added bst classes

This commit is contained in:
Sem van der Hoeven
2020-05-27 20:40:37 +02:00
parent ba2af725da
commit 1f6e229d79
4 changed files with 406 additions and 0 deletions

View File

@@ -0,0 +1,20 @@
package netwerkprog.game.util.tree;
public abstract class AbstractTree<E> implements Tree<E> {
@Override /** Inorder traversal from the root*/
public void inorder() {
}
@Override /** Postorder traversal from the root */
public void postorder() {
}
@Override /** Preorder traversal from the root */
public void preorder() {
}
@Override /** Return true if the tree is empty */
public boolean isEmpty() {
return getSize() == 0;
}
}

View File

@@ -0,0 +1,341 @@
package netwerkprog.game.util.tree;
import java.util.*;
public class BST<E extends Comparable<E>> extends AbstractTree<E> {
protected TreeNode<E> root;
protected int size = 0;
// Helper methode
public int sum () {
return this.sum(this.getRoot());
}
// Opgave 1b (10 punten): Maak de recursieve methode sum af in de klasse bst.BST. Deze methode telt de getallen
// van alle elementen van de binaire zoekboom bij elkaar op. De methode geeft de totale som terug van alle getallen
// in de boom.
public int sum( TreeNode<E> node ) {
// Schrijf hier jouw code...
if (node == null) {
return 0;
}
int nodeValue = (Integer) node.element; // Tip, omdat E nog onbekend is doen we het zo (niet helemaal netjes)
return sum(node.left) + sum(node.right);
}
// Helper methode
public int totalLeaves () {
return this.totalLeaves(this.getRoot());
}
// Opgave 1c (10 punten): Maak de methode totalLeaves af om de klasse bst.BST. Deze methode telt het aantal
// bladeren (leaves) van de gegeven binaire zoekboom en geeft deze terug. Je hoeft deze methode niet recursief te
// implementeren. Het mag wel.
public int totalLeaves ( TreeNode<E> node ) {
if (node == null) {
return 0;
}
if (node.left == null && node.right == null) {
return 1;
}
return totalLeaves(node.left) + totalLeaves(node.right);
}
/** Create a default binary tree */
public BST() {
}
/** Create a binary tree from an array of objects */
public BST(E[] objects) {
for (int i = 0; i < objects.length; i++)
insert(objects[i]);
}
@Override /** Returns true if the element is in the tree */
public boolean search(E e) {
return search(e, root);
}
private boolean search(E e, TreeNode<E> tree)
{
// nog niet correct
if (tree == null)
{
return false;
}
if (e.compareTo(tree.element) == 0)
{
return true;
}
if (e.compareTo(tree.element) < 0)
{
return search(e, tree.left);
}
else // (e.compareTo(tree.element) > 0)
{
return search(e, tree.right);
}
}
@Override /** Insert element o into the binary tree
* Return true if the element is inserted successfully */
public boolean insert(E e) {
if (root == null) {
root = createNewNode(e); // Create a new root
size++;
return true;
}
else {
return insert(e, root);
}
}
/** Insert element o into the binary tree
* Return true if the element is inserted successfully
pre: root != null
*/
public boolean insert(E e, TreeNode<E> tree) {
if (e.compareTo(tree.element) == 0) {
return false; // Duplicate node not inserted
}
else if (e.compareTo(tree.element) < 0 && tree.left != null)
return insert(e, tree.left);
else if (e.compareTo(tree.element) > 0 && tree.right != null)
return insert(e, tree.right);
// Create the new node and attach it to the parent node
else {
if (e.compareTo(tree.element) < 0) {
tree.left = createNewNode(e);
}
else {
tree.right = createNewNode(e);
}
size++;
return true;
}
}
protected TreeNode<E> createNewNode(E e) {
return new TreeNode<E>(e);
}
@Override /** Inorder traversal from the root*/
public void inorder() {
inorder(root);
}
/** Inorder traversal from a subtree */
protected void inorder(TreeNode<E> root) {
if (root == null) return;
inorder(root.left);
System.out.print(root.element + " ");
inorder(root.right);
}
@Override /** Postorder traversal from the root */
public void postorder() {
postorder(root);
}
/** Postorder traversal from a subtree */
protected void postorder(TreeNode<E> root) {
if (root == null) return;
postorder(root.left);
postorder(root.right);
System.out.print(root.element + " ");
}
@Override /** Preorder traversal from the root */
public void preorder() {
preorder(root);
}
/** Preorder traversal from a subtree */
protected void preorder(TreeNode<E> root) {
if (root == null) return;
System.out.print(root.element + " ");
preorder(root.left);
preorder(root.right);
}
/** This inner class is static, because it does not access
any instance members defined in its outer class */
public static class TreeNode<E extends Comparable<E>> {
protected E element;
protected TreeNode<E> left;
protected TreeNode<E> right;
public TreeNode(E e) {
element = e;
}
}
@Override /** Get the number of nodes in the tree */
public int getSize() {
return size;
}
/** Returns the root of the tree */
public TreeNode<E> getRoot() {
return root;
}
/** Returns a path from the root leading to the specified element */
public java.util.ArrayList<TreeNode<E>> path(E e) {
java.util.ArrayList<TreeNode<E>> list =
new java.util.ArrayList<TreeNode<E>>();
TreeNode<E> current = root; // Start from the root
while (current != null) {
list.add(current); // Add the node to the list
if (e.compareTo(current.element) < 0) {
current = current.left;
}
else if (e.compareTo(current.element) > 0) {
current = current.right;
}
else
break;
}
return list; // Return an array list of nodes
}
@Override /** Delete an element from the binary tree.
* Return true if the element is deleted successfully
* Return false if the element is not in the tree */
public boolean delete(E e) {
// Locate the node to be deleted and also locate its parent node
TreeNode<E> parent = null;
TreeNode<E> current = root;
while (current != null) {
if (e.compareTo(current.element) < 0) {
parent = current;
current = current.left;
}
else if (e.compareTo(current.element) > 0) {
parent = current;
current = current.right;
}
else
break; // Element is in the tree pointed at by current
}
if (current == null)
return false; // Element is not in the tree
// Case 1: current has no left child
if (current.left == null) {
// Connect the parent with the right child of the current node
if (parent == null) {
root = current.right;
}
else {
if (e.compareTo(parent.element) < 0)
parent.left = current.right;
else
parent.right = current.right;
}
}
else {
// Case 2: The current node has a left child
// Locate the rightmost node in the left subtree of
// the current node and also its parent
TreeNode<E> parentOfRightMost = current;
TreeNode<E> rightMost = current.left;
while (rightMost.right != null) {
parentOfRightMost = rightMost;
rightMost = rightMost.right; // Keep going to the right
}
// Replace the element in current by the element in rightMost
current.element = rightMost.element;
// Eliminate rightmost node
if (parentOfRightMost.right == rightMost)
parentOfRightMost.right = rightMost.left;
else
// Special case: parentOfRightMost == current
parentOfRightMost.left = rightMost.left;
}
size--;
return true; // Element deleted successfully
}
@Override /** Obtain an iterator. Use inorder. */
public java.util.Iterator<E> iterator() {
return new InorderIterator();
}
// Inner class InorderIterator
private class InorderIterator implements java.util.Iterator<E> {
// Store the elements in a list
private java.util.ArrayList<E> list =
new java.util.ArrayList<E>();
private int current = 0; // Point to the current element in list
public InorderIterator() {
inorder(); // Traverse binary tree and store elements in list
}
/** Inorder traversal from the root*/
private void inorder() {
inorder(root);
}
/** Inorder traversal from a subtree */
private void inorder(TreeNode<E> root) {
if (root == null)return;
inorder(root.left);
list.add(root.element);
inorder(root.right);
}
@Override /** More elements for traversing? */
public boolean hasNext() {
if (current < list.size())
return true;
return false;
}
@Override /** Get the current element and move to the next */
public E next() {
return list.get(current++);
}
@Override /** Remove the current element */
public void remove() {
delete(list.get(current)); // Delete the current element
list.clear(); // Clear the list
inorder(); // Rebuild the list
}
}
/** Remove all elements from the tree */
public void clear() {
root = null;
size = 0;
}
// if (tree == null) {
// return false;
// }
// else if (e.compareTo(tree.element) > 0) {
// return search(e, tree.right);
// }
// else if (e.compareTo(tree.element) < 0) {
// return search(e, tree.left);
// }
// else {
// return true;
// }
//
}

View File

@@ -0,0 +1,29 @@
package netwerkprog.game.util.tree;
public interface Tree<E> extends Iterable<E> {
/** Return true if the element is in the tree */
public boolean search(E e);
/** Insert element o into the binary tree
* Return true if the element is inserted successfully */
public boolean insert(E e);
/** Delete the specified element from the tree
* Return true if the element is deleted successfully */
public boolean delete(E e);
/** Inorder traversal from the root*/
public void inorder();
/** Postorder traversal from the root */
public void postorder();
/** Preorder traversal from the root */
public void preorder();
/** Get the number of nodes in the tree */
public int getSize();
/** Return true if the tree is empty */
public boolean isEmpty();
}

View File

@@ -0,0 +1,16 @@
package netwerkprog.game.util.tree;
public class TreeNode<E> {
protected E element;
protected TreeNode<E> left;
protected TreeNode<E> right;
public TreeNode(E e) {
this.element = e;
}
public E getElement() {
return element;
}
}