clean up checking move direction

This commit is contained in:
Sem van der Hoeven
2023-05-24 17:09:57 +02:00
parent c7f764726f
commit cfa2a39612

View File

@@ -34,12 +34,11 @@ public:
rmw_qos_profile_t qos_profile = rmw_qos_profile_sensor_data;
auto qos = rclcpp::QoS(rclcpp::QoSInitialization(qos_profile.history, 5), qos_profile);
this->lidar_subscription = this->create_subscription<object_detection::msg::LidarReading>("/drone/object_detection", qos, std::bind(&PositionChanger::handle_lidar_message, this, std::placeholders::_1))
this->odometry_subscription = this->create_subscription<px4_msgs::msg::VehicleOdometry>("/fmu/out/vehicle_odometry", qos, std::bind(&PositionChanger::handle_odometry_message, this, std::placeholders::_1));
}
this->lidar_subscription = this->create_subscription<object_detection::msg::LidarReading>("/drone/object_detection", qos, std::bind(&PositionChanger::handle_lidar_message, this, std::placeholders::_1)) this->odometry_subscription = this->create_subscription<px4_msgs::msg::VehicleOdometry>("/fmu/out/vehicle_odometry", qos, std::bind(&PositionChanger::handle_odometry_message, this, std::placeholders::_1));
}
/**
* @brief checks for every direction is an object is too close and if we can move in that direction.
* @brief checks for every direction is an object is too close and if we can move in that direction.
* If the object is too close to the drone, calculate the amount we need to move away from it
*/
void check_move_direction_allowed()
@@ -49,22 +48,15 @@ public:
this->move_direction_allowed[MOVE_DIRECTION_BACK] = this->lidar_sensor_values[LIDAR_SENSOR_RL] > MIN_DISTANCE && this->lidar_sensor_values[LIDAR_SENSOR_RR] > MIN_DISTANCE;
this->move_direction_allowed[MOVE_DIRECTION_RIGHT] = this->lidar_sensor_values[LIDAR_SENSOR_RR] > MIN_DISTANCE && this->lidar_sensor_values[LIDAR_SENSOR_FR] > MIN_DISTANCE;
if (!this->move_direction_allowed[MOVE_DIRECTION_FRONT])
{
collision_prevention_weights[MOVE_DIRECTION_FRONT] = -(MIN_DISTANCE - std::min(this->lidar_sensor_values[LIDAR_SENSOR_FR], this->lidar_sensor_values[LIDAR_SENSOR_FL]));
}
if (!this->move_direction_allowed[MOVE_DIRECTION_LEFT])
{
collision_prevention_weights[MOVE_DIRECTION_LEFT] = -(MIN_DISTANCE - std::min(this->lidar_sensor_values[LIDAR_SENSOR_FL], this->lidar_sensor_values[LIDAR_SENSOR_RL]));
}
if (!this->move_direction_allowed[MOVE_DIRECTION_BACK])
{
collision_prevention_weights[MOVE_DIRECTION_BACK] = -(MIN_DISTANCE - std::min(this->lidar_sensor_values[LIDAR_SENSOR_RL], this->lidar_sensor_values[LIDAR_SENSOR_RR]));
}
if (!this->move_direction_allowed[MOVE_DIRECTION_RIGHT])
{
collision_prevention_weights[MOVE_DIRECTION_RIGHT] = -(MIN_DISTANCE - std::min(this->lidar_sensor_values[LIDAR_SENSOR_RR], this->lidar_sensor_values[LIDAR_SENSOR_FR]));
}
// calculate the amount we need to move away from the object to be at the minimum distance
collision_prevention_weights[MOVE_DIRECTION_FRONT] = this->move_direction_allowed[MOVE_DIRECTION_FRONT] ? 0
: -(MIN_DISTANCE - std::min(this->lidar_sensor_values[LIDAR_SENSOR_FR], this->lidar_sensor_values[LIDAR_SENSOR_FL]));
collision_prevention_weights[MOVE_DIRECTION_LEFT] = this->move_direction_allowed[MOVE_DIRECTION_LEFT] ? 0
: -(MIN_DISTANCE - std::min(this->lidar_sensor_values[LIDAR_SENSOR_FL], this->lidar_sensor_values[LIDAR_SENSOR_RL]));
collision_prevention_weights[MOVE_DIRECTION_BACK] = this->move_direction_allowed[MOVE_DIRECTION_BACK] ? 0
: -(MIN_DISTANCE - std::min(this->lidar_sensor_values[LIDAR_SENSOR_RL], this->lidar_sensor_values[LIDAR_SENSOR_RR]));
collision_prevention_weights[MOVE_DIRECTION_RIGHT] = this->move_direction_allowed[MOVE_DIRECTION_RIGHT] ? 0
: -(MIN_DISTANCE - std::min(this->lidar_sensor_values[LIDAR_SENSOR_RR], this->lidar_sensor_values[LIDAR_SENSOR_FR]));
}
void handle_lidar_message(const object_detection::msg::LidarReading::SharedPtr message)
@@ -98,13 +90,13 @@ public:
void handle_odometry_message(const px4_msgs::msg::VehicleOdometry::SharedPtr message)
{
Quaternion q = {message->q[0], message->q[1], message->q[2], message->q[3]};
odometry_yaw = get_yaw_angle(q);
odometry_yaw = get_yaw_angle(q);
}
/**
* @brief Get the yaw angle from a specified normalized quaternion.
* Uses the theory from https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
*
*
* @param q the quaternion that holds the rotation
* @return the yaw angle in radians
*/
@@ -117,7 +109,7 @@ public:
/**
* @brief Get the new x and y coordinates after a rotation of yaw radians
*
*
* @param x the original x coordinate
* @param y the original y coordinate
* @param yaw the angle to rotate by in radians
@@ -133,11 +125,14 @@ public:
private:
rclcpp::Subscription<object_detection::msg::LidarReading> lidar_subscription;
rclcpp::Subscription<px4_msgs::msg::VehicleOdometry> odometry_subscription;
float lidar_sensor_values[4];
float lidar_imu_readings[4];
float currrent_yaw = 0;
bool move_direction_allowed[4] = {true, true, true, true};
float collision_prevention_weights[4] = {0,0,0,0};
float lidar_sensor_values[4]; // last distance measured by the lidar sensors
float lidar_imu_readings[4]; // last imu readings from the lidar sensors
float currrent_yaw = 0; // in radians
float current_x_speed = 0;
float current_y_speed = 0;
float current_z_speed = 0;
bool move_direction_allowed[4] = {true};
float collision_prevention_weights[4] = {0};
};
int main(int argc, char *argv[])
{