Compare commits
20 Commits
feature/ad
...
feature/im
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
623003a4f7 | ||
|
|
27e99dd2eb | ||
|
|
f1f1aac93d | ||
|
|
563f465e2c | ||
|
|
05ae8ee019 | ||
|
|
3696e2eb30 | ||
|
|
276aa1a449 | ||
|
|
ad4075a826 | ||
|
|
e50cd92a35 | ||
|
|
ff79c1525c | ||
|
|
a7597c8d4f | ||
|
|
5b4d9b624f | ||
|
|
27aca98ea4 | ||
|
|
ca591dd427 | ||
|
|
8720e50ba8 | ||
|
|
acf24cab36 | ||
|
|
1811bf51a4 | ||
|
|
27a09aeca4 | ||
|
|
e39cb1a761 | ||
|
|
ab3b0c296a |
2
.gitignore
vendored
2
.gitignore
vendored
@@ -428,4 +428,6 @@ FodyWeavers.xsd
|
|||||||
**/docs/*
|
**/docs/*
|
||||||
**/doc/*
|
**/doc/*
|
||||||
|
|
||||||
|
**/pose_iter_160000.caffemodel
|
||||||
|
|
||||||
# End of https://www.toptal.com/developers/gitignore/api/c++,visualstudio,visualstudiocode,opencv
|
# End of https://www.toptal.com/developers/gitignore/api/c++,visualstudio,visualstudiocode,opencv
|
||||||
|
|||||||
24350
res/haarcascade_frontalface_alt.xml
Normal file
24350
res/haarcascade_frontalface_alt.xml
Normal file
File diff suppressed because it is too large
Load Diff
59
src/computervision/BackgroundRemover.cpp
Normal file
59
src/computervision/BackgroundRemover.cpp
Normal file
@@ -0,0 +1,59 @@
|
|||||||
|
#include "BackgroundRemover.h"
|
||||||
|
|
||||||
|
/*
|
||||||
|
Author: Pierfrancesco Soffritti https://github.com/PierfrancescoSoffritti
|
||||||
|
*/
|
||||||
|
namespace computervision
|
||||||
|
{
|
||||||
|
BackgroundRemover::BackgroundRemover(void) {
|
||||||
|
background;
|
||||||
|
calibrated = false;
|
||||||
|
}
|
||||||
|
|
||||||
|
void BackgroundRemover::calibrate(Mat input) {
|
||||||
|
cvtColor(input, background, CV_BGR2GRAY);
|
||||||
|
calibrated = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
Mat BackgroundRemover::getForeground(Mat input) {
|
||||||
|
Mat foregroundMask = getForegroundMask(input);
|
||||||
|
|
||||||
|
//imshow("foregroundMask", foregroundMask);
|
||||||
|
|
||||||
|
Mat foreground;
|
||||||
|
input.copyTo(foreground, foregroundMask);
|
||||||
|
|
||||||
|
return foreground;
|
||||||
|
}
|
||||||
|
|
||||||
|
Mat BackgroundRemover::getForegroundMask(Mat input) {
|
||||||
|
Mat foregroundMask;
|
||||||
|
|
||||||
|
if (!calibrated) {
|
||||||
|
foregroundMask = Mat::zeros(input.size(), CV_8UC1);
|
||||||
|
return foregroundMask;
|
||||||
|
}
|
||||||
|
|
||||||
|
cvtColor(input, foregroundMask, CV_BGR2GRAY);
|
||||||
|
|
||||||
|
removeBackground(foregroundMask, background);
|
||||||
|
|
||||||
|
return foregroundMask;
|
||||||
|
}
|
||||||
|
|
||||||
|
void BackgroundRemover::removeBackground(Mat input, Mat background) {
|
||||||
|
int thresholdOffset = 25;
|
||||||
|
|
||||||
|
for (int i = 0; i < input.rows; i++) {
|
||||||
|
for (int j = 0; j < input.cols; j++) {
|
||||||
|
uchar framePixel = input.at<uchar>(i, j);
|
||||||
|
uchar bgPixel = background.at<uchar>(i, j);
|
||||||
|
|
||||||
|
if (framePixel >= bgPixel - thresholdOffset && framePixel <= bgPixel + thresholdOffset)
|
||||||
|
input.at<uchar>(i, j) = 0;
|
||||||
|
else
|
||||||
|
input.at<uchar>(i, j) = 255;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
58
src/computervision/BackgroundRemover.h
Normal file
58
src/computervision/BackgroundRemover.h
Normal file
@@ -0,0 +1,58 @@
|
|||||||
|
#pragma once
|
||||||
|
#include"opencv2\opencv.hpp"
|
||||||
|
#include <opencv2/imgproc\types_c.h>
|
||||||
|
/*
|
||||||
|
Author: Pierfrancesco Soffritti https://github.com/PierfrancescoSoffritti
|
||||||
|
*/
|
||||||
|
namespace computervision
|
||||||
|
{
|
||||||
|
using namespace cv;
|
||||||
|
using namespace std;
|
||||||
|
|
||||||
|
class BackgroundRemover {
|
||||||
|
public:
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief constructor,
|
||||||
|
* create background variable and set calibrated to faslse
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
BackgroundRemover(void);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief sets the input image to a grayscale image
|
||||||
|
* sets calibrated to true
|
||||||
|
*
|
||||||
|
* @param input input the image that has to be calibrated
|
||||||
|
*/
|
||||||
|
void calibrate(Mat input);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Gets the mask of the foregorund of the input image
|
||||||
|
* and copies it to another image
|
||||||
|
*
|
||||||
|
* @param input The image from which the forground needs to be picked
|
||||||
|
* @return The image on which te foregroundmask is copied
|
||||||
|
*/
|
||||||
|
Mat getForeground(Mat input);
|
||||||
|
|
||||||
|
private:
|
||||||
|
Mat background;
|
||||||
|
bool calibrated = false;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Sets the image to grayscale and removes the background
|
||||||
|
*
|
||||||
|
* @param input The image from which the forground needs to be picked
|
||||||
|
* @return The mask of the foreground of the image
|
||||||
|
*/
|
||||||
|
Mat getForegroundMask(Mat input);
|
||||||
|
/**
|
||||||
|
* @brief makes everything on the background black
|
||||||
|
*
|
||||||
|
* @param input the image from which the background needs to be removed
|
||||||
|
* @param background the background of the image
|
||||||
|
*/
|
||||||
|
void removeBackground(Mat input, Mat background);
|
||||||
|
};
|
||||||
|
}
|
||||||
53
src/computervision/FaceDetector.cpp
Normal file
53
src/computervision/FaceDetector.cpp
Normal file
@@ -0,0 +1,53 @@
|
|||||||
|
#include "FaceDetector.h"
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
Author: Pierfrancesco Soffritti https://github.com/PierfrancescoSoffritti
|
||||||
|
*/
|
||||||
|
namespace computervision
|
||||||
|
{
|
||||||
|
Rect getFaceRect(Mat input);
|
||||||
|
|
||||||
|
String faceClassifierFileName = "res/haarcascade_frontalface_alt.xml";
|
||||||
|
CascadeClassifier faceCascadeClassifier;
|
||||||
|
|
||||||
|
FaceDetector::FaceDetector(void) {
|
||||||
|
if (!faceCascadeClassifier.load(faceClassifierFileName))
|
||||||
|
throw runtime_error("can't load file " + faceClassifierFileName);
|
||||||
|
}
|
||||||
|
|
||||||
|
void FaceDetector::removeFaces(Mat input, Mat output) {
|
||||||
|
vector<Rect> faces;
|
||||||
|
Mat frameGray;
|
||||||
|
|
||||||
|
cvtColor(input, frameGray, CV_BGR2GRAY);
|
||||||
|
equalizeHist(frameGray, frameGray);
|
||||||
|
|
||||||
|
faceCascadeClassifier.detectMultiScale(frameGray, faces, 1.1, 2, 0 | 2, Size(120, 120)); // HAAR_SCALE_IMAGE is 2
|
||||||
|
|
||||||
|
for (size_t i = 0; i < faces.size(); i++) {
|
||||||
|
rectangle(
|
||||||
|
output,
|
||||||
|
Point(faces[i].x, faces[i].y),
|
||||||
|
Point(faces[i].x + faces[i].width, faces[i].y + faces[i].height),
|
||||||
|
Scalar(0, 0, 0),
|
||||||
|
-1
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Rect getFaceRect(Mat input) {
|
||||||
|
vector<Rect> faceRectangles;
|
||||||
|
Mat inputGray;
|
||||||
|
|
||||||
|
cvtColor(input, inputGray, CV_BGR2GRAY);
|
||||||
|
equalizeHist(inputGray, inputGray);
|
||||||
|
|
||||||
|
faceCascadeClassifier.detectMultiScale(inputGray, faceRectangles, 1.1, 2, 0 | 2, Size(120, 120)); // HAAR_SCALE_IMAGE is 2
|
||||||
|
|
||||||
|
if (faceRectangles.size() > 0)
|
||||||
|
return faceRectangles[0];
|
||||||
|
else
|
||||||
|
return Rect(0, 0, 1, 1);
|
||||||
|
}
|
||||||
|
}
|
||||||
31
src/computervision/FaceDetector.h
Normal file
31
src/computervision/FaceDetector.h
Normal file
@@ -0,0 +1,31 @@
|
|||||||
|
#pragma once
|
||||||
|
#include <opencv2/opencv.hpp>
|
||||||
|
#include <opencv2/imgproc/types_c.h>
|
||||||
|
#include <opencv2/objdetect.hpp>
|
||||||
|
#include <opencv2/core.hpp>
|
||||||
|
#include <opencv2/objdetect/objdetect.hpp>
|
||||||
|
/*
|
||||||
|
Author: Pierfrancesco Soffritti https://github.com/PierfrancescoSoffritti
|
||||||
|
*/
|
||||||
|
|
||||||
|
using namespace cv;
|
||||||
|
using namespace std;
|
||||||
|
|
||||||
|
namespace computervision
|
||||||
|
{
|
||||||
|
class FaceDetector {
|
||||||
|
public:
|
||||||
|
/**
|
||||||
|
* @brief Constructor for the class FaceDetector, loads training data from a file
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
FaceDetector(void);
|
||||||
|
/**
|
||||||
|
* @brief Detects faces on an image and blocks them with a black rectangle
|
||||||
|
*
|
||||||
|
* @param input Input image
|
||||||
|
* @param output Output image
|
||||||
|
*/
|
||||||
|
void removeFaces(Mat input, Mat output);
|
||||||
|
};
|
||||||
|
}
|
||||||
298
src/computervision/FingerCount.cpp
Normal file
298
src/computervision/FingerCount.cpp
Normal file
@@ -0,0 +1,298 @@
|
|||||||
|
#include "FingerCount.h"
|
||||||
|
|
||||||
|
#include "opencv2/imgproc.hpp"
|
||||||
|
#include "opencv2/highgui.hpp"
|
||||||
|
|
||||||
|
/*
|
||||||
|
Author: Nicol<6F> Castellazzi https://github.com/nicast
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define LIMIT_ANGLE_SUP 60
|
||||||
|
#define LIMIT_ANGLE_INF 5
|
||||||
|
#define BOUNDING_RECT_FINGER_SIZE_SCALING 0.3
|
||||||
|
#define BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING 0.05
|
||||||
|
|
||||||
|
namespace computervision
|
||||||
|
{
|
||||||
|
FingerCount::FingerCount(void) {
|
||||||
|
color_blue = Scalar(255, 0, 0);
|
||||||
|
color_green = Scalar(0, 255, 0);
|
||||||
|
color_red = Scalar(0, 0, 255);
|
||||||
|
color_black = Scalar(0, 0, 0);
|
||||||
|
color_white = Scalar(255, 255, 255);
|
||||||
|
color_yellow = Scalar(0, 255, 255);
|
||||||
|
color_purple = Scalar(255, 0, 255);
|
||||||
|
}
|
||||||
|
|
||||||
|
Mat FingerCount::findFingersCount(Mat input_image, Mat frame) {
|
||||||
|
Mat contours_image = Mat::zeros(input_image.size(), CV_8UC3);
|
||||||
|
|
||||||
|
// check if the source image is good
|
||||||
|
if (input_image.empty())
|
||||||
|
return contours_image;
|
||||||
|
|
||||||
|
// we work only on the 1 channel result, since this function is called inside a loop we are not sure that this is always the case
|
||||||
|
if (input_image.channels() != 1)
|
||||||
|
return contours_image;
|
||||||
|
|
||||||
|
vector<vector<Point>> contours;
|
||||||
|
vector<Vec4i> hierarchy;
|
||||||
|
|
||||||
|
findContours(input_image, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);
|
||||||
|
|
||||||
|
// we need at least one contour to work
|
||||||
|
if (contours.size() <= 0)
|
||||||
|
return contours_image;
|
||||||
|
|
||||||
|
// find the biggest contour (let's suppose it's our hand)
|
||||||
|
int biggest_contour_index = -1;
|
||||||
|
double biggest_area = 0.0;
|
||||||
|
|
||||||
|
for (int i = 0; i < contours.size(); i++) {
|
||||||
|
double area = contourArea(contours[i], false);
|
||||||
|
if (area > biggest_area) {
|
||||||
|
biggest_area = area;
|
||||||
|
biggest_contour_index = i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (biggest_contour_index < 0)
|
||||||
|
return contours_image;
|
||||||
|
|
||||||
|
// find the convex hull object for each contour and the defects, two different data structure are needed by the OpenCV api
|
||||||
|
vector<Point> hull_points;
|
||||||
|
vector<int> hull_ints;
|
||||||
|
|
||||||
|
// for drawing the convex hull and for finding the bounding rectangle
|
||||||
|
convexHull(Mat(contours[biggest_contour_index]), hull_points, true);
|
||||||
|
|
||||||
|
// for finding the defects
|
||||||
|
convexHull(Mat(contours[biggest_contour_index]), hull_ints, false);
|
||||||
|
|
||||||
|
// we need at least 3 points to find the defects
|
||||||
|
vector<Vec4i> defects;
|
||||||
|
if (hull_ints.size() > 3)
|
||||||
|
convexityDefects(Mat(contours[biggest_contour_index]), hull_ints, defects);
|
||||||
|
else
|
||||||
|
return contours_image;
|
||||||
|
|
||||||
|
// we bound the convex hull
|
||||||
|
Rect bounding_rectangle = boundingRect(Mat(hull_points));
|
||||||
|
|
||||||
|
// we find the center of the bounding rectangle, this should approximately also be the center of the hand
|
||||||
|
Point center_bounding_rect(
|
||||||
|
(bounding_rectangle.tl().x + bounding_rectangle.br().x) / 2,
|
||||||
|
(bounding_rectangle.tl().y + bounding_rectangle.br().y) / 2
|
||||||
|
);
|
||||||
|
|
||||||
|
// we separate the defects keeping only the ones of intrest
|
||||||
|
vector<Point> start_points;
|
||||||
|
vector<Point> far_points;
|
||||||
|
|
||||||
|
for (int i = 0; i < defects.size(); i++) {
|
||||||
|
start_points.push_back(contours[biggest_contour_index][defects[i].val[0]]);
|
||||||
|
|
||||||
|
// filtering the far point based on the distance from the center of the bounding rectangle
|
||||||
|
if (findPointsDistance(contours[biggest_contour_index][defects[i].val[2]], center_bounding_rect) < bounding_rectangle.height * BOUNDING_RECT_FINGER_SIZE_SCALING)
|
||||||
|
far_points.push_back(contours[biggest_contour_index][defects[i].val[2]]);
|
||||||
|
}
|
||||||
|
|
||||||
|
// we compact them on their medians
|
||||||
|
vector<Point> filtered_start_points = compactOnNeighborhoodMedian(start_points, bounding_rectangle.height * BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING);
|
||||||
|
vector<Point> filtered_far_points = compactOnNeighborhoodMedian(far_points, bounding_rectangle.height * BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING);
|
||||||
|
|
||||||
|
// now we try to find the fingers
|
||||||
|
vector<Point> filtered_finger_points;
|
||||||
|
|
||||||
|
if (filtered_far_points.size() > 1) {
|
||||||
|
vector<Point> finger_points;
|
||||||
|
|
||||||
|
for (int i = 0; i < filtered_start_points.size(); i++) {
|
||||||
|
vector<Point> closest_points = findClosestOnX(filtered_far_points, filtered_start_points[i]);
|
||||||
|
|
||||||
|
if (isFinger(closest_points[0], filtered_start_points[i], closest_points[1], LIMIT_ANGLE_INF, LIMIT_ANGLE_SUP, center_bounding_rect, bounding_rectangle.height * BOUNDING_RECT_FINGER_SIZE_SCALING))
|
||||||
|
finger_points.push_back(filtered_start_points[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (finger_points.size() > 0) {
|
||||||
|
|
||||||
|
// we have at most five fingers usually :)
|
||||||
|
while (finger_points.size() > 5)
|
||||||
|
finger_points.pop_back();
|
||||||
|
|
||||||
|
// filter out the points too close to each other
|
||||||
|
for (int i = 0; i < finger_points.size() - 1; i++) {
|
||||||
|
if (findPointsDistanceOnX(finger_points[i], finger_points[i + 1]) > bounding_rectangle.height * BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING * 1.5)
|
||||||
|
filtered_finger_points.push_back(finger_points[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (finger_points.size() > 2) {
|
||||||
|
if (findPointsDistanceOnX(finger_points[0], finger_points[finger_points.size() - 1]) > bounding_rectangle.height * BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING * 1.5)
|
||||||
|
filtered_finger_points.push_back(finger_points[finger_points.size() - 1]);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
filtered_finger_points.push_back(finger_points[finger_points.size() - 1]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// we draw what found on the returned image
|
||||||
|
drawContours(contours_image, contours, biggest_contour_index, color_green, 2, 8, hierarchy);
|
||||||
|
polylines(contours_image, hull_points, true, color_blue);
|
||||||
|
rectangle(contours_image, bounding_rectangle.tl(), bounding_rectangle.br(), color_red, 2, 8, 0);
|
||||||
|
circle(contours_image, center_bounding_rect, 5, color_purple, 2, 8);
|
||||||
|
drawVectorPoints(contours_image, filtered_start_points, color_blue, true);
|
||||||
|
drawVectorPoints(contours_image, filtered_far_points, color_red, true);
|
||||||
|
drawVectorPoints(contours_image, filtered_finger_points, color_yellow, false);
|
||||||
|
putText(contours_image, to_string(filtered_finger_points.size()), center_bounding_rect, FONT_HERSHEY_PLAIN, 3, color_purple);
|
||||||
|
|
||||||
|
// and on the starting frame
|
||||||
|
drawContours(frame, contours, biggest_contour_index, color_green, 2, 8, hierarchy);
|
||||||
|
circle(frame, center_bounding_rect, 5, color_purple, 2, 8);
|
||||||
|
drawVectorPoints(frame, filtered_finger_points, color_yellow, false);
|
||||||
|
putText(frame, to_string(filtered_finger_points.size()), center_bounding_rect, FONT_HERSHEY_PLAIN, 3, color_purple);
|
||||||
|
|
||||||
|
amount_of_fingers = filtered_finger_points.size();
|
||||||
|
|
||||||
|
return contours_image;
|
||||||
|
}
|
||||||
|
|
||||||
|
int FingerCount::getAmountOfFingers()
|
||||||
|
{
|
||||||
|
return amount_of_fingers;
|
||||||
|
}
|
||||||
|
|
||||||
|
double FingerCount::findPointsDistance(Point a, Point b) {
|
||||||
|
Point difference = a - b;
|
||||||
|
return sqrt(difference.ddot(difference));
|
||||||
|
}
|
||||||
|
|
||||||
|
vector<Point> FingerCount::compactOnNeighborhoodMedian(vector<Point> points, double max_neighbor_distance) {
|
||||||
|
vector<Point> median_points;
|
||||||
|
|
||||||
|
if (points.size() == 0)
|
||||||
|
return median_points;
|
||||||
|
|
||||||
|
if (max_neighbor_distance <= 0)
|
||||||
|
return median_points;
|
||||||
|
|
||||||
|
// we start with the first point
|
||||||
|
Point reference = points[0];
|
||||||
|
Point median = points[0];
|
||||||
|
|
||||||
|
for (int i = 1; i < points.size(); i++) {
|
||||||
|
if (findPointsDistance(reference, points[i]) > max_neighbor_distance) {
|
||||||
|
|
||||||
|
// the point is not in range, we save the median
|
||||||
|
median_points.push_back(median);
|
||||||
|
|
||||||
|
// we swap the reference
|
||||||
|
reference = points[i];
|
||||||
|
median = points[i];
|
||||||
|
}
|
||||||
|
else
|
||||||
|
median = (points[i] + median) / 2;
|
||||||
|
}
|
||||||
|
|
||||||
|
// last median
|
||||||
|
median_points.push_back(median);
|
||||||
|
|
||||||
|
return median_points;
|
||||||
|
}
|
||||||
|
|
||||||
|
double FingerCount::findAngle(Point a, Point b, Point c) {
|
||||||
|
double ab = findPointsDistance(a, b);
|
||||||
|
double bc = findPointsDistance(b, c);
|
||||||
|
double ac = findPointsDistance(a, c);
|
||||||
|
return acos((ab * ab + bc * bc - ac * ac) / (2 * ab * bc)) * 180 / CV_PI;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool FingerCount::isFinger(Point a, Point b, Point c, double limit_angle_inf, double limit_angle_sup, Point palm_center, double min_distance_from_palm) {
|
||||||
|
double angle = findAngle(a, b, c);
|
||||||
|
if (angle > limit_angle_sup || angle < limit_angle_inf)
|
||||||
|
return false;
|
||||||
|
|
||||||
|
// the finger point sohould not be under the two far points
|
||||||
|
int delta_y_1 = b.y - a.y;
|
||||||
|
int delta_y_2 = b.y - c.y;
|
||||||
|
if (delta_y_1 > 0 && delta_y_2 > 0)
|
||||||
|
return false;
|
||||||
|
|
||||||
|
// the two far points should not be both under the center of the hand
|
||||||
|
int delta_y_3 = palm_center.y - a.y;
|
||||||
|
int delta_y_4 = palm_center.y - c.y;
|
||||||
|
if (delta_y_3 < 0 && delta_y_4 < 0)
|
||||||
|
return false;
|
||||||
|
|
||||||
|
double distance_from_palm = findPointsDistance(b, palm_center);
|
||||||
|
if (distance_from_palm < min_distance_from_palm)
|
||||||
|
return false;
|
||||||
|
|
||||||
|
// this should be the case when no fingers are up
|
||||||
|
double distance_from_palm_far_1 = findPointsDistance(a, palm_center);
|
||||||
|
double distance_from_palm_far_2 = findPointsDistance(c, palm_center);
|
||||||
|
if (distance_from_palm_far_1 < min_distance_from_palm / 4 || distance_from_palm_far_2 < min_distance_from_palm / 4)
|
||||||
|
return false;
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
vector<Point> FingerCount::findClosestOnX(vector<Point> points, Point pivot) {
|
||||||
|
vector<Point> to_return(2);
|
||||||
|
|
||||||
|
if (points.size() == 0)
|
||||||
|
return to_return;
|
||||||
|
|
||||||
|
double distance_x_1 = DBL_MAX;
|
||||||
|
double distance_1 = DBL_MAX;
|
||||||
|
double distance_x_2 = DBL_MAX;
|
||||||
|
double distance_2 = DBL_MAX;
|
||||||
|
int index_found = 0;
|
||||||
|
|
||||||
|
for (int i = 0; i < points.size(); i++) {
|
||||||
|
double distance_x = findPointsDistanceOnX(pivot, points[i]);
|
||||||
|
double distance = findPointsDistance(pivot, points[i]);
|
||||||
|
|
||||||
|
if (distance_x < distance_x_1 && distance_x != 0 && distance <= distance_1) {
|
||||||
|
distance_x_1 = distance_x;
|
||||||
|
distance_1 = distance;
|
||||||
|
index_found = i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
to_return[0] = points[index_found];
|
||||||
|
|
||||||
|
for (int i = 0; i < points.size(); i++) {
|
||||||
|
double distance_x = findPointsDistanceOnX(pivot, points[i]);
|
||||||
|
double distance = findPointsDistance(pivot, points[i]);
|
||||||
|
|
||||||
|
if (distance_x < distance_x_2 && distance_x != 0 && distance <= distance_2 && distance_x != distance_x_1) {
|
||||||
|
distance_x_2 = distance_x;
|
||||||
|
distance_2 = distance;
|
||||||
|
index_found = i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
to_return[1] = points[index_found];
|
||||||
|
|
||||||
|
return to_return;
|
||||||
|
}
|
||||||
|
|
||||||
|
double FingerCount::findPointsDistanceOnX(Point a, Point b) {
|
||||||
|
double to_return = 0.0;
|
||||||
|
|
||||||
|
if (a.x > b.x)
|
||||||
|
to_return = a.x - b.x;
|
||||||
|
else
|
||||||
|
to_return = b.x - a.x;
|
||||||
|
|
||||||
|
return to_return;
|
||||||
|
}
|
||||||
|
|
||||||
|
void FingerCount::drawVectorPoints(Mat image, vector<Point> points, Scalar color, bool with_numbers) {
|
||||||
|
for (int i = 0; i < points.size(); i++) {
|
||||||
|
circle(image, points[i], 5, color, 2, 8);
|
||||||
|
if (with_numbers)
|
||||||
|
putText(image, to_string(i), points[i], FONT_HERSHEY_PLAIN, 3, color);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
119
src/computervision/FingerCount.h
Normal file
119
src/computervision/FingerCount.h
Normal file
@@ -0,0 +1,119 @@
|
|||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "opencv2/core.hpp"
|
||||||
|
#include <opencv2/imgproc/types_c.h>
|
||||||
|
|
||||||
|
/*
|
||||||
|
Author: Nicol<6F> Castellazzi https://github.com/nicast
|
||||||
|
*/
|
||||||
|
|
||||||
|
namespace computervision
|
||||||
|
{
|
||||||
|
using namespace cv;
|
||||||
|
using namespace std;
|
||||||
|
|
||||||
|
class FingerCount {
|
||||||
|
public:
|
||||||
|
FingerCount(void);
|
||||||
|
/**
|
||||||
|
* @brief gets the amount of fingers that are held up.
|
||||||
|
*
|
||||||
|
* @param input_image the source image to find the fingers on. It should be a mask of a hand
|
||||||
|
* @param frame the frame to draw the resulting values on (how many fingers are held up etc)
|
||||||
|
* @return a new image with all the data drawn on it.
|
||||||
|
*/
|
||||||
|
Mat findFingersCount(Mat input_image, Mat frame);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief gets the currently held-up finger count.
|
||||||
|
*
|
||||||
|
* @return the currently held-up finger count
|
||||||
|
*/
|
||||||
|
int getAmountOfFingers();
|
||||||
|
|
||||||
|
private:
|
||||||
|
// colors to use
|
||||||
|
Scalar color_blue;
|
||||||
|
Scalar color_green;
|
||||||
|
Scalar color_red;
|
||||||
|
Scalar color_black;
|
||||||
|
Scalar color_white;
|
||||||
|
Scalar color_yellow;
|
||||||
|
Scalar color_purple;
|
||||||
|
|
||||||
|
int amount_of_fingers;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief finds the distance between 2 points.
|
||||||
|
*
|
||||||
|
* @param a the first point
|
||||||
|
* @param b the second point
|
||||||
|
* @return a double representing the distance
|
||||||
|
*/
|
||||||
|
double findPointsDistance(Point a, Point b);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief compacts the given points on their medians.
|
||||||
|
* what it does is for each point, it checks if the distance to it's neighbour is greater than the
|
||||||
|
* max distance. If so, it just adds it to the list that is returned. If not, it calculates the
|
||||||
|
* median and adds it to the returned list
|
||||||
|
*
|
||||||
|
* @param points the points to compact
|
||||||
|
* @param max_neighbor_distance the maximum distance between points
|
||||||
|
* @return a vector with the points now compacted.
|
||||||
|
*/
|
||||||
|
vector<Point> compactOnNeighborhoodMedian(vector<Point> points, double max_neighbor_distance);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief finds the angle between 3 different points.
|
||||||
|
*
|
||||||
|
* @param a the first point
|
||||||
|
* @param b the second point
|
||||||
|
* @param c the third point
|
||||||
|
* @return the angle between the 3 points
|
||||||
|
*/
|
||||||
|
double findAngle(Point a, Point b, Point c);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief checks if the given points make up a finger.
|
||||||
|
*
|
||||||
|
* @param a the first point to check for
|
||||||
|
* @param b the second point to check for
|
||||||
|
* @param c the third point to check for
|
||||||
|
* @param limit_angle_inf the limit of the angle between 2 fingers
|
||||||
|
* @param limit_angle_sup the limit of the angle between a finger and a convex point
|
||||||
|
* @param palm_center the center of the palm
|
||||||
|
* @param distance_from_palm_tollerance the distance from the palm tolerance
|
||||||
|
* @return true if the points are a finger, false if not.
|
||||||
|
*/
|
||||||
|
bool isFinger(Point a, Point b, Point c, double limit_angle_inf, double limit_angle_sup, cv::Point palm_center, double distance_from_palm_tollerance);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief finds the closest point to the given point that is in the given list.
|
||||||
|
*
|
||||||
|
* @param points the points to check for
|
||||||
|
* @param pivot the pivot to check against
|
||||||
|
* @return a vector containing the point that is closest
|
||||||
|
*/
|
||||||
|
vector<Point> findClosestOnX(vector<Point> points, Point pivot);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief finds the distance between the x coords of the points.
|
||||||
|
*
|
||||||
|
* @param a the first point
|
||||||
|
* @param b the second point
|
||||||
|
* @return the distance between the x values
|
||||||
|
*/
|
||||||
|
double findPointsDistanceOnX(Point a, Point b);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief draws the points on the image.
|
||||||
|
*
|
||||||
|
* @param image the image to draw on
|
||||||
|
* @param points the points to draw
|
||||||
|
* @param color the color to draw them with
|
||||||
|
* @param with_numbers if the numbers should be drawn with the points
|
||||||
|
*/
|
||||||
|
void drawVectorPoints(Mat image, vector<Point> points, Scalar color, bool with_numbers);
|
||||||
|
};
|
||||||
|
}
|
||||||
25
src/computervision/MenuTest.cpp
Normal file
25
src/computervision/MenuTest.cpp
Normal file
@@ -0,0 +1,25 @@
|
|||||||
|
#include "MenuTest.h"
|
||||||
|
#include <iostream>
|
||||||
|
|
||||||
|
namespace computervision
|
||||||
|
{
|
||||||
|
int menu_item_array[4] = { 1, 2, 3, 4 };
|
||||||
|
float item_number = 0;
|
||||||
|
|
||||||
|
MenuTest::MenuTest(void) {
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
int MenuTest::GetMenuItem(bool hand_state) {
|
||||||
|
item_number += 0.20f;
|
||||||
|
|
||||||
|
|
||||||
|
int temp_item_number = item_number;
|
||||||
|
//If temp_item_number is equal to the size of the array, set item_number bac to zero to loop through the array again
|
||||||
|
if (temp_item_number == sizeof(menu_item_array) / sizeof(menu_item_array[0])) {
|
||||||
|
item_number = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
return menu_item_array[temp_item_number];
|
||||||
|
}
|
||||||
|
}
|
||||||
18
src/computervision/MenuTest.h
Normal file
18
src/computervision/MenuTest.h
Normal file
@@ -0,0 +1,18 @@
|
|||||||
|
|
||||||
|
namespace computervision
|
||||||
|
{
|
||||||
|
class MenuTest {
|
||||||
|
public:
|
||||||
|
/**
|
||||||
|
* @brief Constructor for the class MenuTest, loads in array with menu items
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
MenuTest(void);
|
||||||
|
/**
|
||||||
|
* @brief Returns the itemnumber in an array
|
||||||
|
*
|
||||||
|
* @param input_bool is either true or false, depending on the recognized hand gesture
|
||||||
|
*/
|
||||||
|
int GetMenuItem(bool input_bool);
|
||||||
|
};
|
||||||
|
}
|
||||||
125
src/computervision/ObjectDetection.cpp
Normal file
125
src/computervision/ObjectDetection.cpp
Normal file
@@ -0,0 +1,125 @@
|
|||||||
|
|
||||||
|
#include <opencv2/videoio.hpp>
|
||||||
|
#include <opencv2/highgui.hpp>
|
||||||
|
#include <opencv2/video.hpp>
|
||||||
|
|
||||||
|
#include "ObjectDetection.h"
|
||||||
|
#include "BackgroundRemover.h"
|
||||||
|
#include "SkinDetector.h"
|
||||||
|
#include "FaceDetector.h"
|
||||||
|
#include "FingerCount.h"
|
||||||
|
|
||||||
|
namespace computervision
|
||||||
|
{
|
||||||
|
cv::VideoCapture cap(0);
|
||||||
|
|
||||||
|
cv::Mat img, imgGray, img2, img2Gray, img3, img4;
|
||||||
|
|
||||||
|
int handMaskStartXPos, handMaskStartYPos, handMaskWidth, handMaskHeight;
|
||||||
|
bool handMaskGenerated = false;
|
||||||
|
|
||||||
|
Mat frame, frameOut, handMask, foreground, fingerCountDebug;
|
||||||
|
BackgroundRemover backgroundRemover;
|
||||||
|
SkinDetector skinDetector;
|
||||||
|
FaceDetector faceDetector;
|
||||||
|
FingerCount fingerCount;
|
||||||
|
|
||||||
|
ObjectDetection::ObjectDetection()
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
cv::Mat ObjectDetection::readCamera() {
|
||||||
|
cap.read(img);
|
||||||
|
return img;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool ObjectDetection::detectHand(Mat cameraFrame)
|
||||||
|
{
|
||||||
|
Mat inputFrame = generateHandMaskSquare(cameraFrame);
|
||||||
|
frameOut = inputFrame.clone();
|
||||||
|
|
||||||
|
// detect skin color
|
||||||
|
skinDetector.drawSkinColorSampler(frameOut);
|
||||||
|
|
||||||
|
// remove background from image
|
||||||
|
foreground = backgroundRemover.getForeground(inputFrame);
|
||||||
|
|
||||||
|
// detect the hand contours
|
||||||
|
handMask = skinDetector.getSkinMask(foreground);
|
||||||
|
|
||||||
|
// count the amount of fingers and put the info on the matrix
|
||||||
|
fingerCountDebug = fingerCount.findFingersCount(handMask, frameOut);
|
||||||
|
|
||||||
|
// get the amount of fingers
|
||||||
|
int fingers_amount = fingerCount.getAmountOfFingers();
|
||||||
|
|
||||||
|
// draw the hand rectangle on the camera input, and draw text showing if the hand is open or closed.
|
||||||
|
drawHandMaskRect(&cameraFrame);
|
||||||
|
string hand_text = fingers_amount > 0 ? "open" : "closed";
|
||||||
|
putText(cameraFrame,hand_text, Point(10, 75), FONT_HERSHEY_PLAIN, 2.0, Scalar(255, 0, 255),3);
|
||||||
|
imshow("camera", cameraFrame);
|
||||||
|
|
||||||
|
imshow("output", frameOut);
|
||||||
|
imshow("foreground", foreground);
|
||||||
|
imshow("handMask", handMask);
|
||||||
|
imshow("handDetection", fingerCountDebug);
|
||||||
|
|
||||||
|
int key = waitKey(1);
|
||||||
|
|
||||||
|
if (key == 98) // b, calibrate the background
|
||||||
|
backgroundRemover.calibrate(inputFrame);
|
||||||
|
else if (key == 115) // s, calibrate the skin color
|
||||||
|
skinDetector.calibrate(inputFrame);
|
||||||
|
|
||||||
|
return fingers_amount > 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void ObjectDetection::calculateDifference()
|
||||||
|
{
|
||||||
|
cap.read(img);
|
||||||
|
cap.read(img2);
|
||||||
|
|
||||||
|
cv::cvtColor(img, imgGray, cv::COLOR_RGBA2GRAY);
|
||||||
|
cv::cvtColor(img2, img2Gray, cv::COLOR_RGBA2GRAY);
|
||||||
|
|
||||||
|
cv::absdiff(imgGray, img2Gray, img3);
|
||||||
|
cv::threshold(img3, img4, 50, 170, cv::THRESH_BINARY);
|
||||||
|
|
||||||
|
imshow("threshold", img4);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
cv::Mat ObjectDetection::generateHandMaskSquare(cv::Mat img)
|
||||||
|
{
|
||||||
|
handMaskStartXPos = 20;
|
||||||
|
handMaskStartYPos = img.rows / 5;
|
||||||
|
handMaskWidth = img.cols / 3;
|
||||||
|
handMaskHeight = img.cols / 3;
|
||||||
|
|
||||||
|
|
||||||
|
cv::Mat mask = cv::Mat::zeros(img.size(), img.type());
|
||||||
|
cv::Mat dstImg = cv::Mat::zeros(img.size(), img.type());
|
||||||
|
|
||||||
|
cv::rectangle(mask, Rect(handMaskStartXPos, handMaskStartYPos, handMaskWidth, handMaskHeight), Scalar(255, 255, 255), -1);
|
||||||
|
|
||||||
|
img.copyTo(dstImg, mask);
|
||||||
|
|
||||||
|
handMaskGenerated = true;
|
||||||
|
return dstImg;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
bool ObjectDetection::drawHandMaskRect(cv::Mat* input)
|
||||||
|
{
|
||||||
|
if (!handMaskGenerated) return false;
|
||||||
|
rectangle(*input, Rect(handMaskStartXPos, handMaskStartYPos, handMaskWidth, handMaskHeight), Scalar(255, 255, 255));
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
void ObjectDetection::showWebcam()
|
||||||
|
{
|
||||||
|
imshow("Webcam image", img);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
72
src/computervision/ObjectDetection.h
Normal file
72
src/computervision/ObjectDetection.h
Normal file
@@ -0,0 +1,72 @@
|
|||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <opencv2/imgcodecs.hpp>
|
||||||
|
#include <opencv2/highgui.hpp>
|
||||||
|
#include <opencv2/imgproc.hpp>
|
||||||
|
#include <opencv2/objdetect.hpp>
|
||||||
|
#include <opencv2/videoio.hpp>
|
||||||
|
#include <opencv2/core.hpp>
|
||||||
|
#include <opencv2/imgproc/imgproc.hpp>
|
||||||
|
#include <opencv2/highgui/highgui.hpp>
|
||||||
|
|
||||||
|
|
||||||
|
namespace computervision
|
||||||
|
{
|
||||||
|
class ObjectDetection
|
||||||
|
{
|
||||||
|
private:
|
||||||
|
|
||||||
|
public:
|
||||||
|
/**
|
||||||
|
* @brief default constructor of ObjectDetection
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
ObjectDetection();
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Displays an image of the current webcam-footage
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
void showWebcam();
|
||||||
|
/**
|
||||||
|
* @brief Calculates the difference between two images
|
||||||
|
* and outputs an image that only shows the difference
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
void calculateDifference();
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief generates the square that will hold the mask in which the hand will be detected.
|
||||||
|
*
|
||||||
|
* @param img the current camear frame
|
||||||
|
* @return a matrix containing the mask
|
||||||
|
*/
|
||||||
|
cv::Mat generateHandMaskSquare(cv::Mat img);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief reads the camera and returns it in a matrix.
|
||||||
|
*
|
||||||
|
* @return the camera frame in a matrix
|
||||||
|
*/
|
||||||
|
cv::Mat readCamera();
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief detects a hand based on the given hand mask input frame.
|
||||||
|
*
|
||||||
|
* @param inputFrame the input frame from the camera
|
||||||
|
* @return true if hand is open, false if hand is closed
|
||||||
|
*/
|
||||||
|
bool detectHand(cv::Mat cameraFrame);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief draws the hand mask rectangle on the given input matrix.
|
||||||
|
*
|
||||||
|
* @param input the input matrix to draw the rectangle on
|
||||||
|
*/
|
||||||
|
bool drawHandMaskRect(cv::Mat *input);
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
105
src/computervision/SkinDetector.cpp
Normal file
105
src/computervision/SkinDetector.cpp
Normal file
@@ -0,0 +1,105 @@
|
|||||||
|
#include "SkinDetector.h"
|
||||||
|
|
||||||
|
/*
|
||||||
|
Author: Pierfrancesco Soffritti https://github.com/PierfrancescoSoffritti
|
||||||
|
*/
|
||||||
|
|
||||||
|
namespace computervision
|
||||||
|
{
|
||||||
|
SkinDetector::SkinDetector(void) {
|
||||||
|
hLowThreshold = 0;
|
||||||
|
hHighThreshold = 0;
|
||||||
|
sLowThreshold = 0;
|
||||||
|
sHighThreshold = 0;
|
||||||
|
vLowThreshold = 0;
|
||||||
|
vHighThreshold = 0;
|
||||||
|
|
||||||
|
calibrated = false;
|
||||||
|
|
||||||
|
skinColorSamplerRectangle1, skinColorSamplerRectangle2;
|
||||||
|
}
|
||||||
|
|
||||||
|
void SkinDetector::drawSkinColorSampler(Mat input) {
|
||||||
|
int frameWidth = input.size().width, frameHeight = input.size().height;
|
||||||
|
|
||||||
|
int rectangleSize = 25;
|
||||||
|
Scalar rectangleColor = Scalar(255, 0, 255);
|
||||||
|
|
||||||
|
skinColorSamplerRectangle1 = Rect(frameWidth / 5, frameHeight / 2, rectangleSize, rectangleSize);
|
||||||
|
skinColorSamplerRectangle2 = Rect(frameWidth / 5, frameHeight / 3, rectangleSize, rectangleSize);
|
||||||
|
|
||||||
|
rectangle(
|
||||||
|
input,
|
||||||
|
skinColorSamplerRectangle1,
|
||||||
|
rectangleColor
|
||||||
|
);
|
||||||
|
|
||||||
|
rectangle(
|
||||||
|
input,
|
||||||
|
skinColorSamplerRectangle2,
|
||||||
|
rectangleColor
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
void SkinDetector::calibrate(Mat input) {
|
||||||
|
|
||||||
|
Mat hsvInput;
|
||||||
|
cvtColor(input, hsvInput, CV_BGR2HSV);
|
||||||
|
|
||||||
|
Mat sample1 = Mat(hsvInput, skinColorSamplerRectangle1);
|
||||||
|
Mat sample2 = Mat(hsvInput, skinColorSamplerRectangle2);
|
||||||
|
|
||||||
|
calculateThresholds(sample1, sample2);
|
||||||
|
|
||||||
|
calibrated = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
void SkinDetector::calculateThresholds(Mat sample1, Mat sample2) {
|
||||||
|
int offsetLowThreshold = 80;
|
||||||
|
int offsetHighThreshold = 30;
|
||||||
|
|
||||||
|
Scalar hsvMeansSample1 = mean(sample1);
|
||||||
|
Scalar hsvMeansSample2 = mean(sample2);
|
||||||
|
|
||||||
|
hLowThreshold = min(hsvMeansSample1[0], hsvMeansSample2[0]) - offsetLowThreshold;
|
||||||
|
hHighThreshold = max(hsvMeansSample1[0], hsvMeansSample2[0]) + offsetHighThreshold;
|
||||||
|
|
||||||
|
sLowThreshold = min(hsvMeansSample1[1], hsvMeansSample2[1]) - offsetLowThreshold;
|
||||||
|
sHighThreshold = max(hsvMeansSample1[1], hsvMeansSample2[1]) + offsetHighThreshold;
|
||||||
|
|
||||||
|
// the V channel shouldn't be used. By ignorint it, shadows on the hand wouldn't interfire with segmentation.
|
||||||
|
// Unfortunately there's a bug somewhere and not using the V channel causes some problem. This shouldn't be too hard to fix.
|
||||||
|
vLowThreshold = min(hsvMeansSample1[2], hsvMeansSample2[2]) - offsetLowThreshold;
|
||||||
|
vHighThreshold = max(hsvMeansSample1[2], hsvMeansSample2[2]) + offsetHighThreshold;
|
||||||
|
//vLowThreshold = 0;
|
||||||
|
//vHighThreshold = 255;
|
||||||
|
}
|
||||||
|
|
||||||
|
Mat SkinDetector::getSkinMask(Mat input) {
|
||||||
|
Mat skinMask;
|
||||||
|
|
||||||
|
if (!calibrated) {
|
||||||
|
skinMask = Mat::zeros(input.size(), CV_8UC1);
|
||||||
|
return skinMask;
|
||||||
|
}
|
||||||
|
|
||||||
|
Mat hsvInput;
|
||||||
|
cvtColor(input, hsvInput, CV_BGR2HSV);
|
||||||
|
|
||||||
|
inRange(
|
||||||
|
hsvInput,
|
||||||
|
Scalar(hLowThreshold, sLowThreshold, vLowThreshold),
|
||||||
|
Scalar(hHighThreshold, sHighThreshold, vHighThreshold),
|
||||||
|
skinMask);
|
||||||
|
|
||||||
|
performOpening(skinMask, MORPH_ELLIPSE, { 3, 3 });
|
||||||
|
dilate(skinMask, skinMask, Mat(), Point(-1, -1), 3);
|
||||||
|
|
||||||
|
return skinMask;
|
||||||
|
}
|
||||||
|
|
||||||
|
void SkinDetector::performOpening(Mat binaryImage, int kernelShape, Point kernelSize) {
|
||||||
|
Mat structuringElement = getStructuringElement(kernelShape, kernelSize);
|
||||||
|
morphologyEx(binaryImage, binaryImage, MORPH_OPEN, structuringElement);
|
||||||
|
}
|
||||||
|
}
|
||||||
76
src/computervision/SkinDetector.h
Normal file
76
src/computervision/SkinDetector.h
Normal file
@@ -0,0 +1,76 @@
|
|||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <opencv2\core.hpp>
|
||||||
|
#include <opencv2/imgcodecs.hpp>
|
||||||
|
#include <opencv2/imgproc.hpp>
|
||||||
|
#include <opencv2/imgproc/types_c.h>
|
||||||
|
/*
|
||||||
|
Author: Pierfrancesco Soffritti https://github.com/PierfrancescoSoffritti
|
||||||
|
*/
|
||||||
|
|
||||||
|
namespace computervision
|
||||||
|
{
|
||||||
|
using namespace cv;
|
||||||
|
using namespace std;
|
||||||
|
|
||||||
|
class SkinDetector {
|
||||||
|
public:
|
||||||
|
SkinDetector(void);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* @brief draws the positions in where the skin color will be sampled.
|
||||||
|
*
|
||||||
|
* @param input the input matrix to sample the skin color from
|
||||||
|
*/
|
||||||
|
void drawSkinColorSampler(Mat input);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* @brief calibrates the skin color detector with the given input frame
|
||||||
|
*
|
||||||
|
* @param input the input frame to calibrate from
|
||||||
|
*/
|
||||||
|
void calibrate(Mat input);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* @brief gets the mask for the hand
|
||||||
|
*
|
||||||
|
* @param input the input matrix to get the skin mask from
|
||||||
|
* @returns the skin mask in a new matrix
|
||||||
|
*/
|
||||||
|
Mat getSkinMask(Mat input);
|
||||||
|
|
||||||
|
private:
|
||||||
|
|
||||||
|
// thresholds for hsv calculation
|
||||||
|
int hLowThreshold = 0;
|
||||||
|
int hHighThreshold = 0;
|
||||||
|
int sLowThreshold = 0;
|
||||||
|
int sHighThreshold = 0;
|
||||||
|
int vLowThreshold = 0;
|
||||||
|
int vHighThreshold = 0;
|
||||||
|
|
||||||
|
// wether or not the skindetector has calibrated yet.
|
||||||
|
bool calibrated = false;
|
||||||
|
|
||||||
|
// rectangles that get drawn to show where the skin color will be sampled
|
||||||
|
Rect skinColorSamplerRectangle1, skinColorSamplerRectangle2;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* @brief calculates the skin tresholds for the given samples
|
||||||
|
*
|
||||||
|
* @param sample1 the first sample
|
||||||
|
* @param sample2 the second sample
|
||||||
|
*/
|
||||||
|
void calculateThresholds(Mat sample1, Mat sample2);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief the opening. it generates the structuring element and performs the morphological transformations required to detect the hand.
|
||||||
|
* This needs to be done to get the skin mask.
|
||||||
|
*
|
||||||
|
* @param binaryImage the matrix to perform the opening on. This needs to be a binary image, so consisting of only 1's and 0's.
|
||||||
|
* @param structuralElementShape the shape to use for the kernel that is used with generating the structuring element
|
||||||
|
* @param structuralElementSize the size of the kernel that will be used with generating the structuring element.
|
||||||
|
*/
|
||||||
|
void performOpening(Mat binaryImage, int structuralElementShape, Point structuralElementSize);
|
||||||
|
};
|
||||||
|
}
|
||||||
163
src/main.cpp
163
src/main.cpp
@@ -4,8 +4,13 @@
|
|||||||
#define STB_IMAGE_IMPLEMENTATION
|
#define STB_IMAGE_IMPLEMENTATION
|
||||||
#include "stb_image.h"
|
#include "stb_image.h"
|
||||||
#include <ostream>
|
#include <ostream>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <iostream>
|
||||||
|
#include <Windows.h>
|
||||||
|
|
||||||
#include <opencv2/core.hpp>
|
#include <opencv2/core.hpp>
|
||||||
|
#include <opencv2/videoio.hpp>
|
||||||
|
#include <opencv2/video.hpp>
|
||||||
|
|
||||||
#include "models/model.h"
|
#include "models/model.h"
|
||||||
#include "renderEngine/loader.h"
|
#include "renderEngine/loader.h"
|
||||||
@@ -14,6 +19,9 @@
|
|||||||
#include "shaders/static_shader.h"
|
#include "shaders/static_shader.h"
|
||||||
#include "toolbox/toolbox.h"
|
#include "toolbox/toolbox.h"
|
||||||
|
|
||||||
|
#include "computervision/MenuTest.h"
|
||||||
|
#include "computervision/ObjectDetection.h"
|
||||||
|
|
||||||
#pragma comment(lib, "glfw3.lib")
|
#pragma comment(lib, "glfw3.lib")
|
||||||
#pragma comment(lib, "glew32s.lib")
|
#pragma comment(lib, "glew32s.lib")
|
||||||
#pragma comment(lib, "opengl32.lib")
|
#pragma comment(lib, "opengl32.lib")
|
||||||
@@ -21,75 +29,134 @@
|
|||||||
static double UpdateDelta();
|
static double UpdateDelta();
|
||||||
|
|
||||||
static GLFWwindow* window;
|
static GLFWwindow* window;
|
||||||
|
int chosen_item = 0;
|
||||||
|
|
||||||
int main(void)
|
int main(void)
|
||||||
{
|
{
|
||||||
#pragma region OPENGL_SETTINGS
|
#pragma region OPENGL_SETTINGS
|
||||||
if (!glfwInit())
|
if (!glfwInit())
|
||||||
throw "Could not inditialize glwf";
|
throw "Could not inditialize glwf";
|
||||||
window = glfwCreateWindow(WINDOW_WIDTH, WINDOW_HEIGT, "SDBA", NULL, NULL);
|
window = glfwCreateWindow(WINDOW_WIDTH, WINDOW_HEIGT, "SDBA", NULL, NULL);
|
||||||
if (!window)
|
if (!window)
|
||||||
{
|
{
|
||||||
glfwTerminate();
|
glfwTerminate();
|
||||||
throw "Could not initialize glwf";
|
throw "Could not initialize glwf";
|
||||||
}
|
}
|
||||||
glfwMakeContextCurrent(window);
|
glfwMakeContextCurrent(window);
|
||||||
glewInit();
|
glewInit();
|
||||||
glGetError();
|
glGetError();
|
||||||
#pragma endregion
|
#pragma endregion
|
||||||
|
|
||||||
glfwSetKeyCallback(window, [](GLFWwindow* window, int key, int scancode, int action, int mods)
|
glfwSetKeyCallback(window, [](GLFWwindow* window, int key, int scancode, int action, int mods)
|
||||||
{
|
{
|
||||||
if (key == GLFW_KEY_ESCAPE)
|
if (key == GLFW_KEY_ESCAPE)
|
||||||
glfwSetWindowShouldClose(window, true);
|
glfwSetWindowShouldClose(window, true);
|
||||||
});
|
});
|
||||||
|
|
||||||
|
|
||||||
models::RawModel raw_model = LoadObjModel("res/Tree.obj");
|
models::RawModel raw_model = LoadObjModel("res/Tree.obj");
|
||||||
models::ModelTexture texture = { render_engine::loader::LoadTexture("res/TreeTexture.png") };
|
models::ModelTexture texture = { render_engine::loader::LoadTexture("res/TreeTexture.png") };
|
||||||
models::TexturedModel model = { raw_model, texture };
|
models::TexturedModel model = { raw_model, texture };
|
||||||
entities::Entity entity(model, glm::vec3(0, -5, -20), glm::vec3(0, 0, 0), 1);
|
entities::Entity entity(model, glm::vec3(0, -5, -20), glm::vec3(0, 0, 0), 1);
|
||||||
|
|
||||||
shaders::StaticShader shader;
|
shaders::StaticShader shader;
|
||||||
shader.Init();
|
shader.Init();
|
||||||
render_engine::renderer::Init(shader);
|
render_engine::renderer::Init(shader);
|
||||||
|
|
||||||
|
entities::Camera camera(glm::vec3(0, 0, 0), glm::vec3(0, 0, 0));
|
||||||
|
|
||||||
|
// create object detection object instance
|
||||||
|
computervision::ObjectDetection objDetect;
|
||||||
|
|
||||||
|
|
||||||
|
// set up object detection
|
||||||
|
//objDetect.setup();
|
||||||
|
cv::Mat cameraFrame;
|
||||||
|
|
||||||
entities::Camera camera(glm::vec3(0, 0, 0), glm::vec3(0, 0, 0));
|
|
||||||
|
|
||||||
// Main game loop
|
// Main game loop
|
||||||
while (!glfwWindowShouldClose(window))
|
while (!glfwWindowShouldClose(window))
|
||||||
{
|
{
|
||||||
// Update
|
// Update
|
||||||
const double delta = UpdateDelta();
|
const double delta = UpdateDelta();
|
||||||
entity.IncreaseRotation(glm::vec3(0, 1, 0));
|
entity.IncreaseRotation(glm::vec3(0, 1, 0));
|
||||||
camera.Move(window);
|
camera.Move(window);
|
||||||
|
|
||||||
// Render
|
// Render
|
||||||
render_engine::renderer::Prepare();
|
render_engine::renderer::Prepare();
|
||||||
shader.Start();
|
shader.Start();
|
||||||
shader.LoadViewMatrix(camera);
|
shader.LoadViewMatrix(camera);
|
||||||
|
|
||||||
|
|
||||||
|
render_engine::renderer::Render(entity, shader);
|
||||||
|
|
||||||
|
cameraFrame = objDetect.readCamera();
|
||||||
|
|
||||||
|
////////////////////////// KIMS SHIT ////////////////////////////////////
|
||||||
|
computervision::MenuTest menu_test;
|
||||||
|
|
||||||
|
//Get hand state from camera
|
||||||
|
bool hand_detection = objDetect.detectHand(cameraFrame);
|
||||||
|
|
||||||
render_engine::renderer::Render(entity, shader);
|
if (hand_detection)
|
||||||
|
{
|
||||||
|
std::cout << "hand is opened" << std::endl;
|
||||||
|
|
||||||
|
//Loop through menu items
|
||||||
|
chosen_item = menu_test.GetMenuItem(true);
|
||||||
|
|
||||||
|
//For debug only, to see if chosen item is selected properly when hand is opened
|
||||||
|
std::cout << "chosen item: " << chosen_item << std::endl;
|
||||||
|
|
||||||
|
}
|
||||||
|
else if (!hand_detection)
|
||||||
|
{
|
||||||
|
//for debug only, to see if the chosen item is selected properly when hand is closed
|
||||||
|
std::cout << "hand is closed" << std::endl;
|
||||||
|
//std::cout << "item to start: " << chosen_item << std::endl;
|
||||||
|
|
||||||
|
//TODO link chosen item to the correct game states
|
||||||
|
switch (chosen_item)
|
||||||
|
{
|
||||||
|
case 1:
|
||||||
|
//Game state 0
|
||||||
|
std::cout << "in case: " << chosen_item << std::endl;
|
||||||
|
break;
|
||||||
|
case 2:
|
||||||
|
//Game state 1
|
||||||
|
std::cout << "in case: " << chosen_item << std::endl;
|
||||||
|
break;
|
||||||
|
case 3:
|
||||||
|
//Game state 2
|
||||||
|
std::cout << "in case: " << chosen_item << std::endl;
|
||||||
|
break;
|
||||||
|
case 4:
|
||||||
|
//Game state 3
|
||||||
|
std::cout << "in case: " << chosen_item << std::endl;
|
||||||
|
default:
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
///////////////////////// END OF KIMS SHIT ///////////////////////////////
|
||||||
|
|
||||||
// Finish up
|
// Finish up
|
||||||
shader.Stop();
|
shader.Stop();
|
||||||
glfwSwapBuffers(window);
|
glfwSwapBuffers(window);
|
||||||
glfwPollEvents();
|
glfwPollEvents();
|
||||||
}
|
}
|
||||||
|
|
||||||
// Clean up
|
// Clean up
|
||||||
shader.CleanUp();
|
shader.CleanUp();
|
||||||
render_engine::loader::CleanUp();
|
render_engine::loader::CleanUp();
|
||||||
glfwTerminate();
|
glfwTerminate();
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
static double UpdateDelta()
|
static double UpdateDelta()
|
||||||
{
|
{
|
||||||
double current_time = glfwGetTime();
|
double current_time = glfwGetTime();
|
||||||
static double last_frame_time = current_time;
|
static double last_frame_time = current_time;
|
||||||
double delt_time = current_time - last_frame_time;
|
double delt_time = current_time - last_frame_time;
|
||||||
last_frame_time = current_time;
|
last_frame_time = current_time;
|
||||||
return delt_time;
|
return delt_time;
|
||||||
}
|
}
|
||||||
@@ -18,7 +18,7 @@ namespace render_engine
|
|||||||
void Init(shaders::StaticShader& shader)
|
void Init(shaders::StaticShader& shader)
|
||||||
{
|
{
|
||||||
const glm::mat4 projectionMatrix =
|
const glm::mat4 projectionMatrix =
|
||||||
glm::perspective(glm::radians(FOV), (WINDOW_WIDTH / WINDOW_HEIGT), NEAR_PLANE, FAR_PLANE);
|
glm::perspective(glm::radians(FOV), (float)(WINDOW_WIDTH / WINDOW_HEIGT), NEAR_PLANE, FAR_PLANE);
|
||||||
|
|
||||||
shader.Start();
|
shader.Start();
|
||||||
shader.LoadProjectionMatrix(projectionMatrix);
|
shader.LoadProjectionMatrix(projectionMatrix);
|
||||||
|
|||||||
@@ -5,8 +5,8 @@
|
|||||||
|
|
||||||
namespace toolbox
|
namespace toolbox
|
||||||
{
|
{
|
||||||
#define WINDOW_WIDTH 1400.0f
|
#define WINDOW_WIDTH 1400
|
||||||
#define WINDOW_HEIGT 800.0f
|
#define WINDOW_HEIGT 800
|
||||||
|
|
||||||
glm::mat4 CreateModelMatrix(glm::vec3 translation, glm::vec3 rotation, float scale);
|
glm::mat4 CreateModelMatrix(glm::vec3 translation, glm::vec3 rotation, float scale);
|
||||||
|
|
||||||
|
|||||||
@@ -19,6 +19,12 @@
|
|||||||
</ProjectConfiguration>
|
</ProjectConfiguration>
|
||||||
</ItemGroup>
|
</ItemGroup>
|
||||||
<ItemGroup>
|
<ItemGroup>
|
||||||
|
<ClCompile Include="src\computervision\FaceDetector.cpp" />
|
||||||
|
<ClCompile Include="src\computervision\MenuTest.cpp" />
|
||||||
|
<ClCompile Include="src\computervision\ObjectDetection.cpp" />
|
||||||
|
<ClCompile Include="src\computervision\SkinDetector.cpp" />
|
||||||
|
<ClCompile Include="src\computervision\FingerCount.cpp" />
|
||||||
|
<ClCompile Include="src\computervision\BackgroundRemover.cpp" />
|
||||||
<ClCompile Include="src\entities\camera.cpp" />
|
<ClCompile Include="src\entities\camera.cpp" />
|
||||||
<ClCompile Include="src\entities\entity.cpp" />
|
<ClCompile Include="src\entities\entity.cpp" />
|
||||||
<ClCompile Include="src\main.cpp" />
|
<ClCompile Include="src\main.cpp" />
|
||||||
@@ -30,6 +36,12 @@
|
|||||||
<ClCompile Include="src\toolbox\toolbox.cpp" />
|
<ClCompile Include="src\toolbox\toolbox.cpp" />
|
||||||
</ItemGroup>
|
</ItemGroup>
|
||||||
<ItemGroup>
|
<ItemGroup>
|
||||||
|
<ClInclude Include="src\computervision\FaceDetector.h" />
|
||||||
|
<ClInclude Include="src\computervision\FingerCount.h" />
|
||||||
|
<ClInclude Include="src\computervision\BackgroundRemover.h" />
|
||||||
|
<ClInclude Include="src\computervision\MenuTest.h" />
|
||||||
|
<ClInclude Include="src\computervision\SkinDetector.h" />
|
||||||
|
<ClInclude Include="src\computervision\ObjectDetection.h" />
|
||||||
<ClInclude Include="src\entities\camera.h" />
|
<ClInclude Include="src\entities\camera.h" />
|
||||||
<ClInclude Include="src\entities\entity.h" />
|
<ClInclude Include="src\entities\entity.h" />
|
||||||
<ClInclude Include="src\models\model.h" />
|
<ClInclude Include="src\models\model.h" />
|
||||||
@@ -41,6 +53,9 @@
|
|||||||
<ClInclude Include="src\stb_image.h" />
|
<ClInclude Include="src\stb_image.h" />
|
||||||
<ClInclude Include="src\toolbox\toolbox.h" />
|
<ClInclude Include="src\toolbox\toolbox.h" />
|
||||||
</ItemGroup>
|
</ItemGroup>
|
||||||
|
<ItemGroup>
|
||||||
|
<Xml Include="res\haarcascade_frontalface_alt.xml" />
|
||||||
|
</ItemGroup>
|
||||||
<PropertyGroup Label="Globals">
|
<PropertyGroup Label="Globals">
|
||||||
<VCProjectVersion>16.0</VCProjectVersion>
|
<VCProjectVersion>16.0</VCProjectVersion>
|
||||||
<ProjectGuid>{A7ECF1BE-DB22-4BF7-BFF6-E3BF72691EE6}</ProjectGuid>
|
<ProjectGuid>{A7ECF1BE-DB22-4BF7-BFF6-E3BF72691EE6}</ProjectGuid>
|
||||||
|
|||||||
@@ -42,6 +42,24 @@
|
|||||||
<ClCompile Include="src\toolbox\toolbox.cpp">
|
<ClCompile Include="src\toolbox\toolbox.cpp">
|
||||||
<Filter>Source Files</Filter>
|
<Filter>Source Files</Filter>
|
||||||
</ClCompile>
|
</ClCompile>
|
||||||
|
<ClCompile Include="src\computervision\ObjectDetection.cpp">
|
||||||
|
<Filter>Source Files</Filter>
|
||||||
|
</ClCompile>
|
||||||
|
<ClCompile Include="src\computervision\SkinDetector.cpp">
|
||||||
|
<Filter>Source Files</Filter>
|
||||||
|
</ClCompile>
|
||||||
|
<ClCompile Include="src\computervision\FingerCount.cpp">
|
||||||
|
<Filter>Source Files</Filter>
|
||||||
|
</ClCompile>
|
||||||
|
<ClCompile Include="src\computervision\FaceDetector.cpp">
|
||||||
|
<Filter>Source Files</Filter>
|
||||||
|
</ClCompile>
|
||||||
|
<ClCompile Include="src\computervision\BackgroundRemover.cpp">
|
||||||
|
<Filter>Source Files</Filter>
|
||||||
|
</ClCompile>
|
||||||
|
<ClCompile Include="src\computervision\MenuTest.cpp">
|
||||||
|
<Filter>Source Files</Filter>
|
||||||
|
</ClCompile>
|
||||||
</ItemGroup>
|
</ItemGroup>
|
||||||
<ItemGroup>
|
<ItemGroup>
|
||||||
<ClInclude Include="src\entities\Camera.h">
|
<ClInclude Include="src\entities\Camera.h">
|
||||||
@@ -74,5 +92,26 @@
|
|||||||
<ClInclude Include="src\toolbox\toolbox.h">
|
<ClInclude Include="src\toolbox\toolbox.h">
|
||||||
<Filter>Header Files</Filter>
|
<Filter>Header Files</Filter>
|
||||||
</ClInclude>
|
</ClInclude>
|
||||||
|
<ClInclude Include="src\computervision\ObjectDetection.h">
|
||||||
|
<Filter>Header Files</Filter>
|
||||||
|
</ClInclude>
|
||||||
|
<ClInclude Include="src\computervision\SkinDetector.h">
|
||||||
|
<Filter>Header Files</Filter>
|
||||||
|
</ClInclude>
|
||||||
|
<ClInclude Include="src\computervision\FingerCount.h">
|
||||||
|
<Filter>Header Files</Filter>
|
||||||
|
</ClInclude>
|
||||||
|
<ClInclude Include="src\computervision\FaceDetector.h">
|
||||||
|
<Filter>Header Files</Filter>
|
||||||
|
</ClInclude>
|
||||||
|
<ClInclude Include="src\computervision\BackgroundRemover.h">
|
||||||
|
<Filter>Header Files</Filter>
|
||||||
|
</ClInclude>
|
||||||
|
<ClInclude Include="src\computervision\MenuTest.h">
|
||||||
|
<Filter>Header Files</Filter>
|
||||||
|
</ClInclude>
|
||||||
|
</ItemGroup>
|
||||||
|
<ItemGroup>
|
||||||
|
<Xml Include="res\haarcascade_frontalface_alt.xml" />
|
||||||
</ItemGroup>
|
</ItemGroup>
|
||||||
</Project>
|
</Project>
|
||||||
Reference in New Issue
Block a user