Merge branch 'feature/objectdetection' into develop
This commit is contained in:
59
src/computervision/BackgroundRemover.cpp
Normal file
59
src/computervision/BackgroundRemover.cpp
Normal file
@@ -0,0 +1,59 @@
|
||||
#include "BackgroundRemover.h"
|
||||
|
||||
/*
|
||||
Author: Pierfrancesco Soffritti https://github.com/PierfrancescoSoffritti
|
||||
*/
|
||||
namespace computervision
|
||||
{
|
||||
BackgroundRemover::BackgroundRemover(void) {
|
||||
background;
|
||||
calibrated = false;
|
||||
}
|
||||
|
||||
void BackgroundRemover::calibrate(Mat input) {
|
||||
cvtColor(input, background, CV_BGR2GRAY);
|
||||
calibrated = true;
|
||||
}
|
||||
|
||||
Mat BackgroundRemover::getForeground(Mat input) {
|
||||
Mat foregroundMask = getForegroundMask(input);
|
||||
|
||||
//imshow("foregroundMask", foregroundMask);
|
||||
|
||||
Mat foreground;
|
||||
input.copyTo(foreground, foregroundMask);
|
||||
|
||||
return foreground;
|
||||
}
|
||||
|
||||
Mat BackgroundRemover::getForegroundMask(Mat input) {
|
||||
Mat foregroundMask;
|
||||
|
||||
if (!calibrated) {
|
||||
foregroundMask = Mat::zeros(input.size(), CV_8UC1);
|
||||
return foregroundMask;
|
||||
}
|
||||
|
||||
cvtColor(input, foregroundMask, CV_BGR2GRAY);
|
||||
|
||||
removeBackground(foregroundMask, background);
|
||||
|
||||
return foregroundMask;
|
||||
}
|
||||
|
||||
void BackgroundRemover::removeBackground(Mat input, Mat background) {
|
||||
int thresholdOffset = 25;
|
||||
|
||||
for (int i = 0; i < input.rows; i++) {
|
||||
for (int j = 0; j < input.cols; j++) {
|
||||
uchar framePixel = input.at<uchar>(i, j);
|
||||
uchar bgPixel = background.at<uchar>(i, j);
|
||||
|
||||
if (framePixel >= bgPixel - thresholdOffset && framePixel <= bgPixel + thresholdOffset)
|
||||
input.at<uchar>(i, j) = 0;
|
||||
else
|
||||
input.at<uchar>(i, j) = 255;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
25
src/computervision/BackgroundRemover.h
Normal file
25
src/computervision/BackgroundRemover.h
Normal file
@@ -0,0 +1,25 @@
|
||||
#pragma once
|
||||
#include"opencv2\opencv.hpp"
|
||||
#include <opencv2/imgproc\types_c.h>
|
||||
/*
|
||||
Author: Pierfrancesco Soffritti https://github.com/PierfrancescoSoffritti
|
||||
*/
|
||||
namespace computervision
|
||||
{
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
class BackgroundRemover {
|
||||
public:
|
||||
BackgroundRemover(void);
|
||||
void calibrate(Mat input);
|
||||
Mat getForeground(Mat input);
|
||||
|
||||
private:
|
||||
Mat background;
|
||||
bool calibrated = false;
|
||||
|
||||
Mat getForegroundMask(Mat input);
|
||||
void removeBackground(Mat input, Mat background);
|
||||
};
|
||||
}
|
||||
53
src/computervision/FaceDetector.cpp
Normal file
53
src/computervision/FaceDetector.cpp
Normal file
@@ -0,0 +1,53 @@
|
||||
#include "FaceDetector.h"
|
||||
|
||||
|
||||
/*
|
||||
Author: Pierfrancesco Soffritti https://github.com/PierfrancescoSoffritti
|
||||
*/
|
||||
namespace computervision
|
||||
{
|
||||
Rect getFaceRect(Mat input);
|
||||
|
||||
String faceClassifierFileName = "res/haarcascade_frontalface_alt.xml";
|
||||
CascadeClassifier faceCascadeClassifier;
|
||||
|
||||
FaceDetector::FaceDetector(void) {
|
||||
if (!faceCascadeClassifier.load(faceClassifierFileName))
|
||||
throw runtime_error("can't load file " + faceClassifierFileName);
|
||||
}
|
||||
|
||||
void FaceDetector::removeFaces(Mat input, Mat output) {
|
||||
vector<Rect> faces;
|
||||
Mat frameGray;
|
||||
|
||||
cvtColor(input, frameGray, CV_BGR2GRAY);
|
||||
equalizeHist(frameGray, frameGray);
|
||||
|
||||
faceCascadeClassifier.detectMultiScale(frameGray, faces, 1.1, 2, 0 | 2, Size(120, 120)); // HAAR_SCALE_IMAGE is 2
|
||||
|
||||
for (size_t i = 0; i < faces.size(); i++) {
|
||||
rectangle(
|
||||
output,
|
||||
Point(faces[i].x, faces[i].y),
|
||||
Point(faces[i].x + faces[i].width, faces[i].y + faces[i].height),
|
||||
Scalar(0, 0, 0),
|
||||
-1
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
Rect getFaceRect(Mat input) {
|
||||
vector<Rect> faceRectangles;
|
||||
Mat inputGray;
|
||||
|
||||
cvtColor(input, inputGray, CV_BGR2GRAY);
|
||||
equalizeHist(inputGray, inputGray);
|
||||
|
||||
faceCascadeClassifier.detectMultiScale(inputGray, faceRectangles, 1.1, 2, 0 | 2, Size(120, 120)); // HAAR_SCALE_IMAGE is 2
|
||||
|
||||
if (faceRectangles.size() > 0)
|
||||
return faceRectangles[0];
|
||||
else
|
||||
return Rect(0, 0, 1, 1);
|
||||
}
|
||||
}
|
||||
31
src/computervision/FaceDetector.h
Normal file
31
src/computervision/FaceDetector.h
Normal file
@@ -0,0 +1,31 @@
|
||||
#pragma once
|
||||
#include <opencv2/opencv.hpp>
|
||||
#include <opencv2/imgproc/types_c.h>
|
||||
#include <opencv2/objdetect.hpp>
|
||||
#include <opencv2/core.hpp>
|
||||
#include <opencv2/objdetect/objdetect.hpp>
|
||||
/*
|
||||
Author: Pierfrancesco Soffritti https://github.com/PierfrancescoSoffritti
|
||||
*/
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
namespace computervision
|
||||
{
|
||||
class FaceDetector {
|
||||
public:
|
||||
/**
|
||||
* @brief Constructor for the class FaceDetector, loads training data from a file
|
||||
*
|
||||
*/
|
||||
FaceDetector(void);
|
||||
/**
|
||||
* @brief Detects faces on an image and blocks them with a black rectangle
|
||||
*
|
||||
* @param input Input image
|
||||
* @param output Output image
|
||||
*/
|
||||
void removeFaces(Mat input, Mat output);
|
||||
};
|
||||
}
|
||||
291
src/computervision/FingerCount.cpp
Normal file
291
src/computervision/FingerCount.cpp
Normal file
@@ -0,0 +1,291 @@
|
||||
#include "FingerCount.h"
|
||||
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
|
||||
/*
|
||||
Author: Nicol<6F> Castellazzi https://github.com/nicast
|
||||
*/
|
||||
|
||||
#define LIMIT_ANGLE_SUP 60
|
||||
#define LIMIT_ANGLE_INF 5
|
||||
#define BOUNDING_RECT_FINGER_SIZE_SCALING 0.3
|
||||
#define BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING 0.05
|
||||
|
||||
namespace computervision
|
||||
{
|
||||
FingerCount::FingerCount(void) {
|
||||
color_blue = Scalar(255, 0, 0);
|
||||
color_green = Scalar(0, 255, 0);
|
||||
color_red = Scalar(0, 0, 255);
|
||||
color_black = Scalar(0, 0, 0);
|
||||
color_white = Scalar(255, 255, 255);
|
||||
color_yellow = Scalar(0, 255, 255);
|
||||
color_purple = Scalar(255, 0, 255);
|
||||
}
|
||||
|
||||
Mat FingerCount::findFingersCount(Mat input_image, Mat frame) {
|
||||
Mat contours_image = Mat::zeros(input_image.size(), CV_8UC3);
|
||||
|
||||
// check if the source image is good
|
||||
if (input_image.empty())
|
||||
return contours_image;
|
||||
|
||||
// we work only on the 1 channel result, since this function is called inside a loop we are not sure that this is always the case
|
||||
if (input_image.channels() != 1)
|
||||
return contours_image;
|
||||
|
||||
vector<vector<Point>> contours;
|
||||
vector<Vec4i> hierarchy;
|
||||
|
||||
findContours(input_image, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);
|
||||
|
||||
// we need at least one contour to work
|
||||
if (contours.size() <= 0)
|
||||
return contours_image;
|
||||
|
||||
// find the biggest contour (let's suppose it's our hand)
|
||||
int biggest_contour_index = -1;
|
||||
double biggest_area = 0.0;
|
||||
|
||||
for (int i = 0; i < contours.size(); i++) {
|
||||
double area = contourArea(contours[i], false);
|
||||
if (area > biggest_area) {
|
||||
biggest_area = area;
|
||||
biggest_contour_index = i;
|
||||
}
|
||||
}
|
||||
|
||||
if (biggest_contour_index < 0)
|
||||
return contours_image;
|
||||
|
||||
// find the convex hull object for each contour and the defects, two different data structure are needed by the OpenCV api
|
||||
vector<Point> hull_points;
|
||||
vector<int> hull_ints;
|
||||
|
||||
// for drawing the convex hull and for finding the bounding rectangle
|
||||
convexHull(Mat(contours[biggest_contour_index]), hull_points, true);
|
||||
|
||||
// for finding the defects
|
||||
convexHull(Mat(contours[biggest_contour_index]), hull_ints, false);
|
||||
|
||||
// we need at least 3 points to find the defects
|
||||
vector<Vec4i> defects;
|
||||
if (hull_ints.size() > 3)
|
||||
convexityDefects(Mat(contours[biggest_contour_index]), hull_ints, defects);
|
||||
else
|
||||
return contours_image;
|
||||
|
||||
// we bound the convex hull
|
||||
Rect bounding_rectangle = boundingRect(Mat(hull_points));
|
||||
|
||||
// we find the center of the bounding rectangle, this should approximately also be the center of the hand
|
||||
Point center_bounding_rect(
|
||||
(bounding_rectangle.tl().x + bounding_rectangle.br().x) / 2,
|
||||
(bounding_rectangle.tl().y + bounding_rectangle.br().y) / 2
|
||||
);
|
||||
|
||||
// we separate the defects keeping only the ones of intrest
|
||||
vector<Point> start_points;
|
||||
vector<Point> far_points;
|
||||
|
||||
for (int i = 0; i < defects.size(); i++) {
|
||||
start_points.push_back(contours[biggest_contour_index][defects[i].val[0]]);
|
||||
|
||||
// filtering the far point based on the distance from the center of the bounding rectangle
|
||||
if (findPointsDistance(contours[biggest_contour_index][defects[i].val[2]], center_bounding_rect) < bounding_rectangle.height * BOUNDING_RECT_FINGER_SIZE_SCALING)
|
||||
far_points.push_back(contours[biggest_contour_index][defects[i].val[2]]);
|
||||
}
|
||||
|
||||
// we compact them on their medians
|
||||
vector<Point> filtered_start_points = compactOnNeighborhoodMedian(start_points, bounding_rectangle.height * BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING);
|
||||
vector<Point> filtered_far_points = compactOnNeighborhoodMedian(far_points, bounding_rectangle.height * BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING);
|
||||
|
||||
// now we try to find the fingers
|
||||
vector<Point> filtered_finger_points;
|
||||
|
||||
if (filtered_far_points.size() > 1) {
|
||||
vector<Point> finger_points;
|
||||
|
||||
for (int i = 0; i < filtered_start_points.size(); i++) {
|
||||
vector<Point> closest_points = findClosestOnX(filtered_far_points, filtered_start_points[i]);
|
||||
|
||||
if (isFinger(closest_points[0], filtered_start_points[i], closest_points[1], LIMIT_ANGLE_INF, LIMIT_ANGLE_SUP, center_bounding_rect, bounding_rectangle.height * BOUNDING_RECT_FINGER_SIZE_SCALING))
|
||||
finger_points.push_back(filtered_start_points[i]);
|
||||
}
|
||||
|
||||
if (finger_points.size() > 0) {
|
||||
|
||||
// we have at most five fingers usually :)
|
||||
while (finger_points.size() > 5)
|
||||
finger_points.pop_back();
|
||||
|
||||
// filter out the points too close to each other
|
||||
for (int i = 0; i < finger_points.size() - 1; i++) {
|
||||
if (findPointsDistanceOnX(finger_points[i], finger_points[i + 1]) > bounding_rectangle.height * BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING * 1.5)
|
||||
filtered_finger_points.push_back(finger_points[i]);
|
||||
}
|
||||
|
||||
if (finger_points.size() > 2) {
|
||||
if (findPointsDistanceOnX(finger_points[0], finger_points[finger_points.size() - 1]) > bounding_rectangle.height * BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING * 1.5)
|
||||
filtered_finger_points.push_back(finger_points[finger_points.size() - 1]);
|
||||
}
|
||||
else
|
||||
filtered_finger_points.push_back(finger_points[finger_points.size() - 1]);
|
||||
}
|
||||
}
|
||||
|
||||
// we draw what found on the returned image
|
||||
drawContours(contours_image, contours, biggest_contour_index, color_green, 2, 8, hierarchy);
|
||||
polylines(contours_image, hull_points, true, color_blue);
|
||||
rectangle(contours_image, bounding_rectangle.tl(), bounding_rectangle.br(), color_red, 2, 8, 0);
|
||||
circle(contours_image, center_bounding_rect, 5, color_purple, 2, 8);
|
||||
drawVectorPoints(contours_image, filtered_start_points, color_blue, true);
|
||||
drawVectorPoints(contours_image, filtered_far_points, color_red, true);
|
||||
drawVectorPoints(contours_image, filtered_finger_points, color_yellow, false);
|
||||
putText(contours_image, to_string(filtered_finger_points.size()), center_bounding_rect, FONT_HERSHEY_PLAIN, 3, color_purple);
|
||||
|
||||
// and on the starting frame
|
||||
drawContours(frame, contours, biggest_contour_index, color_green, 2, 8, hierarchy);
|
||||
circle(frame, center_bounding_rect, 5, color_purple, 2, 8);
|
||||
drawVectorPoints(frame, filtered_finger_points, color_yellow, false);
|
||||
putText(frame, to_string(filtered_finger_points.size()), center_bounding_rect, FONT_HERSHEY_PLAIN, 3, color_purple);
|
||||
|
||||
return contours_image;
|
||||
}
|
||||
|
||||
double FingerCount::findPointsDistance(Point a, Point b) {
|
||||
Point difference = a - b;
|
||||
return sqrt(difference.ddot(difference));
|
||||
}
|
||||
|
||||
vector<Point> FingerCount::compactOnNeighborhoodMedian(vector<Point> points, double max_neighbor_distance) {
|
||||
vector<Point> median_points;
|
||||
|
||||
if (points.size() == 0)
|
||||
return median_points;
|
||||
|
||||
if (max_neighbor_distance <= 0)
|
||||
return median_points;
|
||||
|
||||
// we start with the first point
|
||||
Point reference = points[0];
|
||||
Point median = points[0];
|
||||
|
||||
for (int i = 1; i < points.size(); i++) {
|
||||
if (findPointsDistance(reference, points[i]) > max_neighbor_distance) {
|
||||
|
||||
// the point is not in range, we save the median
|
||||
median_points.push_back(median);
|
||||
|
||||
// we swap the reference
|
||||
reference = points[i];
|
||||
median = points[i];
|
||||
}
|
||||
else
|
||||
median = (points[i] + median) / 2;
|
||||
}
|
||||
|
||||
// last median
|
||||
median_points.push_back(median);
|
||||
|
||||
return median_points;
|
||||
}
|
||||
|
||||
double FingerCount::findAngle(Point a, Point b, Point c) {
|
||||
double ab = findPointsDistance(a, b);
|
||||
double bc = findPointsDistance(b, c);
|
||||
double ac = findPointsDistance(a, c);
|
||||
return acos((ab * ab + bc * bc - ac * ac) / (2 * ab * bc)) * 180 / CV_PI;
|
||||
}
|
||||
|
||||
bool FingerCount::isFinger(Point a, Point b, Point c, double limit_angle_inf, double limit_angle_sup, Point palm_center, double min_distance_from_palm) {
|
||||
double angle = findAngle(a, b, c);
|
||||
if (angle > limit_angle_sup || angle < limit_angle_inf)
|
||||
return false;
|
||||
|
||||
// the finger point sohould not be under the two far points
|
||||
int delta_y_1 = b.y - a.y;
|
||||
int delta_y_2 = b.y - c.y;
|
||||
if (delta_y_1 > 0 && delta_y_2 > 0)
|
||||
return false;
|
||||
|
||||
// the two far points should not be both under the center of the hand
|
||||
int delta_y_3 = palm_center.y - a.y;
|
||||
int delta_y_4 = palm_center.y - c.y;
|
||||
if (delta_y_3 < 0 && delta_y_4 < 0)
|
||||
return false;
|
||||
|
||||
double distance_from_palm = findPointsDistance(b, palm_center);
|
||||
if (distance_from_palm < min_distance_from_palm)
|
||||
return false;
|
||||
|
||||
// this should be the case when no fingers are up
|
||||
double distance_from_palm_far_1 = findPointsDistance(a, palm_center);
|
||||
double distance_from_palm_far_2 = findPointsDistance(c, palm_center);
|
||||
if (distance_from_palm_far_1 < min_distance_from_palm / 4 || distance_from_palm_far_2 < min_distance_from_palm / 4)
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
vector<Point> FingerCount::findClosestOnX(vector<Point> points, Point pivot) {
|
||||
vector<Point> to_return(2);
|
||||
|
||||
if (points.size() == 0)
|
||||
return to_return;
|
||||
|
||||
double distance_x_1 = DBL_MAX;
|
||||
double distance_1 = DBL_MAX;
|
||||
double distance_x_2 = DBL_MAX;
|
||||
double distance_2 = DBL_MAX;
|
||||
int index_found = 0;
|
||||
|
||||
for (int i = 0; i < points.size(); i++) {
|
||||
double distance_x = findPointsDistanceOnX(pivot, points[i]);
|
||||
double distance = findPointsDistance(pivot, points[i]);
|
||||
|
||||
if (distance_x < distance_x_1 && distance_x != 0 && distance <= distance_1) {
|
||||
distance_x_1 = distance_x;
|
||||
distance_1 = distance;
|
||||
index_found = i;
|
||||
}
|
||||
}
|
||||
|
||||
to_return[0] = points[index_found];
|
||||
|
||||
for (int i = 0; i < points.size(); i++) {
|
||||
double distance_x = findPointsDistanceOnX(pivot, points[i]);
|
||||
double distance = findPointsDistance(pivot, points[i]);
|
||||
|
||||
if (distance_x < distance_x_2 && distance_x != 0 && distance <= distance_2 && distance_x != distance_x_1) {
|
||||
distance_x_2 = distance_x;
|
||||
distance_2 = distance;
|
||||
index_found = i;
|
||||
}
|
||||
}
|
||||
|
||||
to_return[1] = points[index_found];
|
||||
|
||||
return to_return;
|
||||
}
|
||||
|
||||
double FingerCount::findPointsDistanceOnX(Point a, Point b) {
|
||||
double to_return = 0.0;
|
||||
|
||||
if (a.x > b.x)
|
||||
to_return = a.x - b.x;
|
||||
else
|
||||
to_return = b.x - a.x;
|
||||
|
||||
return to_return;
|
||||
}
|
||||
|
||||
void FingerCount::drawVectorPoints(Mat image, vector<Point> points, Scalar color, bool with_numbers) {
|
||||
for (int i = 0; i < points.size(); i++) {
|
||||
circle(image, points[i], 5, color, 2, 8);
|
||||
if (with_numbers)
|
||||
putText(image, to_string(i), points[i], FONT_HERSHEY_PLAIN, 3, color);
|
||||
}
|
||||
}
|
||||
}
|
||||
110
src/computervision/FingerCount.h
Normal file
110
src/computervision/FingerCount.h
Normal file
@@ -0,0 +1,110 @@
|
||||
#pragma once
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include <opencv2/imgproc/types_c.h>
|
||||
|
||||
/*
|
||||
Author: Nicol<6F> Castellazzi https://github.com/nicast
|
||||
*/
|
||||
|
||||
namespace computervision
|
||||
{
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
class FingerCount {
|
||||
public:
|
||||
FingerCount(void);
|
||||
/**
|
||||
* @brief gets the amount of fingers that are held up.
|
||||
*
|
||||
* @param input_image the source image to find the fingers on. It should be a mask of a hand
|
||||
* @param frame the frame to draw the resulting values on (how many fingers are held up etc)
|
||||
* @return a new image with all the data drawn on it.
|
||||
*/
|
||||
Mat findFingersCount(Mat input_image, Mat frame);
|
||||
|
||||
private:
|
||||
// colors to use
|
||||
Scalar color_blue;
|
||||
Scalar color_green;
|
||||
Scalar color_red;
|
||||
Scalar color_black;
|
||||
Scalar color_white;
|
||||
Scalar color_yellow;
|
||||
Scalar color_purple;
|
||||
|
||||
/**
|
||||
* @brief finds the distance between 2 points.
|
||||
*
|
||||
* @param a the first point
|
||||
* @param b the second point
|
||||
* @return a double representing the distance
|
||||
*/
|
||||
double findPointsDistance(Point a, Point b);
|
||||
|
||||
/**
|
||||
* @brief compacts the given points on their medians.
|
||||
* what it does is for each point, it checks if the distance to it's neighbour is greater than the
|
||||
* max distance. If so, it just adds it to the list that is returned. If not, it calculates the
|
||||
* median and adds it to the returned list
|
||||
*
|
||||
* @param points the points to compact
|
||||
* @param max_neighbor_distance the maximum distance between points
|
||||
* @return a vector with the points now compacted.
|
||||
*/
|
||||
vector<Point> compactOnNeighborhoodMedian(vector<Point> points, double max_neighbor_distance);
|
||||
|
||||
/**
|
||||
* @brief finds the angle between 3 different points.
|
||||
*
|
||||
* @param a the first point
|
||||
* @param b the second point
|
||||
* @param c the third point
|
||||
* @return the angle between the 3 points
|
||||
*/
|
||||
double findAngle(Point a, Point b, Point c);
|
||||
|
||||
/**
|
||||
* @brief checks if the given points make up a finger.
|
||||
*
|
||||
* @param a the first point to check for
|
||||
* @param b the second point to check for
|
||||
* @param c the third point to check for
|
||||
* @param limit_angle_inf the limit of the angle between 2 fingers
|
||||
* @param limit_angle_sup the limit of the angle between a finger and a convex point
|
||||
* @param palm_center the center of the palm
|
||||
* @param distance_from_palm_tollerance the distance from the palm tolerance
|
||||
* @return true if the points are a finger, false if not.
|
||||
*/
|
||||
bool isFinger(Point a, Point b, Point c, double limit_angle_inf, double limit_angle_sup, cv::Point palm_center, double distance_from_palm_tollerance);
|
||||
|
||||
/**
|
||||
* @brief finds the closest point to the given point that is in the given list.
|
||||
*
|
||||
* @param points the points to check for
|
||||
* @param pivot the pivot to check against
|
||||
* @return a vector containing the point that is closest
|
||||
*/
|
||||
vector<Point> findClosestOnX(vector<Point> points, Point pivot);
|
||||
|
||||
/**
|
||||
* @brief finds the distance between the x coords of the points.
|
||||
*
|
||||
* @param a the first point
|
||||
* @param b the second point
|
||||
* @return the distance between the x values
|
||||
*/
|
||||
double findPointsDistanceOnX(Point a, Point b);
|
||||
|
||||
/**
|
||||
* @brief draws the points on the image.
|
||||
*
|
||||
* @param image the image to draw on
|
||||
* @param points the points to draw
|
||||
* @param color the color to draw them with
|
||||
* @param with_numbers if the numbers should be drawn with the points
|
||||
*/
|
||||
void drawVectorPoints(Mat image, vector<Point> points, Scalar color, bool with_numbers);
|
||||
};
|
||||
}
|
||||
91
src/computervision/ObjectDetection.cpp
Normal file
91
src/computervision/ObjectDetection.cpp
Normal file
@@ -0,0 +1,91 @@
|
||||
|
||||
#include "ObjectDetection.h"
|
||||
#include "BackgroundRemover.h"
|
||||
#include "SkinDetector.h"
|
||||
#include "FaceDetector.h"
|
||||
#include "FingerCount.h"
|
||||
|
||||
namespace computervision
|
||||
{
|
||||
cv::VideoCapture cap(0);
|
||||
|
||||
cv::Mat img, imgGray, img2, img2Gray, img3, img4;
|
||||
|
||||
Mat frame, frameOut, handMask, foreground, fingerCountDebug;
|
||||
BackgroundRemover backgroundRemover;
|
||||
SkinDetector skinDetector;
|
||||
FaceDetector faceDetector;
|
||||
FingerCount fingerCount;
|
||||
|
||||
|
||||
ObjectDetection::ObjectDetection()
|
||||
{
|
||||
}
|
||||
|
||||
bool ObjectDetection::setup()
|
||||
{
|
||||
if (!cap.isOpened()) {
|
||||
cout << "Can't find camera!" << endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
cap.read(frame);
|
||||
frameOut = frame.clone();
|
||||
|
||||
skinDetector.drawSkinColorSampler(frameOut);
|
||||
|
||||
foreground = backgroundRemover.getForeground(frame);
|
||||
|
||||
faceDetector.removeFaces(frame, foreground);
|
||||
handMask = skinDetector.getSkinMask(foreground);
|
||||
fingerCountDebug = fingerCount.findFingersCount(handMask, frameOut);
|
||||
|
||||
//backgroundRemover.calibrate(frame);
|
||||
|
||||
|
||||
imshow("output", frameOut);
|
||||
imshow("foreground", foreground);
|
||||
imshow("handMask", handMask);
|
||||
imshow("handDetection", fingerCountDebug);
|
||||
|
||||
int key = waitKey(1);
|
||||
|
||||
if (key == 98) // b
|
||||
backgroundRemover.calibrate(frame);
|
||||
else if (key == 115) // s
|
||||
skinDetector.calibrate(frame);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void ObjectDetection::calculateDifference()
|
||||
{
|
||||
cap.read(img);
|
||||
cap.read(img2);
|
||||
|
||||
cv::cvtColor(img, imgGray, cv::COLOR_RGBA2GRAY);
|
||||
cv::cvtColor(img2, img2Gray, cv::COLOR_RGBA2GRAY);
|
||||
|
||||
cv::absdiff(imgGray, img2Gray, img3);
|
||||
cv::threshold(img3, img4, 50, 170, cv::THRESH_BINARY);
|
||||
|
||||
imshow("threshold", img4);
|
||||
}
|
||||
|
||||
void ObjectDetection::detect()
|
||||
{
|
||||
int key = waitKey(1);
|
||||
|
||||
if (key == 98) // b
|
||||
backgroundRemover.calibrate(frame);
|
||||
else if (key == 115) // s
|
||||
skinDetector.calibrate(frame);
|
||||
}
|
||||
|
||||
void ObjectDetection::showWebcam()
|
||||
{
|
||||
imshow("Webcam image", img);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
53
src/computervision/ObjectDetection.h
Normal file
53
src/computervision/ObjectDetection.h
Normal file
@@ -0,0 +1,53 @@
|
||||
#pragma once
|
||||
|
||||
#include <opencv2/imgcodecs.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/objdetect.hpp>
|
||||
#include <opencv2/videoio.hpp>
|
||||
#include <opencv2/core.hpp>
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
|
||||
|
||||
namespace computervision
|
||||
{
|
||||
class ObjectDetection
|
||||
{
|
||||
private:
|
||||
|
||||
public:
|
||||
/**
|
||||
* @brief default constructor of ObjectDetection
|
||||
*
|
||||
*/
|
||||
ObjectDetection();
|
||||
/**
|
||||
* @brief Initializes the object detection, captures a frame and modifies it
|
||||
* so it is ready to use for object detection
|
||||
*
|
||||
* @return return true if webcam is connected, returns false if it isn't
|
||||
*/
|
||||
bool setup();
|
||||
/**
|
||||
* @brief Displays an image of the current webcam-footage
|
||||
*
|
||||
*/
|
||||
void showWebcam();
|
||||
/**
|
||||
* @brief Calculates the difference between two images
|
||||
* and outputs an image that only shows the difference
|
||||
*
|
||||
*/
|
||||
void calculateDifference();
|
||||
/**
|
||||
* @brief Listens for keypresses and handles them
|
||||
*
|
||||
*/
|
||||
void detect();
|
||||
|
||||
};
|
||||
|
||||
|
||||
}
|
||||
|
||||
105
src/computervision/SkinDetector.cpp
Normal file
105
src/computervision/SkinDetector.cpp
Normal file
@@ -0,0 +1,105 @@
|
||||
#include "SkinDetector.h"
|
||||
|
||||
/*
|
||||
Author: Pierfrancesco Soffritti https://github.com/PierfrancescoSoffritti
|
||||
*/
|
||||
|
||||
namespace computervision
|
||||
{
|
||||
SkinDetector::SkinDetector(void) {
|
||||
hLowThreshold = 0;
|
||||
hHighThreshold = 0;
|
||||
sLowThreshold = 0;
|
||||
sHighThreshold = 0;
|
||||
vLowThreshold = 0;
|
||||
vHighThreshold = 0;
|
||||
|
||||
calibrated = false;
|
||||
|
||||
skinColorSamplerRectangle1, skinColorSamplerRectangle2;
|
||||
}
|
||||
|
||||
void SkinDetector::drawSkinColorSampler(Mat input) {
|
||||
int frameWidth = input.size().width, frameHeight = input.size().height;
|
||||
|
||||
int rectangleSize = 20;
|
||||
Scalar rectangleColor = Scalar(255, 0, 255);
|
||||
|
||||
skinColorSamplerRectangle1 = Rect(frameWidth / 5, frameHeight / 2, rectangleSize, rectangleSize);
|
||||
skinColorSamplerRectangle2 = Rect(frameWidth / 5, frameHeight / 3, rectangleSize, rectangleSize);
|
||||
|
||||
rectangle(
|
||||
input,
|
||||
skinColorSamplerRectangle1,
|
||||
rectangleColor
|
||||
);
|
||||
|
||||
rectangle(
|
||||
input,
|
||||
skinColorSamplerRectangle2,
|
||||
rectangleColor
|
||||
);
|
||||
}
|
||||
|
||||
void SkinDetector::calibrate(Mat input) {
|
||||
|
||||
Mat hsvInput;
|
||||
cvtColor(input, hsvInput, CV_BGR2HSV);
|
||||
|
||||
Mat sample1 = Mat(hsvInput, skinColorSamplerRectangle1);
|
||||
Mat sample2 = Mat(hsvInput, skinColorSamplerRectangle2);
|
||||
|
||||
calculateThresholds(sample1, sample2);
|
||||
|
||||
calibrated = true;
|
||||
}
|
||||
|
||||
void SkinDetector::calculateThresholds(Mat sample1, Mat sample2) {
|
||||
int offsetLowThreshold = 80;
|
||||
int offsetHighThreshold = 30;
|
||||
|
||||
Scalar hsvMeansSample1 = mean(sample1);
|
||||
Scalar hsvMeansSample2 = mean(sample2);
|
||||
|
||||
hLowThreshold = min(hsvMeansSample1[0], hsvMeansSample2[0]) - offsetLowThreshold;
|
||||
hHighThreshold = max(hsvMeansSample1[0], hsvMeansSample2[0]) + offsetHighThreshold;
|
||||
|
||||
sLowThreshold = min(hsvMeansSample1[1], hsvMeansSample2[1]) - offsetLowThreshold;
|
||||
sHighThreshold = max(hsvMeansSample1[1], hsvMeansSample2[1]) + offsetHighThreshold;
|
||||
|
||||
// the V channel shouldn't be used. By ignorint it, shadows on the hand wouldn't interfire with segmentation.
|
||||
// Unfortunately there's a bug somewhere and not using the V channel causes some problem. This shouldn't be too hard to fix.
|
||||
vLowThreshold = min(hsvMeansSample1[2], hsvMeansSample2[2]) - offsetLowThreshold;
|
||||
vHighThreshold = max(hsvMeansSample1[2], hsvMeansSample2[2]) + offsetHighThreshold;
|
||||
//vLowThreshold = 0;
|
||||
//vHighThreshold = 255;
|
||||
}
|
||||
|
||||
Mat SkinDetector::getSkinMask(Mat input) {
|
||||
Mat skinMask;
|
||||
|
||||
if (!calibrated) {
|
||||
skinMask = Mat::zeros(input.size(), CV_8UC1);
|
||||
return skinMask;
|
||||
}
|
||||
|
||||
Mat hsvInput;
|
||||
cvtColor(input, hsvInput, CV_BGR2HSV);
|
||||
|
||||
inRange(
|
||||
hsvInput,
|
||||
Scalar(hLowThreshold, sLowThreshold, vLowThreshold),
|
||||
Scalar(hHighThreshold, sHighThreshold, vHighThreshold),
|
||||
skinMask);
|
||||
|
||||
performOpening(skinMask, MORPH_ELLIPSE, { 3, 3 });
|
||||
dilate(skinMask, skinMask, Mat(), Point(-1, -1), 3);
|
||||
|
||||
return skinMask;
|
||||
}
|
||||
|
||||
void SkinDetector::performOpening(Mat binaryImage, int kernelShape, Point kernelSize) {
|
||||
Mat structuringElement = getStructuringElement(kernelShape, kernelSize);
|
||||
morphologyEx(binaryImage, binaryImage, MORPH_OPEN, structuringElement);
|
||||
}
|
||||
}
|
||||
76
src/computervision/SkinDetector.h
Normal file
76
src/computervision/SkinDetector.h
Normal file
@@ -0,0 +1,76 @@
|
||||
#pragma once
|
||||
|
||||
#include <opencv2\core.hpp>
|
||||
#include <opencv2/imgcodecs.hpp>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/imgproc/types_c.h>
|
||||
/*
|
||||
Author: Pierfrancesco Soffritti https://github.com/PierfrancescoSoffritti
|
||||
*/
|
||||
|
||||
namespace computervision
|
||||
{
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
class SkinDetector {
|
||||
public:
|
||||
SkinDetector(void);
|
||||
|
||||
/*
|
||||
* @brief draws the positions in where the skin color will be sampled.
|
||||
*
|
||||
* @param input the input matrix to sample the skin color from
|
||||
*/
|
||||
void drawSkinColorSampler(Mat input);
|
||||
|
||||
/*
|
||||
* @brief calibrates the skin color detector with the given input frame
|
||||
*
|
||||
* @param input the input frame to calibrate from
|
||||
*/
|
||||
void calibrate(Mat input);
|
||||
|
||||
/*
|
||||
* @brief gets the mask for the hand
|
||||
*
|
||||
* @param input the input matrix to get the skin mask from
|
||||
* @returns the skin mask in a new matrix
|
||||
*/
|
||||
Mat getSkinMask(Mat input);
|
||||
|
||||
private:
|
||||
|
||||
// thresholds for hsv calculation
|
||||
int hLowThreshold = 0;
|
||||
int hHighThreshold = 0;
|
||||
int sLowThreshold = 0;
|
||||
int sHighThreshold = 0;
|
||||
int vLowThreshold = 0;
|
||||
int vHighThreshold = 0;
|
||||
|
||||
// wether or not the skindetector has calibrated yet.
|
||||
bool calibrated = false;
|
||||
|
||||
// rectangles that get drawn to show where the skin color will be sampled
|
||||
Rect skinColorSamplerRectangle1, skinColorSamplerRectangle2;
|
||||
|
||||
/*
|
||||
* @brief calculates the skin tresholds for the given samples
|
||||
*
|
||||
* @param sample1 the first sample
|
||||
* @param sample2 the second sample
|
||||
*/
|
||||
void calculateThresholds(Mat sample1, Mat sample2);
|
||||
|
||||
/**
|
||||
* @brief the opening. it generates the structuring element and performs the morphological transformations required to detect the hand.
|
||||
* This needs to be done to get the skin mask.
|
||||
*
|
||||
* @param binaryImage the matrix to perform the opening on. This needs to be a binary image, so consisting of only 1's and 0's.
|
||||
* @param structuralElementShape the shape to use for the kernel that is used with generating the structuring element
|
||||
* @param structuralElementSize the size of the kernel that will be used with generating the structuring element.
|
||||
*/
|
||||
void performOpening(Mat binaryImage, int structuralElementShape, Point structuralElementSize);
|
||||
};
|
||||
}
|
||||
11
src/main.cpp
11
src/main.cpp
@@ -14,6 +14,8 @@
|
||||
#include "shaders/static_shader.h"
|
||||
#include "toolbox/toolbox.h"
|
||||
|
||||
#include "computervision/ObjectDetection.h"
|
||||
|
||||
#pragma comment(lib, "glfw3.lib")
|
||||
#pragma comment(lib, "glew32s.lib")
|
||||
#pragma comment(lib, "opengl32.lib")
|
||||
@@ -56,6 +58,13 @@ int main(void)
|
||||
render_engine::renderer::Init(shader);
|
||||
|
||||
entities::Camera camera(glm::vec3(0, 0, 0), glm::vec3(0, 0, 0));
|
||||
|
||||
// create object detection object instance
|
||||
computervision::ObjectDetection objDetect;
|
||||
|
||||
|
||||
// set up object detection
|
||||
//objDetect.setup();
|
||||
|
||||
// Main game loop
|
||||
while (!glfwWindowShouldClose(window))
|
||||
@@ -72,6 +81,8 @@ int main(void)
|
||||
|
||||
render_engine::renderer::Render(entity, shader);
|
||||
|
||||
objDetect.setup();
|
||||
|
||||
// Finish up
|
||||
shader.Stop();
|
||||
glfwSwapBuffers(window);
|
||||
|
||||
Reference in New Issue
Block a user