Compare commits
26 Commits
feature/co
...
feature/as
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
921609de5d | ||
|
|
fe94b0f83d | ||
|
|
ab30c41bee | ||
|
|
1a149b8b7e | ||
|
|
cc7cb37840 | ||
|
|
40529f84b3 | ||
|
|
a68c6a57bf | ||
|
|
078a6ce66d | ||
|
|
f1f1aac93d | ||
|
|
563f465e2c | ||
|
|
05ae8ee019 | ||
|
|
3696e2eb30 | ||
|
|
276aa1a449 | ||
|
|
ad4075a826 | ||
|
|
e50cd92a35 | ||
|
|
ff79c1525c | ||
|
|
a7597c8d4f | ||
|
|
5b4d9b624f | ||
|
|
27aca98ea4 | ||
|
|
ca591dd427 | ||
|
|
8720e50ba8 | ||
|
|
acf24cab36 | ||
|
|
1811bf51a4 | ||
|
|
27a09aeca4 | ||
|
|
e39cb1a761 | ||
|
|
ab3b0c296a |
2
.gitignore
vendored
2
.gitignore
vendored
@@ -428,4 +428,6 @@ FodyWeavers.xsd
|
||||
**/docs/*
|
||||
**/doc/*
|
||||
|
||||
**/pose_iter_160000.caffemodel
|
||||
|
||||
# End of https://www.toptal.com/developers/gitignore/api/c++,visualstudio,visualstudiocode,opencv
|
||||
|
||||
24350
res/haarcascade_frontalface_alt.xml
Normal file
24350
res/haarcascade_frontalface_alt.xml
Normal file
File diff suppressed because it is too large
Load Diff
2976
res/pose/coco/pose_deploy_linevec.prototxt
Normal file
2976
res/pose/coco/pose_deploy_linevec.prototxt
Normal file
File diff suppressed because it is too large
Load Diff
2081
res/pose/mpi/pose_deploy_linevec_faster_4_stages.prototxt
Normal file
2081
res/pose/mpi/pose_deploy_linevec_faster_4_stages.prototxt
Normal file
File diff suppressed because it is too large
Load Diff
59
src/computervision/BackgroundRemover.cpp
Normal file
59
src/computervision/BackgroundRemover.cpp
Normal file
@@ -0,0 +1,59 @@
|
||||
#include "BackgroundRemover.h"
|
||||
|
||||
/*
|
||||
Author: Pierfrancesco Soffritti https://github.com/PierfrancescoSoffritti
|
||||
*/
|
||||
namespace computervision
|
||||
{
|
||||
BackgroundRemover::BackgroundRemover(void) {
|
||||
background;
|
||||
calibrated = false;
|
||||
}
|
||||
|
||||
void BackgroundRemover::calibrate(Mat input) {
|
||||
cvtColor(input, background, CV_BGR2GRAY);
|
||||
calibrated = true;
|
||||
}
|
||||
|
||||
Mat BackgroundRemover::getForeground(Mat input) {
|
||||
Mat foregroundMask = getForegroundMask(input);
|
||||
|
||||
//imshow("foregroundMask", foregroundMask);
|
||||
|
||||
Mat foreground;
|
||||
input.copyTo(foreground, foregroundMask);
|
||||
|
||||
return foreground;
|
||||
}
|
||||
|
||||
Mat BackgroundRemover::getForegroundMask(Mat input) {
|
||||
Mat foregroundMask;
|
||||
|
||||
if (!calibrated) {
|
||||
foregroundMask = Mat::zeros(input.size(), CV_8UC1);
|
||||
return foregroundMask;
|
||||
}
|
||||
|
||||
cvtColor(input, foregroundMask, CV_BGR2GRAY);
|
||||
|
||||
removeBackground(foregroundMask, background);
|
||||
|
||||
return foregroundMask;
|
||||
}
|
||||
|
||||
void BackgroundRemover::removeBackground(Mat input, Mat background) {
|
||||
int thresholdOffset = 25;
|
||||
|
||||
for (int i = 0; i < input.rows; i++) {
|
||||
for (int j = 0; j < input.cols; j++) {
|
||||
uchar framePixel = input.at<uchar>(i, j);
|
||||
uchar bgPixel = background.at<uchar>(i, j);
|
||||
|
||||
if (framePixel >= bgPixel - thresholdOffset && framePixel <= bgPixel + thresholdOffset)
|
||||
input.at<uchar>(i, j) = 0;
|
||||
else
|
||||
input.at<uchar>(i, j) = 255;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
58
src/computervision/BackgroundRemover.h
Normal file
58
src/computervision/BackgroundRemover.h
Normal file
@@ -0,0 +1,58 @@
|
||||
#pragma once
|
||||
#include"opencv2\opencv.hpp"
|
||||
#include <opencv2/imgproc\types_c.h>
|
||||
/*
|
||||
Author: Pierfrancesco Soffritti https://github.com/PierfrancescoSoffritti
|
||||
*/
|
||||
namespace computervision
|
||||
{
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
class BackgroundRemover {
|
||||
public:
|
||||
|
||||
/**
|
||||
* @brief constructor,
|
||||
* create background variable and set calibrated to faslse
|
||||
*
|
||||
*/
|
||||
BackgroundRemover(void);
|
||||
|
||||
/**
|
||||
* @brief sets the input image to a grayscale image
|
||||
* sets calibrated to true
|
||||
*
|
||||
* @param input input the image that has to be calibrated
|
||||
*/
|
||||
void calibrate(Mat input);
|
||||
|
||||
/**
|
||||
* @brief Gets the mask of the foregorund of the input image
|
||||
* and copies it to another image
|
||||
*
|
||||
* @param input The image from which the forground needs to be picked
|
||||
* @return The image on which te foregroundmask is copied
|
||||
*/
|
||||
Mat getForeground(Mat input);
|
||||
|
||||
private:
|
||||
Mat background;
|
||||
bool calibrated = false;
|
||||
|
||||
/**
|
||||
* @brief Sets the image to grayscale and removes the background
|
||||
*
|
||||
* @param input The image from which the forground needs to be picked
|
||||
* @return The mask of the foreground of the image
|
||||
*/
|
||||
Mat getForegroundMask(Mat input);
|
||||
/**
|
||||
* @brief makes everything on the background black
|
||||
*
|
||||
* @param input the image from which the background needs to be removed
|
||||
* @param background the background of the image
|
||||
*/
|
||||
void removeBackground(Mat input, Mat background);
|
||||
};
|
||||
}
|
||||
53
src/computervision/FaceDetector.cpp
Normal file
53
src/computervision/FaceDetector.cpp
Normal file
@@ -0,0 +1,53 @@
|
||||
#include "FaceDetector.h"
|
||||
|
||||
|
||||
/*
|
||||
Author: Pierfrancesco Soffritti https://github.com/PierfrancescoSoffritti
|
||||
*/
|
||||
namespace computervision
|
||||
{
|
||||
Rect getFaceRect(Mat input);
|
||||
|
||||
String faceClassifierFileName = "res/haarcascade_frontalface_alt.xml";
|
||||
CascadeClassifier faceCascadeClassifier;
|
||||
|
||||
FaceDetector::FaceDetector(void) {
|
||||
if (!faceCascadeClassifier.load(faceClassifierFileName))
|
||||
throw runtime_error("can't load file " + faceClassifierFileName);
|
||||
}
|
||||
|
||||
void FaceDetector::removeFaces(Mat input, Mat output) {
|
||||
vector<Rect> faces;
|
||||
Mat frameGray;
|
||||
|
||||
cvtColor(input, frameGray, CV_BGR2GRAY);
|
||||
equalizeHist(frameGray, frameGray);
|
||||
|
||||
faceCascadeClassifier.detectMultiScale(frameGray, faces, 1.1, 2, 0 | 2, Size(120, 120)); // HAAR_SCALE_IMAGE is 2
|
||||
|
||||
for (size_t i = 0; i < faces.size(); i++) {
|
||||
rectangle(
|
||||
output,
|
||||
Point(faces[i].x, faces[i].y),
|
||||
Point(faces[i].x + faces[i].width, faces[i].y + faces[i].height),
|
||||
Scalar(0, 0, 0),
|
||||
-1
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
Rect getFaceRect(Mat input) {
|
||||
vector<Rect> faceRectangles;
|
||||
Mat inputGray;
|
||||
|
||||
cvtColor(input, inputGray, CV_BGR2GRAY);
|
||||
equalizeHist(inputGray, inputGray);
|
||||
|
||||
faceCascadeClassifier.detectMultiScale(inputGray, faceRectangles, 1.1, 2, 0 | 2, Size(120, 120)); // HAAR_SCALE_IMAGE is 2
|
||||
|
||||
if (faceRectangles.size() > 0)
|
||||
return faceRectangles[0];
|
||||
else
|
||||
return Rect(0, 0, 1, 1);
|
||||
}
|
||||
}
|
||||
31
src/computervision/FaceDetector.h
Normal file
31
src/computervision/FaceDetector.h
Normal file
@@ -0,0 +1,31 @@
|
||||
#pragma once
|
||||
#include <opencv2/opencv.hpp>
|
||||
#include <opencv2/imgproc/types_c.h>
|
||||
#include <opencv2/objdetect.hpp>
|
||||
#include <opencv2/core.hpp>
|
||||
#include <opencv2/objdetect/objdetect.hpp>
|
||||
/*
|
||||
Author: Pierfrancesco Soffritti https://github.com/PierfrancescoSoffritti
|
||||
*/
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
namespace computervision
|
||||
{
|
||||
class FaceDetector {
|
||||
public:
|
||||
/**
|
||||
* @brief Constructor for the class FaceDetector, loads training data from a file
|
||||
*
|
||||
*/
|
||||
FaceDetector(void);
|
||||
/**
|
||||
* @brief Detects faces on an image and blocks them with a black rectangle
|
||||
*
|
||||
* @param input Input image
|
||||
* @param output Output image
|
||||
*/
|
||||
void removeFaces(Mat input, Mat output);
|
||||
};
|
||||
}
|
||||
298
src/computervision/FingerCount.cpp
Normal file
298
src/computervision/FingerCount.cpp
Normal file
@@ -0,0 +1,298 @@
|
||||
#include "FingerCount.h"
|
||||
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
|
||||
/*
|
||||
Author: Nicol<6F> Castellazzi https://github.com/nicast
|
||||
*/
|
||||
|
||||
#define LIMIT_ANGLE_SUP 60
|
||||
#define LIMIT_ANGLE_INF 5
|
||||
#define BOUNDING_RECT_FINGER_SIZE_SCALING 0.3
|
||||
#define BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING 0.05
|
||||
|
||||
namespace computervision
|
||||
{
|
||||
FingerCount::FingerCount(void) {
|
||||
color_blue = Scalar(255, 0, 0);
|
||||
color_green = Scalar(0, 255, 0);
|
||||
color_red = Scalar(0, 0, 255);
|
||||
color_black = Scalar(0, 0, 0);
|
||||
color_white = Scalar(255, 255, 255);
|
||||
color_yellow = Scalar(0, 255, 255);
|
||||
color_purple = Scalar(255, 0, 255);
|
||||
}
|
||||
|
||||
Mat FingerCount::findFingersCount(Mat input_image, Mat frame) {
|
||||
Mat contours_image = Mat::zeros(input_image.size(), CV_8UC3);
|
||||
|
||||
// check if the source image is good
|
||||
if (input_image.empty())
|
||||
return contours_image;
|
||||
|
||||
// we work only on the 1 channel result, since this function is called inside a loop we are not sure that this is always the case
|
||||
if (input_image.channels() != 1)
|
||||
return contours_image;
|
||||
|
||||
vector<vector<Point>> contours;
|
||||
vector<Vec4i> hierarchy;
|
||||
|
||||
findContours(input_image, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);
|
||||
|
||||
// we need at least one contour to work
|
||||
if (contours.size() <= 0)
|
||||
return contours_image;
|
||||
|
||||
// find the biggest contour (let's suppose it's our hand)
|
||||
int biggest_contour_index = -1;
|
||||
double biggest_area = 0.0;
|
||||
|
||||
for (int i = 0; i < contours.size(); i++) {
|
||||
double area = contourArea(contours[i], false);
|
||||
if (area > biggest_area) {
|
||||
biggest_area = area;
|
||||
biggest_contour_index = i;
|
||||
}
|
||||
}
|
||||
|
||||
if (biggest_contour_index < 0)
|
||||
return contours_image;
|
||||
|
||||
// find the convex hull object for each contour and the defects, two different data structure are needed by the OpenCV api
|
||||
vector<Point> hull_points;
|
||||
vector<int> hull_ints;
|
||||
|
||||
// for drawing the convex hull and for finding the bounding rectangle
|
||||
convexHull(Mat(contours[biggest_contour_index]), hull_points, true);
|
||||
|
||||
// for finding the defects
|
||||
convexHull(Mat(contours[biggest_contour_index]), hull_ints, false);
|
||||
|
||||
// we need at least 3 points to find the defects
|
||||
vector<Vec4i> defects;
|
||||
if (hull_ints.size() > 3)
|
||||
convexityDefects(Mat(contours[biggest_contour_index]), hull_ints, defects);
|
||||
else
|
||||
return contours_image;
|
||||
|
||||
// we bound the convex hull
|
||||
Rect bounding_rectangle = boundingRect(Mat(hull_points));
|
||||
|
||||
// we find the center of the bounding rectangle, this should approximately also be the center of the hand
|
||||
Point center_bounding_rect(
|
||||
(bounding_rectangle.tl().x + bounding_rectangle.br().x) / 2,
|
||||
(bounding_rectangle.tl().y + bounding_rectangle.br().y) / 2
|
||||
);
|
||||
|
||||
// we separate the defects keeping only the ones of intrest
|
||||
vector<Point> start_points;
|
||||
vector<Point> far_points;
|
||||
|
||||
for (int i = 0; i < defects.size(); i++) {
|
||||
start_points.push_back(contours[biggest_contour_index][defects[i].val[0]]);
|
||||
|
||||
// filtering the far point based on the distance from the center of the bounding rectangle
|
||||
if (findPointsDistance(contours[biggest_contour_index][defects[i].val[2]], center_bounding_rect) < bounding_rectangle.height * BOUNDING_RECT_FINGER_SIZE_SCALING)
|
||||
far_points.push_back(contours[biggest_contour_index][defects[i].val[2]]);
|
||||
}
|
||||
|
||||
// we compact them on their medians
|
||||
vector<Point> filtered_start_points = compactOnNeighborhoodMedian(start_points, bounding_rectangle.height * BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING);
|
||||
vector<Point> filtered_far_points = compactOnNeighborhoodMedian(far_points, bounding_rectangle.height * BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING);
|
||||
|
||||
// now we try to find the fingers
|
||||
vector<Point> filtered_finger_points;
|
||||
|
||||
if (filtered_far_points.size() > 1) {
|
||||
vector<Point> finger_points;
|
||||
|
||||
for (int i = 0; i < filtered_start_points.size(); i++) {
|
||||
vector<Point> closest_points = findClosestOnX(filtered_far_points, filtered_start_points[i]);
|
||||
|
||||
if (isFinger(closest_points[0], filtered_start_points[i], closest_points[1], LIMIT_ANGLE_INF, LIMIT_ANGLE_SUP, center_bounding_rect, bounding_rectangle.height * BOUNDING_RECT_FINGER_SIZE_SCALING))
|
||||
finger_points.push_back(filtered_start_points[i]);
|
||||
}
|
||||
|
||||
if (finger_points.size() > 0) {
|
||||
|
||||
// we have at most five fingers usually :)
|
||||
while (finger_points.size() > 5)
|
||||
finger_points.pop_back();
|
||||
|
||||
// filter out the points too close to each other
|
||||
for (int i = 0; i < finger_points.size() - 1; i++) {
|
||||
if (findPointsDistanceOnX(finger_points[i], finger_points[i + 1]) > bounding_rectangle.height * BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING * 1.5)
|
||||
filtered_finger_points.push_back(finger_points[i]);
|
||||
}
|
||||
|
||||
if (finger_points.size() > 2) {
|
||||
if (findPointsDistanceOnX(finger_points[0], finger_points[finger_points.size() - 1]) > bounding_rectangle.height * BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING * 1.5)
|
||||
filtered_finger_points.push_back(finger_points[finger_points.size() - 1]);
|
||||
}
|
||||
else
|
||||
filtered_finger_points.push_back(finger_points[finger_points.size() - 1]);
|
||||
}
|
||||
}
|
||||
|
||||
// we draw what found on the returned image
|
||||
drawContours(contours_image, contours, biggest_contour_index, color_green, 2, 8, hierarchy);
|
||||
polylines(contours_image, hull_points, true, color_blue);
|
||||
rectangle(contours_image, bounding_rectangle.tl(), bounding_rectangle.br(), color_red, 2, 8, 0);
|
||||
circle(contours_image, center_bounding_rect, 5, color_purple, 2, 8);
|
||||
drawVectorPoints(contours_image, filtered_start_points, color_blue, true);
|
||||
drawVectorPoints(contours_image, filtered_far_points, color_red, true);
|
||||
drawVectorPoints(contours_image, filtered_finger_points, color_yellow, false);
|
||||
putText(contours_image, to_string(filtered_finger_points.size()), center_bounding_rect, FONT_HERSHEY_PLAIN, 3, color_purple);
|
||||
|
||||
// and on the starting frame
|
||||
drawContours(frame, contours, biggest_contour_index, color_green, 2, 8, hierarchy);
|
||||
circle(frame, center_bounding_rect, 5, color_purple, 2, 8);
|
||||
drawVectorPoints(frame, filtered_finger_points, color_yellow, false);
|
||||
putText(frame, to_string(filtered_finger_points.size()), center_bounding_rect, FONT_HERSHEY_PLAIN, 3, color_purple);
|
||||
|
||||
amount_of_fingers = filtered_finger_points.size();
|
||||
|
||||
return contours_image;
|
||||
}
|
||||
|
||||
int FingerCount::getAmountOfFingers()
|
||||
{
|
||||
return amount_of_fingers;
|
||||
}
|
||||
|
||||
double FingerCount::findPointsDistance(Point a, Point b) {
|
||||
Point difference = a - b;
|
||||
return sqrt(difference.ddot(difference));
|
||||
}
|
||||
|
||||
vector<Point> FingerCount::compactOnNeighborhoodMedian(vector<Point> points, double max_neighbor_distance) {
|
||||
vector<Point> median_points;
|
||||
|
||||
if (points.size() == 0)
|
||||
return median_points;
|
||||
|
||||
if (max_neighbor_distance <= 0)
|
||||
return median_points;
|
||||
|
||||
// we start with the first point
|
||||
Point reference = points[0];
|
||||
Point median = points[0];
|
||||
|
||||
for (int i = 1; i < points.size(); i++) {
|
||||
if (findPointsDistance(reference, points[i]) > max_neighbor_distance) {
|
||||
|
||||
// the point is not in range, we save the median
|
||||
median_points.push_back(median);
|
||||
|
||||
// we swap the reference
|
||||
reference = points[i];
|
||||
median = points[i];
|
||||
}
|
||||
else
|
||||
median = (points[i] + median) / 2;
|
||||
}
|
||||
|
||||
// last median
|
||||
median_points.push_back(median);
|
||||
|
||||
return median_points;
|
||||
}
|
||||
|
||||
double FingerCount::findAngle(Point a, Point b, Point c) {
|
||||
double ab = findPointsDistance(a, b);
|
||||
double bc = findPointsDistance(b, c);
|
||||
double ac = findPointsDistance(a, c);
|
||||
return acos((ab * ab + bc * bc - ac * ac) / (2 * ab * bc)) * 180 / CV_PI;
|
||||
}
|
||||
|
||||
bool FingerCount::isFinger(Point a, Point b, Point c, double limit_angle_inf, double limit_angle_sup, Point palm_center, double min_distance_from_palm) {
|
||||
double angle = findAngle(a, b, c);
|
||||
if (angle > limit_angle_sup || angle < limit_angle_inf)
|
||||
return false;
|
||||
|
||||
// the finger point sohould not be under the two far points
|
||||
int delta_y_1 = b.y - a.y;
|
||||
int delta_y_2 = b.y - c.y;
|
||||
if (delta_y_1 > 0 && delta_y_2 > 0)
|
||||
return false;
|
||||
|
||||
// the two far points should not be both under the center of the hand
|
||||
int delta_y_3 = palm_center.y - a.y;
|
||||
int delta_y_4 = palm_center.y - c.y;
|
||||
if (delta_y_3 < 0 && delta_y_4 < 0)
|
||||
return false;
|
||||
|
||||
double distance_from_palm = findPointsDistance(b, palm_center);
|
||||
if (distance_from_palm < min_distance_from_palm)
|
||||
return false;
|
||||
|
||||
// this should be the case when no fingers are up
|
||||
double distance_from_palm_far_1 = findPointsDistance(a, palm_center);
|
||||
double distance_from_palm_far_2 = findPointsDistance(c, palm_center);
|
||||
if (distance_from_palm_far_1 < min_distance_from_palm / 4 || distance_from_palm_far_2 < min_distance_from_palm / 4)
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
vector<Point> FingerCount::findClosestOnX(vector<Point> points, Point pivot) {
|
||||
vector<Point> to_return(2);
|
||||
|
||||
if (points.size() == 0)
|
||||
return to_return;
|
||||
|
||||
double distance_x_1 = DBL_MAX;
|
||||
double distance_1 = DBL_MAX;
|
||||
double distance_x_2 = DBL_MAX;
|
||||
double distance_2 = DBL_MAX;
|
||||
int index_found = 0;
|
||||
|
||||
for (int i = 0; i < points.size(); i++) {
|
||||
double distance_x = findPointsDistanceOnX(pivot, points[i]);
|
||||
double distance = findPointsDistance(pivot, points[i]);
|
||||
|
||||
if (distance_x < distance_x_1 && distance_x != 0 && distance <= distance_1) {
|
||||
distance_x_1 = distance_x;
|
||||
distance_1 = distance;
|
||||
index_found = i;
|
||||
}
|
||||
}
|
||||
|
||||
to_return[0] = points[index_found];
|
||||
|
||||
for (int i = 0; i < points.size(); i++) {
|
||||
double distance_x = findPointsDistanceOnX(pivot, points[i]);
|
||||
double distance = findPointsDistance(pivot, points[i]);
|
||||
|
||||
if (distance_x < distance_x_2 && distance_x != 0 && distance <= distance_2 && distance_x != distance_x_1) {
|
||||
distance_x_2 = distance_x;
|
||||
distance_2 = distance;
|
||||
index_found = i;
|
||||
}
|
||||
}
|
||||
|
||||
to_return[1] = points[index_found];
|
||||
|
||||
return to_return;
|
||||
}
|
||||
|
||||
double FingerCount::findPointsDistanceOnX(Point a, Point b) {
|
||||
double to_return = 0.0;
|
||||
|
||||
if (a.x > b.x)
|
||||
to_return = a.x - b.x;
|
||||
else
|
||||
to_return = b.x - a.x;
|
||||
|
||||
return to_return;
|
||||
}
|
||||
|
||||
void FingerCount::drawVectorPoints(Mat image, vector<Point> points, Scalar color, bool with_numbers) {
|
||||
for (int i = 0; i < points.size(); i++) {
|
||||
circle(image, points[i], 5, color, 2, 8);
|
||||
if (with_numbers)
|
||||
putText(image, to_string(i), points[i], FONT_HERSHEY_PLAIN, 3, color);
|
||||
}
|
||||
}
|
||||
}
|
||||
119
src/computervision/FingerCount.h
Normal file
119
src/computervision/FingerCount.h
Normal file
@@ -0,0 +1,119 @@
|
||||
#pragma once
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include <opencv2/imgproc/types_c.h>
|
||||
|
||||
/*
|
||||
Author: Nicol<6F> Castellazzi https://github.com/nicast
|
||||
*/
|
||||
|
||||
namespace computervision
|
||||
{
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
class FingerCount {
|
||||
public:
|
||||
FingerCount(void);
|
||||
/**
|
||||
* @brief gets the amount of fingers that are held up.
|
||||
*
|
||||
* @param input_image the source image to find the fingers on. It should be a mask of a hand
|
||||
* @param frame the frame to draw the resulting values on (how many fingers are held up etc)
|
||||
* @return a new image with all the data drawn on it.
|
||||
*/
|
||||
Mat findFingersCount(Mat input_image, Mat frame);
|
||||
|
||||
/**
|
||||
* @brief gets the currently held-up finger count.
|
||||
*
|
||||
* @return the currently held-up finger count
|
||||
*/
|
||||
int getAmountOfFingers();
|
||||
|
||||
private:
|
||||
// colors to use
|
||||
Scalar color_blue;
|
||||
Scalar color_green;
|
||||
Scalar color_red;
|
||||
Scalar color_black;
|
||||
Scalar color_white;
|
||||
Scalar color_yellow;
|
||||
Scalar color_purple;
|
||||
|
||||
int amount_of_fingers;
|
||||
|
||||
/**
|
||||
* @brief finds the distance between 2 points.
|
||||
*
|
||||
* @param a the first point
|
||||
* @param b the second point
|
||||
* @return a double representing the distance
|
||||
*/
|
||||
double findPointsDistance(Point a, Point b);
|
||||
|
||||
/**
|
||||
* @brief compacts the given points on their medians.
|
||||
* what it does is for each point, it checks if the distance to it's neighbour is greater than the
|
||||
* max distance. If so, it just adds it to the list that is returned. If not, it calculates the
|
||||
* median and adds it to the returned list
|
||||
*
|
||||
* @param points the points to compact
|
||||
* @param max_neighbor_distance the maximum distance between points
|
||||
* @return a vector with the points now compacted.
|
||||
*/
|
||||
vector<Point> compactOnNeighborhoodMedian(vector<Point> points, double max_neighbor_distance);
|
||||
|
||||
/**
|
||||
* @brief finds the angle between 3 different points.
|
||||
*
|
||||
* @param a the first point
|
||||
* @param b the second point
|
||||
* @param c the third point
|
||||
* @return the angle between the 3 points
|
||||
*/
|
||||
double findAngle(Point a, Point b, Point c);
|
||||
|
||||
/**
|
||||
* @brief checks if the given points make up a finger.
|
||||
*
|
||||
* @param a the first point to check for
|
||||
* @param b the second point to check for
|
||||
* @param c the third point to check for
|
||||
* @param limit_angle_inf the limit of the angle between 2 fingers
|
||||
* @param limit_angle_sup the limit of the angle between a finger and a convex point
|
||||
* @param palm_center the center of the palm
|
||||
* @param distance_from_palm_tollerance the distance from the palm tolerance
|
||||
* @return true if the points are a finger, false if not.
|
||||
*/
|
||||
bool isFinger(Point a, Point b, Point c, double limit_angle_inf, double limit_angle_sup, cv::Point palm_center, double distance_from_palm_tollerance);
|
||||
|
||||
/**
|
||||
* @brief finds the closest point to the given point that is in the given list.
|
||||
*
|
||||
* @param points the points to check for
|
||||
* @param pivot the pivot to check against
|
||||
* @return a vector containing the point that is closest
|
||||
*/
|
||||
vector<Point> findClosestOnX(vector<Point> points, Point pivot);
|
||||
|
||||
/**
|
||||
* @brief finds the distance between the x coords of the points.
|
||||
*
|
||||
* @param a the first point
|
||||
* @param b the second point
|
||||
* @return the distance between the x values
|
||||
*/
|
||||
double findPointsDistanceOnX(Point a, Point b);
|
||||
|
||||
/**
|
||||
* @brief draws the points on the image.
|
||||
*
|
||||
* @param image the image to draw on
|
||||
* @param points the points to draw
|
||||
* @param color the color to draw them with
|
||||
* @param with_numbers if the numbers should be drawn with the points
|
||||
*/
|
||||
void drawVectorPoints(Mat image, vector<Point> points, Scalar color, bool with_numbers);
|
||||
};
|
||||
}
|
||||
132
src/computervision/ObjectDetection.cpp
Normal file
132
src/computervision/ObjectDetection.cpp
Normal file
@@ -0,0 +1,132 @@
|
||||
|
||||
#include <opencv2/videoio.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
#include <opencv2/video.hpp>
|
||||
|
||||
#include "ObjectDetection.h"
|
||||
#include "BackgroundRemover.h"
|
||||
#include "SkinDetector.h"
|
||||
#include "FaceDetector.h"
|
||||
#include "FingerCount.h"
|
||||
#include "async/StaticCameraInstance.h"
|
||||
|
||||
namespace computervision
|
||||
{
|
||||
|
||||
cv::Mat img, imgGray, img2, img2Gray, img3, img4;
|
||||
|
||||
int handMaskStartXPos, handMaskStartYPos, handMaskWidth, handMaskHeight;
|
||||
bool handMaskGenerated = false;
|
||||
|
||||
Mat frame, frameOut, handMask, foreground, fingerCountDebug;
|
||||
BackgroundRemover backgroundRemover;
|
||||
SkinDetector skinDetector;
|
||||
FaceDetector faceDetector;
|
||||
FingerCount fingerCount;
|
||||
|
||||
cv::VideoCapture cap = static_camera::getCap();
|
||||
|
||||
ObjectDetection::ObjectDetection()
|
||||
{
|
||||
}
|
||||
|
||||
cv::Mat ObjectDetection::readCamera() {
|
||||
cap.read(img);
|
||||
return img;
|
||||
}
|
||||
|
||||
cv::VideoCapture ObjectDetection::getCap()
|
||||
{
|
||||
return cap;
|
||||
}
|
||||
|
||||
bool ObjectDetection::detectHand(Mat cameraFrame)
|
||||
{
|
||||
Mat inputFrame = generateHandMaskSquare(cameraFrame);
|
||||
frameOut = inputFrame.clone();
|
||||
|
||||
// detect skin color
|
||||
skinDetector.drawSkinColorSampler(frameOut);
|
||||
|
||||
// remove background from image
|
||||
foreground = backgroundRemover.getForeground(inputFrame);
|
||||
|
||||
// detect the hand contours
|
||||
handMask = skinDetector.getSkinMask(foreground);
|
||||
|
||||
// count the amount of fingers and put the info on the matrix
|
||||
fingerCountDebug = fingerCount.findFingersCount(handMask, frameOut);
|
||||
|
||||
// get the amount of fingers
|
||||
int fingers_amount = fingerCount.getAmountOfFingers();
|
||||
|
||||
// draw the hand rectangle on the camera input, and draw text showing if the hand is open or closed.
|
||||
drawHandMaskRect(&cameraFrame);
|
||||
string hand_text = fingers_amount > 0 ? "open" : "closed";
|
||||
putText(cameraFrame,hand_text, Point(10, 75), FONT_HERSHEY_PLAIN, 2.0, Scalar(255, 0, 255),3);
|
||||
imshow("camera", cameraFrame);
|
||||
|
||||
imshow("output", frameOut);
|
||||
imshow("foreground", foreground);
|
||||
imshow("handMask", handMask);
|
||||
imshow("handDetection", fingerCountDebug);
|
||||
|
||||
int key = waitKey(1);
|
||||
|
||||
if (key == 98) // b, calibrate the background
|
||||
backgroundRemover.calibrate(inputFrame);
|
||||
else if (key == 115) // s, calibrate the skin color
|
||||
skinDetector.calibrate(inputFrame);
|
||||
|
||||
return fingers_amount > 0;
|
||||
}
|
||||
|
||||
void ObjectDetection::calculateDifference()
|
||||
{
|
||||
cap.read(img);
|
||||
cap.read(img2);
|
||||
|
||||
cv::cvtColor(img, imgGray, cv::COLOR_RGBA2GRAY);
|
||||
cv::cvtColor(img2, img2Gray, cv::COLOR_RGBA2GRAY);
|
||||
|
||||
cv::absdiff(imgGray, img2Gray, img3);
|
||||
cv::threshold(img3, img4, 50, 170, cv::THRESH_BINARY);
|
||||
|
||||
imshow("threshold", img4);
|
||||
}
|
||||
|
||||
|
||||
cv::Mat ObjectDetection::generateHandMaskSquare(cv::Mat img)
|
||||
{
|
||||
handMaskStartXPos = 20;
|
||||
handMaskStartYPos = img.rows / 5;
|
||||
handMaskWidth = img.cols / 3;
|
||||
handMaskHeight = img.cols / 3;
|
||||
|
||||
|
||||
cv::Mat mask = cv::Mat::zeros(img.size(), img.type());
|
||||
cv::Mat dstImg = cv::Mat::zeros(img.size(), img.type());
|
||||
|
||||
cv::rectangle(mask, Rect(handMaskStartXPos, handMaskStartYPos, handMaskWidth, handMaskHeight), Scalar(255, 255, 255), -1);
|
||||
|
||||
img.copyTo(dstImg, mask);
|
||||
|
||||
handMaskGenerated = true;
|
||||
return dstImg;
|
||||
|
||||
}
|
||||
|
||||
bool ObjectDetection::drawHandMaskRect(cv::Mat* input)
|
||||
{
|
||||
if (!handMaskGenerated) return false;
|
||||
rectangle(*input, Rect(handMaskStartXPos, handMaskStartYPos, handMaskWidth, handMaskHeight), Scalar(255, 255, 255));
|
||||
return true;
|
||||
}
|
||||
|
||||
void ObjectDetection::showWebcam()
|
||||
{
|
||||
imshow("Webcam image", img);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
75
src/computervision/ObjectDetection.h
Normal file
75
src/computervision/ObjectDetection.h
Normal file
@@ -0,0 +1,75 @@
|
||||
#pragma once
|
||||
|
||||
#include <opencv2/imgcodecs.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/objdetect.hpp>
|
||||
#include <opencv2/videoio.hpp>
|
||||
#include <opencv2/core.hpp>
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
|
||||
|
||||
namespace computervision
|
||||
{
|
||||
class ObjectDetection
|
||||
{
|
||||
private:
|
||||
|
||||
public:
|
||||
/**
|
||||
* @brief default constructor of ObjectDetection
|
||||
*
|
||||
*/
|
||||
ObjectDetection();
|
||||
|
||||
/**
|
||||
* @brief Displays an image of the current webcam-footage
|
||||
*
|
||||
*/
|
||||
void showWebcam();
|
||||
/**
|
||||
* @brief Calculates the difference between two images
|
||||
* and outputs an image that only shows the difference
|
||||
*
|
||||
*/
|
||||
void calculateDifference();
|
||||
|
||||
/**
|
||||
* @brief generates the square that will hold the mask in which the hand will be detected.
|
||||
*
|
||||
* @param img the current camear frame
|
||||
* @return a matrix containing the mask
|
||||
*/
|
||||
cv::Mat generateHandMaskSquare(cv::Mat img);
|
||||
|
||||
/**
|
||||
* @brief reads the camera and returns it in a matrix.
|
||||
*
|
||||
* @return the camera frame in a matrix
|
||||
*/
|
||||
cv::Mat readCamera();
|
||||
|
||||
/**
|
||||
* @brief detects a hand based on the given hand mask input frame.
|
||||
*
|
||||
* @param inputFrame the input frame from the camera
|
||||
* @return true if hand is open, false if hand is closed
|
||||
*/
|
||||
bool detectHand(cv::Mat cameraFrame);
|
||||
|
||||
/**
|
||||
* @brief draws the hand mask rectangle on the given input matrix.
|
||||
*
|
||||
* @param input the input matrix to draw the rectangle on
|
||||
*/
|
||||
bool drawHandMaskRect(cv::Mat *input);
|
||||
|
||||
|
||||
cv::VideoCapture getCap();
|
||||
|
||||
};
|
||||
|
||||
|
||||
}
|
||||
|
||||
108
src/computervision/OpenPoseVideo.cpp
Normal file
108
src/computervision/OpenPoseVideo.cpp
Normal file
@@ -0,0 +1,108 @@
|
||||
#include "OpenPoseVideo.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::dnn;
|
||||
|
||||
namespace computervision
|
||||
{
|
||||
#define MPI
|
||||
|
||||
#ifdef MPI
|
||||
const int POSE_PAIRS[7][2] =
|
||||
{
|
||||
{0,1}, {1,2}, {2,3},
|
||||
{3,4}, {1,5}, {5,6},
|
||||
{6,7}
|
||||
};
|
||||
|
||||
string protoFile = "res/pose/mpi/pose_deploy_linevec_faster_4_stages.prototxt";
|
||||
string weightsFile = "res/pose/mpi/pose_iter_160000.caffemodel";
|
||||
|
||||
int nPoints = 8;
|
||||
#endif
|
||||
|
||||
#ifdef COCO
|
||||
const int POSE_PAIRS[17][2] =
|
||||
{
|
||||
{1,2}, {1,5}, {2,3},
|
||||
{3,4}, {5,6}, {6,7},
|
||||
{1,8}, {8,9}, {9,10},
|
||||
{1,11}, {11,12}, {12,13},
|
||||
{1,0}, {0,14},
|
||||
{14,16}, {0,15}, {15,17}
|
||||
};
|
||||
|
||||
string protoFile = "pose/coco/pose_deploy_linevec.prototxt";
|
||||
string weightsFile = "pose/coco/pose_iter_440000.caffemodel";
|
||||
|
||||
int nPoints = 18;
|
||||
#endif
|
||||
Net net;
|
||||
|
||||
void OpenPoseVideo::setup() {
|
||||
net = readNetFromCaffe(protoFile, weightsFile);
|
||||
|
||||
net.setPreferableBackend(DNN_TARGET_CPU);
|
||||
}
|
||||
|
||||
void OpenPoseVideo::movementSkeleton(Mat& inputImage, std::function<void(std::vector<Point>&, cv::Mat& poinst_on_image)> f) {
|
||||
std::cout << "movement skeleton start" << std::endl;
|
||||
|
||||
int inWidth = 368;
|
||||
int inHeight = 368;
|
||||
float thresh = 0.01;
|
||||
|
||||
Mat frame;
|
||||
int frameWidth = inputImage.size().width;
|
||||
int frameHeight = inputImage.size().height;
|
||||
|
||||
double t = (double)cv::getTickCount();
|
||||
std::cout << "reading input image and blob" << std::endl;
|
||||
|
||||
frame = inputImage;
|
||||
Mat inpBlob = blobFromImage(frame, 1.0 / 255, Size(inWidth, inHeight), Scalar(0, 0, 0), false, false);
|
||||
|
||||
std::cout << "done reading image and blob" << std::endl;
|
||||
|
||||
net.setInput(inpBlob);
|
||||
|
||||
std::cout << "done setting input to net" << std::endl;
|
||||
Mat output = net.forward();
|
||||
std::cout << "time took to set input and forward: " << t << std::endl;
|
||||
|
||||
int H = output.size[2];
|
||||
int W = output.size[3];
|
||||
|
||||
std::cout << "about to find position of boxy parts" << std::endl;
|
||||
// find the position of the body parts
|
||||
vector<Point> points(nPoints);
|
||||
for (int n = 0; n < nPoints; n++)
|
||||
{
|
||||
// Probability map of corresponding body's part.
|
||||
Mat probMap(H, W, CV_32F, output.ptr(0, n));
|
||||
|
||||
Point2f p(-1, -1);
|
||||
Point maxLoc;
|
||||
double prob;
|
||||
minMaxLoc(probMap, 0, &prob, 0, &maxLoc);
|
||||
if (prob > thresh)
|
||||
{
|
||||
p = maxLoc;
|
||||
p.x *= (float)frameWidth / W;
|
||||
p.y *= (float)frameHeight / H;
|
||||
|
||||
circle(frame, cv::Point((int)p.x, (int)p.y), 8, Scalar(0, 255, 255), -1);
|
||||
cv::putText(frame, cv::format("%d", n), cv::Point((int)p.x, (int)p.y), cv::FONT_HERSHEY_COMPLEX, 1.1, cv::Scalar(0, 0, 255), 2);
|
||||
}
|
||||
points[n] = p;
|
||||
}
|
||||
|
||||
cv::putText(frame, cv::format("time taken = %.2f sec", t), cv::Point(50, 50), cv::FONT_HERSHEY_COMPLEX, .8, cv::Scalar(255, 50, 0), 2);
|
||||
std::cout << "time taken: " << t << std::endl;
|
||||
//imshow("Output-Keypoints", frame);
|
||||
//imshow("Output-Skeleton", frame);
|
||||
std::cout << "about to call points receiving method" << std::endl;
|
||||
f(points,frame);
|
||||
}
|
||||
}
|
||||
19
src/computervision/OpenPoseVideo.h
Normal file
19
src/computervision/OpenPoseVideo.h
Normal file
@@ -0,0 +1,19 @@
|
||||
#pragma once
|
||||
|
||||
#include <opencv2/dnn.hpp>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
#include <iostream>
|
||||
|
||||
using namespace cv;
|
||||
|
||||
namespace computervision
|
||||
{
|
||||
class OpenPoseVideo{
|
||||
private:
|
||||
|
||||
public:
|
||||
void movementSkeleton(Mat& inputImage, std::function<void(std::vector<Point>&, cv::Mat& poinst_on_image)> f);
|
||||
void setup();
|
||||
};
|
||||
}
|
||||
105
src/computervision/SkinDetector.cpp
Normal file
105
src/computervision/SkinDetector.cpp
Normal file
@@ -0,0 +1,105 @@
|
||||
#include "SkinDetector.h"
|
||||
|
||||
/*
|
||||
Author: Pierfrancesco Soffritti https://github.com/PierfrancescoSoffritti
|
||||
*/
|
||||
|
||||
namespace computervision
|
||||
{
|
||||
SkinDetector::SkinDetector(void) {
|
||||
hLowThreshold = 0;
|
||||
hHighThreshold = 0;
|
||||
sLowThreshold = 0;
|
||||
sHighThreshold = 0;
|
||||
vLowThreshold = 0;
|
||||
vHighThreshold = 0;
|
||||
|
||||
calibrated = false;
|
||||
|
||||
skinColorSamplerRectangle1, skinColorSamplerRectangle2;
|
||||
}
|
||||
|
||||
void SkinDetector::drawSkinColorSampler(Mat input) {
|
||||
int frameWidth = input.size().width, frameHeight = input.size().height;
|
||||
|
||||
int rectangleSize = 25;
|
||||
Scalar rectangleColor = Scalar(255, 0, 255);
|
||||
|
||||
skinColorSamplerRectangle1 = Rect(frameWidth / 5, frameHeight / 2, rectangleSize, rectangleSize);
|
||||
skinColorSamplerRectangle2 = Rect(frameWidth / 5, frameHeight / 3, rectangleSize, rectangleSize);
|
||||
|
||||
rectangle(
|
||||
input,
|
||||
skinColorSamplerRectangle1,
|
||||
rectangleColor
|
||||
);
|
||||
|
||||
rectangle(
|
||||
input,
|
||||
skinColorSamplerRectangle2,
|
||||
rectangleColor
|
||||
);
|
||||
}
|
||||
|
||||
void SkinDetector::calibrate(Mat input) {
|
||||
|
||||
Mat hsvInput;
|
||||
cvtColor(input, hsvInput, CV_BGR2HSV);
|
||||
|
||||
Mat sample1 = Mat(hsvInput, skinColorSamplerRectangle1);
|
||||
Mat sample2 = Mat(hsvInput, skinColorSamplerRectangle2);
|
||||
|
||||
calculateThresholds(sample1, sample2);
|
||||
|
||||
calibrated = true;
|
||||
}
|
||||
|
||||
void SkinDetector::calculateThresholds(Mat sample1, Mat sample2) {
|
||||
int offsetLowThreshold = 80;
|
||||
int offsetHighThreshold = 30;
|
||||
|
||||
Scalar hsvMeansSample1 = mean(sample1);
|
||||
Scalar hsvMeansSample2 = mean(sample2);
|
||||
|
||||
hLowThreshold = min(hsvMeansSample1[0], hsvMeansSample2[0]) - offsetLowThreshold;
|
||||
hHighThreshold = max(hsvMeansSample1[0], hsvMeansSample2[0]) + offsetHighThreshold;
|
||||
|
||||
sLowThreshold = min(hsvMeansSample1[1], hsvMeansSample2[1]) - offsetLowThreshold;
|
||||
sHighThreshold = max(hsvMeansSample1[1], hsvMeansSample2[1]) + offsetHighThreshold;
|
||||
|
||||
// the V channel shouldn't be used. By ignorint it, shadows on the hand wouldn't interfire with segmentation.
|
||||
// Unfortunately there's a bug somewhere and not using the V channel causes some problem. This shouldn't be too hard to fix.
|
||||
vLowThreshold = min(hsvMeansSample1[2], hsvMeansSample2[2]) - offsetLowThreshold;
|
||||
vHighThreshold = max(hsvMeansSample1[2], hsvMeansSample2[2]) + offsetHighThreshold;
|
||||
//vLowThreshold = 0;
|
||||
//vHighThreshold = 255;
|
||||
}
|
||||
|
||||
Mat SkinDetector::getSkinMask(Mat input) {
|
||||
Mat skinMask;
|
||||
|
||||
if (!calibrated) {
|
||||
skinMask = Mat::zeros(input.size(), CV_8UC1);
|
||||
return skinMask;
|
||||
}
|
||||
|
||||
Mat hsvInput;
|
||||
cvtColor(input, hsvInput, CV_BGR2HSV);
|
||||
|
||||
inRange(
|
||||
hsvInput,
|
||||
Scalar(hLowThreshold, sLowThreshold, vLowThreshold),
|
||||
Scalar(hHighThreshold, sHighThreshold, vHighThreshold),
|
||||
skinMask);
|
||||
|
||||
performOpening(skinMask, MORPH_ELLIPSE, { 3, 3 });
|
||||
dilate(skinMask, skinMask, Mat(), Point(-1, -1), 3);
|
||||
|
||||
return skinMask;
|
||||
}
|
||||
|
||||
void SkinDetector::performOpening(Mat binaryImage, int kernelShape, Point kernelSize) {
|
||||
Mat structuringElement = getStructuringElement(kernelShape, kernelSize);
|
||||
morphologyEx(binaryImage, binaryImage, MORPH_OPEN, structuringElement);
|
||||
}
|
||||
}
|
||||
76
src/computervision/SkinDetector.h
Normal file
76
src/computervision/SkinDetector.h
Normal file
@@ -0,0 +1,76 @@
|
||||
#pragma once
|
||||
|
||||
#include <opencv2\core.hpp>
|
||||
#include <opencv2/imgcodecs.hpp>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/imgproc/types_c.h>
|
||||
/*
|
||||
Author: Pierfrancesco Soffritti https://github.com/PierfrancescoSoffritti
|
||||
*/
|
||||
|
||||
namespace computervision
|
||||
{
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
class SkinDetector {
|
||||
public:
|
||||
SkinDetector(void);
|
||||
|
||||
/*
|
||||
* @brief draws the positions in where the skin color will be sampled.
|
||||
*
|
||||
* @param input the input matrix to sample the skin color from
|
||||
*/
|
||||
void drawSkinColorSampler(Mat input);
|
||||
|
||||
/*
|
||||
* @brief calibrates the skin color detector with the given input frame
|
||||
*
|
||||
* @param input the input frame to calibrate from
|
||||
*/
|
||||
void calibrate(Mat input);
|
||||
|
||||
/*
|
||||
* @brief gets the mask for the hand
|
||||
*
|
||||
* @param input the input matrix to get the skin mask from
|
||||
* @returns the skin mask in a new matrix
|
||||
*/
|
||||
Mat getSkinMask(Mat input);
|
||||
|
||||
private:
|
||||
|
||||
// thresholds for hsv calculation
|
||||
int hLowThreshold = 0;
|
||||
int hHighThreshold = 0;
|
||||
int sLowThreshold = 0;
|
||||
int sHighThreshold = 0;
|
||||
int vLowThreshold = 0;
|
||||
int vHighThreshold = 0;
|
||||
|
||||
// wether or not the skindetector has calibrated yet.
|
||||
bool calibrated = false;
|
||||
|
||||
// rectangles that get drawn to show where the skin color will be sampled
|
||||
Rect skinColorSamplerRectangle1, skinColorSamplerRectangle2;
|
||||
|
||||
/*
|
||||
* @brief calculates the skin tresholds for the given samples
|
||||
*
|
||||
* @param sample1 the first sample
|
||||
* @param sample2 the second sample
|
||||
*/
|
||||
void calculateThresholds(Mat sample1, Mat sample2);
|
||||
|
||||
/**
|
||||
* @brief the opening. it generates the structuring element and performs the morphological transformations required to detect the hand.
|
||||
* This needs to be done to get the skin mask.
|
||||
*
|
||||
* @param binaryImage the matrix to perform the opening on. This needs to be a binary image, so consisting of only 1's and 0's.
|
||||
* @param structuralElementShape the shape to use for the kernel that is used with generating the structuring element
|
||||
* @param structuralElementSize the size of the kernel that will be used with generating the structuring element.
|
||||
*/
|
||||
void performOpening(Mat binaryImage, int structuralElementShape, Point structuralElementSize);
|
||||
};
|
||||
}
|
||||
12
src/computervision/async/StaticCameraInstance.h
Normal file
12
src/computervision/async/StaticCameraInstance.h
Normal file
@@ -0,0 +1,12 @@
|
||||
#pragma once
|
||||
#include <opencv2/videoio.hpp>
|
||||
|
||||
namespace static_camera
|
||||
{
|
||||
|
||||
static cv::VideoCapture getCap()
|
||||
{
|
||||
static cv::VideoCapture cap(0);
|
||||
return cap;
|
||||
}
|
||||
};
|
||||
46
src/computervision/async/async_arm_detection.cpp
Normal file
46
src/computervision/async/async_arm_detection.cpp
Normal file
@@ -0,0 +1,46 @@
|
||||
#include <iostream>
|
||||
#include "async_arm_detection.h"
|
||||
#include "../OpenPoseVideo.h"
|
||||
#include <thread>
|
||||
#include "StaticCameraInstance.h"
|
||||
|
||||
|
||||
namespace computervision
|
||||
{
|
||||
AsyncArmDetection::AsyncArmDetection()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
void AsyncArmDetection::run_arm_detection(std::function<void(std::vector<Point>, cv::Mat poinst_on_image)> points_ready_func, OpenPoseVideo op)
|
||||
{
|
||||
VideoCapture cap = static_camera::getCap();
|
||||
|
||||
std::cout << "STARTING THREAD LAMBDA" << std::endl;
|
||||
/*cv::VideoCapture cap = static_camera::getCap();*/
|
||||
|
||||
if (!cap.isOpened())
|
||||
{
|
||||
std::cout << "capture was closed, opening..." << std::endl;
|
||||
cap.open(0);
|
||||
}
|
||||
|
||||
while (true)
|
||||
{
|
||||
Mat img;
|
||||
cap.read(img);
|
||||
op.movementSkeleton(img, points_ready_func);
|
||||
}
|
||||
}
|
||||
|
||||
void AsyncArmDetection::start(std::function<void(std::vector<Point>, cv::Mat poinst_on_image)> points_ready_func, OpenPoseVideo op)
|
||||
{
|
||||
|
||||
std::cout << "starting function" << std::endl;
|
||||
|
||||
|
||||
std::thread async_arm_detect_thread(&AsyncArmDetection::run_arm_detection,this, points_ready_func, op);
|
||||
|
||||
async_arm_detect_thread.detach(); // makes sure the thread is detached from the variable.
|
||||
}
|
||||
}
|
||||
23
src/computervision/async/async_arm_detection.h
Normal file
23
src/computervision/async/async_arm_detection.h
Normal file
@@ -0,0 +1,23 @@
|
||||
#pragma once
|
||||
#include <vector>
|
||||
#include <opencv2/core/types.hpp>
|
||||
#include <opencv2/videoio.hpp>
|
||||
#include <functional>
|
||||
#include "../OpenPoseVideo.h"
|
||||
#include "StaticCameraInstance.h"
|
||||
|
||||
|
||||
namespace computervision
|
||||
{
|
||||
class AsyncArmDetection
|
||||
{
|
||||
public:
|
||||
AsyncArmDetection(void);
|
||||
|
||||
|
||||
void start(std::function<void(std::vector<cv::Point>, cv::Mat poinst_on_image)>, computervision::OpenPoseVideo op);
|
||||
private:
|
||||
void run_arm_detection(std::function<void(std::vector<Point>, cv::Mat poinst_on_image)> points_ready_func, OpenPoseVideo op);
|
||||
};
|
||||
|
||||
}
|
||||
144
src/main.cpp
144
src/main.cpp
@@ -1,11 +1,16 @@
|
||||
#include <GL/glew.h>
|
||||
#include <GLFW/glfw3.h>
|
||||
#include <glm/gtc/matrix_transform.hpp>
|
||||
#include <functional>
|
||||
#include <vector>
|
||||
#define STB_IMAGE_IMPLEMENTATION
|
||||
#include "stb_image.h"
|
||||
#include <ostream>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include <opencv2/core.hpp>
|
||||
#include <opencv2/videoio.hpp>
|
||||
#include <opencv2/video.hpp>
|
||||
|
||||
#include "models/model.h"
|
||||
#include "renderEngine/loader.h"
|
||||
@@ -14,6 +19,12 @@
|
||||
#include "shaders/static_shader.h"
|
||||
#include "toolbox/toolbox.h"
|
||||
|
||||
#include "computervision/ObjectDetection.h"
|
||||
//#include "computervision/OpenPoseImage.h"
|
||||
#include "computervision/OpenPoseVideo.h"
|
||||
|
||||
#include "computervision/async/async_arm_detection.h"
|
||||
|
||||
#pragma comment(lib, "glfw3.lib")
|
||||
#pragma comment(lib, "glew32s.lib")
|
||||
#pragma comment(lib, "opengl32.lib")
|
||||
@@ -21,75 +32,114 @@
|
||||
static double UpdateDelta();
|
||||
|
||||
static GLFWwindow* window;
|
||||
bool points_img_available = false;
|
||||
cv::Mat points_img;
|
||||
|
||||
void retrieve_points(std::vector<Point> arm_points, cv::Mat points_on_image)
|
||||
{
|
||||
|
||||
std::cout << "got points!!" << std::endl;
|
||||
std::cout << "points: " << arm_points << std::endl;
|
||||
points_img = points_on_image;
|
||||
points_img_available = true;
|
||||
}
|
||||
|
||||
int main(void)
|
||||
{
|
||||
#pragma region OPENGL_SETTINGS
|
||||
if (!glfwInit())
|
||||
throw "Could not inditialize glwf";
|
||||
window = glfwCreateWindow(WINDOW_WIDTH, WINDOW_HEIGT, "SDBA", NULL, NULL);
|
||||
if (!window)
|
||||
{
|
||||
glfwTerminate();
|
||||
throw "Could not initialize glwf";
|
||||
}
|
||||
glfwMakeContextCurrent(window);
|
||||
glewInit();
|
||||
glGetError();
|
||||
#pragma endregion
|
||||
#pragma region OPENGL_SETTINGS
|
||||
if (!glfwInit())
|
||||
throw "Could not inditialize glwf";
|
||||
window = glfwCreateWindow(WINDOW_WIDTH, WINDOW_HEIGT, "SDBA", NULL, NULL);
|
||||
if (!window)
|
||||
{
|
||||
glfwTerminate();
|
||||
throw "Could not initialize glwf";
|
||||
}
|
||||
glfwMakeContextCurrent(window);
|
||||
glewInit();
|
||||
glGetError();
|
||||
#pragma endregion
|
||||
|
||||
glfwSetKeyCallback(window, [](GLFWwindow* window, int key, int scancode, int action, int mods)
|
||||
{
|
||||
if (key == GLFW_KEY_ESCAPE)
|
||||
glfwSetWindowShouldClose(window, true);
|
||||
});
|
||||
|
||||
|
||||
models::RawModel raw_model = LoadObjModel("res/Tree.obj");
|
||||
models::ModelTexture texture = { render_engine::loader::LoadTexture("res/TreeTexture.png") };
|
||||
models::TexturedModel model = { raw_model, texture };
|
||||
entities::Entity entity(model, glm::vec3(0, -5, -20), glm::vec3(0, 0, 0), 1);
|
||||
|
||||
shaders::StaticShader shader;
|
||||
shader.Init();
|
||||
render_engine::renderer::Init(shader);
|
||||
glfwSetKeyCallback(window, [](GLFWwindow* window, int key, int scancode, int action, int mods)
|
||||
{
|
||||
if (key == GLFW_KEY_ESCAPE)
|
||||
glfwSetWindowShouldClose(window, true);
|
||||
});
|
||||
|
||||
entities::Camera camera(glm::vec3(0, 0, 0), glm::vec3(0, 0, 0));
|
||||
|
||||
models::RawModel raw_model = LoadObjModel("res/Tree.obj");
|
||||
models::ModelTexture texture = { render_engine::loader::LoadTexture("res/TreeTexture.png") };
|
||||
models::TexturedModel model = { raw_model, texture };
|
||||
entities::Entity entity(model, glm::vec3(0, -5, -20), glm::vec3(0, 0, 0), 1);
|
||||
|
||||
shaders::StaticShader shader;
|
||||
shader.Init();
|
||||
render_engine::renderer::Init(shader);
|
||||
|
||||
entities::Camera camera(glm::vec3(0, 0, 0), glm::vec3(0, 0, 0));
|
||||
|
||||
// create object detection object instance
|
||||
computervision::ObjectDetection objDetect;
|
||||
//computervision::OpenPoseImage openPoseImage;
|
||||
computervision::OpenPoseVideo openPoseVideo;
|
||||
openPoseVideo.setup();
|
||||
|
||||
|
||||
// set up object detection
|
||||
//objDetect.setup();
|
||||
//cv::VideoCapture cam = objDetect.getCap();
|
||||
cv::Mat img;
|
||||
cv::VideoCapture cap = objDetect.getCap();
|
||||
//cam.read(img);
|
||||
//imshow("camera in main loop", img);
|
||||
|
||||
|
||||
computervision::AsyncArmDetection as;
|
||||
|
||||
as.start(retrieve_points,openPoseVideo);
|
||||
|
||||
|
||||
// Main game loop
|
||||
while (!glfwWindowShouldClose(window))
|
||||
{
|
||||
// Update
|
||||
const double delta = UpdateDelta();
|
||||
entity.IncreaseRotation(glm::vec3(0, 1, 0));
|
||||
camera.Move(window);
|
||||
// Update
|
||||
const double delta = UpdateDelta();
|
||||
entity.IncreaseRotation(glm::vec3(0, 1, 0));
|
||||
camera.Move(window);
|
||||
|
||||
// Render
|
||||
render_engine::renderer::Prepare();
|
||||
shader.Start();
|
||||
shader.LoadViewMatrix(camera);
|
||||
|
||||
render_engine::renderer::Render(entity, shader);
|
||||
render_engine::renderer::Prepare();
|
||||
shader.Start();
|
||||
shader.LoadViewMatrix(camera);
|
||||
|
||||
|
||||
render_engine::renderer::Render(entity, shader);
|
||||
|
||||
//objDetect.detectHand(cameraFrame);
|
||||
if (points_img_available)
|
||||
{
|
||||
imshow("points", points_img);
|
||||
points_img_available = false;
|
||||
}
|
||||
|
||||
// Finish up
|
||||
shader.Stop();
|
||||
shader.Stop();
|
||||
glfwSwapBuffers(window);
|
||||
glfwPollEvents();
|
||||
}
|
||||
|
||||
// Clean up
|
||||
shader.CleanUp();
|
||||
render_engine::loader::CleanUp();
|
||||
shader.CleanUp();
|
||||
render_engine::loader::CleanUp();
|
||||
glfwTerminate();
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static double UpdateDelta()
|
||||
{
|
||||
double current_time = glfwGetTime();
|
||||
static double last_frame_time = current_time;
|
||||
double delt_time = current_time - last_frame_time;
|
||||
last_frame_time = current_time;
|
||||
return delt_time;
|
||||
double current_time = glfwGetTime();
|
||||
static double last_frame_time = current_time;
|
||||
double delt_time = current_time - last_frame_time;
|
||||
last_frame_time = current_time;
|
||||
return delt_time;
|
||||
}
|
||||
@@ -18,7 +18,7 @@ namespace render_engine
|
||||
void Init(shaders::StaticShader& shader)
|
||||
{
|
||||
const glm::mat4 projectionMatrix =
|
||||
glm::perspective(glm::radians(FOV), (WINDOW_WIDTH / WINDOW_HEIGT), NEAR_PLANE, FAR_PLANE);
|
||||
glm::perspective(glm::radians(FOV), (float)(WINDOW_WIDTH / WINDOW_HEIGT), NEAR_PLANE, FAR_PLANE);
|
||||
|
||||
shader.Start();
|
||||
shader.LoadProjectionMatrix(projectionMatrix);
|
||||
|
||||
@@ -5,8 +5,8 @@
|
||||
|
||||
namespace toolbox
|
||||
{
|
||||
#define WINDOW_WIDTH 1400.0f
|
||||
#define WINDOW_HEIGT 800.0f
|
||||
#define WINDOW_WIDTH 1400
|
||||
#define WINDOW_HEIGT 800
|
||||
|
||||
glm::mat4 CreateModelMatrix(glm::vec3 translation, glm::vec3 rotation, float scale);
|
||||
|
||||
|
||||
@@ -19,6 +19,13 @@
|
||||
</ProjectConfiguration>
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<ClCompile Include="src\computervision\async\async_arm_detection.cpp" />
|
||||
<ClCompile Include="src\computervision\FaceDetector.cpp" />
|
||||
<ClCompile Include="src\computervision\ObjectDetection.cpp" />
|
||||
<ClCompile Include="src\computervision\OpenPoseVideo.cpp" />
|
||||
<ClCompile Include="src\computervision\SkinDetector.cpp" />
|
||||
<ClCompile Include="src\computervision\FingerCount.cpp" />
|
||||
<ClCompile Include="src\computervision\BackgroundRemover.cpp" />
|
||||
<ClCompile Include="src\entities\camera.cpp" />
|
||||
<ClCompile Include="src\entities\entity.cpp" />
|
||||
<ClCompile Include="src\main.cpp" />
|
||||
@@ -30,6 +37,14 @@
|
||||
<ClCompile Include="src\toolbox\toolbox.cpp" />
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<ClInclude Include="src\computervision\async\async_arm_detection.h" />
|
||||
<ClInclude Include="src\computervision\async\StaticCameraInstance.h" />
|
||||
<ClInclude Include="src\computervision\FaceDetector.h" />
|
||||
<ClInclude Include="src\computervision\FingerCount.h" />
|
||||
<ClInclude Include="src\computervision\BackgroundRemover.h" />
|
||||
<ClInclude Include="src\computervision\OpenPoseVideo.h" />
|
||||
<ClInclude Include="src\computervision\SkinDetector.h" />
|
||||
<ClInclude Include="src\computervision\ObjectDetection.h" />
|
||||
<ClInclude Include="src\entities\camera.h" />
|
||||
<ClInclude Include="src\entities\entity.h" />
|
||||
<ClInclude Include="src\models\model.h" />
|
||||
@@ -41,6 +56,15 @@
|
||||
<ClInclude Include="src\stb_image.h" />
|
||||
<ClInclude Include="src\toolbox\toolbox.h" />
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<Xml Include="res\haarcascade_frontalface_alt.xml" />
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<None Include="..\..\Avans Hogeschool\Kim Veldhoen - Proftaak 2.4\pose_iter_160000.caffemodel" />
|
||||
<None Include="res\pose\coco\pose_deploy_linevec.prototxt" />
|
||||
<None Include="res\pose\mpi\pose_deploy_linevec_faster_4_stages.prototxt" />
|
||||
<None Include="res\pose\mpi\pose_iter_160000.caffemodel" />
|
||||
</ItemGroup>
|
||||
<PropertyGroup Label="Globals">
|
||||
<VCProjectVersion>16.0</VCProjectVersion>
|
||||
<ProjectGuid>{A7ECF1BE-DB22-4BF7-BFF6-E3BF72691EE6}</ProjectGuid>
|
||||
@@ -107,8 +131,8 @@
|
||||
</PropertyGroup>
|
||||
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
|
||||
<LinkIncremental>false</LinkIncremental>
|
||||
<IncludePath>$(VC_IncludePath);$(WindowsSDK_IncludePath);;C:\opencv\opencv\build\include</IncludePath>
|
||||
<LibraryPath>$(VC_LibraryPath_x64);$(WindowsSDK_LibraryPath_x64);C:\opencv\opencv\build\x64\vc15\lib</LibraryPath>
|
||||
<IncludePath>C:\opencv\build\include\;$(VC_IncludePath);$(WindowsSDK_IncludePath);C:\opencv\opencv\build\include</IncludePath>
|
||||
<LibraryPath>C:\opencv\build\x64\vc15\lib;$(VC_LibraryPath_x64);$(WindowsSDK_LibraryPath_x64);C:\opencv\opencv\build\x64\vc15\lib</LibraryPath>
|
||||
</PropertyGroup>
|
||||
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
|
||||
<ClCompile>
|
||||
@@ -181,7 +205,7 @@
|
||||
<OptimizeReferences>true</OptimizeReferences>
|
||||
<GenerateDebugInformation>true</GenerateDebugInformation>
|
||||
<AdditionalLibraryDirectories>$(SolutionDir)lib\glfw-3.3.2\$(Platform);$(SolutionDir)lib\glew-2.1.0\lib\Release\$(Platform);%(AdditionalLibraryDirectories)</AdditionalLibraryDirectories>
|
||||
<AdditionalDependencies>kernel32.lib;user32.lib;gdi32.lib;winspool.lib;comdlg32.lib;advapi32.lib;shell32.lib;ole32.lib;oleaut32.lib;uuid.lib;odbc32.lib;odbccp32.lib;%(AdditionalDependencies); opencv_world452.lib</AdditionalDependencies>
|
||||
<AdditionalDependencies>opencv_world452.lib;kernel32.lib;user32.lib;gdi32.lib;winspool.lib;comdlg32.lib;advapi32.lib;shell32.lib;ole32.lib;oleaut32.lib;uuid.lib;odbc32.lib;odbccp32.lib;%(AdditionalDependencies)</AdditionalDependencies>
|
||||
</Link>
|
||||
</ItemDefinitionGroup>
|
||||
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
|
||||
|
||||
@@ -42,6 +42,27 @@
|
||||
<ClCompile Include="src\toolbox\toolbox.cpp">
|
||||
<Filter>Source Files</Filter>
|
||||
</ClCompile>
|
||||
<ClCompile Include="src\computervision\ObjectDetection.cpp">
|
||||
<Filter>Source Files</Filter>
|
||||
</ClCompile>
|
||||
<ClCompile Include="src\computervision\SkinDetector.cpp">
|
||||
<Filter>Source Files</Filter>
|
||||
</ClCompile>
|
||||
<ClCompile Include="src\computervision\FingerCount.cpp">
|
||||
<Filter>Source Files</Filter>
|
||||
</ClCompile>
|
||||
<ClCompile Include="src\computervision\FaceDetector.cpp">
|
||||
<Filter>Source Files</Filter>
|
||||
</ClCompile>
|
||||
<ClCompile Include="src\computervision\BackgroundRemover.cpp">
|
||||
<Filter>Source Files</Filter>
|
||||
</ClCompile>
|
||||
<ClCompile Include="src\computervision\OpenPoseVideo.cpp">
|
||||
<Filter>Source Files</Filter>
|
||||
</ClCompile>
|
||||
<ClCompile Include="src\computervision\async\async_arm_detection.cpp">
|
||||
<Filter>Source Files</Filter>
|
||||
</ClCompile>
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<ClInclude Include="src\entities\Camera.h">
|
||||
@@ -74,5 +95,38 @@
|
||||
<ClInclude Include="src\toolbox\toolbox.h">
|
||||
<Filter>Header Files</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="src\computervision\ObjectDetection.h">
|
||||
<Filter>Header Files</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="src\computervision\SkinDetector.h">
|
||||
<Filter>Header Files</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="src\computervision\FingerCount.h">
|
||||
<Filter>Header Files</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="src\computervision\FaceDetector.h">
|
||||
<Filter>Header Files</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="src\computervision\BackgroundRemover.h">
|
||||
<Filter>Header Files</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="src\computervision\OpenPoseVideo.h">
|
||||
<Filter>Header Files</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="src\computervision\async\async_arm_detection.h">
|
||||
<Filter>Header Files</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="src\computervision\async\StaticCameraInstance.h">
|
||||
<Filter>Header Files</Filter>
|
||||
</ClInclude>
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<Xml Include="res\haarcascade_frontalface_alt.xml" />
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<None Include="res\pose\coco\pose_deploy_linevec.prototxt" />
|
||||
<None Include="res\pose\mpi\pose_deploy_linevec_faster_4_stages.prototxt" />
|
||||
<None Include="res\pose\mpi\pose_iter_160000.caffemodel" />
|
||||
<None Include="..\..\Avans Hogeschool\Kim Veldhoen - Proftaak 2.4\pose_iter_160000.caffemodel" />
|
||||
</ItemGroup>
|
||||
</Project>
|
||||
Reference in New Issue
Block a user