comments
This commit is contained in:
@@ -2376,7 +2376,8 @@
|
||||
"\n",
|
||||
"we gebruiken de rmsprop optimizer omdat deze goed te gebruiken is voor kleine\n",
|
||||
"batch sizes.\n",
|
||||
"TODO loss uitleggen\n",
|
||||
"We gebruiken de categorical crossentropy loss function omdat er sprake is van\n",
|
||||
"meerdere categorieën.\n",
|
||||
"\"\"\"\n",
|
||||
"model.compile(loss='categorical_crossentropy',\n",
|
||||
" optimizer='rmsprop',\n",
|
||||
@@ -2633,6 +2634,8 @@
|
||||
"compile het model met de binary crossentropy loss function. Dit doen we omdat\n",
|
||||
"we maar 2 verschillende klassen hebben.\n",
|
||||
"We gebruiken rmsprop als optimizer omdat we een kleine batch size hebben.\n",
|
||||
"We gebruiken de binary crossentropy loss function omdat we een binaire\n",
|
||||
"klassificatie hebben.\n",
|
||||
"Deze optimizer balanceert de step size zodat deze niet te groot of te klein \n",
|
||||
"worden.\n",
|
||||
"We gebruiken de accuracy als metric omdat we daarop willen trainen.\n",
|
||||
@@ -2767,13 +2770,7 @@
|
||||
"3/3 [==============================] - 1s 402ms/step - loss: 0.0020 - accuracy: 1.0000 - val_loss: 1.2960 - val_accuracy: 0.8000\n",
|
||||
"Epoch 57/100\n",
|
||||
"3/3 [==============================] - 1s 316ms/step - loss: 1.9244e-05 - accuracy: 1.0000 - val_loss: 1.3116 - val_accuracy: 0.8000\n",
|
||||
"Epoch 58/100\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Epoch 58/100\n",
|
||||
"3/3 [==============================] - 1s 324ms/step - loss: 1.8088e-05 - accuracy: 1.0000 - val_loss: 1.3336 - val_accuracy: 0.8000\n",
|
||||
"Epoch 59/100\n",
|
||||
"3/3 [==============================] - 1s 319ms/step - loss: 3.6851e-05 - accuracy: 1.0000 - val_loss: 1.4207 - val_accuracy: 0.8000\n",
|
||||
|
||||
Reference in New Issue
Block a user