|
|
|
|
@@ -1,14 +1,30 @@
|
|
|
|
|
#include "rclcpp/rclcpp.hpp"
|
|
|
|
|
|
|
|
|
|
#include "px4_msgs/msg/VehicleOdometry.msg"
|
|
|
|
|
#include "object_detection/msg/LidarReading.msg"
|
|
|
|
|
#include "height/msg/HeightData.msg"
|
|
|
|
|
#include "drone_services/srv/SetVehicleControl.srv"
|
|
|
|
|
#include "drone_services/srv/SetTrajectory/srv"
|
|
|
|
|
|
|
|
|
|
#define _USE_MATH_DEFINES
|
|
|
|
|
#include <cmath>
|
|
|
|
|
|
|
|
|
|
#define LIDAR_SENSOR_FR 0 // front right
|
|
|
|
|
#define LIDAR_SENSOR_FL 1 // front left
|
|
|
|
|
#define LIDAR_SENSOR_RR 2 // rear right
|
|
|
|
|
#define LIDAR_SENSOR_RL 3 // rear left
|
|
|
|
|
#define LIDAR_SENSOR_RL 2 // rear left
|
|
|
|
|
#define LIDAR_SENSOR_RR 3 // rear right
|
|
|
|
|
|
|
|
|
|
#define MOVE_DIRECTION_FRONT 0 // front right
|
|
|
|
|
#define MOVE_DIRECTION_LEFT 1 // front left
|
|
|
|
|
#define MOVE_DIRECTION_BACK 2 // rear left
|
|
|
|
|
#define MOVE_DIRECTION_RIGHT 3 // rear right
|
|
|
|
|
|
|
|
|
|
#define MIN_DISTANCE 1.0 // in meters
|
|
|
|
|
|
|
|
|
|
struct Quaternion
|
|
|
|
|
{
|
|
|
|
|
float w, x, y, z;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
class PositionChanger : public rclcpp::Node
|
|
|
|
|
{
|
|
|
|
|
@@ -18,27 +34,110 @@ public:
|
|
|
|
|
rmw_qos_profile_t qos_profile = rmw_qos_profile_sensor_data;
|
|
|
|
|
auto qos = rclcpp::QoS(rclcpp::QoSInitialization(qos_profile.history, 5), qos_profile);
|
|
|
|
|
|
|
|
|
|
this->lidar_subscription = this->create_subscription<object_detection::msg::LidarReading>("/drone/object_detection",qos, std::bind(&PositionChanger::handle_lidar_message, this, std::placeholders::_1))
|
|
|
|
|
this->lidar_subscription = this->create_subscription<object_detection::msg::LidarReading>("/drone/object_detection", qos, std::bind(&PositionChanger::handle_lidar_message, this, std::placeholders::_1))
|
|
|
|
|
this->odometry_subscription = this->create_subscription<px4_msgs::msg::VehicleOdometry>("/fmu/out/vehicle_odometry", qos, std::bind(&PositionChanger::handle_odometry_message, this, std::placeholders::_1));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @brief checks for every direction is an object is too close and if we can move in that direction.
|
|
|
|
|
* If the object is too close to the drone, calculate the amount we need to move away from it
|
|
|
|
|
*/
|
|
|
|
|
void check_move_direction_allowed()
|
|
|
|
|
{
|
|
|
|
|
this->move_direction_allowed[MOVE_DIRECTION_FRONT] = this->lidar_sensor_values[LIDAR_SENSOR_FR] > MIN_DISTANCE && this->lidar_sensor_values[LIDAR_SENSOR_FL] > MIN_DISTANCE;
|
|
|
|
|
this->move_direction_allowed[MOVE_DIRECTION_LEFT] = this->lidar_sensor_values[LIDAR_SENSOR_FL] > MIN_DISTANCE && this->lidar_sensor_values[LIDAR_SENSOR_RL] > MIN_DISTANCE;
|
|
|
|
|
this->move_direction_allowed[MOVE_DIRECTION_BACK] = this->lidar_sensor_values[LIDAR_SENSOR_RL] > MIN_DISTANCE && this->lidar_sensor_values[LIDAR_SENSOR_RR] > MIN_DISTANCE;
|
|
|
|
|
this->move_direction_allowed[MOVE_DIRECTION_RIGHT] = this->lidar_sensor_values[LIDAR_SENSOR_RR] > MIN_DISTANCE && this->lidar_sensor_values[LIDAR_SENSOR_FR] > MIN_DISTANCE;
|
|
|
|
|
|
|
|
|
|
if (!this->move_direction_allowed[MOVE_DIRECTION_FRONT])
|
|
|
|
|
{
|
|
|
|
|
collision_prevention_weights[MOVE_DIRECTION_FRONT] = -(MIN_DISTANCE - std::min(this->lidar_sensor_values[LIDAR_SENSOR_FR], this->lidar_sensor_values[LIDAR_SENSOR_FL]));
|
|
|
|
|
}
|
|
|
|
|
if (!this->move_direction_allowed[MOVE_DIRECTION_LEFT])
|
|
|
|
|
{
|
|
|
|
|
collision_prevention_weights[MOVE_DIRECTION_LEFT] = -(MIN_DISTANCE - std::min(this->lidar_sensor_values[LIDAR_SENSOR_FL], this->lidar_sensor_values[LIDAR_SENSOR_RL]));
|
|
|
|
|
}
|
|
|
|
|
if (!this->move_direction_allowed[MOVE_DIRECTION_BACK])
|
|
|
|
|
{
|
|
|
|
|
collision_prevention_weights[MOVE_DIRECTION_BACK] = -(MIN_DISTANCE - std::min(this->lidar_sensor_values[LIDAR_SENSOR_RL], this->lidar_sensor_values[LIDAR_SENSOR_RR]));
|
|
|
|
|
}
|
|
|
|
|
if (!this->move_direction_allowed[MOVE_DIRECTION_RIGHT])
|
|
|
|
|
{
|
|
|
|
|
collision_prevention_weights[MOVE_DIRECTION_RIGHT] = -(MIN_DISTANCE - std::min(this->lidar_sensor_values[LIDAR_SENSOR_RR], this->lidar_sensor_values[LIDAR_SENSOR_FR]));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void handle_lidar_message(const object_detection::msg::LidarReading::SharedPtr message)
|
|
|
|
|
{
|
|
|
|
|
this->lidar_sensor_values[0] = message->sensor_1;
|
|
|
|
|
this->lidar_sensor_values[1] = message->sensor_2;
|
|
|
|
|
this->lidar_sensor_values[2] = message->sensor_3;
|
|
|
|
|
this->lidar_sensor_values[3] = message->sensor_4;
|
|
|
|
|
|
|
|
|
|
if (message->sensor_1 > 0)
|
|
|
|
|
{
|
|
|
|
|
this->lidar_sensor_values[LIDAR_SENSOR_FR] = message->sensor_1;
|
|
|
|
|
}
|
|
|
|
|
if (message->sensor_2 > 0)
|
|
|
|
|
{
|
|
|
|
|
this->lidar_sensor_values[LIDAR_SENSOR_FL] = message->sensor_2;
|
|
|
|
|
}
|
|
|
|
|
if (message->sensor_3 > 0)
|
|
|
|
|
{
|
|
|
|
|
this->lidar_sensor_values[LIDAR_SENSOR_RL] = message->sensor_3;
|
|
|
|
|
}
|
|
|
|
|
if (message->sensor_4 > 0)
|
|
|
|
|
{
|
|
|
|
|
this->lidar_sensor_values[LIDAR_SENSOR_RR] = message->sensor_4;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
|
|
|
{
|
|
|
|
|
this->lidar_imu_readings[i] = message->imu_data[i];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
check_move_direction_allowed();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void handle_odometry_message(const px4_msgs::msg::VehicleOdometry::SharedPtr message)
|
|
|
|
|
{
|
|
|
|
|
Quaternion q = {message->q[0], message->q[1], message->q[2], message->q[3]};
|
|
|
|
|
odometry_yaw = get_yaw_angle(q);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @brief Get the yaw angle from a specified normalized quaternion.
|
|
|
|
|
* Uses the theory from https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
|
|
|
|
|
*
|
|
|
|
|
* @param q the quaternion that holds the rotation
|
|
|
|
|
* @return the yaw angle in radians
|
|
|
|
|
*/
|
|
|
|
|
static float get_yaw_angle(Quaternion q)
|
|
|
|
|
{
|
|
|
|
|
float siny_cosp = 2 * (q.w * q.z + q.x * q.y);
|
|
|
|
|
float cosy_cosp = 1 - 2 * (q.y * q.y + q.z * q.z);
|
|
|
|
|
return std::atan2(siny_cosp, cosy_cosp);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @brief Get the new x and y coordinates after a rotation of yaw radians
|
|
|
|
|
*
|
|
|
|
|
* @param x the original x coordinate
|
|
|
|
|
* @param y the original y coordinate
|
|
|
|
|
* @param yaw the angle to rotate by in radians
|
|
|
|
|
* @param x_out the resulting x coordinate
|
|
|
|
|
* @param y_out the resulting y coordinate
|
|
|
|
|
*/
|
|
|
|
|
static void get_x_y_with_rotation(float x, float y, float yaw, float &x_out, float &y_out)
|
|
|
|
|
{
|
|
|
|
|
x_out = x * std::cos(yaw) - y * std::sin(yaw);
|
|
|
|
|
y_out = x * std::sin(yaw) + y * std::cos(yaw);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
rclcpp::Subscription<object_detection::msg::LidarReading> lidar_subscription;
|
|
|
|
|
rclcpp::Subscription<px4_msgs::msg::VehicleOdometry> odometry_subscription;
|
|
|
|
|
float lidar_sensor_values[4];
|
|
|
|
|
float lidar_imu_readings[4];
|
|
|
|
|
float currrent_yaw = 0;
|
|
|
|
|
bool move_direction_allowed[4] = {true, true, true, true};
|
|
|
|
|
float collision_prevention_weights[4] = {0,0,0,0};
|
|
|
|
|
};
|
|
|
|
|
int main(int argc, char *argv[])
|
|
|
|
|
{
|
|
|
|
|
|