Files
SDBA/src/computervision/FingerCount.cpp
2021-06-08 11:03:22 +02:00

301 lines
10 KiB
C++

#include "FingerCount.h"
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
/*
Author: Nicolò Castellazzi https://github.com/nicast
*/
#define LIMIT_ANGLE_SUP 60
#define LIMIT_ANGLE_INF 5
#define BOUNDING_RECT_FINGER_SIZE_SCALING 0.3
#define BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING 0.05
namespace computervision
{
FingerCount::FingerCount(void) {
color_blue = Scalar(255, 0, 0);
color_green = Scalar(0, 255, 0);
color_red = Scalar(0, 0, 255);
color_black = Scalar(0, 0, 0);
color_white = Scalar(255, 255, 255);
color_yellow = Scalar(0, 255, 255);
color_purple = Scalar(255, 0, 255);
}
Mat FingerCount::findFingersCount(Mat input_image, Mat frame) {
Mat contours_image = Mat::zeros(input_image.size(), CV_8UC3);
// check if the source image is good
if (input_image.empty())
return contours_image;
// we work only on the 1 channel result, since this function is called inside a loop we are not sure that this is always the case
if (input_image.channels() != 1)
return contours_image;
findContours(input_image, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);
// we need at least one contour to work
if (contours.size() <= 0)
return contours_image;
// find the biggest contour (let's suppose it's our hand)
biggest_contour_index = -1;
double biggest_area = 0.0;
for (int i = 0; i < contours.size(); i++) {
double area = contourArea(contours[i], false);
if (area > biggest_area) {
biggest_area = area;
biggest_contour_index = i;
}
}
if (biggest_contour_index < 0)
return contours_image;
// find the convex hull object for each contour and the defects, two different data structure are needed by the OpenCV api
vector<Point> hull_points;
vector<int> hull_ints;
// for drawing the convex hull and for finding the bounding rectangle
convexHull(Mat(contours[biggest_contour_index]), hull_points, true);
// for finding the defects
convexHull(Mat(contours[biggest_contour_index]), hull_ints, false);
// we need at least 3 points to find the defects
vector<Vec4i> defects;
if (hull_ints.size() > 3)
convexityDefects(Mat(contours[biggest_contour_index]), hull_ints, defects);
else
return contours_image;
// we bound the convex hull
Rect bounding_rectangle = boundingRect(Mat(hull_points));
// we find the center of the bounding rectangle, this should approximately also be the center of the hand
Point center_bounding_rect(
(bounding_rectangle.tl().x + bounding_rectangle.br().x) / 2,
(bounding_rectangle.tl().y + bounding_rectangle.br().y) / 2
);
// we separate the defects keeping only the ones of intrest
vector<Point> start_points;
vector<Point> far_points;
for (int i = 0; i < defects.size(); i++) {
start_points.push_back(contours[biggest_contour_index][defects[i].val[0]]);
// filtering the far point based on the distance from the center of the bounding rectangle
if (findPointsDistance(contours[biggest_contour_index][defects[i].val[2]], center_bounding_rect) < bounding_rectangle.height * BOUNDING_RECT_FINGER_SIZE_SCALING)
far_points.push_back(contours[biggest_contour_index][defects[i].val[2]]);
}
// we compact them on their medians
vector<Point> filtered_start_points = compactOnNeighborhoodMedian(start_points, bounding_rectangle.height * BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING);
vector<Point> filtered_far_points = compactOnNeighborhoodMedian(far_points, bounding_rectangle.height * BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING);
// now we try to find the fingers
vector<Point> filtered_finger_points;
if (filtered_far_points.size() > 1) {
vector<Point> finger_points;
for (int i = 0; i < filtered_start_points.size(); i++) {
vector<Point> closest_points = findClosestOnX(filtered_far_points, filtered_start_points[i]);
if (isFinger(closest_points[0], filtered_start_points[i], closest_points[1], LIMIT_ANGLE_INF, LIMIT_ANGLE_SUP, center_bounding_rect, bounding_rectangle.height * BOUNDING_RECT_FINGER_SIZE_SCALING))
finger_points.push_back(filtered_start_points[i]);
}
if (finger_points.size() > 0) {
// we have at most five fingers usually :)
while (finger_points.size() > 5)
finger_points.pop_back();
// filter out the points too close to each other
for (int i = 0; i < finger_points.size() - 1; i++) {
if (findPointsDistanceOnX(finger_points[i], finger_points[i + 1]) > bounding_rectangle.height * BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING * 1.5)
filtered_finger_points.push_back(finger_points[i]);
}
if (finger_points.size() > 2) {
if (findPointsDistanceOnX(finger_points[0], finger_points[finger_points.size() - 1]) > bounding_rectangle.height * BOUNDING_RECT_NEIGHBOR_DISTANCE_SCALING * 1.5)
filtered_finger_points.push_back(finger_points[finger_points.size() - 1]);
}
else
filtered_finger_points.push_back(finger_points[finger_points.size() - 1]);
}
}
// we draw what found on the returned image
drawContours(contours_image, contours, biggest_contour_index, color_green, 2, 8, hierarchy);
polylines(contours_image, hull_points, true, color_blue);
rectangle(contours_image, bounding_rectangle.tl(), bounding_rectangle.br(), color_red, 2, 8, 0);
circle(contours_image, center_bounding_rect, 5, color_purple, 2, 8);
drawVectorPoints(contours_image, filtered_start_points, color_blue, true);
drawVectorPoints(contours_image, filtered_far_points, color_red, true);
drawVectorPoints(contours_image, filtered_finger_points, color_yellow, false);
putText(contours_image, to_string(filtered_finger_points.size()), center_bounding_rect, FONT_HERSHEY_PLAIN, 3, color_purple);
// and on the starting frame
drawContours(frame, contours, biggest_contour_index, color_green, 2, 8, hierarchy);
circle(frame, center_bounding_rect, 5, color_purple, 2, 8);
drawVectorPoints(frame, filtered_finger_points, color_yellow, false);
putText(frame, to_string(filtered_finger_points.size()), center_bounding_rect, FONT_HERSHEY_PLAIN, 3, color_purple);
amount_of_fingers = filtered_finger_points.size();
return contours_image;
}
void FingerCount::DrawHandContours(Mat& image)
{
drawContours(image, contours, biggest_contour_index, color_green, 2, 8, hierarchy);
}
int FingerCount::getAmountOfFingers()
{
return amount_of_fingers;
}
double FingerCount::findPointsDistance(Point a, Point b) {
Point difference = a - b;
return sqrt(difference.ddot(difference));
}
vector<Point> FingerCount::compactOnNeighborhoodMedian(vector<Point> points, double max_neighbor_distance) {
vector<Point> median_points;
if (points.size() == 0)
return median_points;
if (max_neighbor_distance <= 0)
return median_points;
// we start with the first point
Point reference = points[0];
Point median = points[0];
for (int i = 1; i < points.size(); i++) {
if (findPointsDistance(reference, points[i]) > max_neighbor_distance) {
// the point is not in range, we save the median
median_points.push_back(median);
// we swap the reference
reference = points[i];
median = points[i];
}
else
median = (points[i] + median) / 2;
}
// last median
median_points.push_back(median);
return median_points;
}
double FingerCount::findAngle(Point a, Point b, Point c) {
double ab = findPointsDistance(a, b);
double bc = findPointsDistance(b, c);
double ac = findPointsDistance(a, c);
return acos((ab * ab + bc * bc - ac * ac) / (2 * ab * bc)) * 180 / CV_PI;
}
bool FingerCount::isFinger(Point a, Point b, Point c, double limit_angle_inf, double limit_angle_sup, Point palm_center, double min_distance_from_palm) {
double angle = findAngle(a, b, c);
if (angle > limit_angle_sup || angle < limit_angle_inf)
return false;
// the finger point sohould not be under the two far points
int delta_y_1 = b.y - a.y;
int delta_y_2 = b.y - c.y;
if (delta_y_1 > 0 && delta_y_2 > 0)
return false;
// the two far points should not be both under the center of the hand
int delta_y_3 = palm_center.y - a.y;
int delta_y_4 = palm_center.y - c.y;
if (delta_y_3 < 0 && delta_y_4 < 0)
return false;
double distance_from_palm = findPointsDistance(b, palm_center);
if (distance_from_palm < min_distance_from_palm)
return false;
// this should be the case when no fingers are up
double distance_from_palm_far_1 = findPointsDistance(a, palm_center);
double distance_from_palm_far_2 = findPointsDistance(c, palm_center);
if (distance_from_palm_far_1 < min_distance_from_palm / 4 || distance_from_palm_far_2 < min_distance_from_palm / 4)
return false;
return true;
}
vector<Point> FingerCount::findClosestOnX(vector<Point> points, Point pivot) {
vector<Point> to_return(2);
if (points.size() == 0)
return to_return;
double distance_x_1 = DBL_MAX;
double distance_1 = DBL_MAX;
double distance_x_2 = DBL_MAX;
double distance_2 = DBL_MAX;
int index_found = 0;
for (int i = 0; i < points.size(); i++) {
double distance_x = findPointsDistanceOnX(pivot, points[i]);
double distance = findPointsDistance(pivot, points[i]);
if (distance_x < distance_x_1 && distance_x != 0 && distance <= distance_1) {
distance_x_1 = distance_x;
distance_1 = distance;
index_found = i;
}
}
to_return[0] = points[index_found];
for (int i = 0; i < points.size(); i++) {
double distance_x = findPointsDistanceOnX(pivot, points[i]);
double distance = findPointsDistance(pivot, points[i]);
if (distance_x < distance_x_2 && distance_x != 0 && distance <= distance_2 && distance_x != distance_x_1) {
distance_x_2 = distance_x;
distance_2 = distance;
index_found = i;
}
}
to_return[1] = points[index_found];
return to_return;
}
double FingerCount::findPointsDistanceOnX(Point a, Point b) {
double to_return = 0.0;
if (a.x > b.x)
to_return = a.x - b.x;
else
to_return = b.x - a.x;
return to_return;
}
void FingerCount::drawVectorPoints(Mat image, vector<Point> points, Scalar color, bool with_numbers) {
for (int i = 0; i < points.size(); i++) {
circle(image, points[i], 5, color, 2, 8);
if (with_numbers)
putText(image, to_string(i), points[i], FONT_HERSHEY_PLAIN, 3, color);
}
}
}