Merge branch 'feature/objectdetection' into develop

This commit is contained in:
Sem van der Hoeven
2021-05-21 15:22:38 +02:00
14 changed files with 25301 additions and 0 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,59 @@
#include "BackgroundRemover.h"
/*
Author: Pierfrancesco Soffritti https://github.com/PierfrancescoSoffritti
*/
namespace computervision
{
BackgroundRemover::BackgroundRemover(void) {
background;
calibrated = false;
}
void BackgroundRemover::calibrate(Mat input) {
cvtColor(input, background, CV_BGR2GRAY);
calibrated = true;
}
Mat BackgroundRemover::getForeground(Mat input) {
Mat foregroundMask = getForegroundMask(input);
//imshow("foregroundMask", foregroundMask);
Mat foreground;
input.copyTo(foreground, foregroundMask);
return foreground;
}
Mat BackgroundRemover::getForegroundMask(Mat input) {
Mat foregroundMask;
if (!calibrated) {
foregroundMask = Mat::zeros(input.size(), CV_8UC1);
return foregroundMask;
}
cvtColor(input, foregroundMask, CV_BGR2GRAY);
removeBackground(foregroundMask, background);
return foregroundMask;
}
void BackgroundRemover::removeBackground(Mat input, Mat background) {
int thresholdOffset = 25;
for (int i = 0; i < input.rows; i++) {
for (int j = 0; j < input.cols; j++) {
uchar framePixel = input.at<uchar>(i, j);
uchar bgPixel = background.at<uchar>(i, j);
if (framePixel >= bgPixel - thresholdOffset && framePixel <= bgPixel + thresholdOffset)
input.at<uchar>(i, j) = 0;
else
input.at<uchar>(i, j) = 255;
}
}
}
}

View File

@@ -0,0 +1,25 @@
#pragma once
#include"opencv2\opencv.hpp"
#include <opencv2/imgproc\types_c.h>
/*
Author: Pierfrancesco Soffritti https://github.com/PierfrancescoSoffritti
*/
namespace computervision
{
using namespace cv;
using namespace std;
class BackgroundRemover {
public:
BackgroundRemover(void);
void calibrate(Mat input);
Mat getForeground(Mat input);
private:
Mat background;
bool calibrated = false;
Mat getForegroundMask(Mat input);
void removeBackground(Mat input, Mat background);
};
}

View File

@@ -0,0 +1,53 @@
#include "FaceDetector.h"
/*
Author: Pierfrancesco Soffritti https://github.com/PierfrancescoSoffritti
*/
namespace computervision
{
Rect getFaceRect(Mat input);
String faceClassifierFileName = "res/haarcascade_frontalface_alt.xml";
CascadeClassifier faceCascadeClassifier;
FaceDetector::FaceDetector(void) {
if (!faceCascadeClassifier.load(faceClassifierFileName))
throw runtime_error("can't load file " + faceClassifierFileName);
}
void FaceDetector::removeFaces(Mat input, Mat output) {
vector<Rect> faces;
Mat frameGray;
cvtColor(input, frameGray, CV_BGR2GRAY);
equalizeHist(frameGray, frameGray);
faceCascadeClassifier.detectMultiScale(frameGray, faces, 1.1, 2, 0 | 2, Size(120, 120)); // HAAR_SCALE_IMAGE is 2
for (size_t i = 0; i < faces.size(); i++) {
rectangle(
output,
Point(faces[i].x, faces[i].y),
Point(faces[i].x + faces[i].width, faces[i].y + faces[i].height),
Scalar(0, 0, 0),
-1
);
}
}
Rect getFaceRect(Mat input) {
vector<Rect> faceRectangles;
Mat inputGray;
cvtColor(input, inputGray, CV_BGR2GRAY);
equalizeHist(inputGray, inputGray);
faceCascadeClassifier.detectMultiScale(inputGray, faceRectangles, 1.1, 2, 0 | 2, Size(120, 120)); // HAAR_SCALE_IMAGE is 2
if (faceRectangles.size() > 0)
return faceRectangles[0];
else
return Rect(0, 0, 1, 1);
}
}

View File

@@ -0,0 +1,31 @@
#pragma once
#include <opencv2/opencv.hpp>
#include <opencv2/imgproc/types_c.h>
#include <opencv2/objdetect.hpp>
#include <opencv2/core.hpp>
#include <opencv2/objdetect/objdetect.hpp>
/*
Author: Pierfrancesco Soffritti https://github.com/PierfrancescoSoffritti
*/
using namespace cv;
using namespace std;
namespace computervision
{
class FaceDetector {
public:
/**
* @brief Constructor for the class FaceDetector, loads training data from a file
*
*/
FaceDetector(void);
/**
* @brief Detects faces on an image and blocks them with a black rectangle
*
* @param input Input image
* @param output Output image
*/
void removeFaces(Mat input, Mat output);
};
}

View File

@@ -0,0 +1,291 @@
#include "FingerCount.h"
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
/*
Author: Nicol<6F> Castellazzi https://github.com/nicast
*/
#define LIMIT_ANGLE_SUP 60
#define LIMIT_ANGLE_INF 5
#define BOUNDING_RECT_FINGER_SIZE_SCALING 0.3
#define BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING 0.05
namespace computervision
{
FingerCount::FingerCount(void) {
color_blue = Scalar(255, 0, 0);
color_green = Scalar(0, 255, 0);
color_red = Scalar(0, 0, 255);
color_black = Scalar(0, 0, 0);
color_white = Scalar(255, 255, 255);
color_yellow = Scalar(0, 255, 255);
color_purple = Scalar(255, 0, 255);
}
Mat FingerCount::findFingersCount(Mat input_image, Mat frame) {
Mat contours_image = Mat::zeros(input_image.size(), CV_8UC3);
// check if the source image is good
if (input_image.empty())
return contours_image;
// we work only on the 1 channel result, since this function is called inside a loop we are not sure that this is always the case
if (input_image.channels() != 1)
return contours_image;
vector<vector<Point>> contours;
vector<Vec4i> hierarchy;
findContours(input_image, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);
// we need at least one contour to work
if (contours.size() <= 0)
return contours_image;
// find the biggest contour (let's suppose it's our hand)
int biggest_contour_index = -1;
double biggest_area = 0.0;
for (int i = 0; i < contours.size(); i++) {
double area = contourArea(contours[i], false);
if (area > biggest_area) {
biggest_area = area;
biggest_contour_index = i;
}
}
if (biggest_contour_index < 0)
return contours_image;
// find the convex hull object for each contour and the defects, two different data structure are needed by the OpenCV api
vector<Point> hull_points;
vector<int> hull_ints;
// for drawing the convex hull and for finding the bounding rectangle
convexHull(Mat(contours[biggest_contour_index]), hull_points, true);
// for finding the defects
convexHull(Mat(contours[biggest_contour_index]), hull_ints, false);
// we need at least 3 points to find the defects
vector<Vec4i> defects;
if (hull_ints.size() > 3)
convexityDefects(Mat(contours[biggest_contour_index]), hull_ints, defects);
else
return contours_image;
// we bound the convex hull
Rect bounding_rectangle = boundingRect(Mat(hull_points));
// we find the center of the bounding rectangle, this should approximately also be the center of the hand
Point center_bounding_rect(
(bounding_rectangle.tl().x + bounding_rectangle.br().x) / 2,
(bounding_rectangle.tl().y + bounding_rectangle.br().y) / 2
);
// we separate the defects keeping only the ones of intrest
vector<Point> start_points;
vector<Point> far_points;
for (int i = 0; i < defects.size(); i++) {
start_points.push_back(contours[biggest_contour_index][defects[i].val[0]]);
// filtering the far point based on the distance from the center of the bounding rectangle
if (findPointsDistance(contours[biggest_contour_index][defects[i].val[2]], center_bounding_rect) < bounding_rectangle.height * BOUNDING_RECT_FINGER_SIZE_SCALING)
far_points.push_back(contours[biggest_contour_index][defects[i].val[2]]);
}
// we compact them on their medians
vector<Point> filtered_start_points = compactOnNeighborhoodMedian(start_points, bounding_rectangle.height * BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING);
vector<Point> filtered_far_points = compactOnNeighborhoodMedian(far_points, bounding_rectangle.height * BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING);
// now we try to find the fingers
vector<Point> filtered_finger_points;
if (filtered_far_points.size() > 1) {
vector<Point> finger_points;
for (int i = 0; i < filtered_start_points.size(); i++) {
vector<Point> closest_points = findClosestOnX(filtered_far_points, filtered_start_points[i]);
if (isFinger(closest_points[0], filtered_start_points[i], closest_points[1], LIMIT_ANGLE_INF, LIMIT_ANGLE_SUP, center_bounding_rect, bounding_rectangle.height * BOUNDING_RECT_FINGER_SIZE_SCALING))
finger_points.push_back(filtered_start_points[i]);
}
if (finger_points.size() > 0) {
// we have at most five fingers usually :)
while (finger_points.size() > 5)
finger_points.pop_back();
// filter out the points too close to each other
for (int i = 0; i < finger_points.size() - 1; i++) {
if (findPointsDistanceOnX(finger_points[i], finger_points[i + 1]) > bounding_rectangle.height * BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING * 1.5)
filtered_finger_points.push_back(finger_points[i]);
}
if (finger_points.size() > 2) {
if (findPointsDistanceOnX(finger_points[0], finger_points[finger_points.size() - 1]) > bounding_rectangle.height * BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING * 1.5)
filtered_finger_points.push_back(finger_points[finger_points.size() - 1]);
}
else
filtered_finger_points.push_back(finger_points[finger_points.size() - 1]);
}
}
// we draw what found on the returned image
drawContours(contours_image, contours, biggest_contour_index, color_green, 2, 8, hierarchy);
polylines(contours_image, hull_points, true, color_blue);
rectangle(contours_image, bounding_rectangle.tl(), bounding_rectangle.br(), color_red, 2, 8, 0);
circle(contours_image, center_bounding_rect, 5, color_purple, 2, 8);
drawVectorPoints(contours_image, filtered_start_points, color_blue, true);
drawVectorPoints(contours_image, filtered_far_points, color_red, true);
drawVectorPoints(contours_image, filtered_finger_points, color_yellow, false);
putText(contours_image, to_string(filtered_finger_points.size()), center_bounding_rect, FONT_HERSHEY_PLAIN, 3, color_purple);
// and on the starting frame
drawContours(frame, contours, biggest_contour_index, color_green, 2, 8, hierarchy);
circle(frame, center_bounding_rect, 5, color_purple, 2, 8);
drawVectorPoints(frame, filtered_finger_points, color_yellow, false);
putText(frame, to_string(filtered_finger_points.size()), center_bounding_rect, FONT_HERSHEY_PLAIN, 3, color_purple);
return contours_image;
}
double FingerCount::findPointsDistance(Point a, Point b) {
Point difference = a - b;
return sqrt(difference.ddot(difference));
}
vector<Point> FingerCount::compactOnNeighborhoodMedian(vector<Point> points, double max_neighbor_distance) {
vector<Point> median_points;
if (points.size() == 0)
return median_points;
if (max_neighbor_distance <= 0)
return median_points;
// we start with the first point
Point reference = points[0];
Point median = points[0];
for (int i = 1; i < points.size(); i++) {
if (findPointsDistance(reference, points[i]) > max_neighbor_distance) {
// the point is not in range, we save the median
median_points.push_back(median);
// we swap the reference
reference = points[i];
median = points[i];
}
else
median = (points[i] + median) / 2;
}
// last median
median_points.push_back(median);
return median_points;
}
double FingerCount::findAngle(Point a, Point b, Point c) {
double ab = findPointsDistance(a, b);
double bc = findPointsDistance(b, c);
double ac = findPointsDistance(a, c);
return acos((ab * ab + bc * bc - ac * ac) / (2 * ab * bc)) * 180 / CV_PI;
}
bool FingerCount::isFinger(Point a, Point b, Point c, double limit_angle_inf, double limit_angle_sup, Point palm_center, double min_distance_from_palm) {
double angle = findAngle(a, b, c);
if (angle > limit_angle_sup || angle < limit_angle_inf)
return false;
// the finger point sohould not be under the two far points
int delta_y_1 = b.y - a.y;
int delta_y_2 = b.y - c.y;
if (delta_y_1 > 0 && delta_y_2 > 0)
return false;
// the two far points should not be both under the center of the hand
int delta_y_3 = palm_center.y - a.y;
int delta_y_4 = palm_center.y - c.y;
if (delta_y_3 < 0 && delta_y_4 < 0)
return false;
double distance_from_palm = findPointsDistance(b, palm_center);
if (distance_from_palm < min_distance_from_palm)
return false;
// this should be the case when no fingers are up
double distance_from_palm_far_1 = findPointsDistance(a, palm_center);
double distance_from_palm_far_2 = findPointsDistance(c, palm_center);
if (distance_from_palm_far_1 < min_distance_from_palm / 4 || distance_from_palm_far_2 < min_distance_from_palm / 4)
return false;
return true;
}
vector<Point> FingerCount::findClosestOnX(vector<Point> points, Point pivot) {
vector<Point> to_return(2);
if (points.size() == 0)
return to_return;
double distance_x_1 = DBL_MAX;
double distance_1 = DBL_MAX;
double distance_x_2 = DBL_MAX;
double distance_2 = DBL_MAX;
int index_found = 0;
for (int i = 0; i < points.size(); i++) {
double distance_x = findPointsDistanceOnX(pivot, points[i]);
double distance = findPointsDistance(pivot, points[i]);
if (distance_x < distance_x_1 && distance_x != 0 && distance <= distance_1) {
distance_x_1 = distance_x;
distance_1 = distance;
index_found = i;
}
}
to_return[0] = points[index_found];
for (int i = 0; i < points.size(); i++) {
double distance_x = findPointsDistanceOnX(pivot, points[i]);
double distance = findPointsDistance(pivot, points[i]);
if (distance_x < distance_x_2 && distance_x != 0 && distance <= distance_2 && distance_x != distance_x_1) {
distance_x_2 = distance_x;
distance_2 = distance;
index_found = i;
}
}
to_return[1] = points[index_found];
return to_return;
}
double FingerCount::findPointsDistanceOnX(Point a, Point b) {
double to_return = 0.0;
if (a.x > b.x)
to_return = a.x - b.x;
else
to_return = b.x - a.x;
return to_return;
}
void FingerCount::drawVectorPoints(Mat image, vector<Point> points, Scalar color, bool with_numbers) {
for (int i = 0; i < points.size(); i++) {
circle(image, points[i], 5, color, 2, 8);
if (with_numbers)
putText(image, to_string(i), points[i], FONT_HERSHEY_PLAIN, 3, color);
}
}
}

View File

@@ -0,0 +1,110 @@
#pragma once
#include "opencv2/core.hpp"
#include <opencv2/imgproc/types_c.h>
/*
Author: Nicol<6F> Castellazzi https://github.com/nicast
*/
namespace computervision
{
using namespace cv;
using namespace std;
class FingerCount {
public:
FingerCount(void);
/**
* @brief gets the amount of fingers that are held up.
*
* @param input_image the source image to find the fingers on. It should be a mask of a hand
* @param frame the frame to draw the resulting values on (how many fingers are held up etc)
* @return a new image with all the data drawn on it.
*/
Mat findFingersCount(Mat input_image, Mat frame);
private:
// colors to use
Scalar color_blue;
Scalar color_green;
Scalar color_red;
Scalar color_black;
Scalar color_white;
Scalar color_yellow;
Scalar color_purple;
/**
* @brief finds the distance between 2 points.
*
* @param a the first point
* @param b the second point
* @return a double representing the distance
*/
double findPointsDistance(Point a, Point b);
/**
* @brief compacts the given points on their medians.
* what it does is for each point, it checks if the distance to it's neighbour is greater than the
* max distance. If so, it just adds it to the list that is returned. If not, it calculates the
* median and adds it to the returned list
*
* @param points the points to compact
* @param max_neighbor_distance the maximum distance between points
* @return a vector with the points now compacted.
*/
vector<Point> compactOnNeighborhoodMedian(vector<Point> points, double max_neighbor_distance);
/**
* @brief finds the angle between 3 different points.
*
* @param a the first point
* @param b the second point
* @param c the third point
* @return the angle between the 3 points
*/
double findAngle(Point a, Point b, Point c);
/**
* @brief checks if the given points make up a finger.
*
* @param a the first point to check for
* @param b the second point to check for
* @param c the third point to check for
* @param limit_angle_inf the limit of the angle between 2 fingers
* @param limit_angle_sup the limit of the angle between a finger and a convex point
* @param palm_center the center of the palm
* @param distance_from_palm_tollerance the distance from the palm tolerance
* @return true if the points are a finger, false if not.
*/
bool isFinger(Point a, Point b, Point c, double limit_angle_inf, double limit_angle_sup, cv::Point palm_center, double distance_from_palm_tollerance);
/**
* @brief finds the closest point to the given point that is in the given list.
*
* @param points the points to check for
* @param pivot the pivot to check against
* @return a vector containing the point that is closest
*/
vector<Point> findClosestOnX(vector<Point> points, Point pivot);
/**
* @brief finds the distance between the x coords of the points.
*
* @param a the first point
* @param b the second point
* @return the distance between the x values
*/
double findPointsDistanceOnX(Point a, Point b);
/**
* @brief draws the points on the image.
*
* @param image the image to draw on
* @param points the points to draw
* @param color the color to draw them with
* @param with_numbers if the numbers should be drawn with the points
*/
void drawVectorPoints(Mat image, vector<Point> points, Scalar color, bool with_numbers);
};
}

View File

@@ -0,0 +1,91 @@
#include "ObjectDetection.h"
#include "BackgroundRemover.h"
#include "SkinDetector.h"
#include "FaceDetector.h"
#include "FingerCount.h"
namespace computervision
{
cv::VideoCapture cap(0);
cv::Mat img, imgGray, img2, img2Gray, img3, img4;
Mat frame, frameOut, handMask, foreground, fingerCountDebug;
BackgroundRemover backgroundRemover;
SkinDetector skinDetector;
FaceDetector faceDetector;
FingerCount fingerCount;
ObjectDetection::ObjectDetection()
{
}
bool ObjectDetection::setup()
{
if (!cap.isOpened()) {
cout << "Can't find camera!" << endl;
return false;
}
cap.read(frame);
frameOut = frame.clone();
skinDetector.drawSkinColorSampler(frameOut);
foreground = backgroundRemover.getForeground(frame);
faceDetector.removeFaces(frame, foreground);
handMask = skinDetector.getSkinMask(foreground);
fingerCountDebug = fingerCount.findFingersCount(handMask, frameOut);
//backgroundRemover.calibrate(frame);
imshow("output", frameOut);
imshow("foreground", foreground);
imshow("handMask", handMask);
imshow("handDetection", fingerCountDebug);
int key = waitKey(1);
if (key == 98) // b
backgroundRemover.calibrate(frame);
else if (key == 115) // s
skinDetector.calibrate(frame);
return true;
}
void ObjectDetection::calculateDifference()
{
cap.read(img);
cap.read(img2);
cv::cvtColor(img, imgGray, cv::COLOR_RGBA2GRAY);
cv::cvtColor(img2, img2Gray, cv::COLOR_RGBA2GRAY);
cv::absdiff(imgGray, img2Gray, img3);
cv::threshold(img3, img4, 50, 170, cv::THRESH_BINARY);
imshow("threshold", img4);
}
void ObjectDetection::detect()
{
int key = waitKey(1);
if (key == 98) // b
backgroundRemover.calibrate(frame);
else if (key == 115) // s
skinDetector.calibrate(frame);
}
void ObjectDetection::showWebcam()
{
imshow("Webcam image", img);
}
}

View File

@@ -0,0 +1,53 @@
#pragma once
#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/objdetect.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
namespace computervision
{
class ObjectDetection
{
private:
public:
/**
* @brief default constructor of ObjectDetection
*
*/
ObjectDetection();
/**
* @brief Initializes the object detection, captures a frame and modifies it
* so it is ready to use for object detection
*
* @return return true if webcam is connected, returns false if it isn't
*/
bool setup();
/**
* @brief Displays an image of the current webcam-footage
*
*/
void showWebcam();
/**
* @brief Calculates the difference between two images
* and outputs an image that only shows the difference
*
*/
void calculateDifference();
/**
* @brief Listens for keypresses and handles them
*
*/
void detect();
};
}

View File

@@ -0,0 +1,105 @@
#include "SkinDetector.h"
/*
Author: Pierfrancesco Soffritti https://github.com/PierfrancescoSoffritti
*/
namespace computervision
{
SkinDetector::SkinDetector(void) {
hLowThreshold = 0;
hHighThreshold = 0;
sLowThreshold = 0;
sHighThreshold = 0;
vLowThreshold = 0;
vHighThreshold = 0;
calibrated = false;
skinColorSamplerRectangle1, skinColorSamplerRectangle2;
}
void SkinDetector::drawSkinColorSampler(Mat input) {
int frameWidth = input.size().width, frameHeight = input.size().height;
int rectangleSize = 20;
Scalar rectangleColor = Scalar(255, 0, 255);
skinColorSamplerRectangle1 = Rect(frameWidth / 5, frameHeight / 2, rectangleSize, rectangleSize);
skinColorSamplerRectangle2 = Rect(frameWidth / 5, frameHeight / 3, rectangleSize, rectangleSize);
rectangle(
input,
skinColorSamplerRectangle1,
rectangleColor
);
rectangle(
input,
skinColorSamplerRectangle2,
rectangleColor
);
}
void SkinDetector::calibrate(Mat input) {
Mat hsvInput;
cvtColor(input, hsvInput, CV_BGR2HSV);
Mat sample1 = Mat(hsvInput, skinColorSamplerRectangle1);
Mat sample2 = Mat(hsvInput, skinColorSamplerRectangle2);
calculateThresholds(sample1, sample2);
calibrated = true;
}
void SkinDetector::calculateThresholds(Mat sample1, Mat sample2) {
int offsetLowThreshold = 80;
int offsetHighThreshold = 30;
Scalar hsvMeansSample1 = mean(sample1);
Scalar hsvMeansSample2 = mean(sample2);
hLowThreshold = min(hsvMeansSample1[0], hsvMeansSample2[0]) - offsetLowThreshold;
hHighThreshold = max(hsvMeansSample1[0], hsvMeansSample2[0]) + offsetHighThreshold;
sLowThreshold = min(hsvMeansSample1[1], hsvMeansSample2[1]) - offsetLowThreshold;
sHighThreshold = max(hsvMeansSample1[1], hsvMeansSample2[1]) + offsetHighThreshold;
// the V channel shouldn't be used. By ignorint it, shadows on the hand wouldn't interfire with segmentation.
// Unfortunately there's a bug somewhere and not using the V channel causes some problem. This shouldn't be too hard to fix.
vLowThreshold = min(hsvMeansSample1[2], hsvMeansSample2[2]) - offsetLowThreshold;
vHighThreshold = max(hsvMeansSample1[2], hsvMeansSample2[2]) + offsetHighThreshold;
//vLowThreshold = 0;
//vHighThreshold = 255;
}
Mat SkinDetector::getSkinMask(Mat input) {
Mat skinMask;
if (!calibrated) {
skinMask = Mat::zeros(input.size(), CV_8UC1);
return skinMask;
}
Mat hsvInput;
cvtColor(input, hsvInput, CV_BGR2HSV);
inRange(
hsvInput,
Scalar(hLowThreshold, sLowThreshold, vLowThreshold),
Scalar(hHighThreshold, sHighThreshold, vHighThreshold),
skinMask);
performOpening(skinMask, MORPH_ELLIPSE, { 3, 3 });
dilate(skinMask, skinMask, Mat(), Point(-1, -1), 3);
return skinMask;
}
void SkinDetector::performOpening(Mat binaryImage, int kernelShape, Point kernelSize) {
Mat structuringElement = getStructuringElement(kernelShape, kernelSize);
morphologyEx(binaryImage, binaryImage, MORPH_OPEN, structuringElement);
}
}

View File

@@ -0,0 +1,76 @@
#pragma once
#include <opencv2\core.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/imgproc/types_c.h>
/*
Author: Pierfrancesco Soffritti https://github.com/PierfrancescoSoffritti
*/
namespace computervision
{
using namespace cv;
using namespace std;
class SkinDetector {
public:
SkinDetector(void);
/*
* @brief draws the positions in where the skin color will be sampled.
*
* @param input the input matrix to sample the skin color from
*/
void drawSkinColorSampler(Mat input);
/*
* @brief calibrates the skin color detector with the given input frame
*
* @param input the input frame to calibrate from
*/
void calibrate(Mat input);
/*
* @brief gets the mask for the hand
*
* @param input the input matrix to get the skin mask from
* @returns the skin mask in a new matrix
*/
Mat getSkinMask(Mat input);
private:
// thresholds for hsv calculation
int hLowThreshold = 0;
int hHighThreshold = 0;
int sLowThreshold = 0;
int sHighThreshold = 0;
int vLowThreshold = 0;
int vHighThreshold = 0;
// wether or not the skindetector has calibrated yet.
bool calibrated = false;
// rectangles that get drawn to show where the skin color will be sampled
Rect skinColorSamplerRectangle1, skinColorSamplerRectangle2;
/*
* @brief calculates the skin tresholds for the given samples
*
* @param sample1 the first sample
* @param sample2 the second sample
*/
void calculateThresholds(Mat sample1, Mat sample2);
/**
* @brief the opening. it generates the structuring element and performs the morphological transformations required to detect the hand.
* This needs to be done to get the skin mask.
*
* @param binaryImage the matrix to perform the opening on. This needs to be a binary image, so consisting of only 1's and 0's.
* @param structuralElementShape the shape to use for the kernel that is used with generating the structuring element
* @param structuralElementSize the size of the kernel that will be used with generating the structuring element.
*/
void performOpening(Mat binaryImage, int structuralElementShape, Point structuralElementSize);
};
}

View File

@@ -14,6 +14,8 @@
#include "shaders/static_shader.h"
#include "toolbox/toolbox.h"
#include "computervision/ObjectDetection.h"
#pragma comment(lib, "glfw3.lib")
#pragma comment(lib, "glew32s.lib")
#pragma comment(lib, "opengl32.lib")
@@ -56,6 +58,13 @@ int main(void)
render_engine::renderer::Init(shader);
entities::Camera camera(glm::vec3(0, 0, 0), glm::vec3(0, 0, 0));
// create object detection object instance
computervision::ObjectDetection objDetect;
// set up object detection
//objDetect.setup();
// Main game loop
while (!glfwWindowShouldClose(window))
@@ -72,6 +81,8 @@ int main(void)
render_engine::renderer::Render(entity, shader);
objDetect.setup();
// Finish up
shader.Stop();
glfwSwapBuffers(window);

View File

@@ -19,6 +19,11 @@
</ProjectConfiguration>
</ItemGroup>
<ItemGroup>
<ClCompile Include="src\computervision\FaceDetector.cpp" />
<ClCompile Include="src\computervision\ObjectDetection.cpp" />
<ClCompile Include="src\computervision\SkinDetector.cpp" />
<ClCompile Include="src\computervision\FingerCount.cpp" />
<ClCompile Include="src\computervision\BackgroundRemover.cpp" />
<ClCompile Include="src\entities\camera.cpp" />
<ClCompile Include="src\entities\entity.cpp" />
<ClCompile Include="src\main.cpp" />
@@ -30,6 +35,11 @@
<ClCompile Include="src\toolbox\toolbox.cpp" />
</ItemGroup>
<ItemGroup>
<ClInclude Include="src\computervision\FaceDetector.h" />
<ClInclude Include="src\computervision\FingerCount.h" />
<ClInclude Include="src\computervision\BackgroundRemover.h" />
<ClInclude Include="src\computervision\SkinDetector.h" />
<ClInclude Include="src\computervision\ObjectDetection.h" />
<ClInclude Include="src\entities\camera.h" />
<ClInclude Include="src\entities\entity.h" />
<ClInclude Include="src\models\model.h" />
@@ -41,6 +51,9 @@
<ClInclude Include="src\stb_image.h" />
<ClInclude Include="src\toolbox\toolbox.h" />
</ItemGroup>
<ItemGroup>
<Xml Include="res\haarcascade_frontalface_alt.xml" />
</ItemGroup>
<PropertyGroup Label="Globals">
<VCProjectVersion>16.0</VCProjectVersion>
<ProjectGuid>{A7ECF1BE-DB22-4BF7-BFF6-E3BF72691EE6}</ProjectGuid>

View File

@@ -42,6 +42,21 @@
<ClCompile Include="src\toolbox\toolbox.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="src\computervision\ObjectDetection.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="src\computervision\SkinDetector.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="src\computervision\FingerCount.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="src\computervision\FaceDetector.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="src\computervision\BackgroundRemover.cpp">
<Filter>Source Files</Filter>
</ClCompile>
</ItemGroup>
<ItemGroup>
<ClInclude Include="src\entities\Camera.h">
@@ -74,5 +89,23 @@
<ClInclude Include="src\toolbox\toolbox.h">
<Filter>Header Files</Filter>
</ClInclude>
<ClInclude Include="src\computervision\ObjectDetection.h">
<Filter>Header Files</Filter>
</ClInclude>
<ClInclude Include="src\computervision\SkinDetector.h">
<Filter>Header Files</Filter>
</ClInclude>
<ClInclude Include="src\computervision\FingerCount.h">
<Filter>Header Files</Filter>
</ClInclude>
<ClInclude Include="src\computervision\FaceDetector.h">
<Filter>Header Files</Filter>
</ClInclude>
<ClInclude Include="src\computervision\BackgroundRemover.h">
<Filter>Header Files</Filter>
</ClInclude>
</ItemGroup>
<ItemGroup>
<Xml Include="res\haarcascade_frontalface_alt.xml" />
</ItemGroup>
</Project>