From d979ca38f50ec8bae7ed3b1385a6abc861b3a501 Mon Sep 17 00:00:00 2001 From: Sem van der Hoeven Date: Wed, 26 May 2021 15:12:05 +0200 Subject: [PATCH] add all files --- .gitignore | 93 + .travis.yml | 22 + LICENSE | 37 + Untitled.ipynb | 6 + course/0_Check_Environment.ipynb | 206 + .../1 First Deep Learning Model-Copy1.ipynb | 190 + course/1 First Deep Learning Model.ipynb | 190 + course/2 Data.ipynb | 1892 ++ course/3 Machine Learning.ipynb | 1177 ++ course/4 Deep Learning Intro.ipynb | 560 + course/5 Gradient Descent.ipynb | 1055 ++ course/6 Convolutional Neural Networks.ipynb | 988 + course/8 Recurrent Neural Networks.ipynb | 565 + course/9 Improving performance.ipynb | 872 + data/HR_comma_sep.csv | 15000 ++++++++++++++++ data/banknotes.csv | 1373 ++ data/banknotes.png | Bin 0 -> 576420 bytes ...cansim-0800020-eng-6674700030567901031.csv | 329 + data/diabetes.csv | 769 + data/generator/class 0/squirrel.jpeg | Bin 0 -> 1578073 bytes data/heart.csv | 304 + data/housing-data.csv | 48 + data/international-airline-passengers.csv | 145 + data/iris.csv | 151 + data/iss.jpg | Bin 0 -> 106177 bytes data/sms.wav | Bin 0 -> 220578 bytes data/test.csv | 301 + data/titanic-train.csv | 892 + data/us_retail_sales.csv | 1 + data/user_visit_duration.csv | 101 + data/weight-height.csv | 10001 +++++++++++ data/wines.csv | 179 + environment.yml | 21 + .../First Deep Learning Model commented.ipynb | 197 + exercises/Jupyter notebook CVML.ipynb | 2604 +++ exercises/Untitled.ipynb | 6 + ... Data exploration Exercises Solution.ipynb | 404 + ... Machine Learning Exercises Solution.ipynb | 669 + ...ep Learning Intro Exercises Solution.ipynb | 413 + ... Gradient Descent Exercises Solution.ipynb | 518 + ...l Neural Networks Exercises Solution.ipynb | 365 + ... Neural Networks Exercises Solutions.ipynb | 333 + ...ving performance Exercises Solutions.ipynb | 520 + tests/test_nb.py | 77 + 44 files changed, 43574 insertions(+) create mode 100644 .gitignore create mode 100644 .travis.yml create mode 100644 LICENSE create mode 100644 Untitled.ipynb create mode 100644 course/0_Check_Environment.ipynb create mode 100644 course/1 First Deep Learning Model-Copy1.ipynb create mode 100644 course/1 First Deep Learning Model.ipynb create mode 100644 course/2 Data.ipynb create mode 100644 course/3 Machine Learning.ipynb create mode 100644 course/4 Deep Learning Intro.ipynb create mode 100644 course/5 Gradient Descent.ipynb create mode 100644 course/6 Convolutional Neural Networks.ipynb create mode 100644 course/8 Recurrent Neural Networks.ipynb create mode 100644 course/9 Improving performance.ipynb create mode 100644 data/HR_comma_sep.csv create mode 100644 data/banknotes.csv create mode 100644 data/banknotes.png create mode 100644 data/cansim-0800020-eng-6674700030567901031.csv create mode 100644 data/diabetes.csv create mode 100644 data/generator/class 0/squirrel.jpeg create mode 100644 data/heart.csv create mode 100644 data/housing-data.csv create mode 100644 data/international-airline-passengers.csv create mode 100644 data/iris.csv create mode 100644 data/iss.jpg create mode 100644 data/sms.wav create mode 100644 data/test.csv create mode 100644 data/titanic-train.csv create mode 100644 data/us_retail_sales.csv create mode 100644 data/user_visit_duration.csv create mode 100644 data/weight-height.csv create mode 100644 data/wines.csv create mode 100644 environment.yml create mode 100644 exercises/First Deep Learning Model commented.ipynb create mode 100644 exercises/Jupyter notebook CVML.ipynb create mode 100644 exercises/Untitled.ipynb create mode 100644 solutions/2 Data exploration Exercises Solution.ipynb create mode 100644 solutions/3 Machine Learning Exercises Solution.ipynb create mode 100644 solutions/4 Deep Learning Intro Exercises Solution.ipynb create mode 100644 solutions/5 Gradient Descent Exercises Solution.ipynb create mode 100644 solutions/6 Convolutional Neural Networks Exercises Solution.ipynb create mode 100644 solutions/8 Recurrent Neural Networks Exercises Solutions.ipynb create mode 100644 solutions/9 Improving performance Exercises Solutions.ipynb create mode 100644 tests/test_nb.py diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..bc579b6 --- /dev/null +++ b/.gitignore @@ -0,0 +1,93 @@ +.DS_Store +.floydexpt +.floydignore + +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +env/ +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +*.egg-info/ +.installed.cfg +*.egg + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*,cover +.hypothesis/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +target/ + +# IPython Notebook +.ipynb_checkpoints + +# pyenv +.python-version + +# celery beat schedule file +celerybeat-schedule + +# dotenv +.env + +# virtualenv +venv/ +ENV/ + +# Spyder project settings +.spyderproject + +# Rope project settings +.ropeproject diff --git a/.travis.yml b/.travis.yml new file mode 100644 index 0000000..6f5b1ae --- /dev/null +++ b/.travis.yml @@ -0,0 +1,22 @@ +dist: xenial +language: python +python: + - "3.7" +install: + - sudo apt-get update + # We do this conditionally because it saves us some downloading if the + # version is the same. + - wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh; + - bash miniconda.sh -b -p $HOME/miniconda + - export PATH="$HOME/miniconda/bin:$PATH" + - hash -r + - conda config --set always_yes yes --set changeps1 no + - conda update -q conda + # Useful for debugging any issues with conda + - conda info -a + + - conda env create -q -n test-environment python=$TRAVIS_PYTHON_VERSION -f environment.yml + - source activate test-environment + +script: + - travis_wait 30 py.test -v diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000..065c1cf --- /dev/null +++ b/LICENSE @@ -0,0 +1,37 @@ +COPYRIGHT + +All contributions by Francesco Mosconi: +Copyright (c) 2017, Francesco Mosconi. +All rights reserved. + +All contributions by Catalit LLC: +Copyright (c) 2017, Catalit LLC. +All rights reserved. + +All other contributions: +Copyright (c) 2015, the respective contributors. +All rights reserved. + +Each contributor holds copyright over their respective contributions. +The project versioning (Git) records all such contribution source information. +MIT License + +Copyright (c) 2017 + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/Untitled.ipynb b/Untitled.ipynb new file mode 100644 index 0000000..363fcab --- /dev/null +++ b/Untitled.ipynb @@ -0,0 +1,6 @@ +{ + "cells": [], + "metadata": {}, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/course/0_Check_Environment.ipynb b/course/0_Check_Environment.ipynb new file mode 100644 index 0000000..2e0e104 --- /dev/null +++ b/course/0_Check_Environment.ipynb @@ -0,0 +1,206 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Check Environment\n", + "This notebook checks that you have correctly created the environment and that all packages needed are installed." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Environment\n", + "\n", + "The next command should return a line like (Mac/Linux):\n", + "\n", + " //anaconda/envs/ztdl/bin/python\n", + "\n", + "or like (Windows 10):\n", + "\n", + " C:\\\\\\\\Anaconda3\\\\envs\\\\ztdl\\\\python.exe\n", + "\n", + "In particular you should make sure that you are using the python executable from within the course environment.\n", + "\n", + "If that's not the case do this:\n", + "\n", + "1. close this notebook\n", + "2. go to the terminal and stop jupyer notebook\n", + "3. make sure that you have activated the environment, you should see a prompt like:\n", + "\n", + " (ztdl) $\n", + "4. (optional) if you don't see that prompt activate the environment:\n", + " - mac/linux:\n", + " \n", + " conda activate ztdl\n", + "\n", + " - windows:\n", + "\n", + " activate ztdl\n", + "5. restart jupyter notebook" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import sys\n", + "sys.executable" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Python 3.7\n", + "\n", + "The next line should say that you're using Python 3.7.x from Anaconda. At the time of publication it looks like this (Mac/Linux):\n", + "\n", + " Python 3.7.3 (default, Mar 27 2019, 22:11:17)\n", + " [GCC 7.3.0] :: Anaconda, Inc. on linux\n", + " Type \"help\", \"copyright\", \"credits\" or \"license\" for more information.\n", + "\n", + "or like this (Windows 10):\n", + "\n", + " Python 3.7.3 (default, Apr 24 2019, 15:29:51) [MSC v.1915 64 bit (AMD64)] :: Anaconda, Inc. on win32\n", + " Type \"help\", \"copyright\", \"credits\" or \"license\" for more information.\n", + "\n", + "but date and exact version of GCC may change in the future.\n", + "\n", + "If you see a different version of python, go back to the previous step and make sure you created and activated the environment correctly." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.version" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Jupyter\n", + "\n", + "Check that Jupyter is running from within the environment. The next line should look like (Mac/Linux):\n", + "\n", + " //anaconda/envs/ztdl/lib/python3.6/site-packages/jupyter.py'\n", + "\n", + "or like this (Windows 10):\n", + "\n", + " C:\\\\Users\\\\\\\\Anaconda3\\\\envs\\\\ztdl\\\\lib\\\\site-packages\\\\jupyter.py" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import jupyter\n", + "jupyter.__file__" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Other packages\n", + "\n", + "Here we will check that all the packages are installed and have the correct versions. If everything is ok you should see:\n", + " \n", + " Using TensorFlow backend.\n", + " \n", + " Houston we are go!\n", + "\n", + "If there's any issue here please make sure you have checked the previous steps and if it's all good please send us a question in the Q&A forum." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pip\n", + "import numpy\n", + "import jupyter\n", + "import matplotlib\n", + "import sklearn\n", + "import scipy\n", + "import pandas\n", + "import PIL\n", + "import seaborn\n", + "import tensorflow\n", + "\n", + "\n", + "def check_version(pkg, version):\n", + " actual = pkg.__version__.split('.')\n", + " if len(actual) == 3:\n", + " actual_major = '.'.join(actual[:2])\n", + " elif len(actual) == 2:\n", + " actual_major = '.'.join(actual)\n", + " else:\n", + " raise NotImplementedError(pkg.__name__ +\n", + " \"actual version :\"+\n", + " pkg.__version__)\n", + " try:\n", + " assert(actual_major == version)\n", + " except Exception as ex:\n", + " print(\"{} {}\\t=> {}\".format(pkg.__name__,\n", + " version,\n", + " pkg.__version__))\n", + " raise ex\n", + "\n", + "check_version(pip, '21.0')\n", + "check_version(numpy, '1.19')\n", + "check_version(matplotlib, '3.3')\n", + "check_version(sklearn, '0.24')\n", + "check_version(scipy, '1.6')\n", + "check_version(pandas, '1.2')\n", + "check_version(PIL, '8.2')\n", + "check_version(seaborn, '0.11')\n", + "check_version(tensorflow, '2.5')\n", + "\n", + "print(\"Houston we are go!\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/course/1 First Deep Learning Model-Copy1.ipynb b/course/1 First Deep Learning Model-Copy1.ipynb new file mode 100644 index 0000000..48f8976 --- /dev/null +++ b/course/1 First Deep Learning Model-Copy1.ipynb @@ -0,0 +1,190 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# First Deep Learning Model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np # import the numpy library and assign the name np to it\n", + "%matplotlib inline # magic function that sets the backend of matplotlib to the inline backend\n", + "import matplotlib.pyplot as plt # import the matplotlib.pyplot and assign the name plt to it" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.datasets import make_circles" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X, y = make_circles(n_samples=1000,\n", + " noise=0.1,\n", + " factor=0.2,\n", + " random_state=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(5, 5))\n", + "plt.plot(X[y==0, 0], X[y==0, 1], 'ob', alpha=0.5)\n", + "plt.plot(X[y==1, 0], X[y==1, 1], 'xr', alpha=0.5)\n", + "plt.xlim(-1.5, 1.5)\n", + "plt.ylim(-1.5, 1.5)\n", + "plt.legend(['0', '1'])\n", + "plt.title(\"Blue circles and Red crosses\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.optimizers import SGD" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.add(Dense(4, input_shape=(2,), activation='tanh'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.add(Dense(1, activation='sigmoid'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.compile(SGD(learning_rate=0.5), 'binary_crossentropy', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X, y, epochs=20)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "hticks = np.linspace(-1.5, 1.5, 101)\n", + "vticks = np.linspace(-1.5, 1.5, 101)\n", + "aa, bb = np.meshgrid(hticks, vticks)\n", + "ab = np.c_[aa.ravel(), bb.ravel()]\n", + "c = model.predict(ab)\n", + "cc = c.reshape(aa.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(5, 5))\n", + "plt.contourf(aa, bb, cc, cmap='bwr', alpha=0.2)\n", + "plt.plot(X[y==0, 0], X[y==0, 1], 'ob', alpha=0.5)\n", + "plt.plot(X[y==1, 0], X[y==1, 1], 'xr', alpha=0.5)\n", + "plt.xlim(-1.5, 1.5)\n", + "plt.ylim(-1.5, 1.5)\n", + "plt.legend(['0', '1'])\n", + "plt.title(\"Blue circles and Red crosses\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/course/1 First Deep Learning Model.ipynb b/course/1 First Deep Learning Model.ipynb new file mode 100644 index 0000000..d4563b8 --- /dev/null +++ b/course/1 First Deep Learning Model.ipynb @@ -0,0 +1,190 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# First Deep Learning Model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.datasets import make_circles" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X, y = make_circles(n_samples=1000,\n", + " noise=0.1,\n", + " factor=0.2,\n", + " random_state=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(5, 5))\n", + "plt.plot(X[y==0, 0], X[y==0, 1], 'ob', alpha=0.5)\n", + "plt.plot(X[y==1, 0], X[y==1, 1], 'xr', alpha=0.5)\n", + "plt.xlim(-1.5, 1.5)\n", + "plt.ylim(-1.5, 1.5)\n", + "plt.legend(['0', '1'])\n", + "plt.title(\"Blue circles and Red crosses\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.optimizers import SGD" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.add(Dense(4, input_shape=(2,), activation='tanh'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.add(Dense(1, activation='sigmoid'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.compile(SGD(learning_rate=0.5), 'binary_crossentropy', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X, y, epochs=20)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "hticks = np.linspace(-1.5, 1.5, 101)\n", + "vticks = np.linspace(-1.5, 1.5, 101)\n", + "aa, bb = np.meshgrid(hticks, vticks)\n", + "ab = np.c_[aa.ravel(), bb.ravel()]\n", + "c = model.predict(ab)\n", + "cc = c.reshape(aa.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(5, 5))\n", + "plt.contourf(aa, bb, cc, cmap='bwr', alpha=0.2)\n", + "plt.plot(X[y==0, 0], X[y==0, 1], 'ob', alpha=0.5)\n", + "plt.plot(X[y==1, 0], X[y==1, 1], 'xr', alpha=0.5)\n", + "plt.xlim(-1.5, 1.5)\n", + "plt.ylim(-1.5, 1.5)\n", + "plt.legend(['0', '1'])\n", + "plt.title(\"Blue circles and Red crosses\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/course/2 Data.ipynb b/course/2 Data.ipynb new file mode 100644 index 0000000..a8eec83 --- /dev/null +++ b/course/2 Data.ipynb @@ -0,0 +1,1892 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Data Exploration with Pandas" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../data/titanic-train.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "pandas.core.frame.DataFrame" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass \\\n", + "0 1 0 3 \n", + "1 2 1 1 \n", + "2 3 1 3 \n", + "3 4 1 1 \n", + "4 5 0 3 \n", + "\n", + " Name Sex Age SibSp \\\n", + "0 Braund, Mr. Owen Harris male 22.0 1 \n", + "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n", + "2 Heikkinen, Miss. Laina female 26.0 0 \n", + "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n", + "4 Allen, Mr. William Henry male 35.0 0 \n", + "\n", + " Parch Ticket Fare Cabin Embarked \n", + "0 0 A/5 21171 7.2500 NaN S \n", + "1 0 PC 17599 71.2833 C85 C \n", + "2 0 STON/O2. 3101282 7.9250 NaN S \n", + "3 0 113803 53.1000 C123 S \n", + "4 0 373450 8.0500 NaN S " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 891 entries, 0 to 890\n", + "Data columns (total 12 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 PassengerId 891 non-null int64 \n", + " 1 Survived 891 non-null int64 \n", + " 2 Pclass 891 non-null int64 \n", + " 3 Name 891 non-null object \n", + " 4 Sex 891 non-null object \n", + " 5 Age 714 non-null float64\n", + " 6 SibSp 891 non-null int64 \n", + " 7 Parch 891 non-null int64 \n", + " 8 Ticket 891 non-null object \n", + " 9 Fare 891 non-null float64\n", + " 10 Cabin 204 non-null object \n", + " 11 Embarked 889 non-null object \n", + "dtypes: float64(2), int64(5), object(5)\n", + "memory usage: 83.7+ KB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassAgeSibSpParchFare
count891.000000891.000000891.000000714.000000891.000000891.000000891.000000
mean446.0000000.3838382.30864229.6991180.5230080.38159432.204208
std257.3538420.4865920.83607114.5264971.1027430.80605749.693429
min1.0000000.0000001.0000000.4200000.0000000.0000000.000000
25%223.5000000.0000002.00000020.1250000.0000000.0000007.910400
50%446.0000000.0000003.00000028.0000000.0000000.00000014.454200
75%668.5000001.0000003.00000038.0000001.0000000.00000031.000000
max891.0000001.0000003.00000080.0000008.0000006.000000512.329200
\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass Age SibSp \\\n", + "count 891.000000 891.000000 891.000000 714.000000 891.000000 \n", + "mean 446.000000 0.383838 2.308642 29.699118 0.523008 \n", + "std 257.353842 0.486592 0.836071 14.526497 1.102743 \n", + "min 1.000000 0.000000 1.000000 0.420000 0.000000 \n", + "25% 223.500000 0.000000 2.000000 20.125000 0.000000 \n", + "50% 446.000000 0.000000 3.000000 28.000000 0.000000 \n", + "75% 668.500000 1.000000 3.000000 38.000000 1.000000 \n", + "max 891.000000 1.000000 3.000000 80.000000 8.000000 \n", + "\n", + " Parch Fare \n", + "count 891.000000 891.000000 \n", + "mean 0.381594 32.204208 \n", + "std 0.806057 49.693429 \n", + "min 0.000000 0.000000 \n", + "25% 0.000000 7.910400 \n", + "50% 0.000000 14.454200 \n", + "75% 0.000000 31.000000 \n", + "max 6.000000 512.329200 " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Indexing" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.iloc[3]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.loc[0:4,'Ticket']" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['Ticket'].head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df[['Embarked', 'Ticket']].head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Selections" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df[df['Age'] > 70]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['Age'] > 70" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.query(\"Age > 70\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df[(df['Age'] == 11) & (df['SibSp'] == 5)]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df[(df.Age == 11) | (df.SibSp == 5)]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.query('(Age == 11) | (SibSp == 5)')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Unique Values" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['S', 'C', 'Q', nan], dtype=object)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['Embarked'].unique()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sorting" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.sort_values('Age', ascending = False).head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Aggregations" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['Survived'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['Pclass'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.groupby(['Pclass', 'Survived'])['PassengerId'].count()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['Age'].min()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['Age'].max()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['Age'].mean()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['Age'].median()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mean_age_by_survived = df.groupby('Survived')['Age'].mean()\n", + "mean_age_by_survived" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "std_age_by_survived = df.groupby('Survived')['Age'].std()\n", + "std_age_by_survived" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Merge" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'mean_age_by_survived' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mdf1\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmean_age_by_survived\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mround\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreset_index\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[0mdf2\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mstd_age_by_survived\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mround\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreset_index\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mNameError\u001b[0m: name 'mean_age_by_survived' is not defined" + ] + } + ], + "source": [ + "df1 = mean_age_by_survived.round(0).reset_index()\n", + "df2 = std_age_by_survived.round(0).reset_index()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'df1' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mdf1\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mNameError\u001b[0m: name 'df1' is not defined" + ] + } + ], + "source": [ + "df1" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'df2' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mdf2\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mNameError\u001b[0m: name 'df2' is not defined" + ] + } + ], + "source": [ + "df2" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'df1' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mdf3\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmerge\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdf1\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdf2\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mon\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'Survived'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mNameError\u001b[0m: name 'df1' is not defined" + ] + } + ], + "source": [ + "df3 = pd.merge(df1, df2, on='Survived')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df3" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df3.columns = ['Survived', 'Average Age', 'Age Standard Deviation']" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Pivot Tables" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Survived01
Pclass
180136
29787
3372119
\n", + "
" + ], + "text/plain": [ + "Survived 0 1\n", + "Pclass \n", + "1 80 136\n", + "2 97 87\n", + "3 372 119" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.pivot_table(index='Pclass',\n", + " columns='Survived',\n", + " values='PassengerId',\n", + " aggfunc='count')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Correlations" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['IsFemale'] = df['Sex'] == 'female'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "correlated_with_survived = df.corr()['Survived'].sort_values()\n", + "correlated_with_survived" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "correlated_with_survived.iloc[:-1].plot(kind='bar',\n", + " title='Titanic Passengers: correlation with survival');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Visual Data Exploration with Matplotlib" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "data1 = np.random.normal(0, 0.1, 1000)\n", + "data2 = np.random.normal(1, 0.4, 1000) + np.linspace(0, 1, 1000)\n", + "data3 = 2 + np.random.random(1000) * np.linspace(1, 5, 1000)\n", + "data4 = np.random.normal(3, 0.2, 1000) + 0.3 * np.sin(np.linspace(0, 20, 1000))" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "data = np.vstack([data1, data2, data3, data4]).transpose()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
data1data2data3data4
00.1565651.0557472.2091772.990694
1-0.0615881.0617702.2822823.065291
2-0.0748360.4277422.9327983.394612
30.0148281.0611862.9949222.871135
4-0.0811350.9377942.0621733.322928
\n", + "
" + ], + "text/plain": [ + " data1 data2 data3 data4\n", + "0 0.156565 1.055747 2.209177 2.990694\n", + "1 -0.061588 1.061770 2.282282 3.065291\n", + "2 -0.074836 0.427742 2.932798 3.394612\n", + "3 0.014828 1.061186 2.994922 2.871135\n", + "4 -0.081135 0.937794 2.062173 3.322928" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.DataFrame(data, columns=['data1', 'data2', 'data3', 'data4'])\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Line Plot" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAEICAYAAAB25L6yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACQK0lEQVR4nO2dZ5gUxRaGv+qZzWwgLDnnnKPkJFEUAQkGjGDECMjFeI2IoKJeFRQVQUAJipIEJIPknF1YYFlgl4XNcabr/ugwHWe6J7DD0q+PD7Pd1d3V6etTp06dIpRSWFhYWFgEL0xxV8DCwsLCwj2WUFtYWFgEOZZQW1hYWAQ5llBbWFhYBDmWUFtYWFgEOZZQW1hYWAQ5llBbBD2EkK6EkFPFcNyHCSHbbvZxLSyUWEJtETQQQhIJIX2UyymlWymlDYqjTkYhhGwihDxe3PWwKJlYQm1hYWER5FhCbRH0EEJ6EEKSJH8nEkJeIYQcJoRkEEIWE0LCJesHE0IOEkLSCSE7CCHN3eybEkImEELOEkKuEUKmE0I03wtCyB2EkD38MfcQQu7gl78HoCuALwgh2YSQL/x39hYWllBb3LrcB6A/gFoAmgN4GAAIIa0BzAUwHkBZAN8AWEEICXOzr6EA2gJoDeBuAI8qCxBCygBYCWAWv9+ZAFYSQspSSqcC2ArgWUppKUrps/44QQsLAUuoLW5VZlFKkyml1wH8AaAlv/wJAN9QSndRSp2U0h8BFADo6GZf0yil1ymlFwB8CmC0RplBAM5QSn+ilDoopQsBnARwl5/Ox8JCF0uoLW5Vrkh+5wIoxf+uAeBl3u2RTghJB1ANQGU3+7oo+X1ep2xlfh0UZauYqbSFhTdYQm1R0rgI4D1KaZzk/0jeAtajmuR3dQDJGmWSwX0EoCh7if9tpaG0CBiWUFsEGyGEkHDJ/3aT288B8CQhpAPhiCKEDCKERLvZZiIhpDQhpBqA5wEs1iizCkB9QsgYQoidEDISQGMAf/LrrwKobbKuFhaGsITaIthYBSBP8v9bZjamlO4F56f+AsANAP+C72h0w+8A9gE4CK7D8DuN/aYBGAzgZQBpACYBGEwpvcYX+QzAcELIDULILDN1trDwBLEmDrC4nSGEUAD1KKX/FnddLCz0sCxqCwsLiyDHEmoLCwuLIMdyfVhYWFgEOZZFbWFhYRHkmA19MkS5cuVozZo1A7FrCwsLixLJvn37rlFK47XWBUSoa9asib179wZi1xYWFhYlEkKIcuSriOX6sLCwsAhyLKG2sLCwCHIsobawsLAIcjz6qAkhDSDPfVAbwBuU0k/NHKioqAhJSUnIz883V8MSQHh4OKpWrYqQkJDiroqFhcUtiEehppSeAp/rlxBiA5ctbLnZAyUlJSE6Oho1a9YEIcTs5rcslFKkpaUhKSkJtWrVKu7qWFhY3IKYdX30BpBAKdXtndQjPz8fZcuWva1EGgAIIShbtuxt2ZKwsLDwD2aFehQAzby+hJBxhJC9hJC9qampmhvfbiItcLuet4WFhX8wLNSEkFAAQwD8qrWeUjqbUtqWUto2Pl4zZtvCwsKiRHI15yo2XdwUsP2bsagHANhPKb0aqMrcTN566y18/PHHuut/++03HD9+3ON+tmzZgtatW8Nut2PJkiX+rKKFhcUtwkOrH8Jzfz8XsP2bEerR0HF7lESMCnX16tXxww8/YMyYMTehVhYWFsFIcg43e1ugktwZEmpCSCSAvgCWBaQWN4n33nsPDRo0QJ8+fXDq1CkAwJw5c9CuXTu0aNECw4YNQ25uLnbs2IEVK1Zg4sSJaNmyJRISEjTLAdxw+ebNm4NhrJB0C4vbhe2XtiOnKEe1nAZo6kxDuT4opbkAyvrroG//cQzHkzP9tTsAQOPKMXjzria66/ft24dFixbhwIEDcDgcaN26Ndq0aYN7770XTzzxBADgtddew3fffYfnnnsOQ4YMweDBgzF8+HAAQFxcnGY5CwuLkkMRWwQ7sbsNALicfRlPrn8SPav1xKxe8lnXWMqCIf432m4bM3Dr1q0YOnQoIiMjERMTgyFDhgAAjh49iq5du6JZs2ZYsGABjh07prm90XIWFha3JsnZyWj9U2ss/9f9MJFcB9eaTsxMVK0rVova37izfAOJ1lfy4Ycfxm+//YYWLVrghx9+wKZNmzS3NVrOwsLi1iQhPQEA8FfiX7i33r0eyxOo9aRYfdQlgW7dumH58uXIy8tDVlYW/vjjDwBAVlYWKlWqhKKiIixYsEAsHx0djaysLPFvvXIWFhYlAyd1AgDsjB15jjw4WafpfbCU9Xe1ANxGQt26dWuMHDkSLVu2xLBhw9C1a1cAwDvvvIMOHTqgb9++aNiwoVh+1KhRmD59Olq1aoWEhATdcnv27EHVqlXx66+/Yvz48WjSpHhaCxYWFsb57sh32HNlj2yZIMwMYdB+QXu8t+s9w/sT/NKBEupicX0UF1OnTsXUqVNVy5966inVss6dO8vC85566inNcu3atUNSUpJ/K2phYRFQPt3/KQDgyNgj4jIHdQBw+ZmXn1mONzq9YWh/ghskUD7q28aitrCwsHCHg3XI/rYxNs1yWn5oQagt14eFhYUFj5N1IqMgw7/75H3UglFsZ9w7HDQ7Ey2L2sLCwoLjw90fosuiLsgtyvVpPyxlMe/YPOQW5Yo+akFsbUTbotZCiCizoj4sLCxuS3KLclHEFsmWrU1cCwDIc+R53N7JOvHNoW80RxKuO78O0/dOx+cHPhePIQi1J4taiuX6sLCwuK3p8HMHvLjxRdkyM6mD1ySuwRcHv8DnBz5XrRPcJ/nOfNH1IVjFdmJCqElghfq2ivqwsLC4NdmctNnrbbMLswEARc4ilatEsKJDmVC160OvM5FfL/1YWFEfAcJfaU5nzpyJxo0bo3nz5ujduzfOnzc9+Y2FhYUfmbV/Fr48+KX4dyFbCAAItYWiw88d0OHnDuK6AmeBuE6I+vDk+tAS40Bb1LetUHvCqFC3atUKe/fuxeHDhzF8+HBMmjTpJtTOwuLW5lreNZy6fiog+55zZA6+PvS1+LcgxiE29eTShU6XiAtx1IIOm+lMFLA6E/1AINKc9uzZE5GRkQCAjh07WoNfLCwMMGDpAAz/Y/hNOVaR0+XeUCIKtYbrw5vOxBKVlAmrXwWuHPFczgwVmwEDPtRdfTPSnH733XcYMGCAf8/LwqIEku+8eZM9C66PMFuYep3Eohay4gnouj60BrxYnYn+QZrmFIAszelrr72G9PR0ZGdno1+/fprbeyo3f/587N27F5s3e9/pYWFxO3Ax86Lf9mXEgpWKsWqdxH+dVcglYROE2JPrQ9qZyKAk5vpwY/kGkkClOV2/fj3ee+89bN68GWFh6q+2hcXtDqUUu67sQnxEPO75/R5T2/mKINRaFrJUxIXwPEFszbg+hEGKlo/aRwKV5vTAgQMYP348VqxYgfLly9+8E7KwuIVYdmYZnvjrCbz7z7umtvOHhSqE4Gm5PoR1IUyIaJ0LnYqCUBc6C9Hsx2b49si3uscQB7ygGKM+CCFxhJAlhJCThJAThJBOAalNAAlUmtOJEyciOzsbI0aMQMuWLUWXioWFhYuLWZy7Y+/Vvaa284fwSUPwlAgWsHT6LKFTUXB9ZBdxcdjzjs3TPUaw+Kg/A7CGUjqcEBIKIDIgtQkwgUhzun79ev9W0sIiyFl9bjUmbZmE9cPXo0JUBUPbmBlJKEApRYGjQHt/GgmR9BBcGu7mMpS6LISPQ4GzAOcyziE2LJYr48YfXuwDXgghMQC6AfgOACilhZTS9IDUxsLCIuhZfoabU/Df9H8Nb2NGWAU+2f8JOi0013gXQvEEFpxYgAuZF3TroPUBEUT7UOohDPltiLhPpQhL9ycKdTH6qGsDSAXwPSHkACHkW0JIlLIQIWQcIWQvIWRvamqq3ytqYWFx8ylyFiE9P122TLBMfzr+kxgpEQiWnFrisYxSGGfsmyH+LnAW4MPdH+JYGjcRtcePBb8rpftC+Xewjky0A2gN4CtKaSsAOQBeVRailM6mlLallLaNj4/3czUtLCyKg2f/fhZdF3eVLRNEaXvydlPTVRnhpU0vYebemQA8uBp0XCnCBLWA2rrWQhB66bE8uS/cWc3FKdRJAJIopbv4v5eAE24LC4sSzo7kHapl0vjizIJM8ffFzIvo/UtvXMm54vXx1p1fh++PfQ9AXzBZyuJa3jWP+1LO2GLUf6wUYmWuaa39CK2MYvNRU0qvALhICGnAL+oNwHMSDAsLi6Bm7tG5uvk2vj3yLY6nab/mei6EX0//ipS8FKw6t0q9jZediVokZbnSNLgTRjF3h4GylFKsPLtSs5zyfDVdH0GSj/o5AAsIIYcBtATwfkBqY2FhcVOglOKTfZ9g1J+jNNd/tv8zjPxzpOY6qejKRItfrCVW3nQm6gmrzE0hEfPL2Zdl5Yy4PoRzuVFwAyl5Kap9ah1XWB90U3FRSg/y/ufmlNJ7KKU3AlKbm4i/0px+/fXXaNasGVq2bIkuXboY2sbCorgRrE2l1WkEvTA3xo2ceGNRG+HX078CAA6mHMSdS+/EP5f/EdcpZ4Vx51uWirpSbFV/u5nc1hqZeJMxKtRjxozBkSNHcPDgQUyaNAkvvfTSTaidhYUxxqwcgw4LOqiWS4Xp3X/elfl8PYmNVKhlIWpeRD78d+d/MX3PdM11evV4/u/nxd/fHP4GAHA246yqnFKojaKK8hDqwf8jhCXKJg4IgqiPEkMg0pzGxMSI+8/JyQmY5WBh4Q1Hrh1RZYUD5Jb04lOLMW33NPFvT2IjFWqptan001JK8fT6p7ElaYtbv/a84/oj/rRIyEiQ/a0n6GaE2p3LQjk68o0db6jKBMvIRL8ybfc0nLx+0q/7bFimISa3n6y7PpBpTr/88kvMnDkThYWF+Pvvv/16XhYWgUDpv5UaGJ6GbeuJrjLygaUstl7aiu3J2zG++XjTdTTq73WwDs06Kc/RbWeiZJ1SbOccnuMqR9UfJulvayouH5GmOY2JiZGlOe3atSuaNWuGBQsW4NixY5rbuyv3zDPPICEhAdOmTcO775pLOmNhURworc3V51bjUOohAJ5dH3qtRndhbF51Jhr09wqpSpWY8VFL9VUptkvPLBWPM32vtpsm0FEfxWJRu7N8A0mg0pwKjBo1SjMfiIVFMJGcnYx+S9V51zde2IgW8S1MuT6kAix0JorRERoRIWYwap0WOgs1y3rr+tAT9AJnAX46/pPmOuVHyt/cNhZ1oNKcnjlzRvy9cuVK1KtX7yacjYWFmhUJK7Dv6j6P5bYkbdFcLlimHoUa2j5qVXie0AfnpXiZEWotVBa1QdeHL+4Ly/XhI4FKc/rFF1+gSZMmaNmyJWbOnIkff/zxpp+bRcllzbk1eGq9sVba1G1T8fCah8W/9eKIhWxySgTB8yQ20pbptkvbxKgN0aL2k+vDqObpuj6UPmo3HwzpOiHNqRlKpOujuAhEmtPPPvvMv5W0sJAwcctE09v0W9IPv9z1C57d8Kzmej3BEoTajOsDAOYdn4eJ7Sa6mv9arg8vMLp9kbNI80Og90GSotUJ6E29hWtihedZWFgYIjknGf9c/gcHUw9qrtcTIsOuD70BLwqx0ouQ0MPTcfVyiOhZ1GZEU2ZRGxB4gYyCDHx18CvVqEV/Ywm1hUWQkVOUg+l7poszk3hDniNPd52egImuD09RHzqiqxydZ9ayVroclNs9tvYxze30fNTKMENvw/PcMW33NPzv0P/EGWwCNRXXbeX6sLAIFgqcBbARm+YEqrMPz8a84/NQKaqS1/t3J9S6A0R4n64nsfHKojYwEEyVRElRz7T8NM3tCpwF+GD3B6rlyu3f3PGm7rGlZc1YxcrBRJZFbWFRgmg7v61HC1Fq2ZkVgHxHvu46PSEWLHgti1J6fE9C7S67nDs8WdR6FDmLND9MZixj6TUx4/rw5ZhmsITawiLA5Bbl4kjqEdXy/Sn7NcsLAqU3VNsIXrk+WH3Xh5EIDmE70aKGOYtaKpCaddDrBPXBR60V/3w9/7rH7aTbSrHC8ywsblFe2PgCxqwa41Y8pQgCI0snygvJlZwryCzM1NxOijuLWg/R9eHBotYTXUFove1Ykyb61zpH3U5QHR+1EdFUflzMojxHy/XhZ/yV5lRgyZIlIIRg7969/qieRZCTXZhtON5295XdAIy/xIJoSC3qAmcBHlv7GPou6Yu7f7sbLGXdCr9yXZGzCN8e+RZFziJdUSpwFuBS9iW3Arfk9BIcTDnott4CZq1L6fZmRhX6I+rDa6H2kBLVX9y2Qu0JM0KdlZWFWbNmoUMHdTpJi5JHniMPnRZ2wsd79T/0UpSWpicEQZeOAExITxAF/1reNXxx4Au0X9Ae2YXZmvtYdGqR7O95x+fhs/2fYeHJhbo+2FM3TqH/0v7YmbxTXSe+7m/vfBsnrp/Q3F7Yr1ZssiEftaReymm03JFTmKO5PFDWrUDQTRxQUghEmlMAeP311zFp0iSEh4cX16lZ3ERyijhh0Jpyyh2UUuxI3qGa1VuJ0LGlle9Y4PeE3wEA2UXaQq1EmC28kC30KGBaaTyNCJBuHmcDUEpl4mymQ+/dXdqJ0IxYycJ19MaiJiDq6xKgb0OxhOddef99FJzwb5rTsEYNUfE//9FdH6g0pwcOHMDFixcxePBgt64Ui5KD0jXRbVE3PNvqWdzX4D632+U78zF+3Xg0K9fM1P69LSNFED4bsXln9RnYxJ2P2lNnopM6ZeKs5VYyayGbiWk+nHrY1L71KFaLmhCSSAg5Qgg5SAi5JZ2wgUhzyrIsXnzxRcyYMeNmnopFMSMVSSfrxI2CG3jnn3c8bidYjAnprsT3F7Mu4oejP+juX0DpsxWETDojuJFj24jNK+vRjEUt1E26jXI+Q636ScVZy6I2K4JmhP1o2lFT+9Y9ZoCE2oxF3ZNS6nmOdgO4s3wDib/TnGZlZeHo0aPo0aMHAODKlSsYMmQIVqxYgbZt2wbwTCyKE6mQCgJqJ55fJS2BfGztY7iccxlD6w1FbFisrJzUB6qM4hCEzLRFzdgC4rullKotaoloKX3mWvWTDnjxJjGSkkDFNLvDivrwkUCkOY2NjcW1a9eQmJiIxMREdOzY0RLp2wBRqMGIEQdaIwz1tpMaDFdzrwIAzmeeR0ZBBgBJZ6JEhJUhaFqxyu4QhM9O7AGxqCkoWJaV182EaBmxqM1yU4Ra5aIuXqGmAP4ihOwjhIwLSE0CTKDSnFrcfkiFVIg9DmFCPG+n8RILYnL/qvsx6s9R3DJoh+dJEa1Xg2Iotai9yUfh6ThSH7PZjwjACbVUWLVmRzdrrQZKNAUIUXcmFrfrozOlNJkQUh7AOkLISUqpLPs4L+DjAKB69ep+rqZ/CESaUyl6bhOL4iO3KBd/X/wbg2sP9nofM/bOQOvyrdGzek8AcreD6PowYFF7Epqk7CQA2pa3UqjNiqHUR+2NlmQXZWPo70N111NKxTp5Y8k6WIdH10cgfdR+I0CHNGRRU0qT+X9TACwH0F6jzGxKaVtKadv4+Hj/1tLCwkve3/U+pmydIg7S+CPhDzT7sZnb0X0/HvsRW5O2in//cOwHTNg4QfxbavEKFrURodaKT1Yy//h8XM/jhjBL46iVrg+zrgGZRe2FkB5IOSB+SPT2L3YmmrT2hW1uSdeHgmJzfRBCoggh0cJvAHcC8E8XqYWFHzl94zQcrAMvbHwBe69wwUmCDzjXkYtj147hP9u4juykLH3R+Xjvx3h6w9O66wVfrNSiNuL60Iv3lTJtzzTsurJL3L+AnkVtVIwEi9rJOr0SwZTcFLfrKaWqsDyzrg9vB7zo1inAro8j1454zPjnL4xY1BUAbCOEHAKwG8BKSukabw5WLE2RIOB2Pe+byaHUQxi2Yhhm7Z+FDRc24KVNL6nKjFo5Svzty0sss6glro+T10+i2Y/NcOo6N5jq2LVjPkUvSF0fup2JJn3ULGW9Ovdree4DvqQWtXB9zHYmehrw4suQ9ECx/dJ2+TEDlI/ao1BTSs9SSlvw/zehlL7nzYHCw8ORlpZ224kWpRRpaWnWqMUAc/Qa18g7lHoIABAXHue2/EOrHtJcfubGGc3lgDoNqFKo159fDwD4+8Lf2HFpB0atHIV5x+ep9mN0/kCpRZ3v1E6yZFS8hGNKBdUMeomPBJ7d8CxOpHFDy1eeXYkrOVfMWdTUIRuCrvmBMykdJSk876aNTKxatSqSkpKQmpp6sw4ZNISHh6Nq1arFXY0SjdA0F8QtLizObflCthAbLmxAozKNULlUZXH5g6sf1N1m5dmVuLfevbLOREHA7Iwd5zLOcQWJq2NQ+IB4gzsftbe8v+t9DK2n3ymohyfRU6ZsTUhPQJ24Oob3Lw3PsxGbfwa8BNj1cTO5aUIdEhKCWrVq3azDWdxmCJ2DglBHhkR63OaFjS+AIQwOPXRIXOZu+qs3d7yJ+Ih4cWCK1KI+c+MMTt84rdrGF6tO6vrQ249ZC85Jndh0cZPXdTIKQxhznYkS3zlDGL/4qG+rzkQLi1sJ4QVXuhc+3fepZnnly+zJLTFj7wzZgBdBqPVeUH+JhV4HoDfC4I3f3Ox5MITx2vVhY7QtarOUJNeHJdQWQUWBs8BtRIYn9FKK6qXm9Gb/Riw/wRr2RSyk5+CrUEutc29EMOBCLXF9CDlUlFBQzVaLHsXRH2ZZ1Ba3BVO3TcWAZQO8noHbG2tx3jGuw++7I995TFhPQWWCoiVghP8P8DEKQPLO652XN2Lk1TYmBejD3R+aj/qgrkE5eiMTh60YZnifgYrAcIdlUVvcFgjhTt52nimtRSMRFj8e+xEO1oFP93/qsSxLWZlF7enF1FpvNOrDrxY1fLOozQrQ6RunTYm7dMCLjdj8MjKxOFwfgcISaougQrREvXzJpJ17FzIvGNqGghoWAalQE0I8Wm2+WHVGhFooYipJvxfNc2HgkBk8DZKRIh3wotdSMYvl+rCw0IGlrG899saMTRXCSym87Cm5KRi0fJDp7T3BUlYUkSs5V7DmnPbYL3E6Kh/EQipWulEfMDY5q6+dc5uTNpve5rVtrxkuK4368DZntpKS1JlYLDO8WJRcxv01Druu7MKRsUe82l4Ir/PaonYanxRVitbxMgsz0W9JP1U5oVl+KfsSLmVfUm2XUZCBLw9+CUBbILOKslTLtJBaZ3ofP63cz1pIz8/obOi+IkxZZoQiWuTy/TPmOiL1KBYftWVRW9wKCHkqvEUY5CF94Ldf2o5vj3xraHszs1cLUHBzGSo5eu2oak5CqetDjzPprtGNPllY0s5EPR+1wbwa/gh3M4veaEotWFbi+4fl+lBiCbWFzyRlJYn5LXxFK6ztyfVP4rP9n6nKrjy7El0WdUFGQYY4Ms4boQaA5zc+r66Lhh/GiFBLO8J8eXGl2wqJoHTLeDhMcbgBlLPSuIMFKwqrp/kVjVIsQm25PiyClQHLBgCA1+4OgIsSKBte1pWTwkCY3bIzy5BRkIG1iWvF4dveCrUWWoJBQU35g31JyiR96bXC1aRlPDXz/TG1lVnMfKSkvn/hb18pDtdHoLCE2iIoGLZiGGLDYhHKhAIwlsZTmNg1Nc+VP8abjkw9K0jLojaS1EhaB79Z1B46Ez1ZcnpCHyw4Wad4LgTqmVO8oSRZ1JbrwyJoyCjIkGV5K3IW4ddTv8rKSF8EQbyyC11+ZGVnoi++2Rc3vqhaZiRNqFSovR24AyjC8zwMePHooy4Gi9oMLJW7PvxhUc8/Md/nfZjF8lFb3DTOZpzFn2f/9Fju9I3Tbl0NLGWx7dI2c1YGb8RSSvHYX4/Jku0/8dcTaD6vuRgSJzRtpdEFSstx95Xdxo+tQCs6g1JqaP5AgeNpx92UdI8h14dRi9oPSY4CiZM6xftpdEBQMGIJtcVN4+7f7saUrVPclrmYdRHDVgzDzL0zdcssPrUYT61/CmsS5bHGSVlJusIhhOc5qRMHUg7I1v1z+R8AEPcnWInKyIxAYsSi9pf1+s3hb2TH1cJoeF6wC3UgLOriwHJ9WPiVnKIcvL3zbbexrkIssBY38m8AgDgXoRbCyEDpCLWU3BQMWDYAM/bOEI8hjegQwvPcvajK5n5uUa5uWX9DYc6i9oXzmec97lO8FjepToHCSRU+6lt0gpHinoXcogSxNWmrOCdg+cjyeKqF9uzqXx/6Gs+0fEZznZHmqfDQCp1+AJBZwOWNFiZ6/frQ1/L9EpeP2tN+BTH3taPMVE4K1lxnor/wZKV7Ogd/RsMEAqlFDdy6Sf8ti9rCb0zaMsn1RwDfB2mWOQGGcbk2tDCS68PosOlAYCTkKxDWq6ekTME44MUMyvA8y6KWY1ioCSE2QsgBQojnXiaLoEbLGr6YeRFrE9f69TjS3A0CdsI14nzK48y/C2KZm/hOKwVFi0BEWHiM+vDk+gjyqA+Z68NAsqtgJRgs6ucB+Cf7ukXASMxIxD2/3SP6kDXR8FrM2DcDr2x+RZyg1B3p+emaYWfSMLmDKQdFQRPEd2vSVjE3hp6FZyTXBwVFSm6KatZrgeblmns8B28xFJ4XgJhljxb1LR71IetMtHzUKgz5qAkhVQEMAvAegJcCUhMLv/D9se+RkJGAvy/8jUK2EJeyLqFGbA2MqD8ClFIkZibKXBECydnJAKCZZEhJ18VdEW5Tz6oudak8uvZRDK49GIDLohb84oC+hSeNo9Zjc9Jm9P61t+6+IuwRnk5BhllRKA43g89RHzdpwEu4LdxUjg8B6YAX4Nb1UQcKo52JnwKYBCBarwAhZByAcQBQvXp1nytm4R3LziwDwFmZ7+96X1w+ov4ILDuzDG/tfEtWfsnpJTifdV6cqupa3jVDxxFeRukLdTbjrKyMNL+wEj3h8GYKK2XZ0uGlDW8LmB9q7EnYA+E7V16vO2vcib/O/+XKR20wZLBmTE0kZib6vX4CWvfaCFKXkpHImmCl2FwfhJDBAFIopfvclaOUzqaUtqWUto2Pj/dbBS28Q+uBOZZ2TLUsJS8FK8+uFP8WLGtvkFrj0pwYNsamKqvr+oD7zkYtlMLYsExDw9sC+gmP9CgOETlz44zs7zBbGFcXgx2rDurAwFoDMaH1hMBUkEfrXhuBhdyldMvGURdjZ2JnAEMIIYkAFgHoRQi5+WMzb3NO3ziNzMJMw+V/T/jdq+McTD2oWnbfH/eh2Y/NNOOV9eKwKaUyi1r5AdB1fXhhUStF3c6Yizo1bVEHQbM81CbPieIJJ+uEjdjED2GgkHYcm8HJOmUdo8Fwjb2h2ISaUjqFUlqVUloTwCgAf1NKHwhIbSx0GbZiGB5d86jh8odTD6uWGYl9zijIUC0T3CK/nPpFZU3qNaOlnUM2YkO/pfIE/LrheX5wfZgVC7PWWzBYe0qL2siAF4YwbmfQaRHfwud6eSvUyk7a9efX+1yX4sBKc3obM2v/LADAqRu+5Xw2kudXOans0WtHxd+5jlzDLgkKl0WtddwHVuUiPXypuo4GOhOVKIXTrJ/UrPAGg7UnWNSCMHhK/lTEFsHGuLeoH2j0AA6lHvKpXr4ItXDvA+lDDzTFHkcNAJTSTZTSwQGpiYUuc47MuWnHyiiUW9SjV44Wf3916CtTAiq6NzSe3b77nLg8VT2nnjdTcfnq+gj2wSBahDAhsr+FnOB6OFnOonb3EfNHwn5hQJNZpHHUFmqskYlBQkZBhqkZMQTyHHn4/MDnKktYCyOuj6xC9/P5mRk4Ifh+zQihN7OQ++r6MNtcDQbXR4iNE2qj4kZBYSM2t2LsbcSGFJ9cH7dopIeUYBjwcktCnU6caNgI1xcsAACw+fk40bAR0pcuk5VzpKXd9Lo5WSd6LO6BPxL+QJdFXXD/qvtN7+P7o99j9uHZWHxqcQBqqMZdPK7NSTF0B4sQhzwSwYywCUKy98pew9uohJqxmUqVadai9vgy3gS9ESxqM8JgI+6viz0tE4N2s4APYuN1ZyJ1lgyhDgbXRzDD5ueDzVPPrkzzOSs15WMuW5vz+nUAQOrnn4tl8o4cwZnOXZCxYoXf67UzeSea/dgMV3OuqtblOfKQlp+G93a9B4CL7AC4jhR3WemkCPHMRhLU+6Np686i7nWIYvRmFnfv5B7WCmfS8MsHDoSeuWh4/4IP9ftj3xuvk0JobcTmF+tQD08v481owgtD8T0dq9W/LD772oGwQiq6PkZscaLPAfXHs/RH8zB2A4uqxkLpNfEpjjrIh43XSaYYsdVDcizLolZTkJCAwsREAMCZbt1xqlVrVZlLkybL/qYsfyGdrgued4Sb6y93/36v67IzeSe2JG0BAGQWZmLp6aWglGLBCc6S14phls66LOXFTS/iwdUPah7HwTo0IzOMWJD+SMjupE7UuErx9ecOROfKH8pQ3tiOyueWN93GheSF7z9teP/efEy0XB8BFepiGPCiRPDDv/vPu7phm+1OsZjyK4tKN4Cq1yC6PkZspxi3Rl1HUsBl2Iv0flKaEm1Rf/CjEyO2UbctDsui1uDsoMFI6M91orCZ2g9r9oYNsr9pAT+iTjLIgfKWOBMRicLERFH8zTBu3Tg8s4FLCfruP+/irZ1v4ci1I6Klq9XBpcyFYYThK4ajy6Iu4kdBPAcDD4g/LGoH68Dd/7Aokw20PCs/poN/muxOzvpotJefy9CDcLX6l8XEJU4wLIXNC43Tcn0EkqCwqPnn6d/0f/HNoW9k6zqcZBGTQ9E80VWPwhCuo0/vAxZWSBF64hwAoHQ2xdj1TtGFZQavB7wYyKESLLh7Ri2h9gLqkPhThdmaeVcIJELN5gpCHYGE/gNE8dfjl1O/6IYxZRZmih1y6QXpYiefcrDItbxrbodY65GQkQDAfcJ+PfxhUTtYB5x8dceuZ0FY14Pp5N9ROwvUTHEtL7d4Iypc13+Ap/zKot0ZillfOzH51YOm66SK+iCBjTqduU9/VpubhVQQpecflUfx8nIWk5Y44VBopjsf9ZhNrvfhoQ0sBu2h6HbEC6H2w4CXYCeEl5Xxq5wYsEeh2gE6hRIn1GyuSxC1fNZFl7hhzlKLOnc3N68eE2ksmc87/7yDB1ZxY35+Ov4Tnlz/pLjOwTrEpEC5jlxRhLcnbxcnXk3MSETPX3qi5y89ueN60UxXhmfNPz7f44PuTbIcAcJSVLnGxUaz/LsekwdMXuK6joKA9z5E0eGkqy5MoQNTfnEiLpui9wG5uANALhcSjPIZXIekWZQWdRFbVKzW2c1IKSr9GEnPP4Q/dIV0yITa7oTb8LwYiR0RJww25e9zv30sal02dj19ifoIhmgaI5Thk0T2PkTxyHp5nS2LWoFUlNKX/yb+TprwvPhbKtrgm/2XhPW8UBdevIjcPXu4IqGhrv1LhLzw/HlkbdyoqoPj+nVM3z0N2y9tdx2TsqJQ5xXlISokCgDw27+/4eO9HwMArudfl+1HauVsvOA6zvnM87ohe0tOL5E92Gn5adh2aZtmWYAbuLLk9BLd9Z4YtYXFJ3OcKEq8AFby1LRO0H4wW56TL48qACb8zmL8GhYNFAn6ctWJ+EyhTCRlZqh9ILgZcdlSV5r0OQjlJ3KhxOWKAjihdmdRS++pIPYOBojLpnjsLxYTlxo7J2/jqFeeW4lzmee82tYsLeNb+rT9p7OdaJCk/dxbQq2ASkQ48w9XtEbONm7W6/Tlv6HoojzaIO27ua4/+M5E5w1X3mY2zyWKadcuwJmdA2d6OhL69UfSU1yKzhuLFqHNGRaxORRn7uiM+7bIv6gsZRFpjwQgt6gB14zUgngLSMtM2OhKmjN4+WC8vPllzfNPyUvBuvPrZMuUHwApvo44a8ULsjMnS7SclYS4yaQZmws0vcDto2ym62FueJEiX944QO+DLHodZFFbw4ojlHq0um8HoVa2qATCeKFmCeCwuUTZxqot6u6HJe4/Df122IAqaVT8bQRfLOpdl3d5ta1Z3PXVhBRRPLTeiYh898/Y/RsVqXULKCYucSL0WmCevaASajYvD+m//WbIV5V3zBVF4cyUD9IoungRl6dMwcVx42XLU6ZPF39TlgVlWeQddQ2Rdma4oimGL7kbF8aOxemOnWT7uPLW25i8hEUZ/pBt/pXXlaUsIkI4i/qvxL9kCdv1wo/cPThbk7bqrpMm6gcCOxu3EAnAUlbzpQZclpgnykpu13/nO1FVEcI+fjWLJ1ez+PAH1w7LZVBE51I8tZLFwo8UB1KId5sKbURfYb1LFP/70uHxxSsO3prvQJejBpr7lGLaXIcoDp1OsAi/nC6uFizqEVucmPEdV4YSgEhOueo1fsCL5N16ZiWLN352ou4lCqoj1MLHV2s9wHVCDtzNivv1VqiDhR5HKAbvobh3B3dN49MpWiawqginhkny7dqdpmh3hqLOwp0BqVdQCfXVDz7E5VeniK4ILSilyN62HQUnuERBTGSkGBstcP4BLrRN6vqgGv7q6z/Ow9X/viP+zea4MsE9uroI+cfkIXVUEtLH8O9X5TS5ZeKkTvFh3Z+yH1svSYRWOYUUj3SWbiXumlJKyy1QlmSDixTl+W+Ys6BA1kwusAPNz3Ln486iliK1qD0RncuJ8P/+58TsWU704Du4GImfu/chioUfOcX9tirfSlw3YiuLcplA/Uvax+xUqZPm8ptB44vAhD88C7XdCdS6Ctz9D/exevE3FuWfcuUaJ0UO1LtEMWK7JPE+AUIkH69xa1h0uW8mQj6QR4g0PU/x/jyn5seXZeT39O6dLBZ85JCFp43ZxOLhDSzani4ZQi2817WuAjWuUnwyx4n//MKi0UX3z2wW370VkuV9P5DbegVkr15SdPkyACBnK+drpSyLlBkzUMi7MDL++AOJw4bj4uOP4+oHHwIAmOhoFCXLU2g6UvSFT4Dm5yNl2jT5dtdcvs52Z9Q3JnOlK2+znb+hoU7OMhFgKSvGTquOKeQO9lNgv3J6JXfDv73pUQ8rpCCU4p35rg+CMz9P9lKHOYDXFvNCbbAjMEadLVWXyb86xZfEJtl9mSygEe9K6Xyc+7dymqQAX0fho6IXUmU2L4i/IAbvx4MbnJgk6bCN4Fs2pKAIpXgr747Pt+G9efKPdrlMYOhO9TFsa7VbaL0Oq8syrLyVdP8mFiFOYOgOippXuPKx/L0UytkYGzofY/HzNIdX4X2BplvVbmhXsZ1+Af65aZ5IMX2uUxwboOeTFhDeidtCqOHkrkranDkoSk5G3sGDSJvzLS69/AoAIHniJOQfPy7bRGrl+ooy5lpJ8n+mir8ZxYsfWuQaNp3nUFvvwjrAf6OXVNEOfFSJkbJaSCMJ7A6Kn2Y4sfhD+fXNz83U9FETSlHF4Cj8zieMn3/VNOCNheq6v7jcibcXOPHLBw6xzSFt6gsLhbradA4Z6JhrPaTPz2c9P9Pt4LprN5V1zIZLbvFDf7NokERR+cjlgNTR7tRuJY3ewuKj7/mJi/nzEK4zQxjcv4mFnQViNVKVhxcUr3h/2ftLcRq5+HSKSmny+tTXEeS7druvd2W+UR+aqf3u+0pQCTV1up7ef3v1xvkHH+L+cCPGzms+jHc1iyQue+QWeZ3mf+xEhesUj//1uO7miZmJSM9Px76rbifLMcy0PdNk8dR7rrhxGYEiMp+iXIb+Aye1Lj/8Xvuaz9n7pcz1IVDvEnCHCQE2SphOrql6Em2y8W4Qojh82Uwqdq4pP6wCep1y/qL2ZYoP53JDuKXYJZe3V/VeCLOFYvQmJ2pe4dwbyvIC0lGDPY5QvPOTe0MlN8zrqqPlWSq2Fivd0C4jXFfhmbATu2hdKu9Hr4Ms5s10osINbsUrS51omcAiIl8tmDeDL79y4rPZrutX9xJF1+Pm69HuFCuG6YVkB8aiDq581EpB5v8mYWHIP+VbLmYpke3aufWDG6GxRvqKytcpDpS5Ilv2zB9O7K1HsKshg5yiHHRd3NWn4yo5kHJA/F3w778oFwpci5U7HKNzKUpvPITp85yIzwTum6J920OYEOQ78xFWSFFd5/tXPh0I1xDPtxYEJtJBzxKWIliZodLxTaD46ktXnfRcH1pxxQxhvIrpLRNeRhV5M3a9E7WvArWvACckU4lKPxz5x4/j5ed3AACG7uTqnFQWmPiY2tqPMGmR/luJyEYomqH7Uc/bCdd19CYWFW8AFVJdbkdGsnlkPkXvg1zhcpkU12KA9qcp2p+muFAOqH5N/7n0N3qd98qRtkaZuMx1M+0FgZlEOKiEmurMXUfCQnHu7nt82neh3fUi28qU8WlfenQ8RXGgLvc7JofrSe9+lKL7UYr7pjAYv8qJ49UJtjYNTENm5rfcS6584F9e5kS9i6vdbtvsHIsWVwqwo6Z2BIDAgxu175HdP253rxA+HFEF0LVE9SxqrUT63g68qBZdTSXUglhVvUZR8QbFxhbc8aTXK3urOv69ahpQU53HCxGes9nKSI/yXMYXhDj6qmnAg3+zwN+HcSWOWye95j984vpo5ocQ8V1kCXSNgptNWJHvVv2BZ3uhkR/qoiTIXB/aXyMm1If2G8+LT9jg5AXIXr68z/vToudhiths7mZ/O8uJ7z6TW5m9D1E8Z6CXHwCanGdR1o2bwgzlNIJBnljtRL99XF0an2fx+iIWQzbl4sMfnKibHLhm6PVS/t+n4N54eiWLn2ZoD0XWCx10Fxo5dAeL4VtNpGjVGEwiNP+fWMviqVWufbWVdFaz2dphlR/8qK50FYMuglVtuboYjX/2hrHrtS+qIMJ61zwqn4plpFa3L+lVfaVGTA2305QZ5VrTyr7vRIOgEmo4tV+K7M2bfd61w+ZqRofWqqlZhlSp6PNxGAr88oH6gxObY+4hfPNnbiSgP1D6CkdudqLvQW7EWZVrFG/9LL/uT6wNnHlsD4CHRHl+bGamKqyx8QWKiny+EcJSDN7FIqxQexLVe+reAwAYvZnFfds8XwtCuUESZVPVaeeUlrwQ7SEV7bQ5xmfwGbHN2HNUwLvec8KB3zoSFAag7Txoj3ZdhKieijeoZufha4tZzY5GxsQrEplPDUfOeGLWVw48/e0VTZeeWRz2wHwZPQo1ISScELKbEHKIEHKMEPJ2QGoCgHrIkVD2iScMuS1ih92L0Bo1ZMtkeQ/KlZOte/0BGyY/YgN63gHAt+aiXorIObPMK1R4kbwp3+wci3d/dMhiiLXou1+uDkpDYdgO1/Z69d3YzA/mhQYxGp3i45/17eEuozBIC8+dU3VOdT9KxQE07U9TPPQ3i1FbJLOKUIoHNzgx+2Ab9D1r7gGocAMYvIdi2HdnVOuUL1iofmCOT7z5ZLTs70I7d/8YFvi5pw3nKgTmuFoIbp1XlrH473zt5z4uW6PVo9GgbpHA4tXFTsRIDJ3oXIofPnHi3u2ehVorskPZ8qmYDtRKyEG//b4LvzMkMO+NEYu6AEAvSmkLAC0B9CeEdAxEZdhs9WeWiXY9gFfC8pCx7FPx71L9+qnKAwALiipz5IH9DhvwzigGv3RhQGxyYThVjeBcRQL2iVGY+qANf7VSX5aldxi7AdEGonNaJLBiz7cWUkvhpxmuB/2ZP1nUT9YOe5KitIiVFqcUh84TUBigYIhd9dXX8UY0waq2BDOGMnh7DIPXHrRhf22C0Pr1ZOWM3oPEUaPxyTdqRRQ+SoLlNGgPRde5XGesjeVCsOJW70L8ez/Ktiud5f4FFkLTQgrVoqS0qIfu9E9rhVavjDcecD3HF8vLn+m/WxCcqgKsbM9VThBub/ijvffb1kyBKgkX4HJXSdFqbY3YxqL1WYq1zb4Wl1VL5fbX4pzrWhJK0Xc/ixCFn1kZ2eELLz+uYVCEcfmBFvRgsK8uAWWKSagph2CzhPD/B8SZVJSUpFqW3rqO+Hvh8Z/x6NpHxb+vIROHa3IXJrk08HsH7vfyhN/wYdL3sv04bMCRWgyWdGUAnQxihcSJM1UJEiqp1/3Z3piXSM+CkDL1Fxaff+3Eo2udaJGgfnHtOh3H0qbhV18ohh8rmoH1S9fH/I8ceGmZ061Q6zU3CwwIdY6HrgOpP/q+KXaMfcmGT+/Rvo4/9LVhV0MGx2owOF2V4MORNsSNHCkrs7i7DX839/5FKOLfM+ke6u3iMkS5yzE841snCKV45C+nyjqLy6aodZUfkOPgrLc3FjjFJr/y+t67g6LNGd/FmrzwGLIlyayyi7LxTX/Xtb1RCnj9IbsYAXRZoyH6+V0Mvhjs2sZZq6qmKP/U2yVQuY1qqNZ7QtniAeSREgJ2J1AthXLTgfGIqQsko4bL8n0u12Jcde14kuKJtSxGuHFVxWZT5O7ZgztGfKzpnvTExXj1tQkd2BePPW/D750YTBthw0/HfzK9XyMYUh9CiI0QchBACoB1lFJV9hRCyDhCyF5CyN7U1FTTFaEOhyxHtMDSkMOuyvIPfWQnzqDPi7SLD+DqtgzWtuFOZ0MLBkvPLEVK18bitoLrI4QJQWhN7mH7sTeDB192PYRFLPeZP1CXwTFJKBUA5ET4/0vZfz/F1F9YVLzOpf8UCNV4hj6e4xDTT8bkcvkyHl0nCQtSfB/urXcvQp1cJIo7tI4FcFEy12LUy5970nW9lB+Ad0bJHydleFleGIHTZvw62mPjxN/bBnP37Nt+3ner5PHJEUtptHpsbr6vpfKBKteAAfsoXlouL/jpN068wouO3cHi/k0sml6gaHFOGOqu3p80NazXhIaqBh5tkLYEFZ2ki7oxcHZpK1u2tSmDS2Vd5Rxd2mi2JgHgGt+wLapSTnO9O0ZuMXa+difw3jwnxm5gEZ/OuaLE6BBJOgih1ZolyUocxYcvdzlO0fMQfzyJ8VIpjWLO507X2Aw/QYscyIoMjBUtxdBTTyl1UkpbAqgKoD0hpKlGmdmU0raU0rbx8fGmK0LsdiQtfEe1PKGS6yIIwhDelDv8mrTtYnA9Q7n44SqHdyGhMrfwuc6u2GvKP7jhtnCE1qqF/73TBivbERSEuvYvCDUAJEseYMFy/GAEI4Ye+ZO3Fjgxfo0r8YtWb7k0hCmejwZJj+LiaivcUI8KlAqElkUjYNcZ9l1oJ5zfnmdPPYIPhzNIk7hC377fhmUSd0SW4mM2f7Rvc1DaYl1fil19qwLwLYohPxRoc4ZFXY2sfJ7CC4WQRaXlHSnpgLI7qPiMEsrlIzGaqMosJCZaN4uhFtmRBE2//QkRi2bj/ldsYgjnBUkAFCFAVqT29s+Pt6Hcjr9Aw8z7xLSijrQIcbp8+M//7sRdu105ZqQW9UMbuJuQH8q5POpdomjGx4qXy+Q7ailFN0kcuL/cHyqKAtTpoMBUXzClNJ0QsglAfwBHPRQ3TZ5kFpSZ9zCYdf9inN4/GnvrErT9l4oWta0lJ9RHahJxOLKwTpq/mWqEXoXZwzB4+WBcyL2gsjq0hmAv7Mbgr9ZcuQN1GbQ7Q1HxoH89P4KQ1rxKcaQWUXWqKH18woOfGQlMXeREfXmqEwBAaLaxie/0EikVhABZkQS/dibIjCRY25ZXBYmVcq4iwbmKNty7g9tJnsIVEmGPgA/T78EWGyv+FhNQKe5ZfgjX6Xq6MjSvgxSG6luznqYAE9ZLWxHKjGp2B0U7vj/xpd9YnK5sPFGVkrxQdcz0/nal0XoPN0SQVKsszqhjBludmig6JDFO7AQ/d2cwZjMLarPpjmQsCiEIjYpB+tDuiFv5j6lj6hkDSmZ94xJT5b1kc3OBcO5dEL5PQ3dSNEhyag4+e3eeE2crBt7SDe3aCcjZ4rmgjxiJ+ognhMTxvyMA9AFwMhCVcUa4Evcfq0GQX68KANdXXxyu2qkVHnzZhn+rEJlFDUA30b5AmC0MF7IuaK57f5crI5nghc+MlLs9MnUsDiMI/nQ9WvMpU5XuiJeXy1VEKhB64hSabizzkWDxKeObBcv11242l0gDolCma1yHlFj535VKaTj7AXzXl8H/BjH49G4GP3fXfwRtMZxFfbAWQZVSVTTLPPSKHeOftcn8qHpIff8Zivp7ChsUOr+kd/C1Re43qp+s71ryxCuP2UQf9DujGKRHARsGVsIn9zA41asOmPBw3Y5gd2jFeq9uS7CmNYFjxADx/hZGhiKvSU2ZC9BGbHBUKosfe5s7cJQfRlUXJSeDUJeFLaAl0gB37c20viq9/75qGSVE1g8AuPo5AKDBwQMIG9DX+EF8wMgVrwRgIyHkMIA94HzUfwaiMo4wGx6fYMOjz9uQFUnEGVHWtWJwoRzXkw0AOUU5ostCFGpey/QSIglcyr6kuy45x6V6RPWDY31LRiVIhXZgf233Ilxk8/zgCD5opRXW/rTcIhHSWeo9pIDxnAPCR+Ct+21IbFMF53mvlbvolSljbZgo6QF/bySDrwYysh7vat9+q7v92rYMNjVnsKMxg9/uYFA6rLRmudCaNTHrLgYzhzL4T4f/iMsnjJdfyBvRXISDOzJa10Gc5NslizqgVOWjVoY4hjrk+URicihqaYwcVFJKchsmPupZOfbUI/i3EnAtFljQk3s9T1YjGDfBjtzoEOxsxGDvmJYgIJo5VzyhlS2wIJRgbj8bSBTn9J30iA1/vTsQydOfwdv322XbEkJ0n+P5PbUrVM0PIw/TFy/GpCVcJ7xR+u8z3vKNaNVS/P3MUzZE33knrn/zGp55Sn6yz0r+ZmieXyaMNoKRqI/DlNJWlNLmlNKmlNL/BqoyTtaJzCiCbN45L0wMmxZD8MoTdtyI5pavOrdK3EZ4WAWLeu/VvX6pi/BCKm/1tViCZ5+240gN1w16YKIdyztrDEWW/A5xusK4lEIv0PkEN3DC2+aylJBME7lEwX1Idj3TBW/db8OeegTbG+k/gAmVCTKiXOsP1WbEodHCuZXq0hkA8MQEm6wDUot7692LzpU7a67b1pRBfhhBZIjLBBYiUmQWpYcXhtrk9+dLSbSDjVX7qJUhjuV4S054LrocM+/+0uqclfL5XQymD7fhPw/bQQnBhpYM7ptiRxEfWie1hgkhXlnU8RHy/qMdo3e49snvP7EiQdumd6qsbxtjA6VUZlW+LgkRXNGRwc5Jd2oeNz/O2Hyk7lBO0uEJM2kNhNYbAKTGEVSd9RkctSqjSPJdKxteFjeiCVa3IShVOR9I9V/+IU8E1chEZX7lRmW1R81/fcgVUyl08ggv0Ie7P5SVXdyVwSEdl0OpEM/jmfXyXrwzxoaXH7Ph+XHcg5oWrS5TpNMDsLmpvqgM3kMR6sUEr0oqT1toqrzDDoTaQpETQTB9uA1Xy3hnKUx+xIZZU5uIf2dEEVwt7X5fNsaGEQ1GGD6GMMpO2ZnWYL9+VkKqiJ0/UMdVJ7sTeD+jj9tjClnkKqYD/fdyyfLNkB3OzQ35TwOC3ztqXw9pDphKUWq3kdR6IyDe+agZGypEuka/RIe6HtyKUdzI3PHNx6Nn9Z6qbe3EDid1ih/KPfVcoaxCyzalqba761qNOPOVDQD2SpVQ7umnxb8z+e8HEx2N+nv3YuxLrotKKZW1Hl7v9DoA4Ps7bajW7Tq4uxAkFvXNRDljyYYL7vNDA2rXh5KlXRi8N5q72tKHv1/NfqgeU117I7gfJCJwsTzB5bIEdoaLV330efmbk6UwIgRLOTuCYGVbN/O2+WBRr2/p+cFJKgvslgw8OVmF89mGMqFutjJGTgRBemlzkQEExNTMIPl8Nde1kp8rExmJ0Dp1ZMvOVgTmP1YTRJGZUfoRDXEAEb+sNXx8aVikFsrIoO/uZPDMc6GghGDmvTYs6MFg+r0Mnn3ShpM6LpvGZRurlglCTUEBov5Q1S9dH0vvIDjgwQ23fsR6zeWVS1XGxvs24umWnJApRYgQAgfrwOkq3PKrcZw7b0sTgndGc5VR5lm5UYorm1JWfX/1PlhKdjY0J4Zag6oE4p99FuFNXYbEy4/b8MpjNjChobCVikJemGtb7jpzfyeV1Xg/CBM8ro+bidKiPpx6WKeki8QK3IWShhkZ2X+4LVwzc5qAcPndZZJzleUKZSviKVPi5OWEDqv8UPcj/+I8jDx0x7Hq8jpcjVOXyQ0DEsu7yr0zxgYQ4nZKMDOYnYmZIQxCbcY/Ek4bwYMv2/CTRqdW9e/nInb4MCCEu8Af32vD8frhiDwrTz8rjQjydwid0necGQHk2yXXhBDsacAgpTQn3JU63MBXs7rL66eRx0Lm+gBRCXW5iHJY3N2GD0Z6H8NYLqKcmPpVS4QcrAOpcQQvPW7Dwh4MQAi+GGLDsRq8UIOi/p7dYnmWD+djKqrHsBsxhgBgeSdzMsUywOMTtK8BCQ9DdK9eKD/1P/hqIIOMUgQXyhPOjZEv76kUnuOJj9rw4aPR6FxF4Z67SSINBLlQG2F3AwYvPmHD7gaeT0VqsYfYQgxNbW/kWdITpssK94EQppQfCuyuzx37gxHqOjy90lyzWiA/RD2iUCsZT67Eavi1C0GRncBO7OhTw33z3yhm04QSQhBmM5chsSCUaIZfhpQvj8rvviv+nR3OxceTQvWz9X0f7tq/stR/Sl1u1gzVQxNepP+MpJciiKuVB1bRmtQqrxRqpVDcjNnPhWMkxRPRd67EFh2N62P64KuBDEL5WYP6Nr9XXC/k0jEq1DcUbsV9ddwLZMuzFJlR2mWYcC6Mo+yDD+Jc19quFV+2B34YJCsrfCzPVyAYXaOrRu5yy/VhikvlPF+sDhU7yFwfDBi3ze0NfOfY0RoGboTkgXv/PtclVSZ3KuQTthTZuA65+6bYcaAu12FktnmnBbHZZB09gLafPC8MIHylKf+g/XrXr6gaXdXnOngDgVqofXXDVH7/PTirVEB+KBcfz2gItdDiqefHmayiunZRLTtcy/O9NfLsy3zUGh8pb/Nom8GTMSWI2/X778TGFq5IoPAyrhGNKzpw7whDgSXjGmDNQw11O5yZe/rjP3fK+52kHcFaKN8BKSTMFW+nev+vHHH9dhSASq5nTNq/QFqCYmfy+zC9+3T8etevbuvmLUEl1N5Y1EYZXGew7GXYn7Lf7dfwdFVOSNNizQnowToMnphgw9NPq5+WDF64teJK89zokqecGgIMw8ChEGZtixrix0Vw7dgZu+ZsJ94gtQY3j9ysWeapFk+hTiznT9Zyfawbsc6nOsTedRdy538EEAIndYIpdMXjCTHjadG+fRx/6cKg1u+/iX+n//AuwsNLYcYwGzZKcpKkxXg+jp5FPa2rawJmlUWtwOkh+6RZNI/h4YMiTuDMixzLR9swpVxmsZD24VJZgnNNyuBU+wqanfEA0ODDTzCw7mDZMk95aNy5spgw13OmNV/mN32/waI7vwfeLQ964g9x+bATm4DPW8sLE0Z2jfrX7I+GZRq6r5yXBJdQU/NC3bSsajS7JgRE9pA5WIcpYepYST9hoLKZmhFFcC2WYHMzBgUSoVzSmcH5eGB/XfULsI9fdryaev9GB9lQQuBQ5NIo0Gie5oZxzTnA5du3EZvfmnFS/2qZcO20tHfXvRttKrQBwN0bYcJRd9uZnTFcKM9SVtbMfvI5bnmaRrhc5enTUeXzWTj93lgA2j7+P9sRXInjBoqE1a8vLm9VphkYwuBiPMFXgzgROG0wj7xTaaQI6RLsrusitd6kywX8blFrPA6GjCmWBXuBG70ohEUSiUDuq8dg6oM2rG9JwIABU5gHh51g9lf98d5Iz++ktJW4uz7Bn+24igqjKoWp2bSMlLCGLiGNsKtDBu+ofAeaZHOjP+ml/QCAvjm5KJ4pkF0El1B7eAiqR6ujNCa2m2h4/0qLQ0+oH2j0AGJC5W9xuQj9ZDRKoY4LiwMAXClD8OBEO555ioslvlyWYOLjdlkSl17VemHjfRtxpHEkHnnBhrcecD1d//LzGPzZngHCwvDtXeqXUwYhsmZfSixEC3vacAZbGwsPNMHuBgxeGGfDnvquTqBAWNR6sJQVhYcQYqgzsWZMTVP1ECwmPStQGZUDANF39kVM375o1biX7n731Gcw4Sk7ciIICCGir9uuyJU+9kUb3rrf2Cvu1BFZPStaeB4zI4AVfNZIvwq1oxC49q+6nh6sdkopsO97OA/8CADIqsS9R4JveGdDghpFRXimUlnOx04A5vx2AEDfGn1xqrrrepWfPJmvSwFK15ckrJF8sD4eZsPfvJtSGG0qfJSfedqGit24JDiZEcCYiTbYJGmTP+7+sfZJFHK9+TQ0kt+f63muEimZXIRl5cbN0aXa+/MDQSXUnh6CgbUH+rR/6YPMUlZXmBjC4I7Kd8iWmeloU1qmqXHascSrhq7CzB4zUS6iHArZQnWGPv7PsxUJSm37Azdi3N8uysiFWjksPJ3/u1ltrnUgTTxlZ+ymLeqhdYdqLjciGAWOAvH6M4Rx25lo5zukZvedbap+gkVNKcXJ10fiYC2CKWMlF4gQZNYoK9uGCePqwcRwL/T58uprokyDu7otwf0TbaoJKfLCCRx2gspRns1qI52JggFAqeuj+vgLdszv5f6D5BXr3gD529UpWye2DsCycCS5nxSaggKpJ8Hyz9Keh9uhyqefIKxOHURs/g2f3c1wA8Ekz4iNF0KGMLJIlrKPPMz9cBSgQiv9zE4hkmiqmAfvx7dP1gTAtWyjKhZgRyOCd0bb4FC0LitGVUS4LRw1Sin6ZniDUbgD0q1+Pb4H6/J4sadOeV/BkkcDNp1YcAm1hwdNq/PPTChYzdia4m93Qm0jNtW6suFlVeU6VOrA1YG/OeUjOD+C0djKMHuYaPVJxS0pnjv253fZsK4VwdmKnFjZqIdOlFLhsgD9EKc8AGHZHQz+akUw9MUvVdtWLqUWk8G1B6uWSWlXsR0AYGAt+QdUz0UxWDIxRIgtRPwwMNAX6o33bcSmkZsAAPGR5rIyCgLvpE5ktqyF90fZxMyK4jms0U6oY4uNw9SHbPj8Lga/dnZtM2qyTewUfq3Da9xCoh8BMavdf/BT26ke6+pUpPgVnmvps9SjWg+3+2AL3aRJNMtVec617tW6A0eXwpmgHYOtRHjuaGQ4Yvr3BwDYIiLBMlw3NuGfdwaMy61AAIdWKAhl3UbCCf7tv1swKPfqRJytJXEXMcCn99hEV5+SXffvwoq+38kX8snZavA569rlu1KLRVOKisKUgVoGSYD62YJKqKWuDy2fsFkfpRRCCKZ2cL0wlUpV0hVUG2NTfRRCbPIejJk9ZqJnNW70ltZLZQS9D8U7D4Xjlcc4V8mc/jZQhoAhDK7HucrHDnVZs6Mm21D+1ck4MHmQzH+3qbmrPKHcYJRv+9vEZqiA4KtT1t+ThS0Myuhfs79secv4lq4/HK6HPJT/oN1Z407UiKkhfpxCbCG6ro9yEeUQG6Yz5t4DIQx3z1jKasYlAwBTpJ3UhBCCM1W4NLi/dnM9C6wkn8nIhtzEBk3KNpH52IfXHy7+7vLLkyj/w10e66q0qMV6KIaNu8N5TT0VmC+ojpaTCoenofqcDEM4G1mdiVCGiCJHCBEtakqp9rgFDy20zCiCUZNtWNuaC5eTGj26taUUSD4AhjBglC15Pt1xYxKOdXXG4r4sxQdQyCfEOtX3RCMDpz8IWqFuVEY9fNzM6DUlBEQcIgtw/im9/TGEweiGo2XLwhi5xacV3ifcNKO+Xj0hzItguCB8CTbGhqvlQ/DMUzaMfNWGyh+8j/JLf8aE8TawDEHZhx9GUYXSMteHMJGCJ/Tq66nPoE5cHRx66JBquPHLbV92/bHuDdV2gltJeKFsxAY7Y8f45uMN1VeX6+eAdysAvGAJH3Yndeq3vM7vRFic+uVS3psKi+ejxnzt2TsWDV6EPQ+4XAJvdnpTsh9jOJSuDy+a0MOUgiJBiLDxFgICOPLRPdd90jOu3i7BtREbcOEfIPmAeE0pADt/fk7WIYqQ7vNmIJqFZbi4ckLlrVPdN2DnF8DsHsD5nYBTkU9WqAelqBgaq76HgvFBna5WoXC/2NtBqCVRH1riIRXGMQ3HANDuYGpdvrVqmZIy4WV0Bepcxjk0i28mW6a0+Aghqu2Fm2bU16t1/NENR6NV+Vaq5UJURmqca6BHRP0GuCIZVMOA8Sqxvt4IzSrRVcQZuXW3VZxD96rd5REJbqw8wdUl7OPZVs/iz6F/Ys2wNQZqrcHRJYAjHzjE5TmRRn24o0ava4iqFYVqs13zbEpzYABAVNOmiGwrnyFF6HRyh1Gh1itHCMFrHV7DzwN/FpcJH52KdlcnRBmnE2N0hLp3Ti7m3Kkz07liNJ5enQjhhLpdfgGORLVDrNO9eDohMVrm9gNm9wDzCxdJQwkQz9+Sa3mpomjr3icz7oS8NDgLsjTPQcb5ndy/OalqK9gpOZ5GCB+EVMqSD4j4FtwOFnWepBmaUah+gAT3Q7uK7TClwxQcGXsEZSPUvmOt+Egt9AQqKUs9d2OoLVQmwAxRW9Tuht5qHl9DqKe0n6Jp/TGEUZUXmvbSMkqhXtCTwcmq3CQLegjJZlTZ0ogN73RWz7rjDnXdqcYvDqlFLVAjpoZu7mktlNeAOxB3JEMWNQBbKEX1+2ugVLdu4rLIkEhsH71d/Fvwd8t4X+HXv5EInJbnDBGuaN8aXN7i97u8L0vZ6tq//jM7suFINItvpro/C2uMwHupXFSDIC19c3JloY0rLybj05RriA8rrf1h+U57gmgVyYcA4f0kjK4ACq6PxoWcldq2guvjxiQfAMBllazEa/KVnKviWyjto7KVKe3aqUKoyzid+Goggy8Haby/K54Hm+3KP6tZz6J84NRK7ndopNoKFv+mgJa7tYgXaolFLR7ndhBqaUJ/6cv7TZ9vsHTIUrFDT/bAKkcLKde7QSp8QiIaQD4ll4DSotYSTum6Se0miX/3rdEXX/T6Ql1PDUHXE3kt/7xyGUMY0UfNRHKhRZfKEUx7NFY25ZiSAbUGaC4343Of2JYLk1Q12bVyVvD7VVrU3tC0XFN81ecrvNflPdU6UagNDQRRn2tMaIzoe9b9+BflAbnXud9ftAd+vk9zrx91+wi779+Nu+rcpXKrAWqhln1YTq0BtkxXbVPOHonOvCtC8B3PTLkmG2RU3cGL3DtlXR+W62ddO0k94fpdILfIZVckYb3EknToCzV/v9vmF2BzjdHoXaO3ugyAWNaJntV64pOOb8LGn6rwPLz4hA3VVyyXbCC/f78nXUabFuXQqUq6at/kzFo4PT220jA6p0Pt+lir/pDKEK4DpS535+3i+nCyTlzIdAm1dKaWO6rcgfql64vNUbGJdPmQbLRQdEg06sTWMRwJIlzk6d2n46kWT4nLtXxloUyobL8ERFMohXUPNn5QXF4pqhLXa648vuRxl0aVaMWLa30YVJ1/hIBlCE6O6YCaixeJy7ePclmGzcrJXTruMJIGVmBUw1EYUHOAhrWofy9Ei9pgC0iPLlW6YEidIarlYnie2+fB/bOy+K7FePuOt1XL11/gJ6CY2w/4qBb326meeEy4Q3bGrjnAQqyr4t7K6rxwJPD3u6gXVxcA0KlyJ37nBOG8QCilU4hA0mSW2rUGAPigCpDimrxJusehWTkui/rYckOmUBkib+0I2whRH7N6zUKn0o1gg+Cv5gT5UjmCEGHIee510RVRd8gV1LvnCuJYFmOdEbg/U+3qIZDngdfkd5dRBkee3NUhhVId/7ggyrehRU0IkY2Tz3eqx1kL/ug7a/LJya+fk63fMmoLlgxZort/JYLwKa1AIV/vTwNcnUfKqI9we7jYOSnkEJHGBUtRRkUIsBJf2tIhS7HkLq7uT7Z4UhUOaCee45yF454d2Axh9eqJy6VC+H3/7/V3wO++alERJrWbhDGNxrg9npRQWyg+6v6ROl8I1Xd9CC+mL53E8nsnlQK5u8KbzjkAqB1bG/fWu1e1vILgo718yKv9Ptb0MdnfNp1XkRS6JoBoGFEB20Ztw5AKncRlQiSNMlpiwaAF+PxKqnqHnq7DDwOBdPnUQb1ycjnLXCdR/itpNxDFhxfKPjAKg4cRhpeDuNwHBZkqixrgn+WUk9xHcB/3zIZEsrCH8zJ8YadmXQiA52/o+91VFOWrLWqBK4dd1rMWkvreNkLNEAa141zZrLSm1KpUqhJ2jN6BUQ1GcQsUnQ92xg47Y3fFt2rQpKwrF60gbMpOjI+6fwQAaFm+JVbfuxpvdXpLFecbFxaHdhXbYW6/uRjXfBwA1+S4SqFWdkw+3ORhAED4TFdkS9mIsmhQpgEALl5YiB2W1vW5Vs/pnhfgEjx3nWdGstTZKfBg4we1/b9m0agLKcwB8tLFF9MXoR7VcJT2ioMLYT/jivntX6s/Iu0GxuLnZwBzB2i61Mzwnw7/0Z1iDABeaPMCFg9ejNlXuXmqlBY1HLx4bP0YEK5PWgJij/8JfFwX+HcDAAI7gCfSMzA/WZ7GtWJkBfTI04jQ0LAQh0g7IXPTgE/laRlE6U3aDS3GZmZhcho/7JpSl4AphDqU31EVhwMo4AewJG5XWdQAb1hdO839cWoVzDAkW+6Ln5biZi4wR54shBQ3El2/824Aa17V35Z1iu+aePeKy/VBCKlGCNlICDlBCDlGCHk+IDVR0LlyZ7zU5iWV5REdGi2xjrWtg9pxtfFJj09kywRr9OdBP+PggwcBuCz00uHyF0raGVM1uiqG1R8GQG71CLG97Sq2Q5cqXWBn7GLuCumEBA1KN1DV78U2L2JP4kWEGTTyJrebDBtjw9B6Q7Fo8CKsGqr94AodN6q8uUGCIMdk9WRgmiuOmjm0ENjxufZGTgcgaXlIOdL6TQyqPUhzHX57EvZfXO6nKqWqYNf9u1CvdD0xPYCdscstzMJc4MPqwIUdwKYPlXs0xeiGo7FllPZgGoHGZRujUx4nEjaJUK8b9peYuY1kXALi+fwUVw65mu1nN3HrAUy4kYHGhcoOMR2/vIZ75t1r13H43AXVcvdvGceai/I5SCmoJLzNCayZIq6LZVl8ejUVX1xN5YT6+4HA2iniW6WKJReuiQErVQgb1GpzDsxxMy1dUb7rowEAn7XweCwRyoLlHS3CVICBsqiNjCBxAHiZUrqfEBINYB8hZB2l9HggKhRhj0CeIw+jG4723JnFv2R/hDfF9R7ynB96bgKGMOLdHNd8HJqVa6YaLq5HKXs4MhzcTZcOwqgYVRH7H9iPtPw0bE/ejgmtJgAAdt+/W9b8rhlTE4mZiWAII/oWjfBA4wfE39IWgZIm5Zrg0EOHRIu+VEgpZBdx1tIf9/yhmcgHALB6MhBTGdGtOFdHk8JCYPmTwNCvVUU/6fEJXtz0ouG6S3nhejrszUdj4DluZKRoUZ9eCxz8DbhDo8Xw+9PA4cXc7xePiddQE8XzomWFLBuyDABw5sYZbkh20gHXttd9s6LdQqlOonnuOQjh79nHV1NR8ehviOKt/xDKAtEVgJRj8lDH3OtAnP4MRcoOOBGNZr7mm8I6Ub2IE9wO+Rq+d/7xFVwvQohdCBPiEmrWAfzzP9l2vaVx2HyOD8H14XAW4dH4Dpibugt4KxaowFv2GW5mceaZkZKKazabZ9/5FfmISzjyAG9HdFInouxRaJWfj8fTebEvLtcHpfQypXQ//zsLwAkAxuOnTLJl5Bbsvn+3sYgD/uGoaYtA6wry2GmtsD0ldsaOrlW7Gq7bpBrcCLPysKtcCIQQlIsoh80jN4sj9iLsETLf9qLBi7B+uLEhuAAXWrU8yVyyZKnbZfndyzG331wA3PB56YAfGbu+Bta9gfjIeCy8dAVvXbsuxiJL2Xo+CX1q9EF0CB9jfP0ssJf3eR9dBnxUx9VkF6AUfXJy0SsnF3Esi9daPA0hfqZGTA0AQFl3MbmCSAPA3P6YP3A+FoY3xrbzF/X9rZLld9e5G1/3UX9w6pWupx6SLh2leOQX/Tp5YuMHnEUr7UPRiwUWhC6fe9GdhABrXsWbrSbg+evpaF/Iul5+abM8N01/xB6l+uuU90cPtgh1i4qw4cIl3J+pbtG8lnYd5R0OxPHDqfvn5GIsUw4vtnkREIbDZ11RbaeFXXR9FOHFw+twRLDuFcPYtRBGNYZRoIrD9Rw1l35cOj3r+v21orWZe123xeaRnGuwLRqDeZdT0C1PiIgpPotahBBSE0ArALs01o0DMA4Aqld386X3gK7Vp4lW2hSOluVb4us+X6NcRDm8uvVVdKmiTuiuZPW9q5FTpD+IYUh8GwxZPx2oZzD2VEFUSBSiQqI8F+QRQ6vc8GjTR3Vz4FaMqqgrzuuHr8e0PdO4fB7nXMPRmxaqX+S5Xabj+O+PI45/AVfduwo5jhxgTn8g4wLQYhSw6hVOPPIzgFJSAaT4ROojlDTJJ7SagA6VOqDlHB33hZKMJMSGxSLWHg2w3Ag4T7zb5V2PZQBwonpihXr5/zoBKceBqVeAkAjMHzgfZULjgE+ay8tJPxqbPwQqt+KiNQScRYBNy+fPbTfp+GaE1e+I3rmcSMUeW4HHMzKByFCXyF+U+IiLcvStN91oBYgW9ZzLV3E8zE3GQv6Y5XU+on1y89BHYh2HAHglYT/gdLrqe8RYEv2xGZm4ZLdjTK3BQOlfgMsHDW0HAOsvXkKGxkxNc66k4JowoTFjw4/JVxGvdS43EoEwD9PD67HzCyBd4TLaOgOo6VlrzGJYqAkhpQAsBfACpVSVyopSOhvAbABo27ZtYFJIqQ8qVE5zteCrXX73cs31SjzOcOLheF6h2yQ2xottvHNDVIiqgJk9ZsoXXlV4s1gnwNjQLr452kmsqrjwOMQhjhMLAMhLd4U4KTvFVHHVLksvxBaCLpU6wTiUaxILJB8A0v4FenqIe/W0TwBIOwPs0BhFmcJfk+2zgB6T0SK+BXB2s7qc0oKVijTg0dIq52TxTi7j+vZsfM+1X8FdkXfdtYHT4cZKZz26PjrmF6CjhktDJDfNbX11Wfe66cREsSzFtNQ04IfBauHzQDkni3JOdeshklKXoWMLResCjXMtXQs4+Sf3vzdo1TXhb+/25QFDUR+EkBBwIr2AUrosIDXxBuHl8FMeZeOYEFZKgayr7tffbPJucLG00qmHAOArhWgKAqEUIZYFvu3repnz0+V+SRn6Qg0AWP8mvOaf/wGbp0msR5MfvJUvqwao6CL17WYmq9dvm6leJttecl1YFtg1m+u8lKIp5lTbcnYWuhFqp77rQy8UTYlJwRQpyjOfQa5sPd+O6Qm96KUoc9kYixMjUR8EwHcATlBKPTyNNxt910dAj2fGAt47F5hRH7h6TGeXgZ/nTsW5LZx/2VNkg55QO/LkoVp5N9wItQLlvo795rG6HinIBD5uAJxabW67Pd8aLyt1yWmJ3d8eXCxsEXB8BdciOPATsHoi8KeiNaQVs0tZN0KtYzVT1uUnVqKTLdBvsA5zz3TTYUD7cYGrDwDYdBwHUfqTgQQbRkzRzgAeBNCLEHKQ/9+3DP7+whtXRGay5swVxo4nPIDEuCXMh1GJMaGqfQZ45mhHofrlFOJyPb1QcwcA33SXn+sJjWZiXrrLGlRNKaW4TqqUkk79skJHpSdmNgayr+jG+Woi7ZgzQohkVKFRq1RKyglXJsH089y/yg+L1uAZCu7aKuPfnYXAjlnax0r4W//eFrkJVfMHrNOcRe1D6mKfjxHpOeAgWDAS9bGNUkoopc0ppS35/81FoAcMLyzqmY2AL9qYP5Q0J8CplcDbcca2E9wyuj30AbCoi/KAT5pxgyJm9wDek3Qo5mcCi+/nfnvKgZFyjOvYkdbxr9c0xFdiRZl1fUj/VlqUf77gvn4CKvHR+YiyLHD5MPf7cwPPgPQDFyKxqFO8iEz96R7gBh8FsnUG96+7UW8ilHvuQhWd0Kkn9cPKFo3RNwDy0g0c0wdYJ3Bpn/HyMVUC36rUm+ZNKtQxJgLZhpqbacgfBM3IRK8QLWovTsNsvOO3vbmpdjzx2zPAOxLfl2Dt61ngfp45GgBw4zwXjbHmVU5spUizu7EOYyFU0heJsWn4rKX+V8X5qDoTlecrWS8VRn/77lNPARveBr7pCpzbaszqm1bL9Vtq0e6d6586GalDQSbnuw01nneF27fiOgsxycn7ze3HLPnpXOpQozS/z79CHaExGlTPopaWDYsB2jxs7BjNhnsu42ducaEWOhM9lPv1EeDHu+TDglcZnxQXgH7I0Irn5JEIB+crmsaeBu0YfEgN5D4WEcLAlB+jonxg2eOuvxM2ADPUIydVSEWTMO6t4pTjQMJG6Ur9soBcUKSWcYEqsMg7zm3l/v2yPbD9U76OJ3SLy5CmMRDq7XATKWEWM24vpUXtcd+K6xxXnRMmPRecv9DJwaFJqQpA+Ub+FWot61kaFllJMvIwTPLxs4e6v7chkvQDPiYR84ZbW6gFEUg+6L7YsWVcB5ok057oO/YFpwPYP899GS3XhzTa4sNqwE756C0Vu2ZzKSov/GOsXoIFobTYBN+oaRRCrdxv0l7X71/Hcs18cVMTro8iiStAGRFhBukxd3+jXn9Ae6YWtwjnHGjXgR5mO74SNsj/toUAEWWAbBPWbqAR7lOghVpqUTdxjRmQxU/bQt3f26nmBp75m+AX6pMrgX91RvMJN1o5ginrKnBkCXDSjSvdH50YbgbHiAhCvewJYHZP7neGPD8CtsnzkqhYzVv/53cYq5dejgRvw5+kLxJhgB8UA1R2feVuY/mf0miE1NPy2GCpRZ3tJqTRDMmH1PHhVw6b3w/r5PI1n9OIob4ZlDU5ldYfipQ8tjDOos5J8V+dfEV4rvwp1FrvtSzpl6SFK3Un2cK0XTYRrrw/GL0IePQvn6voDcEr1DnXOLfCojHA/GGu5ZcPuzpj9DqNZtQHlj4GLFInaBcRmkPHVxge6qpCavXphUNJI1L0/IPhsUBOmucmedZlzoqXWp5ZV/T9wNmK8/ImWgFQC3XqSf2ynpBaeutel68TfNRnNwOzu3t/DGl9My6o48O9ISuZ65hd9oTv+/IGd3k9jGALBSLi3FvU984BGhgcJWqG6Eru1wfaotaLClO6PoS46gkHuJGlADB6ITCFn/GpwQCgegf/1dUEwSvU697UdivM7g5s+K86n4EglEY7oVKOc8OGf3mQ8197w1zJUPL/Kjoxdgtz1Gk8JEr/a3gMMKcH8D/JzOunNb7cu2dzZd6rAFzcA1zaz/mYD8x3lTm/U7+zy9sXQibUJmPWlfdDGHEHqDuBi3I5X/wi43mwtY8ZgCiCbZ9woxeLixgPo2Y9YQ/lLOpCN3ktmt8HtDXQYe6J8Fj53+M26RT00vURXVl/Xf073W8rfX6lfn9bGHDP/4CR84EyrnTLYEKAMPn8mcVB8Aq13gMlDQPb94NruZC+0Uw0xx9clju3LoGkfXILVoo7n++qV7h/lWJ0fod6QtGwGFcddvBTdv08Qnu/gljcOOeKyz2/nftQ7fsB+L4/sP0z7W3Fj4dJpOFWytGMerBO7njuOkGlU0IBnEX9TXfvs5mJxzYYx+uPfNs3i1gf86DZQrUjIpRo5M0wTe2ekuOGAdE6ycCoSeNK4MVjwMgF8mRL934LvHoBaKbz3ghIPyLSDkJbCBBZBmjEG21R5V3LtWiinkwikASvUHsaQZV6Ui4akvncDOMpvC87FfiuDze7tRG03B/KfX8/QC3Udkno119TjR1r2RNAIh/RQFng0M9qv6QSb/2rK9xPWKDJoUXcx+qa9qwgANQulJTj/rFajT4D0kEswU7F5p7LaCH4YW2hQHic5/J6kzgIObGNIBW38fwzN/Qb4E7FvJbediYyDNBoMNDxKc4l9PwhoPkIToQ9heq2ehCozAcVSEebKl1LQ78GBs0AKupMXTdY0q/Uwo2L1U/cOkKduF3+t7KHVkjfaCbNoHSkoRZZl7kyRuNCCzSmANLa9TUNMfIlX8nhxcDvz3i/vYCpzIUeMJCiUkWGevZ3rzAq1P46395v+Gc/7giPUQudEQQDxqhFrff+6G3b+iH1MmlLRXiuW4wCOjwJVO8EdHmJW2ZWqMdtAp7Z4/o7tirwwhGgdE318bRoPpILrXvod+DpXXLrWnkPI8sA7R7Xd/VJjSvp8QNE8Aq1ssm8+UPOLyt88ZWj0UTXhxmL2kNSp1w+PWeBwaa4MBu1DI0bnXlJvUzqB9Pcz01A6Vu82eQpzrucgRhvLYy6v9o97rmMHl1fdv2+46ZMeiQXBy3K1VcvEz5athD3Qi28A3rPupaYvpUBdNMYjyDNrSF9t2x24NE1QL2+wk71961F5VZAvMY5StFqEShdK+ExQPmGnBjX6gZ0edHztVUdR6oZgc81FJxCfWmfOkLi3BbODSEEmyv9mL5Y1Hp+uRw+O9zWj43tL++GelmaRl6R/HTFcVLlvdVLfRAQXzAwn6JhzGZQA7hwPSneDCyIq258UEpLHzotBUFofI9+0h9/cNdnwLN8H4GevxTgIha0RFOAsbnPkyxYhVLRrC+ZlFnv46cZt6xhUcvW2+XH6vgU0HCwa33nF/Tr6Qm3LVMNQR37B9DnLS+OI302A58BMziFek4v/XVCiJnS4vamM1Hq+rjwj2pWc9M5eZWW8NFl2iO1lG6bS/vk7hVvwwXdMau15zIZfkwzuduLfAipivBEpXXU97/yDiCtpDqM3eVCqdPb/fFCIoC+75ivJ+ASBH8mFdLyIVfrAJSry/2Oq6G9Xb8PgIdXaouU0GpgQjhXgcDDq+Q5Kx7mxxw0GgL0ep3z+973k6tzTe/Dq9Uha/Mg1ELfgPBBjSwDjFrgWt/3bWDEj9rH84RbofajoEqNCMFir9oOeC4wQ/SDU6iNoOzgmj+cs7rNWNRJvL+LMFyo3ayW8ggQwfVhFKWwX9TJ5uZpDjh/9Lwr8TQf4E3P6W0A6XWo1Q3o/DzQ9SXXsgkH5eX7T+OEU8ii5yk7mj0c6DzBuxk+hBdVS6jL689r6ZbOGi4UaV9NnZ7q9QDQ6WkgvoH6Hg79xiWkthC5vzUiDoirxv2u0haI4WOdbXag2yuchW0PBYb/AEy5pB/HrWXlMzquDwGhg9Pdu+ptR68/J/UwfBxeqOv0Mj8wySBB+HZ6SVYysOgB75IcSS/6p81cX8gck0Kt9LEqXRxGMRoC50+kTd7hBtOLBhqpb1EQU6l7JlwhsNXay0UisgxUlK3HWY2ASwzM5hWJre56ZgTBlgqSsl5GafcY5/eVIm1BANpiLiC18lqM5jrwBEtY+UFhQlzX0l3OEZudGxhyz/+A+zTGNWgJtSeL2khcslKoH1njeRu947lWGtuHWW7C5B8lR6gB7uXxZhZg5c0VrGrTFrVCqM0KfbBwswL8q7YDHnQ3TZpUqPk6uUsyz9jl7pIIDaHuPpkbgffCEe984O0eBwZ+5DqOINhtH3OV0fLbGukY1eoIK68Ii+v7X6D9eJ3tGfVvPaG2hbh860aMm/BYoPHd6uXe+KiNZAK0S4S60RCghsHRpcWQMAkRcdy/AQwCKHlCrWxOnTeQzUv5MDnyud7vE3+YO76y01FL6Ns8Ym6fxYHZHnBv8eSLl1oqgkiEuAmpY+zyF1UrisUWwu1D2pTXGiTR5hFXGJlAqwe42NoGA1zPjCCuA6a5ymmF/WlZo6r6GxQZvVQAMqHmPyDC+6Al1EYnkHAHYwMmKfp2PFnURp4v4SNSsRkw0kQSLU2LOsAWr9B3kBW4xE0lTKgZ4Mch8mXf99cuq9xOCuvQnlpJ2Qz1RL5Gk7r5SPUyd+glPfeFp1WTyCuOeZOEOuMi3DZHpULdYIDn/TF2uSBpCZDW9VT6X9/KAO76FKig8DVLLV6ly0MqskohqtnV2GwieoNNlOi1GrVCxgRrWemiYEJcdfY1J7rSxSS9xlrCacSPzJiw9t3xxk0Ida13J/cR7/vfgB2iZAl1bpqXfmHFg8M6gEyNwRdm3Spaw6eNDDqQEogJOEuV58RDD187FqWpJD3h9qU1YAlVk+RHIYxcMHNSuA4eKVpCXeMO7X3X78ddp5b8jDhSX66WQAsoLer088ZC+Hy2qCXbKzMoKi3qsFISi9oLMRynM8q17WNAe0niKr1zemCp+wgJwX3iTZinbD82BDzO2R4K3P1lwDoSAWOT284lhKQQQrwYamYSp8O3PMTeonxQWYf2C232odHqpDLr/zVrUTQf5bkMY+NeFD18TWrU1MQMGNU7cRnb+mtMtGukHvfNA+r24X6HhMsFqdFd6o4eu8Z9rdtHnp9CICwaePhPV7J56WAqURQlIiCE+ikt6qrt1UKphSCuesOWBQShbvc48JQk9a1TEj/uyUcdGuWyhJUfM3c8upYL3avcUnv94JnyZEd6H/26fdwLW+maQNm62s+FO4T7HVGaywnCLTS3jyDEiOn0AwAD/gMfyUsH3ikLvO8hJWIgUAow63R90WXNGZM3XGsiUdMzdZgQ6qjyQP8PPJcjjHs/obdCPeJH4KWT7v3ISuxhwOifuUEP3tQjugJw/xJOPGKruoSh+6tAFY15EfVC8Ya7mV5LsJClz4kg+FLrVlgvtahfOArc/YVBoeZF/8lt7ssJVnLtHnL3jDQWX/RRS0YmAvKUo1HluPqZGZpevaO5IdPehsuFhAPP7QPqeoiF190+Sh437ktdggCPQk0p3QIg8I4eoee0OFAOO/9hMHB4EVCmDtDyAe1tlElyjOaNMJtfwqxFbcSnrbRylL73cvXMHVOgYjMuHtfuIQZWLyZXmjei2yTjYU+EuMRDEE69OFy90LnIMsBds7T9jMK+pEIt+PGlQi18VKUfwbhq3PbKgSFGRt9Js8NJEUYYlq0rXy5tjQr3VHR98MefcAD4j6TTK65aYEdW3vT4fDfPzE0IowsUfruKhJBxhJC9hJC9qaleTvdTP/CGuybKlKpCE5Kx6w8+UTb9jA6aMNs5aNa6NSTUHnyhZqd9EhCsNU8fI2G4f3wj+fIhn7t+95oK8aVzF5Kn2jd/78SWi+LldHef2ozVjlMWrNEYSR5kQYylM4kLH1Wt81f6avu+zX2YhElnlbyVAfTTsXQ7PgW8eJybb1BKW0lEkfDhUkZ9hEQAoSY7xX3BjFDX68cNbPIFIdKnyT2+7SfI8JtQU0pnU0rbUkrbxscHoAMskOiJIWPTFzWltWPE99zpWfOjDk0LtU4+CLc98ZImoZAC0ihV27t+CwLgyfUhiNvDK92XEyzvOybIl8dW099GsCAFK7jj0/L13oxCrNsXGPgx0PtN1zJRqCUWdcsxXIJ/rYxy0mb3qJ+5f4d8Djy13XxuC0K081OHRgEPLON+C4mPRB91McQXA8YjWQDg/l+43Bu+EB7LhQtKW0ZCZ7EvuV2KmZIV9eFvGJv8AZemQoxXDGAwItTdJ5uvgzvXR4cn1csI4UbOKZHmkXD30up1MjYdpr388XVc6snHJPNaerKoBd+hp2HCw77j/N5xCmF++h9g4lntbZSuj/r9OOu0dg++bl6EO4aV4iIZpB8g0fUh6cCLqw68dAworZOTQ6ChYrqrvm+rRyR6S93e3L5EV5DCRx0o4mpweUmUFEdqgsgy8me8dE3+GfBherdixhJqdxCFRS1NbanEyLBhb0b8uesZlw6ykKLsNGkwUC4O7l4evVSn7raJrw9Ua+f625MAP7CUS/jjqQkeWUa7CRtWCojSiUsWhDNE0Wk7aqEkCsAPCGGWkV66iW4WbcZy/2qlQPUnLxwGHtOYPi4Yc8jcghgJz1sIYCeABoSQJELIY562uSmYbaJL6fqKsXLKARTuMJLb2Gyvc6/XPQyx1jsOf1uHfQe88i83QacsZMpNPfReLDMvnCeLOroi0HiI+zLe4tDpTAyNVEcB+ELVtlzs7MDpxre55yt5ON3NoMUozposVf7mHlegJAv18LnAY+tuyqE8qhClNPDzzHjDI6uA9/i52GKrm0vRaTQzl9L1occze7xPwCTFHgE4JNnS6vcz17EnzJwsvBzl6gOl+P4Ct+JMtH/LCxmvR3FOcSW6PgLcYUYINxrNDLewj9RrSrJQ67kDA8CtexWlYlBVEi/bbaLcYtaasVgQNE8wdmNWcGiU70NdAS50Sjq820yu44dWAMO/436LeSj8OAuFtxZ1/2nAo39xPmxfZ9I2QjN+sI3ZEaAWgeEWjl0OJm5doZYy+FPX79BS8odDOZDiuf3Gg+iNilNolOeBKZMlM5aP+ZXrnQ+V+KzDYrgYZGm2NGWP+VRJEqMn/pavq3GHyweuJdS+pn+UXlNP/k7Z9X8SqN6B82E/vcO/fmItBnzEDRgpV9dzWYvAYwm1XwguofY2ID0izjW9e2gUZMKjbIabGY/vyaLtyE8oG1rKNUtzqYr6dRSofyf3sXj+kCt2WHPKIoVQS+ujHHUny/Og8XL4+sJIt9eL/fVEeKx//cRaEOJ5CLaFxS1GcAm1FqMWqpdpCYUwE0ZYtGImCx+awFr+6ad2As8f5n7f+S4w9So3siuqHNdpI0RXaOXuVRJVFihdS/9YSvF2ZxUzGtazNAbbZ1+h5JrGN9QvZmEBaIeIWnhNcAm1ILA1+CGyVdoADQfKy9hCgfFb1NsKnXChpSATlbjqXHPYG7Qs6gqNXXGyDKMxuINvFRj1WWv6k4Xj27TLuhvwIduXtIWiYVFLM+g9t999hIl0FFw3g1EzFrcvj68Hxv5Z3LUoMQSXUAvc8Sw3oEFr5Jo0j64UYQRWaJTcoo4sK5/h2AxmRlUJCO4b6UzY7o6vNZWT3vEJAV69ADyjMxejqyBfFw8WtTCBKCGcS0gvi9qIH4AOEl9/cY1ys7h1iK4A1HKTStfCFAHMxuIjegMaPPlaw6LleaBjqwGF2d7VwRu/boMBwL7vgTYPA/+u4yYYdZf204xFDegPSJHt06BQGzm/cZv1U1q6I666Z8tfi0ZDvBvmbWFRggleodZFIi7PH1aLWWiUK6Z58CfckGHqZUytNyF39fsBr6dxfmsjw4KVUzrJ1nlpuWr6qN11MLoRbG9EGuDmJPQGM9MuBTMPr7p5c09alHhuQaGWoJVTIbQUl9sacHUkejsHoLezS5hJGymIpVGLWkmZ2sB1Rd4LUag1lvlCg4GBmRqsJFKzc3HXwKIEEVxCLSQOcieses31FmOAQz9zQ2WFrGtCYhozLoxa3bnpr44ukQt1mAGXgzcoZ7OWrTMgrk9sVM92fs9XwOZpQCVpzmx3IxM9HwYANxRdelypH97CwiJgBJdQD/yIi4HVmhZJREdVhsziYpJtdi7LXf1+xkcgSqnVjctFcXSJaxDLhAMBFGo3c+8Zsagj4tSTLpRvCIz4XnEc/ropZ9YGvHOxVPEh14qFhYUpgivqIzyWi/hQWpfKnMJa2EJcLgd7mPEE5JPOAa+c4fINA5w1Lk69xAt1mdr6nZu+4q4z0VsfteZxNDoYw+M44VZE1+QW+jihqIWFhV8JLotaD6ll6e8RqcIEn20f46IU6vcDTvDJy/2Rv8MTZqM+fD2O1HFNCNDnTVXRsXN3I7JwMn68O8hTeFqUKIqcLF5bfhTP9KyL6mVv4iw0twDBZVHrIRt44qVS3zHB/SSeDAM06M+Jl7edj74QaIuav25OAx+fPYk3sJltAbbdE348vnuOJWcgNevW9HnXfHUlPlpzsrirccuz59x1LN57EZOXHpYt/27bOby4+KBX+8wvcuKeL7dj/4Ubfqhh8XFrCHXDu3zfx53vcG4VDc6n5cDhlLgEhKmiJClGnSzFoYvpvtdDieAH1xLlAFjUa49e8VDQRY7EBbLm6BXUfHUljl7KQHpuoZutvGPQrG2485PNftsfpRRrjl6W31eNMkZYuPsCDui86E6W28f/NiWYr2QxQCn16NqilOJwUvrNqRCAPw4lY9/56yjk75WNkRtj7/x5HMsPXPJq36evZuHgxXS8+XuAk4EFmFtDqKu2Ad64AdQfAIycr1nk4vVcJF7LQXJ6Hmq+uhLfbTsnrjufloP3V50Ay0pezDYPA3e+h4vXc9F9+iZ8uv6Ma10BP9mtZLbsWRvO4O4vt+NIkrkpk1iWuv2a5xXyc/y5G5DiwbIudLDYfNrDhML8vpJv5LgvJyGnwGV9z97CCdHgz7eh20cbVWVTswrw+0HPL1ORG+G8kVuENu+sw8LdJnKL67Du+FU8OX8/vtmiM2UXgJGz/0GD11ZrrruamY/8Iu78pyw7gqH/0074r3c+BQ4n/vvHcWTkcfd39ZHL6PrR31h5+LJmeSmCUOYXOfHCogM4dSXLbXmHk8XkJYdx5qq83L7z11XX8rtt59D4jbW4li1vvVzNzEdeIXe+fxy+jCFfbMcHq06g0etrsO/8dVlZlqU4fTULq464PxdKKaavPenxnXlu4QEM+2qn+NGz21xC7e55AYDk9Dw88/N+8eOz/vhVLNh13u02/sbJUlzOyEOTN9Zg8pLDnjfwgqAS6mlrTmL98avIL3Li/VUnkJXPPeSUUuy7mA46eqE4LHX98au4kuGaAbrrRxvR4+NN+GFHIgDuK5xf5EShg8WEhQcwe8tZnE7hHuQzV7NQMGAmcMezuHgjFwCw+5zrYbxYZSC+Y+9CQpPnAAB5hU58toET8ssZksT+OrAsxXsrj+NsajZavbMO9/5vB/5NyRYtOEopFu+5gNxCB+bt4D4oee48EhMOcPmmwQliJn9dBN5deRxj5+7GmqOXcccHG5CQmo0bOYXo+tHfOHE5EwCw5UwaAIBRzsrthuwC13EKJS9MZr7aInvsxz14ftFB3MjRtrb/OJSM//5xHPWmrlYJj9SyTcspxJRlR0SRBIDjyZkyt8iPOxI9tm4S07gPkrv7tfvcdRQ4WKw4lCwuO5acgY/WnESH9zfgiXl73R4D0BeSZfsvYe72c/h0/WkkpGbjqQX7cfE6Jyr3fb0Tr/LN+98PXkKaQjR/3JGIIV9sxw87EvHbwWQM/8r9rDDnruVg8d6L6PvJFvz0z3n8wZ/PsK92Ysoy+cCjP/kPxdFLLvH8fMMZdHh/Ax78jsuFnsG3mL7ZchZ5RU7M3ZaIi9dz8fHaU2BZihWHknHnJ1vw9IL9uK5zvwEgv4jFlxsTMPxrY7PaHL3EPat2hqDQweLQxXT8sD1RXH/xeq5qm5nrTmPl4ctYfuASMvKK8Pi8vZi6/KiqHDXx3OtxJSMfCanZyC9ywslSfLnxX2TkFWHGX6fQ6YO/kVPoxOK9F30+jhZBJdTzdiRiR0Ia5v9zHrO3nMWcrZyIdZm2EcO+2om/jl8FwFkQj8/bi/u+2anaR2yEaxLPhq+vwb1fbUeBg+W3o8jILULfT7aID/CZq9zw8t2J10XBWHXiBt4pHI2fD6UDAGZLrLJl+y9h19k0XM3MR4FDra6bT6fitd+PYs7Wcxj7/W7Rotpw4ipqTVmF48mZ2JmQhslLj6DxG2ux8hBnhWYXODFrwxkUOlwvfkZuEZbtT+IG9tTuDkop2r23Hn1muFwE2/+9hnk7OQtiwa4LSM7Ixw/bE7HlTCouXs8Tm+QbT3Ox1gQUG0+mICu/CCxL8erSw2j0+hp0/ehv0aIReHXpEVGICorcWzaJ1zhhdPLXMOlGLq5muj6kzy08gLnbufspFVlKKYqc6pfouYUHxA/1wFlb0evjTWL5N1ccw91fbkdGXhGemr9P/GD/czYNDieLa9kFeH8V5zO2G5j1fcLCAzjPC/vYubvFa7b1zDX8KnnxtFwlDkndH/9xD7bwLRvhPl7NzEfvGXKXzu7E61i05yKOJ2fi+UUHMXDWVvxzNg01X12J5PQ8rObdU8eSOeHKKuA+jE6W4uvNCcjML8LhpHTxOmYXuD6cr/92FM8tPKD7ASkdyb0f59M40Tubmo0Z604DAPaev4F2761HssQAAoDIUBueXXgAX2z8F19u/Bdnr7laZZl5Rfh8wxnx2fnrGOciq/nqStFqL3Cw4kfAHZ+s5+phZxjM3pKAu7/cjr+Ou1x1D8115bj5Ze9FzNuZiIgQrrU5dflR3P3FNnG98AGRvk9Scgoc4jVKyy7A+J/2IiO3SLOsQMcPNqD3jM0YOfsfbDmTiulrT6HF23/h131JHs/NVwxFfRBC+gP4DIANwLeU0g8DUZlS4XbkFDiQyt/g/CInluxLwqV0zirKyC3CjoRrqFu+FADgwvVcvP3HMXwv+eoqm3/CVxrgLJWoMO6Ul+2/hD6NKsiaSbWmrEKDCtGIDHO5Gn7ZcxE/73aVWXPsCtYc4x6eQc0q4cv75fHEYyUP08XrLmvug9Un+fpk4GdJc9QG7mG5lFGAmetOIzrcjkceXI69axdg+H+5yUJbVovDmZRsjP9pHwAgJasARU4WLKW4/1vXC7D1DCfGBQ4nWF5UdiZw4kX5zkQCikd+2INBzSrh7bubYNGei2Jdf9qZiIc710KIjaDISbH3/A1MXX4EHw1vIX7sBA5cuIEWVePQedrfYAgRreyTl7NASJZYr+P/7QdGEW45aelh3NeuGvKLnGj4+hpM6KVO8r/u+FX8uCMRz/aqB4ATq8NJ6ZgkaVp+vTkBq49eQemoUAxrXRWjZv+DDrXK4I27GotlGEJwJCkDzapycfAOJwu7jVGJbvfpm/DwHTVxLVtuIU6UHC/pRh6+23YOz/Ssi3KlQrF0/yWEh7g+BOtPpGD9iRQkfjhIvP7Ch1qLgbO2AgCuZhbgvZUnAEC0DLlr6Xp2cwsdOHopEx+uPokDF25g7THOaFn/UjdNq1bq0vly47+IjQjBAx1rQPgWv7niGOqWLyV7fgCuxfaVwt8uFaIZ607L7td//zyOv0+moIilePiOmpiz1WXUXJBYwMKzufbYFbSvWQbP/LwffRtXkBlWAk5K8fFfnGjvSXS5DaUffuE5aFEtTlyWmOY6Xut31uG1QY3QsKJ23pgmb65Ft/rxmPdoe7R7bz1YCrSufgHdG8TjzNVsXErPw+DmlZBfxKLPzM14+I6a4raHLqbLgqduRic48dShQgixATgNoC+AJAB7AIymlB7X26Zt27Z0717PzUYlvWZsQqOKMYiJCPGLn9ITESE25BXp+xyaVomRCb0AIa4keYkfDsLHa0+hbc3SyMgrwvOLDro95j0tK+O3g66mdhTysC3seTxX9By2sc3wUKcauJqZL76IALDmha6YveUslu2X+4AFQVXSu2F5bDiZIv49tlMN/LHzCOaHfoBxRS8iiZZHzbKReP/eZhgzR/6iDm1VRdVxM6RFZew8m6Z6IMNDGOR7sLT1+PmJDigVZseQL7a7LbfxlR7oyVvT7WqWlr24ejzXqy4+//tf2bJ37mmKgiInPlx9Eg90rIGkG7lYfyJFZw/aPNG1FuZsPYdGlWLwv/tbi/XSYkyH6vh51wW0rVEae8+bizjQuq8/PNIOW05fw9zt51AlLkI0XgDgo+HNZR8wPb4Y0wrP/nxA/HtEm6o+W4MNK0bjpI4PfcaIFnj510Pi30feuhPN3voL1ctEykTcDOc+GIjcQie6T9+o+qhq0bdxBaw7flW2bN9rfdDm3fUAgFHtqonGihnmPNRW1zWW+OEg0/sDAELIPkppW811BoS6E4C3KKX9+L+nAACl9AO9bbwV6rs+34Yjl8x11hU3Zh+68tFhSPHiC6wlPrc6/727Cd7w0BtvY4irk4khcLCefY31K5TC6ateZkx0g/IDGEh8ETM9KseGq9wagcSdiBcnZaJC3frWfSUQQm3ER10FgPSTk8QvUx5kHCFkLyFkb2qqhwgEHbLy3fuIAsXWSe6GrMtpWFGeEc3sy+SNSAOupmNJwpNIA5D5zY2INICAiDSAmybSADCWb2qH2f3XjXQzRRpAUIo0gICK9Lv3eDlNnQeMPAVaI0xUbwyldDaltC2ltG18fLxXlXHnzwsk1coYHwU19+F2HsuM61Yb97XVnxuwZwPz1+egjzHc79zTFIObV/JpH7caVeIiPBcCMHVgI8+F/MCSJzsZLludfya9Feq2NXyfhf3gG31N7/P+DjdvCi6hY9QX3pT0Z/iD8JDATKph5ClIAiDNAF8VQLJOWZ8Y2Mw3IRnfrbZqWb8mFTB1YCMse/oOt9s2quQ+WX3zqrHYOqkn4qPVoxYrxsin42pdvTQ+Gt5C/LtPowqy9T0blnd7LIFX7vQw27cJokJtqOHlsNz2tcrIXsClT7m/lnqUjQrFpld6yJaFSGJmH+1cy9T+7AzB5ony/b3ctz7GdauNL8a0wiCDH6a6FUqhQQWupVSulHYaV6ED21uqlo5AjEbHGQDMfVje2v3q/taICuVeeIbRH4nboqp+ojCtTjqzxEXKr0VEqHsRalI5Bm8PaYImldXvUoRBAZvcvyFiwrkO//mPdcBPj7WXrV/7giuHj7KT2hsaV4rB0FYqB4HId2Pbur3OGxXPs7Rz2Z8Y2eseAPUIIbUIIaEARgFYEYjKvHtPU3w31vXQbp3UEx1qlcGKZ7Vz+yofiG715ZbqT4+1xzcPtsUT3WqjdXWXNVC/guulE27CL+M74oN7m6lEFeCE6pfxnVCtTCRCbOpL9p9BcouspaQnGgA+HtEcX4xxZfJz93j98WwX8fdDkp5mgRXPdkYPhUW+/qVu+NWDtRYZasNzfASFGeY/1gG/jO+E1wdzlsd/BjZEbISxFDFPdJULb8c6ZVGzXBQ+Gs6lX40KteGtIU3E9S9LPkzzH+uAfa/1cbv/t4Y0QY2yUWhfq4y47Lne9fCfgY0wuHll1K8gd1ON6VAd47u7PuY9GsRjYr8G6F4vXowUYan8+RjfvTZWTeiKT0e2BMAJ4PqX1Am/lMI4oo2rRZXw/kBsnthTZh2veaEr9r3WB4kfDkKvhhWw+z+9xY9BRKgNYfwLr/esrH2hm3hPBD64t5nYahJG97WrWVrVupN+HD8d2RKPd1F/IH8Zr36eWI3+rDJRLjEf3qYq7DYGKyfIp+Ba+0I3HHxTbp0Lz+tdLSrLWj5P9aiDnVN6Y/d/eqNLvXLoUleeb6aBxPX49t1NUDYqFH8+1wWe0DKwAKBhxRh8cK981nqpBtQtXwpTBzVGiI0gVKN1Ex8dhoT3B+KZnnUAAGH2wFjUHt84SqmDEPIsgLXgwvPmUkoDMh6TEILekotUrUwkFms8MAI/PNIeBy+mi72v4SE2fPtQW+y7cAO9G5ZH25plNLf73/1tQAgQamMQxzefosNDMLp9ddzbugpeW34UGXlFOJOSjad71EGfRhXcNmkGNK2I78a2RaXYCOw+l4aKsS4Lu0xUKOIiQzG4eWUs3H0B2/9NQ0SoXRY5AnDNzJSsApm4RIXKb8+0Yc3QvGocfniEszJqvsplvatbntuGIUCV0hH4aFgLjJ7zj2xbhhDZOTzUqQbm7TyPPo0qICyEkY2YWzSuIzrWlmcLDA+x4dwHA0EIkYVJ/fViNySn54GlFI/+wN2HyFAbcgudGN6mmhgLDwBFfIjffW2roUOtMqheJhL7+IiIijHhYugkAHSpx72gR9/uh/n/nMeHq9W5NOwKa1P6kQc4IR7cvBI2n05FVr4D/ZtURPtaZZBT4MD8fy6gdGQonunJhZoJYpFX6MRfL3bHmDn/YEdCGrrWjUfjyjFI4gdGNa8aK6un0DH12qBGYigfQ4DpI1qge4N41CoXJYqm9PpXKx0p20/5mHBRyEPtjPjCE4nV+M+U3uj4wQYA3MdEGjL5Ut/6GN2+ung9BXd+rXJR6FY/Hr/sdUV3fDGmNfYmXsfS/ZdwT6sqGNKiMl66sz4av7HWVb8yardRzwblceJyFuY/1gF5RQ4M+2onSkeGiD7fhzUMixplI0Vxvbd1FexJvI7ne9dHu5plcO6DgeI5Cs8yAESF2cVrIz3/356RG2z9mlTE4OaVVcec/WAbjPtpH2LC7WLY6GuDGqkislZN6IrYyBBZqOZrgxohNasA609wESE1ykahRtkonHlvIBq/sQaCd/vbh9piT+J1RIXaQAjBS30boFW10ipj0V8YMo0opasArApIDUxy9O1+aPom90DFR4ehb2OXsIeHMOjTuAL6NFZbxVLiS4UhVse/FWa3YfqIFprr9AixMeIHprHEyv9nSm9Zc/Hbh9ph3s5E3NOyMppWicGBC+niwJu4yFCxqblqQlfERNhlOQ8e6FgdI9u59/8dfqsf7AwnyAse74AwO4OvN5/F+hOu8KTdU3ujoIjFSn74b/tapTGuWx2sPMy9KK8NaqQSaQHhpSnFv0Qx4XbUrxCN+hWicSyZi9aJDrejZ4PyWHEoGREhNoxsW00crSUdhFGjbBQAoE2N0pjcvyFGtuO8a5Viw2XWaakwOx7tXEsUaml4o51v3YTy/yqb5uVKheGLMa2x9Uwq3v7jONrXKoPwEBtaVI3DfFyQWauV4riPa+9GnFtKuPbCAJ6qpSPx2aiW6FG/PIQxNFGhNvRsUB5L9yfJOm1OvzsAAFQiIghxVKhNJtJKwuw2sSxDuBZTcno+KsaG4+cnOmBv4g0QxYf3Wf6D89qgRqheJhIPdqyBZ37ejwm966FKXATsDxA8OX8/Rrevhn5NKqJfk4qYOoizyBmGIFJhFJTmn8UX+tQT0yvUiS+F/a9zlvHWM1zAQJmoUCSk5qBSbLhMVAV+e9olrjPvaylbp1Vei8n9G6J9rdKqlqq0dbv0qTsQGWqDk6VoWiUWO17thYgQG1q9sw4AcHfLKth17jp+3sWF/W6e2EN8BoV61ImPwuNdayMlMx+X0vMwVdFSjosIQW6hEyue7YzmVeNkOmNjiEfd8YWgTHP6/SPtEKfjYysVZscPj7ST5Q9oUCEap65moSZ/4T1RKty3036wYw389I/nfAJSyxrghGR8d66J1LBiDBpWjEGd+FKq0VONNXx8rw5Qd3h9NKy57FxKSV7+znyTMYTPeSIIT/lork4P31ET+UVOPNSppmyfj3dV+/mVRIbaMKFXXQyQ9ClUjeP839OHN0e3+vEY1qYqqpeNxLThzfFC33ro9MHfuLe1uoOVEIKnetQR/945pbeqTKidwdZJPZFf5ES9CtFwsBR/Hr4sNuE/HNYMX21KQDudFlTXevFY/1J38W/hOkmb7WF2m6wPQrDWpflh7m7p8mW+c09T9GwQj1l8agGWpZjYrwFql4sSPyBa5wGonwsBwbALtTGSJjRB3fLRYqvpjjrlcEcddfpZwZcdFxmKCb05F9fPT3QU1/dvWgln3x9oaLKjKQMaih+BF/rUF4Va6nJrV7MMejaIx9RBjbH//A10qiP/uAsCXzpK2+dvBunzoUcbRUdnZb6FVK98KdHif39oM2w4cRVXMwtUboy/Xuwm3pfyMeH4Yox6YoyF4zpi3/kbaF41zpvT8A1Kqd//b9OmDfU3NSb/SWtM/lNz3ZWMPHrycqZP+zCL08nShJQsmlNQ5Jf96eFrna9m5NHXlh+hhQ6n23Lzdpyju86meX2cm8nqI5dpjcl/0rOp2V5t73Sy9LutZ93eu6QbufTFRQdofpHD7b6mrT5Ba0z+k/5+8JKhYy/bf5FeTs/TXNf/0y20xuQ/6ZGkdJqcnktrTP6Ttnt3ndv9+fOZbv3fv2idKStVy5Nu5NLs/MA+53+fvErn7ThnqOzJy5l0zzljz6rDyVKHkxX//mz9aVpj8p8BPx9vALCX6mhqUFrUZqkQE44KMdpWipRlT9+BY34aUMMwBLXjfYsEMMITXWuhbCnv82OXjwnHOwZiOx9UWNbBTP+mFUV/uTcwDMGjGh1oUqrERWAm34Hojuf71EPluAgMNhixNLSVftgmlfhKbfy56XWCBYIdU3rJ+k0EjIY5+kLPBsYioQB5h6InlClTn+tVF092r6PZMRjM3DJC3bVeOZ8HfbSuXloW/XErIPgRLeR4K9L+JsxuwwMda/hlX5G8j93GEJSPCce79zTVjEKS8udzXcRMgb4SqIiFYIIQglB7cDw7ZvA4hNwbvB1CbmFxO3MpPQ+L91zEi33qBc2HyOLm4W4I+S1jUVtYlHSqxEXgpb7+G+RkUXK4tRw1FhYWFrchllBbWFhYBDmWUFtYWFgEOZZQW1hYWAQ5llBbWFhYBDmWUFtYWFgEOZZQW1hYWAQ5llBbWFhYBDkBGZlICEkF4Dm9nDblAJS8CQLdY53z7YF1ziUfX863BqVUM6F1QITaFwghe/WGUZZUrHO+PbDOueQTqPO1XB8WFhYWQY4l1BYWFhZBTjAK9ezirkAxYJ3z7YF1ziWfgJxv0PmoLSwsLCzkBKNFbWFhYWEhwRJqCwsLiyAnaISaENKfEHKKEPIvIeTV4q6PvyCEVCOEbCSEnCCEHCOEPM8vL0MIWUcIOcP/W1qyzRT+OpwihPQrvtr7BiHERgg5QAj5k/+7RJ8zISSOELKEEHKSv9+dboNzfpF/ro8SQhYSQsJL2jkTQuYSQlIIIUcly0yfIyGkDSHkCL9uFjEzjY/erLc3838ANgAJAGoDCAVwCEDj4q6Xn86tEoDW/O9oAKcBNAbwEYBX+eWvApjG/27Mn38YgFr8dbEV93l4ee4vAfgZwJ/83yX6nAH8COBx/ncogLiSfM4AqgA4ByCC//sXAA+XtHMG0A1AawBHJctMnyOA3QA6ASAAVgMYYLQOwWJRtwfwL6X0LKW0EMAiAHcXc538AqX0MqV0P/87C8AJcA/43eBebPD/3sP/vhvAIkppAaX0HIB/wV2fWwpCSFUAgwB8K1lcYs+ZEBID7oX+DgAopYWU0nSU4HPmsQOIIITYAUQCSEYJO2dK6RYA1xWLTZ0jIaQSgBhK6U7KqfY8yTYeCRahrgLgouTvJH5ZiYIQUhNAKwC7AFSglF4GODEHUJ4vVlKuxacAJgFgJctK8jnXBpAK4Hve3fMtISQKJficKaWXAHwM4AKAywAyKKV/oQSfswSz51iF/61cbohgEWotX02JihskhJQCsBTAC5TSTHdFNZbdUteCEDIYQAqldJ/RTTSW3VLnDM6ybA3gK0ppKwA54JrEetzy58z7Ze8G18SvDCCKEPKAu000lt1S52wAvXP06dyDRaiTAFST/F0VXBOqREAICQEn0gsopcv4xVf55hD4f1P45SXhWnQGMIQQkgjOjdWLEDIfJfuckwAkUUp38X8vASfcJfmc+wA4RylNpZQWAVgG4A6U7HMWMHuOSfxv5XJDBItQ7wFQjxBSixASCmAUgBXFXCe/wPfsfgfgBKV0pmTVCgBj+d9jAfwuWT6KEBJGCKkFoB64TohbBkrpFEppVUppTXD38m9K6QMo2ed8BcBFQkgDflFvAMdRgs8ZnMujIyEkkn/Oe4PrgynJ5yxg6hx590gWIaQjf60ekmzjmeLuUZX0og4EFxGRAGBqcdfHj+fVBVwT5zCAg/z/AwGUBbABwBn+3zKSbaby1+EUTPQMB+P/AHrAFfVRos8ZQEsAe/l7/RuA0rfBOb8N4CSAowB+AhftUKLOGcBCcD74InCW8WPenCOAtvx1SgDwBfiR4Ub+t4aQW1hYWAQ5weL6sLCwsLDQwRJqCwsLiyDHEmoLCwuLIMcSagsLC4sgxxJqCwsLiyDHEmoLCwuLIMcSagsLC4sg5/8T2t/B02SAVgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot(title='Line plot');" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAEICAYAAAB25L6yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACQK0lEQVR4nO2dZ5gUxRaGv+qZzWwgLDnnnKPkJFEUAQkGjGDECMjFeI2IoKJeFRQVQUAJipIEJIPknF1YYFlgl4XNcabr/ugwHWe6J7DD0q+PD7Pd1d3V6etTp06dIpRSWFhYWFgEL0xxV8DCwsLCwj2WUFtYWFgEOZZQW1hYWAQ5llBbWFhYBDmWUFtYWFgEOZZQW1hYWAQ5llBbBD2EkK6EkFPFcNyHCSHbbvZxLSyUWEJtETQQQhIJIX2UyymlWymlDYqjTkYhhGwihDxe3PWwKJlYQm1hYWER5FhCbRH0EEJ6EEKSJH8nEkJeIYQcJoRkEEIWE0LCJesHE0IOEkLSCSE7CCHN3eybEkImEELOEkKuEUKmE0I03wtCyB2EkD38MfcQQu7gl78HoCuALwgh2YSQL/x39hYWllBb3LrcB6A/gFoAmgN4GAAIIa0BzAUwHkBZAN8AWEEICXOzr6EA2gJoDeBuAI8qCxBCygBYCWAWv9+ZAFYSQspSSqcC2ArgWUppKUrps/44QQsLAUuoLW5VZlFKkyml1wH8AaAlv/wJAN9QSndRSp2U0h8BFADo6GZf0yil1ymlFwB8CmC0RplBAM5QSn+ilDoopQsBnARwl5/Ox8JCF0uoLW5Vrkh+5wIoxf+uAeBl3u2RTghJB1ANQGU3+7oo+X1ep2xlfh0UZauYqbSFhTdYQm1R0rgI4D1KaZzk/0jeAtajmuR3dQDJGmWSwX0EoCh7if9tpaG0CBiWUFsEGyGEkHDJ/3aT288B8CQhpAPhiCKEDCKERLvZZiIhpDQhpBqA5wEs1iizCkB9QsgYQoidEDISQGMAf/LrrwKobbKuFhaGsITaIthYBSBP8v9bZjamlO4F56f+AsANAP+C72h0w+8A9gE4CK7D8DuN/aYBGAzgZQBpACYBGEwpvcYX+QzAcELIDULILDN1trDwBLEmDrC4nSGEUAD1KKX/FnddLCz0sCxqCwsLiyDHEmoLCwuLIMdyfVhYWFgEOZZFbWFhYRHkmA19MkS5cuVozZo1A7FrCwsLixLJvn37rlFK47XWBUSoa9asib179wZi1xYWFhYlEkKIcuSriOX6sLCwsAhyLKG2sLCwCHIsobawsLAIcjz6qAkhDSDPfVAbwBuU0k/NHKioqAhJSUnIz883V8MSQHh4OKpWrYqQkJDiroqFhcUtiEehppSeAp/rlxBiA5ctbLnZAyUlJSE6Oho1a9YEIcTs5rcslFKkpaUhKSkJtWrVKu7qWFhY3IKYdX30BpBAKdXtndQjPz8fZcuWva1EGgAIIShbtuxt2ZKwsLDwD2aFehQAzby+hJBxhJC9hJC9qampmhvfbiItcLuet4WFhX8wLNSEkFAAQwD8qrWeUjqbUtqWUto2Pl4zZtvCwsKiRHI15yo2XdwUsP2bsagHANhPKb0aqMrcTN566y18/PHHuut/++03HD9+3ON+tmzZgtatW8Nut2PJkiX+rKKFhcUtwkOrH8Jzfz8XsP2bEerR0HF7lESMCnX16tXxww8/YMyYMTehVhYWFsFIcg43e1ugktwZEmpCSCSAvgCWBaQWN4n33nsPDRo0QJ8+fXDq1CkAwJw5c9CuXTu0aNECw4YNQ25uLnbs2IEVK1Zg4sSJaNmyJRISEjTLAdxw+ebNm4NhrJB0C4vbhe2XtiOnKEe1nAZo6kxDuT4opbkAyvrroG//cQzHkzP9tTsAQOPKMXjzria66/ft24dFixbhwIEDcDgcaN26Ndq0aYN7770XTzzxBADgtddew3fffYfnnnsOQ4YMweDBgzF8+HAAQFxcnGY5CwuLkkMRWwQ7sbsNALicfRlPrn8SPav1xKxe8lnXWMqCIf432m4bM3Dr1q0YOnQoIiMjERMTgyFDhgAAjh49iq5du6JZs2ZYsGABjh07prm90XIWFha3JsnZyWj9U2ss/9f9MJFcB9eaTsxMVK0rVova37izfAOJ1lfy4Ycfxm+//YYWLVrghx9+wKZNmzS3NVrOwsLi1iQhPQEA8FfiX7i33r0eyxOo9aRYfdQlgW7dumH58uXIy8tDVlYW/vjjDwBAVlYWKlWqhKKiIixYsEAsHx0djaysLPFvvXIWFhYlAyd1AgDsjB15jjw4WafpfbCU9Xe1ANxGQt26dWuMHDkSLVu2xLBhw9C1a1cAwDvvvIMOHTqgb9++aNiwoVh+1KhRmD59Olq1aoWEhATdcnv27EHVqlXx66+/Yvz48WjSpHhaCxYWFsb57sh32HNlj2yZIMwMYdB+QXu8t+s9w/sT/NKBEupicX0UF1OnTsXUqVNVy5966inVss6dO8vC85566inNcu3atUNSUpJ/K2phYRFQPt3/KQDgyNgj4jIHdQBw+ZmXn1mONzq9YWh/ghskUD7q28aitrCwsHCHg3XI/rYxNs1yWn5oQagt14eFhYUFj5N1IqMgw7/75H3UglFsZ9w7HDQ7Ey2L2sLCwoLjw90fosuiLsgtyvVpPyxlMe/YPOQW5Yo+akFsbUTbotZCiCizoj4sLCxuS3KLclHEFsmWrU1cCwDIc+R53N7JOvHNoW80RxKuO78O0/dOx+cHPhePIQi1J4taiuX6sLCwuK3p8HMHvLjxRdkyM6mD1ySuwRcHv8DnBz5XrRPcJ/nOfNH1IVjFdmJCqElghfq2ivqwsLC4NdmctNnrbbMLswEARc4ilatEsKJDmVC160OvM5FfL/1YWFEfAcJfaU5nzpyJxo0bo3nz5ujduzfOnzc9+Y2FhYUfmbV/Fr48+KX4dyFbCAAItYWiw88d0OHnDuK6AmeBuE6I+vDk+tAS40Bb1LetUHvCqFC3atUKe/fuxeHDhzF8+HBMmjTpJtTOwuLW5lreNZy6fiog+55zZA6+PvS1+LcgxiE29eTShU6XiAtx1IIOm+lMFLA6E/1AINKc9uzZE5GRkQCAjh07WoNfLCwMMGDpAAz/Y/hNOVaR0+XeUCIKtYbrw5vOxBKVlAmrXwWuHPFczgwVmwEDPtRdfTPSnH733XcYMGCAf8/LwqIEku+8eZM9C66PMFuYep3Eohay4gnouj60BrxYnYn+QZrmFIAszelrr72G9PR0ZGdno1+/fprbeyo3f/587N27F5s3e9/pYWFxO3Ax86Lf9mXEgpWKsWqdxH+dVcglYROE2JPrQ9qZyKAk5vpwY/kGkkClOV2/fj3ee+89bN68GWFh6q+2hcXtDqUUu67sQnxEPO75/R5T2/mKINRaFrJUxIXwPEFszbg+hEGKlo/aRwKV5vTAgQMYP348VqxYgfLly9+8E7KwuIVYdmYZnvjrCbz7z7umtvOHhSqE4Gm5PoR1IUyIaJ0LnYqCUBc6C9Hsx2b49si3uscQB7ygGKM+CCFxhJAlhJCThJAThJBOAalNAAlUmtOJEyciOzsbI0aMQMuWLUWXioWFhYuLWZy7Y+/Vvaa284fwSUPwlAgWsHT6LKFTUXB9ZBdxcdjzjs3TPUaw+Kg/A7CGUjqcEBIKIDIgtQkwgUhzun79ev9W0sIiyFl9bjUmbZmE9cPXo0JUBUPbmBlJKEApRYGjQHt/GgmR9BBcGu7mMpS6LISPQ4GzAOcyziE2LJYr48YfXuwDXgghMQC6AfgOACilhZTS9IDUxsLCIuhZfoabU/Df9H8Nb2NGWAU+2f8JOi0013gXQvEEFpxYgAuZF3TroPUBEUT7UOohDPltiLhPpQhL9ycKdTH6qGsDSAXwPSHkACHkW0JIlLIQIWQcIWQvIWRvamqq3ytqYWFx8ylyFiE9P122TLBMfzr+kxgpEQiWnFrisYxSGGfsmyH+LnAW4MPdH+JYGjcRtcePBb8rpftC+Xewjky0A2gN4CtKaSsAOQBeVRailM6mlLallLaNj4/3czUtLCyKg2f/fhZdF3eVLRNEaXvydlPTVRnhpU0vYebemQA8uBp0XCnCBLWA2rrWQhB66bE8uS/cWc3FKdRJAJIopbv4v5eAE24LC4sSzo7kHapl0vjizIJM8ffFzIvo/UtvXMm54vXx1p1fh++PfQ9AXzBZyuJa3jWP+1LO2GLUf6wUYmWuaa39CK2MYvNRU0qvALhICGnAL+oNwHMSDAsLi6Bm7tG5uvk2vj3yLY6nab/mei6EX0//ipS8FKw6t0q9jZediVokZbnSNLgTRjF3h4GylFKsPLtSs5zyfDVdH0GSj/o5AAsIIYcBtATwfkBqY2FhcVOglOKTfZ9g1J+jNNd/tv8zjPxzpOY6qejKRItfrCVW3nQm6gmrzE0hEfPL2Zdl5Yy4PoRzuVFwAyl5Kap9ah1XWB90U3FRSg/y/ufmlNJ7KKU3AlKbm4i/0px+/fXXaNasGVq2bIkuXboY2sbCorgRrE2l1WkEvTA3xo2ceGNRG+HX078CAA6mHMSdS+/EP5f/EdcpZ4Vx51uWirpSbFV/u5nc1hqZeJMxKtRjxozBkSNHcPDgQUyaNAkvvfTSTaidhYUxxqwcgw4LOqiWS4Xp3X/elfl8PYmNVKhlIWpeRD78d+d/MX3PdM11evV4/u/nxd/fHP4GAHA246yqnFKojaKK8hDqwf8jhCXKJg4IgqiPEkMg0pzGxMSI+8/JyQmY5WBh4Q1Hrh1RZYUD5Jb04lOLMW33NPFvT2IjFWqptan001JK8fT6p7ElaYtbv/a84/oj/rRIyEiQ/a0n6GaE2p3LQjk68o0db6jKBMvIRL8ybfc0nLx+0q/7bFimISa3n6y7PpBpTr/88kvMnDkThYWF+Pvvv/16XhYWgUDpv5UaGJ6GbeuJrjLygaUstl7aiu3J2zG++XjTdTTq73WwDs06Kc/RbWeiZJ1SbOccnuMqR9UfJulvayouH5GmOY2JiZGlOe3atSuaNWuGBQsW4NixY5rbuyv3zDPPICEhAdOmTcO775pLOmNhURworc3V51bjUOohAJ5dH3qtRndhbF51Jhr09wqpSpWY8VFL9VUptkvPLBWPM32vtpsm0FEfxWJRu7N8A0mg0pwKjBo1SjMfiIVFMJGcnYx+S9V51zde2IgW8S1MuT6kAix0JorRERoRIWYwap0WOgs1y3rr+tAT9AJnAX46/pPmOuVHyt/cNhZ1oNKcnjlzRvy9cuVK1KtX7yacjYWFmhUJK7Dv6j6P5bYkbdFcLlimHoUa2j5qVXie0AfnpXiZEWotVBa1QdeHL+4Ly/XhI4FKc/rFF1+gSZMmaNmyJWbOnIkff/zxpp+bRcllzbk1eGq9sVba1G1T8fCah8W/9eKIhWxySgTB8yQ20pbptkvbxKgN0aL2k+vDqObpuj6UPmo3HwzpOiHNqRlKpOujuAhEmtPPPvvMv5W0sJAwcctE09v0W9IPv9z1C57d8Kzmej3BEoTajOsDAOYdn4eJ7Sa6mv9arg8vMLp9kbNI80Og90GSotUJ6E29hWtihedZWFgYIjknGf9c/gcHUw9qrtcTIsOuD70BLwqx0ouQ0MPTcfVyiOhZ1GZEU2ZRGxB4gYyCDHx18CvVqEV/Ywm1hUWQkVOUg+l7poszk3hDniNPd52egImuD09RHzqiqxydZ9ayVroclNs9tvYxze30fNTKMENvw/PcMW33NPzv0P/EGWwCNRXXbeX6sLAIFgqcBbARm+YEqrMPz8a84/NQKaqS1/t3J9S6A0R4n64nsfHKojYwEEyVRElRz7T8NM3tCpwF+GD3B6rlyu3f3PGm7rGlZc1YxcrBRJZFbWFRgmg7v61HC1Fq2ZkVgHxHvu46PSEWLHgti1J6fE9C7S67nDs8WdR6FDmLND9MZixj6TUx4/rw5ZhmsITawiLA5Bbl4kjqEdXy/Sn7NcsLAqU3VNsIXrk+WH3Xh5EIDmE70aKGOYtaKpCaddDrBPXBR60V/3w9/7rH7aTbSrHC8ywsblFe2PgCxqwa41Y8pQgCI0snygvJlZwryCzM1NxOijuLWg/R9eHBotYTXUFove1Ykyb61zpH3U5QHR+1EdFUflzMojxHy/XhZ/yV5lRgyZIlIIRg7969/qieRZCTXZhtON5295XdAIy/xIJoSC3qAmcBHlv7GPou6Yu7f7sbLGXdCr9yXZGzCN8e+RZFziJdUSpwFuBS9iW3Arfk9BIcTDnott4CZq1L6fZmRhX6I+rDa6H2kBLVX9y2Qu0JM0KdlZWFWbNmoUMHdTpJi5JHniMPnRZ2wsd79T/0UpSWpicEQZeOAExITxAF/1reNXxx4Au0X9Ae2YXZmvtYdGqR7O95x+fhs/2fYeHJhbo+2FM3TqH/0v7YmbxTXSe+7m/vfBsnrp/Q3F7Yr1ZssiEftaReymm03JFTmKO5PFDWrUDQTRxQUghEmlMAeP311zFp0iSEh4cX16lZ3ERyijhh0Jpyyh2UUuxI3qGa1VuJ0LGlle9Y4PeE3wEA2UXaQq1EmC28kC30KGBaaTyNCJBuHmcDUEpl4mymQ+/dXdqJ0IxYycJ19MaiJiDq6xKgb0OxhOddef99FJzwb5rTsEYNUfE//9FdH6g0pwcOHMDFixcxePBgt64Ui5KD0jXRbVE3PNvqWdzX4D632+U78zF+3Xg0K9fM1P69LSNFED4bsXln9RnYxJ2P2lNnopM6ZeKs5VYyayGbiWk+nHrY1L71KFaLmhCSSAg5Qgg5SAi5JZ2wgUhzyrIsXnzxRcyYMeNmnopFMSMVSSfrxI2CG3jnn3c8bidYjAnprsT3F7Mu4oejP+juX0DpsxWETDojuJFj24jNK+vRjEUt1E26jXI+Q636ScVZy6I2K4JmhP1o2lFT+9Y9ZoCE2oxF3ZNS6nmOdgO4s3wDib/TnGZlZeHo0aPo0aMHAODKlSsYMmQIVqxYgbZt2wbwTCyKE6mQCgJqJ55fJS2BfGztY7iccxlD6w1FbFisrJzUB6qM4hCEzLRFzdgC4rullKotaoloKX3mWvWTDnjxJjGSkkDFNLvDivrwkUCkOY2NjcW1a9eQmJiIxMREdOzY0RLp2wBRqMGIEQdaIwz1tpMaDFdzrwIAzmeeR0ZBBgBJZ6JEhJUhaFqxyu4QhM9O7AGxqCkoWJaV182EaBmxqM1yU4Ra5aIuXqGmAP4ihOwjhIwLSE0CTKDSnFrcfkiFVIg9DmFCPG+n8RILYnL/qvsx6s9R3DJoh+dJEa1Xg2Iotai9yUfh6ThSH7PZjwjACbVUWLVmRzdrrQZKNAUIUXcmFrfrozOlNJkQUh7AOkLISUqpLPs4L+DjAKB69ep+rqZ/CESaUyl6bhOL4iO3KBd/X/wbg2sP9nofM/bOQOvyrdGzek8AcreD6PowYFF7Epqk7CQA2pa3UqjNiqHUR+2NlmQXZWPo70N111NKxTp5Y8k6WIdH10cgfdR+I0CHNGRRU0qT+X9TACwH0F6jzGxKaVtKadv4+Hj/1tLCwkve3/U+pmydIg7S+CPhDzT7sZnb0X0/HvsRW5O2in//cOwHTNg4QfxbavEKFrURodaKT1Yy//h8XM/jhjBL46iVrg+zrgGZRe2FkB5IOSB+SPT2L3YmmrT2hW1uSdeHgmJzfRBCoggh0cJvAHcC8E8XqYWFHzl94zQcrAMvbHwBe69wwUmCDzjXkYtj147hP9u4juykLH3R+Xjvx3h6w9O66wVfrNSiNuL60Iv3lTJtzzTsurJL3L+AnkVtVIwEi9rJOr0SwZTcFLfrKaWqsDyzrg9vB7zo1inAro8j1454zPjnL4xY1BUAbCOEHAKwG8BKSukabw5WLE2RIOB2Pe+byaHUQxi2Yhhm7Z+FDRc24KVNL6nKjFo5Svzty0sss6glro+T10+i2Y/NcOo6N5jq2LVjPkUvSF0fup2JJn3ULGW9Ovdree4DvqQWtXB9zHYmehrw4suQ9ECx/dJ2+TEDlI/ao1BTSs9SSlvw/zehlL7nzYHCw8ORlpZ224kWpRRpaWnWqMUAc/Qa18g7lHoIABAXHue2/EOrHtJcfubGGc3lgDoNqFKo159fDwD4+8Lf2HFpB0atHIV5x+ep9mN0/kCpRZ3v1E6yZFS8hGNKBdUMeomPBJ7d8CxOpHFDy1eeXYkrOVfMWdTUIRuCrvmBMykdJSk876aNTKxatSqSkpKQmpp6sw4ZNISHh6Nq1arFXY0SjdA0F8QtLizObflCthAbLmxAozKNULlUZXH5g6sf1N1m5dmVuLfevbLOREHA7Iwd5zLOcQWJq2NQ+IB4gzsftbe8v+t9DK2n3ymohyfRU6ZsTUhPQJ24Oob3Lw3PsxGbfwa8BNj1cTO5aUIdEhKCWrVq3azDWdxmCJ2DglBHhkR63OaFjS+AIQwOPXRIXOZu+qs3d7yJ+Ih4cWCK1KI+c+MMTt84rdrGF6tO6vrQ249ZC85Jndh0cZPXdTIKQxhznYkS3zlDGL/4qG+rzkQLi1sJ4QVXuhc+3fepZnnly+zJLTFj7wzZgBdBqPVeUH+JhV4HoDfC4I3f3Ox5MITx2vVhY7QtarOUJNeHJdQWQUWBs8BtRIYn9FKK6qXm9Gb/Riw/wRr2RSyk5+CrUEutc29EMOBCLXF9CDlUlFBQzVaLHsXRH2ZZ1Ba3BVO3TcWAZQO8noHbG2tx3jGuw++7I995TFhPQWWCoiVghP8P8DEKQPLO652XN2Lk1TYmBejD3R+aj/qgrkE5eiMTh60YZnifgYrAcIdlUVvcFgjhTt52nimtRSMRFj8e+xEO1oFP93/qsSxLWZlF7enF1FpvNOrDrxY1fLOozQrQ6RunTYm7dMCLjdj8MjKxOFwfgcISaougQrREvXzJpJ17FzIvGNqGghoWAalQE0I8Wm2+WHVGhFooYipJvxfNc2HgkBk8DZKRIh3wotdSMYvl+rCw0IGlrG899saMTRXCSym87Cm5KRi0fJDp7T3BUlYUkSs5V7DmnPbYL3E6Kh/EQipWulEfMDY5q6+dc5uTNpve5rVtrxkuK4368DZntpKS1JlYLDO8WJRcxv01Druu7MKRsUe82l4Ir/PaonYanxRVitbxMgsz0W9JP1U5oVl+KfsSLmVfUm2XUZCBLw9+CUBbILOKslTLtJBaZ3ofP63cz1pIz8/obOi+IkxZZoQiWuTy/TPmOiL1KBYftWVRW9wKCHkqvEUY5CF94Ldf2o5vj3xraHszs1cLUHBzGSo5eu2oak5CqetDjzPprtGNPllY0s5EPR+1wbwa/gh3M4veaEotWFbi+4fl+lBiCbWFzyRlJYn5LXxFK6ztyfVP4rP9n6nKrjy7El0WdUFGQYY4Ms4boQaA5zc+r66Lhh/GiFBLO8J8eXGl2wqJoHTLeDhMcbgBlLPSuIMFKwqrp/kVjVIsQm25PiyClQHLBgCA1+4OgIsSKBte1pWTwkCY3bIzy5BRkIG1iWvF4dveCrUWWoJBQU35g31JyiR96bXC1aRlPDXz/TG1lVnMfKSkvn/hb18pDtdHoLCE2iIoGLZiGGLDYhHKhAIwlsZTmNg1Nc+VP8abjkw9K0jLojaS1EhaB79Z1B46Ez1ZcnpCHyw4Wad4LgTqmVO8oSRZ1JbrwyJoyCjIkGV5K3IW4ddTv8rKSF8EQbyyC11+ZGVnoi++2Rc3vqhaZiRNqFSovR24AyjC8zwMePHooy4Gi9oMLJW7PvxhUc8/Md/nfZjF8lFb3DTOZpzFn2f/9Fju9I3Tbl0NLGWx7dI2c1YGb8RSSvHYX4/Jku0/8dcTaD6vuRgSJzRtpdEFSstx95Xdxo+tQCs6g1JqaP5AgeNpx92UdI8h14dRi9oPSY4CiZM6xftpdEBQMGIJtcVN4+7f7saUrVPclrmYdRHDVgzDzL0zdcssPrUYT61/CmsS5bHGSVlJusIhhOc5qRMHUg7I1v1z+R8AEPcnWInKyIxAYsSi9pf1+s3hb2TH1cJoeF6wC3UgLOriwHJ9WPiVnKIcvL3zbbexrkIssBY38m8AgDgXoRbCyEDpCLWU3BQMWDYAM/bOEI8hjegQwvPcvajK5n5uUa5uWX9DYc6i9oXzmec97lO8FjepToHCSRU+6lt0gpHinoXcogSxNWmrOCdg+cjyeKqF9uzqXx/6Gs+0fEZznZHmqfDQCp1+AJBZwOWNFiZ6/frQ1/L9EpeP2tN+BTH3taPMVE4K1lxnor/wZKV7Ogd/RsMEAqlFDdy6Sf8ti9rCb0zaMsn1RwDfB2mWOQGGcbk2tDCS68PosOlAYCTkKxDWq6ekTME44MUMyvA8y6KWY1ioCSE2QsgBQojnXiaLoEbLGr6YeRFrE9f69TjS3A0CdsI14nzK48y/C2KZm/hOKwVFi0BEWHiM+vDk+gjyqA+Z68NAsqtgJRgs6ucB+Cf7ukXASMxIxD2/3SP6kDXR8FrM2DcDr2x+RZyg1B3p+emaYWfSMLmDKQdFQRPEd2vSVjE3hp6FZyTXBwVFSm6KatZrgeblmns8B28xFJ4XgJhljxb1LR71IetMtHzUKgz5qAkhVQEMAvAegJcCUhMLv/D9se+RkJGAvy/8jUK2EJeyLqFGbA2MqD8ClFIkZibKXBECydnJAKCZZEhJ18VdEW5Tz6oudak8uvZRDK49GIDLohb84oC+hSeNo9Zjc9Jm9P61t+6+IuwRnk5BhllRKA43g89RHzdpwEu4LdxUjg8B6YAX4Nb1UQcKo52JnwKYBCBarwAhZByAcQBQvXp1nytm4R3LziwDwFmZ7+96X1w+ov4ILDuzDG/tfEtWfsnpJTifdV6cqupa3jVDxxFeRukLdTbjrKyMNL+wEj3h8GYKK2XZ0uGlDW8LmB9q7EnYA+E7V16vO2vcib/O/+XKR20wZLBmTE0kZib6vX4CWvfaCFKXkpHImmCl2FwfhJDBAFIopfvclaOUzqaUtqWUto2Pj/dbBS28Q+uBOZZ2TLUsJS8FK8+uFP8WLGtvkFrj0pwYNsamKqvr+oD7zkYtlMLYsExDw9sC+gmP9CgOETlz44zs7zBbGFcXgx2rDurAwFoDMaH1hMBUkEfrXhuBhdyldMvGURdjZ2JnAEMIIYkAFgHoRQi5+WMzb3NO3ziNzMJMw+V/T/jdq+McTD2oWnbfH/eh2Y/NNOOV9eKwKaUyi1r5AdB1fXhhUStF3c6Yizo1bVEHQbM81CbPieIJJ+uEjdjED2GgkHYcm8HJOmUdo8Fwjb2h2ISaUjqFUlqVUloTwCgAf1NKHwhIbSx0GbZiGB5d86jh8odTD6uWGYl9zijIUC0T3CK/nPpFZU3qNaOlnUM2YkO/pfIE/LrheX5wfZgVC7PWWzBYe0qL2siAF4YwbmfQaRHfwud6eSvUyk7a9efX+1yX4sBKc3obM2v/LADAqRu+5Xw2kudXOans0WtHxd+5jlzDLgkKl0WtddwHVuUiPXypuo4GOhOVKIXTrJ/UrPAGg7UnWNSCMHhK/lTEFsHGuLeoH2j0AA6lHvKpXr4ItXDvA+lDDzTFHkcNAJTSTZTSwQGpiYUuc47MuWnHyiiUW9SjV44Wf3916CtTAiq6NzSe3b77nLg8VT2nnjdTcfnq+gj2wSBahDAhsr+FnOB6OFnOonb3EfNHwn5hQJNZpHHUFmqskYlBQkZBhqkZMQTyHHn4/MDnKktYCyOuj6xC9/P5mRk4Ifh+zQihN7OQ++r6MNtcDQbXR4iNE2qj4kZBYSM2t2LsbcSGFJ9cH7dopIeUYBjwcktCnU6caNgI1xcsAACw+fk40bAR0pcuk5VzpKXd9Lo5WSd6LO6BPxL+QJdFXXD/qvtN7+P7o99j9uHZWHxqcQBqqMZdPK7NSTF0B4sQhzwSwYywCUKy98pew9uohJqxmUqVadai9vgy3gS9ESxqM8JgI+6viz0tE4N2s4APYuN1ZyJ1lgyhDgbXRzDD5ueDzVPPrkzzOSs15WMuW5vz+nUAQOrnn4tl8o4cwZnOXZCxYoXf67UzeSea/dgMV3OuqtblOfKQlp+G93a9B4CL7AC4jhR3WemkCPHMRhLU+6Np686i7nWIYvRmFnfv5B7WCmfS8MsHDoSeuWh4/4IP9ftj3xuvk0JobcTmF+tQD08v481owgtD8T0dq9W/LD772oGwQiq6PkZscaLPAfXHs/RH8zB2A4uqxkLpNfEpjjrIh43XSaYYsdVDcizLolZTkJCAwsREAMCZbt1xqlVrVZlLkybL/qYsfyGdrgued4Sb6y93/36v67IzeSe2JG0BAGQWZmLp6aWglGLBCc6S14phls66LOXFTS/iwdUPah7HwTo0IzOMWJD+SMjupE7UuErx9ecOROfKH8pQ3tiOyueWN93GheSF7z9teP/efEy0XB8BFepiGPCiRPDDv/vPu7phm+1OsZjyK4tKN4Cq1yC6PkZspxi3Rl1HUsBl2Iv0flKaEm1Rf/CjEyO2UbctDsui1uDsoMFI6M91orCZ2g9r9oYNsr9pAT+iTjLIgfKWOBMRicLERFH8zTBu3Tg8s4FLCfruP+/irZ1v4ci1I6Klq9XBpcyFYYThK4ajy6Iu4kdBPAcDD4g/LGoH68Dd/7Aokw20PCs/poN/muxOzvpotJefy9CDcLX6l8XEJU4wLIXNC43Tcn0EkqCwqPnn6d/0f/HNoW9k6zqcZBGTQ9E80VWPwhCuo0/vAxZWSBF64hwAoHQ2xdj1TtGFZQavB7wYyKESLLh7Ri2h9gLqkPhThdmaeVcIJELN5gpCHYGE/gNE8dfjl1O/6IYxZRZmih1y6QXpYiefcrDItbxrbodY65GQkQDAfcJ+PfxhUTtYB5x8dceuZ0FY14Pp5N9ROwvUTHEtL7d4Iypc13+Ap/zKot0ZillfOzH51YOm66SK+iCBjTqduU9/VpubhVQQpecflUfx8nIWk5Y44VBopjsf9ZhNrvfhoQ0sBu2h6HbEC6H2w4CXYCeEl5Xxq5wYsEeh2gE6hRIn1GyuSxC1fNZFl7hhzlKLOnc3N68eE2ksmc87/7yDB1ZxY35+Ov4Tnlz/pLjOwTrEpEC5jlxRhLcnbxcnXk3MSETPX3qi5y89ueN60UxXhmfNPz7f44PuTbIcAcJSVLnGxUaz/LsekwdMXuK6joKA9z5E0eGkqy5MoQNTfnEiLpui9wG5uANALhcSjPIZXIekWZQWdRFbVKzW2c1IKSr9GEnPP4Q/dIV0yITa7oTb8LwYiR0RJww25e9zv30sal02dj19ifoIhmgaI5Thk0T2PkTxyHp5nS2LWoFUlNKX/yb+TprwvPhbKtrgm/2XhPW8UBdevIjcPXu4IqGhrv1LhLzw/HlkbdyoqoPj+nVM3z0N2y9tdx2TsqJQ5xXlISokCgDw27+/4eO9HwMArudfl+1HauVsvOA6zvnM87ohe0tOL5E92Gn5adh2aZtmWYAbuLLk9BLd9Z4YtYXFJ3OcKEq8AFby1LRO0H4wW56TL48qACb8zmL8GhYNFAn6ctWJ+EyhTCRlZqh9ILgZcdlSV5r0OQjlJ3KhxOWKAjihdmdRS++pIPYOBojLpnjsLxYTlxo7J2/jqFeeW4lzmee82tYsLeNb+rT9p7OdaJCk/dxbQq2ASkQ48w9XtEbONm7W6/Tlv6HoojzaIO27ua4/+M5E5w1X3mY2zyWKadcuwJmdA2d6OhL69UfSU1yKzhuLFqHNGRaxORRn7uiM+7bIv6gsZRFpjwQgt6gB14zUgngLSMtM2OhKmjN4+WC8vPllzfNPyUvBuvPrZMuUHwApvo44a8ULsjMnS7SclYS4yaQZmws0vcDto2ym62FueJEiX944QO+DLHodZFFbw4ojlHq0um8HoVa2qATCeKFmCeCwuUTZxqot6u6HJe4/Df122IAqaVT8bQRfLOpdl3d5ta1Z3PXVhBRRPLTeiYh898/Y/RsVqXULKCYucSL0WmCevaASajYvD+m//WbIV5V3zBVF4cyUD9IoungRl6dMwcVx42XLU6ZPF39TlgVlWeQddQ2Rdma4oimGL7kbF8aOxemOnWT7uPLW25i8hEUZ/pBt/pXXlaUsIkI4i/qvxL9kCdv1wo/cPThbk7bqrpMm6gcCOxu3EAnAUlbzpQZclpgnykpu13/nO1FVEcI+fjWLJ1ez+PAH1w7LZVBE51I8tZLFwo8UB1KId5sKbURfYb1LFP/70uHxxSsO3prvQJejBpr7lGLaXIcoDp1OsAi/nC6uFizqEVucmPEdV4YSgEhOueo1fsCL5N16ZiWLN352ou4lCqoj1MLHV2s9wHVCDtzNivv1VqiDhR5HKAbvobh3B3dN49MpWiawqginhkny7dqdpmh3hqLOwp0BqVdQCfXVDz7E5VeniK4ILSilyN62HQUnuERBTGSkGBstcP4BLrRN6vqgGv7q6z/Ow9X/viP+zea4MsE9uroI+cfkIXVUEtLH8O9X5TS5ZeKkTvFh3Z+yH1svSYRWOYUUj3SWbiXumlJKyy1QlmSDixTl+W+Ys6BA1kwusAPNz3Ln486iliK1qD0RncuJ8P/+58TsWU704Du4GImfu/chioUfOcX9tirfSlw3YiuLcplA/Uvax+xUqZPm8ptB44vAhD88C7XdCdS6Ctz9D/exevE3FuWfcuUaJ0UO1LtEMWK7JPE+AUIkH69xa1h0uW8mQj6QR4g0PU/x/jyn5seXZeT39O6dLBZ85JCFp43ZxOLhDSzani4ZQi2817WuAjWuUnwyx4n//MKi0UX3z2wW370VkuV9P5DbegVkr15SdPkyACBnK+drpSyLlBkzUMi7MDL++AOJw4bj4uOP4+oHHwIAmOhoFCXLU2g6UvSFT4Dm5yNl2jT5dtdcvs52Z9Q3JnOlK2+znb+hoU7OMhFgKSvGTquOKeQO9lNgv3J6JXfDv73pUQ8rpCCU4p35rg+CMz9P9lKHOYDXFvNCbbAjMEadLVWXyb86xZfEJtl9mSygEe9K6Xyc+7dymqQAX0fho6IXUmU2L4i/IAbvx4MbnJgk6bCN4Fs2pKAIpXgr747Pt+G9efKPdrlMYOhO9TFsa7VbaL0Oq8syrLyVdP8mFiFOYOgOippXuPKx/L0UytkYGzofY/HzNIdX4X2BplvVbmhXsZ1+Af65aZ5IMX2uUxwboOeTFhDeidtCqOHkrkranDkoSk5G3sGDSJvzLS69/AoAIHniJOQfPy7bRGrl+ooy5lpJ8n+mir8ZxYsfWuQaNp3nUFvvwjrAf6OXVNEOfFSJkbJaSCMJ7A6Kn2Y4sfhD+fXNz83U9FETSlHF4Cj8zieMn3/VNOCNheq6v7jcibcXOPHLBw6xzSFt6gsLhbradA4Z6JhrPaTPz2c9P9Pt4LprN5V1zIZLbvFDf7NokERR+cjlgNTR7tRuJY3ewuKj7/mJi/nzEK4zQxjcv4mFnQViNVKVhxcUr3h/2ftLcRq5+HSKSmny+tTXEeS7druvd2W+UR+aqf3u+0pQCTV1up7ef3v1xvkHH+L+cCPGzms+jHc1iyQue+QWeZ3mf+xEhesUj//1uO7miZmJSM9Px76rbifLMcy0PdNk8dR7rrhxGYEiMp+iXIb+Aye1Lj/8Xvuaz9n7pcz1IVDvEnCHCQE2SphOrql6Em2y8W4Qojh82Uwqdq4pP6wCep1y/qL2ZYoP53JDuKXYJZe3V/VeCLOFYvQmJ2pe4dwbyvIC0lGDPY5QvPOTe0MlN8zrqqPlWSq2Fivd0C4jXFfhmbATu2hdKu9Hr4Ms5s10osINbsUrS51omcAiIl8tmDeDL79y4rPZrutX9xJF1+Pm69HuFCuG6YVkB8aiDq581EpB5v8mYWHIP+VbLmYpke3aufWDG6GxRvqKytcpDpS5Ilv2zB9O7K1HsKshg5yiHHRd3NWn4yo5kHJA/F3w778oFwpci5U7HKNzKUpvPITp85yIzwTum6J920OYEOQ78xFWSFFd5/tXPh0I1xDPtxYEJtJBzxKWIliZodLxTaD46ktXnfRcH1pxxQxhvIrpLRNeRhV5M3a9E7WvArWvACckU4lKPxz5x4/j5ed3AACG7uTqnFQWmPiY2tqPMGmR/luJyEYomqH7Uc/bCdd19CYWFW8AFVJdbkdGsnlkPkXvg1zhcpkU12KA9qcp2p+muFAOqH5N/7n0N3qd98qRtkaZuMx1M+0FgZlEOKiEmurMXUfCQnHu7nt82neh3fUi28qU8WlfenQ8RXGgLvc7JofrSe9+lKL7UYr7pjAYv8qJ49UJtjYNTENm5rfcS6584F9e5kS9i6vdbtvsHIsWVwqwo6Z2BIDAgxu175HdP253rxA+HFEF0LVE9SxqrUT63g68qBZdTSXUglhVvUZR8QbFxhbc8aTXK3urOv69ahpQU53HCxGes9nKSI/yXMYXhDj6qmnAg3+zwN+HcSWOWye95j984vpo5ocQ8V1kCXSNgptNWJHvVv2BZ3uhkR/qoiTIXB/aXyMm1If2G8+LT9jg5AXIXr68z/vToudhiths7mZ/O8uJ7z6TW5m9D1E8Z6CXHwCanGdR1o2bwgzlNIJBnljtRL99XF0an2fx+iIWQzbl4sMfnKibHLhm6PVS/t+n4N54eiWLn2ZoD0XWCx10Fxo5dAeL4VtNpGjVGEwiNP+fWMviqVWufbWVdFaz2dphlR/8qK50FYMuglVtuboYjX/2hrHrtS+qIMJ61zwqn4plpFa3L+lVfaVGTA2305QZ5VrTyr7vRIOgEmo4tV+K7M2bfd61w+ZqRofWqqlZhlSp6PNxGAr88oH6gxObY+4hfPNnbiSgP1D6CkdudqLvQW7EWZVrFG/9LL/uT6wNnHlsD4CHRHl+bGamKqyx8QWKiny+EcJSDN7FIqxQexLVe+reAwAYvZnFfds8XwtCuUESZVPVaeeUlrwQ7SEV7bQ5xmfwGbHN2HNUwLvec8KB3zoSFAag7Txoj3ZdhKieijeoZufha4tZzY5GxsQrEplPDUfOeGLWVw48/e0VTZeeWRz2wHwZPQo1ISScELKbEHKIEHKMEPJ2QGoCgHrIkVD2iScMuS1ih92L0Bo1ZMtkeQ/KlZOte/0BGyY/YgN63gHAt+aiXorIObPMK1R4kbwp3+wci3d/dMhiiLXou1+uDkpDYdgO1/Z69d3YzA/mhQYxGp3i45/17eEuozBIC8+dU3VOdT9KxQE07U9TPPQ3i1FbJLOKUIoHNzgx+2Ab9D1r7gGocAMYvIdi2HdnVOuUL1iofmCOT7z5ZLTs70I7d/8YFvi5pw3nKgTmuFoIbp1XlrH473zt5z4uW6PVo9GgbpHA4tXFTsRIDJ3oXIofPnHi3u2ehVorskPZ8qmYDtRKyEG//b4LvzMkMO+NEYu6AEAvSmkLAC0B9CeEdAxEZdhs9WeWiXY9gFfC8pCx7FPx71L9+qnKAwALiipz5IH9DhvwzigGv3RhQGxyYThVjeBcRQL2iVGY+qANf7VSX5aldxi7AdEGonNaJLBiz7cWUkvhpxmuB/2ZP1nUT9YOe5KitIiVFqcUh84TUBigYIhd9dXX8UY0waq2BDOGMnh7DIPXHrRhf22C0Pr1ZOWM3oPEUaPxyTdqRRQ+SoLlNGgPRde5XGesjeVCsOJW70L8ez/Ktiud5f4FFkLTQgrVoqS0qIfu9E9rhVavjDcecD3HF8vLn+m/WxCcqgKsbM9VThBub/ijvffb1kyBKgkX4HJXSdFqbY3YxqL1WYq1zb4Wl1VL5fbX4pzrWhJK0Xc/ixCFn1kZ2eELLz+uYVCEcfmBFvRgsK8uAWWKSagph2CzhPD/B8SZVJSUpFqW3rqO+Hvh8Z/x6NpHxb+vIROHa3IXJrk08HsH7vfyhN/wYdL3sv04bMCRWgyWdGUAnQxihcSJM1UJEiqp1/3Z3piXSM+CkDL1Fxaff+3Eo2udaJGgfnHtOh3H0qbhV18ohh8rmoH1S9fH/I8ceGmZ061Q6zU3CwwIdY6HrgOpP/q+KXaMfcmGT+/Rvo4/9LVhV0MGx2owOF2V4MORNsSNHCkrs7i7DX839/5FKOLfM+ke6u3iMkS5yzE841snCKV45C+nyjqLy6aodZUfkOPgrLc3FjjFJr/y+t67g6LNGd/FmrzwGLIlyayyi7LxTX/Xtb1RCnj9IbsYAXRZoyH6+V0Mvhjs2sZZq6qmKP/U2yVQuY1qqNZ7QtniAeSREgJ2J1AthXLTgfGIqQsko4bL8n0u12Jcde14kuKJtSxGuHFVxWZT5O7ZgztGfKzpnvTExXj1tQkd2BePPW/D750YTBthw0/HfzK9XyMYUh9CiI0QchBACoB1lFJV9hRCyDhCyF5CyN7U1FTTFaEOhyxHtMDSkMOuyvIPfWQnzqDPi7SLD+DqtgzWtuFOZ0MLBkvPLEVK18bitoLrI4QJQWhN7mH7sTeDB192PYRFLPeZP1CXwTFJKBUA5ET4/0vZfz/F1F9YVLzOpf8UCNV4hj6e4xDTT8bkcvkyHl0nCQtSfB/urXcvQp1cJIo7tI4FcFEy12LUy5970nW9lB+Ad0bJHydleFleGIHTZvw62mPjxN/bBnP37Nt+3ner5PHJEUtptHpsbr6vpfKBKteAAfsoXlouL/jpN068wouO3cHi/k0sml6gaHFOGOqu3p80NazXhIaqBh5tkLYEFZ2ki7oxcHZpK1u2tSmDS2Vd5Rxd2mi2JgHgGt+wLapSTnO9O0ZuMXa+difw3jwnxm5gEZ/OuaLE6BBJOgih1ZolyUocxYcvdzlO0fMQfzyJ8VIpjWLO507X2Aw/QYscyIoMjBUtxdBTTyl1UkpbAqgKoD0hpKlGmdmU0raU0rbx8fGmK0LsdiQtfEe1PKGS6yIIwhDelDv8mrTtYnA9Q7n44SqHdyGhMrfwuc6u2GvKP7jhtnCE1qqF/73TBivbERSEuvYvCDUAJEseYMFy/GAEI4Ye+ZO3Fjgxfo0r8YtWb7k0hCmejwZJj+LiaivcUI8KlAqElkUjYNcZ9l1oJ5zfnmdPPYIPhzNIk7hC377fhmUSd0SW4mM2f7Rvc1DaYl1fil19qwLwLYohPxRoc4ZFXY2sfJ7CC4WQRaXlHSnpgLI7qPiMEsrlIzGaqMosJCZaN4uhFtmRBE2//QkRi2bj/ldsYgjnBUkAFCFAVqT29s+Pt6Hcjr9Aw8z7xLSijrQIcbp8+M//7sRdu105ZqQW9UMbuJuQH8q5POpdomjGx4qXy+Q7ailFN0kcuL/cHyqKAtTpoMBUXzClNJ0QsglAfwBHPRQ3TZ5kFpSZ9zCYdf9inN4/GnvrErT9l4oWta0lJ9RHahJxOLKwTpq/mWqEXoXZwzB4+WBcyL2gsjq0hmAv7Mbgr9ZcuQN1GbQ7Q1HxoH89P4KQ1rxKcaQWUXWqKH18woOfGQlMXeREfXmqEwBAaLaxie/0EikVhABZkQS/dibIjCRY25ZXBYmVcq4iwbmKNty7g9tJnsIVEmGPgA/T78EWGyv+FhNQKe5ZfgjX6Xq6MjSvgxSG6luznqYAE9ZLWxHKjGp2B0U7vj/xpd9YnK5sPFGVkrxQdcz0/nal0XoPN0SQVKsszqhjBludmig6JDFO7AQ/d2cwZjMLarPpjmQsCiEIjYpB+tDuiFv5j6lj6hkDSmZ94xJT5b1kc3OBcO5dEL5PQ3dSNEhyag4+e3eeE2crBt7SDe3aCcjZ4rmgjxiJ+ognhMTxvyMA9AFwMhCVcUa4Evcfq0GQX68KANdXXxyu2qkVHnzZhn+rEJlFDUA30b5AmC0MF7IuaK57f5crI5nghc+MlLs9MnUsDiMI/nQ9WvMpU5XuiJeXy1VEKhB64hSabizzkWDxKeObBcv11242l0gDolCma1yHlFj535VKaTj7AXzXl8H/BjH49G4GP3fXfwRtMZxFfbAWQZVSVTTLPPSKHeOftcn8qHpIff8Zivp7ChsUOr+kd/C1Re43qp+s71ryxCuP2UQf9DujGKRHARsGVsIn9zA41asOmPBw3Y5gd2jFeq9uS7CmNYFjxADx/hZGhiKvSU2ZC9BGbHBUKosfe5s7cJQfRlUXJSeDUJeFLaAl0gB37c20viq9/75qGSVE1g8AuPo5AKDBwQMIG9DX+EF8wMgVrwRgIyHkMIA94HzUfwaiMo4wGx6fYMOjz9uQFUnEGVHWtWJwoRzXkw0AOUU5ostCFGpey/QSIglcyr6kuy45x6V6RPWDY31LRiVIhXZgf233Ilxk8/zgCD5opRXW/rTcIhHSWeo9pIDxnAPCR+Ct+21IbFMF53mvlbvolSljbZgo6QF/bySDrwYysh7vat9+q7v92rYMNjVnsKMxg9/uYFA6rLRmudCaNTHrLgYzhzL4T4f/iMsnjJdfyBvRXISDOzJa10Gc5NslizqgVOWjVoY4hjrk+URicihqaYwcVFJKchsmPupZOfbUI/i3EnAtFljQk3s9T1YjGDfBjtzoEOxsxGDvmJYgIJo5VzyhlS2wIJRgbj8bSBTn9J30iA1/vTsQydOfwdv322XbEkJ0n+P5PbUrVM0PIw/TFy/GpCVcJ7xR+u8z3vKNaNVS/P3MUzZE33knrn/zGp55Sn6yz0r+ZmieXyaMNoKRqI/DlNJWlNLmlNKmlNL/BqoyTtaJzCiCbN45L0wMmxZD8MoTdtyI5pavOrdK3EZ4WAWLeu/VvX6pi/BCKm/1tViCZ5+240gN1w16YKIdyztrDEWW/A5xusK4lEIv0PkEN3DC2+aylJBME7lEwX1Idj3TBW/db8OeegTbG+k/gAmVCTKiXOsP1WbEodHCuZXq0hkA8MQEm6wDUot7692LzpU7a67b1pRBfhhBZIjLBBYiUmQWpYcXhtrk9+dLSbSDjVX7qJUhjuV4S054LrocM+/+0uqclfL5XQymD7fhPw/bQQnBhpYM7ptiRxEfWie1hgkhXlnU8RHy/qMdo3e49snvP7EiQdumd6qsbxtjA6VUZlW+LgkRXNGRwc5Jd2oeNz/O2Hyk7lBO0uEJM2kNhNYbAKTGEVSd9RkctSqjSPJdKxteFjeiCVa3IShVOR9I9V/+IU8E1chEZX7lRmW1R81/fcgVUyl08ggv0Ie7P5SVXdyVwSEdl0OpEM/jmfXyXrwzxoaXH7Ph+XHcg5oWrS5TpNMDsLmpvqgM3kMR6sUEr0oqT1toqrzDDoTaQpETQTB9uA1Xy3hnKUx+xIZZU5uIf2dEEVwt7X5fNsaGEQ1GGD6GMMpO2ZnWYL9+VkKqiJ0/UMdVJ7sTeD+jj9tjClnkKqYD/fdyyfLNkB3OzQ35TwOC3ztqXw9pDphKUWq3kdR6IyDe+agZGypEuka/RIe6HtyKUdzI3PHNx6Nn9Z6qbe3EDid1ih/KPfVcoaxCyzalqba761qNOPOVDQD2SpVQ7umnxb8z+e8HEx2N+nv3YuxLrotKKZW1Hl7v9DoA4Ps7bajW7Tq4uxAkFvXNRDljyYYL7vNDA2rXh5KlXRi8N5q72tKHv1/NfqgeU117I7gfJCJwsTzB5bIEdoaLV330efmbk6UwIgRLOTuCYGVbN/O2+WBRr2/p+cFJKgvslgw8OVmF89mGMqFutjJGTgRBemlzkQEExNTMIPl8Nde1kp8rExmJ0Dp1ZMvOVgTmP1YTRJGZUfoRDXEAEb+sNXx8aVikFsrIoO/uZPDMc6GghGDmvTYs6MFg+r0Mnn3ShpM6LpvGZRurlglCTUEBov5Q1S9dH0vvIDjgwQ23fsR6zeWVS1XGxvs24umWnJApRYgQAgfrwOkq3PKrcZw7b0sTgndGc5VR5lm5UYorm1JWfX/1PlhKdjY0J4Zag6oE4p99FuFNXYbEy4/b8MpjNjChobCVikJemGtb7jpzfyeV1Xg/CBM8ro+bidKiPpx6WKeki8QK3IWShhkZ2X+4LVwzc5qAcPndZZJzleUKZSviKVPi5OWEDqv8UPcj/+I8jDx0x7Hq8jpcjVOXyQ0DEsu7yr0zxgYQ4nZKMDOYnYmZIQxCbcY/Ek4bwYMv2/CTRqdW9e/nInb4MCCEu8Af32vD8frhiDwrTz8rjQjydwid0necGQHk2yXXhBDsacAgpTQn3JU63MBXs7rL66eRx0Lm+gBRCXW5iHJY3N2GD0Z6H8NYLqKcmPpVS4QcrAOpcQQvPW7Dwh4MQAi+GGLDsRq8UIOi/p7dYnmWD+djKqrHsBsxhgBgeSdzMsUywOMTtK8BCQ9DdK9eKD/1P/hqIIOMUgQXyhPOjZEv76kUnuOJj9rw4aPR6FxF4Z67SSINBLlQG2F3AwYvPmHD7gaeT0VqsYfYQgxNbW/kWdITpssK94EQppQfCuyuzx37gxHqOjy90lyzWiA/RD2iUCsZT67Eavi1C0GRncBO7OhTw33z3yhm04QSQhBmM5chsSCUaIZfhpQvj8rvviv+nR3OxceTQvWz9X0f7tq/stR/Sl1u1gzVQxNepP+MpJciiKuVB1bRmtQqrxRqpVDcjNnPhWMkxRPRd67EFh2N62P64KuBDEL5WYP6Nr9XXC/k0jEq1DcUbsV9ddwLZMuzFJlR2mWYcC6Mo+yDD+Jc19quFV+2B34YJCsrfCzPVyAYXaOrRu5yy/VhikvlPF+sDhU7yFwfDBi3ze0NfOfY0RoGboTkgXv/PtclVSZ3KuQTthTZuA65+6bYcaAu12FktnmnBbHZZB09gLafPC8MIHylKf+g/XrXr6gaXdXnOngDgVqofXXDVH7/PTirVEB+KBcfz2gItdDiqefHmayiunZRLTtcy/O9NfLsy3zUGh8pb/Nom8GTMSWI2/X778TGFq5IoPAyrhGNKzpw7whDgSXjGmDNQw11O5yZe/rjP3fK+52kHcFaKN8BKSTMFW+nev+vHHH9dhSASq5nTNq/QFqCYmfy+zC9+3T8etevbuvmLUEl1N5Y1EYZXGew7GXYn7Lf7dfwdFVOSNNizQnowToMnphgw9NPq5+WDF64teJK89zokqecGgIMw8ChEGZtixrix0Vw7dgZu+ZsJ94gtQY3j9ysWeapFk+hTiznT9Zyfawbsc6nOsTedRdy538EEAIndYIpdMXjCTHjadG+fRx/6cKg1u+/iX+n//AuwsNLYcYwGzZKcpKkxXg+jp5FPa2rawJmlUWtwOkh+6RZNI/h4YMiTuDMixzLR9swpVxmsZD24VJZgnNNyuBU+wqanfEA0ODDTzCw7mDZMk95aNy5spgw13OmNV/mN32/waI7vwfeLQ964g9x+bATm4DPW8sLE0Z2jfrX7I+GZRq6r5yXBJdQU/NC3bSsajS7JgRE9pA5WIcpYepYST9hoLKZmhFFcC2WYHMzBgUSoVzSmcH5eGB/XfULsI9fdryaev9GB9lQQuBQ5NIo0Gie5oZxzTnA5du3EZvfmnFS/2qZcO20tHfXvRttKrQBwN0bYcJRd9uZnTFcKM9SVtbMfvI5bnmaRrhc5enTUeXzWTj93lgA2j7+P9sRXInjBoqE1a8vLm9VphkYwuBiPMFXgzgROG0wj7xTaaQI6RLsrusitd6kywX8blFrPA6GjCmWBXuBG70ohEUSiUDuq8dg6oM2rG9JwIABU5gHh51g9lf98d5Iz++ktJW4uz7Bn+24igqjKoWp2bSMlLCGLiGNsKtDBu+ofAeaZHOjP+ml/QCAvjm5KJ4pkF0El1B7eAiqR6ujNCa2m2h4/0qLQ0+oH2j0AGJC5W9xuQj9ZDRKoY4LiwMAXClD8OBEO555ioslvlyWYOLjdlkSl17VemHjfRtxpHEkHnnBhrcecD1d//LzGPzZngHCwvDtXeqXUwYhsmZfSixEC3vacAZbGwsPNMHuBgxeGGfDnvquTqBAWNR6sJQVhYcQYqgzsWZMTVP1ECwmPStQGZUDANF39kVM375o1biX7n731Gcw4Sk7ciIICCGir9uuyJU+9kUb3rrf2Cvu1BFZPStaeB4zI4AVfNZIvwq1oxC49q+6nh6sdkopsO97OA/8CADIqsS9R4JveGdDghpFRXimUlnOx04A5vx2AEDfGn1xqrrrepWfPJmvSwFK15ckrJF8sD4eZsPfvJtSGG0qfJSfedqGit24JDiZEcCYiTbYJGmTP+7+sfZJFHK9+TQ0kt+f63muEimZXIRl5cbN0aXa+/MDQSXUnh6CgbUH+rR/6YPMUlZXmBjC4I7Kd8iWmeloU1qmqXHascSrhq7CzB4zUS6iHArZQnWGPv7PsxUJSm37Azdi3N8uysiFWjksPJ3/u1ltrnUgTTxlZ+ymLeqhdYdqLjciGAWOAvH6M4Rx25lo5zukZvedbap+gkVNKcXJ10fiYC2CKWMlF4gQZNYoK9uGCePqwcRwL/T58uprokyDu7otwf0TbaoJKfLCCRx2gspRns1qI52JggFAqeuj+vgLdszv5f6D5BXr3gD529UpWye2DsCycCS5nxSaggKpJ8Hyz9Keh9uhyqefIKxOHURs/g2f3c1wA8Ekz4iNF0KGMLJIlrKPPMz9cBSgQiv9zE4hkmiqmAfvx7dP1gTAtWyjKhZgRyOCd0bb4FC0LitGVUS4LRw1Sin6ZniDUbgD0q1+Pb4H6/J4sadOeV/BkkcDNp1YcAm1hwdNq/PPTChYzdia4m93Qm0jNtW6suFlVeU6VOrA1YG/OeUjOD+C0djKMHuYaPVJxS0pnjv253fZsK4VwdmKnFjZqIdOlFLhsgD9EKc8AGHZHQz+akUw9MUvVdtWLqUWk8G1B6uWSWlXsR0AYGAt+QdUz0UxWDIxRIgtRPwwMNAX6o33bcSmkZsAAPGR5rIyCgLvpE5ktqyF90fZxMyK4jms0U6oY4uNw9SHbPj8Lga/dnZtM2qyTewUfq3Da9xCoh8BMavdf/BT26ke6+pUpPgVnmvps9SjWg+3+2AL3aRJNMtVec617tW6A0eXwpmgHYOtRHjuaGQ4Yvr3BwDYIiLBMlw3NuGfdwaMy61AAIdWKAhl3UbCCf7tv1swKPfqRJytJXEXMcCn99hEV5+SXffvwoq+38kX8snZavA569rlu1KLRVOKisKUgVoGSYD62YJKqKWuDy2fsFkfpRRCCKZ2cL0wlUpV0hVUG2NTfRRCbPIejJk9ZqJnNW70ltZLZQS9D8U7D4Xjlcc4V8mc/jZQhoAhDK7HucrHDnVZs6Mm21D+1ck4MHmQzH+3qbmrPKHcYJRv+9vEZqiA4KtT1t+ThS0Myuhfs79secv4lq4/HK6HPJT/oN1Z407UiKkhfpxCbCG6ro9yEeUQG6Yz5t4DIQx3z1jKasYlAwBTpJ3UhBCCM1W4NLi/dnM9C6wkn8nIhtzEBk3KNpH52IfXHy7+7vLLkyj/w10e66q0qMV6KIaNu8N5TT0VmC+ojpaTCoenofqcDEM4G1mdiVCGiCJHCBEtakqp9rgFDy20zCiCUZNtWNuaC5eTGj26taUUSD4AhjBglC15Pt1xYxKOdXXG4r4sxQdQyCfEOtX3RCMDpz8IWqFuVEY9fNzM6DUlBEQcIgtw/im9/TGEweiGo2XLwhi5xacV3ifcNKO+Xj0hzItguCB8CTbGhqvlQ/DMUzaMfNWGyh+8j/JLf8aE8TawDEHZhx9GUYXSMteHMJGCJ/Tq66nPoE5cHRx66JBquPHLbV92/bHuDdV2gltJeKFsxAY7Y8f45uMN1VeX6+eAdysAvGAJH3Yndeq3vM7vRFic+uVS3psKi+ejxnzt2TsWDV6EPQ+4XAJvdnpTsh9jOJSuDy+a0MOUgiJBiLDxFgICOPLRPdd90jOu3i7BtREbcOEfIPmAeE0pADt/fk7WIYqQ7vNmIJqFZbi4ckLlrVPdN2DnF8DsHsD5nYBTkU9WqAelqBgaq76HgvFBna5WoXC/2NtBqCVRH1riIRXGMQ3HANDuYGpdvrVqmZIy4WV0Bepcxjk0i28mW6a0+Aghqu2Fm2bU16t1/NENR6NV+Vaq5UJURmqca6BHRP0GuCIZVMOA8Sqxvt4IzSrRVcQZuXW3VZxD96rd5REJbqw8wdUl7OPZVs/iz6F/Ys2wNQZqrcHRJYAjHzjE5TmRRn24o0ava4iqFYVqs13zbEpzYABAVNOmiGwrnyFF6HRyh1Gh1itHCMFrHV7DzwN/FpcJH52KdlcnRBmnE2N0hLp3Ti7m3Kkz07liNJ5enQjhhLpdfgGORLVDrNO9eDohMVrm9gNm9wDzCxdJQwkQz9+Sa3mpomjr3icz7oS8NDgLsjTPQcb5ndy/OalqK9gpOZ5GCB+EVMqSD4j4FtwOFnWepBmaUah+gAT3Q7uK7TClwxQcGXsEZSPUvmOt+Egt9AQqKUs9d2OoLVQmwAxRW9Tuht5qHl9DqKe0n6Jp/TGEUZUXmvbSMkqhXtCTwcmq3CQLegjJZlTZ0ogN73RWz7rjDnXdqcYvDqlFLVAjpoZu7mktlNeAOxB3JEMWNQBbKEX1+2ugVLdu4rLIkEhsH71d/Fvwd8t4X+HXv5EInJbnDBGuaN8aXN7i97u8L0vZ6tq//jM7suFINItvpro/C2uMwHupXFSDIC19c3JloY0rLybj05RriA8rrf1h+U57gmgVyYcA4f0kjK4ACq6PxoWcldq2guvjxiQfAMBllazEa/KVnKviWyjto7KVKe3aqUKoyzid+Goggy8Haby/K54Hm+3KP6tZz6J84NRK7ndopNoKFv+mgJa7tYgXaolFLR7ndhBqaUJ/6cv7TZ9vsHTIUrFDT/bAKkcLKde7QSp8QiIaQD4ll4DSotYSTum6Se0miX/3rdEXX/T6Ql1PDUHXE3kt/7xyGUMY0UfNRHKhRZfKEUx7NFY25ZiSAbUGaC4343Of2JYLk1Q12bVyVvD7VVrU3tC0XFN81ecrvNflPdU6UagNDQRRn2tMaIzoe9b9+BflAbnXud9ftAd+vk9zrx91+wi779+Nu+rcpXKrAWqhln1YTq0BtkxXbVPOHonOvCtC8B3PTLkmG2RU3cGL3DtlXR+W62ddO0k94fpdILfIZVckYb3EknToCzV/v9vmF2BzjdHoXaO3ugyAWNaJntV64pOOb8LGn6rwPLz4hA3VVyyXbCC/f78nXUabFuXQqUq6at/kzFo4PT220jA6p0Pt+lir/pDKEK4DpS535+3i+nCyTlzIdAm1dKaWO6rcgfql64vNUbGJdPmQbLRQdEg06sTWMRwJIlzk6d2n46kWT4nLtXxloUyobL8ERFMohXUPNn5QXF4pqhLXa648vuRxl0aVaMWLa30YVJ1/hIBlCE6O6YCaixeJy7ePclmGzcrJXTruMJIGVmBUw1EYUHOAhrWofy9Ei9pgC0iPLlW6YEidIarlYnie2+fB/bOy+K7FePuOt1XL11/gJ6CY2w/4qBb326meeEy4Q3bGrjnAQqyr4t7K6rxwJPD3u6gXVxcA0KlyJ37nBOG8QCilU4hA0mSW2rUGAPigCpDimrxJusehWTkui/rYckOmUBkib+0I2whRH7N6zUKn0o1gg+Cv5gT5UjmCEGHIee510RVRd8gV1LvnCuJYFmOdEbg/U+3qIZDngdfkd5dRBkee3NUhhVId/7ggyrehRU0IkY2Tz3eqx1kL/ug7a/LJya+fk63fMmoLlgxZort/JYLwKa1AIV/vTwNcnUfKqI9we7jYOSnkEJHGBUtRRkUIsBJf2tIhS7HkLq7uT7Z4UhUOaCee45yF454d2Axh9eqJy6VC+H3/7/V3wO++alERJrWbhDGNxrg9npRQWyg+6v6ROl8I1Xd9CC+mL53E8nsnlQK5u8KbzjkAqB1bG/fWu1e1vILgo718yKv9Ptb0MdnfNp1XkRS6JoBoGFEB20Ztw5AKncRlQiSNMlpiwaAF+PxKqnqHnq7DDwOBdPnUQb1ycjnLXCdR/itpNxDFhxfKPjAKg4cRhpeDuNwHBZkqixrgn+WUk9xHcB/3zIZEsrCH8zJ8YadmXQiA52/o+91VFOWrLWqBK4dd1rMWkvreNkLNEAa141zZrLSm1KpUqhJ2jN6BUQ1GcQsUnQ92xg47Y3fFt2rQpKwrF60gbMpOjI+6fwQAaFm+JVbfuxpvdXpLFecbFxaHdhXbYW6/uRjXfBwA1+S4SqFWdkw+3ORhAED4TFdkS9mIsmhQpgEALl5YiB2W1vW5Vs/pnhfgEjx3nWdGstTZKfBg4we1/b9m0agLKcwB8tLFF9MXoR7VcJT2ioMLYT/jivntX6s/Iu0GxuLnZwBzB2i61Mzwnw7/0Z1iDABeaPMCFg9ejNlXuXmqlBY1HLx4bP0YEK5PWgJij/8JfFwX+HcDAAI7gCfSMzA/WZ7GtWJkBfTI04jQ0LAQh0g7IXPTgE/laRlE6U3aDS3GZmZhcho/7JpSl4AphDqU31EVhwMo4AewJG5XWdQAb1hdO839cWoVzDAkW+6Ln5biZi4wR54shBQ3El2/824Aa17V35Z1iu+aePeKy/VBCKlGCNlICDlBCDlGCHk+IDVR0LlyZ7zU5iWV5REdGi2xjrWtg9pxtfFJj09kywRr9OdBP+PggwcBuCz00uHyF0raGVM1uiqG1R8GQG71CLG97Sq2Q5cqXWBn7GLuCumEBA1KN1DV78U2L2JP4kWEGTTyJrebDBtjw9B6Q7Fo8CKsGqr94AodN6q8uUGCIMdk9WRgmiuOmjm0ENjxufZGTgcgaXlIOdL6TQyqPUhzHX57EvZfXO6nKqWqYNf9u1CvdD0xPYCdscstzMJc4MPqwIUdwKYPlXs0xeiGo7FllPZgGoHGZRujUx4nEjaJUK8b9peYuY1kXALi+fwUVw65mu1nN3HrAUy4kYHGhcoOMR2/vIZ75t1r13H43AXVcvdvGceai/I5SCmoJLzNCayZIq6LZVl8ejUVX1xN5YT6+4HA2iniW6WKJReuiQErVQgb1GpzDsxxMy1dUb7rowEAn7XweCwRyoLlHS3CVICBsqiNjCBxAHiZUrqfEBINYB8hZB2l9HggKhRhj0CeIw+jG4723JnFv2R/hDfF9R7ynB96bgKGMOLdHNd8HJqVa6YaLq5HKXs4MhzcTZcOwqgYVRH7H9iPtPw0bE/ejgmtJgAAdt+/W9b8rhlTE4mZiWAII/oWjfBA4wfE39IWgZIm5Zrg0EOHRIu+VEgpZBdx1tIf9/yhmcgHALB6MhBTGdGtOFdHk8JCYPmTwNCvVUU/6fEJXtz0ouG6S3nhejrszUdj4DluZKRoUZ9eCxz8DbhDo8Xw+9PA4cXc7xePiddQE8XzomWFLBuyDABw5sYZbkh20gHXttd9s6LdQqlOonnuOQjh79nHV1NR8ehviOKt/xDKAtEVgJRj8lDH3OtAnP4MRcoOOBGNZr7mm8I6Ub2IE9wO+Rq+d/7xFVwvQohdCBPiEmrWAfzzP9l2vaVx2HyOD8H14XAW4dH4Dpibugt4KxaowFv2GW5mceaZkZKKazabZ9/5FfmISzjyAG9HdFInouxRaJWfj8fTebEvLtcHpfQypXQ//zsLwAkAxuOnTLJl5Bbsvn+3sYgD/uGoaYtA6wry2GmtsD0ldsaOrlW7Gq7bpBrcCLPysKtcCIQQlIsoh80jN4sj9iLsETLf9qLBi7B+uLEhuAAXWrU8yVyyZKnbZfndyzG331wA3PB56YAfGbu+Bta9gfjIeCy8dAVvXbsuxiJL2Xo+CX1q9EF0CB9jfP0ssJf3eR9dBnxUx9VkF6AUfXJy0SsnF3Esi9daPA0hfqZGTA0AQFl3MbmCSAPA3P6YP3A+FoY3xrbzF/X9rZLld9e5G1/3UX9w6pWupx6SLh2leOQX/Tp5YuMHnEUr7UPRiwUWhC6fe9GdhABrXsWbrSbg+evpaF/Iul5+abM8N01/xB6l+uuU90cPtgh1i4qw4cIl3J+pbtG8lnYd5R0OxPHDqfvn5GIsUw4vtnkREIbDZ11RbaeFXXR9FOHFw+twRLDuFcPYtRBGNYZRoIrD9Rw1l35cOj3r+v21orWZe123xeaRnGuwLRqDeZdT0C1PiIgpPotahBBSE0ArALs01o0DMA4Aqld386X3gK7Vp4lW2hSOluVb4us+X6NcRDm8uvVVdKmiTuiuZPW9q5FTpD+IYUh8GwxZPx2oZzD2VEFUSBSiQqI8F+QRQ6vc8GjTR3Vz4FaMqqgrzuuHr8e0PdO4fB7nXMPRmxaqX+S5Xabj+O+PI45/AVfduwo5jhxgTn8g4wLQYhSw6hVOPPIzgFJSAaT4ROojlDTJJ7SagA6VOqDlHB33hZKMJMSGxSLWHg2w3Ag4T7zb5V2PZQBwonpihXr5/zoBKceBqVeAkAjMHzgfZULjgE+ay8tJPxqbPwQqt+KiNQScRYBNy+fPbTfp+GaE1e+I3rmcSMUeW4HHMzKByFCXyF+U+IiLcvStN91oBYgW9ZzLV3E8zE3GQv6Y5XU+on1y89BHYh2HAHglYT/gdLrqe8RYEv2xGZm4ZLdjTK3BQOlfgMsHDW0HAOsvXkKGxkxNc66k4JowoTFjw4/JVxGvdS43EoEwD9PD67HzCyBd4TLaOgOo6VlrzGJYqAkhpQAsBfACpVSVyopSOhvAbABo27ZtYFJIqQ8qVE5zteCrXX73cs31SjzOcOLheF6h2yQ2xottvHNDVIiqgJk9ZsoXXlV4s1gnwNjQLr452kmsqrjwOMQhjhMLAMhLd4U4KTvFVHHVLksvxBaCLpU6wTiUaxILJB8A0v4FenqIe/W0TwBIOwPs0BhFmcJfk+2zgB6T0SK+BXB2s7qc0oKVijTg0dIq52TxTi7j+vZsfM+1X8FdkXfdtYHT4cZKZz26PjrmF6CjhktDJDfNbX11Wfe66cREsSzFtNQ04IfBauHzQDkni3JOdeshklKXoWMLResCjXMtXQs4+Sf3vzdo1TXhb+/25QFDUR+EkBBwIr2AUrosIDXxBuHl8FMeZeOYEFZKgayr7tffbPJucLG00qmHAOArhWgKAqEUIZYFvu3repnz0+V+SRn6Qg0AWP8mvOaf/wGbp0msR5MfvJUvqwao6CL17WYmq9dvm6leJttecl1YFtg1m+u8lKIp5lTbcnYWuhFqp77rQy8UTYlJwRQpyjOfQa5sPd+O6Qm96KUoc9kYixMjUR8EwHcATlBKPTyNNxt910dAj2fGAt47F5hRH7h6TGeXgZ/nTsW5LZx/2VNkg55QO/LkoVp5N9wItQLlvo795rG6HinIBD5uAJxabW67Pd8aLyt1yWmJ3d8eXCxsEXB8BdciOPATsHoi8KeiNaQVs0tZN0KtYzVT1uUnVqKTLdBvsA5zz3TTYUD7cYGrDwDYdBwHUfqTgQQbRkzRzgAeBNCLEHKQ/9+3DP7+whtXRGay5swVxo4nPIDEuCXMh1GJMaGqfQZ45mhHofrlFOJyPb1QcwcA33SXn+sJjWZiXrrLGlRNKaW4TqqUkk79skJHpSdmNgayr+jG+Woi7ZgzQohkVKFRq1RKyglXJsH089y/yg+L1uAZCu7aKuPfnYXAjlnax0r4W//eFrkJVfMHrNOcRe1D6mKfjxHpOeAgWDAS9bGNUkoopc0ppS35/81FoAcMLyzqmY2AL9qYP5Q0J8CplcDbcca2E9wyuj30AbCoi/KAT5pxgyJm9wDek3Qo5mcCi+/nfnvKgZFyjOvYkdbxr9c0xFdiRZl1fUj/VlqUf77gvn4CKvHR+YiyLHD5MPf7cwPPgPQDFyKxqFO8iEz96R7gBh8FsnUG96+7UW8ilHvuQhWd0Kkn9cPKFo3RNwDy0g0c0wdYJ3Bpn/HyMVUC36rUm+ZNKtQxJgLZhpqbacgfBM3IRK8QLWovTsNsvOO3vbmpdjzx2zPAOxLfl2Dt61ngfp45GgBw4zwXjbHmVU5spUizu7EOYyFU0heJsWn4rKX+V8X5qDoTlecrWS8VRn/77lNPARveBr7pCpzbaszqm1bL9Vtq0e6d6586GalDQSbnuw01nneF27fiOgsxycn7ze3HLPnpXOpQozS/z79CHaExGlTPopaWDYsB2jxs7BjNhnsu42ducaEWOhM9lPv1EeDHu+TDglcZnxQXgH7I0Irn5JEIB+crmsaeBu0YfEgN5D4WEcLAlB+jonxg2eOuvxM2ADPUIydVSEWTMO6t4pTjQMJG6Ur9soBcUKSWcYEqsMg7zm3l/v2yPbD9U76OJ3SLy5CmMRDq7XATKWEWM24vpUXtcd+K6xxXnRMmPRecv9DJwaFJqQpA+Ub+FWot61kaFllJMvIwTPLxs4e6v7chkvQDPiYR84ZbW6gFEUg+6L7YsWVcB5ok057oO/YFpwPYP899GS3XhzTa4sNqwE756C0Vu2ZzKSov/GOsXoIFobTYBN+oaRRCrdxv0l7X71/Hcs18cVMTro8iiStAGRFhBukxd3+jXn9Ae6YWtwjnHGjXgR5mO74SNsj/toUAEWWAbBPWbqAR7lOghVpqUTdxjRmQxU/bQt3f26nmBp75m+AX6pMrgX91RvMJN1o5ginrKnBkCXDSjSvdH50YbgbHiAhCvewJYHZP7neGPD8CtsnzkqhYzVv/53cYq5dejgRvw5+kLxJhgB8UA1R2feVuY/mf0miE1NPy2GCpRZ3tJqTRDMmH1PHhVw6b3w/r5PI1n9OIob4ZlDU5ldYfipQ8tjDOos5J8V+dfEV4rvwp1FrvtSzpl6SFK3Un2cK0XTYRrrw/GL0IePQvn6voDcEr1DnXOLfCojHA/GGu5ZcPuzpj9DqNZtQHlj4GLFInaBcRmkPHVxge6qpCavXphUNJI1L0/IPhsUBOmucmedZlzoqXWp5ZV/T9wNmK8/ImWgFQC3XqSf2ynpBaeutel68TfNRnNwOzu3t/DGl9My6o48O9ISuZ65hd9oTv+/IGd3k9jGALBSLi3FvU984BGhgcJWqG6Eru1wfaotaLClO6PoS46gkHuJGlADB6ITCFn/GpwQCgegf/1dUEwSvU697UdivM7g5s+K86n4EglEY7oVKOc8OGf3mQ8197w1zJUPL/Kjoxdgtz1Gk8JEr/a3gMMKcH8D/JzOunNb7cu2dzZd6rAFzcA1zaz/mYD8x3lTm/U7+zy9sXQibUJmPWlfdDGHEHqDuBi3I5X/wi43mwtY8ZgCiCbZ9woxeLixgPo2Y9YQ/lLOpCN3ktmt8HtDXQYe6J8Fj53+M26RT00vURXVl/Xf073W8rfX6lfn9bGHDP/4CR84EyrnTLYEKAMPn8mcVB8Aq13gMlDQPb94NruZC+0Uw0xx9clju3LoGkfXILVoo7n++qV7h/lWJ0fod6QtGwGFcddvBTdv08Qnu/gljcOOeKyz2/nftQ7fsB+L4/sP0z7W3Fj4dJpOFWytGMerBO7njuOkGlU0IBnEX9TXfvs5mJxzYYx+uPfNs3i1gf86DZQrUjIpRo5M0wTe2ekuOGAdE6ycCoSeNK4MVjwMgF8mRL934LvHoBaKbz3ghIPyLSDkJbCBBZBmjEG21R5V3LtWiinkwikASvUHsaQZV6Ui4akvncDOMpvC87FfiuDze7tRG03B/KfX8/QC3Udkno119TjR1r2RNAIh/RQFng0M9qv6QSb/2rK9xPWKDJoUXcx+qa9qwgANQulJTj/rFajT4D0kEswU7F5p7LaCH4YW2hQHic5/J6kzgIObGNIBW38fwzN/Qb4E7FvJbediYyDNBoMNDxKc4l9PwhoPkIToQ9heq2ehCozAcVSEebKl1LQ78GBs0AKupMXTdY0q/Uwo2L1U/cOkKduF3+t7KHVkjfaCbNoHSkoRZZl7kyRuNCCzSmANLa9TUNMfIlX8nhxcDvz3i/vYCpzIUeMJCiUkWGevZ3rzAq1P46395v+Gc/7giPUQudEQQDxqhFrff+6G3b+iH1MmlLRXiuW4wCOjwJVO8EdHmJW2ZWqMdtAp7Z4/o7tirwwhGgdE318bRoPpILrXvod+DpXXLrWnkPI8sA7R7Xd/VJjSvp8QNE8Aq1ssm8+UPOLyt88ZWj0UTXhxmL2kNSp1w+PWeBwaa4MBu1DI0bnXlJvUzqB9Pcz01A6Vu82eQpzrucgRhvLYy6v9o97rmMHl1fdv2+46ZMeiQXBy3K1VcvEz5athD3Qi28A3rPupaYvpUBdNMYjyDNrSF9t2x24NE1QL2+wk71961F5VZAvMY5StFqEShdK+ExQPmGnBjX6gZ0edHztVUdR6oZgc81FJxCfWmfOkLi3BbODSEEmyv9mL5Y1Hp+uRw+O9zWj43tL++GelmaRl6R/HTFcVLlvdVLfRAQXzAwn6JhzGZQA7hwPSneDCyIq258UEpLHzotBUFofI9+0h9/cNdnwLN8H4GevxTgIha0RFOAsbnPkyxYhVLRrC+ZlFnv46cZt6xhUcvW2+XH6vgU0HCwa33nF/Tr6Qm3LVMNQR37B9DnLS+OI302A58BMziFek4v/XVCiJnS4vamM1Hq+rjwj2pWc9M5eZWW8NFl2iO1lG6bS/vk7hVvwwXdMau15zIZfkwzuduLfAipivBEpXXU97/yDiCtpDqM3eVCqdPb/fFCIoC+75ivJ+ASBH8mFdLyIVfrAJSry/2Oq6G9Xb8PgIdXaouU0GpgQjhXgcDDq+Q5Kx7mxxw0GgL0ep3z+973k6tzTe/Dq9Uha/Mg1ELfgPBBjSwDjFrgWt/3bWDEj9rH84RbofajoEqNCMFir9oOeC4wQ/SDU6iNoOzgmj+cs7rNWNRJvL+LMFyo3ayW8ggQwfVhFKWwX9TJ5uZpDjh/9Lwr8TQf4E3P6W0A6XWo1Q3o/DzQ9SXXsgkH5eX7T+OEU8ii5yk7mj0c6DzBuxk+hBdVS6jL689r6ZbOGi4UaV9NnZ7q9QDQ6WkgvoH6Hg79xiWkthC5vzUiDoirxv2u0haI4WOdbXag2yuchW0PBYb/AEy5pB/HrWXlMzquDwGhg9Pdu+ptR68/J/UwfBxeqOv0Mj8wySBB+HZ6SVYysOgB75IcSS/6p81cX8gck0Kt9LEqXRxGMRoC50+kTd7hBtOLBhqpb1EQU6l7JlwhsNXay0UisgxUlK3HWY2ASwzM5hWJre56ZgTBlgqSsl5GafcY5/eVIm1BANpiLiC18lqM5jrwBEtY+UFhQlzX0l3OEZudGxhyz/+A+zTGNWgJtSeL2khcslKoH1njeRu947lWGtuHWW7C5B8lR6gB7uXxZhZg5c0VrGrTFrVCqM0KfbBwswL8q7YDHnQ3TZpUqPk6uUsyz9jl7pIIDaHuPpkbgffCEe984O0eBwZ+5DqOINhtH3OV0fLbGukY1eoIK68Ii+v7X6D9eJ3tGfVvPaG2hbh860aMm/BYoPHd6uXe+KiNZAK0S4S60RCghsHRpcWQMAkRcdy/AQwCKHlCrWxOnTeQzUv5MDnyud7vE3+YO76y01FL6Ns8Ym6fxYHZHnBv8eSLl1oqgkiEuAmpY+zyF1UrisUWwu1D2pTXGiTR5hFXGJlAqwe42NoGA1zPjCCuA6a5ymmF/WlZo6r6GxQZvVQAMqHmPyDC+6Al1EYnkHAHYwMmKfp2PFnURp4v4SNSsRkw0kQSLU2LOsAWr9B3kBW4xE0lTKgZ4Mch8mXf99cuq9xOCuvQnlpJ2Qz1RL5Gk7r5SPUyd+glPfeFp1WTyCuOeZOEOuMi3DZHpULdYIDn/TF2uSBpCZDW9VT6X9/KAO76FKig8DVLLV6ly0MqskohqtnV2GwieoNNlOi1GrVCxgRrWemiYEJcdfY1J7rSxSS9xlrCacSPzJiw9t3xxk0Ida13J/cR7/vfgB2iZAl1bpqXfmHFg8M6gEyNwRdm3Spaw6eNDDqQEogJOEuV58RDD187FqWpJD3h9qU1YAlVk+RHIYxcMHNSuA4eKVpCXeMO7X3X78ddp5b8jDhSX66WQAsoLer088ZC+Hy2qCXbKzMoKi3qsFISi9oLMRynM8q17WNAe0niKr1zemCp+wgJwX3iTZinbD82BDzO2R4K3P1lwDoSAWOT284lhKQQQrwYamYSp8O3PMTeonxQWYf2C232odHqpDLr/zVrUTQf5bkMY+NeFD18TWrU1MQMGNU7cRnb+mtMtGukHvfNA+r24X6HhMsFqdFd6o4eu8Z9rdtHnp9CICwaePhPV7J56WAqURQlIiCE+ikt6qrt1UKphSCuesOWBQShbvc48JQk9a1TEj/uyUcdGuWyhJUfM3c8upYL3avcUnv94JnyZEd6H/26fdwLW+maQNm62s+FO4T7HVGaywnCLTS3jyDEiOn0AwAD/gMfyUsH3ikLvO8hJWIgUAow63R90WXNGZM3XGsiUdMzdZgQ6qjyQP8PPJcjjHs/obdCPeJH4KWT7v3ISuxhwOifuUEP3tQjugJw/xJOPGKruoSh+6tAFY15EfVC8Ya7mV5LsJClz4kg+FLrVlgvtahfOArc/YVBoeZF/8lt7ssJVnLtHnL3jDQWX/RRS0YmAvKUo1HluPqZGZpevaO5IdPehsuFhAPP7QPqeoiF190+Sh437ktdggCPQk0p3QIg8I4eoee0OFAOO/9hMHB4EVCmDtDyAe1tlElyjOaNMJtfwqxFbcSnrbRylL73cvXMHVOgYjMuHtfuIQZWLyZXmjei2yTjYU+EuMRDEE69OFy90LnIMsBds7T9jMK+pEIt+PGlQi18VKUfwbhq3PbKgSFGRt9Js8NJEUYYlq0rXy5tjQr3VHR98MefcAD4j6TTK65aYEdW3vT4fDfPzE0IowsUfruKhJBxhJC9hJC9qaleTvdTP/CGuybKlKpCE5Kx6w8+UTb9jA6aMNs5aNa6NSTUHnyhZqd9EhCsNU8fI2G4f3wj+fIhn7t+95oK8aVzF5Kn2jd/78SWi+LldHef2ozVjlMWrNEYSR5kQYylM4kLH1Wt81f6avu+zX2YhElnlbyVAfTTsXQ7PgW8eJybb1BKW0lEkfDhUkZ9hEQAoSY7xX3BjFDX68cNbPIFIdKnyT2+7SfI8JtQU0pnU0rbUkrbxscHoAMskOiJIWPTFzWltWPE99zpWfOjDk0LtU4+CLc98ZImoZAC0ihV27t+CwLgyfUhiNvDK92XEyzvOybIl8dW099GsCAFK7jj0/L13oxCrNsXGPgx0PtN1zJRqCUWdcsxXIJ/rYxy0mb3qJ+5f4d8Djy13XxuC0K081OHRgEPLON+C4mPRB91McQXA8YjWQDg/l+43Bu+EB7LhQtKW0ZCZ7EvuV2KmZIV9eFvGJv8AZemQoxXDGAwItTdJ5uvgzvXR4cn1csI4UbOKZHmkXD30up1MjYdpr388XVc6snHJPNaerKoBd+hp2HCw77j/N5xCmF++h9g4lntbZSuj/r9OOu0dg++bl6EO4aV4iIZpB8g0fUh6cCLqw68dAworZOTQ6ChYrqrvm+rRyR6S93e3L5EV5DCRx0o4mpweUmUFEdqgsgy8me8dE3+GfBherdixhJqdxCFRS1NbanEyLBhb0b8uesZlw6ykKLsNGkwUC4O7l4evVSn7raJrw9Ua+f625MAP7CUS/jjqQkeWUa7CRtWCojSiUsWhDNE0Wk7aqEkCsAPCGGWkV66iW4WbcZy/2qlQPUnLxwGHtOYPi4Yc8jcghgJz1sIYCeABoSQJELIY562uSmYbaJL6fqKsXLKARTuMJLb2Gyvc6/XPQyx1jsOf1uHfQe88i83QacsZMpNPfReLDMvnCeLOroi0HiI+zLe4tDpTAyNVEcB+ELVtlzs7MDpxre55yt5ON3NoMUozposVf7mHlegJAv18LnAY+tuyqE8qhClNPDzzHjDI6uA9/i52GKrm0vRaTQzl9L1occze7xPwCTFHgE4JNnS6vcz17EnzJwsvBzl6gOl+P4Ct+JMtH/LCxmvR3FOcSW6PgLcYUYINxrNDLewj9RrSrJQ67kDA8CtexWlYlBVEi/bbaLcYtaasVgQNE8wdmNWcGiU70NdAS50Sjq820yu44dWAMO/436LeSj8OAuFtxZ1/2nAo39xPmxfZ9I2QjN+sI3ZEaAWgeEWjl0OJm5doZYy+FPX79BS8odDOZDiuf3Gg+iNilNolOeBKZMlM5aP+ZXrnQ+V+KzDYrgYZGm2NGWP+VRJEqMn/pavq3GHyweuJdS+pn+UXlNP/k7Z9X8SqN6B82E/vcO/fmItBnzEDRgpV9dzWYvAYwm1XwguofY2ID0izjW9e2gUZMKjbIabGY/vyaLtyE8oG1rKNUtzqYr6dRSofyf3sXj+kCt2WHPKIoVQS+ujHHUny/Og8XL4+sJIt9eL/fVEeKx//cRaEOJ5CLaFxS1GcAm1FqMWqpdpCYUwE0ZYtGImCx+awFr+6ad2As8f5n7f+S4w9So3siuqHNdpI0RXaOXuVRJVFihdS/9YSvF2ZxUzGtazNAbbZ1+h5JrGN9QvZmEBaIeIWnhNcAm1ILA1+CGyVdoADQfKy9hCgfFb1NsKnXChpSATlbjqXHPYG7Qs6gqNXXGyDKMxuINvFRj1WWv6k4Xj27TLuhvwIduXtIWiYVFLM+g9t999hIl0FFw3g1EzFrcvj68Hxv5Z3LUoMQSXUAvc8Sw3oEFr5Jo0j64UYQRWaJTcoo4sK5/h2AxmRlUJCO4b6UzY7o6vNZWT3vEJAV69ADyjMxejqyBfFw8WtTCBKCGcS0gvi9qIH4AOEl9/cY1ys7h1iK4A1HKTStfCFAHMxuIjegMaPPlaw6LleaBjqwGF2d7VwRu/boMBwL7vgTYPA/+u4yYYdZf204xFDegPSJHt06BQGzm/cZv1U1q6I666Z8tfi0ZDvBvmbWFRggleodZFIi7PH1aLWWiUK6Z58CfckGHqZUytNyF39fsBr6dxfmsjw4KVUzrJ1nlpuWr6qN11MLoRbG9EGuDmJPQGM9MuBTMPr7p5c09alHhuQaGWoJVTIbQUl9sacHUkejsHoLezS5hJGymIpVGLWkmZ2sB1Rd4LUag1lvlCg4GBmRqsJFKzc3HXwKIEEVxCLSQOcieses31FmOAQz9zQ2WFrGtCYhozLoxa3bnpr44ukQt1mAGXgzcoZ7OWrTMgrk9sVM92fs9XwOZpQCVpzmx3IxM9HwYANxRdelypH97CwiJgBJdQD/yIi4HVmhZJREdVhsziYpJtdi7LXf1+xkcgSqnVjctFcXSJaxDLhAMBFGo3c+8Zsagj4tSTLpRvCIz4XnEc/ropZ9YGvHOxVPEh14qFhYUpgivqIzyWi/hQWpfKnMJa2EJcLgd7mPEE5JPOAa+c4fINA5w1Lk69xAt1mdr6nZu+4q4z0VsfteZxNDoYw+M44VZE1+QW+jihqIWFhV8JLotaD6ll6e8RqcIEn20f46IU6vcDTvDJy/2Rv8MTZqM+fD2O1HFNCNDnTVXRsXN3I7JwMn68O8hTeFqUKIqcLF5bfhTP9KyL6mVv4iw0twDBZVHrIRt44qVS3zHB/SSeDAM06M+Jl7edj74QaIuav25OAx+fPYk3sJltAbbdE348vnuOJWcgNevW9HnXfHUlPlpzsrirccuz59x1LN57EZOXHpYt/27bOby4+KBX+8wvcuKeL7dj/4Ubfqhh8XFrCHXDu3zfx53vcG4VDc6n5cDhlLgEhKmiJClGnSzFoYvpvtdDieAH1xLlAFjUa49e8VDQRY7EBbLm6BXUfHUljl7KQHpuoZutvGPQrG2485PNftsfpRRrjl6W31eNMkZYuPsCDui86E6W28f/NiWYr2QxQCn16NqilOJwUvrNqRCAPw4lY9/56yjk75WNkRtj7/x5HMsPXPJq36evZuHgxXS8+XuAk4EFmFtDqKu2Ad64AdQfAIycr1nk4vVcJF7LQXJ6Hmq+uhLfbTsnrjufloP3V50Ay0pezDYPA3e+h4vXc9F9+iZ8uv6Ma10BP9mtZLbsWRvO4O4vt+NIkrkpk1iWuv2a5xXyc/y5G5DiwbIudLDYfNrDhML8vpJv5LgvJyGnwGV9z97CCdHgz7eh20cbVWVTswrw+0HPL1ORG+G8kVuENu+sw8LdJnKL67Du+FU8OX8/vtmiM2UXgJGz/0GD11ZrrruamY/8Iu78pyw7gqH/0074r3c+BQ4n/vvHcWTkcfd39ZHL6PrR31h5+LJmeSmCUOYXOfHCogM4dSXLbXmHk8XkJYdx5qq83L7z11XX8rtt59D4jbW4li1vvVzNzEdeIXe+fxy+jCFfbMcHq06g0etrsO/8dVlZlqU4fTULq464PxdKKaavPenxnXlu4QEM+2qn+NGz21xC7e55AYDk9Dw88/N+8eOz/vhVLNh13u02/sbJUlzOyEOTN9Zg8pLDnjfwgqAS6mlrTmL98avIL3Li/VUnkJXPPeSUUuy7mA46eqE4LHX98au4kuGaAbrrRxvR4+NN+GFHIgDuK5xf5EShg8WEhQcwe8tZnE7hHuQzV7NQMGAmcMezuHgjFwCw+5zrYbxYZSC+Y+9CQpPnAAB5hU58toET8ssZksT+OrAsxXsrj+NsajZavbMO9/5vB/5NyRYtOEopFu+5gNxCB+bt4D4oee48EhMOcPmmwQliJn9dBN5deRxj5+7GmqOXcccHG5CQmo0bOYXo+tHfOHE5EwCw5UwaAIBRzsrthuwC13EKJS9MZr7aInvsxz14ftFB3MjRtrb/OJSM//5xHPWmrlYJj9SyTcspxJRlR0SRBIDjyZkyt8iPOxI9tm4S07gPkrv7tfvcdRQ4WKw4lCwuO5acgY/WnESH9zfgiXl73R4D0BeSZfsvYe72c/h0/WkkpGbjqQX7cfE6Jyr3fb0Tr/LN+98PXkKaQjR/3JGIIV9sxw87EvHbwWQM/8r9rDDnruVg8d6L6PvJFvz0z3n8wZ/PsK92Ysoy+cCjP/kPxdFLLvH8fMMZdHh/Ax78jsuFnsG3mL7ZchZ5RU7M3ZaIi9dz8fHaU2BZihWHknHnJ1vw9IL9uK5zvwEgv4jFlxsTMPxrY7PaHL3EPat2hqDQweLQxXT8sD1RXH/xeq5qm5nrTmPl4ctYfuASMvKK8Pi8vZi6/KiqHDXx3OtxJSMfCanZyC9ywslSfLnxX2TkFWHGX6fQ6YO/kVPoxOK9F30+jhZBJdTzdiRiR0Ia5v9zHrO3nMWcrZyIdZm2EcO+2om/jl8FwFkQj8/bi/u+2anaR2yEaxLPhq+vwb1fbUeBg+W3o8jILULfT7aID/CZq9zw8t2J10XBWHXiBt4pHI2fD6UDAGZLrLJl+y9h19k0XM3MR4FDra6bT6fitd+PYs7Wcxj7/W7Rotpw4ipqTVmF48mZ2JmQhslLj6DxG2ux8hBnhWYXODFrwxkUOlwvfkZuEZbtT+IG9tTuDkop2r23Hn1muFwE2/+9hnk7OQtiwa4LSM7Ixw/bE7HlTCouXs8Tm+QbT3Ox1gQUG0+mICu/CCxL8erSw2j0+hp0/ehv0aIReHXpEVGICorcWzaJ1zhhdPLXMOlGLq5muj6kzy08gLnbufspFVlKKYqc6pfouYUHxA/1wFlb0evjTWL5N1ccw91fbkdGXhGemr9P/GD/czYNDieLa9kFeH8V5zO2G5j1fcLCAzjPC/vYubvFa7b1zDX8KnnxtFwlDkndH/9xD7bwLRvhPl7NzEfvGXKXzu7E61i05yKOJ2fi+UUHMXDWVvxzNg01X12J5PQ8rObdU8eSOeHKKuA+jE6W4uvNCcjML8LhpHTxOmYXuD6cr/92FM8tPKD7ASkdyb0f59M40Tubmo0Z604DAPaev4F2761HssQAAoDIUBueXXgAX2z8F19u/Bdnr7laZZl5Rfh8wxnx2fnrGOciq/nqStFqL3Cw4kfAHZ+s5+phZxjM3pKAu7/cjr+Ou1x1D8115bj5Ze9FzNuZiIgQrrU5dflR3P3FNnG98AGRvk9Scgoc4jVKyy7A+J/2IiO3SLOsQMcPNqD3jM0YOfsfbDmTiulrT6HF23/h131JHs/NVwxFfRBC+gP4DIANwLeU0g8DUZlS4XbkFDiQyt/g/CInluxLwqV0zirKyC3CjoRrqFu+FADgwvVcvP3HMXwv+eoqm3/CVxrgLJWoMO6Ul+2/hD6NKsiaSbWmrEKDCtGIDHO5Gn7ZcxE/73aVWXPsCtYc4x6eQc0q4cv75fHEYyUP08XrLmvug9Un+fpk4GdJc9QG7mG5lFGAmetOIzrcjkceXI69axdg+H+5yUJbVovDmZRsjP9pHwAgJasARU4WLKW4/1vXC7D1DCfGBQ4nWF5UdiZw4kX5zkQCikd+2INBzSrh7bubYNGei2Jdf9qZiIc710KIjaDISbH3/A1MXX4EHw1vIX7sBA5cuIEWVePQedrfYAgRreyTl7NASJZYr+P/7QdGEW45aelh3NeuGvKLnGj4+hpM6KVO8r/u+FX8uCMRz/aqB4ATq8NJ6ZgkaVp+vTkBq49eQemoUAxrXRWjZv+DDrXK4I27GotlGEJwJCkDzapycfAOJwu7jVGJbvfpm/DwHTVxLVtuIU6UHC/pRh6+23YOz/Ssi3KlQrF0/yWEh7g+BOtPpGD9iRQkfjhIvP7Ch1qLgbO2AgCuZhbgvZUnAEC0DLlr6Xp2cwsdOHopEx+uPokDF25g7THOaFn/UjdNq1bq0vly47+IjQjBAx1rQPgWv7niGOqWLyV7fgCuxfaVwt8uFaIZ607L7td//zyOv0+moIilePiOmpiz1WXUXJBYwMKzufbYFbSvWQbP/LwffRtXkBlWAk5K8fFfnGjvSXS5DaUffuE5aFEtTlyWmOY6Xut31uG1QY3QsKJ23pgmb65Ft/rxmPdoe7R7bz1YCrSufgHdG8TjzNVsXErPw+DmlZBfxKLPzM14+I6a4raHLqbLgqduRic48dShQgixATgNoC+AJAB7AIymlB7X26Zt27Z0717PzUYlvWZsQqOKMYiJCPGLn9ITESE25BXp+xyaVomRCb0AIa4keYkfDsLHa0+hbc3SyMgrwvOLDro95j0tK+O3g66mdhTysC3seTxX9By2sc3wUKcauJqZL76IALDmha6YveUslu2X+4AFQVXSu2F5bDiZIv49tlMN/LHzCOaHfoBxRS8iiZZHzbKReP/eZhgzR/6iDm1VRdVxM6RFZew8m6Z6IMNDGOR7sLT1+PmJDigVZseQL7a7LbfxlR7oyVvT7WqWlr24ejzXqy4+//tf2bJ37mmKgiInPlx9Eg90rIGkG7lYfyJFZw/aPNG1FuZsPYdGlWLwv/tbi/XSYkyH6vh51wW0rVEae8+bizjQuq8/PNIOW05fw9zt51AlLkI0XgDgo+HNZR8wPb4Y0wrP/nxA/HtEm6o+W4MNK0bjpI4PfcaIFnj510Pi30feuhPN3voL1ctEykTcDOc+GIjcQie6T9+o+qhq0bdxBaw7flW2bN9rfdDm3fUAgFHtqonGihnmPNRW1zWW+OEg0/sDAELIPkppW811BoS6E4C3KKX9+L+nAACl9AO9bbwV6rs+34Yjl8x11hU3Zh+68tFhSPHiC6wlPrc6/727Cd7w0BtvY4irk4khcLCefY31K5TC6ateZkx0g/IDGEh8ETM9KseGq9wagcSdiBcnZaJC3frWfSUQQm3ER10FgPSTk8QvUx5kHCFkLyFkb2qqhwgEHbLy3fuIAsXWSe6GrMtpWFGeEc3sy+SNSAOupmNJwpNIA5D5zY2INICAiDSAmybSADCWb2qH2f3XjXQzRRpAUIo0gICK9Lv3eDlNnQeMPAVaI0xUbwyldDaltC2ltG18fLxXlXHnzwsk1coYHwU19+F2HsuM61Yb97XVnxuwZwPz1+egjzHc79zTFIObV/JpH7caVeIiPBcCMHVgI8+F/MCSJzsZLludfya9Feq2NXyfhf3gG31N7/P+DjdvCi6hY9QX3pT0Z/iD8JDATKph5ClIAiDNAF8VQLJOWZ8Y2Mw3IRnfrbZqWb8mFTB1YCMse/oOt9s2quQ+WX3zqrHYOqkn4qPVoxYrxsin42pdvTQ+Gt5C/LtPowqy9T0blnd7LIFX7vQw27cJokJtqOHlsNz2tcrIXsClT7m/lnqUjQrFpld6yJaFSGJmH+1cy9T+7AzB5ony/b3ctz7GdauNL8a0wiCDH6a6FUqhQQWupVSulHYaV6ED21uqlo5AjEbHGQDMfVje2v3q/taICuVeeIbRH4nboqp+ojCtTjqzxEXKr0VEqHsRalI5Bm8PaYImldXvUoRBAZvcvyFiwrkO//mPdcBPj7WXrV/7giuHj7KT2hsaV4rB0FYqB4HId2Pbur3OGxXPs7Rz2Z8Y2eseAPUIIbUIIaEARgFYEYjKvHtPU3w31vXQbp3UEx1qlcGKZ7Vz+yofiG715ZbqT4+1xzcPtsUT3WqjdXWXNVC/guulE27CL+M74oN7m6lEFeCE6pfxnVCtTCRCbOpL9p9BcouspaQnGgA+HtEcX4xxZfJz93j98WwX8fdDkp5mgRXPdkYPhUW+/qVu+NWDtRYZasNzfASFGeY/1gG/jO+E1wdzlsd/BjZEbISxFDFPdJULb8c6ZVGzXBQ+Gs6lX40KteGtIU3E9S9LPkzzH+uAfa/1cbv/t4Y0QY2yUWhfq4y47Lne9fCfgY0wuHll1K8gd1ON6VAd47u7PuY9GsRjYr8G6F4vXowUYan8+RjfvTZWTeiKT0e2BMAJ4PqX1Am/lMI4oo2rRZXw/kBsnthTZh2veaEr9r3WB4kfDkKvhhWw+z+9xY9BRKgNYfwLr/esrH2hm3hPBD64t5nYahJG97WrWVrVupN+HD8d2RKPd1F/IH8Zr36eWI3+rDJRLjEf3qYq7DYGKyfIp+Ba+0I3HHxTbp0Lz+tdLSrLWj5P9aiDnVN6Y/d/eqNLvXLoUleeb6aBxPX49t1NUDYqFH8+1wWe0DKwAKBhxRh8cK981nqpBtQtXwpTBzVGiI0gVKN1Ex8dhoT3B+KZnnUAAGH2wFjUHt84SqmDEPIsgLXgwvPmUkoDMh6TEILekotUrUwkFms8MAI/PNIeBy+mi72v4SE2fPtQW+y7cAO9G5ZH25plNLf73/1tQAgQamMQxzefosNDMLp9ddzbugpeW34UGXlFOJOSjad71EGfRhXcNmkGNK2I78a2RaXYCOw+l4aKsS4Lu0xUKOIiQzG4eWUs3H0B2/9NQ0SoXRY5AnDNzJSsApm4RIXKb8+0Yc3QvGocfniEszJqvsplvatbntuGIUCV0hH4aFgLjJ7zj2xbhhDZOTzUqQbm7TyPPo0qICyEkY2YWzSuIzrWlmcLDA+x4dwHA0EIkYVJ/fViNySn54GlFI/+wN2HyFAbcgudGN6mmhgLDwBFfIjffW2roUOtMqheJhL7+IiIijHhYugkAHSpx72gR9/uh/n/nMeHq9W5NOwKa1P6kQc4IR7cvBI2n05FVr4D/ZtURPtaZZBT4MD8fy6gdGQonunJhZoJYpFX6MRfL3bHmDn/YEdCGrrWjUfjyjFI4gdGNa8aK6un0DH12qBGYigfQ4DpI1qge4N41CoXJYqm9PpXKx0p20/5mHBRyEPtjPjCE4nV+M+U3uj4wQYA3MdEGjL5Ut/6GN2+ung9BXd+rXJR6FY/Hr/sdUV3fDGmNfYmXsfS/ZdwT6sqGNKiMl66sz4av7HWVb8yardRzwblceJyFuY/1gF5RQ4M+2onSkeGiD7fhzUMixplI0Vxvbd1FexJvI7ne9dHu5plcO6DgeI5Cs8yAESF2cVrIz3/356RG2z9mlTE4OaVVcec/WAbjPtpH2LC7WLY6GuDGqkislZN6IrYyBBZqOZrgxohNasA609wESE1ykahRtkonHlvIBq/sQaCd/vbh9piT+J1RIXaQAjBS30boFW10ipj0V8YMo0opasArApIDUxy9O1+aPom90DFR4ehb2OXsIeHMOjTuAL6NFZbxVLiS4UhVse/FWa3YfqIFprr9AixMeIHprHEyv9nSm9Zc/Hbh9ph3s5E3NOyMppWicGBC+niwJu4yFCxqblqQlfERNhlOQ8e6FgdI9u59/8dfqsf7AwnyAse74AwO4OvN5/F+hOu8KTdU3ujoIjFSn74b/tapTGuWx2sPMy9KK8NaqQSaQHhpSnFv0Qx4XbUrxCN+hWicSyZi9aJDrejZ4PyWHEoGREhNoxsW00crSUdhFGjbBQAoE2N0pjcvyFGtuO8a5Viw2XWaakwOx7tXEsUaml4o51v3YTy/yqb5uVKheGLMa2x9Uwq3v7jONrXKoPwEBtaVI3DfFyQWauV4riPa+9GnFtKuPbCAJ6qpSPx2aiW6FG/PIQxNFGhNvRsUB5L9yfJOm1OvzsAAFQiIghxVKhNJtJKwuw2sSxDuBZTcno+KsaG4+cnOmBv4g0QxYf3Wf6D89qgRqheJhIPdqyBZ37ejwm966FKXATsDxA8OX8/Rrevhn5NKqJfk4qYOoizyBmGIFJhFJTmn8UX+tQT0yvUiS+F/a9zlvHWM1zAQJmoUCSk5qBSbLhMVAV+e9olrjPvaylbp1Vei8n9G6J9rdKqlqq0dbv0qTsQGWqDk6VoWiUWO17thYgQG1q9sw4AcHfLKth17jp+3sWF/W6e2EN8BoV61ImPwuNdayMlMx+X0vMwVdFSjosIQW6hEyue7YzmVeNkOmNjiEfd8YWgTHP6/SPtEKfjYysVZscPj7ST5Q9oUCEap65moSZ/4T1RKty3036wYw389I/nfAJSyxrghGR8d66J1LBiDBpWjEGd+FKq0VONNXx8rw5Qd3h9NKy57FxKSV7+znyTMYTPeSIIT/lork4P31ET+UVOPNSppmyfj3dV+/mVRIbaMKFXXQyQ9ClUjeP839OHN0e3+vEY1qYqqpeNxLThzfFC33ro9MHfuLe1uoOVEIKnetQR/945pbeqTKidwdZJPZFf5ES9CtFwsBR/Hr4sNuE/HNYMX21KQDudFlTXevFY/1J38W/hOkmb7WF2m6wPQrDWpflh7m7p8mW+c09T9GwQj1l8agGWpZjYrwFql4sSPyBa5wGonwsBwbALtTGSJjRB3fLRYqvpjjrlcEcddfpZwZcdFxmKCb05F9fPT3QU1/dvWgln3x9oaLKjKQMaih+BF/rUF4Va6nJrV7MMejaIx9RBjbH//A10qiP/uAsCXzpK2+dvBunzoUcbRUdnZb6FVK98KdHif39oM2w4cRVXMwtUboy/Xuwm3pfyMeH4Yox6YoyF4zpi3/kbaF41zpvT8A1Kqd//b9OmDfU3NSb/SWtM/lNz3ZWMPHrycqZP+zCL08nShJQsmlNQ5Jf96eFrna9m5NHXlh+hhQ6n23Lzdpyju86meX2cm8nqI5dpjcl/0rOp2V5t73Sy9LutZ93eu6QbufTFRQdofpHD7b6mrT5Ba0z+k/5+8JKhYy/bf5FeTs/TXNf/0y20xuQ/6ZGkdJqcnktrTP6Ttnt3ndv9+fOZbv3fv2idKStVy5Nu5NLs/MA+53+fvErn7ThnqOzJy5l0zzljz6rDyVKHkxX//mz9aVpj8p8BPx9vALCX6mhqUFrUZqkQE44KMdpWipRlT9+BY34aUMMwBLXjfYsEMMITXWuhbCnv82OXjwnHOwZiOx9UWNbBTP+mFUV/uTcwDMGjGh1oUqrERWAm34Hojuf71EPluAgMNhixNLSVftgmlfhKbfy56XWCBYIdU3rJ+k0EjIY5+kLPBsYioQB5h6InlClTn+tVF092r6PZMRjM3DJC3bVeOZ8HfbSuXloW/XErIPgRLeR4K9L+JsxuwwMda/hlX5G8j93GEJSPCce79zTVjEKS8udzXcRMgb4SqIiFYIIQglB7cDw7ZvA4hNwbvB1CbmFxO3MpPQ+L91zEi33qBc2HyOLm4W4I+S1jUVtYlHSqxEXgpb7+G+RkUXK4tRw1FhYWFrchllBbWFhYBDmWUFtYWFgEOZZQW1hYWAQ5llBbWFhYBDmWUFtYWFgEOZZQW1hYWAQ5llBbWFhYBDkBGZlICEkF4Dm9nDblAJS8CQLdY53z7YF1ziUfX863BqVUM6F1QITaFwghe/WGUZZUrHO+PbDOueQTqPO1XB8WFhYWQY4l1BYWFhZBTjAK9ezirkAxYJ3z7YF1ziWfgJxv0PmoLSwsLCzkBKNFbWFhYWEhwRJqCwsLiyAnaISaENKfEHKKEPIvIeTV4q6PvyCEVCOEbCSEnCCEHCOEPM8vL0MIWUcIOcP/W1qyzRT+OpwihPQrvtr7BiHERgg5QAj5k/+7RJ8zISSOELKEEHKSv9+dboNzfpF/ro8SQhYSQsJL2jkTQuYSQlIIIUcly0yfIyGkDSHkCL9uFjEzjY/erLc3838ANgAJAGoDCAVwCEDj4q6Xn86tEoDW/O9oAKcBNAbwEYBX+eWvApjG/27Mn38YgFr8dbEV93l4ee4vAfgZwJ/83yX6nAH8COBx/ncogLiSfM4AqgA4ByCC//sXAA+XtHMG0A1AawBHJctMnyOA3QA6ASAAVgMYYLQOwWJRtwfwL6X0LKW0EMAiAHcXc538AqX0MqV0P/87C8AJcA/43eBebPD/3sP/vhvAIkppAaX0HIB/wV2fWwpCSFUAgwB8K1lcYs+ZEBID7oX+DgAopYWU0nSU4HPmsQOIIITYAUQCSEYJO2dK6RYA1xWLTZ0jIaQSgBhK6U7KqfY8yTYeCRahrgLgouTvJH5ZiYIQUhNAKwC7AFSglF4GODEHUJ4vVlKuxacAJgFgJctK8jnXBpAK4Hve3fMtISQKJficKaWXAHwM4AKAywAyKKV/oQSfswSz51iF/61cbohgEWotX02JihskhJQCsBTAC5TSTHdFNZbdUteCEDIYQAqldJ/RTTSW3VLnDM6ybA3gK0ppKwA54JrEetzy58z7Ze8G18SvDCCKEPKAu000lt1S52wAvXP06dyDRaiTAFST/F0VXBOqREAICQEn0gsopcv4xVf55hD4f1P45SXhWnQGMIQQkgjOjdWLEDIfJfuckwAkUUp38X8vASfcJfmc+wA4RylNpZQWAVgG4A6U7HMWMHuOSfxv5XJDBItQ7wFQjxBSixASCmAUgBXFXCe/wPfsfgfgBKV0pmTVCgBj+d9jAfwuWT6KEBJGCKkFoB64TohbBkrpFEppVUppTXD38m9K6QMo2ed8BcBFQkgDflFvAMdRgs8ZnMujIyEkkn/Oe4PrgynJ5yxg6hx590gWIaQjf60ekmzjmeLuUZX0og4EFxGRAGBqcdfHj+fVBVwT5zCAg/z/AwGUBbABwBn+3zKSbaby1+EUTPQMB+P/AHrAFfVRos8ZQEsAe/l7/RuA0rfBOb8N4CSAowB+AhftUKLOGcBCcD74InCW8WPenCOAtvx1SgDwBfiR4Ub+t4aQW1hYWAQ5weL6sLCwsLDQwRJqCwsLiyDHEmoLCwuLIMcSagsLC4sgxxJqCwsLiyDHEmoLCwuLIMcSagsLC4sg5/8T2t/B02SAVgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(df)\n", + "plt.title('Line plot')\n", + "plt.legend(['data1', 'data2', 'data3', 'data4']);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Scatter Plot" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAC9T0lEQVR4nOy9eZwU1bn//z5VPT0wAgOy7ygMmyA9OuCK4q6J4H6NZnON3/xu7r1ZbogxMSYxGq9ZbpKbXG8ERE2iiYpsGjdEEUGEBgZB9n1fhWGZYXq66vz+OH2qT1VX9/QwMziJ/fjyxcx0ddWpU6c+5zmf5/M8R0gpKVjBClawgrVcsz7tBhSsYAUrWMFyWwGoC1awghWshVsBqAtWsIIVrIVbAagLVrCCFayFWwGoC1awghWshVukOU7aqVMn2a9fv+Y4dcEKVrCC/VPa4sWL90spO4d91ixA3a9fP+LxeHOcumAFK1jB/ilNCLEl22cF6qNgBStYwVq4FYC6YAUrWMFauBWAumAFK1jBWrjVy1ELIQYBfzP+dDrwIynlbxpyobq6OrZv387x48cb1sJ/AmvVqhW9evWiqKjo025KwQpWsH9AqxeopZRrgBiAEMIGdgBTG3qh7du307ZtW/r164cQoqFf/4c1KSUHDhxg+/btnHbaaZ92cwpWsIL9A1pDqY/LgA1SyqzRyWx2/PhxOnbs+JkCaQAhBB07dvxMriQKVrCCNY01FKi/ADwf9oEQ4mtCiLgQIr5v377QL3/WQFrbZ/W+C1awz4pV7q1k4vKJVO6tbJbz562jFkJEgXHA98M+l1I+CTwJUFFRUaidWrCCFewzYZV7K7n3zXtJOAmidpQJV04g1iXWpNdoiEd9DbBESrmnSVvwKdmPf/xjfvnLX2b9fNq0aaxcubLe87z33nucddZZRCIRXnrppaZsYsEKVrB/AIvviZNwEri41Ll1xPc0fbJfQ4D6NrLQHv+Mli9Q9+nTh6effprbb7/9JLSqYAUrWEswk+qo6FpB1I5iC5siq4iKrhVNfr28qA8hRAlwBXBfk7cghy3ecpAFGw9w7ukdObtvh0af75FHHuHZZ5+ld+/edO7cmbPPPpsJEybw5JNPkkgkGDBgAH/605+orKxkxowZzJkzh5/97GdMmTKF2bNnZxxXUlKCrmliWQVJesEK9lmwMKpjwpUTiO+JU9G1oslpD8jTo5ZSVkspO0opq5q8BVls8ZaDfHHiAn715hq+OHEBi7ccbNz5Fi/mr3/9K0uXLuXll19m0aJFANx4440sWrSIZcuWMWTIECZNmsT555/PuHHj+MUvfkFlZSX9+/cPPa5gBSvYP5flExQMozpiXWLcM/yeZgFpaKaiTE1hCzYeIJF0cSXUJV0WbDzQKK967ty53HDDDZSUlAAwbtw4AFasWMEPf/hDDh06xNGjR7nqqqtCv5/vcQUrWMH+MS3foKCmOurcumajOoLWYoH63NM7Eo1Y1CVdiiIW557esdHnDJPJ3XHHHUybNo0RI0bw9NNP8+6774Z+N9/jClawgv1jWjZPOWixLrFmpzqC1mKJ1bP7duAv95zLt68cxF/uObfRHPVFF13E1KlTqamp4ciRI8ycOROAI0eO0L17d+rq6vjLX/7iHd+2bVuOHDni/Z7tuIIVrGD/eBZGcZhBQVvY7Dy6MysF0txUR9CElE0vea6oqJDBetSrVq1iyJAhTX6thpgOJvbt25devXoxdOhQTjnlFB5//HH69u3L8OHDOXLkCE8//TTz5s3j3nvvpbi4mJdeeok333wz9LhFixZxww03cPDgQVq1akW3bt34+OOPM67dEu6/YAUrWG6Ko3JvJTM3zGTa+mkk3WSz6aLDTAixWEoZyqN8poD607TP+v0XrGAtxSYun8j/LPkfXFxsYfON8m9wz/B78v68uSwXULdY6qNgBStYwZrD6tM9nwxddEOtxQYTC1awghUsm1XurTzhYF4wGAjKi9bn+jSChfVZAagLVrCC/UPZidTWCAK7/j/bufT/LcUK1EfBClawFm1BhUZDa2toMP6fJf/DvW/e61NynIw6HU1hBY+6YAUrWIu1MI+3oQknufTRn0byyolYAagLVrCCtVgLA9l7ht+Tk0MO0hwmGJv66JbKR4fZZxaof/zjH9OmTRv+8z//M/TzadOmMXDgQIYOHZrzPL/+9a+ZOHEikUiEzp0789RTT9G3b9/maHLBCvZPY/kGA7N5vNk45Gyc84QrJ3j66ClrpzBzw8wWy0eHWYGjzmL5ljktLy8nHo/z0UcfcfPNNzN+/PiT0LqCFewf13JxxkHTIPuN8m/kFTTMxjnHusTo3qY7STfZ4vnoMGvZQL1tIcz9lfq3CeyRRx5h0KBBXH755axZswaACRMmMHLkSEaMGMFNN91EdXU18+fPZ8aMGXz3u98lFouxYcOG0OMALrnkEq/Q07nnnsv27dubpK0FK9g/qzU0gNeQdO1cGuiWqI/O11ou9bFtITwzDpwE2FH46gzoPeqET2eWOU0mk5x11lmcffbZ3Hjjjdx7770A/PCHP2TSpEn827/9G+PGjePaa6/l5ptvBqB9+/ahx5k2adIkrrnmmhNuY8EK9lmw0mgplrBA0uSAmYtzro+Pbow2u7mt5QL15rkKpKWj/t08t1FA3dxlTv/85z8Tj8eZM2fOCbexYAX7ZzUNgqXRUh5f9DiOdLCFzfiR45scFHNxzg3ltluKtVyg7jdaedLao+43utGnbK4yp7NmzeKRRx5hzpw5FBcXN7qdBSvYP5OZIGgJC1e6yNR/VYmTthdJ1rbF98TZeXSnR8cknARPLHuCr4/4uq9Y06fpbbdcoO49StEdm+cqkG6ENw2qzOkdd9zB/fffTzKZZObMmdx3330Z5Ut79uwJ1F/mVB+3dOlS7rvvPl5//XW6dOnSqDYWrGD/jGZy0q5UhY5sTh5PnA1kzQkkYkWIWBEv2Lhg5wKW7FnChCsnAHzq3na+eya2ByYCwwAJ3CWl/KAZ26Ws96hGA7S2s846i1tvvZVYLEbfvn0ZPVp56A8//DDnnHOOr3wpwBe+8AXuvfdefve73/HSSy9lPe673/0uR48e5ZZbbgHUZrczZsxokjYXrGAt0RrqXVZ0rSBiRUi4CQCklIzpPYY7h93Z7ICXi9IwJxBHOtxUdhPbj25nwc4FPs+6Z5ueeW0o0JyWV5lTIcQzwFwp5UQhRBQokVIeynZ8ocxppn3W779g/xx2olzuTz/4KS+ufdH7PSIiTL56cs7vngjdEPzOTz/4KS+tfQmJzChZqu9Fa7SD3rOLi4VFxFL+rCMd77jmAOpcZU7r9aiFEO2Ai4A7AKSUCSDRlA0sWMEK9o9hphcaxuVms3H9xzF13VSSMgmAK92cnumJFl4yvzN+5Himr5+ORDmjtrB9VEs2FciEKyfwxLInPM9ae9vd23T/1DjqfHTUpwP7gMlCiKVCiIlCiFOCBwkhviaEiAsh4vv27WvyhhasYAU7+RYsiKS1yBaWx+XWl7QCChQfOOcBIiKChUXUjoby0/p6MzbMaHCxpKA+e9bWWSRdNTEIBNcPuD4DZMM02rEuMb4+4us+zfXY/mNP6tZbQcuHo44AZwH/JqX8UAjxW+B+4EHzICnlk8CToKiPpm5owQpWsJNrudKxTY/TBNJcVMUtg26hrENZTh1zMLin6YYgqIfRIsF088v7XM6SPUu838f2H5v3vbe0GiD5APV2YLuU8sPU7y+hgLpgBSvYP7Dl4oAr91byxLInqHVqkUgSTsKjKrTHaYJgabQ0L6oil8Y5LLgXRjfkqiEdBNdcE0N9/dGSaoDUC9RSyt1CiG1CiEFSyjXAZUD9RTAKVrCCtVirb4PXe9+8l+POce94F5fSaKn3exAUc5USzdeCHvHY/mNDz5HrWkFwDQPbsAnqnyXh5d+Av6QUHxuBO5uvSQUrWMGa23KBnf7MNAsrIzklCIKNreucL92gAT3hJBAIbwLJRyWSDZCbYqJpTssLqKWUlcA/TgWTPKypypz+3//9H3/4wx+wbZs2bdrw5JNP1vudghXsZFk28MpVo9kEQi1Ryxb803ainO6J0g3n9zifOdvn4EqXxxc9DsDjix7PAODg+bMBckM2EPg0shRbbmbip2zTpk3j2muvrRd0b7/9dv7f//t/AMyYMYNvf/vbvP766yejiQUrWE7LtZyvr0azBt3SaClViaq8QClfmiGf9tV3T5o7BzyFR5hKJN/dYfKdaD4tiqRFA3VTz1yPPPIIzz77LL1796Zz586cffbZTJgwgSeffJJEIsGAAQP405/+RGVlJTNmzGDOnDn87Gc/Y8qUKcyePTvjuJKSEtq1a+ed/9ixY6H1RApWsE/D6lvOaw8zWKO5qQJp9YHaidAN+jsapAUiVOGRjTfPtTtMroJNTcnFn4i1WKBu6pmrOcuc/uEPf+DXv/41iUSC2bNnN+7GC1awJrJ8lvPZ+N6msPpA7UT2KwxSNtcNuI5x/cd5Co+ZG2Z6IN7Q3WGCVrm30ltxJN0kUTvKbYNva7YSrbmsxQJ1U89czVnm9F//9V/513/9V5577jl+9rOf8cwzz5xwOwtWsKayXMt500scP3I8j374qMf3lnUoaxIvMQwozXKnVYkqxo8cnze1Ut89AV6ijKZxTlQLHUaxJJwEf1r5p2Yt0ZrNWixQN8fuwM1V5lTbF77wBb7+9a83up0FK9iJWBhVmI03NlerY/uPxZVuky/ng6AK+MBPBykbulrO5hFnozpO5F5mbJjhA2mB+FRLtLbYrbj0Q853r7T67KKLLmLq1KnU1NRw5MgRZs6cCWSWL9VWX5lTbevWrfN+fvXVVykrK2tUOwtWMNOCKdy5jst3H8IgoAnECW9RVV/7zBTtIL/c1HsXBrfaKo2W5tV3QavcW+mrERIREW4eeDMPnPPAp7aVV4v1qCF/Likfa64yp7///e+ZNWsWRUVFdOjQoUB7FKzJrCFxGhN8a51aZm6Y6f09lzRPJ5aM7T/2hKR1DYkjhcn+8gG8fEUFQbVKmFwvH9MBVlCe9I1lN/LgeapiRkMyHZvS8ipz2lArlDnNtM/6/Res4TZx+UT+Z8n/4OJmlOgMWuXeSu5+426v5nNERLCE5QXBgkDVFIqqhrQveN18ZX8mV2wLmwfOeYBbBt3SqLbVd+9h5U9zyfWaCrgbVea0YAUr2Mk1E8zyjdPEusS4bsB1Xu1lRzo40kEis0rzGgssJxJHauh143viHleclEke/fDRvIKd2dqWzyqgJWqqC0BdsIK1IAurqZyvKmJc/3HM3DDTk64BWavPNYU1d4W5yr2V7Dq6C0tYONIBstexDstwDLZNF5rKR02Wz4RyMjXVBaAuWME+Bcu2ZA6+/FWJqnrpBG1hKotcWYFNAbDNVWEuuCGuLWyklBmp7GFaZ7OaXrDokqk4aewEFvTadfCyOSatAlAXrGDNbEFQzLVkbqwsNax6XFh7Grtkb+56F+aEhYSbB96cUfI0Wzp5mGdrKk4sLM7tcW7WnWnqS3s3P2uK4GU+VgDqghWsGS0MFOsr05mLTmgKgAy7vv57vnWbc5VIbQoAL42WKpBGyfgGnzo4I4iYLZ08VwamngBzgXR95V/D6mBPXD6xWWmQAlAXrGDNaGGgWJ/XnI1OeHHNi14GYS6vLVu9Zf23YBr28n3LeaLyiawKkeC5s/G8Temp7zy6E4HwPOCw5JJc6eRBy5dPz6f8a9h97zq6K+eONI21zyxQN1WZU20vvfQSt9xyC4sWLaKi4p+qImzBQixfzzEMlE8kCFe5t5JHP3zU2xy21qkN3VhWy/T09SZdNQnIrCJnVs57Z9s7nld63DnOQ/Mf4ifn/yRrRmM2nrexwbXgVlxFVhFJN4klrNAaJLofdX2PbCBtHn+iapFsnwXbfGPZjfW240SsxWYmfto2bdo0Vq7MbyObI0eO8Lvf/Y5zzjmnmVtVsJZgDckCDGbYgtL4Ag1Kb47viXvKBwCJDN1YduaGmSRcRQckXFXzIhuAdm/TnaSb9EBa28aqjdz5xp0Z9xXG84bx6yeauRfciuvCnhd6aduPL3o8az/P2DCDKWun5LXJbtCCmZW5MqLDPgu2uUebHs3C2bdoj7p66VKqFy6iZNRISsrLG32+5ihzCvDggw8yfvx4fvnLXza6jQVr+RYEPg2G2bxj7ck1hhqo6FpBsV3s7bwikaGeaxB0JTKrl2j+Xdew0JZ0k/VWuwt6842V6wXP37F1R68Gic62zBYkPBEvPugNm9RJtnMEP2uOmkRh1mKBunrpUrbeeRcykUBEo/SZ/FSjwLq5ypwuXbqUbdu2ce211xaA+jNiQW40TBpmmsm7nmgQL0xhEAYO4/qPY/r66d5nGnjCANT8++Haw0z+eLJ3nogVCeXO6wPiMJA7ERWFvvb09dO9FcK09dMy9lFsDFCaIJ9wE7y09iXf5gn5WHNrybXlBdRCiM3AEcABktnSHJvSqhcuQiYS4LrIujrlWTcCqJujzKnrunzrW9/i6aefPuF2Fewfz8yXc+fRnUxZOyWrRxf02syAU747d5vX1Z9nqzkR6xJj0lWT8qqiF/x777a9mbp+Kp1bd+bOYXeecCKIaSeqotAWzLYMy7DMFyiDk4IGec25Z8virM+aS0tuWkM86kuklPubrSUBKxk1EhGNIuvqEEVFlIwa2ehzNnWZ0yNHjrBixQrGjBkDwO7duxk3bhwzZswoBBT/yc2kM3Q2YJhHF+Qwbyq7ydMD+zw6JxEaHKzv+g39LJfdMuiWvOpoNMROREVhmpltmc1jzud+s9UMMYOqzZnF2VhrsdRHSXk5fSY/1WQc9UUXXcQdd9zB/fffTzKZZObMmdx3330Z5Ut79uwJ1F/mtGfPnpSWlrJ/f3ruGjNmDL/85S8LIP0Zsvo8urBKdeYxZjW5BTsXsGTPkkYnS3wam69ms4aqKILWVLryXDVDYl1iJ1Q98GRavkAtgTeFEBL4o5TyyWZsk2cl5eVNEkSE5itzWrCWbU0BWvWdoz7vNtcefROunMATy55gwc4F9QbE8rmXEw1Y5nvu+qrO5eLBs91/fdfN1r8NudeKrhXYwvbkjcGaISeDvmiM5VXmVAjRQ0q5UwjRBXgL+Dcp5XuBY74GfA2gT58+Z2/ZssV3js96mc/P+v1/Ghb2IkP9wTsTcCBTg9yUgG/WqtBbPIUlbuQLSidaerS+c9d3zKexO3dD7zXfhKGgnawVSqPLnEopd6b+3SuEmAqMAt4LHPMk8CSoetSNanHBCnYCFqx1HFRZTF4xmfe2v5fzRQ3bpqopUoOzTRpmoPHiXhfz/o73mbJ2Sob6IF8ZWq7yntnAJlfGnf5Ofdc/mZXk6rvXbHbLoFsaXPj/ZKTL52P1ArUQ4hTAklIeSf18JfDTZm1VwQrWQAvLmjNVFrawmbN9jpc0knASOYv3BLepyhcMgt54LqDbeXSn115HOhx3jpN0k6Fgly8ohdEJ9Xm79WXc5bP79snSE9d3r/l8pyGgmmsSO5kriHw86q7A1JRiIgI8J6V8/UQuJqUMVV78s1tz7KJTML8FC/QEVRY7j+7kpbUv+b4TlpZcGi31AdLY/mMZfOpgZm2dxeV9Lq9X/mV6yKASRyJWhAt7XpghzXti/RNee21hc3mfy1myZ0lWsBvXf1zOVGlzkjApgPq83TDAM4sM5bv79rj+49hfs5+OrTtm7aOmtubmlrNNQCd7BVEvUEspNwIjGnuhVq1aceDAATp27PiZAmspJQcOHKBVq1afdlP+qU0DrCtVxTVdSU2rLDQXbGpmH1v4GKs+WeUBX+XeSh5f9LgPkACvfOWSPUty7i5i7lxd59YBeKnc72x7hyKryKsFMWPDDO8YgeD6AddnXZoHvbdx/cdlXDuf0qkJJ4FAZK2bkc3LFoicu2+HrWYamjjSUi2b136yVxAnTZ7Xq1cvtm/fzr59+07WJVuMtWrVil69en3azfinNQ2wOqIPZHh+YQqLYDaa6ZVrQMpX6xzcudoWNpawqHPrvPPpWhCA71g9oeh2BoN0+exKUl/p1PEjx3uBtMcXPV7vdlYmQOXKhAT/BAWcVJ76ZFiY134itEtj7KQBdVFREaeddtrJulzBPkOmQcq0oOenaQFNL5ietears3lJubTOZnp4cOfqsf3HhiZTxPf4d7m+fsD1OeVn+exKUp+HV5Wo8upm5AuiJkBlC8IFJyigSXZPaYkWtt3XyZqIWmzCS8E+m3YikXRzae/iZgBF2D6E7+94n9nbZgPKAyyNlmb1krJpnYGs6eGacsmWTBFMggnrA61a0SB9RqczGHzq4NA+aGjiTUNBNBsoBSedS3pfwvDOw5vNy/y0knk+DfmhaQWgLliLsRN9GYLL9OBmsEFaoCpRxfDOw3l327u4uAgEqz9ZnRUEYl1ifH3E1zMCfbnSw4PfzzfRI1ttEFvYrPlkDR/v/zgr/3uiiTeNseAEcOewOwG8iawpwezTBMtPQ35oWgGoC9ZirDEvQy6QyuZNRqyIV5nt5XUv56yClw3ocqWHn0h7s4F/fcWfGnJNXYO5KQA72C/QNAlCYZPmpwmWn4b80LQCUBesxVhTvgy5ymfqlztYmc2RTs4Kag3xjE/UstUGCRZ/OtEdr0/EKw1qw4M7qpj9Ysr6stWQPtE2fppgme1ZnywqpgDUBWsx1lTAl0/5TPBXZrOFDdCgCmrNUUckWx+EqTBOxGttqFcapGJc6XrqmunrpzPpqkkZsj5zpRJWQ7q+PsjWxpOttAhamCLnZFExBaAuWJNaY8GrKSLp+YJR2LI9X48pn9oX9VV8ayjg6r5pzI7XwYSesAkpV+q4qe7IljxTXw3p4LWCu6wMOXVIVs+5OZQWJzpmTyYVUwDqgjWZNZeH0dAXqSFLZJO3rS/RJN/aG/kWy9cJOuaWXlrOl2vHmBOlAHRRolwZhmEKGXM3G9OjznbtYA3pXDSNT6ee0rUX28WMHzk+IyjcHHYihbvMifZkUTEFoC5Yoy3XVlONfcnqAz3Nlw45dYjvxW7IEjnbNXKBcS6wzPU98zMknneLhJfXv4zjOp7Xmosrb+wu5q50MzIMw9pelajKWHWYHDWQAcINoWl0PwZ3WalKVNVb9a8pLHi/MzfMZMaGGXlXCbxt8G2sObim3vICjbUCUBesUZZrq6mGeBjZvOZcRXHufuNuEm460cXCyslJZ7Ns16ivEp3p9UEasHKBePCz2wbf5tXRkG6aVtAp8LmKLzV0mW7uYi6EyJk4Y6abhwVRdT9km0TzpWk0qDfHLiv5rMSCz0MnQGVbKZlZoroGiivdessLNNYKQF2wRlm+WuJcVl+diogV8ZbeJpesa2VoO1FPPhuwhnmu9ZUr1X/Lt1h+fE/ctwO4BuiwmtSNsYquFRRZRd7EJgivtxPrkjvdvCGlT3P1bfCasS7177LSEAosXxouLE4RtvVXWJZokLoqcNQFa7GWTU7WEDuRoEwQeCAzdTnfF7sh0quwtgIZf7tn+D1Zrxn0UE0OuKkB2rymGeSTyKz9nC3dPBd/nc9WWqXR0pyJMLlWCQ2Nf/i47ywlbbNdN2ws6PNpkD63x7lc3ufynDVQmtIKQF2wDMsX4MIogHyVD6Zl87peXPMiT3/8tAfGuvi/TlGedNWkUI4a4OEPHq43KGda8GXNthtItrZmA6x8tvEaP3K8V0a1qTeXNa+fz0axkL3aXn38dX3PvjGB5oZO5qXRUhUHIF0iIF8LmzCCz10X5mroRgQnagWgLpjP8vVcGrM1Uz7a4RfXvMhPF/j3p5BIZm+bzbvb3vXO+eB5D2a0K8hdh73Y9cnnzMCb6ZFl876zeeT5bHEVVkY1H3lfPhNpvpRM0M7oeAZL9i7BkY5Hf4RNUmGgFnbdxkrZGqp0qUpUIRCeBxwWOG2IZXvuDY0VnKgVgPozavkE73JlltX34uUKAgaXz9oTNqP8s7bOytr2XFtGTV4x2QfSYUG5+gA0GHizhFWvljfsb8H61GHglI1KydZHAHe/cbcHWMGEk/rOnYuS0X0TnOj0RHXP8HvyAvqw6zY2q7ChSpeKrhUU28VNSkucLFAOswJQfwYt1yaf+WaW1ffiZfs8yB1ma8flfS5n/s75oe03ueig6kRXctN2Rqcz+N7I7+U1iZhtL7aLPa3zA+c80OAXNKw+dS6VRbZiT8E+Or/H+R6IJtxEzhTtEwHHsCCtOVHlA1bZPO/GZhU2BCib4notyQpA/RmzXMt6yD+zrL4XIdvn5kusdw4JA8xbBt3CtiPbeObjZ3BxsbG5uPfFXNjzQh8fHpR/mZlztrAzQDrYhjAAa4qXPL4nv5rT2a6VrY/21fg33thfsz9rG+q7j7BVVTBIawu7wRNVfTRBY4tCNSRIDM1Tye9km2iO/fwqKipkPB5v8vMWrPE2cflEfrfkdx6gRUSEyVdPZt3BdV5Aq6xDGfe+ea8HZE1dwyCYQp3rOvW9lNqj1qBm7vJy5xl38u2Kb+dsQ3N5W2a7TqQPs/WRls7p+4xa0Zz0R9j5qhJVORNRzESifBUowfPX97xONKjYkO9/2jWkG2pCiMVSytBlT94etRDCBuLADinltU3VuII1rdUHQGHL+nUH13mBu/k75/Ojc390Qplvpha1PiWA5qPri5rXt9w1vTezFKiFRbvidjm/15wvbWO9crN9wT4yNz2or5YGNFwDnE/fBJ938PzZgLGxQcWGfD9IIZnbqH1aGxCcqDWE+vgPYBWQffQX7FO1sEDd6k9W+9J9w+R09711n+88s7bO4pZBt+T0VLIlgZi7b5sva66KdifC/wZVI/oa+cjPmtvCJqSwdudrZh9V7q3k/R3ve59l475NMzXAgC99vb4MyGz3Zz7Lsf3HZpy/MQkwuawh39fH1jq1uLh8sPMDluxZwviR40+4+qBpJxPs8wJqIUQv4PPAI0D4WrJgn7oFFRuPLHgEB6VemLpuKpawfAAKigrpUNzBd57L+1ye9Rr5SK+ADKVDYz2pXNc3PcF8kytOxPJ5MbO1r6mW4fVx39l4Zx0g1haxItw/6v4TKnwUfJYCkbEVmi1sdh7dSeXeSt+5m2Klke/3Y12URv1nC37m2x9z1tZZjR6LJ5tWydej/g0wHmib7QAhxNeArwH06dOn0Q0rWMPNFPlLpAfSAEmZREjhAaguPmPuHi0QnNXlLMo6lGW9RnxP3PuODkQGEySEJZBS+jye+jyhfL2T+gBf/5ytIlp9HGo2y/fFzLbcbsxEZfZNWCZofW0MBog1wAeTa040QWls/7Fe+ndptJTVn6xm2vppTFk7JXTbsMbSTg35flWiyr/xrrC8DY4bs/JqKscjX6sXqIUQ1wJ7pZSLhRBjsh0npXwSeBJUMLGpGlgwZfm8RKbIH5SMTQN3RESwhOUVvdFAaw5iiWTx3sXc/cbdvgDVi2te9AKNpdFS3xL3cO1h4nviXnEhVyqFxnVlmanQ4/qPCw1QNcQ7yWfpG3yJgpNSLg41m+X7YpqTlrlreX3p1g2pe53No8zVxmBWYnBD3VySzaDlUnWAWqUl3eRJA7FcFhaTuWXQLQ3OKAw+n8ZSOA21fDzqC4BxQojPAa2AdkKIP0spv9SsLSuYZ/kCWVBaZQmLMb3G0LF1Rx9HrQfVzA0z0yU3DTP1uWaG4Pyd87m096XeBCAQHjibwSlHOvRo08PHq5rt123R1hDvJJ+lb/AlCk5KJwIg+b6Yun3BXcvrS7duSN3rbEkrudqYq9/qk2xmu8/GTKb6uvlKBxvD7zc2ozDb8zmZOu16gVpK+X3g+wApj/o/CyB9ci2fDDcIL7wzvPNwX0DL/J7J505dP5Xl+5d7n8X3xPmP2f/Bxwc+9l1jX82+UI1vruBUGNgM3CGpXriIklEjqehZ/4sdFkDMZsGXCPyTUrB4Uz7WUG40bNfybO3ONVE1xHOrr425rp8rExMaFjjLp69yTU5B776xwb/GUC3B0qbm82kshdMQKyS8tHDLN8NNW76FdyBTAmamDm+s2sjGqo0Z36noWsH4keOzanxN/jfbThgj97Vj67fvQiYSiGiUgZOfqjcxo6GBm+BLZE5KWkfckGBjPnruoPY4X2A3wTgYhAubdMKSRbIpTfKx+jIxm6L/g5Ztcgrz7psq+NdQDz1M1vhpqYkaBNRSyneBd5ulJQULtfiedEpvPlH+E12SxbrEmHTVJB5f9LjPs9am6xc/v/p5Lu1zab066Fw1PXpOXci+RAJcF1lXR/XCRcTu+5qPKjHP2RSBGxM4Ggo8+RSgMic5c9PXfNqpn5kunh8Mwun/m0tRUt+YaY7AWbaVQph339jgX9hYzMdDNwPnAsG5Pc716bAbmhTUGPtMeNTVS5d6y+yS8vKM3z9Nqy+jywzeSSSDTx3s+25TaZO1rflkTcbfbGEjpcwrOUL37ZqOuzNKYmpwrx4lEdEosq4OUVREyaiRGfdU69R66ctNHbjJ5c01NEinPzfrY5wImOkJKVcQLls7mmoiG7hDUj11IdWjpO+9aI7AWbbJoamCf6YF+ydfDz347unttnJNzM1l//RAXb10KVvvTC+zu37/fvb8/DHv9z6Tn2pW8K4vYBKW0WV6n1WJKl/wbvUnq73vN7WnY2p0AU4vPZ2zu57NkFOH8NjCxzJ2WQma2dfDiyJceRmUVEvW9rOouDr9nbU9BWt+eANDt7r0v+Q6X3+bXkxSJnn0w0eZfPXkvAv752NhwBNM2jEL+GcDKnOSNYO4Jwpm9QFits9zfS9sXGf7m/me6PcCmq/AUZhD0RTBv6AF+ydfD9189yws3OWr2P/uk6zpuLvRE3ND7R8aqM0BB4QCbdW06cjaWpASWVfHkTffQgaW3UDWQZqvhaVQ17expwZaU40QrJY2fuT4rNXsmtrTCZ7vJ+f/BFCBOFemlSFixVr2r1uY0dfVCxd5fSvqktz5hgDpwgcO/a6S0CVNE9S5dRR1LmJSz+uJBdpgC9u3CWuY0qEhdbODz6Wia0UGGJjFnfRu2Cb9UN+WXPePut+XBXoiL20+wcCwdsT3hG/ecPBvf2P3wz9TzyM1riF8rJvPTr8X5rM9mYGzhlwrn8k6jOfPJhU1zXwfhuy0GP78FPbVJRleFGHIFyxW9lAUTUuR57VIMz0AIhEEIJPJDC/50NSpkCo8JWybtldeQfXixb5lt2+QJhLs//0f6PSNf80brE3wsYXtZQDWt6daUHMbVoOhKlHlU3IEdzlpSk8zbECbHj/A6dvqsH/xMPuSbsakVjJqpEdpIATCcVTf1yW9F3/mhpkZZTpNBUisvJwHznnAN1nlo5XWgcEwMK11arGwEJbAddM64XuG3+NVctMBz+Bu2Nki/Ob1a51aVn+yOmMTgxOx+kAqH669eulSqqZN59BLLyEdBwG4iVrPKQkDZLt9KViW+twSfLTibTrObs+IS/+l0feUzU5knIbVGMmHm8/G8welosHv6PfhnP3bEXUvev32/9zLeH9glwJHXZ+Z4EpdnYKRlNesB1/1wkWQTC3lhaD0hhvocOutFA8cmOF9i2jUO9+xDz6gevHirJ51cICZ4JOUSbwcEql2exZShFIG5kAIVjXzecldFQ+mvergLifBehJBjrch2zuZQKC9TDNzcdg2gZV01ICtraVq2vQ0UJeX02fyU1QvXMSuPeuxn5upvue67I7P5W8lK4i33eK7nv3xejb/zx1QVwe2TYcbb+Lz119H2dWTG6SVLo2Whqa2a+B1cNBy8WCB/uPOcSwsrjntGk4pOiXnbtgm3WGudKasm8LgUwfn1dcN2aEl13HmZKGzIP8/+zKKv/1zZG0tUkrlwAAOkh1l7SnrUJYRH6heupQ9P38MHAcpBI6TpMusj0i+8xHLfocH1k1Z2+JEAqDZaow0hPrLV+qqTb8P1cmlbH5mKm4iQdKSPGnP4/6a++m57hAlrdRqsTntHxaofd6bbasB6Ti+4JR5jCgqovT669Tfy8t9AFy7di3FZWW41dUkNm3KuvyD8Ajyqk9W+Y6xhe39qykDV7rM2DADoN6ocVjgxPSqgayeZBjHe6Lb2JtgOGgH3HR0EIPPHoWY9ywkEiAlh156iVZDh9Dh1lu9vl13cB2rp/+dMwAbBRRibpzR86BXV5g9wmJ2ufLeauNLcBNJbAnSTXLwhb9RNX06Ayc/Raw8u8ws6P2HedgVXSu8bEzTzAL9x53jXn++uulVfnTuj5h01aS8lCwX9rzQV8Uun75uCGVT33HBFdmCnQvosWABtySSCKnHCbgWTL7KZmjnw4wYnp5Md5S157nIYs55azuR1POUUmKD0vg4sO39tyjrUMaGd6bzX4kZrOzu5NxWLF8gP5H4SvA7usZIvtRfQ6WuvvspL2f5gzfx8VsvsKIP2G4S+5vhK8vmsH9coDa8N7t9KcdXrqJ62TLcgwc58vbbHhjrY7IpPg7+7W/sfujH6RPbNggBtp3mvo3vxCOLfV7MIx8+4gOCqBX1it3ospsaNF9c+yIzN8xk/MjxPLbwsYyoMaQB11yWV3RNb0yqry1QXnrQkxw/cnwox5tL1aAtm9RvzXszGP7XKYi6FYjoWk4ZPZqjb7+tvuQ47H74ZxQPHMjanoJtf36K0ye+xTBXvewu6l8LEC6U7YKyXWryml1usaK35AYbRFIdJyS4iUToJBk0fQ9hWm19Dxf3utgDU4DhnYYzfuR477tmmj3krhwYBIpOrTsREZHQvs5m+QJUPsfp52NmQa7oLbgpYmE7AizB4tMkh06R7Ooa5SspUCopL2dtT6HGzbYEbydsHiyKIOqSCFfXilEA37PHYLZ+9Q7sRIL7bfjJ7TYbe4fvQdkQDzlsRVTfZgLB75g1RvKdHPLZzCHb/Qy6aBzT1k9j+OYEnQ9LrKSb06lrSvuHBWptdTt3sv8Pf1C0Rco+mTiJuj17aDWgjJJRI+l039cAI7jiOGDbdHvwhxx58y3/CV0XKSXSSbLu4DrKlvqDL6O+8SVuXAwreqtF5eAtST7uI1jXSzCs0zDfjiJ6Bg/uPzdr66yMqLGuR5FL66m1ti+vfxnHVZPDqk9WZcjgwjjefLTA2aR+vQ4sZF9d0huUkU6dIBJRMQFAuo7ncT3wTA1C4i2597WDU4+CnQJu/ffz18DOLoIztgneqIDPLXA879vBZdeiudTt3Enp9WlVSK7yqsGyrtruHHYn7+9435eUY953eZdyFu9d7P0+qMOgrIARBhSDTx1cL5+e6xzZjs/3uFgXfxbk5j5FOL/5Lt3WHcJuX0rFz34GdQ6Xr6jzAroAa96bwTVza1jRB1b1Fix/8CbOe20rx+bPBynVBHvtZXTadoSDiQQCKHLgouUuW/pkeqINlTwGab98dM25FCGmU9MQoIfMcVW9dCm7Zv4vfe3jrOmVpspuT57Ng887UOeCsBBCgGX5KKTmkv22KKBuyI36QDdkl5ojr7zKESEgEqH9DTfQaugQdbzmrJNJdv/0YVoHrqN5PRyX9T//CRG3M5ZWjSQSFP3maW5xXW6yVPEj4bgkbfjpbTZDBw71gfTMDTPp1baXL8NPC/gX7lroeWJmPYpcWs97ht9DfE8c13XR22SFLf9iXTK3sQ9uWZWvRhfCKaR9vdti/WoiQoIjJO91/oSy9xNYKZDW1ukwSJH+m35SQ8/7PA/99TXllaRMg7jlgng/ziHiVE2dSp9nnvY8wL5bjrNju4W45QfEOx/2tXn1J6u9yU4rNgbukDy9bywr+1gMumicj3aatn4aSTdJREQY3HEwI7uO5PnVz2fl98OAIqyvc5l5jpH72tEzRLccdi1rxtvMf+t+2lxxBQPOvtT3npgrn6FbXfqfUUbJfeXseujHiLrUeK9LcmDiJEr+8Huqly5l+E9eZFidwy1A5UAY/M3BtL1yEMfmzVPjFOhx1miOr/TTegJ8nqh+Z0eWtc8peQwDYN1/P/3gp3nzxmHB1ny9+XzUOw+1/QL9HnyavkmHH1qSZ6+wKT0uGdmrHVVzpiMSdSm8Sa2iIxG6fv9+oPHKsVzWYoA6l44zaAf/9jd2/+SnKpCYzaRU/ycSHHrhBUVnBI93HGoWL0baNkdO68wpp7THWpbWKQ/Z5gJ71C+p2RPXRbguthQeqIskXLzcxbnqFCAzUw3wqIoHznmAsg5lWMICqXiyLw75IsfqjhGxIl4QK5vWM9/lX3BAm3ymQFAaLfV1RX0e3CkXXEBy717a33wTJeXlrNowk8EWRBxFaZRuP8S806Ik36+hyNH3nKYzTPCO9u9P9dFqrKSDcHVCQdr090ApFKqmTWdb6Sc8MuUoPT5JHTzvYUb+5kGidpR+W2sZtk3SQewj4aaBe817M2j1s6lEEglGRKP0mTyWSsKfzWV9LgOol98PA4qGStdiXVRyydZv38W+HONdn/ejib8i8suJtAdYNpHNkckIV/okd12nTad4yhRwHLY+rSa3oB195x12PfRjkvv3K5oj1c9nr3WwvvkIR0ePVvEElPLDOVRF6fXXcfDlKbh1SRxLORrle0sA/ztbHI0y8dffZ1Hnw1mdg5kbZoYqlPLhjcM8c/23nUd31nudbOcIBmQXvfY0/eqSCAlRF+5+w0UgEfMe4ZDrZjqFUuIcqqpX3thYazlAbd6ooSYIaqUPTJzE0dmzQ73orKZBO8tnruvwas+9rOl3kB99bCOTjgcU+l+rtJRTRl/IkddeRyJxLQuki+UosB6zXPLIm89Q2edS5dUZQABwXo/zvPRTXQZSXV56FegiVoQby270govZPLVsGlAdWMzmTej99lzp8viix30glG1ZWb10KVu+eocKHgJ71qxha2eBWLoS20lxzxLO/tNizvz9Q6wesJqhb6wjMm8J0nUzPGkB1G7ciNy0gRRGq3MEjjF/PvTCC/Q3np8AZF2Sdn95k0nnfQHrr08rJcr8Ocy7zWZVD1UYauhWN+PlmXHm7oxnY05M2fj9xlrG8toY724iwZyZ/0v3nv+aca1ls1+g7v+eJmL2S1LNhLK2lgMTJ3Fs7lwf9ScTCfb+6tccPfYJQhgTpety6G9/U3EYoy/1d46k4g6mSmREeTn9nn2WJc/8mtI341y61MFdNpHl8zbRqXUnX//2XHeIEZd+jeqlS9k/9Umfly0QTFk3BSmlL6lr59Gd9fLGYR4z4EtQ8nagl/Dy+pd9Mswwz1n/3XRQBIKPe7vcJMDSY9OVqkcS/jGjOlb4M2sjEU+9ZGbbNoW1GKAuGTVS3ahWE0yZQnL/fjUIk0n1meumqYsmMgk4FqzoI+i9p46DvdvT5phL0d5DWKQBwz10iCMzX/GOn3S55PTdgssqJRaKgx28xWHmhplMXz/dd42oFfVAGrLvxB0sDxr01HzJIlaRpwHNNpCDoFuVqMqp6za1pg9/8DAd1u9jzMsbsY1B6tbVMe3FR1jey+UhoeY/xVO7WP/3POe17UjbK69le4dS7BlvhwKwkJKIxPPeTNPHmJ95dJTxzISEY/PnU/TBB+mJOOnwQPQGPizvRUXXCvrvkGx9drpPiiaOv+K7XjC4mI+GO5dl8/yCz2dgik5yEwkSlsskewFb3qz0LduXzX4B/u0hSpwsF5PS57R43jBQHY9jGf2l+xZQdGHgM4xjJGqVtLXyfUZc+i+UlJeTeCqRjjO4wIy3ORSNIiIRn9oqzMue0XoNU9ZN8YLutU6t18caZPVKMlgnG7Jr5vXfHOlwca+LeW/7ezjSQaY8gPrS7AfukPRauIiJZd9lUefDlEZL2fTOT7HdQH+Fdr1ECpAjh2X2XY7vnai1HKAuL6f9DTcomkJKSCbTygJQM1Ujd0wPLq+1LT0dKta6XP+hBD7xHe8DDNID9Zw1kgWDBBfbavkvgWMlFjs/WelLw+5a0pX7zrzPF1gpjZZ6XvGQU4f4dNO5ot+mp55wEzw0/yHO7nq2+t1Ivpi8YjLzd87P8B5G7mvHjQtUIHRj7/CtkvRkcOHi41z/hosl/QDg2LCsl3rhdp0KvQ6k22d/tJqjwNF583jtvAhX2fhoEENeDuBNhOZnWk42c6Tgc4slRcnwga8B3wPxVFCn/yXXMXy4WnIuW/ECB0YPpHPrzvS/7W5KyssZu1cwbf20rMHFxtSVCCu+P3CHDA1Mxcrvoc/kp5gz83+ZZC9gTS8YvLWWXf/3BwaO/f8oKS9n5/tv0cfJ5PdFioJTf/S/E8ExHvrGCJHxveAYt4D+E99m24ZvANBl/YHM4x2H0ptvpqhHD48v3//HJzO87O7nd8eRDmXbJWdslazqY7Gul0v/7Q7DtzkM6HsWneqK6XHhFYzIUzO/+pPVPoDv2LojrnR9mv9clKFZwbE4GmXkr7/PRx/O5NoPkun7y2IeJrgS5sbZvOArFPfp661qpOM0OfUhZCPBL8wqKipkPB5v8Peqly5ly5e/kuk1p+Ry2QKH3sAzB3DAsoG0xO9xmLOiC+zoCD0PWViO6zuHiwItywU79UEyJV9a20t4O60M2g7Dt1ucffVX+MmRv4buMgL5pZw//MHDvLD2hYx7iwg13562rY4ztkpW97VZ21Pg4mILm++X3MhFy12qpk7FTSZxIoKf3RZhdQ+ZcZ2Jyyfy2ozf8OO/OJ4HpftpQ3fBrBGC03dLxiyXHvUR1n8fnSY4HoFR69LesBtynD63/l2DdE0rweHWUL7BZdQ6o997dkPu2u3zeqSANudf4MsmXTb7BeS/P0TEUc/l/e9dwYVX3ZVTiZAt3bw+XbR+dmZ5TguLr1kXc/Ev3sFKOiQsySO3F7G5T7Ev3RvUEn704hrufCPV50LQ+uyzOTwmhvzvid5khxC0vfTSUOov6DUHVzGuQYFkOya4+gma7x2yrIws4AMTJ5HYtInE1q0gJaKoiD6Tn+LVkvU8/9JP+NHzjnJqIhbPXhHhi28miCTVGEII3CIb5zcPhmZDmv2s3xGzJovuR50dbNZqCZ6jomsFvaYuZN9vf6smFEvwt9EWZ611KNtVv2ecbTL0jo9E6PunZxsM1EKIxVLK0CVci/GoQXnVrYYM4fjyQJlNKTNB2rLSS1799xwgbQ7OILBg/K7/1d/pcQBc4XrH6ivYgHD857BT8qX1vYq44GAnBi3YzZjlLrYL7vtPceFlgjY1MiXny9yxwwy+1Dq13i4r2sb2H8u09dMyOFZHOlx19DS++PzaFDC5PHp7lLW9bK9GwaFUtFoAVlIwaHOSlT2E1wZrxtvUTHuFYR3bU1OnVg0+MC2yeXuE5M5Zruflhnls+vctXS2GbPGv2WW3zli79/k96BSAQOqFdeG6hdJbWi4eIJh2Dpy+FzqeWUG7j7fRxmibC8iiSEbK/87336K3k5pEHdj7/tvcKz7wyQ5NCxZlgsyd1INmfieYWCMQ7Jv3LujAlIRvLevBJ2dcwU8CQPNQ2y9w2ptPeX2OlNTE4xRVVpK89AKYNQ+kAriD5adRNLcokzMlEzR8zybMvzH60Bvzmr8OCZwJoKhvX1qdORz3k4O0vfIKAHY99GMOvfSSj1Jpc9lldLxHrWKqli/mugUu0dS4cR3JV/cNwnJXoDeOE6lSA9NefAQ5bGDWgK35jgSpwvoKR5nPXVdw1NTTodaS0/Zk7arQfss6seUSOZygtSigBmh/803sDgI1ZAya9rfcQt327Rz74AM1K5I5E0pLIF3pA2mTA4VwwCm54AJ279lAm/W7sVErHHWghbAtXCeJDHib+lxjlku294A7Zu2FRBrgraTLXW8qUEra8LPbImzpm5YxBdOSB2x3cT54kWU1g1jbU3h7Fk66apLSUq972Sfv+9yhPkSctR4wfV1exIbyEZyzfzvUvQgy9UKkAiA1p8CNHzis7WdRtnoBkZfnqZ2L1+/mEvyest2+PXXDBzD648XeyxakhfQkVhOF+AC4epHynkB5vKIoSukZZ3Jkt0FngSfn0+ezUo9a/ztqnaTOhj9fFeXOvy+FlNxMAo6Azd0FfW+/g9q1a9nz6M+JdOlCx3vupseFV5B84X1IedQr+oic0i9f9D81EZZtlwzfVsOaVjOI3Zz7O1rBo7clu6jXRazYPpvrbSCp7rPD8m20e/Bp+t4KLpIztiZZtvUF5Hab010/Dw9AMklk1nwvDuAmHaYufpYbrx5NZIa/H3N5fy6ZAduM79o2HW6+2cverZo2nUNTpmSsbuu2bKFuyxYQQr174HeW9HWPH/cmzlEfVhFZZ/DoQtDj2pvYvWyNN+E4Qj2n5b1crCyqDah/u7F8qSqdDDdn5v8y0f6AoVulNxZd4FDvUjpsq/L3q7FiD429eDcv/3lVH9o63HoriW3b+GTipJzHOdXHaHvlFRxbsMDrMIcA7ykE8TIo3yB9y3iAlb1g6Hb1c3CQJw8coO363WCcS6GIwBlzDuKted73ghNERMJXN/XGqtvofV8KgbAs7FSBHMsV3O2cy9GRV/r0vDotefsHb/Pg8w4Rx8Gd9xOe/4JKqJm/cz4/OvdHPHjegww+dTBT10+lc+vO3DnsTgbukGx+4T3cujpExGbvoM5UdK3AjbXDsVwiUgVBrfPOpn1xKXe+NQccF+bVIZPp+yHVh+bv7qFD2HPjDEn9rvu7tnM7Wu077Lv/kgRcsBIvDVlRJhZ9fvgD2uyTHH33XXAc3yQX5p2YAz/iwFf3DUIkV3jPSD0OQf/dAvHfk9lteHNH58yh7E/Psu53P2Hl2y/zYfVKxqxwuPRjh5G92gGZmv2KrhXeJAkKpL2l+vwXWHbq4IwlebC62tecC1jZR3BgQCcVe+g7n0dur+Xm912Gb1JZbFZSMuZjmws/cogkQVowf4hafgsnBEaNeh1SQFUrh301++iuqcCACctCIj0HRYO07jNzrFvt2uEePuz9XtSjh69uS6uhQ9j/xyep27kzfX6jXbliRsVDBnt93HbWh9RgPFfHJbFtm+++4gMEM861WNcLNhiqDTOJqaE759Rna3sK4lf0IfLuIvrvVM/dFVBnw3+POcao9RGu/SDpu+fWFRXULF7sfy74x68VqLHeFNbiOGr98uz91a+pqe8cqcGqvau3Rwg6VMPItdID6tnlNu+eAaOXO1z6kQJsGbH48W025WuTqQCisqDHEcZVmVxf2LJfFEXUUl57IpZF67POonrpUu/FsqJRan/zA+7a8V8+GsPC4oxOZzBw5gpunlOHLdV9/e0ii2nnW5Rtl3zuUG9GXnMn9+z8RWjVtA1/ncScbXN49wzY0rcVY/uP5aPZLzJkq8uxEsFdbwvsujSNlO1+snGUYauI4Gd6Ka3POavc4rSRlzFg0mzVB5aFFKiJIuSawYHv2oIjA3tQumqH7zlYCK+mRdBaDR9O1we+D8DmL33Z63sRidDtwR+G1iT//Z/+HefVWSnPXnDZMhVMdQRMGRPlup88A2RW6Fvz3gyGPzwF6pIkLDe1WmrlcdGjPqwi8suJ6baPrkDMjftWLbptba+5mur35+EcPOjrd8eCV0dZXB1PUwihZtskb/0c/HWmR6UEKT59HEJ441REo/R55mlffeotX73DC5CFPWefBQKU7W+9larp09X3LSsz7mRQl/r+HvqizfpeqQp+qTjOwO2SC5cnkcD8M4sYdslNjOs/zldxMZfnmi2JTtNWF8ZruOsNx4szSWDGORbPXWpxw3yXW+e43kQHitI51LUE62+vqnT7wPA73PdUznzs9yfkTTeKoxZCtALeA4pTx78kpXyowa2ox4JlS8N4ngw+SL98qKVltypYNDjCyE0yxQ1KLl0O4ppLqOpaBcsXIZEIYfHVYV/lKSZTsd6h14HsIE3w7wFQCw7gkhExapYsSX/BdaleuhTpOFgoEKs750zWvP0yfUtqWdcrPexdXD7e/zFOXwtZZCPrXISlgmraw4u6W3DfeJi+t8KaXmRw2eK1OYypS3LhR/DwbTUc6HGALX1bsb53HTd8ILGSSe/lkEDSSq0EnPQ9ZHspzYkr+LKa33GF8pJsVy1nN3ezuGziLDzhtOuSLIkSqU5kAH/QJCBd6QNpCcwbKrhgjYWdDNeuHV++nC1f+jLRvn1VuVVtySSHXpqSodlfd3AdF//X29hJ1RLHkkjbwkm6nicbTPPXE6SZYh+RMGSry/re6V1tlr/1Y1zUKsNNtd82U/B1/0lJqwFl2CWnKL2z7s++PWHEYEbV7CPqfJQ72OW67Nu3hZlX2tz1pqoYGDyudUUFxf37c+jFF1MPT1WWBNj/xycpGTWSAxMnQaL+5+NZAKir43Hc2lqlzEHijBiMnUom0/eqvyNQ79XwbbClT5Hqf+kwcLvkB8/VecHUS5Yn+Kl8gVVzpvHg845K2smx+UeuJLr4njh9txznrjcVSJt9NPZDl9a1kk3dhM+RATgy+20cG566wubSjyz67/TnCpyy7RNmb53NtZ9CCnktcKmU8qgQogh4XwjxmpRyQVM2JFgTGpGdrM/Gsw3fJBmytY7a7p0p3q6CViQd5GvvcLyti3CV5tlJJun7SiU/ned60cGgF6ivsb8NdDrqB6IgP2u2ryYeV96CMXClo6KODspziMxfwhmOy48tmH2m4L3hFocHdmNf9T5cXNb0tNl8x6UMeOodhOvytdkWK0Z1JuruVveQdLl4hWDIVhWYnGapzQS6TpuOlQpekQpsHtz2Dg9d81V2n17KyF7tsD74ObKuDlfA7GGSd4cLbGFxV/Ichu0p9iU9CDKXx9k8bf2ZALiggrkXd6DDO5XsrzlA311OGqRTFqlO5HyWplcdTEsHuGClhB6dYUeaosqYRByHxEb/Br0SONq+mIjmG6Xk4MtTeG/dS1yaTL90thQ4550F8+IIF77ylsOCDku5Zoeqj6ELEw3cIanbuRMRiShFjXDpfBiG7FS72lQvXcq+TavonBoOArDmLabkvPOpnuennLQWuXbtWqRlId1UuahtO7C37aKbEB4WBvvI6zsp6fbuSvoPFwiZrl5oHluzdKk62JD41W7YwNav3qFyFoTwnCBznGdcS5cGNs+VstoNG9SfgaSQPBLbSM/udhoYbZu211zNkddeV5RQUYShl9/EjacOxqpcyco+Fl3kPiLOLB8FNnSrpPPhWqhNFY+qq2PDO9NZuWEmwx+e4gPvYLZg1bTpXhG3c5ZU0neeo8oVBMaOBVxRKXFF+m69MS5VO9rUSDZ1hf4705/rCWfLnFfhuu/QlFYvUEvFjRxN/VqU+r/J+RK7fSnSeNgmt6Y70gXeHwqjV/pB1XuhUbpduX2faru6AUYvS/LUFRZJG3BSYDlvsUrDVX9iU3fB6fst3KTjgQMokAb/g9TXUo1LDSNzCZ4KbkrbUteQUn0sYH876H4wFWR04cpKySXLHY5c0Z0/dPvEy6rrx6lq8LsuliM4v3goR8RepHDBtrhkuQupOiOP3K7SpYunTkXI9Is5ZrnEdutg/tNc+syzlFxaTvXkMqqmTWd/zX4+OHU+G3soCd8GWtPrmEskEoFkUml1hfCBdJhJIdjXTtK5Kt1PdCzl/R3v872FNURS/e1Y6n718zQnvh0docsh0pmOxmfm88f43ZIgUiCt7WAJlNaQ4SGZ50pa8HqykmudtF5WJpO4riBp6L6toiI69OjPQbkYgYQkXPDXVQgJN9rw6O023Uqr2PpQehXY9pJLOPLeHC5f5nD5Sofup61h688fo1ttrdcAAeBKqufPz+jLVsOGqaDozx9TpQpIVx0UZMpDsS2cWz/Py7veoN/2OipSUkjhSi7uPQZWzEEmXQ94vXfFcTJoxVw0o7my9DlMdXWZBxtesjfZu9B9T5JZ5RZC2Nz9pkS4LkffmkW3B3+Ic6iKklEj6Ue6XsaZkQhtRo/miG0rRwclhz1WIrj5fSNhxxI8mphB2VsJzkioSUDW1rLhr5NYObILw4siiKQDQihlSmpyjgA9A/dl9q/OuCX1mYtaJYJaJa7ua7PeinD5ijpkKsDtpj6b0/kAFwTyExpreQUThRA2sBgYAPxBSvlhyDFfA74G0KdPnwY3xDlU5QGgBA9wzIGxqhfs7GwhcX38ng4imiU1TQ/ZdqG0RvDT22yGbYUuRwSXLnXSg8m26PPgQ5yWqru7b9Mqur29AhFQk2Sbndpk0bau6u5y6jFBt4NpFUP3g/7vChQ4dHxjMQ9Gi1j+4E0MumicL6sO2+bIe3NwHQdpQeVpkrPXyxQXDl+Z5XDaooUqKUifVyrgswFZ53i71gBUTZ9OJJHgwaII7/znxWxc8i4Xv/EWlgvSsmh7map74Us4CjE9EbY/qgDQdtXktK96H+dtqSWi5XGuih+A4Kyi0+i0dIvy3AA3YvHHz1m4SIZvg4qBl3LeKcNwjhzmk8lPI0yAMcZD2Aqr3XGYOUowdqFMg7UQUFTEjjM6s1Lu5FgxjDOSGmTqmDnDLeYMVzVberbtiXPVaIYcOoVIiiayAOmmJmhHZaHGtz7DabV1alJ3HOTx4+ColZusS3rbvgmtuDHvIYRbr4nHlbfrpMemHuf6aN+4/9ZdLDynlClLXmfAdosRmxyKXIFdVET/L9wNX7ib6oWL+GjF23R56yPPu87X9LH7SgWdq9KqFKt9e9yqKh99ASnKq0937O17PHAVqDFwz5suO7vYlB63EDLp0U7HV66i9PrrqF64iLqdO32r6iOz30YURWkzZgyRTp3Ye/FQzn37ZSLuMu/Z7h4zlDpnJR2rXBW3kKpv5Stvs6DWprYvnHW4A/aeAxl9HlwlA+zuAN2qLK/8gUQBdJ0Nky+3aH9c0OWCS7kqdiYj97WjQ81KAKbbH7Fjxxo+7iPY2FM0+R6KeQG1lNIBYkKI9sBUIcQwKeWKwDFPAk+CCiY2tCE7ytojI3gaXXNA6n8H7QJr+CAsVnl/e2+oINK/L317D8det4Wu736Mm3RwUi6v7SowsM4ezoVnjaRdcTu6bazCXfE0Vp2DsG26P/hDtgwbyHN74lR86XrO3XEdW+feld5r0WhnBjdbVESbi0ZzdM6cjIDJkO2Q3sU4cwXgAx0pEYk6Llru0v3mGHTBW77V7dzJJy/8DRtwpOKyZaqIgyWh/04Xdm7wL9+EAl3puAgpOTZvHsc+/JA2F1/scYfU1TFk4R4umlXnAZt0XY7OmUObiy/O+qyCNIPtwMbucKitTcUmQbe3l9NRSPUMUjz13OE2m/pEqRowivMWDeX4tFdJWC47uwhsy2Z9T9jWt4gbrryLTl1i7P/jkz4pFOAF247MfCWjTXpCrlgvWdtLMGSHQLqKX64e0J3VYjsbuwruedP1ee0A+wd0ZEufavptreWT9jbz++5j9bEp3LgYbklxlA4gVWYGSUuyog/03ucocAKsiM2h84bAgnkpLtqlStRSFImoFHa9HVzWXk1ZamLSx5o/E/i5h9PW2yl7XS/liPwbl3DO5+7yqTc6zm5P8p2P0jW/9Ylsm2jfvj56KNKzJ8ndu9NbeAGbu0LHmgh2qv6yB9KWpcrdOg7ScRS7tW0nUoqMcW5LuCt5Dj1uuQIx7xHfxhOep2tZKUltmkaQdXXI48cpvf469vQULHplFcNk2knosjfBQ28nlZMhjLHgwN2vO6mV7/6cXW4Cdpd2PWh71hClTpISYVk4ZX35y2nbmBNTq90JV97lFdU6lOK/z/v197ln5y+adKd20xokz5NSHhJCvAtcDayo5/AG2aLOh9l3tsV1H6YLl+uBYnrGg/ZHQKhovyNgVxeL0luvYEtxOyq+cDun3SX58O9P8YR4D1e6DNsmWNXXYnXxSqKr1zN+5Hh+cuSP9L0Vhm8v4vpbfsCWYQN921d9eeiX6fnDGzjtpYWcUrlB8dqoRph8qdOvJx/fcxFDF84lkkzre7UFJxz9t2xLST1wtZZVB0bWL56tHBcUhVC+QarlsLCQMs2resSREFjFxbQ++2yPBwUgmeTI7LdBD3RXEt26Nw3Suj16wgmTgEUi7DuvjKr1q+i3Ry1rLWDALmCPBKkmhggQH2jR55xLOfW80YxovYZN66fx0ewXGfd80stIG7TdYcwKWPmjf/HKkEKq9otte22RwI7Pl9NN1mQMWrPtvQ4AB9RUommGU1Zu4TJgTAp0gxOlfXo/7qIDF/1tNlZdkjo7yU9vs1nR2+KmoogqxRqxkP9+B3v3bOZ/mQO43DnLRbgKwHdcPYJWc96hQ6q7bBd4P460LAVoIVI6gOjpvXH27sU5WuvdZ/CewkwAzpHDvL/jY+9vG3rZbDhrBJekUui1jbj0X1j2O9gzdQrd3l2p1DaWRbcHf8jWzgL7336C5ahx5OzbR9vPXcPhVF0bgRpv7rfuoN0Hq7y8BVeAHNSPNqecSnU8rt5PSAUvpa+deooavLyKkpKtVA8a5CW1mZ632gosQEVIybH58zn24Ydsu+sSWh9zvMCsBOxlq9PHS5Q80U3nL9Q7MQb61N6yk6Nbd4EQRLp3J7lnD/aaTdy5MULF+Tcy+NTB9Jy6kCrT+0+lyk+4oel3ateWj+qjM1CXAunWwOXAfzVpK1Ca1DX7VLeaVINjQcRN0yGvRlbx+SIbty6pBPK9Yd3Hk30p2Zf84H/oYJRAXL12ileMZer6qdQ6tazpBWt7SazWa+i+57C3JVNSJpmcOt+gM+GBFXhpyK9X2IxbKD0Omi072DjzbwyOu74XDEI859QAwjjO9Ey1Scdh8a8fpONH26AuiWsJLCSkAGFdd6X/FqSy94zvprk0iTP6bORbBkjr86e+oOmh6Obdvu9rO/rOO7T9/Oe8YI9Z11s++igdE+rZ7Ook6Llfg6J6gfW5Yhtcto4RDF93iIEdJUk3yZCtrqJEUvduAzIpGbrV5UOj+l9JeTltLr7YR7+s2rKYNZbFpYF+Dmu/uZz1luwBkJYAluAP3T6m7P1aRJ2S40WS8C/vu0y/OIrzm/vptu4QJaNGsranYPyb93LckVw/XxJJqvY7LvScuTgjGUL3idmm4PVrN271whwgMmi2XGC9Jf4usztv8X63LCurJzfi0n+BS/9FSTjfmc7KPhYrhls8vuhxvjRccnllmq8//PfXfH0akRZdnLaUfONfORpfhJtIKE3+6o1Uy42+Pg72u/ezlBxfvtyXdRw2KZlp7tpJ07V/+k+YxbHThP+zwL/2qaeqMq4hbQla1r5NyQaTO9JKI5F0GLpoL+K1F9mbKhGrJI62FwRuaLnbhlg+HnV34JkUT20BL0gpM9eejbRYlxjWjXfCLyd6nbuoTHDwFLi8Uu3j5gg4GpX84a6udFq1mxWpnVWA0Fq0FV0rmFf5FDd8IFnRG9b3gpUHVhp0hOTl9S/z5SFfzmiPUl9YPHp7lMFbHFb3tbnlph/S4bmPOfS3vylvWcK4D/0vpwkc5kBoc8klJPfupWb58owlbXAwVW/cQIdEKihmaGEdFwbtSJ87eF0LPHoksfzjjIdrtkf/3KY283yqA1yOvPY63R78Idt3rPIK7/eauhBRl/S455oiP8slu3ZGpNLEbQf6T5rNPvk2w4siDL3NZnVfSdJ2sRx1UVcAEYtHEzNYucS/H1+kU6dA+yXvnCG5+COLSFJ5he7wgSypWUf5urQWVvdXkDoLe7G3j63g4+6V1DqCG3UWIXDmZsmZOx36XaWK8APEU+nLAK2PS2+1pAJ+mYAc7HsIpGsDLkItsY1vBFeS6o8iwzP/cLCp8IUhpw6pFyjW9hTc3XkmdcfqsD5UO97PGW5x8QqV3COERDpuWi0iBFY06knelj94E7tf+huDt7n0PpA5nnT7c70LBI4z+8R3vCW8euWgwP7MjYHxFjivc8BfPCrM6mtXhgmBjNjM2TaHMQktqZSIZJL2115K6RfvbdZtuCA/1cdHQPO2ImVn3vMdDrbtxZE33+LQeUP4TfTPnLatjjErHCMVGNZ12AvnW6Hn0OUUbWwG7YTv/0UFta634eHbFH9pWtJNsmjPInQRJW0CgSUszr3yy7QrbseNuo7w9QM4mKprEPTg9L+ugBX9BCM2pc93ZM677Pj8WfRcHj5QzIHd/WCmt60BwSsranwvjM8v6t0bufuQd51o374ktm4JDdKC30NJ/9Fl+45V3NXlVRLHEkTfnMnEsu9SHI3iJGpJWpK3R1j03esSccGyI9j7D6YnDstS3KzrInQJ0it6Ic5th1O5kme3T6X1MYfVfS1Wd08ikT5deOn113Fo6lRkXR11lmTOcIt1vQQ/+2KEHx66kE6tOlF6/XUkewr2Pfxzur31ke+FN/vObtcO98gRfAElIejW9XRssRxwmTNMMGSbVLp6CdQl2f/7P9D2yis4vnIV59Ts55N9LoM3J+m/O32N4LMKA+kgEAWfoTDOIFHFqVyhKBQrEqHDjTdRev111K5dy5E336LtlVfQLWbBgp9656zoWsHfXvqp2uXlkutCwWPmhplekpXeIUjz28O2So60Fnx1luOpow5cOpxz77rfO9fgUwczaIWq92JaGNgdLYbqVtClKpzKCfWozT4LSDqD1wlzPEzFSbZ26c+PFMMptamJNltBt0iE9jfdxHvDLd5d8yIXV5Li0NVZioqONDtIQwtNIe9w6618sreSjnNeY12vPfz0Npsztkq29G/Duq7VWb9rFsVxcBi42U0rD1IazCBQAxRbxRTbxV5xnav6XcUbm9/AlS7Pr37eq3A3cflEKnpWsO3uSzltwlu+2gC13doT3X1IeSISztwaGCRJh5qFcR+/lm0QWa7/d9+xIr2zTJjHKElFvhf566XUbt2CZaWlTkHwEIBzxQW0d1ulAynRKCv7WCSOpev4Lup8mNsnP+Xtkbiqh8vebhYPRMdxahUcevFF1VYhaHPJJRybNw83kcC1BW5sKBVdB7KIODvPs3hzrfIo1RTpX+WM7T+WWHk5fZ95muqFi/hryQrWu+8CEle6iNfmcCjpejuWc9f9bJlzh69Ykdlv7tGjfo80pQbpVAWPR66g8/Mz05Xc9Pddl6Pz5nE0xfPbwLWBZ2VCiVPaFrvqiO/6+jjTMkE6DdBSwM7ynvzxjD2eEmbo5bdw680/AlRwUO/4rjcJm7V1FoM6DGLRrD9z6Z9rEA5sfmYq/Z5+OgNE/GQZnNXlLJbtW8aGXi6beqvCUls6wxlbJWv6Rnjgnu9TYnjpPdcdYq9rEZQLqg6yQbpePeg2tQoIs1mGE2L8Hgbs5qcSmRo5BL7lP7evbcbYB2hrts2yvNra2DZtRo8m0kk5AusOrkO8/TJ2G5vJV0rufNPBdiWWDSVjrsl+g01oLQ6oIXMrq3W91Kx/5xm3suzjZzB3jQa8OrcfG1QIwMd9hKedTtqwso8gIiJe8Xxty/cv54tDvsiag2u4vM/lVCWqeG3Taz46xbfx7OfH88z2OXzl9YTi1IoiRL50M8nfTIRUhp8VUrchYUuSERAGIATBVr+sYUEvbJuOd97BgcmTcZ10EDGMj8sY5JKsO67o3z9e/wH2b37M5++52wtkHu8piL450xfNLukSw+kpGLrBpkvNfjqWdcTpP47SHVKlDacK9Xe8524+uekib6OBTTv+C3aoVYxZMF4gvAJTAI7rePImvZv8hXsreebND6hz6xi2TaodXYydWzrd9zXapHZHD+UnA95S67PP5vhHH3HoxRfpZVlIJ72mCqOmwpb4BI6xDJAOdL26L6E85YjjP4d57lkjLJ695iAQxZGOUsJcNC70vKDqZ98y6BYmLp9I2aaE55i4WbaDGtd/HNPXT/ee5zfP/ibgL7O7oVeCTb0tHjjngQwqpWTUSERqgw89IavGq7tsfcYwalYs91ZuQXlh27HXcuTVv/ueR3DiIvBvOFhnJqnlslPvvIODf/4L0suWDFzXdWh//gCKBgyj5Iob0+VypzyOfGgyQx0YmCqX647uRff4ckrGXEPJVbfXc+WmsRYJ1MGtrHTx/bIOZXy07yP/rtHb4Yep4jl6k1kN1tbwwTwi1jJki8OqPja9zruEB4fdCcDjix5n+X7ldSbdpLcd1pI9Sxg/cjxDd9kM3Kyqy+3vtd+3+WZVoopR9/2Qhzv9jMFbHNadVsT3xl2GOL03uyY8SY/KHZimB9HAnVA5wKZ88Bhard1B7erVoaCqk22CfCauS7R3b+r+5yFW//KnnLHR8Wljc3F+AlTw0bZxU+nswZfjg0Hw3oePUnb1ZGKpndtjpMpHrplKxfHjxGoTXp0Es7a2t5lsSlKoOc1Fyxfz8rmpNqV2Xtcb895UdhPd23SnNFrKYwsf8555mLzJtymskWFpboUU5LSrO5ZQcrAmdf/CBw7JffuURl1TM5aaOk0ZnUlphHnHQVAxLdK1K3V79ngrrg3dBc9ebuMiGbNCctlHIBz/xOlaMGe48PpG91U+VtG1grdPi5KcVwNO9sJAsS4xJl01KXSPTaDeTRMyNvjQ3Hmq/nT7m2/i+Jo1HpD7VmzAQatGJVWlaoC0Puss6vbtI7llSyg1BOF9L7yDMifX4LEIgd22nSd3rZo+nVpDkqj63qW0eD4liQ+g01j1wbaF7JzxJL2dIm9V3n9TDSN+NB5uyuiarHXOm8JaJFCLwBx6ca+LKetQ5tX+tbHpVNKJXm160Wd+3EdvDN8mcM44nS2Ht7D24FqsnhbrellIKdm8cz4X9ryQqkQVNwy4gXUH12Vsh1Xn1uEuX+VtCy/n1/ET911kTzUM9Oab8T1x1vSEVT0FtlB7642kHd2W7fB5w8X9+yudqpREXKhY52BtnUf0gguoXb3auOdc/ZEyKdn9459wpKI/CwbCoK2ArvGbyvzzPHUBq3sJXCkZogOQRTZrLxtI3erVHGotuXAV3g4u088RzC63sEL2CYzVJojN+SM4CfjwGeIX30fCSXgg4tvaq/wenxdXGi31NvLVdZ4d6WALG4n07Zo+c8NM9K43Yfs/+uoJTy7LKLZTev11VE2d6qU1lxyoVhruEREuHnwNkedmeucq6tVLlevUltLxhm1rZQJAkIsOg1EJHHGqaWUc3/qGa9ly6jvUuXVs61vExfd+ly5zVqr2ptK2n73KZmNvpdUdfOpgr0C+ngRzvfyxLjG+d9dTrBmgdiLvd8l1qjpcyG5BudQJ+SgXSq+/zrdy6vr9+73swpLyco6vXJUGcrMfLdhXvY/uWv4ppZfgYx4XlpWcBmvhfSBk+inpdJzgBAt4k7lendntS9n10I+9cy4eKDhzwGFK2h2nMtKa+NI/UFEcJbZ5Lk7XBEm7yFuV9zijLLRP8t0J/UStRQL14FMH+34/pegUHl/0uCehA9hbvZf91fs53Eel9OqOHHnNHUS6VLOxSs2YjuYiUNtVmVsl6epmesmnd4eoSdUIsCTIZJJBWyxW9VRD58KeF3oPIFgXd+fUP9Db9b/AxUOHULt5c3owSpCJBIfaABELK+lmeB5BesJnUnLqovXcacPkK2xvIwKAW953Gb5JKWSQMGSH4J3vX8662ip6zYjT7YDDwDdWeTWxn7kmyld63cCW/m15serPWNn2Cdw8V4G0dMBJUHH8uLejuYuLhRXqBVfureTxRY+ngFlw/6lnU9Z3DDOPbGDa+mlMWTvFB0K5NiENmn7pgn/r88zT7P/9Hzg6fx6WVMG4fe0kH94wkLEld/PJU5NBSqo//JCMLakC9Ij+JNEmSvRoIhwEAr97z33/Ee9zhKC8eAATrrzd87hGdInBpXhZeSWjRvLFnoJBqc/D9vgL2+zA9OBiXWJe3ezmBA5dy7n6rZcpKdlGySkL4PzboLcxYerKea7rJQs9e3WUL11wNnL2MtVnUvpKuwY9Z9N52dIF+u01/iCEUqiYqhDjHHPPsDij91kknAQdx5xN7d//wP5fVtF23M0ex7/jlSlsKu/G8CvPZcS0b1MZac29XTuROLiU6GtfZbzdnceHtKNPqWTYFsnI9ke5dtWvYdsY6D3K1yf5PK/GWIsE6qpEFRYWbirU9OzHzyrANUwicXC8iLXei61jyVpqD/kjGCL1nyUsn+esq5sBnkf38rqXmVG6iVhqL8SkhQeEAB1bdwTCd+0WF16B/Ov7XmaVAxz++99xU+U8vYCJ6/J04j023SY4Y6tF6+OS6z7M3MDV/Dm47Is4cOmOUhadeoje+yTtamDBIMGwzdJThgjXZdwCl8r+pfRf6+cERarG8+lfvo7h5eX02ntZ6Kas8T1xKjp0J2ZHFVjbUWKDb2LCiNs8XlNvKxUcmHrwqvrILlXrXie2dAbxi+8j6SZDB3VjB3xJeTmdUnpfJ5EgacPaflFu6FqB3XZhqkMV3WEm1JhmAoYLRI8mMv4efCbBZbqPm5USu31pqLdqTjgx/CuIbAXyIQ3EfbccZ8d2C3HLD3z1spsbOEo61VFS+39QnVCJf0v/Ane8Ar1HKSD/r+9S/e5r2H2Hs726mpV9LL506mCs1/7KKxWCaxb5g+bawvrUsaDI9a9fWpWdRvv2y9n9YYn3Pf1MXGB7J3i7y0cM3pKk918+omiler+OLVZ5eh1uvZUtlwxiz544vbsMha/OIL70DyQOLsVFUiddZh1ZT6J1K9b2stjQU9L7oITDCeW4BIA614YGTWEtEqiDu3SbgSbAA1xtOtgIIHZ+EMrrWcLiy0O/zPOrn8+6O0R8TxxH+sE/GKA8UHPA2xA2+OLJYQN57cbeXPPyNuU5C3yaVEgBuICSaod1vZTc7Pr5borrzfTWdB2ToAmg//JPOI108koyAp+UdaLL2nTK7NF33+W0nf2873geoQRr8cdsvfMu+kx+ilh5ec4dzydd/2tiB3dBv9FqkO6tDGmV37zn6NRSJF0qamrAcTyPPOw55Brw+XKAJeXl9Hv6aTa8M501fSy+d5GqX3zgo488TlVEo7S54nIOG+nowckwF2eaLaC4ureg/y7p267MFaqWTUOsvgL58T1x+myp8eIz8v2fUP1smQf6FV0riFo2da6kSGRPhMlq2xYqQOo3msriaGY7Ns8FxyjK5BgAFn+akg+/Q0krl+pVs+ne8y56OUPY8+2f49Ye5xqRpulcYGM3ONAWzl5PRpastCx2jz2bnq8s9mk82t/+FZwtK+DDl4D0s3FRNGDJcXjguURAyaOe2pE332LLJYN82cgPnPMAFed+i+jrd1DnJimSksuPVbOkVTF1QlAkoeL4cdUXR9dTESi6FKtNMKHrpcRbtaJi0A2fDY461iXG+JHjmbV1Fh2KO/Dqpld9n4/pNQaA2dtme387vfR0NldtzlCEgPK+JZJ2xe1yDv6KrhUUWUUk3IQP/E2bvW027+94n/tH3e/zJL0AW1ktC76oij/VnGJzxxtJVW+DNP+WtP1e+sd9BMkIXrKFDxBCdozWJvBn+OHAqUNGwIZ30zI0KSnt0Y8jqzb4PA5QHrebSDBn5v/Svee/+vojuOP5jCPriY1WErGwYGJwo17dLzoQWRp/mnjr1mC7GR65yUcHAQqULLK+jX+DVlJezvDycoaTLoLvSfdsm67fv58df/1T1i2q9O97OkC3g+GgLS2B7N0De0s6eDyw/FK2fOM0Nv51Mhd/pDarlUU2O8ra4w911m8mHRTcmb40WsrQrdKLzzhJlw0zJzC8/H/Vd2sTTNi1l3jUoiLhEqvN3GMxq21bCM+MAydBZesS7u3ehYSbSkaKfUtN2K07gl2kABrAjqpJfNtC+Pt3wE1Svb+Ire+0RbpTwJ6mgrYyRf9ZKjFLRgTPXCFY08vi0qUO97wpvdKjoMb/oO01HHMcr+fbnNGFDuefRvXAgYjnXvFiEls6SXrvU+UVxsWlCqqiQT8N/22vvII398S98ZuUSR798FEmXz2ZCWeNJ/72A1RUH1N9ZhUxq89wLt9SCcC9XTuS2DOX6BsfMuGqp9TzSPVXzEmolWe/zzfwSddvLRKoX1zzosclW8LvT9rC5s5hdxLrEuPFNS96ewmawUbNm5rBqyKriMO1h3li2RNc3ufyrJtfTrpqEpNXTGbO9jlIKYlYEQaeOpCP93/seeoJ1891a2DRy/wNvWw6jzqXr4/4Oj3OWcOunz6sCgTZFu+cKZgzTLCpl42N0gRv6GXxs9sFQ7dIak6x+UrRaNruqKJ6yRKPN3VQCSQlZ53lBWCC9IgloWPnfkR/9CC7f/qwejEiETreczeipLWvfoOTKjBUZ7lMshew5c1KH/gFA7oHatIZX+a9ggom6qBXWGF9gHs3zyTh1hERNtdtf51x/cdR0bUilEcN46uDtNXMHPvqBa164SJfZUFcF+dQFQfbQMfUn7zXOCWB3DfvHcTazXQ75A8nehOugElXWuzu9gk//IutSmlGIvS/7W6cnoKlXap59eP1JOJLWNFbsmXHY0zYm7lpa32WjWuuSlSxMiA/XcNChm9bqLzazXOJ1VQTq3aoLC5m4oJHqSj+cX7XN2IS8ahFwq1TG144CeJv/4DYoSqwbCi7UrWxOEq8Ux8VgFvztjdmq/cWo1IbZDpYi/rqhi+U06/1ANy+JWw5/Cy2lLw/wqJsaDkXbyil6LW5qjBUURFth5ZSXYnaXsySdOy+Ep7+PCV3vEqfyU9RNW06VVOn0ndfHaQ8cqRA2gLXS0xT65vWFRV0uPVWKvZWYgvbW6270iG+4L+5p/xfid34Aix7jsq6Kh4/uozEsS0sObWUsUePkRACVwjq3GSaTgrEcMKokcZaiwPqyr2VPPrho14HSik97bMl/NpOrSHVNuHKCczcMJP9Nfvp2Lqjt418fE+cw7WHmfzxZADm75zP+zve586UVC8YkPntpb/NmARMXbfexNTk/4JL9q+P+Lpq560xigcOpHrhInaUtedg6zUMR/IDo23ac4zviTNyXzuKvv1zalKV+3RBqBWnCcTdt3KlM4iaxYt93rEZgDww+Wk23H0p/S2hCgal/t5qQBmHjWJWc2IRupw2lBdKVrKmF9gBHnNs/7G+DXTf3/G+R/noe9UeCSiw3l+zP71BrJNQ56tNKO7PTeICCenw0tqXmLlhJmP7j/XxqEHwDW4eawkLgcAWtm+fyXq961EjoSi9c7dWAbQra48Tf8hLPccSdPvRg3S49Vbstu3Yt+a3vtWMhmxpW0y6QjCrXGDh8JPbbAZvgXWnFXFjyXoef1N5/lYU3HMlrhDYToL4mqkNBupsXHNF1wqe6B3hp7epHII1vQXDSvdT+dwNxG6fqrxby6YyYnNvt84kjq0n+sZdnheYk0bqN1p5yE6CioRL1CqiTroUAaXJOia2O0VJNVe/SmVJG+VxH15MdNN0JvT7F2KRYkjWUtI1iYgWIR0l3ev6/27Defd/Kelcw1A5C275d+g9igkrehHf+AYVp19FbJjSJVd/wditpVMdxXtfo3oXlHSppaRTnXoplj1HybW/URsEJJPpbdmEQESjdPt/t3H8lT9waENr9RyLiujynW8DasXxQMeRPHpgoXK4XJeKlW/AR2/AV2fAtb9RJQOWLFGTlFCuS1RK6oAi26DljP7yVhZNbC0OqDVPrE3zR0GaQUu59IaX2kyPTn8W6xLjvrfu811HUxiA98IHVSAJJ8GSPUuYcOUEb/dvLR/TKhHNo2bjFCv3VhKPLKZ0TAff0t1sm2k7p/6BvqkaxpDmnqdf3Ir7Tx3M7n9/mGBhdoyfXdfh2FuzcJMyJVl0vAFPtAi3rg4ZsRh9z4PIYQPZ8ua92Fk4+xvKbuDFtS96fWQC6YQrJ/DEsif4IBUTsFJMoKaeXFxKj30C08dREYFo107U6o1XkV78QU9uGnz1zw+c80DG5Kefz86jO5mSKrSVcBI8seyJ9MRocKvaqylJZThWTZsOKFVCSXk5Iyhn2c82c2jCBDochNK2LsXt1dgrGTUSWRRJ1ZM2JkPbJvmtO3m/1V+xU/ewpqfryTRnbZ3ln1xQ6oYiKRXHmQUgs/1db7qr+0U/o1iXGJOufpqZs+9nf4e1bGhdwhrRhpltJBNWTyF2xX9B2ZXEd73neYGJFNADuRUhvUcpsNo8l1i/0UxIcdSlxz7hcedZEgKish3jDxxkVpvWaY/bTRJfOoHY1Y9BzQFK+o2mz11FSh3SpZaSTrtgyGGQjl8GN+x2D6C1BVU9Jf85lZLX74cd6RwKju6Dub+ipF93RFHEq93e/sabKD1/ICVbJ0LFIUr7HaN6bzElF12hzpmiKm5xEpS1LiF+WgUVGxYQO14DwvY8Yv/4sxjb6xLGglo9mDy00V/muGtKa1FAXbm3kuX7lnvLXP3Cml7zi2te5JEFj3gqkOnrpzPpqknEusSYsWGGLzHF9BAv73M583f6d9WoMxIwTOlecJkd3xPnnuH3+ICgLPYt4rI6I2kg+PKFLd2D+xyax/a1j/NDyyWKSml1rh7NmlFd+N5F4+g5dSH7AmmwXsBRqFBL0pZ8MEgweJtEuALLtqnbuZN1B9fx2G02ZZsc1p0W5XvDBvpiAWF00JBTh3g/u7i8bOwOPeHKCXx9xNdZsmeJB6QdW3dE5/dZWFTt/RicBLGkw4Q9+5k58AKmHdvsUVFj+49lbP+xXpXDl9a+lMkZZpn8pq+fTsJVgDh/53ziu+NMKv8OsWnfTns2X53hA+uwmgxlR/azZasNLhytsjn2nUfo02UIa3sK/us2m7JNNmW74Ox1jrfjRw+nrdcuU9pZZBVxeZ/L030iLMbvP0CVkJRKwcxex3j5jTtxXHX/etw2RkrXvec5yP1rSQoUGANPVH3M11c8B1veYXnbVmrqlMqz1zEBz0t3asM9/d6jvL6Locb2xOUTSVhqk4cE8GinU0nV1sLSk1FNDdQcgNHfUZPP0alUMJnYlmrYqtyKylat0jK4N+/N7357j6LyvHuIv72RiupqBu60qJ46l5Iusyjp4tLn4iKqd1uUdHMoGbIOFv6vx5+XdKpTXni/DupcBlURq6km1rofJBcokDY84mzOV2hLjf5qDmsxQB1MGzdBWnsbh2sP80wghbzO8BKmr5/uLcVtYVMaLfWCMBrsp66fyqpPViGlxBY2oLxFDRCAb5nt8zS3LaTy+Ru9AM09t70MWQZY5d5Knlj2hPdCuNL1vE6JZNp6tc9hUJa2phc8cnsRdyXP4eKx/58KiqXOWT1KIoqLlZcnBFKA67pYRUV0f+ABtu9Y5a+/cfB8xN/n8MkLf4MpUHubzdTzlec3c8NMZm6Y6VEIS/YsoaxDme+FqUpUecArEDiu45sE7xl+jw+wVn+ymiKryAPiitOvUktJJ0EsCbGR32NsiIJAg9XUdVMNztD1T5D1WMJNMHnVn/ltA7nC6r3FqeiqAhHpuFQvXET8fIuV3R1WdBcM3iEo3yywU0v4klEjVRLQoSrodyZl+mUWJcT2bvVP4rUJKldP4d7db3F85xxfe2dsmJFB8YTJFfX4dGQ6td4E90i7dkSkS1KqN2PB0c3EFz8GXU6lLh2VU5NnamUatWzqHEepceb9EVqfBhV3hHdSyjmp6NCdqF2sVkNCxVe0w3BGoo7xn1QRS6KUIl77jhPtXMqE3bVeQDPeqq0H+LVOLTOXTSTW6jTPGw3bObxybyX3Vv43te3bMvhoG370jovluGCVUHflYRadZlPRXWXOsjqkuKewodsI9XO/0WBFUnW5IzDidvV/iEecTwLQybAWA9TxPXHPwwX1oq7+ZDUPf/CwtyQOk90VCZuK3euIH9pG0tVbLAku7HlhhkpAc9rmMnPdwXU8suARH/hHrEiGqgNQL1znUhJCEJWpJWYIEARVEWFmvnTgl6Vt7G2zaEBvuvcUvtnbSzTQVAb4BnQH4Ht7r2fNezMYGnVB7sdNqpKktqMK7WglS7BPw7S2FV0rKE69mHpS80DYWIID3v1aWFzc+2Iv4EvpAN8LEDO+Y1qsS4wHznnAF6TNJinT4BW0OdU7qGxdQqymOm+usOSKG+FP0yC1750oUiU9K7oKL6lnfS+LzQ9/iXN3t1V1qYtWEX/5B1TU1BCb8wtiX51BrP2ZnlIiZkeJfXWGN4nHD31EYufrGdfWAdtcksSgzE47HzuP7vTA3cHmprZlbN/7EQtaFatgVyqqJvUehhKiuFQc3EusfYIJsgvxgx97ZQH4+3eg69DMiS3gnEz43OPEZXVG2v+aViVw9vUw+CboPcorCav53XirVh5QVxyvJYIgpbBn2o53Gbv7JWJzfkH1yF+z9Xu/yNg5XMsRh26VdKyS4EiEFDguTK1uz9QOFlHZjgm794YrXKQLr9+v7hHUZI5M/YvfIw6hzz5tazFArbcU0mYJKydAA1zaKcadH79DbNME1rVri3tqO4C0OiOLl2LOkvE98QxJ3/UDrvcBuv5OvFUrj++rBWZyLHQZFFRFmKYDkSbfqG1c/3Hsr9nP+zve58W1LzJl7Ut8tfQMvn32t7Iu4YPL+YE7JK1+ptKoHUv4tsPSkkBXuqlNB1T7fCuH1CCt7NCduKz2eGEz4BnkUeOG1MnB4b3t73mB2oYsCW8ZdEu9tSYAKkQJUSFISH8NNwnEz7ubGO3yfslKysvp++yzGfx1DBg/crw3cfzkyF+ZcIOSH977+uMkSk8h2q6ECbv3E3v359ChX9bIvwZiPR51QFQivQBtNtmoKbMrlYLHF/6chOv4iloVWUWMHXgTrP+QJcVR6gAh7NRuKS4RKbnu6FHGHT1GbPN/gfVrYq5DzBz3rgPv/hzGfN/XbxnOyZJnuWfoF+DQVlZ1O48XU6uEOukws00bz3HxTT5CUFGbdsJiiSTXFXfnpdodSBR1Fy8uIlZ7jOp3X/PtnKILS43c146KlGZcb5asx/XyPlZqclITAqD0zHoS0qMjeRyWPae4bT3Ru0n1NxOkUxOuR5+BOgahvPKaAycdxFsMUAeX2UM7DvVJ4oIWERHujPZQ3pN0qBJmgE2wr2afbyBroAkGbUzttD6vRPLimhd5fNHjPkF8aZdhiI3TALVn4bTdHzB4zYsZnnfwxdSmpYZ6Gbvu4LpQGZq5/J98aDlbXvkid47+CXQZWi+IVafS33EV1TJ7hM2+dpmJO6aC4roB16ngZm0CnhlHZQTFIVoWUbvY4xArsyS5VHStCEidMuuF5Gv1LjW3LYS/j2dc6yL220VU9RhG5eGNSCmVFz7ohpx0VFj/ZeOvqxJVGbEKgIR0U8AA8VZRYhvfVUtoK6JoFDuqJjpD+xykiKatn8ZLa19i6rqpHsWXcd/bFsK7PydWfZRYtWRiaakXuAsWtYonqqj43ONM2LWMmRxj2m5VadBGcP+Bg9xy9Fj6vN7KVYAQVEaLiLcqpmLHfGJPfx7KvwQjblOeseGc1AHxAx8Te+U/QFi0ObUDtDsFUGPaK08b1MPvXkds04T09aXLuM2VzOzaiTrLSgVaa8GKUDLmGsRrK9IFt/q1gbm/omf8EHtdkapvrjZLPlAqWNPXZnPvImzpUGRZlEqLe7t1SU0spUzYvQ9w08C95M9pL1pbKihJv9F+qV2yVnnhuz4y+izVb3bUy8Q8GdZigDq4zO7cujOWsDwu+YayGzhQc4B3tr3jKQfirVp5qc0VCZdiq4iE6+Di8vH+j4lYEW4su9FTWGQL2mhFh/Zmp6ydgiVUbV7NXT+y4BFsy8YxgDfpqqCXIx1vya+LPo0fOZ6p66d6FfoEgiEdh7Biv0phdaTDowsepqyujris9ikFvIKbqWXr7NbFvLf4MSyryKeKMIOs2naUtceOWFhJsKJRLr73+zzFPI59shqrejdIfAoXH2jN/RU4CeKnnEJCoFJp81AKNIS2ABq1tNQeXm0qeGpVrSNiRbmu7Dq/AihwDZOOytV/5ncVJ5tJSUTtYuqcBEVCUlGbUMtq14GzvwKlvans0J17K/87VB8OKoFHrxR14LSsgyr246mZ2g5QgdHkcXTouOJ4DVE6UIdLEYKx/cf6n4tlM6HbFXRv1dHjtSUWVZEi//1ZRarNdpTKi/6dezf9lYR0lce8ey+x+FOw9M9wx6tUdBhEVFhKnpdSrgBURiP8qU1r32nN8rRgTLrtF8KHz6gEmuIo8VZRKmpqmLBnP/Few6jYtUI5CXYRJUMHpOm9fm0oWaSCwyWftMYq6oRblwRb0L/vUU7p5nBjwoG+3yB+aA0Vp19F/OAaEhtfTlEuFjMHXciMI+tS99eOCbv3Eaut8/fH2jdgzWtpbbjmr3H9KhPPJDi1sOx5NX5PAlXSYoBaz8A62UQDMijvT2ui5++cn35xBt0A/T5P5eopxFu1YnyXYczaOosFOxco7k469GjTIyNgF6bbffC8B5m4fCLvbns3EzBRqgfXV0NX+MDcwWH2ttletmRE+Lu2yCrihgE3sOrAKr/n+fYPqLjsER8gXNbnMpWNaehCk0hIef3my52hHNn5i9TGvRGuv+X7jLj0X/gt/5JT0uhZSg9aUVtHVKqBrgHKVNSEqVbyoS0q91aqcqkfTErzyHppmedAj7dqpUA6NYlp79J8zmHL1/ihj3yZaI8seIRVn6zK7Iv404qvlS4xu5gJ1/86Q90zwQweTvt2Wi0w4vYAPxteZyNsBaIDu3plNx2LSRGIJdMrylhtggk7d6a9w62VTCxOGgoOh/jHzyvtc/cu1MkUpXX5z2HFK3BkN5R/RfG0qf6OH/qIxCZprBBSXLKTgHm/ga3vMa51BAmKOtEBwdatcdKbPQLh5Wk9ELv6MSoPruLeXW+ScOuIlrZlwu793LM+jqdhcpPqXe5WRsUNo1TyTMq7LelQTZ8vdKfaHklJyTaG7Z8KOiv/nV9CcZT4pvcoPefrRO1W3rsku48gcWRd+v5atyaWSPq9ajep2uA4sPpVBdj52NE9fg7/g/8mdtvLn448TwjRG3gW6IZa2D0ppfxtk7ckZe9tf8+no4Z04M1UGfhSt/fMVh7Flr8zfuR4n2QsWx2JsKSJYFDntsG3eXWqI5ZKuknKJBYWY3qP4cKeF/qSc0wz/yYQXD/geso6lHFRr4uYs+0dZMqDqaipIXZwV8Z9nd31bP5n8X9zsO6I7zzexBFCL5jKkfW9BVbrNSwKSb/Wk55nZl2H639NfNULjKeIqm5D1WSIX1ETplqB7LSFniRUfyfSKoBEQnF/lX8NldR5bdO8YpsuHD4lokAaVGJDUJkDvuVrZQTiS/9A6aBrfeDokE688VYHRvqzOqiW2MFdxEZ/x3c/vvsMBEuh/gI9YSsQrabRlsDlifbt+PpBSaw2XTUyVptI866rplNx1UMZ9VRiCYcJ3a5QgKcnmIBO2WtrcZQoIsNjBqg8us3HT487ekx5m2fcSOnR9dh8gpOSYurVpK88bWDCjF98XyZtZNxbZXGxAvKdfycqIkxoGyNmeLcltR9QYi2CzqNUISj9vWhEpXYLQXTtc4w/5wfpuMrelcx0XeoE6fsbdhN8/LJaBQlL/a/BGqn+noVy9dnaN1Wb8xAYNNby8aiTwHeklEuEEG2BxUKIt6SUK5u6McFkFyCjhGYQDIJeclWiyscH6rRm7Tnpz8ykCTO7cFz/cT6v89I+l3rnevTDRwHlXevMxgfOecCn6zZNKyV0fWFPTiUsrjtSzbijRz05U/C+yjqUccxJVwGMWBG+POTL3sSh6QWTd802EYXpwiG1zD66h3FLpxGrqVZ1Hbp1Vh6PlEz44ANi/T7PT7e/7gMRUCoRn6wKQr3iMAVMnRBe3Y94zWYqIhBLhkjqti2Epz/v6WEri6P8qVtXsNKe3Hk9zksnu2hLrQw8rv3gUqKLVvLloar/9CooQ2+/eW6g1KnIUI5k8NzBYOm2hcQ2z2VC7FvED64JBLTSFlyBrNv4JhYSx8iEXNC6mCUl3ZkQ6Uds7TsZ56DbmekxrVcqCcercJgLMMz7mHDaF4gvfsLfVitCvOcwEnvmpoF1wAXETrueytk/5PHOpThCYFs2D5zzA18JB4/uCSuP68kCDRqlOEq8VSt2tu9Jwj2aStGuI755FrEgn+wmYeuHir5xk1S2as0T7dumeXQpqdq7gorjx4lvX0zFvk1M2L2XmW1K1OiTLqyYAuf/G3zwe/W7EDD487DuLXV+y1bP3kmQUomDHVEAHvDE48e2+Tn8Vq3CddaNtHw2t90F7Er9fEQIsQroCTQ5UGueWgfVvjxUbSybUwEQ4r3oY01dtpkYY2Y36u+VRkt9A017nfr4icsn+iYRU0usS6Tur9nvrQiKrCKfxM+cUBxseoz4Yk51gilBEwhuHHAj3674tjdx6Ikr+HKETURBXXhptNTfN53bM2l3rarrIJPpQRe1YPUUpu+elRHU9cmq3n0MEGqQB7zioAJGICiyiygtu5p7P4mTqN5ItGsnJuzZ701angUqtMVbtcIxVtsREckEafAyxXxlK9062hW3Y/LVkz3v3hdo3rYQqral4gKp8wgL9qz0Iv6V/Ub6uWddoEg/Q8ODjFk2Md0nHz6TuVLQY6s2QeW83/L4oUVqM1sp6VuXZHO0SPGsQLxD98DLn+qED/8Igz9PrPco1Qf9Pp8XhVS5t5J737hLTchWEROueop7NsyFLTohTMBZX6ai9yiie+crTlzYVAz5Fzi4S42TFP0kpaQqUZV6zrWqr3X5gOOHFRDq++0whAlAfMXzVByvUfdeHPWCfxGOEZHgkM7kDPduJZz1JeXN7n6LWrcuBaeCIiSlCydx76lpL3d8UYQZbU4hIQQz25yieHhvUnbBSULPs+CC/1D917oj7K5Uq7iagypOUP4VdelXv50GaytCxY5VRLu0V2nlwqZi04fQ+unsmvQTtAZx1EKIfqgdyT8M+exrwNcA+vTpc0KNySVTauh3grrsMIme+b366vcG1SHZvPxcNRR8E0oOdYK+nnm8DhwFg1LBNusEkeBEZAYPM/pGQLxVayqOJ4hiUydVmceKhIqWmxPGaaWnsalqU4qXT8mqvOWyzCpNq3MS2MB1PUYzbsQ9qr/3f6hebMsmPvQqYuX/6geYfqN9Fdoqjh+nWLYjkYoPPDDwNsVj1iYygan3KLWsf/PejEk81iXmZUTqpBSeGecL3AEKZI0XM75hKon27VJgdJz4rPuJVR0BuzidQux5kIbn5dSGJ9+kgD1+ShGJDqUepVNRW8vOooh6+S3LR0ekLbOvw7x7D3gMSVl8zVQ1boRQoLr4j8S2x9Pfs6PQLUZs2reZYEsV/KtNKD7+6scUB65rXgibiqUvQccBRD2KwaFiayUs+pPRXAdeG0/s3K8TO3LMo5dMVYkjJTcdPUr3pJP27oWdCu6Z3m0xjLid+OZXSXggDefWHOfrBw9mKFVmnVKS6fVGWpGuI+nC+lmqf1p3TNFfgQli9wql8rjr9TQVd2A9sX2rmbA7YcgBN8PGD9R3mhCs8wZqIUQbYArwTSnl4eDnUsongScBKioq8iB4wu1EMoHCvpMLWLN9rz5e0az3kS0gl639DZ2E8jk+Fxda3/eLhEUiBUBFVkS9iLW1KhI/fCwVkXbELr8JiqNEt/zdu8aXhnxJpUxrTjQVrfd51IZXHOsSUzTA26kEkW0vweCvgAHgRUKoLMYQsOWOV70XI3ZoCxN2r0m/FFse99QL2TzWrPrklDfLwqeV/CoI0pDyrtMeYUV1NdH2pWk+t6ZGfZ48rmRcbbsrLzy4XJeuAgDTUtI7nFoqjjtEZTsFfFIy9ugxxh49Rrx1ayrOuC2TOhECBVhRdV4tLQuC9DPjlMRMl+6ybPjcrxQFoYFWSir2bUoBU8o69IOlzyqOPummeWRhQ80BYre9zITVU4jvX07F5kXEajfBxg+YUFysZH61dcSOzCPDnFpFN7iuOhek2uK/d3W/QgH0536lgp8aHAHadIE9K6mYP4Folw6petGSrx886PWVec7Lj1WzpKRN2gGprYPWHfAVuN0yHyZdlfpTyI4GTq1qw7W/Ub8blJwvbqBt1fQmBWohs9Q69h0kRBHwCvCGlPLX9R1fUVEh4/F4fYc1u+WldAgc3xBvPi9rZunOCbU5Fame2boIKWzG9RxN7KPpCmCEDZf+AIwAWvAalSueU8BbXU2sLpl+mbLd59xfwexHMs4fep5cacxPXRX+Egnbk8bl3c8B/jvznBac/++wIF0zAruYymGfJ755VlbuOdwsuOyHaZ1u647w2neNawsqW7Um3v8cKkp6EVv8fGoCKk6rYiZ/Lq3ltYrgrC+r5IvX7w8PxJp97muKAr/K2T9M16q+9GfqPB6o+zoCJYGy0u1JbQ7AK9/EN7mJVHVvOwpDxsLyFwKnSlVPlymg7hGDHUuoLC4KJKgI6H9JOvkmOOkYAUDNbwefh+/viSSV53+NePIwFcumqhWgZStVVbB/cpldrLzqZc9D/Kncx1772wYDtRBisZQyVNeaj+pDAJOAVfmAdEuyUO82B3A2eV5/WJZTE4P1CbXZqFWMsKFfaXiZxlRfxfqNJjb8HvX73F8Rq9qu6lxIB7CU99B1qA/cfZalDGTs4C5iBw/hgUMwjdl8VpvnkrGBgtYDCwGLnwWkH0xy2bLnM0FapDa3TXmeVNyhgkw6K23EbSoFfsUr2QE+zCLFsHc1zP6ZOn+G1y2JJRLEWp8GZ94GZ34lc4ye9WWIT8YDutJesHtZeiWgaRBITwZ2NBN8pet5xTGTjx1wGRzZBTuW4APf/pfAkOv82XhaHRNcgQy7GboMTj8v02PtNAhO6QRbF6RAPzUOdi0jVlvnn/TsqD9DUlNK+j6km5qwRbg3C8Rqk8RqUwt/u1gFV5c9B8fVrvS4Seh7vgpMhoG1FYHzvqGurfvETSrJ4prMcgA+G/z5T4WjvgD4MrBcCFGZ+tsDUsq/N2lLToY1FXDm6yWfhILi9bYxwE8C6m/m8jmsKE2wr65+LO29WZo3lIALG9+FLR9k789sZSD7jVbF5F3jBdR9FHb9SCsFTEIob1eD6OJn0y9bNj442CdL/+z/zC6Gax7P7KuwFPhrfqGogcQx2LeGnFIuYWd6l2HA4CYVEFc+r/oqOOmNuE19pvujdUd497H0ta2I+luwz2oOwPHDMP9/VP9aEf/9masKqyiVXVmX7pNASjkQoo5J2aqZMOpe9XPVNtUGV+2wzv51sH+Nv08++H1KIqcDuKl76TbMf1490QcnHWGlADus/436kuVK386y5/2HtD5VrcT2rVXjV59b2OlVYm2V4qe1GmTN6zm8cKHG6AXfzPL5iVs+qo/3SZc9/sc2X3rocX+Of31mvuTZlpvmcf1Gn5SC4lnbGlwqak9zz8p0sMSy1ctsgpK24CSzanr6dxc1wA9uUSAt3RObiHqPUi9EKsEEu9gv9XNq0xzwqulp4DGBJuhpCyu8n41ElvQLnrKeZ/v7wfzO0mcV93zBf6QnEHPCsqNpZYr3lgg/gOyojwbUnqfMnGjM8WROdpvnKrWC/n757ZkedqrcKNsWwoIn1LldR40BSN+HNjdpeILCSyP3tQFSIKyDvEbfax638q9q7AkBfc5VXrTPq3dgxUvpZyBRfalVGDuXqvGr3y1zot+xRCWl6OsO/pzKLPQV6RJpakM7IgDF7fzdvvb19DGDP5c+r3Rh/Zvp/hFC0TRtu8PqEP9UWGqCM1Lvm9paTGZis5oeaMfNGKiEpc952WT1fl97KjrApMFp2XP+QRz02LMVFG9O7jpsqajbuuRPRkEaJ01bBNsQnGSGXKe8Dv27Hvz6b5YNVdsVuAXBNNdKpuKOcH67dUcDTCVsmA2b3lPAHlSGpHYUwbL8n5uTq5nIoukNzadqkDafyZ6V8Mp/pK+z9g248+/+CUxPWJob131vTuaWrV7wTzYanWts+zD4c0oCpqVxZuBRTy56Uv3cr9LAu2Nx+vkiobhU8emmh+2b9FKTiXTglW+lvhfwio3sSs98kz7pyciKKEmbjyoRajwka7xmsfWDTMpK2P6JUt/bqumZEz/4CyK16Zz21O2o8l4v+KY6Zulz6b8HJ/VtC5UHb5qX2JRIndeYfNa8ln4eEnWfdlHIBGXB6WPCVx5NaP/4QF0f4GVEvw1zk/l5gebLKVEDTdhqgJmDI3ZbJtUx+jtZZVnei5xrJtaZeaaHU58Fl4qaE0QElqxSvRib389sQxhdEQaoVz+mvM5dHylgCXrwvUfVTwGF0Qs1B0jvU50yN5niRvG/hGGTYXByNVUNwoKBV6uf23TJPN6OpstheteuS1/DnMDCJvpUyjS7K9X42LpAAdup/RVPuz2ugNOyoGOZoiXSjVPfe+WbfkrHvPfX7095zsb97P7If48mfRCkmDIChmRfVWye6393ND65Seh+pprQtPcMsG+1//t6UnRTsYRB18CAK9LBSz25ak9+4xw8j7h1x8yArw4k9ogpbbM5XrPUlPbuI4yu0ddCQK8K/4Spg6PeaicJPcvVxLvurfQzHHJds1OaLR+ocwFxLk9Nf69qu9+79EzkT0ek9p/ztLHCUsEdgMXPpAEImZ3qCAbGTL2tyU0GvRlzoC79S34Vu0zwMjnqPStTL2y64JPnvYS1IQig+vdUUNHzHIPStiAVko0CyvVsTU85WI7z799JL1nN5bFul+5j/V09uXqenTSKywt13wMu89MGkWJ/e6widb/LnlPHtumSSQ0EabHYbQrQpAPSgk82wIH1qu/1ymz+/wQ4T6HAPUgr6Huf/1tFMZherBWBohJ/3CBIH2iKKSyBxC5WIA2ZUr8MkDfaacY2qrangp0B097y7kp8zkZw0t+2UClhzIlp+d8yg7Z6NbtjiRrPejVYn8PmjSc9VlPZhmVXKtBd/Ezmd2Rq1ZOenVS/2ivh3K+nMxt1nevPpEetPUnTYw0W8MnmqZl8pC4/qQdwkE+CcB2qab1HqeODUfd+o/0Bnmw7RYQFxuyoMWikApVgPeBAZl6DeGDzHBoYX79fvXCWDWfcmK534HkMIcvNoBcfRgNl6I8tPyDriUOfM6xPwiZZMxjmpfta4dRTECTPuY+Mybnvecpj8i3FpXoOa15L34ewYPvidFv7nge9Rvmz0uxi1TfeZFqX8sCMyc+cuE3KTIr0tYPWuQz2rw//DGlQKEJdr+tQBVhr/p6iI8oViGluX8dhtMe64H/TQT1QyofLf6J+zrbK+9yvMqV4g672T+jxpzPbLGylnNArCzfpdwYyYiLGWJeukSnpOym+d0aPV71qtix1zVbtMoPCYc7L5rnq2UuH8FCceU8i/Wx3f+R3dJpZKNAygdqjKwxPTb+UZgEfDXimpxYsrOMm4eyvKh7RfEAQPhFk6+ywqLu5xNUP2QRI/XtwQqk5oIBknlnbKqCeABW0MaPwViSTB9bXMj2TbN6dXlm4pEDaTS8ldeJI645+zW7Qi/fRQJZ6MfTysfxLuQurL/2LehmX/lkdm22SffXb6fZc87j67ud+pc5r3hfA4qfTwSgTwHd/hM8bkk7qxc+m0DA81O5nwo6leJ5X50GpicLwfHWbq7al26J14mY1vRG3p5M1grUk9M8yJf2yi2DgNXDg9+q6wlKe++GdgbYaHvnu5cYQSkLbbsa9yJRsUaQ11yZlglD31nuUV+I2vcp7Sj0vrYS54D/SyhG7KFPZUHPA398IVfxIKzvM9zgM1Fp3DE8W0tbzbEV1rH8zFfQDcNUkvuz5NC/uukpCF6TfIJxig3BFifa4zedkJnV1O1PFTLAyV8/NYC0TqL1gmPHQNcdqvty7KyH2BXye39xf+ZdpwsoRIAlMBNnSfINR9+OH/R67foCVz/tlbBr8Tc5YCKWpXfEShM3WyeNqoK2fnfZuBl+rDln3VtqrNyPbWj98zn3ZPU9kus6ux9lK5d3piHabLrD+LXxF0p2Ap++T9hWHKzHC+m7Zc2lAcxKKywxm2L3yTb9n5tQq0Ab/iir2BcXz+kDKSXm0Ket2puLefUvnLCBd2huO7fNP+F4dYje1I0hI4K3f6MBki+Jge57lnzi1c6HVA7rUaHDXEL1ycJPq7wI4vCt1YiMAmVOWJiA4QcUnpycy33dSQN4tZoxR852ohVe/mZ4Iz/83JVcL8zw1PWiqL0xlh2lhWZqv358ay4G4BKTHWe9Rqp9W/z3dxnm/C+kDMj3dbNSI9rTf/Xk6kImlVibdR/gdD/A7QZp3H3BZeBua0FomUIdxwlc/pga39mqDgTxNY+RSAWjLNhEEZ8UwyqJqW4qXTg0mb7kmM2VsZkDx6sfSHGEwY0vfo97Hbc3reEtoF/Xig3+AagG+tmSNAnhtOrFCc5jdYsBfjAsa59Gg5AVPAqY9fT0RmNK+oLA/m0cfHMxbF6QAwFLnDeO6Ie1hmSuq0Ay6wHcWPJHWOweTOII2+jt+znTz3DQYCiulCIgYoC+g7ApFOax7M30eqygt49MWDETvWAy7lqnleXB1+M6jxjMNPF8IqCVC7kdK1R5zFeady02vfsx+lSnO/87XFGC9fr+/WL6midyk8qitiPp56Z8Vv2ty9abUUlj+4KZ3Pic9+eqx41MpmQG8lJVdngbbqm0BzzvLODDpt7D3OOhcdOjrVeTDspV2emdl5krbXH3o+MfqV2H9282S0KatZQJ1Bics0zIy7dVqCgA3zVUFNZfZJHE6a6s+1YVPd12bJRgj1FJQTxhBGZsG/5oD4YEcACzoNCCVPEEKZFOekWWnzxEa1MlmAc9r9zLDi85yjlS2l897039P1sL836W/6zqp5a5h5gvhnU+m5U9WURpAvPPIkIkz5F7MFVXYy9n3vFTSQsr0iqv7mf6EhVNP9yeptO+j+iaYWWkXB6SIwljNSPVyrn3dACMBZ31J/WjGPMI8VTep+lL3g57g63u2uj+955Q6X+sOUHMID9zP/qr6u0m3mACVIVd0/Q5FttR6c3XmOOmA7JI/qeD6iNsU4JsTdbKWjPoZenLQATgz2BxU6ACsm6XedVPXTMgKQdjq3oP0m0nr6PdYB6OHjE15/lK9x7rvTJFAcKWd8Uxl+HFNaC0TqCHNCWvvacM7aR3t6O+kQRrUv+ZyKoyLymdWDVpwAIUtNwdfAwOuVC/akOuy64KPH878LuBxYQc2+v/sZWsZ3Pd53/CDZS5r31tNZsg0QJuTEyK1GjBfeuNfnUL74R+NF8j08GTmEtac2Hy3GFFgd3SfobYwzrNjqUHjhC2V28PtLygPVghF15iBv/P/Xf3sCz6JdFq5FUm/wK99F99zOLQ1zcdqLj7bZL/kT4anGvR4pcpwe/razJjHV2eo1Y65ItL1LjSf3e1MJU3zmpaaMAWqX6wIXoH74POrOWg0w1WrJz0GB1yRGZep2q6erabJdOxj20LV3mt+4deQa9PFt4KTqluXVg1p9YjpVGXUNiE9Oei+1RRmtxHw2viUsiVlTl1a7SJdwFb6dUgpZOoyZX6mhb3HmmY0V7dOMlwkEFxpm8Fxc1XfjDx1ywRqrfgI1h/QWtKuQ9XgM5enQe8uaMGsxN2V6UpY2cx8INo7McHNLlIgrWf6LR+kvYSggkEHF7Wdejqc/x+q3VXbA/IgN+1daa33npXpFysfq9qu/tVLwKAiRfeJWXv3yC4lP5KuAodW7fwvm+mFgaIVIA0EYd4jqKUrKA801FIUT8UdcHRvJpgPuCIFdK+pY4WtAlXV+9Xk2HUoTL4mcE5j5eAk4ODm1KUyd+NRxwQyAsMm+/r6fotRMS6Y+bp+dubxWuapJxBvgrMMQNG8tPCnuEOAVyX93d2Vfp3yed9IJTv9GV9hJ60lX/uGAlo9Wa1/K7Otg69VtA5knkt1Tqa3aqbCdx1q1MmQ/sC4SZFdPSJzoseFTzap75njuT7ttLag4sMLRkv8Wa3k1uYHzxm8PtSvIDtBa3lAHdQOp8oheuY6RuJBcfZZL3hOH7clM7MSw4INesLwBqWlMslMLyVMIgghgyJgQ8YpYNq20OCWA9wcqDbvWGJIiPI0o7g559wXLrfTvJ+5pNRevBBpsNfZcAOvSoMlKC5zx2I8yWPZlWpyrTnor52w5nV1zjDO0jNXgXSbzqnnWqu+c/olsHJawBtz0svVzfOg/IuBc4f044Z3jICatkDgSq8QwsZCMFU97Bo+M8bYsueNycsM9LnKg6s54Jem4fpXDXpVZI651h0VrxrM8tNer76eVkEE2+vWKfrG5HudWhUc1Vl5pq1/O82/a4AKOjCC9OotSAX0HgVfeM4vu138DBmZvqumh4wT3XYrMwswm5IjaOZxerVx/LA/rnP+v5/4eZu5AFvLA+oMPWXwoRlLblPxAbnr8pqBIO2dBzW4ZgCy69CUMqTGuLarBnEwYGRKBM3COOYg9AXphPJWM0ptpgDPdfAAxK0LoQvAv9dbDnNdf1LFkj8pwNVBoGCwy/teqkjQkmeh9zmpeg3SAHPD9EsW1k5Q5179d+oFN00NWDZU3JVu38Z3Qs6pveXazMJIoTIvGQAAK6051p5azYHwF27PyvSmpy5pL/XDP6aVPGb9EE2R6TG29C/p9pkUhulgBBUT5jjQXmQwU88L/hqUVfntykPPfEghHS4z++nILjJSviFT528CmZnqbnq9Yc6TlquaiUA6yKljPKZax0rtoO4mFUXYFKnaZts7nOanLU/U6su+baS1PKDuNxpzV48ME8bSTr9Mxe3StEBQO+njTa00F2qqRky5muuqqPTZX03XNzBNc2v63Fq2pz3W3cuy64w1vyeEms2DkxJSBaR2fZRdqSBsJZNq1U69uK9+K8eSXKQCkMbLaAK/1smaChv/zar+MZf0iJQX1wDvXl0Y+l6QUnto+WCQkzboHmT6GeYaD5DyHrV3LLL0R2CSECKdram1xd4zMSiyWQ/5ue9TT1fBuw6n+ZfHe1aqF77bmX4AP7ovM+AYtlw/6yvpYKWwYOCVUFejzqeTN0yJI+BJyYIFiDbPDblfY9UDfk23qeMu/4o/LdxTb7jZqySagep8al8EM1WD8SJTuljczkixD1EkNdYq7mh8SVK9Yrciagg2A1/d8oC69yjfrh4ZvLBlBDR0FNcMsOkKXvpFMDXMZtaS5oU1oJomHbUVfJj3CGoZ+O5/+aPpplYW8AT35iBc/apaakmp/r3gm34QsiLqnnd9RFbPc9DVcMVP0r8f3ORfvulr6+zLbiPg7/8Z4BNJ91XNgZTC5qmsj8RnOiU4H9lb0DoPhMt/nFbtLH4mx9eNIKqW2UVaKZBc+4afa9XgYgZKNQiVf0m97KtmpHlOUOPlwz+mS5DqZzL8X/Clmgez43Rm4I7Fqji8poXMOIWpZ1/3ZtrbNrnVIIiZCVWWrZQObtIPjMEynQglRQ0LjEda5c7UC1bEy1bTBfxceNBb3LYwVTI21Wd2Uf1eb30csEknTL4m7RToeiv5eqrNvGmHdw0zo/PsrzZLBb2WB9TaSnurQT3gCvWS7qxMLym7jUh5ga6hxtAmMqtoDbg0VUc29XLqxAkzstuz3P9S1hwKXwIiA0GjWhWR1pyg/oqw1Qur5VCb52YG0zbPTU9K+9Yqb9Ms4Rhm62alo/OgQLvDaelynAOu8NdVgPTkEUY9tO6YjnL7SlN+kOmZCiOy7lFD2TTNAobfkuKX69QLbIJU/Gm8hBfwX0sYbTdBUGdYescK5XnWHPCDle5b7en6ZJW6D1I8arAE6fIXc/e/aXq7peCy15denDT6P8d5TfAynQgTGEfclsruTKiJWEviwoAu32CY+Xu2z8Z8P1xyCikaw1gx6NrP9Vk+HHCwkFK2ErZhdhI27fDa6D37FD41w3VaHlAHZ6igHMh1VBqpHhzae9QSnd6jUoEsqcDz1W/hZe+BPwnFHMygpFX6JQjW0M1qbqCEZcqkk/L0U8cIK/M9jRSnH6rpOeQyJ6GAK5g1dW9KVRB/WvHQ0lXgG7stdxBvd6UCm+CL7fGOgTq/2kIzugIBsI+nwud+GV721Ks7Yqm6I6ZM6nwjBhAEwaDMcO2bqaCYDZ//dWag1HcPQiUPaV21HVVBXd+KpAErhCHXqX+DmafdzkyV+9STd2r86UB4LnWCbneYPKz3KKXKyMdLzAaEJ+JlBoEf0vEgk8bQ76vpSGSzfNqRT/JaNmtmztjXRo86DBEpNJG1PKD2dbBDqBe45jUjcOMo3q+0d3onCxMsgpH64MA3O1S/BMFKYMJWqcHBJXf3M9NytjDzifxTfKJ5P9sXpwdsWLJDKBcs02oLSFMsOuhlcta6ypoJIrrPtJkDy+wL7TW/+3OlmNCBJzNRofcov7cV1Fq7dYq/vPa//bdgZqJJAcWnqOJABzcr6sGkdsLKimoedseSNN+u6yzrIkV6B5bgJNW2u6JKgpNHffp0vU9hcTvlMXc7Mx187D0qnXkapFTSJ/BnytUHUsHSCNrCpJ/ZKI3guRvjZZorIXOjB11z3VRyhFWCPNF2ZOuH+iy4i1FzaZx7j/In5+VbOrmB1vKAOpg+roMrOviUkY1kpYvY5/JKNdjq+sOQOajNwWheo8tQpfS44D/8MjfIvUGqvwGZHr9+qJ7nUOP/inSh23AFPDKM5iHNG+pNAXwUQqpvikvTQGQXwallaaWEU5dZtU+bBuJN76UB2HUyo/9mDZR5v/X3XZiHar5Elu3X5C54Qm2xZXrGYcv43qPgr18MnNjNDP75O0sB+7q3/IWmWrUzmpnyuruPSGm6jV0/SnulOekg0NQcMOiOEEqlXTe45Zk0FRMW+IbMc+txFrSwNkBuANw8N500onXj+u/5eNjBFYo+x+jv+JUc9Xmw+Xi7+fZDtnaaK7awOttNacGCbc0wKdQL1EKIp4Brgb1SymH1Hd8oM7c+OrQVXxS5Q79UUkjgxT/vG+ohBIsxBTWyw25Se7o5ifDiSSbHGawEtme5okXueCWdJKNBvuzKTFmaLg6kA3qmKmV7XF3PlGdpj8wsownq+ntXqSW95rqDGV7ZNgXQfPKelYHU76RKtz64Jc0v62h+WFCq96jMWsbB6L8+9plxZiekl8LBan/mS1R2pVENjZSW9zeqWlpwAg1am86Zf9OJLaadero/kBgEh9YdSY8Vqa57xU/UM17/duYLGAY0Qc8/SKkc3Wfw5SmgC9sOLqg6CdsubttCNVl6oJtIg26u75q75khXTawN8bBzccbB+88FVvkc2xjqIrhiqy8ZrrGWT0ygkZaPR/008Hvg2Sa/umnxpzPTVvWyfsz31e9L/xyQkVnKGwLDKz2eDoht0TyzpbLYzAdvFk8Ky/8PmjlYzF1jRECuZsrnzFoD2ttyHf/2TfqhZhtM0k3vfQfhVdf0QNcBQR3p312Z2iUkxMsecXuqAM8SvFoeYQX5wU+DaD5ae/Fah75qeppq0Rrl3Ssyd33xlVtNcbdB+d3qVxW9VV91vhG3+7cWs4oUdWICpFWkOG9zgguCQ3Bi/uD3aa/ezGjTYBgGNGEv64H1BjXjhtTzkKp/ikvTdE99nGfofpjRdODUPHfwu75dcyxF4TQEDHNxxg0Bq2zHNtV+oyeL9jAtn+BoI6xeoJZSvieE6NdsLdC2anrm33qUqyWoZ4GkEctKJ78EecLt8RQApIKMXoAnEPDJyP+vCa9uZz5ws/6tRIGz1ggj08oS/eC8l89V/4YFGzLqEWgQK/YPNDPgFBzoJgURrAMMaS9bf3/38vTnwQyxoARr81x/wSmtQw/WfdCA3H2EUuoE923UCS0aiNbNCq9yl2vyMO/9ztcysy6DKpiaA+oawV1GzL43E07MOhS9R4XTFdnoGEgD+gX/4ffIg8kcegDN+40CdZ1IlYvzNL1FU7MMqVKhhiMT/K4GWrM92dQcYVYfGDcErILHhlE5J+KlZqM9ToZUrxmtyThqIcTXgK8B9OnTp+EnGHKd2sDUMytdalCrF4LJIa7j3wbH5AldR2mO176RDvCY+tYP/xiyg4ihDtHWtoc6T7cR6ZobS//sP0YXeNE/Own18tXVpGtReJOMMdkEB08wsp4rKKR3FbGLlMTPHPiTr8nMWLQi/qI1QVnVoKsVaGrVi25DtmJWXvXCQLDWBA6zqJZZo8GsROcm0/K6oKfopZ1L//I++EIHa7boJIZ8g1YmvaPB2Lz/bLxsPsG64DPNlrSx+pV0qcxcnGfQ09Sxgrm/ykzQMp+jvs989sHMZU2pJjEtjOoI6+N8z2PSHidLqteM1mRALaV8EngSoKKiogEap5RV3OFP3hCoAJPPE7Myl47J4+ngllfNTahB2qarP8Bj6luTNfD+r5Rnve4tvCLgQe30xd9La4ZN79t/9ypJRWcmCZHmXTfMVooGfQ/ay4HwwROM8IdZsAj/6/enPYdQBYlQEjhTpRB84QdcqfpB34+24AukaZhtC1V6efB5mBt9hm19pD1UXXcjjDrQhaKW/DntIWrQaQh36eN7a7MHTSF71cOGaHnrA5u5v8qd8p9NOhocE2Gf9RsdeD9SmmZ93Wx8f1Ms2ZsCCBtDddR3npMl1WtGa1mqj9qq9M/BMpAjblflGzNSpqUCww3v4KvxIF1/YoxlKxDZ9F4ahw5tTQUt9amsdI0FIVSRloo7/PVszbRwSF/PdaAiJRNc/aq/+LpWeUDDACerlxLwynYsSW9kanL1pkxx+Qt+KV/whfc87IDeN9sLpL1Q3/MIBG6CNI2+p2wReRM05v7Kf14zkaKhQatg0DSXZx1GSWXjZYPPpz6wCe6Oc8596vu7PvJPWtnakqudYauCbrFPIenjBIGwqQJy2c7TFJNA0E4indKygDoIQMFtjXqPCk+ZBggWmHHr/HsZIpTH1H2EH0RNy5ZuG3wBTcrEa4urgkL6eN81NGCGAI7mzMO2JwqTX22eqyYgr8Jc6vxBb2zeb/xqCsjkn4MvfDZAzvYCaRolG2WgveNsezfmisiH6afra0/Q9LG5UqDrs1yBrzAQzLVpRXCC0v3XVC98cFVwMpM+mgIImyogF7ZqaGpVxkmmU/KR5z0PjAE6CSG2Aw9JKSc1S2vMFFk7mlmlDlIqDx25ric19+i+FK+d0gtvnquSHYJArUupminm+TzoV75FWi0g0jy3HVV1PDbPTaW+G8t3E3DM7ble/baqA6yDX1Xb/S/ZvN+k+Xa7WBVTMnd3tmx/8feeZwe27sKvEAharsGc6wUKowx8qhjSnnHSSMCp76U+0faEaeNzpUDnY2HXywaC2dqWSzLWVAAVdq7m8CTDrtnM8rRGW1P2MZx0OiUf1UcDlOaNtN6j6k+RzYhcj82+ByGStD42pRuFNIhGWqldmCG9D2K2Tg8+6GAxmuBmsq3aKYnXjqXp72jA0mBStT3FKaZWA6tfUf/rtHjNeVt2qlZJCvCTx5VKZsz303WBg1lh/UbXX5gnrP/zGWzZEoW0bZ6bpht8c6irJs98dtdpSHvMdmULsjY1kDTUi2wqr7MhdjIBtKmBsKXbSX6eLYz6oP4HHhx88P+3d+7RUd3Xvf/sMyOJlwChAAKEABlQQMY4gEHYwcG148auHWK7LrGdJl65jp029+bmJqtZtrPquqTLt7lts5K0bhOHOkkbDH7gxI8m6zq2iSEJ4iEZ28K8hAAh85aFEC9pZs6vf5yHzjlzzjykERoN57uWlmbOnMfev8f3t8/vt/f+GTklrMT+Ylq4kRJjMdHOE+yxeK2pBCtLX7YpCg9ugoQjh4TXa2J4uZGTxBulZ23Qai1M+r0NeP2tbQ8Lx32c861jpiZHhaVakOoPMnnlS1rYcmAgNwL1LrI6Az5yTSTZkuBgWZ2XG4FeKlzi+sw/onbCOc/plxlt6mLPopNpwWnR3r3brChBr8VrJXS3OrZWlBxinkqmi2dwRbOVz+r1mlAJn9Si5gKSM0VrkG+Md7shK0mPPZWg3NZ/qgW/XDegTF75nAtbQVnrBuRV0ev6FuAKlytkW74haRYWLmF95idRW9tTWalJrXwfWhSsXMOWNWev7Du8HJQy5m93rOt1u5u6xAiCsa61Nwc1ocd6tyAKSirjtCatXcIt2Y696/aa8LLwFcs9/sVOrwwzks+bEc9pDXqDWYJc27INDkjnt+3n2eD0pAl6+3DOXVvudgO9Eah3jSOb/BAhcoshHmCSb8g/ok7ansqE0h3E6uPl4N0R2E6PalrZh/6AvR281YHf/rn7OfYccIDPrdOaVJp7Zw1v1J5SvRa1RJL9i73ypkscY/32s0+nd23LtJy96WS9u2c7FwWdW5T5Be8EyeyUKZONSPuDTNY4Qgw8CiDAJN+Qf0R9cJMnAtGEn0XtfcV3EoGdgN/5ym16gFiN5v7/6s134bKAA3xug9z0nFFezjwc7z3bm4DfGUHpJ28mDTmV50C2cE1hOKZwnNMSzlB5XTemMhZ8HnurrFQpHf0sqkwGk/5aYuH0wuCjAAJM8g35R9TTl7mT9HiTHIH7dd0v6mr7T92+1nbSJJWcf9kKXbYsy3HVRgpQPw+QTKYYrIVCLWJMgViRjlbocaZuZoFlk6OVZue9vBb19GUOrxYHrGmodDL01aIqJEvscn71HwwPlwJH/hH11MW921MFJQx3vpb7dWpvgqfSiXDmKL5WoJN8rTSi3ihC77ODOl6SlerxYe5vg83lSrOf94x3kdaVdF9632jSudf11aIqFEuskAacvmAo+FUPMeQfUUNmlqa3UzuTIHkTPM37MyOQJWiEt5636Z/cLneZ7v9mwc9KtbL3ZbONUCr4+XP7Rc1lsjDovZfzs1eXWTcbXi0NP+ud9rHCwv3c8/piURWKJVYoA05/EE5B5RT5RdSZEgy4O7U3CdJ1XzOCTbqOGZGIi+43vgeN8EEudxVXp5bLi3RWaq6RzS4f2Vp5Xl0ObjK3QEukzl3td22muheKJVYoA06IvEH+EHUQkQQdd3ZqbxKkP/wArP0RJ841jgWN8M494KzUmpbLXV9SJKayUnMNP8sN/K25ICsv1SDk1cWVL1v3n8cPujZTFIIlVigDToi8Qf4QdRCRpHqNtDr18HI3USszdDzda6c317CVsQ+GRorEIMvN75jfuQGDUMOhDg68vYGlkfeZcvXNyQOjN9FSaDEmoxAGnBB5g/wh6iDSyeQ10spCtuslI7+033y0n+V4cFNymLNoxm7T1kYBw8vz9zU2yHIL2n3Ee9yZvtUchBr0WfzD6v/gJ9rfUUQcfcc/o93/SvKcdrYJ50OEyAANhzqob2mnrrqchdPKBlucvEH+EHUQ6VgudLtecgeNeGHt6gHJ89FB0xdWgidXVKPprRG08W2+kZKf5RZkzXmP+wyC9c3tLFQ7KSJOVHR0K+tgrqY2AjCUO+hQlj2f0HCog/tW19MT1ymOaqx5oI6F08r6Xb6FUD/5Q9Tg3/mtPL6JHjj4Ozj2jr/LXqr7BM3lHtwEn/p7Tu7bQtneF4iQQJxRjY5dTRqqvkh9czt1eseQreykBuszONbpHfzDm7XE+AWoOFq0CKYvs68tG1FMx/menDb6oA6ai/vmooOmus9AyT6YuNTEZj3vyOkL9MR1dAWxuE59ixHQ1Z/yLZT6yS+i9oOLZBPGXns+uTicRNJ0pBMB7lxQycJpZeweNp8rJEoUDCIeXm5b2LpWxP/qeZRY4lGui+7m1lvv5qMVo82cETpoUXYPm9/nyk7X6DPqFGm8TjK5R2CD9QxqC6eV8VcPfJ7/enuqPUfdoM/ivtX1dMd0I+eVkFQO/enc9S3tdgftjul847kdPHj9Fdy7pCqr+2Skr+ecVARstadVr+4MvI9Tdotc/MoEYH1jm6tdppLdeV0m5eqnS6bHUun72G21vgNzpvWdSfu36imqCdGIRiKhUxTVqKsud5Vvj6d8/e7v/Z6qfnKNgRzg8oqo/RrojaPmM1srgoSOoBAzzPmDHa/xy+Zx9rlOIrHwfEMbj99ey6pXY9QmHrGJuPRoPZPi3WjokICFaidP6ivYEZtNydnpfJQP0a2IQqX47Z6TdMdGo8i8shsOdbC+sY1ntx0moSuKIsK6B5e6Osz6xjZeaGgjnkgxAHimbXb/8c954+x0V8N0EpKzY1llWFddzouNbXb5pNNh4bQyFk67E7jTuMeGZnrivWXrbfSZkmIQUdVVl1Mc1Wz5Draf59FfvAfAvUuq0nZGP6TroJbMF2M6msCDy6p5+NY5SfWiiZDQFQroiSXfp666nKgmxBKKiCZ2uTvLRBOjzHSzAJ/dfpiVi6Zy54JKVx15yzKqCTqQSBjtZ62j/XjL1mr/msCNcyayvGZC0gADvf0kogmrVlzJvUuqeGZLK4+91ISuFJoIulLoCi7GdL71i/cQgagm3G3KvOdYF3/9UhMJXVEc1Vj7JX/DJZN2Ud/S3tsuE4qrKkdz5ZQx1E4eQ31LO10XYna56Qq6LsQC7//YbbVJOlttKxbvJf++IqgdWsZh2r7cD+QNUXsbKCLEEzrf14T58ggr2Mjdkbco1hRKK+IbW0vZGt9DcVTjrgWVLiKx0BPXeWrjfnriOg1qNjtisznVNpGWxlJ+okWNxTItyubEHAC7o32wYx0TE3Gioogn4pzdswHFCgBEE46cvkDDIf8pEGdH74n3LlTGEoqvrnub5bPHUzt5DKte3cnFWO/vF2M6q17ZyWO317JQ2wcHN7F72Hw63n+TukQ3onRUoodfvfI8/xL7tN0YnATcE9PtDucsQ6vD2xuCOXQAw9I71dXN+NISm0Sf2dLKr5uOcsuVk+zG3hPTjX0MBFej9yNF67h1zj1PbaYnYUjwfEObq3MvnFbGmgfq+MZzOzjYft4uk2e3tVJTUZqyMwYNTGUjitHMfN9+HbS+pd0uf13BDze2APDTzQddA77u2OxYB8pGFCfVuZVXPKEUq17Zycprqug432OXie5pmPGEYs2WVp7fftgm4ogGK68x3iBsCzLRe2FPQrG+sc2W3TkF5dQloeC194/zxu4TKJNwnXVi6RbXFY+91MTWA+28tOOIr75gZskxZVmzpZV1W1uNtmSe1hN3tFuTvKwB2alLd0xnfWNbUp8pG1Hs3NmTd9s62XX0DM9LG7G4bhStA6t/d4BP1lYA8L3X97ru/+SGfXY5WDp/5YaZrHmgrt9vtc7BMKIJD3x8Bk///oCrjiwMhOUuyrvrdg6waNEitX379qyueXJDM//02h50FbzB1gLZy+cqDvNe0Tx+dngCujI25ZpXOYamI529uYUCENWEBVVj2Xawg4/JXuq0XdTrc2hUs+1zPnP1ZMo+3ME3j3+TIuLEiHJfz6OucwCiEbGtIqeV7GfZe2FZWE69LFkiEeHZkv8LiR66VZS/jf05f1P0n5RIgphEubf7ERr02UQEVi6u4rnth4mbjcXah8CZigrHZ+s5W5lLoz7LJvC4o7EVRzW+eO10m7gAvnx9NZ+srfCdWtpzrIunf9dCy6lzdhkvr5nAb/eeJBY3GvUffXQCr71/3FUG9y6p4ok75rkGBMC2pAGKIsKfLZrK2q2tdl1PGF3CsTPdtl4RTVwDU8y0YDVNiCeUbWE+9IkrXB3nmS2tfOsX77nqqTgivh3PK/eUscNt4l/1yk7eaetMOu/L11cnkX4mCNhKAoDF08vYcfi0LaOl/7VXlLNx3ynfezmt4drJY2xLONcojhj1/uaeE3Z7ikaMnmx9L45qPH67MbBaA807h08ntY1U0AQ+u7iKF7YfTltXN89NrncLTmv48Vd22hb347fX0nSk0zZcaicb3LLzg05XPQfVkwAlRX2zqEWkQSm1yPe3TIhaRD4FfB+IAKuVUn+f6vy+ELVFctYo6meJJMlFcKPuLxYEELkXw4o07l86nZ1Hz9AdS7D1YEfWz1lT/IQ9KKxPLOOe6AYi6MSVxnfjd1Ovz+HayC7+kDBkEYwGO2nMMNpOX0y6p99A533OfT2P8raa7Vt+o0oinO3uzfMhwEPXV1M6vIiuCzFW/+4AulIIhgXnREQTdHOqIBUimnCdh2BunjuR0+d77DIU4KrKMew8esY1mPQFUU247apJtJ/roXxkMa++e5R4igamCUz2Kd+IuXFNRDPKN8g4qBhdwldvnE3TkU7XYNofjB0e5fSFePoTPSiKGNM3fvU1kLDq7922TmNtA2PgsGTIpv9abbrIHBAyJfeIJnx7xZXUVJTyw7f2c+LMRZZWl9uDKFnIkJGcAg+Z02jZX9sPohaRCLAX+CTQBmwD7lFKvR90TV+IGgyy/uFb+3lj1/G0JA1GpcUuZcsbAPxl5CW+Hn2eqBjEvC5xA3dFNiVZ8/0dlLzP+W78bv41sSKrewzkwGjB2ra4EGBZkE///gDNJ84OtjiXHJYxcbTzYkb9ORWcbS+TNx+vHJDe8OurPF5ENeHZh/zXE1LeMwVRZzJHvRhoVkq1mDdbB6wAAom6P3gzQ5IGhjxJA9Trc4gRBWUQ84uJZbyYWJZkzfdXU+9z6vXsR/xLUdqFQtJgzM96p1eGAnI1IOsKPvB54+sLnPJkQ9KWHLlGqlvqSuV8jjoTop4CHHZ8bwOWeE8SkQeBBwGqqvrmVvWjt/Zf0lezfECjms19PY9ybXQXf4j3EnNjIni6pT/PyWQ6J0TuMBSb81CUGWBORSkAu451DZoMgvEm1R/vEj9kQtTicyypLpVSTwFPgTH1ka0gz2xpzWpRIdcoiWp0xwfHnmtUs2mM5Z44vTo1qtk5HwBCwOhhUc5czH7ueChjRJHG+Vh+vf8MJkFbEIHHbqvNuR+1lsE5bcBUx/dK4EhOpQB+3XQ017fMGJpAzGdVqCSqURzxG6eGBpwkPW3ciIHek/uSId90KR2WuZfrlLHDMjovohmWWUR651gHAxWjS7hvSRXr/+Janrhjni3LYJD0qOLIJX9mttAVbNhzIuf3zYSotwGzRGSGiBQDnwVezrUglnvWYEBE8FtT7Y7rSfNh2XSaKWOHUTG6xJdUKkpL0siU2TPGj/Lx6/XB4Y7zGd8z3yFieKHkyxh6tDOzediIBifP9gT+LhgubfctqeK5h65l7Zfq+PrNNdRMLM1apqiWeRtKhc9cPYXJY4cDsPNI54DM96aDhtHvzvUk0p6bD3hz9wk7RiFXSGsKKKXiIvI/gf+P4Z73tFJqZ06lwPBPbW0/x482tth+wJDdfFnQIsji6aafc+tpX9cxpRv+tunmx+dXjmHi6GEZTdFExOiUMZ9AHIDjZ7tT30AZq8ezJowKfKXTBD5WVcZv9550Bdf43k713TKLaFAxepi9MBTVYEFVWdauiAAzx4+k5dS5wA6fyULWofbz/HTzQb79mXk0Hemk+XgXDa2nUaY/9fKaCRw/c9HXv9nveUURsSPjINnPXRNSurYpZbiBpfJPnjlhFEtmjGPt1lb7uWUjihheEqV20miW10wIzKHy3df2pNUjWTFBQ2W95mPV9fDiKDd9dILtxhYxYxD8MG3cCNpOX0ApZQchPblhX58WEudUlLL3xFlXXb6x+4SrbHPtfTRl7LCUskY0sSN8/Mpz5viR7D91jt5g5sFZTEQp9SvgVzl7agAevnUOVeUjXdF1y2sm2I7nj7+yMyUheQM9LB9KK2eEKzw43htlZzUuy9Hd6bSP85zba9lzrCstUUfNII/Xdx23/UedgRqArwUP7qAVpRSV40a4iFoTuGnORAB+u/ckr+86TlQTbp47MUluJyz/09+8fzypkfs1/JnjR1I9fpQrWtEVJPByU8oysGT1cldrxwUeXFbNjze1+DZ656H5lWMoiWpJA4LCiERrOtLJXQsquW91PbpuhHA//ukr7bBzZzSkFxExIiJnTSy1A3ec7e7qqWPpjussrS6ndHgRR05f4Jktrb4EoWnClz4+I0kna2Asjmp8566rACMq0wqu+PEXrknbmetb2n0HNQEWTS9jm6dsrLpMZMjQUTPK7kx33B7wjnZepDiq0dUdd0Uybj/UQTRiBBJZwTRKwaEPz9vBN4/dVktNRSknu3rbekQTbr9qEr/c0TtjaoXtW8/98FwP1eNH8dAnrrD1tqIuf+Pob5a8m1vamTh6GMtrJvDrpqNs8gn4yQQRDW6/arIrwMv9u8EhTUc6eXbbYd+O+8WPVwPY7WewFhMvKTrO99i5BhK6Yv7UsXzlhpkA1FSU8r3X9/L75lN2pNrYkUV8eK43/v+a6WXMnFgamPxmytjhSdFRfglnrDDY2sljXOdYobheLJv1EW65cpIrnHnjvpN2p/zqjbPtCKhIRNDMKDqr2jXgOvMeq17tjZRyGsGCEZX1xB3zeHJDM6+broxWOT30iSuob2ln3/EuXn7niLuDi0HUG/eddEXLaUD1+JE0nzxnn1oUEb7zp/OTys7IAVLGkxua7WARAW6aO5ETfhas+VaQcLzFJBI6pcOLeO7L17pIP2aGUWtab1Kex26vBWDljzYnBaco4IUGo46s9AFKKTrO99iyrn1wKT98az9v7j5hE7lFSi80tLH9UAfvftDJnQsqXe0unlA0tp5GV4o9x7vsPBnrGw2SBbdlNeMjI+nqjrsiQe9ZUsVdCyqTckM4zC4yQV11OSVFRvi+fXMM8n/4ljnsOdbFs9tabdKy2k7EjNRMJJIDyCLmwFI6vMgl28ofbbYtV6tMnW+auoKbaiYwf+pYjpy+wNqtvQOXs/zrW9pd7WPlNVN54o55LJ5RbsvqjBi0gt1aTp1j476TrHmgzu7zgK2/ZtbfTzcfpCeus+d4Fw994gpqKkrZ0tJuD8pRn/5lyWK3e9PgsfqM18BTukJz5EN5ckMzuqMNWhHRK6+psg3BmorSyyMpExCYRMWy5m65chLbDn5o/75o2jiXhTtzYilP3DEv6b7ZpDu0CClQPo/DfXFU42s3zU66xptjwFmRgG3dW8Rk3cM6z2u5Fpl5TYLKySn3ny+d7hrUEgmdjvM9rHmgLum5S6rL2X/ynP1GcveiqSkbmvfZXzatIKcF631TcT7PK6u3XLyNfdWKK21rxTkFkUgYHTEo6c7CaWX8+POLknI5PLmhmXjCnZvEqZM4EhP55Yyw6sXSteXkWVrbz7kyv91lGgneTHtxc9BK6Olfjy25g/KZWNfeXFsR2MYyzd5X39Luml7QRLhrQSWnurpd/esjpSV85YaZtjETlP/FWSdWm713SZVvRsRUCbSsPDBOC9t77ldumMnaB5e69LP0dba762eNt98oBZg/daz9nJKiXnn9MgY6B0wngTuRijf6i7zJ9eGEX5aqVBni7nlqM7E0GcacuUQiAl+/ucY1amcrn18io1zoGiSzZaU5B6FMU0haDTAoLSkQeF42cqfKWZ2r5O9WGk6nrJBZKtB05ZLqGX7ZAJ0DoZV7xcoDkm19eMsI0udhzmWuZfteHiKyppD8+leu6jtdufT1XK8cENzOM03MNJB5uvud6yNb9JeovUhHstlkv8qGjAYbuZA5V3mD8wm5kDUXecL7Uj+p8kE7SfeuBZV2MqogwyKXxkc62Qa6bWRL7H2VJ5/b+ZAn6lyRbD5XUhCGosyXE3JVP17SXbm4ihcb29Ja9UPN+AgRjCFP1BASVojChh/pQvopnbBfFA4KgqhDhCh0hKR7eaO/2fNChAhxCTCQXgMhhjYyCSEPESJEiBCDiJCoQ4QIESLPERJ1iBAhQuQ5QqIOESJEiDxHSNQhQoQIkecIiTpEiBAh8hwD4kctIieBQ328/CNA33IWDl2EOl8eCHUufPRH32lKqfF+PwwIUfcHIrI9yOm7UBHqfHkg1LnwMVD6hlMfIUKECJHnCIk6RIgQIfIc+UjUTw22AIOAUOfLA6HOhY8B0Tfv5qhDhAgRIoQb+WhRhwgRIkQIB0KiDhEiRIg8R94QtYh8SkT2iEiziDw82PLkCiIyVUQ2iMguEdkpIv/bPD5ORH4jIvvM/2WOax4xy2GPiPzx4EnfP4hIRETeFpFXze8FrbOIjBWRF0Rkt1nfSy8Dnf+P2a6bRGStiAwrNJ1F5GkROSEiTY5jWesoIgtF5D3ztx+IiGQshFJq0P+ACLAfqAaKgXeAuYMtV450mwQsMD+XAnuBucD/Ax42jz8MfMf8PNfUvwSYYZZLZLD16KPuXweeAV41vxe0zsDPgAfMz8XA2ELWGZgCHACGm9+fA+4vNJ2B64EFQJPjWNY6AluBpRh7Vf8auCVTGfLFol4MNCulWpRSPcA6YMUgy5QTKKWOKqUazc9dwC6MBr4Co2Nj/v+M+XkFsE4p1a2UOgA0Y5TPkIKIVAJ/Aqx2HC5YnUVkNEaH/ncApVSPUuo0BayziSgwXESiwAjgCAWms1JqI/Ch53BWOorIJGC0UmqzMlj7PxzXpEW+EPUU4LDje5t5rKAgItOBjwFbgIlKqaNgkDkwwTytUMrie8A3Ad1xrJB1rgZOAj8xp3tWi8hIClhnpdQHwD8CrcBRoFMp9RoFrLMD2eo4xfzsPZ4R8oWo/eZqCspvUERGAeuBrymlzqQ61efYkCoLEbkNOKGUasj0Ep9jQ0pnDMtyAfBvSqmPAecwXomDMOR1NudlV2C84k8GRorI51Jd4nNsSOmcAYJ07Jfu+ULUbcBUx/dKjFeogoCIFGGQ9Bql1Ivm4ePm6xDm/xPm8UIoi+uAT4vIQYxprD8SkZ9T2Dq3AW1KqS3m9xcwiLuQdb4JOKCUOqmUigEvAtdS2DpbyFbHNvOz93hGyBei3gbMEpEZIlIMfBZ4eZBlygnMld1/B3Yppb7r+Oll4Avm5y8ALzmOf1ZESkRkBjALYxFiyEAp9YhSqlIpNR2jLt9USn2Owtb5GHBYRGrMQzcC71PAOmNMedSJyAiznd+IsQZTyDpbyEpHc3qkS0TqzLL6vOOa9BjsFVXHKuqtGB4R+4FvDbY8OdTr4xivOO8CO8y/W4Fy4A1gn/l/nOOab5nlsIcsVobz8Q9YTq/XR0HrDFwNbDfr+pdA2WWg898Cu4Em4D8xvB0KSmdgLcYcfAzDMv4ffdERWGSW037gXzAjwzP5C0PIQ4QIESLPkS9THyFChAgRIgAhUYcIESJEniMk6hAhQoTIc4REHSJEiBB5jpCoQ4QIESLPERJ1iBAhQuQ5QqIOESJEiDzHfwPIgaxcy/lDgwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot(style='.');" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEKCAYAAAAMzhLIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA1UElEQVR4nO3deZhU5ZX48e+5txaaZrVxowEVQQ0Q6GgniKijGDMuSMyITsYYJyaGmEEzM9GAMxk0hl8yQY0zJhodNE40YzJjJBFEjBsYBCMRFAigwY4b0Lh1BGmWWt/fH7VQy62q2911q6qrz+d5Wrqqbt166yn7nnqXc14xxqCUUkoVYlW7AUoppWqbBgqllFJFaaBQSilVlAYKpZRSRWmgUEopVZQGCqWUUkV5FihEpJ+I/EFENojIZhG5yeEYEZEfiUibiGwUkRO9ao9SSqnu8Xl47hAwzRjTKSJ+YJWIPG6MeSHjmHOBscmfycBdyX+VUkrVCM96FCahM3nTn/zJze77LPBA8tgXgCEicqRXbVJKKdV1XvYoEBEbWAeMAe40xqzJOaQZ2JZxe3vyvp0555kFzAJobGw86YQTTvCszUopVY/WrVv3gTHm0O4819NAYYyJAS0iMgT4jYhMMMZsyjhEnJ7mcJ6FwEKA1tZWs3btWi+aq5RSdUtE3urucyuy6skYswt4Fjgn56HtwMiM2yOA9kq0SSmllDterno6NNmTQEQagE8Dr+YctgS4PLn66WRgtzFmJ0oppWqGl0NPRwL3J+cpLOAhY8xSEbkKwBhzN7AMOA9oA/YBV3jYHqWUUt3gWaAwxmwEPuFw/90ZvxtgtldtUEop1XOama2UUqooDRRKKaWK0kChlFKqKA0USlVJR2eIDdt20dEZqnZTlCrK04Q7pfqqjs4Q2z/cz4ihDTQNCOY9vnj9DuYu2ojfsojE49x80URmtDRXoaVKlaaBQqkyKxUEOjpDzF20kQOROAeIAzBn0UamjhnmGFSUqjYdelKqjDKDwJ5QlAOROHMWbcwaXtr+4X78Vvafnt+y2P7h/ko3VylXNFAoVUZugsCIoQ1E4vGsYyLxOCOGNlSkjUp1lQYKpcrITRBoGhDk5osm0s9vMTDoo5/f4uaLJuqwk6pZOkehVBmlgsCcnDmK3CAwo6WZqWOGFZ3wVqpWaKBQqszcBoGmAUENEKpX0KEnpWqc5luoatMehVJlVs4cCc23ULVAexRKlZGb5bHVOJdSPaGBQqkyKmeOhOZbqFqhgUKpMipnjoTmW6haoYFCqTIqZ46E5luoWiGJTeZ6j9bWVrN27dpqN0P1YqUK9pXj/JvbdwPC+OGDevwaXrdX9Q0iss4Y09qd5+qqJ9WneL2KyO35u3Lx13wLVW0aKFSfUa6qrYUu8m7Pr0teVW+jgUL1GalVRKmLOBxcReQ2UBS7yLs5v5YYV72RTmarPqOnq4hK5TW4Ob8ueVW9kQYK1Wd0ZxVRZvkMp4u8GHh0QzsdnSGaBgT55qePw28L/QO24/l1yavqjXToSfUpXanamjvMNG/6uLyL/P5onO88uoXvLXuFk485hOfaOgCIxGJc0trsOPcw+4wx3LGijYBduLqsUrVEl8cq5aCjM8TUBcs5EDkYGPr5LWZMPJKH1u1wfZ6n//l0xhw+EMgOPOFYjKvPHMulk0dpkFAV0ZPlsTr0pPq0QpVZnYaZbEt4ZH17l86/ftuu9Otkzm+EooY7n23rUduVqhQdelJ9VrEVTI5zCTGD3070BtxqGTkEKM+KK6WqxbMehYiMFJEVIvKKiGwWkX90OOYMEdktIuuTPzd41R6lMrmpzDr7jDEEfQcnvm+8YBzRnOCR4reF08Y0Zd13+ZRR6WGnck5i6/4UqtK87FFEgWuNMS+JyEBgnYg8ZYzZknPcc8aY6R62Q6k8xb7hr2r7IN3TAMOs00dz6eRRrGr7gHjGlJ4tMOv00Uw5tonxwwfTNCBI27t7WL9tFy0jhzDm8IFZyXlutkgtlbGtyXqqGjwLFMaYncDO5O97ROQVoBnIDRRKVVyhb/iNAZs5D28kFD2YEHfHitc4d8IRzF20kUjsYKTw2RZXnjY664I+5vCBjpPXqYv66rnTCmZ1P7jmbe7MWQ2VGQQ0WU9VS0Ums0XkaOATwBqHh6eIyAYReVxExleiPapvS31rn3f+uLycimWb3iEUzQ4goajhvtVv5J1HBMdEuY7OECu3vs+ch/OHtgAmjRySV9LjlB88w21PbSUUPXj8tx7eyMqt76eHmDRZT1WL55PZIjIAWAT8kzHmo5yHXwKOMsZ0ish5wCPAWIdzzAJmAYwaNcrbBqu65pQbMWH44PRcwbcefsbxeQ+v20E4lh1ADkQSPRCn81tIXsBxmrxO9RJC0fxl6qFonKt+vo44hpsvmsjUMcM0WU9Vhac9ChHxkwgSDxpjfp37uDHmI2NMZ/L3ZYBfRIY5HLfQGNNqjGk99NBDvWyyqmNOE9jzl25JDwNtbv8IW5z/JHy24M95KGgLe8MHV0Blnn9fJH9llNNF3amXkGlfJJbVG9H9KVQ1eNajEBEBfgq8Yoy5rcAxRwDvGmOMiHyKRODq8KpNqm8rNYGdmptwEosbLEvInM0WSxzrOGWeHyDoSwQCp4u601yJk1Q7u5JZrlS5eDn0NBX4IvBHEVmfvO9fgVEAxpi7gZnA10UkCuwHPm96W6q46jWKTWAnhn/yL9j9kt2IedPH8ZfOMHeseI2AbTuuWip00RfA4Py/dar+VKrHcCASx29BJOc0mb0R3Z9CVZqW8FB9QmoCe1P7buYv3ZK1EumopkYuu3cNe0LR9PENfotbZk5k5CGNbNqxm/mPbUmW3ohz/sePYNoJhzPl2Ka8C/aS9TuYs2gjtiXsDWUPP/XzWyy9+lT2hmPpi36qZ/Dh3jDn/eg5wrHsv8fGgE3MGF0Gq3pMd7hTqoi8CezzxzGheXB66KajM5Rf7C8SZ/eBKFOGNvC3C3+ftST11y+38+uX2/Hbwg8vnpR1AU8NDa149T1uXLI5aw4D4LwfPUfQZ7M/EkVE6OdL9E4SyX024djBYNUYtLnpgvGcecJh2oNQVaW1nlRdc5zAfmxL1vh+04Ag884fl/fc+Uu3sLn9o4KTzZGY4bpfbUgvX01lTAOcecJhxHJ66wciccIxw55QlGg88fxUm+5Y8VreqqpY3GiQUDVBexSqrrmtsTSheTADgjadGcNFtiX8cfsuDkSjFBKOGX6x5m1GNfXPqgz75VOP4YpTjua+1W8SsC1CsThiDKGY81BvwLaZdfpo7ny2rWjmtlLVoIFC1TW3NZZGDG0gGs++iO8Nxbjlya0lX+NHy19DMIRjpAPSXc++DiTKfFx95hjOnXAE5/3ouYLniMTjXDp5FJdOHqUrmlTN0aEnVdfc7mqXeVxj0HY8l20J4nB/JJYIEk5iJlECZOFzr+dNVPttSbdp3vnj0hnWuZnbSlWbrnpSfUKpYnuZx6149T3mPbKJ/TnLZfsHbG6+aCLffGhD3nxCMUFbHIecHv7ayfh9dtaqKi30p7yiGxcpVULTgKDrb+qHDQoSM/mBIBY3TDm2iVsvnkjA5/5PJ3dIK+XNjn2MGNrA/Me2FC13rlS1aaBQKmnx+h1MXbCc2Q++jCF7mMlvC7fMTAxZTR0zjNsunojfeYQqi8+Cueec4PjY0U39XRX60/0nVLXpZLbq01JDUqns7Mx8iaDP4ocXT2JQgy+930RmTgYIthicFjIFbSEOfGfGeL4w+Si279rHA79/O/24BVx23x+Yd/64gtniG7bt0mEpVRM0UKg+K/OiH4rGkJyZ6oBtMfKQ/kxKbmfqtB9EwBYsA5Gc4aXUnMT8pVuYfPQhXHTiSPrZFgtXvQlAnERexU2Pbua6zxzPbU9vTQeDS04awfQ7VmHLwaKDuv+EqiYNFKpPcrro50oto031OnbvjzgW/Ss2rW3ihvN+vAq/JXlZ2pDIw7j5yT8x5zPHM3l0E40Bm+l3rOJAbrGnJN1nW1WDBgrVJxWq9JrpilOO5reb3smq8xTLGSbKXfKaK9GzMISLHBONGb7/+Kt873MTmDB8cNF26f4Tqho0UKg+yU157589/yb7k9/sUxduvy0EfYltUHOL/mUK2oIBLEsK9g5y3fToFpZdc6pjuxqDNrG40WxtVRW66kn1SYXqO2Xa73CB7+ez+eHFLXxl6jH09zul3yXEga+edgwxh3yLYIGltZZA++4DeQmC37twAr+48mRWz52mE9mqKjThTvVZG7bt4pK7ny9Yf8mJ3xYsAVuEfS57CimWJPamsETyJr9Tgr5EeXPdnEiVmybcKZXDTe5BY8B2HST6BywCthCPG0JRkxUkfIU7FlniJlHSo1CQgMQ+2alNjLSUh6oVGihU3Uklzl127xqmLljOkvU7HI9r333A1fk+edQQIrE4tiWOORNRA6ePbSLos/DbLqNGEbkJd0pVmwYKVVec9p8oXBLDXW/ixbd2EYk5z1mkrHytg3g8TrxIb8EtXdmkao0GCtWr5Q4xuSmJkTJ++OC8HoAtgt8W+gdc1OfIEYnj2OM4eG5c9TjmnT9Oh5xUTdHlsarXyt3i9OaLEpPAxfafyKwiu6rtAzIXc6S2Ni22lWlPGAP/dNZYfrz8NQ5EC0eU7zy6GQS+MPmosr22Uj2hq55Ur9TRGWLqguVZOQr9/Bar505jddsHzMkJIDNamrMCSyp5LrOSeNAnPH/9Wel9tE/5wXJC0a6tbCpFcDvgBd+7cAJfOFmDhSqPnqx60h6F6pWKbXE6o6U5b3mpm5IdAdtOl8doGhDk6jPH8MOnSu9w1xVd+Vp206ObOWfCEToMpapOA4XqlUptcZq62Ke4KdmRO0Q1aeQQbCk+7+Alv+2+rpPbjZmU6g4NFKpXSm1dmjvEVOgi6RRYUslzAdvOen5qiMpXYDmsW0cOCrDzo2JVnoqLGeNq9ZPTXI1mcKty0jkK1at15Zv0kvU78gKL0xBV7txHT3S3RxL0CTdMH8+E5sFF31uxuRrtWahMOkeh+qzcIaZinOYuUudIcTNE1RVdDRI+S/jHs8ZySGPA1YZFxeZqUoFPh6RUT2mgUH1KbmDJvZC6qSrrpWjcEPRZ6X20S21YVGyuRoekVLlowp3qsx584S2m/PszXHrPC+lSH6m5j0IVXnPl7orXFQ1+i6BDAt7NT7yKz8pJBLTEMWkw1d7MarM3XzQRoAsZ6koV51mPQkRGAg8AR5CourzQGHN7zjEC3A6cB+wDvmSMecmrNimV8uALb/HtRzYBEI4lkupS39pntDRjCVz7q40l8yh6MsUXL1AgMGBbeRsi7Q3F2LRjd3pb1kxOQ2obtu0qOiSlVFd42aOIAtcaYz4GnAzMFpHcDQDOBcYmf2YBd3nYHqWAxHDTTUu35N0vwOb23Tz4wlv880Pry55sl8lvC9d+5jhsK79HEY3Hue7s4/Lun//YloI9gqYBwaxqs6WWDyvVFZ4FCmPMzlTvwBizB3gFyB0g/SzwgEl4ARgiIkd61SalIDEBHHAY8tkfifPln73Itx/ZRKR8lTscBWzh1if+5BgoYiZRbrwxp95UV6rKFhqS0t6E6o6KTGaLyNHAJ4A1OQ81A9sybm9P3rcz5/mzSPQ4GDVqlGftVH3DiKENRAtUefWwE5Flbzj5Qg7LomJxuGNFG/Ee9ggKrfJSqqs8n8wWkQHAIuCfjDEf5T7s8JS8vxxjzEJjTKsxpvXQQw/1opmqj5l9xhiCPosGf9erxJabU68ibgyZqRxC96rK5g5JKdUdnvYoRMRPIkg8aIz5tcMh24GRGbdHAO1etkn1LZnLXwEeXPM2d65oI2BbgOFLpxzNfavfIFSkmqvXLAyWLUQyeheRnJ6GIVH7aWA/ny5xVRXn5aonAX4KvGKMua3AYUuAq0Xkf4HJwG5jzM4CxyrVJZl5BPsjUeDg0FJqovq/n3+TGy4Yz/ylW7Cgy/tgl0PAb3PV6cdy+zNbiw59hWOmYD6FUl7yskcxFfgi8EcRWZ+871+BUQDGmLuBZSSWxraRWB57hYftUX2Im2qxkJggnjB8MKvnTmPFq+8xd9HGihcBPBCOMWxAANuyiJZI9jMGXeKqKs6zQGGMWYXzHETmMQaY7VUbVN/lthRH5gRxP79dlUqxMQP/8ptNro4NReOseb3DMZ9CKa9oCQ9Vl9yW4vjm2cfx203v8J0lm5CepFl7wG8L0ZjJW91x65N/4qKTRmivQlWMlvBQdSuxskkYGPQV/B/9T+/sSeRNxMnLhq6W/gEbvy3E4/lBAg7uU6FUpWigUHVn8fodTF2wnIUrXweECyYdyT2Xn1Tw2FpiC8w+41gEU3AYzO0+FUqViwYKVVcyJ7H3hKKEonF+8Ydt/MMvXuK0MU1Zx5738cPx27X1JxAzcMeKPxN2yAxv8FuaYa2qQucoVF0pNIkdihpefOtDHv7aybzZsY+WkUMY2hjglFeeqVJLC9vvUD8k6BP+64snMX74YA0SquJq6+uUUj1UbBLbb1n4fTYzW0cy5vCBNA0IcsP08WVvQzmnxPv5LAJ2Yre70487TIOEqgoNFKquFNtPIhyLs3t/JKsC64TmwQwIlreMRzmnxKPxOIHkRkZLamw+RfUdGihU3ZnR0szz10/j2rOPS6968ttCLB5n9oMvpTcpguIFAmtBNA6doViXNh7q6AyxYdsu3aRIlY0GClWXmgYEueassTx//Vnc+YVPYEniopva7e26X22g7d09Xd7Rrppscd7lLlNqxddl967JCohK9UTt/3Uo1QNNA4IMbggQsLOHl8Ixw7k/eo4H17zl2AMJ+iRvO9JKCvoscmPX3nCMTe27Cz4nd8WXbn+qykVXPam6V2iCOxIzfPs3m9gbijL5mCYunTyKSyePSlebXd32AXMWbcQSYZ/TelWPTP/4EfzTp49jzRt/SW/XmjJ/6RbOGX+E46S204ov3f5UlYP2KFTdSw0vOe1qB/D9Za9y6T0vMHXBcla3fZDev2FGSzOr507jkpNGVLS9S//4DufcvpK/7A3nTbTblrDi1fccewm6/anyigYK1SfMaGlm2TdOw18gWOwNO08Y/3bTO/zs929Vqplp0Tj859Nb8/al2BuKceOSzY7zD7r9qfKKDj2pPmPM4QP51meO5/uPv1rwmMyhmrZ39/Bvi91VdfVCzMCsqUfz38+/iW0Je0OJ4a+9yWEwp70pdPtT5QXtUag+ZfLoJgJF/q9PDdUsXr+Dc29fianAytlif4RTjm1i9dxp3HTBeBoD2cNQqaCWS7c/VeWmgULVDTf5AyOGNmA51HdqDNgEfcLsM8bw4d4wcxdtpFKb3YklFBgRY/jgRK/gzBMOI5YTtXT+QVWKBgpVF9zmDziN43/vcxP42l8dCwgLV77OeT9ehalgEl4sXrhS7OOb3inYbp1/UJUiphJ96zJqbW01a9eurXYzVA3p6AwxdcFyDmR0AYI+4Z7LWwsW0evoDKXH8YG859eKoM/i+eunpd9DZrs1SKiuEJF1xpjW7jxXexSq10vlD2QKRQ1X/c9LBXsXmeP4Ts/v57fwl7cEVLfYImxu/yh9u9D8g5btUF4qGihEZKSI/K+IPCci/yoi/ozHHvG8dUq5UCihbp/DklenC6rT8+Nxw5y/PsHbhruwLxLjyvtf5MfPvFYwCGjZDuW1Uj2K+4BngWuAI4HfiUhq95ejPGyXUq6khmLmnT+Ofn6L/g7dAEuEze27C15QM8f/g8lZZcsSbnniTxV9L4WEY4YfPrWVU36wPC9gaNkOVQml8igONcbcnfz9GhG5DFgpIjMobzVlpbps8fodzF20Eb9lEYnHmTd9HCOH9uerD6wlFD3YQ9gXjvHln72IMYnchFSJi8w8hBktzYw7chDn/XgVYGpyviIUjfPDp7Zyx4rXuGXmJGa0NGvZDlURpXoUfhHpl7phjPkf4B+BJ0j0MJSqCqdv0vOXbmH88EHcMjO/Gmw0Tt7Kotw8hL3hGEGHpbPVKw3oLBQ16V6Dlu1QlVAqUNwLTM68wxjzNHAxUL2UVdXnOU1Apy78M1qauefyVhpKlA7PvaCOGNpAOJbfk6jFrnNmr0GXzSqvFR16Msb8R4H7XwbO9qRFSrlQ6pv0+OGD8hLUMgV9+RfUpgFBvjz1aO763eveNNql8yccwdOvvocIhCJxRCA3rSPzvWrZDuU1V7WeksNPXwHGA5lDUV/2qF1KFZX6Jj0nY47i5osmArBh2y5GDG3gwpbhPLQufwWQT0jmWAxKHwvw4Jq3+emqNyv5NhzbNqqpP5FoPD3r4BTv5p0/Djj4XpsGBDVAKM+4LQr4c+BV4K+B7wJfAF7xqlFKuZH7TXpV2wdMXbAcv2URjsWJOSyZBYgaeHXnR8z6+Vr8lsX+SDRxfw3MX8cMrno0q//8PvMf25IVJGe0NFeghaovcpWZLSIvG2M+ISIbjTETk/kUTxhjphV5zn3AdOA9Y8wEh8fPABYDbyTv+rUx5rul2qKZ2cqJU3Z2IUGfhTGGcKG6Gb1QP7/F6rnTtFehCqpEZnYk+e8uEZkADAaOLvGcnwHnlDjmOWNMS/KnZJBQqhCnye1C4sYU3JeitypUSVapcnA79LRQRIYC/wYsAQYA84o9wRizUkSO7lnzlHLHaXLbbwuWAAZCsURwiMQMAuwN18A4UxnpkljlJbc9imeMMR8aY1YaY0YbYw4DnizD608RkQ0i8riIjC90kIjMEpG1IrL2/fffL8PLqnqTmtwO+iz6B2yCPosfXjyJ568/i4euOoWHv3ZyOh8ic8ipMWgXLPFdyy5pbdYlsapi3PYoFgEn5tz3MHBSD177JeAoY0yniJwHPAKMdTrQGLMQWAiJOYoevKaqYyb1XyPpW6nVQBu27SLoswnHounjGwM2n53UzK/WvU0sVo0WH9QyYjCbd36Ut/VpLp8t3DRjPF+YfBRzz/mYLolVFVE0UIjICSSWxA4Wkb/JeGgQGctku8MY81HG78tE5CciMswY80FPzqv6plSmdihqgPytQp2GpqJxw6KXthGpcpAAeOWdPfzyysn83b0vFGxPwLZY9o1TGXP4QABdEqsqptTQ0/EkVi4NAS7I+DkR+GpPXlhEjhARSf7+qWRbOnpyTtV3FcvUBueNf64+cwwBuwZqiZOo43TX717PS6zLFDdxtuz8qPABSnmkVGb2YmCxiEwxxvy+KycWkV8CZwDDRGQ7cCPgT573bmAm8HURiQL7gc+b3raLkqqa3A183NQ8ys27ALjz2bZut8ECyjkl/syr7xV9PBrP7iUpVSlu5yheFpHZdCEz2xjzd8VOaIy5A7jD5esrlZZbNTaVbOaUqZ17QU3dTgWLGROPdMzedqMa66Ys0MqwquI0M1v1KplVY3PLhbupeZQZZPaFowX3qq5V+yJxNrXvZtLIIdVuiupD3C6PHWOMmQfsNcbcD5wPfNy7ZinlzM1chNNWoZBfmry3BYmU+Uu36MZEqqK8zMxWqux6sv9CV7K3a5lmYatKc/tXk5uZvQVY4FmrlCpi9hljCPqky8lmhfbW7m3CMc3CVpVVKo/imxk3r0j+e2fy30ZPWqRUAZnzCyDMOn00l04e5XpiN7VE9tpfbSiZ2FbLorE4q9s+yKoWm7sKTKlyKtWjGJj8aQW+DjQDw4GvAeO8bZpSB+XOL4Si8S4vbe3oDHFUUyPfnVGwWkyvEDNw3a820PbuHiARQKcuWM5l965h6oLlLFnfvVVcShVSKo/iJgAReRI40RizJ3n7O8CvPG+dUkmp+YUDGYtSM7cDLSWzNxKOxbAcdo3r7xdCEUMNJGqXFI4ZzvvxKm6cPo75j21xXAWmPQtVLm7nKEYB4YzbYXQyW1VQTyax83sjxjEDel8ySBSqEVhrtQPD0Tg3PboZn5XdMp3sVuXmNlD8HPiDiHxHRG4E1gD3e9cspbI5leBwO4nd1dVOA4I+Lmw5Mu/+WgsUkCgSGIp2L4Aq5ZarhDtjzPdE5HHgtORdVxhjXvauWUrlc5NQ56Srq50ORGM8umFn3v3VXC/ls2DOOSdw65NbCWcEhn3hOIFknfR+/kQw1JLjqtzcZmZjjHmJRGlwpaqmOxVTU72ROYs2Eo8X3wI1kNzcqNJrogIWFNtLybYsLjpxBEcM6secRRuxLWFvKDGbkno/8bhh2TdOS1eXVapcen/2kVIuzGhpZunVp4I4DyD5beHas4/jtktaKh4koHiQALAtYXP7bma0NLN67jRuumA8jYHsyrdBn83ecG+Yile9jQYK1WfsDccI2s7/y1sCl04exeb23RVulTv7wjG++sBalqzfQdOAIGeecBixnGLLOjehvKKBQvUZxeYqArbN5vbd/HTVGxVulXuhqGHOoo10dIZ6NLmvVFe5nqNQqrdrGhBkxqThPLR2e95jiQAingw7/fTyk1j71ofcu+qNHmeEZ+aOdHdyX6mu0kCh+owHX3jLMUgEfYlv48MH9/OktMc7H4X47+ffLHpuW8CypOTrp4aXMkt2aMlx5TUNFKpP6OgMccOSTY6P/fDiiUyf1MzKrcV3mOuuGxZvop+/8Jar/f02d3/xJMYPH8Qv1rzNHStew2dbRGKGC1uGs2RDezqjfPYZY/jtpneY/9iWvI2blPKKBgrVJ2xu302swMqiQQ2B5G/epNTFDHlJcdmPxxk/fBBNA4Jcc9ZYDmkMcNOjm/HbFks2tDNv+jg6OsPcuaKN/1r5ZzqTy2K1ZIeqFA0Uqk/4aH/U8X4Bxg8fBMDwwf0cjymHlhGDWPu284qqsz52WPoi39EZ4rtLtxCOGcKxRED47qObgUQGdsjhbXSl5pVS3aGBQvUJgxqc/1e/6q9GA7By63s89OLbnr1+oSAB8NSWd1n7Rgd+n83jm3bm9T5ssYp2dnRZrPKaBgrVJ4wfPhi/nT1Z7LMSq5wmf/8Zok5VAiskEoOZ//UCAVscs8aj8TjikCjYGLCJGaPLYpXnNFCoupdaIfS5TwznobUH92qIxQ13/+71os+d/vEj+O3mdygyxVA2hUqLXDNtLEc19WdOskx6JB5n3vRxTBg+WJfFqorQQKHqWmofCp8l6UnglFJ9CAt4csu7FQkShQR9kt7FT3MmVLVooFB1K3Mfiu4QcR4KKgehdKAK2MItMyelg0J3CiIqVQ5awkPVra7uQ5Ert5aSE7/dvSW1bsLPdZ85XvMjVE3QQKHqVqHaTo0BG78t+KyDezh05w/BFvjWZ47v8vNSr5l5+/OfHJF33G1Pb6WjM9SNlilVXjr0pOpW5j4UTpPAAA+ueZs7lr8G5E8m+6zE8FOhshp+2yLgs+jvF/ZF3A9RRXPOdyASZ2j/AI2B7DLhmVua6tyEqiYxLrrX3TqxyH3AdOA9Y8wEh8cFuB04D9gHfCm5OVJRra2tZu3ateVurqpjmXWRMi+0HZ0hpi5YXnAO49MfO4yzTjiMf/mNc+kPSJQnL8fK2qDPAgyh6MGT9fNbzDt/nJbrUGUhIuuMMa3dea6XQ08/A84p8vi5wNjkzyzgLg/bovqwpgFBJo0ckvdtvNQcxtOvvMe8xZuLnrtc6RcB2+LqM8dmlQ1PBYkDkTh7QlEOROLpMuNKVZJnQ0/GmJUicnSRQz4LPGASXZoXRGSIiBxpjMnfrFgpD4wY2kC4UAGopEol4oVjcS6dPIpLJ49K935SgexAxm7dWq5DVUM1J7ObgW0Zt7cn78sjIrNEZK2IrH3//fcr0jhV/5oGBPny1KPLek4L8LlcCJWZbB2Kxrn9ma1ZvR+nyXgt16GqoZqBwunPyfHrmzFmoTGm1RjTeuihh3rcLNVXLF6/g/tWv1nWc8aBqMtOSO704AO/f5u2d/fQ0Rliw7ZdALqLnaoJ1Vz1tB0YmXF7BNBepbaoPiaVjJdbgM8n7i/0Xrhv9Zv8+uXtWZPXq+dO01VPqqqq2aNYAlwuCScDu3V+QlWK00R2/4DNFaceXZ0GJf3fi2/nTV4DjpPxSlWKZ4FCRH4J/B44XkS2i8hXROQqEbkqecgy4HWgDbgH+Aev2qJULqfx/7gx/PW4I6rUooTclI3MXAqlqsXLVU9/V+JxA8z26vWVgsI5FE7JeDdfNJHWY5q4fMooHvi9d3tTZApYEC6y8Coci+nktao6zcxWdStVObZQstqMlmbHiqwnHXUIv1zzNnGT/w2/nCxAcjL2fFZikjv1unEDq9s+0CQ7VVVa60nVpczKscWS1XKT8To6Q1z70HoicW+DBMD8Cydwy8xJWauabpoxAZ998M8yEjN86+ENrNz6nibaqarRHoWqS07JarYljslqmcNTm9s/qsj+E7bAwH6+vF7N9g/3E7CtrNVYoajhqv95iXhyNzvtXahK00Ch6pLTZPXeUIxNO3anL8gjhjawqu2DrOGpK045uiLtixmYs2gjU8cMy9tnwqni7b5kscDM5yhVKRooVF1qGhBk3vRxfDunoN+NSzbx3aVbCNgW4VicWDxONE6653Hf6jfwWVKW0h2fPGoIa9/aVXDviULlOGafMYY7VrRhi7AvEnP1HKW8pHMUqm5NGD6YxoCddV80niiXsScUJRSN5w0zGZNYJptiW0Kwm5sTnT3+CAK+wn9iueU4Fq/fwdQFy1m48nXA8PenHJWsKlv4OUpVggYKVbdGDG1wtUtdpnDMZFWEtTDEXe1Hl+/WJ7bis/KDTP+AnVeOI3fyPRQ1/Pfzb3LDBeO0hIeqOh16UnUrM1fCFiEcjUHORkR+W7AEfJaVtWlQSiSeKAEO2V0PW0qvigrH4kRzThn0CXdfdiLjhw/OuuAXqhQ7YfhgLeGhqk4DhaprM1qa2XMgyk1LtxD02xyIxPDbQj+fnc6tmDpmGI9uaOc7j25xPIdTKXK3S2czn2lbcO3ZxzO4IcCHe8NZF/9ilWJzJ7uVqjQNFKqudXSGmP/YFsLROOFo4j6/Df/+Nx9nyrFN6Qvw6EMbPW9LLA7ff/zVdG8ktXd2asmrU6a4BghVCzRQqLrmNKQTiRm++dB6br14UjonYfzwwfjtwvtjl1PqJVJbsKaWvBbKFFeq2nQyW9U1pyEdSExa52Zqf2PaWII+K2+lUUr31j6V5rcsNrfvTu9BoZViVa3RQKHqWmpC22mZaionIXdZ6mljh+UdG/QJT/3z6dzxdy24WS3b32/z9b8aTdDFdnf7IzGuvH8tl927hqkLlrNk/Q43b02pitFAoerejJZmll1zKoGcK3wkHqcxYOctS336lffyznHD9PGMOXwg0yc18x9/21KydxE1hotOHMFj15zGpZ8aSdBnpeckcp8bjRvCMVO0JpVS1aRzFKpPGHP4QG69eFLeZPHecCxvDiNXY9BmQvPg9O2pY4Zx/5c/xY4P9/GXvWH+8+mtRHKeLsZwzu0rEUmssALD7DPGMmX0IVx67xrCReZCNPta1RoNFKrPcJos7ugMOc5hZIrFTTobOrN0eTgW56ITm7FEyN3uPZQOBIZILLHc6s5n2zhm2CR8tkU4lp+zkaLZ16rW6NCT6jOcNjFKzWFkZj9fPmWUYzZ0fvZ0nF/8YVtGUCjtn//v5XSBPydBn2Zfq9qjPQrVJxTbxMipp/GPZx2X1/NY8ep72NL9tU8HcsencgRs4Z7LWzn9uEMdHy+0W59SXtNAoepeZk8gNReRW647N/s583YqyPgscSzz4VbAlqJzE4kYZOjoDOUFglK79SnlJR16UnUvlXSXKTVhXEpmkOkMdT9IAJicAoU+KzHUNDDow2cltj2d/eDLeUtk3e7Wp5RXNFCoulesjlIppYJJf7/7P6ErTxudNfdx2yUtPH/9NO78wonYlkWkwBLZngQ6pcpBh55U3cusItvVOkqNAbvo3MKcc07A77P47qNbsAT2FzjWbwtXnjaai04cwfptu2gZOYQxhw8EYHCDP2/7U0uEze27Of24w3oU6JQqBw0Uqk/obh2lveFY0bmF0Yc28uG+CGCIOhwTsC1E4JaZE/O2XU3NMzgFgn3hGF99YC23zJykBQNV1WmgUH1G7oS1m1VEm3bsLhgk/LYwfHADs36+jlA0/5igz+Key1sZP3wQAFMXLM+aUL/uVxsY0t/P+OGDufmiiXzr4Y1ZvYpQ1GjBQFUTNFCoPsnNKqJUifJCjDEsenl7MuEuX8C2GNzgB2DFq+/l7XYXjhmuvH8dlpUoNX7P5a1c9fN1WftkZ2Zp674Uqlp0Mlv1OW5XETlNImeKxuGuZ18vmEAXicfZtGM3Uxcs58Ylmx1XTYVj8fTrDx/cL2/bVZ2LULVAA4Xqc9yuIipUoryUfv5EAcB5549j/mNbOBCJl8y/8Ce3Ys3NEte5CFULPB16EpFzgNsBG7jXGPODnMfPABYDbyTv+rUx5rtetkkpt6uImgYEmXf+OL79yCZX5+3vt7l55kRGHtKfEUMbHDdNKiT1+pNGDtG5CFVzPAsUImIDdwJnA9uBF0VkiTEmd9D3OWPMdK/aoVSuriyXndA8mAFBO2/YKOiTvAnsOCZre1XAVY8kkFPfSeciVK3xskfxKaDNGPM6gIj8L/BZoPDsoFIV4nYV0YihDUTj+Sua4gYuaR3Bkg3tBYNNZkCyRQjH4sTjhsxFVAFbWHbNqemcCqVqkZeBohnYlnF7OzDZ4bgpIrIBaAeuM8Zs9rBNSqW5+eaeutjnLl2NxAxLNrSz9OpT2RuOFQw2M1qa2bn7ALc++ScCtkWYOGIMDX5fOrhokFC1zstA4bRmMPer2UvAUcaYThE5D3gEGJt3IpFZwCyAUaNGlbmZShU3o6WZIf0DfOVnf8jaoMjEDXvDMSaNHALk52V0dIa497nXuet3rwMQSe5BEbAt/v1vJjDl2GE6xKR6BS8DxXZgZMbtESR6DWnGmI8yfl8mIj8RkWHGmA9yjlsILARobW11X/xfqW7Kvej391t5u9iFYobGgA3k52Vc0jqC/3txe1YvJCUci/PNhzZw68WTilaA1bLiqlZ4GSheBMaKyDHADuDzwKWZB4jIEcC7xhgjIp8isVy3w8M2KVVS3kX/pBH88sVtecf18yeWtDqVMX/g928XfY1w7GDWNZAXELSsuKolngUKY0xURK4GniCxPPY+Y8xmEbkq+fjdwEzg6yISBfYDnze5tZiVqiDHi/4LhS/6XV0Gm8lvWTy45m1+8mxbVkCYOmZYyf0zlKokT/MojDHLgGU5992d8fsdwB1etkGprnB70Q/YkrXKqTuJeaFojB8v30okRlZAWPjFk/LakFnKQ6lK08xspTK4zca+7ZKW9FBQ7r7bQZ+Vt5LDFvjXc09IH5PaqCiSk7CdyBgXLSuuaooGCqUyuLno+yyYcmxT1n0zWppZPXca/3PlZO65vJUBwezOev+Aj8mjm1g99+BGRU75GfsjUcYPH6SlPFRN0eqxSuXITcZb3fYB33p4A7ZYxEycW2ZOcrxop/IyOjpDBXsEqefZBSrOSvJ+LSuuaokGCqUcZCbjdfWinaoRddOjm/HbFjFj0j2Cxet3MCcneS9TP5+tZcVVzdFAoZQLXbloL16/g/mPbSHgswjHDDdeMI4ZLc3pFVWFggToXISqTTpHoVQZZS6v7QzFCEfjzF+6JZ08l1fe3BYCtuhchKpp2qNQqow2t+/O2/EutbR1xNAGDkTz96VY9o3TitaLUqraNFAoVSaJ+YcNeeXHM4eTcvNJjTEMbQww5nANEKp26dCTUmVwcP4hOxAEM/aa2P7hfhr82d/NGvy+vJ31lKo12qNQqgycMrr7+23u/uJJnH7coUDpnfW0CKCqVRoolCoDpyAQxzB++KD07WI762kRQFXLNFAoVYKbb/q5QSAcizP7jDF5xznlZDgVItQigKqW6ByFUkUsXr+DqQuWc9m9a5i6YDlL1u8oeGyqjMdXTx8NGBaufN3xOU0DgkwaOSQdBByXzSZXSilVCzRQKJXU0Rliw7ZddHSG0rdT3/T3hKIciMSZs2hj+vFCfvJsG6Gocf0cp2GrcCzG7v3hkq+lVCXo0JNSOG8UdFRTY5fLfTtNapd6Tu6w1f5IlLiB2Q++rPMVqiZoj0L1eYV6Do0Bu8vlvkutbCokNWyVqiwbibnvkSjlNQ0Uqs8rNEewNxzrcrnv3DLlXSnL0TQgyOAGPwFb5ytUbdGhJ9XnFesFTBo5pMvlvntSIry7PRKlvKQ9CtXnleoF5K5ScnvOrj7HTVuUqgbJrT1T61pbW83atWur3QxVh3qaGV3OzGrN0lblJiLrjDGt3XmuDj0pldSTjYLKnVmtmxapWqJDT0r1UHfzLZTqLTRQKNVDbjKrc5P5cpV6XKlq0qEnpXqo1EqlUsNSWhBQ1TrtUSjVQ8VWKpUaltJhK9UbaI9CqTIolDtRqqRHd0p+KFVpGiiUKhOnlUqlhqU0wU71Bjr0pJSH3CTzaYKdqnWeJtyJyDnA7YAN3GuM+UHO45J8/DxgH/AlY8xLxc6pCXeqNyqVQKcJdsprNZlwJyI2cCdwNrAdeFFElhhjtmQcdi4wNvkzGbgr+a9SdaVUAp0m2Kla5uXQ06eANmPM68aYMPC/wGdzjvks8IBJeAEYIiJHetgmpZRSXeTlZHYzsC3j9nbyewtOxzQDOzMPEpFZwKzkzZCIbCpvU2vKMOCDajfCQ/r+eq96fm9Q/+/v+O4+0ctAIQ735U6IuDkGY8xCYCGAiKzt7jhbb6Dvr3er5/dXz+8N+sb76+5zvRx62g6MzLg9AmjvxjFKKaWqyMtA8SIwVkSOEZEA8HlgSc4xS4DLJeFkYLcxZmfuiZRSSlWPZ0NPxpioiFwNPEFieex9xpjNInJV8vG7gWUklsa2kVgee4WLUy/0qMm1Qt9f71bP76+e3xvo+yuo121cpJRSqrI0M1sppVRRGiiUUkoVVfOBQkQuFpHNIhIXkYJL10TkTRH5o4is78kysErrwvs7R0T+JCJtInJ9JdvYEyJyiIg8JSKvJf8dWuC4XvP5lfoskoszfpR8fKOInFiNdnaXi/d3hojsTn5W60Xkhmq0sztE5D4Rea9QLlYdfHal3l/3PjtjTE3/AB8jkSjyLNBa5Lg3gWHVbq8X74/EYoA/A6OBALABGFfttrt8fzcD1yd/vx5Y0Js/PzefBYkFGo+TyBM6GVhT7XaX+f2dASytdlu7+f5OB04ENhV4vNd+di7fX7c+u5rvURhjXjHG/Kna7fCKy/fnphxKrfoscH/y9/uBC6vXlLKo99I0vfn/tZKMMSuBvxQ5pDd/dm7eX7fUfKDoAgM8KSLrkiU/6kmhUie9weEmmRuT/PewAsf1ls/PzWfRmz8vt22fIiIbRORxERlfmaZVRG/+7Nzq8mdXExsXicjTwBEOD33bGLPY5WmmGmPaReQw4CkReTUZXauuDO/PVamTain2/rpwmpr9/HKUrTRNjXLT9peAo4wxnSJyHvAIiQrQ9aA3f3ZudOuzq4lAYYz5dBnO0Z789z0R+Q2JLnRNXGjK8P5qutRJsfcnIu+KyJHGmJ3JLvx7Bc5Rs59fjnovTVOy7caYjzJ+XyYiPxGRYcaYeiio15s/u5K6+9nVxdCTiDSKyMDU78BngHqqMOumHEqtWgL8ffL3vwfyelC97POr99I0Jd+fiBwhIpL8/VMkriMdFW+pN3rzZ1dStz+7as/Su5jF/xyJKB8C3gWeSN4/HFiW/H00idUZG4DNJIZ0qt72cr2/5O3zgK0kVqT0pvfXBDwDvJb895De/vk5fRbAVcBVyd+FxKZdfwb+SJHVerX44+L9XZ38nDYALwCnVLvNXXhvvySxjUEk+Xf3lTr77Eq9v259dlrCQymlVFF1MfSklFLKOxoolFJKFaWBQimlVFEaKJRSShWlgUIppVRRGiiUckFEviMi1xV5/EIRGefiPKeLyEsiEhWRmeVtpVLe0EChVHlcCJQMFMDbwJeAX3jZGKXKSQOFUgWIyLeT+zI8TaIUPCLyVRF5MVlUbZGI9BeRU4AZwC3JGv/HOh0HYIx50xizEYhX750p1TUaKJRyICInkShf8Qngb4BPJh/6tTHmk8aYScArwFeMMc+TKP3wLWNMizHmz07HVf5dKFUeNVEUUKkadBrwG2PMPgARSdU7miAi/w8YAgwAnijwfLfHKVXztEehVGFO9W1+BlxtjPk4cBPQr8Bz3R6nVM3TQKGUs5XA50SkIVnZ9oLk/QOBnSLiB76Qcfye5GOUOE6pXkeLAipVgIh8G7gceItEJc4twF5gTvK+PwIDjTFfEpGpwD0kqgDPJFEq3em4TwK/AYYCB4B3jDH1tEOcqkMaKJRSShWlQ09KKaWK0kChlFKqKA0USimlitJAoZRSqigNFEoppYrSQKGUUqooDRRKKaWK+v8xoQMLNPK0UwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "_ = df.plot(kind='scatter', x='data1', y='data2',\n", + " xlim=(-1.5, 1.5), ylim=(0, 3))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Histograms" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEICAYAAACwDehOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAbH0lEQVR4nO3de5hU9Z3n8fdHYEQEr1wWQS5x0IjxjvfV8TYj7iBeIhPMZXTWEXdD8nhZJZI1QSdho5ssE3k0k6A4kIghhCg2yWQScQcvG41AQAGRBSNKD4wgCQuoqOh3/6jTZwqo7q5q6tSp7v68nqefqvOrc059m4enPn1+55xvKSIwMzMD2C/vAszMrH44FMzMLOVQMDOzlEPBzMxSDgUzM0s5FMzMLOVQsE5P0kpJ5+ddh1k9cChYhydpnaSL9xi7TtJzABFxXEQsbGUfQySFpK4ZlmqWO4eCWR1w2Fi9cChYp1d8JCHpdEmLJW2T9JakKclqzySPWyXtkHSWpP0k3SnpDUmbJP1Q0sFF+/3r5LUtkr62x/vcJWmupEckbQOuS977eUlbJW2UdL+kPynaX0j6oqQ1krZL+oako5JttkmaU7y+WVs4FMx2dx9wX0QcBBwFzEnGz0seD4mInhHxPHBd8nMB8AmgJ3A/gKThwPeAzwH9gYOBAXu81+XAXOAQYBbwEXAL0Bs4C7gI+OIe24wETgXOBCYA05L3OBL4FHBN2391M4eCdR7zkr/At0raSuEDu5QPgT+V1DsidkTECy3s83PAlIj4fUTsACYCY5OpoKuB+RHxXER8AHwd2LPR2PMRMS8iPo6I9yJiSUS8EBG7ImId8APgz/bY5t6I2BYRK4EVwK+T9/9/wC+Bk8v+FzErwaFgncUVEXFI0w97/wXe5HrgaOBVSYskjWphn0cAbxQtvwF0Bfolr61veiEi3gW27LH9+uIFSUdL+rmkf0umlP4HhaOGYm8VPX+vxHLPFuo1a5VDwaxIRKyJiGuAvsC9wFxJB7L3X/kAG4DBRcuDgF0UPqg3AgObXpB0AHD4nm+3x/I/AK8Cw5Lpq68CavtvY1Y5h4JZEUmfl9QnIj4GtibDHwGbgY8pnDto8mPgFklDJfWk8Jf9TyJiF4VzBZdJOjs5+Xs3rX/A9wK2ATskfRL4r9X6vczK5VAw291IYKWkHRROOo+NiJ3J9M9k4P8k5yXOBB4GfkThyqTXgZ3AlwGSOf8vA7MpHDVsBzYB77fw3rcBn03WfRD4SfV/PbOWyV+yY5a95EhiK4WpoddzLsesWT5SMMuIpMsk9UjOSXwHWA6sy7cqs5Y5FMyyczmFk9EbgGEUpqJ8aG51zdNHZmaW8pGCmZml2nUTrt69e8eQIUPyLsPMrF1ZsmTJ2xHRp9Rr7ToUhgwZwuLFi/Muw8ysXZH0RnOvefrIzMxSDgUzM0s5FMzMLNWuzymYmbXkww8/pLGxkZ07d+ZdSi66d+/OwIED6datW9nbOBTMrMNqbGykV69eDBkyBKlzNZyNCLZs2UJjYyNDhw4teztPH5lZh7Vz504OP/zwThcIAJI4/PDDKz5KciiYWYfWGQOhSVt+d4eCmZmlfE7BzDqNiY8tr+r+vnXV8RVvc9ddd9GzZ09uu+22kq/PmzePo48+muHDh7e4n2eeeYabb76Zl19+mdmzZ3P11VdXXEspDoUKNPcfqi3/MczMSpk3bx6jRo1qNRQGDRrEjBkz+M53vlPV9/f0kZlZxiZPnswxxxzDxRdfzOrVqwF48MEHOe200zjxxBP59Kc/zbvvvstvfvMbGhoauP322znppJN47bXXSq4HhTY/J5xwAvvtV92PcYeCmVmGlixZwuzZs1m6dCmPPfYYixYtAuCqq65i0aJFvPTSSxx77LFMnz6ds88+m9GjR/Ptb3+bZcuWcdRRR5VcL0uePjIzy9Czzz7LlVdeSY8ePQAYPXo0ACtWrODOO+9k69at7Nixg0suuaTk9uWuVy0OBTOzjJW6NPS6665j3rx5nHjiicyYMYOFCxeW3Lbc9aol0+kjSeskLZe0TNLiZOwwSU9KWpM8Hlq0/kRJayWtlpRtHJqZ1cB5553H448/znvvvcf27duZP38+ANu3b6d///58+OGHzJo1K12/V69ebN++PV1ubr2s1OJI4YKIeLto+Q7gqYi4R9IdyfJXJA0HxgLHAUcACyQdHREf1aBGM+sE8rhS8JRTTuEzn/kMJ510EoMHD+bcc88F4Bvf+AZnnHEGgwcP5vjjj0+DYOzYsdxwww1MnTqVuXPnNrveokWLuPLKK/njH//I/PnzmTRpEitXrtznejP9jmZJ64ARxaEgaTVwfkRslNQfWBgRx0iaCBAR30rW+xVwV0Q839z+R4wYEbX8kh1fkmrWvqxatYpjjz027zJyVerfQNKSiBhRav2srz4K4NeSlkgal4z1i4iNAMlj32R8ALC+aNvGZGw3ksZJWixp8ebNmzMs3cys88l6+uiciNggqS/wpKRXW1i3VJOOvQ5jImIaMA0KRwrVKdPMzCDjI4WI2JA8bgIeB04H3kqmjUgeNyWrNwJHFm0+ENiQZX1mZra7zEJB0oGSejU9B/4CWAE0ANcmq10LPJE8bwDGStpf0lBgGPBiVvWZmdnespw+6gc8nlyf2xV4NCL+WdIiYI6k64E3gTEAEbFS0hzgFWAXMN5XHpmZ1VZmoRARvwdOLDG+BbiomW0mA5OzqsnMzFrmO5rNrPOYf1N193fZfRVvUq3W2VOmTOGhhx6ia9eu9OnTh4cffpjBgwdXXM+e3BDPzKyOzJs3j1deeaXV9U4++WQWL17Myy+/zNVXX82ECROq8v4OBTOzjGXROvuCCy5Im+ydeeaZNDY2VqVWh4KZWYZq0Tp7+vTpXHrppVWp1+cUzMwylHXr7EceeYTFixfz9NNPV6Veh4KZWcayap29YMECJk+ezNNPP83+++9flVo9fWRmlqGsWmcvXbqUG2+8kYaGBvr27Uu1+EjBzDqPNlxCuq+yap19++23s2PHDsaMGQPAoEGDaGho2Od6M22dnTW3zjazlrh1dv21zjYzs3bEoWBmZimHgpmZpRwKZmaWciiYmVnKoWBmZinfp2Bmncbdz99d1f1NOmtSxdtUq3X297//fR544AG6dOlCz549mTZtWqvblMNHCmZmdaTc1tmf/exnWb58OcuWLWPChAnceuutVXl/h4KZWcayaJ190EEHpft/5513SvZXaguHgplZhrJsnf3AAw9w1FFHMWHCBKZOnVqVeh0KZmYZKm6dfdBBB+3WOvvcc8/l+OOPZ9asWaxcubLk9i2tN378eF577TXuvfdevvnNb1alXoeCmVnGmmudff/997N8+XImTZrEzp07S25bznpjx45l3rx5VanVoWBmlqGsWmevWbMmff6LX/yCYcOGVaVeX5JqZp1GWy4h3VdZtc6+//77WbBgAd26dePQQw9l5syZVanXrbMr4NbZZu2LW2e7dbaZme0Dh4KZmaUcCmZmlnIomJlZyqFgZmYph4KZmaV8n4KZdRobv17d+xT6/13lrbir1Tq7ydy5cxkzZgyLFi1ixIiSV5lWJPMjBUldJC2V9PNk+TBJT0pakzweWrTuRElrJa2WdEnWtZmZ1ZtyW2dD4W7nqVOncsYZZ1Tt/WsxfXQTsKpo+Q7gqYgYBjyVLCNpODAWOA4YCXxPUpca1GdmlqksWmcDfO1rX2PChAl07969arVmGgqSBgJ/CTxUNHw50HQ/9kzgiqLx2RHxfkS8DqwFTs+yPjOzrGXVOnvp0qWsX7+eUaNGVbXerM8pfBeYAPQqGusXERsBImKjpL7J+ADghaL1GpOx3UgaB4wDGDRoUAYlm5lVT3HrbGC31tl33nknW7duZceOHVxySekZ81Lrffzxx9xyyy3MmDGj6vVmdqQgaRSwKSKWlLtJibG9GjNFxLSIGBERI/r06bNPNZqZ1UK1W2dv376dFStWcP755zNkyBBeeOEFRo8eTTV6wWU5fXQOMFrSOmA2cKGkR4C3JPUHSB43Jes3AkcWbT8Q2JBhfWZmmcuidfbBBx/M22+/zbp161i3bh1nnnkmDQ0NVbn6KLPpo4iYCEwEkHQ+cFtEfF7St4FrgXuSxyeSTRqARyVNAY4AhgEvZlWfmXU+bbmEdF9l1To7KzVpnV0UCqMkHQ7MAQYBbwJjIuIPyXr/HfjPwC7g5oj4ZUv7detsM2uJW2dX3jq7JjevRcRCYGHyfAtwUTPrTQYm16ImMzPbm9tcmJlZyqFgZh1ae/52yX3Vlt/doWBmHVb37t3ZsmVLpwyGiGDLli0V3+3shnhm1mENHDiQxsZGNm/enHcpuejevTsDBw6saBuHgpl1WN26dWPo0KF5l9GuePrIzMxSDgUzM0s5FMzMLOVQMDOzlEPBzMxSDgUzM0s5FMzMLOVQMDOzlEPBzMxSDgUzM0s5FMzMLOVQMDOzlEPBzMxSDgUzM0s5FMzMLOVQMDOzVFmhIOlTWRdiZmb5K/dI4fuSXpT0RUmHZFmQmZnlp6xQiIj/CHwOOBJYLOlRSX+eaWVmZlZzZZ9TiIg1wJ3AV4A/A6ZKelXSVVkVZ2ZmtVXuOYUTJP09sAq4ELgsIo5Nnv99hvWZmVkNdS1zvfuBB4GvRsR7TYMRsUHSnZlUZmZmNVduKPwn4L2I+AhA0n5A94h4NyJ+lFl1ZmZWU+WeU1gAHFC03CMZMzOzDqTcUOgeETuaFpLnPbIpyczM8lJuKLwj6ZSmBUmnAu+1sL6ZmbVD5YbCzcBPJT0r6VngJ8CXWtpAUvfkhreXJK2UdHcyfpikJyWtSR4PLdpmoqS1klZLuqSNv5OZmbVRWSeaI2KRpE8CxwACXo2ID1vZ7H3gwojYIakb8JykXwJXAU9FxD2S7gDuAL4iaTgwFjgOOAJYIOnoppPbZmaWvUoa4p0GnACcDFwj6a9bWjkKms5DdEt+ArgcmJmMzwSuSJ5fDsyOiPcj4nVgLXB6BfWZmdk+KutIQdKPgKOAZUDTX+4B/LCV7boAS4A/BR6IiN9K6hcRGwEiYqOkvsnqA4AXijZvTMb23Oc4YBzAoEGDyinfzMzKVO59CiOA4RERlew8mfo5KWmi93gr3VZVahcl9jkNmAYwYsSIiuoxM7OWlTt9tAL4D219k4jYCiwERgJvSeoPkDxuSlZrpNBwr8lAYENb39PMzCpXbij0Bl6R9CtJDU0/LW0gqU9Tm21JBwAXA68CDcC1yWrXAk8kzxuAsZL2lzQUGAa8WNFvY2Zm+6Tc6aO72rDv/sDM5LzCfsCciPi5pOeBOZKuB94ExgBExEpJc4BXgF3AeF95ZGZWW+Vekvq0pMHAsIhYIKkH0KWVbV6mcKXSnuNbgIua2WYyMLmcmszMrPrKbZ19AzAX+EEyNACYl1FNZmaWk3LPKYwHzgG2QfqFO31b3MLMzNqdckPh/Yj4oGlBUldKXC5qZmbtW7mh8LSkrwIHJN/N/FNgfnZlmZlZHsoNhTuAzcBy4Ebgnyh8X7OZmXUg5V599DGFr+N8MNtyzMwsT+X2Pnqd0i0nPlH1iszMLDeV9D5q0p3CDWeHVb8cMzPLU1nnFCJiS9HPv0bEd4ELsy3NzMxqrdzpo1OKFvejcOTQK5OKzMwsN+VOH/2voue7gHXAX1W9mjox8bHleZdgZpaLcq8+uiDrQszMLH/lTh/d2tLrETGlOuWYmVmeKrn66DQK33kAcBnwDLA+i6LMzCwf5YZCb+CUiNgOIOku4KcR8bdZFWZmZrVXbpuLQcAHRcsfAEOqXo2ZmeWq3COFHwEvSnqcwp3NVwI/zKwqMzPLRblXH02W9Evg3GTobyJiaXZlmZlZHsqdPgLoAWyLiPuARklDM6rJzMxyUu7XcU4CvgJMTIa6AY9kVZSZmeWj3COFK4HRwDsAEbEBt7kwM+twyg2FDyIiSNpnSzowu5LMzCwv5YbCHEk/AA6RdAOwAH/hjplZh9Pq1UeSBPwE+CSwDTgG+HpEPJlxbWZmVmOthkJEhKR5EXEq4CAwM+vAyp0+ekHSaZlWYmZmuSv3juYLgP8iaR2FK5BE4SDihKwKMzOz2msxFCQNiog3gUtrVI+ZmeWotSOFeRS6o74h6WcR8eka1GRmZjlp7ZyCip5/IstCzMwsf62FQjTzvFWSjpT0L5JWSVop6aZk/DBJT0pakzweWrTNRElrJa2WdEkl72dmZvuutVA4UdI2SduBE5Ln2yRtl7StlW13Af8tIo4FzgTGSxoO3AE8FRHDgKeSZZLXxgLHASOB70nq0vZfzczMKtXiOYWIaPOHckRsBDYmz7dLWgUMAC4Hzk9WmwkspNBs73JgdkS8D7wuaS1wOvB8W2swM7PKVNI6u80kDQFOBn4L9EsCoyk4+iarDWD373xuTMb23Nc4SYslLd68eXOmdZuZdTaZh4KknsDPgJsjoqUpJ5UY2+s8RkRMi4gRETGiT58+1SrTzMzIOBQkdaMQCLMi4rFk+C1J/ZPX+wObkvFG4MiizQcCG7Ksz8zMdpdZKCSN9KYDqyJiStFLDcC1yfNrgSeKxsdK2j/5VrdhwItZ1WdmZnsrt81FW5wDfAFYLmlZMvZV4B4KrbivB94ExgBExEpJc4BXKFy5ND4iPsqwPjMz20NmoRARz1H6PAHARc1sMxmYnFVNZmbWsiyPFMzanY1fn9Tsa/3/7u4aVmKWj5pckmpmZu2DQ8HMzFKePqqCiY8tLzn+rauOr3EllqXmppY8rWQdiY8UzMws5VAwM7OUQ8HMzFIOBTMzSzkUzMws5VAwM7OUQ8HMzFIOBTMzS/nmNeuUWupxVK19+aY2a498pGBmZimHgpmZpRwKZmaWciiYmVnKoWBmZimHgpmZpRwKZmaWciiYmVnKoWBmZimHgpmZpdzmwlo2/6bS45fdV9s6zKwmfKRgZmYph4KZmaUcCmZmlvI5BSto7tyBmXUqPlIwM7OUjxSsbXxVklmH5FAwy4i/kc3ao8ymjyQ9LGmTpBVFY4dJelLSmuTx0KLXJkpaK2m1pEuyqsvMzJqX5TmFGcDIPcbuAJ6KiGHAU8kykoYDY4Hjkm2+J6lLhrWZmVkJmYVCRDwD/GGP4cuBmcnzmcAVReOzI+L9iHgdWAucnlVtZmZWWq2vPuoXERsBkse+yfgAYH3Reo3J2F4kjZO0WNLizZs3Z1qsmVlnUy+XpKrEWJRaMSKmRcSIiBjRp0+fjMsyM+tcah0Kb0nqD5A8bkrGG4Eji9YbCGyocW1mZp1erS9JbQCuBe5JHp8oGn9U0hTgCGAY8GKNa7Ms+b4Gs3Yhs1CQ9GPgfKC3pEZgEoUwmCPpeuBNYAxARKyUNAd4BdgFjI+Ij7KqrdNyKwsza0VmoRAR1zTz0kXNrD8ZmJxVPWZm1jrf0WzVVWdHI83dVWxmpdXL1UdmZlYHHApmZpby9FFHVGdTOGbWfvhIwczMUg4FMzNLefrIOqUlby0pOX5qv1NrXIlZffGRgpmZpXykYFYmH11YZ+BQsHxl3BOpuQ/yaq1v1tE4FKwu3f186e8xnnRW/d2h7CMI60gcCtauNBcWzfHHslllfKLZzMxSPlKwXN39zqulX+h9dm0LyUBz00qjalyHWSUcCtYhnDpjUd4lmHUIDoX2zD2O2qX2dBLdOh+HgtWnN35Tenxw+59Wavao5qza1mFWik80m5lZyqFgZmYph4KZmaV8TsGsk/AJbiuHQ8GsTlR6t3Zz/CFv+6JTh8LEx5bnXUJ5fOmpmdVIpw6FuuMPfzPLmUPB2pfm7l+gW03L6Eiqea7B5y3aP4eCmZXU0jmOrD/kHS75cSiYdTDVOmFtnZNDwTqGHW+VHu/Zr7Z17IPm2l8sue60GldSff7Lv/1wKOTBJ5TNrE45FKxdOXX+H/IuwchviqrSI45K6/SRi0MhU83dB/EtXyhTOx1gWqkjq1a45LWfjhgidRcKkkYC9wFdgIci4p6cS2qzKxr/Z+kXhh5W20LMzMpUV6EgqQvwAPDnQCOwSFJDRLySb2Uta/bD3+qXjyAsY+315HpdhQJwOrA2In4PIGk2cDlQF6HgD//a8bmDf9eRr0pq79oybVXvPa4UEZnsuC0kXQ2MjIi/TZa/AJwREV8qWmccMC5ZPAZYXfNCoTfwdg7vWynXWV3toc72UCO4zmqrtM7BEdGn1Av1dqSgEmO7pVZETAOm1aac0iQtjogRedZQDtdZXe2hzvZQI7jOaqtmnfX2JTuNwJFFywOBDTnVYmbW6dRbKCwChkkaKulPgLFAQ841mZl1GnU1fRQRuyR9CfgVhUtSH46IlTmXVUqu01cVcJ3V1R7qbA81guustqrVWVcnms3MLF/1Nn1kZmY5ciiYmVnKoVAhSSMlrZa0VtIdeddTiqSHJW2StCLvWpoj6UhJ/yJplaSVkuqydayk7pJelPRSUmddf1mBpC6Slkr6ed61NEfSOknLJS2TtDjvepoj6RBJcyW9mvw/PSvvmvYk6Zjk37HpZ5ukm/dpnz6nUL6kDcf/pagNB3BNvbXhkHQesAP4YUR8Ku96SpHUH+gfEb+T1AtYAlxRh/+WAg6MiB2SugHPATdFxAs5l1aSpFuBEcBBETEq73pKkbQOGBERdX1TmKSZwLMR8VByNWSPiNiac1nNSj6f/pXCDb9vtHU/PlKoTNqGIyI+AJracNSViHgGqOs+ERGxMSJ+lzzfDqwCBuRb1d6iYEey2C35qcu/pCQNBP4SeCjvWto7SQcB5wHTASLig3oOhMRFwGv7EgjgUKjUAGB90XIjdfhB1t5IGgKcDPw251JKSqZklgGbgCcjoi7rBL4LTAA+zrmO1gTwa0lLkrY19egTwGbgH5PpuIckHZh3Ua0YC/x4X3fiUKhMq204rDKSegI/A26OiG1511NKRHwUESdRuMP+dEl1NyUnaRSwKSKW5F1LGc6JiFOAS4HxyXRnvekKnAL8Q0ScDLwD1OU5RIBkems08NN93ZdDoTJuw1FFyRz9z4BZEfFY3vW0Jpk+WAiMzLeSks4BRifz9bOBCyU9km9JpUXEhuRxE/A4hWnZetMINBYdFc6lEBL16lLgdxHRTE/48jkUKuM2HFWSnMCdDqyKiCl519McSX0kHZI8PwC4GHg116JKiIiJETEwIoZQ+H/5vyPi8zmXtRdJByYXFpBMx/wFUHdXyUXEvwHrJR2TDF1EnbTwb8Y1VGHqCOqszUW9ay9tOCT9GDgf6C2pEZgUEdPzrWov5wBfAJYn8/UAX42If8qvpJL6AzOTKzv2A+ZERN1e7tkO9AMeL/xNQFfg0Yj453xLataXgVnJH4C/B/4m53pKktSDwhWRN1Zlf74k1czMmnj6yMzMUg4FMzNLORTMzCzlUDAzs5RDwczMUg4FMzNLORTMzCz1/wEx6xap+/NcNwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot(kind='hist',\n", + " bins=50,\n", + " title='Histogram',\n", + " alpha=0.6);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Cumulative distribution" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEICAYAAABS0fM3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAex0lEQVR4nO3debwWdd3/8dc7JAnXAnIDBElNc/eImS2auWBumaZpdWcl8Uv66V13uaRFmUv2y7TUCAUNFXH3h4Waloq5IItoIkrkgkdckFQWFUE+9x8zBy+O1znnOudcc23zfj4e5+E1M9+Z+cylzuf6LvMdRQRmZpZfH6h2AGZmVl1OBGZmOedEYGaWc04EZmY550RgZpZzTgRmZjnnRGB1SdIoSVd1Y//ZkvYqX0RtnudZSV9IP58m6bIyHnuppC3Sz1dI+mUZjz1a0hnlOp7VNicC6xRJx0iant6EXpR0m6RPVzuu9hS7SUbEJyLinkrGERFnR8R3Oion6R5JHZaLiHUj4unuxiXpm5L+0erYIyLizO4e2+qDE4GVTNIPgAuAs4GNgIHAJcChVQwrdyStVe0YrLE4EVhJJG0A/AI4ISJuiohlEbEiIm6NiB+lZdb45S1pL0nNBcvPSvqRpMckLZM0VtJGaa1iiaS7JH242L4F+3+hjfiul/SSpDckTZH0iXT9cOBY4MdpLebWwmNJ2lTSW5I+UnCsnSW9KqlnuvwtSXMkvSbpDkmbt/M9fV3Sc5IWSfpJq22rm7Mk9ZJ0VVrudUnT0u/iLOAzwEVpvBel5UPSCZL+BfyrYN3HCk7RV9Kd6Xd5b0uckgalZdcqiOUeSd+RtA0wGtgjPd/rbfy7PF7SPEn/kTRJ0qYF20LSCEn/Sr+jiyUp3faxNJY30u/02ra+O6seJwIr1R5AL+Dmbh7ny8C+wFbAwcBtwGlAX5L/Hv9vF497G7Al8FFgJnA1QESMST+flzalHFy4U0QsAB5M42pxDHBDRKyQdFga3+FAP+A+4JpiAUjaFvgD8HVgU6AP0L+NeP8L2AAYkJYbAbwVET9JzzEyjXdkwT6HAbsD27ZxzGOBM0m+y1kt30F7ImJOeu4H0/NtWOS6Pg+cA3wF2AR4DpjYqthBwG7Ajmm5/dP1ZwJ/BT5M8l38vqOYrPKcCKxUfYBXI2JlN4/z+4h4OSJeILnhTY2IRyJiOUmS2bkrB42IcRGxJD3OKGDHtBZTignAVwHSX7JHp+sAvgucExFz0ms/G9ipjVrBEcCfI2JKGscZwKo2zrmC5Dv9WES8GxEzImJxB3GeExH/iYi32tj+l4Jz/4TkV/6ADo5ZimOBcRExMz32qemxBxWUOTciXo+I+cDdwE7p+hXA5sCmEfF2RKzRF2G1wYnASrWIpOmhu+3TLxd8fqvI8rqdPaCkHpLOlfRvSYuBZ9NNfUs8xA0kN7ZNgc8CQZKkILmJXZg237wO/AcQsFmR42wKPN+yEBHLSL63Yq4E7gAmSlog6byWpqh2PF/q9ohYmsa6advFS7YpSS2g8NiLWPM7eKng85u89+/xxyTf18NKRmp9qwzxWJk5EVipHgTeJmmeaMsyoHfB8sbdON8ax5LUg6RppphjSDqsv0DS3DKoZbf0n+1OsRsRr5M0X3wlPdY18d60vM8D342IDQv+PhQRDxQ51IskTT0tMfcm+dVf7JwrIuLnEbEt8CmSppVvdBBvR1MFF557XeAjwAKS7xLa/nfT0XEXkCTElmOvQ3JdL3SwHxHxUkQcHxGbktSuLmnVr2E1wInAShIRbwA/BS6WdJik3pJ6Shom6by02CzgQEkfkbQxcFI3TjkX6CXpi+kv5dOBtdsoux6wnORXam+S5ptCLwNbdHC+CSQ34i/zXrMQJB2ppxZ0Pm8g6cg2jnEDcJCkT0v6IEnnetH/xyTtLWn7NMEtJmlCebcT8RZzYMG5zyRpdns+IhaS3LS/ltaevgUMKdjvZaB/ul8xE4DjJO0kaW2S73dqRDzbUUCSjpTU0k/yGknSebedXawKnAisZBFxPvADkpvyQpJfyyOBW9IiVwKPkjTN/BXo8giRNPF8D7iM5Ca2DGhuo/h4kqaLF4AngIdabR8LbJs279xCcZNIOptfjohHC+K4GfgVSRPOYuBxYFgbMc8GTiC5cb5IcuNrK+aNSRLHYmAOcC/Q8oDchcAR6Qic37WxfzETgJ+RNAntStK23+J44EckyfITQGGN5u/AbOAlSa8Wua6/kfR33Jhe1xCSfpRS7AZMlbSU5Ds+MSKe6cQ1WQXIL6YxM8s31wjMzHLOicDMLOecCMzMcs6JwMws5+pu8qq+ffvGoEGDqh2GmVldmTFjxqsRUfRZnLpLBIMGDWL69OnVDsPMrK5Ieq6tbW4aMjPLOScCM7OccyIwM8u5uusjKGbFihU0Nzfz9ttvVzuUqujVqxf9+/enZ8+OJq80M3u/hkgEzc3NrLfeegwaNIj0xUi5EREsWrSI5uZmBg8eXO1wzKwONUTT0Ntvv02fPn1ylwQAJNGnT5/c1obMrPsySwSSxkl6RdLjbWyXpN+l70F9TNIu3Txfd3ava3m+djPrvixrBFcAB7SzfRjJtL9bAsNJ3vVqZmYVllkfQURMafVO09YOBcanb4J6SNKGkjaJiBe7e+4JU+d39xBrOGb3gZ3eZ9SoUay77rr8z//8T9Htt9xyC1tttRXbbtvWe8gTU6ZM4aSTTuKxxx5j4sSJHHHEEZ2OxcysPdXsLN6MNd/B2pyue18ikDScpNbAwIGdvylX0qKlywF4852VaPnK1cutXXv9jew37EA2Gjik6PYW6/XZiAsuGcPFv/stS95e0ebxli1fWfYE2GiGzL++2iG0q+e0J6sdglXY3FUvdVyowNH/79ZM4qhmIijWsF30LTkRMQYYA9DU1FSzb9I566yzuPyKP7FZ//706duXHXfahfGXj2X8FeNY8c47DN5iCJdcOo7HH3uU22/7Cw/cfx/nn3cul191Dffde8/7yvXu3ZuBmw8C4ANqiH79iqj1G741vs7e4KutmomgmYKXbQP9SV6SXXcWLV3OrEdmcvWEa7j7/qm8u3Iln//MJ9lxp1046JDD+MZx3wbg7F/8jKvHX8HxI77HAcO+yH7DDuSQww4HYIMNNixazhqbawH1od5u7J1VzUQwCRgpaSKwO/BGOfoHquWhB+7nwIMPoXfv3gDsP+wgAObMmc05vxjFG2+8wbJlS9l7n32L7l9qOSuunmoBvvnXh0a/+RfKLBFIugbYC+grqZnkpdo9ASJiNDAZOBCYB7wJHJdVLJVSbBjn90ccz/hrrme77XfgmqvGc/99U4ruW2o5e0893fytPuTp5l8os4bniPhqRGwSET0jon9EjI2I0WkSIBInRMSQiNg+Iup6buk99vw0k2+dxFtvvcWSJUu44/a/ALB0yVI22nhjVqxYwQ3XTVxdft311mPpkiWrl9sqZ2bZmrvqpdV/edUQU0y01pXhnt214047c9iXj2CvTw1lwMCB7LHHngCccsbP2H/vz9B/wEC2/cR2q2/+X/rykfz397/HpaMvYdyVE9osN3PGdP7rmKN44/XXuOO2yfzqrDO5f9ojFb++WlGvtQA3B9WWPN/0i1EyjL9+NDU1ResX08yZM4dtttmmShHR5pDOSnpm3lzmLt+g2mFkzonAuqoRbv7dGT4qaUZENBXb1pA1AjMzaIybfyU4EVjNq9dagFWHb/6d50RgZnXPN//ucSKwmuRagHXEN//ycSLoolroIDbLG9/8s+FEYJYRjxQqD9/8s9eYiWD65eU9XlPnH3r+1dlnss466zLyxP8uun3yrZMYsuWWbP3x9oe9XvL7C7nqT5ez1lpr0advX353yR8ZMHDzTsdjZtYWT2lZJZP/PImnnpzTYbntd9yRu6Y8wJSHpnPwYYcz6oyfVCA6s+ry076V1Zg1gio5/9fncu2Eq8s6DfVnPrvX6uM37TaUGyZOqN4FZswdxPnmm371uEZQJrMemcnNN1zP3fdP5U9XX8usmTMAOOiQw7jr3vu598FpbLX11lw9/gqGfnIPDhj2RUb98hzueeBhBm8xpGi51q4efwX77Ld/ha/MzBqdawRlkvU01NdNnMCsmTOZdPudWV6GmeWQE0EZZTUN9b13/43f/vpXTLr9TtZee+3M4jerNDcH1QY3DZVJVtNQP/boLH544kiuuvZG+vX7aOUuqEKGzL9+9Z/lgzuCa09j1gi6MNyzu7KahnrU6aeybOkyvv2NYwDYrP8Arr7uxopfn1l3+KZf2zwNdRfV2pPF9ToNdaPVBPwQ2Xt88y+/rKahdtOQmVnOORGYmeVcY/YRmFlVuDmoPrlGYGaWc64RWMU1WgdxnrkG0BhcIzAzy7mGrBFcP7e8vziP3OrITu9TrmmoLx97KePGjKZHjx6ss846nP/7Szrcx8ysM1wjqJJSp6E+4sijuG/qDO554GFGnvRDzjj1xxWIzqxtfjK48TgRlNH5vz6X3XfensMPHsa8f80FYPzlY/nC5/bkc3vsxjePPZo333yThx96kNtv+wujTj+VvT41lGee/nfRcgDrrb/+6uO/+eayovMZmWXNN//G5kRQJllOQz12zGiadtiGn59xGmefd36VrtDMGlVD9hFUQ5bTUH97+Ai+PXwEN1w3kfPPO4eLx4zN+nLKziOF6o9//eeHawRl1NY01Of+5gLumzqDH53yE5a//XbRfUspd/gRX2HyX7o+14iZWTFOBGWS1TTU/543b/Xnv95+G1sM+VgFrsbyyn0B+dSQTUNdGe7ZXVlNQz12zB+49+6/07NnTzbYcEMu/uNlFb82a59nHLV652mou8jTUHdOI/cR1Hsi8K//+lGX01BLOkDSU5LmSTqlyPYNJN0q6VFJsyVV/o0yZmY5l1nTkKQewMXAvkAzME3SpIh4oqDYCcATEXGwpH7AU5Kujoh3soqrO2qtFmBmVg5Z9hEMBeZFxNMAkiYChwKFiSCA9ZQMt1kX+A+wMsOYzAw3B9masmwa2gx4vmC5OV1X6CJgG2AB8E/gxIhY1fpAkoZLmi5p+sKFC7OK18wsl7JMBMXmQmjdM70/MAvYFNgJuEjS+q3KEBFjIqIpIpr69etX7jjNcsFDQ60tWSaCZmBAwXJ/kl/+hY4DborEPOAZ4OMZxmRmZq1k2UcwDdhS0mDgBeBo4JhWZeYD+wD3SdoI2Bp4ursnfu3a67p7iDV8+KivdHqfck1D3WLSLTfxra8fw5333s/Ou+za6XiqoZGHjJo1ksxqBBGxEhgJ3AHMAa6LiNmSRkgakRY7E/iUpH8CfwNOjohXs4qplpQ6DTXAkiVLGPOHi9m1aWjGUVmjcXOQlSLT5wgiYnJEbBURQyLirHTd6IgYnX5eEBH7RcT2EbFdRFyVZTxZy2IaaoBzf/lzvn/SD1m719rVujQza2Cea6hMspqG+rFHZ/FCczP7DzuwildnZo2sIecaqoYspqFetWoVp5/yIy4afWmFrsLM8siJoIzamoZ6/DXXs932O3DNVeO5/74pRfctVm7pkiU8+cQTHHrgfgC88vLLfO2oI7jq2hvqpsPYKs/9AdZZbhoqkyymoV5/gw2Y+9wLPDJ7Lo/Mnsuuuw11ErCi3Cls3dGQNYKuDPfsrqymobbaVO8zjpoV8jTUnVDLk87V4jTUjfwcQa0lAtcE8iGraagbskZg1dPIN/9a45u/lYv7CMzMcq5hEkG9NXGVU0S8bzY/M7NSNUQi6NWrF4sWLcplMogIlrzxOstX9ah2KGZWpxqij6B///40NzeT9bsKli2vvXfmBLB8VQ9eWNG72qFYBbhfwLLQEImgZ8+eDB48OPPzTJg6P/NzmJlVWkM0DZmZWdc1RI3AqstDRrPl5iDLmmsEZmY550RgZpZzbhoyq0FuDrJKco3AzCznnAjMzHLOicDMLOfcR2BWI9wvYNXiRGBWglp7/4BZOTkRmFWRawFWC9xHYGaWc64RWJd4WgmzxuEagZlZzrlGYFZh7hewWuMagZlZzpWUCCRtl3UgZmZWHaXWCEZLeljS9yRtmGVAZmZWWSUlgoj4NHAsMACYLmmCpH0zjczMzCqi5D6CiPgXcDpwMvA54HeSnpR0eFbBmZlZ9krtI9hB0m+BOcDngYMjYpv082/b2e8ASU9JmifplDbK7CVplqTZku7twjWY1by5q15a/WdWa0odPnoRcClwWkS81bIyIhZIOr3YDpJ6ABcD+wLNwDRJkyLiiYIyGwKXAAdExHxJH+3aZZiZWVeVmggOBN6KiHcBJH0A6BURb0bElW3sMxSYFxFPp/tMBA4FnigocwxwU0TMB4iIV7pwDVYhfprYrDGV2kdwF/ChguXe6br2bAY8X7DcnK4rtBXwYUn3SJoh6RslxmNmZmVSao2gV0QsbVmIiKWSenewj4qsiyLn3xXYhyTRPCjpoYiYu8aBpOHAcICBAweWGLJZdbk/wOpFqTWCZZJ2aVmQtCvwVjvlIakBDChY7g8sKFLm9ohYFhGvAlOAHVsfKCLGRERTRDT169evxJDNzKwUpdYITgKul9RyI98EOKqDfaYBW0oaDLwAHE3SJ1Do/wMXSVoL+CCwO+2MQjIzs/IrKRFExDRJHwe2JmnyeTIiVnSwz0pJI4E7gB7AuIiYLWlEun10RMyRdDvwGLAKuCwiHu/G9ZiZWSd1ZvbR3YBB6T47SyIixre3Q0RMBia3Wje61fKvgV93Ig6zmuV+AatHJSUCSVcCQ4BZwLvp6gDaTQRm9czvKba8KLVG0ARsGxGtR/2YmVmdK3XU0OPAxlkGYmZm1VFqjaAv8ISkh4HlLSsj4pBMojIzs4opNRGMyjKIWjZh6vxqh2BmlqlSh4/eK2lzYMuIuCt9qrhHtqGZmVkllDpq6HiSKR4+QjJ6aDNgNMnUENbAPNFcxzxk1OpdqZ3FJwB7Aoth9UtqPGW0mVkDKDURLI+Id1oW0ikhPJTUzKwBlJoI7pV0GvCh9F3F1wO3ZheWmZlVSqmJ4BRgIfBP4Lsk00YUfTOZmZnVl1JHDa0ieVXlpdmGY2ZmlVbqqKFnKNInEBFblD0iMzOrqM7MNdSiF3AkyVBSMzOrc6U2DS1qteoCSf8Aflr+kMxqn58dsEZSatPQLgWLHyCpIayXSURmZlZRpTYN/abg80rgWeArZY/GzMwqrtSmob2zDsSsFvhlNJZHpTYN/aC97RFxfnnCMTOzSuvMqKHdgEnp8sHAFOD5LIIyqzXuHLZG1pkX0+wSEUsAJI0Cro+I72QVmFWHZxs1y59Sp5gYCLxTsPwOMKjs0ZiZWcWVWiO4EnhY0s0kTxh/CRifWVRmZlYxpY4aOkvSbcBn0lXHRcQj2YVlZmaVUmrTEEBvYHFEXAg0SxqcUUxmZlZBJSUCST8DTgZOTVf1BK7KKigzM6ucUvsIvgTsDMwEiIgFkjzFhDU0Dxm1vCi1aeidiAjSqaglrZNdSGZmVkmlJoLrJP0R2FDS8cBd+CU1ZmYNocOmIUkCrgU+DiwGtgZ+GhF3ZhybmZlVQIeJICJC0i0RsSvgm7+ZWYMptWnoIUm7ZRqJmZlVRamjhvYGRkh6FlgGiKSysENWgVnleH6h93ikkOVRu4lA0sCImA8M68rBJR0AXAj0AC6LiHPbKLcb8BBwVETc0JVzmZlZ13RUI7iFZNbR5yTdGBFfLvXAknoAFwP7As3ANEmTIuKJIuV+BdzRqcjNysQvo7G866iPQAWft+jksYcC8yLi6Yh4B5gIHFqk3PeBG4FXOnl8MzMrg44SQbTxuRSbseaLa5rTdatJ2ozkqeXR7R1I0nBJ0yVNX7hwYSfDMDOz9nSUCHaUtFjSEmCH9PNiSUskLe5gXxVZ1zqZXACcHBHvtnegiBgTEU0R0dSvX78OTmtmZp3Rbh9BRPToxrGbgQEFy/2BBa3KNAETk2fW6AscKGllRNzSjfOadYpHClnelTp8tCumAVum01W/ABwNHFNYICJWT2Ut6Qrgz04CZmaVlVkiiIiVkkaSjAbqAYyLiNmSRqTb2+0XMDOzysiyRkBETAYmt1pXNAFExDezjMXMzIrrzBvKzMysATkRmJnlnBOBmVnOZdpHYFar7l351OrPA6sYh1ktcI3AzCznXCPIKU89bWYtXCMwM8s5JwIzs5xzIjAzyzknAjOznHNnseVG4ZBRM3uPawRmZjnnRGBmlnNOBGZmOec+AsulgTNerHYIZjXDiSBH/DSxmRXjpiEzs5xzjaCICVPnVzsEKxMPGTXrmGsEZmY550RgZpZzTgRmZjnnRGBmlnNOBGZmOedRQ9ZwPFLIrHOcCBqcHyIzs464acjMLOecCMzMcs6JwMws55wIzMxyzonAzCznPGrIGoKHjJp1nWsEZmY5l2mNQNIBwIVAD+CyiDi31fZjgZPTxaXA/4mIR7OMyfLLbyUzKy6zRCCpB3AxsC/QDEyTNCkinigo9gzwuYh4TdIwYAywe1Yx5YUfIjOzzsiyaWgoMC8ino6Id4CJwKGFBSLigYh4LV18COifYTxmZlZElolgM+D5guXmdF1bvg3cVmyDpOGSpkuavnDhwjKGaGZmWSYCFVkXRQtKe5MkgpOLbY+IMRHRFBFN/fr1K2OIZmaWZWdxMzCgYLk/sKB1IUk7AJcBwyJiUYbxWIPxkFGz8siyRjAN2FLSYEkfBI4GJhUWkDQQuAn4ekTMzTAWMzNrQ2Y1gohYKWkkcAfJ8NFxETFb0oh0+2jgp0Af4BJJACsjoimrmMzM7P0yfY4gIiYDk1utG13w+TvAd7KMwczM2ucni83Mcs5zDTWIvDxE5g5is/JzjcDMLOecCMzMcs6JwMws59xHYDWvO/0CnnHUrGOuEZiZ5ZwTgZlZzrlpqI7lZciomWXLNQIzs5xzIjAzyzknAjOznHMiMDPLOXcWW03ynEJmleNEUGc8UsjMys2JIDVh6vxqh2Bl4qeJzTrHfQRmZjnnRGBmlnNuGqoDeekXcAexWXW4RmBmlnNOBGZmOedEYGaWc+4jqFF56Rcws+pzIrCG4GcHzLrOTUNmZjnnGkENyWNzkIeMmlWfawRmZjnnRGBmlnNuGqqyPDYHmVltyW0i8GyjZmaJ3CaCanItoDw8ZNSsPJwIKsQ3//d4pJBZbXFnsZlZzmVaI5B0AHAh0AO4LCLObbVd6fYDgTeBb0bEzCxjqiTXAsrPzUFm5ZdZIpDUA7gY2BdoBqZJmhQRTxQUGwZsmf7tDvwh/Wfd8s3fzOpNljWCocC8iHgaQNJE4FCgMBEcCoyPiAAekrShpE0iIpOffd0dKeSbfOX4l79Z5WSZCDYDni9Ybub9v/aLldkMWOMuIGk4MDxdXCqpGr2NfYFXq3DeznKc5VMPMYLjLLeajfOrv1HhYmfj3LytDVkmAhVZF10oQ0SMAcaUI6iukjQ9IpqqGUMpHGf51EOM4DjLLY9xZjlqqBkYULDcH1jQhTJmZpahLBPBNGBLSYMlfRA4GpjUqswk4BtKfBJ4I6v+ATMzKy6zpqGIWClpJHAHyfDRcRExW9KIdPtoYDLJ0NF5JMNHj8sqnjKoatNUJzjO8qmHGMFxllvu4lQyYMfMzPLKTxabmeWcE4GZWc45EXRA0gGSnpI0T9Ip1Y6nLZLGSXpF0uPVjqUtkgZIulvSHEmzJZ1Y7ZiKkdRL0sOSHk3j/Hm1Y2qPpB6SHpH052rH0hZJz0r6p6RZkqZXO562pA+13iDpyfS/0z2qHVMhSVun32HL32JJJ3X7uO4jaFs6TcZcCqbJAL7aapqMmiDps8BSkie1t6t2PMVI2gTYJCJmSloPmAEcVmvfZzoH1joRsVRST+AfwIkR8VCVQytK0g+AJmD9iDio2vEUI+lZoCkiavJBrRaS/gTcFxGXpaMde0fE61UOq6j0/vQCsHtEPNedY7lG0L7V02RExDtAyzQZNScipgD/qXYc7YmIF1smFYyIJcAckifJa0oklqaLPdO/mvzFJKk/8EXgsmrHUu8krQ98FhgLEBHv1GoSSO0D/Lu7SQCcCDrS1hQY1k2SBgE7A1OrHEpRaXPLLOAV4M6IqMk4gQuAHwOrqhxHRwL4q6QZ6ZQxtWgLYCFwedrUdpmkdaodVDuOBq4px4GcCNpX0hQY1jmS1gVuBE6KiMXVjqeYiHg3InYiedp9qKSaa26TdBDwSkTMqHYsJdgzInYhmXH4hLQps9asBewC/CEidgaWATXZL5g2Wx0ClGUmTCeC9nkKjDJL29xvBK6OiJuqHU9H0qaBe4ADqhtJUXsCh6Tt7xOBz0u6qrohFRcRC9J/vgLcTNLsWmuageaC2t8NJImhFg0DZkbEy+U4mBNB+0qZJsNKlHbCjgXmRMT51Y6nLZL6Sdow/fwh4AvAk1UNqoiIODUi+kfEIJL/Nv8eEV+rcljvI2mddHAAaVPLfkDNjW6LiJeA5yVtna7ahzWnza8lX6VMzULgdxa3q61pMqocVlGSrgH2AvpKagZ+FhFjqxvV++wJfB34Z9r+DnBaREyuXkhFbQL8KR2V8QHguoio2aGZdWAj4ObkdwBrARMi4vbqhtSm7wNXpz/8nqYGp72R1JtkJON3y3ZMDx81M8s3Nw2ZmeWcE4GZWc45EZiZ5ZwTgZlZzjkRmJnlnBOBmVnOORGYmeXc/wKxgiElG3RwZgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot(kind='hist',\n", + " bins=100,\n", + " title='Cumulative distributions',\n", + " density=True,\n", + " cumulative=True,\n", + " alpha=0.4);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Box Plot" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAEICAYAAAB25L6yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAU3ElEQVR4nO3df5Bd5X3f8fdX2kVCKyHvItEJRmIbYjyYpZh6myY1TcZJSk0VEzpmppZCHEcMqkqtkCGxIoI7lAmeUfiRNCPsJlJEsCfWugSHTmrSBDeIuGJiGoHBRsiZEoPiFYklapC0G62Q0Ld/7JVmEfvjLtyz59m979fMnd1773PP/d5H0kfnPuc554nMRJJUrnl1FyBJmpxBLUmFM6glqXAGtSQVzqCWpMIZ1JJUOINaaoiIjIgfqrsO6UwGtYoUES9FxNGIGIqIVyPikYhYUXddABHxiYjYVXcdah8GtUr2kcxcDPwA8D1gS831SLUwqFW8zBwBHgLeBxARSyPiCxFxMCL2RcSnI2JeRPRExGBEfKTRbnFEvBARH2/cfyAificivhoRRyLiLyLiwvHec5L3uAT4HeBHG3v7r81IJ6itGdQqXkQsAv4d8PXGQ1uApcAPAj8OfBz4hcz8PrAW2BYR5wG/BTyTmV8Ys7mfBX4dWAY8A3xxgred6D32AuuBv8zMxZn5rhZ9TGlCHXUXIE3iv0fECWAxcAD41xExn9HQviIzjwBHIuJe4OeA7Zn5aET8IfDnwLnAZWds85HM/BpARNwGHIqIFZn53VMNpnqPKj+wNB73qFWyaxt7rAuATwJ/AVwAnAXsG9NuH/DuMfe3An3A72fm/ztjm6cDOTOHgO8D55/RZlkT7yHNGINaxcvMNzLzj4A3gB8BjgNjx5ZXAvvh9N7w7wJfAP7DONPtTs8ciYjFQA/w8hltXpnsPQAvOakZZVCreDHqZ4Bu4DngQeAzEbGkcTDwFuAPGs1/rfFzLXAP8IVGeJ/ybyLiyog4i9Gx6ifHDnvA6H8MU7zH94ALGtuQKmdQq2T/IyKGgMPAZ4Cfz8w9wAZgGPgOsAvYAdwfER9gNFA/3gjb32B073fTmG3uAG5ndMjjA4weXBzPuO/ReO4xYA/w9xHxSms+qjSxcOEAtYuIeAAYzMxP112LNB3uUUtS4QxqSSqcQx+SVDj3qCWpcJWcmbhs2bLs7e2tYtOSNCc99dRTr2Tm8vGeqySoe3t72b17dxWblqQ5KSL2TfScQx+SVDiDWpIKZ1BLUuGmDOqIeG9EPDPmdjgifmkGapMk0cTBxMz8a+D9cPrKZPuBh6stS5J0ynSHPn4S+JvMnPDopKS3b2BggL6+PubPn09fXx8DAwN1l6QCTHd63seAcf/mRMQ6YB3AypUr32FZUvsZGBjgtttuY/v27Vx55ZXs2rWLG264AYDVq1fXXJ3q1PQp5I1r774MXJqZ35usbX9/fzqPWpqevr4+tmzZwoc+9KHTj+3cuZMNGzbw3HPP1ViZZkJEPJWZ/eM9N52hj6uBp6cKaUlvz969exkcHHzT0Mfg4CB79+6tuzTVbDpDH6uZYNhD0jt3/vnns3HjRnbs2HF66GPNmjWcf/6ZSzqq3TQV1BGxCPhXwL+vthypvY2MjLB27Vr27dvHhRdeyMjICIsXL667LNWsqaGPzPyHzDw3Mw9VXZDUrvbv309Hx+i+U0QA0NHRwf79+yd7mdqAZyZKhTjrrLO49dZbefHFF3njjTd48cUXufXWWznrLNfQbXeVLBzgrA9p+ubNm8fixYsZGRnh+PHjdHZ2snDhQoaGhjh58mTd5alirZr1IalC3d3dDA0Nce655zJv3jzOPfdchoaG6O7urrs01cyglgpx+PBhuru72bFjByMjI+zYsYPu7m4OHz5cd2mqmUEtFeLEiRPcc889bNiwgYULF7JhwwbuueceTpw4UXdpqplBLRViwYIFbN++nRdeeIGTJ0/ywgsvsH37dhYsWFB3aaqZQS0V4uKLL+aJJ56gs7MTgM7OTp544gkuvvjimitT3QxqqRB79+6lo6ODoaEhAIaGhujo6PAUchnUUilOnDhBT08Pjz32GK+//jqPPfYYPT09jlGrmlXIJb09y5Yt4+qrr+bYsWMsWLCAiy66iAMHDtRdlmrmHrVUkOeff/5NY9TPP/98zRWpBAa1VJijR4++6adkUEsFOeecc1ixYgXz5s1jxYoVnHPOOXWXpAIY1FJBVq1aRVdXFwBdXV2sWrWq5opUAoNaKkRPTw8PPvgga9eu5ciRI6xdu5YHH3yQnp6euktTzQxqqRD33XcfixYtYtOmTXR1dbFp0yYWLVrEfffdV3dpqpmXOZVm0KkFAVqlin+/qoeXOZUKkZlN3S781a801U7toamgjoh3RcRDEfHtiNgbET9adWGSpFHNnpn428CfZuZ1EXEWsKjCmiRJY0wZ1BFxDvBjwCcAMvN14PVqy5IkndLM0McPAgeB34+Ib0TE70VE15mNImJdROyOiN0HDx5seaGS1K6aCeoO4J8C/zUzrwCGgU1nNsrMrZnZn5n9y5cvb3GZktS+mgnqQWAwM59s3H+I0eCWJM2AKYM6M/8e+G5EvLfx0E8CXtJLkmZIs7M+NgBfbMz4+A7wC9WVJEkaq6mgzsxngHHPmJEkVcszEyWpcAa1JBXOoJakwhnUklQ4g1qSCmdQS1LhDGpJKpxBLUmFM6glqXAGtSQVzqCWpMIZ1JJUOINakgpnUEtS4QxqSSqcQS1JhTOoJalwBrUkFa6ppbgi4iXgCPAGcCIzXZZLkmZIs4vbAnwoM1+prBJJ0rgc+pCkwjUb1Ak8GhFPRcS6KguSJL1Zs0MfH8zMlyPiPOCrEfHtzPza2AaNAF8HsHLlyhaXKUntq6k96sx8ufHzAPAw8MPjtNmamf2Z2b98+fLWVilJbWzKoI6IrohYcup34CrguaoLkySNambo4x8BD0fEqfY7MvNPK61KknTalEGdmd8BLp+BWiRJ43B6niQVzqCWpMIZ1JJUOINakgpnUEtS4QxqSSqcQS1JhTOoJalwBrUkFc6glqTCGdSSVDiDWpIKZ1BLUuEMakkqnEEtSYUzqCWpcAa1JBXOoJakwhnUklS4poM6IuZHxDci4itVFiRJerNmViE/5WZgL3BORbVIs9rldzzKoaPHW7a93k2PtGQ7S8/u5Nnbr2rJtlSPpoI6Ii4AVgGfAW6ptCJpljp09DgvbV5Vdxlv0arAV32aHfr4L8BG4OREDSJiXUTsjojdBw8ebEVtkiSaCOqI+GngQGY+NVm7zNyamf2Z2b98+fKWFShJ7a6ZPeoPAtdExEvAl4CfiIg/qLQqSdJpUwZ1Zt6amRdkZi/wMeCxzLy+8sokSYDzqCWpeNOZnkdmPg48XkklkjRNEdHS7WVmS7fXKu5RS5q1MrOp24W/+pWm2pXKoJakwhnUklQ4g1qSCmdQS1LhDGpJKpxBLUmFM6glqXAGtSQVzqCWpMIZ1JJUOINakgpnUEtS4QxqSSqcQS1JhZvW9aglaaZcfsejHDp6vGXba8Vq7EvP7uTZ269qQTXTY1BLLbLkkk1c9vlNdZfxFksuAVhVdxnTdujocV7aXFbdrQj7t8OgllrkyN7NxQUL1Bcuap0px6gjYmFE/J+IeDYi9kTEHTNRmCRpVDN71MeAn8jMoYjoBHZFxP/MzK9XXJskiSaCOkcXEhtq3O1s3MpdXEyS5pimxqgjYj7wFPBDwGcz88lx2qwD1gGsXLmylTVKakMlHpyt68BsU0GdmW8A74+IdwEPR0RfZj53RputwFaA/v5+97glvSMlHpyt68DstE54yczXgMeBD1dRjCTprZqZ9bG8sSdNRJwN/BTw7YrrkiQ1NDP08QPA5xvj1POABzPzK9WWpZJEREu3N3p8WlKzmpn18U3gihmoRYVqJlh7Nz1S3HiiZr/STtZZenZnLe/rmYmSitTK//hn+46EV8+TpMIZ1JJUOINakgpnUEtS4TyYKLVQabMUoL6ZCmodg1pqEWcpqCoOfUhS4QxqSSqcQS1JhTOoJalwBrUkFc6glqTCGdSSVDiDWpIK5wkvkmat6SxqEb8xdZtSF7UwqCXNWqUGa6s59CFJhWtmcdsVEbEzIvZGxJ6IuHkmCpMkjWpm6OME8MuZ+XRELAGeioivZubzFdcmSaKJPerM/LvMfLrx+xFgL/DuqguTJI2a1sHEiOhldEXyJ8d5bh2wDmDlypWtqE2ac9plloJaq+mDiRGxGPgy8EuZefjM5zNza2b2Z2b/8uXLW1mjNGdkZktvag9NBXVEdDIa0l/MzD+qtiRJ0ljNzPoIYDuwNzN/s/qSJEljNTNG/UHg54BvRcQzjcd+LTP/pLKqNCMuv+NRDh093rLttWq9wKVnd/Ls7Ve1ZFvSXDBlUGfmLqD5IyCaNQ4dPV7kunwlLhAr1ckzEyWpcAa1JBXOoJakwhnUklQ4g1qSCmdQS1LhDGpJKpwrvLSxJZds4rLPb6q7jLdYcglAefO7pboY1G3syN7NnvAizQIOfUhS4QxqSSqcQS1JhTOoJalwBrUkFc6glqTCGdSSVDiDWpIK5wkvba7Ek0uWnt1ZdwlSUaYM6oi4H/hp4EBm9lVfkmZKK89K7N30SJFnOUpzQTNDHw8AH664DknSBKYM6sz8GvD9GahFkjSOlh1MjIh1EbE7InYfPHiwVZuVpLbXsqDOzK2Z2Z+Z/cuXL2/VZiWp7Tk9T5IKZ1BLUuGmDOqIGAD+EnhvRAxGxA3VlyVJOmXKedSZuXomCpEkjc+hD0kqnEEtSYUzqCWpcAa1JBXOoJakwhnUklQ4g1qSCmdQS1LhDGpJKlzbBfXAwAB9fX3Mnz+fvr4+BgYG6i5JkibVVkE9MDDAzTffzPDwMADDw8PcfPPNhrWkorVVUG/cuJHh4WH279/PyZMn2b9/P8PDw2zcuLHu0iRpQm0V1IODgxw7dozNmzczPDzM5s2bOXbsGIODg3WXJkkTaqugBrjhhhu45ZZbWLRoEbfccgs33OBVWyWVbcrLnM5GETHhc1u3bmXr1q3Tek1mtqQuSXo75uQedWaOe+vo6KCrq4ve3l4g6O3tpauri46OjglfY0hP7tQsmn13XeMsGqkiczKoJ7J+/XqOHj3K0aNHAU7/vn79+porK1tETHhbs2YNe/bsgTzJnj17WLNmzaTtJ/vmIml8bRXUW7Zs4aabbuK1114Dktdee42bbrqJLVu21F1a0Sb6ptHT08P8+fO59957GR4e5t5772X+/Pn09PT4DUVqoWjmH05EfBj4bWA+8HuZuXmy9v39/bl79+7WVFiR3k2P8NLmVXWXMatFBHfddRef+tSnTj929913s3HjRgNZmqaIeCoz+8d7rpnFbecDnwWuBt4HrI6I97W2RM1WfX19k96X9M41M+vjh4EXMvM7ABHxJeBngOerLGwil9/xKIeOHm/Jtno3PdKS7Sw9u5Nnb7+qJduaTTo6Orj++ut56KGHuPLKK9m1axfXX389HR1zcjKRVJtm/kW9G/jumPuDwD8/s1FErAPWAaxcubIlxY3nZO8vs6Syrb89JwH4Vs1VzLz169fzuc99jtWrV3PgwAHOO++80+P+klqnmaAe7zD9WwYgM3MrsBVGx6jfYV0TOrJ3c3Fjy63aM59tTh2E3bZtG5kenJWq0kxQDwIrxty/AHi5mnKaU1owLj27s+4SarNlyxaDWapYM0H9V8B7IuIfA/uBjwFrKq1qEq3am3bWh6TZYsqgzswTEfFJ4M8YnZ53f2buqbwySRLQ5AkvmfknmXlxZl6UmZ+puqgqecqzpNmmreZRDQwMsHbtWkZGRgDYs2cPa9euBWD16tV1liZJE2qrU8hvvPFGRkZG6O7uBqC7u5uRkRFuvPHGmiuTpInNyT3qqS788+qrr77p5/DwsJc5lVSsOblHPdnFgO688843PXbnnXdO+hpDWlLd5mRQT2bz5s3s3LmT48ePs3PnTjZvnvT6UpJUuzk59DGRrq4uhoaG+OhHP8qrr75Kd3c3Q0NDdHV11V2aJE2orfaot23bxsKFC980Rr1w4UK2bdtWc2WSNLG2CurVq1dz//33c+mllzJv3jwuvfRS7r//fqfmSSpaUwsHTNdsWDhAkkryjhYOkCTVy6CWpMIZ1JJUOINakgpnUEtS4SqZ9RERB4F9Ld9way0DXqm7iDnE/mwt+7O1ZkN/XpiZy8d7opKgng0iYvdEU2E0ffZna9mfrTXb+9OhD0kqnEEtSYVr56DeWncBc4z92Vr2Z2vN6v5s2zFqSZot2nmPWpJmBYNakgo354I6Iv5zRPzKJM9fGxHva2I7PxYRT0fEiYi4rrVVzh4t7M9bIuL5iPhmRPx5RFzY2kpnhxb25/qI+FZEPBMRu5p5zVzUqv4c0/66iMiIKGoq35wL6iZcCzTzB/e3wCeAHVUWMwdcS3P9+Q2gPzP/CfAQcFeVRc1i19Jcf+7IzMsy8/2M9uVvVlnULHYtzfUnEbEE+EXgySoLejvmRFBHxG0R8dcR8b+A9zYeuzEi/ioino2IL0fEooj4F8A1wN2NPZGLxmsHkJkvZeY3gZP1fbJ6VNSfOzPzHxpv8XXgglo+XA0q6s/DY96iC2ibWQFV9GfDrzP6n97IzH+qKUy2+vZsuAEfAL4FLALOAV4AfgU4d0ybO4ENjd8fAK4b89y47cY89qb2c/1WdX82Hr8P+HTdn3W29yfwH4G/Ab4LvKfuzzqb+xO4Avhy4/fHGf32V/vnPXWbC4vb/kvg4WzsrUXEHzce74uIO4F3AYuBP5vg9c22axeV9mdEXA/0Az/e8srLVFl/ZuZngc9GxBrg08DPV/EBCtPy/oyIecBvMTrUWaQ5MfTB+F/7HgA+mZmXAXcACyd4bbPt2kkl/RkRPwXcBlyTmcdaWXDhqv77+SVGx2LbRav7cwnQBzweES8BPwL8cUkHFOdCUH8N+LcRcXbjYMBHGo8vAf4uIjqBnx3T/kjjOaZo164q6c+IuAL4XUZD+kCVH6AwVfXne8a0WQX83yqKL1DL+zMzD2XmsszszcxeRo+hXJOZxSz8OuuHPjLz6Yj4b8AzjF5a9X83nvpPjB693cfomNapP6wvAdsi4heB6yZqFxH/DHgY6AY+EhF3ZOalM/GZ6lRVfwJ3M/pV8w8jAuBvM/Oaqj9P3Srsz082vqEcB16lPYY9quzPonkKuSQVbi4MfUjSnGZQS1LhDGpJKpxBLUmFM6glqXAGtSQVzqCWpML9fyCg2aIm0KK1AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot(kind='box',\n", + " title='Boxplot');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Subplots" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABsuUlEQVR4nO2dd3xUVfbAv2eSkAQIhN6LBZFeVRRRWQsqiLrqquha1rZ214KgqOiKZf2tCqKrYgEVUARFFF1RFBFdFRClI4iU0FtCepvz++O9SWYmM8lMMi2T+/185pP37rvv3fNe7pw579xzzxVVxWAwGAyRxxFtAQwGg6GuYhSwwWAwRAmjgA0GgyFKGAVsMBgMUcIoYIPBYIgSRgEbDAZDlDAKOAqIyBAR2RCFdq8RkSWRbtdgCBYRURE5OtpyhBujgMOIiGwRkTO8y1X1W1XtGg2ZAkVEFonI9dGWw+AfETlZRL4XkSwROSgi34nIcTW8ZoUfaRGZKiKP10za8FDbjYrEaAtgMBiCR0QaAZ8ANwOzgHrAEKAwmnL5QkQSVbUk2nLEIsYCjgIicpqIZLjtbxGRe0VkpW3NvCciKW7HR4jILyKSaVs8vSu5torIHSKyWUT2i8gzIuLz/ywiJ4nIUrvNpSJykl0+AevLPFlEckRkcuju3hAijgFQ1ZmqWqqq+aq6QFVXuiqIyA0isk5EskVkrYj0t8vHiMjvbuUX2uXdgJeBE+3/e6aI3AhcAYy2yz6267YVkTkisk9E/hCRO9zaHS8is0XkHRE5DFzjLbxtVb8sIl/YcnwjIp183aiINBaRt+y2torIOBFx+JI3JE82kqiq+YTpA2wBzvBRfhqQ4VXvJ6At0BRYB/zdPtYf2AucACQAV9v1k/20qcDX9nU6Ar8B19vHrgGW2NtNgUPAX7HehC6395vZxxe5zjOf2PsAjYADwDTgHKCJ1/FLgB3AcYAARwOd3I61xTLALgVygTbefcTtWlOBx932HcBy4GEsy/tIYDMwzD4+HigGLrDrpvqQfyqQDZwCJAMT3du1+/HR9vZbwEdAGtDZ7tPX+ZO3Nn2MBRw7TFLVnap6EPgY6GuX3wC8oqo/qmXpTMN6zRxUybWeVtWDqroNeB5LuXozHNioqm+raomqzgTWA+eF6H4MYURVDwMnYymqKcA+EZknIq3sKtcD/1LVpWqxSVW32ue+b/c1p6q+B2wEjg+i+eOAFqr6mKoWqepmW4bL3Or8T1Xn2m3k+7nOfFVdrKqFwINYlmwH9woikoD1IzFWVbNVdQvwbyzDodZjFHDssNttOw9oaG93Au6xXwcz7desDlgWjD+2u21v9VO3rX0Mr7rtghHaED1UdZ2qXqOq7YGeWP/T5+3DHYDffZ0nIle5ubQy7XObB9F0J6CtV598AGjlVme7zzM9KaujqjnAQSr21eZYVrZ7X42bfmoUcOyzHZigqulun/q2xeoPdyuiI7DTR52dWF8kvOrusLdNmrxahKqux3qt72kXbQeO8q5n+1mnALdhuZvSgdVYbgrw/X/3LtsO/OHVJ9NU9dxKzvFFWT8VkYZYbjHvvrofy53h3lfjpp8aBRx+kkQkxe0TbOTJFODvInKCWDQQkeEiklbJOfeJSBP7de5O4D0fdT4FjhGRUSKSKCKXAt2xRtYB9mD59gwxiIgcKyL3iEh7e78DlqvpB7vKa8C9IjLA7jdH28q3AZbS2mefdy3lShus/3t7EannVebeF34CDovI/SKSKiIJItJTgg+BO1esULp6wD+BH1XVw3JW1VKsKI8JIpJm38PdwDuVyFtrMAo4/HwK5Lt9xgdzsqouw/IDT8YaJNuEj1FlLz7CGiT5BZgPvO7jugeAEcA9WIM5o4ERqrrfrjIRuFhEDonIpGBkNkSEbKyB2R9FJBdL8a7G+n+iqu8DE4AZdt25QFNVXYvlQ/0flvLqBXzndt2vgDXAbhFx9YXXge62u2GurRTPwxqn+APLSn0NaBzkPcwAHsFyPQzAirbwxe1YA4WbgSX2eW9UIm+tQeyRREOcICIKdFHVTdGWxWDwh4hMxYoEGhdtWaKJsYANBoMhShgFbDAYDFHCuCAMBoMhShgL2GAwGKJErU7G07x5c+3cuXO0xTBEmeXLl+9X1RbRat/0Q0N1+2CtVsCdO3dm2bJl0RbDEGVExHtGX0Qx/dBQ3T5oXBAGg8EQJYwCNhgMhiqYv3k+Z80+i97TenPW7LOYv3l+SK5bq10QBoPBEG7mb57P+O/HU1BaAMCu3F2M/348AMOPHF6ja8edAi4uLiYjI4OCgoJoixIVUlJSaN++PUlJSdEWJaRsO7wNpzrp3LhztEUJiLrcD+OpD87fPJ8HljyAU50e5QWlBUz8eaJRwN5kZGSQlpZG586dEZGqT4gjVJUDBw6QkZHBEUccEW1xQsrwD62OvurqVVGWJDDqaj+Mhz44f/N8Jv48kV25uyqttzt3d6XHAyHufMAFBQU0a9asTnV6FyJCs2bN4srqysjO4NPNn0ZbjKCpq/2wtvdBl7uhKuUL0LpB6xq3F3cWMFDnOr07tf3ef8/8nWlrpvHIiY+Q4Ehg1PxRHCo8FG2xqkVt/19Ul9p434FavS5SElK4s/+dNW437ixgQ+3m7kV38+GmD/kj6w+AWqt8DbWHYKxeAIc4GH/S+Br7f8Eo4Igwfvx4/u///s/v8blz57J27doqr7N48WL69+9PYmIis2fPDqWIUeeb7d/w3vr3UHuBgwvnXRhlieIL0wctfIWTTfx5YlmEQ1WkJKTwxMlPhET5Qpy6IGobc+fOZcSIEXTv3r3Seh07dmTq1KmVfpFqK7d9dRsARzSunQM3NWXuih088/kGdmbm0zY9lfuGdeWCfpFb9ize++D8zfN58scnySrKKitzhZMFqnzbNGjDnf3vDJnyBWMBh40JEybQtWtXzjjjDDZs2ADAlClTOO644+jTpw8XXXQReXl5fP/998ybN4/77ruPvn378vvvv/usB9aU1969e+Nw1N5/2897fmZxxmK/x7MKs/wei1fmrtjB2A9WsSMzHwV2ZOYz9oNVzF2xo8pzK8P0QQuXi8Fd+boIRvkuuHhBSJUvxLkF/OjHa1i783BIr9m9bSMeOa9HpXWWL1/Ou+++y4oVKygpKaF///4MGDCAP//5z9xwww0AjBs3jtdff53bb7+dkSNHMmLECC6++GIA0tPTfdarzfyR9Qepialc/d+rgfJwssNFh5m6empZvYMFB6MhXlR55vMN5BeXepTlF5fyzOcbqm0Fmz5YTjAuBl+EasDNF3GtgKPFt99+y4UXXkj9+vUBGDlyJACrV69m3LhxZGZmkpOTw7Bhw3yeH2i92sTIuSN9lj+77FnmbJwTYWlii52Z+UGVB0Jd74Mu3+7u3N1l4wrVJVQDbr6IawVclaUaTnyF4lxzzTXMnTuXPn36MHXqVBYtWuTz3EDrxTJOdSKI35Ck3OJcBs0YRKIjrrtgQLRNT2WHD2XbNj21Rtetq33Qe+pwTWhcr3HYlC8YH3BYOOWUU/jwww/Jz88nOzubjz/+GIDs7GzatGlDcXEx06dPL6uflpZGdnZ22b6/erWJPm/14aHvHvJ7PCM7A4ASZ0mkRIpZ7hvWldSkBI+y1KQE7hvWtdrXrMt98LH/PRYS5QuQVZRFr2m9QpqAxx2jgMNA//79ufTSS+nbty8XXXQRQ4YMAeCf//wnJ5xwAmeeeSbHHntsWf3LLruMZ555hn79+vH777/7rbd06VLat2/P+++/z0033USPHtGz8CujsLQQgI9+/8hvnZq+FsYTF/Rrx5N/7kW79FQEaJeeypN/7lWjKIi60ge9w8pu+PwG8kry/NYXhDYN2pCenB5UO66IiVAr4ZhbE05E0oHXgJ6AAn9T1f/5qjtw4ED1ToS9bt06unXrFm4xY5poPoPdubs5c/aZZfuuwbZe03p51Hv/vPe55ONLKr3Ws6c9y92L7vYo85ULQkSWq+rA6srs43rpBNgHwfRDX0Ti/oN1NTjEgarSukFrTml/Ch9s/IBiZ3FQbbqiIbypbh+MRQfcROC/qnqxiNQD6kdbIINvCksL2Zmz0yN29+Yvbw7Z9b2VbwQxfTDG8ZelrDJcdXfl7mLOb3Mo0eDdX6FIwONOTLkgRKQRcArwOoCqFqlqZlSFMvjlwSUPMnLuSPKKy1/5NmVuqlBv6+GKq7UE88WJJKYPxj4uy7cmfag6yhdCk4DHnVizgI8E9gFvikgfYDlwp6rmRlcsgzs7c3by/c7v+WHXDwB8vf1rvyPF27O3c8FHF1Qof2vtW+EUsSaYPhiDuIeVQfTGEEIdDxxrCjgR6A/crqo/ishEYAxQNpwuIjcCN4I1LdIQef766V/Zm7+X+onWm/mYb8ewcNtCbu5T0f1w7gfn+rzGmv1rwipjDaiyD4Lph5Eg2Axl4SYcIWkx5YIAMoAMVf3R3p+N9WUoQ1VfVdWBqjqwRYuorURep9idu5te03rx2R+fMX3ddPbm7wU840y/2PoFDy55MOBrxvCU4yr7IJh+GG6CzVAWCUQk5FEQMWUBq+puEdkuIl1VdQNwOlB1iiZDWFh7YC2qWjY9ePKKyTjE/292MK+FsZpm0vTB2KCm04fDQWZhZllse6gs4VizgAFuB6aLyEqgL/BEdMWpOaFKBfjss8/SvXt3evfuzemnn87WrRUHt0LJpZ9cymXzLytTrNuyt1WqODcdqjgAV0sxfdAPkeqDoY42CBXFzmKe+umpkF0v5hSwqv5iv9r1VtULVDU2TaUQEmjn79evH8uWLWPlypVcfPHFjB49OgLSeVKZ66C6I8uxRlT64MpZ8FxPGJ9u/V05K+xNuhPNPug9meLxHx4PelWNJIncAqCZhZkhu1bMKeB4IRypAIcOHVqWXGXQoEFkZGSERfbsomyyi8qnpT76/aNhacdgs3IWfHwHZG0H1Pr78R01VsK1oQ+6+3oVZVfuLt7b8F5QIWYJkkCxBjehoqaEyhccUz7gkPPZGNgd4lV0W/eCcyp/BYlEKsDXX3+dc845JyS39Nqq1+japCtD2lvTVU+aeZLHcdegmyFMLHwMir2S8RTnW+W9/1KtS9aWPvjUT0/VyNfrEAelWlp1xRAz/vvxQM19wfGtgKNEuFMBvvPOOyxbtoxvvvkmJPJO/HkiUHuWfI87svxYkf7KAyCW+2CowstSElKiNlBXUFrAxJ8nGgVcKVVYquEkXKkAv/zySyZMmMA333xDcnJyjeW886vqB5bHWh6RWkvj9rb7wUd5DYi1PuhrWaCa0LdFX9YfWh9Sn2wwhCJEzviAw0C4UgGuWLGCm266iXnz5tGyZctqy3fpJ5cyZeUUAL7a/lW1r2MIEac/DEleuX+TUq3yahILfdB9cO3kmSfz0HcPhUz5Avyw+4eoKV+g0pDMQIlvCzhKuKcC7NSpU4VUgJ06daJXr15lHf6yyy7jhhtuYNKkScyePdtvvfvuu4+cnBwuucTKItaxY0fmzZsXsFyvrXqNvXl7WXtgLWsPrOWG3jd4HM8syCQ9JT3g65mUkiHC5edd+Jjldmjc3lK+1fT/QvT7YH5JPuOXl2cqC6XiDZTG9RqHtd1Q5DOJuXSUwWDSAPpm3bp1HHvssczeOJvzjjyPlMQUoGJKyFVXr6pQ9n+n/h/3fnNvxGQNlkikowwW0w8rsmj5Im5fXTvXkAsUhzj49apfger3QeOCiFO+2v4Vj/3vMR7/4fGgVp2IZeVrqD2UOiMfmRBpQmEBGwUcp+QWW8m7Pvr9I8Z9N85nnUMFcT/HxRAlEhwJVVeq5bRp0KbG1zA+4DjF3bU0f/N8nhpSMSLkqs+uiqRIhjgjszCT3Tm7y+JwHeJARCh1lsa9BRyqpeqNAq7DbDm8JdoiGGoZ3krXHac6qQvjsunJ6Yw5fkxIEvIYBVxLySrMYnfublrWb0lKYgqpiakUlRaVLRM0defUsrpCcPPqDQZfZBZmsjN7Z52PfikoCd3kD+MDrmXkFueyZv8aMrIzKHGWsDNnJ5szNwOw8dBGth3eBnguDaQo+/P3R0VeQ/ywN3dvrVO+6cnpCELjeo2DXgnZH65ZcKHAWMARYPz48TRs2JB77/UdYTB37lyOOeYYunfvXul1Xn75ZZ6d9CwOh4P6Deoz/tnxHNX1qIBkGDpraNByG+KHUPTBYmcx7019j3ffeLdafTDSOMTBt5d961EWyErKSY4kGiQ1qHSSR6jSZRoLOAYINBXgqFGj+HDxh8xZNIe/3f43/vXQv8qOuZKmG2on3ikZQ73yQlX46oOZhZn8dvA31uxfw28HfwNg+EXD/fbBWMM7TMyVg6KgtKBsFlubBm24tOultGnQBkFo06AN/xz8T4Z19p0jw0WoFuc0FnCYmDBhAm+99RYdOnSgRYsWDBgwgClTpvDqq69SVFTE0Ucfzdtvv80vv/zCvHnz+Oabb3j88ceZM2cOX331VYV69evXp1GjRmB7EvLz8j3m+u/KiZ2lWwzB4W2V7crdFZJsWzXpg598/glTpkyhuLiYjp078uRLT5JaP5WGaQ3Lru/dB2ON1ARrerevHBROdZZFMvh6xpW5GBIlMWSLc8a1An76p6dZf3B9SK95bNNjuf/4+yutE4pUgH+99q/8nvk7bz/7tkcqwJmvz2Tay9MoLirmjQ/eCOm9GaKDr+V3apptK9A+OPmVyVxw9QWcctYp/OnsP3HV5VeRnpzOoLMGccZfzgBg0hOT+GD6B1xxwxVA7emD+aX5HP/O8eSX5vs8XtkzrszFEMofHeOCCAPuqQAbNWrkkQpwyJAh9OrVi+nTp7Nmje+VgVevXs1pp5zGhadcyMwZMz3qXX7d5fx36X+5++G7eeXZVyJyP4bw4u/LXhM/YyB98O133mb5r8spdlrJzEudpezM2UlmYSbr1qzjqhFXceEpFzJ/znw2bSgf1K1NfdCf8nXh/Yznb57PyTNPrnSwsdhZbAbhAqEqSzWcBJoKsLi0uOwL4F7v9Zmv0+roVnw15yuW/295hWudc+E5/PO+f4ZNfkPkaN2gtc/UhjX1M1bVB5+c/CQ/LvnR47iqsjd3L+PuGMfEaRM5tuexzJ05l6XfLa1wrXjog43qNeKs2WexO3c3jeo1IrsoGydVTzE2g3AxTDCpADdnbYZ6VEgF2LJVS4qLi3n/vfcpKClAVVm3YV1ZncVfLKbjkR0je2OGsHBn/ztJSUjxKKvpTKuq+uC+nH3Mm12exaxBwwbk5ljT14udxeTl5NGiVQuKi4v5ZM4nZfW2/l6+CGc89MGsoqyy5ZCyirICUr5gKe5QENcWcLQINBXgvkP7KHGWcPaFZ/PkfU96pAI8d+i5tGrXimO6HUNuTi55JXlM+PcEflj8A4mJiTRKb8QTk2v9Yr0GygfaJv48kd25u2ndoLXfwaFA8dUH80vyuW3MbfQ/rj9t2rcp61sAZ194NuPvHs/0KdN59o1nuW3MbYw6e1SFejNen2H6IKHzA5t0lFFkzf5y326P5j3KtvOK8/gj6w+Pukc0PqJCmT92/7Gbu9beFRIZYw2TjjI4Mgsz2Zu7t4KbK9zEcx8Ea3bpyqtXlu+bdJSxjVOdHMw/WJYkp7jU8wtxuPBw2TFfQeKBKl+DwUVmYSY7c3ZGXPnWBUwccC0hvzifxIRE9uft52DBQUSEJilN+O3Qbx71tmdvp2X9lhSVFlGigefvNRj8sTt3t1m3rxokSVKly9yHKhMaxKACFpEEYBmwQ1VHRFuempBTlMPWw1sREZITrMULd+bspElKE5/19+fvD0mSZ0PNqa39sLJsZYbAKNZi0pPTGdZ5GIszFntEqDjEwflHnx+STGgQmy6IO4F1VdaqBezJ2wNYoT2hzKBkiAi1rh9mFmayI3tHzCnf2piNL7Mwk482fcQp7U/xiFBxqpOPNn0UsqniMaWARaQ9MBx4LdqyVJc1+9ewZv8asgqz/AZze/t/XRjrNzaoTf3QPV/Djuwd0RbHJ7Utg5qLgtIC3tvwnt9ZiqEg1lwQzwOjgTR/FUTkRuBGsFZkjSXcVwHIyM7wW29HTmx+UQxlPE8t6IeuQbZQ+nkbFihNsyGxFEoS4GAa5KTUPgs23MTdRAwRGQHsVdWK077cUNVXVXWgqg5s0aJFhKTzT35Jftmil/5e/V7814u8+eKbZfuu9dpcLPx0Ib9v+D3gNhfMW0DPFj1Z/cvqakhsqIza1A+DGWTz7oPeLPx0IbtWbqJFlqV8wfrbIstSyt7U9T4Yj1EQg4GRInIukAI0EpF3VPXKKMvlF6c62Zy5mXoJ9ejSpEu1r/PVp19x6lmnclTXo6hnB0AU+fnP5ObkMn3KdHoP6F3t9gyVEvZ+WJKZScmePWhxuSsqZ/G3HJo5k9L9+0ls04aW/7iLxuedV+HcUA+yuSzepXMW0vzUU5GzPHP7ikLTbMhxm6gXzT44eE0poxYpzQ7DgUYw4zThux6RXwC0U1qnkFwnZhSwqo4FxgKIyGnAvbGsfAEO5B8AoKi0CFX18OG+8uwrfDzrY1q3a02TZk3o3qc7s9+ezftvve+R4m/96vV8/fnXLPvfMl559hXmPPMci378kf98NLtCKkCAF558gWtvv5apL06Nxi3HPeHqh76Uroucxd9y4OWX0aIiq+7Onex66GFyi/M4fGqfaivbyvpgaWExx7TryBtPPMGyDRuYv2gR3y5fzlOvvsrM56w++MZsqw8e2bEj416PfB+89vMSzloBDi8D3OUQaXEYbvpUgdKwKWF/Cv+nPT+F5Poxo4DDwe4nnqBwnWc6SgW0qAhxOFCnE6mXBFr51ELX/18A7dKZ3FsupUNaB48vxqHCQ2U5edf8uob/zv0v73/1PqWlpVzyp0vo3qc7Zww/g4v/aqWcdKX4+9s1V3D6WUM59axTOeP8szhyt9I4LY3TbrvEo94VN1zBupXr2L1jN6eddVpkFLDr9dZ+NqmFyqD1yte9pazMUDVFO3dSetB/wvxDM2aUKV8XWlBA5sTJ6CkvV6vNyvrgNZdcRIsseHTiJKZ98AE3X3EFw087jXNOPZULzzoLgMZpafzNTo86ftIkPn99DhfcfmXE+uADM0ros5Uq4ydSSmDUIuW7Hlb+3/SUdJ+JjarD4DWl3PSpkmK/lbY4DLfPU47JKOHNYaFRnTGpgFV1EbAoZNdDodRpKZTEBLS4uHxctrQEdSoJDRpUOK9UnYgIBSX5qCoNkhqQV5wHWBMn3DlceLhs++f//czp555eZjEMPdtaDmjjuo288OQLZB/OJj8nj5OGnkS7A0qDAqVFlvUXYO3GjYy9dzLZh7PJy7XqOZ1Onn7oaSa8MCFUj6VKZj1l/cDkJsPajkJOCgxdpexsmsCGDuFv/4wVTm78r5PLRydQmhB5hR+KfliSmVmp8gUoPXDA94G9fsoDoLI+eN9jL3D48GFy8vM546STfJ6/duNGHp08mSy3ek0ySyPSBwevKQ1I+bpoftg657se+eTn5pOakFplGspAGLWoXPm6cABn/wyb2odm4DMmFXCoaP3AAwDkry4fKEhIT6c0M7NC3XodOpDQuDFgRTMUlhZWmP7bqXkPj/wN7ngPrPnqPa4Uf326HstXr3/IVz97pvhLsY2gGx96iHcnTqTZ4GOZ9b6VCjA3J5dN6zdx7QXXArB/735uv/J2XnjnBXr27en3GVQLVS78vryDNSiE4zaW79/0WSl33xj+rnPpYsulc+Ru2Nxao6KEa0rJnj1V1klo1ozS/RUXTU1s1oy2e5UDjaoZieDjlIduH8fs5ybSu2tX3p47l2+XVkwzCVYffG+iZz3Hvsj0wVGLNKjIYQFumV/uiqip8nW5HZof9n1cgBsWhiZ+IWaiICKFFhb6LC/ablm0+SX5rD+43mfuhUDjLAecOICFny6kIL+A3JxcFn2+CLAGL1q0akFCbhHvzZ9Pku3BaNigAdm5uTS2jGtycnNp07w5rXYVlaUCTGuUxpINS1jw8wIW/LyA3gN6h0f5Ag3z4fLF/mOS2x+AYcudJJRGJr5zwlul3DK/9sRIZ338McV79pC/erVPn683TUaNQurV8yiTevVoMmoUCU5okek7EqEy/PXBvOxcWjdvTnFxMe/NL59M4OqDLnJyK9ZrnJbGzm++ZdOnn7Pp0885vldvZk96gZGte9BxnwYs4+A1pbz4YgnvPlnCiy+WMHhNKdd+bu2/92SJX8VXGUmlcMc8LbtedXG5HVocrtwCT8ktJstO8VkT4toC9oUz3/+vY8n+/TizDtGwnpLohMwGnv+CylZJdad7n+6cff7ZXDz0Ytp0aEP/Qf0BuG3MbVx51ig6t25Djy5dyLE7/CXnnMOt48fz0owZzHj2WR667TZOveIKOrZpw1G9jymrF0tct8BJUomDT04IvVV65C4lozmo26WHrFE+HRj7Af1ZH3/MzrEPwMTnAz6n4SlWutJDM2ZQeuAACc2a0WTUqLJyAZpleUYiVIW/PviwW98KtA+613NHKB8gc4WsgVZqrfvzqwqBuxz8Ifb17pinXPtFCW+eGXyEhC+3gz/2Pve8z0iVYIi7dJRr16yhS7NmJLZsaQ20qVLgZ+mfqtjcOvTKpWWm0jDIWcmZDSE9B3Y1tcKC8pKF+oVW+FBG84oyVpUK8LSVToasVv45yuqcbQ4oE18t5dfOwksjHFz5tZMha6ruF6s6Cf/3ZweXfutk+lAHxYk1f14N85Q3JpaSVZ+yNwJ3uq2vODs4ltJRrh90IpqZSfGLk+nSqlVI28mqDwcaVf8Ztz6o1C+qul5NKEmAbS3EZx8cvKaU2z5WEiKkclzNZKcSkDIevKaUO+YF5/5w9cfq9sG4s4Cd2dmUqKJFxTgapVGc4X9GWlW0PqTsbhLCBficBK18wVK+AG3ssZxDDZVGeZDgtD6lQTqSvF/nJ75qvbL12aK8Mjnw17deW5Vpz1n1SxKcJJXA1DMcqKP6zyzRFs2X8q0NqI/xhVDROM9yRVTmE3afyeYhFzW3MAPBu10XLss3UsoXyu+3Ub5lFVcWveCSL9KjDHHnA9ZS6xtcejirRsoXoL5vd3G16bw3NL2vXolbaFwQl+z7u5MG+eUndMlQ0vJCI9PIH5VzlivH7IThPzkZsNHJEbs1YD9xcpHyjw9L6fVH5fWdBXU7qVGCE1pmWtZsx33Kkbu1zP/asEA9ZrK5EynFUirQcZ/lQ3X3xwbzah8OBCt6wZ9/uLry1dQPHHcWMOpEVUO2ZEhiKTTNVgrqQU6q4KzksglOaFCgHK4vtMhS0vJhVxPITxaSQtj5HM5yS9FbAauqz+QnqQXKA7OcbGhXXjbh7dBnzeq0R7l6YbmFfbAh/P32qrvZoPXKifanMkqzsnCkBOEMjRbO0PZDb9xdCYmlllKOBRIUtETB6aTFYbj5Y8sfm1bzqLAaI1iW8B3zrC/jfreJFc2qMfAHNfcDx50CTjh4kMz69UlPSgpJ5++4z1IIDQug+WEt8ws7nJYlWuA2eN0yU0ktgvx6lHW4NoeAEGeDSnX78rkrYFXFcbCIrAPbK5zjUthdw5wH6PoFnu6NpjmBnVcS4FiJo379ICWKMCKgimzfTmazZiHrh7UFVSWzuBixo4rqKdSLAeXrwv0/4Rqwu/3jkmq/IZTsqtmkj7hTwPUXLuRAnz7s79ABHKH3sOyzO1OTHCh2wv40KwSmKBEKcyxFl5UNBRHyYZbus9R7ZgNILnLS6LftdHv5FbjVOn7tglK6b1OeuDTy8+Xd6fO7ky2thIGbrB+xP+wfsuQipSQBnAH+qxLS/CYoiw0SE6G4mISXX+HA328KWz+MWZxOZPt2El5+JdqSBIQQnBvPm+IWjWvUftwpYMnMIvFfzwR1zs4m0PZQYHVnn+dgSU8Hs560XmPa2OXPne9g+FInx+yE5kG1XjOS7L+pXuUN8hPITRXOWW71rqbZRI2GecqDs5ys7Cz03mLJM/00Bz92FSa9UsrqTkJmxYmIPskvySc10ftuY4Osjz9Gi4utL/Xhw0H3Q0PtQoGZpzioSUqiuPtpzt8b2CvBGrcUrvfcELh1eMfHTu6bXdF3+o+PnGUz2ULB9NMc3HB79a3WN58vpd+mcnfAk9OC9/d+eGJoXp3fmGi17VK+AFcscjLpFau851bl5LWVmyGHGsAV9yaQWZAZEpnCwd7nnq+Faz8YasL8LjWzbOJOAWf26ez3WEYzWH609RXZ1FZ48wwH190ZfJ4B92m57nSsOJu02pQkQE4NDb0Lv6/Z7LGcFOGe6xLY0hK+6Rld1bKhvVCcJCQ6Yvelrab+QEPtIj+x5nmB404BZ5/Yw++xNR2FDe0sReIU+Ow4B9n1PRVLuBXNtNMdAbXxW1upce6DY2s64CawvaUw+rpE3jjTs6v81hYiOTn4Tbv9WFbAiW3aVF3JEBcoMG1Eco1XR47d3lxN8np0YtrpDpZ0F0YsdbKuvdAsG2743OnhcFc/um3WEAenrg7foobzj3eQUqis7qTkpML9s8vV2EcnCLNOcYBCcZIl4MSRDja3lrLJEuFgb2P494UJ7GwGb/+7vB13Oz8/RfjL2ES67FDSc5WVnYU75jn9vg2EmkNp1vOIZQXc8h93seO+0dV2Q0RqsoSh5uSkwrAbJ9R4deTY7c3VxKlO5h9vWUvTh1o+1DN/tpScKPx8tHD5YvjxGN/G/7504ZmLHPz5OydHhWbZJwCmDHOwvoP19SpIFr7pbW3fe53QY6vy2XG+5fmuh2f5rJMd/GVJ6GzPv4z13wV8rcqxsV35rP2ajB5XxjN/dnDR906O3A0vnOfwmBIeywq48XnnsWP06GpFHSqQnwSpxUYJ+yNWfqAUeGdYMsNCcK24c0H4Wj0gs6H190AjYWsry5L7o43/f+XSYxyMvTaRzaFZ9gmAr/oI21tUbHNbS/GrfN2Z8BcH7w1xMPvkmnXBMdck8OBV1g/Tvkb+670/WFjY12qrSXKTsvI/dfhT2fa7pzrY2sIaCV7YJzRfjRvuSGBpVwdv/8nB7nT4sauwo3ntUMAATS67rNpR3/VjSPmq2ycabfsrj4XMNflJ8HW30pCsjBzbvbka+FrafWkXK2nMsi7Bde9VnYUjd4fmX15Tf+6vRzn41V6ua+c1Z9J26hfVuk5+PdjVTCq1fAHeP6U8AsNd6TVNbVq2va2lcN/11rHEEuX0X6vvJilJEEaNLm9zTScHd9xc8YcpUWK7y7Z55BFmbni3wlI6lf33nUTeElKgyAH1nJ6yKVCQBK+eY80Qi2QCHQWKHZCovt+uXEsCXbtASbNnpEf6B0uBKedYrYZiZeTY7s3VwLVCsQci/NS18n/VXTcmVAgjm3mqg+5bS+niNrh96ZgE3nsqfP7YQDgw8iTeyV7I6DnBuyJ2NQu+y7rP5PKXPa8kUXjlHAc3fVYu09IuErCPuLheuQo6Lr+ApakVpxvfM+CeWjGr7M1hibzp9n764osltPAx1VWxpsP6y38brlduBX7tBE+MSqxykUtr2zOFZDhQYGszaJ0FDh/tFCSWy/Zdd6tPDV7r5LZ5SrimGHk/fyfweX/Knk/rpEpeIQMk7lwQvizgQNjZTNjs5ZZwOoQHr0lkoz24/crZDlSE94YE99heGBHaxyyJCSzz48P2x/PnOwKO6/V2vTgksLbcfcYfnGT50nenBybfp/cMKtt+Y/den3WaZ4V5HnUImL95foWyGacJBV6mTkEiTBop3HprIvtr/j0OCsVSvmApk1tvTeSysYncemuiz5SN3/VI4JVzhX2NLCUUyugXxYpI+m9/aFCMTyVfKvDKufYPgyr1VUGs/ckjhcMpoXdPuH6kXPe8rxG8MFLKsqmlOJ3ceSizxu3EnQUcquW63XnwGs/HNOdkKwduIHw2QPi2V3h+5976k4MT1zlZeYRw0fcVu9/jlzrY1VRQgf2Nhe+7V33Nm29NqJD42+H+O5251e+5S7oL6bkOdjS1BjsRYXcToXWm0mZwIbu+S/aov7SLsKSH0OwwJB3Rlv77j6HLtuUedSbt2ccHDRuwqEF9+H4yDH6w6puIIr78gi4r0p+lOeM0qWBhFiTC+nYEtTZaoByohsL/rkcC39kRntXJm+sLxfoRcj2HYT/7NrFFy61ORHCf5e8u13tPhs5Ed0r5j1QFVBm//yDDc2ue5CLuFHB1LeBgee4CB20PWK+Qt/pZLueLfsJbp9dM+U47expbD2/l4e8fLivTnb8C8MkJDj45wUFqgXLR99YPz6X3J/De09b2yiODb9tXwu+URDeNXOp/iR11CB/7WSHDkeT5A/Hq2Q6+7Fu+uvKFBYeZllUKB6w54U/v3U/7khJ6FxbxWQMrAU/sOx/wuyKvu6Lwdcyfgg50deBAUaxr14TveiRw7RclNKqB/lEsq9fd4j7QCJ+umgo/GH7cUPv9nF8d2Rb083+8TUkpw3PzoHHNV6aNOwUcDgvYF//rVq7c1nUQkoutjjL1ufL2t7Wo+WSKLk26sPWwl9W5/E1oXj4Y5p6RTR3CjbcnlCVxnzPsLY5q2Zu+b/ettgzpyeUJR9zVaHppKZkJgXngvL8zX/bz/HGQTQth17ay/XNza19Gdl/uh0Dxp6BdftobPlVS3Qy86vaq7BSCXqbHF2+eKdz8sVIvyPd+xf8KFf7eBHz+YNhuCO/zqyOTt3y/dsJv4vYy10NSKpz+sM86wRB3CriwNMRZ1ANgr49VM5YfJSzuEdjXpGX9luzN8/R7ntjmRF4961Wf9Tt4LfSoDuGPqzM5+4R/0D1vOWtZWxZ6l/jB9STs3QRHdPRxpaqZvWMXT4pbCkg3C/iS7BympHtmg7oiK5vpjcszln3XXej7h5LctPwt4d8X+rDMiwPMWxnDhCIsyRfeynnwmtJqK783zwqNLe2y2l0RCVVd1TXg6D3I5+ualQ0KluHDCvaWqaxqAPdT9sNwhlix994KXpV0p5MxBw4xPK8ABlwLvf8SwJUrJ+4U8IH8AxXKOmsCWyQylvG8E4S0PPjPiKqtjCu6XcH0ddN55MRHuHXhrR7H/A18nSINObFgW8UDieBISuTpIU9z59d3sjlrMwBH7N3kUW1V4rH0Kllf4fTeBYWsTCn30Z6cl8+S+qm0LimFvINgRyVoxk+QZmn3roWeYSOLtmbQzOn0UMDf9HbwbU/h162ZtOhTQk77Yn48tuJaaZV9STSAOrFAKMKSAqG6iiZg69cV6VJFxInrh+Haz0s4+2f/7RcnwEvDA1sgszJXTSB4n+8vAsWdUoHJ55XL16a4hDsPZTKxSTq7ExNoXVLKKXl5LK5fn7EtmjGxpJQ7f5vD8JWDaqyEYyoKQkQ6iMjXIrJORNaISNATra/odoXH/jlHnMP/7azZ0kTefHLehzxxwjifx975U0JAyhcgrV4aq65exSntT6lwTHyF0wFnO3yPoAjAwkfpvGouH13wkWe5TYuSElBlQLNeFc5/c9cevtu6ndPsV///27ufaTv30Njp6d8+sqjcAm5VGtiPmtNeI655txw6p/l5Q6nEmoukAq5JH6xpYpZg+K5HAtf/I5FLx1qfSSOF0koeUEFiENavSFli+bJPJbw5LJH/9rcUmWJFDeQnlUcPBKp8w4GvCBR3FE/lC7ArMYHhuXksyNjJyi3bufNQJh+lNWRXUiIqwq6kRMY3acj8bx+rsXwxpYCBEuAeVe0GDAJuFZEAxu7LaZbSrGz7iZOf4F+n/IuuttIY2mFo2bF2DdtxUZeLPM5ddfWqsu3HTvL9cBds20Gn5Cac0uaksrLLul4WjIgB4di8yNr44mEcH5VbxyPEdwLorkW2NfrlIz6Pf7Utg3kZu0CdTD35aV7xCvWqBzRyKs/v3c/Pf2yjgSr9Cz2V5e0HM7nqsP/0e66v6TN79zN7R+gyg3UssX6MmgWo8GtItftgTROz1ITveiQw+byKykaBw6luYVzB4FLEAfDmsEQuH2P9GFw2NpGr7608tC1SuELoXKFq7jipOBDoYn6DcrfbxCbpFHgl1S9wOJiYXPP+GFMKWFV3qerP9nY2sA5oV/lZnqSnpDPm+DF8ftHnnHdU+VpN323dzr9P+3fZ/lHpR/HIiY/w0xU/AdCruadVOKzzMD6/6HOmnT2NVVev4o1hb/B4Zh5tSktBhEZJDbky6zCz9mbz4KDy0KhVV69i7PFjeeCEB3h3xLtl5fceOMQbu/Z4tHH0l0/C+MawfSmD86wh5ef27APcFOp3EzknJ5cmpaU8v2cfYrsmzs7JpVejI1l19SqWtzmfI4vdLObvJgGQ6ma9tih10lAV1AlaSrKzvDsOdRvwSqA8ybuLpvZ1BhUU4ABe3bWHiXv20clu87TcPNqUlJRZy2fn5pX96AG86COut09BIS1LymXuVOI/uuLmQ1m8tHsvxxcUQkl411WvSR+saWKWmuIdr7uvkRXmdf1dNVSCtWDyS2W43hYmjRS/cb0eiDCxSXrZ7u5E389ud2ICrJxVI9li1gcsIp2BfsCPXuU3AjcCdOzoe2DJ2w0BlnWHI4n5F85nxvoZ3Nj7RkSE1MRUZp83m7YN2wKw8g/LvypJ9amfVL+s/LjWx0FesUsIRBzcfzAT6ln+ztnnzS6LVhjVbVRZu/f3upnun48vsyan7txDsirJCSl0ybetyd/+y8u24gV4e+duehYWlb361QMWb7MnIexeCcAz+w7ABZa1Wy/Xy+/9xUN82Ol40rcvq/hw1AnOUvoXFjJu/0GG5+RairkSxu8/wEn5+fSyfb4nFpRbxqv+8OGPtnlvxy4OJiRwcr7nSsYfZeykVUkpTiDX4WBLUqKlXP2QBAxxXSNnD6TXPPwnEPz1QfuYz37YuF5jsoqyIiKfL2rqQw0JPiIUgqnjUGtZ2UalTkQg0+EIyY9AMM/GXem2LillV1JFVdm6pBQWPlYjP3BMKmARaQjMAe5SVQ8Xuqq+CrwKMHDgwKADTjo26siY48d4lHVt2rW8bV8n/fgK5GdayssPXZt29bgOAGs/4sp5Yz2KBpS91ruvrOnZal/X4FapD2vvsI/ZYL/OqFB09NaffAv6xzfwQn8EuDQ7sMiDRk7l4uzcgOq6072oGKho2bpb62mlpbQOxrXgiMzrbGV9EPz3w7EnjGXcknGUqKcPf1DrQfy056fQxamrNRFCI2Wd+ogKqLAPpNtvQb7CE12KtXVJKfkO8R3CqMoT+w5YcbY2Z7Vv61MBBiVvVeVetC4p75N3HspkfPOmHm6IsnC0Gk7GiDkFLCJJWB1/uqp+ELaG1n0ChdnQ93Lfx3MPQAPbn/zZaOtvkr1wmbqGGqCCZ6mkEFbPsVbo3Ph5YLL4m+p7YJPv8jIUCkIQeV6biEA2tJr0QZcbYuLPE9mdu5vWDVpzZ/87GZ6Ty/xN/2NcfaXEe5FOP8oMLINAgca2NZjlcNC6pNT68ickM7FxfXYlOFyC+7xGpYrTJtHpJAnIdx1zq5PidNK3oICfUlPLEgcdn5/P1qR6ZVECdx7KLFOa8xvU96mwrNlj/uugyqWHsz2UL/hWgK77a+xmJTuwvpVt7KiFj9IaVjhnUH4+v6SkVPDpuuM9zdglj3tURNn91nAyRkwpYLEyrbwOrFPVZ8PWUPZueM92U7gr4D1ry7ennAbn/h985B4e5srmXonh/eWj8MOLoZFzzdzKjy96CjYuCE1btQUJrwUcij44/MjhDF+7ENYsA90Kqy2X1HCABvV5smkTsmylme50Miwnl8X16/tUZpWTx/DD1szB+Q3q+1QQjzdN5/1GaRUU567EBA+F5a1AfSqbQO+/MoUVRJ3q1HWnX2GRz3Nc9+f+DPw9C3cZfLZXw8kY4i+7VTQQkZOBb4FVlJuYD6jqp77qDxw4UJct8+Hn9Ga8HTkwPstzH2DsDki2Zy18+SgsCeA7d9HrcORQeOZIa/+WH6BlN2t75uWwwae4wXP8jfCT78kYdZb7t0BqE48iEVmuqgNDcflg+yD46Ief3A3LXg+FOIZYZuB1MMLSF9XtgzFlAavqEkIV7rnoadi8CC52+yL88B/4r6f/l/yD5Qo4wKxfzLkO7vu9fH/WVXDb0uCuEQhrP6q6Tl0jzBZwSPrg8jdDI4whthlR85f0mApDCxmHtsKiJ2Db9/Bst/Jyb+UL8Hwv2GYPcgejPF85tXx7/2+WVT3ldFj/SfVk9kXOnqrrxDMX/Ae6jfQsi9AgXI2IUEIoQ+0nPhVwXpDrw+/61fILL/5X4Occ9jG7bkcA7hBD1ZzxqPW3TR/ofr7nsTBbwAZDJIkpF0TICNavLQKrwxdwUadITIGSAv/H/zoXCjIhdz98em95ebOjy6M+TroDup0HzY6ClHTP82N8TbiaBuYbahErZ8VXLoiQse2H4M9x+p+JZQiClMZw/Vf+jx81FHpcWDEUasi9MOJ5GDULHA5L+UJFt1CsuyAW1jw/gKGWEIL/dXwq4AVBrprw6b3WRAtD1Qz1nYTIg7IYyyDHsgZeC8d4LfbtrYBjfVpsVmgTPxlimKztNb5EfCrg6hBI+Fk8c16AuWxPvc8K5/OniFXL3QQJ9XzXcdULhFhXuN54hcgZ4pgQRDwZBRwP3FINl4s3A64Jrn6/K/0fcw2UeUcD3PlrcG1AaMP6IkFJ5BcEMIQBSbDifF1zB3wRgmiXGB/RMAREy25V1wk1fjufQoPm1uZRf/Kcjt2ks//r+bN03RXwXz8MRsLIs3IWFAefM8MQawg8cjAiLdUy8yIADv4RbQmiiyuEK9yktbZmA17+XsVjDVvCXavhrH+Wl1U3fMylmOulWQo9ljEDcPGBtxsptamfen7KgyD+FPCkvtGWILxc+o7v8sF3WX+PqLi6Ro1pNwD+9rnn7D9HAlw1F7qe7VnX5dtN71DuC27SueYWRW1wRZgBuPigKMcznLDHhRXrJNSDc56ucVO1oFcHSdfoJsUOGf5e11v6WZzhjPFw93po1x+QygfA3Ll1Kdy9ztq+5lO4/eeKVvQNX0HHQeWuhUpxG1xr1M6yXH1Z5Z0GW39d95NUv2IdCHh9spigcftoS2AIBaVF5W8zK2f5SPcq0O+vZlFOn9S2UejBd8J3XhEI6Z2gYWs4tMXav/a/cHAzpLXybwmKQKM21vY9GyApBZ6yE4VfNgPeLU8ST72GcN0C6/otjikv7zy4XKaEevC5Zy5jv6S1heydFcuTUuABP1Zhq+7WAEdRHvz8Fhw7wne92qSAT38YPrgh2lLUDRLqWUqwsqRHkgDqI9d0alOo16DyMDLX28zCx6DYO+evhiwLYfxZwPX8WFKxypk+/IbXfVGucK79DDqdCP2ugKPPKJ+IkNrEUrT3bKh4flora0JESmPoPASOPM3z+GljoVUPONbP24IInHgLXDINTrmv6nu4YwXcZa+nF+wsxHr1YdDf3WKHvY/bOZiDjdKIBiGwiAwBkNoUzn/RSobjLx9v4w5w4cuQlOpZnpRquQ5Of7jiMY/z7bcZf26lELmb4s8Crg2+wqpIq7hsexkOe8W2+s2tgbDKGGMvF1TsNjX4of2BT+ftcYH1qYqklPJk9aEmKQXG7YME75XqYpTUplaGvbpKUgPrFb46M0uTGkBicuXPr3EH+Mfq8v3TH4aP76hopRbZ0SjnTbKs2KwMS6me/rDnD+Vn91dsLym1PM9v4/a+LeUQuZviTwGHk6T6UBx4YuqgGToOWh5beZ201nDibb4HBvzh/qMUdkUWhvzSiQH6s2OBHhfGby5gcVQe+5pQD8573tr2pdj8kdrUskrdFeMnd8OyN/DoT+6K0YXrHO/28g9aivm8SZ4K2/vc3n+x/Lz+lLQvBe9LjmpiFLA/OpwA273WYnxwl2cy91BzagCv+yIwbEJw141E/gSXCyE5LfxtxTLxvEJJYrI10cSfEj7/xXLF5a3YXGMz+QfLfbONO1S0SF2MeNYa+K3MenXR+y9WPW+FX5wf2KKZLkXs7xgEJkc1MArYF67ZL4ufga8e9zzmSARnScVzqiKaq1tEwi2T2gSGPQFdzw1/W7FMPIeiFedbbgJfk00GXldRKblbmO5WpJaWW5GVKbLKFKM34fTVBiNHkMSBw9QPXYZVXacqWvcp3x71vvXX16//cdeXh335U3aD76y8rbS2nvs9L7L+VjZ7LFBcA3rpHSuvV1NOvBWaHhHeNmKdeA9FK86zlK1rYo1rym5lq0P4iiRwWaehwt9zj/H/R/xawO5W6lXz4K2R/uv645iz4M6V1q91w5ZWma9RflVIawOZW/37ySqzQsfuqOgmOO566H+V9doXCq6cA616huZaBv90OStyPuDGHez2vHylocBfCFfj9payDWY5njBHEgB+fbVLj7qdu576ip2Z+bRNT+W+YV25oF+70LVbQ+LPAnblRWg3oLys2VEwNMAUld6KskmncuUL+O3o18y3ltAZNcuaolvxwuWbNy2GYU9aIWZgrUnnHRIjEjrlC1YIW1VRE4aaEykf8MDrrMGlEc8ScuWblMrvHS8hn+QK5cEOPs1dsYPd+JnAE0rrtPdfrAG3xh0AgcYdWNrrUa5a2okdmfkosCMzn7ve+4V+jy1g7oodZfINfuorjhgzn8FPfVVWHinizwLuf7W1lE3bfm5LDAmcOhqG3GOtxPDvY/yf/8Cu6rWb3gH62pMdjj4dnmgPRdnWDLUvx5OTkEZDQB1JSJs+lox1gL3ZBSQnJNC4fi0JI6spIfYBFyY1JpmSMr+rInwgw7h3yem0Xf0Vz3ffyHH+rNUgUSA/tQ1ruv2DUT904ByaMjpxFm3lALtoxs5eoznO9oXOXbGDZz7fwM7MfBqnJiECmXnFtE1PZeixLfh6/T52ZOYjwHmOS3gq6TXqS1FZW3lajwf2j6Th3FUM7NS07Fre5yeIUKpa9jc9NYmiklLyiq23zPpJDpKTEuy2mzP02Jl8vX4fO/fkw15QH8/lUF4xd733C3e994tH+Y7MfMZ+YMWze1vJ7vcbSks6ppalD5Yql6V3RSz8Yy00dntYbw6HrUvK989/CT66xT6nkvRz7tf0EORvMOI5jyJ9sgNSeBju3wqp6Tz80Wryf5rGyOEXcFT3/rRN9x8Erqp8umo3w3q0IjGhZi8p17z5E5cf35FhPaJj/XYeM5+05ESevKgXh/NLGHWCpx/68zW72Xu4gL+e2LnabYRyWfrq4N4P854+lvr51fwR90IV/lF8C3OdJ/s8PtKxpIJiqy5Fmsi9xTcyz09bNWWkY0mZMt+pzfhXyV/C1lZNSRDBqUpjL2XvTlKC8MzFfcqUcHX7YPy5IHyRmExeUQlfrN3Dvxds4Lcz3mTLX60cupnJbfku6UQANCGZK177gU17sz1Ozyks4XBB1YHlOzLzKSi2fnGLSqx/2pqdWWXXeL/0NF5Y6eCkp77ijpkrAFix7RDeP4KfrtrNrTN+ZvDTvpf2ycwr4rRnvmbtzsMAzFq2ne9/txYi3Xu4gM5j5jNr2XacTmXRhn3c9PZyNu3NYVVGFuPmriIzr/wLeyi3iDnLM8gttHzmTqcyd8UOSkqdfLdpP3lFJUyYv5Yt+3PJLSzh6w17OeGJL/nmt32oKj9vO0RxqXWvWfnFfL1hb9m1z3z2GwCyC0u4bcYKHvjQsi5+3HyAX7Zn8s1vlmwPfbSmyme7MiOTN5bEdqa7uSt28HDuReRp6OKWvZXvSMcSltS7g83Jo5iY9JJP5VuqcFAb4lRLiVdmY6ldN5zKF2Ce82ROLprEkYXTObloUswqX4BSVRTIzC/2qXwBikuVRz+uut9WRcy5IETkbGAikAC8pqpPBXP+uz9t49GP13Ja1xZ06f855zTextsLdvHD5tVs3me9xr1g67U3TprM/d8Lh95ZxdrkBJ7Wv/HdpgPcP2cVc24+CadTuX/OSt5fbr1Wjhvejeu92tMmRzAn6XxOysxn8FPlCvPXZCfJAtsO5rLx8A6yCywF99MWK1Zx3q87OatHK26bsYLnLu3DyUe34LgJXwLw2Pk9ANhzuJCXFm2iXoKDjEP5HN2yISP7tmXOzzvYciCPSQs38vJfBzB69koAjmjegD/2W/f49GfrudDtFekMWxkCvPPDNgZ0asKVgzryj/esJOmfrtrFxMv7sWDNbu6e9WvZ69mATk1YvvUQU771VH5Xv/FT2fZZ3Vtxx+ldGPGC9Vbx37uGcGzrRmzcm1Ph/7M/p5BLX/WfQP63Pdkc08qKJV6zM4vRs1dyKLeInVnWbL6/ntiJpBq+FVRFdfvgM59vYEfRSRQ5nDyb9DKJEtrl6QO1eAVhfPFVFeqqeqbUyNN6jCm+PqaVYSxzKK/m60jGlAtCRBKA34AzgQxgKXC5qq71Vd+XC2Lilxt57svfaizLNSd1pnXjFJ76bL1H+ZaUUR77nQu8MyVZ/JJ8A+mSS9+CV8gkPJMTUpIcfHL7yZzx7GKfxx8491ie+HS9z2Ph5rjOTVi65VCF8rTkRLILK8ZRjzqhIzN+3Fa2f2zrNNbvzq5Q79dHzqJxqqc/OZQuiGD7IJT3wyPGzC8bDhvpWMLzSS/h8JFDyKn4LPfmgLMhA4rKY8eX1LuD9o79VZ6X4bQGvXzVLVEHDjTm3QC1hecv7csF/drFjQvieGCTqm5W1SLgXeD8YC7QKDU0Rv3U77dUUL4ADxb/jd3ahN4Fr9KnwP/EitHFN/K7sw3ZhC85UEGx06/yBaKmfAGfyhfwqXwBD+UL+FS+APlFNR9sqoJq90F3v/4858m8XXoGTi/7Jk/r8XbpGRxwNqzUNVCoCTxacpXn9aVq5Zun9fhXyV/81nWgtcINUFt45nMfybCCINYUcDvAPfNFhl0WMC6/aLiYXnoGgwpf5DANyaKh33oLnMdxetG/KSXGl1GvZSQnhr3LVrsP3jesq8f+IyV/467iW8hwNsepQoazOWOKr+eRkr8xoOhV7nQ7dsDZ0PbbWvXuK76pgoLcqZXnYy5RR5lLwV/dndoskFsxBMjOTO9UlcERaz5gXy9mHnaCiNwI3AjQsWPFmV2NUutIuFMdpUmDsCfmqbIPgu9+eEG/dhVCm+Y5T2ZekW9Ls7JjvvhXyV/8+oC9/bm+6rqsY0PoqCyaKRBizQLOANwTfLYHPDJ9q+qrqjpQVQe2aNGiwgVGn921Qpk3153sf7psr3ZhTLYTQ4zs07bqSiHi0oF+crbGJlX2Qai6H4aDec6TGVN8vW01WxavKmWWtbvF7FlXfNYx1Bzvt55giTUFvBToIiJHiEg94DJgXjAXSE6s/JV/xvUncOMpR5btr31sGGsfG8aVgzoy/rzuPPuX8gkSd595DHNuPonz+7bltqFHe1znykHl1veb1xxXtn3SUeWveA2TPV8w/n1JH7Y8NZwNj3uto+bGB7ecxMUDymcIuV/bxaUDO/DaVZ7+/gGdql4J5Ot7TyvbnnR5vyrru1PVD9vZbnHGf+7Xjv/eNYSjWlg5gq8fcgQdm5b7wl3laV7Pp2Va+cyrtOREerZrBMAVJ3Rk7WPDWPrgGUHJXE1q3AfDSXk41wyOLnyHIwpn+PXn1qbQr9pKTSdjxJQLQlVLROQ24HOsEKA3VDXoYLt5tw0mp7CEUVOsdJLjhndjyreb+cvADpx0dPMyv03rRinUr2c9gscv6AVQFtMKcM3gzjRKSSpTbvcO68oyO4xsYOemvPODNXA09NiWPHFhL/p3SufY1o2Y9+tO7pi5gteuHsih3CJun7mCEqdyka1YkxMTeHRkD046qhnPf7mRPh0a0y69Pm9+9wc92jbi/y7pw78u6s2uwwW0S09lxg0nlN3LHX86muuGHEnj1CRWPzqMKYs3M3HhRl756wC2Hsjlov/8jxG92zDpsn7c9d4vzPvVMt5WPHQmTRrUo3nDZI97dLFy/Fk0Skmi85j5AGx5ajiqSnZhCcUlTpo1TOaDn3ewaW8OL185gL+/s5y3rzuelRlZZBzK58Hh3UicI1x9UmeO62ytFnt6t1b8vm8zTRvUY/HooWw9kMupzyzi7jO7Mry3tXzSze8sZ+uBPNbuOsydZ3ShU9MGHHdEE5ITE9h7uIDvfz9Q1sld/6twEqo+aIh/Bh9V81WRYyoMLViqmgnnrkzcKXUqd767guuHHEnfDunVbv+pz9az9UAu/7lyQIVjrimLAAXFpRSWOCuETwXDpr3ZFJY46dHW00WiqhSWOElJsiz/HZn5NG9Yj+TEBEqdyj8/Wcv1Q46gfRPLAi2xlW9igqPs+QBsePxskhMT/D4zsKYV/7Itk7MCnFVX6lT25xTSqlGKh7zitb5bqVP5ZOVOzuvdFkcg8VlexNJMuMFPfcWOGg7MGGKfVmn1+PHBM8v2q9sH41oBL9m4n4N5RRH1d9YmLnzpO5ISHDxyXvcyxb5lfy4pSQm0bpxSxdmxQywp4LkrdjD2g1XkF4c9XM4QJQYf1ZTpN5zoURYvccAh5eQuzY3yrYQPbxnMrJtO9LCqOzdvUKuUb6xxQb92PPnnXiRUsoqzAAleln5qUgLPX9qXLU8N58pBHT1CMRrUKz/2/KV9aWe/WflroV16KlcO6ui3XpP6SX6Pu8Rql57qVx736zx/aV8PmQKhQb3gQjNdzzKQdyNv+V2yCZ7PxX0/3c+bqftzErdreivfmhDXFrChbhBLFrALX5ZwalICT/65Fxf0axeS7FrhytBVk7a867kym3mfN3fFDu57/1eKvWeqeBHqZ1bT+/OHcUEY6iyxqIAhsgqyNjJ3xQ7Gz1tDZr6VU6FJ/SSG927jU2HHOtXtgzEVBWEwxBMX9GtXK5RHtDDPJ859wAaDwRDL1GoXhIjsA7b6ONQcqDpzSXxg7hU6qWpkpqP5wE8/rEv/F6hb9+vrXqvVB2u1AvaHiCyLpk8wkph7jU1qk6yhoC7dbyjv1bggDAaDIUoYBWwwGAxRIl4VsP9M6fGHudfYpDbJGgrq0v2G7F7j0gdsMBgMtYF4tYANBoMh5jEK2GAwGKJE3ClgETlbRDaIyCYRGRNteUKBiGwRkVUi8ouILLPLmorIFyKy0f7bxK3+WPv+N4jIsOhJXjUi8oaI7BWR1W5lQd+biAywn9EmEZkk3jkvI4jpg6YPBtwHVTVuPlgJtH8HjgTqAb8C3aMtVwjuawvQ3KvsX8AYe3sM8LS93d2+72TgCPt5JET7Hiq5t1OA/sDqmtwb8BNwIlbSrM+Ac0wfNH0w1vtgvFnANV7WvhZxPjDN3p4GXOBW/q6qFqrqH8AmrOcSk6jqYuCgV3FQ9yYibYBGqvo/tb4Jb7mdE2lMHzR9MOA+GG8KuMbL2scoCiwQkeX2arwArVR1F4D9t6VdHg/PINh7a2dve5dHg3h4/r4wfdAipH0w3rKhBbSkeC1ksKruFJGWwBcisr6SuvH6DMD/vcXSPceSLKHE9EGLkPbBeLOAA1pSvLahqjvtv3uBD7Fe5/bYrz3Yf/fa1ePhGQR7bxn2tnd5NIiH518B0wfD0wfjTQHH9JLi1UFEGohImmsbOAtYjXVfV9vVrgY+srfnAZeJSLKIHAF0wRocqE0EdW/2K2K2iAyyR56vcjsn0pg+aPpg4H0w2iOQYRjRPBf4DWt08sFoyxOC+zkSa9T1V2CN656AZsBCYKP9t6nbOQ/a97+BKEUDBHF/M4FdQDGWFXFdde4NGIilFH4HJmPP8jR90PTBWO6DZiqywWAwRIl4c0EYDAZDrcEoYIPBYIgSRgEbDAZDlDAK2GAwGKKEUcAGg8EQJYwCNhgMhihhFLDBYDBECaOADQaDIUoYBWwwGAxRwihgg8FgiBJGARsMBkOUMArYYDAYooRRwBFCRNaIyGnRlsNgiDQioiJydLTliEWMAg4R9qqxZ3iVXSMiSwBUtYeqLqriGp3tzhpvK5UYYgS7n+aLSI6IHBKR+SLSoeozw4/796WuYBRwHcIodoPNearaEGgD7AFeiLI8dRajgCOEu4UsIseLyDIROSwie0TkWbvaYvtvpm2hnCgiDhEZJyJbRWSviLwlIo3drnuVfeyAiDzk1c54EZktIu+IyGHgGrvt/4lIpojsEpHJ9soNruupiNwiIhtFJFtE/ikiR9nnHBaRWe71DbUXVS0AZmMttY6INLb71z67T42z+19TEckQkfPseg1FZJOIXGXvTxWRl0XkC7vPfCMinXy1WUkb3YCXgRPtvp8ZkYcQZYwCjg4TgYmq2gg4Cphll59i/01X1Yaq+j/gGvszFGtlgoZY2fYRke7AS8AVWNZMYyquxHo+1pcsHZgOlAL/AJoDJwKnA7d4nXM2MAAYBIwGXrXb6AD0BC6v/q0bYgURqQ9cCvxgF72A1YeOBE7FWlbnWlU9CPwNmCLWopzPAb+o6ltul7sC+CdWv/oFq6/5wl8b64C/A/+z+356iG4zton2ciDx8gG2ADlAptsnD1jidvwMe3sx8CjQ3OsanbFWUk10K1sI3OK23xVr6ZRE4GFgptux+kCRWzvjgcVVyH0X8KHbvmKtgOvaXw7c77b/b+D5aD9v8wlJPy3BWjiyF5AAFALd3ereBCxy238BWGWf08ytfCrwrtt+Q6wf+g5uferoqtrAMjSWRPsZRfJjLODQcoGqprs+VLQsXVwHHAOsF5GlIjKikmu2Bba67W/FUr6t7GPbXQdUNQ844HX+dvcdETlGRD4Rkd22W+IJLKvFnT1u2/k+9htWIq8h9rnA7p/JwG3AN1ir+NajYl9zf6N6FesN6E1V9dvPVDUHOIjVP91pHkAbdQqjgKOAqm5U1cuBlsDTwGx7tVlfC/TtBNz9aR2xLJc9WAsJli2FLSKpWIsJejTntf8fYD3QRS0XyAOAVP9uDLUVVS1V1Q+wrNVBWG9W3n1tB4CIJACvAG8BN/sIKyuLpBCRhkBTKi7Lvr+yNvDd/+Mao4CjgIhcKSItVNWJ9SoI1pdgH+DE8o+5mAn8w17mvCGWxfqeqpZg+XbPE5GT7IGxR6lamaYBh4EcETkWuDlU92WoXYjF+UATrNV8ZwETRCTNHkS7G3jHrv6A/fdvwP8Bb9lK2cW5InKy3Q//Cfyoqh5vX6paWkUbe4D2dWmQ1yjg6HA2sEZEcrAG5C5T1QLbhTAB+M6OUhgEvAG8jeU3/gMoAG4HUNU19va7WNZwNrAXy8/mj3uBUXbdKcB7ob89Q4zzsd33DmP1t6vd+lIusBlYAswA3hCRAViK8ipbiT6NZa2OcbvmDOARLNfDAKxBOV/4bMM+9hXWsve7RWR/aG41tjHL0scRtoWcieVe+CPK4hjqCCIyFchQ1XHRlqW2YSzgWo6InCci9W0f8v9hjVJvia5UBoMhEIwCrv2cjzXYsRPoguXOMK81BkMtwLggDAaDIUoYC9hgMBiiRK1OztK8eXPt3LlztMUwRJnly5fvV9UW0Wrf9ENDdftgrVbAnTt3ZtmyZdEWwxBlRGRr1bXCh+mHhur2QeOCMBgMhihhFLDBYIgaM2fOpGfPniQkJNCzZ09mzpwZbZEiSq12QRgMhtrLzJkzefDBB3n99dc5+eSTWbJkCddddx0Al19eNzKeGgVciyguLiYjI4OCgoJoixIVUlJSaN++PUlJSdEWxRACJkyYwKhRo7j99ttZt24d3bp1Y9SoUUyYMMEo4Hij85j5AGx5aniUJak+GRkZpKWl0blzZ0TqVgIzVeXAgQNkZGRwxBFHRFscQwhYu3Yte/bsoWHDhqgqubm5vPLKKxw44J3pMn4xPuBaREFBAc2aNatzyhdARGjWrFmdtf7jkYSEBPLz8wHK+nR+fj4JCQmVnRZXhFUB2+uTrRKRX0RkmV3W1F47aqP9t4lb/bH2WlMbRGRYOGWrrdRF5euiLt97PFJSUkJeXh75+fk4nU7y8/PJy8ujpKQk2qJFjEhYwENVta+qDrT3xwALVbUL1nI7Y6BsfbPLgB5Y6Rpf8so3ajAY4oz69euTmpqKw+EgNTWV+vXrR1ukiBINH/D5wGn29jRgEXC/Xf6uqhYCf4jIJuB44H9RkLFW4PJrh4rq+MfHjx9Pw4YNuffee30enzt3Lscccwzdu3ev9DqLFy/mrrvuYuXKlbz77rtcfPHFQctiqH2UlJSwY8cOnE4nO3bswOGoW17RcN+tAgtEZLmI3GiXtVLVXQD235Z2eTs81y/LwMdaUSJyo1hLui/bt29fGEU3hIK5c+eydu3aKut17NiRqVOnMmrUqAhIZYgVCgsLKS4uBqwon8LCytYSiD/CrYAHq2p/4BzgVhE5pZK6vhx8FVK1qeqrqjpQVQe2aBG16f91mgkTJtC1a1fOOOMMNmzYAMCUKVM47rjj6NOnDxdddBF5eXl8//33zJs3j/vuu4++ffvy+++/+6wH1nTe3r171zkLyFC3CWtvV9Wd9t+9wIdYLoU9ItIGwP67166egdvCfliLTXov6meIMsuXL+fdd99lxYoVfPDBByxduhSAP//5zyxdupRff/2Vbt268frrr3PSSScxcuRInnnmGX755ReOOuoon/UMdRvXj25d/PEN2x2LSAMRSXNtA2dhLfw3D7jarnY18JG9PQ+4TESSReQIrOTiP4VLPkP1+Pbbb7nwwgupX78+jRo1YuTIkQCsXr2aIUOG0KtXL6ZPn86aNWt8nh9oPUPdICkpiY4dO+JwOOjYsWOdm2QTzp+cVsASEfkVS5HOV9X/Ak8BZ4rIRuBMe9+1wOQsYC3wX+BWewFAQ4zhKxzsmmuuYfLkyaxatYpHHnnEb7xuoPUMdYOSkhJuv/12srOzuf322+tUCBqEUQGr6mZV7WN/eqjqBLv8gKqerqpd7L8H3c6ZoKpHqWpXVf0sXLIZqs8pp5zChx9+SH5+PtnZ2Xz88ccAZGdn06ZNG4qLi5k+fXpZ/bS0NLKzs8v2/dUz1E1UldGjR9OgQQNGjx5NXVuhp85MRY5HojGtun///lx66aX07duXTp06MWTIEAD++c9/csIJJ9CpUyd69epVpnQvu+wybrjhBiZNmsTs2bP91lu6dCkXXnghhw4d4uOPP+aRRx4x7ok4p2nTphw6dMijTERo0qSJnzPij1q9JtzAgQM10ETY8ZALwpWwpC7j6xmIyHK3iT41RkTSgdeAnliROH9TVb/x6MH0Q4NFVbMaa5teqm4frHvDjgZD1UwE/quqxwJ9gHVRlifuUFVUlRkzZtCjRw8QBz169GDGjBm1TvnWBOOCMBjcEJFGwCnANQCqWgQURVOmeObyyy/n8ssvp/OY+ayuxW+n1cVYwAaDJ0cC+4A3RWSFiLxmh1F6YGZkGkKBUcAGgyeJQH/gP6raD8jFThjljpmRaQgFRgEbDJ5kABmq+qO9PxtLIRsMIccoYIPBDVXdDWwXka520elYk4MMhpBjBuFqM+Mbh/h6WcGfEqJ0lM8++yyvvfYaiYmJtGjRgjfeeINOnToFLU+IuB2YLiL1gM3AtdESxBDfGAvYEFYCTUfZr18/li1bxsqVK7n44osZPXp0BKTzjar+Yvt3e6vqBap6qOqzDIbgMQrYEDThSEc5dOjQstUQBg0aREZGRtTuz2CIFEYBG4IiEukoX3/9dc4555xI35rBEHGMD9gQFO7pKAGPdJTjxo0jMzOTnJwchg3zvaZqVfXeeecdli1bxjfffBPeGzEYYgCjgA1B4y8d5dy5c+nTpw9Tp05l0aJFPs+trN6XX37JhAkT+Oabb0hOTg6T9AZD7GBcEIagCFc6yhUrVnDTTTcxb948WrZsicFQFwi7BWwvLb8M2KGqI0SkKfAe0BnYAvzFNcosImOB64BS4A5V/Tzc8tVqqhE2VlPClY7yvvvuIycnh0suuQSwFumcN29exO/PYIgkkXBB3ImVTaqRvT8GWKiqT4nIGHv/fhHpDlwG9ADaAl+KyDFmVYzY48EHH+TBBx+sUH7zzTdXKBs8eLBHGNrNN9/ss96XX34ZWiENhlpAWF0QItIeGI6VW9XF+cA0e3sacIFb+buqWqiqfwCbsBbxNBgMhrgk3D7g54HRgNOtrJWq7gKw/7ocfu2A7W71MuwyD0wWKoPBEC+Ec1XkEcBeVV0e6Ck+yipkZjZZqAwGQ7wQTh/wYGCkiJwLpACNROQdYI+ItFHVXSLSBthr188AOrid3x7YGUb5DAaDIaqEc1XksaraXlU7Yw2ufaWqVwLzgKvtalcDH9nb84DLRCRZRI4AumAtZ28wGAxxSTQmYjwFzBKR64BtwCUAqrpGRGZhpf4rAW41ERAGgyGeiYgCVtVFwCJ7+wBWjlVf9SYAEyIhUzzQa1qvkF5v1dWrgj4nVOkoX375ZV588UUSEhJo2LAhr776apXnGAy1HTMTzhBWAk1HOWrUKFatWsUvv/zC6NGjufvuuyMgncEQXQJSwCLSM9yCGGoP4UhH2ahRo7Lr5+bm+sw3YTDEG4FawC+LyE8icouIpIdTIENsE850lC+++CJHHXUUo0ePZtKkSdG6RYMhYgSkgFX1ZOAKrDCxZSIyQ0TODKtkhpjEPR1lo0aNPNJRDhkyhF69ejF9+nTWrFnj8/zK6t166638/vvvPP300zz++OMRuR+DIZoE7ANW1Y3AOOB+4FRgkoisF5E/h0s4Q2ziLx3l5MmTWbVqFY888ggFBQU+zw2k3mWXXcbcuXNDLbbBEHME6gPuLSLPYSXV+RNwnqp2s7efC6N8hhgjXOkoN27cWLY9f/58unTpEoG7MRiiS6BhaJOBKcADqprvKlTVnSIyLiySGaqkOmFjNSVc6SgnT57Ml19+SVJSEk2aNGHatGl+ZTAY4gVRrZBuoWIlkYZAvmtihIg4gBRVzQuzfJUycOBAXbZsWUB1O4+ZD8CWp4aHU6Swsm7dOrp16xZtMaKKr2cgIstVdWCURAqqHxp803nM/Fr93axuHwzUB/wlkOq2X98uMxgMBkM1CVQBp6hqjmvH3q4fHpEMBoOhbhCoAs4Vkf6uHREZAORXUt9gqNWISIKIrBCRT6ItiyF+CXQQ7i7gfRFxpYdsA1waFokMhtjAeyktgyHkBKSAVXWpiBwLdMVKnL5eVYvDKpnBECXcltKaAJikFCGgz6MLyMqvXGW4Bsq9aZyaxK+PnBUOsaJOMNnQjsNayTgR6CciqOpbYZHKYIguz2MtpZXmr4KI3AjcCNYKzobKycovrnaUgz/FHA8EpIBF5G3gKOAXrCXjwVouyCjgKLLu2NCGpHVbvy7oc0KVjtLF7NmzueSSS1i6dCkDB0Y+ssx9KS0ROc1fPVV9FXgVrDC0yEhniDcCtYAHAt01kKBhGxFJARYDyXY7s1X1ERFpCryHZU1vAf6iqofsc8YC12Ep+TtU9fNA2zPEJnPnzmXEiBEBKeDs7GwmTZrECSecEAHJ/OJzKS17NReDIaQEGgWxGmgd5LULgT+pah+gL3C2iAwCxgALVbULsNDeR0S6Yy1d1AM4G3hJRBKCbNMQAcKRjhLgoYceYvTo0aSkpETr1ipbSssQZ4hIpZ9IEKgCbg6sFZHPRWSe61PZCWrhih1Osj8KnA+45plOAy6wt88H3lXVQlX9A9gEHB/4rRgiQbjSUa5YsYLt27czYsSIaN6eoQ6hqmWfTvd/4rEfxMt+jQjUBTG+Ohe3LdjlwNHAi6r6o4i0UtVdAPbKyC3t6u2AH9xOz7DLvK9pBj+iiHs6SsAjHeW4cePIzMwkJyeHYcOG+TzfVz2n08k//vEPpk6dGqnbCAj3pbQMhnAQaD7gb7D8tUn29lLg5wDOK1XVvlhLzB9fxcoavmz+Cj9Dqvqqqg5U1YEtWrQIRHxDiAl1Osrs7GxWr17NaaedRufOnfnhhx8YOXIkJr+CId4JNB3lDcBs4BW7qB0wN9BGVDUTy5I4G9gjIm3s67YB9trVMrASvrtoD+zEEFOEIx1l48aN2b9/P1u2bGHLli0MGjSIefPmRSUKwmCIJIG6IG7F8sf+CFZydjfXgU9EpAVQrKqZIpIKnAE8DcwDrsZanv5q4CP7lHnADBF5FmgLdAF+Cu526hbVCRurKeFKR2kw1EUCVcCFqlrkevUUkUR8uAe8aANMs/3ADmCWqn4iIv8DZonIdcA24BIAVV0jIrOAtUAJcKsr/aUhtnjwwQd58MEHK5TffPPNFcoGDx7ssSryzTff7LOeO4sWLaqxjAZDbSBQBfyNiDwApNprwd0CfFzZCaq6Eujno/wAcLqfcyZgTf80GAyGuCfQMLQxwD5gFXAT8CnW+nAGg8FgqCaBJuNxYi1JNCW84hiqQlUjFiQea0QqNtNgiBSB5oL4A98hYUeGXCKDX1JSUjhw4ADNmjWrc0pYVTlw4EBUZ8kZqk9atzH0mjammueClZyuZlSVka2ypD/hysgWTC4IFylYA2dNQy6NoVLat29PRkYG+/bti7YoUSElJYX27dtHWwxDNche91TUs6HFYka2QF0QB7yKnheRJcDDoRcptMRTKrukpCSOOOKIaIthMBhCRKAuiP5uuw4si9hvrlSDwWCINWLBDeJNoC6If7ttl2CnkQy5NAaDwRAmYsEN4k2gLoihYWndYDAY6jCBuiAqXRdLVZ8NjTgGgyESVBVFE68hf9W1ZBunJoVYEotgoiCOw8rXAHAe1moX28MhlMFgCC/uCrbzmPnVfjWvTVR2j9F6BoEq4OZAf1XNBhCR8cD7qnp9uAQzGAyGeCfQqcgdgSK3/SKsNd0MBoPBUE0CtYDfBn4SkQ+xZsRdiFkR2WAwBEGs+V9jgUCjICaIyGfAELvoWlVdET6xDAZDPFGVf7Wu+KG9CdQFAVAfOKyqE4EMETFTsgwGg6EGBLok0SPA/cBYuygJeKeKczqIyNcisk5E1ojInXZ5UxH5QkQ22n+buJ0zVkQ2icgGEfG9qqPBYDDECYFawBcCI4FcAFXdSdVTkUuAe1S1GzAIuFVEumPlFl6oql2AhfY+9rHLgB5Ya8e9ZK+mYTAYDHFJoAq4SK3AQQUQkQZVnaCqu1T1Z3s7G1iHtZjn+cA0u9o04AJ7+3zgXVUtVNU/gE1Y69AZDAZDXBKoAp4lIq8A6fYKyV8SRHJ2EemMtTzRj0ArVd0FlpIGXIt7tsNzYkeGXeZ9rRtFZJmILKuraRkN4cOf68wQf4hI2Wfr0yM89iOVb7vKKAixJHkPOBY4DHQFHlbVLwJpQEQaAnOAu1T1cCU35uuAryTwrwKvAgwcODA+50saoonLdfaziKQBy0XkC1VdW9WJhtpFLEy3rlIBq6qKyFxVHQAEpHRdiEgSlvKdrqof2MV7RKSNqu4SkTbAXrs8A+jgdnp7YGcw7RkMNcV+K3O9oWWLiMt1ZhSwIeQE6oL4QUSOC+bCtuX8OrDOK1nPPOBqe/tq4CO38stEJNkOcesC/BRMm/HKumO7lX0MkcPLdeZ9zLjCaoD36763C6CuEOhMuKHA30VkC1YkhGAZx70rOWcw8FdglYj8Ypc9ADyF5VO+DtiGtbwRqrpGRGZhWRolwK2qWhrc7RgMocHbdeZ93LjCakYsvP7HApUqYBHpqKrbgHOCvbCqLsG3XxfgdD/nTAAmBNtWMLhPh6yNM29cVnC39euiLEn84sd1ZjCEnKos4LlYWdC2isgcVb0oAjIZDFGjEtdZrSYWVwQ2VK2A3S1YswS9oS7g03Wmqp9GT6SaE4srAhuqVsDqZ9tgiEuqcJ0ZDCGlKgXcR0QOY3XIVHsbygfhGoVVOoPBYIhjKlXAqmpyMRgMBkOYCDQMzRAFKov7NdEQhmBI6zaGXtPGVPNcgNoXMVQbMArYYKgDZK97ygzCxSDBJGQ3GAwGQwgxCthgMBiihFHABoPBECWMAjYYDIYoYQbhQsX4xvbfrOjKYTD4wSwLH3sYBWww1AEqi4Coq0vCxwLGBWEwGAxRwljANcHldjAYDIZqEDYLWETeEJG9IrLaraypiHwhIhvtv03cjo0VkU0iskFEhoVLrrAzvnFEFbNZLcNgqL2E0wUxFTjbq2wMsFBVuwAL7X1EpDtwGdDDPuclETF5KAwGQ1wTNgWsqouBg17F5wPT7O1pwAVu5e+qaqGq/gFsAo4Pl2wGg8EQC0R6EK6Vveqsa/XZlnZ5O2C7W70Mu6wCZjFEg8EQL8RKFISvBNg+E8Cr6quqOlBVB7Zo0SLMYoWICPuFDQZD7SDSCniPiLQBsP/utcszgA5u9doDOyMsm8FgMESUSCvgecDV9vbVwEdu5ZeJSLKIHAF0AX6KsGyBYyxag8EQAsIWBywiM4HTgOYikgE8AjwFzBKR64BtwCUAqrpGRGYBa4ES4FZVLQ2XbBGhmgrahJPVHYYNG8YXX3yBqiIinHnmmXz++efRFssQQcKmgFX1cj+HTvdTfwIwIVzy1Bhj8RpCyLBhw1iwYAFNmjQhKyuLxo0bs2DBAoYNG2aUcB0iVgbhDIY6xYIFC0hLS2POnDkUFBQwZ84c0tLSWLBgQbRFM0QQo4ANhigxffp0hg4dSlJSEkOHDmX69OkRbX/mzJn07NmTrf8aSc+ePZk5c2ZE2zeYXBAGQ8QRsaIuR44cGTUZZs6cyU033URBQQGok99++42bbroJgMsv9+c9NIQaYwFHEhM9USsQkbPtnCSbRKR6SwlXgqrSoEEDAG6++Wba3/EuN998M0BZebgZNWoU2dnZFBcXA1BcXEx2djajRo0q+4EwhB9jAUeBXtN6+T02K4JyGCpi5yB5ETgTKz59qYjMU9W1oWxnypQpXHfddfznP/8B/sN/gNTUVKZMmRLKZirlX//6F/fdd1/Z/jPPPMPo0aNR9TkHyhAGjAKOIL2O6BhtEQxVczywSVU3A4jIu1i5SqqtgPs8uoCs/GKv0kY0OOM2Sv73HsUHMkhq1p4GJ17K2F8bMfbX8pUrGqcm8esjZ1W36Urp2bNnpfuG8GMUcFVEyGUw68mSiLRjqBJfeUlO8K4kIjcCNwJ07Fj5D6uz8z2k+ShP6watL2oEdLdLPrM/bucCsCogwYMhMTGRK6+8ktmzZ3PyySezZMkSrrzyShITjUqIJOZpxxGuSRzd1q+LsiS1moDykqjqq8CrAAMHDqz0nT173VPVFiZc67H9/e9/56WXXuLyyy9n7969tGzZkszMTG655ZawtGfwjVHABoMnIc9L4m+9tWjOhHvhhRcAyxetqmXK11VuiAwmCqKO0mtar7KPwYOlQBcROUJE6mEtFDAv1I24ZsK5Ig5EpGwmXKR44YUXKCgoQFUpKCgwyjcKxKUFXN3ltz2oxeFilSnVVVeH3p8YT6hqiYjcBnwOJABvqOqaULfjUr7PPPMMz2d04q72W7n33nvNTLg6RlwqYIOhJqjqp8Cn4bq+y+pVVe655x4A7glXY4aYxrgg3HFNlKjF1m91qMwVUd1jBv+44myvv/56VLXsc/3110dZMkOkMRZwHaMyhel+zLgqwouI8Nprr5GUlMSTTz7J2LFjee2118wstDqGUcAQdxavK6b4L2ND9+81yjm03HrrrUyePJn//Oc/9my48nJD3SHmFLCInA1MxBoAeU1Vqx9EWQuI1QkYgVrK3vsu5ezrfKO4y3EPAyssLCQ5OZkbbrjBRCLUMWJKAUdqHn4ZcWb5xgLBKG6o20r5hRdeMAq3jhNTCpgwzMN3sSVlVE0vETJi1eqNJi7l7K6QvRV2XVbWhvhEYinzkYhcDJytqtfb+38FTlDV29zqlM3BB7oCG4JoojmwP0TihoNYlw9iU8ZOqtoiWo2LyD5gaw0uEe1nGu32Y0GGmrZfrT4YaxZwlfPw3efgB31xkWWqOrA650aCWJcPaoeMkaamyj/azzTa7ceCDNFqP9bigEM+D99gMBhilVhTwBGZh28wGAyxQEy5ICIwD79arosIEuvyQe2QsbYR7Wca7fYh+jJEpf2YGoQzGAyGukSsuSAMBoOhzmAUsMFgMESJuFTAVS0rLhaT7OMrRaR/BGXrICJfi8g6EVkjInf6qHOaiGSJyC/25+FIyecmwxYRWWW3v8zH8ag9w9qCiIwXkXsrOX6BiHT3d9yt3iki8rOIlNix8pFu/24RWWv/nxeKSKcoyPB3t/64JJBzQtm+W/2LRURFJCQha3GngN2mM5+Dtdrh5T4e8DlAF/tzI/AfIkcJcI+qdgMGAbf66QDfqmpf+/NYBOVzZ6jdvq/OFs1nGC9cQPmKnJWxDbgGmBGl9lcAA1W1NzAb+FcUZJihqr1Uta/d/rMRbh8RSQPuAH4MUdvxp4Bxm86sqkWAazqzO+cDb6nFD0C6iLSJhHCquktVf7a3s4F1WCvx1jai9gxjGRF50H77+hJrpiYicoOILBWRX0VkjojUF5GTgJHAM7ZVd5SvegCqukVVV+JaJDny7X+tqnl2Ez9gxedHWobDbk00wMdCqeFs3+afWMq/oKr/Q8C4J4SOhw9wMVYWNdf+X4HJXnU+AU5221+I9QsfaVk7Y1k3jbzKTwMOAL9irVPeIwqy/QH8DCwHbvRxPCaeYSx9gAFYa8jXBxoBm4B7gWZudR4Hbre3pwIXux3zWc+tzKN+pNu3yycD46IhA3Ar8DuwHegSyfaBfsAce3tRqPp6TMUBh4hAlhUPaOnxcCIiDYE5wF3q+esOluLrpKo5InIuMBfrVT+SDFbVnSLSEvhCRNar6mK341F/hjHIEOBDta1FEXFNIuopIo8D6UBDrDh3XwRaLyrti8iVwEDg1GjIoKovAi+KyChgHHB1JNoXEQfwHJYbKKTEowsikOnMUZ3yLCJJWMp3uqp+4H1cVQ+rao69/SmQJCLNIyWf3e5O++9e4EMs1447Ztq4b3z9CE0FblPVXsCjQIqfcwOtF/H2ReQM4EFgpKoWRkMGN97F8t1Gqv00oCewSES2YI3dzAvFQFw8KuBApjPPA64Si0FAlqruioRwIiLA68A6VfU5kCAire16iMjxWP+nA5GQz26zgT3ggIg0AM4CVntVi9ozjGEWAxeKSKr9/M6zy9OAXfYP7xVu9bPtY1RRL6rti0g/4BUs5bs3SjK4vwEOBzZGqn1VzVLV5qraWVU7Y/nBR6pqheigYIk7F4T6mc4sIn+3j7+MteLtuVj+oTzg2giKOBjLL71KRH6xyx4AOrrJdzFws4iUAPnAZWo7nyJEK+BD+zcgEWsE+r8x9AxjElX9WUTeA37BSk/5rX3oIayR861Y/knXF/5dYIqI3IH1P/dZT0SOw3oLaQKcJyKPqmqPSLUPPIP1Ov6+3Se2qerISD4D4DbbCi8GDuHb/RDO9sOCmYpsMBgMUSIeXRAGg8FQKzAK2GAwGKKEUcAGg8EQJYwCNhgMhihhFLDBYDBECaOADQaDIUoYBWwwGAxR4v8BsZ/IQTgib98AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(2, 2, figsize=(5, 5))\n", + "\n", + "df.plot(ax=ax[0][0],\n", + " title='Line plot')\n", + "\n", + "df.plot(ax=ax[0][1],\n", + " style='o',\n", + " title='Scatter plot')\n", + "\n", + "df.plot(ax=ax[1][0],\n", + " kind='hist',\n", + " bins=50,\n", + " title='Histogram')\n", + "\n", + "df.plot(ax=ax[1][1],\n", + " kind='box',\n", + " title='Boxplot')\n", + "\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Pie charts" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "False 837\n", + "True 163\n", + "Name: data1, dtype: int64" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gt01 = df['data1'] > 0.1\n", + "piecounts = gt01.value_counts()\n", + "piecounts" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEeCAYAAAAwzyjTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA2LklEQVR4nO3dd3xc1Zn/8c+500dl5F5wETbCBoOxwSAg9A4iBAKEhFDDbgiQ0MIvUXYJmWRTvLvZBBJIgDTANNMxiBI6hthyxbgKuci9W1YbTb3n98cd2bKRrZGt0Z07et6v17xkRlMeCemre8499zlKa40QQjiBYXcBQgiRKQksIYRjSGAJIRxDAksI4RgSWEIIx5DAEkI4hgSWEMIxJLCEEI4hgSWEcAwJLCGEY0hgCSEcQwJLCOEYElhCCMeQwBJCOIYElhDCMSSwhBCOIYElRJ5RSl2qlJqvlIoqpVYrpe5VSrkyeN5RSqlHlFJzlVJxpVTOdfeUwBIijyilzgdeBGYDFwIPAPcCv87g6ccBFwFrgDnZqvFgKGmRLHJOOOQDNJAi3JCyu5xsU0r1xfpd3N4NrzUfaNRan97uvvuwQmuE1nrTfp5raK3N9L9/Cfyn1lodbE3dyW13AUJ0YA0wEIBwSANNwE6gvt3HemAHsBpYtesWboj0eLUHbzzwT6XUG8AU4HWtdayrL6KUGg5MAL6716emAD/HOuL6x76e3xZWuUwCS+SES8Z4ioBDAf3yVQGXy9j1h10BxenbiE5fKBzaghVey4EFwDxgHuGG+iyU3V1mAjcB1wBTgUal1HPAFK31p114nXHpj4va36m1XqWUigBHdkexdpLAErnibOCbQEs0SUGB94BfZ2D6Vg58e9e94VAdMB8rwKqBTwg3tB54ud1Hax3FOgqaopQaBHwLK7xuVkqtBJ7ECq/lnbxU3/THjsK5vt3nHUsCS+QKA2vot95QZGPeqjR9uyz933HCoRnAe+nbLMINySy8b5dorTcD9wP3K6XGYAXXtcB9Sqm/a61v2s/T2w5LO5qYzqm5qAMlgSV6Ky9wevr2C6CJcOhj4DXgJcINW+0sLi2UvhUAKaClk8fvSH/s6EiqpN3nHUsCSwhLEVCRvj2UDq/nscJrc08VoZQ6DGso+22gDPgM+G/g6f2d4UtbnP44DpjR7jVLgSCwpJvL7XESWEJ8mQs4M317MB1eU4FnCDc0dPebKaUKgRuwhn/lwHrgKax5q0X7eeoetNZrlFILsMLur+0+dQ2QAN7srprtIgtHhdg/AzgD+DOwgXDob4RDx3fze0wCfgPUAOdirZf6cVfCqp3/AE5Pr1g/Qyl1F9YarAfaH6Eppe5TSiWVUiPb3RdUSl2hlLoCGJu+74r0bdJBfH3dRo6whMhcEPgO8B3CoXnAI8DThBuaD/J15wGDtNYHvYZMa/1GOnB+hnXUthlrlfuv9nqogXUk2X4yfiDWMLi9tv9+PP16tpKV7iInXDLG83WshY3rp14RuCfgUQV215ShJqzh128JN2ywu5h8J0NCIQ5OEXAXsJJw6GHCoUPtLiifSWAJ0T18wM3AF4RDTxAOHWF3QflIAkuI7uXGWui5iHDoWcKhUXYXlE8ksITIDgO4ClhKOHQ/4VA/uwvKB3KWUByw0soqA+iPdXZpwD5u/bGGS+70zQWcWze5IhdWkvcEL3AHcB3h0M+Bh3LhEiCnksASnSqtrHJjrbo+EmsVddvHw7F+IbvK033VOUYfrGsEbyYcup1ww7s21+NIElhiD6WVVS6szpOnA8djhdPh9M6QyYYjgHcIhx4H7srxtjc5RwKrl0sH1ESsy1DOAE7B6j0lsut64HzCoe8TbnjR7mKcQgKrFyqtrDoMuAQrpE7F6ggget5g4AXCoZeA2wg3dHZxc68ngdVLlFZWHQFckb6Nt7kcsaevA2cSDt1GuOEZu4vJZRJYeay0smo4cLXW+ttKqaPtrkfsVx/gacKhs4Dbc6Ubaq6RwMozpZVVPuAqrfV3gNOUxe6yROb+DSgnHPoG4YZldheTaySw8kRpZdUg4BatzVuVMgZISDna0cAcwqFbCTc8YXcxuUQCy+FKK6smam3eBeqbSimPUnLxQp4oAB4nHDoT+B7hhi5v+5WPJLAcKL0U4VJtpu5WhutkCam8dgMwhnDoUsINW+wuxm4SWA5SWlmlgG9oM/UbZbgOVYbL7pJEzzgJqCYcqiDc4Pi+7AdD/jQ7xMgfTTtHJ+MLgWeV4ZKeS71PKfAvwqHz7C7EThJYOW7kj147dsQPX/pEGa53lNs7rvNniDwWAqoIh75ndyF2kSFhjiqtrBptJmL/p9zeSwyPT075iTZu4M+EQ0MJN9xndzE9TQIrx5RWVgXNePR/lcd7s+HxySSV2JefEg4FCDf8P7sL6UkSWDlk+PenXKx8BX81vP5BdtciHOEewiE/1sr4XrGbjARWDhh++9MlaP2Eq7DvV+2uRTjO9wE/4dDNhBtMu4vJNpl0t9mwWx+7Tnn8q10FJRJW4kD9G9Yi07yfQpAjLJsMv/2ZwaCfdRcPON3uWkReuAaIYYVX3pIjLBsccvNfrjO8gRWuYEjCSnSnmwiHfm13EdkkR1g9qN9Fd/j9w496yl0y5OtycbLIkp8QDm0h3HC/3YVkgxxh9ZBB3/jF+ODo47/w9BkqYSWy7XeEQ9+2u4hskMDqAYOv/s2/+YYfVe0q6DPc7lpEr6CAfxAOXWB3Id1NAiuLgmXlniHX/e4J37CjHjU8Pr/d9YhexQM8TziUV5dzSWBlSclp1w3sc+ZNs3xDx1yrDEPGgMIOhcArhEMldhfSXSSwsqDk1GuOKTzqrLmevodMsLsW0esdBjxDOJQXv+t58UXkkpLTrq0omnDB++7iAcPsrkWItAuAX9pdRHeQwOomwbJy1eesm24sOvbiZ1wFffraXY8Qe/kJ4dAVdhdxsCSwukGwrNzwH3rsPUUTLnzI5S8ssrseIfbhMcKhsXYXcTAksA5SsKzcEyw76TdF48/7leENBOyuR4j9KACeIhzy2F3IgZKV7gchWFbuDx5x2h8Kxp76HWW48v7C01yxrtHkvz+JMWejyYJNKVqTsOqOQkpLvvz3d+a6JOEPY8xclyJhwqg+Bv95qo9vHrXv39mmmOamaa3M25hiY7PGY8CY/gY/OMHLNeO9ezz2//4V4/cz4yRM+M4ED78624fRbmFw9bok50yJsOiWQkZ2UJ8NjgV+DvyH3YUcCAmsAxQsKy8KjD7+/oKxp14vYdWzlu8weW5JkuOGuDh1pIt/rkh1+LiqLxJcNrWVq4/28PTlXrwuxZKtKaLJ/beOiqc0bgN+coqP0hKDWEozdXGSa1+OsrVFc9dJPgDeX5Wk8r0YD13kp8iruPn1Vsb0N7hhghVqKVNzS1WU/zjFlyth1ebHhENvEG74xO5CukoC6wAEy8pLfMOO/F3h0edeI2HV804b6WLzPdZU4V/nxTsMrKaY5sZXo9x6vJf7L9i9ZvecUZ3/yPcLGjx9eXCP+y4q8/DFdpO/f5bYFVhv1iY5d5Sb7x5nBdRHq5O8uTy5K7D+NDtBNAn3nLznUVkOMIAphEPjCTc02V1MV+RU7DtBsKy8wDvosF8XHXfJ1crlduxcgJMZGVyL+fySBFsjmh+e1H1h0S+g8LT7jYmnINDuJ6DAo4gmrX9vbja578MoD13kx+PKyXXDpcAf7C6iqySwuiBYVu739Bt+X/EJl11vuL0+u+sR+/bJmhR9A4qFW1Ic/edm3L9oZPjvm/j5hzFSZmbdhLXWJE3N9ojJo3PjvL0iyZ0n7g7A8mEu3l2ZZN7GFMt3mDy/JMGJh1gH3Pe8E6OizMOZh+b0IOYGwiFHNY7M6e9mLgmWlXvcocH3FJ945S2GNxDs/BnCThuaTCIJzdUvtvLT03wcN9QKl//6OMbOqOb3F3R+aedDsxP84M0oAB4DHrjAz3XH7A6sq8a5eWWZm+MebQHgzFIXt5d7+aguyetfJFh2W2F2vrju9SDh0PuEG1rsLiQTElgZCJaVu1yF/W4LnfyNu2WdlTOYGqJJ+NVZPu5OzzmdUepme0Tz0Ow44TN8hPz7H6pdNc7NicMK2BbRTKuxwsul4OZJVmi5DMVzVwbZ0GSSSMHIEoNESnPbG1F+eaafQYUGD8yM8UB1nOY4fP0IN78/30/Ak1NDxBHAL4Af2l1IJmRI2IlgWbnC5bk6dOKVla5gSR+76xGZ6Re0QuHcvSbZzxvtJmHC4q0dn1lsb0CBwaShLi44zM2fKgJcO97DPe9ESaT2HFIOLTJ2nQW8f2YcvxtuOd7DOyuS/PSDGC9dFWTxrQXMWp/i19Nj3fQVdptmYK3dRWRKAms/gmXlCri0eNIlP3GHBsrWWw4yboA1l7T3/Hxb1BxI/4xJQ100x2FzS8dzYOsaTX45PcafKwIYSvHW8iTnjnYzYbCLAQUGN07w8taKZNffOEtW7DAX17fqI53UnVQCa/9ODpSddJd/2Lgj7C5EdM2lY60jq7eW7xkQby9P4nfDUQO7vhrlo9VJCr0wsKDjtLvzrSjfPtrD8Yfsfu2W+O5wa45rdA7sHtgQ1Tv+UB178663o9Ovf6W10e56ukLmsPYhWFZe6uk/8oeF48480e5axJe9sCQBwNwN1tDuzdokAwoUA4KK00vdHDXQxQ0TPNz3QQxTw7FDrEn3v85P8NPTvBR6d4eO+xeNXH+Mh799zbqy6pE5cWauT3HOoW6GFSu2t2qeW5zghSVJJp/tw9vBMoW3lyeZviZFzfd3T7SfM8rFA9Vx/jQ7ztAixR9nxblhgn0rYZKmTn68OjX7z7PjK2IpPgWem1aTaLCtoAMggdWBYFl5seEvvCdUfvmZstYqN135fOse/33rG9bZvNNHuvjwBuvH+pGL/RySDorNzZrSEoPfnefjjhP3XJGS0tatzdGDDF6tSXLPO1F2tGr6BxVH9Dd4/VsBKg7/8o9DLKn5/ptR/vdcHyXtJvIvLPPw67NNfj09RiShuXSsh3tPs2c1TN1Oc8UDM2PzV9TrlcBjwLJpNYkcON7rGqVz4Rg1hwTLyt2g7uhz5k23e/oOHWF3PXnqkLrJFRva33HJGM/XgQuB9VOvCNwT8KgCe0rLL81x3fjMwsSM175IrgNeAt6dVpOI213XgZIjrC/7WtGxFddIWAknS5narF6fmvvH6nhtS4JZwDPTahJb7K7rYElgtRMsKz/WN2zcd/2lE4+xuxYhDtT6RnP1H2fF5y3Zaq7GGv597sThX0cksNKCZeVDlTf4g6KJF56oZONA4UCtCd3y4tLEzOcWJ9cArwNvTqtJtHb2PCeRwAKCZeVe4NbQCZeVG95gsd31CNEVptZ6/kbzs/tnxmoaYswHnpxWk9jQ6RMdSALL8lX/oceWeweNlvVWwlG2tJgb/jQ7PnveRnMNMAWYO60mYdpdV7b0+sAKlpUfpnzBrxcefU653bUIkalYUkdf/yJZPeXzRJ2peQt4bVpNwhEXMB+MXh1YwbLyAPDd4kmXHm14/HJRs8h5WmsWbzUX3j8zvmRLi14MPDGtJrHa7rp6Sq8OLOBi37Ajj/IOGn203YUI0ZkdreaWR+cmZv1rbWot8DQwY1pNovOruPNIrw2sYFn5objcFxcdc+EJclJQ5LJ4SsffXZms/uu8xKqkyQfAS9NqEhlfA1haWXU58Gnd5IpN2auyZ/TKwAqWlXuA7xQefc4ow1/Qz+56hNiXL7anlt0/M75wXaOuAR6fVpNYnulzSyurRgMPYu38/ARwfZbK7DG9MrCAcwx/4ajAyInH2V2IEB1piOodj30Wr35vVWotMBX4eFpNIqPeNKWVVf5Ua+NvDF/hbcow2i5+vLa0surhuskVM7JWdA/odYEVLCsvAS4rmlgxSrk9svGpyClJUyc/qkvNfnhOfEUsxSfA89NqEjsyff7wO579mnJ7H3EFivfu36aAB0srq46vm1zh2GUPvS6wgIvdoUHF3sFlx9tdiBDtrao3lz9QHVuwsl6voIsdFUb88MXhOpV83BUoOnM/DzsWuC792o7UqwIrWFY+FDiraOJF45RhyH6CIic0x3XD0wsT1a9/kVwLvAi8l2lHhdLKKncq0vAzw1fwI8Pjz2RPs3tLK6uerJtckTutT7ug1wRWut3x5d5Bh4XcfYcdZXc9QqRMbc5cl5r7x1nx2ojVUeHpaTWJrZk+f/gdz56jXJ6/u4Kh4V1429HAtcA/ulpvLug1gQWUAZMKjzlvoixjEHZb12iufnBWfG67jgoLMx3+jbzn5YFmMvY3V6Do4gN8+3tLK6umOPEoq1cEVrCs3AC+5S+dGHIX9T/U7npE7xVJ6OaXliaq0x0VpgFvTatJRDN5bmlllZFqbfx/hjf4M5e/6GBOGI3Cmsv6+0G8hi16RWABE4BRwcNPGm93IaJ3MrXW8zaa8/9QHavZGWU+8FRXOiqMuOu5k1DG465AcVk3lfSfpZVVTzjtKCvvA8tqecy3vIMPU3J0Jeywudlc/6fZ8dnzN5lr6WJHhRE/fKmPTsb/bPgLv9HNfdoceZSV94EFHA30D449VY6uRI+KJXXra18kq6csSNRpeAt4PdOOCqWVVSrV2nir4Qn8xggUZevCfMcdZeV1YKXPDF7iKuqf9PQ5RM4Mih6htWbRFvPz+2fGl26N6IXAlGk1iTWZPn/Enc9NQKknXIHibF+UPwq4Cngqy+/TbfI6sLD+h5QWjjtrtKy7Ej1he8Tc/OjcxKwZ61LrsIJgZqYdFUorqwpTrY33G/7CG5UyemqT45uRwMoZ5yuPP+UdNHqS3YWI/BZP6fg/VySr/zYvsSqleR94uSsdFYbf8cz1hsf/e1eguE8Wy+zIqaWVVUfWTa5Y0sPve0DyNrCCZeUDgUkF484cLNcMimyq2ZZaev/M+ML1Tbs6KqzI9Lkj7n7hcExziitQfEIWS+zMd4E7bXz/jOVtYAFnAqZ/2JHS+lhkRUNUb//HZ/Hq91el1gHPAtO71FEh0jjZ8BfepgzD7t/D60orqyrrJldktB7MTnZ/o7IiWFZeCJzjG3602/AV9LW7HpFfkqZOfliXmvXwnPjKuNVR4blpNYn6TJ8//I5nLlNu38OuYPHALJbZFX2Ab2D1zMppeRlYQDngCow85ki7CxH5ZVW9ufz+mbHPVu3UK7Gux6vpQkeFEaSSj7sCxWdktcgDczMSWD0vvZThXAxXvbvfMAks0S3SHRVmvv5Fch1d76jgSbU2hg1fwT0qs44Kdji5tLLqqLrJFYvsLmR/8i6wgGHAwMCoSV7D7S2wuxjhbClTp2asS819cHdHhWe62FHhXOXy/M0VKO5KRwW7/Bs5Pvmej4F1HNZku+yEIw7Kukaz7o/V8XlLt5l1wON0qaPCK4PMRPRvrkBRRVaL7F6XIYHVc9JdGc5QHn+Du2TIWLvrEc4USejmF5ckZj6/ZFdHhbe71FEh0vhjwxe8zxUo8me30m43orSyamLd5Ir5dheyL3kVWFgr24uDh5UXKZc7V+cKRI4ytdZzN5jzH6iOfdEYYx7w5LSaxMZMnz/8zqlfUYbrcVeweHQWy8y2SwEJrB5yApD0Dh0jw0HRJZubzfUPzY7P/szqqPA4MC/zs38v9dHJ+MOGv/DKbu6oYIevAT+zu4h9yZvASu81eIry+He6iwc4+S+c6EGxpG6dVpOsfvLzA+yoEGm8zfAGfmMEigqzXGpPOaa0sqq0bnJFnd2FdCRvAgs4HPD7Rx5TrAxXPn1dIgu01izcYn7+wIF2VLjruYmgnnAFi/OxC8glwB/sLqIj+fSLPQlIeAeNPsLuQkRu2x4xNz8yNzFrptVR4UmsjgoZNdQrrawqSndUuKEHOyr0tK8hgZU96bODxwE7PCWDD7O7HpGb4ikde3t5ctbf5ydWpTTvAa84pKNCTzuttLKqT93kiowvN+opeRFYwBCg0B0anDD8hf3tLkbknmXpjgobrI4Kj02rSazM9Lkj7n5hDNqc4goU95bNd93AWVgr+nNKvgTWYQC+YUeW2lyHyDE7o3r7P+bHqz+oO8COCq2N/2P4Cm/JgY4KPe1UJLCyZhLQ7Ok37Bi7CxG5Ya+OCh8DL3Sto8Kzlyu390+uQM50VOhpp9hdQEccH1jp5QxjgM3u4gEj7a5H2G9lvVn7wMzY56t26uVYm5R2paPCSKujQtHpWS0y900orawqrJtc0Wx3Ie05PrCAQwCXq3hAwPAV9LO7GGGfppje+fTCRHVVbXIt8ALwQZc6KkQaf274C+5RHr8nu5U6ggs4EXjX7kLay4fAGgUo76DRQ+wuRNgjZerUv9am5j44K768NckMYGqXOircOfV85XL/1RUsHpbFMp3oeCSwut0EoNkdGuSE9h2im61tMOv+UB2fV7PdrMMa/i3qQkeFwWYy+neXv+jCbNboYDl3VtTRgZVu1ncYUO8u7DfI7npEz4kkdPPzixMzX1yaXAu8Stc6KrhSrY0/NrzBn7r8juuo0JMksLpZMeADEkYw1FvP5vQqptZ6zgZz/h+qYzXpjgpPdaWjwog7p56C4XrMFXB0R4WeMqy0smpw3eSKTXYX0sbpgTUI0Bguw/AVyILRPLep2Vz30Kz4nAWbzbVYw7/5Xeio0Fcn448Y/sIrnN9QoUeNBSSwuslAwPAOOLSf7Oycv6JWR4WZT32eWK3hTayOCpFMnltaWaVSrY3fN7yBX+dRR4WeNBr40O4i2jg9sEYBcU+/YTJ/lYe01ny+2fz8ger40m1WR4UnptUk1mb6/BF3PXcsqCmuQLFsRnLgcmronA+B1eIuHig/kHlmW8Tc9MicxOzq9am1wFN0vaPCHwx/4fVKGTL+OzgSWN0hWFbuwlo0utEoKBlgdz2i+7yyLDnjucWJDemOCi9Pq0k0Zfrc4Xc8c6Ph8f/OFSguyV6FvYoEVjfpBxiAaXgDxXYXI7qFHyh9ZlHiX8DjXeuo8OJYdGqKK1A8KXvl9UoSWN1k1zIGJfsP5oMUEMNqqPdJFzoqBNp1VJATL92vpLSyqm/d5IoddhcCzg6sYkABKLdPzv44XxXWtX9daah3pXL7HnIFimVKILtGA84OLKXUQq21nbvThACMQLFf/rI6X/qIKqOwGvHDl0pJJZ5wBYpPzXJZwjIKmG13EdBJYCmlvr6vTwGDu7+cLukHxF1F/eXoqpcorazypjsq/FB5fNJRoef0tbuANp0dYU3FOqXc0Wpiu6/B6gvEXcFQkc11iB4w/I5nL1Ruz19cweJD7K6lF8qZ37HOAutz4Lda60V7f0IpdU52SspYOrCK5Qgrj1kdFWL/cAWKLrC7ll4sZ87CdxZYd7LveYXLureULusDtBi+QgmsPFRaWeVKRRorDV/wXpe/0O6j+d7OGYGltZ6+n8/N6f5yMpPe1qsI2Km8gYBddYjsGHHn1FMxXI+5gsWj7K5FAE4JrDZKKT9wEzCOdnNXWuvvZKmuzgSx5tW0nCHMH+mOCo8a/sLLpaNCTnFWYAFTgGXA+cAvgG8DS7NVVAYK2HUiQH6yna60skqlIo23G77AL6WjQk7KmUn3TLfaPkxr/VOgRWv9OFAB2LkGa3fd8qfY0Ubc9dxxZiyyyBUsvl+5PBJWuclxR1iJ9MedSqmjsBp6lWalosy0C1oJLCcqrawqTrU2/tHwF14rHRVyXs5c+pZpYD2qlOoD3AtMAwqBn2atqs7t/gFXKtOjRJEjzFjkeuVy/9gVKA7ZXYvISEbXdfaETAPrPa11PfAx1jJ9lFKHZq2qzrUPLPnr7DCGL/hru2sQXRKzu4A2mR6dvNjBfS90ZyFdtCuklASWENmW0W5EPaGzawnHYi1lCO11XWEx9l6a0y6kJLCEyLKcOcLqbEg4BrgYKAG+2u7+JuDfs1RTJtodGeqMdk0RQhwwZxxhaa1fBV5VSp2ktZ7RQzVlYtdRlU4mcib9hchTOfM7lumk+3yl1G3kzkr3XXQiljPfTCHyVM78jmU66T4Fq//V+cBHwDCsYaFd4m3/MJOxnDlcFSJP5czvmFNXukdJDwt1PJoz30wh8lRGm9b2hEwDa++V7iHsXem+6xDVjLW02liHEL3BZrsLaOPUle5R0mGbijQ021iHEL3BRrsLaNPZOqy72/3njemPD6U/2nl9URLrqM+VaqlvsbEOIXqDnAmszoaERenbJOAWrJ2WhwI3A7ZtDx+prdZAA+BJNW+PaFmKJUQ25UxgdbYO6+cASql/AsdqrZvS/x0Gns96dfvXAPTBTEV1Mt6sPLI3oRBZss7uAtpkOuk+gnZLCdL/Lu32arqmHvACmLGW7TbXIkS+aq6bXLHN7iLadKXj6Cyl1MtYnT4vAx7PWlWZ2Qb4AMzWxm0U9h1pcz1C5KPVdhfQXkaBpbX+lVLqTaBtp90btdbzs1dWRtYBHoBUc/02BpTaW40Q+anO7gLay3ireq31PGBeFmvpqm2ACZBs3JIzh6xC5JnldhfQnpO7dW4jvdo9uWO9BJYQ2WH3SGoPTg6snVhHWEaifn2DNlM508ZViDySS6Mq5wZWpLY6hbUZRgCttRmLyJlCIbpXK7DE7iLac2xgpa3B2lQVM9okw0IhutfCuskVKbuLaM/pgbUKCAAkG7fmzGpcIfJETg0HwfmBtYX0DtCJLavW2FyLEPlGAqubbWn7R3T9kvUy8S5Et5LA6mabsS4T8pBKmqmWnTlzzZMQDpcAFtldxN4cHViR2moTWIzVUJBkw+acuoxACAebWze5Imd6ubdxdGClfU76TGFia50ElhDd4y27C+hIPgRWHemJ9+i6xeu0Nk17yxEiL7xpdwEdyYfA2oDVgdSl460JM9K4we6ChHAyrfU2YI7ddXTE8YEVqa1OAjXIPJYQ3UIp9U7d5IqcHKk4PrDSFmBtjEFs/dIam2sRwulycjgI+RNYq2ibx1rz+VozEW20uR4hHElbGyS8bXcd+5IvgbWWtvVYQGLH+qX2liOEMyml5tdNrtjS+SPtkReBFamtTgAzgf4AsbWLcuoKcyEcJGeHg5AngZU2m3QH1ejqBWvMRLTJ5nqEcKKn7S5gf/IpsGppNyxMyrBQiC7RWs+um1yR06OTvAms9LBwFulhYXTdkpz+xguRa5RSdu+E1am8Cay0WaSPsKKrP1tjJmLNNtcjhCNorePAM3bX0Zl8C6xarKvM3WitE9vX5tzV5kLkqNfqJlfssLuIzuRVYEVqq+NANelhYaR25lx7KxLCGZRSj9ldQybyKrDSqknvCJ3YsnJbsml7nb3lCJHbtNZbyNHuDHvLx8CqARpJ93qPrV2UkxdxCpErlFJP1k2ucES33rwLrPTF0G+SHha2fPHpUpl8F6Jj6UtxHrW7jkzlXWClVWPtCm2QSprxTbWz7S5IiNykX6+bXOGYhgF5GViR2up6rH4+AwFalnw4RzaoEOLLlDL+1+4auiIvAyvtHcAPkGreEUlsX/u5zfUIkVO0mZpbN7liut11dEU+B9ZyYDVQAtCy7JMZ6fG6EAJQhuvXdtfQVXkbWJHaag28RjqwEltWbkvuWLfQ1qKEyBE6lawBXra7jq7K28BKW4C1xCEI0Pz5Ox/IJhVCAIYrXDe5wnEjDrfdBWRTpLY6ESwrfwH4DlCX2LFuZ2Jr3VzvwFHH211bZ6LrltDw6TPEt6xEJ+N4+gyl6NgKCsefB0Bs03J2fvwEia11pFqbMPwFeAeNpuTkb+I75Ij9vnbzwnfZ/sb9+/z8sNum4CrsA0DjrJdonP0q2kxROP4cSk67DqV2/52Lbahh89R7Gfqdh3CHBh78Fy6yTqeSq5TL/ZzddRyIvA6stJnA14AioKlpwdsf9z37uxOU4fLYXNc+xbesYsvUe/EOHUO/C36AcvuI1HzK9jf/gE4lKZp4EWa0GU+fIRQedTauwr6kIg00zX6FTU//hMHf/m98Q8fs8/UDo49n8DW/3etezZYX/wt3yaBdYdW6egH1Hz1O33NvwfAG2P72g3j6DqPw6HOsZ5gpdvzzT4ROvFLCykkM109ydZOJzuR9YEVqq+PBsvLngFuAplTj1ub4puWzfEPHfMXu2valZenHaNNk4OX3YXgDAAQOnUh8yyqaF71H0cSLCJROIFA6YY/nBQ49lrV/vJqWxR/sN7BcwRCuYGiP+6JrF2G2NlJ4ytW771s5F3/pBIomXJB+zEJaV87dFVhN899AJ+MUn/D17viyRQ8wE7F5a/7v61PtruNA5fscVps5wEbSW4E1LXj7U51K5Nw23LukkiiXC+X27nG34S+A/ZzoVF4/yuUBw9Xlt2xZ9D643ASPOG3XfTqVwHD7dr++x49Oxq0SW+ppmP4kfc+9BeXK+797eUFrrZXL81276zgYvSKwIrXVKeBZoA+AGdnZGttQ8y97q9q3gqPPBmDHu4+SbNqOGW2m6bO3iK5eQPGkr+3xWK1NdCpJsnELO955GIDCY87v0vuZiRgtyz4hOPoEXIHiXff7ho6hte4zYpuWk6jfQGTZp7uO3Oo/+DuB0cfjHzn+YL5U0YN0vPXF1f/zVUd3MOlNfxoXYm0H1g/Y0fTZWzO8gw87zvD4izt5Xo/zDihl0Ld+w9aXfkXz/CrrTsNN3/Nuo+DI0/d47LZXJhP5wspeI1jCwCvDePuP6NL7tdbORMcjFBx19h73B8eeSuSLmWx6/E4AfCPGU3TcJUTXLKR1+SyG/vvDB/YFih6nzVTU8AV/YHcdB0v1prWUwbLyI4BKrOAiOOYrYwqPOvub9lb1ZYkd69n87L14+g2j6LivotxeWpdX0zT/DfpddCeF487c/didmzBbG0k1bqNp/uvENq1g0FW/xDekLOP32/zcfcQ3r2DYbU+gOhhOJpu2g5nCHRqITiXZ+NjtFE28iKJjL6Zxzqs0zZmGmYgSPPwk+pz17xgeXwfvIuxkxiL/teb3V95ndx0Hq1cMCdtZBiwCBgFEaj6tSdRvzLnNKnZ+/ATK5WLgFT8jeNgJBEon0PecmwmOPYX69/6C1rtP8HhKBuMbcjjBMScz8Mqf4wqG2Dl9SsbvlWzeQbTuMwqOPKPDsAJwF/XbdRawcc6rKLeXwokX0bpqPjunP8mAy/6ToTf9ifjGWhpnOPJseV7Tyfgmwxf8ld11dIdeFVjp1e9PAV7Svd8b57z6Rq5NwMe3rsYz8NAvTWb7hhyO2dqI2dLQ4fOUy4N3QCnJ+o0Zv1fL4g9AmxTuNRzsSLJxGw3/mkrf825FKYPWVXMJlE7EO2gUrmCIgqPPoXXVvIzfW/QMbZp31k2uyKmf8QPVqwILIFJbvQHrkoShAKnGLc2tq+a/a29Ve3IVlJDYvBKdSuxxf2zDFyi3FyNQ2OHzzESU2KbluEsGZ/xeLYvexzOgFO+gUZ0+tv69RykYdwa+IYfv8Z5tdLwV6D1TDE5gRlveX/O7yx27jGFvvS6w0v4JbCJ91rB5wVtzUs071thb0m5Fx15MsmEzW174BZHambSumseOd/5MZOlHFE64EOXysP2tB6n/6DFaaj4lumYhzYveY/MzPyHVsoPQyVft8Xqr/+cStr3xwJfeJ7ZpOYltqzM6umpdOZfouiX0Oe26XfcFRk4gWvcZTfOqiHwxg6Z5r+MvnXjw3wDRLcxkvBnIuTnag9GbzhLukl5M+nfgP4EGwGya/8Zroa9c/T1lHMAipm5WMPYUDE+YhuoX0qvbE7hLBtP33FsoTC/i9A09nOYF/6T5s7cxE1HcRf3wDhlDvwvvwDugdM8X1KZ120vLovfAcFEw7oz91qOTCXa8+zB9zrwRw7/76C4wehIlp19Hw4zn0MkYgbITvxSWwj6phi23r//LzVvtrqM79aqzhHsLlpVfA5wJrAUoLr/iDP+wvdYNCOFAyaZtb6976PoL7K6ju/XWIWGbV4AWoBCgcfbLH6da6tfZWpEQB8mMt9breGteDQXb9OrAitRWNwP/AAYACjNlNsx84XmdjLfaXJoQB0RrrZONW29c/5fv7bS7lmzo1YGV9hkwAzgEILlzY2Pz4g9e6s1DZeFcqcYtUzf89ZZX7a4jW3p9YKXXZk0BdmBdtkPr8url8Y01n9hamBBdlGptXKuTiRvtriOben1gAURqq1uAB7E6k/oAGma+8H6yecdqWwsTIkNmPBqJb15xwfq/3Bzt/NHOJYGVFqmtXgM8jjU0VGhTN8x47gUzGW+xuTQh9kubKTO65vNbNz977xK7a8k2Caw9TQc+BoaBtQq+ZeG7L8puOyKXRdcu+nPzgreesLuOniCB1U67aw23kN7qvnXlnFXRus/+aWthQuxDfPPKD5vmvHpn+mc370lg7SVSW90KPIS1CWsAoGneazNjm1fMsrUwIfaSbNi8qmn+G5dEaqt7za7mElgdiNRWrwP+CgwhfflSw6dPv5XYubnG1sKESEu1Nu2M1M68sOmzN5vsrqUnSWDtQ6S2eibwPDACUGitd05/4sVUy871NpcmejkzHo22rpz97R3vPtrr/oBKYO1fFfABMBJAx1sTO6dPeSoVbc6rC0qFc5jJeLxlyYd3bXvt/96wuxY7SGDtR6S22gSexOoHPxwg1VLf2vDJ01PMeGvHXfSEyBKdSiRbFr7z29YVsx6xuxa7SGB1IlJbnQAeBtaQbvqXbNjU1DDz+SlmIiZrtESP0KlkqnnxBw+3rpwb7i1nBDsigZWB9Er4+7Eu3xkIkNhat71hxtR/mPFoo521ifynzVSqedH7/2itnXlP+g9or9Wr+2F1VbCsfABW0z83sA3A3eeQUMlXvnW94Qv2sbU4kZe0mUo1L3znydbls26N1FZH7K7HbhJYXRQsKx8K/AhrE4utAK7igYUlp15znctfOMDW4kRe0alksnnRu8+0Lp91W6S2ulctX9gXCawDECwrH4gVWgXAZgBXQZ9AyWnXXesKhobYWpzIC2Yi2to0r+qp2LrFd0tY7SaBdYCCZeV9gXuwWtJsBDD8Rb6S06+/2l3Yt2tbLwvRTqq1qaGx+oXHE9vX3ithtScJrIMQLCsPAXdjdXhYB6C8AU+f02+4yl08YLStxQlHSjZt29Lwr2cfTTXv+B8Jqy+TwDpIwbLyQuB2YDTpzSwwXEbopKvO8w0+rNzO2oSzxLetWdMwY+pvdbz10UhtdV5sfNrdJLC6QbCsPADcChwNrCa9m2jBUWePD5ad+FVluHrldmoic9F1i5c2znr552jzhUhtdcruenKVBFY3CZaV+4DrgVOwjrQSAL5DjhhSdOxXv2l4/cV21idykzZNM1I7c07Lond/AnzQmxeFZkICqxsFy8oN4FzgW1jrtJoBXEX9CkInf+tKd2HfkXbWJ3KLGYs0NM6d9lF84xc/i9RWf2Z3PU4ggZUFwbLyI4EfYA0NtwBguIySk795vnfQ6BPsrE3khsT2tSsbZj7/vhltnhyprV5hdz1OIYGVJcGy8kFYoTUE6wzi7nmtw8ovUi63z876hD20mUpFamfMbln0fhXwSKS2Wjp/dIEEVhalJ+NvAE7ECq0EgLvP0FDx8Zd+zV3U/1AbyxM9zIw21zfMfvmTxJZVTwCv9vbrAg+EBFaWpee1LgC+AexM3wAonHDh8YFDJ56rDLfHnupET4lvWVXbUP3Chzre+sdIbfVCu+txKgmsHhIsKy8D/h1rc4v1QArA029En6JJl1wqq+PzkxlvbWhe+O7saN38d4G/Rmqrt9tdk5NJYPWg9BDxMuB8rFY1VhNApVTRxIvL/SPHny1rtvKD1qYZW79sXtO812p0IvY8UNWbNovIFgksGwTLysdiHW2VYB1tmQCeAYf2K5p40cXuon6l9lUnDlaqpX5949zX5iS21tUCf4vUVi+zu6Z8IYFlk2BZeRC4EjgLa83WruvGgmNPPSJYduJ5hjdQYlN54gDoZCIaWVFd3bLo/ZXAq8BbcolN95LAslmwrHwc1tFWMbABSAIoj89dNLHiZN/QsV9RLrfXzhrF/mmtdWLbmsWNc6ctMVvq5wNPRGqrN9hdVz6SwMoBwbLyAqwziRdhLX3YTHrdlquof0HRhAtO9wwoPU4pQ1pa55jEzk01zQveXpTYtnoL1oYlM9Obl4gskMDKIcGy8iFYyx+OxVr+UN/2OU//kX0Lx597trtkyJFKKZsqFG2STdtXtSx6b15sw7Jm4CPgxUhttfT3zzIJrC5QSvUB/he4FGsb+xnAXVrrTtfVKKXuBs4EJgGDgZ9rrcN7Py5YVq6AI7GuRxxGu2sSATwDR/UvGHvqyZ5+w8crw3Ad7NckuibZtG1ly9KP58XWLooAy4DnI7XVy+2uq7eQwMqQsg5rPgYOBf4f1tHPT4BxwASt9bpOnr8UaATmAd9jH4HVJlhW7gKOB67COpu4Fdi1CYGreEBh4bizyr2DRk1SLo//wL8y0RmttU41bl3esmz6vNi6xTGsLd+mAoulu0LPyqvASofKaK11t//FU0p9DXgFOEtr/UH6vhCwCnhSa317J883tNamUsqNNU+138Bqk25bcwpwCRDCCspdm7gqX4G3cNxZx/oOOeIkaWHTvXQyHolvWTW/Zdn0mmT9BjfWSZHngQXSs8oeeRFYSqky4BrgWmCN1vqMLLzH34ALtNaH7HX/48AZWuuMWsd0NbDaBMvKPcBErOHoUKxh4rZdDzBcRsERp4/zDTtykqugzwiZ5zpwqZb6ddG1i2dHlk3fpFOJILuD6nMJKns5NrCUUv2whkvXsvvi4meBx7TWi9s9zgVk8tub0vv5ZiilZgINWuvz97r/R8B/A0Va6+YOn7zn4w8osNqkr008AvgqMBaIYrWw2XVmyt13WElw9PFHeweOOsbwF/Tr6nv0RtpMJhLb130e+WLGZ/FNtQAuYBHwT2CJBFVucNRlIEopH1CBFVIVWHM6LwL/AXykte7odPJ7wOkZvPyZwIf7+XxfoK6D+3ekP/ah3eR4tqRPmS8OlpUvAUZiLYdo67G1HWhJ7li3s3HHuunAdN+wcUP9pROO8fYbfpRye4PZrs9JdCoZTzZsro1vWr40smL2Fh2PBLH+mLwLfBKprd5sc4liL44JLKXUeKxAKQDeAK4GXtNad7aS+GagKIO3qOmsBNJrozq4v8elJ3vrgIeDZeUvAscBZ2OFWBJrkj4eW7d4Q2zd4g0YrrcDo08Y7T9k7FGu4oGjDI+v0I667aaT8dbEzk018Y01S1tXzl2jk/G+gBfrKPVNrPkpWZ2eoxwTWFjdDSJYE89tNz/Q2Q/XcjIcEnby+R1YR1l7a9uivr6Dz/WIdBO4t4Jl5W8DpVhHXKdjLb2IAtswU6nW2hm1rbUzagG8Qw4f5Bs6drSn77DRrsI+I/L5omsz1rIjuXPT8uj6ZUujdfM3oc1+WD/7JcB0rLO/a+SMX+5z1ByWUsrAGrpdC1yOtV3861grjN/QWsc7eM6HZDgk1Fp/uJ/3/jtwntZ62F73P5Z+blYn3bsqPUk/BusM4yTASL/vDvYKeeXxuf0jxo/wDho92l0yeLThLxqoHDprr7VpmpHGjcnGrWsS29euiW1YujbVtF1j/bExgBbgU2A+sFKa6DmLowKrPaVUEKtVy7XAOVhrnF4A/qa1rm73uDFkOCTUWu9z40ql1KXAy1hnBD9K31eMtazhaa31DzKsu0cCq730pT+HA+Oxho5tw8EWrBX1exxdGv5Cr3fQYYM9/YYNdRcPHGoUlAw2fMF+uXhpkBmPNpqtjZuTDZvWxLeuXhtbv3S9TkTBOgIvSD+sHvgEWACslgl053JsYLWnlBqMNad1HVCvtT4zC+9hYP3QD2fPhaPjgWO01mvbPTYJPK61vqndfZOwhmsG1qLD54Hn0p9+Q2u9a1FoNqVX0g8GDsMKryOxzoiB1TGimfQF2O0pl8flGVDaz9N32EBXcf+BLn9hSHkDRYbHX6Q8viLl8mStR71OxiNmLFJvxlrqU62N9anmHduSOzdui29dvU3HWuJYQ99ioK2GONYq9IVYc5PrZbiXH/IisNpTSg3WWm/K0mv3BX6LtRbKj3Vpzt1a6wV7PU5jBdYN7e57DGvfwo4cqrWu6/6KOxcsK/diTdSPwVouMRprqN0mgnUkFt3f6yhvwOMuHljkKuxb5AqGigx/YaEy3G4Mw0AZhjIMF8owUIZLWfe5QCmdSsR0MhbViVjUjEejOtEaNWORqBlriZrR5miqZWdExyNtwzaFFU7B9Me2++qxliAswdoTcpNcgJyf8i6wxMFJr/Pqh7Xbz3BgFNaRYV+stV4a6ygRrCOZWLuPB9NR08CaCG+7ebH+KBjp91Xp22asUFqJtaBzDdAgR1C9gwSWyEiwrNwPDMCaDyzCmiMaiNWjvj/W2dIguxewZvqDpbBCKYl1JNeCNSxtwFoMvAXrCGonsF3aDPduElii26SHl0GsOTEXVhC1fWz/b4U1xGy7tUoQiUxIYAkhHCPnTlMLIcS+SGAJIRxDAksI4RgSWEIIx5DAEkI4hgSWEMIxJLCEEI4hgSWEcAwJLCGEY0hgCSEcQwJLCOEYElhCCMeQwBJCOIYElhDCMSSwhBCOIYElhHAMCSwhhGNIYAkhHEMCSwjhGBJYQgjHkMASQjiGBJYQwjEksIQQjiGBJYRwDAksIYRjSGAJIRxDAksI4RgSWEIIx5DAEkI4hgSWEMIx/j+HTW7s4gi7sAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "piecounts.plot(kind='pie',\n", + " figsize=(5, 5),\n", + " explode=[0, 0.15],\n", + " labels=['<= 0.1', '> 0.1'],\n", + " autopct='%1.1f%%',\n", + " shadow=True,\n", + " startangle=90,\n", + " fontsize=16);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Hexbin plot" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "data = np.vstack([np.random.normal((0, 0), 2, size=(1000, 2)),\n", + " np.random.normal((9, 9), 3, size=(2000, 2))])\n", + "df = pd.DataFrame(data, columns=['x', 'y'])" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
xy
0-1.471902-4.371674
10.161619-1.511347
22.3697030.065523
3-0.9692800.401674
40.307002-2.472527
\n", + "
" + ], + "text/plain": [ + " x y\n", + "0 -1.471902 -4.371674\n", + "1 0.161619 -1.511347\n", + "2 2.369703 0.065523\n", + "3 -0.969280 0.401674\n", + "4 0.307002 -2.472527" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD6CAYAAAC8sMwIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABG70lEQVR4nO2dd5wURdrHfzVhA2nJOSxIULKAIAoIIkhQQU89BUURRcxnBnxF1DOcioHDO8UICmI8FVFRkaCISM45L2kXFlgW2N0J9f7RPalz9/SEXp7v5wM7U11d9XSYp59+6qmnGOccBEEQhHNxpVoAgiAIIj5IkRMEQTgcUuQEQRAOhxQ5QRCEwyFFThAE4XBIkRMEQTgcw4qcMdaIMTafMbaJMbaBMfaAWF6dMfYzY2yb+Lda4sQlCIIgpDCjceSMsXoA6nHOVzLGKgNYAWAogFsBFHLOX2SMjQVQjXP+uFZbNWvW5Lm5ufHITRAEcdaxYsWKI5zzWtJyj9EGOOcHARwUP59kjG0C0ADAEAC9xWrTACwAoKnIc3NzsXz5cqNdEwRBEAAYY3uUyi35yBljuQDOB7AUQB1RyYeUfW2LMhIEQRAWMK3IGWOVAHwJ4B+c8yIT+41mjC1njC0vKCgw2y1BEAShgilFzhjzQlDiMzjnX4nFh0X/eciPnq+0L+d8Kue8C+e8S61aMhcPQRAEYRHDPnLGGAPwHoBNnPNXozZ9C+AWAC+Kf7+xIojP50NeXh5KSkqs7J4UsrKy0LBhQ3i93lSLQhAEEcawIgdwMYCbAaxjjK0Wy8ZDUOCfMcZGAdgL4DorguTl5aFy5crIzc2F8MxILzjnOHr0KPLy8tC0adNUi0MQBBHGTNTK7wDUNGzfeAUpKSlJWyUOAIwx1KhRA+TfJwgi3UirmZ3pqsRDpLt8BEGcnaSVIicIgrCdE/uBrXNTLUVCIUVOEET55p1LgZnXp1qKhEKKXGTZsmVo3749SkpKcOrUKbRp0wbr169PtVgEQcRL8aFUS5BwzEStlGsuuOACXHXVVfi///s/nDlzBjfddBPatm2barEIgkgV/jKg9CRQsUaqJdElLRX507M3YOMBw5NGDdG6fhU8dWUbzToTJkzABRdcgKysLEyePNnW/gmCcBhf3gZsmg1MPJFqSXQh10oUhYWFKC4uxsmTJ9N6YhKRfpRsmosfn78Wa/YdT7UohF1smp1qCQyTlha5nuWcKEaPHo1nn30Wu3btwuOPP44pU6akRA7CeWR9ej0GALjhh02YNbp7qsUhzjLIIheZPn06PB4Phg0bhrFjx2LZsmX49ddfUy0WEQc/rj+IyfO2pVqM8sNXdwKrPk61FIQCaWmRp4IRI0ZgxIgRAAC3242lS5emWCIiXsZ8vBIAcH/fFknr89CJcuySWztL+Hf+TamWhJBAFjlBGKE4HyjcqVtt99HTSRCGIGIhi5wgjPCKaNU7IIKBOPsgi5wgznZWzwROHk61FPbAOeArx+4tFUiRE8TZTHEB8PVdwEx59mlfIIh3Fu2ELxCMKc8/mcaK8s//AM/VsffBZHCB+lRCipwgzmaCPuGvguL7cPFuPPf9Jkz7Y3dMedfn5smUe9qw7nPhb1GefJsBhfzH9iP4etV+0/ulGvKRE8RZjXpq5pOlfgBAsfg3Gn+Aw+tOmFDWiVPpDntXiFYben4DO6RJGmSREwShiQMMUmNYPpD0PwGkyAmCgJKysrqMii8QxB87jsQnTjrhgCcZKXKRJ598Em+88Ub4+xNPPEGJs4j04HQhEEyQTzoBq169MncLhr2zFKv2HrO9beMoHVd8Cnnv0dOYtyk9o3tIkYuMGjUK06ZNAwAEg0HMmjULw4cPT7FUhNMp8QVwpLjUegNFB4GXmoIvetk+oZQwaXVyDaW4Pb8YAHC0uCwukdIH4VgvnbQAo6YtT7EsyqTnYOcPY4FD6+xts247YOCLqptzc3NRo0YNrFq1CocPH8b555+PGjXSPw+xYzl5GHjzAuDWOcK1KaeMmrYMi7cfxe4XB1tr4OQBAMDuP75A096P2yiZcczasZsPnUyIHEocP12GVXuPo8+5tcUSDWmtukjE/fzB9HWxkEUexe23344PP/wQH3zwAW677bZUi1O+2TYXKDkBLH0rNf0XFwC7Fye8m8Xbj9rSzskSny3tmMGq12X/8TOa2wtPlcFvU/ji6OkrMPLDZTh+WmL9n2ULpaenRa5hOSeSq6++GhMmTIDP58PMmTNTIkN5Ir+oBH1eWYBpt3VFg2rZqJeTLa+UKiPnvcuAY7sdMOU+0Qop1H5yLsSZsgA6PfszhndrjOeujuNNbPVMoPGF2HlEcOP4AqL8mlY3Ra2cFWRkZKBPnz64/vrr4XanY5Css5i/JR+nygK49q0l6P6CNCVwii2mY7tT2386c3QHsHSqZhWrXorTZUJM+vfrDprf+a0ewBsdhc9f3wVM7R2RJ5HK1gFRK+lpkaeIYDCIP//8E59//nmqRTlrKC4tQ9mpMlSvmKG4vf9rC8HAMPfBXgmT4ZvV+5HtdaN/m7oJ68NRvH85cKoA7otE15ONiozF4/KQjpuVnAA8JtpzgEK2ClnkIhs3bkTz5s3Rt29ftGiRvPzV5Yrje4FX2wh/9RB/0D+uP4Se/1JfwGPr4WJsOZzYwbMHZq3G6I9WJLSPtCWkWKOV3JnjwiaNt6bCU/FFpBw77cOGA/a7tUrDvnc73/g41uYdt7E9+yFFLtK6dWvs3LkTkyZNSrUozqPsNPDpzcDCfwk5LlbNUKym9mM4VRaIr/8NXwPznomvDdtIjNXHUuCn5RrKcMzH1h587EwhLnctAwAMnvy7pTa02Ha4WGOrxXN45hj2pHmeeVLkRPxs+lb4F14GTPkHc9WUBEWJfH4L8Jt9D+AZS/fg8S/W2taeUYpKfBj65mLsLIhSRimJvtBXeIeLrMXGV/rfCLyd8RpqIPmDzPsKT+PEGQvRP1/fZam/1fuOI3fsHGzPT3w4Zlopcp7mPqx0ly9lWDovgoJqzvLQiW0VBtiObLdXLos88b/1+HT5Pkv7xmM5z9t0GKv3HccbSV1nVOtBIWxTPiJrx+k+vhsA4EEcb2Ea95vW+b/s1QUY8Poi5Y3f3AtMH6K8rbhAbDuI5z3vAAfXGBLz29XCHIAFWwoM1Y+HtFHkWVlZOHr0aNoqS845jh49iqysrFSLkvYUnipF7tg5WJMXa3Wdx/YA234WvoiWZkfXTnyVORH4dydgSuckS5qeKKlWpbJfNh7GX7sK9Rvc+yfw26s6lRRyrei8DCzefgRlfuPx4PsKTyfPQaQi/MHQmqplp4B3+mLLmiVCdsdVHwE7F6g0JkhdG8cxzDMfwRnX2y9vnKRN1ErDhg2Rl5eHgoLEP72skpWVhYYNG6ZajDQk9ue5W4ztnb3mQEz5D5njgBlwQOy2dZTURy0cBwI+wO21ta/bpwvTxXVnjb5/ufC350MxxWO/XIuflm3AyijbpNQfQAb0hwqPFJdh+LtLMapHUzx5RWvFOlJd2vOl+ViR7YNsvvTU3sCB1cDE4zq9iigZe9KislPabez5A9i/HAe/eBzPNnkZH2vXjuF0WQCVor4fLirB6bIAmtasaKIVezGsyBlj7wO4AkA+57ytWDYRwB0AQtp3POf8eyuCeL1eNG3a1MquhCM5O2beZaEUy7LuBr5bAgyZolk3pJ9anloOrN4EdByWUNmqrnwTbVy5MWX3f7IKbwaChqP6Qv78Dxbvwq+b8/HRqG7hbUr6NhAMAkwykHpglVnRw0gfFuGvM64HxissLqHAmn3HtW9HHS9Bt+fnATDwQE0gZlwrHwIYoFD+Gue8o/jPkhInyhlp6h5LBlIfbRbEML3N3xlu4+59j0QNsMX3wAto5AcZ652FjzLEWdTiNZu74bDsGLQuZygu/OnZG/HbtiPAxBxM8EyPS2Z9DNxfZfIBxpjjSsI9msxxasOKnHO+CIABhxxxtpPQULlje4QZfqfsyXf90Z97rO+8cwFwZBt+2nBItUroXISnkCcDzoGFLwEnD2P0dOvZ+qxex9s8Pwr7J1GRKUq6Y77ufr3dawwcJY/7WL5fdxBFCcyXY8dg572MsbWMsfcZY9VsaI9wGjLrRueuP7wR+PNNa33N/Lsww2/9l9b2l/Dk1+ut7zx9CDClCz5bHnmFV1N+JxWWS5PCOdDdtUFxmymlun8FMP854H+jMW9zvvH9LKB2pR/1zEpcpwrWdKgo5jx9NDSmTsw2M5qZ87gM+NlrD+LuGSvRfuJP1hvRIV5F/l8A5wDoCOAgANVgXsbYaMbYcsbY8nQe0CTsIDaSoRaOY4b3ufD3wFs9racpLtikvq1EYxB1xYfA8w1UF2h4wvMxMO9ZazJZYOqiHXj0c3kY2ycZzynUNsaMpXuQO3YOSsvEGG+fdhbCWOx9Y7jH862hem2fmhv+PPZz677ySK4Vg8dhQjMXlfjwoWQB6hd+2KS7yEToUbFm33HDfVklLkXOOT/MOQ9wzoMA3gHQVaPuVM55F855l1q1asXTLeEQQjfyKM8PuNgdsTTdXN86jeY69wLgB+Vc3DE+4Bcbqzfy/aNAWTEQUJ5afofne+C3V4wJdCIPmHSe4iajdt7z32/G5ytiB+NyTmg8pCQohelOFuPP1VLezt+cj1K/Svx2VHvSY9BKSMWYuRS7Ias41GL0ws61V6sPBscer7JFXlTiMxAVb578ohKs2BO72tHbC3dqLjLBOUcy05fHpcgZY/Wivl4NII73VKK8wCRKxur9HBR/CS97p6rmLZ/yq/4kouOnyxCM/hkXbLEoEYR0BAv/FV7wQQ8zyuOyRdcqNKDcwsy/5PlswrlRVE74yA+X4bk5xh8WRlInrNx7HO2MuAx2LsCmzFtRGepT3Vu61KNMPl+uHYHCAXyz+kBCxmdMtRkMAEUH8c85m/D+4l22y6KGYUXOGPsEwBIArRhjeYyxUQBeYoytY4ytBdAHwIMJkpNIa6Q3ulSRW7OFFm7VcMH98BgwMQe1turnje/32iL4oieuvBl5ccxCKaqjKLItGMBTnmmog0Jg03dAqST6obRIiAlPAlqT41bsNrIepvy87zaRM+Td33bo1jGSPGvl3mNYO2M8slkZspi1c/dLtBtD4e1hXd4JvLVgh6bSjVfJ/9P7gX6l7/4BvHouvvrd2OxPuzATtXIj57we59zLOW/IOX+Pc34z57wd57w95/wqzrmFJMNEecfqz6fEp28R9j78oW6dgpPqeUH+lzEBK7PGhL8Hdi7CSM9cfJk5Efh0uDB1W8qaT1Tbc6tMPbfyMFuyI7K6UBvXHuBgJP+L1XSw4YeD5CHhD3JM+kl4U3Exo1eM45+e99CO7dSs9ex3G3FGdi2V5be6uPGYj1dg//EzCZ2d0M+tkChs50KMcUeNB6wUQi+rMp0JSTaTNlP0ifKDLA7ZxM/rxBkfXvh+E3yBYIKCGGNbPc8Vm1Nl4RZBkTRkYnijgQUoopMibc4aqWhJq1qDhzcC239R3FTiDyBG4b3dM9KewikNZ6S1cOaKS/34t4qbSu3FIAencJNnHj7OeF63faP3wIYDRYrlXYvnxbSmhksy0B5rvYuf134Wk2StFXZryqRpyU+/CmO98gidZGerJEVOJADrivzluZvx9qKdmL9wHrotuAmZsHkldp1ohZMlkoHYg6t1m5SuUfnzxohVKe3t/d93YVt0fvX/dgc+/ptiu2V+jjLp2pYbBevPpaTIxb/uItGfrGW1S86DmuJhCOKqreOFKe0iHdl2ZKE0auBS//pybtJWXvWxEEYp0vnUQkO7SY/j2O/vyCt9dQew78/w1y/ZY6ZEM6KiSZETzkOqHDkw2ftvrMbfTTcVSsLUcf0LqHF0Oc53WciIeHANMDFHSNIVEUn2KVEURT0MpOrrme82YvC/jeXhHvPxClz9H0nq389uBgC4NJR09bkK7iARM/HQvV2rMcC1DOcWzgM+uSFc/nXmBPzLG1GQaoq83e93q8uhp/y/uQd451LgzDHgyLbYAXQTB/HHT5HVvtZn3Y7OzPxAt1QpVy4rwObMW+w3MuKAFDlhO/vz9uAq9xK4JKFm5mDi/xb23jQbANDPJfdpHjqhE1utoCC/XrXfvAwSOFjY5WI0Y+DurGGqOkvZtRJbqJxbSjneWkmtTs14Df/NeEOx/7Zsl+61qb3/F9W2laiKk/K6U3sDU7rElv31tmobejJd7Ta/mIWS/FnMh3rsqMIWY3LYDSlywgZib9oSiaIy41oJhdBZjXQJtSL8L/8x9Z20wHRr//h0deTLQf0FJ1jM56h3AVt/2/LzI3XxrNsvnyCVHTwFTMwBts6VbbMqgeZhPVcf/c98b0it9XArzGoNjVFEP6R+nhD+GB2HXh1FaOrSHiyN774y3lb0lgoosa1PNUiRE7YjV6DGfzztT4iDWgajMhRrifsyMfoiE5Gwt7gtpZnXGa9bnI9PMv4JAPDCj+DhjWF5LnEZC09ryuR5XE6W+AydnhKFyT8NynYLHxa9FFNehZ1GY2Y8YoSBoykTgtQ0laPvFEadVJ4DoMZrP281XPeawI/hz2945ROKpLIZU+Qc+Pmp8Dcr90xon16uNdiYdRu6MuPx+1YgRU4klGyUmPoZDN83EQAQEJNMmf4R+c5Aqt6jX6eHu+fBLEwaCSFBdQbf/OfR0iW4ZaqwM/C8fRHqoBBPej7CtIx/oQ3TnzDyZsZkWVm7iT9h5lJhQlAlnAY/bnw1o3X7xagQhdSxizIfRAaU47ylx1iJleDLzKcltdSvlVSBeuBHVSgvgZa90Pj6q9Gx3T3d9sxHrI6TwOLXw9/jUeQXugQF3sUVxyQ0A5AiJ+JHkokw+sbflHWbpZfZvcdLZG0ZIn9TxCIXi9xRinicVz0GHACqnZYrVz35paliM0uPAMf3ASvkE0iqsNNoJlqyOXHFGnN44MfsjCfAXm+rWS8avfP5pOcjQ71nIxKbb8VdMTljClZn3am4bYxntrwwxamRGzL55DQ910oljVmsdpM2KwQRDmZerGVmhxcy9LN1mVXke/+MsjbNW/W9tr8sKzP7MLnip0sAjVnroUGyaEWwPb8YzU30McY9WzF+OZquri24xR0riN6xaE2TV2unJivSbVu6patooWbB2CLOhae1I0SU3CpG5DACA/B75gOm9mnr2oUfvWOxN5icvFKkyAnbsWPE3qiVV49JUuTPHRcjhwd+VFN5hTeK3sPkDrfxRSMAKA7IXfbqQuw2sRzsde7YuOrcsXMM1UvkzEcrbT/vfS/me9USeQ4ZIwxx/6GyJf4jZiozXad5X1Tdp63oNmvsEiz5xiyx6YTJtULYjlyRW/ExKrQ1Mcd0G294p+Bh7xem+48mW8dqfMKrn+9FieiH1XXuBZbaMEMlnFZ2W0TRzbXZUFtmH9ZqD+ZcyWDuzcuuMdUuADRnxt4itOSwQuwDWduFdYNnAfq4VgFfjLKt/2hIkRMJx4qF3g3rxH3j63ew+684WhBYm3VH3G0oET3b8Vr3IlP7Gj2n0bWe8MxAX7d8kNMKStdFTSYv/OjmSlzUxi+ZxmdmWlHk4XQNGox0/xjzXamXDzJeBtbHZ1SoQYqcsJ14bZ6GLD/szujjskfxpAuDXEttaUeqNHdnDcPnGRM196nMrA++yVIFmCSD2ZdMLJFUxUn0dq02vd9V7iU4VRjJGSjL+ZJgyEdOJAD9WYNaVIqaQHGrx/ryWMmeXWeEB73KS9SZUWij3bPlYwMALnDJ46/tUpOlvgCyNBpjCOJ2d/qtvW72Dngv4xV0dm0z3c/5ru3wvdEmfMKT/XgiRU4knFQp1PSy9eREnxUz52i8TgilGnZeB2lbg11LdUM7lUg3i9yKEg/hjXrryGLGonHsglwrhO1If+SpU+TpZ5FHE63EWpoYsDPXRwQ7Vab03GZbVFwtmfHJTHaQrAfH3yzkdIkHUuREwvGqLLaghl0KOL1sPTnRR1mNFSekj0SdA2m7Vq9ZFWZmgWhCDVLkhO1If+SjPcoxzur722VJp7dFngj00glYJUcyUJqofuzmSvefMd/TzZVjF6TICdtJd5dGupAIpVJJkmmvrWu37X0AShZ5Yimf6tc+SJETtjPQvSyu/RvZNAtujMfcjMtkc47rgO1tqq0ZCtj7gPVKwgkT/fCW5rOxSlqYGAnIG0OKnEg73s54PdUiJIWXvArLkMVJBvyq25xs1dqkx8m1QhBE+mMmp7idOMWddocnDWLdySInCEKLLzKN5/K2k0TbuW6HDK4agxQ5QRAWSaTV3MfCtHYz2JUjJi0gi5wgCKskUpH3c8sXuiZUOGV/SltS5ARBEMnkoLH1Ws1AipwgzhKsZPUjnAEpcoI4S1BLJUsklwPH7F/LkxQ5QRBEEtlbSIqcIAjC4VDUCkEQBCHBsCJnjL3PGMtnjK2PKqvOGPuZMbZN/FstMWISBEEQapixyD8EMEBSNhbAPM55CwDzxO8EQRBEEjGsyDnniwBIFwocAmCa+HkagKH2iEU4BZ6AWWoEUZ5JxMSseH3kdTjnBwFA/Fs7fpEIgiAIMyRtsJMxNpoxtpwxtrygoCBZ3RIJhgxygkg98Sryw4yxegAg/lVNIsA5n8o578I571KrVq04uyXSBtLkBJFy4lXk3wK4Rfx8C4Bv4myPcBjcIXmoCSJdSETKXzPhh58AWAKgFWMsjzE2CsCLAPoxxrYB6Cd+J84ieLA85YkmCGfiMVqRc36jyqa+NslCOBKyyAnCHOkXtUKc5VD4IUGkHlLkRJyQIicIc9jvJSdFTsQFt2t5c4I4ayDXCpF2kCIniFRDipyIC84paoUgUg0pciJOyCIniFRDipyIC/KRE4RJEhDpRYqciBNS5ASRakiRE/FBceQEYRKyyIk0gyYEEUTqIUVOEASRRBijCUFEmkEWOUGkHlLkRJyQIicIc5CPnEgzKPyQIFIPKXIiTkiRE0SqIUVOxAX5yJPHYV7V0n5FvIK9ghBpBylyIk5IkSeLRCwRRiQfRjM7ibSDkmY5AHrYlndIkRNxQa6V5MEsKuR1wWY2S0LEB1nkRNpBijx5WDvXr/qvtVkOIh4S4SIjRU7EBYUfpj9B+pmXe+gKE3FCijxZ0GAnoQYpciI+yCInTLIw0B5neEaqxUgZnHzkhBbzt+Rjzb7jqRbD8axJ08FBq4Od6QYHw6pg81SLkToScBlJkZcjRn6wDEPeXJzUPjnKX/jhFP/QVIugiFVFno4PgLPJTfR7oE3C+yBFTsRHOQs//NDfHzwN1Uwxz0q1CLbCWPm6b7RIxv1EipyIC6Nx5LklMxMsiT2UwWvYfp3p74Nbyx5LqDwhXvTfmIaPF2twpN9bwhv+q5PWV5BmdhLpRiKmG6cao+F64/13YEGwI/J4zQRLVL6okOGBK8UuudWScZAAd8fV3t1l96tuk1nkpMiJdCMRI/CpJl2PKB4r9iCvbqMk8dGtaXW4UnyW7yh7OOb7bl5Hs/5n/ks0t2/kTQz3nYgjJ0VOxAUPGresdgTrJVASexB+ZMadGFne5P2E4lHkafVwYizlitwHj6n6/wlcZbkv8pGrcXxfqiUgwhj/QV5X9lQC5bAPIz+8IBfq1K6cvEHIv4LnWd5XekTNy1I7ZsEsulZ+DFxgU/9c87v59tSR3k+J8EbaosgZY7sZY+sYY6sZY8vtaFOVjd8Cr7cFtv0cWz7vGeC3VxPadSpYvP0IVuw5lmoxVDHjWilElQRKYh9BA4qcA6iU6cHg9vWSNnB3n+9eG1tTPsZ/Jyn00opF/r5/AE4h09Q+RZl1TfdjlOj5BqZ8/mnuI+/DOe/IOe9iY5tyDqwU/h5cE1v+2yRg3tMJ7ToVDH93Kf723z9SLUYEzoGDa2O/lyM4mCGLnIOhf+s6SY0kKdFRYkNLn4m7j98C7QzXfdj7f5b7yfKYP3PP+EfAbAS6q2Zz9Cx9TbeelesY/QAv4FUxw99XsZ70F0IzOwFETrn2yeCcI6gxffyz5ftoFqQV1n8JvN0T2PC18D3d9PjEE3HtfpxXMnRI8fg9/7p+FTB2r6V9fw50Ut22mhufLclSGsvI4LZ443Rv39pU/UqZXuTzaobr7wnWViz3cW2fehAMT/hHKW6TR60YFscwdilyDuAnxtgKxthom9qMi3d/24Vm47/HidM+xe2PfbFWNgsyd+wcPPXNensECPiBNzoAm2bH1cx97q/Qhu2WlfsDQRSVKB9bQinYLPw9slX4mwSLvJBX0q0zvGwcikf8FHdfHwQGGFLSPwat+2qDWTlAVo6pfUIy+aEcJneKm3M5mL1sXwV6yMruubSFuUZiJbC0V1b/J7E0eK7xHVSeWDUqxuZ6YeBoVfIhri+boFh/P+QhptEWeej6zAl0ldXjYOhdOinqu/3Ypcgv5px3AjAQwD2MsV7SCoyx0Yyx5Yyx5QUFBTZ1q86sZYLFk3+yxNR+05bssUeA00eBY7tR+vUDcTXzsPcLzMkcLysf+9U6tJ/4U0IXdjhSXIonv16PMr+6/y9hU/Svm4bBpc+hbcm7WBJUtsKKL389/HlxsB14fXVr1Qj+Zn1RigxdRd6tZAoe8t0dfjk06yN3KSkXj/agaagPJckuL30RvUpfBwAc4YkZh5ju7y8ra1ZT/wGrRoMci0mzPJn4IhBRLwXNrsbnfpm6idB6qOL1lF6CPbwOSpGBgMqDEmCyc7s82EpW6wGVcYzdPCpiK1195JzzA+LffAD/AyB7LHHOp3LOu3DOu9SqVct6Z6ErwCFYu8XKDwUm1kv1m39RiT8h7X6xIg9A/PdEcakff2w/Els4MQf4/lE8+91GfPTnHszdcEi9gUQ9SNoMxQbeFMVQXzg4WDk2nJHF6y9wewHou00Oozp88IBZdK8oimnwPCo9NHbw+jgKwcLvVvqm4f2MsCzYUruCyTeL8G4drC92EX0smZ1uwFfBnuqV212HNvUrK7QR4SXf9VjJW8raBoAXfDeqnoPn/MPDnyNvTJ5wRFMI6eB5cbb9A7BxK3LGWEXGWOXQZwD9Adjkn1DsUfiz9Ufg05uAGX+L3Xx0B1CcH/GkK92/p46iJuLzpeqTuEdItO8/3l7u/2QVhr27FAUnS2M3/DUVAbGfmD5CJ5Rz4PfX4Dp9VLcPs6/9UhYGO6hsYRrfrCA+/Lm5lsz267IgaEhR6CnkcYPbmm9coZ8QN5eNw0Ulk9V3eHBD+GMRV3/oyuj1qObmAm7sAVElW8eyZwzvjJDHX0Q/TBcGO0ZtiT2/PwS74rqyiYpN++GB350t28slyyMjdDY3IMiRX62ztswWsMMirwPgd8bYGgB/AZjDOf/Rhna12S9GOR6XDBr9uxPwSssow13hxn+5GZZn3WWpW8458o6dNl4/+ocxMQf4YayZzlTajLDryCljbW2dK/R/dAcA4FSpH2vzjmPjgSIAgC+g4T5RkmPfUuCXiaj80z90u/53nHksPgv0Vt4gMW0VXRYWyEdVW9pRR0FOg7IrGvNi6biB5+L2nvIUvKWIVXaLdbLxrQ/mhj+XIBMHJP7hhYH2kS/eiPI2bFQwBri0VY+STx6wskYsQ6WMWHdJAa8Sc69s4LlRtaV7a/dn5qF8p+8h5JbMRIOq2cZ3MkjcipxzvpNz3kH814Zz/pwdgqkiveGZ0iHw8Gvvk1+vx24tZecrAfyl6tslfLVyP3r8az6W7tSxRNVuuKX/1dxt8OTfcMW/f9NpOtL2Za8u1JYjxNrPhL/7VwAA7pm5EldNWRweMPUo3JEhVwULlgEfXQMcWB3ZGCgDALhKi3S7NhKXHc20llL3gPr+w8vGYbq/nyivqW7kiA3s4vWA8282Wj38Yx9R9jgAoIxp+7utWOQR1BWL1y3/LawKNo9RVABwm0/bGs7nVY2L43IDg14BEHuV/rzmT8NN7K5g/C1CfvRMW9kyBngyY1IUXFQ6BSeh7N8344K6q/c5hhRo7Sqx90Omx/5gQQeGH0phQoSICst2H8M9M4XY8wVb8pE7dk5shefqAJNaAf4yZEFfoa/cK0zO2ZpfbEg6s/bDhgNFWL9fVI4GLHI9Dp0oQd9JC3C6LHSOhJ/bajH08nRZAADgUlLk4t+cE1uBHfOA2eqJgbQwu2bknsrGBy0XB9thgn+kWZFUiDoHdfRzSEvP2EFeAwDAdZ4o8fjyf1SIiggx/MLGsrJPxbeZbwMXhctCFvorrWZhmr8fTvKIhSi9t5rXFhReIOoa6im7PcHa8GUbTyTmd8ldb24T5+ilv7XX2MoA5kL30inhEh884C7lcELpRCWt8ZLHB5yL0BnTqtehUWz4YzpHraSO00eAZ2vIirccPikr+/hPldjdM8eAqZdgc5ZEIRxaDxRsUdzlP/O346foQcCjO4DvHwXCuUfUL9fsNQciXz4fKbg8JBwtNv6W8ON69cHIT5ftw46CU9h7VHwrUfmBaE4x5hq1pA+b0Qvxa6BjbJUETZuRthuvRW5FwUbvEjoTehkh47HIvwzKIzRC5yHTo57B70X/jbKyRs3b4Cn/SByKsla5xML95SEhWdQ63lTeqOQ49nIhBvvjwGXqB6CwY/SbRJAJx9CzpXpARBGvGNUUQ8NqGq4Ktftd5RocRRXAHXFFpVu6XTUcqMjN/woMudXyN8rL3roYeFPZAjp4ogSjP1qB+ZsFK79s1gjgr6nA4dhxXg4GbP4eWPBiuOy+T1ZFKmz4Svi75QfhwSFyywd/QfowCAY5Tpf5Zccz5uMVqoflhR+d2FY0ObFUtQ5kPQlEbnYuLYj6LNmzfkfc5nssJv+4WdeKVfSiSIJMiEqZ7B+KgaUvYFuwgaSB6P2Nyzyq7FF86u+NwwYzDNYJvWpXjJ18EhoMU8Lqw7BYtLaDcOEgr44TUQOS13dpZKIl/f5XB8/B5aUv4t3AIFMyNqoWkcnlEhR5yzrySBNA+C3HxvAryNX+Bu3tUFfkZfACTxbgAJNHltil1NM210oyWbNpU8L7CLlPjPDpMiGBV0mZ4Gv+ZVM+Hpi1KrbSrBuBBS/EFJ047QsPNAIAPrlBeHCIhN0rUbzy0xa0njAXxcXytw01Bm18BF9lTkS2X2zPktkaesswYJEr7m3uNjM8hZmZs8gDYqz2u/7B2MSbxLgLjBK4/mNZfxt4Lh73j456YGnLH1bk96+MKb/T95Cs7jFWVejLghIZ5xuFOcFu4e8XlU5Gx9Kp4e/hMRBZAimTRJ34LbwxuMnzGvOGIro81I6Xi8tSLAmozPCs3wm45m3dPo2Gjuo+QLm+ayUZ02gdp8g7FBibKfl5xkS8530Zg11/xtwSdVCou+++QuNRKWHECzrp5634ZvUBXQX396lLMGiy9qAmTkdk9QWCqLnsFTzj+QDVX2+M3q7V6vuVFAEn9mPepsPILfxdslH5plISVxrCearMj8PhCVahsCB5tEtOtjfme6Is8oqZsf3o9RJSGKEfndLAmR5avlvTVnOmstUZzRLvhbKyK0v/GZMSWO1O+yTQFxwuvHJdB7GeS1HJKs1QVCIAN7YH68fsCSAcuVKM7KgtZhRb1BG0HqK+n6G2jG1PbooCUuSWucC1FX3dq/BmRmwM7NIs/Qxy8QxGcTD0ca0CivaHv0u5xT0Xmw8ZsKpfieTOaPHED7gt8DlGeISsjz1c6/Cc5z2syxyF3VnDcKgwqr23ewGvtcad0xQiB8JxmRx/cy0KD/CGreAojc6i6gLAtvxT+Gy5MBEpPFVfYWbnN/dcHPN9cdBcbHNICfz68CX46UH1WXue+rGDXHrXzT3sU5S0uAJVqlQV+4kPBoZRPZqh77mCiyTsIwcHHtmOS0rty8YZfR+t481wQ9mThvetlCkf2FMa3A6hZg27JxSg+cQN8g3trsfcunfidX9kToelxFA3fw3UMjH93hDy4+zZoiZevV5tboKNdBsjihArAyXNipNSf8DajofWydPmikgvCgPHBxkvA+/1U23uae80ze6yUYJz2H7NOo1ZPoZ75qEyOwMA6PdSVOj+sV0AgMc8nyrsKdxUF2IdJmW8hfGemaEDEf9KbzKOmn++IH6KuiGLD6vUB3JrVoz5vpPXl9VBA/0kmc1qVZLlxACEtTIx8QSQHRsNoKSaPugQlXc792JkDZ8hhMwpYeQBHlWHMaB6xQy8d6vgs405P5Vq4RjXt7itUhBHrPuI7k3w9d0Xq24PK/IrJROBXG7l+G+3B4vq3KybndE0ddsB17wTWxYerok8NmOQhSfLr+lHo7qhcxPt8YzPMoYCAI5ETUx6yHc30EA6mUd+/z/vu1GQq1HIrUUWuS2E4q5/2xY7FV1NWcpO+1s9gBnXqqYDqITTyCw9orjNCtMzXsS8zNhY36tdsW6Y/u7YAU4lK6q1QrKt0I2dDeEBUIcJ4wFKc0UZADeCaOdfF94i7cflMzghSYOVweb4Jio8Tt9iMf667KshWniVtJfykrWrqtRtdK3YhJl+l4y7FM8MaYvW9Q3kZKnSQLG4cQ0TMzijiEQzqcgrPedjfgfaXx9TFPPWE9onxpjQV+RG+NY7ELklM/HmyJ7hyJ2FwQ7AHb/GVqyWCyB2HGhq4Epg4nGoOb1osNMiRWd8mL5kt6xcqix18Zegkr8Qo92zIVwkjsalW/FT5mPILBX82X1dKzWbMMIFrq2yskvcazT3YeBowfJiynq4FV6Do/YAhLjZTJRFbq6ou+zSozORyyKhjfYqqkg/3we6qSYbUqK6gpUOKLtWRl7cFLh3BXC3gQkqtjtO5b/Y8T7lVKcAw9XnKyvOeMkQc38P7Vgf9XLkoXpmB1Jzq6sr8uoVM/DlXRcpbpsV6KPdcILy9mR6XOjRXDuufes/ByqWN65eIRxLr8gt3wF/n6G9dBwNdtrDgRMlmPCNllKLRf28c1y35xmM936CNmw3rnQtwRN5d6E+iwxK9pYoXLO3ZkOWryyTzn5jPLPxc+ZjaMd26tQMDfQJf/u5V2BL1q3I3DZbiGffHBlMviL/bXycERttY1SZN6quHtu7LmoKuNCmOfpeYHzxA6/bBdRsDlTQDw2MO+lWqB3xiLyIdeUtD7bEzIDy4gMA8NrfOwK3/wo8sBbo8RCQ21Mhbwfw6OXyrHta9G5ZGw/3a4mnr1Ieq1Ad7NT4HajxYL+W6NykmuGokPjRt8AZY/j49m6y8mgyrM62rFwHOO8K5W1cxf2TAM4KRW4nmUEhoiUDfjRjB2Xb47Up3ve+rFiut5TU+a7tAID6TMfFw2IVeYjsNaLf/vNbY8orIpIG2IxFvuARZeurW8kUWc7nHwKxPzIlJbAdQszzg2V3wXWJyTcpCaN7yfORAIBLMd2DhOyq4Y9SnRE5P8JdUCLOoNzjPce4cA07A9WaAJc9Bdz6XVTbWmhfF5eL4b6+LZBTwatZT+gnekKQhYgQData9+5hLBx+CKY8jhFqXv0tIjXuLUV4lPsnujgBXZEiV0DNmvh502HkFwvx4i4EFcPqZAutmryxMqG8WIReKxe6QvH1OjVLi4FPb0YjxM4GVQ+5VPKe6+NWiYo4jOo4gyzgsqeBnEY4r+R9HEBNzLwjosyVfOQ3uf6FdiXv4n/BnjEz76xwy0W5BmqJ8l9wR7jk4bIxQJOI20C68LL0Wp9CNjqVvIVPqltL0KYgTUKIbjvmzKu9oYTSB3srKm/X7VDjaC4YBXS9E+j1SKSseT8sYpFJQP/6Wzu85r9WmNxU1/jbmRmkd+DPD/bCm8P0U0c83K+lLGqLLHIbqYYi5cE/BYIqVsXT324IK28XuOmJLlKGu38xXNfoquO6yvbrMcCmb/EIj42cKTqj/wBR8t1bpmlP4MH1glIHcNE52j7MMpaBk2JucqWfxfhB1sPWvmkoWvj1OypsjZzRH4Kxs3zvvVR5abXoKfqFqAKuYl1axW6Xq9E48jCDXgGGvgU01nZXSAkn72oXlYtc+hbkzQYGvRQbY3/TF3jUO1aUj+PvFzTGkmAbdCh9F8iqgsTYuLG0qFMZg9vX0613e89m6NCoqvBFzG8Pb8TNeH/fFmisMcZgFe2F6MoRczLHx/iytXhj3jZcem5tyO2NiPJ2gSve9F1dsblZGjD1LInPed9X6EH5h2R01XGrA5Jqk3bckgeIZh73c9T9v/Gil750dK8o98WNnwopF9r+TbX+Fe3rAWIofI8+g4CKQ4DabYBvf1CXQfJdmm0wNFN0c87FiE65FZmIZJ3ofRO9up7u4GdmJaCjPHeLHnm8FkqeKESWV3ywjfwByGkIfH23AZkSYNVmVkFpiYXJfxpkR6fMPe9K4JLHge73AEuEiXkP9dNZqMMiZ4UiH+Gea1iJA8D2/GLc+dEKfKywLaQoXUzZtWIUvThxKQPdywzVq8qMZWU0SgUWm7zrRs98xXrLO/wTXa64Q3GbWfR+tLoWaasBwj8N/n5BI0xafx3ezpyMGo1aARn6bgK9h2QQLlxUMhmXt28L/dyJxjASUfLlXRfFpEb1dxqJ2cuMvT31b10Hnqjx8dh72n7lGfMQaqIc3WJ4fyXMvK48ugPt/u97lX6EjhRba9YHKDMQdutyA33kyzQmAkcp8vmb86ETwKTIMzoTcJRYtrtQdnaudS8K+6I/yXgOn/kvsSCNgOnQR4O87J2qX0mBEl8AqssVGuBMVm3Aq52HW4/FrcZhwfo9ij5yuyJKQvRsUQsNH3oErppPKVew2N8B1FRMy6pKkx7AHmkaBXN0bhI7Mco/cBIe/MPY2i5TR3QBXs8GjgvfuUXbN9ERdp2bVMOcdQeR7dW7SU0I4skQkmSJvHBNOzSTTGZTvO9GfG28jyThKB/5m/O3J60vpdVm/uH5KuZ7L/da2/tNVdLMeGPE7VC0mxv9He8EVEK5VPpSWhDDKE1rGhis4yb9x4ptaOw/XFzwQ+X8GVk4OH7ks5MT1JEO6v1Nur4DvruvB6opzSGoa890+xu7Nka3ZvKU2E7AUYo8mZzx6U/nT0QyqKauw7a3mQwOnDCeP91Olozri3kPW38zMoPmpA8DaD4IVH0G8nI994Lph1tUezPviE7SlQDXikVTJcvrRtsGOcobK9aIzLisaHxBi/KEoxR5MqzV5iwP97u/0q+I1E3JTgTVmfHUuEqU+I1F1WihNKBZIUNQnle0r4cbu8pXwKlVORPn1NKYeWcjRqOUEmHImrnXPG4Xlo63NvCcU8HmfCnJon4nYPCrwJAp+nUNYFbXfHlXdzw2wNxELTtxlI/c/MKr5vkl8zEAwLzg+bp1tSJSnEZb1+649k/UlcnOcGP1hH6onOUFAzDxKpU81AnD/JFJVe75jXMgCdtX2ElngDc6B45YdX6je9Fnn7LiqlPF6nhFfPEhWmfr2SFtwg9m22FMiEFPEZ2bVNdNxJVIHKXIk8mt7rmpFsFZ2GCGqvnZq1aI+EUz1TIX2k0cx9Pn3NiVf/qdVxv4S60f0cqvqL60WTRDO0YySS6tfzP6jLJjrXOJj5yZ95FL1b/Srjd3z9VpJPlvuE9e0VoY6Hc4jlLkyRwIrFeOrO1kUF7cTJkeF/xBHkmRW7E2cO9y3PmqUjCqnJ3PD5Ll+tY8M95sYOh/gdyemu1yMFzbuSFeua6D/YP+0W+6Fpe702pSl8ufB+Y8bCi1sd2M6tFUsTySCsAZOEuRJ1GTO+UCpg/xn7FkuM70WPNUf+GDxwX4y4RZiG4v5gaV124NcWevZvhzV6Hmgg2qD7uOw1T3UciZlWDkMr53Sxf4AvGPgahSrz1wu3K+f8IYjlLkyaSuiQlEROrCJu0mKzpO2cTsxXGDzkuANLGEVGxCww8Zg3QSUt/z9HO5h0I5Q2lyk+ElMR152uRioFAvO6gzcZQiT6ayOMclz2xIaJE4H3k68Nmd3bF4u5BZcvHYS3G4qERnD+C+S5vjg8W7Ec+dy1U+28rgScLi3wCMLa4h59aLcnFuvcq6OXPs4rv7eqBmJZMRNiOVZ3Eq0b91Hbz7+y5UNZAxMh1wliJPg1dvQhmu9KPPqIzSKo0Bcb2Lxwa0wks/bpHXcwBdm1ZH16ZCVEKDqtloUFU933qIh/u3wsP9WwG7FgEAOE/TB1WrgUDNlsCRrZZ95C4Xi1Hi0vOzLdgALeKVMwrVmHKbGDfoPIzpfU7MQHs8vH1zZ+w6Ev9qWmo4SpET6YzCj358HgpPnAFe+BWXnVcHd/duLlPka57qb/4V2Wk07Ao074cJG9TXcdXD6tR54x1EcpCbXTFIieh1W4eVjceWYCOs0KifbrhdzLzFr8Hlbera1pYSjlLkZJCnL2rWZr2cbEy/rSs6SfKBhMjJdsara1x4s4CbvsC2sXMsN2GHctWEi4OZzJprRYs/gsorEyWUW+cAe5ckv98U4SxFXm6G1MofWlemV0tjMdJEKkncsmT39mmOQwbGFGwlt4fw7yzBWYqc9Hj6ksYDlenC/X1b4JeN1nLpJDxO/7KJwFd3AjkNbLf+HzG5xihhHkcpciJ9KS8TghLJQ/1aml5YIOEulRCthwj/EG2T0zV1CrYkzWKMDWCMbWGMbWeMjbWjTSX6lPyaqKaJuLHvR09vXmkCvWU5hrgVOWPMDeBNAAMBtAZwI2MsIZmN6hWtSUSzhA2Q7k0MWuc1UWNGY323Y26gi5BRkHAEdljkXQFs55zv5JyXAZgFYIgN7crIYmWJaJawBfusNzIEI6TiVGznDXGn7yHAY08MNZF47FDkDQDsi/qeJ5bZjhf+RDRL2ACXroZO2IqS7Z3gyHLCQdjx61O6m2T3HWNsNGNsOWNseUFBgQ3dEumEnS/55COP0O1cYTGNMn4WxNsTlrFDkecBaBT1vSGAA9JKnPOpnPMunPMutWpRXHF5gztrsSnHUHXwM1jX8j7MDnaXbaN5FUQIO359ywC0YIw1ZYxlALgBwLc2tCujOooS0SxhA3a6VshHHkVmJWxsMRoBJGlBDcKRxB1Hzjn3M8buBTAXgBvA+5zzDXFLpkA1VpyIZgkbCJJxmHCkDzjykRMhbJkQxDn/HoDxHJFEucPowsRGIB+5MtLzQq4VIoSjHJtkf6QvdqwfQ9fXGI6xxNvfoF+HsAVHKXIijbHBjCb7UpuQa8UxlvjQ/wBPHEq1FGcFjsq14i73iaudi52LftBgpzESZZm/f2sXFJ7yxd+Qyw249BfgIOLHUYq8cpYHSHI2TMIYzBbnigD5yGPp2EjI5X6ZZO1MPcu877m1MW9zvun+Lj1Xf41OIr1wlCKnX3j6cl7dynG3QYa4Mq3qVsaO5weF30iNWuLvjOiCIP1mzgqcpciJtKX/efFP8iKVo060W9Goj9zlYnDR4/GswGGDnfRTT1fszJtNPnKCMIejFLmdi6ESNmPjKzx5A7RxTPghkTQcpcg9jpLWOB/7+6ZahPipYjzhZfPalRTLST0RhDUc5iMvn6ba54FLcJNnXqrFiI9Kxnzkix7tg2oVKZNfPDgmjpxIGo6yccurxRYweBmO8CoJliTxNK5RAZWzlBU5qSeCsIajFHl5/aUbTQFbggwsDZ6bYGmIdId85IQUZylyyaSTnwOdUySHvRh9PnHO4OPlN50pqSeCsIazFDmPVeRjfP9IjRw2Y0aBcVJ3Zz01KwlradaunJViSYh0wVGKnNVuHflSs1VSku1/4L884X2YISfb2EDhNH8/bAtaXzrVlD+eld+3hHTk2s4NMWXY+bj1otxUi0KkCY5S5Kh9XuTzla/b3vwZLl81/Gn/LXi900+292UFDqB9w6qG6jIAA8tesNyXqfziY36z3A9hHsYYrmhfn5LIEWGcpcijXSsu+0PY/um/yfY2jWHMS76L14uZ9nhv2X3hz38FW8nq++HBKM8LWNHoFtMSeeE3UZsUCkGkEocp8miFZ38Iy4zAZYrlPrd2Ks53/INkZV9UlCfVL+XKYftGprePLHsU9/nuiyn7Ltgdb/mvAACsDzaN2TY1MBgAsMHVCrtq9tFtX8qa4Dmm9yEIIjU4S5FHKzwD87j3BGvb0mvQnYHckpl4wncbAGBlsHnM9jf9Q2T77O/4kKysVel0xfZ9BuZlzQ+ejyJURMj6nSGZDSodBM3jUcduYc7724ErVLetlTw0CIJILc5S5NGuFR7Eb4/1weDsj9Cp5C1M9g/Ff/1XxlS/tuwpvOC70XYxNgWbxHxXHHTVWVV+cOnz4c+7eD1M8N1ibIBRdK38HOwUU6ymqitnWZu8y8HwkT/yhnJX2QN43X8NAIXjtSnLVdUKgrusRkX5WAVBEOo4TJHHulYaVa+AYFY1FKIKPJc9iQ/8A2KqF6Aafg2eb1v3ai4Qn4Ii19NtG3hu+DMHw/TA5TjOY3OQ7O35MnDR/ZgduDBGisj/EdTCEscNOhdZHmuK9mn/iPDnH4Ld8HugLQDAL71tsqpaal/K0I4N8PK17TGmN7l1CMIMDlPkQdnn0BJjl7SshXxUC2/2j/lT2J4IMSTf6+RUlNfhAJor+9zV2stA7PJavONwoP+zuM93f6SQhRS5sSOrkOHB5W3qGqorxS9x+XhZQCiP9vXfvRSoUs9S+1JcLobrujSC1+2s25IgUo3DfjHRPnJBkVfMFJSKNBTLU1cIVQyVBmu0tE2Kzk2qxXxfMLY/cOdv+DxwSbjM7QJww0x83mOO0D9Xt4pD1nRIUYaQTvi4vUdTqEWIqFnkDIDXbY/rIxulAICqOVGrAdWmlAEEkWqcpci5fLDzzWGd8Ej/lmhVR2epsTj8uFIL8bx6VQBPJJKFMQbUa486NWuGy27s2hjwZOKMt7pu+0FRCder3yimPDsj1mXzf1dEJkRFLHJx3xzlWX6MMdsSfJdB8GG3bNXWlvYIgrAH5ypyUZHVzcnCvZe2EBSW9s6Wu83ySk8TA279Tlbv4hYRRZ7ldct6bVy9gopkouw3fgoMfFlbGKbsI7+yQ33t/UyyNdgQHRrmxJT9HmyLWfXHwT3gOQAo13lfCMJJOEyRR/nIK9RIeHcPlY0Jf2YsKt2s2wtUk4fguaMeJrLnCmP49eFLoIxYuUo9oMPfdaRSe2BFykt5ZLJUbs0KMPsQG1d3KgpRBf/oJ3VHMSyrOhDwZuPWssfQp2ySqXYJgkgMzltYwlsRGPE1ULedqT2ZxjPrDf81iqv0fBXsFf489x+9sGxHS6AoC+j9OBBQmPmo6MKIKFiPoUE8Yy4g2WBn1JPjEBd8+LtfFCYFoVC+/xv+q/GA53/yDX2ewP4dTQEUKEqSnSEcw4JgR0NyEgSReJxnkbu9QKOupnfV8ry85b8CBWLEy6zWbyrWaVmnMoZf1AIY8DyQlQNlK1fL8jXoo9dzEUmiVnZxMSKldhvhb/VzcEPZkxKx5HIVqsWst+iv2f3YgedpbicIIvk4TJFzzYk2vz2mMRVdY8AvOuJjX04XY7IEA5qbQ8n/h5wvZCC0b2V4oaGRFwuunU8DveG7+Tug/fXAxBPA/StxEBK3k+iSWho8F2N9twMAnh4pn40aokFVYSBXaSWfSpkOe4kjiLMAZ/0qeVBTIzZSGUwMU7MVcGQLilhlVOEnI81aSfrEFRS5+LDI4zXDqrRqtjBLUWkw9nveHYPYEkmpvN6TV7RG3rHT4mZhe/dm1bGmT39sOXwS3qb6kTGAcJyzAn3w4n0jgbrqkSdPXdkavVrUlIVZRvPKdR3QtoHzl54jiPKAsxR5l9uAVvIEVVoUcjEssdVAoGALcGQLsr0uoExjp47DgdyewCyNOkoWeTVh6v6zvpvxeqhM48EzDvfj8ZJRGp0IjOqhkNuEB5FTwYuuhpR49NsI01TigBBxM7Cd9iSfazs3NNAvQRDJIC5FzhibCOAOAAVi0XjO+ffxCqVK3ba6SgijfgFOHgx/PYoc4JHtQIXqwKzhAABpNKHMIh/6H+HvLGEyj+IaiW4xH0jVxpGyC+/G+N99mFvSUl1/378KJ08UAm8fRr1qlbD5kMqgZf1O8n2jt1ugSY2KqHCUQgYJorxhh0X+Guf8FRvasYdGF8jLKtUyvHuDqhH3zDWdGuCrlfuVK1auAwz7DGjULVLmcuPBu+5B773HwnHkMldJ9WaoXL0Z3rrpEDo0ykH3F36N3Z5RERj+BdBAZz1SM5N8xLr1crKx8YEBOpUJgnAazhrstI1Y5RqyyN0uhhu7RmZX1qqcqd1My8uB7KoxRbUqZ6K/gdwmA9rWRXW1LH8t+glvEIqEZLcxi8ztUQ8T+0ZlCYJIEnYo8nsZY2sZY+8zxtRHx9KBUMRLv2eAzrfKNvduWcvADFHLnSuUWOjLknw6Sr9hZ9Nx+QRBpA+6ipwx9gtjbL3CvyEA/gvgHAAdARwEoDrVjzE2mjG2nDG2vKCgQK1aYhk8Ceh0C9BxGHDlG8B101BSsy3eHdkdANCsVmwWwwxxAo8nrrUR1ZVohseFZ4e0sdisedeK5kOgvTijtIrCgs21KHacINIZXR8559xQLlbG2DsA5AlIIu1MBTAVALp06ZKI7LL6VKkHXDU58r3NUGS1GYpLAEy/rSsubBYbf31X73NQ6g/i5u6xC0mYwiWe4k4jFDff3D0XvVvVxoHjZww2GI9rRUORd78X6Hon4JG4e548KjwAxv9ooT+CIJJBvFEr9TjnoRCRqwGsj1+k1NCrpXxAtEKGB+MHxWmNutzA+IOARzk7ISDEv+vGwIew07VyzzLg9NFIu1IlDgBuZ0WoEsTZSLy/0pcYYx0haIrdAO6MV6BySYZBJW0GDdfK3zo1xIXNogZLq4gx37k9YivWMp6jfcEjvVHi157NShBEaohLkXPOb7ZLkERQPycLuTXlq/c4mlAedJd6PPik6zvEFtRqCdy/Gqhq3UVU7s4jQZQjyvV78x/j5BkNHc+A54FKtYFzr9SvG011hdmhBEGUC8q1Ii+XZFcD+j2daikIgkgjztIJQQRBEOUHUuQEQRAOhxQ5QRCEwyFFThAE4XBIkRMEQTgcUuQEQRAOhxQ5QRCEwyFFThAE4XAYN5MO1a5OGSsAsMfi7jUBHLFRnFRCx5J+lJfjAOhY0pV4jqUJ51yW4S8lijweGGPLOeddUi2HHdCxpB/l5TgAOpZ0JRHHQq4VgiAIh0OKnCAIwuE4UZFPTbUANkLHkn6Ul+MA6FjSFduPxXE+coIgCCIWJ1rkBEEQRBSOUuSMsQGMsS2Mse2MsbGplkcPxthuxtg6xthqxthysaw6Y+xnxtg28W+1qPrjxGPbwhi7PHWSA4yx9xlj+Yyx9VFlpmVnjHUWz8F2xthkxiwtOpqIY5nIGNsvXpvVjLFB6X4sjLFGjLH5jLFNjLENjLEHxHLHXReNY3HidclijP3FGFsjHsvTYnnyrgvn3BH/ALgB7ADQDEAGgDUAWqdaLh2ZdwOoKSl7CcBY8fNYAP8SP7cWjykTQFPxWN0plL0XgE4A1scjO4C/AHQHwAD8AGBgmhzLRACPKNRN22MBUA9AJ/FzZQBbRXkdd100jsWJ14UBqCR+9gJYCuDCZF4XJ1nkXQFs55zv5JyXAZgFYEiKZbLCEADTxM/TAAyNKp/FOS/lnO8CsB3CMacEzvkiAIWSYlOyM8bqAajCOV/Chbt0etQ+SUPlWNRI22PhnB/knK8UP58EsAlAAzjwumgcixrpfCycc14sfvWK/ziSeF2cpMgbANgX9T0P2hc+HeAAfmKMrWCMjRbL6nDODwLCzQygtljuhOMzK3sD8bO0PF24lzG2VnS9hF57HXEsjLFcAOdDsP4cfV0kxwI48LowxtyMsdUA8gH8zDlP6nVxkiJX8hWle8jNxZzzTgAGAriHMdZLo64Tjy+EmuzpfEz/BXAOgI4ADgKYJJan/bEwxioB+BLAPzjnRVpVFcrS/VgceV045wHOeUcADSFY1201qtt+LE5S5HkAGkV9bwjgQIpkMQTn/ID4Nx/A/yC4Sg6Lr1AQ/+aL1Z1wfGZlzxM/S8tTDuf8sPjjCwJ4BxE3VlofC2PMC0HxzeCcfyUWO/K6KB2LU69LCM75cQALAAxAEq+LkxT5MgAtGGNNGWMZAG4A8G2KZVKFMVaRMVY59BlAfwDrIch8i1jtFgDfiJ+/BXADYyyTMdYUQAsIAx/phCnZxdfJk4yxC8XR9xFR+6SU0A9M5GoI1wZI42MR+30PwCbO+atRmxx3XdSOxaHXpRZjrKr4ORvAZQA2I5nXJZmju/H+AzAIwuj2DgBPpFoeHVmbQRiZXgNgQ0heADUAzAOwTfxbPWqfJ8Rj24IURHdI5P8EwqutD4KlMMqK7AC6QPgx7gAwBeIktDQ4lo8ArAOwVvxh1Uv3YwHQA8Kr9loAq8V/g5x4XTSOxYnXpT2AVaLM6wFMEMuTdl1oZidBEITDcZJrhSAIglCAFDlBEITDIUVOEAThcEiREwRBOBxS5ARBEA6HFDlBEITDIUVOEAThcEiREwRBOJz/By7oXpUcKHYaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot();" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAD4CAYAAAD2FnFTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAypUlEQVR4nO3deXhcV5Xv/e+q0jxZs6x5sGVb8uw4jhNndAJxZqDhkgRIh+GGEOiGhpd0GugGmnvT9EvTTeBygRBoSMNLCCFAAhk685zYimdblgdZtmTNsmQN1li13j+qDLJStmWrTp2StD7PU4+kM/5OImtVnb3P3qKqGGOMMRN53A5gjDEmOlmBMMYYE5IVCGOMMSFZgTDGGBOSFQhjjDEhxbgdIJyys7O1rKzM7RjGGDNtvP32252qmhNq3YwqEGVlZdTU1Lgdwxhjpg0ROXSqdXaLyRhjTEhWIIwxxoRkBcIYY0xIM6oNwhhj3DI6OkpTUxNDQ0NuRwkpISGBoqIiYmNjJ72PFQhjjAmDpqYmUlNTKSsrQ0TcjnMSVaWrq4umpibKy8snvZ/dYjLGmDAYGhoiKysr6ooDgIiQlZV11p9urEAYY0yYRGNxOOFcstktJmOizWA31D0FvU2QUQ6LroPYRLdTmVnICoQx0UIVNt6P/9mv4Rk9/pflKXnw/p9C2cXuZTOzkt1iMiYaqDL02Ofhybt5aaiSG4b/FwuHfsbdyfcy6E2B/3ovHHrD7ZRmlrECYUwUGHzh30jY8lMe8F3Plovv56uf/BBff995vO6v4uKOe+hPzIeHPwLHj7od1USpTZs2sWzZMoaGhhgYGGDx4sXs3LlzSse0W0zGuExbthH38r38yX8hVbd9h3WVgXHTVpdlcs3SfD7x803c3Hgnj8d9BXnu63DDfS4nNmfy9cd3sbu5N6zHrC5I46s3LD7l+vPPP58bb7yRr3zlKwwODvLhD3+YJUuWTOmc9gnCGDf5fRz79Z10aRpdl3/zz8XhhDmJsfzk9vPpS6/iYc8GdPN/wdF6l8KaaPdP//RPPPPMM9TU1HD33XdP+XiOfoIQkQ3AfYAXeEBVvzlhvQTXXwscB25X1c3BdX8HfAJQYAfwUVWNzkcUjTlHvp2/J71nN99M/gJ3X7485DZpCbF8/9ZVfOL71/G++GeIffU/4MbvRTipORune6fvpKNHj9Lf38/o6ChDQ0MkJydP6XiOfYIQES/wfeAaoBq4RUSqJ2x2DVAZfN0B/CC4byHwt8BqVV1CoMDc7FRWY1zh99P/zL3s8xey6tqP4/Gcup/6ksI5bFi7gkfG1uHf/jAM9kQup5k27rjjDr7xjW/woQ99iL//+7+f8vGcvMW0BtivqvWqOgI8BNw0YZubgAc14E0gXUTyg+tigEQRiQGSgGYHsxoTefufZU7ffh5NuZl3LS444+Z/d9UC/uB9N56xIdjxmwgENNPJgw8+SExMDLfeeiv33HMPmzZt4vnnn5/SMZ0sEIVA47ifm4LLzriNqh4B/g04DLQAx1T1v0OdRETuEJEaEanp6OgIW3hjnHbs9Z/QqWkUrrtlUk+5zkmKZfXa9ez2lzL09q8ikNBMJ7fddhuPPvooAF6vl7feeov169dP6ZhOFohQv/E6mW1EJIPAp4tyoABIFpEPhzqJqt6vqqtVdXVOTshZ84yJPv3tpDQ8wx/0Em5YWTbp3f56XTlP6VoS2t6GY0ecy2cMzhaIJqB43M9FvPM20am2uQo4qKodqjoKPApc5GBWYyLKv/03ePHRWvEB5iRNfvjlnNR4RhZcB8DorsedimcM4GyB2ARUiki5iMQRaGR+bMI2jwG3ScBaAreSWgjcWlorIknBnk5XArUOZjUmovq3/Z5afzErVq09630vvWgde/2F9Gz+rQPJjPkLxwqEqo4BnwGeJvDH/WFV3SUid4rIncHNngDqgf3Aj4G7gvu+BTwCbCbQxdUD3O9UVmMiaqCTlLYantM1XLbw7G+Lri3P4o3YtWR21sBQeB/GMmY8R5+DUNUnCBSB8ct+OO57BT59in2/CnzVyXzGuEHrnsSDn46iq0iJP/t/gh6PELfgSry1v2Wg7kWSl9/oQEpj7ElqYyJucOcfadJs5i298JyPUX3BVRzXeFq3PhXGZMaczAqEMZHkGyPm8Gu84lvKhfOyz/kwS0ty2eqpJqnplTCGM+ZkViCMiaSWbcSN9bEjbgXzc1PO+TAej9Az9yLyRw8zfLTxzDsYcw6sQBgTQVr/YuBr+aVTnp4ya/EVADRsfXGKqcxM8I//+I/cd99fRvr98pe/zHe/+90pHdOG+zYmggb3Ps8hfzFLF8yf8rGqVq5j8Jk4+ve9Cus/EoZ0JmyevAdad4T3mHOXwjXfPOXqj3/847zvfe/js5/9LH6/n4ceeoiNGzdO6ZRWIIyJFN8occ01vOm/jMvnZU35cGnJSeyMW0Bqx+YwhDPTXVlZGVlZWWzZsoW2tjZWrlxJVtbUfs+sQBgTKW07ifEPURdbze1ZSWE5ZH/OKs478kv6+npJTU0LyzFNGJzmnb6TPvGJT/Czn/2M1tZWPvaxj035eNYGYUykNG4CYKxw9ZTbH05IW3AxseJj31brzWTgve99L0899RSbNm3i6quvnvLx7BOEMREyeuhNujSDkrIFYTtmyfLL4UUY2P86XHJd2I5rpqe4uDiuuOIK0tPT8Xq9Uz6eFQhjIsR3eCOb/ZWsKMkI2zFTMvJo8hSQ1P522I5ppi+/38+bb77Jb34TnvlC7BaTMZHQ305CfyOb/ZUsL0oP66G70qopGNyL3z9xNH0zm+zevZv58+dz5ZVXUllZGZZj2icIYyKhMdDdsC1t6VkN7z0ZUrCC/J5nqT98iIqysrAe20wf1dXV1NfXh/WY9gnCmEho3Y4PDwnFK8N+6KzKNQA07n4j7Mc2Zycw/mh0OpdsViCMiYDh5h00+PNYWJwb9mMXLAoUiMEGa4dwU0JCAl1dXVFZJFSVrq4uEhISzmo/u8VkTAT4W3dRp8VU5Yf/WQVJzKAtpoCU7l1hP7aZvKKiIpqamujo6HA7SkgJCQkUFRWd1T5WIIxx2sgACX2HqfOv5ra5qY6c4mhaFaVd2xkZ8xMXYzcG3BAbG0t5ebnbMcLKfpOMcVrHHgSlJaGCrJR4R06h+csplg4OHraRXU34WIEwxmltuwNfc6sdO0V6xWoAWvfVOHYOM/tYgTDGYb623QxqHFnFCx07R978VQAMNoV5BFEzq1kbhDEOG2zaQb0Wsqgg3bFzeNPm0itpxHbWOnYOM/vYJwhjHBbTuZs6vzM9mP5MhM6keWQPHojKbpZmerICYYyTBjpJGO5iv5RSkZ3s6KlGsquYr4dpOjrg6HnM7GEFwhgntQWeTehPX0CM19l/bglFy0iWYRrr7TaTCQ8rEMY4qT3Qg8mT51wPphOyKwLDeBxr2Ob4uczsYI3UxjhotGUXvZpKXn6J4+dKKVoS+Kbdnqg24WGfIIxx0EjzTvb6i5mf58wT1CeJT6EtpoDUY3udP5eZFaxAGOMUv5/4o3vYo8XMz02JyCmPpswnf7je5oYwYWEFwhin9BwixjfIfoopzXK2B9MJvuwqSmnlSGd3RM5nZjYrEMY4JdhAfSxtAbEO92A6IbFoKTHip/WANVSbqbMCYYxT/tyDqSpip8yddx4AfYe3R+ycZuayXkzGOMTXuosjmkvx3PBPEnQqqQWVjOFFO6yh2kydfYIwxiFjLbuo8xdFrIEaAG8srTGFJPfuj9w5zYxlBcIYJ4wNE9tzgDotZn5OBLq4jtObUkHe8CEbk8lMmRUIY5zQuReP+qjzFzMvNzI9mE4Yy1xACa20d/dG9Lxm5rECYYwTgpMEdadUkhQX2aa+uPwqvKK01O+M6HnNzGMFwhgntO9mlBhi8xZE/NSZZcsA6GuyITfM1FiBMMYB2rabA1pAeW56xM+dXVKNXwV/e13Ez21mFisQxjjA17qTPZHuwRTkiU+i1TuXxJ59ET+3mVkcLRAiskFE6kRkv4jcE2K9iMh3g+u3i8iqcevSReQREdkjIrUicqGTWY0Jm8EeYvqbqfOXuFIgALoSy8geanDl3GbmcKxAiIgX+D5wDVAN3CIiEwfFvwaoDL7uAH4wbt19wFOqughYDtgsKGZ6aA/8qu7RYublRLYH0wmDc+ZT6DvCyMiIK+c3M4OTnyDWAPtVtV5VR4CHgJsmbHMT8KAGvAmki0i+iKQBlwI/AVDVEVXtcTCrMeETnI+hJb6crJR4VyJ4chcSL2O0HrL3VebcOVkgCoHGcT83BZdNZpsKoAP4TxHZIiIPiIg7b8VM9Brugze+z/Cz99JwYA9jPr/biQLaaxmQZJKyS12LkFocmDyou8G6uppz52SBkBDLJj7aeaptYoBVwA9UdSUwALyjDQNARO4QkRoRqeno6JhKXjOdDPbATzfA018i/tV/Jf3B9XzyW//JtsYet5NB2272UUxFbmSfoB4vryLQ1XW4ZbdrGcz052SBaAKKx/1cBDRPcpsmoElV3wouf4RAwXgHVb1fVVer6uqcnJywBDfTwNNfwt9ey+0jd/PF/J8Tl5jM14a/xcd+8iqHugbcy6WKtu1i12ghFS61PwCkZ2TRShYxR60nkzl3ThaITUCliJSLSBxwM/DYhG0eA24L9mZaCxxT1RZVbQUaRWRhcLsrAXsrZAI66tCt/x8/1+voKbycez9xI0kf+BHF2sKHeZLPPrTVvRnVepuR4WPBBmp3ejCd0BpXypyBelczmOnNsQKhqmPAZ4CnCfRAelhVd4nInSJyZ3CzJ4B6YD/wY+CucYf4G+CXIrIdWAHc61RWM828+h1GPfH8n+Fr+db7lwUm45m3Hua/i7ti/0htYzu/23LEnWzBOSDq/O71YDqhL6WC/NFG8EdJ24yZdhwdJEZVnyBQBMYv++G47xX49Cn23QqsdjKfmYaGjqE7f8sjY5dxyfJFVOaNu8+/7rPE77+ez2Rt5nvPp/OelYV4PaGauRzUFujBtE9KKMl0t0D4sheSdPQR+jsaSMmrcDWLmZ7sSWozvez+A+Ib5tejF/PRdeUnryu7GPKW8JHY52noOs4zu1sjn6+9lu6YbOZk5BAX4+4/r8T8wGNHHfU2/ag5N1YgzPSy87c0eQsZzl3BsqI5J68TgeU3k96zk4vSj/LAKwcjn699F/spocLl9geArPKlAAwcseY7c26sQJjpY7gPbXiNPw6v4n+cX4JIiNtHS/4KED4/dwc1h7rZ394fuXy+MbRjL9tHCqjIdv+xnaLCIjo1De2wQfvMubECYaaP+hcR/ygv+FZw3bL80NukFUDZxaw49ixeDzzydlPk8h09gPiG2TVWxDyXxmAaLyHWS5O3iORjB9yOYqYpKxBm+tj33/RLMqOF55OXlnDq7apvIqb7AB8sH+bRzU34ItXlNdhAXaclUfEJAqArqYKc4Qaw6UfNObACYaYHVXx7n+GlscWsry44/bYLrgbgw5m1tPcNU9NwNAIBgfZa/OJlvxZERRsEwEj6fFK1H+1vczuKmYasQJjp4Wg93v4WXvcv4arqvNNvm14CudUs7H2d+BgPT+6MUG+m9t10xRURl5BEdkpcZM55BjF5iwDoPmRjMpmzZwXCTA+H3wBgf+JSFuZNYoyjBVfjbXyTDfMTeWpna2SerG7bxQFPoAdTyAZ0F6SVBAbt6zlsBcKcPSsQZlrQQ6/TQwpzK5ZP7o9v5dXgH+ND2ftp7R1ii9OD+I0MQHcDO0YKmRcl7Q8ARSXz6NNERltt2G9z9qxAmGlh9ODrbPIt5ML5kxyQseh8iJ/DitEtxHqFp3a2OBuwfQ+g1AzmR0UPphPy5yRygELium3QPnP2rECY6NfXRtyxg2z0L+TCeVmT28cbA2UXE3f4VdbNz+bpXW2okz15gpME7dHiqOnBBODxCO3xpWQcb3A7ipmGrECY6Bdsf2hIXk5JZtLk9yu/FLobuLF0lMNHj3Ogw8FhwNt2MeZN5LDmRk0PphMGUueR7usKzKFhzFmwAmGinjZtYphY5sxbfXaNvxWXAXB53B4AXqxrdyJeQNsu2pPmg3gozTqLIhYBmhMYNX+0bY/LScx0YwXCRL3hQzXs8peysuwsJ4TKWQTJuWS2vcGCvBSe3+NQgVCF1h3Ue8ooykgkIdbrzHnOUVJBYNA+6+pqzpYVCBPd/D5i2rez3V/ByuKMs9tXJHCb6eDLXLEwh40Hj9I3NBr+jL3NMNTD9tEiKrKj6/YSQF7JAoY1luNHdrkdxUwzViBMdOvaT8zYceo881mQdw5/fCsug/42rpvby5hfeXVfZ/gzBofYeK1vruuzyIVSnpvGAS3A07XX7ShmmrECYaLbkc0AjOQtJ8Z7Dr+u5ZcCsHh4K6kJMbzgRDtEW+DWzfbRwnMrYg5LT4rjsLeIlF4btM+cHSsQJqqNNW1mQOPJq1h6bgfIKIP0EryHXuHSBTm8UNcR/qeq23YymFRIH0lURmGBAOhJqiB9tBVGjrsdxUwjViBMVBs6tImdWs7K0uxzP0j5pdDwKusXZNPRN8yu5t7wBQRo20Vr4nwA5udOYhgQF4xkVOJBocsemDOTZwXCRC/fKAldu9nur2BFcfq5H6fsUhjq4cqMdkQIb2+m0SHo3Mc+KWVuWgJzEmPDd+wwisuvAuB4szVUm8mzAmGiV8ceYvzDNCUuIic1/tyPU34JAOltb7K8KD287RCddaA+Ng8VRO3tJYCM4kWMqYe+w1YgzORZgTDRq2UbADp32dSOk1YAmfOg4RWuWJjLtqYeuvqHwxAQaA00UL90LI/KKL29BFCRl8EhzcPXbtOPmsmbVIEQkd+KyHUiYgXFRMxo8w4GNY7skqqpH6z8Ejj0OusXZKIKL9Z1TP2YAK3b8cckUjeaE5U9mE4oyUpinxYR32NtEGbyJvsH/wfArcA+EfmmiCxyMJMxAAw1baNOi6kqPMsH5EIpuwSGe1ksDeSkxvN8uG4zNW+lN70KP56ovsUUH+OlPb6E9MFGGBtxO46ZJiZVIFT1WVX9ELAKaACeEZHXReSjIhKdrXJmelMlrnM3u/0lVBekTf14ZYF2CM+hV7h8QQ4v7+1gzOef2jH9PmjdzuH4wFhH0dqD6YTBOfPx4oOj9W5HMdPEpG8ZiUgWcDvwCWALcB+BgvGMI8nM7NbXQvzoMRpiyimYkzD146XmQfZCaHiF9Yty6Rsa4+1D3VM7ZudeGD3ODi2P6h5Mf5YT+OCvHTZon5mcybZBPAq8AiQBN6jqjar6a1X9GyB6P1eb6SvY+DuSVR2+6TvLL4FDb3BxxRxiPDL120zNWwF4ub+IBXOj+9MDQFphoED0H9ntchIzXUz2E8QDqlqtqv+iqi0AIhIPoKqrHUtnZi1/6w4AEouXh++gZZfA6ACpR3dyflkmL+6ZYkN18xY0NpkXOuewOBy3wRxWPDeXRn8OQ81WIMzkTLZA/K8Qy94IZxBjxhs4vJVGfw7zigvCd9BgOwQHX2L9olzq2vo40jN47sdr2crxzCpG/DItCkRFTjL7tQCvPU1tJum0BUJE5orIeUCiiKwUkVXB1+UEbjcZ44y2XezREqrzw/iHNzkL8pbAwVe4YlEuMIWnqn1j0LqDI4mB2zaLC+aEK6Vj5qYl0CBFpPbXBxrYjTmDM32CuBr4N6AI+Hfg28HX54EvORvNzFqjgyT3HaSOUubnhrmJq+wSaHyLeRkxFGcm8uK5FohxDdQp8TGUns1UqC7xeIT+tHnE6gj0HHY7jpkGTlsgVPXnqnoFcLuqXjHudaOqPhqhjGa2aa/Fg5+etIXExYT52czyS2BsCDnyNusX5vLagU6GRs/h3fSRGiDQQF2Vn4rHE6aGdKdlB7rk0mlzQ5gzO9Mtpg8Hvy0Tkc9PfEUgn5mNgvMreOcuCf+xSy8CJDDsxqJchkb9vFHfdfbHaXwLTczguY608N4Gc1hK0WIABm12OTMJZ3p7lhz8mgKkhngZE3bHG7czoPHkloVhiI2JEjMgfxkcfIW1FVkkxnp5vvYcbjMdfovjeefRP6LTov3hhLKiQto0nf4mm5/anFnM6Vaq6o+CX78emTjGwMiRbdRrMdUF6c6coOwS2Hg/CYxw2YIcntrVytduXIx3sreJBrqgax/1OdcBsHwqQ5FHWGVeCnX+YhZ3WFdXc2aTfVDu/xWRNBGJFZHnRKRz3O0nY8JHlcSjtdT6S527dVN+KfhGoHEj1y7Lp6NvmJqGo5Pfv2kjAG+Mzic1PobKcDekO6gwPZEDnlLS+g5YTyZzRpNtAXy3qvYC1wNNwALgi46lMrNX7xHix/poSZjHnCSHhq4ouRA8MVD/AlcuyiU+xsOTO1snv//hN8ETyx8757KiJH36NFADIkJvWmWgJ9PRg27HMVFusgXixL/Ua4FfqepZvN0y5iwEh9gYy1ns3DkS0gJFYu/TJMfHcPnCHJ7c2TL5uaob38I3dxk720dYVRKGkWYjTHOqA9+0W0O1Ob3JFojHRWQPsBp4TkRygCHnYpnZarR5OwDJJWEcYiOUhddA+27oPsS1S/Np6x3m7cOTGLxvuB+aamhOX41f4bzS6Vcg0oqX4FNhsGmH21FMlJvscN/3ABcCq1V1FBgAbjrTfiKyQUTqRGS/iNwTYr2IyHeD67eLyKoJ670iskVE/ji5yzHT3cDhrRzy51JZnO/siRZsCHzd+zRXVuURF+PhT9tbzrzfodfBP8obugSvR1hZku5oTCdUFGTToHM53rTd7Sgmyp3NU0hVwAdF5Dbg/cC7T7exiHiB7wPXANXALSJSPWGza4DK4OsOAhMTjfdZoPYsMpppztPuwBAboWTNg6xK2PskKfExXFWVy2PbmhkZO8McEfUvgjeeh9sLWVWSTmpClA/xHcKCvFT2ahExnTbstzm9yfZi+i8CQ25cDJwffJ1pFNc1wH5VrVfVEeAh3vmp4ybgQQ14E0gXkfzgOYuA64AHJnsxZpobOU7KwGHqPWUUZSQ6f76FG6DhVRju4wOrizk6MMJztW2n36f+RUYLL+Dt5iEuqcxxPqMD8uckcNBTSurxRhidwmCFZsab7CeI1cA6Vb1LVf8m+PrbM+xTCDSO+7kpuGyy23wHuBs47Vs6EblDRGpEpKajI0zzDBt3dOzBg5/jGYsi0zNowTWB7q77nuHSyhzmpiXw65rGU29/rAnad7EvdTWqcElltvMZHSAi9M1ZgAc/2ORB5jQmWyB2AnPP8tih/oVP7CYSchsRuR5oV9W3z3QSVb1fVVer6uqcnOn5js4E+NsCvWpiC5ZG5oQlayG1ALY/jNcjvP+8Il7e20FT9/HQ2+/5EwC/P76C9KRYlhWlRyanA7xzA73EtM16MplTm2yByAZ2i8jTIvLYidcZ9mkCisf9XAQ0T3KbdcCNItJA4NbUehH5xSSzmmmq79A2BjWO/LJFkTmhxwtL3w/7n4GBLm65oAQR4T9fawi9fe3j+LMX8ssD8WxYPHfyT15HobyyKoY0loFGa6g2pzbZAvE14D3AvfxlyO9vn2GfTUCliJSLSBxwMzCxqDwG3BbszbQWOKaqLar6D6papKplwf2eV1V7cnuGG23eSZ0Wsagggl1Hl30Q/GOw61EK0xO5YVk+D208zLHB0ZO3G+iCQ69Rn30FAyM+blgexomMXFBVkME+LWS42T5BmFObbDfXl4AGIDb4/SZg8xn2GQM+AzxNoCfSw6q6S0TuFJE7g5s9AdQD+4EfA3edy0WYmSGpew97tYTKvAgOXTF3SWASoa2/BFXuuHQeAyM+fvTSgZO32/lbUD8/7lpKwZwELijPjFxGByzKT6NOS4g/am0Q5tQm24vpfwKPAD8KLioEfn+m/VT1CVVdoKrzVPV/B5f9UFV/GPxeVfXTwfVLVbUmxDFeVNXrJ3k9ZrrqbydprJuu5EoSYr2RPffqj0LzFjj8BtUFabxvZSEPvHqQw13BtghV2Pxzjmct4deNGdy+rowYb5jnqYiwlPgYOhIrSBnphOM2MIIJbbK/5Z8m0C7QC6Cq+4Bcp0KZWSg4B4Q/d+KjMhGw/FZIzITXvgvA3RsWEeMR/p9HtjHq88PhN6BtJz8fvoys5DhuXlMS+YwOGMsODqduDdXmFCZbIIaDzzIAICIxvLNHkjHn7HhjYNiHtJJlkT95XBKsuQP2PgmNm5g7J4F737uUjQeP8qlfbKb/v++lz5vBfZ2r+cr1VaRNw4fjQkkpDvy3Hmq2uSFMaJMtEC+JyJeARBF5F/Ab4HHnYpnZpu/wVto1nfLSMncCXPQZSJkLf/o8jA3znpWFfO2GamL3/pGUI6/wnaFr+fgV1bxnxcRHeaav0rIKujWFvoYtbkcxUWqyBeIeoAPYAXySQOPyV5wKZWYfT0cte/zFVOW7NFFhfCpc921o3Q6/vwvGhrm9oo//k/ozuudU81ef+gZfvHoRItO3a+tE1QXp7PaXIm32CcKEdtoZ5U5QVb+I/B74vara48omvHxjpPcfoDF2A5emxLuXo+p6uPKf4Ll/hr1PwcgA3tS5ZNz2CzKystzL5ZC8tHieialgTd/T4BsD76T+HJhZ5LS/ERJ4u/RVAt1VJbjIB3xPVf85AvnMbHC0nlgdYTArQg/Inc4lX4DC1bD7D5CcA2v+JyRPzyE1zkRE6E+vIrb7cejaD7lR8N/fRJUzvWX4HIHeS+er6kEAEakAfiAif6eq/+FwPjMLjLTsIA6ILVjidpSAissCr1kgpnA5dMPYka3EWIEwE5ypDeI24JYTxQFAVeuBDwfXGTNlPQe3MqYecssdniTIvEPB/KUMayzd9ad97tXMUmcqELGq2jlxYbAdYmb09TOuG23eyUHNZ1GxDbYYactKcqjTIsaat7kdxUShMxWIkXNcZ8ykJXXvYZ+UUJqZ5HaUWacoI5H9ngpSe2oDT4wbM86ZCsRyEekN8eoDIjQms5nRhvvIGGmmJ6UyMnNAmJOICP0ZVaT4jkHvxMGWzWx32kZqVY3woDhmttG23Qjgc2OIDQNAXLCheqhpKwlzZs6DgGbqpveIY2ba627YCkBayQpXc8xmeZXn4Vehc/87xso0s5w9GWNc1XdoG7GaSEnFQrejzFqLKwpp0DykyRqqzcnsE4RxlbdjN3VazKL8OW5HmbVyUxM4GFNBSk+t21FMlLECYdyjSkb/PlriK0iMs+YuN/WlLyJntBmGjrkdxUQRKxDGPb3NJPv7Gcq0J3jd5i1YAUD/IbvNZP7CCoRxTd/hwB+j+EIX5oAwJ8ldcD4ArXs3uZzERBMrEMY1nQcC8xDkzl/pchJTVTmfTk1jpNHmhjB/YQXCuGasZQdNms2isiK3o8x6aYlxHIhdQGq3zQ1h/sIKhHFNUncdh7ylpCfFuR3FAP2ZSykYbcA/POB2FBMlrEAYd4wOkTdyiJ40a6COFvGl5+FFadqz0e0oJkpYgTCuGGzeSQw+NM+G9IoWxYsvBKCj7k2Xk5hoYQXCuKJ9X2BYhzkV57mcxJxQUjqPdjLgiDVUmwArEMYVg4e30qeJVCxY7HYUEyQiHElcRFbfLrejmChhBcK4IqFzJ/uklIJ0mwMimozkLafEd4Tu7qNuRzFRwAqEiTy/n7zB/XQkL0DE5oCIJnPmrcEjysEdr7kdxUQBKxAm4sY6D5Cog4zmLHE7ipmgZMlFABw7YD2ZjBUI44K2YAN1cukql5OYiZIy8mn35BDfvt3tKCYKWIEwEdffsJlR9VK80IbYiEadaYspPL6HUZ/f7SjGZVYgTMR523ZwgELK8jLdjmJC8BSupFRa2XOw0e0oxmVWIEzEZfbX0ZJYSYzXfv2iUd6iwANzh6yhetazf6Emony9bWT6jzKcZc8/RKuM+WsAGDlkDdWznRUIE1GtdYE/OkklK9wNYk4tMYP2+FKyerbh86vbaYyLrECYiDpa/zYAhVVrXE5iTmcwbxVLdS97WmwK0tnMCoSJKGnZRpPmUFZkc0BEszmV68iUfmp3bXU7inGRFQgTUbm9O2lMXITXY09QR7P0BesA6Nv/hstJjJusQJiIGe1tJ9ffzvFsm4M66uUsYtCTTErHZlStHWK2crRAiMgGEakTkf0ick+I9SIi3w2u3y4iq4LLi0XkBRGpFZFdIvJZJ3OayDiyK9BtMqHM2h+insfDscylLPbVsb+93+00xiWOFQgR8QLfB64BqoFbRKR6wmbXAJXB1x3AD4LLx4AvqGoVsBb4dIh9zTTTV78Rv8qfJ6Yx0S2hfC0L5TA1++yBudnKyU8Qa4D9qlqvqiPAQ8BNE7a5CXhQA94E0kUkX1VbVHUzgKr2AbVAoYNZTQTEtm6hXgopnpvrdhQzCXMq1+EVpX3P625HMS5xskAUAuPfejTxzj/yZ9xGRMqAlcBboU4iIneISI2I1HR0dEw1s3GKKnn9tTQnVdkQ39OEFJ8PQMyRGvz2PMSs5GSBCPVXYOJv2Wm3EZEU4LfA51S1N9RJVPV+VV2tqqtzcnLOOaxx1lDnYTK0h+Hc5W5HMZOVmEFvSgWLxvZQ2xryn5+Z4ZwsEE1A8bifi4DmyW4jIrEEisMvVfVRB3OaCDi88xUA5sy7wOUk5mzElq3lPM9eXt3b7nYU4wInC8QmoFJEykUkDrgZeGzCNo8BtwV7M60FjqlqiwTuQfwEqFXVf3cwo4mQ/vpNjKiX+cusgXo6Say8jHQZ4HDtJrejGBc4ViBUdQz4DPA0gUbmh1V1l4jcKSJ3Bjd7AqgH9gM/Bu4KLl8HfARYLyJbg69rncpqnJfcsYV6bzmZc1LdjmLORmnggbmk5jcYGvW5HMZEWoyTB1fVJwgUgfHLfjjuewU+HWK/VwndPmGmIR0bpnSolo2ZN7LI7TDm7KQXM5hcxHm9tWw+1M1F87PdTmQiyJ6kNo5r2bORBEaQEru9NB3FVFzCGk8tr+yzdojZxgqEcVxn7UsAzF16mctJzLmIrbiETOmnqW6z21FMhFmBMI7zNr1Fo+ZRUT7f7SjmXJRdDEBmx0a6+oddDmMiyQqEcZYqhb3baEheaiO4TlcZpYykFLLGU8uLdfYw6mxiBcI4qr9lD+l6jKF8G6BvOoutuIQLvXt4obbV7SgmgqxAGEc1bn0BgOzqS11OYqZC5l1BJr207dvEyJjf7TgmQqxAGEeNHXiFbk2laulqt6OYqZi3HoDzxzaz8eBRl8OYSLECYZyjSn73W+xJXEFCXKzbacxUpOTin7ucy2N28NyeNrfTmAixAmEc099cS7a/i/7Ci92OYsLAM/9KVsle3tx90GaZmyWsQBjHHNn8JACZS9/lchITFvOvIgYfJcdqqGvrczuNiQArEMY59S/RqDksrrYhvmeE4jX441K4zLuNP21vcTuNiQArEMYZvjEKe2rYm7SKhDhHh/wykeKNxTPvCjbEbedP247YbaZZwAqEcUTPvtdI0QFGSi93O4oJp0U3kOnrJO3oDnY12yRCM50VCOOItprfM6peStbc4HYUE04L3o16YrgmZhN/tNtMM54VCOOIOYefY7OnmqqyIrejmHBKzEDKL+Wm+Ld5fOsRm6t6hrMCYcLO11nP3JFDNOdejsfGX5p5qm5g7lgzyb37eKO+y+00xkFWIEzYNW8KTCGeuux6l5MYRyy8DkV4T/zbPLSp0e00xkFWIEzYSe3j1PmLWb1yldtRjBNS85Cyi/lg/Os8vbOF7oERtxMZh1iBMOF1rImi3q1sTruC9KQ4t9MYpyy/hazhJpb69/C7LUfcTmMcYgXChFXXWw8BELPs/S4nMY6qvglik7ljzlv84s1D1lg9Q1mBMGE1tuO3bPNXsG6Nzf8wo8WnQPWNrB97lSOd3Ty3x+arnomsQJjw6dxHXt9utqRdQUF6ottpjNNW3ErsWD+3pm7lxy/Xu53GOMAKhAmbnld/zKh6iVlxi9tRTCSUXgyZ8/hU4nNsbDjKlsPdbicyYWYFwoTH2DBxO3/Ns3oe716z1O00JhI8Hrjgk+T27uDixAb+49l9bicyYWYFwoSFb/fjJI31UJv/XnLTEtyOYyJlxa0Qn8bXcl/m5b0dvH6g0+1EJoysQJiw6Hv5BzT6c6i++D1uRzGRFJ8Kq25jXvszrE7r4V+fqrNRXmcQKxBm6ho3kt5Zw0Pe61lfNdftNCbSLvpbxBvHt3KfZltjD3/Y2ux2IhMmViDMlPU//216NJmktbcTF2O/UrNOah6c/3HKjjzOtfn9fOOPu+k5bk9XzwT2r9lMTfsekg4+za/03dy8rsrtNMYt6z6HxCbxr2kP0zM4yr1P1LqdyISBFQgzJUNPf40BTaBzycfJSol3O45xS0oOXHY3qYee5ZtLmnm4pomnd7W6ncpMkRUIc+4aN5Fw4Eke8N/A7Ved53Ya47YLPgXZC3l/+3e5oCCWL/5mG41Hj7udykyBFQhzbvx+Bv94N52axtB5n6Q4M8ntRMZtMXFww33IsUZ+kvsbVOFTv3ybgeExt5OZc2QFwpwT/6afkNi2mW9zG5981zK345hoUXohXPpFUvY8zMNrD1Lb0sddv9zMqM/vdjJzDqxAmLPX08jYM1/jZd9Sll17B5nJNqy3GefSu6H8Uqo2fYUHLu7jpb0dfO7XWxkZsyIx3ViBMGdnbIShX93GyKiPRwu/wM1rStxOZKKNNwY++AvIXsAVW/6OH1zQzZ+2t/DJ/6phcMTndjpzFqxAmMlTZfiJfyChbTPf8N7F3TdvQMTmnDYhJMyBjzwKmRVcs+OzPLJqBy/ubee9//c1GjoH3E5nJskKhJm0oef/lfjND/CA7zref9tnbEhvc3qpc+GjT8C89aze/S9sLvk+c47VcsP3XrVJhqYJKxDmzPx++v/0FRJe+Rd+57uEov/xLc4vy3Q7lZkOEtLg1ofhun8n49gufq1382DCt3j1sZ/yoR++SE3DUbcTmtOQmTSw1urVq7WmpsbtGDOK9jbT8au7yG15gYf1SrI+8D2uXFLodiwzHQ32wJs/QDf/HOlrYZhY3vIt4kjmBcxfdQUrL7icmIQUt1POOiLytqquDrnOyQIhIhuA+wAv8ICqfnPCegmuvxY4Dtyuqpsns28oViDCx9fXwaGnvkPe7v/E6x/hp0kf5d23/xPz81LdjmamO78PDr7E6J6n6d/1NBnHDwIwhoeOxPlo0WpyFl1EbMFyyFkIMfaEvpNcKRAi4gX2Au8CmoBNwC2qunvcNtcCf0OgQFwA3KeqF0xm31CsQJw99fs4fqyL3q4WepvrGDy8leTm1yk/vo0Y/Lwk59Nx0T/ynvWXEOO1O5Im/EZ729nx1nM073yFjO7tLJX9pMkgAD689KZUMJxVhTe3koTsMuKzSolNL0QS5gRuYVkBmZLTFYgYB8+7BtivqvXBEA8BNwHj/8jfBDyogSr1poiki0g+UDaJfcPnR5fC6BC9QyN0Hx9F+EvRlAkF9KR1f/5egz+PpydtI3ry8pPW8c4iPXGdjNsz1LpTnvek871zm0QdJln8JAP5wbUHKOLZzFtJWPVB1l14MbFWGIyDYtNyWfWuW1j1rlsYHPHxxoF29u7awlDTdpK6a5l/rIGqvlfJOfRYyP2HiWWQBHx48YsHP158BL76RVCc6Gk39WOe61vz3NQEkuK8Jy9MzISPPTnlTBM5WSAKgcZxPzcR+JRwpm0KJ7kvACJyB3AHQEnJOfbJz14IvhGO9w7TSeCdi57UfVNCfx23yZ9/CUPspxP2E+Gdv7Sn2O/kbcefd0JZEEHeUSoCSwLrQuf0eRMhORtvSg5x2WUULDiPipwc5ln3VeOCxDgv66vyWV+VD1yL36909A/T1D3I213djB5txNPbhHegDYZ7iRvrJ25sgFjfcUT9oD486kPUhwcfHg3fw3mh3sg54/TnSc9IISkp9uSFCXMcSeJkgQj1F2bilZ9qm8nsG1ioej9wPwRuMZ1NwD/7qx8DMDf4MsZEB49HyEtLIC8tAUozgAq3I80qThaIJqB43M9FwMSppk61Tdwk9jXGGOMgJ28ubwIqRaRcROKAm4GJNxEfA26TgLXAMVVtmeS+xhhjHOTYJwhVHRORzwBPE+iq+lNV3SUidwbX/xB4gkAPpv0Eurl+9HT7OpXVGGPMO9mDcsYYM4udrpur9V80xhgTkhUIY4wxIVmBMMYYE5IVCGOMMSHNqEZqEekADgV/zAY6XYzjhtl4zTA7r3s2XjPMzut2+ppLVTUn1IoZVSDGE5GaU7XMz1Sz8Zphdl73bLxmmJ3X7eY12y0mY4wxIVmBMMYYE9JMLhD3ux3ABbPxmmF2XvdsvGaYndft2jXP2DYIY4wxUzOTP0EYY4yZAisQxhhjQppRBUJEviUie0Rku4j8TkTSx637BxHZLyJ1InK1izHDTkQ+ICK7RMQvIqsnrJvJ170heF37ReQet/M4RUR+KiLtIrJz3LJMEXlGRPYFv2a4mTHcRKRYRF4Qkdrg7/Zng8tn7HWLSIKIbBSRbcFr/npwuWvXPKMKBPAMsERVlwF7gX8AEJFqAnNKLAY2AP9XRLynPMr0sxN4H/Dy+IUz+bqD1/F94BqgGrgleL0z0c8I/P8b7x7gOVWtBJ4L/jyTjAFfUNUqYC3w6eD/35l83cPAelVdDqwANgTnyXHtmmdUgVDV/1bVseCPbxKYiQ7gJuAhVR1W1YME5p9Y40ZGJ6hqrarWhVg1k697DbBfVetVdQR4iMD1zjiq+jJwdMLim4CfB7//OfCeSGZymqq2qOrm4Pd9QC2Buepn7HVrQH/wx9jgS3HxmmdUgZjgY8CTwe8LgcZx65qCy2a6mXzdM/naJiMvOPsiwa+5LudxjIiUASuBt5jh1y0iXhHZCrQDz6iqq9fs5JzUjhCRZ4G5IVZ9WVX/ENzmywQ+ov7yxG4htp9W/Xsnc92hdguxbFpd92nM5GszQSKSAvwW+Jyq9oqE+t8+c6iqD1gRbD/9nYgscTPPtCsQqnrV6daLyF8D1wNX6l8e8mgCisdtVgQ0O5PQGWe67lOY9td9GjP52iajTUTyVbVFRPIJvOOcUUQklkBx+KWqPhpcPOOvG0BVe0TkRQJtT65d84y6xSQiG4C/B25U1ePjVj0G3Cwi8SJSDlQCG93IGGEz+bo3AZUiUi4icQQa4x9zOVMkPQb8dfD7vwZO9SlyWpLAR4WfALWq+u/jVs3Y6xaRnBM9L0UkEbgK2IOL1zyjnqQWkf1APNAVXPSmqt4ZXPdlAu0SYwQ+rj4Z+ijTj4i8F/gekAP0AFtV9ergupl83dcC3wG8wE9V9X+7m8gZIvIr4HICwz63AV8Ffg88DJQAh4EPqOrEhuxpS0QuBl4BdgD+4OIvEWiHmJHXLSLLCDRCewm8eX9YVf9ZRLJw6ZpnVIEwxhgTPjPqFpMxxpjwsQJhjDEmJCsQxhhjQrICYYwxJiQrEMYYY0KyAmGMMSYkKxDGGGNC+v8BzKvxigPJ5YEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot(kind='kde');" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAADvCAYAAAA5DoVFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADnZElEQVR4nOz9eXgdx3XnjX+quu+Gi30HCBLcQIqkuEnUZsmybMmSLTvenXESJ3aS3ySTvFkm886bOMvEnmQm20wySSbLO07sxNm877tlWbJ2iRRFiftOggCx73e/3XXeP6oBXIAXwAUJQBR/+D4PSKC6+vQ5XdXV1ae+dY4SEVaxilWsYhWvDehXW4FVrGIVq1hF6VgdtFexilWs4jWE1UF7FatYxSpeQ1gdtFexilWs4jWE1UF7FatYxSpeQ1gdtFexilWs4jWEZR+0lVJrlVKPKaWOK6WOKqV+NSivVUo9opQ6Hfxfs9y6rGIVq1jFax1quXnaSqkWoEVEDiqlKoAXgXcBHwaGReSPlFIfAWpE5Dfmk1VfXy/r169fVn1XsYpV3Bh48cUXB0Wk4VpkvEUpGSzlWvBdEXnLtVyrVLjLfQER6QF6gt8nlFLHgTXAO4H7gmqfAh4H5h20169fz4EDB5ZN11WsYhU3DpRSF69VxiBQyoijoP5ar1Uqln3QLoRSaj2wF3geaAoGdESkRynVuJK6rGIVq1hFSXBK8CL7Zvn1CLBig7ZSqhz4IvAfRWRcKVXqeT8H/BzAunXrlk/BVaxiFauYDaUg7CxcL71yg/aKsEeUUiHsgP2vIvKloLgv8HdP+r37i50rIh8XkX0isq+h4ZrcU6tYxSpWsTgowFUL/6wgVoI9ooBPAMdF5M8KDn0N+FDw+4eAry63LqtYxSpWsSgorHtkoZ8VxEq4R+4GfhI4rJQ6FJT9FvBHwOeUUj8LdALvXwFdVrGKVaxicXBWdia9EFaCPfIU9n1VDPcv9/VXsYpVrOKqodSKz6QXwoqyR1YSfYch2Q9r7oCz34UNb4TBk6A01G6GC4/Dpoeg+zkob4FIJfQchE0PwrnvQ9Mu8NIwehHW3WNlrHs9jF4APwsNO+D8o7DxQeg9CNEaiDdC13NW7sXHoW6L1WXoFLTfZ2W03QnJPsiMQvNeOPcIbLgf+o9AKAZV66DzKSuj8ymobgc3au3ZeD+cfQRab7XnJ/pm2jd0yl6vtmOWfc0QqZpl307wMrPsuwfGOm35FfZVQ7xpkfbdAue+Z+0bOGrtmLRv40PCyxeEplpFVVbNsK/lFsiOQaIX1txp5a6/D4ZPv3bsK9p+D8DZ7y1sX90WOP9YYN/zUN5k9bv8Ymn25dPQePMy2dcOnU8uo31vhvM/sO3j5+zzVmhffKU5ZpPukesIN+Sg/eyfwQ9+B9BgsrZT5TPghAAB402XuRHw84CxZV4GnOB/rUGFZslwAQUmX1A/bGVKoYyI7XRgj/sFMrRjXx6zZYiZ1m1BGcV0W077fBD/6u3Ts3R7/s0+6Vah+pxix6MObkhdaZ8LJrc4+ybLvKzVQRfalw5krIB9UzLytryYDO3OLHNC9nqTcudqv8ljSttz/FLsu8b+qcNWh5Ltm6t/XoN9xoefftJOWlYMpbJHVhDLviNyKbFv3z4pZXPNV38GDv3DCii0iqtG7yafwbVC8xlNfZdibg/aKlZh4cbg3f8M299bWn2l1Isisu9arrkv4sqBtsqFr3Vu5JqvVSpuyJn2vb8Dfa/Yz2Um30kq+F0VlFFwjFnlc5XN9Y5bCrnXi4xiWIyMEnRrPqtpOheUzb7ucuq2QvYtidzrRcZK2FeC3N0/BR1vLXL+ckIB7qp7ZNnh5+xnFnBlhyjsfPM9xKWiUEap8uaqX6IuSoHMJ2O57CsVJdmnUKW8AOd6oFfCPiWIAkwwhkgwklxj+81pXykTjIUw1726GhkraV8JeuYS1kWyolDqumOPXF+vkCXCU39kF04QruwwFCkTruwwc5XNxrXIKKZbMfmzjospcu4NZB/XiX3DjcK53YbDb/KnX5JF9PAcwcxl5HVs32ut/Y5/yS5Irjj+/5CnveJovQ2OfHp6kWQVq7ga1PQpqvoVJjR3nSMPeAysE+ovKm7+gYOS62tWdqNAaUBZ5tCKQl9/C5E35Ez79v8L9vyMXQVfEAs9Y8v1DC6F3FJkrNp39ZcXhWMUoRyo2YKCP/vbBXGgulctfsB+TbTfNcx6lti+H/0iNO++enWuGtfZTPuGHLSf+H14+R8L/F/FOsZ8iyXFoIr8Pp/cYmWFx6RIWSkyFtJtdtmrZV8p9RcqK+UerYR9k4VF2m/tMYXyYbRZMFoWJ/d6sa9IfVGCUUKiTpDZvopXyb7PvsvyzFcUCuvTXuhnBXFDukdGL4KXY36f3GLLSvX1lSrjavVYLrlLbd9S6LbY+kFZJi5c2O2jfdh40MHNq2Vrv45nXTa+IGi/YDa+zPYtqNsS2JcNwUSjMLDB0PGsQyh/Fbottv48ZeKDCsNEzzzXWRao1c01K4E3/h4MnYZLT2EX7WBJKEcLlpdatlg9SpGxat8UjtzvM9Eo1F1S6NkRM5fBPsdX89d/DbZfNAvRS4r6Sw5TUZSXwr7F6FZYV8EdvwodD7OymJxpX0e4vl4hS4RkP4x3BgP2fC6JhT4pi9Wfvapd2LlK/SydS4+5Onmp7pUb2T5VpEyL/YzXwhR/UIGTB23AOEX0fi3Z96q2nwKlgq+H4Oca7FOFuhW7bwvJEOh/BfKpIrovJxTXnU/7hpxpP/e/bMwCoLTPx4U+LUv93FwOuVcj40a0z1xZ1r3Z0LdJaD2paT437ZrY9T2H3s3GzoCLnFdUj2LXl8lLC/kIhDPMXGxcZvtupPaT+ewrUbfzj9m4KztWMh7odbiN/YYctNvvgyOfmY6tsIobEy1nNE1nQc8aVBxfsebk0jxo6XLhxXd5eCHY9kNN4znNFUySVSw/lI1v0rjjVbj2debTvr60WSLs+RDs+pANyLMgFnr+luv5XAq5pci4ge3TRuEa+/+cla9Rj1S14IfAuFDdWzBgr7bf0sgo0T6lbNyRhu3XqtQiMenTvo7YIzfkoP2D34HD/wJmsWnbSr33s/1vxfx7pcot9dhKPUSF9V4T9qmiv5Z0Sgn2VfUparotrW9orUFm+wqW2r6rvZfF6l2P7XeV1xLg8++Hi0+UeJ2lwmQ87VWf9vIiPTQd7nFBFPOrzXV8dtl8vrnFylgq3ZZCxqp9U3Dzil3fK/KYLJd9s8tutPa7WvuM3SyXGZ1Hn+XCdcYeuSEH7Tf9AYxdsgHZpZQAM4Ur90tZdynkLMX1FitjJa951dcSpr+dFynjerGv2LFSy5ZCt6WQsRS6lSJDwb3/5VWg/K1uY18ZDJ20WTDEpzSakxQpm4vSJPPUK1XG5DWXWrelklGqbq+KfYJxAyeFI1bAa9W+YjLmKlsO3V6N9rta+wROfh3Sw0V0WW5cZ+6RG3LQPvB/INUf/FEqHWp22QrSoZZct6WQcR3ZJwipckM+IozVCZd2GJ7+gIen4IoR5TVo36um22vMvt6X4MIPi5yznFBcdwuRN6R7ZMvb4OhnbZqiVbz28dLbfMYbhbpOG0mvfFTRdkQHVL/CqdsqbmREKqFl70pfVa1S/lYCN70bbv4AqNUof69B+wqmWIGM8UbBuFA+YhMnOL7C8UEZxfQe62vQQwnFp33XKHcpZMyZKWIJ9VguuUsoQ2l46M9tUu4VxXU4074hB+1HfxOOfA6Kpr9cjoFOzVG22GvOJ6NUzOd/LFXuq2GfEvJhYXC9wQvPHES3PqUJJyFdZQfvK06+BvvyYWGkRUhXzRq4r4P2y4eF4TVCpqIwq0AJchfbfleh25LKKEGuCHz1p+Hco1dxzWuB4rrzad+Q7pF8OliELEb5mz2QL+SvK8WftxIyiuF60W0JZBiBXAzScahwwS2I0thy2qHl9ByfTdeoWz5qowI6eUXsKmWUXAcYbzCcvtMQScLWpx1C2Tl88gW6hdKK6ArotqjjVyvjavuW2AzvK+7yVApC1xd75IYctB/4I0j0wsmvUhrlb7EIVrNvCBnLJXeRMjSK+BjEx/T0yUqg5MQCkxcroX6BbmXjirIJXXCgRFxhX7HrX1l27D6fVDU0n1E43vyXmNJNrlW3q0AxGYuVuZT9U8Ob/wdsfssSyVsMVn3ay4+u5+D8o5RO+Su1bD6K0tXIuFbdlkLGXLothYyr0k0hWvCd4EOphMQCguC7wfiui/inF7JP1MyXwyLvvTiCUWD0tHBxBUMQaRCrk3GF6LhCGchGsQYudI9klv9gudtvEtdb/zTwwl/DxOUix5cTilWf9krglX+G7Fjwx9XSloqVLbWM61m3pZBxlXL7NxiOv97nyJs8TAkyRloM528xPPOjXhBN7kqXgyBM1BrS5dOCDMJ4rSEblSvqL0bfy5sNh97q0XmzjwRPVHeHYf97PfrXmeBa0L3VkKgR1h9UbDyg0aKuv/ZbLrlLIGP0PFx6tsjxZYVa9WmvBHb8Ozj+ZcgnmP8TrdixUsuWQsZk2VLIWGrdlkLGVdrXeE5TfwGUWWBWEdSv6dFU9cPG/dqeYAqnePbXg2/zSTQItZcUNz9qfZTP/TuPfAxaj2o279fTYVcXqW/rGU3LKQ3K6gzQekrTekJPqaGBNSc1a45ZHbU/j9wSrrlg2VLIuM76Z0UrrLl9DlnLhcmZ9nWEG3KmveGN0PE2LOVvPp/atbz9r1VGYedcChlLqdtSyLgG+5RYSp/1NqhZFeTK+igcX6EFSwMsMtNO1lgXSnRCQTDBzZSD70J8bJY+AtM0QAl863Pbp4Jr64JZvvYVmsIyhfaCen6g4w3afkVlXKNuSsM9vwlV6+aRt1zQeuGflVRnRa+2Qvj+R+DkV5gZeH0SS/HSLNUXtxRyrxcZK67bzME3ExcG1wljzZOJZhd3gR2POTg56Osw9G0yZCqhItg1e3GPIdEw/ULIxIWezYaxJmGsUejdVCS6X7Frz+aMz/ZHz9axmMgbpv1YUvvEwLd/Gc5+9+rOv2pMxh5Z6GcFcUO6R9QkAWGhNz0l1ClFxlJhOa5zg9injHUpqNlsoBLtM5PTk2Cmq3xYc1xT+6imf5PhlQd9nCzsesTByQUzfd+KnsoBGSAfFU69zme0Sdj2mENtr746+wLd+jb4nL3dUNOr2Pq0g/bUFXVECef2+fR0COtfVqw56qBKma0vJ5aiby1ChgQz7hXHErlHlFK/Bvz/sBYdBn4aKAM+C6wHLgA/KiIj88lZ9luglPqkUqpfKXWkoOxjSqlupdSh4GdJY3c98Mew/b1XTnyApengi/1EXUnM1mMhvZbiE3zZjRciaUVtt6JyYDJv4XyXvtKFcvwNPn4Yms5oGi4oYglF62lNNKlI1gjZMjsxjiYUkbSi8bymYlBTOWjrF16zf4NhYIOQLYfqPlVwoau7D8ffYGf+kYRCzaYBBiITNXDpZiEXh+oeh0Vnfl+ufn+tMkrsn0rDj3wcNr55CXRYDJRaEveIUmoN8CvAPhG5GXCADwAfAR4VkQ7g0eDvebES761/BIqxK/+XiOwJfr61lBc88227EDmD8lcMcy16FEKKlC2EUj5PF5K7UjLmKiuhvijBd8TOYmdvt14S+wTftfKNI1dWKiLDuJP0u4JBVEH5kOVFpysL/dN2plrRr9AemFAwI1fM9KWLmrZZC9HxYAYeyDNFKH+Lab/yYYX2rd99miI4s34kbWf+jgfjdbPcNcvRB65mhryM/VMM/OC3C3K/riSWjvLnAjGllIudYV8G3gl8Kjj+KeBdpQhZVojIE0qp9ct9nUIc/xJ4k1mbl3uhZ7nkvgZkDLYZhtYJE3XCvq+5Vz5v16jbcJNwaY9hpFm48wsO0aQmUSXk4kL1ZWUpc7PQtdXQucOnYlCo7dK0nXJRotj7LYfRFiGaUFck52077lDbrcnHBCc/WWz92QhUDUyf07fJMLBWqLkEbcc1ZWOKnq2G3k2G2m5F+2HHMkgWce9v/ZrDsfs8JuqF83t8Nr7k2AVMsXpM1AsmBPu+qOnaCdU9pXxtlH6fF5SxXHIXKSM1CJcPQM2GBbVbOiiWhNInIt1Kqf8JdAJp4Hsi8j2lVJOI9AR1epRSjQvJejV92r+klPop4ADwfy/kx1kM9vwMnPoGZEa4etpS4bGrlbFccldCtxLqN3RpansCX7NmerPIEtg30mx45S0+4sLtn3MJZ6Gnw+fkPQbtwV2fddH5K2WsPal55p0Jzvx4njUnXH7qt6twDChR1PSqOa9ZNq5gXE2VHX+9z8AmIT4Mt3zdnSKTNJ3VNJy1HxZa2cotZzTNsyh/i2k/JYrtT7p24VwVJCpWcO5WQ9dOg2Bn8o5Y90hZUqa/Bm7E/llERv1NsO4eVhalb2OvV0odKPj74yLy8WkxqgY7q94AjAKfV0p98GpUerXYI38LbAL2AD3An85VUSn1c0qpA0qpAwMDAyUJb9kD7fcyk/K32JnB7E43u6wUGYuVu1gZc5UthW4l1bcuByWAUTOPXZN9QjYuEOzgjqRAe4pMOYgDorEz4iIylKcYazJ4LsQS2m52CWastr7MYZ8dlSfrZSrBd8DJqxm2KKNwJvnjRiFIUcrfYttvhgxRBXpYl4lxAW11iiW54j7PsK/YNWeXFVIai+m2FP1zKfu4gt0fgviC89BlgFYL/8CgiOwr+Pn4LCkPAOdFZEBE8sCXgNcBfUqpFoDg/34WwKsyaItIn4j4ImKAvwPmpMyLyMcnb0RDQ0NJ8h/9LTj9LZYm7kipnW0p5F4vWJRuiqKOyGuwL1ktiIJQCsoHYaLOCms7pmk9roiPKJLVc1/gXX9WweYXQzh5yMQNE7XChT0++eisAaoAmXIYbRYu7LH+4q1Pauo6FU4O8qHZtRX5MIzXG87vNXhusbfd1UCRLYOxRsOFvQajhU0vaCoK5irxIUjUTHNZfS1X2rcAEjVC581m3nt43fVxgR/8ll2vWlFMukeufUdkJ3CnUqpMKaWA+4HjwNeADwV1PgR8dSFBr4p7RCnVMunHAd4NHJmv/mIRLgftgikW6W/2J9lCn22lftbNxtXImE+3pZBxLXIBUcLpuyztrP2wpv2lYBdhUL9vo8/pOw3lI7DzURcnp+aXG/ztO8LJ1/sMtAub9muazmgqBxQ7H1VU9E/7b0NZxdZnXESE87caDu7Is+a0YtPzTrCpxqKp0+WDH60iHxZO3OczsM6j+bSy7pQ57HNzEJ2AvnsNnbsN7Yc1ux5x8B04ea/P4Fphy7PBzkcsJTA2rqgcsrPjZI1w/A0+6biw99sO5cP6qu6zm4fYmKIiKiiBaFKx59sungupOqHmkgpYUdZeLRCbgIphjc5DptzqMVErVPXDWBPER8EPQS4Mt3zLITqhqBhWhDJqTj2uu/6pwBgIxVlhTM2krwki8rxS6gvAQcADXgI+DpQDn1NK/Sx2YH//QrKWfdBWSn0auA/r8+kCPgrcp5Tag22OC8DPL+U17/9Du2jx8j8VGXtKefsvVGexMkqdccyutxQyrqbOHMdTlXD5Jvu5XttVsKAX1D99lyFXBrGLGl0sgt0c9k00CP0bbKzsukuaUE4RyhGMS7N8GQJe2G6IEQ1VPXrGgF0od6RVGGqz7pCOZ51pvnUR+9ycIhuzM27jQE1g31izYbDd7qas7ZqklgQ7Hj2o77Q6dm/1GW8QwkkoGy1ynaL3VK6wz8mDg6K+M7iWsi8UNwfRVHA/CmQpUbj5Aj02GEZb7JfKULB7cKzJ/h8btZRG7StqLgMyW8/Z+hRRt7DeUvfxecqUgvf8i93tvKKYnGkvAUTko9jxrxBZ7Ky7ZCy7e0REfkxEWkQkJCJtIvIJEflJEdkpIrtE5B0Fs+4lwZHPwOF/K9E9shQD9NVgpT4/l9C+SApCadAejDRduTOxptsOZMkqKZ6AYg7ExhVO3sodbSqgsxWwPIwWfB3Q6kQIB+yg4VYzk95XgPiomqbJNRSvMwlBcLOCztuF1ZFg52XZmOVOO551W1zhAw4GuaregDboQD4yv72iBF9LsAwgV9iXDwm5qKUSzryR87mh7LGKQauv8rC2BL8r377svMlp2qzwAMYRPLeAKlnsSwurt42oOP/9nKnbNWDydgt84+dh6NQSyFwsSvNprxhuyB2RZ7+3mh+yVCSqhUStoaZbE5kdkH8W3LzidZ9xGW8QKmZvcgF2PO6SeFkIZShKx5sLkZTi7n9zmaiXGe6QiVohVW2o6dIMthsG1tvBpGpQkQvbc7t2GAbW5KnrVqw9GiZRJ1T2a8oSivio4u5/cUnUWRZI3wYhnBaqe6/UfbRJGF1jFzBbTyhqu2BorR0xdn9T07vV2jzXTLTpgkPNpzW5OCDQu9GnfEhTPmbrp8qF8UZDxYDiwq0+oy2g8rDhJU3dpcC+dmGi2gMMBx7K8Au/VE3EX9y8qqZHc/e/KdKVQvkgJBqgbEThh2xSBeNY3SoGNPEJq5unoWeLoWu7YdejDvHR4tcca7D36HKHcMcXXTQwtMYgDtRdVOhr9unPA4F8Cnpfhroty3eZK7CaBGFlcPv/Bee+D4nLlE45ml1vvmOFIjRXxjgpUcbUudeiR6n2FdFttMlw6K0+SsO+L2gieZlmgcxhnxJF1YCaU4/yUXVV9mkTyA3qDK0xHH6z1e2Oz2haz2maz9rDfli4sMfWO7sjQ+/6HLGkYs/jGtdX7PyuoiwFGBtIqmpA8dx782QrofGMoqrfmaLmTepY06eIpTQXdvv0bhcubxOcYMJplP0kbTkNsfT0PZptXzij0CI89WMeyoGOJyA+oUlVwv53e6DtEotmelv9yfsMd3y20D4HceHuL8aQqY02BW1SQh8I5RShQXtO5RBgwPVAITzzAavHth8o4klrnGug7ZSm7bi2+/QCYbPtqx5QVI44tB8C5cDxu336Nwuxcai75NrTrrZ/ltDv19z52naPLBVuyEG7ej00bIdkb8GAM7tzLFRWzF9X+PxMfrYV4+XO56cr6JAl6baAjJJsmcO+yc94X0Moy/SibUH9q7Jv8tcp+2R6U6EEwhaQ4UVtNV8Hqcd8gpmcYHws9U9sHkUbw9o2jNEQyszSMbDVd6zveoZjoMC+SdUmAwX6BecbhV24M0XOnbrPgtFWH6MhnLWJiP3wpAtkWtbkvTCF9illjcpZkVMxSIree5nSefbawoz6Bfb5Djbfg4bwjHukpmO6FLgUr7RPTa9V+JCP2Zm79gKDCusX65+zB+7F9HsF698Akaoix5cVK+/+WAg35KD9g/8CFx4rMgOG+QeLUjBX3cXIvU5k1HUqNj+n6d8gJKuF8HyBj67hvo012uS58RFF/SU1Y8e7iASD6MwHo+GcIhvVDK2zulUNWN3S5UKqGqLjdnC+/59inN6rSVcI7S8pJhoVmThUDNqZ5aTcPd9xOXerj85LMHOWGS6SZKWQqrG+8myFLYsPQfkQxEcUw22QqhSiSYWSmbNfCWQly4V0DUQS1v+fixhEHCr6YetTDj1bDHWdiolGwc0IkZRitMVSHKv7LSk9VS6kq2FwrbD5BY3jQ7GUaxO1didqLgbtL+vAlsk3bZFBRiCWUOz4gUPXdkM2JsXrzYdZ7b31KYfzt/j4rqVFRvy5685ZVmpdgWf+BJr3wE3vLFXhJYBixUOvLoQbctAubwInBJ5w5S69Scz3mbnYetciY7FujYXkLkJvLYq2Ew5tx5k5Zi6xfRWDilBO4eawA3ZwbLjN59gbDMqHfV93iCSnHw5tFOuOOqw7MlO3SFoRSgshDyYaoXJY87a/LZ9BPezf6PPUT/qEUnDrN11CGcVYi2G0VUhtyTH6l5fJrM+y873rqXyunIl9KY5/opNMrY//N+thMEz9RcX2xxzcPKAU61+BF9+a5uN/nqLpvMMHP1ZJOK157INJnn5vmrbTITYdLiMfZODNVoAXEc7d7k3Z13J61uOmsMSvwL5kjfDKgz7pctj6nLaJEorc0/6NPsfuNTg+7Py+9bd23exzdp+hqg92PuLiFEYKLEDjRU3jhVmD0FX2z0hKcdNT7nTZbFxj/ywsU46l8JbVFTVrebGaBGH5cd9/hd0/VfCCXIqZY7HPulKOFZZdix6l6rYUMpbYPm0UZaMQTgV+h6Be5y4hV2ZpaFOc4WKCCxgU2leIoxivtZ/5Nd36CvfA+b2GfBTiY9PJc8/dYvBDkL1jgvTWDLhCxXOW9Nvz4SFya/OolIuM2EFo/csaNz9T38d+PEU2LjRedINj8MSPpvHC4PjO1IANVrdkLYuyr3+DIV1hudqtxyZnz1dWv7DXYEI2Bslk1MNJ++LDejorTjG8hvvnv/viq7SNfTUJwvLj4N/DoX8Es0C2a2DhT/zFuE4Wg6WQW4qM68A+o4JEvY7MOFB/3vpIM+X2+NSpQfRAz7Xn5CNMUcwEQRmhbMLWHWg3M+QaLdR0223gY/WGTMzS2ap7A7mXYvieAl+R2pHBaKHy8QrIKFTYI+QYtA9DrVdSGrc9E0F70L01Tzag5K0/GkKLMNacQ9xpSqAy4OSY2z59pX1VvXZ7vmgbPdB3hGxEgh2X07o0nNPT1MrJsgv2XibqZNFej6K4zvqnCHz+A9C/pNvwSoACQnrhnxXEDekeufQU+LlXW4tVAGRjwisPeiSrYeMLirUnnCmfdttxh8ZzNj5IKNg96YWEo2/yGG0EE4bYOKSqof0lRWWvJpISRltB52DNYcVEnXD4Pp/6y9B0yqFvs40KONyYZ+Rmj0NvEG79QRn5iCIy6tEzqqj+nXXseyxM/GyUns0+vYk4ZX/fRE3eI/qow7Hbc4QmwihmUr3e9rfl1F7WXNrm8e2fS7Dvu2WsPR0lf/c4tR1ptMkhz9eQjhrCYz5bngvTcsFFNAyu8Tm/M8f6wyEGtsBYgw0X23hBceZ2Dyft0XDO5XX/GsKLKWITipfelOHIvVl2Pxrh5qcipKqE4TU+9RccWk9olIHuzR7dHXm2Ph9h/UEHNysMt1iqZHWvYrTJriXUzo4MuILIRYX+jYbIuKK+6yr1EBAfBo5D481Lr+O8WPVpLz/u+s82a/PwmaBgIX+dKlKvWNlkJLtCLFbGQn7DUnVbjG+8VBnz2XeVuj3/fg8/DOsOadpOFzB5g3rhwq3uCg691SfZYFkjAOlq+3/nXqHtsF2cqxiDtUcsPe3kXT49NwmZWmg5CWtOa/o2Ger7Q9QOhkAgXQN3fsYlmnKtijIZ3AlazmnSH+yn598PMeZpnrzTBV+x5oSLOGJ3WxbYddfXY9z+TStDAf/2X8bIj8dwXqyi6lQEPwQvPpAABc0XHNadcRlc6/P3fzaKOLDryTjVIy61XYod33fQAp/5zQTpauH2r0fZ8lKYUMCf3vN4hN2PRxAHshXC/vfYxJm7vyVUjCnO35znXz82jriwdX+EWAoub4ZTd/uWXRM06cbnNbV9gR2vQv984T0eXgzWHNXUX1ZXspRK1GPzW2HTg6wslMJcZ+yR6+sVskSIVkNZg3VHXeGvK1ZWiIV8frPbr5i/dyG5ao56c+lWrGy2DJlVfjV6FLMPQZQgWqZ9yxK4Kwp3xV0h1x4zAc3MzRPEmZ70P0tRGb478/NeCmRP+mqnONbGUs6mxAAYZSPiYbdra6NArOtAmYJ6BfUlalAK/OCgcSCUt9wTVKDn1HlBEmHfyvNDggGcrEJ59hxRltbn5hSiLC1RBXIdY8ucfKC3D344CLuam24Q6wYKXjA+QXIEK9vxrP5exN5qX9v7i4AJ2bfJ5D00qiDz+6vUP00QmVHPnhAsRg8FVe3gLrDbdKkhgNF6wZ+VxA050378Y9D1LIsflK+mbCnlLrK+YAc4fcUoZ2GUBANakZlCidcaWiMMthmqexRNnZaWNrDOMLDe0HpcUz2gisrIxGC8yWZ5iSUUbkYQM/0cDrQLg+sMTac1tb3TMnZ/1+XQwx6panBTUN0Hjec0w2uFSBJSG7OkdqYZeniCjl9eQ8ezDtEJQz4meCEYazY4eai8DJX9EE4rzr7O8NLbPaovGbo3ecTHFLd/K2bpdED7f2/G7XfJrsvT9s04339fjsP3e4Q8O11NVQpbnnXsfQ7sS8eE8Wa485vlDDbnWP+yQzylGNyg2PV0nMvrsxx/vUcsaZkcO54uIxvJs/lpjdaKUFqRiQoTjXD7t8rpb8tSMaSmqIcD7ULDRc1IiyGaUISzls9d3aPwQvb9uelAiHf8eQUn7soyXmOoGNa0HFdgNGNNQn2nZqDdoPPMuPeL7QOl9k+jZMY9msStX3e5uNsnnLgGPQRe/H+h/R7Y9p4i9ZcR19tM+4YctOs67BvZyzL3QDufO+Fa6i/kplgiGely4ZW3eCSrYNf3HeovKiYfB0E4er9P/3phzQnFlmecGZS4xdhX260oH7GZzCevX9+pKB/RARukuH2RDDRcVMRHHcpGJ72YCqOEo2/2GVgnNJ5XVA3OlDEQMCgA/BgMtkPracX2H9oASuJqYhfClB+JoTMaB9h40JmSUX8RykccIglFvjHPsc9dILw9Q+v/00bb/mpqexwOP+TzxIc8bvmWQ1WvZrwCOvtryY8J5x5OMbjGoyzhcPpOn0kP7OXtHjc9qWk5qUlXwctv8UlXwNZnQ7zpaMTOpDXwQ8hUOsTGomTK7aalTMxwuSPLQKvPhsNhbv9aiEw5vPKwbb/N+13u+6ewvQUaysagc4/h6Gafuk7FpgN24bGmRxMdY+peKoGdT0TY+USE87f6/PDDHlX99sXXdty2d9O5Oeh98/StkusH8ELCy2/1GWsUOp7TtB0JmC9BvfioYvsPi9AdF/H8qWAzVWVb8ePLBVGK/Oo29uXHPR+BsU44+HfzMEhKdZdMHl/qmfTVyg3+H20R0pWAthHpCucvXhgbp0NDXRFK3AwsoIdCEUkJhRHhFIpYghlls+UrVPDATl7EIlcGg0HkvTUn9DSfODj30g4TbN8OTlMz7VOeHUZjpyO2bFb7KRSxCavbxG1p0puzoGHNlypwPEWmUuH4NmxqZTDD7+sQ8jFIlRsub/JAQV2fy+SrRgJd6jrtYDTc6pMtt2VrCqh5k5//ZYHNsYS9b0MdhtEG64/ueCGMQjHaErycFKw5Mi1DGbsAO1FjZbWe1ISCmDCxsSIja/DnpR0G40L5oJ7e3bhC/TMRbPSxL/QiVMViuIrn7wNfhTVzRt5fJiiQ62wh8vrSZonw3F/AS58M4mkvhPlcHgsdL9Y3S/2SWqzcWajqU4TT9iEfbZ35dLl5O0NWBgbXzEoCezV6FLpXipXNK3dmvXAaqvsD3doKdAt8x/Vd9pjOgRtste7bYiP5eWH7Y5SQKZ/MMjPTAKOFiWqD7wjlB6OEe0KoPIzelwCEmssaN2PVG1xvZVV3KxAhlFGEs/ZlM9SUBxGUx9R9Hl5rMEqoGFJTi2l9myZtsPpb3ayrIBexlL6Gi5raHhvv5Oi9WavbUOBjNzaErKjAvpDg5oW6bqtH7yaDF7IUQZsxXsjGrozG13LKbkWfqDfTTbNC/TM+qigbt7YMrS2M0liCjNkvinn0+Oy7oOeleWQuAwTrHlnoZyVxQ860+15eoSh/pc5klkLuLJSNK+76tEsuZncJFkKJYvd3XLIxsQNOyU/qTCQrhZ4On8p+TUOnmpo9z1RVbNzqNYbms5qK4ZnzgFSl0LPFJzaiMI6QLYft33dAMUM3I3YATJXDnm/abC09HcLpu4VDb/YY+mCOUEaz8/EI1QOKgfWGmx9xUQp6tvh4YUuh++GPpelbm+cdf1lG2+kwt966hXyThzhw8SO9hC+G2fPtKoba4NSdPuZu8F0o7xbycZ+qSI69Ok8o51DVY+NOrz3sYEKKSFoxuNYwtMZMxdU69kbDaLNQ3a0pG4PxRmFwvaHxjKZ/kx3Zq/oUP/NrlXTuMqRqFd3bDZmoENowQV0kQ9kPaxlYF6Z/vc/5nXnKxg3bno4y3AxD64TzewyRDAy3Ck1nFf3rhfZDmqpBGGoTRloMLScc1r8EyhP61wvJWp/W4w6xZPE1h6Ltd05TMVTCPG6WjFBWcdsXXXJldpdkSVjkszMZkmLkHLTsLe0SS4LrkD1yQw7ar/8t+0bue5nin2GzMd9bv9gn41wyivnoFiN3MfWxg3MkPff1pwbzq7DPaGH/e+xg1/Gs2KA5ReiAY03CKw/5GBdaTymm9qkHcva/28OEmJoRh7Kw4ZDdJVmohxZFy1kb6U45drHz7F3WxfPSfQn8sHDnl6Pc9JyD42N5ygqO3+PT12GDNAlQMxLiTf8Uo2rIuk6UKMJ9Ifa/fIJ8c56mf6yl+Qs1lB+B87fYxMGbn9W0nXDJtubhr4aQkJA/WsH4GkFrzfqX7cIhQH2XIh9T9CiZuh0924RoQmi6qKkcVawJdBtqFwY3CF6Z0P6KQ8cBbW+LA0MPjzPw7y8zEBY2/o9GGkcUZ27Nc+jNKbQBiYbRotj6hKb5rOVkrz1sb1fzGXuPhtsMR95sMA60HYdQHrq3wOm7fETB+sJZ6Rz9c3x2++nAFbbI/qlEEUmV1reuQIn98+Yfh81vmUPGMsHOtK8vh8QNOWiLcOUAs1SY3fkK/56vY5Yii0Wef02YptapSaftQpjSNzh3dl9WIBqUCZ7wgs/0knbpTdYpkDvJCJx0JShT4EpX09eclq+meNjiCgTnXKlocDmx11AGtCrh5k9dzwqQwrafXTWQPUl7LNR7yhaCn4JBykwmyClw/Uy3kUxWm7a7yAAnQUp3S9Vkujnma4hARzV53SA06zR19tWdcUopO5yXAdfbTPv6eoUsEZ78A+h7hZkD4HzPY7EFl8WUXa2Muf6/Fj2KoUj9oVbD2b2G46/zpw8V1NFGcduXXFqPKsITwSw7ON6zyfDK/T4jDXbr9fZH7TT3pbd5JCsFU8Dnvu1LLk7G/lneD01nFF74St2MNvS9f4Sjn77AxNY0tRdhx6MOrccUP/0bVdz6SIT6Tofe9jzPvy3NP/+3cc7v8snGBPGZChnaeizwSb9hgvO/0cfpP+1CgF1v2UTj39UTOxLFR8iH4PbAvsiEYnxPioGHx9ETmtyLlUgeynsVFT3WT+051qbjd+R46d40J/ak6G/Jcfh1SeouKGKjirFaQ+cOw6G3eqRjwpYnNCrlc/y2DP/6X8c4+PY0//rRcfraPaq/U876X1oLT1Zz4MezdG8xVA6FaD4Xwtdw8L4EGDh1l6FvrfXRT937B33O7zEMNwtuytrsu4AoWk8q6s9A39ocf/+nY3Rt8zl6r0/venNlFxG7GLvjEY3OwcG3eSSqbPuly+DyJmtLLgRTX0/X+pwUQ4kyjn5u5RP7ilLkHWfBn5WEksXkhXqVsW/fPjlw4MCC9Z7/3/DIfwY/2HCwoljsbHu5ZCwAUYLRYEJ2wa9kv7eyftB8FNws5CPCwR/xLZNFAQYqB+CWb7poX3HkTR79G208kJ3fn46aV2wEEQdOvTnL5bWa+KDi1q9bjvPpv+ii/9+NMj4Q4dCpGrKR6WvteizCO/53uU2nFYVwCi7t9Dl7hyGSFW75nkOkz+H0XT7d24RkpcfRO1NkI8LP/kYVa06FGFzrc/QBn1yZ4fCD40w4GjcXxMROKe54pALRinDGbsuPjit2f9chmlAkqw3lw5rRFsPhNxvyEeHI3UnGanzWHwuz9nQUv9JH//JFQlV5st+pRz9eR8Wg4tZvuCgP8mU2jduFnXk+/bvjeC78xO9VsvGlED1bDadeZ3AzcPuXXcJpOHubT+cuIZqAvd90iU5Mt994vdiBNipse1LTcsrBd+0GG8ef594rOHGvT+9moXwAbvmWi/KtbuHk5By7wKW1ws+V0uBE4GeeLt2nrZR6UUT2Xct1d29vlm/9208uWK9t7/+85muVihvSPXLHL8PAMXjp70sIGrVQB1xsBy217nxyl0LGAnWU2IzizqQro1SIHSDCaXteok6m6G8AaKgY0lM7D/s3WDdC/SU1FRkPKXZNy34YqnYQoHx4Ou72wPtGkbDQb1yyk5H0xF5r+7PhKblOysrt2SqIUlT0aMJDDgpFb4d9KQy1+GTidrdh6ynb/Qc2Cb6ryIYhoTSiLG1SFEQzDl7YuluyZVbPum6bzkz5isoh68sYbBf8sH2JjdX6iIaKcRe0wq3PEYpbKqHzin27TdqnRRFJWr07t3vkozYq4MaXQmijGF5r/fWRlF0PUKJsGjRlQ95GphZzrYzRFoMfsTsvW09Y23Wu4H4X6y+B73+ozV6rYkijTeCnThZpqymXkCzobrna/lns+L/78govQhK4ta4zn/b1pc0S4ck/hJf/cQHK33yLH4WYx2e56LLCY0shdz6UbJ+a+9i8ZQrfEcJJwQv5IBAfs26KiTqD71raW02vrd23UciUG/KuMLjWZ5ImN1vuusManbfc38mt260fr0PlFGvyHpWjCp2Hhi7LRz6zNxfQ3wBlo/vVddrZ5FiTkKyxW/DrczaYd22fQyxp3Tld2z1EC9VJH+36lI1r1pxxwdidh6EMpMp9jFvgWzbWvqmsbEohSqjutRtgIknFuhMhQBi+KQ1hg/SEka4oIpDdN47vCAPrfJvEWFkdjRbWHwlRNq7Ih4S+jR5GCWVDltqYiVuOO8C6Izb86liTTRAhWBm+Y+mIOtjmPt5cpJMV/Gq0jSCYrrAy1h22NiTqzdS9tw7tK/uAIKTLBX8yAuHV9vFFPH+feSd0PV+kzrJiYbrfKuVvCTBydoHdkMxxbCnqz1dWYv2RZsPlLYb6i5rGC8WpdnPKW6xuJdT3QsKlHYZcXGg/6BANmBQ9Gz26tnrkxOfN/xgm5Gl8xw4AF3f5XNoplCVg2+Oa8Vrh9K0eogxnbsnzjr8ox/XVFdequ6iZqDWEUgqCr6T1/7WFtX/ShE4r3hTMgtNVwrm9PnWXFOf2+pgItB90GG8QJmqssFxcePEPBwk/MMBESHHh0UZiXWHe94eVrDmpyZbD0x8dhe0Jtn+qgrrvVtK+o4wX3pZmzyNRmjpdxpoMnbvBD2JeVPVC9WWm0nL1bPD41i8kcT1NbAJCaeGWb0VI3TZBfEOWC1V5vAsxbv3ddURTPmcfyHLx4XE7+JdHuP3bZZzfa0hX2wXLu79cYfNs4vD1X0vT256n/ViIlkuWbw4QH4SetjSpKkhVRIhkNBM1PpfXZ4lNaO7+fIx1xzRuvsicLLjPuZhw+E0e443QeE6x/YcO615xWHPUvgynQnvN0S8G24ShdYbGc0EYgkX28cX2T/FBhWHi8tx1lgVqlT2yIrjvYzB4wsYfmZFyrNjbfa7yUssKj12L3OArNBcVDr3VRmlrvGB9eUUj75Vqx2L1KHL+udt8Lm+zqbg6np0ubzvj0nrODQIbBS4Ko+jZIlzaa2fKt/6ri2OgGbB7kWHn45HCCfuM673yoEe6FhrOzUzN56T1VHVthINvt/doZK0NxhQfhc3PQcMlzcW9PkqB2pLEfXs/JiQcfLGRXJ1w+zOa9mMOyheeeYePdMXp+EIFDSccxmp8/u1j4/ghuOObMWr6NUorLrrTn2yjrRCbsElv8eGT/2N0ypUyqe7L9+cgEWUwGUG50CKG3d8L4ebDPPHeDErDtmfDPPTJckI5OPF6EwS5gmyVIlsFQ+t8KiZCVBxxQUGiEUJBuOHPf2SCy1s9qgdctNhM66/cnSQfFW77ZpT2Yw5OvkgfKLjPx+7zmWixHPKbnnamfOLOZALLOfrnZHlDl6K+27ET8WL1YXH9c6G6Cm77Reh4mBWFAKbY18ariBty0E4PQ6KPmZnA5+oY85XJrLJg8atofaH0a82Wy3S5FqaoYr4zq95Cui2ZfUGyXGNfGir43J6imGmZTuM2JTfwbyqbpEAmqzngTA7qhe5RRxARcAUxyl5DM5ViazIJrrgCHojL1Gc/QSAsYIpS7Ac9WbRM1VPB9m9lQGtBC/hRA471aWsDohWCsjPn4OHUBnIR+8k/SctDCSL2fnhhhdGgEJy8wo9M0ye1Z9tNCxixQ6FldljdQhkV6CEoBNFBxEDFzM2davqaqIK+oIVQNjhHgkiAEEQ0tC6SybbCiM2uHqSAn4qy6AjaCDgGUUFm+hL753RfmZnrs6S+NV/9Evr40Bnw0isb6U+UwnNXY48sO579UxgpjKVd+H8hih2br2yhRMGzzy1VbkGZm1Hc8QWXng5jY2gYNW/9xdgnCPnw9ILWFfUC+yaqhNE1wuWthlu+4bJpv4PRPv0dwgvv8bjj8y4axVCzYbjNkKgR9nzXRQH97YbhZkN0DBovKOsbzV15rd4PDNP//hHKvlaPOlzOUKvQ0KnxQlB7Hmq7FCMNHkfuy3Hs7hwf/GglFSMOYy0eQ5sN2lN4Qe/1HMNEjY3b3HRWk4tCbSfUPFtO5HvtHP+FCfa8Uo7c38PaXx2Ctkq8P97MnZ8L0b3VUD6o6NySp3NnHu3BLU+4VAxq+tcaRtrsFvKhhjyd27JUD7oc3yscuw12/7CM275Xzsv3JkhUCWtOOmw5GGbT/hDf/YUsVUMO+bBBNOx/l8faI5qb9pdR0T5E6O1jHNk0QtXHm0GcqQFbe/bF5UWgty1H39o8a86EcTMhXniPx95vuHzg9ys49EAWNwtrzjicep1h7+PluKk8LadcUuWG0Va4vNXQckozvEZouKBoPW3fhJd+ehjv/SPUfbmB2pNxe+2r7bNX0ccXXT/4/dz34OwjsOP9RWQtI/zrbKZ9Q1L+Dn4CvvWLq9lrCpGPCPvf5ZGLw6bnNW1H5w7sI8FM2w8xlYxXsLM349o0WpMTIqNBnCA+NGqKSogK4j7PcQ0TMpiIoHOKbAheeJ+PP8nfNnYB8PDdSbJlwo/+YQU3PRtm/J4Ex/6106Yi+8v1yFCE3rVZzuzJ4ORg32MVhHLTGeWVb2e8vmvVUNqgNyYJ/UwXktfseWAT8WMxW10JuUqfA0+dgQYP+W4d+SfqCKcU+77q4uThK/9xgiNvmDZeGfjQ71Sx9piL0YIShTLCi+/0SdTCmmOKzc87wReDHYx9DY5AcnuaV75zDnEh/8k25GwZNd2anY/YcHYH3uOTqBaazii2PeniucL+9/l4Idj0gmbtkekM7CZoKycXbGgM2soP2TYIPk4wWjjwbp9UrbDuGGx8zkVP5sG83qEgXA4/+yw07ijxlCWg/O3Y2Sqf++rPL1jv5k0fWzHK3/XlYV8i7P0Z2P1h0KV8RyzUX5erPy+F3FJkBHXSFZZ9YByovVwwYBfZBaiwyQOmZ+RqqszNEZxryxyjcD2m5KkgSYCNVV3smxhA0HmNm9LonCZbEXzOT0LDeJ2PF7Uuio79YbRRjN2VwsSNTVwwYkf44RYP40Akq2dmIFd2oDRhmboHYjTSmrM+SkcoOxadugdKFH6DD/UeEhbyF+OIVsRHrM1uXnFhV35KlsK+rNYdsVzyUM5SGr2IIlltKzR0ansvjMLNWxdGKA/aU6S2Za1f3BWkMwYoqnpVkCNSkaqwdMDm8w5uXpEvsxtoxIHaywUpuxRTbaWn2sqWuVl7TcfYv3NxRaYCMIrGUy46H7xdr8gMwYr3z4WOKwXv/XTpA/bSQSFq4Z+VxA05aD/2u/DKP4EpTGtUCuarp+b4faFjhWXzHSu1rNT6sxAfsVxpZWBwncF3hWyZkKgNouUVtUHN+hsKKWC+I+SiYpPJzpJhtJ3ZjTVPHrOJcD3XlhlXSNycwavyqRiEuiAqYeWA3bTTcsGl6bzd4PHSW7P4rhB/vJJQr0somqf9jvMoI9y0P0LVgMYoITYhU+OODvmEKzNUtE6gfKjqtzNt6YlgchpPw9GfGcN3hESNjRoY6g4ReaYCYyB15yheyDDWZBhtNRhX2BfE96jqU9T3aLQSXvm5UXzXUu6ycSGcElrOKNDCpbemSDd6pCoMlzs8fEdsUuBKn9ipCDqpEA90RxKjhc5dHsNtBmWEimE7kx9utbTAyfZDCxfekSRX6dv2q7N0wbEmGyEwXWnL8iGha0d+yr5cTIiOC43nJiMsCvmIkKgy9Gz2MFoYb5Lp6IGL7YulPjvzYQEZn3svdD5VoqylglqN8rciSPaD7zHtg57PA1TMn1bs+Hz1rkXGfPWvRcasOo6vuPn7LoKgUEzUGibqhFwM4kOqZPv61xu6thlaT9hZaLJWSFUKGwYdEtXCuVt9YuM2znSmAgbbDfFBB9ez2WzS1cJQm0Has4y+aZza71RS+VIZO783rZtgB3f9Xp9kpaF7q5Bo8HByLrt+sZkNehT1U+eYGGmn4oLLmmMVeBHoeNYlVWEYXic0xzPEN4+hf/UknClHPrqF8UtljEZznMkqJjIhXvhgmu/eJ1QPOniukI8KdyWgXYY5UhYmGzO4eYeX3+qh1qXR29M8+OVaKs6GIG64fF8Kbkkxtq6CvhbDSw9kQQy3dRrCH+siO+ByeaiV9ECEnk0euZDw9HvT9N2XpCKWZ+Oztagf1gKaRLXHeGuOwX8/QoMyVP9tE6//xximzuPsH/eRr/Oo/Idm+tsyJNckGTnh4o2EOHOH3dRTPgQbDzikK4VM3KBzwsnbc0THHRJ19qVVe1mx/XGXbY8LYw2GT/7xKL0bfG75ToR7JuIMtBvWTThEUyX2z6vp93PVWUCG+KAikBqaR9YyQABvhbepL4QbctB+03+D0fNw/ge2sacwm0ZUWL4Y136pTI2lkDGf3NnHSrBv0g9aMaKoGFHBgr2as35hWbpcOPpGS7XbcFBTMaqoGJ2W8cpDeTIVsOaEIppWlCUUNVNZwIWyJJQlFLVdDoo4VfvLZk3W1NT/J+7O8tQHUuTDEH/BhnJde1xT/WI1g04VT25Yg9Qphmvt5L9sGMJZiKYcavoFRRVUpdENHqwdxv9ABZX9YSbuTBKJ+7iOTyrtInU+iVrbSapjGW55wxFcRxj6x5sYnXCs4UYhF+L4F8qYCENiG9afc66cXb9djTbw4n0ZztyaxY34tP1KP1rD5l9vpeb7leDDjqciKFF885eSjKfDRM+UwcGyqUarHHWo3pvC3TKBk9Ts/HQZ2lec/G+9DL5rDH8gTM9+oLOMbf+7gspBGyZWXPuFs/s7ro34qBSiNMooNh4KoVDUd8kV9/krvzZB3yaf9YdDvOWT5YSyiureYqscMqXjNffPuVBKPWWTm6w05Q+lrjvK3w3pHhk5B/1HgrfzpIWTHaPwy2/yWGGHKaw/V9lCA+V8n4+F9YuVzb5mIYrUL2rf5DNWxD5xZGqhynotVMn2Ob51fzoGcrHJa6opGaG0QhvIlE3GNZGpa9pfFCg7iCtNkOm8YCFs8lpaiKYURll3hOcKjg/50KTvA5RvXQV24dNuUUeCa0kQWW8kbBdLjYL6HBIRQgMuKm9pd44jOARUPgMmrxFRkNNE4jmcKbaQENIeCiHkeohj7HUcIR+xiXljYzZ8qvJUQGFUZOt8jGMXBAXAEeIjilAOPIfpCHoEL6ykzQQvCkzEumTcfhc8hYO1yzGQCyhvoYyaKvMigGPJRgJTuzjFCeiRs+5z+YiNr5KPGEuRVIEOBcRrcYO+4gQdq7DPXk3/nFVvRv+cfe7s50/g3PchO1bkussIAXytF/xZSSw7e0Qp9Ung7UC/iNwclNUCnwXWAxeAHxWRkYVklcoe+fKHrE97FVfi0naf7m2GDQc11T2aSGZxs4hsmdC/0VB3UU9t4JiU4TvCoz+b5sKOPBX9iru+Hqf7JsNtX3MJz3GdbLDYGMpANi5EEorz+zxGWmC0wSc+ZNjxZISBjVDZp3A8YWAjXO4wdG/O0rsux5b9EbYeCLNxv8Pxez0S9dCQy+MrxfDrElR/+ByJbIx73tmIPlHBmR/NcuEjA2SrPM5/pY2aC2HcvM2s3uD77IsOEPp8I6caYwyvFahMcf+Wp/mJxh/wu2U/QWdzFUklDL1Sw+Uy4eFPVJKugHN7cqSqDG2XHSrWJ8h0lRE+5TJR63FmX4Zf/JMY/uUo3/3PCVLlmtrOEKrCh5EQkYRN2Gu2plBNWZynq2g64TLS4lPekqJhyFD+7SqG1kL9BU0sYe/neJ2ht8PQfkjTc5NhpBWyEevfn6iDO74UIpS/8t4bLRx6k80Usvv7EZxZc+yJGkPPVmGg3XDbV+duv5WEG4N3fap0yt9SsEe27W6TT373Vxas97qW31gx9shKDNr3AgngnwoG7T8BhkXkj5RSHwFqROQ3FpJV6qB9+NPw1Z9eoew1rzEYRzh1p0/PTUJ8GPZ91Z1OSLAInL3V59IuQ3QcbvuKixNsSTc6oPxRMCmbimk98zoXdvlcuNVMTbQUcHJ3ir71eZrOO/z0b1QTysFLb/XtgmZw+mQOSaOF7g1ZLuzIogNih2h4aMcFbl/XT38iyt89ezNGK77k/wMP5U9zqG8rv3Xgl8iH4eCbEmRiwq7vRnn735bjucLz7/cxIdiwX7PuiGaoxefjfzmGE81xc8cwtXV5fG1pfL6B/N+0o7qjDLTkOXVrGjcLv/iLNVSM6KkNSGZtBufQE7hhw+lELb1+HNGBB19gx7s3ULm/jKE1hiMPmBmz2DVHFR3POUH+yZn3L1ktHHinZ+Nei70vw40eR+9MgsDP/2o1jZecovf+3C0+nbsN0Qm47cvT7Qcw1mh46WF7H275qkPVoCoqY0WhIFYHP/s01G0p8ZQlGLRv2t0mn/jery5Y757mX79xKH8i8gQwPKv4ncCngt8/BbxrKa+54/2w88dAlbJ+sFA/XK5+Oq/cEl+kpeg2q472FWMtlocdG1dXbd9Im916HU2qGTGFtFG4nsL1wfEUjhe4QYDZK1Mja60McS3/23dhuNXDD0FDp8vkxnXLNglcO47MuNZEnY2o50dsTBI/BBsbx3DChuFsFBzwRXGPf56IznMu1YpxFOJrkjG7caL9WAjHs3Q9P2RdK9X91u0z0mJdIWkVIlqFHbADOA7o7ihKrB5GQySlqRix9EMtdgE41JYiFPZRMZ+RUAiJCIRAuQJhofKlGI6nSNZd2V61l3XwUi10/Nr/k9XWLeS7NsSuaEhU2zUHFDRedOy9L9LGk/c+mihsPys3USd2JyVQNaCC9ruKjrIUz05AR1QK3va3pQ/YSwalEK0X/FlJvFo+7SYR6QEI/m9cSuGP/iYc+Syzc75azNeRivnT5qs3n8xi/uwF4IeFbFQYXDdNk7tm3WYd80JCXZfl8GbLBT9UgowiMjftd4iN2fjSM5IaBDAO5MPCQLuQi1hK2kR9YF+7kA/bJLuzaeKbDsdw8nD6thxn9+RsvW7wXMNEtW8ZHWmov2jdMVVDLrEEVA4oOl60zuPvnmhnIhuiuSZJY00aEH5Vv5MBJ866jotE10ygBTYeiRBJKLpvypOqNHiOTzqex3OFFx/OMtbg03DJpfmii6MNw6NhJK2RnjC6O4yLT+N7LqAcQ+uFEPEJG+zqmXenycQNF3flyLclqLzoseH4MIiwuWzEJoXoDaPOlOGMasbum8ALi42SWLDr1snBaIuN0Z0pE4bWWlrf8FpDPizUXoaGToWThbpOu5uysTtE9YCD9hUH35qzoWKbhExFQRYLYON+h7Ix6+7KR6zcobWWClp/UVHTrXAzNunwYvrFNT07BX08HxaSVcJoQBkVgS//pCUXrCQE8LRe8KcUKKWqlVJfUEqdUEodV0rdpZSqVUo9opQ6Hfxfs5Cc6549opT6OeDnANatW1fSOblkEEd7oW3ns/9eLJWp1Dol0vq8EGTilldbe2lWbIer1C0dF87caRPf3vS4gx+BcFJx+5cdohNQ9Cmbwz7Bbm3v2mFoO6a58/PujO3wY42GM3cY4mOw/qBDPgKJGiGShL71Po/9ZIpkpeHez8bZOhHCycLOR2zwpmP3GvJxCKc1rqfIxoXn35Xj0m5Fbbdm13cdzu3yeeEdKcrGHN7x5+W0HFccegCG6zSVQ4qGCw6nb8lz+WwtP/xeI2VRjwfOG2LfruKRD9/F+nt20yge9x93qXrUJfs+j0SFxij4t98do3urxy3t/dzW3seR/lqe+7U4ZaMO932slebeCOd/QugfqISkg5TlidZmiO8aYMgxxCYcdj5TRiYmPP3eFI9+OEVZ1OPN6y7QoQbpOx3mH5/cxeaGUc6cqkd3xXjo78tpP+Qw0io8/WMefrWH+9AgujWD98VmIsej1vf8sMdE/cwmiY0ZyocVW5902BHEWElWGSbqNbu/W0n5kOLkPT5P/pQNlRhNQGQCtj3uUJbQhJOK2JhdtRSBTDkcvyvP0bsz1HdpbtofI5pgZuCp5ej3c/TxfExIV9lJQVWP1VNryKdZcSwhe+QvgO+IyPuUUmGgDPgt4NECV/FHgHldxa/WoN2nlGoRkR6lVAvQP1dFEfk48HGwPu1ShN//hzDRA6e+Povyt1Qo/FJdQhmRJESSmsp+uZKGd5U4e4fP4Hrrv45kQacU8RE9v/Q57EtXwOm7bazl+MiVAYOO3O+TLbfHImn76V0+ZHdfPvfOFL3teeKjir3fCeH4yvp9BcYawQ82J57YlyIbFRq7QrR0RlAodj5idwWevCPLWIOQLvdpuOTgGMVok2G0xTDSAhdv9kHB1oMxImMONRcV7Y/Zrdo9HR6pTIiWL1ew5otxxIcXHk4hGgbW2fOq41nevv0CriP0UMG4l6HqdJwNz4TRGc3YERfKrZ5eKkwiFSbRVcHkiy+csZSQbNzemC3t4yRr4jw+UcVLUoef0PQlyiAEOy84tB2z0fUOv9nDD4Nzxyj69lEkp6EvQqoGUtUUfa+mq+yGKXcqyYcQH9PEx+21DTBRN10/U24Lo0G29JOv9xhthprLinBWEU0p9r81xViDASdE35iAKCoGF9sPJzvFtfXfsjFF2RjTbBZln+sVT+yrFEZdu0NCKVUJ3At8GEBEckBOKfVO4L6g2qeAx1lg0H613CNfAz4U/P4h4KtLKfzyi3Dxh8GAPZ9bYbFls12z1yrjCt1U8O8cvuZitixgX2zMRoTz3UBtFcif+plDtyK2uHmm4nmkKiWIrGfpYMYVIgm74JiLWjpbIeWvuseyTYxr46BMUvNETcfHcAzEEopwFnzHUtEUkI2DuEJVn4PjWTpbNi6YMp/aPo2LsfQ8gZAydnNJyJAts3p4UaFiUKMRxpp8RAtKCfFRRcjH/q0FL+tgjMJkHaLKA0+Rr/WtLTFDNAUqZKyigQywvmt8e29CWbsV3fEhlXXwjcJ1wGC3k2NsOIDxepubMx81hNNWBxkNga/siBux1zABpdEEccq1CBh7z7yItdm4NjO8HxY8x8Y3UUoIZ4L4L4Fufti6rUzIpkxTAl54mspX3acJ5WyEQ8HaYKmdRd7gV/Q32weMIkigICX1zznLJgfryZi3Ai99EpJ9Rc5ZZpiAqz3fTwnYCAwA/6CUekkp9fdKqThX4SpeCfbIp7FvknqgD/go8BXgc8A6oBN4v4jMXqy8AiVT/n4KXvnnq9f5RsNok8GLQF1nQcyKWRCE/naPaEITS2qyZWJTYs2qnw/bz/VkJbScFOovOkSScPw+j0StYsPLjvWHZhVD7YYLOw13fslSxo6/Lse5WzziEy57v+lSNqbouz3D8AbDCGE6ntfUXYJj9+YpG9VU9zscvd9YX/BziuoezbG3pXjmQwkyIy7/4fgEVe/uYv/5FrpebKWyz6Hp4XNsvrubS/9rF8Ona8lGDXnXY/+Daeo3JGmoy7LpkRiNf9pMzWXNtx6/SPmaDJkXqsi+XEXzgGJ9+yCXumvQcetf8y5HaGidYPCDg4xfKsepzqPSmsw3m4mNaqovw9qjDtpoEvVCwynh4381QbLKo6I+h6OFkf4Imw/HqOlzOHpXmkSNob7ToeNAmIMPpNn7TAXhjCZSkSFclWeiJ07P7Ql6qg064RLKKyYqfN77v6poO6IYXmsH5Mpe6Nxj1w7yoTyXtuRpOq95y9+X42nh2Bs81px0SFZD/xZDpgzqOxVDa+yW9oZOTU0Qy8Ro4Ykfz5CugPoul7YTmsYzGidwgWXKBD8ilI1c2S8MQtcOw6Udhp2PaSoHln4X4atB+evYu07+8oe/vmC9h6t++SIwWFD08cBLMKnLPuA54G4ReV4p9RfAOPDLIlJdUG9EROb1a9+QUf5OfBW+9OOQTzG/K6PYsVLLlkLGdaTbP/zBKD1bPCoHXba/UIbjK+74vGs/p2fVN67w7Z9NcvCtmSB6nJ19/+jvV7L5UMjGxMbO7idjNWubkYx8THjufZZOph4awH39MOHuEHvv7cDNKo7c5zPUbmeOaPtz8A0J0nGfhvo0OzrG8EWR/58bcDIa8Sz7ITShuOPzIVzXoPKWSTFeqTj4Iz5+WHjldUkm6qYThoaycMetA0SjPvn91ZhvNuImFXd+NmTjf3tWRqpKOPAuH6KGw7elGGvO2806WCaOUdZFUd8VYsuhGMrYzTHiCue2ZejqyBFJK279QQWuD8dvTTPUkic+5rDr6bidUAbxtBvParY/5mAihoP7T5Fr8DnfU8a5rgpCGc2+R8uJZBVG1FQ0v8l7JIAouxay8xEXbYS/+j+jJGoNe74T4S2fKCcXtZRGPwybn9W0HddBW03PZkXLVKh0G4bE2trT4XPyHoOThzs/7xLKze4XluGDz3Rc9AK519o/Eahqhw8/DtXr55A3+7SlGLRvaZf/9cRHFqz3IxW/OO+1lFLNwHMisj74+/VY//Vm4L4CV/HjIrJ1vmvdkDsiNz8EW9+JpfzN904qZaFkIf91iYuMyyJ3CXXr2+CTi0I0rUHbgTiSLF5fe4reDkvN88Igjl1EbT5vWQtgBzzHszskbZmdnYmaptXp9jQSESIDrh0gjGKiwbpdxLUyBEhW2IXUWIUHIbEyEy6Ss1sAxVeEU0FigJQDnkZlHbJxu31b+4pUhY9NO2B1yUchXO4jIaArCp4ilLYRC528QmPpermyINxpXpOoMPhGT90S37FjWj4MZUlnKnStdf0oUlX27RVJ66kBMFFtd0nGEnZdQXsKLZZWFx8JbHAg3+ChXCGZDAGKcMZGTzRa2Z2PwT2aHLABlCjKhzWOsb7Y4WZDLgotF0N2x6erpjjuVQNqql0K+4UyatL7MzVgg6UBGsd6Spw8Be696Q6iA5rjlNylfHYcYff/MVS1r+wkU7CurYV+FpQj0gtcUkpNDsj3A8e4ClfxDTlof/834PiXKY3yV8w/vBDmk3EtWAo5V6nbu/+snLouTfmQUHNZEUnCeEOBX3KWnLd8PM6aky6tpx12PBmmckBzcWee8TqfCzvznN+Vs7TFwhMVhFOwcb8mkoDav2oiciTGeJNP1205MnGhume6vnGETMxQNeRSMaSIfaeS+JPlkHSgKVNgoCJRC5d2GTJxoXeTDYbl5iEsHpWVE3xAnac651EzoKkadBCjOHa2En/URTdlyccMQ20+z70zQyYu9G00ZMqF6l5oOWlnlVsOxqjRedZXT9BRNU4kpWi64KJ9uLwpy8SaHNTlUPvGCKeFO75RRm2vJlHtc3lDFirzbFU5Qq7PcEuekcY8kQS0nFCWPhkXJATuhMPGj7QS6Qpx28ua1vN2pM1FDeEkNJ2xAaIq+6DhnCKSgOaTirJRyJXZwdXxFe/4izixCcWxe/JMNAqxcWH9QXvvx4KkwrORLRNGW8RGFywYQduOOtRdslTRVOUUnYhcDCZqhd5NcmV7F8Mi+6dxhExcOLPP8Idf9TlwbOU9A0vk0wb4ZeBflVKvAHuAPwD+CHizUuo08Obg73lx3VP+rgZTmThKad/FUpRea5h6voTztxp6Ogw1vZCssbErdjzmEMootr4QYesLEXIx4fRdPpl4wSNb5B6sORXi3/+n6ivKx4PNLjKrH2fKhVN3+yQrxAYmEogfibL54Y1k4sKRBwxnbvIYrfM4tzNNJK3Y/HIsWJASlFFE8dkeG0QqJhg61UTtN1x6t/hcuMVuFjq3z3Bun6GyT7HlWTtjP7srQ+LmcX588wC/UjFMz8U6vnp8AwA9A3GGOstp6gqxRmwCh/N7fdJ1eRSKcMoQG4ObH3NZ9zJUv+0EH7zrH+kxFfyiej9KoOlSmPUnYyTXZwj/VBfhyjwtH69j46dDKB+2P+6SaPAo/5snuXfXKZ5QG6nIryU1FiL/cguITay77cngUQzuW+sn62j9ZB0Daz0O/VoCZYQNLzrc9JTLeKNw6nXWVbH1adt+p/blOPCmJK1nHTqeLcfJK1ouhrn9ey7pCp9/++g4RoQ7vxnHxospPl6Ksl84sw/GJhS7v+de2RcUdvp9tdO/Ep4vCdYjudJTtwJYGvYIgIgcAoq5UO5fjJwbctB+4I8hNQhHP8eVlL+laPXZMpaqJy2HbgESddC5y+6C6y0HFDScL+Th2llSb4ehf4N1mFYNzKaTLDyjqBxyqBzSiJ5kqVhcutlncK0dKdLV9v/KQU0kqUiXQz6g/J3emyZdbigbDxHO2Wh1Y3U+xoXKO7uJdfTBuEv0C1Xg2Rn27BfE1qcdKoYUx+/K0LneJ58rJ9qqCIXzXBpTDNZMJ7jMxYSyCYdwRhHOaOIT0yNWrgzKh4MEA57iFx76JJX+CF8f6eBlp45cXKgcscl1yzZP4FTlCfW5bPhosw1opYSKYU3b5kF2bzmGg8clVU0kYnC7Ivi9YbIVlrVxZfvZ9nj8gym6tng0nXfoeMFFoTh5j0eiDurPqyA7EHzl/54gVSl0HAjh5hVGCcffYBNIXtqSpbfdI5rUDK+zG3gq+wvfrJMzZCGaVESTUBg4arYLZQrBl1M4pakYlivrF8Mi+7j2FbEEdOzX/MzvKW7bvlSftaXBeu1W9poL4YZ0j5z7Ppz8GjMpf8WwWBrSUsoo7NvLLEMQnJwdiB0fMHb3XLbMlplQEJXPEcpG7eKh9iFbZsuMChLtzqZxFbuWFvxJP2vw+S2OEBudWVf7MFFj44lEkgrlWzZE+YgmlIFc2EyVxcc04QwMjcaQvLafpHV5vIhQNmzt0x5T9ZPVBqOF8mHHpvfSwkAihslp6kMZtA8OlrLnipCo8O34FbJxP5SWqfuWqjL4ytrVd2Et2XyY9YwgWGpiLmq5hn5vGGMgV2bIVxm8iF3QMy6kRuIYIJd3afCTkFdITc4utiohWW0pffaKdoei74AXERrPOjg+pCsNviOIFioG7GCdK5Op+CYNFxzCGRhptiu+EjNEMoKEDLFxHSwYG4y2fWCi1kZI9IP29Qv6wGTfmiybivI3u72DxVDfCSiHoUnKn0wfXKpnx1cc/nnNWOcKD6DKhjpY6GdFVboR2SOvVcpfokrwY0JFr2KB7S+LwlCLz8haoXuLsO1JTW23JlkraE8RSkL/ZsOF3YbbvuEQG9dk4jYTS22X4vJNhp4thqbTirYTzsyEwAGyUSFVLVT0KwY2GgaDresbDmmqLmv6thp6NxtyMQjlYKIKq8dlbVkI2O31I61Cdbdw4vUeZaOKtcdDjDcKNV1wfrdHXbeD055m5L4E58eqyW6c4ORGoXV/zEb5O6zoeTBD66NRnn5rjrO35Blvz7MxmqNuxyhtnymn+ls1jMc0r/zyGNU7xhj81DrKe8NEWtI4HUlk3xjmjzeBr8m6HiNNHsNNHj/++5WUD8H4Pz9D/x7F8Mk23H9oYs8jLt/4i1EuNQiugQoMl3MOD3+ymrEGKFuTwN2UJPHwEHWPOvQeXEf+3f30xaHvRC0bj0apHHTZ9ahD+aBmpNHj/N4cT74nzVv/uYpELYw2+nghS6+85zM27kD3W5I4GU3N81HSVVA+AJdu9qgacJBdE/T95Agj9yQZ+9/tXNjo4fiaxp4QVQMubUc0bUc06WphcK3Qv8m6rIZbhH1fdygf0SQr5QrK5iQ8R5hoEGJjimStYWitDb3QdkzTud2w6weaysEbg/K38dYN8vvPfHTBeh+M/vSNE+VvKVHqoH3uUZuaKDvGzC+2RdCLipYttYyCsq6bfM7caXBzcOdnXVy/iAPvKnWTgI6lA2oZMyK2zUHVmjzqCDJJ25s8r+BaiRrhwLs8lIJd33SoHrDB+Y88YNACd3zWJZJhSoZMXkPbmfHshcqX3+wxukao6lXs+o5jX14z7BO8csP+QyfxKg1nuuN0dpcTF8Pttw0Q8uDQhSqGBmPEEg67nozjOsKLdyfJVvrUXApx08EyCAn4CqUF8YOAzSGBgEK45XGHpnOaRK1w8O0eGsWhexIka3wqRx22P1eGm1M4HzmHqvDIvViJ/41ma8ZknGxjXSSZSp8Db0iigQ/sO8Gm2gkujJXzzwe2ojzNnsfKqZhwaDyl2PakQy4mPPd+Hz8qVgYQTsKdn3NxDZz4P5cYecsEpidM7u/b0Z5i79ccKocUgw+Pc+rvLiGusG/XTTjjDpe2GM7dNslxsIyeLU9qWs5oJmpsImJc2P112346cLmYEOBhY58HbeWFhGd+zENc2Pi8pQ2aoE3FtfWLUv6W4Nlp2Akf/DZUrqEkLNWg/XvPfmzBej8Z+fCNE+Xv1cCa22DD/cyk/C2GXjRX2TS3KvhTrkHGzLJ01XQgfz0zts/ccmfJmKu+Ioi2Zx10zKbMFKVqTR71g2OFA33BtbJllkTnO3Y3ozKWJjdZFk7NlOF4wSLYFN2sYNVYIFUt+K4QTjMV/H7yPouSqQUpU+mjXCGTce0IWW7AEfwyIZV38UIQTtsBWPKaTEzIa0U4ZymNeNaHYwfswLa8thRCo4iPW/qfCQlaFEZDusKQD0E4abfm+45CavJIRNCDEbRv7+HkfZ5MPpANdn96GurKM7ghn0TWRSt7j6JpG/8kGuwrcPI2iS9melUglGGKFpnenMUvM/gZF3GsKyWasKt12XU5sJFjCfe7uCmbOHlqF6xYV1fZuA236kVskgQRW6YnkyMr0EGyiMK2mozG6Dt2cVIFuzOVTNef8eJfoH+KlqBjyrz10LDv56GipcjxZcSkT3uJ2CNLghty0P7+b8KpbxRZhFwi5CMwUSdc3G39jFe1gjjrlHWvODSdVUSTinR5ifIWddnZg3Wx43PJnfvcmsuKdYc08WEYrzekqkwweNnjh9/s47uFb6qZ18pUCCMtwqWbDf1rPcarcjhZ60vNR+1M/uJuQ996jyNvyHJ+dx4noen4hbXQHWZjr6a+18HpjJB+rA7TG2Zrr42lMdLk0b0+iyBs319GxbCD7wqZqCFR6dPZkcUP/NeRpKXQrX1FoeqznP7Pg1y+K81Qk0dfWwYas+yIZWipSlJ3Sx/Vd/SQrPQ4/1w94ZMRWnoNZRPCRLVH5+Ys0TFoPQHl5KmuzrK+JkXZuObZL27j8uVKHCCeExovONRcNLiVOXo/MMrIGxM4Hmx/3CE+DC3Hof6izfaei1r/d+z/bcWcKbPNFLa7No/c75OPCE2frqHxn2qIH4uS2JUmWWUDdsUmAvsOK+LD9r4KUN2jaX9pZvsNrBf6N0xS/qbbKltmWUDRcfv36Tt9ErXF2ra0QWxwjceLD2bo2egt3JUNfP/X4fS3SxK9pFgKnvZS4oZkj4RiwSxbc2Wkv9mfX3O4K4rOiANo3z7ksXGmdvxBCXLn0SOSsklX55RxlXIn/zZKOPM6n95NwoaXNGsPByyJUmVgtyp//2dSHHxzhru/HOOez8UQx34lZMtsbItQRlExDLu+51A2rBhtFpSxOwuPv8EnXS5UDcBIM6w9rmg74hBN2Blt2bDGCxuee1OC2h5NqqacRA20nFI0XNDko5pwRiMipM5WkPvzOCEN27Cz8HM7XfpCYdo7o+y9GCJTbjh2R5JLW3N0HIqy94k40eosW3/hIGUbxvn0wS0811HJpsNh3vnn5ZQNw5k7DDLhEsqFife4hHOafd8Ks+6Mw9lhj5pyh2hFFj8ihDOa6P5KUp11uEMKv0IIpzXxpCYfg8zNGfilLsK1Pg/+Zgt1n6nhxbeX8XdVNhDWtgNR6jvDrD/qUPWsIbMZnJT9Amg+q2k+q69ov65twmiD5vSFGtwc7PQ0LhBJ2X7pjDps/vU1INB5s8/Z93mIBjdnH4XWE5qO5/V0m2ohXT2z/bRvOH6P4eTrDDsec6jt1qSqhCMPeCSqbX7QtmOaiQYhlJ01YAX65iPCydf7DLcI237o0NBZ8BUX9K34qKaux6FsXBeVMeN3BcaAG2VFISwd5W+pcEMO2g/8kaX8vfIvRSaN873S5/uUK4CTt0GBms4XIbQWu06pM+LZ9Up1vZRwPFEHl7fYz9uarnn0niEjeFqCv4fX+Lzw9jReGJs0VhSjzYaBDZYTXdutCWWVfZCVgCgaLwAourb7jDUKKBiIW3nVPZpQRhHK2B2CiOLMLXnSlYI3qpmoE5Qotjzt4PiK+JhdhMuH4fyt/ozvxESloac9FyQwcAnlNaMxn3zIshmqB1xA0XR7Dw0dwxil6BypgDBsfyJMfFiTrBK6dwhkHTZ8vpKqgIpXd9kuwA6Ox8l7kB+NopQQEkV9TwgTUow2WzsjWUWkJ4QfhvEP96NaPSqfLaPxczXorOL5t6bwwtDY6VI1GMKLQk23wvFdQgcmF+9mzx4UyVrbfig4u9PSIuu7XZzAnbHlGSf43fo6jIIzd5qpZvbCEEoxlaZssk1HW4T+DbZfTLZfptwGozLafkkBdG3zSdRYd1f7yzYxQ203XMG3DOQOBouTxrFZ4Iu51mJJzYZXQnPKKIRS8K5/hI2LYjQvDVZ6Jr0Qrq9XyBLh2BfhyGdKdI9c5SBocQ2NeRUelauSEdSZjI3seMFuuHl8iIKlgvlO4HMMKpWPaGIT9oV1/uY8viP2ayOg2o3XF/ompz+XjRYqBuwh5Vm6oShhcI0JXCcyVX/9yyFCWchEjfWXhnwSbR6UeRA2SFgwjsHJCsoIyrdfO5G0msqUM1bjgQjloxrHA0cJiQYPcQ1jXRV4ovF8RW1ZBkcZum7OYiIG7QsYS4UbaQnugQ786GU+1SMGFYQTFLEvA18HlDdlf3wd3LeQwb8YA4FMew4/ahAtrH8lhJuDdNyf2rE71mj9+H4QPmDy3nthwXPssVBGgpRfUDXo4niQjVpaJAKjTTaRgRf4nEGIj8yM8ueFJ49NoyyIAul4kztghfIhZRemsW1qtFDVZ+sZx7oHZ7bxlSgfmfZ3T9TO40KcR0bQGe1/Br79KzB0ev7qSw1RkFd6wZ+VxA3JHllN7FscRgtjjcEDOOth8R1huE0IpUDnhdG10LndcMeX3SlaHoCvhWfflwWtuekph/ouB98Rxhss42OSqjhRI6SrDBW9itOvN4w2Cc2nFc3nNZEJ+MJvpri8IcfDfxtn+zNhCjfi9K33bCyRtgwD/+ky6x68wPiX1hHdO8rEqXLOfqOdx9+X4fVfKmPz8y5j96Xp3+aT7I7RvTHPmgsue8wYNRcczIEqXvnPw5iHRnj5aD1jyqGtz7AplePJTSHeuO8Sm2tH6PrmWk6/3MqR27Lc9FKMijFNR9UYABcScdbe2s2at13iqX/ZRaazgmzE0LsxT6LSZ93pCCMNHrXdmpp+h6N3Zbk94+HeNopekwNAJRRbfrGNypdjnPmVfsbKHPQPGigbUww3C/EJRabCcrCr+6BrqxBK5nn5vgyu79LS6RKKCs7aDNIVpeysS/1FTVWf4vBb7MB+uT3FwFqftUdDvOFzcap6oWunTCUCzkctC2Ws2VA+qCkLZt2JakP3NpscOJq2A9BYnaFzj2GsQbjtKy6RjCIbE7JxqJwnxrZRth9pDxxP6NskrH9RE85f+8D2alD+1u3bJL/xwh8sWO+XnA+sGHvkhnSP7PsPcPa7Qezd+fzURfy5SjNFTyulftGySV964bFiZaXIvRoZc8jVRlHbr+wMb1b9A+/yyFRB4xnF1qccKo5h/d5TsZHtg+oYxd1fjIBPEHxIcHxFTf8062BgneHom3yUsrGdNbDmsGbjixpxhKd+zKf1Upg3/FuM5nPTjPTJe9900WV4jeGl3WHU0+vofKIdJ2Ro/sxGtjzrUB0Rnnh/hid+LEX3R8Zpb0jheZoXDzegfMUb3/8Ka2om0E9VY956B3f9RhN/E4kw3O6z7bEQ7/yLCnAFfeQE+bIwR76xHfPDWuIhUDrL6X1p3rPnNFsaR+kZj/H8C9vZr2rxnqrD3SD4a1M2zLOG275dQdhT3PWVGBtfdPAiQkUigokK0pqFlpwN6hQXTn+ii5uretkpOcwP6pGvNyOieO69HolGofmEYsuzNi96+yGQsMtwi2H/j2QY3J3mzlv7cYwi9y+tpMdCdNVApxKUhpfekCBbYai9HKJuJMqJNxqMsqG/3axQ/bKl+j3zYx5Kw02PKcpSMFEDL77DR2loPg3RrIBRVA0pbv6hYyl8QTtH0ja5xXz9/uW3+Iw3ydTWcw2sParAlyn64tU+fy23wPo3sOKQVffI8qOuA5r3zEH5U3OUTRaZWceYv37Rr75iMmaXFdOjEKXInS1DFSmbpe9c9uVilsbl5gJymD/9/2w30OSxGTTAArn5mC32J7OmK4ikbX3j2MFeUMSSCjc/eZrlg0vgk81FBTT4nqXh+TmHUEJDXqHyNqqg70Ak4iNhwVNq6poV0Tw67EPCUuJUVpOqEHyjKB+zEffcrMIvtxlrmLCZAybzBfkayqN5dMgnJxqtIC8aEYVn7IuHIIRpKK9QviKStK4ZnQ+++D2FKvem743Yxdaw40PEoEZd0ILOK/IRa3c4E0RFDE7TOUWqxvqlVdj+LyGxdqkg2UCw+zQfEXwF4YyaCpcLAe0yF7SHawdTX2MplWIpfwQ2hzMqmBTYe6+8WX0goObNoLoWdg1jwwL4LlPJhX0Nbqagf1zt86dg88MQq2XFYZRe8GclcUMO2j/4bbvBpqhP+2oW9661/rXIKGXhtPDvq7Rv93dsFDdlZGpCtCBFcA5/ZNNpRftBTfVlxebnNDXdNu50ukKYqLW5Civ7IBszJKrtQti5fT6jTYazt/kMrLf+2VASqnpg0/Oa2i6rW7pcSNUqbv1enKpBh8z36vEPVBE7F6XjVBgEPndoMxdO1tNT43D+dTlGmg23fztOOKs4+GCG59+eZqRZiPzpOir8HO1vP0tr6xBtJzUP/005yocvH97ImRONRM6WseWEy9qjLg/8QxmtGY/WhhTtrQlqKrNkfqwHIj4Xd/sMrjOEsoqbH3WsD/krzUQfraLu6xW0/UEjo2MhvnZsA50n67ncpLlwb5axu5JU3t0PMZ+u7T6d92Ttjs/f62VkrU/HgSiVgw6plMuxs1WIgPtjl1H1uRkNe/OzcWr7XJs9JwPVl2Hzcxqdh3O3GM7c6nFpW57uDRkq+iETNyBQ3WPbqKpHkaqyyZe7thq6t1xJ+UuXw1CbcOYOGyaAwsF7Uo9HXRrOK5pPQvtLiqoeRbKmQM7VPn8CT/13OP2tEuouIYRVyt+KIFYPTgg8Q/HkvlAyva/kerPrl1p2LdcsQY/RZsOx+3yMhn1fd4hOFKdXVQ5pdn9HT5ddhS09W31O32EoH4Ldj7hsOKS4cIvPWJOQKxO6d9jsJ2f3ZOhry3HnV6O88V/jhNMQTWrKBxX9m+DwAz7hNOx81KGyV9G5y9iM4uXQu9UnHYdYzmX3UzZho3/YDrRvesLhR88rXnlzjpPrmzDacPInM4zUJdl6MMZt36ugfM0I7//jL9AeH+X3nnuQZ/avZfflPG//eA2q1+HMX/TyxteNMn6wmjN/tRtXG5o/0Evr5iRl2SY6Hqkh3ZTj5OsTjOdd8t1RyGn8DRlO/XoPp8s9ur/ZxLF10HYuzKbvNJMwcGlrmrNH62nsDnH8pfXEJuDm4w4VfYpN/+ksFf/jZTJP1yM/tZfwiMu5vcKFt/iM1/qkKg06r7j71xvZ8cxaXvz5ER55KE1oIsfup+O4OU2ixmOsziOacNn9HZfKfsW522yAMDakufyxy0iZx+0/v56Or7tBE9tZedsJh7bjcOiBDN/6D0lq+hw+8N8rruhSkTSE0sFGLQMjawzH7zWIwL5vOEQSmviYYuf33Rn9YqF3f0l93LGUv2jNPLKWBQrvOpvb3pCD9pv+GyQH4OV/sA1dFIt94xdzlyy13NllpV5zHrmXdhoyFVAxAOHUPE9PUXdQkSduHn3P7rNpzeKjeuoT/9xeG4QpGTxsuajQ055DNGw+GMYNFjnDWUDUVCTA2i6bVFahOH+rHXxS1XOrHx+BhvM2sH+uXOP4MNxkGKvzEAdq+l0co7hl/QU2VQ1hgCejdSCKdZ+pRXdHSW3O0v+eMbSG+PNVSF6jtqRQHUkkJIyMlIPRDEUU45kQRkPlCzaxr751HFmTI53VHNsoiChq+l2Mqxir87iwIw8K2o9HcHxFbZeiskejPUX1w12osKHsiSqkyyUfhrHxGGjo2pwlFxWazzrc9GwEnVfs36bIaUVlQk9R/s5vz+KHLPumctBmz7m427pU9J2j6No80TNhNn+vbMaib2H7PfpTKXIxYe0xl6p+fUU97dnkENW9AIqLu+yLtKpXEZqMTXItX7Lz1FMC7/88tL++RFlLBIEVDwi1EK6vV8gS4dA/wCufAuMtXHfBDrUUrpDlkluCjLqLKojodyXday4ZgqV55cMEgfIXvkleyNL6jBZGmwy5iGWkVA7ZWZnKT1MDwxlLGzy7OzcdiD9wtTQE+iarLa3OCwllI1aur2X6s3wWMuXWRkGoP2+jBpaP2ZeHVmITFLiGrsuN5MXBE8WG2CjagwvbPYwWQv0Obl8I44NsTdhkukMh+7XmKfSGFBihcsjBzdoNK5ky32aFOVeG5BQhhDIE7cNIvaUexkc1kZS1a7Te7vmeaDL4QYRA+U4jktaoW8aQgAIZyggYob7Lxc1BosaQj1j7Ow6E0B5kyoylUPqW9+3kobsjj+eCaEv5A/BPxSGnyNf4eFVz82C3PB/GzUF/+0I7FG1b1V209zlVKeQCv/ysbrEwSnz+ROBLPwEDx0qQucS43twjC1L+lFK/BPyriIysjEpzo1TK31c+BC+vUv6mkIvaTQ7RZGmda6LKMNomdG813Pp1m1R2PmQihsNvzPD8OzPEEyHSZT6NFzS3faeM3i1i2SiDis6tHmfuyPLKG7K8/ovldDzvUtNvVysT1cJos6Gm26bL0j70bPA4+NYcF27OsuPJCINtHvFRh46XI3RtNfS321yLVaPB20hgy1OK6lEY+6VuRuoUZwarGHxolHW1acLPV0FTloHmLIk+h57RGt70T3E2HHI5vztPzxYfLQ6nHx4llXTZMSTUVedQrRnMNxrJD0bQGY/Gsw4tTo6euzNs/FQNB98AXgyI+lDmIyKk900QO15GzXNl1F6GysuKp37So2JY01KWwL85RaLeo/W/tlE+oDj3/hEqj8TIbc5w6q1pLqWjfPD/qaFyQHFphyFbIXQ869KzxdC13aB8mxi4/ZAmU62Ij8CJe/IkqyCU1dT0Ki7sMVYvoHLMp3bUsO7RmA1GVgTZmOHp96So6XXZ/WikpEiTPRttBMn+dmHzC4qabof4xPIMYq8G5W/Nvg75xQN/tmC931HvuK4of83AfqXUQeCTwHflOid33/mf4OJTMHqO0ihxk31sdtms+lN0pEIsUsaiy5ZAbrhwq3EJ9lWMKcoTiraj2jJwJk8opptANKvY90gMEw+RrBcazmq2/dDBEVh3OGDx+LDhuEtLp4OrIiSbhWwFMCgkq+HAOz1wYO/XFPFBxWCbcP5OqEqE+IVfLiOUZ2p9wgsLX/qPY5gQbHw5StVYkKxRwZnXC3t+dT/rNo3ijVVw+MWtyEAZLf/WRCir6F2b58yuNILizkcqSDfBN38lxeWNOcQFX4FOh7jpQIzq/hAGmQrc9HJAq2usSbOtYwwHeGGsEp0OaDIZxyYZ/u0zRLWQH2hhbK0w3mqTElRMOOz9lkPlSA1D7VX03+dz9nWGZx6cwIRhzU8N0tE+QVMO3rF1OzqnOHWHT+9WGz9EAW2nNAMbDGNrNBM50EpRPmrbd9szoeklHEc4vw8bMEtgvMoh5zisn6dvffKPxxhe57PtqTC7fmhpnQv1rZbzmvJxoW+Tz5l7hD1fE0hyJb2vMKTEVfbxjQ/Apjez4njNUf5E5HeADuATwIeB00qpP1BKbVpm3a4aZfU2fKMKosRNIWAuzesznscnN8UfVVcem1OGKqGs2ELMUsotUca0fSqg9Sk7ihUO2EVl2PrGAWUsjU8LKI+ZMphMJmsfBCeYwftB4H2jbIgABPzQ5LWsK8XJWzeLDh58Y3P64gZRA+3HuaXhOVEfCQkeCqXt5632FOIpm9DAKIxYWSJ2p6BxrQsGZdkzjmd39Ck/iPwnyu5adECFxS6MBeFdTUGuRVFWhjhARge6CmjrPHA9u7MQJWimEyX4GnRILEXRKFRAJfTD2HC2k5cwCj+k7Dg4m89s7KYpLQo8G5lwMvWemtUXJvVE2R2gCORj1j43P0d7F+0DNlmyEqbu2xUDMUzvL7jaPq6g/iY7215pXG/ukZJ82sHMujf48YAa4AtKqT9ZRt2uGo9/FDqfnjUrloKf2Si1rFBOqTJml891/mL0WCq5QbkprHCV9hmE3d9xiY5D7wbh4s3mShVFCGUsvbD+QjCoGKgYUGx/zJblYgKiaDin6HhGU3/eRj08tyvPD34ixUtvzBDKKj70m1VsfS7Epuc07oTQ35bn1J40BuGV/7OH7ou1RMp9tq0Zp7bXIROznaH5QojmcyGUEl5+fRJfC+uPRlk7Ai01abZtHEOJcPLWNOR9Wo7BxhcUww15whlNVb+D83QV6skKat0UN//fL+KU5e3wK0DSxfvEWmq+VUHHfkU1WfQto+h39ALCKw96hO7vZs9DB3nzbfup71R84PcraD0TQv+gBvfzDVT9oJzsmhxGCR3POrS9rKjotXxug3Dzow4txxWxEcvHLtZ+WhS3ft2h4Zxi03OKdS8pqi8rclEYbDOcusvn0k2Grq2G07f7GCX8xO9WsevRCBV9Gh+Z8TKabL8rkgELVAwy3X5R236l9K2pY6X0cYEX/urVofx56AV/VhKl+LR/BZvafRD4e+ArIpJXSmngtIis2Iy7VJ/2E/8dnvxv4GW58lNrEvOVLeR+KEXGQnKvVsYSys3GhMNv8RmvFXY8rmk8O4sxUIKMfER45SEbDOqmJzXNpzX5MODYLdNK2Qd4rNFw5H4fL2yph/HheSK7zSo7d5vP+T0++ahd4HMzmvJxSFTBmhOKTS84ZGPC3/3lCKP1wsZjEdrOhclVeBx7Y4JxY/2s6bhQ5Xrs3jqCrvRo/aV1bPx8JdmyIP2YCAd/Nk0iHSZTbogmNLExxb5vuLhpGFrrUdPjkuzIcuzzFzAtObo6Y5zoqmbjy2He90eVhJOQqRbKhu2dNCEhV244+KEsmWSINcc1W/Yr/IYsx96bZjBRya5HNbUXNZd2eHzutyZIlxkaLjv0t/nc8t0Ib/vbckTB4Qd9htcImw5o1h3S5GJw+CGf8Tphxw81jWdKaz8RIV0lhNOKfFh48d0+uQjc9JSm5YQmXQGHH/JIVcHu7zrUdinGG4XD9/vkw3BbCe2XiQuHH/KYqIGdj2oaLkwHKROEE/f59GwS1py0AcGUqHn7gHJAu/Dhx6HtTkrCUvi0W/ZtkZ858JcL1vsD9dbryqddD7xHRC4WFoqIUUq9fXnUujbc+9sw0Q0H/y5gkMw3cyz2uXYts/H5ymZ/+i3FzH+h+nN9jgJjzTatGBpqLxU+8MGboKjcwm9fG2Rool5AQV2njf4WyRB8j0/L6N9kyJZDJAGx0SKfk8XohYEenTcbFGo65ZUDiRr7a123xs0r+tf5JKqsHjW9IfA1Y2WKpOeAA8lKq0hlSwa3ykP5sOmzlSgUsaSA2Ch/6UQE5QRRB1GUjSvcnJ25NnTaSIGpO5KY+jyC4nh3NShFx/MhYsECXHx48sbbxACZCOTGw+DYuOkqqxiIRRlJuKCh5pJGi+L8zjzJKvtF0LfO7tbsOBhGG8VEnTDaHNzni7atxpqMjWetobbzSoreXJRNhaJsHBDFWKPghZhqP4VipM0nXWXdMjXd1qfRu9EnW25fxMXbb+afIy12rWKybxX6OvwQ9GwK9O7W0ynsFujjH/hq6QP2UuK16NP+3dkDdsGx40uv0rXjhb+Clz4BZtmj/BVBqe07n9ylkFFCnYpBRShtfcWjrfbT13ODh3jWiaIs3SwX0OrA1o+NTic86O0wwSd18IlcgNqLCp23M7DBtf6UDKOEfEhIVk1HHjRayIWFdJn1UzedUzO38Ps2frTyYWiNPa/2sqau27GbPpryIELloENsfPrFoXxI9EXQE9YhntyTnjQOsJEQ48MKQciH7bVTVZZ5g2ugOQuOofL5MtwRFzxoDHkgcOr2PNlYYEMBr1e0EE0JTtjOHno67G7Cyn5wMtYffmmHhwkZNpyDmDHoPFSMWIrgmb2WFhkbh7IgfvvQWoMoIT5q/7YbXaZnAJMJeydqzZWUzamx0/5SPqTsIqeB4TXW5qpejZux92us2Z5f12lfXl7IJkJYCFUDNuSu8gv6VshucXc8obZHzWi/OVFw6LPvgd5DC156yXG9+bRvyCh/X/kwvPyp5dfnRoBgI7dFk4qBdsNgmyGSVGw4NHPmNlpvGG8WLuw1tB5T1F3SiBZGW2C8wVA5oOjfIFQNKqouQ/MZ5wrK2KXNeS7uyXPmlhw/8V+qCPmK89tzdN6c5+i9eR76ZDmNFzQ9G/Kc3ZPj5J05dj0eZfcPIqRrFCNNhmQ1VA9A41mH3s0+Nd2Kro4cubiw+cUIL77DJz6m2PEDh6o+6NlsePRnMozWe9z+rRhtx1zGGvP07slyx6cqqBp28FzhlfsyJKsNW/ZH+cGH0/SvzbPzySjtrzhIzKfrY53ctu0ED/7KRSYOr+WfOh7g0LvyrHsuTijhcbkjT6JS2HwozL5vxYgHgf1H70gw8bokI3ckKf/jdYw2Cx3POVSMKMZqfI7dm+OFt2Xo2DBI+7phtnyinswn11Mx6DJW51MxrKciMo41+HRtM6w5rvHDMNIsXN4q1HXB+pdd4mO23kCLx8WdeV54Z4Y3/ls5td0aLyTkyxRrjusZURsL+4DnCofenKZsWLPrhxH8iCJSsCHLdwQ/bNO4gY1l0tNhNz61HtNXUAlF2eQK0aSif71hcK0hPqxYd9T2rUx8khVT2qDnxuDd/wTb31dS9SVxjzTv2yI/uf+vF6z3P/WD15V75DWHe34TLr8IA0eDgrn8vpMohYkxWTafX3mxMmb7pOeSf7W6lSBDiSKatL83XFLUXXKmFvkL5VYPKaI5OHs7dN4i1PRB3WVNzQBg7PDcv8mjd6udaTafY9r9E8hYe9ZlzQWXu78QCyajwobjIeqGXExFmIu3Cg2dsOVQmHwZHPiRLE/+WJrbvxGjrs/mTRzcaEjXweWbfBTw5I8mGViXJ5bUZOpDRDOaXd9zqB5UjDQbzt0J7acirDsVIVsDz3wgy5mdaZTAG//KZnB59ENJDrw9QyinyNaGaLocpvFyGKJw9AGfQ/ckkXwtf/0nn2RL9WU+/YE38Z19d5FzXT7wmRCRXJjHfjzFqfenGV6b4e4vlE3d5ur9caoOltH25432NgT+WRRUjTjc+fUYT/5omgO5Gtw/bWHbp+JUBINq1ZAz1QbpSuHgjxhEQ+spRV2PAm24tFvo2wobD8Jk4omGHoe6AU1ijUvPdqHnJoMGwilh3eGCj+tZfeCv/2aUkTU+O34YZvcTUSJpNV1PwPEVTnr69OOv9xncIJSPQtvRueUCNHYq6juDvhXIi6bUjPoL9fHt74fNb2HFcb0lQbghB23t2tgjwOLdG4uFzPH7fJhvgF1xyNS/ilmR+4Ijk8l08a84DWXUFS8hUdYfij/bpzqd6bvQfh0kMhDNVI5XJTJFU1OFg78Kvuwnr+PY8ybVUAX2THtogmTCWPqdBFQ4K8Z+svsuuGaqEKUErQJan7Z+TW0sQ8SEANdyH5QwlZyg8OUt2OugZ94jZVcCp3WbeqlZmh+eovCgTNk8JWD6vgR2Td3K4EVoQwDa/5SoqXtx5dAT6GiC8V5PnzO7jQrbd8bfpfZlUdO0xenLLwpOGFY685eg8HEWrriCuCEH7Sf/O/S+NKvwahfyllPG7AXCEmUYJWCY6X64St3yIesj7dts2Pq0SzRpqVji2JlV/zrDQLtQ16VoOq+55RsOl7calIAfCHECPfZ+0+Wlt3r0bhBCSZ/N+52pcWROW7Db1Hd916Fvk8HXMNQihLMuO39YBr4NmJSoUyQrDWVDUN2vqOvUHLnfZ9MrMcrGNF7YJgIYbPD47G+n+JG/KKP1jMuORzX9G4XGs4ozdxmaz4VRHozV+zz1gRx1F4VEtU95PEt1ax5+doyWF13qbu2n+3w94ke5eW2Svqcb+JXoX/Mb7X9Nw/YQ76y4zJkvbiFRbRguh/rLYTYcFlKVhufel6ds0HD2lhwbXgnTcNllvAEb/Q8YaPcZa4KJah+FT2xMsf6VEHWXnBk01d5NhqG1QsM5TWOnYu+3HHo6zKRbn6ou2PqE5uTrDQd/xOPWr7tEE/ZcbRS3f8nl0g6fyn6FFxay5dYn7XiWhTPcbBhrttEXtz/h8FO/Vcmz785QOaCQIv3UiIDDFNf+picduoYMfhAmV5uZ9RfsgyX0z0Ic/lc7097+3nlkLQPMQtl1Vhg35KDduBOcCPgzo1fOxHyujlKxFDJKlRvgwh6fC3sNsVHY9/XpHIFXq1vIs7kuq/s1kZTNMv/yWyy169ZvOjR0aqp7wfHtbKxqQFPVr+m+yeeVBw3hFNz2VZdQ1vo/7/iSa9NtzTc5CfTo2exz6h6Dk4M7vuxS+6TtjqKEqj6H9sMx3Aycusen+yZDZb/ilm85uDnh8IPWl9p8RvPGT5Tja+HA+3zcfIibnwjRfCFENi6cudOQroCGTs2dn3fp2uqx//eyZKPCg8dibHgpTE19hnP/aQQ3Dze/bwMV+8voeX09Y9sdG/jpQBXVEy6tL5bz5OE/REV8toWFbcMhvvyfErxyX5a6XpdtB2yG9BcfSjLS4LPz8TC7Hovg5JnaTt71q/1c/Ei/XVfNa4j7vP1X1tL+bxXBTFQhSvj/2nvvOLuO4873233OTZPzYDLSIBEAARAkQVKiKFGBohIVLa/Xab22d732ep/XH6/De37e5+dd2W+9ttfeXVuOsmVblCmKSpRIkRLFnEAkgsjAIMwMJue56Zyu90efG+bizswdYBAIT30+9zN3+vStU9Xdp0539a+rDr3fZ7hDaOxR1Ad5GmsGNDUXNee3+hx40Cc6Dbu/5rLqC5pkuU02nU/lE4pNL+Qecd8RDjzoM94khOM2272bhF2P2zpVow4f+Mvyol02uspw+H0+vgN3POZQNm5RO6sPXOYsdInPjnLspdo1l3e7yyX7glwx2llSSvUAU9iJg7dcjvy7/g8YOQ77/mKBoFGFfuX8sjlCzlM+X/3lcJEswKNvkzVWlaNq7im3+XjM0a/QXRFUEUV02l4bbTM2iYGBykF7KjKcktySPeDVv9FgQlA2qXD8ubxcjzzXSJF7BjwGNlr4V8WwwknNz6O/27ot6i/YpMHpsI3rjLJG200r4vU2d6FCsXq/TXI70m5nl2iovaBQoji3JU0qZvMtrt0bQqGYvX8KHRIiPWEq9sVQvqK/OozJJGiYtn6A1qPaujDSGT+O4uB9ScSB6hEXJYpU1DDeYOF6O5+KZkMIOLO2/sUfG0UiFkSmQj6ioPMrVXPSv3khGM7TL/tiDvqvf6MdA+VjNmlCfv8VHQNBHyQrgjyQGlKBba4cUcSmimwGFozP4dUmm64sOlmiEStljJf6/Al89jGbvebakj0NeyPRjRDl790ismM5d15f+D0b6W9ByN9Cmx/5JAtcK7Ws2LXL5Ntx2Aa2n64L/JGL3UvIQsDiVdbXChZq54UsaiAfplZ/QROetTZ6IBMIv0gbtR/ROCmYrZZc9MACb41RFjKXuWchj5a3rLGOVwpehKIkSqjrAwxMNlnYoZuy0QAR6NtgbCTACaFqyJYNd9p65eM5OGLvLRb+tn5viMoRjSg4sSeNIDQ+XI0ec5hpTXNxVwJBaH1LoXzbbsmobYfeWy6FNO5+ImqhcfU2UqCbhrIZjTJwfHfKJv91hHilbfPoN2qQlMKZ0IT7LWxw/L7pbPuIFrQnVI7ZopE2CxH0HSER9F/bWxYuN9EkzFbN7b/CMSBKSMZstMTolFBz0bZRdMpmyJlqFBtREVlwfDb12HHhhSFeXcS6LtWuXcbz96WPQe9rS7zPFZJw40H+bkr3yPCxRVwjzHPtRvR7F5R1HHJofcsahcLkvPPxmKwVppuF8WZhyzMWujDRbJhoEtJRYf2rTrZ+2Tg0noAL2+HcLYaG0xrXU5fwXXXcofGURhDGOoShDp+2o5rqIfsmSURgskUYXOuz6TmXUN5MOsOj+YxD41mNUcJ4mzDY5dNyQlN7USNKOLfF0LPLEEnAni87c2aEnQc0Q+0+I13C/g96VA8qYsM+pzclWVUW5Y0PG6bqoeEs1F3Q9G4xTNYbqvsUP/2L1Yy2CxOr7Aun8qVK1K+spff2FAd/PMV9kRD1vRrxDb1dKS50p6gfcEmForQcjRCbyqnyof9Zwc4no4yvEk7t8pmu84hNaN79xQoaehTf+HfTjHYILWfCzFT5nFsTof5vW+k8EGbXP8VwIpDUmmN3+5SNKGovKqYbhOiEYtvjmkhCMVUnTDUJY6uEW55xaDviEp3wmWg27H+/R12vov6CYrxFiEzZ8LczdfYgz2yNMNxuqO1XNPVodjzu4oUEN60YXWVPsvZuMGwcdhYcd5VDio4Dipk6YboGzm31qD+raTwXxKgJ6iXLhHPbfNyEouOQxp1vjC7x2REfVBgmz0Pb7fPXW24SsanmbiS63kZbgCeVUgL8mYh8fjmYvus3Yfgt6H2V3MZOsVkEedeKlRXWna9Mllg/U1ZsN74EORxTfFaVpQIe1WOK6nFF65Gc0asdUNQM2octD2RB32ZD3zZbtvtrbuBnDWZyBXwdYw3F4Xf7GBdWH8hAGxSxBMR6FE1n3NwksIh+WhQz9fDm/R7GDZLAKmFojXDmDusG2PVlN5vnECyeeO9H/KzffKoZBtZ57H33NMYBV4WoHnOpu6DY8qyD48GZ3YaZRojNKsqPaioOgxy2ah2/yydZ49B8KkoTMNgtDK43KOVQPelyLpxiYLXHZ37HJTbD3D4XaD3hEK/xqZhxKJ/VNF0IM9kCr3xkhtEWj7JJTcfJKLUjDqdDSXq2GMpGDK5onCnFiz+axo9A50FF+QlFxYSi+VRu8lw1pqgaV7QezfVffb+GEJwrM1zcJFzcKFkoXWYMbHgJyqYV9RccizoJLrlBoK66AU3dIFkkzZxxVDA+z+40nNtuDxpd3GDdP/XnyQVlC+od+IDHbD00nAGdPyYXe/4KywvLFOz6aeh+kGtON5p75Hob7XtEpE8p1QR8Vyl1VESeza+glPoZ4GcAOjs7S2Kamob4WJ4Ldz6fWf61ggdx3nql+KwX4hFEkcsEWcs+TYFxlCCMqcqGslSX8ihVtuy1POOsbHIBC0WDLBYs+K32bV1NgRtbyzz1g1tJkExWzZV77nDPg5jN0UVybLV9QWRgdLbMykvevTKR/Qz2mmNy13zHnqo02uoiOienCaLtZdtXYaMRikVcGBW8nwLBM1EHtVhfs3ECIxdYOuWBuKCCMKYqT29lgkiBeX2vDShlT51aOJ9Fchis3BnYoyo0FNn+y/WpDmTLwP6UyRvOgd74eXsfl4zx3O8zZUpRNPywCsJBqCyUMJc8OL+e9hUqA2lcyvNXQtlUn11Bu1GuIV1798didMOciFRK/RYwLSL/bb46b7ckCJ5rn6b8k2KDq31G2gUnBd2vOihs0B6dtptEY+3CcIfh1idcwomcEVgOEoSz2w0jnYbV+zTVF22oVD9M9pScIAyuNoy3CKv3OYy2GwZXWxRDyyk9x5h4QUjVmXphqMvQcsyhPNikMspuMuafvpusN0y0CANrDTu/4eKIYnSVYbxNOL/F0HZUseqkQ8WYPUrev85w8i4LL9z1TYfopMIJ7h+vFB79lWmG2zw2Px9hw94woWnhi789QTIGO58tp2LMoWpI03zK5pmsHLFxO6qGYbwF+jcYdj7uoj0YXCckyoWaXsXBD/h4Majvgfo+RcL1eeYnkrSfDNPQI/St9ZiuMazfF2b//Qnue7iC2WobTrauX1F3zsa8rulXvP7BBEPrDM1nQ6g7J3B2TdD/Wh3O2ShbfxDhlh+4pGPwxoc94hWw+g1F10Fn7sakY9+iThrSYQilcuNifJU9adjYoxltF2IT1j0y1QhthzXagJPKwUMFwQvbrDsLja3C/hNlEzDPVgt15xVDawwN5zQ1A3MttxcSejcZQgloPqUwrrrkBGYpVOzZuR5JEOpv2ywfeumvF633d5G7rtmJyOtmtJVS5YAWkang+3eB/0dEvjPfb0o12ns/D9/+hcCvfZ3o7DafM7sNkWm4/TE3uyS1MTwAZR+ug++3RlwZQNuZHNgZTedBxdrXnGUx3OmwsPchj9kqsrPhTHxq49gkug1nbQChAw9YaNfurzuUj9o42Toby9rKcm6bz+ki+oGFDe570MMPWWNbPagAa4hFgx/GxrYg2OjR9sCKmyw0JLatDjzgMd4CdecV27/rYBR84XcnOL/JY9v3w3z0jytx01Y23xVSESGUtLNcce2G25v3e4x02uzjt37H+m+9CISSeSuegIzOxMiAVEzY+1GfZDl0v6RpPaYxyh7ScXzF6x9LM1Nrgy1te9q6YjK8LmzyOXG3IRkz7H/XNMlyw/u/GOOOR8rt4ZfAECtUblxAgMaxPPrX+xx7p8VmO749BLTuNU3HoSIBoua0nLD/QZ/xVULzKcXmZx2MY5NNzFbD6v2a1W8U5zFVJ+z/kIcXgl3fcqgeUHPapxSaqRHe+LCHFw4iBfaWziMDa41O2bHleHYZFiqDn3oJmreVJsNyGe0HXvybRev9Q3TPP4tj7M3AV5V13LnAPyxksJdCu34a+t8IgkYtliey2HJsKdfnoaG11h8bm5p7EkxJAJEL1qTDHXYWVYhrlkwEtIUGenBseUEK5I9XQaKc3HOj7T1slkKo7rcP1fgqgx8GjA0mpFBoP/8+Vu7BPP0KoYcTTQYTBO+vGso9rAprSHVC8sqsa8NJ5W8M5GTXRjHRHPAatrC9VLnh/EYP0bDl5cicF4bjKWJ5hpO0lX28xfKoHFZZ90M4I8ecY4X2njqQZ6ZW8KK2WtMZC79zwEaVF8Vste2h+l6Vh5kP+natdXfFKw3pqCAoNj4TyyZ/wOS1Q2ZcMLcdhteIzagOeMHfOeNinvEpCsZarU+ltt+2W7JcbPQ+x8In5xtbk80mm3yharCYsS3SV4U8GmycEnFs4t956xeRf3BdAGkcz0moFHz64dIN9nLSckb5U0o5wOtAr4h8WClVBzwMrAZ6gM8sltrxum2LishpEbk1+NwiIr+zXLx/8J9twKhsJvZibV5qWbFrap6/ed+7DmhCCbuMz2ZhmcPf/tN1UKN8iE3YKHMqbYPKK2OxyPnHlzNkHCEZszGRL4FqzaNL+Rh2tmOgYtTOakOztlwZGO2w5rvxrM6W2QhvlplxbATAqUZ7z64DGuULI20+F9d7c+Sov6ApH7WwtLHWzGshX7a8Wa1jI+pN12WggXaJPVXjM9xug/PX99q6Q2sM8SohOg23PRFBe3BqRypI9puv86Udsnq/hUpONZjcC1LZKHsz1RZFc8muLNZoVQ/adhvptPC7ZHkQ/U8Ldf3Wnz3RbPBDFpo3GbRRxyFFeBaqBx3aj7koH47fnrIwwlgeHLLIuMj8aT+sicxYF0flCFk5LomMV6CyEuh8U+Wi7GkhOhlAJY2FRWZ5FIzjuvPavrB9GG3L9V8GvjjVND+MM0N1fYrKETVnbBW7VzEdVu+3UQZnCuCkD3/SJje5liSiSBu96GcJ9ItAfnTUXwWeFpFu4Ong/wXphvFpl0Kluke+8dPwxl8zN1bGNaZEuXB6l53ml48rRlutga7rv7SDjRK0qOwDrERly4rRRKNhssHOwDrnWSaPthrObTU09ihaj9t7Dq4Vejf6NJzTTDYa3BSse9XF8efCByXYGMwvm6kSZuqEsVZD94sOqXLhxU+luLjGp+6C8IG/KL9EjoV0yNB0rY0JPdUgrH/FuoJ6u9P0bvCIVxq2PhdjaLWhrlcxUy3EphTNpzVjrULPrT7Np63LQqE4/I4kb7wvwbp9IQa6PEIpxeZXYkw1WENQHeC48+UcazYMrjOMrRIqJhTrX3aKJkDO6DLRaBhbZThzm4BjoXDbn9D4juGpn0xwfpvHrifLuOPREPnZ7hQKX9vDPgfe7xGvsS/OykFYu9ehenj+B7+UcTFdJ5zZ6VM+Cl0HHRw/t7dQWD+/TBD6NxgG1ghdhzR1fbpoPYDZCjsGRtsN3S852ROcC1EpY2BenZnbV24MPvkPsOmh0ngsh3ukdtcWec/zi2+QPVp++6L3Ukq1A18Afgf4pWCmfQy4T0T6lVItwDMisnEhPtcbPXJV6N3/L4ydgZ7vF+yEz+fqKFaev9IttTyv7K37fCZaAq9CgDTY9EJQqQA+lxnUKq88O9CLyFY9pKgeVsEiNe+BCOp6IeuXFge7eahs0oAj77LQvPE2g1LQcFZh0xfO5ZEJRJRP5VNQPqlo7LGG9ch9PirksPk1h+1PuEXluORhLaJLxbhNTNt8OqdL20mX1lN2aCqjqOu1VzIIk3z9Wo8rlILBTo+v/scpvDCc3pVGAXUXXWK+QYli83OBTplZfiBH7YBmoNsQrwMTtse7i8mb0aV6SDFTr1CO9UHv/JaD48NTP5Fg//sTRKcVt389lN34y0fJOEZx6H1pErX2fy8KY51Q9v1MpeLGrZRxsf+DHukyiM7qOe64YvXzy8ZbhOP3WHfEphfnjs/C/iubsRBCG61vYffMJfdfiIrwUIUQUwV3/zJ0f2hxdstNywj5+0PgV4DKvLJmEem395H+AEm3IN1YqPFlosnzMHKMXKJaWNgwU1AvQ1LkWmZVWFi/YICFEhZmloGaaWOziOdPvzIRy7KRy8QmdpUMxqxA4Mw1cclBvbJl9sSd0YLCQsscYzcgRRFskOWC+uhgU2uOLjrgkcPU5cmmCMw5KLuRqH2CZL55cjhCJtrQpfoVa2cFonLppoIyC5dT2ZcIKqgT1M1sjHoRq18mq41rcxLgeGQT1tq2J9f2eXIoDaF4Jtlurh0EwTiCcQMXVdYFowglrIvBMUEbOhCZyYskqJg7jvLHRVJlx4XK8AjNXz/TcMbNHxeX1nOTlqcXCuaoefrN3/YWbmhXVXasFBuf5I8BlRsD88q72HNVeE2KlBXWEzj/EiQni1y/iiTYgFGLfYAGpdTreZ+fmaOCzfI1KCJ7r1Smm3Km/cofw+QFGyAnHREis+pS3CsUx4+WUOY59th1eFZIxRRuAtz8Ay8Ct3zPYXCt/UH5CIx2CqGEIhkB7QuhlMquAjJ/R9oMI50w0m644xHXRs8L7pl2DMfu8ZlsFja+5FA1qPFcGO4ynN9mqBy2GUXqzzmsPqDZ87DD2VsNFcPW+MUm4favOFzYamg5ophpUDgeubCiwMW1NqJfdBLWve6gEBJRa6DFtQY6EleX6Oc5wuB6C9vb/pRD+YSeo1fmbzokmBA2sH4J7exr62vO779E1JAqF+562KV/vaFqQKOMombA4d/9m1oO35Nkw2therZ5hFKwbp/LWKs9+k5BH0mgX+d+RfWQQ7LMYtgvbDT0bjTUDtj6E43C1u85RGcgFYWaPsXObzpMNAsiwpltQiwe5u6vaipGrN93ptpQPqYR19q6SMLqfOu3Hc5vs4G2YuMwtFZQvpCJSeCF7B5IeNbm8AwlFBNNhvF2YahTuONR19q1gnbb/ZjLxW5jN4bz+jTb9mGZ0392vAkj7QYnCZ2HFOF48fGJmXuvon+XUlZ4rVhZER7nX4Az3ysd8rdcVCJOe3gR98g9wEeVUg8CUaBKKfVFYEAp1ZLnHhlc7EY3pdFe+154+SnhtfdZhMGObznUDMJi/rdSaLTVcPD9fnZ2IgpWnVBsfH4uNE+LYtWp3P+V4/DWfR6Da4SqQcWOx+dicQdW+xx5t3067viKG0xu7PRoss7nz/54nESFsH5/jEQ1VA0adn3Tpe245ukfneLcVo/1r4fY9XgVYOFe8SpADNVDNpP3vg/7eBEbaKjtyKXogeZTmsbTtpWUCK8/5DNTS3bm5ibhzq+4hBOqQD+h9bhi1QkdzOQvXeoPrvZ5690G7Vke+RlRitFUvYWMiYYdjzvUDMCJ29I8/BuTaA9+7udr6To0F3JTO+DwjkfLOHGHx2yzQ9m43U+oGrl0QSkIrz/kMVOb33+2XusJTcsJ6+CYrRD6Nvu88kN+9jBOpv+qhzR7P+wx2Sw09Cje9cUoxhH+9E/GmWwwtJ0M03U0RmQG7njUwiJP3unTv1HmtFDTGYgkhJF24dD7bMDbzNhqfUvR/apD9SB07Q9+VCTwl+sp2o8Uj7iXgQ06abjzETe7KqnrVdT0Oax7za5GjtzrM7hWqBxS7PyWc1m+6KtGyvq0rzV6RAB/GdpBRH4N+DUApdR9wC+LyL9USv1/2MTpnwv+fm0xXjel0d72L2BNn/D6KbsXWTky33qVRX1yhdenGiQ7e8rsc9YMFIFP5cPxgu+jbZKNzpbzddoHcKLVXotMByiSvIEy2mJIxexOevWoA0pRNmF5KF9xYZOHcaD1RAjtgRdWzNbYyVvtQJDaKQjKZFwb4vNSn6RY2Fnw3WjFVMPcZgulCPDQlzaS9kHP8TvMbbfxVVa/UMJ+FqPpOguXM46F6YHiwsY0XhiiKUVVZuOuCOxxtENycMR5ul0UWf2qB+f2n40XbXVJVlqfh3EgEwu/fDzXfxPN1qVQM6BwfMVMjWGsyUZArBpzkcB1knFLZWTLykFOv8kmY++TN7ZqB3SuX8ylxnrR8QuMt+XGVn7/ZfkWG595J1Avm0qQrdTnTyn4yJ9Dw6YrlGmpJArfv6pe5M8BX1ZK/RRwDlh0HXFT+rSf/nXo/11FzQUbRW6sbX540xxa6FpATWc0lcPkNnXSFu4leb5G37WZsxMVQrxC7DIaYf0rmtAszNZYI5yMGU7cZiFgrUc1lSPWOGSjqAVytJ1w2fRSGO3BWLNnI+NVCemIPTm2+8kYkRnFUJdHokpIhw1pN432YLzF4EWEUEJslnTg1B2+9a9joWCeK4y2SwCdsw+u70LNoNWvatDGap6tsqFhJeNQL2y3BRqu7bhD5XCgX41cWr3gp/XnFbV9Qf+1W7m2/yBKxzEXJXBxrYfvChNNQqoscFQHPNa/5uAmLU55NL/v8+6lRbFmr41UONkkc/rP1lF4IZvDMJS07VB7AUJxmK02WcO7/lWNm4TphsCVM63o3hchFAcRn+iUDaKUDo5er3tVE56BsgmoGmCOfs2nNNWDCicBdRfstfEWkwf7zHshLkQF19vfdKgYtX2aTcqrLv1BZnzGq032kNdCfBfqv1JlK3ptHk/mo/8Cep4p8T7LRJmZ9mKfJfEUeUZEPhx8HxGR+0WkO/g7utjvb0rI3zf/bXCwpuis8MrICwnH3uExsA7qzym2Pu3MOcEGMFVnGG0XyicswiNeIXQczs1uvZBw5J0ep2/zEM/ng/+7DKXg9G7DbDXU9sJwl9ByTNN2VNtNmK0+J/cIqi1B1Z4hKk+G6PytFlJKM9wpdLypQQsH3+dxfrOPM+PzwT8rx/XswZp4pTDRKNSf14y2G5pPK2JTCs+B2VphuNPQcdghlIRkDBKVwkiH0LVf40WEw+/xGV9l1awYgbbDitbjTtG9Ai8k9OzwGW+F7hdzkf/mI0G4cIuhf4M9Xt/UkwliMj8NrjYcfo9POA5bv3fpqb3ZGsN0LaSiQtuRhQ8pJcuEU7fbU4+bfqCJzWhmq4VD77OnBzsPaNa+vshBJyAZvKRHW4XV+3RJkLgVKp1CZfDJL8HGj5RWfzkgf1U7bpHbv/fwovW+V7/tn8WJyKtG9/8XmOqFE4+DLPMSr2+TYWit3cDb/t2M0cpAOez3ylFNxZhkN4wks+MeLLkH1htGVkPluMt9fxlFG8WJPZ71dSqyxnHtXvuriSbh9O12Jun+cC/xxjSVPTVEpjXRpKZyWFAozuw0TDYragdc3vm30axPMjYpxCYVtb1WjsqRXKIy11dUDSt7UjCQMRKHSFxTNWj5nrjNZyKQCWC6Hson9LxJGAbWCRe22Y0v65oirxHzjZgtm2wSTt2RCexfkCA2z4WUIS8kHL7fRzSsf9UJTu3NpbJxRdlEhsml9ySvP87c5jPQLUSnyCazPfpOn5kaqO1TrN5fxGBfsqwXItMQmdZUX5QFDHxho92gRr0U18a14JHH693/z0qUP7hJ3SMDB+H8i4HBLsUdUqws39bklUVmlM3PGMDIxLFR+4y2bhFRgBMkpc3A5AT8sK3nRcQunZWNJZGOWh6RIA6+DqLFOT7Ey+3CPpTJfuKDjIVw4op0nYf4CokZeyQ9YojMYKPNaQsjE0fyFMhBtTIQusxTZVz7ZImTe8LyyyJTAd+AtLGHh+aM5TltRNZbkYrZ5LiZNso8xeLYCH3Gse4HrNgkKjI+XwHJQN3ydbHvRydt2yNRVvAyyMqhbCPnQQlFC74OYp3k8Y1OWv38UCBjUOb44IeCuDALjIv8MQCSbee5ZGGZgt1X8IMkujkoYWH9Rcrmafsl8ViIrxQpux48Mt8FDv0jzA4V+c1VJGFxuN+1ziF5U8609/0lxEeCf5YRcoRA82lN+Zhiql7QKZs5pX+jITpt3Q39aw13f9mdk3R3utLwyseTvHF/nAe+UAE4RCeg4bzCSQj93WKT5/ZA01lN7XnFyOpciqyyCbjjEYcLtxja37+aC5+dIDLokmhJMvbgFOd+cYjOH1tD9Ykw3S9qLmw1vPQZj7v/0cXNk8PX9uh7bDwXLS8ZgYH1hrPbDVuecygfUaSiwniHcGabYcd3HdreckAMAxsM0zVC7QWhbNSxsUwQYtNqThs1nNfc8jSc3u3z8ic91hzQjLQZ6s4rut50UAK9GwwXNhvWvKFp7tHc+bDDgQd8Dr7X57bHNVVDDrPlwshqQ892w+1fc4jO2jmG4ynu/keXwTVCTb8iWQbiGmITOivHbLl9ccZmcrJdXGcYWm0z9tT3as5uMdz1FZfVB1wEn4ENhpc+7XHPl1w2P+vQfDp4SWSgiwijrT6huKJqNJc0oG+9YWCdoWJU0XosCANQeAoRCyU8f4uhuUeTjFlo4NbvB0ihgrFosMfcI9OKUJEkFJm/nmv3TsrGVXG0xzKN+xuBx9BbcPa5awv5E4G0f22N8mJ0U/q0j3wVHv0R8OKLVCy2fCu1LCDjSBYKJorsAQsVRMSbrRZee8jDiwpbn3So79VMNBoOPmDQBnY/6lijF/DIRtLLu2eiXHjlUx5oeGv3LKMtaVqOu/z4b1SjIsJffG6cwdU+G5+P8Mn/VllUjlRMePnTHuJA9wualuOZJb9Fpex/wGOy2frptz3l4DvCK5/ySZdDy2HFhlccZqsMf/Jn43hhoeutKG2nI5SN20hsWtScNpJgQxMDONh4zHn65bdbBllhXBBj5c6U+QGPXFneA6Tg7FYbTTEUt3A211ccvcfjYrdQPgq3fSMnm+jclqQE8cQzbSQEB4UK2i3/Xl/69UlO7UrRccTlR36zOpuMQrTQv97n6DuFUAru/LJLOKUKxoxk9SMTU5zMGaoCA6+Flz/jkY5B2yHNuteLB4iarhX2fswDBdu/7VC7UGCmfFriGL8iHsvIt7INfvJZqF1bIqtl8GlX3LpVtj/xyKL1XmrZfM182jele6T7Qdj8SVCX7IDnltjZf4tVyadgwEjRKYCFh2mxBsXxg0SrJrc8jldKkHBAUTOgcVOKeJW97Ls2MW4+j9yaGzJO40RlENLUhYkGj3TEYpLRoGc1g+0Gz1E0nnftKbs8Oaw9EJJlZFEhVcP5RsBGp5ups4YsFsTD1sYmgjUaqkatAYqXQzpiUSsVk46Fs82qvFN0uTZSys6IHWMTCRTqp32LitbZ44MKHdTPlgWy5coK2l9gqlmyLpbMIdLJZmsgozP5stn20MbWc7y8vgpcR3P6b47BFhDo3eiRjkJdn5s7LRjwna4LRPYDWF1e/2XHSqY9MjoVMdhgXx6JcttX1SMF3vE8lrPVdmz5LlSM5dxdi1Kp434xHoV1rtRgF+MRlCkN7/0c1KxZIr9loBvNPXJTGu2nfw3eegTyFxHTNYYzt6boz0Sky9Ai7e27wlStz8F3J0lFTfHfqIyP2F5MRW0igWSZUNNvD2+EZ+3BHBCaejSNZxWRGYtfzjLNAxWnojaxQKLCUDUErces4ew+UEbNoGamzpCs9kk1p7mr36NyEiaaPfxIjt9MteHEHSl6N3rEyzwmam0i2+N3+6Ri1sKJthHnavsUoTgky+2GoDaKjc/bCITnbjXM1gl1/Yq7vxIjHFdM1ttUJuMtNuBQMiYMrDPMVluI43hLBmqnirTRXP3mPqnFHZ2pqDDWmosymKHV+2y8buNAssyWdb/oUD5q9wu8PAdgKmrlmmgqlC3/trmyVEyYqpNsRLyP/HEF9b2aqQbfHvnOo44jDnV9Cu1ZY5rRb6rBMF1r06fNPVJTZFYcFLlpxfqXLTRwqsHMm8C5rlfRdNqOiyP3+jZxQLEmLDYBX6qdKXESv2Qei/HMzGEEvvEzcPqpK5RhiSSAb9Sin2tJN6VP22RmOnnPlRcWkmWC48ncGYBk/ghndxj6Nhq6DgRQO+xMNR2xG15G2wf55J0+kw3C5meC6GzBsygI57YaTt1pqBiDbU8pnFnFxuddNj6fkyUch1uedkFg+KMT7P31AcpeLif93SYSERt/uHezzSa+9WkH7Su6X3LoOAQ9n0jQ+eAIsWqHs38wxsiDU7R8p5L7/nUHzmwOKte3wefA+z3SYY9bngkhwOlb4iQqoPN4hHhlhPIx2PSci9Ewssrj0L1xVp1x8EMx4pWw+fsOe77sMrjeZ/8DPqE47Pl6jLseK2O81WRn5bNV1sUy1CUcfo9HKAkbXiiA7RXMzHzXbuQaZ4EBL3Pr+6FLJq9UjChu+/rcYVzbr7nzK5daOt+1KcO0XyBMkVnjVJ3w5ns9EuWw7nVNPYoNr4XZ8FqdrVBQPzah2PFtNytzvMKmFPPCoD0JjHzBjwpnlXlVOg87dB4ufsIxQ25asfE5h669MNJhN6RTUeHknuLjc8F7L0aXw2MB/ZbMQ+w7f9H4+MtN12EmvRjdlEb7/s/B9CAc+QpZyF/NoD12jEAxONZ0PfTstLPM6sGcwXFTirqLDnd8K4pCcW67z8A6u1yuGp774Mer4cwd9uHZ+IKTNWqXUm42fPQvzoEL00er8VvtqJ6usy+W9a84lI8Hy3exYUlnfqGP5NoUyc1kc/tt/NedOPFcNCQvBMfeaYgkNbc9HqXxtObiWt8G9A/bk3rJCpugIJywropXPjxDvFKIzTqMdAnKU1QFSRBmqyFZbjPARGesOyd2IrfpVzNgHfqZ+NuNpzSNPTmf+RyXT0Cx6Xwe87RT3ss1Nq2ITedfWDpleWSRM3lUYDyO3+0Rr4K6C4q2txbHaBfyiE0rYidz+lUPFbFYxdwHSzSm2leUTUHZW3bMnttm7Pjk0vF5xbRUHsugX5aVhg/8Iax/4PJ+f7kkcGnOzOtMN6V75OyzcDKD0c5bjSopOG6e9zUct5tPjgczNXmn0DK/RSHawt8ydiZZzhwoWihpDZvrwXR1BhKn5twrCzsDUEL0bBiSCtOYtAlovYwxFqbqhXQYUmH7Gz8sxI5GUAmFSgE+ODOaRGcKCRkLrXNBi9gog8aGZDUOlE9Yn3EkATPlPkqEeK0J0n8Jdb0O2ofZCoNR9repmJW7fMQu+9ORTPJZ+9ISFSTRxULjYuO2DZPlAiYH9ctvowwZNwf5yzmdCzqy0JtQuL4u7klZpEzN9SMXqW9coWzMBl5KRwsgf/PKVuSekifvnCiGS+BRcpm9UDYRZAfyA3fR5fJdDtmWUT8x8OL/ZyN4XlMS8Hy96Oda0k05037zH21G9kRMSFQKlYM5iNscCmzFdI2dYd/9Dw5j7VB7PhdVLhkV4lWWx+B6w2CXxUNHZuHlT1h4WCiABIUSinv+wWWkQ+xBlvx7BpuZJ+70GWsVKgdh0/Mut+3ZwHd/f5BTTYo1fprt34tSe0HxnX8b57F/P83qgyHCccVb98d54MkII881sf1EmupDMab3NzF03yzhnhADnxlj+OMTVLxRRtfvNfGOr8KpX+5jqKqa6GQlrSc1v/RjtZzalWbNPpe+H5lg/JPT7PtXaZp+ZTXd+8tIlc8yVeszuCrB7d8pw4nbp67zTYd4ldC3RXj5Ux73/IONnz3c7jPSKYy1CG1HNdPVsP5lTW2fJl5pIxD2bLewunABbKq329C3xbD6DU3zGT2nP4r10ULXpmsM4mIjGpYKe1vgWu8Gw/gqofOAouGcztsEXbpsJZctBw+g4Zzmzn+yq7XwbJG610u2ZeAxeQEuvALVnUXqXCUSlidg1HLSTQn5O/kE/MUvGF55h4/CwurKJwtmWAAKTu/0OXerITKLDYdqVG6QNBje+IjlsfMbDpVjCpNxiWtQvl22qYJj7EWXhQre+KDH5Cqhpk+x7bsOjgHEJqOVwGeXSQzrhwU8EBfiq1MceOYEOPAZ9rE2Pcb5nhb+9gsfBU+z+6sOZTPBLQUc1+fuvX+Jqkpz9g9u59wf34FKB7O+QDYJYkVrTyEO7H3QY6pJMig83JRiz8MukYTKwuq0B3d9ycU1VmdRFl2SSaCrPCyiJXBJmRDgFW8jcQXxACdTX83bbtkZW5Frp3f4nNtRvP9K5VFYZlyxwZJ0Edny6y+R7+Xod8153MCy1W+CH30SqjsoiZYD8hfbtk3WfPXri9Y70r125Rj7lVDnPdD6KdDDNv9qdKaIwQYQmK2zkDGbFZuc5SMIrhO4AGJTCuUrHAKr7dn0YCo7g7QjU5B5Z3vxanuv6FTgpAmOvduEsPmWAJyUdceoFEht2kJ7Q0KDN0Mo4jE5Wwau4APRaYXyFJldOh0zuHVxtCvET9TZawTXg3sq30IDUaB8RbzSypNZ6BmHbBaXeG0Qi3nGnhK0kEZ7eMXJnJRM57eHbSOdDr5no+bl1svKUygC41jE551tikVmasX779J6c/5m+UrRcaEz/ZHRLT+S4CU8FrnnQmUl88izeqLmXsy6Ya6XbFeZR6ZMw57/AFVtRa5fRRKC4Io3EN2UPu2nfhVG/4ei5U1F2ZjNqTgfrX3Nof68wkkrm2y1Sriw2ZAotxmr299UlI3bDOOWFOmwPdhwbpvBD/y1U3WGvvVpXvlI3GZ+KTL6tnzfIZSAoXX2FOVMjXA2y8PyztDoKp99700wfcc4bc4Ytw/3Ez0V5tW/vpez55qYak0w3jmLILx5v89Qh8db9yQ58o4kvQ0Of/PMOxgYrmHywRHGtiWZ3D1D30+OMFttTyKOr7IR8C6us1H7tn7PsYkCAhINh9/j4ztC1z4LUQwlFYlyYbZS6N1orKHHojJGWj1e+UickTaf4S7DcDb5rGK20t4nE+0wR2qOzpdQCQ/L2tdz/WdhjItTOiJM1whnt+b671JSJCpgrEXo21AkkW7xnyyNSjQGyXI7hs9vycghJCqY03+Xw3fJsl0l/UoiA0/+kl1FX1OSxeF+K5C/ZSAnYgMhdb/i0l1orwuWX34I0jG72XfyLp+hLqjtVzSdsYYrVWY34HIbZvagSChps4Of3WGoGrEQsak6Q/NJe4B9fJVw7B4Px4Pt33UJzyrMzmmcX+vDGw1zvKoVSTr0dyXpW5Nk03CaD+86jW6Pc/r/uo0TlTHL01PU6DCN3+0kvn8tJy7CCyfXk4r4bH5Vs/pQiNEWm6HcD8M3fn6adAS6Who5X7GH6e4Kjv7nKfwqj0/edorIH80Q+/x6wr+9htkK4fGfm2a42eP2b5ehlEtkxiJfKocUYy0GZSwSYttTLiLC6dt9zt4q1AwoGs5BKiJ8++dm2Hd/EhQ8nZylvs/lE7+fS4Pnpqyr5ND7fJQHtz7hUDGmiy+Fi/RV/3qf07cbai4qNj/nBDNhS2WTilufWGAYF7mHNrb/IsHmMwWT18zvHM/uU5hi7Av5zrepVoJ+i/HVgRzRvBO+2rNp0kq67zz6LUm2q6jfgnXy3CvGgBNa4H5XgQSudjztJdNNabTf+19hdhgO/X2RMVVQ0LPTZ7IxcIdU27LulxzCCcXgGmFwrV1+1/ZlYICCk7L+28kmWzTaBqCo63fY8YSLEsXJOz1m6qDuvMrOYE/9fi9mlYecLkfSdiCcuDUBGpr3XMBZM0pyPEJPRQzX09QOKnxCjFDO6HAtEoWh1aBQdB0Ksf4Na8BWnbb3H2nxSYfBdQzruqbQCnrKFJNJRUs4xeqKCUKOUP83jTCu6dmSpG+NTSyQrtK4aWg6oqk/b1OUrTqV0xmEeDWc32ZdH+te1URmFSduS/PmO5PZhzodgfa3XBrO5yB/4aRiulZIRW0arbKJzHI+5y5ZiI69wyYViE0o6zdfoD8vpUvv4aQUDuTpV/xnoYQilICKcRaXs9Sl/mJU+BuxAcNCSSibyskRTtgPY0VkK8LjimVbrlnzZcqmFHzsr2DN/cskR6kk9mVxI9GN9QpZJjr2dTj8ZUoKy1p10cLZlGc3y5TAeLPBd+3uu9E2+el0ncyJEqcQysbJ5eMTe3BDgvMQ1f02m0u8ysLe/JBQ/kYMSSukKZl1oZRPapSBC5Pl+EahHR83mrFMeRt32DgnvrbJCnJpwHJGadVpFzcNxlckkg4kFDXRNI4H0zMhvLSDn3SQPWP4rlBzUQdGAWbL7ax6pjaQ1xF8x8qdiWAXigtu0s5AJxqsq6Ou37G+/qD9nDSMtnqI2NOkvmPbsGrQbuqJzhyqybTlfO6JXHHlsOU/WyMlL9FFBW2lMm1UjEpmNq9sV0Ql8hBscCmjCZI15P3waiEbSpFtsTrL2EYSuEfGTi8DzyXe3hi16Oda0k2JHvnqj8HBvyud72yVTaZaPgaH7veZqhOclMdgu8foKp+P/q9KqvsVx+4zjDcLjacV61+10ereerfHVJ0NtNR0VhObUEw2G8pGFSd+dIqRTkEfK6N6UDPWIgzdPcFwpaAHQ3QfKMNJw2BLgpE2j64Jn829ipN+BeONPmVTmlRUQEP9WYeZKo8jexKsfzNG5USIsmFY94am8qJiusluFPauT7PvAwku3DHLT5yaoebvGnh2c5gLWw0dZ13quscZO1FD2YCNHSKe0HgGOt90eP1ThkSlzc5SNm5nx6v3a4Y7Dc2n7SlRG+9bqBqC85vsy6Wxx2HvR9IorVl13P6fjih6txkmGoS7v2zzEibKhWS5zZHZu9kmz12930b5W8iACvZofGxSZeNdL0aDXT4jHUKiTLj1yblRF68HJcqEqQabiDiSXJosIy0+4+3CwBrhri+7lHTQ5yYkNwYPfaH0KH/LgR4Jb9kujf/w+KL1+nZ2XDP0yE1ptM+9AA9/PIi9u0TIUQaKJiE7idEeaAWvPOQRr4GGM4rNP8jB9cQRe2JK2VjZL/6QbyFu/6IXd/M03mAE70+7bPAmAGVnf8raYu7+YgjXw8JctI398Qd/OYaEwVM2qFB9r+Zn/30tSsH+93uMt0kQ1AgcY0EOjkDzMcWGlxxMhU/o3FMQMzx5rINXz6wiFNfs+n4lTkYOoGrAJnB1BF75uEeixsZ5DsTknr+z8D4KIvSh4Cv/cZJjd6Vo6nH4yV+pQaugngsjrYY377fY6bv/3iWc5FLInyN2JVQM8jePT7OU/suWacEPZFYKm4l9qTwWkyN7L+ZmLC/gO1stvPoJD6Vg27cd6gZULjN8Kfop66JTHjYImo9V6krbqFT9lpvvZfJo2wOffQwqmimJlsNoh7bcKg1fXNxoX7ytfSXK35VQ42ZovSMY4JmODwb/nKXynDJbrjwLe3PSdgNNG8BXNpi/todqFFiDjYW4ZSLYea6yJwwdoNbDRAVSGpzM/r6A2GBMShQi1mfqpGyCVce3RtN3wXOC51JnotUJTkqRjpE12BAYWW3dEJGETbjgiqDKfHTYMOmF8N3cb/KfkUg8Z9BSsZzBzlQMpSxsLxehz856EZhsNKQjNsONaAJYoTUsmZOigk3ia2GAc2eHKhPlrxjkL1/IYmWF11SRMqMsPFHIGchSfbulyJFvVIr5PPN+mw6CePlOkBnHFKm3oGz2NKuCAD6plt5GxcpK1W85+RarX6z/Cnko2PwJKKsvwucqk5jFP9eSbkqj/fRvwKkn5vq0p+ot1G24U7JH1CfrDT3bTHYjMkeq4APbn3RIhX3eeH+CNz6QYKzFcHr3XLhe2ZRi87MOU1Uepw/WMj3rotbMoj8whOqIo98/DJU2Op6bsIldp+qEqXobHH+0TagY13ziv1VSNezQfjxMp5ei4p1DJH7nOBNNhrKxPDEjHqojjvPAEBUzBqOFeKUwVu5w4nd3MBGPsqVrnGbtEY1r0qG5eg53CD3bLWRs+5NONkt6eNYm852uzekWr4TRduH0bT693WlqLmrqz2uiUxAvN0w0Gk7v9jl3i8fF1SnGatNZ/eanS435ZdG8t1gm/ku656VUNWij9lUOKqZrLuMJzzPe14yu5QK8RP/5D34LTnz7agtTcFuBtK8X/VxLuinRI9EaCw3yDNlZTdmEnYU61mYCUD6umGwV9n/QR6dg9zcdolMFHRDMOKoHNe/5ywgTjS7i2M0xcYIZaFDHKGG8xVA+7TA6GuK1N+uJiGHHiQjuxQiEDMQdIjUJbv3JQ1S1T3L+mS7O3CaYtyqQh1sgpaga0ex4rgKlQJ8O4UQqOdE0y9jHPFbtvsi9P3SU+HCM/f9zF+mLEdS7h/F+7wQTr1Uw+JUW4lFF9+4xKiJJ1HQZk2jS1b71oeRRKmp4/OdmGK/16Dzmcn6DR9MFl898roqqi4of/MgsL348zrYfRHjgzyuoHFQoo6kYVqw5HKFqOkr5mCKSVjhTChPSxCagfEzRccT6thfyv463Gt6610cZ2PUth8hM8bZfsKzYUvxKeJTAN1kuvPVuG0lv23cd6nrneWiD3ykU7Ucd2o9coWzXSL95ywppuWVb0N1lURyRqkVkugp0o6FHbkqjff/vWH/2gS/kGtzxFBWjkD9bcXzFWIuNfFc5AeHZhWcy4YRNNJBZr9VdyPCzIy1eBRe7BW0Uo80evtFEBsLok2XgK+S0jeDTuGOIqu5xlCuceYd1GJsLUYxSEIGxVns/Afyki590SU1FAMX6j58gUp1i5HADfsIFT6M2zGJCwmQygolp3LI0ne87i9bCgXMNzBiHiqQilJhrXMYbfcaaPHwHTm+3GVC6DoaoGlT4Ljzz2Tho6DwcIpSwbVPbZ3X2yuzWXnRa4SZt5L/MteiMJh/VMh/17LAbn9X9Kst/UZL8L2qea6XyWOB3xZb4AQ112oNCRtvEvyXd53JlK/XaQvWWqF/JdA31U8CnvgSr31XifZaLBOQao0MWo5vSPXLg7+DgF+fG3jW6OMSs9pyF/CVjgS+6kIoMJAFMxOBVGvxQjq+btBhuHEPdqINGSJT5eSysP3P6dBWS0PgpTUXag7SCjrg1dI6BiB9A4qzLA8eAK6CEoUMNGE9R2T6FCtl66Z4Y4ilUm+UhMw6JsxXolLCpdpiweKQignEsfFGnrC+5Ykxbg+vZFYj2oX99Gt+xMafbTrhoH07uTOGFMu1mB3B9j02QMFsjeG7g6843oiVA0eoybV8uQVLcUtreQvm8ENbNtdhG+lVY5lcNW7y49mCqfu54WhKV6Ba4Yh6XQ8vBdxn1E4HHfgKGClcrV5mEGw/yd11n2kqpB4A/AhzgL0Tkc8vB98z3wE/OLRtYZxjsFKqHFF2HdHY/sv2oQ+NZjXEhlCqt8Wc2JJi4f5qTvzjMxF+3QSrEujdClE0p3Dg0tk5SeesY7nAVciaKbkii2uPIuRjNiRQNL0eY2ng/Y/fOMOmW469JYkZdxnZOYW6ZoXHTBIMHargoLh0XHRrL07B2BvO/VnPii1uofr2Mqs1jfPDBv+Hcw8KXj99H+ZFVVJ6J0DaoqOtXzNx9D7G/fZRfjj/Bvd9+L9/vvYOJTR6tbpyWJyoYCbu46RCbflDB0z+ZoKUnzGBnmlBK88yPJKi/IHz6dyp49Ndm6Nnu8fSPz7L92QhVA5qJJqH+rGK8GcY64dD9Hru+VfpQSpQJo22G2l7NXac1RtuA/qXQVK0w1m6z5ex+zOaEvNZUNaR5x98rZqu4ZPW2QleJxD7Tg29aoME1ve8N5h65bpA/pZQDHAfeB1wAXgN+WETemu83pUL++t+AL30CJs+S8144ko3QZ8EieRCwzDMnzC0r9LVlywQ/ZvjdvxvDjwnv/uty9nwthhaLniAED//qJCfvTFFZlmbnthGczC19RcNXq+j+hQ6UwHM/7OHH4Oz6BOc3JQlFfO66bRBHQfrhVZhDVVnUgAJ2PuZSPa7oVt/iM/6nEWVY8xevc7F+FS2nIqw9HEUBz39oEkcbHvjTcnY/FWa23fDG8yfAEVJ/1YE+UcZ4vc/Be2ZsnkFlXd6Z8en4cOd3qnD9TOxv604yFshCJj9txYhi5zcsbPASWF2RtkxHhRd+2CYp3vgDTctpbRtmCW0vAexNZaF26tJ6lwM7WyqPUsqWPLZKlPd66VdMjhL0U5ocyuIy9Vv3AHzy7yFWR0m0HJA/vXGHRP70yUXrJd7T/M8iyt8dwEkRsYewlfoS8DFgXqNdKlW0QN0amDpvB4pgA9lrmLtsL+aTK7ZJkn9NBRdSGi9kk35GZgNYXBBWlbSdTfooVNim3ZYgsYy4gjOrUUpQaRvXQsSePMy3XSgg4VioXh5cz00DHkRkGkERlhQzsTIkMKoK8BybCDitNaEZB993MaEESmxyX1Ia37UbkZnwqog13JnW8R2yWcozZRkXhgnaRVSwsasIoGiBlCp4QWUMat7Dl3lfis5b2Syl7UUFmG9ybxjFEvuvSP35eFBQlm9QSuVxtWS7GvrNx3chHiXIljnLsCTZ8nkoaNkF4Yoisl9FEgGvxFXgtaLr6dNuA/LzUFwIyq6YnvlN6HkWkiFhuN1w9J0+qTDFByvzlOcPuOCLKEHEfpSBH/+1akJx+N6PzXJiVyr7Pji1I0V0SlNZlqIs7OElNOZYGemvNlP5nSqcIYd4hTDcLsQm7G86jkdpOx6m8myEmS+1MjIS4fSuGSZqLdzFIIw2pnn0l6fp2e7x5C0P8b/f9V94+X338pHoPurHNU5KmC33mWj0bJZ0hO/8zAyntyWJHY+y4Wc7wAf3R3qZ7p4lETU4Sai96NK9P0pDn0vb8RBdfYqG2gTpH+9jfFWKM5sTjDTmYDc1vbD+RU3FEIytEo7v8bNtNN5ko+ed32wuaVYJMupsf8Kh/pzCC+KIX9IBcmnRvP1UQv9dNu+l3G+ecpHCyIbLKNvV0G++3y8HjyvRT+CVP4QTi59zWXZa8WnnqJiml3SfUupngJ8B6OwsLWVFVTu4YZC0zVgdSWhCqYJKiy0lsUl8D73fZ6JBqNk+QuJTw6R6Ixx6q47xauHub5Wz58kqotNCx9EQRglvvddncDWsORLh439SjqnzOPjEKVLds3T+Yw1r/qQTbexMMzoOFxIwA8QrfIY60iQjQnJaM3Wsjo1NYzz4m8+h4prX/use1FCEaFJx6k4hVpWi5ud38mTHehKPbWbLDypRqxI4/+4slTVpKmZdyss9+i6W8aX/W3AS07zjW5Wkf2MjqjlJ2WiYCFA3FCI6rendkGS02cOtA60UyYkI7/m7KjY8Us65bR4n9xiMEo7dPsvwKo/Nr0ZouhDFTULLqdy7v2pIEZtUiDu3TScbDW/e75OKwO3fcLj1CZeRTp/nf8RD+7D76y6RmcXdK0vpv3l5XC2+BddGOn3eute8PfW7UeTIuFccMD6Ul3gactlIbjzI3/WcaV8A8nNQtAN9hZVE5PMisltEdjc2NpbE+N7fhFt/Ahyl0KKozKahKuIayX91FPj3x1fZPI1omPnUCCYmXIg5jDYaG6pVWRzy2r0uZZOaRKVipENQKDa/ECIy6RBfn8KvNCgNHV+qClJXWcy4NorRFnuvwY4UiXJBXJiqsS6Vu9f0UxZLkxguIz0bQqEom3TQRlG3eZSKlhm0guGn2kAUeus0ui6No6Gy3EMrGJkI44Ug5GuSZdZvIRcj6JQmlNLEpm00vrPrkxjX5oVMRgWdVmx6uBLHU8SrFY6nSZQLI80eoiGScDGuNdKVQ7ncm9rY+CDRaWxZ0KQX1wdxTVIQG7d1z28T0jGbFCJzsGfJs0S1SL1i10p1EyyVb0HZ+a1vY/0KXRml8riK+v3QV6HjrgXqXCVSRi36uZZ0PY32a0C3UmqNUioMfBZYPK9PCfT6/4b9f5UP+VugUcW6P4wW0tGMK8SOnophFRzDBveVKkgpaqKezfgiMFNtnatDHTYKW3TGRv5D4OJay7P8rQihIRc8GHr/FL4rpMNCMmqvVw8BWqgZ1zYrTnBv7cGJ4w2YpCbcNIMp98jC6gxMnaxGJlyMQO2OIXAM5nzUpijzgBkHJUJr/SyuMiSjNnKhUfb+gqA8m1ZMOYa2KUErg9b247vCqV1pfCfId2kgNq2pHtY4aZis8UCEyXpDvLKYC0DlfRWqLwaJcsNB4l+g8ZTKwgYT5RThUUJnL1anFB6XQyXwbTxtIY2JSsEvtqZ9m+u3LDyWoN+XPwUDB69EoMsgsXtFi32uJV3XgFFKqQeBP8RC/v5KRH5nofqlokce+wl7sKZUGms0TLRaGNrOx+dGURNls4TEphTn704wUaHxULhJSFTZgyHT9XYTsaFPoRLC0/8qQfWIy/q9LnV9CjcBhz+TJD3tcHLbLBMNhsbzIba8GiNZqVDbx1FbphmfjDB8rpyLnWk2Pxtm5wsu+ud6OLcnwYHXO9nygyoUioazUH0BnGqP3v84BDsnaYpNkwwpzJ93Ev5BDf2NLg0f76Fhwwh7e+vpO9LEphfKMCbN4XckqR5RrN4fZm2fYvQX+mm4v5cnRlfhRoWKMo/B0RhjPRXsfqQKv1xR2TJB7Yyh/vkyzj40RdcjVVxUYc7cmmKi0eeH/msVXq3PwGfHCA85NDxagw52LgfW+gx2ClXD0NyjiU7n5gqDnT7jbcJMFex4YuETlG9HSoftpnC41MNDy0jxSmFgrU/FiKb+gnrbt60bg4//LWz5VGn1lwU9sm6nRH7ve4vWS3yq7p8FegQReRxY9q2Fe/4T9L4Kw0czN2JBf1ntsKJmVNF1QNsASpn6gBJFbNp+73g5Qht583YDOHDiDp/eW4Th9T4vv38K0XDLSw5D64WRNQHaYizMgfdMkaww1PeGWHM8RjKT3OVQNebNKqqUIuYaetekefP+FFt+6TBbGsdouFiB/0JlVvyRLhjtAMGFJ1fxzvcdJVyZwvzBWuS3m/CN4vyP+Fx8ootnBxoZ6kpTU+Zzx2MujnE5cUeKE3s8htcIM6+Uo19u56uV1fjlPqua4rQ2JqmKTZP+81a8coXz4CCJu8a5KEL/r2JRKE9VsPGZEN37Qzb6nIJD3zxNYl2KxkeqafhaTXYzqblH03jG1snG6wrauem8prEXC+EraPs5/baYH5WC68vNo7B+4W/n4Rsqhjy4BvqJFl75lIc4sO5lob5PZftjQf3yIxbeKG0f1Nv4MVj3Aa45KX/xOteSbspj7G50HmjQfJAj8mBkwW5/1oDk+WWziW/zB5cvgX87CFIfXNYmMG55DqiMxyAbfY7AJSBgMYHYDTzrekZrA451YygByciibMZwEftSUdom2VUpjfgZy2ivG6UQo6wvXQHGRhG0sDsbP0UymdWNxjGgfBvBEGOVEdf69bPNochF9cuGPrWJh9E28qHKf0hNLmFw0bbPJpJYoO0X7L9FaD6juxQe+ZThUSiHKlK2VNnyy0qVs4h+IkEfq1yExpLlKdSvgPei8iwiW9Fri+mnIFYL+hpbLHtI+cZaodyURvvZ34a+1woKiwwKX0tgXHOdMrBGGFpt6DqoqRwp6KwiPI7sSXHkjhTRpMOagyHWvVDFoXcl2fSSQ7xeMdFkDVvDOfjh5yt55sfiGKWIRw3TNT5D7Wk27IsRSiumKz2m6n1CSagZ17x14BYaG/upGzdsew56W6D5lGbfh5L0rfHwlbD6WIzXPncnXR88w1RziPoPDbEpOsyPf+IE//D197PuQIzYlCYdEd74UJrIuMFN2gzTIw0ex7fO0n2wjFufq2CmLEnb8SjNq8q5+MFZqPYY1YqRvgrq9wtNswq/pwx34zSH3+NRTYqJWp/RNp+P/EkFWz++ht6fHyZyLmRfKEEbea7YuOQLZIAxCENrhME1hrVvaMrHF2/7Yv23UP2SDd/14LHMfLUobv+qy/ltPm5SIabIzs5S+V5P/QT2/41NN7blkwvwugq0pJfeNaCb0mg3brHJff0URQeEKOHN9/kMdQitRxUbX3Tsg6+g6YyiekgvGjxKEA7f7zOwVlHRlSL66YuMJeC2+9bT/d8rs/eJVwh7P+4ztAYOvzPJ2c0pyicd2nrCxPpDVE04uGnFeH2at+6cxYQN/3L3MdY3THD2qS4O/NNGPAXH//0Mw60+28OzNN46SUvKYe+b9fR2p9mxaop0l4so6HutmkN+Ne/8zVbu2Rejb5PB9aL4rvD8J2eYrPVpPRPinm9VkYgZDtw7zQurJ4nOKlIRYbbK5c7/u561/7OeZJUQmVbMVkUIJatxk4p0OUSm60iWC25SYTQkKu2ojvaFWfdrrXPa6eu/OMX+9yTZ+EqYT/9uJTpzgqegX3TQ9lXDmsj0Im2/QP/NaxwWWp4vVlbKtSvhuxw8ilyrGFdsftZdtN6SZbwO+inHrh5qupZwj2UgJdgxe6V8lOoA/hZYhV3Dfl5E/kgpVQc8DKwGeoDPiMjYQrxuyoBRd/8y7Pwp0MUCQGFzFA532CV/wwWdm6mJhalFp1UWmjff3o1oGFxj4X3RLdPoqCEyGCJ0MZcuWokiXm3dEWg4vT1p05pNODhBIoTojIXcjbR6eGGoiKZZ2zCJ0jByqBFRiql6n9FVPqKhYus0hIWp2RAGBRpqV0+jXDDnyzCeg0446H01KFGMdtgp72yFYbraBwUtPREcXzFbZeyRcGVPcBoXWk+EbPAoLN5aG0XFhCYS1zhGEZ0ikFvhphXhpA0lmw/vs8rbP/vea6GEXW+6ucFfdGZlN8piUyqYkc/f9l4or/965/bfJVTMX8oSy4pdW+g5LpVvKTxUkbJiPP4Z6PfZr0HrNdnqKxBheSB/HvAfRWQzsAf4d0qpLcCvAk+LSDfwdPD/gnRTGu2Xfh/2/aUF4xcjNwUN5xUYGGk32aQIuQGU1wnzvfkNNJ+x/lj9UhV6UpNYlWaqO00+bLByRBGbtDPzukEbNS8R8200wMBvK0qoGnHQIsykXPqnyxED9duGUCJUjjjUDjgoA9NvVkBKUVmWRgVy9w+W2aPtzXFCaRt1cCZIRFw37qO0oXxC09DrgMBok5WxcswhMqvBQHTWwtP61qfxwzYiYKIrhXGE6Spjc1UioKy/O1mWSdxrvwtS0GwWXrjx1TDag7O3eBinsJ3zG7T0tnfTuf4bLtp/eVTMOBS51YJlxa4tZPxK5VsKj8UM6XLqV4xvMbpO+n3pY9C3OHhsWUmJIpRe/LMYiUi/iLwRfJ8CjmBPgH8M+EJQ7QvAQ4vxuindI4OHL43yl09KFNuedElHbHbxLBRqgUEWrxQubPaJTirajmo0iq59DngeNc9WMvJcN8MbDN/7sCF07zRr90WIJm0wpK3fVhy7yye6Bt7zg0rajmgaT2vG2oXRdsEYw1TUsL5P0eQq9p5r5ztvVFNxoow1A4qqIbj1nMPFh6bp+ut6BtxGEpt8Gnd6lE+5TB112fpHHVRfcBFR+CFIbkrw2jM9pFo9al6NUvVaOdv/uJF99xnKJjXtbyp8BzoPVFI2DkNrwU0LDWcUyZY0M7fN0vOvxul9qYGhOsPdX4lwywsRJpoMB+/3wYHOg3Z3crZK2Py8M6f9ElEYbzF0HY3R/UaU5uPa5jacr52XsLS+nP67ar7XK7nXcvJYDv1Kpeugn/igwjB+9hrPtiWTEm/5SCm1GtgJvAI0i0g/WMOulGpa7Pc3pdG+9/+CwUPQt5e5MxHJ+wuEMlmx5/OvkSt/48Me6XJoO6xQ2m6cvfaQhVQNrBd79NtRHLxnGtGQqnGoHQ5R0w+rDznsetohWecQrxGS1YqyWU3FUWw2E+1SOe1yLh4hHTXsbdRIA2w5BZMtwvSuJIP/9hyEBPdPGthwNEr1oMFR1mXyjr8tJ5S2/jeFQsI+B548hYQC18gdCWY6DWd7GwilNdu+61A9HLgzggly/y0esw2KylFN2RGX2LkQh6sqqHaF277q0HZMk6wQ9n3IRxy49dsOdf1BI+VvcgVfYnGIndEcu9cQr1HU96q8qHzzt/OiZXnlc/pvKTxKdTMspaxgbF0232LyXQnfy5Xjaul3BbLt+Ano/mCR319FUlCq+6NBKZW/Dvi8iHz+En5KVQBfAf6DiEwqtXR/+U1ptL0EpGaDfwoHWrHBmP9dBUGMNLkodcoaRFHghYLM2EYC2J6F+vk6N84UmcB8koPXKctPAZ5roYAKLD4Z0OlgwyNjSCUQx5CFbynBwu/ySQcfx8b9VUHm7qyHJoAXZlz0GXkzdVRwXWUgikGEwIwMygRH7n2yvmOVJ082NGE+SaYVgo2coP7cdqb4Aww2oXGxl20p+OGiDPPqlWIQF6NC2fLLS5Gt6LhjYf1K5Xe19Vsq32KyXWb/Jcbnd3leNRIL0S2Bhhc7XKOUCmEN9t+LyKNB8YBSqiWYZbcAg4vd6KY02i/8LgwXBnhdaDmWd613vWFgvbDudU31kPXfei7s/prLkz8d59lPpunrcHnnI2Xc+YjLd/7NLL3r0tRddFnVG2bnMxWEJj02vRzi7K0eh+72OLLT513/ZBElw6vSHNvqcWK7Ztf3yxjqMNzyA5fO/ZrhljRn703j+LDtuxFueS7EdLswGgrj/a9OutxpSCuO7UpxakeaC3clWe/57PuXk/CnzZxrs5a++azLoRcbee8Jj4bvVdB/W5KRrT5oQ3+rx+HfmmHbM2GSUWGq1udDf1bJ7q+5vPYxj76NQmjGZ+0+hzsfcTm73ScyCb4ITkJx+2Mufd0+boJclvM88hyxmHdls5Df+YjLhS0+FaOq5CzkUqzeQr9dbKldSr3LcS8U+20psr2d9Vsq38ttoyL1jz5mM7KXeiJyOUixPJA/ZafUfwkcEZH/nnfp68CPA58L/n5tUV7X8xj7UqnUY+yv/S944v8IIH9LJKMEPwJOEpIVwhsf8UlFYevTDvXnFaNthgMf9NFpxe6vO5SPKXo3+Rx7h8FNwW3fdKkYVtnZ9my18Mqn01jHhd10NBpQQSxqrDGbqE/z1p5ZPAd2vFBO5YhDeOc46hODOGMOt97fTfSiPeZttDDZIOx9yENpOHbPFAN1uYDF2ocf+40qut4MMbDW5+i9FhmS0a/9sGL9qy6jLT5/8d/H8UKw/fkyqkZDVA0rbv22g5sSDjxgGGsNjLC28VDueNQlOlN8SXdij0fvFmG60ufwXTOkosKP/3oVnW+FsrKt0ApdDikNThT+9UvQvL3E3yzDMfZIxy5p/aXnFq3X80sVC95LKfUO4DngELlX9K9j/dpfBjqBc8CnRWR0oXvdlDPt3f8WBg7Bvr+YmyeyKBUs0bQodMKu3aYagiBSDtT0W/jbTC3Z04UVI9YQTzXZ30VnbCZyFTDVokhWCI6vrTsC62Kwy63M+hDQMNzukY5AZFZRPu6AVsjtUxAVys6EiYzrHF+jiFeLzSQjMFSdxwuboLjzcAgliqF1ZA12Rr/2IxYbPtThY1x7vWzaAW31dNMgWjHaLqCs/gDRaQgnmJcG1lnXzHizl8372H7kCgx2KcvnxepcjnugFFoOviv6LUm/z3yldIO9XKSk9FR4C5GIPM/8D8L9S+F1U0L+nv1tOPA3eXFwizXVgptB9kv1xSCDu8C5Wy20rOG8omzClk02C6KEuj6N9iAVtbNzQZipEXxXqBqy4UsxUDFC9si2CjKwVI5Yv3LnkRBVwxpfCaGUgIHIt+rQ4w7T3Skm1ngYJQyu9khHhPIx61cXJdQOumgPqocUVeOKVIXh9Een7LULdoasU1AxltPFCwstJ12qhxyUD+mQbxPVNljstjLQfiSI7jcJbhLilTDSmYnoJ5e0W9dBjU5Dc49LXZ+D9qBnR5pLnsqF+mOhayX33yI8Lvde+SQLXFvRr/T6S9Dv4Yfg/EsL1LlKpP3FP9eSbsqZ9uR58FLkFiGX488DInHFrd90GWs1jHQJqaidSd/xTy6iYapBePZfeigFW55WNFzQaKMZaTMMdxpaTmiqhhW7vuFitJ0hj7X4jDfaY93tx7SdhWvBdxzWvxpitlborhwj8mNnmf1OM9/6qzbGVgkT7xFmPxrn/MYkIFSOubT0hJmpsmFXO444rH0jRL2vGHxnnJmPTTB8sIx4JWx9UlPXr9BGM9jpc2anz1/+txlcT3H/FyroftkhWano2elRNqoQ3x6u2fCCy/qXrNxTNYaZBmG4zVB/xiFVBj07PBBYu9chlFJ0HHJoe1OjxOW9RPBdcL0iT2KpPtIr8cdebb43ihz/TPTLQP5mBoqLebUoE/f+RqKb0mjf959h5ASce65gU2u+pVix8qCfQp6i6ZxD47kgkJGy3mkR4Y0PW/jbxhc0jb06O4uu79XU9QVBkwLKdHztRU3tRfJyKNprp3f7XNgmuNVJYr/7GtoVvtFazYnBGOXjLiFPUTsa4lQsQbzKEEkLkZQmOqg5ervh3DYg5OIfDePsD7Htb+vRRtFwRrIBnQCazjl87T9MMbDGo/u1EBtedXE9xSsPpkmVQUdcofPaIyN35YSickLRfNLq/9Z9HuOtQm2/mrO7rvOOk7uFrqn52nmeti+p7uXwKJX3UvgulUepv1+qHDeqfpfDN7++gj3/AbofLPL7q0w3WpS/m9I9Mn0RxnuYk0xUBTA2+0/B33zKXrNJCiTArFl/srLWVgQTkiDCneBlIHYZK60FxFa1/MRG5UPwQ7nIf+JiXQ2OPSSCAfE1YhTGV0TCvo2uF/BTWnA90AiezkETHc/C8jzXxvXGDWB7rmQC/uGFyeoSnbZ+az+UQ3o4KXCMPeUogDhWXhMSfG2hixm/vDiCY/dWLd+Mzpn2m6+d51sKF+uPQh5L7b9iPDKyFZNDuDK++eWF9Uvhe7PrdznjIr++QP8+SM0UucfVJFk8AcK1ToJwU860X/4jmDgb/JNZXgUzTc+1SIpwQi24pBtqN4y2C4mYsO1pFw1MV/mEEoqRVsOJO1LsvS/Bh/+0kuqBXPwBQTizwzDcZVj3qkN9r2Y25rP3wSQH353gnm+Uo42D70D9eUXvJsNt33TpOuDgO4b+zSFe/M13IJ/uYXC6jJoLLnVDrjWKu8fZedsY/a804FwIkYz4jK3yERFWHwpTOeriNCQIdcZ57d+Ms/3964mMaU7fneDMbSlOrfP52V+s5bO/XcXBdyfs4ZRgFnH7Yy49O3wqhhWTdYbhNTDYZTCS5uTOFK1nQnQdjTDeLLQe0cQrBJ2AmQph/wMeu77lZt5Pl7TlFS2nM99LhcRdyTL9avBd0c9SiXDPhXic/QGcfgpu+XSR310lshuR1+5+pdBNCfnb/zfwzZ+9FPI30m449D4fZSx0LTY1/xtSlFgYcgB1e+Q/TXFsT4qqYYetL5djHNj1TYeaizrAcSq8kPDaJzzildC1T7NmnyZZJrz+cZ9kmY3F4RhF9YBmx+M2lohoC/3LHKbxwsKrn/KzKbyUqOwkFtfOlPF09iEwGrZ916H+nM7GtjYhw2s/5JEIKZzbxtEPDaKnNDvu7SY24AaHgubq/uZ7PIa7goRfiixixKhskjNCSbjj0RDhWebEaZagjd7umVFW6AYmBZEq+KmXoHFziT9ZBshf2arbZNOPv7hovX2/F/3nkbnmatGtPwbnXggQJHl+1YkmO8t2ExAJstFkj/cVkBKFI2B9EIpTu9J4YSibcbIuido+PcdQJcsgWQ4oaDxnIYKzNdYloo1CB3Urh1Q22QB+bt2qAD9kUSi5zY882bzMGjNXXxtoOKuDJZq95juauBscubxlBiJC7EiI6HgQwjR/GhP8O9ouc6CBGdKS4xuZhchsJlRl3npb8tfec/leEZXCY7E6yyHH1eK7ol/J+ikFD32hdIO9XKQo+UTkNaOb0qf99G/Aob/Pg/wF1HxaUzlsjctMg41QN9kopGKBI7DoRNEWvvdvyohOKZRvKJtQaN9C/vKqEJuEVSdstLzRDsELCZEpm4Fce1DTb/8OdxmmGgLoXN5uZToqGAzpcF4S3zzSHtRcVITi9l6Vw/b4+2i7TcQ7XSvM1Npz75UBPN88W4/uD5FuTJNuSpMOCeduSZOMBWlpAlr7ms5uuDi+9XHX9hHM6K0c8Sq42G0ojOg3T8MteqmoX3QxKpVfKTxK9fFe7j1X9Lt8fgUkwCM/BGefLfE+y0WyAvm7JpQYBT/NJcGJysdtNo8MTdYbRlcJtUA4nvNxz9QIp273cVPQ/ZKFs+3+dozd344Vv2HwOy2Kmj7NdK3BV8Lej3nMVEPHQc361zT963xefWCaUFLT8WYZlQNzI+PNVPmMthj0rGHXkxEmVgmxKYXyheN3GyIz0H5Q03RW4ztwbptBdQgz1XDkXR5eJMer4ayi+wXNwPoyxg6sIzKhkCGHgdUeB9+VpmK30HTWoftFq1/7EYfqQcVUo6BTiubT9pDQZINhvEUIpeyhnfFmk4s7gnUjXdhiGFgnrH5D03BBz2mTBWdRxXyf812fr+xKeCzVF7wQj2K0ot/iZaXyMDY+fmJ8AXmuAimWJwnCctJNabTf819g4gKcegIk/y1YsBSrGtFUjsolL/i37vOYaoDGs2pJS6PZSuHou3yMA5NN9n61vYq1+6wb5eH/c5LJRsNt34nQdvTSzOM1gw41gw5rDoRQKGoGrGwTTeBFIVUO5ePWKA6tEc7uMhgHJprnznydFGz9roMWxYVthngNKF8Ip6D9RIi+rTDdYN02+fpVjigqR+dOz6qGNVUjGQsNdefnyj3WKpy6w2Bcmykl6za5VsvrpdS73PpXwuNa3ut63HOhesWulVpWhNe7fus6QP6EXA7TG4RuSvfI8FHofz0w2MUgR+TKVCYEX6aigvCMNdZeiDmu28WWma4HmMAQBssq37XQQBRUjGpCKZitELsKuISvlUMFRi8jWyhAujgGUmUCGsJxe4/MvRwfG7HPANr6xnGse0Z72ITBgS7RaYXjKbxwoX5BW+T7+BV5ZTnZMtdCCfuP40MylvfyWEK7XVK2VB5SpKzY0n2h+jeKbMvBo1T9FuNxpbIV41Gsfin6CRx9FGZHishyFUkJhFJq0c+1pJtypr33z2AmE+Cw1CUiFikRrxJu+Z5mtCNAdWQQEgiJCsFJ2RRbxXiE44q7v+QyuMZQd14xUxeY4YDHT/6nat54IGkRJ36Ob7xSCCUKOj+Pb9mEYs+XXYY7DWVjCoyirldx+1cV46sM9T2KsQ4oH4fhNsPZ24SXPuNxzz+6rH/VoWLUkC6zMcDjVcKWIvrl3zMdFtJRITapsuFYk1HBhLCIm7w2rRxR3PmIy0i7ITZZYPCX0Pbz1r+ePG5k2a4FjxtMtosHrE/7WkL+MpOvG4luSqO94SNw+J/AXyC4USGlosIrn/YwLnS/oGk5PhcZcuABn4kWoaZXsf27DkUzgGPx3+1HLF6ubHrutSPv8pltdAjlJbd9/SGP2VpoPKnY/Pz8fKMzOb4ZKh8PgksBLSdgqMtwbqeA2FCyWuD8Vp/Tt9ttzVO7LWJw/Yua1mNz9cvQSJvh0Pt9lMAdX3GJTUHvRp8Td9ss7nc+4l4ys4hNXSrbCq3QclOkClp2Xtt7Wp/2tb3nYnRTukc2PQRbfwhUKXYksD/JcpuA13etHzdr0II/k032VGD5+OUvhSZWWVhd2WTOxTBVb+9ZOZY3gy02BVFFpiBZUSTgZaPsOR7EpkEZxUSLjeInLohj71U9lK/f3HvN1AniWPx3dCrQfVXAN70E+NNyrBhL4bFYnau1cl3R79rIlhmmGj7wh1C7bhl4LoXEbkQu9rmWdFMa7ad+Fd58GIqeG5qnfctHoe2oNZwn9vi5RLYBbXxeE5mGRGURPHOeS3yh+2x83iE6CYkK+wIAG7fEcwxv3Zuif4NHolwYXJOB1QnpiDBbLQx1CqmIMLTakA5b2YwjpKLCwFoLX2w5oajrUzgeTNVZ2Vfvc4hN5mRwEzDWahP1TtUJo22ZqH2QigjRaTuzEAdO3GUwSug8pKkeVIiGRMXC7TgvldhGJfG50jrF5LhS2a6mfkvle630uxwqRY4iZSLwtZ+EM08vgwxLoMxMewXyd5XJT2KPrZey+x3U0aLofsml7bAw2maycTYy15tPOzSfnmfqXqK/rvGspvHs3Pdk21GH2ITQu9EQrxRSZUKinCyszg9Bssxw7B5DqhyqBhRVg4IncHKPoW+j3fyLTdpj8dufdNB5kfUqhxU7v+mSLLeY9PbD9ohPvFJIVArH7zE4aag7p7i40cYq6X5JUzVooxWKhvJRxW1fLxgqi7Vt4fVSfZpL/c1idZaDRzEqxqPQ2KzoVxrfherkLTCVvrzEJldEKz7ta0P3/1cbNOroY8yF/MGiA61sUlE2ucgCRC3OZ2GSHCoDoa7fpfaifSEoUVQOZQJU2ZlvolzhRe0vtzzjEJlVXOz2udgt2QcpXmUT3RaLSBadgeiMpnow9+TFpmC63iZ5SJbbDDsoiylvOa5RRlE+WtzvXRJl26jY075UHstMy8G3GI+l8lzRr3TS8IHfh/UPLBO/EkmJwr3G6JDF6KZ0j1x4CU59l0shf4U0b5liznrwciFVRcpEC34QOsQP2fgm4uSi8flBpD4/JBhsZL1IHAsl9GC2yrpNogGKw/Fy1+LlUvSecxTIK4tMWx6uR5ZXslyy+s2B95WoX66NbITAjH6XPL2l8M2390uVY0HZlonHlcp2I+q3nLItp34GXv4fMNVX5PrVJFlxj1wTOvhFSGX8uJcLOSooE4SpegvNUwFeumJYBbE5Sud7cZ1hqMuQill3ydlthj2PuIR9xcA6n6G1wlij0HVQ07/B0HRa0XRWc/c/Ooy222w6iKLmomLPlxUTzUL9WRhrh7JxNRd9soh+VcOau76kGG8R6s4L57dZd0oyBqkyc1n6Zf7OVMLwasOZHYZt39eUj2qisyXyWIBvyfWvBY8bWbbL5XG1+C4Dj4kem7nmWkf5W3GPXAPa+lk4+lVITZNbohVbqi2h7I0P+0w3BJH/lD2wsufLLpHE0viuOqVpOmX9yuJAxyGN0tC70ePEPTa+9V0Puzg+pMqFs7cJQ+t9dn/VZdVpNYdvdEYRPWPLGs8WaYgS9IvEFc1nFHs/7F2q3z+5dpZ/Ge1WPgWxo5reLYZDHzCsOiJsfCkP0ngl/bHU+leLxzKNrRX9SiuraoP2O+fhdRXpRjPa18U9opT6LaVUr1Jqf/BZ1sOpXe+C9R/CQv6W6U1vcz5aQ4u2botwMYO2CF9lbIQ/LeCkbdhV5Stmay3MzkmDm7LXZuqsq8RNBp7lpTwQy6Hf7NL1y8mm0GlFosLqVT5Z4B0vicc89ZbCY76yK+WRL9t89Yu5C+bjsdyyLQePK312llE/peHuX4GqjgX4XQWyM+0VyF+G/kBEdgSfx5eT8dO/CsceY26qsQxdZvve8n2H8lGoPweNPYrYlM0ReXl88/zlwd+ONx0azypCCRvDBGD9Ky61/QrBwvEuoWIDfIn6GceeyKweUESnof48NJ6x+k1etn452vo9h7JxC3M0Sx1ty6BfybQcfBcz0oX0dtdvMVpG/cTAd37RxhO6piR2ErXY51rSTekeUS45u5g/cObb5Fjo4Qqu11/Q1Gci2C32m8sgcSy8z7h2VgFQMabY+S0Xo4STe3wG1/qsfd2eZsxuKi4mRwl1tGfjcmdm+pufdXDSy2M9fDdIVVZspJXY9gvS5fBYpnZblJYq2xWMz0XluJzfLUbXsv8UiOSejWtFN6JP+3rOtH9eKXVQKfVXSqna5WT83s/Blk8yJ7EuYDt/OYztUpfgJTC7sMVntNWePIxNqDk8J5uFvk1Cqgxq+wKDPR+vwhNFixlso4jEFWOtln9kWqMLE/KWwGc+OnKvIVlhN0kvGfyXw7PwN5czmy2l7FrIVuz3V0O/y+Fb6r2ulEeJ+ikFH/lzWPu+ZZBhiXSjoUeumtFWSj2llHqzyOdjwP8G1gE7gH7g9xfg8zNKqdeVUq8PDQ2VdO8T34YjjzIX8leUOaUNmqVOOkuAMomInYVqMFqoGAZlwItAOopN5hsIF52yiBXHg8n63AnGfNmyUEINuZFegmwBj8phe5IyXlXCk1kqX6B8zMo9VStzEwSV0qaLtX2p/XIV+u+yDNg8bb8kOa6k3kL1l6rffCuYQh7L5JYRA9/7NRg/swz8lnLrG9CnfdXcIyLy3lLqKaX+HPjmAnw+D3webI7IUngefRS8eIbBQkKWwm0J9RaqX1A2UwUjncZC/h51aTnhgvEZ2GB49SGPu7/k4gQjPjqjeMffu4yvEmr6gvCoBXz71/sMrBWqhhRr9jk2f2PBPVMRYapRqBhSRAoiFe543GFilRCZVvMGrVqKfhm641GXsVahfKwEOGKp91pOHqXWvx4rtBtZv8tdwVwOBTxmR6BvL9SuXQaeS6AbzT1yXXzaSqkWEekP/v048OZy8t/5U3DicYiPYNcSmdjVhQMoc22OcORmCLJAWWH9JfKomISyY5rONzU4AELLKU3zWY3yAuRL3lTF8RT1vWpevi2nHFadDNTKXMvTL1EhvPwpD6Vhy9MOjeeAPPidEkXNgFo2/fL51vVfAd/r2X9Xi++NwuN6y7bE/mvcAp3v4NqSrBjtDP2eUmoHtlt6gJ9dTuarboWOe+DEt8gdYy/2xi+GLpGCv8XK1Dz1lsRDodNBQd7yyvqT55bl87AZ2jMFOWOofIWaIyBz9EuHbbHvQHR6EdmK6bJk/ZaJrylSVnhtqbKVKsdCfJdLv+vJYyG+10K/pfSfgm0/AuVNRX5zFUnJtUeHLEbXxWiLyI9eTf5P/zqc/DaXxh1ZLio2AC+bRykORpvAYKYeRtoNq05qojPFmM7v1qgYhfUva/o2GWZqhcqRq+yHW442upFpRb9rSwLf/z+hvhs2fPja3fZGRI/clJC/cCU4Ieti8JOgXWvAdZBey6TtNeOBGwEx9pOp70RsfaWxqbsyPAzokDWNfqqAh9jv2rFJhZ0wWZx4JjqZEwLjW16oHN95eUQAm1wd5cAbH/HQMXA1dB6xpyrz9XPCAY+i+im6Tju0H3GsfhloobKyZdsoZHfqr7V+KDApW2Z80IVtv6h+8/RfgX5O2Mq8qH6RvJe+DmS7gfVzQrZ+yfrl9V9R/ci1WyEPpYN7zadfcJ9i+hWVLaNfZhzNo58IhMqX0VCUQkJxNNV1pJvSaN//X6Dtdpjqh9XvgqNfs9HBBg8BCpq22pn4poeg5xmobINYHfS+YrPeHP8GtO62x+DHe2DN/XDsaxZuNHLcbnK23Gb95hs/AudfgFgDVLbYdEibHoKT34HGW+xAGz4C6z9gow52vQsmL0BiDDruhmPfsMlK+1+3A7J2nY0ZvOkhG/Sqdi2EYtC/T/GvPuPyzBHD1n+vCL+pcvo9Bus/GOgHNG2z99/0Mej5AVS0QFk9XHjZynv8W9CyC9IzMHba6nXsa7D2vTByArxZaNlt3UsbPgoXXoBYvT1G3POs5Xvi27YdRWD4LXv/o49B170w1Qvx0Tz9PgT9r+X0O/2U1e/0U/n6wYYPwbGvQ/tddj9iqt/yO/Z1236Dwc5H41Z7yGLjR217Z/V7yZZl9ZsN9HuvlW3d+2D0pNW79XZbb8NH4MKLtv/z9Tv5HWjYYl9gg29C9wetHJ3vDPQbsS64Y1+H7g9b/dwyqOuGM0/Bxo/B6e9CzVoIl0P/G4F+34D2PTn9suMzT7+mbXZ8bnwIzhb230fh+DdtBpd0PKffsa/ZcTp2qrh+0VqobrfjYdNDcPIJaNg8V7+jX4Oud1q54sMl6PcU1KzJ0+/D9tlpuzPQrw9W35f3/L0JyKX6VbZAWYONK1JMv3XvC/rvA/a5vtZ0o2VjV1I0U8CNSbt375bXX3/9eouxQiu0Qm8DUkrtFZHdV8KjObxbPtu8uM35Hxeu/F6l0k05016hFVqhFVouWvFpr9AKrdAKvU1ImRX0yAqt0Aqt0NuKbrSZ9k2ZuWaFVmiFVmg5KAP5W47YI0qpB5RSx5RSJ5VSv3q5Mq3MtFdohVZoheajZYL8KaUc4H8C7wMuAK8ppb4uIm8tldeK0V6hFVqhFZqHFMvmHrkDOCkipwGUUl8CPgasGO0VWqEVWqFlo+U7xt4GnM/7/wJwWcnT3lZGe+/evcNKqbPLwKoBGF4GPjcC3Sy63Cx6wM2jy9tdj64rZdDP3id+C9VQQtWoUiof0P35IEJphoqd0LmsQzJvK6MtIo3LwUcp9fq1AsJfbbpZdLlZ9ICbR5ebRY8rIRF5YJlYXQDyM1y2A32Xw2gFPbJCK7RCK3T16TWgWym1RikVBj4LfP1yGL2tZtortEIrtEJvRxIRTyn188AT2Aj6fyUihy+H1z9Xo/35xau8behm0eVm0QNuHl1uFj1uCBKRx4HHr5TP2ypg1Aqt0Aqt0D93WvFpr9AKrdAKvY1oxWiv0Aqt0Aq9jWjFaK/QCq3QCr2NaMVor9AKrdAKvY1oxWiv0Aqt0Aq9jWjFaK/QCq3QCr2NaMVor9AKrdAKvY3o/wcUWlZPrC9DsgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot(kind='hexbin', x='x', y='y', bins=100, cmap='rainbow');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Unstructured data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Images" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "from PIL import Image" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAGzCAIAAAAwqTHqAAEAAElEQVR4nGT9Wc+tWZIehkXEmt5pT990xsysrKyq7qpiddMNk5Atog1TJtCwLMC88l8wfO+fwCv/A0mXMgjfGRBlNy2DbVGkYHZ1s92Duroq58wzfdOe32kNEb5Y797nFLWBTHznG/bwvmtFPPHEE8/C/8v/7c/H3oMoBSZGj5RYwRAD2SKK3e0CJ4phfHI5T2E/9LuLyi0Wi2HwxlmtNZCOiaPA7tD33jManyQKMJoQUuTkvRcRAEBERDx/gYjMnP8JACklEUHExCIiKAAAIoIE+WtEFBEgRCAiEhEGYebAScH0bMzAzIKIiIJARABMiAYRWJQwESGqlJKx1nuvlXLOJT9WTs/K4rDbGk3GGKUUKRNjZMDEwziGoqisMhzCsjQG++ul+ejJ7GJuLy/ms9ns/v6w3g2jx6++ffvOcwqjU6opTamhUrBalIu6XMxKJHh3d+cD66JmISDrY6pVq5Ul0iEEREkcLi8vm/lSq/qv//rLthUf1ON6mzgsLxcsfuYWPoZhbMexbZbN06fXgHw8HlNKWllJKcbYVCUR+aGz1hJGRFQKjSZjtNWEKAiAKEQEAPl6EemUUgihcNMViDGGEBjEOeecCyEYYxQSICOiAiQCY4xAZGYAFMaUBACY2XuvrFFKEZEPKYQoqMqyjoH/z//H/9Pt3VvhcPfulVYgEo7t/uLiAhDzHR8GP5/VTVXXRRniqG0xjuPhcOgHDwAMyMxElN/V4XBwzuw227Y7fPLJJ+M4tl23Xm9N4ZbL5Xq9RUSjnbUWEZfL5du3b8dxdM4hoi1cWZbMvF6vUwrWGOdMSkkjpRRms8Xy8oKZ27YfxvF47IbgV6tV3/eXl5ePj4/5bXjvmdk5BwAxxryMvfcXFxda6+PxGBOLiFIqpRRjVEoBEADkP9FapygiorUOIXjvo9/K6VIIQn6wYP4To3X+jkLKuwZJ5/uIiGMIKaWmaW5urkMIl6sLHwYCiTFeXSy11sPQsZTMrAmVUiLinDu0nSD1g1dKATBIaoqicKY0tFot4rCt6lprM4b0sN6kKJvdrqxnggRCoPJLq5TCMAyICKhD8NYYIoDESqnAabFYlHX1zTfffPLRx/e3r0HSxbyZ1VVV2GHwnKD3o4iISGLIV5K08t6HEPJ6Q4GUH8Ja6xjYe//lN18jklJKGzeO4+Bj3/fOOQYBgLqu27YFoCdPnnjvtbLW6bIsn1xfoaS72zfdcb/dbi8uLm6ePn/1+s23r96Qohg53ywAsFaXZem9BxFEcdpoo1BAYprNZmVZzuomcjq2+6a0NxfL436722yNsx/94EffvHqTUM/mi/V6nVJaPz7sd+2Lp6sfv7z+zRdfvvz4hxfXT1+9vfv+zZvLi+vXr18rjRrJar1cze/vb6+urn7xi190Xffnf/k3+8PR+wiKkDQzCEDTzPPdH8cx+AEANCERhRj+D//7/+znP//56+9fPTw8OGuXi1Xbd//qX/2ru4dHUPDkyZN//I//cRhGAnTOAUtIcVqHKTnnxnEk0gCQN28O0fmCpJSMMTElrTUAhBDyjxAxxkhEOarn+5hXKSKCIiIigZQkR3gASilprfMNN8bEGBEFEYuiEI7jOCqlqqoSkb7v89tzzuZUkl89v72UUkw+3yxjzPScCIhIRAhKRGKMMUbm/L4kpCkNiSQSyB8kxJEAvfdte6yqChEVARFprT3Hr7/+ui6rx8fHpmnyBg8hrNfrY9fGwGVTF1VJREDqeDz+zo8++YPf//u3t7cpxPvbu/v7x5SSIHTt8OKjl7/zO7+zWCydsWM/3N3dffv111oED8e2PQyVq2azGYOEMAoIMwtIYU3bjuzHw259uaquL563m8eHhwelzMXFRRIOPoHIw8NjWTVElGLyQ/AipCREDjm6yPnSQ743RFMShdMj3+nzvRMEYMnfYREUICJBQAARSSnl7CsiAhJBiEEEz08CAALAzHlHI6JCMsYURYESNpu9teSsjpxC8kg4Bp84dH3XFM44nSRGnwCgKArrZg8P6zgOEbyzegheFCeGIUQfTd+PAIQkRqNS9tnNsn08JgN14Qqto+9A6aKcFU01v1jO55Up6i++/kpr3fW+KOz8YpVa7b3XWiHg8bjTho/H3ePj3Wxxcf/49Wr5tKyKZtH4NByOby9vVvPKa61jrN683d3e/sa5/unzl5ttB0KL1TyvZkWcUgCIMQ6zahVjTCkSilIkohARUACmfEmKtNZa27ymh36fr6FSirRmZmbuup6IEKMgkQIiYpG8J5EYMd9Ple8jM8cYfYrOTZnPWquMq+t6uzm8eftKRMrCImJdV8PQaWXfvHnz7PlzRAUgzrmyqI0xXdcd2/2337+uqsraIqYUYyRtyrIsy5KI6rqu63qzeby+vi4ORY4FiKi1fvHixXq9HoZBKWW0e3v79vryerlcfv/99/ktpZSGYaiqarfbAbDWWilVluU4jr4fTplyWqj5k5ZlGUJIKeUPmAPBtNhExnE8B6D8C8YYa23oOgAQ4YwRU0pEFGMEYBG01uatIYBIog0hlt77HNGU1ojoQ+CU6qbJT56DiyKVX5olr3NBRAJErZVSzIwCbdt2/bEui/x5AQCAMm7QWuUPmECGYYgsxhYxRiK4vFhBjIfDbvH0iVF6eXVlrAXAmbbex7Yb8gdRSjEAJBZCEc5hDgCQgCg/OQtA3/fKmufPn3/59Vda69vb2+P+qJXUzlxdrFKKIkJqigzMnNIUYVNKiKiUYkaRBAL5dhhjt9uts+VsNhuGwRhrrVVKrVarQ9ciYgjBxwAA3vuUUl021tr83jLmEBFFEEIYxzG/kNbae5+hvVIoIjk6eR+bRmmth743Rmmt97t9U1cco9Z6tVp1xxatvry8jGO3Xq+NwiRsAI7Ho9Z6v299iCGkEEYRMRqcc0AYYyqrahzHzWYzDMPusL+6uV4/3hurB99fXf2QCB4fH6um7sehqqq+72OMxrmc8wBot103s0XeWQgcQkiccvR78eIFMz8+PuYPqzSJyO3DowBwgqqqjDH9sSVAa60ikngC4swxZjAdEdU5j+b7cg6t1tqMkPJVyoshhJABZf6r/Mv5ac9RPcf//MhbQGtCzC8ddd6BRN3gcyrNe+0MtcdxKIoiY1xrLRGFEEIISHLe+IhojEFEBhHGXFGcs2/efZEpv21IMaSUP5oAA2BROK2V1pqZcwIuy3LYbfKGOieynIPLukoMD/169+7Wla5pGgbsuu7FixcA4IdRk9rtdpvN5pNPPnHOvX13Z629u7u7vb2NPv7NX/113/c3V1d6czjYokFw0ce2HxKEwKO2uj124yhaVSj40bPrqlKVk77dEemnT68fHx9fv35tjNHWFK66mM92bYdMztgk6Nt+CF0SRVqlyMIiAoD5ZuT8KnmDnUPYh7dqQk/Tj3KSBUQ8PYPk8ve8PgAghyD44HH+qYgkAEARY40xtZb+iBy6dhxJOe2s1loEEdBUhalKbY1AIgFrbdM0fhyq0gLqcQjGqBiDVuAF24HrMjmfFMXCuZ6GxH5e4oureVmW7eE4jmNTz8PYv3p3D/jUFOPyqvrks6vtsb+7u/feW23i0A8DNNVSRBjDi+cLUiGmfr5ovPcvnl/1w0BafvLjz4rabg8Pu/3jTz69apo5kh76T//277747rvXh+19U1kEIyLA6eZ6RcTb9b3RVqmiO4hxVmERo0+J2YBCZBYiCHkXpcQMKYkxxjlXllVeykopoGkRhxC01kQEzCCkyAAyJpzKMxEQEhBEyr+WczkZzcxhGJhFMThX3t3dhRCUwru7TUqp6zrnjNYahLpuqKrGFEVhdD8O9w+3BHh1sfzkk0+GYei6IQNwRLXdbl+9foWA8/ncWlvX5byZtW3LzG3b9sMgIsvl8uHhYTabhRDy/1NKSqm+7yeEqxQQbrdb5lgUBQCkKfqAsqauayGMMeYEmZNuYez2sK+qKhfQSqn8tDm95V2aA1NegbmiRRIASBwINYAQ4WIxjzHudnullHOGCEMIzDGHD60cEfkYcsXMIkqpHHGISCs1FRksOQJykvydnLM1Kas1AUZmay1IyZw4xpwygSconPOx1ppFENFaIwBN04ikw+GgAZAFAPb7/fXl02EcAZA0KKWGYcivhagEcvlLiJRhQa56cjk1DN2sqodh6Pe7zz///HG9LUrbt13hXOFUvkRaa++j1pponPYvcmZfEqccKGOMLIwAOSmO41gUhSKdkURKqSiKsmoAoCEsXNV13eBHZh6GQQTze3716hUAffbZpxcXF0VRbB5vcwS31jKztfZ4PDIDpJTSRFcQEYAcDodcmWlNGaJ5751zRVHkBcmEVVXthnYcvJuVh8Ph6ZPnL1++/Nt/9f/ZHntSmkgjStf2BJAxnI9Q1/X3b28fNmsk1XXd1dVVCGN7PIxDYJBmPvv621fr9do5R0Sr1Wp4d+v7XogQlbAYa70fjHHGKELHzBxZQIw2maRRSulTCRv8WFqThFGr6+trpVRRFCiAAgJyzpQ5ReVlhkjnfHNG1edwev7+hwn1HMw//FGmLoSZgRBPLCZMFWqGCCdcZQgxZ+KyLBHRe2+MyQk1s3H56/zLOevDqRQ+P/JujUny6iqKIoQ4jmPeqiKikRAQQRgx/zKSGNIi4pwryzLDDa0po40weqN0JrrOWRwAyqLmBNdaxRhHH9pjt297rdFpdTzui6LQpH76O7/z0YsX3716891335V19fj4eHd3Z62tywoAFouF1lqPnhPFlICRiBQiKGQWkZjGYbSVWcyWi8ay70jBrNBSL8vKaa2rqvJ+2Gx2Q9+u11tTFL4fovRdlBiBAWMSiek/qHQnFhqImZEQADhNcElEmAVInWL6lIBz6mWY0vDp/ucbqQAEGJMw/Qcv8SHdLZJS8t4Pg3r+1M2aF52P37+5FTJBZBiD1poRCmsjwK47SgzOGgA5HmVRuermWpD2uwMAjJiOQ8+PA0lTOvPkej5blKUxYeyrqjLm6gXXDw8PPLYabDd4H5kZXt2vR8DH3dFZfdwdU0rXl1fe+/6wnS+feu+dtswpJbGuuLm+tIVFpE8+wr/6m18/PBwwlYvaIj77za++GjbjRx99FGNcri7+oz/4ey+e/PDLL76JAXofFJg4RpBD4ti3fVk6plwHqEyqKKu1Nkorgky/UF6U8fQYY6idVkopbQUIBRWRcqZwMAwDgDAACiCi1k5bUgp96ACAUCMqZkZUWoMxRkSEUEQIkEEgsdZqt9t13fFitdSanHPtYa/1vKqa5fKiqmeoVYwRSWLbpyiowBYF6aKqmuWSQ4zjOMbIRVVeXl62bRtCEJHHx8c3r15/9NFHfTf6MfZ9f339JBfQVdWUZVlWzrWuaRoAcM7laFKWpS3c7e1tUVhmNlpTxs7MIhI4OcSUktZ29D7D8Bz95/N53vOnrgef48j5n9ZaazOwEx5D/hGSADISFaVNSQnUx0N3OOzz72fqYhh655w2RMp47/txEBYyuiiqHGs0qWnx04QvEWJuy4QQznEtL/6ysM7qrusG7wEoU0oAACgxRBExxqBgURTGFQKUUgLAYRiaouj7/uHh4Yc/+CQnJ2OdQnTO5awDAjFGJI2IlhSiCiwKUAhDTIgIwgrUfD5/eHhAlq+//lZr3dS1bYwzqiy0YokxKqNOtTswynnPnptT0yNRRuQsITMcQ++NMYtm9u5+DQBEoLWtqioyFEURQhAEANJao0CmMS8ullVVDV0vs6pwblCaYyoql3FP3w8AcO6h5P9ba733ufbNDRdE7Nq0Wq1SSuv1+vLyMsbgvRdGJAKhvuPl5YVzxcO6TQCIvq6N1goAFELTNH2/VgZQq9dvX41jXCyrQ9c+bh+fP3369k06Hoe2PTx//nyxqN/cvvvxj388dEfn3GI+CzF1XScomQg81fQFEVlrmXD0Y9M0VVXd3d055x7u76+vrxFxsVj8p//p/9Zai4oQsd3vmcUorZQyxgwn8h9OvBciAshEj51y8zlDQ0p5jeVLdEZyH8be89dEBEAi71uN+bWIQKkpWWpNWilFkFJMSYqiyLhqYlk4kysBAMZxzNkXAIZhiDE652BKBJh/IYRAqK21PgYipbWamKcoAESIxmRWb2KStFL5zk7gAzFNbDbl8NJ1R6XU8XicamWRlBIpwykxgnNF1283mw0jiACzPLm+efPmDQJLmtDM0B3rum777rSjsSpKH8bFcj70vbZFvXnYxMB1VUFi5mCsNlYxw2p5XZc1p3Q8bA0mpxBJmotF8v7Y9iIyn8+Bpeu6g1H77daUtSvq2A7tMDAZADgRX+8feb+dIRV8QD7nr4km9oNFCBB/GzoJAzOfy19EBKTcMU4i9MEKQEQABsATnMstk/DtV99fXT8tm8XFcnUYfRgYEJE0C0dQafTsA0hIKaXE2Hc8KFdUkYEBSam6rjuIBPK4bce+awpXmptyYZxGhZHHobAaQudQ6qYSESDlQ+yj/N2X3y1m9eXFvNDW2OpwaHfrx5vr68PxPoQUbLldr+fzKviicJhS2m6O+10/tvz21aPTX283T9ebu25HeLAbo1NK27vHbq/btm0Pg7Pl2PVWGULt+3jo2uNxuLio6rpsFrLdbrvuWBelcTYxSEooEkWQptYvMyOokESi9313ZqSVUlprMjp/B1ESJJbofYgxKUVaa0Ag0kYbEUxJYgz5ynvvQVGuFElrTmAVbLfbrm+r0hLwer22WiFiWcyMsyKgSKXkw+CNMR999JF1uipc24593+ftoZSJceSYkvBisQghDMPwySefvnvzum3bvG/z/7///vtz7BiGYRiG5XKZK568hZRSKQXnjDUmhqCVMuY9keW9z0y11noYBuectUXXdVrrrjsOQyWSUoKUAgAjUubjAQBRADjG0HXHE5UaMrgUSSIphNB1x5RSVTXe+3EcfQiJA0sk1FrrdGLwtLWVUpkV7Lp+sVgQoYhwYswwJ+N3FAAmJEIsnNM5PPV9/hRE5LRJxgBL4JS3Qr4p+eaG0efKM1dLxtiqKBEhpVSW7vnz51rH3Lup62Z/7Iqi8D4khsRRa5IT6575XqWUMQVwItLa0jiGL7/88ubmZr3dPX36dDabxeiH7uhUobW21vZdl7nPvOVzTGSJMUZt3+Ohc9BIUQQl+JQxEACsVrOyLIe+rxujlPJpNMYQUT8ORDgMg1HaGPPsyVPnXArRVbooirvbt1mpUNe1UZoEcjQiQFR0Wh4phKA1AYC1dr1+wAX6fvj4o49vbq7v392O4/jw8GCKAlkIUQTGmKxFRPVv/of/LyKAgFLqxccfPd7da40aQWt9HMeyLLwf1ptRWRACALi/v0fhZj7b77dt2+Zq7O3btz/60Y8Wi9nd3cNqtVLGff7F18zRWtsPg1KGUwre5zzKCrPyoCjt6HvrtDGqLsrkgx/HqiyHcSxdNQxDSskZiwCA0h7258z64XXOSPpcnn7IVuoTvAMROK1VACA1YSk8VVyIqIj4t4lJAAJIIhMHwxyJCk4pc8t5y+Tkmm8QMxNhBvQZ/BFR27ZZcJBSklM7OcYYfEJEUyillIQwDAMzx8D5/Z+lEimldGKqiKbkQoDCnAAyPsj0UkrpeDw654Yh47OUUmJBAmDm3/zmSxYwhobASiER/O7v/lSYg/eldc65h7v7zeP66uJyDL5pqpB4uB/X680WNzHBfD6/WK00J1DGWaOU1n3fCiRUjhisLZxzLAk4kPBi0RD4oT9+8eW3Zen67ng4HEREEmck8qRqbp6/dPX8829ebdvvU0qonVYGOH0Ijt4zGIRZK5FvkJy+zssg45rzH57TqpzEWadfS0woH7DPOTOfAikJM7IgISmlAQGgduXYdsZWi7ppu40S0Nr60ZdlCVFihMKU1tQSEyAoUv3QsmACqeqZtaaqiuWibgr3+PbN2G3fvH0sFRq8LEpXlyoG/u71KwwReeSkAYCTdIN3ZTVfXLAkH6Q97JWk2tnV6lIr+3C4b5qGZdwe1s3MIJl+OCoNF5ezlFJZ1vf3935o3775brt7NE63e/9n/+7fry7mH338pD8erKGb69XheAQZh6HV2prCFIVtWzkejwDgSq2NtUXpEw8+FkURUxr61hijtSJAYURQZxpTYaadR1TKGKMik48A4JwjBQgEQpEFYkQUpaLSjJiYAVnGMWTcqlTu3jHjRFbEmADg8f5+OZ8VhT36YbWYX15erlarYfCk1aHtIYDSVkS85zF4luj90FSLXKYTEZEHgMxHdV3HzIh4+/YdAKxWq9yFhUHevH0lqJ49e3bmqQRS3/d93+e+r9KYONze3WnSijLwx7PuLNejWtsMTbJoyxiVm0/D0A/DkAvW86rOnzqdHiGEHEZFhCHkH+ULQqQRsSzLlEJVFXVdd113PB5zU7lpGmGFoKYCQmtFJsYYk+/7vigKay2QznQFnkqW3FFGlKqqiAhEjsdjWTqnTVEUXde9r30BADM3gRkW5LqZRTiEqqqIQGIY++P19fXv/PgniSMza2VQgJkPh4PROkYmpSTEhOm0MXPIxowMJJFIYuau68YxIKr9Yf/ZZ58ppfb7jk4FU12WvutBKWZWChlIRPSJW9akJmQACKfQiYjRB61s1dT57hhjttutMebx8R6A9vu9Mo6IxnFUxrZt+8nzl4/bTU5piGiUAhYOURIzM4FMyiMEBkDAE5B6z5+FkJ4+exaj77rO98E6NwzjbLnIuWccRw7R2Slhm6Ic+vGLr18DgACQttdXT7758qsYpKotger7vizLrusAoKrKvKj6vt/tdvOmXixnh8NhHPuXL5//6le/CiE8vXny/bff0+WlJmjqIrF0ozdKA4EIZ2Y1c7aI+Pz5cwAIo88sdEoBEcvSJRAdMYxeEpeuiDEKc12UXYzKuUzhnAFrvgJKwYc084lJ/DBD41kJlf8JH5AWZw4jdw8A4BSkp0Irb7rc+vUppCRE5JxFxHEcM/0AIDEKvC/3VU7PXdflUjilJJDOT+hcWZZljGm73RERks41PJ5UKogYQzh3OhEl/y+FKMCkXP4dEYHE1phhGNq2dc7F6K0t8ifN+3qMkQhSAh8YAHLTuqwqa01prVJq6PqqKJ49uY7Mgw+b3W5RuB//+Mcxxq7rFNJqtaqLUvf9SEQsMARvitJanVLYHdr5fLbZbBBgMWuspc4PdWEunzwbN/z9q++aqqyd+/7V28W8/tnPflbX9eN6G4G2h6499iJCaFgwJdFqujFnAPJB+zb/SMF7cRbmQnbaA4ggwEmQBBGnxi8CwlQQJ5HIrLKm6LRWFKIgEgoRMQCkBIBZKS0iMcDY9oF3zfISIs+KCrVpIytmjSQJSSsEE2XkhAJKoUmiEMX7IUYfQ2+Vjgf86PkLjFcl8v44vHt3N29UnJmyMLOmSulQaDVyOu53ZOu6rscQ+3Hk6BUhJjEIy9V1WdjN4/rm6RMAKmyRUhKO2uqyNIWVcdw7Gx/WG63HFx+9mC9mZG4A2Enx7v4dIs4XTtu4Wq2e29Xbt/eAqaxmzBCZy8bc2Ivdbne/e0t71zSNNc6LD4kjgzaGlAFUzCIIeOrfAIDWJl8lFkGWGFM80XFd12fljibQWhMpRCHS49gCQAwTtCTIShbNHAEgcWIWpbRSSmvYbrdte7i5uYp+uL68qKpKBGPkwjgRPBxa47Qx1oKM4yBCWZSee4qImHndTDTVZZXznNZaKX04HOq6zh1KZ50pyryTjXEAEEIwVgGy0iiQQMB7n9+eiBRFkalpmfRTbIzKSW4Yxwkyp5RL2Hw1iqLY7Xby250w/kB7lTM0M3MKme5hTrns01rP5/O2bfPTAsAZ4O92O1etzvS1iCgtpnDIVdd1foxE5EwOUhyzTIk+JP0kt28kBgVFWZZN0/hxPItU83NmqllEfIoxxmmcASilFGPSWlNZLmZVWZaQkujcJLb7/X4YBmFQShlr8zuPMYIIISqiiTDwXpNiZq20c/bTTz+9vLx82KybphmGgUOczRuttUbMQTblelfryFFEFFJIQWuNiCCCgoiEOPFkSqnCVSEEYMnU65u3d828QqzLqtrtDsMwgI9aa+dc08yaqgaAWVUbYwInSOymfMMxeRRBROdc27ZZpMIytcP4JCMKIf74x5/Vdd11wzCEprTDMATvm6bJJRpo61NM3Rj9qEll8lMjCCEgFUXx+PiY18lyuVQK+75/+uzC+0gICimGSEpbray1m80mjP0wxL7vl8ul9+nVt9+sFksRsFoN43h1daWU/vzLb0AlSISKUorMFGNkjkD40UcfDcOQOyZ+GJ1zwhxiHIaBjI4cSQEAcEp5yWmt8ZSZzqk0pxM1sS9T1TSRE8zn38kpjU8CwHN9BR+0kyV3FU8lU07iee0RkVJEiCIp40il6IRiIxEZowEgU1Zd1+Vkn0mvvNLOyCC/H2fLsiwRqe+Px+OxrmdWYZYxTtMxIiLgvUfE3OIFPknMJGUxARGRMAoIgFJqv9+HEPLHzFEoMYhIjOlwOMQEAIAAiDCOAQB+/rOfGVIAoBUpo4vZ7HA4hBCePHlyeX1dFMVHn3x8f3//q1/9ipDGri+t07lNO4QRAJwzMcaua2OM+/2htM5aMwafGI2tRJeHQdqQEphqtkCRIW5ld/z1b74YhiGKbLbHLqQ+kaASJBYkYzj2+MEDJkWoOkefswbvDLIYkYAQT/Uxi/CJf35fGVPK7XIUQiKi/NT5ORQhTxJ5YGZgEQCWBAk6Py5WF/VssZgtJAAo3Q+DkMyr0lrddcjMIIBoEFSIzCGaKK7Q7P2iqQurDdLuYf0octFUUJi6mF3dXFws7PH4sN7vq+L62bNn8vaBRv7ko5egi1dv7wKIQRBr9/tDXRQJZN/5x80+pVQSXFxcVGVTuCb4TmHcbA6z+klZamEau7sQxovV8uJqhSjH4bCc0bNPPjsej30/Ho7tN9+sSbuujUYXMUBgASStDEPsg0cFhtw4hKjRGCMMu8PRWu2MS5CCTyJJa63zvgRE0ielJQBITDFvvFwkSZSUggdQKilEACYipRkRtQKtjVJaRBiyaGJkhEwBAWCMMAzw9s07UlA3pR+K/fFQVU3fd2VZJoahHxNL40rm2Pb9OLRXdk5anQtNEVEEOVmmlNq2RcTVahFjvL+/r6qqrutxHEWkqqpmscy1XS6Ly7LMDbzZbJYJbefcT378I0ScFYUQHo/dbrez1jpX5kAfQkhTMp6aKUTE45jzrDEuhPEUiRQAjuMAE6MlKaUQpn5wYSpEzEK2HJLatjXGpSTex8xCC6MxBoiYOQfQPAmWiwwFmFK4uLjY7/f73XHWNHU9qVSYGSCdN06MkQS01pk0Tin5ccyTHjlOERFzQkSjjVIKpuCVqfssJcOUklGqLMt+6BZNHXwfY6yq5vZuTaRj7IkoxmhtEYVDCB92wVNKWhd5ZsEY0/e99/7x8VEjOedijLlWa9v25vKy6zqQJKeOADDHGJXCGKNWNpdZWaZ6Dvr4gXzseDwS0XxW/cf/y//4T//8z1KMw9AppVKKbTe2XbvebAHgJz/8UYZlWd0DLO3+wDGF0edWljEmE4yIgEBZeJiDUn4/f/RHf/THf/zHw+CdU+Pof/2bL6vCaK1vbm6U0oyotekOQ388NFVhXcEMZe0SKmMrBvj1r3+9nDeh7xaLhfeeA9dl5YMohOh9iAlDGsakMDSFU+JWiznH9ObVa2fU2Pv6eS0CzrnNbk9Eq6fPZ03ZdUPgZIhQIElMUwWpL69vDofDoT2iwJdffnlzeaWV8uNojAkhGGtCim3bKqJc9yMisAAKsCAhx5RnPjUpQkoCIAkAJTEppZByJj3rDPikOjznb/lt0RZzFvm9z+IfYH0ixBg9MzGztSZvk1z+5uo2hJBHHs4vmgXhWTWZp5WySChn3xDCfn8IITTNPIuZ0xCAptovhNF7HyaZhWHhyJlSTmcYQWeZBCIi7na7DP1zys+C6pzCyrJ8+fx5SHG73QLAGENKslqtNpsNIUJia20KYRzHy8vL3eHw+ZdfuKq8f3x49+7duzdvEbE9HH7+859PSMdq6vveD+DKsmnmSqFRSiSN4wggm67bHXoiGobh4FXwAwtCGgunRel3d48xRgZx5UzXBvuQhpQYcp2hYeqlT3MdWjlTtG2fM6580EWYsPk5B8sk7xQQ4UmKlZVZIpIEz/VHFFZJUCBnBZGMyxhymZZHvrRuXF1VFR7geOi6wYcQskiBo3646337MLRQllUQ8SlWrm77UFZlvah86JFHgLTbbpLVy6Z+drWyqCCGoYvR0Tj6xG51dbPf6Xdv7l1ZLVarwqe79cFZ9eLp9cN213b9bDaz1j48PMTIb+4fC+u8j/u2PRzC9aVA4rKwIExo7+6PVxer66vVYvZUm8+/+/b266/fjr5vFs2zpzXA1ntflvXLF5/ttu3f/t3nbRc5Yd0sfWQfPR5D5Kj1HEkkQUop+iSMbIg4+ZhGFRAFWACZYrJKn3WMnH5rWoCQEgNSxq2QEosIxaxcRWBWHJRSA/gQRU2zgAIgxhZIEnxyVofI1lJZwKtXr7Q1r1+/hsSZtAEgP8aQolLKlYX3XiTNZrOqtMwBEWOMOT4SkdZamBfzmTHq/l5yQyurJS8vL9frdQghJB9CKOpqNpvnSD2OYbfbee+rqsqDSUphUdgMrh8eHlar1acff/TunXvcbkIISilriqKsM+mal2fmDLXWRpvj8bhcLk+wXeVMY63NES3X6Hm1j+NobWGMBo5KmRg5pRBCsrYj1OMQhnHUSiurkghpXVibRKWUhmEoy1IpxSEKotYmRj+fz733fddlaXdZ1jmH5WCqtXba5N3kvddaI7C1OreuM7WedSU5eiYQZI6cipy8hZVW49BbRSEEBGiaxjlLmHJLtW3bHCsQEZFiTD6Goii6dliu5rk6qaoqEflhzOzifj9mnBRj5BAlpaJwKXqDKJJQlNG6Dz5HXqWUUyolsdZygjxAYq1TSmW6In+KHOtzTd/3fdM0i8WiLMuqKm/UzTgGROzHsN/vvY8Ckk79xeVymetdpAkxWKtEpCjserNjgDzNLmmqdc5B6V/+y3/5+edfIsA4JgAggNGHLMrzKabAaM1ms5HIfT8uFrMxBGF88fGLZrZSxrRtO3THi/kn87rq+1YEFKhxbP/nf/B7aMz+2GVJV1MVCqlvj5/84KPD4fAv/sV/+5OffPLZD39knL6+vhiG4TydVZblcrn8/s3b/PYUEjOHEJ1zn3/++b+/f+PDcNwfJLFzrmtbYxTzqQMCWDijlMkj2igo6qxefd/sO91lPJFPAgB5FCLPDWfgki9jhsgZJ53z67k+RjxxOUplZVOMUREoMnKK8FkDlbNsxgpn0XLbtuM4lmWZ40AmY7LEMpdwVV3MmoVSquu6rKQzxmWgFgMrpZxxSDJkfRaRtTadPCdijDn75tVVF+UwdHji2GOM33//fWGnBnBW5CFzjBEAjTFYKQCYzWYisl6vnz59Whdut3mntVZIwzBYbX7w8cf3j49/+Zd/CYSuKl+//j5Gfv78+WazKZ0jIo3AhKIVQem01pTbOaSPx2Pft2VZjtGDUl0EQfCsRRlbals1zi7S2NXzWYoBgK+ubg5dd+g9WrA1vnvc9IM3RUk8gdx8R5Pwic37bfrutxV0ACCoCOWcpPkDrVbOvudnQMxsNSBKltcjijYmJg8sVhtjTfSBmUtXXF98cjwe7+7u3r7+9rC9fX5zvZg1H11X261fr9eMo1Z2t2/BdKas+yGGHmdN4azqj4+O4HLZXM0XpbbA7IcRJEXmYzv6OCzmldL2m+++f/bi5ac//EGIEBJ+8+1rV5bPri++/vZ7Pw4xhhhjN/gxRGejUkZJAuRvv3vrTFEV5mJVN2V1/3AbY1SmSJFevnzJov7u87/rx7D+9pUfPtWaYoxl1TcNNvPm008/e3d7/+r1LXeHmNAURdePRVkrxDEmq2MmUCMlEgUCKaRxHI3RWXREIsKJSKY9c5orBYBcXZ12FBhSSEJEgCBAIgjAQDoJpJAUZHU0WWOy+LBwpXCvlE4cra02m9h1AzPvDnsCXM7meVeTMs65x822sXmUHkVCjBGZxyFA7M/dqUxHAwAhLhcLX5Yxpd1u13XdJGjy3jj98uXLqyc32+0+pdT3/eHQLhaLnCbHcTRG5Zie+7uj70OsNptN27Z932ttmfnYtQySMa+I7Pf7m5ub/X7PzAoUANzf32ut81BTLrsn14g8IglTI01AsmwEAIDxrJUVxmN/jDEhEAACkSHKqihJmN9e13VNWeW00battTqHxaIsx3FcbzbOuaZpOKosDj8PTnRdpw1pNSHUzIqfpdHn8eUz9hUAZhCYcLA2KiZumqq0JkVfVVUIKaTIzAKTbiOlpLVJICklYcyvm0l70dpam4fX+r5PIe52u0wyp5TGcSQOVNjKFYiSyWSZRECYRJinGQg8dakzk4+IIgwgRVFkNSwzBz9cXq1CCIWxs9lM64Go9z4W1qrVKoSUqY75fD7NbSNneSAz932riQAg11UIQAQCU/rJlyIzol9++eXUDWMggsrZqqpiCLe3t7PZLIraP2zHwIvGhZRQGefKTz79QT/GL776arPZWas5+nVdPn9yUzpjlNFav3n15ic/Wy3mC0UGAMMwfnt/a7VpD/t/829/CQCVA6ssiszny+Vy6b3v+/7JkyebzSbF+PSTTx4fN904WOtORAhcXl4uFovN3auuHS4vrp89vclETlk6ZmaJgB/wsSSIhAomz6NThXomM9Rp+BWnBmoe9Zy463NRK6dp4PNv4kk6NxXB8l7AlTOfojOWkjMczOEckfIqyrLP/GZCCMfjMafPjML3+31RFJlN0UpxSsMwDMOYAX1u+oJQUVhEDHHM68caE6O3zo1+YE677U4p1TTN4XDIjgUPmwdDajabpZPbxjiOl8tVLr4z2SOTqQ5nLDtdOmaQNGsqRZRSury83G+2Wusf/vCHIYR/98tfVlUFhEqpF8+fbzYbEfn45cvD4YACWhIjcIpJJOa2TRiD70erSZWVq4rUMdmi7eP22DfzC4hxHPt91zdsIMqhH9rDrju29+ttM18KUtf7PjAhWKMQ4vkGnKBryiw8AOfmfPptjw75YFBMPujYf/jT/6k6AKfmMiDBidoHTSqk4MOAYggkRd/1xyc/+tFFWD17frW+u13fvRva9dOVlRg+eTp/dlEsr64Z7a+/efXmYcuxTSzaNsfjEUu6mM+uFvW8NJSSURJSuL5aKqUOx+3jZlNWuVUZnr14sdls/v3/71fOlcoUIOm434cQuuMeSAvScRgAjS0apUw/+nDchyhGFdpSZCnrqm7UGNyh3W33pQjOZst+jD/6yQtA/OrrL15/vSNMl1cLreGLL764eXLx8qMLoPji5c3rN7dv3j0QYFVblihAWoMmEynPm0OMjJjRTGJBpVGTQsEoEU/KWE6/JYk8g2IiYkpEoBFEo6CoXDGHhIgKdZarQ2QRHxlTSpvddj5fdMdOBEVGYXr79rap53kGejZbGGdxHJijT2ALp7UewoiSlAattUadN3xGxEVRFIUdhmEc+4luJVACSmO2YijLsqyr/X57e3t76Nr1etsNXelKY6ZtZozJWP408eyGoavLKqdSIsjlbPApt50Wi2VeYPvDcbFY5N6zkOTocE63pz+fJA7TEj31SnjqM02iUAEIMXZd773PF1yAEEiRJiROEIZxNqvn9bLv++PxeHvbz5qmqqpcyeUaLrOmIYT9fj9vyty7ynhCa73bb/wwfvzyo/wG8qU7N/Awl3cKjEj+CIgYJSlQH9K8Wcc09G1KhTLWex84ZR+P05ac6h4QyjOaGWokFtIqJdBacUxKT+rcTDzE4BEEQKy1KQ6JU54hRsTfBuSAiJmHjDGITMMRlJdvnp1LfhjG+XzedgelUUS0VrOm2R9a5lBYS5QtR+xsZvIwSY6eYx8EUoyxKCwpKIri2O4BgAXywMyH9xERUhKlJjlLVVXzuqnr+s2bN1rR4XAITOPQa4LFYsExLBaLx8361eu3u7YnbbXWdV23u3A4HPt5HcaMXaz3Yb3etp1v+15rba0pTKkILi4uDrvdfj88f/7i/v7+pz/96dOnT9/evnv69LlSKgkaY2azWdu2i8UibBInns1mRLTZbT/++OMnT568/uY3WS18fX2dF8w5hOJU5Mgp203/BMjwC3FyPnnv3XYWW314XyYOMltbnZTS2dUkZ81zxACAGHjq6AMzAwrgNAGcPuQ+81IkIuFIKFqhIsh/w7npkMXezM5aZ21KaRyG2WzmnOv7fuj7GBLgOR0obbSIJA7MnIcemXkcgVO8v7/f7XZ3d3cxxj/8wz8sy9I5J5KISDt77Lv8Zqqqunt8ePbRk6GbpjCcc6HtM9+Q+yYZf3CIyLyczSCl5WpV1/V2u/34xYsQwpdffnU8Hm1RjMHnbZuriLHrmXk+n2uBlFJk8caowilDQgqLuiiKommqADHe+nfrR1Mtla37kYHD4KOIHHYbq9VmGzWhdUUSvL+/R6XJFBxT9D5FJiZUREQiKXEkZWCaNcqEpzAC8ilm5S04NX9BRCIwngDyuRTjk0Qas6ciCAkQSdZp5fIXBAjFWQ2SwhAYpvZ+33b/+r//7z799BOj6eNPXvzuZx/9+Z/+2+iPP/70k+N+6y5q48yu7z9+vrKOXr97NFoZgzFEp5wCCH0XwIQQ4tDOZrPdYQsgIY6ls4eD14Rl6XwM8+VCEW63WyDjnGPxfd8v54t29AxYFvXucNzuu7Kqm2b+yU9/vH7YjN14e/9uXhXzpe3HlJJvmvIv/uovmmZ5ffW0H7wtytVqcXl91R/a9ebuOHhlqzEGuTvWM3U4PArgxaqxVr+9X9ezou37mGIcgzaVUkrQMqfsvIEkSmkGJMYE52SRiEWxxMgf7iulFE0Ih4A5iSQQJWgSsGZEFE6aFBkURBCIAoGjCgLI1tphGJQy3vNyMX/97qEbBjICSiuj+3E8K2t8CsZqUsgjo0QFSilltfJ+yONAOYlmFoiZlUJrC+Ypu6SUAJmIbOGGwfZ971J6+vRpLkNDCH3fIiIR5G2TEX3G2qu6Mkq3vssfdhgGYSzrOsaolIoxiUjhinEcY4xKo4/Jx1Q1szFE51wSQYEkoJSmyWSGANW5SjiHv7xdBSAx5xouv2K2s4BT56yqCqWUc66uqsK57XaaS8nKrNwkzmgj1/Sb7a4oCoRMD1CWUsei0Fpnp4EQRsSGOUZOkQMmfX4zmdH9MLDmWElEx+PRKRSO/Tgsl0tOQEQhcowx61DG6K21hFpA8qTWKXxjCAGYc2WZn3m1WqQUlFIgWoEg5OFB0aTC5DtLiKKEGN4PLp6F5RmpgAgplRuEJxU3LOeLtm0BJlVdUZRFSACEiCmOWQ6Wu/jnpH5OS6ZwmWU9diPny4C5Y0j5d079ZoqRAeD3fu/3/sE/+Af/+X/+X14s5rkd4IxNSLSYVaWbV8Xb169E5N27d/t9u7y8YKBDe9xsNsDJabi8vOzbQ1HWIQRU6vb2drZc2bIko21ZVs75sS+s+elPf7rb7ZRSVVX94u/9/v/9//kvdrvuxQvV9uNSJISQeDLqGsdQFpOgGgC++OKL2WzGAqZwQNj3Y2GyLRoAECGd3V4RKFc/wgiTewrmNHyu6vJqPPMQ57h9VgLnBfxboPPMqZyqYRH5wKESCBA1AEyGG+ea8gz3lVLCUyWAiCIpC00AoCiKYRiapsn7fRzHqqoyUTyOYwzZtkUlOT0hJB88ADhn8rgwEWpd3d3e/upXv7q5uXn27Nnd3d3d3d3V1cVsVuOpA53JbWa21i4Wi7quBcgOfVZfxzRd/Ky9FxFjNMfEKVxeLBWBKordfl8UxWq1evXqdRJ+8uTJ67dvy7qazWZ53iH3ayTFlJIuiiKlqFAVpZs31fp+DQwXy0utKfYHW7hnN5f7rj+OI0CxP/aFjpNKUFFd1+PQI0pd10VR7Pd7V1ZVM9/tD4jIQDHGPGfLp4EQotzbfd/BBWT4oKE73dQcyxgZ8uTv1EJmBDkJ8/KwEhIinCaPABAYEQFZa80cFYgurNNGEqOAMcrZ8t27d01d7h7vf+ezH/zBH/zBb/72r7979f2iroxRHP1h81jOFp88v+EYjCtevd1q4Xk1a5yWMGitlxcrq6muqwzHj4edcDSkVovl06dPNjsTQjrsu647ArnE1PV+8FEZ62MCJAC01lbNfLW8qqqq92/J4dzNfB+Ms4/rHcDgDLx9c/fRyx+Vxfzf/8XfzmcXQPHxQebLi3qx/ujTT5VCBBnH8eH27vtvvru8uF6v96U1hTVaDr4fx35QRivis4iJKDvcCgglQQ2UThpFFMgOOyycThXwxE6DkAgiKJj2lpqmxVgBEpFRJIAhMoHkLKiQQGf3aZtSElJFVfzZX/z1r//ucxFsj31VF0VRoXCmXpNIHP0wjIiiDSmwLDHGwMGnEIeyd8YWRZXxo9aUJ2iZOUaf0mRzsd/vD4eD7ozWerFYaGsRRSn18PCQt/rNzU0upq21SmF2zst7OA80D70ngXEctXF1Xa/Xa+99Nwwh+uVyuVzOD8ddVVahH7quO48hAsB+v8++tWfK94zrETH7QmQbWz4N+59FzgxCJNm0Nt+mwhkiTNETmvm8aapyt9vtdrtO6WzCBYhTaaJVUVeh7zL7fbFaOld2XWeMaZome31P8iXCrDdBROSkTlZlzAxIHwZNYzQRFEXRHg+z0i2aYsheOiREmnmECS5MSTGdfLXOVRGgYo4EEGM8tvtcsiuicRyNVUSkiJVSBMgIqID9mSRgkKybfe8fICc6lIgyPZ0Sl2WZcZUIFEVx93AfQnDO9WPIwxCTSGcIzJxAFEIUtichT4zhgyYLMHNMQApYAJA4Td2urOnLahJr9dXV1TCO/8V/8V8aM0mBmqZhkWEYjvutCDx/shIEVxbjODaLGhGHfsiLwRpCZiQ5Hg+mcIMP+z4J9A+HPpvLAcBiXhVWz5t63sxmi8Xbt2//0T/6w8+/+vJ/+Hd/cXO96seQ69rNdrdYLETk4eGhKKw2FCMCgDN2s3n85S9/+elHT7U2s9kMEM/Oo0opAWCEzMRMKZGROQn+FlJMHIWBPrDCeF8aTZMpAsBZ+jSFahHmlFsk54F4pVS2XiAyGYLCaRYlpcDMmUA+haacyylPxGSemd5r0Scl18XFBTNvt9umaTLgy1q8vhtOrygcEypC4HEMIpKzrwj7MGRMk11CP/744+12SwR/9md/2jTN/f39xcXFD3/4w2fPnuUezWw2u7+/z8ZhTdMYY5gh44Nu6Pu+n81mkCeVY/JhSMEvZo1RtD0OwHJ9dXP38DiO483NzeFwyJzZq1ev8u3ouo4EQkiIqIdhKMvCKBQJi1nd7XdpiDx0oySR5INirVez6vH12osYVcTYlWWJkpaLy1lVhqFYP9ztDvs831aXxX73+PCwbpp5XbnHx30Une93bnEZazPwSSm9r2VJUN4bZolMTnuQWwj8XtQuCP8Tqmpi+0SYMouCgkjZUCLHuwz5FRKKXF5c7Xa74+54c3X5xZffzipnbK1MFZmEVYpREne7w+LSXc8rQaWeX/ixtxiJhUEy+Fpvj/VQVVVxdXXx5Oll3x3X7243j/eLuvrBy+f9ELpVDBEOrX93t0Vlq/mi7QdjXRKM3hulL5YrgPTm1fe69ovFCpIOvu36sFkfnt4sXFHf3W6+++7h+bPZZ5/9/S8+//Zx/ThfJfuuf/EsuckXT1WuSEMYunHNu3GI329eBxZj3X7XJk4KUCsV42SdnZc1I6SUUkyiBHha/RoJcCKlAAmJcmZmQWBgEcQTqkVABQpIEJKAJEECZNHIgkiCgpL9N2KM665rmma/3a6WV3d3d99///rh4WFZJccghNHHlFJMnplTFKXQ+0FrLUTAgiw+ekk8n8+zcMMYJbmdwcwxGGM4318iADbGZICfxcyV0X3fA1Df9zc3N9mU9ebmxlrLHDOURsRxHIdxaJrGGXvYt5l6JaK6rr/77jtXlrm0imVZFEXXd6dy3FxeXt7f35/VuRkcTDmV37v54zRlkRCn6f68F/JI0jlnC6Q8AKOU8n4sioJyWwhEK5MdN9fr9fF49N43mXbzYxpHY0xRVFOsJK1O/kS5HCQiHwZUoNRUTChFhNkCSZ2GADGlhKROfVbJUtCu6xBYRGaLBRLxGGJKIQTMbiCEChUzp9MnEgABiCkxeCKyWolIWZaz2cw5U5a1QOIIWezhnNGaUkCRDyxj+cyO5gF/PlOgSEIoCfJQYcqr67DbI0JZlt2xPddwMUYUykbxZ47hTK3nGH0+4yHfuH4cpvQDAABnqVoeo7fWAuAPfvCDP/qjP1qtVv/X/+q/+uabb8joHI7u7+8ZSAAMQVmWmtB7f+jCYum6rgss+XQBTBGzGXhKqijLuhEAZ1XrU5hYWNjuOwS4f9j/zo90EgZS8+Xij//4j60jWzgfonVFiImIiqLIRX8IoWmacQhZkv3t99/lrBZCKIoyk66JuThN8SVOHzTXMQqDiJoEHYCILACJQYCIUEQh6g9mFAFRISYE+m1zw/MyhpOrEp3K3nPylsRIAjB5y39Y8uY3wwwiKff7c7qKMWYGxVpbFEVdz7L/hta667q6rkMIh8MBZDKCBaAYg4go1IgY4yT+D8Fnv2gi8H5gjhcXy4eHu/V6neGRiHz66aer1erTTz99+fLlMAyHw2E+n//Jn/yJMebJ08vb23tmns+XNzc3Q++V0fNmlldRPgxD2EeBwmpNMI5jXdeR036/V0TH4zF3Ge7u7no/3t7eLRZzq2zmRA0pPfTeOSuKOcbVxazd1308Jt+HMN48uSKjvnj9/UMbLBUA2ifglIxCZyprLceUCw6RdHN1jSQhhBjGypqq0IVVPKvGNhvKaK0p2x2c1Oofzu4CIGeDzvcN/OwegMJ5Fon5lLARAORE9/NJPIIAAFMOpmxLr7WzGlmiDwIABEMId3ftarVCht2+E44cGVO4uDCz5ZUrzP72rUYTUipIP724Gry/ujYa9e3bd7vNti7L+XxeFHZ92KSuDeDbV4d7pwuiWV2Frt3c3w3j7eXVzdXFvO2eqMejF33s4+gTajeOozJ6sVhst9vbd684MDNHj8e9xJFJyCmq69l8flFV6h/+L/7h/bvb799+M59dohmblVEuBB77ljYP43xWzxsX0nBzczN0bdf2n/7gWT+mrvchSdcfClO4qgw+9kDMnI2Oc680R7HEkwWgZEFqPnJGIH+PCDkPuBHh6bQAkGxrQwlEMQKJEKYkShFPWRxBJCUWQWHOCmQE1XXdf/a/+08e7rft/vj86rIoShBq2x6F8wE1dV2vt5vDvgUAUqCyqbqALfWzZ882m017OGqti6KIfgzB51aTBmHGcRQRyWVfFkxmByjvfVkWRVHUdZ3Vj1rr1WqVOxx5k+92O0pjjNchxKyVVUrlTuoYwilZcsbdADAMgyg9n8/n8/k57hRFwachuonbNOYckrJJdQ4rU5xHFgAii4hA2fYviYjWRmttNAnHlCBPMLMkpWk2mxljNptN2w8sUhQFqMkOsB8Ga4y1hXFWKbW8vBi6IxGhIq31sTucJSRwkrVnSvbM/zMzKZ3/mVIip/txrC2VZdn3fbVcZUeh3GNm5pRYQAAkponszWx2vghnuzFEefLkyWxWZ7IhS9Xy9cmG/nAaPhQRTmdHvPOFxLNa9X0cPx2ToJQ6Ho/GqNls1nVdUZVZR62UItRJ3ne+J4SBiFqpk78VnzwUq6rquk4AFCEJMMtpTlSf31sI8bvvvvvn//yfA8D68ZEZ2jS6GPeHIwAkYEJIDDHGvMYUQdu2aKYDsjgFiOl6VTtthmFYXV/rwiHCGJNxyufTeUiMUn5Iy1V9/eRmvz/+7s9++uXXX93dP4IgJ4kQz4TtOI5lWSulvA8PD2tCCiG8e/cu7wIyllJiBGbhlCbF+zSBxiKIpAQnjgFJEcm52J3UgiDnkok+sLWa8FmWama34pNYOnOq5+ybH6c/AQBQOgcbyBg6W3DT+/ljERECVEjaOfyA9867PksdMz88m82qqopxmv9BeE+D54VhtE4SzzU0czJ2EmD3fWuM+fnPf/769ev1ev3ixYt/9I/+0Wq1+uEPf2iMeXv77ng8bnZbpdS7u9vvX7/7gz/4PSQ6Ho9N0+Qxtt/8+ovs55xtuuuqcE1jFHL0hXXW6DyXMXZ96Qpr7Wa3K4rieDx++umn89Xy3/7bf4ugmqpyxj59+tQYo58+faoNKvJaueV88ZvD327X68aVy8UMJf7gk49nVxf/3S//ImkDbNr9WFgdQigLKzHZqjRaFYW9v3375u2r1WplrZ3P57PZNKFRXl302m+327ziY4wxyX8Qrc67iyWPRv+H3tG58PoPvzndX8ylgwjnFJxNOAjh+uam647OucoVh91+v9slQK1t8in51DTztm3ruo5+RKJjG33gYjUDeqwrtd/vD9udq0qnjFLYVEVbOyVzY1zbtpG5auqyLr3v2v5IUMaUYBzB+yfLZVnC48Pd7d2jq1ZlWTY17LqNtg6R2n7gkLAma61RigCNMfuodrtWk7Nkve9XphjjWCtX1eof/sc//fqrt3/6y7/4wY8+Q1DH7rDfH9f3trDKaRpUGsduOS+tg1kzny2U7lJRuqqef/zJ88ft7vFhdzjstFullOBk7q/zKQnWTptnQriYQBBAAfo0Mah0vsRKUdYa5NZKDpSIRqZB1an4EFaCgkIsMInSFSI2TT2OXmt4/fo1KNUPPstGQgjAidQ0MxNjDHF0hVFK5Q4iWVytFjmShnHI7cC8yfNoIOPkipWlDXnS1Hufk24I4erqarfbHQ6HPD38+vXr/X5/fX1ZFEXf94Kw329XTZUTjzEmJUHAw7HLTlhEuYyGpmkO+93F6qLv+0yHPTw85O2dyedz6ZwvnTpNSYpIFJ+XaIyQkuTgnkUoimw2Psx5xVpjrVVTN1cTIQkCC4AESEqpy8vLou92++PxeCzqKpc4zpU5qGVqy1q92+0uLi6IiDSGE4zIoDYKO5pUOXmiDCc3oPcmzFlLWFWrxWLx7s0hX2GldJYxhxDGmBBV9mjUkwtgyk2BHFhDCNGPdV3OZrPcaz//JqKQpJPSJ53qp8nqBADSyWOHTnOleQTuw3prHMdsDJKtSB4fH+dp4b0nbZXSZVErYwEgoYQQUL/Xmp0zBwB4Lykl55z3XilQRqNgSEI8TS7lhkVKqSxd34/D8IgI1mjvY1UVYRgBQFE+PhUQwRgjKZ47sjwx2eCcG2NnrY0xiCSjXVEUT55cvHq3rq0ViOMYSmeAGRF+8YtfZHndxx9//Md//MeolU46N/vzqsgmqdkWbQghUxo++Jz+i8KO41iX9VTnMGfsJadBEsQpy+avc4Y9A52TNOf9PFJeEud/MjNOmhA8d4IztXmeEKPTzMK0L1BppUjBaRFCzmR5qu2Ug9EY44xtmjmS7/s+Q+HlclkURX6ejAIXiwUAeO8zP8HMit5LKOBUfKeYTSunciKlFKPv+7brulxG397evnn38Id/+IefffZZCGGz22632zywdzgcmqb58ssvraUXL17c3r4WkYuLixBS3/f39/ddNyil3t7ez5tqtZwv542vijAOxmoiss7VdW2VHoZhv9+LSFVVz1+++OEPf7g7Hq6vnmitq6JQSHlwUX+6iq/f3aJ2mzZ8Ub/57Hf+4G/8X96tH8uLy2fPPv721ePD7ni5ePr1mzsvfjlvLLuYfL/bqbJct7vCOmPU5epiGIZxCMOYQgjGlb4dlDZaayVsEISQyESGFFISZlKiTUwyQWZjJAZNGoQHfRQRSYAEGrVEAGZBne2zBRUrFCCZvGawRpPXVmBGZhHlADUCDuPTuom+++TiwhfSNXL79nWhTVP96HH9AI0nGWeLZl6vvvvm2zF27+7epLSvGlEa7Kz+5tt7OThr57qucb3zAxtbaKf77sBdf3W5urhYre9kF33sAFw56lI5dawvnq6UsX3X+cN2f9x1x01rvQDhcRh0IgG9O/TbY8vIqKAuZiLHH/74ZuhDUy2+/vKrh91AaqERYv9ue7+pm/L5zfXtqzfzxROtlr6PqeS3+3VPcYkzp2rooC6WzPH2zWMMowgSSx8SgXaWoh/IeW2QOy8iiEZiQq1QKOuWiTQRyanvBUohBiI6eXoKIgCHkJJSqBUqQlJAwoqIKCEQAykgiUEROevOUy65hiCicRwLa5Hhq7/7KwdD4xbErFCKwm5367IpkjBplRGlQiKA3veaXJJxtnwmku7u3imljLPJs2Sh8qkoJ6WXFyvSar/fWwIEJkh+7AyKBoEUKQ+vt91svhRlI+B639KxJyJjlLYVaKvLwndDFBZNzpg5N227N5Z2+7V1ZvTDarVgjsyMyhzao84evkJVWRGqPHSUoXdmy2PsMVOeGrSm7JKDShuTjcIIMvJRhAIcE7DUVTYcSJa0IqWQCClB/LBbSaDqylmjj8dj37YyjlVVgY5GqT6EYfAKlTXlYn6ptQohPD4+Hg97oxVLUkpZW3jvg4oAiAyIQhCRx6qeDUNvtQ5hZIJxJGPVs4+e7YcjOENaFVW5Xq/Xu0cfvXIaUwSSJJFQC0lKMsaEiMrYMSaB6INfLBY5gxIoEbZKE4qkhAgpBE0QY/RRmCEfBsAIqJXWGiPnWjZm806J2Yww2+WlGBNy4arWj/sxffLxC0bbBQibfe5lOucUaedKrS0wzprFMHoAFEGIobYWoidh37XIQKjrZvl3X3wJAilKSEkrizIQgSktkinrqixLFKjs8Z/84//Vf/Nf/zfJxwKA4pB1wwxiABDAKQh9f3l57YfADNZqzgOdHFHAarBGjcOAiZeleXz96mreHPeHfhhcUQQfUGD06en10hm1Xx9+8tkP3nz/zWH7aFEPKKQwRJ8PFvQpKmvCMHbj4JzN1q2RE1CmXpyJkSI75bRxMcaiqkIIhJxSciySOIxjUThQEMbeqCIlSSkQQbauI1JEBiA7hyNngw6ZbNeIULwnowkhsQgzIgFLCCGfIpzXNgAkRiJyhZtSOE0Yy9oieyMqRSF4pfIxDMlaW5TKhwODMIjSymiHiD6kcfTDMESfEJFPzuqKbEpJg6AmTfkVozJKWxXTiCjASWtrjPHed+2QUhqGdNj2h7YLIWjj/jf/yf96ubrsuqHrjnnAoajKw+FgTXFz/fSP/+V/+/Enn8Ykh0ObD76s6zqlZEszWzZVVaGGX/zi57/4xS/+zb/+76+uLtpvx+M4Vhzrch58+vO/+vO2bTMLFWNcLBZfffPq+++/n80Wz26eEGIeOK7LSo+MzeLif/zV5zfPPnp7/6Bc9ZOf/eL/9f/4r9/aB+tcBjtlXc9mMyeqaBYYQj+001wdaNKq78fHx8eiKFxZOWv7MRy2mxRZWzOOISGJSFEUKUn0PcN0RkVMgsCEpAgUSBKAPCZBBYhIYhbhLAMCRNRAwikxB0mS6QWJwsxBKTgh5Ay+knBIvD3sU3RpaL/n+OzJ5YsXL5xRb9++ffKs7uO94FjURd8P1pQ3T15uHx+O+804DKtl9dGLp0LRuH1Ket9u/eGAKFVh7awAQuec1bTf78MwUj4wchji6ANS0LB+vN8YdXFx1cxnV9c0jPzdq3eff/X96D0IGa2GMPQ9g6BzlU9x99Ba498Ob188/+Tdm7eG1OViPvTHPYX6ZtW2PREVtiwMd22PCoxxYWgFtPdxs9kAB6fgYlFfLOqiqnebcDgcBp+60QtZZYuL66t2BOds0zQikvWrnBInmKShBCgswHkyWyQB8pkdmgpgNESUPb0REYHytslgVxCICGHSH8kHZn7nVigzhwD7/T7Xf865XChkT6u8vnNzaxxH5+xp3qDUWhulF4vFMAx51EdOQqec4DPpVNd1Rt+Hw0FpPZ/P+36InO7v72OMMXJTNxmbN00TY2y7VivtPa5Wq+6w4QSZeTaumEpzgP7YLl48V0rt99v7+/u7u7szYM+0GAsPw1DXTa5O8P2UrYQQsmEMR46Rc9IVERDJEuwYY65fs6XiaU7j/eEzIpJSyL3Mc1Xt48RUL5fLsvBt2x4OB+WMM5ZOI63WWhSuKtu2LQDv9/vlcpmfMxdPIR+pFmImDKy1i2ZW13A4HNJp7rYoy7IsrVbjMOTp58fHTX6S3MtgFqUUaJAkZ9FZZrmUonw1zrhhKn2EKa+eaWlNrZD8Yc84I4SJIv6wLs9fJOE8nM2YTwUAa+23335rNMYoqHKL3YOEYfBEunDVcnWpTzMURATI+axlZp7N3HnaKjFIjCIQkncaAGAcPRIXhSpcdbFaVFZd3Tz9J//kH68f7//0l3/95Mm1Zzy03eri6nJe7bdb4JRCLMtyv9/n9wyJU0rO2RijJmTmrssmD/GLL36jbWmMioDOWG89MzeVs9a+evXq+dMni8Xir//6r6uyyaPtGcoAUTv0WdN3PB7zzsrn7sEp+iml+va4urgYx3E2m+2Oh+9evwKA0fe+H7TWP/zBp8baiTgkCiGQVafieAqiuUfz/qJ9wD0wMwvr05FfcDrFLglnZ5KUjzQSUcrkxoRzTqmpPa+UKooCJOW7kPXA2f42kyvGGGP0tMdDHMfR+6lfQPD+uPHz6kogkE/OViq/+rnVkkX4+cCCrJQehiEyV1X14sWLfMaw9/7rb74pioIQlVExRk5QFMXr16+Px+Pv//7vZ8VWURRaW2bITFueCez7frFYHY/Hjz76aL/f7/c9EXVtn1L6m7/5mz/5k38dBYzORyTBy5dP/2e///efP39elqUCJMSMUDWSZlUehrGN+Ga9ty62/js/9D/82e8pievjEQXI2fJ0FltZJwZR2hpjlDEpRWsKpVQS1sZ0gydtm9kcte770RTOFs2hPeYQk9KolLJKhSS+65SzBAyJkRODoDACacI0ahDJWuekTocPIqIAKWU1oQAwU0qEogC70/ow+SxFQEIBycFdXFGVVWOL6uFxc+wG0vb13W9+9+c/ef32rhsjo/nm1bvC2DREq4vdIWkN373ZK4VPnn/a9f3x1asQQREWRQGAXdfN6/LJ9eVuu5aYUKBwxmgCgBzvSq0H7/bHA6Cy1qGxP/jseaL49TevpQ9DHI3SAOTAOlcXddN3I6jdMPg4jBqpqOvgh7ooPnp2U1cu+M7qYtaQ93TsgivLi1WzPW7zY7VaVGUZx363b7XW89rN5gttbO8DBtDOGVsKxt4PIYy5DT/NrgEIpBBO9D7RudN23mkymbMjJGEUpTTpbP4MRJgzbg6PRoExmkRzSpTtsnI4lmiUCmHaLeOY7u/vc8Y9iSayq2qk0ylGxph92zlntdYcfFVVWutsKDPKEH2oqqofBzzJbdLJyjSTWszADNkYK4RY17Ufo4i0fQuA8/l8KrLVRJTtD9t3t+8UQHY5IKLu2GprFouFcy5JAABjTO74Pj4+Wmurqrp7uB/GrnvbOeuIqG2PZVnlpm+MkWgyrCYigcybCcA0syEfmOLCpBiCs0uGiBBhZv4z/XA6SRtOuWq6O7mlncFH5wdJrJTpuk7VzTliEhGI5ExPRKipbXullCsrIkoh5js1+YQkLsvSOiciWmFdWUKdh8URcRzD7rDnBEMIIiJIilRkMCIpxXPI4yQgOAXZD/q7WbYFk8sFnD9s7hfE0xHF53T7YeM2X65zdo8xAoEW2Ww2McHtu/u72wdEJBJXWO99CCwMAgnAQ3bEA0gpAnB+3Rgjohhj6rrcH7ssuQIArRQo7YcQIygFKQISH3x72B2//YY1wC//9M9I4OWLqz/8w//o5cef/L//5F+3bV83HqCq63pWV1/85vNsHagRUkr5IOeqqg67LWmVM/3kJCNJGzUrbHu/5mTCmADgyeXl5vHx9as09sPDw4NzJYP040BaM0BIabZY5iOnHh4e2rbLKSee+gi5vztBQEVktKvKL/7sl//+L//yvLGdwuvr63kzC9Eji9Y6hFigJqKTuP093DmHAvztRiGeRPiE07BQjiLDMJ7XntbaWicnZUDuLuY9njFcRhV1XSulEPg8RJ6zTEZjKeav89pQxtrsmOu9zzMF07SSeu98qbXOY2Y5MvgYxn5qXWVZYtM0y4tVURTH4yG7NOcu0lRJCOXxob/6q79azOZ1WX33zbc315d57RVFMfQ+jkkqjIGXi4uvv/q2b7tMev38579bukqh3mwe7u/vowACoEBIAACFdbltLCJd36vTAHFRFPp2P7663YidD2JChM3tY4phYLYoYRwIOAmuLqWuZwmHPPCnQSNiiCGG4JxzRVUK1nXdD2M39MfjdgxJGc2eY/TaWTmB0MIarTWMw+g9JqLpKEdBBhZmZmSxbEARowgAkwROSZIkYY5Ga0JCZInCiREESCl6P8J/OhZcQGAYQ1PYMcVX796VlXv+8uPCqtu37757/atvX30Tk90d+qo2y9WqH7r51fy431VV/W591Hvf9/3V1fD85bP56ln37t6P3ke2RgFQZFbKVGXDITqrY4zt4aiUAkkAfDzs3rwryzIao8uyjMnfPHnyg49fXF9fHtput+vvHre7Xc9Ah+OaxxZIkYq1tu9efZ9CJBSNGAv9jmJZWILYlWVkGHufEvfH9nhsy6qqinK3Hx8e1svlfNYULGm9OxyP7eVqubq8uTBuvd68u384dPuqqrI0CYCmU8cFYTpDPiAi4UQckQIRIAERzczImI/Sju9nQ3O2zl12RCAQAUCl0CpNCKAUTTOvCXNZzUwKOAkR9X1/d3dX17X3fr/fPnny5HDY5a5hDkycwI9xKrMTAEBZlorMGNsTCNX5bB9TaCI6du0H4eD9Sa6TqmgygudhGPLh7cd+WCwWj4+Pxqhje0RARSpxUogZp2f1jbX2cDj8+te/ropKIxwOu2wwGUJYLpc5WX7yySe//rvPRz9eXlxmVXw+ZImZjZkEnMYYpdEYk0XXkCfRmTMSyn54wIJEWmujdVZpwrkIfm+6Oi3uvPDOyCPDDmstt+C9D2EchqF0BZ4kS9774Ifcw9akAk+W9+eyu+uO2Wi37/t2GIdhEEARFo5hXr2tinlTOle2fbfb78Yh+BSzdM8YTUQcY0oywSnSnEROVmVKqTh6RDTGZJ0tEgpzPsg2Q4fBjycxFJ/12DlM51b/VHIlyAWWiOSXU6QR8f7+HgHyiVir1coVpq7rMYwxRhBkhmHwWlkRERBOSQEao4gohpGInDNlWe6PXVFYmKhXstallAqFZVHtji2SJmXGYajr+awstpv7WVXNZovvvn3zq7/7YogxBn716s3juzcc4cefvWTm+Xz+3XevooBTyg9+cbGwdtK7GWOiD9baFMfFYuaKqmhmD4+bMPYK4enT608/+ai9uri+vPjqq6/+9m+/+t2ffXbs2qqp2bMIMAszH4/HYfAhpJMsSkEKJ6pJMqXFCF999VVZVx/Zj7uhV5TH34UFUKvlcmmzp3FKWmWZEnx4+tzERpz8kxHxfFxdjtZKU0opRRaazK0QkfR7pw6aOsQxj5MRTVAso9JxHDmF3DZGhBCCMBeFBZjMR8fgY4zCEw7LRF2MHGP07E9yRZ0lBXniPO8FOJlt5fy93++JKHIKMSiliqrMxasri8fHx+7Y5ly2Wq1kGsAziJilXm/evHn50fPH9X1R2sVitd1uU4yKzDAMKXEKaRx927bdsX37+o2IkAKrDTNsNru+PVws53//5z/2Meb5QyLKKuuu65KfKPR8XJW1Vn93u9kcfdUsQJsxSZdCU89fPawvmlqBGFJKq0Pfu6KJMcYUnCt9HLM0wyidWEYf2q43RUHaBO4ioCsrIGqHkZnFj5qUsQpFCAmQjaZlU7ddR4oQFRIyJ8on5ySmsCdliDARIJLAdMxvdjYZhbWIMho1MIhnwfOBkzj9l0djBh8QxSAKy+dffv3tt98+ub6aL5pPP/3p4+bwuNkKmH6IQ9ovZkVSvloWu/1eRA1d2O/8cXh83A8vXz6/uLh4eLg7HA6FXThlDvv2FbwttJaYUjTGmKurG+fMm7evDoddCGEcZD4nUuNyqZSG+8etsfrm5mq+mF1de6WSwnh1edP2Yb3expASlsMwzAodNS/ns2dPbtaP94umMIpCkO7YAimt1LKqQ+JD2222QxYZZQYyhOAslc7Wdb1vB59guVzOF6vA+O7uYbvdK1cyc1OX1pUhhLYbRKSwNiIJ5U2MiKdLfZKm5xr4vC1zNyjTqEQKAVChQkJE4DFxxHwvCYgoW3kgUc5DYwzGmDzM+vLFizDssglOrn3LsmRmYYwxZC5XKRXH0ZzORchxOeu3z7qPEEKWu+fzK88nrqSUMjWtrT0eumPfKaWurq/2+/3pGBwpyzLv7WHo+qFPpwIiw+22bZ8/f5lS+u67787M2DAMIQYienx8DCE8PDyMvgeAvu+zzWGMKaWECGeROSmwqizLchg6rTWfyP88B5Jf8XxuklZKa60U5optuv6/nYAB3hMV+f8hxeRTprIZUgg+j2VZa4vCjWM/Dp21NlfkbdtlxM1A3nujcHM4XCxX64fH+4d1SgKKSGljjHDq28Pt23co0Tl3fX3ddR0j9v2Qj61MKYUkIpg1SiAoOHXBrbWAIjFlclsRxekgOYxZJ2y0q0phDMkLglLKKnsOmiGEECKfRFhTPJWpwQkARJMWrG1bpaBwRa6kZUgiYow2xljjlDIhJGGl8sFHOJ18BwDZPzz7eFj3ftg0hKC0lcRDYEGfopS1q6rKGlO6oqoKo548vbnyfrRFgda4yLPFpY8p9puxb3MOyDAx5yIWmM1m49gjYoyitY4AWuth6IaxJ21WxWVVuofNsJqXHz17ulosXz5/URT222+//d2ffYZaKePa0TMqH0Pk9LB+HMdAJwXlOPrsDgYwZdCpiNRKmcnhf3vYJ5AQAQA0gisKZc04jgoJAMYYlFLZA/V8wQEAFIEIQm6avAeC555UHkQ60xgAgImIJuqYTsdcwgfzSPmhtRaYDpE0xrTtMcZYV5XWtu+7vGYIdT7bXkQQadL3hPd59xwTRDIhZ1NKMbLIdErbOIZxHIfB03SKkc1cGiIqpQ/7tu9Gpe186eq6bppGUvYG57wID4fDOI4vnj998+bNs2fPcuOJUIlA3w9N01RV1fc9x2SLYr8/iEgUKDQhYtd1IvLkyZMXL14AgI8x1wCz2SxT7s5O5y3mzSIi+tBGsjVrd+iGJBISDsfuyfXz4I/HtnNaPblaIipti7KMSLrt+wm6cnLO+ZjYh7YfNt9972w5hmics1U99OMw+rIshyECCEVRKKRIZScIq70nQUgxIhEJGmc0VVprF3ohDDGOMUaBIKAEEoA1ZRROuVIGUUREChHJj4iTmAjPvmssirQgJRDjCkgxSHp7//D67bvL1XK+uLy4rB8etzGm4Me2215dL6yixeXFfjMEANPU4zhK1//dF19+9vKmruvsYO2Bk8BmuzdIkuLHH38MiI/rrStMVc/KqonRp+R8hDiOLC0RD2PgNL5+9ebpsydKqeurVWFNVZU/Xr1cr9dffPHV19+8raryB5++AIw315fzWbVdmqYuDZnj8bh+3CaAmBKopA2SNrwZox+1Usvl0ocwjF2MSim1a4fs/HnseudcipLBbH/c54U1ecZKyi4n0yHAU0DPA0cEkhNE3m/v3W1SjHmXngusvDcRkWNipERpkm8gClICVkhRmIhYorX28zdvRj8CYkphNlvG6LPaOU+tEJH3PkauZ1U+ozxnYhAhEEkRSWXGMm+kvIJFhBOLYHbrynbQSqkkQsze+3w+yWKx2B722+0217jDMByPR6WU1vTyxcuf/vhHk4mH1sao3WEvkLbb7Wq1yqTW1dVVVVWzZkZEbduWdZWVpVVVpZj6vnfOaQ1EJkN4RFQa9XQO2tT5A6B8/Y0tlFLnWZcMLPCk3j+XEUj56k5XO3va6NPcs5yaYSmlnMY0TccY5IBIRFVVOatXq6W1NoQoIqUrog8JKYy9LktNqqqq7XavFTZNI6RCnHTmIREBW6OaZnbouhhjWZYxiTEaUgpJUoqIyAIfMMzT/AlwOk+nZDpEhJRSwfuUElrjnOMQRcTaIsYIcZr3nSyN0kQt5lonpSSIlA3zTs/Ztns5GXSEENq2JQWHw6GqSkDKcjMEUxQVAGRxQ56akJTGcUQRQMhq+Xz2OwFEhny8lc3HqoH07TGl5Idx0K0fysNh/+7dO00QGaqqEoQxpOXywhlTumVZllvELCZarRZdGAkhK8CJCCVZpduUmroB5DBG1YD3ftE0u+3w7MnTsR/evHr9+7//+7/54tfb7fYXn/z9x82GQZJgiGG73caYiNhoky9UNiHJYJSZUQABCusIMAH87Gc/u7y8TJC3PACAUsAJcjOCmYvCidYpRq018mTmfOrmZj9HSDxp1OEkMJ5iBdB05OUHZnnK6AkcnNza/TSWBmcViEynH06mTM45pbQxpihLEMmtJCKN4BWRIkp8yu6o8jN/yJEIgNKojFY4Rf7Me52ikyitichpnZF3jDEfytF1XcZJ2c2DmVFj7lujSD6v5eb6Mr/tTBqHEAiVQsruK/mUz7zXcuAC4R/84Ad9Pw6Dz+c5TSw9TTNU1lpEST4EgbM6lUW89zpbN/RDSII+RlGqKMq79aapLNlCiPbdKCIr7ZS2u90hEpAirRV4SIK7Q5vjjtbauMJzf+z6YzvYwpG2IYl2jkQESRCstc6o7FhQlmVKqechVzBWm7Ksy7K8qRpBGIdw7Hs/Rh/TEJMAMjIrTIwjc8hSEEHSyqqcSuBstAa5TQzcjwE4Ok1NVVTWaMKub+/vH42tQiLnyrbrvGfjim++ejufz1cru7y8XD/sMIbaGR96H4cvvzysFnNX2Dxj6BrXHQ6bwxFY5seeAKJQGlkkkcKiqMih914Zexj73XY9q8qmqcZhaI9BG3rx9Fny6W53V2hnEBZ1URf67/38x5999jzEVFYKOF0un41dj0JG14RJaduNw3HoB98hhOViEUMafBiGXpBmzUIRjD40jRm7DnPLBFRKiQScMypl7z05Ho/GGKUQGVP0gjmDUvZQIMpHGREAKcKz9oeZQTjGRGQREEAh55OuJrsyRQKSmDEJJCQiUhoVKAFSMI1yZrEMAGS2ebFYMMdz3WlNQUTD4K21iCrGmM8PBpazayAiKAQ6jdhmCpeZUxKGqYTNGXp1ucxbdAgeAH0M+fzBbEfcdV3XdYkTM4fADw8PD6tlVnghKu996Yq3r98oo3/yk7/36tUrSOyq8lzpoqK+71+8ePH111+nlJpmniNLURQ5PeQundLIzHmaInPOANPgKZ76YYV1H6AZyWqklJIyamL8zqysYDam4cndfhKUIqLWasynHCIohdqaGKNCmNQowoj5aMiYK+NxDEDIzH4YU0pD2/m+y6ZCpBShEpvdWMAosVo18+V+vy+cDTHz/CkyiGD2z5CzET+C0SZbNwMnAHbOEWIIAeA07CTTtJUx5jiOClFr3fd9149nm7B+8HBqA+e1xyDC08kWWf6lMG23WyJVFAZOtt6uMCLinB19OOcMEYnCMUbgCGCznmRCSIrGcaxmzX6/DwG0BomQPYcTSxpHAAAUFNaaUJJIsubU4FTQj0NMzAC3d28nl0uWDKfathVI1lo1jPk0WUR0TgOA90NdP/H92hVonZEUVsulc9XFcpXP01ytVmPvRfDu4SFy2nc9IiaW0XtA0MYhYuj6ECarqXyhKB+vi5SzRSYtUkpj18cYiUAEUgIFUFWVUtMxi5DZ4/dGv0RE8YNEC789jPQhxsLTiLZSyhijbT4WaZqvywwQAghzTInUe5c3EeEQY4xZSpZL0hBCCCHFiIh934cQspJApkEMohMffjweh3F0zuWx+Ji89z6kmGke7/3ZDKcoy3g6mRsA8gIDRZG5aZrZbJbpNOZJlAcAiUMIwQ1D27bZOr4uyqasdsc2xuiciim0bZsVWLnZnIfIszh/uVzmYacsID1XgwDgjMnGBqf5+GzDRyJI2milVAgejVEoxqgxphhjBAhJCJRzhZAKw7jdH5QyPoYgnMGIjyFz+lnelgQOh4OPrIyOWcoorNCFmLRCAkBU2hpXZhQWeeiBUEebt5YgxRhDSMeh11ojSeVcbQuYZvPVMAwhxpFjSCppDMmPMfixM3YBADJ5KEL2ckVFMTABKNI++LYfw+ivLpbzxRIKu9lsYsyHNehZOQ8c5s3Toe9fHW/9VVgsZotlsT882lKhlHHLwzCE6G8uL0grUhQZEyhEQV3ElITUyDGmFPrBegaV/edIEgeBu/XOMz65vlnO5oTS9fJ4v/NjH734frh5cvX7v7ioans87AESoY5hLKyezUpgVATjoIvSVXNXD259kP3ea9SDsNKuqooxSP68Sqn1ets4VxTVZvPYtW32LPTDmFAZYypX5Ck3RExTYBNFChEFpsSQRaqJAwBOJ4pMeuYoIt4PognAICEAIItS+rfGsSVFQG1IkZrGSGiaQVRK3d7eIuAwDE+vGmvt8ThkHiV3THNRmB0tUkqumlQ8KQF9MG6IiH4cs9tGms7XgjzhmKWtefPHGOvZwtpWBO8fHvfHjhkyek3MSdgVBQGWpdtut1c31//0n/7Tf/bP/hnHrDuDxWJhrRVIIY5IIpK22/bq6mp32Oe38dVXX4lI0zRdd3S2zBh5UiAj9kPb9/5MweVm1RnQpJQQEgrke3FimlNKKCLI7/2ZJ4pvcmLlaeI2nXpxJy3M5OF42tgooDQhorX28eGOOc1ms+wv4b3PNrzGGElsNcXky7KsZvP9/gioyJpM9gY/aqVsYauqef32XVmWx+PRxyiocjFJNDXa1cmmP5OK4zgSCBEVzuXAmseFz0R6XiwpJTKGTg7+OZEg5dqAz0k99xcmDuZkoFGVs7bvhtHPmnroh7Pgy1prjAUka60xZfAJtTmTn2o6eCD3I0HBNPrSti0LWKViSllRrG1mYgUYwjjk9911bVUW+Z1rY2LkJ8vlse8uLi5qI8fjsanqw27PMXZdp4zOn2uz2RqjUdgUTkS8j2VZvnk45A+uTWFdqbTZbDZ932doWFRlWVdv3rzZtV04nc2qtc1tlxgSCCiFSpl0monPpij58gGAJsUxqdxoPB6AM2ylFNlorQAJMOblqjJJM7FeJ0uu6UKl02j7KfsSkcqzRmeEdNa1ee+1tplmy9nunG/SpI1X1lqlsT30IlLXNQAcDodMO4cQvR+nDB0ZABiESGdp2MRCx4iI2Zw5j2hngioJ52ZcBh/GmH4Y2q5rmiaTZOM4RuG6KZVSx+Mx+PD69euuG+7u7mxpl8vl4XBQSpGCOHqj1DAMlxdLSIyIRWlvH+61JudM27br9frq6jLGcDweiCi3j2KMxijm6P1ARMJxKsEng4Spu/zu7V0GCiklRJWnk40x2iAbrYY4FkW5a1tkzjMGY4jAqS6rMXFIjEkGPwafOh4rRYWxOShUVdW2bTYuUEZT348hKU2IYFBJCta6vu3AqCRhk8LYO0Cu69pYgRDIcAgJSMcYFZmY0hDBEkFiSYJJUEAjchoapUHR4TjE6OfzxpTN4bA/HOJj8EQ6ciJllDFJ3tsgcGJCsK4QSCHF/fE4m82aoqkqGsZxGIbtYTufXZRFtdlsHRlTFjH63fb++uaicCYlapom0Xg4HMqyjMIk+vtvXxdF0Qdmhv/xN9/WdQ2cYvTzRWNtcRj86DulVNOUIfrIpp4vrKtCxNv7bQqjMyYlHD37wNo5H0Vp6fu+7XYAqW5s8ENV2Kqom2qmFF5ermKSzW7tqmKBTdsdDLNYcqiq+SqxrHf7GNhYDVFpo4hgtVymFFJKx+MREQWRJbGkq9VF70dEsjSddn4KiCqXKURglYqnljozR07MCSlbWsaUIoAoq3OvhSj7l6HOiCkxEWWFzsS8aR1CyKxXjHG1WjVNQ4TTDJsiEUyClTH5iDSjNGL2OEzOVSGOZTUnxixYAADnrC2Kd+/eZZiJiAx8bhaeDy0Ygs/M8LHrEbAfegBar9fL1QpOXobM3A9tBn+Y8wpOn/ri4mIYBo5pHMfFYjFfLvu+f/32DSIqhc6Zvm+zetY5pzVl+7Z8HYxV290ESTOjb5QehiEJ58EbZkYjhS3yRf6wsPj/k/UnvZZlyXogZmar2e1pbud9tNm+pqBXVSJE1UCDKqAmQoGomnJKgD9A0h+QNOHfIMCJBAkFlERBAwJkNRKqXpHvkfkyIzIyMyLcI9z9Xr/NaXa7OjMN1j43nNBFIpHued39nt0sM/vsawwpZRXL8gKnx/7/BA8K0GNByl+yOENBSqkwdkEskrTtpu+P4zhutxtjTN8PRhcZic3R2s778/PzfAQowr4/kjJVu+q7sa5rY0zkCELZgN57L5jXhbmBE4AlziEfAlabfBATEcRo7ZLAqDUpQO9nYxbmc900KUlRFCGEYeIkmFhY0GgTnGPmHDKR4ejlFjOnxHPw2XnRe//w8KAUJYZMnTPGVHqBEzKIIiJkdM4Ej9Hrx95omhhEYpydTylt1mfvrt8rghASCxBBYliv1z/72Zd1WTrn/u7v/t08BgBIDOM8v3z5/OHhIaXkvTv0hxCC9/V5uy7L8rDbZ7Zjzli01k4hpATWoqLFT4oIlEIhzCS4DP8oXSyEdmuur6+J6O7ubgpMmljAlhYZ88Y3R73REpjoM9uJY9JqocSuVk0Ibl20hhQoGro+xYXHwYlZYLtaKSRCNNZqpPxXTRyUMczsncsXUJ1Sn+kkJiSikJgQknAK/168IINknlTequTnM3/ejAbZosgPQ4o+eAaAsixznc5vYrbVzOterTVzoJOpar77CEorjaRXq1U2tJrnmSUmEGV0pr/keqyU2u/34zTlJChmThyqumCE29vb169fv3nzZu6m2bkE0lY1avP555/m0ZmIop9DCC+ePcsfvGmrDCFM09A0FaJog7bQ+/0+m8LObnz69GlRmnmciqIAYEQJwokTIIAihbooinmerSmzL1sIgRlUTptRKsaohb2xZej7aRpIG6NtkBMQgWqcXWFsSDIfO6M0g2QAPR924ziu1+vofZ70NUK5WcfIwzS6EDI3YOhdXZQKiRCGoT/s9nVddv0Iiqy1gCpxYk7EmqfpeOyOekHnCmNLa0tr8hRfWH24v7vYbiAGTdKaoq3qn12c/+2D3z3srSIhcG5ioKR0VowEN3P0PsXsweNjGoahbS8F0tXludK831tmGPquNEkEjAZjFTMfdnuNZtVessfz8yalNA7jNd+u1+vZBTJFu76YJnc8HhPMROScjzS1bcMCbi6bppmdIjGr7ZmkeL8/HrpeKyHhzXrVNsXF1fb5s2fOTcmHm5v73XGnNZ6dN8y8P9yVtmjr6eKMC1NqbWOMzECgrLKFLktQja44ixpjLLQypJybSltwiNM4Nk1VFU02mlFKaWWXKYBAIyVOAAzAeTRZznfI0dlICvUjzUe0yVvGzBJUimXZ7eXqkBhFkiAFn8CCViQs2Zm2KK0PgRDzQ5ZDWOu6Xq1WhQ5kSBjxMQCROddpY0wILg/VKfi63qYUUq7l2bNaax9TNsdBxNm7XLyWOhGC0robB63sOI5JwDkniGebLZF+2O2cc2dnZx9ur/OPpLU+22z/1X/7r/7Vf/uvnlw9yavuzWaTjbbz1PWf/+f/+eWTJ//Nf/PfZPelPIamtIS04CJrwTwZsMTcfJRlyRwXQ4kYZWHKpIVvvlBAl49/8us5xTArQCIQIZE8ASwn3YkqDCemNBCKiE9RIz2eeiklpY2IXFxcdMe9MTqfjGVZeh/7vjeFbprGTXNVVSGEaZqa2iqlxmnad/35+TmnOMeAKPVF7WMQRlnskwhg8YelE0WWcvbGSa+C2SKLKA89RVFITCmxD7NCKsul2Jw2ZBRjBFSP4EFGL1zwmT6KSyA8uxhya2WM6YaOiBYxOi7X0+gi94JEhEg5mItOY3XG921VzsNQFMXD3VFrrciQViGkxMAAWkFgKEu73+//5m/+pipMVVWEkhiUAkRomkJrbYri/v4IAGkctdb94fjd4f78/BwB8lQXQijrBkmLQIaREEEhnex4tfexrtrdbnf1rFVIPkZB3B27siz/9t/+Zn88DDPbgtAYEp+ScHDAqBAz8pQrHCKKsFEFqJ+y/PK/nsEhibGty//of/Ef+BQRsbJF2zYXZ+cZkdJIKcTAbJTK+a2yyA5/Ijbn/egC3hISQQ7SnseQ+RkhRQFRP3GPTySA0+8sKA7HLJcQ+amVjIuafNnafgx3a20fp14QUsrYsshtwTzP2YWKiFwK+WeOMc7znK3x7u/vlVKXFxfe+7opEXEcxx9//PFPf/rTt99+O0cGAAVglf75F19UVfX6xx/mef79H/6QqacIoAAuz8/zv56BIh/mdlUbYz7c3V5cnGX7thBdVZdPnjxxzqUUTKFz9olzrigKo/PmDkxZMEASXC4jAJHOITHZRYoRtNUo0RdWrcsqIfWzg8TalsyMRPPkFeqiqBJRURTAMvhRYiqKgmNar9d1WRKnbJ/LMTRVKUYR2NqqyTtmRlUgQvDOatKkVEGkTT+O2prZBaC8wVWREwEqa4LzzM6f5NWltc5NhVaVMWEa5xjWdRljsjpu2k1w/nK7OeweRAASEmBRVbMPOa+mrsttuyUUP41uHMdxnGfobo6o4iefXFycl3XJla0NxlVd3d49WNVMfYeKSrM97sbhAE8vXnoznl9e1fPYDX0SIVu6IKR5ChFNcRimGPx2uy6qxsXInAhWCls/TylxjC4lL8xEWJTldtOeb9fzPN8fj7MPixAFrfcooJjLfecOx1hcrstqm6JKiGVhlbaHQ393u0vCCqxWYgxGoHGe53Fk0NZaTgoRSSOnEJynAjPLIKUUsk+e0o/a8xhjjMKcEJFymhQIouR9oza5MCMoBaBSWtz7RARZZU9/RIUkREhAIhI48sxgjKaFGJkmRsRsYJnPnWHocrlKWqZpcqcswsyckphWq5X3vmlqozCxN1Y5N1VVqY3JjXDgREQxhewgkUGq/I4djkdc0sSCEFpLgkBISqn1utrvjwKgtf7+9fe//MUvt2fr6+trpTAHnihSWY2TgRzmmFLKvuXBzf/sn/0zW5a73c4Ui3vtY2uPKErpBfqmiIAhLArjENyp5vmYosBPOo/HC/JYidWJeoUsAJA4PW5AH6HmkOJjCFgG6B6/iMhoE0I0hSWiCMuGCE9mgZkdupAwi0IZnVLqh+Nm1RSFVYjTPIxjvzk7nyfvvV+tVszclMUnn3zy29/9xlaltUucsIjE9AicLNUXT7suhYgImnIEHiulFKiZl9RkBmzbJpfVDLNnd+iqKuPJEx8Rs/fIqWWRlDgKhxAUGVuWwni/2y0Q8clw7RFFeAQVUox5b5VOdMLIKYRwOBxijOM8Pbm88jFUVdWPAykw2dxjjjFGQvBeLs5qo+n+QySAykI/QYz+4fAQA2uLCsm5xByjj8hQmF4Sn2/PpmmSBFrrafZaK0WYsRBjTAh+0V9NYix3vZwzaGWAxc/BpzR33e3+CABaAaEKMTIDhpiddolAKeIEKTEi6DyVBp+S5F6oKqt8j4zWIGKsaprmP/1P/9NcS8ZxZE5Wm+B9oc0J7PU+YcwpmbKotPnkv5EWx37IebL52sYYgXD5T1p8VB6L7mNPlv9RXHxql8c7nUxX5JSDyT9ZamQHAZRTrUJQpJWxebNh8EQwfuQ25n5dKRVGnyfgcRzrus6iXpvCset+/PHHb7/99nA4zPPsIxsEY1TwqW3rly9edH1/dXXlgi+KpSkklJSkbpu8C8ktSN7cJYnzPGaYLXLop1g1pIwuCWKMx+Nxs9ngSZtARNkdD33wsyuKwhSFd7MFyqk2UTiH8BKR5piqpr54chFZbu/uC0VlUXTjZE2JiHPy8zxvVuvSNhzDOI8gDApKWziYCqMIpC4rkEQCjAsbW1WF937sDsJclu04DkZrCVFSUqZYGFvGOB9jZI25UWJNyipt6hIAEqQI4FMICUbvSjQjCImMx+Nxno1IELh48nJ1rm53+6Yo5xhYIJKk4IAlQ5TTNHEK5+vVixcvCk1Ddzjs9ramvrt/9/51d1Avn14+e/l807R398e4XrGgrlchBNfPGsnP7ocfXtereH5+bsoCaPaMQGqa/BTSarVK3UhE27Pz87N1SsGNY9u2MUjiQITAqet6pLRe1zH5KfqtMso24rif+HA4ppQItUIHVBV1o+w6hckUMbGdZilXepimyTmtNQiRUAiSIvrkQowM2kcObk5L6AuFeaqrKkpKwrk5JSLnY+SEiN7PSmFG59JHOdtakyaFqAGXU+8xn5M4PcoB8/vzca+KsMRAxkziR/QxojHGWObonCOj0yyPBNf7+3skCd6v2jKlcLI7hpQkhGCMLcvqsHtArJ8+fdL1O5AUgm9XlclWowh+nvK5gIhJFt397Fw/DNkvOrcWRszV0yfv37/fbDbj7Luus9bGxQdbv337ViBtt9sY/du3bxGROWUHY+99CvH8fCsiWTfVNE039ON+dt5pa/JS87PPPnt4eBiGIe9yfipFSuUmXWvt/QyweI1lI2iEJbRrmXoVZBVmFm4hIrII5dUR0uk2LXXoFMG5jBS4hHUuGJ1wTrh6dONSpxjdbC2UL5R33rlQVRUDiEg+s7x3/bG73z3sdvvj8Xh+8dTF+eLiIlveT9O0u3+oVtuftB8MWUaStzyP1TeXXjztWRExpagAY4rez5m9mFJarVaymCVJ8JNzrm3bEFOuxM652bulWjMvzFWIRASn4SlDHcoYBaS1JsBHMuqSfEYEkON7l7QW733TNFqTMebp06f3D7dKGdIKYqiatu/7uq6UNsdh3GzX1pZ39x8A4B/+w3/4X/2X/8U3X3+12+3+zb/5N//X/9v/Y5pknAdBKEubuyhjjCZMblyv10PXn2/Xx2OvNWas++rZMxfDw8M9IlVVxX4uisJNM2kApKfPL6q2jQm7fnj/4YOLiQgW8jzRHHwIggSg0CjK4xTwYk+kiDLdaZ49nJItqroAZKUxLyxn7/7Fv/gXzrlsZDaO49/7e//LVy9eCjMRee8VQSbNPa7hT09ybgXFT14pJSetRIapMrNJTs5ludDmkfSUG/6TObwsUZURT4Il+SjvTimTK27OXcMTsStEzvFH+dHN/W5+KhBR62WfZQutAMPsUuJsE900TVEU8zy+ffv2zZs33377LSJqrdZte77d5oJqrb26vLy6fBI5teuGbvWP797OzjOAgiWJ2hjjY5i8A4BxHDOfK6se9vtjSDGl9Nmnz/7BP/gH33zzjTFm6I7ffPPNAsgRAilUKncO8zihIkQ1zz4lCbig95jksWvU7Xo1OWe8R6WJaO4HpVNtyySQEqtMc0ex1hynjqPXRVmX1TQPEtOH65uL821p7KZpUkoaoVA0u1GLGEO4rpqmSao8Hk1KCUGFFCNLSALEzkchJKHITAxaKUSZ3UgFECoiUChAKCSmNKi1AHqUVdP44Jx34c4fu+7lixf1dtNURXfXk7aF1qOPLGhMZrUbAt7vH6bucLZZP7k8/+TVi+P+lkN7eLgOc9cfh6l362arzowBu+u6JAIMurBVVR0PY0rpOLvjj2+ttUJYlpmghlbr7jhIShcXF4R8eLhvm/Js23o3bVYrpYJzE0MwVqy1RWnHMQ69+3r/3e/4T8knowtNZkldk2m73ZJnPUetS1NuXIj746AJq0IByOGwDzFpXRaFBdQEE6FCREumKAoXIgkTAhiTUsorMQDIcg4y1saQX7OMCuZxirLLFaBCrXQG7hRyAoDAElN67GH5pI1Z1pCCsCSA8sIrEi5QKY0gkCITJa1NXeu8tMvDTdd12YWjqeph2BHlXV0m96aUUt4UFkXh/HRxcZHYHfZ37WodoxfkEFKeHpgZEENagndiisMwxBhRqznE49Cbsoic9vt9349EOrd6LJJ5j+M4DuMAwOM45gWtiBhc9MqIWFVFHsqVUtlk9Orq6m73MLuFMoaKMrhyuiaQE8Yfe3MREUl5i5ndtZYTBxYEWZ0yZ3IEYRbsAADJCYLWjBg5QV4XocphVqdQIPxo+BUB4MDCzI8clmXgizHGJTUol2GtdU6V994bVQiATwESx+Sz3+F6ey6QiKjrDgpws9m8f/djTt5dWgFBItKksp0m8E8eSYuGbWnfEgPG6NFIFnwjIiQwKkePp/1+LyKv3/yIiOvNGftlwZ9P2NzlLHVaJKVUVdXjRtC5kP0TFFCu+USa6N/j7qaUYkxKmZxDmtWxMUYk+uzzz8ZxzMhzu95477sxahUTT1Hg6bPtJ598UtXmzfdv//k//+elVn/7N//zX/3VX/3jf/yP//Xf/O3Xv/8xL1TH0YOAIuAQjz6ZU1Jn27Y//vgOETkmRDw7Ozv0HcqSReG9X9fVNE2KLKE1ZX3z4e7YTYdhmAOXpUXEbKHlJ8cZfkIipJMaEE7dWwZRCECqyiCqnCySX20i8jEwiPf+d7//fS7cWgEz9H3PcPIU88EYpaxavE1OKZZ4YlellBJHIBD+icCsFvc6DCGlJESaKLtnsNaEuBiG4NIecja9zdg7nhREuUg/1mP5yCiUT2kKeeoFgHn2eVbO3RUsQnBg5ry1BQCjbdu2RHQ47P7mb/71b37zm9kHq9WrVy9zBMujCLgsS6VxVbZlUz/sdvmX87xYKSYAAigMrddrRZCNqzIzrigKa8tmtX7yTPb74+3t7i//8s8zhx8Rb27vfnz/8PnnX+b05XfXN/M4Zf+NqR9+/uXPysvaz/NjU5KfFmEAAELUow9FWU3Od919UVabdtUNk2NHpFNibRQBSgrBs8RQlDoJkwKr9OwCoczDSBUTa6M1gfi5n8fRGL1er9fNRVVVjOasKW8/3OuiZIFd11dN7VI8DmPghU+vUIhFISmtgndk4HTSo/hYGZW8L6wtqhKjq0p7drUF74e++/HNHzbypVFUWuOZCbCw2vMCEtZVobUCVDHG3f5+6vdKqZevLs8uL8+36ziOc7fv9kNlqvWqykPD/eEgCapVUZbGBzk7O/v62xSCH7OE1HkiyluWEIKfZg1cV4ajG7uBuKoqC7wnKoLvvI9l3Wqlpt4BKudj8EKglSpIm36cUkqGlK0pCN8fjt00awLkaFTaruwU9fb8bFVX2sDh2E9jT7ourCVkZezsQvTLFuRxm4KQT9goQKhNIkyRCZkUZMRjabsAFVJKSQCTCpg0CQNmSYKQ0gu7RjJDMjKcksUY8ywnsriPIaJWZg4+BLTaoEGKrDXYss43N/MS53n+8OFDURTr9brrbqtqAcNFwFqbkoBApmCsN61AisEZo1MK8+TaZptSyOUknrJgRSTTmrz3c8juvkse3Nn52f39fdM0Psa8df72u9eZfGitnee5rMppmgDkBBHLZrPJOFW1WTvnCm0KbW7ubgHAOdcdOmts3h+bwmZyU47Yg5MxZJ4q6KMY88f/fTLYJQBAhY943TIQ8IkezMLMAklIACDFrHdHRMyWivRTHvbjVwIAoYWHvJBgc1CjXtQdC0s58TxMIlg2dgo+gRyPx7apC6OUUk+fXBpjtFUphRQ5Onv+5Inz04cPH0IIzWaJo8lr13x6njK4AQBQWITyqcuQRMh7H1MQEa1Ja504pCAXZ2eZPjMMQ1VVd3d32XQsWxiiwsnN4zjm19AYk2DZ8IGcej/BcRxDSNYC6MU1IpfYxwaRmb0PzkdbEjKHEAurmZljTCkhUjcO8+S1ngThD9/8KS+TQROkdH19HWNkjs+eXb5/f/NP/+k/XbfN4XB49/a9UkYpiAK2rLz3hbEpxLZt9TxG51JKAinGuN/vM/xujAEUZHkEYE/MAE4Mc4i3x5vd0QcBQSiryhgzTVNEiSGKgDUEQCllG7CUI7ZzBPiyfQdk5swE7Puj93xxcYYoANxu1rqwbh+IsGlrRJznOYV4dnlhqzLMLj+DCjCmFGLM/rK5q/7pwUopMdMi6Dph0QgAkPfN+TNmUxReTHVOS4RT9GH+epx68USuPtWgxchdPgpiQkRTWp/i3PX59zPSYJUuigWCCsGJiC3swhsI8be//c1XX33Vdd0wDEngk5cvnj17WlVVXdeEyJynJjA6Mwbw8HBf103X99M09X1PGiTllgGqugZFQ9/liX+aJqWMUiak+NvffpUd7F2EYz/+3e++ZiBOIIx1adabM2ttjPz/+R/+R5bMwYLE8NlnnyulE4smBZLx9jzDLObbOrHMzgNAWdVnZxfHY5+Ooy1s4GSNQYTFSy+iVoQoSRaZPwqvV6u575HTNPpAaBQW1lRGAYiGZMjs72+8x2a9MkoUyBjC0PWlABjbNE035lAHIpaQZkloqoKpRCLihIgrqwnw6dXFeNwXBldVcX/zrtXyxdXm/Gzd1Pa42//3X18D4dlm1c+hm2ZRxpBCrVjr5XGRpIEhwRyDxPhVN5XWrKvyoq5rVRmtUhh0g5eXhS4Ytey68f72br1dt3XVdzsydl038zyHbA0iwMyT9wpwu1lj8sdDd76uNquNsDeQjsddVVWrujHb2tjqeBhv7x5EwAVf13XdVojiw9xPD+t1+/TZxesffpyi58BlWaJAU5mLs7psaqVwnDvgSZA32wZRzT6K6ASgCF1M4zyxELOk6PODbrQ2tgwhRAFMPE2OGRojxhhQgIik9SOwmb0SlVLqo6w35pgtJIVxiRNgAGD+yJUXiTLYuGwxDaaUUkwJEysVkSklOqXgGWPatr27+XB9fX15fm61eQRImfmReJzhQoH0/Pkz731KoaqLeR5zcAoiZpJBdC7PSYKAgDHEYZ689+M4KmW0NQySXSMAKDNpD4dDRrdyu8qSx196TOElpMhsjMlim6urK4TMO3Xr9XqcpxyFqbWumvrm5uYv/uzXP/zwNpfPGKMIZnXBOI7/2X/2n/3Lf/kv5SQ2rarK+1kRgSxyHYafWn75OPT6VIBZorLZ8AsQkZYwkp9YVyAfz50kIielilan6It8bDkXmHk59H0YhoFIN02TwzOyJ8MwDPM41XW92Wz6aTKkEkri4Px0d5eKomjbegoJAIQhQyGPP/+CNyJmuCQJIP10fJ9OakVEiYGIMoF5t9sZY/q+z0NM13Vam5RSDDHLtRdoV+vJuwzpC6O1VikTOe0Oe6JlSCJZlugLbhFmAJDF0TCVRMaY7FBmjNGmRFTX19fe+9lFkcHo4vsf3rCA84khAaJE/+7du7quf/HzL2+v319f369/3rz94e0fvvkjk0kJGGAeHQAkBbassgVemA91WQ09ZeKY1joyE1FwfsEeaBGiENHQHZ0LkXGafFOXSRsWjEmOw4jAKIyERiEASEz5vcz5oUSEtGSBLPBAjAZMjDEERoS6rvMdCTEKwMNuF6LEboh5dEZQRk/T5L03pAqrWeBxHk0pnfBXCOEn73H1kUOW/LQTWUjdaVGiazwp4h6n28ef87HEMvPjW587Ujrx+D4uwIRamSIzm7LEJne6KaUsNGJmpcha68P8ww8/PDw83Ly/zvLczz///ObmBhF//vOfFUWRL5tzU26Is16cmVP01lpj1DiOYZ6rqhqd1zoP5ZDFS7N3WmvI/h6AqHRKcn9/ZIGyMtbQDz/8OE1zNqktjT0/vyCiw7GfZi8EnMAQRAYEEJHlbzvt9k5Q/0lWPgdfFMXZepNpbNbapmkSAztfVXWMgQAIsK7rVVv52e1HVxdl/syGlFmt/DgoBJREqKuqgGS67qAJzrdr4Pjm4Z0iMKQApCmLzaq5O3YREI2N2eI1BEDSWivh5IOYOiWRyApQa1UZ/WJ7foxxOO4syufnZwghHe+G1KVCWWs/+eSTr7/+OoqQrYqiYNKzC4CnqQ1QAWXSAAIgYsS1m8LEcD/2nQzB6Wlgpa+unj4p6tWxH1epCj52hw6kruqiWTfMPHdHrU1dlihS2AJs8tMsMVRFsWmKy7PmYrs2mrWmmxsSwRfPPzm/fDY7fke397vxsO/OLi5Wq+bsfF3VilTa7ZumKS+vzp+/fHk8dvf3uxh47PsEEjkdDruqWOkZvUt+nuuqBSCliDmiBgSltV6tVqTsNLlpdLnUjeMo3scY5xBdSkj6yZMnqyI7EnOMEWixUiKijDcS0WPijkjilFz8KMQGMKcbsfwE8XESwGXznN+fuq5JgGNIKQFgSipLTrP3U1VVXdfd390ZpTim1aqYpiFbVmmt8lFSlFWMsSxMURTAvixLllCWNsWQFzwhxM12KwDTNClFIcWiKB7uP+x2u7quRTBy+klqwmxtuZC8QqJT+hAAlLGc3Zh/J+8aCfIiivHE/LTG2kKH6KqyGR/uWQAlPn324mG3SzHWdZ1Btmy8kO0YMyD2j/7RP/rrv/4f9/uHPN97P5dlucjYyQBASDEfIo+nD5z2povZojwyirMWlh4Jw3IaJU6d0IK75vcaAZjZOYcg3vvS6kfSSkbCN5sNAKUkzJxjqfBELO/7HinvFGdbVsw8DENdVkfnvJcgGgAQFkHzTxjacpQAAEhiVowfLaqJlHNOJFmrETFfKO9913WvXr3605/+lIvBMAzteh1CmOcps10yw26e58hJBI7HozV+u90WRSUiXd+h+slcKTNm8+N9f32fd8DexyRYt6v8GYui0FqH6B4eHt70RwQRhNmn29tblwABiCALqbXWMcVxnP/uN79D4ULD9fUH7wIpOLtY05VVRT2Ms3NhHAaj9W63Q8TtSo/jGELY7/fD4IzByCCksrQ3paRQ5f5vt9vdvD/MADg5Rthsqn52LibvAmqtteYYFQIAeB81QlWUImLNAjyklEQyLsUxxtlFY0xb1bhSIpJjTvJbqbU+Ho8JFuKfUpASNE1jCptSCj5krSoBaq05LHPqCYiOcII6+Kc909JwyxJRmrVhKRe2R7Dn47q7HDIiuR/N71p+ZpTKkraFur9UY9SZtuJD0CdTTzzZ24UQNMIJanJv377907d/2O12VVWdb89evHiRd0bPnz+fpilDQdnzJ7cIcLIHIAFUuqyK2Yff/u4327OLruvy3c8fs6qqzMBCRTmjJTeF4zDXVbHdbl2MmWv99u11rqEZTP6zP/uz1QoB8NPPP52GMR+Jm/X6yZMnIQRhVqddXr4Cj++RPlO+KcymgNm7qT9agedn5ub6tiiVuF1t7ebyLMN3hbEfrm+ebDebQrVgSmNicMAeGxz6samKoqAUOhGprYS5j6483zQgr+Z5jpH9PFpTvVhvigj9NHsX5hgyLg0EKUlRViJS4uydo4RGmel4gLr98ea2H44G3bC//vLl+V/+/HOt1O3dvhvT2+/fOyOFqq2mCOijF0nKoqJMBE8ggRBLIksIwpLS7Dtb6kmCE2mqNgS6O8D14MvX73/xxRefffrL3f0NpXnAOc2HEFRro7VlubHMMk4TamOAAfH86RPv57c/vPnk1Qss1rfHiZmbqmwvnkfv747HwXmQJGH8y1+cb9evytI6N6035Rw8ofn82c+Kqvnmm2/ePdBqtWqbbdd1q9UKIYZA73bHyavz7arvDpdnW7H1bndXFKaua3Dw0O201obo6mw9V/NtmiMDYkxGTGGb9vLt9Xsd83k4r9vLzEfz3iMG1IolBZ9O8WGBMSe55SdClM7hcZgYToo2ACFUBMACKYEIs4IknDhFhSxgNSmlBFUigRCUD8IQgjg/dZuLV9+/HgFWSjPT+6r6RVYlKaVEcJ5nRPHsFIkP3s9Ha1RdlXGWeY6rotkPk9baFuUwjLN3WaaMxj4ch5uHB1tW3scQwjAN66perVYH57z34+xF8OLiYpqcj/F47IqiIiIitd1c7A87AG104cP88uyi0WYKUaEOKRoyZVknUeMwf/Lp5z++eysIL1686LrO+7lp681mk8dxrXVWHRDRNLm6rsvS3t/fw0JpkaIoY4xKGWbJbiciApAAlix6ABBccHVEFJIYGWMWRGRnbs6DLkuOqci2QJm3shx2hCVLtMb03Xhz/e75s6fnm3VuRIwtQ+SmbYd5ShwB+NDfGyqIaN9NsQLnEqKJoFBQowb0bg7KFpFp141kK+99inlFJ9m9KKUEKICKmRWCKESUtBgXAgCIdYHDplknFEQM7EWkrYoxuMNu165Xh+546I5JGBW9ff/uy5X1Kc5hVhoFkvOTVjYfo3m0dX5S5rKo7HdvXtvSalNpY5xPTdNoa32Mt4fDOI6HYUZEVKSUAiFtjDKEXkjj7f2Hw+FQVdVmswkheAGt9cCLJ+vJ/hxiikBEQjm4IKJ+GLxShj27+x4AoJu0tmfbNaH0/TgMk9LaO7VarYbB33z9x2TUk+dPm6Z5+/btMAzzNBJiVbW7bkp69f3tEAD+3n/8Fz/72c9u7m5/+3df+XFkhsqQSKCk5xiDgNZUllaQWYkxxmZuHosIiORhggCgLDQArNdrY8xutyOBFFNRWa2UMKcYFEBhyXuGBGeroi4LN095WxxC0tZwEkqsUGdX+KW3yw8vKVogs8UxShDTUqQlSWCIAhKdC4HKsiQSrY1zLrf4SRICJk4hhiQ6pTTPzhhTlhUzM2mrrYg4NyuFbbvOGxNhFsTGWKVUSmHY73ObXpSmtpo53t5e393dPjw8jMNQ1+Wvfv5lZQsodEopSZhcvp8SQ0CA7EA5zyl3DBmKr+v6Zt99/7e/+fHHH4no6snzV8+eY76qANba8/NzlZKEREoZU7iQiDQnmKYJWNarZp5n2KxSSlZjJufrwu72fRDuQ9BN85/81V9l5GMB3saurmufnEAOkQORGHOqMYjzUa/W513XJT5oY8/OL/pxPvZDs1orY6bJbc/PP/vss5ubm/fv3xvTl2Ud3NyDVFXJEpljzrJ6+vQpEVVV0XUdAKyLYp79/thZa22pYsJpnhhVP3dl1a7PV2YupujPjRnmaZqmPE/3x1tjzHatP3l17sfpeOifnl8kge7wwVi1blZoZejcd6/ff/nZlwLlj2/fdKOf1K2wEBrF0BjFpCY3xyiFMUga2KbgvQho09arsiw3RNkNGDjRkqnHzLjfd3/6/rvLs63RtNps1+t1P3R3d3e7w23brtebTUrctGsXk/d+HGdj1OFwuLy8DCH86U9/CG7iGNbrdbOuttutn/2936/bldE2JaP0uh8mAHt7O83zzAyRD4Wt3r7ZBV3e9p3SCCwKJXrHmi4vLiSG+9u7dVsjgJu8JuPn0FRU1golODdtzs+NwuZsk4L78d1127bb9QpICcfS2BCmFOKmXeXmTmutVJznOTrOcGXGT5RSWiMorR8t1yHHnOUxa4FMBSRbDCJmmSUSLTLWUy2hhZ+LhIIilECcc0CKmb/++isA+OKLL8bph6z2OeUShrpt+mOXz+6MSV6cb5k5R+P106TU0gh772fvgLQxJrP8AUAhFZWepqE2Nj/0CrA0FoD6ccxxnpxEEOq63O12T548+T//H/9P7ar5xS9+8V//1//3f/JP/kmet3IpzUpf730cx5y8NDsPCCJyPB4zWvz+/ftFdHfKD4ATRfw3v/nNPM/52hYn2VJG6uAjnUz+5gUa1ZqIcmHLt4NPoq9Tv/y49lusGR8p0PnE1Abnbm62hTCzLAzSvu+HYcjt/zx7rW3X5cAAm52GMgMWT0EXdJIvA4BPnKHUzENWtCQWHI/HlJKxmoii80Q0x5CfAXgUMQPEcS6KglmMsSGEaZqvzi+QQSKnxMMw7na7rutjTFYbjnx3+5B3w9ba0lpCLZSRRr0ExiXoum65HbM3UTQ1dV2nEHfDEEIQSUopRAFAPzsAQNIAkOeMoe9B5MXz5wDgvP/pfp00NnmeW36Z4QdCJFIKU1pAgvy4juM4zZMymbWnQowp+v1hcbEOEc7PVn/xF//BarVSynz99dchsFKQLROCz/sO/O3XX+2OB+/iPM+JIfN9siW1Uj8Nu5GTUgkACmWWVxgxIYiwD352KRcMWkiyiCcmYGkspOTGyRK0VR2MG4agEHNqUFGYjIJEH4hIkU7enZ6mx8SLE3p4+uXy/7MI8DD0eTbVWtMpx/rxWZLEKeWR8jT4QuZ5pBgjh3jyo3CZ+ai1dm7yXuXVAyLG6IfB5YvWruqyLPeHw/XNu5v31yklY3Tbtp+8erXdrjOtknHhRccYJXE+iTIxPv9mVVVKYSZ7hxD6vr+/v599/PmXn2+326dPn+pTZEgGq7NI8vnz5zHGYRiULdbrdaZ95LOiLMvtdnvsO+/i+mzrnD92PRFlNtwgyTmnfCAiq7QATbOfJm+MwZMZqqSFQx5j1NuzyxAlxqisuXs43j/sP//8c0Z8/fr1y5cvvfdfffV1CMH7ME3zixcvijAqAIXCOUxDU2FMXjVpay+uKqXU8dDPbrDWcgIXutm5sqmULiYXDofj2fl5QZTG9PzZk8StC2G328UYK1ut1+tfXRVXF2fv375bax3Cw9MXn729uZvmcfdhty7M+eX2uHffw42oot5crS+rw3xIKaFWWllUehzmXXCM1B17pQzpwmAlCDHiocNj7y/P4PmTC3p2dX97dzgc4gxVaUXDkyfPDodd13VWkTZ0cXZ+8eT5+dWzdx/ub2/v7+7uYkxFWcfIk3da69vb27Yq16smxVBXti7Pjabb29tudMN8a3WRQvhwd9yu2u1mc787AkciHPtBKaW1UUptNmpVb68PNwQYxuSDWzUtShJHzbrthsFoKrUNoweTqqJksutqs1khXW4+3NwRMogHIWuoKXVh1ItXn9w97A5dXxaGiNbrLSlFRMMwueAXtiESghLGlK0EH43lEClHyqFiBpLEzEIokYWRc+lFOqlNAISyikAAIgNKEmECRhQAJUBFWQmlw+GQUrq5uQFImW3LXpWl7fu+qipmmYZRgImM1Wqah34an9ln3eHIRimti7KcI8fEKaUkrJUlowEg+TD2XWnN3d3dq+cvcHt22D+sVw2waIXCpLWO0SJL01QxxhQ5OK9J3dxc/+//D/+758+f//JnX37//fcpBm2IFJDKIhASjkCUg12BpSqLKLyY2iNkcA8WX+K8TMqVTLVt+9d//dd5F+C9B6AQnFLq0U4P4BFnkMygEZGsekwfCcPiKd8+a8YkO1kwI6isKCMigJ/EHjFGQFytVt5N+V/oum63v7++fv/JJ58sRKfgc4eRz+jczeSfQZHJTOnHki8xjG5ijsYUKSWXfEwh77kVwnDslFI5Py67KSCiNqR4qQTRQ5hdaWz0frvZbNpV5gpkczGllNXm8vzi7u4uH+K3t7f5yjjnBlkQVO89Ih2HXkSAyDk3ujk3LiKyP+yPxyMg13W9Wa/zaZtl7iI4TVPWuXvnQGS9Xv/www9lWSqlCFGTKYxdrVb9OOS+56d+BkGYM/TADEQ2ceKQsj9r27bbYg0AddNkD8XlcgFMs0sJBOB+1/0//1//b2ZoGltUJSqfIodM980UKZZhkD/84UdFcPX0EpWextk5xwxkVFb3xhhz4ODCujstVnOFTCnlMgMASlPiyJHVaR+ktSaAeZyGrk8M3aHP37puV4WxBAEVz95bVMJCAGl2j6yCvGxSSmn1iLLAYxbX43Nb1w18JOqlj5za4LQ9IUACIiCFKlvxaSRjizyV4kmqVBibux+lCEH8PKWU8i7fFjqldH1zc3t30/e9iDRNvd1uN6t1NirID0xKKcuk9MKTxgUeP0meMpkZiWISRAwxXV5eDsOg1Pvz8/Osj+eT8EFk0a9m2HmaJmttAmjb9v7+3ntf2MrbBZfebDbHQ980TYwpJnjz5sd912ekPaWktZaYMj7/2FTlVibGCKf0NmbW0+iAdLter1araZ4F1Hq9+eHdW6ML72IIaZ7n3J9KTMfd/qKS9WqrANDq3DKv1+tpGLTW0+gy28Jau95ujDHDMDqXQLRSuqoaoDiO7rDfT1Nfl7bAoCzqlDZPL2fnV6vNOHubHr58fvnrV5e73cNXv//9s3N9dfbp7jD2x8FNswGttcQo76/fD56fvnz1+WfPQghDNx6PvRL78nJ7sVrd3+9LIc/oo0RJCYkBUQEhHh/u2LvNZnNxtqlLu3/YOeeQbYjR+cgpYFl6l/zdLoDanq1fvvxEBB/ud/W6QdKICidVVZUhVVVFVdqy0OfbtdWKgM83m3uX3rz5EQlJFd10LKvG1tU8HneHvdFgNNRNjZiswuDvY/SfPbvIbVcK4enTp9v1OqX04eamtubi8szPrqnq8/Pt7v7hsHvo94fPvzj71a9/DhJ///U3+vnzcej2+31VmhDmb//wVUxYNasXn3xmymoYx7u7Owd46I55vtGFLcggogve6jJ7suAjeWY5ehaJUTyRGPkjlT3kGOCM9TByDn9gDgKYIkIiIkWCJMM0AojRBQB9//23tqjK0n737c3zpz9LKeVsA6WUtib0fr1eX1+/2z88aFJffvZ5dr2YfBCRoirHYQ4xCBFpyvKevu+dc1M/tFU9Dh2w1GW1v7t78uRJGc3kJxEwACH6uq5TdAwkwOvNar/fD8fDH4+HP/z+d4UxZ03rZ1cYa7VRSCnEeZ6bprHWKsAc++hTzO1zntEPcMgH0KPiK5MnQgj/0//0P+dzIZeQzPPiU6rM6ZhbSFV93wNAnq4+kjCJMUVcKLucge48zy3V4nQOLhQuZmPUZtW2bfv+uNdKK4WAvN1uD4edUmq323nvx2ms6xqEQgwJUkySBMfJ7Q5dWZbZX1dOLJuiKCgQCSgQa804zqWxWunjbh+jj6ct+Hq95hQyqwVhoV4jIrEJIbhp7vt+u94Q0jzNVVX52eW1dOZtFEVxe3t7PB4DLFZTIiARBIA0IFLcPcQYAZXROgr3fZ8YbFEIR0jAwiCQR898xjVNs9hYBh7n6ZGNHJ3frtZPLi5vb+/d6LJ3fdd1RVEQYIAQH9HzfHdOninMUWBZBXgfD4d9WRZVVZWF2WxWj04D3jnvcwIVEMF2u83dzHp7NgxDZjDk7W1OOT7b1EQ0TVNTt2fb8/v7+5u7+9V6lVJyzuWghaapiqLw0Q3DtDFGEACWtLxswVYYzqvN/tillJqmfTQ/iSFYY375i1989umniJKdT54+fSqJUcBqE1VA1LlrSSkpXOjNETKyBYiybEGY5SMf79ykOBfUQo2kR4SMT9LwnFCnlEJUWVUEzACsFJZFobVKKQIiAhdWiyRmIaKY/DzPiNi2LSnu+/7m5ubD3a2IbLfbzz77VGu9bGcl5hyRPG0zM51iOrU2Vpv8JgakEFPuhru+V0qRVoCoSMeYttvtzc3Nhw8ffv7zn0/TZJSy1maqRB5RmqbhkwsYEu12O2benp8BgPe+H4fjd8OXX36ZnUDy4fDHP/4xsGhN2T8jl3Y8kcuyAI+INC0/7cK/AdDv3r0Tkc2nq+HYBU6K8Mcf3oDI08szay1AsW5KP80iqcc++tnUtlCY0Q+t9ey9935ybrVaFVr3xy6lQ1VVVpt5mudx7A7D2dkFJjUPvjse26Iaj/vzzaqwdP/dH+qmqsq6bM3ufpfGpG2ROH7zm282G7tqyr/8+Re/+eqbKQKLKcs2RL8qzrAyPsWqIi/u3/7mf1p/q1++fPnq5SdNYb/99s3123eXF0+vLs8uhA7DuO+HOcQIECElCZGhtGYeB46hbVtjTI6IZ+bbh13WnBGjUrqbXP/ju2Z3eHZxVtc1KV1VDYukJGVZZp7eYT/AetUfpg/vfjjbrGIMZ9t1CFVRbKIIAqy3V6D13f7Q1rY9ayRMbWuAZ4D4xc9/XlibUvr1z38mAuMIXddLlKqqCqPFDxzjpikn4M16pQCGvjvbbD/99BWo/TTO5+fby/PNcb97/vz5y+dPH+73UaCu2rv7/ebsnLS9f3hQykzjOM4uu0OgWowaUJFFywu/mUUEGQnx5LLGzBwZUuKUJKZ83GfODiglRIQCSLmnR6E8EGc3LVhga4mRmSwyKO/93f2H4Mcff3i92x3Zv/nVn/+ZMWY+TIgYfGzadhxHpdQwudc/vPnVr36xaVcx+TRJURTdOB+OhwyK5vlmHHvvfXQ+hHB+thm6XlIsbVGtV01hgYVYkkgIEN2ck7EKZdq2nvrh1fNnlxdnY9drrf/0x2+64DRAXVqtsiF2SsEzV5k/LCLjOKJWMaXFdSRyjjIsiiKbeeXQw/y+7XY7OAmTTu6Ai50kAMopiYyZEVWOJc4dej68MgrnXUwn+09ByA1HjnnJBftRbpQhu26YEQ0pYF5oqyGEHD6fW+ezs7PLiyfZB6qsq6EbcwewWq36vq/rWkQCp5QSh/g4qScOzmdOtVIKszUYyJL6bI0ymhJq59w8j5kCg6hFIGug7+/vHxOr2radpgkAiqLIy12t9eXlZSbXWHvaMoqAAmZJiUXYB2eMjsEzggnqYXfIj3GpTV2U2cg2hHA87rXWxhQLuV2IiJqm0WQkMYgUZalQG1NkQn7XdSDMMY4pFUWRj9ppmrLDl0KVICpDKXJKDAgCYBQYozMpV0QeHu4f7o9VZS4uLjbrq6bezPP84fZ6tzvkKTzGmLMsTz0rxBjzpE0EIXF0fr3eoFbf/OlbIlqv1/M8O+eVoqIwudgYYwA4aO+Cz94XKaU8DmtNRFYQUkrzOAHger3JeGYe42KMn736pKoKrXUGt2PyQ3cwuiiKojKWmYWhMEbZcvJ9LsC5zsPSCEYAzqB0HsEfgWhaAloWmW/+s49cKszmehljC5wd0I1etPLZcZaIYvTWlrmeRe+KomjOtn3f37x/tzvsDt1RRJ4+fbJerxExgw0xxtmNGZfKrR4SGmX4BA/k75GTxCOTsKqqyrnQANB1XdnUTy8ulVK5N1JKES3ZYjnmSCBpbS8uLvIkGUJIgJnxmlKavev6EYQ+//xTADBlQaRm94jhQ4wc4yIs1pp0hscT98cDQGZVf0xUJETUn33y/Pr6ev/wgVDnLpu0MkoPu/vq8pIlzl1XGmsL09i1MJ+vjHcTp4CKssN7dzgopYauK4pCawWSDvsHSGys0pjO12urSBnTdcOm0AjhyZPVl6+eVQXc32iBdHd/CLv5xcX2w264v3/QpSms8rPaub5pyudPn9m69UGOu/752eZs1aQUylUj330fOP3lr18iq++/e/3tH7/94vOfPXv+fH8cjv10/bAvmqaoq/Mn2yi8H46Hbi8pKaP8FOu6tsYeDgfngrXWFlVKgqjI0jzP/f6QoUVFyiV4++M7rTUqci6UVZPfc+99CK6wuq7Ltt5+uHnbdcfjYff7r37TwTMiXRRFaYvNZoVIwzBXlXn27NNCy/PnZ8Phfp66589fxODncfjTN9+WZemcjzFqbT98eGOVrkq9348P93PbtutNVRZFUX6ptS5Lq8wmv1TPX72UKNuLDQA0qyp37pF5GEdbQlWWu/2+0OZhGoXwsfoyCJxSg/I4lV1MH9+xBMyn/LvEzCw5E+4EQxFiQsQArCghIuikCRQqEkCgLEUWJNQYA4eQfAxnZ5urq4u+f3jy5OLhwzAcu5effvLw8JBXndmNnZl/+ctfTtPw3es3bd08e/ZEaXvshl3f5ymHAWc3H/suOJ9pXNaoFKImDDGVVr949vzD7TUmWVVVbi6C8xpBoyIF/XG/2WwuL84KbbgwfnZPr564cULiuq5CCIqwtJUpCqOom8fHCxJCiCkRqRw8ZbXK4dOncZa0/umcUsoQLZrmR5Qyv/+5bD8elDkE0Jy+cg1GxLptxnHs+z4jXY/748zippNPAvPikFxVhUIsy/Ly8nKah81mVRgzTcM0TU+fPgWAYZjG+913338nQH/+538uuITS52jxqqoOh8Nut2uaJgf25RqsScUYcmMkIlVVKaJ61eRnpm3r7CjOHDlEBagAjUJmnoZpmqa6rPIHyT2Hcy5Thb33GdCLMYYUm1WbYKHaprQ8ls45UmY5dgXi7KOREAIgRE4+iUYATnkGEMEYOYQxRj7ZjZFIvhHae18Z/fbt27dv32prttvtI/+cOT1KWk9U36XC1HXd972cftMYvd1ut9ttDuEZx3EYhnkO795dM4PS+uzs7PLqqS2qw2EXk2hTjJMD5GEanfMIlNfjSuUdP+SVvPcxM/j6vo+RiSAP8blQTdMEwGVZ+nHQWgsiAygiIGQGQAzeE2UnWVSn+OSM3PhplBxfJpL926dhrKqKU0gRDSkgRQUgCgHkVcjjp08ny3EGQaGsHEFFj2HV1hQppeinGFKMXmsFANrQqXEERoWEwMgJMjidZ8Hs2IWIxiit69y/lmVZlcX9/f379+/zw1a1zSeffJIZjvmwJaOJyPkpj5IAEP0SgKus9vMph5hUfsByO9g0TT8Ov//DN8MwCCGhZua/+Iu/uLy8zOrzZ8+exhiUUgLLg+e914Z0Y/qH/vXr16vVqiiKql2JyKeffpq/oa7rnD368PDQT2MIMYdYJJZCK58SnYh9lTUiEkKyGokoxoS5oVvIbpIfeM3TeLZqjDGbzeaHH37o9g9nZ2dhnuq69v1+vW7Pnlxk1/OLs0zXmr2fx3HML0BZ1HmZ1B33/TSSAqsVz0NT1WfbVif/2Wef9X0fE5eAZ+u1G/dnrVmp4xdPr/7DL/8MEV//ePN337w5uuOmMZ9/+rN5gNEP2lNd1t//cP3y1XNjKq14wKOSUJd0f38QmZoCXlyt2+1Z2z7brs/+7re/++71m6snvNpetLaOx8Fx3D/sZHffrppVWzbt1TSN0zRoLhOgssXVZjONbnRzAiBjZheIyFYNmZhSSkBE5GKM8xw5lWUNqJT+KfDcWiuSdrvdtn3x/MnTvts/udwej2fHcH5/f5+ScPRD1wVrQUJ3nEmgbYp1C25S/RH/8PX1NPaa1Nnav3u767tRKfXq1achzt1hfvHixWbTtG17dXVljXbO2VKHEO53B58mZl63q6urq6RTd3R541hWjff+/fV11Wymw+Hu4T6GlJ88dZIKaK1J/aThO9XUj01ZAWThswhQ1rrwgk6LgLAwLjmdJ09gnRSxpkIJiyRERAIGMGhnP9dlc3/3cH39frNt++P+uDvU9do59/79+1yTur43VgEAEE5uNqZIIrvD/t31exFp68alxXUSXBiGbsrWV8JGKefc86ur3b3XSKu2fv/ux+QDIyksEcRq3dalVoiSgFEb/XB3+/nLl2fbzftxqArDXm2fXNZ1xcy3t7dIqq6roihI6xhj5i0XRZHcXNqqG3oESimVdoGIM7hXFCpnkS5Jwynl5VmutRnYfyQoffzfuUPPW6Ks8MkD6+E4yElrm8dcs2SGLnkviAjqJz7XvPDFBh9mq421FiQh4pdffum9/+GHH6wtt+fnP/vyFyFFRca7oe/GPPblzKiUkia1290jImVCjYDWWiTN85yZMiG4aZqqqrq6utJIEpOxljkSsDZkrMrk+ZTS7rBv2/bs7GwYhmz2CQDK6Cz/BYCnz58pp5Nw0zSIOHn3yErLnYoPKeeiH4feAqWc6XsSq3sfg0+klsboFDivkMiYhWGkTcGCnBhJ7Q57BskzZcYDpmnyKQIAxxBiAACBxVMzCRtb1u3aOed9IMz7BVUUhaRkq2rdtqumQZEffngvDEZBZLi9vb+/361WTduuM81nu90O/eRd5ARa46NLqIgM45zpfjHJOM45hLht2qatHlurk5WK897nrAhhjpyAlAJijpHZh5hdblISFgyRWVCRyQrafEyllEihQloCdGNMPpiyzqB9FtzrQscY06IIIkgJCJWy0TlEBEKAxZAnq0anwyHvWUmj0oiKGCSGkFhYmKMQgVZZrkSkiIVj9Bn2yKMzkWaOm82m7/vb29u3b388HA7n5+dPnz0LIZjChhByz52NPpYXTZsUE4gopRQZowulFCcWEYX0GMvxqEvODfTr168Pw5QROkR48eplxtKqqnjy5IqZMx8qA/j5b2Dm9zfX371515T6/Pz8xScWEX/88cdpmvJ2Na8VMpNUKXVxcaG0nqYpJcH4E6WgKKrsTp+3FQLIJ/ON7G+We1kt7C+3W0QkTGebZt2WKSVgg4jrdUuIwuHi/MI5F8MQ5q5arZ8+rff7fVVVzCwcC2s5zmermoDHoec41woMzzAeG8VG9r/87Ok4ztNGf7h5f7Upt42xOI/H95ebFzHGz1+dkcbf/vEdjmk83nj15PXbd6+enr2wWy/qfj/s929Tim1ZKHab1QtL5wxyc/vhw/1BUTX2t59+8pnSxVfffNsN/RjBVJUpq2noEVVMqT/20zBaTdbqs3KtjPU+zJH9MDsfUwJBiS5Ya0c3G2NI28kNsx9zp3NeVo0xZVUhqq7rQOm+PxpSMfpVW5XG3tzcnG3azWbTNsWr588cFV991d/fH1xIwMZN6L0nmd1gjpbCNFoCN8237x+M0l98/vk4vz503a9//ecvXryo6ta5cH19nXkXpi73w3GaJjfNPsz5XJ5nfvnqecTiuzc3RBRjaOs6hLARun2478bJMx77sSxL0HoYBsAiv//5fqusPNUntkJKzPHfKxJLCPwy+6aTN37eYeQpDWARVSNS5AgifGIWKM15mp6dR221Kva7Wxa/aoswm5cvX757e/f69XeImP0+ETH1bIzJNFelVHAeETM+GeN1SDFXemAREAC2SqOwAtysW2vtetNSahTS4WH38uXzECSl5F2wRtuyUMYWhSnLMnCqS6sNeT+vmmoep027KqtCF7rve+enzA/SWjNAcH4axpt37/tjV9bVxdWT7rtemEmpjKaWZZlHBzlJHvNrVhSFc1OeGjOhBpHUR5lIj4BephmHEIZhyD6X+RtsUee6SycZJXzE4cp3gYVzaESM0Y9+s1nn78yGwMfDMaWQl6zjOL549WlKUlWl8zGPoZkgTR8lq/sYFIL3HnOqUoreoyFllUYBDhERrdIKUGKKyGVllVIhLu7WGXKPMXrvgXBztn37/l3Xdd4vuUY+ZQcHOD8/C5ym4JFwfX4mIldlmcf9EIK1lpTJfLGirlwMTVuM49h1HarTqs9a770wxpS01k1T5VmKGZwLAISARCqECADWlqBUBqXrur65vV2tVumRbnYyggDIZsDwWAK9C8vNAokxOudLa6dpEpGyLJ89e9b3/eHQMYPSarVaaa29n7uuy4ut29tbZlAKy7KgU7BBfuO2261zLhMSEXG9WldVBbjgIkopQ2r5kUihsZ3zDBhTGme21htjQ4h5VQxAjBDYu5DKyMwQEg/z1DSNi6GqKq10Ycw8z1VZogARMbCyCk9OKsYYLxKS5IKKyIkBBUSDIACiLLaRixF03p7EFEIIKqEChZoSCIuAIgGRJEuvwJhSQMTIwdrCGJMYBFhrnZh3+92bf/dvP1zfGGOePXv66aef6hOhmmPSJ1eZx7mZT+5yWmsU8DHvU3VIoSpKAIgx5gXiI1yvtV6v17ltxXyDiURkt3tAhLwsMMZEWVQJiJgBidwZ//pXX+YCV5bl7e3tmx/fA8DDwz4J1KVp23az2aybdvJunqeqLAtrQwh1VSRYmoYnz16klPb7fYzx4eFBTsMvAhLl0xgESFdNPXu3Xq8BYLvdZrgg/0xD11VVhcDXtx8IuCgKVPSwO2itq6YOIQDL+XY9jn1bWjdPm1Udh/jpZ8+Hw/7m/buqNSn2seO7uRvG+Yuf/WLTft4d9rvDblVrIth343q9/nBzv9lsv/yc/i//9T8/HMexefX04nxzuX17e1NqHVironbdERSVdTmOozAL6M3qST8XblIz99c3/+7s/PLv//2/f3N3/9U338ToizKctXVdXb179y4lqU1plNl9eEBEu+J8msyeAUgUEmlJ7jhOWuuqblmi9D2RzlGAswvj5FRRAjAjEYAI5mYwMw7ye9UdjilavT1bn8n/5j/5s9dv3u13fVWvjocxcBqGgcT3fQ8ytFVtFLWrUhIDparY/uKXT6p2M8ypGw+kVdls98dDP4fj+w9a664/EMjV1VXTNB9ub0xd3+7mFHpALoxBxH3/oJHe3TxEYdKGCaumDikikjZGF2VKSSmytoCT46sCCMEjYmG1wKKoyeioIIXwk206QrYDz2VGnxT6+VUkJCVADKSQMOf+pkQoRIJKA1PdbN6/e9d1h227rev6+sfvQghZVnvou+xOtd5uQggPDw+ZzpDXq4gIIoSklVVKJQ6B87uUmSMkILlO5w91f39/cXGRUgouhhQ3m7N+HkOItipzULHNknwWP7sQglKkjV63q/1wuL+/n+e5sJW11nkPpLLb8/X1dV3XLsR8ClCmmZyC45VSxhT5pMjfkA0Fs6/AY21mlnhK+/HeZ8pVPoJzVX4syUVRVFWVFlEJ5JaciEROvErJxWDKf5ARiMgWlohS9FngsdvtjruHqqoWGEYgq+am2YtI07S5wLCwVjorykQkRr+9uiptYZRClJydJXGZgPNY0A/HaZr2h4fNZpOZ3planEf/3JScnZ3dPey//f7NsAiEJAmI0kYtC8J+mP7nv/23GSxdr9dt28YQRGRxIHIhW6b4FOd5NrYsiiL7HiRZrkZiAFSAWJZFvphFWRPRPPuMQAgLEOb0xhBjWShdaDJ06A/jODZNc3Zxfnt7mx8wOaUAZcADCNmn4TiAZBlSUgRV1RhSwhBTnHlWqFar1bMnz6ZhMsaIrnKf0TSV1jofuERQ12XeX+bFZ77FdV07F6ZpQoCmqtu2JQUinOsuAOQLlhdAGQLR1oyzK8uyKFhb0/eTVooF6rqKSVJK59sLpdTkHJI2RSUyTW5u21ZEoo8iYoqCARDElsUjayGf89F5MDZENsZw4nEejTFFUTrnfUrzPAhjjFFbc2oopSq0BHFTr0Qhe2115Mylkrqup2kWESIIKZJWmeapTuGex2N3d3eXhXxNW33y2aer1Srfh8wDWDrylACBALN2I1MdjTEACAxIZIwlWMIrSauTls8X1jjnBCDvEIdh+PWvf9113eQdoS6qcrVaZcuUsiwVEgpkUkJeTLDEsmzHcTw/Pz8ejzkEwhZ6moeLs/XFxQUAZEIDIuY9xR+++VOWkRNCWdrz83MPiwvs1dXVarXqus45d3Nz8/r1az6h0znnLJ+weo4JAG53+9VqdTz24zhmAN25KSk9hZQ41EWptd31U3AelTLGKKNTFATe7/fsJ3CqtFoD/+LzVxymz19e1TpenZ+dn32pxPsg13cPh4dDvT5//uoXX3/9u2/f3p+frffzYbNOl+dXLnJVtP/V//a/+O1Xv//vvn937G5fv0lfvHw19cMPP/wYgn96dfHkyRPk+d3NtcRU1pt+DIJl16W7421VVXe3N+PQDVP/q0+f5k3G27fvuoM2PlDEw2FfFu26asuyuvPHGKMPKVtMeO+Ntbn/yuSRqi7Oz8/zBgJRHCQRPHaD1hoAjaGqroP3ZVM6527noVAAHOah3z/Icbf/LG7X6+2Xz5+94euqXj07Px+df//+LQB8+urKh3k4diHJs+2ZtXace1OUd7vhdufquiZjQwjHbjgcDsvxanVK4eLsrN5crTetY/X2h0NKgZkJYZidpKAQysqKgFIGCEPi0c3eBa01EOrEhpQilXxgZqUw2/UhIhq7FN0MQOX0kjwWgxBppTA7LCQQAWJmQTTGKFVASiGEEDxaEBSGpEGRKkgxqIQEUUAC96Mb+klplOTHrifSq1WRR6Xcz+ae9xGQ9N4rMooy+zr7/iRltKEChGLyInnBp7x3iKofJyUCHAWBjHbO+8CT90UTQgjNaiUsZWFRQJFCWfrrqioJkE+agUx3/KkHZwaAHDK63m6vP9zmV5FjMoUtizIXwryJyKjpIzyQu5aFzUeklMqmr3wSDT/Crfk788v/2MZN00S4hAkiIiPCKTQiv/ZZaZHn4/xPZB5DvqRG1VrrpmmUUtbaDPnu9/u2XYeYMtqcxzVmJgXOeyIyWheF2W63CokUIItROsaISldVxRLn4G1pn26eHw6Hw+EwB/+n77/Tp2jkXE2ttaAocLp7uM/jnYiAIiQkpfMpnKfhmBKzzC70w0BEGBkAyqJoVu2CqYLk9OWUwjimj3RZoEnNPiIpY4wxhVJGBFJadh9lWWbekJuXJGalVF0VWdOplJqd+3B3U9f1ghISwkfrzzygaLP0UiE4haRIVbaoqkYrzP+EiHz48OHu7o4T2LqcWay1RWFE5HA45NLLzIlDjMkYbZSKgTNkMo6jn0NdVrl3YYkYUSmFnFQ2GmNkkSXZ4PSE5C6zblYiQjgjYlWVzGCtraqqLEs3zff3u8z8Gqbx6dOnOQOqKAqlMMaYQlRKZcKsIUNEC1kSYBgHpVQSiSkppa0tGOHQd24Oue2LnCInZnjcWOdoKUF4eLgTgDx0wsJysM757KZChMwJkO7398Oxs9YOw8DMn3766Wa7epz0MnkwI+SzdyQgIkprpVQBNqtmtdbRB04MAJI4Y+MEYJQCQuGUOCkC7+dsqRGDi8k3bfVl/fkwjUVRMsIwDH52s1ZjPxx2e/Ozn2esRWs9zQMiVrZ6+/btNE2Xl5f5wc582/w85Iz5vu9DCJk39/333ysFn7x8vl6viSgHrwWB/X7UmNx4rAtllaDBq/P19Vtg5ixXw4+eOD1HiTEej0d1dxCEtm1ZmV0/iogmPbjZOeeTalszJWQylbaCAKKMQa0wTH1hjVXw9OKM0lwpCYktyeevniUfDvcf1nUZozRV/e622/VctOm7930Sw3X5+r57fmV20x68b8vi2ZPLX37++fjf/n+//t1XH96+fnV+vmnqytj9fr9sW1e2rKyf3eF4nCPd3O4PfSDDHNN2XQ/7D5++en483H/+2Utr7ReX+t37W1tstWmZ7Jsfrr1PwR2VIslpYohR2DnJ6EpKKTsIDl1PgMaYyhYxeQRs6np0Lk5LbEtuvBkhJlGItizbdtXUpXAsjd7fHMadu7h66jq/u3lb1W2zXn3y7NXt7W2aw6ppP3vx6t27d++uP6zqZhzn23vbtm1dVw8Hf+h2LkSttbHr6JwbHZIjAlRh+uNba/Q8z25CQJmGHknON2utDCPbohrHPnH0waFWWmtbLt70KQVmZP4pJ0Cf7PutopQSBy+ERBYRjdaFqRAn731iTokF0gKi/jQlZ1YhKWWEhDHm5AZBUQBIIDGlGAS0ROVcenh4QESl0HtvlZ1j2O12KaWiLDIRSUQULtYQudQppXzwhMTCwLKkD4nkUiUsPkYA0MZMbjZIHGNVGCQ9hbGqalbLVpuIJjcDgEJKzFYbAFAIBIvNXg6GSlGyu2cSFoHEOQxqUbnkHynP5bmIPjKQ4cRlw1PGbaZKZTf7RwBZPtIg8Unv+wgy88miL9d+HxZy5gkdXcLJm1V7ypmBzNvMf3CePTMjMBFoQ0RUbjaImMVUzA+HwwFRTbNfrzeIviwLY4zzk7Wl0hoApmnKkEZZllphmN12vcljeAghcPI+ZiMC73PuBT88POS5P0/tIjJO08Nu570PLFEY1NI4pCxQEZGUANEWhT7ZAudPbQzFyLNzY87FAxDKm1dIDMaox0YnA/UA+uO+5/H65C1ApmGH4JWqcleUxy/nXGacDcOwXq93u51z/uNIicevGILRuq7r48GxsGJExKoonXNGwXDsbj/cO+eqqmqr2o2TbVtEdNN8OB4AQGk9T3NRaEIijd7FojAX51vnwsP9gwicrVf50M//nFJZgCAiLMsaQtSCl4KAaG2nyc2zL0tKJ/dHpdTV1dXd3cPu/kFrvd1u69IS8Ddf/05JuLu7+/rrPzx//uTly5cvXz5fNe1qs/beJ8cZOAGEnHWhVBHGSQSc87kBfYzwyn7dec+Su0MCUUrlVsMWmkVyl8NJpnnMreTgAwBsV2siGvvBe9/105sfvp/n+Ze//OWLl88yYtT3/WrVRh8kJQSQxIBiNBEqYIkxcgpZBxVDyNt9a8zj65ZRehEh0kVdZMMNTTCOLhv4uBA5MpYFKjX0x6wYRBYXnEi12+2y/K8fjswc4sK1rOs6O9nlFdLpBqm+76uyIaJxHGOMm81mduMffv/HlODqalsYvbu/izGmEKqq4BR5GEzkm++/OVyXucUHgLNC5cDR7FLy2Kxr51PfD0RGcgSbT7MfM1XSWosCSpVzEgoSEiplpxANqeMwVoYYxU8DGiXsb9P88tmlVlg0lZsnW1dFU3bRxzSP0xyx0AajyLHvA6o5onLAqv7xvt8Pw9bS/v562F9fnW9+9cmrMsap63/7r//680+/+PSzz44SN+3Zz798uaqVnwaB9PbtrYoxyagtrZu2bYrz7epsU4rrLp+t/+O/+PT+9tZV5ounn41OqvX5w2G+uvz8d19/2/VD5wvhxJFZxNpys6qAtPd+msI4dPk1nvqhz2+vxnq70Vqvy5IZsr+rm/vEYd005+tms24Nyjx7RbJuV5tV0+A89NOH63eFrQKCAonjCNZgimdnF2VZPn/y4tnV85vr29vb++DnwIKURt+nKAyaSPsEfuLZsfeSI0KPQ7x76BBRa4UxS4IgK3qrqlZ6OaaLotBGKaWA1CJis0SRQwgsqHJeCUdQWFoTYyQUBiYUIi0pLtxd7/PaLgNcQCon+RARECIqOXkaK6W00j5FBkTByJI1xAlcYgdoiSsWut/tmZMtdFEUDDSFmEn/ZVlG4YzR5YntcQY9qRqUpJPz02P6EiwqUEPKJ04+eBSIqWmaIIBKq8LUVrsQTVGGlJzznEQpBQmyTUGMCQCiDymlJKBNQVoZsKgoxsTZNpbFGINEzFCWZVVV2+2267pxHEHLabTFx+Es/8C5TYaFUTl/NLotIDOc5Acf7wXVyRiWFz4uMS/lO+PSdV1rQymlHFmTwyIfaxiRij74MBeFMcaEeUpKCbCInJ2dIaq7h/1+v48sRHRxdRWTT5yGYVBKaWNEZJz6GGP0oSgKa5QCXK1WhjSIxBiLqizL8vvvvx+Gm7ptACg7SGmjY+L52D/sjo9JwEqpuExWPzko5U+Xkdi83nusdkopdrO1GokyGA+KMkwaIyNADImyPwblEBnQ1mQuj58dERmrtFKgVJ4p58kTgCYCSSn6uiqUwrdvf2jb1hg1jX3bVIqosDaH6f70hctggsLAyWpllRZJVWElsaQgKdw+HDLw3jRNFoadn59TYd68eZNYCODyYmuMOR6PIXoWIaLzzdoYM/TDPM91YYqiaqo6cUjR51KKCMyMLMKMIpBT4JbTWUSEhDUCx8CBhHm7WSHiMEyH/X7uu5RYoWzbhtYrZn737t3f+4//apqmmOCHHz/88OMHgL9pan11cf7q1atnz16s1psM9SWGY9d9+PDhxatXec4zSwLgnPEMDjFrc1NKiOBj9PPIzGVZ5KeOjD7bbmNKIpIiW6PGfri4uIh+VgRv377+m3/9b/7qr/7Kmmq7XstqpYm6w4EUEFFdlcHPHJNWKuNeMeRMQ4QEyOK99zKLyOSdiAjHnfcKME9K+oRpE1FIOS3Y57eyris5xYFw9KiVn6f87AkjEM5uPBx36037sLvLtyCj3OmUwVrXdf7+pUf3SRg3mw0RZVwhcXj93fdFYc42a+fc/uFOa60RlKGh79aGL2oFtRJxMs0cU9adbEqbDd4fG+t8pOno3Wa1DimGELKmwlp7OPaKzDjMSqm6NsPo80LHWlspFZj7h0OhAKLf1Obscrutq7rAZ5fn3fEhcHz25Grx+NdGlaFAI54327JkfZjl6eXq6+9+COC11pXFkkkX5bqtnm8bS2n/x2ty868/e/Uf/vLnKaXb+7v/6C9/XbXV6++++bNffXG2qpXGypop0stPX+4Hb6l6/f23d+9ff/rkz0hbjd733fPLjdZ06Ac7hw/3P6IqCPiTT9pjr9MND+McowOQuqirZmXLYp5cP5bZQwdBRYmQTRKsDYnf37yrqqoqm2n2tqgKa6dpIFKTD3g8llprJavKAtDkQtNMX/ziGZFSZA6HQRjevn1/e707v7pE9hLh9sN7Qr1arUJI+/1+8t6nZK3VpgiRu3FiwbZdaVuV9QoRh7F3s8RIAOB8UCkkjk8uL863a+emvj/Wpe3mkVDAGkVUGKuMzg+riKSs+wbI5GY5PZ5VWRpj1KkeeO/nyDHGKURCzMsYQKWM5QSjc9PsEZGzr1NKiSFywsigGGQhSDEAJGEUAYpJxEdhddgfc3UpbeEDEk3GFHXdEsE8LdIUY4wk1qRyoEI+u/NhrTTQ6X3LX/lNiyEeuiOwKBAQ2QJ451Brz8zMPoY8XscYjVKayGr9yA7N4LwwRE4UhUgVhUakkFIWijAzi1TWhhCmebq+viaip0+fvn37NtfLzDzPxJAM4z9qfE/j6cIds1Y/1t3Hdw9RisLEGB9tOh4xba1UZojkdiTnO+Xh7/HvX4ZmAEQMMY7jyMxWm2ma7m6u27ZdrdsTNUxttquqqb2PnGAcx7YqUCDnIiilUC3RciIyz3MKerNdFUXhZ5cHoLKu2rYd5+nm5mae50yUyxc2825AISDGxCIQeInywFNKLp54XvARxfdjuP78/DzEOM9zCF4pRcoyc0psTL7pQoSSMnkQisJGRmDJIzsoBUykBBGBEykiTJDiul6FEMDqy+36uLvrD8ftaj0P483727qyw7HT2Uvioy+RxX+DAIKbuxRiSkZBVRd+Hnc7TCn98ue/EJFMiC2sySvqN+/eCEthaLVq/9d//3/1/v37/e7BKK2UyiBE13XTOFur16uVMYZEtDZKEZ1ioREF1EIROj0eyNlfm8WPkxJAIq1UFCkykj9O8zARgiaorR77g7VWIVmCsiz3+/26rUQkRBecjGN8PX5488MHrf5N29bn5+fBp5ubGxcZAP5sGM7PzzOzN9+sbCOTaQpw4iLEEHDxyAzPnj0zumhWLQkYpBSjVirOrm2b9z+8+fDhGiR9eH89TPL+3fcxqTxVP9zfEIAx5nA4lGWZs4RzT5bpAhkQymSx/KigolxxH4V8HFOeEzLuoZRyKWqtUwxa65cvn6eoMqKZ7VYAQCnNQN776+sPznkGePbsya9+9as8ojy+lXmlki9C1vhkgDrGeHV1VZZl13W5Ff7qq2/GKV5etMYY4CgMxujoZqN1vV7xsFMksqRkYiJR2nrvQeLJRTAv+08rhmeXlyLyww8/nF1eMqduGGt79vTiXERub29TSuxdcm72TilFArvgVm29Xm/P11WYhlWp1u1q1RZKYmYGWqvvd/vVasXMm4urfnqHZVkWeFa2+8M09oeNVU/WFkgngraxZ6vi6qLVoS8L3LT1kzPlujuMY5Jhu92+ev7zXde/f/PH++u338n8+acvbm/e1e26aNcrq55eXB0PU3q2enLxeQoTIt2+3xGgNurs/Pzm7s5Udd2sBhesUVVZIMKn1Oz3+3GeXEiKQ/9wMzh/6IbN2XlhS2CZvTO6wBPANc6ztjYJjm7W1riQDodbRZSMFtalqVGrcThGPwPAZr26P9yC5qpsjrvjarV59uRZWdI8Xzx//vxwPL57d3374cEY64Pc3t4XZX11djbMU/AxRIkJEEURpRSFKfN05nm2OtvcICJqTIUljnMMtrZ6dv3x0JXWWmMRGAEUkkElSktMLgZgzrUHkI3Cx9MTJXGUlAQWkUF08xhjVOWGiKw2oIgFBSClFEJQCn3i4DM7VC3BtMz0OKEKCgNjErXwg+aQZh8fHvaIMo7D48CXq0iMSU5uNRmYUkpVRRkii4gidVqj/jRFIWI2aEREVDQ6r0AQQAHOIc7TZK2tVuv9fp9SdH1Yr9eTc/YUwpi73XymZKGZyvNKSmVZCmIICYBm7xDx2bNnQqrrusIW+aRYrVZXV1cfPnzIyhyRxWMhxghCbg4CP/nz5a3nY919nIPhBJlm+C6dEmyyNKUoiqZq8/dkKkeutcKc57NMPOGPYla1MdYWAFIUBYLq+352U4YEy7LUtlBRYeQsrs01PqUQ/Oz9jIvOBPItEMVAOE/++vrazy5fsWZus/vmkydPunHAvcr7Zl6wCAEAbbTSSxginYIrmfMzAieQYIEK5CRuzpeo6zqlly9E9Cl670XgRPQFBRghA/UQnOdF6iZ6yQfxKRABDuOQaWgpJUUcJFiDVaklVn616vd7UHR5vmmaZrfbCbOhZQSR/z8gWgBiTAiADJCSc7NC/OKLL4rC3tzcjONQVXWOpui7Q5gDAmxXq7IsD7v7h7sPBJxCauuyMGrsBzdO66bS2oTZJR84xtxlZl2DUgrxFA699C7LAZ0zoREARQySFmCObugjJ01QFQZy5mOKu7vbxYqR+X/47/57731VVSkmDmIMWGuVUuM4aa36ftwdRgAwBG1VxBi/+eaPZWEmFwRAI7AAIeS2CgCKwjAzkqTExmjJwtZXL0VSaWw/jEVRsEvZGc/Prj92Dx9utYKry7OL6LvdHYNVShGqGGIC0AqEAyfKWMdSR5dkcUVE0zQRIRJGRCIs6gpO/H9EIbW0s9mynogUa611CGitffr0yhgzj2MIgXTGNR2iSiy6tE1VELAo/fLly2EYYowZdVNK5ZM2v5KZKVnX9eFwUEq5lJQ1LobcuM/z2PX+ycV63Tb9cW+1QUQSNppS8Axi2yYGZmZjynmeQ0ilIrJ15oqfXmfM0zAA6Dj15+fn6uUzH9IwzY3VSpKWCIraqsyHRdk2+U8qQrIlp2yGApzSMMxHS8hFbdUQ5n7oG6iO191lTJGhmoOt2uB9ZXRtKt0oGd19N/35q+cB1BjTmzffl7FVF5vhOITScIKXz84qE0qN1kBMQ/Ty4uosurZSr7r7+927G5XgoqqHeTrujxerVq3U9Y/H63fHypZ931tbFc2TN2/fOYnDZNti9e0ff4wMTFDX9TA6EmoslaZyPjAp48kYTYDAaZ5GbeyTyysi2u8XFhwDrjbbruvc7OtaI2K9Wq+bOnnH0U+TUyDeR4Wq67px6AucpvHYtuLnMA3H/W4yStd1OQzD7YdrN/dVaZWhi8v1elON47S5PD8cun6cZ+/Fc20soEopJU7DOOYjGMVkYUlZFNuWqqIUSQSxbeq6pHmeqsIQYFVWWZw9jvM0zcaYVVmDQlJw4liKMUqdzMdJmTxkCGKmbHRdp6uamZGWaFUXoo8cY0RSMcYQYuZn5bKhlGIJuTgKJwQlgNnHAwCVLUKINzc3AOC9RwARzA5QzJz1ssiCLIw/2VPEOGX7pXwepVPiN5/Cy0QkRK7KwnufYlSAQDiH6Hx03rer1TCO+aB3LqSU0BgRiT5gUcJpEetPm2znAjMQ6ZQkxmn2ru97IsqJwsaYi4sLBtjtdre3t3kYPSka4XE2VWRERBudxzsiynjaI/T6WHfxpP7a7/eImHdRZUYjFj2Pe2wRRLLfUHpc+kZe8swfqwXH1Pc9gJSFefbsmdUwjH02i9jtdqRNjEzKOOeNRe8dV+ZjbDx3JNlMAIkkpSEM8zjCYjoK6f2yKt2sNxcXF9vN+cPDQwhT9j/LReOR5g3/PsFkmYbz77HkCYATszAABAiKFHMyJotWmREyO01rEAGlNIe4fFqW7HyYyVBK6VzRkRMKI5EmAA5KmcRx7I8hBBS4u35/OOxz45VCIKLjbicxlVWVjOGPG4SPfup8ByWFzJNSBEjyu6/+rqqqnE+cNXIAYIxdtQURuXncPRy6434YHAC0bTkN43HfVVWxatppmnzkTIJD4Bhc7tuIALJuNcbH/gwwISoEJI0AWiOklBhBEWhC4KQB2tKklLShyhQA4CCicHSsNQgLyAKoF9aSzmHYPr9PxqiqXByYRYRZVpWNMVpcfEISR3XyM88b3xCcJAYB4pSSbNdNqY0AFdrMpIKL1lKMsa7r6P08jE1VcnRDd1iv6qosEiOApORKa5gZ2K8qy5yQWRv6yISAU2TUuixtvv55kIUUIRPFUQCAFCHiErpAKJJOnbloTW4agAvmaIw6Hg8xcozRhcQMinRVFWVpPeNqtcoyWhHJU35+VbOJbJ4QmLmqqpRS3w/OudVqtVqt8vPx5GJ9dra5ODtft7U1moS1wqE/hhC2q3UXMQyDIppBbqdeq6IbOadB5BPjlId82gFD9Pu7D03TPtzdVk17cX7lgtfajm5uy8IF3/dT2TRa2+yR9nAc+uOBJMZ5UOwVu7kydUG9n9arWlvbDdPFxUU/zkBqcr5ITZidXunhOCmQxhS7eX/17OowRxT8y1/+eugPWtTVxTM3D6mmGOaXzy+u370ujHlyuXl/c7fdtuvauA5+/fNfPFxfX23PKEl3t4MY3n377atffvLFp0//7b/77dXPflU1m9dv3sY3t9qsRm+mUN58f3vsfNM02/NN3/eGyrYupa4m59+PdyHOtqxWm7O2XQ3O74+9MOc0DERV1/U8+aj4cDjEGKuyyYv658+e7e/v8ugQY3ROCPH87HKzrpn5yfqXKaXucHz+/EtrVHADISc//+n33xWlOj8/b9crrfVqcza7cHt769h1/W72sW5WTWtdkBCS82mcJyKoqgJZyrIsimK7WWmtCzkS0cXZxiiaxr5tm8vzzd3tzeR9CtnboZh9RIAqG9AXFN0JbAFOMaLWeeehCIi0SEClrbWI5Jwbx8llMFCb3JP5GBEVkmJAlX3TZYngJlr4TMKAgkh5VUxCKrgl8fDh4QFOKZheFuFN+ij8J9erPDflRZQ6EWqICFBU9iWIMaWUjQtIKYFFX8unTkII3ejfXr/vx7EtylXbRk5aL6lE6mTTiIjalkpJEp7c/DikZhKmiAzDUBTFzc2NrcrMekWiPEZst9vj8Sgi0+Ry1Xnc6SqltKHHhW6MnC1M8sGaJ9p0ihNIKVVV9VgC82meR1uj9GO15lMykpxiG3K9/Gi0JK1yeGqeJ1XbtosrAVHXdSExYn75F/pY1uoQEoMQESfWxjyysgFAkTqZZ4JWCkGapsl8tBxCMAxDVdcxxsc92WM511pzTD/VknzfP9Ic59HfKI2nuFnS8rgRJ7PA+NlzSikFiREVARKRRsqL70fvtsQhY9TGmEzeSRAlpbHvjTEs8vBwT0TZ1SGlpKyVxEapaRrzk5Z/Tll2c4iIMTpmNoqCUFEUwc3MPE0jEaQQRcRYndORc10nWrRwbVuE4Ioihx97ZqmqQkSyHRgi5rssvARvnAItogCrvP4Ugo++MnOA2QMKAUgKNm8lOKaUNCEkjizeJa2hLotpcimCLbNB2HKJgEGTKlqbUhKEeFplpJQyTJPJp5utzZ9OqSo/WoVRuTsMwQAAZLzXOWNM1x1Wqw2noIluPtw+ef6MiMauJwWXFxfv5z4SlUW5f+jKkpzjTMJr1qthGNw0rlYr5wLHRISAoLXKB4X3HoSRiFC0IUA1zYNzzAzew4sXDTMboxUuCWNaqZQSLYIxMkp9+PChLEsirOu6aZphGJhpHrrRzcOweH4XqyqrA/KjmM+Q/P72fZ9P2qw4yMGj+VAiosCJQ7TWfvHFF4hydXWl6Woah8qauiq+/uq3JLBatceJopeiKMLkAlZnl0+Ox+Mwz6DqiMyYWweSJWpFdAdGIz3cPzSrVUrh5sOP2ePDWptSROKmLUViPwxVVe0P95sqPXuxrsqiMOruw40xxeriLCHOIXgHQSptiii2aer7Dx8Kq/2dT8EFTXRuZz/brd3w5pvXv/dJj1OavHz6+Rfv9tKuWpbyzfs5+UN5KO4+DKuy+MvtJwwD+/TsYlOAX62Kun0KimxR2TCyd7Ob7+/2F+dXCPY3v/vTz3/1l11Us5Pk/e27b03VllW9x3i47uujzD5uNptfmRhCYqZ1u373/rY7Htfn2kcuCvv04rIfpuMwOM9IogwlVOhHq9R5WyurvecY+h/ffpsYSFs0dg6elN0UdOz2EIdS404ra22xrsTKh91d3x/Pt5vtdptmX59fNk1zOBxE0nE47naHvu+r0taq3mxKUQqURvFjN6JIgak0bHRq66otqSy4tFNVFOumZua6VpG5tpXz4fr6AxmryypEcT5hmPL528+j1hpiQFSSmBny+kFhyuKEXJOIiAPf3++HfhLBOabjMCYGY0vQdnAQgrRtqbTGhQQhgVlACygCcmwMstVC4oDnxJqhYGmjhNbK8eHb+w9/aAjGozvbNEO8H3eziGy3W58cM6Yk6/U6pZCSQIIkqdA2RSmVXVpjWl6Aw+HAQm3TDsMATG7KFqwKSfkocwABgwWxcF2tnPcNmbv7h7qsfBLSxAACy2o5S2kBZRpdnGBdbTTpZtXmouWnpMBsmsoYAwL5BN/ouhI73x5VEiK0ShV1zczGFNM0DdNUF7UkAAYkRYoyVA4IIDPHBACaVHbLSxK3m9Vms/nw4QMACrP3CfFk0Q6cOwBJSSvVjy4vs60t6cTpRVqcCohoU0KzrrfbbVmWr7/9fe4RObIivV5t+r5PKRWVJaJ5nsV3RydEVBhUudIrTYRCywqAFn6ZZFqAtSbGKMkRSFOZoduJyMXZKqXEKvN4f4rBYQQAQa1gYWp9PAknpZRSlPHVk42aKAUNgbCMwZNWmBi1ioAkYEjxwuQSQBBIQRIQKCBEShw4ZSm2WVZ3AtbaFGMMwRASJ06pLYr+dM5CSj6loqmVUuIcEQ3DkD0rhBdbN+ecQSzLkiVprYOb82rfKC0IWmvNShBCEtCUCFOC6KM2RS7kRdkua1RL9gR7hOSqtu26zhhzdnaW/JQrWa4iJVokUspM0zRMs1IKlSmKsh+GjNWvyvXtwz0AaAIAODs764+HpmqQRJParJp5ntu6AYBVcNbaUK6//vprCIIIgYEBrCVMkYhQlK2qwHA8HhH/f3T9SZMtWZImhqnqmWy4k7u/KV5MGRGZWZGVNXRloUEQaELQBLHodf8FbtgiFO74I7gCF1xxghALYkMhhUKKoEmKdBNNYXWz0NVVlZmVU1TM8UYfrt/BzM6gqlwcu/e9zCr4IsLd33W7ds2OHVX99NPvM1CYkKz3T66eOB94mggxl9S37TiO05i88aOS79b1rqH3EtM77z9arRa17MwlQ8D9uGtDw0ZijMbYRx//8Pbu/uX162TpekgNIio65/bcHllsWL7YTc41aLDk7JxLMfXWMfMUkQAVDAC0rTOmGUV2067O7UTYCMgY5Zw2SRQRUyDnnADAezKA6XqrqtbcVafkBw8eP2wva9754sWL4/G4XF2kLN4GQptTqfQpBELEXGS9uRzH0Xf9mEsQGIssuoaZLQFzMRaJ6MuvvhKRh4+e3g+jiH327Oadx09GWJh+fc+tjHcelThLmkDLzc1ra62SIoI1VIrkKTLIrI+di40xZqI2BGttv+xn9VfEwzDtjwNZXxP2qtTY9/1m3S669u7m9brvPv74h1LyNEzBGWW93d6mKXZdk2O5M0iAjW2DM4aWApAEb+/2Snh59egDaH/xmy+uHr/z4uXNb774AhEvLy/eefrw+YuXm6V3TlOSF/c3BL95/53HsWiK0/riIaLKlLZ395uN+eCDDz7/8qvlanMc0+ub2x98+nv/7V/87Dd/+9nVw6fHSVzw4egQtOSU4+hJUxziGG/S9E0xpUjJImCZPBvZHaMilBh9aMusFiYqhcR6S4UtgCZmkzSVDEgqmApLicH5kku0aJerZbvwJCXFL7/6er1ec8lffPUVgWxWy93x8Pz5c5FyPB7ppPGEiLWour8fnXMKVESL6JQKlyqR01tLffB9F7rGN47sPJqSM+v9/pBSsi547/vVGgBSLOhnOnQVcebZpFMISUSlaJV0JsIArpaVteTxZkal4pSNmrZtC2tkReY6v2icr4esVRkzi0r1KCTrVKVormO1SqJGhaAyEv/yz3519+oVrZuHm64Gj83lxTAMDIWZnbOqUkqqPjl1RLUUblqngsMwtG2/O24RtWmatg1VVz1nKyIhdLV1TUS16gJUVCAkRKQQzhGl7onOudC1MU7Hk+2JgkzThGyWy36M0+vXLxERrVmu+pRS5pRKdM4RYkyTiBSu2pNusVhUNMmRKVKI6HKzYWZRFBFWxqJVAFhVCUVOkhpEZCwSNavV6k/+5E9+/vOf39zcHA6Htuvq/XLOZdHaI2TmKc0y9KWUENpaRTVNM8VchfF2u927j59sNhtVPRyOL1++cs4dj8P9/c5Yg4g5F1WwdobunXOCBIgsuYqrKBIZO0OfACxaxZmNgcSihWFmAJicc9/3NW7Vy34OsHzqoqrqKcTOX29F4nzeOs8vBoDlsleHF93Fq+vXCpmr2dYczucjnAtqRCSh+ZpqmbFiVQNoDEHUvu8fLpeVlQoA+/1+GYKcdDdVdYqRiKprsnPuxcvrt3WgrYVSwNpCBCVn7/277z6tI2cVBhPQGHMaBq6CkCJGAADW6/WZiFeRBtEyZ0uIc3e/7x8/fqycjDGvX7+O0+Scc94PwzSOY5VIREQWqUIc45icI7NaI2K/aOU0rlZbEFzKbjh6768uL5nZkinGrNdr9j0R5cIIYCzUsVpmYWZDRUSMccYYSy7lVJ3PDrv9Tu5rk1WZ4zhW/sHxSKpqvKtWFiJyOB4fPlwy8/X1q09/7/eurh7st/cVU6naqyJ5Pxxvbq53d9tY2Bi0xkypPH2yrJBPvSAhhFmKAKHKmNQsiojGWABgyqlpGq7Troje+ywMAGgIAErVgEuJmYE0p1SKEA3WGmutRWLBFy9fWzIvXryoDd3xOJyJZnUl27cmESr1rF5bIkKiJ0+e3N3dcSld35yVEuqKrZNs9RE418cVwRaRKU4xxr5bLhaLxOU4jMfjMZacsyKCrZY2p0MRkS2ifXAuhONwEMDgGxE5TjG0fd6PTsEY27Tdcrk0xqwWnWT+5a++lDQ132tvrreeoG18HFMIQQsVxpjgeBi7rlsvl/tIQ0qonPOYFDIjohEMYvXph588f7XNaO6PExJth+++e/3KGNLcGmrJdfkYX7zavnjx6qP33nvv6eOXtzsEWS6XvuHdMBrfxpRfX3/zwfd/1DTtMOY//slPrq/3r2535Nr9/b3zRkC5TMHSZrU6HI5QqJR4c2xDaMRTjFnJFCOHcXLOZSlD2tWLslx01lphSKnYrp2GcZomQIw5saJxXsgM43SEgRAWTdiP6e76etO5773/XjLN/W6bcw7Odm27nyZWaftu2B9ijAjQ922MeDgcKgUgxmidyzlnliLMol0b6liON2SdUc5pYhTLVJ3Ds6mMCxMEKWZVQUUga3E2zDnRYAAUMSe1FkQgZymlgGq1ylkvl8ycc9Rc/UDUekPGbO8OiOicFVIki8ZlrpypyqmWKrfLAqyiSN5W7qICCgCAsogB0P1h+7/9X/3nt88+W6zWRPnu7u51GpmZec/MVECEY+RSkjFNaNyZeDlNyVrrfRAtMY6IWP1rc856LhPJpBR1Hv8nQJ3iWD91LBlPdmBaMiISYE7TkydPLi4u9vv7an5FRNOUc86dc0XyMBxKKVUCIoRQnXcBoEyJiHLJRITGphSdQU65QrK1q6esSbl2KlkkyzwxBTN3bKpvdwZm6+l99tlnAHB5dbW9v5+m6TRArFNJ1lpOufrn1MhXRWVZuI4+c9F53CXnly9f3d/vHj16BADL5bKSg4y1tYcHJ++aYRimKSMWcl7fIl3rSUzj3BdERGa1lmqAIQUWdYq58NOnFyGEYfg6l4zANUb+ThcVscDf96V6soWqP55+LwhNCJvLi1c3tykxAyio/PbfGqjcYEAAViassqcALISiCoRgBEvR5drY4OM4TaqPHj4cU77Z74hofziyVAaQpiwplf1+8N4gAAE0wQ5xPu3NumdmETi1AwHRtG0Qke++ex5zSimlItbPeimbzbqi2ZVSV7djEakQyEwRMKbiCiKy6KsGhTHWs+ju5m6aJjq5CRHR8TCQNTEmRPBtgwasN4vlsnrUZ+GiKggxFSCYUiyAoiolX19fXz64cq1HEIMgChaJUUEBEZbLlohyYgAxxpDBgCGmKIVzjjVpMEjV3qiqMM7TOLmMpeRsrfV91718+XKz2dze3t7vdk0IzvkafU+rvQ4IVOiCRXTgYg28/70PRaS2GKZpOhwOIYT16sI5p0TMvFgsRGS73T7cXNZmjXHWN6E6kzrn2r6rXJCcc+bCwmQNWcOgwfnAknNWZQW0ITjnHr3zTt80VZ3t88/+9utvXyJA19pnz56N47hY9OR9vSOipc4XEc4CYRZpu7372c9+lrJ8+oMPr66uKoBRH97Ly8u+7+tTU/sv9YSHYXDOFU5cNJXMke/vd4chQhXCNDAr6mud4wcCMARWVceYiGi1uawA1LDf+3ZxnGJkGHN0zq2s65qAoGPMPHEIS3CNMMWcBAVZrCVSatuOBafE4yTgMGA3HId0vPcORcp+epXTYIx59nowrlHTqG2SRvRdaNuUo+/baRrQ9re7oQ0bpcm0bRr2v/ryO7Dt5WYBIN+8uCGCpmkiw5/86T/8xa9++ed/8ZcfffTJlHiKHAuGpjtM8f7+nox58OhxZk7TOB3vSeDhxZqIBtfHGBGMNZhSvr+5OewOF5drAHTWNE2Yu/2AQuJbCy4QkXPOBX88Hq+398OUlMiGJlgXx+HV7Z3kfhU8hr6gTYLHqagCawZCLtl7v7m4vLq6kpystYu+H4bD7fWNiCiX5Wpjra0Kw0TkQBrviKgJ3hCKlJhiBhV2lrC2PJ1TY0zTNCp4PO6FgexMLYaTB7VBzDkXjoBO1Igis9RZMiJShWlMKU8z5UeRuU7jhLbth3EEtK23RU1mSSWrVIYwaPUsRFQkUFFVZUFgJDTGGCIWUqKq3/TLv/oL2L4EHUqLHrmkkYgUhZkP45GIqrnptN8CQNd1sURnTNuGlJKqLBb99fV1fWiNMaHxZMw4HRVURJCw5GyMqcaIIlyFgXLOJSYRKSUVKb6SMNumznDXYYOqWcPM1jgypqpHVYF+Y0zmsj/s+36xWCwqD2thTD34y5cvNxer29tbBDEEoLOlXUrpxatX1ZpGQRUNzUMmVY3yjRlD7Zky3z95552mbSuqlDOLwDhOXdcRzMYyzrnFYnHioAlZsuicq1LJnplTTu8+ffcPfvTJt99+u95c3t7eXl49tNbudjsk61wwBnPOi8WiNkGn6a4UIay9WwCAOhle440xWEN+lfs4eRO9KW0BoEp2N313nCZR+HtkLGAOjfj3/Av8Tlit8XhKcbFcG+sXi8Vwe1+fvfrSc7WsONfB9ZIqoZ5o4PUsBCAXJYAk4pjHkoDFNaFfLZ/dXDvniJClpqfGqFbsZxjT1eU657zbDwTQtb5pGgSd6QJTjJzr9dludwBwe7tDA9b7tjVo5vopcTHeTdNojMml5Dj7rjvnFDAVqRovFdUQkevr6+p6dHd3d9YVPx6HmMGY8vDxQwFywe/0WO9OFs7CSjjlRETCIABAODEHZ9HQGCcCNMZkVuNCmqK1tut8jFFUkQXM7ItXQ4XOFl62ab0ql9ngGfu2rbNztWR8/fr1/f1+Jk8oKdXAHKqzwvvvf9i2PZfULvoKp8+WAwrOuavLS2PMs+evLIEoCMDN3U1lVxz2sw75cRhSzk+fPv3g44+Ox+NutxPQxWaNaBh0yolT7LrOt03OGYj2wzHnXAk6zFIb/9ba2o4h7yyawqmopswKdDgeSyk2hKbvmq5dr/oQwjRNmEfvXTVQYRVLSEh1iJyZiyQEs1gsPv/885QFAO7u7h48eHC2chKGrl10bW+trQJBqrrdbm9vb1/fbuvKbYLdgI4pjmMkhMrHZGZAQJp1VxwpIhhj7O4wtMGJyP44EOhitR6GUTFNMVfLRmPM7jBst9u+bRZ9F4dyeXGZh91ut+u96RYtqhCYaZr2w/Di1e39YRSibsr7gimVReP61YWUaUojUyss+/3UL8IQB0U7KSXyu/vjYdibuy0ox+3xh7/3fTBhefH09ua1tx348MuvXnyCHxLy1cXj5y++pSFlsHfHr9vlhe1Wz663daQFyLHQ69vbi8sHirBarV7dvDocDqr64MEj53C7vXuV9rv7Qx3idM6HEOzlhTHYBF9KlpJUJVjnnMlFmDmrIbKhbbxrMmvbi2MBMqnI+uIS1us8jetVtwx+ONz/4rMvvfehX65XSxQm1OGwvbndbbfbq82aS14vlsfjEQHafmGM8daJcaqqOIsiTSlaMtYZBLWI6IygQ0RrZ9QCycXEKY10jDMLCYEKCUO1HhMkIgsAKcWcc/UqA5YYS0oZRAGITEZDKaVpioUTgmmaJrSds36zCSyQMhfWzDkyc9EqFwAASpUbS4gIZECklALAZIAQ67iMqoLqxXr5v/jP/5f//P/6X/3rf/Ffr1t8/eIbKUVB1psLVSmHElqvqsHZ4/Fo7AyyTWOywTKwtXRxsZ6mYXc8iIpzbdOFtm3LTaoP/HK5ZM71/UUFAZbLvsoDHVUhZe/7OA3kLLM4a4Bwv99vNhtrdb/f1+nDvm2R9Nnzb1n14uLCerc/7ra7nTF4HA5C0nWdkCAhOhzSUKDc391Nw1DFZlVVOBuCJgQERRVFJDIAWrljRKQwc0ZqEWyMSTmzyIsXL9brtXOByE7TsdqRMrPCrMRexfoFFI1ljRaopg7GGGfDOI2EFGPcbnfGOO8bZp2mSBRnzG0cVfX+ft80XSnStj3inSqoIJ6k0KzxaN/obanMbJSYoiFbqmUQoIIWAQHYH8fM2oRO9fZ3gque4eWaavyd6Pt3Q3KNx4fjdHmlu91uudm8vL0nrP3hWi68CdV8OjIgIRlQVpVq0qwAqoAIojDl5CSEpo0x7odhu98zq0h2LniPKaWcmYjOiYVz4dNPf//P//zPVTXGXCHe00iuGMBxSsIQY1xfbLQyDowRkRSTMcZ4n3I5Drf1fq03q7Ztq9h4xe3rrY+ZiwABFIFhiqwQnB+GKWdZLvvN5mJ3GFShyj02TXe7vTsnHznn2vRJJXvvgYvUS0cwpXLVtEA2xRQM9eslqwzDuOz6ruv2w3G2kVZQhPEYvTd1DoYIQPTMO1utF8G6SsxERG9dCOHD9z/4Fr/d7u6nKVrrgw2plGE4GIvffPNNXf9V79q3TUm5prZw0mGO89TDfGu+/vbbyjo+jMcapJ1zL15f32zvHj5+5Jyr0AIzlywV9GLmwmxOTov1qT/fOGEtnACSsTNZxFkiImaJ06DAcgMG4LO//fLnP/95KWWx6MlZnrSo+rapb2EsAlkpXF0O6/ivEtcmPQE4A7/3wx+VUkqWX/3qVzFLNVZ6+uRh0zSHw+Hy8nK5XErhy8vL69tt1zkk23VdCE1NUhWgFBEFa+DkckuIYE6jAfbJkye3t7e19ds0zbMXr4z1y83mweYyprLb7Zatbxs/DYcqYw2sL18d121YLlrM0Tm76Jqc8/rikm9v4WY7cF72F8urK9t0Q9nfj8UM5X577yz1bQADInB3TLfbI7nGd50knngMi81xv3O+ub4/2G+e//jHP84FXu1jcGa17DmnX371omvDy+2xCR6E8ZBECpf9u+9/kkXvbrccSypK1rX9+uZ+Z61dbNJytWnavqZyiLhabVJUyTHGxKVkTo1bh2BjGoF9G1zXhPG43x/uCVAV29Acj3trrR5gm3eHOAJZ50NBlFRub29BBDilYZA0chzXq8VmSWTcbn9w1izapu2X1loucYjJESrSEBMptG3LwoDmWAEoJDKkzMaUeiNijFmYDKAiIuQiCqwKYyzOOXR2ihFAyBouzFwbSMaQEYZhSiLCklWVQERJimRWqSJrQKxgrG8I0VCMxlq7Xl8YssfjcUiQSo5FYipTUTKOAbgUOI0AKRCDCIAqiAKqsmgRrRROURAiJIyZP/7wQ2Y+3t1c9I+IiLxT1fv9zlpbuKRI1lHMJZXsyVeY4fr17W63q4hWFeKZ/fKszTnXPaLOb+Q885BnQjUSAJRSXPA0juBdGxrrqA1NnmIIgVBjTgDQNF2dsodTGdh0XYzxOA6uuKuHD4yzQ5ymadrtB+f9/nCog5XH47Fpmv1xspZkHvM1zDyOY9/3fdvNGlWgAhUsR2utaHWTU1VBmoeUROT6+rbvl6tVW5Xf66c4S2Rba/f7/WEY64+VHxRCePjw4fF4HIahCQ0zX99cN8EBwGGYutDUMktVd7tD0zQiZR5TBmhDE5yPKVnvrLWUU6XFvrG1IjSVZ2RtEUYikBlFB6gpDlbQu+s6Q4aFfyfK6t8z0vNbEfrvDcZFYMq5jON6s0EAQWD53b/9raqaQKv4/Xl+F+ffo0JhzZnBucTy+vr6eDyuLy8OhwM5W93dY4yccl1F1vDNzc3HH398cXHx8tXrrm289yJFRcYxrlYLi3Q4HEvDiDVm2KKiKbNIyrJc+BDC69e3T548/NGPfvTf/Iv/5uZmF/yxaZqmaVKOQG/8niscvd/vCcw4RLcKCkRW0FD1+1ouAxEZ47qu++qbr32YKUKpZDRYeyJzG5KgCKsCGjDGKILxLmbmoinzOI5d13nvO2YAcK66qzI11a2v5hlaOBUmADCowboqOelsnV8nlrxard57/+lqt7h+fbs/HlJSIgsiw1gqoe8r/QZF0xTf/+Bdb2zOxftgrQFDNQU3BCwABsjS8ZiOx+R9XVEwTXmMmQimxN98/RwAnDP1qS+iIYTQdimlKWXmiZlBlYwBJOPw3PhnZi6FudSVkAGQmHM5rwjXeBSeYiTEu7v72oMQAUQcUxQtBlxF2uuGsNvtnjx5IiIpT5vN5u5uVztZJ+sUsQQVfAKAL7744nA4FE4PHjxAgqsHF493F3XSVUQO41BKITxlh2+lpyJiEckaSwZJbc7ZWypg0Djjgg8giPvDME7JN229KIfDIY5HlLJadM6bNrjL9frhxQIlS8n7aUBjdDwOuXQXF1fWh37hu1YQC4qSuzmMKSPmvDuO3jsiA2SF3O44lt3w6J2nasOrV68otGDtg6er3TD9xU9/2fd9s37w+vXL7uLxq7sXV5frccjj61uLGsfjZtW/8/hRcP72bpcTF9ExCZBfLS56auB4vN3e/ubzr6t4wsWDPqVEZFpr1xZWHqcpNm0fYz4cDqH1j64e5xwJpGk8ahucR8T9/W4cx25xIaCgLCKcS9YyTjEVBrKqalBJpXFutb6Q3IfGtW2zWq3iNKgqg4bQEFEctbA468csBKKqx7irI2FJkYicNaqKKmSgFAFC4RKZUbiirHLSEN7eHxaLRdctMEsWtmBizszCKgBCxJnmXmPVbjXGAQAQkp31h40FZ21KxRhom0XXLQxZtOZwHF9d3x0jTTGjtVOSqRTrCRALz5aZWqnKgqzVSVMRUASQFJXqfqqIRgBUX7x6+f3vf//b3/+DB+s2x6GO2UzTIFqMdamUxericNipYoxxe7+vau88O6XTzfau8oFnFd9xUNXaSwO045QQTX1CjMHqH3B7e+tCM0wjiMYYDaCqooJX3R8HQhWRh1cPFotVKVsbLFlvjDOmxHxchKawCoNxwQOScXI4iAADxiJlGIVBFa0xoJBiNkYqEcNaqx167yGlrEqIysrCRGS8N9ZZa+rgrpyGfWrAe/bs2TAMm81msVgdDgcka51XEUSDaKoZV9M0FcBk5ouLix/+8IdfffXV1199e/aMapqOmY2xgpCzGGNQwHtf4U0ROB6PdTq873sAQOOc88YkZhWpG4LQbIxRJ7ztaXSotri0hlsAjDFb64soWVfSf0e4xd+On3/fq/S3vx+GAdCkVKoK9Ok45nw0fOsPzvyGeh3PZbJK9ZmRVOdHAcj5q6sOrck5V2Xj9XrddV3xBVjqPNVxGF++fFnbe8vlst7Qruu43BhylUJmjJmmabfbg6HGemMMoJmmKXR9PZP5HrV+GBIYSlzSbmeM4SKqKgp4OFZFncPhuFwuvfcw4xzYd8s4RRFwzlnfnEjdGoKNU2HmImyt5ZOBd/1GREuBvg8qoALBVz1kBmM4l65pU8nW2lZDUck5V9YSqzrnYsz1ijEzGYipGuJiTtlU1y8iZt5ut33fP3nypO/7F89f3d1vT90nZObheKxjr6FtAGBM0ZGp8nlTiuM4TtPYNJ6ZyRpm7jpX3YR2u93hMBCBcQYAuLC1JCI5c84DABhnK7MJTxPz9RbLaVKOT1yKN00IACQSLVBmroCzxnuPwkUVUCtBzHt/eXmJiJvNRqSgMbW/Qxatpd1uHIZD3WGk8KPHDyr/NKUcQnM8DpeXm3qv+76vy+mcMZeUjTFd16WUhjid6Z+h8XUW2RgDIDmlnBIpEKEl44O11to2OCnucDhsNk1tcU85I9ki2uUSnE2RoaSuCXESVb1cdyEEa2G336YUg3VDnFIud7tvEsOT995/fHFxHKbXN69qBYBhcbvdXm6WBvS434Jt7u7vWdFYB4Rtu3j+4sUQY9u2Oaft7rBuLmzfvXj9mnb3TdMdx6Svb1JSGEpj3cu7ESQ/vrq83h+T3iHAMccmdNvdPjMCWnh23a+WxvpmdfHy9evtdPtiu2/b1rmwXC4NyFWXnzxcT1OakgAX6FvrXJ7GmEbvfQi+bZvGB+/Dzc3NeJwimPvDPqUMSNZaTkUJGx+YGYm8M8ASvO/7HqF1zgXLKmWaxtVyySnfHXaWsO1aTlnJ3h+GOkE4TamOcAhaZY4M03A0qCH4AWMs2SLlHJEghGBwls5wDmLWtD2MkXPOxlkyjgWM9VWyCkoRa50jb6x1hoiGaaqkG1JwzhkwmmECaIwfYjQmWWtFUiklxcJlVlslY9CQJsylWOvRmiJV6VlUsPoUqQKDShFCsUBKhGAEVBFBodpe/uEf/vGrr379cNN99ptf3tzcAhEZDMFvVpv72ztrXYoFgKzxObMx8ujJO4fd/n53b0ScC5tN2G633jeA5ngYDTkEUxuc0zQZYw3ZrBnAGOcB6HgcOyQR6boORL33wJLKtN3vgnUK+OrltbU2OF+bu8x8t91573NiUZxy9iwCeDyOx3E0xtzd75um8S6klJzz+2G8DC0zVyu9V69eVd7veBxASQURjUVUYs5cC7eaNiFZAMiaT1Fk1uhIqahihe8M0TSOAFDnSiv9ynt/1sN68eJFFadDMLvdTkGtscwcY+z7/tmzZ4j48OHDIR5LKcG6SsQ9HkdVHGOqC6+cvA1qscsnCdwa2M5MsboRI2L1opEkCsoqrDKOo8jfqVL/u77w74/BbwIqwOE4LhaL/XFEMAoMQEhUR4NA62yTvDmIkiKqAiiBnoIzYj1VEShFOJcQgiHXdf1xOq5WK2aepqmCKIgohG3bllKGYTwcDsfjsWubvu/H42CcrTyAelNeX18fxwgAisYa3zYtq5RSEpe+hgGEr7/95vMvv0GFs7OeQj0/qHezNguJKHg/DnH2Pxbpug6tuX91751zoa3J5cvXr0qBnEo1HUrHRESci7JwLsIMouf3qqurchpCCIf7HRE1TRP3ic6Qlao9aaa2fX8e4q9fAKDK1pi6NEvJRAgswnx/vxVRY4zzhnBmp1cOkbOOiw7DgIhpipdXG2rbojIO4+3tTXU9qsXbGCfv/WazAYDj8WgQmyaklB5ePXDOvXp1PYxThamJDDODaBynNEXvvbKAzPRjPYl06uwLXmtKVJqFSGGmKRhrDIBoySmX4C2Rdc4tl/3jhw+Px6OQSSnFyG3bVn3N6hNzpiXWdu80jH3fn316mqZ5+PDR8XhEhO12W9uazFyZcSJSH67b21tAU0+4lCJFK5Oj73suqb4LiuScYyxTKobAikhloKWUWDFOA6JBktViwcyHw+HBZtUtmt32rqRp/egKVW6vX/eLdjwcBSEnvj8erW+2h2FzcfXtizsR8cFy5rYNKY6vriOCTC+mvnVd006pGBeC80B4vz86UrQm7auCryBS4lJUM2DJeZ/33jcv7w/OubwbvTPUrdNwvNnHzXITBYfhaIOfmMA0fddPhV+8urk+jIvlGgyJCfvjQSeO1/eE1jnvvX8YDl27aJqOBQCtsX6IkZnHMb66uf7m2Xeb5arv++FwPBwOi8UqsuQiaC0gNs5ba4cxFkmgcLW5uLu7c5YsAktGhZzzculKTleXG0dGtJBpRQookfVZJSuVorvjIFhdaISck8KI4J0xxpbI3iElRSjehxhHgWKMGcfBGONVQ9sZY9q29dVHmoyxM0EAWAsnlgKIIbjq4hnzfpomZ7z3/jiNy66fcnFah/aqCKrkzJV72XWLTMk2iOTycQBDNb21xouAKnLRzFkVjbWIhABgqqgykICAAlogn5m7YEFlGIbd8fDgcllZNf/wv/+Pvv78s3fffffHf/Cj//K/+C/2u3G9vhzHMZf4YPNQRO63B4PmweVjIlqtVs+fP18t1+v1+qtvviaiBw8e/vo3v27atmkaZmnbNsfUNoumCYfDwRnfdQsVMOQMucW6O+4PuWRLbowjkTbORknW+FyEyN7f7x8+fDhlGaa4WK2LgjFuillEyXrvVRFSShUHVqRUODTdkydPd7vdar3+4z/6oz/7sz8bhmGxWBlyx+F17S8qIQoa40QgTdk01DRd13XV3/D6+rYGOREBoBjj/f39YrG4u7vnLAhGQRFQQZl1s16paincNn01D5AqQ2KxpkPOm5TLOMUUs6rebe8ePnyYM7948fzdJ+9Ya6sRXqVuWR8wpuDakhmUSpFSpiY0fddWThAoTWNSjapQ29nCPNspgtKsjqKIb1wofivU1qh5qkrJmNl9DeYQWSkLAFAbe+cAvFgsXGhFhIUreVh/J8Ar1TnpWnbgyTLyzCZDQK2XhijHlFJyxuQY70tpFm2Kseu6SpapdbCqLtrZlHAG1Y0Zx1ERjDHH47EUnlLcrNar1apqExpjgHCYxjpOU0rZ7XaPHj1aLhb7/aGioN47YypnkIwxMWcAaP3cQ1mtVjHGcRxDaEXRu6bv+2EYj7FcbBZ1PEZVq7myMSbGAgBamBwBixb1wR5PrWVS8Maq4jTE4NsKrX/w9IOHDy5/+etfVZx21orxON8ya/M0E57rfptSsQg3NzeXFxf1NaqqhedeT0xTThXQ7bruOAwVI+m6LscUY5xSqVnP8TAu+tXLly/v7u4AIITZkgQRF13ftq2K3t/fI2LmYtFkUS08JfbGJkOlzCAjAggzAhBgitGQqSJocyIGMJtVwG9VwFVh3Vmq9osWqZSiws2iyzk+ffLo8vLSWjuOR1U+Hqfm4rJmnBUoMsZN09T3/Q9+8AOiN2BD5X4CVNPPSETV3/csIs3Mi36lJyf1vu9FpKhWWjgzx8yU8zSM+/tdrXdbH0LwzjlQrsi2ffXq1WKx+OCDD8Zx/M1vfqOK6/VqTClOQ0xl0bellLth13q7WT5CxJub281mU7IsN4+Gafrsy9/4bvnw6pGHw8vt6L2P43HZd4vW51jG43gYYL1cDePxcNit+44IDvs9GfPhR98LqQzDcDiOzKWqf4zjCM4oC3qbR1YE5qKKhXmIySAFQ63vI5ebQ1yEsL58ohCLABRKSEIGjB9L0ZRFVUCjEJHNRhGMoEPTvri/9qM4GwuD902V2xYRBWgXG4NaWEop3aJn1sPhYEKT08QTZFUgo2hExBljneU4Xa57VADlkrKqNk0jOU0pcT6LmTAAorGGaDgMhyEhmcxFBVmMDW0qWZWsIes7H+oIEScBRODM1gQ0Dgz0iw0RMecmdCLCRaaUZPYLg5M+A/nQWoPGmFxknPZxmqwnVWUtuVDTNFl40ffMOabMiqigKCxK1iGa4ZgKFlZEwlOVQ6DKKkioolI9NoBUValybww5QwBCUFUtS07OuXEcHz+5evb57tuvvt6+fn7YD+Cb3f4YQnNxcTmNybgm54rVWJVcMqScAMj64J0fx/HFi1cViU2FnQvWWhHo+1VVBPSucTZwUVDNWZgh5UJoipScc51NjNNEROgMM8eUjDFNs0iFQWZxvd1+DzYUYZotC7nEDIacC03bD8NQcq37FQCXi+XDhw+tsQD01VffXF4+2Fw8PA7f5QIUyPumjsBW+kljbeISp7xa9M45Qw4hg0LfdqxSijCrtbbrOmu8Ide1XYyRT1HkTVQ7df6cdfM0FGIpqf4+53x/f1+5e48ePl6v16eeVpOFpzFV3qYKusbV+i+eRngNmbZt63hh3fprcK2l0vnd8SS1cZ6hmmG602v0DQgsAACi8/4+D2eDnmYoz9phdZOtyDYZWwS40oVgFsitu9u5Fq+nVqfYK/UAf+et698CKIP3vvG+0lynYXx38UHwbb3I0zRZ46sS73GMzGqt1+rtQ5XFT86ZlJL34XgcQ2jbfgE0AmJmOYECBsha41V1mqblcqmqlTHXtq2zdpqmWhtBVX0pWUTAUFGxwds8d3N9EwBNyRMADMPYtl1K+dWr18NxrBmGa2xt06sIEFUraKpar4gKgGgMEhhgZgPYLhaLxcI4W+m+55JOkuScRGqXCgwgzcpuKFK0QB1qrwmWiIBIbVcjovOuaVpjTAihqYO85GrVu9/vj8cjFw4BjbPDMBz2Q1VzrJh3fZftdnu2WkJEbz0zO2uncVTBXLIWOS33ubkPAFo9oIQJAEDticR+zsjgbSaBAgIs2qbKwIFoSmkcj85gmjilxJxLSZxLmiIq3d/fW0vDMDTeI+LhcLjcXFReJ+LseumbcP369ttvv+37xaNHjyo4UYVfAOA4JgJwjohIBbmoUFHVEEKJuXK46hnWh0RENKZxTAeoIq9gbR1pBmtcuLm7Px6Pl5eXn3766Xa7ffn65urBI0Ecx3HY741y4533ru/7L/72s81i+cWX3yFZ1xxubu8iOxD/1bO7XGSxWhtjZCgsJiWIPGoBQZhStNb2/VXr3cVmxSUdjsfb6xtWGcaooiGEpgneB2ApKopgnIWYFJCFEYwUkSKNtwWMkOVcAM39lOLNTnGyxoMxecxTLEkgZsaiiiiijFaRipq5s2UDh00kmhiGKVJKLmqaIpfJG9M2dtEFi5gVOtc8etxbY169fq2qLGBUi4IwgIIjs+zarmuePH788uWL169fG2OJyHt72N+HEBofSi5yUljcHYYQAqDxbauCSTCrkDU+dEPasWjOopBsKahCIETonQHhZd+iKgmu+p4MDIPmkkREBWJOb++MFSoBALbGOfTOEFnrAksy1hKYEIIPLedCzuacuQgiOuescSWnUsRZZ63NwoaMKAAQooI1tXX6dt/ltwg1iMzFWlv1iawliybG6XLZP/vum//d/+Z/nQ+329eRiJbd+te//vXlsvvLv/zLw+EArFcPHgCqiCwWq8Nu75wJoUFAJGtd2N7vloulsR6UFv2qlHL9+lYVQ2iZz12iydlqz+4qsspJQmiqtbu1NvhZ8K/1Yb1eO2OttTmObd9V7lHb9SklRSCiEmOK0Sj4JgDAcrlaLlcxxkpRXC5X1rrDYViuNj60v/r1Z6raNk3NtKr7SK4qa0SXl5fGmDHFIR/r1j+OI5FdLFY1Pnnvq+HjdrutrrqbzQYRc54D5OFwmKbJGLNYLLz3q9WqxrxSyqvXL6ou7Hq9VpntmCAAALx8+bKUslwuLy6upmmog0yI6J3fb4j6jAABAABJREFU3u0AIBZ++PBhnbCyJ2Pjc1Lftm3btsaYGTlHVJFhGOh4FJEmdFVgqAldheBqf7SybWub2dh5mJJOQgfMnKZY57XqfjdNU50W3aw3TdOIyDiOAOSdXywWQHPOYU62rPUMc47WWqsmhFB0VkSqDey6PqdpOs/bWHLeBm9DNV7Uk85DvREVhDDGuPoZT/+qqvVM+r7f7Xa73a5pmmpBWF8AREDknOv7uQE8jqPKLGxEiPW+AEDwbUWqatOUmY+HeVQ9leK8qYZXRN3VFfiT+GBM6cGDB6VIjNFbg4hd1znngm+7Nrdt2/gWDRljNqptaCqokKd5if7iF79g5BlpN2QwAEDAXAerrLV1rPb2fptzRoSu6+IQmXl3f8g5+2DnZ5xFVRlAC1d9id1uN8VojKtKZ865hw8fXl1dSWVgOKcA6/V6sexqcWmtFeHj8WjfuAyRta422uvSAqWzwACdXImqwsY4jjUbqB/QGFMTnb+bC1pXXT6h3qPD4VBKQeWuaZxz6fRVSnFz1yXUfY9zrJdlGsowTCGE+/t99R0pwt41+/08hVUZarUI7vveObtarZqmqdD0OI45paZpmuAuNld2GmvbqJ75OI6LftW0vpRiTwYMcDKlY8l2irlpe2dpuzuklLz36/WaS7IuaCmr1QqUVTXl8vL1zd39rmTz7vsfiEjbL8kvx8yLzdX+MDx/8TJmON7cLhe9CtzfH7xBS5BzztPYhqYL4XA4WIPBW0O4Wi8VgNxxtz/mnOIAnAoAxWneDRGRkOq6Z9bQNl3bQWEgQmP65TLHGHNmKV3n29BP6ZhZQ9szkjFmSklAlZCsdzJ7jIhIpEBkAbFUvUC0iYSRnbPHnCmV1tnDkErZLbr+YrV++ORxdxxT5jHnVFgYrLWLvp3Go+ac44Bc1oslAOyH4f7+vsnHjTVAmLm0FQgSKGmcYnYhIJjIJWVWhSKSdofKgQTVMSWNgojBmeBsSYVUXZKUkjXoyLDklBKBOWf9lVXrnMNKPswZRRGrSj163zrf7PbXzgUiWixWlTJwPIwlTcaYKr7TNE3OzMzeYQhBFVgxJj6XF4ioisxavfNq3ELEuW0oxRrKOasxTdPc3e8Xq/XVxeUi4DC5nKZl13KScQBS2Ww2ARUAdrksFosKphmydYdqmsbOymtqrSdyxnpVVMWm6cZx3G5vfRPmTLOUGvCcaRFM8EFEQOdcvn4hOiQjhUExFRYRJinTlHMBhuMwhRBM5uq/JMjTlMYYjTGss0mfMWaa0jhF73yMuZRdY800HL112/2egZ82rQIO4wSgolqYKzdqFv4tDEAiMAzTMEwA5FwgAkQzDFPdqqZplCLdok8pA8z7SO1Z1kGgyvGpz7+q5pQIkHNRL87YImqtSzmO03A4HHb7HQAYY7bbbe1zG4PMfChle9gBgALpaRA25xxPooyFCwnpSWuJmatWUd910zSN01gPW13CzMnoqdJHq2TuHM6huDCrZk7TtN1uKzK02WxmtheRMleWlzOmDeHu/n5/2BuqwlC+bounTVwEFBFTms7vaythTFVOfdAzoF2bdrVAr33umM/tLWyapjoq1jymxra5QFGVWjLCnJjWGjrGaJxbhlZEzCyKPGs5VYJYijMbX7UWDoHQEpHv6ZwwEZEiHIZj/QjK0kjjVz4Lo2jfL1V5GMfKqw/BxxiPxyNnVtUA0Nim5pc1utfSCRERsKo7TSnWHOjufssAF+v1ZrMR1VJyZVY7F2qcm5XjcuHZ1JKDbxHNlGJ1yEaaveJnkZlTRDwO0zRNzs1iNU3TXFxACMHbBubxYjbGBN/lnJmz834ax/v7nXMu55Lz3Em9vLysy4bLyZR+dlaYA7Dxrhbf5i0ZGWvt5eWlnr7eZioY+8ZebDoOaZwq4C+aKyZRr6oxaL23PrCic04LCxKgENFms6l5wPX19d3dnfVu9qE6ZT+qKsKIQITMxRhzcXGBJ5/NcRyVa5DicRzjOHBKpcwWisBiUFf9wp7MzuvRTt+IXazXx+OxTGW56FLhnI+h7ZnZe18VBpxvpvForf3xH/zh1YOHt3fDzW64u7sL7bYUsS7w/X3dy6qkCzNvh7Hz5r3339/e3WG+C01HAvv9vkzjfrf1zqxWS0Uw1vZNo6olgwLFMYbQygy7IAGKKoiSQUXpu8YiFBAylEoZhqMls95sUvYiUphT4SIMgDlnVmFgVbXknFHylsjGceI0xlKMUSKjSIhGgcg4Y0ws0SgmQWLpvLOhUzDbwxFBCis5F8gClmzUEtaOTh6Pt9evSymLfrE/DETU9b0vGLPe3e+ZuV9i3cgKawWsSpYxZSRLZIRlHEfWUncKIEIkQCyAKKhcgresUlgI8Xg8xmlwzqCSzlO5hEQVl7Oqxs6BGUVL4ZSOAMDM1plSpGu7nHkYJlSIMVqCpvFyEoio2w2SlpJd47QI88ScRVCZFUhEUs7VeZCIAOm8bTlnlbM1RqTEOCuE/Ov/7//nL/7Nv2phfLBZXX/zGafBIBBqmcZtnKoQATPv93tCrDtd1/UAWJ/tuo3W4qxGslqotH1XRezq1maM6fveOVelN+tvGt+qKgGJgCowKyDUJl8qnHMZx/Hh1YNpmoz33XLJCMbPu3DTtS74uv/Cybmh7/v68ATnvfeIKgCRy7vvvxdjDE3b9N14OFRp5VrWiEidLDTGtNQ651Cwb3pm7ru+ejV6F2ra0TW9937R9cYYYwyr1PS5tpS8913Xl5K7tp2myRpTJ6CqJqWIAEIuqQ4gee+Xi2XNyWZbdRHnXN1DvWtEZLFc2pMDa61O6rZeI3E9h3NNiYg5R5ESvFPVEFwlcwIAWVM4G0EFNhZVYYZHRQ+HQ03s9vt9jrFpmmkYRuecc5m5dgdqbtFrP45jmiYCUGFgwymDkSo2qSeVLlWN4zRNoxQ2Dc1ID+g5HNYNdBiGwsUA9q431spsOvnGbrnWMcM4IMy3+LynnzfE4EwpZbc7TClV1yZHs50lADHncnIuUuBSihYtsTAoAgY/+4vUOygiRZiZnQvMmlI5n4lTX3u0kgueFEZLKYg1hxARGOOIgAzq26YFUNWcMxDWz1vLXEWoTIWxZEtU0xAXvCJIbZnpjI3VxaAym3+UnAVn+WtTBb+MBQCV2bOqgiKISGhr0laHm733tf1MCmmcEkD1O3HOpTSdc99SSi5FAcapSpCCKATV+Z9y5jKbm1Wx0nO6z5lTnkTLNAx1AXRd54ONafydAFzjmWM6a5CdM4YszMxTKqvVCshmVhGdDgMitj6kqs1uLTNwTnX/mYmQzubEtR3umsCgxpCc/DPqc1TPdpqmOteLdYJUoRRWhaZphmGou1bTtBUCqdDLeY3BrHqGiGhf394/uLyYxuM4pb5rUprtOw6Hw3K5LKq3t7fr9RqN+Xd/9dfGGGg3L19dL1YrUBiPd0tvpumgIimNOXHf97v97aLrjbMFgEELJ8pqfZBciMhZCsHFGBerPuecEo7jWLJY21SsLLimeq55G1JKVtGqGkSJMUHVQFJRzjmS90jatu3hMJQidYAxc7aEfd8hauIEAMqJWIJBJbVYVq1VVUEFBpHMJQuztabrOkL21qhIEhzGfOAJES0Ucq7rl9ZZIacp5VLGcbxY9u1qNR72wLNh3Iw+jdlaS8aypJSZmYdhquEkM4NSnSpRRWvBEowp6uwTicaQInLMI0+E4owFNG3r+saiFmeh77p5m2ZmgVJKYUWslr2pLkRVrU91DRtELsZoTT4cRimsUiq4MAxD24a2a5AASZxDRMglOm1h1nXTynhEQlEtpRia1fLqvMfclJOECsaSRAaArgmE/MXnv/nir/9yufQbz/v7O4OFmbOIC71Rvrl+XZ89a20tyuUkC8BS7GGWgAg+7Ha76jg2t0VpfgZ09k9HAEYkVanEJYSq5z7zJM9QuaHqPSJd05WY3nu3u93e7Yf9ftgzkEEjoPKWAGI9Wv3m1BPV+/stACgIYR2gpCLZk0Wd0bDKM1dgEbnf3c08F4HTrJQRkcNhLoNkbuydBJXOPEzraspfSqr1U0l5miYyaK09HA/Ouh//+PfrbrharW5u7m5vbyvKeooTUErZbrfG2prQ1Ce/X8xWAYfDoYbbuunUXnKFuImoaiCcW7BdG2oJrif61Yz6FlaedY+XyyWe3I0c4oPLy3pYe3mZl8uZAmYtiC66vm+7uunXwFPnkksphLYuiRmffKsXrqRN4ytmrsy+8aro6n7NDAACGkTNSbShC02l4CKiaKlkbz5F2TPTtSIcOguaGiAUEaNivAsluxDqu/f9kk5uWgIz4RFRZ2C5HPDkiNW2rZstkggAvG/IGjjZPNR2QG0Ltm1rrAUAIXInMeGaQjGranbOOVbvPXLxvjHGKZKIGDJAJKzGO5o1ZosiEKFxllMiZ5UwC5MSUV2WphQppc7nU8yJmVlUAJwjg86QEwYyKABabRsQFVAVRFU0n/MPERmnaGYknvhkFXrqNahIOePDKaXCcxO0DpwDmilmZlFl1DdI8tthWMrsRzdO2RpgnoNWedvy8q0KGFgQkcioQmKecp5iOT34Yuy4XvvCYq01tiqGckrJWsPMNXGvi7OiHdOYqg+1AGBh1XSxWteof0bLa4btnEekSievIgSzgPa0H44JAEShFF4sFpXDlXM25CrAIAhFRWud/U/+5//ntm1RGSW33quU2qEJTWeMUSJV3e12XQiLxeLu9vomwaLr0jRaksY5VO66rpTSLVZ3d3eHw7Ft248++mi3u9fCzPx6OhLAg/UFiljAxppFH3a7e5GiCMb6ac6GfE6iqptVz1wvux6HQbWahUFKqXGeDBCgQW2axpIhguMxxhidbwQwpVREiaBfLdo2THEopcRhFJHlclkSO+cK5lJEGHLRIloEKr4tJQOKRQBRQwgsKtJ3C80HJLKuLQqFBQBUOBhyKIu+QWFEND4o0BBjYQ1U1ut1F5qcc9sFZt7f39fH3xjjgi9ZjHHMDMYyMyMw11k9Pae3JUVnzWbVrft22YXGoQVpggnWxZJDCJXvUkX5AY2IWmvHFEspdfwhnNC84zimMdX9yBqjyk1wqqWk6fJqvVz2iDgMwzhGBBIR8iEV3u6HyJCVIiuSzUVijNbgGSmaeTDGoIx936dpUoXlcr29P4am4RSXHv7VP/+//L//7/+nq6XnOLR9R87HLFxi3ZuqJvPbeHLdvMrJHWyWjjuV3cysCOcnvP6m7lz2LfNg5ao2oqqK5g08VQcxUWGapncePa42QYjINL/v+WhFmIjq+E0tNQjmSSFmbhbtOI4EWK+nMWY8HFeLpWgppXhjz0nunDWrPRfT9awKpzOwNrceTwRUAMgsNQ7lnFGFha2xIlL9eZ48efLkyZM0DtM0VTbvF19/c3d3V49MRJXGhYBaD1Iy/J2vUzpSc5TfHRKqyQdVZyYA4Vx/VH1jXU9I53wFAStzpn7qD56+8+GHH37++ecvXr7wzivLgwcPfvzjH4/j+O/+3b+rn/o4Hj/94aeffvrpz3/+82cvnldIQxhYuar1qarAXIshIpk3O285rRNEVKxWxG+ElJ2xZ1ynsnmnODsP1kWVmQHgbAZQg/cZ8FRVo0LOqqownGKzU9X6MgA5VV+zubonV+/XGeguc1sajHtDqVVVrCUPzCttFo6r/HDAylRq236u4XhWlVLOZ9m1dOqezmsV5pZQXTze2FIKIzQh1JNXZlBqmgYB6iOgylXTQ6QwqIgQem/sKegyiBpjquFjvaf1Qc+ZSylAhJrro+pcUK1yb7aUkk9+BiAzQjBNw36/911fA7Cq1gTFGGNOcm8I8iaUnoeMh6GSmOoBa+e25kznl52/TylVqAwAxnE8Ho/CIKD1FhPRxcXFYRzGcayVbm/ter2epkmZ6yiaVvKsyN39tiL5gsBzXKfHDx7UDIlODgoVf7J2Lrix4paI4zhut9spD6pqqOaH0LZdBfzqb1S1wJsJAlW1U8ws0AVTyWMVaui6joyD2uHPuWka3zSHw6HtFleb/njY+T5AyQIcLARPhNh4+OC9J7/6zd8C8IsXz4nIGLzd3or3y+UyhDAejl3bck6q+uDBg5ub174JrGLVqjAR9X07TSmlXNex9d6SFRARQcDgDJKiai6FQTink0IQiwgxI5L3fuG9gCqLciYVR6iORKAPPmFyxk5pr8zIJAIKhrlIYShYtX4q+tOGxjgXYxxj8iAqIFQKA5z061POuUThtGgb59x+v7cuKEDXdYtgnHOC1PRd48PhuBtjtGQWi0VtvMXxoKpElkCnacwKgqAKdd/AkyNHVaWYkZ/jQMhmtYx8FIVTFWJrhR2agIjG2KrXSmhVVUqJMaaUgCyRHcd4cXGBINa21mhKXEHLKtlfdxY+qcUWrluJQUARBuXa0qhp7xm0m8FK64fDobpp7XY770PbNOTNh0+u/m3XAWrjfSpjyVFFWaDWWKXMlpwi5wVta/e05pjjOE7T5JxTmB94PcFU9ZU1ztWHqpTCXEc862CWqYEc1RgyoEyExpjVagUAm81mirHruvpQRUnn3ZOIKmZorcXZRoaXy2VV+RCRNoSR03q9rlFZVVXkycMHMca2aVJKwVZq2CzRBQBF/byzG1OjeM3lRcQHWz94/SXWNIJm/UJmdsYy57rDVq9lEZndgRDr9OdqtVitFvUtvG8qMoaIx6qrp3NdWA9C1ujJr7eiZPWCu1nId24Ay4lzV0qpGqj1T+TEfJaTLMzcPQXlWSBCVot+t73r2+ajDz6oJldXVxc3N6+Px+PTp08qB8raJRHcXb8GLldXV7PAbz7HNjwDBhUO1RNJh5nhZKMJhCcVr8rG0lJKKUWYK0QhKkXFnvQW5gRFVVSqyNocpxHOn05VDUFVxhaGmnmIzm8jIn9H0BrcCSzRt9IXreNkJyT/HIBVBEhPVhJAc1txnhgmJJk1PkkBazplEWquo7/zRoiqigiIoAJnGVCtGtoKNW8DBYNGdO6RGzRFc82fCEEJha2BOd2ZbSKhilcC4Tx/TTTLTJK1NQDX9xKBugXktzQjjTFkoIJwTeN3w3gOmd65YRjoDKMBAAi9VQfXe1n/IYQwjOMMk5zYrPDb5a+qmjoXkOcFSUTWOxSpCQ2D+qYbb+5evny9XC4Ph8PCm48//ni3vSfCi4uLly9fHo/HiiGhmW2eY8mLRSMiLBJjrFO/Z4i7ynoA4BnqqMx/Y0zXdZuwnBcwVWlPqswD4WnOcmiWgq17js2SDZrDVESk8QER0LaZQtd2qio8FVTnnVrHAQ7jSJIsOS3ZmcahAELXLrbj9e727sc/+v395c1hGA+3r3/y7/374xhvX98+9cGV3E/7HhPu795952Getg/WFx++d2GCv767vyd+8PH3PvvimynvgcrEaIwjaw95PEgCNGBdSklEvcHGWrIWFIBQVXIuUbRt2pgmR6YNYdHSou9jjNvttt6ly+VlLnK/PdjQFBExm2HYj1M0xqBBNd45zIoxc9s2U+RSuF02u/0hl9Q0dBByzrVkiFC4KIElJyKTFEAfTEPWLDuypI01BqIhV2LsFgtgjWO+eX1tjbehAd9MWQ7jMExJRJ33iFhYtObUQACCCt55YwwXQuU0ySCsHLyxkvXV3dh1DVmfIqhiJfoT+hhL3/ddE3xxuY5758ycRcQaEBitM8tl04RsjDGQORfkFELIUyaljABAxnVpHJ1zOeZxSiVnRga0ktOQMqDzbZNEgdVZg8YS56rDwQmc7QCtKLWNU+A8HhDk+m732bO7+ynk2FvXD/vdZrmY0vgQd6t+waxjTP6EExrvnDMgbAxW37G+bzOL916K8c5VSNwYRKnaQoaQwLuSMoGx1vaLTW09WgOIWHJ2oSJFNh0HA165GGumKdm29d4fj6P3XiQzjABtLcJCaEig5DcRCARzLAW5PmjDNEmJdQxrmqa+X44x3cbUtu3hOJZSjjo/ZkSmhlVjqgecSfWw1tQ2mHMujbHE1LZtKUlVCdE5l+onRQTVVCoTGLRkY23OBRFv72IlvIAxx7i3tqkbmSMjIm0wRMpcNsu25osppdC6cRzXq2UphfwM8BaH83YzU6h8yeK9P6MRNYEwAVW1zq7UjKQWAefdp35jjJHCKSUyYCw2rffeXz24qOlUztl5A2AWy857ryrMvD3cNYvQktlsFvVQNYpXqhecCDj16p3xAwA4Z12IKDzv3aznyeA51s7pgnLF2BFMfU0IIaUEhs6Wh3oaPEbEem3rJDEici6VxVbDP56mmVlnAANKBgA9je1VsTNEdM6N07EGJHO6SgDAZ9ep01ufbxMR1XzjHN3rOnzj9jj/zRv57plMd1IwzVMEg+eOb03XSineN6WUOtYvp7myIiIi3hnRgmgQsco0Vv24eovnOhUBkUBUZZ7YqzlQSgVJwEj1XLBUdVEEBAhBVaexNj7rNYFxmlSAoY5mzgZZCL+VPejp++E4nu4O6Gk86fx1RmNq7nIGuuGUoBiCIgAAjx9c3d+93qwWv/d7P/zpT3+6XPpcBrS8Wq/B8NP3H9/f72OZal8mTr817QRVhPwkJ0Pwu1/nk3pLJ+aNjDm99dHgTeY0/wYRiAD/4//Z/7FCbQaxaRpUKCU5M9u5ZOZaZ5A1sysck0U0BJaAgEnLg8sLztFb17attfbXn/0tkF0ul2TcNE2bNjx98uhi2b/47uv1ou2D5Tju9tuPPvro9c3dk/c//Ld/9bPl1QPXLb998eo4TDPrAk1WjrmIIgPGGGvz3xA4IIfgnbUIwuy6PsbIJRFR34auCbUyAwBRLUUElIsWrV13fnV3N02TtXaxWgPMssnGWWNcjGOtbJqmSXlqfZjTcBBnrDUkUvDM1yjMKTfBrfu2segtelKQwmqIyFg75RJ8g4YAzRBTLpKFY4w5Fz2hKzWxqm5WqkrWVBXMwnmzWoMUh7LoukXfonKOk4iQNcpzrdA0jTOm9sZyjl3TGlvry2IMzhUDVCJP56ytTkG1IHDGIiKrxBi7rgtdezgcUkqimEpmRSQXWfZjmkoBNECmdukKJ1W1VHcV8Sd8Bk5URmDhkhrnhuN+v7vVnLSUtrEpxr/6q3/37K//1dz3Bap5VQgh56SqSJpSqqTE/eHgm5BzNoDezyVv27bBmTMWNExT1y0AYEoRwbjgmTmnaRzHq6ur4/FYSloul9662nSskNQ4jl23qF0f55xCKqU0TTcMgzWult21R1C3oVJS27bjONb82qDc399XzCrGeHX1cBzH+vErZnUCMwHmQJXrvjazFJ2tp1EP7o2tvB5rbV3DQgin0RpVdWaeDKmKfbXclBN0yaAIQaSQwoyiGziHiopdEREQVa80RGNQz4JQVcenilTUPw8hlCw1P5jfQiKenCTOIaGef/2viFQIriYcdSzkPIl0briKSPWHsNZW/cu5XnF+bjGeKu/z/aWTh6OeRp4qw6XudPUJqs+OIYcntZBzaVtjXjV3qCgiM7MI4swyq/zYczVfp2IYuHaaqVoWsDjngOc7Ugl0cylmiJmdpXOgIiIEU2OFslSSLQBwSv6k8lhOCNLvXE8RqRr955v7Wy877fTnGAwnpQg8Ea0dGWZWgrNMijGmqlLUYFwRsjOcLjWEwxvCnaqQwulk5qb+OdDMmBDpOZkowoZszW9OEUnxDFWBqKoInitXeKuJW99r/qM33p1a/j5F8XPm9/Zv6qEsErzlSH3m1dWtkotcXl5+/vnnf/AHf/Tll1/e3W1/8PHTx48fV113IlosFgBUZ5qnYRzHMSc+P8tEVDTXfa++ISKC0tu3BuC35VcN6lsf4fyat1JDcz5LRLRvSO3VhItLyVxNJ+a/QYDCJJpZgSwVZi2GjEHyzkuS2+vrHKeLi4vdbrder2tPa38Yiupyuayx8/nz5wiwWCyG3d1q2a/X6/v9sV8sf/Y3vzDWf/vdc9vub+73aFxwLrOKigqIQOEZCipZgjPeBQIRLgBQFW6zgjFmsdwYJG/JGDMeDydACckaFRQEa11hYZZusTTOi0jtupdSvPfBeCLNwlAyEOU4Sk5grbGGUHMuOceCWBkKVctECcVS14Sm9Q7AO7LAcYzGeTJGFUUECEPTFQUZp2EYioqIIpF3rs7bZC6pzCTpOkqbCqsq55TbbFAz6JQSIhIqiKACASkCi5SSS6msmakOddR9nBCstd7beuObZvbBHqcpThMzW+ON9aJaxxhijK4J4bRWak7tfOPbdszFufEw5SmmosXWpaIowghKCiAsWclaBEdEqGCI1CihS1yarr3cfNQ1nlAdkbP0Jz/5yf/t/7D/f/7X/7xt27u7mw8++EBV2zZMkw5xur29TSm9fP0ihNA03gdK8WjJ7fd3q9Wqadrvvvk65/zhhx+uVqv9fl9S3HH+9rvvFKDqVAAYAP6Tf/AnP/nJT372s5++eP58d78FqEYSgGjef//9Fy9efPa3v7q8uKqVmXVY+6kpFRFZr9eg+OLFsxoya386paQgdRMHwg8//LBWP6WU4/FoDHof5u1j7g6YM1rFsxWSYeai4mE2PJhhz5xUte974UzoAMCQMoD3lnMd7J7b5GfUFBGdsYpQC2UVYEDnHTP7YLumrXMgzNw1QUBzZlRtvKfackZwzogUa+16vT6VOG/KOyJCUnPq91sNbxegbwOAb22185f3vkoj+TCTtoioqgn6U6D13gPoGQC31Sj1TMYhwrPi1alYrFesSjpXYSkiQkA+sfOsJWYGESlKRBUSr8s+1Bm5U94MALlM3vuqPnH6UMYYA1VyBYXzjLpLYQCoQzvnHR9QwNA5PtFJ8XH+BmZqkogQam0H5GmqZXfFLf5uFJkTstMvzxnP+YIr4Sluz+oo54yn3oxKyiSiXAeNahQXTaeD14yqtobphLqzqtE374Jv9MXkzBKf48jpPhs3dzTqDFgl/9edBwAqL3OOrCgAoGh/Z9nM4e3tAPZ2YKbfCth/78J7++pxKudjKr2J5TXFjDEWlo8//tgY9N4/ffrOu+++2zRNPWwcpwEMACjLxXrDiyWX346sAEpCRKB06tGcSDD85jPSG2WuE7Lx243q82o531ydibdqEQ0aYy0SYBGYUlJmb3xlsmQVFS0VkZs9X0EVWme7NizbtsSwvbtx1jpr26bZ7Q6E9hiTDaHtOte0Hz167+bmRjhfLBdtt0DhYRyay/bBco3Oi+8++/qbzeWjz776plksp5SreQACIYIox5IUqPIkPXrjrENQJmsMOW8MHo6DtRaUhjgeWZwzOJPdOefsmw4AcpFSxuM0ISL6tgrupDTlnJ2xzpCUrABdcFqSluINZQDN2YUApGQABKsbNBAJQmEJIVjvmuA5F5Xc+947Pw0H65yqNk3rmuB82O0PY8rHYUpcKkBjyFo/i2SVieu+X8FAVkXVyj86DmPwzhkcppRztkSGwForpagqqk7TtM95DnsGl8tl5a9674xyzvVOw/lBVUVjvXUoAmOMdb9IRdA4BFMHCisrIauCsgForKGuJUAoUYAQGY0jb5ltSkm0OIsiagiDN1WEr5oQOO+JMA7jlHJKyaCWkrxzT5++c7fdhq69urx45+nDRw8eHId9zvnhoyeff/6lsbBZrF+9ejXFAbQ8efxouWhVcb83T5++8/Txk82q3+/3jx8/ds6N0/7l198JEKH2ff/w8aPvvn2eUvrH/8k/vrzccIkffvDeg6uL3/zmV7/57Dfr1bpuSe88vnp0dfn1F59fXz9vQ7tcri/WS10tnA3f3H4zDAOnbK3NcWLmNngFUZBvvvt2tVw5Z1S1a/wPfviJMSZO+f333//666/v7u7u7+9TKiml/X7PzN6Hmt5Za50jY0y76G9ubpi5eh3VcY6+CdXjaL1a3N7ePnr06Pvf//7hsKsiSmjtql8YY47HIyqsF0s6UabBUB3hVdDqHWQdjcNhGIaxmeeRiKjv+9vbWyJaLhasUskyIDyOo7dOVaVkV+Wgmfu2n6aJAI21lt7Mmtcu37kEMUiAUEMgn8IkvFXJ1Uf1zJOq4CqcqEYswikhoqMZY7NIZ3tEEQEWBRBmwTczXfXezdJyKRlDxticMxT21iqpMUYqqfhNz9XW0y4xhuBrAaqEldhfUYpSisoc6lAUCBAtOAMwK0xX8QRjTOH5I7yJbYhF3zStRQQQmWcv4TqqMA1jxQMa540hZ6xzruCbrVlPRb85Udj+bgA+5yI1ds47O1WXkTft+fM0rRSpW3ctiCscXUMRvFUp6uk0igCKnvKemR+gsyDJKQrqHAsRK5tKAUBmQeY3bYhTtNbqdVjfiOmtAI/z5MTskvJbSmd6fuu3o+/bsfntwPZW7jIvngrg6wmqHsfxLDVzeXFxf3//8UcfWmvH424axjk1hBOEQzQLsJOrybGc1dHt3LJRMaeLQKhvASHzqb7pJrydK5zvppy4gae3nsc4rQKwCCFCxVgAlQwjiYIqFJkDtWgVg4WOwBnXd403RnLSkj2Z1WZ9c3Oz2lwaYwRz6FpRWD94gGRFyziObRO+/e678XhYLdrVcvGL33x+cXFV47QP/bPXN03Xj1NWhCkmAEBjq6u5CpYTrS6VPI7KzgRr0FpRzbFU5vBhHHLOUhJF6tuGAKxvgKxxNk75OI1VUdBYP0zR1MWn6q1pggvWqRTvbdc0yzDP/Il4a633Jo0TKOeSgbM31LWdDZ65cok1T7HksXXWOde3DkpfkAAgBMcxAUBFWfU0bqsAOXNVgcazqh9DzBzzULGj4IxzDoRVuBAEZ70NRFSYU5opDNZaRYMGvHXWzQZ2xoTgaq+6opoUQoATiZ9ZybgQPEuZW+CILFqR+cJMRMG6kkXqIGMcAY1DXHbeQBtTMcagNQgmMzoUVUNEVeHEeetsSFymaRJmIcqZwZABk0u0rmlDm3MeUtkfRuvc9d21Rfnee484aXCWZVyu2kMMKec/+gd/BKLffP0lQUHWEPrN03e8dzGOT955dHG5rqXmhx++v1ot/vqv/3rKZX+4/0f/6D/8wx///n6/v7hYTtPwb/7Nnz179sx5s9lsLtcr1Zk+M00DIn76ox8CQM55vV5/8tHHX3755dXVVd81L168yEUWi8XNzWtVnaZh03jnHYGkcTCmV9Uppb/94gtVnabp2ctnFxdX5Gzo2iwDMCmhKiqiImblkmXMqWu7B/0jZr69vc05pjwBQC4xjQMrD8e9Stnutpzi9z/6HpIuuqY+orUsaxvvnKv6SjnnStJOiQyqEq5XV3XEMI5TzlFyubu7i2nsum6/WHz33fOPPvrw4cOP9/u9qlIT1pvlL3/5y88//zrG+PDhQ2vt/f39e++99/77747jWKu0U/MVAACJ4aSzVkM7nMUl6qomcw7PFY08jzxW/NlaW0Np13Wl5PPAFTNP09SG9k1/VMUYU4eYc85aWCqppy7ROqbFAoTMRYSJajyQnFl1Tk/Pe5yzhpnRUt93ipAT14oWEVSlFCYFBEVVQjJmxtizlHnTVLAERKDAphKzWYyxijrTL1StMUmEEBXAGlMFFs5jOSVl6xoUNdYCzFPXcAotKAqAhkwlkdGJ3vh2JNYT+wwALCDjGxYSzSc8d+jVaEWkq+dVnYjDE4NJTtYIpyxkxgOqQu8pSPwW8HAOmQBVjfn0vQqdBhErNC1vE+nnFqqeQ1DGN1U+6W9F078TgCvPrvzOv84Hfkse9RyVVfXv9mHr0ax1tQ42xozjWDW9Y4yNnVtRtXFQQdAZ4xFMWt6O9IgoUzmDHKB0vh2z0s48Kv0mdXg7yp4TC3prsP7tT00Kb2iZNON0BFBXflUcRQWsgg8MoMwrb4K3jgyoDsOR41RSBtHVYk1ETdNFhqQ6pvTs+UsG9ZerVzfXj66ulAwa65v+N198DQBDLKnozWEbuiXZJudYRFnRoVSClQvWhdYL5mGIqZqTlFGUmYslEGVrmQsgRc4xTV3TYgjTNGQWYMkszrkiMKaYcqlCjKrKrGmKqMUZstY4hGDBGd82gUCWi5aI7u7ubBO6rhuGQYANiLdkQtf3/XK5ZMDDcUREFgHULjRtsKKFmRaLxe3uCED39/evbm6dD8aYtulU1Qv4thXVw2GoarF1V7LWVstOYRBjaw9P6lOtWvOGmuCZuiaqDLM1jbMA4GauI7OCIwJDVcnEWksEKaWkrIq5lJyZjCuqwpBZq82ZiErOiNo23ntfSppShDf8l3n2zii3lkITjDFTzqja9l2d1mDmFAsII4i3JMbGMstopJSA0Ded9Z5TLpCLErrGtf3j9cNf/PVfTOPRGmAVYV2tuouHnz5/8SrneHd7+/jh1eXF0iIx+NC4lNJuvyWiUpIl45w7TLvvfe+Dx48f/tmf/dl2u/vm2y/+2T/7Z7/4xS+++/q7/94//NOL9fJf/+t/vd/v33n0kJm32y0zf+973/un//Sffvvts6pcUyUJgeWH/+n/8O7uziJU5abbm9fvPHn0/Pnz7e7WB9u27XLRH49HkOCde3VzfXm18d7/h//Rf3DYDznn+/s7RHTOqPoq714fzkW3cM6R4Zvbmy+++NsQQi65a7sKJrMwKy8XPSpsNpv1or+7u9vv90gaQpULAyIqUpqmaUPDzKyiqgYJYVYFsda2/bKSllZ91zRN0/rd9n632z179qxt2217F0Lo25DjCAB1Uv/TTz+9vLz86U9/+uLVK2ugMLx4+ewHP/hB3/f01nxUXXgV0aljMMYY7/15hkROiKW+NYJcjYfPHfQ6QlMp/cbMWo/jONboS4Dezs3RmkmHEBaLRQjhy6+/ijHe3Nzs9/u+7zebDYMOw7DpF5VWWsnqMjNyFQBQtY5dqcIp6WTCebANAKoQ4+F+drAJIRBgKYVOiUVKyXh/3kmNMajAXOr5j+NQQ+y5iy+WxZqaTFQMtv631sHBeUBRlZSSqebQIgZOJrE1Gp429PN+TVTtwWeU+0RKUjiRgOrrhWWmgKuyvqnOlWspSbVuEtFSZYB0jhYoqKrnerqGcCLSt6LjuTxFPb/7DAUbmkfyRERP0OvvlIMAp3oQwJzQa5o9FN7ENgCo21n9o7fD09+ths9ffyfU0SkQnuPwvPaadtYeWbRd13X7/d45RzhDApV3VsnblQFwXvPnDAARWWItM96cjBK+dRoAcAYaAUDLm4QDfrvHf0Y1VN/0s20Wnkf6TgbbWGfcuC4jAiKy6M8z75xLgRQxWFO7O845EXjy5Mnru+12dxhzLkTWhWNM1rtxHD/6+PsvXzwj1fvjsN5cZobj8Tgx+tAep/zt629DvyTrJLEicrW7A8UidJLvYlBQsUACmrgwa2WdAACQ1iwGgawzilQEnHOiqmhyyVy1y5HQUJwmLqDK1mATXGMpGGid9Q4tFs4FhX0IDUHbmL71VovpvLW2aUMIwZAtwtv7fU5TraedNcFZ5yjHtE+xDbMm8DAMy65lwLbrnW9824wxGbIM2jZepRRmKdkS7vfHmvUbC0Q2hAAgKSVCcGTIgKsafcbYqhabU0oJyaKCiGQVLqmUsuhwjJwyODLeO2tN9WPnkhANkvXBC2LJkgrHXIwxxhEaRyAigGCcc9MxxlSICGvFoyAiooWZ26Z3hLUDjCxATEoABKCWhFlLimSNdaRqs/AwDIBoK9M7ZVVVcvshFiDyrfPdg4ePv/nu2x9+8tH9fuu8Lwlub2/v7u42m81isVAtr1+8fPLoEVgZhqFulwYBja2QoHduGkdV/clPfvIv/sW//Juf/fKzX/06WEdEz58/v729/fjj71Vh5FevXl1dXV1eXIjI9u4up2m/3zsb6vNWYnry5EkI4dGjRyJytVm/evXq/rB/8OByu93GODpnLi830zQcj/u+762FEMJ333232Wzef//9F893zrmuW+z3e2NSzbJTzLXsc84N433w4cmTJ5vN5mc/+xlzFi3OOERyxlxdXaECc3bGWGufv/juD37/90spNzc33vsHV1cVn6gUKhIM3gFAylm1WsQ7zslXohZwTpM1eHV1+ejRw08++XiaphD8/f39r3/5q1LKk6fv9Iv2F7/4m88//9w5/+DBA3N3dzwO1sDddv/1N19++OGHzptxTNXpuXLH6tiSgUqERWCRtzDA+jXvGzoP21SG2txORmzb1nufczrv7PXiLJfLy8tLKfOuVysS51z1Yf3+x5/UTOX6+vo4xvv7+6qe9s7Dqx/+8Acich5aC76t05Iz3dq56sZRa77Xr559+eWXY5xK0YuLzWazQdJPPv54OsZaHsEcppiZhXOqO6noOcAz88XFhYrEaaKKHyobYzKXwilmMMYMw1BKubu7rwJky+Vy0fUpT9vt9mK1zjk7M0/t1Syqrj1ENKf4MQePcww28491lkxEQOccBWZSnj2HbSnsvTfWFmaBSgHxtfPtrRMRBbA0k8DnKCcCc5UmqkD0W1WaspwlSt6E/AqinhjmOA9Pz/G7AiRvFa9aPwwjn2Pq2/+dV468dUoKZyIevFXj/k4APl+o039rZXxCuU/MrlrXci71Gu7u74jIIMVpcM5Vm6/6AqnaAmjkZO8Ip+6Aqs4D8MBarWtAqzTQvJgr2P4W9W/WeHiTZMgsVmjPTX1AMOfPaGs7xxhbmFNKADONk4XP1G8CR6dGMnPRQlEiio0xorJBYmYfWoDtmOJhTH6xiDEDmlRkGOP+eLi8enh1dfH61auvnz23TX/RLceU9mM8xmKbDoy9ubtv+0VKJedijBHgyEK2TDGm+QxNlV0xSOiMECZVyUUJWdQ3oRTWAk3TIKgLnoiENcVMRC742lhFRBhjcMEiEDCUbK0LBiwI5GKVSxy9kfWi7fuua9vLRQ80m2Ag4jSlcUyg2oVmPxzJzIl217SWkOM0juMqNCLFGPPB++/e7w5jyne3103bI0KKI6tYNK33Q5xKTirsLDVNqA9MKUWlGEMOUYEJyRK1wQXnjDFISidTtvp0lVIMEhEZ6zMrFjYGbWsBIHMxCG3bQrFTLoUFEBmgcElFWBVUWTV4Zw3iacUAgJvFQTOoeG+99QRWVY0hVOaCoJpziuNARMbatgnWEIIUzkULkiUDqOicq9S+ohJjqstxOg5fP782Krf3h3c//Oi4fbU/DKvV5nZ7FxN3Xdd13XK5bJvmxbdfXV5cLBaL717eXFxcpJTG49A0DRGeOqnmcDh89913gPif/Wf/o3/+//h//fRnf/1P/sk/efXq+v7+/nA4LBaL77559uGHHz568Pidd97p+75SfLt2cTzMTaCmaSbh69cvLy8vc5oePrr64ovd03ef7H6xWy6XzLzb7YLzXdcsFt3ddg8gUmDY70jlz/7szx4/ftz1zcXFRR1cqVlCCIHLLAKcUrIeIUnTBRd8v1wQIDPnkpvQqMj19fVq0adx6vv+8mqzv9+RAY9GOHOZNzVHxpExgIaMa8KckjIH76xzMWdAUBZnXa2mhDmnVEPgn/7kJyml3W737PlzS2SJYowffPDBl19+aQz95Cd/YozZ7/fM8uWXX9arVAMbACAJgNZ25BmFYy6/VazIvCOTMSdy6Kz5ULcRmTWZDeicTOM8wQvGGGuMDXNXlZkTFyIyhKBye3uz3+/H43G1Wg7DMCWO+UAAf/lXf/P+u+9tNpu6dVpj28YfDqm6eRJitXGVE8I0rXpjzNXFZUqp65o6xPn9jz+pPUJvXdd1ksvu/r4q4adTe6/SM4VZVd95552+bz///PNab9QwX10oDrn0fT9N093d3W63u73bAsDNzc1y0dX05T/4h/9+G4Kq7nY70Hk4uI4sw1v4wbzpa3k7GJ+RhnN4Q0QVPIcHANTTv1aUYr/d1ihS/QyWy+UwDMMwVGXT88EBqpQtVRu3M8+uvsXbPd3a8zrHJMLatFLRSjGjquxx7n0iIgGqzj3UOsaNiERcy8e6fowxb1tVvglIZM4/vh2AfycMnzO/Wfr+zbHqzDQDonBp24CIzDMdWGHm0teajWhWnZtb+zJP9uMbtQM1gKYSr+p4UWVaqdBc5ddf0NkhkZRqgVvPjkEVKpGKzwg8EVXtIGa2ddAwl1JvgyBVzTYGVeE6/8fMRWYJOhamQOv1GoU36zWBXr96dTiOd7v7IabCYr1jFSAUFgaYsBymWAT23z5/cLn5+uuvm6axxm/3R+eb0C+nmA/D1C9Xh2EyxpAxKSVjfbtoFaGw2JqkIRmDkpUMLRdrzvF+d1ivFgrgvM8pAZK1DgCs84VFC+/3+3p96yU+Ho+ISKA5TmRM8LReLkmys9iHoDkhSM40HQ+I6Akx+KbpGHQch/ttYuaY0nGKU0wFDKIBpVqtDiNcLBfd0qU0WUsiZLBM04SkwGW9WgLScRxQkBCYc9cGLqlfLVNKClR3Ci0ltF5EjAIQeB8kF5Dibeec45JUYCocC3tfqbkzqyLnrMzemb7v22AApI5dKtA0TZ5MKcUar0gKQKo5z24B3vtxTIu+rUPoOWdjHBRRLeQciqRUsibnnLe2FCECrKMj1sJJLzCNUwjBOYskqiiALCK5QHVIRFAEBCOqhOSDb/rN82+/usd02JtFQEaXBFzoJpmatl2tVsvFwhn7/e9//2K5kFKevdr+9Kc///TTT0Og/X5fpd1ExNkuxeOjh09SnqwxP/7R7/3bP/+3//BP/+Gi6/f7fZri9//oj7/75ttPP/10HMc6Jl9hz4uLi/1+742NMdbxkmEY3nvvvbu7uweXV9vbu7v77Y//4Ed/9Vd/9fjJQ5ac8rTfwdN33hmGYZoma2DucbJ++beff+9733vx6vmTx0+JgJmXy77urVWDIoQQ48DMfd9//vlnx+OxDQ0ArJYr770zZru9LSUgYi7RsZmmaX+/e/r0aS3KOWWLYAw6V+28kBS0ytRUHjWAJaNISlpDr3euaXyMUbIol/GwB0N93//hH/zBl19+aY35/ve/P03Tu+++e319XQvrzz777MMPP/zDP/yDv/mbn/+jf/Q/qIBt7bnWjLtSiuCEOSPiWX0T3pqpqJtL1TQ2b8lJpjjhqQNa82BmPjOTz6ElhNCZrqjUfebu9va7Z89KKajw7/3kT42z1ce+xOnZs2fvvvtuzrlKkchJDpqIa2irUd8YE2Nc9Yvf//SHX3z1zdXVFetsmlRVGlJKwzBUmhURkEoaB3FBmGuOWzXwx3EMwbXtuymlvu+ZGVgEihaOw8gI3tm+uxyOx7ZpDvsqlcPb7b5Ojn755Rf/3k/+lIi8q1pUs/37GaIERGtt4XSG9BF/axgJTyMxylLnu6y1RLZt27p6cymr1WzT+dlnn/3iF7+o3c1aOdSRgUePHs1ZTkp935eT/2BVxqidgnNdW90MK6hgT5ZZc+Mf5ovThG5/PGzvbr/8+jsCMN4YY9aLZdu2KSXnbJ0nBOXqiDBNU865bdvDftYmq3RxY2wdOq/Lhui3ou85J+B5MOwN2F5/430oJ7k3MuCcG4ZD27bKUs3E6lIspdSFByLD4VCv53g89ss1n76apqnIAxFVx9AQgkiqf1sHEY0xluh4PLoQaoYUnK+XcbVa5ZwBDRH5tpk/keKZIj5nrMwAYL0hwJzVikjV1kdEQYJTaU8nIVZEJFQlqiu1MQSGkEhUpxhXy+XFw0d3d3cvr2/GmICsMUbIoAI5cMZay/1yfTweU0p6f5iyJo79KoD1kZVLROPIQmaupSqPbF0gZ6VyML1zoFOMNT91TSCFzMVaT85u7/dN0zgHLEAEhZmZLYsBrZugqT4HAKUkqSJ2nL0xm2XbBt83zoJtvSfJi80yTdFZ6rsGlDKXV69elFJMaOpOIYqlyBhjyszASDYyt973Xe8sjikiuMVidTjsASDGHHO2PqzXazB2t987YwsyChqDJU7eUByO9fRImGNBTjNNk8iSpmlwxjpjCZFLyjkjqiUSgTMdJudch1mXq7W1xhAwC4A6SwimSMmpjPEQurZpmsxCCk1jiWi/31tnCMRYOh6PwVoVGycREQgLEGIRFVFRawyiKXXSkdkB1ceVTqOW+8P93E6z1gVvfJhiZhUBApbCLAigVMdmROB//D/5n+7url89/2bavf6L/9+/er0d3u0eJy4vX9y07UDWWDIpJc2JWFnyxx9/fHt7+xd/8Rd//Md/vFpfpJRAsrX27n7X971yWa1W3337/JNPPnn16tUvf/nL3//RH7148UoEmPXhw8dVR3e32xmjfd9fX99++OFHkuXFixdN0wHAom/v7u5KKU+fPr29vf3kk09+8atfTtP0/vvvf/vtt5vNZr/f1ynki81mGIaHjx+ulusqevfzn//0vffea32YhuHhw4fjGL/99ts63lPDAEupO5qKwGmot0Kp1zfXq37RdR0AHKdxaVrvfdt3r169evLkSXXuc6ftoJriIc46yZVHQ2/l6YhgiEBVpAALKbjqrg3gZxmvcnl5eTgcYsne+9/85jchhNVq9c2XX733ztPL9Waapm++fvbf/pt/8yd/8ie73Y7IOGtZgVHOJci8A56IL+eNEt/qh71d0NT/q2qdSK5xl4hqyVgJ52jxHNpFBE/x5sc//vFisfAh/PrXv3758uUnn3zyvQ8+/OlPf7p+cCUi2+32yZMnFfCvC5KZUdQ6b0ABsAsNADgySO7Jkye3t9tX19fr9UUppWmaP//zP//H/8l/CgCH3T7G2Pf9xcXFTX4dY6xzXwBaUdLazD7ptAQUddYKkgIDinXUGX9zc/P69esvv/zSGPvkyaMHDx4YY66vr+9v70rJX33x5U/+wZ9YR8vl8ubmhsjW5v0p/BhERRAQrXA0KKjM+lAqSohVBAtnlat51lxVQnDjGIdhaNvWGhOnqeT88UcfWWN2+3014SilPH78+Pnz5/VHAHjy+PHV1VUtTurtIKLaJqh89XPEPat11mZHndq6vFpNU9rtdqFtukW/3+8FgAwwc0wc441zNsby/e9/7+OPPz4ej30THj58WJ+Xw3C01j64gu12Wz977eU7N8fgOqKG+KbEP6+rEEJFxetpvFU0z05EIYRc4vb2ru/b/f2uaf1HH39YSiGFtm1vbm5qWuN9U7OTmiwu+vZwOByPAxh68eJF3/d9349jrCla3/eLRbPb7Q6HQ829mNnOwt2KiKhUKxlmvru7Symh8xV7aJrGONt1HSJub+4QMaVEgM45SzSOY3De1rQUQWohj6dO+xnjBkRCJT3RshGKFmZ+fXvLXEghFkbEY0zWeSZQQFZlERbNqjEm1JhyqaDN3bMXNdXN+4MIsGop0nQ2M1et0SJs50rf1HdHxBPjDlJKamdu/Xq1aNp+0nGMuc4DBHKqmEtSVbWWiNbrtbW2pJymOhBirKHFeiklWTI5xaGkvgl+4S164+zVckmAVYk0YMOsKSX04XA4HA6HomKtd8ELKacCxgjrmBIAQLBtsIBGgJhVAIxzvmm56HEaEQ0iOUfA6N2sgVyTuKZp6u7JLE2oXcmScySinKJtSUWmaTDGiIhz1QPuDTJDaEGLMBRhSUIIROCMMisjGktd1yVQQsvMxlCakubcdW3b+P1+j6ghNJwSgqSUpHAVR2RmyUU4AwCRZ1EFqRKhtrD3XgFRtWrJrlYrYcg5V9KLYTHkVovlOKVJM3AGBiVFrVzZHJr+yQer3/vRjxsjP/j0R//Vf/m/V9ORKZv11f1ue3f92oK+8847bE06zfP86Z/+6b/4l//yF7/85e/93u9VJkVNRUuo4+CNtfbF81f/6D/6j6+vr7/88ssXL1788pe//OCDD7744quuWzx79my/3xtjFouFqiIaLfnzzz+vqB3orFMYQtjtdhWpa5rQNGG3u6/P/G63++677548ecLMJeXHjx5d39w0TbPbHf/qr/7qH/yDf/D69etPPvnBe+89/dnPfhZTfPrO0/P+NcWpvu+5LVol8d59+u729hZRS5rz9/r658+/++STj/q+L0UMYjnZPNerV5/NorM41EyDAEWsm7KiaEV9VLUywmrIKTGt+q5x/me/+ZuHDx/e3t72/f+frD8PujS97sOwc57t3e69395f7zM93bNggAEwWAiABEGCCimxJEp2vMixK5YopZSUYlcllsqKrZJk2XEsy4pLSZUX0TG1MImqYsmyVNFGiqJEckRix2AGs/bM9L59293e5dnOyR/n3jtNpwuFajS+5d77vu9zzvmd39JcunRpMplcu3at7/v9/f1PvHhjEyyIYpWgkPlj/5/Vqbdm9f/PavBmankKQlxtTAR72Hhu13VdGNut3/jTCCSt/SLEFmZ/f/+VV14Rd/p33nnn1q1bL3/ixcPDw8VisbW1tbOz471HYrHWSZwE5wBQ0p4qpQpXaOuuX78+nc9lnN2a7HRD/81vfvNHfuRHjNJt2+acu3Yhu+cuxJiiJKLKh7ypRmVZhn5wzlmnYwRksNpkqxpV6YNzo6oGgO9973tO61deeeXFGze01qenp6cnRyenR9evPWetXS7nyZPRGpROgEmt+jP5LfKxp3U+Ljylqlp9RHll8iVoc2Fs1rFyK44brOMlLly4IGU1xtj1/Te/+c3lsvsDf+DnFOLp6anAgU3TaMAnT55YoxCxLKxzheDtaq0lw/WyQ2utDQIqWb2nFJmzUqpurEjmtF7vEQiyT6vLl1OkLBsQ+WkaFWdSqMuiANlBrG9Uuc/Lsswp4dp6Re72VdnTWoo05QzrTS0AaLMKM62rou9p9/LFGzduANKFc4eSPSxpZm+9+UPhQu/t7XVdt1wuQa1SomXn8uTx8enp6cnJydnZmYzO1tq+byeT58RK+VOf+pS8i3GzMs5LYWXskxK1bTs/m7Zte/vRI+/9sgsMUJV6PB7v7GxNtreqohyPx5yJmSej2nu/8pOHtYIY4Gk6OQAAZCLMxJqBkUkppQjQGa31sm05p6qqZl2HiOhcyJlQZabMlIkBlUGVNVpb+0zKFEUzav2pc04XtehwtLU5h8yMiEVhq6pIKXHOMUagpHUJiCH4vHayzTkDOFlMDz4yEaOKOdFAAICVdgZyZoUf55Uigw/DMAx1WRldAnFKgzPWWu1sURVWI3T9wJmM1U+OTmDtnSu22M45ZDaF260PAYAAfMx5iIGHKDRWijFGyg5V6ZxTPpaj8WKxoMTKAWqTQ2TOyujFvE0pNQ32fS/eQ2VZaq39MMijopSK0UvkiDR0dVXJKbZiaWnNzEYBIoaUvPeSqYmIOXHmpBQa0WkSE4UKnCmMc6XMr6OqQsS+90gEzJWYDsboClNXdUopYjTatdFv8p1WbThCzoygmIgyZ1oNBwoAFFZFk1LKwIgqxNjOF6htUZWoQK/sZDOSYpU5MxNqo4d2mM4WFunisy997X/x+37jn/7jl65fsdZeuXTxt3/rN15//fuL2fTSlat1XS/73pkMiF/72tfefPPNR48e7e3tyQQveCYqbk178eLlDz+8KU/FCy+8MBqN5vP5ycnZpUuXJHweEeUzl8t68crV0Wgkx3oMQ0ppGIJQvYbgx+PxdHrmvb906dLNmzfruulQ+RAB4Lnnnnv//fc/+OCDvb298WikEO/dvXflypWjoyMieOaZZ15+6YVbd+4cHR0ppeq6lMJARLdv3+66rnAVAIxGo4ODAxlBiGDoeudcyEk82M+GRdu2KwcP4zYFTK0VX8JfXc2jiDEFoszM1hhEprxyrvDeW2O4KJTWgruuITs3Ho9ffvnl09NT55wc1vKPX/7yl+/cuSMvQzTliKiURlQfc2gRGZ8+Kf7nXgpSdNUqTxCkgWbmruu2trbEj0JAOQGrN3i1UopwRSKVLenOzs4Pf/jD6XR6/cYNa+3p6emP/diPFc588MEHr7/5zmc+9dKP/uiPLpdLih/LjnPOYroM6/iBoqi7rtvZ2dnfP/fhhx9q42Kia9euffjhh/wN/vKXvxxCaNu2qgsgDn2QUU/2eIIGS7WTkahbiC2wE6mr1poYDs/tn56eItDVK8+ORqMQwmw2K4riww8//OjDm6+88krXdYhsrd7b2zs9OuUVWweRNCJqpeXMkf3OmuK04g6vuVqIoAlpha4rZYyRNYfgyaHvbFkYo4zROztbfd8+ePCgLMvdna3PfuaVl19++fr16ycnJ3fuWK21VXraLjNiVRWCptR1rbX13stTL74Oab2BFlbXCgnHbIxZLBYP799DbTLFS+d3QZnd3V25B+bz+ePHj4lo3FTI2YBaLpej0QQAimK1dNjd3ZXsIGlJ09qsO68jn2HNJ+d1DJHIqz4OSVznR8WUEHHUNMYo7/2NGzcO9vZGo7pt2ydPHu/v7XXtcj6fh+iJM635U0QkhX3ZtQCqaRrr9DNXLhVFQSBJVk40+s65x48fv/vuO5cuXZJWFYC3t7eZuVu2Mpoz8+H+Qbvf3r9/3wM8ePBgMlKuLJbLJQCVZbk1nly5cmV3d9cJJhyiRqW1Pjs7M5unR/xJmT+GmwgTIigEZDYaxRw1AQIqUIYREmJmlt6kWyyMMegMh5xyRATritIY4kCAQ4hxsWRtAmEavNIGFDMqAoyZwjAIMRKQZGEg4z2teJWAa28BRJQ4467rQgiFc0VREVFKIcuUpxSgZmZUqus6o1XpitJZq3VRuLqudc5aa+/7EKLWGjL13VJrHYe+KIpRU7myNIguk7HaOSeq32Hws+Vi2fY+csqUMnY+EpHWaK2JDH3nrTbOuZBR2SqSPz6ZxpycLbXWKcSyGeWcQ0qRmJUW+txisSiLQk6KlJLsWdXKp9CY9cSQMivIMQvrxCmlKOXoQ4hZno2yLClnokREmZkgccxx8Nb2TVlsmLTGmK1JDYgnJydN01hj5vN5WdYCS0gfYBSC0toozgYAtLNGWYAUYyZgrVBJ9A1LejmGnJRWTmsAzERK5UQxDAhKA5IGIASiDBmYgJk7IudK4wrKdLyIn/riV999/4Nbd+9cv3zuwe33T0+OKq2Gbvnd73776rPPXX32GqS4bOdlWb7w4o233nrrbD6z1s6Xi7ZtZ7MZcSrL8lMvf/Ls7Ozy5ctE9MO337py5cqnPv2K74f9/XNd1z1+/LgoitPT0wsXLogcsGmqqrowDMPp6emkueB9770fj8chDru7u+fOnXvrrbfefvstY8yNG8/fvXv3pZdeeu+9944ePXba5BBlCheEajpbvv697+/u7t67d2dra0tA1HFTGeeGIWitndGTyeT47DQnVqWSPkDOKWNMWbpNsCghZOCqqubLRVlXztgVQmiNEjsLjcaY1bMBkFbKn4+nBBaT5Zydc1qpTRbh2XQqvyKEUBZ1TlxVlbwSWV+Nx2NJv9jwj1JK1joi2hg38VPaD9HG4FMN+wYtZGSDeqWW24ggEXNKwzCI/1/OWWs0RsWYMwiJBVEhrsUbWuu2bcVEbzQaOWt3d3e1UuPRaD6fHh4efnU8FhwbEUejUdd1Uim9j3ptU2WMkV2mtZYyXL9+/ebNDynGo6Pjum6uX7/xL/7Fv0gpfelLX9Ja5xAF/nPWyvqTnpJaSa8mUqW8dsPWWscYgSn6kEKsy+r46PFiPt3a2grIs+npfHb26U9/+lOfevnb3/72d77znZ/8yZ9ExXVdSzgdPrXLXDFvU2bFIj2RNB6tNRCpFcUJeL3LWU3GzAiAGwpuJlRKAxpt9vb25vO5tbbv++eff/7w8BDW/qBInCgxc991xpiqrgFgczPIGSt1UcUoOaSZYghYFEVZlkxhPC6NxseouqG/evnKZHvrzp0777/7zpd+5MtXrlwxVnnvnzx5MplMmJn6pI0urSMiXsPI0nDIilApGIahqcuqqojI+7i5zTbQiGwPRd0nAL78X5sVtVKq65bj8fj6tWshDABwenqCAJcuXuz7vp0vnDY7k626rlNeLbalo5qMximlrlvy+lN1WiUigJUkvajKnZ2d2TK8/vrrh4eHSinxzV3nqJJzbhgG62xVVYvFIvkwaUZ98CEEojyfz7uukxH/ow9vXrhw4YXrN05Oz7z3vu8fPnxoFEtPTQwIxLwilYFi0sbUReGshhQRSDF432cuQwrK2BRzt2zLsnQaF8seFTID5LzO7YKcIqXMhr33AEpk7IiIWpPcB5mElLE6pVly6LAsXSIIISTKstMmzgq0XLyYMyIalPj6VaapdEmIqEASAxMhWG3Go0Zr5Jy1RquNM1rmg5ydMcbYIkIcMmNOvU8Hkx025dF0GcNQ17W1Nk8XyilmjomCvCCCQBwzm7IUkCByVpmwKAH14ANrY21RuXJIlCJppVBZIJrNl2VZDj4qbYchWKsTAxq7WK5SaySwlEGhMshytmIIsRt6rZXANVprBTmGEGJSSjmrMpH3EbHLOStkrRAQiBNQdkYJX7EodEppvpg6bba2xkVRbDV14lyVRQxOKWjbRVnWWmvvY1EqoVmylqdbiYeFFAOttTWGOSPoVdw4agCM0YcQALEoCgMcfGImAIWKNSEjI4DSyAxkrE9RpqkcKVH8PT/3L/+D/+FvnE7P9na2amtDjJcuXKiWi3sP7n9w9+4nrj1z6dKltm211s8+99yjR4+GoTdGOWf2zu3Nzs6kndJav/baazdu3Lh//+6VK5e01vWoOZ2e5EgPHjwYjUayADs8PEwp3L59+/Lly0RpZ2fr5MlJWZbOlUKyODk52dvbG4/HZVkNw/DgwYPHjx8LeHXroztdO1y8eHE2m81Oz1JKdV3vbI+n04WZz8uyfOON1wXAF7qfVEEJ6IQMCqDvezGVlNqQmYnAGMMIQx+kBxLcWFy08npEcM5BTpt6kIlwbUFgrQMIee2DwfjxFkmOucVikVMa7e7KKTabzYwxR0dHeh0TJEW6LEvBFRAxxrRxrN0wYDeFdoM2g8L/GWjGzAi4OgEU4jrhwBijlZKst7IsAShDVgBa6wwJgHLOIgbhlfUEKwXOmStXLt29e3dnZwuRnTM5x8lkMh6PAUBWRdKaoBwr2iImvY5GlpPBey8Zf3t7B5//whe++e1vO+fuPXxwcP7wxZc/8a3vvW6M+eIXPpeU6tuFKwsAZW2Rc6a4kuLgWnewacdzYq2MnLzIrICcUQDw5lvvnJ2dPf/88ydnpx999NGP//iPv/rqZ27fvv3w4UPK8dXPfaYoCi4gxZhWmn4V15+nrJlQsdZGMSsAkn9cp3NK25U5y3XPOY9GI2mbirJcdQMAgISKrca6LufzOTPfvXubKF27dg2ANHKMoSiKybghyWsxRjDtTTCaICXSKsn9JjGs1trRaOQUDYMvjN3dnsSjWG2V1567frC3v7O1PT07cVbv7+9/+9vfJqIvffFHog9D7OUqNE0jVt6uqgAgpTAeN/JbUkqj0aiqqvl8PgxhpQdZ/8GnAGd5GRJQLbVD8Inp9JSZL148X5alc6Zt29OTk729vZSCVTga1THGqioQWYNKOWVKqMAVNictG9x5mt+5c0u8zE7OzgQza5rm/MVLAGA03L794Hvf+96NGzd2drdms9loNNro3Y+OTqYn7/d9f/PmzdHWNhGN66Y5tx9SUkqdTs8ePHgw9C0AfHTzg262uHDhggI+evyYczbMvEq5WjWxGQAUAyEarYxGrQBQWa2BcmAwxiXKtrCJMqsMWsVExIiAMYWcWSlllBbwhFIk0DGTtZoBu77X2kp0cY6JONWF0MRTVTrhjyyXUSnFClNmYVNLoy3NrOxpBIGBNalP4NmUEnlvZHcCRExFMzLGRN/H6KuiTECLWR99kkuutSZG51wmlXNWpnzw6DgmSZUocu+563POKQ9lWRauIlBD8D5k1ka7sqpHROSHLnRBMxJjjNEPXUQdQjDaJSZUOhEOoZc+l7xHpZihH4bBY9sNSqlh2RZFKgqLiMY4oRoKxdEV1RA8rRTcCrRGY2RlqBUqZQBUTGlNRQFnbeksGUBApXVZFlVV5RByZmOM00Yp8N6nGIqiSD5GPzRllZgEDkJxIVyP2oiaUecMwBxjRK2tMYLJABDlmDPEGFsfAEKWbFQn03mKyRvtCBJlzpSBUIuLFiKWRaVN1/uuGxhdn8NksvVv/Jv/9t/66/91Pap/4se/+v3Xv/3d19/YP7/33I3rD54c3br14aNHD55//vlF145Go8PDwzt37qzwwK4TSHM6nd69d6+p68F3oPCDDz6QNstat7+/pTW+8857BwcHw9AtFrOmaYahQ2SJa5RD1jl3dDTd2dmKIZ+cnOzs7Fy6dOn09HQ6ncpwoNDs7e0dHR1duHjovf/kJz/54MGDhw8fOufqqhLcEjMOfmDm3d3t5bLrhx4AjF6RtwUYn81mT46elMWKJJljROT5YgkAV5+5vLW1dfrkgV4nu2UmTtx13Wg0Go0mgr/xakxcMWM/PrsRtTagV2wmeVikr9/Z2dFKzedzGZTlJN3ge3qdKjiZTIqikMwlWG9k17ffZq37O4qxQMz81B/YCPTXciP5eon/kh9YFFb+UlUVDaung9e8E6k3EuC6t7f34MEDmTO2t7dlRS1cIV7nUXrvrXGrTeE642QzBCuFMUZUajabPffc9Q8++mjZDQbg5vsffv7zn3/y5Mlvfes7TdO8+tlPD8OQokdAay1R2Qcv5768cQEqJFY1xmirqqqavvfk+zD4xWy+tbO9t7OVUtrb29vd3Z1Op9evXxM+zr/+r/0rzNz3fdM0WX+cNMXMRmve9C6K4akwBg3AG1tppTard6QMoFJe67+ZmYjXciah7E4mkwPvj4+Pm6Y5Ozs7d+6cQLhPALTWCrDzXtIzFUNhrLxTISdLuMjT7ky0NvVIKU3G1dD3nGkyGi8Wi6KoNIIz9vOvfu7Rk8cPHjxwznXLtmmaFKJGJZqfvLYBb9vWdz0hVNWq3ZT/FjiwbVvnyg0bXPqepyfdDf9UBhIZXWKM8tnu7+6mlJSCGFYm/01ZDcOwvb1dVRUCLJfLlHkYBqSVWXSI3hpnjHny5EkIoa7rK1eeeeWVV7S14mZz5/a9lINzxvfpt7/1+ptvvvmFL37uEy+8GGOst2rJ8K2qqq+rlNKlS5euPHttsVj88IdvKA0vvvjieGvr0aNHy3a+WCxK687Ozm7evHn+3AGl3LbtuYMDw8wKIANLiPd6IAYAoJgGHDyQojyuq7qsFMLJEJnZe/AxiNXU4NvJZEJESq0oQpQp5yyhPcMwjEaj3ofed1pbRFgul3VRGmcpg1K667qcY1OXipXPcbFoEdGWhXWlVlo0q8aYwpXL5VK2R3ISmfXBIX1QCIFzcsYUhVXIdeE4UwgBmOuyquuacwzEEuYaQhh8PDs7ayZbZVn6lHPOwQdmsEahNplA5ApVpf0QfUjMSAzaWutqtb7wTOiKAjguFougVeFM1CAZTjHlnLNNmRmNMdbZtm1HTRVyGk8mOUgCEmVgn6IUJ6tWUWJFYeVNKeOMK8VSIPjYd35kdDVqELHt+hgTwirlaTxuEEABK6Ws1kahmDNLCLbEyhaFs0b3fQ9ARqmzs+l4a6KMbZomZbG2ASZK0afMShmtgDXQWvywIUcg5lV0KBODkgds08zKUBV8yjmHFHNmUKi0M2AUqoUfGFQfsilLZHBU+DD0y/bSpUsPP3pru9Ff+NyrH92994P3PjxaLG+89EmszPvvfbBcLj/7+c/lnPuhE4eyYRi6rvvEiy8eHz8Zgr965cq9+3djjHUDd+7cKorq6OgoZ/785z//wksvPnnyJKUwmUz6vt/e3k4pnJycXLx0/vT09NHD0+7sVJy033///fPnz4stszgqHB4e9n0PrIqi2N3dXSwWT548eemll6bTaYzx4sWLi8UitL2gTFeuXLGFm8/nwrNrmmq5XO7t7XkfnXNC7rh48WJRFCIKmM/nfuiF07C/t3v50tWuXxIwI4QQhiFIUXn08OF4PH7uuVHOmZhlZMmZQoqwtkJ7ilKLm/lPdslyxkk9G4awv78vZ5MAzqJd0Vo/fvx4e3t7a2tLjJMkoELW6puDGP///Pak1D2t0OS1maK00ZviTESSx9V1HaLMQMkUpbYGckYmXt1+q1wmaZGl7ZYfm1KqqoqZZ7PZzs7OaDSaTqfDMEiwptBE3NrHSrbCzrnge+ecMS74oaqqz33uc//gH/3y1tbWYrG4c+fOc889V7ninXfe6drFl770pen0lOIqHVl0Xxsa1DAM8ihJHVJKyRMao9/sC5977rm+750z165du3jxvKDi1555dr6YCgYzm00bN96UDfnhTCRvdkOsw3XWsgyj8mcD+CsERC1VRzsrC3tev2VmXiwWe3t7MlO2bTsajW7dunXjxg2JJG/bVri4O5OtlFJM3jmHxJugaLlecgsppUKMmFbmi2272B9VTVmllIBRVNQP7t37zve+NxpNrl27dv/uPY3q2rVrzzzzzGg0SinMz5Za67IsY4xN0+zu7soDIhc0xlgUhaSNLZdLpdQwdNIUulV+FACAczalZIzSWux70VrtnLXWzGaLxWIxDIMsoeUTEMvC2exMoJ3lchlDCCGUZRnTx15XoJVcSkFTfv/v//1f+cpXzp8/D6AIQHQ0t+88+Oijj77/+ncfP368mE1n8+E3fuNbR48ev/DCCy+99NKobojo2rVrL7zwwgfvvX/37t1rV5958PiREEpu377dNE1mjilSTKTNpQsXrVZVUbYp7+7sHBwcmLTymGZAUggEjESJAQETqBTIamPRdANQjoWtIB1PxuP5fK4BOcWtrS2L0M87ZXSKVBRFYkqZEZEUaq0d2K71hGBsRcDt4LPWy5zkIx4AjLao1LT1ReGGCDyeEOMQ48g4VEYI60opSt6VDWokZCFnRUTnjEadYzJGjavSGW0UAGUEziFoZGK02lhbKGUIFGpcDClnChn6lJNzLeeYc0IixW7cFMY6awgVEIMpDClSNjNrtKiwqpxzLoQhxR45x+XCaL29PenbpGyxd+7cfLaMjKZuFsslMDbNOKUUfGeZCjA5x5ztZDL2XR+TN8bEFLmsumHI0ZdGVwoRkkqhMJUJASHuOtNgQ0qljJCVtYppGIYBgLRC1hSjt1rvTqqm1t57q5TRYK3RqIZhsKYgDv0w5JwROYQwDISIOUHZVIXzoQ+jUUnAKYWcOcaorVVsrZZ81lXEqdTRyBAATc7ylA5D8N2QgHPmqmoiOd+CUpAzxzi4QgESQzRW5cQ5qhyoquot8MY4LnXMkZisov2t5ps//PDJyfHe4fknDz8aVdXlK8/t7F3+9nd/cPO7bxW1iQTg8wc3b1+9elUrq5RPKS0Wi4vnzx8fH0uy2Ggy3u32bt+6e+NFe+7cOa3M2Zn66KMPco6f/eynCfg73/3O17/+9flirq158ODB4Xz2zLVnlbYxJR9SPJsdPXmytTWeLpbLfji80B5euNL7fDpdvvvBLUT+9Kc/jVYdXLloh35vPHlw964ryhhjCN4o9oPf2ikvH4z80NmKR7tb87FWykyn2isdQz8/O8uRLh1sfeGTVy5dODx6/KSqy1u3bmljex/v3r3//AvPae5yv3wyXVTj7ciq7fzQ9Q/u3R9Nxo+PpuXkyIews7MDyJwzcsaYNaAqVNd7ay1l1oVJkIeQUTtmcHXTdp1Rxli7WC4BqSqLi/W5pmnOZtNbt24dHz2+dOkSgmKmD96/eXI6/YmvffXg4ODo5Ng5F4I3Rnufnjb3yWtXHGGQrWqDQsqZAVCplKKc40QExBtODQCIZD+lNJ2tsO5l24szhlLaaBNCkCj4tm3lOJbebmONycxIWJiinbda68IUiAi0osxIwZZKJuNvjFG5YkgpY9DGLBbzw4ODz37q5Td++GZVVTffe/tnf/Zny7L49V//9Vm3ZGtv3Ljh0zL3JANXirEsaxFxySyhFChN/bAYjQutdT02Q9C9H1xZOOekP3DGzKdTY4xChZmGritMQZEKU0AGnxMY7buUKDvn8nrZnHNGNEohE2YiRNZaG60TRWTFGUjEZhtBtsUQs83KOacJvPfMWNd1yCmm2A2pasYXDy++/c4PR3WdmH3fj+qaQKG2faS6GbVhoZz1fjAFFcRorAPouq4wq0Ezh6ir0hrD5PRKRh+GLmxv7xwdHctr1qh2tvcmk926GQG6R0eze0ev//wf+kMHh/unXaurEhctZ86Q+74tS7e7u5tS6PueIuWcq6piUn5IzlbaxK7rSldQJgTRo6G0QTlzjLmuC3nvQuli5tlssZyfMtH5c/tGgXPG+348HrfBC6dVtstNXS7nCwTIMWhEpFg4ExMFH4y2Zd1EPv3q137qp3/6dw/en0w7UWQxc1VWn33lxVdevvG1H/viD9948+233757+9a9e/fu374zLJeHe3vb1+rCqtlylhapjYsLzxxOJubChRcvXdg9nc0fPHyUGZdde3wyizHqopy13fZkFIGyop39naKxxmnDkFOKRFkppQ0aY9PaadQqazQqgkzUBx9j3N7b77qOlaaUlNaLZZdSqkeNQtNxF7K4oX0cpm1soZRi4JTSJjR78wWrDjpn4X2EfkhJDA5hOp2iWu13mRkBcs5MDCB+quuETs6e+hwVlk4VWitNTCAcfYpAzOp3SMesNcYYRUa47JkppZU7PIMCrTkTagaJ7FDKGZVSohhSouQDlWVKIeWAyFVVde1CvB1SSidPjoioy+ycMxqV0jnEoe8BhUZYylLq6OjY+2E8HmvUve+S5kzkSCulKAMhjOpRU1eLxSLENhJnAuVcJtUOngFqu9qLGGOMs9ZaY5Qry5iSc04x+OBTUqUrnHPKmMF3a9wYcvAirpdpVfZGPkoSOIozbUophGQLV1UVA4JWwAq1EgvrYRis09Jrh37w3itn5VymHCVdJIQh58TAZekmk0lOTAQpkVZWa727c36xWIg7twKuS9fU7id+6nfNjh/MTx+asjk+PRuNRt7Hz7766dt37t+5/9G5g5W2suu6xWKBa3dDWSheunQBAHZ2dvb396uiPJud3r51ZzKZHB8fX7p0qe/71157TQ7xBw8e7OzsPHnyZD6fa41PnjwZj8d1XT9+/FiopOPxGBElm+HVV1996623fu3Xfk1Kwg9+8INXPvsZIhptbR+dnjSjsbbGLxch58P9/X5oZROplBqNRlrrMtcppaIsp7Nea13XdfTdMAx7e3sxRgYaj8fXrl3ru6GoaqXM3bt3XVVZU8xm87PR2e72zr2PbrdtN6oba+3tu3e60G1tb9+/f//ihfOTZuS7FlIO/WDKSlnjbNE0zcaAUIbstluWZUkpHh0dIeJ40gCxLYrlcqkAx83ozr27u7u7W1tbb7zxhtb65U+8+Gu//puXzp+7dOXycrk8PDyUqVqe07quhUVFRMJIovUf/VRi0mYFqwDRGPWUnGYzTaq1xwA/leIgNySLpaVSe3t7MiaKt6usnIZhcNptdqIbaHQzl2+mbfn5Ml/KxyLSGma+cePGvXv3Fu1Sa/2tb33r5ZdfvnjxIhF99NFHi8Xiky++oLVuF8u6ro/bdj2MgnywooATAlFZls6W1g4y1h8dHW1vb2uthQVdlqW4ZQl5QrI02rYFZaRObwIZNyIIfspDGJ6y2oa1Z4Uwg9arh48tseRfUkreezRaCNJWNefPn5/OTh89ejQajU5OTg4ODjaAh4yewmKDNbs4rmN95QGXIRsRtbaILAuFlHPX91rZkEMIwRbu5oe3njx58rWfePnuvQcEdG5//8nx0a//5j9/8aUXvvKVL00fHQmyLVvCtWxJCOqFUgqUyjkLSx8AUo7EVLqC1pGIT38gcoYLmYCZBXggIh+jK0ullHizyJd575fLpYQPSjcm57z0cnKA+5j6vt8ajV999dUQgsDv8mnUVRVjPDtrtdZbW1tf/epXX3nllZvvvfe973337t27tz+69Wu/9mtN8/sODvbk142bUd/30/nsN1/7rSGG3b2D+XyeCLZ3905Pp9vb248fP1YKBt9t37m7s71VWNt3XiFHg1AYUxhtECywZjLAdhUZBohIQJGij0MnCXOJ6macMoPSDIoYU6Q++EgZYCVrE/hF2F/ylKYc8lOWh4iY1usi3gSq6JXtNSLKalNuPmYGhbQ2WIc1C1FrXZeuKgqlIAy+X7a+7xDYOVc3pTNWa3TOOGe0RgVkVrmwoJit0WUlVozgjC60Vgg5hjB0fd+HMIjQHigbpYvSFoVlzn3fZopl6azR1qj93b0Lh+frupw0o7quyrI82NvRyNH3fbuYL6YpB8FYJpPJaDQpiqqsmqoeZ8KuDzFxSgkVg0K0xlPqQ0iAPVFkSICkNGsdYm6HPubAzCGlLOatWis0DCqk7H1cdkM/hGU3ELE2FpVWxqZEAlCvT4GmqqqiKIqqTCmVddWMJ2VZCpiGiKCUtsYWrixLY61cR0mMFpNFOVYEsNJayypRGLYpRb9et5+/cG5nZ2c8Hldlg4jaGlQGlAox37n/aN4OKaWco0aOYTg5OYmBv/xjP3U0Xe6ff6bc2rn3+HEGnk6n5/f2r1y5cnh4KDeS2PrfvXuXiPb3969duzYej09Pp9Pp/NGjR/P5/Ojk2Fl7+dKlO7dvW+0U4PZk6xu/9c2+7S5duHhydFy6Ynp6dv7c4ec+++rjh4+qohRc8b333hO08+7du4j4/vvvHx8fP//889euPyfnUWK4c+fOzs7Osu36wS+7dry1c/HC5cnWzu179733VT2yZSnhgH3fC0Q7mWxt7+ysWC1F4QqzNW4op93trW650AiusMx5uVyKUllrXTrb9/2j+w8AoF0uvPenp6cxJoklOD45unv37v279x48eCDrMaHhzObT45Oj6XTadZ0IW1c23syra1daIhqPx0pBWboQhvF4/Pz1G01VO+c+/elPH5zbu3PnjtN4/9GT6elZjunhw4dSUIVpIb+Of6cIBPFjzHlVXAGRQcEKCV9XDpBzAADM2iVbr8OMNsVSGzRKy7bv4OBga2urLMsLFy7A2v1YTuRN8d5U7qeBcTlt4Kmf/PEmG2CxWEwmk5deeokzVVV1eno6m81evPH8pBmNqnp+Nn3j9R+0i+UaMq1CGEIY6rp2znHK0Xsx65W8ByLa3d09OTkRsqtQ28bjsfB6YO00KQlRorrpe+99zFlc6T7m+j79ceH6D/PHEMLm7cgf4ejyWlmHa6aYfMIxRu99VVVXr16NMbZtK3dFXotrhTdeFIWs1QWqlSU3rM0vYZ1IAQAxZoXGmmLZD2VTJ6aYCZQuqmqxWEzny6qpHx09IYCz2fwf/IN/8N4Ht95+993MKLZx8ja998ILW1F2iKRNXC6X0+lU3ohea9I28LuUgE3DV9elUmKslIrCaq2Nc8xcVVVRVyJyE4WndIrCkdbWOOfkOtZ1XZZlVZZN00hHsn+wK/pghSgHgvzqnDMBOOfatl8uu+3t3VdfffXrX/+pH/uxr37xi19czhff/ua3mHFU1XVRLqazncnWfLa8+dGt4+PTyWRr2Q237tw9OZ1OtnaKsk6ZQ0g3P3z467/+66PxRFn3G//itwzmbDVWRak0pBT64FPOjIAKCJgpJxJ+BKNChXh6NqvrGm3B2hJoVMhKtetPWSyn5Z3LbSFHUmKCdQLlZsdARGLxgYhoLDAoDbyJOTMFI2xq9oqGgKiVMUZrhUopa50fuqoondVI7Iwuq0KjUkAK2BhlTFEVhdZIq18DLNY2yeecGTUQY2a7cqtUCoA5K0C3+RcEInK2gEqJgjuGbBRqozjnrb3x9s7k0f1HAEA5+6E3QP1yjoh1WSmtV5mmmebLRQgBWNmyUq4Qvp/WJiVvrQatrCuD70lpsCaDanZ2QwjZe2YkTj6GIQSibns0dsagtsDKxxhjBGDKAMiG0bliazxCxOV8rhGMMUYLCYWdc9ZZZhFax7bvmmZcFIaIMnDMK3q5c2XTWAYYBj/EAACZQMi9ShltjEZktcr5stY2apuZQ0gpZGTMMR0v5qdnoDW6whhrYyZm7IYYQ06JCHhvb8sqjmEJVRX7ri6r044uXL72h/7ov/NLv/RXwDow9mw2zUM46R+1FKU4WWslHkce0bos33zzTSL61Kc+9cEHH2wi8IDylStXPvXJT1+4cOF/+p/+3uXLl9u2dc7dv3+fmd95550YY0rh6Ohx0zS3bt1SupCV7WIxOzo6Oj4+LstyOp3eunVrf3//a1/72nw+f/T4kTFqsVjMZrOLh+fu3L6XATNDTHk2m6HC6bw/ODhYHaZKA2YUM1itqqpZtrcNEqe8d/kcZ+KcbGGROBOXzrb9MKrLT37yk5FoNl28+OLz3bI9Pnniu9ANwZhFJqrLMuY0n021UkdHR4vT6f7ezvnz5w/3D7oQF10LAHfv3r11+yOl1HK5NFZvb29ba73vUwg7u1vSKtVlFZcLWb9prcfjJoR0enwiTntd3+/tbb/w/EsnJyfCPjs7OS2qcjQarbhO1m7sCUMI8pdVe70m61JKT68wZXjdAKeyMEbRHCmFyAJqpcxMajPumHWC3mqPGwJRWqkAlAYgmWWFhqOUYpblNIsb2HoOBgDWGlNKWiNR0toypXY5f/ba1bv3bh8fH49H9e1bH7708ifKyjFkBn12dvLd7377R37kR0ajydnZmZAbkLi0rk95zZEUVprKmYiCMebixYvb29tityQt6aYJkL9L5bPWOgey4RauJTMjKAH5c+YVDLkec7VG4I8PQMSP53tnjdYovfUG5Fdr3rJcqeVyubu7K55uJycnIiUAgK7rMrFdp1RJsRflt1CLiUh4+LTOYkopWedyzgs/DD6ashhSNM7ZwrHG0bjufbx//74xVg4NreHk7DSkqNc2Izmsdt5KKZlKpXtITAgr/MM5B0zyYqQflYRyqRjS8AneZtapvZnZGiOtg+jsh2EYjRrrHDO2bZtSymmV/QprbbdTKK2I1ppSlA09ImttxJhBgcqJCldqA13fW2XKqlwuO63xhedf2tnZGdXN/v7+b//2b//yP/rHP/n1r0lunVIKlH3+hRdnsxmjfvTk6Oh0AXjv9/2B379YLG7e/KBtOwCYbO/u75/74Q/fuH3roTHMirKGXNqSrVLAIeWMKmYGpLzywMqIaMRpyZgEar5olbaUIcQeETftSVr5eW6s27O1zqfIxChSNl49h8LrIUQfklagUa0+5pSkg0PQvAq1sPKA4e9UhgEAZKpKB0Cc2FhdlqXVZgUpU5YDgjmHQE816WqzT1JIQAkocWbUzqKyVitVoGK9MgUjLUFdlLXGqqqMMcPQAXJTlcYqIuoWSwCixG3bGmNSGEpnJpNJWdRiT9EPQ9/7RJlRAwD7AAA+5EBklNJWGWNiSp0ffDdQzp3PHWSjvEweSqnex7bvrbXaiqO9ypkTJ+ZMBHJdRvWIchxCcj4A8XS+BErW2lFlZcZlwnboKaaccwhJPr8Y4xCDQoOItnDWWm1W1qY+Ra21H2Lvh6efVem+5e4fhiEBEkGOKYSoAZFJA1uji6JwlVPaFqjmy444pYy6KBVgSmQsGYWUhhxTUElr8+RkeXDh6td/5vdujfXf+O/+6ze++53rly4bY2DwIUZrbRiG0+NjIvr0pz89nU7feOON5557rhmPv/3d7xpjJpPJisnCdP/+/aOjk9PT6bPPPvuVr3zlt37rtz75yU9evXr1V3/1Vx88eCAjy4ULFwRT/ej2e1evXl0sZ1Kky7I8PT1dLBZ//+///a7r9g72x+Nx27YhJUS8e+f++b0DWxaldaDU8enpouu3Rs1y2RZFkXJmhRvYFo0motPZXJ4FH6GuS21U6cywnCmljNY5AzI1TVM01cPHx64sXN30bRdjHHw4f7Anx6UyGjW2Qx8TlAZH2/Xh4eF0Op3P5/sHB5cuXZjNFi+99NLjx49v3749Ho8fPnyolCpLV1XVaHfPh/7OnTtdtwyD19a1bbu3tzefTt9+993r168/99xz0+n88cNHRDAej5+9dnVnZ+f09PTJkyfeez7LBwcH4/G4LOqcsrCBiEgBshjuIMI6oFAbQ6vy+jGPegNZAQATxXVLrTUaY9IwAECMKa8NnjbTniClUno5MxBlIm315gRI6/Rf+cx5HcvDa5dpOXCt0ogYY4yZmsnYe8+ZPvXyJ3/jN35DeECPHjx85plnPvzww9IVZjK5d+/e22+//eqrrxZWsyv6ZWsnK3ab9B9KqWEIAi0A8OHhYdu2QluTbZT3fmdnR8bQDdd3bRy7iuFavWxAWHO/N7M7rl0/QcJ0Nhi7DC/EAGCScc45a8XllDOJXSWtFVOAEEJooLp+/XrO+ejo6PT0dH9n7+TkhJmt0bBKrc9EjKB8WKnA9TqhDxGJMmVWqK1xzNC2nUIwhbNFaUIMKb71zrsAUI1GMUYCXNkyIySCruslXkU+tM08HWOUVEfZ2lAmAJIKYowhYnGhEXUcAMS4WpwVRUGUQhhiDELqXi77TcMhXQIhtG27vb0tNX7eLr33hXPGqJTSMAyAkg7ilILBe+ucKE6ReANX1FWDZkXAToTGFjFG8kGhjin5lCfj7c9/8QtSDl5//fXXXnvtlVde0VojgHE2hGRcSQTHpwsFUNf13bt379+/fzadM4AG+OQnX0lEd+7cIwCjDeYYBmCNLFcUEQkw58CgACRdXDNQBk45IRbMLKTKRJkYDWoRL8pNrxiYCZjLomBjWGuilPNm8OUMLCfUWnaWALTSKnM0SgPBas/kk0Q9ryVuqFbxkZxzzikiImTa3h1774kI0aSUBt8D5aootHUKJWIlA4DVKwTbS2jLU1z2HNMay1rHRBGnVcpIDv3q7vE+KK3LsrZWpxzl2xfL2dB2SiljncgPQuhizFrrbuiTTxm4bbuUCBSCUjlzypEZMrCYzzVVIV3bfL4YhqEwZtH1iCiOCjF6AYVcWYybkdaaIyFqZmAmRK0UxJxz11VVlTN3XdfOFwDAlJxzwMq4ohlPEHE5n4khKCrOKRtjhhhCCDHkqqld4TQRIkbKfevn8wUA1HWdKEs3unEsymvbmhSi9z4pI3T3HGKMEZiLwo7qiS0cKDUEz2BiTIhaWXRFKUhvvVVPKos5nN8///jxMbBBZdvO/8RP/dR/9X//iz/4/vfquiSElJKzZU48m8+ausk5X716VWv94UcfPn/jedT6W9/+ltx1jx4/KVyhlDLAYivx7rvvZuYLFy595Ss/9vrrr3/uc58zxtR1fXRy5Ix5/PhxCGF3d7eqqnv37iFiXdfT07MVQ34YmPng4KAoiq2tra2tLcmE//DDDz+89dH58xcXbbtcLofgnXWzZVs71TQNE2nAkCKu15N9388XravqNHRG0bhpNILRmPXKOVIBlc5Rir4fJpNJTLS1PemW89udPzzcq4pyPp+Px83p2UwpdfnCxens9Nozzx4eHp7bPzh69DiGcHZ29s7774UQdnZ29vYOrl+//sYbbzx4fHT79kcXL16s67oq7GKx6Pv2/Pnz165dYwQ54IYhCDP25Oxsd3d7Z2dHqdndu3eNMS+88MKFCxdGo9GjR4/abnH79m2t9UsvvWT0x5b9slIVWHWDl9I6RYfWsigpKwJ+inpwcxaLawg/JSx+urdmZjlwY4xW67yWIG9kh3LdN27GsFYtb8qVMIk2L0n24m7wpXPt0O/u7t64ceMHP/iBtfb4ydH5c4cHe/sPHjyIvtUIQ7dczueTycR7rzS03WJney+l1A+t6LhWO0vCzCRLR2FIyIsRAZh8RE+jyjLAyrQXQoBMyjl5uMzar1+twxjWn+HT+PPH+bjyLWZldJ8E0Y0xOlfFGEPfqbIsimK5XBZF8eyzz8YYj4+Pd3f2EVFEK6j0crmkNddaKyMvGBAB5Nop1GYNbRqZfpRW80XrbPnw4Xtv/PCHo9Ho4PDCZBKm89lqCkdFTMbCMKTlcllVK+NGmfvlksntx8x1XScmGb4zCRjH4lIn/ufe9wKmFoWN0QsWbawKcZCdhXy0q2F6PbxJb8HMKZHYuVjjrE0RYop9URTGWgCIKVlt6rr2/cCQKSZl3Ua8t7otUZdV7bHz3jtjCVU/hMIZUOYTn3wZtfLev/X2m6+99tru9s7Vy1e6OFRVVaJ+8OCBBmCE23fv3757nwCE3EQAL730UpTVEoHJOaJCBsknWRmsrLzBlH7qwUBiIM4pJ4EM5NYvXZEpcsooHq7MCiFTppwpK2ZGrY0xFqSFpRX69NRqfTNXASvrSgQyShdFkVKiLKBKklW0mJJvQGzIlHV88uSJIFFE5GMQU0ltCxTUK+fMhAwRFDMkgsQrv1NGDaysMaWriJKWPCnIiQiQFCqlNCodgtcIqBWlHIaQkgBc4pKT+rYTalVp8/7+PioNoBjzEHzf9wg6MwXvtTEhJubAKF5dSqzIjDFMUbZTAgkUdQ1aM0BhXdu2g49FUY1GtVHaFWa5XBZmJZAXrxzRagJQ13Wlc00z7hbzlFJdNU1TjUYjoygn8t53gwcAUKQJmDFFyuRX5nNGMyg5JUPO3vthGJTWxJzzylhYLpa85lVOsHVVVbU+tW2rlNra2nLWypUqisKVRUgpZup6H2JetL7t+pxPLx7u1lVRFlZrHDXb589dGPocAiHyiy+88Lf+h7/6d/7mL9WTSYF8ejo1aE7aubNuZ2uPiH7u9/3utlt84xvfePaZZ5VS77//vjU2Z85ECDgEj4i1s8enJymTRq0QfuM3f/PqM8888+yz//TXfu0nv/67/s7/9LeLohz84OfzZdcen54QwaVLlx49evTVr371h2+8+f7777/44otSgI9OjkVnvOw6RKyqajwe+7599OhBM97qum45X4QY6sIZDQrWyg0NKUQiTMMwPTkZBkKgFGNhYDSqUxji0JfOAsByudSulPPCWuts8Z3vfn/ZtT/+4z9+59btlNLkYHL58uWHDx8qo3POz117Zrnckwjh6XRqrd3Z2XHOiZLbGCP73a2t8eHhgRzK9+7d2Z5Mrl+/duPGDedcjkm0mF3XndvfQ626bojeG+c+85lXbt+++857733wwUfHx8cvv/zy9tbulStXTmcnjx49evLkyQcffXjj+gsxp7zJR1LIxJkJQexfKCcyyvyOtdE6pm25XFpjqqpai3lSSrRBdOXu4vUfMSpRa5XzppTKf296Qb3W6W4q1uZHwVNGylLRhYq4XC7H47FB5bv++eeuP3n4aDo7zTnevPne9evXu27ZLhY3bjxXVdWHH978whe+IEoeay1xquoixpgiqVJb7VJKXTeUdSG0JvFBk3WvLESE+QhrCpUUj5yS0a60TjFIQXp6jf30i18/cUY+kw34B2s6+qYXWW24VZZP3mkTwpBSAiRZr9R1/eyzz85ms8VSYpVlOcjSZEsHoNYaQlljC/yurZUXo5TKDM6VKQXvg9bq7OzsZ3/2Zy9evPgrv/yrTdMgAzEVxvoUi8KGEI2CB/fuX9rZladJXqdciBCCUqtwEWkHtdZVXaeUgveybDJGIdph6MbjMQAppYZhyBQBjVxH+V7gJIid3A/WFIJOLxbLTJRznq+PaKk18l0pZ0RttM45ooLFYiY3FVAmxOC9dFHOuTbGmx99uL29ffHwvA/90PXMtBx8YbRC/YlPflIpTJRv3/pwZ29XW9U0Tdd1e7sHx8fHiJDXV1VKqUY4d7C/t73z0a0PkMEAmMB5VNaFNcwcZQZKFGLKxEyZxVYVEJVGBCAojJW2N0WPyijAYRicpHhSBuC6LFzRyB3TdZ0nMsag0SlRzEkxA6i89s/DtexMmiDx1RJ3bGMMAhOwmNMyMxAjkEHQSsYHNkrnlAzqEKO4vTdNU1pHiF0fyqpwRcWo23YhfWtVlBkgx8jMPoYhU2Gcc5aJQxapKyMiaoXKABABi+GG0qYelTlxCCF4r40iBqWtcSud5dD1J9PpyXRq5JlHGHx0DmWcGk8mVaGVMgAi6UlGG+Y4LPuiQCfhQpnks+7aIeesgKy149FoNBopYOJUmEo1ozwkBE6UQghI2VrblFVZOWdsCB6YnXO7u7uT8XgYhr73hcVlWEnrlFLBRwYqy9I6x8yIKVMefGRQEq4QUwbEumlyzilRVVVCSFkprZmdsXJDyyWrVOG9d9o456xRSiljVFkWiVgpU7iq60NRFKiL3b19pZSJ7ai0OcY+5fFodHo2my2Ws7Pp4cHO3/+7f+e//C/+L6CwLHQ/X+YIOQ2Fq3zws2X71a/+6Je+9KU//af/9M///M/fvXf7V37lV/b39x8fH1lTUCKWIgDQ+VC4gnMQNJiA/vr/65f+5v/7b86Wix/98a82k+av/42/LkYQPmYa+hyzUurixYs//OEPf/Knvv7u++8+//zzjx8/Pp2eOleIWUciUkrNZjOllMa8XPYv7+1dfubq2fTERRNCyABFURjERImJZD8qdPEYlwpZa42QJ5OJUkoa0eh7rfV41Jw+eKLXzAmhhobBf+1rX/vBD958+PjRJ1/5lHFW0ODlfKG1TiEKW9sWWl5eWZY7Ozu8ZuIcHBx87nOfe/31199//93z589/8fOft1bnnM/OznKKVVnnnAWvUkoRU9M0fd+PRqMLFy4cHJ575513njw5/vXf/MbLn3jh0qVL4/H48PDw5s2bb/3wnWvPXldrewTBb1b++OuZlYgYf8eURmuObt/3fo0PV1UlhVKto90BPmZ7SOWWLWbO2TnDAE1dS7CEWZvvr3pBRMEeN0u+zW/np0yU5C0LbikIbQihqotXPv3Jd9991xjjvaeUnrlyJSW/tbXFDGdnZ/fu3bt27dpyOR+GcHZ2duHCBanHG2qPyOEkJ0eK7kZ/vPmXlX1H30sRAmZEdM4Yo/q+l7N0o3t5uguRNyJFWmYGfKpNgTVp2RjetDuJEidRba3wCWEvilhZLlZd1/fuPajrOvgoVUcunMydMcaUYlkWSmHXDXp1bhilVAweEWUCyZkuXbwydP1777x78eJFRPXPfv03DWJKsVAm+ogAGuCf/dN/+m/8S/+y4P8bWGI0GhGRXUccMgIiWmu3t7fbtt2ajLa3JzlHubvm83lZOiEEjMa1WAY555qmUQqZuSgqGfTN2pMSFfoUy7IUPHwYBhpP5LYgorIs67oWMUVZOh9SYawfwnw629rZTpEQsSidQoHK6U/8n/6D+/fvZ8qf/9yr/9b/6t/8xCc+sZxPlTUZ0EffVMVzN54nBK0xhNC2/fbe+XaxPH/+/Bc/9/mvfOUrzHh2drZYLsuiuHLlysHB3smTI8rRavX89WsP7z82aF0fQ9nUTeEWs3k/DKB0zFkpR8JnZAYGoTsCIWBWyAp50jQAkGJsysJqpRGbZuycE6s5WV7WhZv6FWB1Mj0rbdn3vbGWvPcr/2frM3EmSStLOVg0ViEaK+APkhriINUaOI/qpnI2p6ittUallMpR7b1vmknyoW3b4XSqDvaSdA0h94OPMSIrQEzEPlNC0MYqpYZ20NoMISUmDQJVobWWkYKPQwxyf1DwTdPEbjDGEWM/eGbOnVcDFEWhEfvBa1SodD9Is1k6a33XpZS1JmaoqspoJZ7dRCSKEQk3rQo1qsshJE55XNeZmEPKa12QRjUaN85oIEKG4HuDipBFnYmUq6rSBlFx6Yq2XaaUJuOxHdVOm67vKWfv/el0CQBAXBSWmYFoNKqJIcTk/UBErqq896IYkSzEolgdLnKAilZB2thhGDpqq6pC1MvlchgGW40KY4koUyQPiFyW5ePHR0VV9j4qbbXWBhgMD35wzmnymozvvbU2J1wup973Vy5e8N3ZX/rP/iMe2t3tinyMMacEdTVGpro03dB+6Utf+Ue/8k8Y+KWXXvrv/+p/D8DT6VShiik66zKT+DAQUaKVbTWi2h5vnZ2d/cf/5//kD//hP/wX/uJ//if+xP8REAcftUZUEFMujH37nbe//pNfn81mb7311s/93O9/7Tdf++IXv/iPfuUfxxiJKbdZW+uDHzWjtm2dZkRAZMjktIGcmME6WKe9ZmTSyN734/FWztlOvdEY+5YYVlRzAK21RxCfGQBAUIwQY9zf3y/r5mw2j5l29nZPT0/feeedF198/vbtj3w/7O1sE9GlC4dSdzOQdtootfJHzDmvbes/+uij1177F5NJI4j6wcEFUUtb04TeK6XG47F8MQGnlBFx8L6u69Pp2Sc+8Ylr14bvff8HP3z7vYcPH167do2IHj86Shm+853vfPazn62qynsvJB3Zn4UQpZBY63jl48MidJFqEWMuikLcTu7dv3/u4GAyGa3otYliioBkrEEG6V2eLszMqLVue4+oGXkD7cqHsCGsyh270fPktcOXNCjyFxlrZBc4Ho/ni+n+/n7XdZKCFUK4ePHi7Vsf9F2XUtrb3bl///6FCxe2trZyPlVKz+fzqqpCsG3XScKHdU4RyjSmtZZfJEkzmxFcHiJmFrs0raz0EHK7xhiZc4xJshA26Dqv47M2M7EgBZvCLMPwer++8nC2K/f4qNaJzmVZLuezsiyrqvS+IiINejxuYswMpFFJaZSXba1tu6UkOUp/44oihOCckR8lIXpD563VO9vb0+n08dGjqmxCiDvj0YVzhzKopxRc7bz3584dyKLXWstiTGStIGTyS592erHW1nXdd0tmFhw4hCCIGouZ5agSnCPGOB6PxFJbdsyizhA3WUG5i7rquk4bM5vNJM4ohGSMU4oEsYurBYqt67pt27OzE4lYwJxCJqPtaDR6880379y7R0wA8O3vfv9b3/3e//5/97/92Z/9WT90OQQwyudkS3f9xvOvv/76b7722o0bN772tV2jgFJs6vLg8Nx4tAUAxpiqqlIOQIw5WK33d3di3+/tNAYQE8GybZlZl84ydH4ggsxJCtWKbh+ZJUpCsVVKI1OOlDIiVqUry3IyGrtC2i7ftm03tPJs+ICoNABYEcbYBEBA7KQKdj0zA1LwvbUWGcuimM/nltla27attqapyxi9VioT9X2LuSitrUpntQkYKLOzJYJOBKitUpxIKVQasI8p5ywZW7KhJEqRwRjT1DUAaMAUomVrlC7LsqoLAIgxKMYQhpQiKCzrRrkihhxCzJkkfCMnrusqM+dMgEIzUYV1sn1cLmdFYceTiTRc4/GoWyzn09PCOhEBjZ3RlRm52lrLpJF7zCmHaK1Fa8RGv2lqa02hlVOaETjnHGKU9jZzXRVV6VatcqbZbJZz0lqLC7GQO2L0fd8r65wzmTNGbkbVZDJxRk+nU6UgEgFAZYzWWhsXQogxa2czMINY8q6MF+TI6Nsux2QL52NYLju577dGYxF6pByMUQIeJsowxGXbZeKY07IbnHPaGlJUFwooKsCuG5ZtF3zUGkNY/pd/6T/t508O9kaQh2Xb5gxl1aB1mJPWmofuh2++9bM/+7P//J/92ng8fu7Z5z68dTOmqLSxWvsQlNZ2lXhKzjnnanFmECXbe++992f/7J/VWv+pP/Wnfv7nf/6f//Nf++CDj2QORkCjzTe+8Y0/82f+zC/8wi/80T/6R3/lV35lsr317/47/+5f+St/RY4JH7yzbtkujbVAkRnquu771lqdMwDAqK4AwFk9PW2ttdbambj0ac3MXdeXBjWDUJGtcSF5awrUaug9EZV1pVzRDsv3P/iQGZqmrqrqypUrn3n1s8KrunDhws7W9tZ4fHx8LLBhSokRYwjKOVgxZlf6DXnaL126+NGdB0o9WiwWKR0IzOi9R2CNSoJ3rLWZicgPIcjCTynVdV1Vj77whS/cu3fv1q3bb7/9thwAh+f2vPfvv//+c889V1XVMPicyfuwdjVWAooyrQhERMToNQooYrTWi8Wiqqr9/f0nR0en05Pd3d3xeLwe3DGGDACZgHNq+66wTrgdUts2qFiMkYFBKwWGmX2K8kYKY5lyJlLr4CYBoljhbLkoisJVZfBBcGDeGEPmfHBwMJ1OZX1w//79qqoQUda6zPT48eMrV67M5/OiKIhWk+J8Pu/7XuwgNuKoDX4rRXeF0q9TJt06QmAYeqXBGKPzypdevlKY3gB2Azhv9tm0TgridSU2xqQQ5RuVUrJkFxJTSkmEUkrSOFyxMt7yARG990avzg1rbYpZwm8EemFY6a1p7fEpJXPVD5HRymImismWLhmTUiqsU4gH+3svvfBiPRojonQhZemWy4VSKqewWSU8/dY+JqblZEyqqkIbFGhUeqaUwjB08r3OucF33q+CIvq+HwYvdPecs2yy27atqkoptVwuM5n1y2Yi6rquaRoQ8j8yESk0hXVKqZRIK5hMJvPpdLlcjrcmKa7eOxFdunSpqqoQQkixKIthGP6r//avdH74uZ/7vZRSTpkoI+KTk+O/83d/+cLhpGxGJyfHy+ViezJJYVjMpqO6aduWmZfWWqtL585Oji8cnndW7+5s/cxP/67V/rXzw+C9MUZZA6yMs3pta0cZmFmjcsZabYAzU8oppOg1culMYZ1GlSkuFgthkNI6kVQWOX7oT05OTk9P2/ksx6QAndUKWStAoLoqmqoGAMVEMSTvrTUKsbRmNKrlbo4hAEBVuMoVRHnwXdd1IQ7OqJCiMpqAQ4ohRR/Dsmv7IfiYJSqYQcVEiclV5WhrW0whiNGaglGD0qgNKOyGXhIXRBgnd0ldVspoQA1Kp0whZgZlTVHUFSuUdUJZ1MJs7Pt+sVjEdc6J1rpwTmulgKxRdVlsjautpnYKKHkN1JRuXJfO6sqaSTMqjQbOoWtLo3a3x06BZqIUKQYDbLVxWlujq6JUgKIt5rWPQdt30hl3fY9KZaJ5u5wt25Ap5IzGFWXN2mRGRp1RZYZF2ylt62asjfMhyYVj5pxY1FZy5Om1r0Lfdjln1Eq2XGVZXrx48fLly0JGkwdAtl/T+TIkisRFWe3s7Dx79ZlLFw63J6PdyejGs1efu371ueeeZcbgs9bFhQsXzh3s/nf/7f/tg/dfH9cF5nB2Ns0x19Xo/MWr+weHRVlrZUfN5J/+s3/eLrvPf+GL/81/89/8kT/yR3a29hQqykmosE/TeYZh6PvWGCXLpLIsxWdD1h337t0TKHL1LVorpbq++/N//s9ba//YH/tjP/3TP/3aa6/dvHlzZ2cnpqiMEf5XVVaISARaQVkVDx8+nM1m1kBhwBgzGo2stdranHNmrusatQoh7O5s5Zi7PpelK+qq7X1i0tYlYkZV1M0QUtcNwEopMxqNPvXJV77y5R/78o9+1ZX1d7///TfeummL8vnnnxdip9VmPp0ZpTdLQQQtw8pm/Sn/fPHiRfnfy+VSgrDk/xWuC6zTztd+QyqEJLh0TCSumZOd7XMXDpU12tnx9tblZ67eePHFS1evmqKYt61PcbqYPz4+OpmeRcqmcKCV0Po2RJvgU0hx0S7PZlPUqqoquV1F9XFyciJTqVqzT6WAMWHXDm03ECNqFVLcMK1koymOCpubU7Y8+an42A14w8wSaRNjHobAChPTEIMp3KJrhz4IHn7hwgXhkWyWkQygjanr+qOPPpQdqtww4iMhw9ZmtSlo/GYeFQ2V3JZSX/M63lS+TIwPAUkbFCWFVAsAIEryzEvrIEnn6injEfr4wj11/RABaDUg4Urh6Qoj8JV8+wa9F0xbBlPZyCJiCAHVSmwtkP7GxWHzL7R2XFlt7hlyiKV1Tqvz58+nlKIfwuDbxfLh/Xv37tzt2nboe/U7DUZWW2rneB08LMiBKHeNMVVVeN+LeCytvUWJyGjJ5lqpn733AGiMlZtBsAQRHcUYFRqtNWhFRJm47wZmdlVpjKEMwOuXBCtde9M0W1uTk5Oj6AMRUQzGmGW72N3b+cmvf40hI4AfBq2RAf7qX/3rb731TtM0oDBmzpm1sj/19a/8L/+Vf/XLX/5yGPzO1jYzpRSBiFLY392ejGpnVAr+9Ph4MZ8Wzuzv7iHy4eGBKbQJOWWCFP1yScMwhJiULggVp5R5VX3RMDAwkQQ4K2Ws0tZaq42QKLrFEvT6RmGWvChti3mfmFkhaqXkseRUsIRnoapcURVOKWVX3pxq5UXCQSmdiXIM1pqqKijlsixLZ8nHoW+HvrUIzVbVrGNb5MLIByqXIcdkjNEGwzAQkTbOGLO7vZNzlvmbiGxRFM4RJUpix7jhVWJhbWFtlhe2asMjESiVrFHOucJqZCJOVtvCGnEc0RrLorLWaq2QOETPOY3risHtbG3VVdV1S40M4OQYdbYJgweg3Z0tZp7P50DZsB5Nxgw5x8SUiLRWCtdJYZuVGzMzgoSHD8GXCmPOIRKxComVKYwx08UclJlMJlVlAWCx7AAgxGyLigDa3nM3yHmVUhpCGo1Gwv9g9ZQvD/FoNAKFKaWzs7PlcllVjVJqOp9XtowpMWSlVB/8MFvMlwtri7Ko67oRT9QcI+VwtjgFGvZfvhYiLdvh8aMTjWbvUy/+f//u3/re917b36mzb2fTGYC6cHh5tL3TbO/5FJ3S3vvFAhTgX/2rf/3P/bk/85f+4n/+/e9//0/+yT/5p//MfwAATLlwBTMnYq21MTITCHKVBXjPOSq1mkV++Zd/GQCKwgqqRom1teOi6Pv+7OzMBy9a4V/91V89d+7cqBkt2nZF8xEOqgal8OHDhycnp/v7+9vb26cnx4XVTdM8ns0mk+2u69q+Q6Vni3a6WE6n7XhcQoo7OzvAKjMp1DGnomm8jyEm1MYYk5hWI3tKb7799v0HD0IkpUAbePj4cVOVTVUr4tFodHp6usE2V6PJ79wdyvF68eLFf+1f/ZeapmoXCxnjrLVhWKlcCCCLM4aSU68ZQjw9Pl62PTMvuna5XL1rs3bqv3PnblVVW1tbZ2dn8iDHGIHVctHNZ0sJqCEiiVmkmMRMu25KMfHo+/7Klcuz2Wzoh4ODAzRwfHx8Nps29cRai1ojc2bKmTgTAMhAg4iZGTQbYxhAjHylwIg0zjqVh2HwMdNS5iqtNYMwalk2I845Yg4xGjmW8mrtOsSApoKUDg8Ph2E4Pj621saU3Ao2j3VdHx8ff/jhB8888+xsNrNWD0Pwoa9GzRBDO/S2LPIqNXkVYk+/00ZjM/kJBo6IVVVMp9OUQlnWUvxS9gXaqi5k6pKA3rXslROT4rXfCKziMVJKSgHRyuBvw0LlFG1ZSemq6gaIQxgQi9FolHNWjKA1AlqlgzDDy3XAIq5eas4RAZgzonbOLftOxsTNbh4YhL4eQkBk54qyLCfNiFMGIgAqq2JU11qrsqmJkv44KUTrdQCXnNUb9oDcYNJUyfS5wcD1WtQqgzUwAqBgXbIYHj4GG1BSOuR/WlM45/rQElHvB8rsbBE4aFzpy6URAWLUqBTs7e0dHR0/evTg0pWrfoja6GGI3vt/6w/+62+/+cadO/e01hlWgvNf+qVfeuE/+fNMAAAEvLO3/4f/yP/m+Mmjb/zWb1+7cqWoSlgRvpRoU7VWw9APw9C3ndjC7+3tGGOMUqbQilEZJE0QuwGEVa90iolRaaUQFTIgABIZxKJ0WmvnSqs0EaUQmRmNCYkoJHlBWY4q8ZZLuS5KZY1IlVKMlKOx1mgja3Bx+6jWOrDFfBpDaEaTatTMlws02lor4BUyAbErjNU1xeSstka5qjw7O0sp6fXVUkqJc3oGAKTSVk4b5lwWhXNOQwyBcvQhslASWHEKyVodYwRkY4xRUJalENPanPqhZ0ZKIm+QZwCQmDOByophJcQQfAiyRqoK44ztuqUmsoV1VufMWkHlrDMjBTgMnTifDbEPITRNdf7wXNd1nBNxbpompaiVYoRMiYnzyrFET+czRESPjEBEIacoHH7gclQoh1OR21tbN5OU0mTXppSGEBlBATJkJFKAGlRIMQyr2BARW4e1ZXlVFACQUkBEo7Q2GhFjToi4u7s7Hm+RLKVSij4SEUFmxK7ru25wZQWsumFg0DEE7/1kXL9y40Y/LO/fvfP+7bs5gXF1XfsL5w5f++f/9G/9P/8fAEsfXL+cK7AHexf29i+iyAkQiqpmVFtKKQW3PvrgF3/xF//e3/t7P/qjX/7iF7/4H/4H/+Ff+2t/7cmTJ3IM1aUjIu97YZ92nddKO+eEbSAHZemKGKMrTAihqWtEJCRj9NB2o9Ho7OwMAN57/73CFTHG+/fvC3WWiIqiCilqbYlCUVVPjk+YufOhe/zo9Oj45RdvVPUoMVttRts7yhUnp2ens9kwhOeeebYs3JNH92REXsRcF6UCypRI6WXbZ2JTOgacLxfHx7NHRzNjtE8EAM7pnPP9+/c/9dKLfd9jpq1xMzvjlEJRWN8utS1yzJxWJCY55mRxIOmqs9msEN/QEMSsuBWcg8TLAhEoM0sAA4L23s+WixhTjNGHINW6HwbBVBfL5WK5JAKxR5Ay3A29WS42BVjWipIVL7NFpoiIyYeDg31EjDG+++67gCSv8/j4eDQayYgZY3qaP9z7QQHKOnCj8JEqFVcWNGBWdjlKwmXlUJaZbzXtMQ3B13VdOSsJ6tbaRbscjUaKWbIcING58+fPZrNEhJyXy7Zp6uVyyczb29s3b97c29sTQFsZ03vvylpShrquq0uzgVjlWMe1lAie0iLL/9t13fb2REp1CAMiK7X64rIs27b1MSr6mLktHxEhGuFE48fzrjGr6IXNAjWHGLMM/dp7L1Ms0QoiEukUKA0AVVVpV4QQiqJYtp2cmkRUVUUIH4+q4rspFV+W08yMRjPDEMIQQ9nUzrnt7W3QovFV6ik6t0EImdCuGpGyKCRGReKDhNq5afFjjJlXhVne48YPRHY6RCTDNzOXRd1TnyIVbmWYJZ6UAJCZjLOru71cDQDee+nnYoxF4ZQyzFkpBlBEK/fNvu2apj45mx4M3jobUioK23XLyWTrP/z3//3/+D/+T+4/PmKAwpoQ0/vvvv/w3sNzB3uVrYeu86k3qM6dO//ii5+4f/eWvLWUknOFc242m125ckVgDxkU7z984JzZ2dmZz+dmq2qKFdcuBSajLSo9pAwg3lXinkE556oo6rIincW1nyDlnFfpeFoXRdX2HRExonFOaRtjTBk2dAD5yo3RlzEGMpWF+BAxAgFnhXp3e6f3AyKEfrDalKXJDHVdK71qDDVa1loxSXUHjBQDMRkwfliR0VOkqDFTxmxCCAAknjTWakzE2gxxYCZkNqgE9kmJc4pG6dKZ0tlJXVmrw+A74hgjZwDGVVOGSiMDEhE5pYrSKeAUgjZYVVXsl0VhnGKreXvUdApyzs4aXdoc4mI5AwBk6LqltGBGGaDUt23fLhXi/u7WMAwh9n3XyXpGa2NtIS05IlqwqFVKiRKDNkCcKBEqpVTMjNZxJNCGiRLAkJKxOlFc9MOiba3WZekUskHVzWfOWGsLBkUEOSdjTFHovu8QV6HQzFlrzbhixEiD6Zxz5SpNDxTKBx5DiDnHmIuq3NrZi5GsKZIPRmutOAydNXj+ysU0LO7M++WiK8B94sVP3Hz7jf/rf/afAvgL5/cePbpXuGJv9+J4fJjIUiTNbAqot3ZGozyfTzmnG9df+Na3vvNn/qM/9wu/8At//I//8Z/+md91/fr1o6MjZy1qvVJlMI/KYnt7++jJyuCJtTHaJIaYY/ZslEp9NApD22utswIiUtZ43wNAUzcAIA+wXKBmPA4hSdvetq1WMJ13RaH3986dnZ0hoqvqIeXpfLF/cCinFavw+PR0ueiMsw/u37NWpzDQzlYiPjub5vGorsuY2Bhb1eb7b7yDtvzkp15ZLpeJAVH5lEejuqyqs+lJjtD2PcEKWq9Lh4i+74umlnlX4YpBDQDCVpV/l9JijDNGn52dtW09mUy6ZavWOl1mZAQm6nq/XC5n86W2Zjwez9s2pUTM3vsYCRGIAQAu7B1IRlNd15KUsGHEDEPoe6HIptIVxqi8FouHEJQG+TCPz04lJf74+Hg0rlNKIQRtyyGGsu/EyVyIuJulKQD03ssZba0hkq0ziOiz7XtxNQcARuy9b/teHBvk3xkRGL0PIcSyLEXNNQSPDO2yt04jogjTJ5PJ9evP37z5XopJKTUMq2gHKQY3P/rwypWr5KWkQdcty7J2zi2Xc2cm0qKtHoR1WyA8Lyl7UgvlE+u61jmLCDEmwWCUgpwjYmWMiTmLxFG4BRtwm1dS4I+tKwUtl4c0pYTE61VCkMG67/uqKMuylMVQXdfe+5QzcyqLWjsty4IQfFEUqFQIw2hUA4Ak0sZAAifEFHIiYxxxyomdtYirsjcej63VTVPFGFmxKSxlPp1Ol+2iqio0CACwtrwWyt5KVrAGjRFRr0SVGaQXUYpBhTgopeT5lY90A48TUVU1MWbvPdGKtbeaqlHJdizmZMhUVeVsmcIAAMuuHfuxdDayOyiKApFCCDIEh+iLsq6b6u7d2xcuXXZlKeTE2enJM5cv/Rd/4S/897/4i7/2G6/FmEprfYxNVefEy36pAIxxOfgU8v7O7g9/+Mb5ulEGCJARxUB/vlzWo/HZ2RlqJYLPth+2trYW7QNTGzOabA9Dv+wW1jjWakgpU1RaxZRotZZfgVtKAYHKOXjvJb5KKaXREJDKCVgpYzKTD5kwxxi1MRzjuqHDpqzkZo0xOm0ypJyS0ZqQc87IAMTLYa6VJeSQfDPe0tbMZjMGhowEzAp9TilGp1AZG6NXiorSmsRGK+eMUkZrXVWqKArFwJyJKIaUUnBaYV0VWmllmVImSpQRGQisM0oprZgzMWdnKmSKQ4ohaK0KZxSa4HMIQaPTyDmnuIwK0qCwdNYZhQzOOauVK0vZW0CO2hgEohwNgtXG577vYwhBAUqrbi0MEVxZWq2Wy2Xft8YKXzrXdTkaNVprZlTGxLg60QBVTtT7mFJCbWLOMWcCHFV1HwIiauuIOSYI8y7G2A8LRKyrEhGVYkSdKYU0KIY2dmM1kpZIyJDDMCDq6D2lZK21VmtUvHYulE3SMAyoMwBIbHAcvKDUWuutnW1tCwIM0VtXJoaUc4qRQnv7ow9yONRID0/ONOnpotsdbf/t/8//ADlcONx7+PCjstT7B+cmk/OF3WbWqKIrGFVIibwfyrKOQ6+Ay7L823/rf7x4eO7ixYu//I/+8V/+y395sZh9//Uf7O/tS7f77JUrV69ePX/+/GKxQFhJSJfLTrbU3vuzszOttVIwHo/n87lHOjs7m0wmoR+IAgC0XWu08cFbYwFgNptlYqNNZtJaK81ameeuX3euPJvNiXnUNEcnp9/9/g8UrADY3f39shqjKWNMKczDEBF5sVicnZ0dnD+0Ssl0FRP1IfQ+VKYoiqptewSwpvjUyy9qa95+962Uoaw0xfzw4cPrzzzj227o+qoovfemLATE07gyRyPKACvLPTmkhqEjIqvLuq773nddJxSkzExCLMkppdR2w6Jd1nV9cnb6+Pj4+PhYrMcAVFGYPgRtlDGGFQ4xpJxKBNAq5lzXdVnU3vvZbOZjLMuyapocY2bQ1ihmZPDeU0jDMLRtv7OzLbQJV5Wn02mMcTQajRrrh+X0bC6QMkOOg5dBRzg1MhLJGBTXh4kUj43yRFaDMhbLqCQzlqy1UkrSMexMtgB41ah5X5QrQrIkq29tbY3HW7OzIGtambwXXVuNmgcPHmxvb6+GThIee9TWYFhN3vJihGYlzcdGPiQEq2EY5Au6rhP2hlIoI9GaqbeUdyEYACJvdq6rNVCmzcgLACnlYhWmnonAKi2TNK9tQSnFgMG5Wu58UbWGrk8pGZ1Af+zlYK31wyBtk9aYQlZKESdma4wahgC8EpXlxEopbZARXFFog66wMacUMjN3XZdSCjFMJpOydPLoyUpRRmq1pnOudjpifYWwuZTGGL32IQkhSAcje2j5FiumVESbhbr0W8zsnAtJvMbspocuiiJHL7ytEELTNBuUQkYIXptdl2XpQ2jK6v7Zo8ePHx4cXgAAa4txVT68e293b+9P/ok/8Xt/7+/9F7/92/fvPfyJn/r6pBnlnBnQKI1Mrqh939b1qKjK6Xw2Hm9pqxhVCINM5AAASjNnpVRZNT6E2WymtTW+bbe3t6GwKRdVXevStT5sMZ/M5n2IAKqqKo0q+J5THHyHrpAbpU8JMxnjyqoyxjhbhjQLMRGwKVxhLaAGAGVXOc85Z0kRX7P+fE4phFDXpVGaUq7qwjlr3SSEoI3LHS2Xy7KuiCjFmBGRCcgCZcypGo+dMwLiG6UD9YphZ7JVVVWkjKgNqpVnLJGzOvkVI9HQKidcOq+UEiqQdlujG/oWiMXROqaoAVaKscqlNOSUyCajjFZKMZSuKpwunXHOATHF1C2Wk8rOTk/kBz6ZTlMOo9FI9O8bCoNc9ZhT3/cp6xijrivxeWHI46ZmA7JOBnG5zEiUMq9IJYnJWmsLh6gLgJgphFBWdYzZxyi9YdM0IaRIfO7C+eSD1jqnaIyxRUEJFWAKQwgRGhBrcqGx5Jx1YZFYG5TyC7zqXtu2FWtuViv4WsSgzrkYvRBTR6MRKPPk+CQGynnZVLVicqbY2zpXOTx+8mR6+sSTMRlRGaPdM1cv3/tAHz152DTm8uXL4+0LMZSsnEHDANayVrzssrWFGHvlxNeuP3fn1ke/+It/bWd7cnp6+u/9e/+H0WSMAMcnx1XdfOYzn7m0t01EZyenoogngrIsm6ouimJvZ1cOLyJSGoqiiDH2sBLwlNbFmFNKUkSdc8MwPD46cs6dnJwdn57gyoyQAeOTJ8cnJyeykYo+5JTi4PtuUApShrsPjxJB1bidnZ0Qwu725NKFi107/yf/5J9EP2RKW6Pm4OBgvL29WHYvvfzyaLw9W8xzzkWBr3z21atXr969f6dddqgAAHOG5XIpR8bQd+PxuJ13bs1LyimDVjmvjJc3C0jB7laT0DpvtalqyQ3MOXddN18uYoxDSEPwd27fe/DoYWIuy7JuGkQ9F2HbZCwDynw+h3W6qrWWMrTLXjTrcraGELquK6yVQ9AYVdf1+ihnUdAy82KxEFRMBCTCq9oYEQuErjS084WIO+u6RsTFYiFos+jRxeJx842bLaxIXSU1a6VQsmaDXs5ms8oVRbHiFhXWMWSxu7La5JzPnz/v+8XZ2Zl8YtaumKQppYcPH+7u7qWUjHbNeDSEVericrncOD9LnZDSu3mmhGHU972A53IoCes45yyLfyn54hvPa6GRoCkhkFQmXIfdrsBoZl47fYrD2KqkoZLaI+2yXB3Zwdd1rURFmTPzCufPRGVZdm0rP9A5l9a5XtL3eB8RlVR0ZlkYozHWWptyAIC2bYkIQAXvZVJTSknB296e9L2XbYj4NGyu1OYvGXitYbOiuZFzUgh6gp1MJhPpS7QW9H7VfgGAuHptOHfSKAAAKSXRCy1qWUr6GEY4Al456YooQO6ZGGPmLIDN7u7u8elJzHz9+vW+7zHgpKnb5bJt+8uXLv2h//W/TYzyODAzMBKRAl4sFqUzWuvd3f3vf//7n/3snrzIoqiGYWBcsZTOzpbEuaoqY+yjx4+rqjKJ3bwNWputyX5VVSF5RjaFc4lyxYSQgRNDaWoi8imeBWJmisykNLMj1AQOQKcwMRgAMnPOHTGWBpVSxlZGae895eSstYpyzoo5U2RKTqGRXTJxJkWsKWNVTkLw42YSY2z7Yei9q+p+CDkDWleVFlJAUxKYYehrZg0wMk4hlFZVViljicB7n2LmFIchjEaT0fZkMW9z0kWJAFAkk1Kq6pqIKGeTuES2RjX1mCkl7zEmrYEVj41FRE2pHpV7TRFj9ClmyONmRESRKAfKCoqiBAuU0gKUt9DnPLR9iFgVo2iasqk9UegDM6OuYoyxj8wJUTVlqaxLiKYwCbwt3LxPxipK0A4z2cXm2PLa588WuSxtJPAhMzCjQYVo3XI2t85ZBMBclwY51KUeN6PGKNZFjJELR0RhGKqqijFnNGi5C6k/elIXxWTcAHJdFUABCIwxRiFnZGYCiMyzLiYEpa0pnEbLpiJIixBH4EnpzFQWzXw5nJ6eAuDW1lbo+9Clsii2tsbXX3zx8eOH77/32LmtiW5yHsa71nM/G+Y3PvXpvZEJ/bQuDFDUI+z7Y0YF2vmeCLAplB9aa+2ymxulKecLBwcnZ6cPHj7JrB4dneDRkQa4fPHgK1/6EQVUFnZ/f//WrVvBz3YmzTD4YZhZa2MMzMgEBAyg2KMPSWtNgY22Bix7KIwunGv2a0RkzqOiurC/j4rvVffO744ODw+ttYvlbBiGvvO7pZu37dCHtu8tqBg5MwBZhYAagUIc6NH9I2Lq46zePvfw8axpmoezJRE8mrfvPWyZQAH8nt99oesGa9TQzl/9xIs3nr988+bN737r246hMkaBbjk9fnTcXU+6HAVWiwSLmF1kJuQMpIByQoXGacorRwZJHBmGUNelQiOIXwjJuZQZlVKszbe//70hxBdeeOH23TvLRTdbLMbjkQxViBgpN4XF0gEqZpXVivmCwIXRWqErlPdeK22dGojEOUEZ4Lwav3LmhR9kxwkAXeijt7P5YCz+wT/4B//hP/rHAMAZun6xKjZMOUfFCgBo4O293fl83nXtkKJd85u01kqxUmp7ezslOptOYS0E4sTsQSp97wcZd5bL5aQZrRhMzJFyjFH1SmqelPB5N8j6sGy7sizRbmf002UCJBWiNk3n54T2bN7V452uG4wmn3i0tdV1rUKTSPlp2zQNDtmloI3rOTBxP0RErBVSJADIyiZC71NhHQV0btQOISWNpg4phS5prX2KRVFqU8UYKQODjQkLw8AhRwkngBhTDBmstdZ2fasYtNaRMrIQTiEPURtMOcjHFVI2rsgZl8tBKVeXTY4Uhri1VWutp0PYakYIuD2epJQMKgBVuGqIQduCFZZl2XWdUiplbw2OtkecaAWIxlQXBRI6tK42zEwFSUsUhmVZlpPdbcpwsLeDayMOyiw70bZtxYFrPp+vKAuuIB/73kuH55wz4GKfrSoWy/Y0T2Ug6bqTvu9dYaqq2trZms1mOShp+BJiDAHVyu8opTRftrYorbUxU44JUaM2QAmYY4pN07jSdl3n4yC9dVUWy+UyxnhuZ2sxb2+++cZz165BNVp0HSIaq7uhnS9nqIzcPAox5aSN8SGZsgwpKeDauG62wETbzdgvu3pnh4zOMUlH4ozxPgnjYdxMlsul6WIfWDEzLUgakMyklCqbuvcDAYM2MaUhppQzMwcwlHMKEXOqjFt1E5FIE2pjNRqFSuvE1Puh64cKHGnxXl/pwDbUc2YWjcTu7m5ZwirnyGrxlLDKEVEOcTU948cRY7j22i3qSvFK8iRbBOOsMSaExMwxpzXCk1c/QSvZZxNCUVeldd77yOyc01ZbY61RAASrQJWMAFW1Mr0TgZYKAUOIMSYCra2xnEOUbsitUvlSjNEoDaiMs5mx7/ucc1EUWqmcsyh8hBGjtbbGrsGQlY2OMcZakxiEQCHNdekKOWhcqVMi6r1SkQkzpRyln7VEBIiFdcJplPEUht5HSaYCY40YnggA3nVZ5BCKwWojnzClqLWmyENedaBD74/Ppn3wZdMoh3lAW2AKWUj/tjJlWVbOEXDOtL2zK7wnRAWA9x882Nvb6/3w+OjY+ziEiK7p/VAYHgb+3b/n9/z9v/M3ex93t3aQPLJB5NFocnRyWpYOUC+XXVk5hhh9eOaZq9uTrdd/8L2d3a2yLvb3d6fTqXV6dnb66mc+de3qpeX87ML5c6PRKCUSb/2ubQtX2rHte69BJaGxADIDrlalrPTHfyda/Q0RhWJKlIjT3t6eMXo6nV67dq2qCyIy2uWc0ZihD3VdT6fz6Xw2DIMwPoYQRJsYYwxxSInee++9nLnvW6WACJhBKShLNW6auq45Uwxpf+/c8dnp2be+dfPmRymDReh9MioBwOOjk/l8vru7KwVSJqrJZMKcQ1rpr5RS4gWWUgreS2RyCAHVSj47m82apirLqm3b+/fvA8B0Ov3GN74hN+e5/X2h08vL1lqbqkop9YPHp5Jk9MpM/+NRW55lWHNZgVaWruIJv/pGZDnKm8ot+lAUxdd+4sf/9t/+e/t720yr7ARjjLZmRRmBLAOE9J0bRhIixhgAoO97ohVTSVjWei0EF0qmELv6vj85OVFrGQ8A8Cr7B1NKAgWLAcWmkE/qbWaez+dKg1KYc7ZOK6XatpXTuc++67ph8CJ6NlUh7B6rTVmtTKHFvdIYwynHKElHK5VU9MGszbx4LdkQhoecbRvDL1yFP+YNpUsDIipAJoaYMhNkAGAwWjOqzICohMwlOyNay5CMtV3XFWU5Go2MtT70qBUBi6pwg+XK8MprOR+ubQBo7f4tr7MsC167ZEgKNeDK3UIpJdEvAldsbkgBM6qykXOyWzuZbBB7CR7ecE36vpdPCWDlF8bMIiMEgNFoJG4wSimm1U/AnLK46q4jH4THXlXNbDbjdTZXXuuvZBMsEIK8u7y2C5S72nt/6/btvUtXZcgehkH8snPOZVF3XSd1dCOly8xN05RVBesETGNM5wetUQR+1tq8XpHI7WqtNV1sDa/ueySoqqooHDG0wfucI2WOOaQcUiICAo6ACGSMcYWb1E1VFJSpHzqnjXUatQUEWnlHY0p0enrqnKvLSmuVU8o5W7XazAmjJ2cWe5qu6xYLT4mJqK5rSjHnaK3VznV9r1DQpNT3WXM2CFy4oiwMkIAtIcXlsvMx6bV5bErJVaUtdc65954AlAJGQK00Gm0NK2SFoBUgEnCkjIDOaGYFlEFmBUoxpTSEVRlWaqOQY+YUc8oc5eGKOTMaV+SUV30CYCQKKcfMriwTEaBqmrFUQWFIdiEz52EYCufquowxiERdKaW1ZcSc4wqdM05iy4R96oxV2g4hhESKabGcJ6KiqHRZUiZmppR939VaJx+KokjMnClFatvOew/gRaFhtUkEbd8jolGqT8n71io9qhsL2C263g+JuZlMjC3m7bLrp0VRKFgxTpftom5G2trFYt4Pg7IuEs9Op9eeeVYDPnj08Oj09Oj09OHDB2i0c245O9MKYg5n0/aZS+d/6md+9z/5+/9jF2BvPJ6eHRXWzGazuqmM1t777a3GWqVUTaXNOZ6/dDCdXTk7O7tw8TCldPWZi3239Ac7uzvj5fzs6pULVqPASgDq8uXLt2/flm6PCFJKJkMChNV/gFdeRR+bDfHa9GBzLjhnNFptcDyeLJcPXn/99U9/5lMxxq6dK6W0c0rptm1Ho1EzHuV1ShoihpTkLJMAltlsJidLSiH0Q6YEAIvZdHd3VymjFFPKzzzzTIyxz/zCC8+Px+PQD8vlkojFqunNN98cjRp5kdqgE/exnGNORVHUdW2MEd2BQjRaCwg5DEkplYjEklEZVxTFN7/5zQ8++EBrDZSb0TjnLDwAH5KcPquVv9I+9HkdnK4QQ4xMpBAFS3TrdF61NpQFAKctcVqTw7QwuJQGZlajkbWWefEP/+E//Jmf+Znnnr08W8ydNogIep1AkAkRBZ5VSjnZC2qttVarbQjmnJlRKdyk2slhl3POORmjESHnLP0QPmVLiYjIwEQJeHt7WywM5XzfFLl+0UsRTTkAMCKKP49k2QJATmytzXkVcsyhS9HLpZeaJ33AYrGwSnfFKr5i00zIe5HxQ3oakQjnnKuqFp9kAGiaxhiDgKEb1ntu1lozATFSZsgZZeqIyVoKKW+2e3LpNyeM0U6Od2kLtLYA/UYHTGuvD+FmC6FpU4DT2iN61U8wpyQQ9eowFMkQKt5g4JsqTkRarXyLce3/L4eGVEf5HKSO4voWSk8FKgzDwLxSP08mE6IkG3Txb5HWQcwjWaF5KoUPEWWJ4Iw14/F8PmdlYsgxZLMWOAlSLfvj9UrYC41Rngi5Fg/u3Unnzm3t7FirY8xKK611iENR2mEYtFJyryITIoTgpfQsFgsR/liliqLs+3YF7xMRMaKSac1aa7Z3J/KppYSJMhiVEfrgu24ghMQwBB8zWePAQPTRWJ0SZ86JoQ+eUkZgIvES1shAmQgYFDpXKuP6vqeUQoo6K8qrVClrrUa1WCxc4Zi5XcxAGQBAliRL3/dtjLFq6mZUZcau7wGgcAYAcogKRcvIzGwKCwBWO2V0CCGkJBHKMUZaJxCvJF+oY07A4u2iQ4qBAhGhwkiZyeQcEuVgxGSUlVJGoRD65QZVRoNCRmBgZfQwhBATM2vrVgvCTJk5EDIzUEZEzhmIrVMxMTArparCWrJCuVIMZVnrdVITIuZMsuRI0Wutq6oCV2KICFpqsg8hhMSJdSHRqASUAGFrPCIi1CrnlFYEBJdSQoC6rouiiMQxxv8fV3/aLEl6pQdi55x38SWWu+VeS2btG1CoKqDYaLCb6IXkDGch54PGZPogk0n8GfoXMtNiY2My6YtMNpRxOBwNl2ZzyEE3utHYgaoCUGtW5V6ZN+8SER7u73aOPhz3yGyFwdCJ7JtxPTxeP8tznvM8o/uCc13XWWsMOSSTOeUhM2dm7hkMkXi3CYwwEBH5pq4asnaIYdsHHYkRWUuGiBpXZ8DV2fmq2zRtG2IOoWOGrx+fXL18+YWXXnPOfP3112Ics2xjBOOQIDMXzl0IB4cX333/u4/ufXn/4f1LR/vDtpvP59vtpnBBKZL6vkDTNMLSbdefffbJa6+98stf/tJaatv5er0+PDw44bRenX3zjdeaynLJu8FhXdfPPfecLinN26brh6zRhoFHc0sWIZExU+4kKZiZCNRcS1PRdtvXdf3cc8//9re//fDDD994/S1q7JDiMAxtMweAzWZl/bhcqIBNzpkBmLmpKu+qK1eujCy2EFVQkAyGfpCSHj9+XPvq7OxsdXb64osvtoKXLl3yZiR2Mo9aK9tNl1IUkdPT01xiSPHTTz/dbDaZiwIV1nhrbVPXOpJUAkvTVFrdOmcA4Pbt2z/96U9v3zu+emn/+PhxXVfDtpstlvpJSymG3GS4PW6vark5dWNjXNbPOLFwn5jGI6JkXUIEXc1jZEBGpJxz5b0gNG11evz4Bz/4gXOupGzbaip/IO+ceRwKQ+UdABAZO/kbIiKAZFTSLzgaZ8ZaLQ1DAJHZbC4iIYQSY+1c7fzTlz1BHbxdb3Rdipm1g1cPkuCSMcZUplslZPDenp9vqsqKiIqBi4h3NfPGWhdj9E2tt845ZwCV2FxVlbbwfU9arOhF7oKS9tw4mUrphfUT9x4AhjT2VZZEEzBOO2a6J62QQ84ZWLxnZS20vn58+lhb+cwcQkA0qYjOws8365DLbDYDQyfnZ03TCMhOkUqB4rENHblf+izQDoHIk2uT9nNE4/Ibgmgm2yF2msVNNa4P6SHUVKo9jHaQs9lMMVH9V1rH7MTndxyxXRc+DMN8PiciXUxlZmNRGYL6JmWi3+t1ap2hX7oKjs5qTJnV7Z7MSCnQq7LWGuMUxEIwunlVhnjnzp3T09Nnn3123jZ9CClGRJNCJCKRonPxYQht2+7t7X115+5suWd8VVWVIp1938eYzaRJrr2vQUNknPMWScLQ68cTQZHCTDnnbRgADQOmVAoLkBBZgLGOEy4ksOn6NWdvrPcuM4XCNNEoREBrMUSz3W65JCAgspr5rbWVtywNM2ek1Wbdtq1BbGtvrWf2Occ+Yl25FFPmUlc+FyYiErDOe0talyWkGAf9kowxZK0FYOaQovdVKmWIQRj1izQkMcYEqdaVc2Z1ZbDWGhAgjKlAzrZYY5EEiBgQyToClFKADKIRQWYpkxUBi4iot/P4VJyenEkuZMAgWSQWRuFKaLXt29pT4ZOzlZTEueTMAEAxqgRPKaWJI7VVq0ICMsZ5X3PFRCREsXCKJYYccnLCxhiWXDlXNXq+hRGGPpYUIxcCzDkDQtO2ObMgpMzbbY/WGLS+akRkM0QQjeAOyA39diNoULIkb6WkiABNUzezNqS03mwBTTtbaF7Xez7bW2yGcHxymjJXzaIL267bksC6eyCC8/l86GMXsvWVcw4Is1BOsQt9Y/DL2/c+/92He637o3/wj370F//h5qe/u3iwt+62ljDFwTkHkgxWq7Pzg70Fipw+Pjk/PHrzzTePj48vXbmcQrSOjvaWt299wcxEtu+2s7oZhsEbm3Oa1dWFg8Pj42NqGmcsQIbEGUEYAEZxc12tl2nHAwAQRRctrLUhBIBiyKVY6sa//vrrP/7x3/zud7974403MJO1WDipMkDJRcZNcNJyTaOq4mlt22o/PWE/zKUQ4byZDziIlOVy2ff9b37zu+uvvIIsZ+uNFuCljNsgTdPM5zNr7YULF5i5ndW62vfw4cOzs7Ozs7MYgjVmjP6lqF6HcbTrhOra55zv3Du+cDBDxLZtvPeLxYKI+jCu/KaUck66EKy7jE3TILMGjmYaspScZbLrUdxAJkVKZyzjE1UyJBEBERmFFFhqX9UX6tPHj0ophBZYdAfUGOOsdWQKiKZhRFSPsrF/UtxiGmaN+X7X2pLUjReRcfxp0ViEAgi0+8np+0UiY61Ro3k1YtNuZDZruWDKQU3AmEvImQvUiIeHhzv2LAhst1vnnAjk9Zonx0NNFavVuQbZMi0Ba286Nm1NxcwmjTNa3XzVrmuIwbuxHNElbGstguw+7xRaxQBq8taaT63V1KJAODKz976qGmYYhk7pXXVdlyKbzUbbvs1mM5/Pq6qSPDo9TGXoVIcSaUM5AgcTWmtg3LEOISCKMo1TDnlagKZpCVuvzfmRu55zZvdE4VLV2fSQ71KgFo4a27XDNsbqY6gzYP2MZdLzGusei6mUnEVxfTSkv46IdotkANT3Qb33tM4AAM2Duwz9dKcehphS8t7Xta9rf//+/Tu3vrr+wovPPvusbxoGSClpRUFEnGLb1svl/IsvPvvhD3/40ksvHR4d1U3TD3GIgYiMNYSk3bz2n1xGn2x7Ybk8E9GdqlBS6AeG0A/BkQupCKI3LoFIEqbsyBRmBCDj0KBkRVszsCEAZCbmanQaL0PIpWyNBR1wehqnRLoHFobRhgVJ6sot5q22udvtZrFYONcQgfXWORxSRiOFJaUSUyJAAoKCKGLJFMiVrbQxdVVVNc0wjNjdWAdNNltEBFAEJebkaQT9wzBoTJQErIIvwsCGEUlDNBEDZOYiUkQmlAP7oBqnCJNNop7RLMCIUkRKtgaRBaTYGGvrJWQLYhB93XLKiAMi5qTzHsOch5CsIyJjrbPW5JxDjFVVERkWiSHKEFKIpbAAMgMSEpH1tql9SFCyGGMaXzmDYUiQkyeyzhljhpQFKIskLlYsAFpXMUIOIcZCmYXYOZfJANK2H1KR5dwCuRR6xkjOhZwSc93UOsIhgdli7l0VMm/64KvWt5REhpzJ+O12y7nc+/rRYjvM53NX193Qe6DCLIQ5BoOYAX/8019849UXr1+7Ynz7/b//nx3sH33x6UfzxbJfn1trHWGIEahanZ7N6sYQWes//vjTV155ZbE4eHDv0YULF2JI88X+q6984+YXn73+6kvz+b6u0GipHkI4ONhTyiJZZ5DEqGxUyYUBEAEEnmj7Aeysakc6paoBaKW/Ot8sl8u/8/vf/Xf/7t93Q//uu+8Nw9D3/axdpJQQx1g/xa4xnO0KeWMM8xhMjfHGQwhhu+2JsB/icr549pnnPzj54NbNL19++eXFYqEVFU2CwHEITVNrFZ9SEihVVQmC7lwxs7VeV01Uk09Gs6OxOTs7O9M4e+nwKKV09ZlndHK5oxPnnIGMzlMVLR/6cSFHw2XOOYbIuejzUkpRKfgx/RGRMSigXuuICCIAbFCxaBQWS0Zbq81ms7/cW23WxphSmMgQkE4NBQGZBaaptoLG+o1ofQPonNcMDQCFEwKrh6m3oyZzETDGECAL2KlNl+m/YSKRENF8Ptd2P02eBM18ntZhs9lUlRehbhuXM7dcLtu21oGFFNbSZ4ykMiaerusITdu2QwxPMhmiztR3ldmwSbsbiJOwnaIjmjgJJ1NyZq1xcRqOOh2sTiWIor66nqQt6XYYDJVSVBJuVHVmZj5nQ0473dOzM7UD8lV95cqVsrNamsDCcXqgmd6YXTWpQzcyY0nnvRcp08RnfO1A4F1H63FkoeO0u6z/L4XlnHPq+7sDXXYTWb2H6saH49RDlAbRD51mbudcUm/FJ+InGVikcMm5qWrd4Pe+3m63iQsjEFnEca1f74nWQPqUpRRE0FqbaDznnLO1tq3rvuu+uvnF1/fv7e3tXbx86eLFy1pniMhy3nKBTz755J/9s3925+7dl15+2Xuv5HAu4P1IztdDMWp/pqR50DbOQTuP1oeUsafCUAAaWwMZg1mAwJiYSs6ZBQkJDOiRilHUphGMTSx2fFgwFs6SSxHduV60FRmLIJkZIIsIeGhtDRNzRL8/ImqbRrFNRFHWfoO4f3TYFlltuiJEFEspKQ4lQV15zzTEkHMEIWEUEee4qp2Z1ukQDIKpKqdowHjOyGgRjMYQGUQqAjGMvBJDRgQVPqRChSQEnf+TsVZllvXGCYKu6IgIWqtCmzFlrOsSY9j2McbKeYNSYhLocU6pZIdwuFwsFvMUQ79BQ2BmprJOxYpzjoYsC7rKKyCmiZ+s16NJRIXFOm+t8kogF9HxeVVVaHQmKAToLFnrq6oyVc0gxBhyEgByPgl4YwWAnDVABinGGIZks6RQsKbZYk6AMbO3dHB0UaSsu20qEQCYKAMgGRHZhhxi6UNIJbeL+YheusY2Fmh0Q+v6YOsmCcWCORRBKDw0VW0JZ7N2vnf41d2HVdWcnJw6yM3s8Jvv/J3je1+dn54t2wYkWXJk7OWLV1LI9awhS7Wrv/riq9ff/EZTzx4fnx0eHjw+Pjnc37v23Iu3bj967vlnpIxzrJRSXddhGC5dujQMQ9JhAREKAhhhyFIAAAkQQYr2ckUbYkTUNSSNSikVV7vampCTsfj97//hf/yPf9G2H7/55ptm0l4opSAyMBCIlAJklYKU85NcHkJg3adKuRuGowsHQ7cVkb29/RAGFHj77bd/8rOffv3119euPSPyBOwlorqudGg0Sk8IjBrIQwQARgghKX3UTUZvADAMkQwQka8rRZ78/t5XX311dnKyvHFD27hhGJRmUkpRd6Mxv5YxpOr4cLvdnp+f6z3ULVudEyk/RWvcnLPKFjLnmGKZzG41niNaAxhCP5s16/XGIDljpYxQCut6DItK3YoIChAiEooIqBQOIrMQIusYHwBYkFDrX+Zira2cBTcqNtTeoTHMLALaM+8KrMp7BgEYNwONRe8rZu5HJRAwxhCBMbi3WFSVG/2JeRy1Nm3lbOWcAxytw3QgbSzOXUNEhpwa7SnyLJMZX8hpB7rqX+r5MWSKALBkjmMprzQCGLtPHB1aR+AaJlcGYwzySDsahqGuximmXrBeVQw550GLAwUIU8pfP3p47dln8jA2fwpkxJJ1hVLPg7VW81yZ7JuqqkopIuJyuYxxWK1WpRTn7a5sVSB6xKjRKEcJEZumyYlH8Y2JIKYjZH1pitJ5c9u22hbvIOucc9NUzrmdBacWAX0IOMll62FTnSitO2UatGu7eX5+brGx1qKM5PyUkkod7AwYAGi81UrPrqr1eh363jnbNI1z/sGDBz//+c8//fTTd9999/oLLw7DEGO8f//+gwcPBMrVZ59Z7O8NKeoWn6srLhAl6h1GRGcrFaPW3GFtwbmvi6v7EAzaXIQBk0AfIlWWkXIpQEzOiEjOKaUnZiPW1dZRznnTb7XmIjClbEXEGCcinLkb+vl8XrmKS5as+rHFkakrp0bW3vvz89P1+lwdZhbLff38s3mzWq025ytb1VVVDTHPZjNr/flZVqVZNKbr+qoaFeAUu+974733ri5Zuq5TgoxyTPSI5FL8BMfzNLooMSE4Q8aQEWF1HR/7GB5PRkxZS1FFV4wxVBGg4VI4Z0STUhlyWaecQtSOAYx1ZEIu3EdjXFN7Bj5ZrUXEW0POWjIgAsZ6ZzzAZrNBYwTF+ioVQVOAbAZTQkwpFZG6rktkMgjokIgMGATgBIh9GMkaWbJzrqoqRENEZ5t1SDnn3G37mDmzhFRm82y9g0AhJ2MMOE8saLCYVFuVIwH1sVGdnZBi1TaImEoZYg9CKDikAUX6kIrwef+YmRd7e5tuS0Sc87DtCdBVzRDzMATjfMyJkLyvz1bredu0Db7yxjdOHn791Z1Hs8otanMwn127/Oxrr7zyL//54z52FgDJ5SHWdZVD/Orml9evX2dmzuWrL26+/Nprp6enMaa6Xfyf/5v/5j/903/w5huvff7FZy89f0EtS50zaqwdQ//8s8998tmniASERGAFCgEwPHmhyswCwBjbdUEzpWS8A5BhiN77GHsqMJvN33//23/z45+llF5//fWYeu9GPSaeZLpVVQYmQkp8wr2MTVWHGNq2PT9b184jqSokqIL6W2994+c//3lV1RcuXNDRbNM0iKCiFspP0bElIs7ahQUc3zmNzSsRyZRmnHO+rrrtWhPzZrNJItevX797//6jR4+uXr16fHyMiOv1erFY6MIJCsScAECZ3sptmc9m+3t7ly9dcs45Z3a7uTyxnwDAIim5BgCGYVitVtvttoBMvRSq+wIKbFZr71xVVcMwEI1yxDzZ0sG07ADKpgYCEJksb3eRawecarc0wdGTrCaiNmqGgZkZRs1kmgS8NHkTkUFSoTEUCP2wHUIpZX9/v5RCBBcOD0Uk52ittWQUzKh9VTm/y6AxDLs4E/M4Glf1PRBDRDpEZ+YYI/c9EXljyY0HRu2b9vb2dqlCJlBaRAqIHgOYprDMrMtdnLKWeGVaoS6ldJOngl4GWWOtRTApJQZV2lEBEFiv12+88YZ1tpRCOk6G0cZRJ5cTajhuZ+hV6TeuBe7Orgonmbzdpq8xpqoqBLPerr33UT3dS8q6ti7iqtECeTab8SiZlQqXZsIGdh+KR4pSns0Oxzs2wUsxRv2BMklM6+GZKG+wy9+GLCF1m+2sosXCG++8Vw0yIEPMvNls4uicWImI88ayjTF227XzBgByTKadIcL+cnHx6Bsnx8f//J//T88+e/Hy5csAULfNwcFBXddVM1MDJQXAj46OsrBlQvtkVR0RrfXK1bA5ROeqfujjELvN1jeNAK7XqyJgXUUEnLMxBIDDMFhrPBq97wrPe2+RKOVsjAOAIoyGCA3nwszGmpjjdjtwzbXzrrYWPLDEGEPo95ZLEUmTubfKihYG/UuQonw5RmAxnHkYAiBWVYXO13VtEETEGgSgUoTIKIVhGGJVoTFub+9ALX1SGpVWttstEPV9yJktUs7ZWTKAY8VkrMY1KOCs11MlxsbCCEAkXNg5F8JgrUVrEE1MqZSC1sUwhCEZY/q+K6UAUTObVXWz3XTOVymXdT8g4ryuur43SPO27rtNXVVQSjWROBBpiKFpmiLQ9cPZal3X7RxtSBGB0Jjj0/PGOIkmg1p3FQAmHPdDYmYonJkBoLLqvy22bVcnp+frdR8TGWd9RYb7UmSbja+GISgwpfMYP5vluKm8r32FLIoWGmfJ2a7fNu2cjOuGXDmy3m3OViVlBsnqCya8efTIOdfWddW0hiwKIBlt2TMX47xzjqAY60PkdRf29i8u5vubs1MHbCQTxE2Et99++0//0fAv/rv/13zWphSwRGauandwsBeGbdNU83m72Zx9/NsPX339zUePH+/v7//9P/1P/tW//7ch5pdfefHLW5+98MILKDwMoaoqBEbElMPzzz5386svgbiqmizJOYMq0+MswCTliCPJnMg657quq9oGntIzstaT4b7vr1279uYb69/89hMieuutt0IIKWXnXB5GW+I8WZ2rkKeyXnPOBLjZbL23iv0WEIcWEa2FnPMwDLPZ7NVXX/3d7373h3/4h9pXiYjKCtJTikI8WZp75zVw+6bWyVyMsUyhk0FijG0zDyHE0M9nyzT0m+0wny8fPXo4m82Ojo6Oj48VrlDpkrH1JNWBx3ENaKevxFzKOCBHljQENlmVDsGR3iglwe3v78M0vs3CzPzCCy98/PHHKaW9vb3VaqX1RImiUdVO/KOUEosgiTKoR4hb8QBjECiHaFQhU9iRIUAyRt9EoFRTFBZ1AywTVAvAzKVkRDRIuZSd0qEuBPZ9f3Z2Zuumqqqu6w72Fgpa1LUHFgBJJQEAgZSS1BvQOacOLrPZTIfcBILCRBbNyBsSkZSyCBljmqqetfW0VIM6wnDOLZaLUcWMMwiDCAJU3iJi5gLe6jc7DAMCLGatetprQLc00vinBrQwgyqcpJQyFxFxDohI+aTe+81mU0rpuu39+/dfeP55PZ8nJyfzebsjMe26XpqMJrWNQcFSshZPIqJru4dH+08Ps5VyVUqBiceHiHqf1+v1jvKi69fKsVep5KZpTk9P9/b2dDqZUjLG6aO0G3boteFEZNt98JEOhuOsXYdHPJlHae1VSunDsL+/b40rIDpPMWRLKaenp3o/iSilQkRcgIgsGWGJaUg5bPuNS1XO+caNG//0n/4fZrP/929+97G19vDwMIQgJQ/brp3vIaKqXmvPfXh4CIVLKcqeM8a0bXvS92PZygyrbhNSFDR10zBRKkzWAWEByCXHnAUBUTKHkErAeoRQlGpYChqw1mrhycwiSFREBJTqgqJ7qFC4rjySqisBCm26zhrTNI33dc6j2tVuhIAgKACoayGikTGmVHlPzoQY26YyzhKMZyXGaIwDosIlbQcZtUOx5JL7oOQ6Fqyruu/77XYAYAOIUJGxzlXWUklZ+55SSth2WkYFIPV5doRVVcVUWJhAYiosqZSSWCDGmIrCO0BPliZZMLOIFGQJhVfbHgAkxfGUl8IQG++GlGKMMAyIyFxCKnVdRxZjqz7G4fSUgciOXfvB/sUhbDebzhly3iIqOgd17R0ZshbR5Jz7nPucY4xrkXU/BOZYOKdAuQBZ5y0Y6rotAPSb7ujoKIR+2KxzzpfmxjQVAItw3wcR4ZRSyX2IfToToJRycA6Euk1njDHWsmBizjqmquqqaaxqu/tKo0yMEQy5yqeSOUZmIGtCyufrjgSGLBmgIptyasT9/DefvnjjjX/8X/9v/8V//88WswMPmzD0deWMIzR8/8EdIrp69epqvb755cevvfHm/Xtfv/TKC3/Cf/zn/+HfN8v24nLv9t17N55/riJTUnTGhtA75wT42WefvXfvXgh93bQpFnQYIxZmVfoTEZ3n1XVdVU0cp+/j3qgZjVcZwYDA6enpq6++enZ29sXNW865l19+GRFV6DgX3p5vGteQAxHJODbaiOiMtbVuso0WMYhYtPVGgwaJJOd89erV9Xr9wQcfvPfee6vVCnFclng61mhYKaU4JEQMOWk+aNuWOa/Oztu2RRgHezBNPUMIwKABwrnqk08+eeONNy5fvvzw4cMd41TfOaXS9+u9vb1hWtGhSSNQ88esbsSMnDIdPGsRmeJ4vHla6NIEnFKaz+fvvvvu559/vre398YbbyhwLXnkVSDikKKbNuk1Ro+DmBC1yymlaFuj0SDnXMoopr9bcEcau2H9e+trmV5PTQrBAkhhb533XhC2262SbqrKGWOcadSHw+BI/mJmtVAbs7sUApACOQ7ekrUORQBRScUyuraUAk8Oj949zqw2aDlnZ2y9t7+b8o7YO06buCwsXNeOmZnQGZo19diVcqlU54tU1m9UipaRq4XWVm1bA5CIDDFMnSI652azmSoynp6ertcrmKBs/RK1odQ/6Ntq6ePIkACy9MNQVX6qyoraCGqw1ZrSTCbcRBRD0E+qHe1Ot3kHU+8eMZ6UwzW5wuQipZ20jth3qVSTghLIuah0tkqPRe9HlML7+mmwZDcLGAYMCqAiMoNzrqr82dmZ91bBZ30xcylShEmYmQlQ4YfZbBZiv1mtc53+5E/+ZLlc/uVf/uWVa888//zz6/Vav0olYShSlXOGwr6yuhOlPxBCGIatVrE2ltiHnoEYJCOGHAsgeUfOxJRQULJkVcGtTEkMeYSgx7GBZElqFj0+RURozDiDAUDVno4A1pKXSVKcMSvw5kX6fgcEVlWVZVQ9tQaJCNUR05i29cP5+Xq9ri5cmM/nOSdjfSk9WjOkWLIYY4FUBR6MczHGkrIxJrMUAQIcYhCE1E08dWOd98aQcW7u5+fn5wIoRQDEOO+RNNBUswWSJQIEqJom5+hhlC0FADBUYs6l6E5bKtmWAkQyKqsREQEiILBwiDm4AoVzTM45b0lKsWxzzjiOHlkEtv3AiNbV5OrNZtOHaL1lMKUUsv58GIYhMufa+xBSyZEIG1+VIVkrzig6xIgCALlwFEwskWXIJRUmAesMIQ39sO42TdOEkjNIzMwMVTNbb04ADSGqI/qI8DD0MbBgKiyCXsCgVb1KpWaSiMSgUtqZRRe4tYYdR1ZmJBPllKy1zvqcc069IRLBBIKCs3YPKtcnvnt8fuWF1//RP/nf/Nmf/ZvMZ0CYQcBQ5nx4uPzxT37EMtx44aVbd24bC889f70b+ne+87at7KbfvPbCK/du3/nq9p2XX3wpMMecnK0QBRHbxh8cHDw8flxSrOp62w11XUdd4gYo0yHUuO+cI2efYKEiNJEzc86z2eL8/Pzdd999/PjPP/3086qqXnvttZQSp2yNcXVDRAIlhGSbRt+BAHcPODMbQBCV5YJdjgQALrJZb1977bW/+qu/+uKLL1599dXz8zMR0R/cJdQJeuSeaDexK6XUtbfeaYQVGXfbpvGYYRZgVlWsy5cv//a3Jx999NEbb7yxv79/cnLSdZ0xjkiMMd671Xq97Xur2pDTKFdEmFFE+hjaqnaTfU1KSQ1uuRgYk8/IxlJ0ZERTjLly5cq9e/e8tcvlEkXy5IY7jsS8V/0QhWRLKTlEnBLbGBZLyTmrIGVK45ag6j7uOh7N4tqH5VK4jHIfjGP+1h5OgbFu061WK+/9vJ3FnKzzbd0QUUlRRKSwAs7anaN2+U8plhhjAIQ5E1lQ0gYRTMqUzBxjynnUHHZktbygkXFSpDAgGiJDoMzxp2bVgMCEYiztnDY09Wl/vOtYdkNugTGda4YjsgqYD8NABkAMThQn7/29e/defuFFHSJYa4dhqxR6/VzaNWnE3iG9MLoWFp226jVof7xLkF3XaYbLOQOBjnXhKY+TXakHk46KXoBOQHYzPsXeZRIBLNOevUpCjRtc06lQCV69Hh1d67/VQ+grN/RBwSQFbAiNWAGQYRi2223b1lyKAO5ydhEmIUFIJevKaxmpZxJir0fru9/97t7e3i9/+cubN2/u7+/v7e0tlofL2dwiVdaVmGI/rNZnbWlpYlOyZBVn1RNlM2citN5th5AKx1yYrBjKscSchDABxxQrqqx3ZA3lWmU5K+8BOMaYSwGWurIMkhMzszJLWVj9tljUXGdUg1NiMAoKirLDRaSqKt1DReuYGUXIeEJkQZwK5Lqu9/b2vPe5FEVNfV3lmOpmxszr9ZoD+Kpi4PX5qqqqxKUyRgcmpqpyVqIjABCSMb7ylS85d9uBmXfKQdvtlsQoyJNzfrTpQ8yAyucMCCAknFNKKbFS7TmmJILa+xLKiN0VDmm7iwgGyQIMKROINyYXZVVQH1IpxXsrAATIIkNMYryrDBEVtGKY0RTmxIWylH673W455aatx7jA0qfCSUe/birAAQByzusCm34YUiwsxnnna0EjCGgskQ0hNc2s68Z2H3MiltP1xhAdLC05X3IpQmBovtgrAn2I/TAUBmMRycZULJL3zlkLbuevElFYJmqDPmm612grN6RCk/YFgxCA8R5KAYOmqbtUJMUgEmFTH1z53p/+Fz/74f9Hcgglel83TjZnjy9evHBy/PViVl+5eLA+f3TyuFnuH9y/f/ebb78RQtisNvtHF46PH56dr2dtLSllLg/v37969WoIYX9/P6V0vt4YZ9WxPCbNvGgQtX5UwJXZkI7HdmQNg0QQUpwt5n3fE9pSyh/90R/92z/797/5zW/atr166fLZ2ZmeJYUW68YXFA0r05ciIoAs/JQw0y6nMogBqKoqxfL+++//xV/8xXw+v3jxwnq99nbsDKawi1PStZpiNV1th945pz4Tuv8zocdmYu6YIQRrLZJ95bVXf/SjH/VhePfdd31ddV1HCGRNTsyS67ohIjPuU7EA4BMpOqP1/i4Wa8At+Yks3a6vzcLIuCNCItrZbHbnzp2XX37ZOZdSrwIgTrWF8ygStN1ux5YxZYDRklZPlOZjxY1hIvp6b/UPO7R5zL45P9UuF03bGvSjelF0ncqW5ZwfPz5pGh9BnKEQcpkEh51zRhmjWsgYTCmpo+jBwQFOnGprR8tzhfS0HeSJQqWvnGPhDAhkDBEyj2PsqQwbw8XuSMSYRzLK9DbGGOcsPXVypspMCzgEAUvGOBIRGQ+1U+VnABAE9ZPY39/fbDar1ery5cs7OScdSAFA27ba++4QIK3w9P5rxlW1uJxzYamqahp+P9E9JCKZAAnvvYZ6vS0AoKPMPMk466Q5p7SbNCtLSxOVLgeP270pKhkipUS+SoU14+o/rKwTxm6zZmbf1LtiiGxCwlRkO8QLRIpQbruu26zgqdcuYuv3gjBWcgrh7IoMQ3a1Wj1+/Pjq1asA8Omnn267bj6f11VVea9IAyKmPHp5GVTPyvFb242T7GJed/02lYRQvLVDTsyZQcWDWBB1X9laqx/elCrlLONuhnDKlqhqm7Ztc84d9iEk/WJ21QQAgFDOuedCiCRCiFXlgKmACKG1zlZ+GDjGVKMTQUJjjCEVRhBkLoCEOD7GMUYy2Pe9MQjMlA0iMpmQQg6AiAWhC5GZZerFM5FIsdaWlEMc0hDm7ayqKqOQCMDZerVcLgFB5a9VNna73W5DQcJSwHoqRdTOT0RCGnfXnHOsQ2swxpiaJAsX4RBDGCLQqM9ijHGGGIHAVHUtFjKwMx6FDaFxXvG1Ajr+opBKzENhAWtD4SxcGEvM1nFmKQCxD3ZICEAELplhGJzPM8aqcgBQOI2yG7bOLIa8a411FRoXUowxb7dbW3nJpa7r4+OHzrm2qfrtpnaeEY2zEaiyLqSeiAQxZS7MMSWVWg0pcy4pJSwcUqkqN/E+GBGtsSRQzbxBCiEoOJ8BQhieLmkFWIjQYOJSCnz9+OTwYG+xf1RKvnuyllKaZvHiW9/56Fc/t2RL6b++c3d98uBw0bp5e+HwiEFq5+58efP5F2lvtrh/5+7BwYGv2hj6i5euHJ8+tu6CqyqD8Owzz+cSiQikXLhwIXHpt8Nib7nZbHHaJWXmnLKmRI0ORsaZjXrMKIIHBZXJ4qwFYGPM+9959yc//cXNzz472t+v60qFxhRCLKUU7SDxCbfIAAJNofOpnCoIBGAZlBTjrPvWN9/+xS9+8e1vv7e3t6fDPBYGAWMsIqiF5+5mEhESASqyJMYYQXTgSinMooiIPvneV33fe+8RzHvvvfeDH/wAEb/zne8Y49Su1ZDT/eNdNyD6exCUT8zMADQMg/eedksyzvV9r+NYbZr1F6oeoSYSABiGYW9vb9huf/3rX3/nO9+ZzZq+D08JM2WRYq2XafPVGw9PSVlpJ7RDuWGSPRGp5CkhM0QEIGNGDpEqD+8AZJ72dnLODx8+3Ibh8PCQiB49enRy/FCrB51xaimQYxzbl1GgdJyIK0mFJmoYTaoR1hKRFgQZRJxR+lhJMcWYtXQopajPLhGVMjEG/vYLABj/FkZiJjG+3SfdZWv9AUuQcy4IVVUZchMSEIDQWg8AJWUFcnzlbSA1SlKRLN1W39UxEzVap4qUp03fMjHmtFRiZo024454KTtxD2ttlnGKrBL0u8mOViqaiXdLUzFGktEdRcu7EEbWtPd+u92oZIqmRl2QK2kcvpjJkwqFum4jE0z75LnTQYBBrR0FYbVacYoppbZtFUAAfiJOqcJiuaTMSflii8VCRSW9dZuuR8Qvv/zywoULe3t7i8Xi1q3b169f18NjiEzluDjvTNu0NKqJGZ2j6x3WK7RXLx18/SDfe/SQTOVr3wdAQDBWDOXMDGJtbSpj3cTKIyqlhGFbiicBAHDG1r5CAW8dNljZNPrQ5cwgjGj1CcwpslgEZ40jo6hJyUJkEUxhIOMq6wWIULWYUQE6Zs5FyLCyVPoY6rqeuTrEWIY0a9rH52e6cmNZNv3WuapdLtfrdUzcrzciIoQ2jWz1tvYFIDJvQk9n55BTSbGp6xB65WUQEYts+360rizoveeUUpGUBiJAGHUJaCS+jgRFGPcEcpGCpUDiEpNvHBlDaBEYrZOcGIURchGQ4iopmb33ZD0qZSdnIAVsJaYMxhKaUCKDIJokpe+Hqqrquiml5JiYwaElJHR1ARmKcBnV0gsgGzsMMcYMhChQODGkmAsiNk2jjVpKAVi8dYvFYn12vhJq6tqSX/XZRYlDrKqqSOm6LnExxiyXS2tt2AaD5L3vS4lZzbQzIFtCZgYyVeVhNKtJKKycYECoai8iAgyIwqUUQZSYkzW4PNxfddtNn7y1MWbn3Pq8Pzh4/rVvtR9/+HMHFmhe1/tXr17B3Her7uKVy1C67OXBnbsvvfyaMJ+frmazRUxl7n3TzE4en127ejn0HYoYO/lQWdxfLEGw77YiRfd0mQsiGiQcMfxEZGHE2cYN0Sl22KKmrYQ5ZRF59tlnT04e3/zi1hdffPHGG2+IyGbTLeeLEQyoKs4FaJzgIkuZtu9ERv6aiJA1un5JAIq8IcrR0dHrr7/+4x//+Pd///fb+QwmtrAeP40v/TAoJjR2otUTQx5hnBLhyDITRgZANE3TrNeb+XxWN3tvv/32T3/6y/l8+dprr7Vte3pyXlVkjAWAEJL1Rs82TGs8LJJyrqtKN/SqqhJCzsV7772XXQoEACBGwKn9s9Z13bppmlLKhQsXfvvb33700Uff/va7xpjtdgT5cST6wqRkMq4hPZUV9NM9CakaXpXS9VQag93/AQAuRXatzQRLKiNpf39/nvPe3t7e3t7rr7yaU9DkuvMK1HleHwYtLhExpbRarXQqeX6+xlH/ed11nWKkKrC1SwDAYp0hIgSxdpRPUrW1XW2hIwNENE9JQwCorO+UXK2dPuNYtu0+6a6cs2qhxcIpCxYdsGhyQmGZdLiMMQTorTs/P9dPCgAKAf7/oc3W2tGLbvqtMPGi9Q+llDQE3frTf6g0q5SSd084zFrN7H6XvvmudqyqSm+75hSdx+uvVvoOPmUz5clO5R2AEBExg3PVMKy9r9MQ1Irj6UZTf4WIIEDXrVMsIuXs7GxvPlsul0SUUyAinhand5BSjLFkSTk755Qjpidz1ra/+c1vNpvNxYsXu/Wmrmv1/vKGKmu8oQKj4gciphSmTzxJqTiDCDkn21o6XLSbdeXqNoPpAKxxaP12CKYICpIjSzaH3HUdIiYvLFnhVkTy1lXOoJRuvfHeo3HWWhBmKJCBmdEaQwZU+4AZDCESIsaY69qrCHPJyQhP9pbq8ZTSpIumm3DDMACR0AiGrLpNZV1d1xnFeMcC620XYjLGAeH5agPGJIh932slE5mstSUmbV+IsLCsuk2JwSFYay9cuphjSlyAS5l00o13KSaIMeVSSrE0GoXqV6uxW/XeqqoCQmOc5IxcDFJb21QyEUhhMZJyYR6QizW06XrC0lSuFI5Dj4Yg4Q6oRDIplyLMSMIcCoeUGQCRQ8pgoE8xF3HOuWZOAimlzRDrui45DSnHkgGYDFrnbGMcZ1HrDmONMYLGpISGtNfZrNbW0t7e3tXLF+fzueRy8/EZMeQ+IRdkQZAkqZRkrK8Iq9otl8ucc9j2pKvUU+0vIqVkBiEunI1DNChV5dq66sMwDEPtXbuY5z6xyvECpMREVFUu58gi3XYLSGX01bApCYB5cFo87j//4rfuff7hhas3TDiwJhPQwwd3DDoyZtHMQyxf3bz16iuv33tw//79R3Xt790bEHi9Om+b6sLhfrdeqxqihhjn3Hwxe/TweHqMtUWLwzAgWe38psKZY/zbhT+NQb/v+8pbY0zXbV566aXbX9769NMvLly4cPHixe1mq2rys9lsmKrdXfu1i7m7P8O0v4SIRFYLIw0vzz333J07t3/zm9+8/c63RqkKedL1ImKZRExzzoDM4qemamxTkFBjNIIR4ZhS0zRDP4zTvhxu3LhxfHz8wQe/sda+/PLL8/m874cYU9PMnobLmBkQiMzYeo6AKhMl51yQlIXJWUlZf1hlSXR5V4k5zOxcpW6G3ppvfvObP/7xjw8O9p555pkd65VQ5SNyzno3AEllqtyEukdjDKKO/dIuUem+VtO0GtZ39yfFvMMYjM6wJ45kmiwdmfn4+Hi73V65ciUMW5rYsHrly+USEVV3gkevlJH1WUoRY5k59P3p6WN1jaTJ+tAZaywNw7BerzW7AIAYs16vu6HX9xFmkVGIQ7TbRUBUaAQBQArvWn+aXCXGM6PnR/8znaicknXWTrrNBIyEigmIiOq1aSus/gfr9frRo0eHh4da4QA8kUsygNORGzcw9YaoXr3Gf3lq0VbzlmY7xbH1oOqfQwje13byA9biafcN6pC4aRpOWYtdvSf6LewQZpWidN6oDXPOmSY1DGVCcMq79xcRyYWcdc6hAUTs+15h/OPTk9pbHZ04S6WMmfLp4qCwxBi7PmhVoQpcMcZLly6VUmLM69VKqWc6k7127ZqKVI/XQyS5oLPWkopLAoAlUnkALaRijHa7Ot9fLpkvu2Z+er5ZbXpBEoSSMgmRIYuWBIc+DOutc24Vk7Nm1rSIyCkjsBZTipQIlJwlC0thQJ2cg1i0SFIs0Li6BwAp57mdq0+R3ghjzPl61VQtCJRSkqp8AJIhEiECHr9Fb60dQq/qyLHkEEIuolAboEHmWDInVb225KwAs3DtnQXXeoeIwEXtgknYIKkrSJxm+EpgA4DMxfu5NqalZIPUh8F7jyC6567fjauMsy7nHONwcX+JaMga6xqyq1x40w8yaspkqye4JG+orlpXeQ7JmlGtDYHGkwSiTUBkicPAzIKYWXLOLIXAsAERjJClCLIAQBhi4YwoiMrmFV97a633jUAkIrIOEYeY1+t1SJGI5u2sbVtjkHM+OTnZrNZNXc+Xh6WUvts0vmLIKMwxAQpDrl1NaEMIo9+qsYQ4MDVtXdc1c85DZGERYikhhMZZMcLCzhvr2sIctn3lamOwiGXOAOwr27YtI5eiLCe25IYh9H3wVRNjXLh54nDl2gtXDvc/+vF/HAbOaXu4rK5dee7+/bsHBwdE3tmq77Y3b3716quv9umzbbeurDFE+/v7n37+mcGXFot5TkEJIN57FgSAvf3l6nytDUEp5fHjx199dTuXcunSpcPDw9lshsgARrE1DRBkjbZSKl6ICMzc9/3BwcEf/MHf/Y8/+OFHH330+7//+4eHB6vVeizjLDGoE7YlIu0Hd33bGJRxZCkDQEijrD+i0c2N99577+c//3nXdSoQT0RlEj+CaTYmOhwlKRPXtK7rGLL2MXl0JRp/o9YZDKqYgUMM77///vHx8a9+9Wvn3As3XiIyOhZlZlc92Z0d21pAXRh13guz3h+chPvdzk5HgFnvtLJgqjxtuykee/Xq1aOjo5/+9Cd1XV279owmUeOqSQNh4ntnFXQ0yscXGdV0RbA8tT0cQvC+0uSXJljSWhumHstMQoOKXyOiXskupHRd98UXX7z56itZeLd3KxPtvO97FUTTnYgRdp6WbpcXL16+fDnGQX+v9nDOGs03OpLQlLDabh89evTgwYNpiE4qoKGwto4bNdNrLGJGXfhkkVwK7BShJ4b5rivdVUsEWFIOKeIkKJHziNjlnBEQgAFIOb3rYbNarVQSSz81TKu0xthduNaX3saui9pDA4wLuGrPpWQrvWyYaMyagLXwrapG9S406e5mxrsHwRij26F6bndqGLvsPno/II5THhh3VlWdpmmanPLumvVTVN5ZS3oOQwiEtqqak5OT5bw9OtwzxgxDrx9xdz/1uBQeuX6AwMyqzKNAtBRerVYxxpSz1jExpsViocdeJncvACABPQNqy11VFSKM20OI3nv8P/6f/mcsqbboLHRd12dMrnm8GU7WfSFCxNl8ngTufn183g/WNRA28/nCOne23mQuObFxlhm8986QtZZQJGYpCRGsMdY5JSiOukLIbd0AgPKKHaluhsFp1S9ATqm0Vet9zQViKTElNOTaKpa86TpmdczwORZnq0GiMil0CC2T9MFutr97WvS+qPwpCuScm7oWEe+tMUYVREMIKFw7X3lPAttNt8GJ6MgCIo5M5bwjQwYsGYMkMAry9X13fnLaHl5wzqGIJGnb9uzsrOs6cjZxEYS2rQmQYzpcLo729uMQ7sXTma9nVS2hQCpENpWcBAILVD4DDzGLPpJZJJfkFBct3tcp567rqHJoSBAzl1KKQXLGWABvrSWzcNZ738cQU04ptbPFkKIGEZ42hQilpOy9t0hcckhRcSTjHSLKNHxi5r29vWEYjo+Pd4Bh4+xuIqWzH2CxRLV3rXcIXFubwmBBpKS6rmrnFdvQtYfMxTk3hPj49LydzzLgEBOQYcHEAgAZu3lz2NrFUVOX87u//av/bzr+1KWzKxcPQ4qnfV8c7R0d5iz9ebx4dPm5a0c3b36ujz0iFE7W2itXLh0e7KWUKmu3Xdc0TYlBmM/Pzzd9LMKI5ubtW7/49cdIQBYF6aWXXrly5YpF5agTFHbGAoBxlpm32816281mzXy5UEG+5d7i7u07v/jlhy88d+1b33y767oYAjNX9Uw5pdY5ZkY0k1gB6PBMRBDBIOn+jLO1drQw6dnqA/zFF19cuXJFxSaVoKR73jLRd4w8Gb7qgScDiCiFmcsEvo5KU0/iqX0iDvVv/s2/zln+9E//6OLFi9rD+cqSWBSYzWbawlZN3YchpWgr75yrnV+dnc/r6mB/P/fBEEUMTd2enJzQyMwyypZQLYhSijEOp506Yfgf/sd/+eILz37nO9+ZzWar01WZ7OV3ZK6RyO2dc4aIylCstdo1ikguESd5HO0peYIErLXCmHjQ5nLq7UZhWjva/jyRktZW9fBw7+rVqzxRuBXx9r6GwjFGa11d1yUrqdBWVZVSeDrCyMSyJqI8iVTsmioAyCUqUNz3/enp6eVLl2az5vz8XEcbKaUQ02azYYZUyunpab9ejefHWhWcWq/XOpLkSR5LRQtUZFVo1JBx1mfWWSbFkkEo5tGAqJSyHQIiNk3z+N6j+Xz+d//u36XJhqSMK52mqqrZbLbZbDebza4TLSDaL3pjjUXnHArEGJmzHQ0lLSKqWr4qHIuIjr0RxRijMkdt28aYY06IaMjpQzGk1CL2fZ+4LBaLUpKy0xXTBuRhGPb39/f397uu23RdjJF4HL3rJtWjR49y4hFVHkc5ulhYjQRb0qVwbtu2qt3h/p6xVEoxMN5PfWzVPfPk5MT4WSnpzp07b77+2np1Nps1+8u9IWy/+uqr3/32k7ZtV5vOkBPE55577uDgIMZ48eJF/bwPHjyw1iq9d71eV1V1dHSkIl9nZ2d6V+1qGy4d7u0vmtBtIm9d3TC5zfb0bHU+W+4ZY/q+L4CVM3WpQoy1gv46ZIKdnyUOw5AQjDHWoEVyzs7qpqq8tXZvb09EVBmnHzpBmDVtSqmunK7zl8xkBIgMgDEuxtwNfR8SkUUcuZR93w8pamBNKQNQCFGdtvTk52mLXxGwp4iFf+u13W7UAc06Ein6zhpY7USr0fdBllSyqUYHEqWcMpIUFmcoIVvb1L7ylQEEYEfz2vmHq00pBZi9dTLZg6eUqHJoja08snDOQ4rn63VJyXkXY5a0lZg9mdqPY6Gcc5JcAEqWnJlzUaPGUEZVMwFi5gLCOXMWsr5IQeWqsjBgjompbHLEoReRIURB4M1Grd+0rhxYcs7OkqVx1V03RgAgcUlDwYm9o22i3v88ee0xc4InIuajRSsXsna9XqfKeUJsaoMICDnzNgQD6JzTNKZOPoAUS17sLbdDLMI5l+3QVXXr6moYoiODKSJtHz58eP1o79u///3f/U3eHN+88/Xja89c3K/cV3fvDkO8cvkZaPHR8b3Kptdff/2TTz4BgJRiyeIcPnr0yFtHBmrniWi9Xh/t763X69lsdr7pY8yn548O94/+0X/6Jz/4y79abQZD5YsvvrDWXrt8jQBTjt5YXUaXDABwenr6yeefMedvvfvOxYtH8/l8u91euHDhxvVnvvrq7rUrV2fzxnvV4wzWeiIqORtrnbPMhVl4GtCiHnFl80JByLvuh6blHES8dOnS/fv3r1+/rqW0fhdEmHUEIE/A7d1wDsEoE1k9sJ8uzGFie6qtHjO3bfsHf/AH//N//Isf/OAH//Af/sPFYrG3t9d1XSmjf60WTIoEGjMuPnWx85VdrVYWcN7OQAQEu647PDw8OTnp+342W3AurvI58ZSoJtkTIrL0zW+89tFHH+/v73/rW9+az+enp6fWgq6x7VKX6Oy8SCmlrWsAibGkSVJfKxU3KfrSNF8XEYARzSLc9VIjRJlGTcSx0FFkom3bW7duX758uW1bla0AIADS/RlXV0bzNxARbTab27dvz2aN/lLF8ARBM4HKIfG0tFOeMmZIKW37Tdu2i8Xi/v37zz//vDFOU2Pl61RUd8LAuEyRSimWjDGGDGphNAzD+fn52dnZo0ePzs/P++2KmTUBg8FRVbF0qhZORPP5vI9h3s40k3Vdt91snHPOkDZ5Ocflcql5vWkrMqBQc9cBIuhJVtnOlMdZuzYhIpJiSmmcAbvKG4M5s2IMRNRW9TAMkosQeV9ZS6UvYRrzG2Myl8nIBsw0N/XGSi6AVNdtKaPGqn6PepFE5J0rOVeuKaUYcsKw7QY9ZjLNxXYHI2f2vo4xj5NmwhCCsdh13Ww2c97FftBQp7dIQb6+7xtTD8OwmM30CdJWfujj8aOTlNLp+VkIKcUyxHjlyhUgC5TVO0AQGUAQlTNmnEulDDFa71W/WhAzs33w+DTElPN+2/h6vpcZuQCQ9b7Wjrtta+sqYIGchAsYw1wKS+1sAWSLMSeAkZpYSsmIjlDYOFLDyGitJUI9oABQMg8xECCSNcYIiTFGF1hjjIlLYTBIoqrsqGEa+tCDoTK6RebtpjPGhdhT7Z1zqnuy423ql7RDFZ7+s/e+sk6/5t3XIwg5BMHRc5AFSs4IIIQlZUTUzSJvrCVsKlc5b4wpOZaYEkuCMaB459q29d5LKbWviLBxbTX0cduVUqrKG2PQIrAUlj4MwAKWDKAxhry1ZMAanvyEc4gFEdDkHJXwUkopFpRkBZT1yoW5MGSOiisYRBYmwQIAJReLAuCcN84aY0IqllBxSAAAMtOECCWXvgxAhowlEi4pT7NwAFDi7mYz0gtxZ6nGIwwogsxJRIAl54wihggILQVL6J1BsoDCCCEnC1JVta0h5ywgztfGu4IkSCbGVFh9EwjyQTO3xBaHxdKdnJ8ctgfv//E/+eG//xf9iu4en1y9dDSv200Xcx+ypMWyPn180tTV888/99VXXwG4KZOZW7duvfTSSyLiq5qI7ty5s1wunfcXLlz64osvwpBuvHj5+o0XX33ljd9+8vFf/+jHZ+erLz79zBu7mM0RxTrIcSCiqmoePXokhN77rk8/+/kvXnzhxtWrV+fzVphff/11TvnTzz5+77331CtrNj26MJGGFLMdUWjNINq6EOlzRJNYxG74SkQHBwer1erLL7989dVXh2HQtctSyrg8Ncox0C6zjtnIqAlEgWmVuZTy9EMB06MRQrh48eLf+c67P/7pL/6X/+V/+Yf/8B+OeAYgEQ2hH/3mSh7Tv3I4nUtxGIbhz3701y++8MLf+c77AKDDUWstMwzD4JwbhsHZahrZcJkGwyLyyiuvfPHFFx999NHBwcHzzzyvC1TWWlF5bngCtOoFqx7frkgVKDvuVZ4U5XY9vdLQEMzToUCP7sTGR8SJcGRJOVk/+9nPv/3tb89nrcKMo5xyjMYYAWBmY5wSjrbbSvdNedJHLKVoQ3ft2jWaTJB2gDYRbfttztkYG0Js23Z1fn7z5s1XXnllvV6v1+u2mTHoQg6gMdZalJJzZmOJyHlLRLPZrG3bZ555ZofNppj7vu+6LoTQ1tXh4eHdu/cePHhwcHQ0DMPHH39859ZtoHFXqqoaRCwpr87O792568nE0P3yFz+bz+dHR0fGoKYf55ySe41xXFJOsW1bZ8GY2nvPklNKHEcyh85BSimcC7DEFDVmWqKzszO9ZmQZui0YAoCmalOIWhwQGAGRwoCEAjvChE5SZnWTpWLmUpKG65JLyWLIIaSSJUIupaAdxaWFjKsbIRMLM0sW8NYxUuLiXU3OsroZo00ppmQ2ha21ygwlMiH01toyVTkAoFpw3jsR0T6bczk5OVGf+3W3Hfq42W6t8fPlPkxiGLuve3duq6pSsZdd9TnStjO6beIHj88XjWvbFqwbwhATV81s3W1yik1TlRzDsJXMrfcGwFWViBjrhpQZhJk1OjOO1jJqFZViMdtOwRNjTNM0s+USrem6ziCxZGbOhUCKMqGBEAjVisDbqhRJMccUc85UrIDEbT9bLlJKBsnWruv6yrp+GPT9+77fTXpUmPTp53b3GCMKGWhtVVWVkp62Wy7CmQuzKaVkImBhlSlxzhhHRNrjclb5Gy4Yw5ANoKmcobHzYxGQ4rwxFpFGQRllq6WSnasEQFeKkRlYEK13Pg29rerKNyCSQwz9NmZGxKp2uWfvLRnLkrX7L8RknVKudS8FEQUIjHApQIhCzIyCgmSRCCiWRETIBQB0n5wnhTzFlMgZ7z2wIAInBiIZxU+sI5NH9JJ15yRNxj4AYIiMMY684oTMQCMtqEjKs6axzjlnhAAQs4CxTv2/QghDzmIMI4XCJXFKiSdbFUGsKi8iUspiNvMlLedNjh0CHl65XDKd9/27f/yPP/zZvzu+9eHJ+ebyhcu1Oe9X58sLB7ailOjOnTuvvfba888998XNm0QUhriYV2zc/ftfX7l0oW3rtm3XVR1LRmsa31y9+swQvvzkk88ODi8yyDfeevvK1Wd+8pOffPjRbz744IO6cgDywvPXL1w8FOCU0t0H999///133333o48++sWvf3nz5lcPHz785je/eXiwt12vv/GNb/z2Nx8+uHf32rVr3o6yzDp+zk9Zoj59OGFcuBz/bjcbe3r4agxdvXrl008/vXXrq2vXrq3Xq/39feZiABEmhurUY8m0kAPI6JwuVOgXN4SMu1+GrPlVu8Pz8/NXX331/Pz840+/+NGPfvQnf/In1louiSVzHt3gaWeEFyMUNs66uplf8fcvHHx9/97+cnb/9Kyu25RS08xijOv1ej6fW3JPXxUBkHKCSjGG/vAPv/8//Zs//+lPf76/XM5ms6atuq5TOjcIAciIERRWm0hVQt6lgd31Pw0Y0KSvhFJND77eHkDEie+p4n0jMKAV+WKxePDgwaeffvrC9Rt1XbMtfd/PZjMdwcATuUd2zu3tLXSyJjIaAOh3WoSPj4+Xy2XbtgjAOVvvx0sqIFls7TReXTi6+PHHHz98+FCtvbquI2uGYdAc36e0v5xrhZZKLkPeMYd3QvpEBA0q6GqMcUjDMOy9uf/OO+/ol/4H3/ve48ePT09PV6sVGrNYLM7Ozm7evMnMV69evXz58ieffNL3PWB5dPxAB8M6NPz64YPNZqM5wxqnQGY7X8znc2+dtXY2a5TXSyDL+UxEyCARenHWWjREFL09CCFwKSoL5q1FRAR01m36bSnFuQoRy+SQo0zpsZ/x3jlX+p4EiBxYcs4zh2GIVVWpaw4RGONEkFn9fUa57BCCaEQCKpkBIAxRRu7gKLyVE2dJmw1578lZb90wDMxAaEHI2aryDRI5Y5QHrgZinMvXX3+dUioCQx8ZpJSyf7hcLPaUkGuMs9YrjKFmtcxAZJlBk6+IbnbZUsSuh5KKrNdhO68v2wos5iLtfHHv4SPv6/msqZ0dhsGA1M4yQNNW3tUhp8Kcc1SpWxFIKQIAjc+zQS6ZS0mYu8E4K1Kq7bbabErOOav4qhMgBhGGFFPE7LypvCdHhBYK9EMXYihFEufKGl3QHrpNVTW1d0MfDpaLUoQL7xbUJtxpJLjvQtrTyRhFSilNW9e+qus6bHsRyVx0MD66DwFIYbIGiSolIgCqrQ0Kg4BksQh15ZumsUgpBcEx93cplCjW2lSirsz6xtvkfVUBYR+GnDOheDSgA8Us2XDOnHPuOq2OjT7wtS/W1+htzjnmHHPiMpoGkHLSxrV6AQQgJCJCwlGdf6TzFRFmDn1AxCLRew+ExlqXXSmFJRMaFAAC77z3fh2GlLN2CYaIo9bvmHOxdoTa6rqWab7lnJ26qyeTRWZzvl7nHJuqNgRO17WJnMHaaZTEvN0SWkEApFBYxacAQEoCtdypzGLe1uvHJvTCZb5/AIZu3390er46mNeXXnxvu96ms1txiPuLugvD6vSk2Vt4IufMzZufv/zyq1evXLl79+6smXVdt1gs1DzglZde2Pb93v4+oTAzFnNwcEBEH3z4m/X5arl/sF1vDvYO//P//L/c39//m7/5a+ayXM77YZ3SzDmTc7hy5ZJz7qWXXrp05fJb3/zGn//5nz/4+sGPfvQ333zrraODvdAP77zzzge/+uXJ8cNnn3325LxHRGNqABv6rQFD5ok/JmlxJ7r9IE/nZpi4u9q56RLUc8899+tf/3p/f98Ys9ls2raN0161yOgmYSZpQ20B9PRqUici7588Jiqvpf9TH59hGF5//fXz8/M7977+q7/6q+9///tnp49iVHIfGmtSSiEk5xx42G63ta+qykqSxWz23fe//Vd/9ZfPv/SaI6N9tnPu4OBIWSo8Lc0DgBKskIUESpHDwwt/59vf+vHPfvXhhx++//77zhnnTEkRUeUqnLJtmaWU3FSVljKK9PJowZSJtP4btyUnlhDwJNupMNbToAJOilGIxkyaHlDg8uWrH330m/39/avtVSyUU9G1aR1aT01tTCnFOHDKu69sF3AMPNG1VYMpawyXwsxN02xL6fvgfT0MoW3ra9euffrJZ4ZsXdddv9W5advqzgL2fb/rvVAAYBwx6PcLAIbsrqo2xnRD0PF2tx4p2caY5Xx+8ehIs7Xerm998xubzUapM9/4r/6Jc0YPGCKy5K7rFOterzr9y/V6PQyx6zqlgp6fn3Zd5wwpxUyRCbfD/2jyO+qDRV9V1eHFC8vl0jkDUkQAiQSkcgad13kBM5RSSo6u9iKy2wHTUkMp7hYJWbyxsR90sdta2w9D0zQ5xpFBhjSE6JwTQAaezVqyY8kSUrTOevZ6tUQQY0SSzWarmd7NxjEcmVFdTpT4l6L33hAYY4Zh2603Z2dn1trjh4/CkNr53JDb3z9EsoCZ8In60K7CpsmOCUZB8lImiRgbcjEERAbJrvs+pLyJ3GfRzfSShxCGYRictW09Z0AgYRl14HJhIcOSS9HfRIxIAKwMdRADSFbDAaZUcu5V6sUVBoBBxLM1xpAFZi5ZghRfVQA05KGPgQGts8DgnCPCrlvPFvMwDclLYe8rO8Scovd+0TaMpA+DsvLwb2+p60s3yBBESkZhlmIQsrCS+Z+YsyOICKPEITjnkAg4W8K6atvKG2MW8zknleRKBsk6q2UXguQSCYWAqsqlIhZBI4XyY6y1lowhAsBQmIX6ISaBUkrMkZkdgi855yzMWDJmsoYqZzMXLhHAcC7WG7IEQAwSwxOAy1hrBYEFWDIDSgZn1G/POoeTH+eEEI5CNpo6K+ustcZVqUjhrHFaXZDNU9I2zrlW8c+YmDnHJMyWDAClMuYVdGgtCWIqmZmcq4BYmW5FslHbV7KJIcVkjK2aBpFiDM4YtDaGHgEtVhKjh2iQ3nj9G4Hppx99GFGWly/0XT9fPvPa23/0wQ//x4ent69dqCyVtvbbVe8WtXN2GKLqOCLQycmJNW51vm5nzWazuf/11/vLuQigtUVyZbBbdfv7+9evX//888/fee/bq9Xmv/tv/+//2X/5X3z/D//e3nK+3XZXr17+7JPfnZ2d3HjheogGO/zss0+effbZmNPVK8/81/+r//VPfvKTX/z8px9+9JEjaKrKO7zxwvMPHtxvmvrw4rPr9Xqz2dR1XddVKapAUpAAkAGBGXCSmTRPWaLiyIt+omebUtrbX9x44fm7926/+OKLRJByADBPinrIyGOOmepRLqWAMYpRKd16yr7l6S584sVERPzud7/7r//1v/7si68uX/7dyy9d32w22+1AKTW1Q8TQq2i5LOeLGMJnH39mCS9dvnD88MHZ6eO98/VstqCYCdUlgay1oy/6JOAqEidU1pCx52erN954K4Tw0Ye/u3Hj+QsXjtq26TYbzS5UkSEDYNS+6knksrYwTpTaUop2/5Cz5EmFSqaJ+M5lEidNYADUa4NRW1uXsz0A11XrnPvtbz9u2/liMavbJqU0hOiMtW4c6CoT23tf2Uohd0cmASj2piSy0A/KujdPrdwYctZ4kLHGDSEdHF148PDrTz//7I033pjP54rA61DATT6yu7pBeBx+6w7kdrtVgVOZXrV1uiepmfvw8MA5p5x2DYnj8QDeX8wP95aPT09u3/pyPp8fHu4PfbdarURGmlXtq8XVedM0iFjKFb11vmqttTGGvu9jjNvtZtt1yrkJIZyenT169Giz2YZSjDGVs8JwcnL84ME97aSVqA8As8WiaWZKVrLWzufLUcyS26qq6srFGBGYS1IXZJWW0zs/DMNsCMhIQtYYZ22M0RqjwU24OGMtGWaunM85cyloIKVUOU+jWkgCMKUUazAWVjWS2vvdxrx6aeSci3BK6fKlC8aYGOOw7R88eBBjDCENwyBMMeQssLc8YBZmqfzodzQiB9baSWd7d9h2QyIRsV3XEXvf+r7vQuhne/sHs9lwfI5gSskIZrFYzNvZNqWYZLPuXGUZhICJyJHpY2JmAgPjCjyoq6VIIS2byRSALIxo1LCTOQ8pumIQsdhS13XtPIkI51Ry6LY65U0CxhAZw1lYxHsPMDNI3hpmwyLz+VzbVkWf9AZV1pVS+pR3gzSeXMPGAqSkyjcGBIUlRYcwpBiH3hpjjRUEIpRJg00TtsImwIUQvbfee0NEwpmzFHbG2mo8IiEEMSTCKifU931IpQ9DiEkAdAqrtbklgwClFCDbhy3nJAgAAsglBhFpfUWAOSZidgiV80NOmKRyNnImQEvGGMcgSSfFMCHAIiDMAAYAgbJay1lrvTciIQRWbi2hVRnhiS4ecirqzkXETCkVgLRrZYiopISIKcah21prdTouwMIMxiCylCwMSh6xRht3QUloCKRIXVeO2qrVnTE0rqThfL3WERHpbwEmEY/IOcft1rdsCH7v/W8/fNzdu/+gCPd931ZVu9zLTEcXnn/17e/97if/5sHp8TNXDh3DELZSClg7n883m82tW7deuPHi6elpVTUikmJ2rrp164598cbRhYPT0xPnHOGw3JuHVK5euYSIt7/68vU333rvvff+5b/8Fwb+yZtvvnn79q1hu53NZqenj09PT53fW+7NN+vt48ePl3sHp6enzlX/4B/8JzeuX/93/+7frs9Oq6qazypkeeONNz797OO9o8t1489OVwphPT0P1sOJAup7q2G6lNGaWqtmbdo034TY12Z+9epVZj4+Pr527UrOSUnPT95tyq8jFj01TLMdiAUAAQAASURBVESEqFvmIFxY/tY2FAA450KIxozbKX/yJ3/yZ3/25z/72c+ODueLxUJ5OiwVTkuZGuW3283Z2dnlo4PFYmGheGseP36s0KsGys1265yr63oYBp4qi6npYZFSMjVNs1qt3nnnncePvv7Vr371x3/8R5W3wZLCQoiJKqthWhi5jDswOurCUSZ65GEZY4iszmtpVIJ8EgR4WrYewaEyLeDKmBWstcOwnc1mb77xjX/7b/9t0zTvvvvujt5lvTPGSGRmBhRjyHkLGXdvjiy7+6nhO4TQVbW1draY61/G0OsdyCk755OEYRhu3Hjxl7/85a1bd1588UUiq1u2WsvmzLo5qo+htTVNi3O7Dpgmw6Kc2aC4yvd9T9Y0Va1qjkdHR6vVynljd2vck96L2vr2fX98nPf39xeLxTBsnWtU2EQ1NbUFzzn1fdj2Qdtxg1RXrm2O/NWruse1W4o1Rr1MbVVVuhMfQjg7Ozs+fqQ29a7yOqHruu7x45PHjx+HEISxlHLxysWjoyMVttQ9MecqNcawBp2zzlV6/bNZw5zPN+tSEhE4N7ppEREScGFjaQi9WkRQoZxzTM4RljJaTWjZaq2NMVubNUdOgNB4o1JOzpJzLsbYrVfr9fr09DTGeH6+IrRZdD/NLPaWKaWcWP2YZVrD0cdQj5YxJuesCuTWeqJEBPbShf1HD+7GjvcXLeciSMsLLRFkYWDmnKSAiJBxriIXk9Lum6bxNebC23DCzIQkT8nKAyGyGZV1i3qUWkCTSkRD1jhjbJHikACfaJI5Mta5037T1C2DZC6Zx2q3FltXnojmbbsdBhE01pFzDgG3m6qq1LVtGAbVWB+6TdM0sltJfOqluxMlZY4pD6Ft28Z5Auj63lhi7YGZYbJZ1W/UIBXtFQpzKTkFkifqCkq9JmUb6h46F2O9As5KuhlCkJiKYcRskPRIIUG7P8trGELIkskgomXIAGAIvO65s9jagzMxpxDCzNeQOhIwApagCBGOow0GUA9MYTaASIYQuWDO2fpKP7tOnpwzKUSv9qgAhVnV+hlG5XEGySmVkgxSXdfOuaryoUcEKDFty6b2FRG1dSMlh5ClMKBBESIkEGbOrHQVw0IhpxxiYQDELiU0lDP3IeVcVDW877be2OVinsKQU6yrKg9iQS4eHrx2+aU79x7eefDo8WojyFcuX0wMTd1yH1dDf/jMi6+Xv/fxr/7ywfH50cG8qens7Gxvb88v66aZHR8fg+BLL73y2WefeV+LlMJ5b+/gzp073vuDg8OcE6UkkksKzleXL188PT3/1S9+/sd/9PdKjv/9v/wf/un//n93+cKlDz749dHRxdu3b//spx+89533q6qezWa3b99+Y7Hnvf+//N/+r3/6x3/6/b/3BzkMjx8/unjh4NHDe/fv3r5w8eClF1787Ue/+ea33l4sZ2dnZyKChoxBXWgZR5WT8r5yWFxldwwGrWhxWrPREVSM8caNGx9++Ot79/j69eubLu6S91P/SqYC9ElvNBaUdnSYwKdIIvK3mQHb7bZt2/fee+cXv/jlBx988L3vfW8+n283vf5M27bd1PTMZrO33nrr/PEj721tK2vovN/cvHnz5Zdf1gDatu3J+ZlG51KKpOS81/AaQkgpISEACcMwDO+8886f/dl/uHvv9jfefEtE+r4PIeUcEQ1YxKdsIZi5cKLJkT7nuAupxjzRUNR6V5/QXXSmydwpxjSB1eqyLMZQVTXb7XDx4sVnn332Zz/9xd7y4PU3XlWSx7QBjDvhwxhjWzXGViaicn2NUdepfiTscO66NRE1TWUQykiAZ8XwUkqIJqdSN/7atWs3b968dOmSJrxSijpqEBFP1A0eBaok78wuGYTGob5zlfeoPpsNUdu2IlJKFpHtduu8YeZQiiXlxus8ok6p1L6x5ELot5uubVtnPIIs5vOSpalq8ZpLQL3FrKsUK95F1BD6rlvrPdlsNiEk1YRKKVnjtRf03j/73NUXX7punzJvVuwaAE5OTu7euX98fDwMA1kchuHOrZvb7TZnHoahruv53jIMUSs57+sQgvoCrFar+XyuOL/KvJNOwrJ447x3KijrjRURY8iClMKlFO8ccyYi1QJiztvNxiAuFgutZkpK6uluHdX1bBiGOPRd152dnek6EyLWjd92wVk/W+4t5wsRqaoKOZNAKSy5kIABhMIlJuccssQwkIBtW0fGkQFk++7bb8VXb2zPTvrNeYwRLK3XK+dcvw0hBG8BiU7PTn3V7B1dYtnIpDsjaKwz8/n89PRcTFEjxiePOgIgPCGYIzJz5RvrxmodxPQxUE5tVSsbXox4Q6pKQdYBQAhhuVzO3Cz229PT06ZywzCEvkfjcmEjkDIjombfUsrBwYEKhC6Xy+126xzAtF2zq39ziFi3TVURoDPWWKyrWcoVAJytVs2sjYVFhNBIYWYmb4kohmitrasqx9CVYtQ2QYRgXDLTyIiI1piUMyCcnZ0NMRTBmLI31hqTC+cQnXPNYqYlVYwxZehTFjOyzySX2tWGebFYzKum77qTszPDXAhmdZVSosxzX3f9lrnkwoyUYzKVSwKkkG8ePUNCyRZHZ2xmVursvG1DCCjQNA2KpBRpCsSqn1esg2nCRETejXMjS4QAFqlq65KyznS3m847tMYUZhD21mSWkhIao3x9hd0ALFoTcvJcgwFvXSnx/OQEgVSPCYDJwursfH85by2Goa+9u3h0cO3yla4vX917uDjcW1w5ROMfn65zFijZNSaTiyEvr71+dLp69NWHZ6vV3gx9XZ+crcj6vb2Dkvn4+LhpZs8///yXX36ZUuo224PDfWb4ze9+++1vfxuQchmQjXNGUOrKqCXqzc8/+/t//+8/++yzm9V6f7l37dq1n/zkJ+t19+KLLzS+8nWVcwlD+uLzT7/59jt//P0//g//4X8uOX7/D/7u3bu3Hz28v79/+PX9u59+8vkbr796cHDw8W9/99obr69WK2ORCJFIWxwRkcJCpCxlAiyloBlv/q4542lpNU/GqCLyyiuv/PVf/3VVVUcXrpRSQsgKIMc4eDcasTGzOu4oSiRCIuJ00r9e08TDpKlOVamBpqlTSimlGzduhBA+/PC3zz13+8UXXy6Jc2YDJJN1ShiSMdg0DS8WN2/e/MZbb1DOly9f/uqrr+7evXv9+nV1eF20s20Y1AsWEYe+n81mmjsRsaDVlNP3/eHh4XvvvfmrX/3qmavX9veXIlKKxJByjtZaEkJA570WKLsDpt0Xj1tVRfvLMo1+tZKuqspau1N4mFB63EGOZhRnZudUoij/4R9+/7/9f/w/f/6rX164fOngYA+xynHAaSF+OtiQJhvHnHMfgpkWbXeELGUvioid5Jz02naqyADQbfpnnnnm66+//uSTT15//XXNTGdnJwcHB6obqhVGmaz3YowqX6wDYFWlsNYzc0gym82AsN8OiGidAZFUslFjRCIY15VGm0WFsrWH0fuDqjMulHNIKXlfd916vV4r5E4GADFnKKXM53MA3mwGrRWstfP5vK5ZweqxvzQIkoY+hAGrqjIW48hDHu8kgjk62L94dKhnvuDYR52fnyuaslzsI+Lnn39+5849hXMPL164d/f+arWylo4f3j89PdUUAIBHR0c79F6rKx1Lw6RcPcRsJ29gAGjb1tuRGa7ss8Vi7ky1nnZZYxwODg44F+WjnZwen50cl1SapgkhVZUHov3FkojQGBHxlTUWt30PyICsl6FrbLrBPwpJDUOMAzPbbn22P59dfP6ZHPZjKp988VUf+yhx28fZbBaH7Xa73T84GmL+4uaXxlUGSuZiuRhXWe+aphmGGHPSjQp9luUpvT0EEhk7cQYJMRsauXyo8BoIZd0GyHmbtzEys3EeEFlk03U9dd7Z2WxWOcPM8/k8pBJKiWHIRXIK2RJRU0rp+17nHE3TaJ27M6Dhid0umc/Pz2vvj/YO5m2trDYLePHwwDk3xJgzt+0MgWKMyFIESxY0hEgpZxYmBgEgpqZpkCWkWIRLKQxY+UobuMjSNJJZ4jAYY1JKla/ralyfUOcsfQ633IsI0GgGgiq/ALBer3MfKueODg7AutNuPfSxxISSF4vFrKpSLoklC1fWpcLOeZ4IOAioXsxZmCalAVYtFBEC8VVtx42Unf/KGKbVkQtG3VIAFT0SAWOYMxgLTAaFAAlE/Zusxco6IWRmiRkJyaAlKJOeqohIUQaqYS7GOG/FWxdjLDl57w2SFWznsxKGEEPb1BcO9+dt8+De/eOH3WK/Pe82S7cI21UZBmJs25o5YUWPVhESPPvqd0qKp/d/5eJwdHSx6/qTkzMAapsZIt669aW1dOXKpbt37y4Wi4cPHx4c7VMwv/nN71577ZW6qmKM88Xi5GwVY97fOxKRrutvfv7ZSy/c0MTwzNVn7l29uzo7f+v1b2y2HacsZVTG+fCDD/7wD7633XQ//OEPLxzsv/DC9bt3boHkK1euffDBr3716w+/+a3vbLfbTz755Fvf+tZXX31VVVWKwdlKWwEzGkMxorFknHOA4141TvrAu25VJWgQcbVaHR4evvXWW5999lnTLuu61uCuT0cMeRflEUcR591LVR0Uw9QYxJN6sxm19XUfYyCiV1555eTx/Z/85OdHRxcXs2XsY0rZSgHgnLPz1hgqJTXz2bZbf/rJ56+89NKm729cf+7Lr746Pn64t7eXs0HEeVOvus3h4f75+Vr7VwBo6nq73Q4peW+RrLX+7OzsrbfeOj17/MMf/vAf/+N/jDh473MqY8ppfIxB97WYWSVFjTE6wNOTpokZoISQp0z8hIy56/i1uFf5pBgTM++aWhFpmmaz2czn8+/9/u/95V//zU9/+tP333//4sUjgDrlYEbGnA62mFXAy5i6baum0bKplKLiVmqJsxsDO+dkMrbTLFVACggYCqlce/b5Tz/9WJO0JvjNZrO3dyAiiCMiypNvrnJK1GNHeWTWFiKKMo4wtOM3ZWx4JRdvdDwpBCgiauZG4HIuISTvfc4x5zxZ2YOaUBHlqmqGITKzMU4n6F3XnZ+fA0Db1oh4enoKAFVVqc6JHqemni2XbeFgRc2swHmje/A559lsrpV9KSWXWGIZS5nKnZ+d1HV95dKVK5cuaokQUv797/1e13VNPWPmtm1Xq5VeIpeiYt2llP39/bZtHz16pHvSJ4/Pbt++/fWDB9qCI2KMEZ0bhoEAdLat8ORisXDOLZfL/eWyqqrFYnFycnJ2dgYA1tHZyam1dHp6euvLL3RGHkKwlgBguZjdvffguWevpxziNrbNvG2XSpAa0SYoMaZcjLG4m5P2fV9Gvweyod+el3gWtyXHpm2bpkFxD+99DbbabDvggsa5qmHKqZwmScg9ADhbUWZBMM5bSyEJS1bDwd28dSxziGLmUrI33jt1cs4soicVURUnkgEspaQcuYirG2RGIrTGOVfyqA/OPFZPkSULCmAs+eLFiyklAOaSEL2ZxNO1vt7Ba7vxT93O4hD6vk/tXKRFARQga1IptXcxxhwDNq0GxqauS8lDit77IiWl7IwFEkHcbDvjLAqEEGxRe2fmCFzAOCOSjfOCfRHwtU8xt22bM2vXKzIp5jBHU1SNxJCTnCtDBszcOQMYQiAABoJcUMhbd7Dcq4msd8K4yhvkgohN7SHlUFLJAERoSFgAwBDtkitwYWYUQQEV3diRdFhBd5GiwZ5FQIwxdqR/g47ECcUa64w1KDqdJwJkMFCEM6Dx5NA5R2ZIMZVcEkrJOJViu54shGHWtN66g719rdyX81ZEvDUlpfPV+cH+3v7+foxxCxjjEET6s/ODw3m3DafHx4um3ZydylBVsxmbCm2VAezMv/L2t//i/qdWDJ6uDw8P++2wOl/XVQMAKndw48aNK1cvP3r06PLly9u+966Oabh378Gr1y/mnENKfd+nVHiR26YiA2enq69ufrE82K98zbm89NLLiJRS1lSHiAbJ1v709PHPf/7z//y/+EfXnrmiDNUXXnjhd7/98Lcff9w0swsXLpRSrly58uDBgy+//PLg4ODk5KSqqvXmvKlnKJoSsJRCgMV6RCSLO6B118DtXiltF4tFzvns7Gyx2Hvlldc+++yzd955J4SgE82u68y086P3nBB2+LOI7GTIlL6kyUzfPE9KhDpWjjEtl813v/vdH/zgL3/3m9++++63nTPb7TbGMFss66YaVAXdOQJ74eLl40df3//60cVLz8QYLxwd3bt7t2matm232+3e3l5lXQhhPm9PT09LUWNk65yzkolIGLVT3G77v/Od3/vn//xf/vrXv37nnXdWq00pZehDCL2I6EquiFhHMWYAcM7EyPoRtKTQSkLF/WOMZNwUkhgRiIB5dEssk5iJpo3pno9eF0OKb7/99ocffvjLD3/XzmfvuG/u7e0BOksmxrHPripXMugtpWkJSt92NpvpOdHsrtrgOHktjAAyPVmaSikdHBx47+9//fWN558HAGsrrSrS5M6rL2stAMaYjDEZYHK6FP1FQBByMsYAoYrUkjEIEEIsxlgRYGQSJASGUooxFQINg5o/Sq/rEhPzI6UCkJXWu+16BEJAY3g2mykC0bRtVVVn5ycx5MLAnMMwhCExc5xlIkJSPCUpCGxMq8XTen1urdXFWYsszCRCAsaYa9euPXr06P6DexcuXNB2Nuc8bLsYNR7Iplsprc97bwT3lwuFN7Si2l8u3NHhtSuXU0rf/MbrOXNd103TqLLV8emZSo48fPgQAC5cuCCFHz582Pf9ZrPp1mulOjLzer0WERQoKZ+cHJ+dnQFn5+xms2ma+vz8vG3b7XbjK9vU7uGDO9b4nGMOq1LKdrtVaovRm+m8JYMG68oZY5ylMGxBZD6b2ZiLlIRc2roiskcXLtw/3aw2W99gjHExn1mD979+UBjqtkHruJdSih4dJeVXVRVziSnpeAMAEHfSSFxEn4onNk8aCGicWrGoBp+qhXibQvLOR1HGk6+aJvTsnCNmY8xyuew2vbMIiNuYNkOYVVaxglJKSh3gKIMywc6y+58aXKq2cc6lEFPJfQgErNCfaoVYG/RhwIy6NkDel5QFISVOKUEFBChQjHFDzCRQGKCUqmqMxZyzsS6zMFIuHEXEGEBCYzOP2mylFDRkyAgA54zeihRgSEMwIgC2rnxbNzEERsggQwwM2LStfpeeRoVCJS13IajgICr2660VP5oeG4sABMA5oYhBdMYiCiokYh3rCiSM/FgVZ9FH3aAYNc0QIWOsQW+sIbBIwCImG0AiAhG1urLWucpba0sFVXYx5PW2KzmBECIgGtGtj1x2j/e8rStnpOTFrJVSco5N2+T9pa7Mdl2vMxi2dr3Z8gnsL+fzZuYwXbm47DZbLoBk58u9lFIfN1cvXX725W89vHUzhluPHp9cfebZhw++fvz48eHhIRLkkr669eUrr7yicyPF/52tHh+ffd3ShQuXEHFvbw8RkcBYqMHNZ01IsVudRzc4b0tOKICIJFhSbtvZEAOHfHBwkHP88Y9/9NJLL+nCHiIeHF6Yz5fXr18/2Fucrzvv/dHR0QcfffjHf/zH+/v7MC346t4QjntjKFJYuetPvXY/oFNDQy6G3DZzbc0P9o8QzIe//uA73/nOw4ePqCbvvTDuKJcAIIwCjE9NYZ4snEwLLbstWJqWcxQ6Oz8/31s2v/d7v/eXP/iLBw8evPX6GznnGPOmWzdtSwa2Qx8CWKLlfHbp8rUvv/hiNt+r63qxmIWwuHP7K5VVUlHrk5MTO7fqu6AR03tbyHbdRhVs4rCNMc4P9t977+2PPvrouWvPHB1dTEMA72POw7Cta09EMUY/MUsRrWrQ7u6qajvryk0IQQm9T7cEE/5MOY/g88ienXAgxdiHFEspf/CHf/iv/tW/+dnPfrZcLl977ZXK+ZTSdtt7Z733MRZ6Ktbtip6nS3/tUBUtt9aSdUhiFP0GYB5NDhREvX79+scff3ztyhVmLgWtHZEMa60+jqUUP4Hw4ylCMGR0jUdRxrEQYRGRuq5EJOdc161zxiKVUkDIGEvOIhpCA1wAaaSqIuYigDDEkDKXUpxzVc5DiH0YqDPz+SwMKedsHAHidrsVkZJFfwsiVnXrK0GBum6qqlazZ0UBU9aKRyf3VgQQgQTKuJhTAPLp6uTChQvAgoR6t1frcyIiNAoqNE2DAgaplIIC7awehiHEPsa43pzrwY6pbLthjDPzdj6fN01zcLB37doVIM3obO3bk0jWuDdcVVXlfCnl4cOHfd/FGPf395fL/ePjYyLo1ucffPABgOwtl8prSzmvVuvNdjg7W3XbYblcHj9+SMg6/t+1uSmWuq6VOJVSqutG6cOIeHBwYG/du19bM69tCK5qSuDh3sPjqmkvXL46DMOmW8UhhBBi5na2RKKc85AiZbLW+qoeZx4C0nUpj43mDvXVR7quveKrU31Ku0OP8MSu3Fiytpo1syGE2IVmPiq7ppTMfG5p5IX3MfQp+fl80w8wkUWVfeec21vOYGJFiQhyEaRdWAGAISVvXW2MNS5zgVwUqN47PEg5e+/n8zlMrFRmTjGlEIUQUH2KHZBABkHp+m3TNL5phRkMiVDXd0X6ISRb+cA55IzOZkCw5ny1MmjrukXEmAOLoDUGHCCUVAxKHtgZIwLWV6gMPcLIJZSUGTy0whxTyUUx9pnzBhlMzmSwMZVE3cdAI1yEDaIRBhFDgICAaJC8JQDgXDiXUAriqFE++hciAaEBZCiiu0wgI79aAAUcGWdHfxqQIiIGEIWttU3TINkYIwLOqqqpaoGy2ao+CQqKNcok56rRgX1iS1JyiH2OlXe2gFiHB3vLIaYhhpiTclkLsXMG0aXAl65cMLx1TmaLZdcDVnOIyRqOCMer1Vvv/9HZ2iy7zWq1Oj053z88OD89GUKfc57P2/V6fevWl6ofdHx8XNfNdrutqub+veP57GCxWEA1do0GMOSwWLa4lk3cxFTu3b51ujoXgBQDItZ1o9YICXO/WScuIvLpp/nGjRv7i2Uu7ipeOz87s9b2oaiDddu28/n8Rz/60fe+9z2tw/ThJxyN1VBQY4H1T+xCeVyh0b7HdF2nEBYiqtta13X7+/s5508++eSFF17s+q0yX3ToJX+bgSjTODlNFrYyzR12RM1dSlZEkZnX665pmnfeee/zzz9ftLPnn3/+0aNH6+0aDRweHp6fn5+fn7Z104dY+/rCxStffnnzlVdecc5euXL5s88+++yTT7/17juKEisAsH90qP2QUruNoaZptt1aYWRm2Hb9W29+Y7Va/fznv/z+97+vQaC1FQF03Voa5YqP16x9jyKQOuhNKe2cl+q67rZbM0ml7pB2Tf9V5dRSCZE0cOv7aKB0zm2322eeeeZ73/vuX/zVj37xi19471+4/rx1JBPHLaUEWIwxCKiUbEQEERBIIRtjuLAupfi6CiFkLpZH1rRMmXuHOpRSrl595s6dO6vNZn+5DCEYU+2uGVH9S2DCDp9UFcY4gNGn0junf58lI6J3zjsXVBShQJKSlT81bX4XVux38tJwTuXTjY6cAHW0l3PSgma2mKGhFLKgRTTb0GVhJCwgpQgiekPKVd1suz4My0XtfV1VSjwkASRj63pUOAcAiyPRQY/iwu8pHq5N6mw2q30VY0IDVnE3IvWFVJK59pRacukUWb+aUeyMUS97p1vCMCYLZvVot+rqYa1d9UOMw3w+rypXVftNW7Vtm6Jcvny5qtxmNSfC27duhdDv7S2cM2+99YavmpOTk1iKNX7dbWezWbdeqbaxXsNqtbl7967yb5bLZdf1q9VqvTpXztDJ42N7th6uP3Pl8tVLq/PHpmoe3n145+7X2MzDw4cphaHbNM4p49hWPhe2VTXzHhFTzuv1+nyzzjkDqaMyT2dCEHeCnDARMsdNRx0tikjhRIDWWgEpJXPSVTyy0xNCCHrXELGuqpKSkgOH83MiKwDt3jLGYTab6de52WzUpkrlVHZPHTw1/ulCTKV4veDMse+to7quY4wsYgy2bbsdehYgQ8KlH2LJ0SRbVc54ImuMMQWjtTZ321xEIMaYfeGqqsTg5rzvY/AgSUoGscbGUixRYgHSjhMKQxYhi4IghQm4tt6yLKqKUGrrDEhV11l4sx1iTolFNmuFBp3kyjeCqsOO7ayJKYfUE6AlLALEYsgYJAOqIMQq0WFpXHrRKKHzRcEn2Xda0WAzIqCjtAZyYcaYopHaorPWWYulABQ2xrTOKFergGQUBHSGWJWBAXLiWHLKDFxgstoFAKPKaSRQSoq9d7PFvD47O9OFHAFEMmDthcuXz4ezwHExq4ih74YLR4u+Xws6UxnrTZFAxjxYDZtNv9x79pnXv332o58t9w4eHz9ExIOjw7PTE0SJcWjb+uTk2Bjz4osvxhj7IdR1m3Pm7O7c/fr557y1FMJQOSvAzhljjNubZ10KqgzggplD0tpmLMBFpG78va++HIbh8y/Crz/45QvPX3/99dfbuqnqJsdEaHJJVdWIlBs3bvzlD3/8wQcfvPnmm0/aI8ooTjtvdZvdLb1MDcl4hjX1llKsdSml8/OVFtrn5+eHh4fW2tu3b9248cK622y3W2WE7loxfSoLSBaurZ2g13G1VH8mjyKv49KadhtE5LzfbrfPPffc8fHxRx99NJs3s3mTOIUUUwqzxZyZnbEly1DyhUvXhmF16/aXL7/8corlmWeeuX379u3bt46OLmimnM1m3WqtuLSSipPIfDHnkrquu3r54snJCZHtuu7NN9767UcfffbZZ6+99ppimM7ZMgx93+/t7aUcAKCu6xiHSZ7a7MZMMO3jVlWjBGxELJxKKaLpEdB5g6C2hpRz7ntWbo5Ox51zsWQi6vv+1Vdf/frrrz/5/OYXX3xx7crl+fxIcskp55y3221VN7tqRlGH3f6JXlKenCEmmHpkvBfIOiwgQiCzHfrKeWa+fv36arWi/X1mtcI0WhiZSUpFvyD9LePfEBIalV0taSRI6x/GtketlMbVfkDE/x9ZfxZs2ZqkB0Lu/g9r2NOZz4k54o6Z9+a9WVlVWXOlSlKVoMVgMpq25gGZwRMGBrxhGLzw1rLGrIEXDDCat24aULfRjYzuRiWpBpVqUKqGzLzzvXFjHs6JM+xhjf/kPPhaO6LU5yHsxIkTe6+91v//7v75598XA0smoDVorUTphSECgnc+pSTOevJ23kVBoUMIbdsJMN4Hr7UWgSdtNGAkSlprpUxKSaUBk6+bLs9lyJZGlr3K8rwsCsmTACC6GKNPCWIcCN5Zljnn+97leaG1KYpy+CCgUmAiym0mAdj5jIjarlNKybzcy9PTtm2tzbcYkmgV53nuY/CuVUqVRZ4SK6UUGe+9930Y+bxEpDSur5YKOTqfQDOzc10M4dbNm65v79+/31YbiOHJk0e3bt0pi6y7WvXO7+8tnHOHR/sioplnJRGtVqvj48PpdDqdzo0xIgnAg2wqp5R03QfPlFAzWRcRkGa7e7qYnV4staaTkxOtaLm8BDHpjJGYtdbGGJNSjLF1PSIWZdm2w5TCCPUMog3MURqfsgplbwxdDYhGDb6bgksYY/qu19ZMp9O6awW0EbrKZrMxSiGizWwxmV6t153rm0t3YJWAlmocsU08ZLKyo3wYnKWHxDAlCBDZI4NBDMFlaG1KTdsqowMnpYU6H4biwOSIGIVjyVB3vTEKUmiaRmutM5vZIivYe7/a1Ov1ejKdYZ5FZI7MiH30KbDnaLR23semllpcWcOoInuOPtdmkudzW+SKFCelFCCG6JiwT4G15hDrrgdmTQZsVBxSkMEyTSE2Td10nbaZJoWRgSHXRiuFIseBQERCeeeYGEDgL1QKACOLFhkmFqdIrQf9XNHSQgWIzAkCxORDT8gECVgnHwhBWzMps5TSYAtFigkRkUNQCFabLCPtY123MSVITArFJU0ZDQDWGkg2BBe85hS894DoY0pA2tgyy8lm2ueYg+vXu7Np01SvmCeL3bqtlA7BrTIDmcl966LXj19ezq/dgJ39y8vzw6OTV2fPld7d2dm5unoFYCCFaZlfXp5ba2/euHX//gMg5WJQZKtNf36xPDzYLYoJQfS+B0whRqXV7mJSt733Mc+t975tW6Rcxh5Wm/VisWj77uc++jiflG3bNk3z/MnTP/uzPzs6OCYiUrrvPSlxZAs788XP/+B7P/nJJ4eH+9evX1+tVtIASxwwibXykDiOaT6Mpc9gojedTiUuTqdTCdLSN5WYlFI6OzvbPzxQ5DebjRTBY530Wl1LUCgeCyA5niRIDH5lo2q0/DA4Lory9PT0vffee/r44RdffPHzv/iLeZ674K9Wy8ViMZ3P2qrTWrdNF2O6fv36w4cPz87Odnd3s9zcvn37/v37eZ5PJtO6rstJ2batBpBg7703RbHZbLque/78+fLy/ODgYL1eF0WR59l3v/vdx48f1XVtrXWuS4nz3Ha9yI+85o7J3pfevLRvt4FHtKiUUoBpOxAs90FrHcNg4YWIfe8EeDeGnHPz+bwPHhBjjHme//CXf+np06effPZ1Webf/+jj3cWMAJUmrXXXD94Acg2CMUi2JHdSBmq3vV7p1zInlkfPhhGGbg+Cc26xWDRNI0+273tUymSZqDrE6AWB3z5KCfxDjB8MB4f2AclEbBoSZYUELFCYGtNrJERGyIo8Nk2CmOJQP/W+g5ozWwj8kCCKbQXBIKpqjJV+gYhjD1xXwMQy8ZXES5iZYwoATrw4iTBGlvHi5dVaMie5achkTW40J3aC0k3yArVaryoiunHjhnMOYXBUlHpXGkmJBzFwubdE+uDgSH5Nj26GslT6vt9sNm2zsjZ3ztV1nWW5GG8AFK7rijwvimy4pWWhFBmjgTLnHEFiIqXUnTt3JnlGROcXZ8F1y4vz3YP946ODJ0+fb5bLrutwZxcA2q5PPgBAcL3V2mrdt/Vm5brWCQs6qCCXrfOivP/o8emLZ8dH+0VRoDbaZBfLlRwBoHRKoSiKrCh9TCHxwcFBCCGmlCmltdZNLYPJb1SZWzkpcbAyb6AoKNJRwiwATJFERo6Ah3VTsGZmY4xNsXX9ZrOxmjKtXddhlimlVqsVZXnTNDt7e+umkR7POHUn8owiTZy2p0kcpYUAIAEnAE7ggsdRvqARHemg666dTOeTyURnsWma5EG4KuiEz8IArHVhlE06KaOrqlrHqigKxAEbbF1PWlVNEwAjsvfemAyYkcUynZRSTEhKoVJACoO31ubGzsoCQqQUXd9BUolAGZ2AfQwhRGY0ZAARALz33nfW2hC5db7tusl0mgCN+GBHyKzVSNH5JAh/YqY40KFhkD3K8zwm5jScyISolCGtaPTCiykSAytEQEysSCFDdN6lmHTkGMRAqetEXidPMXZdw4w6syGyjwkRy7wwOnkfe+dEU8Jog4oip7atizwjoq5pOQ2zj3kx0UhN57oQlDJpqaaT0oVQFirGFpDqxre+Pjw+qNuz4NcWtbKmzKarqk4RmhA++uijf/bP/gkz7+zsXF1dFdeOiMhYVdhstVrNZrPT01Oj8/fff/+rr+9bm4euLYrJq7OLFMLJtQOr0VrbdrW1GiBlmWm6DiAVea5EHMerpuuyLJtOp3VdKaPPz18t0q6swI8//nh5tX727NliPi8GI8IoZ0Fd1ycnJ8+fP//Zz362WCyUUkKcYWYxvyNDhITjyMC2ibPN4mWEXyBWyTVns0UIveym4+Pjzz77/HJ59dZbbzmHW5rlgD8TyUiABHgY5Vp55GEJ4irG7JvNRjzUYoyQkqC71Wp948aNb7/99osvP3vnnXeIwGo79HFjLPPSYb+pq2lZ3Lp14+uv7w/uxQqOj4+fPHny7rvvKaU2m83JycnTF8/F6q7ruuR7rdViMZtO3282jdI4nS/6vnetm06nN27cfPLkybvvvs082VQrpbVJpqoqQeCbpjFmYNoLKC2HwHbvhxBIADA1DmWMqIB0rBQNVqpZlo/kVVKKJGq2XZfnOSMcHx//3f/mf+M//k/+088//3Jnvph98B2ttZA7R7BoQKQFeJtOp/JG0oCQMcVtIrVNAlJKwOJMkYqi6LquyPIQ3NHRUQrh5ORks9lUTbOdqvLeSTMVxmEkHGbEmYggyxRCcE6PHTdZP0qsP2UZyFE8XjAiJoTptIxRbDGRIdpMh8bVdW2MYSCpFGWRSEkDALPFYrZY9K5r2lYsK6y1UVSBGSTKYsQYmRR6HwQBJiJRakyp7JwPTuj6HEIQ31wASDzMLxVFhjBIAD179myxWABAURSCosleyLIscui6LsuKPC9jjMZgnucyNIXj4PuIPSAAKNoXtN/7CACZtjFGgqQ1aT3YaYgWTVVViIhKhxCMQkTs+342m0XX181md3d3uVxuqhUT3rhx49r145cvX5ZluV6vTk5OlNJKDU3rlFJVVZIi2ywpNeAAzNy2Lf78v/2/M1lRNfW16zfffu/9pm2/efCg7Tqh6QKA1kppGYJHjun9RXFy8+Ynn3/RMs6Pji83zdnlctO0jMZa67ouy7IYvev62XzinFPavqkJEuXQCXF7UxSS0kiAMmdN6vXUBA1+LYMojHBqNpsNML7zzjsXFxfW2np9lee5j+yCj8BIxAht25EeHNOcC4XNBuSTiN9wogjeI6LWhAxaa0NKa230sNqSDzHGi7aVUy+zdj6f9n3fNW1eZMbaspwgYkgRQfkU67p2zgXUWyomcPTeK0CZ+4aYtNZaHNDcAKfXfVOW5WwyFQfiAXtU1PV97bq264ZxAqWMMcaYAg0ASO/We++CT6PK7vYYUmSEQaa1DhARURhYxugUY3QeAKw2IbjXaYqgzYjGqiTGgoyMkBKnCERkNHFMyKm0ipANwrQslcbYtgIxeRelgAshda6XFFUygKbrqqqSqrdAE2IsiiKEYDIrIx/iGJE4WKXLMk8pBT9I2lIfrLV7e3shBCLUmV0ul4i4u7untI4x1nVb13WMUWtrjJnyxTdf/uT5t391UJJqq7huDnfmfbc5Ot7x0S+rrnM6RP3u+++D8g8ffd2qHgNgwBzt3nz37rVb0YfonTGqC43JlEtdXVfraiUjHC8rE0Ig1ApQAifH5H2/v7ubUmSkopj4kNbrKgZARMpaeYLycfq2+8M/+rOb1w9/8Rd/0fdO6EjGZNIWzfM8xChVXZa9NuFJKUk4TKM4JQCIg14MQ1xRSgXvP//887fuvV3muXPOZFnXdcZkpAeHTSISaApHSsQ2MZWTPY3iedsONBCkEAWv4hiI6K9+8hff+973jo6Orq6uCMUj2TIzMDVNY7mYzW3vlw8efvG9j76TIiHk395/VuTTmzdvM4fdvVnX19WmzrKibXuJ7ogyHp2H4CRFcM453y1m00ePH26Wqx/84Puu7/u+nc72eu/btifSpFQIaT6fN01LWuOgOpAQkrTDGFJKWm7+diITRss5+exEpJSRaO29F3jYWlsUE2Z2bsDkJ5PJp59+8gd/8Ic7O7O/+bf+xuHh/mRSxhiTC51zIt4uAw4JWDD8siy3NTcNOthMpETcWCSDZHhX0ME49sWZ+enT59evX5/NZhidiHzJMLEQqmX7aHotKi6yVlscXtqrkuQNn5TBOSf2zzgSXLIsA0RBVqqqetPMR2stDpsxxouLV5KQrdfrLDdlWaYIos/Th3hxcSELVSPJN1ab3rUSIJu23eYiNtMC7+8udiRsC9osnXi5RYRRwBj5sMwsSMnu7u50Ok0jqW0rS5lGEWwpzeWurlYrGU2eTqdCOpNH4L2PiYQrACgSHIljYh4KQiIqs9w5JyLQMUZtC4GIUkrOuf3dRQjhyZMnhJBSWi4vOfiTk5Oj44PT09O2bTM7U0odnhynyCHF9XqtbS75XFFM5LMMwhXOa61JGVNOJ7/0S7+0u7v7/PnTEEKW2TzPU4jWWkTw3mtSBNg1bdu2Z69erdfrcjotiuLVq1dnZ2disEwKhC8uo12T2bTre3xjyIGZIwzTR2JKBQPgMfKlY5TsQ8AcREStbJHrzMq/Xr9+PaV0dHSUZZmIGSGiNbm2+XQ6lSoBALYDkdPpVMLAtkTeAl9y3mVZNp/P5de6rpMDiHmg/nfeta6XlbdNo4qiyMsCgTabar1eb1E7GUHe0h299zG4bVYu8+BlWQodTjIg0QkSlgGn5Noh1nZdd3Z2FkJIPmyNwSURAebBbdsY2VfymtKOQkQxbFcERCA9Pk2EzNEH5qSVKmxmjKFRf2BLw+GYZGap7/vtR0ghxhgTB7GuYkjiA5NSCiklYAAwNu9dWG/qBEzaMJILXmlDSjOgj6lz3nufYDBfCuJVHkIC9t43TcM09LQ4xL7vu7YFZquNURoZ5M+6rpqmDiFgYtlIm8262qy7tk3RKySFFFxfrVebjo9vvlUuDruo2EwhK+reG1u8urjcPTjI8nI6nWpNX3/zZZFnx4dHlErXo7aTAPpiuXl0dgq5SYVxhpdd/fD5UzJ2b//oYO/I99FAVuamsJYgihITEQGxMnrT1hEBCDrX+NBmuSonRhtMEWShShEznU6/8969p89f3b9/f7FYyLOTTSHVEo8uVXKfR1SJt0eqVCHMnBgTvJ4jkkh27969R48ekdaolNj4ILKUUNtWpeym7Z/pDfquGhW1tn+V9vM2Wltr79y588033yQf9vf3kRgRox+Yrtba3tXeeyJ9eHjy+Wdfi3DgzZvX1+vVq1cvtaGqqvKsEFRZKZTKWy6jbWsaVUrKSS7zpu+8/W7TND/+8Y9tllmb13WtiZhZ9DestVdXV9YahQM7aXv9zAyMWZbBGw6JIj4s4CeOzW8/GhltG1UCXw/gHEDXdU3TfPDBB++++9b5cvPgwQMiSom993HsBcgLChWIRxtKOVKG3ZSS94N9k5xLogiGY9Na7uF6vVZKXbt2/Mknn4grkQTdqqrEVV5odzJbrLWWGZvpdCrugYvFYmdnZ3d3d3d3V6Qlp9OpnBKz2UxUQieTyXw+XywWIlIhHzalJNxtuQ9VVTnnnjx5QgSS+td1jYgpQvBJINzlphKurzQZ06iF4oKXk1z49hK6ZCFJHSl612p0DdnSFLaYjfyTsJkmk8lsNpN69HXnwhip70XJRz6CfCNFc13X6/V6s669i3KFoogpscaJM3AI2+RVTni5GGttURSSCcnbyS/Ig0DE/f19eQQ7Ozsis3p5eSnvu31lpUkeMWCSuyEFj6wHOWZjjDoini+vpstFnueXr66en50mGYQgmE0n3uu+7YzSMfmyKA4PD6fNKsvzg6xIWqeXZ8u6S0h5nrfOE2qTZUopIhCWV1mWIUQiYsIYo2LcFr4JeTskKpN5Q5Ws+M00XKp41INBUBajtbYsy+VyKc0hMrrrOm2N977ILIeASIJXDIy4xGGIFwO6NyQBI58Qto0xQqUUDlMKrBQjkh9hK+fcarWSDZZGNxUpLLrWVZuNTzHP80xJNcDMkZkhppAYmLUmq7RSKgIoxRJE87KomqoLrTGmzHJI3HWtD/41ixVIdFUBABmB0VrjgmcvJwzLzpGCPsuyLMs4vh6okGM3JcnGou/6CIgAubFyKIfomFli9XBeADMBc0JUADJzBQoJOBGDON8lTkLjSqw0qXJaeO8jQ1U3nXetc1pbVho5hZAYYkgJAIf9pRERXfCgCBP3nScaxsCU1tGH4LxmRqViiNG5crEYUtcQYggx+SIzCjn5wIBKo5wOKaW26eu67qAgTMe3P3jyxV9haoNLqDFByGz2/OX58bWbV8vGM/fr9RdffPbh9973UD558oSSDRyY+Hyz8ireun2DKRqe7C4mPVMKWBS7hzv5i2cv7R7pDDlxHzwY0tqwTz4kH70CrRiDd5BwbEp51EoG5ocHkeDevXunp6c/+/SrnZ2dw/0DZpTDd4AxUpKjKsYkOaVk+q8PKaUIAQhjjJxAnAriIBbt9vcOllerJ0+e3Lx50znXdV0xKZ3rtSZE9DFwHF6H31DLkTi0bQy/ydIaGECotCGOIYRw/fp13/VffvnlBx980LYtJyyKwvfO5pnNtG/hcnlxfLK/t3vkXXz08OmdO3eU4ju3j588e5HYHRwcKdUvFruXl+chBCIrp6pSigHkAJUDa7FYuK6tqurnf/iLP/mLv/zmm29+8IMfvHhx6pybTIquc0RaGyPlII7D0wDIqAZrOuTtP23xfKX+Gv2YRxlOHCii4j4bh2G/LBe0f7VaKUU/+tGP6rq+f//+3bu3b9y4QWOrngdrRRVCSCFGIvleUL22bb33EpDkHN9WmQC0reGaqrJ5Pp/PxSV+Z2f+5Zdf/vzHHzZNI2m3tAbW67WUUM57EaSLoxVjHJ0btsDGawRR/M00bgvu4Zo1euel4tRaS+oCADs7O33fC61VSmStdeJgjZUXjzGGELdVjcx8q1H6FHg0p/FewvB8Pt/dW0ikNEpLUZSG6x9Ane2fYj4t8XL7w81ms7e3J07MW/hdLsaMBs/OuaIo8jxfryrXh4aa8T4PBtKAThZYlhsAkFJTa0opAUoW2MYYs2zIkHovMLCWG9vWG2PMYrFo6krS5el0zhwFnZ1Op64Xi9tmMpkgUZ7nLoa8SCkK2pS2y09qMw2ZwYBPT18cHBxUbQVMWmvRwUnBZ0rrogBI3of5fH73xq0FHZ+dX8z2Dxzgi9Of3rpz99677/+z3/uD5aYqC6O1JsSyLF++fGmtds4xqcRpu9u3xAGZqRcveoQ0AK1Ge9dKOikQRxy15WS0uSzLs4vzPCv2Dg9C7/q+14qarsUOs7LY3duLMV1cXV5eXmZFsV3fEp9EEUYGBJVSkiQLNJ0AhYze9J0KirZaIqNi2Ra02VYbUsuGEDrXuz7IoiGiECMOFvcEUVwKUHA/MlryzRAhhSgRHYXjCqhJSSGbUsryQqgDAKBJkVYcE5FGVEDYtx0P7hQgO0fWawrRw4AqE2D0IcbIwERkFBEMzgkQUxhBSEnGRbu167pNXffeAUBE4RzIR2YNAAwKAUmR2Pgl8DExRk7RFAXE1HWu63tmbn3QTF2IkoohIqMiZGBi5sARGFChMcPsaRqIuNGoXAFreY+YEDhTqswzyTHbtvXBrZcDPmmMcSl0bUoJtNbG2swomhQbRxzMyc33l2dnm+ffzmY7GFoXm+RTotB0/ctXL1NK164fn56++Pbbb2/f+LBbVevNssit932M/XrjTi/VwcG+ymyW5X3rfFAhcj473DlUy/aJUmaSGWTofGAi0ApTTJBc8ABJEQAk37VaKQZWairtRgZQqESd8ed/4Yd/8i/++M/+9Me/9Vu/tZjPLy8vRbfBWivcPzUKL8BIgWZmHwMnNoTGDK24GCMzkNbJeSLVdb0z/u7du5988smrV6/29vbavlOjP09IUfJfeE3Oeg1BSXBKb4wRDuVyTM65Isudc0ph13VIfO/evfv377948WJvb086L9sDZboo10v38sX5/v7+/t71R4+/PX3x4saNa06Hw/35xcXFfL4jG3D/8ODp0ycW1Xw+XS7XsoyluLHW+tBLXPfe5/nsOx9+8OlPf/bZZ198+OGHZ2dn0XthOa5WjTEmJZCYxOPkFZKW6tz3A9tFTm0a/TTfQID4TSTAWrHVUd4PpkkCYOzv719cnC8Wi1/4hV/4L/7L//zrr7+eTCYnJye+d1L6C+YsGp+CMElJJBW2BOMsy6Sqk1ChBsvYgWxcFEUYB8AQ8c6dOz/5yU/u37//9ttvb/PpLaA9JuivOS5yysnioZHZKsCiVAMAEBO7UQlywHIzHaJLHBBkyUVm8F6gSizLfLlc7u7uIvFsOu37XisbIyuFEZhiRMTM5mLZXBRFpo211lptjRmqYe+l/y0KnSEENTq3yqlFRMyD2oZSyhqNI113W+kK9Ng0jTFmZ2en6zohqcUYl6sVywS9JBAJnI/aZDt7Rs5GUewS5KP3Tisiot61gEkeTd82crvKsswLK2w+53yWoTEmV1YKaB7tESVZ3N87eHn6om2dKgqNGphk2rAsbdN0VVUZY4y14tZKBUklGQatG0RkFNMaUDrFBICJcb3ZTKfTEBMSc/RNtRa4nGNCJo5wcXGlJjSd72zq5tunT84vrtBOWh/XdTWZTIAxxkjGlLPpjt8LwYno1zYvk9Rym2grpYzSSg1GYwO2GRMDhpiatisAi6KA9Noesk5NZnOxuQAANKSUntv5qtr0nfvqq69NZieTiba2qipr8zLLpaPDKWlrZVXFGIGB3vDRlJseQgrBbVPpbVIpqFGR5+K7IugBEbVtGzlJypJlmU+x73sZpNkecCgEx5EA6WLAxISaCb3rfRtyYwwpABD6Rp4XgpZQJvOgIF7TwIMi/6qqrdXbYZUiy8WygkC43wFHlw+ICREVKWBIMWqlc2OHtsfrmWwrx8Rw0CMKZkhCikaKEIlZmEGaABGIKCZIwC5EH5OLHHjtfEwIIaaYkouJDHjvKJKkuggDfUMrE7lv+04p1clMrc2IaD6ddl1jrcVIWqEh5V0PCbZlhFIqy42EYQAgZE5Baa2NkvuvtSLSyRjMba5mJrQ3jm//5NsvDw8Kt9mUWXZ1eX5y/fjZs2er1dXp2YvDo928sOtV9QIfvH331jff1E27yY3ugwcXLp490ynu7O03VY1giJCUXdXNzslJ++Rp3zU6n0zLsrvadF2XFxMyFnxyiRFYawMYIXgAVop8iEQKkUIIoJRQN621v/6bv/FHf/jP/+iP/ui3f/u39/f3X758PpvNnOuIXk+YSIKYUlJGszTyBmZWlCJHax1j8t4rPUAg3nsw5q133v7yyy+zIl8sFkJZ6r2TcE6v5xReV0hvoq8j4vPaMgjGDpHMW7ZtqwDv3Lnz1Vdf7e/vLxaLs7MzYzJIQZOOkLKiWK4v8HK1mM2vHV5//PTr2Ty32mjD1qonDx/cffudrtch+cPDw/XFOvkgfrTeAyL2rs3zPLHy3mdFHr27vLzc3d19+933vvjy8zt3bl2/fn25XIYQ67adzyaAKqVh7mh75ZLSbT+glEcwtrrDqHslMM/2I8sNl4CqlKGBreMR0XvnvZehr1//9V/7yU9+sre3N5/PjVbGaoYURlcxSS+6tpvMpjHGtm2ZRWxLHOGSYI8pJUnZmVG+V0pp5nVVlWUp8enOnTt/9a9+PJlMrl27dnFxsS12JQEd0NpxuGd7ZG0f5RbhkAMhAXMI2xuiBlbs9kBOW+QjpbBeLwXd1VpfXL66detWGmbToe97UKSUEq97ef08y2WSW0eNiIAYQxCa9DD84rvesUTf7cELoz3G9ilsTzbBQiQMy6i3Mebs7Ew0zqT2QETvIxHJtPpkUghKLzdWTo+6bplZKWOtTUm68PDmCc+jHWff90isR90I70NKSduCRuY5M1ubx+ibpimKQkR12rbuYyiKou88cz2fZczRB59SQBCFxEgA0qJmiJxwRCk4cdARyTNYxJt37yzXq2q9Wszngp1KKppSComFkfvy9BXuZvuHh9oaZbKsLC6WV6u2EfGKatPIDV2v12VZnp1V4kK6XZcM4KXSBZDZfLZsmQGSLHTvPdFfQ4al8SCVqxCX9vf3Jfo656bTqVKmaZrVcr1/eGC8ka5J3bZ7eweGBkW6Is9jCFJSpxQkEdN6yH/lS49GVCCyUEAxwZtGSoKoiP+3bNQQAmmllRK0xKcYY8zybNtUG4S4lNKapLSVRzuwAEjqGI7AmBIqbYzVmgExIgAqVEZBTMAQeAjFGIlZSmHvh6REk+Ioww+kR7F+iAmVyvMc/DCOJaA3jrz82HWCxQtgIn3flJLKctmug2tKIqCkFAIwAXFioAhMwBwDJ1EyIQ2KUgjOxwQMpF1IIvscMEJiQjY2M1rnWdajJ8dGk1ZoTW6MWa/XV1cXk6JM0UNMRhsismIWxIAcU3CImGmTTY3MAMizEPoSjYRhOUkMaXCuyMz197/TvvwqVC/KeQah39mZn718NVtMq3p9cLD//Pmzg/1jRen5+Wk5nx7fPHn68EGK0TCyZ8XYvFrtl4u9vKybNoIH7bX1TffqcP/w2dMXXd3lpSmLou3D8GSSVhqZQ0pAoElZAEyRI8QtxDrCOaZp2slk8lu/9Vv/+B//k9/93d/9r/2dv7O3t3d1dTWbzRgGlwKlUKTlmDmJIxlqZV7DNvJAidQ2bGga5jQWi8W1a9eePHmMeHtnZ2dTD/0zIoL0Whl0W+nCSIp+nTWODWMzqgUVZYGICRjQCsI2n8/FdHlvb2+5XAq9kylpq/Z29/vGL5frg73ZzRu3Hz14+P533taKFzuTp0/Onj59fO3Gdea4f3QAmC6vzuezHQew2Wwmk0moG3lfATbX3i8Wu+v1+vDwkIj+7E//9Bd/+MO9vb3Ly+XV1VVZTo+Ojq6WaxnNiiOCuv1o3vc86rEhYgQO21xE2iGI+Lr5jSkk2eDW5gMTBYmIvHdFUQDAcrm8cePGo0ePnj9/eXR0dLC/J2PNSpMPzmYm+Ch9PgL0KcXIEizfCG+v55VjjILSmdH61yi12Wy01vP5/Pj4+Pbt2z/96U+999euXZMwsO1zy+uIB5p8WBoJAWNexW/mBAAQX9tkDUHIR0ejmURKQX68RQ2996Sg23QhBDlatULnPGkNjDiqp8lpLBUnB0/D9HAXY/R+GAwT+ggTSQdUStLtPZFzOMsyEepVSgn+LIRnGLvCKaXVanXr1q3Hjx/XdZ1lGaCS/aW1FqhfVC/63m810barXdoBKQ0nxhZeejPiJHwdgJQS1D0XuBEGmlGSuyHrwfu+7ntlBx6ZpCwRhE3ttktMpwSIgShBghSYkYUXebVah8RN66qmNVkGpIy1IYRyNp3MZzYvGZWPHBK0Pqzqum77znkfk0CvSmtElCa83M2+78/Pz5erVdO2MQzkEUDkcb5wSOS3+gAxppSQSA6IyCkBoyJth/RHVmff9wl4Op8JO0D4BUPWiWDzrCzL3f09wSUW04VGkrJS/owxNlXdNe0WUhZgoe/bvu+lwgYABAVMKYJQybbEja2hUNN0MbK1OZLWJjP6tYCOHIgpxhQjp0Tjrn69+od37KWSk3a9REFtM2MzJIopRWEzyVZQJjKKbLowoISIv50FlLe21hqjJRWAmCAGgKQQFELwvVY4KcvpZCKbvG3buq77vm/6rvPOhdB733sfmZUxIkpJgIholDIKNSmtUBEAJoZR4l8REIrblewcpbUYO2gjI8EgpSpwVJwUJwwBQ7h2eHC0t2uVxsSQAnKcFJlwF7fujd570mo6nZazUlnTBy/PSFgMsmemk4lWyruuaaqqqjabTdvWIbgstW5zyV317ec/a1aX9fp8VprdxdQSzsrJy+en+zu7u7uL3d3dopj4NtFi+pP7X/WAx7fvOVaJTZEv2FNo09OHT7j388JMVIrd5SwPllbzyXyx2DXKcODC5mWWU2QI0ZJSoDARRM1JQ8o42RD19rzj0TyHCa21dV0ngL/5N/9GCOH3fu/38jw/PDyULG2bMNEb80JjRfPaczCNMIac70Tkgk/A1tqqqm7fvmWtffTksY9hWwltj2/86xA0/VdwaR6/tgk08FAOKjJM6Jy7ffs2M19dXE7LSZkXwfm+bbTN8rw0mS1n06btfeTDw+OimHz99dc7u/OdxfTuvZubavnixbOimLx8eSqHXUzeKBQuXgihrRtpLspASOTkQry4Wu7s7S8WsyePH3ddt7u7u7uYV9UwTio+yrJng4/BxxSZhxGjTHQYhE0pULAxAwFqBBXCOIYEMcaucyIVIvtLBsnkoC/L0vXhhz/8oVLqq6++OT078yFsJfkAgCExs5SDHIdXBgBxIJXMRl5tBAIREdu2FRwbADJjgnOi2PDxxx8fHx9/+eWXchYN00Fj/BiQc8Q0+vtunxoAb8tKGg2v5Nznsc0fQojRS1W9Lanlf0nZiogSxgTIJRoQkTF1GBaPhAA51vq+r+t6vVmu1+u2bSU7lPx+u1yzzEhzSuKFQMpiTyl/CjtMegdypBORhO3tbDeOrXe5ac65q6ur589fnp9fvnx5dnFxsdlshBomvyNvQSOzQVIQ6dNtARJjTFEUJs+2ly14ZExeIsI4qKZSSsHHLMt2d/cl3oPSPkWpv6dF6b1v2zb6oA0pjZK+KACIqeu6rmsEScW3/v7/SSjBR/t7COzaDokXs/m2gdF2zjnnfWhd773fz3Dv8KiPYbmpQBtbTi6XS0YlPVSprxMHQR4Sgm87IsLx0W73NiKWRSGfRAFL8xgRq2Yjy1Sq3slkopBkjwktvmkao9VmsxH5qtl8kVK6uLiIMU7nM8mAMlvI+nbOmdGGzHV9URR1vZFIGTmNDCbz+kgaXUe2GSJw1MbAOGsoWeq2kS6BnIhmsxkoqqoq9EE2lbIDJRvGWTRBThhhG4+ttRp4Wk4E55fV1vuw3mz64BOpNOawWkRzGAqN0q4T4880mKlRkeey1Tl4pRQByqZSPGjGJmBCzcx9GDifkZOwKBFZ8iciQtCcEnPKjDLGpOA5Bf2G3RtphaCAUPpkNnHTtbPZzOSZ6M9Jkui9B+bcGoxJIWTKQArGmJRclmWgNCL6kLz3qIYhgcxYRcDBB++tNbvzBQBADEoPNEWNwzlrBunvYQQLAHoX5PoL5W8dnRRI/59/+B90q0dHuxjbK6P1s2evrJmwRp/6g8PdpmmvHd+t1/0F9QTomvbde2/Fzr14+syQSiEiR23w4GDn2rV972qGnsAjpMT7WuvVul4u1zGRC7F3gQmB0HsfYszzkkh7F6X5ELDe5j1ydgOAzXToHREhAxH+xZ//OSL/9m//9mazqZq6LEvgoRARnov3XhvxqBGi4rCPIgyI2XQ63Ww2co6MLc+otf6zP/uznZ2d73//+6enp1prJJ4Wc1nGb4bbbeXEb8hvyZdw3XNru66zmUbEFLzzXaaNvNeD+99ev3792rVrT58+zbIMckNkIVLfumlRBt95t9lZlN8++HJnd7qz2GOk5aq9utocHV/fWewZStZa8ajAgetkYoxC011XG+99lmWXl5eSv9483n348PFkOn3vvfe8j6tN1batMVliRESmwSUXBoqlianbllnbAEOkt5UivFHxp5QMyZ4iHvF/HDFeOX+NGYjoRZk9evSo65oPPvhuWZbCMpHwUJZlVVVFXiJiCMkFT0R5VqaUgm8lpAENHgzSvU6jIjczS00sj2mxmFlr//RP/zT68Mu//Mty/sgJuQ35ZhT6VUpJC3sbm7drRk4h59xADmWWdZXAjxCAkpCjyKSUhMrUdrUMTTHzZFIgousxpUSDlme2rZW1USLKjSk65wBT9EFQXx4762MHNDnnRL6w74cCV5CAsixj6Ijo1q1by+XSjz7rwgqSYeKUUlmWR0dHq9WKmZUphB8ud0NYyoJOa61ns5kkUsws66osMonfA3kzRFGSGBBNBbPZTO6DZF1b6IIT5nkOKYkDsQgYW218cBcXF5eX53mer1arxXR2cHBgjFrXFQDMZjNr8xjjarPOskyR6fu+bTuJO0opfO9/+H/Lsuzq/MIYNSnzo6Ojy1evcBTlulwtJ5NpTOn8/JxJAUDmqv2Do8b1Een6nTur9ebV+aVPUSkj90sryxB75xKCMSY5L9zOLR2RR6W9SVkKwUHM7RFAKeW8DyHE5CUZGVTjw2A0JsFbq4GrSUSAJH0p7700F2WjFvkkhmCMmc1mdV2LAxciGkuI2LW9Umq1WjGKnGxJRM57Ii1ZsGDvWusY3Gw2S8wDwMK8xYu2YRvHMSdQZGhYZ5I9BU7y+7KBI6dtwSHVDCc3KYqiKKIPxmQhhJhS551n8DFETkopQo0MKB7awROBMloyJGZOKfKons/Bg1CXma21k6KI3sXIyughU06wqSullLJGOJl5njMPcwiGFEdkToiYW53bjDlyCpKKSQ7ECIpMArY2Z+a9SRFjfHV+vrOzU86mV1dXqMgYFZzXhNYodoFSzG3GUbY3Ou+zLAdFpIwLSVvjY5A812hSSom+tLhEF0YrJBnZ0gpjjBwGOzwY3UyJtJxWVVVRrH/h+z+PvftH//F/EJvnf+/f+I3/+3/4fz3aPyAsNpVH4sdPH9y9dyv4ZHU5newu+0tmDs4DwHvvfefsxctVVW/pstPCLmb59eM95N73Vei786vu6OgEQVVV3TSd64OPwTkHpIGwc16pDEnHhJFVjFHrGhHTaEkUAxORtTYFJ0jGtCyVUn/yx390586djz766PT0VNgcAEQD+XlM3YCICGmQVpUIIWmcrECZFRFPXxypi3/8x3/83e9+99btG1dXV1prQ1lKSZY3jDJYb0Kgr8ecRGpKETOD0E2JJQDHGAFTYTNrrZhefPzxxzHGi4sLVc4BoMjyvuus0laberMqJ8a76umzR0cn+wcHB51LF+fV5VX17jsfEHeyQ6XY3dS1c45IA8DOzo7NM+ecuOsMiCh3s9nsm2++uXnz5snJ9bZtN3UDQHXb5FmJqAInRRoAIsv8Onddd3h4+PDhw/l8joiilbjdPlsa4FAN+yDQWhiHTfmNQayxuzRI/WitX52/yLLs+9//fte13jkeKVFt25bFZLFYrFarznmZndVaKxrUWOWR9d7JsSbNoO2qptGqT8QfrLU/+9nPlFIffOe7QksWJEMqPCEoyU9sNnwuoYBsk48wugSO0W7QtvShlXi0DUI8qkgWRcEQ49gFj9Hv7u7WVViv14vFwnvPMvUrbruaQggaQWsNmKzeKiMJuDJAKTFGmYuDAVVWEjKJqOucUkor3sIV4msnx3vXdTKzJ3fp5ORkrCKUxAhpW9DYJhdKjXTWRXNDDVTcoXzHoTIJ286gPPTEYQsvjbAByyEs68SOpZ3WlOe5Qqqb6urqqm1rAOjqZn9/d3d3V8ADk2cyi+xciDH2TmbNBy0KRKU5xADOKG2Uqqv2af/c+e74+LhuWwYApJ2D/dPT03w2aZpOKTUpdkCbX/3hDz/54stnz55FgMlkcnZxnmWKGJg5ok8RUkpRMJCUYoyA28GModKXD9m2rUaS/Ahk2FGRBq1YEREnjCOpT+Kf1HYRBldtrXXXDyMcRKSQxF6wzAtEtkVWFMVqtZoUpbh2EFFMiYgYEsPQ8OdxyFJmh2Q/xJFwiJJLvsEakF8MnIgB+PU4h/xCUsqPCpqSVHYivqgUA7GAVAkAII1uxX0M0PsQgvaDtGdEUMYSKtEHThwgoiTwIjwUnJdBbaUJAWJKzjmNQzUjGlVWayIIzIwpBCc2OyExKGLCXlzcvA8xEo4GpQRGWa2tQvlQERHFt0rQmzzPQ4qckBiYIxHt7yzWdUXIwfccs9xqa40mhbntqyZDLOcTg1gWhVEEAIvZrO97IP3g4SMX/bScbNqOtOq6LgIH1lZ6MwqBMQJUTae17mPqXbCZzm1mrUHECH2mzXQ6Nca4GKqqqqqKCVu2nz95cTSbLU5u/fhffPKPfu9P9PQIih3nkQo0Rt15Z0IKZlPb12FT+x2reu8jcdt1p0+/vXX3XvXNN31M5XTWdu6y7fqUTF5Oi0zTglXO+mVW2K7rkBKgL0tTVV1use1qVCo3tu0aRlOUcx8YQKUQtDWG1FAB6GS07bpOIyVOSqmqqqy1H3300V/91V/t7e0dHu6/evWKmZkDEQBjTEO1isAx+a7p+r7P81zm1yGxoAhyfEgzQviidV0vFosf/vCH//Jf/su8sJOi5DfsCDebzTZIi0EbjiM6W4wKEX0Iog3OzMGnxAERCVHrDJVh5sXujnPuwYMHH3zwQdd1qzZMZ6XzXVla50LT1SYr2t5lprx2/ebTZ99OZyWhLcs8eHzy6PG9t66vq2o2m61WK+EfCU8NYKAaKTJEg25PjFGBatv2zp07L16cCqFaay2TLYkDMgOSZGMwdsS3OCoza223Ff+23H8TgddabysquSdyEMvGFyRGYBg5o8vZVCn17Nmzu3fvBu/qupb0vczyhFBVVRqVMeSM6vu2bVsJMN57Fg6dUjJUySO5xA6M0WHrhRA+/vjjTz/99PTV2Xfee//8/FzGCOVhycBnVVVaa0TLg9RwJB49YUeVFXo9oaREi1hpxfxazhNBbbs8RKS19WGYrwWgGGNZFl3XxhhiDEVRSLwXEQWIKSB77zmFfhAGRgKDCraHv7Cs5cpTSkoN7XCllDFKEku5eN4qUXsveWFKSYD9tm1PT09v3LjRtm3TdF3bpnF+d8D5jVHCetGaiFJgADBKG6UREjML+ZeIQnDbBEvyrcSBBr+mgRs7hOGEAhOq10y3cYBQaaEgNE1T13VKaTKZTCYT7z2H6LteZ9YYxcwIQwGmtZakR6fe933HAACDXE6RT3b3Dmy9ubi48CkK+BOchxSRsG5828d11VRVtVpvXPBFPtFIyQ8ZVkpp0DtDYEBFg4IE4l8jZOGIRSdOIQQYLRNIrg5Hc83AMTop6YTCTloljgJ9bB+SoDcS9mQeoGkajkkh9W1jFHnfI6LWmbFW7iMiaqOCj8PYg49a68RsjBZavJQCSbyyxu3KjAkpMCCqwciPAzMHHsYogQc4d8vE0zyQlqUrI68TgYEBEROjcyHGFhmSUjFGIKSxRcFyGqbEHBVopfQky1NKLgaGpAUlHuE1Q8gsHSgOIUQBlBBQUYyRgRKwk00r7AOjU4ghBDGLlsyUQlKjd2SMYJSM0EURxRwSHW22WWRMAVLUWhEhhFAYM59NNalqs4oQY+8T8GRnsZgWyMAQLWLnnMrp9q2bp+fnZ5dXymSgFWlLAKjIJSF3cU8xOq+VUimkrks+GK0nk7LMcpmEWjNfrjcyzyZ3EkkvHb54+HK3WM6Pbhy9/dFXT7/64J33rt+6/fDbR21oLzaVQmra9WwyjV2YTBa8uSonuY+xKIrl8tK80B9/+N5f/uyzpr5SlAmz4/zVpT4+PNzddaq9NsHAvnVtSK7tG6uNj10IQRtV1ZUxWVmUfeQYGkLj+26xU2zWtdZa53mMUStFkAyJnzLEGMvZrG3bLCu+853v/PjHP/67//XfPtzfPzs7U8YMCxtAaZUSS7Vh5/OLi4uzs7NXr14ppYosPzk5AYCmaWxuRflI1r9Mxezv7//cx9//7Geff/TRR5PJpOlbOawF+azruixLPzo3yHOHsXfIzNLL0FoPwG4EIZH6EPq+ms/nWVbs7h88fvxYxJu6s030QWlq+2ZSlk1KMSUkE5mzYn50dP3Bt48++OCDFJNa2JcvLk9PT4+OjqSqu7q6kjJFDmtJmrXWbTsgiikBAmitEFVZls+fP79165axOqVEJNLOrJAToSERt3KESTDJLRz6Zr2L4xePXdU8y66uroQiJHrvMI79yNEZQgDA6XTetu35+dnJjRPn3NnZmdb6zq3bbshrg81zrXWvvChyMA6ggtBC5WyRsBdDlHNcYE/5yAJlbytF+YWPP/74yy+//PLrr9556+1t41MgWWkYb+c2h/yAWUwJ/egOxyMhi8aBb2PNttoTuGVbxAvPSBocEoNTAqKoacBvZbIIEcHY18BA9GSMMcYaZa3tO4+AHJP3Q325bUfKGZ7SwCZj5hid0XabssDIWt8WtbIj1Gj6LqnVcFCntNlsZFRa6FGSxBCR5BDOyXnut0kJSrowRveBe4FGQCb5yLIgt+V7jBF5sDlQAy8shBAYMC8Km2VttQGA58+fX7t2TeRF5frzPG8HdZektEHpxzPrFHtrbV4WKQ3MI+lMOBe894ro/OxUKWWUvvvWXe/9+en57sH+8xcvO+fzPM+p4CRxaEgkU0qREJESQmIWU2iJOgSgBxdCEKtxQwpRhL6H2Jw4GVJJwXaHGGWEYClVKQ56xoCJo/OIJEI8MQStdW4z1/UcUwpRaovd3V3nXJ7nQsVSHmQCT/LNdb8Jg4RbQMQYIiEm5pTC4I8W4c0APAbd10Zvb5bFzByjZ4gAKr0x3S+3dJtHv/mFiAmAQyAijVpbMxTfKQgLG0FE1ImINJIPzhgzsfmQmMcEKKrrEUhvb+O2KAeMmclSQq0pMUKIIEkSDndYckNmoUSxMRqRARJAItJAmKQBAir4mGVGpEmRoU8hzwwQoVJFUeTWIqIm1EAQfOy7aZ7H4IJvXWeufMshzOfz89WmKKeb1bKPg49hAgqRgQa0U0jFIswVB2KcIlKcKAA3LjhfcUpKibAJIwVmJqOrtququtO7ampWfTudT7/3y3/j7Pr1t+/cOthZzE/eSyldnl+8fPnc9U0Kbr1ceW2u2pnt0GgDsS0XR09evCJbvHfv7a+++opSyFB1MdTL8yW7uWFjVSDYbOqmbZHpq2++3Ww2H3zwwWS+iDEusvzy8nLTNllWApPWdndW1Ov1Yj5rmmaz2QhWJq0s551kjU3Taq2893t7e9evX//d3/3dH/3oR8fHh2dn58istOl8l2WZi0M1phFPjo7ffvvtlNLFxcU3X33Vde3BwYEI9cnaZmbx1GPmzWp9+/ZtAPj888+/973vTacT2RcAnFLMsuGbLTq1PeN4gGe3IO2wXDlBgqS1dilJPppl2f7+/sPHj1DRzu6Nq+UFEiulur63uSUw1aaOkbXVO3uHVVU9ffry2tENAjjan7+4OpfhTu+9ALbz+TwN5j8+SetqPI611pwCKr1cb/aPDl++fHmxvDo+PrbWrlcbDQmI5DjSRgGjbz0p0EqlwFbZlBLEJCN3RJgSI4JShCBbngFAQmAchSq3KT6OTDopqQela9JKmaJQVVY8fPiwLMv9vd22bWOIMv2lM9v0DTOTNgKQGmO35XVRFPIuzjlZ/GGUQxkDUmRmkbSUyvjGjRtibnFydHx1dTWfz2OMMmgu3YTeeYlGaSRtcBhuXXqDIE2jEsB604pOFhEhKBwVrSW6S7NZWy3X1jTNfLogBZzEvaMRaMEYI+rc3jmAlGWZQgrRIaI1Q4d7OL1peGs36p4CDCiFHuUyYOTWSGiUGVxZhOKgJUHqxYsXh4eHom8gakVibCW4xZYXjW+QZJVS0Q/ZD4wm2VIByxtty3ExAFRKCfww1IqJiUjJGL6oA70haIpIAHzjxo3nz59fXa1CCHfv3p1Op1VVzedzEkmoEEJIgNK7TDFGbTQChxh8TCm32icUZxKFYp2VLGF0rpzb3Wlx9mJVTKer9aaqqp39vabr15sNEVlrFZEiw8w+hhRZ4lRKiUaXLgG+5PaFUWKeExORGWVZQgjlZMJv0B8EhZGe+SiDmEjsfQTYETo8MMcQUoTMcgyuS5Np6XzvfM/MPrjZbEYK8zz3XZ9pg3pgMCGBsVrQCWWGhw0AmbXCN155H2McOds05A6jj5v8ECBuA6qPQSllM02CACCmN0jL252sGCKIXwUopThE4EGtl4UinoboSCR+ZaiAgWP0ySitNIGCcXJgkJ8ZyAJxCPwydyKzWIoSI/jIClD8B43WCCgoTZ7b6LzrAyQGjDBOwgGAC2k4DTGhQpNZTSpF771XyLNJIZrhklZbrYzSyLFvWouKw2D7aDQpgKQUYDJGh+gODw+vNtXLV+dFUfQxua5nRCUc6zTw5SEBgmr6YBJmxthyookgxcSMlNq2o4nN8tIUWVU1btPUdduHFBTJHu8CK2vK3RueZucVVFXaPdjfvb0fil1DShuoq2W92Uww75qNBVcvz9btld2f3n928Y6an1x7++njh31bl7lGhs36ar02J4eHF8uq771z6S/+6ifrTf1v/pv/1sn1ay9fvqyq9bfffP3lV99oxO99+OH3v/dhXdd/9If/fLF/aHtNkBbzad/7FIK0smQvCMrKnKTj9YMf/OCv/rz/2U9/8uu/9hv7+7vL5bpuNnlWDjRaa5Co750MQy8Wi5Oj49s3bjx79qxp22EKwgcAkAnOPM+7pmXmq6urk5MTYH744MG9t95SoyLgiKQNRGt6g7D9GmItJ3H0k0kw5G3idVnkk7ptyrJMjPuHx8D06OGTG9HcuHHtxcunqrByMMWQlNEpRRcAPdy4+daj+99c0Pnx8TFGvQv7p69Oi0m5HSZJKWXGMPO0zH1kACiKQqYGrLWim53nZdf2106uP3v+dD6fz+fzvu+DjwAQCZKL3oNSShtFgAAk2jjCGNiGoje/trl1CEE2fhwth0dUj+WpybC19FwPDw/rtpmWk93dfQJ49uzZ/u5ebixrfvLk0WQyu3HjRuKolfHBOdchqo5hMpmkFITrK8xeY4wLXuLxiM8NoUhG0bIsK4piuVzOZrObN28+ffo0M/bw8LCqqm2fWAhHhvW2At4GGCGmjBVC3BYDPILVzrkYWCklkRiAmF+jIMG/plx0TR2Cc04agoaIrDFZlq1XK601IhulFVLi4JyDmBgH1v14Kg78shHiHqDgNFr5ii/L678yS/ZARELykq4NMwtr/caNG8KZAoDJRD7463Fw+aTbg9Rau6orolzgdDVOZvJWkXcwhSPn0JhojKnqSl5EEhRJTL3MfYz+VynRNpECjvfu3RO9gadPn968eXN/f3+9XtOo1x0jK0qsUDaZhuQ8Jx/6mMDYXPRAFWV1vcm05hQM88nR/quXL149IQ5+06sYY0JabSoAEOw7eJ8AENI2hdl+KUCNJOLPQw4ihTyiFlgmxF6IeYmN0gDEHGCEo9VAQguzyVTAVWKQecdxgf41601mFm5e37TTohQRpcXRQil1dXXVtq1VejvJI8efHkU+KRIyxIFXjN73YZQH4jcq3TdLXtwqqP314lbWh9gYSA8PUTG/vj8pAQIysQKwSkdAHnRSEgEaoyOz8D1Q8lIGgkQpaq0A0uBewgnodRInb52ARckLEYFoWmRkNKJ3XpYXJAZCVEqLOnRurFXaYdRImLjzjbU5KQWAffDeRVQ6U5pIHAMjUwKOkAIgBudOq4pjEJvhGBmja73zbZeiz43Z3d3NtEoc8jzzoV+tVpktdGbrtprOJ4dKvTw9r+rGlhMvyGdCZiI1sG+VUilx54ML0ShtFCrEzJjMZM7HTd22vZcRJnE5NDbPEQE4L3RZGAvoMbu8bGyRV21YnV7aLKdiv2r7CRnaKW2+WcUSy67r1uXisDp/cbA7zxW4qt6fzQpXtNXKpT7066667J5dPn61NMik7Nf3HykzDcz/6B//0S//yq/efeveZf3w8wfPr9bt1Oo8z2/fuvbTv/jzl0+evP3uux9+9NE//ae/d3l5eXztxtXVCpBMZqV3AABlWdZ1JVMDz549+6Vf+qW/+Iu/+OLLz9979/3FbHq5XAEAxFDO5pvNQAk2Re5cf3l5Ya31Rs3nU63JBa+1FaSuiVHm5heLxdXVFQC0TXPz5s2+7x89enT37t04Tp7EGLf5Mb7RJJLDxVor7Dwe5+MljFlrpKCPCVwfpLLf2T/wiV8+fzqflrPZYl2tZrNZZGZK+cTWVet8LG2RYrx5463Hj7+eFHY+nWRczGaL09NXd+7cSjEKn6jIMikQNRITCjmx67oYAqIBVDbT9aay1s7n8wcPHrz//vs7Ozvr9bptOiClDaU4OLikMLSrhFS13bPbCBRjRCQhVwEAIoi2pfz37Wm2hUnHYmi4J4R6va7KMp/P51dXFy9fvjw62I8xvv322+K04WIgJYUfTafT9XLTdV0ILo6im61YsSklcu7G6CyzcugbY0TCReotkUvb2dkhosdPn/R9L2hBURTSQrbWVvVGjoJt+GRmn2JmLY7i3tuGdIwxxJJQe+9dbHnURYiDFht2nQNIIoiREpAiwnQ430NE5wcmGnOUYbAQlELyKPpLwyCJtuJTjCkl4q0+V4oh4EjtVKM8vlIqcpSavixLNU4Dy0iSBGxZbHVdS3FZ5BMACM5LbJYgp5QSaYo0elYKgkKA8/lcWGOy8t/U/ZBsQL9hYhgHDecw3k9Io7L3JPB0VhJR0zQj98Iwc+9cjPHevXtPn5pXZy+LPDdaF3k+9I8BUStjjJIsEBT+6v/4/zKbzYFovWnrtnMhWZvdvHmzWq2vLi9cUy8m+W/95m+srs4Vp6Zp/vzJZdu2Yron5i1d2w7jWahBMiZAIBQI2o7NWgAANZDNUkqYBjI9xxSig8TiULZpWmZGHNSS9SCbEgZlBiJDSo8eZEN2k3ibgAhcI3qK8kTrut7d3Q2cZO4q9E4eoTGmahsc/UTxjWEDRCRUMcbIyfs4dMVEswZHMGpUNwYhK6UhdWJ4TTtMKaEkidbGOBTwY4weskKtSSkVQ9BI8tY+eWNMSMP7EgEBEoAG0lrnNKDW20jPCFvYStJe0Z8SmH2qCQB8im3nxFTBhciECMQw2HYSMKQUvQMAUinPcyTtYvLexwRiCU5EBBh9T8DWKIUst6wD1qSs1hrA9469K7Q1hNeOD4s8K6zZbFZVvdZaZbmx1nbO+ZhWm+rw6MQl3LQtKHt2fhl5mJICAGsMAChga+0yQZBMKLEC1gRFlpd5BgC+H54y6WGBxRj7Li3mBXEzzc20mPo2dW3ooierKt9FMPlkd7mqEnttojHJ8bxp1+y7zKpcI6WkkHams65pLal5mYGvfbNcXT178fT+V19++m98cGc63+kCVH2c758EIDS2d+7999769uvP/tN/+B9hX50czKCrdqZlvV792t/5b89m85dnZ3/5lz8xNt87PPrnf/RHLiQimM/nR0dHwfmdncXx8XGR277vfX1148aN+w8fWWtv37qzXlfL9arIJ8xs8kKKFXjD4N0ahYhSS11cXVprrclFtHyb3YsEJjNPp9OvvvmKmaVtrJQSNypJSbeFwpuloRlctkTz4TVnWGstCGEIXtzRZejg8uz08mr14Ucf+xh636PG+WLatq1rHbEmUIphVpiLV4+q6uytuzeWcTel9Or0NM/trRs3B6FE5hBCnufAhIjKmhgHWXjno7U6pZQ4BNfv7e19c//rvb29d999t23balN770kbMShLKUEcdscIa78Gk7eZ9FYLi1n8RjUibuueYbuOAgb8WluKvfe2zOu6npR5dD5E17fNnVs3i6LQehhJQm1SSiEmSZ4UDrNA4t1ycHAgH9kY03Stcy7PM1HKHBHagSvqnJMoK2PNDx8+/OyTT3/0ox/J+HgIQSaaAHmEWAFHZi8AQBwKle1jlepNtP+GYkkpxGEYaVsXMke5ISIHzbGfz+fCmyGlRMZZ4qgccDFGEQod3ksZ+QXnHMOQ7Q0ZwKhgr7WVEjalFPyQ8AkwLjCvYKKSD0np2batMebq6gqYFouFPC8aaeFiHEBEctziiEIbY4SPve1owCg1IaFXSkRJPeXXfOil2WyMEe+vlJL3EROnlJzvZKFK0lZVlSVomkZrWiwWF+dnL168uHbt2rvvvltVVdP2fe9BkVYGSMnILv7of/7v7+zsuRBXm6rrfUrQ9n5ntgjeBdfvTCeLSZlrunPzZGc2ffny5R/dP+2DX6/X4n9AYtRM5HsnyjIMkAATYQRmADt21IfwBkxEMkQoTwgSAyYClKnfuutlBTBHNUpYMHPfNtPpVMx8bDbItQNAkeVbe6+tCFld1+V0stls5C20JjFa6PtewRBrF4tFXdcuBpn6kAFwNfpb0cj79WHo+kgAlusHJrH3xiEKxkH3USmRGH2jHh2kr4RrEAaGi1yV1lpnmYkh9H1fZrncqKapmJC0NP+TuEMQoFE600bB2J2SuSYhbb1xOijRxmIZd8lLlCCKVddHBiBqe6eUYiSFINsGkjBdIcVIOlmbJeC29wBEygSGGJJVOi8y17UYg1ZoNeXWBucgz5Kciz5ACBnp3dl0MZ0YhZk1hTX7+7s7u/MHD7598PD+3t5eIiSikJCM7QKj0p1PIcFqswEehiUUDZy+3JolIAAIAACJgaMm0KQUgoj6ykO31gLRer3WnlNqkt/cPDnMzKReumyyU3UtW4xWrZtYtSlEjBhtFrMCYsXMsesbY4xzvc0Lm09SpBiS1VmuFYT6cKe8tj+Jvnry8P7fPUk/+/yLnf1rP/vqwUc/+BUzndWtjxitgv/s//3/uHj+sCCX2rUKTWobq+Hv/ff/Rw8ePfz88y/OL5ePnrxUBpF03/sIsJhP8zxfL1ed84f7uz/3/e9Pp6VOnVLq8PD4Z599ev3ajRhj17m2c4ho8kJgHmutGKFrrQ1C63ql1GQyAcKmaYJPAm7LZJfWGhmlwMqMMUX22WefTSaT4+NjIbBImSuTrDA2CzebjUgZSFTO82J3d3exuyP6vYETIrq2E8TS973Q0S8vL3MFp2eXzHDn7Xd8dH3oQnSz2QTBtBvnmrCYTCE2uXUvXnxN2B+//RtN06zX681qtbu7OD48IiJk3momAxMZnWUFIvZ933YuxpjnNkRHwMyc5farz7/43vc/XiwWIYTLiysXotaaUEdgTIPmuRxBAjzg2NzFYZJebBhkz7JMqQpCtpVj5JGlpQfpIQ8AWZatm2o2mwFH3/WJw3p5hZzeeect+V9t22blpO97m2VirCuM3Ol0enb28smTJz/3cz8XY5RHYK3tXCdettI17PueSMkvSBj4/PPPb9y4IWXc48ePv/7yq9/5nd8RWLFpmjzPlSYaVczejKwwaPkMHLRtN1A6kWOqQQAgwVWY9jAMvA2crMlkAqlv23a1Wk+n08lkkhhfz62FoYjkGEWTR8bz5FDtui7EQdBRAjYSyXCRtbnoVKSUgKPEXaWUUOKZebPZyBj9lt8Agxu0Wa+q/f39lJI0BYTINp/P5WmGEFJ63WEpy7JpKkHdpfwNIUhumlKaTqdCvtvegaqqSA0y6dZaRUYNM9ZARL7rAaAoMyHWdV3nnMPoAaCq1jHGIrdXV1diBD6dTrveex+ZkFAlwBiYmfHX/6f/Ub1ZKkqTSa6taX2s+qBslimb+jZT5NtqWs6K2c5s7+DV+fJn337z1ltvnZ2drdfrbYptjIliFu0cESjAlILR2nuPxsowq3OO1OBan5XFNsVmRuJhrjGlBApgYBwkrbXSVqZ1EgdDqiyy0hhCQBYr1tCrwTfDajObTULv2rbNrBGuf0phWpYwjnI3TaNRz+fz3rWS6TRNk0SjKvgYI5MCxBiT+OP23utEjMDCWx5ROIIBPx9KcPlX2orQDjwCNehAoyHFENu2zYyVRHVaTvq+n0wmyWTLqysAEDckRGRMTdNE4CHGM5BCq7QmhQBaE8TEbzA1AIAUSHMLRoVCOamVUspkg+QW0darBMfRaiLS450nUFrrhpJgLQCQpB/DmBBkzpsIDCnilGucFLkiUL0j1MYWddeXWc7BHS5KG7sSwzTDzGhlbD7bfXFZv7haB8aiwJOTE6XU1eWq73tlLCf0KTZt14cYUhQNTu99712W5QCwqWtrc0DlY0LEFLwiyK2O3msCpVAqOdTGOeerFhVFTrOdxXQ2q6u11RTbTqc0n844RlTmxcV50loXZVZOFNvz8/NNU5NGJIrA4pHnnMuMVkiTLA++t6iODg6Z+eLBXx7fPDblfNnqrg0QVnnmGcrS7P/Df//fe/jn/887B2Bs/mu/8tv/rd/8dX/+Nd79211Ms72drJw8P798tW6fvLr6i7/8S6hOP/n9/3wf4Pa16xd1fNVX3/vhd/ZPpnylQTFptbtz0NSVwk0K7e78Tt3PX14tsayjriiV1JlFadhfaT29WK60MUCYZyZGr7WNAZDy3kertEIf+kprsJlx3js2Ra6/+vLzwtqD4yNbTJouKp0jQ4ZsIbDrAFIxmwegi9X6wdn52dlZXdfVpj442PvVX/plTcoqHQU34gSDUMwAk2z6piiKBw8eGK0/+OA7y+WyaZqD3T3AlGXZxcVFcF6cBAHg+fPnxQSvXbu+WbeujxcXq7t33iKiyWya2HVdMxYrFANOpzNrcicWJsTGaO97Uklr1Xfd+fnZRx99lOd50zRXVytE1MoAAFIeY5RMOcbBkmaLl2il9GiFKSey1kMV9SYqtq3b/rUmGiImhJTSfDKNya9WK+bYNM3u7s7x8fFyudzimSGEoiiFLYVvODLRIDvspXGGiOv1+vLy8t69exIeZC9LYIsxPnv2jIhOTk5SiFluv/7661evXv3yL/+y6C5dXl5OJtne3p7oX7ZtL9S8bbUj7eS2rVNKi8WsrmtDBoCkAS+4ndVmjLusNFptEDmmQSI7xNj3fZZljx49QsQbN25Ixua9NyaTHE5Sk8FAKXp56226s8X2eZx7jqPevoRMQZJTSjKsJdJaKaXcWKVIwo1kfsJIPz09PTg+qqvWWssI3g9OOQPM7kMITg66GGM/Sg5ICiIcq77vp9Pp7u4uMkgcdaPqpxlXiIAoMkD/JmcCRy+mruuyLIswmDN2da2IIKbT0xdt3bz11lvaZuJcjkpra5QyVVXpy6ur4N2kUELlAYDcZpPZPPpgszm7Vqc8xvjy5fPahRevLq1WL549DSkWhfDpxTO5N0pwIVZIQMSRY0qAKJ+t6dpt0qFGVr18Lyy4MNKUZuVkwCtk6SvkhIkD+5hUSkGz1khiwgYMLFTv2aRUStXrTQhBEUoLwSrdu8F9VpA0m2mDmbGKwTJz27ZN02RFkec5OPTeuyhjGCgVRghBkx0gKom+I2i1BZO3u/RfozjjG62mlFLiaJSWpy6rRxZuXVUxRkOKmVOMgKMIlyIpmJkZEyCBVsoYZRRua3R56pBYkZkUpawGAAAGSCz2R9J7GBJPEIB8eAu5YkKNhAmH1yROKcYQhZ1PRusEGGNMIRIDRQROACl57KHXitB55qBC0tr6FAtjrLUne3slcV8ttVYh8cvzi8ZBXk6u1jW37tnzl7K18nLS1J1PMc+LLEMysWn7puuBoskyjdiN5pqMDpgSoCCrKfq+75FZwPa+77vO2SIfuKApaq1Xq1XvXAxu4/oMaZJZTbC3d7DaVMf7+1XfN965Fpt6U7UNc1Qqg8FkceASExECppS8i4Hdpq44ppPbbzOFVefboNuoELIQse3CyY7uk2LKgwrPn3e/prJ8utjN7z5R86Vr1pu00CplczMtby9uHN39Tr85d3369ic/+aYuWJm9WzdWdd8/WR6l+WRvGjlV7TIxMVgVaWKy6vLps6//4u4Hdx58/STPT26e3Lu8PJ9NPbE9OtrrXA8AAlHW9cZmE++bLCtCcH3XZJZsZmIMCYG06V28c/veg/tf5VU9Rau1FdpbHwIqzrKi991V3cx3D9/78N7HP1ACbzrnfvzjH//xH/7+b/3otySlBuFkaSVTVT4E3/VM2Ht/++7dBw8e/PTTzz/4zndjgvPlajKZtH1VTGbe+hBCYlJK7e0fn726P51uFov981dX1toXL168//77bVsXRWa1ccFba5umsyZfr1fTacqzMi8GxNIY43yXki/L8vj4+Kuvvvrwww+NyaSEksJFBKpR9KBlg7wxdCRfRIQa8bUzgSYZngRUSqKCaDiLGQmOlhbADMiAib332pBk/PLWbdteu3bt/PxcrhMR+7YzIzicRjloHEmaUupprff29iTACBrUNI2UvzJXJr0DGNWvrl27prX+/PPPP/744yzLrq6uPv3001/91V/XWq/X6zwvxclYAtK25hEy2mZTi/C++CsMqDJR9EFQbudciM4l1poAQarYLM8lV7h9+7YIMo85vZJBGGlXI6JwyvouyBDUVqxKSoWxrzyU42LItp3C2v7ati+rtRYWcYyBmQX1DCEgEgBcXFzMpovNZmMyq7Ud0fvh4UqgUSL3EbycEhLs46iOGWPkmOqmET/m7amexqakGqTXX/tG8Bv2nVtAJYbBvq8sSwTItFEKnzx5cnFxcXL9Bg1mSgOnXWutSZtMqSwbWcGcog/V8koh5WVhrQmcrl2/cbVpHjx96VwPEJq2zvPSaOo7pwikWkzAUh0mYABOSgGgj+H27bu3bt364qsvV6tVWZabqgohyPDZWD4yM/s0oLiDdiNSxLjNjOQeGU3SMc0yaxQyxxRU5XqFwMzJB22U0WoMJOB8B2OzJ8WIiIvFom/6QVVc6216a60VRH3TtK5pUho8jYzJUkwSdhER8DV3Q4YW8PUX8BtELEREHn6CiSNyTEFmagGAY2pcI5lvn5I0lGNwAMAjGYRDTJCIyGqlSSkCq8hqo2Eg6iml+siBERAzbRQNsLZkyh58knSTAVERjexWQmSpg1Hey2NUY+7FzNPMxBg9c0qBGCExRA4hAClNpABBXiOCTwGMMmSUVghKGzMpy5snR83y8tHjp2/dunZ883bbVC9enoHOmqpat00xmcWECWi1qb1fG2OyLE8MV5sqs0WIzEiotAu+bzrpOCInY0wCSMAi7qiV6kMwWhulOPosK2/cuFVV1en5q+CTipyXRVbk2HWKCAC1NlObpdD5tnm8vOq6rgtx5+jIZsWqrmNEIhA+p9wEOaiMUlZbpUgpRd67LmzqJoQwyyeAKkTeNG5V+XySlaZwXZ9QL6sGQNchTRbq5u1bp5fn7dnD1d2PdbEfidoKtJ6w4TbAykPLi9/5H/wvNq8uL15evDp9+er5p+fP/tV+2Tx8+XT1sx7KqZlP5vP5TpbfPThZPX988eLb67v4/p2bn3764PmTh4tyZ56HVy+ecjZdr6qUgBO8//773rmiKIDQ5LZ3PWqw2rq+7Ta9rI3EyiiMHL/3vY9++tOf5sUsRp5MC46JgQMnhVqXCx/D6aZ92Tx5b6cwxkTvs8z+rV//9ZtHR4++/ebOW/cIFQNETimyh6RJk1Um0zGwcy5BunXn3ieffPKzz7/48MMPw8WryFwUkxijD0ykXYxWk8ry44PDl8+el3a6u1hAhHXdfPLpTw8O9qzdn84mzPzy5UtC5V03KSfBuSaloiiIUKSIlFLe996Fvb2DvvcvX54dHx8LJMgQAQY2DSK+pvX+daLoNh/dfr8tT9/czvzG17CLx+/F0dmYSVEUznXW2hDC2dkZEd28efPi/FwaioPkkxpMXwa6xqgiKae8AL/SA5YAI9FumwO9Tr4TI8FisbDWfvPNNw8ePHjnnXdu3759eLgvJ/lkMtF6aC5s34KZq6qyVsstIqJmcyl6Js659Xo9mUwQQIaMedSBGkjL6nWra7VaSRe56zqZBedRQkT09YS7t9lsFvOpVL0SaOXWbRlP29YAjcpugvEOpJPx5LfWSpOVQwR4fVXM7H2YTqedd9bYxWLR9p0AottaHBmIQGuN4z2Xkndb46pR5izGQRBwazlMRGTMtoCRZyHZAI/07DQye3CkN41RVqcYOu/Kcnrt2o379+8rY/f39wMnQvJxgLV158KssFlmvW+jd6RNbqy1+aycVMurybTMiuzs9OX5qq7bNjAYQ/PFfgjB9V5mkZMXJ2qntSaNMcY4DK4gJL2zM++6JgWfZaZta2bO8zxwkiFu773IrgJAQmBOTVsppVIEYiBOmBg4Cew7bBIW7tUodhrCkDHFqJCQSCFrhXmedx1KJSRxfbYzk2RKmHVbTEZ0zha7O3leBgbng3i3JSBrjQ/dtpzdbjzg1wysN3ep+M7/V/ctYNJaa6UBQHDp3nVZlslvG1IpJZ+S1QYYUkyAoBUq1Mbo3GaEjIkVkkGKrpWEUyYZM62IKDMDv98QKkKIDISM5FNMDPgmYQ1AZvOzLOM45EABWLoAWuu+bocLJhr8HzgpJE5gh0E9MkqchQOzCkixj1qjSanv+9Vqtb66VCl++tW3L+bT99577/pbOw8fPb1c16DsuqqVTin1wEhEXe/WTafIFJNy3TS9D5ETo0pAiVEZkxghOm1NjIyMslTkAFIK27bNjAKAy8tLn2KRT3wMRV4I4oKIikzCcLC7KDOt4hScs0oh83Rq3nn3rW8fPQbXk5mqNKDx0oKChEjIMbFmhQMjI4TQOdf3vXdqOi+BuNIcQqh6ZJMbbV88e9A8fQBEq7WjAKdP7k+6pfKbq1W9P91PJmt7V6KZTCbBxdPq1bIHp7RZ3FyUt3bvdL/A3/t7P/pf3d3z66vl4yftzz5/8uO/+hcPvvyTq9OXp5/9DBx88NHta7ffObvyq0atmmWZu6nlyOpFvT47f7W68rduHF07vv77//T37z98cu/dO2j00bWTcjKJMSprlaHgY4jQdf3efOJdE7W6efPm44cPvvu9718tr7KsKKxJ0Vdda7IMbYEKXeRXL0+n0+lkNvVt11b1W/fuGK3Xmw1MQQw5UASMMSYABJTwJLvs/fff/+yzz7788st33rp7eXmJiHmeF5Oy67oE0DmX5/mi2K2q+v63X3/0vR8sdmZFUTx+/Pj/+1/8k7/9N37l3XffiRD39na6zgUfxeWNgzdGq1GMVynlPfXedW1/88atZ8+fiqmUnJUwrvwtlQRGh1AY5xfSIA30elomjEKkAMNkoICWW0xr+zpj8TeUzkorRGWM6fvUde3XX321mM/FAzilNJvNUko+DK8TR6EJQcVEc3FUpx9GdGCg/AxiEXJXJc/u2y76IGXiu++++/XXX798+fLGjRs4qujgKBQvryORMqW0Xq+38V4Q6fV6jQNPJQklWxxgtSE5cglYKcEcwWZFURRZVvR9v7Ozt9lsus5lWSH1XAhB/HqliT6bzbLMCkVXgFmJrEIkfi2hM4LkMow39M7G81lCWtM0ACBiizLAI0/BWmvyTHvLzEc7R4zQdYOqiUDcKUTRmwwxQkriTZLG2RkAEKOXxWxe1/Vms0kjhVYCpHNuK2MiyZwU0IJFv3mFwxwzYjnJMXHTNAQYYoCYFovF7u7u+fn59evXlTVVVUEcYr/eW+y4vl5eXiXfaMJyOsmsyQnAdaVWvm1OTk4SqVX3uIBJdbU2VhXWXGzWLiZrLQrMPrqtvQ5RAIK1StNCdO9IK5tpITehtWMpGd9c0wTAMaUYAdV2ujzFAKgUSnc5pRQSqmHAACEFPylLZt6sVsra6WwuEJAwBmV5Ceq7Xq9D62Xkbst201rzIFY3GBgwQoriAfgap3pz721T5uEjIGyrZJZsiAHp9dgSIsigDjLY3CqlsEURilOYlEbwomAlFC02WiujAWT4LGECCJ4BA6eMcLQYRjJaT8phk4hyHjCmSCkOcpcImclk+iymgIhqvM4UBlocDOpoaIyyVk/sVGiBoMh737S9TDaTtq/vQ8IEnAApgYsBAKxSm6amFEPXQOjLIrNZ+fT86un5n02n83IyUVnmQ8ry3HUNoorAvfMxMGlFSFXTJkAg9I5j7BNjVuTW2s4Fed4xJkAFwCGEzOg8zzHF+XwOKfV9T6QTgLZmtlhI0tG1fYQkeJr3vk/BMBdGFXmxu7uYTOddXWOKfV2laS48zyKzzNz3IFs0+uDFCzHoGGMCTJwiYmEwVyl5t1cU3aJ8VbdVVd3amTK30K5me+X+wrSvLt6+sTia5t3aLcFXy4uUz4BU7YPvXNJZZqxRvdY0m82aVV9drqr1ReffymeHcHTrw3eu6YNXi+tvv/M/+ftvHc/uHtz5g//f73714NOO9P/sf/2//aVf+Z3V5p8/ePTpx2+/1dYpWFIq210YjOrpg2fVukkAX3/9KAJ89sX9977zzt17bzWND45n+VQBLubTvq+MMq7r5+Xk+tHxs8ePDo+udX3nIRKCVgqZg++ZdJEXHLJV07eB8zy3eX55tTq5dm3nYL9pGhf6EAISaqUJIbAPIYYuzefzruusxujDR999//PPPy+Munbt2mazUTgo2hdZtl6vM2Ma1967d++brx8+evTo4ODQWruzO799fX8yKbuuMcYUWUZM61C1bV2W08TY9y2MGCwnNDpD4uVynRLs7x28fPlSaz2ZTGRWNQSRsQRE8hy3CdxrzDBGTK/j8ht17dA82p7X20R8G3e3ZaJMvFDSKSVrcxHEbZvmk08+EZrV5eXlUNeO9nyQBOABlZHVJvpAgJoGi3QE1KS0VQlYwFuJ0BLk6roWgXSZhbXWXr9+/enTp0qpPB+kKM0oZC1F23w+Fxdba+1nn32ys7Pz8ccfX1xcMONsNkPEpmlodBoWZZ44+p1oGhpefd9HTjIHxcxN00go3dnZkSirtXbOSaSXoBBGP2+paCWNkGc36gOOsvmjHIdEtS3HRcKehGciis6LU6+cRX1foVbr9TrLsrbpj46OABLA2N9MLNFXXl8hTrTaVt6SqWRZNp8PIQNG416hTLdtSwADx5sZx+l5+SCSc0iuJl63A2CubFEUV1dXHFOe5871fd9fv3697/vlcnlwfFTXdUoRQBGhXi3Pj/Z33vvg7YPdadtUV1dXCGp//9AYYzU9efRweXl+6+13Pvroo7/84v75qhKkou+9LfIQQkzeWutDksvFcdRMsoPZbNasrqq2Pbl2jECPnjy21uZFtlnXMDyRYS4bXsO5sK3xCVl8/UhrAjbGGK2QBSQc58a6VikVXMfM1mqrFcdAwL7vUvB93y4WM1E9dS4A4Gw2afvOWkMEWlOWGWZ0ISijvfe96733SJjnmXg6pj6KINU2SRjD6janZhCxKh6hZ6k6AQBAAQIlgtGAEyHLMkxslZbESltjtSZtU0rEEEIw2hRF0YUeEcWdXnFKpIAjpVgW5RYi286xDST7bRYPw/gBMWijYgokFyciCoBEEGMgAEXKaKO1Fh1KY1R0vU+emQ3lWVkomyUArfXVah3SIMkWhqMHQoxG6cworbVrN0YpgASKNiIDVMwQcd32VYhEZPKsd21eFm3TM4M1eVAxhBQ5GW3rriVlAMDY3AXfNI2Pr/kv8EbTPYRQ5HliX1VdmWfW5m3bmixTSr969ao0WYxRZzaFQcothKDzKUa3qasPP/zlW7ePnzw9u1gvRb/phQMY8XkYqXNyZsmNFTgEEUFp4dApyjWmjKIlQMTgnGXvuhXa4Ns6FTyfwHffuWkCm2tHITu+aHzvfVYY3/XNumGbOwCAVK8vfL3K9GRnd/aqsn/w519Pdn7hj7/6V//i9x+7yh4cpg9+/Xc2Rv+Tn1x8/2/+W3/jv/ff+Xf/wf/m//Dv/oP61bn26fJy9TN+VC/TJjW+dYVSGfcvnz6/vFwSAAIoAJfgi8++WV5t3nrrvYPdIx25b7t+s8oUZlZPcru6utrfnc8ZGWlWFin44HqCkJRipZS2BL5NrJQ2Nlv1bbe6KrI8URNC0EYMtTGlkEJkTEZhprW37LtWI6YUjaYY44cffOf+/fuZ1QcHB8vlMkVf5FlKyRoVgyPAq6vV9evXnz17EWM8ONj96usvPvzww6urq9Xq6u7du33wi8WCCa/80vsecOiV4qCSb7TGvm9Jmavl+uT4sCiK09PTrRDgG007VsAJ/5o7JBEhEMNrb6jtCMMWjpYIIbOL/1oRLLsABvgEmBmZjFaUZcy8u7u7Wq2eP39+8+ZNQWuZOXGExEiABAzJB6f04AC91avf1seTyeRqtZR6a9sWLYpCa901bZGX0s1t23ZnZ6dpmtPT048++jCEsNlsAEhr3Iax1Wo1mUwkRr777vt9365EOiOh3EnpE3/zzTdE9HMff3+9Xg/Fjujg4hA+v/rm6xcvXrz77rtC75Je7MuXL2/duuWca5pGGnxbH53oQwzMjFrZlFJdtWn0fUrRSyKV2ULR6x5QSikmn8YRXhp5alKz+hSZxf4RAcAWhQTIGONqs5FQ1zW1FPcSa7cgszEmL4vtaJMEdUTMbdZ1nYirK6W2gezy8vK1YzwzDZqsLPnQtr6C0RY2z/O8LKuqMsbkeXl+dirLiWMIIUwmk8ePHwtVpXdOmHf6vXt35mV27WDnaHfm+3yqse/9tLCIGHp379atz7766smjR3s3bqeUwCgA7nwwWZ5nxaauEBWRzrIhQdhuDATglILvhc+ymM6YcDKZNE2jjC4nee/DFmPhUX+EmTlFa3KjbQjBBS8ENqN0CFGqNxGnSwk4JiLa2ZlnWdZ3XQxczhcAIPPvIo4jSZ/kbkA0mUw4jn7RI1MgMuoYIw9NlxACoDJaHCNQqcAIb+y3gczBzOJQJAQtHv9VAfI4K4yIW5GsLMuGc0dpn/xkMmnbljkqY/Rrr71IPQIAKdSRlFJakdFk0VDGahylVjSk8MApBi/fJI5KD7gNKYwpMCSlKfnALiCDwNQwDnFqwnHsRKRJCYA5hcgBFaSEfQocOSaIwBh9wiFPYgSOqJRCrWKMBpJzUUHMrVUQmnpVZvlkPouRs7yYTGZ1Xfd9m9nMZrqrm4uq3d3dnc1mXdetq9pabTLrnWBErg9+scittVerJUdfZBnHSKjQqOAT0EArUwTs3bQsZONZa2Piuq6NzpzvI7MGE2PwPuVWZ+UkKwv2qqqqT778wgP/7JNP6t6ZLI9Ikk4kjoPyMBGJUphSCYAZQ/CJgQkIWWl11bfTqElZBB1jr5VVCNz3f/Enf8iuctg/e+5+8O4UES9WK1vsrBHrZNZ9oNCqKK66UKXUeMisjsznl69CUsXk8GenV5/+h/+0Cld5freY7Vbq/P/4//rdX/z4V/7L/+Rf3Dn88b/3D/7+L/3GL/3bf/fv23TwzrU7K/+iigTzXVOzYZUhfvzhdw4Ojn7zN3+z6/2zl8+evXjy/PT5+XJ9/vL07MVpTtk7t29/5513aVpMC5tTevHs4eeff/qLv/TLi8X+xaqqq8ZqNS1yTZxSYEJQEMCHIieiy83VdDIhoyPBuq05ROxQISmltbEsLUYW0dDBxWS7qQHg3r17X3zxhcksaQWE2pqqqrIiBwCTUtN0k93Z4WH8/Msv98/Ps6JApY6unRhjEpIitV5XOzs7Xdt7713orbWkIIaUEhgjvVvIskIpdXG5nC8W6+ebl6enxyeHWusYcQtXIqJGEGIdjlQsBcL7f3MWFrf7fYszC2b7Ju61LX9TYmNUSkn8zVJKzHISFmmWHjx4AADXr1+XmR/nhv/75umXUrKZ6V1HOEhWSbCXUZxtwJDBGKliJ5OJ1NNEJD+5du1a27aff/75d7/73el0fnFxsbu7K8WfhBnnnDCTBf8T4lVKoFOSGeuiKES492q1REiKlACtItObGWuM+e53v3t+fi5Da/J8syzbbDanp6c7OzsXFxfW2j/5kz+RWanJZNK33ZZ7K+XWgDKKNc4osgbjeNIIsg1OPNv7AKM4MzMzvVYuE+FMiZpZljVNI0A3IgrTapswScSVyTr1pvSHD4IibJMt7738X6WUkbJ7lIOWMTw9TuHrYZY6CJtaVotAvPP5vKoq17VZltmyfHX6Ms/zCCzdeoEKQgh6ZsCkrlldVNzmRu8UtgHmvvEhpZRm072D/b0nZ6++uv/Ni7NXNptqDrLX2i6kSIPcNiIAiCaZc47TYGK6uloaRVVVee/nuzvTSSnIeO+dUYoHE2lPpIUoKEGRiJQmxIGoNu4TVJo0KR/D8MyS+LuFVp4TcdNWMt0s1N+iKKbTqdxDUdsHAB+C8Nm892IbSdpqreu6GZzmlQphCDa+60mJAFcCYOCEAIikAAbFa0QEUIAJB+dUIrXdvcTAwqhGQOEOhNj3vff9tJxAiogYkAESMWijFZK4I7iuV0Yjp+BicokV5cZqrRRSlukthvZm70TFoRcuz1WwI2ut9gyayFKR5YIIKSJjVIzRd73zXfLexdevRpq0tdpoF3zvvI+S7MskZRjQdERUhoxKABhDWWSZQo0MiWyeEWFXNyrPBVhWSmVZ1vdtZspbN6/1LtZ1W282ypjcmrbvQh0S8PHxUdt2ry7Oo++LyWwxnfgY2qbKNSUFRpmUkiJNRF1bh15YmcPsNRElH2LgQEFh0srIHiCiGDlEfvz85bzMl03z9OzsiwePtM177xKgyXJR6SXEEAIm2Or0hhBQGVSEiWIMMTKHGJEQyaybEmEyyydTCkHpZHdN361eHR3sffz9X/nyiz956517dd96Mqt1+yQ4ms5hYhIAOO9aV/V+6ZnzLBH21ZpRqWz6sotAu5PJtVxdhWrad4Aed8tZMPPJ9Tvn7uqPPn32W3/7v/u//z/Hf+d/+e8YDTv5PFiTKD9cXJtY5TfLZ0+/Wl69aLpw7ebNk5Pju7c/ns9/rfXpYrV59vzs07/66eOHX0NzRtOd/d3ZvdvXd+fF3/qt35zuHATIdLHwAdbLq9DVMfQxOEQ2mTVEX3z909lsdv369RhagpRCVEoxEQD6gVFFRBqAgClFTOyV0kiklJHjnoiKvPzgo+9/8skn3/nOd3zg5aqyRR5E8d/FYjJdbRqblycn18/Ozo5Ojiezadu2SKrr66IoyrJcrTfzncXl5WWuh7kJTihBhUhNJtO2bYzJum7V9/3BwcHTp0+KMpvP54pkZSdRjgEQ07Ukva0YorisbknCWWYH0fjx0MeRJbvtGr55rMuc7hBKk4hZJrGYFTBzf3//6dOn0+m0LMuua3BUWdLjHCqP0lQ4DrTAKCbati0O/sQDRWM7ByVUmAEvDQkY26a7c/vuV19/+ezZi8PDw9lsJijxbDYDAAmZgrUKvQhRxcgAUHct8TA4NJ2WzEUIDscSRb6IqOPex5Dn+fXr1+VWOOf29vZktKZpGhEzFwi6bdt33nmnaSohVEtgi6OvlNxhsQPZhsahp4CgtSYkZABGhrRNjLbPZRtZEZGY5XVCCEVRaEMiACk3WW7vtj0q/zfPc2nMxxitNomUGQy4Bl40jI1h7330fju0Iu8u0DqOkl5d1/V9L73z2Wy2XC4BoG9bQbYrYEHvF7t7SHD9+vWf/OQn9+7dQ0SlMXHQFkNpNLk21B4nhVE0LQyQDTFVVbNZXt26cW3du2+/uF8Uk54Ts2ZATkJfRmbciuek6Akwdl2e567rkpT5WTafz09PTxExy7JJWcSUMmMTsKS0eZ7L4vA+ZtqoxMkHL6p4vNW6ijIX1PYuRq/yHIexII7Ob4mCACB+q0L8kzFT0UyRaWvvve/byWSyXc0RBpOZLMu8j4hQAF11S+XFhSPMd3aki2yNEXTFKp1SUmN2P0AlRDQKng0rBhCEEj5yPZxzKYQQ3GI2F06B1toY7bvexS4F730UwEApxTEBMjKXRbGYTxWn1HubGTEB5JEECISROXifZYVo68j6kDzXe9+169lkOhBAun5amGk5kRiz9L2kUMaYTbWqqk1ZllXlsixr+16ZjJFEIzXLMuRkFHjvUClrbIgucSRUmkN9VZnFBImAU9c1Wussn0QfyslMRgYzY3xbub7LNGZmwnlarlehqQCASCutluvVqesmk9mNa9f6vrcKPaaiLJxWfVcTkyZMipgTMOfGAkdISZSrtbEhDSwEF4OiBJiQMA3mVOhj6kO8qpsmJMwKr3RCmh4cb6qGlYYUvPfWmMlkYpUOIcpSUWSACBARVYw+pIhK9d7ZzJy9unzr5Oj0xTOHlhLd2Jt/8vv/1K3OfvOHP3fr9tHBzN8+Krz3y009W9yKnK4uL6OdzOdzQvTMEXVUwDp7sVkVKkMFMaAqppFTFSISIahpNs8gQn9xtFckXCVr/pPf/cnv/sGPae3f/bW/+dMf/25OAdu+LExMyXVxZ5EZNDFxuZg6v3n06FJDnE3LEDGbLm4czXd/9Xu+WXXLi/Mmsts8f/hVlmW33nrr7Xfe27l2Z9Phquo3q3V9ddGuLy9fPWvrNQa9aerTJw+++1s/spiuNleotFZW6yIyImkG1NY6l/rgrcljTEQISIp0771SSpksxJhbu9pUk8nkzr137z96evfuXaWUZpUYtNKJlfNMRD6kg6PDg6PDpuva3mubdy4YYzoXUPksyxhVMZm19UZaKaSUTMrz4HBqnesnk0lVbRaL2cHB4bf3H3744YdSCxKR0pBSJDIxJaKhsTdGF8WjZdB2AHJbhkpCLyfvUGAw53le17UeZaWZWebf5DTQ2sbou84JiwcAvv766/fff78oJuv1WuQ2heDCowHDEOT6ViuzDRgxRkxo9eia6oNWatBFANZGi3QFKepcb/OMmd99991vvvlGjjghQ9V1LXXbli60HZNNIytYULec7JbwFUIgfA0ejGGPAVgpzczrdaX10ESXcuvFixd7e3ta61/91V+9vLwUu9yUhvnprMjTOAHc9z1w2tSVyGcCs4+hc70a1TPkzDHGRBe1oTczIR5HyOR35GrlrJMHtFqtzi/Obly/JUILIYQ8z9u2laeWOpa8pGvalJKakFKqrmsR5WZmKRclEddaE4B03yU/2ELZQpmWwlfg8bIsJSUCAGQWJvlid0/hECNCCO+8c3J6enr//v333n/fB9U0je42V0ezk91ppiBq5DzP685vqs10sROsCSmGEDKrZ/PJsmffOZ1NQnBSQUrSZJQOLmpDHGLo3aQsm6ZWgL/6a7+iSX321deXl5c7e7vee9HuiL0TINdmmhRsV4AiIIIiK5hZlB2VNhFHX15EjoNoS2TWiDJ5JnUzAASfZBtIda+1NllORHVdb+q6ruv5fI6KJrMFM/vIbd9Zm3V13bbtarWaTqdAQ+8nz/O+HxTalstljFFp7bueGKzNUkrATDgI3yujE7PzHgiVHmYMYLB7AgIEBEIIIShApTAJypJSlhkiTMg9h9inQAQRaPRvQGGOyAyxD5BiSiEFAg0JOKU0tFbGFk7nNrIUtNYIoEUsCUADI8cUHDIQMqXEMSBqxbw7m2prBHsoc23MqIqOZMopkIoJPHuldXD9Yjbt2toiAoIhar1DVHmZ7Skzyffffuve9ZOjb7/99sGD+9PpfLmucmMyq7VCImDfEUJyfYcpnxqlURFsmiovJhyczcob10/W1Wa9uvB9t7+/3/YdxlDayd58utmovvdAkClFWvvekVHBBaXIGPFrG3p1MQEzA3FI3pocUTnnptNp03UmK9abZQQymQVUlOVgioC+apwiL4I73nvf9TjaxsXkg0uMEJEYAZViBE6pqjf7mWo2q26z3LTdvVs3v/z/c/VnwZal2XkYttY/7vFMd8w5a66unqq70UADDTQAAhwAUgZJU1SYCsm0ZFGWyJAY1oNs0wrRcigcepFDYSvsgMKMEOQgLJkihKBIECIBEAAbQGPooQpdc1aOd8g7nWlP/7j88J9zq+h8yMiqyjr3nH32/tda3/qG3/6H3/6n/8NhLb/5G7/K0Q6D+9f/Fz8ynXxOsuLs+eXV2R/e+uyXT11/fmU0Y8wF60CoYvCGA3XDUOmSA3rb55mI3phARa6kx5yXQ3PWNcv7926+8+HTowV7Yt1EF/tv/tj+ev78o2/t5mRWly7ThI75WGjBlEZUWVkWPGdu4NFKoU23bpuV4MShPzioZzRhHHZn07Ks3/3o8T/5jd8I2d691968ee+VQu9Ob7wYhuZWtyJnruZnwzDsz/S3vvWtn/6Tf7pbrX0gZwck9JG0yhGQId28see877qhM0NivQ2d1VozpKZtyqIWyOqiDD7cvnFo++78+enBwUHXrLMso+Czol6uFmVZem8hsGRhGAIxJqTk1oWyyq0POue9GRhn24B3REDOk2ekTwXSe691melivW5Ho+r+/RcePXr0+quv7+3tXF5eem+NcUWBCKB1lqQQW2JBElLCNc55vThMZ2s6wdPBkipxcstqmgY3BtpbWBtYiI6IlNJElOz662o0mP7jjz/+zGc+U9dl0zRayzQhXFOlQvjUQbc9QwAgOVtd66li/BccLT49juM2+uLVV189Ozur6/p6XLPb5KVUpRKmyj/J6E0/a0PfoY2JnmJbZP4arU3XJNliIKIQKvlxJpJU6i1u3bo1n8+zTKUGhbFP+MzX3Ob0Btq2XS6Xu7u7eZ4n9W06ydO7ury8TND6atVnuboeYSExn6VM7yRVPkTc29sbhmFou9s3bp6cnMg7ON6dGePSJU0L6eVymdhVmyGH6BqvTsSja6GXcy5lt6fxPf0uttFMSXC1SUHe6rxT9zYkhfr2k3rvudajqko74Kurqy9+8Yv//J//8+Pj4xs3D4hI3L99azqpSwkxWMYgvb/pbul8FEpGS6bvJOOTqup9m2lp2y7X2lk3KgoXQ6ky501V5N57keUhuqG1RZZZ058cHb/88ssJ+F0vV1JKDtgNQ1piBoqb3IwYgYIQgislGE+x7elbT7dL6pvqus50ppRKPubOOS2lEMIH4pzlea4zSFcTIq7bdTKFRkQfoxAqK0Ao7ZwbrGGMRRO892mVwjlvmgYAUle7Wq8ynedaqSxPewW2JcGn50RwDpHSxwEAQIZIHDhyJqUMzhMRo08ESZsumwAgZqowZBhEoiBEHkIAQIhbgjuTUsoUXOGc2yh2g2cxCCAEgkiKq2s8KsaYDLdDgMQ2BACdZ9seNuBGM82j90iUGObeGo6AFAXjSGBNn1ijiWQ4Loa2HyJgiCCEEkKMR5XtmlILFqeIcHFx0RnDkGVaTuo6pz7LNLnh448+XC6XO9Pdbuino7HxjlPgbJO6Na0roFAUhc5H6/U6nQ5Zlp1fXPTNWgu+O5uO6+ry8rJr1zFGgdCtV4VWVZkXeR5C6HqTEItRkTnJnR2U5FmmB2u8tTFS3KDxGEIQknEmYoxE4GPkUtajSTv0kcBaG7kk65BLlQlvFkCJo2eDdZszPQREHigCYGKze+8DxRhjoVn0YW37L7/5hb5dvv17//zt3/yHN2tZFvoc8GA2Ubj86hc/v7e3s79bkD8Kv/PNG599IWSzi6gJBaAl26PrJTBEJzFIcEwgMCpljOBWlgTvHbgeaO35w5Pmxp3X3/n4UpV1KOzaeZ1XX/vZvxrOf+i7v/nf3bgxE9k0F3F5ecw5LXq3XPS5FTK6m6MsVwURaJ0xYEBRSx5844P3xh4PxoVnopweXSzldPSjr35+NbBVO1RZPq4nsz3OGYXTozdu3fj5v/2PH5123/7eB+PxmKVkLS4IgjFmZ3fadd3i8ng8HmtuZQbICXVpjOn7TuV5KUU0bdevi6Lw1rQL88YrLzx58iR26/F4HNzgvbeqrMqacex7R0STyWi5XPpIArQPHgCSw1HKedVaM9YCAFCyNYa0oeKce+8SHpseOu9jUVR53jx6/PCVV14ZjUbL5bKuS2utEKrrGqUyAPAhHTWf6Afj1jI6DXbpNdu2Taanfd+Px+PEqEqDl9869dMna2NOEI21VTXq2jVjQkry3ltnjo+P79+/m+d5CCHGzRGUTv9rwwP2KVvZdOBcv34IIUBgyDnn154E1/8pNQ2EXHBR13WqbanQpvontrZcG2ZWBMa5Dy5umN5An4qZYYzBdr8Dn9LtJCQ2xiil3KbaFN7b1PqfnJwkp2jvN9nGlHT8Mbito3KqVZzLw8Ob3/nOrxwdnfzYj/1YXY9pI+javJ9U8zjn9XjkrSvLLL2NhAwDQNu2qcbP5/PZbOa9T/kCUsrd3d3T09PDw8MQguAy5UxfNytxy6m+XvQKIZKTZWq2JOefvlAAm3wO3Lpep6KbCEP0KXoQEaVuIHqfOqSkv4oxFkW2WC1HkzES/Ok/82e+//3vexczXQit8xjB+qiEjERt1wUQRa3XQ4+RuBQ0WM5Qc47RFULxsV6tVpLzvlmUda3yPM9njx8/FkIERlVe9ClBiPD58+e7u7sAcP/+/aZp0mivuBBaBR8zmeGnvMKRAH0kBoN1nHPcONFsdnLX9yXnHECFYEJwQQgkMi5IYNxv7qEYQQheluXQ26SQAQCVSQmb4JHkZuKj1Xk2WENhK30DCMFJKW8eHFrjnl+cK2s555IzzvnCDgknN8bkVUEhkg8ppdhHH4EEQwLy3jLkqW9ERkl6xDbJuxswRyq+0RRG8taZwVtrI0UB2+n5kzhSiEQJXUfBMiHSoBa3+rMAhMCJgIiqqopA3TCErmeMJeNZzvmoqtN1TlUZgUIIwW0uO2MsAnEmZSZTS+jAKMacJ4aMA/EQ0LkccK8sNQeEyPpm7ixq3VvjlstbhzVX4p23vjc4f3B4c7ozFomHLBmFmIhd/dAIVgxtF6zrTVysV3VdTyYTIprNZoiYiJ11UVZ5EWM8OzvLtS6KglNsm2Y8Hg8UteBCsCgZQ1IM6/EIAAQCREICznnwnjFID6cxJpOizIu+H4qqJCJgAvqBMUxJRG5wIQLnnCuVhh4AYEImSgwR+ugJQAoFnAWKjDGOHBEHcG2gQtfvPnj6t//Dn/tPvvM7dn7+8td+6Ks/+uPf/t53jj/6o/5iVYxmyyHORmXwVM0fDs/eo8PP9yhaH1WIUioJEL2VYLXkpm88irKs/dAh2por6w0o1sYIxejh0TwrDrnIvIs9RFlUF44HL+7uv/rh08vDurl3e+f8avHqS2988Stf9rp2vLxcLNzq8uNv/15vGsnV1dp4plDwnAnfc2KxyIreWWshxMGD+Et/6a8c3n91/vGJltPBeTd4K2SRyUsnlBH/1t/8Tz788INf/uVfDr2azy+HvgnOKIlFpp88eTKZjspCSww6k7t7O8PQLeadZlCOy9/+7d8+PDzc29vTUmoWmQDEOKznd2/srVarYNo8yzyAJbLWSSXqunbObNHdHgGkEAisNwMADL0VQoTgyqLuus55t60NGzsLa22WZX3fRgSp87Y3KtDewa2L508ePHjw2c9+djA9hCAY83bQMiOIiFzwTZJLjJEgIrBkRZkelq4b0rmcAgTrugwhdF2TSmbft4io8oI+Fb+9Ba5FmhMIGOMQA+o8y4r87PxiNKoODg6urq74JpjVxq3zw//fUJtKBWxH20/KPFKMkcuNAzNuVcXX/3vXdVpldR2Xy2Xyx05eWuwTQjgGH1NFYXwzBKdT5VrssfmX24MXACgiEAvRb8g0zqWim2XZMMTEFzs+Pn7w4MGbb75pTJ9UOtZ+YjyJn/IgS23N17/+dWPM+fl5VVXphxZFngjJMcbf/u3fNsZ84xvfEEpSxERWT9wOKWWC2bXW/+Af/IP79+9/7nOfK3SWat7+/v5yuVyv17PZLHmbJJ/IyWSSyuH1NjpuTU6uZ9wyz3FDsOfX43h6w2nwTV9N2mBe+6hcf/XGGyGEN9b7mDxV0tK9bduiKM7PzxM/6zOf+cyTJ0/quhaXy2ZSF1Ez4zwxDBENxWa58i4iBa2EkGwyqmWeT3Z3dVEvFqvf+q3fGo0mO5Nx2zan580Xv/jFr37lzQ8++IAxZoOzwZNHYgjIn59dPH76dDKZVFXljItERZF75+uqSKceUpR8I2EOzlMMRBBCIL+pvkWZE1Hy5/TeQ6T04CmVMca9jxEwAjZdTyFyztEFRKuU4kqqwGKMyVDJOSczrfLMGGODZ4xV1ajv28V6TUSjqiai6AMQFcWYqJ2MaoY8Gc9KKZGAbaV4DDCEKLbJKhIgAAUkmzy+GUfAa1esdDvHGGNwHKW1NlPCWssAE5DltyeIQEERY4yASATAANJzxyBFMG3uY9hsfzexl2KT2xgjubAJox6NRgDAmfQuAkKIm+AKARAjWGud8Ym3yaUAgN4MPgYXAxHVmVJZtm76QOCcs86QHUa5MC0YZ8gNwvtCcp1LclaCX5yfMqHqPB+N9HK5Xq07lWeSMSW56zugwDlXDCudC2Tj8fSiaZNV+mq1Wq3XOzs7aQhgjK1WK2dtURT7e3sYKQS/vLqazsbjqjy7uCq0yrIsVzLGWIxHeZ41TWOtRSSpOAL6iMAYRYoRKHhGVnGJkch6TxE5k5xxJYGQSxW9UUgCBWidnh8Elg6jxPIDRIrReIOB20Q15xwRLS8sxvPWnX189Pf+8YO9vQMt5O37n4Hp/S/+ifvL5WWzeErZuMVymo2Xq9bOz+dHT/StLzImkenoHEXASFpgJBBAHihGMsZ4bzMlGQMPnIP2odcSm+bs/Xe7aAcQtSpmDpBJHHz79PTZYrEagf/+H79/fvosz8uji98b3Xnlqz/5524fVhPp/9v/+u8qt/wb/86/y6sZZDOudLO4MMvLq/WyWS+i7Y3pz67W3/jJH3/55Vcfnl8CMKmyfljFELgj1Bz0qI+SRnde/6F7B698eVQW52fHF+enfbMw7fLRww9Pjx49enrq3SBYFJxNR/XtOzcFz/f29hDxxo2b3vvZbCeE0DQN52wymSyXS2et4LzI82EYpBAAQhVZ2zZt33OOZ6fLuq4zJWzfySw3ZlBSBu/zLLOD6RHG1VTKTUgc28hCnPdWCOa9ZVLgxp8hI6K+Nzs7OxcXF8+ePbl/5+7l5Xy1WhVFCUDeeq6AMYEA17tkZBvdsNg6yoUQ1uv1JslUqd3d3dlslkDddAqnNCFEjIiRIGWPKiayrLi6uhqPx0QkREz4apZlz58/T2hTmrGstQDsujomOPD66ACA62Dg62E0Da/4L6ajpuVR4qakdqSqKu/9arWaTCbXJC/Yuj9eT8+JJRdCSCYEwBnfJAkCRaTt66dM1IQ9JOwtwZAJNkuSJ+fcbDY7Pj5++vTpjRsH26F5w2FOwC9ep+HhJh0nfbRrB4zlcl5VVUKz33jjjcVikT4LEnjvkxnINcmUMVZV1c/8zM8Mw4CRpJRFUSyXi9PTk7oexRjn8zkiLhYrQnz27JmU8ubNmwlIT/vKNKUkToxzTglxjYSnpUYqq6mZSAPu9RtOW3y2VdKmqckOloj8NnEZt07gCWPr+957m4IlppNJjFF45BZFyngFjh7ABogQsywbmjUZJwUTHHIpnYpE4e7B7Ed/6EvDYIHhQsFkVJihqapsMB1DUdRVCMEFr3UWEZdtmxgHbdumfiExAq7JujFGLVWmNCJ6sN57t+WIp6vcdxiiT8kKnPOIFChyxiNRDCnvTwQC028sxGCzxYnW2s3OJCUkUiwY55wb6xhgXmTt0EMEzvl0OmWA12Eay/nVMNjxdJISsE/Pz4TkZVV4Z4N3s9mMfEDJJRdJ46UyHYDariOIgrNrL8lPF2BGoJRKVpQbLj6g8yZEp7KciAQKAHA2BCAOwDgP0cM28TDGGAIMlGhlYiP3FogbU7rofTAmzeuCgAGxvu95JYUQjPN0q6XQwBijMzaEEAh8iBGCj6E3BrbhnXrEIsWma4lxRJSCAQVEyLTc3Z9kAtu2Pbu4RJEBQ6mymsvz+QJF3jSd8XFnb8Y5RwrRO4TIGQkkoRRgDIEG6533WZ4vFov1ep1+aOqjQwhlWTopY4yZlGm7Np1MBANnhuBMkVfeWTMMIYRxWQoGWnIirgI3fW9tJGRKSqDMGUscGYC3ri6rpmmEkpkWeSbTkxaDLxWXjAOwzqEQyseYxB7AkBB8CJOdWQK7fCTxqdhwD2g9Ggs7t1/8h//Tb/zxL/+dm7PJ+Xy9ft5lo+rjk8XN2Y3J7q2Hl/O9yLTWzcAj5rnMbdszDhBc8CBFFlAxJoxZZVlFwNf9wHURJLd2yeQ0eAYRIQyjIq4unh7M7s/b0C0by6PAYTRmy/mTQrJSjj88fvzFL3xh/8bd5ys3ufn6x2fWhHNan3x8cvnajfGf/Jf+fL5z+60HJ6dn85fuvV5Knld5JtiklAz8xcUF5qMPj66sCePReHCRokUI3pt+iEoz4OHccrfux5ODs3bd83L/xc9Wubb9+kd+6mcXF89jsH2z+M4f/aG35uz5yVsfnXWrZSK//NRP/dSdO3fatv2d3/mdz3/2DaXUYrFAPWKCrZcru17Xdd10Q13SxdnZBx++99prL82muzuzMREOvcnq0gcM6KP3Ij1XEIeuE6iS6UHft8kVATCGEBhng7U8BTAgZ4w565GhtcPh4f7F84ur8mpnZ+acYwyd85E8Rg7gCT6hUhJRSmBLEomyLN944w3GNjqOy8vL09PTZ8+ehRB2d3fv3bvXdR0KnhpozlNQdypSaLzjSnuKEKLgytgeEYuiatZXT548efnll9MRF2NkLLkAqeupF7e/ACAED59a8W6HSAouXsOq1yNmjFEpiYjDMJjBjsfj8/NzImIMQnDes83olkiN2x0wbiZf2P45QcQ8YkTYOB4n0W1MOpxIKXErQd+JdpNGXqXU3t7ee++9h0iJIYQoE7Hrep1MWzrYdlPmsyxLPiFSyhBcahcSWnlwcJDq/TAMwfks34iFEpyulBqGYTqdOudypdu2BaCqqoL33llk/PLycnd39+DgQGq9WCy++c3f/dmf/TNpgk/U5Wv0PnGVc60Ttpy24J8GGNjW4zr9ngBR2iZnp28zhFBVufeprwIA6Lrh2rsjuVElf1C/Db0QnYnIjM+EkhKAVl3fDBYYl93g22Za5VVWCyExRBbD2cVxqIr7tw64kIv16rVXXxxMeH5+MZuOyzxbrNYv3XhF59l333p72ax1ni3a9Q+++eUY43vvvZe20NYYKWXTNFmWaalSF8MgMmQOgvPGhk38cmpA2rYF3CAA6cKlj70BroFxRs45G3wIgSzmSqd9u9vy+znnwFmu8sRWT5xyqVQSsEMgIrraLglSg2Otv7q4TA+VFvJgd2+xXl0b9DPJBOO2HzASQIw+OArWWoiRKQnxuidFTPc0EAIqpTiyRGGUXIToEn5CjHnvE6PK+xiTaS1jnAtAYgw4QyG5VlIAxOTVSJt2GBEpAnkfrBNaCaGca4j8wrnka1PX9eAGABCMBaLBOowUCXyIABAiSSUYY8wl4VWIFp4cHxGwbnCcS6VULgUgLNcLMMvZ6IXZzr6SjHH0xGZcRcLDkX5F6rff//j08TMH4vTsfDqdsugyycdVVeVKCJECAJrWNE2bFUXfm+VyjYIXRWY2IVRYZvl6vU68j9VqLYSYjMZt21J0zsJkVOd5uWrWjIAg9l0TvAKGbNugOGdEVjKOjBTPBHlixJSURZ4H7xlDZ4aMKaQoERw5gZITJA+sGCMlBA8IE7Gfs/V6HULwMVyL0wAg+lDW2bC8nOjS+bA7riT4l27d/It/4S/9wrceTPOxI9RSOWsRmeL86uRph1M1ujEajW6q6AGhx7axvecDcCk5kYqBhEj+axgC5RAEpyFYEoQcVDEqS3Hnxs2v7u8+PvrIh75ddvuZvGpO16u5HRUvv/riq6+/en41v/vaV+6/+vn3zgaU0sAV5NXtV150HIa+6yNddkGVcr7uw8LtT4qzy9UrL9y8dW/84NGzItNZ2xvb5yK7uVP3fctFnI7zLsPFctlShohxMGU59sZddqbxtD87OF+v9u99LpMiOHvn9R/e352FEFaLZTCXv/Irv1JV1QcffPD9x9+5ffPm4YufvTTsh978gd/6hf+mKLOXX3757mdf9d4vl8u4WLphfXZ62q1XSnDbd1GyPCvrssjL0XrdKiH7vldSDaaTkjtv1+tGSqW1SsheiA634UJJyEBEUorgIxFlWeFME70/ONz76MEHL8aXDw/3j45OiqIYBsOQheTEBxC2JRhgcyInAnNCR+u6ttZOp9PXX3/de//06dPT09PLy8uDg4N2aGMMMX6SNHw999R13bZt2qUGwkyKNDK2bXt1dZX8pOQmHnGTSvvpGpyGs7SjvR6nrte3ET6JAI+fSua5rhmpYMxms67r6ro0xqRgPrH1wN9sNGmDsxFtJblInyrqkRjb1OMt1rqBH/iGG8G3Cq4kGp5Op4vF4vj4+IUXXhBCxIjXFe4ap03VLsl2caMlY9PpNO10k/NzMj8RQrRtm7w8vffeCSE/6Tm891LoNGJawDzPrTXB+6qquq5jCAcHB5eXl7u7yjTNl770pZ2dvSzTiY+Whtc0uSYaUK51QlvTJR2GIZmDhhCuS1L6ytJ7DluLrutt8TXLbENYQxAqK8sSEdMeOsuyi4sLKXlVbQwHRdc7YAgYXcCI0BrXW4cYHXOmaxn4ZPdDKLxz/XoVhlXww/nl1WLVOKIvfeUH5vOr07PnXKAQ4uNHDz/3xS+89NJL73/4gZTaWP/o0aPr0Nb9/f0Y42q5rKqSQhRSMsZSsCDnXDDOAFMHlyCLNK+kWbDrumuWWp7nCCytbbzzAHFLB7AJpm/bNvmrWWtdDOR9erVrPIExtre7c3Fx4c3GAu3a4dMYM5tN2rZfrVZ93093Zrdu3Zq/u0w919XVVaEzBqiFTDt8a631Gy4cEyJFl2PiMG/sOSIDDCEAEuOYbtlIPq23e+eJKIaY7tHr2dkGTxAFAtcy0T1yKePGV29L0wBEgZuHiiHnIsaYeggistY3TacrBZEY5xCjd44xJjfeUozIJiEZAeOMeYo+ki4LRJ5VfN101jvBYHd3Iqxo5s8fPHhwfnI09G1eVB6YLkaD90XMy9F0d3f39KrpIg4+rFft4d600nxcZYqDtzb6YIwJngI4xrDpOxeDiGiMA2DjcQ0AvTWMseB9lmVKZwkjybKs0FnXdVyIruvadSOlLPLKWgsQOeeDsSEGyUWWIVPCe783m3LG+qa3vdVaD20nkLVN46Kzpg/BKaWi8yQ0KpXJLCq1Xq+NMZhyx2KgSKkLFkpqniUbNY4bbMOsV7O68K3TuTRNY9uFbeUP/sCX/3CVf/D0yfzicufW9GBvdumeR9uvL59juR9Y1q4bARBMq4BJnYU+OpZxobWStp0zgmk1WvSN9SGPIdpWMGm4j4JdrUnB1DuE7vQf/sJ/Nqnkqy+8/AdPT54fPz68cfOyHz5za4/xuHe495Uf+tqTzmb1lAQ7frQGaw5u3SzH1el6qGazvVC23aB5Xk5mUUTj/EcfP71xMJtOpw7a/V3dOVy2Q1HqIsMQHCMLcYDQq2KcmAc2BlmU9XRm+8Givv/aF5wZQiQTDS/wg+PFuB4FPt09qP69//A/7vv2+Pj4rbfeIh9effXVjx8++PXf/fYP/vifcs68+eabP/IjP7KYzzfDxMl7bbv+pV/++7/7e//8T/+Zn2KMGdtT5KvV2jtgTJRFMQyDZIgUiiwbHPZ97/1GaGtsIg9HIaRggsjGrQEyY6LruiKTaZba29t78uTJaDSaTCZpAIgxeutjJAKIFNMIKCUyhoxhCNE7F63XXkbKuEDrhn4IMcYXX7o/nY3ff/99IVk1GVtrfQwsBiS4roVVVSWDiMRsreu6bdfImFICkZ4+fVqWJW09lTiXqRTBNo7lmvKSjp1rRDrVHkAE2gT+JLz0k0M/xDSfDcMglUjwUtqqer/1fv9U1dyWdtruf7cZBhvkeRM7vWXJhFQs+cauxKa3yreZfQCwXq/v3r378OGDq6uru3fvtq255pGl5fo1Ip2Y5LDloqcIu6ZZwfaHph4LEVOgU6DonPNh0x+EELquY2h1tvGQsNYOQ78zmyW9qPeeC7mzs+OcK6qq67q9vT2isHm6P5UHzBgry7Iuy2EY+r7nW81xitVK2Fhi+Ca7nrg1YBAbe/xPWOLpvTEGxBhHrKrNWvru3btJeZzaDq0l04iI4mxYxi4WShe62J3t9F1o1kM5Ga274eh8GO3kD6z1MXAlj09OLi4uXr51sProBJn80pd/4q133nv7zF4YeXJ0XOYi16wu8NF738uyfKSQyNdKHoyLGKHNRIh0cnISCT1wE8VgjQyb5Sg1bZ5pN/SIKFx0MUil8iKLjByECMQZ40oOznofhJKdd8YFqVWMUQeg4EEQ46ilWC7nSkgpkfMQAyjJMqG7rvPGLsxVPZkChkiOC3VxcdYsV6PRqC4rCtF7j0RD12mtI1HbrrWWSRSRQJKk+uKce4oUgTi/9gQPMXDGpJDWWEkiPXKKqxgDIjgXpFTRe2QQCYARF5jrLPgw2N4HBABC7KMnBgDAEQRhzpkkzDjPhcgFzxgBOR+GkVAQwXmfFYV13hNGChEJEFfd2kOQeTYMAwpejsqua+zgyizPpOzbNpOKQtyb7TDO276br9ar9bq3m7wUAvDOV0UluehWiymjqsg4Y9B1nXO3X/uCUurZ4yfRZ9UQX7lzkwV3cXpxsm7vEpW+f/1m9vFVf7q2k+nI9ZeZqtDC2brTWs/GOQarZiIgu7w8z53lAkGCx4Asnl2ccSnLuhaCARMohXUOfAjWjsrKRy6zPIQA3pRaYHKIJOg6K4siMD14zzTkkhApz/MshuhdJlnfDc8v1yh4iMC15Kwkwb21uizDYAbExvtRyZZd52IMQgAAI+AogEVKzBwCCpsuyvkIACBkwNnCzXPVFcKZZmX5tMHxf/8Lf+c/+F//tb/9f/5Fdvl9gV/88DvfCa7wdHi2GJXlaczCsYOnTcw83q2zKstWxgjXiWCrQvhMrSC4aAKyjIs1vxEpcGAjXQCAZV2EDkT/rd/55tWDjwCXX33zzvcfPTLLD//Kv/Kv/ONf+839aT14/eYP/bmTdQ6c7bDVXlU9ePYxBLZ/cNsDIgXlgraRQACjOFx1iLa3KwBzZg4PKqZ8HlYcjea+d826985zIXfKbDLoqixl13WlFMF0Gkn4iLGTzlITpmXerleSgxBKz1ikdtmvztt69eycYyzGuz/4Iz82tB1w9trnJ3df+fz+wWEMIXp/cr5k3pWZGNdlMX1zd2/2//iFv/v8qvujb793Y38vU/z1V17+ypfftNY+e3r8+PHTvNRNT0plbdeBzLrBCmsZgOQkiZRWQ99eXZzrrCiKkpAZa4TUzjmtVWdJF1XTmclsn0L8/tvf+drXfkjKsFgsmMwCud5bJTMhpXcRERnPAvkQgYAxKbz3y2ZAqSaTSWQGPIvOzZfL3d1dzvnDhw8kMF3kUuqkO+RKeu+7rqnrOtW4hABTcJlS1loCzbjM8nB+fnnr1g2IHokhxgFs8EGpLDKW/O6sD4QMEQTn1trgXZ7nUsrofFoJxeg9xaQaIfCRIlKUjAEQQFCCQyTFhSc/ONs0XcoA9S4QUKpYG2JUTJIkRCQIBFsKUvAUt9TRa4eKaxYVwSbpNeUkKpUZs+acE1nn3M7O3vn55d7eAUXLEIJ3MYD1LtUpa23bDaPRKG0JhRCRIXFgigM667yUMm6QJ+Z93J3tADAKQD4IkETk1pZzXvKCRIw+CC7arkmDnBlsnudmsG3fcSGF4E3fRQxFUVg7mMGneSbtHFMDkUYpHyNyrvNcKSW1Pj4+fvj48Rc//9mdnWkq59d5FSGEYRi8t4hZCM6YIamYYoypZUnb6NQbKaX6pukRb9681fd9Ve2vVquu60aj0Wq1EovV0lt3ZuzOzp5Qqum7i9X86cX5slmrPJs/XuVVmbqA2WwG9Xh+epLlBUY/P35ck3v0/e/FGPcnk8H09WhnNKqeP3++mncIygzm9dff2C3Fu+++DwBSctsPKNWNGwfHJ8+zLONCGNNnWZY460IrLaQgYYNP0eifhlYSNVxJncDStKdBTO53iai2kcMzZDGGYRgQNh0K55wiOOeapnHkcp0FTyFQACTCwZqyLKuqGoZhPp/7vk94S8I9Li8vE4uEiKa7O8neUgjBBUtofowxkegSKwE/lW33CdQTbJZlCUqArenaVnGoYPtJgSFjjCNIZHWWsRg0E1rJ9CnSmC64ICKdZcC5DyQYXy+b3jid54Kxuq6Xy7kx5nB/P8+1ljwKbNft4mIerdvf2eXIur6PQKu2cT5mWcakSBsvgUxwvm4Nh0GiiOQjcAF4fn52586d02dPb9+6sT+tfI83dse1YpcnFzujgqmJHfoX7t0+a7oLO196hojj8bhplsNgs2I09GZBi1GdI2dFNVo1z1RRTndmHz95ipSomGwD3QD44L33hc4icxSjzDQwci6GEIhxoYWU0gdiPqhcDoPjUmRZNpgukdKbpsnqOjE76rKqStY50/VGMp6XZd/3djAp6aUoCs65G2zaxwCAZBwjJTCDcy6QRSKAkBg62/mAmLnKNIsmVFl26VaAfnzj1vvHF0/Pzl99/RUu4OHDj/7ef/sLP/KjP8sD9sNSq1zqDIBxjpKXg7M2dMDE4Y3d9cUVB5cXuu9b66ziUgTiwmitnbGmuwybRFJ7MT87Pj8Z747vVOVLL98ZFSHPqdbmh7/84oKKfHx3PNmJ5c4Q42p15b07f34KEG/eOJBSmn7VtsRk3rcrT269HnKdkQ95nl8tF0Kyvd2JtQMw0iLXAUNY94vO9P1oXN++ebAeVkqpFNkhpciUiowyJdtuQAqRgDOeZVkhVD/YQOCJAUQpJQIoLtRoZK11nKTKgvcxBikZi5u9Zt/3IOOTx8/+0//0//Jbv/lr//Qf/6O+7x8/Onn40YfvvPPO66++duvObS7F06Pj6XRHSDkaTYIUEKNz1pqWAAGIIZ2eHs/n85deekkqZqyvqnIwTglOEJWS3jklxND29+698Nbi6oMP3nvhhReKojA2eO8ZMQDmrYsxai29t2m8C7SRCYTo1us1Y0wIhgQJml6sVkR0794Lph/iNniAb5WBUm4otbTRUtprUdMmigYx2Q/s785ijEqJvu9TcaIIMRIyTKeQUmLz/0qRZilGsOUQ8ev1JEv+8MQAwXuf0ObrNbOUMi0giQhhczRd+0mlGz51msjZFtn2W8Yxu56/+TYqKpGhcMvqSmSla651qkaMsUePHr36ykvJcFAIrvNsuVwvFouqqjKljTFSbixQSlbyTDnnyrJumoYIOUskG1ZVhVJZusKeCDkDIgqpQGMy9WOc1+MRxA0szxgbhiHhhakKLhaLDXSKgYjatk3gZbIGS4yTT4c1JcbSfD5fr9da66IorjHn5KVVFEUKV6iqKll+puWCVipu7UUTjSlFMkeipml3dnZSbkSKeSYikTwoIseA8Hx+ebVYdsNgfQDFe2+JKDoPg5NE2kTFtJzMPve5N6IPkovnvr+/+9K6Gz74+HGWl01n5ivT9lYwLhibTQ9Pjk7V4aiqKrOYSymtGzIlTNcDhbzQRNR3QQgGIIa+U6rgSoMnDjwSOet93KisQgjJeUorEUyIMQouvfdMCmttsjVWIBPXKSG6nPNUgPnG+Hsb7sGijyE4KxgPMQ7OdleD4iIC9n2/XDdCiPF4vHdwuFqthmFgMSbKe1VVVVUdHx9H56XS3ljywfS9lFIyrrgwPhQ6Y8hxk88QYwwATCATkhFRJEpQTwLNUpsZadNUJkNpzkEl6hTngjOBm/YixigEVyrjiDGSLgrnPZOCs01uSdOsi6KM3pd5LhgzxmRKI0EmNC8AfLAEKLhxzqwWLvim61IfI4TyxnICgcgBUSktuOu7sqwLrTLBzdDbrkVvLp49fvHurayaKPDjjB+8dOfRxw9ZPh1V9c5sMrt56/vPfsf2QwOUo76xv8eIMZG1XW9DrMcT633bdzZSkamdvYOTizmL3gME43ReXlxcCSFypfNcZHneE0VrfQzOekQUUku1hecpMMY8YYwRAiEEM7jobVFk2XX4VZ5nZQXI/WK+sk2MEQCX63WC6BPa4a3t29YT4Ke0FlykcksxbDRgACylNQRAijThfnCInDMI3dUJMRzy2TKb/eZ3v//lr31VZPAzf/7P3tqfZaLMJMybS8HLGHDorXUsy7K1M+i9rqrJpCoxlCLqXPllcKteUsBALDaZIiUiLzQX2kbyVgkRVVGfXi5v1JNl586ulirTq8X8hTu36Maba6OXvS0Kfvf+3WB3VXSr5SUDmo0nZhiIEg/TOmdmB7vgukwXXbtGRGB83fZVVYwm06urC8GlVCKMIUTWGz80c6WKvl15HyMChMiU1jrzyIRiEolLmTE0xjSdBbBtN4RITAoCFEyF4JCBlBIsMAbB+ba1VZlP6gqDRfKjQkMMjGyRZWWe//t/83/7H/zv/3cQXVwtP/zg3aNnz775zW/+o1/9n4KPH3388OJynmXFaDSa7E53dnamk1FZ5gyCLjKKfrVeGNsxDjH6ENxgWjPYvKycsxGjty4vR874xXz9lS9/9aMH7zb9UmvtQ+SMUWSMGMWA5DhyhhhDIAApBGOstx4iRR+Grq3rOm24Nmgwos4ywbj30TkHW/rShgLmUsYlIKJSGd9uTBE4YwCRYqDnz88LnWW5CiFKqWM0FJEIKBIKLhgl7XmqnUWWC8mVUplUaQIjwiRTklIDonMuouecpS3w9s0gY4wY5nl+dXV1//799apJspxEWd1snSlQTI6/m1/BE+dwjTwHv9ndMsaSexJuuVphm7ic2otriHs0Gl1cXCwWi3TdnPU+hmQs6pwDjM45IfIEBWdZxlKKZe9CxCzL6mqcxhshs34wnHOlcy5d9CGEyDlDzgCj9+F67eqi41uzkUTaXa1WQvDVaoWCA0BVVWlSSu8w8bBSM5TiLlJrMgyDlHI6nX7ta19bLa66rkvVFLfC6FTXd3d3f+d3fkcI8dM//VMbZ9MQ4tbENHUhacKu67rr+1/8xf/PV77ylddeey3po5L8VVR1LYRarprzxVUkNN4BcmKAQJwxwZgdDBmXCWmWjTNGjMR3/+itw73Zy3dvf+6Vl5RSHkVVlH/80aPDw1tHz89LFEryfrXen013pxMXVjfv3P3e977XdgMXyBgulstxVUIM1hjnjPc6hECAPgSwFj167wMEYJh4MUQx+hAZk0JdK67SVw6RhBCCbWZfIpKbZBudLmWg6I1J9JoYYwAKQMO6UUKIQgJgJEBg67Zbrpu6KDOdG2OGYbj/0otZWRwfH/dNu1wuAWBnZycxBVKjlACc6617wiVGo5G3bstiF4wgRMc4F0I4Y7fBf4w2zwYxxmKIDCi5JxIQYxIRBUKMMUX1hRBiJADJRBRCBIBA0VhrQwwhMGBKqQgsmbr1fT+dTvu+v7i4mFsbYyRkVVUJxi3AMAxDuujOEoL3HgmKLBKFaT0qdMYIZKGFEM9Wy3mz9kVZ39x/8d79q/Ojth3KSRH7RmRib3cH3VBOxrPp+KOTk0vfLc6fvfrFrwRnOUMt1Xg8RoSqrC7mjbHemOHo5PnOztQlZ+sQF+smqyrXtRLZfNHoIhChtT5XeQhh1XbNcsEQ/cb3HIQQkm/IUEpo4OpysdR5Zq3v2panvKwUrRGiUioimK4nhhBJCRGI+r7bmU7rumaMJWroBlTYyklDcIwxJSUlL3GKFFOuRiRKQ0AEYDzayPKAmQc7mC6r6l6PZ/svfOuDp9/53q+3BIcvvnRrb8IczS+NA1dXO8h1jDESd8gZzwUHlqnTk8d3ZqMRJxf6QsJIMYxSIXgLFeNC6bysicv5qm0D74z77Bd/+K1v/X4DccUPvvf4j86fmx9/8dUVy/om9h5KLYdm/fyt771we//N115aLS8J/O5sJ5NZdGtrvJTlaDouy1yAGvqegBkfOKBx/vTsav9gNt3dIyLrXKHJV0ChHfrG2IEiIkXw5GMIgZwNzrpoQXIiAgPgjAXGOOdSqlyIpmuIi+C94lxIJrnAEhmKiHB5OR/apmGUCVbq9NiC0lVn+8ls9vzissrkeFTaEF/76tde+2r8E3/hL0LXQVY8e//Dt7//7gcffPjWH7/98cP3f/8Pfi96V2RaST4el4Kzn/iJn3j99dcfPnz46PETrXPGUNYlF2K1WmiFSsq+aTlTQ++PT85v3r714UfvHhwcxCgRBEfJgAFjEMGYlaASAAIQQyJgDKISjHAzM6V4pTTLpvtEMS6l5pwba0MIwEXy50vgKuPAGBOMCyGJNuc+xei9k1JeXl08e/bs1VdfNbZnKIBciAEY3wLXgkVPtInZ9tYhYpbrPM85YJ7neVXi1oDJOgcAo9HIG3tdNTdTOMO0be26brFYjOpxQl+vLUQAgGDj5pHmBtqaM3POWfoLfGMA4oOFLW8cth7abBvvKKX0ntKeuKqqdBAlShRn0vsghLomNCmtaesAenF59vTpUyFE2/lEld3d3VVKJYJ02shKJTKpuJICFUJMw2WeqSzTjLFgXdg6Aae1tPc++pBOxjR0Hj99Nt3ZTzvdtI5NiqBkaZm0YZzz5N+ZXJgSVy4tlZNYI9UgrfX5+flXv/rV5XJ5dHS0v7+fJNGwtZ5OFWojT2Ksquqf+7mfW6/XVVUJIbTWSRAkVF5Ya4lh8ERIWusQwQWPiC54M/jDnb3Qm9dffuWLr3/2l3/pl65stBLDxaobHt7Y25mOa+tjnmsG8ez46dD2SqmD3f36xu6wurLCibq6urrK8lxIiZyFQEWu1u1aCOFi0EqmL14I4Zz3PmimjHeEIFBAykUnYIzz9PGugZ0QlBDee5XpxH3YQvCbUKYU/hVCcG6j8kzlPAAjwgjMGk/AjNn4fHLObfDjaqyL/PT0dLl+K7Vmu7Np8sk6OXrW9/3u7i5SjN5pKYZh4JxT8HVVpaQRO/TRewRQSjEGUSAjyZEF5zlPVlSp3yQAYIAAjGFEziEiV9IFL1OGJUTgoJQSAMZ4jJFznpw4PTDvY+9aIvKBAvXpvk/EfSGE6XuIfn93tl6uuJLGBowUnUdEJrgAFRA8A+cclzIl/yQ8oy5KyQXGZa5Zdmv39PQsRnvy9GmVqyKT927se9MqRlWZQ/RNN9y/92KWj99/+tuCAsP47OljhKgEi873bXf73p2iqK5WRmZ51yyePHsagfKiMoFc15mjIyaVsZEJjMCcj4zLvu8DEDLRW9d7r4QcmjaRZQRCptNzG6133WAiEBIZ5/q+z5TKMhVjmM/nN8dTYNj3vQ8klNRS5do1XQ8AiQy4XC6ttckGpOs65DwhRUSEHCKGJKcWQgAjhpwxFrf5OYgQLOlqvOx7YrztHSBnSi+NnY5G73z/saym9c6tNg4Zg8iG1fL5rRd+FGTOGAcAYwMIiYKth6FiNCpUwULTtRCCFFwGzmMQqqyySkgmCIMLWaQIvLN4OXd/+a/++6WIcX/2+k/t3+t7tbO7XLcIw2i8J8rdwPmwssenJ8KuT549HefVeDzlTFFEAGI81kp713MpmraVQiiVB++FYFKrxbKtvE4doZZqXHMI0HMDAGQxhNCT25iuESLyELzWGUPedw0AaCmIiKMwg0MC7+1qZesiB5TOWCZ4jBaB50oSsBh9jCxEckHUZWGMIWCDdSHC1WoNEL2zct3E6N1gbPBFEW6/+trtNz73M8ZZY6Lv/5v/93/9z379N4IbLi/Ojo+faSW+9723Li+vyrKcTnes9ZSe8RjzvLT9FcVQ5FPOlLPDb/7Wb7z0yq17L9w01gJhsOgCAnhknovIOYs2Sik5QJL7M0AmuHNOMJZUK2mEMn2fSk5kPMZIwMLGPCeRbzDB0QQhhGC26Qupnl1rVASXV1eL1WpVlmXC57yPiJxYGiI3ApidnZ3JaJwYpsMwdG2PiKumxYvL5C9x+/bt8XgcKHof2KfUPmn2TR6b3vvxeHx5ccWQJ9OJRIPaYrabcZkDXcPauCV1X69gruVD13zmT5OuY4xZpkLgbdumv1MUxWo5d87lWZl6lxBc2zqewn35JtG1rmudyfU6odMTROz6/uT0Ih3gjEM3DEIIwaAo8slkMhpXuc7KMt89PLBdD8QYYxZISnkdQJl2lHmeW2NHo3EIXil1dHS0d3AzYcVppzsMQ9I7JHOCVDiVUpPJZMNFx82wlxD7sPWnvP4Sp9OplCK9SJZlCClG71Mg/ybMI77wwgubI9oY59zOzs7Z2Zm4uroCAIYibdRD8MgZRmIIWV6s7HJnb5dHeP/BR4Tx9iv3jx4ce2SLVbsw8eHp1ajQzWpx8+ahFDFS99KdnccPH8Ig65GUGfTrM0R4dnSU7MHW6zVjUOa6H1oKvsyzvKqJaLUOQgjjrLVBF4kMQJEoAkYAwfm2ixRJdsYYA2eFkNcNVApEQ0QXSW25D0TEuUSMnPMYiFjawEJyJ3HO1XUdvDfGCMEYY0mhdHV1JaV87bXXiOijjz4aFVkIoS7LF154wRjz+PHjZNK0Wq0EY3VVdV2HRJJzktJam96nkiLhJ6n56vt+41/7qRuabbz+UQjBiSutOzNwhBB8JEbMEWUxyfDTRsFFZIQMHIFzwXvvgnfOlWWJDHUmGUTvnY0++qCU0lKF6FIQRd/3TG7A6kCRcy6UZIlukSyxECiGSLRXMh+GalzJuHu1XJVZfuNw/8H7388gZ8Gu5/P11cXOZNo03fOL3wVgQP7Ojf0iV7wuZq2fmyYplZ89ezaaTCNCoBgIAfliuY5MMKVd8EM7ILfWeuRcap1wDef8YFyWxxgDShUodmYYnKcQuUBtjWScc04MAwHj0tqNTN4YkymZ5VnXtMMwECYehEpxW+lSK6XW61Xbdulh01onbp1zLnoPMUrBOWfWWyLSSsZkJrohsm8tgxG1rlfG50IDhn4IPJop9nsFCUndamH6oSjKYFEr1Xz8dKIC5bMhoAueoXYhSM4j427oIPZPn6x3qiwAbwcfopIIwXmn1crYmmuhYsa485BpOZnsLFfN8eXV/v5uez4sO11WewsvYz6+p4ertXHtVT6qfAhKxIvLS0DcP7yR6WrduiFZEcWQFVkgKxgeHuz2vQFAiML7KJRuV+sQAudYlWVRZFISWR+t6fu+zMZDT5ZipOitCzoomQH3fT9InocIWinGhHMu2RNXVWXtYIYhnSqBuXQ0S8XrUamlCM5S8BBM13WSo/WRIyyXSyV4JnWWl6S1dUYpJTQuLi+73k0CdYOJEYyzdZ79+Z/7S8Hje+9+/0tv/sBqOQegi4uL8/NzpWoh+OXVZSAUUtd1rVVZ5eAd8w5jhMHRj/7ET3388Pu/83t/+PWvf907lEwpyKLz1nmMJJCFbdRrOarJueVyyQTHbS61UoojMs7Tnj4VufSkMy6llBGAKHAuEBOFGJOsB5GSjqbUGREXIuv7ti6L1co/e/bslVde4Zzned73JiJQTPb4DhF98NdqmcQeSlhX4gwnb4ekoNV5xjlPueYEwNVGZoOIWuu0ex6Px0+fPr1//346A1OpQLaBmhFRsk/cKDeF9hOjzRDiJymK6ZWv/5yEQ4l3lgjMqcKVZXl6cvbaa69prV3wabJPuupoDCXOMIeyLG/dutW2bSSUQmYZBqB051jnJAEi9qZv5/P5eh0eOiK6ffvm66+/XnI+WCOiYChUrrquSwEwSdKSDoc0sCqhMpUdP3t28+ZNjkiI3vs0XqcLlfTrSqmNaaNSAMBxg6hfB0Knbyrh2MnKGxGTW3hRFG3T+K1pZcr7Ssg0AKxWq9FolHjdScs0Go2EzgoK0ZMVyBiTIYRJNRqMma+WAplS6uj0REreuO57H75XFEXjI1hb5vXKWcH0atWXIjudz/dm9Rc/+/rhwe47I3F4eGh623IPdfF02TPGyiqvR2U/tCGEpllJhrLIq6oSUrtIcjBSSiH1yq+ICDnD1GcRMSaQ89R7W2sl4xwQONegfAwMKcYNBZwicMmICDizwW8twiVjjDNhwEEMRMQAGUGwTmidZxljsFh4JOj7vq7rMstXbE6B1suFEIIBmb7XUvZ9//z587LMx+PaW7dazL33VVWN68pbs16uUgYw51wKDvBJvHHcGqwn7dN1Z7rl8ZMQTEmePgsGz1AEIo4bxn/6Q3rIE+kMNfoYmOCm75xzxDAAaami27x+mRfG9hR9VRfGmKu1ISIUUmUqbszlUWuVJj8KnnGe6xwYGmsNkXZXXGaL1Vrp+sbN20dHR3Xb/vRP/3S3OKs1uzw7Pj1+1rQrKTUhrtv2pXt365wF0+zvzBZOfXS68JaqvFhcncKKj3YOiAvGIBhpjJnP51m969brCM67MBgTE3HRhdFolMXY9kOMV7R1DyMiTuR9YD4mKkeR6fF0NiqKpu2NC5zzoiggRq11UeRFlvu2TUQYHkM79Na7LC8LUfSdGXpDRFLrbhiW63WqyhKxyLJ0rBhneQiMc6GV896FsGl/thoQIkJU0K3zMiMTppMdtzwed0/2Onl8ceXPn92bjvbybD706OHy6OkYDIz2nCgCkZKITKTIykzn0lNnWsUcaBGYcgHIWk3oVHZhes/BEuScDaZFxrJqNNsfr4fm2eWF0nlv3RqwGk2GYbBnF7v7N6ui6q0JBMDVk6dPIYTR7l49O3SBAIUQLDKvuOOcO+e10qZ1nbFSZF3Xpma0aUyksM7bybguiqKqqrIsh2GYty56Jy3ECM70g0BWFNF5sTXORQDvrTEDWo6Iw0DeewIYnCdmOUckFCpjQvR937eBI5SFUrqg4CPCaDQyfS84SSkuLs/6Znnr5qHUWd+11WiEiDFSO/Rd248m08GaJ0/Pqrr4xk/8yfWqe+f7b2utBGMHh3de/8wX1uv17//ht7/ylR/48Z/8iSfPjn/t136NMSTbZFlZVBPr6GAyPn3+7A/+6IMsg+dnc8F0kYsi56iE8BzQIos+QFK6lMgjeWM9D4SIm+wjH4auzfN8VOS97TnnwPRmBEQCjBiRiCKL8RPNKzBAnp794ELgHAkZes4YY3mer9fro6Ojw8NDpZTxITiHDBlL0iCoijKEQEJsqaYQIzgXiDD9zrmMEYxxnEuOgnBD/GRb26x0FoUQKEKWyaqqHj169NprryWHKedtWs+l2zsCT8PL9bITP6Vvvh6L0zl2Pedck8L81vI2bLMlJuPZ48ePT09P792752NomkZrnehj6UyTWqUqvrOzc+vWrScnq1XbbPbQMTLGAkVkgjGWl4lWZntj+749fn4us+Iz9+4l7moiqAqtNhZPPqQ5Nc/ztm3THDIajZpmZcxU69w5N3Sd3GLoKUYpLY+ToDldwzQBs08sUDZRDakqW2vlNlOyruuu60KMkUAIESJtAme9T8Su9ECl3TMilmVpjBFt21ZVlbEsU7lpuvlyzesxWL8znvTDwBGN6X0ULFPGuWDbTCpEEcnmVUnRSyW0wlLS7u7MB3N59fze/TuD9aj1xem5LspEM8vz/OTkJIHvWikhZWonB2MDEGcopVQqS5vU5AIetimYjDEIECkMbuBZfg16mH4g3Dq0MUwM5FR3k14oEhBDxoRSGZk07HlECN7G4IDE5flZURTO2BB9JpUd+ugdEmRKXp6fJTXXwcHBw4cPhRCLxZW35d7e3vHx8Ze+9KX33nuv67rT09PUK41Gk67r+r5PGxclZZ5lIYS267Y/91+4Wa/3NGVRCyGiiRRicJ4jcAS9ib5KYbwEMRpjIQbGGAjhfZRaD9Z7H/I8T4XEGxtjHI/Hzti2beuySqElPNeCce89Ixj6wRkDjEUfNlcMAQEk4+veWS44574bumF9cPOO5ZkxHlXxzgcP1surV+8dHExne6+88NqLt46eHjMubt154cnTo+mkygW88NlXrhqbZyoTfNX1Xd/s7Owcn5wPAfcPb07Hdb9eXl5e9tY2fXe1WAFAUZURgKFwIUqJiQXqve3IJI2/MSbLFGeMEEJEwXik0Btrz88BeVmPvffGWK3VZDIBiMaYMi8sQmSIyIlhyhaVUjozlHUR12SDd956F67HiCzPp9NpOgeNMRxZ8g5TUhJB6tmRIbJN2mvTdnuTcrU4txnbP7j54J3fWXz83ZPv/rPHZ3MC/9JLB9//vd8ilNPZ3sMHj+7eun023Qt5FqzjFBiEvu3Rm7rUIURPatmTNRaKwiML5HZ3dnsEisFFPLtcKvQigWnU6pIjE8iiDVEIVmfCd4tS8NnujcWqzYCrTPddLANvrAeuZwe3eDYyXbd/eGew5vHjR96sXrh/Z27Nxeml1FmhZIhBC5k89/sQg/UxUAi0Xq8ndVUUBSKx6DE6Rj5RHSF4geBwE8IKAN5bxpjW2jknpRBScSGVUtaZfrBKqRBDWaqu6yi4osgE4tBbx6LkXGt9cnQUgrt187Cu6yKT3Wo+n89v3bqZQlkmkwkijwhA2PdtCCEAcw5fevn1v/xXJv+v/+rnqyJ744037t2788Ybb3zzm9+8+8Lrf/Wv/7vgI3n/Z37m5y4uL9vF07//S7/8i7/4373w0mtlVZ2cHv3Fv/Q///Cj937lV39XcZBCKJXVdX1wcLCzM1VKleOd8WgSYyTGkNN0Z18qsVgsSqUieUyZbM5enJ2dnB4d7O2jcmneijFGH5AzxhCipxA455wz78nYgSOTUioh+7ZJZ1qWZcPQKSWck0+ePBmPx1prRArBCaE2lIdNPLnXWnPO27YNYaOjxW0GYkJxmqZJnbrzQW6z1WPYTAIxkBQqMaL39/ePjo6ePn36+uuvr9drLj4Jv9n+2gy16aS9LsC4taNJrcBWuADeQwgQgksVJZWr9AfvPYV4eHj49OnTqqqmO7OkKU/rwrRdypQmor7t6vHo9u3b8+axtYNSGTLW9z0wFMCIaHBWCOGD9wGLalTWY+fcoyfHt2ezyWTCuASAwRrOZIzRWquEFFvzfKVUIlLVdb1um/l8PplQ264559YOUuoYQm9tlmWImEDsVFyFEFzy9DrpQyUcIlXt9XqdnoLrMK6qqqx1tDW5TFv2dBmvzTBSjEeCu4UQAgXvui4TcohDDCFZZd6+fVsX+bJZn1+dN6YPtGHtOocVgxhBZ7mSAQCzuvJDN53UjMvz+aLKs87YEHFw9ODZ8+nOQaE2+uVEkMtzzUQx9DbhokKI4GKM8fL8oqhKBIAQCYHxxLTbDIKZVDFQcK6LlL48rmSe533fp6KeFsNkSWuNAEnYCgDOudFo1KzbdD9Za/MiizGWRY6Ik9lOt26id4Kjt8YZ4QwURXZ5/vyll146Pj6O3j99+jSdL5PJ6OLsfNPRIB3s7z569EQKgQAhhNVqlR6AENx4XBtjhoE450pKLgRjLK1bEos9vbeERXg7ZKoiwZxzk1FljPEhaKlS05kgL8kFEdnB5Hk+bxJ/dfMMpO/SGLNer6ej8XK5XC9Xo9FIqmw6KQfTxbgxLqAQYwhIjAMqLoqqNFtKp4sBYkyL/2iBWAZdIByaZZNLRipfdO3l1dXhWE1mlbVWoC20HGm6f3P28bOjcaE+/LAZ799YzhfBOozkrRvv7/ZTO2+Gk5MTweDWwd64HtFqdWGdc05K2bZdXdeD9TIBTd4RkVASICJjeZ4VZdm1rQvkQsy1EhyDdTpTnMv5aglMIOcq05nWxrmhaxAiEogs9953Q29ak+W5lNLFUI9GbdsSI8lkQuRSdywk55wrIdbLZdOsyio3xjRtPxqN8qpcrRtwSLjxgkZkPgZQar68yiT3xMa3XtD7t8+XD3OzKqhVdVVJjtYa1z03VB+8EIxZocqEKousyMuz00sRXMnGi4urMs8QmcirzvTBxRBCwUVrbMaRS3X7cH91pUy3jt61ba8hrvvVcj3IvNJKYPBgvQwmtKavuI9h1axju96bTRfrS13O/vp/9H+qlfzee4+klF3X3DzcffWVl44eP2guz6UqykwSECFJxiAyH2LX9RtikQ9msH3vYoxMCiHYuM6l4gDxatVwBIpu3SwYIPl+MhkBknMbxg0i1HUdgHnvIzImdCBmI0zHVT/0golUQsD7uiyEFOu2uVosRlmGBM+ePZvWVaY1r2tr+uenp9NRrcry7Ozs8vLy829+yXnLkM9mk0AmxnixWAip/s2/9m+PRyNEms/nJ+dXL7zy+v2XX3vw3vtATGg1Go1f3d+n/tZibf9v/8//yj344Pa9u511h7df+M//r//ls6cP/6O/9X/49nf+4DOvvfLoyZO33/l+iDg4SyCKotjb29vf39/dne1MpjrLD28UWslgjTW96dtc68X88tHHDydVeePgVtd1XddtAnOIxW3ukPceKTIALZUdemIp8y5l6PoQIMkXs1w1bXz/g3e/8Oab1/ZBIWxb9ghpIAsh1PVYys2gtjXdxCTDRcSua/Jc53kOhCFEzgXDT1r/ZBjZ932e55/97Gc//PDDZ8+e7e/vGztcM3jruo7JFyhCluUhOM55pnUCcnHDc+4RMcHpjKWuawPDsm2GI+c8GSdcp/sVRfH222+/+eUvJQp0Wh1uSVt+U/AGU1XV3bu3m2blvfGOIgWInDE2OCuE3L4acy5uSLgA73/04HOfe2MiJeOSMeaMtcHjMOhapUGcc84BGUHE2DftvXv3Pv74YynlrVu3ElidfECTNYfbSEMZ3/pbpTaItnmR6R/TMZ7ctr336UNdS17TH661o8lwaSNU43w0GqVog1QIRAiBfCiyssgLPVVlXgBAN/RnJxer1crHqBRHRMUlY8w7V8hkot2ibZXKXOu8tzbjRgiZZW9/8NRYr/JiMGGIYt070zZcYJZlVVVJKZGxFKMotLomlUGISvAwWMW5h8gBnTXAEDmz1uZKp/tPCCU4Sw0Oxg3bGz5lxgaAaQKmJErznmLsuyH1YkKIsiyRojVWKRWClQxv3765nC+yLDt9fmz6Ns9ziF5yQdHXVXF6eqqyIr1ha4e+7UIIguN6vX7llVfOz8+JQAgRnUuuaX3fI/A0uiPGxLdKd2u6TdNWOL2fECjLUmgo11INw+C9z4SIjBkzpAVG+kZVpgXjHFOvihswtig2vABPXIDW2niHiLv7e0IIa+xp0wDAUvC+63xvWCRBKJFlMsuzXCK3waSuKC1NfRq4ufI2NlcdIufIyqxmCMjs5WJxci7uHM5evPfa7mT04IMPWfR3bu7p0fjRB388zuoiy6sioxCKXJu+e/r0sQmgVIEcumZ9cmz2dnaPT1Z5ubszHfsIiQ9VVZXKckQ0zqY3k7CBhJrs7Oz0gysgoxCcMcgZY4JzPplMCJj3Ia3rMqWUUtb0V4v5ZLoDyJTOI5GnGL2LhMzapmlSXjoiMib9p8zRknLae58TTKfTLC+Te3lq2kIMAMCZTGBEBziuJm2/jAGNKu/9yJ89/8NfefT2b+fgK2eL0VhllVBxFfQV3wt7Byvg/WALIftufTgbZ7w4PT2rVQYgZFYOxPI6W3YrDoRIy/VqtwBr7aDCizcOP/po4WMoi6wfBpA5Y8JY7wNxFjmiZlxKPl8umZZZpnrnT55fcrAlE4c370yK/PHp+agaS4EfPfz45Xs3Xrx/V2Dkxejy8mrd9n0/IJOSszwvtNbrdSuECDwQCWOhaXtki4P93UwzgDgeFcCZsd75QOQ550C0mF9VZb4zHQvBPIGxoWlXIHMptPM+HTF9319eLYpcswhCsrqsTN8ZY0bjylsnhJqOSsbY/Ori0aOHL7/0QtqSdG2jBffeHx4e9n3frpZEdLW4HEdfz/YuLi4GawBoOpmgQO+9id75jeu7dVZIiRRXfXN6eTaWxZd/4Ed+9Md/8re/+c/uZYqb7Dd+65v/2r/6b3z+81/tjb1z59b/8T/+WyHSk6fP791/48MPHr39wfcfPnz44MGH77z/0fIPlgixzLK6yG/funG4vzcqs7rItc44lz/8wz/MIAJypXNkAhBDDBwRiHkXuUDTD6B1CM5bW9cVhdis1mnfyRkbjMmybLVa1XW9u7N/fnX57rvvv/HGG4mvm7aMbdsCbThTxhgAprUejSbJFCj5wYUQErcmFeOsyHErq0sH43UJSTUvJSq+9tprDx48qOs6y/VWtcGttRwwHZ5phF2v185aIURd1+ktpT4j2Xill0rCVgBI+GUqvakm5Xlu+iHRnr33T548SR8whJBEw+nfJ9Q6eQPvTEd3bh0+PT6WiIDaudCbAUI0truOZkLgnG000PP5/Pj4dPLaxBgzm067pk3FL1BMdQ4R2SY8gymlKMSDvf2rq6tbt26l0Mb05jc5ArTh8Ka3pJSi8EmK4vVKMW0Dr9le1xSBDXK+CcuJ14WJb53kN4wlolSYRfr8hc6yIj+/vJxOp5Hh+fm5jy7VvDLXWioWw954OpuOo/PLbrm3O1tdzp+fHM2q/PD+vQjiyenpyfHZaHd/1ZEn3geHkeqsGpquGMv0AcqyRMaMMcY7F4OMIjGHGQoleK6ztm0RiAMEigyICDkyLbnSgojipyygOecuhM3AFPG6vgKkfFBCxL4fEBkhpKjn1G2FEFxvUgQTR7m4mjertfd+OhtjpCzLYvTrVXv7zq0X77/Q973ph1U37Ozs3L17d355eUanFKK17uLiwnuvlFqtmiSlTTdTP9g8E3ab1EGfWp+kxjB1D3HrF22MyaRyxoo801JwIq4UEfVmSM+D975nzFpb5kUK5c4ynbrjRN5Ot2+asM3glFJlPQ4hOIJ1P0gp16Z3xpL3GnnyKvHWGcAQZIqYAkbA0KWdDcNIwJXmXDoXOEYh2KiY7tXq5lhTf/mtb7/1ZHdy5+b+6XxxsfiOUurWK68fHBygNX3f37hx48bhcr5afe5zr6/m588vr3Se9YPJFK9KXWTihTu337/qpWCVygOVbd/rPA9Ei9UqWbBmWaZ1FmMM3jtrRZ4XRVHmxdA1TYxcIGPMeCe4CgmQZyyE0JtBKyGkNMOwWK8S7OZ8SCSISH4wHTLSnDsLiKg4M8bkqiSGmdhwQRFxtVoBZ3leAsDVcsF4MlLwwBC2mSd9cCyIQJxJaUAW0/uzH/pz+XgcT96Zn3ysqpEHJhhEVKv8xtX4Mx6kC0aGqKSYjcc75XhYLQNX68H3llwwPEApkGOEYZBCk7sqtfJm0XVqf7dYLpdVVRzcvLuy4eOjs6OLlcgU59i0q/XQSxZLOYoYbfCc8wAwLvf61VlnQpFBFBmqrCxzhpkLfrFYTMtalXw2mSqlnvWnZmizvJKcrPWCbRx609PqPTVNU49KXWZFniEiMLQeItEwDCnIyJshU2VeSMaYish53bY946rtO0TuAhlnuq5nbew7qRjkknEWNeecY1XUgvHz8/MYI087FG+995zL6XSaaZVUIlzK119/vR36SZY3TdO2bZ6NZ3uTlJ7CNO/bLpK/dedmNR4//vjjy8vLoqp0pvu+zxRUo9z3Mlf5z/zZn/31b/7Gummqenr09Pmv/pNfv3Pr1unx85u3ptYO1ofRdPrqa2/cf+nzf+4v/8vWDd7Y9Xp9enzy0YMPPnz/vaOnT97+zrff+f57DANSVIy+8eM/+hd+7ueMMd/8o7dWq1XapzLGOI9pJQRE/WCFEJxLG4cQ4tnp6dHRUVnl0+l0b2+PISaHyBACMUytxtHR0Y0bN6qqWi6X6cRIzohEZK0HYJxzqRQyprSOMTIkIkpBCM7bpl3rPEsnezr9kv4StmFKaZIjotlstlgsTk5Obt668emwQtq6KiYhSdcN52enachLgK0xJvGbyrJMWaJZliVdUzqUUuFPFYhznuclUUg+Cg8ePJhMJi+8cG+5XCIyRMpzbS2GsEllQMS+aw4P9lbrxWK+ctEQEQXPGSIKRCQC730MIbGGYyTOxfHxcV3XL9y9k06wqhxxJETkjMtt/LD0m6182zVVWT969OjZk6c3b98iImNMnueIlDSvsLU8SkIsZzYknvS5NnyjrVdoAp9p63BMRExKn9B7hmn1nhCRLSeJ822I4QbCjM5HGbuuCeQ717e2a0ybZRnjLNNyVo8LJWkYaiknMs8LOdvfy4Q4mMxmdSUQD/f2ZV7aCO7s6vj0nKt8ZzK5Or+ItisKvb83kYVKtFsfyPZ9b00IJHUWAzjnrPHjcVkVBQBIhK7r1s0KAEBIqVXwjgE2q3VqasqyghD7vo/4CdU7ffjUa8A2SjqtgVN4g/Uu5zxufUkoRiFU2/ZFkSXmG+d8sVjM9nbJh6ZZJZHW+fl5OgIKriMgEa3b1lqb62ww1lp7fHycGInO+5iIbrQxhU+gSrr68ImJK+NchkAhRCJKbRcRCcacswxIS1XmBSI55zxngkEfwgZCQdRCZ1pLKcEbLIpA5JxLuNAG9hGK0CFn3bbvQyZD3NwWnHOOnBH6EII1xllmhfOeGDAmQnJ33/DMvUDGiBSQBOyXV73r1xKPwX39q18od3ZOnp+YeJGPD6aT0enp6bvvf7BX6Tv7e8fPjiZ3PwMAZZ5fnJ06208mI1XWUvJcjsaFdsOwNx1dkT46Po7chUBVkRGyjSuvt0KoNNZ760zw3tghEjCpBBdCFEUhJMNIwQwhBB88cpFaMWcsZ5DnmnO+bIcY05LJp9uGAVCIiToiOCKiVkIAljqTUnbd0DQdIkkpPcX1qjXWJ3k+5zxQJCKEFN3qAdko5y44FJwJ5pE97/2N6f1Xv1E1b4vTx+/luQ7eedd5WZhycoyzcWwiQdsN5Xg0DMPSxVwJEyNg9MFppaJduObK2XZ3ekMy6Un4QNYFc3o+G5eTydgMzcmzB/Xu3ot39nVZnC6aZhgcgFR68CbniBx9dExIIGDIy7KWWQTBBRcoM4uMR2o7i5LbjJllyxiURX33rlosFheXcyIaVaPoPHCEyBnHCAxR9kNrjOkgSKUAWZlnFRcI3FrrvLk4O0fwEoCCB5DGDhEYESXfKEIeIwkluZRIhAjO2XFRBGOBwdCb89OT3d1dIhoGO7u52/d9364vzq/qUhuk6Xjc9e3zi0ut5Xg8LXf2FqendTXy3jMOaZ+nlGjbdZ7nwxCvFovL+bysay7lMAxnF+d5nhPRer3mvuKS/eSf/FM3/8v/4uLqMi8mjLE//P0/+Df/tX91Nb/68pdeKat8fvRc5tNF07ZdsJeDlDJTuqhGn3vz8Ie//qMcwZpeMPjw/fdPjp4eHz3+3ne+zRF+/u/8wt/4G3/j3/nrf/P8/Pz8/Hy5XB4fH5+eHnddNxifKbmzf+AGs1jMq6qIARar1WK1unXz8Atf+MJ8Pj97fuFjsNZLKZkUw2Bns91hGBaL1Ww201oH6zjnvFDpoNhKDY0PgTEmhMgLHZxHJCkrTDZ7FPphs1dKR2IIAcWmeFyDqGkheP/+/fc/eO/8/PmdO3dSYc6yzPZD2s4k3u/t27fv37uzteUfkkOFc67ruuPj49///d93zn31q1+9ceNGsp9LG0MpN9bWiJwzbm1QSh0cHJxfXnz3u98timx3dzdN2Am75nyTP+G998Hv7OzcONi3g1mtW++8dxaICaFCDJAy2hhLsTgMeXDD0Mejo6PbN25SRovFggFyyb33RZUn27IQgi7y5HilpSCI91+49+DBg52dneRJEjcJ63C9+Rb/AuttU1xSBb2G9Nn2F+JmL46IDEWq9ZyzCOQpctqItdIorJRKEqn0siLlQIUQDg8PV6vVarXKygJC1JnUUuWZmlUVK0rXdsv5FRTVeeMZ0O3Dw6Ietcv188t5VsXReJo1lne2KMpMikxgPimnpR4VWYNAIbVpZnA2RGBcAoKPJtWhuiyrIjfDoMY1eLNz7y4xPDk9Q85ciMg3GHrfdvVhnZbk1posyxKN6Hrjsql5FIFhjMTEhpKXUhYSs1wIEUPY2EaGKISoipyIVssmxliPyqKo2rZ99OhRURT7u3ta67Xtz8/P+77nCJzzCFTk1Wgyvrq4XCxW09lsrFTb9s7HtF1HLiASE4IQAwUighiIQCAkKPs6hSPhHoyRUooDcoRiS1RO7ad1AyDPZBYBmqaxxjDGmqHFrfyOti2nj8EYM1jHpRqW60CRM0mA1liOnCWZFlEEYoSAyBgLBJFxQAiAYZsuTIQYHMQAjClgBdcsWiCPxE3w3/z97+zPxpOqeO/b32/m8x/8ga+M6z2/PrPeqTxTrXv69CkEf+/uXdstP3j3rdc/9/nl/BIADmb7lRSe02o5Ny1Fa7lSQjAm+arru6FfNuvUVnvv+7YL0SsumOBI0A8DR1JKMkSMG7F/AuGvbYkIgQCIMCIA4ynWBpEjkuAcUaAkjJRIEIiYCYlcUvDIN6v0EIKPAMS892SAGEouCSCGT/z2AJiUksVeMXQ+KERQWQj07ORkNHYY0Hs/G5WCbEDonXMgHZMYgXNugzM+rpvW+DUGL3QG0Y1Hte3WZn70g5+9c//mZ779++/oQl3xicx0Qnfm636cYb8acq2ujk7zyQEZ63vjB0fAUCrORe+sFipQlEQMRNf0k1KQ75XgZTFGkG3XlRn3TPQOO8O6bh1jLEtXVcXewT6XwhrPMJaF8pG00JxzEwznqBVjjF1dXQHyoir3dvdllrdty1DORmWp5fzyygw9ImZlYQYHnOV5fnKxiD5YbwfrZrs7SGCHoayz6e5MRttFb3srOB/6njNWKH1+flEURZ6VjIGPcf/GzWDNk8cPR6NqVI+5YMvFaifLJ4c36q57/vz5xeVl0oeEwINzw2CbpsnzfBiGGIExdnBwAAwTfpsK1bprX3zh5T/7Z/+ln//5nz/cu7O7O3vy6KN/+D/+MsNY5FmutFIqy8vRaORp0FwaYwdrnfPL5eoEQAuptJxNxvdffvXeCy8Qxf/Vv/W/eX58dHx8fPPGQbVz4/6rERkwghDCxcXFhx+89/7777/z9lvnF/Mi0+PZnuRs6NuXXvlMWYxPTo5C+M5LL78ipSqkDBFijM5GIrZcNFVVrVfNcrHK85yCF0IURZnAZylTf7OhcBpjQnSIhASRAueolIJAZVkntDkEG7eRf2ybd5vG3FREB9PfuXPn+PjZfD6vqhF9SrJBW69cIpJi84wwxoqi6Ps2y3RRZLdv3/7MZz7z/vvvv/3220k4m/S1aQ6+vLwEYJzDYA3n3PpQFPlLL7z49h9/74/+8A+/8Y1vjMdja+0mVVcpZwMKMMZIJfu225lOOfAQQm+dGSxyZq1PfUMa27z3FAKLMRBxzucXVx988MFP/sQ3siwbul7KrOu6a/pxjFGpLEUXp4iXyWRS1/WHH3746quvhhCSMzPnjIjSAAPbOCncYslpeP30lUlnNSIibqKD0t/BTxHFKaLHKMImdS2NfHHrqxVjFFmWQaTJZKIY5wSHs90YY12Xfd9rJSm4dddWSuejisXQk7XRZ1Itmubi4soMA6775aPjgKwdTFFXPvRXl0vBaf9gN5eyW608iojAQDKGgiuCaLxL1zGEUCqVmibbd0Wej+ry5s3byMTFxYX1NkQyJhRFAXGjBACAiCCEcMF/ekme6lmEjadHuueEEMH5dB3EdWwF486HvCj9xo1ZbNluzNkwDEOmBCJa41frdjKZnDW9LnJr7XQ6bkNwzs72plVVrdfrqh4vFgvOpY/Bu5hXpZTS9O1135T+sC2WwKUIFCMQhHi92Lfkq6LQUjBAAODIlBAA0PYdESECcoaEfd9ZY5ItFBBFignySmo2Y8yqaY0xXCoAAOTOOuTchAgQgIhtlTQBABkjBJQ8pAhCH4EYAmeE0VGuMopBIVcMMwYUAhNCMcZEMaoKH+Px6bkP+PWv/9hnP/Pa6dHRw8eX5cGs7/v9/f1nH50kJmFe6Dde/0xZFoNrejNEaz04hXxolu0yCopD06AULHgt5KrrhRAhBqLNG1JclHmhpUSkCGCM8dYmtqbWUkodpPSBAkEEQsY4shhjPwwIyUYQEBkAMWAhBA6UZZnQQiDkea64ICKG2DRN15tsMhVKpY0aYywRp5UUxjpnnXOekFGM6XCXXIiAMQA4J6X0xhTe/+jXf+AAV//gd/8HofI6z3w/yGpsTGZdyMugkDMBnqAbfFlmKKltl7vj0l01FVbt6uzNF/f/1l/786ELP/3Fr/z3v/TrJ8dX+XQm8yrjmaqrUmIt9OnJ06woL07PLlofSGQ8d8GTjUrKyNEDhRCkAC002Z6RMN1qJYK1TmfTGANYjwKdo+cnz0a7lVKCYBismU3rJKtr277IVdO01nqmdcY5YCyr0nvLR5PVajW/nFvjJpOJEEIiIpBEPpuOrbVlNZpMZ8umf355dX52GbxHxsbjesKllKptGyFYClJDxW7u75mutWbwQx+suX/n9lvzxfnFPM9UpoWP9Nbb75SFvnnjVoy+qKqPP/54MplcnF2MRiOVZTfv3rdHZ0+fPlVCpkDWdDIuF02WZetV1/d9DMhRjSfV1XwOAMYNSom+H/7Un/zZX/y7/9+u6wqlXbD/9//iP5Oc7t266Yx3xk33ch+dkAyAM60BIEZKi8MAaFy8WKwk413faimull2eFXu37pEQz07O0lgTY5Rc1NOdH/3xn/76N37y9Pjol/7+33v/ne93yxUSIIXDw4N1P7z7zkd3bt/PVJ5lheAqUFRKdYPlnLfduusGxvgwDLa3QghkQ9t2AEC4gS6lyhJ1pqxy7/0GcfEWACTHFIGeakOqByndKITgY0hui4k6k7a8ZVlOp9Orq6uyLJMyJ0WlJZV8Gmw28xNRCD5NyQkV994zhl/60pd2dna+9a1vffazn3355Zevi5wQAnFDmU6VJuk833jjjffff//3fu/3vva1r5VleV2uQnRCqBhj8MH4MB5P66oSQmR5yRhzIX6q2uFg+vV63TTNMAxda/q+Xy/nT58+fffddwGitTYEzTkfrIGYVCfot/FH1vl0OL/88stvvfXWcrm8efvWlkQmiEgmWtIWdhZ8S1T6JPnU4TZFKqGtnLPr4fgao05jdPp0QjJGcH3mp/+UvgiBBGVZ1nlx/OwoOFeM5Gp+lXM+qYp0spu+d3m+O5soobu+zwX6YE8umsH4yBUgbyI4b3vTR07W9BiD0mLRaKMzEMIbTwwBeSKRdsa0XZ/wCiSwjK9WK68Vi2E19Hs7uxAisrg3my6adlqU8+WiMwYIpZSr1Sp9Tq219S6EgJylupXargiUmOKp0dNaWwJjzGBNnmUAMAyD1JkxhlhgDKXMElpPDMvRaDoan54er1frXGuh9NnF+Xw+t0xwhuWozvM8OG+HuG4bY3tjzMH+jcViYZzNsgwohBCc80lzDYHIhxQz4INN3UBSmFlrg/Nq69ntg+26hhVlJqQdDGMsjdp5nouorAuMMSVUoi5roUlQaqPSAjixXZIqX2WaccGYGKw3zmIkH0nEyBnDrSg5AkUKkUhEJGSRQQjEiBJXm4gsEPkoFRZFtTeueQzkXNuuJcOd6Yyia6ML4Nfzq4/fe1cLuHf/fi3IObc4ex5jdC4IIS6OL0Z1FmPMcpXlKgRHgRVVduvgYB47rmTvfG8dCNE6N5guAiNgqSfDxPoOobcGAFDp6IOPwad0ZI5KZXmed73RXASKMUYEctGzELhARMZh034pISi44DxHhhQVFwKwLArbD0KIKHVr2zQZpHWDEMJ6l3b/KtPJGjZZhCaIJcZIQUkM1WQGsrharZfHj9nt0UVzfLVoRTETqjLdIuKoYWMQWR6MiNF74kr1xrTW13UJiAQeIczPT/Zr+Vf+Z39i9fTh7/2zf3b7zhf/vX/7Z995sPgff/XX1sNa4LgQNY947/7tuhDvffQAsrosc9M5G32eCYTAKLYRCUgIHmMc7CCdkyMxHo0JzKiqrpbr+XJx587eEBmYUE4Oe7eUSousYOiatremLbJ8Oh33TQ+Fvuy7Zj3UdQUYi6y2juzgy7KS0qbDJc+yplmfnZ4WmSqKghgPzjdNh8g4k9Za5511Xmtd1+NuGJwxSghnOkeIXHOgQmsGYb1qT4+OzM5OXtZts+r7Xkm2uzPd3zssSr3u2ufPT6q8OD+/JGBVVX344YNbd+8sl8tIJQR5tWzWK1MUhRAiOsp0RZ4YY1qJphmEEEoSA1UUxXx+vlo1wOhLX/ryK6+8+u4f//HL9+8B+Vwzb/uDvf1MKiCWgt9daCSCEoKQJ38GIRQgDoO1LmitUWims+DtojVFkRvruSp9sAwYIQYfV1erXBsl+M7e4b/+v/w3Hn388YfvvxucPT05Ojk5CQQHBwf/6Ff/qfwnv1aUZV2P9w72p5PZ7sE+Y3Dzxh1jBgCo6zpYR0SLxSLLkTEWgVlrjXFS+QTY9IMCgPWa5leXe3s7MXrTi/G4XncGN06WaQsWr0fbtBBNBTIBTuv1uiiKpmmWy+Xurg4hCGTOOSFkKg8hhOAdYwyRtoMNXNN9E9R87949pdSTJ08Wi0XKvk0FOMuKazAcEUNwCWd1zr3zzjvf+953X3/99aIoQwiJLRUYMcY48K3X2ND6SBG11m3XpiVxjJuBalzn+7sTzrmxrGkaO3Rt2xwdHU2n0+R9lObX4DZcyw2IRQwAVqvV3t5e3/e3bt06Pj6ezKZlWSakOqFceM1+VYpBTObSCUxNU6zWOnmRblfdLM14Qoi4DeBJNTj9dGQEYWOFlvbr1xOz6PteMHa0bgTiqBpF427u7gcf9iaz07PnDLAY1UQ07xohhLWDCpZx5QI4gsv5UhW1LGrbrbmSgHE6rZ0Z1uumGYwjxrjk3kRgPAIw3vbDqml9iigQDCIRUd/3AqFQfH6x2N/bjdEP62EymSyath6VTPD26LgsC2vcNX84cYk559dzcOLp+Rjatr1OrHTODdbgp4bRtGZIS0cAFgH7ocvzvO/6RC0BQqGkcU4IUZY1Y6wsq4uLi0Q0aJqGI4UQ9m/dODk5efr0KefcRw8AO/t7FxeXQogYN3tfG7yUUiAGT4gbI5E0oGOiEsSolBIomqaBSLIe+eBSkkyEWGS5pWBdY4yBCMG5aKNnngRxzhNl2nontdZacykCgWK8aVvg0HWdj8QAiEBvQQK/WWVQ5EiI1gelRWp4ow8AwACRMSek4CQl9yGuVo0gX+d5rrSUfBiGSVXcevmlQiKzvWnmzsDuC3devnW4OD85/vgIQs4Q+6btuk7wuHO4f/zw6Ww2s0M3eO61vrw671qY6tnubDJfNzzPm+fPtdZFNRqsSchSukERIhci19kAwACNGZBStqPruk5oxTlHQGd9CIFzhojbcEiMkYLHTPE8z4NjnfMxRi0k0wIjaSEH3waCxOpfXl0lbmee5wnJZ4yNRiMfA+cBGSPGXfCCMcZYjIAsR3Ic1KqxnKn7N2+980e/N8niaj1UmGfZyDvfRt1SwXTJghEAIRJDwQUNJuBYjCZ1CG46q+dXy7/yL//lW7vy7X/6qxePP5Sh+FbLpTz/2R+8t3P31bc+fPLw+EwofX7+2FiXV1kXHHGpMoGIDGPfrZE8yJEPVuVaogSLnLG+WaMe6lFm3RBCcM5dXF5JAg1Zz1hWgovUGxdDVygGRMYOVxemrkd79Z619uzsIjgZEZTknKlYcc65GZwxBiKGELRUk1F1cXEBkQhBMTG/vAqMxcjqeiS17AcTAENwiaUvGBTj8f6kvHtjr9JCClwvls/iM53nmVI3b06urrLL8+edt85H452Z9wD08suvPnnyKAD11rhVWKxX7OQEgAVinAvGuJSZG/x4d0JEeZ4nModCury85EpSRGMMQ5FYvldXV7OdvZ/6yZ9++7vfHdqGK2ZiZAzyXHsbEDkFGEyXZYpTdC7E6Lbdc0jcHOTS+rjxyggAjK97k+e5d4FQEkrrBg7IhGBCBorzxUor8fobb7zxxhu5ls4M3hlrbXN++u1vf/vhx4//8Nt/dHR0/J3vfDcCRcBc5+NxfXh4WBRFVZWzySTL1I0bNwgcEIsI1tphsHG73F2v1+PxeLVaPHv2bDIZzeeXVxdnL7744nT3TqLpho1tPjC2STFq2zbNr0IIH1x0MRXL3d3dhw8f5nmZoOkYYwhRSrFZUm4lVak5jtEnkvB2wccXi8WtW7fSaHEd8NA0XbKMxi2pWEoOkebz+Z07d9q2ffbs2e3bt6fTWVonaa37zjDGooucc9sNUmnOI2cMAATjCDHPlBBZuqUBIsTgvJNqnGVZVWR1XQ3d2LqhyHR6zTT3C9oUvjR9psKRiD7JSuy9d979/Be/sMWZJd8aUiYGiTP9NS0rxRGmD55myC2YLJKqIsZIuCn2aVBOV48gCGSJ5Og/ZcEdYxTRxcCxyEvJhbNDjKEZOiUkIv/ym1959/33rPEuBK4kYyoQHA1ARAjAInLG3HIRGANrS6XIQW+D9RQgawZHXHFEz4sQgutt4kC5RDpnkYGMMUQbc6Ut8bZxnud//PFxNinu3bu3Wrmrfrj8+HFV1kAYfEz3kBBCCxlCCM6HELSUWrMQQt+tp+XdYRjmBEC0f7BHEc7PzyFGqZQudNoJaa05RgTHOcbogzEYHCfFICCh6wZEZMClVi7FsHPMgs0pDPMrLlBxij5EZ7um/cxrr7///vsALM9+ZlDUAAEAAElEQVRzrfXi8kJz5rxhQIn0LBhQcB6iVBwJ7GCyTAnGrDXBe845Z8w7g1paRksX3ND3fV/kmUIgIvSbPss5v24bznlZah8R/SCURM5aZwm59xCEcBGN802zjPH/x9V/R+uapmd94H0/8U1f2N+OJ9YJlVNX56jcklAAhABjQIYBPBYgwohgjweMGQYvGJbXjGcxYw8wWCCEBAgwCoAsZBqk7lbHqq4cuqpO3vnLb3riPX88ex/1zP7rrKpzdvj29z7PHa7rd0Xva865kCwEwzl3xDnjwDBg9ACBGDKGTACR9xSCgRAFi0pwRg4pSs+DtyEyUShnasFjDrEqcaMQV3YHleIZj9b0F65uGZMvprOMmiEPO48+Nlu2uQ2n37zVxiWFfr0OEU4wxL7pHLFWy6blc6qm2WDWRtn1oTdZbaSPQyA3P+URSi0zxaphtVwuq6LIC9U06+iEkMIyApQWyFgrGcPOKy6AQjSOU4RIirNC6eAcjwYAJqOJ1jL6VgjY2MhKLSm4Ikv233UvOh9ovV6pnO8Adx6zQnb9OhIMB7lzjnMSgRwl+pjcGgyX684ZPxlPRG/ZSHrVlJ0PnVp2orzywlgtijh9bs8KultDoLCtPRoD9cZo5Kzqazi4t83a7/rw0x96amv/3mo5X7x3564q9Xc/Wh7cu/fSa+8y02cn33jw3r8v6+xovf5T/8P//cKnH+3DY2+9d+/tbz6IstAkZk1/1LRcypU1xgXFUIgMQtGbyAJ5vlSK2eiXUi98rlZZ1oFgyse8q2O1UeYKM21s49uWABL1JcMoskHhbH90eJIXq53dic74fD6ngM1qXRRFyYNSfOWafCgIg/OtdUEV1WBb+EDG+tW6V0KOBuV6vdYiKLvmwRVFPswZQLx2ma2WMyWY6mes6SHkMtO7A7Fxczd633XzrMKLm5vHI5yezuvZKTmbl4NqOFg2fufS9VXnlqv20u7O7nibeSp0xrfGk83y9DS5YLnOWVbkQgjtJBHNF1PUxCWtmrn3npjng2ELfN10m3vZD/zgD//0P/yfV80qKwbzbk0FUxuDjkXPmMhKhso5ILJppRchacLJUSQKEG0kMsGkdgqTdANJS2lMF9pacgSIjDEKFpmQOms705m2aesIUFY551gU1eSZT3zPkx9jDP+EQNv1X/vaV77x0kt3bt2+8/6du7dvvfnegbdGaW76dlhlWuutnb3BcLy1tVUOqqwYCwSMJudIpqmEP77/3uK9Nw6Z/+BHPnrbh3deevXZb5tIKZlgBJRK2iQTCSFIxjzZvFDGdBhDnmVERN6yGDeHxfL0YGf3QghEwACobbvJZDKdThmA1tpZl+e5sw5BOg/IkHMMgN57znG5nGst06GqlbK9ybXiCM45G72MZ7wpQs50Ma+7K9euAxcvv/ZGWQ1Go1FvuhhDJJfpIgoRMQotfPQhUNs33PEYfdfXBw/uh+i2J5tlOciU1kWV6awNDYZWoJSSk4C+MaiVkJqIlBR9swwMtRIpVI0xplKx7mIwnit2ee/S22+/fXjvwbVr12bLRVVp611wzp5nH4mUhIickLtAUufIz/ILGAfOGTEMRCrPgfMAYE2b6glMrT+RkrLvfeRgjANIA2pEPNOci3SrGWMaWxeZ2tzZhuhns1nTte/fvjVfLjvTr9tGpGQMwZfGJayaZBwiYCTNFBfCeR+BiMjTuVsZiLxf1s15LXbesCMBMOdcMrZaa4koz7Iyy0MIBwcHigvOJSOgc/9yKsFSU5tJ1TTN9va26buHddnOhb07d+445yaTzdlstlwut7d2GGNZlpVluVwuGWMp8gLZ2SCezjkyKVs7YTeI8GGhlOhl1uLu7u7R0REgF0LovDDGHB0dbW5uPvLIIwcHR877LMvSkuDhquDhhuBhpSPlw5ATxpUS51mhZw0fYhqYdNSnYZFk3JzN6jFZkhhjCDzjkBBXEAmRgMN6vV4ltipQqgYAz6KikEVvHQghtGKARKSlACZSn+esYQTDQem61rRNkWkp2Nr0Wgpk1HStCHZ3b+vC5b1xJsE003UdCm0kb1crFHxrc2O4vT1bHh+fnjw62Z5sjt3pam9vp/e0vbMrs3y+WDXctG27WNc+4IWLl33web8fgWIAZCj18OB0DcR0nremvbA5HhS5d1ZX1Xg4WC5mRYxNWRwdH29sbIQQBGBZVtPpNMsyJaUxkXOZKW1d3/YGZFR5XlBQSqXcMaTIESFYBCpzrZTIlBZK6qoy1mfVwDlvLRpjOuucd8BTqS5d8EnwORyOe+M6Y4hCUZQ6V7niQceuWaGl4OLW9iYXwdSH1hjJshAZctFY7wJJwTIGws1Y6P74j//Bb3u+ijVI30u33P3A07//kd9/enBk6+6br79q2+bixsB0q0Ex+OV/+W/bGH/wa1+/8ZlPZ0o//fSjW9t7r73+XlkNBza4B4cLY0spIdLGxqZ3cbVuB6Xo2pYzETxwrvvOxQiG+RbrXMpMoNTSGEMekDKt80gRmSgHWYxutVozBoMqD8EFT6enp9ubWxzZYrFo6pU13eZ4QylR+MxTcCFQjAyBIWRSBEbGGIQoGDCKWvBM5hvlUClFFC/sbk82RkKw5WJ+uH/3+PDAuiCEQwtRRCmELsuqqg6Wc6ji3vbWxmDj9r17pjdLa6ezE+SglECg0WggpSSEo/v7r9y7N7pyZXt7W3KOyFwI6/Xy9PRY63xnZ+f09IRzXhVlmu/VdV3kBUnRcb65MTZdf3Hv0nd/+/f88i/8czcobef2di9PhluDarixQUIwFwIiQzgj1gH51EGm0yw1dnT+ARTTwaWZSholZPDwlEtdmuAyxhgBs0yPRqMQ3Hpd12tnrQkhDEdVlWcf//jHP/GxT3ZdJzhfTGcvfu3rX//6V/fv363Xi7peLZaze/f3rb/Xtm0gLMpsPKi2J6OdcbWzMZjP4/aFi7/9d/3o7du366a/cOURFPnhg/3d3d3hcExExEhpBQB1XQuGQYjamFFVCuDIGEdx997dvc0N4GFnc/vw8NAZm5cV49IYo/P8dDYDRAcxeKu0NBR0mTMP6Tp3zhARO5NY+6TS4iicDd57RM6BAwOmkl8oBk+IgQMKLjjjly5ctL155Ruvfvozn8yF7n1XKO26Hrh6+Hqnf5guwo2NjeV8dnBwcHp02vd9cD6hSCJB8ihvbGxeuHBha2srncOISODTyPdhq2qtjSFkWTabT53129vbzrnxeDydTjc2NobD4WKxcOHMIJTYAFmWpfP5Yaee7KODwSCJQx66kpIQmnwggAhnQ+w0subnOcpnr9KZVAuJSKg8o0jWewCKACb44Exrza17d2OM4/FYoi4ZKqVW9Zp54ufT3RACR55o+8gQkcUY4rnGJxL2xsQYTWsfiuuQET83U58FEQDGEK0zmVZcK+ZxNBi2dVMU1cZoDAzrdaOF1FkWY1wul2nrU5S5D05q1VuztbVhjNnd3eVMLlbLlFyUaCPpek6xSDxp+QCTmuah6S0BCB8OVZRSLIEbGUjJraWu6xjg1tbWbDbLC2W9S++/O3fuIKKxPr2/U4mQxAt05js6f3RjIIgAZ6J2/FY6K5E13gfHAGNyrzrHO4QQdSWJSDCeIlmC8w4tAOhcc2Rccut7RKDo23qNBGWeuxCQgKJHRI5EQBBilWfImffeGQcI0QfGSHMI1gyUQCA07d54oJWYTqc88CzLnDfRUZVpQNF6P103iIVCAVwuTBhKOdy7tFwvzHR26dKlC6WwIbz1ztvex42NUTUeN72bzpcQvFZiY1D5AIPBaDpfxuCGeTXEeWdDH8RJY5ANx5tb0/lqtmo3R4PTg6NLTz+ZV8XxfoNt2x1PhWCnFkCJpu85MojIMYyK4XK+AgN5WRRFFoCcMVFpKqqe4gCRK/kwCYNzFFIjRB9D7G3fW0+xKAeEPC9K7C1XHJVoF8sIGH1E67MsSwLUdBn7QE3XEwJyFkJwaLwNCvOiyBtvYvRSEEEMnkajTdPHPkrHtfVBa1ShL7v7v+d3/tBe1v7tv/n3YjN78vqVb775OgL7yb/wX62O7t15a748Obi2u3t6cPfKzub/8s//ydFs/Z/+kT98Opuvv/jFJz74QVUOL+xVk8kH7u8vlq1Xmu1P1yerVgErmcxHZVEsogtTC4pLQmmNR6Y3J0PGATEqRqMq1wKp7wXjUikfgnPer9vJuHLW1U0Xo48xDqpCSX5ydJDrbGM0HFZl13VHB4cLoqqqvLeEEGNgiIILIYAhN9YrRkIpROi7Wko5HFTkesmZc6FtW8FxUBZSyrIYXLmiRlU5HJRZnkVjnTNaKeB84O3J8YnW9aAabY3HvbGdNULJyWQitLz93rtKcsGwqMqrH//IoMxjma/XC85lWZbe9H1nrXfDqjw6eEBEW5Nda+18PtdaKyWIgu1bzaHrelSZ1Oon/+yfe+VrX2vXM86yft3/7M/8k7IaDja3nn/+o5EiBeJnEFw6z/xFzohStNE5BBcRCeBMEOt9mvEiQYwBEYmQKAguI0JnTWq8EgQ3AuWCMxCMKYGQcAIArK7b0WAopfrQxz7xbd/13afHh9a1nLMsyzKVTeez1998+91333333XfeeevNBwf3337zTU4hRvi9v/N7172f7F4KpzMb6dGnn1k2bV23q8V6c3NTyyz5iQdZBRCbpsm07BojONvY2Hjxq19ZLBbL6UmW5XuXLl64dKVuu9t37uzuXvCRgHGpVYyRA8UYrXeMsX5tSqljjFyIvCpT++SDJcYhMudclAERAWWMobWOc17p7OwCToqKc8tomVcX9y7cuXXrnTffeeH55yjEPvRSSg+EwBBJcZkiU4mIcyG4uHHj0aeffrrMc+/9etWcHp+enp5a77z30+l8f//wpZde2tzcfOKJJ65evZpkaJKfKW+czRLxytk6XZl5nme5DiEMh0MA2N/fv1k9lmUZDz7J3Drj0rIv4X4fOpHS2d40DRdnlcK5GQnT/v68aPAA0LZt3/uHs2jOkfME+j5LKhThPJ04UzoyWKyWAFFmerqYP/3005evXPnyl7/cNM2NR28ywY+OjmRVSSbIp5eTQohtMGfSdjpjP4UYXd9FhBCCQgEczgS9ySwECARSSWcsceQcY4zpFgSAS3uXptNpVzdEFBE4wywvk8A91yo4O6vXk8mkbesYY1mW67aRQp+ezGKMWuvpdL61tdX3/Ww655xvbW01bU0+JF1AEi4hcqIEmuZC0JlblLHgfLIApVqm73tjzGQ8LKpyd3tHKbV/cJ9zzgC99wmrjchjjH3fMyasdyrTqc8OwcUY4axPxWTEZsmze66FA4gs7WkjAmOIWJZD27cxRmtdIsioolyv69QQ53nunBuPqjwv276LYUYMQwQpRC6l9x44phf5zCMHMYTguoZLaaxFxgd54Zzzzo7K3EHgZKO1Ssi90a733mvhXaxdrxTPlEYKXW8O52HV1PtKPv/kY1u7l6YH9w/u7j/1+I1iY3Mxn9v9w92ByMtiUI1Pp/PD01NAGQGvXr6IXGZ5VXf9u+/dWa7Wk+GgqAZa5VWeVaPtDvSLb92WSu5cuNq//sbWcNSv5ltldvft13Y3x9f29iaTybXLl+7dfbDf9q43hoUiKxhj3lgkNhwOAZhzoXe+KEtdxLqrex8AoMDgXWhMK4Qos7xnWGSKIxRaSF3E6BlhIGa8Ry6JC+8JGNd5YUPbmz4YltZsmc76vq+bJsmqI5HxRgRF2HkHIz2QxHt0q2bBtW7mU855VQ6Nw7UhmyFypcnb2d1PPrGxLRd/+6//9XZx/JmPvHBpkg2fu7m/f/hz/+B/XK+arZ1dJJgfH+1sbPzqr/zK7Vt3/8u/9H/dvrg3rWuG4f7dW48+8ywA5IrdvDaezYIgKqSm/gH0zKyX1WAopJhO14NCIjCdlYtl0zu7Wq2YwCznDgN2vpRSAiuynEkVjJW5bNrazwLE4Al9axhvk6hkPJpkWSYYZ0Dbl/YyBuu204opqQkjkQgREDFQQCAUqMfDtEizts8zBeS5FDHGPM+9ddPp1BmLFMbjiTVdcL31LsMcBQYXTLCSSSX5zvbEuXByfOhcQCbm82WMcb2aX7169eqVS8Gapl5BrkutHn/sJpYZCrWYTt+/dcs5V+ZlWHUY/HBQrJb16fHxZDKZTDZCiClyVXJubD8siru37+xMNp967PHf8YM/9FN/7+9sbBT79/aVeGVzd+/a47iYz6vRpO86nnGGBMAiEIMYgZ01CogPZa5nPTAREVlvOecCgcKZ5wcAQqTONEmOs7t7QQh2OjuN0UfyGfoYvZQ6sYmWdcOZLCruCJ11UrCRzgMT5Xg7Rr9u1p7E1u6lb9+78gM//Ds55+vlomtX9ez061/5wqvf+PrdW+9/6e/+/e/+rs9GhLYz37x3uLexGWNs23Y1X1VVtbGxIaVcLBbee4hYr/utzU3nTLNsF/O1Mf5wOb86GhzPF6qsDIWXX3/j1i/98sULly5evHjz5s3RoEJEjgwZCEDrYk1tCn0ynXWBzl8Wroo8GBNC9D4AZ/w8PEqFACEGiokypbVigscY120zmWxZa7/53nuTra0rVy+1znCuYt8zBhQZYkw5VElzGoIL3hljus4oLrIsv3rt+qUrVxlj4/G4rmtrbV3Xafx59+7dvb09CjHxNNLGVyruvY+kovMPbeJSSnC0tbV1+/bt995776mnntJaN13btm1Z5ZzzrjXhPO8o/cYRMdneiM7sv6mkSH9wgA+7Ya11nufp/E/MBvYtbMvUlIuHvh1P0feWIwrBiCgri1t37xydnljvLl25HGNcrVaIWKqMiPrgfTyz2MpMSymX6xUhAEMEpECRCAhSCi+k/0zn8W5IABCDjxSQOJ2XFek7M32vlQIi5z35sLmzrZRarlfWmfQAcI6LxUwqzjgSBG9jVWpEtN4RoVIqz/PT+SzRzHWmOFanp6daa61lEg8DQFqGnz9LlAqI1PSkMqfve6XUzs4Ogzifz/fvPxgMBomltXfhQtooX758+c7d+6mwSmoFIuIcAZCjDCF48g/FX/hbESLpvxAjJMBwblVKYwwEThQQcT5fVFXFuSAfhNKy0GVZOudihBijt44x5mIAYONBZbwDQs3VWVXuLCBKzqQQo0FuvePICFj0AX3UiCzYSaYGecXI16s1N914PLp5+eJXvvr18WDQtr1PDkKuQgzLpu87+8UXX3706pVckAdx/+Dk4u5mXg0B4rKpHfB1exwBx+Phatk655rVnHHdruvt3YvPP/3EK6+9sa4733fRmtD3y/Ux5kOJcv/27ceywYADC/0zT9/c2xwF0+4/uH94cM94kxfD3csXi3du6SwLIcTeEOcxQADSOq+qomnbtuu4EILxQmkK1HVdLETkZ/mdxLDrTd/3HKlVsipz5xww7I3zEWRRKKnXyS8oFXFGwACgbXt2/qA473vnfYwpmEFqZR0FH0y03hLEUBV5VWbHywVCVFo4os7ENkQ9yn19+tjF0e/6zuf/6c/+47A62NTMt7PoasnC66989bFHn9SCHz+4pWW2t7X1q//rv3355Vf/6l/5b2au64/2ZZGF2tXL2Z133rxy/QaTRXQ0LvnoxrYk9G23ORw8OD616xNZ5YVQk0E5W9Rtfcy5kBR625vGFq4gim3dlVqVWkopUWDvzGAw6Ofz5arOM1nmuYAg82q+bi/vbUdvjo+P43jMWRTkt7cmedNluQKAAGeohJCiQUhaH4goutb1XZ5lm6PBer1O73TJmZQ6BhdjtH0HQDG45XI5n8+rwSIvlJYiArlglRK50pxzLaRSuqiGp6ez6WyWlwWjyAi5lLwqRmVlbA+RZrPjnZ2d8e7WFdsdH51s7UwmG6MYI+Ni9+YjRNj0nWtcpvWgGlCIy67e3d55/933/tyf+YnJcHRhe3O9ON3dHkF0j1y+tDGufuJP/PjJci0Zb9u2KEpn25RslhLYgGIgiCFwof7/p9CQfHEppQ5SGDxjjDEeiIpy0HWmbdt1XSNi07QbG+PxeDjIdN/3CR2fRp1910eAC3tXGBOnp6cHJzNHbHey3bTr6XLFBDET1vUSp4ssy6oyv3D5Ebx48YMf+TBG99abrx/uHwglrXeDasSksot5GvvVdX1ycjKbzYzzUmc6Z7/zh3/73Xt3vvybX+p7k2+VV68/evv27VU3nc+WV648sl43k8nWb/vs9/7iL/7S9PS0a5puXT/33HNFnjmAMtPOmiLPWzR93xJRUVTDqgJixjvvQ990QggmFQP7UHGNRDyEiCCQIYuBIIQQgXpnE1NhsDEa15PX3nojGxV5mbdtC+cfMUYGPB3X1vZEDM9hD57IdwbAIPAEfmGMlWWptb5582bXdXfv3m3bmkKMUcboiUJRFGkigsQT9LDruhjjWaRj327vbL136/bGxsa1a9dSU1rq0oYzz1I6T+I5SzJNkpO2K028Hw5IogvIwfuQ+rckuUrvE3YWvcwCEOecoeAIIiGlHurFgbHkxkzK7MV6FaxL8cXpTqpXK8YYEmkphFJEZK1t+44xFlOCIwCefzec89D3jDHEs0KS4dlFmybjiOidBwDkDBhSpDM453nXmKi80+k0z3OtRJKPO2/ato3RN+uVFHnTNDt7u21v+r7TWh8cHHiKVVUF6w4f7HPOre1Hgyq94uE8ISQtihK5FCB2XZcpfVbAhhCiYxzyQpu2y/NcCBF9KPJquZpzKS5evPjuu+8uV3WMUUoJwJADJ0xt9MOJRNryxhgpxhQImi5XxQVHlmy4gTgiJwre+64zkaLgSmcyqbKFEC6G9FtMNuiubVarVVokNE1DDBMbVnHBGLOuRwqZEEqpvNAA4Jqmb3smZCDq2240HO5MxtHU9elRUWx9x2c+tVrOY4Cm62fT2eagsoNB6Hsk8t7rojRdD8Q5l5nWd+/tZ5y2RlXN+uViPRrkSvLpqtXV2Hu/s7kVkR0fn2a6KDJtjVuslsH70XgiMa7mx8a44XD4yIULkXgXaXM0OTqc2dVylOnTo8M7t8xyVu7tbF2+du345GTVrEkwIfWEi/H2diA8nJ4s1nVkHIXoXBNbzzmHELt2lUs5VEow3gFEsNY7xgQh85GMD9FZhhBC6EzfdZ1SGQgplHadbftQm9b0rijIEyAXwHgIFgCs8TqT508XARchhNb0g6oCDmVUZcUXzSorZCFUJiREXw1zF1xnUGaDvuuzuP5jv+dHDt/+wtvf+HopuDVd3/cf+47veOfll7d3dr7ytS9VVcWRX7t242vfeP/zX/rNv/E3/sbP/fzP//x/+NonPvzkn//zfzE467qOXKgXy+FESa6AAfTw7BNbe5uTL3ztRXVpsuy6+SqUTE+Gw81xtX90EDmfLo3vPZc5IQ8O+kDe9C3W1pjRIEcPRFS3nXMGGQkhLAVcrsbD8v7B4fbGqCiq/f3961culmVpu15nknPOGGoGXKD3jJD3UlKExWKVav/oehMdjMud7Y2mawXjXddxBt571xsf7Gq1Gg0GWudCMGCIXOqyRCLnjO2t693W9vZka6trGtM1eS7Ho0EEitFzLre2Js265ozlWWWNgcY267lgcVgW+ZWLLtJyMR8Nx0Ip07eA3HZ9QiXXdcM5Dy6Yrl/OZ0h+sTgU0GA0N29cuPbIpR/4ge//0le+2rQLBsxaW4yHxlrGAAkRiBAZYHi4SCKi8z8zxhioBEZNQSkpuMzHECgCxRjABMeYQORt23OOeZ5XVcU5b9s2YXYIYNXUSmXGWeSqd3Y4KJCLiHDh0pVyKBfrFTAeInhAobMQgifoens6W1KwnAGnsLFz6ZGbjwPDajgKIXLOgCIAgLWACJwDY2DMfD43xmipnnrhhY996lNf+MIXXn35lQ9+7BPDze1f/Id/T7fxg9/2/T6G46OTalB94Imnf/lf/5t2Vc+nsxjj8y88X5blwrScc2u7QqIxrmvbdlFLqaXQSmmtc8YYs8R5LHQerOvqRkoJBE5EImRSMOQheJRMCKUFCyEYa6WU169ff/fdd19//fUXXniBc04seO/TTcI8k1oJIawFRA4QQ4jWOiBGhKmvBReTbjlhRvq+JYq7u9td0yaCYbo1z9eLLPgzI1Nq1YhoMBjUdZ3am1u335dK7OzuAtB6veKcRx+ZEEgUnAshJFtxcM70ffSpweYIiefLACCkXSJHH7iSIs804zyVRAAcETwFETEV+JxzASH6eObkiRESSUoK5cJZCjFxwTmXXATnu667euVK39l1UweKzvRMSJVpHkUy4LoQAJj34eF2Wgv5cKibpsoPCwHGGEYiRABwztR1AIBhOSAi7x0AAGfL5TLNEJwzm5sb4+Gwa9aXL1w8Oty31mou1q1NBqFUPaVhQgSK7qzBRaStySZjLAUmR2JAQEQ+eERMLNY06PfWnWVWCEyq+nv37glkSQFEMYYQHn300cViMZ1Oi6I4PDxMv8W+t3BOLAvOps0/O8/jBApJyXGmzCII8Fu0bq40IibRgA9BSoVIwEReDjiSUBIRPcXgXVK6/9bOX/AUcdX3rVZiY2ODiOp6HZwjohh9v26apskEV0JmRRmJCSFyIaI1sTePXNgbKIxduzo+KgejcVW++857GKGbzfc2NjbGm2++845dt8j4uBwxiG3Tl0plSkjGt8YbhRIiggJm9eDgeKEEC36qMzkeDJfLdYyRMbG5MVg1za33TxnBhe0Na32e51qVV65cma/r9+7c2xkPZyeHvfMu0tF8dbxeLzqbZ3pjVGZFPp0eX764t1WV89OTrb0L46ps29phXDerajiIwTIUCJArUUoOvldCjkbFce2dC4yR8xEJGGPIBUOIwKz1wFRApqQKBNPlsu9sNsitd6HriSACQUjMA05AzkdEnud575wHdM6um1rpEkwQECXxrl92jTNLeXT3gVJCl6Lv1n1fbk1k17Xf/vGnr27E//mf/y/RRxuBUD44mP7Vv/zXXvjgs9/7Qz9oov/aV75648aNg9PDX/33v/YTP/lnL1y/9pXXXt3cZq1tbt1595Mf/9Ri2VTXcg6iWzZ5Kfbv7BeyHO9sbG2x7/vuj3zltTfM/vza3uPLetavVroUG4PMMxB6mDfeRWkseQHBeYSIwK0LxlEleYy+LHPvJYVoveeIs0W9Wi7JmWDd9rhyPjw4PGrbdjwaCCQi0vqs/0vEUAYekEkOXCkp5WQ8XC6XXVOPBtVgdyuEQLMIEBlEEChkxjlv+15KobgERoCCgEeMIis110YY4BxiVEoQoWvbBw/uJR/2ZHOzbXvnnMqzummq0WhP7K7X62ZdE4IxZlCNJpOxMc51njGBTCRfYllWyFnb9M5RCLRaraTC649c82bV1/WVRyY698BM0696U4+2rqDgq1U9nmwHvwYABAaRAqMzTTCx1PM+7Cs458joYbuWeovoo7UOGIVA1nitNXLuIxADRazruqZpWLBSSkD0ieMGdjgcCZU9ePCgnZi6aULw41HlfRIVR5lpojPikJRSCk4ITCiGlOdV1zUmQK6yrnd5LgEgOMuVgkxBCNYaxpjI9YbeAcYghL7tLjz66O+5fuPjn7m9s7PzMz/zM2VU89uH73ztlRc+/KGPfOf3PHLz0dHm5O5/df8//Pqvv/jqy1/48hdef/OtJ556gqcBUgjNot4Yj7dGm6fT+Xy+RGiLorLS5Dqz1lprJ+Mh50xAnFRFCKGRacUJMYbeOoxeQ4wxMgAuUDAdQrh66eL9+/eP7j24eulyiy6p2wRX3scYI5cikTTONgDAGWcxgvcxhLbMZTJWpYatrtdKSIoxpTQ65xjHSKE3nVQCGWite6JUBsUYrbWj0Sid9pcuXZotFwcHB9vb21VVJezEt06Mk8Y2nhM0Y4whMIDw8C/EGDlRcDHSmevpbP94ni7M2NmG6+GnEkQ0KMosy1wMTbMmf0b4zpTuuk5xwZXq245ipBgHVcUjSIRCSULuY3AUyYeu77iQEAmAGAOBLDkfOee5OAufT309xAjBAwBnLHpHAEIwAEhATimlMS7dMalIsd4hkPdeSr6cz0ut6tV6enx09dLlx29cv3//ft2dBorHx8eMCWvt8fGxc24ymWxsbOzv70sphWDj8bht22pQOOdC4GePEBPIIE32U45HGhQQhDRVTuZC8qFpmqZphtUgxnjv7oPhqAohdK3J8zzFcCLyvj9jqEI8A8ekC5gzIDxTcadV7rfuDBhjwJAAAkXOuAseOXPOrZs62c6QS4rRJZkYY0pwjCHG2DQNMj4ajVIQ4fb2NvmADCgEa230DhF1JvNC50INxxNAEQi2lPKmj329uTEeZ5z5bv/uHefM/mLdGNd13WA4Fp1hEQQy9JDnhZRyOBgHb8vx2PdtJqIWcjIcoO81Z4VSFqRSKgantLDGZFmhdW699z7mRabyrCy7JEk9+4kin88PNiZbu5Mc2WjRmGwwOZgu5nW7qJv9ebs54h46HowCnE9n5XC3daauV1sbEy5E5+3NcnAym6aA6+AMi14xKXPlrVmvGp2X3ncE4KwloqqqBFMMiYIHZErJumtNIB+IgA1Goz70yIT1nnPuAwXfF1kuJHfGJJx4WZVxtXLGpsVBCGA6QxTb0OU55lwPpArruiyyPhgfbXTg+0XFi9/3w9/9S//677x/6954shEIuZYr25VC71y5uWjt9//w73jy2We//JtfzKvyd/+B33fjqcfnbfNH/+RP/Owv/KPX3riHDLSUL37lq3XT/8Dv+4PgwXX2tW+8/Iv/6hf+wk/+hWsfeDzP4VMff3rr3vDO235cTmZLqE2jgNm+355sZdofzWvPCDhY40RiCARvDemc5VpubYys9/P5vKqq7c1N0zWmqTPJjWneevf9jUHpfetsCIBEQWs5HA0yKRiHrmuV8t7HXBdpE7Ze9zs7O4hQ1/V6vSbulsul6R0jlvJn+t4omVHE9Xo1nc4Yw9FkZFxgjJVVzm0AFN55IQTXuls3xrvBYACMF2U5m83yPC/yfL5c9W3TdO3GZFBUJRE1TeOc4wLLspTSn5xOnQvG+mo0Zow3bT8YDJre9MaNx3K9XhtvykG2dPMAJqD95nvvv/n2mzIbbO5dvnj9KUAuVTafL0dDDgBA33KzQuoZWIjxoQaHiIL3IQQlZNoQA0DaUyBSJHQhkLWcc8l5jH7dNm1XM4aDPIuEjzzyCAoWCfb3j1WW13VLRH3bDavKebOcTevVbFDle9sTxpW11kePDCUnztI8XHDONrdGbaMHgwwA6rr3XnIBTKsIFGPkgnOuQwgRCTiuVkvJhdByvlqMR6OLNx7hXPyxn/gT/7vv/uxf++/++ssvv/zFl15c1WuhskeuX3v2uec+8tEP/ek//if/xH/x48t62XXdSy+/lIIicCs/mU69j8PBeEvns9miNt1IZ1GyPKvMYjavlwROCd649VtvvSU2h3lW7O7ujsfjrNCp84o2sZcjIbOmK3R248ojD+4/2NvaSiGzAEwIkXRbgnEtVYyeIw8hBJ+iFVViMEcfyrzw3rd1o7VmgMnDkj6/8/YhAxLPsflKKRcpSYnzPE+ZN2kGfGnvwsHx0b17965cvbq5uTmdTrUuUjeF5yie1Kw+POQfMq2S5ldATDyTcKa+9jGyEB1gREbIKK1l0xsmhCCC91VZMsbaZYtEUkqCwJAZYwQyRIw+SCG6thuNRpcuXWoXq8aYQVVVw0EE9uBgv27qoij7vs+06noTnK+qYdJVIefeGq41Cg4QEUlKTom4ey4pTLsQ4AwZuhiAgPxZ2JM3PSFACFLKlECZmFNVXrTN+v236yzLrly5cnJysqrXZZmPRqPpdHrlyhXO+Wq1KopCCKaETD2u9z5Zm847YySKx8fHeIbexhjJOcc4pAs7hDCZTKbHJ4g4HA6ttYUQWus8Kxfz1bqfp7ESY2Jnb/fBgwfee4qolUpP6XA4ZIytV4twzkCnb6Gtpsc46Qu01kwI5z1jrLPmDGFqnXXOh8AQAcCnd0mM6NzZZj3E9E0SUaoDfHB5nheZZiyPMRKEGKONtFitlc5CoLZuqkxBJIHgnVuenpAblmU5Ho/jqp4Ivay7q9du1HU9nc13dnaathdCIJLtu83h5t6l3X5xMipUW9eVZpuTrfnJ4dxmVcXJeWc8kuu6yBgWRUEYQghcysGgKspsNMiCt5zz/YMT59ze7uDJxy/vruovf/0Vs7ZP3by+6sJ0Ub/z3q26bhBgVJbGmL4Jd26/fvny5Tyv7ty/T0RFORhmxdydCC4neRWU7vpWKSUkM76z4DXnaVyvda51TnQWbGJNB0CdNdZ621mVFVKppuuYBCYEhehsICJA3nQt75nkCIABCJGNRqPudJqet65ukGDRdcOS8YwNBVd95+plKZUNcbVadp2op/f/wH/2R83i6Bf+yT+6vH0zIqzqeliUfeif+9DHGhf6rm26+PjTzyxWy3t3H2RZ/sY733zk2s3nP/Th0aXR4b2Dj370o2+88cbRweFTzzz/1c997qOf/DRCfOkbX9uajAg8IEQXSPPrVy5fncAXvvBSdLVEFgIrxWB5tPJSlUIVms+X61EpTWcpeq204ipXIDBwDOAti345n/d1PR4Ps7JwXQvAdvcuQ7BFJiVC3RolWVEpIRVw1tuWCJ0LUkoCSPQSa10IIStKYrhuG679cFj5wpvWUOTWOu+9dy0AMBSjYWmDn54ulqumqsrFstGMlFIYw3BQDkZD4ExKab1DjKens+3tbe/jvfv71nSIpLLcWlsURWomlFJ933Opy7JExo9PplwoKXTgNFusjA8AoHTGuHzrnfearn/97XdyRXvbu+PJ9tVHboxHk/fev/vEk88ScOSibjuVVV3XZDrHc/1tJPLxTKXBzkedZ5tgSFQHBgDOOeusj5ExQcAgjbyASymNsSFaxTmRz7IyECqhgDMhARGMd/ffPyBCIeT25gZjTMlqa1ICQAwuz7dWa3dychKQp0UY57yqqtPTU2vN9HQ5GJR9H4iizqTg4J1jiiEgMh4BABkTSIAAUA4Hpu3avpNanaeERcYYf+La//kf/F0ABCK7XN69dfvlF196/ZVX/8f/9989PjikGDdGw0euXNm/f++Nt9/+0LPPPfU9n/wv/9JfGe5d+PVf+ZVf+IVf2tjZdc6tlsvj+clwWGVKjsblajFvXYddfO/uu7v95TvL5eTTn25DSkDnUqs0WxWMA8SyqkIIxrvx9uTu/oMbN25onSXrysMhoveeKPhgh8Ohd9EYg8iJUHCWGFUPBT3pakySXq21VKJt28FgAADppE38r/Rp019+eImmK2Mymdy6dUtrvbu7mzbZCeCf0EkPY33TwXvmdyKq6zqZhtB7lasYowYAzlK4DoXIRTLXMIJzVRCiEFJkWdY0zXq9TtHEVVUZ4zKdCSH6tjO94YwpxrMsY4Bd0y4WCyIaVlWZF7PVUgo2KKt1UyulJJciZ6a33hohlJbKe4+SueAxBgbIkVGkSP8/em4ARgwQIN1KJHmMMVjnfSiyPMuyGIJpO6WU5sL0PSNgiBvD0dZk0zkXzkbWXko+n8+LohgOh3fv3k1MFiHOQg/7vkdGgvMYz0nZcHYXni32vUU6O1OqQZFl2Xq97vs+y4qyzFPT2RGkwIC9vb0QwoMHD7Is896/++67jDHOJEBIvyEiOstmYIIDJLM1SwGF8YxVlr66TxkyFCNQCEm0xSIQ48wT2RARSSCLMfbGuhArpQBCyv8SWhVF0Zp+3TZZptP7zMYYgjfGJPhq3faILq7WgvEYvNNqo8r3HzwoJF7c2drc3tzZ2YnI+gdH3Xz1wQ8/9ebd/el8vqpbKaVSWQKcEYTT02PXLYeaWelLnYUYACJwduf+yWQ8yhQvM5ZJ7kyvlNo/OLTBV8NBlmVVVdb1Kpd8MCzbZr21O/HB3b7/XqFzKeW3f/Tpf/Mrv7Zfn2xuX3h8Z/uRyTPfvP3gYDoTXBflhvVhY0/M6nbV294HyWSMcPvWfWO8VNwYp7VUWb5omqLIVFEyLbvOWGvzLGNcpMfDOFuKAgCs9c45wjN/YdLNBXLeWBdCSlzhHKNnBCGkCO4OGG99DGlCE0IIrstEmRdDnlNkXVmw7bJo50eXro23ti89uHsbSVdl+PhHnvjv/2//bQ5i98rOnXsPHhw8iBIff/yJclg555RSVaaOjk72HxxW1XC96iKZyaQBprY29p649uS9O/e+8Buf/7bPfMfO7qYL9ouf/9wHPvDBn/hT//t333nv+rNPhLbhZckBCCAv4fs++8EvfeXNb7zyro8SVFXJYeOs874clTUtqkHltfTW7Uw2tra2ijgjokwJTrFeg+k74908+O3NDSklMSZ1VubDKs8EwzzXGI21/Wy+zLQsciVzmaBg1nhre8Y4IXrr3XoNDMtqEEJnTM+5UHkGAYqiYEzESBRxNlus2ybGiEyZ3pt+JbUqtFDCC04puyydQkn+BsBmy5XWGoVE5xgDQlis6ggsyzKf8kViDGRDhKIoi6JreoOcIUGel4DcWqty5Xz4gR/+7RcvX7h/730IvWJ0OF1u7eyuu5iV2yez9ub2UGW5CNZ6A+AJegAWQkAmGDIK3jnHuKTzsDUAOKturTVNg5xLKYWQPlrjbAxAwKXUqSHzscu0VpxVgzFD6lo7Xy6Ns1VVtaavykFTtNZ68uH09FhJORkP+o4JDuTdrJ5PtncyvTc7nXrvNoYjznldr6OzicxsjElHEEP0wQvBANL48Ay3lFgLBCSABSEgkmBcJCsMAAD0LDKGEjkCqK3Jo5ubj374w7/bBWAcfPRHh2+8/vo//7l/upyvPvvt3/Xmm29+7e//9L/717/69FPPvv/++2+99dZnP/t93/Zt3/Z9P/aH+q75+te/+vabr0mqMs43h9svv/j1frnsYv6pj3zkynDzeDrTShlnVst1NRyYpkPOCAE4KKVYpjgna23XdWVZInBjHGOUdEwCWSAK3kfnvbUMmDc2yzKVKdP0bdsmCe1yuWQMkqw42XaFEA91yGkOp5TKsqx1dcqCTAd7mmCnWMaN4aiu6zfeeKMsy9FwOJsvsiwjClLyxWJdFFU6vYuiSF8iUbWT5O2NN97QjGmtGUdElJkeDqvRaFRVFRM86aKdDct63XWdlGowGAjnXN/3SdRTFaUzNvrQNe3FCxcgRCAaFGVZlhxZ+jJZlnHOTdf3fe9CiM5DjFrwQTUAhgjcaGetS+AOY0wklzREXCnOefQBI4IQzoWz3hdixLN3NufchIAAwBnF6IIX3vP0IwFtbE6ElEVRMaTNze3dvZ27t+8kLHNVVTs7O4vV8uDg6O7du+nZmEwmk8n49PhksVhIKSP5pu+ULtMMKU2ZzrvSmL63ruvShQ0Y01zadpZzXpZ5URRpDjmfz0MIWuuyLNu2ZezsoE+oL61YGi9be5ZGEgljBCnP3vEBiMWzxxgRpZBpX84Ys8FTClUE5FzG4HrvkChN8YVWmdLj0dAY44LP8xwYWu9c8EVRGGP73lRVqbSenqwAgEvVWyPzwnuPzgKS5iyXzLb1ZDLOhAChLYlv3tmfLVd3791nSluAe6u667pAQQiNigEjYqQy0a0XHDpOigEHsmuyjz5+Q9miNbMwW+aKu0qPq7zr3U41DG2XVyVxcbpYuuAUB8p1VajRqBIWHjx4gJHm0+nW1tb2ZPDDn/3Ur/2vv5r17PkrNy5ff+KtW3u/8O9+Y90t1sYYjxd2BpzYwcERcJYXVc4FSUExRC6Wbc+tzTKVF4PBsIox+HYdXGttr/UoEllrGCsYk2VZKskRMf1+PYUQAniHyDhjEQIk1T7EGNHHgBCZEMFa732gyKUo80KFaKwrZKQQs0HVu/Vqcfqjn/2htz/3712/HA8vnk4b78WqXv/uz3y4d6uvfPlLF7cmdTNnPDz/whPvvX/rjde7Z599dGdnp1mthtXm2/fuDsqhEOrocHY6W+3uXBqUo0B465v3XnnpxaeefvbJpx5v+05Kzhl/6aXffOTa9Rc+8zGIobcdAuSjEiIgWmTqUx9/6tKlS1/4wkt3909Jlp64t642Yasae2/yjG9d3LSmbZb7eQ7exS56KfXGoByVRTqhELEqyr7vrLdoyHtvTSel3BxmxvQMIjJiDBGiECxXuTHGGAeMh0ApOGR3d/fa9Sur9elqterq1lrrbMhVLqU2xma6SKMIZwMhxggueB/JdL3O5LDIAmAamSitt7e37z84yrJM5+X29jZgvHPnVtc2a8WrPJ9O50qJyWQyGOSr1cp7r/MsBM84GGN64wIxpTLGMc1CVit349Ennnjqma5ZM4p9W68Wi0FROmsXy1XbW6GHXe+1VjxGcDZGsM44FziPyEWMkeCsYkuPcIwR8AzNLxNrkAjPpZfIuWAiaSSdsUKy0WgzuE4w3vWN87S5ubler+u2E0Ks12spNSLvfRtDMM6uIGJ0w0rnmeJMrZZ1WeZFJtvWMfIcsW+bEFyRZUS0Wq3ObChKBNsHb70LnHMhJQAAnn3DSABAWkjJOCPASA8PQMEFB3zYaHJAZAwY+L4VRSku7T1/+eLz3/+9QASIsF4f37r36quv/p2/83e3yo3PfPiTX//8l1776ov/7Kf+0Yc+/MIrL399Nps+/eSjjz92c7lstsvxj//YH33tpW+SgYPbByrTXLJc5lUx6K0RShKgDyGG4MlLrXOdF1kxXyzbtkPgRGit1UJrLUN0SqmiyJqmVkqH4F1wRVFMj48yLVOvlbrermv4eTJx2kkXonDWUwStdZ4V1pn0fx9aXcqypHMIRPpV7uzsrFard95550Mf+tB4OGrbtnc+y7JhNej7XghFAIQMInHBkYAj29vZvbh3wTnXN7X3fj6fPzjan81mxnRZlg0Gg729PZ1no9FIq5xzrrhkgK43AhC5EFopY0wKt9ra3Myy7PToWGs9HgyLokgBnEndQN5H4K61iXmNEIFCobNMS+scImVKnA0NYuSMefdbBnYiAoacKyGEUpSW5AGIQjjbSyNGCr+1rw5x3dSZ0nmWXb10UUu1WswW65U3fZbnXEmPFJ0/3L9vvBNCXL161Tl3fHyaapnT09O2bY3p4Nx3VOSV9eGs7z6vAYkoxjNwdiJ81nXNGIsBvItpBFGWO5ubm7du3TK9SbQpxlhVVQcHB8ihqirnXPBUlmUk672HMyQOnW2+EYnw4VYpAkWKZwlFMhIEwQTjCiwYcgAQKLrgGTAiihQpeBdAchEAp/MlY0xlRVENQgjGdG3fI2JaQtdti10HjAOcpe/NlqtMS4WkOWqGk1Hhuvbq5Sur1coETzKv6652UQ3HWuv37t3rVM4ZR8Zt8L5dU7C5Gg4HuWZ+VGYYXTUsikz1XQSp7x2eLtfrvd2t4XgYbG9C3N65UA2q9+/vj6RWUnjgnfGjrbEU0NR1psWGqoaPXItMTGcLG7zp4/Ubj3/Xd/a33nsnQ7M8+OYz16/Gz374n/3Sr/VBlMXQLsPGaGQGZe+9cf2iXjuiwKj1TjNigbkujqtyuVwzwEIXVMHZEMJ75xxAKxh2XVcWmUAQCMvoA0UhBRMqJXAjJyIeKeFyErkGvffJU+e9R87KahgI/HwOGEI01npPPCvHP/3TP1OtT5bTo0H1IYqsbrxx8Onv+q6f/Rc/P1suP/7hF77xxleklN/13b/9hRee/fznP/8rv/yvHr158+a163WhZ6fT4XDctn2m8lFFzXK1rlYB8D/++ucevXHjIx//2KpeIoKUmqJXIj64f+vgYP8jH/t0uTn2fTw9mm1MJiAxBgMkHrk8vPqffMdLrxx88cuvTJftQA+Ii0oUUUmOrlkcj0cZ4yRAq1z6GDhQlWkbvOTce98bIwCs7bu27qUcFDki8yFYF6RUWaYzxbw36VYWKKTUWVYKlbVtb11ouvbg8Hjd9TvbpbNEIKQSmWZKZZJxIaSzoSgyodVysV6uVyEErTKtdd/3zkfrQ29N1/Eyz5um6fseIq3X6976siy3tiePPfaYaRvAWOV5erKSJCfLVNu29Wo9HI+qquqtNyYY65VSgJwxs72zM5/Pp7OFcw6RU4jNqtdikBW7Fy9Ptpp11zeefNM0RVWF6JRQiMgCRaDgPYZI8Fs8u1SpeO+5OEMraM6dc8a5YG0gTLj/GKMNxlsbKWouiIJzdtbV6/VS65F3lY+QS7m9vf3gwYExbdv2jGAwqMA7peTW1lZZSQAACoDcWgMYEeJ8Ph2NNpRShCwrSiFlCEFKiQwBgEJkHH3nQJDgEhAAGBAl6yeEkDhM4L01hhGkiwqQIiJjDDgXQp/dxNHxqmzatqhyY4x1blANCIgmw538ue95+rnv+U9+PyBCjLBev/fOW1/8/G/83M/942owCjF+6Ssvvvzyq+t199GPPDsYTZ795CcuXbo0m81OZtO6ro3p03WQA0dEwZjWeSYFBYIASoku44vFwtsgpQyBGNVFkWkliMKdu7cfe+wx72xRFMHHtlkryYN1nXVKqUjRez8cjtORm+eaviUOIa0JiMi70HdGSonAurYDwqIo+q5Nai8pZQqoePzxx99+++0HDx5cung5GYqstcPhsGka5xrGxMM3Q9d1iQlRlmWe54NBGULY3Nl+4pknlVLW9qvVqu/7pmkWi8Xdu3et8ZcvX37ssceTTAwv/MjfVEphJADou2ZQVmWVD4ry8PAwy7LU2ifSU1rPRGs456PRKKnOErHPGJPluQ3RWhsJCaHtrbWWCe6iQ8RUZKX5ahq4F0WSRIUAlCBhIcYk7k0d89moJ0RElEJsbW1Nj4/auilzzQB9sJsbk8cee+z2vftpxdv03Wi4YYxBzoxx7Ay/ErTWGxuj6MPp6akQwoWzyTM/T8ICSGEdoSrKpmlSaBcAJNcvAzDGjMfjGzeu3b9///jwaDgcVlWV5/nR0RERJrk4RXTOZVlGEJxzKeBdCfnQiZTKY3YOTElCZSJCIb33XEnOubH+ofPMBS+lZMnWTRBCAIwcGaMoz71SWZYlEUEIgUJCaUHXdWl1cdZYy0Jx6FeznFHJ8cLmRCvRtr11PjJpI9Vd1ztbVRVR9N63QifMMsYAwQ9yvbs1LpRQDDeGpesaJZizffT+gx947uWXX371vdl4UD1yeW9Y5pliKebz7oP789W6LMuiyKIzT928PBnkrl019WI7qzxgANkDNr0rhyPBaFRmb7z20qjUOpNZXl577IlX3nnv4HQ52Nh8cK8/PDk+XdYnywUrqmw8PlmuZJYT4xRBCUHej/PS9/3OZHNvZ+todrRqau8CIes7m14lwbHQKr0lnHOeInIByIkheeciWRd8pIgsBPIUGQOMxDhILmKMPgatciZV3/eIy4yPGJSegVb22iCs3vrqz/4//+bv/09/qMjYm6+/k1fb/4//6e//6Z/8c7GZf/jx61/4yq/82I/92M7OzmgwqKrqrTfenM/nl/Yuda3x3gtdLBer27fvBooU8dFHH90/Pt3ff/DH/vM/kmWKM2qatTOdpzjZ3CbgJoAN7NHHntq9eBWYWJ0sonDjzU2ACBGMjTpTgeArX9//0ldeHYy3XaTO1OONUudRcC8VlHIyHA7DWaApJPUAAPR9n9A83vSImOd6MBgIIdD3XGCmVK65FKiVSCOxg4MjAIxwFhEPjHfGOOckp7IslRaSCyEEAxRCVEWRGH7IZQi0f3BwdHRCCDEQChmsESJWmRiWcmdri6JXKgsRp6dLH8gYwzgMBmXbrRaLxbXLV0fjocoygAhIZ9dAjF3XcZF1xriAy1XtPbW9bds2yoyhAM6Mcd5FRBFdDM4L4ts7m0iRC/DRGN/JjBORUhljzLvonIsAFNF7HyMwKTgg52dZuYxDrjORGDgxGOes9z4CAfORrA99b9Mll2lx6eLO5sZwvZot59PD4xoAJpPJxtamlLK35s7te95HBjgeDoOzgsXxqMo0L3NVDQqZZ8F5LgQQHe8fxBh7E3wkXQyYPIMrac6UZIJFziB6bUyPiDrPUovBJAPEsxYWIPQmtRnpTDaMHh5K/CEjEdFay6VgDDxFZCzG2HWdp1gansa5AFGWJUCEEIAj9AYyBaafHR29885bt9597/6Du7/4i7/4//qHP/P8s8+BEBAiAHSr1TffeGsxm92/c3t2cjo/OQYfh1WRKY0UkYC2c63z9XJ1ejqDEBljguFwVN15/733b733zDNPvfTSSzs7OxcuXLp69WrwkTGhUyAN5yGE4cY4oWoTXSrGmLZ16TKuqsqY7kzKDgjnCKYYgjEGgICdVVp5np/Mpqenp5cvXblw4cJ5VhKkOTbn8kyQBJDCg8+LQo6IQrAz1w/EFK6TQlrT+nI2W8RAeVkgIiIXWZGngDwOWBRF2mCTD2VZJoUtY0xmWgphnWvaVkk+KUudZW3bFnmeYrystScnJ4ozC+C95VIpJXx0IYRIUQgRAbyPyRqUBrapHmGMoeAMueASMKQbVzAeY0xXb3oRu75/7733qqoqRgPbG8aJCbl/ejqrV4O8eObZZ+/cubdareaLaYqvstZsb+8KIWazWSInS8kJwceQZTqdPuc4ud9aiT+MnYLzfMMQgvEeiQ4PD9O7WQjRtm2K/zPGZFlBPn0SLIpiWa9znTK/uPcRICilWAhnsmdEAuDnFEwAlgAFCETWO/TexzP9JbK9nQve+7quvQ+KM845YxIJuCAfAkZy3osQbPK4OccY67p+MBhInXnvGUOlk8XZIWCea7ea5uMBI5NLVW5vLuv2dNXVxvURRV7VvYnRD8oi45oBIEESy/MYci4GWvf12tVQlJm3zjtQqrj74HRZu3JQlMMSBfbW9MZlZTFdLFd1z1V+dLrc3hYs+OXalEppmQlUbW89AVMoVFlVucqK8XjYtfVw62Jw7WR7xzlz/87tjzz1WN02SmVv6/rCZm6JTtdNE2BlnBTUuci1mp7OnZcY4spYhGhteXh4SCIoLqxxEYgLBOCA0bm46FolhdY6LzJgvO07aw0XKpOC+eC9J4icCWKEjkLwVVV52/sYBOPs7DF2UspAHIOH0KhqULduxeVsaftgNydF164Ahcx2/+1/fHXyyNObsn/3zRefePL50WiTEbO9WVv/2LUbcA1OT2eW+3I4Ojo+td7tXthJZve7994/OZn+9t/xO2K09x4cXLp4EREZcNt0B83+aHOT52VRZG+9/Ua7rq8/+fRwMmi65uTwWCs2nGzoDMlbLtQnPnLx2iO7v/6Frx2fzHKllqeHFy5ucsbQ0K3926PRSAmZnkTTdkKI4XC4UVVN0zAtsMy89yH4GHxEGA8GQAGAvPcMGaJMNoHNzY267pbrpm1bH0goyRgriiJGYiIHQuvIO++dAYjeWmtNjFEoPRptFGV26dIFQpjNFk3rmRR5xrViSgln+9Vq5Xqn82o+X1aDkeC87RsiF7yVnC+XyxB9WZaZFFJxYAAxpq12hKilzHOBiNPZIriegnPAMy19UkICUXRCSilzBrhcrcpC1V2vNAiGFFyW6QDMumCtizEKrkAgEETyFAJXinMRo0/XT9o1njF+IdV2gYBFwLR7cs4DxOjR9i3FIlMi292pmzMl5mq1UkrNFyvvIyIjgOlyqaUcDcrW+ghUDirkOkQAxtPgm0vRrdveOWRy3XTx7P5AJbHKVJXLpBQxxiGSS70vYparLFOACATBexN8QBAofIzOOSuR09lEUHOiGCASY4wBkgvEGGfM9rbve85lKXWXUQiBcwIA5XrvbQhhNKx4mZu+41xMrt/4+CPXPvG9CIh/6Cd+strZnFubC66VCt7nW1vPf+YzyS8D1i8fPHjr9TduffOd05Mj0zuOeHTrzsbGxnAw3t7e7uqmaRrvg2T8wYMH6/XytVdfHg2r4aCM3tX1KgRiyPteNE2XoBEnJyff9p3fcXJykgQxMcbJZJJMK0Q0PZ2nsbxSQiCz1nLOizxPuA8iEEykeX3XdVsbE+fc0dFRURRVVSV+/kOLaepOzxxT50Lrczl0DMEAQIJBNU1T13UCFWdZkee5kjrG2PeWcxTrro0hDIqSAe5sby7ni+Dtuu0S+IkxFoC01s57QhBK+uD64FjbzE+ng2HZtnUScI1Go6bt4QyXYwm5lNLFHlFESr525Eryc3N00zSMMYYcBX+4ECUicp5xniKO6QzZCIyxajBIfSEqIYWM0SvOhFJ933vnpORFUWRZtqrbvu+H41HXdamy29nZSZUEImbZGWrjW2XJqXhJtUyel+krAkDfW+8DYzioqqTJCiEwOGud67oeDAZJmyylBGJFUdjgkcK3uMRCjDEQcC4ZO9OdhRjxW+BfEElwHgljCBwRCCJgMh93Xdd1XXQ+ACGSYDxSnEy2VqtVXdeErDV9AGIERVkul0shRNf3RFgUpXNuXbdlWdpITdNEMJOqfOG5p6/u7szn82I4ef29283xPIgsAmMqo+DH44HgjLzw1jAigeC8Z47lnG+UpWO4Xi2j89baoijzrOw7J1V5cVwoySMRVxyimC8WJ6ez1toL2xcaE4UqRtVEZ2VvA+fAUB609WOPPrFer5ngfdsvD2cQtvM89z5SFLfuHD791BNvv/nmal4/9cTj28ONw0HTtsGtm5HCoc4u6c0bly/eOzgWebkajZyPfW+W84UQyoF3xo6LgZSaSdE2XSDOeYw+CARZFIIzpVSuMy4TPKHnHBUXiNwHCtFFiOlt+BApE7xHDpzLECyFiAKEKrgLjDnOAoL2UT84XHIuRhtKMonIRbb12nuzp1749uW9r54spp/49PdznmuVs+hijJnWR4cnfd9rnQ9HG41xmJSWEHjD193i+Q888ejjV155/bXheBIhADAl84s7oweHR9PpstrgGlmmeFsv3vzS55/60EfKwZAx5kx/cn8/yzQirpp6srO3Pcl/9Hd+/KsvvnVwcNL3olnUeV46GzJdrFeNUkpJ6frOe88ZSIZ910hxhvspC50mQIAYQ+AcBWMIBETBmaCE5CEVz4OiVCrrett0bdO2jDHOK+96IViupRRIwLwzi8U8PYzz1XI2n3IhU6gzIuV53tar5XJpJQ7L7SzLorfTtgvOGGMorvKyyLVCRig4F2f7zL6p62DLPBuORkShaRpkjAh6G5EJIbM8U33Hl8s+SGXReooEpAtlrW3qpZZZkWWBPJNKEnKOjEciZIAuxhjJe+8CBXIppB3PY1SIIRIKIeI55C5tE0MkyYWPECIAAecSwLFE++GwWCymp0eDUk8mGzs7W9bag8PjLMv01uZyuczLSnD55JPXj45Ws9Np21vBABHr3vVmoQqJMUghcq02d3aG47hYrg4OT0WmOJd5VSrBF7MTZzrvslzL6aJOc1cXTYgOGLMUTDgPg/HBExAyjxSRIkfNRIzRWRsRFeRccIzEHoLrI7Z1CwCFzDtrmt50kRBBCFFVFSJpmZEIfWerohBMW2vXy7kW2vamKMrdrcsL08XAm9pBJhAZxrN3kvdW5dno5vWP33zk4/QDYM1yPl+tFge33/niF7/4/vvvj4bDQVEG59u2Xq1Wzzz79HK+98abr3Vdh4if+MSjTd0VRaF00fd9nmul1L179z73ud+4dvPGP/7H/3i58v/dX/8/3b1z/969e9vb23t7eymYR0h2Bh62LgTy3nZd9xDgT0TOpjo7dF03Go26tn///fcvXbqUXLLr9dp7z7lMt+/DEXf6XaepcJZlAFmMHpAeXjRpBh5jCwBSmBDIez8YDERShBvvyIfDw8PoQ/A2kypZlRExxBBi7K3x3gNnmZSn0+n21hYKvlwug/NEVBTFxsZGbw9FECrjTdu76FO54AN57xEgycw4pCQNl4oFiuDPt8vAkIgk4z4EjFFKGZMZ4HwaLJSUUhKFLMu0Eoh4cnIiQzg4OLh48WLiUOq8PDo6Wi6XKdmRiKSU6TI+m7njmXacnfuRHt7x3oYk60i1TIxRa00U2rbN8xxAGNMxxoAgTbbrutZ5oZRKL+50OtVFnqg6D0foyWSW6yzLslQtxhjpnBSGiOSjEDIgxYic8fNQW7pz506Ch0jGOecUYtptdKaPQISglWaMTSbj9GJuCrFcrp3zSdb+0HtNgLu72zqaG7sT2zfHRw8OD48XzduW6QjMh5iMN3mmI5APIRqKLowG5dZ4EPqWR5sJTs5365qsl0LJrBBCz2YLxgRFvljMRsOqa+olUFnmw+E4K4su0rppdVZEQM4kMd53rfW97WtXju4vlsF0AiET2KxOWOiffPLJJx+9OZsubt++/ZWvvOysPbh798Hdo2//zKfG4+zW7Xn0ztkAzmxVg2VrR1IgYjkan8zmjkgqMRyN0hHprZNabQxHDHkSzazX61xJioFzHoJr26CyHBlIyYkwhMCF1FKZEH0IhCxpJtfrdRolxRhTGjkQE0LYELz3w1w3faf1cHPr0r39qY/x+PDBa6+8NBw+s7nzyPbeYyerKRC7c+/2fNF+6pM3unrZrxYXd7ffev21f/4v/+X27t6f/sk/R1ycLhbUtafTkyxXLljrzdtvvVoO86vXb9w/OCSijXIcPbgYR+XGtFkdHBzIItve3p7W9Sgv3/7NL2w9+8HN7e1cZ8tEv7Mt5wixc67P8uHHP/LkK6+x23dOKLDLF240dd/L5t69e8mkwShKLrJMI8J4OKiqou/7g4OD6DOZ6Ri9c25YlJCSXckFHymQYFwwjshN11sXI7KkNXUhhBBihL43UjCIsSUnOGilCHyRF1pLoQUi997XzTqEoJVgYqgE63sIfd01jcnE1tbWZLzJuLpxQ1hHIQSCwFhEBtb2iivnnDGdBAEAXddIKatBuVyshFSI5J0bDkdFURHh4eEhSvDeM8n6vu9tm2UZV9TbtZAx16rr1kWexehjJCFYCME6AsaYEBziw/0RnCebEREQcc7ZGeOdJ7mldZ6AOOfOO2Od9cQ5R0AAyPP84t6Wd/14WADQcm6WXccZXLhwYb5almU52dy+cmWjNXDhwlCpbDY98ta2nSGkPFMi9FqpLMuA8eAj52x7e9xZmC7X5IhxmU9GRBgj1E3X931vGQAY7wgAGWktrfPWuQRDZowFBsEFSIxrIZnzDIAixBgAXbA+zfkiAue8N4Yricg7YwgYASsAENB1tjMLrWVWlsGTEBJbr7ggCwIzsECeUe3r1SrqyBmLMRKPQktvg8o4CeRCOyAXPGMgOINcZ/lOfnH3yvVLH/v275rev//qy6+eHB5NT0/qerVaraoyu3DhwptvvX5ycrS3t6OUEmORNgXJfQoAN27cWK/XdV0vVv6F5x9dzFdf//rXB4PBF77whbfef8ABhqW4+sjly5cvI+KwrJ555hml1Hq9Go/Hqelq6lpnWdJzRQrtuh6Px0dHR33fDwaDJObt+z7LzsICpJRFUaTbhHPe9z2XIgJFH7y3XLAzmBWlsQEnwpQTLKVI/0TwQNFboIAMTbTIEbjowEspDXmKRESma4AYMAEEPXGRDWbrHiJhlIwrjmy66Kuql3xQjPnJyclkOCnL8vBonyFbYETOIVLTtqmsRs6cCXmehxCC9xADMCAkxhgCRESIGIhCtIiIHBGYjyFSJOe8dYjMdT4UhbWWgw6MPzieO5CHh/tKqTNlhFSMsaRLOj08UEpJhM3R8PT0VBYZCyE4b40VjGP0ZKxUComEwKsXd99pVz0FLhgCeDIaeGDgnCHkkfEIwBlDZCGQEIpcEMAokuAYiGzfXtjZ1AKbrnXWJdyX5CxG3zTr1PIy4IgMMDIAJAQO3vsAxBABSAmGgUII0XkSvCzLMwUZRCBkUvaNAYacSQ8UvTs8PtJSkTE8BE1UIUBjtscDKUXksus6hC3pufHxtVv3lGYQkUU+Lrec8blglUAX+tbbQuQUxbppM9FvDvOtibi0lZva2MZVoiOzBr8ui9xDz0Ru0I8vXjqezWWlN/MLd+/cih5yLYu8BM23R4PtraytjcDCO+5bP/NGSFQ6izlHVMZz23PX9cOiMnbQtC7w442tDV4MhtceffDggRNRX85fPTx+8Gsv1hvl/sGidyiUGo5gHI6Yt7mo1vOWZ8OVwZP1Sipo2uV2ual51vi6Xq0nY76RZ/P53Bk7UWo0GgohFotF27vO2uV0dvXaI12MddsqoThi433bdtVw7JzxwXKBxMkFEjLrnVdC2WY1zGWGcU7MyLKhbOy6D23RB7cWv/zgcy3GyUZ57eZNoS+Wg6JfG6WGk8vPH4Ti5/7Fv7h89fIHn31qs6rIhF/8+V/ra3lgzT/9J78y2hlNVydllbWmX82a5jgqvuHk4pWX3uhq19RdO2/XG5NLly6h8BHDAORbb3xDCHHhwx8RQtSLk2pv7/Y3v1rPtx55/JnRZr6cWsZKG8L0tOY688HllXzi6ccv37jxv33u14/qd4VQblXvjrLZYrkCv7W11axXnIVRgegbbNY7ZeVL1ju3XliZDWQ+6c0pIqJWSVgglDKRrU5XVTHwxCOwGKKPzjsvgCEQYK9yZrzxRIkBpITOslFiT9q1k1wgSsUxuFDmmWJU5BllmxEq29WzZQ2MI3CiXkulsjx5UZAgU6IqKm96LaXQrG1bY4NUivPM9J7zcj5bhBCBMdP1iObyzuTgjpwGraW0XYsxDgpNIRDRaDCKgVFUnMveRSJiPJLgSgoeydmAwBmB1vlisRCCAUTOSQnoukZr7ZyRUpreEZhQZkxJjkDWMu8UEiEFChCQ6YIYc6AiywOE3kDX1AdHp4xLXQ5v3z/wIQ6HQ8758VEtBZuvV4/e3NsaXnznnXc443VdZ9l27FrnI1ZDisyHEMFnTGxNhtPZCcXY1/3cdXmeN03jI3rkrTdEJKJywUupbcSKSYgBKUbrIcbUC3HBKJJz1oNLd8NwOEhSAMYYsYjInXc+UugdYgTkBMi48ORDcASMAfPGtXaZKZ1zIXIJAIYFQgroPHhra845wwwohhhss1KWK6W41YjIBeOAkisCAgIihBh9CK0vs0xtPrbxbTee4xx8795+643XX3m1q9e/8R8/99ad1aDcPZ7G3/zyG5vjjcuXL1sPmWRXdi9xcE2zDk/cHG/vRoDnP/zxWw/2v/ji6y88ef2pJ57Y3b34ud/86rTxD964g2/czhj8xI//ruc/ePXo4LCqhtYRoTDOUibWfTMajSVlDFQ7542bTiaTtl5f2NzSozF4FzhXMmtNDwQMhHUkiqz1EIFbDyM0zGLGpYjMNc5zh0owKQICOVQkBHEwgWkqC2ViK1IbRsQA4FyODgAs2WGICOmsAk4fIYQAgJEgEkYKAAGRAT44PJCS7+zs1G3rQui6DoH7ELz1qaB8SCfRWm8MRyEERkCczgIRzr80PUwrBjhnv0G6U51zIUbJmQ++bdtgnVKKMQjBHx0djEaj3d3d48Mjz13XdWc2obquqqqu66IoAGAwGJwsFkSkhZRSQiTnY/JcO+dWq9V6vRZCcOcYY84YlWkIsLm56ZybLReRkHPuz4WjnHPGzsImY4wx5Tk6GyiVj2eb+VRB8/NsyADpJQVC5AAUEVlK1UAioogM4IxAGyk6H/FsYJ6QnH1bA2c6z9LkwHlXqmzrwgXm/fxkyoEG41IpZb1x1keinZ2h933bWMTYLrvJcNTUa+O8knwyLppmach+5KMv3Ds4uX17HwJXY16VJSO2XndaZFLGdRskZwF0b0koIaXmQrLoJAVBYTmfKZTr1oTGrlleyULlBddhVI3u3bq/Xnej4YQC55ib4IVg3vWlUqMyv3dyePe9tyGG8WTz/v69u4f7KKVU2XiyORgMlstlVuSr1aptrTWeUHKppdCz6SITHDLPuOJCrNq2c9EBBY51bw1E4t5aO18utZRCiFxnSZ0RQvAxxhgHo2HSmHTGpGGUEAIJEshMCB6E1Equ2yaRYbz3pEhK6a2TuqxYEzy/ubf34r/78k/9X/6np7bk7/29v00P/Xi70sXGyVRsbg2hylbW6/H2Bz7xfe/+2k//5f/jf/30zet/5A/84eV08bf+1t/6Mz/5f3j/7ttv3n2DJP8Df/APnh6vNBfHx0eZxr6ZVsNqMplIoZ985vr29vbBweF77733+OOPxxg3d7azLGvb9qd+6qc++9nPPvLII8aYr37pi3fu3PvYxz7xu/7wHx1tbjXHszLLFqsVI4PKtlM3nIzyXHzy+Q/++uc/v7Wzh1zlVUmEPsTp8QkXLCBtbGwoDBh89G53a8ui8IenxvcyqqocGmNSE8i5AGLBUwwwnU5T4U8AzoWU/4iIMiUr8DP+XeINGWPatpWJhMx4AiDECKtlrYVlnDLN8zzPFBDFruuaupNSZVmR+ZDkPzF62TDkTAmulFJCKpV55lFwZIJzQsQsyzpjU0tKRExwlenFg4XSoiyzrKgAolRKqrxrXZbpGDHNRYBxH4Jr+74HBAXndCBrk9dDMsYGg1JIplQiM6zTAjiJcVjKGBVCEHnr0nIpImvX68SxefDggelqcv1oUIUIBOH69RuL5fre/Qdd1y2Xy83JRqYl5/z0tFFKbW/v7O/vb2xOVqtVKaPSGpElLS7jUkkBif5hAxDroLfeExFjuFgsI0rvPXIvpe66LqlqhoPcu+iCoeil4ABnpBDknEHCLEMElFxISQ/PYSJM1oAQQiSKEdJrklo3IKJIAMEgokFEzHKZgBUAknN5JvQDdKZPpyUFGQN465IuiXMG5xAxxESNBQ+h7VoAyHWWXtRnnnnmmWefAwYf+9hHfuRHfuSf/ezPfv7X/+Od+/ea1RoAsuF4XGRXL2w/cnm3yHRWlLu7F3Y3R48/+ti/+aVfFgDBmV/8t/9+b3fj+z77nb/2v/2HGzef/j2/64c++12f2BxnRwf3NnauTk8WzrZCaoGiNzUitk0toduoJkcH75cTpcYqU8XJarq1vTtdzD2QYC5qxLxQKgshaBkzhTHapl9HriKR8aCZKKsqcmxd1zaNUgqAqUyvlyuO5DvTeIYcBE8idcQIQHSeJ4+Qrl4EgITJAGDEiAg5AgAkJ3ekhMVARGv7pnEpCL3tu5PpqVIiVc0AhAAI4L2PzkOIKQEixojndh0gAATCtOJJYJZ0TTFKe+XoKUaGyBEIiAEBY1IIgKCEBIB6tUaCuq6NMQlc5X0yyBpEvHLlSp7n+/v73tg0NO7bDolSAHASRCSaSTIs7e3ttW3bti0gWywWCWDGBDe9izHKLOvDGXLy7BhCwBiBaLWsHy6VgWGktDYC5AwJz3TX5z9mfIh3BwxpwBWJgDjwSEAxnr0YCAjAI/AIeVW1bRt9cM7mee45GmPW62ZzNPQhcs43t3e01k3fzBbzvmmni2Mtuenr7Y0NrmR9dHRhc2syyNA16I4LZZ/52POewjcPbz+6e6HpKejYLptsrGSVtW3b11YrVSiJgiMjwaVre4/GxWU9n8cYlx5m0+Ww2tAiN0u7ZDW03Y3rFxHszmYlWbBmxaRiUTjnyo0hhN6u5/mguHZl58JWiYIX5ajpw4uvvkk8k1k8nDZFVW1ujSZ7e6u+3Sp2ghOzVc0JkJgUWaaVVEVvIjHWW+MDoRABuCE03qMzQkhEThEjYaCIwNqm5ZwrpZCzwWBACNP5PAQaDgfgegCSUsoQW+uSgsbFQMCMtdWwEjzz1gzzrJBZJthA8Yu7V6WlmzsD9+GnR3rx6OM7dw6+2XXI1SBikNpmYzI1Hi+b0aVnPvPRJ9q1ff3FW3/xL/3V//on/tTOBz/4e3/fj/7xv/iXLcDWVtlbamrf+I4FWiyPR0M9Hk2eeua5siy7rluv6xs3biwWi8ODY6XUaLghVPbi5z///PPPX79+/e7du4yx/Xff//THPv61L37pnZde/9N/5s+WV68BsC/8s3/xL37xX/3l/+avXL1xsz4M1ebkkQsbP/p9P/D1l17cPzkVy6XU+Wg0ijEeHR1uDXfefeebuYBHr12puxqI7V24TAAHp4ui4IgkhMRIzkbnjORCKZGK6XTCMsayjEvJEyooREqq/vQcKaViTEEjXVUUUsrgfAgBiFK/pSrmfegAAJ2QoISQUlLEpFVH4JxxwUNIIWIREDljAhhHHsEza72168Sj4FIx50MInbGMMWo6IqyGlTGdcS6CiNELQQCsbrrFukdijDGlRZYppTmi9NE710spo4+IPC35EvLIOdf1VpwH5FnjOefW+rLSAeCMUsx4iM4FChF8jNbHQAHqNga5NR7PT/d7a4fDjd7Zg8Pj3b0LG01/b/+B1nKxWnIEKZixHWOsbVul8+W6EUIwzrquPzw8dM4B8jzPA2DXGucjE8I4V2l98fLl2WxxdHQkpSyyylrbmR4Ig4+cc2NcJ1iZ6xAohpho9GR8JELkSifQnqOIeZ7HSPBwO3aW4sZ8sN5HFwNF9D5wDpyQ49lfC4H63vS9KWyulRKCtW2ttc7zsm3bBGouCn12MlcDIo7ok0kyebXp3KfKkXHFtBTp1IshWNM75ziy1Wo1mmz+4O94+kMf+ch8OnXGHBwcvPXWW2/duv3eN9+6e3r06uuv2c5wxh65fkPL7Ktf/MrFnd0/+Ud/TAj2wz+slm378U99+6e+/dNPffA7Hr1x+f1337x151AJyQCFHvqVn58uJ5ubWcY7WljTjcfjd9995ctf+rXv/r7v3b93d7y5tbG9s2ibbDR2MTRdK5QyXWu7WgEoMhADC0Hbfs2rQVYqrjCQ9c4HAsar4cA5F3xYNPMYAirFGI+IkaFILzMhcAAiHjECQIrsTfdfemkYnTXBzvuzYCMCBkQMkSEDyLIcejyZnlprfQx5WVhru3rNi8p7b0IgH9J9nNoRPHfjJIcssWRbO7v0IRJ+Sz8O6TnXGWMMIkUfJDBHIVibvmFENMZcuHDhwu7urVu3vLVIZI0BpVI7devWrYsXL85ms43RuO97ClEpJRgLIbR9d2YYFSJJ2oqiyJRezhdIwDgLFPM8B87qtokUtM4SOhgiJX8RMsbZWS5VemhTJO+3/AAQIwBDzgWDs8VzChCVXJzdykBIDDClNQBGSodUklwCAETvrQ/WM0TJ0MTAEXykJLUHH5RSRVEAE3XbN13XdoYIu2ZtkAolNiqNnd/aGX3nJ17w9XxrlF++PJnOjo+m0+2L15onrzvK33jzzqqj8XgcAp0cz5WQnlQ7b0yud7Y2MTqAEIwdDQtnnCUDCMPtnaceuXb/3lGzap3BWTu/9NxNQW6yUexs5M3W0JigZO4jLBaL0Nc7m6O+aci1W9sbVbV1MpvPlqvIy/HW7p0Hs1LKtutWdrnsurzgHmB5cBRCzBigd+1iIRi01nPSSiohcDQY9N5yLn2gZVMjYaWx0rmUEoFs13nrM3ZWAEmtFM8CRR9ACCUUcikYcE9eZ5JZJ7Wy1jLGrQuIjEvddkYJmRe6q5eB/MaFrcl44+Te3fmDw4899+hf/PG/82v/+h985euf29zNGWTWNEWerxf7lI3ybGt6sr5w+eYHNn/bn/rTf/YHv/v73n793Q9+9IVf/em/v1ivHr22I8vy/sHxq994ebKx4fuuUrxp1x949vHLTz+dmCqMMcaatjPbO3t5Ua3X67Ztr169+iM/+nuuP3JlMBhceeTqYrF49vHHBzr7zk9/6usvfuO9N9+63tvq5o2Xv/blw9vv/8t/+nN/9if//KqZYfBFOSoH+tlHb57OV08/+5xxISCu12sKwfTtej6VaHMFk/FoMBp62xaaDXI2Pb5PkGVZprXmSEQBzg9n51xe6OQU8N7rTCqttdbOwqqp0wIokRBSBSnOP5ZmmTrUMi+yLAsQOCOi6COCTzB5dkbqcK7vLSL3PoYAEAggCiHJeLQBYmQp0JvOuL5cSGDobHShVzoP0UXCosrzMkvluFJFRLZYLOazVVKHSMZ5h1WRD0eVlCJ4SBIbJgVDkU4VshaRhsPKeUpJb3meOxsYYwCMKLJEtgAgYExkQgvnoml7JgQgukBS6p2dXQHBO0PI28asm+ly1fTOJgsJAxIMi3zQd3YymTgbOusAmJKF9yvvfd9bpfVwOMjKwrtovQ8h1m3POS9AEKGUOstLIkoZUDHQet0EoEJnDKlte/IhBscREJIzmAUixpChREZ9NL7r4pnEDTjnACwNIH2g5NNL9RYhBu/JOY4sy3Smc8aBQpxMxt6ZFCA2mzvGBOcshJDngyzL8lzHAG1XE2IIMXAeIsSzvdtvXcBEFEwrhABIWasgtY4AXdchZwDy3sHhaDy5ePPxZj595kMf/u4f+EEoSnA99d0bL37l1tvffPUbL7/4jdeGUf7mb341uI58zwXpXF9/7LH946PhZPPdd9//wHPPPP/ss+VgDzBSxEr1fRech7btY/QhkEAeyL/6+kujcQZEr738yvd87w+ADQ/u3VdFNRiNgw0ykzroIpNVJjnGYFoAJ/Oi5dwHZ9sOIgquCCGw2FoQDDKtum6tpGj7RmiV5QMP8SwBFwHprM1Ndy5S/Nbrg50PJYgwECERICDgb2U0tm2bnsaEAvfeCi3Gm3u9CYlSbckmX2B6W6dlLQIB53DW56XukKXNM55/EBGEyCFthBkxEsiQEUNKTeWZWIlz03W27xO6M6kTNzY2tNbL5bJpmvfff384HGopvbUhhOi9OXdqa63btq2Kqu9brfX1a9estW3TlGWZ5bmPgYi6trXWSimRke2dSgQcgAiEMRJCTEY6wR5+8wAQgGLEGMFHJxLFG4Fi0lqliAye/hpEhgjIMMaIQOmTA0SGhHiWJYUEzrs8z4FIC6mFNG0nhWARhBBFXsbg5vNFCN7HEH3QWrPIhqXksZ8d3FKu+8gzjyu/qITvZwdLbHa2J8H03Xz23JM3X3zlva2Ngkgba/t+VVVVqbMUcpXnWVuvh6XMJQcTNPNI3aRS29ub1d61qhxJ191u51WhAOy4tLsbMlKrlSbJM86Wq8XW7tbli1ce7N/zfZtl6FxsmzVXnHFJTApdjrYEHde18YErztnhfCFWsRoUe8MxcixG5dH0dLVaeUum9yoiGw5dH7Y2yvnqFJF58r1zigugzIboopUMgSERB8ZUphGxt4YJ0feWc15WA2tt35lSYvDB+eCCC5TSuTAGCjG5PtGZToPIGDx+7Wq3nNaLvGutUuL5j77w8jtv3D5d/+zP/8Z/9gc+fvnSzqJxOivfef+b/LDbvvI0obp8+fLxi8Wqz//2/+cffeaTn/xD/8V/7iwUOZ/s7N2/e9JYc3x0cHh499Grl5s2dq2NUdV1ffXq1eFgHCim8s65UJYDRK6UuJBn4/H4dDZvTX9hZ1dKOSmLt956691vvv/bftsPbO1N3nrvrScE/rX/4b//tV/6xaeefmYwLhy5rJTT5cmW2p1c3nyufvrWrfddJKEyF3ymRAzq6aeeSIzGosyrsliu1t71vq+VIBRljLFpOgaRc64UCM61VlprIVOsGRRVnuc5YyyEUA4HTd8BQJZlCUhnrWUM0yGQ53lZlsF5732KW/euAck5QyGEUkLwFAbIlM6JMERgjAgYIMTovY8hNEkPxThoqVKFKpWCc5lnCGSsT9iNLCvQklIyALW9DwiZ1sALG5fWupwldLQkIawLMQARci6JSAqNiEpp5zwXHNn/l6k/C7Ysze77sLXWN+3pzHfMuTKzsqau6q5GY2g00AQaQGMiaA4OkYAtP1iWFQ7KdgTlkMJPdnh4kIJhS1QYHkTJlkVJJEECBkBMJIi5MTV6ququMbNyvPO9Z9pnT9+0/LBvJnieMjLj3rzn3L33+tZa///vz3VdA0Yi6tv6rq2aphNCaAWIGEL0gZkEkIokPLBn5EgCmSSFCMcnZ77zSlCSpC/d3nr89Mnx2Ski5nkOEK21LOHgYK21bNtWJcb7YJJsMBrd3N1jhsVidX6xODm70GVFRC6w0Nl2MWbGxXIZIqRpSiTrui6KQZoVMcbTi3nXdY11zDJGIAZBIAh9gIBMxEiSAX0kQvCRrLUutPDc/NlLvoEphGB9b3b0zKxMzsCRPRCxUFJrIQSH0PlQb9rOeqV7jQv5EJVOfKT5YpU2SQCUOnM2hBC01v267bK6PGciIbJMNABAYIngGXywUsrheNTXoH7NAQQd0NNnh+PxuCyrWZEP0/yzX/ryZ3/oy3/Lh5MHj3/3d3/f2+6D73yTffXo4UflZvXg4w9OvtoJCTnAb/0C3Li6u7eze/36zZu3Xrp247YMIZOksoyZg08k2tXi+PTsWddWv/yLv/R3/kc/tz2Znl8sBzJdzzcmGGaoyk2SJE0X1hcba5ssVYNhro0yaAkEUBRAHKPzETWRBGstRs8comcpKE1TIXVbNRIuPal9QUUA8dwHC8+V2Qi9ExAAGfoK2pdDhMtlLcQgJVnbeu+V0bu722Vd9d9FSyVJ9MVDkHgxs33u+L4s7fFFfZeCnrfdlxU4MgskIm+7SJQaw4p6O1CWZYPBYLFYVD4gQ1s3w+FwWAzG43HgmCTJYrEgoitXrpycnPTssb5DNcbEGH2MvXB8uV6nadp0bYhMzi0WCyHEdDTuER/FcNAjDHsAlrVWG8U+CFJ/udnliEJIKfG5tSn2Axzm3trLzD29WyD2C+PLN4fAEWNvjOsPhEAAgYhi9ACI/V8TCyBEHBRD51zTtGmaJsZYpSUSQ5yNRxi5WnfB2iTVXRfAu8jh2ta1ujwXUL/1+p0f+f637+5vlyenh598Mtm+9sknn4QAIM14Ott4mQ0Ht7d2Tz46DIgRuK43oauHWXLlxm6R6VSJrWEhwJ3E9SCh0fYeIWRZcra5YBU+/7k7aI9Xy4tPvXFne5sW5/dPT863ZlfKTbO1tWebqqsVQaVVVwz2rLXzZbtpnM5QJEML/uzorIsyG47KxjqOUplsOMnThCHozo5HgyvXZuX5k3k5JzSZSCh48l2AthgMdR8vScRCkKK67XwMSik2fZqv95Xr7/BelOd9JBSkk6ppOeLAKESumirG2HZOaR2CB4QkSTZNW6QZBEDfaPBf+vznfvvXf2WcXNm0R6Nxjmn63tOzi8qAkNuTK6Mkc2iDH1CadjFbly6d5Bz96PYX/pP/8lf/7r/7t/8P/9l/yt36n//3/+23v/Hh4vGBMfra3u756dHVKztJqk+PjtNilA1ns62dvBgyghS6qipjhHUuSdO8KNqmUUqbNL6y88r9+/e//f57+/v7XXT5bPw9+19IxoM6unxr9MnRo2Gz+tGf/R8CAjQdazq8ONJJXvkmT6WzzfHBsyvXb0ym46brhBA7W2Pv6+lwX6F3Xd00TZ5nPoYYur2tycODFjBKKXWSSIKq2qxWC5NoKWWWJcaoEIJfr4hIai2lFGSXyyUAFEXRpyb0y6au68TzGz/J83CZkAo+BvbsfZSSdJIIKRCFl9A0XQygiHsvQ28f8D4yCUUCGYIPTWyds0IIbWSapnDJcs+ruq2qquu64BnYn18sm853LZfNXMlUJ8ZkgwAbktJk6bDIBVGwzsaghCYBkdF7zwxEoi+3UgobnFKCpMQQOF7iOKSUzBEAfeC6s4GJFHYemtYFFpHZxxBjrFtbV2WqyCiFolmuyn47duXKFa3lcrXY294iZNs2y/m867qqqibjban1/GKZi3Y6nUhlXODNppKd9ww+sNJme2cmhFiU1aa1IWLTNCHEatN01gNQL6fy3oOSSmmpVD/DcJG5c0iy77j67Wzb+RDYB9cHBiBecr6gR5Ew+8A+cAih6ioiQgJk37S+3NRS9EPsljkqSUWaZVkCKJaLBQBsutpaW5uOCJGBBEgk52MEB4QARqrnE8DLOR8DAhAgSdU7qoGIBCDECFL1C2yYbE0cYoxxf7aDwQujACLbFqXZffne9wvdVes3P/PG+uIoduXZycFoOjmbL7757relrx8/fnry7PTb33z3L/70HQBwEcbTdDCZDseT7e3tq1f3JbnDpx996Qc/f/fujeOjcP3WrfOLhQ02Ik73Z4tlWYzGddW0LqLHCGADdhaqtVMqItWr8/nybJ7ovMgGJkvz8dA7n6QKg0skBue0zmzd2NKSTuS/8e4Zn8ND+4NGBAYg5Bexl8iE7AMgAonLxTFjiKGncg0GA8RLE3qiNAhaLct+wy+RFAlBIoQghdSpjDEiMePl/Qnh0pwTOFy2j/iX2UECUSnh+ZL+RUTIwBxi9NevXcmzJM+Stm2Xy4X3FhFjHF67evW9997rxeLj8bjrutVqxcx7O7vn84s+qYmZXfBAWAwHvdIyz/Po3YMHD4bD4WQ46rpuuVpevXq1J6dHH0hTf/6I/QUFz38kJH6hxnoeNfjis/3LAUsIPQYaEfsjT4iXh5wYI74Iinj+TiEyCgaMokdiEfRnUaOEImGrBiMrQ0VasPcCaVBkwXW+qar1UhONBkXCNsv1G6995lP3rhjy3373G9e3d3SSPTk4Hk13100QmT49XKwdHC/WpxcHizYkSneuTfNkWCSxLTHQ1dmMfT3KYGdr+/a18XiYjyfD4+Pj+/c/FszlYj1M9n70hz93evzk5Xu3bty+uTw7W8w33oqHj46yJJ1Op5tqXq6W2ztjBtV09arcRDRtLFtX3n/y7HS5sQHayChElg9ilBy4aWyMUZCrlqcXqh4XorhzfXvr+nxeHZ0c78xGdaiDZEVcWRuZIkBnvQngPRlDvY7BxdBrVntVTt3ZyyiQ9bqpO5MmnWMfERCVUplQQsrONhA5Sw0C2LYqtNwaFV/7g39Z/cjnZLc6++A94VZXbr4khDg436xrEX0qfXr09PTCY5Vu5Xv3MtxzgZYNLw8vVNQxDP+/v/bHX/riXxfd6U/85E/95i//4v/lP/mPAdgI3H/p7pe+9KV333335Gz1xS98/6c++9bZcv6d77yfZdn+/j4JYZIshLBalcYYkyS9m+7g8NmqXKdpaju/ff3KZHf7448fvPPxB3t7e7s7+6zEfLM8+p1/eeOlW9devjfLdsLJeWBY1UtdJIPcvHz3pcPjk6xIE5OiFOtyJRBKLI0mTVJIipEJMNVmfna+qS7JR85ZLSkEH2MvBRVlWda1UIkRgkLgaH2MwLHun/uXXo4Ye1pFluUQ4mq1AoAsy3pUr1LKBwaIzNx2gYTtBMYYXesAIEaOxLJPjyEkobRSUgqpCGMIAUhAHyvbo2eZ2ejUmCRJEiXkxcVivVosPSxXG+eQMXWtW9s2zbMsy8bjqZQgpGidZR84gETJwiNFAGhC5Ig+sHWBOqdCMIm01m82de9DJZLKpMokAiwiRkYRwPnY2dj52PrLDKV+S+VCUCh8iACuOTtzzq3Lcnd/bzodHx0fYgxNvSnyZFjkO1uzs7Pzk+Ozu3evPn16UVXVcmE54npTVVUdIhCStS4yNFW9uf/w2vXrg+H44uLC+6i1tqFFQd77urPeeyk0IlrrlZBKxBDcpS2VkL1nDEgUAiKG3ijKzCGiAGJm6z0/b08RRWQRmUPkiMSA0DdMwXbWkUCBxBwTo7QxjqFqHJG0jtu2FunIpKr/nTIEKQVqU3c2iZK5Y+YEte7Laj+I7hd3jBACCEmkAIEZejpDWXdGGwAQAsajcVluJPeDWIDAaDIgODo+X7luUzflavnnf/xHn3/7U3t7e1mWaZ3s7exv3byT6OTBB/fPjo7PDg7mF8fRd+9//J2Tk5P52eGDD7ipwEi4ft185tXrmt3ezZe64B1y5etsONrARoywUTUMoekaZ71SxqPzIcouGDAqtPP54vTwRDDZzgeA4WTsoj85ffrFL3yPhJBokySdUnlkLQVKuIyaBkTRa4ICRwZGAGZkji86UQAGRoVERFKSQMIX20sO09GICdvWZlm2qSqAXnbE5lIX149nMcQY2SOikIRIiBiY4TmYgpl7VytJwZFD8L3rDoSo2kYiCSAfIyJroxE5xnhxera9vb09ne1fu/ree++99957RPTkyaPValHXtRQKNX788cd912utXa5XzCy17ttQKYSLYdPUQgglxKbZZCYZjcc9HFsIMRwVF/OzprW97vHyjnKuhxQG77EfiCG46J0NWiUv5s+Xaqzni474HObed/8xxsCRQ898YEYI8flq/Pn4AYn7Twl6QxhT/02MMdG7rnVaSHABTWRnXfSSMHZ16NqBwmvXruzt7bn5+c1bLxUpLE/PuFAh4B/+4VcPHj+7fftuMtru7GZ5fna2se89eLZso9ZFMAIRtrem13dnGryvYZzrzepklOlqVfuCtMSDp2cX55qIxsMiYDe/WC7PT3bu3b114+be1p7b1EVWFOlQ6uH21pWP7z8JNngHRmXLRTfbGW3t7tQdnF5sDg7PT+flfFWOZtOkyE/PzwKwrRauXmfpwDqWQt998xZJV0ySK9f3P3l4RDT0AQeje1E4tnFZt4JjsAFEQkp23s2K/BJ4EoKUlGa5sNIkKoSQmOzk5CRGllL7wD6yinB8fhFJASnPWBSDtusI0HlbV5s0TSVLsE2om2f3v90tT8qjh9//5hfeef/wyqTYLMsYcVN3RqaHj0+SxD7rIGzvj28NTTZybWzqUgnjRS5SebQK/8U/+tVbM/yh77l39eaV/+A/+rvDdFAMtvd3b//yr/3Ws6dnt2+/euvlOx8+fL9ct0mSvPbaa1k+6G+cHtq6Wq2Gw6Ex6vDwsGmtUur8/Hw0GkmTbJr29r17bVWfnJx9dP/j69evZlk2Gm199NEHRyfH3/0DP7izv7tabTZVowRdf+na9TvXzo7m737wQdPUSZY656qqzIze25lx9KlWSZKsy6brgrUxBFZKhuBjdEUxm012mdnalojanmuvdAihaRsheDBIvXdJkvTZwP3jO8syY4yRCp7HfhMKQtFZF3tGjRDOuaZ1kVutVJIkSZGul6sYo0NWgQH76beWUkohgMEGB4HpEpuIBNifDFj64J1M86mQbdM09Wa9abJ0UAVfVWWiBybNkUSaJiRASui6+ny9xMijwdhkCRC1Xau1jpGJhPWhj1qJ7FFg09REhdYJIhqdtm3bNC1xCygCCx/AOq5d29rYBRZCeO8lXXqFQwyd64o0sVUtjb5z585ieXF2ckwcL+bn9WaRGb27u6skFVlWF9nF2TrP8+PjY+dguS7Xm4qESk0WIjauRZJC6NbZ+Wrdtq1zwfvoA2ttel4EOS+lDNErKYnApDrE0HUuslfSEJL13oaIKPLEhNBP7LEfMwjx4mkc4uXynhHRM7sYPYg+iAkAJPbpvkAQiWNgKAaj4O16uRxNJtdv3ijLel52VVVVVamk1FrGgBEgMgZADiz7/gP6NLy+9D533Ah5OaMmQARJ0Llom7arm16UgAKT1HR1lRoNHoHAene2XLcxymJ4Z3/vo29vTs7P//yrf/GZN15bL8sky4vh6MgPhCO99+qdvVd+6MfH3/nmnz78+J17b7z8wYfvCTL3Xn7t6ZMnH773XpLwH3zl68jdF/76v6eUOt80USVMpAkvLi5Wm7JHkeTakAib0CKrELDxrU4z24EPOByNphPdWu8hnp+fHB4eG2N+7Zf++Xq53Jrt/OiXf+bK9btN5+Ul94GQnucE9I9+F4PWST+jgHg5lRaSNKgkSYBZKUUMSgkE6E29DCBTctYZrfOiaNt2kA+dc63tuq5jjgCy3wz553nAQikjpfe+rutLBLQUkTl6//zeIkBkjEQUmDmG4LxA8l0UgAhwcHDQdV2WZWVZ7uzsfPDBB/2qqaoqpVSaJnV7aZDoL5p+7AYA+aBYbUoXwyXlQxJw7CdmCDgYDGKM1bqczaYHR4cxxjRJXAwAQimFkY0xwOy9b9tWSCmUjN71E+l/Ux3dD9Bi/Mve3XvfT6F79wtjDNEjihdlG3tbmBQQgxAaIVprAVAqiuwRhNEmuMgch3mBwMM05+gVRhTo22o6zLuaCeL2MLtzZUvMVFGYp08eZYlyjVIgTi+q7Su3tq9cBy0uThYyKzabdVVVk/HVCEqlbDRR9POzYwwuAZ+LmKt0s9lsTwdVVZ2sF0oLH9RgMNjd3UYVX7376jvvvLeaN4Lo8cPz4CoGr5SYbu1qM9AK0yyvqmZ+vmIOIC6uXb01m0xNMt5Un1zd2SuKgY9+kCo1HQDE+WoZrLtzZVYUo6dPDpp2s7VdNM3qww/Omc3jp0/PL5p8UOTjfL0+9yFS9Bqwi76pO9LKe99HKfjOAsB0ayI4+MBKmfVmE5il1D2uPMlSpXXdEhC6ECNgVVUhuOBdqpUxGmOg6Hyz3tvd//63X18fPXzw7a/+nR/9kXe+tfjMq6984+GJItFUJUFs67ZZNWsnhzOlwGtRF+MsWh+97USSp0me4cRcm+XdrVu37lwdwmderZabq/u3/8F//l9+5513r169+tZnPnUxnx8dP3313hv37t2zLgyE6PF1TOg5pkWOUpxezKWUr7766tOnTx8+emJMGi0Llq62yLS3tR1CePjhx3fv3qUYo3Wx6z759vvbu3ujrd3RcBra7uL4YOfaje2r0+8pPv3+xw/OLxY900eSKJuOAJWWR2eL5cVKSg2CByPVw1+11oAxAE9n065rhBCrVam1bruuaVtgFUEElnW90loPh8Oe9N6LsHoTwQsHS483SdO067oAFPtgSyQXCBgYfIwWhGybCokhSYCjs8GFQEQSsN93CoXe2YisTdI0Te/WDdYJQJAKTLK/OyN+fbxanl8sT49P83wWgF2wzlPXopTkbGiaiplHw3GRD5VQhDKKKJTq6hZCkH0suiJjlPNBSh0iIEZrfdNaAGyahqJlEiS0Y2qc7xwwUoyuZwW3daXQ9E82Z8MqVFt5du3atflqORoNFxdzpDCbjEeDAsETcrCdt05rffDsCYMkhtn2znA4fHZ4RMJEEs8OjgFF1XaCIgqq6s5bF4Hapi0QpZRCo+eotbTO9dtWYxQidt5Z73q/RtN2jXUMxMTexX78+eIF3sPzmDhEFD4K4bTWiCoSeAfORWZARBcDIsv+0RWDDPHJ08MsTYw2jOJivmnbtqptn/YpBDatL/LUBUbnnXNZaiiXUorna9BeiiWAuU8O7YM7kyTtnNdacohKyBAdRx8DYUSKATD2JxzvQgBUSpWNbbq2JH708MlXv/a1Zn5yde9/9eabb5Zl3XahFSMJLKJTGP+bX/jFv/jKv3z48TvDQiml3vz054rta3cm16+/+r3rcnF88sSH7ne+9omW4pU7t2fj0cnBk9NnB8vzk52tqSmSZ48e9lrIAo0LQUjhnJv7LhlMysfPDj/6cHu6naXFdHcbz06lMv/sn/9S7OqdnVme53fv3omURgiSCaEXUwEGjn2V6jXJznXMKKDPjuwJZJSREkhCijxLhBAQohA4HA6Wy6WLrJWKMUoUq+UyxgjYIaKzNjjfd3V9+9g5d1mJ21YIkSTJaDRqmubFqbnvGIFQkEBEhhCBESBiJIYAkQNHRABIEQ8Pn21tbaVpWparwWDQu4n67LPBYKC1joD96rfP6B0MBqtyvVgsAgSllHNdz1iXQpCQ3jrX2dlsZoxZhMV8PldCoiYGCNYpBf1RIISQXDpHZYjR1U2apZ7jpYeXqB8nXO6DY+TnqG7TJ4VB7At235f3t+jzYQMQQd9kAF5Wbn4uNyOUMcYYvSKRKF2k6XQyirZp6mqzvEiV0BjTTN28du2N117erMvD4ydPrc1MUococnP9+kt373xKIHzjW392/8H7VVPOtrcEytfvXBdqUjdcwsp3VZIk28OJIGw3q6YNGxnPjo66zr1899bu/g3bbupq3VI9zIuL82V2bTabXHny+MjodGuG4+kAYiMEbKpSOx4OCxJ6Z2fLend0dKQz8aj9JMuHqTav3b2xXNejVuzs7JydnTRkjNavXN1N0/TK/rWjo6ONtg/vfzu4XZkwCUZMY1eSt9ERW9geJsVg9PZbn37ngyd//q0Prl+5sbW3d/L4cd00SJePj57CCgDWl8wYGHu9OjM6Z/sEgtSkipTtOvBWS6WQnW0phps3roEfHjXLJw8+OD96Ws5vgN18872vHp88nZ+fPL7/HtiynB8qicdHp81mdfcz37e/v2Vyt7OD88Xx1pXBsrSnTcurTVs3Sdp0VXf//rd3R7lrW3D827/zB8+Only5sS2EePT4Yynl25/+3LVr13wI1lXM0yRJPMdgQ5EPVuultdY5Z4yp63axWLz66qvbOzvee3AcOm+thciDPL17687hk6fG6L29PaXM+bNnm2V5rXbTydazZwdn5+eIcTSZFKPx577rra99/VunZxez2cx733ZBCbmunFKDbCjyPF+vN4NMNU1TlZsY46NHn+zt7fVR00VRJGnuQ2hbX1ZdUQyAcVO1/addFEXPDDLGuLYbDof90hSeU+1Wm5KZkySp61YryUxCao4wX2/yPBcSrW0BSUqyzvWKZWbo6iZXhqQlIimAgEgQoWTyzKiE6OXZiLUSAo3e3pnGVM1GQwny/icHN29fPTy9OD8+Dm6QDXKTqDxLiLIsyQCgapoQ2GQIqHzg6H0QAqWKwJumzaImAgYkgT5EQkQQCKK1EQUCs2dgECiQ4yUc2LbNsMgxeG8dI/RQYkkBCWzbBOarV/YuLs7atp2MitFwbKRar1ZnpxfLdclI2ztXBoPRZrMJDMPRpKwbqbTJ8tV8IaRmBmbo0QjIIIQgkojY2A4AAoN1LYJAYh9D1TaZSXr7pXfBsw8RuuBDcFrqF7O6F4O3F3+DiBRBRGIBxmhFqos2hhhC4MjEhICBESL3AUHErIHYhvfe/7jrOo4eRTIej69du/HRRx8URQEo2s56j5IAkY1Rie5NbQiA3PMgEDvr67oBgBh7ZZywnYMQJbBAIRAER0IShCEVJHsHDUAEJUSiNIZIkdfzi0ybnWs3dWJa5xwgSnVtb3txdr61Pf2jf/nr3/ran1WbpTLi7muvDSdb4+3r9083Mt8ZjHeXYX7vh3+IObwGcr1e723NTg6ePTp+/OabPyyA97amO9PJu+98fbGYn1w0WksXQuQ2y/M1C2HyV9/+3L/+jV9790/+NAIkxmSDbHsyHI/TZg2PDy8++/Ze7RrrvAcp+637JRiyn3ISSRLe+8SY/qzKzNDHyDMQoBJSG4mRjVGkgQC9dQAwyFLPUNc1CcrzXEq5Xm2sdzFGIJRCXGIzpRRK9RDz/nTsnOsjktI0tU0rhOhrFoS+J4UQw6XXlsHHSAAgRO+Gqje1Meb4+Hg2m3mOfZ5H13XFYNCjtEMIaZ4RyV7QGwXb0IXohEQtTD+r7MPAIXLXdQgxzUxdlZsYmQMxaSE775TRL5KttBJpor0PwTomFES9xcLW9YteViIy90kNjMT9/RGCByItVZ+brZQiAikQuHdEY3/RSylDCEr29LsgJTFzgKhJWttKEplJJBJ7713HznKMwXV5avZ3tgaZNAJvXdvPjX734w+LPF2vams3eZ6/evNG5/zXvvJHjx98kiZ09crO5777x2azSd3ZzcYfHFzc//ixjrHYmw6HYxdiU3daZcy8abGYXklGM5ADlWRaJ96Gg2cHJ4cnajg5P39/a7Jz9cbt+fmp9Q4xU2kCGBAxRNf5NnatNPrq9eloos+PzpjRMpqcNblR6lUMs0xs3bhSrcse1tp1zUi6jWhf2i/k9cn+lS3CxkWnZD4uRk+enq/Laqqzvf0tlSgb6u979drhw48xbrBe3bx19f79+855qSQRda1DRKGVazohlBAKEYEJhSBmDqFIR0yCUGRIzjnkSARC6barq6r61L2Xf+Czrx2+/42hX/7kl7/0R7/5z4/PT//0q1/5ySfvFaq+MZW/vzjUEoDEz/7cz/1//tE/6nyzd/3mL/zff/fLP/XTD54enszXn/+Bn/vu73oNedlsDt567RVXl1VZj4ezeb343T/8yt7VK8+ePTo9Pwuef/AHf7jQxdnZ2fb29vb2dj9N6a+Euq61MnVdO+eyLCvrSilz9erVrnPeh6IYffDk/U8e3B9k+dX9vd297bs3X/r6N75WV9Ubn/rU1mxS1fbs6PDxwyccMRuYw4PHm2p9/QbKJP/c5z5tbfzgw/ttaxOTr6t6tW6yVAiVRzARutVicffu3aIovvn1byDier1O0/zi4kIqE7n2PtZtFyO2nQuB++WuMUYp1UMc42Usgevt+EKIzrsQLsdOTdOQ0EJJZqw2LQAEFDYC2EhC2rbuHBujlFIB0Ha2aVqI2PogCJRARNAKQwjAATgmiVYkAEAQKduClEJLg7C1v7M13d7e3q5bVmpnMhkEBhQKCG0fa++CIgQSSlLdVREko2AInXXQcxlD7ESQkjhE8hGAuN8qIQFKJBUYfYyxj1fpG0cEpeQwS+uqHA2Kvb29yWh0dnYu7KquNzs7Oy66/qGxuz3rmmZhF0QwHAzu3Lmz3lSn5xeDQT6bDRdzd3BwMBpv2cjlxbrzQUnjQogMHNlhhAgkXjQtl95FRJJSAkkpNEPwPq79Jk9SZt40bdu5gMQgPPhgw18uyy51UD2Z/7IdgMDgguPOMQohABVDDJH7hxsRxQDMoJHSJOmaZrWuE6Oic1onznU6zZjEYl0meSGl3lS1FARA1jrmWKtWKUGUKdn/vyEwEPUr4EhEwccgg5E9eJmlEJeyG469OpWM6tXBApAia5K5VuRcoWRXVuC9yVIAYCkhETLNb4zT73rp9X/48z//53/wG+3yoF6d3Ll57Xu/93uzye7jkxqH26Mr97wYTKd3Pz4739q+dmsosom/mM/V9u1m9Pjr5/btz366Go4eBJu/9QOpbY+fPjo7Orh955pkrso1us52m9nuUE5Gm0egBNRdt/HudL5489XrZyfz0IFHnmxNagvnF6XsVWiI2IshoI+QBxRIHCIAKkk9wBkRjdHDtIAYETiEADEgCiS01vb5Kl1bZ1m2qRrvLDN3rVNGA1262Z1zPfgqAgeOHBkRIYama0MISkitE60k9Ib7HpEVYqTLsxjAi00ovTg06DTVWkujO++01oPBYD6fF0U+HA4Xi0VfXAkwyxLsgzyFsG3HIQKADy5NU6Mkx+DaDhGHWRZjLFdrgZSmKYTo2eVFEXq8p3M9jkoJuV6vIcThcBACt85KpbqmJSJkBAaIgakHjPV0YRFCCHj58ZKm0OO/mZUQApUnDOHyBOq9984bY6SUMXqIRIIiB4xMRIM8R2YOUQCkiU6kWs4XTbXOck3Am826SCdFMVitFtVqwTEyFsqENJOT6eDh40/uf/SgXCxno/HLt259+lOvpCkuT05Wq+XJyalJitdfmmA+AsbGxScHpxdn8y4wCmOMSVNzeLq+mK/QtyK2L13f29rec7Z9dlGPh5NIyru2GGVXr0yFcEispQkRrA2bzWY8HjJZiU4l1fd99rM2+PP5eZqlIHKllPeha50AtThak+sQMULkYToepeNRMl9stiejIp947xBpUoy3huNN3QmMTb3MZZYLyifFS1P13sNPComDrSly5OAjAaLq5Wy26QCo3zdFDgR/GUnJHNu2FVJLoyMH3zYATMhG6YuLi1/65e/8/r/4pQzqn/7+t/7pL/zCz/7cz7Eyvz/N/9bf+TIwh5r/1T/9f7+zXORv3HnlU/fuPz3/1JvL04eb0wcPZqn8L37tn9194+XvuZ3+1OfvPH38Eck7Tb1qN+vFxcr7uL2995nPvv306VMXYmKy7SszZIfo9vZ2jEkBwNpWSt0PTpz1McaqqjiCFKpx9XQ67YVOPmLTzCez6XV384+/8kcXF2efpte3d7beeOuN09PTj+9/eO3GS0gyxqC1lFL70OZFtl5d3P+4uXHzTjYYa5JvvHrva9/8dtU2CMJGPnn6NE1zrZO+lD548GB7e/veq6+QFPWmss5pkzZNQySPT8+8j0hyUzXFYLSpmtlQ5HkuhOi6rsewD7K8bdvhcNi2LTOTIO9903S9MQkpdN5JYWyISpqiyKuqYnAALIROUklETdv1WTQ6GbjofYgiog+MEEMgAC8RlBQcqQ2eOAohUAB2AACC49nxsZDm7U+//rVvfLuq6t2tcdP51nkXUIDwMbrgLfSeQMmAVdMIUoIoQPT92yMRIhBfZrgJoRAh9qQnUii0C8G6GBB9ZGaWhEIKTQjs8zThEM9Pz+bnF0IIA7bH2FWbJssHUmqT5ltbWxdnZ6NBroRcrJZ9JMz9+/cX691b1/aXq3JZrqeznePzeUCZZBm3tmsbYKIXuy0h+udl11og7KtvP3kmBhKQ6FQlfbhvcJEjgIscIkUfASA+F9pGvKzCz9dh/bAu2uisY0Q0OnEh9m8zxkgMgQiZbW2lTkCoEMBkwyJLgrer1Wq5Wi1XKwBIk6SuW0QeZGlZVlpLIULbdbIiAs5So5RAFL0GyxjjE9d1nfWOIUbni6IgZCIC6n+seJmuCJEhKkSQQoaIAlMhgAi6plstyfv0eRtpfSzyAjbzX/+df/FHv/0rm/PjxemzO7euff4HvpClxcnpYjS+unf71YrTs3kjU7177bZUJhm4TOvB7s7ZapVevfa1d77dPj568zM7MYq0GIB1dNNkxeydJ48+9dqrt1797KTaJCp8/P5Xv/6d91BB4wAAfIgK4Onh6bTIKa2fPn36q//il2c710w6lATIkSMyAkki0WM3iPrZLAIX+dAkyluHiHmea1Sb9ZKZlRKBY1u12ihjDBD2zhtAtMFa60kIksL67vlGAXwfQiAIEfudUL8M7l8RMHBMtemROiSxn7VyACkEAcYY+/m0JOo7VwCou3rTbG7evJnng7Zte5YkSdEX4B6EvV6vA8d+L5WmxjkHoARgXdeha4eTyY1r14+PjwHANi0TTa5d6bpus9kIiVmSBe+j8zpNpFZ9G60yVaRZ13V5rzgLnoXoD8vI0GsZemM1AvSoEh9cHw0GkaXAtumIKDrIBiMAbNvWguul/3XLbes4+N4JKhCFIAJiYiGEloQMnXMoMNVGImzKyjlXlm5ne7KqNt62EMLWqMDglTbrBkENjs4Oj86P80xevbE3uHeXOweR73/08eL8aDxOptMh+2prPHn9tTcOTjZ1254vykzFwgjoeNPUZVkOBgMaDY+Pz5r1xe2bV0Q6ICO3prtlvFiuFkmWIvir+9NFeY7QjgZFVVWEClimJimKQijvmK0Py8U8QsgSU5aL1nYu8pWdK8F15xdn5XrVSu2Cz4r88cFx1VZSKWvDo2fHqUKBQUrpAgLqYZ6NiyLRu9X6dFUulM9+6Ps+fXw63x0NfLRKArJiJCmVSbPIuFiVgPIy8wMQCDtnCZAEcOB+oYWRBXCfSxdcsNbu7l0xSn/uB7744Ot//Av/7Bd/k9ppSi9d29/aHfz9/91/OByk3/yL72zOnwr2jNGB/Y/+3t/a39lfl3DwbPlP/vEvfvbtt0zG5ck3jx6MV+fzSw0/QJrqr3/jz7rWTqZ7P/pjP/4L/6RUW6LIEyK4emO3sSwESoFCSubQ1Y1KDCCfnZ0xc88GFyQJwDk/Gg031oMUHNxLL9/VWtmumi8XJ+dHt2/f2t3fqdpmPj/Li5GQmpFjJODg21YT2bp69OCjvf3r090rQshXX3n5a19/R6q8XG8a66yvlPJStlnmQghPnjw5P5uHwFk+6JXYxqSL1Wo8Ho8nsxihrDZPHj+bTqdVU/dnx/4GD9YFExBxPp8TUTYolDIxgpQhxOi6rhhlIfB8fmGS3AfunK/qWmkhBI7GhZCqaZq6sQBCSx1B+egBWEu8tN4jikCkZUBgUkpoQSy07G1O3lst02GeRSTfrK9fmVnbkogdhOCtdegDAIjI4GPwMQK4RPdkjNCH22ijILILFoiiDxgDM0sJRDJ6DiE4ZoyddWx97B8CBCwQi1QF51xTc3AxgNBK6yQx6WiS5cPBfLEKHI1J1mV1fHR668a1xKj3Pvg4TxPrfQgnUquIcHp+Mkh1URR2tbbOaZ2sq67pNhGpxzUEYIUEAFpKIUhJ8kp6F4Gp16xdLuClEFLFCM6DjxRidBGs7+voi6T2nr1EL0Sgl51OPxmOEGJgZh/75zBEhhghMtMlxxDLqhYIRklGtJ5Xi9L76Fxg5p2dnaZpABiBbIhKG8TIjN5H51wI+gXxqX9pTTQYhBBibxl1vq5r5tCDY4W8hE+QuLTt9FnHQghCQUAycle25eI8kTgepO2mdF1L0giE3/q1X/mNX/9VW62Wi7Od3a0vfPGvjCdbj4/n06u3f+pv/ezjs82fffOD7enuYDJZV3ZTbjYZdHWQJjs+Pfr8F77viz/6IxerzaqqmWnThui81oPtu9ucDX/pj37/rU+9+dbNuzLFh0+OfYjAgASSQItEMtvWD3am5bw6fFY+ffL7rYfJ1Ei8HFwAIhBewjkRkb2bjsZpmvZSN0wFM2Pwm67xHLXWWskYe8gE+xiaqmmtjQCt9UKINNNCyfV6473rDTkRmSFEwH5I1HnHCAHYeUdEqTa9BZ4ACXogDkZAFwAAiAEjEwNir8OIfT9JRH1S4+PHj2/evHnt2o3leoWCAOD84hQR0zSt63pvb6+qqqaqo3fGDDOTVFVlu85IhZHL+XKV5rdvXD98+szHMBgM0iKfu7lAijEG23XeCaLoPAgKzjvnOt3NxhNCXK/XvYCQOWgjQwhSaHhOtuYXyxUI2sg+d7m/K7SQ/cfSVXWWZanRyBGYI0OqdJGkTdfGGHviCURGAEICDk1dGaVTJbMkUZKiDxCiSsxgkANSVgxfunE106ppKoU029r7xoen88Uxx/rlu9dfvnOjq9aubl3TDJPk6PAZh/bWrZ07d+7s7m2vy+rh4yfr1cZk2XigB8Obt25x1cZI2kaeL1ZZlg0GRstrn3r99ckwOzs9LAMII3WahBi1EhfLVZEJRFis1kYmUgIwKJkcHRynuTYpsBc+NiGw0aJzflU2xXB4tlitl6s0zW/cvY1Ay6oCIT/+5PGi3IwmYwR1cHGoMN64urOzM+7AbdatazdHtLh3Y3//yg084fc+ej+mWy+/8qrJtt2wKDLTtVbqDKQmqRjkdKrLTe3A9Zd2f3qLyBLF1nRSN41nRoiEyAyEZLJsOJosy814UPz0X/uby8++0R1/8kv/9c8vF8eIIFTy3/7jX3r0uHz5WkKc/M2/8VOo6dnJ0b1XX0OPZ2fnShePvvPRYHz3M5+69/jxh5vqrZPT4zwbRqDWVUITgv+//fw/EJT8B/+b/+2rr7/xW7/x6/tXth8/Xn/y+MFP/ORfTRLdB6IRyTRNWuefPn0aA+/s7PQCYyFEiDHPcyLRuZoAvfdAPBgV64WFqA4OHx0dPnnl1VezLHv3vfdff+PT4+msc9G5ziiybWOMyfJ809SPP/morqprt14uEvO93/vdv/pr/9JFYuZ8UPQLyKauQwjb29tSyh7pnOf5cnkuVDMYDKRWDx8+nC8Xb7zxppB4eHp4bTvf1FWWZXmel2UZYzw7OxuPx/1g1rngfRNjHI3HALBarZLCJCZdrdedbdoueBeTvIguJFKXVbveVD2AqQ9jkoIieGKIqJGZXexcdJ59EhUhMOWpIhLOR+CewE4CMIbgfFcjzybjZ4fw+NlDEFnnRVV7GwmkCQiMAESIWFUVkQTBbecMUJaaAC56DCEyIwlCQgBixsDB+eAYOIAL3KeGit4cwqEq28yIPDPBEaIoBqNsMDw5PgVUZd2Um6pt20ePn0amYjAWKjk8Ouys39+fjSbDD97/qHNBKHn9xq31fI6IgHR4eOhBoJAYonMOSCBgjAEICUgpoSRJKclK71sbOh0QzGVoTwPQsy68j53zAUQAiCAYIMQ+AZ3ic/ZhfC5GCSFCCL3nk4gJLumh/VO4zwu4VC4zaK0754ijcyGEdWp019ksy8az8XQ67SP/vPfO2xj9MM8IBeJlLJwQQimCvvcmCDFIEkqjVoIlpanpGKy1IQQiCMAKlQBQQoAggp7fFREEEKIAKYWUeZJwXVeCWAKv52dF8lYL4oNvvft7//oPvOsODp7ubI9+/Cd+cjCcPDurZrt3r99+swt6MJntXdl9fHgakc8v1uPx1Il8XVbl2QWwWJ9edN2xSfItk3rkuq5JJ61tKrbDrb3Pf+knv/KVPxQb8bnPvDye7AIoQJsa6uo4Go8ToquzsS1PXr1777NvvV539umzo6PTuRxkeQjBc+z13329EIiINCoGiVGbzSZ0ba98bpsGpS6KQmsNEH1n8zwnos45k6abtlFKj0ap1KbtnLUWiLIsY2bP0Vvrgg+emRAt9u3IC+NsR9TnQktg7H8AwIAEQr5wKL3YT8eIMXLvvk8VWe/2ruzvX72yXC/61bK1tus6rRJrbdu2eZ4zc8/qajZVT5IKzm9NpjeuX18v5ouL+SfrdZZlWqqq3GRJKpESpWez2enp6e7W9nAyfvj4Ud00WuuiKDKTHBwc8HNpVWIMiMsUwn5afomSYfbe9oxJ7If1iEWa1XXdK8sECte1bLSSkoVywUfvlVaj4Yg21LZtgEtfPCL2wiKjJAevjc7ThJClJK11AI4RItBgmLPQ600VrR2myfH5RRetB755845JzLe/82B+dFQYNUz19p1bd15+aTbLBbpPnj4ENACaSE1n1FrfdFU+nHj2F5vzpBjOhtPcTM8uLobDDBHf+/jDftdeluVAx+FwfHpxMSoGMXge587Vs0mh0kSQ6hoPSMBKYqGFYZNlCZokBTRkBm04Fjqtq1YXo9ZZgeyDM8NhZWHpySXTDRQeRF1zV68v2sXkvGXwgRE9aqDlavOGvTqZTa/eoT9/50EXC6VzjpaDd95Kk3RNbSMAqqwY9U8ZAPYuCtnHu2JkJgJg9l3HQiFyDC4CKKWYRNPa4Ugdnp4rUBaFygdG4P2nh09WVT650cB3Hh61r788WzfLn/yRn/4b/4Of/M///n+MNv78/+MX/p1/79+/99q98+MHx+9/+P7R+QcPj/7tf/t/Urratc57z8R/5Ys/GoP47//xP/31X/uVv/1v/ezLr96WUnZdJoT4zne+M51Ob9++Pdve4YjW2tW6RMTRaJgkl64EREy0JqL1ep2lmeu6zgcPPoYgCbrgfNMJyf/6t37TBv/57/+BV16+G2IwQkplvOsSY2KM1WZttDZSz89Oz84vXnnjM6YofuInvvzf/Hf/LMuHTdNY7/JsUAy20jRtmiZG6PPXmqYZDsfW+9lstlyvlRYAcHp6vHd178GDB/3hph/V9hMd731VVffu3Ts6Olqv170n2zqXZdlwOFyU53meb+/MLs7XxkihwBjT2q5uOuxhzUQxYtO0guRolDlgjKxQCAbHwblou9a5UKQmxsY5ZxQKyUYLY7QQphAZE242a6kER/fy3VtSJ/c/OWoa2zTRghQsHIPniAKAgKxPEimF4hiYwfngnBdEkQERtEqERO9iZEagEAKT8TEyIIhLqBESxeCmw+Lq7taoyNM0nc+Xi+Wmqipr7dHJZvfKvtDKN23dWZOkioQPPBzPYElC6iRLB+NRkuZSqwCc5/l8tTRJ4b13HNNBnpCKm9oFDwzP13F0qZtxVkqtNQTu8XkAgN4H31mlZQghXGbocEQC7olAyL3iFeg53R56jU3sowAYODCE2BMLBXtEIQQChHjpwMXI3DQdImulvHfWRwCbJhmSDCEkiTw+XrXOaiGNMQiw2lTjYQ4oeiWGdzEEkJd5QF72MQN8GRDpnOt8Z/uFBaJCiowoomcwaKQkBLhs4Ol5pJBCiLhp1yRASazWq261Ojhb/P7vf2W9Wh0dPBkWyZe+9KViPF6ULh9duf7yZzrM3394OtzfHexe3VHJweFJELixLcyNtbqHJFnrh4OJc87WDSJmyljvc5011hLSJJ/91I//9T/8J/+Cbf3qy68TSfDWNrEwClwYT2eh7jbz9Z3v+a4f+J7vOzo6+swbb5WbWvYDZ4NCCPXidymEyBITQiiXK+99arRWkohSk4BJvPfOWoDYuQ4l0fNg6slkYn3Y1NXy5HQ0mkSEJEmyRHvv667tvznIyCgQUWrlnOuPTn1Q4iX9wwfqNY4ABNAX6X6oC8z9th0AhBBZWswmk8k4u3fv3h//8R8753pjQ28A6K+lPM9Ho9Hp6WkfgNrXy01ZGqXHg2FdlSeHBwSYJknTNHVV9Tvjoih6Bf9sNkvTtA8Yds4lWroQuq4b5sX21lYfQum9H6ZpNigODw+ZOTqPiKRkL6KJkS7fV4yDwWA4HG5PZ/cffOR9iD6oPClkIokgRilJqbRuG4gcORglvUXky1U3ERCJEALGEAMbo7VS87Pz/teXZ9lwPJSSRqMBA4KURggQdHh8Vkx2t3enaaKODp415VqQUTL5rs++vbeVS9GFULZtd7FcMSTD4d6gmBXFBjab8/mZDwGF1grYNc8e32+9FzIBVst1SVICIZFgJMf1anVh9HAy3i1X666Ng2LKMcYAWgnnmsV8oU1mu03RgpT6vH7mA1ZNFHrgWTz84BEImk5HzjeV64TSO1s7B0/Py44H0+0u4Kq2Qo8l5k7A2l1ykbrOG0Qh6NnpetWu1m1dR1q18ZMPH+7sJ4RolO7BZ0IlLviqqryPiKiURERtpBCEyNa1ZyenyiQ9d8wYo1XeH9oE041bL202G4F896U733zyAUrzv/x7/+7P/4O//+h0IzbGimkI848fHXzw4OCv/a2fAaD/+b/zvzh8+OzDD4+ODp8oJQqJIgiTbw9nu3XXRnads6PBaHtrf3t8xYj8zTfeunn76nsffENpWQyHqZeffuuzAhbr9brrus26lFoV+VCRGA6Hw8FouVwKIYqi6F09TdPEGNF7iJwliUAMtotSHc4X49GgrjeC8HOfevuHf/CLwKCVbjrnu7YPK1VKkeDgPAlMjIqoP/jgg+n2lau3rrzy6sunZ/M0y7KskFImAoExTdO2bYlkVdV5niuldJIcHx9PZtOL+RwgzlfzAJymaS91bpqmT7xRSs1ms9VqtVwuX2gt27btrO13wNlQtbaZTEYX87USCgLXbdPz6VAK5x0ASaGNTmKEpulYRYhs+sQhxhgju15OEbQipXOVJFqCVMgcq6q2viWiuqtzCIvVMpK6detG54hOSyC7sRCAnHM2OqGJUCZa9ynRKEho1XeQ2kiNAoCkVkrIGNoQYgD2HH0MIURAgXTJMSXgGON0PLm6v3d8dFSty5PzCx/YOrbWSQPOOaGk0ol1IYauRazrWktRt93ZxSLJsytXrz89eObrqLWmzl76JI0ONtZ13biAICI8DzB4ThV01lnvHEtmJiFjjM6Fvg1wMZAn70NECpG7EEgYFtIHRurXvRSYAehFUpv1IcaoSABgBIYIvZyC8BIOAX1P8VxIK6WK3oUQIEZmLssy0VvOuaZuDw+OB8N8PB6/9NLO+UnVtjVCYduKlEQhOGLbtrUSeZ4KAQyMPYIFZT7IgIkjCCE2m9p5j4gkBSMEjhCD4Ch6CycIYAaEyBBCVBI42M61iEwEF2en3/jqVw9OlxdHx8cnz0aj4q/9zE9t7cxOL1bZcH//1uutN1aZ+UXdXtyvQ1fbdra9y1EcHZ12tRVaxGiMUTKNHXMkKRPBzNWm0dowc6pTDuCaYIx5+63v+sbXf6+aIwEwg0SAyN/9mc+5qlmdHEwHk6u7e3/xp38WQmicH02mMjSN1rqXASeJidETAWMQGBpXq0SlOpVSopJt11lnRVsDQFnVSZJcu3H96ZMDJjw7nxuTpnlWVRWQlLpYlU1/YFnWdW/nYhDCJLZpCIGBIQQtVRe8Ehi9k0IIRABOp1td17XWCsA+SYOIgIQxCQhyzgUU/YVwtlidzpdvXNtOr1zZ39559Ozp7t4VmaS2agNIJUVVVVLqvpoOh0OGUNV17Wg4Htq2i+y39/fOT092d7Z8Z2fFREhcLtYo+P6DD2fbWz64x08e7e9MEo1ts84Utk2baCWl3JTL8XhikqRqG1R6XdWrqgVUktBFh8AaAIJnbzMpBJJtO5MoQwD1BvJ8NhhWmzoqTE2qyQ4Gl+cG4ggUhRCiq8fGSK87ZzvvCKUgGfvQHtYutM759XpF6IPr3nrrrc1ysVmf7e3tD5WwwVedr6wtI2A+RF7X61ivKFEakkFiVJ6l94/OSu/aerm9NSEYPDl+NiwUwKZtLbMQQEUxdp1rq40O2Fk7HY6C0mXXNa1Pk6xZ16v5YjocffbNt1FVRZ5oQ0bjbKIJwyDLnXNEsml9FApTGTU67rz3WZJGtyUIRhl/45tfnZerOiZezs79DGiAVNrq8HaXaTFOYYC2Ya6cD5UXTCl2Qjk2ZJ1vG9uhVKWZ5WoySgapPcvc6uZEL88fnF7srOrWRhymk5iasrZZMVjXNYdIyABRSembjohMYrgLqWi0RBux8xw9a6O0RoeklcyJq65FI9qu3mw2KjFlVZ0eH01SwdxtlOxicdRhyiU19Yd/+hsnJ4cRk099+sZ33vtw03BMzNMyXB3vbo7Xv/0vfv/Hf/zHAPTx04v77z/+rV//reOz02vXbvguaJF5b+fHhwCA/tbk7q2ihEIm3q2PDx7rNCdVoKLzzXGeJ93Kx4BFUTjfuihBFGhXIfpUq7ZeQ+xcbDZdJYS4qJvJlZuf+f6/ElRKRH/yZ388HY9feeWVxpUesYMUMJEknG0H2iPUuRLPHnx178qPTqbZ8XyepmmeJhS53MxddFrL1rVCSZmo1nup06astSJXl4UGLBIp0uV5OZ5stXbtV44U+VWTZsbkwxBcbd2jZwdSygCoTeocmyRvA6yrTli1CWuZ2VExW1Tlqqub6AVokgKZjTSSUSmdKYMhcIzMyxixm2/YDCNLwtSBjByDh1zLlY2x5d3p1rIsbWOjSxreSCmkTKqKAHTb2pOLR0QyUXE2krp2ZdMJiTZoDhJBOW37kZMQZL1FBm0kAFjvYhQVtlmWSZN2VVV3lgmdt4hIEDECMmMEUMqY4fnanr77EABCiE1L3nsmZFLBCnvhQnQYWWttQ4zBZklaVW1dW5H6srKCbFt3xqhCJ6iorNqmdX02H0RUHAGiABaCpJQavRIsmKOMNoYQ0PsoCZuuI6V9QBvIgikdMKbAECBGjBADxICE6PFS33rZvvegjBiBUVDo/4UUEPgQnHWJIEQkIIGCkGIU/WjSts4YzQQhcG19lha19xA5lWKQm0RyKpxw3esv5U0d16sLZBwNEkHSudDaaLvWGCMEISiASHip8hEiooAkJW2yXvbVS3+eezMtgYgIy9gllAiIhKwogg3r9+/zSSlFdrJp63pj6cGjJ4+eXhzdSbIvf/mvTneuPSuhzK/htdffh8Gi7KQOzjkOLjOSnPSlTbQaKLJUI5IWEmMkQRFFENz4DjkqjSJaEQEEWwKnfBW7/JWXv3Q7+f/9w/8ju9oodJ5Jm3yiNti4tXztrbd2Xtu2Ze1ami93VPG6NMb0oolee9Z10XuPgqqqGg2HZV3ZtgsqbC4uPEci2hqMFovF7du3rbUfvv/BZLpFSl69kixXq6rcSK22trbmy3WSJERUlmXdNb0Vofc7Oe/E8/QFIAYgYJKaBBIRQYhdXUkpUQpr7QuHbgghRi+lVEIhoo9MiHmaENHZ2dlgNH7ppZfWdXN2dqHTpI9hqBqrjW6apm3bLMvatk0zo5RihGa96Tseb7vpeCKRdJICB4g9rxwmo7FAUoJef/WNyH61rrtNFRmV0UKowMyRy7K0LkgklLJvcBlYCBJC9x5yHwMhEylB2As6Ei2dC2W58tYNhgVHsNZy9LZpBAkhVQ/n01q3bdujXIssN8F7joIUSaG1Xl2ca62VUnmSjPa2fNv0UvH+XTvnNmXZOosomqYJ3geI0+msrtr52RyZijyVUrZt++zgoKvX5Xo5GRWvvPLKxdn5dz54fzqaMM92t7aLXG9CtW7nWTHw1mV5Tmk2kPLZ8Unnu3SgB4O9V166E32bKNNZHwJzpNSYIjdaa6jq5WLTBwoNh+O6ayFSiPHo8ESJ5O7tO4M0+aHZlx4+PXz3gyei2F7UdWubk+PHGG294Vs3X5NGLzflpltaUK3liF6QIY1B9mFaoapqI9TxMfL6YpJLk2QN4KAYnVorpbSNq+t6Mtkyxs0XK0QROTCgEKJpKiVI9PPbLPNtWSSmSPLFugRmRO66TgkUhPOz0/29fQxdtN3hwZNBag6fPUWE69evf/jwUectYA6RBcLW1tZ33v/GZrM+OSsX666qmtq61fnF2nYmydq2fW0y+sY775ZleXx6pLXe39+/98qrzjnmSEQxprdub129elUIEZ03xggEKZIQYtM0+7M9MrKqudrUChOA6L2vXctC11UpeJOnSV1VHINzbr3eJEmyXC5PT87/zs/9bFEUZVlmWTabzQZ5fnx8LJQpBuMQhI+glBgUw3q9HE+GZ6vV9u6VuumOT492d2fMXLUrjEHqdLNs15tyZ2dLJ6mzPD9bbso6NUpKLIpcKdra2a4rb/2yrqvWtcaotrGYmXJdBdcJgYNh3jVtjHE2nTZNZ7JMCMkIbY3rzUoZXa9t7T1pI6WGxgcOySCNPjCz0RpCiL6LzuepuXb1zmJVxiAiq/P5KmBIjHHOex+YCUD5zh4dHQUXbdNFH1potJZpmkbNwDFERqTISESta5XSY1OsNl3sPKBwMfRP+YjxEobMDERKCCLy3nbOGk60NFrruq67zkUpiTn0FYEIABlFAFhXVYyxx9PacJkIDog+BluWfQlpW6u1zJKUiBixH++3bdt1jfdeKRFjXC+XUidJknShiYz9bMA5Z0wiBUkFSpCURERIJKV0ZVBKCKkQvbPBhWh9cJERRYihx/89L2DIzD2fv99CMgL1XJQY+UWnC5eBs/1X+RDweTgMCEJk5kB8ydmFyDEEFIhSGGOEEG6zSNIkzU2/BBwNzKAY5GkiqB8WQwoEq2q93oTIeT6QKvR+ZaJeGiZ6wTMJAQACQAFAH53eW5ZrIFIjoSJHiigQIHhg+gf/6T9YnC6He2OwNMlmsYNBMrm+k/3EX/mB8e61Ze1BDd58++2aRh8/O0vTgZDKdfV0PJpORseHB3Vdx5gwiktnCkTJiH1gLqEAElKQC9F7IaT33jGbNCFk39STYVEUhRRAJJj9zs4Ox9jrju/cuTMuBouGPMJgMJruXpE9KC6EsFwu67pOU6OU6roOCK21TdMQoRHEzBJpOBjGGKfTqSRsY5xMJkSkSMhE3xyP0zQ9Pj2z1iZaVk23Xq/zPC9k7kPosTiIKEjhJWI7RCIhRADGSI5jajRpiuxt1xDRoMiUJPYhxpgYHWMM3hH2mSeXKMe2rSyH+588GE+3iIiU9C6iAAKRJAkiWtdoqRJjNlVVVVUv3u6aNk3TPDHB+eAdONre3k6UPjs7MVLFGEPs8tT4GD784L2X7r0WkAKjD0CXGgwGYGstopBK9SGGnvuoUnSRtSCUAkEQw2V+qlQQe713iN5Gb6PtTyCBOTpr+0QmgYm1NvogSQklmZkRwTEyIwZ2wQU/Ho6QWJEIIbStBe/Pzs+bcj2bTjvvCsTBYFAwN7Zrmmo0LLJc5XmBEZs0beq66zo5zLVMg2+yovjgg++MB4NXX3m5c340GqEUH7z/8Gw835rNlJAoZLnZHJ5epHU9LzdBqGxQJEkyHQ2LxCgN9598UhQzwlAM0tRh3XJrXZGlWurRdNrU3aqsvfettfmg2NnbllJ+/WvvPj14tjMdHR4eBtZ377z+4PBCCGYKQMIkE8bk6OT8fLVoo1s3lU4zDiJCALJNiEF4EqyUGkpdrlan0ZW+TgQD0fbNl1rr1otaJ8l4OKqtLxdLG6PtGmOMFBi97UHmEYARGTECJInZbDbYWBdinucSYtlUZPRoe5Ykul7Pg60dtLGrR0Vy8+re9Vs3js5OrAMUwJLAeWBQSiVpXjfduj5bVW0AeTG/2HjnlfzMFz57dHS0vbd7cHQUgEezraIo9q9fHwwG5+fnHONoMsrz/O7du8aYTz75RA6tUEgK73/4MSmd5cVqtVxs1o8ePbqxf+3a7rCzbbXaFINR5bpNVWY6CpHbznVt02NhkiSr6+MvfvGLvS+gzym6e/duXdff+sbXbr/0Gg2E6/14ro5B6Dw/XZTD2d6V26/8zp/8RduyB9c0DXDIsmx/MgsRjh6cNK01Jt3d2cuKAUQ2SpLgJNHMvq7rEHg6G7aN95UDwKZrk1QTYpJnxFFJ2vSGWYTB9mSzqZumFKR2p8P9/avWu4OTk26x9sDeheA4smuhSZMk0zpLTVdtCAHJSqGyJC/SkTJJ3Tqt9cnJSddak6gkSVzXrto2ZElwXqC0TUeAaISzDNBZe4kBYRBta5vWxQAogYiyPFEGGNAFthAjewKEEF2IHCIRUV+TGJnRWh9jUzVNa30EApSeIwAIQATsgxSp9y/FyBEj8OVAmwERYwjR+/F4PBgMondSytSorq3rutaSlFIBuN+gxxitc5PJpLW+3LS2aSMpFNhv0wQCActLuQkCQAy9sZH7gszMnQsuxF7BGV4wBsQlzCB6F2O0zoKgPl6uD7KLADH2WbPMzMDE1NsHelQiwGWcGxDw5QQagIB9dAEickBG56zTSgiMwNbamCpd5Eoba33wnEjsOtvvOhEpTdOm6ULwdb3JiyRGCMFprSGis7Z/wL44NAAAR7zMDwIAwPlHD4/Lxb1794Q2oAQAwWb17Xfe0Qqr1cKkajqdJcoMB7Oda1cmN29vPJcWtm7cCWRO53OSQimhFG04tk21iK5pGhRyXbUhBF1kxIAMHJljBEJkRORgvSBBWkHgwJGEBMSqqq9m48f3P/qdX/sNARCDFygEx7rc2NaWy0WzXj97VINbh2Bq72cqkWmebdalECJJtLV2tWp72ZQQYrlcJkniYvDWD4uBj0FrLQFDCA8fPiyGI631crkcDMfn58eD8eRZXUsplTJ1XSfGFHs7i8UClQJm23XeOUQkokuXDqJ3ve6UQWuMQFIJIYTnRMkQAgZfJKYoCudcVVVaqq7rpCREdM4RQJ6mo8ws5yvv4tOnBzpNjE7LsjTGmNS4tgMOyJDlCSLubM/OLs7zPC+0qkk0VeWCzwbDGIMCicELKfe3d0IIJycnStAgTaaTkff+z7/+za7rFAlAwYCAgjmGGAgJIAKHGBjjJb8NOHrnRc/KFr1aHnuTHTNHHyQJScIIIPbMjMCasMjSzrmuaZMkNVo7H/M8ccF776P30XtBpAljjBCDt8E5lxgtCYPrJqPhZFCMhsNEycQoa+18cW6MGeTZuEiJsK7ro6NjCLC3s1sniZYCABaLRdeWW7NRXhR37r0spL62vVtXzeNHj65fv9o0VdVstJSTyWRVVZOdqUiy43lZVhWTYVaPVkfs3NXdrenObrmy5WZVNXWRJ8NCE8q2LWUvBWW0nRNaKYObTbX6eD2ZTKZbO4fHj+bzQ2fjesXpmKRU87PjytYmza7svrReVWfrdVSqbtt8tgOuS5IUyUipBcTgKsDAhE1r+7HKaDLbHhdn8wWT2trbOyufZWkxmk7nq83x+cIDGiUkARF2njm6YpCXZdnakOapcxa9IwFKaCGwa2oHPB4Pt7emSZKMpTw8PBwN0t3h8F835UuvXF8vzrvA54tGG6g9gG2A4daNqybJzs6XhyenT47Ozi6qalUH4PHWNBuP1005LxfZMt++ssPMTdMFjsJoxzHNs6IodnZ2zs7ONps6BL5y5dr54nh0dff8/OD09Njo7OatO9P92f/+//R/TszgzVfeXiwW1Xo1m+22nQ0cIndEpq43vScVEfNssFgsdrb3bt++W+SD9XqNQFLKTV2lif7c935PW1a/8ev/7Ee+/GPj4bTpLANbYK+yr77z4Pj33j1ftzt7NxpXDsajEPj49NxtxGgyTExeNbVQSVk3rgmEmM1G41EmJUoF1tUMsm3a9abxgTwAOb+pGoSoFRFHQaAECaSz06PRcEhEs2HGEdfr1ZMjfzFf1o0VOmWQUojZeMYRV+uFDU1CBJ40McYOwCKIw2cHeZ6bJAuBJ4OE46huOmaG6LVUROh9jIG1EXmRaa1ZUFVVTd0xWyHEcJQlSRJYpgUMp+mirNdlJUwqFFZNC0BSGY4Uo3+uO4nYUx8w9nHmTedC3VrvGElqZVkwRIA+y7hv2jyBYMR4GbeHASUyxoCBY6Y4APSNKUTGwJ0L1gVljHdOSL1cLgUwCuox1N6Bc6EfH+pES6ld4NQo5xxwkAhSSkR2LnTOee8BEwZyHqyP3nsGwdyXj8iMjNCPjDnEEDgEz4CKSErZV0oXQu/Tuyy/EXu0CD9n6zJc9p6MfaBvfCGZxsiCLkm61jvR1ZF1qrW17aZuJaGkyDEkEjHVHEEQARMgKC0nk1Fru7pqIXLXtG3bZhkLIax1rPuNgOgj4xCRL+0wCAiwOvoP/+7/7P6zJzt7+8H5rf3ZeGs0zrQ0DXgrJZxfPIJYj4rJeLa3vb932OpA8trrr0+v3Xrv/jMPOgTP0QPT3vY0xjifz0mqre3dVbkJfWYjM3kEugxr6g09JISzjhgUKWVSF2PrXZ7nObqvffweAGRp5q0LwR0+Ozg/OijS4ny5/M67WXshZJwzjhrB2f7n5Xq95BD7sp5lWQihR13P5/PEmNFoVFVV5x2R8G237JaT0bAHo+/tbDedJaL5fN627ZSQkLu2res6y4o+7HMwGJwtliEEYshMAqL3IyEp1Y8sXkwSXAxV28QYd0c5EVXWurZTSkCWCo4SONEidFEwpkkCSnjvITjXeZNks9lsvlrOV0sUPBwOich1TWJMkY2Xq7lru66utBxH7wZ59plXX0GGw6Nnjx58At6lSmapyY3pCZEySWBr6+Li4vjg4PbdO+PxuKrvI5IUiiEAQB/i1UPhY/TUE1gE9oRIAJ4Miv7wq6VK01QKij54b10IiCiJIHqj1SAvQnBt21IMSlBwuFivbdOaLGOgEILtfIyRISIDxABREELvoUHgGCNJlRiTpikQJjrNs8Tb9vjsuN6sZ9OJdzL4rqzriAQhZEk2Hg+7thZIzllEvnnzZvDt3t7eYDCYn50PBgPv/cv37mmq9/ZezhK9WMwvlou6WydZ4UncuHXneL5+dnB89crA6HFr12UZyvUqL4ZMsnUY6xYFqQTYu65tpZQE/RFXCCKlCVyXpTkJePnllwFa2/GjT1abTVfMJrvbk/c/Ptvdv+WiaD2ko8nGbtibyvIsSxFl23pENMYokSBFxzFJc/AubkrrQ2Ta2tk9nq8QhRCiruuqcR5AkgghxBAigNBCCkRkRA7sMaJnQ0qOBxNmrDsLSCbRs+FwWGR1uWqqKs/z2WhgKBSJ2ZSrZ8/w8UfLT54cEEIIgAykKXZ2azbpum6+LA/PFvefHB0crryF1+7d0irjiB9+9N7169dNIhGh7trRdHz9+nVm3t/bXy+Xm80GYpiMhohs2xoRh1n6ra/92UvXb/zEj//YP/yH/91gOv3FX/3Fb33jm//Z//X/ORvP/uyPf/fRo4/eMMlONrg4PRvOzPpiPp1OgblpmujcdDrNs8F0knzzm98ySfbZz71dt82mKmezCQB4b4WMP/IjXyhXp+9++y9ef/PTQo1UMVmsy61r95IZqaPz+bJarsrOyiRL03wLUD57djSabE8ElOVquVxf2bkyv7hommY6zILrBPKVvR1G8eD+k8XF6eTKHe+tINV1LjGCI/oQPbtBniHH7a1ps6kGo4GA0LkObAWDLIBvu0YjCYnIKIEYcXs0qTclWucpDDIVQ5CkjBGao20rSWC9b0tnrU+UbjoryTRNwz5IEsUg88ECRBGYOY0BgUVnO+ds57EoOETWuiCpIjfWRyl8RPDBhhjbuhVEABEjA4CSkplt8IpEYPTON23HzCgFM3fOB5nACx9tgH7O1+u3fXjOkWUGgYQYGR0TMKyrtmktIRKBQiSI0Ttnm9lkBEDSKCNFuVmXpR/lmU6y4VBDWfm+hSV2riNkJUSfT+F9tLYPS2aQwoXovbMuWs8k0AXvIyhlGBmfJ7Zx6BPbJArCPgyGGUgIAYEvXSfAhM/5wYgoekU6XC6MI19GwCHiZV28DAZFeA4UAgApwRgjpVhvqq6p7SgvEm2tHQ8LqRTgpftYJ0qoS+GY970+L2itEQUAKa2CjyG8wOyLfqQvBH7wR/9KxHp3VpQXx1mWvfvN+5/9wmf/5t/8t1ZnHzfL+Zd/4sfWVfdbv/7b12/f2Ll+pxXos6s7e/udSkunHCWdi0pq39lhkUfvXNcCwPb29tUbN9tPHp1fzJPCSKbex8IcuPe3YYyRhRBGqraxggQIaqpmMDRprD745teM0S5YjlCYfHtcjPLM+0gct2fjT796dbN4vGqT1uYry7Jt293tHefc+fn5cDiUUlpre8mu1tpbZ4wZDod9NBAR9TkHeZ53XXdxdqZMsrOzo7W+uLgoy1IlBlEsFhdd1/WfFAqSiDpNlFJ1XYcYiJmYrHUo+yHE5ZksxiiRbNsxs20bRLStOzs5id73lEdrW6P01mQwyMdCiIuLs/l8Uwwn3vs0TU1dWx+KLGuapmtaRXh2sh4U2d7e3sHB0/VyeW1vL8Tw7NHD3d3de7dfGmhtjAGOXdNORmPb1k3TDIvZztaNLJFHR0eZFoL97u5uXdeXcduyz10JUghEFoCEqKToU5L6tK8YfG9QFkgE6F2wros+KClD8AKRAwMhB6cQTJ5h8LbtEqXGo8FqvenWayF1Vbe9f6P/H5VSUpD3FgEighDYNJWkYrS3JyQt15tBnpbrtcAAAFmSbtar5fnJztbs1bsvoUqWy+V6vbZ1LRGVxOjaIk+LPC1X9Wq1Gg0HPeD34PBZURT7OzlDqLtmOB2iptn+3qaJDx6fXqyXISgSWVlZZjHd2ufQcvTrutEm15q8bRbrCoUcpCkpVEp564TUMUJZVUSgtV6vNyiSi/OTopDDwezmreHv/dE7Hz9+9OWf+TGVmKeHF127WlUN2Hq+WaajEemktbWSwlrrrccYSXhjtBAYgpsNR+Od7ZEWm8VisrP14NE7+Xi6d/Xa02eHiDAaTXhTuboyJu0PT4jsvVuvndY6zfOyrMbTCUFIkoSUZuau6+bzOQfX1JuqLPev7BZpws6dn59uNpuzi7iZnwImKK31HgiQnQDY29lSylS1XZSNZbG2ME5kMRy9+ZlP7+7vf/2bf5KniZbi6rXd0WiSJMlwMP7www8lxsl4EG3r2mo0Grl2k+R5U20W6/moSP7g9//1/+u9/2p+3n14/8NVNf/B7/+BVOf/1T/8r71bbG+PiODw6CArlLdNv83ZlKX3XglJJAaDodbJPsmDo8NPPnl09eo+CfH48eOrV/elQCGSxKimtqPhtBhs1UG++8Gj06UfbyUv3Xr18HQtsZpORsvN0obWgcOGGILJdHR+OByfn5+fn587axfnre/Wd29fTZOMBGiVumv75yenVVX1k17nHbNwAjk6I8h2bjIevHTrRjlfbqp1uVyenpxcv34dtqYmTdr2waZcJtmIUEffAIA0ZpRneWa6ZgVMaZoUmUZiWy4RUYp8OByVdfPo8TPbxeFomumiq/xyXQEGEhCjIxEW6zMIQ6lVmqYp6c6V88VmuWmF1ELqddO4EICodRYFKSOD9a52kYiIEPn5IAdiZAcRI4fI3scALJBiBOdCiAGev/radulCZAwMwIwIkVngZbS384GIOEIE0BKDD5GjFKSVlCqXRivC4G02HDCzSbQIHJgBUQjRto3zniEIJCKQJiHS/TLO+xgDcMSmc84Ha23ngw+sJPkIzNifBnoVeuTgL+2/EELonEMkrXWSJBG4bVvb+T6C9y9fL3au2ItlX8yEe14lMPV+3BBj7M8v3nOMnrvQSZklhpAJsKqtty7RMkYIPk8Tpc2l/RWRk0SX800IQQjBniFECNGFrj9VX6LTLk8CJIQQJH/rX/12YFivNopUqhJj0rv3Xh3Pxi+/8crH334nGRbH6xJ0mkx25GjbkUy2b150gV04XB+6iJGktXYwyK21m/WqBx2uVis8PKybFqVyLjCSBGaG3qrc+64QQEiBJBltjLEX++RZ9uEf/va3/vyPE4NZVlTluuma1MzuvXwnSbLjg2ev3L3z5uu31hdZxeM9fIW2X5Jaqn51tLe3NxwOe79zj8febDbOuSRJekpzv2St63owGDjn1uv1bDaz1gohJpOJMSZJtZLGczw9Pc+zTEiJiD1/TglSgjpkLSWi6JyT/Qw3BiEIEHSSZlmWJMnq9HAwGCg1Cq7rfzCSyhidaJ0lhgSMBsNgO6VkqtRsNGqR66oUUg4Hg8VyuVmvvPdpoiXC9pW9QZZOpqO9renJ2XEIIdOya+uLk2PX1H3khBTKiy64Lka/t7OttQYOV6/seddWm9V4PG7KdQxBCCGkUEr0BhsInvuYLAHUi9+hv23JhSiVICIpZH99x8BKKfbB+6gEAwIH19ZBkTCJytIscFUURQrYOF/VXfAOQQRg9gFJGqMTo6UkJRAgohQA0JMytdblarVeLpEDMg9zs7OzowWkirQUAkFJal3Lrh2kCbDTxNG3CJylumuq3d3dxKjRaDgoBsfHx/v7+8PhMJFYVaFpNzqVZbWZTHciCdR6U69b2+V53rYNst3ZKWLgYVFUNYQQfLRSpwJjiOQBALBurURqbae1Jrr0pZTlSidQ1y0D5NlA60RSxBAOnxwM8+Hy4uNiJIHipm7SPNvU9SgpyrIejzIpJTL6GLztAkcgIOCT06NakNjeKkbDohgaqbzrdme7h8fnJs+FVlVTWx9JuT4iiYj6kFMhhJay7wM8+8v2hRkjL8rVplonSgfmyEgkgcTRyenFun793t13vvMdEEVwjgQoDV3LhmA6nS7mK8f40YPHF1W4ffvWm6+9Ph3mV65cyYaj7ekMAG7funX37svW+qqq2qa6vr+3ml9cvbJ3apvHDw6+8P2f33T+nb/407apIuFn337j89/7Pe9968GdOy999Wt/8fb3vK1AfvTe+1/6oS9++92/uHFr19ouywbBd2U5357uLZfLrmkn46FEuri4AKBiOKya7vOf/0K52XzyyaPpdGy77itf+cpbn/7U9b3XbVuNx9dGsxsA+dHJ4k+//oHKt5+cfXx6UX/q1Zfr9fD84nRTn+Z5mqQoPWbFMDWqrNsQXFFkGNHItNksy+VG0PXEqLreCJQSQRGVTZNliTFGiqTtr2bbJaPBwfFJkiSbstWJySEnhtPTUwBom0pJmaeJbVxCbIxITML+0vwj2Htn25aNKVAqjOHG1SueYwhhNB7s7u4SivsPnjZVG0M1Gs6ydFjVq01VjsbJzu720fHTzSp6axmFVFrppHVoPUgS5aYt65pJkJQuWCZ8nlucee8RQCmlCBFRCqG17rqOhNIkfaTWdi4AM4NUPj4f413m6CECcmDqEWsACPR8fdyTprDnGgiOzKwEKqWVohj8IEsSk6VGde0mPr/Bm/W6rGpltNbaxWC9A2YhkIAjB+s68sL7GIECQ9f5MnCvUmQgRvARYgQSomd5vpg49nJiRPSXSMFAUkhUyAJBIIYXbf3l5vX5V/Xt8r9RmZ9vYgEEMCERghJCKyGRAGKaZL2tLk8TlSYuABGmwtSN7d1TJPu1GADEfnLQIyKaplJKIGJfeoVWvcgUILxo20BCVEakA0Gbrvb51nhnSgK0oOSV1z7V1U3rebFo/vbP/k8Zh0uvJ9u7h5A0Xd12TpkMhejaxpi07Zwxxkd2wREKBr4sW31OGkXuKd8I/b6hDwCsq7YL1pg0Mnvvh3lhlLw4vF8YVImeL5dGSQyotfz444/Lsky0QHj5+PBZWy7OO9fM7lCIcjgcNk3T/25OT0+JKE2Si/Pz0XjcNM14PK6qqqw2Ozs7iFity16q138EVVUZY1aLeU/0LbKcERKUdjzc3t5ercqqqmajoXOOiFRitBLj8VgoWW0aAFhvyvPzcwYmqROtBEL0bjab9Qv/bDT23ofosiS9evXqk0cPR6NR74B0MYyGQ0Lw3p+t2jwZzVdrBEiMYmapsOtaa+GsqexodHzwFDDu7O1mqdls1hqQjVmvV3mer1YrY4xRar3ZJFo2bRXZayFGo9HeztZ8Pl8vzwX7LDVCiKZpbBekEkagUqqvgpfmZgAAlEREVDVNDL5tA1GntLmUEZKofSsIicjZLlUqyzLftavVipmTJAFBi/mibVuhVOwjmmMgJU2aSknWu7Z1yCFJkp7wkxfpcDgMIZRl2RvnB4OBpDga5IpACTZC1NUqsGDH7WYznU4jezNMUpMwB9c1Ki2867a3t1JtrGu1kVoq5uBDbj2l2bTuyuWytXHlQazLajydHJ/Mq7qUkoTETXUxHqVKx5GZLucXnQ+DwRA4bjZlCE5Jit6NBkVVN0mip9Pps2dPmAMiRue2pjMfy5PTo9EIBgO1WvHh44M33/7Mj/3wD/3yb/6mR81SS5mP00Fd10WaCyHKpmzrlgQCYsKBCBQytO3u/m5d1xdnp8ro7/ve7/6jP/2Ti/WytnYTQnt24SMMRsM+L9J23WCQI7IxpqqaRTfHCG1V55kCgOhsf7I0Zqssy0ii7eyqapjZ1atlbf/m3/4fX9udvv7256om/sWf/vb73/pjJdVwu1idLl66eXt7e284mnU+WoAf/JEv+bqxrq1bu399dOP67Y8/fuAsh4AANJ1uLZfLIs2KolitVp9+843f+93f/nv/639/OhnduX0rM8l0d+vJo8cI9F2f++zF2eZn/upP5cVQJ8Wv/8qvvP76659++3XrmzRNmrayXaWEqKrKez+dToO3ZV1ZayeTmRBqujVzNhhjtra2Li7OtnemMcY/+ZM/2f8br0aSztkiGXz86PjhyfraS69VTgzHW9uTsW2r7e2hFi7L5aKsfWBnGyUzQdEosm0lSDZ1O8qL8WBA5M5PT+pEZalRhpYX8yxJMJ24ztabajqdDsZKAD5+/PCwOxdI58syhGc3b1y9cuPme+9+WyWJY3ZNjSAUcq7J202amRtXZhyxqqqLi4v1atk3JQBou5AVWWNbgFjXddXURTHc3dthFg8fHrnOrnyZZdmdl185Oz8k6SZb2ypRqyWdnV1cnM8jkpCJddFGFiwCo8qG1rm6aQMwCnDeExHHUNdNjD7PMtSGCJRSJkk66733oT8FRm6t722BACKGEPvV4POBMzM71wc5aBTch6vHy2C0HqejUVCIgQIHirYLRovO+rOzM0kgBC6Xy6LI/MqnIKgHA/vYNA0RJEkiJCkSfUFCCKQSqSU0trHOMTIDoCAhg7ccog+xb5dDCDbEGC0iAmBvprD96te5ruu8i0AIAELpGGMMASIT9Wl4l7NoeHFa7WcDz//UB0IoSVpSqnSSJJIgxri3tzOfz+uqZB9sRPIQo0du8sx0NsRYOd/leZIYhUhC4ng8bpoGkevaJ0kComf7hjxP+0/Vexejj1H15wMzLFrXKaOxg1vXb5y++2eDLJUIV3Z2D0bDYTH46Z/+GaKxNDv3T8oLz7PdbbXeuIt523VAQqukaVsScHh0kmWZEtjnvscYu7YBAJQSgRCRISBEBiZAZlgsFpPxLDDYznddpxLjnf3df/WvHn/l98aFWVZlnudtXb129+4bb9xzVfnJJ59cvbp94/ru0cEHksNFA8XV7Prde1IbpY1qmubFcaYsyx6y06ug27ZN82KxWGmtk7wYD4q6rq21IYaefVEUxWazAea664bDYQSejSc9vmpra2s6zDebTd8KmzRJjQKAbDKebM1ijO+8887J2akU6Luo5cB1Vhm9s7Mzn89t8CGGZtM4G0J4AiQ2dSMJR4OhR3t6dpYmCSKNisLHoARIrbWiPM+dc1VZjgbFztZ2nprz8/PBIK+7tg9HEyEGYEG0rjaT4SjP8/Ozk9FgiAI6a6UUkdj5Znd7C9mfnJwMU8UcBEJSJD0JKMYoBIQQjNYhhDTR/YRECKGUqjdlmhgOIUZPaAaDQV03XddKJITYNE2iVUSQWo1GA/bT0/mp0AqDL6sKCJuuS5LEx0h0SXMlRRiJRa/eBfZBGm2tJQFlWXZdNxoUeZ73d/5qtRrmKRB79kaJGGPXVoLieJBmWbLZbJjZO5dniRSYJEbAZWBiv26QklCQdcEFd3o+L5umZUzzsRDK2jgejzfloU7SyXhI6DbrZaLGQI2QqLiPz9Lj8bjarPMskYkhKUiAc13b1nmWemdv3LhxfDCHyNev3iDJUiQYRSLzxdqtL5ZX71z/7Kfv/fm3vgNM3jqILGMsilHXtEZL7wQwFpPRcr3UmpSWSaKbzaYYj6bTrXfffXf3ym50zbc/+GA8Hq/Wm0hESm7ath+TJWnaNM2t6zeI6LA7DIGlJojYNa3rrA9WCt11HQiZ//+5+vMg29bsLgxc6xv3eMac7/TmoV69qlINqtIsEGYSIQwCI9EibBzY0Ha0TZtou03b3dGNHcYYtwNsAgMGHM1gYyTRQCNAdCOEVEilkqiS6lXVG++7Y85n3uM3rNV/7LxPZZ8/buTNkzdvnpN7f2ut3/oN42nTNDrNV7um7/tPfuyV2WxG3UuzcS4lvv7cy5dPP3zna1+uKn+wV3Squrpevv3Oe3XXqySvlotf+KUvff4zn8mLzMcgtd07fO7J2brzsmo4z8tyMvWkXdcyitOzKyD+yld/7enTq9l0XNf1KM+FgA/vP/rSL/3Lo6MTo9MXX3xpvn/rE29+8q/+pf8huNYm6lOf/mTTbowRVe2V1ARib2/v+vJKouAYhVB7e3t122utkyzdbDYUYTKZrJabl1565Ytf/Ll1vXzy6PHx8R3fNKuqT/LJ0fFLF4uq6TsEevTwQT8uyrLUJGfF3BGQWJSF3dufdK5/9OgRRUqspuiPbh9fnT85ffLk9ddeHuVF37RG6ejDpl8qpXZVn6bp4EWzd3ByevZkbzquOtd0y7b3vfM6LTaVs7mf7c+01rOyePjwoZbq4GD/YJomSUY4c/3x177+9bppQgi7qmu7sGtCEjbT6QRArdfr8/PLLD0vx7N7d4+fnl6F2HY9XV2hSVOpzG7Xl5ODvYMRgXh8dmaToup61BalbjxFBgIGoaVVMASguD7GmCRZkqXRh8H1PU/SGLnrnDFmV7c+BqE0Si0kEFMgHoa2AQce8OebbZoajLEihyilFFIIgQDYuaCEjExIrAACkQyESgzeupElAvqulwLqugWgyWgqKPZ93/X9gOIQEUQeQnSCj9YaQBV8z0ICSiH1MAFTIBQyxAg3phx+GO4JILPGOdd2vZDKJCaEwIQgkOBGUCUlCCFCCM+ciYU2Epi7ruMIKFg8azVwWAULIZiUlFYpClFYKRHrXQ1A51fXIQQGwQJCpJ4xMbKPoD2F0I7LhEDUdSsFaC2VNAAiYbNcLpm5aassy/LRiG+AfRyNirZt27YlQmZM0/zlN1/657/yC8vd8tZ0/+1vfNU11esvPI++f/etr62uLrXWX/3q27/jh/6AUCpQ3FUtyysXolRCRQgMnXcsRGRQSR4iRGaO1LsmxlhkxjkH0njf2zQh543RQDGEIEAkJo2RCdiTV1YJoKbeba4vjKTtagFKhdjneT6dTgEgyzLA+OYnXpvNJonbB+IQJnsvvsypVdvtdnBOz/O8bVvfe2ttnueRKIRQVVVejqSU0mghpff+ydlpCCE6DwBSiaqqJpNJURTL5dJqHUJYLpdpVuR5HqOvqihCNxSnZ2pgDwDG2PVqYdNkPh0boxaLBVNcXV9lRU7aLBarEKIQYrut+r6Xzg8zepoYidD3vUQxGRVC6l1VCWGkEFli276TQuSpTWeTMJ0oIZGjtfa55+4yc3dxLqUs8nS1WGGMIsQQgjLaU7RJZrIkuL4PXgclBDRNQ8Fnqb1393Y6Dev1uqpbIrLCSCn73jOQFBC6mpmdICk0MrmurbYbAbHd9WmSZMWk7/tqux5MULMklVIjKy1FDKFtembWUk1ne7vd7vHpZWSQSudFGgm0sjFGFuxjiMSZtUmaxxi7ti6zHBFd23V1QwSDxtFaG/p+W20FeYljU+YSxSDj0yj2p5NRkQMScFBSSmFijForJPbR36QRI4FAH0PXXQeKrWuNtRbT1baKwjRd//jJpUCdpWmWpFoaJUSaZrtVI1OFzMg0MEliiFmWpWkqEfLcJla2dWWsypICEdu2LjLT921dNYzdaDR6/fUX10t/cfbhg3ff7/3m+GB8787BuoKrxe7o5FgZZCCjBLE62rtbte7p1ZWwCYuIUiBh61znwq1bt1zoQ+8OZpPrOqmaWmjV9kEA2TSpqipLUhYizYqmacajkVYqeme1IqIQXWlzqy0RuOCYQUiFwmilYuiqemeSXNrm4vJ6vH+0qaqnTy7eefcDZhQC7n/4WAP+xf/hr3z+jVc/9dmPf8d3fMfjn/rpy+urYlRaxCQfP3j89ODgxdHec6TSxxe7o6P8fPVUa7U33//mW7/6N//6//Q7f/C36mz05me/7bs+/7nz00c2L09u37n3wkgn0/sPPrheXr/7wfv/xR/9v5x//e3v/a7vjBCtMt/zPd//4PG773/w1nw+Dx49U9c6a63v3bZq7ty65Zyz1vbeDa7RPBiM23Q8nn7h27/jweNHRJCVkzTf0xcOZfHeu/efXi4QQrvK9guthE1UzA6mq20fWJliJthH3yVW55ntWo+ESsrl9WI6nWoRrs4vtJBZWqYmnZTjJ2dXe7fuXPRXp6enxahUyqxWqzwvIypj06Zab+p2XfWJlVlZnl1cr5eX3/Ed33F8clhY+ejRI/T1xenOORcBb92+e3gwPb8gkxVZPl6uN0JoKfNd5YvS3L511yby9PTJanMeAyqjRJQ+tJdXFQqpjUKFAGdZOTo8ODq8dffR6Zn3KEkFYJMU0QUCiDSMpBgjRtZ0UyBBa10UM4HcdZ3bbpMkEXpgWYreRx9DBACUA/PqhhkEAr4l/xufRQt8xDalGymtklohc9/1LDDPbGI0sAegJEmSxDAFDqitTpMUACKFoRcHROl9GPLgAon0Jii2dZ6YWj/kfykiiowEYgg4IhzktIKBGQSgZAoRUCd2CI6sXOcDMYIYwqCekZ+FEFJo4hCZgIAIlVJpmtKglYbIzPgMoJaIUirvYnQ+S2yWZamxfdttNlUQgpmBGCgIQNI3y3LBVBZp27vg+9mkaNoeW8qyRKJRiZ7uzQfvh7ptrbUoWEqVZhaF0EZKKUMIQmCM/jf//h995ZOf/mt/5f918f6Tp+9/6H1UwnzzrXf+2v/4N+/eOv59/7s/tKgCyMSRLMZ7hwU8WfcUAkZAQgSUIEmKIczYRScYjNIcYwghsXoyn612Ifh+yCUSSiILZqbIiNj2XZIVSkXkCNFPi+z3/NBv/1++/NdTK7tAje/3D2YvvfSCiU6SExLGZdp2laeIUUlTzo6PryWqwSjKe79arZAhy7K+d0+ePnXOFUVRNW3nvE7s0OI575WUgzSIQ9zf39/uNkOvVBTFbDbLitIYEyJ3Xdf3fZ6Xw1OLxWJQG3fb7fHxsffex+C6bjKZSinbum7bFoAkgnPdYFk3OITcGNeFmBqx3uy0Elpro3TVdNL1ADcg8LgcAYAL/urqSggwWmdJOuipVqvN6cVp75211nNEKZIstdZ2Xdc5v1it92dz62O1q8h3Vqs0URR8QLLWZIk1qR7ntmm6ruuWy2WMZDNdFMViseqB8qw0xrgQERUzOyeV5K7rsjRLMq0Fb7dbraWwSd87jkjBY5JopQLTcr1FYmkkMwslBcrOewgiRLZWkGAJyByJoQ8eEYmDD9T3/bAsN8YwsxK5EtA1DUUPFKVAJPbeE5OWApBOTo62221Vb8uy2N+fhxDatm1bH2NsqL/ZUlNUSiklXKDgGxY4mpRS6wRGtph0fdQ6vPryK3XdtE2fajXKUiCHMRphuq4SQjRN0+12aZoaLZVMLi4ujEKEyeH+nssTjlQ3uzwtrLVd19iyuLq+3O6upMLD/e3F0zPq29RmEv33ftf3ZKPxr7712NUXGvysLGsXAeR4PF4uV21PUkoXqI9Ogdzfnx0U+fnjp998573Dw31r4PLqKYKN3vfR2TQDVG3TG51EptB6tKbhriwKLRXLgDEolEfzfakwONd1Xeed632IQEJWuwYpTovR9fVyPBq3nh+eXtZNN4vQt46JGQElIIvU2k9++tOvfezlf/oLXzLGNG37Z//sn/sDP/L7ynI+mx0tGj558eMxUozhYuvLcvLh08fZ9GhR0b/ygz98vrz4mS9++Td9//eYfDw7untyciKNSYv5cy+/EaXMivOnT87+/R/7g7/7X/1dH3/9Y4/PHv/b/94fhTx/7s1vO7m7/yu//JV2Fzh2VVUZKUBgURR7e7Nd3UIIBGiT5MmTJ/P5HJDyNOv79uDgaH7rlUePT+89//FyPv2Zf/He2fL6er0TCl959d6br91946U7V+ePZpPprnKA/a3bt05PT9+7//7TU7d/cKC1Mtr6LkZPNwhkBMdkTeq9Z8ZXX3ndlVMhhKfo+tD33qZFZKia3oV4uL8HwgQW55dXSqBQCWEdu67bVX1VpErtTfLJZMwQgydGVDImBtNENU0dA5OPbWwVoLU6BulckIrTLLGJEkKdXy6kNEQIFLa73nkSylibPrlaXm+bQKxtttxuutBl5WS3q6Qy8cbPAYZBjkAgyBhDmhZaYt02yDDo+VvXi+AjAQhJIIKPnkEpFEpz6IdyKwQQ34y/w231bDkFw2du/irR+yiRlVJKAhGF4DSCtrqu6+C7UZknSeJD37ZtkiRaSx85xgDMSimNGJg4xBiImT2x63sX2EUIhI44MBBRZALGMEDEjACM8mZ36wNh3ydJIpRyMcQhc40IQCBS5EHkEzkGCUgRiAMopVggorY2sJfMMaJn/+vELMS27Y2SUmKMvFisBAMiK6XrtlVCIiIQKAGBQBH4yFrBrqoTg1qCUkJLKIvshuDM8IxBrRBRaQ2D2EmIOBihpyZGiYje9xDNc69/6j/9f34OnKjf//D0/OnBnf3D7d0/9G8XSuA3P7g6XTV5Sb3bhXR++PIrQa/btt02/a51PhAxopSoJHkCqZhiZBRCAHsASK3pHBIbAOIhA4NIgjBGu0BayrbvpESrdGEzRaHZrJumSazWGlrfvPn6a6+99tr10yebyyeJVWkiEWNeTOo6kkxskgkkNXD2jDEU4maz6bpOaTOEmbR9Nx6PB8BzvdkURZGm6YBm7O8fai2j81qZLMsWi4UQ4uLiAi+uLhfXNsmGvYWU0mjFzAdHR03TxK4zSXJxdcXMh4eHl5dXTdOWZXn37t0PP/xQCKGl1Eprrde7bd/3QwG+EYGhCCEYnTKK3rvtdislziZTjdw0lafoQz94z3oflZC9C5v1xZPHpz6GzWajrRJaaa1v3boVUaAweZH0fetC3NbNarUSHJApMXqUWZPYLDVaou97k+hxZotEO5dmRg5hDJPZfLPZ9J2fzGdCiMvLq6qqdrvdbueLLDHzsUDV9F1WJopd3XQxhEQLrW2MiohiDEII7wMi9l0QQgDKEOJwwRkjEVkyE4WhvQghbl016CK8j4hSa0tEwXkJyJF8jErQZDRKrEqNBGYUAqWInvre53keyYcQhFADn86F2PUOQGitCUUEjjGyFJFYaSOkFjLbVY2jYGzuQgMgdrvN3dsnVpvou76pJcYYnFWyyIvVao0hCKmZQlv3WWrnk6nzbVVVqVWJ1UKi710LtWCyVhGK6XSeFclqvUCUaaIR27ZtIdjNYrFbrQXx0Xy2q5bZPK3aqtltx+pwb5zLJpyv1mY0IaSmbS8urwtjdJr1IRTjye2Tva6rFI1/7WtfRyVc33kWqFTfh7IslcXQdX0MFxcX7JwUQkoxn08npY3eRYQyTbIsu1itt9sNoSqKQgqpBCqJ15eXeZ73jk5uPzfL5WazAmSpQGjjm6C0TZNcoLq6uqqqyqZFIFiud1UXD20+m93bbDYhhnIy77oOk+yFN/Z/4u//v//JP/6pv/qX/vzf+fG/+fD8+h/89M8kWf7Si885losqdNy//+Ds5dc+uXd4Yj+Rxgp/4if+zpuffOn5517sttX2cvnFX/pnKPtbRycuNs4HaxKg2Lb9uCxcDFKhc65p+77vZ7NZkiSb9VoAShRpUliTffvnvjubjjnCb/vBH/rbP/n3hBCjMvkt3/eFi6fvf/j+N+rt4umjD0Doq+t1msr5fL9p69a1o/E4LUqKWFe9IBjlubWQGNxVa0+RIkaGpu+GjpmZpVZWmYFv3PdeKrWrm11VF4kG9uTcbDI+Pj42/Zai75oaIRR5RrEvy7Isy96HtnN1HY8O5stNs1rvlEr6vnOgtJZ13eXZuN5VUoCx8uBgfzzKIoldFS4vtyEQxRADdqFvBK8+fBIBtclMXm5WW7drIgpjiG8snm4SBQAlCMlEbd/1gBJZoojEaZLked71fdc5EFIbGxG7uiXgRGkhFA9DMIiP8vRQisgEgAO35iPSEiICcaSAQlhrjBYaAZGkQiIyWmqpQghSSWtShti27chgJI7Bh/gsNpMoxtg0HUgRCXofOx99xD6y85EGJJkgAg25CoPESIDyLjLEQJF6AkStVAgBpPhoTKfBXQMAUYQQtFYEPEQEB2JyvSHCwfSK+dl8j8wcGZRSIMAFQgzOETLkRYraxK4XGgWKm5wlIVkJQKjq1mg2OsvLUmtBoetaR0RpUnRd51yfpqlNM0QIMRCRVgIAQggDXjs0NE3TdBGbvksTmSqVv/Tiyy+/COzH8qXbn/gMAJw9eJg37smT1dPzazsp1u8/FApdpBijlGhBOkIfQ4wMUhhjOMQYeiFRCu29W6/XTQuRAioUChkZmIkJcRDeR5RYlvk3f+2ry9NH97/5jaP5pPPuN37/9/3e3/t7/95P/YPf+6M/+pnPfIaaNjfwx/7oHx6Pshg68iFEMzs8UkpR36ntetW27Ue22kmSDEokZfReueciLRYLmyRlWXY+GCOV1Ayw2WyUUlpgVVWXVxda67t37zrngLEsS6Vtnucu0na7revOe2+tHX6xSmtjrDGmrpshMfTRk8cDrXpwg9JSWWuWK+dD33UNMw5e5M65shznedp1XXReaam17VyvBGRZFhl9WLdtj0r3wdd97b1v236o4jrNpFat60HLxXIrhBiNYpkXvSNj06aqXdvevnUCoR/WrmliUmslU4Su2W0BwFo7no5ODuZJkmy323p1NRtNLvtr6iuTJLPSTgvTjtOqyiZlkSSJ9/76eskCcy3awnVd17S90OADEkmTZGU5Wq5WTdPEiM47Zh4m/oHnPjDdBm0W480pwYKJKNDNw3V9jBGV6PuIMeg8Hdo0IlRKKiUBufddXbejUQEoI3HTtcwstZXauNAzCIFKCBF8D0hIIKQGssTq/HzrCJxnT22aptakB/OZ66vM2Nu35n2nkKlr6rZtCeKd40NrsrOzi6pqjFLkQ0sxTQ0yVNvdloMAROJt0z/dPZ0VRVqOkqKMJENQ9z941DXdb/j+zyZlev/Jo3e+8f6ThxeXZ7t7956fZNyuLyXht7324nw0eevtD4zMpuPJVd0wEjO3vb9abqy0Vdt87ZvvMPg7z7/QX7bjRK/qJpGJREkoWQATdd6TcyjB9yFLrOt6LQSQVyIJMUDohVJFqgkmWc7SpqvVCoK/Wl48fzSPrmHv33nn/T//X/5Xv+v7Px+9A6YYIZJTyoxn8yTLs6xgIg43OXivf+xTX/iu39j0JMtpSzwvS+dc33QiRCPyX/vGe5//ju8dzw9/9Mf+zQ/ee3918fS7vuc3uK767Ke/Lar0a19/Z//uvd/zY39wt7q+enTx9V9+K4RQ5OODk5NtVR+8/EL4kvjmN+9/9Vff/+ynPy9UoiVu1ouu74siu7y8fPr0SV03/8pv/s1N0yltt9vtfLZ/eXF29+5dq0y1vYjk7s7fjARHx/AH/40f+vt/76c1xr/+l/77/98//gf/xZ/8E/fff4woD09u5dn4+uIyxCT4uFnvFpvt4cFRlo8BUGmzqarUC20sCHm5XJblVCbm/HqxqmpCIVChEBTJuTCaTNfr9WazW69WwbX2cO+l5+9mRgXXIOJuU7Vt7frUWpsYGckLAN+3bdsrZQTFxlWZVZ0VAMFkUkRWGphwEAoJgRxcu61GRW5tfvd2/vxdfveDJ2+//WC3bU1SoMrbet17D31rkkynOaGoqq6L/XCIC0QphRZSGymFNLqwWgsBHImj931X1XXX91rr3jsQyiothFBKgZA8hBMAEDMMKblwU9Y/4g8PIygBM5NgjBC1VkpADI6kSfLEKgnkY9+YLDFKCaAYIwpGRKGk8522aZqOQuS267vOhRCZuQ9eCk0gIrOP7BkiAQHfKHoHzhTDMwIYBkHkgwQcvARCIGYfY5SoBp4oMxOIZ9znKITAQafyTNRLFJxwVlr+qPoCIOLw6gBgMAqSUgo5ZBBgjDEyIoMamgIGH6MKKBWAFMfHR8ghTfNUSyDTNlWSpFXdeu+JI7Vt53ogRsFpap2D1CZaayFlDGGgSklAHxwoXNTLFHQhDQCQZOVJM1ZtIybju8/tTW47O34MOv/g6dlyG4kGVF6hkEKAJA4UIAptNCkRAxARIvQh+L6fTI8717Z9EwFQoJRSkKAh6ldrANput5PJ6B//5L/o19fv/cvrExX/5S//ikWcH8z/1H/+J77y1a+Nsuze0d7Lz8+LxBiBXZCt41kxK4oiR6+89+PxeDQaEQEiohREtF4FKeVqyEGbTOquVcqErtcAgYCjb0Mo8lSn6fHx8YBCX19fxxgTmwohqqqKMSqbJElyuai0NruqOz455Ejn5+dlli9XG6313t5eKQRdXQVPs9lstdm0fe+pRi5HRZHnxbbaeRezstjtakQsy1xr3XcNKpnneWJs0zSX18uyLLMiz4p8vdtWdTsYKde7ejqdSmtdH0AIm+YI6AiuFkullI/UdX3XtGmaCCKTZs8//wIEZ5Bmoyy3SjIryXmatJHbtu37frvbaKmAR8G74DurOBHk6w361khlrR6ZbJJIpVQIXkoeZ6bp2jS3B/ORc/7xk/MuROf73kWl1JDDVTU1gk6SlCFqbWOMqU0YSEsZEJUZxKkuEgllpFSDWbELhEzGWKtYCvCud10zG+ccKWIEkIhICAql0tbYtOu9iy5JlZSyD06CCwQsJAjTB5YS+sjGmohCahXaIFDYpKQ+dN4HD6u2Kko7HaWjXE9K49p1kRlrbEjl8tpf1513ztuAQKlNhBBd0ysNyKEoEkQKvY/Ol2XJEYBYKCkEVE093Tsu88PF9dULnzm6fWv2la995eho9ta759tla6S5Pn1SlGgwvPjSC08/vD8zL40Mvn9xgTKXUgklQtt7iI+enicmJaIuuMdnl3Wd7jb9PE93m81kulcFXqwrba1znZbKJMa3jTJSKdGFbro/K7K0q3ZGSV1kyARKKW1V61lquzfLNPQj65uNCF5G/22feKOu27/z438FwupjH381Lc3b79+vr2rXh3fefi/P9HvvvScRdptGSZWXE0ADCC66+XwambaLXYzxhRde+Cf/5J+8d/+Dj7/xap6VVsIf/+N//Bd+9mfOzy6+/mtf+dQbb5KdvPrxT18vr/7nn/i7v+UHftPLn/40OvzaV75677lXvvN3/iAoAITPfuf3Ht97+cEH97tAh/PZYnHlel+WJXM8O7v80pe+NB6P/+E//IcHB0fjyezy4oIi/KYf+AGItNvtEmy3q3Z9NZkc3gkMZQ6zkfhf/trf+PIv/qIE/Ft/48d/7A/869umVUYPh/jjR2dCiywfuRiI5XbXdI2XUtbVVkE4OpzqJK2rinBX5NMARCiSJCHGpvM+UGA3KidN3QXr66r1fff44YP9SfbSc3c0KqXU5O6tLMu21WZupkScmrRudk1D4/G493E2nWS90ybZn462dRNjdN4ryUolHL0SmgIYnbV1aOtV5EWaFePpwXN3DjnSB/cfr1bLDUw6L4ht23r0LUiFWnpmpMgIGCIzSwSrjZBmGN+VUkPEskTIihyIvfdVVUUGEBSIBw8sFhhjZGIiiJEH/4pAgxXUkPTHghkAAVACIgoGAKZBSiqkEMDee4hOEBmlYoyOyCihlBiUI8YYxGEnLZUWKCSi7DrXB8+ePBOjiASMAkCAICksEyMiAQ07zkGGHIGRgYhACCkUUHDBCxLINHgdD/A4oxw8Jj7Kih0KbeSbKWCYQZ8BBxIF8Y0pB0ciJQVq4xkwRI5hYJKCkBTZ441IKxAFikiQGaOtIUdEtN7WoyyxNgUQu6Ye4hbIt0SktCiKPMuKEAIjcIQYwsAwR4pEwH2LSpR5Enu3bTYRKFCcliOdFRD949PT7dnFwfxkvVvO95NxoSssOIQYHA7WkoAC2AhBDBQDImqtOXofPTKgFALIKN17QUC991YCCjHYffrAQUSFcPvW8Z/6k/9Zdfr0J/+nv/H+r/x01zT/9Kf/YZJYPSr2ZrP5eHr25MHHX9oX7OvtxsiRTWwxmgJxvV2qvb09733XdSEEZhyywIy22+22nEzbrgshGJMorbGuY4zBucPDw2q7dt4rpRqmtumS1NZ1PQjM0yJXPjrnlpstMydFWVWVsclqvR3ocMvNNk1Tm+VXV4vtdj3QAVwYLg/FoYveFVk6m8+SJOlcL1ANCMmQE6e1zrIsetf2Xd/3k/F4V1d9jDZN82LU970yFoRkVAHQuxiItZa9566PhFBIHSMtl+udrocEyiJJurZ5/PjxJEutAhF6nyjJMU1MolWAIQ1QUIidb6yWEmlS5HW1zhNNRFqilIDREwV2nQ+SmbXWe9Oi65RQWikTIiORZ6z78OTp+dX1Zd32vfNa6zybInLTNG3dJImxiUGGGH2WWCGUCz764EI0jEIoKUWeWyllcJ6I5BCTZHRmxkrIxGqthTFaoBCIyhiQoq67JEmkNl3fA5KxVkjpnCOWRuku9CKCJ7Zad971kRLuDWKSp5u6bZoGhVqslj4kiSYM1cWTJvTV8f5elqSChbU2dB0zLC4XfRfKYnpwcGCtlYoBo8AYQp+muc6xyMoYY56XXbO+fffONz/48O2331OijH17kVzUzaOjk/L8yt2989I7731lsbx69dU7qe4+++nPJEkW1tf16uLWwV4L5t1Fq7V2FPOyVNHZtCiL8WKxqrv2/GpZ1/LO4R3JtNnsFDM4pwT0XWvTLFLI0yw1YpTnmZHsO20EQszTxBolOe52m9B1AbV3UVnp26pu/MiK/XG+WCxa8FaKf//f/SM/Hi5/8if+8uMnD7KxfeGFF8IR62bYRMjf/lt+29c+uL/rY7Vzzz/3cpZPwUgvOlTInqyRQlpEeOH5u2+89urnP/uZXbXZXp/PR9kLz9375ltfLbN8uViY9DmQrLIyn8Qf/8l/9MYL9w5y++YnPx4DQADQABI+uP/o/GK5f3QvxjbLxPU1S220Au9blOL4+PDVV19db3fvvPNNa9N/9I9+uqm7H/v9P7a6Xpy8cuvi+kNW1hhzevrk+OQ2Ivx3f+ZPPXnv/edv3eq7+MV//nN163/Xv/av3drfOzyaP378YN2I5fI6UJDW2Cwyce+C971AVGnKUior2pXrd9tAcltVXR+zvLy+Xu7qejyat03f1OdZlsVgJRfF3mS7ul5fX50qskqOyvzunTkR7a42u8owRSxLKWyaKFuMu6ur6D0EDwrz1Eync4FqWS3qqk2NSXQeHC8ur8BagapptzY1XdV2zaM0G925vVfm9un5xeNvNkplm2q3bbokV65r+1glWco4pLlzjNHHAL4bhtU8s03XciQtUStBfZAoBmgqEAeCyBw4ChTE4F1UqIggEnAkGrzqbvQ5wBQFsBBCwI3xOAAoIYgCoxr2Tb7viEkrTEySJRYFkw9CiMRmQyEERc71PrJUBlANKzZ2gQgCeUYRI1NklhAZhRJiGEYBkAnhxidjwMY/Ymsz82AaIqXESDxg8CwEIAsxCIvisLdGRLxR5ojBnT4CAjDe6H8JgZgQ0CQWiSMFH4LVRmodQxjyGiKxYMKbbAv2FCVhXddnZ2eZ1nmaNE3jmia1Jsaq6hwzGWNQCGm0loKI285lien6niN53w8H7KBjLtMppLrt+56i85TmWUS4vtrEAlkaKfPQNGen1xhFQipuu02PiKClFhKAWQYPFCMEpQxTEFKiUvyM2Q5AZ2dnaZESRGkUs0BEiuC9y4sxcQwh+th3TR9tfngwGxdp17k7871uy4f7052Pm+02PUrn09nJ0VGR2NgN3nCoVeL7NrdKDTH1z9Q1emiIeu/m8zlI1fU9SGG06fo+TVMfg9Z6s9m0dTUajUIIHHyapr3rptNpnud11XR937ZtmqYDH6Fum0BRI3QuIHNejpDBGIUA5WQ8uKXGGJumOTg48N5PpnkIwfV+u14SiBBC37VJkpC4MUM5PNibTCaX52cD296FyIxSSu89AddtN5/Ph4uHGZWGtne9D0iOhBRC+NANJk3OOZBqt9sVaTZYgOb6QAJut73vwEqkaJ3AjachK1ANqnwBQAxIRulRkbuujT5oVFJKoZQg3fpgtO77LgqhpZQCuq5Wxs5nE2ESVEmaFfDBgwCShg5LiAEnR9Dz2cS5XmstUZkk2e12bd2EEKRUUmhEFELduKKDhBt3GtZK5dY09U6rXEvVdZ0SMs9TRHS9V0pvq52UwqRSSQ0AnobMcFY2wS7wEHAtVFWvu667NZOo9HK93VVN25PWdm9vtjcZJZqEYYtGiXFh05PDk91mt1isjg4OfYwUl6Nce88XFxej0ejo+IBiJySkdmQTLQFd1zsXBkTu9OwJIl4vNpvVwoi4XNTf/rl7o/H+6UX75V/45WrnZpPZKy+9sDeRdbXuqh0H17Vd3zNFY63dni+SIt+bH9TLq+C8j0QMkaFq2jQtxnmWZdnb73yQz/eFzeK2TlHs2tYmZrhvAahpegbabrc4KvzOJVYmSgAFJRQhSESrpR2Xu+XlKBsbLYrU1nVbbZanT5+cnj4Bjrttv2vbi7M1eDFPy7ffzu+/9/V8Prl79+7B7eeaOvz8z39xtfvi4Z2Xv/sHPr2+vNJar9ZX3vuHD/BgPvsjf/jfmo/L64tzSe6dbz548N57ErGutv/g7/+9H/rDn7epXF+fNi5MpvsM4hd/6UvV1fK9d5786jvv/44f+R3l/jTJ8pdeOe7qejyeS79QyoQQLjfbvUl+79696XiEUsz3D2bTOTO++fFPnhwf/62/9bc+ePe9H/mRH/nk5z672+6anfMkmOFv/LW/8eF77x6MyrbaotBHR4fb3fqv/o9/4Y/9h//B5VWVl+JEHzdd68kro6tdva27GBCJlRIU+0jt0cGcEba7XQgCpUiztK7rGGOelVVTN3U3GDAlSRIg3r59xAcz8I2RokyT+XTknGPmyNQ0TZkXAiUBLRYrADGeTLabDUMsssS5zkqLVh4WI+cKcuha2K5rKU1wsNmsGcLlxTUqGk+nkYmbHaO4dTy715588OBDQC11XK3WJkvTouj6PssyMYyl3numGINzjiG6vrbWIEP0BFbniUWGYavtnPcUAXVEDJFBCiFkDDeGGxEYGIZF8E1tuyl9Q0keHLVIW62UkkNcg8AiMVYKhKilAoBBPAYATVsxc5ZlzPWgwJFSAsoBpxzOTO8DSBVjjDAsYolZCcEAYgijZQKEXydjDwvpwTF3qKxSSmSCZ9IpFgPyjQhyWPWCEAgQI4UQUMgYoxZ6+KZxSGdnYEAAquvaGGOkYskgUAjhiKzWQ3IRISqQOEydxMxCaeVjbCiGEKxJV1eXnVaz2cSmwnsPgDEQInnk0ATEbVsr77016sam0vthWk1aDZ60tmme75wqy/FquwOyvpVXq+W2c3UXVhfLw2IWG/rU69/2tV95R91EIBNTQCKphBGKBYbIAKAEkNBGSo6xaZrpeCITta23A5VdSCmFihGccx5ISBEJtNa/+pV/+ejrv/r1X/vVW3futYtzxRB8X+bl2NFuszVCJMb4vkdEF0JZHnz8jU+sk6wxW4Uk6m0TbIwxOlcfHR0CgIuBiAD8rMwBRV3XszIbmNIRVYjx7vPPcYjX19dt2xpjog91F/uAiChMumsWrQ+z2WwQnmql0PdKCI6R+iq1CfUuy7I8s832JmLD2Fxr633ctSSlVolpOsfMqbHFODVW921nMDXGSCH6ugZiZNBaB2CV2N57QLJKGyD0/axIfFsDshCSPUTyEgFj7OpuVCSJ0VGKqqqEElYbBprMptYmi6rVSmTWtkJNsvGqbULvGhe9j8G5zMoyy9zGaYm51Ym1nYsorY/O91wUiVLKCehZRlIekENIle7rNjEaXG8ohnYjjL03Nfa5vaeX17XExrnKuTQxAnmUZVb7VCFKbD1Ghl3vqt4nSZolJvStDP14VFhEIUSPXhDlZZkmxhilpexDX3vniYRAJSMplaAUJg39erw3jjGCkELKuncxxr53Sqm+b7Uiji4Bz81molEmRSqJu+7ONH/t9t4guUvywppUGTsgP11TI4JDTspkT06SSam1Nkq54KVU2+1WSQJoRuNit9kQhGZbZYmG6I73x9Nx+fbDvq7r+ejwOttuLx/v3zoqyumTp/HR4/cF6rsHxWsvzl3wD97/Wvbma/lo/rG0eW7y2i++9ejDVX/tGy95fw+bZtnvGF0zVfjKkbn76Tff+uo3F9dNPMf74lc+97nPv/HSbL26PJnt43Jhk3wRKkN5aa2jOC7y1W5dxVjkRpdZaWbM7Mk74RgpAidGcd9bqQozefp0E5ydjPaOj4qm3k6Vu17dB4GABiKC5HRkF7vNP/rqLysBMYJgePVjL/zH/+f/hEGFiG3vsF1gt2sqhq4ZjyZt1ZLDtg3MQQHmSbF1ycHdNzD6n/+lryux++C/+Y/+3X/n3zuZHp51l555F/DTP/CDy8vT/+6//a+6b6x/6w9/5yyZvH5ctl1I5nOh7ErkL0yONsvdxemV6/zpqpFqLhUtq6XKZ2kif88f/P3IgCxe+cQbj67O67f+5Ydvvds8vVo9ePpdn//On/rLf3nz6NFz3/1da9+PRqPU2uXFwzuHxz/+F/7SH/7f/5Enj84gE121dSRMniw3rQOZZCOW4CXt+g5aFxJGNYFRRolhCm5L26oC1qGLztH+/lG13Vxfnn7i4y9LqbTpdCoU5KN8NBmPmVCL5WQ825+Nqk2Vpmn0oWta17nl9XK3qfM8d11Hqd5VTdc3o5EC4ZMkAYOpCKnQde13m90yLkBYm2YsbNXbbps2fbi4XEbAkB0UZdLFXqOymNZ9325ikmQhkOTBBFdKnZGkHqIjnGUZoBAKE22M0n2MIQSFOlJkoZQARIlEIQSKBIjuW6woB99zZiZmo2SIDgJJpaSQw0pYaqm4z3SSGR2D0wiH0zzPEtc0RkkhwSpJFAmhyPLVaqVGSnMWgSEyQBASlRI60SJGIHYRWhcBNQkZIoBAZuxDuCGK8LNVNJNGdvEGSJY3rlZwMw2jlEIyUYQAN/GJ5KKXUpIQxAEQSUlm6AILoZTQIUbiiAxaSCVRADKxFAojCooWJXgiJCsVRhIYbwIbYgREKaRAEQkAQJFU1pwvdjE4EiYKtehIMzNLR0EKoAiCWWtUiH3XGKk4ejFspSOhELFzO/K6l9BTF13X90YjMvRBbl18/7SN0l6v+tYlNfmCq7vz2Rfu5R88XHUhdQLRaAaQUca+EWKTZcYHm5oiotusLiWqlDPgq5P58/1uEWKSFAetG0AAH/3i+HAamBbL0HZqfvjSl/7ZlzYNfddv/9xP/52/v77avbl3sG523nI5Gfnr7f7oOeEEclyxFxNM7ubzXYvbhRoyaAFASjEalU3TDI3YQEe6Xi7ath1Nxok2zLy3t7dab51zV+dn8/l8MhkN7hC3Tm47566vr8eTifd+f39eFIUQIpJHkM65rm/EIFQn0XRtlqSIuFgsur4fKG0uhvV6ba0ViETkGV3wACCC6IPXvYwUnHORqcwLKaW11jknhKjqekgpGZf5sIcGgIGwHUIIdOOA6n1QWt+7d291faatYecGb2ohRNu2SokkS4GjaxsJIBAvr6+aemetzYtR3zYCyJhUIANAltpRUVD0RKQQrJJCCKTYN71r296xlFIK0fY++N4qSUQx+Bg9IvLgGifEaDTKUbW9w03rXGeUVErNJhMi2tUtEne+EQxaa4ksBdo814IUihDCeDxOrR2Y+kTUdd2u75VAKZ8ZAuCzyBNgqczQL/ONkzkPYFSWZdF5Bt7tduMyn06n6+WiKAoj/Gw2S80NwuOca3ZVzKJyDgCMMRw9SNFUlZXQdnVz1adFrrU+PT09u7goy/Lo8MS72NbNSy+9tFpcXZw/yaxl5rZty7KcTGbWuMvrhffu2z7zqTRLTp8+ZC3KPD/YPyyLJhD2IVbttu97qcAlIJW5ffu207u4q6ltbJ6LuF0vtqU24/0ZoDw6OTRKfONr77737kO10qur9WuvvL7ZVqvV5vnn71xeL46PZ3XvIrm26YrxaOhhISqJSZnbxWoFAtLUbqtN0zRJkgBhojOtMIS+bjaTcXLr1snTU79cr66vLwFoOKpQyraqhcBXX3oxTxOOtFqtVxe7T3382+eHx03rBcqm3UhjHz1++o23P4h9V45mZxdneV5OiqzvGt+34zI7mE9OH92vtpsf/ZHfF7P0//af/N//wI/9G0dHt7VVibW73e7k5ORP/+k/XaRqGBnL8Yhl7YPbLBYXbdN1ToIWEqTCvf3ZdDYKobu8pqvLp6Nyenl5XabpuBgbrV5/9dX2Yvndn/5M84mgEltMpn/iez7zZ/6bP/MT//OPv/TSS832Ws2mv/aNb3YhfuH2rfcfPJyMxufbs9HIzA6Opvu3f/YXvrxebZ1rA/N4PBYMINR21QjJy+tFUWZJkjCA1aap+zQphrDkNNGZnVW7zf5ewdEn1hZZGp3rqp3WOmqxWK2tNiCFtVYXdphstNar1fry+iJ4uri+MiYRUvYuZKVxzkmFFCKSsGnZdozSMOBkuidNUveBlY6IrWsfPn7UljUxErAyRjDLEHyITd/tmtpIMxj6K6WEEPjMjTIiioDkqRNd9IGJtLhx/xdCuBCYGaUQjB/pfT/iPX0kNxoGPfzoA8QBc44hbrdbr5XREqXc7XYUvUZ0LjLENgYAyEfl4P9V17W04ua/gCh4CKz4Vo9mYI40JLYQC6H+10/xr+NkUoCQiL8ulProa4YzUwjBN7bTaJQOFIECDXtrgIFuJhE775hZAEsULJBBEBATsWDJOLC4AAAFCBQIoBAR1Y1dCSDfpDuwFMK7AMRRo5Y4rC/7zpEECYgIg9szAjFz+BZN10fQwvBC2q4d25KYSaBQcldvIxppsFtXSSrPrq440kvP3Xn4+GG93T28vyuKIi2SdusZOISopXW9m43Trtu5GDoPoHtrZVqk5Cm6oPT8g0eXRDCbZSYTDx4+zrJMqYBRCtC7TaXUqO26o/H4u77/O588+PrdO8d/6k/9yT//X//ZenMdgPrYb/l8v8iLEbpuB+iNSpUugKXO88PnbqnDwwOlVNs0g61VCK4YlczsnDs9fdJ1HQGulytmLsuyekaHGAABAABJREFUbVtj1XhU1HV9fvY0y7JRnhHR4vJib2/v8HDfOVdXW21N39ZaawG83e2YWQglkPM8d87Vuw0z+xiMMdPpFBFb14dATdPsdjttFTNLKYFYa601E5GPITHWJFIJjEy+a0FgkqWpTVRiiUgJ4ZwbmoY8z6uqIYCiKFwIddUSkbV24HLX1brp+t1uxzFqY0ySEEAIdH5+LgCNEiLHfrNJEzMeTYUQkyJPlGQKglkhTcdlmVrXt4nVgkngTbMSY4zBayWh79umAgDvPTIk2vhIwcfEWgYIDDEEKeVoNIqoaLsrMtEKyK1JtCmynIjappcCqPUCIVHSGJPaJNVCCRguPS0lIdpEJ8Yyc3AdIhtjlRaICPHGK/XZ9aoJkACZCIT8CIwaTLtGo5HESZaY6J2UcjwqoquHe84aY7QSiNvdDgGNEsw8KrJJmUrm1eJS6XQ+G28aF3qX53lRFIfEXdd9/etfv3PnzuHB3qNHj6yW49HUWmO0TBPTdc6FONs/kKaMpJzvZ+n0tddfb+rt++++23Wdd8SoGTBJDcdwdrYcOfnya586NuErb3/APVDTyETs5fNlv8nS1Pv46Mnj1eLhb/juL3z2M89zuAo8/rWvfLMc5bfv3KHg55Pyzt2TSPzehw+u17ssN21dVXU3H+9LYVfXdZJuQNCuqkSPBCAFAXslxcX5o5Oj48Oj6XazNunJ49PH291Wa9k2NdyY0RN4kIgU6L2330+kijH8pt/4Wz//he9aXe8eP1zsHZxMZ3OtUAl+5YXn8zRbrXfKZGdPHoqoXbet16syT6zCerPan04+/+2f+a7v+NzB82/4Frar7b07ZrfbKUGLbZUoylPDMVxdXUkl5nt7qIU1Atq4Ot2VWR4jOeeMtlrLpml6tzs8PEQIm+VVniaudTEJ7bZ6WjW68UFBn2of473R0YsvPP9n/9x/v6dGq6vrn/vSlzoXTp574Xf+6O//0R/9UUWwuDgXfZsWZWRxeFjePp7U9UZaaDu3XV+NirFE0bdOKSXIaihG6fTp1UOtTZZlRJRmyXp1PSqyIs9PDqe77VVmhWQWIcymIw5xt1lDauaz2WJxpaVK0yhlGM3GTVV57+8+d3exWD58/HS32Y3GKkbf9aRqq4TI81wi+74zWoO0e0e3rq6XTd9fX1zuWldO5zYbZaWVGlbrLSoplQGlrUlQms6HEIKSZoBkY2TCIFgIFgxUk1MohIAgpEQckuKEEN57SVKKIQ8egBhuFDv40Z8fWTbe3P6IQ6zfUN6GrsJYKQUoBOCohEDEEIL3flTkIYYYQpIkRVEAQJoO6uqhrKJzgcALpZ0fnIpvptvIAEhMAMSR/UeV9aPO4NcL9o2e4tc7BkQ0QhERIAkpBu4YI95oH5kCExEQM9ON9IgjIQOJmwE6ShTAQ/wRIPBHbwjgsEJ20SsUN+tnZGQAFIgCeMiFpxBQsBBKRMAQA5JghRrxZv8MCIA85B8KVEoiIoU4rKWttZ5BFylAWFxfbbfbtuttWk7nJ+tdU1VXgkKRWgH1pz/x4na3XiyuNs2u95IQhBQgGYGUApB0cHSw3Kx9HyB6gYK1jIGEwtpr37XP3z567s7BZrs6x10mWQodGOvK+Wg7EkTaBdpuNxRqAfF3/ciP9Mvmr/7FP995HE2zptnNZtLYHptWaQsO8mwKg/LNOUVE1W7HHJPESolSWmRYLq6FksG56Xh8cvu2lPL9+x+sFsuiKJqurdbryWTSAhslGUhp6St3fnE2XEwMsNts0jTFPPN9V45HFxcXk9HYWquNbJrGJFk5nmohQwjr3XYymRTFqK5rmyTOORc8xRgJiCJ59jG4rg/BTcfjJEmYBTlHIRhjvPcxxvF4PHg5bbetUsJam+clgDi7uJhMJmmet03PbYNSNE1z//79EF2MUWutbTIuR973nXPMTCEE1ytgNxmVWWaNYQTvfd81XdtApDKz8+l4Mi4yo2MwFHqJGilKKRIjOIJkDYm+WKyuLheDUKEsSxes1dKmGcVIFLvekZRKaaVMFyLH4PveCmWVjj7sNlvvfVs3IUYtRYxorU3T1BqlJWspjdZCoRAiOFJCGqOIyOocMWNmJYc7jbWQKGRkEkJEJvAxEOMgNfsWz7w0Tcs865AkijxPZ9PxdrvdmxbbzdZaXRYFIiSJ1Voxw2w2WywWbbMbj4pxlrPLJAJHNypyIvAhHO7vJ8YsVmtEfPjgvnddnqTW6DxPxbRkiuPxdL1cLJvw+MmlNilBbLoaBHfOjafTw+PjO7duMfPl9eL07KKpqyTRe+Ppu4/ezqbH49lRKuNiszRBQVDCqoQF+bB23bS047H+8P43P/epV//VH/qO84vynXfeefeD98dl8eK9u9tqNy2ziOLFe3dfeMG8/f79p+dLIY0ETJVhFADVwd48y7ULfhgFsizJ04wO5kbLLMt266Iok/GkDI/8yckJeQcxSCn394+C61fLxV6Z701m+/NZatMf+32/BzG5/+4709nhxenTx48fF4U7OTnxxIkWB9PShfhtb7z87rvvZ3L6ue/+9quL08XV5dH+/niUffGfq//yT/5nf/T/9J//pu/7vhhj0zd9s9KiL8vy4vJsUpZMNJ2OA/HV9aZqq2KUb5taglTS5qmZjaYAcHVxfr1YGCuurs4/8ebr56dmvbjMra1Wm+lkFLq238shFxpwD9PmrQfwUgbT/f/rn/lvf+1nfrZR+nS9+NF/81//7Hd+4Wq18n1/eXVZXVx/5tu//Wq1Xl1dTcejLFMoeLlYHxwcKBXbqrLKEplRUQYXLs8vQSnnoxCIDPP5WAoCDsF16+VyfzYNXaUAE6t922gpJPhqh88/t79c7VabpVDCHu6L1KRo+1W/qTbj2eQwRJtUUtk0zTfr3abyfd/rZS0AXNcWWSIExBhn+ycEXEeMuuuCvzo/3ewqNAq99iFUfcMIoBQoDSikMkPY9pAcqpQSSkqJilkgsEQWggApMscAAMwopXI+IJK1FhFDIOKgtQa+SWEZagxzHEbeoc3FZ7m6H1VBY0zfNUKq6WScau37jjmkec4IQgjWRlkjpRyWdwDQdu6ZC5YnBo0KAAQqF91HciAYTGqBOcCg60VE4Buh8/AVMcZBl/xRIb6ZgCEyEA++WUAAPEzTSilBhBQJwFMkJh5EwYgMDAQebrB3FiBwkO5IBgFD5gQCCAECkSQBMiMSSSmBgREigwBmIVEgMbtINwADDi2MCMwisEQGCYPHPgKAFMP4yzEgshCgtZzsTZzrlRZ9DKARg1itF7umZzTBNzH6g8mo2V7vT5LPfeq1rr/3d//ZV6qmI5EzRwrRxyZV2XK9Gs9OWBkwqouMLiqlQFAkEXyrNfZt7ZraCvGJj7+53lSXVwtHsq17TMquJ6M0IzXV9mhvzgGffPDQx1jVrbVglbzcXifPz4X0ShMhuz7kxZgihD7EhhQggWAldZIkzjmlRAhuAHjv3Lk1nU7btr+4uOiaNk0SJXBvNvPe7+/v+94hg0ShhJyOJwNRMDJVVTWfTlFK7/3rr7721nv30zQtRuVmtV4+We4fzLMs2+12Usosy4wx2+02EoQQEHGz2cCzCVii0FqnUiprtDUuBFdVQJQlyTDpeu+995uh2CPOZrPdblfX7Wq1KUYjY8x6u02SBBUOUGrXuUHfTARGCAaITDEyR6+EUFKW0ykEb60ty3KzXq/Xy3t37kqAUZZ2XcPRC2QOsfGdBNZKGilAMFEk7xDRaCmEODk88F3vKQZP3vvlcpllWZnnWmv2yBiGS997H1wQyMiQGCNRKKN816/XawCQUiXWaCGVUlprQJKIRkst0AdfjEZRq4ETbrU01gohQnCD4bsQSAiD5WeijWcK5JkRECQjg4gEwDxkXiVJ4vtWAAtka22eJkmSNE1DRFVV9X03hCHaNKmqnRDIFPqmrkJvlEytFKivNs45V4wmu93Oez8dj6Lzo7yoNtsyz4wxUsoQqN7t9ub77753vxWZ972yzcHBweXicrFeHMz3UKjxdNL0jVVyNsk3W01sJfJ6uUSbf/j06as2/fQnXn79pfDo6fIb7z5NsuLoztHD89NyXO4252+++urrz++126uOWiNfOtofC3EPEcn1HHy7bXSSQqRqtzmczpuq3e7a0G+3/a4oS5XFanNNIIok3e56Y0wqJfetQPZdIA3TaV7ttjYtRqPJz/3cL9CgkYhxlKXpdDwy8od/5w/97t/5g7vNpmvbzXa53tRvfttnvu+3/VYAgAhdvxVCtG2/Xm+NTctyREQfe+nu+fm5CM2tgxm6+vBgMp+OX33lxRdfuPfSi3cfP364Xi+VFp/85Mvr9TpN07JIl1cLKfXp6TICp3nSh35du6dnp1my1yuXJomUommrPE8BxteLSyHU9fXS6jTRWd/UrqvBucSoxhgb3Qv5dM/pdtnAwwVQBnvl7OXnvveHfygi7B/fev+d+xJF09WByciir+N2Wfu4CCHORxOZmNu3jobMOEGIKK8uV227iZGAxc4JBCDqx2XedO1oVFycnaJVFUajxKzMKHLwkCSWYr+/v//gtLq4WiKozbbyvp9MR1BHba2xythUK9v3PaBcrTZXi13fufNtnSdplicCeL3erqvGKCmUanmptO4JZFL63rW+6QIH1igVEBNTF3zoXEQxyCNdiEAUQmBmEKgII2DgENkRGaUUCykRIgrkIXn+GZgshZLmRgL77PEto7BE5AGsfubCEQaYt+97732367PUspDbTRUzW6aJZNW2zbjMtc6c77yPm81m4NYw80AmZWRi8MQYaPDbCvEGLpYohohA5hCB8VnkETMPX/m/AaU/Kr0fbYhvohKZhBBSSb7xzozIIAZat1RBENNQsAdEmoFhcKWUgGL498AAjMNsDjcl2dqUiIhCHIZYgRSZ8CNlEyIRMDGzYRQCtEJgkiSCIMkoWCLeEKIBiJmVEqbI6ZnqWkoUVmml7t67jcRt2y5W2/OL1d17dwDV07OLDz/8QEpprJhOc611BMMIiJIZAFkCKKljtE9Pr4MUKDPXQ2ypSJUACMEn1j13+xY4d365Wq52ST5Z7HaBpDDaI/ShFcY0TctkX37h1cdv/eq4vL3b+fcfPY4iKCMVgpRy72BfW0t9F0JgIdKyeHJdoaPD8VyZJEmSpK5rF/x4OimK7Pz0bL1eJ0lSVVVVVUoZa21RFIM7uWYCisvrK+97pUSaFt772Wxyfn7OzHmeJ4kZgoY4xl/9yq9AOjo8PKzrWhl9fOsEAM7Ozu7du1cUxWq1SvMsBnbODVfn3t7eqmtDCIwiUOAAiCgBlRLGJr7vhut+wFeNMVmWVNsaLGupAsUBJL+hDiXJtqqapiEA51ygKBVmKgvIAsD7yOyC99PxSFk9n06tluQdki3y9PDwcDwqLs8vFotFp+jgYM8oHVzX931mFFMgYIEESgsUTMH7MESHUgRr9OH+XmRoOkcEvXdKGaGMMlrKyAgEwgXvux6FGBf59XXjXRcdTkZl17Vd2yqtjRB5lhaIQkoiCt4nWlmrKUSjhAACZKsHnJmIwqAXIOabILJn7ndRs0JJw034LeFiSmnXdsZqRFRCWqOqqqp325OTk7brrUmJQ982SmlEaPtOapWmKVNwiEqisUqCjKELMUop09QaJY4O9vb399frtZbqpRdfqKqq67p79+4UaSYVPn4c33333cvLy+LgheW6QuT9g4NyNNpst03dJcYsri7H43RvNppOJ6NRRkTGKCX0qunne3ujccquGifpNLvFfe+khQzgaLJt61GW7zbN8mJz66DIdProYrnbXXJotc6uz0+lTk6vH51fL6ezvWI8WS6usW/mI+tCmyRJWcDhpAQQgQBBR9Vbrftd1VTrLNV7+3PF/vGHT1aberZ3fHL7+Xfefj9GFiAVgpZCcpyN8+fvHvftOvptavDg+f3VLkVeg7vsnDc2SfIRRDKJHc/Gj9+/v2w2eVZqjJnG4HbOB2vYdTVQ+WN/4PdfXV2tVk9PTiadW6Ki8cgcHr3Q9w6j7up+u2naxoFUdeNnB/urzbJuKHR1ta2Zwp07t0PsrlZXfd/v7+8xc995QV4I6TqvQULw49n4BTHeS8uLt977x//fL773zfc/8z3f+7v+6P8BKDl57d4Pv37vZ37+l87Ozo8n80yZsGt216uD+dHVxVWeFmmaPb3/YZLavu9nB/vlKF8sFhKUUia1ydXVou9i23f1NjLHLDFV1/eh74zunBMCrLW72nWNO96f+oCNiwd7eyF2eweHdd1uNlsAsd3Vjx8/Pjo6SEOIRFVVKRmc95eXi94TgFosV16oZd/uGv38vTvH+Z2mqnd1BTFW/Y6EaFpf9y6AYCHrXqyq0IvYD2kDQgmBBExEXe+EEPhsU4NSAgBRIOYYAoGwjGikUFIrLYCVkG3bChDE1LVOKVLWAIBzPQhEQhkH5wrEAb8VN+V5KMkwmPzHyMxZklBkx04lFgDbtkWOWgmhjDbKh36IutFaK2WISEkFiMBAKIh823WBoXN+WOPeTLTiJhAhhBCeFWAiQiaGmy5heKX8v94fDw8pBAANP7iUAgA8YghhiDzn4V1jvoGi4X+zgeYYiQEHGxMhxEDj4sHhk5mAI1OkIYwxAkglAAlQsPeRQlQCpABiDAQILD1pJUCCYDEkPA5vHWnUUmpjEqNASqBAMRIRxKClaKutABwMNW/fvpckUyI0Ovm+7/2ed957+KVf+iWpEiGy09Oz7S7YpKi7qIxGQiGF63utjPPOBSCBUpoYunrXpkJIlJHDrq7bXbPdtCySdei6HmyeKKPYt8F7qwwxbzsHpC82LiuON22sXFeHRjl0IebZuCj3AyQouxC8SozO06eLZbeh7ZrVersrsrz3sW7bbVUZpZRSeVksFgsh1P7+fprnq9UqSbKyHFdVtVptZrPZs2BkNZ3Ou667uLgIgYSST07PRqPR7dt3vY+IuFxvTZIsl0sA0Fqv12spZZaXq/X27PyyruskSQBgVJRlWW6329VqxYl99rsVTBhjJEQI0MRGS5XniUQhAJxzRsnIYhjcAWC5XE7nsyEJwIUQQpBSxhiJWUoZmUII1qq2c0qJNLHMHHzf971M7GRU9G3nQpiPR+T9cnE1GY2ns/FmubI29b0bOBR93187ZxSMi9z7KOFm6uUQCWlIurbSFFl6vVxpKbtISqmud5GpoJw5BhcIKXiKwRmbZlk2KrOBzJUmhmJ/dHQwTL1JkkSmIRjLOaG1tNp476VCRI4UEmsHK7HhWmeKUkliEWNEKQY2JiOgUBTjzeIHxeAdL4T0wZVF2jVVXe8SO7FatW1bbXcshe/74YbMi8Ias9vtpFSXl5fMnGfJIJ0KrjVKTWYzsXWPnzwZUH0iGpfFuMyVMVJyU60XVxddnr/yyiuI/NavrT7zmc+8f+4mYyIMP/8L/+L4+Hg6nb/7/gef+sQnx9PZ3TtHTb3qumY+HXHgpoujYmLH4/OrC9csZrkpdDpK89df3H94fq3L9PBgb9uM333ng0RkF6cr2ds7t2YUtscHkw8f7vput9lUUiUM8hOvv1rVNbN/7mh/kinUOJ1PtNbr3Tq0uywdjbOCSJgIk8mka2vcH7f19mgylkZvF6uY0e3jk2qzc3VvtXG+YwCrdN9urYTxKGt3Gy2j67oafXR9jOqf/dP/jzApMRu5Z4z57Be+AFKullf7s3lXr4Fof1rGGB1Hh1hX24d9W45GMca8MEmq3/zE6+eXF8vl8lZe5nkOQd27d+fs9CpGcAE+fPAgyYrpdL8sp5enVyH0y+VyVKSHR/P9+eTRo0dnZ2cf+9gbibHf/NrX/sXPfelTb7w6n4zKLEH213/3Z3/yF3/xG48f3Xn91d/9x/6tW6+86lPQuR5Qw+/77m+/WlbnHz7KWb4wP9pcLZ5sL4zFF16+5xm+/NVfHuG0dd3V5bmWt13rOXqiBlh5H2Mkq+1kmq6W1yzQOVcWI4puNBm7rr9ebm8dHKGSF9c7FzKjYbnd7u1P96eHMUtXq4VJskyY3bbe3+fBw26xWHWtUzqZH86Xi83lxVJInExyKWWMNJtNnHPXq2Xbe2Ozug8M2Ee5aajxXurURQVq1HehD9EF7xmkUqgNMwx3jVH6poANoDGikspoJYVgxBCjkBIEDYpeApZKIWEMwVOEEADA+yCUAICIOBRgAfgsP5GGAiwRESUzD8QiZk6ThCF2rlcSbZELYIq+rpu+l77vfaDBcNE5RwT9YG43BAegDMQUQQjJ7G/ihgEQUUklBCGyD/zRgIuI8IzwfDOO4/92JqboYRDXCAE3SDVIgSwAWTAwIwrBRMgMwIA4zNAIAIIBkCTKwTPkZgihMJxIA9uq7xwAMBAAQBTMQSglhIhERFFLMQDjRByABGDggKgBCBG9jJIEkSCiEIJRVmkBUgIQIIrhZ2YGAM1IRK7p19vt5dfeu//w1CRlUkw3VZzvHbz5yc875y4X1XLjmAFBIkdkkCAgRvbeuS4dZRC49d5YGxHZk02EYljG7PS6iT6AtHkx2tWtTqUgB10ng09AU4jaZg648ji+++Lewa0HT88eXpxXrtNCttWmHI+meyet5xQtCwnCBsAucsvq0flWaWPPry/7tjs5OTHGrBbXe6OR9NrUrRBisVqNIhfFiBEWi0XbdNLIs4tzIUSSJG3fvfv+e9PptHP9gACXZbl3cLCr6+vlMk3TF1544en1auDTNk2TpulivUqSBL2zSk8mk+Gd7bpuiHBBxI3riWgI2xJCIEiIITKgxCHha7fbBWvKPFPK+t65MFQUkWXZMLj33iulTJIwc922zGxMwszW2lu3bq3W68Vi4UWPDFma+K7rIXZtLYDJu66uN+tlV2SJkok25e2TUWqVUq5rd9Um1G48KtMsZyF88ESEQmupCIUERkSBQjG6vn3y6GExmQllitG4a3tE7Ps+Rt+39dCcdt4F31PoiswMdDMhWCKfHO8Pew4AaNsWFRiTOCeYeXDD4RCSJPFKeYoh+CHjjJlDCKnWrBQAKKUGYTQz+wgxshYCh86YIMYYIw7tel3XWusQwna7HY/HaZpWvT+7upKIWZIw4ajIGAQx5kUZY9RGr7drjlFyYFZ1247Hk6abfnj/YZZl4/F4ubwqyxKRjg/3tcTr6+sQ3MOHH47H41t3bu2224vzK6UhcDeEbj16/NQFXiw3L9y9s15vBIbR/my73c7n8yOVvf/eo/O6OtzLEGOITiRGyv74IG/cqg4bJagw0kK8//a7dw4ProIXJKIBrfWdk1sxcp4uhVDLxSozfjYaMUDvnQgAEqdW7u3NrjCqcfr0ybmOcTbdt2T3R0Wnse92d5+7O5uPl6vVyf5kVNCDd96ezW89ePf93ncSBQCh4DzPjaTEaiEEx5gkSQxRSsURTk5ueWZWSsJICOHqncmyIk3qeicQx+NxjBEDj8YzZWTTdEKr1vksy4y1kaCtnbbF9eJCnF6Ox1OFylpzeDA7O7tIrZ7NCmR/99bJ6dnZ3nTW940P7eXl+fXi7MUXn59MRk+fPr26urpzdPLZz3xOEW0X548fP33wwTtf+ZUvz987/cR3ff7f+Y/+j89/4bNbgU+6dV/lI+TpbM9o9AAHs+Jw/LGrxxfLpxd5kd7bO1ws1yjd8cHx8y/cPTu/6po2Bh4XMwqwWKyCJ6WMsWnwnVLGBEyMksBZmSIHBC6LjGzS7JosHwHHTd2uHp6Wo+Rgf3K+2Ciw8+ksy5PNphtPp33fVrs2zzNr8rLgg4OiLMc2y7ebarvd9S6s6t14PF4sVlIBecjznFi2LoKyq00TWJJIhZEBZO3biKlQ3iodu7Zpm9YHy2CMHdjOQ8kcPJAHwoSUEkBGghhdEAJRshICEZC1TSSgYBZyCNGiobIB43DjD2tKYsZfd5K6YRcPlhpKKSlRCBUoUogCIETe1Y0ANoL7rhkoGkWWEFEkor4f5uDeOQCUQgWG6HwgGuZFGrJEcVjrskKJEsi5j2ZTABDI8Iw/PNTbwVD6o08YY4bpYmigo/OIKI323jM98/EC1BIlKADwcLPhHoQAQkoppVFqqL43G2Dm4cwHYhYSEQVKvpmM0UEwSgBFOSx8UbhAAkgpYbSOgGqIoAmspAwCBIMCgXCTf/yM0S1AQAxRhgCsVJpD59CgnafVNrz28mvLXX9xvdns4unFUii9Xm+bNqxW6zJPq6bSSkkMxiqNsizG6/Vy06xsUpIIELZGwGhkxoleX19xctSFXhudJDpwiNhmSvtmh0yJNMCxb51jNKk6uH3yxuc+u94sTCHXu3VSjNp6V+16IZoyz2OMjsCzZkicB0z00e1j0bNa77Y+ktImEq8269c+9sbR0dH5+flqs12v10VRaGvSLFdKOR+cD03dHB8f13W9a+o0TYWU6+0OpVpvd4NZ1enp2XQ6LYoyhPDkydN12w/1QAgBUiRJstlsJpNJYFIouq4jCsJaYxVDFBK0kD5ScF5rzUAAqJSSKPquK2wqACWg7x1ZG5wfiAnD5T7cP3VdgxBEDEJIKYd44L7vBprgo0ePpMQ0MRSiVEILFEZB8GdPn4yK3CjtXVfk6XwyReQiT4UQUulA3kfSJkmMtYnxDOyjFAKIGKULXiK4SMyemfvQcwx37twRSkcWIcQ0S9q66WPD0SOTlNJYlSZ6YEhIF7RRWiMAmOmIolPSMDFzlCJKBAidEkOJ7Y1JlDZEAQWbZ7wPRCSAIWxKopDWDsfK8KzrekSMQuTW9n1PId4w+Jm894m1bV01HLVNvPdXi2svTTma7Tbr1Wa7XC4nk8mt46O6aZqmSTObZdl0duDbKs3LIrdNvQvYHB4eZll2dnbmfKeE3G5Ws9ks+G5vPtmsF21bWyPramO03G7Xk9FoNht1odk0+Xg8JVa+o8uLJUc6Ppp0fTfEfG43dZ5NZrPZddNBxO22OrhzEJgUx729Utrby2oLyj45W5/M84eb7eLq6uTjryw3G1Rgrd3fn0fyx0dzo0Tf933fLtZXRICE++ObbEdL8d7RYWL5cDa+OF+5erNbVZmEJFVVvTFTQ22VG3GyP62a+NavvqWlrrdXAASCGYCQQ9dO9qbWpEIgRBYsnPcMOC4PBGZWWVRaKhVj7Hp/cfFhkiRJkiwWi+vrayJigEgQGHSaMvN2V4PQV4uq806gEkq1Ldb16upyezCfZ6nO8mQys8aY2d6dB49Oz08/9L0vy+lLL99rm93Z+cPLq7Nf/vKXRpOxtTr6sF5vkeE7v/O7P3zvG/+P//Q/3q2uP/Hmx37gD/2B5156kYR89+mHUqfl3v7F0yfxiKb7M98Rg0itjAx37h2uiuyDDz7g7cZm6Xa3O7x9PJ3MtS7fff9+cDFJ8ul0bzSaOOfOzs66bjO0aCNlqUOlIbWyzG0ILroWIozLYrW8rut6PB7l5RhE3DadTdTV9cVqfZ0Y670/P7/03ldJqvXm+PjYO0bhum5hs8Z7bxLd+7bIU4qx75qzs5ZRMQgCDBGbzoHUbRPaANumcQQ2H0UiFxqllM3SiCIw5UUhta62uzRNKcSbHTCAeBacMFQOKbUUEIEF0TD0CQo8dMZSSEQhxGAE9BH9ChillMOoN9yVzBiCI7yZiYdoSGYGkES+956IssRahV2IVstBz4NSF5lu2xaFYBBt5xAxAvSdCwPlWQwR8QEYQEglNSB6/+ug9MAs+1am1bc+kAlQfjQlM3/0lSwRBsrTsFftg0eUgBgCcSQhhRQ6Vcr5LsYYOIQQUQhB0XWeoxZCDDVVAKKQw/bwxpNEAEXmgdslBCJKZQQyASORxMGlS0YiheyJzc0wfdNGAHEIQQohFWqBjIADK0tKQAVNC8aAtcIRSvn66x8LIN+7//SDB4/3jycvvvSqj/zgwQPvA0fKR3J/b3+52lwvN4I1Q8z3zHMff/6Xf+UrFKuDyQilqjfbeTm5tTd688WDn/rqWdXulJF9xAgILAKDtokB6JrWppnrXG5NLuLTD7721X/xz7/9h397ddUsry8o8N5oHzs/H2ejTJepSCm9vO7LYi+z44vtzpoyT1KFKPvep6ldbtbb1bra1dPZJITgnEvT1CbpdlctlitjzO3bd/veZ+XIpBlINT84vL6+Xi6X5WiklBpPJrvdjkFYa7O8RMSLi4td1QipgDhCHChXw1ULAIP/JVK01g683MlonOf59WrddZ1z4WaRICWyICatddd1TCpJEmCq67qpKiGEo2hMAgBN1zZNw4hpmgkhBvOa+BFLgpiZENnHiIhWaYng204robUKrnedSEuVpYk1pixza4wQwjnX990gyxFKE6ALBCAIQYQAHKGCIjGoRJJoIpJMMbKxqpSqcb7e7hhliilylMgmsUZJIUArJRQOALtJxLCheZbgzSF0vu/SNLWJlFLWbR8pGmMVSsagpSEEunFwxUFZJACklF7AEFwNAIHi0Np/1OOnVidJogT2fR98nyapMSZNrdVKKeX6NsaITJEgTfPNZiOVkcYE4oePnnrvR+Oybhzw9uRorybctf2urqSA7cX13t7e/mx+69atut4pIXfVpqrXbSdv3779wot3v/jFL56d29l0T2t9cnLkkM7Onj7/yvOjSXG9XN++dff8/LrrQtP1fRcvLxd5niLz7VvPda0HoMPZ3q1bc4n1dnfpuy43CaCeH0zTTLFUd45Ofsl/vVmnB/snSmMkfXl1cfv2bQphPpu03W672Y1G5XQ6OTwcr1ar06fnHNR2USFKV1Vaa5RdWYxnpa3qbnZ3fzweAUUjRuPM2Ewcndz68METJeBwnsVYba4eAAIRJ1Yhogtea41SMDExhC7kedm7INnk2VTqxPnYcz/b2xuNxxcXF0Zr37TKJt57CcAEVdcRozSWGEjo1a4RQmudgzDL5Wq77aWUzHKxWDSpuGX3T04mMUaKotsfL5bb9WJdlJBnyliZ2WRvOkvyxBjjfRSoNptVvds+un9/fzb6D/7Yf1htro2SD+zy/PLhXjbezyeTctTXTZaXdbt7/ORBkuSShN0/kAIo8mivfGPvU5fvfXj/w0ePTx8EyM7PVttdk9gym2YX51dK0GQ6vnfnYL6XbbbrXV1573an1Twz2uBydXE8uTvbO0jT9JvffK9aXcbIUmgrBYkQQui6kCQja1XbtpvNpu+68XgSQ9N2Ps9GDz58enRy/PjRWd21z79wz4fQ9Y0x5vKqRqFiRKkso2TktguNi56h6vrKRRLKAe/aNiiTZOnYjLdV3bVuWBVdXV1Jqay1ruu11lbrQUyBQlCIjXOSIc8zY8wwyillhACKcfAKBmIAkFIrpZXSQhMAoRCC4aMBmoGkkMNYKYRQ4gZ5HmCqzrHofaQAFCVi2zsf2EoJAIlRSklG9JHjzcnlCQQiEHCIMdKQREQELJQOITJBiENLjcPzROIj3vXNQpoZUA62AR8Nx99am4nIORej1PKGNT0ww4fsYSlvEvOGVsMYrZUYhtG2rWGw8AgBOEopWUqFYrCsBwbigdsMA12XJQIQEEQAIZkBB1AbAGjw9gNBHMQNSH7zk0DEiGC0GkDvZxA6AyAgUt+J1Pq6Dc5Lqa8ur22Sravm/ffee/Wle1Xnry8fHx8fP3dr/8GDB4XFdbPOptlW+DzB/f1ZbiXERmN379bs8mrB3Xq6N7dBiNgsr3Yf+8Jnf8/B3pe//JXTp5eRkvH0oPLY9g60qetNkhVddPsHE03xx//qn//Vn/2pPYN/4fKtSL5ZX++PZ+31OjfJyd78yf233SgVUTadPdx/aZIkO1d31VVfo9pV1Xw+39ub3b9//+jWSZ6kg6Co67rtdnt0eJzn+Wg0Wq1WX/vG19M01VpXVZXnedM0vXOT6XQopV3XlWUZQkjTdL1eX15eDjzn1vnBPMxq0xENamMiEkIQBUQcdpnB9UTBdU1irO+dAB4kX8hEFJ7R6m7YBFIoEjj81kMIUkZ8Rr4fOi8Cds4N1w0PpIhnrD8FAhmAI5JAZKAYY2SKRZalNsnSdCAftl1HzMDcdR0AJEmSSYuIjBgZQwhKCquk0DofjSWwkjjUMOaOfDA20SYx2ipjhRBdozgGoyXH0Ls2hmBNZlM7gKKIUhoNLNq+I/JFavRozCESBYFYpDKSJJAEIKQQyCgA+JnP67PwEyG0iJGIPN0QrSUKKQUP92P0AwhmjGGiGFySJMzs+hCiF871fZ8mJi9G1bryMejERue9d4iktY4+7OouScymbpsHj6eTUbtrlOT5fD43ad3URtejcWGMslZneRKj75rWuzZNzP58pgQihN12p22iIOzvjZvtpuraEKltmrIsXeevL87Xq6sX7p50LVX1FuGsrhoiaBu+vOS9eVGOjnrVVJu12raopDYwnabWqC989g2BcL1Yv/Lqx9a7lZKRQidlYRO9WtVCiOVi0XdpWZbz6Ww6nhlt+973va92Tdv2JkmtEavV2rs4m46mkzxG793aJiJPzQfvv9N2rmr9Zz79xp/9c39RYEcMDGCMsWnS1phmmTLaN7XCiJJ3u7WQ5uTW4cMn98vJwd7BQdN0s/k8eN90Hd0c37LtPDFLqfsQUSjq2855k6Rpmjb1NrFJkhZV3aUZDH4vm81us2ldv717+5iZtU4kwm61AYLTs4dduzo42GOm8Xh8eLivlCIUT5+c2SyxylxfVNuqKaez1XZzdnqBB2KUj5W0IslO1wubZhl4V3UxxqO9/RiR6kQkqVASAA3AvReev/fC8+++d/qlL321c/HuvRebfogrCIvlZdfvnN9ogzZLkiwXqrg9sRT9drvZK44mZWIUTXL72vO3z86vlst1Ve+qTUyLPE1NjL7e7WqdT2fzkmh5tQiR83LqnFtv2idPzs+vV4gotViuttO9GXhXNd1m0zvfSClZOGIJSjc9gTBKK0VSg3eMhG0X+9huArjE5EopzTyAzMzsvdNKCqUEMDJIRFRSShmBRcTMJtZaJeQwR3rvhzPIaA0gCYlCjNENCDYAKCWYOQLgR7vVwfcDn51IIIY79VkNpsEbmlFEZkkUAAAiSkkgBLPzAyQOMUYRAbUYAnsjARER3OijUElAIA7AiBKH3COmG7/Jj4674eOPDENuqu+3DMHP5mAOIcSIUkotJCIppSTdbPcGZrUQChERaDiCWKI1BhGNMcNbJAZ0+5kQ6dm5BIgsBIrBDoxv3q3hRB+QAkQhb2ADHlwyB4vim9GJaDDgVDf+zDfI9fA9MLFd3yejkWZ4+O4HiKhT7ZftnbuHv/bW19OsMDIsL7rn7j2PfnJ9fU0tXjx52Ic4LvejJ5lYAJ6NRpO8nBT5dG9+eXXFLdbbWuf2/vsf3H3u8Dd/+6s/93Pbx5dVc41BT0yS79pKJ6VT9MVf/IXLRx/uJ+K9L/+zeVzfM+mTxw9m02KvMM3qlFwcl0WzXv3yz/68xi7PJlfr8Mrl7tYrr81G021wLIySAp4+fbzbbeaTaTkq0jR9+ZWXLs7Ob9269Yu/+IurzXr/YK+uaq31K6/cEkKcPj6NAEM8iFaDObgfptvBRWvY6ZZl6ZwriyILoek7IjLGdK6XgPbGF6mGSNoYANqslokxZZ61dWPzUiBLAVp/BK2Q0brvewYGjhIwsUYoaaVkiJqh984Fj4ggBDN3rkePv94DIioh+NnlGAPZJAEKAjDNsuB6Cbi/d7i/N+NIw2bHRfLeBwattXNuQKWUUoN9NwnwvRPsIU21El3vBAWBg5Q4IKL3fWCySVHmWQRuqxrJ56nNEiMExJAws9ZaasXMRaoGNWKEUFihdZEkVksVouubNjAZUAwYQLpIKKSIwAx0k3I2uLYCAFDwMfohqgwQhRAgBmyNUYkAMoRAwQvIAWjwDgshMntkQikRJaAkvuGaZVlG2ilRNHWdpqlSarOtFsvLyWSkJDIjk9ubTi4ul33XJIkRqjaJFYh5Xo7KstpuppOxcy66/s03Pna1XGij0mxaFqNvfuOXI7DJ8tdffe2f//wvVrU/PDx+7rm7WnJT7Qiwd/ETb36qqqrVZtO23XrdVbUEOJpOirKcB49dcBcXq7K0fdNprUeT2cc//sI7777Xh+VopCcfe8F7v1osXdeOyklRFEpKorBarXahU0rZlA/2jwZ9VNd1MbZKm6dPz2LgbbXb7JZJalDh/YcP1uvlG2+8cXQ0y7v2n/7sF//23/5rAGhM4n0/2JnFGHWi8zzZuF2MfjoZ1buK2AnVf+47v63e1ZcXp0l52Hbugw8+YJTaJFLK1nmVpMzYdq51UWtFLF2M7AgVC8U+9irqLLcMsdr2VbXz7e74eJInORFfnF0amxf5VOuEYkTerdcLFCFLUiVTjmRTkxWla7uzywul5MHR/sXZuTKTlz/2prKZv3wS296XYqWaydHear0O1XaUZBnw9uyiLMsP3nt7sre/f/cOOS+N5ihQwiuvnLz40smXf+WDJ09Ps6zo+6bvmiyxqZVd21Y7N6ZRWRYUwKKPGPNE5EnORNx1vtqOMpvcPnr+7q2m65uuXa42dbXNsqzI8rYPcteUZZkWk6uLa0i1MakDNz88LIqiqnc2TZXN15tKSu1iv6nJOS80CikIQuTYOO65A6UZhTAaQzCJHkHuKTrfAskkS5UxneuFVgPrU0qJxL53PgRElEoN5ClUGojrXcXM2kgjlScPQAOiNsBUQskBUhpyFuIzk6YgAGN8Np9JEB+ZTJEggYiD9XQMQSkrlCAKQgqUgpEikdTaM1AgxCCMFkpypEiE8Ua1QwQEyIiBOBKDjzFyZGCO4gbzlkII+VFZ+/XIXmZmFOpb6Vcf1eBIoLUSiMH3w6QExkgpB2nQswl5qKYBAKy0LJCZUURUEhGVQCEkCx7CUDnenD8D71piZGaBrNWvR0Egg5AgQCiBzyq0vKnEN1u1m3bh2UsbZg0xVF++cdZGQAYhbJoCAHmfFulbb33jFa1G40z33d07B5PJLISQJ4j/f67+LMjyNLsPw8751v9295uZlVlrV1cv09Mzg1kwmIUAaUFkGCQFy+JiUQxZsmWHFA5RYjj44NCD/EA5QrZoBxWSgrLNF9ESKTEYEB20SYoSRIKECQIDYDBLT29V1bXlfvf7X7/lHD/8s3oo5UtHdWVVZd68/+8757fGylUrEetbk5PpwZtPTy9Xu7BcrLuqnI30brUd5MNpPp4Wg65uQicXFy/vntzbVvXjDz/+wrvv3j+eWZ3Iwa0fPD4rq1ZJzQRt6x+99e7DO3eWjz/wXTuVwH4/HN2Grs4TzdpFFFfXp5zbb7/3tSyhXd3MjkfXixf/3r/7577y7X/mj/9r/7sGjHpw7+5isei6brVcIETftcvrq5OTk08++ej27eMHD+4JIfb7vVKqa+qzs7PxaDIajcqy9G3TBV9V1cnJiZDAEPMi7V0oFL1S6u6dEwB4/uJV0zQmTYLvgu+EkK5p+2rb0WjUtXVbN8OikFJ0TYuIVssiSyrEGGN8XbTQ7xxNU0VipZTQEmOUKGyiExTcdN77eBOxhv3ACK8jn3rqpSc5gBiZtZQgJQXvOweAaZYOhyNg4XzfWt//EXQ+Nq0zCD32QkSBoiZCLQGAX78V6rpOtUSJRVFE13VdNxgMuhCdazWz975ry+EgNwqMAJtoibo3ykVgAJQcZZIACk+RGI0xWqkQ3DjPqEhioH3duIhC29r5xvleUSn6GReQkSUCM4YQkEH39doIzNi3ZvaMjkTgGFyM1iittVWamfsmakS0UiujQcimc4nVXoBCSLPxfDb77LPPyrJMbHbnzp3Ly8u2bUVidmU1yJPWBwFokjxSfHV66X3MU1Pvy+Nb89l8HoKLrquqqiiKGL21aV81/d3vfPm///v/6OjoYLdekQ9RdMvltRCQDwZSokD0Pl5dr0bDIs2skFQM5y9fvqzqrmk6a9aTUTHMhovLc2MS1/njkwkzpxYfPLiljQEh630zm04ExhCd1hZRO0dCGGsnVbOuGgd1cPFaKNRaCyEUYIxd4ymEsKubiCKN0eaDN+ZHFxcXnYdms7v/xsO//tf/OmI0NnWtQxB5kt+9fTdReOfOncF4cH353LcVsgOOs/nhyxdP/p1/5//w8NG73/l9P/+dP/i19Xp9eXl5dHQsjWUQbVdLY13nu8hSJSwUMUgtOu/dvh7nSBAR6fBo7FzRVMVmpcllhwcTQcE7TJMhMa5X+6burE2PT2bW2sl4PBlNjTHAInrabbZd1wwGedu2KOV4PlUmFUl28uDR1a58eXl+VEwwyqsXF1araTFxu8rVQWu9cV02HgPS8yeP77/5JkUvjABAAMUMP/tzb75fv/k7v/PDGIMHjyxXy00IwSZJsECJrqqq83Vd11LK9WI9HA57bi+EvUmS1nX7uhlPZid3Tlrnu84vVxsCsdxULopBlg8nsz5oloi6y8s2xHw4WW83+7qtu7rPlmpjQWhjYCM1IdZt0xHsG0cigNIRwXuvlMpzUTV13XSEwbVN76ORiAyslMqyzDsHwbc+ChASWQqIHIl4mA9DCJ8Pqd77fhXW6iYDUkopUPX2CqL409UNIDBBvOGAP4/j4L6alyjGfgHwkUBrqZUCISMzEyspiJE49noOEBKBCUAp0YXITDFy6PVWzIHBh9CnW/RANUT/eRgIRcLXd+drKvqmAAH+qQ/uCxmFZIIej+QbfJc/pwg/LyWMTBRvypTC6wtSKaX6CsXoOfTZhX3CDyuUUqIQfaIYMRAyIffIPBAjCJIoJfZZHX0ZIgGIXtImhJD/lNmpP8E4xIhAJG5qcxGxb36SzAAxOqXN4cnJP3Pr1tPHj+u6fvOtR/funQCAECrGGJw/Ppp9vFnsry4F+OODOXFblWi02e3XL9yryWBCRJPpSEvFLB6++d7jZ89v3zkkH569WhXjGV1vfuYL9wLGj56dmjw5v9qMxtNsnqdaf+nBw/LsyUf/4P9tFFmRH04Hv/SLX3/3vTcbx//R/+0/Xjx9+caDB5OBXdZ7Oz2sgrpc1cbo9dW6S6YqMfrN+/edc9fX11W5y9KDwWTEFK6vLmaz2Wg0ul6sjJJHR4eIWO0LJUUMfjwapon1MVRVpYy5vr5uqqqqqjRN7Wg0GhTMvLi6jDEqKa0xSkgXQj9C1k0DBEYqpVQVghJyNBpGH6r9VilV1xUiGqOqqvMxGmOEEF3XKS2Ekkyx8w4EaCVIArWtECpNU5Mkbdt6H1CKHk5hQuIbmEiiEAiIIiJbk3gXlJbM2Lkwm46n40nTtqvVqv+xdiE45/qcMyIaKP48dSs6J4RIEyMROHqNLCCwkVZmjCyYuhBQQD4cyNb1EdNGG2uGwywJro2hbaumF06BQCmV0hpDm1qVZqlnCIGkVlqqGNBIoZRVygwHRdX5uove+4gywP/gQzDQDYdCQkh+PfASEzIJYInQnw5CCIHcB9IShaZxvVOLgnfOSSmHQ6u1dm2pEBFICthv1sM8k4Ag1OLqejgca91U1b7IU4q4We/6oK7RZMaAdeONVAH8erNrqjIvskSroiiYaDweCyGcCwBw9/b029/8ymevrlzJJycnOs235d75Nk2tc25T7QdZ/sknj49uzfLC7MoVC6mscTFMR+Pg66dPH7/x4PZ4Pm3q7vjo1tXVCtDfOp7HGKELITiJcrfZTUbTs7OLV5fng9EYGJWxF1cLAmydc8H7z15lRR6ZtdYHg5EQYjAeXF9fbLftcldTjA/uP6za5uXZ+t69XFnzG7/1/d/+/g+lzbquyU0WX593SqmDg4PJZJYPhs+vLos0k2iih+Xi6rMnLz768LM7x/d/4Y8mTdMMBqOqqjoXhDadi81+AywIEKVoyjIG1tZ4H9u20qwAgDwAgZA4ngyGhdUI281qNJmnxta2bprOpnhLQAjh5N6xFDr62LZ16AL0qUgClVJt05pEC6G0MQByV7XWZu/8/j9w8Wu/9up6NYvj2DWzWwe0a4SPWWG2+/344GC/Xe/qirW+uDi/dXwC0AFgiF5JWzc+zew3vv6F3/v+D12iUpt13QgAuzZeXS/rKkqpmaokyfJ86Gl7frUWQkwDzuZTYRUHt692l4vrYjjJ8pHUtqy7PkG27nZLUUqJPnJZ7ULnjDGzg6PVarWru4P54bbxEZR3PuqeIWqc80KploCkBkmA6CNFAk8MKIgguAjM0QciQikYoVcjxxiB2UiV2sQozczGGGOMC75pmraueu42OM/MKNhoDQDW2tCbG4WWUkgp+1+iEnhj8sE+jarHe5sQbqIttBZ4Y6TplwrvvTFGFpJBdL4TwFqasqy1FDK1BNh5LxEpeDSGmYkgEMXIDBQBI5GPxIwgBIBgJgIm6gfxm2sSoI8D+OkGzK//+/lyfHMHI7oQEanXhwohmGMvNr65xaUg6okXAa8jNplZKiGUYgFI2A8cgIQKJYjeINR/msA+RrpfYwlfc2K9JxnhxuWEspdVwefC0t6F3M82/STUo98cBSsFBiQACtHe1EYNIPh6t2fCh28+evXsGYWY5sO2a6WSrvNdG1Cbt77wfrePP/nsE+08wBCV7JwzkkGKzWYzGuQXF+ekxL5u8sFEJMWLq+WdyWBbR8BYu/D87FWIrcRwcjDRiC/Pl6SymsV0YH/5T//r77395m/+/b/11fe/efHsR3/tr/6NF2fL2clwebn70t3DPM9QxWw8hCKf29lkancuObtYNllUbbknY46OjpSAs7MOYjh/9XK5XJ6cnNw5vnV+fi4EzKbjy4szk9ijWweu8aenpz0HlmXZbDa5vr6ejodJklgtQwhWSwFYVdVkNETE7a7K87RtXdu2LLANoTfhJUlyfXWhtdZGPX/+PLH6aH7gO7cuSyllP+XcWNM4+Bh8JCklALfORaAcLTF30StUJk20ssaYzyVXvbJPgBIChBAIn7v0AFg61wKAFJgk2Wg4yYphudvs9lU/M1prd7sdIg6HwzRNJ1pZpYyUiKislVIq1TdpNwAGAPI0M1r2+DMwhRCAOAQnhGAKLCAx0rW1AAaIUqBWWkpJ2Ceo0iiziMy+U1plWaKTFCl2TQQK5CILyIwRQhL7SnRGwQ3yzKJfoxF7exHAjZNPEFF4HQfdYwA9hKQkCmGMMRDJMfc/BWstvBZ/9ZHRPfEsheia+nq3O5gdTMbDqm57cmE4HDrXVlU1HQ0Pj26Xu63z1DQuSQomB1Lt1huO/vhwtt/suMgTq4nIO0dEUuh8PATcvfXW3UB4sWgi6N/5we/de/iGUsJ7d3Jy68MPNnpkD06Ol8vT4ejw+OTgyct1VqRN1VRKfelLb52d4dnly9vHd4BxX7tiNKdYLdfbtq6l8EU62ld113XR4XAwDp6Eksamm/3+6Phwtdtvqmqx2lVNm5aRQRiTxEbEGPNdV3dOp4Nepf/idBEjN2Von14aq7qu2m4qQEKddK4GIC0F+UCBh8NxDOA6GA3nWTIJLubpwTuPfvbf//NvLVa7Nx48dGV5cXo2mR8sFov1ep0WA5vk6MmYpOncdrtvO8+M2gciWi5WzZLH4+HRraKP7vZt07W1a2qtVFVVECnLMpDgY5ioRCg5GuXRU0Ncl5UWjCDrprSZDeRDdEZZRpwdHlZl++zy1WCAOwx33n//6sWzy1evbs9Hm83O++7w5OjV8spY66LrgpOAVpnd5YJblw6L8XSuJDjnktQigFL43e9+/Qff/yESCkQp7GSYdK4pq1YrCkokNtk1XqXDApPRaNS2zZMXZ0LQYJgd3713ebVYrnevLleASquUGRG9NSrP01TrNvosz6d378YY1+ttAJTabKu2GMwYxHa727oAAKS1j9FKy1o7HyNiBGRQKAEiAAgFQgqTJ4nrqPfYRCYXgxTAzG1VijS12hhtoLftaam0kBKV0D3q6r0P0VHkXkoS42vJNIvX45cRQgF7fn3p9mM+M3vvmYhfs84g1ef3Wb9YS4lEEGMElMTRR/JdlyXGEnSti1IYJaIPzD3IzEQQmSIDMxIjMxKAAMEIIG6uqH557bWc+DoDE17v34j8OqLqpyEhzD2a1gu/5WsnFTKQ7JF2YHxdJgGCGVgqxcwxxOCj7l+oGHqjU0/9kkAk8jegI6XipsSiV3EBQMQQI4h+5UVEZIE3wvLeZNx/shQsbwDqG9dGjOA9xwgxRgJljJEAqZbVrtzt6+H8CCPHEBfn56PR5OXpmV4s07ywSaa10Zm9XlWbzeYbX3jr1r3pP/jtH+72nsGU7f5nvnj/7tEk1u768oKhW652i3V1uQ2NJxc70S2++uWvTA8P6cXpr//WT0bz44D56cUyy1Jg37eilyGm+dQevf3gy7/4R/75P/gX//xvn12spcFV6UWaHJ4c//DH3/d+qw9vxewg0rX0+Ze+/vPTg+OzQKosy8PDwx//+IdNXR8eHo6Gw/lseuvoMITw7LOnZVXfu3ePkLMsubpavHz+YjaeFVm2K0tmllLmSlGISqnhcNjzK01Vt64DgOB8XdebfTWeTb3viEhIRTH2b0EAGA6Hru26ujFKI/F6vRbQNxf5wNS/T3wIQgitJaIKIQCCscZo5SlqAJNYjj3yQf2V0w9oSZL0T4tUqMSN+l8i9rmmShlEJgZm3u3KrusohP7eDSFYa7W2LgQXyILot8P+JrPWSoUxxs51VkmttVIyz3MIHTEDcpZl3X7nuq7nvLuugwg2KSJEiEEJ1FIYJbU1qHT/Xk+VQyW1SYTUEYCDR2SjRFV2zNw1bRcJVKJtlqUpVU2QLIToOWD+qVSBUaDWWkpJBOFm2I5EpKQMHCOQED1opEBEYlUURVVVIYQ+I76f0LuuG6amx9yIaDQYhuCrqnI+KqU40n6/z7Ki3MUkz0IIRGCT1AfSSlRVk6dplhbeN+v1ejYZNU2z323G4/F+v9daa4XLy8vZDDEZvfXWm45eneTzNtBitSCKo9Ho+vp6MpkEoiRJHr391vnZZ+998e3rMtb79pvf+uYHP/i9J08+ff/9h0217Lpms66qJp7cmo+GeaZSLexuXQdBbROXy/VuWyV5OptNbGqevXg+nM5AAkE8vnN7dnxvvakeP3mx3ZeDAsO+jRCbZy+zIu1Cd+vk2Grz6vySPD24d98Yc35+enL76P6bbz//7DEzSMTIMMjy/iUqigGAQFCDYpqlI4dRi/w/+g//8n/xn//1zvE//sf/BAUvFouTu3fmhwfdq3PXeW1oOp0uVltEKaQeDLK6rst9VRTFYDDYnS0kdEXRNk0jVUQkKYC8oxitNn4wiBBRwHQ2iJwSR5uofVsJZIjEyMG75WI9ng+brnbsbZK40L06PRVCD8djinB9varKfZ4X3/h9333y0Y/K3eZWMpblblWXR8N029bEgBSg8822hrq7XOyPG8gGhdTKGGQGKQCIv/DOm/v9fnm9Wq/2WsthkXZdI2WU+aALEAOliZ3M513XMZp91dTt/nwR3//Kl49u306H0+fPzs4uFoeHWdt6jj6Zz0ySNl1VVSEvrK6r09NT50LX+jQboMTORa1Mkg2ZdkQktax3raSIUpKLOkm5C9oYQOFCSREAUaESqKL0/U2GUvSMbL9e9YOy1tpI5ZwD56RW1hjXeOccIxirpLrpHOut+X1vG4Lsr9gbUAnF57ealLJ3HfSgbgjUI9hByM/dSsbaXv8YfBcCWqspctu2Sty0/LrgEqWsTgDAuRCZACAy9vWHve0KbvBnAoY+IRLFTd8wQHi9hXxevvA5Jfw/DrHqoTPBsl9UCIhC7CHwnt6mfyrXup8tHFH/t2G/4yIwR+b/gdCVBUoEKQWiRLoBPvsXQAgRowghAAUAQpSy/+d61YqQ/edIKZUEidBD8p8PDTHGm9AUKYQIAACulsCvXr4AH4fjWehCCLTf75nw8vJ6Vz1vupAkWQx8+/a9bDg9e/n44O7JH/iFb/3kefn9D14Sqovrs1EOsfaNq3SebfYboQxL1bV1MRq8MVJVtZzNbpt07DmsS1W20sa43l2Z3IAMTRe0yUpH54vOju5dXF95BmMGm2q/q5u3H93/xrd/dorbpl5fumjy8bvvfBcq/cUvfZ1uHV9cXKhtC+XpkliBHVYkN5fL3W5XZMnx8bGrapPn27IaDAbzyeHh7NZ6vS73NRHl+UAptd3ujUkYRV23m82ul0NrKfb7/dHBYSRvE62ClVqhFGlmYy8CRLndbK3VPQkXOLrglVIILKXoWXyKDEh9ODdz7McriYSIGhkpIoCQKFENiqxpGkGRgMm1CtGkCRE5L7uukyZRWnfOee85slJKM4nXBnwfYVNueM9pmgJx7xRc77ZILKVk73JrGkLXBdHF6XgYI3EAa8wgTSQKZu983O72EnxqRAxtqpPBMGfmrvVNWQtirVX0HTIMR0PA4H0HMkilpLyBxwm0AHEzbCICeA9MjB6h9dF5DpF8XUWutDJ5ZrCu+2mCeuyJUUillCH8nGrqkEkCCREJKJBBZQUJAFQo9uu1QpjNJ4ury+kg7ZrWIOSpBRBt207Hw+BrFzsEHSL5GCiC1hoEIrum3R4czNu6PpgPrVbBhTTN2m4jhCASWZZ4jiSE8wqCTEhLRue8aKENsuq8FD5N022JGXXex4e387pe/4Gv3i7r+fVic3h0fHp+dX29NMacPf3x/bt3bITLx6eHenLWnv/4t37j9p2T9Xr52ccvB3Z29/adl/Ti9PQldmU7n7WuyYqUE/Fk+dnYJEluAZP1xqONMrhni53eRoF5Vbpbx8MvfvENjvVb94Z/9+/86vr0VT29PRiNz6tWOjRpevZkTYBSGKbQXTcY1rNBXjftn/pjf+I/+L/8eaToQDAwpEmHuI8hJGYv2BxNBEUxGO5OL4/nwy/93Ff/tFLVrju5d7t0uCv9Rz95Pp3OB8Xh+dWyquuIzbasAKVNjWQ/ng2HI2uNuDxfFAdZF7pVuRuNBsyGGZBR26Hruk1Z76MfkbPATR2KNEEgSUBRrdbr1vv9ciel9MhKpyfTeV2XgsXDB/efn56XtVuuVoPBKGldqnKtbbMXd29/+cXLJ58+ffngodmumyKn0SgLbQM6MG3TQjVhGzuzPN3upG3b9uTO8ezBHaEwQCayfGzy2eTWZ598tFxcKIahTZ2XOyd32zJQVKqdHcDp6el+uwWKAvidd945P9vduTfKs7Ssn+WDYeNdI7AoxiWIrvTapB789cqp3ZLIMGhSKoLItYwxbtuV1lpL1YWu65wAuduVBEIYjYKllSF4AiG1jOyYwGa26zqhJBEoo4nIKgtChBBsnu/3+zS1zKJ1wShhjGHApnVKoRaq38Po9WXjvVdCIrJgAAwKASUK6OVFSume3gEK/gZzAgwEQlrnW6UUo0AUwTlrtPRbgDoSZGlqUxVjYCkCQGSqnWeUqbUkVekZQIYYIltmBiRE9XrajsxETIKUECLQzQztnAPuqSgk5l6mSRxvEiGFQO6TOHu4C7BPyUdzs85Sr4QSHEOkKIAVSxI3YmmGvvQI+lsfUQCwCwERpNQ3RzSAQlBSKBTIICIIgYqjZtDsEiVlT3Ab0TChNpGQSRIiMCGylKgUoO+ElIhSoNBapFoYrSSwFEICOueAEZVuyrCnztoksYlSQqWDqvOw2wGorJjIKNKR2fmLplx/9OoZy4al+L3zx0mWfu3OZPGiRbwcFZP5wF7t8XJL24/bQSZn0zfaJGmATQbDPJtql0j/7t3jZ5+9cuvm/fuHy9MXrY8uBohFx1oJLQgGkrUrR4m9lcvZ7btZu1lfL8DE25nGq+7hbHj/jQeiOT+i+QHeXg6+Ut7+6nBqnoZlung+YaV817XRD4dDKXFxeUUcDw5mWuu2reezGTNnSfrhhx/mSXp0dJRliRQ6xrjZ7zabzWqz7hdfIurbfPM8Hw2Kd99998Wz59fX15PhKM/zy8vL3lXsY6zrVko5Ho8/9+giiF44FSMLwYjCKOURe+uueD2+3UCpAJ8b2Po/vtlsRqNRr2jNsqzrurqu+weVDffx3IiYJkk/jSrGz4WL/VTIzM45iSKEYJMMOIbglVJJljZNA+TzLFFaE5Eytv8apNCua7TkEGPTNNNRluc2s3JU5KGsvffIrPrOI6mIYghutVolqTFGSGP6fjEhlNYafBRSSn0zIAcCJOr7V4REDdynzkUfuq5rvYsxSqmlUlooZu5l2yCFa1sA6B+wfm4lAiIIsdNaW6OYo7FaSVACKPjxZOg7d3h4eFObmKX9UDIYDIRQ69U2hDgoJsODkfe+LqtmV83n89lsvhWrfpPums57r40FIKVUnmY2Mcjgk851TVVVWirvg26aPu4nTVMUSkrRHw4hhLIsIwGj6n3nR0dHiPLy8vLo6KivlazKSiby4GCwWDnvmwdv3tNSfvzxxzbN8+HoNurVYjkFRRHLXTOZjcfDg4NBslzsGOz1YmX2utu2oenKTQUiXS13jx//6LPHP/jyl9+9d+/eG/fvU3iWTUeT6cRocXZ1xV6Mh6MQSSnjOzh/+ezh/Tvz6aytlt/5znf+wv/5L/ynf+k/efzsIyO1Zs6lTALdHU4yT8OI283+6OCkpMt6vbx3dGC/9tXHn372n/4nf/GX/tX/pTVpCOGz588IBIME1KBUVdfFcLTf77USk3ExGc0W15dpmkppBdyc+yFG772Usmq7XlsUIm02u0RhU0NZluNB4SGGPj5Q6ixDKWVd1+v1cjYbKTU8PT1VFxfr9Xqx2tkkNyYZnsy94/2u3u43FLyy5sGbD323L+t6t6+ZlHNOSxyPinLvvffCCEEdKxxk+eXlRRXae4/eQcDI4B1IDVLKyWRyerbQ2jYubtY7Imqd35Wr9XbXtq0QmKYZMj158tl0Ot3vq75HJMlymyRapMzsPXnfQd0roQgAejgtguiCgJpuImWVzXPtA8U2RO5tO9C2XYgcGSKzMhYRBcogiD+XQb3OYQYAeN0B0Me4aq2NVUzctm0vj/hcq0SfQ6+v1y9EkFIKiQI+7xbjPoSg1z0hCGIOgXwgBDJKM2tkYL7JuAAgJTD6UAyK4XDAKLuua12nlNBa9/8cETShBer9liCwN5nfmIl766aUUiN+3uMLADF6ZjbGEDsAEHhTdyABwo0/UzCzIATRM7McOTILih0z933HvU2kFzj11g98vTTfXLGISMwCAUjcKJRvFlSBKJhEr/W+CfcAFJwayxSGg8F0nHnXxBiVMrivO88MggRLgVKgFIAAFL0WgghiYCP6dASJiEyklFYIiLrnwgEpxlhVZWKHSZKMRqPl9eLy/GK93rsAwmTSDJ68uEiH05NbR/lksin3+aC4urr67Ox6OnFayOtPnu86aEmXravKLRQqoer4zQff/spbvgtdvRvcyj/75IOrRZwfz5a7xeGtuwcnB5+dLZMiV8NhItRqt48xQvSpEhhjJcTJ9ODlj34IQINBwe0mU/DWO28z4Wg0MRQvz2seyqZpbBN9twsCTTJVWWKTZBBCUELeuX2SJObg4OD84nS9Xoc0a5pmVAzu37m73+83q/V2uz04PAlMUsrxdJLm2WqzJqK33nqLiFarVWqT7XZ7cXae5/k3v/6N3W53ttlNJpM8z9frdb3ZjEajHrszJul/2FJKjqGn/fuKC0RUQvjIfffGDYEPAL3miAGZUXCPmkqGruuSJLHWyiB7p3xwHrTowefovBCCUQgGI5XqDcTi8/eWQOQ+2KW/mF3rob/bYqzbRgHlWaa17p/htuukAKt001SYmNSo1CazyVSLyORCCEiMxEQUb0QaPTGEUikEKYQUqEFIBug8RY76c0dc37bJRETxdY0JCimVtIIZheu8pwgoUfTZrTJEJvJEQNH158Xn+Rv9CUIUrE1idMBCa4lM0XdKKyn0MB8SUZFlq81GKcUxRu898X63zrIsK3IEFSNXVVPXtfddkqaIuFgsuqYeDofOOSLSWit9wza13nVdJyQapauqGY1G0fmucwDQtV4bWTVtWTdEaZ6m1to0K3RZbxcrk+RCiOVyadMiBCcl5nmulTy+dXR29qrp2kExnB3crzrXuk4PRqiSVxfXJ0fHq20tVLrdNUUxBKSu9k3ZLNsyEh7MD58+++zFs8d3H9y1CtKkaJqYJ3h8eBsFffbk6a3Do9//89+9f+fes9MrH+oE3DTTxbB49/33P3v+4vT0nANnVtS71cpwokFK86/8r/9X//af/Tf/ya///f/wL/7F5fVVJtRBXiyfv1o8fpxowRx/++Kq67o7h7fQil////2Dd9798i/+wT/URf7il94/PLy1Xq9Xm91mW55fLygErbUxynvhvG9aN8jTrvVSJeNsZBPdlFXPOzoXlBXORwDRtM4JsEpm2SBNTfRt7XxuRJKkVemSRB3fmrVt23XdbDre7/eRfFnt8sEQGRaLxXSq5gd6s7/uOtc0ngikltPpwe3jefDN4eLW+avz1fIiMQlRjAGVBq2177oautuHqfMtxVjvymePH997+AWFSiUAgZQWNhnBxXJ+eOQvNs1q7Vyo6oYQAGVeDJVSRZ66ttFSMCIIde/BnacvTl3nOx9MokIIBP30GZmQBRKwiwFYeB+YWamb9J6k5sEkZxQsVYwUiBkFoIwcGJEYvPeMN9jpjRWidxy8voBf18zezPSIGJ0PIfRiz+iDp746vm/OhhtsFECi6GuOlO55ZNZSKiWsNkQUySPfZGkJjHxj8vYIlGapBACOGuR4MBwoj4iD8aSf3ROjiYNnQAYmBtn3JYjIngkQFVNUSiFyjIGZVV/pTRGVvgn6oB7Sk8heCkCUhHCz5lJkEP24QD3lxtAbhgH73ZalxF6gFclRBACQEpWQAPS5HIpvbBfAeJOi0OPJ/TDDGJFuVK4KQQBLARJACBQCObgksVmitJKCZRSgFOaZ5dJFgECEwBKEQBYUEMEH1kqiFAgyeHLARgsjRQiB4ebMJxQ9L9mH9xGN54eHo8Hw6urq4aO3OkcvX129uLhOU83gsiRTggTF7XJhtFR60kRcbivA5Hp1Nbl192Q6FbEZG8pEq5rFh7/z42dPPxsVydMPfzxO7Vd+4dvRV1/4ws9U+yW57Zv3Dv/JD37y3/yN/3J++843v/sLQnAxKrRAX5YmscVk8GK3ds4VmUzHkzyLo+Fkvdv/4J/8FtfV6N7PDm8r750A+85bb3X77b5mVeRJmqaHh4fL5XK7XWsp6mrvO3c4n81ms+XVdZIkUkqOVNf10dGRTi06J6U8uzgXQmij0zS9vr7e7XbMvPRhPp+enZ3dvn378ePH+/2+FaqPYWuapudl+7d+37bR05YobtZQ55yU6qeCKRAgXvt3YxQ3kd7QO8eARQxslWrrhiPlg6KfYfvUFWQWQjCAlYoRORITpWmKzJGptzq8XoUF94EeWvW9SXmaxRg3u3IwGIwGBQB0XSes7ndo33YVkJSSQpSplUrEGLu6FOQh+EAcPXEkiJF88H1EjgKivipUh8jWWiH6RNkYEXrdSIT4+YuDKKmvCue+xVNqrYERKVL/nKMIFL2PvV9ZCGGMicTsPdONe04oxax9VyMTGpMZA+S1YCZPQQbXSimvri7atjXGEJFQxnvnQ9iXtTE2sTZGatu2P/uUUk3XtnVjrenHEa2VEEIpaa11XRdj7LpWoVADpbStqgaRpTIE4ImQVHJjve2MSQyhVCJN8xgXMcY0TUPkNLNt206nUwCySZrn6cHBwenZ87raosLxeHJ6fuViObt154e/98GuDAez+WaxyPOB1iZN9H6/zW0yn2fex+Xq8v69Y6VUMRzlSbLe7QaJsApHo4GUcrfbfPrRx3dO7j64f+fRmw9evHr52fOXd25NdJpNEv7J6lyFKlGGgEeZTo1o663L5JMnT6r99vjW0Z/5t/7sv/9/+veqqtYm+blvffvevdurqzMtZdXUdds8ePjW6eXij/yJP/7Nb3338mrx0UeflGU5n58+fPjw+PiY4Hy9LyPD0XxeNx0iEgWtbSBIsmy9XHojlB7pxCoUnqIMPhIwYyCqm244HLKEq8V6b1VqZWIsCnYugMDxeNy//w+P5tE7YgKKt27dUlqORqO3Hr7pSfrOFePxvemhd/TJh58sl0up5bNXZ66rN8tF9HTv/sNBMTp99erZy3OB9MbDu1dXq+Ojw/1+LwWMp+PAvFmu8vyiKMZ1Wc0m45M37gOIjz59fnF15Qi0tuPJvGq7qm5RqGIwJKLOheFoisjldgdC2iQXKENoTJoJQC2VD+SC94HaEBlRauuY+pkQETWLnuCsQ7uq9z0Xu2+6sq6E1NamBCISBR/j6w0XBEqtlNHo4+vdkSLczPj9sqi1RmbnWq21MUYJKS14FwX2TgFCRCmUkMDMWirm2NOTAvreTyGllAowMBMIpN7DKlFKiVXdBteGEITVKACRjFTWSIuU5JmR2JR11zYoVAieCVxkivBTzhWQCBxHIwQFL4TofbSvcTsFCP0F7L3vi536Lby33xIQkojALABB8esrOdzgAghMr8FFop9ezv2yKwiilLLvcJCv7+D+a9NK8k3KNNwYOkCBAIYogSUKJVEiSAQpUUsxzYeT6Yh865tyPBwoLdum4wBsyRMGT8wMGAWQEiAkOIcxUgwcRNBC9t+QtUZJ5hBDdJE4Bo+otJJC6iwblbvtxcXFvTsn8/nc++h98+4X3rr/6NH5YuNJtgSL9T4xYrFcdi6gTN5569HQZK9OL8azQ2stMMW2nk7ybr3+q/+P/9ff/9X/bnl9NR+P/u1/43/77Z/92tl65a7Pvn9+/sUvf/2tafajj37y9/7q//Ozs+vRz/7cIf2MTbNPP/qdttzn1vjVFg/y7XZ963geunWM3keSxl5dLp88O/3s44+P3hS//I3/BVs7yNPF1eXxfHp8cqiMQCvF6cvnzFxkiWvrTkukuF4so/O9+D6GIIRI09Q5hyFkWdZ0bjQaJUmy3m7W6/XBwcH9+/cXiwVHklL+4i/+4uLqKgRXFMXZZsfMi8WirmupVNd1RNQHFyt1o86Xr+NS+Sbjm1n8VI/OTJEI6UZUID8XtQMwc1+pFELomtamSQihqqo8z5W88e2hBqEkADjngCjS/5jVv0HCUQqBN84cYCnl51+qd51rvZWDllstBBF1TWuUYCX7FuTNZgOxTRQ2ddl3fcfIAJjapJ++Q/D9A66tJaK6cVIyEVmrPHu4USreJEf2JWlSaeLgiZEIBL6G3xEYCBj6LxuiEMIAoNJN03Bv7Q3U3+JCCEC2ErTWrm3rfYcItw7nRmkhoaqqbV33vY3lflsMRpPRYL/fG5GU+4oYXYg+RCIw1tZ1rOuWwfeNLtvttjfn1XWNIs3SlIjato7OdzFGChRimlolpDSy/yZ8IO46pRREP5GahWTG4XA4Ho93Zd20rfMxHw6JQ6TYtiFLk+vra6mwSIvT80utB8NJapLB2dVyu6tsMb5arnZlLZl2u01q8NGb90fD3HdhtyvTNFUaNovrIh9WexwVgyxNvffHR1NEsd1XzqS+C4vFYrfb3D6cfuHh3cNJ/uLlaYQAzWagg8rEeDLS2s4m0yxL1hsVQ3dxcXF1cfbZZ5+9evXKsQKbNyHc+9JXwIjpfAqCBwAAsDq/um677/7hX7q6XK7abrXaDAZ5XddPnz+zJk2y9N79O+cXV2W570vxhsMhInadz9OiTZt+8VUofPARWCnVdh6lTJKEAGyaSsS6rt2+BszzQRZ8k+V5Va9Xm12WZXVZDkeZym2W2O1uI4XaldVqsd/sm6oJ2mxrdqNROSjGB7fuSzNg6iJ109khMXSNazw1q00+GgeIV9fnT5+/mI4PQNgeZdnvNsZmUuiLV690cr1ZroZf/ZrwkliztJt9qdMsywsiaDsvpJbGCJME54hwva2t0dfr3eXi+52n4zt3nz17FgOj6Ky1wupEpCzVvmw3ZUlAMXAMHCMhYhTUD50IUNe1dlEI0ThfNh4gJoQ9N0Sv97w+mru/I/sKBGYmhBCC932LChVFAQC9W8EY4zvXhDrLkx4PxT42oHf9SmBmqRUF5teV25+fTgIZkVEyQi/ZBYmyZ2SL1HgvEYIgTBMrgJpqmydCkG7LTiGlWm+2OxeDsalAUEoZo4SAGKlXeAFAH2aOEpO06FOPIoVe6kwUIVIfWyQw9uzvjUeuz7gAwdj/PSIgMWN/7FDk/gUB4BA9MAtEIQW8TtHqj0QiIoooldJCY18pQYlWvfoSgQRAP6wIARwB+wAlKSSCEqAUGi2R/TCzUpim2rqmrPcBEfMkYyLLIioOFJkCwI3mWWY6OO+7BkkamWhtE220ElIiAQEqAIjQ0U1DFFRlExkuL6+vrq4mo0Ga5FLKstrVXVCCyqr69Olzmw8Gw8m3vvGNEOmjpy+ZOclST9GkmojOTl9MbbAi+Y3f+LX/6j/7yyfHR3dvzf6tP/Nv/uyX33/88Yfr5bW16a5svnd9uViX/+Wv/NcDD//Bn/3XTFH8tb/8f/3Wt741iOGHv/YPB1lqhNiZ8sEbd4H3n37yg7MXZ+PRPM+Kzeo6LyaD6QnJ1Cbpvq0vL6o3jpKr84vlaqsEw3q9ds5Np+OmaZIsPTg4aJpG69iTiKenp+PxOPpQFAX2fizEEPzBwUHn3VzPT09Pnz59Oh6P5/O51ebi7HSzWt86PMyyrK2brutGo1Hvo02SxEfuRbbM3MvQXwvQb0hZjtxLrnoSgYnp872QoTcUfb4T9856H4NSKlDsV3OtdVVVWYZ9cGbTNDFEKaUADM7T61mPAEAIAggxCgClVIzcq/F7OrlnofbbnTZKIRJR2znSSrBOrA4hFFmaJYlgX5dVkSqtddfWPZGjpQQpEKVA2X8ftu/v1aKqmhijj9S2nai9lJ9b9wBvMHkQgi3IwMDUc+E9nsxAxIAcCCD2u75AZgTBJIFRIKKOeHOR9+eIDJ1V2ma2KLI0MePBsK5L5xxGrwQP88wY02mZZ8l+t2nadt8GF2moE9c6IrBKF8VQCIEQqnovEa21TbW3OkmKTAiRGqUFaoFRKsx0pKClAg1N01hj0jRV1szMDBH7UM+6bnyIWrGDOBwMbt++7V+8Wm+utUl2u10/h4Wu22xWWglmRi+NTC8v1k9fLUw+LAaT6+tqt98GHz756KNvf+sbRlCeyKcvP7tzcvTg3l1ksdmupNZJnvbnyHq9fvvtR+cXpy60i+Uuz8bvvvPF5Xq13qyEQg7tbn05n4wVHpZ1u1gtjyfZZltNh+be3ftJki1Wy0Gq1+uycfWrVy8nw6N63+XFpAs8ODjmJGcOnqlrmiLPtru9M0k6PQBpJvPjT5+evvPOO0mS1HUphIjAxqjZwaFNkp98/IlAWVdVYm3ogLT0gIlOpMTQtSREL+xXSgkfCbDruhB5udoMiiwbDLu66lxsnK/r/Wq9Hw6Hs9mcKG53ayFEjC6SdK7V2t65c6coGn2+uLhctc6nw1lVxdXy+u7tO/vKL64ujOWrxWJYZDYb3Ln3YLfbPXnyZLtdDYYFCtbJaLurOOM8Qd8BsCRBLL13dZbKstqUZdiWcbWpstF0W1X5cPTi5en1YjWaHWQq2TeuLEullBK4WW08QfT8gx/+5L333n3z0du/8zvfB7Ezxghjk2ygdBYUOyDvO0AZAVlwjIFbp1BIiUIIZfOqrgOxUkqnuffeESADSiVAhOhCCIh98iIJIVBJKTUDK6leW/KE975pGmttn7mshIwxtm0borNJ9rniRAjRF3pK5Ne76Y2752bABYAYBIKQiMTAxNS3I6kis85JMpQkCQUvkSkEZEr0wBpDsZEotGQEFsAxOCmlsXqQZ1rrruucc4gshFBAJrUAwN5HJGt0jNB1ndbady0iWmuTxHgfO98BopRCIQohguin9L4NnAQxAQtGicj6xq9IREmqY4whRmZiRkDAfmHvKwUBAKl/8ZWUJNEoCRwDEfanNJNAIUAACoksJSiBSoCSYIw2WqZSrJZXRorEKsQbo/R+u7U2ARSkIUYIgfuuBmRSOtOIzoUYfddxW7MR0DNoEm963kAK1wXvPQEXw1G9340nM+A4HI9j9DZJ6rpsOx9Rnp5+ppVIrXr88Ufj6eFgNDo6mJ3cOn727Jn3XbPd3n/wxpsPvr2/fHJ9efH3/u7fuXf/zm6z+aU/8oe//d1f+MmPfni52ETnNmVFxC9OX+2r5g/94nefPnv+k+//2ieffnownX7t4WxY5F9/MHn+5PGd28enL17+7X/8wYvnH88myb/wL/zx23ce3Hv4aD+dfPLBD/cN3bnzRgDMsuyL7957+cn3BLnOk+o18aNisN6tvfeD0fAnP/mJlDJJElTy4vrKWiulTtNcSjnM8n1VKaPX281yuWydjzHudjtjzHK5fPr06Xw6C65j5s1qpbWUKNZ10197vfuIQgcgkiQpyzJGL5HpxodKFCIyaKn6O6wPPIsxAlO/9fZYaP8RYxQAJIQ2umnbBBPNumkapdRgMNhut865/iHpwW18ncXKUgBi77PpnyH6aWWY11L12VshhMTYoija/XY4mEtk8sFojQjB+5ZjYhQClGUJoSXfDrJxYqwejYmiMQZRdJ33LgohtNZCybatA0VJcruvYoza2KbpmDGCl1IaqXqsRwihBEkpQfzUnsvcGxB7AACI+uH0Rl3Sr/QUI6JEZgiBCYSUWgol5eF83ocPJFrmadI2pXed0TJPR2mWEYGPQSsTmFarVYx6UkycC23j2tYBQDQxriNRSKx0zmkpkaOUMkmMEKAEAFPXNkqKIs96wEIK0V+3g0FeFAX5EGPsO5uTJAE1cC4IaImIY7QmHQxGhxGvrpeXZ+dJnvXHogtudDjf77fDfCxVcvn0M2myp58+WWz249lRf1b+0V/+5cP5uCq3q8XF2fXqfLm82uzee/iF2cGxD9XB0cFisY5OxNj+5CcfPXzrbozeB7i63j5+eoFKHx3PdZoxx7Is8zzjGK3ie8cHt+bT8/OLwWg2zu2+2rf79XQ2K/KkrHZf++pXptnR33n16gff+5279+/Mpm9jBBQSCJIkQ5DR02qxSm1GXaz39cvHnxXDycnJrTzPr68vN5uNzVIiQm1Obs2rxjMF33VFlkkUvuuC64h9f6oOBgMhZN00ArB1ro8N6SEZidhyKY1BxK6LbduiUnBxMR6PvPfX15dHhzPnWmPUer0CRkLz4MGD8eRwu68+enWVJcVif/lb3/s+AtlEpKm9vDqdHx7utuW6bEDYbe0dy2x0wCI+f345HSuAgCyNFE3rs3yktRFaZEW+3W5v3X77xfc/eXm5VmXYlBXCtqrbLsblertvo0nTQNA0nZFSCO25zQejrq1//NEnBwcHt+/fd6Fumi4ANjG2640nVEkKiG3nPw+PiN4TskLkGKQwtQuB2IBgFISKIt+U6AntYwixVwUrIYRC0fq2z4nrVUVM2Ot6nHPeey0lQPQx3ESTdvWN+Oh1J8FrQBuISADA67qCn6LBzICoUAiJkXykCCwR2Qh0FJUQg9S0dWzqnQDOs1wIaKuagIE5uM5qKQTEGLMkkUIYCVmiteCaAzNrLWWMSaKIqK5rYFWkGrXi0CJ7CQEYBAsjbaIMe9V1ndaZEAKAIRICsEAhUKB0InhPIXoQwmgrpYiRvafEqBjBeXCRIkVmgQp74yXctLwIRJQCJEhUokcriQjhZmtCBmSQN9u/UIKVRK3QaDRGSQxIUShMrQYWAllKnSRABIzIIAKwAKAgiIlDBHLW6iwdRN8yhUih6xqKQutCSdOf/EZLJu99DMG7ziuTpmnunMuLoRCiqcs8z68Wz0aTg5OjQ2mz69V+PBoczuefPH7iUK6Xq0ePHj198SrGeHFxkWj4uW9+5S//hb+1WF5r7u7dv//H/8U/9fjZy1dXi0AYtdmVtfeerXn3rbfv3r37je986+zs7OTO4Ze//GUEOj1/ul0uH7x558MPfvz400+1sX/6X/qTX/3SFz768IN9Vf83f/e//Zf/1L94586bP/70NBseDIZTr+3BXD88/s4Pf/f70+lcOeem0+livUrTPFB5cXElpSyGAwAo97WSZjwe13V9fnl5fHw7EBhjNpvNfr/fbDYgsGm6ftG01mqtv/mNn91vNx999NEb9+8/fPiwLvfPrq7xptphX9e1EEIJiL5Lre5Z2J7T7U3rxhj1U7UzhhB6zXt/9PRtDOKGBr7xsXXBE0LrXY8XBReVUvPDg/V6W9ZVDyn/02iz0uqGyQ/BGNPzyUqJ4LzsMy0iDQaDsiyjjOPxuKFQFIWrq65rjo9uI8XNerldVbUSSKFrTJEoq5AZnAtpkgB6pRRFEAJQMHOsWxdCYIQkSVDKzru6anQSgyetLaMCVCSUEIhCSCW0VErL8JqsijH0L0g/TyiBgSJR4Nc3MMS+Mo0RA0fGGAUKo2SemcRmedKXtdB+uwu+Lfd7KSVqRGQEYApA7IMLPh4dHZ2fn1+XtRCqamogZAKi1nE7mQ6YqShygexcyxSHoyLRpqoaLR1iHA6HSqm2qr33wTvvvdbad83GtV3X5WkmhFAS08QIGHrvjDFS6v1+70yIMRZF4QMppcqmqaoyT1Kj0zTL6rr00VVtffv2rYvF5vLiPBuMMyuPb92bTqfW6roNV6vdsxdXnpNBNujk6OnpRb41B7NCZ0kxnu1WFUq7WJx3HzV3H9xtfNhWTRvAt135/FU+SGieHhwc7MpytV4BxzS129X6cDpJsrTaLaxJTg5nSZ4NR6PPnj8bZOnd8eG3fuZLH/7gd773vd987407wASRrFAABMHPB4O5zT740Qc7mVxeXq8vXjHjlcDxeMgUBkVGwMvFRTYYblabyHxydFhVjUSg4IosVYNCyNgTkEWR13XdNrVEoYC1MYEIBWituraWUs5mU6u1jSNp9Gg4Wa0XiJimaVfv67qeTgbz+TRN8/2u/ujjn7CwTRuPb90VGC+vXnkX5rPR7Tsnjx9/tNysb9+7Pz88IV589OmLELGLRmXZ3sk0z5eb51kx+erb7374o9/aLK7ffuuLV1dX44PJeDaq6zJENTviT5+8CqRfvlwko0GqlSOqO+dqp1qv6qZzrm0aI8WgyI0S3W5f5KkL4fGz5/fu3RMqDwgqSRlluVt2EWxuWx9dwNciKokClJTM0TvXsCNlJGJg9i72lC/5CABpqqUygFIbc5OmHr3Wloi89877fu1LkqRXlmy3W2vtIM9jDL3LHxFBy89v30gE3nNfViZRSKGUEghwg8rxTe0pghJKCJAE/nUrAoLIjFZKaYFt6BSAUTLVyvu4Wl0PxqPRaNQP3CE6IZPDw8OqqgR4I6I2iAERRZKY0HTRdZFCooUxSnK0xhbz6Xq9lkZ1XdeWu1TL0XSusNjvmSUD9G33JIiU0dZqY5JAVFVVXQeCqEVUEgMRQyQXEIRVUkvlmH0gYgZiqaQARASFAMwQCSUKEErIiIFQIIreQNSfxogoECSguJFfCSmllgg+aKv6OIEstRIFUVBSo1YEIsYIDMCCjeRAERShN0anRiNIBL5pMvRuvV4XaUZELlKapkIopQyTbJpOKaVM6iM8+ezV228/Ujpt27pt3MGR+sqX328cSH3x4uWVNclbj77wkxfPXp5fNJ1L0tw3oY+A/P/8rR//g7//q3li2ft/7p/7owCw2m4iAQvpPTuCEOH4+GS7L6++/3vDIs/z/Ktf/fp6vd6sl1VVzSYH//g3f/fTxx875375T/6rv/TP/v7/+m/8teur5b7p1pvyV37lV9569z33q785PrrjiK6vLn7jN5YPj0e3b99ljooQLhfXQoi6bfI8R6n3+70QihEC8WAwDMRpXuxfvEy2m8FgUJWbi4sLFGo6ndZtw8y3b99+7733uq579erVwcFsPp2EEFJrd7vdqxfPyxA3m40yBgCAyNqkrKu+EImZB3mxXq+zLNVa92w/hVgURc8yGqWzJPXe9+qnvjq+92N8jhGBkMam3nvP4DrPzGkqfdXoRDNHFzoFChBCDICgjQ7kjVTK2rqOzJEjpjbpbUhCCKnQKo0clYDJaBBcKwGq/VbEmCbm1atXxwfz8WCYWm21KvLMSkgSbSR47zkxVVUlKRJRXbVN02pti3y4XK+cc+PpJDIH727fvn1xdR0iR4qRKQRGARyICLLMSik8UWyd0rIXoYQQpERjjJTYM8UxeAWobc8DyX5c75wjgiiiTBJlTJrmPTW+3WwGg8FgkPtWF3k+yrPRaLTdbsuyrKq9UsY5hyh9iOX5RVmWgMV2uw2BAECCVEpn1hhjgm9i54TALLWZTRSCFFDkVgN2XVdu1kVRTMaDGON+v+8Eb7eb4XBorM0HQ+ccxQgxNmWpNDRNo7W22sQb4WhUKplOp5eXlz0eIxFvHR92TW1sulkvAWVejMrn6/EoHU2Ht44PYuD18rKu29YFYnF6uQPUq7o9XV29d2fURL/erYeLTEs7Gc50mk8PjwH99XrnCITKOmpI6t123cSQxO58sbl/9+Ty4jxPkxN7cOf+vfFguFyuJYJVqKTsmr2eje7fOV4ulyTqP/Q//fnv/vzXfvz9H3z04Qebjz/YbdYvX72wVg9GxdVidefe3UJbDWE6yg4PRqYoxuOhsYqCKUZD51xZV8F31X7rAmmptLZdU+VZYrTUQkrNzjmOIXp562DeNE1Vt76rMq1ns8lqu6l32/1+m1j16sWz+/fuIMBwMM6yrO2y9XoNGPNE13UN7F3bSilPTk5OzxbL1X4+PbLW3r9/8PRp9d47b796eb5ZXTy4d1LVu+nBPEnz6UydXlZt66/WXZKJV1dXd+7cLr0fz+bvvP/FL7xz9+/97f/v6elpmhW3kuMYI0qppPnw4ydlE5ebZrGuT8bzqmtZqtnh0dVqW3Uu0zbNi6ppy7YTEkWeIVMEBMQkTdebTZADIrlfb8q2FToVSpebJhIIbZhZoUiSxDU1E3ofKIqW4ucPfmCmeGPr11q7EHvpcl3X/f+x1rqu6a0UrvOfpxwrpZIkGRndNW3rnFGqR2h6cy30TYLInnzg2FcsUGR8rTqUN+5YQhQUQpRSIkkhpDJa6BjjTZGfNj500QlrNLs2s2aY2e12n2VZmqZpaofDwntX1zVx0BJODibOOeagNNrCAICUUHs0WittY4xd1xX5oH9G9MGkqqqY9QWvTsl4+2R+eto1beiFO2iRGZUxiJimpm7bdDKorey6rnNOCB4VaVl6ISSjRCk6TxKkVegCoVQ3AACgRGmUAIociRlQKa21EJKImJGRFaKUgikoFEKCVCgFKASg4H00gpm5z0nsoU28QQ4iCFBaCKlQsGBEoylGgiBFVFJneSYRKATftaiUYNjv99ambec263I+P9is9+v1+sXZ5WQymU0P0jwHdL/1vR/cv3cym03eee+L5+fnl1c/lKZIi9m9Bw8vrlbjyXw0nkmpyrrJsmI8TM4uLny1+L1f/zv79XKWmfHw+Lvf+aZ3TVNtmZyAqNrOrdbj8Xhi7dV2O9A6VvVivdlcXDvnyqoej8fr693ZxdJ5+fY7X3n//ffWq+WwGLSTbr1/pZVYrVZCJdOju7fffIckGqOGxeD8/JJpkqS2lyjrpm2NTgJBW+8j076shBA2SZU2u90uxlgMhuPJNEmSz55+8ujRo/nhwYc/+bhr2tlsprX8zd/8zR61/uCDD169esWRiizbbDYANJjNxuNh0zTz+eF6u1VKTfTYe+9cp5RqmtoYnVrrnDNZVlWVEaral1mSxhiZWKJAY5qmmYzGZVkCcV8X2NtgmDkqweKn6LQQIjJFH2yilTXYR79G6reKrut6CWUIQSlltWmaJvjOGp3ZZL1epyZ1XSOlHA5yQTG0zajIkiRpyv2gyJESISBNbfCNQCzLMmohMbF50rZtqyUAAbJShpmbpulcaLsuBNLWZEXRNE3TtXXbouzJJYoEOrEmSRB7XxV0LlD0UiIiRorIYJQUQgBxpAAAWlFmVJIkxhjgiIjGmD4+LMa4XKzzPJ/O5xfnV1cXi6Ojo8o551qtRtba3W6TGhtj7H1ExhhUWkgZI2+2u7IsQwj7yMyolPIuMHJvT9xvN1KwUWI2HY+Hg+B8D0goIQTFLNGIKJCaao+IRgkBOr91eFP/7EPw3Y2OHbmNMcbYNI0ARI49awBAi+vrruta751ziDBqmvn8QEshtbherVnA8fHRo7ffLQbj1Wqz2e4xht1m61lomw1H810TOtJ1hz/+5PHDN+8At2XrtdS7MlKIkbok0avzJcqEMEFtL84uUMPt2fHV9Yu2qbLh5J33v7ZdXiqTSpVst3ulVPT7MnoAEZk/+MEPbt+9k1q1rK5BR4706L033v/S221ZFnnyX/0Xf6Wu6z/zZ//MV7/8XjGeVF34+PFPRrP5W++9lQ/vrtfr5dX1druxy6XNbZYPYoj3793RJtntyu1mm6WpAKzLfZ7nWWZSa+F1dvcXHj368U8+DGliNS6uL733ZbnTUgynMy0FUPTeK4FSYS/lBYwxBu95H1xdlkopAvXFL37h9Gy5WO3KapfOzM9/52efPH7W1Fvnguuyzrfe+7pqh+MjBL0rK+eFFWk2yPZ1VDaxeX5+vbh//3B+eOvli/P7Dx7GGHOTtZ0TWl+cX19cL/LZ3bkdlQ1pCCAwMipjBiZlFEQ0HBZKopaSokcQQitWEhG1MV1rqq5pgwSZRRJl5QhYahtdjDEG5OjJKAEMWiWBHTM7ChQC9qBPL9QV4nV4LQgGkBLwhvSVSoVAAL1zTxBx533VtN6HLMuSLFNKAnEIEAgohBhJShkovtZ5igiMzDaxSinx2pTRbwuISCwUyBg5eqe0SI193fbWMDNKlVsjElVBTKRE4KLIekwueldkaWKkkWytjq4zgrURRMQUlGAtZF2XGtV4MuwxsHVoFVCqpVIC0WZGtG0bQmDGRAlBIbc6dE5BzDLbf78uBmaA2KUKnO8UBGV1bjUzR+q0JKWNlFJIrUToXPREClj1qWGirxMm3zlgtkpqJT/3dwkhRA/AAwNHJAJkgShRGdmfKyhREDkpjU20kYopAAolQSnFIPqQhz6ejAMwRObI7BhlJI4BtDZCAbCMESAAEXSdL/LhoBCr5Wa92s7nt8bzozwbnF1cCEdf+/oXVquw3S5RGKvVZDobjaefPH3xm9/73vHdt5NUn51fQ4qH02lb7v/m3/ybxXA8GAx2y/P1xYv5KNldnP3PfulPzqbjDz9+oqUYDbLdds2uPpwM3nzzwfX19WSY9nGwRWrapku1jlrPZ7N/8Gv/KIQwnsz+N//6v/F7H/zg4e1bh7PpxflVX5S+227LsvrWz/9PPCgU6s7d2/NBOn5wUu5Xu/1adV0nhOo1byH2QnMTQtjudzFGa23XdU3TCInE0RjTK1ejD3funhwdHdVtk2UZEXRdx8wffPDBo0ePiiw/PT29f/8+AOTjYnG92m22SgmjRF9ysFqtJAIyRU+9zUkiWK1qphi9tTZN7Wq1EkJ4D0qp46PD9Xrdw0Te+867/tZpmqa3EkXgfl7u39wELKQ0xoQQmqbxfKOHZOa6rvM8T4ztXFOVu+FweDQ/2G5WdV0Ns1S8zooDAGu0NfLWwRwAIHQKgYBcW4/yZDqduq71Xejf5UmSIIk0K6SAzfZS6zidzm2aNnXXdC4r0s/hdBbonBOoOnK9tweFBEYUCCxCjMF3CCSEDSFECgJYayPVT0NcTZ/IgwzsJaAQLDmQ8xCjkTJPte+q/RpHw3w0zPvY97Ksz+h8OBgQkXNutVrFGPM8v7y81olV2m4228ViIaVGpSAKrRUi+s4RsGBSSoKS3jWD4fhgNgWKVVsqFELJrmms6PUjVgjRc+3GGKv7BpKuruueKbCJQlTGmKpupQDnXJZYpVRd11rZ1nfGmKruyrLsc10ur5eJzUbjQTacjVkrk8CqWm/2xIoIyv2+aVubyIPJQeu5ZbFuNiAFR5we3GraIISwJDvvq3oVnL99+3gwKSofCNRiUTKqJC+KYS5t+tWf+/nQtR99+OPtrjw+HOc5rDbb6XhkhES53W93k9k0Vcp3jUBOszQZH3dNW9dNtduP8qLI8+nDR5gXIcQ33n1PpRlkRZ6KxXo/P7mfy0Rr/cYbb3SuKcv9wcFBYAohjKez4WgGQlqbTsZTrWTXtAJoNBgqzb0QOjV2t9vN7s3unBx/8vhJtdslaXL/9r2y3CHQfDou95thnqyqOrNJURR1XYcQinQIGBIrd9tVUeQxsJTy9PR0udqHKG2il8v11eXms8fP7t97c7VacYxpkiwWV/lgNBwMlBabzSotRkqpXblDhVpIodNIgrsAIKy1VVulw4wZ6rp97733f+t3H4cQvIvEsnXB5lInaecCEYGAtm2JKE1MuWsGeaalkBr7BTSx2Xq72bs2EEcBvgut6yKgkJK60AfTCCGbdg/GApNSCpBufLxC9W13ANBDrr2ks7f1IwMwBEFAUQiFeFOe0XQOXsf9t871pI5RSimpjZZSBgAhsD8oiAiFgMjOuQgoBBgiaY0QUmJPgcUYo5USleqlJHzjvqVeQCcFxIgCKbE6N2OrpJLYEux2u0GeZZkJvhnm2SAdNnXlfBtEFAxZYvreH2OEb6OQajTMb5zK5PJEWwlaY4zRKvAQUJCU0ghOtbg1nwTfEQWrDUAE5tg1WmsJsnMdUCxSnSZZvyLXdQ25RV20zsVIJBC1UAQeI0N8/eqSEEK8zsOKwUtUyIz9y9hfwBwBQCqQgiUKibF3C0sWCARAUqLWWiIwyv6rRSmoL2PoA+xBsUSOIgASdYgEHDl4VlJJya+DuJVSzEhESskYY54PRqORMvKTx88223I8sd//wYuLy8vEmouLiyy3zrXSZkfHtz/4+MWzl6/SweG+cUlsf/D4kx//7vd+8uMf/bE/9se++92vXl/M/9oH/1CSG+Tpz/3cz8YYWx+U0bEjrXWrxWx+uPdtOhl2wStOrJTb7U4Zua/K4Xj86//413/00Y+UMf/7P/fnQGPjmuGwOHvavP/eu49fnkpmCK6u2snBA5UWn372NE90JvnhvTsoog+hJ0RbqVW1bVrvsixru8Z7v9tufAxSyqIoDo8OBoPB1dXFYnF1OB6X2x0LnM/ngPLi4uKTTz4ZjUbOBeccAV9eXuo7d956663FYnF5eUnn4eDo8I2H98uy1FINipwRptPpfr9v2zYx1hhllEyGwzzPtVR1udPaUAiJMUVRMHPbttH7PM/rug4UtZaImoBi9EoJ/5pIlq8bF/qLLXjfv0v6jRkioUAp5XQ8kQqJCBm0kNPhYDYds++q7VZaOZuM59NpVe1jjEdHhyEEir6qKoquKhstMUuskDgejpZLp0SaWpMkRimVaG2tlQK0SaWUgKpuquvr9Wg0ms4Py7JsnSdiJmydE6iCJ2ZEJfvVMBILBuYYvJcCZN9U2OejSlBKaS2V6sdKAgApUQuJgnVvWqJgjKmqqsiTqqKr67NBMRoOx+vldTIcMvNqtbHWIkqQSkq92exiZJAiTfLIpI05ODhyMVycX3mZI4MxJkkSwRBCAPaJVeNBQSF4V+dpYrWsywqBrNK9pdtam2YWBXvvAUlI2bStlDLNrNa6T0fpui44nyRmu6mD6zqtsizrD8Q0TSNBYHLOZflAG+ldu1ivqrZ5dblJkuT87PTs/Go4HDctp2kaIjVNo6wBDEqL+TTXiZE2dQEOEqqbCtkbnTexAoSsyIvhwAcOJPKsODhInefNrlytVlVVxbplpo+fPE81DodfawNIpsVq25Z71zZ93VOe50mSEIW6rrsYqqqZzWYCk+vFSprB6vz6ydl1lmXf+/DJ/fv3t09e5flote7OXq2TJB0ecFlX09lBmqa9HvhofrTZl0LWnfN1XVtrXddW+7LIEhe6wLzdbinEIs3quo6RGtdJiXmShhBGw+Le3eP18urwYLYx4LpuMh0tF+vNZl13XVEUWZYZjbP5KE1stdtKKauyns/nneOzi8V2t89mU9d1t08eGJMyi1u3jm7fOXr+6rmxpq7Wbb2l0AAbgYKgSpTxtW9bV9dhs66qupEStQSjVeicEtp73zVNkqiy2nScxigpBWZ2bRe9J0AkskqlWucjNZtPjuYHSqnNZlM1nTXsvSeULKJUzN4Td1IrYxQR2UT3vZwxEqAnJh8DCkaRMITeSYOI/UDfl1gDQCTCPkHvJmYnCAbvAyIyCgAQQkkpGUXvmY4hNrFTUUUGpZiAkFFgf6Oz1Ro0yIBSyrapg/e+axOjE6OzJEmSRGsNLgBCnyPLTDHGG/WyRGM0BRdcFzCkqTEagaOVOBtl1lopGICjrymwlSIZ5ojguya1Ssuk7eo8TfJEr/Yd+1YwK5CDIlVKxNBJqRBAIGWpUSiISLCTYIyRozxpmkaQV0oR+dRAmiqllBqliKhM0gP4MUqOrRCico58QwRaoJICpfRBMqOPMUYOIfRJzz3rB32/eJ8shABI2GeVABglAEhgVAASQYFQAqWURmltpBB9kgkIoYTESKQl3kAVSirBwJIJYwghRsFw44CJIQITEUSKMW42W+dCkhVSqtVqZa29vr42qTw+OVI6We9rpdPNrm7a6+l4MA5pWW0bT5t9GwADifPrxXh69A//9l/5jX/4q5PUfPP9R19683bYXW0vnmeS2rJ5++23D45vL7a1slkbm4iBWNj5ccwyoXXTtl0ETpWLlE5m9b5kZcGYX/1Hv3Z+tfvFf/b3/eF//pd/7dd+bTAYHM7nP2w7YpyNR+MiffuNe88uqh9fXorjjS5SY5QE+PjJ86Oj+a3juTo4mDVNEwIpLaALdV12ne8dI6k1RAQU27pyXVWVu4P57NZ8niTZkydP6rpuXXd1uWCEvrX+6OjgF37h93344Yer1erRo0fOubIsN9vF5fnZgwcPrTarat1PxH2IEvT+XhK+c1JKToPS4vDwsGmapunbTBsAMEYRhSIfCCH2+30fHB2ZvPdCCC3kjXBRCGaOPnAkY0yIzntvpLLWKhR1Xffcj8nT+Xy+3+62rRNatlW9WSxGxWCt5MFsdOvwIERXJFYp1ey3RVFkacLkG+qAOLPGJiY4v9msnHPIUSIN8qTrOgH66uqKIY4mk6qqVptyMJwEwqpsLs6v80EGjJHB+9DUXZIpRGQBFBkVRApEJPgGJ0cAIjJWKyGFBMGgBabWvJaRRyVRKYHEkXxg1hKlljH6JDHyphOJXQj7/VYIWFwvsyxDIZfLNTOPhoU02jm33m0pQlmdCyHTrGjb7a6sR6MRdzd9jhJQ9qGuzEoARY9CCODUGi4KDdjvKNoqIrJporSWffR8CN77yWTSd2MQUdu2AJQkJk3Tzocdcpplxuhej1pVlc1yANBap1nRx99rk9RtW5bVfk8vX17vyjYbHOgkC6wimMZTRGzrqvaNsSmgCJ44pmmSC9BIvNvVVidd67quPrl1eHR09Nlnz7ebstx3UillbJqZqtpvqvZwfrRYLJROs2HSuVjWbpTbSCFE1jYZjEbr9baX+k8mIwbgmhIw7aZlRtfBy7PV/QdDlsUv/ME/Mpneeflq1TXd48dXWg0vXq2KfLgN0Wjdti1SbJqWCMrWl1WjzVZoU1WVUqpIEwB2Mezrajwedp0TQpRNneVZ691ms3n70VuRoWka19SVIASqdmvXNVrJPB8KIeqqDSH0J1cIVO3r8Wjy7MnTLMuGY9M0zXg2eX56UdV1J9KD2WFdt08evxyPh3maf/zhRy9PX3zh/S9G3z64dyvLso+fPGEWX3rvTWa/ujanZ+f3b015UtRlg4gouG+tkYDf+61/4ruqazsPzFIi2BhjV3fee9uTuEqlqVVCaCkMgAQ+ms9mk+nzl69CjKnNEkFV5QAoz7XWTMxpqqy1UsoIWJadTZSUUsmkaRrnA4m+d0hEYO8deNd6J6XkcENCIfQF70IGgQ61lF3XSSlRSmvTvq6UuhsVlTK6VyG44ANFY0wMMQoK8ab2U8o++E7kiQVmoIhM3vsqxrZFIcR4MAQiJYW2hqPrQuccC4l5mklkY3TAqCVLQVKw1bru2hhdbL2LnjhkSZrn2SCzXdcpiW3lmrrUxaA3RYxGI6G7tm2TxAiIwyJD5K7rskTlaVaWZQiSmbfbLQBwloCAk6PpbrcLMQ6HQ0TZ020xRkJQSgHEsi57BIJzw8wEQqFVykTgrvOdc8yRQARyWghjJGMvd2WBveKMkREFAzAyo2QjhdFSMPXRClIIrYXWMtFGSqk1ptYkRiEDsugJNUKSWjDHHs9QHpkZCElLuiHymXs1GDESIyJDzPPUue16syzy4WQ6NMau1+suiFmSpXmy2FbVvgoRB8PprZPDk1uz1Xoxnc8vVpsX1x/WjlEPrlbb+eGth288+vRH33v28Y9/+Nu/8cYbb6SJzlPLrXn46O0kGy6rtQPJIIUyLoSAxbQ48DGwEokpYvD7zbZI8125vn/n3n//3/3q2dWOAP6P/+6fXy93bRtu3z7ZbFZKYJHl1NXWyHq3nc2OHo0n2cFhG7s7d47Xl9dffPTuk88ety8vFAVHwa3X2/6uLcudtSlzNErlRfrlL3/ZWvu7v/vbRPTg3t3OtZcXF/1N8MEHHxhj3n7nC4e3jqqq2m63McbVajWbzTar9W//9m/nec4Ib7/5KEmSfDjo72OtdZIkbeeFEIO86FMkiYNzTqEIMex2myzJZZYXRbHf7/f7ve+cUsr7rsgShrhab51zvclVCGGF6qgTr+sngYmIQKlBlpdl2Tf79nquiEIpBcRNVSfa2MN517YYI4U4m4wujB7lWZaYunSr7XYyHg7zzHVtGaMQYr/dJUY4wVJwn401LLKu67RWw+FQK9AI63qPxFXdjSfzxWK13pz3sq667VCKxnXGGECJKKmXfjMTga+b3iulBRotlZAoegMAKqWUAKLAQDHGflVOTOpDn+EFfYVnBEZiZh4OhzFG2bRCiKqp27YDpCQvfIzD4TCEkFibpEnXtNakVVUJpSiE3X5f1W3nY5IkxiQWyPsYOteFkKVWJ0ZgFEL4rp4MJ0lqY3BK0GiYEUFT1b2pTCnVtq5pXW86dM7JurbG8OvIISnRew8AWZYURTEocgkIxBJxU+9BqjQt0rRT2jZN14VoGJ1rlVIghdAqK3IXKbTe+7Y5u5SKi8F4lmohGYCqqkGiGNoUTJqk3sn5dCZRhhAouOXy2lq9XKyQsO7qpqlGk/H924fzyXS/q41NpdQ+sHNhud6Ohvm+bHKrLxfLPLFlWSeJQSldDBHQdW2SZN7F0/OL8XSOhIvl4vDg+Jvf/PZ4MDm+fc8k68Fg9OzJZzGgc8FmRRuasm6QIc9zdjFQwAjEKrJsaidVkqQ2Almj8+FACqjbLhuOog/I0TkvpdTKhhCyIm/bWkoZva/3u92qm4wH5N3p2cssLWyiU5fGSPv93miZJma1Wp2cnPz4xz8+ipTlo/mtuZToogveffL4UwRdvE5xR8QsTV48fXrv/gNri/lkeJ4lSorpIHl5dj2fzFcXZ+dnCxvdfl8piTF0HH1Vu92uHg2mX/3q9PB6//Sieny615kud3tESUSD0bBPCC+yNPpOSYwxnj7/bLdaHh4dB9fty1ZKicBKYgQAwMRopZRNE2utc4H7CDapAzEK6CL4CACeIUqppBQA4Jyr6zrGqJTqW9wFopSolOpz80SfooySCUIIyAJBSmUicQiBAYwxQmoAiOQjk1ZKCCFZEZGLwfSKoUAhBiWlUdIaq6VQQgAQM2/3GyBOjM4zY3oboUJjlDbI7IVShTYaSSEaBeNR/mB46+zszDkXQvQeh7kpiqTraq1kkWU9qd8D5mVZeu+V0V1bpskYmJWURETRUdDAJBCs0VLKGLwQYjIe9AEd3jX7fYscJEKguNuu67oeDAZoLSJKjIkx42E2yG3TNJ6BYhBIAiCKiAqNECxk//gEjgIVCtHHMSCR1qonlSSyECwlp1ZarQD7AnIpBGrZp8ULJRAVaCm0lMDMIRIFpYw1mnvNS58dBsjcM8oyYNbXBBARIAkGUEJK2ctWsizLh6N8NLo+v7y+vlYa62q/2X9S1tEFnQ6mSZaF4Neb3Xg6DMA/+OBHxeggG47qbeuQZWIefflbD9585+yrX/3Bb/7aB9//3X/467/+pfe+8MV3H/hmf3xyT9ss0KpHuYP3RWpcwEKpjlnbtKoqCTgdTtqykqxmk4P7d994/613fv4XfuHdd7/4wYcfnhzfHYy0v77y3hurlMeD+fjDVy/2KJo8u3N0oIwkXx8cHBGLtBitN1eqaxsiQo5aimKQpWk6HA5d8IvF4mtf+fJkMrm+vn7v3XeIqOuasoRX16skSWySvf3mI2n0fr/33tdt8+rVKyJ68uRJb6INzs/n81u3brVdA8gvP3iZZdmdOydd53e7XZFnTd0JKZQWDJFD7FsThBBSCEAK0e32myRJmIu2bZMkkVoxs7X2YD4t62pf1v0vESXd9EhzX9QQY+RIEoWWCoj79bof+owxu+06TdNskG03G4X4pZ/5GUHx9OWLzCaH8wPXtTG4cZGnxuapTa1m5tQmTZkZJfu0Gi1RKeXcTWRM0zRecqIkAColy9op49bbanl1rbUVQmgtI2Ndl8PhUChJRE3TMQOBYKayLK21VkmprbUWgQT3syowxF5iwszOtb1TuWuDdx0iJ1anVoPR6NkDpcaWZSl6XBclI5gktV3XBrvdrSOglNpYG0Ks2xYRQYjdbjcoRgcHRVnWu3JnjGld1zRBAvblJIhI0RP5qGE4LARwV1c6T43SrutCCFliGo4SuHFd13Uh9hk9slcVdM4550TTWGPyPO9NIMZIraRzjnxQEtM0Tdu2z7aMMRKxNFqhYWbyAlEOhqrpEIxqtm692wzH0zydtnW5q9u+UMsoUdhcgmzbDkCE0A7ybDKcVVXV1pujOydK49Xl5fNnz4aj2XQ6hvHAZlYrVAjDvLBJNp3MfVNqxVXVCCGHw0IKeOPhI+/a/WabpDkR59kgxiiE0nnS0l5aJbVAwV3d/PB3f+fBnXvnL0//73/pL0ltN7v92194f3ZwKJTZ19vhJGEUUiuljTYhy4dSapPGtnPr/TJJEuh8U+3zoiczhHNuOBx6cErifrOVktM0PT0/MyZBZKlQIo6HOZKRwB7i4eF8tys3q52xOaLY78s8S621AJRae+fOnV1ZCWkXi8X777//k48/Od+2k8Ox1UmRFomSrisjuUdvvrFer5u63l9urhZbiDDKhhrUyBbr3S7Lik8/eiKawxgYKI7HQ9c2rmNjzBv3755dL44Ox4vSS3CJViobZ1lW17UUUoAoEpsoudnVjXdJYhKl26paLZZVWTW1QymCsBoNgOtrJxQqSSJ6cF0IISIoAuGD7wIzW0aJEJ1zRK3Uttc5w+v6XqQbq+EN6SglMggW2khC6LrO+cguKKP7363rOkZuW6eUUEp5F4MnSEzfDyNex0JprRFIKdmXfxIRi/6iVRKFTUfedTG4EEJkj5GCQmapVcpMCEJI1EoZCUqAEmgV379ztNvt2rY9OJzPZrNexeK9t9bGQFVVCaG6rluuV8wiRk8UXNtorbs2SikRyHVNhay1zvN8mBdH81mMURsDzCBRAie6vwJV3bVporXK5/Npjyv0SURSCtCCybeLTVXvVa9tRra9LlcZAl5ttruyiuyFNEooQCGlND1Kx6S0MBKMFsYqo6SWgikwswSUUiohe5BfGFIapADBSBIBCIEQBEIkYASSQhKjYAREIBQmISKiAABIkZkBqd/j++aMui5DcGmq7949VspcXZ+FINelO78sg6c0z4UQUsbT8wsUUZnExVC3DSjjO7JWXTkxGR7ffz997733/9uDX7EKm2qjrDZZPp7PhZLMbJUSSHXpitz8lf/sPz88Pvmf/4k/visr1KEL0Zqk3jT37p48efLJ02dPv/6Nb/xL/8q/fHp5dblev/OFd1dXz9ZnZ9W+3G93jW+ePv4YgbLEtGkqlDy7PB8gJTJ9+vwqIkVi1ZcFWaPLqhZCDMejJDGWdZKchBAWy+u2a4ySjz/9dLPZMMR33n4/y7K2ccv1ar/frze7GOODh2985zvf2W63bdtuNhsp5YN794+Pj6+uri7Pnm+3W4Fyv98zs7JJmqa73Q4AOkfW2tA5AEjTtO97r6t9Xdej0cg5F0KQCtM07bFlApZaSSmFksPRyHu/3W6BEIgRgYl78xkQE1H/ZdxkPvsgjdFSaamklJvNSgKnaaoQd5tttd8CwKO3HiolKSqFAjUnVq+Xqx5D669wmxiJkOf5brfru3qMMVqK7XYrBY3yzBiTGoNREoHWtgtxV2601reOj2KMxiREVJdNWdaAMklSRgjhhjTqj5IkSRAIYpBKSIHyRtgpAYhCZA4IEGMkht6y3HSd9y4Y1Z8gvWKZiLSWRVG4EJm5iTCbHhBR01ZlWRMFa61zjpm11k3XbvclAeR5PplMTGLb5xc9lkAxInIIMbV6MplI9n10aHTeplZrCTEAgNI2EnjvKFKfU0NEQisXKe2FLSHsyzK+LmxumpqIyAcA0kmWZdlitVoul1k+AoAYGQSmSS4VhhA22y1bABVd5QJEFhwoaiF3dRO7UjAVmSkSkxnbto13MbMJIEXyz5+/ODw8AGJr1Dd/7usX59dpmiohkYGRskQFH/bb9XZTt3xx6/AgSZIYmq7rzs7OEI7uHh+6GIOnW7dPkKKQIKVQSuR57jXfmt9JhsUPfueHEOH41oFzYTZRElkYe3Lv/sVqdbFavrg+02khlVquL4fDoRSiqprUWK3F1WLVdq71AYXwgTpfDYp8PC6ccyFCDLzd7lNrQmCbpU1ZbbdbKXXTNNbqGKKUoi75YD5GDsCxXwvqqo0xIoo0TYuioAjW2v12/e57Xzw9PQVpOs+7/YYopIV58eKz1GbT0eRgPjucTbSO19eXTdN4V7355heNXi23++jj1flSSGGMcWVpTYIggShLbfBd29W+E9/69i8IZex2fWs6azhd7PHV1TbNzHw+76OmhkV26/BgkKdGwiDPLi4umqbpOte2VySkNUmIUQgTggueJWiJ2DXeOyoKJUC5zhMKIrQ2DxG1FtC2kcvexy+1Ncb0MeZ9rxH50Lat9z4C9DIoIYRgIYQgpj4Sp5fz9L9LCD1LEkMEKVigkDcqX6GUgJvonpvADZR9T0y/nuLrlvi2bZUUWZZZjQo4OOdd7b1fLKoiS4vUWKsnRT4epMDBKh29S5Lk1uHBfr8l7zj4PE2JKNGmC95aI4RgFEmWSmWstQLjIC98cP2oURQZ4hSAJGKvFQXBQkkMHKNDRMHSJtrYCREZY1QlhkVmra2apg/j67WrIfg8zxOjq5iMh4P+ZewP8BiEV93R4bHWejweC6Ujy6Z1PgYEIUMkCig40SqxylihpdASpACIMpJHBimVMcYorZQB3QlAKVAJgSwF98kdBFIqIJAIwEIKIARAQBZai0h9aAqSJAp9MHYvQU3TNDb1xeXZaDQaj6Zaq/v371W1p6v9riISWdP9/9n6s19b1yy9ExpjvO3XzW51e+3udBEZkRmRmZGZLqftwlUuCSRAQjIFJYRApULCdYPEHXfcIPEX8BegEgIKgShV2UjuMKUyttNOpzOcTTTnnH12v/dqZvu1bzu4+NaOdJVYF0db6yztc+a35nzHO8Z4nucXx7EHTJcXzZOnV6eua10wZbHbDovVoylAj+V0atdCSln85Pf/+j/+R3//d3/7t9vdx5ynoqiIZGG0Gwfk0BgBbqqLeL6Syd1XhRxcAkoIE5C7ePT0P/87/8+/+w/+q7/0+//W5dPHd/uDXTVewHq9bt9IKeXFxcXx5dc3+5vth5vySq0e/dZut/PeO0htN2QshVWco5yGiTljZiuwMIr8dHW5vry8jCl9vLu3uopCvru57UJOpsoJ3nzcDtPb4OOxa+tF8/lX3wvOPXny5PLibGvVy29ffPbocrlcPnn6/A//8I+urq4uLp+2bXu2XnfdaZqmOI0upUebjbV2u92mlEhi27aF1aYwh8POktRSiQyQsvO+rqvj2Gqtm6Zp+27quxBCURRKmbpqFKNjbtvsRs/MyMBSaqMBYHQxi6yVZp/nPhs5BdcrI/3khBDEYEjsP7xpFP3gy+dPHm2sQufFixcfhykKnw0lqY3ilMKgFRmplbVaGxL6dDp1w36xqFfN4rC/d35arWupNUspZNwd7iPRFIUuN4rE/XYoSluW9m7fxRiVMqf+UNfRVHp0LQprilIoKQUrSpQTYMKcBQoiBSBjSCFkTgmRELGgIBEzzwntgokYSSUUlAxJwYlgMkpFiJKjKhByTMklSFJzYgSglKMQpI0BVCGEkIIQMiboB+d8GvpQ1QWn6Ce3XlacobYKg1dKZB9A0TRN49grpThHIYRC6b33w2CMESCISUnlxkkpNXRTXZc5jiQxxQjMSlKKaVanA0AmkQVKKWPsUxzYD6UyWpvMXoFpbOm6wbFaWLUq5etX75If6lxQTJ+tl9OghmEIAKqpUVGhtD/tgkz7UXCIhPqX377m1De9/Pj2TWHsX/vd37y/3W/O1+9u3xulX755c7sbjyfX1OZ4ujs7W05tOm33pbykqRu2uS6NLrAxjKQzQteP233fTKEUiVUrUVydLz9+3DlOerXySdpr6xN9fTPU9fmzzx737emwu7elWV8/dy58+HC72pwlMLuuB5AJWErQWlaFLqxGRJGh60etFBrlQpTaSCQXoq2XPgIRKYGr1eJ0OCLxaXD7794vV83FxWW7vynLCmUWmRHBh/54dJwnqyUyt9s7S/Duw6vlYp26U4nT2p6ZZVUUxeXlUgjWafidH3x/+uzZL3/5y6+//ebDqz8bQz7tDsKWg7Ontl801ePLqzwNuiwd6GkIss05pO99+aUg2N+9//7TRx/udp9vCvj+tXIv9pjb3TsL+fG6zn6A3fsnj3/zxTeHd9v7AcTI0ixWAMAuKIQwBY8TILGQY0yYiYFyyBzYKBVSG2NkQswEQgKQKSAlI4SYpmleyQzDkHNWJDgn7xykuKhKqxVkhpwR0sy0ZmZBZAqFws5BsAyAyJFBasXMU0xEkoQiCDnFjCBICCBBIDhzTgigCCWRRiGJkDMyAYIh0kJIAJGSIlJCGFvIgmZx5XbXDr3xI99vT0bLs/X6i6vCWiuEUkrdbu/vdtuiKLTWy2Xj+p5BEgDkRMyKeonOmCXXxTSxMSqlpBCMkSklpdQ0jWVZcgzDNM6Zu03ThCCV1tMUZiWHtVpo68fRSOOGICWTlVaVLo9EEpG/eIQQJQgdvROPl6duuL+/Hyefh/sCRfb9ZnkZo+9iZ8pCSjGNp5xZKQXglWJjNHMsbRFjZAGImmAeG7CxLEQkoeFhOS/gEyTxIYFQiE/sRwACgMwEBJkxk0QAZE4xMMfEzEJRP47Rx9lFaYwhAYC5G0TO8mKzTN69fv1KZtgU9tiNtx8HFqpaXYxpzGCB/DidiqK6iIcJxz76UYi4eVT91l8LT56Xl9PNn/6LobgSVbNohEY4bSesyttjjxWpem2r58dxbFOrSzu2Y102POxvX/zMAPx3/r2/gSr34920Pcr6/IuL839983JxgWqhfvL7/+6//Cf/HzoOuVglfX08mb6/92YkaVxIj8pVo42s6jrnvGhq5PT+/fumKsfBffvNd88+e16Vzc++/oWLvD0cM1LTNDe398OpVUYXtjw/Px/d1Pc9AfzBH/xBXRVuHMauf/rkyeTC3f2OmXeHE3Pa7XZt2wY3bjabH/3oR69fv3bOzTovY4yypqoqRJr3wTLDPC4WSjo3IWJVVdM0nU6nxWq5Wq7nfbPWdna+kpTL5bKn7rg/zZLa2VrKn/AdYoZKzso6wNVy1Z36w+GwKCtp1Hq9Jj/6MKUQ6vUmH/zFxUWIeXfq69JWzRLDNEw+hEDiAUUsiGKMZWEPh4MSqJRKnLt24DIvl0s/9cgYY07BCW0ROcQQIylVrdaLw/6UgetqASLnBEIYQUYKxZy99xOwklgYY4yag7J/9SqAcPY1AoMUxIw+Jh/jgxmDYIRJEmgprFEpJYaHxDhrMEQRY8yZJXPMM5AiD6cTkkwpE0NKETFrJWJImYOfHiQPMXprpJaqrmuBaRx88ImUyBmmySNype282a2qahafz72IMrpvu7mBSCmF6Gbb2NzRpxBmD2UIwU1+fXZ2OHVt20tliqLKDFM/mqJpGr3bHT5+uBdCLFfrs4vz5XoTQ+66QSn12Refv3nzComRZFlWOccFIRGdPbl68e2b9+8+loXRxjgX7rf77e1dqavl4uy7169sZYuqXK3Wp46dB2NU254Wlbm+vlYQjVHX19cSkxJQNjUST84JbcrCMLPVqimLt2/fMcx8tPTq1at6eb68eJRz/vqbr72LT549X9TV2LeF1VVdhOB3u22zqKrCCoGmLg+Hg7VaaVsV2rnRe2+tnt/MjlkiIKJzLpNIMSRCrXVVmNlVeXF51nXtYnEx9u3pdErLVVlWiEgohVbMCBCV0koZN01lYb755tvVavXF51/d3d0XRVEUxf6YfvzjH8/RxymFjx93Prhls/j1X/9BvWgA5Xdv3i83F56FrZffvXydgI/9ANNQVE+//OrX/tk/+39rax4/fnz9+Hk7+LabEtzVy814CkVdueBVVefgLx89+vLpk/54WK1WL757+f7dx7Nnn3X90Pej81kpJRiE1NLoFFOMIcQcUiYp53TDGGP007yfZoC5uZ9T3+fMSJJyxp3N8+d5iju7Gee3llSSAACyYkTEPGuRmCElRNRSpPlAyCnGB0ALUUZOUkkAUCRmH5H4BMT9lQ8QaS4hsxuKU0oJ5zw9YGQEQBAzsE8IAUpIohijj5N3SABLU1dVno+pU9sVhWWgrh9jTgQYQ0ZEqzVzAiTnA6IHRCG1sWUIwcfACEVRTM4Nkxsm9+Dj0ZakdiEJ4vmxSSkIcs6cg8s5Z87GKETRtm1dlyCo607NYgFMIDQgSFMAc9M0cyydcx4F9V3tvW/b7mEjRsIoLYRYr9dzOqaWSkqZc5aKAEiSEAIBQCqapUL4aZI/u6phxi3CJyIO/De+/k36MiKSlJIBAUBqSURsH4iE8xwipaSNHgbHgOvNQsjnbvIxobZ2GON4Oo1DeH+3PRz62pbKWmttG2U/DKoofHLGFD/4jR/JDDCKs6vHiUnakoWVpjl/VHfHYde/VaJery6ltEShtAWS7EO7qhb3N+9ub/bny9Xv/uSvTl1AFk3T3H68Cbt3b968ffr51cuXr0O6OeyPzWIFRemc07UWYiE5pyjmWJWLRSlRSKtpvTk7P9ukyLd3Hyd/8xu/8UMgOfnTOLhMxAhlWR4PbUrp+9/7kpGMMS7E77777md/9udVVTZVMQyD1erq88+7rhNSn07d/W4npTZGLZfL0+n05efPrbXzknhw0xyXppRCKaRUs1ko52y1llLOoRBlXXZdR0RVVc1DLUEziyPPQRzGmDGl4HxZlpzyPNlGxGmatDUhhfmCbKSQs2FX6b4fhRAhz7J4tNooRcgwuSH6UhCvl/XkU4xZFaU21vWJCF0Q2uqUkvfOWmseyHp+tztsVo0QKiUMEbpuiJyHduhar7XebDaAfDxuy0ofun176hLTOPhq0ZS67PqBCLRKAKCUkZASQPIhhEQDWWsRkRHmxCyBEDkiYiZWQmTkkDnGJDKklJA5JSJCKIyQmJgAAIlSBmsteY+QU2RGkIBCCJWYU445Q051UzrnptGnFBlyVYiZBD+rXBZ1aY2KyZMgpZSUMidGElIKIQSzyJgYSJFwzgHEh1uUlHVdxxhnmU8eHjSlc0nWWs8x7zmmaZqaZpkZlbbex+OpLcvax+ycE0qHFJFUiKltR21tXdc5Q8gJCHftXheWOd1t97ORiVkdj13ntkKQUqKuy2nsfGAU9tSNTjFIo7QFICksgkgpLVfN1G6vH12tFlVTls0XnxUKgTClLKUo66rrTsMw6Bil0dYIQr67vc05Syk/f/bcmurq0Wcv39189+2Li0dPrs7PXr/9+Cc//eOrizOtxKKqkrXR+1VdmqIkzN71WSglUAk0UjRNRZSBU1VVUz/ME0WhFDOHyaFRxhgpUIJSSng3TmNfF8XUD0Y9iB5CCE1tpdSAipTu2iENY8pwakfkXFX62Wdfvn37+vHTZ199/3sfP9wKIVYb++bNmxm7goiXVxdPnz5tj4fT6UREgPDZZ8+mAKDt7tjd3d2Jsvr8s6/2tx+/fvn26ePN6uKpsHZ18eTn377RJD9/9nS7vX399deXT756+fIbrbWpmo8f3k8+7tt2UTegTR+CKat+mHKCoiiMrXPOYz+kMMx3xJgTEGHGGCPRHJeRU07zxDgE70MSDEgiRT669uEmh3MY0zwl/osonhijBwapEBGZi6KYD+uQkvc+pMg5JQYiAgKYXTSMIEhrpZQyxMxMhILgU1GnlBMiA3yidCMTzVug/3ptxtmSA0rMr4UeeAbEWmujpbU2gbjdHsZx9N6PY79YLNZr2SyqmEAIHLvJh2lRV8aYjJTCw+XZuSB0BMAMcnTJxbFt25TSnKxpjEmZYsK2basqq6QeqEoh5BwBlBAYY045WCukJOfcFKacM0MSgEoZ731RFEJpIgBEIYmIAJAWtN9FzMlaKwUZKaRpcs51XRNBzllpURTFNE2SxIxrJCLA2QYtfvVc5oIKnzK0/xtf8y+R5pSTTw8TEAFQiDndEoDzw18ODxKZ+ccSBGOFEKJkKQSfTp33Uema0/HY9SASeqdSqBAVYa2kWNW7wzalzBknnzTpfpzO6vX51fP74zhEWZ897vdqGkaqys9/+NvLxqyXj1MgjgzIyFkg1mX9h794kSI9evR00Vz0XXj/5n3sp8+ffP7q9XcXV9eXF4/e3p2Ohx1K8fzZ53/86rC4dOym2eemtWbUiEjSSJJ6cuPX37746U9/qqT4y7//V72fvvvuO22LmNKT58+XZ+cx8WkY/+W/+iMiobU+Ho+73e7UdY8fP/7888+7rv3el59LgbcfP7hhlFJeXl4mxqJZOOeWy4YALy8v2+7Ytm3ft1KI6+vrELwfJ6WUIuFDWCwW1trT6YSMQggScyS4mNOUAKAsy/v7rdI651yWdT+N8/ZruVp2XVeaqirKebvpnCNjUo7zL1UpRUg5pzkqpK7rqqq8MsQ5xzS5cbEojZEEPPSnRV3GGP3UXpwvtKnabtCGrC1l8FKq46kf3SCESCl6z4vFglMAIOem4zA8efJECmt14YbUc0CGoe+EwJS9c6gKVdWlDyCUBVTjEKtm1fctEfkUs0siZylQEChFyBinB5gE5sSQE2dJJBBi5JA9APkIMSNlBsjEQUgbUsoJGCgmBshq3lSlKIAVISqEuTBjzgiiLtt+JINCUfQAHPrjYQaf5eiNUprSarWyRgOn5IMXgpARKWPWpAQJQppGJwzNpkwfM2MGJu/i/NGLMc4qdGMMESkhCTBkNsbMcOhZlkXDZG2JJEPs+9HZkkiqw6mdfLi936ZUj963/UFK6WMSQoxhFEL46BaLhXexH6ftsXO32/bYMfNy7XKCyfWT18M0ji6dd85Uq9IWz7748s2bN7vD/v2/+CNd1OvN6n57uDhfbRZVXVkfpu64XTelkJchBR9jSJwSSylj8hjYGJNzOj8/Dz5WTX1qxxjjMI1XF2fVcjO4tN/tCqN+/a/85S8+f66IEDLn+Pr9q6dPnkyT7/uRJQoBhCInnxOPQ0fISptFXc03mPmWCQDee0EoC8s5MoQUmQiXda2NLKvL4/6Qc9ZSHXb74E1hq8RAnCcXGUhaS4DRT4mFsfXl1ZPdvhWn4bPPvvjw4UNZVZuzddupw+HgnBuLwlpdlqUyenRTyth3PQvFQRDRctXo5eX72+0Xjz+rS/Xqxc+unn/v0fX5/tS7IVgBf/bL76zB/aF7v/1TEvb3fu/3fvb+brFYfry7v729ffzkUVVVsig+/9733txsp6HdHXuSnTJWAEZEhUxSJB+YOTEwAhAywqxIkgSDmyTLEHPKzDmHEEJKM9p2Nh8KIRQJpF8d7vwrfi0RIRGnGPMcK4aFUZp1znk2MYacEVgKUFLNOhhjDKYAn8akco6nFYggaaaiPEykiCEhEM5rIRSzLwtnwTXirAIDgBT9zDMwUihJGfj97X1KSQhhi8pnaEffTbfyjrRSRWGaqgCAlElqo2JGEN04zYOiCMCM8wHYDt0825tcSNn5kJGUlDIj7vd7rWVVFQwpBz+fnzlDCAkRQxCzcd97bwsNADETJB5dGF3YbDYppQecOKJzjhnKwgAviEgoaYyxSrRt691YFEVZGCLSUpA1iJizYEjEnDMjPoingAQw//+puv/16jv/4aE8I8KvrjaIQAjIkB84eMAopAREQBQAijKAmH85alUXRg29dyFrZf2r94N3y6pU0vqMru9vjqdBLaXURBgTpwgTZiHscfBIZtuOH/fus8fPqtXV1A/tsWfbXW/qaeQUcW2WhyEkZquVkUpKXZXLq6tnj6+fOxxWiyVoebWp/9U//a4uxbt3H/+tv/rv+ETf/PwXwxBv709Pfr/ZZxdiDCkwqMzpcDxS9jKlFBJrrdV6s1ktu364vfnY9kONFFN+9fat/+XX2hTHfiASZanev38fYyzrRktZ15VS6v725u3rN4tl/fHjx1Wz0FrvjgeSoioq58PcBm232+NpPyMLrbWzsBkRrdLMPE1u7HoAiM7bqkw5rtfrGOP9/X1RlsaY0+kkF7IoCqV113XzxElJI4Xeb3da664/cUxNVR1j3HbdYrXMCQWJOdY15wyZQ4oiiWmaKluQgEJbS6QIvZ9O3q+KM2RJmBAiQVSkJCQ3tiREFplTYCGIgCCnFFJKTdMAwLvXb5SQhTaTO02TSyk3tdGyqAo+7ce7u7urR2ebzYohkBIMtDxb3d8dxyky0OnYGWO1Jmb0LghCAGIQHOeZMD68HTkBJ01gtUQlIkOaYuLM+IAZFwgKaZyCAFZCComfrqIyMmQ/zS4sTZgzhBBizpxzDI4gaqOHySOkx9dX3vtdGKvKWFsvm8VqtWrqsm3bm/cfhBCEPDjnvZdCoxXDNM4CK0yslBIAcwYZKTm4SSKVlS2KYm5xmJlTdtmNY1ZGzkYLKfU0TZzxfrd1wZeFXp+fwe7YDf2pG7wPKTEDNcuVHM0w9jGlU9u65ABgvdlorXVZje4whnhqd0oaEhpBRJ9QgFZiu717/PhpWZbKNAmG1+/fo1IAcOrGd+9vjW03F+fLVf3sapNTTCn4aTi2rZ8GW+jVoiqtObatGyelxdR2OefVYkFERpkud7NOVSlFjouyRAWRp+Vy8fHm9hc///PvXnz9+PJCCjwe9+cXy9cvv80JMkBhq+VqEWMEyCGE/nQ0pU3B38bAzAgkhGiapRAiRi8IgbnruhQmJeSjy/MY437fLupGShljRBTjOGovkYILSWl0MXkXfZwIQEsxhdAsz27v7wVizu6f//M/vLy8lGW8evSobNv37993XdcP7d39zWa1BICqWQhlb29vd22/Or/uRg8A+7bTKMYMC1n0Psshuvf3fTtYYWorP755eXm+vHx8+Qf/8k83l5+/f//uzZu7i4uzrXMh84f7vWr7fpyUrUCaulqYcuVD9MwhhMwslBZEzOPofWaUUkr5YGRARBCIiNbazOhScs57H21l5/ox7z6MMUIhAOQHsCBKpaQUAh9kiQohxhhz+lX7RYKUUIKAp4QIUmomzDkTgiAUKOeoxQcJJDIiITIhAefMMWdKCcVDkQLOyMQ5Q+KUcealMvMnWrBSyIzIkTP76L0zxpjSSCmZU0avbMmQgg8uuHHyShnmFOMBhZBEzWKT4iEnLioplbnfH3DwJOWpG7W2Cmj0KWWkkEn6spQ5UYwx5wiQhURFs4HCx5hPp261WmmtBzdVi8ZWdhgGrTWznqZpXqm8/3AzK16llHNcPyKWZSEEzcobIYSgXBQm5zgHDxAiIM92ybnRZeB/s6zir/7w6ZsPJxsifPpX9NDv/htfcw3+1fcYYa6+Meec6Vd1GpE5P5yUJIiwIimFTUxd7x49gUM7JRAf7w7H7RFJ5ZwhhhlEgSiMsc4Foawb+mWz3t60/+Uf/Ouf/Ob3rJT3d3d9NxVF9XlRQczOtdKCKsgQJTfF5E6n3WdfPP/v/ff/u6bQ79+9evHLP//Jb3z58sWf3O93TfXoxbff3ez+Tt2sfuPXf+tnv3zzgx/9JiJOQ0dSSCpSZNJESvjAUhldliUiSoLrq8u3b9+euvaLL76o6/rDx5t883G32zeLVfTBlmVRVevSaFNcXFy8ePnq5YsXwzAoJQ77u0eXVz/43vcR8ZtvXmwuNDP96Z/9+eNnT4/H493dHQBcnJ8ZYzjz8XhcLZcAIKWKMc3zwxAeUoHoEwl1XvYE7+NMzJ5l+jkjimEYSOoYQ4xxHHtjlFUaFBijc25CSomzlDIBp3nhmZIAAgAgFIDeT8OpVYsFQYam4JyNUd6Nel25cVQCK6vHaWJmwWmcAkkRY2Z82FzO0+/Tqb28vNxsNraomBOiyBm6blBSOB8Axeb8vG1PVVUBxa5v08Sbs4vt/XYcg1RFe+q1VSEEH2ROfo67YhSj927q+3Gw1hKRFKQFKUnEHBITMZByaQohASIA5RwFAUopIofMIQTvZidxnD8GBEyA8wIb+YGnxszi4X3OmLykvF7WMcaq0LbSs41k7A5Du7fWOj9qqRBySilFHrObm9eyVDlDdF4ISQQ+Rg5BkgjBo1T73XG1XjBjCCFFtqWZExZjDsMwlGWt1EMOJTuPIKYQal0IpU/dMaUccxJCLZdLVtZYrYwax5ExC1AoICNIY10MMbPSZhx8IXXOcH9//1s//v73v//FqzcvD6f2/cf7r84ufv7Na+SIykSG6+vrf/XTnzEIa4u6rs/PNxjH4/FY16XWNjNOMd9u23HyZ5vlKScp+PHqIoQgCeauaLfbxcyTD23bh5AXi0UC2Y+tc14pVRSFNWZRF6tFE4MrzIUUsR9bQerp0+cZKEx9BnbOTdPYj90qrxaLRV2XZVl7F7z3k8/Jx7lUKK0Xi5qTlQJtZQ/bnXPj/eSWy2VKnHM625y33S6kfGwHWzQRsOt75xwRaaL370Pbtu/fvR37oaqK/X7/+u3bwElJc/HoKnIGQfVysaybxWIxTdO8l7JVyafu13/91999vHv15m0qC2nNq9dvtneadEG67Mbp59+8/uLp85ywblY/+b3fffrsulqd/7N//ueH/nhxfr1YLWKG129fRSELY1ofFXup0fk8+BhiVkWJWiNzVkogmLJgIafJ+xTjxEoIa838BJxzWtn5nTxHOM2uDa01ETnnovMBUM03EgZWYp4b8afjPvIMvkP4FEkBgmYbkhSCELWWSJRSIkKJIFHMsdIAGWHelDAAIMGs1OWZnDrz4BH54TuMCCEnQOLEiBh8UCSEQEKIMYNgKYUU1LvgMxAFRAwhC0kkBGC+vLpK0StdxBgy5HFwDCmklHMeppGBCqF9yKNzUpkQKWMOOToPKWdCFt04eT8NY2lAG6uU1loisfM+56ylZsTRhc2F8m3HPCzXdTeM+8OpaS6Op56ICqt3uxutTYyhbduh74XAqqoESSUJmIyWMcYZFgc5MycUnypkziE4ftjKPzQG8zMXKP9i7PyrYozIn9YHAhDo36i++Bc/iTA7Sxkyz4j4+W8GIsiZYxRCxOQRhZQSCCFD1w2jS0KawAhS9aENmcmW1UaiVP5wKoU+tCdGAgZETBmmGLWtOjdUZ48+7g5/77/6I05eotTaEh0vf7zZXJ2h3o7+VqASQkitMvFi1Ux+QMlCMueJeWxK8Yf/5T+/enQBKK4fPfv5Nz8vmtNyffV/+3/87f/2/+h/YUsjfUQgEgWDZ04559Y72Z1aIQQi5xiNkk3TFNZMwziO48ePH1arldJ2uVlX9eKnf/KnOcY0kJRyt9vd3t/Vdf1rv/a9H3z/125vPvzsZ392PB7nwCAi2u4OMyS4UOLq6kprfXv3sXv//tGjR1rIfhhySjlnjmkutLOgkZkJoSgK51xVVZeXl4fDwXmPiNmHSCmEIKUqimJ0oW3b4/G4bArMbEolSfV9D5DPzs4+3t7MSeKAaIxJMQrA6INzrtY6p1RYUxglc0zRA0FZNHVhCFkSEEFhlBAiZbRaBgAg5BxizIjIhH3fD5Mzmvu+f+DX5vjo0aOqKnbb7bFrd9vjOIazzWXdrLSp2mEfMi8WC2MKpZyU2Wql1k3MqShMjC4kDwCpSMTgYmDmkNAPjoisUVRYIxRJYAAfc0IfE8fEiRNnBE6CgGMyjSWUOUFKSeDMBf4k0YKMjAhCEAAiRGAG01RlWeacFVHfD971KSUpkEPI3lPOiBhTKowpjMmZYab5Mg3DkDjPb0QXPKBkFImxPfXzNQIyM7ORSggxbwRCCM4JxJnKnFKIwfm5/SUirbWSZns4uCmQVEKpSunUZQQiopv7m6IoAFhIRFLGqMFNd7f79x/uUkhSyiePnpytz7fbvWu7qir+/E/+9XZ78/lXzxZicXb55MXLD7vjcHG5Wa+Karn8eHe/WJ2lhLNRbXJdwUlKeTiciCiDZMb7Y1/U9c19KzCt6hKFrqsVchjHKad4aget7Pnl5m7XTi68e/3NYn2p62b75sPN/X69Xl9fX7tplFJ+9eXny6YW0MeYP364JUVdO2x3+zTHFgJ8/tmzJ0+fam1Pp1PbtpMPROQ9dF0rJQlMAFkrkYCTD0S0Pj+7vr7uuoEztt04DeOiWT9+/Jik8q/edtPIQM7HcfLGmBi9H7pXb0LfnsrCKmXOzy+llH1wzNz3/XxdGMexPX0st4fHjx8n5rPNhqlte397e5szE4jd/l4wKCTKmUTs3rcAIFUxTvG3f/0r1+0O+9Of/+xPppAh+9rqu5hu77eTd/t+TMYiI9my7cdKGAZS0kxhGrt+zDFyXm7Wa6OFkgbIp8zOOe8SoVISMBOT9x6YQgwMD7KosXcPtn6lOaY5OY6ZZ/nPg0SLCBEzsws+uIfQda21UCJDyDmnyMxxXvHO/5TigSrGnIhQCEIU/IkH/FBCCAkIxFxxciIQQAycMjNmRMiZMmZEYmYimZGJMXNKOSEgC2ZAY+uU0uQcETFKUpqIROLFag057bZ3wY1W6xhjU1ZS6N53fT8eT11ZjzGBj2kKYwaUjIg5xQSAKUXmUY6Qc+YYm2aZMkwuSUWZkVDHDIvFph/G7fZ0PPUphYwIKLa7E2PjAisNCWWzWJFQRgjv/TRNs2WRHnhlNGNVlHi4y+eUyQcUAEIA5Ic5M3PKKXxiOCIKM7NkPuGTH+bMiJgZ+VO9zXmWQcNfqLPyp145z200PDQPDw10yjnGmDJoUm5yLgdrSyE1STseD/vT8dC7KeZdO44RhpgDoyKZbeEPBytFJMqBU4hFUcWQYk6ZgViSbYTEurB93zuQMcZvbw6yeWQvHulk2t5E50xNMvP/9D/8n/8P/v1/v148CXF6/+HdF589+7Of/lEY29XVF3fv7oyW0Ycnjx/9/Be/3LXu6snzREAA4+QlCW0IZGbEDEI2TbVYLO5vb/f73Wa1LKz5+PHj27evF4tVPw6XV1fJKKvk97/35Z//2Z+cDvtgNSIqpdbL1Y9+9KNhGF6/+m7qOyPV6Xjous4551POjEVdNU0Tp+HDhw9EtFovls1iu93OwJCcAiJWVWWVnpVWVpsc0xzH4b2fz4hZzvP6zRtEzDPSgKflcskolstl27an9qiUCt4LIbyLQslN05yfn++Ph8g5eD+Ho2shY/KQAHOeus4o2benZWndOF7Uq/V6uaikn/qiKb33PoZmedYPLkYPWE3j1PajMna5XEtdh7jlwXVdNwzD9aOrrPTxdNRSWKtXm6UwunfpZvvOp3utbQSe/JQzDmMoyhxCKI31fsw5bzaNEDh4G2PMMeQELoTRTYgiMwsxr77CvLjNWQhMAjBwnt+mKXJKEQAScuLYEwvg7JmTNlYyc0qklCKO82NUSjBjcs67cXJBKXV1dS2lrKtifzgppZxzwzA0q9XpcJzROplhv99LKReL5TzxIylmK3bf9yE4gCzELNgWLoZKFjlBTME51zy6SpH7oRdISilAZAZri6E7NE0jpez7cdE0bdfdfrz1Ia3OztwUiCg4F1JKIZa1Aabzc5kzOx8z0OTCNE2TD+MU+r4visL1493d3bMnj3OctMLr6yeuWxxO2zdvXpuqOrtcMVA/eNuNMbuYw6Je7o8nQmOU0lobI9BD10+kZF3Vd+/vcs6LZX236xdNnX3ountE1DI3hVGUlVKr9ZkQqhsmJBkzNIulz4wx66LWhRPakNKbshj7drvf5Zyvz9T11aP1ev3+3cfNZvP48eOf/eLnZVlWi+bs4vx0PI7TzTi6NOtngcaR27YtqyInhwRVqXOOCHx7tyVEKaU1JWRerTZ34e71m3dXV8355VXOqW2PQtqMAGJGA4Ctyqury9bq1Wq5Wa/nIdO03RZFEXMqyqaqquNpH33w3k8hKKVevXmbmJQy93fbw2m4uLjI4+DHIUawDQlCIcQ4jk29aNvuxYuXTy4X09B99fkXf/rzX6xXi69fvHt9aqVSE0fSZt92oigz0OBTzH3OPBNjpdYiYoiBhRjdlFKafAwhzeIaP05D11dGg9bEMKuOBUBCTJlXq0Xf924Y56optJYkUkopRy2NeGiSeJYIhRDKsgohMECGWXhFKcUYEs2fDiEyc45ZCESAFOa2lYgkEfzFtBQRgOeNLxHgpylrgowgMGdAiJhEhsQAEpCJU8ohJ4lGCkEKMPmUQxgdJ611ZpFj0lovluuc0l3f//IXX18/utrvjzH6urRj30/rNRE9evTYmML5N6NzjCJG7ocxI6XUlWVZVUVVVsFPkHMIHgACklTFMHQhuPVmWTcNM+93x2HopdQfPu6KomhW634MSqlucEO41VpngLbbXpyd7feHxaK2tigKu72/BwDvPRFoKaP3hKiU4hi998yJUxYSdVmCEMoYyDllyNGHkJh5ho3CFOYAAABIKTMkAKCHKj6Hb0BOaU7emE+2T5vgB9c1QJ7bZTHL42MEgBDSjH5JoxOkSIqcJ6WBSCltUx4Tw6Eb923XhxxRRBBx8oDih9eb3vn3d3trqjGzm0ZGEkIIkj6GQtkhTLJQfSJtDJP687dvb9pfnq/qJ9eN1ZdlKbUcDh9e/W//d//7L55/9h/8T/6jLKxSyo3dt1+//Mu/9ZN/8fOXrg05pZxSXdj/5O/+57r43JSL4mwdlb27n4Kf1XWD9yColn4axLI5P98cD9vt/d1iUSuBf+2v/JX5t0JEo/O7/X53e3N9efHv/Tt/HQCGYYqc7+7uXnz79W6304Kauv7eV19uVouX3702ZZFJntqekfbHE8xZFiHMMksiYnpIJVw0JQAIIVar1TiOp36YiQLe+1lJW5blPKBer1Y3t7dVVWutd9vDEY5FUa1Wq81mc9jf+ODWqytmHoZtSulwOFTNEhHbvuNPscYpek7ZGDMNJ4lki+XV2YaDW6/OLjaruiyVyKqumZPWerneHE5927bMGLNwAUYXt7v7mMViudSmPLsovJ+M0m3fWasBslL22B2VUtPQRmBdVilLWzbHbjydTlUph+Fw2LfIVFVgtGyP26lLUtEU9fxk6rJKnJkxM0fOifN80RucJwGcxYzghXnhFDkBZoZPeVIWgWKMRigiij4BZKsLSUILQhCIghmnaWLmYRgACJUKwTk3aq3Pz9a73W6zXkqB1pgOUQjBzN7P5NRijncGwuSd1jpzXKwX3vsEiUBPzgmis7OLYegUCSnLFH3fD7KuzzYXPkxzv2uMOp5OHH1RFH70OWfnHABVVQPD0HXd6dhJbawt2XtrC2ut975ZWgAaQ7zfHY0ti8gugbGT9x+srZuz8v724/3tTVMXTW2fPLmC6fxPf97e3dwWy8Xtdri7nxLTFHj34W65bBgxgyytlVIgifXZ5np1+fb9h3fv3m3O64hqcENqPclgCvz44e7HP/ze2/c3q8YObbesi2Uj98dWSjWM7tXbd0W5KJpFt2/fvXxrqqZZrCbn3rx9X1em1PrU9iklDOCmsF6fXV1d7fcHhvRbP/5NILzd3n78+N7aEgDKpk4RdrsDIrokbVVLLQtTAQeGuYlhF5MWcn+/S+FOa21NiUKtzqoQuxj92fn6w92dH/vV5myz2XSnoyShlei67uzyQgD0wyClzMxFWbdtj4iLdX232+ecS1MVZX06dkVR1fVC2+qf/+EfJxQZZN0s1wtWi2V/6iG6J8+eLVbN1y++RVCnyQPA0HZPvrr64Y9/2CzXf/qzFz/6YbP9en+33XrkROgTdJNbLtebC+vHKbjgQ0qcEzMIJKm2u8PjpoghxxhTykVRAIAsS0EwjqMUeHG+6fpxil4YgylLIshcaOPYeeeKorDahOAE8iyN/ovVIxIIIJBAUhk5C0FmeJoQknNOzJJh7oHzA9CFiYSLIXtXZqu1DiEKAqVUznOPlplAocwCM2eVhZCCMycAgUQkU05AgAkTJhAChUSAnIEhZeR5pzkvZedRakj88eOttbYs693u/t37D4JwjqpdbTbBhxcvX/vJXT66ykApxnpZL4zF/WkcHUOYhdA37z+sV4uz9WZKKTiXEr79cL/ZrLpjl7grhnRxsU4sgMzokk/k2smUy36aeIwoq8OxJxqVEjEEBCEFRAarbc4sldrtDmVpx3Gs67Kua++9DHly3adHnQqyEOPc4DofmTmE5GNm5uw9UtRGGmMU0ky5llJyzoIgpYzMABBCmAFxSikiijn8ak88h/ICABGklCzRfHYZY3IO8x3ImnIOnOcYQxwS0+3tLZKcrfOSYFFXd8c2pABCTlPPC/rxD3+g7ftv3nwgURAiE8QYCBkJXM5S6nb0pIvAgCSjPd8Hdfv68MvXH0qLTy6uzopyc/HF3a7/+3///yzU4n/1v/7fZM+vXrz+4vNf46i0ll0aQ+9+5zd//OLbb4+n7nvffz5lDqdTDNn7abV+tNt/IIEAnJhl13XjOGolL87ON5vV6XDYbFac4u3H7alrj8cjkLx8dPXilz8HxtcvXrx6926xWJRlPauxHj9+9Js//vHLb799+c3Xh9VqFiXuTseu68tm9fzpk/dv38xyFWAAJq0lAICg0lgfEueolOKY9vt9cH69WaHAw+EwW4HnD0yMcb1ehxC2u/1isbi8Ou/6cRi6EuoM0DTN3d3d4XCw1i4WCyn05F3bHWNOKSXiLIClIIEaKGulr5dWKaWlUsgoiHNyfkypQCUzgLUFIu6PbYjcdtPg3IQmRjq1zoUgDt3N3f6HP/qNvu+PbRtCMEYXVdksqt3d7d3NbbOob7tjXa2vnjw+3Pd3u/0wdITZe4+Um7KyWt1++Hh9fXX96ELIlHM67KKbPEOWJEgKpZTSBkgOw5ABc+bIHBN6AZEzIVSFSpAyMiEpqZOMlBMzaq21FinFafLWKkHkffQ+6lWdeRZ9BmY8HI7L5Xom8k7TtFqt5hBv5vTq1Xer1SonJhTICCCEUBkw+cQcGUFJIqIM4LyPOSOiMcYHtrY8nU45BSmlssYNIxBqrVGK4/EYY3TO5RTm1X5hq+CTT5FIdv3onHM+eh9ihusnT4nocDjN17L5tpvGY0ycQYzj4KNLLCOIoXfnZ1fr9XK5aM5XzaIutMxDd9ysisPd6Yc//EFz+/6X370xpf3ie18dT2POQcjl1y++k0jKmMV6NXbdMAzbe3RtZIaMenfqRhdZWFOtUBWv391UdvH6zQeN0WoJkR9fLhDRR7/d77UtAcX9dtecy7PzS1PFD3c7Y0thyhz8MProPEBZlvXQd87fHE6tNSUiEcqYE2RIKc3Wu+VyfWz7siz6wbdt6+dqdAqXFxurxTB5SSCU7PoheBcmX5ZlTOxjQkIiOfZ9ezrUq7Pf+vGPBh+H0Sml1ssnfXfilN3o50aBiKYQJudCgM3mPANYa2PglGLMGQAziJjZSpUytG3XTaFq1oslPbu6gAQH4GkYsh8LvbrYrF9+95YQ/DjshvG9iYLSh7vdz3/+y8Xq8uzsTBY2S3r17r2PnoRJGdartVjT3cebftgHBh+gDz4KoU1xOna6sEVR5AwAoEhobavCAKdZDKUkpRxc5zOIetE45whRCsyEAkEJFKgF0uyV+JWS1sc4l+EQcwhBiDivCREIhZASkYEEZoCc8uznISJmIMQY4wBTApZIQuq5QkNOGRAyR0wScQ7SipwVSmZMmRGBkAAxI3BmICAEQsoAAhEwJ8gC6BPK/mGOPUx+dmNaW/pxCJyMVt04nV1eVdZst9vt8eQS183KpeMwOnfspLFVVdWI80q7vrjo+/5+t7XanLqOhHaJl+vzanF+v70N22M3xRjjfndsmgWQOZ1OpxdvfAzW6mmaQiY/TRJBEPrMMaa0O5FgjqGwOqZ8OJzKshTCMCOi6MZpJogURgkhJ++A0Fjrneu6ITEDUEwcY4qJlVIujDGBUezclFLSJhljLKL33nuPGR86Y3YxzsKdNMs26UHmhkIiM02Tdy7ElCHFeZKdEgshMqSiskKI+/3BuWBsWVh9vz12x649dm6cBrcz2p6t1i7E5vIa/f7t629Xzbop7JAhBA7JN3XtnMNfyfQAMgMjM2QolqMH0pqpHrL75au2odMPnlb/0f/yP/4/0f/hdNr94md//stf/OJs0YzDVJ+fXV0Nb1/efP7k6bJu/vbf+TuM4vLxY1PV+7Y9DKOWy67rrC3HaYcoMoK8vn70p3/yJ1VVnX35lbV20vrmw8fb29vf//3fX61WH5S6u7s7HfcpxKIqtRIIcHF+3vf9oqm+//3vG6kO221OYb1a5BxRYN+dxqEnhtuPH16/fl2V2ofJ6GL272qppmkSEmfCVAoREWfbO2uJiHPshDaWZyiQ1jPF6Pnz52eb82N7uru7cyGhoHHstda2rp49ezYNU9u21trg0ziO67NNO/SF1UbLcRw5ZUlkSr2oaqtiaVUIYeo8QmQHJw7DwhpZcHRzSNP+0GbSg4+DY4ecGdtusmWBShPgz3/x9eXl5XZ/sFpdlsXt3XbRVD7lbuiHaaTG7g57H2DqM5HWRdm3h34YCVOh7epy9dVXX1lNr159fXm1kgIOY+66LuWolKrrGgi9C0PfM0Bm9j5OOU7TZISQhEoL5gQAjCQICEkKJaQmgrvt4WLTGPFwYZRy1oHKafK/8q1ba6VSRVmO4/jk6dP52c5x9lVVLRaLu7u7RQPex5gZIYWciAgFSaWEQBDEzMBpvrfO510/pBBC13WlLQDA++icWy6XUish5M3xNkwTIi6XS1sUzrnBeUQUpEjJGMeyWpQLirdbwZBSIqnLuhbOzy4O770kDCEI9WATd9GHROPoYswAx/1uayXnMEiRMU/v3r6q9JIIHl8/vT/23ch9e9zvu+fPn3Y9u2k23RTTNEmjJREA3W13UhuSapgiCG211sZqW958+Hi+2exv3z273jy+fpp9q6w57Xcux6qqbFnf3u0TcIq8P7btGKp6ERnYhSxyoZQ1oiqtFJqBvMuT77QOVdkIIYKPIae6XkzeZcZhmIZh7AcHQM4FVIUmvd0eDweqS6skyKoEBGtLgVSVdWmtd5EItbZKSYi273vnYybBKIFjTuBzXC0aAEh1QSRCCMGnfpoABArshvH29rYoa621VOQnV1VVzjnFfDp1Stsvv/zyNLhjO3Zdt1gJgfLybHnjhg9vXsU0HtveaHp8eX3c3j97dm1LvNvuXAiX14/v98NhOo4hZBIpclU2WmvnfNu2SsjIGaWAkIjIGEMMKURhpRZSKMPM0XkSQksSBE3VzDsRNw4SYbU5izkP09RUpXMuBZ9CcClJgMIYaxSRcSHMWdCfpDqopGSAmFPMKQPPq0XM+cGhhJQYOMX86QsRCdiHNNsMlJBMCKAyz4ylHCFzRABCYmRKiSVh4gwElCkLJoaUEYABWQIkBMQHLRcxRsCZSsDMc+TI/DnKCIU2bdfVVfn86bO7u5sX371ar9dFUUipdqcemI6nTmmTMwjNSsmyLPu+b9u2LBfnRRFCKAszuknoxc2H913/s6oq5pjbDzc7KeX+NPgoQMhh8KObiEj75JxDoTgxKxFT3h/a4F1T27Plwqe4KRfj0J2GabkyKbPzSSkNyTufQkhCKCtF1/cApG0ZMzAKZkgpO59cTDlBzImApWCENLnow+SCSJGVUkLp0I/eeyLCjDlnrVFKOePy5hWyEHMityB6CPkhlFOcXJhmfYlSanAdjlgUpVQAINzUUaYcBtcdSqLLx5f18sz5tFit12cXIcWP7775xbff6dJNQx9QEynOMWWX2c/J4YgiAzI+3JECKxQChRxCKsyCsx/ccLvb/8/+g//hf/i3/sev/+Rn//Sf/kn046vX7y/r6uPtzc3u5nvf+/LXv/ze3/9//WeCyNpidX7RLBceYj+6TLjv2sWyAqDIOWGWz549H4aha9vdYf/NN7/8jR/+8Nd/9OOf/EQ657que/70mTHms88+Y8LlYv3tt9/+3u9dzMNhq/T29m7ou+50bKpi0VR1UVR1PfoAAJkkKdn1Y07BKF3aYk7bny/jnGH0TiJl4BACaiyKImfNALYqfYoA4JwHwL7v587JWvv69evj4WStbVYmhjwzELtxcP0UQgjeSyk36/Oqqtq+M1JFzjEzJSYEI0hkCM5LkRRqbSRkpkyCsyDMkYNP0zhmxn6c+jGM3sWsYmZW4v7url6th2Fsu9HHGKIvm4UyhTZq0azGvi2Kar1cMfPQdsvHZ+1p8A5jDkrmOQFgvV5XpV4tl/ViIYRYnZ0NY3t781YbofWF1jp4FkLM2THMrHMaJg8PH9HkXJwI6qJQtvAxSa2FkClDcGFOpyuUsGXlfAoQPqWpKyA1epcixRjLskQQPnBRVCEkZhxH1/fjfr+f/QbTNF1cXAghPn48CSFkhgRxViIKoUAQgIwupJSEQCHUrJjt+zGzHIYBgIuiCNHNKlNmFqRubm4Oh8NyuYwx3t7eLZdLa633OTNLCaXUTEraQgilS59z7seJQtJaS62IFBFVNSKOXe/a4Xh7e5dYuSQySgYRU7q9vf3qy88UBa2p0Hg8tK9fvoAkV5uz+8Nxf3+o1lcxhZim7e6uLG1KOUVw7IZhWNTVceoHZ4RQp5uPZVHPKh8AGoZJCqqqSghxPO2XlWwWVW0WVmKchjyN9/d3Tx4Xq9Xiw92W6VQuz+q6fvfhTuoCCGc2VfDpGNu+7y9XoixqZg4xd8OolIozsAuFdxEIh8kPw+R8VNKi0CkGY0xVF3YmzkpQQmgpY3BN0whE732KnqThFF0Mi7rOgEjSpxxiLuwDHHfo2jkqCJHcFEYfDsdWSiVJbDbny1V0zo3juLZrKiQiPnr8ZBiGGVnWT6Mx5lHV9MN02G+fXD62ynz2/Nnt7fu+P15fXT159qUb3O72ZhzH60ePzy43t9u2j1s9qTS5cRrudsdMorA2uEBEx+PRGIOIptAhj5yTkloKGVIuy0IpAwCZOYRgtck5Rx9G7qu6LIzOIQ6Ts1qiUDknq5VRsikKv1ggJyFEjmkOhhSITATA+VOSQ84ZCWYZEXOa+5uU84N/b2Z3flL2zN5iRkiIzOBC9D74GJItlBaQgRABMHLGhPQwHc0JMwEzQwZOs/0VMjKklJgpM2YCSQiADIDEnNMDMXGWdjNDSuxRUM4g+8HfH9qLR0/awW2PbdzuP3/2vGps3/eqqGKMmeF06s7OzN39PedsrY0xri8ubm5uplPvErhDi8qANKfB8YyKCbuLiytTLk/DNLiTIOVjVkqkkDIQMWcgjiAQfYIQYtc7xP58sxDKZB4ZyAcexhER1+u183mcfE5JKl2UJbPwMYeQMgttisR8OA39GBiRM/qcjQCZGBNGhpA4p8Q8khRVUaYMKc0SncwZiFIIMYT0SUGdAMScezWrjoBJaUVEzs1jajFNvixMjNFHv16uiWi3PShlFk31ox/8IAbeH0+J6Zi6+1ffTrv7xWLx6Pq8d+Htx2OMMQCuLtcLxEN3IAQBApCYQQAyIWPOwCl7RTqmPCUvtTSFlZjef/z2v/jbL3/ji5VVxaPL5cvv4ji2sCj+6R/+wfLx+Q9/8zdubt4L4Ohizlg2NSpJRKW1+2Fi5mmakDFnJo3yfr8LIY6T++KLL7z3H27u7u7ujDEppbOzs7YfUuLTqfvmxYvZndKsNvf390LMduypKsovP/9cCq6LAhHbtr3f78cQR5emGBFFAp5jxGcD+AM3OyWrrJYUZ4ZI3wshtBAA4EO6vHhERKfDTmvtJ1cUhTHmzZs3ALA5Wy8XK0Z4++F9P7Tn5+f79jRbit00DcOQ0/0senTOGWOMNZhidB4yo2CFuFoUhS2qokgpRR8wxaYppZTeh5jw5nY3hRBZtcOEshxD9mFApYZh8DlRziRFUy6dDzHx4dTR+w8CoSxLN/munZbLMzdORuuz1ZmAAzOM49gsimZRPHnyGAEi54/b+/cfP1SlLRdnKYXb2/s5GH3VLLSW4zj6aeTM0U8ZKKacmAEFksgkM8l27EoQUkvOGGOKPnqEnHPOovVDZYQtCp+BfYoYhmFqtASAlBkJ5l1sVZXGmPcfbogoJj9Mo5Sy0OZuu5u9W0JQAiYpiGRIiRFTZOenT+EGQkrJEKQCZkwZpZT4yV1QFIVSIqVUluXHjzFliCEjCm3LZrmOMSor9/v95IdFhMnHY3/HiDFkFGTLahimtjsVRTHHxFZV1XcTg/AhSGWsbVLvp5DkfMlQdd+3lRWt9wOERVMqQd2p3e+3jx9/Ju3ydncStjKajsf9svlstTzPcRJCVJWxhWZIwedyZbQxKEhKpUxChqapghvWy+ry4uzmdcHJt8fDxbNra9DoC3M6MqSqtijFV59/Xp9dji7/8uV7pRQSJc6cMyPkzC64MUXKtF4LrWwIafKJKAghlFEx5qqZZ9rp1E7WVIe2K4uaFDPnRV1XhSFkPzo/DGdn67Isl00VnA/Ol2VRGjsbryFPOUWErIVETEhCIAmtAoL33o1eKIVSKZBKR0YBnAFxuVyGFI/Ho48BGXwIp9Nxs9kYY/phWiwa5xNDXm+W/Wlo2/bxV9eLuhKCX7397t37N2W9Wq/PpdbfvHyFEt7e3qtyMbIyywtq3wGRLbSQFhjZR7IGMvd9b60pqkIYPU5xCjHlpABjzERpnsdCZoIshSSCGHyOqizL5aLpp9G7EdAjQ4oeEauiWDbVHGbnJ5dSavsOmQViZOacgZAz+BCkZCEIQM7vT6UFfhr/IjIiIyMIMV9WmHm+zSBi5lmtlYgEkYUHADblHGNmZJg76ZCSEiiIMkAGDjnP8R0xMwFnyClxImAiSUCMmGEOlIj5YcaecnI+ntp+sVjkFG62+wjYT1EIJYx++f5uuVymBOuLR5jZe7/f73f7Y1GYPAMRM4SYY2IhZATsnVdKoTTO+7IsSqWPx9Pdfh9DHkfHQMvlMjIiCMystZ2miYAYmAmRZNmsrKLC2m7wCF3fDxnE/tg9eIewLQordenGHlAoXWjjUs5tNwolg08upnEKU8xEMjMycw4p5UmHHFPMEVlADkmOEyIxg1SaiHJMzMwoJh85AzAy8CxvB0ifHEyIiM6F2afKzEVROBcSu+V6c9ofTm2rhFZKWaVRi74bu66vbQEkNVF/PLx7+fV0dnHVfB5jnKZpsVhhgI8fbk2hpZWQEhJDAs48gywzhMxRScUhMXNRipyn0UGlyeepPe3vb067mx2Ks7/y+3/pP/2//CffDofPHz+NQvzxH/3LAvnD+/du9GV1fvHoago+51yXRe/HstIxxpyBiBiS/PbFy7ub2/Pz86KsFsvV/d2tUfrXfvgbEokE1HU9ef+P//E/Hobh8ePHT548+f/+s3/+N/7G33Dj9NOf/vS3fvf3xr4lYOS0qBulRQxOEYFWMTEpywzzJmAuwDSDb5V6oIYpQ0TzCr0oHuzeu92+qqq+H45tX5blDNg57g99319dXXVDf3d/uzk7O19vovNCiOVyeX9/LwDrup5ltMvlck4UkgKFEBIpI0hBpbF1VUmYaqvONkvMOI5j351ijPvjQQkSEvfHDqQa3DAFzCFMLtqFrIzZHg9VVQmpAeB4aosyIJE2hQtcaDW61B33/eB++IOnb26+vvlwEzcYU2zqZWanbTVM/aHbna/P7+62++2hbXstxdn56uxszdwDQIxxnPoY5DQNMSaSOscUIWcGIjlLoiafU9uzHwaXlDJSKkKZUqbMHFPyIbgpR6G1BsyScH22MkXdtQcimnycG9C7dx+UUgA4Tc5aUxb1drtFcjNu83A4PHr0yMcwjo6IhFJANFvgh3aYMZQ55xgfZlCF1X3fG60BOMZIgkIIRKJZVcx8OBxyzkVVEtF+f2zbXkrpMx/76dR1x35Ekt57khoAiGRgiim7lHny8xE5uoCcpa5rMM+rtdDV7e64O7WZIcYYUoDRE5pSi/VixSn+4Nd+wxr6Z3/wR23brxZrl3AMviq01nqapspW+8OgJBalcWGqm6V3SSh8+uzx6dghihgp5/zo6vzdm1cpOoI4Dqda1+1pr/RjgTBO3XJRFoUp6mYDIrN4e3P37vaQEjGoGH0MiZmFFiwImDGzC/lw7KzJn4IVJyFEybYoS0FSaHXq9t7HIIAzSqkXS5VSSt7llPw0AecU4tD3lG00GlKClFIOrZus1U3TFNXSOTeMo48+xqhURlBKyug8Zs45C6YYswspsWDG5aLc7/cZeL1ebzabORWEM0Up2rY1hS1KAz4LJYWyzsf1el2XzW63u7v5eGi3T548sXX9+t2NNuX55RUSv7u7L6tKeHHsoXdkSrNEuLq+ThHHyWfEybksZWEKbU1K6dR3w+iksMYWRDJOw+xbAwA9U2QBiaGqKkmUYzRKbFZLFPLYdn3bQy5CCGEcpJRaKmutEkIqBVDHnCYfgnMRMgpiIGbmHKWac5ryvKadw6tSioIQYDa4ABISYGZgwMwQcyKGjIQAbuYkEiGRBEIUCDknTkT8yR48bytn/mBCni05OYNgZmBgiJwBSAKkFKSUc2zArBNm5pQToOiGKcZY1/Xt7jCEKEKy1rb9NMajUWL00U0DMjeLSgs5p5F04+ni4uJmu3MxrZtFOJ4GH0XKtq5YyBDZGHN+cXVoT8oKYZL3vpv8NA26sIhgrTVKCSEJskBglEgYY+7HMTjHzARSSHDOzVkRh2MrldHW9v0w+TyFKJVxzoWYM/H+1I5TCIlTppBySowoBOSYo4sp56gEShKQ2ccM/QSYaVarw0O49l9ki84rWGYiIQTOipC5WCDi3CVLqVNKQzuUxSJGSCnJQkipt/t2v98/e/Y8Y7/d7xPDYrF68vypNPrm7tacOiBZNevb/VhU6yw0YxzcoIWAnDEjPuR8ICIlBpFyypApG6F8znPMbWX05WZzvqDt65sPd2++/fbN3/pb//H93ft/+Hf/3h//9E/+nb/+b3/7+rv9/f1xN6WLs8VqOflRa8shCgTmJITgJJSiNjpJJDfnF9//wfcPpy4lfvzk6TSMh+PpeNiHEM7Pz2OMm8359RN7dX2dc/5Lv/e779683Ww2/62//m8jw5u+XVT13e2Hb7/55fPnz58+flIW9fu723a4kySFUcPow+SEyIw4V99ZKDFP+UkLpRRzWjRNzimEcPnocQhht9s1VT2fWdPojFZzhZAk0NrddhtTYs5+nERdFEWRfLBFtVzoFEJwDoVYLBaTG8au95MrrGnKinN2Qx+E02ebyhhmkALHru1P7UCptEZrrW2RQLquY1RC2uxyBt7vto8eXzvnhslrra+fPrHW3n74WBS2tIWWIidixs36MmWCDH5ydzcfpSqsknVjV6sLbSjndDwehVZjiD7w2flFN0z3u9eEzDlisqmwRkmJNIYxhCAkSVKZRAbKwG4K3gUfkpUUfBhGj1IRSo4MnIygUksjMZMCqY0W49h/vN0R0ULBnNBZ14wohBCTjzHD4KbIWWi9WK9CCMPk68WqqCtrK+77bhwyQ3TOx0AkUgYXvFA6ZvaTnw0eUjJkHscx51xVJTM752empBDizZs3m81mvV4j4m53yDlv9ztEDCB3xzbGOAXWGmOGQsl26BF97xwRSSldShxTCKHt+mW1yAD9mEiJ03T00ZlCjy4gQlPU3WELVCilQoKmqKpyud6In/zkt/6z/+IfFPVZtV6/ev3dYrm0ZlEa2/cjMhFRUdi+76zJVdUM031Vlc6PzBxjiiEM3QE4KqGtkd/76vM4HD++f/3HPJyvF0bJ86vLcWhPp5OP8OLVu9PgOYvJJRenolzUdU3AnCPEIKW0RUGKOKWYWSIBQYaYYuJh6ocBpVgsVv0wMXPfDYVthBBjf9RaE7I1mo3UUqXoo5uO+wOmWFelknOU4CgojwPGEMqirms10zmD89GHojA5JsgMiZlxmKZuTAwCSG63WymlVA/0aImgtZnGYbGo57MvpKwK2fVjN3STC5tl2ffjZrmyVh/a7f54XAjx5ZdfGtu8ePHS1s3xGKaE06EHtdl3vWxISplCTJkQwA3jsT0xwEKvmFPkmB94vQKZp34orELEeT9lrEV+EFIhJy2VlCLnbJQkoXsppcAYQpwDFYFjSp5zQDF7rtgDUVJKATMjMQA/RDrPJtTMDDk9zDPp33CmCkCaY5yRAgqYQ38RCObcu+xCAKXYM4gsBQISM6eYQUImxMwxAQgihAyMCRjT3OYmAAaAWU6ZcyJk5pgjYpr1RXnu8lCM4ziPxF3Kfpqk1CGlqRulNsd+1FJA7owSwMnfe0RsFhUTLhaLxXL94eZj23bCmPApq9KFaIsqRj/4MK8/AEBIWRUlM9e8BIBTe2j7vg2JiAThetkslrVSauiP/jQUVseQtdYhpZAwg9RK94fOvftQFOZ46lBQcSq0kSEzEbph6vpx8omBMlPOEDILIpIYc84eAJmIJGBMmUKKMUJ6sFnDw8ZXcEaEB/LgXIEBAFEQyRAcAM3bCmb8lYw0Ot7eHh5CnDBMU7vbHo7H42nwX331VTttt/udrJsMfPn8yRe//mt3bf/htj0e25TVoqzDOMR5hgcgSCAKRiIiKUUmiBmUx4ScGNw4ZeBCNUPXaaZS2UVRWFH843/0j17f7P/m3/ybv/OT3/6Hf+8fXl4+2mxWx4/y+tFltaDlj/6yrezRDTLJNDpERogpSyEUEwtEeWxbAHj//qNzThLWdd2P21/8k1+cn59/9eWXNzc3q9VKKHlzc/PmzRvv/XK5PBwOKUfvpvub20VTFaV58uRJYTWnoLU8O19HhHachtFxTLNYYDY1KaWstX3fz+qDEIJCUVg7TcPxeESEsixH5+YdwHq9VkoopbpTO8ffP5jSpKiqKqaEiGdnZ0c/zT6BlNIYxxTC7KwXQlilzUJ5MxEgMHMMgFQURms9h3gIFF3fIvNquYw+JM6b88tD2yNNJFRR1aPn3WHXNM04jh9ub+7v7y8vHr179y6ldHl5uX+310pZKSBzYfT11aMXL15+9vnl46tnh2OXEg/TWBdFTFOl69u77ei8mzjEnBg+3m6rqmDUOY/AD4iPMLnJDd57FJITCwlS65hhnPzk3aybzYAxxClEmCKiYGYrlZ050roIMd7f74TgYeyLori6uiKMZd3MN8eu68qy9t4bY8qiLitrjPHeXV9fz5RQIvPm7SsXQgipKKrM6JyTSjOjEIqZg08psRBSSuSUx3HyweecF4smxvgr6/bt7a0PXpE4HA59Pw7DUBSF91FrPfrQ9qMxpihKQbJrTyjiMDoAWK/X0zQdT91ysWDmYRqNMcMUGaAfJmlhd9xnKat6MQWvpZaE5+fnYZp2ux1xHuvKSO1DcXe3Ozu7SKCC8+vl0lZVWVZ+8kqZZ08f392/nXP15k+yMco5N5+TRWmGLu7226awFxfrFNzTx4+6vbg8q0qFhdFay9PpgCimsVdFff3ocnp7u9uelKoX603KNBtqCdkI0EJprUlRCImkApLE2RqROcbonXMgSOvp+fPn795+zIcjAKTEnOIY4jgOF2dnRmkC1NqMIfjQDz0UVlWlVarKeQmQ+773LseQSYq6rs/Pz6dp6rouxVhY3fXJe89Cp8hEZKqaQVoAAIgpOecksMsREUmK0+nEzFprkooIVquVMu7m7u7YtVbZ/X6/WS9Xq9X2uL+9vT313k15GCZr7bFthQ8e7BCT0IvRnZCp77vl4qwum3H4WGiDSnZd5/ZTyGnG3AoUwFhYrZSc1eB93yOi9762piyLFP1MiMqcpZQoSCAURcGcELkwWik1A104x/SQsQogqSxLFsKF6LxnYMLEOeacOT9w3RFxJvYgkgAAhDl5Yw64BQYpJQuGzClhjhFzRhQxxgwzEVhL8ZDMBRGkopw5ARLmiCSQOTMzS6k/OV05MwfIOTMhSokP/w9KY84hzRYnKIpi8g6Au2EgwBTi/P3oEqBIDN55AC0Jhml49uSJkLjf75W279+/7/qhHcZwtxVCmLLAzCGEui5DcLNVabXajC74EJMPPgSllNSKpKjLgjIR5xC9c+725l4QU05WS844TQ9b5HlfjoghhCE6XdiHlH7Owaeu6+bVofeBGUNMMSUQElAAiRQTQ2J6CMnOADnnEFkKkTkrFA/4JICcIOckBSHinDuZE6fkQwi/ggLgQ0I1G2MEycKWRhZ93+dE0zS56TRNU9ksNheXX3/z4tuXr6Q20trAeXs4tG17fnmxWF+QUF0/1OvrmLJzDjVaa/04ZQZMwCkBcQTOFFOKJunMLJQkCEJopZRz4XK5qYowdu1nT7/4S7/zV35H2tOx/7/+p//3H/3mT7run1RV8dlnz+7hg0vj+fl5TEkpm1y01pabpvT88WaPDKNzspTyfLNqmooQKyNTilVpvvr886vzc4AsBBVFUVTl9t17Y4uvfvADZv76T/7YULpe11989b2fK/nh492Hn319vay+fLScjne3t69ktXGOiEoQIsacp2HRVEQ0TZNBwW5aFjalNKZYKNl3vSjB6qLtO2NMZuLYff702Tg2ANn7KKVcrpecc9/3w9BZa9fNsmmalNKbN2/60/Hq7PLl3d4wXl+cf/fm9RRiXdcJ08371+frjSYCAE7hdDyebVYCaYDiFPV06rwLyJMQypSqWGzKsry9373fnowugNQ4jkhyaO+DFPf7vdK2WaxMuWiWi+123x0O227Q2hzcuKk3StKQ4nf7uxAC3OimkQmki6530ZIZB3y3O45OdAMM4+RdZoBSQk4xRGcJJWrPohvjNGXvggsxY0wk6qraHvfaltIYlZh8QqDWc4zMiSFFq1FIwZyA9BBTHn1l1TSOmOOqrr96/sxq1fYf22G/qKt6ocaurctcVbWWstRN8EkjrDZrN41DdLrQOWep9czs1FbsdgclzaIpQ0j39/eEpaCMKAprpLTH45FELiWsVrUy+dQeEidJ9tCPx9PgU9ZaH/Z7U1hTrN4cDs65tr1BrGIU06HdrOT3f+2rhNq5UQjVtm3dgDC1EiaqwtjS2uXucFyZcQo5KhkiIVYi0emureoiAnuGD4e9UUIkWWaPKeXuZML0dC121ViU1eLs+usXuVysT30f2Smrun7a7W+EkJv1ZXsaCBxKrmtjZHM87ptNXa9tcFNhdQ7+eJxyck25WJ0/loJccsMUjBpI0uLsMoJst7eepTR1Wa1ISICsJFijcwpSoQ+TJDBsCyNKawg5Yo4xQ4LSNkBmGMP9zgMd68V5YtW3R8gehUDEuqjGYcICS2vnw1rbkrTY7g5FaazVVVUAkDR2vz1Za/3kTilIBCnlojSR4dT2MXHRLBKLsjb+NOzvt0Vd3Z6GpmmMKSceDauU0+0xWG0AK1vYcRpFFpMbCMaco0ix93nyjii0LFKCm/uYAFdMJIw3/O3dcPB1oUqllJJENJ1CEkSgpSfOBHa16baHqlpg4n57P7rJgPIplyVmCEorQzI6z5iRU86sDa3WxaLSxATeYcqEGZFKI754sp4mf9OeBk9DiOMAplmNPjOyVGANmewFQgbvpyRIWKOcj0A65RR9xJQKowqlYox5HFEqkLoPIaRYlqVRIqTsUtSkxmFQWuuizDl7IXLwjCBIUM6YmGIU+DC9xhyBBSBlhMzEgCkjYCYkSBkAECDO4SMkIiIBBkpIigBj5PnahygQICUWSDD7vmdy36xOooiIIWQgmmIiAGXqbefqsopQuDFZpZWsKiNTSCnkQG6WB8NxYIbEOnHaHXprtZRSKDi2h3ECrbW1NvpQYDbGWKFIgFJKIMUY9qdT72JZltJxjLkoCgem3Q8RjCd1cwxW1QnMNKbCir5PKNQU0ujlFB9af/BeClQYAyBzVpmVJoKICTXhjHIBIYmIcxSCiDNz1hKTQGaeaarzHkoSSQk5hsIY7+PhcMiJ53pclvUOopIUAZmwaapy0fzLn/7ZxePnuHz8R9++EqYchmG18KumGAfMH9vxYETUUlA3ba0ORuXSVG4IkDHklC35nBiTJJGd1ygyFyROjK1CZDCYQqXu1tWdraukrsby6up3TDz88p/9g//j6eMh+PJSagrjlKb70b28HcWOn6RiN4y11CmwyTyFLvHJoq6lGQeQfd9vt9v1amGMGdpWCrGom5nXu92+fP78eVEUTdMw8/39/W63yxmeP/u8KMr379/PrButzOl02un0vWePpTI3x2HvJyVJIvkw+exnU+/shU8pWGvrup7vVnOgq1KqaZqu6+afvLu7e7C41fW8vVuvVjln5rRarRjh22+/TSnN1vv9fmeMqZsGEcuiqGshje77flHVhbXEPPXD2XpFzdJNg5DCx3x3d3c8HiGnqizW6yUQfrzfEu3Lsh5d2B07Zgwx7k9HoYw1crfbjZNPKbmQvPfHtlNSNnUthKiqYlaCMNDt7W3TNB8+fry7v5/TKqy1u/1xezjc3m21LSf/YJMgYDcCqiwVMWdAiJwzIBEJqSnm1dl6iqFtB+99BhnjiAlTSlYXMUViFlJlBOY5zg1ijEVRNHU1nE7W6LPFalUXSHRsT1KrzeaMOSHR1ePr6KZxGJQySpm3b97Pss9pmoSiZb3cHrYXFxeHw6HrhsKUVeGF1EIIZmyaZkaLKSUAcRhHH4I2RgAAqZwEkrZGOBcOpz7EPE0+A3rvtS6aanE6tG9evY0xFlWWJKw2SBx9aKqyPR60VMvlkpmTm5BEdH4cnZBy2dTt4UNMKLUigcaoaZqGoevHtmiaKWdmPB7a86YsTKG1OL9Yl4W4vd9enJ2fXz2/vP78+Wdf/vLbVy5MKIvEmTNenJ3nzMFPSmJKqT2eVouGrI7elKVNMRhVXj+6fPPyOze0j6/OjTG3t7dKYlOXdVEqwS5E7303DTnnpqqNxXZwx0OLILSRMWdJCCk1dblerwnYT04QKy20RO99H6ZxcEJpraDr2w/v+routdZaQYrjsq69n3zMKcYuRGTerFZNVe73cLZeIkJMfhiGcXTGGKXUxcWV915qVRjbdkfX9VJKQNRap5CSz1P0MaEP0XufWsw5930/exy0ni+oAAAImYiqpg6T01pbbbbb7TBMCUWhtS0rBMqYnz17dr8//MEf/MHl1fX6/Pwh/tranLPzXkqpQBbGZsVCkCCgQnYqd6e7cfKlsRw5+qmsK4hBCZEm7wTPaTlITIhVWWqlJKnGlmAcppRjEIhlUUsprXVDjkA+ZD/64IY+w6yfyilQDJNAEErOiVdzqKFzjgjqqiLgw35rpKiqKmdwIcUYlZBCiOC8nxwA55wZHlxM0U1MSAQoxCxhEXOpFMjMiQEJBD0g5Zk5chaMs90oYZ6765nowIgJWDBkhBx/FW/J8Cvw0AOZAAFyRpSffoKI5v/cLFxNKYX84Fqe3ZXzC5RSltbO8trZTPErg9Oco4BEbTcIIYqiWC6X88x/7rABYZ40aKm0Rq21MRoRUwje+3nMOzs8cU7AECJn7gcnEQaC0uqHl/8Jq/xJM8UhxJSSVOYBYpPBe08AVkulVIxRyhlVJ3OKCCgkSSkBWdJDmCgAIHNKacYk39zcLBarzXL1819+fXFxcXFxtd1ud8PQdkct6O729vz8/MnT51dPP3/x5uP18y91vWq7IaPcHltEsVxsnjx5fLjtyEC92mzH4dSOOYN3zBmZwZZ17ydBAgii9xIlM3hKAFkKiaCADUaULJd2ZUFRtrUu0+jevX319R/9k8tms1l/rm1VVVW6eTBwzju4+TfonAuIPvmHbTdkKbWs61opdXZ2NgzDdru7vbkpiiL6sFqtnjx5cn9/f+raoqxmQO84jr/2xVfRD3/65z9vlot+St3kLtarAtSzZ9fPnz/ijDfHF9u7u9EDEaU4kaS5TiulJFJKqe9b58ayLIvCzK4vpYWUEqGMMTrviKiyRc65qiopZdu2796/L6xdrTYzRPP8/HwuzDnnnIERpJQvX74EQV999dXknERy0+SGwWhtrfaT8+MwJ/mlDPvTcDichMCYmZRKKR32u8KWVTOEkIbJh5BICK3tOI1WN3P+X8751PXDMAxdX5Zl9EEVchwGrTUyhRCUMm3bQl1n71RwxHA4trvj4dR2IGRhPYoHLpPVUiIBM4fEGkEQoiAioQ0ImRE252f3h+N4OAipYoxt2xqpg4tumoSimV0KnBCyMaYoCqNEzrltW2O0MdKH5IK/vR3qqqzK5WK57ruT9wlRSKm1ynOK57wA45SFEJDBOdceWlXJtu3H0dX1QkoNs0sRQAgx4zmJKOXgw5Q5GqWQi2lMPnRdNxZV3fahbfu6WQY/TZNfr9cc+c3LN7MGipkfP31yfX293d7tdrtf/OzPlstGzvE3CZQkKeXowzSOkTOSBIC6WJy6fhhHIF/YylZ6Cqprh77vB59UUS6X67E/lIzNo4sQRzfZ7e3+s6++J1V5e/PGJ1IqGyVF5sAgpXx0fjG/qRDx9vbWjagEArAbh902na2WVVncfngvCC/PzzabdfJj17dWCU75fL2ZhpP3UWkdQ7bWFo1FNK/f3wDANE2K0Bbl1cW5EowEQojS0DQJLYUkwTz77HQ/TLvjCRkriyCQyCfvpBLLuhqHDgA457EfAHi1qJQSMfqLiwvkFIIvixqY+qHt+1FK6V2y1vqQT6eurstZY6m1HkYXEwNJJRGlaITOSD6k6GIIoaoqQMzMktScC59zzsNARM6NEinKpK1plothcj5MNJEyNofochaAi8UihOCcK6tmuWrGyWutlbHH4xEYheaZxkgcykKbJ2chptE7Y4r7rXz38aaggpFyzEZpYi+EVFIW2qSUJGN2QRitgJQyUuccRc5ZCgYOnH1lNBGZolStHxO6mJlyCl5oi4JSjsH5jARS+Qzj6CKDtVpabZXqupPUmpTmlLSQREJbCwDDMEBO8+q9H5yUD/bIWZGQPrEEZhU0AiTIAFkQPaBNAOfGleGBQACMmXHm8WWYm1rMwMAM8AA6m2tzRkAEgTyXQwQgwoRICEiEszh89i0hSfkruD0Ow/AQ/pUyACTDgOBimPdvs0QLiWYajUAMIcwH5nw/8y6mlKRWLIQyVuWcUhgnDwBaayIhCzX3smaeBHh/PO5DCGWzKowmzFKglcjMZV3FlKcQXcopz7BkIhISxcPTQPHwcjIzp5zh00wbCFEpKYyWOKechHl9iIiQ88O9R4gY8m63myVaV1eP2rbbHQ4hpLquQw7HdiqKwrF6eXP45v0+AO3b6UP/DSo7RgCgHEmOfkr8YfsziFIYG0hHDJkRFPmMUqiUUkrsfUQBVlgprQTmmKLVbooaQYlCpYr8VAv79Ows7G/rpjwduji2nz+5XMJvp9F5741d5RynaZoZU0XVDP2UUgYFKaVxGrNAYwy4nHLWWsr5FR5P3Th019fXiAicjTECSQihjDbG5JicczHG68srFHS33S/Xq9/+7d85tMPd/vDtL36+UPz6dQDXImJhit/9nd/+5tWH12/eNUUBhen7fhgGpZQWMqXkvRdIVpvFYqG17rouTE5YNFLFGBeLZUqpGwZFNAzDXIbv7+8Jcb4WGVMIpUkqbbk9nq6fPP3pT3+al/mLLz4/Ho9hclorPwyLqkrGnA77HCMBrpr67OzseDiMIQEJVdSIeJqm7maXUnJubEDuhp0xRko9BldKo4pidzq54zGF7NJISlZFaW3WUsYYz87Ojsf96XS6PD/PGeYm/ng83uy2Wqlh6MLklFJXV1eqqIJPzgU9Y645IVOOKTNqLd0UyArA3HYcQw4hCEX3u8M4+ZwBmUOIkLIqlNUmpZQ4KSHrphRYp+CUkDnncYhITICr1coP/eGwb8rLpqm9c/0QPn7YjlNnJbpxXC+bpqq01lVVPX/6tO97FwIiDtM4vB3GcUwD910vhIAE/z+u/uzXtjXLD4TGGF8329Xstbtzzj23jSYjIiMzbJf7gsJ2lXAJISEaFwIeUAkhxAuIEo9+4R3BP0BJSGAhFS+AqgpVlSHttDNtE7Yzo+9ue7rdrnZ2XzcGD3PfyKxaT1v37r21z1xrzvGNX6uVnaaJLc8UdVlW1toQY855vrF9CMFDCAGRMqvMOkWZxmRsnMaktQ0+7baHOco1+uScO+zuS6d29/dlac/Xl/OjRFIcJp9y0MYpV5BCfxyFUGvLtnVl45QevU8Q/NgTsSlMiLmu2xDZlUVVL5yeiBB0vrp4/vr1zeeffvHhxx9JTm2zvLl793j/rmpWZbUoirIwLsYwdPuqKuoSUyqDHzgmZ6gpnEbQCjNC6cw49dNQFFZFH9pqZYy5u7tbLOw0Tt6PtqyQcHvsmKa2dpqgrlxVVaUzdWmEM7AYRZJD4bCwBnIixMVioWjjY7i93z3udt0waKsUQoiBgBQQJwaAs9XqvevrrjtGP+0eH4zCh7ubxaKdneIxRkUGtc45M+j7x91yuXRFKaBijCLQ+8hCIUdAAiIRSAIzLBFTSik1bVsUxazJEBGt9TB2IcSHx8fCOTDQ7w+LulkuLNDJez8OAzOzqPv7hxDT82dXh9M4PxCNsaducM65ojidTrWtNCql0DidUpj6XiQjyKquco6bRdXtdeOMs9XDdt82CwYGAKddXbUpxhQ8C4u1IWdlCK1yikAjUWYE53Dj6t6nIcoU4tR5YK7LVhWOFChUMcbT0OcspDQAMvOYAyXc7vfrtnVV7bTqh4mZ67oxxhBACEFiJGBMopUunUucfYpzD8Rcb4uEzJgQUT0NWCJEUkhKSAAxg8xGGQ2UEUFy5kTytN4Syty9AwBKZt8xMALO+VmEs94IBQCYRTTA1x19qK0RESCkzDMkm3OOmZWxLEJI2mgBHMYp5zz5YEgrpeauAq21fP1Sxvo49OM0j+0QQkrJCbAfSRsCmZ7MtQiovJ+l2gwAMxOstV6uzlDp4zCOMSlId/ceJJbWLJdLRlKu0ASzdlJSJoSsEBGtMZJYmB2TVqgIs8hTMgEKIhqlnSGtkIQHDs6Yp38mMwESoTG2sMpPU04CLIh4dXUFQse+u7+/X1x8vO/GN7f3gshox5yVLT/67nfe3T0Okx8TIKI17v44FSWnEABUIcSEylVGGUFIIaXMRMqHuCjrlJKMQWsd/QQAI2XlrHGYRgVBSsmVAgf03b/w12H10Xs3W4PbP/yDH37jk4/6/fHN28e6rYOfRLJPuagXq815CNEUjjMIKs6CShVWpxwlgCal9/v97PZZLtar9aI/nqZhXCwW7969mzXxwzAEH8dprOu6LMuc+OOPv+HMUz2yM+bi4mJh5HxTIfI0hi55T14pXLT1/f2t0vTkIUs5sswrVOEKAPBhWiwW49BP01QUbhzH0jkkmiGy9cWl1rrrTkVRKKXKqkoxzu/cvM5P0xQzn06nDz/8cL/fK6Kc0sP93fX19Xq16rpus15V1iCiM5qIJHPK2YewWCyMA++9jxByAGRX1AEUKhwzF8T1YoGIPobFaklE1hTz4TFy5ghnq3UWrkt3+26YjRMzCPzq1ZsY4xDjGBMB1svVer2+OD8/nU6H/cnHNGeraKUUYE5JgzJKJ+A58oUBmRQYXp+f98Nw9/iQGTIneoIToy0KzjLrGFFAK0BSIsIxzb5ba9TxeLIaF6tVSLxann316gtE6rsxp0kWBY1Qly4Y/fBwp5FmBMIBMLNCGsahdMWYtFHWOTdrH3KMOefg/dwnQ0rlaZpiyDmHnJKwcBGSOKcJVYw5JUZFYz8gcE5hzJG+DvlbNjUAFJrSNDhDktLlZqOU+uqrr4q2KcsyA8aUOIUcMylEpQF4fxxIKzQckhfIU5gQkRTEIXbj0boqJzlfr5cuGgPM6Q//8R8dTsf3PnjZ9/0vfvPrs83lcrGqC5NTOu3227wty9JY6g77HGzTFgiNNeb+tNdav//yGXIeh76wOkwjsHg/aiqO3cmH6aPiw+VyiQBVvejGyaIhYhF5vL/3MbJg0zSWUCvsDgdOKYSpLMvVypKQpJhTAJZJq6IorDEvX1wtls3pdPIhIDBig5xZEudymiYOPisgEKNQchh8IgUsaRhi3/cpZWNMzjKOY0Y9DJNSZiCYcSbnnFFq4pgiZwiCJmUYfAgpCsBmsxnH0Vo7V+rOnAgiFkUx5cDCtbbW2WkKY/AAgMKr1arrupSlrktG2u72IUYistYiIghVVSVI4zhWVcWBT8djllTXpVIYszdGA8hwPKDSmtyibkC4cLayxhJaZ3ISY5TFtGgqjtYRWoDKUGmU02iMIcWMQASkHYjVp155DrUTkTFk55TWuus6UYjCWmuOKcYYBbXWdWGQ8zRNoSxIKTJWfABQITECz81cmFkkKoXLRflw6HPwwlnPJQApzQ7g2SnFzIKinroEFIOgIMKToHouCEVAEXjigFHoqVHgqfHWPAUdA4DM5WQEeaafEPJccpuy0NexIQIaETkD81OHEAtyFqU05ywwhwkxxyQioOaiaMw5p8SIkkUSCwMboxAxg6AgCDBQSJwlLCsz+iDCKGCMBdJZMAqEEBWicw6N9dM0DH7OJUSlEaGuF5xCGPuRuXvY5iSolHWlLYv5eQgCISXhzBIkZ4USSYxGpwCsnq+ntUYRAErOGYSdUVYbVDrnDICkNMwF6YBGK6dNF4fDYRCRs/Pz9dlytVoR0T//1Vtm9jFmMqwwUrE9Tl5vjSshsZtj4AQSUUJtmnKaQlZqDJ6IACWkCADM2SitAM9Xa4nh4e4WObVlobWekiHUKaQYUuNMlfObz370f/njH//N3/+bm803l5fnr776WV1pP+XMqu/8sxcupEly9iHoqnr23ssvJ5YkUdIs7WaGuS1aaUACvVgsxnHs+16T2u0fT/sDIk7TtFi2Xdd961vf6vv+5ubGGHN2vrm9vX3/5Xu3796MfffrX/4qgVK2aOpiv3/4q9//xrc/evnu3bt//qc/2w/7IGpW7U7xqQ2D5AlPmIYRUFxhlVJf61E5+BFBhBNnBICZJD4ejwDgfbwvhJcAAQAASURBVCjLcu4rLZzTWh8Oh7Zty7JMKTlndrsdABeFvb6+RIFpmrRWTeH608kZWxR2FvL5MGpDSYCRfMqd91MWIgMAEQyAMUSZ2WdAgzkkgLRaNCmluT10BnYeHh5SCjnn7nhYNO3bOW6zrheLxWazKYriEMPDw8OiqZdtWzr77uZmmp4aK402kDmn6Aq7aJcaJIyToMQYMxGyzMWl4xQedvsQM2kVvC+KQpMahqH8emXx0zCOY0AxSltrtbUzXRRzYgZDrl0udrvbm7t7RSYxFaVWGo22hNSNQ/STVqgAi6LIOZVlOU1htVg0VQVEZmTkzAjRB3IOEY1SAdE6x8wp55ATM8yViFYpBgHCLJxzTn6KOZSlC5NXCiVHo03V1Eiw2WzWy9XDw8PnX/w6WVot6hDC/e2bummeP7s6nI6r1QqQjv2w2x9ziIV1szQ3s6SJQ46sxFotiDnlcfQpgdG6O53q0saYvrz58tkPvnk8bt++u18smxcv3nt3++7Z5dWuOy3WZ7/zO7/z6vVdCLzbH8MEq+XZ5fknAoEUDJPOOa6WrYjk4AGFCDjlU3dYti0RGeM+/PDjHIMP8WG7m4ZxvV73fdwfbx93h/3xlBiqpg4hdpLHoZuP8HVZphBQwBdKICRFwEIoHI8ddaZw2jgitWzalEJKCSTnHP2Yr87OYvLTNJ0OOwTZbNZFYU+nU1mWp9Pp7u5BKVOUldY2hjT002maiMhvd8D57OxMaz0MQ2JBrbKwgEJCMqSz1lobg977GYUCIDIKAJy1iKi0DnmvkUY/kVZN2869wkAkIkVRxcQ5SVEUl5fXp3GyU5hinGLQgDGzpOxjNsa4wmXMecpTiEphjJl0wczDGDabMxBcrc6605BzLqtiGDqSYG1RaUhxAoTa2KYwmFOJXBldFdpaIqMYMoNorWOAyiCR1nqxWiwfT/0w+WmcZjhUaTKuHmN+PHQhZFuUGdl7L5m7rvPjVBQFkZIMRHpkVoBWadJEDKumudqc7U4nBHZaWatCjJEFQDInIs0gcwS6EANolowZDT4Fa0jOiChKwRPUDAAMAgqAvh66iJhEQITgqfCHAElIoWhCnCv5ZNZfPfUvpWmaYwBEhIjm2r8Z0CatACDmNKciK62AOcc55gEFIXF+4rMZYg4hcRbO+qk5MLFkydo0KQtLdsZmgeMwOZOUUiCyP53UOBWuRDIJfBZBEdIu5TTGLFkiU+lclljU5tSPfpy4n/gpJd7UZeUK0w9BIVhDWlHOeXpiO3Jh7dxil1OsnDWImhQ5m1kAZO7dgicEnpn54tnV9PmX2tDpdNrv96P3FxcXAPBv/N73/vE//WMCsGW5n7Ln7OrF7tTn/VEbVRitNY3j6Jwb/MTjoIzWoiEnEM0cQvDGGEQwCjRS7E+FVhaFWc7Xi4zweC+ayBIpbTgMQI/f/Paq+ei7/+T/+4frs7tXbz7f73/2nW8/++TlD94cbxbNyjrlxzQN4+CDq4vl+SW92/X9AEYb47KklBkESURrgyB6v98752ZM0o9Ts1ycLVd1XV9dXL55+/ru7u7u7m4uMuv608cff3zc715/9eVf/ks/SCn/+vOvxslLCo0xn33x5fbuXUg5ZR6neJx6pdRms9mH9CSyAHjqu8gRoMw5O+fGvlNKaVLz8XkcRzFsrXXazPy/c2673c4fX6318XgchqFpmqZp3r1713Wdj1NT1WdnZ7vHrVKqLsvjfr94/mIKY3c8BGtjLKZpOj8/N1Z99dVX69VFPw6Tj8aVjJFhpkFFA4Ys1hgBGUcPwFphP42Qef4zmqa5uNxUdXE6nWZE/dmzZ1nSbneYmZ6mrlNia5zWOmd5fHzUpEKIdVmJoGSeTQ6otXG2rmvJsetOri5hTphSGHJCxC9fvxrHsarrnDOnnEJEEmvUZrO2Su+Oh6fTDIpzzmkzF+5qrbWhtm2603F7YE2mH8eqsCFm54wiA0SZY4xkrDKmqAqXYwaJnDWBFIVVqkwpgQKBPE2TMQaVqsvCOYNK5ZxDjCHmEBML5ixJgJj6sSOiFBMAKMKiNE3TjP0wdMeqWuYYlOKL87Pri41SKoXimx9/dDgcIKf1ot1utydOz66vc44+TFNIMcSqdKRVDFk4F9YNgQypBKK0SjGlkDnHFLlwTinT1K0fBlwU77//YU7w3/hb//arF69vbt4+PO7qZrmwSu3KcfDaKE2wOD8zxkze9/2pXRRKFV2/V6o9HfuLi03liuPpECZ/eX7WVBtrVF2Wl+fn0U8PDw85Borp7uFx2a4+//JtCOHF+x+8/GDDr17144CIzrnFYrFer0tXaK2RZbvdTuNwd7+vCpetBuHCGqXJ+xgSLBblOIwAYIzSZBAUCrCKINFqVSybslDj0PmpI3RNY8vCLVd1Udrd9jROk1LK+3g4HMaUjvvDYtF8+OGHs0nDGBNCKFXpjM0AWdAoFVUCzixCys2QEhk7fz8qEgYfgyBFFogZ+6luSlRaae2AJx8BAEgdj0NMuV4sy6oBHXbvbjFKSENmQK1YoEICEjTaYDUbRcLhFKMKQU7HUFZZa220a5fae59zHKfOcJhPeUZYfAJwyhalIUuyKGzdGGOUsgoIY84MolE4awrMnKy2KWrMQSK7ssoCQIi6cFkCI/ajMtoYLLTmmIDFGEOkiCiLAGGKSRuLJDmkojDW6a47rpcLjR05w4K77siBhVTOWSPN6c0AwIKZGZAAZCY251FBT2Qt5jzPsJkOBuSnCF4EFAZEzAAEMLPEioFJJDOAKESAuX1bAAAwW6WBFMgc4ghzOwvAU7oRAGSBxJmB5kMwCufEMP9lQEiojEIQ72PMnHMOiXNmpVTKbK099U9ccubAKaeUiqKYsY1uDEopxhmzMyGmfuoT91prAi6dFU6BJXqvdVLGIKBSgCA5pm7wh1MPAKumVQpLJgIDJISiQGJMo/fzauSRSSo0ZI3SWmVJgIwCsx+MjHnSoE3D5eX54+PjZ19+ZYxxtnx4uB+GYdXH/+bf+htvH07/6R/8cQxYLNaDjyjcVGXw/TgMThuElJOQiLZWMBklRVmkELPk0lCSSFqRYo5xPI2mqtuymJLv+5PPqaIl5Akl1bZEHwmOH3y8fNac/91/738BdP2LP/7P/uRf/7/EHxJTuzzr9idTmHRKOUtMcnF+GYUW7WqcQs5CmrOAMLCA5EykUw766urKWnt3d+efYMaF9/7m5ubHP/7xi+fPROT73/9+SunLz79IKU3D+PqLz59fnpfWvPjoQ0Z49fbhvefXw/6RBXaH48N23ycE25DGyU8pcuBklS6MnQWTc+4VAIQQjCLn3NyRt1gsSEHKqqzbnPPxeETExWJBRF3XlWVZlsVut6vr+uzs7O7u7nQ6KaWapllvVjmmGGPTVpC5Ox5WixZy2qyWbVXe399LyoZUiJMxZrFYAMDpcARUl5cX4+S7YZxbF3+rBeMckdCgyjmHcSybZmZTttvtOI4AMs/j/rSf/ACSAXh/OmWR/fEw1/yFKVTGFVU99oMzVmtNpIdhGIa+MLapa0R43D0oEdIqhsDMRVFUVTVLJPb7fVmWp+ORiIrCWqOYmawGgP3p+LVbUWZX3KwnzDkbY8ZxjP5BKxrHXDtTFAWitG2jiDVRUVjIbK2qKqcUiOTMQYQRZbmqrS1EpOujNaoqLUiq6nqapqyQU9SkYmQRyTkHn4AUZ4yBc5ps4YjodDpyykVRVIW9vrzIHE/7MqdUulWMcfd4Nw2ns9VSmAtnuakRMaTgCmuNu719x4L9MGpbFEWRhAHROQdCu3Q4Wy9Ow3i/25O2RFS6xmiEivt+qJtqGP1q3ez2Wx4pHeHTz96UWn/8yTc/++LzP/nJn5ydb4qqrptFSPH8/NyVdc7Rlfp4PKaYjSlyUilOczbNjLvY1bJ0JviQUhKBxDyF2C5XwzCM47i5uiaxCY0uss+SU6rb9vrFCxGZY+WVtuMUqkrnlH3Ku1NvjFkuamX0cDqCMAiOU0zd+PB4NMbUdZmtzZyMImeUs6WgKEUC2Rqszhdl6QypkMMMflh9tVqtHh8O4+g9cNNWa1c+v75KPnAKfd+LSN22ZVlqrVFhSCn6oBCtRmcVAKByfxa7yDxOnpTOIMMwaGWihLJuUvC7w8lqmlUwDAhCiKZuWiElQPvDSYBsUWWB7tAVdZ1SjjE+e++FQBrHMUxBGauNi7nzMfopltVqHIMxklKs2wqAQxyso9YWlshIXixahFRZXRle1uZsWZ+tF1bRFAOgYoUYwcdUO+10baeI6Bm1ZE3grFb740nbIguxeKXsoq4QMSZWWpVtOwzDMAznq4sMcjycZipxvn0QMmpYb9arZf14d9+2a8mMVoeYUAARSeGsG0IkIZg7BTOQAhCcJYpzqzzO/qEn9xABAII8jec5DGSO4hKYwWQA4Sd/LELKAjjDzF930wODwJST1oCIIoiASFrNm3TOcwEUEWWkEJ8qJUqjmZmIlNJAqJSZDxwhMWkjSECYchQgQKW0FQXKFcASc8gioFRIuRsOxhhU2jg3Rs5TNMaAdsKYIGlS+2PPQADgAFAXYNQY5rhfstba0tqv5dBj13FOPeaxsIvataVFrbTRIURBBagmP0FOg0JAXrYLYAbm+FRmVZCrkAiYFVmV8/PyuVLq7vFh7khN0b/54tfBj2fPP/7d73z7//ezX58OB7BOaz2Np8JoZYph6IhQBIvSdaeBLIZpKo0NYyeIrqpSTkRqHAeVZVEv2qauqqrz/duHu0RAubMuIzGKpDyRCYWjMYY//Zc/+vY3a1by8sXFcMJpGHNOZaUBYOx6yeITlOuz2+3erS6ttcGPM99DZBiycMaUYvL68fFxHnIiUpeV974fTt/8+JOXL1/uto8hhLub29PpAADMaRq6v/D977WVzdEPx11lbGH13d2d5kh6VdXVm7st6roPmYxNk48pIoKQIOJ8zkopFkUxO46ysCOaaWZArlwpKR+PBwBYr1fTNMUY6rper1dKqRhCU9dKqb7v52ZK5xwRpeC995uzs8fHRwVojOkOR43krI0hIOL5+XnXH0OMSqnr6+txiIfDoazLmQAzRhlX9n3PkiAjKHHGAieQXFo7l+gZY6YYyrJIKQqn1bIdx/HyYvPu9mYcfQiTIYUkImit5gxNUSQfjn1njEFhS1XMsSkrb4xVuqwL4AwJ6soppcI4pZSKwmmEDLK9v7vcnHnvz5aLEMKz62e73a5saleVDw8PdV2z4NB1F2cb6zSnJyI2CffTGPzQ1lVVVYvKbVY1gSgUlqQJtaEYfVPapnHOqBR9TB4RqrowRuWcvB+UUoUzUz8BJGspJ++sstYkEWEprB4PE7BAhq7rtHGKHDPPzgcALIoixtjn+PkXnzptlMJpHPrTiVMgAgLpui7GqJRJKSKi1U8cRIyxKGvnEmmFShsGrWWcJp98XbpuPJVFVZfVcfAAkoOUhTbIq8Vyfo5P42CIyrLa7R5ev3qA3L98+VIZ+7vf/8GPf/pzf7svisezzebjb35jv99XbTGNPkM+DaNxtYCdpm7WHBTWJJ+aqsw57Xa7+VREpJbrsxhjN4xAStvST5JFoTExQT8NqMwUWESqZhlCANLb4+HVu7umrEVgmHKji7d3j3VVaAR/GkORx2EUEaW1cXg4dXVdloWbCQ5jVMhzYh+CMc6ZorRKYY1ORIgQSwMAcVnN9SQAgPN+Rup0Ou23UwgBUZxRQ5dIG9KqLExMkXN2BnOWxMlHUUpxzkRUlmU3DlXVWFvkHF1ZpZgTiyISVMwcQirLcgoxTFPXDa6orCtJmcOpF6SUMhk9jGPbtudX18Y4QNrv94gYJ69RL9s6R042qSd1qwx5CsOpsLq+PO/704cX521bG00pjIVTbWkqA4vafuvjD3MKfX9ikSzMWXLMOcaQRwbELLVTUSQ5k1IikPr6ApTtfdh3w9Cdjv2oXZFRnKLxdMTMq7IkzjlLXRZEysdMRIfusF4u2nIxxfD23TGn0DSL1WpVNfXDfr+YwhhT3/dEmpmnqS/LkghFRBOmLIhYqD8TOolISjPRZgCEU57tA/S12QsREwsiEqJCFIAswJwhgyYAgSxPvfT0dTWeUZjlKbIL4CnQQoRzZgAUmauNAZ6CrTGxKKVZJPhAWhfKMEsIYQoBQSltfQxzUaLRBWkDJD5mAJAszJBznjjmnBMgEXFkpVQUCD5qrXVRcMynYQCth5QJMAE6Y2LIBBq1SOZhmGZxOILSWhdVrRGMxsKgQnnc7pu6cFZXzr59+64sixxzThFyutycZwaWFNN8/BWl0YADEAlRRKgsIaXLy/Plsj32Q1VVX3wRIebd3d2bu+3VR9/drNc0RDDl7ngoiiL6wac4KxhQKe9901beTygSJt+2bcx5DJN2NucMRML5OPZzJJmqimxNe7bSXk6HLTBoDcxslG7KWkK+ffB1s99u9ymMiiTlkDlYEwV5mqahn5BMvdr0MXev3uYUlKb4lJ3GhKCUSZwB4GkAr5crY8wcWdW0V3Mz3e3NO+dcKnz0frVaoOTN+iz6vkujU/TLn/90YmV0sTscXz67JG1+9vOfDyGrqjRFe3O/K5w1zjEnAMg5zyQuIhZlmWKc46vmygQRQYZ5RU6gqqpSSg1976dpFuLPq7CIzBqTOTcn51zXtfcjId7d3R13+6urq/VyVRdlymG3e9xsNt6P+8NWKyuMQz85W2qMFxcbIj1Mo58m0kpyVChlWXLOklNmIZT1YlFXxTAMY2Kj9Xb7SFVtNHXjiJA++eQTa+12+3B/f2+N7ccBsVovl5P3eYoxRq2wKQsiGsdxOB1BUdMsSnDTNMXoOce2qoAwhCmnYI3ZPt5rrcu6SHEsixVh3qzXt7e3H37wwhrVj8PFxcZ778qiKNVisVi09TR0wzDM+ajzTTs7MsvSFYUFAKUxh1C6ylrlLGmNxqjSGWeVIs4xosylLDCH4KacU85ITIpJGPHr2FzGTCAZlSIfwsxFpZRylphFGQKRHDlwlJQnycDGKstJoo8hhGdXl7NoOsastf06iV6ysDHGlZWIpMyzdJNTQFKAoJXCOTnT8OPh1NZlP6TECKRyyFliiqGs7Ga9ePeu3z7sYBwcwXbbf+vbV69vbryPdbVMmYY+LpZnYwhd133w0fu//M2vQ45VVY1TeP3mtq6bqqpmSPZ0OmlS1trjviMFZdWEEA6HwzyJXVmQVrf3dyHoOc43g3g/KaOLosgiuD+EEIuimKYQfOqnozEuqwK0Hqdx3O0XTX3cPZyfbcqqVErF6KcQ5rtAW4UIriz82JfOAXBKGYABU8qTtWYmiZRSBmaHB1VFHEY/TROAXl2c12UFAN//vd/d7XY3NzdIChETAyKgnkV+IQc/9Cc2y3ndzzkKGkQsikobwyKklDUGUTDR3K4hOaOxQ0jeB1JGG+dDyhiUUl3XhZRTFtK6tA4Ru+54OByeX55dby7ubm68HyqjkBliXNb1fv+YEc/OzjTAbrdz2CzrRaUa4kyciXnVlOtVbVVuK/Xes4uUO5GsMBNmZgYhTYTWKdGJM0POPkKGwhAtypCwm2Jk0aScsTGxQkBgg6CyVForp0QkpWwInDKJIULMIAAwjmMMYhQQCqf48PCgbZE4e++ttWW7aJqGGbz3Iv1sVgGAGacpyzLnjIyIKF/rnEUEeBZAq6eipSfpNHCWxKKQRDI/Vc8+dc7P6vc5FApRAHGWVccsyAkR5SmfQr4WZ8GTpwcA5tRrQQEafXhi+gAkxsRMqEUEScssyGIg0qg0yyzR4lmiA2CYYxYGVNqazMyMkjKnNCepZciQ5sIoAqCYhDkbASSDAKUzKYVZHYaAk/dz7DlWNhFYU2mlOfnl2WZRud1um1IqrRnHcbWox7EvnN53vSlcysnHoLWeN5O+7zebDZVl7vtpt6uaOqboCrNQTQjhww/f/9Mf/uh4PLZXLz79za/Wy81x2oYUZt9UiMmQRqUTYIqxrtqr58/evv5qmvyiqn1MIUWf5rRfjCktXJViAqQhpuFxi4Xyx65SumcpTZnQIoWzdl2QBqtD8CjFhy/ev//y1wNP1dXZw9u3FFmQcpZpSqJse35lqtZiCkMGyBkkg+QsSjhDRhFh0Dmmqm211vNzXGnsuu6zzz4jQmGuy8J7v2iqd2/eXl1fWE2ng++m7vnV+e9///ciqk+/vBEk55yP2VbtyNMQMojfXF7mEILvzZ+TwqeUtFYA4EOgvjfGVFWhs+77PqVU1rXWFiB0XXd2dnZ5eXlzc7NYLJj5cDjM5rCcc9/384S21jLzOAyLxcJpIymHyU9uWiybrusQsR8HBmmrhTHm+PatT7EsS5DUlFXISWsqrNbWCpIYIhTvJ1u6srBj193dvmvrxlorgCJycbYxmm7evqlLV1qzvbstq+r55YZQXr95p4TXy0WK0Rq13rTH4zGnsFq2zthpKnPOQOismWLgFE1pQuS+OwKksihWdQWE3BQhBKdw0ZTLpmyfXQLL+fpbYeibquj7/u7u7vr5MyB88/pd6Yph9NvtvjvujdIAswmqXq+XWpHVpBByjm1ZgiZrTVXYqjTOYumorg0hS06cEjx5CoVI4dwxAnk+aM8ReqQAkREVCQYfrKYJxWgSsd0w5cSIQGQ1KdGgEE2twuQLY0pX5ZzP1kVKKcUMQIvFasZpjVOKWeXMgNoY4yxn4OCdNtM83RWSYJCQU84pCcdVU91uh6aqJ5/ubm/Xbal1dtoKp8KpsrDc1px4nMJnn3+VYXd1dZ0Zzi8u/+bF8x/96Ce2tAD8+ZdfkBaRjAqWq7Px9jFl6HrvXMwpxTDVZXHqu826rUoXxsGP48j9XLQ1gzfW2nEcjx3TU9uP1sYK4akfjt0phhwzl2VZlQ2RPp06Ig8AZHLpHIGOwKIILa3O1kRwe3s7Tr1JJmWbedIKN+sVahLEnLPkTAQppRgzCFtjUowAQKRQsiHEyopkztj3wzhQTlNKyZqiqcrr68thmKxz3ocsKAiRRSmUzCH6icU5l4VTxJwzApE2c9L9TPML5BwTgGgiAYyRtdZIuh8nBCVEmSHGaRxHBszCBjHklFMsimIY+k7D+dnZ+aIp3JogG6MUAYp87xvfur29TTEsnVnaVYy5kPT+8yuYYlHalLxCEE6gWClz6g5WIwoDiNKYGYEzonZKK0U6aa2FiGQIKCAIU/SFVn4MnJhAjCajCAESspKMiHVRzG+fDzEJS84KMeeUchx8LJ1hBmcoCcSQfexPXf9w2I0xrdYbawsiKopymvzQ9QxSlsV8cuKc57Pj7JCcZa4CLACz5hTxyU00D2ZmFoE849kIKJyf9t2nO3FWa83YNs1TGAWfYG8RmCuYNADkuU8dnn5g5o0RiZFCZhJAJBZOIQEkIo2oGCRzTszWFkrplJIIZmYWYVH09Q5NREprjjHnGVZXDDlmhgwiSWsirRkweB9jigIMgYC99wSCKFYMKi2CDE9FyMwwjqPVpUKcpkkjbDbn3k9zYkpgmHw+HA7WuMvL6/bswnVdSkkYM0dOue/71jlFBjEPwzAv9K4qT4+n6+vrb3zzd263P7y7u1s//ygoE6cRXH12dnY89dqUmfnYT0NI1hYJsR8no8tIchpCSuny8lKnEHJKKTX1ojt1yKJJMcjy/Ny19Zvbm6hR67YLXChwIk1RFkTb7dgf/TBMLy5WD1Nc1+svb04xcV3X29FzBM6oi8YtVkc/AWuFlCHOFe8AgiDq6eKIttZ677335xdnVb04Ho/e+3ZdLZdLQnnx7Pnj/e1+9/je8+v1eg3MH3/zGwbBkhRV+fDu8as3r5vF8mG7l+hjmIxz6/Nnv/niHWiTwjR2ndVqdrAIASLMRsZxHBfL5TSORBpIlWWplJrztVGYQE6HvTHGKFII4zjkmIClKAqjtPeeAK1zc7ylVdoP43q9ds493N2PU1+Udnc8FMZaa6uqmjmYuq4rEY5p8oNSHkHVZYVPJaBRCUvKhdVaYQ5RkyrqWkROp5Nt2qnvq9KRtqUzTV0um6Ys7PF4nIK/e/v68uzMuLpsm4urZ9vtdne3Wy3rMOnsvU9htVzGGO8et0XhCq1Gkv54FE7OklUEOQmn68urs/WCOaUUbm9Om2V1fXn+5s2b8dStzjbPrq/f3d7mQK6odsfDaRhSyv049EMvqIyzCmnOmTPGVKWtrKqsVpiNVs5Yay2BADMKcM7DEJE5TqO1VpABCIBw7hwhiUzMcSaTFCJgFlIATEilMyLCKSJQ4XQIiCJZcOynylkUzCKF1ShTSuynoLW+f3io6/qJQX88Wqudc2SNJpqD1733XT/ODwJlzMy0ASMCOW3mkbBp16/fbdvSrlarr17fXF9uSquckq7f5lAFP1pry/NzDcjTNJ663WFvXTEM4U9+9Kcv3/vo5csXv/n8N64wmfOnX3xZ13VMHGKvtRUkQl2Vehg6hXB1cX5/+85Pw2a9HvTeZwbgFCal1PF4SClpa5RSm/PlfKlDjMMw5JytKy+K5tR3/ehHHyOPxrjDGGbuv+C8qqq6clN3evHBB4Wm0zjEMClrVDY+hboufIoC0I99U5dPXkw9d5FzYg4x+SkoTQikrDKKEIUyQGEUlt7HECbmFEIYYKiqilAXhT0cTyllIRSgyBlRKYVWq8mLSJYshlQGzCxEFFOKMRORtVopCyanlDjFlJKg7oZ+XvuMMbvjMeestC2s1dbmnBOL7zqwplotUDJMk0Nx1uQ8Wo0Qu5zDoq0vl5tNdXk4nB4etk1lAUxZ1SqHwMlPMedojBuGqGpb1JXW6McO52gqJqWUFkImZXRKzMDWWtJaaRtZYgZANcasBp6fHkappioEVUpJgZr8INkWtuKkwjTklHNM1lUCpFSlFFqn/TgkgQyYAZTS1tklgJo8M3Rdl1KeZfxNVR8O+xRizhlR2BqtDM4H1qdRiwBKIDPIHDQxA8VPRiYRxKdRLSICMjdBZQBSqAR5nuFAMiupBTQ9RUrz13kgLIygYpaUeP7NQE+bsFJE2sYYJWdjDCkjklJKkKPWlkgRoVLy9T4tAKCUSSkxZ6UUkp5do4DKOj0MU4pZa5UEQoggOGtlgFCQGJC0I62RFCKPfVdXhVYUc5bkGRAAUpbT6XS+WZeFC8E3pXNFgwrHKZRlmWJMMWcCV7WIGKJsD8OF0qYoptMpA/gpGaMPx65uFv3QK6VnbZAxZmagd7vd1Yvnv/t7P/jhj36c/PTexx/sT9Ovv3pLjo0xQspPPkdBsqRM8Onu9kGTBjKooayqCLA/nKy1zhUKoLQOBTJHZ9049vvjrq1r7ylnrIsGMhCmy9USw74q6pSP1tHYdWGKi+XZ3d3bwqq2qLrjEGNOEcp2ocv6oRtLVTiRDIkRGRUyAhAgCGVk0mEanHNKqaqqZmtg27bOuXEYUgrHw27s+qZwxuhpGOq67kYfp6E/bO/u7nTRNs0CSFujvvGtbxwPu8+/ev3w8LBYNn03CIfCaZCn+CSWuQn7qXl+jtZarlYppZByZV1KTKSf4l1E5qyrlJJSar1etm2LiCEE7/3pdLLWtm1bVVWYYBzHWWRIWimt5yc+KCqbOkU+7Q/zx1Rra4zJHOcUtKou5q8VqZxCSrEsy8LYEHxRFM7amQxYVvV2u+1PXR6xNLotXekUh/FivUiJr88v29V68P7N25vpuK+smUqbYjSWNqt18ON+98jMy7pSwknAacWEm/UGJCqAlJJGHPvTBx+87PsTqWZVu+392+3tm836HFLQIsisEPdd97Of/WxKSQQHP0lKKaSysPPFrKrKFYYIndVGk9FUGDJKlovKmmIYu5RDjEiMElkhKGWINAMDogCJ4BxmO+9YRCICs7vxt+EAhXPMXFilbenKyhh1OJym4C3osnKSeRi6sY+Hw44AO2cIcLZPzJI6pdT5+fnU9fHki6Ka+ctpmuYYEGNcnEIWxrk2DmAGPMYQp7EHibvtLvLekG6XbWlUaQFhIoQcIrA87h8v1qvr68t0tnzxrCai/f744x/99IsvvvjWt75V1YUIrxYrrfUwTVXVdsNoy6LfHjebi8J4NlYRGqUWba2J/Nin4F9cnRPR7cM9Z/ZT533kARBxs1487naPjw85Z6UNGR1jZI6KjDU0Tnl/HJRJ0xiKSiGnV68f67q9vr7e73bD3cOyKYFF61kGhSnmlHjR1qU1WqFSRmmH89kmswATM2eZpqC1FvYAYK11RrECRWA0dYMXkZRYKTUr+PaHU9M04xSU0soaUso5N2fAEVE4ZhBJKSltZ1CKkUKMc2FPHAMKkAICnKW2QZAyzfNjvjkjM+a4XFTauPk5riEzc2FAgbY++eF0sVlFH41hQg0sq9po8e89v2y++dHr12/v7x8P++5yXd/d3fV9KivHzJJNCPL2dNBKvff8MrCCFFPKSoHRzlpkUahoDHkaJpERlYoxsaCgNppiFmNMrRF9wiSIpK2JIStjuw6sVggJIVmtiqIQVNvjkUSMdUVRKK1TiFppa0B88j4OMfqQ5hGlrTNGvPdVUc6qjmGaQggsKYeYSz0vt7NjlZ6U0jSTO3P6Fc4b7NMABXkyKYHM4VnzWM0iJAhISAgIwHPmR5InY/Gsw5p/bv5SkFhYBCDLLMiaVZxPBQ+kNFIWSHPFHyaNWmlFwgzCnLOwAgGlhPEJ9wKYnZCIoEijUjlzmMYYUgYhImRlFEiSLKCMVcYCYMisSVB9LR2D2ZeFmSFnjhJjjM35pj+Eh+1jodXzZ1dau+1hr5FSCs+urzXRZrMZ+lPXT2N/ev/9913RHE/j/tjNhvWzdWzbdYoxp0PXnZqm8ceuLOvd7uCqi/XZcr1o98f9my9+c7VevX4raLGfPWQI1pWAzCkJs3NGg86QyWgf/bjfl4XVgjx0hGCVijEYBYUyTtAJUBxRimXbIEA/nQx3i2pRW709jFTo82dn8vBqc3ZJWFy/+Bg5yHATUprG1HdTcb0wdcu9EoCUUsacSTFkRMVCJBkEOYsuy/Li4mK32929u5lx3dLaaZo2ZytOrjvu26Z6+fy5ZM4pdKd09Iw5LMtqc349JU5oM2JZlj//5S/NfKur4jSFFMdlU2Y/iLbGaqUIsnDOIYSc8xzy4L3fbrcpJaP1U+JHCGeLGgTKoqjrCjgBUOmcIMYYrbXW2qappmlyzszhixqkKkoUmLMVtbaT92ebDTM/PD6ikLFGRLyPKFRY1y7Xp9PJh3E2bDjnSMAPQ2GMpDTFNI7jSGStVURtu3y4v1+v15VVp8NOAbdlcb3ZhOCfXV0bZxer9b/44b++v7v3fb973L73/geAXDUlcA5x8H7SBMoYzlkri1lmc/fl2bo7Hgpn27Z+/ennxzRtfvD91bL68Z/+68169W/+9b/y0x/9+PJs+clHH/zm01dTTHVZvXvcJwqmrMZxVICcoyECQkF0zlRVtVy1kLNSSiSllEEpMsoYvds+TNOoUKCyYEghWKNQYc7821tFCIk0KlZirQBiJMoof/a8IBTmpEjq0mbIkoNSua7MYlkd+9Q0haSkqfTTYA0RUVnoly9ffuc73/mjP/ojienDjz9IKW23WwBYnV8opWJK/TjEGJ17csUURTGfrsZxnONWyrJUmtLQlcasmvLdw/7YD4cDfvdb37q/u8s5797s2uXZ8/c/SCEQkVAep5Nz5xcXFyJvzjaLq6ur6+vrsiwHP/3m159pU0wxWSf0VALGfX9oV24ah7PVYuy7QutFU+fox9NRXV9cXV1qRSzifRj8dOoGZr69fTOOPnoPpImJIwgJKZdS1taUddv73TBOMQslRkUpyi9/9ZkItkUzxaPS1emw0woRUSktou7vtigbqWTZNpxn0wjmLJmzQmVMISI038PZ5xCttdZprbVCVEYtFothGHKeUsqJszamqiofEiIKYUhRQtLOAqrZfVA5241DzlEQsiCzcHpSaRhjlNKalDYkmWMM8wmsdAUijqNP0Vd1MSMTcx7ODAYYlK4/GsllYQ+nXXw8PbteN3WrgK2GnDwJZ5+iD/XGfe93vjl+8P6vfvPruq7P1h92Houi+PLV6+PxaIyepnh/f9icXWqqEo6ZIYugYkIFyMJcFnVOEkL4mtXKiRkEY0wouXJNkimkoAk1kXKYFTXLhVWEIARQV86VJSkjCIdTNww9spjCKWW0NoYQRU8hAWftrEYlSCKSQmDmrusMKVe4oijGsZ9iiDEKQH5CljPiTLgrANAA/PXAJICn+QjCOePXL5E8D2sAkMyztHrWMCPSnBkN/LWpGJ7WVkZAUIgkJLNyejZSighkzgJZAJASS3oKnwcFNMuanhQYKc2oeM45eAHAp2DcGHPOhFpriJBJG4c0TJ4xIWkWmcbBKUwsDKiTFIUSycLJIjqtvPeZcHYxhZRTjspoI08Ex/Pnz7vT/u2bVze39x9++L4IjjEC4HZ3cFaPo45+GsbYFunYTZvNitDWzQoRAehxf+j7kZkPh5O1FoDadglAq9XZab+rqkqTGAn94w1zerZu7OLsZ5++JtQEyDkqpQhFk2jIBm0WFkgx+cIap7B7eHx+fk6c1+v27bs3isx0vFcg1+v1zc2Nte7weJpDuxfnxabRPAUGudtvb7vtOZJ2TR+lWV/4bn98jCHlcYopwdX6glFngMQCOaIVIEEkSCCz+YQFmHX04bg/MPPZ2dlisfB+OhwOAND3fYr+fLMByTc3N9/99rf2+/32/kHqMwV6jJm0Oe13AYOx9vPHh3VtbVkSc70+K6fgjBpOh9qak8+s+bei/1mjD0rZsnRVpZGGYUiZj4cTIhKqvu9Xq9XhcDgej+v1OoTQ98PZ2fn80fHeA3OYprauraYcwYBCouOxm6bBuNm+NgjhHI6jlGmIAKAqSuec9x4tpZSGfgKAZdOSyHzs2D1utdbr9booCmPsYrE4nU6P221blqXRD7e3VaE/fPk+cXz15Zd1VRyNGfyU+fN+fyDOdVHUZXXz+hUXzvsRgWdHHLKYOe7AqGa1GMfxsN9u7++QebNonl2c725uLq/OV4v2zdsvN+vV5cVZCuPlZpXC2B/AanXqh+NxXxRFUjoBCKNotNq1ZdnUZenssq3bukEUrYkIjDIKokAmVNPY7/d7Tejq0hhjtCYURBDG4JmICFUmhCysBYGAEEETomCcaeDfntYRIaEYTeOp9+mYRYwtzs4W4/QQplNKoShcWTZ1M0PiRVnazz779ej7Z8+v9/tdPwxN01xeXi7W1+M47vf73ntUIkghZUjZT4GIyrKqqmqO4SWiEMLV5eVG4JOq+emvPx2nqeu64/4uhOHy/Goc/O3tfVktlFLWaueMLIovP3sFjHVZGI1t49rGvXrz1e98+3sP99vtrtO6OB4GbQ3HdH5x7v3otFktmraujKaL9dIoRLCfc7y7edc2hTVYlI3W2ofUjUPf903EEMI0eRZUxgGpkCRlLBgSkDL52A9TSqgISJE2wYsx+vbd9sv+2B0Pf+kHv0ui97vT5eW5UkpVJvphGlOcvGTQhLoYmTnGSICFM9ZajaAIlFKKMCXOeQwRjTFaz6oIGP1EinKIp+Oprtpm0R4PXVHXxtlpDMe+k5hZpnkAz/oUYUkpMZA2hoEIEWjOi49THq2bEXDUxiDjMAyISAQhZBHRCtumnWMOjVHWGKtXy7YUySICq+rs7Mw6TQjL5ZJDuHncV4XuwU9tOh47a3VRumfXm+12yyAhoEgmQq21dZU2hY/86vXd1cU5gRZgFBYG0ZBTZOYgBojmZhelVEqccggJUwjj6EvtFJLVxCFJjjnLEL1CItCSk0AWgRQCULpYrwhVCI85JhFBVIlDAlhUTWk4pOxjDCnNSZkpstGASlChJjUPqsJYq8g/6aGYmdVTvAYqpRifZqVGeorQggzw22n6X3rNK+fTbYbw578F1VP+89ydxILCModEchYR+BrZfqKZE2dSBE9uqKduXQbIWWLwc8lujElrrZRKMcfonwTqMh8QMEPOwgCgBVBpa21iiTGGEHxIiQMqzYAxzbmKShOKQq01ZJ5R+Bn3YmZUuihsURR3dzdHrYzGtm27w/Ht25tnz57d3d0BwPZwPF+f5RQJ1TR6SOHV63eFq0kbK1CWRc7t0PVJg9Lm0PWIg+n65XKpld1sNovWDUP/yQfv7Y8HVy1e3Tz8lR989yefvlaQnNLIEGMgJkJRkjFl4yqfQw5oNBDGOPj3rza/961vlEr9/u8v/6P/+/HVm6+uNuvS6KbAl5+8rBo433z75Uff+MN/9i/C8d1yYQ77ybMdCaIitgZscX62Ai83/gCaj4fTNAVCs9qcDyH6SJrFfC3EyyA4Ix1AAAxCumnrYejXZxtr7c3NzVzLMZdVFcs2TuPxcFiU1WeffRYnTwoOx1OpyGO02oDSCBQzLxYLq7jveyA6vnu3P3RIgDn0IdfLC9LqqQWIaP5YzPJga203TciilEqc55DFOJ1CCDOkrPUsfS+qqiiKau62nCfrfAYvikIbLSKg1GKxAMIknHP23ldVdXl52XWD975y1XykKIviOPSIOINyWuth6MuyPFutUWAYhsViUde190FrXVWNCJ4eHzjHpq7/jb/0+07h/bvXk0Dy4fWrV6v1OmYGyUZpzqkfB045xtjWVV1VkJMiUoBt3cQY88zHSS5dAZyGrj85C1eX69UCBX79q1+8efMqptEqPl99smwXr169Od8Uy0VzmrY5Z6X0lNIQYsqMpEg77axzzlpDRD4GZxWpufcCRJIhVZal1iQpq9JZbUgghkAgCRElK6WMccyMrERYMAJBjEl4Fs0hoCAQ0Rx2i0JoNK9Wi6IqfYo+pL7vh+64XDWn0yn4oW1K5xxnFUJgCa5QzlUv0rOHhwcfw3svX8QYu/70809fTdM04xlFUcyH8XnczmdwRAzRK6WqolRIJMAph+C/971vF1V5d3d72u1//fNffvTxBy/f//hnv/qs63rrVExhf3jwUy99OnXHs7PFOPaffvbLpi0IBVAuLy/HIWXW+8NOW4OE+/2WJd2H0/PrZ9PYo9NXV1cPN2+cNaVz09Dd37xLidvV8myzsUZtiqVVuhSyzong4Xg6HE7HbpoSC+j94ZSAjKuV0oWrGBCIAGC9OffjNI5+tdpcXVwKq5jCYrna707aqKYq33vxQZjG5If+OMbkM3BKaYaF6rosrNMEWmHb1m1dWWtj9NM0zR3GIqKq1XzpEDEnub2/c65sFiutddsstfWRZfaMJs7GmKJ0xWSzQZ9yjJkBpzCyYNW0+FTSInM2DhEaYzBDXdciMo5jTmG1Ws1Y9/yQJSKt6Xx9YYx53D7c399nyEgSo6+aFkGRNlq7ofdjPxljF22bUtgfds2iRMV+7Jw9e3h8iCnPYhSlTFnWgnq/P5VOG41a6zn+cB4xyhjnXM45hRBjAqAw978DRB+UC6RdURRAKYSQUmCjc4oxBqcIUWLMKSVtinHaEpqmaeboYwAAJAI8nU7GWQGMMY7TBETWFkopEYgxppRAWClVl5Vxdhi6wJmZOXPOmRFBSM+QMogwExETqCcJ1ZNO6s900V+/Znj/vwJQP32Nf/7bkJ9kW5Bixq9rdhCR6Enryk9jXlJOAKDpt3lS4FOkQIg4k3SzppUlzZne89sKAIlzSkkpM44jKj1bHk6nU8qita6qSlsXUp589t4rpTIBMgVgp1EpyjGllLKA1loZC5DKsjAKlfDpuHt+/UwjhRA+/fTTaZrKsjTG7I6HyllFoEnlJN1piImtLV7d3m/Wy7ZtoZIvv/zy6uqqLOr9fr85u7h5d9s0zel0gsyEEmOcpnG9XB0e7gLjxea5hq98SqR0aY0iiGNPhMu27k4nkExISCIhVoZ2N+/+h//b/+Df/bf/9v/pP/zf/eUffE/S6ery/BsffMR+ylO43f7oePPw//n5v1pfP3/5vY9zGNpm+fj61hTN+fNnu198aoWqxfJCF19+/pNh6oZhGoZBRKqyzgJImgA06ZCnpCBzhgRzXcUsrNM5gbNVGIKncbNaD0M/ny4Pu2OnVLNoE9p3h14b0/ejUqosrWpWw9hPEQSwqYuh6/yYiuXy/PlF13U8DM+vzo1zKaVXr14VRMa66XQiIsl5imHwY1EUktL2cJgfwWdnZ+M4bqexLMtVveAk0Sdr9em4N0SrZZvHHcNgs3++dsduen6x1KYYI1dlQyo9Pm7Pzy6Ou70xpq6KTdVyTgXz6myVp+EwjCeO1lSAyii9qEoUiNZM01hY2x0Oyua2qQxXZlMT+Bqg1akuYHndPt77X3XxeLh/773fabCHED553rbfuPzi88/6vl+X+dl7L+8e9r/89PPH/f1yc15Zh81qu90GkLZtm7LkHAvDBWaC1FbKLEulmsfHbfXB+3W7vLn90kssi7qfRJmzfjw+nnDjMzkzED/E4L16OOV9J+SAlBYeHSoN5BQVRJbEKiFOihmzijkXBoWlcObyfE2YX3/1hXVOaxBknyFknlkiIqNEYcxOyAgios5zGolJKQAAMgKgVqQAhIQl5phZcukMgLm9uV8uz5IGP0XMx8umMuvVsRvSMKWUmqZaNI1BHPe7eNyZHK6vL1erRRJ48/rd493j/OCYrWWzjyVn0rpgZu85c2qatutPp+lQVdUx+zRFhVZ4t33Yv3jxYjhB18nN3f7Fe1f//b/37/6zf/pHDw/b2zevv/2N75iyra/clOTzm8fHsb2oV31a5egfv3od+t7KSPUy4uo4pdPpJDlWheuKIlJ1mvYpj8O0u3q2moaxWbWnzh8mrUiHI3TT3ig5Wy8kRQNiUrIGO39rUwf9vjJNYFdpe/PQUVUgLZgCap6ih5TWuhOcQnao1gzmOMH93Xa1apvGMESxMsROqZSz1wQx5mPMxhhblkbpql0YhV13cqS2pyEj2aRRROsCUUIIOXNt2aIBhAjcNIvFchNCDD6HOPRDqOt61S76vp/ypFBxSIFjWdaP+x0p47QZQ6xccTx2d+/ezsVobdtKikM/uMJOIa4WVZBUFAU15cFQWVpCrRWGEJhAJFKOEKAs2ufnVevO8tT04xBPRyrKNPnH3cEnCBmjT26Ir24eri834zAhUVXUp+MRSLftegF0OvUc+7ouq6oSSTEni6SNTgKYwDlnXZljAphyysnHsiidcSnF0pqUg9HU1EUWdtYy6jH0aJswZp9Aa0cCQdAoIkk5RyStgGP0DjNDRsVAOPRjBGnKhQg0ZcEpT8OgtfZj166WXdeNIRdFgciSs2awKGisYwkhJM6QgRRp1PPAExFCEsGchREAEEDDXGY4r7bAiKiQSCEiQn6CCQUggwjLfCxFZpozppm1gEKVUo4xCBAgkNGcQRCJFAsjKhV7yXPapQJCRiUiCZSABMwspJXOhALolI5ahK2IZAZiRBGjEEVB5JyFREeflHECpIvSDxMAjrq2pESlosgITCAaKUw+GZsiFGRTikah5OQs5rE/NlqH0ChoIH3r5ZWfTmcrfXZ+TVoN3fjmqzc5DmRajyqgYqWvGAHo3c1jUxmZRhhQVFotzt5Vzb2nV6N5u8fyg7PiyoZ+u7awVWevX7+FhKejHDAsrr7981/+8veXzz663tw+PmSkol4c+jECZLLV6nmf3sLIJVgKSabhdz950anT88X+7/6Ny/Tu8z/8B//h559+8b3/wX83vt1++vkvgKC19th1Nni///L2Tes++OjZy4/60y//2vvnl/GhuXo+lMUkfql8mcYvtn3e3t6P0745txfPde/LmCZdd1Q6U+hwKnBi5UZ2vSjNooT1XIcyE6tz6HHXdavVaiZZU/AE+OzZM6317e3tarVCoBD85mytSQ1Dt2zb6Edjijlgdj6RDdMk4wgA1hbee4AnnVTbNoWxYrMmZVwxp2nHGDlnZ+2sAuv60RjTtMtx6rve13W5O/VVYfaHvnRFWS+ZXDeGKfFitVpfnL979dl8cl+era3S+91jjLFtm2N32h8PZ2dnLDiOk4iAcM65Kgwzt21zf5/u7+6IoCiKcRyLopjGDoXPFq12tqnr4/G43W6ttR998EHTNCK4aBfdYccxfOMb39jv90VZxRivr69vHra9Dwg4RI/d/qyuiqpUIAozQeaQQeL52bqpS41YVVVdN9vdoTvurTboHJIapykmrpr61A+H/enZ840w7HfHfsjb7YklaXLG6ZyLHNlpU1hrrTXGKYWIyCAppaq0InEG0nPOp9O+KIqiKDjD/C5kECI9F4vOh2IRYdZIEhAVEnPOPLsQUaGAEOinytP5kB5CSJkXyybn2HWdMS5m5n7UVmJm51xR1RcXm/Vy8ebVl/v9/sWLF977yQdO2fvp4e7m+vIq5qQUlkU5k5QxBG1dnEZjnHV2mjhOPqXEnKZpWCzbKY3ausfHx5Ty3d3d4XBIKb1582byXQa5uX9w2qxXmzfv3i6apU+jq9rFYrE/nh4eHn6N6cOrs8VicXV90f/i17u+K8rlw/64WCzG/jRL2GbxQZr6t69ef/tbH9d17awNDibvtRFLSmvnLA3DcNzvBGmzXo1DuL56uTMH5iKDAV2YIQvhw2GfY8IUIXBjKKW0P+6Wi3VbL1KY7re3hLhaLaZpWixcCDxNQSGQcJ681UaUhpiLonBGzy55MEo/VZZhSkkkG6Wcs4Uzxpg52HlGEcqydAWGmIdhPHSnzfnlOI6Hw8EY0zTNnPM6TVMGEsBFXQmpeacRUotFQx1YRQrhtN8JcFWUzuiUEmdfOL05W6SUgjdGAxHHGEtntDYzd2iMshpEVLTUTZlQRMCHSSlVOpOjj5JzjpyyApzxLT9NSolGPYQJAMqmNcYUhSUijQCktFbakEICYgDOOQLTvEnOkfLzZ3LGyawFm0X7DKhSCiGnGCMocc6FKaTgq6oqrOm6rrDauSpMfsb5mCcQVApRkS2LeXY2i4XWOqWd914ZY60VkfkC/jbIz6qnjpmQn6TIc4uviOQsAKKUEpAn+9BTFjQiYk5pFhgqUn/enkRET/fZ06KMT//9a2fwzMGRgDxJpyVniTFyBtIKEVNOItECMooACM+/6UnvzMxWmxm6SDlIULM2NsQEAIkZWGjuOCYSxNnllEFAZssUElHISaWkCRWRJgTJwHn26c0J1ACglQIhRJWzCIiO6IdYaLRN4YeEQg/b7fEwnF9dFtpdnz/ru9nPpmOWonBWBqvN4/bmvfe+8/LF7//pD/95vax8GA2p+/uH3cMpTvlP/vVPFpZ+95svI4cXlyvL6Rc//w2K/PxnP3r5/schhHf3D9rVugwPD1uTB2PcamlzksPDzeHudVvXGvN0OtRaHMUv79/+9/7b/y3i/L/8n//PfvWzn//9v//3N5v29v7m2fXVdv/4m9/8ZuqHv/gXfn82Jf/BH/zB5fPfXFy/f/XivVm5UprN2y9+pRLc3t5+9dVX97f3h1OkzXMkO4euiGRklXNEYRJg5D9n+AQdc5ivYLtojDP9ba81tW1dOrfdboe+Xy6XRtE49Odnm/V6/fh4rxVwioFHTWCMQoGxHzabzfxkLIqKId7fP/oY6rrW9FSTorWa2fiZ4q2qapz6uU2vKArn3OP9Q9M0yjqlVJCsXKEFspAGJWBZ+NRNjEcRIFukMAyTP3355Vlbn52d5cizDtDYwhizXC6ttfcPt9baqigRaRx8zhKEoWi77mStaZum644aSWmsq3YaOmNM7WxKKXGyWo/jOI7jy5cfLJqmqYsY4/YwSgxKOx+iAF5cXGTAkLkq3Xe/9U00NoS0WrTDMGz3h2maLOTj0IWczs9WCCwp+ZxTjEpra5QojTENiTGKtqVMOabkYz71Q/+bExk7dsPp6LuuY6DoA0POKRpTGKv+LKlcDCNCFsC5SkVprQtnMIMhVVaFMTbNuW4zSEVzNEKcL9eT4FbyTF8xcwbUSIhCgEahiEbz9OxgZmHQWjdV/bg91EW5ubz66vWrKaXCkraurJsY4/7YbR8en11d1GWljZrdYj//6Y8Xq7OLzVmgJTMbp3POoMimtI8nyaxIT9MwQ51tU7V1FZOflS8IcHd3UxVtwgyZ67rcHxUiMtDj4+Pd3R2CutxcFqooqpI0/OIXvyjblTFmnHrvfVFYn+Jle35xcXH7y0+FKcfQnp8rzH6cttvtsikWi6bb93Pc4zSMxpi2dfs3tzqzMSbGOHR9Tl4kE+nDoVu0q93j1PWsdUtAtqqTnC6vni1ucbd7DIERuG1rP4xfeFUouNqsok9xGm5v75eL+uryPEafM08+pzRU1lhbMuBpOJHWKSXgrJ++SFqrGCOAilFEaG7Qc1bPFMzxNCBJDEkyj9PU92OIGQB224eirIvC/tZZgIhVVVHG0UdFEJJnFkVKENaL0micpqksDLMCTnXtjFGFbZSKwzBwntqmruxmztJJMY7jaAwgYs5JKyRKIqIVLJqyqRyh0m523tHQHwm5rsqqsHVdKqSyrHL0pbW4Pp8eh5yzcDDauMIyMxIrhc5qhJxyUoCgNQKzcM6ZnpgRIiIkcs5lDgBJREhB7VwCxSKKUIStQZuJqNAInIISnmkgpdEY29SLw+noYw4hxZRnBqQpG+DUDyMRtW1tS8eCOaa5wWY+Fc0a0iaLcy6mp7IZoXko5j8nm0AhRHkqSiLC2S0MAPMfj8D/FcD5t5DynzmFvh7SX9OriAqVKGZOkkAwQ8opMTw1CgeUr8e4zK6C+TBNZiaGc8ppvnrzYwGImDnGLDkiIoN1VpNRcYo+BaWt5JRBAIiMzkPwfiSQwhqlFQJyEq201loEAbL3ERyIsEIBBmtdYUyaBqzc2I0VVVrR1dkFOd0W9fbhceqn9fJMafvF27e2bbr7h+tL0Uap0n71+stvf/Oj9eWm6/uWDAIPx9OyrB/uD5Ds9pReVQ/vP79+9/lPX7730eliqW29bhdfvHqltd7uTt/6vd//k0/fQNGOzGM/4H5XKPjmRx/8Wz/4r11uzldLqiwYgFe//upf/aN3y9L94//iP//FT/70P/jf/K9+97sf/cmP/uXjdnvx/Prly5fPNhe//NlP/+E//IdXVxeffPLNjz766Ce/+NWb24e/993v7h7vN5cX/eOBCMZxNMZYa68uLn2Jzce/t7i4fhgEEYkzWSUsnCXhjIHMJDAiijaF67pTlrx/3Hddd3F1ToDR+9I5pdR6vc4xvXv1erFYuKp69+aVtXSxObu7uwORtm377gjImeOpO4SYY4yHU0+kbeGU0VqZsR+I6OJ8Y609HI8556IoTqdTDJMmVVUVsIQQ0EJTVQ93d8vNGSIuFquceD54xskXRTMmYQQipZ2dUjZWZUmgaOh7RTSNIeecbTGHSx+7btE0i8Ui5+zDSEBaoVaYc+xOJ6MphklE2qpGkjCNGkSTQqKqKvrTsS6Lsiw/+cZH+Xvp3cO2Ox5AklHUH7fILFxP07Rqmy+++OKjb3yzKN31xYWrKh/Cu3e3KtB5W9R6eeo0kC4Veu81zSnlMmtHEWhRL2KW3Zs3uylrFY0pfeAYozHm2I3Rd5zyw/1uu+t9xqJYuMKiIq3VTJjOUhoiUAqRlCAopWOM1pl54K1q115sJKWcs63KoiittZkhxthPXkRSlhl6EhBmiCAAkDMjYiYgQIL8FBeASitZr9ddf0oxK1JowVnDhvrjoV1t3r59O8QOEU+Dn6bp4w8/+PhbH8ZxaNv6s09/8/j4OAen1KUzhUtqE5M/Ho/d0BljbFGUhSXS/TCBsDVOOBGgVgpECzFDVkZfnJ9Xrvri89dEqm7by8uLxLkoijev3wGqs/V5SFkjImnmGDMPj7uyruq6NsY8Pj6eL8uvvvriYnNxfX3qAhRlG1IGFskJEVJK67PmtLs5Ho9v375t6+Y73/nOF1+907eP0zTVdQ0APkYCEGYiyMxF3dx/dfPV6xttrc8ppLfLs8Un3/ro+vl693h79/ZmOB4/eHF5frb5L374M+/9onTs7HvPLr76snl7c1tVVmt9Oo7DMBnCsSwWTdWURbU+UyLMCRHrukbJ3o/GaETSWv92DXrK7yyKp45IIpCQQXJK0zQVVdm2rU9pfsdTSiFMv90v/bFXEFnAGlUpB4SJwTjtp5QwOu2stTkrraFyZrVaCA+cRqfFaUkAcUptWzvXeu+ZOSbPbGY6n4hk3fanoW1bYbx/3Er2TWX60qQwaK2NBhDx0wBp9uYyEa4W9TiOABkQnSVEJZKVoswBBVABqNmWgyg4O+hmKyozk1LW2phEq2BIOW1cYcfAhElJ8jEBaZJIQrMbqiwMwNzVm0JmWgARaY2kjY4ZtSIiRbDbPR6Px6pdFM6kmJKwAI2Tn4Fl/vo1wsjMyprfjs9Z9aQZvuZlCebYhbniCObNWDPAjEI9/asQCZ9o2t9OXwSaI6EzxNlerEA9mYUQQSNHUEoJQswQYlTMQmitjf6px5BZEPm3CSEESERTzjMJpZTKSXLOqETmvmHlENhz8lOacYUUIxEGziKYhJVSSJRSihQVglPzDcERM5EGBNQqp5QEUohGK1CISofptGnb2mmVfNNWm7NWGbp9uI9hXLbVcDwedvers/PzsyYAnK02zzauqqrPvvwi6jQFBm274xZRn6/XD7vBiztbNAzox3jzcF/W7rqi/f1bS/zs+vKv/tXv/V//o384RpKyuNsebL00dTOOw7R/WDj1nfev/jt/9/eqP0e9//Cf/pP/7D/9T5aF6XeP/+yf/OHz682/87f/zf/4P/l//u//D//Hv/Y3/sbf+x/9TzSpvjt98sknzuq7m9svPvvUunrRtI+H7p/90T/9K3/trwPnaRiXTRv7hIhXV1fvpncIWLTriambRu0MSkLGBJwBRUhmkxgkBiER3XUnY8zgp+vr67473t/frxbLFKYY/fnZZhiGx/3+448/Loriyy+/vLi4cAVtNptx6Oe3+eHhARGttT4krTUqAyEQaWX0nNNirJ69XHM6VYpxGse6KmKMzlhgiX5cr1Za6/6wL509Hh7fe+894VBXdXfodg8Pq+WyPx6sUTmwEnSkQFLl7K47Nk0z7Puu66y1i3Y1Q+jxdBLIx+5kNCHi2Wo5jp5QrLJVVd3d3SzWawCo26ptW8kJmJ0zfhpT8Eqpq6urpirD5GecNnpfFIUiIISqbpUwKVWWLmSOmcdxxGmqSuOnAYSvNmvHXvwoMRgC1FSs1zHGlJi0HqeQMmitFRmfIgtaVxYoStkYhLRSrLq+v719e3Wx/vCD9wnNdve5QgrRm1QgkDZGPSnJOaXErJkhMyAwKJ0yIz65b4uiWBZ26I9ZFBFZpbRWKDIHzxGRpMQsLIws870vIjmzEGoEAFYArJDUHOgDXdfVTd3Urff+dBpzzikGAEpFUbarYZy2u11ZlotlO6X8k5/+Yho7g2CUICnrig8++MAYM0wh5JByPJ1OxhljjOTsvU+pF5mVoFKXldLInIahjzEulk3wkeMEGdqmendzZ4ze7XYxJ1AwBa+UGSdfl83V1bPHx8flcnl9/fzNu9u2rqbhmBLGrPpxaAqXUiAUP/Zls44xRv/Uz7E/HgzFWV7EzLvd7u7u4fLqvcNp/M2nXxwOB2N12y436/Z42EdIimwfpsv3X3z29na7O045Hk4nvL3ddt3Zur1YL58/+3BqTymmw2P37Pwyc7xYr06nw7J2H7x/vds/RD8iNofjUJalXtQ+4d3jHi8377/3PHaHWRFTVUWYJuZUlaXWZI1iTnPqOCKA0DwC5wgkbaiwBREBImkDQm1ZpJRFkkDu++Ccm+s7C6eMdsPoiVBbiDkX1miFZ+uFrNr5w+O9VyCaIPpeay604Rj6Y3qiLUmEI+cgIihitXbmyfbtnNNAw9ALwnrVcIa7h/t+OC6WdVWUi8WidI7AMLMhm3xyziBla+cdXSE+6bpFMgIbM2efqLmYff6/CJQ4q0wpJZaEpK3TDTQhnSILiqBkq1VTu0oqa+1xmh4eHpQqAWFGfdq2PRwOPkTvfQhBUGnrjLbKGq0tcSoLN4wKgGNMKYt2xRzuGDnn9HSLwZMxjElkzrX6Lc4sT8srK0AF/6WXiMzvVxYhYQAgRCKYqxvmGfkUD4vzfYcgT6qr2S8sIgxPjQ3CALMJipkRCEhEMtL8bSBIT0OcASDG5JyzipA1EAkjzx1NRqeUUsrzmA8pMrNzDkAyQhROT2B0VlprrSWLAKcUUkKaU9tEAFgpZV0JqFgk5ZneIp24VPn6+UYFf7m8HLvt4zFqDatN89577/3sxz/7wV/8/i9//qvzi+XDYTfud4ikcWNUMwzcLJtDF8eRgawxZr97/Pj99z57c/f9731zsV7dbW+3D28fTvc1q/c+fD7J8Q/+8A//Jvydv/N3/s4f/rN/efJyOBycc9v9njmvFvXh1S9/72//RRsBmEEDTMd/8A/+zz/+0Z+2VYOm+elPfnJze/z3/6f/4yl6W+p/5+/+rd2+Ozs7a5pF8iHFOA3j3P1D2oyRjVHv3r4e+2793rOqsL7r+r4viiolHk/HtzeT+XbqEmVyBhE5IAMCJgYGBKScM4AokSxZN00zP3dub29TDqvFMoQgIKvVavTT6XS6vr5OKX3xxRcA8Pj4iJS2220IAQB8iDOADEB1YX2KHLksS63tFPz8uVw2i2EY+rEDAGXmKuacQpxbSD/7za9evnyJAtu7248/fP/29jbE/vhwh6Dshi3motQ6TU1dL9tqG4c07lWxvt4s6mbx01/+ajoejDEze+2cm8ODbVk5rZarZr97ROGyqlIIi/XKe8/Zt4vaGgUAVqswjTlG54yf0rJtwqQPu62S6mHoU/Rdf5yG0ZbVermaQ9GstVphGEfm8fmzq2mavvjis6fqrq6b/awC4kNCobpufeIxxMOpH4bJORejR5aqqs7PL0G7se+j4NT3rpC+G2LMx+ORMM+i1rquP/jgAx8Ald0d+4yEWlnnfIxzN/fTMpTznLbNnCurYjYIqq1qq3TOyRmLRnnvp2liPyGSwJyyoQByZmEUEJxt+yKQGTmlgIgCCoU1KYWGMiHkDCGECXtUerVaPNxv70+npm4nFh+yT9lWbRK5vd/uDsdC6xxHSbGwprBmfxycc+tNU7fF4003juPheKybanaEp5RFsKqqnGRu7rSucM5orUTEKOR4Wl1dDKfJLBpEvH/YfvzxxzEnViiHQz/ulcCpH8zusD47DyFoWxhj3n///Zu3X/nx0LaXzJxBbm7fKkSF4Kehbdr9fh9C2O0eq9LEGGtnUuSqbIb+lHLKOS8Wi9V6SdqIyPF4PDtbbc4vxji8u7kzZXF5/uyDb778yc9/PR48OjdM/k9/8UWOcd0svvnBB88uznNIYTgEjJrwdNwbo7rT/u7urqmKZtF2YwZARO2nNOSU84AEQHhR2fk5Pk0Tf90NN5tKlDLKKE3AnGNOPDIgA6qvQxgSAFhrc85ZOA6egeZ48K7rsqSUAwCUzgIYZs45A2cU0QrLQteqhK/lspWzMQSQnCIY0ig09pNzzlmdYtjvdszctnXhSqUUoQop398/dqdBKdU2xVOIyjgSaWf1ctnmmGaPHJJYbefiteg9M7Aka7RzdvazKkWijVLWmFYgA2f1dZBI8mkcx9k9Z61BUIkziwBAURTWTDYzCyuC2lijNCmtna3byiB/LbDXISTOUSEtGkcwZwPmGKMiPc+SunSb9bJpqtGHfpy0NUrbMcS5oTyludCGZiheRFLM9OdeX0PHnDODYJA/0yrPbgLzlGqFQormbkKkp712js7CuTfpSf38W3nzk8hZniY9kYo5pMghpyysgTLD5CPoQkSEEyEIkDyJbQXndZWZiLTSaXYPCzvWv+WblVJPE5RznFKKnBnms35OSTODyCwZm38pKUStiYgBrS2NMVk4jD5zAtBEJAi991++eQshIIBBPGz3gHmV/GkcXV3f7/Y+83EYf/f73/7jf/FDlrTdDm9vt6iKmCCyPHvxfHf3bhzH9Xr9Jz/+eXv+7PPPPy+37be/+0lR0257d3O3e/ujX129+KA8e/bH/+pPf/D7f/Hs7Ozw+m3wU/RiEeraDds3/nCjpv39F/ta2d3x4R//4T/8+c9/WpWlM+Z0Ou32x48/ef/3/sJfRK2P/bBYLf/yX/uvF2U9hNjUZQjqxz/+8QcfvvzhD3/47e989+NPvnn9jO4fd//kD//R3/vkQ4QnBftut8vCThug3J5d6Wol4Tj60WlBJAQlNEdwwCxsnd9fPU3eGK0AlVKc1TRNy3ahlAohKKWMK+q22e/3U/AvXry4ubmpKhtTRmNm/25VVUAUY5SYifQ0HedRVJZ12RTTNA2n7nG/c85dXFxM0zCrD47jWDr3/NlVHAejKUcPLH4cry4uLtbvv379+u72obUEGhBFoVA6OKRVRePoZTrWy9XS6U3t7v1ACk1dEkAYJxFhhhj9xLEsTNM0IHw67MahO1vUxPrNmzemLBRCYe1xv0eURdM6a6ZhvLu5IYIQphA0gNRVy5JIq9VqlWLyPizaunRmHPvIXBTVOIXbmxvnzPXF5cPj/TT0zy4uAOCLTz9brNZMarfbbY+9slVMMmWZhilOvh9OInLzsD0738zzptAicewOD4t25ZR0fXd+fiaZQwjr1dl7L6Mt6vJue/PwmAHn9oXfak8QVQiBABAlBjZYTdM0WvKxGsdxysFoBVG89ymyEAkCgkpMKeWUJWYRQQFJIsiCiCwUsqAwARDM+RuaWZiR+emwHf0gjAJZMucUdVWQ6fvdFGKeAwSmLgw0GcLlYjENPSgESyDwuO+7rrvbjURU123MEdJTlG4IaRqDMa7rhq4bDgdq2ursbLVYLDj5qqpOhw6QjTZNU81tuFfvPR8nXzVtZByGSRu7PezvHh+Z+erqShsrIh+8//LnP75/3O8++ej70fdAeH5xhtp+9eYuRW6bipTxflytGvZ98KlsrPdxHP1ut+8Hr0x59ezZcrnq+/6XP/+ZfP7l5eW50RzHgSRN0/Gb33iexX/5+n7XBer8UlcIeuynX7/aPh7ietloVBJ7kHTqDu+99+xss7p/kLqyALJsWr5AJHs47kTycrGylna7nUvlrA8yRjljnCtijCIZEcuC5hWKWXKOROSMJTV/HpSPMcZICoiMVSSCc+iNc3q5XMSYZuR25i/rogw5aeMQMWZWSvX9CQC0trOki5ln6UZgsqYkNFVVgOSu6zgFa+3tqWua1jintc1M45AOhy4nIVxaa+eabeaJRWYM/0n3hzhvclpbEVHGFEqUUkbrORlGa6sUVlXprA5hCiEgSVUUxpguDSmlLGqeIlk4Z8mSYkpA6JwVoG7ywMzgp8EDEfTk6nqzWs7OcmX0NIbH3ZYUzF4mQBaGHBgs5JyJgIiNUYummqepts7HlENUSpEyRJJCiDGGlPIsYZP053ncP7/s/lbq+FtOl4gyIQLOlYKEmgiIiPApq/LP/TiygAhrzTnnOazqa5IYURGCYiBGnjsYWFCERZAVQM7CgsIWn/qJRUQpZE5fD3qErymnYRhmLxAza2OU1qe+64fpacxzttoQkRDFGDUSatK/JeGJZnIkC8xW0hizj8Fqk4VDTjqm5PHQ81mz+sVnt21l6oIuLy/Jmldvbol0f+ytdofP3gYxZBoA8hxut3dZ4ndefrJsXVVoWDU//9FXZbl6/uL9T18/fPr524tn10P4xTc/eb+u1/rZ5k9/8ou30w0L7rf94Z//8OOPPnjvxXUG+hd/8uOmKnEa//P/x//tf/3v/3u3r379H/+j//fucfB+VI4ur68m72POx3766u3ti+eXXtQ/+qf/ol1ffPr6bfP/Z+rPgy1Nk/M+LDPf7dvOdre6tXRVr9PT0zODGQwGIAkQAAGQggxBFiXCJkhZMmmGZDuscEgOyeFwmFZIlhWyRMtS2FIEbUqhCNl0mDQpy6BADUls4gIMZgazz3T3dHd17Xc927e9W6b/+G6Pdf6qqOVU3brne/PNzOd5fssDsg6ZKlKPP3r03/z933bFL3zqU5+6vL56/ryJLG3Xh5weffub905PUFMO8Wtf+5ozKoRgXTk7OOkTdD6VwFVR9KMHRVNcNwOIsMg01RFNAu12f3h4uN2sc86np6/M6mq9Xl8PAyI2TdP2fWI2zj158TylNO68tXYCVxljhjFYa5vZom370tmqqibRpuRsFKrSpZTmTSUiwGkKObLWls41TWWUPljOb926FcYxhzC2+9rZUplbq4PTg0Nr9di3t2+doCThVBYWoHnx4kXbDWlQ0ZrGudHa6uCAma+u1kPfCkLfjUaTCD96/PDenducwnxWO4Wb9XVVlHdun1yu1+urC2stClR1ud3lvtvVZTmb1fvtbrq5G6MnSjER7bc759wwDAhszNIYM4m8nNVHR0eXl+e//5UvHyxXRtHYtVVdHN++7VM+P79uxxSEtJY+hKlFicxVMyei3XZtnC2KIuVQGOyHPo+7L/7MTy4Wy7/9pS8Vpb19cqtpGgC4vr5k2LSDH8auni3yx8+z0qiUQpSUchKxmkQ4xBwVtG1/qTA3zmDGnEIKoMi5QlvDCSLHmDhETgwxM2dhJBYkEkTKjAIkkJlFA7BgYkjCilFrZ601xqzXaxF48OCBNcUPfvBB107BFCMLJgGtDCA21RIhrfdD5Qow5a4PSoH37XK5zDJaWyxW8w8++IExyTlX1TMk71xpTXF1vck5A6nM4ANv267fXh0eHq9Wq/2+tabYd1euKi8uLi4216vjY23cwcGRMd12u92st2VRpIzbXUtEL168eP2Ve9batht8SFrbSah6+/QkMf3g4SPr6hCzKezZ2ZnTomflMOSPPnp8+9bJanV4dn7hamrmlSsLQdDWbXZ7VDS37uTgZHe1tgpeevnBT/34Zz/z6fTehy+++86jy/Xog8wXq5xz4LDz3ofB+X6xrC8vLq6vL9/61CdCjN6nft0rN4xe6toioiKyTiOK92MICgCmM3E6FmNOhXPOGSIIIYlkqwmRcuZIGXISEeMUAGhNVrsYozAqq5VSkfP0Pm3b+hgKUxSu8t4zoe8HFrS26LouZkbEoqiI6PmzsxhjVVXb7baqxsrVy+Ui+GiMaery5MQN7T6lhKA4w3bb5dRqa1MEQMOSX5xdnZyczGYz0qrruhgCqDzZvhNnEfEhxOQVoIAwTGBEiBJFwChNIASkiIioLktnTIx+SiYRESJdGDcMQ9+NY/AiiErHmMlkY0xmhGEETsyKU9TWiEiOYwZi5qppBu8X80Zr3Y9+8HGKQUWEj628SZFGgOCHnLOxSieSnDjFsrBEigXylBVFZJRCnpgH+MPGN3+ccgUAQChTbjOqKWASSAHRtOBHIZEMStHUAiut6L8dnaFY5GZKIZCnqK2PO2BEJAYymkgrTaQ45ZAEQEgrFXOSzJAToSggg8g4ecQn678BxBiTDynnrJQySpWu6Meh7Xvrbl6I2HWd1hoFnHOcc0Ya86hJ8URrUAhT7WeZAFE59ynf+PiLohjGbhKNG1KX62Exu2Uq2477mCTJ7uig6UdJKaag2j7F6BmfswSt1apSgtk4UJrfe/c7tw7m9+/cPr519N77D++//iNX33lRzE5aj+tHl0T69GR50adW7GafBh+tLp9e7wM/PJiVmeOb92/vu/a/+Jt/TY2bT7x08rXf/tvd9grAndw+Ja1SAsFC2aoP28vN+kd/7PPvP/zo+9/7ljZYVfXTZ+ef/NTnttvt4aoZxg4AvvzlL7/++ut1XSPKd77zrefPzw6Pjr77nW/ev/MLOcSu6/7IT/7Uh++99/6jM2WWtpr3IYG2h6vZ6aL4/g/eF6szIwhNdz642fuxLmypUHf7VqE6Pjlazhcphc1mU1XV5NBgEFSkjK5LN93F9vs9EVlbTPPnnBlQKa2992OIBUCOUSRziiJSNbPJ2uS9L8uSAZwxTVNpUs9fPHXaPHvy5MH9e8Wd27vt2o/9+oIXy9lqtXzy+MPVcrZaVkO7NUoZLcaY5esv+4yZCXUJYlbzw3XoAcBqA0DjGJazWdd13g855nZ7ZYj2aTRKF0WxWswUmapunr94JiLz+XzsB8lpsTxEFIXUNFXXSY5xUnLlnJum2e1205B5GIaU5lO+zX7fbjjcvX3aNJUmHLp2tVppQ23bgm3W15vAXM6ayhQJyJRVSkmT8kN3sFyEcbhz62DaNVpDvr38iS/8+Pffe/fR+9/903/2nxX+md/93S+XpTt79tyWRV2X17tOiJXCkKIgaFKIaBRNXcWEBvU5loWNMfaYNfBegZJUGEJhxmyVyQw5CoICBEBiSN57QGKklGXK1DXGKGtEkERbpwxi5bRRGIMvaxtjFLETjaosq+31ldJ4dHTw/vefICrURitd2DILl2UtwJyxakrmNESICXNIRVFf7fzlehPPL2bXNSC2/eDK6uT0th/jZrPbta0yxlYVM+96z9RVXDVVs93sWqW0UkHCbFafffAQlO3ajkkbW1hXklIhppOTk+vr6wTm6nqjlQjH589VP3pheuf9D1+9f2/fD20fyrper68Wi8V278cQDyp3cHQoYSxLN6vKsd1u960ifb3ZlRHe/eBhTvLaG6+z4HbfzhbLRbPa77cS+PzJC6uoni98hnuH8/DSre31u7u+W1+f103TzGpWuZwXZXDGmdc+8dbQX5Myy+XBo8dPUs4Gmrp0RIDCnEK7CfN53RROa9113ZRRkEUUYFlWShEzE2lEJlLGFV3XFXaa/t2kK01ZnlmgLEsQijlZqxWI0XaCfpLWIqJtFRL4rhvGsG/72XyRE+csi8V8GMN6fcmArqxYyBV1iNlp2e/blGLOOcTx+PBwtlzgtMgEUW3ftUPwCUgt5ivvfeai7YKxqdA2CzEAC2njBDAxdGF02mSGievejQMlKIrCKJMSIypmCGEoq2JoO1Lwsbx22nlHZh72PQAMfvTeCyqtb4bwwzgYW5ZlScqQtq4sdvtOhKMPRMQgbds656YhQVUVZHTa5WHImZmUkpwMKUQYhn42m1VlOfqYjM0CDDiGCACcgjEGkabc40EGRDDKTDODH0ZbeO9RETMb49THbqVpqCAiCEJEpBUCp5RI0fRLyjm86YMxpjRdOBAx3piPJYSQp+EHiFLKAJPWOYbEQtoAAAswAwP44BVSYXRmEUFSyscBBf3gnYOyrFGDEVRGi8isrMYQckxOGxFJKRmldaVjjClEL8lo3ZQVA+mpmVY3Q+nCaq015zRJARILgWJmTnm7W6Ow1ho4k9GlK4fBQ4qv3n+ZfXd+/qjdXTZ1LYKAlHKeL1faGhapSnt+vZ7PyjAML549f/PV2+364smjR4cHx0/P/KMXV+e7jsp5yFEELy+um0KtNykxjZnBlIk0Vni+bQ8ODsZN98pL99otfeW3vvTP/+qf3F6+OHvxZF6XO6+++93vvvL6mwdHt/ohurJ+8uyr/TgkSZ/4xJvHh0cXl2cPP3zv+dMXwXcISVLeXF0/uPfSa5944/Dw8B/97pdv37778kv3l8vl1772td/+jb/3Mz/5hyazxuPHT3vvN9vWnbxiymoM034B56ul1rqPEagQBGAkIgUKJGeGiZSE89lsOZsbox++/0GI43w+X60WHz15fHJycnV1cffuXaXwan3tnJuI01pr5wqtdRIex9afXxCRcJ7i4CXHk6PjlIMCVAiasKqK4+Nbm82mqophGD766OLe3dsckyuryhlJud1v290mpVTfuv/0ydnTp0/HoY1pXF897/fb48NFWZg7d+4eHB6Zsj4/33/05CIw1c0cHObMG78LwR/MG2aOQ+sqh6KPj4/82PfdvimcM6rd7YmomM8Xi0XfdpxiWTqrtbXaKE0EWhd9308w9vmNFzAyyzAMWmsEvr6+Lp3ZbTbRO6Vhv9/Pmur09LTb75h58N4Zsx1aAHaFVdaA1ooxZM6JCaQszNhtysLWheq68f6d48V8fvFYXr5/enKy+P2vfO3b3/yDLFBVxX63Q9JnZ2cp8+DDfghCmohS5olOMaW9o0BknniCwkiaFBkgnZj6kJmZJtSgJkJNoBhAGBOLCCKpJJCz5CyZIQNDZswCRIiCoCbY6BSbJiJ935+eHM5ms+fPnz9//lwYq9m8rut7d+88e/acCBKzMSaHmIQJdeARsgzdoLWu69oP/ZMXl13Xvf7qK+v1GlBKa0zh5oumqBpbwK4dBr+/3uxIm7J0iKofwr4dYmONMeOunfBhzWL+2huvX15trx8/jtv9YmlCvGFoJ85VVQ0JQXLKPqXU9UPwyQ/hQ3l+fbU5PlwgwNn5VTvGcraYz+d53/kY6nImCMvVwasv3c2+v7682rV7ERy892McfPjBBw9Xi4WrZj5wJuszbvYBMbzz/Y+KynX9mLVhMJ/8xP3Hz87Orjb1rG67rm2jUqoSM0RdzWtbzTKqey/dDTFtNi0LEVFR2ll9p2s3hUVSvJg3TVEYZ1HAe++cCQkAQlEUKbNInNrcYfBFUZRlKSIiN/nqzJw/bsiEcYppFJCUUp4SgQEQcbPbxRgFsWlmAlCWtZBytry63oSQ+n70MRkhIkDlCqezxJDFFaZuKpA0hsFoyDkLsNHWOVM3Tc7S9YMICskwQGZebzs9BBFJIjEnrckYJSnh4LPNImIIgVAYmMX7kDNwyjHmaYU6dgMRsk9KBxBSSlIKu90+hECmJCJjDABN3WDmyRf7sZBYkda60poFvfeojIiElHPOYwgYU2bIwqD09D4kAqgySIqcUxZJ4zgyS8qZU4iJZUISKUTRDBglSmJEAhZQOHW901ZYPo6EnPapH++DZZK2sQiIlO5mAa8VTgUshPAxDXbKCoWJWpNSYmajtR/jpL1ihpCYmbMGwGyIsqBMGo7pD+Y88ggsCVIQLpzxKYaQQaSuywwSMvM4EJFSmhCm9HVh1kQAWhAyc0wpM2tSrjIigixh9ApRkyKiPo3GGCUYRh+GobSuLMsUM2lIiTnH5WKRc5ScckxlWSAEhSrEfVO4YdhqGb7wuTed5qJwf/CN7+bERWUB477dnRwvl/Niuy69R0OF0dUffOXbP/WHPscx7YcwZB67fhO8tQGRZ/NSm3i9PZ+Xx3R88MHTc1NWu94XxrmZ3gxpt+vf+8EHBYVxv37jwd1+t57Na47+8vLF87MXL738BmFBiIWrUDISfPbTb906OfR9//lPf/Zf/Jf+JXC4++jdb3/nw92TJ1rrd95554/+7M/cuXPn9ddff/r06eh9zvmtT7yx2663m+vD5XK9Xn/zm99cLBaZbNkcBJ/EZqXUoydPtHhbVPvW/1DoDkB8A95ADcwoOYfIOT188ni5nC/mjUh++OH7h4eHOfjVrGm31yGlWVWklJy2Cuzgx/0uWmszi1EK6AZX6YexrusUxrbbiYhGmqBgRPTw4Qda6+VyCQCvvvrqxfmL5Ww2m81Ko1P0nMK8mRmjGEhZF0Kum/l8sdztLruhpw1/8Qufv3vvHoheb/dPnj17+Oh5PT8aPAvtm6Y5Plyevzj33W65XL795utaUdvuMsfa1ou6yDlLZiJdVRWz1GUR/QgAdVmK5L7tiMAYU5bl4eHhdJNNN2w8LOtqv90VhXZWj+MYfbfbb4xaNqY0xtR1nUN0ZVUUllMWER6C1loEAAVRlFHW6EKDM4pA2o0vjcph0Jge3Dk5Ozur6vLD939gnHvrrTfLpmyH9Pbbn3n3vfcRiVBdri8FoSgaUS4kZIRpkzANwZiTQkBU1lpjVWGstUYgd2P0nq0SQ+Rqw8qhJgVTDqgk5syC2kBiALmRhGTJkFNKxqEiUkqRCKJoUtPFViPtdru6Kl577TUAfO/d94cQ3/rk259e3oPMCWBMwkQYcbvZM7MxJqKfcgTX211KydrCxxxjHMdRgIvCIuLTJ8/Pzy61tpwl5mSLMguGxERERpPSV9drrbVCqptydXSIpNs+7PtucXAYE+fMGSaYoRPJIcWiXlpN/W693+/D2BKCpmLfBmNc26eX7921Zt+fXwy9zyRZCLU6uX2a+j4E33fDvKr37eMXz89dWe2HQRlb2xKIdu3w+uuf0EgPry52603w3ijNKczEhqzGIaCBQg+z5ex8u724vMxMIURElXUOYj748PGrr94VUBnw9u273j9KjMFHP7ZlWTaVLctCOBilEdG5MkaPirS2KYXBZ2OM1kaEtZr0N0RKjT4qosQJkLQxSilMKcbox5hzJq1izECaIWWRKYkFABBrzpE/Jsj2fowxKm211jkLkALg4BMRFYUty9rocRgGQERi5iQQSVkBIUFjibKUpQYkbTFnQeLdfkTE6JPEWBQFgMosJCpEQWCGICKKQKaaxKyVylkUISnDOTPzBEL2flQKp/wAZh7HkZmtKfoQtNYsjIgCmBlC5syARD7F0acxpOSgKOuqqoioD5lFcs4hZSUAhPlGfcxTAcYpRJJZIShNOWEIgVlIKa11lgwCSjBkBhRkVCiIShCNmdzVICJaqfzxjnaaSPMN/ffm3gMfS7Gm+EZgyYm11siTcgLzZMOdHtHpZkGUcwah6YtFxBt4CkDO7L3PglNqqQgC4lTXBVhrgowAoJTKzDllY0w/eGYgwslKBUoISSmFwjfrXBFmhpyEBTNrQILpd5BClMxE5Jyplg3nOLQdkbLG5RCHrreFm5X19fW1Frk6P7NGl6V7+f4dFNhsHxsd7p7e8V0/dtcv3z2sbHzx9OGdO3fuHDch6+fnmxRjXdmT41kMfVk2koMfw+HyVqOV9zT0oRsz2vKjR88jiUi2RpnCVHVxclBLL+364u5BGbUJIShrRi/P1i1lmq0OP/jOV42m26cnWoa6mW/Wlz4Mfdcaped1Q6Tr0nEOkMEavHzx9Gg5+7HPfR5yhIwzZ7/+5X/03vceXlxc/vzP/7wx5upyDQAnJyf37t37u3/37242m+V88f67772oyrKsf+GP/2Nf+f3fbwPeni0PDg6uNtGnWFiz64d922WwAEJT3AIigWKJIKg5RRQwWq3X65PDA5Gc43B5fr5YLCAFQCxds9ltX7p3T0Sur685e2eMysRArnDdMGiibuinqhBjbJqKiYTT9DkTkcPDwyyslLp9+zYAPH36FCSXZXlwcFCVjoBzEk2otS4LlzPeOX1pt726vDpbr7fWmE+8+an7d2+//urLiPj0+dnjJy+u1usxBuz79XZXlT4Hv1gsTg6XKSXft444K5Q0WKTFwYIZurYHoBBS27aurojIGaOUcs5wosBhUuTvdrspIJqIxjEwg1JGcgRC51xVOmcUClujrFJFUWiluq579PQJALz88svawjAMTdO4ghlIlMkMPibvPaeobQk5I8jBcp5j2Gw2k4Ozrubz5erJs6d66F3vP3z0vJkdtn3suq6ZzxAVacUg4zCgKgtdRBh/qJPUpMBkQ8o5MzGVEcT7EP2IOVlDVpuakDGKMloTs3y8TQKBG9KCUoYxI99EcygSNkY4IQAKEJHVWgGD5PXVNed4fHJ669atkPjZsxfvvvvu7Vc/pYi3uy4B7TvvysYoBGsMqf1+rxC01pNLXWub/fi1r33t8PDw1ulJURQxxt1uZ4yZz5dNvdApg+jej1Mz13ZDCOHl05P9fu+qYjafkzKDH88uL0KKPjKD3vWbqmymSayzdhzH9X7bFAUqqutacpyWqZK5KOrl6ujDh4/7vjNFgUpX8wUqVzq4vFp366s8Ds8fP82+l5zfePNN0XSLtC7KP/j6t0zhDJnLq/WnPvXp6zw+efRh6LwzhVF2HUat9WbXJWhb//Tw6CSx2vWdNY2QzZkijLU1pPGjR8/6bp3CW0VhjTHJx6oulFI5R+G8320Wi1mMWfKUlKSUMlnYx6QQQmLG5LRBon3b1lWhlEopJ+QJY6DIcGY/xsmegIokCwBoraf49BhjYhjHMWfJOQveqKJSz8MwqN2ububGuKOjIwDKaUI1oCBkDqREaRDKhbPWGms1ATEnrSGBDMNea+usHYMHDE1TTZLjyDlnQSJCBYDj6LW+EexIlpxDnpDHCUXEGjDGBQkcAyKOIRGi+fgVYxYZ8sRonAx4gDlnBsyTlEFoiCllyYCoVMoyBC+Mg4+9j5MJJ2XJDKgIgEABh0xEZeViyIMfU8ogQESo9STOt4jWFqQhhBRi4hhQG0HWpCZ+EWoSEQby3k9triIKiad+g5lFC8DHiIUbSfMNSIpz7Hufc7aKRCTFaO3kELmJ8lDKENHkT5kmjlkmgwIppeKExYg+Z2FmQdBkpwG4ISRAUErpm5LMAiwwhqgVGUVIClhyjiKkFAHf0B8IbzbZpBG0+aHMm2CSXE2rX6W1Rk39vhXJVhXbcTcMw3K51KQUYV2VpVVl6cahy2Fsqur1l1+5OL98/uzZrYOjxazQIJr5/MkjSqFZnKSMVVG1fbfd7i/PzSsP7h6uDoIfL8+fXW82i7L44OHTqipWJ3fMcHm+fd9VB3sfhhgIc1MuVwf33/5Ms/hu8fd+5x/eee2tweZd6LoxreaLtu+udsOHHz48PT2tCpdD6AdfNvPVanV62tV1qQ04VopYIzDAe9/7zkvHR8Dy0XvvfvTheyF2f+Qnf+ylu7dXs5NHjx6PMfR9T1o557797W+/8cYbv/Irv8I5Pn/+/Hvf+952s3711VcvL6+7flTlYnFwHP0Qx7xYLaLnF5fXzWyBSabNPwMJQwZhBuSsU44hjCxRUkwWjdHL+eygqbt+f3SwWiwW/dB+7u1PjOP4g3fevb2YV1UVQjq/jDFxYchSQdrm6AfvEa1z5vr6Ooz93bt3U/SocLO9JgWjj0VRPHr0aDabrVYra1Rd13VZXV5e9u3uaLm4ffs25yQp+5RibM8vnm+uL3k+u3v75JUHr7752suc0ze+8Y33P/jQR5ktD++cHiehIhvftct5bRCRoDS2vb7Y+J3VZjari6IwCAlkOZ8NPm33bU6CJnCaBAiYc1ZEs1mNiPv9PoSQUspZJgG9LRwSzeuVUkqRatvWGeWMPj05HPp2HPurqysAaNu2qmdKW2utKSoi3Q3D6FMUCCmLz5xBkdm3/a3DA85ZUM1WR0Pk/RCa5eHl8/MywHx1/Oz8Im76dswvrp5I1t0YxrQ1tlCGAstiMWe2PrAxdkqTFREisaC1Iv3xJomZYxKfYYrJSSIwZIbEkIy5SWCZijdzntJ/iIA/1sSLSAgBJEtSlkCJLq0yzihgP/YK0Xu/2WyI1OHh4fV6++zZC1W+4JyNwrqcAZrMwAiS8ziOGhiykILD5Wz6H1YQFcJyPqucHfsWEQ9XC6NdEri6uogZYshjDMroSQmiNIC2rq4FYfTx+dkLRvDeJ5bNdq9N4WPWKkwnl1JqNputr7f7rl015RtvvEac9/tu1/YZ+exq2+27WWWWy1UUINdcbHZREHKnBIgj98O92yent1/yY392cVnUVWSxVdDOXpyvnXPM27JezO+sAvB6HA5cg7YY+kgMHdv1bktKb59el0XtqgM/JkPOGk3ahxw0maZqCms2253aT1iwBEDe+7Ksy7pu2xZAX15dH6zq0hgiCiH0fSKComkm4Y9YzADTt+Do6EhrzZKs1agIOU8H8dRmEgNATgzZ+34cQShyFpFxDKRAaUVEWd2sLeu6FJGyaqqqsbYYQ+y6gXseuq7vR8bN0WpZls5pU5eFIkQWbbVRFgCaygw+TO1giGPhdFEdtG3rvZLRD8NAyhRFEUPOCYgwRTAkOKE0EZTSJJASh5SdwykoURGkFOqm0lYzghC6yjU4Tyxt205BNDAxCgSiAIuwCDP4lAEVoPjoJUSlTBZgUSKShEIKAJmIhFBlk4Un9Kq1og0NAwafUkraGkTKOafISIlIA0BOEREBGBgmHzYzIwoiYIYfyq+01lWhJ8kYM08rXQCSj7vaqYGdol611lbRpLMj+v8Hd3w8zc5TzztFgCEpjZQSxRSne0IGucmUhQxCOBF2FBBKioG0kkydH1hEKRWTL8syc/Qhas1aKcyZma21SX6o/MKp0546kJvbW4zDMOQcyRhUlIXX5+e3bh0v5s311eVus543zXLe9G3nu/bk6Oj6+poIIafbx8eSopJ09mKXIjCTH/l62NvsPvP6g1/4mT8+juOQ6J3336sXt4hw243ff/fJYnl4/+7oLGu9ePromR/s0eFh13VP3/ngqgs+JFtiUc76brhe53b94unTrXzu1snR0U987lP7MdqT+TtPLrNS1uq33v7U9vEHwti3u9EPi7pqlitlzV2Wg8Nbh8cHGZI2YK05PjkEAGZ5443X/tO/8p+k6O+cnvzSL/13nr94fHJ8++237r711qfe/NRb5Usvn333O1/5ylc+/elP37t37/LiTCn1uc985m/+jb/xjW98YzabAamiql9cXf3o4kA4WSV+bGPwrlmMGRFRCSAwCjIRT7ZvAc0Qi8JqQwcnt9ZXV7PmwBI6Z0vdHC1mi1kZCy3dfn95efdohYgGYqERlxUqI6R7n8eU2ftCq5CCj7GqKmbed4PCm8D96+vroiy3261Sqq5rrWkcR+/HF2fPOMVX77/0yoOXfN8/+ehRWbmDhRuHnZLw6v27q8VCEVw8fd5eXo599+jRI2vtnVvHy8NbIfPldptFeTU7OTpEls16vd91TsNiNiMFq9V89J6zR9DDMLS9R0RrTRjHGGPOUSkMo9d6+jTmEAIRFUWVUgopTr0CAMiMfe8JxY/dqHAc9gpeEslTsrQxZr5YVU0tSP1E3wTZ937f9plBUGdBU9alK7bra1FWFbOrTdd66bz4830WrorFd977yBam7ft2jCzGByBlitKOvnXOxugPj05WR7cfPX6hEMhYEVY06SEQaaqmHIMXQBFMLCyUBDlCZBaEKCEwGRM1KSTQSESUc5yOBYAweRG1UkSkp4twTsyQIOeoqDRIYq1ViEXhjDEpZRFpmub09FQbVRRWgJLkWV09PztH0kqpOAxlYY+OVlXhkARZ5pZ8U7z55psA4P2gEMqb9F3w+67b75QpirIkojGGYRiYmZR68uxFXdecRrVaDsGnlFBpkTCfz/uQCmWm/VdRFCF4a83B0eF+femjjzFabQR1ZgxR2u1w+OBO222rqmLhx4+fbMfk5otby5pTmrs51KFwZUpsjLNEF9fXCfDJd74vSgPQZtutVqvr9W52e/76y693x0NTL9ebveDY9n7vOUGBoFjYJ3BGVbXimKrCHCwPZ0119eK867rD5UJrQODLy8vZrC4rF5M6WC232307DMwooHLOzhUAMI5DzHlW1EVRjOPotOq7URuar1aX67Var8uydM6NmEQwxkxEShljcMqXKFwFkEKI3nthJGOJlLVWgLSeuDdc1/UUdSGCggiA/dBeXa2v1ruptRp6v1rZoqgAaBxHZy0qygg6Q9+PKYWyLIWQmce+H7oOlRIMMfQpZU1AhIoAAXIWpRQwxpisJueM0YQIVhOQTnwD57baWGsJxfsQQjBG5RxTAkRHRLawOpg85snKOKVJQI4558CARJwh5JABQ8wiaBxorZlQRBLHkPhGpaxIa1FK5Y/B5IWxVulgg/c+AWkNKaXgk/deKRZBItKALBJSICJSSlCsVkqpmKPV5oe7XuccM++nejzVQ5lUSjcWo8KZlIOIFEVRWsPMKXoA/CEWzBhzYyQRIcoE05pZiqJUSuUupyzW6t6PLJxlGmilnCcxtlhFkBkJWSSEIAAZMKXESIiikZQAi+ScFIpFLciCLPnmGJnAEUYpY8wEiq7rkm8COH1RFE3TXJ1fFM7cOjr2Q280HSxXcb7Ybbda4WJe5RCNVi/fuz323TvvvFMuDkFUznh2tXtw6+CVV18JIX34wUNrrdjZ9br1OB8ju2rVdfzeB0/Xz77ZLI+Wq1uJ84ur7fPLnVIqZD6+d/+el/efXFYHtwQNk8Rsrnf5y1//7h/9yT/0xmuvvTh79vDp89dvLz48b9cXz7nbzRUdHa5QJAy9Wdaz5XIIsW6Wt++tiqLohlGBUoZO79wTgKfPL37wwUeC/KM/9vkf/dHPnd45TShnZ2fBP3377U+XiwUQHh4ejsF/4xvfEJHgB9/32+126Pu7d+9a4zbr7b/3f/z3f+t3n/yDb394fXHRLE+7lMuqaseQMjhFInkSHIiIoBJAmbjRqJQIt9329umRH7o2dMXhQQ7D9flzv3fL+SIJ314tN5uN9944pZVaVc4Uxa73mXKQiJDDED3zMAx37txRSk2jRQYSkdlsdnLr1nvvvadUdXZ2No59jPHWyfFisZCc9vv9+++/35TlZnu93sjnPn3/aLG4fTwvTLFdb4a264ahizH44WS5unPvrnZ633da06oxRVkOQzn2rVF6VlcqR7GKCDRRt98QauXcGP16vWUwWrmL6+u6tEqpCYU9Vd9xHCcVzzAMfT8qoyfmcz+OOefoQ2H0cjGrSmsUdiQpJWepLGfWWhZxzMxwdnHV9t1+12YqRSRmRqW1LYAUIsfsRblHzy9uvAQ7v2t70korUwAC6P2mG3PUxgEbUxSFm/V928xWSDH1yTkXvU8hO1cFGDRqdSP1YIQsGVIQ0mZiKGTBmCUmEGHKIMA+g58YO5q0Jj0pMFg+bnoFAFDfaEZIEU3zbY2ThpMUKkEA5AklC722rmmapc9jiBfnFzHljDREXh6dFEWx2+0AoKkLhVI7XZeWU1RWOeIesyja7/dIMmsaRGnb1thi1lQpMbMQkrEKVMFww79D5VLizOJDROKQoi2qCnH02WfJCRlEk9Fah7HPmTIjAHRd9/DhQ6sNomawLKqer/rO+67/YL8VRcVsUc3KMfG+bePoR62XhR2IEvqyLA4OloujoxeXF4Hho0dPfEi3bt0+XB3GmJ+++9Baa1xBkJGjVmKdNsb0Y+7acblcFk4pSEeHM99tFA3tPrbba6P01NI449brq4ODg9XBTBnCcRzDMPiRRbrBp8RLMFMLBYAfm+wzM/f9OI69UXq5mh8eHvZ9r3J2SilSicEPg+Q4BTblnBHUeredOihripATImZmJA2SEYUUE5HSGMPoRUII3scsGGPat32O3trCuLqqqvlMaW04IzACo9bWKIKUk+fMsPNdM6+tsTlLVTY554v9VUwRgZSmqrCJUUSM0pNASYEAkEINAMCJmaYnMaQ0jmM2mUC0oZxzSsJsACjG6GMIIaXIE+RAKYVKowBkQUwswMxDTCHFzAiklKLEMgbPg2dygjBFljDgZJCd5E43PgLESQJirdaa2jEREaEGCZOoDRn5hmHAKqI2xhiTUjLOaq2HyJkjsyjU0+w9paQ0geC0CZ6e+ClniojKspiGzIYwf/yaVrxT33mDalBqaqwVTYxIRJSitEJ1N4xTjLNIVpoQdYxRhJXSRNZgNrrIDGOISqkEOLXJ683OFcYZzUKaiHPUBCEE0noKpQWmCWuMoPIENEwJUcqyRK04cMqZcpKUp/vBMAw5xsPF4ayprq6uXn75frvdldZFAE18dXE+n9XLWfV8tz1YHaecq7q43m3/0Zd/7/5JuTl/cnx6696te2+89YkRq8t1u283mXDddj/y4DSDub7YnF90mVU/hnsv3TlezK7Wa8Ak4KPfo1acgBGU1gOUz6/2q0X90u3j0tDvf/u9uwcnwDuOgzBXVlfWPH708O2337jab+O+jzqL0mCUYi0iCeXkzkuVc8+eX17vui6EYlbODhZjSrODk698/Z2FXSPSV/7v//l21/7sz/2xo8OTN99886OPPvrWN79+cnh4/6WXXnvttcViUbjivfc/+HN/7s/9+f/5v/+/+Nf+lb/+W1//3e/9wMzm3ovSLuTEQDht5llYURZkYc2gU44smUAk6/1+7xTlnF48e6pBnKJ5eXK4WAx9q0AWdbU4PV2vX6ScAdlprWW0RmsfEHj0vXHlwcFB3/fb7d6V5X6/jTkZyK+//npK6fT01BiXcz49PTk/Pyei9Xo99l0c+jD2q/k8jP2tW7e63eXxg1dLV11fb9rd5vTo9OWX7gunh+//QCvCnFJIhLmsHQ6xba8BKoVEgCBpsVgYhednL+qqERFBaPe7KGiM6YbEUZRSMcbJgx9jVHVjrZ7cyZvNBgCUMpAikVbGuLJERIlp3tTG6PX1ZlYWt27d0gpS9MYY74euH1ERKh5Dt+/6YRhAIyrtYw7JE46C0zCHUKAoChDZbLcANIyBEcpKtV1rC0NGZc7drlemErb9ZndwcKAwDuOuaRpE6rpuuVy2+zFDVkoBIqfMHKfZIzOTTkgKSANQiDklBgCNGGJKmVMimzgZ5YxilVVWk09guvYCACVIxCICOWhSRqExpdXKaaO1JhY/ppQikkVKQGoMnoiqspnPNQu0o+98SwKHq+V+v0fhHP2sqUHYj23lLEoag5/V1ZYFkA1ppxUoqutaKbPbd6vlfN8OMeeUpiQ7QBRjbOEqAa5c0w691Woy5HAGzlCWZdv5oigmzfBUewKDMabUjdZ6HEPX77WptTLLxVwrbnfitCqaejuMSUsCs93uy8J677uUh/0OOSuAq8365PRWVdVquz85Odm343y+6PpRaz3Ter+96oaBQcDaGHJVLvGoKsrQdn4cR7SKMHFsmxpybAu3Kkyx22xBIPmUtJmy27ZbVoaKori4uOj7IEzWOGOttialtNvtiqKoqrLrumEYqsJOIere+yePn9176c5kk+v7vijctCmMiUXCzbkJCgitdfWsWcxXPuWUUj94EZk1xRQlnXMkgpSCiAhMC1ZBxLKwiMrawjknDH5sCdThcuWsrqvaKLKIwXsR1Mq0Q0ug6mpmTQGKLq/ONYGqbM6YomTMOcaE3NTzKf3KKNRKi0jykTmJE9LaGDONXpk55zQpwpRCAEg5GDJaWwAyGolo6JPWGkiRgECe6rFGwhSJ1JgiZ0ZlUJEEiTEkvEEn/bCkTfVPhKZxa84xRo4xaqUQhUhP+B9r7fTwpshJ2FobYmLmsijJKu9BK1KKmqaZ5MpFUSCofhxSSkVZ+DFMBX66eQjccIAnERYR5ZxyztaYoq6JaBxHFJDMQjfV96Z0s1hrY0rej64sy7L0MbTtSEohKuOsfByBaa1VSsHYa1eMH6+lM8sE50DElFIYvcJcl6XRFHMWkaKqJhW9AjUlayhSRusQwnTEnV9dOufquiStur5XqJuyyjkKc2HtMAxbgrIsN1fXdV3vtpvN9SWnaI26e/vk7bffNpeXF+frbhwRa1vQ/GB2597hFz73xlf/4GsMWTQMfd+sZkPYC2qfBsVU1wttiw8ed8/Ptw8ePNhs+kdPn4Ts7by+99KtJ2dXoCrUKmVWZLdBfvDRU/Hbg0pee+XBF+iTV0G98uobXeethJ/+s7/4/N2vvPO97/zKf++fns1mI4NFG1M0wkVd5MRKmZfuP/jkW5/+zre/cXxy+oUvfnFxeEDO7PZDVa9+5Atf/Mt/6X9nrTs8OX7rU58Wxi9/+cuk4DNvf+rk+PBLv/7rfhw/85nPAMDZi7Ojo6Pf+73f+9/8xX/9X9iGn/gTv/TaZz/3a3/vdx5fXFcHJ0VVQ/AgN5c/EWEBZEjCWrAKKacYCgtWQ1SiwZSmnM1KicGUy+eXGyJYLmaM2IOocokIXd+XxkTg7X63aXvJ0RnDmYGlKgo6WA5DN6/cYrEYA3z06BkRnJ7cOjk6kJwvLy9TPwwxmfl8uTyAeTP0+6Zw83vHq8W83+0KVYXelxq/8CNvLJty1uDZ2eXpqdHWIKqUAVUpoCL7vBu19aawBRVAYDRprW+frgAwZXFF040X7a6zZQMkbT9UZc059MED6sz4bLMDVILKlSsf9DiOpTEpRFGyXCzGsScAjNGPI2d1eHjsfdeHqDVxRsvUR9z2jErVTb3vdiGWgMU+YeinrSRZayZkQs7ZWjsGL5lJYd93pXPMycjApYgEFOvIkkaQjDRoFXOI5KwrqPdxvdkJKudA2ay7SCKMGDNnICINBAysUIUYAeJ0rChtc85kDU52osxIDKwgYRRQWQCQctZEU46rRiSc0tWLDFBaJZwkBlODAY2YjAIU9P0QQqirmUEsNUNFoIsQQlNZlaSUzbzU9UvLp89fVM2sKI1ITBmTsCZh8W3XI9NRWRitrCUh7BL4OJQa+tD70GVR2hW+D7u+V2RE2wpBBAcflHJMZkxJYi7LClK33241kmKFAgpQGxtjrIS6AIElxbRarHp/zqkti2ZeiSE6euOVwmhFcHCwbHebp0+fnl2IYz5YzpeL0hI4S1bTbrfbXZ5bV8IwQsoPHjzoQxBEcJab4nyzJldaVypTUt+HnAqSaq5U7LDf1jhXShmqY8iklssCl8tlqbU1KoR01e6sLUjX65FzJyn1TbUU7AbfFlZQPDESZKOAk3/y5AkiNk2za4dpnqRt5dDsel/VCwBIKfksQ7tfzRdZZLvbL5fLZT0XkeVy2XVdDpHDWCjd5UB5bNt2s1FVVYmID7H3HWfQ1mXBvo/DEODj1qchpy354Gtj53VDRNq4LNzuuxC8cGJORuHIoY/DTDVaQc5xtShn82UW6Id4ebXbbrZ9CMYWQ/SoJGNUSjMKg1jjctbJ53EYnTNESpkihFErnRkIydiCGY0pC6MRRSnI4rWTptA5CUPOoL1SIQohiIgCHMexcHXMMvhRW4fAWiEolVKKUxKYCBMJ6YCUjfOMGBFRg2QMSaEYrVvQHANxqq0qAYIfIMSFtggynzWjc6P3CqAsjQ8jD+1c5lq5rJQPWTm7PF61Q39+/kIpEpnyfimBzmiyGAg6p9ZqLDQ4VKUhp7WaAE/W+pymCJIYoyLSCMn7AdBYZ7RWRCQShwFjNkDCOnFmz8YYY5UmQMlxGAVAUrTGFDb5lAE4QYg5K63HGIwxSdRVN5aVK4yFDKi0nRWp64d+NEiaFJAf4sCSbDkzqHSmlFK/89YWM7d64fsQ0sKZGFpLwpn9kBEbUOg5FpWpg6lAFZR+5KXVz3zxAcT53/rNr/3m1y+wWl6PugjlN957UZX2tfv3QrfpLs/GVGOlQkJrajDmxdX+9aMHlFCVpjlePu+6k1unB0e33nnne3aX791bLM3Y9sE1tScJUfpcPtqbNarS0SMedOhm4FfmfOH93/q1X/u1//j60UdP2m5zebG9f3ioh90lDTkmkFib+RAiSlotiz/+c1/87re+en7x5OT0dlnNtCkS7MiMV9uH7Tj+2Gfe+sM/9eNjSNtxd3T/wTjIl37nG0eL+o23PvOJ1+594Yuf++pX/6DrhqvnmxLn9rP/xOPWfesv/5Wf+OLn/vw/+Ud/91vf+42vfDvaedkshqgNRpV8kVOksmUzZKd/KM+LMe73nSLGnAdnxqG7fXpkC3d1eV4Xrhv6vu9111ujvfcp87Slc84VPp0N18pW1lgfQvThxuim9TiOPqLWKqfwwQcfXJ6/sFqXZfng/v0p4ZaAV8ujsW21ksPVPMdwfO+etXYY+rIotNb9ODZ1Udd1Vbqqnill+mHc7jsfuWmqqqqmDCClUBFVriCC3a4dxwCkzq+uxqFD4bHvYsyFNTH4nCMAMCQkPQxDZpgC2adrbN8mFIDMZWFTSsMwHDVlZoiDJyJrrHFOoWTM683uertBMHVTdl3XdoMra2so7bsfXrcRUaEoUkSUUlBIgEJEi1nTNI33PqWkyTjnACiGrJQOISRhW5YTPKWazRJAjMICXT+mlEgrUMQiSXjaG00zqylFfbpc0w1iLDJzpUkEE4AkFkmJkiY16aW11qIEEZljzqQ1IaJWKuccQraoyE2Jd0KopjSlDLKsZxOJlojquta1yjmP/ZBj6vteW/uZt99KKbmyGkMchs5ai2IkS1EURiHqWkTGcRxjqKpqNpvRMA67/aQzSkkmqrS1N8FVUzvMApxylJvU+77vJxGvq8phGArrgOje6SkRffD86dgFbTXHpCG/cv/e9eV5DOPjhx++9uqD09M7CoVArq4v9ptNWRYPHjTAaT5zx0fz06MDo/Dy/ExRHROcXa2JrDP2+dNn+8ErV2hrdleZ1ERypXEctdYTQmrqOZbL5TRXiDEKgCtMyOHFxSVyTklXVTOmzIAiELN0XZdCiD6UzpRlySBaKTIaSIfEAOBc4b3fte1isQBUMWdBzCKcEQhzzl03NGpmXbnvB0R0RYWkQanzs7PIrLU2xsQMu77dbrfe+xizKksfYkppCDGGzCAJMGcWQWOttRYA2rbv+x4ArLVlXSrjvPd934tIij6llGNcHSxiltlsHmLuuuHo6CClYGazfZ/Pzi422z2ArmdN3O1zzszph0hEJPnhmQMkOUbvGUQmdMoUBjVxCeljrgARWm0ywXTgTF52HyXzNHUPKSVEcs7FFDJDWZaCNB1BIfONHehGagTMmbOIBEZAIIUT+0tYJEbPJIAiOXfdmJTSBGhURsicJCcBAAXGGKNEETIbxSqDtmXpM1/v9v3AzphZXXg/AIIS8TlKSgJJGVZGFJKeGAnIk6SZCLKIUsrQTReLiNmHLKy1jikFPyqlSnuzX7DaVBUmAc0GAJVSClHTDTN40mBPCZFJIDNrrW1RxMzTgTPlYSnA6Sm7evbs5OjWsmoimbEfJGcGBGAhTJzBKFHUtj1ImCm1nB3MDeyur5wUpTZ9CMOQjKaGIefUVPXhagZxHHbXn/nkJzPgN7/3+AtvHfxTv/zzx/ef/p2//43r/fi8k9Xrdy63g0GVE2pTSszby/N+GGRWVFUJNHbj0I4cY0yZr3f7wCCSBdUwjuvNzhgTY2dzbIpm43cRM4AMfeg3g+G+31wfL+fNa6//u/+nf/M3/uu/1RhCjAer+v/76//V//DP//NlisvnF/u+I6UMLbCa79pu08mP/ZFf+ENf//63v//4L/y5nx2HdtjmGS4abq4/vPzy7737hR/9/K3DW+3Qf/nv/MbXv/q1n/6ZXzhYfP7Dd77z9NmHf+pP/onf/K0vrdfbhx99dH5xdXb57D7tnRN3cPq3v/rub733/Bd/8R/7n3z2U1/69d9574N3V4eniWwHRZTJDeZDt9ExRpZslJ6mH9YWkpNzBkC2u1Yp1W73pBV3XgS0NVeXV8vl0joVfCLSKDklbur5lKkkKW+3W5FMRAjAISAV053aGWWU1krNZ7VSiJwPDpfb9fXF8+fWYNlUHIZ53awOjy6vNxdnz06OVykM7W6d4zhrKlcUzCmEEEIiBRbJoSFtkbK1ti5KQJbMXdeNw75rh5Dy0A6FNQIgqMuyTCxnF5dWG9KKmRNnZFZEVhtB2G3aKQDrcHWAiM/PXiiknLPv9qvVCoHHGDSBMboq3Xw+H5NnNqgoMfsoicERKmOIQESA0xR2DsBEShNmQDM9bDkbhVVhC6tTSgCslOnHkEG0swyUgkdtCDExaOOUST57EPLB55wVQEof+wtJIyIgASInFkEGyCnnJMwcQtIavPA0pmPAMSQALqy1pAggppwFCYSIFHJOgog5ptJpIo0I2jptjTDGHJwrbTlwhizc9h0iFkWROI9+LF2RU/Bje/v0NPgUfP/2W298+OFHtTNOoTHGaJScXGFTDCGEKdKSEUgZpVRg0XpATFrZxCmkLIKScgTRSF1Ok+1qSu6d1pwpReY8n899PxRFUdf15nr9/sMPP/OZz/zoZ9766le/aq0trdntdmlMs9IkBZtxZzRI9k9fPNtcXV9dXQrkxWJx+86BVtg0UBb5YGWM1u0OrC33e79sqpBJZUbSKeWYk1POVYVSuh88Ihqj45TwwLyYz0FkGLrD4yOt7eHR0bNnzzPIvvVDuy/Lsqq0yjnE1I0doe7H6fqlQuh2u2xQrFGLZqb0MuasjEFQALBcNVkgM6ecIEJRaGbsfZjUOsoW+3aYzerzy0tEXC0X17uu9LloFqZsnHP7Xffs7JkgVFVV2jLtW9IuifQhx5jzjWhAYmIAEiQf06TRBVQhZiRu23a/309rGk0AAMYordR6szs8WGbBeVMj6c12rxVeXl7bcj65pwY/poxKKWONMWbyk042VuYUgSer7GTnm2oDESqUyShFQEKIfAMJUEqRgpyzcw5Qp5RDGlNKkrMisooCojNGIBtlssB0jfPeJ3T/bT8uKRJguanBKCIJQBNqAgFMnDKA0ZPbhqxWAOxTTDkjUhROkLNwTB6FIDMipNw1czf4PieZzwsWibE7Plr0HaUUUuKCQRAz6CiQOUyIoymiY9r7Tr5nJJhMokqpsijGzChcOgejTzFAJrJWISkQUoiRFSgkijl5HxVS0giZRfLUKxtrUCsdQosoiMoY9jdxHzmzcxpRTbunW8uD2LZjSKvF8qCZD8Pg/ZAlsZJ932ljPOQAnJhDt4uKlk0BTWOtzimPflAsYwiuYADoh9YZ1EavDo7ee/hke331uc9+pjTdrZM7P/kjd+dW/fW/+Wucdbvbn62rBw9eefH06ZA4Dv36/PzuK6+Vs/nZ1WV1e75vR890td6Krsqi6voxCxujxiQ+5dlsrjZb37fJj6Uy+5zmZVM5vHh6eb0mlupsKDbvXL7xE798740vqLh99vA7WsWLPv3m177zh//oT1WhUrgeg8/RgqLFsg4pppz/wl/4n77/7ncR3J2jZbe5dtZePTn/wbfe/cd//icLVQz7cHFxVZnqRz79I/1u//57P0hj+6u/+qss2Tlz+/at66utK+rj09unn3o1QFonMLde3Qzjf/pX/8sfe/PBr/6TP/30o0//rS/9xt6r4vhejhA55twjJW2s5oTGGFBYWFcWLqdpgppDzL0PCWjbDou51tqs970kGENULN5H1JMigqwxGZQPQ1mW4zgiymxV+2EEQCLSBJGlrEvmXFX14XL14vnTxWJhEF5/+cH52bOx3R6vlk5BXbnB++dn55v1mhQ0pVE4xexZVxjv/ejbYQyISmlbz8qDg4MQfOkKa230wzAMbNThYna4WISY2j74LCEDaffi8mq7646XjQ9Zax2z5HEwhFnEWD2GdP/e3SfPnmtS19fXdVGWldvv9kdHRyGMGWAYfIyhqYoiS0gyBBERU9Y+pk07GFfauupDEO+NUgoRgJXSVhskCwCSk9HGTNk3KRKRVoCIThmf88dRRZIZGEmUDQkAoRuHRNsYY0ycUvYxp5Q0sIgQkbV2ysjMOaeUblZBilKMMabpJxkkMzjnSm2RiCWTKCYFpHOOKXpOWWlyzji0k1wji1SFA0V5wqUpwyhZZPAjknb2pr0ry7IsS2Y+Kkvv/aIuu8Jur87X6/W9lx4cn96GHGdNyVkzs7XK2rIsy8vzs4xKWZMEovd+s0GlBZVWRpuchZHZoAKEfhhjTsaY/egBQBNNjVRZQlEUAFCWlSElKTvn9vs9EIYQnjx58rm37//4Z988Pz/v+/7+7UNF5L2XlDeXTx4//IHfr11hCqe/8KOfLcsyhHBwUBTWEEoOw363LotCkwAhYsy5u3fvlYv1dv/sbFarTdsmH30qAQhQZdTOqXEcjS04R5+SdS6EkLPs2w0LXG83Rrvgs2cFkS2oy+vd4MeuG6xzWk87TfJjCsM4q6vjk9PDw8PRt4hYVnNE7McA2sVx3O3axWIxDEPIH2PbUaZJMjOeX+/HhCmlbrisqsqUtSvrdTvG9X673TKz0W7TrW9WlZWklAbvAcBoRxqBZfQhZpm8TxzThPX0/bhv+9LwtDp1zhGpCcrWNM3Qt10/FsXSx5xlLKzZew/AEoOxtiiKXbcZAxvnbOGUmirN5KxhmQjzAEhSV3VVFW3bxhiBhYxC4Bi90QXesOUFWEB9HOgYEzmaorXopoyJNVqyDCGWha3q2fVmRwTHhwfr9dr3PBmepgKMpKfNbAZhlpwmRgWg0kyCAs5oYWbJbCAK5xwTZ7Q2I4DiDDCpvgVBAZAo24BAzsLG6nFqxLUSCYeLGrgUyQDEgCnLEOIwhijktJrSbT5m9d4ItJAz58w5W6VVWRCAcw6IhpE5JuBECkujgWUQFhbURibHNlHOKJA1EnOaxmCGFCAmgTBx2n2YFDDjOBJpY4wIpsQMmVMWlbz3BFjXtTGq9R2CDPudBSSism5i5q4bLtbXhsuiqDim3a4d+0EhgsST0/Kzn3rzd37r74Sh//mf/alu3777/Xeag9PLNj+6GJ+efe8zb7z6mZePn336wd//2jdDv3h6sQ10efHiultfzOvy9fu3Fovi6dV5aWw/xAR5iGCMUUXZ73pX1gw0jr2rZyHz06dPkx9vH5+E0TN7myP70TaH5fywB1ocnSrlnr+4KA9P7t+97fcXl6N//ZW7P/2zP/X3fuc3mvfPfvKV2/Zo8ejRI++9JDZorCIBJqQP3/3uv/pr/+9/4y/+rx+8dLrfbR5ffvif/bX/4q2X7//3/9SfVlB85Xe/8e3vv/v5H/3x5eLgyftPbt89/mM/+yf+7X/rX99sL3/u536hmR0/f/4Rok710TZgFKAcqsKag6PvfPD0nf/w/V/6uZ/7F/7Hf+of/d7D//q3/75qFuSqfchSzLXWOqTMzEapG1Az4xBj4SwoikzlbN73Pbd96VxRFJUtdrtdUVWkzL5tlbWr1WG8Xu/2fUqpcJVSShEYpcXonPNstchTPI8PhbMv3bnLOa7Xa+BkSerCHsxnaladHh1y9nVRXOxHQbVcHTKAMual2/cOVk1VuxS9MWo+b46OirKqkoAIFoVZNsU00UJGEmNVZQ0CUEx8dGQZqPMJyQDI0O5jDJWrrHOolOkMadOPgZSGfXt5eblaLCcdo4hsN3tjTNePy9W8qOvIMnofGZWolGQ/7ImoqqqUckyp1lxUdei60Y8pBa211cZZo7VWCDn6JNkpYkkGlS5t4RwRxehzziCYYyiszqL27eAzAKoxhszS++CvN6i1iPTdiIjMwJgndVUWmWQU6cbWrKwxxhgAnBh/OTNAFkUYM6lsNSltFZGghJgRICTmFI1oY4wgaDKEWkNOKXXdiJa4djIx1LSLyTPzTa6k95OB2FqrQUIOKQx1aXrJx4fLtz7x2sXV9WpeGEOZMio3DWattUPXDp3EmIdxjDEKUo4JSCUWrW3gSFFpTaRUEZNMEQqZmXkiJOaclUrWslaWY/KQmrquqmqxWPih77ru4uLs/DEfHR2dHi6ejm2hhCDXTeGc8+2t3W7H2RvSYxpjGOazSpGJPUuIKFEr8EMkBk2qbdujg7m1tuuurMEHD46LshZFu93uowvZ7nYheZ2FhawtjDEvXlyvlvOcM4u8ODtDrdfbVhmdOQoqsoXPsfNx6AfvAymNyoaUpx2BUQiktXVV03TDoHm01o6Rb7ZC7dD3fV3P2iFeXW2nwYNxlpl9GmKM3vvDw0NG61OsqgpNebXpLq73u93u7t27q5M7wzBsNpv9rgMA0qr12+ly5lyJBpUoZg6JU2JrFZHOJIzELDkxACQWa21RGWMM3eQYF1nQuhJRlLZIKCJZiLRRStmi8qEFUk3T2ARZhDmJoDaKgJBoqjdKkb5hGGSYUH3CAjK55IwipZQhRQpQWISmvDaNlHOipMC4Wd0IqMzbkFKIEZk1AgAYTXXpysodHR4Zo7aPLicRViKSjwVLmpTkBMAoWXIKSUSxNqSUkhtVY0o5ocI4YQVBMovWmUCh8OQkmUpniG1TzxExI8aYOIMirZAsYeGctVYgx5C99w6hIrXLk8aMIDPBNJBHIgIBqzQjQE6MMA2WCbB21mmIMSoEBexKZ60NKa63LQHAD0OyEEEQFKXgbyRXOTNO+KzsY0zpRrAGN1hiFhFjTOs7YTSqCBIlUWlUJlDKCEejrFGaBYHAKguZROTyxfP5fGlduVgdzBaw2Wz266uzqzUq89rrn3jve9/+8KPHRNpUi20/dNf76x0fVQTwwXJW/OIv/TFtzbvPN2PMTx8/4RwLp0+W5awu5svZdnO9bXdnKMe3Tl+5e//Ji3Xb7euq2Q9DyBxzDpGHNs/q4s6Dl04PDojTfrudz5bvP3m6uVyPogaB3LWcNyHvx5CsO1pHuPPZPxwRfu+7z1kffenv/h7/4dtf/OJPfPL20X69ST6kcdhcXJJSpXF/+k//yv/+3/7X/1d/8X/5f/mP/oNibtxB/Zf+8v/2EI6Lqvztf/APx5R/+Zd/ud33f/X/8Z/fvX3nT/2pP/ebf/c3v/a1b7z88v39btys+90+tG0LnW1qYxSI36GyYlxaHJT1/K//9u99/d3Vf/eP/+QnX7v7//mvvvStR49jeYR6ro3SrLNINqYwzqJWFoo+9ikzkuo324ODg8CyvtoAwP3792dVRXYMKWmtY0wxg7bobInKO+dCilqTIoo+HCyW49hv1tda6+PD1dC2hnCzvnr88KOycgqJEJ89frKYV6dHByml0Pftdtsl0w++Ko3WhKSz4BhCVVjnHHPy3gOwVogM3nvv89hO/rnpYg0ETMDC0tQVoMqM3dCHGO+dHqPk52dniKV2dsLiKuNIa1R68OPp6WnOcrW+7vvRaE3GCkEGaUevi7KoGh+zD4klVVUFKKMP/bCZbJSXm+0ss9baOCccp9JLINGPoBA4W0OaUBiMBk1ImFP0mNmgjDHHFAxNa0VQSjHq0Pc+pMgQUqIsiNiPg1JGISWIWmsQzsGLH+Emp4aUoh+Oan/YEBMRKBWZYfRspSgKAsiJh+g1EueMAglzCIFAqCis05Sh71tHsqwW1loREVCkwaBh5o+3dDcINme1JRgH3EcvnF5+cHc+X2olaexPjlZt26YYjCbgtLneCKoQgg+IiDeph6g4RhBhQCBUyiiVcwIBcc7FLMMwoLGUMiBP3BgAkAzGqLqsY4zBj1gWhFQ3ZcpBm2bsd08f7z/99tuLpliv1/v9vnLFycnhS3duheBL5y4uLp4/f9q3O6PQGesDakPOqnpRk2g/Zs6QM+x3w+rgyPSDKEoA3dArVLdODpZ3H3zrW9/58OFDm1XK+4OjEwYERdfrrdGUUsrMmBgQfMwWFZBOkgD0MAZty8EnpUzOObGUdeOMLazebzdaU0jctruDWsUkiKC1TpxjlsS03u61Nf3otbJkADN6n7o+jDFYa8+vt+M4GlKb7YVz7ujoaL3eNE3z8Ok5ACwWC9JVViGEoBGstoSitdiydEUJQCklZbKP/aTgVT+UDVtTFIXB1DSN1jql5McROO/b7noTUHi+aC4vr4lAEVqr7927lyXHIfZjiIlBaU0EKbHgtDS/KRU3pMKJ64M5hr7lYRy01gTAkiwqa61Vky8dCWSy3BlSQKS0mqbYoKiuSh9SP4bBRwQpCzv6GMNQlTZlbnebdr/9YayEIOTEN/Q+BTiRv+Am8THmJKgBFedojJpufoCkjGbO3nskJRI1sQESzhlBBBDEqFQdFjF2SlRpXQgphtQ0DYFM4y9EbYwY0AZykJy0MqQUUoYpi04AQCGOIRhnraKcJfqgiZQ2SZKzVBa15Dzp1TWBUXrZ1F03ZJhCsghuXkoAEEAye+99CEJTGD8QYF06BlJKaVLK2OlboLUuynnXdQFYOKVMoc/eDxrJFaYqCmYehpEZjC0NI6KeLeY+Bh+SoBYkIpovl7t997133p2Vul4sv/feB2VRa1Ps9qOyDMqt2zFznL/74ec+9fqbn3htcTRsRlqe3n30+OG4v7p9stxcX148e2jieGCVIG33XUiPlrPSmHS52c6K2s1WMee26wjh7Tdfx+R3lxcHi7oyeFTQMK8ux9S3o1KaYx98b406vXvn8dMXWXRghVn2fV/q+sHLn/r2u+88v/qHr7766t3T28VMb4fzZ8PVycGxj97O6n/5L/47/97/4d/6H/yL/8p/8n/7vx7dfuN6L4+fPdTOXg9Xn/r8J3/lV/6Zv/ZX/59/5p/9kz/xxR//9re/+fd/93eUgqp2WpMrTMq5qKv54jjHMWfOwIKTxgLW/bY4WD65Xv+l/+iv/LGf/EN/5p/7pd/7g6u/9Rv/cL+90kVhiWCSk4hIP3qFMMbQjXk5mw8hXG02ADD42Pf95fpbn3/zDWHe7TZ1WQFgimnXjVFgPp+3wxhCUEojMEt2zmmFrIMfBo1YGH2wWgCnlMNidoyIm82mLorl8kBrg6Ca+fLq4ux6vR36PietF/U4hhfn5znOnDHjmGdNVZZljGGz2ez3+34cnHOlK5RSVhskMKS01k1TO1fEkDf7FpU7Pjro+hAzAGejUFmjldns25zy4GMWCOyHwZO29ayJZ7lpmmkgXBSF1lpIuq6z1mpr0Bhri8IV68GPPotk0AYIh2EQBGttWbr5fO6cIUBAjiNbrTRprSmnQAoLZyAnZFCSUaFSGkevJMUwpOxzlqnfBaAheEQUhKEbi6IwSqcUgfQUZnuzwkK01hptp6ETA40h9WNgZo1KERKqKTIog3zcb2kRFk4xs3BCyQohxZCjYUmSHXHiHKvKWK2YU4xoCECx5Dx9Qtq2zTmWhdUKiUArxTkfHKwmL3VVlzGE23eOu25IcRiGeHa2Xm827TBaUxhXGLsQEQnJx5ByzDkr65Q2MbOgKOtQYhhDCHG6SaAtiAg4oQCRIpSUUvTgEYiwdKapisePHz948BLNZ2fnLzjDJOJTSt29fdsfHOz3e+B8dHBsFNV1fXSweuXBvW6/32632+02xJSZFLn1ZrNXVFhtjCnLpU/pe99///T2S9cX27Pr65Nbt9p+f3TknvUv1pttZJYYhphsNTRNc/fOS7v9Zmi7YeynCe3Ryel3vvf99XY3X6x8SFohx6wKpYwOIdjCTbMETRi9nzqzxLmuZyG3JLEs6qqZ+7iOMSuVzs4v796928wWSunJZT6GGEIYg5d2KIoi54hVZaum7bru6XOlVOuvnHPKmKvtjplFQJsipmTM9LEArS2imj7qANA0TYwxx6S1nj75GskYFZPPAilETjnEKCI5i++7lGNKyTmniVxhrTO7Xeucu9pfgVBkSZEZQCtrrZ5UdAoJUUCAmRMLivwwbRGArVZIYoyxWmmjpnAoFACcqF8ZtUwGPBDhHDBnQe2srgo7eC0ioIxIRs4IzDm1bbu5vFTFkWSeIMRT/UdEBWSUTphJacMmpBhCCokZcqE1M4eUc2ajVWELI1kpRaSYWQEQCIgAkNKEAndO74KAI1vW9fXVDkk3VRnG4IqSmDCDMVS5ko0dELqcPBJARhCtAUEDwBRsqYUIhRAFOeUoqBE1AEpOqBFBSqOJKAlP1KDFvOp8ogxCSoCmQKvpioyTuEtNtJUsIlprBtFIyqrJaiQiQkKAkWNRV1rr3fUuxlxYF5PXpE7cgbV26D1klgw+jyIokK0FFPFj71ypteEUqqLYj+03v/PtwtByMYMMhbFD5AQADFlV69E/vh4VPnVVefnk0aff/lz48Pl4/uiTL91+/6Pu7PLKh5EjlkXx0r0Hl8O+67o4DpBCgXI0M/u+NUlb5yCpEMLV5fm429aGlFTVrBHu753OPrk6ev/x04t9f73vJCUBevriClVJyMB8fLhqCvPsyUcBzb37P/H4yZPz33+S4TEQOOe0UR9utn5oLeHhvP4f/cv/7m9+6df/tb/4H/9zf+ZXP/P2H/cPvvHi/PIn3/xk0zTvPX1y8tLtf+ILn/s//wf/Yd92P/jg+0yB82i0dP16u7u4/+qblabNyB4MVQvSKHmw4gmyBhONWTx467/83e/++u9+/8/+6X/mX/2f/fKXfv2rehzHlFIYx2jMNNEqy9LH1DRNF0JiMUjMHAWKZjZ0/XuPHi1ncwTSrthsNiEEZR0ozSDdOEx8JJRMIrvdRhFJTgYBJYJEqyn6dOv4ZHoYhtEbY0LMuxiebK9jGA9XC2uL2WyWUxDJbe9T8Mum2u32i1mVUmJOPxTy6RAk38grSCtFqLQmwOmr8DFnZpCEWscYQ+K223nvGzuBYoIxjkO2hQOfnHPvf/jR8ckpauWq2hhz9+7dJ0+ejONYFsr3k+LGKNRKKVA0xuBTXC6XdV0SkbUaSfphKEuXcwTWQOi00U4Ka3KOIFkRKACNQEaXZQnAnFIIgVCq0g0+9+PgA6PKoqwxqjA2gyDJOERr6lmzbDctEQXJ8jHre4J3GmNERFh++AQqpUgpTimDILMxxpCOMYYQPICz1hillU5RJCck1IQKBTKn4HMYSmcL51JK2+1WSV0YhZKNNUQkwiJZWDgFP3QoCa07PDqaVtFTQKDWymg19kNdlzHk6+uNUmq5OhRQg4999Ig4psRCZDRoFIQx5SzAWbTWDqjthm4cEFRRFLuUNKEwAwspAoaYBomI2RmrQFHf7svC+HFQBHdvn2q/8SG88+77zlhtqLBOa302nO33e8lpVtXzRcMpG0VV4aw+2LvROm2t3lyvfRhDMn13rZQTUADV9XocRux7+OCD8+12+/13nm7ReR9dUY4pl3XJzH3f73MmkN6PZVlGzkBaGQtC1pVCxMw+JYXQc7LajGk4qA5SSjmG3vv9dl0WTutit9tpQsreGNO1Q0ppHMNkCH711VdjjNMi3MdYlmVR1aRNFqjrerK2xxgRVT1feO/rup4+CdP5zswTfDekiB6IaHqr6TXNXVKIRmmrFQkgZ4485LzdBlsWQ3edUiqKQjKnlKxRAnhyfGu+mHX73cHRqnLF5eU5Ig7DcLXeam1JW6X0FGjMKQvkm1AXUAhZAAGQYSqEhIgoTmtNCpqqtNZKTgCTO5lEOOfMwMxsjEkpOudIaRFAyVqRs2SNQsQx5MIaBohxcMrQrByHchtSnkBJpBFpAhqIiLVGZRIBIMRAYQJ7ZPHDZhodVVUxq2ZEMI4JfVYGOMbMIkSAhM5pa41SElhrHYfRkbOkJUbOqXIFpKy0csYao4wCFpCsJdsh5sSACIoMaY2gEBEIi6KI0d/otFGmOQQnyTGMORFwU5VVWYQUfcpKGauo5ywsqAgRJhdvjDELK9LGGFJqjClM1gml233nikI7m1IiginqFREL0n6MSWVCtNqEELqunzXVGFJZlkWtQGkf4uhjElCkSJtCGwY6XDRV1Tx//nw5K28dvfb48UcCEsFUTXm96yQyM1eVljRa5862a4Xq5X1Qtrx4/uxoZp+eXbpbRyAIRV3WB1cX177t6cUlW1CACHyyaiZR97bro+TDW8sfPHy83V0/a69La+6/+spmszk+PBDHZ88fvlnjayt1d1Z/98PtRcRtyGAKpRXnVBjoNud7SagArH68Tnpxbww+p0RKdTkvylk/9rdffn3o2vcePxxw+dmf+ade+ez1r/2D3/9vvv3sj/7E8b2Xv3BweGt7dXk17L/34dW/8W/+2Y/ef/SP/+JPv/b6W9/42ldundxBkW63R0TSJmEWo0KC7AMlsJgLlOxHxgyqvtxHvbgTxuEv/2d/9bOv3PnFn/spTQCcUlmWiDghU1JKxrmY8zAM1tosqLQtaz0Mg3KFT2HddccHh5u2SwLNYrnZbm2p+3EAwt3QHa0OQLJvOxFhTrXTti52u81yNpcU/dgXzrb7vu2727dv94P/7jvvVIUxAEajkNUa+37MaTxeLepqThJEcBI/5CRTAIVC4pRTSoeHh4JQFiUz+5AQqPdea92PQ0w8jmFMwwwItbq+vBagm9ksyeHh4cXl9XbborWbXeequiiK/X5/9/6D/X7vQ1hvtixwevtOHLeG1GKxuLy8ThJzlpRSWZZOm8rZwtiQgzbUNPVut+3afaX10PVVXUBR1mUhnMuiQEhWae+HnGLZNChZRJxzRHSojY+p7a4AWGvFKGXpMKboTDOfeT9apYwx1pjq+DDGuE8xhzhZG/FjGLhSKox+mj9PPImUktbaOQccP052VZLzFDjQlAWhNGVTuoPtZn18uFrOZ0Vhvffjfp2jT94HlYuqUEgppaKyhSuK0qYUCSUScAopBF0X1jnUGrRWABBjjBFFlFLWGWau6tTM59V8aVxztW0zyphyDJlIg8acMyBlkTGEmFkEJbIAMQsIGWtijFppIvLeh9GfHh06oznEFL21drmo69Ix536/2V1fzGa1c262OJy+/N16kzLs294ac5O1C9hyu99trLUowJKGYRgS0ghKqRBiSsnvBufKMfA0knFl1cd9Wc0F8eJqHXMqlivByCBFUQnjZrs3xlSlS5yMdv0wENF+v9/u3yWtSlcIYdM0lxdnx4cHwMlZjdRIjiw5ZcnRLxbz4IfN9eWt4yMRmO49t27dCiHkHMuyLIpCW1WWZd/3rLUyJoQw+FCWZV3XZVkXxU3CzK7bKeH5fG6MGYYhpjSJIpVSACKMTT1HYBIAlGEYprCFqe5OpVdrvV6vjVV+GLXWRuvdbuecU6hiyKRAKcUihOi9HwZtjMk5X11dhRCCH7XWdT1jZldW3gdFN09cUVpEUESISEgpREacKAuKxFrrnANkq+2049BqomFmEZ6kWNMUOsZorck5ayQkrUhZhKapY05tH4qiiBm2uzblmHIah8GSICSNxBNPUE1IgyQAObNRyseYIgMZV1a+H2PiKR4SSXXdEGOsyyqGkWOSpLL33g9N07DSA3MIYb5cRB+7/d6R8V1rlSIFfTdYo8CQs8QSohd0Wil0VltTd9t9SkzaKK1CEuOUIuNjUAqJHOeEIKx1yiFFVZYlhwgARhsRGYcOFWmSkDiOIwIbrTMLI2ulhphyzoY0kjbWphBD6AGgcGVZV3U9e3F2JiLG2f2+67puwrfMG124MsTIQH2KOSVnLTNcXl4uFoss7EMaU2qHkYytq1IpyDnP6tIatbs6S8O+unU4m892q+XF1XrXj+0YKlcYp5021mj2Y/bx4OAAdPzGux9++v7tq32fu4u2Gza7nXKVCD692Ag51urJVXtwYBZ15RTU1nbtZlG408PbgQWtbt56xX7u09/53vc5pq7r6roex1CV5tOfeouHvUZ/9/bJsiofb4avvfd0F3chqOPj4xSGofOkgFB33TAokDAqQGUIQYTl8npDApmpWRyEx0/OuzGsR6XxEz/9synnL3//o9/+1ncXy/PaKn/1zKXZ6vCTHKv3P7h++f7dP/En/unX7t99+tHDdusVlfP5QWuqtveksgXWkEkwhKz1LGZCLJPf+dQvmiaoxbeePHv///U39M0Y05jJPMoAxloDwMxlWVpri6Ka9OsxZq1BGzd2/fV2Y0gtmnq6lo7e67KIQ+ecQ43Z3xhSC2eUJGfVaj5/6c5dpfHJ42fMrDSiwDAMN8bTJAwpMzx78dya+vjogJMZhqEweHRycDCvQVLOTOSIIGEEoKKomBlYjCtSFhFAVP3oAaCwjpTz+5YFRx+7i8thjNtdG2MWVCJ5ygGacv5CgufDRT/4oigmo+04jj6E5XI1m822263GMAzD0PVlWW+326ZpOAarVGTs+n3mWBQ2p5SjX86b1WoVxjh0bfCJZEBhq7FwqnAFCVvTpBSRBRRMncckQpkK/GyuOp+37WAIVVkUhS3rirnu+z6EUJZl6aqu68btjnEC5uDU+04p1tNGZ/rBFIIzNUDW6cnekJFQQEQAJk6NdGEc+w6Ed7tN9L0zuixLlDyOfVNOXDxnjNnv98DlOI5zaZxzVVVBtil6EU4hXoeNtda4cvrbtbXTuq+q62EcrbWr1UEfIY7JZ+l9ZrEhhZwDIDKSUgBIgjqmMWdB0kIAipxz2hpUWhAlZwJE4XEcgU3tbFMXu801SFS4WMzr1WLOkkRy3+2jT3Xp5vP5bIVD3+/bYRh84UzlCtJkjBPRADAMHTOnxAKV94E52arSGjJ6n7NSNrE8uzwfBu/KIuWURY7urFJKe6h93g+DLzSVVRlj7Pu+H9q6rIhwNpshorZuHELftyFEWxYaJ/oCW4UkYJUiwmU9izFOwBpnbBIWEVIohPWs6bquqqrJLK6U8sOIFSIiIaSQiKgs3fR9n81q7733ngjm8/n071FKZeZpLHFjDVdAREphHnMSIYUT5BFYhLIhrbXuhxYkOzt9DGDacVRVlXNGlmY2K0qbQgTJAADCQ9cXhY2jn3TIfd8jImpjrYVpZQuAAEVhrbEpexKWzPlj3kAYbowxamroaIqakMwJ+OPp8w1qQUQANH8MKgBEQgTMorUpC5tzg9j1YxDB0pIwpiysUAwtye7a3hgLBL3vAMBqCyAZgAgUmj6k/eg7H1MGBmLCrh8UoFFaRfY8ovCsKK3RbG1H1LV7mux5aNq2dRDK0n3+R96OMT756NEwDOh4HK5IqUVznDiXVWGsitE3M5dSemN1b73etH1gALJapondMFqnb8BWShGg92HaGTlDmlAppbW2hkTEx4jMVpNPyRidUQ0xtW3LDNpZQDZF2Y2+7ToAGvw4jiMqbZ2brmUqJ2NUjDGEcbFYQEi2dEXtnMtm9GMMAmCtVRpjjPu2jSw+Z58iAIzbTVG6FP2ycq+/fP+Dd98JPT179OH8+FZOQspkVAwopOq6VCI5epXGO3dOwaD3HVgl1UG72ygN7nD+re//wBvXC4EuONN+7A8Wh1qPU8QuAB8u5jl5iAMJbLdXrlnEHG4dzEcfXzw7W778yu2TW93uAqmaHzaO+ORwvlr55bYtdHjv+fW1h3ZYMxaqXr71+ieePfpoc3mRak+KBFTOCQWUJq0JAT54/KFSysyqXrJpqiGEzXqTQWbNK5Wrh8i7/f50+WqT12TmzeLEj7uvff07V7ePD5rm+mrDDF3XHZ+cfgiQCYxEI4mYGXUSG3MBqJNPWpggRr8NSKGcezK6KkpmRkVTiikiTkGjUzDCdI4j4jT21FoLkLKOQZBotVqtr69zzlqbST9sC4oxjmOvmUffF3pWFur4YBVjVMR923OOTdNM72+Ncs4RoTOqKuZW4+Z6LSqhcF0WIMo5k2Nq25aQSzebdEVaWyLSGkRq+v9R9Se/uqXJmidkZm+7mq/ZzendPfqImzdv1s1OUCQMqkRJhZQDBgwQElkIUaoZE0Aw4D9gACOEKAZMCmVSgERNkBACKQVJFmTWrcwbt4vwiPDm+Ol283Wre1szBmt7ZHIGR37cjx/tfb61XnvN7Hl+D1FKJYQgIk3TrMbKEGutNaRSGLW2KeVxWkIq1rc3TTsNk4TQbzd93+MJMZVt345Lyind331k5qbvjNan40FpXWv1rWmcn+f5cjk9f/5sHsclJQDoui5OKUbZbjtjqXHeW9N4R6CkcilpZRoAUM5VEdSUr6921ppSSsx5nhdjTN/3Oc+55pwzKSolLfOUStXW+7ZZHR2brh24alJt60k4IQ3DsLa/1lqFFGOUypvNZuWfrMfx+l8BYDX9r7jBp+jf9aO0OqXqvPvhD75AyXGZ47I0TeO2vusaqGmaJqfQKBTmaYnGGKGly2yd9s5570uOMSwMAMRAuTKsZk0UBq5caoyxMmpr4rRMeZoWPpzHOdMaqGCt1VaL0pW5VKkCubCyILUKEBCHkEop5L0ANE2jCRExpWQ1KU37/T7HcD6fSg5c8vV+673lWsaFpyUKTsDFGHP74gXUSihTCFYRAFil29ZrrVNK4zgyq1xpmEa7MpcRUsldqzNLqHmpkURnSNYbIvXw/tPdmLTWSpnCdRyncZlrLZu2m+e5lOSMRcSmE2YIISgyISe3koRTaDedM2bltRFRLUUrtaTQNo7ArjcqUsDMIQQgdI2f5zmlwfpmVWkY6zNXYTDOIs6b/W69bK09ovd+xbDnnLUx1tq1m2QuUlEEcqn0JILC7yV7GZmqRaMphVi+v8CtpTGEAKiMMVcvXvSb9nI6I8qzZ881wsPjfePsNJyt3tzeXF8ul82mq6WAUYg4L4v3LYgACIGkMPV9iyRcas5Zaa2U4sxEhMi/R3OsbS6IINIaB6RWYgVXBkAwhBpAAKAIYxEQ1giayDsl4BUSCyLwPE8kcn216fvtp+NS0hTTTNZ1VqdScxydc0RSa0JAlFpSqBWUaRUR80wrCRLXnGWjRTSp1hqt3abx50GJ0sdpEK5E1O7sy+fP4zJu++4Hn9189+3b5zdXpZS7x4PVqbU210XY9J3VBp23IJicAcaQYam15Apat51PKcmaloP4/Wr8iVeCShWpqhRnHRFZEWPw5nof7w+p5iLVW5uziqmkZe66bpymZYmMwLUyiPVNjDHl7JxDbcZxFKlrTCcAKK0ZQQDR2EZrWVYk/nxzfb3pemAJMXeteTifl5Q3u/Yyjle7nbbmm2++mefxb/3Nf+NPf/nnp8eD7TbKulwqs7BIt+l7a7CWPJ4ulxNoU7hq00zQvr1/92y7q3M4ZyGUWrNGRUzMhaUQkXa+lvx4PL96fm1dk3O8DJfNdj/H+fTwoG0zX8ZnN1eH+wcS0Ir+8f/z//vs9rqx8rMfvXy2973N/9Z/4a/tfv3NP/nl78akwTZV9NfffVQVCYxLxRglJJmFRciqCqoIF62eaK/zoozWRKKV1jpkjHnRpvO7jZjw4av396dPO8+tsU37POXl27e/+/qrL7/7eG/6m3bXqXDRNSECo8pAArYQACBIDXESqEIYYynakm2Xyk8SwVrqar9Z78vrNPH7zhgAGLgQsNWUsfabDZYMKWulmPl0Ovl+E7nknAUBWJSsMnrSWlurjNIoLKXmuOw3/YsXL95/usspeKt2245AFIpWfLXd9q0+HqbT4b7vmqvdhmsZxrOibr/drBsm54x3brWirm62xlkimqZpXWitElNrfNfR8TSGVEoWY1xHFknlnFvnprBYo6TGFBejzU9+9MNhmpeYlcJhmJQ02qrz8T7GeHt7GyPvdjvnnNb61atXq3gnxiXn6JxVRMJlvbkz8ziO1rbGWaWwaZqa00p94qI2XbOacxHROb9eWWJMruswllRIUHvf7nYogIKUwpJzdo1v21ahhHlcc4q2m064LAuIiLNaaw3IOedc4gofAARSYK1p20YpleYLAK3r4RXQgUSMkHId5xBj3J6O27Zpuh4Ra2W/afab/vHhXhuNZB4Op8aZcZi2u02uXIs0bFBANxZxJc1GRgJUwKJFO1QoDMwph/XxqEWMsdN5PM/pMme0rSgstU7jiKCU0UBYMmfmnHOjLSIZ47S24ziKSI4JANq2NcZwyWsY7BLi5tmtSM0pjuOIwrLbKCKuaIxCqc4oACVcjNHKKmfs+ZSFIJcaQ2KEzjdd77Vxp1CLpHRO5/nsGk/aDvN8noN2XhjR+ktISuF+uweAdjuboq21MZUYEyji76Pcuk0f5kkhhZCIApKuuZDVwpJSEi5VY025Iq6Y/lprznH15nIFMjqV7MGbps0htp1h4FqrMnpaZt92KSWlNSI2TbPEwMxFOOcMBEQkhPM8x5KttW3b5lIAwBhTclYKRXB9r3POQqRQIaIwVKjMDMgisoRpLeHLsqxxGmssT+GaS7ycj8Kl1kyInFMmsFo9v712b15wLSXH3bZ98eLFw8PdlGQYhrAMWqEioxVxjcycU7DWOGcVAjMbZRiBiIym7ynQFVhWx7AogcpKIT2JsRSsTTEhEAihWt84KbUIklYojdERg9Zm3zcke1C68Z0xZr/f71r9zbsPd4ezbzbe6wC42zREdBnnJRfiuu5VAUtiNpBQkUKlBCtAFfTOeav3++2mbbQhxtdZ4Ldvv/n46X6apscyOGN2Gw9CN1dtXjpE+Pzzn7z/1L14/fp0Ge8eHqdlLoqf3b4iBWnK0lipkEuyylTmWjnVohSB1JWqJoBPxzCqXCsASM2iwHlttdGGlLa+1K71OvNxmAUQKhtNIMKkCtQCUEs9n4eU836/X0/FyzQ3TbPb7cbxUkpZL+gZMZZUa1HWKWPJW6oFkszzbLAlFiOoSXdaSyqWQfn2chm82s0xDVP8+pu3qAwhM0LTNLrUdVNwPg/V29aaKWWtTcxVUH14uMz5ay5wCBdvYL4s11v1xeevAKDrNr8cT5fznYNWKe2tSxLvz8vVtr958Wx7k//ln/3L58+f/+2/9cf7q5v//f/h/2yNcd5+8803tu//+N/8Nx8/fdBY7g/D+XgQDi+m8ouf/sHtZ7/4v/9//vSbj5dYSyZAVK9+8IN3b79VpIWBGSpgLZilpFpvb28VmePjo/WbmkAqcqqh5LIroYjXVIUZwxjuxvnTeDx+eH9vLf4H/94/+OHzZ29ePMuga3v97PWbb+YziRTtEtq0vutUpS5Sa66BQVe0i1QUZVhsKdpam3OutRLgGhFPiCt9xmptVt/YSnVgJkDvvVZauIaUxnF89fzFPM+XeR5TIGtjjASw3e1brfdNs99sw3T48OGD0+r6ate33Waz2e02H95/t9+2ACB56bf9tu84L50V03Wd9ZfLRWEdh1NO8/Vua6+3BJxCFGAAXtPIcym0SiIB1mh3ZiDSOedpXLotICjnmpj5PF6O5wGQtLYVBEtovXaGDqeLMwgE3pmcVSnpizev3n/85Kxt++52vzmfz13XFKZxnL33RLQGAD9/fjsMw/F42O/3ApUAmXmapvXMiimXVLjWOaSSgiVUiAopV4nnYV3NKqVW5lyIYYlJGDNLqRlR9X1fKscYBQWsqiWlREqpeQ6HeNBa236DLBop5ZQ4gLVSKgkoQG/s01mmtLVWAaYl5MprfKoAMayUKWBBUspYX3L85tu3L25vf/CDz5sOj48Ha0Baj6R22yvv1PnxYclcUgmPl23famN1oWFJIUUNUIqkVEBlJA0sqyXKKSSlCNBaHVNk5q7bnH7z/uNxyoxet1rbVMJlmHJh5xwZU2ol0rUyphWkhwBQBQtDWAIz51SZ+Qm+b0xhHpYlpWxJGWPXgWIMWaAqEFBiDXW+CXEOIczLPH2fM0NGp1ouw3i+TKvWN+VZGb55sbuMpIxbQkkspTLnSGgFQQSsNZ/uF4VEate2IkBxmucYm6bxTSPMoEhr3fe9M3YcZxHkKkTaWVuJORcAcM6tWtyU0jqfWDkqa//qrFs5owyiG0eAwzDMS2zaHlClnEmplFIRaPtO15JKJaJxnlrfANAqS8ylKH7iF6730VLralN5IjOoWoVAESDWWgBAKwIi5rqCMSoDoAIEIgJUAoJS11WUVmhNM5yOv/3dJ03YNe5fvP/27/29/9Lz22fTNDy7uWoar5CP4xzmi7fKajQG1/Af7/3pdAhl0X3vvcm5IoLVGgCUAln3sk+BfbRyRmhFV4FCBQqRGUWQmQno+1yDp4w/BCaUCmyUkAattEhjjNXaVmatyh/+5PNn19u/+vKrJVdj29Q4Y5S1Vkoi4JmYSxEWoFxyFU6ICAaUdiHmZZx4t9l0VwUkljgswVpjmub51c04zvOyHE8XpejnP/vi2c21lOX1iz2Xwun8i59+rrTbbbvDw91wPEjffyj5iy++2HrrjSWcjsNUCoNoY61xNscoiAqIiBipguRaudbCa1gREyKvQkupCNUo9EYjgVkCIyCwRk0aiggLHo7nlJJSCoCWlD0pAVltBd57730pJdcCBUcQVBqQa+QallKKRuo2G08qzrMWNNaVUm63+xc37jIOaLTf9p8+ffoY5uur3SWUl28+TyW/+3TnlGm8s9aGcThfLpdT3bTd1VU/XCbSZompCqTTKITPrrZKiWl3j8dDnC5/7Q9+8fMff/4nf/LPS+E52O/e/2az2XRd9+k0fXN33N+fDZWq3K9+89UwzYpMY9TrF89Pp0tj1IXjr7/+rYPy49evVK2//qu/ur69tRv7z/+v/+8/+pt//Hd/8VNXf/X+cD7NyyQmKWQDDAWYUEChSGElbCtfN71S6vTxTpFeYiStyFsUKXJwvmEu8zLDBudpzMtYwtS25nTM/69/8s/o7/7d/+4/+PcfztO/+O37YwDM2WgHqCsqFmEARMhcas5V68pUeb0/gqSiBLRGqgKwZvOJ5Lp6bddxFiIKM9dcpBYCYS5WuZJzqw0YO12GH7z+7PWLl+PvfuuNRaNLKQRgSGkkYS4xKLVilvFyuWhFz25vnDXe6ZVEapRsvHp50zu9QeEcQ63gHVqtKmdCfXW97ftWag4xW6tFZC296/oz5zycL0RUc6lVmqbJhS+XwzCFq6ub82V4/+nh/vFgfbfdXV0u48e7uzc3/vWLN977eR6vrnaXYUxx8obMpptDfHl7dX19i0rlnDWKiHi7HYYhhBSjNI0TqNpQLKnruqZ1T7p/gVXSAkDjOJeSUKCUglJFozM610KkRYlRRkSWmHKVzWZjXHMcJ6WIiXKqAOyccdoopUKKxuhxWXJK2jil1DgHiUmnvBp/19D7lOJaWmpF5xwApPSUfIyIIdSnFg1UBa4AmStXIL1qxNE3XQzz8XLhb741Sk/TgJLatt10LjE31Fw9ezkOZwbkUudU8TLnXK0hhKJAtEKFXEpBygQaETVCBSQSrakmKiVppbLI4/FwuWS/2QkSKr2agEEhao2kAbAwC1DOGQCUMmsNRkRmiWt2T85KkbXWNUwAU0xhiU4hs1Ii52EyCG3rrSrWqDAdaxqttbc3u5SaYRhijMfzAACKjLV2WSJfBhExjhCx6Tdt04N2IU1InpCG89J2NoZMpAHo8fFojFJEQ2Fmnucl1UJKOUSj9bpdM4o0rVlymlHWO9YcU4pLZ522nqAorUUq8yoFIlJGG4oxKm0rQwUUAe98ztk4n6TmeWrblkNAxJpqKdnkHFJOJa8ft4iEsCCR0hoQiTSQQqW9cd/vj2gdUa936MJoAIGEAQ2h0kYRMpMiiPOyLIsQkjaVeVlCrbUxlFPY7zYiksOy22+NVqfDw89/9pM/+7Nf/st/8Se7vttfbbBm31jn3G7XpLi7ud6vmZ7W2lqrc2a/ax4fH5Z5sLt937frdbmUsgqef/9xPym3AZQ1mp7C4UVVZMYV50yCIFyfSrQI1/q0NLRGKa1SKlgLExVhYUjTqCW/vNm2zS8+3B2nOdRqQ4hSQ2MByUxROw25IGhtgOo8K2uYIddSpDLwaZ7Du9EptFhqTldXV5vNprBgKb1vipQQy9tv37262e8b2+oNQXl8fKzLBLqOS9y3Xdpfn86DJPj49tO+M/3+dr/b9McBEuT1DeWnJZGgsDCBFlIasYKw1gwMXHMpc1iq0khSVVVktFKo9NV2F0pNMTOw0fq4hGkYY6lACrVxTiHiOI7GmK7rACCkqBQRqFVMSpBrqZkllBJLrlU671rrhmHw2qzq+hAClNIaa53LXC+Xi/MNa3tZSpFc744ph/UARMTVxjmFaJVOQICojD4cjtdXz26evXj36UOt+Xg+/uCzVzFH22zGZfzP//RXttv98Ke/+M3vviTruqvrD3cHM5Wf/Oznl8vpz7969+bV7atnr7rt1XA+/NEvfvTX//APp3EpMdW+u6TLu/ffvLm9vrt/ePns5dXLH4aQv31/3PRXX/3lX7x5/VyHw95CrQCi7g6Pba+Qn1DBikGjsgCg1cff/U5bQ1xyYlBSkENKSmvPVCsQGas6iPN0uHS2X+KcK19fdb/58t2f/fO/nM75v/nv/fv/rX/wH/yv/qP/45JbrS0iaMmWawEoiDFxZUVkhEVW8LNIrQUR9RrfXWpZb+JrOKVzpusaEdGkBEkhaaSkSSnFlQGAAL11YRrv7+6k1Ourq0rqPI9d4zWpHJNSxMsiMaISZ3Wt9eF8NFpdbTdSslM0z+P+ZrNpW+8U1di3rXe2ZhJbnSVrjUKymrrGL2FKy9J4i2hiXIZB1v30KphcK7G1dhimlBIzKKWZ+f3797lITokrrBP1VfP57GZ3td+WzJu+NVaFoLlG32xS4WWa933bt05Ezsu47b0x5jBrUub9++8Eqvf25cvnx+Ox69qQ59PlYrU2xjjbWAe1ylo/iLQmVIRGrXEslFMpXEGwlISISpnCfLoMKaWqda2CoAWl1sohrgx9rQgAmCuzKC2krbWwNgrMTN+T/aQyEWlS2+12Tb9Yp3mXy2XVZ4EiqHVFZ6wpfoJcGLxzsVYytiGap2EY3ndN23bNw/m8KdV7D0oXACWYK5aKV9fP5mn49Hh0Rm9bR8gKoWuc0znVYqtY8EopJFml2draFAIKGGPevb8LS+o2m267B+eZOaacaqUVfYCgyIQ4a61zZa01abXKf0opuRKgIiJlHCkQgMKgFKVcBSjlUnJslapNm3MSkc21vr7eTtOUc87LVL252m+3m/ZwPMcYzpcBUe12V8roFPM0z01p53nCx1gA2w7JdqWWcQohSpGQcyll2mz6J4S9UpZ4LedknqicKaWU4rZvV8U4CRhSWViTWuUUpRSz2YhIWQcaCOtu9YnNqHWtNeWKimIq1quYcymFlEKlp2EQpKZxpbAyoJSaQ0glp5RYxPtWGyshTeMIAMZ5VFqhbppmnYU4Y5iZcN1BrHRRqMLISIigNCKygIjEWFAbtQI3cqqFmblp2ttdE2P03t9//PD+/fvnz2771j97dqO1/jt/+2/efXifcnDGWqf7vvXGKo7PbvdPBiSG9f6XUnp2e2UNffP2W+batT7ELAKIUp8SRJ6qbxVWQCCklAKitSoTGqInv/LqYa3CxMLMiEACUusTbYOLJuw3rTDO87ws8aaTspxrzdvNddl1wIVQB42lcNv4WCVm7hufFo5cSipKwBmfawkxVxCj9FLzw+O9V7hxtO831moACNMszEaRbjdK6sPh8tvffvXDV1dXvT0eHrrWhXEgVYj0zfaq87vTZpzn2aJ7frsHZU/3x8PjY1ENg9ECjADI60gdABQBatTKKEIhJSWv26OUEirWhkQk5WiManyLWi+PZ6mFBbTXl3Gupd48u621Hh5PRNw0DZIg6ZifpCFEsIZt9H3vpjnVXEs1gkA2ca6Zw7yEceyePSeUEkNFGKdxqKndbLHmWqQUrrU2Tb9/9uzxcG9Q9vs9Sk0pAhdjrLXV+U67HjF2rdV0czqdwzJpq6UuWquHj+8VoiXz/LOf3t/f/5M/+cvPfvDaXz03Ss+x7p+/PpzHX375bRFuzPbdMYR87yDfbiwA/Pmf/3nftFarn//0h+r+3cU3taDZvvjV24fG+c3OL6ePP/ji89b15/PRadEFN10/ncqzzXbhSWmNAiXnggzIhBpEkFTmQoZCikhakTaIzhhbmdGAGKpCgFjgZru5nx/MbgfKP3y491b/b/7hP/oP/+F//A//L/+PKPVEtiOtIINkw5kEFeo5iaBOlUSAEVkYsYKWUote9ZkAAIpWJz6uGlSt11wjIjIKQRkkAZalVoO0LIsnZY05PR667eav/8Ffe3t3d5oG770mJVI1auQKADFGrXDT9m3jdtvNdrvNKex2m03nNGItqdvujBatwJKAUw1rrUgRaK2vthtr1HA6UWMJibmEENb0yhVGDwApRufcpu+XKZzP5xBSLlUErW+Vph0pVA61rgyru9c5ni7nVLlrulQKAU/TeDxdQipN0+3322EcAEBq0dbEsHz6tJSSX7/+7HI5bXe9iJBSd3d3a3ex2WxEpBZxzvmmSSE1m67UpAm5Fm81CiuUkPMwDNt+432Lipj5fD4vywJCwZlaxBmDqBAoxhhC8N47b8Mal6TNqstwzhnrENadIq846LVd0FpzqaGUlFaJkIoxrhmIqZZaa86FBQFAAI02WlshBFQCaLS21oImIIghXW19zOlyuTy7vc65vv3wTgG2bdO0fQghxJyWwCWjZGtIa22VQKmZorJGpDJTZSkCVj3txXPN33zzTQjh9uaNsfbtp0/MvKQojK63RBRiKVxLKUqZ38sA14vg+gQCAGplUQNhjEtMufGusBhnoWCZk2nbl69eKWGt1G27XO833iml1MPh8e7D+/P52Pdb58yrV69ubp8N86LIpFQgl5jy+DgBoTIwp3Q43O9vb2PgnASAHh8P1toQFlLivV3OZ+89um3hp8ev1hpCAIC28TEq2zREpIwiIil1VQY41+SY+r5Xigid1qpt22WeV5UyGQMA4tz6+a6Yi5QWACg577db37Zr/VvbC+NcFdjv25TzNC1COE0TEQlCKcURIeJ6CVsZpX3bMa/GklJzBgDQllkQmdbUJhaoRUSMsQiSckkpee+v9n0phRGMMafT6e3XXy3L8vrVS+fc6fj44x99fjg8Esqz5ze7zYalWEWX4+HEfPXq1jc2p5pzXsUHTdNM03B//+nq6mrbd4IIIDmFUoUZ1if5iWdZKwALrohKKaWsGBmlnngy8GQcgForrNay71kzImKVIlIZpOacKxPRbrdRfN50zRy5pNlZ6r2tgjmB8VppvxRum9i1fpGSkpRSSKSUknONNaecAbn31vWtQ+76ZrvtM1crte2azWYHAM9efbZtza9++Z+9f//BlCnsPNZ0Ph2s9bcvtmMoSlmNbFC/ef5ZSikuwTRKK2WUJqVrBRF5Cqn4136ICNcqQMwozEopbYggrzq1WqsIEkBNOcXIzN77cV4upzOzoFIx11UMv+ryuq67XC5rJLOIiNR1A7Isy631AQlRJZAllxDnIY5hHF48f7YsS0xLqTVWzsQ1x/PjfcfQtZtY4v72RQzpw/3BW5fzHEJwhrRCqRVVzYXzHC5TLKfHttneXL9snzf39/dU2CrmHMZwUdSwGHKbIO54eTx/+Q0p0fO4u3p29fz2ksm7dpwXUSCYH0/n17etoHr34f22a29vbk7HSy35tu3SlPzz1+cA/ubV+f79VY9fvN7E87f99bbWebfbUd9cPgzPr2+ZzYfT0jQeNU1lKZIzEoNkLohImmpmY70mpUljLbQUwWxNMy3JEVpS7775Ws4PX3z++jjOoJvL4eEylVfX7cOcljz+2//Of+X/9p98pZCMiBEhEQLRUk3NgjrXwsoyqVxmY9go5jJro1yGarQ23l3qAKjbplWo52nQiLmmpmkYcQnpPExd1wHHkAsikVbk/SXlHBNeBuebjW+naWKFiCLWXj27AgAeo1Lq5uZmt+2khGW+dN7M06BJDOqrfme0kIJQinJOKdU15rAcpmWySmtRfd9q7RQqAc4xG2VBoGZuNn494Ij8ErLzsL3eLnlBhqbx1rWENoSktdYIgGIt5S0j5q3bmO9/AKor33aKhml+PA4giUOwSl+GmZSVapYl/uhVr4xblrhtroEUV6ggzra1VqXQG59TKhL6ptUMVSCli9a65IqItQoRWWev+35ZliEk13hNylgvLoMQVyjTrJRKNQsUIo3Gi+CcIVRWymsNS5hqWXabTkSmaYzUoFZEBJWWZSEia10uhUoZ5inn/JT7prVSKjOvbYPGtWHgmgvXLAioxBGUMK/sHCHNwITEZDSp0xjef7hvGzeFog1hrneHUwiFVTMsl9M0Omt6Z0BLKY2x6ERpSqDQGLAMIrIELGL15vmHT8P9gqesvvvy68Jku22MURntvV+maAy7xs/TRMoMMRIgUxEEYxSwoAJxGjSGVEkbgxYUpiK6IEjlGrcOO08dhHz8dphOL25v1M31lIeK6v3Hx3FK46wpyGGYUHiz7V6/vH35goQTl5hTc7+Vu0d9f38PlPpegSKjRskPu43vNzvrb3/3u2+AU2Mgh6VWnKcUwuMwh1igsToLFHDO6tM0ppSWaWwbp5FCKiEzaG9c08Pw6vMbbYgZMkAmtbAEQG2dt0YrSmFG4r5103TebTZk2tPpoLXeba+meRaoTdPcH4/riXk8n3fbqzWNUUoNl1G0sdYyECqXCo/z2TmvtSZC0jSMs/OGU0aUCmCtlbxorQjAADfkQGqRiCgWSq1ZarZaNo3+4RfbGOPd3Z3QjTYulPSDLz63mn72kx8/PtzlnPu+3+/3tRbXtoeHj8I5pXL/8dMc0263W4noXd/kXPtOKepijF1jnj179t1372tbgVEKA6NBQ0wgAsBIFQAUiTUCHIzWiCiclHHe+1plWZbVv0dEAmolTBYRBAQABsUMiKiMVQbWij4HVyL2261Shoe5b9U8B8hTFkiUhPzNtpvGUJajV7jb6FNSISwxF+9bBWqcl4Bk9XYuBSZ8eHy82TQ/+bx7eXM1X44lp47OL64/O95ezeP03SGZ/hlyHC7LfsN+OonINJ5A+3kaXNMUgVNEDsvd4YgKkZiYlTZzzEAKkECZFeMFdTEKNVEHUhEYdKmUwSURzEKQiIpzpZZJQ8U6d80+RFFt96JZzudzmIeNNq5ziKAUWQvYKC0qlSxQgbBIUWgrgkCuedm2DSlzOJ/IqKrbwnK4O26vrs9jbdq+7xtc4uFw2PRb64a4XK42m86WRmGJnNKoiGJiUbZWRMRWNRUTKdn03WmOMeHLZjNMQ3A05Lh3vS/dHGZp7Fhik8Y3r15BTccwqdbX9uUp1PfvPmz6huvY+dI0Pscaq/401Y+X+bOXL9PhfPiXv/r81ct/42+86ChSHvr8UE9DmMKb6xuT81z1eVRv/uBvcPl4d/f22csXX/D2u3f3V1e393zmFF6+fI1lnlMtuXTeF9G1VEGpIplTUbpyYadRUTfbJUeylil9Gt9+mj71gGb7RtL0P/wf/U/+zh/99f/iH/8kLPMPXr/84sVuOH+8lgAhKq0L6CWz8+3zl68f0tdQWWFWwCKgEYlNZSmJ9TSNSwy1sM6JhZvGW6dFaokp1+obS4DCjMBeq5pz5eSt06hqraWyiAzTOEwjInrvmHm4nFr/rwQm6L2I/OVf/uXN9e52v0MoXWOttbdX+6a1++3GWruC/tfmLxbDzH3TAspqajQKrTWa1FiH1aNmnBEgFlRK17rkVGqt2+22bdthni6XMeU1t04vc2iaxlhNxEgNIuyaLqXEXBA1KgYsTWt955+/ejmM4TLPcQqIvIRBGbfddNYbEWSGaV4upwuS7rYbY4x1uuvaFGLjbSl8Op1ur66NKfzkyykkEEuGyqWUoIPWOsQUUnbOddsNoeYKy7L0fZ9rWZZYKjeNFpGwBFLq977e1jcAvHZaKxpm1av/nnsFIMbolBJ/H9y2rhLkiTyPSqkKgFlWafrvLcJPHxCwCALwmhM8DJP3FqTePTw2zgqXBm1Ipcq8LEsIoWbRpHKppzIxgiVA5bwiFpjnWTjvN03bdVkBcVGE8zwPw0TaeGWGOU3z4F1bS53n+erqSghzTCjApSKANnpFIwEjERpjGoQYIUGqWQiQa0GWmpGQnTHdptm5q5e3/c22HY73VtMcyvv33z179qZpN999+FZpnwtXLiwlHTJz3m0aZ1VOwWrabvbG9dc3+2EYtvt9Kvk8DtfX+08PjwL017740bPnr96/v7sM8+HxtKSl73sp5QksxZWInDPOGqc2Ggsg5MKMwIAAKFJLSf2+X7ckSlEpMl0G7HtvLADnnGMojTOkValijH08nnxTtba11nmetdaIZt2hxBgVGRA6Ho9rU2isH8dxDc1VSsWYEVFrXWtJKe12WxLg7x8AImIOpRRvrVJKIThjvTUgtWoiAoWw2z1f99MA/PVX33ZdZ43X2nz22eu//OWf/va3X+63/eX4cHV1VUomwvP5dH19fTw91hTDggCy2XbDMDHzdrs9nU5KY9e1pZTtfi+Fa5XW+xcvXozDklJas72rNtYaRQoQWESgENEKkzHmyZHx+5+11rmW37fCK/8cEYGZiKr8q9hBEfk97njdAtQqq8vFWruGk5aKCdhpu91u97E+nKblPEVRjGStZZAlxpQSg5SiUCoxaSDSNlUOMbeb7fu333733Xuu5NveGLdM8/kyW8VXN7c//8kXX/3219ZaVjRPkyCsbbnvfMp5HXiEDIgYYySy8rT8RhQEFERBICAEZC4cShLQRltjDCGvm52cl7ZtXafnCPfHSwhVu8ZqY5RG57fbrXMur2iEtiUiAZBlLiyEpLXRCrnWS1y01mQdEfXbzWZ/lQo/HB6ZcJguq/IxlwBcfGOQqlFaOVoNF51vAFbiVZtSqilnrusvr672l8slhbBOMz5+/CAIYRrbtq0ptpsdIF/iQlLjEoDLdttPeQkpIABzSVKjsDekNYVhkpq/eP3q/Xdva45vv/5m48xnL1/N0+XLX/36F5+/udo/M1b3G3d923326vWHDx9evfp8/mr+T//pP0sFdturw6dPx/HCspyO56bbDcP08dOjABZRpCkLVRDjmxiXzBVQQWVhIUWIpJ1ViSswosyXy77tdsI3m+Zw9/gf/W//13//P/5H37z9+n/6P/4f/Prb7z4+nn97dxG89s4tSzDOee/v7u/nkGqtxtiQIiIikVIUS15BSRpIuq5JlUWEgJDEagVcCEBQOmcbo0NOmqX3rhQOomplfNJJYiklpVR4laeqVQlMqJdx4pRb33TeKqV2fde1vml8LeHjx4+7bX8eh6Z9ZoxDhBSLrBF7xotI5lpqYWbQVWsiwJwx1BBics4hqVwkxDmWTESQq4icz0Mq2Vq9LkcBeFkWrW1KyVjtnBGp1mlE6DrXtquTWKdSS8mo0Vh/meamVYVNSKFTeglDSaXrPQCHELkwCNeakZlLKikQUVZRoIqIUVQEYozMdR1Kx0gATICRY8iJI3vvm7Yx2i3Lcr6MAFQFpiX4tqtVbm5uSuXLZVxBGcu8rGeHc84YhQKrKx8R42pzXjkeoEDBah7TGhpwjLCOcNe/TyL6XgwJyGvuLyGiImRmtYbbrCEQqNZTL2eqDCUz55mZvTVLqnOcVzVNrVgBCbDkoolQ2wKUKudSnTVkrFLEQJUh5ZKrFIZPD8dPjwfVXotSqbJVdLPbzjHEGL11qeQYovEupQRrKs7a2QCIIDCCVKOxc7YyAEiuOZeipJjGxpiGgTuzce1WGaNcN02jsyZXfbjMOS/DnLy3S4gi0rZNjWGex2nX31ztclqcsQK86fzrNy++/fbbEEOIwRC+fvkKUQ1L+uqrr/ZXz0jpkEpiYVLjkpa4ANfdZmd9k1lEBFm0MSkmlnUricLIiFopa1RaFkQgUs6YQrmWhMDWKACVc3LOWavXD9Q3HZK+DEvTNERavmc2WqO6fns8HsdxXJcOTdPFGNu28d4/nk8iYoybpoWeErpKranE9P27AP+6aGBF7hhS3jurFddKgKRA43q9Y+dc0zQx5hgzAHy4+8Y6fXN7fb3foeTL+dS2DVH33XfflVIOxwdEaZx5dnPT9a1VpJ0PYX7x4oX3FgBKZc5cy4Couq4j0qnw+TwgCnMRqAAaVhYLkoiIKERVBSGvUFVk5oJcyhNXhIXXCS2iCJmngS09Reyu3+n3EA9AROf97+Vd1lqDyrlKRAI4TrlOIXPxzlztd4VpmeMwp1oqki65rgnouUopURNxqb1TS65ChppWUKZc58cB4E4pE5fQOHMcZsnz7e1Pl4Kvf/gjTfTx4yffuszpcDr6tm/IgAhIXVlszviSq7ZqCXn9OgEBFRE4IECFRiMAM9W1AFtrrSFFWZEobKvwsJSrq5theTzPI6IqMThtnDYKkHNZlaohn7z3jfdKqcIVAJUxqzJmytkR5TAbY0IMhStpy8hFklbWOVd4yQuUUhSC1Wa73a7GmeF0XiH53lulkAhub58551Z/MBGFZeram5rx9uZ217WXy+Xm+toYNZ8uHz68u7q6gpKvr3be+2kaGu+tUTEmQ7Lp+lqyrEIHIkB+fnPdW//Zy1caJM2jJbGkl1Su2vZ4vGz311bDz37+wy9//RcPjx+ubzYxjX/4Bz/9q1//LoTxfPx0Gc+55tvr3YdP7yf47PPPfngaxsfj2XWbKmx9Czmfx7Mz1hkbQgCBq81WKXU+nxeQJKLEtNadzmeLEM/HD7/91e3mSvJw/O63JUxf/OBHE7XHGf7qd3fY36SUrPfzPGvr+r6/DEPbb9bhDRJKrStWBQCWZdHzPDZNAyCIpI1WCJqAGbhmZ5TVSglbwoLgvBcRiRBjzPyE5q/CggCKXNsM86QAfdtQlWVZUowpROh907qXz269M8KZSI/jtOnbEFJOJeaCKNO01FpRrTEshARaVCp1BUpUoxwiM1TBJeaQyloscmbmorkYZ4dxfDjc28Y3TRNTCSGGpRjjQgiVrfcWEUopxmjU7NYY3SLG4HbX0hJiSCjZe4tERYqQRQXC6BpNqhvOl+P5UjKUnJHqeDnHGK+u91zzCtFtmqb1PiwphDDlSETyff+a6+qvwNN5GKel6zZa6zCHEKK19sXLVzGGlEvK69ZT2rZRIcVlqjmj1CRV6lNM5PouNc6tCTbrJhIRQWpJIgjMlUgxyHqgr4fReiqtTZL6XherlRIRQtQKldJKoSb63oKp53GopTIhxBJSzjmv9xVjDAEyQ1VAokGwgApFGKuO5KzCxpKmmEpMg9JOQMdSz8NYmZzxARQZk5ZRuFhC07QxzLkWYGmdJ4HVDqeQSGsBBOBSVk+jSCnALEQEYpAVwXC5XG871/hY+f7xcNLgFDEYDe445no++GZjbPdwGKy1OZfT+W67abWSyzATaam5OBQRqudpGg4P98roxjVTCHefPkmV/XY3p3L/cBimcBxm59td2z8eTs+fPx/nSTtrrG60KlWOx+Nxnq3ViihWUPAEU3TOtY2jnDdttzZwGYBEakpTKbvdrgpsu36e51iKiKQSjTHGy5KSMcYqM88BWfpNi4h9v52mqQo4Y40xIYR1pdf3PaJaPfFPlYbFab0qALTWLGWlUa7iypwrIqOWUhSy1JJqTqTAaTNPyzq2LYWvrm5ijK5pyPqm8XmZS001h88//7xr/TzPm2339u3bfvN8HIfXL390db3z3jbWhMwxqmmatHWrhtZ7NU0Lc7HW51SnyzSOI1fpum6360IUIGERhai1FlFcy7JE7z0VkdUfjOsFX/3+YV73O0zqe+E0rVrodeoDCCLwe50m0FrbWUQIuQIopVLMAKtBgBWiM6pxxnllxcdhqrXmUhmEtJUSKoPRpnAWYx8v0/Y8uaY7P94dh2Xb+vvj8Pz5c3LdeR6zwK7bHJdU7g6dV23rQ4XvvnsbM2y2V6nEh/tJG9c6P4ZMiRlESq6opNY1v0whAarKwiLMCEWAlLEmV8hcsSSttVe65Nk1ruYiIsbatt/oMYeSCbHx/vdkE6VMBZRaU0rWWud9SimlRABEConR+6pUqUwWQCtO1Tnd9o1rLAAMwyAiXbdBtJfLpWkw55xz9t5vNptSymaz0Uoty8JaT+OoiFgKp+Kc22/7ZRo6p3KJoPrb22ul1DQPKmXVd7WWTd/VlGKtBZfk/DIOP/ji8w9v723XDmFxlvZXV1zyeDnFaf72dNrtdje3N0H4izcvrzbdr/6Sf/Gzn6d0+fLLL6210zz8jT/6Ox8+vvvVX/zlZ5+9Pp0PXYe+bV69evP+44dXbz7vus0//sf/+Ecv/8anh4e0BBT57NXrt58+Hc4n3zZkXchFE2htai55DhVRYqbOaKVrERG5nIbxOJS7x/e/+yAK/sF/77/9P/9f/M/+l//h/+7Fs+1/47/z35+5YXvjnLtM477tlLGVebPfxcpTWLQyxhiWJ3GD8YaImqbRAjWXWISNdpoMkpSc4zx5q3dda0mB1NaaGhPWssoBjHacS4plFXlmqSEEJKqlVEKVySlqmo5Q1mAslvLtt991reVanEHf9oCq63tQOizRN844Lymt0Q7eOmNM27bOGURLRLVKSgURYy5PwzdlgXTFGkt2wlqkVi4MVghQGUPClNO8An3WUa21OpdorVlxkghqHMeUEqJiBOYVBRAJddM0pUrjXCplHqclDJfLhUvd7fef9TtGWKdSWpNSOI0jKUKSWut6LNbKWhttnTGm1gJZGaOdc/M8hxBP5wsoWjv+ikSlFuaVflBrvd5fCfDp8VGjKKMQQRMYrayx8DRswyxojC6avg+lcAxSSglLAgBE0IhCiomfvC7CK/dIK6UU4ZrvawxyxacCjEapVQXCzCVDYWHBFWW1qqybplmmaB0arUSEtCFNqebjZXaqVcpWpFIlpKxI2TUnXblU+fF4ejhetPdkXVkKabvb9EahN0276d+++y5XYebxopxz/P/v7yTSxigArsKskBEJFSmORXJO1mprdUx5Gi4lxd2m71o7DXOP9vr2zeUyFcH9zfMiD+M8KeOcAt+2IKUwV8ZaKIZxnudHzCKCqPrdVri0zrEgKoPatVXuDue2bdH4+8PJ+vaHP/lxCfOTzC2nMC+5VATu+75wZcZaJUtFEKWACInQO2e0Zi7MhYRJOMdJRHIK63e6LItrWxYZhokRWteGkMZpWcPEiGiJudbqjSXUOdWSgwA535acz+eh3W5W5Z1zjpmRRQTatislrySslHidgmitRayxBgC0VoRPGfXGWYVPeQYANSzx/u7BGJO5qjW2lwS4dK1/HE5EsNlsHh8fU877613M6W/9rb/VegfA61C9aTeb7XYYhnmenz9/nlMdh3kd2HyYPhnj1ld4ngfrDKAQmad7JK6qwFKrQOWqOYoA1PVB/dfVSU9VFiBD/v0//34j81Rp5cnR9BQmzPz73yPMJIwEikArSEVACgF4pzeNNzEREVdh5lwKQy1VtDahVIOUmQDo3d1jZZ7GiyaTMhjfDnOZ58BcKzIa5rvT9c7nZXjz+vnti1cM6tPdYRguiMRpbjfbtttqEGt0yNlo0s4wAsvqgQZeZymlAgArUMoA0XpwSy0aahTqWh9jYECtzNcfPh6GbJyvRSzpVaaKilItMUYWMcYoIgFg5pRSXKIxxjnltQmcESnlQFkRobamljQO591u57QuYbbWhjAJcxov1DU/+sUfvn37NoTQtq1zrta69lrMZVnqdtv/7Cc//c1vfhOX8Obzz6ZpqvMwDEMI4cWz2zjNjTV937989eJ0ON59/LTbdN77j58+Xcazs/b8cNe1TetdGGHTtS+e3S7TUHMElr7vd9vtw8PDyxe3bz77Yjg91lp/+cs//zt/9+evX7/8i7/4q9Dt/5x/S4Cff/Zjlnh1tb/at+N0+fTxN/vN1eOHt89+8dd//ObNN8fj/PDxx69ef/3+4/2HrzVqLnE4x93V9cxzqawBoLJIIaUbZc4pdv1OjCo5ncfw8XHYkguSlMZ/9H/6T8Z57nbNV/cX6m/H4i/JllKNtrXWm5ubu/vH7777zlhfa00rDMC3t7e3x8t5WWIIwVqru65d1TqIWGqSWLmUEMK2bbTWtWZnbesbEQkhhZAKqppWs6YqpaS6nmi8jiNqLpyL32y01gTYdL5xQIDXN3sSPjzepyUZTZpg0/cxlbreb1kQqBYuuU51ttUaZ3vXGaNWpwcirmGlTdMY16wrsZiiCFjvSRsC8YqqyPl8aXzXbnrbtDnVUsoa97behXPOOaXCMwDMc0hLyFwVGWOsMJbKSmPr/P3jeR6mVHmdqHeNz7qgcE5hnUT7zjNzimEdekNlRiy5OOcqC5DKXIGJRTJzLYVBzSET6ZRTmJda6/76Whl3OI27TVMFqmDf913fxmXeb3sArrlUYa2tb1sgFUIQpZxzc0hakdZUFa4qR1SqFHYuppRyYWYGEI1UaDWBPB1eK99OKpMCIjDariG7mtbpHXCppeYsBkEx55JyrdkZ27Sd1jbkWgUUKq51iZkap5SpqGJllYoJYJW2WjuNximlbMl8GeLbdx8fjidUfRVIpQhq4bpMY9dt+tZ76zyhoEJFq/5Za70m7jGLtdoYM92frbXOmbVDMFbttn3Xdefjo3Nut+mcfQaSlxjyWFHo491RKWV9E4b546ff3N7eet8cDo9ayTiK0UggtYpSBip4R5u2GmMIVQV5eLhvu9319fU4xWGa0bha6xJyrGCU6hoXQvBKpbiM87hCjJ02YCQzKWvnlHKuWmlvVdN4771RCBVCmDUp501jNgSrUt2cx6lrN5fLhRE1Q65QUS/LEsPQ933MY5qW/XYLiCEWrfA0DFprBYCIIUTvGxHwTbssS865bVtrbSm1lPp9sZEVLlvr+oQ/rRhWMYFoVVIWYI1gjQJS1RCUVboM2vlpnrfb7bIsNUelsG1cKWW323348OHjx49v3ryZ5lkr++LlM2V0qiXOU9d6IogVtttt2/aPj8e3b9+5dR9mDDO7piFttLOfNZ9dLpdSSowLKrWOvuQp40sESJFeB+CIQgqJiBGIgQjoaf6MzCD1yRBB/5qKmJkL/6tNsDF6nQOJPP2b9SnSWoNgTCWXqkAUgdXknRYIyLXkvL5H6++vq4ARuFzSbrMZ4kLHoWvbXPOU6rP+6nA+PT4e9vt9WtJ5Gne9W6Lbdvbjw/EyTq9evPRt9yf/2b/YbvfCusRQjL/ebZ+1/f3j6f54mYeL8U1iERBh+f6eAQBQBEpl5CIrKgWl1pwSGmQkiSk9nqf37z48jFFUn4VeXG9yXc+9mkouXBGxIhLzkjOKlJRZ2CJqIgCw2pVSEBWCAua4BJRqgLZt2/lGCXRdN47jfrs7HA6Hw+Hjp/vD8bwsS9s0fd8iywpJZalaqQ8fPvziF7/Y7Xbn8/Hh7hMiWhZmTjnfPz5QLAutRBqRWp89v/nx5z84Xc6k1OF0bBv34dvvyFXnDChIKY3zdLmcGWG7315fXy/jMIS5fPxkrNr3ne66UPLdp+N+9/x693B9fX14uE85/OKnP3n2/HUMcy3s7Gbb8zxM4zAo5Oe3u0/392Y53P3u8OL6dqp5yPPOUiEtOTpFQJprRW2NsZZUrIFgYWZhxaTf/PgPj9/+VoYPj8uXmeUcDOjdzfVtXu7N1avDIs3uxaJxieF8P/YhVgCjXa1irQWkEPM8z4+Pj8M8Iar1WdUogAIKIKccQiAiZ4zW2jXeOUcgu93O+7bdbEMIcDjefbwvMT1xfLQyhE77pm/WHZ7UUpmnELGyM3a9lZKmZ8+ekYBWeD4dh9PRWj2MkzEmI+YyrNErqTIZG8KsrTPakla5cs5ZpLa+MUqvg9CaY0qpCq7VUVtHSpGAQB2my+Uy9n2+AvSu1RqZGdXa47JWNqWsdTNPaWXcN93WVRjHcZzGtu1jLDElQPX4eJjmxMxNt1GGrFFt2yISV6gAlet0GbSm9UgSkVIYEVZt1FLr+p57v2o1iZQzzutcqogCZUEP0zhOUamSc95v+3mZcwxG4eV07lv74x/+IMdlPaGASFuTyoqFFQC4udrVupoXJKdaayaptYoza6+fal4v+nVFB5HGp8MJmVDQEAqgVCQioJUMLRWRAFAQkRi0oRSFiBCtMc5aH3PiCkvMggq4pFSUUpuucc7WmudYNOm+adZ82ZxA9BpWsQzzwqKAVEgFFGnShpXWGlGWZVEKc+UqAozCCIQKgWEl9oOpRmt48eq1UmrlI67FQzdKKXzz5s3p8Hh/f7/pO6NIoJbCzpkqNYY4jCHGmHOOMfjG/uTHXzzcfehav+27aTjP46CJFJnddvvyeRNjzKk0fdd1m1xAWKSyNerdx/fnYSbjSy6EhFBDmG3TWWulZkuCinKtGjFK4YKlPHmUSdvVNEwgxhgRNMZ0vnHOaMLT6eS9b5oGlJ6XXBHnkApLLpwFFSnrmsoQlinmKqmiSNt6RabWglobYxhhnufvXSWgtTHGEtVaQ64llSzDoLVOKZeSnyYnoISxFuFaiQBRgwKoT9eyNaNXaZVjiDGuDvJcitIWEU6nizU3cV6MJmMsADDg5z/4IRFN0xBC+vTpQ9+1t8+uay4FMORyc7PvNtv3799vNrsYc2GyVu92V6WUlII26vnz5yHMIfjDsBQpNX0vaxASeTL50mqoB/q+gooIlZp/3xAXEVWehIf0ZBqGFeG5/rKUQmSZuQo+qSJWhw9zySzARpN1qBPzElMMOS4GofFGREiLrpIYCkOIWRnNBaYwr/lRlzlWwBDmjVLvH4/b/e657z/efeSat5smDfNlunz+4gbA1xqb4+XN65c//MHnyxJ/+gc/ubt7+Pjw6IW3XbvtuiXlOgaoFZmlShUEQvxeLFlKFilrc68QSRMjcIEIdbvdVtTW1hev35y+evc4TRV0+jAhIoPkUoowKgLSEJ78SwpFkzKkcuWQCgCkWmIIACyZueRpGrTCTdec7g+bzz+32kipUqqz9sXz5yWVj3d3pVbvG20sC2qtyXCVCoztZnM4PpyHS7/dpJJrLtY6lVMohRxWhucvnt+/+zAvp1Ocr3e7TdNZrZdpnpbZte6zN581oN5d5inN1poEXBHQOlTY7DZffvOVty6WMsUg3/EXn70xbXc5nf75P/3lj378g8/efJ7SePts95tffzhfDlxLzkUre3N9vWmaV8+ah8f3zOX6evtv/Z2bP/7Zmz//8tfbm9t3j6dff3PntCuRTLudUwXUzjWgcJ7nsVSrtHVqnkZG3+6v/96/8/f/8Oc/eXj/u99++VdobLPpf/1Xf/H1V7/lTrHfn+acUcUclTJtp8dxDjlp4zLzm+ev7+7u1vo1zNN6L7TWzvOsndXMkFKJS0g5NU2jtYkhlMxLzIiiYzpcpsJ1ifnjx4+XKVtrLUAIoQhvNpu270IOzDxNEyPUkIZh8Nt94+h0Oj3mSSk1TdPrVy+utpvV1GgIhyn2PRNByXWaF+99qWiMadqtgMwpK+uIsNY6TdMwDF3TMq9uxoyI3vtU8nAep2laXcvWO+c3TUEkPU5hXpIxJqWoSSEoRjLe5bkOl6i1NrYnIlIGkK0XQIugCSHnyTduu7n2rhyOxxxy4TxNk/dVkUGltptNrm4YBmP0ze11ztlouyxxWaJrmw8fPs5VVnQfM8whLMuy2ZiNa9Jl8K5VzCnXytB0Xdu2Oee7h8P19V4ThhCmy2l0pjHaGN14w9XkWmIMpTIKg0gIi1K0LMt66JSUMldCXYWt9cDVKK1apRLmVHMtOWejcO3+URhRzPeLNKllXakCrKWXNKEmXQG1dgYBUeIS1mNxvY3HGInIW6218957bwnJe6+Bu85d73bbljiFUgqQHZcwLbmK0sYtpSxxRufXQ9I3jpQa5oG0SjEBoVW+gDBzLFkpgcoissSQa/HeIZaUCinTbbRUjik9PDz0bcu1GmPWBqVv+xDnZYmbzS6EcDweY4xGU07h89e3StH17kcgtbHmnqNVetNtuFaj3XkYAPBwOCzv3lvjBenh8aCMKxVrLt6qOczCsul7b2Db9lVMiWnOqWvcfr9noEtI9Tg8XubIKEiFoZSaUkrEGkxCFhGFoFAUttZa523TNLmWw/kCZAUo5mxdE8MMqIDoPAw5ZwKKqSCw95ZIg6YwhpxqtdI0TSp8HqaU0mbbrQbip3myMUqpWisZjUohCAnkXEpZ1q1w05Amq521WnHJRiFpVVKUzJ5ohaRqY3b7/cPDoZRCGr1z07hYTczg+v7V8xe28caYw+GgjE+Zne2880Y3wuFw/2C0PR3Pl8u4LFlkHIe5aZq+7+/vjkqjtfr9uw9X1/t1ZSMiKZWUUinFkCGiNeRbIWlDREZEcRVAYS5EhAy4YitWnTOyIAiCQkBEEFn1/0S0BpgygyCIrOV8pdtVFHBWA0DWAqveLAUU8dYYKje7bdfkOeXTOMcQFWqQylVIkfVuDuHZzU3N+TLNzrnTNFy+/eZ5fOXa5tPprEBQkYJStRwvk9Xqxc2rEOL9/aNVeojnZVlEBGrx3veN941asSqpiuZaawEBYCWk10wGIrV+uPLUFDMp0ppA+P7wiGRRGWNlClFp13ZbSCGVzMK6MaXUcZ4zx3UCscY4Gq0tlVS5saxJMQiCEoBxnLkkLpyXFOf4s5/+WCnz+HhapSSfPh2ttUp737r7+3trkaosw2CtdcbWwqj0HJP17eF0UYCllJvbm2EYlOD2an+cBswFhF6+enN3vA9cbNsqo7/63TfffnibNYJWWj789LPPfJGHxztD6v7+7nAZUg6llGeglW0fLsfGugr8/v7xOFy8Vn/37/7t51/88N27t8Pl/IPPXymFKYR5XHKsfbf99HD/9u2Hq6urUkLb+b/4i68/++y1Tsdn1/v/+r/7b4+5dF9+te2bqdBXHx7uzxdnuowQQiDUylllpDJrQG8Ma3+4XAg4RMLdm5/9l38koAvzj/7mvzWPxw/fvbsb0lxlzvLiiy9Op9PDwwEUWWpWTcbd3V3MqRbxXZumgojTNGy327b1WnIRQaxMgI1rCVUppe36InwcRufM4bt30xJyLeMcamVFbp05EAEh5ZyH4dw0TRHmXErO1phdv+maTirHkAVr5jrP8/F0mee5826axuFyfvX8WQHUoEKcWegyzErhvATtDCJWnlKpmnC1qQPLSmZIKcVlur6+7lqP2AyEQ8HzOBNRW6CUok0TYwwxEkGtY0rh2e3tEsMwFZR1bF6rACK2bTsOk7U2hmStJ6MLw/XVjbZO23Q6D9vttlbZP9ul9I0xpu+2a5evCY2izWYDLEQUQoilpFIOp7sQgt9dlVrzEltU4zijIkD1eDjNU6gM0zSLiDG2gqRaQoqlivcteX+4+6AQiaiUTMgAQAqIpW8bBpyWkKswoNakuqaU4pwPIdxeXZ2GAQW1JuYCShljnLGLDrZqEce8rupFIREgrQFvJZM1+qlnEKUUyhPKWWFBkdY7BDFrEG9cEMg6XWslYIXgrLGagKs2qBVaQk1Qclwm1sTGmGUJwxg/3D/mUkPKc6ism4aU0pTncn1zc3941Nowc+UsTAyxMCOqNC5d12ltvHMikkopy6qGVb7rlnEMIXlnUkrDNDmj+s2maxqu9WkAI7Isk1Kq9W7TtZwLS8lp8b2P86RIUDe3+w0CNN6lJU3TxXbmcrlo07Rkj6eLUvr29vkSIwN2ygzjLLVahKtN67vm8XAYsyFYpbY4TeP26spkimEWrgoVEFpNtZaUeCxh9+qFV6v+GIB0zOXwcL8sS90ykEJQS4gFUCmbap2miYGKImZunPFdp4lWyDkD9X279vSCFPPKDTAlxGGcSxWlrdZ6mkPTNNq4WsLv6crKGqyFK9RaU608LWqrYgyrtaZU6AiMsyhAGuvCbddprecQ++3m06dP++31528+Ox8PMcxQoDIdh/n09v0auuWc8d5u+jZlOV2mvm/nJYjEeZ5jyNb642nQWs8hKGOAqNay3fbK2G++fXd7e621qRyPx4Oz1tlmzePquu58PmuzGupoLQBr/VgHx08DHUQREIDVVROWJybrKsWqRQBAa51rFZHVFbmiwYiAqS5LLKXWnFIISELCwDIvowbsvKklOQVeU1aknBXhcV5QW4XEyAAAhDHXKmmt69/dfQSgGKPWBOP4Yr/tdt04jzXeQam9NwppvJyBMcT86vXrWHnVq09h4pq3rR9DUqhQIMRcuQAwgQGUdar0xPxSa4BVzSxKI6Iyzk1zvrt7QKKccrxctn03DEMFado+S00synq7auPjqvUxoDSTWpghF4WkiUJItzdXwHI6PCiju6atoM9jaPr9+XzOqS7lMk/Btc0pLMZ5JMosqEyuwlBQWCkVYiSiRpllmZxrPt0/eu9t17357PPp69+lJfzmm29e7m+cb1HB4/EUTxPmzEDa2FTLHJaQyrAsKZaH4cFpM4dFKbXZ7r/87W+VUkq7WJlIXd2+qHFe0vLrL7/68R//8Gftq//0n/6zTx/evXn9+e3V67u7j9vNxjd2s33tnDudL6dTevfu0blmnD+9vi1TjmJMv736xc9+vLs/se20+fbhT/7MeGqb/nEYU82olbGGUENYEDEtwff927s7BQKisGBiNtodltT73c2bZgiLdgZqOp1OQmpJEUl3XXcaRlrzQFE//+z54XBY38o1J/SLL77Q3lhm4FKJKhBppQCRQRQpEBnmOE1TyKkiZgRQGkWtrT7sAAEAAElEQVRKKdM0rdTiJ7ltrUikjXK2Q5YY4yVXZ4wyert7phVeLhdmzoV//dvfjefT61cv0LhpyVJm733bt1rru7s7RBMyAOeY6hzjtuucN8KglZ5DbH3TdV1j3Zol97TUFJ04xjneHwbnmv1+T9ot81xqVgjGOkCltDG2OR2OyzLc3F6t/6MyWjvLAKAINXrvc+F5iZFLydy0xvj94+Pjsiy73U4pA2v9TolB9vt9LJGZQ8oxF0Lr204b37T9zMAMKcVcy3Z3tSq2vG9sSufzpdtulFKfPn2awvLmzZt1Ep5Sar0VEdS03fYAEELw3nKpzCwlCWpE9FaRtofDYVW3EsGaJNM6F0IULkZp/YSATnGZ1wOolqTVGkgMzMwlP3lRgAFo9dwqBAYGECT05nu5aalGoe2anOqy5gcYdEZboxXWFCZi5XRXY6LWakL1RCbSzDAv8XgahnFZMpBtLHAoEsKiuD7fbYd5yrUI4LjM4zRp67yxOWet0beNiBChyNPUPeUKALVG71lpbbxHRGU4hcjMbo5WaUUIAMJYSglhttoYY6w1pnWEIrXMw8VoJKgxzATQ+TbHCQFfPL/9zft307S0bXv77MXrL37YtZs1vu18Gi7TqMxhu+tJmVLKMJzH42N2NwTcNo2zupacQywp7fq+8uj63WWalnncdp3W2mo6Ho/U9YgIXILRjbOsVBU4nM5XN89IQ1pCZiKQCiXmmnPICN57VAYRmUVEauVlWdZEh1VUuJpZETGkVGstDKfL6JwD0ivI3TWemVc8b9M0XdcbY6Zpmqbp9etXwiWXQkTOWkRJtXAIfd8vIRWu4zw1TaesSbX0273z/XlYzpf5fDoQSq7weLyIiDbmPC465FdNb13HwMfLNM2hVpnnybu2bbbH4ynEuN3ua61LSCHmlFLKBVCWkB4PF62JyQBQLqyoOOfWCto0jSalFAJwrYC4apuxlIJarxey1YVRSklFCuecKwDoJ18SIEspBXPRerUR01OsEqLW2jidc70M07JERCSiruu0h2lZdki1JijJkNq2TiklyqzT4PXivix5WZa2bTe7bQgBQBXAxKI1msZbp5VWieX+eP7i+Y1HfvP5D0uYf/lnf/nZm1cr6ObhNIxTADI6MxB6o0spBgUQQJPVPqQcYq6SldFMTmpFACJABCRARCAkIm1czjxOSwU0xtUUCufDcFbOT+Nw/+GddV4ULUsYU3LOpVKgcsrFIFltvDVEpKQKEVq95FJT1L7RmgTw7nAYhuH5y1djLgAUY2Ega/1G21VYIBoEkJkR2Rirjak55lLWWJqUq1JGBJcQ3n34VKtsN3tyJYucjpdm28WYSk1WBEig1lRyMe7Lr76OyszzuGm7NXaagI6P56ZtV84BITpvrfFN1/7m17/q/PyrL//0xfOXLz97tmm2WsO3337d9+3pfNCTUgp924RUmVD75oc/++u//NM/+/rT7652+19/d//mzefjOP3Vr77+a3/0N3ebbds0IeXz/FgVmaZNJY9zUAppzsqRMNxcX6W8KKTzeVBaEVlQtgothYmVGFdACtbHT3fWWtd4YYylWudEIJVMpM7n85ryCQDdpj+cjj/7xc91460i45yjaYq5wrp8UGpeRu+9cCkAoZSQSwUBIbOq5SsY0zrrSk211LQsu+srRU4jcamZRaFalyUAEFMZp+k0DNaaeYmu7ci603mIMXZNO8dUU37z5o027nQ6KW/3+z2wHA4PMZWb631NCaQqAq4igNZoIMuyDpeUoK6stdWx0pJ5/HivtZZarNPM2VUT08Om66+vr0kbgdy07f39fal5u92urq+cs2/94fRISqGRuCwxl26z7b2fwzQM02qdXO8sy7IsMeQcjXfrnimlBCiONJAiBZpks9tO07TMseSFQTAra3mYp2672W63McbPP/98lXwTUZwXAMg5P56O+74vhU/D5Xa/894zc66lFEZihVBymaYpxHleRiLq2o2IlBwVUUqxUSQEa+XikqRmRETBvmk1qX9lyWBek90U0mriME8qbgUA1up1L8glF4F1a7Zah1Gr7aYnopKCJtx2XhMqYpCsyRgFJKyQiCikehzmw2VZCixJppDmVBOLFtBahxTTMTe+TbUM4zgts0q5gnjXaq28sykVZh6GAbjUWkOG9VwupTDR+nmBsDfWOJNYPt0/otTtpm+9Q9+25BExzMswDPvtpmt9ysF3rXPaKBGuJWVAUUqhVqfToet3KfOS6/Eyz7EeLyGVvCzLPIU1M3VNcEPET58+xenyVx8fvNX77Rvv7TxzKcUo+uHnn+F374dl+dGb15fLZRjPJdYClqx+PI+aQGvtqlQWEBClSynHy2CbJhdecpFYYq25RCItwDnncbpw8X3ft20rzDnH9RsXqMoYBiocEbFputPlLEhASlu3bf35eJqW6ByM44iIWttUGJZIMSulm26zLFFrQtJANIfEJXlvvbOx5JV2WUq1IAb1EhIqmkMeLuPj/UMKizFK6VEppbQOYVyW2Xu/hHI4DShMWBtrkKjrt7VKiElpvfOt1jbn+TxM66VhjomZpyXlCrvdThCMsatezLYtPAWhakW0CsdqrSkFRCStEKHkCgBg0GhCpaRIKgmgWmtLKblIKYVA1u04fZ8XuSrm1j8NEVmg1uqca/sd6ubt+/vjGJiw6zpo7OVy8VYzaKW4MESunbOImAs3TTOOduW8eu9Lqc41mSsTMkhKqQSuilCkQfz0eHq+3cwZG9ex9qx82/rHSzgej8fj42ZcAGCz2TjXaK2NqkSsKmcWqQiGCgshECGTgnXoQvK9nRsFSGtznsbLZWBm7awrlYRyLbXWrutc2yw5VwZUEnLKhYVREISFgcmIKIVapzCnWnJKoWSQSgIqwWazWaZ5TKncfdLW5cqilLL2cRg11zWnUmQF0TgASCWvn9oKIVeIa2vBzKkyT0spfImX627z2Q9+AO/fnoeBlBKCWuvnX3zx9XdvU8nJFGMc5NrZNi8BETWpXJMzprUNp2qcJ4Lrq90yDHFM1/u9QjXHcn+8/PU//AUKf/7m9TfffPPLf/mnzHJz/eLbt++7zVWuLEjWNX/55Z+3O/eu7DnrT8MU8OH57bN2c/Xt+0+MFoS8c+2+i4LH4ZxSarpmHMetbQuzlPxw9z7NAwBYTUqrnAsyIUjOlQjQmCKFRZ6/fPH4cLTWZa45FWNtFfHGP56OdZ6IyLfNsiyrgOnrr7/WzmjjHCUVcy4c+Mmzjs42xts6TyklfpIwaEZU9IRPYuZcIpfqnG29h1y9tdZpAJDqrdLCHOd4OB1FBEhNc6jMylpn7ePh8vlnr+cl+qZTpBjKp/sHa61vN0wwzTHnNM0ppXI+DymFZ7fX17t9KMJLakBlLisQKuf8GOVyGa11RjtErDUhofNdjIvWqgqkmImCukzLksY53h8ehdBoP86z3dt+u1mW5XQ5d11XBaTUyzicx8HPk/dN5bLb7ZhX42AppayenFLSsiyb3b7tTQWVC4hgzCWlMuUIqEBIaz3OU99vlFJTWNYvOMa4ark73xCR0uh3OxEhUn23ZS6plt5bpTWszC9jQpgAq1JGUHIMXdcNw1BrtU5v7EZb45zz3p4vY0lpSQmUUgSNt+uOzCkCEJCKgEYRKS0iawUCFiLQhla5uwJ0ztWSRYSUFWtSSjkXjcptOkFAxJRCrsk61zZGgRBC65xR9Ht3SBVcQjpcxo+P56r7ipSFQi4MAliWZclzaNu26fppnEopXbdZ41b2u+u1ymoChVJzJEAUsEYJFwae55xzjSUrpQypJWdQqzejolS9hMqMAF1rEVA3zc43zhokQpE5Jq2IFHVtV0wuAN55pdRvv/rm+s2Pte/SPJ/HheZYWNZ9ZK4lMeec9XkQoNubq7ZtN5vdbWnmeR7WVYL1zjkrYjVtO3c6PtRl8AarNUhUKkNmTglY2g6VMVNcI3UBSGvnlLYhlZSL861G1EipJkdam+855yGgiLPae78mXmeuFhVRTSWvk1WlbamChMM0MkjMJeeMimJOWmtgTCmtI+umaQBASlJKKZRsNaGgQK0SYl3faCKqDKVK5TyHZK0FZiK7lOJ8a7SaYzEG0zQKgm06Ze1lXg6nY2NV42zy9Wbf9X1/OQ+1pr7fojLH4/FwOHVdF3MRkZiLMQbQXaaUZbi62gmqNQpXagWtAXiFYtXKq9lvXS6sauclhipcBZCsUsgVWBARS5VcWCqvywjrZG18a45r/+q9t9YapQVqSsk5lwvHGDUY1MoYs8xRBBrrZq37tkulcixKmGPWXkEtOaWVUkL0FNsFAJdpXlW+iLjExWjNpKFyIZrHqWu63739aJAPU64fH1++fH6e5tPhnEvNsNRaE2PfStM0TdMopQpzCKEYy0A55xASOA0AFaQKi1QUrrKydChlmZdcGUhppcQ5RwJ1zpd5bJqm3+5gmsdlFgaoXKEAABICSBXOhZecqOR5vHRdBwpQkbcOSh6GQWmyzvlSYg7kTOGitUUFiqltDDMjCQIBQK0ZAIx6qsfrCamMWSkIq3gk52ytAaZY8vF0qkXatp3HEY3Z7Xc//NFPphhOp1MIAVigEgoTkdSaoSqlSABYvHUxxs1mgwLeOoU6TGWZ5o95/qMXry7zcjreVYj7m81/7e//V//qL758fLj86Ec/+frb96VCKLnKuekbXjipLZIy3WZhexwzaMeAIeZXr169/fTw+OFDv7/y1oYwQaXWKZSVPQbLcBFgImqd4Vq0IoRaSXKuIlCrzCGkWnoyFaQIA5AApFJyzlWwbdvr6+t3H97XWvu+Xy+7wzBogTUqp65QJ5Yn0Y02xLnM81xKaXzj2y7XusSEAMYqzlJrZRAuVTt02minjTGllPP5nFLatF3f903fkIEYl2VZ5rCEFPu2EaJ20w/jvNv2S8pKmbbf3N/fr6Af7V3XdURgve+aRik1T0Nm/f7ukYi898bEdRm2Lnv0Zn+eluXhpJVFJO+9CBNWJN52rfPKasOgphC1aXxDl2Ha7/dt66dxZFAMKEi5cq4QYiyFi7BvOm3sZRjath/G2TmHRKWUUsqyLKgIAGKJNE3TEg7Hc2UyrtfGKWXaxkzTtIrCju/eAWC76dfjI6U0jmPftCufMsbQtm3jfN/383jZbrfPbvYkHJchVYZUUslr30NEWqm+77quvcxhlUQ654ggxUXhUw5MTqnUurpNrPdrcZL6tENFREJa1xFPJwgKkTLGOK1YkYhooxAqyZPjEtgACyplnFlnmMDSt82m90SgQLq+6TVp4rXnMMaWKmPIh/NymhPrdA4QMhQgJKkgwhW5KmtEcEUtbne7dWY1j5f9fj8vU+sbLkzMq0eWAUspvumM96sMR4CmmLz3cZwVSOecd00oNaQZEQW5FtFK9X1/HCYN+OLZVS1xXIrNgGCU0jnGcbwopZZU5iUKo4AKKVWBXGUdlF7f3sRcYhWs9eF0mUMkgNtnL0svh8PhcrnEnFvvzbI450oKW2/++A9/9vbbd0Kqc2YMEcmMS/DKVMhLrkillsTMwLWUstnf+r7rt4uKAdUTrlmBOG9WjbQhktUFwGXle9vGq1pFRBCssTnnOSyCegphY/Qyh1TYKATCwgKkBEmQGLAKA1NMhZlNo0Eo1cy1GE1aU66Qc9JaE+klJGYGiswMoAD1vMTGe2N907Stt0RkjFlSrEWeKB+xCEtvHWiVCseQYjiM45hZGMka2W63TdePw4RarZIrqCBkKudlqc4mJDFEq6PPGKWVlloQIYVQUtTWrVNiAsUsSFpyLpkDZa2lrq4rgWVekEBrjUqv+4hcaiVpGrtC3NYYpfXWvsyjMS7GfLpMyubVVLAOsUspCtAZy5A1i3MuFEHENYxovAzGuaZpBHElSpZcS82lVuecc43VBqTGUoHQa/vpOMYCJc2X86mblrs5IWKt1Rsf0QDxFGoulypCAGvRMsZ0nSVllmUhADGaAQrXVNYgOhCRKsIhn4fL3eFUUCuljIFWqcisCYzCOaRluDTOGb1ZQtSkCq/GEaxPsRc5RmZmZy2XWnNsjP7hDz7/2Y9+9NVvvvzP/+RPuq4rMdxeXS0h9dbmWuZx3G63Jca1C18vOk3jRNavSFBYQAggpaSI1udWWculQMmIGHN6vJye3dy+efH817/+9el0PI6Xf/HLP9UIrXVZYSmlUbppOkV0dbUL03w8nne73Woodc59eP9d3/hXL5/1TWdIgOvldDpMUbfld99++vbt3R/+/CefvXzxR3/jj7/67VdK21/84c+//Oqbr795B9oa6+8eD+dQLNXnV/3rNz+oYQrz4pz/9i+//OHP/trn9vXdn/5FSfH69qbx+tPdB6VUVtUqW0O11sYYW+dFgFBqWYQUgUIURqwMFZWx5pvv3hpjapVS1wC6dYNWtdbH82m3253P53VPtDa6OsaA6ukBLzWnmFdQfgq5cEUWrZRGAlSMrBgKZM1EiFIzKGcUlZQRGMGte5e11RvHceVY3d5clVKcA+/t6XDYXV2nEO/u77VSKaUQwvXVTiMZY7p+27W+AIYQjDG73RVU/nj3YZ7ntm3neX6ao1aYpkk765xDxJ7NHEplJKXmKYTEANy3bn+1tY0VLFVgXmK+zH27ERFSZphSTswMMcplGEMIiHS+zK5pfavNnA0p37Ux4+kyQ+W+79cY0t3VfqVeWGsxqaZplHPKNgwqZRnnFFLYXe2GYRAEVbWIKGuIaJqm/X5fa+VcjDFaq23f3y/LMs0a6XQ6lRSu9zuldC3RNu04T/vtbhmG82VUBNa2iKgIrHUFyDlX4cnZzMyX4TSNCxCuRXZ1FykipZTRjPLkm3wynKw2jFykZiIiYJLvc1hRRIS+t0vWWklB0zQMkEv5PsBCGQXOkjeklbTOGhKFtKrqSZkYl8uULlOcAx+W4+NYplhIK5bKlZUIKe19CwBaqSXXeZxiCCvZ//b2FqusOcr7bd/65ulZmidBteQ4jVMWIGWQNOVKpEvNeZxd0q2xWhEhfXf3cL27nmLIjArxeB5CzG3jWq8ZVDgMSq9Kt1JiUa69XIYqHFKJuWRhJF1QsTLv7o+ci9bUWncal2GKhtRu26PS/XaDaoVvS8zFOWe0apzd7/eYU8j1cZhJYP3TEotSjpSeU0kxAgCJxJg+PT7eIhpns0BKqZRMCF3fOuOUIrUiXQ1yXQMuadN2S1rrIgAAg5AyBmhYYikZkJxvQJi0zTVOy1Jr1dYa5+D/R9SfPVuWbtd92Jzz61azu9NlW+3tLy4BECADACWFLUU4QnbYpukHh8P/m8J/gN4ctiiTFEVKBEQBIACS4AVuVd26VZmVzcnT7Wa1XzPn9MM6BZ+HjMyTkXlyn9zra8Yc4zfIPjYBqyDRNHLTOEPEUjgWx8a54LwvJTlDMRdV1DnlIog4zyUx6zQBmlPf9T1WVcXMZM1msymlMAtYcM4zIAuw8unU73a7Zr1JKa1X23meT/2Qcz52fVVVgGaek4goEDM7h/McrTXNul2tWm/RW2NIUhZvbF74GcJLYaJqJiJEgyisojHnVLJwKctzINZaIEUgXZybAKq4CE7MnHOO0SAqKSjQ4XCo6jaEMCeepnIc5jkV4+wcGdEggDHGO1Jyc9HIbK1d1U0RmKZJAFIqMSZjTOU9sxEAslTmSUANWSSwLpTCN4c+CTDnAjbOfMwnb0NwJgMUgMqaBKisc8zO0pyiQWqaFgBKjkvdC4AKqIIQKOOCF0EAQmuneNzvj2I8+DCXIsYpQGWJCcUiK6dpJOtq55TFIGVhVQWEBbhlLJGiB1QpxpCk+OH1d8+32ydnu6vtGlWfPr26u7tDgMrS2Wo1eVNyBGNTSopqCYwxlpBZvHPGmJKjs9YglsLGGC2ihaeSWhdIVEHB2yz54eHu9u1bS0hECnA4HZ1qW4UffPb5j37+0/5u//r166auSylTimjx+sOH9XpdhKdh3p2dIXA/Dp9+/PyrL6/Xqwaq1f2QX35y+ekPfv+Xf/VXX3zxAbmeJ/nkk8/ef3g7zceXzy8VIUt49+Hh4W7wzS4Pw0McfzNPz652L55eiMjnn738+utfffqTX3z6ycsx5of72x//+Mette/fv09WxjjmnEUc2aofmAx4Q0XYEmTJDCgUUipE1oWaaDbGLX40F0JKiawPIRhnv/nmmx/84Ae73e7h4cFau9ls+r63xhGiIigREIEoa9FSrKpIKcG5nPM8TmSNAlUhCJCzTpjTPBtFVwVjsa1qcraUMscRWIioqHBO3ti379893nV4nUppmuby8vJ0OhmDd/v9qq5X7abve01p8f4shOcYc85L4Xxerc9UFZ2o0hzjGOM057Nmq7ZKOc8P+5xKXbeFsbBO82AsKjA5mqahCtYY440tiUecjTHTcajrenYiUoStAp9OEzMrYtMoGhrGkiXuMJydX9luICzGuK7rhmFYhoJVVdngfal8U7ssSDGLSd3EEoFM3/c5ZyBkls8++2xztpum6Xg8brfbDx8+aOGU4tCl8/Pz3dnm7u5uv49XV1fLkUW0oBZH2ATPzIJgjHGWjEEpOU4qJSs4VX1kZcMiCyckDb4KzgPh4hclAmPQWovl+/4yYebHljqWHEJYDjQ5R5HyKEp/jzJYLtnOOQSTmTOn5TjlvQfJXAp6F+zSMWCCM1VwRHZKsevH0zSdhvn+2N923GVwdYvWcp5LSqWkdtug4DwlQhun0zKqDCHcXH8Izl+cnZWSQB4NY5W3L55essiU892hI+sfTn03Tr5q8zS1bWuMZ81zVi7REnjrBD26qpTp0Mfa+jGWbng4227m2teVBSnWGu/9arXOPAZf96eRRUQgs44xFchgHZBZbbfjOILokIsAtLXLoveHoQcZx5FZWaBtKlRMKUHWTeUfrt9WzjlXCZCvV13kLDqNoyIUgVIkK6AogDDi/tjPqSxnI2ttXdfLN5O5eO8W24FwVlXnXBOqpXiYma13zJy5WOOttQARgPb7Y9NUAJB5VFVRsD4I4Dw/EqGtdTln5gxgYIwA6p3xxgNqKVJKAVHVIkysIiqqKqo5x6KiYcn+KjNbYets3awKKwsYZ5kLcypl3jS19zalJMsFPXEIYU4RUTMzIvbDlFJRIGOcMYBo58RunENw3DTGGOeMSJK8sDVgtVotN+bMS18IiCycfCiZmRPDI9hvCf4uPxERi7BAsxHxrG3X6/VSxvfYaKKP1CBVyFy6cZ6jLneUOZYFoaUCoESkwGKM0VIQjHEGAaYYu25YsKlEBMWTMcYbJFrAkOSCsXbKjKKG3P0w55x8sKBqVRpQIQMFWXIquEJXtzWQqeqaywKzw6WjfeHlKRYGzSrMS6GoUVQVDrbarLc+PHRTKqJDjIUIkEIVUMr5ZmOcu7l7YC4LsXJOBZlVgUAVFBUMAjl7UTUppbnrtOQP3333H+fpycX5Wd38+Ic/eHp18U//6T999uIjItrszjabze3Dvd9efvHFF9M0VXVtLI7joKpPn1yenZ29evUKVWKKwbnK2wKac0YHUrJB65wzdTgNfS5iVJpqReL6OFzutjAlYHn9+nWXRgfm7v5uHAdLj1y8qgno7cX5ru/7GKfKu0N3OAzHqqlv7u82Zy9/8+rD61f/8yfPnz376LNxf/frr7+9u6m+e/XaGBymeXN2+bA/MbqHh4fNdnXfTTZNbVXfvXmVj9f+889C2/xn/+j3GeDNm28LU8mlezjsb+7OdpubN++KZM7iqpoLrFcXt/d7a2hM0TvvapenqbCWUqaYBOycBudCLqWU0jTNErRLpTDzarPebDa3t7fLeXpJo6mq3WxWKZVxmIpwCE5VxykOfbeYGqoQADDmJEBTTMwqTsma4H0Rcc5WPhjUBXq3KITtqmbFJc7vq6r0ab1eE1ERXq+3t/f3Z6XEnGTiOI/A8qsvv3DGtm1LICLi62pZ/S8uLh6jb2j6vkvMIQQTao8OyK/PLkMIwzBIGQtDTCXGabXaXF09JYJT9zDPc5/Gpq1BeFU3xjidphDqcUpxLohoDMa5cE455+35WQjhcDyWwruzC57Gm7v98+fPnQvehaVgFRFjTMzcNE3i0o+DF8lFprkkgXGcSyl13W427Wazsd6N4wQA7969yzkv9L6cc54jEW7Xm8JpaQh+eHhYvlfjPA1jt6rrKphSkoLUIXhjc5oXJORCG6hDnXOGQstTuqhq2+32sXEBTCllTo/wL0RUZmvMUg4/p7gsNEtLqDGoqouUZCwtnwSRx6T1Yn3KQqpV1TAvaG4NjhbWJKJaZyyR9956m4XHce6HaRrjlHJWUDIKWlizZFBFa6BACHXOues6AVi+kHdOCiNinKbz3YZzEuauO3IuT58+Bc2EVHJWKVfnF9Vqsz8Om7OzDzd3wziD6KqpiPB42CuX8+2uWoX7h0PbrsjI4XRCRSJ/e/+QNk3fU9v41ap5OBxjLjFG76tFn3eVJ8+zcI7JojPWn8YJFdu6mYbx7nAcBr+qq1XbomQRcSHInAENIXGJrnYA0lRV5qIgF2db6DNVNKUizNM0TVN0zpBxLCWmqIWttTHlpc7n+3m/qaoqZ0bEUgooG2PImJzzYR5zzkVg8THlnMkaERnmiQGUcH861nWw1o7j6PwjOVxVExdrbU5l2Z9U1RvLRZGU0AoKp8K5KEgdfM45lcysxoh1XlVUMZeyWrXTNDnnkqZxHHfnZwBwGnprbetCFiYVstRu1uumHu/v9g/HZ8+ebbc+pXQ8Hr2vUkpzijlxKoxgSpkzS1231tq+H0vxlXerNnhbpxhVctvWosVYr0JEUjlPZGOMMWYRFJFSSkpl0YFYgFlJlVQRCwCAsfh9IdLhcECgrutFebPZ1HXtDVlrT6ceUZ0NVQVgELwWteN0n3MuIkV0aR0uReCxiAljTGiMryoRWIblqgqghqj2tQ32cSonMk0xx9K2LWcWFGMcOBcqdzydgBmJrXfKGqcJpKxCUC5pHqvgvPcLPf57nJmkPCtAVsggCgRGFVCYjoebdr1br7cZezFuXlZz59M8tlXtvC0sqyoU1lIygix+WEEAgMKsqERkySjLk7OL0ftgkOMMadacP3/5Mo9D/4CNtS8vzuZcbt6/tVI8FwO6XrcAMk3DcnBk5r4/rdetQbh68rQ7HmOMQ9cvkpv1BLGgCpdsMZAlSWwVDaB1hAmnaWoA8xwhmN/85jcGqQkVEAKR815EsvBwfJhjNMbMKYpmsqafRlc5Bn7Y49nFZysPXX97edb4QMIxJTo8HLtuUDBXz+35kysxOMe4PT97evXDr/72lw4Znm5vr7+7ff/6xSefcpxePH/yx3/+F2F1bnzz6SefBO8/efmRpPxn33xrrc2lEIYpS9VuRYoS9fPBBZO4sKLAY2Yjp6Koy+OcSoldV0QWUEHXdcuTvowjF48tEVnOVUpzycYgkUYi2zTm1HfHaWQRHgcbKkGc54mISoo+gUMLkD1ZBIpS1k3bz1NKKcbYNI0KSCne2FJKicnb9TRN61X9+aefvH//lmeJNl5sz4ZTF8gSUeIigAFsqCtg7uNc1zUZM2aNmVlA+v7qyVXXdfPY73Y7VDeOurXRIpdy3A+zNQZALy5aFXYVOOe6kcA4MdgNpambjDUSqXNszNnTp8scKMZYChtTxYKpjzTmnCWlks1gjDn1U9ONTdNoiVqkXW9s1aghQXNMWter2rWn0ylnFtVgzLPz1Xa7TSkNioeH/Xp1jtmKSJfz2Xq92Wxs8H/1H/591dRIWjht1mdXP7n88m9/dYop3u6rqlo37Xp1dnt7e3G+WbehqPXN6nTYXz19Ng9jdzoJIAutAY5x9gBTmjXHBYdUQa4JLai1iMGk4FllLnmKcwyGvAcgGbNkIWfJOkDHAqBqDKkyCLtgKx+aKghPwWNhBhBjA6NwLKAiWJwng0IglbUVGQMGmZKxxBCEuu6gyn6pBCCaC8+Ks4gH9QZr68o0OyxxZhvww7GfS96dn8U4p5wom03tGwMfn+/ej11x1Etp1y2TlllyjiXGp+eXXYxTKt7y4eG9tVgyk7XjOCirKq1XF5FhPM6qnIS8NWgpxonjvNusqnYFACNLHPnhMNbZqOp82FdVk1K6vKyHYTr2yXufp+zJe1HjrBR2IdRmN40xZmEwZKheG0QUmEXL4XRarZoDgxYzjmPf92dnZ2U8EqCmVAGMRqvKTlNGVGZWBBZSxCmDreu5FCLSwvMwbzbbKLLcvYacameb2hBILjOIWksX27Mhpjnmgq5k8FXICIMOhUtzdpbIxsyJoSStvHXGIBBhmVNRFVBlkMIFTQiWLOEpzQRgHSEgs3YlE1pAiwqG1WpB5VJyMEYLN007jmNiQjSHbjYmN1UNXJzxrsL7mw9ht526WGIBNcfDcS5wdXUVU5kSPhxPwzgllqZpcxoASAwhUWTJyCdmL3nC0yj8k88/3u7O+sO9I9M2bZrm0NRcSkwxBFzOmrNqKRxFCmIuUBQADZnAnL1xMRVnsWmDcYbzTIChJuP5sx88H8cxz7HyVPmw3q6fP+MPHz7kzOumyTn30xgCfbQKX3/QdzcHFZoyZAwZkdGICmAJpCqxqkwRzdYVgXEcx5IMJ9ZSlyqgGYZhTrGA2iqwE7UqRayz8zgbhoqtLQMaFe/2cxSEb9/dXyfZNK4yulP1KRmF4HxlazGUSoE5uboSlLnMIoo5W8XgAlr//v27QWQ0Osy9sXatxhtPm9r7MKd06k4plapuW+fWAseuy2zRmtM8jnE2dSggkmNfTpO4MaXnFxfrtnn/1X+62sBnTz8+P7v6k//lP86p/vpdUaMPAx/ffxuCmod+ijwVa+sr4ZTmYbOqcsrffPcOCD/c37oyGSnBu7FotTqD+eH8yfPr9w91WJ9dPMs377KM6vzbUxes86YqJXfIpvaA3unKuVxU0VcMOKoRFQO4u7iauq7Ms0cbwCrqN19fbzYbxfM17gOHKmzv76bfvP5wdb5db3Zs+OnFkycyOWMV4ds3X/3wp7+wVf3Fb16luf/FLz4eu9OXX933fve+1H/1t/3Z9de/+OmPfvT3/vCb19+NYuapwHCfIHtNP6mdqcNX333n2pbHBysEgk1oJ+PmsZxfvnx3fxdTsdbWZE9DT6tWgUophmhOBdAl5jrUzjkrkudJpVhQUj072z083NkFc5pzLiqL3iWq1topJVgmigCL3Wk5CWrhxygxqBYlg7HkhQ69DGWXP0KIVQgppWmOSBLT+O7dm3keL853hec0j87Tpm7HcXx28XzJBoRgvK+7To3BaRqm7mitXa/XdV2naeaUlwqnqmqqqlLVYYpF4NmzZ8zLwNLe3t4a551zOedhGKZp2m22zvvT6eScuzzfdV23HNms9+eXTxYRabqL/elUShEF7/3xdCqlXF5expTGaaotGGOkcMyshac5ZRG01nnPAnPMqpqBrSMchnme6925c+50OqGqNf6jly9TzuM4Uk6ffPJJKeVwOFQ+GGMs0nrT/uTy4v2bd0N3NCpN8AvVK+csnHIapeTgrEXy3i8j88aHVd10c29A680ml2iRnKXgrDPGEqqqMVhAiQlJQQAAuDAiOm9ALSICCrAU1eU+gcrymHWhxlpVAEQhYuacSykFgUQEF+6BAjMnFEIFAIPSTVFn50mryofare6P09gTiCT2rsolxilvn16uwu7mw9ANYwIV1VJkmpMwC2sq3A/T0XfTnIwPKc4uVDb4wrKPvfXVWMrh5pYV1ND5btePUy6Sx8Qp1lWz0FQyZwBgTqo6DB1b4x8hjbikxZaDFxD54KfpsbxvGKZF9HPB13W9yJj7/X693Szld7gUOBojqtM0OUvL+x8AqmZVRFIp1uIUZ0VIJR+PRwCo6zrmMk2TeG++bx9bWjEWepeqLpVZzrlcYozxdDoRkQdSEGNwISQbJNVKpCzD+GmacpGiGDMv9jQFBHjsZ7VkQl0RIDMvftSlBojILinYx9SciFpjCRSglIIKS9XHYpsHUSQQwIUt9b19D4kIRIsyEVU+AD7Ge6pg6rqe59ki4IibdW2s7fox5WvvvcLSAQAAMIwTAKE1Zc6ZE6KBCKG2pbAxzlp/OHZQUls19WrFJWdhytkYg8hFZJmRASMzL3FiUWBAUWEojgyLqIomPvZaWWzrarPdhpCt9d5Vbut66Pu+7/hUVdVutzs7OxvHURWL96vVSgmbphkNvb+9K6WgWgC2ZAFKLnEZCiz1M957YyFm9t6Dt8LL45OXb5cxRlTs9/UJlsw8z2VOULgJlXWBkYZxRm85FgJz2h/nE17uVhVZNlhSzrkjE+q6daFar88fhr5LM1gohUtMtfWhmGV6waySi5bMIA4dIk5ZYsnjMO33D4AmVJWqHee43W7v94e+7wGhaRohYBYFbY0db/eF8fb6djAa1uvTNO9P3f7UH8cTOBriYCr/j/6zP7z78Jsv/uav1tuaQkUkkedgYNWscp7AULAmZ47zbIxWxltbGdb+NK48dF1njFHgL7/80ntSTinlul4ZQFD+3vGpiGCtVU0iskAFVIoWRUuE4L0tkkuOOeuqbq7OL25ubnLO5PR2f7hgbTdnVVXth6Ebhp98+lyVLza7OA8vPvo4zvlXf/PLfua6XX3569+8+vab/+IP/7Bdrbt335ndNnX9u3fvNM/BW2ttVlTVh/t7nbt/9A///sXnqze3199eX6uqsdZZt2q2p1M351RtNov0G2MMrqqqypyf33QnReCiZO3ygOD3U5ISExGAShGxROM4rlYre319jYjLfF4Uweiy3a5WKxZhZkFaNqpF+Qn2kequ3wvE4zSnOa7WbWgaFCYiZ60xWFXVOI5AOvYp5zhO4r21DtNctrsGhI2hj55/NI7jw/19XdfrOiDm9mLT9z1jqStnrM1TL5xzzksRd845tS0+wparze6sCMzzNMXZkB2mcXt2PkzTsRtKKW0dijAzrzdbLnmY4jD0Uy6LDJsKz/O89Njkwi6Eha7XNE1VN6f+UWA5Dn3TrHKcUi42eEZz6rphLlVTHw6HrusM0oIOaObCORe0zHz74QZVXzx77upwe3vbD0O9alerFVndrNqmCt1xn6cxON9sVxael5S7bpiGPgRXVRXnaZpGhJDjfH9/31Z1XVVVaG5vbqzK5eW5LyZ4u6qrUsgYAyUrZ2ONd3YZ14kqMYLwgkBCUDBECsyKSxpBsRRWAINAxhrABfpqKgOASJaRWL6fBwM8rsLfF8+UjAlYVS2kYKjytg225AhIV2e7zz76iPbjaboRFGXMAPM8G0+GXGKZTr1rKkklZgYEFZkL+8rfPOz/9quvFhTMMOc+ZiUsaAGmvu+DDc65PMa2pcqE2mL7rJmmaU4pxkkUwKBzTsZcB7eg05KId6YOXlW89+v1mlWnaZpTnqaplNINI6Dx1h32p7oJrBJzcs6xyjiOhHYxjqJ93IREpOvn7w+jUDctGnt42I/j7L1tmiazpn7IOTdzcc417fph6K1FBGBmELDBASwEMmRmR4uD/XFTWa1WmplBLVrnHBlHJIEoZxiGAY1jZkTy1rAic04pg0dVZRFVBIvOkSEjUpawuEEyFhd7LQESLL25LKoARpQ1CSIa96jZioosfQhkFva4iOT8KIoiKbKoFNFibagbjyBLz50lsznbpmm+e9hXVaWgXT+GwMaHxKJIpZQYc71qDTmBxKzOoXVOWVhk6KdVFaYpGRXUyto5eBOqhplzTinNS12xSGHGIqCKAMqAZRlZAyWOtThr0BBx0TEnRKyaojovu2OoKu/9NCwtGpim0YZKVUVYRJ1zDBpCDTxxjqhorV+G9JWzZrNNKTGmRecLdWOsX3AozhkVoaWnRERVqWTIvBC2c85oIaeEqqxCzkaYeS5oXRuCcRi0NipQ0uG+S/0UglfVWErkSagzzm1MyCoJhZyZpgkyX6xdJXw8Hm0VyLi6UkTimEgFc55zJLaZCxECQRZWTqLlcDo6Z4KEfhpzKqbywbuY8xZ9N2dBy4aqzdoVE6f79nzXVs1v3t9jmvoy4Bhvbm/LnJ9ePZvJdUO/u3hKzt5/+JAKVc4SmVxyQFOtN2er5v7mlpJe7C6GmXPqAbMqMbMBrIPLWVEfkV6EaqxBBF7A9aiVt8M0a47GelVAkJxLd9jnNAdD2/VGSm5XTRU8ITx9chWMzO+vtxeXq+35l19+aUhtmV+9ff/TT558+dUX6+C60+HFi09vHo4SzPX1jfcmpvzLL776rV/87n96dXs8Hp2rEPH29pYMdENszy7R+9VmV3i6uX+or/yTp89/+7fpi6+/7oepOEAc/+Ef/eG/+eP/NRd58+Ztd+zOry4NmDHOlfNEhIZAhYxxjphnIMMpElEpqa68AavAzjoWeXb5zB4OB1rKRoypqsZYm+c5xmS8mx+njKiEi+eWmU0IArqU9pZSlvYVVhjGiUUR1CIYIu+tQUXlKhhrGhEGln44ztMpePv86ZPL86u3370CrX/rZ58pfwTCTdMQQI50f3/fNd5aP07x+vamqcNufRYLZy7B11XbLOe4ULfjPO3vH0SERZlnIkvWQhFjTNu2z5492+/vT/1Qc+FcQuVdqMZpEpGqqhTAOt8P45SzqfxqsxGGmLmM02p3FmM0wY8pEtgo0A9zzMUVrdtVAbPfn+Lt/XIiaZpGRKmoTElEug/vpHBdNcG5OUUaabNZsZahO+YcicgSzWNvkFZVGOI0HsvFZhP8+XffvT0ej6CuPwFzXq/auvZpGons4ijZbbfX79/nOIBsVlUoac5pRMTKejAIha2BJVCpyIhoga1RrwBohSCmMrGIFrJojVUiBTQGLRlnyBh01gZvl2YkIlIkFlkkDZWFUkkEioCioqAiwAJx6P2qTfNEjP3plFjFVM+vzm+PUxNMnoq1vrLVNPaeVqvVpks69H1T1TCnpGrIKsicRcp01rZZybpKRNTInKL19m4cvbGncXKGDSBkPh66knNd17uzM2+NMcEHC4invjuNQw3mdDqplIvdjlD7vre02q5XmdkBeO+tD4e3b0MIijSOY9Oui3CORRGYWRh86+u6zkUWksCcc4pRVRUoxlhgIRp6ABMLo/GsMKYUU55j6ZbOImPmnBnAhkBESwmzqgKgMxYkp8JLV66ICLPK35XMPz5oyy9LKWCQ4PFM7J0LouMUcymgSGQRFcAAgyggaiqZR1kKPck4JAVAJLLWWksigqJkrUGyBLDsPFIQEQuSJwWG7z9UVUERkDMvxBbSv/stKSVXzoXKcS6H04EUvLdxTjHl/bE7IxtCjQpzLsjLcNLGaYqZvQAZqpuV85xzVoW6biwh59idpsr5klLf931fXV3uXr58LlyGoeunsdvfLyrCPCkDknGoLLkwAysSLRBKiFwyajBAACbyqRtql7G185yAoZQSQu29N4CIyCnK9xXCpQgRGW/Oz3dPri7e3jwgqTMUY1EwJSaFRyDzPM9AxgOxgHOOCQRAC0/zWEpRBe+9r6qszKWUlEvKlqiuquCcqhaApFpbN6dMSpxK27aSgLTkpM6h84GtTjHthzH3412SsGqElKyZpoljAjCtr0yobdX03WmcE+dSYnHKMReoTEkzFyGLWWQc+1A3VVP1/ViK5ByDt45CLgWKBGNlSN44NT6zJtH1artu7a+/+PpnP/nxpx9/9O2Hvy62Fsi//PJXf/9nP/QEb8dcUPvuEEJ9vt1wSTnOoOmTlx99/PKjL371q/54MmQF6fCwX2/OUtRSCoDPMbWrOqXRECiAN5RFF6sbopbCqkJG6rrOmQUUlJVhaS7nki7Pzof+tNmsgzPb9eav//qvS0qbj14g8h/9F//5v/3zvyqv3wlgMNBaV7Xbi8unGCeCfHV1NQzDP/i9f/D16/c3d8dZ9Ld//tsfv3hKribrNeuTJ0/evXtnfYjTeHZ2Ztv2/tizgAr9zZe/no7dj3/687/3935+u98b2/dT6uf5N69eu6Y69EMsxVt3fDguZW4gKmS8s4iqzEAEUsjSNI9VVVXBLWdlAGAjkjkXtrHkqqq8cyww52SEl01lSjHFOMcsSwewc6KyxNSWjAoaUkIRQmvatonjNM+zs0ZBwRIIxCiVdylFizjnUjgZpLOz3XazSvN0f39/eX6R0/zzH/84x+F03NchbNfrh7uBOHoLCrRdtetVA9ZNcyxF0Xu0JqWccrE+FMVhjMYYFg3BC2BQvb/fs8r2bMfMp75jBR9CKlK39dl2d319nRcyjsgYY7taHe/7eU5VVb17/yELP/v4pTV+GMeUkqJZXBgmcUrMosfxVCXOrFmxAJG1zJoVjfVgvRrrgm2rRkTmMQ7TVHm/Wa3X6/X55cV+vx/HcRxHAJHCzoG3pgl+ta4QpDvcp7EzKnEajpx3m7Vzbpqm5W4dXNWdTnWIq7o53zXKJdQVoaaU2rb1zqIyGVN5KyJcEmtRQgSorDFkkQwzowKosrGKJKBEKILOkHXGERoib03lA2lOOWdhBSq8CJikAMYQAeJy3xApBEZVFdumsQTz2IMzjszpdDhM+2MEyPOuqUVTBmIAh37VtKfuoMYUBVYUQBUlg2JMTCmVDIDmbr9ZF+tcu17zZB/2+1MRlRSnsm39PEfOGTJXwS2U0MIMhsRgqCpWqb1b+Wq326QYmYsIrzZr693dw369Xo/zXlVdqEuRdt1YVztfDfO8YJIEwSKhoTnmqjJt2wJA4uIAvsetlpxzASciIdSKNM2pruvVehtjHPpekNA6V1XW2sKsmWMqTaistVpUC2fkx0sSKMGjXPmYEEOb5nTk06qpF9khlqzMxaJBKKxA9u8E4cdhEKm3LmcWVkQU1iwFsYCigC6hWwVRxeXyocIiYkiMNZaIC5MomMdaNEQEJVUhAkIAIFAVZG9t5YOA5pxoybMZNKgpzynPwVlALMKpH8cxOeea1ToVFo0AkHNRUiIqrE27Bpz7YRIZ2nblvV80WxAga4umw7Efx9Fo8Q5WjWfVzfZMJTkXzi+uDvv7cRwBgGFpE9GF6sbMAgYRVDWrLGVHjIYMJYFjN2nFiJawq+rgCJ133laqKghLHFPkEalofShZx6Hbrtrr2z2AOlQtEY1T4ZwTCoQQllpMACAQIqcEpJCBF1UDQAEUUCVz4WIQF2z7IzWvZBucJyQ0IlBycsbVde1rb1FJ8nrTqqF+mrPwpgqMZNM4c993k/XOkCuSp2mofGialSjGmOcpWWNCqKFAmgeDUKSIiHfGkmEFkbJ0yi0Ob1AgYVDWLGTMmPLnP/tRT/T6+noqcv1hTwG2rf+z/+mPoVqNwwkaxKpG6+66fj4c7if1IXhjOc7ifE6lDU0cuie7zW/94JMPr76+mUY1pm6b+XCY5lMIISdtm6rvx3HoDBZyJAzN9nKeU85RlB/9wMZ47xdKlCWz8HA8VdYaBJNznMfx+t2b3WZ7vllbgtDWr775tan8w6lDFC2laloSTiUO0/zmZp9neXp5maAacu4/3DXtZrXaPMR0dxrJPjTtOjQrHo/LxTLHRGSM8+M4Jy4sWrmARLfH4+rmJjEbMH/wB3/0p3/+l1PKv3n9HSMhGRVGEUPG+lCExRAhOBtUUinFElVVFUJAZUK73W5Pp1PiREQli4je3e/t8r5xNgCXBUeXS7HeB+tma71ILrgIUAbRh2rJQrgqOAussDDkMofgPKcISED6yCrjUoVgnck5pxibqt082bx48aIO/tU3X7dN+9u/+Nnf/Mf/8E//6X9/sV1rTnEaP/v8U0+hzJMnACTyTlVvHo4f7u9Xu4tV204p3d596IbRGOOrhojO1s1q7UXkfn8wznnvi/DhdFqtVtc3NzHGddtaS6vNOjQ1GCq51HU9TtP1h9tnz54poa+rmLhu1wF0jnmzqQVUkfpxmqYJ0IqIc65qVqAwjDMax0g+1Nb6wihqmtWKiAQAjUfLJUbr3WazOe5Pzldk3Lt377a7ta+qqqpECijznKZxbJp62zgRmLq5cuRdNU6zNdS2rTNWGC8uLryx4zjmnNM0X15erlua51mEHZEJ1appLcHYRwSxBKgCINaQgKoqGduEWkBjQnaFjFOgXGTORREMqbFkQJcVg8AQCC6j38KiWFgFgYDksVAVRES4IBclQ1pEtC9jW1Xrpl41YbVaATnsx4pNP+thuOc4MlpRs16vfbCH7w7QnCnhmJIAAqACIRlBMs7PhaNwVLm/31fTbH0lYJXjMIyrutmeXeQ55jkSyNOrJ31/qutaRKZ5mOYZVFKKU0rJjDFGY6mtG8nldDrVoXLOeRZrbYzx/sOtcRan6Jw33us8T/O8eMeoqqw1sWQjDnNiXkjnuty9YBFDUxKRuiwDEURE7ytmFVVjrbEWAUoWVbDesSKqyPf4TxRVzgDovTcGjfGKsDyAS1goxlj5x36nUgoSiYIYQ4jW2mWS5Jwj58pyNLSIZZmc6TJFstYKwpwyGSQFXGa6QCgKyiLCiMFag4TWwvce7MUgvdx5CVFxKRxQEAxNvUy5Fqm5qj2AMPM8j4gY3Nq5UDSDpZyZUFerNsYoCMY4EOVSlo7qqmqats3HI7MsmX5jTNM0joyINPWqcIpTT94uzcrvbh525+cqufauqcN2d66qx+PRu7OUUimpFAElY0hFmbWUYq1FS8aYpclElFg4JhGecuJNER+Mz6RNAOHlbF2ExyGxgiqGrF3fT4k26/bZk8uC7jCmKctcBJWlsCJYpAVVvwBhHIgIsohB8m1riZh5ijHm5J0F0DpUj9DKlDOzt1YVEWgc5xBCjLHero3BtqoqI1btblszs8niKmrJINl61w7jeA/TEAdD1arxwZmKZOpOSBaUSRRAXKict8E61+KxO0kZWdlbp2gySz/1zoXK2aahcZxTyeu6WcpXyJov334rzUq9YyRP9tmTJ//wR5/+zX/4y+vD4YcvXr4bY3u2u765+XC7tyTOrrBkQ+IBMLNRqJyPJUOOWOazbdPH6WbfV9vN2ZOzfjhJKVXVIoglJGNevHx2ff3OeZviJAUQQESWItRFJRrmGREDeWsp2OCc5ZJKyqFtnj59Ovan4/H4q18NiPrTH/9IVb/69tfTeLrYtET27Ozs+t0bVLq9v++6bh6HZ6dkcJkUOKLJh/bh7ugPJ0EzvPlwfXdQsK9evVpvNyB1jHGY5qhYhTrGyFJy5lXtu3G6vf1ymmJ/GhTp4dQ1u12aoyo+ffq0rVdffPXlEOdqtS4lK9Cc4jzPC8Pg8YUhkoGmaYZhICJX1SJiEceYbFVV8zyPU7TWVm1jjBmnKefiqyC5LNYbhMcFIoRglEshay0QGiABiJnnKc3zTKAlY105NpSjOEvMhQsra1O3zHo89H33taqejvtVXb/+5vUnL19Izt/s3zbB7darN999cGQQ0VfNzHG4u5+yHIexaVbTNIF1ZKxZNlmgxeqy2Wzu7h4E9Pnz56nI+w/XqZSqau7v9wJKRDHnVPDN+3dd1y3Tu6Wcy9cVkK2rChHn6WC9e/785evXr7/77u2C8WvbVhFSZlVlVMzFuFAkApICTXPabKq6aa21u7Pzvu+7ros2j8O4Xq+RqIiK4sPxNOfi6+r1m3eXl5dk7dyPqFCHoKp5joN25+eXTy/O1u1qTtx3Y1EZhx604ZyS6twPnLM15nQ6WTLIdlnJc87OOclFHJVSUpxIwVoySMYQijCIt+RIi2gB9cYQaVZgBRIBJTRolxI3EFUqJeVoXLD6fbcdIiACIoGILCW9XLgwiQhwYSCFUKNXrFe7lOL9w+nucFDyq9Vms46VO66CS4pCdrNu4zSXlLON1rt5nkUVCBMXR6aIhhAcwmmcWMAY0w3TeH+IMYLxknh12R4ORy3FeaOIN4c7Y0waexTOOddVFXy9KuW0P/RlssGv6iamuetOqjqngohCZrVaF6CZC8ccWZsG/fcfZgkBAIgoAP6d42aZETILAAizMAMYIlwANy6EGGMIwTnXtq2qztMkDAuwcBGZradFZA7eLl2BOTMsMCE0McblvomIdV2nlDKLt0aAWIAIQABRrPfr7XaeZ56mlBOrqKhIMeisWSLjapAAWEBZl+ssKqgnMtY6axwZQovy2NYnWgh0uVALABGlwgtxVhENLe8AAMIFYTFNIxJUtW/bWlVTmpdQ3BKlWDYwABzm2c7gXHi83JPlcczzLIrjfr9er0OodruzZRlabt5AFONsmoqIXKhCcKxFGE/deL/vmuCF8/HYbdYtoDXk8fvjijFGEUBBQEQeH+pSREELweIRcdaIYlaAWMgmEwWBw+hEyqpp0Lgp5pgLK6Qoh9MUYxwTz6nEYaRqXVl6cr693Z+6LtbBx8yKCCxzykQkoMK5AKaUSKFpGldVzhmiECq3OGOJKKcCoguGGoiIQVUXAnyMseuUeLLbdnO+qgDOWqNFg1hVO8/IAqvtKktrPnt5u98fjoOv2lJgjrMBLBkNFx67ORe/481mW20b33rNZRrGHHMsCsai96u6AaCHhwfvKwUgQGWZU6yqKmOB2o85ZlGOVNL04eaue/ns6bMXP/ud3/nlq+9e3/3anl95tMb4eZp90PPNRucOmas6FLXzMD45P/MoZerG/nA47EO77ecJQQ0BIlzsttfvb3frjbHw5Hw3dg9xLtM4kPHGGAGE73ffnLOxHpQVwXtf+0CoXRdFZL1ep5Ri5nXbIAiAvHnzpq58SckSffLkAiUrDzsHx1MHtt5PaUxm2pe+73er2hvI8xCssVULrnl7e+i67uLy6Xfvr4HMPM8hBEWIuRjfiKoiOFcL0u3xfn8cAllg+NM/+/PLFx/V6zSXMpVSYopj/PiFvTg7d+PUxylz8VWbWUTUGCsAKhJjXBiRS5+EknHOzVNCa0TVLod8AGDGNM0MaohW67UxdhgGERESMGQIhJf3m6QU55xKFrKGrI9xApGlA06EHZkQggVu6ipYl6ZIiE1o+2lkNKVI3425KLTh/uHYdV+fbdrL891qs1aCmNOYJ2aGbiqi5MPm7FJtb6uaT/39/YPzVV6o8caJSEopT6O1dnd+tlqtfvPt68PhYH1VSl+3DTNn1SIMAGUo1virq6tpGKYpAsDHLz4ma4/HYylSRA+HU9+PAJAyW+NVdOinGNOUNYQw9f39fl/XNSssXtlH0R9gmqZ5nk+n00LqqHfNMEVVdWiQ6OF4VCJU2O7Ou37kkgyqt4bo0dq2WzdN7VDBoHUmWTIs8HA8VJU/zf39/enibHfx5AmoxnHaP+xTxPPz8zmmvh+sNSmls7MzH2pmVsIsypotWAUxSMFVmgqKWGBnlHPhXJTFESGCCBmDIIqPjY+wBEwZ0FqLZElYGARBFxj44tDhpaRJoACIHFj7MVoX9ne3Jc3TND159sJ7v12vfvaTH30U+cP+NKXim/Vvvv3Wez9yqn09xoRIysAiYCRziRlffvbp/vbuzfWHy/MLX4VHktrZ7ubmprZ+6nvnDSKSI2EZh9M4DJaMATN0o5a7zXrd1HXbbIwxdV3v9/vMshR2jeOcsry7uRWGqqqOx4dGQdEA2ZIXvhIuC+LSkOFDOD87UwWiR+sfABhDVRWmPi3wEyJYrZo4RxXjndG6ZmbCx+J3YzGE4L2vDSQuC4/JOSeKj+k1IiJgZkOPBihCQ2hyzkvlUVEgIQFRRevw1HcL35QFUBiRYJ5zyc40UgoCeGMn5mmKLnDbtjkmQ6jGLXuVI2uRwErOadmoFpMzoxBaskZSXjbg5VKMxoCCQZ2miKjee+ft911M0DSNtXae52mattszEehOvQgoUN+Pu51n5sJc1633fhhnke+7RGNsmpq5IAZnDZdsKx+CU+BUHmMOU0xNFVjy19+82a3bH3z2CVklEwht3eDpMIuoIbdYaCUzKejfsduIgndEJCAx5oQqyKHywgpzXOobjNWcxbgS0M2xoHUklEt/6Prg67Ozzd3DYbtZRaGhG7ytncFVUxclAACyj+K5cIkxiVDVgBTjnLNkCHLJOWdVJNRAlDLnOLPCdrtd/IwEJnNx1qKoD3aah8Y3gJXybBy2npAUrTgyxQRVpaaOOX/86ac/ks/fXX9gof2xv3849P2YY3LMLWUI8GTtVjVYy1PKDuh8s1Vj+pSOw2iQttvt/f19XdeXl0+6rns4HIjCYs63DipXDw+nXbuFkj2F2777N3/x73708fMfv3gRru/SOFdg/s//9f/x//vP/kXl22fPrzT1cYzB4qb1H332w5ubm+HhRuN08+6tFbjcntvd5XfvbwwygHz28tn52cXDh/uPnj+5vX0/Hh8ud+vXr9619Rm6oAi5lCIZF8AvCJIpRVJKjLDINlq4aZq7u3vnnPd+npNyqby9u7trm+q3f/6L/f3N3ds3v/vzH+22K/zhp7/69s1/+OIV+7Vdrx4i2/Y8endz925XuzjHCd3rdzfWEoB9f3tXV60inZ2dTTHV6/X765uUUlbNXFIqRFA3K2BAASQk1uubOzbIgGQMkE1zGscxx9LWQS3E/pRZUkpSZGHGsXCJ0a69IVdKIectFmu8QARRY6wlY5aVIqXknLOqS5ro/u5WSiFARQRRAPHWWoNxntOcUsnr3c6QG6bx6dXVfr/nnECK934cR2+0rStjTNNWP/rs87uHh/v9vgnVbtfc3N0yszUe0BhXW2tOU57e3Uwxt3UIIVycPfn222+fv3wyxXh9d397nKaYw6otWR4Ox4srN88zM5NqXdc555ubY9M0D4d9qNsliHz55Nndw/08z8voeln7AMRaOwyDMjPzk6tnwzCklLpxWBYd+V4sUIRFZi+l5FyGWIjo/v7ehXB5eZm5jGO/3x+tcyEEZt5ut/v9fsmBiMjxNKhqU9VTKcE666tumERku1v7KqQo3prxdMzRXJzt2rZta+CcpOSqXrHqqR8RDUg5PNxdnp/FujrbbpQFAa6urtbtCmjuui7F4ry5PxyePHkypSS5sMCUshQGkLrylfPGWRGxBCwMwsCsXCyhtb4AIGJh5byMixwBgahzrqg81ncvZXgKIGpAASGmrCKEqAALGbWuKiBNzL9+fW1QKxvQm37KOxcOp+40zNX63FvqxzyPA6oSQU5xcdEXfnR4LVzyxOXm5iY4d35+fjgdy0PJmbfbLZf8g88/G8exCu729sPV1dVutb6/v0cAS+Zss63r+nTohjjcPxwQESq8uroCgGmK5+eXh+Px+ctPvv3228hS1euHh4duGFNKLlTdMJJ1lTUL3WxRFBald57nh/3eO1fX1RIZX1QsAKi8MrN3KLlwnJtQgYpFE7m0VRWsmaZptWq9r4wxXdedne9qrIJ1U4pE9Lg9GzHGLOm7JQRlyC7eXhZhkcxI1hQVTtkYFIS6rhG07/tmvcJSlhiVs7bkQgSFiwHLnAGkpFxcXmzLcx6daZmQFUNl0lyMd46MNQggS4+BiMxzQkNQtKhIKohYV946K6rOUuFkravq2liQJS6xBBdLsd7NKQKSr+qcs2axFuZ5VlVjPeLjfH0xNMzzvNlshNk7l2Jc0FfWQWHJOS8lm+M4sqiC2W42nOKpG1+/eW8Q+tW8WTXy2BWjiKqJORci68mO06yqKIygOQMSWDLoDICSrVhBUDVy8OSqQMY3IQDAqe/JuDlJjBOjta7ORY0xL549mYs8nAYg240zaaksnuZMoCKlqStnDTMv9IVCEHy13OattSnNhmghbaXMKkKAzttlolm3DRZlzgC4+Lm8Q+ZcUowRWrJkIM/lbLsxZFV1ntOb/fHy4snpODrnL3ZX3TCdYBiOhyJ8ebZFUdmt1qt2s1mJyH6/P/Q2jtPVs6dJ+HR9zbkM4z6n0qzWKXUPDw/LvB8Rq6oqpTQegHMl4nISEUWJBt5N3enb6f3Qj/10eXZ+/eYtgl/Xq2ma7g8fdm3YXaym02ma+8Ph7mc/+fF/+LNbb83Ke2Qu0zzMtxVAW7Wrys99dxtTG+yv/+Y/keFVuDh1XRy7KrQWwpTynGZjtKpra6rjsSfv1u3quN8D8FRy7YMPDlRzKct79R/83u/dXL97dnmR5umLL//21198+ezqvKrrf/u//PFHz56tt7tnzz46Rnr9MB4ygXMTl6kf6qadSxRmDXWMsVptV6vV4XAQFS7l2Hf9MOYi5LwkFi51VQOZOca5cCDHKrWv4jgbZ8XQeDoJoLWWSfYPx5TS84+f27Y+Dp2gQeNIaelRNcb5tWdQRLM/dcu0O+e8BJQB0J6fnw/DsKwyzOy9L3NedCpQJYTH4nRmEPXWZcDtbl2yTONUTKqstcC1IzE+TpMB2a3aZbqTc/5we/viyUVwmNN09eTZzf19znF7tiGiruvmnIyrLi6vtuv2/vb2NIzr9ZqRErn7fhKEdndxt98PMU0s1gUyru/G9aZ1zi2b1na9smSmafrt3/2d2/v94XCw3vHSxIc4z/OyxC/Ol5SKKlrABc1jre26rnJekBZcOz82l5UiXFV10zSq6urV/f19CGHZbs93Z93xNAydMWa9apxzd7e3S5rTt42qGhemaVrai8n6OM+Li607DYDShBBzQmPX69Ui4uUcjfPG4NCdhjGtmgqN2+/vQ1WpqpTcnQ4AQIBpmo0xrkYWOPXdYmA5HjrvKu89IYzTGGOsvHXOTRpFpHJVKXNJhYUNmbryYGxmnXJJJTMvlcBkjDGARQurCEPJsqj3qCC6IITJEAVvCTDHaL1zznHOXdcVkRACgcZpPr84Y6T3bz6oa/puCHVzf3cTU+GcLJkQ3Ha7PZ5OIqWklEWRjCoy50Wsu7758POf/eS3/uHvf/mrL47HjplRSYDvHm5zTFXtt23jUQ3L2tkhxc1mi4hxGInIVU4ErHfDcHy4vVttN977YRydC1Ockew4RSRb1Y3oaBVy4ZQLUt+ct97ZnJL3noiEqACkGA3ROAwi6xBC27bLAhpCaLKKmLapSyl1HULwOWfmErxbr9pSigpXIdR1RUQpTuM4VlUlwiWmZZtZSmIU2DlXREUEFBeyVSkFjJlzXlk7jLM16IydptlaO80RKhSERWjZ7XYicn19LeJAgRRySpXzqhpz2u8fdtstp2ydLSn3KbL1IMVb50OFCNYgiIIwESkCGjuMc1ERUQaw8Fg6C6xFBY0jWp4msO7x4m6tXYohhLkUFlHjgvWo+QSIiAYAinAu8v0e7Jdi8mUnripv0IBozsl7h/gY1CYiay0YEoWqXYUQlqGaGSOAYS5gHpuIrLOqJjOriDVA5KapCBdDCIJF0nLmRkMKoFAWGZ4FY2GjJsYppYJQigiCM86ZokVy13Xeexfq7ao1NmfmYEyE4gmsdWSctTlnoyzRQCmFQuO9J/dYReOMTSk5Q8olWDunYlDtUunpPS9HJFTrlphZY1Qkp+OxC8pnzbnxq2nMr2/31noBfPPu7Ri5m2DdtHXdIOI4pzEmdL51brPZ5XnKKXpvyUDmggac83XTdqdBLa3XW0YrfT8MQ2aZpmhtVkQRKZIhZVZZZQLVLZEFHGI0FYF1anA/j3g6/u5v/f0v/+arP/q93/7jP/lfTWjW2+0kx3Ger55dppTuHvbG193pBMIg/P7dm9gdA6MPnox7+exSczymlKZxOOx//PlnoOnTz56vNusvvn599zDHkofuZDx6H+Z5LGmoq9XEPM/zerWSPJPwPI3e+6Zprq6urj/cCsuH21tD9m7/IDHWodq2q/fvPmianlw9tfX6u+v7f//ld2F3lRKAMKFDKVxyoqJEvmoKQ92sj904zlmlWEMEsN/vq2ZN3sxTEi3rVSOK3TQqWEQqwnlOomZzfn6a52GaRADJDMNYGSegAnw4HFYXZ5ZMVFxgdtba8+3GGHN/f68iS6d127ZxnNI8GmNKyt57qyIX5+fLceDh4UFVU5yMMY6wCHORZWjqrAWAlKK3ZIFcZZ0l55wIzONoAKrgPnpy9YMffnZz/d4ZTHOsm2o+zb/85X8EoKqpx+mwO2uvnl6s1lsAfPXqu+vr65cvX3755a+O3erJ06vrd+8hpTdf/JqI0vWts8F6V9XtvuvX6+0vfvrD6+t3h/uHGO3F2W75b01xTik1TdP3vQFcCHzDMKDKNE1L9HOxbac5Ll7WKeVQVdM0WWtTSt5XoQne+34YRITIWO+sd+v1er1eq2oq0jTVet2q6uHh7unVxdn5FnBBKBgyxjk1hmKcmLVtW1+FnHPwvm3Xp9NpHuelefDUd21TVVU1jSXm2HXs7M57l3nKJZLzxsCCKNtsNtt1ezodp2lAVOdcWzchhGmKnLIotuttP87BueVGNc4xFUZUY51HUJXMAopgAQCstayijIJASGrQGIOGTMRMC1+FjDGgRASqKAD8CFYDREQFRLUGi6pBMqj9NCZEAlBlKXnKuV2vpikmwf1pGsexO/W3f/FXm83GJR6nOdRtVWGfEitaH0IIKRVVNYCItHSGKEssebfbffvqVUrp048+/tnPfvb1V7+JMbJBkmwMTt3JE23r+rwK3Tw/f/5ytVrtT93Nwz6WhIiucSrYNvXpdOJSABGM3WzPYoybzaYbhyyChlR1vV5XVRVjFGEtbIyZ59l7B6DWGgCfc16tVksV2AJeWNXN4qpYtzUzB+e6eU7TVDm3aqplJFF5O5ZECqSKIiqy6DRN06SU5nkKTb1clUIIY5yDN6oMQMu/SkSILNCSYIBYCjNiTYCmKDALxmidB9VSeJ7nx7+ZyfuqCO8PB7LG2Pppe1mv2vdvvlMu9aoF4XmKJGxQrbXH08k7VzmnwCVlRPW+WubQAMuPwKCZC2YUKbXzKpoKixZSDRpC5YxZ4DyLZA2CsIATAQCBRECAgRWLjDHmUiyAqho1qjDPM5fCbGaemdn4pm3XaKhIUYXg/MKoUVUugopElpCnKatOIQTJUUpSQigAKiACqg4x5Qk1IwABEpK1NgT/fZN3RgQiAmNFeI5saWl4IEHgogDFkl3MaJV30zSlIorIRZwx6zagc2ZKx2EuAt6aYE0pKdjKkjllABUC9dYol1VTj6CWsJTinZdcjCMymESqpiZjcxpSzJglllT7qglN60zr6Xi8vw/x/hjnYv/62/fXd/fbiydkjPSTYKfgjGtSLjf3D904zYwZwWdNWUsGiHLi2I1dN/RDl23wNw8PYMnV9ZQSkEWjObMACAAh+iogYuZCSCCKylaF+1NrLYiKwVSkbtfri8u5lLPLi/cf3q3O1nPh43wMtR/n/Prd/aZptxfVGJMdp21tKm8327PnVxdzkfuH02a3BZ72/U0puq7bs09eXmyaOOVn55tY8t//rZ/9yZ/9x+vrDz/8yU+L5Hc3b8/PL+6uH7SwMyZOsxI4FAR48eRqnmcik1KK0xxCePv2rUN8fnX55s2bJ1cX//v/+n/7P/zzf3M4HOrt02p39mT9JL7/cBrGkkRVyfiV8+otiFHgLIKE1jvIIkhENucIvJCJnRrLOpOCRUjCBIgGQckYg7VVtEI0TPMcExm7CGaqUJhjTi6ltq5zmmcBa/1CvHk4nlA0pbzdrhFgHMd56Ju6TikBp7bypGqbphrHQaQYg86ZcRzneT47O1PVi/NzIoopLXOppdhHUpymyaC53G1DCOM4jiMzAwHnNL759hvnjKva+9u74+ngvW8q9M4Zg7uzLVmnQN9+81Wom9vba2uxaH7+/PnpdPr21StjzDevX1W+aprV8XhK8Viv2nxzf3l1dTyd/t1f/MWnn3xy9ezpzfU7Kfni/Ew5r9ZrQFvX9fX19Wazqaoqc1nmcJV3vqqMMWl+5DV6Y1NMCwlr4R607XqM8yYEWdheLMP3Vcmx5Jv7OxFpm/U0TTHGjz/+WFVjjIf7u34cLi6ucs6Q82azqauWiG7ubhE1pVTXtTNGRAhwSYUaQ9vt1lmKMRqDbdumsbdkpKRRU4qladAY55ybx1FK2Z1tnKVJ2TsTggOQnDOAxJIJdLvd7na7TbuZ57mqqlN3GKYpVC6E4J1VLgC6OFcHGrYrFyg40Mw6p8hZyFpnDYhVzalIKTknXrgQqYiv3GKQWT6zuGwQpAqOFCwZZ0lySXNUVQ3Vk6Ye45zmiazr+vHVq1eIeHFxcTj1hbvN2a4bhuMwd3OJinPMaBAAQFQBNBcWVQFWRoLT0BvQh4eH4dR9+vEny5j83cO9AV1VoarDyrq191bkYrXatM1quz3brJ9eXry9uzv2gxi8e9hTim3wgNRP43qzBWUQc3l1wddLlIiZC5dsTYPBihCCqCiCcI5AjogsIgV/Oh0XRTrPUUTcer1AysZx/DuBR4GdN4ti37YtIpZSln7lRS6rqmoZBS0eKxdC27aNtgt4jqyhQsZ6TXkYhilmay04472f5qSqjBgz1z7EVFarlYDYUNXezfO88MmbpindaJAzF+9Ms2qMMWRtZe26XRHAdrvWwkYFARKXfDj4ph3LNM+zRQQUApziqWSxIfCi8BKpCBctUFRZHGWOBtFaR6hF1WSx1uKC9FFQ++jXK1JKkcqaJFoKi2QFKoVFAAWITC4CKmht5by1ppQle62LOYWIAB4LvhBRWRInEAZRMohoWBHIWszO1aoqAmqwrStFFNGHh4dQezQkIgDaNr6qAgCUksmAedzVRUFBJPPjvRz/7isaNoacM3Mq8zxbW4xzCFR529QhSWrraoo5F7UI1hlbrUAKCA+nue97zxUtZRUh1MGbpk7zDEolOFEcYjp0R+x9u1oJ5rnMhhwIWeNK5oRIoldPXtar9tvrvRBKezEc8+E4kQ8/Wm+7GPfffItKSEYMMlIUHabTu30/j1MpJVQ1eptRp5zyvmvXq33fMZKLaSrFeo/GiYC1i9fh/883JKLDODauRuGf/+jHOec3796exuHpi6eb803tw1/++//44snTUko3HqpVU9WVpBBCk/Oc2AdDp/2Hbe0M4MPxcLV7cblbD3334uIJAux2V6+/ieluuthslLn1Ztr3f/G//DEa+p1/8EdPdpvb26NRadbt7Z3Z393VdR1cmIU569MnVxrnw/2HP/wH/+Xt7e2//+v/NI/jxfluGOftZlt5N02DNahc/tv/9r8TQDT+l1+9ev4yT3F2Ifiq2XiepmlKPYgVRFaDZAVAciwiodokLlKKtzblZHw1zBODERFHMI+dKAQbYhFrkYsiYpQyPtzPMTnngKyyLIuD9d5pObu8aKpwvt4O96N1wMzBGku4eIaY+fLiIk1jXfnaGY3FGtA0IaldJqDDMMzzzCmv6oYULKEJPoSwnIjt47jeEZFvQlk1pRRvTRwH5Lyq3MND56rqB5983Pf9q1evpmkyzr58+TKl9LOf/3bXdV9++eWhH9p2JSLH43F8/0FEjqf+7du3//gf/2Nm+Wf/7J+FEJhliqlq9Hd/7/dE4FdffMUxN+vVT37+s7/883/37atXhuD/8X//v5UU//1f/eXLly/ncTKbtu/77XqTSzHOWV8jYicSQliv2rpul9dlAJc6veWcKwgK6KpQxgEX6g8iWZOmoqq+rnLOwzjWdb0/Hp48eQKE9/dLIbFX1XXTbjYrIur7cb/fwxm8eP6RgJ5Op3mcmqrq+oGIzra7VVPFGImgCs4YsqDWOF/7mSQ4RBUywXoTUykleesQcRg75zE4+9HL5wurYZ7S/njnfRWqakr98XgkfMQN1lVVysq4eH5+njlxSaGpK2tKnLEUb60iIIE3XnOGBEvvEwEF50oRJWBUEQUyaHBJwS6HhlLyMthGEBG7qhtClVxWdZNNrL1fSu4+3LwdpxgTJ8GLq6ef/fBH33zzTVEw1g+xN9afb1aFTm8f3iYGV9egstiCOAuzAOFiZyWDpWSyJuXsvT/1g7euaRo53hEZa/2ubb2KIYpDv2maPM8jHuYUp5x5OkGOTVg/O99gTGTdw+EQEaAUzSmJHh/unaUQalUVznEeuczBOl9XjUdmrjbrOWXCxSHA1tomVIjojUWv4zg+PDw4S3VdKwuSQQUCBCRLBhVKygtAdMm24t8BWYkWq+DyKC1jYO/8/nR0ziksdA4gIiDLPDOzsC2sqICkFlUBiIqW4kKyZGKMS+vG+fk5c+m6rq68c3aB7KAwC8dpBCkOoa5rS8bW3iKICKgeDocyJ2Ox9o6s0cICbMhhBYvTm8gSyTLpR0MGTCpZVIxxzoUFojXnDHNsmmYhcnIpwiCgj75ogJJzfqyfVQajSKrkyCEKEAlLUTAKZKwPARAKi4ogkiUDAAslQ5Qr51WhHztD1DQVkIs5rSqw9u/C0NYYQ2iBMDhSVWaNMQpA8MYaSCkRwlKjaZEIFdEsZyMlssaogCFQEZBiEC3ptHQQqaYUVUGNJwBUIaTz3U7RDMNAIOfbFSj3x0NbhTiN3hLnmLjkEjftar1uj4VLKW1VjTEaAmttN44KAAEiS22NqBbRIaac86jcdZ1w+ujjj19+9kk+9hGtX63vD8dfd/fbZmWRplOvqn61mkUO4wBkc54lC1nXDUWTQl3NrIBl6IdiDBqXFRiJCwOAdw4URBVULTgAAQBjjGA1i6yrauZ0cba7u7/d7jaHQxenhKQhhOub9//oj/5wfV198dWvznBri0kxVlXVn0a3bj/76KP9zZuuG19cfXR3OLaV6Y+3nuDpk8vUP5xtwid2neYUrPvo6vyiwYf9h3a7zvPQhvDTH/7w9Yeb+2/vq7Z2xiIAKayqSubp/atv/zf/+R9uf+en//pf/osQwng8rs8u/9Ef/sEv//ZX79+8/YP/3X/1zVe/2n94/+Tyqhvzd999tz47++RHPxrHSY397LMf/Omf/tu2Dg6FgjehilmGWABJFByZKFJUUswWod2umuAfTn1SUFRDhFqAi0FUFVQFQWYuCuRcEQFj5ylZK8Dig63P6jdvXtchfP75p7fXH27fv6OwFo7r1YZVxmEGWCL1+OHd28rZPE1zmjxKmiZnqTLeTtPQNI1zZh7GnHPTNOvVKuesREPfL6XT3ntVjnNW1W6pka98VQVJc/DeB5sm37b1/c37VMpmvUKCcZqrqrLW/vf//F82TfPk6qqUUjKUIpWvj/tTXbc//cmL7tT/yb/5k5hLCPVms3ny5FlK82Kw/N3f/d37/cO7t/nu7k5V67omAwbpyy+//J1f/JYB/M1vfsM5oV9tt1sieiTdGDPH2RmzZGfbWnbrjQFMMZacETFyQcSSxVh76rpxHO8e7hdJcLnzFeY5xnEc+2kUhDjmR5JnKZvNZgEIP3v2bGltIrLH47E7Db+evl48nOu23t8/BO8BTZwmZ2zlnYjMwxgqu9qsoUQCXq+aNE+eQNAqWlEWESAkRQJEkJim1fqi708xxtV6O0UfYyS0u93uuD807SrnSIgppSo4583xtDfWghaQTGItgfM+OFevAjMvQi8iOmPIWCTTDeMcsyiUwrmIERVFLCILGgnxseUNFdGhcE5zVVXMpWQZ+8EYQwoi8pNPP7q5fzh0s69b49vTqVfAh/v91ZPLJ0+eGefqtglzFsC5ZO98GjoRIOussiorGiBULTGnqgp15ftTlzMPp6HyofKhRAHSUaZNCIKQSszzVHkTpdSN8w6d8+vN88Opn1MkXxVrASA6W52f7Y8d1bVRHrtTvWoJVbTsVjWs6s16ZYzhlNvKMHPTrLphILJzivMk35sG0rKhWmudsc6btm1DpaWUmNM4T84bASUEsmYxHIiICk7TtLyXFhF7t9vlnPf7fRYehqHIKaVkLQBiKpkF0NrVaoWIXdctvvq2bXPOjOyqME6TIeq7sW6Cqor0nCKs16CynJNC8OtV60O1lApMYw+qIqIi09jXPiz0aVAJwfcxW3kEgKgKAJKl4Hwu5XsHNKiUJYEGCkXYkgXCmLMlcs4hY8pzjNkYQ9ahSCozM5OzRJSL5CwiCISgxMIiACy5xKZp0JmcCkgBQoOEAKmAtRZQOUc0GqwhIhV2xqrysnOWksdZ0UBt61KyqlTeL+VdORXQXLkqnK2HYYox2sbTI34MwBCgeIfO0XJmIiICIyJNVS/+9sUNJwiIhguhWy0yydD1U4yAJouxBCkXY7xxpjgTp8glNd5iXRfnSimsZY4RVZlZ6ko4e2ecsZllHCfn3NPLKzd0CpQ0I0ourIpDTME6BqoIt2ebOPVvPrwfOKEx3jqOqa3q/eFYspyvVs3lSkQA0YhsmubhcGRUQVWByIukInPharHBhqAIXMpyXDOAqECKqKjAqkqEi3NlLqSaM+K3796QNZ//+EcvXrz4H//1v04pW29VpG2bd6+/hhx/8eLJ0B3JpjGWPCTjqNsPnz79fP3y6fluFbzROD2cehA43Hz48Y9+UBirBg46HsaxxHi4vf7k42dPz5t6vfpPv/r2/duHN7fD5fOXu/PP37z7bp6Td/XMgAkvdqu7d8dvvvrVbtW8uDybU3n+5OLh2P2rf/k/7Hbn3tl/+yf/BtJsAT68fa3NzjfVNE3x/ds/+IM/+Lf/9k/efvfN+W6zWjU586EfUixT4ZjVGQTW1aqhJF2MQKgKwzBsmu+bQNFISSnNwQCRmefJ122JyTjLokJYUFPJIPry+Yuvv/5mhHF4mFzwReTP/uzPnl9d/vSHP7oe57vbh2SNiILqer2OMQKLdcZbI5I4zT/90Q9Qcn86fvTiuTXG7Pf7aRhUlQw83N+2bVtV1TjOy90XiXLOPLMSWmsJEES9sW1VeQJV7Q57TcmuVyVFIvNbv/Wzv/7l37Dob7593batD5t+mA11pRTC/vz8vO/H2jd5Tt2xe/b0xdXV1fXN7Z/92Z/t1hf/p//D/+XNu6//x3/1r7788stf/s1fn51frtZNN0yvXr16cnEJKKWUv/zLv1w39Waz2Z1tvnv1+vr++Omnnx6Px3a9ijmP4zjFuaqq891OVQ+HQ1OvgvdVCF3Xccp12zjnpjGq6jCNMafbh3vvfd8PuEQ/CZUQEEIIC86iqpq2rbuue/v2rfd+tWqOx6Ocjgt6/fz8HMl++PChruvt9qwKjlCfXV2mVOZxyuPYrmpEJEIpeRy6ypKvXO3s3Pdc0hBnEWlCVVU1gI5Tn+OsHNfrduhOOc7zPJ+dX15eXj7sj6XwNPQppdnMcz+IyNid0Jo5xaLl8vK8ritQVtU6VLVzzlggBEUgQEPWWlW0xoGxTVUTWkHElCEyIAISAEAqzAzfkxEXKCESjePojamrChVAOE3zspitgll//PLbtx/GAu/efnfoxp/85Cc3NzfW+fOLi1TKF199/fbmITMaH/ohAlApRQUQzYLlITKIVCILYC7ignfGaubMZVufvWi3nGOw9uL8ymLpH+6msasb23hnPQWyIlI37crb/f5YSmmfPfN19cMf/lBAf/nFl6d+nNLsq0ZzTiqci7X2bLtumrqtq/1+jwqVD0SwXa8V0UyGmVMszLzsUmmOi8GVGHLO7u8aDJ0LfhE5yyOaSpXQkqMF0brchBdv46KyWmtTycuFeI552bBBmZm9q8gaso68L/LYJ88CJUtZIr/GuCzeQilFWPu+987Vda2cx7GPMS9elcp5rpucs3cWhZcYIiIiQSnFV+Fqsz6dDsMwsLN1VTlnVbUfhu32bM6JmVFUVQ2iiEhhNCSgpYiqZtCFUoTGlSzLmW55daUkzQgAAtVjQs8YAGFd6NNqgAQR0FoXEBxZWvLVpZQQyCIiFhUUAYJFU8SYpiq4tq3neY4xluLQGovgnfHeem+XIYWIkMGSkkGpg7XGLWNsADBkWRJoEVYDCIAACgvSXBkRLZmqciKSSl6ML13BgEtDCRjnYirTGEEMLFhTH0SkpHx8uJcmeGuI3LqpD91p4YUaS8Jl6PomVDb4fpwRgVSQoPahj1OwISdhViBTWBTzGLNHTTzW3hDz/c37zdn5eVNNudzePeRm+93+eOj5+eXFdr0tpYzDEdGcnZ8H66bTOA2DFYmiUYs3Miglg4LKwqLigRwZMjbnYlQN0vJOIAJRYeaSNfh6zMNu0/7q1a8/ev7Ru7vbbo71qp1LsgYSpzTJ//W/+i9f7jZ//j//m799/+6zzz4ZxazPzr/621/eX7/+yQ8/Wa/bf/cXf/Xpx5+c9qcX2/bTz3764UO3u3j2x//rn//27/+9bdW8ffVdmafdun793TvnjHd2Hvqmqq7fv8PgyNAPfvDZ2M8P9ycf6Hh//0d/8Pua5i//5q9B+Z/8k3/i6/V/98/+RdNub+8frLV5Spym51cXv/33fvZP/+TfhRCkxJ//7Gfvvvv6ydn6w7vXV1dP7u4ekmA3RvI1mcp5DKGZ55lLKkVFCMkAwPF41JyIiAlTTNu2tgEtRwTIhSvnM2DkwirDOMwxK8PZand5fn58OL6/u96c76w3cRo3VXP97n0bqiFGBBHOddViSqf9wRgTvP3hDz5//fXXn3/84vb67acfPf/5Tz77iz/901UT7H6/XzyopZQFj9c0DSKaZe7CwKyPYoVImuZgTUnzOCIBXJ7vzs937wwYgpjTZrdDY9++ffvhw4dQ1ZmVmUuBH3z+k9Wq+c3XX1tnHu4PlfNjGVWw23d5evX69RtrfR2am5u7/+a/+X9ePqmdpefPn324uyspF1FL0FYrEcklOkOffPLJu3fvJOfC6fr6+uUnP1wGbFVVAcD19TUaijFWVbPklA7znplDCCjqnENjrLXG8ZL4tMEv7lNjbYwxlrxohlVTE9FwOkHGh4cHgPNPPvlkmqa+78/Pz0NTd1232awefa3GPX/+HBFVsT91u93u4uLi4f5+XZ/d3Nzc3t6e73ZNW9WhVo5t2zqjpeT1ul2vGj5N8zRlUVsKiFRVtW6bkkYf3DyPTVPFnO/ub+pqvTAcUkqrVWPBiPclJiLKzNM0FS193xPhuq7qEJZUq5rcl2yt9a4KISAaZkUgQdxsNnaKRZUhpTwqECKoPI5+VRVJEVFFtWRBpyrLoh+cbUKV57gUBs/DQ2g23uLm/PL5R5/uuxmQROT8/Hwcx/V2y6/ezClmdGgDWnO2Xh+PXZzToq5ass2q9ZVLnIzBXFIcdZqmXbvetJuzs7O+m+rdhbMYY1QC693u7MzXFaj242ANlpRLTNv1xm43fT+cuqN0B+MCi9ahOhxO0zB671WNtw6dlVJKSd0x7VYfbTer/rB33sRpXm3WIvC46aa0Xq+nOHMuRLRer40xcxy7rmtaXHLDSxRnUZnIgHfVMpdd3PIL/2i9XgPy8bRv2/b5i6f3++OconOuG4Y5RVAqoi6YlLIwLPS00zw752KMRCSch2kM3saYrTGTCIIQ6nq9XqDfh8Nh3dYg4u1jwAlE6qoCVVFNKf1d2GnZaDebTT9rXdfOWEugoIjUto3zPsa8bKWkQASGFuKjCCiWsmgAIDpPaZnh1z6kUjj2zJy5MDApiQiTZREiIl0Q10DWW0RrKWUuZbSIdahAOXFaCqeFwQRrqkZKFimssCDwCNA5gwKlJFWLFktJpsK6Do9A3FxQhUCl5HkcqqoJdQUA8zwri6oyFySVnLQgWgtEWkDQODILLh8tOkvTnOI0O+cE1Ll22ZubpqnbdpoTY1/U9g8HLmk5ZomWkqXvs5Qs7ZMQgp2sZTPOkwNbShEQYFmvnUFcte3MPOS8sIyaps1J+hgRUVHRWYJChDFHYdnWNaqmcTideu+rbeXvyM/oJUu6vve3dyJlmAa0+MlHL55cnG9CmGpPxh3G/t3+bs6Zq0BVlUWQbFV5YwyJchFrDIhaY76Hej82bXhbEWK13nbjyTfVu/tbLVJvVqlIs97kPHBOMpf927fuw4f//Ge/uPhkJ7b961+/6g6ZKG7Wq92m/err37hQHU/D8HAow3j+kx+mTF9+9fb6Zrj55//s8vzq5dNnx8PD6XAoKX/99VdRg7V2PoxPn79EZ+cy/87v/M5f/cV/UNXKByCsfPitX/zszTdfpnn+n/7Vv5ozq/HW2s8///z923eZ9PnzZ5999Pz4sA9VVXKsg6ssjTJ/8uLqdLy3hCEEQjeJzYpzYgF1XglN13VMoW534zQHZ/1qVVI0oRI0LOnFixeXm6q/e59SclMGV4HUb28/0DJ+9V6KDsPw53/67xRg3a5yzldPL7/dP1REL1++rNA8WTci8Pb9h6snz4rI119/Xdchx/T6m2/TPO73e1IByZWFH3/+6f/n//3/sgFNidkAApCxiED7h7uLi4tF4UmZT0OfUwFEFhwzPySonHVl3iSe4nw6HRpn1pV/cXVxe3v78ec/IBss2l9+8VUBFDVjGr99/3bVVKylco7IWe+0GAC3atffvH4FQNvtNhqoKv/7v/f7p/1tu2HjbFTz4qOXQ5rfv38/aunGuFu1P/nxTyrjvv7yq1UVfvL5Dz99+tmb97/57Z/94Ouvv37z7vU4p8vd9uGwH6cYp3R/tw9NzczGuNvDcb1eO+Yydd77aYy+rlLKddPOuXBRsAwMkqUIFYHSL912CnGO07wYQ6ZpWgrsmLWpG+QSDDHo6fhgkdrVahyHVeVTim+/+XZ7tlNVcna9PfNVUEEi6wzlKRmLdfDKYoy72IYT0kJBKinHlNiiNauYfagaAHCocYxjnBar7TyPl5eXoal32/O7u7vT6cTMzgaPldEwddIfurMza4w5HE6uCnXQujK1l7oKBu007lOcm6ZCnqAUZa0MamXGpGnOU2QAsNYAgDHWOScopWQG4sIQjDIbg0XnpqHVyqKymLPDMICBJ2eVsDzfbO/vju/Hw013+NHP/15Sg+TmVGxTtasqF1kQFmSUuagkUdQieaRV2yIio/GuAlfFcSqhHE+nik++rJBxzrkQWWuNr6KGYsycBRMoGEr83YdbH1wRfuhLP43DcA2IbdvS5twLfTh0Fxdh7kdrTN+fzs/PL8/OX3+4e/ny5Rrc6fBgjLl+96Gu68urpzHmh3z87v0HIEPWElGi3NbEaOacTMmPSUpr51I053rVojFRpBhS77oUm1WbSik5GmNIbRZ3tx+dc6IWtLAYH1okP4xz5swxzbmst7U6l2JcGxVLrFAAiqUp5jjMzlpGQtVxisG6NCXvLTOnXLREh1gUADDGJGRSUabAIv3Q77YNgEwp58yq3HHvyaiyt7CgEFFk6vtRFYyRnLUwuJBV5qgh1AmylmjIZMYEQIogwMzAElWMNWBM0RIXVCkrAMTMoOqNLaksB/dpHowxVAhRrbXobBG2SMEGzuw8xTRaqterZhqTNYYQVBmQqsqLFm8IKxdRSLMRg6YtQnkuMU3L2aiuAylsduvt9gwR7+7uxnFcrFUlJXIVmYBERVXL48Q9IyHgNKb/H1n/9azZluSHYZm53HafO6bcvXVt3zbTBj3TMwMMBxhCIECIAEWGKJCQwFAEEXxT6En/hx74IAVDD3oQoQgIAgkKkggEMAYzMNPT3t7uvr58Hf+Z7ZbL1MM6dYEInYeKqjrnVH3n23uvzPzlz6SUUu5DijGkYjjTOg8AgCpmjElQGzLLw/Ywj+I9+BjI6JntHINSSpu6juryZptEfMLRp8phYzSlEOdp5tg0jav0bkqiKAefDmNWpqlUZtz3u3bRcfA5xsS5tmbRbg7TWNe1rVfDwY8ZXbtYvdgZhkMKU22u4qCtpqWDyJ+9uDrsksq5rmy9bHcx52oZxDcpK6VSYs6iWQEJgwhhIgghgLHZz01ltVEEkPOMjFa7hTKLejGNg0bFWnHwmDMFgtG3TTWF8SefPfnml99bHS1+7727//rPfoGXZy8v+tN7d7/89hv3jvTdxVuPPnv57MXhjYfvDsPhR49ePLy7ev3e0aZ958ePz6Bd/fDZdj/zR999sqjtt77xW49/9kMfvdbx1770Jqvq2YuzP/xnf+jHfa3gYnd06oZPvv8H9vwLDzcnHzz/5ebeerjUOt7hbVyst9Ub+eVH0swb8PDDT/4gDO8u15uc0yfPbtbrkz/+3s8R0UtvjFkfbTiEe6+//vzs/DDNMewyM5k1Mcs4NYjvvfXORx99lEQg5JQOLeHHv3of33sHTXO9m+Y59JfXGUkb108+MfgEZK0YTIhtXYnkeX+4udwT1jezerG7+cpXv/Yba5xj6J9N8frlwc+1ZsUBQU5Xq+707qNPP7ZaffzpecJ6e9i6176gu64r1hbW2syxbK3GsYxEt/YUAjBP0xxTzhlMnVLKMaV5OOzyBcGvf/3XvvjGG8+fP73/8I2m7c6vd9rZ1WZ9fn2zH/oQktb6kGPX1Eop1zTjOHrvJx9d1bz22muXVzfjODrnlsvlw4cPv//82dX2hkHGcZxDVGScrff9obLuZrf/6c9/sWq7d995+9OPP/nJ+79477335pj+xZ/8y7fffvtr3/jmx598enl9tVis6ha2u0OMUx7HmHix0EV1johJUlVVbdsm4WJu7L2fpsm6uiq2lPNcSORE9PprD06W6+12WwZZAFitVgCQc+4PO6WUc66qqmXbFcFPId1EHw5+iDEuVqvNcsXM0zQlkdqSq5xSUFYOKafz83PbLphTSoFTzBxSDCIMSitFF7vtouvI6HG/c85VdRWHQQj3Q59BUCvX1AvCaZqGYdJaJ4GpPwCAvHIQtCkSWADy3u92bBUZdZtHeyviBCnmi0opopzzXBaBpdMvQLRP0YcEzCHMlrA5PeIcm6apqkYpvLy+unf3wX67u9kdJEnbcoz+zp3Tjx89+fa3v+265aHfr5fLmTn5MIaZ0eSciwbONqbcDF3XlbiIEAKiWjRtruq6rpVSnV4ZYwBIkMLsJz/VDMqUtxEFYLlcP3r0KOdY3B7ELYuF5DBMSaCqKkAsCc1HR0eFkThNfqom59zFxcXJoiNtX7x8frReX91cD+PcLleb46OLqxsWyTn3fU9EldUhRqVUDJmIEkfrXGOtMSaEsF6v9/t9sSMWkd1uF0IoHAirbHGACkEVmhIZJSF3m42rp+DTHGNK/TSMiFNI8aiurbOJs1Vq8rNWlpkr5whQCRulrLGoVCkkhflltNMkcwjzEEhpZZ1rqv1+rwjmeSQUzloUKaVuNwoi5V51zpW5Oedc8r+NMYl59jPz7VfG4MuXee8Lk7EQqilSTLd8Omtt6Q5zziJQfswktwXYApSscQCJMeYYIpDTpjLaOYcUPiflFt8XJBK6DY8qL8+a6hWpDUOIRaXMGUBuPXMK3rDrh8pYpUxd17vtPsZotM0AZZQvP07ZciPi4TBMwWcGAEiZS+YbAAzjCEDM4GNmISAbc/HlFqO1ECpjYkoyxSRirSVko3DqJyDWIJpQkl8tF0Yk+dDWjoG2Q59mTwJa4Xa7tXVllK6qar/vjTHOFM48TNMkKb2K6FA3Nzfpipf1qRY0DDkhSY1MAhBjMK7e+VgbXdXNIcnz661ZbaBSGKeCQJRtYcgBUBljUVgrMqhV+URmBEApl09fX1+v2saQAmCrVMhcWft7f/EvPX708ae/+sVxVxljPnv8OPr57T//8Jt/7jdP7x3OrvYvL56fPf2kv7DvvvsegrvZPg/oPMQs6eWH+0eXcVF3X/naNx49e3n3/uLw2RNt3cmdu4dhvNzuQuRusXr/F7+qutXl9TbG6Jz70hfeveph/9mj/8V/9Ne/+Gtv/l//0R9Adfzv/fbf/On3f/zTH73/xa+8+/X3vhKncSHn3/3JB2ep+b3f+1//yb/4qZ8m4+yLFy8Oh92XvvSlq6ureZ5tVS2Xy+ub7TAMXddd3GzXxyf7wyHGKCLW2nmeP/vsMyBkyAT0xhtvFAXH4dWHc65um8MwTZOf5rldn877g/cegBDlcDhYo5xzh/1+nGbbtPM8//ynP926GHNuuuUXv/Dl7/zgh5OXr339yxdnl4c5oZH66PSw3/3i0dOPnr+oanvnzh1dkvtijNM07ff7vu+bpmFBpSjmFBLfmsEGn7Mopfp5ckYbBUprETi/vnz68mzy89XV1Xq9ZmV8Zu0cGh1z5hS1saVilceyQHzKmNY6Rri52d96GjM/f/787/8//wFmjik1TRMzf/LxZ4xAWgFQzAykfcpPXp4dn5xExIurq+sf9s7JPM9TyN/85jfPLi6X66Ob3bZbrhdrjYNlZodYN03xnRFEP3trqm61pJSQ1OfxMsUO1BhTDDhLioXWerVaHQ6H9XpdVVYZXTx+U0pldae1ds6RdeU4c85N/f74+DilNM7T5fk5Ii4Wi8rqGOPhcFCS2s0ac/I+Ss5amxAnQAl+LDLTMM91XRNBzBiT3x0SggJFIac8z6j1enPc9/3sI+8Ot4aRyghMgORshUAiMo3zMAxNW2utb3YH54IzyiBg5ZyrrSUBBhQhBJZcCOBaK5XL6SQiIUXMKQsTETOkxFaTDwksTSFwzALe1U1T1fdffximeQ7RGcvCL168uLrZrTfHX/var13txqdnF23dXN68RFcL51XT+cwiehKuatd1Xd9X8zwTYArRGGOUKsI7EUkxcs7inChT13XbLfu+H8exWLJMIU3z0NbNdt+/8dY7sx/btn38+PH1PsbEddPthrE/jD4ka+3m+MR7P4dIpO/eezBPw2GctKsUUALeHB8NU9903RzCnONxXaOzFzfbeQ6ubpTRifMUPIBYpcvdoshobUUElPbTXExMJz8bNpK5WK+U+4SMtooYOedcrCGMVjkrzlGBWKNAhNo2iSilmK1RSmmdQtakNClTVcVYikVQmBHL0piLo5Y1TmsQquvq3r2VAF1tb3b7Qw6+NqapVzlExNuxz1ljrdVIIlwahQJQF7Gsds57H2Ke/eh9VMrEV6ip957wVmTvvUcBIvIpOqOMMcqacuveis5zQhQSICJ6JSxGRK2p/B44C0uWxEwxpZwna21lLIMorYsbNzMrZZX6XDaDGnVKKYSELDExvepi88AFi26aJCJ7pFvmeUw5c+RI1oDALaeBS/gdJgFGKOlPIEV0RwAKAEgJI3HMgiCImWNMQkTHx8eHYdrt+/FwCEU5ikDC2Y9dZRQ1rnY5d64yxGm9aCpEZ2wI6eYwLBsLiBe7g5JcOJDNYrE+Ojq/vNbWcMqH3c2q64QRtcmAs49VVWlrc4z9NDKptlsnzuLnGLMxiqwdw+y0TinH/Y2gMnUzjZ4B0SEnIUQiVe5DRETOGkkpbVGJcoYQWESyQuODT4oqqzknkJyiZ6XadnG9215enN05OXn5WeW9f/b8+cM7J7/84MMXH/38G7/+zaPj47ozy6kaej/10/mzm/t3Ht4c4uU42LZRdfvi5fb980kBn988J2X7kDbHJ0D46aPHH4cpB/YZ2Kdlo7/5zW9+53s/sNZury/7ORKCDuNRa65388VhGrz+h3///7WskJq8C8O/+pPvHy4uoqFcy8z8q588RQAiQhKjcLlcPnjwIHGenr/Q2n7y2afz5LWrrrY3TdNcXV1pYxbLbvaeOXfLdr/fAcBisTgcDmeXF1XbjOP48vzSGJNFfIyJGVC1y3bOcnl52SxXcwjGOYV42O3Q6uBD3/d1s9BI1igifN5PbduGkP/sez+OjNbUTx6/2O4PdduePXturXVtq4DjHPLMjx691MU1rfBuMgOgqpuuaRofg6VKW0hZ0ATUahimaZ4TACYBVJQFFInRT84uPn70GADMy4uHb0bXttMcdocBlUZFxpjMAEQhZQDY96OIAGHTdoIl2IdTSsU0Y57nqm5NzkLobD15n5m1sRnFx2SttU0zx/iDn/3MaqOtZWfnOKK2geVP/s2fCcJ8fRNi9mmLSoUYGaGqqmGeCp3Vp+i0G/1sQ+W9F8AiqSxEoBxTSgkFFl3DzJUzbzx87YP3f1lV1enpcXkILy8vU4hNW5VOipmLr7rVWhNpoqOjtTEmZ2l8s6XtOI45zaCrzaKxWiuF4zjO41A7gwLWatJZa+2Lk6UwKTBWWasV6aquh2EK2TtbpZQOw75puujDNM2k9bjfl5nemsq6JuccUkRF1pjSSbDkvu/nMPXj4Ixd1JVSKguA0gicc8pJMgsigiJkUYqcMyEJIEKGEEIMuez+U0zD4FEyQPPk+WVTad5GpSugKh76uSQosGTOJ3furDablHHXD8Owe/vtt5qbrRA9fnkBhJVbtNoQ0V7pkJOk3NZVZU3OMgeviQQRhAhRK1XITVe7g9Z6JdhWtSijXM1IU8wE0i3WzHmcwnJNs8/b3UskfXSyPD8/j1mCT6iIvcw++pCKg/fkZzMOwGJdbYzxIVxez0dH66OTUwA4Pr0zTONh6McQVkeb6ezCh7BarVlSytlZKwRGm5RS07WI2Pd9of5e39wcHR0pMiCktHZVU86FENI4D+rVhwgrTSX7YRgGQ7pxZlapdtb7WKIaJj8rJAL8PDUh55xibOuKmEohiTkpAaWUc3VjyVZOa60UOldV9V1n1PnltXF2sWj7vkfEGCPCvw2cgVf5g2WGLo9/P03jOPqQJj9zBiJKMTtXkzIpeQbRSqGG7AMzm2LyQo6MhldxjaXM1+q2Pa3creRPOJdUVxFhzgqxBAyHnHLOWpdoxdtht6Q6MEvwCZxWWSXKVmurK61TjJFFcmZJgoiYIr4KKk751rOvPwzMYK1F0jFGJA8AiKr4biILZ1IQjXbJQPapGIKJCKIwAhqllRIgQMVAs0+cAwGl4CurvVPTnBTKsq0KOFgr3bRu0VjULEJGQ/ZRpn3VtceLxXYfRwm2ra21PswI9mrMcz/EmE1da6S2bpRSVunamhR89KEfppbM0fHJGPN4cZFVCCFVWhBU17bFi5tTOF0eEcjl+fO+z0frzXwYO1XZqvaQSYFCZE6A0DhHoMZx1NYhKhAxoLWAgIAQIelaOEVLVFuz6Fbz2L/33nuC+Pjps2dPPt1vd6dHq9PV/atnTy9vtl/98pcePX75b3766I2HYdnVd1/7wu7m8ub88jDMpj5UlevPnqdpcEtxdZVQmPX1MAOEKLCfzt5++915nrf9pFCOju/cXF7l/eGnP/3pNAxV0yhT7fvpcpt/8yvvPH76/sffHTHWjsNf/Atffv/9H0SwZ1tK/c4p+cY3f33M5sd/9qd3X7sr6vji4uLBvdc/9f7Jkydz8OM4x5QF8LDvydiT09Ozy6u2NdZGANz3u4JjFQfcKXicRiEcx7GIXBgk5lQ17f379588eaK1evDgAYMC0+/6XhkT5llrXdf1NPZVVb333nvPnr9MOazX66urq6OTo+TTOE2NdZqla1sk0kpCHBerbo6z57zuFoFZSlZpYQIrpayzR0dH3vuqqYGQARBh8nPJ51HaKq2LSD7kJCQ5gyYwzWLkzKhj9JCyubqh/WG37+cQrbVZhAFEGAEFMaR46A8ioozz231MXDX158rLYTw4Y21V+xgOhwNppW1FILFY9CFOc/AhWWPIaNe28zD6ebI5vvbw4cOHb9Z1fXF5fXF1OR6uM0jbLJJAionFF4j76Ojo6uqKOZesqHGai/0sIhYG6Xa7BRHrdFVVxhir9NnzF8aYuq43m01pFBaLhbGq73suGYXGAACnXPruEi4XY1SIR+vl8WYxDaP3PoVZcgQFfk4pRLiVZUpja2vYGIOgykGWIXIGP0eiXO4jQiVIqDRpx4DBR+vqRbe6vLm+vL6c59C2bdu2i0U7jHPOOUVvjFl0rUZlrbW1TTHmmA7DyMzWmqqyRhMzZilmMUqK+3kuCeSejC6WyDHEAufGmKYpdG3NQqOPVd0q67woUS6Mh5igabrKuWG/A4CqqkLKcsiV1V/64hf8L3516lO7WJ1dbadx0Kbquu705KhofaytTOXmeXZVU7D6EFKZzGKMIQSltZ+ij1tjBkVkrTUK59lbrbWlDJkBfEgx5P2+f/PNN3sv7WKllLre3sSYkXTlnK2rlLOyxijdH0ZFsF6vY7q1m7i62dbOKqVSSqhUZokxNsvVahPPXl6klEgBKi0AglAEriXZkIzOOWtjdEr7/b7UM611sb5KKRlrx+lwKwVRigATswCTwszJGrPomjpyCAFS1oRGq5CUMaYmHMbpNtHs80gzvN2YlGWq0loAiotW2SJVVXDOdU1NJxtm7ioX5pGINBIjFBF8gWELLbHgUuWlFixXKayti5xTTDHfxo2Umh1SNKLJaIhp8rMzNudcON4i8mqvkY21WikAqIwFgCAQEQGRM2fJKMKIrFFr54w1Cpu6vGfEXNJ8sYS0M0KZVkWEWZQCRUYUZpGcM4CwMAhK5tLcTD7rQjxXDiD7WNzcFN8a02aCAu+Q5JwZnKso5GILipgBbqVLLJOgKhAuA6mYEAUgD/u+WSyaSqdgI2djtLVWG2NTDmlWyHHwxpIj1S4dxrSuNeVpUxtzst6NQUg9vHs8hzg9vcp59PPYT6My1RxDVTUaAZUGSqT15MMYLn3Kh2EMLKrinDxoh4iAEYW1kLPqvTceHC2aD1Qc++Gb3/j6px99XNn65bPnF9qJCMKt4aliUCROkQLRpHPKQopBKUQgUUqJyhqEAKZp+iv//u9GHz799JOjk2MCAcJ7d079PCplvvrnvmkBfvWLn09C250P/DIOw9Fy0TW2a5svfeOrP/jB9z59/AR1rcWEfhJtIEcyqO1mGAaraRznYZ5Am6pd9P0+k/n13/rt7/zZn4bw6V/48//eD37yUxY8jF7r9fnus7/6u7/+rd/74j/+J08fv/jwW7/15TFcvvjRNqTaHOE4vzjfT1947V33a4ezR/968e6/v73Gx48/k1vNTySt26oOOS3Wm7ppPvnks8RcGs3CbVRKsWbv/Ze+8pXVavW9732v5EmjolKPQgjDNE3e26p58eLs4uZHzXLV1F27PNr3fVVV5+dnOab1aoGIb7311osXZzFErXxbOaWw7qqLw/b1N15/9OlnJ6u7d+7e/Vd/9kyhoYyUvDN26reQcqX1PO51jLFtW2NMjBEVtYuOmbf7PTPUbWNcXTGgImfrfhzm4BkwhKCUEeCYWRnDSXTVACoAuO5HZs7FWEpQKV1qr59jqjnGAECJMwmWnNIYbrNoSg3WWh+mwRijqzrnLCA5ZyTdNnVIEQBEcuSMiMPstTMco9LVOMXzq2vnnPfh/OqKUDtnJz8X0GyaJmPMw4cP33jjjadPn/aHbYwRSc0+lMVVyLzdbjebTVkMTP1werQpFff6+rqtu7quLy8vEdE67Zwbd33hqVqlyDlgycXeIUelFLBYa5U2BKIUdk1VW+W92t1c+1Fyzl3Xte0SgOZ5VsYZC0Zp3TqlKYSQQ/Tee+9LaiwoDDk5U43zNPQTtKQQQdFhLJlOVADSYRqL29eiqRWB0coYk/wMANrayrkw+3nsRUQprZQCBFdrBkmZhVSIIYY5BC6LfwIkQqVUkISI2jntnPfB2GpOmUHPPnWL5vLmkDLePVr4yLPPda2bxfKwvSnrc1eZNa1+9cHPD7u+qVxmcUYdHT14+uyFV6ql1jkbmREYMjPz0O9DzDHGnCUzG2MA0bpKOeu9n7yfQqjr2rpKSDHkxMyAmSHktN8ftNHauN32kJX10zSHMPaDtma5PCoXqzDDF4sFS0ohzvPsp3mz2RhblSSrBw/uGWPu3Lkzzv57P/jh4NNiuW6aYZin2jqtJcZY67osd+d5noJfLBb9MJQlzs1uq5TiIJSi1lYElTJaW9RShCtEpEmVMffWFXWaSivd6KYsYosQHwAi55QjpxxzAgACjIiKSAEkZiRBRVnYx+CtPkw9MJf19n6/F07GmGnyh8Ou3++AFBEJqkLa2iwWIpJSIro1VS6dnzHaORdiNEYZMDMFCIwCUXKOt36cmpRkKMHDMSeHgKAAcvlsYSanFCtXQ+aC61ZVpYXneWbJmkgpRQSalNbaOVM7p41YbYggx6iIMgCgCEhxgwFSnHOQW+IbM4PSAsTCAIqZOUOWpAFCSjrnYqqaUinSxWiiRGqCRiQkQOJbo9Bi5XELKrAgESISaa0IBYWhWFGCViAxNbXRkIxRZt3ebpQRjUHkfOhvlKbKmTtHy8qqk83SAgNna8w0x3nqMU0GTKVQUNZdhyxjjHMG5cxu3x8Og0aqK2uMWbRdpc3+cHjy8uU4B1u5kEZlqF00wtj3s5+DBXC1efbxx3JydGe5gXbVIP3m17+W/eyvXuzBpJyApERXxXlCrVtjOIM1asqRARAAlUFBJPJz74wRZpT87W9/20+T9363251fXjRNk6w92qyePntxeXZ+5/T4d/7SX37/J98P0zjuzpVAGGQ/2/Pz83e/9OX/4G/8jf/2v/2/QGJJKSJkw1ihMnAYYtW0kBPqOE2TsdUYss8k5MYQc85xnt7/2U+KAGeYfI0vH1+/+MEHr52eL3/00x+1R80/+P/8seQUp94a1/e7atF++OGHVx+//Lt/+3/+Q3n2vY8+jDktN+vr3Z5JfeGdd588ezZOvutM2y0Ph8N2v3vrnXdCivuLfdd10QdmJEJrza9+8f7JnbtlC2MtFTQ0pdQt18q4x4+fxhiPT05vdtuLi4umXTFCVbcxhqaqAwXv/TiOP/vZz957790f/+RnzjlCmfuhOzk5Pj52TX33/p2PP/1ou7852axDDm3t4jSmPDVVnYR9jNZZrZQyziqldoc9M1dNU0g9ymiZZxGcgxfGEHNKyRjDSMyci3SHaPCRCFPkLAQA0+yNMc5VOefEmYrhnEiKYbvfKQQiKnT/mPjOnTuHcRQRP46Tn53VqCiEGAOXOo2CACCQU0rO2JA8kVotF0qpgq3NMdTaHYZ+N/Y583K5JKWqqi6walnQbq+uReRwODx79mS/3xWTBIBblScjOS2IuNls7t+5++mnH4+Hfdu225ublOLJyYkCGsaDiDRNM89z2ViXWadExaIAoQAgCThtrCNNKufop6wVEQEBGuRFWyulchZBjDFrjSGmFy/PNstWKVVVVYMORLVNrWg2yoiI1lbySKC6ukk+ZB8CUs5ez3o/9DlL1dTr9rhQxpRGo0paHFlrFYiyWkQO8wjOFSORnG2MMcZsLSGSUgpJJWGiMm1k4WyUIoVEyijyCgjJOauUzjlra3VmrXVgzqK89/Fmt9/dHK2X0c/b7W61bI+PT6zVNzc3F5fXq/VJ3O7HsV+f3Bumua2raTi8+cbrIjJOfh4nQWDElLMAFp9IZTQpTNPEzIiEWiUBRhJBERCgyDnNKcaoFd1t22mAxXG3vb5cLk855ZSS0lBVVik8OjoKIYBkaypjmxK/0dROxE48FjuC6CftmuPj42maQgiX5xcxxnsPXvuNP/fN7//wp8J89+7d4gNDRAo1EYWUlDXTPAefQpVDSMagMlAiq72fRaRAoMaYnLN1plRQESGtrLXa2uyDs9U0TYe+J2UUslIqxjjPc9W5LJx8UFjKFXnvE2es0DlHhDlEACCtE0McZ47BKs2Sxzk0la2dBeG+75VSKXqtdRZgoJxyCXrb7/dlNVgQ/gLkCOE8TiISQ0CiqmqMMVI3GSQkmGEWTiUCPPqQsyijFVKJR6SEKRUWNmqtU4pEBAKIqJAEwQCkFGOORGSMUkoZJKUQABIzpKgJiTRAYXsAAqNwcbR3IsWNHI0qT1NMmDMwAyADAJcvT6C1EVCZC3QPqHR5z8udQ4QZSISUgAhkztM0xRgBygJYsAQagygSQlbaAEDAjKAR7DgmJcAQnaXjZqU1xRiHYZimoTKmdYYlLWt973jVOt1Y7TSkEJqmuc77OB/8OIGuOEMYJmILKYV5ImVBuK5rlRMA9cOoaCKibrG4c//B5XY3patx8nXXxBjnIQKpxGCbJg3jtp9M26yO74398OTs2flhznHc37xsLK3ak0lmzwkFjNKZhbIojQDZOu2ZBCFBBgBFmAG6roveV1XFAWPIxtgitlyv16UzO7+4qqzbj8Pw+Pk0py/fu3vvdHm4fo4pcEBQ3fn1MOzHVQdvvvnmxflV1S7HRNfDxGBDkhzz8enpwwf3/uxf/8l+v12ujplofXLy8vwiTIff/d3fffTxB8PQ/5W/9jf/3//099t28XvfOE3xC//ij7+tzGeLzcnV5LfPbBqujzYqpBeadRzdN7/+NRv6P/yDfzrtx3GaSanz8/O6W/Szf/78OSIO05gFjo/d6288DCmKyBe/+MUX52fzPJPSheJzenr6wQcfDIf9vTunnz1+0jRNStx1XfCpBCcTaaVxt++bbrlcn7w8PzOu3u/3iHg7gBkFAM65q6srQpznki8gh0Ns2uXLm/3pnfu1DyOApJgj1zX99q//+cMwPHrydAxRWZeJtKtt3/elDbRVlXM+DKMgTD7mEtIiOPvZ73dzDCnlCIiIxriUmKwOIbZtO06DLgxP7QgxxYwECinMHskoAtfUfvbLRSsiddtOfrakh3ku8Nfp8fHmaHV1cRnmqWqbMsxlyACEiAowBF837v6DN4ZhEACWBJJTAqcNI+ScCpJ8s91uNpum6cZx9MOkmubozjL52Xt/cXF2cf6yaZrdfl/OejK6JIc3TdN1Xdu2l5eXzHxycqKIlstF27Znz1+0bVdg1XEcjTF937ftbQucQ0BEa5RWSqGIiLFKKxDJkDMZQmFIGQg0IVozjjMqqlwz+RhTBgBjXD96Zl5EzoFTDmqBJWgPAK4vzolotVrVGt1mYwiHYWAyxV7Yp1h+6kKga7u6rh1wgpz9OEw5Hq2Xy0W72KxzzteXlyEETpEgpRiOjzcxFXSBBIGIKmsAIMYsCTWhtbooiRPnHGJWXPjAdV2XjcDso9aWRRixn5KfPad5e9hfXl994Z23j0/uTCFebW/qbnn37t0XF9f3Hzzk52dKmRLmI5y8j8bZ4tJgrA0xzsFrrY2rlTXGunmefQhkLAAwArDknD8Po7SmmecZgIno9ddfv76+KteodqYfIAGfHK2990JoNBlrCSSlJJy6rnOKYvTMLJzHcdTdYtl1fhqbprm+vASgN996+/XXX9/3w+npad/3KcZiyzX7kYEQFGcQhGEYGERbM01TYt73fVmszvNMqK1RKUZntTEGBed5nqY5Z/Yhl6QQjIkRI+fdeCi084w0DAdtHQA0TcPjAFT8aZUxxjmnlJpEUkop8eT7aZoMUu0qrUmr2/1uCfoNMYpgXdch5Tnk2XsmlRmEg1KqbZvyP3rvI+cQIgC0bau1zsxl8U+kcs7KuLqqYowx+pQSaQWEnLLpnBBGzkBKKWS+TSG8jerL7JzTdGv4rLVusAbCMv46q52xRpNSijiXPiDGqDWJiDKKQFMBooEIGZByFpFUOuYkObPc5isUBjVAThK8L4dj6RfTLY2fAAAyokIRzFj4R1hMXrUmpVFnEpFygEWeFUHllDGm+Md5Hw8azs7OFJJF5ShabZd1taxV3xMwaeq22xsluVG4WdYauHU2KIhhWjbV3eP1zXaXWZ0s10apnXCoVchajB6CJ2U0UhJerRYhhGmeE+Dm2Bpnm0U3zQGSoYxxziH7MYTV+ohspYS3Q/jg0Qsg9XJilaNW/Nf/l//xz3/4p3OoASgMPafk6tqSyiHmFAoPTmnMIMzMyCQomMN8++ZLzqirGP3R0fEc5pRS5GyNM1qnnHXVEOB1P3/6Qk8xHbX41S+9gwk+++RyPux/9KffP1xdfuML71wdtXcfPPzg0cvtLz7JSbFoUrTd7y/PnpVwOQDoum67OzRde3Nz+cV339nU9p/8k3/yR3/wzytnhaVuqxePrjSp49Ojy11v9NqC2x4Of+u/+E+Wx5u/9/f+J8bmxz/7+dv3m//qb/2NH/7Rz5598Kv/6u/+r372i+d//K/+tXPV7rAXwJJM9ezZs5xkuT767LNH55cX5dkM0YuIInj+7AmnvFos75zeubnZppSQ1PZ6V9X10dFJznm33b8yNM+kBZUq/jYFOW2axhhjK3d2dvbuu+8WBOvy8tLaRWL1+OVVt1hMcjUxLuoqMuaI05i0cv3hup+S6Cpr5zlr5xwzT5MvaEwWaNt2DsEPUz8O3WI1TdMcg6ucqartdmuULrRDhVR2SOM4ikAUVghKowjmnBRREUs450RKsTElV3WaphAzMyeR4id8dXXV1G616LY5cYwxx8lPzjitFWQW4aqyyc8vnz0t/vgioolExDmnAUthWCwWLKC1TinE6GP0zPbly5d+ngCAEEKMyfvjO6dd11VV9fTp03GcD4cDM1trAYBjitE75/q+t9Yctrvj4+P9MBSCibV2nKaUc0wpxFhXVdl+WWtRACWjQPQh+2it1Qpzjtpqjmkefdd1KaWmqVJiY0xIPBx6EXF1o0kXLgApsIjBT1qRJhn6/bqriMgZ5jBWVXXvqMureh/SPHtALljxOI6FgF3AzOgnH2bkJNn7eaiMihQLc7utG06hQHmHw6GqbOaotM6A4zgDUFVVWrMDHUKappEBrbW1sdPoCaBU+pzzarU6Ozszxqzqep5nykiMGahql0rS5cXZD3/8k69+9avD5Ou2OTo+dvVqP4Zf/OIX681J13Vko1Jqu99pp+YYsnC7WGbmxFkQ5xAyktJKAHxOTdOEaWZmp5Ut28KCW8SoNe33+2XXhDgrlM1qfTgcEFhydqRMXaeUcqlFnCFFS2itifNEbUPIhFB0LaZuwjRjNk3TAfMIcHN5Za1bL7u+7znlo83m8vKy3w+L+130qmrqyc8F+c/Czrk5BGaYJq+UKbAnKhM5l6hpOYRSFWLIPuaUozFgXTXNc8icc458UKrc5yKaVJaUQonkW6/XIlJbF0IoMXjzPAPILYYUhZH6KaB2jTUsMsWoramdJUSECII+JiBtrKpIASokNGW1AfAq+UByTlVVuaoCAFKqgLe3DUHO/ZzL5Ipoy9CslBKtUxYjUh4NQPhc3ZGFwxQQSSmtnNbWphSdNkmpkjtgrCrpmURklRa8Dfxo27r8hplzZq0VA2pEAQUsmZgTAECCUGjVAMh8uycGgCwCigiwvKSyd2fmlICIUIEIpsQl9ksrBIUAJdQrrRad976u3Xq93h+uLi8vRaHSBJC1Uu2iOlpUp+v24uIipSShn700q/Vm1baa90PipJyG1um6Mq2zTqE1uFys9/s+ZVmtF1/76q/d7Kebw3C6anuQnDxp9fJqKyyJcwZKIRtSpYOc9ts5xWaxzDmTgpTQGKeRfQyd0dN+a0hVTcM51W0zMu5TdopOF/Vm1Wnw19fX7aIDQtDGZ4YUl3Ub5wkExn6PGiUnawxIBh83m6NhDvxqGBjHWUSW6yYjzPNsrBOAkLLWWkAlEWb81U18cthV+ezTZ4+/+vY7iLZtXM2M8aA9ndQwXjxznJaGDjkqpdhqP42v3bsXp+Hm5qbv981yU1eWRHKMP/j+d//mX/udP/4jd9he1es7guHHP3tx/eSnv/Xn3v2P/7P/6P/43/zR9mL7m7917+2/+Z/98+981+OyT26zboa+/+xq+Hv/93+cnzyWzf3nZ/Pv/sUHF7uv/ZvvfLduOmNd8anb7XYX11cAoK1JiQFAEE6PTwqDZ71e+yncXF8jotUmhKBAnHPDMJ02XSads8w+iDHzbrfdbrW1Maa6ruu6vtnuy9Px5ptvPnr06PHTJ68/eO1WERe9tZYEEBg4+2mGECyRQpCUP/zww6ubnXUOjL0+7Oqu013XERHiYSrmLMIxZwCq2+bQjznnZtHR7MvMV1KmQQQBBYofPSplRASAQUAYBQVRESEAIIOIpMQIrMtzkjMR1XVNxtzc3MQYF4tFnOdPP/20qdzJ0boHrmsXo5bMKUWFqJQ2WhcoO6eIOQuhJVVVtmka51zOJ58TVeZ5nuaJiNqmVoTOGqPVqlscn2xuScuCKaVxnNfro9df787Pz0sBm6bJWOOc6/s9iAC0iHhzczOFUKTSN9ttwc/LdCLMpnLFfgtR6qo2ioiIME7DGHK2RtW2zoiKsHZWE+WiqwzBe/+qNZGmbcaxj2kaR5+V0roypJzTy2YVQsgpEEWNudLKWouoa1hfX2+vr+1+d50SV3UrhNa6RbfIWYp0pLIuBeEUvZ/6EKexJ9Rt7UQsAe53B6Wprp0ga2etqUr4KJE2RrRtRMYYY4pJBEqTUdZ+AICkU5ZusfIhzd4bawGRBet2xWlWzq5PTuehf/byYp7nOR6u9iOpOgu23UJbK0jZ+xRz1dRGO/RzTHmeZyRdTBXmEFNKPkVny8+LpeVy1hZJjFIkKY8heO+b2s3zvFp2JU120TW5diklrdA4l3OepinnLIQ5SSHcAYBwNgqtdqms28fplkAn2ShtlPY5bK+uF6vN8WaTmP00N1WtlCoKscM0FrgoCwNT4lveUNXUr4SwkjMjslLaWmMJhmGY5wmJKteAoswcs4jSCaKQIutIqRhj5qyIRJI2xtiKEbz3PngiWiw7AmJmjilJFoSYUhEjuXbJiCEm0UqTyUIpAygMCQAksmgEUFqBEiBm1soiqZSZYyoKIRGZvfchlLe6EDJSjK94ywy3vQqVtWJZZyilmCEzlD+W2omJRUmJNYycDbNSZXMNzKCYAIoeNwMQ5JRAnC39NLz6v0ATgiIRiKUVAEQUzbcGTkXZVIpu+bV8l4hoBIFbsa8UKzcSKiqjfMsBBwRgEQQCEMhaERIgxNWyZkkA4e7JunHKWls4Ozne/uPd8dJijjEiiog0TWUM5QDb7K3Be3eONSEHz6kGpeq6Q+Hj401M7FNuOlqu1u78+uX5RefaxkBM3FUGYg6CgRkNTWOvjLbOZi/9fjv52dSVjzmpfLRZ8LhdrOsY8+EwvvvGO9vLcx/7i5ePPDmt0BD7m+1dS3cwfZxTP0+6dhkBAIxR5QK1tRv9DIzKIHGslUKDdxbNC4b9vNfOMYIxznt/uBWqKCJdYuFBbi3qhVB3y2kM9+5/8fi4e/T8fPvyYtV261Vz53Rxc31+fHJvu5/OX+7aZjVMI1MGRkIZDjsUaaoqZNjvdkopgFw78+LZ8z/8oz/97d/8jYz6T7/3ozlJl/jv/Kd/rVG7P/nn3x1386btXj79ZbWez2+mPphKmX640W03TLy4/7rh/NHl8M9///c/ffylly9fPnz4cPZxGKcQUoyxcDWUcXfu3EnC/TB470kgTPP9+/ffe++9MIXtdvvi+fO6ajQpKTT+un758iwLurp66+13X+622+2WiJiTtXA4HB4+fHjn7v0f//jHwzS9PD9frJbXl1dPnz8bDv39+3crvdgP+6VTEKbsh7VB4BzHvq4q4Ly9PlstVsvV5qPPPnvrwf3Faq37vu+6zloLREoZnqc0TMM0LroVInrv2+WSKPKrqDK6fRAIERlAWERSeRhEBJiFoOj/SCAXJiJSeTBizAFCimycGJZylxuiDCV6InvvCzGKcwIABEVE1hlnLLNJPqSUhMQSWWuM0pjZTxMAjPOcEpcRARHLWF/O3P32WhO8tXhDIZ2fnw8+XFxczfN8fX3tqqqu69PT04cPH3788cdnZ2fLtlsuV4RShrzj4+PiZxliLAyNqmq0ttfX15vNpq6aqqpimIehzzEerVeb1Sr43moVvN9utwpk0XZN04SYWcQ5xwzaurv3Xzs/vzj0fVtXWWalxTlNkGKcg09O2aZadW0D4jiGvu9z9Na4RWeYefLknFssFrt9j0aT0eM4pcyFHpxTivPkuvro6EgBG6ss49SPt2GtAFl4GidjlA/BNfWitmSdZvEhCZBx1WGchnlKmVNiIOQYI9+6K2jjCuG2bpu+72NmbUmI+tmTMeMUYlYESlctmmo6jMMYVtXCNc3w4iIkbpSOiYvShlAzAipSRIf9LmXplmsfw+HQMwII+jkUs3gEIQStVSmfJJARtSGC4msBBUf181hZp5TiFGL0bdvqphmGYZhGjmlK8VaDLplTsNoopcgKgQTU1hhk5pQ1qdpVktmHEGffLJb9MAFAXddaaz8NZfQERkQEoQyimBkEABBQkSZUcFsnsDwvSmttUmYvAowILLMPhsWneOiH0m0YY1KJYKqcFgCAmDwDlXilIqi11ipAQcRSibMAktaGRWISIHRKA+mQmSUaTcACAMKQVVlxcqE0JiktQk4pgdJaa0ESEUVKBLnk+nKRO6BSyoAqjcXtM16cxbUSgJBiltt6XLqjxFkECjYTE88UKrBEBIpQGBEBUYFoUlqhQlJEKKVSqH+3rJYmADKIgLqFmm8/C/JvJU8AiIwIQFRUNQoRWZJABkREAmCnrDAzJwQEYRBAEgIiBShsjdaGnMaTo+U4HAzyerFsKysiWutcuxijAizdPyzrFHV5W+raEVFtkUyFAk3TzNNQQpeBhQiKF7+x6vT0+Op6/+LlCxR5eP9OvJrvHS1bn5q2vdqPI9NumMbJc04I4lNKMdWVC5IlBqdIWcw8nKzrO6v1G6+9/uzpS87xm3/+m2cvnz85u5iHwShLIu+9/to9Z//Gt771rx+/n4RyZtFkrSVBEe66LvtZK2WsQZKcPMRwZ7E8ce5p2mqFxU+GSduqTgIxJmu13L7jJISASIIIKs3nXa0vzs/bzG/df/P68nB12G3urg4xYLOh5u773//BbgZveMogKBaj0WqaJoW0Xq+PXH19s/PTbC0lgmkaf/bT9x88eGCrGoW/8Wtf/ivvnda83d8c/tUffi/qN4JeXOz9L3//26vXv+Ac6pyNay+CRLLf/fDp21VnbO7H6ZcffpCydKvl0dHi7Xc2v/jFL4razhhzGA7G2aPTEx/Cvj9cXl6HkG5udr/85QeXl5dVVa2Wm+Vi9emjx0orALVaLeaQo5/7w7hr96TVzW778LXXF4v28WefEYHW+pe//CVpbQG2+14pzMwmQ7dcMHPdUlUtz188V4BG4zQMbdu4zdrHMPpZWz2Mu7oxtYaVVWtrNMotEQOVKuSRxWLBgjEnpZRPKYRQTGW11tM0oQAQ3g64grfZXZAJCUWg8GVum1QkomJ/r4mYMwpk5hBCzGmx0BxTsdFxVmc/G0XO6kpAYirWEES6iJREi4gUvYExxlldgGjJDJr6vp+8J6KUuGmaQh8o1lfW2twsUoq/+tWvbq6uh2FQ7ZKImratm+bq6mq73bft4kc//ikA1FVbd205btab47apwq08V+q6traaY2AEISRjQwgxBEmpcqbrOqt1GbkWrZtnUUQcg3MOFVnjnMVhGJyrY+YQwjAMu92WWeqqsrURkcN+a0kTW2dJE+7215VFAlZa1Y1TWHfLTmu13w+Xl4NSxlpbtY2AZoHIEn2gQ9/UlVEaUKHSTdMQgiaUECeAnDMiEeoMoq0gERrDpIc5jp7Hye/6AQTbdnEY+si5rmtmMEonzsUYgZGMsymlafQZaZg8A8ScERUA1CwJEJXtD3tEyTwHxs3xnTHGuB+Vcxjl5eXVcrkUoMo1qBUzT7NPnEFIJIlIYVFprZUxBdKMMcrswzTnEAvLt6j3jFVVVYtwVbVlTNPGzcHXdS0iBJBzdOiWy6W2xnvPI8fZo+QiOXPGphRQwDmX060fRc5ZISkU51xmmP2YhFFp55y1lgiYXc6ZUGfOUEgszDEnEdHKIJIoUEQKShkDEcxZ0FCzWGjnhmHgMpwRChUihTHGuKq2Rt9WOABbueKunDgppZqqvp1EYyqcLEn5lhSmFINMfdSaLFhGyizMLJqUUspYQoSciUjK2CgCInNMpcZnQCim34gFsJ1jQC9KKSzsRwBErJ3z4H3mIlorvyKiIM4hIWYiYkEAyoKQOJJoIgJMkHLOnEGb4qomIqIRiUhpdMooQkSkV4GMBYco3YtwEpEMLFkYUTOAKmZtpJGlZBGiKhSrciYUo3hEZCYRIRDCLCBGCaMwYlmEAYgm1EoUAaI2CmtnjabKKhTHzDl6Apj9jGKdc5XVVpucc87RWfLjVFoiQ6gUmdbZehljrJ2bDI5Tn3PMxOM4Nk2NilLKOceco1XStR0I3cumNqoap7qujXEe6SQfs8Cjx0+nEMtRSnCr018dHZ/tLu+//fbG6sP5xVlCjebevQdvPjitDT89e8oS7732+ounLz797NE//Idnf/HLD1MaW20EUhIUUSmBRqWRUpKmqYDAx9EgLZz5yrvvrqv2J0+fdpXLKWqk2/2CSGl2XzVDoJEAbommRxWF8aAAf/XxJ5V1737t6+dnL3757Ly6qhTZqx98tljfBcqE6u5y8+Li3GpxWqGxh8Ph6urGmB4RCZKf8rsP38hhyjHc3OyMm+7dPf2f/d5vf0k++Of/7Oevvfm1O0fHv/NXf+enHzz/4GNeHd/lcJB4zmJV/dAafdXfuKr6+eXu4f2TlEI/Dhlk9/yl1vp15srZYRhLlIhzLoTw8uxsnGfSZrlYhGne7Xa73e74+Phmv+uAsnA5BCpXA9Fh6AGV0ubp85eBsFusdoe9MWqz2VRVtdvtlFIhJR/zatN1Xbff3hydHL/z9pvf/e53Ly8v79050VobwTjNcfZvf+XXfvN3fuOf/eGf3Dx91nV1bSvbtK4enz19IUl0VVWSWVuDSo3jTERd1xU9vjE28u3z9oqkT4kD3T4vJCIagAGYC28fqKjthAEIFJGiFLO6lf3VpGCaJj9HItrv98UvQjJXlVVWxTAftrtMhlgIlGRIKWZhYZghAICz1hhNArOPMnpSQER+SkUWtVwuS44TC/R9f3UrTPLXN9dWaUXG1VW76CLZ3W5XVVUIwVrrXN33fQihaZqY037XO+fCPFbVrftdzqnrOhGcY0DEAvRrrZkBJKeU2ChjLCKW2V0ElUJDiuu6HBlz8DlL03bb/e5wGLz3rp9q65Q1T58+OTqp79696zZHR8tWEWrIhHJzdXl9s2tqt9lsmm45jvPuMJVU2u1UL1erEDOQCjHHmIA0AMxJYj92teu6Zb1oEmAYekU0TlPOOTFYa3OWGLN1bRLOQIfd1E9XMeWcZfIRSNV9yJxEJDEppck4IRSUKMwhaa1zlkywO+zneY452RBzktVqtd330c+r5RpNIODr/YGZUaeb3UHUOMxJkFhwiimHWFVVzqy0Xi6XjGTduN0f5nG0VdU1LRDWVYO3lNrk4+e4bi4TYWGhx5xQYAoeciJEY3RMnIepNYa09T5m6QHAmionaRYmhCCogCXGmG0GQEDMWVJKt/RBrY2iKcfSFIaUxnGs2w5RtFWFBp9ysEjzPJewHQbhlEHQOHWbKi2YAUoLSiI558M0WmtTER6JgLr1+FRKlXZBK7JKa1cVLnqevFIKCHMIImytK/yOVwUYfIpyG1QFKSWtqXCmQgisyRktRTiOhc1+q/EjwPJ3ogwR8S2LAlNKzFkLMidgQRJ3G8Ry+73CCZCVRhJKWYRLQgNYWwEERCStOHAIMWdGRGFhjUqyZE7IzGyiBmTnbFHaKiQUQCqD8itPLiRCQoTigJkZWJBAGAEBIucMYggtEAoTfv5zcWkMOAMKAzCWy8BAyCjlX/SaSBmFpWBLJkQiMKokFrJVVMgBzpgQ577vtdZ+mjllglvzamOUdaaubKhdCba63XihxSQEJBybyqI4YHHOIWLiXDubhElB5dRmvahcs98fVJh52MXDjGR46n0UVs5W3VsPHhzGYb0+Ogz9J4+ftEYrVx2vliunh7OLh2+8obvN9noCnawZWqfGYZf8oak7VGCbdnd1aE/ur197c1N9HMYDVRZRccC26mohnvODBw9QY4Q8TCr7qa6qfrub083pegmonjx71i2PAMkXYmllcwoioMtlQhFhECQAPyZmU3etEfj5o8+uhv6dN97az+BDHqcejLk6nN27d2e1PJqmAHUdeep3+7pb1E2Xs8x+3iw6Blkv6r7fS+bf/Nav/+AHP1BKvXbv/vOnL989HZ+92H306Cdz2q/d3u8/ud5xi93v/O5vX5+9/8GHj65eXC7vvbVs2hx6rOjmcKiqioGOjo9ubm68nx48uGeN+uD6xrkKBBZt6zNvDz0qAtLOVjmxrWoAuHPvfj9Oh6G/2e1TzrZuhjC/uLrUxpCxPiTSqijixuFwfn7OKf3lv/yX+3H+wz/643qx0k5pZeuqPajDxdV1Of9B6efnV5tumVnIVJu76/c/efyTTx5NKWnXXA3eBrg+TEoQlH70/FwXOaBEr5RJKbGgdkprrZIWScUzttBui76z3Hev+iNBFJEswErpUqZvjx9EJA0AVUVGYXHmM5pyTImisVYplZglZ11VVtPYD5Kjs2YYslZaEYQUQ0oFfWJmUzlRFFOOMaYYAMCQIiKfYoHQmTmmPO/2V1dX5bDebDbHx8d37twtPC9F5t7d+4/Ozk9PT/f7/TiOJU+wTMzDMFCJhCJCZWKWYZiIwDmTsyTJMcaYklJGayhU3sZZUGoavce5srpramttmMe6aoprxziOpqrLhqwfZwBo23a9Xhc7hZyj5Pj8yU3jmtrZlAAJbNMsu7a2dY6pOHTe3OzPLi67rhNsRIVx6o11ISfSVnKc5wCofIopTRLnvVN3j9aLtmZHqGzOsZ9Ga5211lXNOM5zmDOqEOPowzCNcwhACpCALGnL5Lg0GZPXOouyRORTjoGJaJ69976qKtLW1UpEfOac+DAOOURCOT6Osw/OOWUqTuniehuz1Is2pF27WrhOXVxcGCRjeI5Ba620pQIiZyYiyKAAMwuUfTNA5ZyEQERKl7uLXFPfeqco7SoTfVDGEhEi1F03DENBdIEwhiwIIpJBlNLWIhHGGIfJO1s3baWQ+r5nwRijUZgz6lsLYrFOk1aQmAHm4KumLnOP1ho4FwvPcomFARQBwDiOSpnStJWXGjlziixRR62UyiAxhDLpFjWwIZVy5JAyQG20NRYARvCkleRbK+ZiJMkxlRmdWUopZ5CcJSexRgOAQM751l4h5zwOSRuy2hDKrXw2s9IaiZm0iIC8qmHCzLc7XTKKUDIIR0YUa4zWuh8mZi4kgMwsgJ8fAsWBCwRTzDGFot5OwAiCpJCRgZkhE9OtrhetpkKVABbAJALlGvGrbW4Zvcs0LEBQ8H0oxpOQFTp1u49AUMwqp8TMwgkBOEcERYSoCJCVIqWU5uCcMc6V20ZEJOeUgjPWOu2nsbLWaM05oTEEGONtKJxILh55OedCHFNK2aaxdQ386vKIQAgWkZm1UoQ5peScUUaLsE9ea7VcLiDzsD9Yks2i3V5Pm7YBgJuZLbD4ECTsb7akjNLWILTW3t1smkUXWdq6bixhVy+MElOpk/Z8u//ej370+GN47+H6y6/deXIzvbw4iyNv1ptPnzy3Yf8f/oXf/v7Pfvai3+ekVEUWABNrpGmYPQd0BMaEsQdtnp293Lh6c7qu6vbi/BxyKoMVIuaSsAkMjKiAgIvtCQqMAZtmcbWf62a1PnaPnn7a7w/3ju9U2jy4d+fFxdM33nqLFM+Hnd8d3jq5P+r8/MXZEBIQAqFSBoA5hX4X3377zQ8++OjPvvfDYRjncQjz9KUvvrt68JX/9L9498H9xT/4B//ox9/5zt/5z//26bef/cG3P/zo46cQJ4Xwza998RePrnMIad5tKgypWtjq8ubaTfPv/u7vfv/73/34o4++/OUva6Sf/vwXdd3kHMfR13WdAH0MT5+/EJGqst775y9fNF0bc5rmIQMqZhaYfTy5ey8m3g1XSlsCGIahrqpF25y9ePGjH/2obhfL5fIwzQI6smwPfV27HOeXL18uFm2K/v5rr0/TtLu+WSwWRw/uL1P68NNP18fHQHR1dTNNftUtXnvwIMb44tlzXUbvV6ObyjHnnOu6nrwvrXoIoa5rZo4hAICyRkQYQSCTQHEVBmGlipQOAOVz81URqaxyzgHzNE1RIb+yJy17tZTSbnstXdPWdVetAcXVFFIKKdmcTAxzSDmLEEDimG77Y+cqay0C5JxO1qumawnV8+fPr65vEHE/jIvFIgO27cIYN/t4OBzGcbTWXlxfl/2W1nocRwBydXV2cb7oVsU5gRkYsK7reZ5DSkqpIoauu5aI+mFCTMvlElDN8wyZCbExtq4rozClNE1TV8nspxJTmAFTSjHkojRNiYfJH5coiJR2N1vJ3Lhud324SeH82VnX1g9fux/nnELY7W5izH3fC6o5+Ka7M/l4cT2JwHZ3SIgsKKi0cWMIsw/ee86p7/sYPKd4erTYLDpjHADOPnZd7VwtqDOYyYc58Dj5KWQgrYzLAsKYheIctYHEkKMI4jB5rfU8p3yb1QHTHFiwrmulrY+BJQnAOHlCsUrvDsNhN7gqlHatH+fdYd/MoarbzHJ5dX52dna6XFdVVdd1TuK9jzFe3+xIq0W3mCaPiMSikWKM4+zLqVdKnVIKtbbWElFKsZ/GDLXkqElpDUCEgiwoQNY659wwjeM4gSKljYgAYmbJLCnGYZ6K/AxQpRj8HJ1Rswy1q1JKDELaAGkiiBxjTsM0IqKkTIl8vIVMszBnKZwI7/00eeegzHNlfBfGGLOymJmV1qhQkgBhYeo6bYzVmhqUrJAUQQp+nmdT1aVOFJBJ69stDADklFJmBUjGoIAgaWPolnuRlbqN0Egpi0jKLIYJhYgUFJErivArGPhW90qoFQEAFBiAAFMOnDMRFL6VSAYQBRiFP1/QlgWwcw6BQrEe1oZFisdyZtGEqJUGjYqIUBEgotXaWq0JNd5imyBS2FtaqUIHY7kdLgsWWo4SFABEFmERW/x6tKFbWw8qfmExxpwTgJQCfwstWOMUVnXtnCtvJhGFEKYR2ratrBsRnLPAorVJPiBgIZp9TgIvoJfArZfZreGX3EY7pJQMSiIxWueYCFCTCiFo4KZphEQphcJ1Xd07PVHKHLa7ZV0TQM41Y4rLZeKDZwU8CQAh9Nc3WbjSKg7DEMJ42H/rjY1Suls159vnYuzJgzs3149/68994S999eEPv//tX3vjK//yZ08/3fcN8n/yN//azZNfvn7v3ulq+cc/+P6nl5eO0Pd9imjJphAnSSmw7SwT7KZhIchaTbub1aI7Xi+u96Ny2irNgDGFAkILMGQRYskAgCS4bvX+sLe2lYAP773227/2zvNP3m9NWrabi5u9iHzw0aN+PDDzolpebj9m8brucpa6WQpQnIf+cFhUGnNGxHaxenF2/sbrrzX37n/28S8//fjjY948OHodAcYkTy6H3/LUdW3d6GdnL7/0xmqD4Qj6h0fuZ893i9USp0ug9upmu14fXV1d3ey29+7d+/CDXx62dx8+fO3Zs2fDFMoyK6UUWIi0EINIyqKN2x32zrmQGBRZbS9utnfu3Vtkvt7vUGlT1TFGIUJ964JORFdXV/UclNKrVbXtJ2Md+znnbFxVLbuz58/+8m9+89d/4ze+873vzf3N7PtPHn/w2oOHnEO/u3nvnXe/9dVf+853vjP2Wz8vBAF11gVyQQFrra309c3ucBhuHwYEAJhG72ytyAD827JaenMiJCREYf48HLtsm1BEkjAzz3Ouqirl3B8Oxqi2bUvYw+f7vLZtj442Stg6XVlHCBfXVzH4qmmMrRLv5+DJ6P1+X8wNlNJCmIQl5Rjj7rC31+74+Lg8g91quaDb5+QwDofDoSB11tpFtypv4uFwCCEcHx8T6cnPIYT9fr/ZbFbL5TzPwzC0i2VVVbcW2ZzI6BgjIC4Wi3Ech2HQWi8WnSFV13XrKgQehh6F27pOKRfAoAgtnHPztNsd9s5U3k/TNDWuKo72dV0Pw5AT+tE3TYPAwhSDvNxeJh+22+31bjuN/s69e/04kblWZJbr0/1+e3lznZmiIJMxdVORVtpqM89T79OcYj67OL+6ePnGa/ce3Ltz/8GDly/PQwj7oSdlbeWmmJUxpB3PIWaxSgSV0rZYc4ccEdFoImViYpbsQyCi2fu2bb33/TgkzuVyF7pNSqlyZpqm62vUmkBoGkdQpJSp20VdtRkhhKC17RarovtaLTe2rk6OjgWhH2et9TzPzOKsFYbjzZHWuqAUTdv0fZ9SVkqX1VRmZoHMMs9z0zScY86ikPZDn3OuyOScGSDGtB/6qqpK2C0RpeRL+zWOU85Mr5wOY05KIXByIEiSQgKWmItljiaifhybpmFhP0454S2hWhAAUCvOeZ5na60uWuo5iIgwlmlYkFPOebplKtV1lWM+9PvsKhdsbZ1WqLQgE2Qmvn0o0qv0nqI+KDdSTkkArbVodGQxnEkpjiHnzKwAAFkyZGu0MSaFmYgQWIEoIiI0pBiQEY2zABBjTPFWsXNLj1JUWFcKkAhAJOdcVxUgimDIKeUcM0/ehxBQaSLykGKMhZQQY0wpMTEKkEanNHzOVUZIKYlRiEiIUIxuBZDImFuJswDM85xj+LxFzq9W1PQK8BWRsgOKMWqt67r5nLmtCWNEkaxUUeWjNmSd7ipT2jgAMJqMcQgQvK+sqyqbgtWkQgrWNTfDldXGVKZI+xBRayrQGsCtyrmUcHklGs45C+eckna1T0kkW2smP2PGJEmSlIBXaxQ0FTJMCmujr68nBfT6vbvdhvfTJ2H0jauA9DR5NNhUDfq5j/GLb7+N2txpDnOIxuSHbz345bPrpnHf+s1v1NS/+PgXv/3em+u7b71x/71/+E//1TxND49W8Qn+5Dvf/tt/9+9c7rfnu11bt9fXe4ONpMyErnZMqW669f27h+cv6mV7cXU9p6Ft28o5wtGQmmIERdZagkQgKBkAOJULoQAljS9W9VEMLBE/+PHPwv3q4b3q/Nlnob/c7qGfEepOdy0gBwFQvNSmajdXj1+oKlurRCQn+cIXvvD1L3/57/+D/8c7X/jynbsPPvn0Y3u81lp/8MEH0xO+0y2CTx8+e8GL4//z/+1/lGyVXbAPrcH/+r/8W//9P/hHz57s1PLuYQ53zYLsYp7HfhqPj48/+eSTy/Mza9RPf/rT1x48+Et/6S99+zvfe3F+2Sw3N0Nv6ma7749XyxLMoJQibeeQEBEIfYqIuN/vb/aHzfGpMvbZ85fKmkLmTX4mkHIzjONIylauefjw5NPPHnVdxzl57xHyer1+8sHPTfaPP/mIWVhra6qj48X93fri7Gx79uyN043jkCk//+zDqmtBGP/L/91/k3Nu2zbkVNjb4zi6qinyXxEZp6lq6uIZOwzDnNLnh6+1VkSm4D9XxIrg5/0jAFhrgSMiNlWd51BX9ni9YUmIuNls5nksUU9WU+0qa8xyuYxxfv78pdLm+OReP8fn5+f97NHqkBMja61r6xpXSUyQYL1a6cZqrZeLxfvvv//Vr371+vpaRIq5oDFGAI6OjpQ1xecrxmhRVVXFCDc3O2OMNsYYN89z07WHw6Gu667rwjwBwHK5rKpKMhR/Mudc9L6E08XoX3vttRIL07bt4XBYLpdlD3fcqKIV2+/7cpg6Z3KM3vumcs7aME2uMpvVOuecg7/Y75nh6OT48uraGFc0u8D5sL0ikOinFGKMYb3eFGq3advz88sHr7/++Omz65ttu1gpYxloHOeLi4uy2EZEjqHrugcPHpxWVLp4730xHPXet4uVraonz174lENmIePqplCUA89l6Cza4tJx7Xb7kg8NADHxOI7Mr/yQia21iggA3KsJtVQO772IaGdJ6aLrF5GltsWJxnu/OTqy1n7yySfG2bZt53kOObVt27ZdTCmEMM9zBuz7HkGRVkoZ6xwzz/Nc/nckOTo6IoLDbp85zvO8ca7rurpq53lmgPOry7rpkvAUorV28l5ynsfpzunxerHcb3ch+cJFAKVTZB8DYEnTkzLqlXpQmr++71khABRmVgkQQ1Rd1ymliv9G2VJnuWURO6uL7rCMdAXbHMexso6IKmOrqjKF4E1oSPkwlaLCQAWa8iHGGEuZFGAsjHRNumRfyi01+PMShUjGGKtUAXJTSgJZa13cXYRDyXHKOSOo2wUS8zAMhUKRmUO8LTZa3/p/AWG5vcd5LhYW5WYor6EYblhr53EK2sbolUBXVU3lrCatwCjsugYRlcLKGasNsjCz0fqky9ZWbbccx3noZwCagk8psQiSlHV1SkkpU6ZYl6M2tOrq49Widmp/c2Osatvaez8HX24MYxQiGqOJqLWmTK7DMBSP97IUb5pGaypetOM4VlVFCpg5iRGRcRxJbjcF2lCZ+stmgQjUrcfWbYdUQH6R4ufG5WysXaW1qqqKlEqvGIXDMGz3+3mcbnZbrSzZ+qPPnk65enxxGKI6P4SEBnRB/nf3751Ulb2jJ6X0tp/ao9OnF7vv/+xXdx+81dQuD9sGpt/9ja//ua999ZefPP3v/vt/Kt3pPtD9Vn39W996//Ennz1/DkIqi2aojdWEmFND+Mb9O1/64rs/++D9WeVnFy+8vq8VYg5OC0Zvtco5GuMSFyUShRAWbeeMkpRi9BMvBTIRIzFwImRDiCx3jjaYeOj7tqqVwu1hjwhAcmfx9H//X/8f/vRffPbP/uhP9dHGG1s5/OobyyPatar6x//0R+/8xl//1fljhusj3f+Hv/Pn6z58+PEHVFW/fPpSFid7qYOgEzBhVHFCxKiqgUnV1ewHrQlEKwI/ToqgrVxxip1C7BYrZd04zfvD4JwLcWbmk5OThatevjhj5gzoQ3J1JajmEID0zXa/Wq0SS9d1x8fHP//5z2POndYHsNcpJ8xGvMpslGPRSuSN+5thuLrqh1QtxykeVU7HsTxTxWhdSKZpun///re+9a3f//0/RMRhGuuqZRZtTYzRmkqXzS4oIqFyZCBiSuHz35uUNCmldVnSQIylJS/3X84Z+TY4tuj0i0IJAMqM29bWGNO1XVCzpDj6GTJbp6dpYs5N01ijcohGq9payHkYhjfffHMYJz+PhNogWoJpHgVBadVYiwgpJavUolts1uv93F+cnx/2+7qunzx5cnFxYa0tIOfz58+//o1vfOlLX3r/V7+8vr7WWocQam2FsHwNII7jqFS0lSvufaWLR1Qx+sPh4L2vXVNy5eZ5dsZ0XcfMzplhGErwXAEkyxdXVTVMEZXe90OOiQgQcdHWUSTHkGIkhJQSeUHEtnIj581qte/7w+GglDo/PzfG3Lt3L8fgnOv3u9fu318tlt77Z8+exRj3+33NPEzT+++/j0rnnKuq2veDcbVS6uj4+MXz55eXl13XKYV9319cXEhtCiJqrPIpTvOklbWVCznFnHJmbSpBijHGxMUBn17ls8YYEUvqjhvHsWkaY60SVEoV62ARYQ7ySnlZ6kRB16umJqJpmub9rqobRAw5dV1nndNabzabaZoAwFZufbRBRCFcHW2IiAWKGVOhKU0hrlarUhq99yxSSPtlSCoMBme0Uqof9mU5GnPiYShRx23bhpi2/QGVziLee8m5XM3Z2FteYUoiSAayQEpJgIVQKZ2Zi857GIZSdfq+R6uLkcUrboQU1ERESKm6dpBT4lsj4nJH4at85dLJGWOstSHFpmnIaJ9i2TUaraNSzujy8vJtFHepqViclnMuc2kmAin1IGelFGpThrbSLtArt2dERBLIkGNCzcYYAf1vH97EiXPOgohVVY3TJAClqy6veRzn8laX0yDmHEKAYqnN7L1vui75ZIyxxnjvjXGX/QBASmHRTVirrVGVMczZOa01cYbAQQEWKBmRE+fD4RBjzjmnFGOKRGQ1hRASZ2OMsrZQsxigyIdSioC8WR93jcs5ishyuezH4fLiOuagtXauqmtnjIHoi4FMCAGEOIMxBglLw4GIAKS1XSwWiNj3/TiM5ZZAFrkNS9aArPB2u19+NBIocokMYtVtEDgzl+lCa52FIUmxPXg1NCtj1Wq16rquamoAYND379/vo8q6/eVnZ01V3/TzNM5HJ8fFmSCl0NlQN92du/cvd1PTru7dfaCNOT8/N5CA0qePnyttgyjSao6xdt12f/37/+IPPEIicqay1hjBECIbMgYSwbOLs8cvHjPJvTcfICpIkVAZTc4oARbOTV33w2StTTmtNqc5pn63XxxvQs7MoG4ZPkBIokpKDALK9dW2sjYmPgwTKWi6tqqqq6vLcTA/+enTJIBKMWc/70Xkw48e/9aXXv/1b33zT3/45Be/+hGt1851+/3w/Gz6q19/67d+5xvf/vGHk+keX/dxvwPUoI0odXT6RuOqOYaboT+/2tWrbvaxskYrfPP1h8+ePi6HUozx6Ojo3v3XvvfDH1V1ozSGOJczbbFY8OyHebLWJuYsnAVnP5E2fd8753aHPZHux/H5y5dlhvQ+ZoOIiogUGI1ZkYKEKczOOYTF+W6PnBdto1F+65u/9cFHn5Tn7uLiwjm3Xh/d3Nz87Gc/K0l6bdvGkI+PT+Z5HsdRKaXHcTSVczHmV3mlVVUJQAhDSZDAgqQBlLVZnqbP2VjyShqUQYq5BDMjvloUiZRDmZkJMExzCjGEZIwC1WrvD4ddXdll2x2frtZdOxz6F08f28UixltV3P3To9OjjU8xcAZN51eXPiRm3myONekwhqfPnplaM+e+PzjnRPjO8clisVDWPHny5J133lmtVh988MFut1utVsMwLJfLOyenSqmcZblSTdOcnV1cXF1ipMKQKhRHeuUuUi5nWYoj4uFwkJyryoaQcs6bzSbM/ubmpn61ZApl5kVk5snPmvBova5rd3y0OnvxcjjsCJw1Oue4v7lu25aI4jyLyDSOy8Vqs9mIyPX1paS8WXVd15W38e7du9vtdrvf+ZDuLteb49OPPvqkqps333p3u+8r1wyzPxQ/UYC6aQAxxkxOH8ahVjUiUgo6lfUkaaOudrsiaZ1SQEEWECAyGpkRuEwMr3YKUiS3zjkWYQZjTFVVWttignZycjIMQwEJp74vJm2r1aofh2K7nXIax3GxWFSmSinNwVeE+/7AzIvFwjV1BskpZeFSbEIIZQ723hcJASIO48zMxlbGmHEcGZE5G1Kl3tfOVlV16MkZW9d1CIFzKL5CGWS7O0wxKGM1MzNXztWuUmRuXS0L+pTZIiAqQZhDAADrcBzHnHMhtRack5n9OJauK996uNuccz8MKSWtLeJcXMrLu1Q2nQLAIsaYpm3HcUw5k1IsmBkS55xzChEA6rquzC0no+RwAwDSbYp2WQBprQHLGQhZpMT0lteGiJqIMyVJtxOqZADUpLJwSsl7yTkXKzEiQlBAGZiIRGsdUyqED2b2KQFAzJmZKedC71SmBF7XWRhIEalGmWGYSsE+9H3xq7nllyFoc0tJA4AMYl5N5JyyUorMLT3bx+TQZBCtrSLo+94qqqqqbqopTOX1MGcEUgTWaEPcNjUC7/fbSoM1ypAqHU/lGueGOCYW5Aw5IZFYbX1IpFRVtyIQUoo5I4K1NmUhgmkOwzAoo51zc4jex/Isg/Ar4huzJP1vL4QqqjlJOeccOSdKRFS8DgC5NIXW2jK74+26G5RSlWtIFa2EMLOgOT3GeNkLh1Vb5yHXlWGQYuLddkuRXNVO23qxOb3oXxBZUDqxHB2fGog1puXpvUDm6YurfvZ60bHEdl3Ph97VtQaSmEUItCZLCVk5fZiGxcnxV9/79U8effbo8dOsqXMEIJQ5c0TJCvHo6MiYQ/DJ+0FiKOmP4zhqrWNIqsoAxXZJEEUBiAACGGdT5qZdpJRCnL/45rtHR+s//ON/Ybr7f/AvvwtBgVGvP3xwfrjcHV4Enn7xyw//6u/9B/+b/+1//n/67/7HIU5KV0Dr7/3k47/y9de/++Nf/f3/4X+68+YXlOC9ZbteH/3q08fJNo8udpUbFpXmMB8t6t5HECUiOXPRyg7DYdUtcpbz83NXNXVdE1LMERByzjmnx48faVBN08zBV3VLlmPKTbe4vLzMAjknRihgho/BWkukqtqhMiEmz5Iyg4gSIZDl0appmuubcwCqjEWi6XD46JPPmGG32xWLixBC27aI7ZMnz+7du3fn3l2tLCIWnKatmy9+8Yt69LMDsf+O01B5oqBti0O9Vkobk4XLHFDwyZxzgdQKtUFESCAJvxqC/61FHED23qcQJWUCTDkDwDRNzMl7L5wwZ8WpgkTM62U7C1+ev1wu121dWZDXHtwJOWlrPn70qDVKUjzMc78/5MxGu9XRRiGfbI5KpS/WJycnx6vVurgg7Xa7co5Pc0BQd+/cr6rq4uLCex9CAKA79+6+d/Te06dPFZni+8HMBcQbx3EYpmJBfHx83LbtOI4hZzLaIRLRvXv3lFKffPLJPE5lC2iMCSnvDsNi0XZdV5Yon336yenxEUqMfk7Bb1aLtnaAPE59OTYPh8M0eQTaHB+t10ePPv1kCsFaW8IBrTZnZ2eurtaoUuRnL866rtv3h9H7Kaaqaa+2N/McWKT4/1nrYgw+BFLKh5Cn/vj4uKpsKFJXpTQAIOyGMQEmhuDHmLMyrrVdzEliKMMlIn7u188iKWc/js7lxWJhrSXSRTIeQlgul5Vz4zhCzgVayDEt16snT56U+ApIebVaGedijD7FOOaqbZytrvbbMXoGmWavrNn1h7Kk11oro+M4aDFEhKSXSzuOY0xpnmfUelnXIsKcObNwHoYppYBCRCSIMeTbBpHw83OzlOrSDrZ1nTgzo9U6ScpZBBKgUgYEVc4+plzVDTOP/lZxJCkCQNU2eRrLHmiaJudq6xwSla1wcSKLnJVSBBJyyiDGmMgSYxJSTVNZ4X4cio/36GeflCGVWXLOpJOtMDEAaecw51y4z58zkl7xqxWgSOZyuSV7AgahkkBsjKrQFlC6XD6ticjFGFP0OedxCkVhX3q7lFgAkJT3AbWevM/TZK1JKe0O3hhjtdFaJ4YwTUCojY7zvN1uhSGlVNc1S4hEzHxWUiusQ0Qi/P+DUjQkBk7MyYgQIuSkCFTtENXhMCilmrq11hqrF4tWJNf1MiY/jX6eJmGorW3btra2qi1xJk6APE0zVlVdVURUW+tcvdsPc47CpLWrKocqAynSRik1jsWOOwPAcolZQGs9xzT6gPt+tVLKOJGyALYZY8HJmVkEk4il2335bVEWECTmXAzJi105Ar1aBBSd2y0WUt4Na60oU9fQNE3f9ze7Q5jn5MdK4707R3w94pgSy263ExTnTNM0QLBYnzx5fv7Dn7wfyQWGwHsQrjRijoMPzHx2ecVaOacvbq76m73rlgolpkhoynFNRkee93PfVOrysP3k6eOL6ytlKiDQkgFAoQgwCGTOu+0h+CmEcLxeDft9ztnZ4s5bKWM1MCIyZhEmBBBgERSInLXWo/eISNp+8tnjR8+eKm3RLt94++7LJ88u9oeY8707p/3hJYhbHd//n/7Zn6nKvv3W6UdPrwTRZ8povvfjn46slHXJh+12f/fOyV/9vd85u9pejTEqSCltzy615LfeestM6Wo7hJCNpu1h76pKRE5P74YQHj19Mhz6xtl+mhFEkYoxVtbFGAMwIgrQ6OfMgNrEnLR1kHNkIaU4gyKFkjNICIGTRAw+pVTyHZm1YYOyvbh4JHGYR2st5KxJ6bp+9uxF23Vt1223W2utNq4fB0RkkKqpnXOPHz3dbDYFFZum6dGjR7fecqV6vcKmsgi64sTG+fYpSrmcy/KKeVj6OLwN7GQiUlmg+GO8Wo38u5VYa62UFoDZh9l7bUgRI3AfPc99HPats6u24cT1Zn282eSYdtcv20r7EJLwwtlc1ZKyWdjV5uhmd9jt9gBAnPRaicj2+sZWrixrvQ9938/zrA6HnMWn29DDFy9eFEjNxyCCxtDhcNhtD4lBOJ2dnZXTv2mrk6Pjz6FXrWiapmma5nme5mEYD8aYzXL10Ucfla2qMnq73crhoJRaL9vSDQCn9ao9Wa99U1vC9fro3snRNIxF0JJzTpmBsF7Ui7ZdLtezDxdn5+Wz5czSZEMMqc7jOAaf5nk2lTvsh699/RuHftjuD8fHp7OPWuuqVjGmYlM8+dlaa5xLzMx5zKmJSZQmAqXNHGMcxuVyOfghgZBWyBJjSDFQ8ABQaVWG/vJRYgGVUt7fMpjKpUdMJSm5/HUIoa6rtqr6vvferxbLOfiiw9Zad8tFGZcRcT8Ox8fHu6EPNyGlPM7ee2+czcKCoK0pY2VVVYUrV9XtOI62cinLYRymab57926Zj6cpzeOoNE7DmKKv61qjHsc5CTttRu+11k278JkPZ2c+JmVMaZKstZI5p5yVKpZVAjj5WbHR2gpCzrmfxgxiXhGSC8BzfHxcAr5Sum1KMMZysPbTHFIsr9wYE1OavQeAyjkASDmncczMMcYYslIKUFIOEMEYo5AYZAw+HYRv9bLFJ6rQuSAJm2IHEUsopyBBWfbD7bonMkNpsG6RZykejZyzQkTrtFaYUgI0/06FUICRM4ecUN9+IyBqY0npafaHfY+Iy+WysJB8iKZyIYRyKZk5slilX0G1WSnFeUJEZY1IuXFKKBFPkzcmKY3I4JMP3lulK+uGyZsku0OvtTau0lorpZhTit4YZbUyjbOE3kerqKsbUv3YHzTh3eP1Zr28ub7KOX1OOgEq+BPEmGcflY7rdaVMFKQsMAcfYgYAbWicvYrJORdiEsAQ8zj5z88rZma+ddItzSgAkLpdw/27HzlnESrLpixsUBHqEuCmlJJXQGC5akQkwonRGtM0jZ9jT3MKXqLf7wfNRgkjpLaq9tPw9MXLruvUolLN+qfvf/Dk7NJ16/jqsnqtIKerQ79ardxyA97v9jdfePO1Vt/51aefodaSoFjNc0opBSCpK6uAwzR675klCdi6w2lCVZyVEDQR6O122zbNneOTFy9eIOJXvvKVcZyfvzzDEk9GoBRkocxZkUIUZiBEQBKkjNlprZTqx6EAhwc/v//RL/08NqvlJ5981q0bZ9o0h8+ezE/zUzCzaXE69ItNlR0lkD/+4c+++N6X33vv3c8+efLg9M5+f/iH/8P/N4TctvV29kzKLjanq8WLs4tF06ow0WLh57GqKmZgZltXZHTXdQJ5GkatSGu1H/qqaqwxKUbUKqUUWZp6AQC7fkBKSuvDNLu6mkaPWmXOKaXT09NhGIY+CCZN4OqaSaWQFbARWB4fheiLbnseD7pum7pr792fpmm1WsdYlP85hayUItQfffhJgYi8903TlH3lNE3684DScuwWtK30a3rS2WcRYUnWacTWODuEuardLbnjFchcmMYFKQdEn8ueWIsUVhaLgJBizgqQtEJE5ggsoqTr6nubda3RD/007HTVHm82Y7+HzJYo+0kyxxBVXWulCNFqo0m1VR2mua3d/Xuv73a7y8urlEOnuzsnp5OfP/zwIyjuCqju3j1uFt08z5dXV7vdrtjoIypj9GEYzi+vmbkYUs4xFOOhGPJudyjPzitvJu29Tzl0Xdc0TQEekYu7JN8We6US5ykUKpnXIESUUuiaKoVpvwubzWa17JRSpNV+15egYm3tu+++y0Avz8+ur26uL6+KQGu/36vVUnK8ubmxphr9fHF51XUdKf3xxx+//sab84ef7Ha7qm6/8IUvzj48fvokxli1zepow8xqHAuiqCSL0lNM0zTVtXPOlUT4qmn7cVCaNBKG4FOEaarrW0PjWxGICIt8vnEo0Nw0TSLonEq3p4/UdZ1i3O12Cm6hNni1ZZ+mKUfx3guDqZxS6v9H1Z89WZdl92HYWmtPZ7hjDt9Yc3dXowd0Aw0IZIAQRYImZZsiw6RERUiUIhwhPzoc/gv86jc/2nqTaYuWyWDQFEVaIkEBTczoBtCNZg/VNXxV9c053fkMe1rLD/tmNvw9ZWRlZd577jl77/Ub58ulj9HHWOLVZov58vRks9n0+7211jknjH6MQ+8JdUiRFK+3G9yV3CV0VYVEXd8PwxBDyClV1YQAOR/p58wBEQWBMxeWejqdppw3u71xzjg7juOh741Staums9m+O5AWAPAxCotRhEorK+M4QjHMKLLOZWE/jCKilMkMSvOdyomZQR0PsoBY9vh0fJRsymKMunMTZZAknBIXdzIRZQFFyhyh7EGFqJQq2yERkSI8BpmhiGTOzIwsiCgMObHRWDzBKSUJoaz3dGu5IUCAhDgeaQWtalOJSE636iFESQkAjK1CCMZWmFI3emNMPZmGzJLiMAxCmHKCzElARBJL09RF+mC1CT6JSNu2HJIy2uiSjQUMEnNGyQCMiCUM3SgkKknv7MXfpDydTrWpiShlSZJ8CgDGGpVSUghaGWdsGKMwa4WokBQC59H33QE5JlSq6w62akPMfgwl10tExjGkxMZyiJGyMPPo4zFKmjQdhwHvfVBaAdEYgve+trYshoVo0Ki0ttYe54qYEueSK32c7Jm5qBkKyoK1w5S898aquq5F67vdt/xzdZOCV0o102kzm00mMyRjLjavrz4bI6UASli5yjSn+67f7vZhc0PtIoB2k8X5w0cpi0jerG+AEK1NMYudiMZ4OCyn7X/6d/5W7fv/y//1v1YImQhRilwcY3CGxA8gXCPtrlfG1WTcvh/vGZVBUkqZQVlTVU6luDw5OZlNv/iFd5n5O9/5jnX1UTafw6S2ShsUQAECQUBBIDIA6GNwpsqA3o/T6VQpdX19KXWNSoIAodjKccpI6KMB1ZKRL7z3+NnLn0ys3D+ZvLzZex9lcvbBZ8/+D/+7/yr7+N0//rM/++DJ9jBiXY9DRwCKtM+w9jkrZ7V6++Hyg6u9c3YYhjj6k5Oz1XoLkkMIRS3ryJ2dneWclaKmqazVF6td27bxcHDOMVLcbLWlru8AwHvPCCTCzNoaATK2AsUokThLTokxxETMJAEC2Kbt+tEYczI7v7682sc0W5wDqsurGyRARSlFUgoIS49ZjLEodr33eNsPpLU1JUQ332asFxHmbDYrR93IuWmatm0H9CHFkpebY2LJR+MvQKE98DbTDllAhIqMAeT2MI4ICo1pmsZYlbxHjvOJO11Mz0/mJ5MGYkjeY9vOp7MXL15sV1tr7c31ZYjsM4NyiVAYrdNjPxAh53hzfTEcdqVk6ezkFFCt1+vE+Z133omcD6VsVanC5M3ny2HwVzfr8/Pzvu8Pu51z9XJZF730zc0KAKihwvkd9nvnXM5jSbCra6cU9v2hLFsiUtoJ0+FQyhyXy2VBFbq+v1qtNMn909O2bcPQ14aa+XQxnXjvV6u1MUZru+8OnIGZt92QEg8+7re7IrQp3GTtqnEc27aFzGMMztWT2TQnQVQh5SdPnmz2u93LV/Vkev/Bg8lsVtf1y9eXTdPM5svtdkvKEJEPwWcOLG3b7vad3+1PT21VVVXTMuAwBrCiAiilDEOhu8bgi7YLEeVWSSciRY4UQmAEZ2tUquAcWqlhGEDEuSqlOHa91rqogtu2zSAT5n4YCys5DEOZhgucMJ1ON5uN9z4nQVDCCEIiXCrBETH6EEJiAM6ijBYGhbLabnR3KIOXMqZoklEgDGPOmTEbY3Nia62xlpmttffu3bterV1dt20rIsACpDND1w0+xpyztk5bB4qAlFIKFalsc87GOERVbmwfw/XqxtiqLLuF20vCzECSuq7r+n703hijrCkER1VBpQwcNUyktRHOWuci9DPGlSNayEmVsHTOPolBUPlYW2JcVc4TORcIWgFwBgGRnKJP0epjmS5AefIEBRFVYkARpUihsECKKQtbaxOnclzOOSNS2VREEGIOIaBWKafyRFRN7epKss05E5JSGHMSBFJKkQGhofd11aaUSivU9WqNiPP5lMCKlZiFxkAIAKxQqsoCkiBkAWOt0pJj9DEBqTGyIuVj5P2BQEhJVc8YhBBzTilmTpJSQiE/hGaCy9ncWS0x7Pf7ovYXkZxjiCFED3Bsj9CajFFlIRaJMebiESiTQ2msE8la6/liWiaK4jMpD8JROndMqC7LcsEg4hFVRqUUaEMpS0oJjnltFpFzzhgRG8RbFLrM6EQEFEEkg0DwCkk4LRdTIBszfvjscrzpJPohxHq2rJo6ZEbBDz79dIg0XZ40s/lqtRq7LgtDhnq6aE6arutyzvP5vKb8+Uc/+fnT83dPT1+Ooay+SaIhZY2SMFTafOmtN7709rsXl6sfffLEh2iaJoVOAEmZhJJRD5ET03a/v7m+fO/tt9568zERAYuxxlVtkWKUW01Eblu6j874pmkASHKqrOkP+5TSrKnHSADG1EarikMWidpoN1PdPk5PZ1/4uS/9wjff/L3f+f3ltLm8WGtR6334q3/xVyYzuHw+2Nq6tjGm2Y2j1jrGEGNUrr1e72cGY4zf+Pmvh2dXT548QVR1O7m8ua6t++Y3vzkMw7Rpu26fg5/UzascD7u9L/A4qRijdfVqtRJSxtj9vi/Oq2EMpbHb+yjMxVAj6DRlyYlTBm2trSyySXlWVW++88UffPBTZ5u3Hz8Kh/1+ZDI67mOBSXLO7eSYnmvblkEkc/mkdttt0xzD/jQAuLoyxpRymHKsizEuFov5fJ44b/fdfr/PwiVaSNkSYWu894LALHIUBx5pquNKcPsdlgzqKOKHElJDyIIhJyVZa1NeQ9u28+Y0+/Fys5nU9ovvvvXB+NMQZRxHIVPV026M9WQ2q2okWu+2i9m0rvQ4jttNN5/P67pumubeg/tD71eb9Xy+GIJXSg1j2B72aZPGIewOexEhRa9fvwaA+XzODCFFQcj5GIm3PRymLPP5jG87Ctfr9WKxyDlba8vOvdvtptNpVVUxRh9jocwPh11RXqTEiNjUbd/3KU2Xy5mSHIc+pVQ7Y04WPubNZrfb77SygtCPMQs8fvPttm2vb1aFIC/oYttOjVEJU6mADInPzs6n89MY48X1len8e+/dv7xZvXz56jznkJiZb9arzW5LRHVdAwCRrqd1iGlKqplOYwyCahzCftcBgBA645jFGKOUGccxDGNd2eNnBwC3cRDHtUNpkERwdK2EEIxxVaPvlGsiUIiMEnsymUx23SGmPJlMknBxZwGqrusI9XQyb5t2t9sVYUKJgweAov8qMSmHwyEjFLu2tTaxaK1XNxul1Gw2UyCEGMdxMZ8XU5DV+uB9VdWRs2Yu/Ry+O+wPh7Zt67quqsr7CABGaRKIKXXDmEEm1pLRhAoIGUQpE+IoAKRUORoXDiXnXCklRzeqKGtuhYeojSmnzyRsSBtzbOctwFKZfu7W4sIZ3yoZcRz9bZ8BobXaukJtsEhhAe5EWDnnxAJ8pBUBwOeEnFCObUIxZgCw1lbGMkettXMOFcQYY+QEWTgTUUql2KfkT0EqDQcIkDOhnkznAMBZtLKBR21NYROGXSDkqrKoYjf0Spl+9FVV2QqRqJm0XdcdDodc11proyIKKSSjFSryKStrrDZF24SkGAgAAit/8KU3EkkRYhwOIrlt7HI+RaX92EefcmbguN/vu6GbtvXD+/fbeb1ZpfVmS0RV1axWKy4JJ5XlXLSfKWeYzdriWMup1worZyIBIvqxL4ax2Wwym0w3m40fRqUoJxYGEdBGK00ppZBTwfnoGN5ZFDDJOWesraqmrlsAHsex77picLLWlpYtAIj5VhMHICKQc8kcBRGwDnEHOfW79aQ2y0m92vVaSYV6HMd11yttDz75HOdnD/ZD+OzzZ0pjjqPWKqR86McKTXcYJyez2sHh4vPv/v7v/JX/9L/8L/6Tv/ePf/O3fvr6KiOA1pIyIjw4u3c+a2Ecf/Qn329nS4uqB/AlyhxJawMMqFXK2TbtmIJW+qMnn3z80U+ttcaa03sPh9H3fS8IgIQoAEfYn7lUacBRACRMAM4oixk5OTPJooMPrDMkb7Xs+97UU9Wo1+tX3/sz/3f/xq/dm0w+/PGfzZp7J8t7N1v4+JPPftvZf/e9PxVUoqtDt02CY8qune6HsdKynLR5PGx23e9857u+XiillDIhBOfqkNL3vvc9a9TZvfs3N1dvPH7cNJUC/NYv/cKhGz755BOqWmurvu+trVCr7W5vjRGgEKNzruu6s7N7h8NhtVrN53PvfTf4WjNwZkAhJqVEchiHQJBSij6Y6fQL77wzdfbbf/gnNzdrp1XZO3LOwae6cefn569fvy5kvPf+4YMHzlpErIy+ubnRQHrfDecnDWvWWZe19fT0tDzGiEctqIk2JZ7OZ2R08cw0TdP3PXNUpHJKJbujLKAliaLrupRS09YAcBg7rS0g5yzHhTV5Tdz1/bhfv0zRfOOrp+9/cez4dD45nU8QVP0L3yRlf/Djn15cb2PmwzAOGc8ftpvd3hgzmzQxquuxnzbtYeiL5Gy73XaH4WZ1s93ubF0N44ioigS6qmg+n8ecqknLzJvNZrvda2uISBiE4M5BO45jXVeFKSxb0X6/Pzk52e12ZTkDkd1ut1gsyne0NTc313VdP3jw4PXr12Vj1lr3+8Nms6HUOgU5jlYrr3U5EDGzMO6GvVLaVhNmXq/XJUq3XLpx6EmgHwcnLuccOz/GEFO+Wq33Y9xsNojq0HXL83vn9+51XR9jXK02ZQnu+15Zg1qVU5QCHMexH3xOopROKRtjbjYbEtDOIqK1dtK2nMEZOwwDoa6cLc7RMoSVW2cI3iE553a7HWGqqup6ta6qavS6aRpTSOKciUgjKFCMcBh6Y2yIabPfWWsFqOu6snMsFosi8jo5OSkKxhhzVVWHw6GqhBn2+64oCbsYEYGM3h26MXhEpY1GxH13UEiGcNK2291OKyxO4vKJcMqbza4UcpQjY2Lx3sN+fyRNLKDAMAyolRLhkn1JKECAavS+QOuFDjTaKIVFOLNabQDAVPU4jmk/ppSm06l1bjqdltbnMQbvfQGNmVnGcH5+vt/vgah2bgy+spaIMsh+vy8Xeex6AKjrejlfKEkl9QnLGo0oAFqpEkAhIkopUEWryUQUQr4FOQv8DJzy6DvvkjFGQfLMmpTWBADdMOYQiUioYFdHfQbepitrawh1mY/Ld5TGnHMMmVBPJpNit51MJsPgC1WBSknOPqa+H5BU4lSwtJiZiASzRAEySpEPCQCcNoIQE6MIaZvpWIDIKfYhayWZ0YdcVSSonLNtO91v9jdXK2VViIkye5V3u31tllXVtG2rUOecT06X/TB23WCd9d4jKZGcmQ+7dHp62tZVGAfPWTKfn54VLZVIvrq62m93ijDFmFNE0ErpAia3bRtjjCFxliGGmEJljgtCWQeYeRh8cWoRETNMptO6rgklhNBMJyWMRWszdF1ZT8ZxtNoVQr12DnKwRldOnZ8uLjc9cGysntbViI4zNU2z7fpmMsk+rHZbUbb3PY55MWm6rjOuyqisNohIAu+/9wX9+Nzw8Ae//4fV+fl2uwUAVT5kzkarlNLl5WUaevRps+/ZOgDUBjPrmDM5xZxCSG3b5ugJKKT43rvv3VxdxtF3XdcMnbVVzoGoKnDm3aHQWp0zl8M35yQpaxL2Q05h0jQjBhZCMISAWocwKNN2QwQlDOnp81e/99t/9HB5+vN/86sfP7/53gefT61Ryv72H/3Zoeva2hgVYhayE2WqfZ/bdvHzX/3SD7//xzVxzynXy1KPUdftoeusdUicRXxIz58/PVkuv/rVr1xdXTGn169fx8SIKoyxMswZhrFTSocx1m1z6IZy6NztDoftjpkVYA5xPplmy7nbEIAhhUQ+JcrhbDEfttsPPvhgMZ1trq+efvKpdcWJcDwxF3pRKTUOgXldBuLZZKKUurq6YuZ7pyff+ta3vv3tb+t+8NaobhzCMMbkjToSwNfX17vdLqQj3sIZlNHr9Tpyns/nBY0s4M8wDCnluq6L8BhuM9vK4pJSKq5cAFJK2aoyzoUcUgpKmV3X6+Rboz57+oxDvHd+aiF88tHeWmtsFQXLuJCiuLo6OX8w+hBC4Ag//OEPQVL0w6GHDDIMw3vvvWe0S2nPzJEzj+P19XXTTE5OTqy1I47MvFmtZb8rgHlxW9rKHROv4ChAR1IppZjSbrczxty7d28cx+12e3V1dX5+TojT6bTg8957q6gIdwHg+vpaa3047M7Pzo7urJwvri4rjQ/OzoBUzMyJSZupa13ThhCVUuttVyDZ7Xa3WC7LPa21eX11ebKY1XVN2jLzZrsjbZbz5WJ5utt3q9VqjOmzzz47v3cvcd6sNgxUwpjqus4gnCFFXt1sJk2Tc2rb1ih9OBxAGIGHsXfaiIikjIiGVEbUWpfuxZRS4lzyuo9SdkUAEELqui4zkMGCVJcJb7/fiwiyaE3F5RKJ4zACwDHb3VZ8m2FUREkgYq0lUCklTgJA1qriOCpIUdu25UZKRL0fD/tuDF6AlAIfQuFK2qYRUj4ERSiiYk51XUMEELLWxJjHcWTmyujyOmPOVdOKxN1uZ7RdzOciEFNmZmOZBfuhryq+kzXwbXpGSolIl5Nl59OdiKkcEVhkvV6LiHN14RecO5K+4ziyyoWHRkQoEcciRIoANKrkIyJOp7OC+XsfhKNlKXkRJFAcL+VSw5EGLugfiDAA+8xlFmHOpYKQSJE2oI0gpQyQcyLRchQQpZSJju5BIoLblKkCfaUxG+2O/sMScWyOWY/CqG5jQYdhqKrGex+PXYQKlZSmS2eMtZI4lyD3JKwpoyJSlgEzQ+SMLNn76IMwU90cAXpElYBZOENkGXzoh6i1ddYIKgESxJSSMRBj9mMex6AIm6atrHW1rSdTtd1671MKSmF5qPu+r5Q1igCAQCprF7NJU9kiIquq6v75OREy89j1kBMpKsmFiFiAwIJXAwAI+tKHobSI9KNXSlVNG0IYQ2DJrsjFUypdEdZaQ8oYBQDK3MZQi8TonbGgQJiRQClVu0pAd2N+dO90vQ+1xeXJ+TYIb/b1ZNHFXWOrPPh93xurSLCcYlGkqW3fHTTAYb/96KcffPHxeVtVv/OHf9Ce30ukUkoMQ11Nijj/atM1VhsiMhqAq6bKh06BFqWNNqhUPMqCOgKpnGFWLy+vIGdtbA5+GLrzk2U8PVkfxpSYCCSL0lRV1Th4Y03O2ftROEGKRqvltDlbPvroJz/JFZn6jOxEWTV0w+hxUS99HiP709P7S6Ttevzrf+Fbl9efG9ov2ig0WXV+dnr/3a/9/MunT/rdlTHW5+SZlG4lyU9+8AMJw8iZrBVbz03TdV3f94g0Bq+QjDHTupq31bOnnzdV/fabb3366Wfr67XP3DaT5Wzx/PlL41xlq8GPiGi0mzQ09P3gfe0qTlkQyjRcVdXp6cnTm9fLWeMTQOZKa87wta997eXTzzfrw6NHD1v35uefPrG1JYKYgnXNHT91pxEpj3PX9Y8fP1rd3OQc1+t113UooIs3JSZOwoRaGZ1jKskAy+VyvdlpHRPnlJJkYOaSDxVjLMqjQg9vNpuy2OlbjXTBWwq8zLkkwkuMMXEvIj6MIFK3LYchpJAFLm+2u+3h7OKqBn96emrrajqdMhmjxBnKIEOE68vXpK3knFAmTTubt86oIRmt9cXFxaHvdvuu+LeGEDLz1772NSINipRSz58/v7m5qWqbScUYjykQ1iokQuiGoayYiEgacs5a62Ecyw5UgqO11n3XpRiLJjbG2Fau4HhF7FMOws7at994o+/2TdPUdd2FULXtarMlWhYgt7ZVXTc6JemGwp8NvUedtDGFu2JmH0JVVcbV0/lys9ummHVVG1dlhtevXw/DkEFOTk6Q6MGDB1kEEV++vgQA0qppmiTcHQa6TaTKWRCVrauSFyEiWlnSRpECQUTSWlHOIuKc64rFzx9noHKOE0IirZQZxrFkQRbQOKVUVU1KoVwWzJiSVykV22vZOYSUIsghZGFlbE4SYxyHm1JI1fc96aPt2Htf13VKDCDWumEYcpb90A392A194my0YwRGElIZcPR+lFEhLGdza21MrLWULZzqukzYWmtk4ZyN0sqYvu+L/52IUs7OucwRkpAyOcZuHBjBuRqULl0dRzonJWZTzpQqSYExUkqKDCrKiUNI8/m8ePmOsIE+yhuVq8v0k1IKxWs7htKpcAcjp5R2u50mlXM2TpWpl25nU52PREDBq5mPgHY5ViciAAZBFsCS1ayU0hqVykcXTSaSLIXwFWNc2csBVZacwzHuseDbRJRyYEk6HbmhxKksIiKCcDxWlu8UqZf3Psvx7ZTU9yySWGJOKmIhUJUw5kxFkMlKg6BStnIEKK6JMQJIynJIgyaxCjJTzLDvegSADN77n9VPMZRG5N1uX1emsoYleS/MXFXVgwf3913XdV1MXmttjUopiOSSMadUQITC4xpj0q1qPYTQNJUxKqWkSd158FJK5W0WF0DRmRZBDd/WxMUYy8kya74VsZI1qq5roSMNp7UubsaUEoVYV1YjiQgCak1V7bSpt/txOmnOTufVwnrdjF2YTiGDXl2vN7stAwIcM3+8MAnFGCnEMIzzdgJ5fP360km6cRoWy9njR6+fPZ/MptP5aeOaV69eRY5CakDZh7BsJvdPzz9+8mk9m4fola1jjKnfG6LkewSYzmb77WYymcQYU0gE0k5nkvJ+txmHfYo8m80UUsl1YKUhs2Q2xgxDP2vqJHnsd9f7+Bd+4ef/+r//q//oX/y/Lq43YKHrk9F0tjzdbEeyDiGK4HRx2l0873x8+53H8/uLR2+9+S9/68OcOXv/05/+dD6f1PPT7XZLmmpjQ0w5ZMijIm0ndQC4Xq/40LmqYaQMoMEWFvUrP/f+tK5ePH/2k5/85PXr16Q1EDllM6BzdVVVidl772zdj9vVaoWoYk51MzkcDvfv31+cLH/84x8XNHS4eKWM7sdAylhFPsYQxh/95KcSgya9ub7ixv3Kr/zKb3772wDQtk0KrJSyxqSiJCBJieU2MGO3273zzjtPPvqw7/t/869/o65rrYwJKe52u5xzXdlG2QKwWGuXpydlY76+WdetCyESKY7Jy1Bm3GEYihdwPp9vNhuljsjMkfdi1koJwG2FX7EnxszaWpszJhYiJaD6kHRViTI3++FBq/sxoc7n5+eCsP3kU0kdZTqdNq+vNz6MZw8e3r9//vr1S+/948fvhmydcwI0DEOQWNc1GT2s1mVT3Ow3h0O/Xq+dc5PJZL1eu6a1tzpvBhrH0TlnrYkxISIRMlMR0McYlT5aLAjxjcePLy4uynJ5eXl57/TETiZd15VBwXvvrCVESWm1Wi0Xs6E7bNa7pnKZydaTMbFkZo6DT24IxlWkjdXmvXfPlVKfPXsmKWlr5vP5Zrct6L11/mHdpJvVfhhd3WTBzf5wOOzm82UznW13O07p+fPni5OT+Xy+2e/8eKyZIiFo26IKLraJruum06kyFvGo69ZaW+dEhATuJHiIxx5oRBzHgChl900pAbB1TillzFF/UYS7ZWwlZQhQCBCNNbauG2YWQsxl4aYswCxAeBwuQYBQEHwMWjQAAeSY2AnGlLz3NsaSvjsGzyDOOZUlcg4+lgWxcHK1tZxj70dFR6tbeRflUytbZoyRMwiKUXqzO8Sc6qopIgYibatKtKBWkhMAhZC0zuX0MARfBMxJjmpSpZSrTHnIrTJ3kpxyt/BtOFdZuKuqWkxnvutzzsMwlN3XWku3N1U5oBQ5xtD15dZCo6RwjZxFhBCZiIRUxrvADQAA0gA5J06xYMVQRHOAKjFA5JxESmy2iLqlh5gZjslWYsAgIt+meZSXpEkdZzXIcgzUQWNMIcJT9kU+LSLD0BnjSlJKoXWVUrkU8R59dBmFjs2GiWMalKaktIiAVk6rtmmttX3OLAkZ4Og4R1EkDAgqhrRJ+5yzQnTOMYoCAgCfohlREmhVW21T9Oo4sktJz6ysi0jWWmCZVFYppTXN5/MSbOD9dhjG2WxWdAwF2C8o3W63CwkBiBmK5CclBuBS06KUAYCSklkemXHsitKibMn96BWCc6aYBarKGlICR/dRObiAlGgOECkGbEOSFUjO+XA4+LEfU3yxvnq57veR+8hQqRwyKLKoQgg+h6Zp79279+rVRYx+Upm2sUpUz+litVOEdlpd9OPW+0XTblbXA1mJIQOD0tloZS0ruxvH0/MTH+O8lE/HcT6bWK32u818Pu+6nSXsDwfjal21HDwIjWO/XfE49K6ZG0TJ2RJpMBIS4bGtCwH6vkcO3/qFX3jxyYff/YPf/8q7/9nX3//mtF0/vVy///77nz/9rG3q5P0h9Mby+vqizlmN8ff++AdWHRLH19fbl1e2atz+4uU3vvWLV9vN6jAkNeWUbR4tS1U1UjX7occgLIkIHj16tFpvQwiorBCQsX13+JM/+d5iUu92u+12+/jx4+ubDbNPwJLjarMJKTFL4pyCJ9KnJyfr7Y4Ji4WV4Vg4VqCvB48fYT55/uxZZauqbda77XR5Ejk3lctjmLfVfr366MOPgUplVCBQwJkILSlEzMJFP8QpW2ebun727Fl59o0x1mntU0wp5cwKMSU+DH2xn9dc56vVGEORvyKSqdzhcOj77uTkhJmTDwrQe6+UWi6XZU1kPgZSlvGIiDJCaTih2wA8vg0S2u12TeUmiyXGyJwzGSQVhUefYtzdXF1885tfrzR89ORTMs1uiPPZG89eXod+v17rfdcD0Q8/+JCoLhfLVq5t2xKDsFgsLi8vn796qZR69OiRc6YMtZPJZPQ+HZE64pScc/P5fBxHgOGomuFcRjFmzhydbQtJWX7DUYFG6nA4FPN0ufMq50RkMplsri+7w84QEkEpKWoqe//8XhRRSgNJ733nu8ZlUzki6q+vTeXefPPNdjJ78tmnm83m7bff/rmf+7kXz56u1+vPPvvs0A/aVlc3axa0VTWbzl1VXV9fv3792jm3O+wH78tuBAAKqexbs9lMBCPi4D0qdej7uy3k0O+LiMkwA0ASQVSoFZTWVWPKxzSOY86RiEzltNZdN4QYvffO1UQ0+mgQiSjEbJ1WpJgZUGlNoCjkxMyGjACkxDGHcRwTM6IyCFrrwlV7H31IgEppyTkzwhB8ysmn6FNk5nEcxWjEYl0TSMwiSAiKFBoRIKOVUinHmBMBbg/7yuqqcmXnsNaiwBhHpUxGQMS6rueV2+8OzCyCwzAoBcaYEFLOUnblvu/bti0UoAhqrTnnMm4WNRze/vPeF8C8HEarqionmyJ3TCFGUmXALMQ/EBrCyrphGElrZoZbWtc4KyJACAoRkREAFXJmEWAGAEFEEEUESFR+CDHnrOlnPO7d9kwAIoxwTJNVtyAzAIRbfleQrSYirRRaY0rCJQiXugRDGgFzykRCIJpUJqWQRElSmBm01olzCiGEgIq0VoilVokYpJw2iAhI+xgTMynQQogYEkhOknQ5xw3RF72SVsppY5QizMwcQtCVFhHIXE8mBDh2Iyis24pTIgXNpJnPZ7XTKdq6rQi1T3H0/lYxZ6uqMcoaxd7HcQwlx0sEYuxLInrOOcY0DAMzl5IYRCWS79RzfJvzXI4XRWBY8kT5Nucg5mTIWGWUKoeIDEB0TEqgpFJpngBCEtJaC4uklEuoliCAAEBM3LYNEYYQDv0QfAxhTJk06c1hWC6X/aELISznsyzADP3oUZFk1gqHfo8soHQAdM7tYtxeraenZ/2hr0iHoVdE88l040cQJG1jkm2/nTW1xIiGKMmDxfSwX0fJM6dpPBjOlWvHjENIxjpl62EcJlVzspjgbLIf0+b6onaVLs2sqIhBNIWU4cg4CxG98fjNTz748e/93u/NT96kfEjj2O1X905nl69eh5ErrSfTerpYPvnpJ7/2K3/xxacfXb16BpLrZmKnc5E4mTTz2eTF5fW+j6aekHiNyWkBCLsuUTMNISjhWeMMqbKZCaqQOTNXbUOcNpvNYrGcz+cnJycZqA+5D4mU2263BdIJia2FmNJmtx9DQFSJg3Pu5YtXry+vxhCdcz6mzeqKQLmqZYbkx0qTD6NSSphhGHIYvvjuu6aq2JiPn34Ww0hsM4hSyhqnjM7jyCm71h78ISUsvXxxHBazeTupx3HUPiQCJKcLn9/3fRx915m2bY3pUKvM0DRNsSgY7ei2VrOAzCSYUirBH8xcTDt3iBkzZxBEVFoXNkUpFULwflgsFjnjGCIwayDMbK05O7s3XL1E4jcfnVlrT5fTd944j8Pm4mr1+GS5PoR7J+3r1eGzJx8zmuW9M06amYdhaKcT51wGublZ7Q+HGCMoWi6Xzrmzs7OHDx9++OGHl69eLhaLpmmGYSjM0yAynczm09nLvj/qTpnLvGKMicmPoyqKMyJarVZt2+YQkw6TSdN1nbVWmPuuY+amaZRSL1++fOPe+fn5+cXFxWI2qRaLzWaTRW0OnUJs27ata6XNMAxDCGOMxRuBWo8+TPoRQV1eXPXduFjObFV/8f2zjz9+strszs7r6WyBSh32fbE/VVV179693WHvnDNGF0JrHC+LZ9cHPwwDoprNZmSIUG82m/V2W5TAWTDFzMwxp7JwKzimDYhI4UXatp1MJn3fhxy6zaC1LRtzWRlJK7oNN27bVqti3oiIyKLGIXi/n0wmKUvfj/04hBBiFq01kNR1q5RK3neH3nsfOSthDaIqG8dxdXWZcxYkY0zbtrUxY/AhxRhyLuuHpZL2TEQ+RuXRKG2IUGkQPnRd7RYi0nWDEqisQcSSBFFXtW2qLH1ZJsrmKiJ9P1bVke4t+2iR4znnStZguW9jjMAZnAuBU0oFgi7m70JezCbTuq7LubMYtwpX6upKKVUqfkNOsT9S/nXV1HWtlBpDyF1XHo0CMiNAUQWD0sTHdQ1vS7hBCI6VY4hKGTp6TEvF791+XHYIhcdSJpYkICBM2sktIRk5azxGQhIBAZbQvpIwcpzRbyfawgsU/USMkQU4Ze9HACi9RiICKCkyCIoqlpujtouBRQQz+pg45YgSKYjUACASBRJnEhFVVcYYzsyJkyTW6shA+9L4lJTCEHxTu7qtrNVEoDVlhs1mkyILKUKltQ0hBB81Ra11BkEQFsaUjSFtrWXWIY0hFcnMkU9xWeeUhOXWynGHzJdlocTrxxgT58QZhZVS2hoJFGMQkbZuyhqitbLWCicACjmhlDPYUf1eTvPlcSvUfgl+qaqKU17O5hHD5X6VYkRlAdiZatj3KcVH9+7Xk/bVxfWh7zufUEShjL47bvnGqarp0JiMVeNSzGPw06kDEUkCKc/qSRdj7pNGrJULfnSWhn43IXM+X773YH714vkw7vf7rpmfjkNnm1nIlCKYyijDMfrXL18tZ83bb757Ops8fvjo6urq6dNn1tUxZWCTRYBAWUPI3/v+D04n1XK53Gx2P/h3f5rQ2yo+//zDpplIZAN02KxSdMKLDOH15ibVcz2VypnN+rpaVtGL0/a3f+f3VTVt3CQktsakGDh4lmBs0/ddO5uGPq9udou3ptao/RAEwVbtsThHkdJ6Op0CwHe/+8cZ1BCyrlrjzOzkZLPZ+GEAorN753U/vrq4Ojk7Xa02rqlzzt04PDp7bJw9HA7GWd93LJqU836IA9vKgEhGQmAN3O83z8cRTD0CfO1rX3vx+tnVxW46nYuIT4ElF5qm0Mldd7h/795k0pwtTz578mmMEVn03R2QkdRtm41GKuZaY8x46ElrYk5JjDEppGMdfdMc71GB1WpVhNNaq5SOis0yAcd0VNICFH0WIktSqsDCVqssWFkH2oaMhyE8uv/o4vVzH7O15rOPP/zSe4+/8oXH88Z8+OTlyez8/sNH448+2fVjVPZqvXVVk/3Y9303DKhVCGH0XilVjJhlN/3Rj340m80qY+sHD7quY5bC4oSQsnDmeDgcCqtdaOzC6+wP27Ls7na7wub2fd9W9S7EMvhut9u2aTabjdzKZQsGgJL90M2nbdGp1VW72+2aSXvo+pA4howkYTzGPYqga5oQwmazu7pZEWoyWmv96aefxhiXy6W19u233wZtdvtek3n81tuH3Y0gAGEzaX0Mi8XCWut9uHfvHijq+96a6vLychiOu2ZFNSK24pBR+QAAxqJJREFUufFxREWC4OqKAIF0CQgrhlohBEJhWS6XZWspn2DKiYicc3hbvzqOIefsbF0mVDK6yGr4NsAyC4cU992hqJBCij5mIiKtJPNR+gviUyzE3qHvfAwhBCFklqptyzp16LuUUtM0gsD5mNSKCJzZhwAiVVVJoWlBBj+WGr7ysjlla125A40xWSDnzCkPwzAGr5UpBYVlYruj+gBAkSmSwzImlpVYKaVJMecYo1K2sIM55wKKKKWstYQ/2/mKeEchAkAf/Z1KIOfMIrHvlVK7w74fBwCIPhRUZQwBRWxTiwgAKTqmMiGi+nPbKgiJCBCVk24qE1suiJlkRCJFRJIzIkJhKyEf8c/MmW/haBANiBoVIHMSQYVERMgSitfz9sfK3yUByCmLKpP0MAzl0DCduZwkcS77SiZRRxwbCjBNJTUkCVPMGViRJVRa5ZxzElRsNEkSQLbaVM5En4DBmPKHKOfc9XtDyjotwlqr6bSdTZtJZarKWKcA3W63G4fASAhUtxMCRSDdYWDms/PZXb3EkZBWpowBRJSzKKWryiqliuA53maNhRAKhXEkNRBiimUzvtuki0CEb7sjlSJjTGFDyuIDwKXRDxEIEBG1IcnMxHIkzrXWiii9fPn88vJyevZwaZr5kNejiKkjqu56d7pYNLU9HA43Nzdg3Gy62A8jICJERFSGSDlWLqAZM52yzSOPeZzNZpv1pjFm3kzHmLUGy8pqhzGmsf/yl97Zjev1IZsxdjcX//n/9r9YX1189JMfPnn67NX1rpqcHsZgTdNH6Ac/cVphmrbTX/qFb/zgRz80pDCH5XTycddXxk6a9jCMMadSKDepTGWr/b4LILvNtjIP+nQ4PZ/8nb/3X/6jf/jfj5zu3T9v6uknnz/FaB4+fvNie31z1U/dkkVFUmF7ZVzVH6Ce3uvHQBJrghwzKZ0VtZP6/tn5j37y08YsqGr2CQ6HQ9d1MYNtq67rQJEi6vvDctputtsUwhtvvfnBTz+pJ/PAeHNz895Xvny9usnCiPTi5WvtLBBuD3symkWMddqayWRijHn16tXjx48V0HrnY8zz2cKI3/d7NEZIC+S2bX/1l3/x5mr1x//ugx6wz+N8VlttThbzwY9xGwGg6EYOhy7nBABKqRx8uXNCCKaEqyFiqcF2zmml+v4QR1/IswKTjuM4Wy78GFebtUEpeUlFLlg2rclkUtf13biQbtPGCwxY0EVEZE7eZxEBhPL7AcDZKotkH6OEGFOdpg8fvbHZXD1/GmJXEXdKUo7Z95shyoPp6Vd+7v2t/+Annz4zzaT3eeqOh4bJfHY4HMoZwtaVtba0jJU44n70TdPknMfo27btuk4E75/f68dhtz2cnZ3tukN5qJRSnMIwxBJaKYR939e3oh7nXLHxnZ2d7Xc7AGia5uTkpO/7zWZzfn4eY3z9+nVd18vlchxCjLHv+74bifQ4hpSSIRVCEE7WWqVU3+1FZPTRVg4h7fvuRt3U1mmtV6vVvQcP4jBeXd0oaw/73ZizkihHx2e8Iztns+n19XVlbdChfCiFt9tsNroyzFzX9cnJCQCEcCSAGST6pDQaYxiBU8lO47JjFQNPVVWKTdmfjNZFwoNK332+xR5atCcKMHMJPc8islqtcs6CYLQryUTlntGkMMVy/5FWxlkJQVmDnIEBlZQ5Yww+xuicG8dRGW0qB1klBlSklFLa5hzruvbDiArrpibAnHNI0QWqqmrStK2rri8vikZBKd2PYz8OiKTpKGxeLBbb7da1zXFDEslZSCtnXbkUZf2tnFFKJWNDGBHRCxRQp1yictZUSJFZa12QTKPUer32IWitYz7WMnLxUgOUBBIiEoGiz2qqGo/FXEoUlpYtLLFiQET4Mzm6HDt5CuJMRBAzEgkdE9oLyQP8swFOICMLspAwEMRcCu4hpVQqjSEDIGtSwIIEGklpUqiOWjNkpw0dhdasEMt9a4wZfeyGviirS9yPrSsfIgFySpzyGGI+1gGVo0454BAisuBRyAaD1lopY5Rtm6qt6l5Ycmxql+JgtbZapRxKClt/6AB5t9sAx0l9AsDDELSmxWLRmzFkHvoxRx56z8wACAA361U5OE4ms7ZtEQAzoaIQs6uItNLGaOsSS44j3yZWlYvsnCsVjdqa/X5f3NvjEArLA0IIkrMXEWA4HA6ltsQoCmE0mohIBAmKJhaYBRGr2qZbfD5yJhFUVutkjF2enkwWi3E7Pn7w8OrgL9ada2ez6QIR/DCM/YEAQ0rduJ9MZyEOcYyVASmtEARDzqpq7TB2Q2cqE8Y4mU0Ny+FwmEyXIbBm0YKaEZV59vTpw7fODyNVROurq09++pP/5V/7+je//Ohf/k/f1uZFqhbjdddHrqqGADVlyBBCuHj1Oo1dN8YPh/6b3/jFe+enylb1dLbe7d94/HjMMeekFXCKjx+98aU3Hx+226ef7jgNk3aKkJRSjbMc5Cvf/NrhwB98/rFagJ64b/zyL68v9tkfwjbMbO1zzsqxKOdqSl5yJK0SUB8j+rBaX1lI/e4mQZvBeT+en59frXcpizHGVK7bbbU1RfvWdd3jN990znkfyWrU6k+//z1rbakc7X1QUCauzCKttfv9HhV9/uzpbrdbnp50Q1+pCIAlxz7FoTI6GjMIj8Mwb48lYEI4mSxSGl+8fOb0SVnzi4AmeA+I5rZkpUwpH3/8sdWmPMK6bDlaF4MEsMg4hiwZUEU/JBRrrdNUiVRWjZIVZCsawDASmhqVzQJENIwxpWCdaactWd11XfCJU545y5y0JibwiYmIlKLSMa4NKeScxhi99wqJrH7JoQsps3v+sq+vxtMX6cHZqdF2h/edbq67qJyezdsHZ3M0NmbedF1hNEOMptQhhICZIXMO2evoXJ2ymNrsvV+cnN3TlFIau4Nx1XTaLk8XWl/Z2tqoBUEZnVNW2krODITKkFLdYXfvZCEa33/nQezHfjiICIKDk/n1anN9fW2Ev/7+l16/fi0iy9oVEBtjvH8y/+STTzTQsN9N5ouu70VQGZs4183kMAalJGRljBkQh81Y1zWZdhiGmtDvR0kRq75p6nfffXd9fTUxpLVcbg6EMl8uzs7OPn36+a7v0bgujZlRhIbAIYy2acvI3g2DzaKUCuOYjyCnSjkDitYKtRGAzGTAJEkhZQCCmH3MSillTDWZjpsNC1ZVfdTI5BQKu0WZiLTTrjTz5Ky1BuTDGAotis4QK2ZOkEc/5pxb1RqjQFGMkZCo1sEn75PW2oeQci6h0AQkKDmnqnJ13VTGlDqNlLOPgUj5GEEBGWs0Vc6ggAOVI6eQW1sr67LQEHPXbzIqckqURq2AVBZJmSOSkMXWXHSDmy5AEEQqVw1+HENMKZW0c23cfujF+7meQxgr55Rqu65THGqCqnHWWgPZex9D5uBREadUxqbF2Wnnx811X2stACUdOucMgjHGWTPhmBGxrlwhawiysFRWaUMpcsGYiVCpY42EAgUAiZmFb4FoLoOaJsvMwkxAeHyKhQEYjktzGUZZkJlEhCHmlAFAk0qMEjwiGqWO2aOZi/EJETUSKRoZNmMAAGdMwcgVZq01s5DSbdsCC9jjASsNY+1MypIAAud+TJqUtbo2pZBWSlhpRhLEJERCVoeEYWqb6cSdnah5a58d9iI8cdXAGMbBTpuq0gLh5GzZNOBYBFgzX7x6rRQt5tPlcjlbzBYner87vBxfxugn83oYhhi9IAxBx+gra5zNa791lRFGa6qqgaNTmYwPLDlljpxyTEyqRNBouU257w+dMWYcgiAoVynBmFNWKglpUt57pZBQoSBG9inXlUW0PqEFRUjImQiMNkQEgYx2qCgCk7UJSJLUzeQLbz8O3dpWvZUhH1ZfnIytD+vN81EvKzd5tdnppkkiYQhtrWN3EGZUNqBSlixhBTiLng6Xg0ZTEUAGoZgVA1JjRmSmpEiS+KSh5K2/vNnHaGQ6WyznH3/+0Y//NN9r4CQ8+dYb9sOLFy9C1NW9ju1h8Iumdgo5pScvPrsRXNR1DPKnf/SDOPpf+dYbZye0evpsXs8eLh//8LvPGqSpll979wv/3vvVd3/zX/zh8M68nr3+9GX36vl/8Gtf/8f//NvKnOCHPw2xm4H/xts/9+Hnn789nw6r7cXORzP3XowxkoMiIWPI1rtdxEwK1ERPxcvldqyqM4VKIxKGAVzKOpp23x2sUlXmig8W06JdfPXrv/ibv/eHe8Zc18N+5/xwUts+T0II7Wy633X37j+8uroxlW2N2x32MaYCHVXWpar2wzidTve6Zg6cA6ja41wba2B8WMV7Cyfd4erl0+0hR5gCTmM2rmlbzDcXr6umFaQcokgJa1cilHMc+rGpnNZWKRp7f/7oVB8xFiDrKkSIITBzVZcmNSzKBWdsDhER752eaQNZJDNhiN043gX9YOOm0+kw9Pv9PnFWSk0mk8Ko8W29axmPCoRljCEkRBDmVBSkVhORH+OTqye1oUnlJJLf769fv7p3fl5VVUyHzaE/uXcfb+u9gBSRn06nZbpFgELDjOO4Wq2Yj/GeLMdJcbfbdSlUdb1cLg/D+OLFi8lkEkLohqEsSQBAt1HYBYaqdG2t3Wy207b69Mnnb7/5ePNqE3xKnJfL0zKFeO9vbm6MMcvlcu7MixcvmqaZTCb77nB+/17lmtV2U9Q9tm7aphpLBG0IVdsUqnXo+pBi4ZmOhi5S3Th0Q4+Ik7YVERZMKU0mk5jT559/fnbvAQCu1+sY8/V6dbI8E5HEeT6dlVNIuSYFGEwphRSVUqVcstB4hagv8xnehpiVD8jHACMUMrgg0mWKuWMiyxqtlCKWgtX342C8EUQRBIKcxRh7y0RopYwIDoO39bF3K8aYU1DKEGIWKSMOEYEAANR1UxjrUBKzjREATMjMnFKZ/ku8mlZKay0cmLnoXjbDICJOayISTkVprI3JiCEOXd8zjYAqpJyFbdMWzCDEAAgliDTn3HWHAjAOwzBt6ltGI0LmQmEQ0cnJyeFwGHqPiAzHAbdc89PTU+3sOI5Y3mnOfd/n0r5bVeXSlc3Sex8jldi1ofeq5BvcMb63UGeZPvE2o1syH8fX2/6xI8Cqj4F0xYt4/NkS3YsCIMKikPg2y73wxD6l8sbLey8vWAEiYsBb1WSM6rbVxyiltWZEhYRKEBGOKKz4IjfjUhwER/o8Jd3WSMe4LjkG1IpPkdi4prKmIXTCOmeuXJ1TXK1WVWVRcr/fLRazs9Plcr7gdjruNm+88cbV5cu+D8GPbVOt1+tiskgpKWUYBEEprQVARDLgtKpqZ8fgh64vsA0qWixONrt9YeuNomIWyDlXVV1VlTpGBYTdblcYtHJVc84p5pRiKXtizqNPMUZ1LHkETYiIKbLWnEESCEhGFAtHygBBilpNRACEiFAEUKravvfeO4MfmgXrav72F9pnl/sPPvx8uB4UgUHmnDQSSs4RCEToqFIvv0oABEs0sxybi4sWBxBR8P//dgIAYRRgABh2h5OzWQZ9s88Pzx9vRv3+V7/e6+sX+2d+6N94cD5763G3XW8vbxZt9cV3H//ZS9/vV0yxbd2Q+4+ef/7Nr//6m/c+//GPnmCzmi0nwh7b5s9eXP7Kr/7iX/5b//vf+G//7c36xtSnTy7Ht+7P//ov/9wHP/nk+rMfnr/5Fd6df/D0qjX6J3/wG/sxZ6y0bjNHEE4gPnpNQpxBQTOtN5tNZZ1IblvXD52qamP0dDZ78ezZuN0koMen59vdulsfppP2nTcef/jRR+lHTxaLRz/80SektbHzGMedh+IBKVGANzc39+/fPwz9Yd8ppQpTW27+6XTa9/3hcMC2kug1GuI0qesQgw+7r33zG1996+zFRx985zvfd/M3Thezy+1mcTZTyLk/KKWqypY42JBiSLngz0S03+/HvivegclkstlsNACAZAXKGeusHZlFcvSh5FMSUQrRGDPGaLReLpch9oe+BwRrdUwaBRJT3/c54KSyChk47fohpNROp8657fUqw9HFcXQWFrtLjIlLSQ8m4WIi1NaEEGzlhHm73UZnzmcz5vj64qJtW+0qpc3NJ0/6EKfT6Xp/iJmtM0pTTrEE4Zb9pii3AdU4js10QkS7/TFuWxFsN5vlyYnTZr3bXl1dVU375ptvPn3+/LjMKXXH/3nvdylWzsSUVqvVvZMTY8z5vQdf+tKXvv3t3x5DCiFo4/KtieLq6ursC+9oa2azWWa+ublRxtiquX///qHvdG8nk8l8PlemH4bBJwwhrDc3dV23batjyDkXh3HhqLTWfTeWLoFHb751cfHqsN2xIWsqoPHp06fWVYhqe9i3zZSZm0lbZB23TbS42+0AqK5rVKRBK6Xo9hhUZjW6jYZAxDD6GKOtzJGVEBGR4/QmXObacpC6e+xTSpOqFYCUJfb94CPcZu8ZY3yK5V3oW2cOIuYxaK0FOPtAAJXRxtgh+FDOAYjGmEkzKXfI9eWVNVpEQozDMJbfxiAoUDlnrSVAjaS1LhbY2jo0OhmjlTJGS8rjOCJppW0fOh9C74P3npRRTgHnoQsnTYv6mKYJAKghBp9yVkrNptOcc7/fKZAUY86xMrZcAhEZhmE2m7mqEcYsrJRiTuXi+xgAwCoNxoo6ChIJ1R1tXETgIYRC8pYPotx4dyebOxJHI4FiRCEiBZTl2JFX1tTyeui2DghvHb1yVBkLM5MIA5aFubiLCoUhIkW0VW48vAUzyvnsCGiXUhOtj8d4ABHpRVKKxTJ7tAaUu4JUY2iMSRKjSALJmYFFiLquaysHzpYOCe3QGKcRdLRaKglqYN6tu2G71yCVsbU1PgzWaOv02HVjW0GcpjimlE4WU4R7fV+vV9f7/b7sKMwgTP3gU0qjzVLUzCKZsXbKVlXYHdmZnDODOFeX93iUmDETlHBeXSy/isiYUjebAcCoiiijcKHrjDakVQghJs4FbYBERKJJE8acdCIgBEYAVgRCiotwFZEUAglLJjAaARBAGI1aLOeyzU6ZbuTrvZ9Pm3fefNybA2gSzBfrDWhTG52TJE5aGUFkZADFCMICgFKOpbfNS4hICAj450nr8l+PeGcGQ/ricjPuKI75T37wyXyyDPbs0ZsL/MEn7y1OOGxmEXN/fTisM9uffO96aL9odcVK7QHU6fJyt87o/sav/83X//SfH4BHTkPyu15/ctn/+P/8D//e3/hrzBywGtj81h/+6M1J+s/+13/pb/37v/xb3/ngv//tH+2jHXv/7nun//nf/tv/t//m//6Ft9783qcXoyQNAAqNM36MPnZvv/nWw4cPv/e97wFGBTyOXW1M391wNN/42q/8e19889CPP/zxT1avP5tUlVhtqdJu5sWtD0kZnVkJmyQYuZLIRHGMAQukFNNut4ucQwjF61hkleUG+MIXvtB13YtXzxZtc//k3m7XbbbbqqnB0OXzzybx+v5y9h/9r/4XL1f+uz/+vK0I0rg8me2zJ4LKOoZiPBBUWmftY3DGggHgo7QTALTWmlCcqxRSDH5A0EjzyVQIq6oSyUN3SImXs3nlnKR8OBwEoh8G42pnK664bRpmhhwnTZWCz947o42inDGMPnEu7yr5cMsGHVE1EeGcmBlKXgRhyIkPh8iMzOPQ1QpJGyGczRZhGOrJFJB8SP0wKFtPp9PD6F1txpQPu30IYT6fa21KL6+1tq5ra6rCySXh4zYDvL25vnfv3oP791frtbJmHuNqvX7y5EmRpKbExYtSNjARcUb3w8AaT5aLzW7/nT/+06///FeffPa0mUwYsNWzuuG7TMGu615dXOy7bnc4FGHa2dmZj6GZnNjKHfox5nB9fe1jaJp2eVLlnNtJ7b0fhiGFpK25NX2hcw4ANvtd5Hx1dfX2m2/FxMpVyqjNdjuZTEnpYRjqum5n06aefPjhhydnpyml9Xpdu6qs0VVVFc9iIbdijMT8swE057L6K62NUsro4oGLMRa6K4TQj0PTNEVDdCdWKpaLskCPPiAiAJIxWIyTWUQgsaSUU8xGW21dTsyZjdES+iwZgFCkMqayDhG1YMhcV5WtKxAMo8/CBeTIxwQDX8hmAHDOGasBAAUk54RMd32X1sjt+SOnFGLMAJxS2O1EZIwpC2utAQkkK4K2tkqhc4YlMWsfQ/KhlPW202ld14ftBhFTjM6ZbjeyYlA0xsCRQwhKDVprV1chhLqub25uen9xenJurS3NmIjY9T0iWuvqtjnStJmLhquQvk1bo7BPWYNkkDJoHkGGMnXdpmuUjYZAEAVRyg6s1THGpPxw+aLUwJc/l7MUSzaUXsCYERCFCYSP46gws1E6cy48ZYkBCCHEGAMfRVjlNcOdvIg5HOcquVVZgohMKuO99ymzYMkbQUSrdess1pW6zdICgGO4mJpDljBGwbzLe+Th/HRRV7qqbE5mNpvWdf3y+dNhd8iLhSSurLm+uVYKJ5NJ21SvX7+MMe92h9l0zgiIavQj+IRaAaGIcIZDh977FDyBFG2ECN7c3BwhaBFRZLXSSuOtYaycxiiXJKMsCBJCkUCX2rsYA8SCHmkAEqSUEt42tSBi8IkNiSJNKHI8DKVckjc1IBepVtHogzCkDARVZfuQ20l9tbmJw7jf3tRoNocd+544GVMf4hCGcnQGAUFAABZBBiyRzEWthygArEDKh15eEgKVNA8RKXpvRohjHobxl37pL3/+5Mn15Vala2ofvfPGA0r8tbceIcLFxcWvfvntDzD+B3/11/+Hf/k/9nmlQbSpd56ZoWbzm7/zeyfzKWhkJhbrM3jVVotmdXXxz37396aLezbpEDOibLrwm3/w/ffevE/K/vqvfv2TT19efH794qevP/3wncbUn3/04Zfeef/D11flpnzrrbe22+2rV6/2u9Wrl0+tJgsU/DBtKkjh619//+OPP/rOv/0370zd22+/+Re+/OD0/i/84Z/82Q8/+jwvH/zggw8y2T5xv7ueTGY+pH4cQduIaFXOY66cCylqbVfbjVJKENSRSjga/Mq0GoKvCWQY+tW1U67R1DqtqmZ1/dqN5uwrX07MYRw1Bl3VIQ2vXq0d1pFz3+1j4izgY1TGJmFEjCkopYCZQN599931zY1I1mEYq8nUOauIrNJN7apqCSQhhBKxhCIpB02ljjTZWjnnmroRwuDZkGhrYFIDQOx2RChIHLwzFWhtsMJ8fG4lc4qpmBPKchlT5iwAjIoUKRHpw0hKxxBEsJlMtdFD5FZwMp8j0enJ+fNXL7WtUKv1et00jbUV9733HjJrpEldG1IAwCknSdbayrow+sGPkBkBnHNf/fLP9X0/jqOztmnsvu/qYUDv27oZg4/eg8I7WSMAkEBVVTGM+/1+MZtYrT746Uez2czaKgxBWzP4kZk3u20JAnzx6vXp6WnTNC9evV5vN8roEAKiOj0/t1YL0q3ZKZUA6vtn56vVqhdhSSGIUgaIimtLKfXGW28jInB+9uq1JqjrejGb7/eHq+trra0I7rp91UxyzouTZSmbLHtkCW2eTqe7Q5c4l6cuxJjHsawvRDQEL+mY+VyUNdY5ljT4kYOvCAVBmIuxskACdxCiUqpEPcXAKaUkfLdM422zgq2cIUVIJEdfeIyxUseVTrTS2iqBzBkASiWXRE7CpZVB3aqayyNRVVXx13LKiIqISACVOkLQt744IChOjxIRqqwDgDD6qqmzcDlthBByDM7a+cnSKktECpAUqAwCYEjVrjKkfN9570FEKayt6/HQ9z0ZW16PsqY4hvVt6NXDhw+HYTh0u7zLs9kspuLyImYuwAbfNskAQtXU5VTEAjGVvEl9h0wWlRVkQGQhuXt3t7+BibAMowpQASqkEvhw1HKXvRYQ+bhVF/JYABBLaCVqUgx496pQl3UHiFRJzivpXV6OZ7K7W6tMUWUn42ObeIJ4DMzCrHPOuURMEAAoTVQ7szyZz5umrlxhNDjn4Iecgs4CWgkGYxhBTRr34HxRVzrE4c0336ytSyl109l2vV5drwFgeVodDoe6dsGPbVs757QWpcx0OvWBfYRhjD5mEnU8eRB57/suWK0AQBMys7Huzl2Wc6bKKWe1pvjneq7KwEhKCQBnYTi6y4AQRTilLMKcYyYRIRDOCCiJhG5jBgAAWECBKIwKVVYAmYkEctkjjwYxQSxdcZDr2pFOytWHIQ3jdtqYzRAcynLakjV2MqusXfMeSlWxQiC4vaUACEGASBCB5DZiFEDuQlURS23C3bZcEJRqMv/ejz5CVF4vjIUfP7syrrZV89d+/S/91r/6DfL7//g/+uV/8A+3/+7Pvn+6WB72L2bt5LDrT9xZH0QxfPLZk5eNoely9Xrj2lnt2sGjl2gbE7Df9qMfusoajrIO/N2PL//kw88qCP/hX/5LX7tH90Lz63/17/53/+SfX46e6/bF86eJtUbKOYdu0CKn06mk6IQ1y1sP7xPH50+fNk4tnfqrv/Kttm7+3e/9y7ceTE5Pl1/9+ntf+tKb3/3RJ//4f/ptPb+vrB28bybVMG5EEEkiYMiMHOuqHccRFYnI6enpdrst56PykRXvz36/v76+zjlNFDy6dy9H3qx3zBIGbCr+4ntfkO7m/Pz8+YuLTz75CLDyXQKDzmgDZJU22gWdMgOiABGylIhYa20Io1H6rbfeAk7jOGoCyDkJ60k7mU3buq6dM8zcj4P3Hpi11ofdPsWRc7bWEXDTNHXtQgjASaI4p6vlfBiGvk/GWl1V3WGIDMIymU+67YYQtdZFZUPHGKOk2gYUQcqcRWkqpdAK9OBTCmnSVn2IYRwWk3Y/BK2tIfIpkzaUY1XXu8O43W6JOlB62rRtVZfTq3MWkcZxrKrKD6OYzAgInFPo+l5rnZsmxmhjIq382LeVmzx+Y7XdLBaL1XqNAqhIa10SE4vetWkabCqOoR+DnU1sVW92+7aBYRh00Dnnx2++MQ6dJtU01eXlZTcM0+n09PT0cDiIyMnJidaqaZqqqrKUFKFht/fO1oUMaNtWO3tzsxp91NZyCNvtHgjbtgXSLHkc/aE7aK3JOgF6/8tfubm5+fjTJ9ba05PzruuAcD6fr1arskQmzpWqis78iDSWgIhbk0zvx0I6sjDnxOMwxmCtrUqkoVCK3KWjzyTcslxUanyKOJwRSVljEZKIIGNBKcvjXcw5RJRLFgSBIizdDzVma6siARWREnNqFAbB6EOISVmDiKh0jCmEZCtTnDDGGDI4dj2yCLMApNLnc3tWYskhhaqqouQMop3F0qAuSMYOY+gHr/XRc5I5Wm2coqp2ZWtBPpqhkUxVWZEcQnDWdl0HmbuuKxM5IObbFMlNv0vC06YtYaVN0zBzmYarqoJxTCndjZKI6GPQ6ighNhYbVCn6shOINYX3pZLCUQoSkG5ZV1JIDKlkXZTzxxFpPH7JiHCcjPmowQLg0i6hiErKKQAoa8qBGBFTSipgily+LnM2It39QDmvxNvepJxjudSImEu6jlao6BYEPu7AjHQLeJK1qrK2rV1T1UYrq8kpaxBijCCZGJual7P2ZH6ynFezVreOnMPV6nro9lfETT2pnJtPpykEIp1CHIbh5GSBIPv9tuu2VVUhQl3XfT/6wDmLoBKULJS49KWycW46nc6m7dAdxnGM40jMQMrQ8eI6a4wxWmHOscRdiRwToYmonD/uDnmISIQiQgAoMnhkyUphFkAAzcQEIsBZYkm2zmC1UkRRZSHSjJxBqSJlLwbpondHYAQk17QqwcPz0/XqcDKfXKzXBsEpmtRNyOzHot5QWmsGBASiEsMCwOWe4fIdAqDbzqI7DvgOgs4MAAiATIhKb8dR6Uq0BcjPr9bbzXWdw2/8zne6wQ8ZPn0RTNPMtXv66idf/tK7v/qLv/Bvf+O33n//S9/+ne+8994bfqw/e/3qpJ39jb/xK7/1r/9NpRUAjeOgLGdOY7drqzolJmXcZJl5mLWLvL/83p/88V/55W8t3nnr3S+e/u3/zd/5r//f/2Rk/dbbX+IXr6bTaUrp4tmLlEJT18j56194//xs8cPvfy8O3ZfeePStb37j/unp/+Mf/Dff+tYv/M2//bf2m3XXdT/96GmXab3bGGOQSBujUjQaEuYQA4IFHomIE2hDWVgDgSJjTCnqK+bSku5QSKKmaZh1o9XNep9DBKDT0/OcY3+4efjgce4qY5uv//wvfP8nnxHa1tV98EojRFBKITABAxEBKoXMGGMAo4GVQooxfvzhBwWs1dPJBADiOIxaOUUawSrinJuqLuVilXVt23JMMQQs5pPiUzB2UlcF1ZxOmpNZu1qtrjfbqq5Pl/PVob/Z7IcQLWFZhpxSKUalNRH1fU8C1tqscowxZk4cy+2ulfXgRUAZa7WrJtO6qXVVu6q6uFkRkXXVvQeP4Prm2U9eWlsZZ5umqWwdQgijJ0AAlFw4OS6hr1ZpX07+KXX7A4h4763Y4raaTFvmSfJjitFZHVMiwIwZkK1SRrv9fv/l97/Y73d9dyCtCaAfQ+Rs67poOkIIq9VqMZtzCqenp7vd7nA4nJyceO+ZoSRwXbx6UUbSSVMj4nq9Dn5QGn0YHtx/VE9aRHry6eeJwTlXt03XdUTUj4MxZtcPWttuGBJv9313dnb24MGDxWqzWq1OH5+v1+ubm5vi6SqSrv1+v7M7a23MyRgzjuMwDEU2Um6v4q06hhUrVb5ZuMBxHBGRQYoy7ojJsJSiIbytzeHb2tSUUkpRKeWMcVqnpgaAfNvTkAmttZA5MpQhW7O3VmdmxZgRqChEEEXEGIOkhNB7jyxHmOQWktWkKmNJgBANqTIciwhqpbUShJwxCe/7jogUaSCVcvY+Rs4IahzHmHyjFSIaq4yqEEE4g0iKEaAkDh4ZzfI2Sy6ESFZKFVJwPp+OSfb7/Z2TJITgrdXOjn2gkZQ1s9msSLeGYUDEMXHOOeZUnuoMx6ClMmkJEIMISEhJ8DhWAkAZYEgrReUwU5hkfbuM/ozuJWXuMMYjPsEMUrzieMzEISr8roiQsKiSSYdleo46l96e209W7gxp5ZYo57Cqqpjtn5/jEQmQjvaoY31TNtZQFmYWJKVUZW1TVW2lc/AJEiuojCYFmFhrXdful7/+th/6nAbgMY4IruVEnPx8PhvH0Zqqy9JUrdHVMPoc01TVRBSDb5qm7w9a65TCarUSphAFyQAQkBIgYUBFOfcAMJ/Pl4vZWLn1eg3FgoV4976c0UoRAGttM4hRWsSWof8OeD9OtGXU/HOPQGJiFgEpE2gGpMysKGQ2gkACxFzCvZiZCYAYhIQQBFiyZBICUhISGgRmyaM2zXw2QeGnTz4GdTKO45BZT+brfb/dbkVoNpv1fX/kd0sdrxS6F4Dl1j1e4EsugVt864QWkVvBnCBiJEzJt+1kGAPnWE9aVzdjf8ikf+u7fwY5zCbtP/in/2K1WQMpIv356/7in//rhxP91ffO3zr7K1cXr95+8yv/z3/yP2xfvZ408zfOp6ubC1VPFWoCg6o2oJWrvCQkOOzX50v763/pL26vXl0+f/673//4m1/+ynYHD99Y5JwA6enlDabc7Q9aawJcLhY5xMRxtVoZwv/k7/7HTz978qff/aPf+p+//df+6l/++3//7//h7//BCF/84LMPLy8v3//a1y7Xh3/9u985efzFq0NgJTnn7TC2ruqDF5UJVONcpjwMg9aakTRiUfAVvKfYVsvCeHJyst/vmHkfyZBxzXQYxl3XtZMq5vz9H37w+Gz60ydP33zz7YePHz17fTOOvbEuxOhQGYU5M6eEShGKVihCTdWOMWSOVmuyerVaGaUJRefgnXOodQ5xdXN12NvpdJolubrmFCtrEKW2bswMxjhjB38oWlpnnVazw3aXU5BkBGk5n67Xaz+OVttJ0w4+hZhLykdZXkt8B4t470uaB9wOMGWt11p3fXDOhZiNkcY4bR1o8/TFixzT+fn5crHYbvc3NzdXV1clgrVkRpKC6XRaqOXD4SACu822bVulVD8OOedJXU+bxnvvjNNabbdbhVhZCzGtr6+HYYjMaRwn02nOOXNGYU2qclVRzX322WeztmnbtuuG4gJEUsbAfr9/cP/+zc2NVvb09HR9c+V7r0BdXV01TRNj7A9d9OPZ2VkRKJYOWKuV1eboHw359evXk/mMlJrP5yExKrKkSlCsNhYQrLWr1arve63JGbu62bx6eVHGrLJPnyyW16ubImQt4RUF8yyreLyVDZfo+bKmFOKwyIKUUsrolFM39CVtsSyyd4yIdiaDpCLlzbnM0+VhVkRUDjcciagyWkTGHI/NgEaRcMyRUDjHw3azmNY+hDKaa1eRUsRQgAEgFEEiIq2I1Oj9MI4CualquA09qJwroR93J3qlFGmV5Nj+W3brxDmnnAQySMqS0jj60TnXNA2CRB9MoypXKYWHwy6EVJZUTahJOefKyzPG5OCLJ9tau92stNaO9AH6FBNiXiwWhTcqf3TXHapc3e5VzMyHwyGkIvotkTWFoE0Zjkh+8QuISFnrtTYAKAzCgBrpNvyEbiXoVKoXuMDYiIjp1nh91Mfd7hBFW1RSwIqw/LgD3KaYpZQAlFLKMIec7majErElCDEnyBDlZ3ppABDJZVs/Du7C5YUhISGSUv0YAEApo5V2zlXOWK2BpbaqNWrmbOXU2CfC1Dh7upycLuTl4dp3u9YurKqbymitT09Pd7v9bHE2ny0///wp6VqU3u8O5RkPIVTOnZ4unz79rD8ctLJ934MoH9i6CQvlLCxcQiKR9DiOfd8TCiIUd0Y/jgBY0mQR0Rl9h/Arpcfgw7HFyypjS7gSKq3t8fRZ7roCnBS+GG/bHXPOGUr0OSgtihQqAnX8BJlZgIQpC2pAZgBhBAQkAIiDF4gpC3p5/vLq5vKi262uk7TzZWa5PAyXV2tta2PcYd8rXRo7hBEBmVhABEDd7awAgHzcegtfc/v5/uwLRsiQSaMPvdYABEO3zto0bS3Z9SlUZn6TwvVqN58uEXh7OKQD6CFM6+qf/4//6nwxO6ntzMCU0m6/ef+Nh//hf/Ar//j/889eb7umnSNJt74mUzlSgmEcummjuN8/+fGPHzx8/MY7X/vd3/7dj16u43d+8Pbbb05n9SqlSms7n11dXSHibDabzxcvXjyrq/rl5eVmvwNNzz791Lhqs9v9yY8++OY3vo7t9CefrT++Ci9f9Z25ubhZt/M3hkGcqhIgAdZVFULIWSmlc8yasjIqCRMeDSDHKx8jaTWZTY3Sfd93XVeS+IZhEFSJaBh6pcykqaumTX62Wm8Pq5sH58tuSCAURu/qNobktIWUUACFNRESGYUKIQEHPxiltFbMGUQmbV006rpyjogMYVPX1loUPj1djuN46DsRKZ0YrjLB+xxTgWKIyI8jG22VriurEcqva5qGgdb7frPvDvu+MjbFETIjS5kIi7AoxVjSORCxLC/ee2U0Khr8mLPYugbJpJQ2btv1N+s1MFutmNTF1c04jsaHQls65yrrYowEWFd2t+9u6VtAxN1u17YNMPthuLm6euONN9q68eOIIJVzIMI5v/HGo8PhUFc2Rb5OCUGmdeVDQN0govfeGYskcfSbzeagaDKZWGsvr64Bad8PhlTOWWuznM/L+IKIJycnjx89evXqxW1NOux2h8lkIpmHrp/OZ5oIMscYOeV+8GQ0GeOq6v6jh4d9f+iHpm27ri+nMyIKwWtj3n///evra05xGIZykGfmzWZTEtfm05mPwXtfsLKfcaIiRZVWzjdl910sFmVZKT/jvS863pyz1aaESxDRHc83DENJO2Hmfd8VaVvJneAcyw1ToPVuf7BWS05G0X63ZebZdFpXLvmQc1rOp8zpcDgAQMiJMtdNA4QIyhgsKtQ7sd4xHDTnnPOkaQvFwDmHYYRbCZipHDOHPibhkAIzt9amlMcwIijUJsQcY1TWTKt5ZayIlGTyoiSOowdUABx8dNURtA8DKqXaqr4D8HPOWqnFYpFS8jG3bbtareZmWi5peTGPHz/+5JNPivJuHMfSDVwOMXVd7/f7bn/Q1pR5dgg+3Z6KhIjTkXochsFqU6EDgMgZIhCg0kYB1HWNJCVjS5O6g0ZRmzuwFG8rNY+qCxEU+NnSf/tjpUFERIbBlySQEAJnuBNSFR373bRXAIA7A+HxsKK1tfYuDyumY3QlAzJzVVdVVVmjrCKU3DpHHAzR0K3F02LSVovz2lXGmDSsH99byPn83tmZZEZUimyfYz/wGLpDn8fILy8uNSndVH30IqpkZXrvq6rqDwfv/WKxMLp69fqaOQEZpVT0sZwSEJIiOBwOnCMA6CNgSyklJF1gHh+jCDljYxwyHIPri0+vVGVst9sjKHK0G5G6bWgGrEipzElENCittVaIIAw5AyFnSKLJMLNgkcvpnFmyICJq1IQIBFmEIWcJIVRVFVMOwwgxztsWqwd7nzbbzWp3MFUdEo4+W+sUSMYkwpITokhBtQG1QgRGERDIt7EtBc+QY93F7eJAZSBOAMjMwqIJnFUCcBhHVCaLjmK0McZCNm7sDs18ef7Wl19+8uNnN11buY+ePWu4j4Gdc994+90/+qM/2hyG+cnjy/71dtdNGqUxZsLXF8+nk7quhKPX1r14tc0y3dyschYF8uTTDwSGSWP6Loft9WBrUWSs3Ydxf/XaTSeDD3axHKP/4x/9GEScMbaefHRxnT98cu/evc8vDi/WYzTLD16unavZwDiOAImUDikdhlFpayezMHoiCX7wiUoaWmlKBRFjTOJcNpTD4cA5l5UHEYwxObOP4ezsDBFvrq9mrY1+mLoGks8JHzx4QALC/PT5a6udCAqwcEJBAuEcjVLA3FhTtAJGkRASEQhnH0xV6QcP7jlt1qvVdrttKnd6emq18ThYq5nZGNNU1TAMInkce+fqxWyCiPv9LgSPdWOttaq0ko1KTd996+3w5AkZNzk5X233yjgkaWfT9Xrd930Z0eq6zrc2RLkdfDPzrRVEpxQIMed8GAantdLGD+N02qw225OTE83CzPPZMuYVM9/cXJ2cnJTlQKsxioQQTk5O9vtD2zaIWB4kJFlvbpRSVrtxHJnTYjrz3ne7/fn5idb6s6fPDWG33SDpvu+ni0XKuWmappkMwzCtq6urSyJdVdVmt3XObQ/ddDplgNHHWVM755IPbdsO3dgdDvvdLsb88N79cRy7rtNIL9fP60m7Xq/HcXz46I3FIj9//nykXk8niNQPQ2ZQxpFWgNh1/RC8a2ofY20dIjrnTk5Pz8/Pd5v15eWltfajjz76+te/PpvNbm5uXr16VcKojbMnJyciMo7jZrdtmqZyR0D1Tivkvc8p35lZywEQAIy1dV2H0ZeQ0SI5KVRx+YG7s3NKqRsHIsogjoRzHMaxdAvGGBFbpRRLWi5miAiZOYbKGecmWmvQqjiP+74fxhBzirEwd0SitdVaa/ZjCCML1nVN4spJSFIGrcsGcNxgCEUk5SyEhIpYEakYE4MQ6gwCzCL5dqGRlBLnaBVN2rqqaxAex4DGWGutBUB1t2+llPb7fZk8y5qbUhrHBAC2aTfrtbFqNpsVMKAkXonIgwcPLi8vAcAYc7jdGK7WGwSZtpNi8i6i7vIWbq8/c8l6JCq4QtGiA4DSyMw5SZIUUnT2CI8DMIswCCoqgrXyAuKtt6EEsx9hDKQ7dBoAQozFgVbXLZEugjUERSR3iioGKa8NERmASRml858btY+uJE1yjOcka6ry88JHnqKuKo1gSJxWRsG8bS2mk3Z6upzmcTw5XUJmRJk3DTN3h8PN5SZnNrrOPKy33XY3iool11kbVTurEZRSKct8sbBGCee2nXJKMeTT5Ymt2tV63/VeGaqMK6gPEBKhc7au65zjOI7z6cRau90f5NblNfqYc66dlcwxcaG0iz4rhpQTK2uqph1DBACDpBQhA4MQKmerUTQRiRwtZCKilNaacgyIgAh09O4d/8WQyVLJ+qZbPy6zAINWRtWtUiqmUFXVg3tnTrsfrrVKopSq6rbvI5DhlEkZyIEEuND8AohMoEmY/hwAXRCXOwL4bvzFW4kZIiogrUkrK6lsQ0IKtTaJQRsrIjGz0mqM2daND/H61cVu27fO9F5Jex8lyOm7X3rw/v/8u3/sJot/9W9+kxEmJ/cVSNjvZ5Xpwv7dt+5v9x0TIeKQso+52vSc8Y0H97v1q69+8d5f/gtf+d6f/n6F86qZveyH6Wzaj15EBGhS1WNM3eirygmqFKIQHkLgmA6fPZtdb8YhDSC6qVNkn6KGjCo5rXzqpfRXomHAQEKckTKzVVorrVtjrq9vSKsvfelLKaWPPvqodNSWC9U0Td931lpFZJv66ubKGbuYNUO/QxE/9pPKNU1zulhaBV//ynv/3T/6Z32fx9CRNSQgwAhsUAuWDk3WAEprUhRCIADnXEIEZj0cOmya+XxaO3t1dYWSkWQYxxhj3TYEPAyj9/He2XlT1SGEvu+cc1VVVVWlkVY3V7vg57OJ1vrZs2dvv/Pe+dn9l9c3wWeFVBkrik9O7k+nkxDCfn/YbDZN06QYkaiEeB31QTkVrZA1VZnbYowhBGmbWTtRJkUBbZyP2cc8n8/LMFdCE4mIOb169coYE2Mmopubm0ePHnVd9/r1a2vt6cnCj/3q+mq5XM4mU+T88uJacqxd9cFPfvTm4fEv/dIvncymHPxiNqmayZPPPjVEkpJTWhEM/cFpPWsnIYSbm5umaXoZ3nrrrf2uK44dEVmvVnEcjNYPHz6czWZlGPrm17+22+0A4PHjx6vVqplODodDzoKI5+fnRDQMXk9apa33vht87gfvY8qMiMWwiIhdTOUs9uSTT5bL+XI6O10um6aSHIduf+/evYtXo6sMkhh7nGCcc2f3zl+/utzvurFKZcUsp5+7gQZShsxa6VJ2NAxD9KGwoHfPcAk91lrXdR1CUH/OQ1ymt5xz1Hg3YJVRm4gAmQCLs8v3Q1F0I0IIXqFj5iycpewQqFSBBpVg8dKIQlLHuDSsdV3GEWtMeeXa2ex9BiFSmTly1tYoUgVcDSEQasacU045lVMdsuQc29PTuppoBEIcxxFYgFQWDuPAzJVryvxdjoZlFiHSAMcC4HJGLovsOI4XFxdKqdl8vt/v67rebLeLxaKclHPOJcWw7/vlbM7M6JRJJuaUcx7GkMMRBIoxKpQ73QewaHck43POnI6F3lmpIhLRR04Aj0J6kZyPjT3l3IC3+LPc6tWFRCklIHzEvbGqGjjWUYiyRhhJ4l12erFk3M3NcMsNFyVYkarp22JEU9EAHREVoxoiGtNaa8dxbCsnnCxBa5XF7BSdzRcGUugP58vZ1Jmr64uHDx/utn4Y/G63IyBCq3QcfBp9RmOZwecsRSxmVc5Saxx8vLlZTybNfNaenJws59Pdbrff7YlU21QAOPqYMoAkQEZARfjnRGcREUvz4KEbivqhQBFKHXO/hbkk+aSYUStM0SAhYghJKWUMHUsJmTOgsk6iiBzLskSEUFLWRMf4SYTjE3d3oIkiDhEEkSFDRgACDYJc+pwBqdR2VbZyNqfw8vnrq33ndRUyIikWBKVSYg0Ct74iRFBHHuBo+b3bdP/8F8UhRYh8uxMDAKSM5YgGqnyXQCkk5uiMLvlLBpWk1M5ONuPq+mLjtLWV2YWUle2G/Jvf/5QyXu+V8/svvPPWr/2lX/yn/99/pVnN5stxvzV8MHjv3sNHH3/2+dm0pXH8a7/2a8HLd//oO5rgjbNZ3L7C3bP/0//xv/pv/+Uf/d4PPmsW93KIEDMQAsjqeoWKgHQWEtRRUmYism46iSmNovthRabyyTMqUxmDSkLKPLJkAUpAWXIGSACaSDhpbUII9+/fjzFu93tr7eeff17WzOL9lcw/+tGP8Dble+L04HujQes8HrohDO89ejyp6sN2hwLXV5fjfiXjG5ZjJtTWRkUlkUKXQZcwZSCQgnUoBNJKKVVZzZpyzlppbGonIk1VN5W9zbHE0jJW7p7JxBWsyTmXMjdNU07rYRhDioikjUspCdDTFy9dO7m4uEiibNMyyNVq1XXdOI4nJyd1fTS5ioh1rmB38DPyCQBgHEo2LCprkCWlfBj6AhUS4P7QN211OByUUvfu3TscDqXSpDz/4zjGxJPJpGy9ZZmYzyZvvPHGycni448/zjm/fPb89GxZ1TaF2C7mY1s7pZXwYtL+8AffXy6XKHC+XDDQW28+HocgIpTZVHRzc6O1BsLNZlPXTd/3RTg6DENCqK2tqmo2nZ6dnRHRbDYbx/EwjOvddjKZKGtcUxNpIr3bbz///Nny7FRZN+72mxe7uq7HkMqB24fYtq1r6rZtx3EsinxjtNF6u133vem2GyJyzmitLy4uLi4uiGixWLRtOwTf9/16vW7bdraYl8bTQlKKHM2aja4KEVCQf2ZOR/Go3EGUR8zgNtIBEUtbAINkYdKqfD9zHvyo0JWtVx/Db8V7z1mMrUKKeRiSD4joAQroLaY/4rpJUkpAWDrgcs5KmcS5/HWnTBlwK2ettfHYoJ6KoA8QQwiiiHMOKaIiJC2MgBQSK3V8O3fjGiI2zdQWTBuEiGIZaIwJvqdbG+s4jiGEum7ruh6GQd02HZXM5/JMTpu21FdsNhsi0sYUTdbp6WlZgqfTaSwB0Uoh4mwy7boOEAWyJmWtTZxDZGdMkDyEkYmaptGkxnEsL+mIIXMpIhRgSUqhSDERGGOcM4iYEjOXqlqO8Rg5SUQxcYj+buRFZE1yxwFnAkCIoUyu5Q2mO4SZQUqEcvnfc86ob1lPRCIFBApJEUhKSqmqshpzgdljjJLZGGU0KasdAbPUxhhkgzIOe2j1g0fnGH1dWcn+ZD4zhGBOV5vL/V5yDsWhzQJVO0VjY06Jo1IgEAUo55QYANSh91prZ3WKkQhKZHffd3XtnHPbfZ9LfX1gAChp8F3XWaMIoOs6KaaMlDKIUzoJIEPOPKZRKVUZWz7oxCW9PMc0KKUyg4CkLFoQAHxIfT947wFcyIljKioWAEgp5MS1swXqLffhUbGFCdEUdjZKAChJ6UikEJFFEEkp5RzNZtjvPaE4jcl3SdC6NoMDVecQOYYS8w3A/z+u/utX9m1LD8NGmOEXKqy004k3971NiqRokC1SEimSgmEThm3AEPRgwA9+9v9iGDBgvZkCBBg2BAG2SLtFm5JomuxmdzNc3r59czhxhxWr6pdmGsMPs6rOodbDxj777L1WVf3mHOEb3/g+RjjyGBEVmbCcZk90NLE8JWAGKNXrGY4T4mqtJVlDTohMZIkIFDWLAWXJINkZppwACEq1ffbs8HB4EmOKsu9XuygoRE2Tw1PcDX/zL7/q3N/9z/4v//VuTuQ2tsBvP/8S7EPJIYyS4/KjP/vRenXTbrfTcv/9v/CX/urv3CwPX3JO/8n/5G/tH//+Tw4wjbMzhshkATQsSNMyhyTM7NjBaVMoLPtxCHGevvvxN98+7h92oyUOIUjOxnBKmoCTclEuQEVNnZ3U4POr3/zaGHuuthEYFEop4zhqkbZtiTCl1HiflxlUvLMpLO8/v+kZORUGfHh4IoSUUucdQXl5c/nLT969+uD9zx8eTvgDEpIC1DR8HAQoVvM6zUlFUNVYNrvdzhoqzu0eH5umWXXdHJem9f1qVU+VSNk9Hdb96urqapygadyyxLr00q+3fdNaQ+PT0+Xl1ePuyQNcX1/fPuyXZWE2l5eXt7e3+/2+XlHn3LIEVaW65MBcCSnn+RMzOGdq0Hdscs6i0PS9AHjnlmVhsjEVDWmz2eScFVJO5c2bN5vNRUrJ++ZMFMITV+L29q21drPZdI179+4uxvjRB+8bopTCxWb97OZqnqbtZvXs6rKIXG7Xj7sDGZaQVPKbN2/ee/Xy937vr/z4xz/+Vz/818hmtd4W0TreW5ala64/ev+9ZTp89ptfp3lZQiil7Ha7pmmurq4eHx93u8MSUozRe3+YxsNhZGYw7H1zGMYhpGmJIuDbxlmDxM41FRe4enEhIm3blJxfv/6i9c1+96gxr9fr/e7x4f728mKz2+36vt9u1wC0v7tFRBB42u+mOaDhfrOew4KnliillIhrPkYA75yIlJPcUpGiuUSRWvrlk69zbceNs/UPa7tTtznneQZRqjOsuTKis6o6YxCVoJJWCACk6hjknOErbhEillwQoajUjhOUQBURENSxMcY0xjJSXWmNMYYUjDOCEEtmglJKiBkpK1B9wTmLCNRVH+e+kpQSkWWZNBfvPZEJMZeUvVfrbdM0KR4VQJumqxQqc1IkrdB9RVnqryK5883+1Jf/4Ac/KKWcVVcRueLAKc7ee8lRoaBwKaWAGjCWzXnUfcSKc8mkAGqMEQGtGz6nBSSp/ZEqZEAs5ymsKtSfdS6ezvj5ueerv6Yz9Qa0ZKgPok5/a20BVcOyMtb0OC2ueUhVQJUIiYkAkZQUSCBrIcXGmoZaY0zfdUdfCqa6zwoAytBZhhwtoSGUkqZhtChd6ysfMMa4n9K4aAIHIIq2AACxsokpppwLFEtMgCKV04BPu0PbdanovMS2scswopa2capYxjmLdq1r+9XucCiPDyll57akknJIUasIUUipLrFXUouqkmFRLLm40zVRVTLWuUY0LEsMIRnvUipZlmqsuSxxnkOMUb1RKIBCDGyOcRa0lFIQlAhL0Zwxk4IWLWIN56yoBbAQgQorGSWjCIiEVRYcpPXu5avnIrDjfUH57e1OtZnnQ9uzFNFSlJSgVDlSUkBiBUKtTIAqTqnnA4BnA9nj/znqmAKAMU4KaF0RRzrNg2PjDebMmi2bEBZk+/T0FENaXLGStej11fWccRwPGRYGbJum88am+F/+F/+fy/e/ZU1XfJsZl3DFNDeY/nf/2//1l59++l//g3/4m7dv50++aAx/9xvv/dN//eNf/tp+eLP99vu+seEDv/zpW/RM6349LWGeZ9+0KS2bbhXzETMbhkG7LsdUUgZRR/Y//L1//xe/+eS//yd/oFi87zP7eVpCoUxGBTQTIoIyghVg4uScLbNWNkbtBJxj7/1h2L158wa1jn6P7EgQNWQQufKfXj67fvvZF7/55LOrm+cXVxcP++Hxza9fvvj3n796+dm7/cPTARWq6E01ThEQrAMeAEFAFRQ4cylUxDBjjGmZ48V688EHHzhnQwiu9U/7HTNVUk+M0TmD1cYkx2mCStoEpMZ5smael+ub5yKCbB+fdjmXlJJt2rbrnuaDa3xfemau/O8ad+Z51lMoIaJK3xQRQ4Ci8zwFmmvr45wz6zUC+K7zvjGGHbhpmm5v740xCrFCXiG8tb6Zl4iIbXvELQEl53x/f19feddc/87v/M4XX3x2c3PDqJ998uk8jQ+3t2Gavv/97//ge9/7xa9/rSUvw4HYTsP47Nmzb3/80eFw+Od/8AfGmO9++zuv375LS1BmRxTjESXe7XbD7qnx3atXL/qri08//RQNi8hnn39+GIa+79/d3znnhnlaQqptGVvr+pYOtjfN4XAooraoQBaBmDOJ1NXSUso4HFIK0zBax6Tw8Tc+ijHe3d1pLss4PXv2DAA26/XrN2/ivGwuL5DMHJZ5nn3XOueqLKLiyY+IkoikGBNAdXqpQCicmDt1PHnuhms3VlSWITRNU7u6JGWJoRoWhZQBAFCPfbaCMUZRUlhWq5VzXnIJIYAWJGbHcCJgV6BVRKoKdKxS9QC97WpiEBFHjCoppFIywHGuOS7zEmKWQpJVMJYMKRbQUtQoIJGokiqdcdQcqyNW167atu26VUppnkPOWZGuN+sQwnCYardUmTu1Wjq+BufqiVW1ADAMQ9d1Fxcb1bKkWE5fABBy8saLSCVhEVHMyaqSgkhCBctc9ZBzTGwNIjrnJBdVFSkVcwgh1K7OGsvMeCbT1XaGOAtIPMp2OucoAwAyH7lgIoBIiiAix65I9NwJqcISY03XRbVUmbS60FVK1bX8GmJZD4CoKgEaxmoeDFpQwbvGEnfOMlgiaozxjDFGRxhSsQaqfgvkWVMSUGs455hSuLy6JCLj3ZLiZ59/totr1YLGkFVuvGNGphDnJcWUMzNTUWKUAoQEhVzbDcMUwzx60zYGoVxsVhUdMYyllKLFO7q+XIvm/X5ftzwIdRwHb+1qtVLElHLX97SEJQRVBaCcc5FixFTBNT2qo1MVmSkCkKSUssSYc2nbFpGMc8a5/RJU5YzYixQiqNrSSjXhHS9RfRygUVTRgrF1PK+qolqqan/OWTSjgjPUtv7Fs8vvav/lmy9uD+NTDp3zJcX1apVnzHFCQEAUBCVSRAIGpOr6+vUvPR2h0yn6t6DpXL5abgYRRWFQNoSIRQWIhTgDIuKyzGiInWoqhl1ehIxVies1pzQ/HnYffOt733t286M/+hebHbz34Td/fvvGtFjclUyp1emf/3//8YcffLy5ur4dgunaQvn17mnd2HefHR5n85f/6jfG128sSil6ff38vffe+5N/8a9819ejG0KYY0Ayzrmma9u+SymwpVJyy+Y/+z/+H2KRy6vnFvXh/sl160jNkguCQcym7sSBskIGyDmP41R7p1IKMquiN1yREmttbRvGcVn1fc6Z0BXFotx0m7fv7mScrKKC5WazFJz3Axv/6Zu3n/z2iyHmftvglOrnTFCfP9T2Jqs4awFURBC0zkHCNJva03zwwQcX601dKuj7Pqukkh8eH413la0zDeN+/5Rj2qztkpZSxDhbsuRSuMiSkoxDKQWRhmEYprkU8ES3t+/U1fEepJTW63X1IKtDwaNBG9agf2T0kzEA6rzlKtpmvmoX7u/vLy4uLNI8TfVIzfN8edXP81yhuY+/8Y27u7sz9cA5VySN4+icWW96ARNj3O+fnLEph1Sk61sDsD88TeMhp6CCaVnuU3r58vnj467tVpLyEqZpGJ6/fJlSistyfX05zSlVVTkiEbm7u5v29tWzm/7m5unx/sv727ZtV6vV4XAYl3lc5iQFmYDQmmZcQkpZmA7TyL5pu9Xar2LKIkLGptNOCyJOw1Ad9whhs1q/9+rF0/2D9/Z73/veF198Mc/zNI3zPDHTuq5OlXKSmFBrbdu4kFMpUmMTfL3WOX3V7vbM1nHWGmNSzjFFQaj0q9MxpWpJBABZRZJUWhYiCqCq5pS6zjaNV1VvXZHsqQPiJeY4LykHZ2zbNs450FJ/aK3KCdhbBwDtuqkpuXKIlgXneS4ps6GKogPKEdJIaYlBVbMIsz21LEfJPWKb0lJKUWUAQC0553meN6s1aBnHMaVSe0RnPRlbbbsQse97Vdzv99771WqVsyxLrB4/tcyqRCdn2RoznwTFUpoeHsB7LwiHw7jY+Pz5c07pcDjUwqLa8yqqb2yd1FTIsK57IVfmLBvmcrLQZsbznBXqHBcRTstXRCQF6+iXUAjk60Pfs4fwOeaqqiIgHPdW6/r/GW+vNUc5iZ/rSUP4FJQJsUqZKBFZYiaoCsbee8NV9MdUd3pmZwCNJCQhTQqlaRoA7TrvWLd9+/6LGyZNYTGGnnaHaZqub54vBxLJOYUiCYzYxrSrTvf7aRcBlQ2LZDROBAyRFEwpxxhvrjZt2zKJiqjqw8Od961zxlq72w9xmX3bXF2sLOvj7ij43DWNMaYWkcM0q2p1VKyfUFFgNAJqjFmv19a4OYan3SGEBIRt207Loiej1UqsQmbnHKcMAJqPFHFUQCA9TuWRgJiAT9VM3SUupQgjMztv67gdCQ07wFKWzIqGmABKLkTAEr1VB8lbjkVDmLFpUQuCIikgEla/Q1YgQBYs1abh61m2XrdTZ1zrMqiKhFEVERiVQZgUTsY5WUWZFWlWEOdFBJnYGF4yorApT9M7063QQsg6Lew3H/zsi91nn75prXt6vJtxn5fRgy/xdds0ITR/+MPf/ugXXwrktmsDSPT9p8O8Tbou8Pnnb/6r//s//nPf+/YvnnjOk2vci/ff63758xDzksJqe3EYRtOYLDClGQgPy15E2DAZhin+3b/7H798+fIf/r//0eN+t9qsn+YwFyxMhpQlkyTVUkBVDYoy87Nnz+7u7jabjWuaui+6LIvm4pyLMaDC9fU1gIYQrLVpAdP5JWbnnXX27ungwbh288W7B3aGYd649KNf/ConAL95nGN3PAN4Fo2v19cAGiJVRcOq2jrfOl9iMtba7Xbb9/1+vzeGq7ReiuHi4mJ/ODx79mwcJ0m5wu4pZJGji0tOSYo2XQtAT7vdZr0Wkd1+j4hFdRjGWMRYO4VwxDCJr66u7u/v27Z1zo3jKDlXrA+MOevpVP4JMxvDJYtrm/V6TQqVxhBjTEtwJ9Gl1WpVwfrnz5//+T//543zt7e34zA0TXNzczOO4zQf0blhGCTlKuA1DMO8jBf9uvE+Tcs8TvUlXV9fE5Fvm1jKxcVF07VS4DDsmPndmzdt3ztnlpgrFaht21W/+fzzLw+HQ3t1WbHE3W7nNpuYk4g0XXtzc1PtJQDAWP/xxx//4te/evPmbb9axVR2u917H37g3OpwOKhibVKNc/XjyjF6b3dPj957VDEEu93OOfPzn//cOZtSJKLValV/6G44tG1XZbdFkQyj52m/I2JuLNQJ39EmXfGkghTmBQCqdnM56ZRptadEPM8FSykphgrLzDEgYtM09UfP87zEwlwtDrlu4tY8igphiUhg2XTtChFL0WWJ1hyr8ioNlpNwZZyl1Pc9WJtSSiGUFFHrSogHEWCWXHKO9Wl67/fDUIoCcf3OAKdNVqAYM4CoMBFZRmO49T6ERRVEYJ5DzoKIvu2stUUzO+vYtG0rArU0rJ3huRhaln0pxbWNqlpDh8OhbkyF4dC2LQDsdjvftZeXl09PT4fDoW9aAMi5MMMc5/Vq65mtd4pcb3VdA6tJnZmZjuZIIQTnO6ySkPiVvwIRiZZ67yoqXos/RUAlFcipTv4ACSuKiEiqWhesjwoNojmXOmOuuHqtIZjZey8ide2qfgJ1PGwM114QSQ0SMxtGy8YbrgNDJuoaDwCVSrYgUFFnGQj7tru82qrqe8+fMQlrKXFuvB8PO0RMKZSi8xySmGWZ4jIbA84jFmmwyRIBi6Ag2mrAqEWALAjmLNZSSklx9d57L6XEHJcUlhJDJjbGqeo4DdMykWHnbNuacRwNYyUS7vd7RFxi8k3H7rgIYC2DaussEVnSWtIBwHq9btt+DmmJRxlOAIghS1lqOVj7mGVZYjqunDEea5bzgyOqVS8xkzEMgKqApHwU8TZAFtgBMiAaQwSWiDSpghhjrjarb374/i9f312//Ohf/uzTtumn8VBheQQUqCLPjMcxMCOinjhZ9UbIaQPt3BKfO2NVZd+DJFRBFCZFVIBcRJQNslGgRdQQLyk01hbQtnhLEXkBX2ZQds28ULN6b04sOJuWc9kZI6XkrW95SZ3uEF480houroOOvjxaWAKau4X9+vlh2Ddp8BR/8qM//Vd/9pvrj3/nL//V9R//8R///Le/3lxcZlDbNUlKITWGQSWk2DVdjFH1yCRLedIyfe/b13/yR+7u8W7TX0+ax0UUBAgJA2METQCgaEQhluZcxz978WKewziO3vuiGpfFOkaFx8dHY44Ct8h2CcWvuqxxXoJB47p+notp+izJWL/k0DUOFZYC5BvKx4URpmPJXiQjQG0jVbVOuFKMCBCWxXz7+VW32pRS7qZD37YImuKy7rthGK4vLjddzwqffvbZ9fU1IiIjIzl22LhhXOYYlsexbRpifxim6+vLIhJSlinZtn8aF/Z4fbl9fHzs2nW/Wk9znJfUNKwxG+tDzH3f5ZyhiEGu6F8upVIkpnG21jrAZZxEpAZ9VsmaEwighBDabe8QHVpE/slPfzkMYwiBUFujjYaY9iYcehIoOizR95vDosbmIRdHriwlHfY5l2JWuymF290gtgBcbDff++D9//6//UfykJ9f33z729+svcK7N2/nIQBiKnme5oubZ2OMmzUvESaRT949xJiM3UBMm83m4eGBmR8e9123Nk2p0e3Pfvazy8vLjz9u7u5u1+v17uH+ntE511K6vLxkZx8eVAGAzQBhHwModl2zLHFQzaLjUvrNtSF2xjnnfbvKAK9v75cYrq+v92F/xA9Fcs6e7fvPr9+9e+e4BSs1WLPhKYX9PIKotTaDGmOcMSKKVKzzAMCNzTkjUVmWQtB0fUqJc04pKWHf98MwPDw8VJtKZm4sqqrrWiIUKIiyLPOxDWPwTWOJc86WmY0JIYAcFYgAGZAUJZWSq0WEMV3XhRTHcfR91zGnlNQ5IpyXxRjH1IZlRuXK3uraJqsQGlUNOXrvBZVyWDU2xqi5NH3jrE2xoHMxxpySACGiMihTgsJQPB53e2KMROScEQQ0uiwRDQIBGV5fXlRx6Zzzl9Pctu16vTb9Gsd5yYolpSImFnZ4udnudjtJucZlRBMU0zwxc0vILGSNJUSJaCuRKmMu1jlLJktGtlaCcy5lSSlZ3yJRzkVRQ4rMbJi11jc1K+cidKRfHbN1zgJUVM9DrONGEzOoEoDDjMilBAa2bKsMRMm5qIAIIyqAATCINTkIFgVFATLKoASkqrGI5rJqO984RWHJjSGnk7VJMK0uViku87h/3vWvnt10nasDpv1eQ8ypYJrTuCTDbj4MIWYRQVJmB2oB2tu7MM0sZQsKS0RHkJMCqpqEhIcw3nRXocAwLq9fP3atc2Q+/OA7w3B4eHiYc5qWkIqwb8Kw9P26oRQketfPUwxJjXUhBO8aT03rfBnGXKJnpwjOemaTDkNhICLjWDU766xtxrejFMqRc6FawbJBABjHLBSJKBYhgqqtZgxViTUBLYpZIGa0tiEyImogMTOBSZEWROeIWbVMxAzWGjaacwmllEIKRRZv5m+/Wn3x6uKQ5u9t7ecPb8S2QS0aJ2oQlFEQixx1vllzpGoljXQkP4ASkxQRBEDAE8numKPDQkTMRkFiOfp8GCQUQC0GtW4atMCYlQgPvS+REDe2gipSrAXMj40kRAUha7fLsjCTgBbDaF+oqIGDQZNLjtgd9mG9Xn+EMD++JdBsuzdmxQ0plNvD3eic664IYRnnvvXLNApAwwZFh93Yr9YSxRZTcry6WE3DAfoP/7t/8dv/5z/7KZIJsoEF45J80VyfBneLuoJijFXVJc+G4P72FhFJ5N2XX0rOrIW1ICIZNES1hSCyVTo+oxwlv0WZqQAPIRKr5rx2Nseo0EyLdc5hHCk8LMjM3DRNjoszDColJBKhAl3rUiyska3LQsNhtr4xrz78KISw3+/71aptW7Ku6lCr6rJMy9TknC8vLgxzztk7p5IribQqFZeiKaW2bQ/7JxFZrVb7N2+ttYvoarNW5N1uF2PcbDZE9PT09OrVq2rEVpc6KnRWT0JFSquAlDHGu+ZcitYhXEppnmdQ8d5ba4lSSmnMiQxP0+R8W3vNm5ubD14+C+MwTdN3v/vdx8fHwzQvWUB0PAxd77rGT9NSUo4h55xfvXr19PQEQJ9+8XnXuLoNdnl98+7dm4f9YUo4TcPD3X3bti9fvRiG4aObm6T66RdfMiAgkpaSwiFJKbJZMTuu6lS1ggaASoSu7/Hu7g4RX7x4+a1vfevd6zeffPIJ0VF9wpv26uoqVpteIuccAqeUDPE8hxTi+++9aprm3dvPiXgOCyAw24vLTYXR+tWqmjh575Zl2e12ubQXFxd3h9FaW1uciifX2rzhprawowjKV0SeIKnSSkspglBRu2pmfN4ErU+t/qbp2xOIJzEG+JoWhLNWRMrJCqbulZEzdZlnmqYKtLI79mTjOIYU6SSJXskHjXVEFGM8HA6lFDbGOhdScsYuy0JkjIOsx71VEbGO26avJIOcEqgCgCGbiay1WUXl2G7W04J0lKo/0wBFj6u69WWf9TTqej4AVE54XV8xJ+nKJOXpsF93fd0PPnfSueTzMa6bYMystbaooPHJk+jICsmLnmStgOp2qYBixYqPX1+Dl1PK9rSgVb9nXXQ4Pwj5mmoYInrfIuJRgQtIpE6g5fSUjo6QzjnLBhHr4wM5+UNUJeFSnHMhBITCjbWGVaWAsjWrbsNItuucMTnnt3e3m37VNe1ut2NrUiwVuFLicVqMcQpVnAQFNWfJ45wVVCmlpApEaK1RRCApRUJamDjkpEKHCZhAinOECDJNo6rudk/TEi6vb9i4et56Q1fX18MwFVDvbThutOs4HZAKGyR2RJRKrtKhBsCSJYOqklIpurDxzrklLGTI1A0xSSJkDLFnhqMkFrOFIrkUVTRMiFRnYVJQ+DhfY0Db2PogalEuUhBRoaw2m9qWLsuSY0JEKHI4HND6h6eD9f3V9vLD3/13dyn/03/xr97c7QHZsGFWhZzLQmiQEfSoHXueI3xtDPw/dJjW05FARNVSSTjnv1b/SaXgff0f9vmpaAEFRlKVCqfVK9P3fdeviGhKJeZcQVhMSUTatq1Cjznn7XYLAK1vxnGsVOQYF2+dtTbE/PY3v3HO1EHsNE1EuFlv9uNUJdbrR906n0SapvnWNz7+5a8/UVVTzDe++W3r23/+x38MZGzTSq4yY8dTLSLVYK3SD+sh/5t/82/+yZ/8ydu3byvOZ4wJIZwHiDGExvkomZmJkAlzinzacWdQBWFrDPHl9VXXNJ99tpCxGrMqSMr1Ahoma7wzICWrIDCVrFkLICpCzGJuHx8uLi66zTo+7R92++tnN2zN4e7w/PlzAPDGTtPkjE0hVsEplQTEKRUlQ0QxLvM8gvOI+Pj46Bo/zrNp+vqMfdPs5kONCzVeV7XrOiGr1nvlJDx7Zlxb445N8DQR0Xq99t5P01RPQOP9ie4vh8OhVZjDQsaJYt93lUr+xRf5g/eev3r1fpUlury+ae6f3t4/rPpVCmNWXXWrruumabm7u9vv95X1Y4xBtvth/O3nX6y63nWr3X4fE7Rt+zf+xt/Y73bOuY8++LBb9SkXa/3t/eOSM1HMSaz1zLZtusuNr+lqnueq53B42tWwWePy9fV13/fjOG632+985zs5p5oMbm9vESnEuN1uV223LEsusXraX15ujTHLEkghpRTj2HQdMM1LtNYadksM8zzXpmeMY23mVLDrOjOH89CdTnq2xpg5LKWUHKtVQ3V0NQDgnJnneVmW/TjUqmiz2VR1xjM/pZ7j+n2ChMrUTSnFGORkJlOfeIwxqDKgmKPiQCrFiFRWlLXWGVuBmjksbdtWJFxVh2msGHtlRqy6vspUoWFiIyKb1eru4QGAQDQvwXrnjLHWeqa26UIIJWesNKWjjmMDhJVTg4gpS20yzjAsfeWpJyISQqyNZh2b1fn3siwFsB5La+16va6jmZxz3fhaUuz7nqGm54z6lWJ2/c1Zi/uMCgpolsKlHOFo9qLIVWspfwUe4lnqudZQpyhJoF+Xqaq+g/loxPQVCfYEhxJbRkTNoEA17iBAXc1SlIqK1wTMWKMwg6hSIUD82mi5cvekJEaFjMpg2DprnQFAcaaJqjkmLZJcGlWnZY67HIsQm3EJxvq25XGaiDtkLFpyKaUkACiKRQGURASAsmZWZIAEUhI4AyEkMJxjIima/Kr3OI3OmP1+vyxL23bWcpHivQ8hPOyn1XoLhKYuOaUqPghsbT3AAGq9syIhJRGx1ivCsixFJUnJRfMSQyjGGAU+SqAUQJEiRRJ6YzUXxwYVilT7ODrmLNUT6ZVKkZIV6WtKkEdwQmsCDvNsjIlLiDFWXl4OcRgGaHQ3z7tx/smf/tZefPbyW99m463zKcOyLNZi2zKTUWVQKQWBjytk9cCcZhD8tXT8bx2MY0w4N8T4VeI+l25Vcrr+SaMn5+y6zYwoQDlnVzVTwiNbo6retznnkFNniJmHYXDO7ff7ruv+zt/5O7//+7+/W46Wr4D08QffjDG+ffva1B0QgrqNverbZVm+/e1v/+qTz79489a4lpmdc6iAiPf399NwmEMOKVrjd7vd5bX73ve+96tPPk0pVV0dpaOrZykVJABmowrTNDVN+/DwOI5T3TBgNuv1ZhiGnEtKmdk0DYUQRYWBSynMphQlS7VbIaawLFCEG3p42g1myCJlWXrXEAOgMHENNjlGRiuiqcS2W5WiuVa7yIhsouhunFSVnNUYvnzzpqRUGxRELJIgVwkYYMMWSImKqnOulNw4D8W5jVEoMWBKsVbW8zyL6DDvt9Zut9uUUq0vqkZx7XsqReXIxpLjzTfGiBxXtYwxq9XKGEdE+/2w2WymaVBVBUwlO7SVTLvMo6q+9957d/ePy7J478Oy7MLSODJMy7L0/fpptweRrmla559f9IdpFJFN1/ZtG0IYhv16vV2q2xrbi5tnovrZ29vxsLfWWiNE9O7d3XDYXaw38zC+e3drnbNI8ziGVCRLybru1m3bi8jD3b1vm1KKPy06V4HvGrKrt26lMTvnwjRvt5umafb7vTGGrMERiajrmhd8jch9379+/VpERDQvszBdXFzsdjtrTc4lxYXYAleDqeS8s9bWSrNtW1Wd5rBer+uGDJz1klKqoHq9alQzz8mMYTccqolTnW7mnHe7Xdd15+4QABQg51xEUs6IdJaVrj/iTHImOh5/g0eCj7XWWs4iMWdiNsYsMVBOrW/OmUwRjLWaoKZ8KVBiMsY0zhNRyUJIm9UaALarLQDM81yIPRlPZtOvAeCYdE81Hx49bWZmEiEuysTKCgqEWl/t+atiUwLgva2i1wBQROrkJsY4LqGe4ToTqX1nfcpY9T0ALi4uAGAcRxEBrLWXRMiEEYEQSIoqEhMZgzlnkWrGgI7Z+67yh+uPq2+hnHZjAABPiNG5ezlnZEFAZYXzBjB+vepCRGRSQSRSIFXNKlKgygTrad7MiMxs6MiIrvQ3AABRAKmuSnqaxDsmAIglW2Odb9u+heVgjW8a55z11mrJzAyiIRVkYxmT6Ju3t2xc07TG+2nBnFWO/CY5Dk0RQavxk5SiGQkQDYIlRDSA1lqf05xLqT7qzvI0DLnEruu69YqZc06ayzzPq7bJJW42V0tM05y6rpnnEHNouxWAsGXVoloAVDQj4TBN3jtFSiWFJYUUkV3br5Y5pSwipYAYywBSSk4pCLdSoG2blEOlhqCK5ITGCICgMDFp9R0T0SqBSUTE9FVKrHBLmI9VKRo7TdMcQ0opGfn1J1/cP6arZ6/e7KZ/+s/+OJMxvvNtBxQIY85RJTE5ww4Fc60aqw2hkp5wZzn9tGOCPellnS5KVfkmxMrT/7cko+s3VEUASMqqlQx/OmCI9YAwaJGclyg5I2QP6BkKQM654pp936vq3//7f7+6Dyy7xVqLQOMcco5EhoxBwBBi45iMc76d5tCtNz/4wQ/e3D2cy9BSxDmXc6K+D8PEZAX0i9dvP/3yjXEu59y0fUilctCP3HM9SqI3XZtztlL69epnv/h5luLbxhjjjB3HsX7+NQAeqfXGVJ3RhFilfkqRYRzXq+7Z85dv33xZRFHl4Wlwzvm2WcZDpWi0rdciQMzWsPWvXrz/7t07BU6aiY0iG5Bc1OzHyYTjPSdjD49PIOqciTEaYwzxzc0NFPmqW0UZppmMK6I5SzKJgZclieRu1ZNxyvP+/kHZ5jozd0c8s0aTSlSp2bf2iHXfA6rfHBE7nsIiCOt2yycR2vqWchbVAgCEDISp5DjHrXedb7eXF4dhevv2bSVSlZJub+9XfWPoKy2F3ePTDp78By9e3tx8+foNSLbG1R0GVVyv17vdLub8tDsQUQaMQDfPXjRSbu/v3715u+r6OC+tb5quHaY5FMEsDBhFQGWehnmcrLWXF6taahFRZZw2TbMfhwoN1c6+8mjmed4f9k3jiahyQ4BpWYKINN4T4rJMUlLfNQjcWPftjz56eHiAanebU87JGIOEsZTaltRqpuZ4AJiGkYjmZam5vz4CPKoqLohYVUkVMUkpMdS2ptQRQ0o1nSBinRe0bQuIZ7seOK2cWuvOF5uP27fu3ARX9gEi5hBrEQAFKy7tjDOuiVlUFJCdb8dprvL9IYS2X6+NeXx81JQRcbVer7tVkjJOUwihgAJA17a1Xu+7rtYWTIQMzrJ3xhozTdPZAZNPqhoqyowe2eDRNlFOS8/HW0BEAGj5GA0RY4ygWivIOR51m4+rRyHUf1VB/nEcKzxbv3OMsYge2RyIWY4859pbw8liofaUcNoBOy40q8SYjp9eiueQyCezvyOwhseVZSmQUwaQrzcyFYU+/v3K2EIAQlIq1YYWjuuVpRSQU7etQkTOWCISLESWAHOOmiFrrsvHx10dQRUiSZIyERWVFR7B7b5v111//3D3tD84661rrfWPu0NImdhlwTd3j977rM5aJsIipZRURdCAEIBUERSLagQpgAiG2ExLKFlQgaREgzGXEHNKIaV4dX0tIsMwGbbe+8MwGSTvfco5pJRKJgI01kgpUwohYOM643OWeZ6rHUXbdQBEjEWKCpExdUmgtpJViEJUEJm4SohCDAEAmAiNLSlrEYXjCIaAtLKaqieggJLGk/4JKZ1bVcKjs3L9T++Od4oUfvW4n2K8f9pDYxTdenWhjX/Yjcv+0DS+aZoUDylHNkSoJRe0pvaVAFAtomtl9vUvRARgBERArlIvoABIgJVSfU69X33pSaHTNOf2GhEt100KkyV7NkSMUiQXyKloMcwKtkjZH2bvmgr/1nvhnDPeEXJK6eHpUXIxxjx/+d6nX76ph9K5ZncYC+if/ujP1ldXRFQNrFJKVQkHEf/yX/7Lv/3sy1/+8pcIaIy52GyGaXEWx2U21oMQVjnQU40BAOlk+Xx3dwcndRprbUgxpuidq9+5FtyIyHy8rTnn1nnRUu9+TOXpsI+pOM+HcYIiK9/sD8Nl45i55qkiGbISQSllnkLJypaYGRBzSqLIhGY/js+fP1fVcb/vuu7FixfMPOwPIDnGmGO6ubmpSwi1TOv6LouKSN+vbu/ucww1j1YOpwWCqgOVpVcwpx2SOp6s6k562ks7LryfRP8rkXiJi7W+jutCSFX6ruu6tm2HYQih1BFyXSfouq6xbonht7/59Oh9NE2gxRBcvXj+8O7tMocYQtO2bdt//MGHpZT9/tE5x0jjODYdrvtVWFIo5TAM3WqFiEtK1jnftAo4jNMY5+fPX0AqhtGTabxl5lW/edzvXrx4McxL2e174+YQD4enZzcvAGDYH5qu7fu+W/XW2v1+H0s27MZxzCxVa7NkLVk364say2pFQsQhxHme6+C8lHJzecVEMYakMqO2jRPF7cV6mkNKyZa8hKg5EdaSHKoHUT1YRQUI03JUGawVQJ3s2sbHGPGs2g9H2SYkJKDVamWtvbm52e12+/2+FoZcxQusrd1VTWYVlP4q3eJX6aQWT+dZZYmp/qwpLMYYEMlSQoqqKqBTWLKKJUbDuZQlRc621i6uNTFGER2GQQndURNDQk5N0+acG+frfHRZFsnlaDPFbC17b6vEKap0jSciRoj5DDVrrepKdRc+9eiVu5RDPHkSUAghhOCcQwDvfU149aOuwRQUVSDFzGQA4Olx1/d923QxpCVM5zailBJSVATJxx22CiTUMqh+dNM0p5SAqYY8Oq1inwFDQjr/YV0ikAJSvnKvOoeVM5hYLa5PygOoikWPgHZ9j7UsqIO3o2J/EbUFCVUURAWKpJxOXoQFsLLMpOpXs1lSxGFURXaFrZtDXJY4L/HhYTeNo3UNAHiPBagATzGloiGVAoVtQlHDxIy1mJNSUkyEpnbjClgKAmAgKolWaASxCDZN27W+6xpkAimXl5dNUys/TkWWeakN5dt37y4vrx8fH5Gs8c1ymBARDYcYc45hniqEoIRN21rrke00TdVCzXjnvR3GcRjGXFQERKRIKZKMmmPVBXVpXtu2RcQQZjxiMF+huapFjvILx7qNiE6Lc0etz+qgWncT6u/bttVcLoFevnrxxdvldndAvybXHA6zMwaZRXNK4hvXeRPnnEO03CnB12uvOuwA/TrszHgUzqqv7iuKAKCcddDOReE5+9Yvg5AJABCQVTUWIEJBViItGGO2ho1fgaEUlwLoDBswjXWCYPgocVND3Ha7rXGp8e2iS8xJEbquK6VIit/+7nc+//SzmMOf/wt/8Z/+4R+oas7J+AYAQAGJpnn+9PPPQshzDNb4zcVFFkklZynONkVFjpn3FAwrclMDneoSo7W2fgQ1Svd9b9nURcQKW9bqHACQqE5coGRnLLJNJXv1ZN24zI4tOz5Ms/XNHKa6O8Gckcha2/etMebd3S0zSwrV2VJKZGTvvDHWT/OcYgSAaZpVCjMPh8O664kIROvlzPNRFiPsUogBALyTxjspDSEg8TAMwzTOISkb37Y5xI7wqC/jXB1ubzabzz77rHqK1cRce0E+eXvlnEvR+rarFiChmZYY5rmem2pGtN8/1ejDzPMSh2Hc40iGu1W/TLM1dHGxXZbl+tnzME/zPG/W67v7x6Zp+r6/ury+v3tQhP0wbgUuLq5KKcsylVJiDCIKTJXE5NqGiLZtJ0AF0sX6qsQwjPPLFy+q6n0I4WhNyMiMTdtuLzd946dlBqBhmIhtDDkVJTS5aigC1BanuiiO44jaD8PonEOk9cU2SQEA5+yqbe/u7kJY+GTVunt6vLq6Kln7vifDKZY5hiLqQUvR6qCwxFSFmgGAjFlirIPVo/DvKfGUk/aknqSDsbrPMk9DqBPFp6enGGNt4ivE/bVLC8ysCJAQkQQUAZCqdOmRu1TzjYrk07JZ7cLrvwVmqa7sCNYcu2rbHCfNtRwZprGKcymCr5xhFVWtb7AijVWhGhHrj6iFqp5ITIa467p6rmoCqx2tnuevlSV6Qs7r8p6exKSqoVidhuBphXpjXf14K/Kccy5Z4ITf1O6/mgHXAqIa18tpiaXiECLiras7P3iizCwxhpQkLSJi2FW55fp2zpRmLQLM8NWS7klV8eRexSe9bgAgc8zHFZmoH1RMGU+vIVUNlmMJyAjI59a5LrorANdUXZu/AnBUjhiGISyJDaIoQsGSAYBt3HofC8SchmFgppxzKThPi7X2cXgUAWSbhKxzZP00Tf2mIQIicN42zjNiCHEZp5IEQUFFlRRRkUomKZqMquIC0dkmpDTNKpm8ow7hcBi991dXV4+7/Zs37yo44dvWuWYOWQFSLNMyG2JVlZxKjjnH7XrVdB0zG+Pmed7vnurDillTqYxI65wbxtkYJhJJUspXxD2sBpqozjKhl5KIoHHWEDIqEyBVNpOqSrULrM0uldplEiMREJujZmpcwnEhUDVJAYmX6+5y249hmUvWHFHi5eXzZy+e39292+1uCUzXdVCWkMRbN8OEx2nRcS/5XGv+W03wV2yrgnAcLNTXWf/4K+4e8NdFtYwGLApsFLAo5KJFWZFEEI0BRkFYRHIGIN92/fNt+9FHHwHAH/7xH1XqDyISmdXKI7JIdt4dDgdmZjKfffp5KcqMq9XqT3/0Y984Efn//cE/W0Jk5pgilMxAomKM9d7//Oe/TEKG3RyW73z/+4+7/bv7h1hEY2brat1xDkf17SzLUuv1iumKCIhU/8EYY5RQB1jVia5t21JyfRZElHM2CEWFEAXoMA4ESGSGeXHOGGNUSuN8hTTqV72bKcSbq+umad6+fZvC2DRNZwGgGFkMKqDSqt/0bfvb3/768f7h8upi3a8O47hZdUS0xEBEwzBUkpgztt7nYdy3TUPQdI1TZCSw3j3sD3NIUUTZEFFcopzq9Iqt1yzeNE0Va6xhxVpbiT85Z9v4+pEREQJX3spmszkcDiGk5hgNOedQNT0aYwR01a8eHx9vbm6csdM83D08OUM5S1zmzeZCgXJMLz786HA43O/2yxL69RbyEkLaHfbPnj2Dh/t5DinlF69e7schpLher+cYjDFLTveff3q9vfzNp5+smrb1zW8//+zq6kqRng6PCuSbJuYkoP1m3fTdF59/ISIiS0rJN02McbXdlFLmsFTtvVTyEhbfNv16Y5wvaZmmyXctENUlnxpwr7YXwzAY4hcvXtzf38/TVMe6MSdVjSELQuW7O+eeDvuUSkppDrFaIMwhWKJSdA7DefGaiKp+5/3TozHmPHrH075KDT0VQX16eqp06K7rDoeDiEA8ruEiYtVaEhFrj/7B9DXbuwqHlFLoRB1iZmUMIRGzQjVIpUqDMs5aNjWt1mogpVROubZ3LTP7rgWAUk/JsgBTzV6llLNGdL1RlczCSFLlAE+Js4YPNoR0FLgmhaxSc1W1tqyhqlrdVZTFEQlo1WCsN6rEJCqVyB1CeHx8dM51bV9pDWf8KoQwz3PTNFu3rdNcOr1lPXEy5VRE1ltQB/NVDVHtsSGu5YuIMJ6MGUqxpy8iElBGg0y1na1+D7Xa+6q0OuX+nDMBici0LPVx1/KiHgYAVDq23URECqqaQoKqbxyTghCRFI1FUkpIhtEsKULJjXe+633TK+NuXFQ1JsF4pJqnlMiUxncFihQ1vi2qKWvTbVKarGPDrgKfRNw4a6CLc9ACVSVMv9aWHZ9CKSmVfZyXGVpLVxd9iI139jCNbB2RUdXtZnN1/QyJH/c7BQpJBWLTtKWUOM8gRynQ9faimq4WlXGcitoiSoClQCnChkSgZO3bTvGoWFKrorqRxQTeV/nuamBXZVbBNxalEAJhOXaWKHgiJ9cni4iSEawiHbFoQ2y6rhILiKht229eX4DY29v55llzt493w3w/aVmGxztUybXeYua+7yUuyxLUfzXRh69pcXztP+WUf8/AFVZa01fUMYBcAdivVavHVy6iCiQF2ZSavwsQK6FaAIaIInGZU05acsrrz/ZYeZSSctM0qjoMQ9v2ALDdbu/v7+vnYM7irJZTSvf399Zaw1YMHA4HNhxTqWLGiMpMdVfFOleyxpiA+F/+6x8ys/etxkyG51jp7lgxNjxxzIrI0R50HF++fDlNExpTqRuIaI1pmmaeZxHpum6e5yrdfIKaCjsjKVc6tfd+nsfVatW0bSkFkFVhydkysWVBsCfD9WWec4m/8+y7kjbTAUuOeZlBE3tvcpZ5mKmnQz60vkur+NFHH+WYHh4eJmNCmL33IWVm9mwyYJqn91+9F0KQkkqKYZ5KUd82zthc5OrqajdO949PAtk6X0qq7/zy8rIe3JTSdrt9eno69yve+wpyrtfrGujrANIaD3wk1FSfu77vd/vH3XDwxpaSa+RdVLuuG5eFAXa73fZi3WgTQohZ5of7zWrtGk9El5eX+6eHeZ7b1cUU7u8fntbrtXXNerWtaMM0TetN752hURrn1+v1quTD4QDGXr942TmLpd/dP9zd36/6fpi/BKZhnKcU1puLfrOZpukwDvmLz/O8PHv27PXr1wrw9u3bpu86kX69UoRhmLz3h8N4eXlZneByzta4ovM8haZ1r1+/HsexNnAPuyciYmt2u92yLNM4juNhvV4LHgHYtm3v7u4A6eLiIj3c991qmmdk8r4BojmEaVr6niu6AAD19C/LQkTb1TqrLMsCp+asDgjmECTnqorsnauV1mq18v7oxjGOY8q56zpFOFWIUr+DZXN2Qjve4/OgyNrahZdSnPeqCoh1wkrVsPZE+ZETITmVXG/mfhy89zxZJFpvNmwMmiNjuWajGI/2wM5tACq3tNSEdxQPmeem9TFGB8b7tiCFIiratO1ut2tbX0opJam62iNWmL0ObpdladtWGVW1xtlpDiAiKV+sN4tdvLGHaZyXiU9fXdft9/saYXPOyHRshUupLzuEUPlZxhw3suq44di4m4pgYZaiRb4OBp5/UylgFWOoGNI5ZJ+R6oqN10+p3ik9bj1BtZ0rJ8HRWoI0ja885zMG0DrPzEGyFhERBWmcDyHUhF5ncqUUVWp80/Wdazrrmrune1UtJZ+rH1UoaCyZjIDGEQCyURFkRSaD1rFd9et5GpYSxJRV1zWGs+Ht+uLx8XF/GACJLYUS2TgAmKbp6mIFAIrknbcWpyl6N4/jvFn1u91hu902TdevNiEEIZOixigpF1GMmlUVkYpASqnrm7Skg46quoRAaKQAKMWQcy4CSlmIKKUFEdvWo+p2vTqMQwip0h1aA8cgu8zW2lwiKnPrRbJlMoRMZEgJtYBCjtbycaBACKLsnbW2lEyAWoRODUllxoQQDOSPXt2w9p98sTP4uIRhprIUmXdRiBEERR8eHm4unxMZMKyazqS8emDON6uejYoAf50pef5f505XT39Sq2EmWxunGAI2DggUuWRhZgdgmOZ5bK01ZSEo0+Hxf/O/+l/+tb/y4X/z+3/yj//bf7RsPn56evrOd77zuN8tc6h0RZFMZJ6eHkpJlWIJAKLFsJGUvHciRQGmsFQ6+qbriyzpSFO3IYSm6QroEmMBLlXIjLkIpBQVKRZRVWIW0Szl6x9FXY2uazW15NVS2ra11qYQ6+pNrUoJ0BlLpxlwSskaE2Nsna/7hykl74/4orduWZa+76GIMgtQESUt1lCOyTpG0f3u0RLdXG6e7t96J//Bv/fXf/ynPzIGDRGUnJnMMAze+/vbe2ZarVYhRQFcbS/WiLvdbslJQB3zOI4phc43rbdaXFhSCsuyJFGNuSxTmKfg2qZIlpSda+qDrG1uDVK13Kg6z7W3Xq/X4zgaY7IIEjnnLDs52QafAera9KhqzvFICCo0L4uKCKHOc0yLc269Wh37Cd+y9TEFNuitW6bp7vFpc3E5TVNWODcKxpiucfvd06sXzxnp4enBEMScvTUPwwHXm65pvXd9zsQsRCIyzwt7i6APh92SMzsrCE+H/auL65zzZru9vb1NUq6e3aQiYZjmkBQRiKz3WaSEMI4jABiCfr2q9jshDCIS4xJCsMbU5elFF+/cdrsN1Vq4a6qdgYh2XV8JyeuuX1JCxCNxBqBtW+Y8h6XardcmrzKNjzE3pYr0FhFEqvwgEGma5tgPnfzsDJJvu1XbCULXdfvDoZRSUoaT7Pvx9qqmlAHAnIbNX8ey6twUTkNNPBN0y4nrC3jGya21lo0zlq2pzPZaKCQpSY5qMrUEvri4qOdnmqYQ5rSEi4uLmuG2260SxhRW677C2ppLbReqZFgl9+XjLsoRrDpS5E556zwfPUO+6/W6QjUxxtVqVZNcrQDwpGbV9339jaq65tgW64mr1TRN43ytMuG0hoenNSGiyvM8JsiaFKnaLNJxlEtERaWaIC9LsNYikjFV2eoowlofipxs8k5dYwoh1jtYC+JSw721IkqEUEdCxAAaS8aUihYCzDkbPD7WtmswJdXK4CGRHEPewxRjfGImOUmSqRIAMxAREscCRo+1xddPQimYEHNAQJ9TzDE4tpu+YVBnZN2aHElJ0GQUtR7yEJvGTdNUMr96cX2xXYGkedqPU+zbRsEM4y4X7fp1zvnu7q6ABaAU8xwikqnkmnkaLtari+0mpTCPh9YwAs9zQMSYjaqWIgoIAiFEESGC9aaPIfimOY5pVXOkxvmm4ZR0nhOBMGrnXSklxBmdM3T01WQiw2gMOTbMWB/9ebEn5wxa6mrK6SjieVo07R+I1y8u+2E3ev98XvZSli8fDoYaZdaiyORMc3t73zWXOWHty7+egL+ehlFUc/HGGjallBRD4/iMedRBQ318zrlpmlzbVqXGZR6991cvnx8Ohxij90ZVS46okJNuGp/DCFpQ81Vnf/wv/vAvfe/Dv/T9b//RP/6H2ZhxmT9//eVwGPko/kXHsWbOL26evXrv5b/8k3+RoO7r87QMMcxttyJrDvPc9qsXL168u72tOe+M24WcAIDQLLkIIDEBkGguAogV2f8q+9KpE0VEAagiAfUKrLqudsNd18EJrKZaXSIys+hRfu6MJdRXMs9z17RzCJbRWltZ5SklJESFogCofOZXqjLBmzevn11evP/+8ze//emrq+3zi277P/pzppQiglJCDTfvvfpAVbfbzThPt7e34zTlnAvo0zDUQt4Urcihs2yIWudKyo93O3TOsLPMmw3HVJAp5ER4XH2p8QgAamyqytc13s3zvNlsKr7dNE3KR5YgG8qhlJT17Gx60ltAxFKO3dWSoohpGmeYSCHGYK1la9IggrSfx2maWEVLYIBV1y/jzNO86vtasKhqiPN777/s+iZ+8snnn3/erfrry4txmqz3Oee27cZ53j89tb7Zrtabq2siCiHMT48ZUBEUKatIVTf0npifdrurq6tnL1/knGMuu8N9KqXi7UDI1hWtz6sqgE9FMWZRZEHIKknU+7ayP7qu6/o+LQGZNtttLsU0LQCkXMZpqps8Mcb1ep12+wqf1kjdNI33OM7TGTuqM1GCI63GW4c5lVJKzr5pa7D+6vKrIpH33tWLeqLLqSoTnSeXcOLiolanM0EAPYsJS5W9JEJC0YqZH/MKYk0nSIqIkkstsc/rxcecB9j3fYwx5YiGFcQ6A6jE2K86Y0zbtsaYcRwvN9vD4aCqKceLy23T+v1+X/H5cRz7vi+l2MYzUs27Z7sOlZONBBERAhyJ3IfDIZwscmvarkRfKaXxFhtXSkGQeZ7rSCXn7Jgs+2kJXdedfURAVEGoKhOJhnmpYeh8L+qPOE+pASoR+sjVRGZCBJScEpKhk2GznPQFFTGetn75tKRRinzlinOqkE4Q9HHTtz7umPNxJHlSk04pKQkT1I/F+VY0xxjR2JyxlKJQZ+oEiCJaimaNKaURBUW71p3fIAImUQI1TF3XWOsQESSfTPRARMKkxRUpUyqRDTbepFTu7x69xXXrX764JFPGaeo23Zzj/nC43m5TSsY0L1889xaHcW4bS+z3wzRPyziFEBcaxsuLq2ma5iWUo0c9OediKtUPZr1ev3jx3FkD0t7lPB0m37bO2MfdnmwnAiklVMKTUnoN2d7by4t1KSXFxhg3DMMyzY65aZq+pxi5QkeqauxxgksFmJGsddY4y8xVQQsAwHDFdUFKqY7CZ/pCva1HbGMu4/5eYPno1SU1K7Z59emX18+ufvqbt2BMSoGRQoiAlEoshYCPULN+zRiYFCqb9QxZi2ZA5aOtM1TIpM59BAARK2tHROZ5XverUkoIYbveXPT+N7/5Td1kL1IqnJsNtN3qsH9aNe2L91/98pe/+N//n/5zZlqoVyRQPOyPkzU9WpeaGOO3Pv7GvEzjYViv+2kYrq+vP/vsk7/0u7979/j06WdftOtNEWXrxnF8enpyzjFBSEEKdF2XFZaQECXEiIjsPABIRpGixArKbIrm84fQdd12u728vPzxT36ye3wMIXhrwzzXarVGsAo/1Kdz3q2/uLqoAykRscY0TTfuD5X7CQCi2Zi23qyuabnyn5GBqig7AEFVgkVk1ZRSePHi+b/zuz/48b/657/95U9bR6YOz5rGpRg3m02/WqkqGX758mUIYRjHu8eHzWZ7dXVlrZ1jCtNguKmkGFBddy0z3z8+FJEQ5ykWtC6llKZUVNarVSiyWq1ev369Wq3qwuvl5WVNxufBJCJWylk9gvVLRHKO1X+53oR4FNlXxBN9n6hkLXxE0tgZQw6IDuMcckpSDsPkmD589bL35uHdu5iWm5trJmqahkFF5PPPPnn+/Pmf/psffutb3/rOd771+ZdvSsoVH3ZNs9/v2+0FMwfRYZxijCgKAEnKar2Zw7LkzGRTljAO9TFXwZBxmQGAjE0psbW7wwGZPLU5y3G/yxjkik/xtMzjPPV975uOcwbky4sNADx9/vluPxDbYTjsx2HVdqWU3VNcrVbAhtnW9r0ULaU8v76ZY3ja7eY5oK3kHawgp7VWcoGTPkMtw5XQAaTqf0CcAUopjJRz5tN+tmOjDYtIXAJbU7UYaw4GREZSBAIsRTIIM4MKIOacScEwFzgyg2rZWDPrnCKo1q0eKELMhhiNFRFSqAKVBokAK9237brKN259cy4R5nmupFNJ2VsDbdO3nXe2lFK723rJQwgXFxeIWA2krXFFIRVxlqv2OCEzK52skfE4WvYVBjzHLzntHYnIsT4+hci+a+ZZtchXfy3FZRqpVjzG1CFu/RzOUDAzV/D5XMToaQ2pykHUjaATzQdEj1WCiFQVYjkz6QDPS94Vmyml4HFud/y2fNoGrr+iwrmWZWvrXyqlABMUELECgnikBcScSsqlaIZcJJ/LkZRyLrnqZKFC1lwlo5eQmfUolFTLTEQ6UuILiiKIN8awAcxJEqIVwcMwx5KdZyLaS5j3972jq013eflSJMY4ffjh8zmGn/zs6Wl3//zm2cuXzx2bp8d7RGWCp4cny2bKMYm2zoNCCKkmzlR4nucQExpLbM8lo3Nu1TfzODLjet0L0DiOXeODKCKAFFExxlhiQWVU503T2BTmGON23T179uLN67e73SHGcp5c1NtRBwrWGimQNBk+9lKALCIFjk/Wu2pglSveW//tOXHWE2KMudxeto2mSEnUmPy73/1QID/+6a8gLYchkGtTKk3TfPzRN9++eRiGRYqcs84Rc0ZSLgCiUAARtBjmEAQRrbE11modlB6hCwRAY8yyLNXBIoTgnTVMD4/3711frlarp6enVb/JUsZ5Wm8vpmkyltrN9W5/eM9tvvPv/NWf/OTHAOq650XFOKsI1rtzViMiQ/jZp5+8evXiN7/6hSE0hNO4u7m8CMv8zY8+/MY3vvHL3/z2YTeEebkN4f333jscduM4Nk3j2+bpcS9IiPy0P4hxXItHIAAogKCKSDGn0wTkK4NOVb3YrI0xw4AxRmstAS7L0nVdNUCrSgfGmLqSxUSHw+E4GiNq2/biYlNiqiJr1rE3FhENMaAolFyKZXf68AFAVVBQgGhaoiF49+7uZz/7+Tdf3fyn/+l/kqf9L376Z0YJfdeyoWVZAKEqQuwPuxqC27Z9eHjcw943HQCN+8NN11lvq8aapEjerdqmb7sploSFiLx11phSimV7dbm9308PDw+bzSbGWPdQn56e6iiino86HqvChOXkynImf5aSVaso9nHWUhGhE15HxjEohhBKTqXYGvKmJTBzykWZNeZhGl8+/7Bz7unxfiQ6PO3WvS+oT4+3zpjNqoOXL1NKqeS2be8eHhWBjBvGhY1/enry1nljrbVVKK6IAMB+HHLRVCRBQOSjJFtWdYiGQwi+7TabTUjJGAOEOQsgAuI0z845CMEYm4ZRpeRScs6iaIyxjpEpF0XE65vnWmSYp361AYBpWQxxER3GOS4BAFQDEa3X63rt1+t1TpJSMdYKQIypxn1ELJhTSqTgja3jw2EYWuc70w04IFIqqaTc9t08xSPkkMs+5QqiVQ5tmJcKqxY4Oo3XNg5O/irV0erY1eIRO5WTh0/9E2sqmShLklmKM1atbZwDELTExhKRsbWHVgKZx8kQVw/dGitQtG9aKZJKaHqbU76+vFim6ebqYr/f+7atfd7z58/3+33OebvdIuI0zlUOxRgjCNMwHjMTH8u7WqykkonIWld5GZW0+dWQTLXEgCdS9DJOTdeeD3BOUqQcI1fXtepASr3bejLSka+x1WqtfZ5ny2m9smZES8RHgnc6/68TYnmU4wGAmI+yl1/P7mSMqhL8D/k4xhhUPINpRMSnwkJPTEnnHDMykgqmWPbjrpRkDWUVSMU7h4hd144PjzFmAbTWImGJBVEd2SQllpxVCmhjj+JeztZpZUFQi2BJvREVpVIy2ZTSnCIZnmIS0KtNt72+ydPeNW0pClWxK6bxMFnm56+un1/fMOMXX342j1Pf9zEEQjuMY9u2hhu2jUheYmZjlpSl5K7rrCvDPJUCVRR2mcfd/qnkVnJULQCEWmplQwyEqo6lgLeMzpSEgKVrmxcvbioHrus6QwgqJUdVG2MkMk3TGOMKKKmcbIoUkVUxpxK4WAEAMVDOdwERpQAgMhsRgSIlpnMTUvM0gluWvbPdOI/KWURWHj3rh69e3A/y7IOPP3n9BTDM87zkOZZwrhoBgFEJFVCgjkhT1iL1CsQjupOr8EzOmSutEo6H01qvZQaA1jcxhkrgmIfDTw6LKlBzEdGosTnHwxzYuMMcLFO32fzkp79gQ2wbLRKKCgIApZStJWbLBohIUnbeLtNoGQm08W6eUxiXlNJl27x7/fl7H35jmqau65Lofjg8PDwAHH3Kicg2XpSnJbimjaICWgSq5VFNfXW1HY8cBa0Q9NPT08PDAyNeXFwYYtO08zz/9b/+1z///PNf/OIXq9WqXiJQJUQ4wXjV9a4C5k9PT2mZx3FcdX2QmZSJeZ4G51zbtpILIioVURBhAVVUUdQK6TetM6zO/dnPf/Hm89/+z/7Of/Dnfvc7TGCUCa3JJdmuSWEpKoaqIeLovb++vJ6mebc7hCVtNhd9u9pcbkByGAYQNWByCsy279pp3hNR62xlbRKiYVymueouXVxcVJGmlFINSbXtqDOPCkcfGYaapMixpjnR9lQFkRSqR945GoqIGONLiiJQhQYrGlAUfNt161VjHYksMX722WdxHrFk7LbPn13ev33jnCGQ/dPjT//sx2zNBx989Nlnn7H1OecMyMamUtiY7XoT5yXEwHUCZy2WkkQrdlfF/QnRsLV8xAZFYLVaN11LxkgIT/vddns5TlMNkfM8hxBVteooMR/hxBBCyMkWKyKgMwA07RGrCal478m4oloLUmSz6tqcc5jn+tGN43h1ddV13ThPQNX66gg81lvX+cYY03hPJyd5UIUipRSDZInVqDM2VzkUZgDJMcEp2Rw5isYKqJZ8ZJBZWxcZK/FYk0ARNlwpCd57BEwxAYBrfIW/nHOllArnHi32RGrHaehoRlubMz2JV/R9m3POMTRNQ8ApLKtuW7t5RiVDFikhWTbeuse7eyXsum6Z5so4yyrWONVJTxsgMeY5JkRk0Xk/VtCvotmMhEQpHUU3LTOcpr/nYWq9kAAwzwOiMttcLXtQvHHOuVpiHlXNCQtCEQEBQmQEBNWSFaEa9gICMWIBUBU9rRupZlGsqkZ1tHsCJ0spKS9w6rDP0PE5hZ8rhuoKfirF/63hFiJWyzw4lUd02mISAK5bKQhFRRFTSoQGEBiobduYU5XJq9Du8QUjgKJA3Tk95nsiAtCc86IJciIEz2CYsgALG0JPkhs0YuZhilqWZcnit9u+aTty1jX9flhKxrbZ3t3u394/dP3F1Xa13z90TX+53Vg24zjGJXRdJ2BUOWWFEIkxxrnrOmI2qBcXG7bucbefpglJGdEY3j89hnG/WnVMOE1D27abvnvcH7xvcqoUHnDO9l1jDKOmtnMXm363ezQWQdLD3W6Z9paByJSix2ViZFS11qNoTtmaanKAIeVSijPGGBaNdQ6aktKJAMXMrfMiEmOM85L1qAzT9/1+ioo2FVXI42G6fHbz6tXV75m/9N/9sz9DKQ93j8sUxjg87h6yAJEh5MoDINCvBL6Pat5oDFtrEbSueCF8RW4QERWsk4saqdq2zTmnErq2tZbTEkQkgvGNVy3DOPZtK5hjWJy1hjCFJcfgjB3HQ9M03vsUAmCDCIDHXRg84mRaUpacf/A7358O+zdfftE07jvf+ubj4+P/4n/+d/+v/7f/8h/+N7///je+lQFUy/e///37+/v9/omZQhXQBQwxzCH2602KUQuUUgqoSM0XWH11AUAAqultc1YHyhlUV6vV7e0tEf3hH/wBAFxfXdWcRV/DlugrdWQxzGRtfUB937988XIeD2/fvn354pm9uri/vZvHabWqcoEFgAHkqJ2ugIhC9OzVq7dfvialbn2Ry/JP/uCPXj3/n/7O979j3ty9m5bZObNZrVPJT4c9HxBUVqvVOEzjOM7jVFLu2hWKMtOyLIZgXkZSddRJysaYvu/nIJBySDrNCxTxxraNl1zO5JFKe6nTsrp0VUqpvxGRCtARkWYtpaQc4Ky2g4iIVcqDmfFU1NfZJBurCErorU9hAYBUchaglERxHB87555t16tVD63vW/9wmFEzaD7sx1XXf++73/ni9ZfrfvX4eN80XVFE0pxKyNk17TTPWGSegxZJXJY5TsvMztYN6zmk4xMqEFLImBhIE3ddx9bc3d3NIbjGD8MwL5GICqi1Fo1ZQiilGO9UFZiWGI0xCMAnElBWIaLDOK/ajo2rBi/eW4PErgkxGcNLTDkGUM1ZznF2vV5nKfv9Pp82RytqaIzxziNiZRJWqLai5TlEa13bNBgCyrEsMEjccHHZWgtFKiDs1msAENACOs/zvCwAUHVWq4aDYyNItVvtuq6mhyOvhOnY3oFaYnXknNMixpiK1h4XIVT1RFaqccE1vs6fAEBLYUTLXFIiRGMMiFpjlmle9ytDvO5XyPRw/1Rp2wDw7NmzcZkP+4GtweNij6jG89Tz3IvUGggR2ZqUUsVgvz5GrVlwu9nUe6gA6/WaiOZ5nufA1czOMSh560rVDgOoc8FzvsTTRkctRI55UQHYFEBEjHTESM+Y9tfV8GuWreINiJhzNtbVG3RGGgCgKg1lVYLjGzxnxByPu17IdReM6u6vHsEnLKUcEXY4QrWSc04JGEVyKjmlNA6T8Q0iiuqplzqKRRPrKaDnlABBMwipWNR175/dXG/7FnJQyZaJACGhII3CeUlzXqKm+72Zxn1HYBENaC2vQ4pzysas727flKKEgEjzPFo2m5ttzRYhhDmkAurQKHJW6TdbD5BymMNChE3jlxhCyow6L8uquyRGAOnaxjiTU7m+vpxTBgjGWseOkJvGr7oGIK/6Zjg8fvbpb6x1bdtXqS8ACgWWZck5lqKuaZi5FB6GAbXUo2OZGKEQ5CyW0eKRfKeCZyEIUgA6CsqWUo6MSABrrW/XIR6enp4uL9bLbrh99/o3X77dPvvu82c3X969/vKzz7lrvPeusSGEVI5HhU6Yx+lwg0hh5mp8URueOuBQqHJ4oIJJyhlZ/Kr/qfNgt+q223dvXxMWy3me594ZzpPJ4a//3l95enr6xS9+YYhunr/w3o/DFg2/efOuaVo8UrqO86NSCqoYZpDivf3v/vt/9PL581evXnz5+Rf/4//4b/3hH/7z/+I//3u/99f+Q7TN67sHtA05t9vt6oByWergiVJM0zSBMYfDAV0LIAX0eDEQBY6cIeRqT1kAYIkRKzikxRh6eLh7/vzm9vb24uLi8fHx9vbtarXKmfW0c8XMxnBKknOuiDwRMWCMi+Ty5evPry8uK6B7c3OTY7i/v0dEyZmt5WonSlRLYEEkpcenYQyxMdz3vYxpWOL/4x/8/t/49/89Y4wZpnFDfa1QUlzY2LrIqAKq2rY9ALVNc4S/JFxsVkSUp3Gx1DgDTJqPnrKI7Kztuo6IrOVhGJZlefny5cPDwznvVpS4LiBVVLkuNdZIZ/H4m3LS5Dt3RbXJSDHVEcsRS0mJGaXqYqbUNI2AipQ5LD1b7z0TjfP03ovrbXtx2D1KyU+H/Z//3R9cX1//9Kc/nefREMcUlhCFbBRlNhf9+vEwxJR8120aR4Cq2jRN5S3XOmCeQz7uvAIDNtYZ5AoGzmGRp6PksoBO0zSM83q9Zmf7vt9sto+Pj3XXXr72VV+8dd46E5dQJ+L7cbB0tGudpqVt28PT0zzPbr2Zl4mR+q5T1ZRyKWWe54ur/vr6OqU0TCOfaD75RLQpOYcQLJumaUrKNbxWplLNQDFGZ3wppVI2jgFdoaaZaphqmNpVDwDzspRSdrv9PM8VfsET5hxCeP78eTmpQ4jINE2pZGttSqHyfbumFRFTKV0K1n1l6VMfdy0gVqvVfpob542z1Uz68vISAJZpBtH1ej2PkzGm0klLzsx88+zqMM45581mUxnRqnq0oBao68J1N7G+dz6lIjmZ4xJRjPk8mj0DxYgY43LEokup2uZ1CmAbLydPke12W8cZteI8VxXnzv5cX8tpbfprP+vrDgpwRo/P7a+qEjPiUUGTgIqCrbtbKeFJU71W7nhqBc598Pmi6Wn9rBzTZxVIwTNHWko9ORW9jKVInCdirJ9PCEGBshxHnsYYywYATFVVTDkEMEjWsGewhtrGXV9effdb33x2tR33j4+3t2EaU15ShiRaSuj6dozLNIyHwZiuL86Mw9IYPuwOKWUks7m+Dos+zo/vvfeeqg7DofaI6/V2HOda2R+LckbvfUqBmRV1mqaUMxqbkyzzTAxd14YlHYZ921jv/W63s9ocNVtASyHv2853cUkphWnKuYRl2Yukq6ur9XqdUo5BcpZlWQ5TIqKu7UspIcQzkJBCLiVRVG/YO4uGRFJapHWl1mGEhIh8AjBqGDw3rDX0tW3LBpuuV1VAuLy8vH+6//KLzz79YljkKoVwcXERUW3Lh2UgIkaJSesY+auqC1DxKLJRaRxnMQpVLSfFtFJKLvk09RARudxeHA4HUXXe7vd7QvXeX2LePX35d/7G39jv9z/84Q8b12CZGospzG2/3h2G/DSCsQ6t+FUgayDWJk1EnLVHIgWb6jsuuTzc3f27f/EvfPPDD/7e3/s//6W/8BcfHx+XMP213/sr/9Xf/31jjCI+PDxUHHTV9+M0GWP/9t/+2598+uWf/vSnKUtRLUeHYwKQeovq/cpFVZO1RyqGloKITNWqQJqm+cEPfnB3d/fxxx875z755JNzkXoeD5VSCI8DuGVZSMEYs+r6mJZ5njfr/s2bN4fdfrtdt22LWoXlEQEJgRQAIatA0YLwtN+vNhdhHB73h6uuMYBziP/63/zIiHRN60vBw5jbxpnW+cZPyyg5N61frdbDlwM6VZOqwsNGtCyzRwLjFEzTX4YQ2Nmriz6+HYOEbePyXKZ5jJnTMnqHTAUhERYkFk3lpHoK7EspsUSypAVDtYfDhCCgUEqWogDAZGvja62tkiVEtCxxvV4zaykjAlamC7sGre+tszESUQpL03UAUND84vPbqrf8rPdt279+9/D567d3725FS51P39/erTbrtlttLjbdanPZtQ+Pj8yg06NOw3q9bkxxnels1zTN/eNTT7qEKAhFlJgz5Qy03W6dW+2HwzIt1lrjW9+0V7apWqw552EYp3kJIVSUsho11m7JOhdiJGZQGYZhs9l4YwkVQFGKtzbGeP/2zT6nq6urRRN6W1RnVWvMFOaI6I15GvYAsr3cLHGe50POeU5ylGeKAUXZGGTOUqxzDbW7YWBjDvPinNteP3/37l3ZD9vtdp7nFCIirtf9Mk0xxu3FummcFpmmiWNVpcQ5J3p+6SefUnp6eurbNuc8jmPbtg/jU9d1zBDjdHFxsbpc73Y7Y4wucb/fM9N4OFhrTdNUUs+0zFUpzDhrjKmaEs6528cnIopL4JQL8BxLktB1ne17y+Zx97TuO+9MypPk5JwrAIBwdbPtVv7u7k6QAGRzsVmWhQwbolRiFnj50Qe73S6pcjnSiZ89e3Y4HIwxqGCIM6TGWTiayQApecMhhEMIqtpY13WdlMKAyEZVuRRvzLIsbJgsMqKUwCTOGjiJYCCo4boGJjnNzKxSSimGDShKEQQkUQKtQr2naEg55yrZXBG2HDMi16BmcuqtAQApxRFVU0ZGACkgUu8PIFZlegSUVI56y6KlHMntDREAGADPbAlLTuHkn7ifZgBQYvaOnB9E5oKzSsrpyC8DnJf5anuBnodp6swqx0SiK9dsVytZBhPD97/9gffy/ArL8EXzvNnF+d39fhijtX4sNoSAeRViaXJDhDrDfhnN5fqAya7tex+833szHp4YEugy42UprSoY7gjz23evtYRX7728vb0Ny2C9X683QIjGtN7P8zwGZe4eHm83W5uzhJAv1itQC+iBfdZGtbBbK+D+ENigYbZoDKB3BKq3t/fG0rIsFe1gcjcvPkopv317q5zTHADbEAOZsOqcQhbJKUJOAYRiLIRGLIzzdH21KiUBiuN+TlgQyRogFFWELISWKaVZNPrOY8zEdprmx6fDs8vobFdsyQl8e9G2/Z/7wfaHP/7li5vrX3/65ZiHuahxl0WaORa2tsi+lm7VkkmkAGkd99RCLJ8yfU0zuYQKHmy365ur61/96lcfv/feJ598wqIO1KoYJihSE7WKZMbV9ubnv/rUWtttr1Xwj/7kh89fvezXWwF97/1Xn3/++TjsLW2tTAS0kDadTzE6SyWH7aofhlRKsNYepnm1Wr0bph/++osP33t/V/p/8sNftzcf//hXr//mB997/70Pb29vrWJDlebNYZpb301L+uWf/XqJiRJ5IHexHsdxWmZQtWhEiqhYQtWCRbxzhFhiZCYwnHOOhl3TmiJffPH6o1evHt+8a1++ctb23k1zyCoKpMhZKGUg13FatIRcwBGWkgwwafiLf+77H3/04f/r7/8DxYIyQ+SLzo3TwTctxGytZTVkrBYhBWPx+c313bvbZ91ml0CLH8Yl+aYUe/ummDAPjaFm1U7TUNLSNUbi3LV+SQqiEpMzRku52l5Vj5dw904R1+sN0VB5Var6cH/vm7Zb9R2ZYTpaLPi2yzkfTu4xZFhOO9GIWEDODQczI6NRUq2bLCceARb4mmR53b+sVj/GLIiac0ol12UVOW2M7MKBAWs9Oy8LqHrv66o1AIQUr66uDuP49t3r9168/PDDDxCx7/tf//o3IYT9MMUYbUpZ0jzPZPh6vd1e3Azz9LAfvnzz+vmzl6/ffbG+uCg5s29VhQokKVwQGUNS4kQIwIQIpeSUoqoaY2LJ1aBESibGZ89vrq+vEfFH/+ZPawN0eXnZtu0S5hiw67oS07CMINq2rem5vgVjTB4GSAWhSjrEbHLjjGdz8/wy5xzj0jSNYX5+fTOO4zzPDVAppaSqrQhErFBSyWGIzjnvnShAFQQukZmvt5vNZlM/zKryTUSr1aqUQmRUj1ue1aA+xpQVsAiJtnz0Zeuuri1xzjkMU+sbwzztDtZao0hFwdqLqyr/uQCiIhrnUilERxt5EfEAx8bUGEaszK+cc9s1oOicA1QRmeNYn3IIoWs8GBoPg+n6eZ4ZELKs204JI1sUMYAOkNmyawRUUy4hppQuNuvafEzTdGSjnGwzztC0nuipqloFs7yxfEKwVbXEJCkXf1Ryr0hDY7ht2xKrFycYJCY2WDtgcFX3WHMpolKgCAMioGl8xYf0xJGuH3idZ1fee/6adQSI1N2kfJoBExEjK37VA2FNwBVJOrK4v+rszUkpjJkJsDaR5x/R1uwOaphUcsiplFyWyIjVHS0t4dnm4mK9HYaBk0g4WKLGuc6hpUQOV+3q+np9sWnv775MrR/Hww9/+K9CgucvPvz0ky8eqdOjyxYKI1jOIkXlbvc4z/4w7NrvfPP9Fy+unl3N4xDDvLt9DCm3bbuEqeS4Wm/nmHZP+7rZaYw5HA71VKixMcYwh/V63a/aeuRaZ40x1hmkxnuf89GHJsS5rkHWN55S2u12m826bduHx7vqbFgxsN/85jfWOmOOCirOdapFSwkhsAHvHSIT0HCIqlqkGEuGKKeiIICSQhBmLQUhM6izRAgkSJYQkdmWnGOM1fFiGIbW6RKyMQ4AcwmXl/3F9aXx5tM3D32PKRS7wH7/kMi6thvGxRKCnux863xXQcvXhMFPR6I+3wp4zOP08YcfffDBB5988snr16/XXZ9Senx8rPdi3a/A2ioI7xpXicEffvjh3f3jssyV+5lzFtAvPv0MCLu2rdrpMcbeN/M4P7u8rKuoEpNnCiFFkRfXV7v90Dft4/3dl599btkxm6UEB/JH//pfvnu4S0WMJzKm5PSNb36z6btf/PLXKSx/9oufWdcsJTLbwyGkpEUsIiJgoeNtLUW5MYdpapoGra3FonOdhSy5OMPMPI7jarVSLdM0jfuDsrHOIplUCkhWtCJCplGAIomZkdyc4jym/Zz/zZ/9ahdy3/QZ4JDgg2fP3Ori7u7uonUhJbSGEZSxlJxS/uLtG0b89M2XjGSNQeeiqIIiocG8MPg4peHxfrNZJTW2a+dDBJApLATYuUaT5hClFATyvp3nOTKTsZ5NkmKMWa82Wco8BcEEQNa6cZqyqHPu+Wa7LAsyMRBA8R5rL4hI5SiabwVUsqpUJDmdRl9UigIcN6md80Rad7Zyzsa4umlT11HIcBXyR8S64klIVTc/5wyIehqPhbCElI2zXbuKJWfVVdMOwziFRQp0q56tffv2rXWN9ZVNQ03TqGICY5u16frn/WaYpiAqIuMUbOMVSNU4403T7fZPdcJnT3hLkiIIdZms6zrfNpasc269XtfxeW1l6mqNqk5hQUTv/Xa7PRwOy7KsVqvDOIrI5XYbRUMIKmK9l1IMsUVO1e8sJke8bjsR6baNQXJssvMhhDAvOcdzqC2lCME8z0mKdb5yqaZp8o2d5iVU+vTRoFCRDFvPJLW1bftVzLlpmpeX18MwvLm79dZawvXl9WG3C3Pwa0eAl5dXD3f3cTqGRcgFFZTINE5KYcSXz58DwDiOaExd4cAT0claS4iSc1UXUVXXNM41bd/Vv1ZJA2SNt3b/9LhZ98Y5yblb9QgmFHVAqIrWqWrTuJBit2oHZACs8pPTODZonGM50ZLrnKlqOJ8BZzytIZ35MkQ1MXPKokUIEJQEyDvPxITqrBcNIosqWusrNfwc6fC4Z0JEXEoRgTp1+goGp6NMzXk2kU9Sz3oyvDrj1XgSMnPOecR0ookhIvJXu8IAgKrHBRhzzMoVq6vDYObT2JdQcn1JVQiisvkURSQXzMJFEcEj1xF+SQFU37++6Zom7fbOWuty1zSNay3Qxapr7XYZH3/yk59846NX03y4ZLp/3G2vrp1bff7Fu3mJtzE65+oMz1rLiElESmYVtMaY5m4Yxl/8/OZiKzl9+cVnbXexn0JSMs4tKcZhItRnz5594+NvDuOhMk7Y2nmec0x901hi5wxR93B7x6jWOdGy2z0SoCEMJ8fbEpPmMh32bFvrOOe8WnXb7UX9PInBGGONB51iTMsSVHFZlrAk5xKBnEslY4whC0K7p1lEpEirltnmnIlRiiZNqoqqJao4Wx0WQSQlUMWmaSjkmRIhM6bDODLzZrXujAHNJc37+cC++eiDTb917db/8Gef/vSTNxIVyBYBMo6gnEtGPplz1Pa3ug0CAsHRLqmaX4/DvL24+uWvfvPzn/+ywoEpLcz8H/3Nv/WjH/0oxjxMs6p+99vf+fLLL1Xx5tmLjz76qOu6P/vZL9frzeNux7xY78I8Zwl1leCshJqnpWdb5jAPY9u4sMSYltVqpQCaVYs4bwlZvRp2iChonqZpvyzgnO/MMM+kJWl5HA/vX18V5iHGbrVmY6p3ZFKDSGi5wukiRzmClHNj7PXzF0+7HWZhts6bZVkslbOfWAghhVBS3A+HdtUTWzSccs0vxtY4YNxut0MkRRLJ3rVLmH7445+sV72y6zaXWmS3f5xjaZoOjc+Uybmkao0BEdNxSVmIVuv17e3bvnFTKd66XDIRZ1Dz4roDSH3bzbsMaXa+W3mzWa2XZQkhWGuNccthvn/zzpN1zmlc6ij36elpvV7X/aqi8vj4qIpFyrQMRLharappEhg3DA8AwGxSPg4DpKhjJwLV20WrFSiwiCIwHYt0rCem5oyUijHGuWaappRK27ZSIMXiGmuMOez2fd8TcUqp79fzPJeSmBmRVcuyxJKkhqrnV8+XmHe7XWNdTPr5Z2+22+1nn33y3nsfGGeXOU7zgmTW6/V6u91uL4YpziF+/M1vlC+/nJaQCvrWiS7zEpqmEaCUhZl92wHRw9PeMapqDmGOMYRgqlwX0hJijBGtRWuZoYR4//gUQujWm6Zpxnkax0PUggox5ZD2676z/hLIhLiM05JzVhHrnWE75XmZhxiSNcY2JqVSioaQ6gT06WmPiF3XIXLb9mMpjfOWTZ3TH4Xa+ehPsLFOCWMqwzyJyLObFyHOlaNhraxWqzoMVoBxWZYldKtt33UhLM65brNNCh8Yl1J6eHh4dnlzub64vb1NKe2HHSuvunUNBMaYuiGz3W6HeQKlUuTxYVevgTEG6+KpKKGpWoyqKkVUYbPuikrJCkUOu70xRx/1lKIlHuNYmUwxJhTtV+t5CKikBQyx5OMsGYBSSiB1rlHYWC2lbZqUkrKvZiGAltjGtCgYYhfTAie1JlUSRREUZQXSoqmytwCJ2BjL1p22pKQoCBCylQIpixIX0QJ15kcV0QGELJCyZAFF1hoZtYp3AhHX3ApQtC60oHpfyVZKBPVDOOZaZkUSQEJiPirfnsa+hHg0u1FQVIUjGRZV4WguDARAApURrUULFBEFrI4FqjHmesFVNeeSsxAoATbGLnHWKJ1pNk0XlwVitsa05F5eP7vYXM7DPA9jnpMKSXZfvN1P8zAs+OYhLUH6jn77xZMqirdgbQppWZITtGxizpKLZZBh9t6/edjnZbzfPjHCPMfH3Zvr6+vDOG3XK+da8v5ys/ZN8+7+rvWOCAzhw+07JM0559gY48ASo6a8fPzxx8+f36jIz372M+fsvBxEZNOvVDWl4L23thMhkRym+XKzTksoKb149uzu7g4FUwhaCgJBkbDEcRjath/mkRmNtUSkpcQlidHqP+jYxFKLJyxF2bBInGNonEdnM6OIoKKqlKIZojGG0IgcPUPnOcQl/Ppuev683FwrSrAGVuuWMOYlG9CXz1Zv7te/eX2b91PBPIeRXX/iYSECStHKakYBVaWTX5mAHvOyiNaGGXG12SzTnHJRQECMKf/BP/+jytO0vhmG4ebly1DK7edfALkf/+yXbdvGLMMcne/IGiL64KOXj7unw+GARIAcojB7R6WxbjwMv/s737/cbJ92D59//nmICZme9gMQDeMUi3jvhzkYogkjM2vJjARZrGsQ0drms3fv3j7th/H/3963BmtyVIed04+Z+V73vXtX0i6SVgIskISQ/EIxCk+ZBBKK2OUUlAvjOKGoSqUsG0wIJVeQQWVsU0RxxeCiUiQQglMhRQwBUQQQMa8IhAQCTPRA+9Jqd+/u3nu/98z045z86Jnv/d2HhOxy1Z6aune+mZ7u092nT3efc/qcvtBRXKt2+2nmPOpIYdCpg3PesSt0RsRMLpZR1t3W4IHBplZXKolkkpKJg1l2s9tr1KqvetWrmu32177xdSYjSINAlJJABH358mJDC4rjmD1lxqDESCI7n/fasVJ5r12r1RqVaPPiOQGYJIlxVIlj51yr00VEcl5KWa0mmbWoIgciNTkJBSi0UJ5IXX6gUY0T7/368jUb5841avryA8tRFG27THix2GggyrxROdNuuSzTiGna897rSC0sNuI47nQ63ntE7HTaUZI4AiJXqVSMccamS4vLpzY7eT+rVCoKhQsrfgYBstj0sBAsRDixLxCI2CMzhJOkwCBQSpDMzOQFQ6xijhgRq0kVfI+ck6gkqkhGsYoRkSyxY5e7WEcCBHvwlrwPYUsFomw120HycOWVV6dpmqY9Zswy99RTZ51zVx+99uDBQxsXLm5vbifVSr+f9XptZv7+9x5YWlwRwN6mrMT21oVKrSoFxlooJY33nfZWtVqtV6vBN2SYbxiAEJxz4AQhyEgjYmbygrMjdDodpSLrnZCy3ljM89zkKQiM47jd76e5iWKdJLElX6lVtdb9NK9WayrSvbTf7fcajYbQClBESeyZZJwgYrfTrVaTcHAPEcGTljKOFGsuooITEdFiYyFIqTKTL9ajlaXl7e3tPO0l9UY40m6tzY0jogpKAZA7H1WqqXWm1dFapu1Op9sTQqw0GsHkRwhRq9V6vV44wLbdaoawhlppRnDkvXXNZjP4PwpCwjBL9Pt9K0Sj0QjqDClEwFIrpbUOUYO8z8hLASApWIuQt84LEEIsLSyy84BQrdSQoVKpGGM8UxQl4FIhRG59v98XqvCI65lirWu1Wr1e7/V6VkdZnvfTjJkjYpSq2e4sLCyI4NkRADB48UIQUqhgBE6IECQEsvSpGSI7MULYhqpICyWZWasYWCD4UePSYP3EhfnVUFbMHCZKRgjnRIgJg2sxZ8MpEaFkIVwJwtJqrQ4AwSeHUkqULgwDEMJoEJyBNkeUNueFlFIIJUJ4YmApwtnoYLVHXLoUDafynSNnhRAuimKlVcK1ShU99VudREcCUMvowsbW1oVuJaogSm8dERKrDMC5qHU+1YosYW56SbzgLDMZ8uCtM5llD6TZW09EkYwWGvV6Y3nr/Mba6vLS8srG2TOASkj2jAqF9a6xsFjRslqtBB1tnnaztBdFkQC32FgM09j64cu2trZ6vd7znnv1Nddc45wzxlx11ZFms7mytL65udlsbddqtbUDq1LKPM8XGsvtdjtNU2PMxYsXszwN67NGoxG+DQq1JEm63W6/343jOiIogUois7AuJ6JI6lolliLq9XrOOYEkhVJCstBK4yAyVVgtIQE7572XQjvnvOc4Svquz8yNRmOrnf3or4+tH1xaW26k3a2V1cbhw5ejBNvPcwtrS4tXrB+82H6Kotj0ibyVOJTcIEBBXRKZCKQUMKLgK+5QCLTGB3/XcRJrrTudjhCq0+sHnYv1vtZYePTRx/v9PiG2+30i6PaylYOHut0uIPbSbH19/YYX3fjQ9x7up3kYWbmzURRFzBaslPKJJ5742Rff/PKX/cJ//W/nvbG1Wh2dbff7Oo6EJQ+oK3Ge59Wklud5WIYHzxvBhb5gYXKrtT64stbvZ85YhYKBrTXsHYH3zlFwsg3gmS87eOD5z3/+/fffz87VajVW2rmMvHdCE5ElWl1aTpTsdbqbm5vPueqqWq2Wmtx5zwQEKAQoFSmlTLcj2ZleRkT1StWYHlt3xeHLrj16zY9+9EPyfmWpduFcFxBWV1eyvE9O2NwEiVesNAmSUnZb3VSmtWrVGIsoAUKUMAsAKkL7nMNHkiiy1rY2z9z8ohc85/CRarX26KOPnjp5WqGrVOLK4cvzXlehTVR1/eojTz75JAA3GpXW9vbm5mat0VhZWXGullQrxvpmx1ZiWU0iT7n3ab1SMfV62MVqIQSy8469r1QTC0zk2QUDpqCqshWtB6o1guCOBIhYChBMkl0swXtn064gt1CNvffgzVK9AuCddYlCl/ViCYIsEDgi9F4BoCdvyXhvBK4tr0gpT58+VUmSfr/rsvQXf+5njx07trGxcfzxR+qLS4uLi+yNy3ChmizURKvVWqw2VlcXnqLe4kI9qVYq6rJWp9vpNG2vi1Gy0Kgzo4CcM2tFRETAJIXQSmmtejYnk8XhcAu7SETe+06zSSbTSlmbBScsSZIIsFKwUkoKjgQoCYnCOBKJVkksASj3eadrAUBIdj7PcqE0Gimr1cQ5t7SwqLXOcxQKrTeETimVEATL/OC8CqRgx47Z5/0oirSKwaN1GRBUlNBxRAo4lgCA4CQ7JTBSAMjVRBORM2maFyt0raUQImtvVatV8vn582eUUmmaSilWVxeZudfrpWlmTBHSqlKLe73eamOx2+0KZ1Rx3gFRy6BjZvZSykpUvInjOI5jk/WSWK0vH0QlpdDdbtc4MMZUKqper5ssjzUSQKxlLBEAMnRxVQNAHKk8J8fGk0XhEaFa04hJP0ulJKU5jhVAYoXsNDeRPHkvtDiwsthsNrVgRPJQSHS59CiLyALBM2uFSVyc8kIiBAHeKKVQoSMP4FCwRJLgI4mCiQQjEgBBcfISmMmBU+iDLLAUegtAGU4q584gWSQvgRkYgbQWQoASXgIgktIQRZHgMqi20JECIdhz4dQQAGRwOFzqgxkYJCCiHDJhRiREDtZnQXVYbK/ZM3sdS++cc866nMghEAqqxDrSUK9UwSeRElneEdJfdmhVCpHaHnkAAK0lSOWIHLPx/vz5llLKsZPaHlg7lLmsZ5wQyvc63hnpfQW9DrEaYgXESuD6yvJVR45Qv1tRUaNWb8dxc2tTKnQmWlpc6XbaLuvVawmZ6kKjRs532s16JVlbXaofuQKArLUXL15MYnVgbdmalNieevJ4rVYj68iZxUYthB5eXKxdcfnlzWbz3NkzCwsL1mTemWoldtZIgZGSaa+bRNpkKSIKYKlVkiRSqiytpGlar9eInNJQqSQSOc9Ta50DiCIlhIitbrdTBCkkeS8BgBGCExUPgyP0QsTx1taW9KRQEKDWyhHn1kQ6WVo7ePzUyezUuYV6AzA+e2bL5Lyyttrpm4ud7Hw772636lGkGlXjeoDClnYARScSB3NrFiyQEIvAR+GtQBZKBKe8EklrjUh52lUiRN/jShQbYyRAoqKrrzz88MMPJ1FsjIniCAC67e0oipxzS/Xq+Y0z3//ed7c3N73JTQpaYTj3mEhhc5NUpHfu29/55k+eeCQ3HaXEi2564ZNnz3SPHXfOWvbgQnALxWn/0MqK1npjY+PQ0mK3220oLZgYSGt9cXObk/jy1QNpeyuEgcE4Djo1IYL/x+JMs2RaqFZe+pJffPDBB02eKSUqWiaN6vqRI1ubmxc3zqPpC+TlevzwQ98+dfwxl7YVQhJHKhzIdiTAMLHQQCSU0NZaraVEbQU4Y4j88tLCmTNnzj11JoqVECLP+ghQQzTWrq+vb29vx1L0svQF11/f7XZPnjxZVbJvch1pJYXxGPSMaqkRSciPXH7ZD3/4w+bmGW8658+ePHr0aCTI5d3tzfNK6Wq1mqXNfq9JPqvUCCjb2to61e1unD+nlDoEh4BzYDx29oQn0Frnaaeb9pvb7Vqt1nPY63aD3wYiQpDBxiRfWuTykIxzhQdw55wPOpJSByZE4WogmFAFb1mmPIBbq9VC8Iqg8A/ed4PU2uT5QHsHpRlqUBFtaC2E8N7Xa5VGo7G8tNBu1ZPYI/Tbrd721ukzKtJaHzlypJ7obmsza24YYyDbtr1e6nurtcOdfPvwSl0farRare9//wcbJ7vB1ygi9qjwyA9l1Jrg8wwRg5el4INwe3u7H8e1Ws24MnKfEEIIpUTYTkVRVK9WsyYBcRzH5IrQvKpaC0SWZ5lNIetGABDHcRxrn9cheDXxxMyVSiWOY9fPBlsihQV1BsVBnueOQ5A+xcyOvFIRaR1cGzrnwJMQItcymCkFyUF5jtCLSqXb7QqGFrP3Pnc2BHJARJuKra2tYMPFzGmaxpXkwIEDROSb56Iosj4Jp+jC9qJ13gTHs3EcS1cNLpmY4zxH73IptYPUMznrm532UKXqF/r9/sV+GidROBMcRVEzbSNIHUfh5AARKaUJ4OL2dlBguzxPre33+2nnnLXWkeg0m4FUqB9Lu5B3u9u2GSQ0xeaPhg7Zg8NYktKVkVWwPMVRKL2cs+WHUspIax6PZYSlY5OAXjhHLkqfnZnJvffBvNGVoUcGMzSNHPaVUiZJgiUXJ629Uoww+GrAZ8PqdjAcBjskABhsiQZOzQAAaBgNomsyY4zzJssyCRjsaV292m+pXhR7kwtAZ61CkXcWdCTjKgoVpX3baSODsJ6YOc3zNO9vb2+rODLGnD+/FEdVY5wU2na3RiPzDKQpsVbHuxvY36J+99yFJ7vnT6ZZz3vfz3q15CqXx+3t81s2f84Vh6iqbM4bmxeqSRzFtXZr05p+HMdRpLSC7c0Na63Nex2ft5nTej2YiWRZFildr8VBNa+1ROQ07ZEX3vsoUoiYJBEgEVGcaETQWqFIpNBElGU97x0i9LtbQgjvgH0mJOR5bnLHjEAoUHvvs6zrSTov87wvJMRaBfEOCG3JW+dQKkTpvO/1+1pHIc5jr99PM5MbV11ZPXT5+umTx46devLgynKtvgKQtNru5OmzW9305LnNk+cuZKiw1draarFUQsJo/44YARRkMwqB/V522WUXT50Ox/ZarVbgUc+75trTpzeeOrVZq9WEEL2L/vzJRxAxWVvjPD9z+uLRo0c7rQudPNdaG6WEFI89fGppaQmsbbbyQbTdljNay1hH7D0AnDuzyYjWu6988Ww/N8Y5HSfeMwAYY+Kogv0OdDbe9a6333vvl771rfujKPJK9TOT5zmjsNbWDjauXE2e/H9b5zYuaK07MiEqPFwWgysEsdjeOPX4D9fX18+ePq3LKOBSyt7m6TA1OkBv7C/9vZcw80MPPWi9Y5RSKwJ2NsRpjRCxa5yUcm1tzXS7m2c6QkCk9Pa5J7fOnhRCGJMZIYIdUh/BGHO4mlz3vOcJwVdcuX7//fcj4g++uVFfaKRbW7apnHNax0P1fBzj2TMXg9USM/f7fSXk8vJSnjtrrSeQUhtjqrVqlrl+v58kCSFIicaYSKrCcAYKN9/tTq9arXpAa20Ux84RM2e+iDblB+FxCgO9wtDUlc5yQxpUYnQCDjo8oqHJyYAfDURqg/NzAZ/gB78gQT/GHwGAUZJziBxFkbOGmZMkcXm2tNTIMpvneRj/qbFCiEajinkGXBBuZk04kusJkiQWApIqbGz0lIpC91vyIKNCIAkFVw1HTq21lVriHPV6vXDeJmQFKJzzgxOcxcpUli3FLLGwvhHB32+krTWhjiEuR+DFiCilcM7XKjLLXOhj55wSsvDLT8MJABiJWEpkhNBNWHpkRBBErBQCQCBErZEZiMAYG0WqkF0xxDEaA1JDr5fX67ExHOIj+TJ6l1Iqt7ZYfFgbNLuKKdxgaVccWH+xbi2PIYbgScZQJAUzOOdUrJxjIdC64GMEnPPVqsxSJ6UsEHaEZfiwMGUa65JEew9SgveAEowZlCWsdUgyitDaEOceiEBrsBa0BucAEYQI3qJACEAEG3xeISCBD479JBABIhABYBD6ASEEh0Sq/JCo8KgRCFNKyHMSKAJiIf+w1Q0K2hH3GwM/VhBYlVJFjxSVwhIlHOIZkCcscAu8tzzfCKNRYosPfXEf6jtAyZbV955k6AuTVauJAGBPxphIaSBWQlibxzpCnWkdp7kTqFCozDiUEiUaY5USxhcR0pjZe1ZKRTZE6QgOaIMbZFQBYQYpATxYkydJ7KzRWndz26hGxpKWgrxPEhlr8I4x0DM5Zg4OMJ1zzlqhRTg6Ec4KSyltbgZkliQ6OFuoVKJA4YgFhSuFQoBzHEWY5957X61G1hbzlpTCOTbGMAilhJAQvC8Fr+BKaWeD6Sh0uy6KFDN7skoJAJBBL4uslQBE8A6QyPvgPoU8qCiyuQ1cUVYr1nKn1V6o1rx1kVRSqW6nRyBISIyjnKCbG9AaNeaWg9OCQDASETE4mhv6YxkygcBelAijgwi85zjC0PtRBN4XRCgEhCVlGCPhYaBzZlAKnAOlwBMIAc6zlJjnViklJYICJrDWSUAtCxmAJQIUKoZ+ClIXNByYbOLAWre+rnq9ounCwGEE8iAULC3BdguYwTiIIuiXg6UYBSVVew9xDO02LS8I64b0TwgSQCIwAeW8uIhJAu02ZAZQAUpwHrwHrUEAWAugwVqo1yHPygHCwIFRSFAKrAUhgH3BNxJPBw+IrW3Ic9to6MyEMYsFV4nBOfAeIg3WgnOMYW4LLHUMEMgDDIZuGLQMCEVzw8gNEaAAIhACLIGUwDDsFVnmwCMNNAqeQYYYsuUTS1ycgQUQ5YcegBlUsBoAmFzO7QFwpIjR3tohK8WTT3ikDjT5cm5W0ymHGc5/hVN5mqm3O2cyKHdmy098SADxvPznFTCe70Q1d6ja0wCeup+ulJyDyTx89Lyy5qDO40VOjpo9JCiez+mPfbfY+Ac8r5tLGDTLHodPacM1BJy6ESM/GSyAYBAAGIY8j+QgpnIYoDETsekR6njsVXB3gIH/zqo7T3ZkeRpnOvF00+9hzPAYIZY/5nU6FIt55GF7AdJU6cM2IDQAgIDAAkAgF4yy/A8U4kqVGUjYHUZpckAw8wh1AnYmsOlMcgQRzj6N93UgjNDpo1SxA/4DChmlqOn0E4Q9ga8pH0oevgpZEQ7JdZrIJ3Ierenocyo/mOCr0w+LfIiGnAoH1FD8xqEgqzBlByiWQsI5r5QswohisfZnBiEgNxRFYUcLSjoA8OSlkMSEKACCfQk55+JoyPAZ2HsPUggQAGCc0UoHc3kCcs5FKgIAR04JRVBI/3AeJxu0znilCceaq3gbfMXM/JyKLubB6BkgPKNkIdhMP90ZwYnfIdtxfMpOYeApORIyTH8wALcToxWj81T4Xvt5zGMKrWIczMZ/ItUAvNhhKTID1GQOuMP3Agr/A4PE02nG0GOB5GfntRtd7Rnm8PW5K5p9wn7x3MuqbTQJj7O4seaf0RWIAwoupuGCTBgACRkCjxq46PJT9DmC4Az8sFwiIo8nmNgBDfGfXckh33hm/cDD7yeWEONbirK0CbO48s1oS469J+iXD8OaJtyAKNlEaNKybfdfmV2XbHuHWSzIIRYTMI9jh8BlTXHAQxhA5lMsZWCtMEw1ADHkVzz5DmCaRFlGwdHTWGIc/B0pmsNPO/4kpKTxJyOlCDWBLQAM5vrRdEVOIwRKozfkfbCoJPbnzm/cd999t99++9rqmgAFAEx04sSJq48eBQCT59baXq934MABFAIAPv3pT994443XXnutc+7+b3w9TVMhRKfTue3lL1taWtrY2HjooYde+7rXhVK+8pWvbG9vLy0t3X777YD4nQe+I4S4+eabBQpP/qGHHmq1Wq965asYGAE/9/nPXXnllddffz0RSSFhbACE+sDOwKNNXFDtdAOPwk5ryhnMlfc3wUysnwBgcmG2R8DxAT/Mft5ecQ7Mw38eo99vdfc73nHuj9mwbxa0z/ruF3h0lT/6fP4uaV/wU1sojMOAf/hRafXgZodeH5EpDDZ5w2zL3yWZsaLpPkOeOy/g1IJvBLHhKy5/4mT/TnfERFb7Jeh5MHvl63dNMQnFBEBQbITKegEUvGl8OhH7HgDPMoxPmxPcKPTm6Cs1MuFNtBDjLInTbh06QQCiTDO6IMDyCsF7xxYKM/OfTyQ4saCf2p9MygxDNEj2I5cNV256zObf/+kHAOGVt/99neAffeBuZutseuMN1/3Cz9/MbMnnzDbS+NZ/8ZvMNu2311YXb3/1y5WEr/3VV+79/GckiNf98mt//sU/d+Xlz3nikZ+0LjYTGR9ev+KytUOml3/9vq/FIvqNN735t978z9jQXXe+R4M6cujwv/7dd7Lnf/KP3vC8q597cPnA7S9/NXu+6YUvuvmGF8ci+vxffo49syHbN2OI7+WiqWvnt7tkNwnTGex87fHDITzt+u4t2b7x37V5J+qw3wKeef/ueO0Xnf337+4080xg/yj5qWs//esnqzcJO3SBn+7Q6daY0VxjBZIZXmyYDZMtWdbwqzntvxfYL8HNKH2HTnfj1+70U5JoSG+ZLXvL3rGnkHNo0vLds03P+73cgEwmu36EKkbwH0uxB7q0Ix0werk5F43lH64CxUm6JmaanfkO1869Pz1gy/1ysJ8ZkckTUaSj3OR/+Ifv/9Sn/uJXf+VXH3ns0bvvvhsAPvjBDz7++OOveMUrmAiF+J077mDm4KjynnvuufXWWz/z2c8++sgjV1999Wc+85nnXvMz/+vezwEAeAAJ73z7u37t1974sU/8p5XFNWbx7W9/99ZbX3rXXe+78ugRAPiD9929sXFxdW3xmqPPf+/d7//W/Q+cPfekd/DYY48zwcN//WOTmTvvvPO//4//eftrXqsUqnieCm8+7LxAnKHS232dOrqkmSPQ3OXbmQoDmKXPkKOSjT1sfiYlP/OgVErtF3+Fe8VkiM+zCfuVqO23vvuHp2Gr8KzC/vBR00LdHbX+87If7NpGduwEo5sQHvm+HBWDsgalyAkRNU7vUSb2gH8z7S/Gb+bukHbFZrK9y8qMMGgxOx8E4L8Bet43+KAAxrGqDalosK0NW8+ZEo5p4BE62R8yBSUOxQilTnpShTClLNgHYvOhIO2yaDX8EGBYIoNAAcSxrt37+f/9hje84a73vPf1r3/9f/nYJ5j59975rk63/4UvfAGFMsb8u3v+9IljJ85f2PSev/vg9+79whdvvfWX7v+/3yb29frCEydPvOTW2zY2Nowxx48ff/Dh799www2AECXJX372s2fOnTt+6sRbfus3H3jggW6vtbS8/KlPferGG288derUl770pY0LG7e99BXf+NY3PvLnH7nuBc9921vfFiURAJ84fkJFQB6m9KHPLjwbwr6ghh2VOs+s0zDBLCR2kJpJ2A1v3lPF5snF961Cmmd8tKPqeXbZ+2yKAYz5ppiTZl619qJC3UuTzFPY7VeivN/1zN6zDzn73djQlAYFZj6gcrDy2CuaQe8jKvLwl0qpICPIEZY1rzJPa5zu1zptGsT4/WxKxH0VVC5BBtJnOb1gh1J8Wt7Oz+ynALu27RyTh/E0Qwdt4RhcOT3PVz3A9NodAQAkTy855ljJAACAE5MF7Mwx1J5S7VT6TBigNKTmIV7lO+9ZKqxV6ieOn9hutt7xjndcddW1x08cY4Bmu6OjKrHop1aqJDdkHQip2+3um9706x/96Eff8pa33HHH777xjW8kNF/92pd+/OMft9ttoUknuLBcdeyrizFo/4F7/uhP7nm/c2ZxcfGxJx7d2HzqBT/zwptuumnlwILQtLq2+LVv3veTn/zklltu+adv+pVP/MV/JjYf+tCH3vyWN375y18OXi2FGBmQY+jPqfn4untOe40Ypu2qNBqH6R3DLsAk9/PJzMJ36PMRgp6TCsf0ZGrnFdwMVPenM5s7wOZNzGM6++mEk+xsGvv5rUsAoPfLcHex8dpzmnmvnr0ZtYDx/tpJpRrQcSMvJriXmMBWDvuXSoPQ0fVdMMAs7gkIylkZh4UO4icWzxmELPPCPUp9dk/yU4fpZpw7B5cwtfiY2fUTK9/iL43aDXG5h4NZpzYm83mmMFKpaeKZlpcMbahGU9H4xmNwPA5Gp6TJrMaG/4BOpis89QSH2MqhnfLgSbAIGyPTwYoHcJT+9wA7SExndc382hJIJZzl66+/8d3vfvd77vr9d/+b3//oRz/GDN7TQmOp3W4jQhzHQkBwcMEM/+Afvu6Tn/ykEPLYsWO33HJLp9NZPbgkI3jRTdczMIB/9Wte8fGPf/zfvufO48eP/eM3vPafv/U3rrrqqjvffWeW5c+99uh77/6D7/3ggUceeeTYycd++TWv3GxedJw99PB3Dhxa1gl2eh0C08tap8+ekgo9WBTIo1ZqewAeZ9k0R2YzYs6xA4OeOcBmZbgTV6XdeO6YYR7OtiKei2RZXwHgx028Bp8V24zwpDw1MDe7SXiWZco03sgCJs3uSiiafULQtXsBM1bQO8O4CHT3/PdpBLdf2G/zD0QNBUZ+9MeMPNHCcBk6YULkS4uV4edYaLWCh4+RAzblLnZgLCiGRlITxzTGlDAIngEFABUDdjapP2NZ2K7z5c7fAsC4UQ+MPhtiN7l83F3iOjI5jZoODY3FKMy+IeCVmr+S/enAmKiqJJ558rGZE2Q5j4oRs985SE83zuixuHA/oYWc355FuX4ET1/KWwBx3Np2iPUOrHVmIfMn7GnpBfKsDVuh1SNmEAp+9OOHX/ayl33wnj9J0/SLX/y8QBBK1KrJ5Zetk/dMDiFaW11eWV4Epjt++1/91f+5Twi87rrr7rjjjnvvvff8UxePHrm21+s1m80//uM/fsc7fu8jf/YfI5m8+dffnMjqv3zbb992223vu+v9H/6zDyNoJF1LFpeWlu69914E/eH/8OeJrksp77vvvljV3v47b1ciWVtb++pXv4qg2TkxCPfxdGH3Y3M7ZT+zb3bZUjwj2H8+o1/s5Yzgs7192G/2e8L5mcDfxnbpbxP2WV+cv0bfLUMxptAdT4nTyXYr4VmnhKc5iU9KaCZeTTXPeCm7dQdO5D9LoBVaRg3SPKvwtPOf+nBmTrtl/8yVjnovxexLKzcOu2E4/tnoMaTZEHxIjbqmCu6ogg8mgBHXKuX9IHxbcAEdntOIk9IQ78laG1xE6dL/8yBx8JA1KCIELhxFKaAx7VztElyCS3AJLsEl+DsB8/fXzBAcApeT6yBIanDWCADBYWzwhhE8TTJzcDo4cAdYRFAhCl8Fvx/BpfPA82JwxDhwCUJFxF8FAEWEHCkBIPhMHuB2CS7BJbgEl+AS/N2F/w96U+KRqMTLpAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "img = Image.open('../data/iss.jpg')\n", + "img" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "PIL.JpegImagePlugin.JpegImageFile" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(img)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "imgarray = np.asarray(img)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "numpy.ndarray" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(imgarray)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(435, 640, 3)" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "imgarray.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(835200,)" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "imgarray.ravel().shape" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "835200" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "435 * 640 * 3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sound" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "from scipy.io import wavfile" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "rate, snd = wavfile.read(filename='../data/sms.wav')" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "from IPython.display import Audio" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Audio(data=snd, rate=rate)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "110250" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(snd)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([70, 14, 27, ..., 58, 68, 59], dtype=int16)" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "snd" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAD4CAYAAAD//dEpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAoz0lEQVR4nO3deXyU1b3H8c+PhC0IIUCAQICwuSAqQkTcURRQbLFebbFW0dKi1tpa672CWnda9F5r616qVrT3KrgV64aIWjcKBgFZZAmCEtbIDpJAknP/mCdxQmYms08yfN+v17zyzHmec+YclvnlOec855hzDhERkfo0SXUFRESkcVDAEBGRsChgiIhIWBQwREQkLAoYIiISlsxUVyBROnTo4AoKClJdDRGRRmX+/PnfOOdyA51L24BRUFBAUVFRqqshItKomNlXwc6pS0pERMKigCEiImFRwBARkbAoYIiISFgUMEREJCwKGCIiEpa4BAwze8rMtpjZEr+0O8xsvZkt9F7n+Z2baGbFZrbCzEb4pQ8ys8XeuQfNzLz05mY2zUufa2YF8ai3iIiEL153GE8DIwOkP+CcG+C93gAws37AGOBoL8+jZpbhXf8YMB7o672qyxwHbHfO9QEeAO6NU73DsmVXGbOWbU7mR4qINDhxCRjOuQ+AbWFePhp43jlX7pxbAxQDg80sD2jjnJvjfJt0PANc4Jdnqnf8IjCs+u4jGX405d/8/JkiKqu0d4iIHLoSPYbxSzP73OuyyvHSugLr/K4p8dK6escHp9fK45yrAHYC7Q/+MDMbb2ZFZlZUWloat0Z8tXVv3MoSEWmsEhkwHgN6AwOAjcD9XnqgOwMXIj1UntoJzk1xzhU65wpzcwMuhSIiIlFKWMBwzm12zlU656qAvwKDvVMlQDe/S/OBDV56foD0WnnMLBPIJvwusJipJ0pEJIEBwxuTqPYDoHoG1avAGG/mU098g9vznHMbgd1mNsQbn7gcmOGXZ6x3fBHwrtNm5CIiSRWX1WrN7DlgKNDBzEqA24GhZjYAX9fRWuAqAOfcUjObDiwDKoBrnXOVXlHX4Jtx1RJ403sBPAk8a2bF+O4sxsSj3iIiEr64BAzn3CUBkp8Mcf0kYFKA9CKgf4D0MuDiWOooIiKx0ZPeIiISFgWMCGjYREQOZQoYEfhk9dZUV0FEJGUUMCJw+VPzKN1dXitt/lfb2LqnPEgOEZH0kbZ7eifK5l1l5LZuzq+eW8Cri3yPiXRvl8UH/3VmimsmIpJYusOI0PkPfQRQEywAvt72baqqIyKSNAoY9fho1TeproKISIOggFGPddt19yAiAgoYIX329XYmvrw41dUQEWkQFDBCuPDRT1JdBRGRBkMBIwp6gE9EDkUKGFFYXbon1VUQEUk6BYwoVGiDDBE5BClgRGHCS/UPhBdMeJ1fPbcgCbUREUkOBYwoLFy3I6zr/B/uExFp7BQwREQkLAoYIiISFgUMEREJiwKGiIiERQFDRETCov0w4uyT1d8wY4FmR4lI+lHAiLMf/3VuqqsgIpIQ6pKKk73lFamugohIQsUlYJjZU2a2xcyW+KW1M7NZZrbK+5njd26imRWb2QozG+GXPsjMFnvnHjQz89Kbm9k0L32umRXEo97x9MHK0lRXQUQkoeJ1h/E0MPKgtAnAbOdcX2C29x4z6weMAY728jxqZhlenseA8UBf71Vd5jhgu3OuD/AAcG+c6h3U9c9HtqzHNf/7WYJqIiLSMMQlYDjnPgC2HZQ8GpjqHU8FLvBLf945V+6cWwMUA4PNLA9o45yb43zrhz9zUJ7qsl4EhlXffSTKPxZGPnD97X51S4lI+krkGEYn59xGAO9nRy+9K7DO77oSL62rd3xweq08zrkKYCfQ/uAPNLPxZlZkZkWlpcnvInr43eKkf6aISLKkYtA70J2BC5EeKk/tBOemOOcKnXOFubm5MVQxOuEuSphIM5du4v63V6S6GiKShhIZMDZ73Ux4P7d46SVAN7/r8oENXnp+gPRaecwsE8imbhdY3FQ24v0urnp2Pg/pTkdEEiCRAeNVYKx3PBaY4Zc+xpv51BPf4PY8r9tqt5kN8cYnLj8oT3VZFwHvugTuk/r4v1YnqmgRkUYrXtNqnwPmAEeYWYmZjQMmA+eY2SrgHO89zrmlwHRgGfAWcK1zrtIr6hrgCXwD4auBN730J4H2ZlYM3IA34ypR1m37Nqp8n6zeGueaxN+UD1Zz9h//lepqiEgjFJcnvZ1zlwQ5NSzI9ZOASQHSi4D+AdLLgItjqaP4/P6N5amugog0UnrSW0REwqKAEcCHq75JdRVERBocBYwA1u/Yl+oqiIg0OAoYDdCw+9+nYMLrqa6GiEgtChgp4pwj2Mzg1aV7AZj9xeZkVklEJCQFjBQ57s636TnxDQ5UVgW9ZtzUoiTWSEQkNAWMFNlV5luocMHXO1JbERGRMClgJIFzjreXbqLKW3Lkq617a51LtE07y5j0+rKazxcRiYa2aE2CGQs3cP20hXTJbsFfLivkew9/VHNuelEJJ/b6buHd4i174v75v31hIR8Xb+WvH66pSdtTXkGLzCZkZuh3BhEJj74tkmDzrjIANuwsqxUsAF767LsV3Vdt3p2QZTsOVNa9s+h/+0xumL4o7p8lIulLAaMB2eQFlnj7vGRHwPRXF0W+SZSIHLoUMA4BZQeCz8QSEQmXAkYD8M2ecgAemh39PhbOuage9lu2YVfUnykihxYFjCSob/fxwnve4f0VW5i3Nvo9oQ6eAFUw4XVueWVxvfnOe/DDqD9TRA4tChgNxBV/+zTuZf7v3K/jXqaIHLoUMNJEMp7nEJFDmwJGEui7XETSgQJGglVWOe6ftTLV1RARiZkCRoK9vXQT+ytSN621egZWKGUHKuu9RkREASPBDiRh/aZv9pQzY2Hgh/AK73mn3vwTX65/NpWIiAJGghXFMFU2XOOfKeK3L0S/zMcrC9bHsTYikq4UMBLsmTlfJfwzNu5MzJIiIiL+Eh4wzGytmS02s4VmVuSltTOzWWa2yvuZ43f9RDMrNrMVZjbCL32QV06xmT1oVt/jcBKJx/+1muWb9NS3iASXrDuMM51zA5xzhd77CcBs51xfYLb3HjPrB4wBjgZGAo+aWYaX5zFgPNDXe41MUt1T6q5/LkvK50x+cznff+jjpHyWiDROqeqSGg1M9Y6nAhf4pT/vnCt3zq0BioHBZpYHtHHOzXG+J9Se8cuT1p76eE3I819s3BW3Lqn9IbaLFRFJRsBwwNtmNt/MxntpnZxzGwG8nx299K7AOr+8JV5aV+/44PRazGy8mRWZWVFpaWmcm9Ewnfvn+K4F9eqiDXpqXEQCSkbAOMU5NxA4F7jWzE4PcW2gcQkXIr12gnNTnHOFzrnC3Nzc6GrbACVza9VfPbeA5z9dV/+FAezbX0nBhNcZ93T818USkdRLeMBwzm3wfm4BXgEGA5u9bia8n1u8y0uAbn7Z84ENXnp+gPRDwr4gD9bN/yoxU3ajfS5j617fQ4Kzl2+p50oRaYwSGjDMrJWZta4+BoYDS4BXgbHeZWOBGd7xq8AYM2tuZj3xDW7P87qtdpvZEG921OV+edJesC/gku37klyTxHHO8e8vt6o7TKQBS/QdRifgIzNbBMwDXnfOvQVMBs4xs1XAOd57nHNLgenAMuAt4FrnXPWv19cAT+AbCF8NvJngujcYh8L84ReKShgz5d+1to3dVXaA6UXRdY+JSPxlJrJw59yXwHEB0rcCw4LkmQRMCpBeBPSPdx0bg0Phd+6vtu0FYN22b2vSbnrxc95csol+eW3o3zU7VVUTEY+e9G4EgnXTbNu7P2Gfed1zCyLOE0tvUqC8m3f5pgtrcUSRhkEBoxHYflBgeHf5Zrbt3c+dCXyo75+LYptT8MXGXXXqLSKNW0K7pCQ+7vjnMnp0aMWufQdYvmk3j72/Oimfu2T9zoi6gvwXazn3zx+Sn9OSj246KwE1E5FUUMBoJK5MwJ7f9dm570DY127ZXUbxlj210qKZxeW/RNiCdTsAWL9jH4VBrheR5FHAkIj8cdZKPlxVSqtmmXRt25Jzj+nM0CM6cuLvZ8d9K9rq8n79/EKO75ZD9/ZZ8f0AEYmIxjAkqEAB4MHZq1jw9Q4+Kv6GaUXruMK780n04xOn//d7fLDy0FjuRaShUsCQhCqY8DqfhrGJVDjxJpEBY+ue8ppZWSISmAKGJNwdry6t95rdZb7xkkffK2bb3v0UTHi9zjVPfLSGcU9/yqJ1O/jrB1+yfkf8nnQfdM87nPj72XErTyQdaQxDglq6YSen9u1Q8xzI6tI9Aa+b+PLn9ZSzi4IJr7PsrhFM/3Qdu8oqWLt1L/9z0XE0aeIb5N66xzcFd+/+Sj4v2RG0rNnLt9QslfLSZyW8dX2otSxFJJ4UMCSoP7y5nLEnF3Dk794Ked1z88JbvqPfbTNrvf/dqH7ktGoGQOnu8pr07d+G9/zG8k27a4737a/E4chqpn/SIomi/10S0tV/n5+wsv2f2yj6anvN8W+mLYq4rGPvnMmBSsfayaPiUTURCUBjGBLS+ysSN9Bc/ZzHnf+sf4wjmAsf/ZjT73uPA5W+brP7314R0fMjB9PAt0hwChiSMje95Bv7+NvHa6Mu47Ovd/C134KFD71bzD2vBV4yZce3+2sG14NZ883eiOvw8mclLFm/s1badc8t4P63V7Bld1lSN8ASSSQFDEmZnfsqElLu7OVbqKisYvgD/2LWss1UVTn2V1Qx4K5ZnDDpnZB5o3me5Ibpizj/oY9q3u8qO8A/F23goXeLGTxpNr1ufgPnXNBJAyKNhcYwJGUStc/Htr37+Xz9TlZu3sNNL33OaX07MGOhbzHFsgNVFEx4nUE9cnj00oF0atOiVt6yikrKKyppnpkR9edXVtaNOtdPW8iMhRs4rltbjunahnsuOCbq8kVSRXcYkjLLNu5KWNkXPvoJ4Ase1cHC3/yvtnPrP5bUSb/yb59yxK1vUXagki27ypi1bHNEn3vD9IUcf/esOunVdVi0bgd///fXEZUp0lDoDkNS6pk5a1P22cs37WLHt/sZcFfdL3j/qcRL7xxBq+b1/1cJ9LChSDrRHYak1G0zop8hFat12/bx2+n1T+E96/73mbFwfZ105xwzl26K6rO37C7z6vAtt89YwsJ1O/gyijGOlZt388PH5/Dt/sSMB4n4U8CQQ1r1U+OhbN5Vzq+fX0jBhNdr7f73wvwSrno2uudUbnzhc5xznHbfe0yd8xUXPPIxZ93/r4jLufu1Zcxbu42pn3xVK31PeUXQnRpFoqWAIRKBm19ezM59B6iscsxZvTXqcj5YWcopk9+tk74hwvWxqqfz3vvWcqYXraOyyrFx5z763z6TJz9aE3G9Fq7bwR9nreTNxRt5aPaqiPNLerN0/S2ksLDQFRUVRZVXfdFSn/atmrE1QVvQZjXL4Nv9lVxxcgE3n3cUW3aX8c6yzVxxSs9a14144ANWbN4dNH+1687qw6+H9SUzo/bvh845nKNmPa+qKkevm98IWKe+HQ9j2FGduGnkEbU2uZL0Y2bznXMB9yxTwAhAAUMaspnXn05WswxOu++9iPJ98J9n1mxCtW9/JSdMeoc95RVM+kF/pn6ylpWbwxtDWTt5FN/ur6hZG+zIzq2jWgRy4suf07F1C647qw9NzGjSxNi57wBNDFq3aBpxeRIfChgRUsCQhu635xzO/bNWRpzvtetOpX/X7IT8G3/00oEc1jyTy5+ahxl0bduSyipHr9xWrNy8h09vORvw3dmUV1TVWdTyp6f05KmP19Qqb+gRuXUWlHTO8eGqbzi1T4eau6OS7d9y3p8/ZFdZ7cH//JyWXDK4O6f3zeWYfN/+9Dv3HaCisor2hzWP+59BOkibgGFmI4E/AxnAE865ycGuVcAQaXiuP7svf3on8rGRv1w2iJ4dWlF+oIrvPfxR/RkCOK1vB07q3Z773lpRK/2sIzuya98BBvXI4S8ffEmX7BZcMrg7/bq0obLKcU6/TrW64Sa+/DnPzVvHb84+nDcWb+Su0UezunQvN7+yGIDLT+pB/67ZnH9sHplNmtAss+5QcVWVw8y3h/2S9TvZue8Alz4xlzMOz6XKOfrlteHSE3uwu/wAR3fJrpXPAU28vImQFgHDzDKAlcA5QAnwKXCJcy7gwkHRBowtu8sYPEkb6YhI43VSr/Y8N35IVHlDBYzGNEtqMFDsnPvSObcfeB4YHfdPaRzxU0QkqDlfRj+DL5TGFDC6Av479ZR4aTXMbLyZFZlZUWlpdMtyh/NEr4jIoagxfTsG6rCrdT/gnJsCTAFfl1Q0H9KyafSLzolI4mS3bMq+/ZXsr6xK6uc+dulAzunXif2VVXV2jazPn8cMoKB9K47r1pbZX2wmL7slj7xXzKVDuvPS/PVs3Vte754zK+4ZSfPMDEp3lzPt069p2SyTw5pnMKRXe9q0aEp2y6as3LIbw9hfUUXTTOPIzm1iaXJQjWkM4yTgDufcCO/9RADn3B8CXa9Bb0lnR3ZuXWuL2kj86UcDuH7awvhWKAz/njiM3NbNeX3xRn713IKw8z14yfGMPLozzTKbUFXl+GLTLnJbN2fzznL2HajkxfnrmF5UErKM3rmtmP3boYBvAcj2hzXjk+KtjD6+S8QrE1dVObZ9u58OaTrLKl0GvTPxDXoPA9bjG/T+sXMu4GJEChiSrubfejaVzkU1OWPuzcPo1KZFTP/GF952Dje+sIh3vvhuWZU1fziPfd6yKVnNMmuWJQk1k+eUye+yaVcZK+85t2bWzy2vLKZV80z2lldw4/AjavZ8D9eCr7fz9bZvOe+YPDK8ZzskMqECRqPpknLOVZjZL4GZ+KbVPhUsWIgk2h8uPIaJLy9O+OdcMKALPyzsRnlFFWccnhvTF+Ci24aTneV7IO6dG05nd1kFh3dqTfPMJizdsIvRj3xcbxnPjhtM26xmPDH2BMA3q7Bk+z7MrNbzEuFM+fx4wll10ib9ILZ9Qo7vnsPx3XNiKkOCazQBA8A59wYQeO0CkSQ6r38et89YGvf+9Hv/4xgGds9hdeleRvbvHPLak3u35xO/9axe/sXJTP90HVv37q+1j8eto45i1LF5NcECoE/H1rXKOq5bW9ZOHlXnzuOjm84kPycraB06tm5Bx9Ytgp6X9NKoAoZIvOVlt2DjzrKI8vx93IlkZzXlN+cczr1vLY9rfX50QncA+nZqXc+V8H8/H8LnJTv4/sMfc0Sn1gzsnsNA77frrXvKyWhiNM1oEtHMv7WTRwEw98utHN6pdcRdQpLeFDDkkHXj8MPJapbJXa8FfPYzoCfHFnJq3w4AXHlKQdQB454L+vO9Y7vQLLMJ+yuqmLl0E4d3rj9IHKx/l2x+dmpPxp5cUCs91mUvTuzVPqb8kp4a03MYIlH7y2WD6qT97LReHJufHeDq4E7p06HmuEXTDNZOHsWH/3VmxPUZdlRHsrOa0rJZBtlZTfnhCd0Y0K1txOU0aWLcen4/urUL3m0kEi8KGJJS06JcviBSOVl1u1ZaNM2gsKAdN593ZFhl3DrqKFoEeE6nW7ssHrt0IFef0Tvmeoo0ZOqSkpRKZNfH2smjePjdVfzP2yvJy27BezcOZcWm3XRs05w2fstnjz+9N79/I3TX0t0X9OeyIT2Cnj/3mDzOPSaPqZ+srZleGkrnNhoolsZHAUPSzrn9O3Pr+f0A+MXQPvywsBsdvS/onh1aRVzeLecdxU9O7B7WtV/cPZIPV5Vy2ZPzatIuGdyd9q2a8fB7xUy5bBCtWzTVJkTSKClgSNo5Kq8NXdu2BHx9/B0j/G3+2jN788h7q+nVoRVTfzo44vGBzCa1e3p/PLg7x+Rnc+OIIyIqR6ShUcCQlDuhIIdP126PuZzDmmeyp7yi/gtDuOr0XvzniCMZeXQe+Tkto5pW2q9LGzKbGH+9vJDDWmTWbNwj0thp0FvC9vhP6s40isWDlxwPQJM4dc9ccdDU0ki08wLDz0/vBcAx+dlRP4OQ3bIpxb8/jzOP7MgJBe2irpNIQ6OAIWE5snProE8enxTlwHXH1oGfFajuTgrHezcOBeCaobHNUDrSewYi0O5oIuKjLikJqcNhzXl23GC6eF/ix3Vry6J1O2pd89z4IXFbsHHYkR0p3VPO+h37wrq+Z4dWNU8nz1m9lYffK+bEnpH/Vv/4ZYNYun5XrdlTIlKbfp2Seh2V14bslr4v0ntG92dwQTvuv/i4uJU/7KiONcftDwvdDVTQPotLBncD4Lqz+tQ6d1Lv9qy4Z2RUU3XbtGjKSb31dLNIKLrDkIgck5/N9KtPAuC3LyyKS5k/P60XByod/z1zBYbRo30rPi/ZGfDabu2y+MOFxzLh3KNqgpi/SPc2EJHwKWBISO1DDPzOu3lYTGV38qa7mhljTujGC0Xr+PnpvcjLbsEFA7owbmrd/UyG9+sEEDBYiEhiKWA0Yr1zW7G6dG/Cyj+uW1se/8nAoOcjfb6h2tAjcrnje0dT4PcQXfvDmvP+f363JtOwozrVybf4juEcpj3XRVJG//sasWlXnUThPe8krPwnLi8kN8hMpmjc+x/HsG9/JaMHdI1qymprDUiLpJQCRiPW2PYUrt7rIVJ/uPAYLhkcXV4RiR/NkmqkekWxJlIy/eqsPhT2iM9WmT8s7BaXckQkNgoYjVTrFom/OXS4qPPeMPwIerT3BbXvHdeFq7wnqKOREcM+1iISP+qSaqSi/ypPnuoVP07r2yGqu4Rotk8VkcRRwGikqpwvZJzWtwMfrvomIZ9hxPab/fjTe/HhqlLOOrJj/RcHMPu3Z7C/oiqmOohI/KhLqpHy4gXPjjuRPh0PS8hnZDWL7SG4wzu1Zu7NZ0c9OJ/VLJO2AXbKE5HUSFjAMLM7zGy9mS30Xuf5nZtoZsVmtsLMRvilDzKzxd65B83bZcbMmpvZNC99rpkVJKreDd35x+YB0Nxvkbz8nPAX6wvHhQO7Mv/Ws2mlZx5ExE+i7zAecM4N8F5vAJhZP2AMcDQwEnjUzKp/lX0MGA/09V4jvfRxwHbnXB/gAeDeBNe7wfrZab7B40Q+k5DZxGjfyKbsikjipaJLajTwvHOu3Dm3BigGBptZHtDGOTfHOeeAZ4AL/PJM9Y5fBIbZIbrH5XH52Uw490ju/+F3i/+5OIyAd2vXkkd+PJCcrKZceUrP2AsUkbST6IDxSzP73MyeMrPqSfldgXV+15R4aV2944PTa+VxzlUAO4E6S4ua2XgzKzKzotLS0vi2pIEwM64+o3fcH9q7cfgRjDo2jwW3DeeovDYR53/7N6dz30XHxrVOItKwxBQwzOwdM1sS4DUaX/dSb2AAsBG4vzpbgKJciPRQeWonODfFOVfonCvMzc2NtDkN3me/Oydget84DHp//7guMeU/vFNrPWAnkuZiGtV0zp0dznVm9lfgNe9tCeD/zZIPbPDS8wOk++cpMbNMIBvYFn3NG6d2QdZfuuncI2mW2YRH318dddnx6uG77fx+SXmoUESSL5GzpPL83v4AWOIdvwqM8WY+9cQ3uD3PObcR2G1mQ7zxicuBGX55xnrHFwHveuMcjcKlJ8a+DtLUnw4Oeq5pRpOoNg1KhJ+e2pOLdachkpYS+avgfWY2AF/X0VrgKgDn3FIzmw4sAyqAa51zlV6ea4CngZbAm94L4EngWTMrxndnMSaB9Y6rl645iZlLNwPQunkmu8sroiqnaT3LYxySMwBEJKkSFjCcc5eFODcJmBQgvQjoHyC9DLg4rhVMgW7tsli2cVdCyu7eLish5YqIVNOT3gn33e/+3x8Q28ByKAUxrF579lHRLd0hIocWBYwEy/TrSmqo3Ubx3CRJRNKXAkaCHZufXev9P649hT/9aEDAay8b0iN4QQmMNr87v1/iCheRtKGAkWAHT1cd0K0tFxzfNeC1qfjiXnTbcLKaaRqsiNRPASNFPrrpTEYdm1crrVlm8v86srO0T7aIhEcBI0Xyc7J45McDU10NEZGwKWAkwUm9fQ/VDQywx3W/KNZtEhFJBQWMJDjziI4svXMEJxS0q3Pu3P6dAfiPgfl1zomINCQa7UySYJsRZWT4BsW7tG0RMv/RXbJDng/mzCNyObFXezbs2Mczc76KqgwREVDASLkrTi5g084yrjqjd9Brrj6jN9ktIx+cfuLyQs7u1wmA22YsqedqEZHQFDBSLKtZJneNrrMaSi0/OiG6xfyqgwUEfozj+rP7RlWuiByaNIaRRtZOHhX0XKDlyzVuIiKRUMA4RDQJEDC0b4WIREIBoxFo1Twj5jLGnlx72ZFfDO1N26zAGzKJiASigNEIdGwdegZVOLq3y2LcqT1r3udlx16miBxaFDAOEWamRQZFJCYKGIeoeO3hLSKHDgWMBu7VX54S1/LO9xY8zKxny1cRkYNpmkwDd2x+27iWd+f3jyarWUbQJdZFRILRHUaaGdyz7npV/tof1pz7LjqOFk1jn3klIocWBYwAXrvu1FRXIWrTxg9JdRVEJE0pYATQpkV0mwrV99t9sjTNMG7/nmZEiUh8xRQwzOxiM1tqZlVmVnjQuYlmVmxmK8xshF/6IDNb7J170LzpOmbW3MymeelzzazAL89YM1vlvcbGUudEah6HHfPWTh7Fg5ccH3V+M2PVpPO48pSe9V8sIhKBWL/hlgAXAh/4J5pZP2AMcDQwEnjUzKo7zR8DxgN9vddIL30csN051wd4ALjXK6sdcDtwIjAYuN3M6u5EFEfRzjgNtPxGVJ8fl1JEROIrpoDhnPvCObciwKnRwPPOuXLn3BqgGBhsZnlAG+fcHOecA54BLvDLM9U7fhEY5t19jABmOee2Oee2A7P4LsikJT0iISINUaLGMLoC6/zel3hpXb3jg9Nr5XHOVQA7gfYhyhIRkSSq9zkMM3sH6Bzg1C3OuRnBsgVIcyHSo81T+0PNxuPr7qJ79+5Bqla/aH/D75rTMurPFBFp6OoNGM65s6MotwTw3/UnH9jgpecHSPfPU2JmmUA2sM1LH3pQnveD1HUKMAWgsLAwYFBJlEd+PJBhR3Xk/+Z+HXNZwbZzFRFJpUR1Sb0KjPFmPvXEN7g9zzm3EdhtZkO88YnLgRl+eapnQF0EvOuNc8wEhptZjjfYPdxLa1BGHZtX52G4phnR3aoMPTwX0H4VItKwxPSNZGY/AB4CcoHXzWyhc26Ec26pmU0HlgEVwLXOuUov2zXA00BL4E3vBfAk8KyZFeO7sxgD4JzbZmZ3A596193lnNsWS73DaFciiw/r85feOYIMrfckIg1ITAHDOfcK8EqQc5OASQHSi4A6m1g758qAi4OU9RTwVCx1TQUXQ6eYuqVEpKHRk94B5GRF96S3iEg6U8AIIKtZJmsnj6pZClxERBQwREQkTAoYIiISFgUMEREJiwJGCLE++Xdct7bxqIaISIOguZsJMuPaU+iZ2yrV1RARiRsFjATR3YWIpBt1SYmISFgUMOKgc5sWqa6CiEjCKWBE4aVrTk51FUREkk4BIwqDeuRwyeBu9V8oIpJGFDBC6NUhvFlObbX2lIgcAhQwQvj1sL48O25wyGuO7tKGp68MfY2ISDpQwAghM6MJp/XNDXnNpSf2oHO2Br1FJP0pYIiISFgUMKJ00SDfoPcpfdqnuCYiIsmhJ72jNKhHDmsnj0p1NUREkkZ3GCIiEhYFjAj1DHOqrYhIulGXVASW3z2SjCaW6mqIiKSEAkYEWjTNSHUVRERSRl1SIiISlpgChpldbGZLzazKzAr90gvMbJ+ZLfRej/udG2Rmi82s2MweNDPz0pub2TQvfa6ZFfjlGWtmq7zX2FjqLCIi0Yn1DmMJcCHwQYBzq51zA7zX1X7pjwHjgb7ea6SXPg7Y7pzrAzwA3AtgZu2A24ETgcHA7WaWE2O9RUQkQjEFDOfcF865FeFeb2Z5QBvn3BznnAOeAS7wTo8GpnrHLwLDvLuPEcAs59w259x2YBbfBRkREUmSRI5h9DSzBWb2LzM7zUvrCpT4XVPipVWfWwfgnKsAdgLt/dMD5KnFzMabWZGZFZWWlsavJSIiUv8sKTN7B+gc4NQtzrkZQbJtBLo757aa2SDgH2Z2NBBoTqqr/qgg50LlqZ3o3BRgCkBhYWHAa0REJDr1Bgzn3NmRFuqcKwfKveP5ZrYaOBzf3UG+36X5wAbvuAToBpSYWSaQDWzz0ocelOf9SOskIiKxSUiXlJnlmlmGd9wL3+D2l865jcBuMxvijU9cDlTfpbwKVM+Augh41xvnmAkMN7Mcb7B7uJcmIiJJFNODe2b2A+AhIBd43cwWOudGAKcDd5lZBVAJXO2c2+ZluwZ4GmgJvOm9AJ4EnjWzYnx3FmMAnHPbzOxu4FPvurv8yhIRkSSJKWA4514BXgmQ/hLwUpA8RUD/AOllwMVB8jwFPBVLXUVEJDZ60ltERMKigCEiImHR4oNheP/GoazZujesa1/5xcl8sXF3gmskIpJ8ChhhKOjQioIw98E4vnsOx3fXyiUikn7UJSUiImFRwBARkbAoYIiISFgUMEREJCwKGCIiEhYFDBERCYsChoiIhEUBQ0REwmK+FcTTj5mVAl/FUEQH4Js4VaehUdsap3RuG6R3+xpT23o453IDnUjbgBErMytyzhWmuh6JoLY1TuncNkjv9qVL29QlJSIiYVHAEBGRsChgBDcl1RVIILWtcUrntkF6ty8t2qYxDBERCYvuMEREJCwKGCIiEhYFjIOY2UgzW2FmxWY2IdX1CcbMupnZe2b2hZktNbNfe+ntzGyWma3yfub45ZnotWuFmY3wSx9kZou9cw+amXnpzc1smpc+18wKktzGDDNbYGavpVPbzKytmb1oZsu9v7+T0qhtv/H+PS4xs+fMrEVjbpuZPWVmW8xsiV9aUtpjZmO9z1hlZmMT2c6wOef08l5ABrAa6AU0AxYB/VJdryB1zQMGesetgZVAP+A+YIKXPgG41zvu57WnOdDTa2eGd24ecBJgwJvAuV76L4DHveMxwLQkt/EG4P+A17z3adE2YCrwM++4GdA2HdoGdAXWAC2999OBKxpz24DTgYHAEr+0hLcHaAd86f3M8Y5zkvn/L+CfR6or0JBe3l/oTL/3E4GJqa5XmHWfAZwDrADyvLQ8YEWgtgAzvfbmAcv90i8B/uJ/jXecie9JVUtSe/KB2cBZfBcwGn3bgDb4vlTtoPR0aFtXYJ33JZcJvAYMb+xtAwqoHTAS3h7/a7xzfwEuSfTfYX0vdUnVVv0PvlqJl9agebexxwNzgU7OuY0A3s+O3mXB2tbVOz44vVYe51wFsBNon5BG1PUn4L+AKr+0dGhbL6AU+JvX3faEmbUiDdrmnFsP/A/wNbAR2Omce5s0aNtBktGeBvldpIBRmwVIa9Dzjs3sMOAl4Hrn3K5QlwZIcyHSQ+VJKDM7H9jinJsfbpYAaQ2ybfh+ixwIPOacOx7Yi69bI5hG0zavL380vu6YLkArM/tJqCwB0hpk28IUz/Y0yHYqYNRWAnTze58PbEhRXeplZk3xBYv/dc697CVvNrM873wesMVLD9a2Eu/44PRaecwsE8gGtsW/JXWcAnzfzNYCzwNnmdnfSY+2lQAlzrm53vsX8QWQdGjb2cAa51ypc+4A8DJwMunRNn/JaE+D/C5SwKjtU6CvmfU0s2b4BqFeTXGdAvJmWTwJfOGc+6PfqVeB6hkVY/GNbVSnj/FmZfQE+gLzvFvq3WY2xCvz8oPyVJd1EfCu8zpUE8k5N9E5l++cK8D3d/Cuc+4nadK2TcA6MzvCSxoGLCMN2oavK2qImWV5dRoGfEF6tM1fMtozExhuZjnendtwLy21Uj2I0tBewHn4ZhytBm5JdX1C1PNUfLeonwMLvdd5+Po/ZwOrvJ/t/PLc4rVrBd4sDS+9EFjinXuY71YAaAG8ABTjm+XRKwXtHMp3g95p0TZgAFDk/d39A98smHRp253Acq9ez+KbMdRo2wY8h2885gC+3/rHJas9wE+99GLgymT/3wv00tIgIiISFnVJiYhIWBQwREQkLAoYIiISFgUMEREJiwKGiIiERQFDRETCooAhIiJh+X90dv5MOjJ0XAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(snd)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'Time (s)')" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEGCAYAAABPdROvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9a6xt25YWhn2t9T7GnHOttR/nnHvrdavKxAYsGaTglOWgRImwZSn8QIJEmCp+BKyUUpg4gUR2gm1FMYr/mCSQByWRVIQFRWIwgihBCIRio8j8KLCpOFKCsWUeFdetW1X3nnvO2Xs95hxj9N5bfrRH72Pufc65Dr7cKu8zpK219lxzjtlHf7Tn175GIoIvri+uL64vri+uL67/fy/+Tg/gi+uL64vri+uL65f39YUi+eL64vri+uL64vp7ur5QJF9cX1xfXF9cX1x/T9cXiuSL64vri+uL64vr7+n6QpF8cX1xfXF9cX1x/T1d+Ts9gL/f13S4lcPN+wAB4mpUADLwmpC9Rv0zJACavYFo97n4u/iNKO5Bw3uE9vcEAGoA2X2FKP6+e+8wtre9FyLx9xjT7j5XXxr37PeSwZwYxxzf2ez9di8BIJkgSf/DRd8DBoT1+akJqA43vR5GzBkgST/31vdAn78/e38mahLPG9/7nzUI8e3TFxdXe3YankEE1PrnhanPuY+X7I/jPqsSz9km1nUR2yci+oy2VtT0/QDQsr5O9t7YA7Qfa6ztOAbCbo9dP6jvk7hRjN3HZX/ivjZ+33GMkvrYY78M+8LXD/iUsQzf++YYfTz9g8K2V+2cEwCqfTx6P9rLgav7xlcPc+afxfiSALB56nKEYszf0p4c12pcE9FvER6+P553OBeMt571cY3f+MpPkVvjMHRP6v/v73/uQxH58tuG/84pkuPxPfyj/5X/AdpMqDMBRCr0mm261AUSVRXSwkBLb9nFbxF81ARsArRlQkv2Vj90DNRZvyOtguncQPXtm1mSjlF4vyG4IsZbZ0LLPl49+LwB+aKr3yZCnXRTh8Bp/dnGDab3FTt81Dd06+/1TeVzFopEBPXIWO8YkghcBLxJjKFlAlXBdNbX20QxD9RUIAsN7236HP66H5K0NvCi960nRp30mZr91PmRLoBHge7ClfWgcxVwQQiBN9e3z70fWrLnpbIX7sIUCpGLIC0NkP48IN1Dsc6jMB7WYicUBV152JqM+8nnZhTSu73oQs32L4k+LzV7Lb85D+O656XFWpUjoyXs9sH01JDOVffpkXUNhr0znhsu/Vy8YVRdCW0uogI/9qxLbjuP/h3Y3+dtioaLINk+rBOhTaRztwm4ClomlCPFul3PAzXbc5ugHhjlSGiJkFZBWl2R6xpQFeSLgIpA7L4gQloa8rnpeT0x6sx9L14pGj1Tts82ARcfI6vhNsyX7zt/Tpcx+rvsDM7q8k5U7nCR/n0ARoVKdVRQfW/91J/5H/9/35xhvd45RSKZsL5IusFWnfByJJSTbrD5viGfq25g28RueQODFUD7SXaLSphQ7eC31DfY9NSQLs022JvCVpIJnBio/vAFH6+WVXkAKky4umAgNBd+zLEZp6cGSYTtxoRZBmRywQzkRRVBywSZ3ZLrAoXr8BO6yV04urAk+7x7b8JAPVAIneTCf9jQ/mwtEcqhP7sqpr6ZuQJUW7e2TRHsLNjRw+HhDy6Dhpd4UyUwKkMXBr7GEJ0TqvaYifR5AHAhW7c3hRnZs2833PfFlfIYFbIwUCe2tRDkpfX5Z+wUxSiAhYHqVnfqCiEtKiBHYaD7ZT9WnT+7r8AU1N6KLkcGDl048ab3qrPfi1EPFGMcFc04H7FG6B6CMMBFDR6qgGTs9z/1veDP3VKfT1eo473HdR49jtFSp6pnJq0q8CEAJ4IkMcGt76sHVTxcBfmsn0tLgxCD2c+sKdTHZn/ztVJDKG0I4+hyysOzU/dOAfX4ByXAq+7bciSsd3sLIa2CfDa5dWLUQz/7biRyAqipfMmXZvuNQFUVW0t67/Hy74cA7L7WIMM+73r3FAn6hmzZ/EnqB3u7Y2x3vLPER5e9ZaBlHiwnxITvNi/s8ybo1doRNCKzCM3i9DBNBdgsofAyGtSaEr93H8dofXlIwy2k7hbb52wj5LNaTLuQl3RLEaQRB0DHos+AnWfm1nxLCM8hbTp+CQ+mH9jrUFsoIADNQ2WjkC9dkaS1AQ1osylfHjb81TV6Ta741ENAzG8/LBJz1l13QjMXv06AJFavqAxW26Dc86XpPMyExn1d3hYq8t950/0iCSgHgphle3issY8AdA/EBDqvXblEeMiUhXtjIcTdirdnGL2wnTebXHkCJGo1X4d3XWhT7XudqyBt9Mb+AwSp0c7TSasgr7Lz3GLemxoe6zNWb6n1/aKGg467ThQCmzeztJlCGM8PDfmhQjJju+VQcj6m0Virs855ZfXSd2tU+3f01/T3ciTAvIvRk/C1Fma0mUKmCKvhND1WUBVsz5J6PUThIblSGcNlgq4Q/Iz6XvZ9y9XXs3tWqhykG36ln9f1LoHsLM33DcJAudF5cpnh3q+HoiNCw0C7SxrR+JzrnVMkQBcoPV7aXfFyUCHOFRZaATxcQrD/L32z7dxs9EVwbyCtbp0zthuOxeNtHJBa7+OChTA0udsSoU0mTAYB6ZssXwTHjwrSUrHdZGwWYipHDxW5O++fkzcEB1VBqthdXATp0kBV1Nqyf9stm7KzMBS650XNrOCJ9oJs/C7pY4cJTA3VAduJNWzDHK59y/0+o8Lw8A57HHmwiGkQSC2pwO05B+wGJPym5RUHrQ4eqAnq5UVSZbeZYGATeuTCUnxp47V8bhr2SAQhNk8CYXVy7YrNPWZhirCdW7w+XnblsKknIqbcRw/BjSQupsgTIJOu2XQejJREaMNajfuMKtASd4XqDzZc17lFDaOpMEUT1FNS78XmObwhojDKPATVchf0qrzsOxLp8pIpHdicP88RMm5ZvcV8aaDSx+LKp037EGsfj763zX2NZfB6/Bn9rCebc58/DR2a8SP6vvVZin2jno5ECEpYDaldOI6gRol7ZlcGSbzmYaekBta1R4xKiHCt3XN7kdC+DDPQumw6fLSBl4p6k7G+yGqQNLJzRbu5/qzr3VMk1C1pGjaxa3qu3W2OeHUInW5NCWs4zIV/WJ1+L1HhU2fbYEtDrlfCYPBi2hDa8pCPHg7uVm4TS35SF5YmOFsCLu9nQHK3mKAHMZlXND3WiHlvtwnVV3+worv13a24OvuEdEGZFsF8XweBQxYuQjybWqZ4I98Sczl4ByDSKIRbSCb0ypHtgHYh4/MkScxlVyHNRVBnRjmRWbnd81DB0eIe14KwZUKTfc6hZUI5AFwHbwP67B7zbgcK4Y3h36gwY40mUiFhc4gqET4FAY0EZIKq+b5qgzebKJQP21wKkYY4JgtlLB7714XV50EIZg+dhOJzL2/0vmEh04tE3sxzQuWo8xuetIVofJ55FUyPDVQa6jFheZlDibesCu34UcX0WFCOCcvLFCFRDzPmre2Vlm/JIUcQwnjItfUws54bygNAwYzBdC+Wfxv2qoVA64F7TvIque3rSGXIk5nS959uMEo2xfik791uWT1qAnDwZxXzvhFrAeqeXxgjftxZPaJ6AMopxd7wczGOtyUAiXaek4aXh/0+EbYE1GnW/ZJ6uJwaILbn23QVcvyU691TJIB5HCr4BOgxX7Mwc0HfmKQWjC9YnQn1oKGv6anhsPVw1C7haSESV1otsVol5GEw6i6lCUpPkDuqpR00Ruqufyi0NnoTbqFabgb9cI9XZaA9TztPgCv2B5CGw/oGkmCvaFQw9BAfF7WI1eocDiO6kPLvcEHqISxJZomZsgFgQINu6UV+xO4XyetZPce8IBQVb/p+D7/5dZ2QHoXM9NSQHzUhsj7PKKfuvfizR8gnAdVizM2t2cG6bBkQS6i6YUHNgG1xaPt+cUs8QhrocxRhTLOmNUSi783o7/fczHrLsQd6qEJDld3CF0jbr//43Q5S6EYKoR1M2eXu9eibCbwB8+uK/FjRZsb6PKHlFPdhB4HYuVpeMi7vHUKY5kUVuOfJ3CLerZUr+Kttee3ZAp730s/zNuQhMyL85KHSXZK5vWW9hz0gDIgbMQ7CEICqKvFxHuvUjUxXniDNnUWOcEj4j3mjdB3KFET0xHM4gIMHgAgHFsEbABE7E/nckJ90DMW8Q1UuqrTroXs3YSgxUI+MOuNzr3dOkVAD5oe2O/hp625uOTLa0S3BwVIzATsKyHJg0CTdMpDBQhqEKOCWfbcwe7gEPXFMg2VFMEtbuidih6UcWQ8d9Y3LRa3uuG8INbdi9fsjybkMLnbuiB5PbkZM+8paDZSIW2GEPQplCLmNm97nzsfTMiKuv0uQTnsPLITsKEBGgSd636cPEsAAr4iwBcTyHvb5QN6Nlqbnxm4s9GjhicMrzYG48NHv716C5zo0hOfPNwgZFwDS4+67RDX633fWt30urRLCNKDNVZAvXRn3PdDRb8ksbU2S6r2msyA/NUjSmLmGWF3hhgR+49LncQHmghlh0YzKXZiwPctm/QrSqvNdJ1vXwYOhCrB7i5Z/87ylJ5k9HJsvHWHkhgdXibBVPXQP1fMcAHqobgJwotgDYxh67+kj3rPbG2Zcxnp7FGEAk7hXMaIHfY+QaOJeEVyD0pLhPS70GzA9VMwfr2rQvJyx3foHDOm5aagZpsBa7c+uxpwrpsEAFlWiy/t5p5A1fE9woE059bHjjPAw6YvQ1puXamdRVIa56JEvoS4cHMkDOCywT/howQDDpgKwQyMNkFS3nDQBxnB3c4TsurudVkWy1IPnIsw6lq60Tg8qGDTRSrtDOYbPuAh4AYRFraExt9IEaUzS02hlCVD74bu2BEerNJ5tUIyunD28N4ZWaMVuvHVW1BYJMD0ZdJY89NLRSD4HACyko4JZD6IeVIcih5JNBE/cp7UfmB5Ll8EiMy8jc8BAez5GwHaAR4RdXhpw0dfKQfcPF3RvQPrBdWETxkTzfABs7LoWQrb2SXNFLkxV2FyNgYCWxEKLfU6pAa11wbyderw+wBYk6LBXG48l7tXLNmDJEL7JiyA/6sbfbjXMNe6BeDYBiDT0CGh4dQfp1RRToAe5dmAJb/153g5lZdRb3699Y441Lz3UPCjyidCyKoV8aeBV0A6E7TRAa/1e1RWTBNy7gQAPLZYuM+qk59QFdygWW/cxPzc9NQVqGHrLX3d0lTBhfW8OgzG8MHvMknQtR7AIbB71Xj3H1hKwPNcDny+2bgSUE4ds2iw/57kwqkCdgOXl1YR8zvXOKRJhQg3cOOAmlcekR3y4W1s9pKACMl8GS9Hgwe6FBDwvLBwCQTeiu7/U0F3IJzuUzxLWZwyqwPxgMf9NFGlhMW6PBQP6+RDSs+UJFmhic+qWLxdAHFEFO+i1Q195E0UFWay9DdBcP8CSbI68XmFQGDoPCA+Ki4S16ZvfYZUj4oWLPjtVAd30TRvxZgv/CQMlk4ZsfM5MqbgHNYby3Or3pLxbsaCesHdPU8hguoMHB5ilb7kRF+JqXRN26CxbX3/26dwTvKMi8xxAWnROvXYhDISmQjCs8mGuGxG2kypKRYvpvqwHCo8k5q5p7gSDJS22RyLn4l7QUDtzDQ8eDSW3aF05tEy4vJfiXmkEjQChBH3d5wfd3/XgdVvmGQ6KVah7kdTcI3GlZAIOEp61Cne/h3RjbQjHxbPZ2Ykz4/O0qcEiKe1ySO6FEIYzzIqCa7mf8zZ4kh391MN4jmwEqfJNr/o8ODQ8zocZe76u9cC7/chVPYNIgLO/bpEUIrS5h8x9n/vYADN0bK8X8+IU2qz7ux4Y5QA7Y135vrVG6S3XO6dIPF7ohWIR9zYrTUMuQ+JY9u6oJ8a6BaYSM6yohkCXjNDDnogdhHEijbn6W2wTKkzxavUcCmhjHZE8Pka1qFXgKCJHEDBf1rESUQhWYTEBYlaJo8Es1EA2Vkdf+UEBXABIzEsP04h5c1Z3MViNXFSw8Kr1NNXi1B5yciE01p9whcbzi4TA306OkJEe7giFAVQPQdU9cCFQWWIew5CbGZOS86MLGcJ2Gg6+fbZ7Wxr6aolALNgSx1jyxaHhQwgwPCxgehRQazFPO6SQOCqo7zEXctc1Tbv592JYQQjHCN+uMghKMQ9K11dDHC44RgSS9GJJf3xCt96HkNzobUXIiwjliPje6dwGT6eP3+/roUUP7QFmzSfaKQhHMPocBDLPvCn37HTeCGLfM4Zjyw1H2CgtjnrrBZ/Cmlck8XCPrrfXXIVBZrkJ3hrapKUD9cRIm3ofERIbFPl1bZgkwvqMwtPxmqtIsouBIyzhHnkYEHAa9i/2++F6b4QBu/U9pXtOPzw9yW5Mcb+3AB+ur3dOkQgT1ru0m/y0WuiExDaj7BbMBdbb6CIAi/ebYK92UCDqIQSqwt8voiggVheyHNy6ky4w/P6j1VMlFFCdKGKu+tn+/v45O4jcFYRX2pMQMGDrtxsKS90TsHXuWP1d8hX6DPN9QzpbgeWNVus6IoiaWEiuexHJFO3ygtFSGqqpfV4QuSgv6NIH6Icg8ik+76knNEfUiisuj017SCbgnhae5GKQXAtZ+r1aAppZb4EYG9bFQ5marBTMS+vQW/OE3PoeE/oaazdIbwbGolGgx9p3Ap8pAAwKyJDdwdZna10RDJX2sefTkB+yjRuKQnRveT6rTQTKg/KNUBhijKPHfX3tkuJDjZLuv66QOzKp/31M+IvXllh1d5+z7mlHviTCiJ47AHhrtg4cwIh81qLglgn1xN0LG86zRfwiN+gK3sOIKtgpZIIwUJ4l1KkDWRy1qTmfgf3A5+YqNB75RNmf/xHQ8DaQQYBcWA2eOlN4Lx7yGr2qXRGn50fde/daId8PA8J0/NynXe+eIiEMbnMPwVRHwwwVui5ANZYJAAYpvSqWAvR9aUBhRTjANrrSLDTUmbHdGeQRCOXkNAzjpYl7fmMhVdjod/XQioR73S1sCivVLRuFy5pSQj+UsTE3DSEUMFqWXW3DmKSucz+IGh6rqAfG8oLfsGbCQnLoMnQ8dUJPvtrGVUoXgBohD0nQyN9YXFiIgLEaejAK8rmGJTgifRw66+Py74N5lIdzjXnveSkde5t6KElrPBCW4pgnUK91OHyDwaL5Gj3smgeTHYXNGPob12fkiCoHs6It7OmW+HZDO8GsnzMPtAIJEns/wmcGshCrrB+NBl9n6Dbaee77or/hu8JTkr5VRgEog4HG8d8Y98h0EGs1KOProsbw4uarLyPAvWw3Ev3ceuW5rlGH4sbHfZ+5t2EeWDzqeESHOfHz5QWsXID8VCNsVA+swYEAUOzh12gAwWQQXc2T35+60leAQt+nXLqh4mwB9aDh6sh/jHyBw1mO/KufU4vM6Pm4NkLefr1zisRDSm3qNAH5onF3NaK6YEvnpjHtmXVBYtOLbaIe8hktZmEADJSJ1OqsgulMSItb+YhCO0+0elKz5ye6JxHjNst2ehLkJ+U4Wp8nTVSb4nALKChUCilc2OLKMiTjIAAPBziABmSWnnShH6g1t0y9QpoJ2+0wTpgl54cfAOXuJUTiulwj3fRv871RyVjRo75O+5CakSCmDRGD90t4EHRtMAhc8bImXD0J34u7NAl5vVe6xzQoU1tncsPC4+rNE/eAmEeXFq3ujjW0/bc8S+YVmZchHc6peTLjscq295yNweLulQzAYMi2abH9dOiGxxuQ6wbMj5Zknjp/U14apscGiKCeGOXA4XVJgiWnPUbvc7NHGGqYuDMdjEoDsJyEe4QDnZAW2Voob1VhPAJeEPunGw1siXsCoRgakgtw+qjGnHkedAz55ouCWpzDrs5kFegNXAXbbcJ2q88x8lz5WKkJ0kDfEzxiVUCXUauqF7neafzN86470lU3OtBliisHsRyS55LC82q+f+xzbmCQhwt17MsLHlBZw74lV3bSz+g28sXtFb+fnfQFaustly0abx0l4oJVBTW5MYN64ni/J8UdSQWMFlPfFEC36HaLUkVx3gmgBMDRMqMlbgKw5wj0UHIb0GLkkMcUB1W5g4DpvqrXc0xhJbtFJqR1KZ0ADxHSWY8c44480EDTEgpuIPdzT8WV20iip8pVpS2JCsqoAvZlcG9hdPNdaFs4zscpTKgJg9LuhWBRvzLRrpDQQ5JpNes4rHULLXrxIXtsuiczNTndv78v4tVP9PH456LyedUPj8nnCBHJgFAqvX5ImGOdR2TNTqBEzmcfwhrDJ2O4ascabB5sm7DbB5Io0DvFkuKeQI79mXuc3+ckjIHwGlTA+7OJh1XNi3E+O61T2Fft9/mhqKWI9RnClv6+zoumCoia2LnIcSb9fj4nLdvzZq+HcTgz4l5cyPaI7xndLyCPLOzBHbvLFSoMGTaEl1T402B0WMjXPnctxB3J5Tx65aB0PM6dF0Sv9ln3btzDYJNBAfQY8omhpGIPdyUFILxkNzzS+fOTJO+cIiGgx4OHYrVy7PDJTiNi75sI7dSx1w7RHKHAo9XXXXzEf5RgjRVyem6gUlHukrLlMsXrAMKNjVAEeTjExpNUKQRyyalP/IANB2i7Iax39jcLg+Vzw+HjgrQ1bDcZYmOI58DgFXF3c7FRKIjqJ8DmaawHGX8X564y178vxF6JeIJRUVfJ5gGBdgrqiaD+oG41c/8OD/nsiDXJKo6vHY5w6/W7nLJiZPFVK1YBEM4S28MADlbQZ/ME7JhTSFsn4auHN2Gm/jrQPRFP8q933IWXe1c+hR6GgFnYo8c4WPs7CRx/3yuERoAS+u3fHpYyEN5pWhvSxaxrt6I9yTyRhtLss2Muz2s8JAFytPu5cvf5n3o90yio3aJmU8y+Xv63kS4Fkylnr6nivu8lIShQdE8hwouumCLRDVzVECHugbbPG3nYqBklkQvh4JrDcCbsHL6Rb7XLa7wAm5NgjUCExeqscUE10BzAkFBtPvIiu3owwPJoi+7DNlEUVrpi2ee2epGsQvc/P0nyzimS68sFxxhrlIFfa0TIELr2hikVkf7eEVYIqIDwkJhWOxNw8Hi2+qfKuWV5iSObhWVw2dSTtgB2NQISMFOL9xIgp568nV/r4MQ5r1hhpH5o2sSIGodrdlnBQJzXecFGwes5Dw8B8tbQjE9MGY+V6gIYrMqwyGyT+wH1fIADDoIfq7vcfnjYwizCyn5aBlYC/S7Lgclg/dntW6aOHLMwS/P8xJDX8BqBMezlrwNiiCotWCw3FOE3nxf3igDzinJXkhEqWhQqXA+qNEBqKDhS6vB6UKwWYtJoEcUae53OWPvhFn7aejEa7PmB7t14bYOw7sFke70z5u4t5Iivx5kh1NsUiLOdxxChx5FqvYdbx8sVMkCRs1QUVc//+P3conZknysVvzzJHXnCqwLUSJr7ebWq8uV2MDJsf0+PDek8etwYkG6dfNHv74jN+aEbPCPtia/VdmK0GeqdDMaAKxbPYfkap00H1M8ChXHZJgIN0ZF86es9VssDwMYMnuw7rPYMV+sbUQH0n9dr+2nXt02RENEPAPhJAN8DBQr+hIj8b4nofQD/JoBfAeBnAPw2EfnYPvMvAfhRABXA7xGRv2Sv/xCAPwYFu/0FAL9XRISIDvYdPwTgmwB+WER+5rPGJXBN3/HWY4JxtO4q+qbjbSj2y9SVQ6KdF9MmQpvSkDhW68PpvZvRiFQTauHBVE3W++faZNaFWX8jF5cfvmskS3hCleJQRTOqIQxSJ6XSp8A6qnATS6z58+54fNAP4hgKAtQ7aodkMXL0pK0nFi3XExaSHTo21FBPpLpAtGHR9Q52+u1O6KeoKwR02rm/YtwxJ4LsYagENBkOkgvmFSa8PFdkCD6Hww5gCMf6e7X5boPZLzvvgVwYj9Q4loeyedlugOVZirCS05DHGg3WY8CkY23tOS3HF0lxMzx8zyRn0CXNFY39eGyKY56D48tqc2JvzL4fhpoQEziqJB2d1s9KNC8TREi3JfWYtQrbvDkB2i1hvcvxLAF4yN2y97qkeHbp+064F/3uwn/DGLHC6NJ7hMHRbX4GCzgMmh7+sn3GqhSA/jyOyPQc2m4/mCfCFcA2eAtmuEXlP7ryCk/JQ8kFkCSorEAdlUVX+2P4zh2zxEDSSs28O+7GGgtp/dcQ4urjxude306PpAD450Xk/0lEzwD8NBH93wH8MwD+bRH514joXwTwLwL4fUT0jwD4EQC/BsD3Afi3iOhXi0gF8EcA/BiAvwpVJL8RwF+EKp2PReRXEtGPAPgDAH748wamISpPCu7DD86FE8qjYVfJHCgmAABBPF4/xMrjUFdBsvCAMv4KaKYd6sWtsHLoVa5Oj+HCYNcREQB53wTqP/XB9Eeb3Mql3QajJiDzLoKgrfbakLQqumfs8BcHkVyxqaVYJ8I2O9oH/XvcsppHEkpEUnCsVaFrllPzCD0RWOfBEjPlkBbS5LVDS6Vbc+p9iMZqbP5HzH6EFNwS5G61Uhkq6o8qncKzICiqpmp8nFd9b8uE7VkKgfK22PkbMFlxq9I8lk1w+EQne7tjrHcdmbQ7/G+5Xw9D2poaiGRHBTPu72E9vZ7DLWmH0Pb12edSHJXoPEwQQblJCiyIwfnz2X1rz/+8icTSZ4niXhqUYYW1VBhqQyqCQ42rFtF6spkNUl2dWmVQ+mqAmcJwChWRnXKFeXo1IbirZMMuGe75OR6JFK8Wlwswvy7gtaHcJGXTzUBNtKezsf0fdShDVb8DTwQ9JylJa6e8iJCL7sfIJQ7nZjSqdsW5rXvoIddYgSEtdXYDmO0ZoWlTWp93fdsUiYj8PICft9/viehvAvgKgN8M4DfY2/44gP8HgN9nr/8pEVkA/F0i+lsA/nEi+hkAz0XkpwCAiH4SwG+BKpLfDOD3273+DIAfJyISkf0Kf9oYbUHLgUAjfbTHyx1xUoaY4URoEYJCJJHVY5FO9e4bzwrpNMwFO9iWTEz7GLLDFL3LWrMaj+vOaBo+QoTSxsSg53ncSh6FeyQe2+BBDcixrnScDG4PKY34uinAyXM6g9fT8fbdAhXyhLfxO4l/b0+k+nwFT5adXjZ+o/G+5agfiBoC//7wLqU/hx8IU8bNEDuSvEJan1tOgCQNNwY4gDznQSHUhAg4AkK6KGwV7S2RJXv7OgGGCDRhOXaz9LlumdBu+/jzuQvWHS8XRs/CX7Cx2zpzNfRh7RBmD/V5vmU6a45DklheRHbeeYSQ/CzMBndezIvIiMp277MzxtcdqQcA0wplL7AaLCcvjS6BXntDNv5t3Gc2R1VpfHqi+3pu+hx14AFiX6mQHs6AzWNavKLbaIhsP0yPEmElhU+rzO6h0+E5hzwNiRYwLu/lENIAIkzrHGpjq18P9+WLDLUf3L28pESsY42SiIEamhm1nn+zUgE/205N40bGGKIaz5wrtHwRHD7ZQE2w3WSUmx7u+057JHER0a8A8I8C+GsAvtuUDETk54nou+xtX4F6HH591V7b7Pfr1/0zP2v3KkT0CsAHAD789MHYpvf1dO4mdwcHjqkoMKuiCUYRtJRMWPQQBeAxcYMcDrUl1wgupwbhOkAwB6tfOxlSTwCbAB3ZgbeTU3n3x9J8CtvhkaCuEAIwFqeRToJ7Uhpr73Ph9RdRvzJYxmxCGnCBvEevjZf3yBgT75GLcAVtcx1JV5iiOHEf26UZ71RHYmVbixGpFA2FVqW3p6INhbZblWwOp20zQ1JSFJgXj8K9FwxW4WDVwxFKQ8I/DyGHqOYHGAaccDqUNPRlsfsEhNzuVUcU1ehFjIV4PscRgu2eh7NFy0AKOYI3RhSah8UcyQMBcBgVQfd+rwsV3VrvRW7DuN0SRjdeWiZcjChwnEu/8kVw+voG3hq2Zxnr84SoebAamGrJcoKE4eD5CmA/j8XZtm3/O128J9DLDQenmyOpRoUb8Hl7ljiT9rdReQB9HnxeA2p+FSKKHCyGsyBdCbcErM95dy+f8z2sHpFDdNg3B2ouqXHQOr1Smymg3OpxYGfkBaqOCeUECE/duDGDaGQ9+Kzr265IiOgOwJ8F8D8Ukdf0Rty7v/Utr8lnvP5Zn7kew49BQ2M4nF7u+Kt2OZKRUgQdakniEM4u1AMeWZTbyr2EsT5Crdj9E6r1zpEQ9Pu3sHj76271u3D3EIpaDxVgaF8R8yhGhmCvy0hGBhmhA0cjnZU+upwYm1nE84NED24PPYkLQu7J4C74bR4WL65jlBsOehWgW6u7ft/+0+PyQ4LUeYAAaCxeCGkDjh/XCHk559I1TTw1ncPlZY77umex3bIS2I0Gglm65JQh5i14zisadVUtWF1vFd0WsOIrkkCuQIPXAwBkRW8exvGc2D5xDGAan6F7LyH0rorYAM1DTAbqGKHhXXgZ27R04ScEyNQ9AAqqn4HKx44PV2B6XZAuFe2QsD2zItohIes5wjHdNBoeaN1IGcfnoIM6E9aXGdQExfqhC3Vm6vHckEB7olRBO/b3+pl0oZcWKxK185qyAjN8Tpv1bUmL1iuVU0KdJIAYvkaj0iLzQkbFGs3ESEOS5cjKw/fUdM689sy88qCBN+/Fe+14Ez1v+zsq5zFy4HIhCg9b74kUys7XxaHw1I21lgnbQd+TDQUpRErDQz13OyIvQ+kYwOOzrm+rIiGiCapE/s8i8n+xl3+RiL7XvJHvBfB1e/2rAH5g+Pj3A/iavf79b3l9/MxXiSgDeAHgo+txiMhPAPgJAHj28vuFi/R+134ITIlom9Ue9qBmELyxlzmwM0d2kzxsGo9RBo576wcp3MxBFXpCf7T6WiYgY2cNaQiFERWo3GP/Ow8ANvYI6yAEaZ1Tj/3aZt1uGOstD3FW30g+FkDYvBAbj+aQuHsyThsu/b4RF4fh271YzV8flbfFiwMbn3SChTlCBteudoTfrorg8sXo0wkotwlyeNPC8xxVnaBwT2jiUZoA3MMFitTxsfQitzEJ6xXv7kkKDIF0aRYKbaCtod5knD/IQd/Cda+UIqyDQZjY6yOltydiR8ESxlHtQhEe4gvrGv17r+Z0tHLXlxktTzvjRpkDmu01QvP9NhqIDqO273Mlqha4GRhN13a9G1oQUN/3mp/odmTLUFJTO19jbiU83dzPyIiCqpOu4fzYcPywBmpxu0vdMNg81+lKu3uCjmrkQkq9Ur0uphcpR14zaRi7HjlCZmkVZYmGKo8OghDkBUFPouM1huKQGQMvmuWY3EjpaEhglycx44iG/VSdmcG+w9dfOeEELMZyMDxv3Pc7WZBIapL+UQB/U0T+0PCnPwfgdwL41+zn/214/d8goj8ETbb/KgD/rohUIronol8PDY39DgB/+OpePwXgtwL4y5+XH6kz4f4rCU5jAAFaA5yGPFBDjj33zd38QCBguHXq1nPaBGIdz3o4YJgPS9bKRFhvqec4nDOo9Ipg95B2/E3De0fFFQgMt/zDddW/O4zX4+dOia0HQiCZQ7GV4wAECGoVAOg5H88/pIsS1TmraDlRVEC7e9x7MHQrWOO7il7JS4uNPlYhOw7f0T/A8MwCYCRftAOZ7L31qMpQw4uD1jBLTBhohhgKcj8xjRk1EB4u6FBinUvpazkIHMAsTOvDHqFFI+CshxQH0kMeXJWhgB0QIENITbogvFaS4C5MxOhdnJxwZ4BY2HRcS6ArTsCEpIeCvFgN3aJ1+n+n8Y9KaYfZVtICW6A3JkNXSpEjRDeqfK9zkYj3wxLzYbwQoiiyhwiH/GUmFEeADVxbfo2kjc4WIORCnAOhpcrBvOwIrfZcaQBSzLiLreRjGChzqGleVSH86Odb3EPt8qUzD9iaJeyQhr0thJ3dTXB8rIGga9azR5mPhz0rw94UDOHyYR+54jU4ua/TLl/V9qzP1ySTb7u+nR7JfxXAfxvA/5uI/l/22r8MVSB/moh+FMB/AuCfBgAR+RtE9KcB/AdQxNc/Z4gtAPjd6PDfv2j/AFVUf8IS8x9BUV+febUMnL9Lu7pla97ilzBQj4j44BiC8YKq+bVgvtf3brcd419nRGjL3fl6QDSzSgsZPYPdn/V9vLjQcIuOOuTREmoQVRZhXQyMnRGaGSyyiJ8T0GxT8UZReyCspHVOaeFz4MrKwzRu5TrMUw+t5W9uXMsaZJcQKCivGvf7hqd1dUVtSEHU3lDlqLtwdNGIrklBe9+rv1u2nhJsHFSP6gHQoPR5q5GzKLepJ++TCgAAbx4Y9x4x7AXpynXMkbBlLlXpDwWEa+v39WS57zcT5Kpw+yEO4IQdfBUIQ60PbJ/V1ven5/rsWTQc6UAB0ja+zRK7i8bP1zs1IvIyCMOhyDYtErUJo0Lw8eJtNptgp5R87viiSXdYDmyksenFnPYBe05VmGR9TXqNRjNaFFfIEfL0IbB7WcMZgTMdKPP3an1+xpxF5Awi6oCd0kmrGpxj50kSTdB7R8Hm7AbmOZG/z9ZyBK/Eug1G0vQkSBcd8HbDWO/YFPmbXSPHupi0dkMnQCE0KK2m9x7zcxGdmLqCBvQ+DXruGrqx9FkXfYsAp//cXMev/ID8wH/vfwRwn+S0aKxQErDdCepJBZVuaBOexSykR0J+pO4hNECy8SsNcXdAlVI9DoK8uDWjFm9aCMn6S7RZ/+2uyN1ceSTusbjim/rr49+pAemCSHpT6Ugbr0+J3iU0bHi7PGww4ugDYVOuLEHy7+4W2C5uPxzYSErW4b2W2I8kM3VXfncNAnVkCvZuf6PnEvkFwi5XMXoUfoirxeiBgT59iJXHe81zc2vfvYzx2ffFjb1wjWr/vphjr6+4Emje43wco6P9wnuZxuZP3VIW6museRgrXmudHLTOmhtrmTA9aQErNbd4Karr22S0HIam27VfGNfGlSwhFNHOQyHA4dej59H3SLese0GorUUxive5C7xrostAYtUhROVWvSvZSDAroKVlfbb5caB796T4EDby/RbnypWO5SU8n7bzvgdjIqaIen5oXNdRuYzvHcPHEXobPdi5r8XYAMt/pkUwPSiwp86911A+N6Sloh4S1ucpYOC+36ZH5R9zY61aZOXf+z/9Cz8tIv8Y3nK9c5XtkoDtZQNthHTRTbN8uYCfbwr1KwRpBFQCNgZVghwa6L0CAbA8TCj3CVyA6TUhP6kgX18I2sE0vQkcmQSSBWABpgZKArH7ohFoJaQLh+ehgoZCQdWjYHvZIJOAnxjTg+6SNgvaNJp8UGVngkqpIGxjZ4V6pkfGs7/LOH1osVpLRnq4DuiCkBoCjtisEU/3SGweI+zjCrWPZ4fS8k0+RJm6kO8/I9k7KKGowEUXBt0C1/DarrWwHXa2nIG/VwjAAbu8GNxq9OTyJpiH3iZRE5R7WEaL5672UxmLMN06FBwerBf2saPbRhi2e49jGCau5sWqw3jt80H34UIRLqC7MI1ErHs6bjQlzRfofBp4YumgC2CfQAeulJQpEc8dXEORZVhzoBstfc0MHHBlmPj31pkgGAp1B2PDC3C97sVpRLyHvCpXWNJ8SNgPSgroRsThE18LE+5Bciq7ccXekzfvhRg77XjINFFthpAvnRtlNl7eBIf7Fk3lQqF6jdHO8JJ+trM3Y+vRBAI0p3c1pyAldb1W+KDuyYcyDEbrYT+SnyV87vXOKRKwQE5VE8R+Ei08ztxwfFYwpYq1JJwfDpCN1TMpZs7ODfWloG4EKgnUSL2Y715xuF1RtoS6qskx36y4PS1ojXFZJ9TCoIMg5woiYNsStiUDjVCeEtJZQz0uQNoskEMDsqCRYLV+DnJTkU4q0VsloBFkYaT7BC6ENgnaoWmKgEzQJj2UaZVuudomuraaYEKDPETm1vZgydeZUQ+IsNTIUQTo9/rh2G4Y24kCVTNSWbyR0L8i8fOwXfUQU3hbDobw53PLzGPMZHmTBjIp596Cw201P0EYw2uhPCbezxMQlf6jAI1QiCvG5jBVr+nZK69ATFX3MHt+a+xkGOihosgx79LovVSoAjzk8WLOBm4mDVO2XXfOeuAAaGh4iPfhleHqnpKgCYVCCaE4xOcdmDIme8fCS5DmRDzxO0JQAQ253XxYwttyy301luRrz3aEHcda2HzUGQYmGYwPQXBTjZ+PXAgNoV8itOPIDKBCW1KnJxnh+GRhNK4G7S9i1P48eEGAJ8S7xysxBu2XTshLQ36qANFghHRNMHpx3hKCBJEj9Nq0se4K8P1m3zdAx6nB2m0rOaMajxyGhe/Vz7veOUVCSXB4voTiAIBaGa0yiAWHacPtvKEJ4fmNVvUtW8ayZU0OitaglC1j2zTpVU+6U2sl5KnicNxAJGASNCuayLmCuaG4gqoMnirypKtUWPsWmImpP5OApgZiASZAPPQyNaSk/06HFcepYKsJ53XSZ1km4FEVFICwpuph37fC46VRtORhlqZII94alvcynr5biynne2B+pYJyemo4frK34J3GXFgr4L23Ny+C6bELyKh5OKjH0YZk49hj2y8uHfnUZt6x6XqsfSS69EurejkO8HWM2b0q9QJNAEJQZo62xiO0NsZjHEgkAC2A9yWJmDX1XhdOVw6xOdm6gA1I9cVzHey8fJE7ALTSvtp4dySCtrZeF+Fz4paz53K8x4yHttKCoACR5JT+7qn2/EWE7Xbj6R5RS2ohUyWj1HECwdETsj27GiDF70WwQsW+FsuL1L2XJjqP15X6GITi6JRL916uSTyjZ3um3kjOw05h0HhvGQ6jYLL9GxDnOCv63bITxvaah4hk+DyrcSKD4vdxwliVozHe4PKWA/cCZ1ceXgXf+voIDUXKBmLJZwnwhrDnkvpc71B2MOBQSnvDjjra7/Oud06RJG54drOASJBMkZSaUCqDSHCcChI3HLjhlDcwBB+eb3FeZtTC2B4n0FNStMr7C/j7igrsklC3BKBimpoiWYTsvqq05mzfxwNkAgBIMB2KFoYJVPlcJQfEFQyAtjFaYWwCnD85ahguCWhWpSP2f7CAsoBSgxRGPguOH9XwOK6TioHSKdDeENX6KrwEyo0ig6YHaOtS6oKtnCjCVx67LkdCuk2gpsWc+VFhl/XIu9AJNa1cxur3HK1Ye/YEiLWxHTe1W3ujENlxqNXO5jqS6OmUOw2LPfvB2HY9ht/239VDG9Yw6Kge1nzfMD3tff82KTS0mcfnUFUPkSnxpHoKbdLK6tFy9fAcW27AYdDjlvD6IPIaEFPO5cQR6w6BZQW4zTytXeM2z+dNXfj3xD0C8dMBBghh6txle3SPgFeKeXDEVHwH3GtDKA1dyyHZG53/9Dsp7T1BDcOY4B4YekdF62OMvJkAXBpy1c94wS0ZSAIyeCcyMCyILz4CGBEKyhB/weyQYJ4F7/ZkujTk12a0HixXYUaKgyzG+hRXfFNpcc6cvDJITX3OzADLlxbjdY9YVkI+DzkUg/9L042x92RHlo0hWvAtKBHgHVQktTFe3Z92r6Ws1j2RQBbChRu2mrAsE1pVajex+DdlgdxWgAU5NzA35CyYTgsSC9aSsJUEEcI0FdwcCpoAl3XCUpLez1ZHKqNUViVxSeAza07jWcF0LOpdXBJQCbQy0qOuen3WIKfB3ySAnhLmr03gjbDdCspzVRhi8XIqmqzcnqX4WISCBpoKFzyXlxpUFwZuf1Y0/OcMsUwKQmjQDZl4J6QDEWJ4dxyBNmdVNE7+V2SfQDR21HLkDu9Fv5+HS3jT5Ks3D3J+sh1yaaDr8Doe90jaRFifd8JDBwnks2Bah/FUj30jEp6OPovWzLDvMOHSeY0QxWuh2DAIbumU52N4h4uABwLIETbt3EqBIrtYCAQq4Nrci9DcS/GeFLv8C7oSGTmX9sodkW9xlFM5ctQhid/jisusGZpw7Pw3AhDGnILH37OFU8pNCus7QjJjLmkD5gftfNmmzv47Mkn4nt4lvaUzUExngLcGFFVODPWq6lEjCz18a8K0Knv2+ixFEzEPpyYLQQkRtudJ8xZAhDd17G4JcXhP7eDeqDWjciJMA9KokZJin0UdicHi02roq2u0pYEo2kTRgTWfG6aHAqc9aTPvlK1HJKgBDdYbBaNRgH1O6DOud06RSCOUNSEfCu5uVPgnNiUiZGGsqedFuYEJ4EnA3HCYCk6z4nvboK5DOSChbCn+TwCYBDeHDem0oFl4rAnwdDlgeZwjBBUHYknYxv4QWSBzQX1ui7sk0DlBLImPqUGq02CY9VZIFYlzKCXB8hJoqcc+bcC78EIIE3tNkR89/DXWKVxOHjbySu+YjJ3rPMIs2WpY/KD5YccRgUCanixEcrCKeFN4IupF0dQ3eRymEUdvHoVTqyt0WA9HORIuHxC252o5p4uOKV88do3gWeJEmkPwivewninICj2vMSaGHWXj73VKmLDAaWgPEEqwH2z9u1nMzQ82dpZry72CP+DRQy8QhRYj5sm/iy0301szGx2/VYpHRbd5leWU4nOpdmaByEuYUKoDSeeYc9FaCektGajvhzbRjrdLPbeOHPPL58zDTq7gAUSuScOQiHBTnxf7vM+J0dvUQ0e94fqfzS9Mwfh+CFaFRFhepAjFOReZowOdONLDgQ4LjnFZjtDzcz4+/ZvACvEDUenC34085eyjjhYD0HKKPE45Wsg4M8pp1jGk7m2NYa6WCMhAEGxeef00Rk4+43rnFAkEkDWhEPDEAmZBKYzWGEyCw3HDad5QG4FZ0BphXSas9zpV5dmKOasluJaE0hhTqnh2WDEly3eUhNYIx3nDzUG7UfnaVCGsJaE1xrpk4NWkhX8JGo4iaIK2KncODlVzJH6TYcNTIdCi5djpQphfaa1KuYGGgljdW0DvWQ8qbAK6SJbYt4PaJrFQAVBPihabPkm4/VlGfuohgp5bGRiKLQ6rwuntcXzALcbB6gSUede8gcjTwCwyE25soYxyw1ozMqJWBIaYkp2FenjdML9WpV+OCW1i5eJ6ZaG78HSA4FaCYehtHGOeIB7Hw2R2uafiyfOwwO1yQZG2HpaIsL/Xu0iH1vrrvuweUttuGMsLCrh5mwAqwPxKIZtp6424RgjuSP/fEvTUS/fmxLxNQldo47p5LukaseQFsEA3AlzxaZjRPSiKdfIxOBuDz00UHA77M5B9BmDIT4P3YlY9QXaelA66I8PUoLCq7dQ9HH//qPSEB06ymw5qyBeDcDeTsrZ3HawC9Pybr693lPQ6Hn+e6DEiVqczIvHIoc12T2fNFgpJHU27vHbGnyVohlRBRa2IOPRfBoVLvdTARQtRKOFmytIRXN/pgsRfmhdBBewlYb3XFZNTRT4WNCE8fHyDh01XlVYCNUI7NvDdhpQr7m4ueHGw+MMBaCBMXHFMG7LFEjYLX93MG+7mBVUYD+uMZct4usxYPjqBFkZ+JMyve4GTj889g3oE1vcJMltGzQUaQ9FcDQpRLoR6FFwcEizeUY0gs0AmQaOmHk0S7KU8uuSwuUFh0JmRHhh1Frz6hzVWO3/MOH5I4FWLMvNZD205IKzUKAZj9waA6akhXxQRVa36e+Rh6hY6DcwC3drNi2DeagiptKrA95qIqDlh9ddliCFvN7rFxYRpOTLWl8D2XEAbkM/e/jWmzvioCB6ei3yLh76syLBlReZ4vkQVG4HXhulB6zLqIVldBoLAMS4RyDyEjKIGwbrcbYKWrRlShjZE4i6M61HAm3qeLvCdybqTZpqAs73j0OhOMd6rqIG3hDVo2C42xqDaMUix3//a29oxSwPhHTgliXO+oQHLy4TLBxwJfIdGT6+VRkQNhO7xpE3Dq7GFm2jIx5BLbty4d9OYIEcARzMgpOdPeh1Qi2cYa5sCwoyQu13I27PHfvG6jsG7H8lJgR6e1HHsz6LDsiGqMBzA4Hto9Ir6Php+ZTK+OlWAHgarM3d0WoWOZ7jGfMmoYN9mSL3tegcViSCdinL9eN+KRigXjV+kQwXfVJTLBL6fkS5AaYyWE2QmbEc9OUUYn5yPuKwT5lzx8uaMQ1Jl5KgvAfBqOUbIrDRFh/k4JGmIhIpW2eezwHMQYKBUKOV2o32c/K5gut1ALIYGU8+plARphO2SQY9ZE7CTAFmA3HC4XTHPBa2xeWGEsmTIWd+bzgxejOrkqXs363vqnQj5hrNqd6tA5yLKRTDwXAFA9CYxgbuvzv50Ijh/Vj/AvU+5ewP+TobSRHR6EodlUlGBVG64H3BGsP16lbl7L8FxVCmSwSRAHqqA3QLsh9Is6yF0AgvZlBvbJxY20hh90wroBKNRH4gnR4GNfi+nqRcL7TTDaaRFhRAXIJ29+HDfo8X7hAfqJ563h3dapqhgDwDCtBduOvfU18Dh0EPCP7yqHXJPBdkYLgmLOLsXiYHGvO0aZe0K8Uz5UUCxDRE1hlAnAqb9nAb6iryQ1Asz+/3d0xn537Zb7iFL24teJKq8a+oxugKPULAXjHphp817CONhHhzJFXvWgAA+B9uttjDuyEi7RXvTFmyZINMwNtu/zgk3FkKmFRFNiJNkUQZgQO7ZWn0r4a13TpEQKRR3vFqjgOlCCLXojNe7inYkLSo0c0SEsBpUQhFeCvNda8JWE57WCY/nA0SA43HD7WFVKDA3jSgcCuQ5oTUCpQbkhlIY9e/cYP679h1ZqazVgre6l0ogsz7TqeLZ3TnyO4kE5y3joSQ0IfDUIM83PcCFFdVVGOvTjPUygXPD4bBhmkTrWQhaJ3NmpGWgaCFgegCOH3EIdg/j6Ca9Qjmhb/I6kYbYHI3kCdN7q2VJ0Da5dtg9hu7kdy1ZIaQnYI0s0kMGVIHjRw3TY9sLOdKDgAOsJa4pu9RDAV68SYWi2l9DBbYFzK23Jxo2D4YkpYde2hBe60LTBZl7WGH11j4Oz4EEqmvCYEmroogWBtUrvmmXuHYhoyUaBoKAFh6O9PMeCpzOGuaIuLx4SLLBWRqAPfT5jcJDD4F4opYIEo2bOnJPBSRCsenxouB5ahlaMOfhIat3cUqe0dBQS92ELfdnaofBwvcftTM3hAEAn/8u9N3zqNZfSL0QRzm5lyGdw84Uu3j9x9AeoK8HxXjH/Ew4/Q5YSYQyKCZJPHhGe8EtCSiG2ho9h/mhKZM5qcHkii9fJDxmVwhcBLwgQtHloGzF04PC/OuRryDEaphcV+d/2vXOKRIRYFszUq44HAqIBKUklM02QGpgFtRMKKQspZQEnBuYBJkbqimdMdk+/p5zhQihVsb9+RiQ3tYIKTXc3CxI3LCWjHXJqIWRElAsLru+0NqUemiQ2wKaG+SSgJWBJki54uXpgkwt6lXuZsLL0yXGIdcmC9SzEgD3lwMePrmBbAyaK/KhABNhK1bbcCbcfo0wv1JL6fhR7/pWbhO8PmD0PlzgCAAQcP4y4fEHFTk2vWLkB0I+934hbrVGFbsV9Wmuxa1KPUTLC8L5exraQSv0p0cY8SSBJPXDdfXIvTOjMbIaEeDt19wwkL215aG5ITndXXwMcFC9SABex1AQ4rsUBopQjsLA03cx6tEStFv/W1q68OANoYjapIqjTR1dFWgpi7U7WkzRaeoWeajKlajSqdjYnFZjSOAqeuiqhsDW0QvtHIgQEwX0UIvnUAyemheJudxOe0kbiLGqY9lu9Vl9HjyXlAOsgAhRqeECjEotEu9hhLjXo2+I0FYCyq0mqnkDjh9ZIe0mUYhXTwnbrYUXK5A9N2B7hCvAlpCuh4HZexv2wMCe4MizEabr66PfYdB3mBeSPNdiSMNR6TjwZFBK9UC45M7i7fNVThTzHeE1oeDAA8xwIgUBSObwjEbPG0JIW/ul0Y/kl9qVc8MH7z3g9eMRD794p+GiY0M+FnBquLu54DQVPC4zXi0Z2BhSgFoYlQTnpJBfEcJ5mbFtSRXMVEFjzJYEOTXMuaI2wtNlRq2MsiaclyOUIoXBF63CFgYev6KUKvWugg6KxMLKwJLgTKBgDV194+EWmRtu5g2HbAWJ24RSGWtJWJdpB1sGAcRi8pO0xsSUyOm4QQBs5wmOFHNBXk6M85emQIR40tXrGhym6EVijvw4fUhoUzJryAS/tQ11BMv0JBDqhVOeHKUGSzSLtjUDALBay9LfAwy1CUMVcw/vmPVMiO/gqj1evI+Mwkjf7DESXRGHynZHgAWqSAA+DMSNA/9YR1lJhEWWF4xy7ON3xNHhvkZNScsSSV/v2ucwUGUS1ufNZ8H8agMY2O6yNkgbksn7ugzNU0VtQ0PQiuygs55T8JyNr3HtiWdVAn2u3cKGw4eZINwVLu+d/13+QDsSDrkO956uDBRhCqiy1tagW+cWxgrqdAMNuFHhe1MSsNQEp5/RJLJ5JC/y7l6IPd3HpaEoikLVEOg+FcEjJnb+NX8K6nUmuk99j3YosbfGFtbPMDQikaobIRpy7agwxLl6G6VLfM9u4u019+bsPm7w+F4cuc4ADcGWAz73eucUCZPg2WHBzbRhefYEEYrwEJNgShWJ1PtYbjO2ySraLQl3Omz40s0TGgjnecNaE5Yt43ye0RpDGiBVTcfpWMAkIBI8v70gsd7X1/xxmfF41oq4lFt4Mu7BiAC1JAiAVhht0xOWpqY1Jo2j4n5dM+rrWWG/zrsFwJlUNfmuiqUdG/B8A08NtSTcv86QSkgfZ0yvGVT0c+VGLbj1pR6i+RPC8Rt6oMtJkR/UjEW5qCfhVj814PhN2XsJormMOiV48R1IPxs9tifvJa5gAw+j5POba9kmwmrWqEMaqQBkVPZO8x/QUHbF6hazFZgltY656GEtR0QDpOlRPZGWgHYgjHF0QO/RdsgxVxTS4Zom0E/fbDh+hJ2CotYblo2szSOSqBwRraD99XLDqId5Z0F6DgswwWAwU83FuVKhCON4T/axJkEr1NHDOwaY6Hmi7j1GYt6tXuvA54oobYgujdut5oqi3e+yR5aN5KEuIB2uK6zfsd3YxFO3/HlTgkH3dMJDmoakt7MesId9jLjw0qwZm6EON3mjeBR4UygHRY95Pw4ljr85m/EQBnZSAK2j0rPidEFCCG8gDKCd8aPek9eU+LMFlT36M461MOM+jfoWG2PMb+SJO8Rf9yLt98DnXO+cIiEIMjWc5g3vswp6DwetLePrj3d4Wmb1KHLVf9yQUw9tFeFIpjNZniI3oApqS5CiK5jvNAmfuSkNvI+BrGalaBC7NUZbGdtmmHrW8BqzYDqtYFNy/rm1JE2sm8KBEFox6ydBUWmOljk08Kw5lnbOoJUUVrwxatXcBwqHgGqzQE7A8mVFe6ECvBKoaqGjCxYPJfFmDMNFhbUSG5rH4pDFDaAiqCfC+bsF5bYhPzHmTwi8GnTVKtvX54Ttzg6So5SShBWWLkqUqWOF8opNWnkvU8PhGxkv/pYlqHkv9B1mfXmPhzi77wsEZHV5j7C+1FDL4ZsakisnG1e6skR9HlbC/No5j0xgez+SK1bngJl6Itasze0WKHf7JOh0T7j7OY2Hl4OzCOh46nGY37FSXKz+52wosu2KYy0S2mZdAyHAgp5Eek2JFiQ67YsEenA7dGbYMFiajacBdRa07O5cZ6F2T2ik/vD1AToUGOheUIzL58+q3aPGJgAXg7fXgEZAMw+tHtQbpgJAEvKBg55nZB/W7xWk2sfmsHVfm7GWBYII57kBwcUg61CvXrzhWNP77mDWuBLyY/My6sluh4d7Hi02Lvr3+lijB8ngEV4jvbSJXOvz6hX6BmohAChjLPHTr3dOkTQhnMuEc5lCON9OK+6mRQsHJ42leNEgADw/Lvjem9fIXPHJeoPXi57gm0kpVMrMODlSS0gT3ub5PJsuKJLwejniUjKaEGqjyGHc3V4gQthqQim8Gyuz4DRvmFLF0zLj4Umr4Ka54Oa47t57XiYsiyUujw3TzYqUBPNUcJiK5mwaoTZGbaq0pBG286RJ/EYWX7XQwUGBACCg3tmXrIxtU6WSzsqeLE0PZ/VWotZFcLlRYRyhEwLa1FBfFuRTwfZ6RrpoSCFdqB+kopBWzY+oktCuc6IKMpN6BnZIqJqHQRIwWK88f/g+xuP3qYJNZ2sVkIFyQmdPNitwfk04fKzC4PiR4PAJMCaJwUA7mEIb8gg9zKYIPICijkIMVRUwZ7vqQZVq9Is3C7SeJChFRoHrAqplxvpMPcHtDii3DdSoP5sJEACYXxHmx33S1eeGl6aW8Y0KwyodFZgvmiAPZSlurfo8j89uUGzqbRRaVgWnVrYaGQHbdjr9AcHkntl2Q9iedS8toMKLDMqE3qjF8JbCuFqPDu2lgPS6V0KW06nmSXr9j4IzdHCKqnOl1fdJeHncman3l74WcG1Xrla57rBuwLyngQlZ98IQNjTvxuG+7nVqwn/wen0ek87X8aOCdC4oNxnri3wFN+5eiyIQCSN79FjY6srzW7neOUWSSHA3L+plmLpuwnjYDsjU8IPPPsJdXlGFUFpCA+F+O+Ablzs0IZzyhu+6ud95MoB6JgwLj3END8Tfd0wb1prRQFhrQhXG0zbh4aIByGenC+7mVRWTmRu1MZaaVPgPcQtXQswNp6ngkAvqifFkSimnislqWl6dj/jk/qRK6eDFllpE2YTAqWHNkyqSwUTioQiSzFynI0CsPvP2NKFcEviJkZ8IuRnq6KhKYH0pWL9c1OpuAMQU0CcZ+HDCvAFsEMxRoCzvEZYPdOweKhLu42pHQb3RPAyvrPeowPEXldo/P3lCmdW7edECdefPd43d13slzHZQ15fqfZEg+tAoogq7Qw946MTGSIRSrDbFrPnFPCxAQz1UYIpAlYYKNx1XfmQcvrn3eLSntnX3O5gXlmHtAVQh1mPr4zKBJylpv5tVYdxjYyqy0E+bHKqs4wGA09cZ/A21Utlj/M7y27ATatuNKY1s4cBZkVK8Wc7iNWG+b70QLpBY6lnXA2F5TkbrobU9HurkQqANOHxCyAZndYp8AOFJ5bM1zCKlOmmDx0gCTA8Nh02908v7Ceszt/q70ol2yzNhvcsD0q1b9Y4A00iQnT9HGg4N4zqzMmF5byhwtJDd8UPg+LEEUKPnHj0U1+HtPs9OxJgW6Z4QOYxaJ8LRgfr3CVQnmwdHr1GEPsWq2X3vu3IJ8laD1Adb9/b5hSTfzla7/zqA3wTg6yLya+21fxPAP2xveQngExH5dUT0KwD8TQD/kf3tr4rIP2uf+SH07oh/AcDvFREhogOAnwTwQwC+CeCHReRnPm9cmRvePzyBqWGyXIgLfqaGg4W7/GpC2FrChzVhqQlfv7/DctGVnuaClFokvTM3PG0THi9qat4eV7w4avFiMU9gvBIJXpwu8T3nbYoxeuLeFQIdJCrnXXlkajjkgpkLSku4mxfzeDjCb3fHBYdJn2lOFYkbHpYDHh6PqOYBEenGkY21Vwo5Bbwd7CT9d4+ZQz0GmQTlRgs3t1tg+aBpeCxLKJH0kJCeTAmadcebhoyoAsv7wP0/qNa+HAswv2Xjin1vJf1HQLupaHcCFIakBF71ILIhug4fCQ4fqSYsJ4pq8HL7phDXpDVZzBuQycIidw3esTcQMAXqxfnzsLLattmtZEY6q5e1vgdcvrvoM58ZvCoKq900pbcxDjUq3XsZIaNe0Q+oUjl8LAENjhxA7vPqzyNZvR5JwFyGOhFDpFF1RS4aXrzX7+RNUA9mxa+IsJFfHvtXJUbYngEtC+qNoM2CdGaks9W5VDEDwcM+gMP6HDXknkK+6JpFsp26ABcC6uSJcLL6lBZWtRiLtNOnB6hAAJoIbJDp7U7/eQ7GocReJOpCuiVge6YKNi3A6RcF84PsQkUe/hEyOO2xN7vTuhjg8HEHTHDVs6DtlfXz2y2hJYXh5rOBNVofV7lhzYEYuhGwZLtX7UsHH5TnjO1O98/00I20yHtQD135FWg8906cf84US3zuO5wj+WMAfhwq7AEAIvLD/jsR/UEAr4b3/20R+XVvuc8fAfBjAP4qVJH8Rmir3R8F8LGI/Eoi+hEAfwDAD7/l87vrcZ3x7/3sDwYNO5Pg7rjg2bxEDsS9gq2qR5Ko4blVsycS3Fte5O6w4pQ3LDXj46cTqiXI3WO4bBm1nTClhmeHBS/mC4owzmVCbSroPdfy+nxUBUWCw6GE0vDr6TJjfVIFtb18wvc+09DW/XpAbSdsjfG0zKiNMefOB/ZwOeCyTDbnZpVWViXStOYk5YpWGe2bMw4f9sQvSIVjuVHFoI26TMgXFX4yCZ5+sCj78MLI9ypEY52b8VltKvC2O9EkfVVK+rQq11ObVfFMH2fkR63UX79ckO42LR4tHA3H0pON3dBgMgHlWUN5r2FbGNsLBm0a3jl+pAdzfu3eCCJkdXmf8fgVDVkt7zUs79kbzMNIZ8bxG6y1EANSLOyMCBOoorp8WVBO+n1alazV+8cPswksnddyJCyTWqL5dcLtzylbgDL+YgfnjKK8qmy72SrwD68kUEbLe4ztBjshnM/a+MuRQcIAGmkjqyrgmdEyR5+R6PMdsG71UK+dt5YQ7aXbwUKEFp7khcwLUgGWLjCPRKL4EUCguxyoIZ5fsLVJNg/lQDh/F2H7sn255ZSO36Sg7vDmZyHYGYEQHL2Xbq0jvLdAlEl/toBFV1UiaUEU9zngQBem7wV2YeyetcGZD19r8RlfFw8z1plweU89uumRcPyo9fDhsE+nJwkhX9g53fRvXncEaFFqOvexSYaCa8wAUzYB3cAB8bZ2B8gIloFrmqI6E3D4DioSEfl3zNN44yIiAvDbAPyTn3UPIvpeAM9F5Kfs/z8J4LdAFclvBvD77a1/BsCPExHJt9g7+Dhv+K67B8wW4nFL/qPzDZYtBwW8iHJmvThdkLnhdlrx/HDB1hK++XiDD+9vtac0IX76zmyNcamMCxAhLH2OnjjXuSJczjPqWQPc23lSqG4STHMBG9Pw/PIJBPVefu7VCxAJ5lwwpaYIsNdHSGFcTgVyq72uN2Mc9u8BNCR2vNFCyWWZsL4+ABvh9E3G6RsWJjCahTYR2BP0g1TRfIF0i4WA/EA4fZ16kysT2F7015LyQnmHOLfubn5BcPoGd5RIEkWFTRnFkFQRoz53RdVmzSsIQQX9ouCBehDQBLSnDtV0Wo4eftCCxtOH+vvlfcblA/3uQPg8Ek7fUGu0pT0SyIWah43yWcNqLXMIQsBzDrYfrJ7hQMDNLzKEGGlRYEBY1279D4K1Ex72rZ2LbzPB4RUiFLPrruf7zcKHwp5stni6tSceW8xG7qlJUKXHH+CFb4AXmKaLoaQOEtBSLfZE1KU4BXpsH+qP43Mj4xp7KIvt/pb3idyRoQa56F6bnypGGpExNzwqmAB1GCDA8zEeAsoXnRNgT6QIdDRd90olqusdItvDYAgv2McQvdOHe2qjNAJZHktDr7QzVPqD9Hv3ZHzn1PI5i2c2ReHjHWt6+jP7fNoauCJuYx4Hb+ynt13fqRzJfw3AL4rIfzy89l8gon8fwGsA/1MR+SsAvgLgq8N7vmqvwX7+LACISCGiVwA+APDh9ZcR0Y9BvRrkL71Aq4zXDye8en0DQPMBbDTyyQoSS0lYniZIYSzzhPMyg7ntYLnlKWudB2Po/9HA1o+kFtZwEaB/c4PDIHfpWHGy4sQXzx8xvWdjsJ0kALaqTMKlslKsiFbFa8Ej4fHVSQsLV+XGogrUU8YndxOQBPlYcDgaW7F9rmwJ51dHoBD4MeH4Wi34w8fA/CDYToTle4H1xRB7F+DwkcJ/HbJ47fIqi26LOgWvrBYGKmv+5PIlRVhN94TT1wVYKKxuwCG7wNQE+AVVJiFgLc7M63ggO0wxhJgduOle25mqFWchgywQdqWl0FqQvfdjVXyd86r3x95u1Tpu03AIC3B4BeRHU1aLxZRLL8rz3uqK2NHagKgNqYMABfr3hlXuSV0AQzW8o+UcejsK6R6S6MlZFfxavZ0XaJ3C8Jmxmdgo6HbhjmGp06KItuPH7m0wHr6XsT3XtUmXzqNWjleCkRAeRFqt++MmKDeM9Y4tmdwF5OFVU0UpfWy+nj6uZpxh0RlwPPvBCKBKS5waxbnMvKnUQKM/Qrj390K0Jh6LMakKEjpCsPH15ymUpI+dN8H01NfdWw2MtSHehyagxG5sBOcYQFtfb8+txDxVQR6QY5t7L1YjwxXRUlsBJBRGZDn0KnkHIHzW9Z1SJL8dwJ8c/v/zAH5QRL5pOZH/KxH9GrxdFw6r86l/278o8hMAfgIADj/4A1K/eVDLM9kEHrSYUEC9bmNjyDlrH49KWAnKwmu7rW0Mvu9hmPrBhnSoaIVRn0yC5qYdDj2/QECrGqZBA+pTxsOS+sgFAAM8V6SsUiYq1StZDQRpoaKx9pKFmNJF6zy4AKsAq1kf5fWM+tEBtBGme31fzgDPEla31kqoxcabILPCTiEcyCnAhZeHDcyaDcJEROhHCMFCCxiCJROms2B6MMx+9ZgwdkLC296C1MJ3K9Ct0rEY8W27YbRsp7PxKDWAN2sjOrMV3VFAR6MOxavg517o6N4Qb5pH2MF/BSCLUaMCybssiilZ65/iLVnHinnAvDV/HVACRLraxDY3At17McdDbD/eSu417fnCYBY3YEJ8UDpj7YX+3eP61tzJlFXE5R0Wa1ezPh13X6vAz3cLfPQ+xudAA/LWenX2rNxczag5CIpsSquSfO6o4e0z0dgKqqjakWNvOMTYFdGoGJvxjAlZTQr1vIY/lzMn14PmJxwlxgYFrvFdxi9mwr0bTTpPabH6lqY1NHVi8/x0DJqf8HEqKk7IDR4Jo0lDUwO0l2HN2IyZuvY5jzNg701DyNJDsF7j4uPWpmp9Tj1E5wSo5Uio81C1+inX33dFQkQZwH8LmiQHAIjIAmCx33+aiP42gF8N9UC+f/j49wP4mv3+VQA/AOCrds8XAD76vO/nDTh9LWF7Idi+vIHnqigWUdy09x9JqQFHjU/Uyqgm8NOhYpoqVslB3V7PhK3OVoPRwLebHr77Cek+7UgQPVYOAnjRJCOgkNRy0vqPcpuwHZp6Md5qF6bISMCzcnfVLUE+OiA/mYK4qJXsdR8C6EarGp6aP1HaE004W3jjovF8t+IlaXz45heaJSiV7qQd+gYMpEsFRrGXVsH0WEFVUE5JCROBEKbCQBoqxbvlhN7Y6sSozkG1dJbdeujQUFc+zkzqcfuWvWq5C0mvom9TCotY7y3dU/ED5zBR4X14hIYQlVvUAcsdvQCzVOHKgYI7DEAvOIzLwiVXyWwAoezivmTcVWeNu293jO2WY/68Ijk/Cqi1rhw8HDNAOl3YjbDWOB/FrG4ToF4VvvN8fFi1W8k+/0q+WMFrw/Y84fJCi0/zYmEyu8+IMlJEk9iaSHC6jX8fIb3xd9JQ4nZLPS/lisC8wIAKAyAHGgCAQ7TDGyDkS8P8ibpS210G3XAUc25Xe0uoE0j6XOm9evg0eMQIwQA8zp/CvynWSr3Ra0vCjBzjz1L+NSjAgx0JZ15XGXqmsEYgWu55lcn2TlpF35sVAu5ejlPNeJGqP9u1Z/a26zvhkfxTAP5DEYmQFRF9GcBHIlKJ6B8E8KsA/B0R+YiI7ono1wP4awB+B4A/bB/7cwB+J4CfAvBbAfzlbyU/omgIQX4kHD7S5PX5y4L25VVJFC2Y2TYGPWTQRpCDACftC1KfMmqdQJsRHHq8Mb4AWtkOgBeN5ytDq+Lqow1q6uNx65ar8uEkMGQ1a+xY1XsC+qEvjFZJreCzFliRI36KNmyihXR1CbrpHLbp9AobIPY5LzCLA+jjMq/gxd+xpOGww+NgN3TmUkOaCFFUqPt7nepkRLvEMwHAicKC9Mpqb2k7Ik5I9rxGbgm6+x+hAdE5rtMeKeeWulb29lCIJohbCNmof3HrbuthjXIcKsU3FRKjgPbOgR4miyTzQLY4Qkwj+WuW8Ri/blZ1LwadrY3jYKfVhanRpLtg23kidnvnizIl3DIA7+nh6B3/jF3NujhSBfJjA1fBdpuwPtMQVF4QRYtYJHjCLu8lgMzw8vavLrjhykzvO58VatzZch2mSvH5tIlxbenfFTXWzwSvjpQSrVa3+WquiNgbWHVrv9nfxzqSciSU75l3a6VeArQnO2DhIwpvFzBWZqttcmUYuTSi3dGxNEj3lgRWcEuhcHqPnNET6VXsYUxRv7ErFS7KduxhO28VEA3LGFhedN45D5m1rBBzIYcz21kZQm2fdX074b9/EsBvAPAlIvoqgH9FRP4ogB/BPqwFAP91AP9zIipQpvx/VkTcu/jd6PDfv2j/AOCPAvgTRPS3oJ7Ij3xLAzOBXQ+ilcqsLL+OaPJ8SQGiaE1yAxlaiV9POHyTu3uYujJQzU9W2a6bQZIYc6giNKIKO6lbGqEVY3bVAioBNhoS8gJakrbabdBwXBKg9VAHzL1maHHa6eu8Q9xQ0wM3UnCMxUnUekJ63ORKrKdWTn4SzA8qTMcOc6sRxwGDdW0KATClcByEKRCHWcfmfFXA9FiRzg2StWWofwc1fdCWOnWFf4+HTDzyWIdY8Hyu8FzFmNPxkFwkUROBhoM6PZplO7Dxttw9FT/sY/+OLrX7dd2o6PpQjmGlbokPHfzsMNNqBINOF1+64N1O6C2HLfbdecSurHkL07iVe23+upIPQWZ7fHkvdSjr1pWO8lwJDh8XpEtFPSasL3N4BJE3GDnLUt8n9aBvUgPD5nZX8d6fwRl9efXQFyCcQlG3DODIcR59HjqpYwcY5MVaDThCaVTwgEGl31jOuOpEqC/V40jWMtjXreUhXzhWqbuHyG40ucFjlfpEsQd871wnu0cPYfSMPTcHsrzcwdvq2j4Egd2YsDkISLZdwb4h+3kZ+dg+7fp2orZ++6e8/s+85bU/C+DPfsr7/zqAX/uW1y8A/un/1OPKwPJBhUwCOhUQC6apYp5VmWRWUsa1ZDzBPBM2lFWjEP5uLTbWBkPledX6h8Kgs5LDpTMhP3VLOyB7zypwqEhzA08aPlteHcH3abAkCZIFdKzKiSWEZl392m0F3+jnvOc7PWRQTVpJLIhGTZqo1QNSFFuggsRgjd6604uWIifhiURBxKNJrKc60DepdKtm7GRYT6x0KURvWLp+rxCqZEJAALlL4BPDC7PEhBfVfp8onBqseu/twJbIjBBRdKnrh2q08oKYkPWGIWyb5sw8vJJWJXt0yhCtaZBu6WWlr4+Q1+BV+PzBuuWNSfwRMUXhKSHG5R3xvF6gHglCvAuTBWlkdaiwT7L+0Ep/dzvtR3KeMduftv5er9EF997bG+P1Yw5ie56xPVdx4qFDF5ZCZG17+3PuKrjFzpF5wwlDxbYh3SKXIdDmVF7cg8ED9dBSkFeOirTnzBxoEYrL2zQPebLtNnUP4IoBWpPcqoj0ee37jQRR10WUrdgT5O51DrUxsUAjuio8Gd9n6N9dh4p63/em7Lzl83guXNH0OeiGSTRpG0g8fc5a7qFBtd8+TZ32652rbEcSyF0BlgT+cAYE2F4WpBcLmBsKGCzaJKqtCVi9eZLubJkE23O9lVtW9djAzzakqWJ7fUB6TAF3Xd5T76PdNFU0DcpttSTUjVGz7ebqiz4U85EAlVCbWj5iBW9ohPaUdX0Nrgq2HAtr+KpNg3s9eEwuiHlo2qP5ESNhNFI/x8/XSZVCS5YnOMM8FT04VIH5HpHL2G4GT8gFyRi3nd0F93hz3/ghWAcryft3tIMLVgQclqR7hc5a20Q7BPrzekhlF8+faG8dous5ZzDOjxVtZoAS3KisMwNj9JQs3GAdIp3rKa1mIVbZeRnrMy9co4DYcsHgBfYQh3uIIA8XjgCFnivwMKIqFqCdeuJ5rGavs1nPa1di+ezazoWX7nEPm1Tj9urtXVsPQRGsyK6vRYQT5yGfVbsQeoOOfPjvWPfh+RQvemyJ4tndu3QWXt8Prhz2SlBCQOr6KWGoh7l8DXtI0KhgoH9PGyJ0qEpHooZDmKxlMSKJLUShcP3sSTLwwLmZgrJGZ8McaGsFDR2WE6s3QYhz6Ovp40LScFka+8qM02rP4woZwK7ZV5sUTLCff4l8HldA/Nmn67ze2693TpGkXPHeBw8ojVGsgZUTM2pvD4BIaU0oNaMTaEhWbd2mhvW2Q3rB2qtkPmqVe3rvgvrMnERL4AMAbWyswFAOKyGkm4Lb2wtyqnhb8SiRBGPwVhO2klCFcH46aEdHIBLwMhHqjSqDetMgt1V7q0zKKjwWta6XDHk1ayvhSp123Rh80bSoLOg8numh5kVBA1qE5SguTd57uGt5rnTv1KCoMtHDkFZBmQlP30PY7hS9dfyGClzJ3SrXg0hRuNcr0PWnN6QCRs8COw4sP0j5orkphTmSWfVW4Z4cqdUtbvcclucJl/dSWMFKeOgJYhVibYYJY1UE2iDJBN8kFgbae0I6aAuTeZvbBm00JR0VFwc4QiQqwKp5EYApQxdkFqoCujDmYg2xhl7wbuE7y24IULNMAfRaAlM0XHvIxlkDRsRUOfBuLUalgqir6l7Bbt1c2FK3iF0J5CeFcJVTAgXNCIXBsYMri+V+xrChW+vGE9YSsD7TMC0XYHroTc9GBJkyDHcgh4euYk49BxLeLEWPl6AUKW2PomJCueV4Tr+ilbEnu4dIwHiNIWhhBBO5w8FJgPzUkJZmXGc85OX6GHa5uF0eB5E3pNYNgcg9ftEh8c3LCRJvDytePn8dBYkAgtBxq0kF8+2q3dPsQDA33L5c8d7xjAbCwzpjLUlRXqaI1pKwlozWCNuWottiniuIvbiwgsloNYSwbBPWNaEa+y+ZdcjccDgUZG5RAQ8Ap5sFuFnieQCglITtLqE1wum04r3bM5gEl5KVat7eK0I43qwoc4UIUNaMetFQHIyu25O0AEArIz8qp5UYhxYJkO9JNw+R9mwnpUhZX6CzogKBMqFm/Q9utEJ+fSnYniEsYGeVne6VOkWShuLaZB3zZh1bulDQrcCEdJtEld2hhYUIAfI9Y3pNXWFUii6N86r3LQcXyEO+yb0j6sia9Y6wvO9wVFiBplV0F1V423NtRjbdE47fUIHVJgR5nws3pbFQi3dUkucvkz7HIITSmbSS++LhQ71HuSWsz+w9K6Lo0yGpakUqqaNuFL2nwjnRPVT0e3l3PA3hKB3L9DSEoBxQcaTIRcWzDfPmAJSWtMrbE9ZcFTI7P2iOwuG9ILLaCr1NnQmXD/IuJMpVwCbE65E1xEoIRoBAeHmfDW8PMJnSp2ENWh+zMNAcxZYR+RS6ELxb43prymKCEXMC06OyJURdiFebG1w50HzSUYWAzmswMVthp0Y1zPCgHqrzc6GKnBE1K5uelZHZt5xYz38gGBH1QWPdSxeEewOMKkCnobmZRzGGffJZ1zunSOZc8Q+89zFKY2xNyRNv84rns/ILXOqE0hhryzgflcrkmDe8POjfP1lOuF8PIAAvDhccbwrOZcLHlxM268vuns48V6TjhjQ0oGKS6HfysB5wfzkoqeOxAcdt19kwc8PNYcXEDZeScV5VQt8cVtzNe/bfoFsZlKIqqYxlNe+le+1oVb2mPBekk0Ee14y6uokIQAhyU1GeK5xZnjLy6wTtBQ8N+SwqyOaHhpbVG6lHQT1aOG+EtBm9SVRDzwLhBrhgbgDVBC4q7NaXTQkagRAobSaFLrNAbirSqaKuDLrPCrUevlIYWN43a9JrYFa1rLUrYT+Mkoz7aFLiyO25ID0Rbn9eMD0OiCbSavpyV1U5Phh6T7SyPz/oJK8v9L4Bq/aw3iRIi/E/JYf06n3XZ124+JXYYNVn6Yl77qFFm1bQpCgVl5D5DAhzhM489Og0/eOc1oMqeK1/AHCxPTRpaDMgsoOiABC5OIX/9hCQMwHXk6DY+s0fMw6vFECiYAitkNecwn4t2AwPahJtYxWsMlrVEmtcroAcbk17rsnHPkLH432p978h6YqYjYgRQqbgZJd8dmFLrSP6dFKwv/z/bpg1DR+JAQxcWI/FjaFIIpekSEzPmzi6Kij0E3B+n7E9cyRW9zC9JssVXsuE9YUafSOcP50Fh9cSIdcIbzpbwOdc75wimajiu4/3ABTJACBYe/Xvhs6iTub40XqDb1zusNWEV+cjHs8ziICP80nrTdD3S+aGbGEw5hY93QXAUjKy9S5hEmXt9YSefSeT4Jg3HFNBEa1md2r6ar0dDqnq2EgwG8lk5oaZCxIJHsuMh00V1CGXUDCbEUc+rRMeV2tmdWy4O6l386BPoA9CWixHJFHH0nJDuyVIZdRPJkyvNZGt6DfG+oKwvmhoJ8spAXaaoQfDINNa54KIn68vBOW9AmRge7+hPFOgAZ5tmOa6C5FIo6j5ifs3VVDKutsF0vbMmIIJ6mE2rz63rpQmFIBere0Ehk5lf/8PwChdVDjzCvAE8KIWYnleUdi8nSdWj0E3lQ7P8P5KQ9+ALNgqYfmShhVpszBi1Zqe4zc8FgTzwBRBli+C1UgHJXtRGnpubKAGIaiA5A2QDfBkbmf8xc7rVO/DGAYunbp9OndrfxQs5aT3X59b/xR2S7yBV8L0qJB059+ipjByXgdBZcJTqXAQAhUw76r0YjverqTzEJa7VmxaBEqYLGlOr3ut0eU9rb6nZKSSTRXr+XsEde6GhiemYfvl5uuCwyul3vd+MMEsIJZHnBhRaxP5oZ6jCPCFK7LBvvJ1BMywMFixtodmBBjCj5OHw6wbZUCUF31OPY8U+cy0ebiw6dgLYzKDJ0AAVmgcFPkZkYejqzYIb7veOUVShPGN5S7+z1DBPXPBRA3PpgsOrMJ3Mylzm1eUwxNKYzw/XFCe8876T9xwk1ejpm9v0MgXYdxvh/B2nrYZW2OUmrCa93KaN5wm9Uge1gNeydHCcBzf4xDlp23CZnQpb7sOqeKY9V6vL0c8nA9B6xJ942+VSn+rCfdPB6VPMfoXD+M5lbzziMWMpYr6jLAcGHxhUHPrEhZ3ATAJkNXLyJ9krZRHP1Ae3uGq1Czy1Unj2C+UnVcK0GjCljIwNfChhkKDkHpVawKKtSwuPfSiVr10FmKC/gTQTsD2AqZI7Pka4fjzCXc/J0hFwznUtPr56XtIrXXouIAeutPDqx4aWDm+Ggum14zT11SYri+8L4sAs02AIYsEAJr1AymE09cSjt/sYRJt3Wo5CdHGV0/fK2gHu99VrYsDMchCbv6a14lwEZy+oYWpjrLrSVz7YQLKK6B9zTzxXCf1CrVlgCqxCIcCYbG7RZ1W9TCmB8HhfhCGHoOvALEV5N52paWWNaHcU1CuaKU9kAwMoWuSOpKQEG73yDsVzascwUQ9ZJNWpetJA907CKizKWfq3ph3zNT7dy/v4fsSlvd1LbMRlDpPXSg8UgV5+zXBzYeK+Xe24+jGSO799dc70SWFZ+E1P1GoS14HJVFc6cSoit5yw2NAulnIy9FbcRG0t7shuZb3OdB2n3W9c4pkKRl/+8MPMOeK47xh4oaXxzNOhw2bMP7Ow5fwuM2qSKopkmnFB8dHzLmiSMVaE4okfHI54VKyUrPzIbwaF/CHXMJz8NeWmvHqfESpjOO84Ut3ujM/fLjFh5+ogmNS82yaKm6PK6ZUjESy+5getnr9cEI9ZzhkGADS7Ybnd2fk1JBTxQfPHiFQNuLWtKf7+Txr18RLBj1ZSKhY4p2BcnCBJ8Cs1fVSKWjmMStSDXfA04sEVAJdGNMrxvTIYf1CNEGfNk183/5CxXzflIL8hiOkoJYQMN9bMjwrLbZk9SzKlwVpbp1iRgBsrHTuBKwfaHKWnxjzJ+r5pIUg9x2uDDLK7ZPmaXhjJPOO0qaHbUyG8ga8/x9VpKVhvUu4vGeIpYygEcln9WTKkbB8oHQ5+aGjdw6fwGhhCJJ5R0AIYBf6mO67da2ClgBD2zgE9fDxkKS3tarOwmv3JVFghD6LQDYKD9HDHhH7dlTdkJdxBZYvTdFTTAYOUDAGFXTwRkDAbR4vpCg+Q67lc4fyVhNu3tyJNw3xtaxeKntveM/31O4ded5HPTzudTPScw5auOmehSXFk4EkhOI706qKbX5oqGdCPnPAbH1N6qwKk7eelB+vOiliT1iZm+dPKAwkaqI6PvIw3UsBFFrsdPHBzDx6GslDhGMrXf1sWgWT1Z5F8l46rQwEoF9EoMgcFh+XfUbs89qznXZej9MFee1Zojef//p65xQJkeA4bzhNBe+fnsAQXGrGz9y/r4SGjSMJvpaE1hj3lwN+4f6ZdlA8rLibND/hPT5KY3xyPmrL3EbawhbANFVMqSrb7lQwWULelcfENUJYAKIneyOo4Lb+JSlpT/mcetiN7f/zXLABKJcM/iSBV0K9MD7x+hdGFDbWi1rwaAQ2pty8UVjz0WkveU92RVR5oi8vBPZGS7eCdrKEBANgQXpi3P2sVtZ6klMFZo/Xat0K96Q1uw40j8VCPDioa1QPZpV/OKtyvVCw/5Zb9TqoaDiFN3Xvp4ehlgI9dCCkwmF5qfflqq1+IUpvf/mShaJsXPMrwnv/ISE/ihEMUrR4BcyqNWGQFsHsXldr4VU4LNctQxcoAXelt8Mr8yJ7gQ8VqodXFJ8Zrd0QQsZsvD4HHr+i97/5BcLtz1MkaqmqgFW4cq+zAazmZO0hGRdq4alUMep3tb7b13UBO8qpV2Y7Em7MAQAdqi3WW0NIARCnjzyEih2M97Mqqx1J56FATyJrHqaHCYMOxt4z0rBoiIqiQRXQQQk+98G95lMe8GpBGhT1+Hdfv07pYn1xZkKbtNtlPWjIdH7dcyORH6kGyMAQEiMFiLh3kq1ANV8kGny1mdCYNd+y6t/b3D0dbXZlXueQ/3GYdCTZi+Dmw31R5add75wiSSx4ebpgMt/X8ySOjEr2k0miY+Gr5YhXj6dOhmYexnnL2GpCIsHNrEl1v5yW3tvqvj4fI6x0nAoSN4jM8V4mwe3zyxvjFSG0xli2hLKl2ExvdMAkgcyi/aknzW+AFO48TYbQytpeVxFh+jDreUJ9mIBCyDPQzgRJEkJaBwFAVIkcPukhk0JaYwOrfwEsYZ1ViRTvKe6oKSvg4oPG2deXndLdLXVee1gCoqSS3tuCmkJs/b6HT2gPBTbBfXm/w25HiKwn4tPFYMxu1RMgmVBuW0+AVhVoT9/FWO8GGNrwXY6ciWS6Jcq9J4XDJ6+5itTC715N1PdUBGR6vTNYbXO6iv085bOGejwW6YrEoZuHJhreImUkaBlaf1AAjvAVlP/JkGX6bCPtj85t0LRwH4PP47w2e3YKqvSRb8wJF1vqa+EsDi1bYj6p5d+bUiE8uum+Il8qyinh8n4Kgb4zkk3ZTufWlc4YamMCM9CeCFpEqmu03XYCTw+BeVFqtp73mkfriXCv+fGeIi7Q/Vx6aMwRdtQEdSItGRhyKL7vfYz+rx728Gwn4CRT1kLdidXPqjAoR107hacjvIzgeRuVqBde+uuAzosrLZtP9Vh4B/74tOudUySlMr7xcBvJ7fFqQtiK9k5PSXA6rMipQYRwc9SE9O284ZQ3NKj3UmoCs3ZJdGVUbXW20nMggK75tmVczjNECMQNOev9l/MEOXvm16z8SpoDaKQ0LUfNExyOG26Pa9SZJBIsJePx2YxaOZp2EQlqZZTCIFIPiVm/r5QEEYCnhnZbtH/7xMpu6lbRptBWtsRkmwRP39O9i3xPgPNdJc1HPP5gT/6RIb8iL1KA8qBeT7kBlvcbZNqvgTeVokZW54KA7WoFbj+AtUBrTlh2UErPi6igt+9vdgAt9u7JY/cwFHWlcTaPp5Nozma7o4j3R33MCEiz0x3x9aPmMyT1RDtgSqshvqOP0b0bI+TbiYr++1hcmh8VgsqFMD2oRVpO6m21Q1fc1NS7LDc99KIV0qOARIeq3mhuyJWdz4V7Ux6iJFGFHgSQ5mHGPMCU3aPed7vVjoMal0fPZxn81HM7vS6GgKa1H1yyFtQNAlLXTAJckTZVPvk8hk07x9SYzK8zYfmKhn2oYNe4rOcL+rx3xF6vQPcmWV5vky6DMZEQnq6zR/g8VWuVzBU4ftRpTXzvpkXXUtgITO2ZvWI/PKFhDlomLC85amTSpfNqFWdtLjpHEChhZXNlSju4PkS9+s5MgC88kk+7WmOwhZm8CNGvnCpk4HIqVZFOpaow9pqRrSY8rROWZQJzxlqyQnsNqQVYe1373HHecJhK3KuaMN/WbHtUgEPrhdNC8B4nIlCl8jChsQCnDe+fnpBcgVFFkYTlpD3hGTIkx7GDFAPAh083ePj4BlgZdCo43qmSPOMIKVakaMJWSGGcmt3rtRb12CvwxcYJFiApwqoV0gr+q2v9QH9SNUWxKVuATPYdTu0PQI6+CATa2DwO6YJ54V4t7Y7S8KgyCdqxqZW96DMhA+XQuoXm0Y+Ngv5CzHILLL8jlqyGwHumUyMl47x0YdOhvuYFUB+fWD0DlY7UirAbVIGOJ1LDQ6SIpw3RN96hxItV8C8vqX+vQ105dM4OKuzeZYxXXDnaRHCfQ7e0W7L6nwy0rXOZtQkBYlBhvfcWWgWaOdkyhpYaorOlC16lh0F4lc3G2g5kXtrguRXz0sLT1NDM+f0ESWmnNPIFmJ4aBITtRqHdI4SXHMUGGOTY5oixt8TNEEpnU7qe17DHjhyTK5oJWJ+rVt15vqbAGwlgObmgLBHntuOY04AC2/NEWwIBzh9k9b5Tfx6FclN83huMYQaqPZsm5gfUot/f/qWhOFcLX6/DH29e76QicUt9tfoKZg31EGlf9JwaaiNc1inyHh4SAoDaKEJkh2cPOG8TXl8OynsFgCxAP6VeMe91JB7yakK4vxywGgy3XTKwEcAA322Y5oJaEuqaNMkNRPhoXTO+/nCHnLRne+aGrTEeLodotXswDq/HZca6ZhDBmnZpc67js0XDXSXh8tiryuS2KsTWLEKHQarwURgzRGGS/ES2eSUESuD83boW9CQ+upByYRvW6GofHoWcCbjRo1BIqd5jeyam5EwIk77fBVL/Mls6s8zmjxXl1bIqybdVEgNdcIUQuXRLvEavCvRGXwloDCPNHCC3Jtx3CW2bm53Act1PiEJMjb1TVzro7x17qaCp8oj6Bisq9CuY7j3EV9VydSofD8X1SRis66L5olhf8zqoAa2Nns6wbm79n0xgOZcaIepYXDlQ1PjYo425JEMjOV2KziGZ19q9RK9gx4B483mqs/fcQKCuRuG8Q6x5iNXgvWNoS2tjoFQoQ6i23BDKLcKb8uf3kFTUa4hBmq0rpHuBwSxdATooTN33nxs2zep5FH6ta8FVcPN1914UwXUdCvW8R1oQbRCUvXrYTwRgCP2WI+1pXL6F651TJESaD9kkBeS1CAXtQEqGUBL1XCCEVkg7HRLAvODZSWs3qmh1+yFVfP+LV5i5Ym0JS9VpzdQi53IpEy4lozbGsmVUIWxb7qvZoFY3C9qSsAHap/xi5plZrr6zSlOvZikp0JfVoMKXdcJlnUAkOEwFt8+eIEJ4Wqd4j1/SCLIa6qqYh5C12I+mBlkS+D6BN7Lwlc2jIXTaJHq4LOnNCxlaYPCIElCTjj2ERFWrqAtPN+9C1vbPA2G1r8+bKi2hoEsZ4/nCfYyA/l0TkOYx2f95w75YzQWvUM/TDJYaW+iERA+7W3KSgWaCwhFG5aSC5bqQKxBZyRRY6o8fT+DQ17WH8/JZx7c969xtXHSc1FSxeuGZKyUPs/jv/v35aaisToTqOSpTck7yGbmM8b6+XL68FUht2MK+ne2f904flXF/UMu9HNFDmaYQvabBPS+3iEMgOwjBvBOnsInCwtrRU1FwSGTNycYZh4FJhtoPYxuoR2CbHImG4EuTASobW9y9Da/hSA760OfR3JWulcKwfX0ooLl0k7q3ZV6EMKLbolOz7KDCYyTlIsad1vdZV7y6F7aAEiMMEN9jPSfTFXkgvL7Ikbx5ifSQkxhCSxrQCmuP9FPBzWFDbRRUJzITWiMwC778/AE/+OxjMDWUliKUlLkikeBcJzyVORLogOZeiDQBXhvjvEyoJWmOI2siXA4m4P0z3qL34OYurIRZw0aX8wzihmmqSKlp7/WHWdvn3hTc3C1gEpyXGQ+PFiMiiXa/riSJgHRTdAyFNSQF6MaqpIrtpmmowRFaDQBS33xDbwgtZJLImQBQK8y8G+2b4m61/X0bhOKmgkCSobKMf8lddC1OG5SvH7hJ79dmgRybKg3vJGlj04A2sJ3s/6Y80YB05u59oQvEMFrNIgb0+8Lad8Hi1mjtgrCZoqmzCb7iORD3AvatBFxxCXkoqSvM/gw6Tz4mSaK5Cg8PbeoN8oJdBz//rNZr0O77Ri+Cq54Hku4N+PP5FvD5qYfOOebr5izEHbFGIWC9HieuQRDyqgoT0PDMetPH4NXa6YJAnDm/Wz5bTiEJQKxzzhQdEIMmBKa4pVvtXAXlYCABE5huIGTr7675F0cBSgjw5aXmo9wI8dCVzx8wtE6g7mFNj4hCQQ/RRb7Kt6oA0SnUt9dgJHiOa6SR137z0vcu9P7Tk3s0b7Zf8DVwg8q9nt3atGEPfMb1zikSJsFp3rCQex264VJWT2TOFTlVNEnaGXFgL21Nw1H/Cd4DgKgUn1LFzbQhUcP9esCrJ0V43R5XvDheUBrjYTlYHQdFon2aaoSgLrlhnY3KBAjiSKn2fuqmuhvvaIxSTCkAyKei0RISbMbbVUvSMJXdmKgrTpVYpAI3BIX9buEsexEArCmWHaYskTOgTT2Z4a07K4ZWq2YH+veQekM+rnYAIEYOaQn0sHzdSgJ6AhuI2oWYl2YekdFJ7AT33FsG+yCp2LhMkLasoQZKPZzmQr4lQPx53dIGolJcBbaGPJQxFSFk8nmwBKFCcV61ur4laIGhKQiyEB41AKsq4bR05Rr3NcEvDMidMQm0ziwMoCe/h/CZh7VaQgAU5nvg+M2xaZeN03m7soZvdh6W9JxBULYcB2OgefJblej0gDA0NoO9ejX2WBAXqDlTzPkJ+zoOV/DmoW83hJbUqBk7Pnq4zxVa5AY2re7eTowtW52F92AxtJjudcJm8N9qSnIMh1EF5ldqNOWzjdEtePMAwtNxESIq0NcMY1SmobOiGy/jpu+KPjlnlkhEFJg78WI5aZU+FWB+7MWSZRpQYlckn5Ej8TlbdZA9FNfH/XnXO6dIALVK5qxCXIRQqlKREEmgmpiAeSqQSZFWW+RTGp4fNIO4VOXWqo3xsM6oJtAPk5qrtRG++XiDxEqHcnfYEy0uNeGyTtprxIXqMMb4afsKGDYlVNlMU8WcS+RdRKgrQN9wScz7UTTXuia0TcNZSAJMGp+g+6z9U+BoGukQWjIls2lFuBwa5K6pxb9p33iIKodAIBWj3VhMwJMJ6xH2aD8D8XQSlGT9Glx52v1UeJn3Yha+s+V25l8JyCkZagukh5XJFEXlHXzUY/ih/FiT8Vy0nwxtiOQqYF5GQq8HKf3sK2leT0772HqoiHr4zYXXSn08oRR1samosOXNYM/OxeWhnapFimgUTdPKrY7Ju/ZFTsOEyJi8puIeEEUI1b2YcqKYl+DaGi8zTELRR72Jji9Z33oSRIMphw3nJ7eeR+9Kb5uMv00YRgRK3WsCol5o7OxJpiiiJ7kh4erUwQG+Dzyk5gWMddY10vDl4EX4s3Gfv/hOH2/0+NDn9J7xdSLUte8H5wnzZdbmU/pFmkDXtYzmckDU2wDqfWBU5PB16YqiJTU412cUnvi4z3e1VRYCnM5aVxT0LzwYg+4FXa/7W65vmyIhon8dwG8C8HUR+bX22u8H8N8F8A17278sIn/B/vYvAfhRaMTx94jIX7LXfwi9Q+JfAPB7RUSI6ADgJ6G9378J4IdF5Gc+b1y1MV49HG2MKoxPhw0vTuo5fPJwwrZkpNxwOq045KrC2RBIIoSlZk2Wm5fhxYKKAFOB7d9Vm4Y41ppQGuO8Tnh6OqBVimJBAKiFe8W2h2RyAx9rAAEiP7IlyJpgdY/h5ehPADKQN1YK72NzLyOJ9aoX7UVvNB8kXYE0S6BTIfCFIuwzon0iSemW7zjRrEK9ezX2b4jH+/vTQlqECD1w7WBJfWtMpGENCuHgV5s10T96LIRuPeoL+gHlwKLIt7TI07hwo8E6pggx+bO5QIcA5Vbhy34YvTWwPycVrVNxuK6MiqT5ZLx5jeGLqIBPRj3j0cmiUTsf+3jYebM6n+sI0g7WOizJIDC2O3txXOMG0KLCeR8KGazuE7qVO7RTHo0Dn3NJ0LyKtXIVqyNpo4AcDaWqnkwovSq7ZwvUVuxJiXX38JAwR86sNS2o7DkxAa3mLcmV0OzHbacgo5lYEWQvtiRt+DbOk7cr8P2rhYPo/WC82Vp4jBT7uIkp4CrIlk8pR6130cLY3qVU8x0WHkVvR7ADE6Cvxfi799Ah2xDe0dSh1mO49vOub6dH8scA/DhU2I/X/1pE/lfjC0T0j0Bb5f4aAN8H4N8iol8tIhXAHwHwYwD+KlSR/EZou90fBfCxiPxKIvoRAH8AwA9/3qBSanj/+dMbrxfzJl7enYE7FfDJFEMTLeZrTWlTPno6AeghJSLBnJUwca1JaduHTBiNUtd+EyHVMF5gNlVgtnjJoAj8qpU7eqsRwIheJI5C2y5ZPQI2okXbMDypFCGWSMy7yUVmxQOaTI+Yf0PkDxwVJZaHAIB0UWr5fkMLdaz6mXrUJDxYrF+DeQM+B9TvVbxZmCBgxwQokgQAWMkBffJ202lCJj0ZsmkyFBntFVRYltkoUqzWpEFDblKxa6h1fZF7ZnBGXPv96HmhnrgMwSfquXhhp1vkwJtCS+ePete9QUC6ghvBAQ5gCEGUBoXxNkUyKgdPxrpgMYXn3wtLsPvajpXvYyJWhrX3/4uHzAjIBLSNAp00zo9fEe4bwkpjZ8A3nmk4FgI1Bl0wlmznonalzVWQXg9jt0r4Zp0gIdC+9Fc9NxypNY4xLYL5Qdl7g7kh5teJLrVfej0wVuGOPqv92cqxF146u0HMH8N6jOjkXqP13AshsRyJV/XH/fyf9sTxfj4YzswOjpx0H6TVWgOLoba8P1D5DudIROTfIaJf8S2+/TcD+FMisgD4u9aH/R8nop8B8FxEfgoAiOgnAfwWqCL5zQB+v33+zwD4cSIikc/uwiKiHFUOnfXaD0+Me4jI+39sjZFYixNFtNhwLX3aiLTp1PqUNWEtnSLFR8KsXs9h0u9jbkBSiG27mCY5FsyTqv7wMCqjbqzKIQl40jp8HgoO3avSYkN5I0TmCohYw3IpCWrRIkW4B2OhLRnal3qeRD0Rr1PomkCSVSIDu1h0Pbpb3oWt9wiPEJL3m/fcjHkqOqHoFvyQtNUQkd3bLWobnwDKNSXD5+ECnAJGmlZAit5AnLfJLf/hc2E9t344R4vOE/dulWPSG/CEUMS7UJUrl9LrPZAH2LE/j0GMdX77666AvDp8DLOQKHyUzggLXxJAW4fGjnBaBTvYa4Zycl4s9Ug7VYa4jOJhDQYPaExO+zwpMgqBmFJBRt0A8M/7mFzAjcriStBJ1tfY94t7H7ZPHXWkoVUVfvmsNDWjFxF5pXEd4a91PjMPUXHROXeGYslG4CleuzFaAgRkaCdKn7MR5OB8VsN+EiNYjOZlVgUffG8TxXNqhbtNjysSa37mzxZnzJ/5ylDpZ3dYN5u/lrV7Y+xzU/ynbxbMn+xbVrzt+k7kSP77RPQ7APx1AP+8iHwM4CtQj8Ovr9prm/1+/Trs588CgIgUInoF4AMAH15/IRH9GNSrQf7SCzyeZzALHll/3h0XvLC8xyYJm3kazml1mDZMR22A9fX7Ozy+PoKS4OWLR7x/cw6CxypOi8K4YsUAgMihTFNFSxKKJ/7uCsgUCaeGw3EDs6KytotKET61SNIDsO9nrY4vDJ4rsimWnLegQ9nBfs3raRtDVu4Wy9Xmk6xFfeHD+1iTgLxYzIoYx4srer5lMgVjwlST6dBCRLMgXansQmbjpi7Q/wyCox6NJl6Gz4+QYEFPzptU/MyY7+j6u6ezoXsJNgVRxS0AL7RD1wBuNfZ5TOvV3BSAzxQH2JPe5VawvK9Irvm1FjtKtjBaklCcoeT9GQnh2fKmyvJtoAd/BjLGvrGWpVptwhsKdVAemjfqIb42I/a5J7clKUx5JAoMBJjnPe462iiKEA99DG8Np9Cg2BLQuHNxTU8NIIX5NiNpXF5yD4u6pzP0MAegnSmHfMqYz3KuKyIKw6IBHT04INpcaeyS1778MX+6bsmVlaGhPM+mbLxekW7esudIBo9ll78YPEXfa/GdNo9uIPh3SALWO1ZKlQaFjteBuHO8HZty4QM+7/r7rUj+CIB/FfrI/yqAPwjgv4O3H235jNfxOX/bvyjyEwB+AgDufvX3yJdfPuwo2G+mTckVSXDKm0J7JUUi/VwmfPPxBrUxmATPXpzNkxE8rDMSaSHjRILaOCjemQzyK4SnZdaCxbeErQD1Wry3iV+ecwG0HbDM/bOXdQJzw5wr5qynrh4KWmbkqWKaCghK07IsZiUF3FnRYBCCLAxaOBBPDkdss9c5iJ0gy5NYBXMIfN+8XttgdCqSBbtCPHufdzr0RDiFpyLxEyZkUN/8HhrRZCbIe2vg/r3egtQN13pqYQGPiiZi4SxKvX1Vl9ESdDyDgFUrfm9h7vYb2/MwAvoMMpp5tyD9eaxvh1rBPbTlxW+AxbyN5dgfvQ1hxhAy1e7R7NFyv5cLSG0xPIx98HQA7MIj6VFzGfVAwcT8thwZyIAAA+ABULRafsQ+tFaB5M+YvY6ke0oA0A4aPnQPJ2p6aleC/t3lCLSJA+IqyeZ0VRiyh4B07yEaNdWTzcVmvVKqdDhtzDOZQNdfeXNaGgloc6y5KaEYgysiUaXnr+WzWBM4wnrHvReLd/VcelW5w4Jjr5ui4erKSJBWg1ffGFOw9L9zgXKpoSfjA8GVzNsJ774TnUa+hoDlBePyHj73+vuqSETkF/13Ivo/Avjz9t+vAviB4a3fD+Br9vr3v+X18TNfJaIM4AWAjz53DFCvYascNPHLlnGfDtpXZNpwSAVbS7hfDthqz4PkVHGaCm6nFQ2EpeSd95KpYYwOuSKojbFwQzVkmJ8C5+gSIZyXCefHGSBgmrX/e2uMtWqPkLolNFMI6aYg5w1EqqRaSUr6eFpAJCg1odi4s9Hll8a4nGe0wmhLAj/koCdpc4NAtPnTleBGgvYWYYGsDF44ajfUuu9UKa0BdLQdyIrtJ1EqFN5sk3sB1HC1IWwyXh6+kQTIpIkTpTIB3Avx9/CmAluyK0GlDA9YclM3Qxhot03HZo2ltBDNlGgStFsbS7O8xRC2CcvVxsrmsUjqYaURahuNrewzUXE86SFmUCShqQLJPDv1VFxg7HmofG6k0htz5uuiCV79TD1aQagnjD1XY/9G/qzRKneOJ09Ou95ygkd/HpilLHDLl8LadfivVl4jBJx7Q8lqR7y/SSjFNigSQ801a+kc+6PZHBjzsPaod6/JCvisfqIlQ475GBZ9Hlc6nivRyvUBGNF6jsr7fYyCNn7amo/UIuVmKHSssHwkdaJIPyq1j6FOhO00kFdWCc+jMSE5Kq0JauIg0wS64vIQXpvUowABvGpdjO+hjpozZuPBSJkfBdNjG7yXT3Ph+/W5ioSIGMB/EZoEPwP4G6NC+E9zEdH3isjP23//mwD+P/b7nwPwbxDRH7Lv+VUA/l0RqUR0T0S/HsBfA/A7APzh4TO/E8BPAfitAP7y5+VHAA0fvXo8ReMm9yzmpCf0UjKeNm2x6/07EmtfDyZNyj9uM6poBflmpI3HKSFxQ6kJixE1Js+HQJXKadZCx+qegfSix+XhAH6dISxYbhJobvvaEVYFQtAciXgyDsr9VRqjWJ2KezcihGWZ8FTVVPTZobmhvbBORQ2adGgEOlNviOSWb4IWKXp4bFZElRaAQTfmyjsBB2BHBMer3Zck4rouJCAENmy8gVXQrixeRdj4aUGEOMZEf0tKmQ+z7AX9MAZyCKYUDBCgiWHzHIaENa+9SLAnLxFhjVGRjIlg3gBYjYZS6iCoTrq1bt9x7sy/njvg1XIk/r1meXuyuh5IBZ2HXzDMuSn3djDvCoSIuFH3PnaJ1jEllnXunZ8p5tr7eQw5DY/xO2qOC2G67/mdHhY1NBj5vPY5u8Kf7CqsPb9GgggpjYIu8k9ivFAjoIJU4CcLFQG2X6pa4G2oKpcEzWtYDmfMN6SLKabWCxK1qhxDzkZ/piKRn/Bq8rQI6JV+/3arnS1rAtY77b8eSyNdmKsSFOTF97QpLfQwmoZDbUOLF2MSVutXD2+T646b57MyocILYy1vaU3ceFOF6/T0vteckqV9C+7Gp76FiP4hAL8PwD8F4D+GQnaPAH41ET0B+D8A+OMiI2nA7vN/EsBvAPAlIvoqgH8FwG8gol+nQ8XPAPhdACAif4OI/jSA/wCKGfnnDLEFAL8bHf77F+0fAPxRAH/CEvMfQVFfn3sRuZBF9FYHEBTwa0mRcC/WUfBSJ4XJAjjcrnh2s5iH0qLu5GJIrWy9RwANK12sz7qHtLxfejNzJKjpDxX4cu3hLNthtWr+QoBdz3WH+26rQpHZChynqcXfAGCeS0CMfQzrkrEtc9CF9MDrYDHn3r418hNuGQO9HkS6BSr2NhCQrK6EAJALCSFMJiidq4haR+l4yAEO6R1CMpG/cE/IlYRbrp7IJttBw6UCaP+MIfzhHksXto6ICkXkn5mHMeQucAK9FoIMIBMG9UAg5zUiFwbUn909D9OMwvr5wzcVIVSOhMuXepFg38jdcveivTaRFqg6HXvrYw8v0NNdQwI9rd2ar9a4S9dVdJwT4CzPY/7CW9OCtBYjPI4hFBV8YFuveA8jJSNa147vzasqT/H8ROTRupAcDRdXPM1IEB2OzUZV78lrrT/RfEA5Se/PQVd7Ch46tD219H3gDLpjX3PhXqviuRI1HDxkabQ0NCjk1pWn1qEM62pjyRdtVuUhLjHFXg3A0NIg5Kl7NWEECSJZPxbRjlBm/7wn+YWh4BG4Aus5ps+66NOMeFMEfwTAX7m29InouwH8dij89o9/7rf8ErqO/9BX5Af/wO/aFfa5YJZmNRobg3LDdNQQUymMWrRQgZOYRwC0miANvWhQCDw1TCa8y5Z29ScAwstwtBVxiyrvN1rnipEn+uz7nw1tRUlwOG2YpoJty1ge56A1YatlibEB4KxQ4VZJw2RD0SJVQnrQvudC3VIfLddRII3uvIcAuuClztME7MI9frHHxIdn87xAHRSJJx59ahwiG/DJunfLHU0FWCFkVFnr+yUD201XBFFMCISQG5UVew5k9JBGwTxeb7GaI53jgm4a3kdv4ZjyWgzL8zhZJBfRjnnmkaQNQR+iFmbvEhjK18cwCK98FlV83C3eoFqHIYGMYyo/CfIyEBeat9CMu6ovptWDZA8rAR29tpcvZKEir7weWQAiIb1YGMa9E0PQjYporM0Znz3e63tksNC7l00B2+bN5qTq5732w0Omrmj0g3jTmyLs+Ml6SM5bNisU2K39UDTDxcUamZnneb13+n6xHi5zp/93WPH4Of9d2QsowmdBQnkVmvN1ca8nikeb5ZpsT/61P/Uv/LSI/GN4y/WpHomI/PbP+NsvAvjffNrff6lfo2UPDB4CgDwX0AF7K75psaAqHGfAJdSVozo8HTRZ79BcEWA7T+DXWd3f1VA6s6C+LBa6Asjwp61qApwIgNWBtCWB7zOoAPWmge6K1odYPQiRFjLWqsB9yg1gvY/nU2huSNNbpJ4HaMWEsXE+0QaFZh51rJ4/8PCL5w6mB9JOeclqKSYJSxsekjj1EzHG+COGm9+0joUG4e473ZUDmYC1sBkXaG2MJ+49BuLrPIRKqvFRRZ7GiBm9b4QneAEEmV2/EaLgjsQq1y0Rrkl+xMGMkAyGMVooqVWg7e7bw0ZROW+hhfyE6HgnqUNCx+JHDxFm8xxYVPh7uMQNAe8fTk3pPBS9Q2p5Gs3GPqzjrXZVkbRMKG4MDNaxW9OoVtAJfZZiuY6oQB+9IhubW7+9JsUMGtGugNO5Xb2ve62eU3BB596YEHXqMzbdQcqFpy/q2nAV8FWho4eV0uIeFkW9kHYXhPGBSaDF8pPm7Zbn1tfc9pY3oHK+L++37vvb19i7ZO6MM58LkejY2DKhHLkTjNpc5osgLc32AnW+LvseVx6AnhnPdfgZzKtgemjgraFNrOGsgMWTrRV1UMdnXN9KjuRvA/hfisj/fnjtz4vIb/rcu/8SvUSAsmXUs0ovPhZMh6J9NNzaJxjtuuY5qle4Vw5CRUoCyk3JHo08sVbGumQLXQFtbooSWklhoAS0RanhJQm8f0fA4gWKevL/j57BagVOuYENPrydp12eAwCQW+RYpBHKklRppQZiKEHlhYMZ1y0wD9m4MGQjU5zuVck49QdIrdLNQh28WsfBSHLq4StH6orGuy2+RaeN/FChcIbwj/Y7R0cmmbWoHEeIBHIU5RW8YTXWg+VeLFbfGVj1LTwknD2kI1kPn89JPfYxR8HbSFZoSrQejP3XQ2ARPzdBuGk1dVolhLyvQXg6giiKc3hwhN/Qn2usv6CqvTe8A6BbwVyg1OWDhe7KewzvAIBxecLrTyLR6saXfSfFnJsXsZpArlfKY8jNuFfQBg/V38ul7dryeh2EKxGfcwBDO2ATsie2EF1vTRtTVGXfwiAUPvWxWLLZiwx1TyIMn/m1RKjNlZ+SPXY3W5tRkYEGdO/mRYDmuSSdh3y2HvBDZTtgXg0GqhwQ1pkCtRUevSnCyInZ3qlzNzbiDqbo/Sxcc5a1pKgsgKMgVL0WE0i+5lfRhLdd3wpqawPwTxDRfxnA7xKRFb2W45fdJZWw3B9ASZBONZpbaV8FbWsrDd6cEDAIr4egmEQL+K6ubUtKlChdEU03G/hZQ2uEsmRsTte+EnhNpkgAIQEODXxQrF4rDOc/kYMHpNX6BgApjLoQwIJ0Ksi5olVGWVNUtvs1HUu02l2XSWkiCJC5QbL2bk9nq+5mrWWI+KoXTw2hnnQmBK4+C2ioFPZcioYJEMK/TaJU2YJQDtC32qKohCGBoZcoDjFXU2BHzdns4KfoB7sdNOGenwiH1yrUt2eE9RksjCMRi09MaBVR7CZmPbtSyEJIV13hdmGn1L0pt2g17t4P3ZhYdkHvFBSStKf6CO0ELFzl4T57xjHMMgrmMQkfCCMyRt7mn5OYx513NncF49b4+H0hbHNXnu4xcO3wVLLqcPcMRuiwCzqt+YBKmkEwucXs4RkvWgUsJOPQcfdUmioJV4RRqHfVaxxAF8aC4LSKUJw9mwMgXOA7keV16Mzzbr5Vw9ukroSrE3f6XNtzRJ932hseCi2XUJJ76K19N1l0AtKNm/A0u+Jbb/fKg612pBdjdiMkznUDXEjVofI98jWkg9Zc6RVZ56dc34oieRKRHyai/wmAv0JEv60v2S/DiwGaGvJUtdiPNFTldCd+tUYoxajmRSG2ADAfCu4Oq6K6Bjp4dq6toUmWFzRWISwE1GxFiOZxSKPoIkjGPkwA0qTQ3lZZG1s1DVvlqQ6nBJDGaJWwrnO8RqwV8JNVyddKWC5TN85ZgNRUiBHQbiraDYBGSI+s6KqGqDVok2D5QBN+aSVVJIKeu2D1NgSwSmAVLPUkGv4ho0ofD0rqhyoK7MJStHvrR1HRDz2A7nG4YPSD4O8/Ak/fa0LPQysE4EDaXZJ1bLrI+pyjsAd5qI7icLHF/CNMAGUKcMEME6ZUAG6iFdAW3nkj5k3oVB2pf28IcX9vxtCLAm/E60P4kCNsLDRzMe9xVsvYvUtXTlys6C2p1+g1HGk1Nmyr4I4EeeRTJNYI8eydRh5CSFCDoQ0x/Cgs9KR50/AbbzrG9YVa0mnpYbmYKwxzx/tnCSp9E8au4LhYcZ0ZODVThCHDWIALc33dBb4DHYAedgoBa3u+JTO6fB5EDQDNJe2VVXhdW+/o6N5DCGlWmPb8WJV6ZeZoXDV61dfeho5Rlau4ATEBKOqVJgtJ6h6gnecbwI7RE01+LunKkOyeyWdd34oiUb0o8r8gop8G8JcAvP8tfO6X5JVSw4sXT7vENkFRWwIM6CoKJdIVhQrmh8ej9k4/bJhuLrv7M1m7XiE8LjPOl0mbaeWKw2GL8Fhn9/Xv7PeI/cgNyfh8AsFlz5ByQ0VDWyZgZWASTKdNX68U3lEk9IFQcrUyKqPTyW96QuupoVn71t1JtgMha6/haCCl+bDN6N356o0ePu/jrh+EagT4ZtL3bne6Y8lCc6PlHYfRPuOWeFp7h8QQxqSHXAhWFzNUzBeKzwdvmH2GAMAOOCwZDrhFaNbqWX/KrFxOYwIUwI4KxpFp19DWUBLwsWJPW2KKrB56EWIkywlYX3TpGqGiYmvhiolM0S9i1jqF4mlX37WbX4ZWlXv83NYAGBWU5QbKOHZVInWoKfG9457GGDr0e7ek7W53cwardTlS5GiSr/HoxbilXjp6iqvmESJsZrmCcuiKx/ucjMLd5zi4wRiRy6Cq4afJay1SV2SxbpG8JmMSZlA1Ft8i3ROyz2UZ2jhT/y5/tnYgSNEuh4EyKxIsyMXzF/4M1O/locVp0X2/vEg7z3K8dh499/2bWleejuZykEX7z8gj+Z/FvIv820T034DWb/yyvESArSqs1yGyh7ng7rigifJwFevpPhmMN3NDtqrzoJwHjKNLFcfdvCJRQxX9u0OB61GV0nnV2pRrWhRHb7GFznyMQWFCrRckXnS55KDShFlw9/KMPNSqOB+YKyvn7fLv8vcRCZBgsV/o5tpYazCSoN5VYG5wmnhNSBu54iD8+sRit3HV6nNpG/u9o8GGz2mPeP1sm0UbQTXrFWLhHP9dSMNYADpE2b7QQw5uRQJA9EMfvAP3hDR8o94UDZ7JiOQKz2IQ2J78JwF4oV2hl8NR2zwcdOqf02fuz7W773CN/yWfR9b5AwBOPeQQiKusQjoaiBUV/p4sVm+rh75CobZuiceyUBc6krQWAkAfN67GbHPesjalCkXhHpd/zr28zRLAN+iV4DaGahXaYw5Kva2+rh568iZckoDlhnc9N9Sq7qijCINOhOWFKgDtZKiel/LH+bpThHW00HRvwe/gtOZZSiYs76ny8HwhG9uwgh0MkbYJIBJhujYRthO/kYsYuxOmDcDaujFg+aFerT50TuQ391Pswwbr2a4L4x67kOfDqOeVGNiOCA/ps67PqiP5L9mvPzf87tefv37/L5fLubUSNyTb5U5DQiS4mbb4v6M9fv7+GT7+hedAI0wvL/jyy4f4LAC7lxM/th3ViVe2J25YS0apjPPCaJXBqSHnFgrAcyvKjSXmDakiSKkAx/1pD4UArXAvVssSDbvQvZDWCMuTcnGhEaKZ1dRAloeRJCgzh1LBwlq1PjcVYgRzPbCrHVGB5L1LzBW+rsY2wb0T8n75+8aXkqDeCoQEtHG0m1V3u2uriF83RS21rAovGAaCI6UrimhENXxhHB4f3yjsfaltjDSw9PYbmEKA5yFkUGqKhGkHVZRUBbxQKBJ/8HQ2tmIycMAsMY74/gjp6P2okUaaXCm5wDAYL9AFMlgFt9NyjD3fPa0WDZDscxFSs8utdwBGwGmve4gLXQFpuMqm/zh4L/4emNKug2IDgArwmEdzT+PG5sDp2gkQ5j4+E7Ad+uugg25AaCtbQ68Z2KScBgHsY5A+xlCKpdPBa5LfzpjXuDhgo+nzbs9UyDuwIoAY3pvEnq3nvpwCpQv2NutzpTcYITrjgiMq3Vjw6vvoVulz44ZSc1CD1Q25pxUGDe2e/drIeNv1WR7JHxx+/yEoyaIvmQD4Jz//9r/0LvVIOKhP3KM4pKp5j8YoRp1SvTkMgNsv6Yk4TBsIygr8uMxY14x5Lvjg9gmnvOFSJry+HCBCeHZccDcvaFCP5LJO2NaM8pSBwqCbgmwtcUvrXoSTNo4hNa/E94LCsiaAFK6cs6LFypZ2NPIEoEk/EflQgIPmg5rlXkASvFsorJQirhCSqAB+SioMJ0G70Z3ZvD9Jo96JkNBN/ywaV4dZ1L6h7eKCEKaR9Lb3ZrPAQ1Wzeh+IMIn0H0L6P1NmGpqgoBxxriulwx68EEa38AkgobBuHUU2Wu2h7DwXYmEl5/Xye/XiOgphrX1DCG1Rq1XYqDYmu5fxdinYoT+i076kDYr+mUxgExSSPdZ+uNLxcRaEpzSe2nTRUM8IufZCPQiAo/ZxD8/symvy9rNCrpRsjT22XtFZh1lb7MYhgr4e4cIhrJSMgVgI2J4TtltYLUvn5vL77AgGQ/H3hL8wdvUg1PTc97ooCsBEQGTNowgbxYV0VU8oeSdD3w82sSTqzaStf2/NKsTnV2LrQzh/ySrXvTiRe7JeQ2luFEgvUt56oeLoiQXSzsEnduw8oT89OqJtyMc4wg66hwIlGcoF3ZjbGVi7k/ip12fVkfwTcTOif19Eflkqjk+7InSEXtWeuCl547x2Knn7Wf1nYzytkwp6aOV45oZLyVhrCoXRGmEtCZ+ko74vV7y4PUNuCPX5m+zAtfW8SZ5qeCnFmlLVyDYLprngdFqV3ys1JOPxWku6yvMA25pRtwRiYD5syLliXbMSOVZVGm6OUiGkC3drLCz8BpkEtBHSo4XXUq983xXskXsk3XrmlTrU2LofCiEo59WRM6V2Vby4yy8A0WXQQy6wFrN6iExAOHTRE/no43Od4Pd25QIgaEKcadc5vKJOxEIGylSrA0sXRPHcWOVdbnrYja7Poc9ZAAZsHmpXDoA9dwa8awFVVQRjrB2wmhN79jp35XdNbeEJVE+h+PNEr24Xtrb+/q8N993JFX9mDHsA/XsjZDbspxFMMNaRRDjKn6d2ZecdH3dtef2eDVG3Ea1tq9Ga+HOa3HWyQp0np4bv+9TbD5MpXM0JKWHlNlLhiwl/5+iyNQ8vww2OyOuJNs8CdjmWvDn7rxiNvK+T5inWO0Y5qaKfHzpazkOr6x1rN0Qgqv5JsC9itnXQvJjmdLzboheixvdebVMPDb4RQXjL9a2SNn6+SvplcmVu+PLtYyCqAM2ZrE2JD59NC455QxPCWjMaCPfrAQ/nY7D/+sUWWiILX0mEqHRJ5lxxc1CldFmn6NneLFfikGNAiRpvjusuXFUilwO0mlBX1jyHEPi4xX09jDV2RxTo72Oh49ImrDxBBFr5nhukMsT6ttNAM1K9Q2JViLDGcgX12EJIx0EdwgFqXdMb0tO5ubwDIy+E/KgcXW0WaxLUk/mBBrNQmSO5GlPkehSGLCGQ3ZPIj9xhy84JxlYxj8FKdYvVxt4XVoUKox/CgE0CO9oNb7vrz+/CVwvbBsW4P9s9rFG0mA/iz4PuDbiiyf1v3hXTFQEJtMJ9ELweLnGPpB560nsMh3gRo4895tTyShBoJJMs3NIQlvx4Lw/FuQJ2T4o3ID8a9cpBeaqoAWwWfh2ocSQjINVOlLjfQOhQ5WEO20zYrFEUrx0m6xcVIAUctyeXQ8kNChWOCoNb8NgZStzQE/u2BqO3Gv9ngDZvY9vXZSxMjDljUo/T1kyVK8f9XXm6RyHmUfm4Q7nYfOicoGuFrnt6F8UBps2mzLTVrn7OIcpclLwxnz9fk3yriuQ/N1dpCb94/+wNge3MvB/SrXVFpEiOp6T8WTk1FGMNJhIcckW2XerdFLe6T6iT/e0wFeTGKJWxFiWPrCWhnTWmUw4J27yP/zTxNrmAVAY8NDPTLq/i+ZaxudU1nBlA9HFvosol0GLSvYVAsBiDriQBsX5OLRR7rnIFmx0vArSiFwCLhnyyCXFXekkFuydKo2DR2XgjP2GWINzyAnYNsQKhYHOWgTa3eC3yKZ7wZ6AcBMgClJ7Q5w273umhC8ms59a/aswvOM+VJKsjyf2zbyhGD32JP5t+p9O4OFLG5zBi8xUaqmt4k68qqXcUsXQjpBxDcfkM4DK8Zh7NjjJ9NAauaWUs4UyMnmS293nbAV4BMRi0U7ekRTpiiiWUbzsoSklDLwjlVecBuReWv+0FDGNFH2u6CLIL+tqfj+reaABMKIsBAu5UCYUCubpvvkivBRqUrVOSlAMF0i0g1YRI0IuxFnguQgkVNex0uO9N0YRVmHsxZjlobYeizQR5aXDyRPF0kEFyid1g7Al0XVcLZ5mHpZ5jry9Ji0Q3St8DXHrB9OjtbreM7eZNWXJ9fVay/Q+ji4nvJ6L/3fh3Efk9n3v3X5KXIqSYekgL6Al3DxVtVYW+C+QLsioFbjjNW3gjnky/X+ZOs5L7fReLS0QDIG44mqCT4wp5poK9VNaqefdYLNeR52KwY81rAOrJXM5a4ZeSYD5skUdRh6V7KO71BILLwj1SHc40/LOLGoCVQnj7D0mmEARgYTjPlXsOCkmlnqCNjCr0sHoxZumn1kMBvA6Kx4vRrO6DivZKITcGefi7D3FojBXoV8/joD+jewtizMNRKU7QXiYETVQbFUd+3PcIiefxg/ZMk6oRyqgKpZQhx6KHuRf+jf+88t9zL/ms99Z6jC5QAQDFFJrPG9wjGRBng/HoCdR6UKXNlVTxXXzO7I2DV8WDx/K2qw0eVssAebX/MM4eWiPUqVO75ydVuFqno98zPQFB/z+FTRPPGazJBMihMwD4d3oCHYCy+MbWMiG/dfr0cV7aRJHbCvDAMKcKVLCwzuAdOltAL5i091peycNdjg7bCWaxvNJ8bfxQV6K2BoC1vD0mcNXQFy9GhbNpS9w6c9SJ1BkBeW4z4GwA/j1Oe9JIen5vImw3FMzDiO8fwmz10/fCeH2WR/LXh99/+vNv9cvlMkFNgtqsmJCAZBQoyv47qccxKfnieZnxeH+ENCVlzFnpUJ6dFsy5IE8bXh612dVH5xt89OoWTQjppuFkKDBv51saRzfFtaSgkQcwILYaBJozKWvugr+Qxv23jLoRJAvK84J83JCSK0iBcOsMwaagiAXzoUSOZH2cIy8BLzabiwpSgeZPnF5+pQ7HPeupa1lQT9Lj1J4wJrNchxBHftAQlmRBuRnCY77Xq1vu2h+E3WIewgvhsdD+wAOIGhFq+r561yJ3EoAA74kC93ao5ymgY3XalDKJUtM0CuoUT3SHMvGD1rqQiWLL2kMz5YgACbiicSs4Qm/oXkpzoIGBB1r2MOPgjTXs+tFzwf+PvX8N1mVbz8Kw5x2X7u+bc67L3vucI44kFIGRIIAJRkBRcS5QxBXsBAOVBPCPQIGCDCEFqfgHiLiAiosqyIWkjMpgEYORHG52AiEpqQDZhUmqJGOMqTLGEIMlS0fXc/ZlrTm/S3ePMd78eC9j9Fxr77UgcmmrTrpq1Zzrm9/XX/fo7vf6PM8r+hO2JmbIhhKUT6uMAN+g91u0ZOVN9dDPow2SMMPj45uXwIZrwZDrBgAp9IyiTV2g0RwJhs+GReenaMmJBtjsY0PvmcroOBkISiAEYTdq1pyPNa9rFueKQP37eG/wbX6HN+4jCeJrhZfqygBzNiduw8lE14w9WLByWj6zZ7Dbscvv2LkZB4eYd06dSYmTGcAxwljpHyevI0HTICkfRB+ua9LBm+9WOjMCa+fTdOHON22f1Gz/U2/89E/CrTXC+TrtXqs1SAkJcAQTRRE7DLGJQVFdrSd3F3zm5uylpQZCDhXPpwuS/vyapx8CABI1H5L10XrEpWSc1gkfvrhFLVJKoyh3SV2iEAsBMexmCE2OfcjpOTP40ICoKr9MKFvAtsrc+BAE7RUCYz5swmdhyWLWRS55NOmVYWO7AQkg7SdwJbSsCC81YsRyXB2rr04kMdqxSaZgx9yAcA37yYvT/saUElLPKKx2T9r4b4m7EQ/cyzB2TRNEtkazCl8/TTU4SMbkAAdzQFo2A8sxWiObNiBthFBpx1tx1rNJmQC9xk9yChatLs/hfR1vJg99JbCi6jI6cmyjPhbZmtCWWW3wMiEIzukxh21imfYdIy/D+g9+DpYt3cCb6f59u/V59DsUdXQVI+U1/7iHFTvJcILX9Q1ZRo0EJnuFjhFW8ugs+7D7yVFglmnZOanTE6Y4uyimGHzaSdeYETf7aoRJzxYALf0N+mNWZjsQtid6b+jaehYDMcqODLMgJqmDIkgANvai9DgFdsxglgzRel67qJ8ABoHAA9gh7Hs29j5zkgNiDSDvV+2kV+zYD7RTIxbH2x2aBYcgyba3p0P08DHbJ5W2vhXAv8rMf+c1f7sF8OsALMz8f3njt3zKNmF3k0vDx9Qw3y5oTYxxU4RRq4TWoog0LlLwLMcVz2Yp/L5YjlK6SsC1JkwgrDXiWjMaE26STFIsOq73vAnaa5o31BR8AFVrhPNyBC0BCAzOorvFjaTx1gjM6lgA0E3BdOjlLNusLxMCe9lORu3KZTZZmG2LWK9ZmvBDeYivUfgjDaCFQJXE6N9WIDEo90ifr1F4JoGFIJmbwIcXhRBHjbaTZCA1MFAI8SEinIM4hyN7ecq5KFrbqBFoNxWcGmgNSKegjHZLR9Q4JRW9fB37dnAcPvLWoM2BwRU6IdEw+Vo+U0RaI4Vp2t81ch25FN7PwZApkUWV6sQ0A3Ey5mig0XszYSUlxgHbU5lHL0g6yZZaIrABBhocCVdnBt/KdZHmqWQrSfdbZkXIDc4dEX0ypW7mRF83g956GV1wkXpDGoNxb32d/PPUm9xMjDBwjGTgGbT0Ysui0YxlC6NApmV/UXbMJhXDEH6O3h9mIEeNNJtXMvafWgaWWZ8bzQYs40mbCjUaX6YCUcs+vJLzbeJF4dPUeyRNS3UtaoCh2ZlkMaGfv8nlx+GncXNMq+tRALQjLqozqRN1Z2hqCxpPWZbmaD297lbie0yE3DlwiMN+0/ZJpa1/DcDvJaJ/EjLJ0AZbfR2ApwD+BICPdSJE9CcA/A8B/Bgz/1x97X8H4FcCWAH8QwC/iZk/IqKvBfCfAfj7+vHvYebfqp/5BvTBVt8B4HcyMxPRDODbIByX9wH8Omb+vjedMBFjygUbRZknoq/XKoio+bA6X8NY4VuQUhS0J7LWhEBNG+4FjQkfXKWcdVozThfhkczzhptpAxHjkAruFFZ8qz83hey2FrAcCqqWrugawacInhjhdkOIjPJyQv5I7rBtrrg5rIiBdXKjjvPdEiqTT2ZkJhTqd4mU0AJyrnhyI6TM0zLhoiN46RqQX4ZdZFsrAIreeHeiX2rguTozH1BjELj3VhpAHHbZCxr16FeNLSBZFgDU3B0mGkCrONKWpOkfNjE+0kxkr6HvSmVDncV7J8a7YNpFq5wVOnrTUJXD4dyTjZBO1CXlCbvySijA9BFjOonG1PIs+FyOcqtAhUI+SS9dqasK33AfFGXlMaDLvjAUSQeExeDNli4C6UH6HeJIDMrKMhdem/r1gG6E0J0dWYakulNRM4QRxu2qzckMDmtTmvoSW5YwZAthVR5DVbHNo6Ds5o+A8MWevVQlMMq9IGKb+aWco5XBTJK+3cnY5N0xojsX4elAHJ3+cYzE6wHS/Fa47+5+sfPgno1QA9I9I5/kfrZMx66/EzbVYcpMFPlbgPCyQgF47cdl37k+I/A76MeoziSdB5itOp3poUvVewM/65RG08+yYxmyiMeABGIGKknvTkt1xpp3ZekhEAgDf2VsvH/S9kmlrb8N4NcS0R2AXwjg85BRu/8ZM//9j/vcsP2bAL4FYuxt+6sAvpmZCxH9IQDfDJnCCAD/kJl//mv280cBfBOA74E4kl8BmZL4jZDBWj+DiH49gD8EyZLeuBUl/sUkd9s0FUypIIbey3BeBhNSqqiTrGxOFacyobSAl9cZy5YxpYJ3bi44hIq1Ru9NXC8TrteMGBk3hwXHXLCUhNN1QikBZU1glbInhd8iMPhYQVkb5zWgWGqtRLp83PC5uwdMseImrZhCwdoSXq6HYS68bCbZMm7XknB/OaAUcZ45V7TYsE6p603F5ml7uErjvSX2xnE4JVDRm3FuPrcdU9sZWwaA1CHRjrcthHgRJ1FvK+i2wEoCj3XHeA1oIbhx2p60V2/usSxjQpiFXF5EgAIAmB1xRo36yNtKjkhrE0skaU1n6gbBvsMMz/IuYXmXulGtg1FKQDs0FAUo0Bq8D2NOuQ39mnRSIEAF6Ni/u2mPpJlBhxoza6jqd4fSRTV3zin0czCo7e55iHCk0IjqGg1nU3gvmEE6e8PeC+yd0KLOO6wdgrw9eRRh67mJwVcp9CPcCtqxC3KMFG2Ejm5ThyC6UJ2bZPeCldTCxjpqgFEP5JIsPmLZyj+813qrM2F5rpUJdSJhG/pKQe4HRhf5pCpoL9JBWwIeENJizyZI7qOmaK+hrzGW1igA6y2hzLH3u8ZekWYhXkp7/AxgcA48aHSh39ek1whA7/88ckb+DLwhKXkj/JeZHwD8tTe97zWf++uaaYyv/ZXhv98DmbX+sRsRfR7AU2b+bv3/twH41RBH8qsA/H59678D4FuIiN40tz3Fhs89fXCiIQD/aR80MqKN3DWWORGQY8UxbSgt4JoSSo2IgZ1jQsSYpjJ8hrUkTlhK0gxErlTKFcg652SN4LUbfNYGeciS+bTc0G7kxp7ngvM2YWtVZFwScC0ZS01+zPXRuQGCTCPAnU2MDVOqOEwbagv4oEQUjzQlO4I6E9ZoBtocbgmgoBDhuQGZPYoWQ9ENs3A5xDpRkdKZRb2ILDf61fL5/jl/IAgdijz0Nex7dugwv3lYSxJqxEvnyYStM+rFSLDMlbd0vkpJIKgwoulCyaAjBpIgj+xBdK6AGpdyFOFIEbUcjEhuUlqpQLwq1wXyGTMkXkKyhn+QNQn2Po2iX2cY3IGMpRA1Ct6/qJKJjOvlUTM0wl/3f29F3uTqsNYDObDI0RghVHkZzaDeAzHOSJrUZCjaOKXRvqsc+vn064hXtnzqc9rbNAxsUumPFgZEFhMaD9poG8CqJvBKSUfX7LHhtEtozoFiL9XJQcDLqzbgShy5zjFROK71Y2zcrzTxB2eG/r3E6FMNgzpGWDBBfl19brxOlWwJKDdDr8juCz3Ox5sFDTat0te/SSazU3D+hO0nkkfymwH8ueH/P42I/mMALwH8y8z8/4LMPfnC8J4voM9C+SoAPwAAmuG8APAegC990pdGanhnPqNw3DkScxhLFdHGGCsOSbKQy5Zxuk4u+LiUhMKS1Uj2Qjitk4zXrf3unFLBlKobcHttzuJoaiMXeFxjQs2CIsuToKvG2eutBf992yK++PIOITR8mI+YUsWyJZzOM1oLCLE6BFmY7QEhMW5ur7iZNtSm8isBOF8nvHx5FGLiErysM0peGK4/FJ1AZ9GqzlNBFEkW3nRgVt0//fTYGtiDpsq8bSOwSVwr5He3NSCU4J9Dk8ytHRica3cotu8iT1kwpNaj6NnnlhOET6JGucVOZvOeir6PGrxHI1BVs+Z49WGTGscOgikoNHWGilLrmRGGrEIdXKReYrO6PfQzLM5w9KGAfm4WZ0eFepPYHSrtjfRgtLxMs8KNfDlaVG3HR4ORAehEwLlzR3ZCjCqoWY527wDTiyHbGJBKAJDvgfkjkfYoR3KWuhMIzSkGlf0Yggdr/Fu935vteq5diqSj6RwpNThk28zhmNpxM4PvWRHLs/CI5Cn3J/trJh3fPBvGUApkhPN4LJr9UL8uNuzKCY1B1tH0vvoBo0/ahDgrBwE8gu+OZb0RouzPOuC8GGrKp3mLme0/IY6EiP7XAAp6j+WHAXwNM7+vPZG/SEQ/B6+NR3wJP+lvj7/vmyDlMRy+4gmuNSMQY9JCYOOABnEmWQmGS024X2asJWKrUaRKADHYcULQvscxb9hqxGmRclcpfcDVtkWZnBganh2vuMkqaxIaAhgv1gM+Oh9RARzmDeGgvZMSsSzZswbrQzhjfqo45ILGwHXNeDjP0nhXefmyRVxPkvuH3JB0+uO2JdxXPcYlebOdAoN0Rok09aHNdgw5Lhz9tFt5BmiJ4JW9PCcPFQ2wWO7GYESzWB17Vg2vofFvJSrjqrjzMRkRUuLXUN4BIBmLvWQoFBjSytRcWYYtqUEGxGBtx377EKty7oV8TrwPkKrKXDfD0LDTjfI55IHd+FpWKk1QI63J/BCROJGo3aJUaZiKU62OuCKfF+NrZ4bQnN1FggDPkPR1uEQNOpS4wB2Z63YNyCOP6vVzIPZGLYAOToB+BhYgyLH2shF8JDFH0d+qWQ2zlVOgPR3NeOJFz33u7Pc6wq8V5Ze00W19gF0PhYUzYeOJtyfUp1xaMOEXfLinmxIdL7IGpREo27W29GQfPDAJcur4fkM+NZRjwPI0dFRf6Of4mEcybgbL9muRJZCYX4jYpAz9kuu73RLKrZbw7N7kfoys7wWUHHq1aoLeh9bYN6fT+oLYvVNf14x/zfZGR0JEP/d1yK1/3I2IfiOkCf/LrQzFzAuARX//j3S879dDMpCvHj7+1QB+SH//AoCfCuALRJQAPAPwweu+k5m/FcC3AsCzn/UVbE7kJkmOX7SPUFrEqUxYSsKmzevSAm7nFV/17AWmWDGF4rLtRctIa0vIsYrD0d4KEePdmwveO5yQqCGHikRNpOqbZDSnIiTGpurAITRA+xnMQmy8mTdMqYAAd3L2PfZe45+YFH0tQYmHIpECEixLUKZTzhWHWc69cReLrLkKx6YS2hS91+DXbojSX+vGrURCAIhlkBST8x84MdpdAabmDkzOVZBTzl8ZMhqfImlEyCUgGHptI8QapAx0WxFUGcAcblu0XNiAkDRCb4r1r1KCKndDf8fmpzTdRwM4BaBxR3sBiKcgvAzSMta8twjhSsj3ck71yKiHHiEC+tBukOFh6PPfyx2j3Fhz9dXMrFVlU3sWRB1pVQk1snBvghrzjTwitrp8XHqmAmjEnABW51EnjZ57VapH6JqlGlCwZRaH0BRxNqgJA1rOevpq4OGlxQysqrcWF/J5JOa0WxKn02a9j8yAD1lRG7Sydr2gAIDolXkxfg3s/Gg8rp5xxAUq5kgakUspan2H0KL83bIb+45QCXWOCFvwXohnBpqptEg+LdJnsKvkvKGuvLGvDqhkYLsLnd+TgMfPX7P7i4frNGh4tQysT0kyH+vFeICwdzqhoKsTEAPr6x72/fY2GckfI6IJ0jz/08z80Vt85rUbEf0KSHP9v8vM5+H1zwL4gJkrEf10CDLsv2DmD4jonoh+CYD/AMBvAPBH9GN/CTIX5bshvZZ/7039EQBIVPHufMK1Zny0yhP8FYd7fMXNSwDA0hI2zRELC1orU0PSp2NtCZsWdrO+FsD+90wVmepOk2vjiPtywKVmnMqED5cbbDUihobPP5XvNU5KAOOYNqRQUZpogNUWUDigquPIseKYRWvrmDdUJpyXCfcPR7RCyIeCdz9zjxgYOVZEEskXRu+Z2PHVJkrITYmSpTDCxEhPrsI/UVmXsU/UGuF6ngQoYBsTODXwkT2D8D+Z0yAgRukbsX5GT16tAonMvb1uvZUofBsiBt8EFM1S4lyRckFrAuXmsaTGBMoNrCW+etcFiG2Esjd2AfAWRJ6FlYCpTXq7jAJ0kHMoTyrqnZZXrFRgpbpGqDdNDCj0NesVGWJoaqg38M8yqaGfK9KsPbNzEsTao80ywpZbH/k8ilNaSfIakR8A1qxQb1TUA6MCLktj5RArk8ULIZ21+X3owpy2jWU8IsloOUj/w7TPTE+tL644GlOWLpkFVEL92Laneq2He4cKST9lUeNnkb29LUiE78PAbI0ifKKjZbAOgAA8o+gnhe6gCOAoc0XqJGXM7ZbRJpsFIuvLiR0VR2q8a7agwLhLw72h/+JlIF6u3cGYIWeTjdHr5Y+I3gpu5LmrH4CBfLG58T3jkD6MZieJvPy1PRFZHSpCVDUyqq+J3/PA9l6fe/NJ29s02/9bRPR1kJ7G3ySivwHgTzLzX/2kzxHRnwHwSwF8hoi+AOD3QVBaM4C/qjBCg/n+dwD8b4hI6VL4rcxs2cVvQ4f/fqf+A4B/A8C3E9E/gGQiv/7Npyskwc9OD0ihIUIQWoewqfFvOFDBrHjPqEXW71/fwz88fRbXmnCtWQZjQfobtQXMqeDZdFEVYHEWAPBsuuBZvr7y/bdpRYnBs6JAbeesbFtbwov1gBIijmAEDadMcLIxoTQ5lveOZ4TnH/pn2xCyBDAKB+//XEvCy8tBIc/Kw2DpvTTVEQPkgfLyGkQeJgYh9sXYUI5xLz5J7IS6GGUYGENKamUTkEG9xt6QB+RhP1RMB80Oc0PbBGgQdfwwgC6tfSiIsfnxbmsSvo2pGavjkeyoZz32XWCoPIwew9BbQZTmOE/QJ5VAaxB0mmUt+joqQBBpfRADCWBDrJmjArqeGQEUO9rM1pgi+/yaskWUSxJE28u0m+wHaMP/KEZYVA4ePeGBvTzIuaHOQTK9yDtjYL0oc0q0BMRLJ0tud+yG1eQ0BAQgIII2t/45G4R2Mzg2c9BrUFScTLWMy6Brpj2GcjAHIU1pj8Q1OyxHgA5Wb9G1Y3j/YyTaudyNOQXAezXWE/DK59gn03tj06zT+1nJCJTk2dz0IbnYoy3/rgfhgIh+jxviDiS/u7S+fTF352wEVWpS8kwXOHLOSlhRmeamYAwCNoKUuTRYeKz8bGXSEXARr4T5QwEutEmAAhxUt0vFKaf7vu6ftNFbBPHyRqIIQUz9q5CGOAH4Pcz8f3urHXxKtruv/yn8877lNyLHitu8IlHDe/MJn5kfhA+y3uJS884QT6HgLq0IYFxqxqVmFA44l8mVgy+bTEC8rNlnpE9TwWHakGLDO4cLbrPkwk3Di2tNuJYshMUtiRgkgDkXzyTmVHxoluuBUUOghhQaplAxh4KNgxMhrQcDAGuLWPWuMhjweZvw4fmIUgPmXHCcpM/zpS89AX0w6Q1vvBEGzc2Nss05CbGpQSfUSuAWQKF5k7+UgKrzUbgETQOwM9xekjhU5BvpTI5THFNqTrg0VeXlmsXYjrftiOSKDFLCoTkKZgBLdPl5Uy7myM5fQW5CuIT8nZs8neEUXR7+lRIJwac0cmLw1HZOTM5Dj5EYIXV+jwtuLhF0Vfr1EKFDCZKwvpAaT49srzLnXHoOrJIfnfm+R7DZOmHPp9E1kwFUSmjzLEmMi8FkrWfTsjhM4HG2pd9bNfuwXpj2SHZ9nEGPrenn0pmQTnDCp/UWtjt2RrzpptHWxSmjgQMIDpHtkvOqL6Xlvu1OSpG7NRl+t2yKGMLdcYLlwIPi7oAMiTV/yJjuVfbkVhvYg3MwZQHPoJxUqsCJBd4n25WuLNup0rNxoqhen+1OJO7NQXhfZBp7kj3TjIs9d8M5WJaMfn7xCu+njFnj3/5j/9J/xMy/EK/Z3qZH8vMA/CYA/wMID+RXMvPfIqKvhJSVflI5ksaE85pxM8E1kH7w/Az/xf17wh1RJeDaCGsRyZE5F9zNK3KsmGPBIW5oHHDaJlxLX0ITdJySoLJMHJKZ8MXTLX6kPUEMArk16fmqIo2XRYZeAcA5yJz1nCtuDyumWGV8rjqCKVYnQtYWVLdL+Cm1BtwcVjy/kQypT26UzXS/5lwQQ8B1zXjx8kYMfg3gO0VBqUwFAwLNtWb/kP4SqxTDoSLkhrombKcAk3Yx1nhcVcIjdHl6l4Ania63FzbGDn6XL9q0R2TQVHt57LinXrcSwOfUh3KpiB9tqg9WJSIOpk92o8apkmuEiQUC0EiNUzcGXhZxMhv3ZjbgEF1a7AXaRan6ElpQUUhl/CNIdsMkZEsXoWxAukY5Zj1240+0eVCO1bKTNextYJMZOIfeHtgHX0m0KUbYDKXDji1q12ygR9di7IyPgBD972ZomiKxHHIcVEJF4a3pTD26NoRR7ex7cC/TpAsw6fzxfC9oLBu+JWMH+vGOiLfphYyxLUfhgLQk65LvNUujbhV3SDl1dnUiUQAYHK9lJ5SgoqTy2XwWEqGUjSBzQQiSVekamLROOjPmD/VeVScZCpDPDWFj1EnEE3dqzCTX0516FodICgkmlv3KuIK9wXfpGgV++DpBj2t4LWx2v7GMHK79vjHnvBOA/JjtbXok3wLgj0Oyj4u9yMw/RET/8lt8/lO1BWKBwDLhh++fdKIcgBgkAziO43aJBf67ZjBPTloUIy5O4HWS9DI2t5eJAAyz0wtyaJhjdSmTegzev7AsxPom5jA2LWddtoT76yyN+yWhVTH0BInkH04H3J90oNa8Odx4LdEVhrlJzlJPGeEU5WFW6XgrD0mUOUS4zZ4swGVbII6mmhG1zbIasIj/OWBdDJJxKUYUF2Awxv6dTGLU4zVJHfqgZRT/OyOsAdNLqaVz0ohvPBwejoe04azwWUMjWe3byxEGl2UIh0b3y4+eKark8y7cSNVexqHhwTT2eT8ucqIkQwyaRb/5BCXSdTSYiAsOx23naJGywYQfRdvRGuHoWQ6ClMmkGUy745T3iYPyqFrLOE7KY+wQSS13Q+j72IQ1L43f4fhsnc1x2f2ln7UBVLZZKclG4rbc+wjUZN2MHMpxv+4tK7tejyE/7I9Bzkcb0hMcQmwG3yDRck0l8whV9aqOcC5HNO6NPROxG+GWCdd3e3ZBVTK79Y46ws5kS4ywiGFdLItogkJLF+XLqLoyIOssREjlp1gQgEf7svtF77cOKujOxgeABThy703b2ziSfw7AhZmFg0oUAByY+czM3/4Wn/9UbbUFfHg6+jwQQJR/DWZ7XiRNaS0I+smazF6q6CULG3/bGrmBHqG625Ikmg+McJDvCLE5IbDW4LDiw2HDIRcE4l2WY1uprzLUhUGvWmDaU/BjVIu3rUn0w1qQ/sQWeuQPINxHTB/Z4Cq4FIax6EVGpDnqxw3ucJNDSy9e3gksjestdI7CgDB6XPZwKW8S9BkbtFf5D0GHP43N0N4cJIfFhk0iY3s4rewE4JVJh9KItYyDXBsJ2GchdZL1CBshv6Qd1LdH3mokyqMSlBkOQ+NM3TiZgbbj3vFJhr+b5hO4K84SPyrp5G6IbBshvY7IIfjI4rASpheyJnLd9XpusqZCnuu18n3UDjQztjasagPo2u8Lh6TWfiw+LyN1yZHde1UGJig0WfoJYhjDpjIiFWimK6UO1eZ+uFz86ChKX4c+X4QdwQfNNFvQnsMsn8v3jHzW43FobY/YQwSC9XTsnto9nOZcNHh5XVBvx5/ku00axWDGaek9Kh/xyx1dBVhwYdeZFB4sa2zTI6mpDI4OwaoTdeUGbfaHCh9gtd0GbMOo4sdjsl+3vY0j+S4A/z0AD/r/GwB/BcB/8y0++6nbWiOsi0wVNJSPBWIhMHKqmFQ6pbEY661GrNrURYA3lFsLqBXaJwi+8naZKTAwV78BapG56ospDCt/AwRczgHXkGUS4kMCLQE8N+SnK1IWJ2SwYzk2+ZZWSRBHgVF0EiIP7GNK/TvCVIGpOvlQRP7IiVMmzSCoGClLhALgIr2blhXqqk7FcPtBh1GxeAJZhsGApHOv55t+kz1Eu6YuSxOWKlSPqjO913eaOLbc+xqkkx05aW+AxWH5eNcGKXeR6k/NcKgqFXm4ks7DaIaAQT92QMsEjzYeCYg2wGv8u5UUAJ9x3qNK+JrZHI7tqDVtXzMpAxnJT6JGAMSox84bMMNgY3blhkDPFrQub4x7NGGVG6fDSkVshozEcYzGi4NKfOhxpwv7zJRy6IbXpN9bFmc3EuSsXGVGj/Q7DGFEBJdtt36Kybjke0bWhq8ZTJujvnt4qZ8rNbjxH5vxY1nWHAIHuBWMK3vfrs6qXtDIHZwFQGC9dwZehjW3vY9mEb4l12bszXkGuGZWqIzpJfd7o6rzLuww6HIMrzw3+cyYHpQScBNQJ0IAgQvA6gBNJblOhOWpOT75GRdGfsGI14Z6EN4LRwJVRj6rBt3044TagmQf5kTAzA9EdPMWn/t0blsA//AB7aYh3G2gIDX2ZYmgwChzQckyw6NsCa2KhHyIUqNnhk8a9I0YKYmA4XpNqKfs0Q5S88iVCOK81uC8Cp7F4TABQbOcdqhe3tnOGRtl/x4igJI0uhtrI7sBSIzpZhM01RZRtigPijW7G0k2os3DqL0DqnCSVp2llh5XwuFLhPzA9rUAgHITsA2wVQAe+fuYUnvYTTG3CvIj30tD+DKRolLsQaPd50QSHs40t+/xh1hr6gKl7E7QItER1eLNSCbkeyV60b4pa1u+74Qt20YZizoR6lGOK16A/EKuWTlK7TpoQ5SqGhat4dcJPsJUnIWsi5VL6Aq/l0bBxrB0I8AGSGuixwWITEjWGj2oZ0W2mQ6Tw2WtFzJT54mEHkDIAYhjne/Faa+3wadY2r7rQSQ4gKH2Py4byXzyXSnFzu0RWEEMfi+rdOesuxyMcShAWlRyxO89ElLekbzsY07QIn3jpRDDxQg5iBPkUTamWmZkFh+77NCyYdtGnaygI4A5iCw8RyiPR7OBlZGuDUzClak6mTEugLEiPXAx59pYlZilXOX8kr7MO+6HOU/oHPbHZSxTTZBgoCEt6iiy6HmROlduqkhgA7x+HEtbJyL6Bcz8twCYGu/lDZ/59G6k5ZvckOeiMu59PG6rAcs1ght0zC2hoYFInzqHuLKXsZZLRv3iLHXxiYGbJrLrc0WalBdQhOiHQgiX4IxqQEXZjg31oNlLUOSRldQ8yxCkD68RDYr0UXgqtoB10dAhsnMwSPfHjXTmhoovHmQAlotFajYQF3JyWW/E9nqpl5cIYoybsryhka2S76QhKM369Ynq/0T0jIYxoJL6g1RnaGNYGs2wss+ImtFjqFmVXUMvycUzSb9ESW35JJ+Ji0S9LRPajWQfQUllYRyiRFYfp12ZJRVGPkH5FaTkrm4QmYRpDKBLl/NQ/qnA9EIbtHgUuRqB70CiN0VmsAeHrO/z/SZgO5qXhR9L0LII1X685UB9aJGufdgY80sZ8VoOhE2HNK1PCcu7cZ9lRHJWeVykqb1nkIvzNuMa1wYwsDyLuL4bXE/Km9BDzyde2DWlrI9TBrVd21jXmCAG2/5ujG0mOH8iruwEv3IglBu5D6W8yo5IqxMpu557n07vxXxmpEtzww6NzrdbG6FLu/M3xxM3gK7svRHADL48m6J6IFmIrJncd0Wvj4hMaiB0DFjv4M4un/u6W/V6vQt+bOY4JQveB0XizHpAYGs1lrksE0pXRlya977GUtrHbW/jSP6XAP5tIjJG+efxliq7n8aNcsP0U84y0rYGtBqQcsVhkmmIU6reTDf139ICtk0QXLVEbApljVF4DtzI+VctM+i2IERGXQO2e4HTQjkRdFNAdwVMLI3u+9gfMmOSM6RnFyBS7TrAKmdBe5m8fasBJSSwlnjCVbMTsnKGML7zXMCpoUbGps6MtrBTxgUA7dlLRLKQR+Tb004yewyP3D9Mqj4LyVIM5tiyOClP56MmNVUk58tRnIDDESNLBrWyczgsCrVSHEiY4EasihdCuMqbbCBRPgHz+3pus+g3wZrW6pykv9B7JNZctfkf22uE9eoE0V8i7Ayq32ODYwT1Ov0uYg7wB7U8gdfHjUrUhu+MV3PM2BmssEn0uDwLKDfjcUj5apzQZ8bIjCZY54Pb5ELVXKIGhOvQtE3kxyDZgK4jeoQv1xuAzim/Pk9eUpKSUF8Ty4rGYKRBS3gr+74aW3AzBBkToYL6/a3PivezZjHSdQaCKgBYlsc6UXB90rOXvNrNO1w8y7wmgEMQiZQD9TKhqgrHlXfjBQANMmb5rrAB+SIOvaW+ZvascJBMaix12b7GcQFNNbqCltCt9AzA19iRcFbW2wS9xiZeaU527KM9ylh2azkcjwiYPrrBX7O9DSHxPySinwXgZ+rX/z1m3t7wsU/tZgS7GOGN9BDYpUoezrM0sK330AjhUHC8XTtRr0jPwHoX3AjbsYGj9jWylMGIGE0b4A6dJSBlyYQwbwifYedH1E2uHqkIYiBGytXlT6Kiwww5VlvA9ZgEOFADyhpdGoVNRiQ2l0zhq3ApODL4UCUzsPG9DCDKdEPJxCKi3vzxSoiAwku5G0JFG7E25l1ioupwH+tlELnkB+usDM5QeKQqCCv5K1yVyWzlCRVSpAbv+8iCyvcxifAjR4gky/5qO3TRHJiXUYa3OkpHeyQW2ZlxGoUWDe5pZTdvUg/lH0ciAUgXcpRTuellIYcOR/leL03ZcVmyoT0Mqt3oiJNk5BP57+ki+6pZnKVMaVTnoNkZAJSpCxu6qOHQbLcejZ97EstCtxKFj5pjHAlszfjUgQh17pMEe2myr6mhvYJeU3Pay5NhbRp2jnMsp/q6BMkCXYlZEUgcNTu060CPjC2Ty8GHTdbOovGxl+E9ogaZ2x60xEjDMaHv15x1aFKGS9em5VPRAuNAWJ8Ezz5GeLVnnZpVMpnDl2tYDuj9KjvG1LOJ/KClWXUazmVhy+7Zm+Ytdpj4OEaYVeCUsiDSrE9D43P3Mdvbijb+IgBfq+//p4gIzPxtb/nZT9VGBEypumQIAJeUH2dmxMSgScQOU6qY8yY9DOpCilMqSFFl3luQyYo1YHupFikzQq6gAMQgziXniifHq0N/k14let7Z6pvKooybKxQDuKwZl1VA6jE05Elk7S1bwXAuI6iAjH+hZTKby+6ZCUFKYrmhfKahAPIelf7oByPQ3bACPmkvM+rEqMraNTJjR1fpT3Wo5DwTIGzBH8w2McqxwUb0Ss8BPoCKqiivimEQo+FIKc2U0okchba8y7sozMEBtRsEi2g9upvYDZc97C2zRP16f3RYJvk+oIi0MBhp4u6gxvUbEU02mKnlTlazLUAiaVLDbA6oHgjXz6AboUc1fHe8rPs96LnpVElz1AwtxWnvqU2D8y7i1MfGsXNOANAki0rD+Zi4oq3Pjpdgt4GvqThWcV7sw6EseqYqWVWoUn5bnpFnjVZONCdomeQryAf09+d7KQ+1KCxwg/vWWZxLfmBMD1IOqJqtmTS8cT/Cxh3Vp87fBDDHrU6EOlmJkBE3eE9in0Vo5qGZw3ZHbri9PzGsv5MtWa5TUG5TOZKuJTsKMF0Z08u2K3NxJCzPA8qkkOgNoHXvROMmir+9P/TjkJEQ0bcD+CcA/G10IBhjP7DqJ80WSZR4lxqxbEmIg7EikGQrz28qcqxO9DMOh8BvRTbeUF0G840k0u81ysztlMS5pNCQVQ6+1ODTC8tAeuzcEsk0AHQnwBAHZcehkiY384bPPpGZKteSsNWAFBpoKvu+J4AUq+/XtuuWcHo4gEsAI/RZ7ZWALcLJgjrLQyI7icqhUVKdO5vaZULGrUn5zCNK6H5S0zkdCgCAPRz6ewOayXcfG3zK4EIu1gjsI2pSAAHpsW5PdB1Tl+8259EiUA+tR5B27jbJEEOkqJsbW4vYBm0r44a4kYZlXPKG/CJgeiFGY30mZMhQRM+KNvTSi2oz2dRER7qFwbib8jHb5zRbCN3Q9BsdO2do5UsweXaVT7L2dYYDCUxKgy0OUGSZzVYXmK6JQer6186G5gBXAnC+hzvd/bWz0bY2R8Q3Q71NQLmTrJKKaFTRiR2CLCizDvvdQaiHKHoMJGzmSdjkvnInG6B9DXgWYNmMO/sghh4El9s3hWFrcHv5aCgPxSv1/sPC4E2yAhuy5ag6SB8vXeGB1eNSlGR8w5raPdw0OCDyoKElgCl09NpAcDTei2fPEaYBK9yodchEXvXNr2xvk5H8QgA/+20EEX8ybClUfO7mXiRH0LMAQFSA37/e4qxyJ9dNykbPby/4Gc+/hDlK2CEOJuBhm7G2iPMmIdpaIlIUdjsAbFUUhAFhxx90+mIk+V5RHBZHUWrARZntzlWBZBxJGfJxboih4S6veDIJ/tG0ttYacS0ikXJMG55MVz+3cbhVYxGAXJ503a1lk4FYy5pQhrJdCE14KJesDGx1Nsz9xg7qcEySxIzs1ByxFpPwZ2xjhs+rByAcnGGOS4AqGN9nhEsQgby7JiCEJSBeBGJcbxtwqI5kc10um+FyjYAKH7bbfpzBkHSV0NboznEkS3qm4f0EqJaWECAdVjwPMiu6UVV9Jga2pw3bs/09WGdGPcoxmAQKANGwUvmRYshAEsMOYtAlIj0o5ydBpUNY5S86sQ3E3qQHxIk0VemNl54BGQKv3DDKk6YLDwdBGJPaB1ARA6QETCvtqMFc3wFWKKx6lfMqd8DyTpN11zV2+LWCNNJJHLRlFrs+GVPPtqJldsau17U2Pogex65kOWZ5Y2ZsDxfJcRl8vU1ANfjvQcAc49YmJXGGvr5UgeklOZrOv9tKV4DD3sfARbIQy87hfB3SDFLuI3hGuT2hLub4cZtlga7uTN53G0t81hd0af6Ifu+wjkVWPTzLDt+0vY0j+TsAfgpkZshP+i0QMIWKY9xwmxZENMyh4EZddFDV1gZC5eA/N5ZBWD+6PMGXrndoTM5+z7HiZl6RU8RWIl6cRI70OK94clgwp4L3Dic8SQs2DlhbQmPCtWYsJaGBMMeCKRSdk1KRQsW1ZrxYjijcWe+BRB34Jq2IxC5Rv7XoGmCJ5JzsPLYmx34uk+iClYyHZUapQXovgRFDlftbMzMTc5wPGw5HWZuqs0xYMyVW3oqBDsw5dNLmowyrkZMjWwVK6Wx86ynFKCRPZgLfrD7cq5YomcHT5grC1juqNWBZsszKjoz5uIIIuLDMopeL1BCyoImawaEBRbhBpuOwypQcmggQNhKyZyXsBBFvKmDcHDVIXAntmsThzhW407+n5iKTtUSBYgNu8ShKH2xUQGiNxHmvGi7qsQGCinOAg5Z3yi1je8L7Et8qWQ0AF3u099rWo11LrzA41NEQqsRKBOpdw5bVCVqGCvSoleCIQStjggFaIsh4IlEhrcQDRFenUTbdpWUFEb1PMxAsTSGAzPFBszp1Ml3aHTIRkuHaYePxUgOqnu9KAF7psw3rhCHTGVBo6xPGdicOcnopSLI2kBXLEY78GsEpIwBhzBbcIY5OUbNkA20Qy37Lzcc4STtWtjXv11NXS5z+oF5g+1ifAuVWysrx0uH0n7S9jSP5DIC/q6q/i58Y8z//Fp/91G05VHzV8SOfC9IQcaQNc9gQwZhVCXjcvrQ9wQ8tz7EokPvpdN1F+oEYn7/ZEElEHc+q/vs0X/E8C1LaRSBrwllnnzRt9kcw7vKCZ/peyzISNeRYpe6ppTJAhBh/7PJkNyTL1H0bi1O6y4v8nUTgsbHss7aAKVQ8P8p3nbeM8zL5ueQsDuh12ezNvOF4J+r/ly1jKVFJmSq7wvDyW63a4NdzNCiyZDoFtQZRG24aKumSbxBnZtwcc05pYO2bA2fABRBtY8Bla0Jk8LF4ZO+9IjV2FBuCOqViKgS6E39vbqLJNvRFeAvgS5b/D2KPNA33DcubuRKqhs9Euj/qDnfMzJZrluOoBCxBSoNAN/QRMgDstdH1/qVaCdszMbK0CvOfAQdGYDCaY/bSEsCT8KW858DkI2oRSZxlYNEL09kyJkjZmNxRc4UgERtAa9c1I7tQgAM2kNnLVUKmfJTlNXaYuhlhYCj7Nfh8dzD7zBRjrtsyhlXAGTv1X1s/I9wSeo/P1X8NUk7e4zIIv2UfdWacv1Id2MouhPmKaoICBdpRvkdKcur0h2mKpnoAdDSfCGxaMEHgZJUCeI/KxgM8Rmk5oMOyPAsWNPM2wqhLo1i/6y1qW2/jSH7/W7znJ812rQl//+VXYFLxxagPqTmWH7i841nAVmUeybP5iq843qsKcEWii4g21glLTQjEyNS64Qa7RtZFpzHad5zqhPevt7iWhJu84YkqAv/I6Sn+8+UzPhek1oDDtOHd27OX1NYqho6Z/PheXA5Yt4SUKu4OC+ZY8bIc8GI5eH9HwAQyEMtG9hblyFgmAEjE3Nr+pqHQswTTF7P3z6mi1O40GoduzJi898LV0GTopS+LXPU7zFDb7wSJzA080NSgtUqeCVHS7AVwp4Um8vKAOgM7jk1LWEGNuWY9ddP3LFauAtgIMltAuI/Owt7pTa3yAJcbRjtoqWwAF7hhmBtorrsJl7xFtEsEbVKOghpNGx/rM1G8Z6PRbAHCNfb9G0rqrgKzZFsu0U8MqBAkRwbP4qzTOQgqTr6oN4wtqrcMy8AHQU/JrjsB3ACCMKhhmelDBC3iZ4JFz2Pfhh4ZbeqZE3ivOeZOeyg7eckGBh6Q8lJ+QaKfReZU5NrkB1ayrfYiDF6u/QgRD9XXUl+HcBVgSVhUYdgyqvEnemkRQFdTAAHWeyA4Eq4NoBArnUrfDiIlVNEnRbYu+Nn7PYOky7DFC9wZSK+ury8ALTNSd7zqMFwpYdic8KjrbjBjk6550/Y28N9/n4j+awC+jpm/S1ntb1E1+3Rvq84WaUz44fYUlaVf8eJywLIlhMCYUkEMjC+e7vAj909AxHh6WPDOfNYeR+9PPKyz8E2qGHhADO2cRBL+K27u8Sxf8IQWTHcFpUUUDlirTEvcBgdyvUxoa8SSMk6XCTGy63oRieikDbYat1KF9/JwnXE5TR0KzGKgQ1ZZ9sEwB6qIUY3qGvuwKjUoYIKDPqaGeBCjaNBnIkbOBTkD65qwXrLLxpNGo/GkcytUeZczwxj2ALqelxkbLSOZHLzMghdHQBshqgGut1X6CgAMEcb2WYITQMFKAl2oR8MshqDeNo/MeWo9y4jioNpMUr9ii3bhKB1iYF4IQNQmKDujuk1idcJDBL2Q0NCW1FFbGonag1oPvBtZa0bYu0dsxkb6C3HVSPiUZLJhBOpNc6i1l2mGyNschWUqzjDfMETonUltDkUIn4LwM80qF45k7BvOYThe3adI0LD3hHwdNjvfjlYy2RmOwmEyRd5iGVQhH+XrC8RiWBMDVNgn/IHld0NfVeP/VPH4oQF0Dr629i8/AOnEDnYwEmRTYqaUmLQioVI20v+Bkytttvr13YDre3A4ss27scwwXglYoIOmVLEAe5JhMjkbZbNzALiycMjQAQcGvzZghK1DOjOmU1djML5LV7Tu92ZaugSNqy28YXsb1NZvgcw7fxeC3voqAH8MwC9/8+4/fZvMWt92Uw3NqDcm3ObVxRGTNscvJeNhnURBt0b82PkJGMBakvcZcmxOZGTWJnITpd6lJFy27Eq/tkVif60xYU4VLVbc6BjcsYxj2YDsN+CyZXckNhfksmb/3O2TqxzvmkScUktFxuRHUfXfElGuXYIl3G1oJYB0Qh8nNfzaTK/avC6X1PsMFolTZ9L3WaaQhrQKKLZZm69MbgAcIUbjvnSRNHth7VmA+teS9S+sFKHRFLT+jhJAq4W/chyuzFvFOFBV1vOgTwbj8wBSbzdIrmVuFSg2X0WNQyjCqo9XAg6qHOCcG01TdMYLFQLOQTMOllFv+uuIQDLHyNqEHtFp9cAot3pYWmbhquFpGHokLFlTPSpPx0bm2nUZYhFSZ2nOKmjjvE5wNjrPe2cnzdwOAQbg+xyNUFjFYO4yHR5+2ntZyjhhg3A3PlIukBl6/YzX+7V0BABwPg5h4+F7lXiYLizHEIFyq30LW2v0qJwYfa4IejZj0TygSLfhGPaDqUh5Q+QZw/zR44yMdn0PmxVSjzKH3fZr96TJGI3OwbMedAfGvNf9Mil7gDwicXXlprI+jC4cSf2z3rbzMsPHb29T2vrtAH4xZNQtmPk/J6LPvelDRPQnILPZf4yZf66+9i6APwfhpHwfgF/LzB/q374ZwDdCEr/fwcx/WV//BvQJid8B4HcyMxPRDIEgfwOA9wH8Omb+vjcdV2mCzBo3m9E+IrVM3RfoNi0Q47nOYS8t4n6bcS0JOTQc0oYUGi4l436ZwUyYUsEUq7PjGVDYb3Bob9Ua/3LNoo8FeN3eSjbjhaQAHI4r7g5yR6dYHZ3FAJgJOVafeYLDItnGcG45Fzy/k2b9ec24LBNqJZQlScNYjTsfeuQKDnBpeaAjtTzTEQ6Lo6AIPgCJ7Wa2kJwAsNWCaXgNcI4L4KWeXdN2FYTSaGxbBsrTKg3yAJCRQKsctzcu2aJceZ8jzghgan4MtERHXcmOpDZusxv20TN2xtgN3EaOxvK/FepDkjTylQjTnCA5SqoemszBqFbmkoyu6mAmZ/jrsQlxUVUAhmWj4QamCswfEKaXOgPjaZca2Z2DJFk6OwWuTQaCil2Sr6U0ztmlNoBumIM2awGB3TpsVb+Ph6g8bAKHJpbylGllst0XttZ+kPodW8+G0rlraRnJE+jOxyJxalC0GKNNvfQlwQB22YnDY/URMCdqLHIrz8WFe0ZnxzrM8fDX7T5Gdz6g7ijiBcJlgRl8fb9xV4xsSbZuw99bD2oc0m/lMe4Ol6kHTaZo0NJ4boSgDtWO903b2ziShZlXHY0LIkpvt2v8m5BZJt82vPa7Afy7zPwHieh36/9/FxH9bMio3J8D4CsBfBcRfb1K1/9RSEb0PRBH8isg43a/EcCHzPwziOjXA/hDeAvpltIivvRwixQbpiQh1HVLWEuSMk2sMq9EuSOGzjJ0kzW8Gwj3y4zTdRKjfcMACk7rhPvzAbWSl6SIBMY7wnENjWS9irJF8CoF6YaGEOVm2NX5G4EiY3pS8JV3LzDFitu4Yo4FS0041ekVuO841Mq2a814uRywtYC7ecWz4xVbjfjRD56inGXuh8FAPYVXeGQ7qoFnkqc9MmhqiKlKxKs9i3EjABQkE2pr9HTcni6aRPfM+giGCqvXJKWp1ES5mAC+IxRt7GOJyqJnYK4ISVQGTJEAAeAbQaNB1QLkAds7CQDAFvqM9CTjZGkj5PswTEhkLw2ZpeuGgwe2MKPdVoW9DilUUgfG0N7PcAxszlH368OlZOgVVLzRHDlb47lpRlIh89lBTij0HoDJZEyM81cyzp/vir67izRugzFtSaDW0hju2mxj6QpBYbEqCGr9DYu0d7NYmHaNbibpIwSollxkbwIbDFUyLLjIqPFBOMp5cwTW6VUlZi8RBskyys3+7nSmuJ6LKQ/s36M/XU0Xzufw9d86wVn6Q+wCkG3QkN9xlEYHqa/VA9AmevW99tba4b11hmuzjetqTqeZakLAjv8TVRDUme0jpoP1eLRf9XhOzcdtb+NI/n0i+j0AjkT0zwD4nwP4f7zpQ8z814noax+9/KsA/FL9/U8B+GsAfpe+/meZeQHwvTqH/RcT0fcBeMrM3w0ARPRtkHG/36mf+f26r38HwLcQEb2J78IsPJBtzbg/iwuepuLcj+uWcF3zzvhXJiyLILGMfwIAN3mTjAPAVctXtQVMufj0xUCSXRynDTk0mZd+PrgDYcskKvUyDQU06Wh68zmoZIpxJb50uZNpi0Eyj61FnNbJZ53kPm0JgNxrecheACmtrTXicpHGfLPvV5y8R6bgbgyGOjVVUqSLokd0hosbRltzKxvx8BPwTIQvEev5NbfiiJSqVgOh7gx0xjoCXNxyfPBoDa6/1WwGtx+D7GOM2PyBKbKjsBGSyq7XSUh7IMk2vCau0XDLhO0JwJmVJxE9ihWDwECJvn67CzMalmavsRT8DbnF8ImPYJVesZnuEc7BAHrGZL2XEDQKta8aDKcsTjfYLqdCcCl4MeJWo+oO1QmU1rQfGvYUFD2kl7UN3JCgCrVUlH8xOC3P/sYymWUwmh1RkVKRrxnEIbxCyhxuI4fYaloTNbv0jGvIOoxvk66yBuUGPvOlGIJvvL9TzyhsTSVjNEQWC4JtON6P3Wg4Zx0uJdeyK2b7fBVVJJBr3j9vZcioJE5b/6aBhfe+Rph0gU/ifKyhxq8dprLf3saR/G5I9P+fAPgXIVnB//ktPve67SuY+YcBgJl/eCiRfRUk47DtC/rapr8/ft0+8wO6r0JELwC8B+BLj7+UiL4JktUgvvccDy+OSFPF4SjlnTb0FxxZwzJMCuj8CQJQD8EN8qwZTQBjisIBOZcJp00ygylUd0ZTKEgmBnkrMN0Pr0d8cH8rA7FmoBnPYYlgY5gr0a4tEbWIoS9bxPWQEQJjzhuywkdJey4f3t9g/VDu7PxswfOnAtk9DTBfy1TuTwfUj8RJ0k1Ffi53nk1Q5CZwTsuIHBUELaeQyNTXKAO2+Gq6G+y9EFqk0d0SwMcKTKYMAF9r5y9co0w6DGKUOTCoBjeg7cDAQRhWdJX9cgR4Cqp/xTACHx8r2p3k++ao2UtTvf8A+CntNg4A3fT0XxyPcCraDKAB+SQG3UocnaimDmxSQpwK6Jlul2mS1VknPob9d1MJ4KoKyj6gy6JnAy6QN97Dip0G1KgnRq0zq03Z2TMVoKsVAypbIuvncvub9FuCKgPYFL821NBEImWfuY3JcGh6wc1BZXTIL3qkTXXkYgiz3foAvi9tOltzO6psSbr0LMCvoQpyCjteJO7HramulKOWzMBmOMgkXQFc4TDesWfjZaGRLEhacjsY8VK5GNyvyw7MEKhDlKv0OqgCYTgf4d1gp81mjkbOs1/L/JI9GDCnJI5EnQ73fRrSDQFdAgj2vg4keNP2NqitBhm1+8ffvLt/7O11Lo8/4fVP+syrLzJ/K4BvBYDDP/FVPOvcDhNBNC6ElVXMmRhKKgTGNBWEwHj3eMbX3n6g3AwhLFrjPqKhopMHC0fhdoBwKhPWmvBiPeCL93dY16iEOkYIwLYEQUyZQW0Ezg1xrj5jpGmRk0vAcs2ISYiQt9MqPZAiDuru5op2WB3++3CRzEvOUZ2EnisRkJ6vTgrs59yVhrct9uzJSk8poma9iyuhXqOoFN9trojsXIxDkQYwdf5EqzLkiyuBTgnpPuyurCUOSAA0OyIG0n1A/JI8NS2z1uUZjdidF2VVWrbIHpLxOYptEocCVVUGgHZJoKtCok1AbyOPjg2i6SUoNQblBlje7UYtXOFMZg4sD+o8lsQgg7imLmnud+5w93JuQFbuy6aOz0AJ6EYOTHB0piHhWFSY80kWUSDAeqki45HCeB+AZxmUlrDiFS4Lw1GayyYqCAMrRPYoF2k/zdKb7qErNftxalDP2h+iSmhWsjkC1/f0uxbsInE3wqqvZZG7leDcmcVubI3Vn87cZ+xoBL/diSJwy2Iw4+lRdmoRvmV71TJQzULs/rLrGHrUH5W5Lo7ZnH5v2PuyayYos2dEUp4YoKmfs91zNVMvV+lwLcuMw8ZuFW3KqItxFmCyQVxa6qyTECd92qdlx/q7XcMfL9TW9wKvGmhm/ulv3v0r248S0ec1G/k8gB/T178A4KcO7/tqAD+kr3/1a14fP/MF7ds8A/DBmw4ghoYnN9ednlUKYtwIcBn52oIT7kIQOmEMDYUDfmy52/UejF0ewHixHfD+9RbMhOfzBe/MZ39PSJvAhW8itjn6MVQ11hURCAw6inQ8AWglqBovQFkY0qyRf0sRHzHhcsh9SiOEVGhje03Tqxpx0JSNlyjZxWCcYNIfY2lKeQgIAB0qZlVBLrH599ndwSzGmpswzOMsoW8tAXWRJnwtwWG0qCJwGAbOhI37JXvdOA+6keLapWGq43UzYX1Ozg1oU+sQ1N2HLUTXf2DBy2sZSWr4rPBMSJObgxhM7jIX6dox/B5lakQdikSncj5W3rBIndyhWN8iXQjp/tGoYwI4CPqKgS57UsNOMBCAwqCbjjgmRcKJA1PhWW/ok/YtHEaaxWkEBTC4sX4EEgCgsiUArXDoM1WADYmlpZNRot/LaATQS3KmvW/mIKz0ZD2mgzodBmjua+ycEj8o4a1EQAIDFl4UJ80yovYDFjHSLYlWFpP0IaxsNH/Euk57qXUz8Pk0zG15Iu/pUTp1IzzcZqJcDXdExjnBkH04YECFGLmRziMxZyQqvlZuEkfEXq6S+61PMiw2n2aw1mND3/pK43GmC8CjY3NH1M8/PI48XrO9rdaWbQcA/xMIFPgfZ/tLAH4jgD+oP//vw+t/moj+MKTZ/nUA/gYzVyK6J6JfAkGN/QYAf+TRvr4bwP8YwL/3NnpgKTZ87vZBOB/KLjfiIQDkIDBeQV2JNdqqSJ/Y2F3jnzyss89X9wY6S6MYAO6XCT9Iz6SXEav3LaZYMcXqOlelBYHlHkUh2OXphwzJJEsAadSKsW64OayYc3EFYwCq2yX1gKDlLssGAIAoiJZTIClXWZOZBKk1lod8siIAPkcsDzdS558bwlwBBtqmTkn3Ach/K7TMZbNPHl8dbcxbhAWS0hVric/Ii+EapOmtpCyPJp+IwbTafjqpLtcW1QFC6/JmQCUqNGPXJsgslMh7h2rN+CH78O9lkaZYnzBCJUwvgPwl5RtkLV8FFTlM+wa5Nd3jQpg+oh3RkZV70nRqX9jQ5fTN8WkzFWZ4g/IVzhHUdEDaxE66s89RAdIwfMwi9PzQVZ17XR7OrB5Z2Pb3elCZFVa0mDoVGyEw9l9cP2tw6jtwwBD9jt+XLtKfaklgunWyCYTiZMNK3puKS4f32v7Cxpgv/RjqTGDsM0k7Lmkm0w6hJefDTsbL5yblMw4+9CxUkRgBSYN+LNEZOCAOTW/YlEP73gbN+AAboPZKDYb62o0NcVbn2xJcEn57IkPR4gIc3mfkC8vgt1kcZz4x8kWmNBab0hgAqtyvjz3CY6/pzT4EwNuVtt5/9NL/iYj+3wB+7yd9joj+DKSx/hki+gKA3wdxIH+eiL4RwPdDnBKY+T8loj8P4O9CAqnfrogtAPht6PDf79R/APBvAPh2bcx/AEF9vXFbS8T3ffAu5rzhybw6zLbUiMbAtYmTiEHEFyMxNogzYQY+PB/x4iJ3jWUlKTYnHtrrVlYyB2UOa2vBRRK3orPgVaeJloAWGOshivx87DIhjvSx9dXSTW0Ba+mMd1l7xkGlTtYiKsemiZVSRRneH4IIKjITyhoFvgt0Q27f2SRSFeSHOB9+SJIZPI4UMRg/+yzkgaq3VZrIg6HeYVQbtNmNznc4NCy32ldZg8jLDzc4E4Cs2YRLzjNoE4HH3QNqqTrJQ59fmrXt+zNY8Qh/nF4Ctz8iktznz0ZcP6fHlgVWaiie3RRIP3/qGVaFZgBibKwmLw8zOfekzUA9Nics9mxBd5m706E8TM7T6zQu0CiBYiJHI5u6AwL2zqMeMPAQdK1Dz6bK1BWB80sSqXSr/Vt5pOi1N9QWke/f7rNgx2DLpT0HaiL9PpUelcs1kXfuHPywhdrhuNtxmLZoTs7PRV5X/rATDqkCh/fF+DLJFEInZibJ+rYDOVw2Lh3m/IojIDkecmcn9xo11j4ZXDzRe1sK5c065XHXvyFIxjxeE+VsGaKsHuDjnstRvk8mQgoApBzFwdg8llCt/0P9eDUL+TgAw+PtbUpbv2C8RpAM5cmbPsfM/8LH/Om1REZm/gMA/sBrXv+bAH7ua16/Qh3RP8oWAuPusEh5pvWMo6hGlM0XiTpISgiMxdFZIw9kLcLL2CqrdEhyOfpAjGPe8HxaUFrAB5cbXNYs9llH+9aqNfkATE8XTFNREqGU1AjmHCSbMPn6yuR6UuYEWd/LLJDiUiRHN0cB/7uuw6C8Wy5SBJapjCxEvnNEXGS+eju0jtax6HrIopvOc+g1eji3AdAHIfY6vTuRJp8TtrRFxiTZhDXbH2UJ4RqQH+Th2G4Z7SjZCw3OzKVK9LuIIXBm5Wg4+zwzeBank15GTC/lO9okpSAxzLKj9TmwvCtOp02sf5cMJE6jF5I1SGdonbpLfwgogPs0xqYIJSUhttyjQ4NdewkrivGBRdaVHKnWdFgYNV0HlTa3WSJ2rtSEq+FTGK2Jzd1gtARHHAo3Y7hmUAOl7HCD6Zqxq5OstTu1IeMQguHQMM49O2FoeUdBAOVGRCYN4RfUWXEloA2DzsgclO5XHUNYgQliDOu8h7jurtPgiLzfohlWnQnLU80cVDLeInifZqmSOo8RcHJCcAcmPRbyzI2055auMvdDDLg4KD+eJplW3KSPUY4Ek6XzkljV7wNL/47k/+kqzqHYgDkFSJjgZ9iAME6HHJ0sQ5QBTEF4DAg/YXub0tb/Yfi9QImEb/G5T+VmBn4KFcckhc61RWzKpgpgdwQmiHgp2ZFYp2XC9TKBQsPtccXT49WzD9u/MeKZCadNILmbclJyrLg5LEgKBTbncjNtOKQiCLIpe5YByPVc14SXZwlF5uOG47w60bGqY7KSWs4VNwfRsWAmVO2fLEsW1roJBZI0c9lIhK2T6Dg3lGk4AIaUfkxfSGHJ3EhY8hVAhJMQPUhkEb2z3ktYwytY/zY1NG/EKqw4sGQZqYnwnzWcsyityue6pLd9V1iBYLPr1bg48U0f1LAZ3l7Y4ESEdmAsWZ2HyW+MBnZilOMwSItlYcotUG8YJupng7jabGQ7zU6G/YqRkEyjY/mVwW6OE4ORaoABMFzdt4gTFjgxdXipGm4pF/JuHagw5peEdJZm//oEjlqz6zyidMY6v/UOWmZ3JH2eSP83vtcgpbYv57XotRizyrHP4EbaylCGlrqzN6IbPY3g+7UGaNaBWVaaHMqSHckm//egQo/Zry2J8ZVBUTKYqui45lFWBDC0GcMlR9TROGs8U5fIj+ZI+xRDK5PZ/eAsfxrmpes1H7NH602NWyiQXg8LEMVLi1Z6hGbOSaYiprOg3lqSUQkgFYZc5P4th1dRc6/b3qa09cvevJufPFttAR+djzhMXYZkaxFLSahMuK5ixEetLeOCBGI8O17xzs1l13soLWDVYVUpNByz7PuyZZw3EW085ILbSfSxKhNKSTivWXS1mHC6P4hRJlXItR7JUM6KqWM6Tc/LzkHk38V8lxKxXB/BmQEhA1YS46zsYYoM0l4H16CkNrwSqfim/3fSH8HRUqjUh1kNn3fZDSaX9DalVYH3CkQYgBtfMqgx5HuEwUu9OQvLMMzxmYbXwEGI8ro19kfUD0O+x6L+fozoxwEIh0adz6zN4nrg3cx2i2zjaqx1XYAAjCJ8XoO2SJK7IQYINbB0j0n7K77eeo6JQerIWJcGrCipIkZF5mWglyKH60cNOqRK9pcuAC69l+GIHWdA97UQqKpkQFT0kp/JG7+jHIp9rs5wpz8a6Ka9o3gVqG/YpBFcbrsRtixtPH5ncZtzRf/b+F5WlnYzZ7f17/Zb2a6vMbrNgL7kV5zOdkvYSLKU7RbexE8KuGgJIoo5XE8OInfCup5Nr9v8oSLHSIy5Z2gTNGuxTFizlmVAxalzM4Z6PrEPE7s+D9gUKl1t9swK3PyoZOwt93kmlpEI21+dbu2lsZaARcdsj3ykT9reprT1v/qkvzPzH37z13x6NiLGnItMKuSAAEYOFbdH0dh6SYwUkzfIo2YO17X3Tmxm+u0krPI5ArfqtZcqxEQGcEgFT2d50qyx35iAGsEkpME6FSl1DVfCVG9bjY52Ip2nEfTvRZV6S4meZRhZMcaGaZarb8361khERx2OIe8NoSFYFlFjdyTALqWl4XdmoJ2Tiy66thVB6+CMMe0wQUYf61tJUFKTZkVrb8Yb2qn3J1QaZBBX9NDRxAkrCStdj2c3c0L3Exdtbke4wKG8R4517D9YVOhWh4CaWKAm48ss59siOpJJNZQIUM5KN3omeUFa6iNoJGyjb8OQvWyD87XoOUAyt56AyYM/YUgBoSXGbni9D6MGiez3jF5O0WavQ0aHbGx3bA0uUYOgSKDR0VhEDW3AX8mdtzeP1WHVI+Ois8EF9UZ+DK67pSWW0Rmb8fUMaszsknxvfimRfm/oE+qxl9/C2o1+uvbb1XoKPuyJ+nda0GCOyQyzZSE8fC5dgOmF8EHKLaHdQst2hBbFYewQeAwQuJe4FNln4A0b+zveT9uRsD4xgU3yewIRjkCzPk49UJ8OqYGMcVyosoMw5D7tyDIBNYyR5Ou3t0Vt/SIISgoAfiWAvw4lA/6k2xja4yAPnFNovbRFQjQcM45DKi43f8wbjir6aFughoMSEq81IQeZCX+IBVMsKC3gUjKupTfZrQlvEu3LNaNoo1ucgji9w5NlN2hq3FKqeHKzIKme16ZcmKhcEBNy3EyEUGHMtURsp1kM8KEiHzfljDBYQ3HSsJ+1PMCQ7CVYVDo1h7KSaW1tUeZoFEFPQR2FzYZHNCFDyRwkKg8YR9eKoqwyp0e2ujHqt+CQYE7cdaittJO4O67BGRWVcPE5GiPDnIEWhZVlD6kZGcsyWmYxHGHcL1ywEFBDMplibI/eSYmkVRFpxCTqyFYK8kxFMzbAMxlW5+yGzMt48Lq+T2msHZ3GCVLuGhzB+NlXmsKPuAJWzw/FHCBJdkZaUrTSSuzvl+OW4wwsa+fllAP6PPpHZTA/BlNhNmejmaCUa+AjcUXbCp3Too4oLhAZd3VG1YZLmROjwakPDeuxD+UBnQUBVdFVpTsVEFx+5JVNHXDLwPU9u7Dd8VlZrxGJBh1ZBqaZUGCFiQ/BmY4AbklLbda/AHbIPxuV66WoIJ8FtG/0EvJ5db7j5ug27XmFyxCMvcX2No7kMwB+ATPfAwAR/X4A/zYz/8/e7is+XVtjwnnpvAsixu1xwfPjFUtJ+NLLW6znCVAYbogy4S5GMcLnNQ+aUFKmSqF5lnNaJpwuE7gFF1cMxMih4SZvXpIKTVFcW+oTB1u/8dAkOilbfIUsGKM4OOGJkAyt0rG9hsQyTTAjHQLYESybls5aJaynCVb+ccFEWzDuxqulJk3boEOhdKATN/gsEJNOkY+Gnjlk6XWEU0RYxaA3lZugwWhi/F5DdQGebYSFfJ4GJ+qCh2YMKkAIYGKERRjxFkWGKjpUbdbySmKwyr3z1FBNkl5hwrQFbXHIOWUdp+qDlzTTsdp2Uxl5Q2bJMcJ7BmRrPETYtBGiGgbv4wBDyQv95NSREEvvwSQ81mcq32JLF2Qxm5X13IiafAs6rHRw0oBkEEEbty1J6UOOU8Qa7bhZHWNTh22sdCuFkBrzoqWtsADTR0O0b7c6D5/Xz4nRtDUd4MZ1uB/smjep8QOQ+ShDtgb0LELKOISautOhgt3M9p4Ro/eiqhAZ01UykHJDnnGkixyXgDNGB8/DAyQGuh51zaaOSIurHQsjn7j3ekicSZ2ELGmbqROMcF0ez1WP3Z0E9/Wltp/BbigwY/1Lv4T3fatxH2/Y3saRfA18XAugv3/tW3zuU7mFwHh6c8VaIq7KtbA+yJwKnt9dsMyb8Ex0gl8t2XsNKRdMk5WN5LXSAlj31ZgwTRVEBZNmNo0JH56PLrliTfFaRJvKYbuGk08yN6SWiHJOnaPBBARGfrrg2d3V+zZEjFIF6ttaQFTHJlkVY41NeiTNJhkKSdB6MiFX7cdoGY1JInz9Piu9gAlYTGVYsycz9lZxYY1+N+o6V5NEzKbf1bKI++V72Wc9AO1G5qF7Q7kR6NqNnh1Dm3TeuW2kBkwVchHlQSSFmb4yDEmNRdpIouytR/sG+XW9KSt5ParH78pv+rdQhP9ATevOd1o+a3DDzFXROcO+gjkdzxwgjk3LUXvZe8CZ0zOwGEAhoJP1rPyiasXEElHHRYxTue3ljt6E1vtvyEI88oauv0nZV2v07y6BoPS2/jm2jGKIfMfyrV0H0ywbWdh+bFXlSdxS6umuvZFthq5FoN5I5J4ujMMHinhK5HyLlnU8jTXE9Vqns/wu/QK9p6ycSFKaqgeN1DeIBQxdhXd0WnHlzr0JfV823yMurLIuwPyyIiyMchtwfR6E0LmpggLkPVzte7mvk84jqZM4KW+8K7otnQQcMCLZXCKFMKDyGOkChNK89+LB3FgheIus5G0cybcD+BtE9Bd0978Ge0Xfn1RbbeQz1W3S32XN2Ir0MNYtoQ4jWUOQsKRH9e21+7XyE1oAK6Hx/nTAh2sCBcY0F+GEECMqx+NKWUQOAaSpYJ6Lw3dbDYipIt5JmLGdJoQXUbDxYcJLPTZTFx6lXbYS8aIcPfuw7CTGCkSgJtK5JDpD/Rq9z2AkuJagWlkYeiEY4LiaqRAGVVd9r4oGhiJOJ5A4WGrwiNiaugx90E7abCfoE67locBweXWG3LHD90GRSwRyA2rZSzqrKCApdv7Q03XVVHSIrBng119cdCei2YAjm8aa/yCXHy89I2mm2Gv7spJMEwO9PZUyYbwS0kUs064/oQaBzCmhR5IICgiAGuZlz+mRurwaPX9RD/M1tzJHeJZBBUg6FKq2fq4WEYdKIGsGRy3H1v3gq1H23rRcev+rO7NdNqboNzeQxhBXaxXVobkj1PvJnA9HwvIcvo52nmFlnQtCO4fnGWNTpvdwjmaw7R6wslKo/TjTlfuQsYP0M+Q8NZMq3OWCGry3tN3GXYPd1kbAGvqdmnZ4xjNcw2DSBbBz0MBNpyW22BFmDhXmfh3t2TFSozX0vV9Icqw2HuCTtrdBbf0BIvpOAP9tfek3MfN//OZdfzo3bjLsSf5DADFyrqAsmlvbJqS8kBvmw4oUm8uLMMsY13WRZjpXie5HOO3+ywghaV+iUtfK0re1GgUpxUBZE5qWvcwptdblUUBAU6cCArbLHpNHsSGqwGOt0oAH4MRFbtgz0K0XcI3IOgDJWdhsDVXaZQO0AEH7Lc2Jf3DHQIV0VKkaNRMuLJDxqzADYCHc8BBog1a4B0qMKlLeG2eBtDJMbGzUI9tlIN2ZIRym9o0QUPBQzRlqLHIu5DLbHm0OUSfI6sk9QrX3hjGrsN/1/KgB0wvtGQwRZJ0BvtWgZZgx0ksScEKiCEB2o2eZQTqRc2R8AJU1vUejy9Y83UfM/X6Fy7wMt3BH7hC6wYHqUhVyA+oDpqgfe7zKIqQzfPLf2JNoaZhjYtI3Z4mUQWLEzWk6kbR05zAeD1VGMkFKvW7+SLKWsxgY56DUSQKrFodyFaSEZc1pR+bpvbZzhDpXpyoQIV0Aak0yIBVXlCyPYWKJPUCQA2wjNJqwgwW7CKXeE/26kWdATNTVlYctsBCZ5Rni/fMBOCrM7gcjJO7ud359wPF4e5uMBABuALxk5j9JRJ8lop/GzN/7lp/9VG0hMG5ulp02lRltIsaT2yvCk4ZSI65LxrpkUGiI0QxyELl1QJrPYO9hAECrYT9rgoC6BYSPDj6xLio6pT1p4OcFlDSb0UZBLQJ5dcVdAAgMOjTPovxmsAgeUEQYCYBAy2+1qCqvSqFQUfa0jbGdxFGS9jestj/ebBZNcWaU2wYvJ+lDRSX03rY2htEIre1vbH8YHp2DRb8EOOpFev3kEuVmLLwnYqc9RO6jAeuQ2X4ePqtcy0Nel9emumcZ5gyGn+MDZTV86PHWAeG16/WoM0tDX8QM3/aUtYfRS1KCcoIbOE7wxrVt5jBkLdTwajmKIwR8oMaLBg5Hi/0cOnHz8ZrpfhWqKsGARdXy93ogsCKQRgTYWMbxZvC4JlHq/YIUYs8wPRusvdeBNjSM3bmJ3hVYyjnlCEc4Wf+JSj/WOCCrbKysydePjjpddSSuXXfjzQz32MiTocI75+T3lpE8I4DYyYdgJRau7CW4PvBKs7UI0b8jWYNgPZ9Afg+apEkwNrpqh7XYsys7r5FcKgjCPivHkFp2POM1MNFHd/QD1PhN29vAf38fBLn1MwH8SUiF7d8C8E+/3Vd8urZWA+4/uEWcK443goi6nGcZHUtAmCpiqqhbRHvIAitNjC01IDLy3YrnOsb2skw+1dA2QUZpuSpVpNRQSsBSArYYenmIAKQGmtQ5aKoJAEGnzqGZYq1GrIZ44q7c6yW1YRO4rxxDjA2U5S7nYx+o1RatYZAa/6Z6Xpax2BAnoBvu0oX3JDLqGYXVk72xO36eeznLo0erN2t67QZhyBxIC/RjBNgy0NTZebo+Rspu1BpoJhTrGWgm5CgoNXxR1WI9kifscP/d+Y0XeTA0j6K1ETLq3nVo+No/gyPb+shPOBJoV1oZhjhVJYS64xsMBnjvQGxrEzq6TddiPI+RK7CD3lbABoRtJjOC/rd8z5gepA+xPJdJg/EqIohxlamJxip3Up5CVWUkM5yoF61U5EZblHC3WzGi6SoN71BYobBqWDd2sMIIp/VyFNTQ6yAv53jMAEcRSZQsgn1GOiAcjfkFepACeY+tXTmQ8HFIjsH72Pooyn6lryFcFeOMdOl3v50aQNXg4ISqo3pt9rs/VwE6+AtdoaJ2pzO+T/7Yr1e0kcPcj5H1GvBwC3qmpJs7nDdsb+Nvfg2AfwrA3wIAZv4hInqjRMqndQux4fb5RSYeqhE+HFcUNbZmmFNqqFP1shPOCSik8iay0DmXV3omJk3CDCc1TkmGZ1npbFsSWEtPXAkgQpwq8tSnBMq+AkrLWkKTsg5IymUpCeR2ysXhv1VniEQSqRcAWEp0ba2QrWRG2JIc53ZN4BaF25DFoO+jSepRP+BwYHlwNTOz90egJsDEGB1BE1uPmBQRJcaf+3doc9+ZykxqyHrkBOxLav7waj/G52UYv4RYZDkA8IHd8dkmWkTYPygWiSsKyfgGnOBNWnlYx6exG2N/SL3JybusqDdMe4RITR5wTh3FPDouc6zxSjh8oCc+OKWmxzbKfVDpTVvPRMzpRHNKcJSZZQBRobUCYX5DffwJOWS0HnTtj1DFWtobp9idnZWnOA0aUywlUNKMw+aH2z5K6ExwN6rUG8+7jeF9Bg9MSAiCdp6235ZIuSXUgwDsAQm9LNRRaybnLvsiJYp2Q90yYbNpi4MDTgp8EOiy/KwTYTvSK6XGFgnks0f0moyG3taH7LqSlPeuek012LRAydbPy3N2WOaAtBTq5U0GQF1W6ZO2t3Ekq85IF9tAdPumD3zaN4vgmxYlU2iYDhKSGdnQRu3WFlByxaalojw4nDlVkDbOR1n5UYW3qGbWnCpi2LCmiKtKsNcihEOPLizCZygpMQiDvBKQlThI0rjbtqT9D/lMihV3h8X5LnYcpQZsTD41McWGpURpsrcgEF5V2+U1itIvwespzGroIQbalOOtIb6rsZuBtc/vmuLwcp3tz7Mfa6YT0OYmn6NuVP3z/vQPDq4NzfIKkPV5oh6QlXE8UzEnA7CihrgNkij2lWb0MBh8G/4UAeThxDXbaMYqNyNP8n2jofPMxId2qYSMro8dh5PGWDIpM6DlMOzjsZEfG6M20XFcP1uDIVK169Zrk/BmK1VpbLekEFlFoVkWZqNeheMhDlN4F/16ujMZSlDmvMb1Kwdgu6FeShrIoX4ZLaOIw7k/QpD5LoM5+A6rDSvLPRgB9t4LejlrKPWli4AqxEma+oGhzPQe8r4Td7LrYV8OIsYOZWZlKvm+V7OIXekx9cq2B2V6b+3KZKROXzW91ufY9dH8mg69Huvv7EiRerygoby59aznk7a3cSR/noj+dQDPiei3APjN+K92yNV/pZsZVIHOymulBp/ZHoPwQYKy2o3oZ7Luh1ycsHhMG6LNcNcrcS0Zp3VCY2DOBXdKasyxIpIQH0+pyiCqLWEJAi3Ok6gHN803nS9ylLBSpjTK02j6R0Gb/ClWBFKiJTHWErGW5PLzhhZL+t4YGuZURe14zViuExhS1rPphT4EiiHEqTFEbvBJhgD2kZQ2EBEJ7OiTwekcpOgvA5ssr5b3y1sJ2JSMZYZ/yIIcbWNaXDqoqepsewyf4908azt22T95SUt2POpY+XtZEE+7hw/wGd39psJuHahoHwzaLJ6GB9GtKRw6vftOPb+aRgc0Rtf0yq5MXZnKIyNu6CqFlLIZHDPCtv8h49yeANfPsDa9uxqA8Q5s5rx9nvVauGT/eHxDKc5mhiOojMtQaoOtaZFrICNk0Q1kAGTkM7qjKT1bGCc+cujzUZj0uRyytFBY1Bu0Wb3ri4S+ZsZh4eH1fp0GNBhjlymNSsPWj5G5L70/FDb0eeqaLM6qOgAAoYJJREFURYwkw12PzYKUSK8GAMMWVFhSekQ906n2DNi9guFacg9cdqitV8rL9OoXPto+0ZEQEQH4cwB+FoCXkD7J72Xmv/rGPX9KtxhEL2uUeH96KDgmIQt+cLnBR2eBznatLckoiBjvHC5473DyDKQxYW0RD9uMygHP5wt+2tP3EcD4cD3ixXr09wEyxfD+Mnu5CVpKW9eE5ZJBQbgqxng3p3dtWVBeDOSpYJ6Kc0jGTeaoVBw1U6psc1IIW4m4bsmlVfq0RD0Ule0w8IDDh1MFQRyVQZO3AFSHYumXJ9HtMqSYHRsD3SlZdN1C536Mkav2h8ShyPs4N2AWB2RSMMwEXoM7IxuWxQmATkh0BwbpL5la8ngsrJ/nLUg/TA2OZ0uDgWflqCAplJhp72SGiLnYgKohovSMqGnjnwkIOtKWlCcwlv00K/Jzs88DQn58JEdDhVCvsqY2z3vkwBCwK2PYEC2/d+xvw3u49ah97GVhOC9Az32Va1lueefkAC0VqfrsmPnZL/UAFJ1WGQfSqZ0vFUW8VTX8Sdfd5guzRd8szXgt23l2xwBm+UIrByKo81WWfDnqfBrqRNOxfxZWIJ/7e7c7u26DI7HrNm4NApWugrCLVziCy+RHmp7PyCMZy4GBWK8F9Wtg6zcEIzTWoWjYh3JovBlvZVArt4b9Z7zfOF7rT9g+0ZFoSesvMvM3APhJ6zzGjbkLHtr6NCYsVZbimDdMqcgAqy1h2WRG+5wLYmhoIJzLhAbCpWQsRXS5jmnDFDdca8L3P7yzm40eiBHJ5FYIN/OGknpub/yVDbEH0Cx3iJXaTjWgnhPQxL6GIL2O9ZLFGEZGnDqqy1BgMY4DrfpNRprD1kpolyGH9saD/owMOlQ34OZA880K3IgjqlsAVzXIq/RpKDEoScmsXZIY6YaurDtGzAv1qXCZXF7ksSEmgsClV41cL1FIj0HlN3RELF9VYXiI+nkjeZKCzFx3Q500nM9NQQcQFJrBcC1ad6cxZEfD5teNLModHIlHuXpeQa6vGxPb71DWEEss65Uu8rNN7Kq+8RQssREBTEO1ZQBTQyuEoMaJjv08XN5/OAdzPF7+GiJiK9EJJLiXYrz/8zizUNj3LqLVSL3lYUrjI5CC9Xm8ejnqpZEEObBZ6QOHhM5APkmEX6wHEhTFpgg3O2YjW1qp0gh8NpArJDn2XQDOcF7MaHD7yNxHvQ27T9C/V7JS+Wy5sf5LD0IMrRca7/SxdsY9AMZ/seOL6zBNcZJnR+bJd089ovEI4lTTST4ng8MEEBFXID+YWnHnwryNEwHerrT1PUT0i5j5P3y7XX66NwZ5JmJb0v+bMq+VuWxc7TZMHBRJeHl6riVJ2SswthoRiLHW6O+dc8Eh6YApVQeW3krBMTMelgnn6+QDq4xcaLPcmQnXTS4REZDv5I5OuSKpI7LMRBSFo6OyRtVgQO4tE3qUFzSKjYxwFCIkl4DHkw6BwTlcIugkPZ86mbyIGc0hzCSAC4QpzwAtMmCKA6MddJaHOhUwoc3sBqAdes/GjDatAfHHsjRiDzqDhGROSjuoITwHBDW29VacCgppEx/iJHLPBqipYzMCC4ZjN+P/uITgf2MvdTh4wJbMkgRFxLmYIQPxHLoy8VCP39XE46O1jyzlNY0e41U/TBr1kzgl49nI9EcdyTuw+p00Op6OOaLIPtzJShnOBdqgw7t419AfHYccqEW7wnC3c3ocNHjppPT/Mxnzm/rahH4+Bm025nXcgDhMQLy+R7vIeXR2j9e3GDpPQQdNGeBBARbzB/36jH0Lqf1q05r634UfBEwPXU1XNLEk2yAG0u7YuoEe7wHJZsj7a7amfl+9Zhvl6Y2EaD0qVIYMz3q1D1NuBGFn2Zqx7uv8qvMYr/UnbW/jSH4ZgN9KRN8H4GSnzsw/7y0++8pGRD8TUi6z7adDpi0+B/BbAHxRX/89zPwd+plvBvCNELPwO5j5L+vr34A+PfE7APzON43bTdTwzuHio3EBIMeKQ5ROaskRTVfSBl89rDMeFvJphJt2nANBexOEc83ek7C+icmjAEDUufBRHUmiJsa/BZcuMSNvv0tZSY4mhIaqoW2MzScgurxKIyDB+TEVNjyLUKvI4ucsvZJSA5brhFYJMTXkQwEzsJ4n8KJ9i+GGN/FFPjQUm244OA2k1g2vpfnV+h/yNssCeNJmetVIrg1zOzxFJIBEDBLEOhtF92eZDuBABI5AvauodjxquMWoqXGK8joVEj2pTXS6+pjf7hzGpveuf6HLwkQiw8/YsbBtPcToDVGhlUhmRj32z1lpa2dQIA9vWMm5CWMjVDIAOz+9FENjW1BJMt8ijj2YoVTnTtBmfmh/Qxq0XQk56mwSYoiuWdX3pf0t4MdIADVGCH0/zmZvva/EhL3leWTQyg1QMxwFWNGdT2javF5kfQWGC+dHuHyLruUYtW9P5L0eRzZ1LqkfhwcDw/V3Eqc5Jrum+pl6AK4T+efc8Os1GSG/NsJ33LwHYr+P3KcqDunxNEUjaI4SJnZM1QbNoa9Dm3r5LJ11/R5tdu7mIHdr8obtYx0JEX0NM38/gH/2zbt5+42Z/z6An6/fEQH8IIC/AOA3Afg/MvP//tFx/GzIGN2fA5nn/l1E9PU6ivePAvgmAN8DcSS/An0U72u3rUX88MunOEwbnk4LYmgoLeC+HqRctWUx8JpZtEZIqeJm2kBUdEIiad9EGuRbjTgtEyoTbqcN7x3PCMS4X2ecVsEI5liRQ5PZI6vMILmsGctVHFBM1UtQpUSwEvpaE8y9aWQB8ntRpd+tRhefNFFGWWc535yrQ4H36yqSFq0Slk0nJF5jn62uKTobfDUCNFeEG9lxXaLMeh/vMjPigNyA5kwC0LSERFMDpSb9CROJLAQyOPQw2ImHBqRbra33NcK1S7r4iNrMMorUwm0MD4gazXIjLGNn8psR10xCEDvCb5FhU4LgkRnnWqaxRmyS9xjhMZTOPvfyljoKQ2qBRXPLhPRsiNPYbxk/1+KwrsDu+lhphAoBkbWxywhaGgNkTWy2/SgyyUP208sw7NlAy52rEq+S5LVMKnLIHQ7txpb6eqM7I0Bmk/kfAkkJsSpxsGnW864dx6AyoPBroBt3jlKSsfvCRgabEKMcg1z/YCx4EgeUqJ+7o/Fq3+8rUGKgG+yGnTS/gRY4CSDAMkYqdt3lGI0UCWjZz6RVLr3JHqC8q6osNBYn2LlGcMfkfb+NhTOk2YzPgzHQx5D5UQWC9ozSVfS+vF/CcnzbLXnfSNBcpkT86po83j4pI/mLENXf/5KI/q/M/D968+7+kbdfDuAf6nd83Ht+FYA/y8wLgO/VGe2/WDOkp8z83QBARN8G4FfjDY6EwMiKYlqbUH63GrFqbj/Fijn2yL1QQCT2stRN3nBIG7YW8cHpBpclI+eKd24umHXC4WkT51Gb9FcI6nRCxdYi6pZFHTiLsCMALFvGto0NcGkIF0UjUWqIPr+9l9+kf7OhKXjAsqIOJSbPini4I5KRFC1iaSRy84uWTeYGTgprqeQZRB2m7mFWDTJrgI/TFrk/6OPoW75GsEJwaBNGvZedGAiXoOrAg+EdNs6spS9Cmxs4qDMLcDhtuAaPrHjSBruVbEZ7bIKUruclGcL2VHtKTC73biOAHxscRxhBzqMmuFzFDvbbgHAKXcpkQGW5cTB/H4F6aCJ0uZGUxNZHD7SVK6D1d5LzcGVdYjHeQ8Yh82AYUXsYkm2QC1oyifCk8UjqpM1nM7yQz6SLfHmdJcva91t687olYLvt59tSzzzCqtmAzjOhIs6aeDCKpAZYAQU7yLAaynjVccDmiINda/l/nZQFr+WsEfJrPZJgWQT7V7nRDu4c5DOewY63pRlkUtFHDIKhvHdOcl8DyMJrsTUL6gzluvRgjNVBuZRJlCoDE6tkDul9yAJXfgxBnvr95wKkbOsM1FtyhYQwZJByb/W5KW/aPsmRjLftT3/zrv6xtl8P4M8M//9fENFvAPA3AfxLzPwhgK+CZBy2fUFf2/T3x6+/shHRN0EyF8xf8QTPDtfd36dQ8VQlxG28buGAmywqwJct4+E6gxm4bgk5TggEHKYNt/OKFJqXs64l4f46K3qqeJ8lh4pJHVRjQtWBWeumGUlomI5Fj7c7AZOG3zbhflSG9DWIEWJDPlRMqaJUoCgiS6Tk2fdlfZNSgs+CJ+3H9EwGaLcbmkrDe4kKDKnnQBzKNpTSGsTIpGHOyDAAic0ArFJKcsMeBZXlEWZid0otsUjQNCC4pAv6jBGN6EEMTOLwPKvRUbx81Dt/DQjXoNGqyL+0xKhHdmKaII30c7PWLzZSUAD1AVOkDf0hU/Bmvv7dNq+vkz68iroKCnGVoVYkGWGSkqE11l0KfCVx6oDLsNi0P4MAv1pyoG7gzIFDn5Sh/1DV+AeTy2cRmXT5DHUk4rgkSmUdEhXXPoGyWr9LnjHJAkgmHco90o1XXFRAE2KMHfU2cFZsv15VdQdFj/4/rHUUZ+WO0ZPvVwNTqsKg5yi9DI6yNvkkmcH6RCcgWqbSZN1rHhzNmNyPX6G3vzlR0pIUsSAnDXBhM9vt2L38ZeVCVWAwoqo1+Nc72mUkNta3JXhPjlQCJqmmWUvUFZXN0ZISPlUrLq6MeNXez2Qad5rtcL82b9o+yZHwx/z+47IR0QTgnwfwzfrSHwXwr+h3/SuQWfG/Ga+7IzzRe+3rr77I/K0AvhUAbr7u8/zB+bj7e6BuvA2VtJaIyzK5zLtNFnz32QlfefcSUyx4lq+4TYsQ/1iGVa0t4VQmH2x11N7L0iIaB6wt7sbzbltE0zLVePAE+LwQNAIX6ryLuYEn4ZwsW/J58QDUKTQnJtpUxpQasjboG3f47+hMjvOKSd+z1eAzTtY1SSmKyTOlthh5kYEs80lg60iQ7KQGgBmMIBMGEyPdbcjTvki8rQl1U8s1DL5iZmclmvGUZrd1T9EdnpaS6FBxfHJ1sc2i169VzdgaRLzy1WqfRvkMzAyeAS6EgKi8EyBue0NtxyP9Fy2rWYnDpOGHKLdNEAl8HpxBg2R7ZBlSPxfLtKxX5PgJhgAjFKwQrkH6HdSznLCRly/GTGY0hH3qYS93Le+wGx/LbEj/LhG+SKJI74Awv69w2gmDUoEZ3o7OalnXNAHlrkmvzCZmNnQILWt/yEQi1SGHVZ0dW2mR/Tx9Howa/A7pFZkV10UL+30Cctw+gEo/a7fBazd9a52VD6PXyqHGAxcmLnZu6L0TczLMIFNyVoFHmBFfHxlxKZy4DLxdz7AB01md94GwPZE1HEmGY0Djz4mVJNEzmjr30QcGf/ce4OuelUfbJzmS/wYRvdSlO+rvtpTMzE/fvPtP3P5ZAH+LmX8UssMftT8Q0R8H8P/U/34BwE8dPvfVAH5IX//q17z+iRuzzGUXdJSsUCSRYx8zAG9+k5L+dEbIZ25O+Nq79xHRm9+ZKu6iDLDaOGLJCY1JYL9o2Dii8AGlEdaa8HI5YK0ysOq9pyfhr3x0h/bRJFF8ZtHhIoiBjmLxvVqk/YYQGp4cFzyb+2wSQPkeLFMgL1vGsiWfCOnN+CJ/Pxw2PL+5AADurzM+epgEIaaDuqZUfDgXAY4Qe3k54HqZQKFhnqVXZGU0hhEolbW/s2TsxEpznvWSQGetnSjJENAsJAM2TZFYDY9OkrRyFgIEopx0ANlg763vFOcNUbPBEWgh9wSwLllgzI2GbEz3r5FjU/ipgwMsotaHN1+DZGLaexHnIbPp5QHWjI3QHeYSEU9BYKdDyQVTA81VHGolLcIP1i0ApFl0y5qVDVurBFoUIpzZjXy4hv0MbhYxQyGz9VILoG0ZJs+wvNms/YeoMGzAjI06MzNgzP7adsdoN1oy1GNDsx6Mlik1M2ttPBY1jptE148VnjnAMxgrv3G2rGhw5pqxhA0CSjFnDXJj6aoEg7GmIvDisGI3BIsjO6CCtO+xW/8JKDeaRev+jOQZdVTAON3Rfm8RMv8dw+cGp/J4aNZOX07XwPoxcZXsZASDMEmfC4qCc8UC0l6d9YDGzPaxgsJrto91JMxv8/H/n7Z/AUNZi4g+z8w/rP/9NQD+jv7+lwD8aSL6w5Bm+9cB+BvMXInonoh+CYD/AMBvAPBH3vSlMTQ8vxXDaVH71oJG9cLbaAxVA5beQU4VN/MqhjVUXGpGaREvtgPOZcIUKu7ygjkUvL/c4kuXWxTdZ2PJeKZUkBW5dZNX3E2MrUUsJQGx4p1nJ5S7i8N42yPDAMD7HzlXJ0tOsUqvB/DMZK0Ra4k+UrjDi6UZn5PwYqzsdVomlBZwenkA7jM4Mq6HKvIpDJWyF7l82JTGXDHNmzjkIfsptaPQuInRrtckjfndhWDQVPuDNisEyXoyFhb6A00DokgHZM1N7mCb2KilnHWNAKJPnXTiYbE6gkTAfZSvOq9HMtxohHgNveFp18GkKdQXdMkQdYBqaLyhrTX1eAqOIrPzHhuibdKphsPMF64EukYh4mUWBB2A8CIh38s61AP27HnoOSXtDxXyOSWv8HjU1kqJhFUBWl5vmXeoINutTzJMkmVQlWwhKtdkRJC1WUtiV0K8Rj/vvph6O6wB9FHw9TMDNh5DHbIQK2O5c9Cvtr6G/d3Y72ZAx2jcUVZjxqAGPS7a+wpGVIT3N8xRGuEznUj6NHrM3vMi8ve6VlZmlFsVcywa9W8Aln4cr1vvdJXy2yg576U+Ce3Bm/aWZjnusWzoz9HgdMjWQe9PGhybleeyck7etL2lSPCP70ZENwD+GQD/4vDy/5aIfj5kab7P/sbM/ykR/XkAfxfSCvrtitgCgN+GDv/9Tryh0Q6Isb2/zm7sALhhDcSI2hyvTAilyfuY8HCdvbl9SJu8ts24lowaC1KoKBzw0XLE+/e3qJVcwoSZ8KIcRNuKGFGzG8uKmElmti/KGUndKJJBiZVhHmPDe7dnfPb44CWy0iJSqN7fudaEa80eeTf0hjsAJ0gCQOWApSRsLeB6mQTeCwBF16epYdcSjCFzSmRsanzDbUHKVTKdq5AmKcsoXgIQ5wrO4jRG2XtAn7ep7MABlsXUGroq8VN1VluQhj70OxQKTI+a8ubgrOrHQA8zE4OpAUUNOxN4blJC0oOSY2DUQ+u8gKEcZcZ0V1qZWcs8LLNjNOuQ8QOEGoU9T8NDW2dImWc0roH13Bi1MZxzE+D8IJmAaNZBNbu0F2FNWXNm0hSX+yw2eE/H/k4MX3NS0IODHZS46aU27QlRE+cUVjFe5cmw/vorKbse0DUxgqQabWn2NiAA4Urap6EOdQ1q/EenbJF1kmMOOkUQGBwEII7XrpX28rYnwPqcvWQHAPV1NSwe2PWhO7N9eU2Js15nQr83AC9vuaHXt+2kTsavJLufOjRXSJqyvusTgpWorBm/3cjESyn39qzH59ccpfH+Sl9p6OFZSe7xe2xZfHb8G7afEEfCzGcA7z167X/6Ce//AwD+wGte/5sAfu4/yncHEqKh6Wsxi3M5L5OTEA1JlWNDC4ytRGxFSlFTqPjcfI+lJbxYjjitE7Yk422Ni5JSBVFQJWEgxoq74+JQ4euWUHVuSa19ZjsAQPsVMVUXbgSLbpX1KAIxnqQFKVQpyw13QQPhUjNSEaM4hYpshATdlprwUGblyQgrP9SEpsQ+jgDfFYS59l5Hg9TlzeBUKTO1WdBkt8cFMTDSO1VJnNEhyqsqENt6ELGUvlbJvNKkMiwDyACAAwdGqXyeCE3RLlUJmK9cY3PCkaUFYFkJAARRAAgKxfbBYUsEHrI/+GYMfP68SYpAo+BC4lvn1ol6asxZpWJsZHJSZ2eOsTH5jBgKHWHXNunHgAFeA+oq5R8ri7FlTcSodxVL0jkyW9d+8mizSBkFBKzPGO0IcGgohoIC3AjKWGT5YMvs5EUTlBQjpam1gRwgCrjVMme7DA0+616/pH+VouPiQhL5m0ElcQxtBqDs7lBMdl2yxriqtEg1A6sfHTg0/o2hz5o3UAEHkW6xaziOFXgFWg1Fq930zNB6M64WbSUzvWHMIHt2YyXPplmEET41WzJUnL+uFatyAHqtrn+XwZjHpng9CpT9dRmeb7R3qGT3qWUper+PDH8jf5JlWG/hJX5CHMlP5HZMG37Oez/i/6+aWZw2KSyOTXcr2ZQWXEKlgfAP7j8rxgCEu3lBCg0pNDQWh5IVnRVD23E4qvZfImkpRg0kEQPHV/PHpix6a4qHIBH+y+sBf698rr9PHYyV0oqy6McthoabecUcK7YmTP2qGRKRwJtjatieF1BgJJ3L0mpA1eFGnBtwUKOsiCoEoG4Rp8ssQ72GqZGkCKt6kcY8NVJ9LaAdGHxbEJJkfctVYFSWkfj52sRH619oRAwCwlQRonBt2kMGFdHlCjdyDm2NSrDsUTQIqBd2fp5tgpiibiAsKo/Dg6oPaZvl+KU5O9THg0y7o0rgl1laO6yISjOKCiG2Pox/BwBshLCKvAtn7Y01uCYZNym7Wl3+cYnCSieAHH8xTEKUiB8cPBtgc066L481KoEXklM2gxkA2oSBOTaqR/kY+86P3RivkOQEvhsUdqyTHs0Zkh0jOYfD+jQdUSZG7pFf3GV8HIGivB5oj8LfSwr9NcHP8RyGc6/zAKLQCaB1VjKr3T+2FnodBDIun98h+hSB599ljjD249+VTM05WdnJvg+6b9aox0pzr3Mk9Ohvw/ekdThWWxOVbDFU1+P+z+u2LztHEqnhWb6gtIhNn8S7tCIcBUuwcUDTRrX9flUnwkw4pg03aXXNrbVKVHwpUkq6X2ZcV4H0TrlgSqK2e5M35CCqv5cipEcC+jz10JC03LS23t8Y5VzMsQnXpaCyQJMBQ2cBj5vITUUZK8n+zuo01lXu3JQrDtOGFCvmw4aUdbZJJYn4AXkgtQPppZVj0WhaRCRjbKiBUaBcGIZPVgyHCjrW/bhfzQLaNYKOFfm4eSnQoNSsa15KxKZZGYUOkrAMjQiId2V33qxIN9qCl4ZeGdo1OAqHDZNkMo/5K/4QsjpRldtvA3Q3ngNChUyRfLIhJEYr5LNnRoRZJ26Ss87NKRFJCcQNauJeujAo8UZOZHTHF+EKAs4sh0WVclHCSqreN5xaFP4L0I0XazOYtI/fDs3HMBNruWMo2bhUTOu6XWEVFQF3ygqOsL6R1P5pV5MHeklIxC+lFwNGnyUyMLp3Bnx0JK+RlzfD7T2LXReYe59kWFM5N/vXIevpTKBTN8D20+VYBhTZaMCdxxLQEXq2JnoPhCL38Ai7dfTaJrwZkhijj+gd1aL1+8JGDkcem+Yjl8Scclx1zDCrhMqtvKctgw7bJ2xfdo7kWjP+Py8/JzNIQlF9rIS1RRdv3KoY0E2dxJwK7iYpTRUOeCiz72+KFR9dj/iRD56irBFpqri9WRBCwzEXHPOGSA1Ppytu07o7lu9/eAc/+MEztBowzcWJhcuWnPNhkXg+bnhye0WODSEVHGLB2iLOyFi1xGNORDIhcQgPpwO2axJl3xtGygUpb7iZ11dmqFjzvZaA7ZR7g9we0CLz00FAu6mgo0irlC12mLTuj0twBrojlQxJpON+WdVnKTZMOtSr6RyY1gLKJqUvLsEzC9pIBBiBXQ2fDlUQbjCnB1Bi8E2V772PfWCTNiM5qWRLYOn1pD3OsZUAXIztTw7fTAt5rdwNibHKg6xTO6U+u8UkW0oAqhhYkWgnFzO0WnybuTs4I0BmgLlL3UuGRR6FBsvyJhbEToRzeGwzxQLjqkijOuykMAB4U5gDe7Nc4Le67poREMgZ9YZG8pkcM9SZyTo3Gnokbp0BUuVeY/cbXLnZmmrfqU7ovQ6N0INKzIzEPyv/SETdpdTbrP2YQ+cCEeDrZ9F+VPFQY7C7lIk6ijoL4VAc6qAssAKx7J2KZRTmIKXhT6DcjT+0xLW7TiOfpvWfZCOPK/ZsdeVn1WngjFi8tOgM+fqabMUyPgMyHHofJi5K8rRb4zU9ncfbl50jOaYN/+RzQQk/bkAvLeFLyx0ethkN5NnGO4czvurwEQIxTnXGQ5kUwVWQqeFrb9/H/NnicF9XyKWKTBUNhBfliOXRAOSvvfsA7x1O0jDnKLpb6szGspPNPnmarwgkzfS1JemVTAvu8oq1RVw2yYpy7OTH927PPld+ihWJdDbJQLw0SGzj4Dpjtl1Kxv0yuzilzUx5uM5Y1wSbJmmgAStN8dzRYiaJn7S8NsV9z6a2gE3Lfssmjlwg18p7aYRy3LP+oaVDy2IO04as3JHqpMyG/Bp5mJHpbzX+rfZJksb2LzEKJBiAzbcHyVjVR0CuDtUmAQRgtToMPAPgyEDSka5H0qhbXkNgxEPFYe57tsywrIM6s2UCqSEkCRasF2VrQgTpP50yjNhpzPh60O/zkg66sgAxkBnBVQ8s41Eek2ZP5HwaLYGRcCrqQSGlR/kOjiwqBFp68YzsNX2tEaHXF0A+4xyT1j8rhpF3JM7XldZabp1zsmggpPu2iLyqdLwQJbHP8jSz8EDhUKWkVMiBE968tyw3qNOvj45XRRQNgDCW0TyzmoaPDY7pdTNTbJ9SIuyKBJZt2bEjDfsy8IUCCOwnDfdDucM+y/v/O5JXtwNt+PqD9EgMuRTQCXynmxkbR+GDtIyNozuECsKPrU+9XzJOIzQnMRrjpJ8zx3KMGyIa5lBkyFU+y5wRJiwt+T7GBrrty0pcTe8i6+Ec44YpFJQWsTThixzjhidZ2PtrS1hqQoM4KHMc15LRIHIuZy2P3eRNGu/6/YEa5kjALH2iORZ3As/mK7ZHc1jNIdg5ZH1vVWIj6+8PJYlw5Jbc4Mco1+AwbXim6n3Wr5pC1eNqKNzlbLahBLjW6A7C+k5bFVKpNewBcWp3hwWzOkTjvWCFa5bZADBmwnrYVO+Mdd94hbNjnCMrBU43G+Z3hLdisjV+XID3zmJoOC8TLhchsB6PK+4OC2oLOF0nycjUmDOj950IABPKJg2CpNI5BmYABHBQjCBINsMF4BIFUhzYFRKalSxZSo/tZLR/q5FAEG1aUvQJo1Wc9g71QxDJd2KEKKARMGE7ZxklYA41ckcBqlPyjdBLZ4OMjYt11qCODe6sqRFoISfS+WTMAIe3gslH/JanrWejquxQxoyvkGfOOKg+XNEAYQNoCwoxpm6EbWMx4PXYxGlzX57tOCD0GmBjpqnsM9x+7Cr7Y7NlWoc7twSwwqu3J7wHDdiS6lqSno+XcZPI76RTAF3gTgbArlz4Gpf/2u3LzpG8v97i23/gl+Cn3L7Ez7z7UdyoUFJVB/DhdoOLDWOGGPC7uOBpuiJSw11ccHNcca4T/svzu/hwuXGWukjMBxQtjSU1GDlWvHO44C4vKC04NNfKawAcSgyIoTFZlbu8YAoVcxCWfAgFt0ka85kqPpMfcBNWnNuEF+XYHZ92T1+UI7YWEcA4ThcEMC4148V2QGkRz6YL3pnPKC3iB++f4QcenoMNGs1iFMxQRT0XIsZxmBRps1ZaIFDtkxkNBHBWUiTQ+zxbFckXZsJ8WHHIQmo0Z1ZawMM6S1aYJMsKkF7UWTOv6yplPSJZMxuRXLUvZMTSkb3fGuGDl7edqa/XmdANpOvk2d9ZGfFlyDJYPkSpiUEOjKww5hiaw8nHGTCWLVlmR5BRA8b1YSbcXw4wyf9dX6pqiW80WFr6qjw5AMGffDWQZtit7EfmFHTf9VHpUE4capwVrTcxMGvpTzNOAEiHDSk1L4c2FvJkWyLQdGxAiH48fFvcSFufjEnkYlC7MZbSW+ioLTs0Ox8zjizOI+hArZYls2ItlRF3dJ0Z0G2CDE87VgTtB3KVNQ65IuYKbgHlXsAbpH/jEJRjo9ckM9pRPHy4EsLgUKz0Fk3i5nEW8SjT8UzGzn3ImoBHDPNdIwg6oEszStOMW0KHgBu03D7WgPDQQRek6Y/3BEm+dzcB9C22LztHIpF5xBfun+NHTk89ch2b2gZZPV8n1BJxd3vF55++RAoNH1xucH+dBUY8bR7ZAlCeSa/TlyYQY4OanrZpV8Zp9iCrUSxbdFkUa2rbz/l2xXtPT8ih4fksxn9rEf/JR1+Ja8keJZuhflzOAno2cyoTProcpbeix2pclrpKxArtZbTEqMNN6o3hQ0WcKkJsOMwb5lxwWTPOD7MY3Eoi+crwaIgDYBMQEVmY2YFxvUxYltzPl8XgmSLySwBfpFtHchlAAQBSbCg14P7lUaYcRhYiJbFDl7np+ShnxCOuXbO9OdkPS3Toa3rQXkbW/sMg+27GjQNQiFEw9Yf2MblRS1xUxAjRbUFM7bU9TK6EdsoIF1k/q84Jd0Tv40n7F9afUD6HcVn82EhLV8YX2Dqp00h7Y+OZKmAaauUoM2doI+DDCQ1SQknaQC9HxvXYZB0NZWalkCAZB5T9Hi+DUrMhmcxhyYM5qAQMQAGdSe5NaYJPGwT3zwBwnk+LKl8SJIlK6pTqLD0oKgQ6ZRDnngwRwKH3tXbVHM2cwiY8kqD/t2PwmSkEJzyKSXjVGIcynicAVtHMWd4uOlfDualDaAoV7n0YQrwAloLuSmEj6k3XbxQaJTvBouW+qv2hixIlpz7nZMxOPmn7snMkBHY5dyvDAHAJkKTs82Pe8OwoJZatRnzxdIfGotK7rjLfozJhjXUH07XxuPJdstUa8OJ0xIeNkHPF3WHBIcnExVnowDhriUkcjBj3FBuezAsSNRQODuktHJRdHySTYuGbSMlU+gyGHLPIHMCu9DFOUrTX8iTEwtYIW07gEgSZZYbZ5Dp0v+UiTXxuMuGxmpOxRvFA8DNiXggMCk2ynsFh+iNHcNRXLRG1REE+rdGzAK9H2+/K/g5qpKuVLOrg+EaJc61Jd0kMdZJX+Q7agg9TWt+VmjhVgS6DIYz6w6NxvpVEe8wcoSoQ72bBA27M+Tp5pAyYIdB9NTHWNs3P1ISR2GVaXMsJym+40THJanxaEp4CtKwRrvpFuwYuqeFglNsmDXKT9ieWpn0YEGBNjqPO6i8KEI2NTqFfRDvXMRLXBj+TBAlmpHaaTq8RB7TPiHAnvEltnIc6i/4XNeGZhA0i/6Hy/9aofqXWr+WvYNklC/jA5q+4ASXosDH4uj82rH5th/eGDUgnIFT2RrghtVrWfemaUgPSVV7z6zbs1++BR1nNWCKz2TGPS1SvLZmpUzHV4VAZLZLobul1cUXrwQF90vZl50gaC7O9qvEFRL5k1kFRpsYLoJOt0A1vjhXhINyH6zXj3OZeFrHGs2YGRfWmALheV1aZ+jmWXRZxk1d3KlbaCtrQl+MWYUgAWErCj25PUJvMgC8aRtlxryWibB2s7oQ35WHsCHFmwPxE+/lSrrvS1uiYzMBTFKZ+ShUpAXSQkLnWgG2TEEqkSiAPSiVwkeYxKzRXSlCPLpRF9UPkCgBIvRlsGwfVg3IEkhhD2oLzVuJiCsTsRDAqWgoA7confKxomp24bWwE1uFFaASsUj4T0UFrOqtzbj1ateNx42QOTAUeHTnE8OjSztcF97SWztQNQksAmbaUZhxjxkeWPTKJvL3J9G9yvBLldkdPG7l8i0TLQWRPbAytGthxbCxrNualG1tDy4oLiVox+zLsri9VQj7ByzYW1UszGK9uTZxQvWFsT3Q3Bh1uDExdryxsAJfhWkBfX9DZ82MvYAgw7L07uKx+l80+8etEcqyGo4kqhW+lRoNxjxkfFVmrlnqWYbNhTCnBjT/2mUFU+C/0nG1tWxyyPXN8bTjWMHyXOiWyBv44XtiulYlQbtz38Qnbl50jYYZOJVQJDl3B0Qi3FqSEMpAG3blw/1xrWrOOjEm5FAR4A3Nbk0BvCWhTRcoVlyrjdR9v41Aq27/JVjAT8lRwnFeE4WFcS8TDw0Fmrg9NQy6kk4QATE0MrzsIWQOpm7PwOEzWpHZ5jXZsklFUQq3KvAroM84BMXYr4XoyMDs6wqZ2QUMzNKaK6/IXCgfdGRw1un69qMNie2SU5CGdm88m8XkjVZuu9n99CJpKhoDNGJAMHDowEDDMjSfUQ0Cbm+DwL52vQcND1pSrYVP5WoTCTPmVUpFBVUeLShfaR7Y0QGSBneOJ44zzIfo1Y5Gu5CNxtztZr2CaWWxR8H5R/VpYSclKRfp/1lkibYaPzqUK5A0yJxVAM7LgGLX7we2NcdABVTtk1Wi4A4bhT3D1X4vEaQXCS/JSnE/7uwzT/ph3THA5xj4Fsx406rbzbHAdK4MK14NcKhtd7GUhPTc/xlXJek0zDztei/aHrGacRy+SL5qFFICYd4TDUBhRJVBq7oz5oO8d57b7+jIwXVggxqF/zu49Yu68pHH5rU8TCLFyH9o13pb86muv274MHYnM9ojKXbCttI7YCamiMmFT8cRRKVgatwDAPVhuhHWRPkVMDTkXmMoulgiOjHiz4uawYC0JyzXvJFGsmeslKEXntDWCz8JjKMeMchdlBkmuXj6b5oKaai8VseglOVu6Eto19ajeDJpH+yT1bSZg7c4knANAQfgek7yftgC6PJqzyvASiZUoAPRhSdC6rzVEI2RcrgkwQgUYjxbFopc4LDKPECa8Mb0tU2QIY74I+iSs2EV/u1KLOQL7vEXAK8EE7gD5Wz4BOEWEVeZxx4VRZ8J21/fPCUBh5AfC9ELKPcu7BMyEhi40KGUCOXeDx0IbA1LvF0Nt247NbM6QH/2N4bIbhG5UXabDyIH2uQqZmMjD+lI3cBT0vmZ1GsJgFYfLYjSnl2JoQmXPHNan5NwDAM7odkKhBgx2m9v6m5aWKdl6sKFGcjS8I5O+l6B66QUkBDr/O3oUHSoL0e4q+1lZvwN7A1kn8uMHS19FxCDlDbuykH4+FPZsKK6M2BEaev8TtiN55mF6bekix8SayYDUmS28CxK89Md9HZh6QEMMASiMjlgzsjqj90aCnEDYhmmLdj5sGZQ5Yv1hEikNiBeWY3vD9mXnSIz3sK4Rl3tByMS5YpoKag1YT5MMFAosUt6BkeaCwyRopbUkn2RIoSEGOMqJFYpqEh8xVdBTLVFNxbOJskVpDKeGqPj91roY4W7qfFL4Y2SULYKKlMuWIMbfhQ2DKPKGwFjPE+hBy0c2Iz2qEGDkV2dyBABND9oyF3/QCFio39HDTWjvCwW7dF2iuP6gpVNA1Ie53DI4kX8vA156YpKySb1hrd8OrOeFQGFvMLSg1NnYZggUp8+JPVK2Q6YAsF0g7OvKAtZjLzcxEdanigBSAwgAbRAjLDcS6Y4ZCUJ/wJ3kRvpwgzvwBoNRYGmejqNczee73EfoBpYafJ6FnKtmRVlmmsic+H0mBewNe9SMxfSf7KA4yrUQByTfVY4EOnRjb9chXdSx3sAFMpv1Jvg1tXa9xtYfCSvruZGXs8IKhAt7FmHy8eZcxzKaTzqsIpkeNvh91EB+fqD9Ocu66ChZzTjSlZEu6MGLZZXU7xHnc1jmoYEJNQVdHIIEGUNGIs6b/V51x2D7i+J4fNPrGxdxZiLz8jjL6Mdk/RY5hq4f5g6QOyBA3sv73hMR4saIi4ygXm8DOJpTJ/Rw++O3LztH4ttQOgpBCG0AMM+bw1dzrIhBeh3GcgdkDjoAF14MqSIRXiM6GNDWiBYYV8qoWRjbKVdwaggj6S4H1Ll052D1bSOCLQH0MsnFf7ZhfqICkf5d0rcoVRriBMAyD5o03Fa+A3v9HPAsBZBGtWYLUKJXWE2NNaAe2If5GGZd5NQZFEUNtR2rfOc5CkbdGrQqohdXyXzqxKg37A1el78wxEmUjMaj1VHzyh6OlRwq2TIDEzQ7MuOkn2PaDehhY37bvrB/bwBEIItYBPJSf4C9wXvo/QFv4tp6DhFsObIOJNKyVej+efyMGYHRqbXMjhbqDXbbr+ybWB1dNcNGQOnrtv+OIWOwy65Gy9a0pR4pW1DgjWHumSYg2lhZy1y7/Vq2VCW6pya9iVAHI58BngC+tQi/O9F6AEok/15z9jJSeFhfzU5sLrxN/gsrY7pnhApsR8J21+VmvCyU5N6loo1qXT8RTcRuBroHVXqdvJ9iGc0sDo/NCXtm9mokXw69tBWKzmzXtbPX4sbd4Fd1MgwfKOaZQ+iN+7GU5mW2LGUuudf6XJKSyMtv9tlKEgwRk9yvu97dK6fxyvZl6UhCaJgPG6a5ePaw6aApcx61kcxyL7RrMo+8ACJGHElfYlN9m6YCKLfgOG2YUhGtLRVMHFVtpWTWyWuNNNTQOROB2JViD5NInGw14uXpgG1NzpUgkt6HzUAHQTKWyEjzhpyr9G7OuWsuGb7UhATNuDQSiYoD4HecGScSY0wNwBp6E9EE8Ehq/mi97CVpt2RIHNgZ3b5kDOntaHMZ0PUcg7W18wbqrBIoDEcbUWBHqrSsZTkwcP0YbSptcrpDaKziiT37ctkQNSyj0muHekIa3UP0CgARohHmhqeiR9NB/k+Q/9cji8YRdWdDzFpmIJRBk8k3Xfd0lUZ4nVklVXoUPDLC2RJR6sfdMkCm+mOvm8F/DGPW95hDdcdvfTDruXB3GtaX4tbX0aP93b0xvGa3ZB4c4rjxcIyGglJjXI+Ek5bc2pAJjSUjH3kbdK485J7b9YqsYa7XK2hg5ffksIbQDC5ddG6Ioq/YsughcDAH4xnBRNjUaaeL6ng1llHI6ty3WxKHMlyfMePgKH0xDr3xDr0H3MnQ8J0RGK+sPe/jNWbSOSw0vP4x25edIzFnMWpTGcN53AIJFHiEzgLiTIytvK46JhfwOyrEiknLYCYD3xpQagBRxCEVfO6dB0dj2ba2pLLu6FwQ+wlhmRt/QqRUZAriIRVcS3K5D2bCiWZsq4S+NFckdWY568wSha2yft/jTIqBPZ9Dv7dW0f4CEyj2me94B2i6D7uh3OEOjjIQY1K5lFIi1kVG+IbUM7OqfSmuBL4kIYRFliZ/APjYv6vDWjAAE9AfCCPlAaghoJnjNCdoTXpZZO8rcSbUoz606REKCpDZJUeZyepr1xSiXAmm3QUAJQeEJbiz8wfaMrpI++GG/rAPTkPlzG3k7eOtHhmLfXboKXgJrQHWiHY4qJ2zfZdO+xuzKWeXszp2hoMyRsNt5SNqcJ0sdy6P7KjzRbRH5k3tYfM+lGcO2jTPcsxU4IQ5H3w1bo/tngVUNn+lPSqb6pqERVVvPescDK9F8Lq/uMr7LSAxFFRhcjitHW9L6CAK69FRd6bjVm4IeE+Mt4lb+jUKjLiSIs90v5PGdzqeWBSKX82GTHV4zJrG+8XBL5CsN17t+f0UOxIi+j4A95D4rDDzLySidwH8OQBfCxls9WuZ+UN9/zcD+EZ9/+9g5r+sr38D+mCr7wDwO5l5v4KPNptHMo5bTSr9bpuRCZeSUBtkEqHOKKneB6EuL8GdmWzsb0BVfCshRmEw306rikSKzEcaFX9rdE6IbYka5mTw34BVYb6mDry2iNOasZaEpGxqy0qWqewmFTrTW/cfI6NRcwNs592qZF0hCt/DUGMMIOWKdFxhkyN9fruizCg0xMg+b6SO2lV6VYwwy1Xhv6ys6Ci/8xokU1KEGCujOibpV9k8j36xCCB221FLAF/sidG/N4DWgHgVp9QmKcXtQjI1kiAIO3pWdJqOPOYtCDfEiKKKiuNBVqMr4IZdY/x1kZ5lQFQkdCdIuY8nlob0NYCucENkUfkYnTtE1A3CkDHq9z6GtZpApC2d7cfZ1BhfC54t2Dx6aUJ3uQ5SzkmbtEdi52wZn4+jVUdKUt500t1wb/ilGFBSPkO9yveYca1z582EZXA6+l1RkXs7cp6V3AZHMmZTNgnR1m9cXwyHSVAnMMsahK2XHKXvAjjcVtfaZPp7X2K4H6y3RRCyo5ZQoyLdrL/G1L9L+D9A096WZ1g0lNoG5+CTJPXvTeX3x96TQb2lHC3PR9y4Z7afsP1EZiS/jJm/NPz/dwP4d5n5DxLR79b//y4i+tkAfj2AnwMZtftdRPT1OiXxjwL4JgDfA3EkvwJvmJJoExJzrDjk4gbIFH+vW0JR3aZN1WdvjyvePa6IoeFhnXFapaB/nDaP1gnipE5rxvk6gxm4PS743NOHncruZcs4r0ImtFnxAHC6zFivud+tTKDUXKJ9zgU304YcK55MC96dz2hMeDZNuKosiU1CPKQCPvRMyjIZ0+8qLE6SdT1M1uV0OoAvUWxvUn0mNaBUCeuhYVP5eEH6sOs4BWqoJWK5Ri2liXQIAHm/HksYRuJaNF9KFIQbgDBLJ9GzHQBlS9geJrwyRGSuOoVRnQmJ0+GbDteWtZSIrhw0I8lybIaOI6BPg2ToWF7NIs651/qLGPy2RnB8td7iNfObBnoisvjlkmRULjTjedSbkRvHSlDm/ICivSoXPgwAXSLSyzA8/MKLKUeIA2KSUMuO5RHqxyLXx/IY4wmYQi4HBg76k+DAk3qNwEPo/Axt3MZzN8y9D8Egq9EPx7LdsgMSgkKxLVMBSQ/G+yF6XCM3R1BbulbjZdAZGiNAwftZUUqtNtWQ6sCPsOBqhYwkHp2bPguPkYBhg6gh23mZozYmPrqBtoyEWLOFVRyOkzQjfHKijdIFzPlilzm0JJMed/0vADUPjs9KcdY/sgQ+9TXdcUNIS4gGbd7sGDsG503bp6m09asA/FL9/U8B+GsAfpe+/meZeQHwvUT0DwD8Ys1qnjLzdwMAEX0bgF+NNziSZ9MV//2v+XvIVF08ERAj20C4rwfJRlrGqU6oTHiaFnx2uncl340jthbxUbnBQ5lwLhPev966mCBph+q6ZixbRo4VX/XsBT57eNhNJ5yCjO2V0pUY49LiTt3XSmDmjBI1fGZ+wHv5JBpX6GNzg/5cWnYxyArJcuzzEc1fa0z4YLvF+4sc+/XmguXdKFlbKsihYmsR1yKKvKfrhOt50mxMJiPmXPG5Jw94Nl1wrRkPq5A9D6ngNq+76Y12jIEYa0s+w2U8P9PtArAbFVxMHbhGLFva6X01Jpe5qSrDzxDhSBssFlWxAOiZ2Tglcxy9nO6qOzvbnNeD/XtNwwvAIJzIHliEJ6JA7OfCfX/20+R5cqyYVNHXVJDHPtr1mrHdZHE4KroIwIEZIksjmRFXEo1FAtqzgsNTCZm3VRUIhtOjIBkooFWggahKEPThNBVEEjmh9bmE1ON0x+qKB93qWJABSOZWmYbsV15jUwOoHTjRJfQ1y6uQXpoFJq55hV1a1TJekaYxwUc5EXaFZlLisE/JbIRq+2PIWo4lUnX4JhwJ7qCVcB+1r9GBD20CijqwfbN+cA4DY94AImN/rYM5eJdJPi7dsWWiPuMGvnZkYo/+Xv1eH23QMzc71vRAyA/yJR83Gvjx9hPlSBjAXyF5Qv51Zv5WAF/BzD8MAMz8w0RkIwC/CpJx2PYFfW3T3x+//spGRN8EyVzw3ldO+Pm3369y732FG+9XqyJgYyk3meGtCPiw3OKsGgbP0xnv5pPIktwkbBxxqRPudV5JooYcKqZQ8NnpAc9U5L+xSJssnHCukw7Rin4MNlArUNspBs/qVM5twoflBqVFXGrG0hKOccO708mVim+CDN/60naH++0AAJhjcRn5qIXpY9zwfDp7z0VUdIOXz57kBV9z9+FOYdi2QM3fW1pACjK2t+h53K+yDmOfaY5F+jTEeDZdEIhxLpMoFGs4xSzCh8/ni0v1G+v/UjNORdbsWjO2Ksd0WiasJSKpui8BqnUmaLvzklFrkF6RDhsD0OVsyJQG4IoDROwKz5VJM1VzKvqgWTQbmmeMo57aFKuXJ80ZmjROCg2nbcL9MqM2wpSqa7fJcYtzmlNFisIdWiaVsFkT6iYSNocnq5c1bZ3LMOp4vAYxVYQwHLuWBhkAmGS87xqAAKTbDdO8eURaB2cKEsUDI+Eiww1zHXpv9trlMqFehEgaZ5m+yS2ghS69w0mPZ5gPz+b01BHYsVY9XheAVMfnSr/+8A+/q/MCE+oSxXHkhulmk/OgDphZrhPqIpY1pAYKEJ6WOT6VkQeAdmxY71i4N6cgQpGJO/fJema8d5g7lF8QhzAOYONpcJ4DN8h4VKJZ18/NA4y5dYdp126JQmuwjFzVjHkJ3vMyMrFJ7oAfZWefsP1EOZJ/mpl/SJ3FXyWiv/cJ731dYsWf8PqrL4qj+lYA+Mx//TP8XR/+bCRqOEbpWXSZ+ID7csClZmwt4lwyGge8M5/xuVkzkiGCvokrsjLZzOnk6SVyKIiw/RZUBDzUA8519uwBkCzoJq6oLEq3H66iJPxiPWIpyWVSiBi3ecXTfPU57WnYTw4Vl5rxvaf3XFV4nLZozXnbTmXCB+cjSo1SMsvbThrdzg8APlqO+NHzHZgJT+YF78xnJGp+HHJ3d+mWD69HlBowpYpD2neGRQl48v2bFMx5y7houXA05i+XA1JoLkFvOmJrUbl9VfwlYsy54DBtIhuzGfig95yI4HNTkiLz7BjsJhvFIIkYp3XCFz+6k3KOPaiARLamhLsEMWSR8dGxz2m3XpFJzIfAuDmsOE4bTuskMvE2vEz7LSE1N2h2zACwQuR61pKwLqnfg1nWL0ZRYaiNVLVBRj4fpg2B4M5v2RKuH90gnKKACA61GzhDdjl6h1G3gBVZzmGJ/fz16dtSk1JiI/ASu0F/vFnT3iL78U/6OrvGl/K6dC6LrREAB4DYBeNG4GtCPO+DQC+V6SkZuKHNHc1o0jZYAtZr7Men6gewKZiQz7JmDsGM/HA+NGi61Zsmy6Cin7QR2rGBVF2Ct6CQedsJQBshnHvJMmzi3FuSbGDnF5tC6Bk6yExqT54IBoAXEalEgziuBmSdVinnAzyeAOrqByRZXFXO004n7hO2nxBHwsw/pD9/jIj+AoBfDOBHiejzmo18HsCP6du/AOCnDh//agA/pK9/9Wte/8TN5nIsEINqA6wMNXXeJmwqRV6q/PzB9AxT+iwiMZ4fLnhvFvD8D9R3UDjspOHP24STjdpNgpKaU8Hnb17i3emEwpJFVCZkNciNA754vcNHyxHnLeP9D+/QTglIjHgsCKFhmkTs0cb23uq436UkzwAsEryWhLMeg/QfNBqNvGPoA8BWIq4aNZ6XCctVhSMLefRmd/IXpyqz3LVnYxLohhYbJdyva8YLFiNa1oi2Gt4TsB6IGZiYmhuOMdq3bTln0PuTqPDOrONtGchSqqDAvRmvZSr/qv9ve28aa9uWnYV9Y865mt2c27ym3itXucFgI2EgGAidlYQEJSGA4iQiEvmBowTFAYEACQkRlIYEIRFEjAghRCYgYoGDkGhiERtCJBLywxhsx9jYJYMxxn6uqlf1mnvv2c1q5pwjP8YYc8597n0NKdd7VXX3kK7uOfvsvfZac689xhxjfOP7SFUfFy+NfA0IlOlC392cP4DiyNclIN12IB1QNWQTLQ60yoS/19JA9lLeSZ6R0AhfWcnBMdYl4OCzgAuOXVEttPXNHki2G1cHKMdoShZaQnJn4cICZKM5QXsAu1TXRa8nL15QDpngJhG5wkLgSRx3YRW27ZmWV+LWI/YZLWqraNQzFWSZOTer6RdH18k5sYN8bn0GMYEfB+TCXkBwDAyPCeObcr7Lgw7rzSjrsVfdkKz06CyOzmR/w8EjHPXcFHbsFqA7CAw3bklUDR3JHFRfr6/ekPq6tvfS/LmWmrjK4wIC7WQbHGxex1BGXQAZSKNDGkMhvJQ+DSpzgUGNWYEIizzez6gkkjoblAMV2HVuoPBm1ptiAsKZ0N2iUN7cRY5lj8IqjBklEyrLotdxF1X3LPvAAwkR7QA4Zr7Vn/8NAP8NgO8A8B8C+MP6//+mL/kOAN9ORN8CabZ/DYC/x8yJiG6J6FcA+B4A3wTgT7zX+w8u4qu2byJBAoD8X/XbzVpxqTkH3MZBGtl+RaCMc+rwz24f4tFxgz4kvLA7YfBR69yuUtHnDsHJbvuJlpisPzH6FftOateOMsYgpZHupYTlQdD1qjtn32QNVno6rqIbb6qItoM3iPPYlDzMUqaimSK/647YSXM/Z8JqnTmXS50bpIy8ySFGh0mzCCt3yK5f+gs2rAkAoU9gHeJ0ygdmXGdgumjAp1R38H0XJXvwGXOXha7GsQi+aePe+yznswZkIyS0/oXumMt2zTNMohYMuIOHfyOAGFjvZ6T7i06+68IwQNsIbFGdKSBlGJ1ELnDXtgQQhEXAZnoseNu1A0AekjTsrddBLEgw+zLbd7oEFX2t0tnwUiNN4RFzAEUHTgympjvltORDEoS5zCNo4Iwyo1Br+bIjpgTQLLoi3OxWi+m5MYC8Rclo3OLqTrZ9erP29h42RxT3wFlpRCgC/WNxdDE65M5VpFW2eRtJOXLHIurEldsNAOYX9T1jnccAC1WIXEd1ulnBBbS60mTmJnuyRrfBjklngexamFD6GaadbqgxI3oUdgNC3FzCimuPpB7L5mJsQr58uWDnYI/ZuV0OxxokWlxaHVatw74VIWaQ58JfZvedfna5vvW72oeRkbwC4K+KXjMCgG9n5r9BRH8fwF8iot8C4CcB/PsAwMw/TER/CcCPQOaNf7sitgDgt6HCf78L79FoB0RV7/X5XhGOAlAa5m1TGsDFz2ZeXxfZYdutWIYg7ME+SpBx0hdhJhydOHmrE5t075Ll/8My4I3zXnb1TQ3enDwBCD7pTesApb/vNGC0lrLDCkGfzTFoE5lKs9Zr+af3wiO2aMnjbl1eCCMF6kvKRVZIadkyBn3PZDxk1VkKNxmV1wkUWOhjpNSjJ3yn8WrqhKS1d0CypVV7HOQyPAlUOCmzsesSoqr8DeNSgsoF63Cii3OGY2BUJ5Ql8zL0D89S4ig0+NDshHRXP7sCd5U/4uKLZzVmdgJXdiYmpSWu5dRLjR0oThRAbZabkJJn0DYi9BGcncj96vu6wGBm5E1GLAGs+aZnlPUvzVv7pTSvlY2Y6/MubnVzTF0zX2KO1UpgjHpwy1QuRLcANxH8SR6Le9O10bWGOjsVXsrBldhSz6MuFXtgvZcL+sx6Bu0O/hJyXc+jytRyQTRxc3z77CyjIsjv9hzSj6fMvTAhjywKiADCyRXeK5rrGhiU2KDSdk1FO6ahMSmosMiFWr+FbVtAcQkXLAMACszXgjylyiCcOwYCFWYGJr02DSppw7iD/K63dyaQ8qK9l33ggYSZfxzAv/CMx98E8Gve4TV/CMAfesbj3wvg5//zvP9x7fE9n/xKeJex6ddS+jDzLpdG7XHukZKTGZBhQecTDqFmETfdhF1YEFzCNizoKOPxOuK49g2KiMBEhWIlZofzGpDVsXrHyCylICN+DJ3swmNyOJ4GcJb5FHv8wXjGV+8FOS26JF5ld5eKRNEMq5XqzTqnkkEX0r3SuA44rx2OJ6HFd9pITcmJkmGG1PJ18hxZ0UFDxs3LB7ywPV+s80WjVXsgjiTg2LBvbpyGBb1Rgx0zlRKjlRmL1rq+RrIeYWoeuigIrQ7wW/n2WcNZ3oue2UBrS2l3J5BydkVsjEIG273S7rTt1skEtqnoLmPcLEVN0o51IiAG0bLph7UgyuyapqlDXIKwF2ykgR6zw3SW+5Cc9EMAYDW1RJZdKvIdL8zNYzp7gSwZmTEF8zYJu8Ds4I86x6P67WxccyZz65pypL2FBU5FX5WAaOuTXXFCaVDN+wwg+YIoK1PijstwXTm+Beom43MRRQkRAOCcIIvAhUZHHP7lrAs7Rtwz8rYd6JD3hfLd8eAuNhaXNwqkpAnZgeWBwRsp++WVKvHmO+3euQbAkqmclIEhaLmLJDD6SY4TR3H0QqGi15OESJFYpt3X+/kie6JEIgWsSCzJfrjAou1+MWh57lFmfQobwyTBuVzKF2hG8qGadxn3t2d0ipyxQJKb1XJgRJaGZdZM4bR0IAp4eP+En7V7E3MO+MnjQzxeRs1GZMw3Zo/TKhQojhi9TWwzIWkwKQgax0Ub/Jgc4iRg88wSONqSUWEThmQd8RljsRIUgGPq8XiRMtroRaIXkAwruFT13UGlzLbkIBT6NmjHhGTTscQgDxm2Yt1VspAvUp8Ksskkhw3mar0K035JACjX4xfJVu25MBNup6FouBic1pGsU7hzQ2ddOxsY7bSsZ0GSNHDl7HA+94iz0O1LP0XEtQr9TaIyZGiOs0A8zSnbF3FxcJPTUpHu2jOk/xBl83DuBsw+lYzNxLrsmmx2xtgPZFGozLZYz2ldA+IcZJ6ny3BDzWKoUL7YtDpdNrTbzEkf545rOU4RT6JNLp+pW5Ti3gFx48B9FqeTNSPtJcCIByzpjhyvkwWyUmjeJCwPqGRG9hruMjJRyU6kjOYQzlr6sl26Obd20BHyWWS9eUwQi3RN7FSsTAQr+9k1G2ND1D4ZQWiBm4zlmY7TCThBq9N6HrL2xnnlNDiYIFkZkLTAys3Pjdl1SVmL6yS5Q4HnGlccO2C90Y2Pl6wPdCcbM2uDcjvUSvpd9kAas2w0dE6qZLEByMRFo+a97LkLJCk7PDmP6ENE7qmgdgwhNfiI3kVkdhi8zihkj1VnRBwxjnFABmH0Eff7SWGwhDlL49sRg0lmMcYg5a59N2PjV9yuUs6am+OBGEMfgT2KY4mrhw8J2+1cqFqs9PbWeYvvWz6OlB1Oc4919ej7iPubCZ1POC49DmeB3lpTnEiUIR3xhcNvM4eUHUIfQSQ8YcFlKZVpA955Bms5sFCoeDnecRH47TR3z9RDN7soMwHlxj3Yr6qaKGzGtTwESB6/njuZXAeAIcP1qezwvZc+UqfB+7x0QtnPCiMVbyuNd/aSXa0kDWAb/GMAhkDSnaDUq3Xq3MnOOnVNGWElKc+MWSoYDkingIQgjnoVp8l9BnVZgsBZ3oO7DNgUfeNkpsVj9lmkgmeBnDIckg1CKsLJvCbrLrqFixqsU258IdnyZ1EBLNPUTnbvRbuk4aayHklZhwzwwsidBNHS82g/ZCvHtHUqDQhl+p5Qd/xZnkCxOk07r1Ly0ZmHliHASkzOhva40W1pSkKl9g9tpEPO/YIjrKGWL9TwqvHCXifBu0vvn5XXDIBo2Sg1fNqwsOQshHCW412oG+bm3CxoJUNqoXLW3VnTSr2Pwtwrf9dzbyjlLViVNbf35fq+ZW4ku8rW3KxdyZyeFaCeYc9dIAHEWVsPAUApnwBVnRDAU/xanhgf2d6W4cSvHN+Eo4xTGvD6cg9zCvjY9hF+zs1nAaA08T2xzkMk3O/O+Mh4wJo9buOAR/MGa/Z4wmOdbG92ySfNbKozFA2SsZfSyCv3brEJayn7ZCb0Y8LNIOW3zqUyt2FAgSkFHNcBUYPl6NcSSAPlgmSLLFQuNmRowYyZMK1Cp2/SwlIqlHLhxVqzDP7F7MR/6Jp2IWHXLwgu47D0OM2iZz9NnfQjCBfDeGUWxWdwcOVn68NYphdCwv1xgqeMdfBYt/4pHrW71wKgXA8gapbeZ6xrwHxs+hpmhPJtljh4yQdGTgff7hpb8AV4o2SToUoZt4dvAQjYNYfQh/y29oSmc488e1Gr7GVOKM4BDBEsMxkCAIhDbt5EnHq2DIvR9EUk8zDkl6mFytS/BqgElAaaZUIawAqFxyBrgk6CqCDsJPjn5BAXYULIu4j1Fc1kVl/f407/B8BF057N2WUqmWGLHEsjI25qyavMYBjBZgOF9Wcn8sXcTMSXYNZ8BgDSJoP3gvhLD2QpCqu2zpn4s24AFAgBoFDFtL0cC2CAACcw1tsFeqvlQa9Zz7ecu788L8vG7AELKn6WxroxSyctpVm8zz3LZ0W6Rm1f5M7351n23AUSImHPvSwx5ZKZRNVfN2qRgunX11rmsZK/mBzvnQz7zTngrWVbBgpt5iNo/u2RCwnjxq/AIDxbt/2AuZOhuXzyoFXQMsnJDgddFjoQEj2TYxL9912/IJDOR2jAeLKMOMy9Zhky7GazGYA4zdNxRI6EYbviwf4ERyzOVDOlrpm1CC5j0IG4zqULEIJlMm1psLWYHQ7zgDXpNDlLUJiWDk+Oo/SNVi9zCgR02wXbBxIE7TNaV491CuCkGUSUtaGRdWCOS/lvjh5vHrflszazY7XByTvGEGJBxS2+MhM4O57Tb6OVYEidaWmaW+lEaynJnL3sfEOf0ClowUpZVb9GndaiHeBmuM7thZ3a5AE4o8KxgQt4r3MMt4lF9My5jNRHxI1vEGgNJ1ymAiKQzxAiV6DlDVKxr8wEDgK9LbID1Pxr6u5udmWnLCSQuHCgiARWEEl26v2iA80OLksAy0oFI9IHcnCj4yk9Olu3pCnc7C7QWpbFWLZgGZf9fBFAyo5fN2EdY9Vmvlv0dQ0KqqDUSIPBQZGVmr0ScFGmEq0R7Tl1uWYYVhZMVJy2SSCjOUbJUAngLCSj7LhwdRGj8GsJtYpsqCyLMLZi+z0VeYAqvMZ60pQAf/T1/d8H5Le15y6QbMOKX/jyp7BmjyU/vVttLWZfdueT0nm8Ne3w3fPPuphsbgfbjkuP2/Mg0Nt+xVZ36Nw+tziyyug7hogXH2iB58V6Di3RYjkv3eEzE948bvHGYQfvMnqd2G614KP2J5gYfagBk7dzIV58dBDHa8NwzITjEorGu5lvWHqXJUgDGAApozBbTwEoOu3MVGGtJDvjAie2a4zqmPXxluUYQIHRgqRH4Jw4GXvP4mxZ518W5UoPDaWFZS5NqUhgcU1ZSR+jXrTqy2NlvkSDRK67ytoMpoKGsoljJsa6eMQu6HVWZ3FZ79N/NvVMQD50mCYPLA7dIw8/E9KgejAGPVXHnbX8kxMhaXmHg+mf8MWuu0wvN5Bgiqptz03JhCEqmXDicAy9leiO7oisU2YU1Jb97xOBlxqwyg67/fg16/ATwc++KclwCQr2eq/PN5gtgFIOK8cnTZJ0TQvpI9u1a0+jV2eaa9nH6O2ZUHoEFnTgpF9gMs2iV3/ns+RaAmwFqETjpUkdLIA3vZu73FnEFWrMZJ+nQJn9hJJtWPA2nXtr6JcSlWVuzRwJGGVuyNlckhFPMooGPenz7hCVP9Oeu0CyZo/XzzfF0RpP05zqtLQ4+4xRKUWOucfbpw0YwKgsvm0JbPAR97oJg4+4XQfcDiMyCJuwYhsWxOxwu4w4R6nz27T6mjwO83CBXpJzePaUuZk13p1j7IYFo/FNWXmOKlEjhYjgSSncE3qXMLtKO2/IMaMRWWbFFFIz77Ha9i2i7+pdVViFV1k712VsNlKuMpRUSg7TqUc2wYWo8w0quEWWppdj6lAjKiqLmya01103s5A9xijQWI5VKZKGVHbchjRyrikVSdxETq4oTBbqiwzgLFotMv2dBdnEqI13c/h86cjKDq8DsjWkiWtW4LnOsqyuqUXIOWLIwM6ig56LZ8R9RtooZDNI/411516CMwE5Su+FkjaRi9wy4GxK23xfhnpmEpiuasjnQRuwTIUht/RNdLAyD5ByycldKFtKaalCV+/qiLTNcgtals2lULOINltop73DQUtmQxWgKs4ya49EzzcPl0SLzDY4qD0LzVpMvK1Fhdlrsg68l/mRSI2zJSXKbPopWjbKHYMC6qxRx3UY0CDGWYJn4bmyGY4myyulKcuASK4hHAHKLMOWG9SsKchnbY15CyJyEij3qWv4t9rPyOZX/Az0jyVQpo2u9XvYcxhIHD59e1McKFAdOwDEpS+8R7t+QedkxmI7LJJlhIheG85zClizE9js2pdm/U0/AQBulxFvnbdCp9IteGE8Ycnac2j6MsyE09RjmTqQY3R9LCqMbfkt+ARHwHZYcH9zJ/Mwenu9nsohxXD6N8msgr63lKS8E3RYYfks/SGUob8CkSbGNNchREGWiZ6GlV1i9MhOJ+oVfUUO8PtYXic/4CKDsfdNURBWVopqG/NE4vwL0pJEYyUlQmygqEjau/Csol2CmEtUr4vuaM2w0WOYE7Pd7eoETjlTIeaLGyBvBQ4MdWgWVMBQuC2XbKBkMrPXyXB1IgkiRrVLgCMgApx8DVZWz9dJbjc5Yf9l4UJK2ywHj+ovSAIfEwOLkxq9OfS2Ri9PBuuOmdbqWCgqhX0WBJJfZLe7PFBHlVEyr+K8dLdfsqlmnsHrXEWZc+B6DqL4KOeYNiz8TpptGRVJCUoksyj2+nBudh+2/uZ0tVkOWJYhm4pURNpQptjJynmW6Rh5ZbNmZYMQtMzMdaofgMxGNQHa25yIZRwZVWO+nDMXOVtKgFeJ3/Z6TF+kvR/ZyfAmQEVbBRkIprWjWUSh0Nf7udWpKRLX9h65HvuulU0ePf231p67QOId4/5mQnC5MM2uykclg21n9C4huFT+P6wDbt0oPFZUy0N7PxcnvmqZ7By7wifV+YR9P8M4ph7PchffJfwjEh6moZd6vZEKytBk1vPOZYDSjhHZ4XYeMK9B+zwSEBemQnXvHWuwMO4pKTtZw3ldOsT4jDvojhFx0aQHIDt8b85YhsmYgWUKFxkEAWUCXSDFrpIFMusdncudSE6BBZlERCsT2ulv8vV8vDakCwmhDiDmRXihBLCgL9DzyaXeTxe7eRn1tfOpJRtxmoQ8ZiyayaDLcEMSZ7r4Upbj0eoNKGU6ZCrULKQ9EPaM9WGqjqp1II5Lw9oG1wQtppmBOXMmCXKlHmXHqLt6CTQowattvrKH9CUcg4ZmMLOx3DFWfYwSQGeS3kdQkkcNKvZcQ3LRqo7ZM2LfvN4m3/RjRUCR7RVBpstSkZV0zGEaFDV3KMOAbiF13CLnnL04x3AiBRpAFCPtsOY09bbgrBuLEkj07+15FIiyyjBngUnbhLmVjWyK3ZQXTamwlMdg2ZAcyy8oMz1xA924aFbkgHVsylG2wVM6m9KbKn0pOU+5dsAvjHVPWO5LYLf5FMse88AadOipDCiNKBryRdDrzr1x1567QGI74TV5zEr8b84xuIy+S9h3s85WCKV7ZC90KaTUJLErWUagLHTwOqthSCdmnUBXFBQRF+Eqy0RWbex7ArxLJWh0vja0rU+wajYBAF0DDtj1C3b9UibajRp9meW5oUsFDmsoJWs4O5Idu805rEtAig7kGYMOzGUto0k5jYpjFr15yWZWnQL2NqNBSlaYLOPCRbAiyFQ8KxkibRLG7VLmK4rqZFSEkGfpHN7xdSk5pCS0LfEcap/FSkjARYYFSKAqTp5Q+zXRSQ8DEDErLUGxcY4ZUaNmNCX7iQbvVXQOqIhhgRraE/NkWpoqgdQWRO/N0sS3TAIoO304Rrypr6nEe1z+K5xYKyEcXNnNl51pVxllZXm03q+SzqYEaadovQMbUryA/KLu4C+YCjq5n4zWBLjc7Ze5lyYD5kYjvTXKdYDPMojcM5KXk8sdKm2LZTs2GMp1x07UXEebcUY9Rw06dyWAaz+B6q7da//EU2l4+wl1APBOD9CuVxf84iZmy6Yaavlkmyo9LoBC82IzJQAQtxBEGqBwbzn/5b58rrklYvRoWCUqrN2ukbIGsCagvt9sBHgOA4mQNvrSR/AuY9ct2IcZGYQpdnhrlq2nOfM1SWMeAHqX0HVLefyYPTxlbIP2BpLCde+8ryMZ5nPEZXdiDXOhRREiSZt+z5kQfMbNOAs1OVNhtV008zA+L9N/tzJX5xO6bSqlLmvy78cZg09YlSG3HRgkkqDjvHBaTedeNC26jHFc4VyCcw7JhuWiV34rBzwJ8JNDHDPWfRKH23JeKfKJNLNwJAGHd+pwHCMq9DYlVwfL+gT0kAb5JMEZnpGsgd4wxlKXgc4IGNU5ATAodfG1mQT9pf2HopeRSOjTCQAJzXZODnTyNTPQL2W2QMUAra7stAnqbAJVlI5jQJ00R3W2trsujQA9t45l2A8ouuvWxAdDwAO9BlS79hZRBaDI4wajWkdxgJSAcCSR/rW6ujqNbIEkotTjS/mGAXd21fmboyxxrCKDLkokjuv8RRMsC+WGU6EpByBxzVjawJpRKD3sHC3ACeULCh1ICTQdsO4roWRJ0lYAM5UgwoSLKXgOkEl+iKM1jqrc1x6HGZX1hgylNmWwcp1lp1+DB2UqmZH0sXDBg0WxNukvzN7PSznUfrbyZwv8YFc/GgvkpWlOUsYuQduO6+px20D31Hm8gz13gcRTxv1BwrwFit5JScmBsQ0LtkARU7JsxRh2XxyP+Oj4GIAISK3s0FHGvXAuQlBzDkhwF/T0cxaxqlU1REz7w1iDp9hhtkxGMwcrbzHLzWeiR2tyiFHKWftxRu8v+ymj0rgYmAAQBJoRPWbuChps06+4GeYi7GWT7medzpdekpwH6ZpZv8XYkedtQIoefSOAZMGQCNiPM3a9BF87nyV5mR1pyzKoDXYAdyjV5f9lCViXIEOTw4qhi0hMWNegssZcXtei6dp+iMF7W9TcWenpbSA0Z2XyZSD16iXaLMfKHZsI8lVTA837ALjMSDSIwEECjWZH5I1jTDi6DEhgPGFyIMAFmcGwjI8VlMAatJ2vMxrr6pEmYSg27jApPXqQqj+WXkeflX+MSx+nlPes3FeCXt0IYSUhaATXp1DDktzMI7SzLBVCzKW0yDo9b+tszALZMiDL/hQxVXoSRaeDRKf8TjCzzAgAWJl/AVQ0k/J9seNLHrJVkmB2CgLQ/o7tEFOZmOe6Nllh0JEkSIa6XndRc8hUezQtY/IgJboSECzuaZaFeotJwImXpamngAZqvAA8E4SxQOWmMxUwQ26zNdQ1cmst4b2bPXeBhAhl3gKA0KFkj0MD9W1LUOZYLeB/dtrjoMJV9jf7GQAezyMeHzdgJjzYn/Dy9viUk25LTG0Jy0SYivNkUo4swmnpcJpky7AdFzzcnotDP2hQ6bUktmaPW6VImVMoAWpthI6IhHZkiR6fWfa6cdJrydIsN310yyyGccV+M5fgBogz3m1mOEJp4JeBPw1Ep6XDqgFiTVVWt22k3+W7IgK8hzpNV2Yw1jkgK5XMoq/LmWTOJDpELUEZiolXVzIWp5mMfVecz+j7WEpqMco3167ZSlqyXUX9BicSWnaCzDZYP8We47nsbBFJpHZJuJlom7TZL3/OqwOfRNExh4wYuDbmjZ7Cnpskq7F6vpW3RAVQKOhzTxLYSvDSTIhqMCtZi+PanlG2ANPQgGPktkzTbsG1BGIwU3YQjftm5sR6JS0iyha/qP2Zk2dclMyKbgihBh/9PgDQfg+VDCucJGNJG65a5Lqrv2C91Z/bkhcHIDmIdHSkZuaECymiiyglzDDJeea++XujY1/fV+jeQVwn2y3AaXBuew8WMCS70+9/au65sgYoyK52mt0so1lry/64CThJhxOVb0ukjjWQKAdROAoNP0ho+Eum8i723AUSZkVbJV/gsttuLdPhRodijLxWPpoV4nrqOgyd7Lp33YIhCLHerLrpg0945f5teb9bRWjdTkM5hqGR+l502L3Lys0FZAgs2MSJjD5+Tb5MvoeQEbNQrzwYz1WT/Rl56K7JTKYkWcacAo6KTjOo7cXrzXHZF1edyboEPNJeR05eGrQArG/gvAwIOuW+GjZSzF2iR0ySDS2zzJ94L5T1NgsCaABbfenThJBkN0YSxomAbojIXdJAk5W7isB9UvI5LrQzzgMYALCyBs9eSl/6vJQczqdBUGurk9IWa7NYxaowKPxXPjn5YgeWLqfCeMlo09WZ5A0De+mzcMdgKBlUqNmR8VeTz3A3+niGDgsCGBMwog7fMUDZFd0LHlWXpbVIwNzprItK7UJ3zlqiIqM6MWizZ3md8XZZKSgR3ATw4u88F9LkZ+jgoTr8QUS9ZGjQS7DqVF9Fl65ka+ZAqZZYsss100lUJGL9LNfMliFBApjV86WUqLftYrQmSkZI0PkIvb+0REUZ8Gc5RqsPL2g6Oc+WoiUNcp3kgLUpl7WDkLmsg7yu0usQuqnCirNHCep+hpJQKsTWUFau9l5KGdD2FKq1QhlY94S4q9kX0ARO+10/d2YuQ8OtvkruazZlQYcDEHf1uXeD1bPsuQskKTs8Om8uZjcyi0AUgMI4W8oixCBypVm76Ve8uDkhkOp/UC6DjelZ+DmIg74ZZ2yHSwzgqvrjbZYCSLAzNNRp7ksGEDq5c60Zn5lwu4hOiqc6pd1mSvb+9r8DF8p4k2I1Fb+0+kpPYn0NzxcOPysayrkMdFJyK5QXWSRgmQkzMQ6a9qfohPaiMXZawrLsyx4HysT2unrE6GG66BZQWj31ksE4hmv4rktznbiup/J4pVzLKaXsZPBVoDDgys1BUle3XTNQSz6J0L/l0R0IuQOWe0IzQQvBvT6Is1CHkz0QHyTQfoUBPiqUSK8l3yGOtL9p6YY7RryfymOkokbc6Rtpb8OwnaW80d6WuhunlcDZ135DcY6VNTecHCgaSsoVWG+xrjp3LKr02M4uNFlaO9PQJjdlYhxotFgMakyShd3tyRAjWe/GpsoZpQRDTMAJF7t+0+aQEhbKnIVbCf4szhsEhQc391dTQqMoSKtCLAlUXi77aptfDkAeNKjRM4AE2sspjLvN662kVY6nQcfW0Jy/DabSnfMp11k+h5rZsmaxVZJYvqOt5oj1S6TvpIOK72HPXSCRoOHLUB8AnKa6iqad4UPCbjOjDwlLDDgfe3FCiooy6vd19Re7YwClNCWzFEL/PQwrhpAQk5PgYY1oEmdYGteAqv5BHLkez1QAAajcrL8IAt6LEFSRjtXgMy2dNLKJi0LiMneIh06cZJfhRwlQZaZDd8YAgRfCfOieXsgG/RS5+bvdvJ5LQDA5WrIegT7P3q8o3pF5XgBZp7QjVQbXu+9BQIHbdo0AlzXYrRmtO+yCfqqJ1KXT0//9JHVuAlQNEBe75/b5wsZqQkEA3ZF9Fa0IOUd/cMDtWJbvbs3bq4OzMg33WZyXyrCyDe0Rw82uOJ+LGQFb3+a45Zq5ziYIvFiWT+rj8nzX7IILakx3xz4LXfrFDt8av/pWhZbDSiqWFRlEVp0TZfk9jVyceFn/RQSmdC8lu+JYnWlLxFiunfG0mh+JQ8yDfD5+JvSP6ofPmrH0j58O6gAaGhJ6uoTUoQzwuaiffQS6I5ehR0FwEShxcfZxJKHLz7oOhta626yHfk65YQOmy+dWwSyUIUsw0K1AqzUD1CBETT2ZPSGOKKAEy/LaIc8wMfxyZwPxDHvuAolzjG2/Yk0OC4y4sQaAzZDKPIbt5Df9ik53gn1IVRzKtMN9xm5cSs9hXjul7ZDaPrHW+RV/14Ukvi25Qpne9RFOSxVZ5Wq9F91t7xinuRckFdvuWx2K4yIRO2lZIwShZbdrsq2JBB3Z4fv9Wr4ptgK8OtAs51Mcd3HuovrnVKEvzULfIXoOlfepRfKUwKTBgcEXDqP8HfU1WHQQjyAT3IGBTrikyLH0FGzSXnfqgOzeybHsipd2SyfvRYuw3lpAMKcpHEf1y9M6LxBK2aPNUsKtQ3cr57jeKClgs/u92IFrJmOlmYt1vWMG4Wx/L5QqCp81NFgumFatdz+DMba8hTpNSjJfYUy1NntQmIBJyjEmgFSo0JuMgAMQu+azNges/zIgKLV8eT4FlZTVMTfBin1dO8uO7Gf7erbLdZfV1oSe7P1KNqBwZYpUAvdT0/bq/ClJqWjdo+7WNZv0ub7WVATbfks5nyA9BUqM1JMGEmmkl109NYE6oA50apmsSbrgVpELzoERNzLDY835i/uN6mttPSgxclfPodwDLOU7m8QvgTqjZGoCG9b3acpy72YfhtTulwP4NgCvQm6Zb2XmP05EfwDAfwLgs/rU38/M36mv+c8A/BYIBuR3MvPf1Md/CapC4ncC+F3Md+WJLi1naVzL66t6oIkMiQytcFmtq8w02MyEPd92+464TKCf5g5AJwEj1q1c6CrKZl7DRQqZsyszE5wZ2Ynzjasv0FtjtF1XX3XUk9CbwDP8mAqSp0U5iZAW9Bp09sNZ/aJO9VvZiJnAI1Wm7hZWmNRLTL7OWowZGHTsdhZSQWJSGlSFv1opJJuzplKjv2g0qjORoIU6AW3cVMzICJcIojufsiCcNIAEBpjlvC0TIi5ysval9bPSbrBMiscd11kDz2UWwy+yi0xAcSJxawEBlzV8J4vG9twyLc91lwj5HQDc4uAmunRIVI9dX4CL8pubXdmhF06mxvGLWBKKN7bjxx0jjbbD1XsgURFZIt3Vkzp9zgBBnGOZ+m8yNL7TAyGggexWWGxB/9jTNbvzE11ep91+lamnBBQO8rG2GViZqyAtFemtalmXSdOWoGSvM8ftgOWenENuWX6bbCp1AKnDt127UKHoUqT62ck5SDAOzbR6CXzKwSVoMFmHAs3NdSmIuayxBWBYwOR6jheNddsQJa5qiKH5W/OdqdT6Gjd9MxRpGZZmf6l/xgd0xz6MjCQC+D3M/P1EdAPg+4job+nf/hgz/9H2yUT08wD8JgBfB9Fs/z+J6GtVbvdPAfhmAH8XEkh+Ld5Dbrdl9TXOtTl6zIqIslp8Sg4petnFawmJCEWsyjuZ8bDZDTv2FANOcw+GoMPaAGW0H9bE7zuhg89MWIzGnAXGCc9wqlfuNWBZADOac0eM7bBg8OkpUakCBdaMBkChgonJY46+wFyNvNF6HcwkjLRWc7eY0uVKYGgL6jJolwoK6W7PA8AF060RQZKr6KriJLVh77zMcKTFX8xeIBkKwN6r/u/6JOuG5rvVvC8nuZ4yU8KEtAfWB3qQhmLcms4gKSXlIMEl91mhu4Skzy+04FZi09MtMrp9Bg2C+ip8XlzfiwMj7fSMDSZKKLTryCSNz1Ksl+eK09NjuGb6u4GDkkY+7rgMueUMgFUxzwYPLVNkbU4vVIKlKfeV87JAjgo/lXOwc6MyRMi6swWJoiDspebso5bJbJNRwAHN+zU3kiVrRq5IDNEct6HHdohOzWVdV0hDW/TZUQktM5WMRpw8PbXbLz0L0pJjk80RmjkUZ810uVUv+gymVzI2Ac8Sa222W59HJtDpolxlVCYWKAAgDVT135vgGjfyQ8kyLJjZ2rj6/vYebZB1DuKlA5ADgRoZg3eyD0Nq91MAPqU/3xLRJwB87F1e8o0A/iIzzwD+KRH9GIBfRkQ/AeAeM383ABDRtwH4d/AegcQRYz8I2moXFjjKZRq91eSILFDVyA5PplEpz2Um4stvHqFinWTGJGaHyB73+6mQAk4pFOoUk97tXJaJeJdxXPuCnvIuY+zFmVqgWpNolieWKXmTBt52K7bdUs7X4MU2Bb/vZtzvRHDrnDosOSBmh1PsCx3MEITSe4mhBJVlDsg2DFiCWZ1NaCnYLdNxTogaN/0qwlZLpz0bYSM2TjO5Hofz3KtoVy49najwXiJg6FaMVpbT9V0aUAJpKQ5Qn2bBWbXm38mySvU6quABlNdDND2OSgs+ZPguSxntEIBFd94qO2soIQZqD4arQ+QhI+zWQg1j8rgWsC/uR1dnXWadkSnStZOH8XVJzYFKQ5qHJI1hQvEUHB3orLrvVoq7qAmR0vCTsN+21ObPXDTJMovoV8li9c9KO8OJwOcgzf+BkfaAlSatTOSPToghnSKlAgCje9cMNvcZxAR3cs2keAMF1mMaTJcZSBtx7lbSgmMRmjoTXNRMcmxeb5nDkMtxk20Cmmy3lELRZBOMS7EwvQmKGJWHEHbqRHkpr2nJsoAaLFtTWLCfCN2tIrgCpLxGyuirxJAlSTXKedaAatDvocKRzQobgGW7munbsGU5VsZFpQRAmfB/vxHiQ+2RENFXAfh6AN8D4BsA/A4i+iYA3wvJWt6GBJm/27zsNX1s1Z/vPv6s9/lmSOaC8ZUbgfqCcFQiIE+5DPXF7DA1Y6yBMvbDjGAkiAA+fbxX2HaN+HBQcaeWAsUG+UzTw6kTMS4uR1wG9ZbkS88lMyFrdmGWmBAb+HDMTnVCYn1fveOfLCOm1JXjJg10FsxsuNCT6MVHzbxSEuQNeca4Fc3wJfoy5V7KAlQDDBFLNhVF5MrUGO08U3aYFo+4CvQ2hIRhXKXUt6jjJhR0lQwFVgJKAFhXpXxhgf/uNlJwNvnelByWKSBHB9dlDOPaBApdr0jIUWdRzp18ebqM0Ddbtk6+aJy1BwQAuwjeQWC+SjBYmv+OQWNC6IRFwPQyCEBaPBI8YsgN4gxPbQ+dzxUCq1P9bLDipMN3jiX7aGZDaPW1lxG4wHsBVGnZ5n3kZ8hu1ByKXk/RywBkWDFKhsWB69BdA1ow5oGiyGiZkGVZ9paGJgNKRiIBV3oG7NX5OQEVhFtfr0HLRm4hQDOO9pJKycycOBRdzQ65Y6Qty0zR2tDeN6VDO25xsAQU5mJ7H+U1K0g2y8ygzngV1BjpuloJSkpVBJzlrKUxL2vuZ2MKpguK/LQBEkvm0h3kcReBpKwKadRJfStzZbt+GeR0ZBloNRe1dMgSbFOo72cLaZP0tRQKQIcxSxn4Cxn+S0R7AH8ZwO9m5idE9KcA/EHI/fMHAfx3AP5jPHvPxO/y+NMPMn8rgG8FgP3XvsqHtYenOrGd2RcnbESOFyWrVA/7yvYWr45P0JFAcL1+ovbczIS1gfcYDNcEsCLLZPuqPF5T6kpZKmrpphVe2g4LCMCTaSgzD0sX0PcRnU94cZewaxQOTdjqrfNWfB5VuPCuW6pDU+t8wo3Ckvf9jH0nTtoyrsiSyRippVHE2yxOzA5zDEVBz86/8zU421ClDUXm7ND1VSHxtHY4L11hRJ6WDt5nDN2KzmesPqFTTXcbUCzvo9PpRgrZ2qZfsR/mpzK3Fm5tWVzU9xa6Gl84xpYl6NBhkp4QUClWbGeu71t4xrg6W+dqn8x7OdcSnKMD+Yykk+3kGONuEQVP14muiucLOeHduDTSyPUa6pCnrvPqkc5BnGOf4LssMcgClT5X/kfx/mzbUwcprwVBIBQK/Y5Vmx0ScIzssaCzBG1WaFTM7q0XyDvWtRk1O5RSsivnnzMKNc7FpD1QAhdY5nFIOa+kx2BB0kqHmrEAjTohlSl80uAIDciFudgGM0kDLXAxN1OyGAKKOqR+hiBUyp22JMkEf3Rybk05quURi1tg3cnzCxDB+mCLBDJB7skiFtZm6700JSp2wLqrm4rCTg2U8qE1+6XfhTKIaRuL92sfSiAhog4SRP4CM/8VAGDm15u//2kAf11/fQ3Alzcv/ziAT+rjH3/G4+9qjhj7TvRETGL2nWYuepfgKOP10z28cdiVBvtOcZe3ccCSwkVZafQrtmGFo4yOJGNITEKLkqVUdlhlSNHKZwDQ+4Tt/ghAgpmZBbigPZlcvvzy/+084LD0RW/EEZchQyupHZcOjoAhSPAxgkcpqdXd8nHp8Sm+uTi+OXdmIHhBg1kGZhK7QnPiC7MwM2FpMrOYZNq9nVD3PmNaA0j/bjK3lp3E6BDjUKDVQ7fCkYAaTnMHQqVIadkArFTFTLg9DXh8uwGIMQyxUOvb85wyJts5GvdZUTK07C2oE7b+hunWs8x9pFlKUBekjhZkEmFeO4CEy2zVgOd9LrtbtmMtDmsRrgDcGOt7AJiSzOkAKMJh9lwrTVh5j7NOuDuBdYtOPYQIMxEKuSWhBIQCz2Ypv/hHHlT03SFlvWZXX2hPmCRLg2Ynkwa1hhbFZlYsq6FESAREp/jh9ny4Xhf6DB5YztsGRfX8Soal9C8FyIF6DCOOVLyFnIs6fyYUFl4wkDuqcrOWddnzSdl/ZwlE5ugBVLSdk1IUOy2/tvsa/YDyHRQcaRCXxzTzYoBBAHMzkFjpSywDo1z7YahPq+irXns6aMpYuDweB1QaFs2+uieEMAmjd9qg6sS8i30YqC0C8GcAfIKZv6V5/KPaPwGAfxfAP9SfvwPAtxPRt0Ca7V8D4O8xcyKiWyL6FZDS2DcB+BPv9f7BZbw4HpXrKiAyIVC6oE0xk52rx66b8WX3npTd7E8cXnjquLbDnTXLsF5LcAlRsw/rlxj1SnAZQ5C7wjKADCrPs2MQMaJ2s60sFXxSji6ZFO98BjSQTFkGGTMTgkrmGq+U7c5FSZGUnl480mHuMRn9fKtDAvkexOQQlS/BdtcGWiBi5FR7JIYGA4AQZH3hcrnj1uRlt68ghiL93fRi2rkcC7h2PECc6bzK9a9zKGU5ywzi4sFaoopDkIn2xkyXBADiEspzqctFc70dHDTZV+dkZoWz6KCY8iEnwYOScmIBQFq9DBnqLrb0dBZtvJuTsu84VSfD0OPa8ckhtzth3eWi4ZuyvkZxpATJEIYkz4tC2sg6dQ8brhwVaaZINwaLMFPWTKAdemycbMlkWv6rXNfsWcgzN7vCAmAoqDRypb1fqfQBynuU0qDtnmvm4KI56VYfBU9ZaZo7FDZjsAR76XU076vxogUtmNO/uIdyA1Agaayzk4wuKxKxlMaeZRY4LSA2jf123VrUlZ0Ce8Ydl/XUtZdBSW7OgeTeIgZo5Yvltb8nQ82tQLdcXvOz7MPISL4BwG8G8ENE9AP62O8H8B8Q0S+CLOtPAPhPAYCZf5iI/hKAH4FgCX67IrYA4Lehwn+/C+/RaAc0EyW9gfTT2nczHnRnAEBm0R9PTEVqd0qhEB7Kc6jQyI8+XmiXZHaF4DFmV45hFlzGJkgXL2V3ySqswWFOIj7ldNfviDH6Cua242Um7PtaprHHxxBLWcmCUYYQMc5KVbJGXwKN6+pd5O6UJILL6EIqZa12V2/XYL2iqhGiJZ1mOPKuGYOwZScX9PN6LCAXpJwBDeY1YC7zP/WcQ5/AXaqU8plk7mUb5RgKfeasaLBMcH3CZhSN88UxVqt/uxpgSmM5OaRVuco6of035JlcD2ADkOypHIc9A8rYG7qEEJKW5gTYUHi3LCjcXSdicDZ+E9SSEauna3fvPtddfZMVkTbvpdbJyBulbGmeW1iQoy+78QtqlckCXw1kPCa4McFQccZIzDbECdTXNLBm69EwZN6jPFagt1RVHh3XHbz92dbVPpsSILg097mQL1bSwTQyeOAKAjAzx6z6LAAuBvqMroUiFfSUDVHa05KxJzMKgqtkLWT6LTLD4WcqZasiKdxCmjXLKAHFgl/7WdtaPCtZsFNvX9+kLdZjKnLAijost5/OxJTnP+MtnnrL9xi7+JKz/de+yr/oT34TOp+w6xY4MM6xK1K7zypz3X38WY/ZMzttgAPSX7hL8d6+booB50WYeDsddGRIwzllKZfZrr3rUoHybrsVY1hLBrRmd9HzaXnEOnX+KTuc1k6b4qrvToykGZJJ7a6LjB+HYKJRAj++GwxK6Ysr825RHyz/6/UqzNjMMh279Wzi3p5rj1t2IiUx+dbK7I066pAlO2jeN64ecfaXaCrHCJuIflgvEF45K60HQ+jtLZAoS0GKDnEOVWu9UHigDGmW3xMJ51YS1Ja/WUtg5OZ1bQkOsCxH12l1hSKFugznGZxRmvhYHPxJzrcQG+pAqAsZefGgo4dbBTpatE/MmbQlIdQSSyErrNWVi6l4DiykjI6B1RVK+TxoP8TWWY9PhgRqBiwFJSbRw80OTmlj8pgvnTogWVNEheYqhNd2+BdzR3qylKUvYoy9rROt18L19/b6muyu7TmUFzZlMNcGSarPLRP3Rhtj0HA0z2cpL9kciSGuKi+XBpc76KqnTPtzpYmPy+Oy1wBmn7ct1d2s6B3WQIKdPB6b0taP/ee/5/uY+Zc+44yew8l2Uk4qaG+EUGv92eEcO0E6ZVdq+0NI2HRCrni/n/BwOIk+SOqwaAByTT6ZNSPpfZXlNTvFDm/PWyzJgwDsG/6ti8DEgv4x8ajgMzotN53WDrdzD+8YY4gYrTymX6xNWLHXoLINC0a/YskBb047nNfugl49MCHq6/oQgR0KF1fNDMTmNWCZO4EoDxFDtyIQMIR6jS2Hmc3peC2BJS1FFZXFph9V34MKFDilWiIbxyjAGq7UNjZLw0AJZqETVFhh9F2rEJf1UoZhrWhPKzUlDVaA8nFpj6QTVBWz7rabzOOiJtBl0DY+ldF53wxm6nuRy+h7yYSM3YAZhbuKCHC+zvRwkHPnDcA36vCToqsAIGpABMC7JPFOy1jywWa4XiQI+Cw08lVaWEpYJkELoJZbUkViwRiEAeRtrtdsGZmuBzPAvQVxVGfcaLikTUZ6VqnHbn+vjLOs34lyLD2eMQQw4M+1eZ0DEE1NsuMCFS6zNebcazIj5bCNMQ5o4GUl7tRBxzKgmgi81vMp/YnQoLosYCflz7rTTzFYcCmZ5XoeF2tANcu5CH7t+7oa+4XTq1lKGybUQEOo79WWvlrkmG5xlIreNgaVEufd7LkLJJ4yHg4n9C5hMB0SUobd7PH2ssEpXvImt7TvvZcglEA4rAMOyyDIp25GcAlLDpijNODPsSsDkPe6CRu/wnVZ5Xml8W5OdfQrRh9lbmUZsWavUruVoBGQUtJb5y1O04AQEu6PEtiM3beltU/Z4XHa4DE25THLTmx+Zewi9irUZRlUZoLXG3BJvohgjf2Kh7uzNPSZynucl076NCHh/mZC55OAAM5DaWpbdhFcRu8YKZNO3xNyk710IZVSmnO5BCM5f+E3W7Th3PcRrglilplYZpa0r8SQ0lRlEZAvie8SxlFYlJmBFK3RLediMyBtI5uZME8d8lkyN+olGyDUbINcZRmIsdLmd6W0Jagq1kkwZhUgizUjyZ5KpmLDnkQMr0wKKTGyU/hu00C3hj8cSfkFgBsEoswMRAY4iic1Ys6LkpqWuXJ0oCXATYQ8MOgmwdlsjXHCBaHMKXMkhnJq+iXF2vkLQtmJ09og4Cwz0WHPotyoEGNjOYBnEQDTe9CcbOl7NBmH9IEgENlFsorsgbTNYFsrNOdFrNmUKw6UZyolqtapl4Rlrc5ZiH3bfgTXzOFuQGiUKK1UZywFz6wnEUpPBqyzQjpMmDdcymN2XpVOhWRwc65ZZ1vGsmzEwKYlk2wD5nvYcxdIptjhE599RRzoMEsDGpX25Bw7rIbeUTiomXeCjPrIcMAAwtKL9vvoVzzsTxhcxDn1uI3DRbPcUcaD7oyNXwt6CwCQgYWlV/FTTx7icJaCcdvoNucVQsKgg4qbbsW9cUIgKVuJAJcr5bOYXdFUaVmFzdENIeLeIK/vfcToV2R2+Ox5j9t1KAiwzqfSF8ksFC9vHWTacuiicIZxzRra0p3X3kqF0QrHVzKddRKqeUcoaC8AF4JYXtfQjmlrs90KRNk+I3vce8mq9sNSMsw24An9jcc0S+BzrpJibocVYTvJPbB0AiyIHufDIDDdIEOKZKW0IcGax2kW4s4ysKdwVjlJ+QyJICzIFyU+gPXeIwCuz6IIqTQ7BTzgYyn/WUCO0SN5CY5x1exE5X5NTriSWEKAB5kETrtas10HEGyHK2clPxLAu4i8F9+NJD0tRCeDhywluxRzfa0GB39uym9jAwU2B+crus2CZFocMPtmi41y7hfNfc226BhgMF8X9ZzXCuu9oGbR9mIaGFEb+rVZLxQ1yFTZC+Rjk4yAcElb02RYJvHLPdWykYNkQokKoMB6PlYSbUttFnSKlK5BlIHK0pubeZXms2KbfLcNjJYT3YrLcqAtpQaa3GkAQn19KanhsiR5kea8iz13gYShZIlOB/S0WWxsuuLIal8DQKFI8T7jo5vH+A0PfwAJhB+fX8EbcY/7/oyv7N/AjTtfQHcn7jDlHgmEKXdYWZQT163Hyh6HNOLtdYtzlonz49QLAmnpSyPWvnwzOhyy7FJ3+wkPNhO6LuGr92/g1f4JTrnHo3WLOQfcC2c87E4XSLDEDoc0YM6hzLIkJuzDgpswwUOypsO2x8av+LLhMe6HEzI7JJD8X4AIDqfcY1aoqodkAHMOuI3jU6qHG79icPECyHCMA96at2Wg00qAS/YFtTZHEXzaditeHI/o7RhMiOzw5rTDcenLtH/nKsAAkCzPqP5f6I/YK3NeQgVNrBrI5xxwVqiKASSeLCNee3wf09RhGCLubSZ0qhHTuVQADjaDclw6xOQxdBG7/pJ5oFxb8qU/Z9djn9GjaYPbaQAR4944Y6uZ4l0ZAPk5l0zV1nVJHodlKOvfiqcRpJ91nPsLan6j/DEJAgNOpEw4TQPW1SOEhJutDOXenkecDkKR3w0RwxB1bkjQgUnBEkXmWb9LRhdkmWjOhD4kPNieMfj4TB2g1pJ9R/X7mzTDXA898tmJXsg+IvQNw6CVLTWY51UzN8/oNiu6LiFGj3UWcIbrsg7UovTemFHg4Cl65JMCOTYRw2YtJdicHZwTWWoDpLSUSClVaDlr2TSrAiavTsTPNOsyXrOsfHZkmRJB0YEW/JsAZkF6daAnDn4lxIERH0QprWZc9vgsIC8S5PImw9+TezauHnlxgAP8kOD8sxo1l/bcBZIhJHz1S28WESsA2FJGv00XX1L5vwaSJQfpLRDjH5y/Ait7fGa5waN1g41f8ca6x+Ai3lx3+PR0D0sKOMcO59ih8wkf3T7BC/0Rcw54vG6wJC9fLn2vwUe8dHMUJ9kMx9mXcugittqn2YQVoxcoymunB3jt9AC9T7gJMzqX8Pp8D//48JEy22LXYBPuFjAZwP1hwiubWyQm/OTtC3jjsJNe0GbCJqyYU8Dt3CMmXxyOZSnmuG3eZkpdcWS9OsvMhLenDU6zlAuDTwUubCUoG5pM2eHJNJSBxE0vX8q3Thu89tYD0bEPqfCX2efTBTmXfTdjSh2Oa4+UHQ4YimP6/uPHS38ndNKfWFePuIhj6LcLbrZzOS8AOM09Do+24Mlj7TLO41Agw8a4bKACI+vMTIiDK4Jkx7nHee5ABHSdrN2aRrx2foichFetU5VGczzeZ6x5LSJkT6YBa/LoQ8SmE4f/6DzKgCpQpXaDKD56b70XqVv4ICW6GB3mwwBMDgjKqOwZB+Mju+O8rSfEiXALyfrWRlcmzgFxvitmXjNfoAlmXtY9JWUWWBxOfcZp6mWm6NSDDwEXUroEoLehSAi8miGMBJ0EcihklyOBU4fousueCjX/rE+T5NzT6gVtplDsdPLIJgdomYWCBygB8FDZYj0XQMqUxx40yWjyrRfSLFJgRFWARJEHyEOuA58FUo0CEy4zLNnJZ8WoVCZcy2hxw6VfRStpT0uyjDgKnf34WldRZM18JCAZ4/oggQcJvmkW5gusVMXLnoRn97Pu2HMXSJhlhuG49ridpJR0fzNhGw4AoPBd+bIYYWO7swyUMLgVyEBk0Vz3xDK5DsIb8x7/5O0XscSg9XFCCBlzDHhr2JaGvvFujQoFnrTJL+egXz4QYvPJk5bKXhiO+Oj4BDE7vLXucIw9ehcxOIEid06CYosUC5Rwv5c+zSH2eGPaY80e2yA745jrNHfOhEfnEbdUJYUZonSY7qS6fUh4YXPCvotw+WlRLQDlPFrercEn7Pu5lP6sb7RmV+hfdv0iQTOEp3a7jlgCiE/oGpnhB/0ZH908AQC8Pt3gs6edAgeESsKaLkTAMESM41og4TKgqci7ICqYyy5g7f1FD4Szw6rldZtIrwFKro+ZkPTvplUzdgKMSCwzRIZ4W+ZOzo20BOYT1sELWzEJN1x7H8bsMJ17xMf9hbNMnrEw1R2kNnpluFI2EK5PMjAXMvoh1ob/atS66vwdIwyxzOxU6WSZ4GfIrt17LrQzrLICpbwG1J2ysg84h/KadlYIjEqzEmrpqd78gOtTASJ0GkjyjpBcAJJOjStiLY+5QopNBqGvMHOb3cmJhVQ3EWDzLdq3IJLeSL5bntNzMQ61NCYkJYCEZT2wvgddNMZBEP4yW+tMQJfByjyA2YNmd9mXYJQgkgOQN7mCJUp5TZ9aUH6ynm6QMqTNugAoSpE2R2RlWSM9TdnLoAVQBd7ew567QLIkj596+0FJjwFgWQMenwW2YsuWs+zomAl9H7EfZww+4cu2Hlu3wIPRuyhDh5TRUcKgI6dr8oW/ChBnsusWvDQehG6EHXJRZJTgUWhCksO6KHmiOhYQY+2l9DaEiI1f8RXDm+gowSMLrcsdbF9uMJUOGSsHnPKAiQNOacCD7ow5B+z9jH2YcUo9lvQqptsBrkvYPVzwYHPGee2kHKKzJ4aC6npxMj0S7vUTXh2fYMkBL48HCZI6jAkAX73PF6g2ADinHo/XEZkJLw5HvNwf5Hoe6pdTS3FGN2NUNEY1M+eAnzo+xNvTRkpB3YQH3VkZBRISHF4cmjW4xyVgWV/MylKWca5JSj6CdIvII+Ej29tSOrobINse1Dl2eHwesUaPm82Cr7z3NjZ+LYESqCWzZOUoJizZ47AOF30smRsSEEDMrkgkH9Yej84jcnbY7yYMDw4XiDdDxSUmKdksMra835/x4u5U700N1JYRttZCx+3agsvYKRsEgFJSMwJQZkJ+QCX7m5YK+rANxNBFDBrgavmslqvuPzjBvWDHt+uhMnBKJIOoRFxQlABw6HtMG52ee/kyGwKEXDRF6WH1w4qxl9e1MgqABMoleixrKI9blmhwcWNZsM2BlbCCz6IgmUUCwpQ/7W6REp8ElLx4RcABcNJPc11GP+ic1NwhnaSkS4FBijaMpk1D0mMiAK7L5XzsGphlo3PX/WtiJKXBWXpd8CylK6U9Muoc6rOQdKJmge9lz10g2YQVP//VT2kJSZxUUGTU3bkR+9eyA39m2uO7088GIEGg5W5a2eOmm/DRm1vMKWjTW3TcH44n7MNSauIAMIYVLwwnOGK8OPrSNDfpXuCyvJbYwYFxu4740dOryOzwJA5YcsDGr3ihOyK4jEfrBp+d9uW81+wRSEpi7aQ9M+HF8YiPjo8BAB/ZHZBfkUb5vl8w+Cglo34GM+G49jjp3EubXZxij89MNxdO0Rxiyg6fPe5wOA1C6thH9KoUaX2p3ShBy4Exp4BZ19rrMaYYcFpE66XzFdXV+yTDly5hyR6P1k1xzpkJp9jjtPZCUbN0hRSztTrLUif1vds+xWdljt6yM3usyiLXL/Jp7vHp4z1Zm7XDtEhJbdNLz+a8dnh02EgWQLXh37IFP9hM2PczzrHDW8ctYnLoQ8LNOIMAPDpt8PjJtjZeNYvwXqfuuTrJ89zjde39LXMQ1U5fM6VlDqX2j5BBqlbpulwa/G/7jezg8+UcTkvTz5mEamVyoEzIY4bbC4HmwVUFUZMScD4XeYTDcUQ8dmVK35rTZfDQs5ybYxybmR9myTQ5OYE2L672E/SfzdKcO4+p68U5zqKCyR0LbFtndor0wOyrlLGROpoRw22lR8JMmM8d+KzwKfXWlGupqdDTE4Cu0blf5dwyB0zJhOM1Q7BjsBBCkLEXlHNQNoBRyWSjE559V9eMrAeSUckrCYAxBQdGYiAHamSn9X2YVKemKnG+mz13geQmzPhXXvhH6CihpwiHXHbviR1W9liVJ7w0mUGYlaN56xYMbsUp9/in55fxxrzDOXV4fb6H4BIerxtk6LyCzncMPmLnF2zcgt044ys2b8mu063Y+6mcmwWZtSGRNJPzkn+3ccSjdQNPjHthxuAOSHCYc4dzFv32l8cDMjvcxgGHVUtUkOAZXMJH+jM8CW/YoLCWn3vzOr5m/xkkyET+yjLoaJZ0555YoM+n2CO4jAf9CRu/ImaP3qWy04/ZY4HOwHS1YZeyQIJ3owSEl7ZHfNXuLWQI/cwUt5JlDBO24fIubktnhfIFjEFh2WvTvI6ckFiuba+ElTbEWbIJPa4NdMr5VQqbMayFqLLlOWvZBQDZyd9OA2J2uBlnfNnuMTZ+xW0cLuDkjrgwNhvtSw1SKE3bdvffa+Ak4hIM+xDR3aSnBmhtsNMoaAzx1/kEtusLCotmcerOMdgckqK9HHHprXReApih9wwNd5p7zGtQlgIJVNwDPFS4PBjIieDVO0qvKDWQ6qqFg53GxbKzFocOnbyWwFZ7VMyQ7H3x4ji3MgfVNq9b+n+DQRMxeKcbtQaqbVUKZiD3WQILN4zABCn/2CapZCo6mAnpoZR+V6JyPXKxQBmUBapyKDWy1IsDFiflrxIs9cV3ej68Seg2kmHFRal4nGQZ1ifLi3DgwTIae28mKWuFKlEtdEBcAiI7Rt7kwj7wbvbcBZKFA35yfrEgjQBgzqH8++y0x+2qutq66puw4uFwEqqRO+WNmzAjg8rrp9iVZvlkKXzn8ODeCV+9+SwOacSnlvs4pw6Di3jsNg36hnBIA/7R44/graPsioPe5DfDrMilhJeGA7529whT7vCp6T4+M+8l41ASytenG3z6cHOxm7YMgnQnv+9n9D7h6HsctcH42WmPJ7OUm2Qok0rWAaAIYhGkr2QQ4pg9FpI5HJuNebxs8HgaEVWDRBQeVWMjEmgX8fCFA8Y+IjPh0bqBo4x7vQSPNkN8/XSDn37jAeLqRfjKZTif8fDmhIejUNsY0itQdcJzCphiKNBlQ+Qti5Qfui5hvxE00hgibrq5oKfO6iDfyhthHlA9GAB4dNwILNh2cZlAfcbmZsLQSQ/kzWmnw6P9BWnmECKeTCPefHMva2H3EzG6+zNeuHcCaRY2RXXSz2AFOJwGrIceNnFPicBjwv7FEzb9CuaMrMOsAOrMjjbQY1R24Civd4sGl46RPSOFDOxWadJnh7dPmwtAADMwTz3SJI6eJqcCTyRiUgzEewn+wQJyGSl6rJMohPpeVD2zOW6jcFkkk6FFGui5Z+DBiu7eelmyyQ4JMkdS5JqtGQ8IA8CtTM+nXnsKnmWwM8hxCumllY8BpMmDzhKA3EpC0e5ElMsCUh5FxC1Tdbo5ukqGOTtQbBIYrk10kDTIebApxCbAKBLLNTMcNmeCLP0NSgJhNkp59g7R6yzSpBmUV7Ztn8GTh7/1ylygfGAeWO5n5E2W97wVee52HQp6zNgCvhCldj9sC5TwUnd78dgpDegooaOEN2lXHNKuE2f7Un/EV27ewEix1OCllBWQQPBgdCRomlPucUjjRUbRUcIr3WPc+DNe9Ad8vH8LgGQZC4uju80jTtoTOK8dTqcB5GQn71xl9u2c9EUcGFu34Gt3r8NRxpoDTlmIGgcXca+bdFedLrIKANj5BS/3txjdiil3mLPAkl/qDXAgZToDHVhN3xiNzZ6FbrN+wk0348WxKyUmEwmbovCIjTrL0ruI+92El4YDPHKB5s454I15jykF7LoFX/bi4wsUWnAZD4Yz7mlm1fYizCyrAnDBQmDBbhsWFQDTQA6CA+Mrtm8juIRjHPDTp/tFP8Y2Efe2E3bjUpw8MyH4jHvjJJkRSf9MmKZnuB1fvH4TVuz6BWuuA6mOGPeHCQ/6cxmSlde4cr4xOyxZ7pd744T1oa8wWyaMIeKV7S02XtB21o+bkwzJtpaYRPuFhZJHshdhUjDGACP87HwSxCBlTLHDcemRGdgOK+iBgBQMXFKGMomxDwnbYSn3XykXciUuZRZFz3ntsMyaQXUiG+BJZBR6Zaw2BdAWmr/E2qcxcAs2hHxf3sckDayvYQ1ys7YsGTuHuFHiTtQ+iVKnXWQvnU/oFYhg55CUxdoCXgly2udkQAKOygeEPsGHLPBhlcbmTEoiSRcEmSvkGAgiK0BOsugSsPpUkw3LPAaRKLgIWA7wuxWbPhZIM2tJzVlPaHXgWXpXeY/3Zc9dIHngzvjGmx+8eGxlh8mc5gvVafZalJw44EmWLOWem7B1Io97ZJkNmbjDkzxi5YCdm/FykEDVUUSvkz3WDN/5GS/7I0ZKgtrR5vGbeYvbvMExD/hIf4u3X9mWxjIAvNo/wc8ZP42eEo55wJQ7dBTxYjjgxk1Y2WPiDokdekoYadVrkAAp1+mRQDLL0mimWNCbuCvBUUp68rxjHpDZ4b4/4oE/wVPWmRIFK+ixVg4XZTmbqTFQQILDMUuwnHOHU+6R2GF0K7ZuKc6zaLxs+QJMYNxgZqNbMdKKlQOOuUeGzLrYuk3clZKkowyvXzW7vk4ReB4Zb8QbvL1KFvix4W28HG6xssej/VZKihqo7XpGt5Z5GptFMXPEJeMd3arvwc3fc1kTe759PnIsOe6UO3jKZW3m3OGU+hJszew4cw44JPmsdv0JH9s8Epoct2DrZ2R2Os90eb62Xu0GYs0et3HAFDuMYcX97oyuQdjZOtjPdg4ACix8yl2ZzbE1kfPsngIdtP1JC35tQG03C/YaWTNXSsJljgg10JxTh1O8Ix2IWha9eIxyQTy2GzC752L2mDWQt+dmLBXysyv+4y4FkGXqp1VkEFoAw8V5PWNWyDYQrdnsDYAyqyNr1Qjq3dlctYCTJXncrmMBmVzMclmfUlnDAeAnn1rF5rzf5W9fkjazx4+vLwAQhwLg4ku+sOz3HXIJAgt7nPKABIdPxocXzirB4VPLA/zg44+VstDdgbwxRPyCh5/EV41vXLzX1s248VKaeSvu8TiJ03ocN8UBWi3+lHt8Nt7DSCte7R7h5b5mVVmDh2RK7uLxhVpHL05+hVeHHtBRhFfKl0+uD/HGeoM5B3xquo/DOiC4hG1Y7mQijAfdCffDGR0l3PcnbN2MnhIehCM8GIv2mhIIj9IOhzRKfyeNmHNARwlbv5QgsnUzPGUc84BTHsTZQvotnjJ2boGnjIU9Jl2b27TBW7zXz1KDF9RJkzpIkh7XIY04JXH6hp4KlLDxEkjawPo4bss6prrnKwH0lHs8iWPpV5mzNHupP+LLx7ekl5YGHNIIB8ZL3S1u3Lkg6FYoIo1l/U9pwMwiNzBnCcqOGJPr0FHCkzjirWVXpJ3bbMYR4xR7vD1tMK0BN8OCF8Yjep/wQn/Cg3Aq98BdIEc7SGqyzEBFmcm1s7Jby3MA4aizTYo52IRKqmkBSd5LstmVXZF/bml9THIBAJYcSvZhYJbBR+y7uTBZ2zneDUBy3jVzs56OlXR7F7HkgM8cbnBeA3b9ihfGU4Hh1+HRUL7HFlCOscfjeYPIDoMyQtj3zM7JmLtbM9CNoerWKEOejhibsF5kWHMM5TpMQoJZACTMpMPTkkkanLwdVM2gUl7fdCtCIycug9W+nGPmqvJqCDTLShiata5PB+Fn2XMXSN6Me3zb67/qAm3V8l6l7EqJw+CRr4y3+Nrd6+go4RPHj+InDw/hXcYrm1u80B1xSAMCSd/hblMWkC/cOXX4zHKv2XVS+aJlJhxTjyl2mFLAW+ctzor0MebdV29u8XX3A+6Hc7mWlQM+vd7HbR7hwTLfAuBTywP89PSg9CxidqW3svczTrnH7aoO3dVBzMfrKKJb7HBYeiyxOtcWnuqdNMhfGIQW5qabdHKd1KEImuyteYeYHR7PI05zX2Y/DBX20a00pA2CnNjh9fkeHq8jepfw0fEx7ocz3lj3+OT5filN2WdnJRsb0myb4kZYeb+bENnhk8f7eHvaNJPVdeLaEFXbbi10OXfNdn/WZDbdFdZZI+8zhkEGKN/ebpFB6F3Ea6cH+MxJxMI2YcUQIuYY8MZpiyWGMvHtXcYYIgZfpYptNzorwi7qjI3xmy1L5eoqn40yIq/J44lOyXe+7iqtDGb9rqSKlUk5vkKX6mc0yBxPzA6T7uqPscdh6YuzbEtTMbpS/rHSmJWV2un609wjKqTXrtUINsvEd9JZFi3/hCA9Ku8ynpxGnI+DlGyMCsaQYwyRKV5kloJ3CeO9GSEk7IZFSooKjFijyFufV/murdFX8IBOqxOgktIVsSZDngl9L8JjyyIQ44tzSCQzJXdvJYsxIeO0Fb68GL1AcplAPsMFARIUqHDbpNdBRjhGGC4JSlMS4ETXCbXRZx7tsd4OBaxQqGdyQ8Zp3+8xoduuICc6PlnPB3fRYu9gz10gIU1bZdcTLgKKIGTWsvOyKH5MPf7Z9KJQzqcOG1VATEx4Ejc4pw5T6kpz12RjozYT+152L0bRIeUa2bFFlt1KoIx9N6P3sVDaW226cwkf2z7GR/onGHVW5TZtMHGH2zzicRT+KwtQbyx7vH6+wZwCHp3HQvD4kZsDHg6yM63IJ1/SX3O+Sw5Y/aVmPACclw7T3MEplf2D/nwxX2E72zV7LAo5hqs7ZsDEsRw6l4uufMweh1SHH3eK1Hpj2eONZY9Pne7hpx/fx7p6odNXlcYxxLKjKwABdqUfYPLAS/J447TF7WFTdluAsgcPKzwxzktXgncfUqFCGbxOo2dfWKGt9u49gx3BQ6bW741zaagfYg9PXdlxM4AnywAsA5bocZoGpOgwU6Xd7zpBV7XQanP4NtcU11ARTQWqKoN03DPyzQofpK9mAQqo5RkLAEv0MrOQhNOrEDHuGZthQaevJQVRHBZhCTivQYOoK0itnEhEwQzianr2xk/WBubmekuN3prtdxwvExCZkHMuMrwGR97sBJK+LgFpdbXxrk7PtFRIA6tdc+YBKVfphJxlfsQR43jusZ56OcYqawoPxD6rIHxtSOfVYTl1FfKbm/+hcNuZSsOckvpl00RhhzQFZO/qccma9/r5Tg5uvsxuQAArLDnGmv3lQtwJrJ30UNIpwD/2tWmvgKy0y9LwV3gvRUJeCeuq8y/Riaa9NfzfmyHleQwkQEcZ+/6EzXiJDgJwUbeW2rxwSJ1yXzKXSeu327CicwvOSahQJnVgm34tSKGFAryWHT677PFCf8LP234SD/wRI0mNH6j9BOs9JOW0aqHJVts3G2nFy+EW9/0Zp9zjM8s9RA4IlAt9/EOdUwGq0FZkma7PTHh5c8DHNo+0XxBrqYJDIX60ss+TOBZE2wv9CffCudTgOxfhOy49h7t9mLY/AUid/FbLXR5Sm07s8Gjd4pj6omkfs8e+m/H1r75WGJqtMX6KPZbk0ftUIMjPshwc7r88Ib1kMNtL6hjjqVpyQO8iXt3cXpQObXjR1uPuvJFcTyhcZ4OL2AXZNLhRgnOdS9IyyL6Wpu4OI2aW8sSaHYIGFgDotqmUMs5rV8o/9VwqnHY7LHg4nhFIIMzt2hhMuq27t9d0d1gzs8MmyD296QLOXQQDylVXkYG2Nna+SwzafKaCkiLP2G3ngoC7gFTrKRStGx2Ctc2YcZ0ZPU+LdizHuBj4QKkymFmpaKfv3zb+d5sFi07MW5Cx1wAQlJkGNHIVBSlPuoyAJbOCNb8bCQKWYcNhtxRQgdH+tASm7XubLTFgnmSWy/mkMhMVft2+xm8jspKL2sZDPmA9phe5YyN4NO15HhN4Y9eC92Vf9IGEiH4tgD8O0XL7n5n5D7/b80+xx/e//vELvW5jumWmC/EnS8vv9TNe3hxKGeheX2c/DoqMsdJKa2OIhZTQGHaPccBPTC+hcw/x5rLHZ+Y9Yna430/Y+QXH1OMfP3oZjxRuaaWXL7v3BF93/1MY3SplFs0+jPDRGpRGNvhkHi/I73Lzs6ybNnjTfbw57Uqd1Xagj86j1GLLAJp9WYXi4sWbI17dPSl17rt1YRssbNl063sDQ7fipe2pzCbY+ZlQF4BCXXJcOtweR+Tk5csZHcjJF3E7znAEfJpuSnPQpIPfPm1wPA11aO5OhkWOy1zCMETsBpk1ee32gU4TVylfZlQHkeUc7DEpOTB8nwvSR96g7r6ZZeq5vK7F9dvE8jZi3C4XEsMGtQVQtUsyIU++wmWVCyp34gQQGLdjwpPtWAKE+YO2lLWeuwL/tUE+3iV0u6XsvC1zsOFDTlSnnRu4KJ29aKN7VDr3LsMNou7E0YlAmAMOiXD0g1DSn0JhynUm6aqgJQ6MvEugPmOdA07HQUpMkRoqe53+Tg44BBnA0500AMR9grtZBbIbqxyyC1keSySzG7oGbnJFS8SvVHirONwR1MqErJBe0ysBQ2DUGXALoZ8aKK9yYC33M9I+gyMwzSMmyOdPa1Nu0uzBLSLURZHgZ8lq4hbI94T+hSMhRylb2YChUc2YWFa34ELdkR0Q9yxiVYwiqAWusZAJpQzm56ow+W72RR1IiMgD+JMA/nUArwH4+0T0Hcz8I+/12vPcF44j0tkEYf3k+uVJslN5Mox4sgzwxKVGbc274DKmGPD4uBFHAdxRxBNuoONNj/vjhM4lPF5HBMp4so54e5LQf4o9HgxnHNYBj04bnI+9pKuqI36ee4x+xTYshU13zgFvzjsc1gG9l6Z4oCr21DpOR1xKnSlLEy1nwuQzgrss6ZzXDm+/vQefQuHsacn0Vs/41BTw9nED7zNuxhmj1v6Pc38BNsjZ4XQY5FjqXMgzli4gJl/q6MEJ19C0ClWJJ8ZuWFRquFM1Q/EwpqOREunUeIVqmhqjXXvQeYX10ItcrDoog2Nm/Zxi32HqhUm46yOCzxJIzh3yqsyspl44u+L0RBOCy/yF12OX2YTohXUWSmkxSC8pzSYlQMUh8+IwQc6hyO+igXOqMRNo9vAHJTEE9O+MNIgHyKvD6ajlwnMAzSpmNWRQl2Vo7+yL0xHHK1odK3oUKo47nFmcCdCZExO2YpIAURI9o0KPXia+bc0dAwngY1/0U6DrR4upIlZNDu4Ii/Ym5L1RJXBtbRKLtHF06A4O/lynyQGAssdKQJHhJYmAeQ01GCpvFZvQFzQg6jxMd5SgnwdG3EhAsFKR8Fhdfj5gwK2AmyEKjxZIHNB5naj3lQ+MFodwokLwWI6hZSWKQDih6J5wIORQZ0wAUTWkLMdNQ9UpsaBc7hGG6LhbtmXvaUESEjy0Cn8hAfxu9kUdSAD8MgA/xsw/DgBE9BcBfCNE3/2Z5ihjp6qEcfXIJFxaQ6fyuLlycMmkp+zGrPF8PA9YTgIDlS8adGfavIllkK7SXhjZXsyuzCXMSZp7gDjQzx53xRF6U8XT3VWKDqcoDet9WHAvTJhzKKzEmWXa3Hb32+4ShdKmyFPscAsZMLQSnF2bpOS64+wzsIjTdJHgJwc/yc11+jiQR6HctmnrwzTgcBirfodXDp9FvzxBgrZg5x2evL0FmBDGiO12lmlh2/XrZ+EUmjgMK1KQHXnWJnNaPbJNh2f7vFA5gxqBJepUyKhtILLqROhr4iqTwTb4mFcHHIPstHud/nYsu9dZjuFnAiUnTKok9XQKwk4rGvG6sbDzcAyXgVz00nOzs28yndVVFliz4jiUDfaOUSQJLibyYY5yl4GbVaalFwdeQrlf2TPcqo6MVTPlrI5ukxspXTsHqqWRSGC9d5gY6OT9jHDRHxz6x3Ivxa0M0pninltVuKpxeNkD8EIqCF2a4bMOfnFIIzA/zFWu1zJgJTO07C73fPFdpAR0jySY5U7ICu0cKAIc5HGTppU1Y8QthNxSswuT0+2O6hN62dUTA+FICGc5/7SR9wDJz4llR18CW1LNdi/eW9ZfsjELNrZ+7BhMBHLCoUgMOTaj6K3bfZCV6JIJdQAS9fkWQGVd9Zya+6n93IouvX0u7yNKfLEHko8B+Knm99cA/PK7TyKibwbwzfrr4bv/zT/yox/Auf2M2z/5mT/kSwDe+Jk/7BetXdej2nUtLu26HsBXvtMfvtgDybOSrqfaQ8z8rQC+9fN/Ol9cRkTfy8y/9MM+jy8Uu65HtetaXNp1Pd7d3Hs/5QvaXgPw5c3vHwfwyQ/pXK52tatd7bm0L/ZA8vcBfA0R/Swi6gH8JgDf8SGf09WudrWrPVf2RV3aYuZIRL8DwN+EwH//LDP/8Id8Wl9Mdi33Xdp1Papd1+LSruvxLkbMT7UUrna1q13tald73/bFXtq62tWudrWrfch2DSRXu9rVrna1z8mugeQ5MCL6tUT0o0T0Y0T0+57x919NRI+J6Af033/5YZznB2FE9GeJ6DNE9A/f4e9ERP+9rtUPEtEv/qDP8YO097Eez9O98eVE9LeJ6BNE9MNE9Lue8Zzn6v54v/ZF3Wy/2nvbPweNzP/DzL/hAz/BD97+HID/AcC3vcPf/y0AX6P/fjmAP4VnDLl+Cdmfw7uvB/D83BsRwO9h5u8nohsA30dEf+vOd+V5uz/el10zki99KzQyzLwAMBqZ59KY+e8AeOtdnvKNAL6Nxf4ugAdE9NEP5uw+eHsf6/HcGDN/ipm/X3++BfAJCHtGa8/V/fF+7RpIvvTtWTQyd78cAPAriegfENF3EdHXfTCn9gVp73e9nid77u4NIvoqAF8P4Hvu/Ol6fzzDrqWtL317PzQy3w/gK5n5QES/DsBfg6Tuz6O9L9qd58ieu3uDiPYA/jKA383MT+7++RkveZ7vDwDXjOR5sPekkWHmJ8x80J+/E0BHRC99cKf4BWVX2p3Gnrd7g4g6SBD5C8z8V57xlOv98Qy7BpIvfXtPGhkiepVIFDSI6JdB7os3P/Az/cKw7wDwTYrO+RUAHjPzpz7sk/qw7Hm6N/Q6/wyATzDzt7zD0673xzPsWtr6Erd3opEhot+qf/+fAPxGAL+NiCKAM4DfxF+ilAdE9L8C+NUAXiKi1wD8VxAlDVuL7wTw6wD8GIATgP/owznTD8bex3o8N/cGgG8A8JsB/BAR/YA+9vsBfAXwfN4f79euFClXu9rVrna1z8mupa2rXe1qV7va52TXQHK1q13talf7nOwaSK52tatd7Wqfk10DydWudrWrXe1zsmsgudrVrna1q31Odg0kV7va/08johcbVtxPE9FP688HIvofP0/v+buJ6Jve5e+/gYj+68/He1/tau9kV/jv1a72M2BE9AcAHJj5j34e3yNAKEt+MTPHd3gO6XO+gZlPn69zudrVWrtmJFe72s+wqYbHX9ef/wAR/S9E9H8Q0U8Q0b9HRH+EiH6IiP6GUnKAiH4JEf3fRPR9RPQ334FR9l8D8P0WRIjodxLRj6guxl8EAB0W/L8APA+071f7ArFrILna1T7/9rMB/HoIBfmfB/C3mfkXQCbFf70Gkz8B4Dcy8y8B8GcB/KFnHOcbAHxf8/vvA/D1zPwLAfzW5vHvBfAv/YxfxdWu9g52pUi52tU+//ZdzLwS0Q9BaGr+hj7+QwC+CsDPBfDzAfwtpbXyAJ7F3/RRiEaG2Q8C+AtE9NcgrLxmnwHwZT9zp3+1q727XQPJ1a72+bcZAJg5E9HacFVlyHeQAPwwM//K9zjOGcDY/P7rAfzLAP5tAP8FEX2dlr1Gfe7VrvaB2LW0dbWrffj2owBeJqJfCQiV+TsISH0CwM/R5zgAX87MfxvA7wXwAMBen/e1AJ6pwX61q30+7BpIrna1D9lUAvk3AvhviegfAPgBAL/qGU/9LkgGAkj5689ruez/BfDHmPmR/u1fBfC/fz7P+WpXa+0K/73a1b6IjIj+KoDfy8z/+B3+/gqAb2fmX/PBntnVnme7BpKrXe2LyIjo5wJ4hZn/zjv8/V8EsDLzD3ygJ3a159qugeRqV7va1a72Odm1R3K1q13talf7nOwaSK52tatd7Wqfk10DydWudrWrXe1zsmsgudrVrna1q31Odg0kV7va1a52tc/J/j+fH0s4zpjdIAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "_ = plt.specgram(snd, NFFT=1024, Fs=44100)\n", + "plt.ylabel('Frequency (Hz)')\n", + "plt.xlabel('Time (s)')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Data Exploration Exercises" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 1\n", + "- load the dataset: `../data/international-airline-passengers.csv`\n", + "- inspect it using the `.info()` and `.head()` commands\n", + "- use the function [`pd.to_datetime()`](http://pandas.pydata.org/pandas-docs/version/0.20/generated/pandas.to_datetime.html) to change the column type of 'Month' to a datatime type\n", + "- set the index of df to be a datetime index using the column 'Month' and the `df.set_index()` method\n", + "- choose the appropriate plot and display the data\n", + "- choose appropriate scale\n", + "- label the axes" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 2\n", + "- load the dataset: `../data/weight-height.csv`\n", + "- inspect it\n", + "- plot it using a scatter plot with Weight as a function of Height\n", + "- plot the male and female populations with 2 different colors on a new scatter plot\n", + "- remember to label the axes" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 3\n", + "- plot the histogram of the heights for males and for females on the same plot\n", + "- use alpha to control transparency in the plot comand\n", + "- plot a vertical line at the mean of each population using `plt.axvline()`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 4\n", + "- plot the weights of the males and females using a box plot\n", + "- which one is easier to read?\n", + "- (remember to put in titles, axes and legends)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 5\n", + "- load the dataset: `../data/titanic-train.csv`\n", + "- learn about scattermatrix here: http://pandas.pydata.org/pandas-docs/stable/visualization.html\n", + "- display the data using a scattermatrix" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/course/3 Machine Learning.ipynb b/course/3 Machine Learning.ipynb new file mode 100644 index 0000000..54b455b --- /dev/null +++ b/course/3 Machine Learning.ipynb @@ -0,0 +1,1177 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Linear Regression" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../data/weight-height.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
GenderHeightWeight
0Male73.847017241.893563
1Male68.781904162.310473
2Male74.110105212.740856
3Male71.730978220.042470
4Male69.881796206.349801
\n", + "
" + ], + "text/plain": [ + " Gender Height Weight\n", + "0 Male 73.847017 241.893563\n", + "1 Male 68.781904 162.310473\n", + "2 Male 74.110105 212.740856\n", + "3 Male 71.730978 220.042470\n", + "4 Male 69.881796 206.349801" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA7QklEQVR4nO3deZwU9Z34/9e7qo8Zh0Mc8IBhREV0GSIkkqAhIR7ZRI1idjXGYDS7Odzdn6wxnomuIsuaTTyyq6tJFqPfXJgEMYmKJsZEjMJGDJqBABolHjBATJwgAmLPdPf790dVD31U9/TM9DXd7+fjwYOZ6qrqT3VDvetzvT+iqhhjjDHZnGoXwBhjTG2yAGGMMSaQBQhjjDGBLEAYY4wJZAHCGGNMIAsQxhhjAlmAMGUhIueJyC+K3PcfRGRluctULBF5XEQ+W6Zzt4vIbhFxi9h3koioiISG8H4bROSEwR4/gPc5QUS6Sr2vqS4LEKaPiHxJRB7O2vZinm3nFjqXqi5R1Q+VqFxlu2EPlIhcLyLfD9iuIjK5v+NVdbOqjlDVRLnKkvV+Har6+FDfq5xE5BUR+WC1y2FyWYAw6Z4AZqeebkXkYCAMvCtr22R/X2NMHbMAYdL9Fi8gzPB/nwOsAP6Qte2PqrpNREaLyF0isl1EtorIf6QFkoxmIxH5kIj8QUR2isjXReTX2bUCEblZRHaIyMsicqq/7Qbg/cDtftPM7UEFF5F7ReRP/vmfEJGOtNe+LSJ3iMhDIrJLRFaLyBFpr/+tiDzvH3s7IEP4DBERR0S+KCJ/FJFuEVkqIgf4r2U0G4nIYX55d4nIL/1yZtcKzhORzSLyuohc4x93CnA18HH/c1mbpyx9T+d+jWOpiHzXf78NIjKzwHXcKiJbRORNEXlGRN6f9lqz/7nuEJGNwLuzjs2oUfn7/kfAe3wPaAce9K/jShFpEpHv+5/dGyLyWxE5qNBnbsrDAoTpo6o9wGq8IID/95PAyqxtqdrDd4A4Xo3incCHgJymIBEZCywDvgS04gWc92btNsvfPha4EbhLRERVr/HLMN9vmpmfp/g/A44EDgSeBZZkvf4JYCEwBtgE3JBWtvuAf/Pf+4/A7DzvUayLgY8CHwDGAzuAO/Lsew/wNN7ncj1wfsA+7wOOAk4GrhORv1HVnwNfBn7kfy7TiyzbXOCHwP7AA0BgwPX9Fu/B4AC/nPeKSJP/2gLgCP/Ph4FPFfn+GVT1fGAzcIZ/HTf65xoNTMT7XP4Z2DuY85uhsQBhsv2afcHg/Xg35yeztv3af6I7FbhEVfeo6p+B/wKC+iZOAzao6o9VNQ7cBvwpa59XVfVOv23+O8AhQNFPjap6t6ruUtUY3o12uoiMTtvlx6r6tP/+S9hXIzoN2Kiqy1S1F/jvgLJlO8d/su37k/X6PwHXqGpXWnnOlqzOZhFpx3vyvk5Ve1R1Jd5NO9tCVd2rqmuBtUCxwSDISlV92P+cv1foXKr6fVXtVtW4qt4CRPECFcA5wA2q+ldV3YL3nZZKL15gmKyqCVV9RlXfLOH5TZEsQJhsTwDvE5ExwDhVfRH4P+C9/rZp/j6H4jVHbU+7Sf4v3hN8tvHAltQv6mWIzB7F8qe019/yfxxRTIFFxBWRr/hNOm8Cr/gvjQ06P/BW2rmDyraFwpaq6v7pf7JePxT4Sdrn8hyQIDfgjQf+mna95HnvfGUfjOxzNWUHrhQRuUxEnvOb3t7Ae6pPfaYZnxvw6hDKlO17wCPAD0Vkm4jcKCLhEp7fFMkChMn2G7wbwYXAKgD/6W2bv22bqr6Md3OIAWPTbpSjVLUj4JzbgbbULyIi6b8Xob+Uw/OAM4EP+mWflHqrIs69Ha8pI71sE/PvXpQtwKlZQaRJVbcGvPcBIrJf2raBvHfZUjH7/Q1X4dUUxvhBcCf7PtOMzw2vHyHdW0D6dR1c4O0yrkNVe1V1oapOxWuKPB24YKDXYIbOAoTJoKp7gTXApXhNSykr/W1P+PttB34B3CIio/yO2SNE5AMBp30IeIeIfNR/Wr2IwjeMbK8Bhxd4fSResOrGuyl9eQDnfgjoEJG/98t28QDLFuSbwA0iciiAiIwTkTOzd1LVV/E+6+tFJCIixwNnDOB9XgMmiUg5/h+PxOtf+gsQEpHrgFFpry8FviQiY0SkDfjXrOM7gXl+7e4UvP6YfDK+XxE5UUTeId6AhzfxmpyGPCzYDJwFCBPk13hNRemT1570t6UPb70AiAAb8Tpil+H1HWRQ1deBj+F1PncDU/FujLEiy3MrXhv+DhEJauv+Ll4Tx1a/LE8Ved70sn3FL9uR+DWnIbgVry/hFyKyyy/PrDz7ngcc77/3fwA/ovjP5V7/724ReXbwxQ30CF7H/wt4n+3bZDYpLfS3v4z3oPC9rOM/jxfs3sC7xp8WeK//BP7Nb5K7HC9AL8MLDs/h/XssON/DlIfYgkGm0vwn3i7gPFVdUe3y1BIR+RHwvKouqHZZjLEahKkIEfmwiOwvIlG88fvCAJ7065WIvNtvmnP8ppgzKfy0bUzFDDrHizEDdDzeWPpUk9RH/f6ORncw8GO8YZ1dwL+o6u+qWyRjPNbEZIwxJpA1MRljjAk0rJuYxo4dq5MmTap2MYwxZlh55plnXlfVcf3tN6wDxKRJk1izZk21i2GMMcOKiBQ1892amIwxxgSyAGGMMSaQBQhjjDGBLEAYY4wJZAHCGGNMIAsQxhgzzHTvjrF2yxt07y42r+PgDOthrsYY02ju79zKVfetI+w49CaT3HjWMcydMaEs72U1CGOMGSa6d8e46r51vN2bZFcsztu9Sa68b13ZahIWIIwxZpjo2rGXsJN52w47Dl07ypP30gKEMcYME21jmulNJjO29SaTtI1pLsv7WYAwxphhonVElBvPOoamsMPIaIimsMONZx1D64hoWd7POqmNMWYYmTtjArMnj6Vrx17axjSXLTiABQhjjBl2WkdEyxoYUqyJyRhjTCALEMYYYwJZgDDGGBPIAoQxxphAFiCMMcYEsgBhjDEmkAUIY4wZglJlVq1UhtaBsHkQxhgzSOmZVXsSCeafeCTzZrUPeI5CJTO0DoTVIIwxZhCyM6vG4sotj77Ae7/yGA90bh30edIztFa7VmE1CGOMGYRUZtW3yUyeF4t7N/jZk8dm1CS6d8cC02MEnSfsOCxZvZmvP76pqrUKCxDGGDMIQZlVUxwRNmzbyZwpBwKFm5CCztOTSHDHik3E4sm+wBEUdMqtbE1MIjJRRFaIyHMiskFEPu9vv15EtopIp//ntLRjviQim0TkDyLy4XKVzRhjhtp8k8qsGg1Jzmtv9ST43HfX8EDn1n4X+QnK0Dr/xCOJuJVb9yGfctYg4sBlqvqsiIwEnhGRR/3X/ktVb07fWUSmAucCHcB44JciMkVVE2UsozGmjuVr1in0RJ/vmCCpzKr3rN7M7f4Tf0osrlyxbC13XvDuwCakrh17+86fnaEV4I7HN2W8VznXfcinbAFCVbcD2/2fd4nIc0ChBrQzgR+qagx4WUQ2Ae8BflOuMhpj6ldQEJg9eSwbtu3kymVricU1p/lm5abXBzyaqHVElH89+UimT9yff/7eM7zVu++ZNhZXfvPH14ta5Cc7Q+uNZx3DlVllqWTzElSoD0JEJgHvBFYDs4H5InIBsAavlrEDL3g8lXZYFwEBRUQuBC4EaG9vL2/BjTHDUnqzTioIXLq0E9dxcB0hFteM/cOOw4ZtO3OOyW73L1S76Bg/ioTm9kncveoVrjt9Kose2jigm30l133Ip+wBQkRGAPcBl6jqmyLyDWARoP7ftwCfBnIb8rx9MjeoLgYWA8ycOTPndWOMCRoZFE9CPE+nsveELwWbgrJrJNeePpVp40f33bxbR0SZf+KR3PLoCxnnjrgO0yaMZtVVJw34Zl+pdR/yKWuAEJEwXnBYoqo/BlDV19JevxNY7v/aBUxMO7wN2FbO8hlj6lOhEUbp9gu7JFFuPOsYOsaPytsUFFQjueYn62mJuCRU+5qi5s1qz+mLSJ1jsDf7gfSJlFo5RzEJcBfwnKp+LW37IWm7/R2w3v/5AeBcEYmKyGHAkcDT5SqfMaZ+ZY8MioaEsJvZSBENOXzz/GNZddVJzJ0xoeB6z6kaSbY9PYmMUUmtI6LcdHbp1oy+v3Mrs7/6GJ/81mpmf3VgE/BKoZw1iNnA+cDvRaTT33Y18AkRmYHXfPQK8E8AqrpBRJYCG/FGQF1kI5iMMYOV3Ya/atPrOZ2+c6aMK3hM6sbeX43EFelriipV30FQraXScyHKOYppJcH9Cg8XOOYG4IZylckYUz+KaXpJb9Yp9sYd1BSUql1ced86XEfYE8t8dt3Tk+DnG7ZnNCUFnX8gzUX5ZlinD48tN5tJbYwZdnI6jD8ylWkTRvcNHc13E+6vH6DQDTw9wKx+qZsv/+z5jNe/8fhL3L3yFW46O3ho7EAT8gXVWio9F8IChDFmWAnsMP7pekZEXWLxJKpKczhU9DyGVFBYv3VnzlDUoMlz0yfuD8CIqMvurJpELJ7k8mXrmHrIKMa0RDImvg20uSi91lKtuRAWIIwxw0q+JHnpN+tdsTiw7yacOi7fjOqQI33HFzN5bvbkseztCe4i7Ykn+fB/P4HjCE0hl95kkotOmDyo5qJqz4WwAGGMGVbaxjTTkyhu/Ep2VtT0NRtg31N9EE16s6CvuHctPYnMWdeXfnAKiQKzsBIKiYTSm/AC1e0rXiS7S7bY5qJqzoWw9SCMMcNG9+4YS1ZvJpEsbo5sTyLJHSteDFyz4Z7VmwOHrqbEEsoXfuQFh3SuI9z4yPN5jgoWcV3mnzi5ZMNfK8VqEMaYYeH+zq1cuWxdxiQ0AEcgKF5EQg7zT5zM4ideIhaPZ7wWiycDn+qz9QacuDehRFwn76zs4PMkmTernXmz2quaOmOgrAZhjKl5qY7p7OAA0Bx2cybBRVzhns+8h+kTR+dtjkp/qm+JukWVw3VgwRlTCQoNqZtpU9gh5EDYlZzaQuuIKNMn7j8sggNYDcIYMwzk65gGSKhy/dwOFi3fNwLpnGPb+OTdTxN2nMDaBXjNT+lP9eu37uT6BzfQW6BzQZMwa9IBXHTCZG5fsQlX4C2/DyNVst5Ekkc+PydjFNNwCQjZLEAYY2pO9nyEfDOZoyHpG456SsfBdO3YS0vE5fTbV2YMKQ3y6dmT+m7cqff49+UbCpYrCZx220qiIQdQTn3HIdz3bGbKuEQStu3cy+SDRha15GgtswBhjKkp6RPKehJJ5p84mXmz2rnxrGO4dGknqVYmB7jsb4/KmeewbWf+2ka6u1e9zN8cMqrv+K4de4m4bk5/RbaeRJKehHfuB9Zuz7NXZpPXQCfJ1QoLEMaYqgh6ou7eHevriE7d4G959AVuX/Ei153ekdFclAS+/LPnaYmGGNEU4splXhqMeCKZu05AgFhcM+ZJ7Nzbw97ewsEhm5Onj3v86KaM66x2TqXBsgBhjBmSfE0nhbYvWb2ZO1a8SMR1Myaf3fKLFwI7omNx5br71wf2J1x3/3ocRzL6DgQvW6sjwt7e/HMmXJG+eRIhRwh464KyFx4Cr5N6T9okulrIqTRYFiCMMYOy70a/iYib2XSSr0nl/s6tfRPPgL7mnEuXduKI5Mw5SJfvpdSktHQKzDmylWjIZfnv/5T3nHt6Etz6yxcKTnobjNQaEqk+kWrnVBosCxDGmAHz5iSs7XuCTj31X3mfl4coqEll/OgmLvlhZ2Dzj3d4ae/Sjz73l6L2K2VwiLjCtadPzUnPcc7MNpau6RpQTqVa6NS2AGGMGZB9cxJy76xhx6Fzyxs5TSqaVM69c3WJQ0DtcR3h3x/cSCKZJJ7cl9dp6Zouls9/H3t6EkXd8GulU9smyhljMnTvjrF2yxt0744Fvp5vdTXwmk5mTNw/p0klllDiRabHGM729iaJxZM5fRlhx+uXKGaSXHqn9q5YPGPFukqzAGFMA8sOBvmWuEzfL/+cBG/G8OSDRmYs3RlxhabwwG41+UYHDVcD6XMICsCpTu1KsyYmYxpU0KI7ix7amNN3sOvteM46Cecc28Z3n9rcd67T3nEQi858BwBrt7zB7MljWXXVSRkT1waiVisb0ZBw4pQD+fnG1wruF3YFR8gYpVVsP0ItLBSUIqo1+k0UYebMmbpmzZpqF8OYYad7d4zZX30sI9V1xBUiISdjXYWWqEtvPJkxuigaEkAyhqM2hZ2+ABPUbr7413/MWYFtuFr2T8dx3l1PZ1x/yAHXcTJGcw1lHYcHOrfmLBRUyj4IEXlGVWf2t5/VIIxpQBu27cSRzHacsOvkDDPtTai/fV/QcMXJSYIqwIIH1md0zF6xbG3fZLADWiJluY5KCzsQDrncdHbuSm9BAWGwo4+qvVBQigUIYxpM9hDVlIQqC86YmpH07trTp3LdT9dn7BeLJwi5mW3kewMW3YnFlf/51YtMmzCaMfuFS38hVeA40rfsaCkDQpBqLhSUYgHCmDrVvTvGhm07AaFj/ChaR0QLDlGdO/0Qzpt1aF/Su7Yxzfx8/Z9y5wmI0FvklONv/+bVoV/IEIUEAi534Odx4Kazp2cEg2rfwMvNAoQxdWjJU69y3QPr8XPKEXLga+fM4NDWlrzHLF2zlcnjRjLr8FbaxjSzY08PCx5Yn7Nfsau51QoVgUH0tYZd4fq5HUwc00x6kE2phYls5WYBwpg6s+SpV7kmq1konvT6BJZ8ZlbeNZjBT34XcYnFEyST9JMPdXgYbEBzBE7pODjw5l8rE9nKzeZBGFNHunfHWLh8Y+BrgnDH43/s9xx7ehLE6yQ4DIWIBM49qKWJbOVmAcKYOuKtaRA8y+zteJIVfyguP5GBt3uTtERylyKtpYls5WYBwpg60jamuSFSWlRC1JWMtN0ptTSRrdwsQBhTB1KpMIC+NBepmkS9pa2oFPGHtGZrHRHlnGPbMradM7OtLjuqLUAYM8xl508CWD7/fX2ZU61C0b+QA3979DhCDrREXJrCTt70GN27Yyx9pitj29I1XWx6bVfBJIfDkY1iMmYYC1qi84pl6/j07EkZK6yZwlwRfr2pm6awS0/CmzCYb1RS0ApxAKfd9iTRkFtXo5qsBmHMMLZk9eacJTpj8SSLn3y5SiUanmIJpSeeZHcsQU88yaLlG/PWBIL6IN7u9fJV1duoJgsQxgxT3btj3P7YC4GvDbfJbNXgQN505IVGJbWOiGamMw85RLNGjtXLqCZrYjKmxEoxwzb7HEFpM7715EsEDLIxRXJduHDO4Zw67eCcdOT9jUpKT6bXl848rUmvXkY1WYAwpoRKMcM2+xznzGzjB09v6etTcAXOetcElj6ztRyX0DB6E3DH45uYN6udaz8ylYUPbiDsOiRUi1q/IT0X041n5WZ3rYdRTbYehDElErTGQlPYYdVVJxV9swg6hymfkdEQn5tzOF9/fBMhR/o6qM+bdeiAzzWccjMVux6E9UEYUyKlmGFbaL1nU3o9iQR3rNjE273FdVAX0joiWtSa08OJ/Us0pkT6m2GbmsxWaLx825jmjMV5TOm54tUcmsIO8088kojbGGkzBsP6IIwpkdTolqC26FS/AnhDIlOznBec0cF5x+1rzli56fWMEUiuwAeOHMdjL1gOpVL50YXHEQ65fYH7jsc3ZbxeLx3MpWABwpghyG53DloqMj37Z0pqac9rfroeBM6bdSjdu2NctrST9GkNCcWCQwldcHw7Mw9rzdhWrx3MpVC2ACEiE4HvAgfjZQ5erKq3isgBwI+AScArwDmqusM/5kvAZ4AEcLGqPlKu8hkzVPlGLGWvNJZv5m3KgvvX0xtP0JtQilyozQxAxBXOPraNT88+jMkHjcx5vVbWf65FZRvFJCKHAIeo6rMiMhJ4Bvgo8A/AX1X1KyLyRWCMql4lIlOBHwDvAcYDvwSmqGreBlkbxWSqZSAjlrp3x3jvV34VuMynqYyBjiard1UfxaSq21X1Wf/nXcBzwATgTOA7/m7fwQsa+Nt/qKoxVX0Z2IQXLIypOQMZsbRy0+uWMK9CrvjQFG7/xDvZL5y5joN1PA9ORUYxicgk4J3AauAgVd0OXhABDvR3mwBsSTusy99mTM3JN2KpJeJmjFBK9T+kJ86z9NvlpBx98EiSZEZk63genLJ3UovICOA+4BJVfVMk7/+OoBdynrtE5ELgQoD29vZSFdOYAQkasXTOzDY+8j8rcURIJJMsmNvBtPGjc4612kT53L7ij/zPij9yzsw2lq7pso7nISprgBCRMF5wWKKqP/Y3vyYih6jqdr+f4s/+9i5gYtrhbcC27HOq6mJgMXh9EGUrvDH9yM7Hc+ptT2bUFK75yXo+f9JkmxVdQXv9z3rpmi6Wz38fe3oS1vE8BGVrYhKvqnAX8Jyqfi3tpQeAT/k/fwq4P237uSISFZHDgCOBp8tVPmNKITV7dtvOvYHrL9z22KaAo0wpBd3Ewo7Dnp5E3c1srrRy1iBmA+cDvxeRTn/b1cBXgKUi8hlgM/AxAFXdICJLgY1AHLio0AgmY6ohf76d4KZTq+IOnVD4cwyqn1mfQ2mULUCo6kry/a+Bk/MccwNwQ7nKZMxQZM97uPb0qUwbP5q2Mc1s+etb1S5e3RpokI2G8i8XagbGZlIbU4T02dCpCW/X/GQ9LRGXnnjCJrhVSMih4Ge9X9jlm+cfy5wp4ypXqDpmyfqMySM9ud6K5/9M0JzSPT0JepPWlFQpIsLVpx5NU9ihJeLmvJ5E6Rg/qgolq09WgzAmwJKnXmXhgxtAlZ6kl66hJ6AT2lSWALMOb2XVVSfRtWMv67ftZNHyjTactUwsQBiTZclTr3pJ9NJYcKg8Fy8pW7qehLL65W6mTzyibwTZKR0HWx6lMrEmJmPSdO+OsXD5xmoXwwDieB3O2W5+5A8Za2nU40I9tcIChDFpunbs7VurwVTXlR8+OrBvJ+xaXqVKsSYmMyyVYv3f1DlaIm7fjNveeIKYDUmquqtPPZoLP3AELU0hrvlJZnNfQtXmOFSIBQgz7ORbh2EgUp3QIhCLK1G/Ezr9idV1IGGxouL+5QOHc+EHjgC8hZRQWPjgBsKuQ0LVOqIryAKEGVaC5iNced86Zk8eW/RNI6gTOhbQCW3BofIirvDZ9x+ese284w7llGnWEV0NFiDMsBK0Olsq138xNw7rhK5tC+Z2BH6P2av0mcqwTmozrORbh6HYNmkvwFgndDUFjQEIOcINH53mNSmZmlFUgBCRrxazzZhyS63D0BR2GBkN0RQeWN4dL8DYnIZa4wiMbLIGjVpT1JrUIvKsqr4ra9s6VT2mbCUrgq1J3biGMoppyepXc0bGmMoJu4Kg9GTNgrN1oyunJGtSi8i/iMjvgaNEZF3an5eBdaUqrDEDNZDJUamcSqnJVefNOpSrTzs6sKnDlF/EdfjUeyfRHC5uTW9TPf3V6e4Bfgb8J/DFtO27VPWvZSuVMSWSk6L7I1Pp3tPDHStexCE3lYMpvz09Ce5ZvaVv9bcUW8Oh9hQMEKq6E9gJfEJEXOAg/5gRIjJCVTdXoIzGDEpgiu6fWtNSJTgCjgjxPP09e9Lal1oirs1vqFFF9QqJyHzgeuA19i3gpEBV+yDM8FWKmdD9nbdrx16SNpmhOhSaIg67Y/sCQTTkIELGGt37RVwWzu3gxKMPtOBQg4odNnAJcJSqdpexLKZBlGImdDHn/XDHQfRYfKiKprCTkwE3kUzmLPbzVo+X2sSCQ20qdh7EFrymJmOGJL3ZZ1csztu9Sa68b11Gds5Snff+zu0lKrUZqCSw4IypfcORg7Kypix6aOOQv39THgVrECJyqf/jS8DjIvIQ0PdNqurXylg2U4dKMRM6qGkq6LymOkIOfbXC1FoNO/f2ctGSZ9kVi+fsP5Dv31RWf01MI/2/N/t/Iv4fYwZlKDOhCzVNtY1ppsf6G2rCDz93HDMPawX2pcjo3h3L+d5TbPRS7epvFNPCShXENIbUTOgrs270/T09FpOk7/R3HMx9v9uWc6wrYAvClYbrgCi4jkNSk3SMH01n177W5wuOb+8LDunSv3dNKrGE0uTPg7DRS7Wr2FFMD5K7LvtOYA3wv6r6dqkLZurX3BkTmD15bE5TUaGRTYWapu57pouv/vz5vEHAgkNxHIFCWUiiIeGms6fnfHebXttF55Y3mDFxfyYfNDLv8enfe/oaHBYcalexo5heAsYBP/B//zjekNcpwJ3A+aUvmqln2dk5+xvZlK9p6u6VL3H/WuuMHqr//LtpfKjjYP7nVy/ynd+8mvM0uF/E5ZuffBdzphwIkPHdTT5oZMHAkM6ysg4vxQaId6rqnLTfHxSRJ1R1johsKEfBTOMIaj66/N61TD1kVN+NJ6hp6tIPTuHLP3u+mkWvG//20/U8t/1Nlj7TxX7+0326pCod40dXqXSmWooNEONEpD01c1pE2oGx/ms9ZSmZaRhBzUc9CeW0/1nJzWcf09csMXvyWFZddVJfE8W3/++V6hW6ziQUvvtUbmIEm+Xc2IoNEJcBK0Xkj4AAhwH/n4i0AN8pV+FMYwhqPgLoiSe57N61OAIR1+2rNbzSvYela7rypnEwpdESdVl4hs1ybmRFpfsGEJEocDRegHi+FjqmLd13/Xigcytf+FGndSjXkLArPPWlky041KFSpfs+yf/774GPAEcAhwOn+duMKYmph4zCFnqrLb0J5VtPvpR3lnN2GnVTf/prYvoA8BhwRsBrCvy45CUydWEgyfju79zKFfeupdfmudWcb/z6Je5a+QoL5k7NWA60XPm0TG3pb6LcAv/vf6xMcUw9GMjNIzWCKTuxm6kdPYmktwKfwnnHHVrUpEVTH4pdk/ogEblLRH7m/z5VRD5T3qKZ4WigyfhSI5hMdTWHnX5X2Fv44Ia+mmH2d2arwdWnYv9nfht4BBjv//4CXgpwYzIM9ObRNqaZWNzWdaumiAs3nX0M/+8f383Vpx5N2A3eL+w6fc2Gg82nZYaXYgPEWFVdir9YkKrGsdUaTYCB3jxaR0T52LETK1E0E8AVOPfd7Vy+bB0XLfkdX/vlC1zx4aNxA0YMxP3vMTVpMZXKuyns2DyJOlXsPIg9ItKKn49JRI7D1odoSP11PgfNeL72I1P7ahBBx/zj7EksedpWr620ppDDzR+bzuXL1mb0J9z8yB9oDmeuBgcw/8Qj+76/fPm0TH3pbz2IS4BVwJXA/cDhIrIKLy/Tx8peOlNTiu18Tr95rN+6k0UPbSx4zOSDRnLB8e189zcWJCpJgVHN4dwkiG7uanDRkMO8We0Z2yyvUv3rr4mpDbgV+Lm/76PAPcB7VXVtmctmqix9nHsxnc/p+7eOiNI2pplFD23MOObye9ey6bVdOcd8/uQp/PILc7johMNxrc+6Is561wQ6xo/KaRJMqGasBtcUdrjpbGtCakT9DXO9HEBEIsBM4L3AScA1IvKGqk4tfxFNNWTXFi46YXLBleCWPPUqC5dvJOIK8aSXu+fQ1paCOZZ2vR1n4YMbCLsO8WSS900ex+N/+LPNpq6QT88+LO/6HOmrwVkTUuMqtg+iGRgFjPb/bAN+X65CmeoKGud++4oX8bKs7NObTNIScfnqz57jG79+CYAef0XJK+9bx/L57yuYY6nXjwQ9Ca+t+1fP/7lMV2SyXXB8e1+m3Hz9CdaEZPrrg1gMdAC7gNXA/wFfU9UdFSibqZKg7KoR1+XCOYdzx+Ob+p40z5nZxmm3PRk4yc0RYU9PghvPOobL712bs0+vVRMqKhoSlnxmFq90v5WzsM9AZr2bxtJfDaIdiAIvAluBLuCNYk4sIncDpwN/VtVp/rbrgc8Bf/F3u1pVH/Zf+xLwGbzhsxer6iMDuRBTOvmGqs6b1c68We196bZPufUJ4nnSY7zVk2D91p2cd9yhjB/dxNn/+1QFSm7y+fi7JzLzsNac5UAtZYYppGB3oKqeArwbuNnfdBnwWxH5hYj0t171t4FTArb/l6rO8P+kgsNU4Fy82sopwNdFJM90HVNuhca5t46IMn3i/mzb+Xbe4JCy4IH1bHptFz8OWCfaVNbSNV05s9kHOuvdNJ5++yDUywe+XkTewJv7sBOvZvAeYEGB454QkUlFluNM4IeqGgNeFpFN/vl/U+TxpsT6H+fefxNRPAmn3PqkrdtQYa7jDVV9uzd4QEFKoXW+ranJQP99EBfjjVyaDfTizYn4DXA3g++kni8iFwBrgMv8/owJQHobRJe/LahMFwIXArS3twftYiqgY/xowq7025dgwaEyrj7taI4+eBSg7Bd2mXfX0xmvB81mt5QZpj/9jTifBCwD3qOqh6vq+ar6dVVdq6qDSc78Dbw1JWYA24Fb/O1BacIC7yyqulhVZ6rqzHHjxg2iCKYY93duZfZXH+OT31rN7K8+xgOdWzNebx0R5ZaPTSfSX4Y3U3b/csLhXDjnCOZMGceOt3r55N1PI/5CYE1hJ28qDEuZYfrT3zyIS0v5Zqr6WupnEbkTWO7/2gWkJ+RpwxtKa6qg2HTOc2dMYP/9wvzz95/lrR5LzVUN0ZDDZ993OJD5vaUkk8rDF78/Y9RSOkuZYQqp6JxVETkk7de/A9b7Pz8AnCsiURE5DDgSeDr7eFMZA8nI2jF+NMkil601pbNfxM2Z4Rz0vUVDLnv6Cd6pgQcWHEy2YifKDZiI/AA4ARgrIl14HdoniMgMvOajV4B/AlDVDSKyFNgIxIGLVNUeSatkIG3T6TNxHSAWT6KAdT2UT8iBb37yXXSMH51xU7c+BVNqZatBqOonVPUQVQ2rapuq3uX3YbxDVY9R1bmquj1t/xtU9QhVPUpVf1aucpn8UnmRgAG1Tc+ePJbZR7TyVm+ShFpwKLczZ0xgzpQDrU/BlF3ZahBmeAmaMLXqqpMKtk13747xrSdf4s4nXiJuQaFi/uUDR+R9zfoUTClZgGgg+VIqdO+OceWytcTi2tcpffm9a3n44vczfeL+gcev3PQ6X/hhJ4MZymYG75yZE/J2OKdYDiVTKhYgGkShlApLVm8mllUFSM+6OnfGhIzjexJJYv1NozYl1xx2OW/WpGoXwzQQCxANoNCwVYA7VmwKPK4n7qVemHrIqJzjTWk4kPOJukJgyvO4dTibCrMA0QCCUio4ImzYtpPRzREirpO3RhB2HDq3vIErNiGuHII+9XyT09WGE5sKs7W7GkDQ8Me3ehJ87rtrWL91Z+CaDSmxeIItf32r37H0pvyaw6HAuSjGlIsFiAaQGv4YDWV+3bG4suihjVx7+r7lJcOuEHIgmpZC49bHgpugTGXZnAZTadbE1CC8tBgR/vl7z/BW777agIMwuinM4vNnAsr40c08/6c3uXTpOkADFwMypdcScelJJFFVmsOhvgWZlq7pyhhYYKOTTCVZgGggHeNHkczKgfhWb4L5P/gdTWGHeCKJiPSNVDLlFw05XHfGVKaNH91XO0gfivz5k6fYnAZTNRYg6kSxy0ZedMJkbvvVC/Rm3f/3JXhTehPW31AJIQfuvGAmc6ZkZiVO//5sToOpJgsQdaC/ZSO7d8dYsnozd6zYhAg5wcFURzwJ40c3VbsYxuRlAWKY6y819/2dW7ni3rXWl1CDoiHHRoeZmmYBYpjLN+wxtf3ye9f2u+qbqQ4RbFSSqWkWIIa5loibsUAMeP0JLRGXDdt2WnCoIWF/6HAk5JBIqo1KMjXPAkSN694dY8O2NwHNyf8PsKcnQdQVYmmBIOqK33Rhs59riesIi88/ltHNERuVZIYFCxA17P7OrVy2tJNUFoywK9zysekZHdBtY5oRJzN5jzhC25hm2sY0E3IgPYtGUO4fU3qO5K6L8XZvkvGjm/vNxmpMrbCZ1DUqlYI7/ebem1CuWLaO7t2xvm2FFolpHRFl3nvaM85rwaEygtImRfpqdsYMD1aDqFFdO/biigNk3lBcR+jasTejeSLfIjHdu2Pc8/TmShbb+AJ7fkSsU9oMK1aDqFFtY5pJaO7zfiKpOTeZfJPkNmx7E1u2oXYsOGOq9TuYYcVqEDWqdUSUm86ezqVZfRA3nZ058iV7kty1H5nKtAmptA02gqlWhBw4pePgahfDmAGxAFHDUk1H+UYxBU2Su+an62kOOyQVPj17EmFXbKhrCYUc+OIpRxNyHaaNH8V5dz1d1Op6qVTdVoMww4k1MdW41hFR5kwZx5wpBwKwdssbfZ3UqYWAsu3t9ZYE/cavXyKZVMKu0BS2r7oUkkm4+dEXOKAlwszDWrnpbG+AQOrzDTtCxN035yHFUnWb4chqEMNEUL6lqYeMIhYvPComoRASOP+4Q7nzyZcrVNr6lcQbrppKZ5I+QKAl4rKnJ0HbmGZWbXqdK7O+L6s9mOHGAsQwENSU9IUfdRJyHUQEUEIC8TwtSb1x5Xev/rVyBW4AYcfpazIKyriab2SZMcOJBYhhIGhN6YRCIq3tO19wAO+pd83mnWUs4fDnCjiO0BTyFu7pTSRzJrqlK6bJyFJ1m+HOAkSNCRqyGrSmtCkd14FHPj+HMS2Rvs9+1abXuWLZOlS9VfVcf7J61BXEEWsyMg3BAkQNybeuQ2q29GVLO20thxJwAHG8ZiIFrjt9Knt6EoxpgekT9wcI7FtI72Ow4GAagQWIGlFoXYcde3roiSc5+W8O4ucbXqtySYe/RX83jVM6DqZrx17Wb93Jooc2Bi62ZE1EptFZgKgRQf0MYcfh2p/+nofXW1AolZaIy7S0+SQfX/ybvIstGdPobHB8jQjqZ+hJJC04lFg8rXM5aB5JanRSPt27YxlzUYypZxYgakRQVtaz3jWh/wMNgjcKqRjzTzyyYOd/odFJ93duZfZXH+OT31rN7K8+xgOdW4dSbGNqngWIISrlE+XcGRNYddVJfP+zs1g+/32894jWEpSw/kVCwo8uPI6IW/ifczTkMG/WvvTnhVKlZ0vvI9oVi/dNlrOahKln1gcxBPlGHRUraEhr64goKze93ndebxpcrnzbG1HEdQmHXP71pMnc8ugLOa/vF3FJavASn8VOaMvXR2T5lUw9swAxSIVGHRVzw0gPLj2JBPNPPJJ5s9rZsaeHK5atoyeezLgZpUs9JzdSgDi8tZnXdvUELriTahaaN6ud21e8SCxt1mA0JHzzk+8KXK41pZjRSgNtjjKmHlgT0yDl6+DcsO3NfpucspsrYnHllkdf4Lj//BUf/u8n6OknO6jSeCvDnXDUgSQClmmLhjJX0Lvp7OkZTUY3nT2dOVMOHPJT/kCao4ypF1aDGKSgJ8q3euJ87rtriLiFm5yCmiuAotNyN1LNIaU54nLjWcf0JcBLr3WBl+W2bUxzWXMgWX4l02gsQAxS3+zme9f23dhT+ZFS6wMENTl1746xc28PPQlbm3ggFj/5MtfP7WDVVSdl3KALzT4vB5s8ZxqJBYghmD15LE6B4ZXZnZipm5krQjypODReU9Fg9SaUa36yHhTOO+5QYOj9QMaYwqwPYgi6duwl4rp5X0/vxEy/me3pSZBIesHhnRNHV6i09WHhgxsKLpjU30S3YthkOGM8ZQsQInK3iPxZRNanbTtARB4VkRf9v8ekvfYlEdkkIn8QkQ+Xq1yllC/LakvUzenE7NqxF1dyqxu/22JpuFNcyV2JLVvY3RcAyjGyyCbDGbNPOWsQ3wZOydr2ReBXqnok8Cv/d0RkKnAu0OEf83URyf9oXiOCRrbc8NFp3PPZ41h11UkZHdRtY5rpTRTfoBR1xcs6WoZy16rF5x/b7z4J1b4AUOqRRTYZzphMZeuDUNUnRGRS1uYzgRP8n78DPA5c5W//oarGgJdFZBPwHuA35SpfqRQzsiU1Ie7yDx3Fl3/2fFHnjRU5oqleNIUdwiEHDRjKmpI+pDWllCOLbDKcMZkq3Ul9kKpuB1DV7SJyoL99AvBU2n5d/rYcInIhcCFAe3t70C4VV2hky5KnXmXh8o1EXKE3oRzeuh8vdb9V4RJW3zkz27jvmS4Kxz2hORxiVyyesTXswMUnT2HerPbAz7lUI4tsMpwxmWplFFNQS0rgrURVFwOLAWbOnFnTj9lLnnqVa37qdcH0+Pe8RgwOAA+s3cYjl8xh2863AWXLjr0sWp65DkPH+FE5N+hIyOHhf30fkw8aWfYyppqsrswaNmu1B9OoKh0gXhORQ/zawyHAn/3tXcDEtP3agG0VLltJpJqTWiIuCx/cUO3i1AxXhD09CeZMGde3LbVoT3rTUNANuhLBIcUmwxmzT6UDxAPAp4Cv+H/fn7b9HhH5GjAeOBJ4usJlG7L0SVuxRBIKtKdXgyvw7kljeOrlHRV/795EblNNUNNQvht0UGLDcrHJcMZ4yhYgROQHeB3SY0WkC1iAFxiWishngM3AxwBUdYOILAU2AnHgIlUdVlONgyZt1Zr/+Og0Fi7fWJX3XnBGR9E33ewb9FCz5hpjBqeco5g+keelk/PsfwNwQ7nKU25BI2Cawg7JpBJ2Hd7u9eJdNQcnxeJJQoWmfvcj5AiqSlPEJZ5IktTM/FFhV7yZ5eqNwoqGHBRYcMZUzpt16KDe02ZLG1M9tdJJPewFjYBRhYcvfj97ehK0RFzue7aLxU+8VJUg4Qjs2NPD7lhmxcx1hESy/wI5wMK5HZwy7WA2bHuTfB3NqeahlojLnp6EDT01ZhizAFEiqREwly7tJJWtO5FMsnH7myhw5bJ1fUn8qiGpcOtjm3K2//uZHcyadAB3r3qZe9dsoTdPEZPAooe85qlFD+0LCtd+ZCrTJozOWfSoVGzoqTHVY7mY+pGel6e/HD273o6THgPiSbhi2dpBBYdoqPxzqFsiLtPGj2byQSP58t8fw1NXf5DL/nYK0ZBDczj3n4YrwsLlGzNmGi96aGNZO45tHQZjqsdqEAWkd46+HU+gqjSHQ4Edpd27Y4EdwIIgATmY+pO+Klq5pKetAO9mPG9WO9MnjubNvb1cdu/ajHL0JpJEQk7fnA6oTHOPDT01pjosQOSRb1RSapZvdkdp1469SMCw1kQyWXSAcB1wRIpeOGiw9os4JJWcJ/Hs0UIff/dEfvTbLbjikNAk153e0dfMlFKp5h4bempM5VkTUx5BqaTTZS8v2hJxA/MnXfHho1kwt6Pf93MFFn/y2AEHh5DjHbtf2CEaEk7+m3GkJ0QVvNFFTX6TUcQV4gnl2o9MzakBZSeq+8HTW7ypHOKdaWRTyJp7jGkgVoPII18q75S9vZnLi5501IE5+0RDDrMOb+WV7j15FweKuN640Js/NoOxI5uIulIwUZ/gpZ+IuGnNXhGXnoSy4IwOzpt1KN27Y2zYthMQOsaPYseeHk677UkAevxzL3poI6dMOzijBpQ9WigVrFKr31153zpWXXVSzqpuxpj6ZDWIPLI7R8OuEHJgZDRENOT1K8Ti+562H17/p4CzKC0Rl6vuW5d36lxSQcT7GtrGNCP9zFMYEQ1x5wUzueO8d+KI1xG+O5agJ55k0fKNdO+O0ToiypwpBzJnyjhaR0TZ05MgGsrMnp69sE5/ATH9mNYRUaZP3N+CgzF1zmoQBWR3joL3pL1zbw8XLfkdvYl4wePnn3gke3oSOU/m6eJJJZ7Uvqfz9FxEPYkEvQklfZrC3t44HeNH9a1mF4vvK0O+DuNihopmJ6rrSSRJJJMZo7JseKkxjcUCRD+yO0dbR0Tp3h3r92k7GnKYN8tLR97fvrDv5p4elFoiLqfe9iTJtCanVIf3QOYHFJulNDsg3vrLF/juU5v7Xj9nZpvVGoxpINbENAhBY/MvOL6dprBDS9QlEnK47oypfcElte9+AXMLUtJv7qkmnD09CZqymoaaQm5fLWEgHcZzZ0xg1VUn8f3PzspZ7S772qZP3B+Apc90Zby2dE2Xra5mTAOxGsQgBY3NP+qgUSx8cANh12HR8o2MjIaYO2NCxr53r3qJ+zu3950n7AquI4E39/5qCQOdHzCQoaKW4sIYYwEiQLGppdNvuN27Yyx6aCM9Ce0b9XPFsrV9cyVaR0RZuel1HtnwGi0Rh1hCueiEIzjp6IPyvk8xTUPlmh9gKS6MMRYgsgw2tXTQE3csrtyzejP/evKRGfMMUv73iZe44PhJBW/w1VofwVZXM8ZYgEgzlNTSbWOa+2oO6W5fsYl5s9qH1GRTrfURLMWFMY3NOqnTBM2ezp4vkE/riCjzTzwyZ3vEdfpusKVosgma8XzlfevK1nlscx6MaVwWINIM9SY+b1Y70VDmR5o6vlRZSYcSxIwxZiCsiSnNUNvdW0dEuens/McX02TTX9+CdR4bYypFNCAD6XAxc+ZMXbNmTUnOlX5jBobU7j7YDuRi+xYe6NyaE4RsjWZjTLFE5BlVndnfflaDoPSdvoMZejqQDnLrPDbGVELD90FUutM3n4H2LVjnsTGm3Bo+QAyl07e/JUgHwvoWjDG1puGbmAZ7Yy5Hs5RNTDPG1JKGDxCDuTEPZUJdIda3YIypJQ0fIGDgN+ZyJrKztZeNMbWiYQNE9lDUgdyYrb/AGNMIGjJADLX/wPoLjDGNoOECRKn6D6y/wBhT7xouQJSy/8D6C4wx9azh5kFY/4ExxhSn4QJEqbKqGmNMvWu4Jiaw/gNjjClGQwYIsP4DY4zpT8M1MRljjCmOBQhjjDGBLEAYY4wJZAHCGGNMIAsQxhhjAg3rNalF5C/Aq2V+m7HA62V+j1rTiNcMjXndjXjN0JjXnX7Nh6rquP4OGNYBohJEZE0xi3vXk0a8ZmjM627Ea4bGvO7BXLM1MRljjAlkAcIYY0wgCxD9W1ztAlRBI14zNOZ1N+I1Q2Ne94Cv2fogjDHGBLIahDHGmEAWIIwxxgSyAJFGRF4Rkd+LSKeIrPG3XS8iW/1tnSJyWrXLWWoisr+ILBOR50XkORE5XkQOEJFHReRF/+8x1S5nKeW55rr+rkXkqLRr6xSRN0Xkknr+rgtcc71/118QkQ0isl5EfiAiTYP5nq0PIo2IvALMVNXX07ZdD+xW1ZurVa5yE5HvAE+q6rdEJALsB1wN/FVVvyIiXwTGqOpVVS1oCeW55kuo8+86RURcYCswC7iIOv6uU7Ku+R+p0+9aRCYAK4GpqrpXRJYCDwNTGeD3bDWIBicio4A5wF0Aqtqjqm8AZwLf8Xf7DvDRapSvHApccyM5Gfijqr5KHX/XWdKvud6FgGYRCeE9/GxjEN+zBYhMCvxCRJ4RkQvTts8XkXUicnc9Vb99hwN/Af6fiPxORL4lIi3AQaq6HcD/+8BqFrLE8l0z1Pd3ne5c4Af+z/X8XadLv2ao0+9aVbcCNwObge3ATlX9BYP4ni1AZJqtqu8CTgUuEpE5wDeAI4AZeB/2LdUrXlmEgHcB31DVdwJ7gC9Wt0hll++a6/27BsBvUpsL3FvtslRKwDXX7XftB7szgcOA8UCLiHxyMOeyAJFGVbf5f/8Z+AnwHlV9TVUTqpoE7gTeU80ylkEX0KWqq/3fl+HdPF8TkUMA/L//XKXylUPgNTfAd51yKvCsqr7m/17P33VKxjXX+Xf9QeBlVf2LqvYCPwbeyyC+ZwsQPhFpEZGRqZ+BDwHrUx+o7++A9dUoX7mo6p+ALSJylL/pZGAj8ADwKX/bp4D7q1C8ssh3zfX+Xaf5BJlNLXX7XafJuOY6/643A8eJyH4iInj/vp9jEN+zjWLyicjheLUG8Jog7lHVG0Tke3jVUAVeAf4p1Y5XL0RkBvAtIAK8hDfCwwGWAu14/+A+pqp/rVYZSy3PNd9G/X/X+wFbgMNVdae/rZX6/q6Drrmu/1+LyELg40Ac+B3wWWAEA/yeLUAYY4wJZE1MxhhjAlmAMMYYE8gChDHGmEAWIIwxxgSyAGGMMSaQBQhj8hCR3Vm//4OI3N7PMXP9RGiF9jlBRJbnee0Sf1imMVVnAcKYElLVB1T1K0M4xSV4ydWMqToLEMYMgoiME5H7ROS3/p/Z/va+WoaIHCEiT/mv/3tWjWRE2noUS8RzMV7unBUisqIKl2VMhlC1C2BMDWsWkc603w/AS1cAcCvwX6q6UkTagUeAv8k6/lbgVlX9gYj8c9Zr7wQ68NIwr8JLFHmbiFwKnJi+Jokx1WIBwpj89qrqjNQvIvIPwEz/1w8CU71UNwCMSuXySnM8+3Lu34OXgjnlaVXt8s/bCUzCW+TFmJphAcKYwXGA41V1b/rGtIDRn1jazwns/6KpQdYHYczg/AKYn/rFT/6X7SngLP/nc4s87y4guyZiTFVYgDBmcC4GZvorkm0EsvsYwBuRdKmIPA0cAuws4ryLgZ9ZJ7WpBZbN1Zgy8ecz7FVVFZFzgU+o6pnVLpcxxbJ2T2PK51jgdn/RljeAT1e3OMYMjNUgjDHGBLI+CGOMMYEsQBhjjAlkAcIYY0wgCxDGGGMCWYAwxhgT6P8HMWHwwspWcm4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot(kind='scatter',\n", + " x='Height',\n", + " y='Weight',\n", + " title='Weight and Height in adults')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.plot(kind='scatter',\n", + " x='Height',\n", + " y='Weight',\n", + " title='Weight and Height in adults')\n", + "\n", + "# Here we're plotting the red line 'by hand' with fixed values\n", + "# We'll try to learn this line with an algorithm below\n", + "plt.plot([55, 78], [75, 250], color='red', linewidth=3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def line(x, w=0, b=0):\n", + " return x * w + b" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "x = np.linspace(55, 80, 100)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "x" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "yhat = line(x, w=0, b=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "yhat" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.plot(kind='scatter',\n", + " x='Height',\n", + " y='Weight',\n", + " title='Weight and Height in adults')\n", + "plt.plot(x, yhat, color='red', linewidth=3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Cost Function" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def mean_squared_error(y_true, y_pred):\n", + " s = (y_true - y_pred)**2\n", + " return s.mean()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X = df[['Height']].values\n", + "y_true = df['Weight'].values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_true" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = line(X)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mean_squared_error(y_true, y_pred.ravel())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### you do it!\n", + "\n", + "Try changing the values of the parameters b and w in the line above and plot it again to see how the plot and the cost change." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(10, 5))\n", + "\n", + "# we are going to draw 2 plots in the same figure\n", + "# first plot, data and a few lines\n", + "ax1 = plt.subplot(121)\n", + "df.plot(kind='scatter',\n", + " x='Height',\n", + " y='Weight',\n", + " title='Weight and Height in adults', ax=ax1)\n", + "\n", + "# let's explore the cost function for a few values of b between -100 and +150\n", + "bbs = np.array([-100, -50, 0, 50, 100, 150])\n", + "mses = [] # we will append the values of the cost here, for each line\n", + "for b in bbs:\n", + " y_pred = line(X, w=2, b=b)\n", + " mse = mean_squared_error(y_true, y_pred)\n", + " mses.append(mse)\n", + " plt.plot(X, y_pred)\n", + "\n", + "# second plot: Cost function\n", + "ax2 = plt.subplot(122)\n", + "plt.plot(bbs, mses, 'o-')\n", + "plt.title('Cost as a function of b')\n", + "plt.xlabel('b');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Linear Regression with Keras" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.optimizers import Adam, SGD" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.add(Dense(1, input_shape=(1,)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.compile(Adam(learning_rate=0.8), 'mean_squared_error')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X, y_true, epochs=40)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.plot(kind='scatter',\n", + " x='Height',\n", + " y='Weight',\n", + " title='Weight and Height in adults')\n", + "plt.plot(X, y_pred, color='red')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "W, B = model.get_weights()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "W" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "B" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Evaluating Model Performance" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import r2_score" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The R2 score is {:0.3f}\".format(r2_score(y_true, y_pred)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Train Test Split" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y_true,\n", + " test_size=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "len(X_train)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "len(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "W[0, 0] = 0.0\n", + "B[0] = 0.0\n", + "model.set_weights((W, B))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train, epochs=50, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train_pred = model.predict(X_train).ravel()\n", + "y_test_pred = model.predict(X_test).ravel()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import mean_squared_error as mse" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The Mean Squared Error on the Train set is:\\t{:0.1f}\".format(mse(y_train, y_train_pred)))\n", + "print(\"The Mean Squared Error on the Test set is:\\t{:0.1f}\".format(mse(y_test, y_test_pred)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The R2 score on the Train set is:\\t{:0.3f}\".format(r2_score(y_train, y_train_pred)))\n", + "print(\"The R2 score on the Test set is:\\t{:0.3f}\".format(r2_score(y_test, y_test_pred)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Classification" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../data/user_visit_duration.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.plot(kind='scatter', x='Time (min)', y='Buy');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Dense(1, input_shape=(1,), activation='sigmoid'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.compile(SGD(learning_rate=0.5), 'binary_crossentropy', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X = df[['Time (min)']].values\n", + "y = df['Buy'].values\n", + "\n", + "model.fit(X, y, epochs=25)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ax = df.plot(kind='scatter', x='Time (min)', y='Buy',\n", + " title='Purchase behavior VS time spent on site')\n", + "\n", + "temp = np.linspace(0, 4)\n", + "ax.plot(temp, model.predict(temp), color='orange')\n", + "plt.legend(['model', 'data'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "temp_class = model.predict(temp) > 0.5" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ax = df.plot(kind='scatter', x='Time (min)', y='Buy',\n", + " title='Purchase behavior VS time spent on site')\n", + "\n", + "temp = np.linspace(0, 4)\n", + "ax.plot(temp, temp_class, color='orange')\n", + "plt.legend(['model', 'data'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X)\n", + "y_class_pred = y_pred > 0.5" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import accuracy_score" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The accuracy score is {:0.3f}\".format(accuracy_score(y, y_class_pred)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Train/Test split\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "params = model.get_weights()\n", + "params = [np.zeros(w.shape) for w in params]\n", + "model.set_weights(params)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The accuracy score is {:0.3f}\".format(accuracy_score(y, model.predict(X) > 0.5)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train, epochs=25, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The train accuracy score is {:0.3f}\".format(accuracy_score(y_train, model.predict(X_train) > 0.5)))\n", + "print(\"The test accuracy score is {:0.3f}\".format(accuracy_score(y_test, model.predict(X_test) > 0.5)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Cross Validation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.wrappers.scikit_learn import KerasClassifier" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def build_logistic_regression_model():\n", + " model = Sequential()\n", + " model.add(Dense(1, input_shape=(1,), activation='sigmoid'))\n", + " model.compile(SGD(learning_rate=0.5),\n", + " 'binary_crossentropy',\n", + " metrics=['accuracy'])\n", + " return model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = KerasClassifier(build_fn=build_logistic_regression_model,\n", + " epochs=25,\n", + " verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import cross_val_score, KFold" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "cv = KFold(3, shuffle=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "scores = cross_val_score(model, X, y, cv=cv)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "scores" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The cross validation accuracy is {:0.4f} ± {:0.4f}\".format(scores.mean(), scores.std()))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Confusion Matrix" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import confusion_matrix" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "confusion_matrix(y, y_class_pred)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def pretty_confusion_matrix(y_true, y_pred, labels=[\"False\", \"True\"]):\n", + " cm = confusion_matrix(y_true, y_pred)\n", + " pred_labels = ['Predicted '+ l for l in labels]\n", + " df = pd.DataFrame(cm, index=labels, columns=pred_labels)\n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pretty_confusion_matrix(y, y_class_pred, ['Not Buy', 'Buy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import precision_score, recall_score, f1_score" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Precision:\\t{:0.3f}\".format(precision_score(y, y_class_pred)))\n", + "print(\"Recall: \\t{:0.3f}\".format(recall_score(y, y_class_pred)))\n", + "print(\"F1 Score:\\t{:0.3f}\".format(f1_score(y, y_class_pred)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import classification_report" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(classification_report(y, y_class_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Feature Preprocessing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Categorical Features" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../data/weight-height.csv')\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['Gender'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pd.get_dummies(df['Gender'], prefix='Gender').head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Feature Transformations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 1) Rescale with fixed factor" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['Height (feet)'] = df['Height']/12.0\n", + "df['Weight (100 lbs)'] = df['Weight']/100.0" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.describe().round(2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### MinMax normalization" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "mms = MinMaxScaler()\n", + "df['Weight_mms'] = mms.fit_transform(df[['Weight']])\n", + "df['Height_mms'] = mms.fit_transform(df[['Height']])\n", + "df.describe().round(2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 3) Standard normalization" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import StandardScaler\n", + "\n", + "ss = StandardScaler()\n", + "df['Weight_ss'] = ss.fit_transform(df[['Weight']])\n", + "df['Height_ss'] = ss.fit_transform(df[['Height']])\n", + "df.describe().round(2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(15, 5))\n", + "\n", + "for i, feature in enumerate(['Height', 'Height (feet)', 'Height_mms', 'Height_ss']):\n", + " plt.subplot(1, 4, i+1)\n", + " df[feature].plot(kind='hist', title=feature)\n", + " plt.xlabel(feature);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Machine Learning Exercises" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 1\n", + "\n", + "You've just been hired at a real estate investment firm and they would like you to build a model for pricing houses. You are given a dataset that contains data for house prices and a few features like number of bedrooms, size in square feet and age of the house. Let's see if you can build a model that is able to predict the price. In this exercise we extend what we have learned about linear regression to a dataset with more than one feature. Here are the steps to complete it:\n", + "\n", + "1. Load the dataset ../data/housing-data.csv\n", + "- plot the histograms for each feature\n", + "- create 2 variables called X and y: X shall be a matrix with 3 columns (sqft,bdrms,age) and y shall be a vector with 1 column (price)\n", + "- create a linear regression model in Keras with the appropriate number of inputs and output\n", + "- split the data into train and test with a 20% test size\n", + "- train the model on the training set and check its accuracy on training and test set\n", + "- how's your model doing? Is the loss growing smaller?\n", + "- try to improve your model with these experiments:\n", + " - normalize the input features with one of the rescaling techniques mentioned above\n", + " - use a different value for the learning rate of your model\n", + " - use a different optimizer\n", + "- once you're satisfied with training, check the R2score on the test set" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 2\n", + "\n", + "Your boss was extremely happy with your work on the housing price prediction model and decided to entrust you with a more challenging task. They've seen a lot of people leave the company recently and they would like to understand why that's happening. They have collected historical data on employees and they would like you to build a model that is able to predict which employee will leave next. They would like a model that is better than random guessing. They also prefer false negatives than false positives, in this first phase. Fields in the dataset include:\n", + "\n", + "- Employee satisfaction level\n", + "- Last evaluation\n", + "- Number of projects\n", + "- Average monthly hours\n", + "- Time spent at the company\n", + "- Whether they have had a work accident\n", + "- Whether they have had a promotion in the last 5 years\n", + "- Department\n", + "- Salary\n", + "- Whether the employee has left\n", + "\n", + "Your goal is to predict the binary outcome variable `left` using the rest of the data. Since the outcome is binary, this is a classification problem. Here are some things you may want to try out:\n", + "\n", + "1. load the dataset at ../data/HR_comma_sep.csv, inspect it with `.head()`, `.info()` and `.describe()`.\n", + "- Establish a benchmark: what would be your accuracy score if you predicted everyone stay?\n", + "- Check if any feature needs rescaling. You may plot a histogram of the feature to decide which rescaling method is more appropriate.\n", + "- convert the categorical features into binary dummy columns. You will then have to combine them with the numerical features using `pd.concat`.\n", + "- do the usual train/test split with a 20% test size\n", + "- play around with learning rate and optimizer\n", + "- check the confusion matrix, precision and recall\n", + "- check if you still get the same results if you use a 5-Fold cross validation on all the data\n", + "- Is the model good enough for your boss?\n", + "\n", + "As you will see in this exercise, the a logistic regression model is not good enough to help your boss. In the next chapter we will learn how to go beyond linear models.\n", + "\n", + "This dataset comes from https://www.kaggle.com/ludobenistant/hr-analytics/ and is released under [CC BY-SA 4.0 License](https://creativecommons.org/licenses/by-sa/4.0/)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/course/4 Deep Learning Intro.ipynb b/course/4 Deep Learning Intro.ipynb new file mode 100644 index 0000000..a047d0c --- /dev/null +++ b/course/4 Deep Learning Intro.ipynb @@ -0,0 +1,560 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Deep Learning Intro" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import numpy as np" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Shallow and Deep Networks" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.datasets import make_moons\n", + "\n", + "X, y = make_moons(n_samples=1000, noise=0.1, random_state=0)\n", + "plt.plot(X[y==0, 0], X[y==0, 1], 'ob', alpha=0.5)\n", + "plt.plot(X[y==1, 0], X[y==1, 1], 'xr', alpha=0.5)\n", + "plt.legend(['0', '1'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", + " test_size=0.3,\n", + " random_state=42)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.optimizers import SGD, Adam" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Shallow Model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Dense(1, input_shape=(2,), activation='sigmoid'))\n", + "model.compile(Adam(learning_rate=0.05), 'binary_crossentropy', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train, epochs=200, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "results = model.evaluate(X_test, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "results" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The Accuracy score on the Train set is:\\t{:0.3f}\".format(results[1]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_decision_boundary(model, X, y):\n", + " amin, bmin = X.min(axis=0) - 0.1\n", + " amax, bmax = X.max(axis=0) + 0.1\n", + " hticks = np.linspace(amin, amax, 101)\n", + " vticks = np.linspace(bmin, bmax, 101)\n", + " \n", + " aa, bb = np.meshgrid(hticks, vticks)\n", + " ab = np.c_[aa.ravel(), bb.ravel()]\n", + " \n", + " c = model.predict(ab)\n", + " cc = c.reshape(aa.shape)\n", + "\n", + " plt.figure(figsize=(12, 8))\n", + " plt.contourf(aa, bb, cc, cmap='bwr', alpha=0.2)\n", + " plt.plot(X[y==0, 0], X[y==0, 1], 'ob', alpha=0.5)\n", + " plt.plot(X[y==1, 0], X[y==1, 1], 'xr', alpha=0.5)\n", + " plt.legend(['0', '1'])\n", + " \n", + "plot_decision_boundary(model, X, y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Deep model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Dense(4, input_shape=(2,), activation='tanh'))\n", + "model.add(Dense(2, activation='tanh'))\n", + "model.add(Dense(1, activation='sigmoid'))\n", + "model.compile(Adam(learning_rate=0.05), 'binary_crossentropy', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train, epochs=100, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.evaluate(X_test, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import accuracy_score, confusion_matrix" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train_pred = model.predict_classes(X_train)\n", + "y_test_pred = model.predict_classes(X_test)\n", + "\n", + "print(\"The Accuracy score on the Train set is:\\t{:0.3f}\".format(accuracy_score(y_train, y_train_pred)))\n", + "print(\"The Accuracy score on the Test set is:\\t{:0.3f}\".format(accuracy_score(y_test, y_test_pred)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plot_decision_boundary(model, X, y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Multiclass classification\n", + "\n", + "### The Iris dataset" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../data/iris.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import seaborn as sns\n", + "sns.pairplot(df, hue=\"species\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X = df.drop('species', axis=1)\n", + "X.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "target_names = df['species'].unique()\n", + "target_names" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "target_dict = {n:i for i, n in enumerate(target_names)}\n", + "target_dict" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y= df['species'].map(target_dict)\n", + "y.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.utils import to_categorical" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_cat = to_categorical(y)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_cat[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X.values, y_cat,\n", + " test_size=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Dense(3, input_shape=(4,), activation='softmax'))\n", + "model.compile(Adam(learning_rate=0.1),\n", + " loss='categorical_crossentropy',\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train, epochs=20, validation_split=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred[:5]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_test_class = np.argmax(y_test, axis=1)\n", + "y_pred_class = np.argmax(y_pred, axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import classification_report" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(classification_report(y_test_class, y_pred_class))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "confusion_matrix(y_test_class, y_pred_class)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 1" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "The [Pima Indians dataset](https://archive.ics.uci.edu/ml/datasets/diabetes) is a very famous dataset distributed by UCI and originally collected from the National Institute of Diabetes and Digestive and Kidney Diseases. It contains data from clinical exams for women age 21 and above of Pima indian origins. The objective is to predict based on diagnostic measurements whether a patient has diabetes.\n", + "\n", + "It has the following features:\n", + "\n", + "- Pregnancies: Number of times pregnant\n", + "- Glucose: Plasma glucose concentration a 2 hours in an oral glucose tolerance test\n", + "- BloodPressure: Diastolic blood pressure (mm Hg)\n", + "- SkinThickness: Triceps skin fold thickness (mm)\n", + "- Insulin: 2-Hour serum insulin (mu U/ml)\n", + "- BMI: Body mass index (weight in kg/(height in m)^2)\n", + "- DiabetesPedigreeFunction: Diabetes pedigree function\n", + "- Age: Age (years)\n", + "\n", + "The last colum is the outcome, and it is a binary variable.\n", + "\n", + "In this first exercise we will explore it through the following steps:\n", + "\n", + "1. Load the ..data/diabetes.csv dataset, use pandas to explore the range of each feature\n", + "- For each feature draw a histogram. Bonus points if you draw all the histograms in the same figure.\n", + "- Explore correlations of features with the outcome column. You can do this in several ways, for example using the `sns.pairplot` we used above or drawing a heatmap of the correlations.\n", + "- Do features need standardization? If so what stardardization technique will you use? MinMax? Standard?\n", + "- Prepare your final `X` and `y` variables to be used by a ML model. Make sure you define your target variable well. Will you need dummy columns?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 2" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "Build a fully connected NN model that predicts diabetes. Follow these steps:\n", + "\n", + "1. Split your data in a train/test with a test size of 20% and a `random_state = 22`\n", + "- define a sequential model with at least one inner layer. You will have to make choices for the following things:\n", + " - what is the size of the input?\n", + " - how many nodes will you use in each layer?\n", + " - what is the size of the output?\n", + " - what activation functions will you use in the inner layers?\n", + " - what activation function will you use at output?\n", + " - what loss function will you use?\n", + " - what optimizer will you use?\n", + "- fit your model on the training set, using a validation_split of 0.1\n", + "- test your trained model on the test data from the train/test split\n", + "- check the accuracy score, the confusion matrix and the classification report" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 3\n", + "Compare your work with the results presented in [this notebook](https://www.kaggle.com/futurist/d/uciml/pima-indians-diabetes-database/pima-data-visualisation-and-machine-learning). Are your Neural Network results better or worse than the results obtained by traditional Machine Learning techniques?\n", + "\n", + "- Try training a Support Vector Machine or a Random Forest model on the exact same train/test split. Is the performance better or worse?\n", + "- Try restricting your features to only 4 features like in the suggested notebook. How does model performance change?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 4\n", + "\n", + "[Tensorflow playground](http://playground.tensorflow.org/) is a web based neural network demo. It is really useful to develop an intuition about what happens when you change architecture, activation function or other parameters. Try playing with it for a few minutes. You don't need do understand the meaning of every knob and button in the page, just get a sense for what happens if you change something. In the next chapter we'll explore these things in more detail.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/course/5 Gradient Descent.ipynb b/course/5 Gradient Descent.ipynb new file mode 100644 index 0000000..b77dfc9 --- /dev/null +++ b/course/5 Gradient Descent.ipynb @@ -0,0 +1,1055 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Gradient Descent" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Linear Algebra with Numpy" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "a = np.array([1, 3, 2, 4])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "a" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "type(a)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A = np.array([[3, 1, 2],\n", + " [2, 3, 4]])\n", + "\n", + "B = np.array([[0, 1],\n", + " [2, 3],\n", + " [4, 5]])\n", + "\n", + "C = np.array([[0, 1],\n", + " [2, 3],\n", + " [4, 5],\n", + " [0, 1],\n", + " [2, 3],\n", + " [4, 5]])\n", + "\n", + "print(\"A is a {} matrix\".format(A.shape))\n", + "print(\"B is a {} matrix\".format(B.shape))\n", + "print(\"C is a {} matrix\".format(C.shape))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "C[2, 0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "B[:, 0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Elementwise operations" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "3 * A" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A + A" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A * A" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A / A" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A - A" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Uncomment the code in the next cells. You will see that tensors of different shape cannot be added or multiplied:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# A + B" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# A * B" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Dot product" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "B.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A.dot(B)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "np.dot(A, B)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "B.dot(A)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "C.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "C.dot(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Uncomment the code in the next cell to visualize the error:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# A.dot(C)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Gradient descent" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![](../data/banknotes.png)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../data/banknotes.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['class'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sns.pairplot(df, hue=\"class\");" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Baseline model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split, cross_val_score\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "from sklearn.preprocessing import scale" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X = scale(df.drop('class', axis=1).values)\n", + "y = df['class'].values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = RandomForestClassifier()\n", + "cross_val_score(model, X, y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Logistic Regression Model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", + " test_size=0.3,\n", + " random_state=42)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import tensorflow.keras.backend as K\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense, Activation\n", + "from tensorflow.keras.optimizers import SGD" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "\n", + "model = Sequential()\n", + "model.add(Dense(1, input_shape=(4,), activation='sigmoid'))\n", + "\n", + "model.compile(loss='binary_crossentropy',\n", + " optimizer='sgd',\n", + " metrics=['accuracy'])\n", + "\n", + "history = model.fit(X_train, y_train, epochs=10)\n", + "result = model.evaluate(X_test, y_test, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "historydf = pd.DataFrame(history.history, index=history.epoch)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "historydf.plot(ylim=(0,1))\n", + "plt.title(\"Test accuracy: {:3.1f} %\".format(result[1]*100), fontsize=15);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Learning Rates" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dflist = []\n", + "\n", + "learning_rates = [0.01, 0.05, 0.1, 0.5]\n", + "\n", + "for lr in learning_rates:\n", + "\n", + " K.clear_session()\n", + "\n", + " model = Sequential()\n", + " model.add(Dense(1, input_shape=(4,), activation='sigmoid'))\n", + " model.compile(loss='binary_crossentropy',\n", + " optimizer=SGD(learning_rate=lr),\n", + " metrics=['accuracy'])\n", + " h = model.fit(X_train, y_train, batch_size=16, epochs=10, verbose=0)\n", + " \n", + " dflist.append(pd.DataFrame(h.history, index=h.epoch))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "historydf = pd.concat(dflist, axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "historydf" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "metrics_reported = dflist[0].columns\n", + "idx = pd.MultiIndex.from_product([learning_rates, metrics_reported],\n", + " names=['learning_rate', 'metric'])\n", + "\n", + "historydf.columns = idx" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "historydf" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(12,8))\n", + "\n", + "ax = plt.subplot(211)\n", + "historydf.xs('loss', axis=1, level='metric').plot(ylim=(0,1), ax=ax)\n", + "plt.title(\"Loss\")\n", + "\n", + "ax = plt.subplot(212)\n", + "historydf.xs('accuracy', axis=1, level='metric').plot(ylim=(0,1), ax=ax)\n", + "plt.title(\"Accuracy\")\n", + "plt.xlabel(\"Epochs\")\n", + "\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Batch Sizes" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dflist = []\n", + "\n", + "batch_sizes = [16, 32, 64, 128]\n", + "\n", + "for batch_size in batch_sizes:\n", + " K.clear_session()\n", + "\n", + " model = Sequential()\n", + " model.add(Dense(1, input_shape=(4,), activation='sigmoid'))\n", + " model.compile(loss='binary_crossentropy',\n", + " optimizer='sgd',\n", + " metrics=['accuracy'])\n", + " h = model.fit(X_train, y_train, batch_size=batch_size, epochs=10, verbose=0)\n", + " \n", + " dflist.append(pd.DataFrame(h.history, index=h.epoch))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "historydf = pd.concat(dflist, axis=1)\n", + "metrics_reported = dflist[0].columns\n", + "idx = pd.MultiIndex.from_product([batch_sizes, metrics_reported],\n", + " names=['batch_size', 'metric'])\n", + "historydf.columns = idx" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "historydf" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(12,8))\n", + "\n", + "ax = plt.subplot(211)\n", + "historydf.xs('loss', axis=1, level='metric').plot(ylim=(0,1), ax=ax)\n", + "plt.title(\"Loss\")\n", + "\n", + "ax = plt.subplot(212)\n", + "historydf.xs('accuracy', axis=1, level='metric').plot(ylim=(0,1), ax=ax)\n", + "plt.title(\"Accuracy\")\n", + "plt.xlabel(\"Epochs\")\n", + "\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimizers" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.optimizers import SGD, Adam, Adagrad, RMSprop" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dflist = []\n", + "\n", + "optimizers = ['SGD(learning_rate=0.01)',\n", + " 'SGD(learning_rate=0.01, momentum=0.3)',\n", + " 'SGD(learning_rate=0.01, momentum=0.3, nesterov=True)', \n", + " 'Adam(learning_rate=0.01)',\n", + " 'Adagrad(learning_rate=0.01)',\n", + " 'RMSprop(learning_rate=0.01)']\n", + "\n", + "for opt_name in optimizers:\n", + "\n", + " K.clear_session()\n", + " \n", + " model = Sequential()\n", + " model.add(Dense(1, input_shape=(4,), activation='sigmoid'))\n", + " model.compile(loss='binary_crossentropy',\n", + " optimizer=eval(opt_name),\n", + " metrics=['accuracy'])\n", + " h = model.fit(X_train, y_train, batch_size=16, epochs=5, verbose=0)\n", + " \n", + " dflist.append(pd.DataFrame(h.history, index=h.epoch))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "historydf = pd.concat(dflist, axis=1)\n", + "metrics_reported = dflist[0].columns\n", + "idx = pd.MultiIndex.from_product([optimizers, metrics_reported],\n", + " names=['optimizers', 'metric'])\n", + "historydf.columns = idx" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(12,8))\n", + "\n", + "ax = plt.subplot(211)\n", + "historydf.xs('loss', axis=1, level='metric').plot(ylim=(0,1), ax=ax)\n", + "plt.title(\"Loss\")\n", + "\n", + "ax = plt.subplot(212)\n", + "historydf.xs('accuracy', axis=1, level='metric').plot(ylim=(0,1), ax=ax)\n", + "plt.title(\"Accuracy\")\n", + "plt.xlabel(\"Epochs\")\n", + "\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Initialization\n", + "\n", + "https://keras.io/initializers/" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dflist = []\n", + "\n", + "initializers = ['zeros', 'uniform', 'normal',\n", + " 'he_normal', 'lecun_uniform']\n", + "\n", + "for init in initializers:\n", + "\n", + " K.clear_session()\n", + "\n", + " model = Sequential()\n", + " model.add(Dense(1, input_shape=(4,),\n", + " kernel_initializer=init,\n", + " activation='sigmoid'))\n", + "\n", + " model.compile(loss='binary_crossentropy',\n", + " optimizer='rmsprop',\n", + " metrics=['accuracy'])\n", + "\n", + " h = model.fit(X_train, y_train, batch_size=16, epochs=5, verbose=0)\n", + " \n", + " dflist.append(pd.DataFrame(h.history, index=h.epoch))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "historydf = pd.concat(dflist, axis=1)\n", + "metrics_reported = dflist[0].columns\n", + "idx = pd.MultiIndex.from_product([initializers, metrics_reported],\n", + " names=['initializers', 'metric'])\n", + "\n", + "historydf.columns = idx" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(12,8))\n", + "\n", + "ax = plt.subplot(211)\n", + "historydf.xs('loss', axis=1, level='metric').plot(ylim=(0,1), ax=ax)\n", + "plt.title(\"Loss\")\n", + "\n", + "ax = plt.subplot(212)\n", + "historydf.xs('accuracy', axis=1, level='metric').plot(ylim=(0,1), ax=ax)\n", + "plt.title(\"Accuracy\")\n", + "plt.xlabel(\"Epochs\")\n", + "\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Inner layer representation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "\n", + "model = Sequential()\n", + "model.add(Dense(2, input_shape=(4,), activation='relu'))\n", + "model.add(Dense(1, activation='sigmoid'))\n", + "model.compile(loss='binary_crossentropy',\n", + " optimizer=RMSprop(learning_rate=0.01),\n", + " metrics=['accuracy'])\n", + "\n", + "h = model.fit(X_train, y_train, batch_size=16, epochs=20,\n", + " verbose=1, validation_split=0.3)\n", + "result = model.evaluate(X_test, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "result" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.layers" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "inp = model.layers[0].input\n", + "out = model.layers[0].output" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "inp" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "out" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "features_function = K.function([inp], [out])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "features_function" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "features_function([X_test])[0].shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "features = features_function([X_test])[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.scatter(features[:, 0], features[:, 1], c=y_test, cmap='coolwarm')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "\n", + "model = Sequential()\n", + "model.add(Dense(3, input_shape=(4,), activation='relu'))\n", + "model.add(Dense(2, activation='relu'))\n", + "model.add(Dense(1, activation='sigmoid'))\n", + "model.compile(loss='binary_crossentropy',\n", + " optimizer=RMSprop(learning_rate=0.01),\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "inp = model.layers[0].input\n", + "out = model.layers[1].output\n", + "features_function = K.function([inp], [out])\n", + "\n", + "plt.figure(figsize=(15,10))\n", + "\n", + "for i in range(1, 26):\n", + " plt.subplot(5, 5, i)\n", + " h = model.fit(X_train, y_train, batch_size=16, epochs=1, verbose=0)\n", + " test_accuracy = model.evaluate(X_test, y_test, verbose=0)[1]\n", + " features = features_function([X_test])[0]\n", + " plt.scatter(features[:, 0], features[:, 1], c=y_test, cmap='coolwarm')\n", + " plt.xlim(-0.5, 3.5)\n", + " plt.ylim(-0.5, 4.0)\n", + " plt.title('Epoch: {}, Test Acc: {:3.1f} %'.format(i, test_accuracy * 100.0))\n", + "\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 1\n", + "\n", + "You've just been hired at a wine company and they would like you to help them build a model that predicts the quality of their wine based on several measurements. They give you a dataset with wine\n", + "\n", + "- Load the ../data/wines.csv into Pandas\n", + "- Use the column called \"Class\" as target\n", + "- Check how many classes are there in target, and if necessary use dummy columns for a multi-class classification\n", + "- Use all the other columns as features, check their range and distribution (using seaborn pairplot)\n", + "- Rescale all the features using either MinMaxScaler or StandardScaler\n", + "- Build a deep model with at least 1 hidden layer to classify the data\n", + "- Choose the cost function, what will you use? Mean Squared Error? Binary Cross-Entropy? Categorical Cross-Entropy?\n", + "- Choose an optimizer\n", + "- Choose a value for the learning rate, you may want to try with several values\n", + "- Choose a batch size\n", + "- Train your model on all the data using a `validation_split=0.2`. Can you converge to 100% validation accuracy?\n", + "- What's the minumum number of epochs to converge?\n", + "- Repeat the training several times to verify how stable your results are" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 2\n", + "\n", + "Since this dataset has 13 features we can only visualize pairs of features like we did in the Paired plot. We could however exploit the fact that a neural network is a function to extract 2 high level features to represent our data.\n", + "\n", + "- Build a deep fully connected network with the following structure:\n", + " - Layer 1: 8 nodes\n", + " - Layer 2: 5 nodes\n", + " - Layer 3: 2 nodes\n", + " - Output : 3 nodes\n", + "- Choose activation functions, inizializations, optimizer and learning rate so that it converges to 100% accuracy within 20 epochs (not easy)\n", + "- Remember to train the model on the scaled data\n", + "- Define a Feature Funtion like we did above between the input of the 1st layer and the output of the 3rd layer\n", + "- Calculate the features and plot them on a 2-dimensional scatter plot\n", + "- Can we distinguish the 3 classes well?\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 3\n", + "\n", + "Keras functional API. So far we've always used the Sequential model API in Keras. However, Keras also offers a Functional API, which is much more powerful. You can find its [documentation here](https://keras.io/getting-started/functional-api-guide/). Let's see how we can leverage it.\n", + "\n", + "- define an input layer called `inputs`\n", + "- define two hidden layers as before, one with 8 nodes, one with 5 nodes\n", + "- define a `second_to_last` layer with 2 nodes\n", + "- define an output layer with 3 nodes\n", + "- create a model that connect input and output\n", + "- train it and make sure that it converges\n", + "- define a function between inputs and second_to_last layer\n", + "- recalculate the features and plot them" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 4 \n", + "\n", + "Keras offers the possibility to call a function at each epoch. These are Callbacks, and their [documentation is here](https://keras.io/callbacks/). Callbacks allow us to add some neat functionality. In this exercise we'll explore a few of them.\n", + "\n", + "- Split the data into train and test sets with a test_size = 0.3 and random_state=42\n", + "- Reset and recompile your model\n", + "- train the model on the train data using `validation_data=(X_test, y_test)`\n", + "- Use the `EarlyStopping` callback to stop your training if the `val_loss` doesn't improve\n", + "- Use the `ModelCheckpoint` callback to save the trained model to disk once training is finished\n", + "- Use the `TensorBoard` callback to output your training information to a `/tmp/` subdirectory\n", + "- Watch the next video for an overview of tensorboard" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/course/6 Convolutional Neural Networks.ipynb b/course/6 Convolutional Neural Networks.ipynb new file mode 100644 index 0000000..cdc79a4 --- /dev/null +++ b/course/6 Convolutional Neural Networks.ipynb @@ -0,0 +1,988 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Convolutional Neural Networks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Machine learning on images" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### MNIST" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.datasets import mnist" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "(X_train, y_train), (X_test, y_test) = mnist.load_data('/tmp/mnist.npz')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_test.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.imshow(X_train[0], cmap='gray')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train = X_train.reshape(-1, 28*28)\n", + "X_test = X_test.reshape(-1, 28*28)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train = X_train.astype('float32')\n", + "X_test = X_test.astype('float32')\n", + "X_train /= 255.0\n", + "X_test /= 255.0" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.utils import to_categorical" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train_cat = to_categorical(y_train)\n", + "y_test_cat = to_categorical(y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train_cat[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train_cat.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_test_cat.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Fully connected on images" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "import tensorflow.keras.backend as K\n", + "\n", + "# K.clear_session()\n", + "\n", + "model = Sequential()\n", + "model.add(Dense(512, input_dim=28*28, activation='relu'))\n", + "model.add(Dense(256, activation='relu'))\n", + "model.add(Dense(128, activation='relu'))\n", + "model.add(Dense(32, activation='relu'))\n", + "model.add(Dense(10, activation='softmax'))\n", + "model.compile(loss='categorical_crossentropy',\n", + " optimizer='rmsprop',\n", + " metrics=['accuracy'])\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "h = model.fit(X_train, y_train_cat, batch_size=128, epochs=10, verbose=1, validation_split=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.plot(h.history['accuracy'])\n", + "plt.plot(h.history['val_accuracy'])\n", + "plt.legend(['Training', 'Validation'])\n", + "plt.title('Accuracy')\n", + "plt.xlabel('Epochs');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "test_accuracy = model.evaluate(X_test, y_test_cat)[1]\n", + "test_accuracy" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Tensor Math" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A = np.random.randint(10, size=(2, 3, 4, 5))\n", + "B = np.random.randint(10, size=(2, 3))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A[0, 1, 0, 3]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "B" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### A random colored image" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "img = np.random.randint(255, size=(4, 4, 3), dtype='uint8')\n", + "img" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(5, 5))\n", + "plt.subplot(221)\n", + "plt.imshow(img)\n", + "plt.title(\"All Channels combined\")\n", + "\n", + "plt.subplot(222)\n", + "plt.imshow(img[:, : , 0], cmap='Reds')\n", + "plt.title(\"Red channel\")\n", + "\n", + "plt.subplot(223)\n", + "plt.imshow(img[:, : , 1], cmap='Greens')\n", + "plt.title(\"Green channel\")\n", + "\n", + "plt.subplot(224)\n", + "plt.imshow(img[:, : , 2], cmap='Blues')\n", + "plt.title(\"Blue channel\");" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Tensor operations" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "2 * A" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A + A" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "B.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "np.tensordot(A, B, axes=([0, 1], [0, 1]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "np.tensordot(A, B, axes=([0], [0])).shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1D convolution" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "a = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0], dtype='float32')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "b = np.array([-1, 1], dtype='float32')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "c = np.convolve(a, b)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "a" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "b" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "c" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.subplot(211)\n", + "plt.plot(a, 'o-')\n", + "\n", + "plt.subplot(212)\n", + "plt.plot(c, 'o-');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Image filters with convolutions" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from scipy.ndimage.filters import convolve\n", + "from scipy.signal import convolve2d\n", + "from scipy import misc" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "img = misc.ascent()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "img.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.imshow(img, cmap='gray');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "h_kernel = np.array([[ 1, 2, 1],\n", + " [ 0, 0, 0],\n", + " [-1, -2, -1]])\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "plt.imshow(h_kernel, cmap='gray');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "res = convolve2d(img, h_kernel)\n", + "\n", + "plt.imshow(res, cmap='gray');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Convolutional neural networks" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.layers import Conv2D" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "img.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(5, 5))\n", + "plt.imshow(img, cmap='gray');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "img_tensor = img.reshape((1, 512, 512, 1))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Conv2D(1, (3, 3), strides=(2,1), input_shape=(512, 512, 1)))\n", + "model.compile('adam', 'mse')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "img_pred_tensor = model.predict(img_tensor)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "img_pred_tensor.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "img_pred = img_pred_tensor[0, :, :, 0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.imshow(img_pred, cmap='gray');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "weights = model.get_weights()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "weights[0].shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.imshow(weights[0][:, :, 0, 0], cmap='gray');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "weights[0] = np.ones(weights[0].shape)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.set_weights(weights)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "img_pred_tensor = model.predict(img_tensor)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "img_pred = img_pred_tensor[0, :, :, 0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.imshow(img_pred, cmap='gray');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Conv2D(1, (3, 3), input_shape=(512, 512, 1), padding='same'))\n", + "model.compile('adam', 'mse')\n", + "\n", + "img_pred_tensor = model.predict(img_tensor)\n", + "\n", + "\n", + "img_pred_tensor.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pooling layers" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.layers import MaxPool2D, AvgPool2D" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(MaxPool2D((5, 5), input_shape=(512, 512, 1)))\n", + "model.compile('adam', 'mse')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "img_pred = model.predict(img_tensor)[0, :, :, 0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.imshow(img_pred, cmap='gray')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(AvgPool2D((5, 5), input_shape=(512, 512, 1)))\n", + "model.compile('adam', 'mse')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "img_pred = model.predict(img_tensor)[0, :, :, 0]\n", + "plt.imshow(img_pred, cmap='gray');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Final architecture" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train = X_train.reshape(-1, 28, 28, 1)\n", + "X_test = X_test.reshape(-1, 28, 28, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.layers import Flatten, Activation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "\n", + "model = Sequential()\n", + "\n", + "model.add(Conv2D(32, (3, 3), input_shape=(28, 28, 1)))\n", + "model.add(MaxPool2D(pool_size=(2, 2)))\n", + "model.add(Activation('relu'))\n", + "\n", + "model.add(Flatten())\n", + "\n", + "model.add(Dense(128, activation='relu'))\n", + "\n", + "model.add(Dense(10, activation='softmax'))\n", + "\n", + "model.compile(loss='categorical_crossentropy',\n", + " optimizer='rmsprop',\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train_cat, batch_size=128,\n", + " epochs=2, verbose=1, validation_split=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.evaluate(X_test, y_test_cat)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "### Exercise 1\n", + "You've been hired by a shipping company to overhaul the way they route mail, parcels and packages. They want to build an image recognition system capable of recognizing the digits in the zipcode on a package, so that it can be automatically routed to the correct location.\n", + "You are tasked to build the digit recognition system. Luckily, you can rely on the MNIST dataset for the intial training of your model!\n", + "\n", + "Build a deep convolutional neural network with at least two convolutional and two pooling layers before the fully connected layer.\n", + "\n", + "- Start from the network we have just built\n", + "- Insert a `Conv2D` layer after the first `MaxPool2D`, give it 64 filters.\n", + "- Insert a `MaxPool2D` after that one\n", + "- Insert an `Activation` layer\n", + "- retrain the model\n", + "- does performance improve?\n", + "- how many parameters does this new model have? More or less than the previous model? Why?\n", + "- how long did this second model take to train? Longer or shorter than the previous model? Why?\n", + "- did it perform better or worse than the previous model?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 2\n", + "\n", + "Pleased with your performance with the digits recognition task, your boss decides to challenge you with a harder task. Their online branch allows people to upload images to a website that generates and prints a postcard that is shipped to destination. Your boss would like to know what images people are loading on the site in order to provide targeted advertising on the same page, so he asks you to build an image recognition system capable of recognizing a few objects. Luckily for you, there's a dataset ready made with a collection of labeled images. This is the [Cifar 10 Dataset](http://www.cs.toronto.edu/~kriz/cifar.html), a very famous dataset that contains images for 10 different categories:\n", + "\n", + "- airplane \t\t\t\t\t\t\t\t\t\t\n", + "- automobile \t\t\t\t\t\t\t\t\t\t\n", + "- bird \t\t\t\t\t\t\t\t\t\t\n", + "- cat \t\t\t\t\t\t\t\t\t\t\n", + "- deer \t\t\t\t\t\t\t\t\t\t\n", + "- dog \t\t\t\t\t\t\t\t\t\t\n", + "- frog \t\t\t\t\t\t\t\t\t\t\n", + "- horse \t\t\t\t\t\t\t\t\t\t\n", + "- ship \t\t\t\t\t\t\t\t\t\t\n", + "- truck\n", + "\n", + "In this exercise we will reach the limit of what you can achieve on your laptop and get ready for the next session on cloud GPUs.\n", + "\n", + "Here's what you have to do:\n", + "- load the cifar10 dataset using `keras.datasets.cifar10.load_data()`\n", + "- display a few images, see how hard/easy it is for you to recognize an object with such low resolution\n", + "- check the shape of X_train, does it need reshape?\n", + "- check the scale of X_train, does it need rescaling?\n", + "- check the shape of y_train, does it need reshape?\n", + "- build a model with the following architecture, and choose the parameters and activation functions for each of the layers:\n", + " - conv2d\n", + " - conv2d\n", + " - maxpool\n", + " - conv2d\n", + " - conv2d\n", + " - maxpool\n", + " - flatten\n", + " - dense\n", + " - output\n", + "- compile the model and check the number of parameters\n", + "- attempt to train the model with the optimizer of your choice. How fast does training proceed?\n", + "- If training is too slow (as expected) stop the execution and move to the next session!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.datasets import cifar10" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/course/8 Recurrent Neural Networks.ipynb b/course/8 Recurrent Neural Networks.ipynb new file mode 100644 index 0000000..71232f9 --- /dev/null +++ b/course/8 Recurrent Neural Networks.ipynb @@ -0,0 +1,565 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Recurrent Neural Networks" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Time series forecasting" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../data/cansim-0800020-eng-6674700030567901031.csv',\n", + " skiprows=6, skipfooter=9,\n", + " engine='python')\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from pandas.tseries.offsets import MonthEnd" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['Adjustments'] = pd.to_datetime(df['Adjustments']) + MonthEnd(1)\n", + "df = df.set_index('Adjustments')\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "split_date = pd.Timestamp('01-01-2011')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train = df.loc[:split_date, ['Unadjusted']]\n", + "test = df.loc[split_date:, ['Unadjusted']]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ax = train.plot()\n", + "test.plot(ax=ax)\n", + "plt.legend(['train', 'test'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "sc = MinMaxScaler()\n", + "\n", + "train_sc = sc.fit_transform(train)\n", + "test_sc = sc.transform(test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_sc[:4]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train = train_sc[:-1]\n", + "y_train = train_sc[1:]\n", + "\n", + "X_test = test_sc[:-1]\n", + "y_test = test_sc[1:]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Fully connected predictor" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "import tensorflow.keras.backend as K\n", + "from tensorflow.keras.callbacks import EarlyStopping" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "\n", + "model = Sequential()\n", + "model.add(Dense(12, input_dim=1, activation='relu'))\n", + "model.add(Dense(1))\n", + "model.compile(loss='mean_squared_error', optimizer='adam')\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "early_stop = EarlyStopping(monitor='loss', patience=1, verbose=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train, epochs=200,\n", + " batch_size=2, verbose=1,\n", + " callbacks=[early_stop])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.plot(y_test)\n", + "plt.plot(y_pred)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Recurrent predictor" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.layers import LSTM" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#3D tensor with shape (batch_size, timesteps, input_dim)\n", + "X_train[:, None].shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train_t = X_train[:, None]\n", + "X_test_t = X_test[:, None]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "model = Sequential()\n", + "\n", + "model.add(LSTM(6, input_shape=(1, 1)))\n", + "\n", + "model.add(Dense(1))\n", + "\n", + "model.compile(loss='mean_squared_error', optimizer='adam')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train_t, y_train,\n", + " epochs=100, batch_size=1, verbose=1,\n", + " callbacks=[early_stop])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test_t)\n", + "plt.plot(y_test)\n", + "plt.plot(y_pred)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Windows" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_sc.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_sc_df = pd.DataFrame(train_sc, columns=['Scaled'], index=train.index)\n", + "test_sc_df = pd.DataFrame(test_sc, columns=['Scaled'], index=test.index)\n", + "train_sc_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for s in range(1, 13):\n", + " train_sc_df['shift_{}'.format(s)] = train_sc_df['Scaled'].shift(s)\n", + " test_sc_df['shift_{}'.format(s)] = test_sc_df['Scaled'].shift(s)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_sc_df.head(13)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train = train_sc_df.dropna().drop('Scaled', axis=1)\n", + "y_train = train_sc_df.dropna()[['Scaled']]\n", + "\n", + "X_test = test_sc_df.dropna().drop('Scaled', axis=1)\n", + "y_test = test_sc_df.dropna()[['Scaled']]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train = X_train.values\n", + "X_test= X_test.values\n", + "\n", + "y_train = y_train.values\n", + "y_test = y_test.values" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Fully Connected on Windows" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "\n", + "model = Sequential()\n", + "model.add(Dense(12, input_dim=12, activation='relu'))\n", + "model.add(Dense(1))\n", + "model.compile(loss='mean_squared_error', optimizer='adam')\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train, epochs=200,\n", + " batch_size=1, verbose=1, callbacks=[early_stop])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test)\n", + "plt.plot(y_test)\n", + "plt.plot(y_pred)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### LSTM on Windows" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train_t = X_train.reshape(X_train.shape[0], 1, 12)\n", + "X_test_t = X_test.reshape(X_test.shape[0], 1, 12)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train_t.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "model = Sequential()\n", + "\n", + "model.add(LSTM(6, input_shape=(1, 12)))\n", + "\n", + "model.add(Dense(1))\n", + "\n", + "model.compile(loss='mean_squared_error', optimizer='adam')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train_t, y_train, epochs=100,\n", + " batch_size=1, verbose=1, callbacks=[early_stop])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test_t)\n", + "plt.plot(y_test)\n", + "plt.plot(y_pred)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 1\n", + "\n", + "In the model above we reshaped the input shape to: `(num_samples, 1, 12)`, i.e. we treated a window of 12 months as a vector of 12 coordinates that we simultaneously passed to all the LSTM nodes. An alternative way to look at the problem is to reshape the input to `(num_samples, 12, 1)`. This means we consider each input window as a sequence of 12 values that we will pass in sequence to the LSTM. In principle this looks like a more accurate description of our situation. But does it yield better predictions? Let's check it.\n", + "\n", + "- Reshape `X_train` and `X_test` so that they represent a set of univariate sequences\n", + "- retrain the same LSTM(6) model, you'll have to adapt the `input_shape`\n", + "- check the performance of this new model, is it better at predicting the test data?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exercise 2\n", + "\n", + "RNN models can be applied to images too. In general we can apply them to any data where there's a connnection between nearby units. Let's see how we can easily build a model that works with images.\n", + "\n", + "- Load the MNIST data, by now you should be able to do it blindfolded :)\n", + "- reshape it so that an image looks like a long sequence of pixels\n", + "- create a recurrent model and train it on the training data\n", + "- how does it perform compared to a fully connected? How does it compare to Convolutional Neural Networks?\n", + "\n", + "(feel free to run this exercise on a cloud GPU if it's too slow on your laptop)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/course/9 Improving performance.ipynb b/course/9 Improving performance.ipynb new file mode 100644 index 0000000..9a7559f --- /dev/null +++ b/course/9 Improving performance.ipynb @@ -0,0 +1,872 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 9 Improving performance" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Learning curves" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.datasets import load_digits" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "digits = load_digits()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X, y = digits.data, digits.target" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for i in range(8):\n", + " plt.subplot(1,8,i+1)\n", + " plt.imshow(X.reshape(-1, 8, 8)[i], cmap='gray')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.utils import to_categorical\n", + "import tensorflow.keras.backend as K\n", + "from tensorflow.keras.callbacks import EarlyStopping" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Dense(16, input_shape=(64,), activation='relu'))\n", + "model.add(Dense(10, activation='softmax'))\n", + "model.compile('adam', 'categorical_crossentropy', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# store the initial random weights\n", + "initial_weights = model.get_weights()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_cat = to_categorical(y, 10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y_cat,\n", + " test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_sizes = (len(X_train) * np.linspace(0.1, 0.999, 4)).astype(int)\n", + "train_sizes" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_scores = []\n", + "test_scores = []\n", + "\n", + "for train_size in train_sizes:\n", + " X_train_frac, _, y_train_frac, _ = \\\n", + " train_test_split(X_train, y_train, train_size=train_size)\n", + " \n", + " # at each iteration reset the weights of the model\n", + " # to the initial random weights\n", + " model.set_weights(initial_weights)\n", + " \n", + " h = model.fit(X_train_frac, y_train_frac,\n", + " verbose=0,\n", + " epochs=300,\n", + " callbacks=[EarlyStopping(monitor='loss', patience=1)])\n", + "\n", + " r = model.evaluate(X_train_frac, y_train_frac, verbose=0)\n", + " train_scores.append(r[-1])\n", + " \n", + " e = model.evaluate(X_test, y_test, verbose=0)\n", + " test_scores.append(e[-1])\n", + " \n", + " print(\"Done size: \", train_size)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.plot(train_sizes, train_scores, 'o-', label=\"Training score\")\n", + "plt.plot(train_sizes, test_scores, 'o-', label=\"Test score\")\n", + "plt.legend(loc=\"best\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Batch Normalization" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.layers import BatchNormalization" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def repeated_training(X_train,\n", + " y_train,\n", + " X_test,\n", + " y_test,\n", + " units=512,\n", + " activation='sigmoid',\n", + " optimizer='sgd',\n", + " do_bn=False,\n", + " epochs=10,\n", + " repeats=3):\n", + " histories = []\n", + " \n", + " for repeat in range(repeats):\n", + " K.clear_session()\n", + "\n", + " model = Sequential()\n", + " \n", + " # first fully connected layer\n", + " model.add(Dense(units,\n", + " input_shape=X_train.shape[1:],\n", + " kernel_initializer='normal',\n", + " activation=activation))\n", + " if do_bn:\n", + " model.add(BatchNormalization())\n", + "\n", + " # second fully connected layer\n", + " model.add(Dense(units,\n", + " kernel_initializer='normal',\n", + " activation=activation))\n", + " if do_bn:\n", + " model.add(BatchNormalization())\n", + "\n", + " # third fully connected layer\n", + " model.add(Dense(units,\n", + " kernel_initializer='normal',\n", + " activation=activation))\n", + " if do_bn:\n", + " model.add(BatchNormalization())\n", + "\n", + " # output layer\n", + " model.add(Dense(10, activation='softmax'))\n", + " \n", + " model.compile(optimizer,\n", + " 'categorical_crossentropy',\n", + " metrics=['accuracy'])\n", + "\n", + " h = model.fit(X_train, y_train,\n", + " validation_data=(X_test, y_test),\n", + " epochs=epochs,\n", + " verbose=0)\n", + " histories.append([h.history['accuracy'], h.history['val_accuracy']])\n", + " print(repeat, end=' ')\n", + "\n", + " histories = np.array(histories)\n", + " \n", + " # calculate mean and standard deviation across repeats:\n", + " mean_acc = histories.mean(axis=0)\n", + " std_acc = histories.std(axis=0)\n", + " print()\n", + " \n", + " return mean_acc[0], std_acc[0], mean_acc[1], std_acc[1]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mean_acc, std_acc, mean_acc_val, std_acc_val = \\\n", + " repeated_training(X_train, y_train, X_test, y_test, do_bn=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mean_acc_bn, std_acc_bn, mean_acc_val_bn, std_acc_val_bn = \\\n", + " repeated_training(X_train, y_train, X_test, y_test, do_bn=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_mean_std(m, s):\n", + " plt.plot(m)\n", + " plt.fill_between(range(len(m)), m-s, m+s, alpha=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plot_mean_std(mean_acc, std_acc)\n", + "plot_mean_std(mean_acc_val, std_acc_val)\n", + "plot_mean_std(mean_acc_bn, std_acc_bn)\n", + "plot_mean_std(mean_acc_val_bn, std_acc_val_bn)\n", + "plt.ylim(0, 1.01)\n", + "plt.title(\"Batch Normalization Accuracy\")\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Accuracy')\n", + "plt.legend(['Train', 'Test', 'Train with Batch Normalization', 'Test with Batch Normalization'], loc='best');\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Weight Regularization & Dropout" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.layers import Dropout" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Dropout(0.2, input_shape=X_train.shape[1:]))\n", + "# first fully connected layer\n", + "model.add(Dense(512, kernel_initializer='normal',\n", + " kernel_regularizer='l2', activation='sigmoid'))\n", + "model.add(Dropout(0.4))\n", + "model.add(Dense(10, activation='softmax'))\n", + "\n", + "model.compile('sgd',\n", + " 'categorical_crossentropy',\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data augmentation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n", + "\n", + "generator = ImageDataGenerator(rescale = 1./255,\n", + " width_shift_range=0.1,\n", + " height_shift_range=0.1,\n", + " rotation_range = 20,\n", + " shear_range = 0.3,\n", + " zoom_range = 0.3,\n", + " horizontal_flip = True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train = generator.flow_from_directory('../data/generator',\n", + " target_size = (128, 128),\n", + " batch_size = 32,\n", + " class_mode = 'binary')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(12, 12))\n", + "for i in range(16):\n", + " img, label = train.next()\n", + " plt.subplot(4, 4, i+1)\n", + " plt.imshow(img[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Embeddings" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.layers import Embedding" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Embedding(input_dim=100, output_dim=2))\n", + "model.compile(loss='binary_crossentropy',\n", + " optimizer='adam',\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "emb = model.predict(np.array([[81, 1, 96, 79],\n", + " [17, 47, 69, 50],\n", + " [49, 3, 12, 88]]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "emb.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "emb" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Sentiment prediction on movie Reviews" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.datasets import imdb" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "(X_train, y_train), (X_test, y_test) = imdb.load_data('/tmp/imdb.npz',\n", + " num_words=None,\n", + " skip_top=0,\n", + " maxlen=None,\n", + " start_char=1,\n", + " oov_char=2,\n", + " index_from=3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train[1]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "idx = imdb.get_word_index()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "max(idx.values())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "idx" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "rev_idx = {v+3:k for k,v in idx.items()}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "rev_idx" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "rev_idx[0] = 'padding_char'\n", + "rev_idx[1] = 'start_char'\n", + "rev_idx[2] = 'oov_char'\n", + "rev_idx[3] = 'unk_char'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "rev_idx[3]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "example_review = ' '.join([rev_idx[word] for word in X_train[0]])\n", + "example_review" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "len(X_train[0])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "len(X_train[1])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "len(X_train[2])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "len(X_train[3])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.preprocessing.sequence import pad_sequences\n", + "from tensorflow.keras.layers import LSTM" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "maxlen = 100\n", + "\n", + "X_train_pad = pad_sequences(X_train, maxlen=maxlen)\n", + "X_test_pad = pad_sequences(X_test, maxlen=maxlen)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train_pad.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train_pad[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "max_features = max([max(x) for x in X_train_pad] + \n", + " [max(x) for x in X_test_pad]) + 1\n", + "max_features" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Embedding(max_features, 128))\n", + "model.add(LSTM(64, dropout=0.2, recurrent_dropout=0.2))\n", + "model.add(Dense(1, activation='sigmoid'))\n", + "\n", + "model.compile(loss='binary_crossentropy',\n", + " optimizer='adam',\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train_pad, y_train,\n", + " batch_size=32,\n", + " epochs=2,\n", + " validation_split=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "score, acc = model.evaluate(X_test_pad, y_test)\n", + "print('Test score:', score)\n", + "print('Test accuracy:', acc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 1\n", + "\n", + "- Reload the IMDB data keeping only the first 20000 most common words\n", + "- pad the reviews to a shorter length (eg. 70 or 80), this time make sure you keep the first part of the review if it's longer than the maximum length\n", + "- re run the model (remember to set max_features correctly)\n", + "- does it train faster this time?\n", + "- do you get a better performance?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 2\n", + "\n", + "- Reload the digits data as above\n", + "- define a function repeated_training_reg_dropout that adds regularization and dropout to a fully connected network\n", + "- compare the performance with/witouth dropout and regularization like we did for batch normalization\n", + "- do you get a better performance?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 3\n", + "\n", + "This is a very long and complex exercise, that should give you an idea of a real world scenario. Feel free to look at the solution if you feel lost. Also, feel free to run this on Floyd with a GPU, in which case you don't need to download the data.\n", + "\n", + "If you are running this locally, download and unpack the male/female pictures from [here](https://www.dropbox.com/s/nov493om2jmh2gp/male_female.tgz?dl=0). These images and labels were obtained from [Crowdflower](https://www.crowdflower.com/data-for-everyone/).\n", + "\n", + "Your goal is to build an image classifier that will recognize the gender of a person from pictures.\n", + "\n", + "- Have a look at the directory structure and inspect a couple of pictures\n", + "- Design a model that will take a color image of size 64x64 as input and return a binary output (female=0/male=1)\n", + "- Feel free to introduce any regularization technique in your model (Dropout, Batch Normalization, Weight Regularization)\n", + "- Compile your model with an optimizer of your choice\n", + "- Using `ImageDataGenerator`, define a train generator that will augment your images with some geometric transformations. Feel free to choose the parameters that make sense to you.\n", + "- Define also a test generator, whose only purpose is to rescale the pixels by 1./255\n", + "- use the function `flow_from_directory` to generate batches from the train and test folders. Make sure you set the `target_size` to 64x64.\n", + "- Use the `model.fit_generator` function to fit the model on the batches generated from the ImageDataGenerator. Since you are streaming and augmenting the data in real time you will have to decide how many batches make an epoch and how many epochs you want to run\n", + "- Train your model (you should get to at least 85% accuracy)\n", + "- Once you are satisfied with your training, check a few of the misclassified pictures. Are those sensible errors?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/data/HR_comma_sep.csv b/data/HR_comma_sep.csv new file mode 100644 index 0000000..be6211c --- /dev/null +++ b/data/HR_comma_sep.csv @@ -0,0 +1,15000 @@ +satisfaction_level,last_evaluation,number_project,average_montly_hours,time_spend_company,Work_accident,left,promotion_last_5years,sales,salary +0.38,0.53,2,157,3,0,1,0,sales,low +0.8,0.86,5,262,6,0,1,0,sales,medium +0.11,0.88,7,272,4,0,1,0,sales,medium +0.72,0.87,5,223,5,0,1,0,sales,low +0.37,0.52,2,159,3,0,1,0,sales,low +0.41,0.5,2,153,3,0,1,0,sales,low +0.1,0.77,6,247,4,0,1,0,sales,low +0.92,0.85,5,259,5,0,1,0,sales,low +0.89,1,5,224,5,0,1,0,sales,low +0.42,0.53,2,142,3,0,1,0,sales,low +0.45,0.54,2,135,3,0,1,0,sales,low +0.11,0.81,6,305,4,0,1,0,sales,low +0.84,0.92,4,234,5,0,1,0,sales,low +0.41,0.55,2,148,3,0,1,0,sales,low +0.36,0.56,2,137,3,0,1,0,sales,low +0.38,0.54,2,143,3,0,1,0,sales,low +0.45,0.47,2,160,3,0,1,0,sales,low +0.78,0.99,4,255,6,0,1,0,sales,low +0.45,0.51,2,160,3,1,1,1,sales,low +0.76,0.89,5,262,5,0,1,0,sales,low +0.11,0.83,6,282,4,0,1,0,sales,low +0.38,0.55,2,147,3,0,1,0,sales,low +0.09,0.95,6,304,4,0,1,0,sales,low +0.46,0.57,2,139,3,0,1,0,sales,low +0.4,0.53,2,158,3,0,1,0,sales,low +0.89,0.92,5,242,5,0,1,0,sales,low +0.82,0.87,4,239,5,0,1,0,sales,low +0.4,0.49,2,135,3,0,1,0,sales,low +0.41,0.46,2,128,3,0,1,0,accounting,low +0.38,0.5,2,132,3,0,1,0,accounting,low +0.09,0.62,6,294,4,0,1,0,accounting,low +0.45,0.57,2,134,3,0,1,0,hr,low +0.4,0.51,2,145,3,0,1,0,hr,low +0.45,0.55,2,140,3,0,1,0,hr,low +0.84,0.87,4,246,6,0,1,0,hr,low +0.1,0.94,6,255,4,0,1,0,technical,low +0.38,0.46,2,137,3,0,1,0,technical,low +0.45,0.5,2,126,3,0,1,0,technical,low +0.11,0.89,6,306,4,0,1,0,technical,low +0.41,0.54,2,152,3,0,1,0,technical,low +0.87,0.88,5,269,5,0,1,0,technical,low +0.45,0.48,2,158,3,0,1,0,technical,low +0.4,0.46,2,127,3,0,1,0,technical,low +0.1,0.8,7,281,4,0,1,0,technical,low +0.09,0.89,6,276,4,0,1,0,technical,low +0.84,0.74,3,182,4,0,1,0,technical,low +0.4,0.55,2,147,3,0,1,0,support,low +0.57,0.7,3,273,6,0,1,0,support,low +0.4,0.54,2,148,3,0,1,0,support,low +0.43,0.47,2,147,3,0,1,0,support,low +0.13,0.78,6,152,2,0,1,0,support,low +0.44,0.55,2,135,3,0,1,0,support,low +0.38,0.55,2,134,3,0,1,0,support,low +0.39,0.54,2,132,3,0,1,0,support,low +0.1,0.92,7,307,4,0,1,0,support,low +0.37,0.46,2,140,3,0,1,0,support,low +0.11,0.94,7,255,4,0,1,0,support,low +0.1,0.81,6,309,4,0,1,0,technical,low +0.38,0.54,2,128,3,0,1,0,technical,low +0.85,1,4,225,5,0,1,0,technical,low +0.85,0.91,5,226,5,0,1,0,management,medium +0.11,0.93,7,308,4,0,1,0,IT,medium +0.1,0.95,6,244,5,0,1,0,IT,medium +0.36,0.56,2,132,3,0,1,0,IT,medium +0.11,0.94,6,286,4,0,1,0,IT,medium +0.81,0.7,6,161,4,0,1,0,IT,medium +0.43,0.54,2,153,3,0,1,0,product_mng,medium +0.9,0.98,4,264,6,0,1,0,product_mng,medium +0.76,0.86,5,223,5,1,1,0,product_mng,medium +0.43,0.5,2,135,3,0,1,0,product_mng,medium +0.74,0.99,2,277,3,0,1,0,IT,medium +0.09,0.77,5,275,4,0,1,0,product_mng,medium +0.45,0.49,2,149,3,0,1,0,product_mng,high +0.09,0.87,7,295,4,0,1,0,product_mng,low +0.11,0.97,6,277,4,0,1,0,product_mng,medium +0.11,0.79,7,306,4,0,1,0,product_mng,medium +0.1,0.83,6,295,4,0,1,0,product_mng,medium +0.4,0.54,2,137,3,0,1,0,marketing,medium +0.43,0.56,2,157,3,0,1,0,sales,low +0.39,0.56,2,142,3,0,1,0,accounting,low +0.45,0.54,2,140,3,0,1,0,support,low +0.38,0.49,2,151,3,0,1,0,technical,low +0.79,0.59,4,139,3,0,1,1,management,low +0.84,0.85,4,249,6,0,1,0,marketing,low +0.11,0.77,6,291,4,0,1,0,marketing,low +0.11,0.87,6,305,4,0,1,0,marketing,low +0.17,0.84,5,232,3,0,1,0,sales,low +0.44,0.45,2,132,3,0,1,0,sales,low +0.37,0.57,2,130,3,0,1,0,sales,low +0.1,0.79,6,291,4,0,1,0,sales,low +0.4,0.5,2,130,3,0,1,0,sales,low +0.89,1,5,246,5,0,1,0,sales,low +0.42,0.48,2,143,3,0,1,0,sales,low +0.46,0.55,2,129,3,0,1,0,sales,low +0.09,0.83,6,255,4,0,1,0,sales,low +0.37,0.51,2,155,3,0,1,0,sales,low +0.1,0.77,6,265,4,0,1,0,sales,low +0.1,0.84,6,279,4,0,1,0,sales,low +0.11,0.97,6,284,4,0,1,0,sales,low +0.9,1,5,221,6,0,1,0,sales,medium +0.38,0.52,2,154,3,0,1,0,sales,medium +0.36,0.52,2,147,3,0,1,0,sales,medium +0.42,0.46,2,150,3,0,1,0,sales,medium +0.09,0.94,7,267,4,0,1,0,sales,medium +0.43,0.52,2,158,3,0,1,0,sales,medium +0.24,0.46,7,224,5,0,1,0,accounting,medium +0.91,1,4,257,5,0,1,0,accounting,medium +0.44,0.5,2,148,3,0,1,0,accounting,medium +0.71,0.87,3,177,4,0,1,0,hr,medium +0.4,0.49,2,155,3,0,1,0,hr,medium +0.43,0.47,2,144,3,0,1,0,hr,medium +0.09,0.85,6,289,4,0,1,0,hr,high +0.43,0.52,2,160,3,0,1,0,technical,low +0.9,0.96,4,258,5,0,1,0,technical,medium +0.84,1,5,234,5,0,1,0,technical,medium +0.37,0.48,2,137,3,0,1,0,technical,medium +0.86,0.68,5,263,2,0,1,0,technical,medium +0.11,0.84,6,251,4,0,1,0,technical,low +0.37,0.57,2,133,3,0,1,0,technical,low +0.4,0.46,2,132,3,0,1,0,technical,low +0.14,0.62,4,158,4,1,1,0,technical,low +0.4,0.46,2,135,3,0,1,0,technical,low +0.75,1,4,216,6,0,1,0,technical,low +0.11,0.84,6,300,5,1,1,0,support,low +0.46,0.49,2,138,3,0,1,0,support,low +0.11,0.92,6,260,4,0,1,0,support,low +0.38,0.49,2,132,3,0,1,0,support,low +0.7,0.89,3,183,5,0,1,0,support,low +0.09,0.82,6,250,4,0,1,0,support,low +0.37,0.45,2,151,3,0,1,0,support,low +0.1,0.83,6,292,4,0,1,0,support,low +0.38,0.57,2,140,3,0,1,0,support,low +0.9,1,5,221,5,0,1,0,support,low +0.44,0.51,2,138,3,0,1,0,support,low +0.36,0.5,2,132,3,0,1,0,technical,low +0.31,0.84,7,133,5,0,1,0,technical,low +0.1,0.84,6,283,4,1,1,0,technical,low +0.42,0.48,2,129,3,0,1,0,management,low +0.74,1,4,249,5,0,1,0,IT,low +0.73,0.87,5,257,5,0,1,0,IT,low +0.09,0.96,6,245,4,0,1,0,IT,low +0.45,0.53,2,155,3,0,1,0,IT,low +0.11,0.8,6,256,4,0,1,0,IT,low +0.37,0.47,2,152,3,0,1,0,product_mng,low +0.84,0.99,4,267,5,0,1,0,product_mng,low +0.41,0.46,2,151,3,0,1,0,product_mng,low +0.76,0.92,4,239,5,0,1,0,product_mng,low +0.11,0.87,6,306,4,0,1,0,IT,low +0.84,0.88,4,263,5,1,1,0,marketing,low +0.39,0.5,2,147,3,0,1,0,marketing,low +0.11,0.91,6,278,4,0,1,0,marketing,low +0.45,0.56,2,154,3,0,1,0,marketing,low +0.37,0.52,2,143,3,0,1,0,marketing,low +0.4,0.52,2,155,3,0,1,0,marketing,low +0.39,0.48,2,160,3,0,1,0,sales,low +0.11,0.8,6,304,4,0,1,0,accounting,low +0.83,1,5,240,5,0,1,0,support,low +0.11,0.92,6,305,4,0,1,0,technical,low +0.39,0.5,2,136,3,0,1,0,management,low +0.45,0.45,2,132,3,0,1,0,marketing,low +0.1,0.95,7,301,4,0,1,0,marketing,low +0.9,0.98,5,243,6,0,1,0,marketing,low +0.45,0.51,2,147,3,0,1,0,sales,low +0.79,0.89,5,239,5,0,1,0,sales,low +0.9,0.99,5,260,5,0,1,0,sales,low +0.11,0.84,7,296,4,0,1,0,sales,low +0.43,0.55,2,129,3,0,1,0,sales,low +0.31,0.54,5,132,5,0,1,0,sales,low +0.32,0.5,2,135,5,0,1,0,sales,low +0.45,0.57,2,158,3,0,1,0,sales,low +0.81,0.99,4,259,5,0,1,0,sales,low +0.41,0.46,2,160,3,0,1,1,sales,low +0.11,0.78,7,278,4,0,1,0,sales,low +0.1,0.88,6,284,4,0,1,0,sales,low +0.7,0.53,2,274,4,0,1,0,sales,low +0.54,0.74,4,164,2,0,1,0,sales,low +0.41,0.48,2,148,3,0,1,0,sales,low +0.38,0.5,2,140,3,0,1,0,sales,medium +0.37,0.51,2,127,3,0,1,0,sales,medium +0.11,0.85,6,308,5,0,1,0,sales,medium +0.4,0.47,2,146,3,0,1,0,sales,medium +0.1,0.84,6,261,4,0,1,0,accounting,medium +0.89,0.99,5,257,5,0,1,0,accounting,medium +0.11,0.8,6,285,4,0,1,0,accounting,medium +0.36,0.55,2,141,3,0,1,0,hr,medium +0.4,0.46,2,127,3,0,1,0,hr,medium +0.09,0.85,6,297,4,0,1,0,hr,medium +0.4,0.46,2,143,3,0,1,0,hr,medium +0.37,0.55,2,152,3,0,1,0,technical,medium +0.44,0.51,2,156,3,0,1,0,technical,high +0.09,0.8,7,283,5,0,1,0,technical,low +0.92,0.87,4,226,6,1,1,0,technical,medium +0.74,0.91,4,232,5,0,1,0,technical,medium +0.09,0.82,6,249,4,0,1,0,technical,medium +0.89,0.95,4,275,5,0,1,0,technical,medium +0.09,0.8,6,304,4,0,1,0,technical,low +0.27,0.54,7,278,3,0,1,0,technical,low +0.1,0.91,6,287,4,0,1,0,technical,low +0.1,0.89,7,285,4,0,1,0,technical,low +0.77,0.94,5,226,6,0,1,0,support,low +0.9,0.82,5,259,5,0,1,0,support,low +0.39,0.5,2,135,3,0,1,0,support,low +0.76,1,5,219,5,0,1,0,support,low +0.1,0.93,6,256,4,0,1,0,support,low +0.87,0.9,5,254,6,0,1,0,support,low +0.38,0.5,2,153,3,0,1,0,support,low +0.77,0.99,5,228,5,0,1,0,support,low +0.78,0.87,4,228,5,0,1,0,support,low +0.44,0.5,2,128,3,0,1,0,support,low +0.38,0.52,2,153,3,0,1,0,support,low +0.43,0.46,2,156,3,0,1,0,technical,low +0.39,0.5,4,294,3,0,1,0,technical,low +0.88,1,5,219,5,0,1,0,technical,low +0.45,0.46,2,153,3,0,1,0,management,low +0.4,0.53,2,151,3,0,1,0,IT,low +0.36,0.51,2,155,3,0,1,0,IT,low +0.36,0.48,2,158,3,0,1,0,IT,low +0.9,0.98,5,245,5,0,1,0,IT,low +0.43,0.53,2,131,3,0,1,0,IT,low +0.89,0.87,5,225,5,0,1,0,product_mng,low +0.1,0.84,6,286,4,0,1,0,product_mng,low +0.37,0.5,2,135,3,0,1,0,product_mng,low +0.37,0.51,2,153,3,0,1,0,product_mng,low +0.87,0.9,5,252,5,0,1,0,IT,low +0.4,0.56,2,149,3,0,1,0,accounting,low +0.9,0.97,4,258,5,0,1,0,accounting,low +0.37,0.46,2,158,3,0,1,0,hr,low +0.44,0.54,2,149,3,0,1,0,hr,low +0.85,0.95,5,236,5,0,1,0,hr,low +0.78,0.98,5,239,6,0,1,0,marketing,low +0.42,0.47,2,159,3,0,1,0,marketing,low +0.92,0.99,5,255,6,0,1,0,sales,low +0.11,0.83,6,244,4,0,1,0,accounting,low +0.42,0.56,2,134,3,0,1,0,support,low +0.48,0.57,4,270,4,0,1,0,technical,low +0.83,0.85,4,255,5,0,1,0,management,low +0.4,0.53,2,151,3,0,1,0,marketing,low +0.43,0.45,2,135,3,0,1,0,marketing,low +0.43,0.53,2,146,3,0,1,0,marketing,low +0.1,0.97,7,254,4,0,1,0,sales,low +0.1,0.87,7,289,4,0,1,0,sales,low +0.37,0.46,2,156,3,0,1,0,sales,low +0.38,0.53,2,156,3,0,1,0,sales,low +0.4,0.5,2,128,3,0,1,0,sales,low +0.89,0.86,5,275,5,0,1,0,sales,low +0.45,0.46,2,155,3,0,1,0,sales,low +0.37,0.48,2,159,3,0,1,0,sales,low +0.46,0.49,2,148,3,0,1,0,sales,low +0.87,0.91,4,228,5,0,1,0,sales,low +0.11,0.84,6,298,4,0,1,0,sales,low +0.79,0.87,5,261,5,0,1,0,sales,low +0.79,0.92,5,254,6,0,1,0,sales,low +0.19,0.59,7,192,3,0,1,0,sales,low +0.87,0.98,4,248,5,0,1,0,sales,low +0.6,0.92,2,258,5,0,1,0,sales,low +0.44,0.45,2,156,3,0,1,0,sales,medium +0.11,0.81,6,266,4,1,1,0,sales,medium +0.42,0.54,2,156,3,0,1,0,sales,medium +0.88,0.88,5,232,5,1,1,0,accounting,medium +0.11,0.84,6,287,4,0,1,0,accounting,medium +0.46,0.46,2,154,3,0,1,0,accounting,medium +0.82,0.97,5,263,5,0,1,0,hr,medium +0.44,0.56,2,131,3,0,1,0,hr,medium +0.11,0.78,6,260,4,0,1,0,hr,medium +0.42,0.5,2,139,3,0,1,0,hr,medium +0.84,0.93,4,251,5,0,1,0,technical,medium +0.11,0.95,6,286,4,0,1,0,technical,medium +0.45,0.53,2,129,3,0,1,0,technical,high +0.38,0.56,2,156,3,0,1,0,technical,low +0.38,0.86,6,139,6,0,1,0,technical,medium +0.44,0.51,2,127,3,0,1,0,technical,medium +0.11,0.84,6,251,4,0,1,0,technical,medium +0.81,0.93,5,270,5,0,1,0,technical,medium +0.09,0.96,6,296,4,0,1,0,technical,low +0.11,0.9,6,254,4,0,1,0,technical,low +0.81,0.95,5,238,6,0,1,0,technical,low +0.1,0.97,6,267,4,1,1,0,support,low +0.74,0.89,5,229,6,0,1,0,support,low +0.09,0.78,6,254,4,0,1,0,support,low +0.82,0.81,4,233,4,1,1,0,support,low +0.1,0.98,6,268,4,0,1,0,support,low +0.27,0.56,3,301,3,0,1,0,support,low +0.83,0.92,5,267,6,0,1,0,support,low +0.1,0.93,6,289,4,1,1,0,support,low +0.38,0.47,2,144,3,0,1,0,support,low +0.4,0.56,2,148,3,0,1,0,support,low +0.11,0.83,6,306,4,0,1,0,support,low +0.11,0.79,6,292,4,0,1,1,technical,low +0.82,0.91,5,232,5,0,1,0,technical,low +0.36,0.48,2,137,3,0,1,0,technical,low +0.4,0.46,2,128,3,0,1,0,management,low +0.87,0.84,5,231,5,0,1,0,IT,low +0.41,0.49,2,146,3,0,1,0,IT,low +0.11,0.91,6,308,4,1,1,0,IT,low +0.1,0.93,6,253,4,0,1,0,IT,medium +0.38,0.51,2,146,3,0,1,0,IT,medium +0.39,0.55,2,156,3,0,1,0,product_mng,medium +0.4,0.52,2,147,3,0,1,0,product_mng,medium +0.45,0.48,2,136,3,0,1,0,product_mng,medium +0.74,0.84,5,249,5,0,1,0,product_mng,medium +0.45,0.55,2,151,3,0,1,0,IT,medium +0.12,1,3,278,4,0,1,0,RandD,medium +0.1,0.77,7,250,5,0,1,0,RandD,medium +0.37,0.55,2,127,3,0,1,0,RandD,medium +0.89,0.87,5,255,5,0,1,0,RandD,medium +0.45,0.47,2,135,3,0,1,0,RandD,medium +0.37,0.46,2,149,3,0,1,0,marketing,high +0.11,0.81,5,287,4,0,1,0,sales,low +0.41,0.48,2,145,3,0,1,0,accounting,medium +0.1,0.94,6,285,4,0,1,0,support,medium +0.1,0.93,7,305,4,0,1,0,technical,medium +0.11,0.95,7,300,4,0,1,0,management,medium +0.4,0.54,2,139,3,0,1,0,marketing,low +0.41,0.49,2,130,3,0,1,0,marketing,low +0.1,0.81,6,268,4,0,1,0,marketing,low +0.73,0.86,4,245,6,0,1,0,sales,low +0.43,0.47,2,135,3,0,1,0,sales,low +0.37,0.46,2,153,3,0,1,0,sales,low +0.11,0.94,6,276,4,0,1,0,sales,low +0.4,0.46,2,130,3,0,1,0,sales,low +0.41,0.54,2,153,3,1,1,0,sales,low +0.82,0.84,5,244,5,0,1,0,sales,low +0.61,0.47,2,253,3,0,1,0,sales,low +0.11,0.91,7,287,4,0,1,0,sales,low +0.37,0.45,2,131,3,0,1,0,sales,low +0.41,0.52,2,135,3,0,1,0,sales,low +0.37,0.52,2,157,3,0,1,0,sales,low +0.88,0.99,5,262,6,0,1,0,sales,low +0.1,0.85,6,266,4,0,1,0,sales,low +0.44,0.48,2,148,3,0,1,0,sales,low +0.38,0.57,2,140,3,0,1,0,sales,low +0.11,0.85,7,302,4,0,1,0,sales,low +0.09,0.98,6,271,4,0,1,0,sales,low +0.45,0.52,2,145,3,0,1,0,sales,medium +0.1,0.81,6,290,4,0,1,0,accounting,medium +0.45,0.47,2,151,3,0,1,0,accounting,medium +0.77,0.87,5,266,5,0,1,0,accounting,medium +0.44,0.51,2,140,3,0,1,0,hr,medium +0.39,0.5,2,142,3,0,1,0,hr,medium +0.1,0.91,6,246,4,0,1,0,hr,medium +0.09,0.89,7,308,5,0,1,0,hr,medium +0.37,0.47,2,141,3,0,1,0,technical,medium +0.9,1,5,232,5,0,1,0,technical,medium +0.41,0.56,2,143,3,0,1,0,technical,medium +0.37,0.52,2,155,3,0,1,0,technical,medium +0.1,0.86,6,278,4,0,1,0,technical,high +0.81,1,4,253,5,0,1,0,technical,low +0.11,0.8,6,282,4,0,1,0,technical,medium +0.11,0.84,7,264,4,0,1,0,technical,medium +0.4,0.46,2,149,3,0,1,0,technical,medium +0.09,0.8,6,304,5,0,1,0,technical,medium +0.48,0.93,3,219,6,0,1,0,technical,low +0.91,0.91,4,262,6,0,1,0,support,low +0.43,0.57,2,135,3,0,1,0,support,low +0.33,0.88,6,219,5,0,1,0,support,low +0.41,0.57,2,136,3,0,1,0,support,low +0.41,0.55,2,154,3,0,1,0,support,low +0.37,0.54,2,149,3,0,1,0,support,low +0.31,0.62,6,135,5,0,1,0,support,low +0.09,0.91,6,275,4,0,1,0,support,low +0.1,0.87,6,290,4,0,1,0,support,low +0.76,0.9,4,263,5,0,1,0,support,low +0.41,0.54,2,145,3,0,1,0,support,low +0.72,0.96,5,267,5,0,1,0,technical,low +0.4,0.5,2,141,3,1,1,0,technical,low +0.91,0.87,4,235,5,0,1,0,technical,low +0.1,0.83,6,258,4,0,1,0,management,low +0.4,0.56,2,131,3,0,1,0,IT,low +0.82,0.86,5,243,5,0,1,0,IT,low +0.1,0.82,6,266,4,0,1,0,IT,low +0.37,0.45,2,142,3,0,1,0,IT,low +0.36,0.51,2,135,3,0,1,0,IT,low +0.39,0.48,2,141,3,0,1,0,product_mng,medium +0.36,0.57,2,142,3,0,1,0,product_mng,medium +0.86,0.84,5,254,5,0,1,0,product_mng,medium +0.73,0.99,5,262,5,0,1,0,product_mng,medium +0.56,0.71,4,296,2,0,1,0,IT,medium +0.44,0.56,2,158,3,0,1,0,accounting,medium +0.31,0.56,4,238,2,0,1,0,accounting,medium +0.77,0.93,4,231,5,0,1,0,hr,medium +0.44,0.45,2,156,3,0,1,0,hr,medium +0.38,0.46,2,145,3,0,1,0,hr,medium +0.45,0.48,2,144,3,0,1,0,marketing,medium +0.38,0.51,2,159,3,0,1,0,sales,medium +0.36,0.48,2,156,3,0,1,0,accounting,high +0.75,0.9,5,256,5,0,1,0,support,low +0.1,0.93,6,298,4,0,1,0,technical,medium +0.1,0.97,6,247,4,0,1,0,management,medium +0.45,0.5,2,157,3,0,1,0,marketing,medium +0.42,0.57,2,154,3,1,1,0,marketing,medium +0.78,1,4,253,5,0,1,0,marketing,low +0.45,0.55,2,148,3,0,1,0,sales,low +0.84,1,4,261,5,0,1,0,sales,low +0.11,0.93,6,282,4,0,1,0,sales,low +0.42,0.56,2,133,3,0,1,0,sales,low +0.45,0.46,2,128,3,0,1,0,sales,low +0.46,0.57,2,139,3,0,1,0,sales,low +0.09,0.79,6,293,5,0,1,0,sales,low +0.87,0.83,4,265,6,0,1,0,sales,low +0.1,0.87,6,250,4,0,1,0,sales,low +0.91,1,5,251,6,0,1,0,sales,low +0.76,0.92,4,246,5,0,1,0,sales,low +0.74,1,5,275,5,0,1,0,sales,low +0.92,0.93,5,240,5,0,1,0,sales,low +0.76,0.87,5,245,5,0,1,0,sales,low +0.47,0.5,4,254,4,0,1,0,sales,low +0.73,0.99,5,241,5,0,1,0,sales,low +0.09,0.94,6,257,4,0,1,0,sales,low +0.91,0.92,4,246,5,0,1,0,sales,low +0.82,0.98,4,233,5,0,1,0,sales,low +0.28,0.45,6,218,4,0,1,0,accounting,low +0.84,0.99,4,262,6,0,1,0,accounting,medium +0.45,0.53,2,138,3,0,1,0,accounting,medium +0.45,0.54,2,142,3,0,1,0,hr,medium +0.91,0.97,5,233,5,0,1,0,hr,medium +0.42,0.48,2,155,3,0,1,0,hr,medium +0.82,1,4,229,6,0,1,0,hr,medium +0.11,0.9,6,264,4,0,1,0,technical,medium +0.42,0.53,3,199,4,0,1,0,technical,medium +0.82,0.85,4,223,5,0,1,0,technical,medium +0.09,0.96,6,268,4,0,1,0,technical,medium +0.1,0.94,6,287,4,0,1,0,technical,medium +0.86,1,5,257,5,0,1,0,technical,medium +0.4,0.46,2,143,3,0,1,0,technical,high +0.45,0.46,2,130,3,0,1,0,technical,low +0.42,0.51,2,136,3,0,1,0,technical,medium +0.74,0.92,4,261,5,0,1,0,technical,medium +0.55,0.6,3,180,4,0,1,0,technical,medium +0.37,0.45,2,126,3,0,1,0,support,medium +0.41,0.52,2,127,3,1,1,0,support,low +0.89,0.65,5,195,6,0,1,0,support,low +0.41,0.57,2,160,3,0,1,0,support,low +0.44,0.51,2,150,3,0,1,0,support,low +0.87,0.84,4,264,6,0,1,0,support,low +0.1,0.84,6,309,4,0,1,0,support,low +0.41,0.47,2,135,3,0,1,0,support,low +0.11,0.85,6,261,4,0,1,0,support,low +0.43,0.53,2,160,3,0,1,0,support,low +0.77,0.9,4,237,5,0,1,0,support,low +0.41,0.52,2,136,3,0,1,0,technical,low +0.41,0.48,2,139,3,0,1,0,technical,low +0.36,0.78,2,151,4,0,1,0,technical,low +0.77,1,5,229,5,0,1,0,management,low +0.81,0.98,5,245,5,0,1,0,IT,low +0.39,0.54,2,127,3,0,1,0,IT,low +0.09,0.94,6,283,5,0,1,0,IT,low +0.44,0.46,2,143,3,0,1,0,IT,low +0.1,0.84,5,298,4,0,1,0,IT,low +0.36,0.48,2,159,3,0,1,0,product_mng,low +0.81,0.92,5,239,5,0,1,0,product_mng,low +0.81,0.9,4,226,5,0,1,0,product_mng,medium +0.85,0.98,5,248,5,0,1,0,product_mng,medium +0.1,0.87,6,286,4,0,1,0,IT,medium +0.37,0.54,2,145,3,0,1,0,RandD,medium +0.09,0.97,7,254,4,1,1,0,RandD,medium +0.44,0.53,2,127,3,0,1,0,RandD,medium +0.86,0.93,5,223,5,0,1,0,RandD,medium +0.77,1,4,255,5,0,1,0,RandD,medium +0.41,0.48,2,136,3,0,1,0,marketing,medium +0.4,0.48,2,137,3,0,1,0,sales,medium +0.43,0.49,2,135,3,0,1,0,accounting,medium +0.43,0.5,2,137,3,0,1,0,support,medium +0.8,0.53,3,255,5,0,1,0,technical,high +0.8,0.85,4,273,5,0,1,0,management,low +0.82,0.98,5,234,5,0,1,0,marketing,medium +0.37,0.54,2,152,3,0,1,0,marketing,medium +0.37,0.48,2,134,3,0,1,0,marketing,medium +0.09,0.95,6,292,4,0,1,0,sales,medium +0.9,0.92,5,245,5,0,1,0,sales,low +0.41,0.52,2,159,3,0,1,0,sales,low +0.1,0.85,6,260,4,0,1,0,sales,low +0.44,0.53,2,149,3,0,1,0,sales,low +0.89,0.85,5,266,5,0,1,0,sales,low +0.42,0.56,2,149,3,0,1,0,sales,low +0.87,1,5,242,5,0,1,0,sales,low +0.45,0.57,2,134,3,0,1,0,sales,low +0.11,0.87,5,271,4,0,1,0,sales,low +0.09,0.79,6,275,4,0,1,0,sales,low +0.76,0.83,5,227,5,0,1,0,sales,low +0.11,0.96,7,277,5,0,1,0,sales,low +0.37,0.49,2,151,3,0,1,0,sales,low +0.1,0.79,6,274,4,0,1,0,sales,low +0.77,0.87,4,242,6,0,1,0,sales,low +0.42,0.54,2,143,3,1,1,0,sales,low +0.38,0.52,2,145,3,0,1,0,sales,low +0.32,0.95,5,172,2,0,1,0,sales,low +0.38,0.49,2,135,3,0,1,0,accounting,low +0.19,1,4,192,4,0,1,0,accounting,low +0.1,0.83,7,276,4,0,1,0,accounting,low +0.76,0.88,4,206,4,0,1,0,hr,medium +0.53,0.56,4,281,6,0,1,0,hr,medium +0.39,0.51,2,151,3,0,1,0,hr,medium +0.11,0.83,6,244,4,0,1,0,hr,medium +0.1,0.94,6,309,4,0,1,0,technical,medium +0.84,1,5,218,5,0,1,0,technical,medium +0.82,0.99,4,263,6,0,1,0,technical,medium +0.1,0.82,6,244,4,0,1,0,technical,medium +0.59,0.49,7,263,4,0,1,0,technical,medium +0.44,0.48,2,143,3,0,1,0,technical,medium +0.89,0.95,2,181,5,0,1,0,technical,medium +0.91,0.84,5,265,5,0,1,0,technical,medium +0.66,0.57,5,161,5,0,1,0,technical,high +0.11,0.87,7,282,5,0,1,0,technical,low +0.43,0.51,2,155,3,0,1,0,technical,medium +0.78,0.83,4,217,6,0,1,0,support,medium +0.11,0.97,6,289,5,0,1,0,support,medium +0.83,0.98,4,259,5,0,1,0,support,medium +0.39,0.54,2,158,3,0,1,0,support,low +0.38,0.55,2,158,3,0,1,0,support,low +0.37,0.57,2,155,3,0,1,0,support,low +0.44,0.48,2,146,3,0,1,0,support,low +0.53,0.85,2,164,5,0,1,0,support,low +0.09,0.96,6,259,4,0,1,0,support,low +0.11,0.89,6,293,4,0,1,0,support,low +0.83,0.96,5,275,5,0,1,0,support,low +0.88,1,5,219,6,1,1,0,technical,low +0.1,0.89,6,247,4,0,1,0,technical,low +0.09,0.86,7,309,4,0,1,0,technical,low +0.44,0.54,2,151,3,0,1,0,management,low +0.39,0.51,2,129,3,0,1,0,IT,low +0.87,0.94,4,274,5,0,1,0,IT,low +0.74,0.99,4,233,5,0,1,0,IT,low +0.1,0.95,7,289,4,0,1,0,IT,low +0.74,0.82,4,239,6,0,1,0,IT,low +0.75,0.99,5,221,5,0,1,0,product_mng,low +0.41,0.56,2,150,3,0,1,0,product_mng,low +0.41,0.45,2,144,3,1,1,0,product_mng,low +0.09,0.9,7,289,4,0,1,0,product_mng,low +0.09,0.8,6,301,5,0,1,0,IT,medium +0.39,0.57,2,145,3,0,1,0,accounting,medium +0.4,0.56,2,137,3,0,1,0,accounting,medium +0.37,0.54,2,131,3,1,1,0,hr,medium +0.1,0.84,6,246,4,0,1,0,hr,medium +0.43,0.51,2,136,3,0,1,0,hr,medium +0.75,0.85,5,240,6,1,1,0,marketing,medium +0.37,0.56,2,156,3,0,1,0,sales,medium +0.11,0.85,6,305,4,0,1,0,accounting,medium +0.45,0.45,2,154,3,1,1,0,support,medium +0.87,1,5,261,5,1,1,0,technical,medium +0.11,0.94,7,244,4,0,1,0,management,medium +0.45,0.54,2,129,3,0,1,0,marketing,high +0.81,0.87,4,254,5,0,1,0,marketing,low +0.77,0.91,5,236,5,0,1,0,marketing,medium +0.89,0.92,5,237,5,0,1,0,sales,medium +0.43,0.49,2,135,3,0,1,0,sales,medium +0.78,1,5,236,5,0,1,0,sales,medium +0.37,0.47,2,149,3,0,1,0,sales,low +0.37,0.5,2,141,3,0,1,0,sales,low +0.85,0.82,4,270,5,0,1,0,sales,low +0.41,0.47,2,138,3,0,1,0,sales,low +0.11,0.96,6,298,4,0,1,0,sales,low +0.75,0.99,5,254,5,0,1,0,sales,low +0.82,0.85,5,248,5,0,1,0,sales,low +0.79,1,5,257,6,0,1,0,sales,low +0.43,0.53,2,150,3,0,1,0,sales,low +0.1,0.9,7,281,4,0,1,0,sales,low +0.46,0.48,2,141,3,1,1,0,sales,low +0.43,0.57,2,157,3,0,1,0,sales,low +0.43,0.55,2,136,3,0,1,0,sales,low +0.11,0.8,7,296,4,0,1,0,sales,low +0.09,0.86,6,279,4,0,1,0,sales,low +0.37,0.53,2,131,3,0,1,0,sales,low +0.4,0.57,2,160,3,0,1,0,accounting,low +0.1,0.77,7,291,4,0,1,0,accounting,low +0.41,0.53,2,157,3,0,1,0,accounting,low +0.79,0.58,3,294,4,0,1,0,hr,low +0.11,0.79,7,310,4,0,1,0,hr,low +0.1,0.97,6,282,4,0,1,0,hr,medium +0.44,0.51,2,134,3,0,1,0,hr,medium +0.25,0.46,4,214,4,0,1,0,technical,medium +0.44,0.52,2,137,3,0,1,0,technical,medium +0.73,1,4,252,5,0,1,0,technical,medium +0.75,0.97,5,243,6,0,1,0,technical,medium +0.36,0.47,2,148,3,0,1,0,technical,medium +0.37,0.49,2,151,3,0,1,0,technical,medium +0.39,0.49,2,129,3,0,1,0,technical,medium +0.48,0.78,2,198,2,0,1,0,technical,medium +0.57,0.72,4,275,6,0,1,0,technical,medium +0.9,0.96,5,243,5,0,1,0,technical,medium +0.39,0.55,2,159,3,0,1,0,technical,high +0.44,0.51,2,145,3,0,1,0,support,low +0.81,0.88,5,242,5,0,1,0,support,medium +0.74,0.87,5,242,5,0,1,0,support,medium +0.44,0.56,2,145,3,0,1,0,support,medium +0.41,0.56,2,154,3,0,1,1,support,medium +0.4,0.51,2,139,3,0,1,0,support,low +0.46,0.57,2,152,3,0,1,0,support,low +0.8,0.83,2,211,3,0,1,0,support,low +0.87,0.9,5,258,5,0,1,0,support,low +0.39,0.54,2,155,3,0,1,0,support,low +0.38,0.55,2,148,3,0,1,0,support,low +0.66,0.67,2,255,3,0,1,0,technical,low +0.1,0.8,6,264,4,0,1,0,technical,low +0.37,0.54,2,132,3,0,1,0,technical,low +0.1,0.77,6,255,4,0,1,0,management,low +0.09,0.87,5,263,4,0,1,0,IT,low +0.86,0.84,5,222,5,0,1,0,IT,low +0.11,0.9,6,263,4,0,1,0,IT,low +0.37,0.46,2,157,3,0,1,0,IT,low +0.11,0.92,7,307,4,0,1,0,IT,low +0.77,0.98,5,259,6,0,1,0,product_mng,low +0.84,0.94,5,222,6,0,1,0,product_mng,low +0.1,0.84,7,250,4,0,1,0,product_mng,low +0.83,0.9,5,245,5,0,1,0,product_mng,low +0.11,0.79,6,292,4,0,1,0,IT,low +0.86,0.92,5,252,5,0,1,0,RandD,low +0.38,0.56,2,161,3,0,1,0,RandD,medium +0.11,0.88,5,250,4,0,1,0,RandD,medium +0.45,0.49,2,134,3,0,1,0,RandD,medium +0.1,0.85,7,279,4,0,1,0,RandD,medium +0.09,0.95,7,256,4,0,1,0,marketing,medium +0.39,0.53,2,127,3,0,1,0,sales,medium +0.37,0.47,2,138,3,1,1,0,accounting,medium +0.81,0.97,5,243,5,0,1,0,support,medium +0.09,0.9,7,296,4,0,1,0,technical,medium +0.1,0.88,7,267,4,0,1,0,management,medium +0.39,0.49,2,144,3,0,1,0,marketing,medium +0.83,0.95,4,251,5,0,1,0,marketing,medium +0.45,0.57,2,148,3,0,1,0,marketing,high +0.43,0.51,2,141,3,0,1,0,sales,low +0.8,0.75,3,268,2,0,1,0,sales,medium +0.1,0.86,6,247,4,0,1,0,sales,medium +0.1,0.55,2,247,4,0,1,0,sales,medium +0.36,0.52,2,146,3,0,1,0,sales,medium +0.38,0.5,2,140,3,0,1,0,sales,low +0.78,0.98,5,263,6,0,1,0,sales,low +0.44,0.49,2,145,3,0,1,0,sales,low +0.41,0.46,2,156,3,1,1,0,sales,low +0.72,0.85,5,244,6,0,1,0,sales,low +0.46,0.54,2,144,3,0,1,0,sales,low +0.1,0.9,7,286,4,0,1,0,sales,low +0.34,0.67,4,141,2,0,1,0,sales,low +0.11,0.89,6,260,5,0,1,0,sales,low +0.38,0.56,2,154,3,0,1,0,sales,low +0.82,0.92,5,225,5,0,1,0,sales,low +0.39,0.57,2,127,3,0,1,0,sales,low +0.44,0.53,2,140,3,0,1,0,sales,low +0.43,0.52,2,147,3,0,1,0,sales,low +0.84,0.83,4,227,5,0,1,0,accounting,low +0.43,0.48,2,153,3,0,1,0,accounting,low +0.37,0.52,2,128,3,0,1,0,accounting,low +0.74,0.97,4,228,5,0,1,0,hr,low +0.73,0.97,5,235,5,0,1,0,hr,low +0.37,0.47,2,148,3,0,1,0,hr,low +0.58,0.62,4,238,3,0,1,0,hr,low +0.4,0.54,2,141,3,0,1,0,technical,medium +0.51,0.83,5,249,4,0,1,0,technical,medium +0.46,0.5,2,151,3,0,1,0,technical,medium +0.45,0.54,2,129,3,0,1,0,technical,medium +0.46,0.5,2,156,3,0,1,0,technical,medium +0.39,0.45,2,134,3,0,1,0,technical,medium +0.09,0.88,6,269,4,0,1,0,technical,medium +0.09,0.77,6,290,4,0,1,0,technical,medium +0.37,0.51,2,132,3,0,1,0,technical,medium +0.1,0.89,7,308,4,0,1,0,technical,medium +0.77,1,4,232,5,0,1,0,technical,medium +0.79,0.86,5,235,5,0,1,0,support,medium +0.43,0.55,2,130,3,0,1,0,support,high +0.38,0.53,2,146,3,0,1,0,support,low +0.77,0.91,5,221,6,0,1,0,support,medium +0.44,0.5,2,130,3,0,1,0,support,medium +0.39,0.46,2,136,3,0,1,0,support,medium +0.78,0.89,5,274,6,0,1,0,support,medium +0.1,0.79,6,256,5,0,1,0,support,low +0.1,0.77,5,276,4,0,1,0,support,low +0.75,0.85,5,267,5,0,1,0,support,low +0.46,0.62,6,213,3,0,1,0,support,low +0.91,0.97,4,274,6,0,1,0,technical,low +0.1,0.92,6,258,4,0,1,0,technical,low +0.72,0.6,3,153,5,0,1,0,technical,low +0.11,0.95,6,245,4,0,1,0,management,low +0.11,0.94,6,264,4,0,1,0,IT,low +0.46,0.57,2,154,3,0,1,0,IT,low +0.37,0.46,2,149,3,0,1,0,IT,low +0.46,0.5,2,157,3,0,1,0,IT,low +0.43,0.57,2,127,3,0,1,0,IT,low +0.11,0.82,6,270,4,0,1,0,product_mng,low +0.73,0.89,5,236,6,0,1,0,product_mng,low +0.43,0.47,2,158,3,0,1,0,product_mng,low +0.86,1,5,229,5,0,1,0,product_mng,low +0.1,0.83,6,269,4,0,1,0,IT,low +0.4,0.49,2,128,3,0,1,0,sales,low +0.11,0.87,7,278,4,0,1,0,sales,low +0.86,0.98,3,158,5,0,1,0,sales,low +0.42,1,3,202,3,0,1,0,sales,medium +0.79,0.84,4,240,5,0,1,0,sales,medium +0.1,0.96,7,255,4,0,1,0,marketing,medium +0.09,0.92,7,254,4,0,1,0,sales,medium +0.09,0.82,6,257,4,0,1,0,accounting,medium +0.87,1,4,228,5,0,1,0,support,medium +0.36,0.49,2,145,3,0,1,0,technical,medium +0.42,0.75,3,218,4,0,1,0,management,medium +0.84,0.86,5,268,5,0,1,0,marketing,medium +0.1,0.83,6,278,4,0,1,0,marketing,medium +0.78,0.71,3,249,5,0,1,0,marketing,medium +0.35,0.99,3,236,4,0,1,0,sales,medium +0.1,0.81,7,291,4,0,1,0,sales,high +0.11,0.8,6,306,4,0,1,0,sales,low +0.43,0.48,2,135,3,0,1,0,sales,medium +0.38,0.45,2,156,3,0,1,0,sales,medium +0.46,0.54,2,143,3,0,1,0,sales,medium +0.89,0.82,4,243,5,0,1,0,sales,medium +0.45,0.5,2,147,3,0,1,0,sales,low +0.44,0.53,2,159,3,0,1,0,sales,low +0.74,0.54,5,216,3,0,1,0,sales,low +0.45,0.54,2,152,3,0,1,0,sales,low +0.79,0.93,4,226,5,0,1,0,sales,low +0.79,0.91,5,271,5,0,1,0,sales,low +0.11,0.87,6,255,4,0,1,0,sales,low +0.42,0.48,2,140,3,0,1,0,sales,low +0.64,0.9,6,252,2,0,1,0,sales,low +0.4,0.55,2,159,3,0,1,0,sales,low +0.84,0.98,5,270,5,0,1,0,sales,low +0.73,0.92,5,232,5,0,1,0,sales,low +0.4,0.51,2,144,3,0,1,0,accounting,low +0.36,0.45,2,127,3,0,1,0,accounting,low +0.43,0.47,2,131,3,0,1,0,accounting,low +0.11,0.78,6,243,4,0,1,0,hr,low +0.91,1,5,244,6,0,1,0,hr,low +0.8,1,5,260,5,0,1,0,hr,low +0.42,0.49,2,139,3,0,1,0,hr,low +0.31,0.87,4,184,3,0,1,0,technical,low +0.44,0.47,2,130,3,0,1,0,technical,low +0.38,0.54,2,135,3,0,1,0,technical,medium +0.45,0.56,2,146,3,0,1,0,technical,medium +0.43,0.46,2,149,3,0,1,0,technical,medium +0.45,0.46,2,153,3,1,1,0,technical,medium +0.43,0.57,2,160,3,0,1,0,technical,medium +0.43,0.49,2,160,3,0,1,0,technical,medium +0.09,0.83,6,282,4,0,1,0,technical,medium +0.43,0.47,2,128,3,0,1,0,technical,medium +0.79,0.94,4,232,5,0,1,0,technical,medium +0.85,0.58,3,226,2,0,1,0,support,medium +0.38,0.45,2,129,3,0,1,0,support,medium +0.11,0.92,7,255,4,0,1,0,support,medium +0.83,0.99,5,258,5,0,1,0,support,high +0.81,0.91,4,229,5,0,1,0,support,low +0.42,0.56,2,143,3,0,1,0,support,medium +0.11,0.87,6,257,4,0,1,0,support,medium +0.11,0.85,7,275,4,0,1,0,support,medium +0.1,0.89,7,291,4,0,1,0,support,medium +0.5,0.54,5,153,4,0,1,0,support,low +0.44,0.49,2,154,3,0,1,0,support,low +0.11,0.9,6,301,4,0,1,0,technical,low +0.39,0.52,2,134,3,0,1,0,technical,low +0.11,0.78,6,245,4,0,1,0,technical,low +0.36,0.5,2,132,3,0,1,0,management,low +0.43,0.51,2,130,3,0,1,0,IT,low +0.4,0.5,2,127,3,0,1,0,IT,low +0.86,0.84,4,246,6,0,1,0,IT,low +0.38,0.49,2,145,3,0,1,0,IT,low +0.46,0.45,2,138,3,0,1,1,IT,low +0.37,0.57,2,129,3,0,1,0,product_mng,low +0.43,0.52,2,150,3,0,1,0,product_mng,low +0.66,0.93,5,253,5,0,1,0,product_mng,low +0.37,0.48,2,160,3,0,1,0,product_mng,low +0.77,0.92,5,235,5,0,1,0,IT,low +0.38,0.55,2,151,3,0,1,0,sales,low +0.39,0.54,2,127,3,0,1,0,sales,low +0.41,0.55,2,151,3,0,1,0,sales,low +0.1,0.9,7,290,4,0,1,0,sales,low +0.09,0.93,6,249,4,0,1,0,sales,low +0.41,0.47,2,131,3,0,1,0,marketing,medium +0.39,0.46,2,159,3,0,1,0,sales,medium +0.83,0.99,4,223,5,0,1,0,accounting,medium +0.09,0.87,3,214,2,0,1,0,support,medium +0.75,0.81,5,227,5,0,1,0,technical,medium +0.44,0.54,2,127,3,0,1,0,management,medium +0.1,0.84,6,293,5,0,1,0,marketing,medium +0.42,0.46,2,141,3,0,1,0,marketing,medium +0.1,0.83,6,300,4,0,1,0,marketing,medium +0.1,0.86,6,309,4,0,1,0,sales,medium +0.31,0.77,4,149,3,0,1,0,sales,medium +0.42,0.54,2,159,3,0,1,0,sales,medium +0.38,0.5,2,152,3,0,1,0,sales,high +0.39,0.57,2,158,3,0,1,0,sales,low +0.1,0.97,6,254,5,0,1,0,sales,medium +0.11,0.93,6,294,4,0,1,0,sales,medium +0.1,0.92,7,269,4,0,1,0,sales,medium +0.11,0.9,7,247,4,0,1,0,sales,medium +0.44,0.65,3,271,4,0,1,0,sales,low +0.91,0.96,4,232,5,0,1,0,sales,low +0.72,1,4,245,5,0,1,0,sales,low +0.36,0.46,2,132,3,0,1,0,sales,low +0.44,0.57,2,131,3,0,1,0,sales,low +0.85,0.99,5,248,5,0,1,0,sales,low +0.78,0.93,5,225,5,0,1,0,sales,low +0.39,0.46,2,156,3,0,1,0,sales,low +0.78,0.81,3,222,2,0,1,0,sales,low +0.1,0.92,6,243,4,1,1,0,sales,low +0.23,0.99,4,204,4,1,1,0,accounting,low +0.11,0.87,6,301,4,0,1,0,accounting,low +0.9,0.83,5,259,5,0,1,0,accounting,low +0.91,0.89,4,247,5,0,1,0,hr,low +0.11,0.79,7,295,4,0,1,0,hr,low +0.43,0.54,2,150,3,0,1,0,hr,low +0.45,0.49,2,151,3,0,1,0,hr,low +0.11,0.91,5,291,4,0,1,0,technical,low +0.11,0.93,6,253,4,1,1,0,technical,low +0.43,0.5,2,161,3,0,1,0,technical,low +0.91,0.97,4,251,6,0,1,0,technical,low +0.43,0.55,2,153,3,0,1,0,technical,medium +0.85,0.82,5,264,6,0,1,0,technical,medium +0.1,0.77,6,310,4,0,1,0,technical,medium +0.81,0.95,5,266,5,0,1,0,technical,medium +0.36,0.62,4,237,2,0,1,0,technical,medium +0.45,0.54,2,138,3,0,1,0,technical,medium +0.86,1,5,227,5,0,1,0,technical,medium +0.71,1,4,300,5,0,1,0,support,medium +0.11,0.97,7,310,4,0,1,0,support,medium +0.84,0.93,5,236,5,0,1,0,support,medium +0.09,0.97,7,288,4,0,1,0,support,medium +0.38,0.49,2,127,3,0,1,0,support,medium +0.15,0.55,6,139,4,0,1,0,support,high +0.1,0.92,7,253,4,1,1,0,support,low +0.8,0.97,4,218,5,1,1,0,support,medium +0.84,0.97,5,251,5,0,1,0,support,medium +0.11,0.87,6,264,4,0,1,0,support,medium +0.89,0.79,3,149,2,0,1,0,support,medium +0.45,0.51,2,138,3,0,1,0,technical,low +0.11,0.93,7,284,4,0,1,0,technical,low +0.74,0.93,5,244,5,0,1,0,technical,low +0.41,0.5,2,128,3,0,1,0,management,low +0.44,0.53,2,154,3,0,1,0,IT,low +0.37,0.56,2,138,3,0,1,0,IT,low +0.11,0.86,6,308,4,0,1,0,IT,low +0.1,0.93,6,269,4,0,1,0,IT,low +0.7,0.74,6,136,3,0,1,0,IT,low +0.59,1,2,160,5,0,1,0,product_mng,low +0.38,0.53,2,138,3,0,1,0,product_mng,low +0.72,0.95,4,220,5,0,1,0,product_mng,low +0.73,1,5,274,5,0,1,0,product_mng,low +0.39,0.48,2,161,3,0,1,0,IT,low +0.89,0.82,5,224,6,0,1,0,RandD,low +0.89,1,4,260,5,0,1,0,RandD,low +0.11,0.78,6,300,4,1,1,0,RandD,low +0.43,0.56,2,133,3,0,1,0,RandD,low +0.09,0.93,6,308,4,0,1,0,RandD,low +0.81,0.9,5,238,6,0,1,0,marketing,low +0.37,0.53,2,126,3,0,1,0,sales,low +0.36,0.56,2,138,3,0,1,0,accounting,medium +0.11,0.85,6,299,4,0,1,0,support,medium +0.1,0.85,6,254,4,0,1,0,technical,medium +0.66,0.47,7,156,2,0,1,0,management,medium +0.39,0.47,2,152,3,0,1,0,marketing,medium +0.44,0.51,2,146,3,0,1,0,marketing,medium +0.1,0.84,6,253,4,0,1,0,marketing,medium +0.79,0.94,5,227,6,0,1,0,sales,medium +0.1,0.81,6,301,4,1,1,0,sales,medium +0.54,0.94,6,294,3,0,1,0,sales,medium +0.37,0.47,2,151,3,0,1,0,sales,medium +0.37,0.57,2,128,3,0,1,0,sales,medium +0.82,0.89,5,217,5,0,1,0,sales,high +0.45,0.52,2,160,3,0,1,0,sales,low +0.79,0.9,5,263,5,0,1,0,sales,medium +0.42,0.56,2,156,3,0,1,0,sales,medium +0.1,0.85,6,273,4,0,1,0,sales,medium +0.11,0.78,6,303,4,0,1,0,sales,medium +0.74,1,4,253,5,0,1,0,sales,low +0.1,0.93,6,270,4,0,1,0,sales,low +0.79,1,4,218,5,0,1,0,sales,low +0.43,0.48,2,144,3,0,1,0,sales,low +0.41,0.47,2,154,3,0,1,0,sales,low +0.39,0.55,2,146,3,0,1,0,sales,low +0.1,0.94,6,260,4,0,1,0,sales,low +0.82,0.85,5,218,5,0,1,0,sales,low +0.41,0.46,2,128,3,0,1,0,accounting,low +0.42,0.56,2,128,3,0,1,0,accounting,low +0.74,0.88,4,248,6,0,1,0,accounting,low +0.38,0.57,2,152,3,1,1,0,hr,low +0.39,0.56,2,126,3,0,1,0,hr,low +0.87,0.94,4,260,5,0,1,0,hr,low +0.1,0.9,5,263,4,0,1,0,hr,low +0.78,1,5,220,5,0,1,0,technical,low +0.14,0.73,7,282,5,0,1,0,technical,low +0.11,0.94,6,277,5,0,1,0,technical,low +0.91,0.94,5,257,5,0,1,0,technical,low +0.49,0.63,6,265,3,0,1,0,technical,low +0.38,0.47,2,143,3,0,1,0,technical,low +0.82,0.97,5,263,5,0,1,0,technical,medium +0.38,0.88,3,154,4,0,1,0,technical,medium +0.89,1,5,253,5,0,1,0,technical,medium +0.11,0.79,6,294,4,0,1,0,technical,medium +0.37,0.51,2,128,3,0,1,0,technical,medium +0.38,0.5,2,153,3,0,1,0,support,medium +0.78,0.87,5,256,5,0,1,0,support,medium +0.41,0.51,2,127,3,0,1,0,support,medium +0.41,0.51,2,137,3,0,1,0,support,medium +0.11,0.83,6,295,4,0,1,0,support,medium +0.11,0.79,6,281,4,0,1,0,support,medium +0.43,0.57,2,131,3,1,1,0,support,medium +0.75,0.86,5,237,5,0,1,0,support,high +0.74,0.99,4,276,5,0,1,0,support,low +0.85,0.85,5,267,5,0,1,0,support,medium +0.73,0.92,5,266,5,0,1,0,support,medium +0.1,0.79,6,294,4,0,1,0,technical,medium +0.44,0.56,2,134,3,0,1,0,technical,medium +0.3,0.56,3,309,4,1,1,0,technical,low +0.11,0.77,7,273,4,0,1,0,management,low +0.84,0.83,5,238,5,0,1,0,IT,low +0.78,0.94,5,271,6,0,1,0,IT,low +0.43,0.53,2,145,3,0,1,0,IT,low +0.36,0.55,2,152,3,0,1,0,IT,low +0.43,0.47,2,128,3,0,1,0,IT,low +0.45,0.46,2,142,3,0,1,0,product_mng,low +0.76,0.93,5,238,5,0,1,0,product_mng,low +0.1,0.78,7,286,4,0,1,0,product_mng,low +0.09,0.86,6,291,4,0,1,0,product_mng,low +0.92,1,5,259,5,0,1,0,IT,low +0.92,0.9,5,248,5,0,1,0,sales,low +0.79,0.98,4,271,5,0,1,0,sales,low +0.43,0.51,2,140,3,0,1,0,sales,low +0.8,0.95,4,274,5,0,1,0,sales,low +0.44,0.49,2,127,3,1,1,0,sales,low +0.89,0.87,5,275,6,0,1,0,marketing,low +0.48,0.88,3,239,3,0,1,0,sales,low +0.11,0.82,6,304,4,1,1,0,accounting,low +0.38,0.55,2,145,3,0,1,0,support,low +0.11,0.85,6,259,4,0,1,0,technical,medium +0.82,0.86,4,264,5,0,1,0,management,medium +0.37,0.45,2,160,3,0,1,0,marketing,medium +0.4,0.48,2,138,3,0,1,0,marketing,medium +0.43,0.47,2,137,3,0,1,0,marketing,medium +0.44,0.5,2,156,3,0,1,0,sales,medium +0.42,0.56,2,147,3,0,1,0,sales,medium +0.11,0.8,7,243,4,0,1,0,sales,medium +0.78,0.87,4,236,5,0,1,0,sales,medium +0.46,0.86,2,212,4,0,1,0,sales,medium +0.77,0.91,5,261,6,0,1,0,sales,medium +0.83,0.82,4,243,5,0,1,0,sales,medium +0.32,0.58,5,271,5,0,1,0,sales,high +0.9,0.92,5,154,4,0,1,0,sales,low +0.42,0.52,2,151,3,0,1,0,sales,medium +0.1,0.96,6,254,4,1,1,0,sales,medium +0.1,0.91,6,285,4,0,1,0,sales,medium +0.44,0.49,2,130,3,0,1,0,sales,medium +0.1,0.95,7,301,4,0,1,0,sales,low +0.11,0.8,6,286,4,0,1,0,sales,low +0.1,0.89,6,246,4,0,1,0,sales,low +0.39,0.47,2,135,3,0,1,0,sales,low +0.92,0.92,4,245,5,0,1,0,sales,low +0.43,0.56,2,136,3,0,1,0,sales,low +0.11,0.89,6,301,4,0,1,0,accounting,low +0.81,1,5,235,5,0,1,0,accounting,low +0.11,0.85,7,272,4,0,1,0,accounting,low +0.87,1,5,274,5,0,1,0,hr,low +0.37,0.46,2,131,3,0,1,0,hr,low +0.39,0.56,2,135,3,0,1,0,hr,low +0.61,0.86,4,196,4,0,1,0,hr,low +0.11,0.95,6,285,4,0,1,0,technical,low +0.09,0.9,7,289,5,0,1,0,technical,low +0.36,0.52,2,157,3,0,1,0,technical,low +0.09,0.94,6,308,4,0,1,0,technical,low +0.41,0.71,4,301,5,0,1,0,technical,low +0.4,0.46,2,131,3,0,1,0,technical,low +0.1,0.91,6,262,5,1,1,0,technical,low +0.46,0.53,2,143,3,1,1,0,technical,low +0.39,0.57,2,133,3,0,1,0,technical,medium +0.41,0.5,2,153,3,0,1,0,technical,medium +0.1,0.94,7,281,4,0,1,0,technical,medium +0.39,0.51,2,132,3,0,1,0,support,medium +0.73,0.83,5,270,5,1,1,0,support,medium +0.41,0.45,2,150,3,0,1,0,support,medium +0.37,0.51,2,140,3,0,1,0,support,medium +0.38,0.5,2,150,3,1,1,0,support,medium +0.8,0.63,5,180,5,0,1,0,support,medium +0.09,0.85,5,281,4,0,1,0,support,medium +0.85,0.92,4,275,5,0,1,0,support,medium +0.42,0.54,2,130,3,0,1,0,support,medium +0.41,0.48,2,130,3,0,1,0,support,high +0.38,0.46,2,147,3,0,1,0,support,low +0.72,1,5,264,5,0,1,0,technical,medium +0.11,0.74,6,290,5,0,1,0,technical,medium +0.37,0.47,2,150,3,0,1,0,technical,medium +0.1,0.81,6,304,4,0,1,0,management,medium +0.36,0.54,2,136,3,0,1,0,IT,low +0.92,0.94,5,307,5,0,1,0,IT,low +0.11,0.87,5,303,4,0,1,0,IT,low +0.39,0.56,2,156,3,0,1,0,IT,low +0.11,0.95,6,271,4,0,1,0,IT,low +0.45,0.45,2,140,3,0,1,0,product_mng,low +0.44,0.55,2,130,3,1,1,0,product_mng,low +0.85,0.97,4,266,6,0,1,0,product_mng,low +0.43,0.52,2,139,3,0,1,0,product_mng,low +0.75,0.86,5,260,5,0,1,0,IT,low +0.11,0.55,2,137,3,1,1,0,RandD,low +0.36,0.5,2,158,3,0,1,0,RandD,low +0.1,0.79,6,249,4,0,1,0,RandD,low +0.74,0.89,5,259,5,0,1,0,RandD,low +0.4,0.46,2,144,3,0,1,0,RandD,low +0.09,0.77,6,244,4,0,1,0,marketing,low +0.76,0.91,4,219,5,0,1,0,sales,low +0.45,0.57,2,151,3,0,1,0,accounting,low +0.84,0.88,4,269,5,0,1,0,support,low +0.38,0.45,2,127,3,0,1,0,technical,low +0.38,0.46,2,144,3,0,1,0,management,low +0.38,0.54,2,157,3,0,1,0,marketing,medium +0.86,0.94,5,224,5,0,1,0,marketing,medium +0.37,0.46,2,155,3,0,1,0,marketing,medium +0.37,0.5,2,131,3,0,1,0,sales,medium +0.87,1,4,258,5,1,1,1,sales,medium +0.11,0.85,6,267,4,0,1,0,sales,medium +0.42,0.5,2,141,3,0,1,0,sales,medium +0.43,0.48,2,160,3,0,1,0,sales,medium +0.09,0.8,6,247,4,0,1,0,sales,medium +0.54,0.56,4,260,3,0,1,0,sales,medium +0.4,0.47,2,151,3,0,1,0,sales,medium +0.36,0.52,2,137,3,1,1,0,sales,medium +0.87,0.9,4,256,5,0,1,0,sales,high +0.75,0.88,4,239,5,0,1,0,sales,low +0.43,0.53,2,152,3,0,1,0,sales,medium +0.43,0.47,2,149,3,0,1,0,sales,medium +0.1,0.87,6,284,4,0,1,0,sales,medium +0.11,0.78,7,248,4,0,1,0,sales,medium +0.44,0.53,2,156,3,0,1,0,sales,low +0.39,0.48,2,138,3,0,1,0,sales,low +0.4,0.55,2,155,3,0,1,0,sales,low +0.92,0.87,4,229,6,0,1,0,sales,low +0.36,0.47,2,136,3,0,1,0,accounting,low +0.86,0.95,4,241,5,0,1,0,accounting,low +0.74,0.87,5,258,5,0,1,0,accounting,low +0.8,0.95,3,146,5,0,1,0,hr,low +0.36,0.48,2,145,3,0,1,0,hr,low +0.42,0.57,2,159,3,0,1,0,hr,low +0.42,0.47,2,129,3,0,1,0,hr,low +0.4,0.45,2,142,3,0,1,0,technical,low +0.46,0.53,2,129,3,0,1,0,technical,low +0.09,0.9,6,287,4,0,1,0,technical,low +0.88,0.89,4,275,5,0,1,0,technical,low +0.1,0.82,6,272,4,0,1,0,technical,low +0.1,0.97,6,307,4,0,1,0,technical,low +0.11,0.93,4,295,3,0,1,0,technical,low +0.84,0.88,5,237,5,0,1,0,technical,low +0.42,0.56,2,158,3,0,1,0,technical,low +0.1,0.86,6,266,4,1,1,0,technical,low +0.1,0.95,6,256,4,0,1,0,technical,medium +0.46,0.54,2,158,3,0,1,0,support,medium +0.09,0.97,7,268,4,0,1,0,support,medium +0.89,1,4,237,5,0,1,0,support,medium +0.82,1,4,273,6,0,1,0,support,medium +0.11,0.89,6,309,4,0,1,0,support,medium +0.81,0.84,5,258,5,0,1,0,support,medium +0.81,0.94,5,233,6,0,1,0,support,medium +0.77,1,4,249,6,0,1,0,support,medium +0.63,0.94,3,179,2,0,1,0,support,medium +0.4,0.57,2,128,3,0,1,0,support,medium +0.86,1,4,250,6,0,1,0,support,medium +0.37,0.49,2,151,3,0,1,0,technical,high +0.44,0.5,2,132,3,0,1,0,technical,low +0.74,0.89,5,232,6,0,1,0,technical,medium +0.79,1,4,229,5,1,1,0,management,medium +0.09,0.92,6,261,4,0,1,0,IT,medium +0.37,0.48,2,129,3,0,1,0,IT,medium +0.09,0.78,6,244,4,0,1,0,IT,low +0.09,0.84,6,258,4,0,1,0,IT,low +0.1,0.8,7,292,5,0,1,0,IT,low +0.45,0.56,2,143,3,0,1,0,product_mng,low +0.4,0.51,2,136,3,0,1,0,product_mng,low +0.31,0.95,6,235,5,0,1,0,product_mng,low +0.7,0.93,2,310,3,0,1,0,product_mng,low +0.36,0.48,2,152,3,0,1,0,IT,low +0.34,0.97,6,157,5,1,1,0,RandD,low +0.87,0.83,5,267,5,0,1,0,RandD,low +0.11,0.91,6,302,4,0,1,0,RandD,low +0.47,0.81,4,133,3,0,1,0,RandD,low +0.43,0.52,2,142,3,0,1,0,RandD,low +0.43,0.47,2,129,3,0,1,0,marketing,low +0.45,0.57,2,136,3,0,1,0,sales,low +0.74,1,5,223,5,0,1,0,accounting,low +0.1,0.89,6,244,4,1,1,0,support,low +0.78,0.87,5,243,5,0,1,0,technical,low +0.9,0.95,5,275,3,0,1,0,management,low +0.53,0.95,6,205,4,0,1,0,marketing,low +0.45,0.54,2,154,3,0,1,0,marketing,low +0.86,0.83,4,270,5,0,1,0,marketing,medium +0.74,0.89,4,267,5,0,1,0,sales,medium +0.09,0.79,6,276,4,0,1,0,sales,medium +0.8,0.95,5,244,5,0,1,0,sales,medium +0.46,0.53,2,128,3,0,1,0,sales,medium +0.86,0.95,5,269,6,0,1,0,sales,medium +0.86,0.95,4,238,5,0,1,0,sales,medium +0.9,0.91,4,269,5,0,1,0,sales,medium +0.87,0.88,5,231,6,0,1,0,sales,medium +0.83,0.94,4,267,5,0,1,0,sales,medium +0.77,0.83,4,245,5,0,1,0,sales,medium +0.77,1,4,272,5,0,1,0,sales,medium +0.9,0.86,5,254,5,0,1,0,sales,high +0.73,0.92,4,273,5,0,1,0,sales,low +0.91,0.9,4,250,5,0,1,0,sales,medium +0.36,0.53,2,133,3,0,1,0,sales,medium +0.38,0.54,2,150,3,0,1,0,sales,medium +0.44,0.46,2,157,3,0,1,0,sales,medium +0.73,1,5,230,5,0,1,0,sales,low +0.89,0.91,5,260,5,0,1,0,sales,low +0.11,0.77,6,275,4,0,1,0,accounting,low +0.1,0.77,7,308,4,0,1,0,accounting,low +0.37,0.46,2,129,3,0,1,0,accounting,low +0.38,0.48,2,134,3,0,1,0,hr,low +0.42,0.48,2,132,3,0,1,0,hr,low +0.44,0.46,2,153,3,0,1,0,hr,low +0.11,0.83,6,262,4,0,1,0,hr,low +0.09,0.97,7,262,4,0,1,0,technical,low +0.43,0.47,2,130,3,0,1,0,technical,low +0.38,0.52,2,156,3,0,1,0,technical,low +0.11,0.89,6,254,4,0,1,0,technical,low +0.37,0.49,2,130,3,0,1,0,technical,low +0.44,0.57,2,139,3,0,1,0,technical,low +0.72,0.82,5,269,5,0,1,0,technical,low +0.1,0.91,7,297,4,0,1,0,technical,low +0.73,0.86,5,249,5,0,1,0,technical,low +0.09,0.82,7,267,4,0,1,0,technical,low +0.44,0.46,2,149,3,0,1,0,technical,low +0.09,0.82,6,251,4,0,1,0,support,low +0.1,0.87,6,306,4,0,1,0,support,medium +0.11,0.86,6,279,4,0,1,0,support,medium +0.42,0.46,2,131,3,0,1,0,support,medium +0.09,0.85,6,260,4,0,1,0,support,medium +0.72,0.88,5,249,5,0,1,0,support,medium +0.75,0.97,4,245,5,0,1,0,support,medium +0.44,0.5,2,138,3,0,1,0,support,medium +0.11,0.91,6,278,4,0,1,0,support,medium +0.38,0.47,2,147,3,0,1,0,support,medium +0.39,0.57,2,131,3,0,1,0,support,medium +0.1,0.9,7,301,4,0,1,0,technical,medium +0.43,0.52,2,141,3,0,1,0,technical,medium +0.39,0.57,2,158,3,0,1,0,technical,high +0.88,0.87,4,235,6,0,1,0,management,low +0.1,0.85,7,261,4,0,1,0,IT,medium +0.1,0.89,5,270,4,0,1,0,IT,medium +0.11,0.93,6,290,4,0,1,0,IT,medium +0.37,0.47,2,149,3,0,1,0,IT,medium +0.37,0.48,2,160,3,0,1,0,IT,low +0.77,0.87,4,150,4,0,1,0,product_mng,low +0.91,0.94,5,218,6,0,1,0,product_mng,low +0.46,0.51,2,155,3,0,1,0,product_mng,low +0.11,0.87,6,291,4,0,1,0,product_mng,low +0.86,0.91,5,265,5,0,1,0,IT,low +0.87,0.88,5,262,6,0,1,0,sales,low +0.09,0.92,6,303,5,0,1,0,sales,low +0.42,0.46,2,132,3,0,1,0,sales,low +0.82,0.83,4,245,5,1,1,0,sales,low +0.46,0.48,2,129,3,0,1,0,sales,low +0.88,1,5,226,6,0,1,0,marketing,low +0.1,0.91,6,286,4,0,1,0,marketing,low +0.43,0.45,2,140,3,0,1,0,sales,low +0.37,0.49,2,153,3,0,1,0,accounting,low +0.8,0.95,5,217,5,0,1,0,support,low +0.83,0.95,5,258,5,0,1,0,technical,low +0.39,0.57,2,156,3,0,1,0,management,low +0.77,0.92,5,255,5,0,1,0,marketing,low +0.43,0.46,2,129,3,0,1,0,marketing,low +0.79,0.96,4,234,5,0,1,0,marketing,low +0.39,0.55,2,152,3,1,1,0,sales,medium +0.1,0.88,7,300,4,0,1,0,sales,medium +0.39,0.53,2,131,3,0,1,0,sales,medium +0.11,0.89,6,301,4,0,1,0,sales,medium +0.4,0.51,2,156,3,0,1,0,sales,medium +0.42,0.52,2,141,3,1,1,0,sales,medium +0.57,0.85,4,219,2,1,1,0,sales,medium +0.11,0.95,7,269,5,0,1,0,sales,medium +0.36,0.73,4,276,2,0,1,0,sales,medium +0.11,0.94,7,302,4,0,1,0,sales,medium +0.35,0.8,6,281,2,0,1,0,sales,medium +0.78,0.99,5,241,5,0,1,0,sales,medium +0.11,0.93,7,288,4,0,1,0,sales,high +0.1,0.96,6,303,4,0,1,0,sales,low +0.42,0.54,2,135,3,0,1,0,sales,medium +0.43,0.5,2,127,3,1,1,0,sales,medium +0.79,0.84,5,245,5,0,1,0,sales,medium +0.45,0.45,2,145,3,0,1,0,sales,medium +0.09,0.91,6,248,4,0,1,0,sales,low +0.11,0.91,6,302,4,0,1,0,accounting,low +0.45,0.49,2,144,3,0,1,0,accounting,low +0.11,0.91,6,272,4,0,1,0,accounting,low +0.09,0.8,6,294,4,0,1,0,hr,low +0.78,0.71,4,296,3,0,1,0,hr,low +0.38,0.5,2,151,3,1,1,0,hr,low +0.82,0.82,4,249,5,0,1,0,hr,low +0.85,0.89,4,221,5,0,1,0,technical,low +0.45,0.46,2,146,3,0,1,0,technical,low +0.77,0.89,5,243,5,0,1,0,technical,low +0.39,0.5,2,127,3,0,1,0,technical,low +0.91,0.9,4,245,5,0,1,0,technical,low +0.11,0.77,6,264,4,0,1,0,technical,low +0.46,0.45,2,143,3,0,1,0,technical,low +0.43,0.49,2,135,3,0,1,0,technical,low +0.11,0.96,6,262,4,1,1,0,technical,low +0.1,0.93,6,299,4,0,1,0,technical,low +0.09,0.8,5,279,4,0,1,0,technical,low +0.36,0.51,2,155,3,0,1,0,support,low +0.11,0.89,6,264,4,0,1,0,support,low +0.09,0.77,6,256,5,0,1,0,support,medium +0.44,0.51,2,129,3,0,1,0,support,medium +0.73,0.97,5,217,6,0,1,0,support,medium +0.21,0.58,7,203,5,0,1,0,support,medium +0.8,0.85,4,264,5,0,1,0,support,medium +0.37,0.55,2,159,3,0,1,0,support,medium +0.79,0.96,5,218,5,0,1,0,support,medium +0.09,0.8,6,298,4,0,1,0,support,medium +0.75,0.74,6,134,3,0,1,0,support,medium +0.83,1,5,263,5,0,1,0,technical,medium +0.1,0.77,5,252,4,0,1,0,technical,medium +0.44,0.55,2,136,3,0,1,0,technical,medium +0.42,0.97,6,259,4,0,1,0,management,high +0.43,0.56,2,158,3,0,1,0,IT,low +0.09,0.84,7,307,4,0,1,0,IT,medium +0.44,0.53,2,152,3,0,1,0,IT,medium +0.81,0.98,5,237,5,0,1,0,IT,medium +0.1,0.79,7,284,4,0,1,0,IT,medium +0.1,0.93,6,243,4,0,1,0,product_mng,low +0.11,0.83,6,268,4,0,1,0,product_mng,low +0.09,0.77,6,244,4,0,1,0,product_mng,low +0.75,0.83,5,262,5,0,1,0,product_mng,low +0.38,0.55,2,134,3,0,1,0,IT,low +0.09,0.87,7,278,4,0,1,0,IT,low +0.74,0.97,5,238,5,0,1,0,IT,low +0.44,0.56,2,127,3,0,1,0,IT,low +0.76,0.95,4,259,5,0,1,0,RandD,low +0.42,0.56,2,146,3,0,1,0,RandD,low +0.75,1,4,243,5,0,1,0,RandD,low +0.36,0.52,2,137,3,0,1,0,marketing,low +0.75,0.93,5,229,5,0,1,0,sales,low +0.4,0.46,2,134,3,0,1,0,accounting,low +0.75,0.89,4,228,5,0,1,0,support,low +0.09,0.84,6,301,4,0,1,0,technical,low +0.39,0.46,2,127,3,0,1,0,management,low +0.4,0.48,2,142,3,0,1,0,marketing,low +0.39,0.54,2,131,3,0,1,0,marketing,low +0.1,0.85,7,310,5,0,1,0,marketing,low +0.42,0.55,2,148,3,0,1,0,sales,low +0.37,0.52,2,143,3,0,1,0,sales,medium +0.11,0.98,6,250,4,0,1,0,sales,medium +0.09,0.88,7,265,4,0,1,0,sales,medium +0.41,0.54,2,152,3,0,1,0,sales,medium +0.42,0.49,2,145,3,0,1,0,sales,medium +0.4,0.49,2,140,3,0,1,0,sales,medium +0.36,0.47,2,129,3,0,1,0,sales,medium +0.74,0.9,4,226,5,0,1,0,sales,medium +0.66,1,5,269,5,0,1,0,sales,medium +0.38,0.47,2,152,3,0,1,0,sales,medium +0.43,0.51,2,132,3,0,1,0,sales,medium +0.43,0.53,2,148,3,0,1,0,sales,medium +0.1,0.85,6,297,5,0,1,0,sales,high +0.82,0.85,4,274,5,0,1,0,sales,low +0.1,0.77,6,280,4,0,1,0,sales,medium +0.1,0.93,6,288,4,0,1,0,sales,medium +0.43,0.49,2,155,3,0,1,0,sales,medium +0.09,0.94,7,247,4,0,1,0,sales,medium +0.41,0.54,2,138,3,0,1,0,accounting,low +0.1,0.82,7,284,4,0,1,0,accounting,low +0.88,0.92,4,225,5,0,1,0,accounting,low +0.43,0.57,2,151,3,1,1,0,hr,low +0.42,0.5,2,155,3,0,1,0,hr,low +0.85,1,4,234,5,0,1,0,hr,low +0.38,0.49,2,144,3,0,1,0,hr,low +0.39,0.47,2,142,3,0,1,0,technical,low +0.41,0.48,2,126,3,0,1,0,technical,low +0.88,0.92,4,233,6,0,1,0,technical,low +0.78,0.96,4,241,5,0,1,0,technical,low +0.45,0.48,2,138,3,0,1,0,technical,low +0.09,0.95,6,260,4,1,1,0,technical,low +0.44,0.56,2,145,3,0,1,0,technical,low +0.11,0.84,6,252,4,0,1,0,technical,low +0.36,0.51,2,143,3,0,1,0,technical,low +0.86,0.98,4,270,5,0,1,0,technical,low +0.1,0.92,6,285,4,0,1,0,technical,low +0.45,0.53,2,149,3,0,1,0,support,low +0.42,0.53,2,158,3,0,1,0,support,low +0.36,0.55,2,134,3,0,1,0,support,low +0.45,0.55,2,129,3,0,1,0,support,medium +0.38,0.57,2,131,3,0,1,0,support,medium +0.11,0.97,6,288,4,0,1,0,support,medium +0.45,0.46,2,142,3,0,1,0,support,medium +0.87,0.95,5,227,5,0,1,0,support,medium +0.45,0.53,2,131,3,0,1,0,support,medium +0.1,0.83,6,283,5,0,1,0,support,medium +0.44,0.54,2,139,3,0,1,0,support,medium +0.78,1,4,267,5,0,1,0,technical,medium +0.38,0.56,2,148,3,0,1,0,technical,medium +0.85,0.84,5,272,6,0,1,0,technical,medium +0.36,0.48,2,148,3,1,1,0,management,medium +0.75,0.88,5,270,5,0,1,0,IT,high +0.81,0.81,4,218,5,1,1,0,IT,low +0.4,0.55,2,150,3,0,1,0,IT,medium +0.83,0.83,5,260,5,0,1,0,IT,medium +0.41,0.52,2,127,3,0,1,0,IT,medium +0.42,0.57,2,134,3,0,1,0,product_mng,medium +0.09,0.83,7,258,4,0,1,0,product_mng,low +0.87,0.81,5,304,5,0,1,0,product_mng,low +0.43,0.56,6,149,4,0,1,0,product_mng,low +0.39,0.51,2,139,3,0,1,0,IT,low +0.1,0.9,6,272,5,0,1,0,RandD,low +0.41,0.52,2,132,3,0,1,0,RandD,low +0.72,1,2,240,2,0,1,0,RandD,low +0.44,0.55,2,137,3,0,1,0,RandD,low +0.38,0.5,2,139,3,0,1,0,RandD,low +0.46,0.52,2,148,3,0,1,0,RandD,low +0.4,0.49,2,149,3,0,1,0,marketing,low +0.45,0.45,2,131,3,0,1,0,sales,low +0.89,0.89,5,262,5,0,1,0,accounting,low +0.1,0.97,7,284,4,0,1,0,support,low +0.46,0.48,2,161,3,0,1,0,technical,low +0.09,0.78,7,290,4,0,1,0,management,low +0.45,0.57,2,149,3,0,1,0,marketing,low +0.89,0.98,4,242,6,0,1,0,marketing,low +0.62,0.77,5,227,4,0,1,0,marketing,low +0.11,0.93,6,276,4,0,1,0,sales,low +0.44,0.5,2,135,3,0,1,0,sales,low +0.09,0.94,6,266,4,0,1,0,sales,medium +0.56,0.75,5,236,2,0,1,0,sales,medium +0.77,0.89,4,270,5,0,1,0,sales,medium +0.39,0.49,2,146,3,0,1,0,sales,medium +0.1,0.92,5,272,4,0,1,0,sales,medium +0.72,0.85,5,246,5,0,1,0,sales,medium +0.4,0.52,2,136,3,0,1,0,sales,medium +0.11,0.81,6,260,4,0,1,0,sales,medium +0.88,1,5,247,5,0,1,0,sales,medium +0.37,0.51,2,127,3,0,1,0,sales,medium +0.11,0.96,6,267,4,0,1,0,sales,medium +0.4,0.52,2,143,3,0,1,0,sales,medium +0.1,0.86,6,306,4,0,1,0,sales,high +0.62,0.89,3,131,4,0,1,0,sales,low +0.78,0.86,4,249,5,0,1,0,sales,medium +0.37,0.52,2,144,3,0,1,0,sales,medium +0.76,0.82,4,254,5,1,1,0,sales,medium +0.42,0.53,2,131,3,0,1,0,accounting,medium +0.1,0.77,6,272,4,0,1,0,accounting,low +0.42,0.47,2,157,3,0,1,0,accounting,low +0.1,0.96,7,301,4,0,1,0,hr,low +0.1,0.81,6,252,4,0,1,0,hr,low +0.42,0.47,2,130,3,0,1,0,hr,low +0.09,0.86,6,297,4,0,1,0,hr,low +0.1,0.8,6,248,4,0,1,0,technical,low +0.11,0.89,7,257,4,0,1,0,technical,low +0.44,0.53,2,147,3,0,1,0,technical,low +0.87,0.9,3,307,5,0,1,0,technical,low +0.44,0.46,2,154,3,0,1,0,technical,low +0.41,0.56,2,143,3,0,1,0,technical,low +0.51,0.79,4,134,3,0,1,0,technical,low +0.89,0.96,5,221,5,0,1,0,technical,low +0.1,0.96,6,275,4,0,1,0,technical,low +0.9,0.94,5,247,5,0,1,0,technical,low +0.36,0.55,2,131,3,0,1,0,technical,low +0.44,0.54,2,150,3,0,1,0,support,low +0.39,0.57,2,150,3,0,1,0,support,low +0.38,1,5,137,4,0,1,0,support,low +0.73,0.95,4,223,6,0,1,0,support,low +0.1,0.96,6,292,4,0,1,0,support,medium +0.89,0.83,5,130,4,1,1,0,support,medium +0.87,0.85,5,221,6,0,1,0,support,medium +0.84,0.89,4,245,5,1,1,0,support,medium +0.11,0.77,6,274,4,0,1,0,support,medium +0.74,1,5,248,5,0,1,0,support,medium +0.79,0.97,4,243,5,0,1,0,support,medium +0.1,0.92,7,273,4,0,1,0,technical,medium +0.83,0.95,5,221,5,0,1,0,technical,medium +0.1,0.79,6,271,4,0,1,0,technical,medium +0.45,0.5,2,157,3,0,1,0,management,medium +0.29,0.48,2,249,4,0,1,0,IT,medium +0.46,0.46,2,145,3,0,1,0,IT,high +0.11,0.83,6,262,5,0,1,0,IT,low +0.75,0.89,5,272,5,0,1,0,IT,medium +0.4,0.5,2,129,3,0,1,0,IT,medium +0.37,0.46,2,134,3,0,1,0,product_mng,medium +0.41,0.52,2,147,3,0,1,0,product_mng,medium +0.1,0.83,6,293,4,0,1,0,product_mng,low +0.39,0.52,2,129,3,0,1,0,product_mng,low +0.4,0.45,2,140,3,0,1,0,IT,low +0.41,0.52,2,132,3,0,1,0,RandD,low +0.11,0.89,6,284,4,0,1,0,RandD,low +0.74,0.99,5,263,5,0,1,0,RandD,low +0.42,0.46,2,143,3,0,1,0,RandD,low +0.88,0.88,4,265,5,0,1,0,RandD,low +0.37,0.53,2,147,3,0,1,0,RandD,low +0.78,0.81,4,253,5,0,1,0,marketing,low +0.46,0.5,2,141,3,0,1,0,sales,low +0.74,1,5,222,6,0,1,0,accounting,low +0.11,0.86,6,273,4,1,1,0,support,low +0.8,0.87,5,240,6,0,1,0,technical,low +0.37,0.48,2,154,3,0,1,0,management,low +0.87,0.92,4,253,6,0,1,0,marketing,low +0.9,0.84,5,221,5,0,1,0,marketing,low +0.1,0.88,6,263,4,0,1,0,marketing,low +0.43,0.46,2,145,3,0,1,0,sales,low +0.11,0.91,6,279,4,0,1,0,sales,low +0.4,0.46,2,146,3,0,1,0,sales,low +0.09,0.93,7,270,4,0,1,0,sales,medium +0.4,0.5,2,135,3,0,1,0,sales,medium +0.14,0.7,5,236,3,0,1,0,sales,medium +0.4,0.49,2,151,3,0,1,0,sales,medium +0.11,0.79,6,244,4,1,1,0,sales,medium +0.72,1,4,169,3,0,1,0,sales,medium +0.39,0.57,2,157,3,0,1,0,sales,medium +0.82,0.93,4,246,5,0,1,0,sales,medium +0.41,0.52,2,142,3,0,1,0,sales,medium +0.45,0.51,2,156,3,0,1,0,sales,medium +0.2,0.7,6,281,5,0,1,0,sales,medium +0.43,0.53,2,146,3,0,1,0,sales,medium +0.39,0.55,2,156,3,0,1,0,sales,high +0.11,0.86,6,299,4,1,1,0,sales,low +0.45,0.47,2,136,3,0,1,0,sales,medium +0.11,0.87,6,272,4,0,1,0,sales,medium +0.84,0.86,5,240,5,0,1,0,accounting,medium +0.86,0.96,5,245,6,0,1,0,accounting,medium +0.79,0.93,5,269,5,0,1,0,accounting,low +0.39,0.57,2,130,3,0,1,0,hr,low +0.15,0.62,4,257,3,0,1,0,hr,low +0.81,1,4,241,5,0,1,0,hr,low +0.39,0.53,2,136,3,0,1,0,hr,low +0.92,0.94,4,219,5,0,1,0,technical,low +0.9,0.98,5,271,5,0,1,0,technical,low +0.32,0.6,2,280,4,0,1,0,technical,low +0.46,0.46,2,140,3,0,1,0,technical,low +0.83,0.98,4,254,5,0,1,0,technical,low +0.39,0.47,2,131,3,0,1,0,technical,low +0.2,0.9,6,138,3,0,1,0,technical,low +0.11,0.85,6,295,4,0,1,0,technical,low +0.11,0.96,6,301,5,0,1,0,technical,low +0.1,0.95,7,296,4,0,1,0,technical,low +0.75,0.87,5,246,5,0,1,0,technical,low +0.44,0.57,2,145,3,0,1,0,support,low +0.86,0.93,5,241,5,1,1,0,support,low +0.1,0.82,6,269,4,0,1,0,support,low +0.39,0.49,2,146,3,0,1,0,support,low +0.45,0.48,2,149,3,0,1,0,support,low +0.1,0.94,7,287,4,0,1,0,support,medium +0.36,0.55,2,138,3,0,1,0,support,medium +0.57,0.61,4,158,5,0,1,0,support,medium +0.09,0.87,6,266,4,0,1,0,support,medium +0.87,0.91,4,255,5,0,1,0,support,medium +0.43,0.52,2,156,3,0,1,0,support,medium +0.36,0.5,2,147,3,0,1,0,technical,medium +0.91,0.99,5,265,5,1,1,0,technical,medium +0.41,0.48,2,136,3,0,1,0,technical,medium +0.37,0.52,2,140,3,0,1,0,management,medium +0.43,0.45,2,146,3,0,1,0,IT,medium +0.43,0.57,2,142,3,0,1,0,IT,medium +0.4,0.53,2,155,3,0,1,0,IT,high +0.1,0.89,7,285,4,0,1,0,IT,low +0.76,0.99,4,253,5,1,1,0,IT,medium +0.82,0.93,4,248,5,0,1,0,product_mng,medium +0.11,0.83,7,255,5,0,1,0,product_mng,medium +0.43,0.52,2,154,3,1,1,0,product_mng,medium +0.11,0.88,7,305,4,0,1,0,product_mng,low +0.41,0.48,2,141,3,0,1,0,IT,low +0.73,0.87,5,252,5,0,1,0,RandD,low +0.37,0.57,2,157,3,0,1,0,RandD,low +0.11,0.89,6,250,4,0,1,0,RandD,low +0.46,0.52,2,131,3,0,1,0,RandD,low +0.41,0.5,2,149,3,0,1,0,RandD,low +0.78,0.78,4,260,5,0,1,0,RandD,low +0.78,0.86,5,260,6,0,1,0,marketing,low +0.72,0.86,5,251,5,0,1,0,sales,low +0.63,0.83,6,242,5,0,1,0,accounting,low +0.55,1,6,136,3,0,1,0,support,low +0.45,0.55,2,155,3,0,1,0,technical,low +0.39,0.51,2,155,3,0,1,0,management,low +0.1,0.81,6,248,4,0,1,0,marketing,low +0.4,0.5,2,136,3,0,1,0,marketing,low +0.39,0.54,2,133,3,0,1,0,marketing,low +0.78,0.45,4,128,2,0,1,0,sales,low +0.42,0.53,2,142,3,0,1,0,sales,low +0.39,0.54,2,149,3,0,1,0,sales,low +0.46,0.57,2,145,3,0,1,0,sales,low +0.1,0.92,6,279,4,0,1,0,sales,medium +0.45,0.47,2,146,3,0,1,0,sales,medium +0.1,0.83,6,264,4,1,1,0,sales,medium +0.1,0.89,7,272,4,0,1,0,sales,medium +0.78,0.86,5,256,5,0,1,0,sales,medium +0.4,0.65,2,296,5,0,1,0,sales,medium +0.45,0.51,2,155,3,1,1,0,sales,medium +0.39,0.56,2,130,3,0,1,0,sales,medium +0.43,0.48,2,157,3,0,1,0,sales,medium +0.09,0.96,6,245,4,0,1,0,sales,medium +0.79,0.86,5,226,5,0,1,0,sales,medium +0.44,0.47,2,156,3,1,1,0,sales,medium +0.79,0.95,5,228,5,0,1,0,sales,high +0.38,0.46,2,155,3,0,1,0,sales,low +0.36,0.56,2,159,3,0,1,0,sales,medium +0.39,0.57,2,142,3,0,1,0,accounting,medium +0.09,0.93,6,271,4,0,1,0,accounting,medium +0.16,0.65,4,277,5,0,1,0,accounting,medium +0.09,0.77,6,310,4,0,1,0,hr,low +0.11,0.87,6,254,4,0,1,0,hr,low +0.44,0.56,2,142,3,0,1,0,hr,low +0.11,0.88,7,253,4,0,1,0,hr,low +0.11,0.97,6,260,4,0,1,0,technical,low +0.45,0.52,2,147,3,0,1,0,technical,low +0.1,0.96,7,288,4,0,1,0,technical,low +0.4,0.46,2,160,3,0,1,0,technical,low +0.38,0.55,2,130,3,0,1,0,technical,low +0.39,0.56,2,133,3,0,1,0,technical,low +0.38,0.55,2,160,3,0,1,0,technical,low +0.38,0.45,2,151,3,0,1,0,technical,low +0.17,0.75,3,188,4,0,1,0,technical,low +0.79,0.84,5,247,5,0,1,0,technical,low +0.1,0.85,7,259,4,0,1,0,technical,low +0.37,0.48,2,129,3,0,1,0,support,low +0.42,0.49,2,152,3,0,1,0,support,low +0.44,0.48,2,128,3,0,1,0,support,low +0.11,0.83,6,253,4,0,1,0,support,low +0.39,0.48,2,151,3,0,1,0,support,low +0.1,0.83,5,271,5,0,1,0,support,low +0.4,0.46,2,155,3,0,1,0,support,medium +0.86,0.91,5,245,5,0,1,0,support,medium +0.37,0.46,2,157,3,0,1,0,support,medium +0.4,0.51,2,160,3,0,1,0,support,medium +0.43,0.48,2,149,3,0,1,0,support,medium +0.88,0.88,5,248,5,0,1,0,technical,medium +0.44,0.52,2,128,3,0,1,0,technical,medium +0.87,1,4,224,5,0,1,0,technical,medium +0.4,0.46,2,156,3,0,1,0,management,medium +0.45,0.52,2,143,3,0,1,0,IT,medium +0.84,0.93,4,250,5,0,1,0,IT,medium +0.1,0.68,3,179,3,0,1,0,IT,medium +0.72,0.99,5,257,5,0,1,0,IT,high +0.4,0.5,2,127,3,0,1,0,IT,low +0.45,0.5,2,145,3,0,1,0,product_mng,medium +0.89,0.98,5,274,5,0,1,0,product_mng,medium +0.4,0.55,2,131,3,0,1,0,product_mng,medium +0.38,0.53,2,136,3,0,1,0,product_mng,medium +0.38,0.47,2,140,3,1,1,0,IT,low +0.1,0.82,7,265,4,0,1,0,RandD,low +0.42,0.48,2,148,3,1,1,0,RandD,low +0.74,0.86,5,262,5,0,1,0,RandD,low +0.1,0.8,6,261,4,0,1,0,RandD,low +0.82,0.9,5,248,5,0,1,0,RandD,low +0.38,0.55,2,131,3,0,1,0,marketing,low +0.41,0.56,2,160,3,0,1,0,sales,low +0.4,0.47,2,152,3,0,1,0,accounting,low +0.83,0.98,4,249,5,0,1,0,support,low +0.36,0.57,2,144,3,0,1,0,technical,low +0.75,0.98,4,245,5,0,1,0,management,low +0.44,0.53,2,146,3,0,1,0,marketing,low +0.1,0.94,6,297,5,0,1,0,marketing,low +0.39,0.52,2,148,3,1,1,0,marketing,low +0.09,0.84,7,260,4,0,1,0,sales,low +0.4,0.57,2,152,3,0,1,0,sales,low +0.41,0.54,2,135,3,0,1,0,sales,low +0.83,0.92,4,235,5,0,1,0,sales,low +0.42,0.47,2,145,3,0,1,0,sales,low +0.61,0.46,5,220,4,0,1,0,sales,low +0.44,0.52,2,128,3,0,1,0,sales,medium +0.77,0.81,5,237,5,0,1,0,sales,medium +0.81,0.95,4,275,5,0,1,0,sales,medium +0.1,0.78,6,310,4,0,1,0,sales,medium +0.73,0.84,5,251,6,0,1,0,sales,medium +0.09,0.83,6,250,4,0,1,0,sales,medium +0.9,0.99,4,259,6,0,1,0,sales,medium +0.88,1,4,259,5,0,1,0,sales,medium +0.09,0.87,7,305,4,0,1,0,sales,medium +0.4,0.56,2,130,3,1,1,0,sales,medium +0.17,0.55,6,250,5,0,1,0,sales,medium +0.82,0.82,5,220,6,0,1,0,sales,medium +0.9,0.83,4,266,5,0,1,0,sales,high +0.83,0.92,4,255,5,0,1,0,accounting,low +0.44,0.5,2,154,3,0,1,0,accounting,medium +0.5,0.85,4,138,3,0,1,0,accounting,medium +0.14,0.61,6,291,5,0,1,0,hr,medium +0.77,0.82,4,217,5,0,1,0,hr,medium +0.09,0.83,6,286,4,0,1,0,hr,low +0.11,0.88,6,290,4,0,1,0,hr,low +0.44,0.57,2,148,3,0,1,0,technical,low +0.43,0.52,2,146,3,0,1,0,technical,low +0.12,0.8,5,136,2,0,1,0,technical,low +0.1,0.86,7,261,5,0,1,0,technical,low +0.1,0.96,6,274,4,0,1,0,technical,low +0.4,0.48,2,132,3,0,1,0,technical,low +0.41,0.47,2,145,3,0,1,0,technical,low +0.37,0.48,2,153,3,0,1,0,technical,low +0.4,0.48,2,139,3,0,1,0,technical,low +0.74,0.96,4,231,5,0,1,0,technical,low +0.39,0.48,2,154,3,0,1,0,technical,low +0.11,0.9,5,307,4,0,1,0,support,low +0.36,0.51,2,129,3,0,1,0,support,low +0.8,0.83,5,275,5,0,1,0,support,low +0.6,0.85,3,250,2,0,1,0,support,low +0.36,0.54,2,158,3,0,1,0,support,low +0.1,0.96,6,310,5,0,1,0,support,low +0.65,0.86,2,181,2,0,1,0,support,low +0.49,0.73,4,244,3,0,1,0,support,low +0.73,0.96,5,256,6,1,1,0,support,medium +0.11,0.8,6,259,5,0,1,0,support,medium +0.73,0.91,4,247,5,0,1,0,support,medium +0.43,0.46,2,129,3,0,1,0,technical,medium +0.73,0.93,5,229,5,0,1,0,technical,medium +0.76,0.85,5,236,6,0,1,0,technical,medium +0.09,0.96,6,281,4,0,1,0,management,medium +0.9,0.81,5,264,5,0,1,0,IT,medium +0.1,0.81,6,308,4,0,1,0,IT,medium +0.43,0.48,2,147,3,0,1,0,IT,medium +0.41,0.55,2,159,3,0,1,0,IT,medium +0.41,0.57,2,154,3,0,1,0,IT,medium +0.1,0.87,6,307,4,0,1,0,product_mng,high +0.4,0.46,2,132,3,0,1,0,product_mng,low +0.4,0.53,2,152,3,0,1,0,product_mng,medium +0.36,0.48,5,310,3,0,1,0,product_mng,medium +0.83,0.95,5,230,5,0,1,0,IT,medium +0.83,0.94,5,273,5,0,1,0,RandD,medium +0.41,0.51,2,144,3,0,1,0,RandD,low +0.11,0.93,7,296,4,0,1,0,RandD,low +0.68,0.62,5,198,5,1,1,0,RandD,low +0.43,0.53,2,157,3,0,1,0,RandD,low +0.44,0.51,2,145,3,0,1,0,marketing,low +0.87,0.94,5,219,5,0,1,0,marketing,low +0.43,0.54,2,153,3,0,1,0,sales,low +0.89,0.48,3,178,5,0,1,0,accounting,low +0.83,0.88,5,239,5,0,1,0,support,low +0.11,0.87,6,278,5,0,1,0,technical,low +0.85,1,6,260,3,1,1,0,management,low +0.89,0.97,4,264,5,0,1,0,marketing,low +0.09,0.92,7,301,4,0,1,0,marketing,low +0.43,0.55,4,134,3,0,1,0,marketing,low +0.42,0.46,2,147,3,0,1,0,sales,low +0.43,0.54,2,130,3,0,1,0,sales,low +0.1,0.93,6,307,4,0,1,0,sales,low +0.37,0.46,2,156,3,0,1,0,sales,low +0.76,0.98,4,237,5,0,1,0,sales,low +0.88,0.89,4,254,5,0,1,0,sales,low +0.39,0.48,2,151,3,0,1,0,sales,low +0.45,0.54,2,131,3,0,1,0,sales,medium +0.91,0.95,5,241,5,0,1,0,sales,medium +0.86,0.85,5,267,5,0,1,0,sales,medium +0.39,0.53,2,153,3,0,1,0,sales,medium +0.89,1,4,217,5,0,1,0,sales,medium +0.11,0.86,6,254,4,0,1,0,sales,medium +0.1,0.87,6,265,5,0,1,0,sales,medium +0.38,0.57,2,146,3,0,1,0,sales,medium +0.4,0.54,2,156,3,0,1,0,sales,medium +0.86,0.97,5,269,5,0,1,0,sales,medium +0.1,0.86,6,288,4,0,1,0,sales,medium +0.1,0.85,6,283,4,0,1,0,sales,medium +0.42,0.5,2,128,3,0,1,0,accounting,high +0.36,0.46,2,130,3,0,1,0,accounting,low +0.39,0.48,2,127,3,0,1,0,accounting,medium +0.43,0.47,2,137,3,0,1,0,hr,medium +0.36,0.49,2,133,3,0,1,0,hr,medium +0.09,0.91,6,275,4,0,1,0,hr,medium +0.42,0.55,2,146,3,0,1,0,hr,low +0.42,0.46,2,135,3,0,1,0,technical,low +0.91,0.89,5,217,5,0,1,0,technical,low +0.41,0.56,2,154,3,0,1,0,technical,low +0.11,0.78,6,247,4,0,1,0,technical,low +0.09,0.83,6,295,5,0,1,0,technical,low +0.83,1,5,224,5,0,1,0,technical,low +0.11,0.78,6,281,4,0,1,0,technical,low +0.1,0.93,7,258,4,0,1,0,technical,low +0.42,0.55,2,150,3,0,1,0,technical,low +0.1,0.97,7,282,4,0,1,0,technical,low +0.38,0.51,2,138,3,0,1,0,technical,low +0.77,0.98,4,238,6,0,1,0,support,low +0.11,0.85,7,244,4,0,1,0,support,low +0.87,0.97,5,250,6,0,1,0,support,low +0.1,0.88,7,282,4,0,1,0,support,low +0.1,0.89,7,253,4,0,1,0,support,low +0.09,0.9,6,256,4,0,1,0,support,low +0.84,0.85,5,260,5,0,1,0,support,low +0.11,0.86,6,245,4,0,1,0,support,low +0.81,0.97,5,230,5,0,1,0,support,low +0.77,0.85,5,276,5,0,1,0,support,medium +0.42,0.47,2,137,3,0,1,0,support,medium +0.36,0.56,2,140,3,0,1,0,technical,medium +0.81,0.83,5,269,6,0,1,0,technical,medium +0.37,0.46,2,130,3,1,1,0,technical,medium +0.1,0.96,6,264,4,0,1,0,management,medium +0.14,0.55,6,175,5,0,1,0,IT,medium +0.41,0.51,2,159,3,0,1,0,IT,medium +0.44,0.55,2,128,3,0,1,1,IT,medium +0.82,0.94,5,232,5,1,1,0,IT,medium +0.67,0.54,3,166,5,0,1,0,IT,medium +0.44,0.57,2,141,3,0,1,0,product_mng,medium +0.42,0.54,2,143,3,0,1,0,product_mng,high +0.84,0.83,4,239,5,0,1,0,product_mng,low +0.86,1,4,232,5,0,1,0,product_mng,medium +0.56,0.86,5,252,2,0,1,0,IT,medium +0.09,0.93,6,255,4,0,1,0,RandD,medium +0.1,0.81,7,270,4,0,1,0,RandD,medium +0.39,0.54,2,149,3,0,1,0,RandD,low +0.75,0.89,5,276,5,0,1,0,RandD,low +0.43,0.55,2,159,3,0,1,0,RandD,low +0.09,0.96,7,274,5,0,1,0,marketing,low +0.83,0.94,4,264,5,0,1,0,sales,low +0.59,1,3,156,4,0,1,0,accounting,low +0.44,0.54,2,135,3,0,1,0,support,low +0.38,0.49,2,128,3,0,1,0,technical,low +0.76,0.98,5,242,5,0,1,0,management,low +0.22,0.86,4,293,3,0,1,0,marketing,low +0.4,0.46,2,141,3,0,1,0,marketing,low +0.41,0.48,2,155,3,0,1,0,marketing,low +0.38,0.51,2,141,3,0,1,0,sales,low +0.45,0.68,4,212,4,1,1,0,sales,low +0.39,0.56,2,160,3,0,1,0,sales,low +0.45,0.47,2,150,3,0,1,0,sales,low +0.42,0.53,2,132,3,1,1,0,sales,low +0.1,0.87,6,248,4,0,1,0,sales,low +0.78,0.96,5,272,5,0,1,0,sales,low +0.39,0.56,2,160,3,0,1,0,sales,low +0.1,0.87,7,299,4,0,1,0,sales,low +0.1,0.8,6,292,4,0,1,0,sales,medium +0.43,0.46,2,126,3,0,1,0,sales,medium +0.38,0.45,2,132,3,0,1,0,sales,medium +0.09,0.77,6,282,5,0,1,0,sales,medium +0.39,0.53,2,141,3,0,1,0,sales,medium +0.73,0.99,6,206,5,0,1,0,sales,medium +0.38,0.49,2,140,3,0,1,0,sales,medium +0.1,0.91,6,255,4,0,1,0,sales,medium +0.41,0.54,2,133,3,0,1,0,sales,medium +0.43,0.51,2,131,3,0,1,0,sales,medium +0.79,0.96,4,257,5,0,1,0,accounting,medium +0.1,0.81,6,269,4,0,1,0,accounting,medium +0.11,0.97,6,254,4,0,1,0,accounting,high +0.42,0.5,2,143,3,0,1,0,hr,low +0.36,0.51,2,157,3,0,1,0,hr,medium +0.63,0.93,5,163,3,0,1,0,hr,medium +0.41,0.56,2,133,3,0,1,0,hr,medium +0.36,0.46,2,157,3,0,1,0,technical,medium +0.1,0.9,6,301,5,0,1,0,technical,low +0.11,0.96,6,310,4,0,1,0,technical,low +0.44,0.54,2,133,3,0,1,0,technical,low +0.77,0.96,5,249,6,0,1,0,technical,low +0.91,1,4,251,6,0,1,0,technical,low +0.26,0.46,2,242,3,0,1,0,technical,low +0.81,0.93,5,265,6,0,1,0,technical,low +0.11,0.87,6,280,4,0,1,0,technical,low +0.92,0.89,4,241,5,0,1,0,technical,low +0.1,0.86,5,253,4,0,1,0,technical,low +0.45,0.51,2,137,3,0,1,0,support,low +0.11,0.94,6,266,4,0,1,0,support,low +0.23,0.7,5,168,4,0,1,0,support,low +0.86,0.95,4,270,5,0,1,0,support,low +0.44,0.55,2,141,3,0,1,0,support,low +0.41,0.56,2,133,3,0,1,0,support,low +0.84,0.97,5,256,5,0,1,0,support,low +0.42,0.52,2,160,3,0,1,0,support,low +0.11,0.88,7,275,4,0,1,0,support,low +0.38,0.46,2,160,3,0,1,0,support,low +0.11,0.96,7,244,4,0,1,0,support,low +0.1,0.83,6,271,4,0,1,0,technical,medium +0.86,0.88,5,268,5,0,1,0,technical,medium +0.91,1,4,253,5,1,1,0,technical,medium +0.37,0.53,2,140,3,0,1,0,management,medium +0.46,0.5,2,146,3,0,1,0,IT,medium +0.1,0.89,6,259,5,0,1,0,IT,medium +0.37,0.46,2,127,3,0,1,0,IT,medium +0.4,0.48,2,161,3,0,1,0,IT,medium +0.09,0.78,6,260,4,0,1,0,IT,medium +0.11,0.89,6,272,4,0,1,0,product_mng,medium +0.39,0.48,2,159,3,0,1,0,product_mng,medium +0.89,0.96,4,219,6,0,1,0,product_mng,medium +0.09,0.91,6,243,4,0,1,0,product_mng,high +0.88,0.97,4,255,5,1,1,0,IT,low +0.11,0.9,7,245,4,0,1,0,RandD,medium +0.1,0.95,6,264,5,0,1,0,RandD,medium +0.91,1,4,245,6,0,1,0,RandD,medium +0.44,0.52,2,137,3,0,1,0,RandD,medium +0.63,0.76,2,157,4,0,1,0,RandD,low +0.1,0.87,7,247,4,0,1,0,marketing,low +0.36,0.51,2,144,3,0,1,0,sales,low +0.45,0.51,2,149,3,0,1,0,accounting,low +0.73,1,5,253,6,0,1,0,support,low +0.37,0.55,2,140,3,0,1,0,technical,low +0.09,0.85,7,307,4,0,1,0,management,low +0.41,0.71,3,205,4,0,1,0,marketing,low +0.72,1,5,234,5,0,1,0,marketing,low +0.36,0.54,2,127,3,0,1,0,marketing,low +0.9,1,4,229,5,0,1,0,sales,low +0.44,0.56,2,141,3,0,1,0,sales,low +0.78,0.95,4,260,5,0,1,0,sales,low +0.37,0.52,2,141,3,0,1,0,sales,low +0.4,0.47,2,144,3,1,1,0,sales,low +0.84,1,5,250,5,0,1,0,sales,low +0.09,0.86,6,245,4,0,1,0,sales,low +0.83,0.93,4,269,5,0,1,0,sales,low +0.11,0.87,6,273,4,0,1,0,sales,low +0.37,0.5,2,142,3,0,1,0,sales,low +0.09,0.93,6,273,5,0,1,0,sales,low +0.43,0.47,2,248,2,0,1,0,sales,medium +0.39,0.56,2,147,3,0,1,0,sales,medium +0.85,0.9,2,168,2,0,1,0,sales,medium +0.38,0.52,2,128,3,0,1,0,sales,medium +0.76,0.84,5,227,5,1,1,0,sales,medium +0.44,0.51,2,135,3,0,1,0,sales,medium +0.73,1,4,268,5,0,1,0,sales,medium +0.43,0.53,2,136,3,0,1,0,sales,medium +0.43,0.51,2,149,3,1,1,0,accounting,medium +0.09,0.96,7,264,4,0,1,0,accounting,medium +0.43,0.53,2,143,3,0,1,0,accounting,medium +0.45,0.57,2,138,3,0,1,0,hr,medium +0.42,0.48,2,146,3,0,1,0,hr,high +0.41,0.46,2,150,3,1,1,0,hr,low +0.44,0.55,2,156,3,0,1,0,hr,medium +0.09,0.92,7,245,4,0,1,0,technical,medium +0.41,0.51,2,156,3,0,1,0,technical,medium +0.43,0.51,2,143,3,0,1,0,technical,medium +0.38,0.51,2,159,3,0,1,0,technical,low +0.85,0.96,4,217,5,0,1,0,technical,low +0.88,0.91,4,234,6,0,1,0,technical,low +0.44,0.46,2,138,3,0,1,0,technical,low +0.11,0.92,7,265,4,0,1,0,technical,low +0.38,0.5,2,145,3,0,1,0,technical,low +0.09,0.78,6,263,4,0,1,0,technical,low +0.11,0.79,6,264,4,0,1,0,technical,low +0.11,0.88,6,253,4,0,1,0,support,low +0.44,0.48,2,155,3,0,1,0,support,low +0.38,0.51,2,137,3,0,1,0,support,low +0.1,0.87,6,254,5,0,1,0,support,low +0.45,0.57,2,143,3,0,1,0,support,low +0.11,0.94,7,280,5,0,1,0,support,low +0.36,0.48,2,136,3,0,1,0,support,low +0.72,0.95,5,271,5,0,1,0,support,low +0.43,0.48,2,157,3,0,1,0,support,low +0.45,0.5,2,150,3,0,1,0,support,low +0.4,0.53,2,127,3,0,1,0,support,low +0.1,0.81,6,271,4,0,1,0,technical,low +0.83,0.93,5,257,5,0,1,0,technical,low +0.11,0.8,7,305,4,0,1,0,technical,medium +0.43,0.5,2,152,3,0,1,0,management,medium +0.38,0.5,2,144,3,0,1,0,IT,medium +0.83,1,5,269,5,0,1,0,IT,medium +0.11,0.82,7,285,4,0,1,0,IT,medium +0.43,0.52,2,136,3,0,1,0,IT,medium +0.11,0.88,6,294,4,0,1,0,IT,medium +0.43,0.46,2,157,3,0,1,0,product_mng,medium +0.1,0.89,6,280,4,0,1,0,product_mng,medium +0.44,0.51,2,152,3,0,1,0,product_mng,medium +0.82,0.91,5,276,6,0,1,0,product_mng,medium +0.1,0.86,6,247,4,0,1,0,IT,medium +0.1,0.95,5,286,4,0,1,0,RandD,high +0.3,0.89,5,257,5,0,1,0,RandD,low +0.1,0.93,6,258,4,0,1,0,RandD,medium +0.39,0.5,2,151,3,0,1,0,RandD,medium +0.14,0.47,4,175,2,0,1,0,RandD,medium +0.82,0.92,4,252,5,0,1,0,marketing,medium +0.1,0.85,6,266,4,0,1,0,sales,low +0.09,0.9,6,295,4,0,1,0,accounting,low +0.54,0.83,6,165,6,0,1,0,support,low +0.61,0.58,2,264,4,0,1,0,technical,low +0.1,0.79,6,275,4,0,1,0,management,low +0.1,0.9,6,299,4,0,1,0,marketing,low +0.36,0.49,2,147,3,0,1,0,marketing,low +0.1,0.97,7,306,4,0,1,0,marketing,low +0.84,1,5,242,5,0,1,0,sales,low +0.38,0.51,2,159,3,0,1,0,sales,low +0.41,0.49,2,147,3,0,1,0,sales,low +0.37,0.51,2,154,3,1,1,0,sales,low +0.43,0.56,2,129,3,0,1,0,sales,low +0.46,0.53,2,161,3,0,1,0,sales,low +0.09,0.84,6,269,4,0,1,0,sales,low +0.78,0.86,5,274,5,0,1,0,sales,low +0.45,0.53,2,159,3,0,1,0,sales,low +0.42,0.47,2,135,3,0,1,0,sales,low +0.46,0.53,2,147,3,0,1,0,sales,low +0.39,0.49,2,142,3,0,1,0,sales,low +0.36,0.51,2,130,3,0,1,0,sales,low +0.43,0.53,2,147,3,0,1,0,sales,medium +0.85,0.87,5,246,5,1,1,0,sales,medium +0.11,0.92,6,281,4,0,1,0,sales,medium +0.11,0.9,6,253,4,0,1,0,sales,medium +0.38,0.47,2,128,3,0,1,0,sales,medium +0.43,0.57,2,129,3,0,1,0,sales,medium +0.75,1,5,223,6,0,1,0,accounting,medium +0.11,0.92,6,269,4,0,1,0,accounting,medium +0.1,0.9,7,269,4,0,1,0,accounting,medium +0.1,0.81,7,244,5,0,1,0,hr,medium +0.37,0.5,2,154,3,0,1,0,hr,medium +0.11,0.93,5,140,5,0,1,0,hr,medium +0.45,0.46,2,159,3,0,1,0,hr,high +0.44,0.48,2,158,3,0,1,0,technical,low +0.44,0.56,2,133,3,0,1,0,technical,medium +0.11,0.77,6,247,4,0,1,0,technical,medium +0.79,0.93,5,268,5,0,1,0,technical,medium +0.8,0.9,5,267,5,0,1,0,technical,medium +0.1,0.87,7,251,5,0,1,0,technical,low +0.09,0.93,6,279,4,0,1,0,technical,low +0.7,0.84,6,161,4,0,1,0,technical,low +0.72,0.84,4,256,5,0,1,0,technical,low +0.11,0.8,6,304,4,0,1,0,technical,low +0.39,0.51,2,137,3,0,1,0,technical,low +0.4,0.49,2,144,3,0,1,0,support,low +0.43,0.54,2,142,3,0,1,0,support,low +0.76,0.87,5,262,5,0,1,0,support,low +0.4,0.48,2,142,3,0,1,0,support,low +0.09,0.89,6,282,4,0,1,0,support,low +0.37,0.54,2,157,3,0,1,0,support,low +0.87,0.91,5,228,5,0,1,0,support,low +0.1,0.86,6,283,4,0,1,0,support,low +0.11,0.86,6,286,4,0,1,0,support,low +0.43,0.5,2,148,3,0,1,0,support,low +0.1,0.81,6,245,4,0,1,0,support,low +0.11,0.95,6,279,4,0,1,0,technical,low +0.85,0.87,5,245,5,0,1,0,technical,low +0.37,0.49,2,138,3,0,1,0,technical,low +0.44,0.52,2,141,3,0,1,0,management,low +0.1,0.83,7,302,5,0,1,0,IT,medium +0.11,0.89,6,268,4,0,1,0,IT,medium +0.87,0.88,5,240,5,0,1,0,IT,medium +0.39,0.49,2,127,3,0,1,0,IT,medium +0.1,0.94,7,264,4,0,1,0,IT,medium +0.44,0.53,2,155,3,0,1,0,product_mng,medium +0.4,0.49,2,143,3,0,1,0,product_mng,medium +0.76,0.98,5,217,6,0,1,0,product_mng,medium +0.46,0.55,2,147,3,0,1,0,product_mng,medium +0.9,0.92,4,271,5,0,1,0,IT,medium +0.85,0.87,4,273,5,0,1,0,RandD,medium +0.1,0.78,5,285,4,1,1,0,RandD,medium +0.43,0.49,2,131,3,0,1,0,RandD,high +0.2,0.5,5,135,6,0,1,0,RandD,low +0.81,0.92,5,239,5,0,1,0,RandD,medium +0.83,0.85,5,237,5,0,1,0,marketing,medium +0.14,0.75,4,277,5,1,1,0,sales,medium +0.1,0.84,5,303,5,0,1,0,accounting,medium +0.91,0.98,4,242,6,0,1,0,support,low +0.37,0.57,2,158,3,0,1,0,technical,low +0.42,0.57,2,147,3,1,1,0,management,low +0.39,0.68,2,282,5,0,1,0,marketing,low +0.39,0.54,2,154,3,0,1,0,marketing,low +0.44,0.52,2,149,3,0,1,0,marketing,low +0.37,0.45,2,149,3,0,1,0,sales,low +0.39,0.53,2,146,3,0,1,0,sales,low +0.72,0.94,4,258,5,0,1,0,sales,low +0.37,0.49,2,148,3,0,1,0,sales,low +0.82,0.94,5,236,5,0,1,0,sales,low +0.42,0.52,2,134,3,0,1,0,sales,low +0.59,1,2,155,5,0,1,0,sales,low +0.82,0.86,5,257,5,0,1,0,sales,low +0.73,0.97,6,189,2,0,1,0,sales,low +0.78,0.66,3,164,3,0,1,0,sales,low +0.09,0.95,6,271,4,0,1,0,sales,low +0.1,0.97,6,280,4,0,1,0,sales,low +0.45,0.46,2,149,3,0,1,0,sales,low +0.83,0.81,5,219,5,0,1,0,sales,low +0.43,0.51,2,128,3,0,1,0,sales,low +0.4,0.47,2,128,3,0,1,0,sales,medium +0.43,0.46,2,157,3,0,1,0,sales,medium +0.78,0.93,4,225,5,0,1,0,sales,medium +0.39,0.45,2,140,3,0,1,0,sales,medium +0.11,0.97,6,310,4,0,1,0,accounting,medium +0.36,0.52,2,143,3,0,1,0,accounting,medium +0.36,0.54,2,153,3,0,1,0,accounting,medium +0.1,0.79,7,310,4,0,1,0,hr,medium +0.4,0.47,2,136,3,0,1,0,hr,medium +0.81,0.85,4,251,6,0,1,0,hr,medium +0.4,0.47,2,144,3,0,1,0,hr,medium +0.09,0.93,6,296,4,0,1,0,technical,medium +0.76,0.89,5,238,5,0,1,0,technical,high +0.73,0.93,5,162,4,0,1,0,technical,low +0.38,0.49,2,137,3,0,1,0,technical,medium +0.72,0.84,5,257,5,0,1,0,technical,medium +0.4,0.56,2,148,3,0,1,0,technical,medium +0.91,0.99,5,254,5,0,1,0,technical,medium +0.85,0.85,4,247,6,0,1,0,technical,low +0.9,0.7,5,206,4,0,1,0,technical,low +0.46,0.55,2,145,3,0,1,0,technical,low +0.43,0.57,2,159,3,1,1,0,technical,low +0.89,0.88,5,228,5,1,1,0,support,low +0.09,0.81,6,257,4,0,1,0,support,low +0.4,0.48,2,155,3,0,1,0,support,low +0.76,0.83,6,293,6,0,1,0,support,low +0.4,0.57,2,151,3,0,1,0,support,low +0.37,0.48,2,160,3,0,1,0,support,low +0.37,0.53,2,143,3,0,1,0,support,low +0.11,0.96,6,280,4,0,1,0,support,low +0.37,0.52,2,158,3,0,1,0,support,low +0.09,0.89,7,310,4,0,1,0,support,low +0.88,0.86,5,258,5,0,1,0,support,low +0.84,0.94,5,262,5,0,1,0,technical,low +0.1,0.98,6,265,4,0,1,0,technical,low +0.41,0.47,2,143,3,1,1,0,technical,low +0.84,0.91,5,232,6,0,1,0,management,low +0.41,0.55,2,161,3,0,1,0,IT,low +0.53,0.76,5,132,6,0,1,0,IT,low +0.42,0.47,2,139,3,1,1,0,IT,medium +0.36,0.5,2,131,3,0,1,0,IT,medium +0.38,0.52,2,161,3,0,1,0,IT,medium +0.36,0.48,2,152,3,0,1,0,product_mng,medium +0.46,0.54,2,138,3,0,1,0,product_mng,medium +0.37,0.47,2,159,3,1,1,0,product_mng,medium +0.42,0.49,2,153,3,0,1,0,product_mng,medium +0.44,0.56,2,156,3,0,1,0,IT,medium +0.92,0.82,5,265,5,0,1,0,RandD,medium +0.1,0.79,6,301,5,0,1,0,RandD,medium +0.76,1,4,220,6,0,1,0,RandD,medium +0.11,0.79,6,247,4,0,1,0,RandD,medium +0.43,0.48,2,136,3,0,1,0,RandD,high +0.4,0.49,2,160,3,0,1,0,marketing,low +0.11,0.84,7,310,4,0,1,0,sales,medium +0.84,0.82,5,240,5,0,1,0,accounting,medium +0.84,0.84,5,238,5,0,1,0,support,medium +0.51,0.6,7,243,5,0,1,0,technical,medium +0.66,0.91,5,248,4,0,1,0,management,low +0.42,0.56,2,137,3,0,1,0,marketing,low +0.38,0.49,2,155,3,0,1,0,marketing,low +0.15,0.63,7,229,3,0,1,0,marketing,low +0.38,0.53,2,140,3,0,1,0,sales,low +0.43,0.54,2,156,3,0,1,0,sales,low +0.37,0.57,2,147,3,0,1,0,sales,low +0.11,0.92,7,293,4,0,1,0,sales,low +0.41,0.53,2,157,3,0,1,0,sales,low +0.84,0.96,4,247,5,0,1,0,sales,low +0.4,0.51,2,148,3,0,1,0,sales,low +0.58,0.74,4,215,3,0,0,0,sales,low +0.82,0.67,2,202,3,0,0,0,sales,low +0.45,0.69,5,193,3,0,0,0,sales,low +0.78,0.82,5,247,3,0,0,0,sales,low +0.49,0.6,3,214,2,0,0,0,sales,low +0.36,0.95,3,206,4,0,0,0,sales,low +0.54,0.37,2,176,2,0,0,0,sales,low +0.99,0.91,5,136,4,0,0,0,sales,low +0.5,0.75,6,127,3,0,0,0,sales,low +0.74,0.64,4,268,3,0,0,0,sales,low +0.56,0.58,4,258,3,0,0,0,sales,medium +0.34,0.39,2,136,3,0,0,0,sales,medium +0.48,0.94,5,255,6,0,0,0,accounting,medium +0.73,0.62,3,218,3,0,0,0,accounting,medium +0.59,0.87,3,268,4,0,0,0,accounting,medium +0.81,0.57,3,224,2,0,0,0,hr,medium +0.9,0.66,3,231,3,0,0,0,hr,medium +0.41,0.84,6,191,6,0,0,0,hr,medium +0.89,0.92,4,165,5,0,0,0,hr,medium +0.48,0.84,4,252,3,0,0,0,technical,medium +0.79,0.97,5,266,2,0,0,0,technical,medium +0.98,0.66,5,248,3,0,0,0,technical,medium +0.75,0.7,4,144,4,0,0,0,technical,high +1,0.41,4,174,3,0,0,0,technical,low +0.24,0.82,5,179,6,0,0,0,technical,medium +0.84,0.43,6,246,4,0,0,0,technical,medium +0.56,0.86,4,201,3,1,0,0,technical,medium +0.92,0.93,4,208,3,0,0,0,technical,medium +0.61,0.98,3,267,3,0,0,0,technical,low +0.84,0.77,4,262,4,0,0,0,technical,low +0.85,0.59,3,235,3,0,0,0,support,low +0.67,0.57,2,160,4,0,0,0,support,low +0.54,0.94,4,267,4,0,0,0,support,low +0.75,0.56,5,175,4,0,0,0,support,low +0.82,0.79,4,224,2,0,0,0,support,low +0.76,0.6,4,177,2,0,0,0,support,low +0.19,0.53,6,191,4,0,0,0,support,low +0.61,0.41,3,138,3,0,0,0,support,low +0.51,0.8,3,218,2,1,0,0,support,low +0.52,0.88,3,179,2,1,0,0,support,low +0.74,0.58,3,241,3,0,0,0,support,low +0.98,0.91,4,240,3,0,0,0,technical,low +0.71,0.92,3,202,4,0,0,0,technical,low +0.33,0.88,6,260,3,0,0,0,technical,low +0.98,0.97,3,196,3,0,0,0,management,low +0.52,0.59,2,176,3,1,0,0,IT,low +0.84,0.65,2,140,3,0,0,0,IT,low +0.87,0.5,3,242,2,0,0,0,IT,low +0.48,0.85,3,279,4,0,0,0,IT,low +0.58,0.55,4,202,3,0,0,0,IT,medium +0.58,0.84,5,228,3,0,0,0,product_mng,medium +0.73,0.69,4,171,3,0,0,0,product_mng,medium +0.68,0.54,4,153,3,0,0,0,product_mng,medium +0.41,0.68,3,165,3,1,0,0,product_mng,medium +0.85,0.6,3,182,3,0,0,0,IT,medium +0.54,0.7,5,239,5,0,0,0,RandD,medium +0.81,0.61,5,231,2,0,0,0,RandD,medium +0.7,0.52,4,255,3,0,0,0,RandD,medium +0.63,0.66,4,237,2,1,0,0,RandD,medium +0.68,0.54,3,251,2,0,0,0,RandD,medium +0.7,0.53,4,178,2,0,0,0,marketing,medium +0.82,0.65,4,148,3,0,0,0,sales,high +0.72,0.94,4,240,4,0,0,0,accounting,low +0.77,0.78,3,269,3,0,0,0,support,medium +0.86,0.91,4,147,3,0,0,0,technical,medium +0.15,0.97,3,198,5,0,0,0,management,medium +0.81,0.99,5,143,3,0,0,0,marketing,medium +0.93,0.98,3,238,2,0,0,0,marketing,low +0.62,0.74,4,213,4,0,0,0,marketing,low +0.53,0.81,3,226,3,1,0,0,sales,low +0.86,0.99,3,169,2,1,0,0,sales,low +0.92,0.65,4,238,2,0,0,0,sales,low +0.97,0.83,4,202,3,0,0,0,sales,low +0.39,0.78,2,205,6,1,0,0,sales,low +0.45,0.66,3,111,4,0,0,0,sales,low +0.41,0.47,4,104,3,0,0,0,sales,low +0.51,0.69,3,212,3,0,0,0,sales,low +0.74,0.62,4,236,4,0,0,0,sales,low +0.69,0.57,5,245,2,1,0,0,sales,low +0.84,0.64,4,267,4,0,0,0,sales,low +0.69,0.66,5,106,5,0,0,0,sales,low +0.93,0.53,5,198,3,0,0,0,sales,low +0.33,0.45,6,239,3,0,0,0,sales,low +0.25,0.65,5,220,3,0,0,0,sales,low +0.63,0.59,5,224,3,0,0,0,sales,low +0.81,0.62,3,100,3,0,0,0,sales,low +0.12,0.87,4,244,5,0,0,0,sales,low +0.52,0.66,4,139,3,0,0,0,sales,low +0.57,0.51,2,152,2,0,0,0,accounting,medium +0.84,0.58,4,208,3,0,0,0,accounting,medium +0.6,0.95,5,205,3,0,0,0,accounting,medium +0.73,0.44,2,194,6,0,0,0,hr,medium +0.2,0.58,3,209,5,0,0,0,hr,medium +0.58,0.9,3,212,3,0,0,0,hr,medium +0.48,0.56,2,151,3,0,0,0,hr,medium +0.54,0.67,4,282,6,0,0,0,technical,medium +0.86,1,4,256,3,0,0,0,technical,medium +0.94,0.83,2,185,3,1,0,0,technical,medium +0.76,0.74,5,132,3,0,0,0,technical,medium +0.61,0.95,5,233,3,0,0,0,technical,medium +0.56,0.94,4,215,2,0,0,0,technical,high +1,0.74,3,220,4,0,0,0,technical,low +0.15,0.53,6,222,3,0,0,0,technical,medium +0.19,0.58,5,182,2,0,0,0,technical,medium +0.17,0.73,5,258,4,0,0,0,technical,medium +0.71,0.57,3,209,2,0,0,0,technical,medium +0.86,0.79,3,242,2,0,0,0,support,low +0.59,0.88,4,155,3,1,0,0,support,low +0.74,0.76,5,104,4,0,0,0,support,low +0.98,0.92,4,201,3,1,0,0,support,low +0.93,0.75,5,143,3,0,0,0,support,low +1,0.92,5,161,3,1,0,0,support,low +0.59,0.81,4,200,2,0,0,0,support,low +0.98,0.55,4,255,2,0,0,0,support,low +0.35,0.5,5,227,2,0,0,0,support,low +0.42,0.96,3,270,6,0,0,0,support,low +0.61,0.85,5,230,3,0,0,0,support,low +0.78,0.72,5,270,3,1,0,0,technical,low +0.93,0.52,4,200,3,0,0,0,technical,low +0.5,0.95,5,207,3,0,0,0,technical,low +0.67,0.51,5,182,3,0,0,0,management,low +0.75,0.85,4,234,3,0,0,0,IT,low +0.79,0.51,4,237,2,0,0,0,IT,low +0.84,0.89,4,187,2,1,0,0,IT,low +0.72,0.5,3,257,6,0,0,0,IT,low +0.57,0.48,2,194,2,0,0,0,IT,low +0.73,0.52,4,162,3,0,0,0,product_mng,low +0.74,0.58,4,148,2,0,0,0,product_mng,medium +0.52,0.83,4,210,2,0,0,0,product_mng,medium +0.56,0.76,3,213,2,1,0,0,product_mng,medium +0.76,0.68,4,189,2,1,0,0,IT,medium +0.82,0.93,4,185,2,0,0,0,RandD,medium +0.76,0.83,3,186,2,1,0,0,RandD,medium +0.62,0.59,3,128,3,0,0,0,RandD,medium +0.48,0.8,4,268,3,0,0,0,RandD,medium +0.64,0.77,3,213,3,1,0,0,RandD,medium +0.74,0.82,4,142,2,0,0,0,marketing,medium +0.52,0.43,2,199,2,0,0,0,sales,medium +0.67,0.5,4,157,2,0,0,0,accounting,medium +0.71,0.76,5,172,2,1,0,0,support,high +0.72,0.63,3,176,3,1,0,0,technical,low +0.33,0.58,2,183,2,0,0,0,management,medium +0.91,0.56,4,270,2,0,0,0,marketing,medium +0.88,0.68,5,157,4,1,0,0,marketing,medium +0.96,0.6,4,185,3,0,0,0,marketing,medium +0.97,0.68,3,167,3,0,0,0,sales,low +0.27,0.59,5,226,5,0,0,0,sales,low +0.65,0.64,3,223,4,0,0,0,sales,low +0.68,0.73,3,257,3,0,0,0,sales,low +0.68,0.46,4,143,3,0,0,0,sales,low +0.69,0.74,3,215,2,0,0,0,sales,low +0.79,0.99,3,194,4,0,0,0,sales,low +0.74,0.92,5,193,3,0,0,0,sales,low +0.8,0.83,3,163,3,0,0,0,sales,low +0.38,0.94,5,252,5,0,0,0,sales,low +0.26,0.83,3,168,3,0,0,0,sales,low +0.81,0.86,3,231,3,0,0,0,sales,low +0.67,0.54,2,141,2,0,0,0,sales,low +0.55,0.81,4,260,2,0,0,0,sales,low +0.87,0.71,3,132,2,0,0,0,sales,low +0.46,0.69,2,159,2,0,0,0,sales,low +0.63,0.57,4,177,3,1,0,0,sales,low +0.54,0.96,4,248,3,0,0,0,sales,low +1,0.49,3,185,2,0,0,0,sales,low +0.97,0.66,4,149,2,0,0,0,accounting,low +0.9,0.92,3,152,3,0,0,0,accounting,low +0.75,0.7,3,129,3,0,0,0,accounting,medium +0.92,0.84,4,208,2,0,0,0,hr,medium +0.8,0.94,4,136,2,0,0,0,hr,medium +0.57,0.81,3,142,2,0,0,0,hr,medium +0.81,0.94,3,225,4,0,0,0,hr,medium +0.64,0.6,3,143,3,0,0,0,technical,medium +0.71,0.54,4,215,3,0,0,0,technical,medium +0.35,0.58,3,229,6,1,0,0,technical,medium +0.88,0.81,5,193,5,0,0,0,technical,medium +0.13,0.59,5,160,5,0,0,0,technical,medium +0.82,0.73,4,195,5,1,0,0,technical,medium +0.17,0.92,4,189,2,0,0,0,technical,medium +0.21,0.82,4,207,5,0,0,0,technical,high +0.89,0.47,4,108,3,0,0,0,technical,low +0.2,0.72,6,224,4,0,0,0,technical,medium +0.99,0.81,5,180,3,1,0,0,technical,medium +0.26,0.85,6,152,4,0,0,0,support,medium +0.22,0.53,4,244,2,0,0,0,support,medium +0.79,0.84,3,176,3,0,0,0,support,low +0.73,0.79,4,145,2,1,0,0,support,low +0.83,0.54,3,149,3,0,0,0,support,low +0.42,0.54,3,122,4,0,0,0,support,low +0.18,0.8,2,110,5,0,0,0,support,low +0.92,0.91,4,222,2,0,0,0,support,low +0.87,0.52,3,237,3,0,0,0,support,low +0.72,0.65,4,224,3,0,0,0,support,low +0.64,0.58,5,115,5,0,0,0,support,low +1,0.66,4,180,3,0,0,0,technical,low +0.83,0.65,4,162,3,0,0,0,technical,low +0.98,0.58,4,136,3,0,0,0,technical,low +0.7,0.87,3,260,2,0,0,0,management,low +0.9,0.79,4,150,2,0,0,0,IT,low +0.55,0.99,4,248,3,0,0,0,IT,low +0.78,0.84,3,233,3,1,0,0,IT,low +0.89,0.53,5,272,3,0,0,0,IT,low +0.17,0.59,3,197,5,0,0,0,IT,low +0.14,0.64,5,164,5,0,0,0,product_mng,low +0.85,0.57,4,216,2,0,0,0,product_mng,low +0.84,0.79,4,266,3,1,0,0,product_mng,low +0.7,0.69,3,102,4,1,0,0,product_mng,medium +0.16,0.98,5,284,5,0,0,0,IT,medium +0.51,0.69,3,145,2,1,0,0,RandD,medium +0.6,0.89,3,167,4,0,0,0,RandD,medium +0.5,0.63,3,172,2,0,0,0,RandD,medium +0.43,0.39,5,198,5,0,0,0,RandD,medium +0.5,0.7,4,201,4,0,0,0,RandD,medium +0.91,0.89,4,197,4,0,0,0,marketing,medium +0.65,0.93,4,270,2,0,0,0,sales,medium +0.59,0.52,2,149,3,0,0,0,accounting,medium +0.89,0.56,3,256,3,0,0,0,support,medium +0.97,0.6,3,162,3,0,0,0,technical,medium +0.56,0.97,5,163,2,0,0,0,management,high +0.76,0.93,3,266,3,1,0,0,marketing,low +0.28,0.55,4,208,4,0,0,0,marketing,medium +0.75,0.51,4,138,4,0,0,0,marketing,medium +0.78,0.81,4,232,3,0,0,0,sales,medium +0.26,0.63,6,100,4,0,0,0,sales,medium +0.53,0.72,2,172,5,0,0,0,sales,low +0.25,0.41,3,133,6,1,0,0,sales,low +0.82,0.51,3,234,3,0,0,0,sales,low +0.71,0.57,2,183,4,0,0,0,sales,low +0.61,0.95,4,174,4,0,0,0,sales,low +0.89,0.68,3,175,2,0,0,0,sales,low +0.57,0.78,3,109,3,1,0,0,sales,low +0.93,0.8,4,248,3,0,0,0,sales,low +0.61,0.84,5,104,4,0,0,0,sales,low +0.56,0.62,3,154,2,0,0,0,sales,low +0.7,0.89,6,214,2,0,0,0,sales,low +0.9,0.64,4,209,4,0,0,0,sales,low +0.15,0.74,6,212,2,0,0,0,sales,low +0.39,0.36,3,168,3,1,0,0,sales,low +0.74,0.72,4,176,3,0,0,0,sales,low +0.7,0.61,4,163,4,1,0,0,sales,low +0.72,0.93,4,148,2,0,0,0,sales,low +0.61,0.97,3,137,3,0,0,0,accounting,low +0.96,1,5,162,3,0,0,0,accounting,low +0.7,0.59,4,216,3,0,0,0,accounting,low +0.92,0.49,3,240,2,0,0,0,hr,low +0.72,0.56,4,176,2,0,0,0,hr,medium +0.53,0.75,6,192,6,0,0,0,hr,medium +0.67,0.85,3,160,4,0,0,0,hr,medium +0.78,0.8,4,194,2,1,0,0,technical,medium +0.53,0.75,4,239,2,1,0,0,technical,medium +0.9,0.48,4,204,3,0,0,0,technical,medium +0.16,0.9,5,258,3,0,0,0,technical,medium +0.62,0.38,3,257,3,0,0,0,technical,medium +0.62,0.98,4,137,3,0,0,0,technical,medium +0.22,0.52,6,175,4,0,0,0,technical,medium +0.91,0.82,3,183,3,0,0,0,technical,medium +0.87,0.74,4,190,4,0,0,0,technical,medium +0.95,0.69,3,225,2,0,0,0,technical,high +0.99,0.75,3,215,3,0,0,0,technical,low +0.99,0.57,3,176,4,1,0,0,support,medium +0.77,0.99,4,153,3,1,0,0,support,medium +0.75,0.68,3,150,2,1,0,0,support,medium +0.83,0.54,4,259,5,0,0,0,support,medium +0.61,0.39,3,99,2,0,0,0,support,low +0.91,0.97,3,167,2,0,0,0,support,low +0.47,0.64,3,192,3,0,0,0,support,low +0.77,0.61,5,146,3,0,0,0,support,low +0.55,0.51,3,190,3,0,0,0,support,low +0.32,0.48,5,246,3,0,0,0,support,low +0.96,0.67,6,190,3,0,0,0,support,low +0.72,0.79,5,260,2,0,0,0,technical,low +0.8,0.9,4,136,3,0,0,0,technical,low +0.61,0.55,4,231,3,0,0,0,technical,low +0.97,0.88,3,204,2,0,0,0,management,low +0.63,0.93,4,201,3,0,0,0,IT,low +0.92,0.92,3,159,3,0,0,0,IT,low +0.94,0.74,5,171,3,0,0,0,IT,low +0.79,0.72,6,240,4,0,0,0,IT,low +0.75,0.73,2,152,4,0,0,0,IT,low +0.78,0.99,3,151,3,1,0,0,product_mng,low +0.96,0.45,6,232,2,1,0,0,product_mng,low +0.65,0.68,4,128,5,0,0,0,product_mng,low +0.18,0.94,3,187,6,1,0,0,product_mng,low +0.94,0.51,3,160,2,0,0,0,IT,low +0.84,0.79,4,259,3,0,0,0,RandD,medium +0.67,0.54,2,136,2,0,0,0,RandD,medium +0.71,0.5,4,253,3,0,0,0,RandD,medium +0.56,0.64,3,260,3,0,0,0,RandD,medium +0.29,0.56,5,231,6,0,0,0,RandD,medium +0.47,0.9,3,101,2,1,0,0,marketing,medium +0.4,0.69,2,174,3,0,0,0,sales,medium +0.81,0.82,4,167,2,0,0,0,accounting,medium +0.96,0.99,3,148,3,0,0,0,support,medium +0.99,0.75,6,139,5,1,0,0,technical,medium +0.75,0.77,4,136,3,0,0,0,management,medium +0.75,0.74,4,153,2,0,0,0,marketing,medium +1,0.86,4,161,2,0,0,0,marketing,high +0.52,0.53,2,163,2,0,0,0,marketing,low +0.98,0.74,3,164,3,0,0,0,sales,medium +0.6,0.64,2,137,5,0,0,0,sales,medium +0.38,0.44,3,137,3,0,0,0,sales,medium +0.51,0.41,6,106,5,0,0,0,sales,medium +0.91,0.61,2,272,2,0,0,0,sales,low +0.56,0.62,5,238,3,0,0,0,sales,low +0.58,0.69,4,223,4,0,0,0,sales,low +0.51,0.53,3,201,2,0,0,0,sales,low +0.91,0.55,6,97,4,0,0,0,sales,low +0.8,0.98,2,232,6,1,0,0,sales,low +0.55,0.83,4,199,3,0,0,0,sales,low +0.62,0.53,3,141,3,0,0,0,sales,low +0.62,0.6,3,171,2,0,0,0,sales,low +0.87,0.58,4,212,3,0,0,0,sales,low +0.65,0.5,5,270,2,0,0,0,sales,low +0.51,0.64,3,267,2,0,0,0,sales,low +0.98,0.77,3,134,2,1,0,0,sales,low +0.13,0.43,4,165,5,0,0,0,sales,low +0.78,0.76,5,168,4,1,0,0,sales,low +0.6,0.98,3,262,2,0,0,0,accounting,low +0.68,0.69,3,185,2,0,0,0,accounting,low +0.55,0.84,3,237,3,0,0,0,accounting,low +0.99,0.79,4,192,3,0,0,0,hr,low +0.92,0.68,5,236,2,0,0,0,hr,low +1,0.65,4,202,4,1,0,0,hr,low +0.77,0.93,4,171,2,0,0,0,hr,medium +0.86,0.7,5,160,3,0,0,0,technical,medium +0.89,0.84,2,252,3,0,0,0,technical,medium +0.58,0.55,5,206,3,0,0,0,technical,medium +0.56,0.66,3,212,2,0,0,0,technical,medium +0.38,0.64,3,111,3,0,0,0,technical,medium +0.62,0.64,3,240,2,0,0,0,technical,medium +0.66,0.77,2,171,2,0,0,0,technical,medium +0.3,0.44,3,129,2,0,0,0,technical,medium +0.82,0.83,3,271,2,0,0,0,technical,medium +0.96,0.68,4,162,2,0,0,0,technical,medium +0.66,0.95,3,191,3,0,0,0,technical,medium +0.79,0.5,5,176,3,0,0,0,support,high +0.97,0.77,3,182,2,1,0,0,support,low +0.59,0.65,3,226,3,0,0,0,support,medium +0.57,0.48,4,161,3,0,0,0,support,medium +0.64,0.53,4,163,3,0,0,0,support,medium +0.14,0.51,5,173,4,0,0,0,support,medium +0.48,0.55,3,228,2,0,0,0,support,low +0.78,1,3,139,3,0,0,0,support,low +0.96,0.62,5,128,5,0,0,0,support,low +0.82,0.97,3,115,2,1,0,0,support,low +0.94,0.9,5,191,4,0,0,0,support,low +0.95,0.66,4,183,3,0,0,0,technical,low +0.59,0.43,3,173,3,0,0,0,technical,low +0.69,0.89,4,174,2,0,0,0,technical,low +0.74,0.72,3,213,3,0,0,0,management,low +0.67,0.67,4,192,4,0,0,0,IT,low +0.83,0.52,3,167,2,1,0,0,IT,low +0.81,0.85,3,263,3,1,0,0,IT,low +0.54,0.73,2,100,3,0,0,0,IT,low +0.89,0.83,3,164,3,0,0,0,IT,low +0.79,0.74,5,172,2,0,0,0,product_mng,low +0.46,0.58,4,171,3,0,0,0,product_mng,low +0.99,0.93,4,236,3,0,0,0,product_mng,low +0.75,0.9,5,186,4,0,0,0,product_mng,low +0.93,0.82,4,175,3,0,0,0,IT,low +0.65,0.6,5,227,3,0,0,0,RandD,low +0.19,0.63,4,142,6,0,0,0,RandD,low +0.48,0.61,2,121,2,0,0,0,RandD,medium +0.95,0.64,5,234,3,0,0,0,RandD,medium +0.92,0.77,4,185,3,0,0,0,RandD,medium +0.84,0.54,4,160,3,0,0,0,marketing,medium +0.37,0.63,4,153,3,1,0,0,sales,medium +0.22,0.74,3,199,6,0,0,0,accounting,medium +0.64,0.54,3,166,2,0,0,0,support,medium +0.72,0.88,2,247,3,0,0,0,technical,medium +0.48,0.69,4,245,3,0,0,0,management,medium +0.12,0.55,5,242,4,0,0,0,marketing,medium +0.78,0.98,5,158,2,0,0,0,marketing,medium +0.71,0.74,3,163,3,1,0,0,marketing,medium +0.38,0.69,3,99,3,1,0,0,sales,high +0.57,0.85,4,164,3,0,0,0,sales,low +0.72,0.51,3,160,3,0,0,0,sales,medium +0.6,0.57,2,184,3,0,0,0,sales,medium +0.61,0.55,5,266,2,0,0,0,sales,medium +0.67,0.64,4,190,2,0,0,0,sales,medium +0.97,0.97,5,192,2,0,0,0,sales,low +0.22,0.6,3,205,6,1,0,0,sales,low +0.15,0.53,4,205,5,1,0,0,sales,low +0.6,0.6,3,258,3,0,0,0,sales,low +0.15,0.8,5,151,2,1,0,0,sales,low +0.5,0.81,3,148,2,0,0,0,sales,low +0.9,0.67,3,179,2,0,0,0,sales,low +0.84,0.51,6,141,2,1,0,0,sales,low +0.74,0.78,5,216,2,0,0,0,sales,low +0.72,0.51,3,235,2,0,0,0,sales,low +0.93,0.63,3,160,4,1,0,0,sales,low +0.54,0.69,3,141,4,0,0,0,sales,low +0.87,0.65,4,246,2,1,0,0,sales,low +0.19,0.98,5,226,4,1,0,0,accounting,low +0.33,0.4,4,212,2,1,0,0,accounting,low +0.94,0.93,4,220,3,0,0,0,accounting,low +0.77,0.49,4,266,2,0,0,0,hr,low +0.48,0.82,3,183,2,0,0,0,hr,low +0.7,0.74,5,263,3,1,0,0,hr,low +0.54,0.93,4,161,4,1,0,0,hr,low +0.61,0.98,4,199,2,0,0,0,technical,low +0.97,0.4,4,258,4,1,0,0,technical,medium +0.6,0.85,3,209,2,1,0,0,technical,medium +0.93,0.84,5,135,3,0,0,0,technical,medium +0.48,0.69,4,222,2,0,0,0,technical,medium +0.16,0.76,5,192,3,0,0,0,technical,medium +0.18,0.75,3,250,3,0,0,0,technical,medium +0.84,0.75,3,187,3,1,0,0,technical,medium +0.69,0.63,4,217,3,0,0,0,technical,medium +0.22,0.88,4,213,3,1,0,0,technical,medium +0.83,0.52,4,273,3,0,0,0,technical,medium +0.58,0.5,2,132,3,0,0,0,support,medium +0.61,0.62,4,140,3,1,0,0,support,medium +0.67,0.5,4,173,2,1,0,0,support,high +0.56,0.76,4,189,2,0,0,0,support,low +0.74,0.74,3,156,3,0,0,0,support,medium +0.92,0.97,4,238,5,1,0,0,support,medium +0.81,0.68,5,230,2,0,0,0,support,medium +0.48,0.49,4,242,2,1,0,0,support,medium +0.73,0.72,4,197,3,0,0,0,support,low +0.97,0.66,6,164,5,0,0,0,support,low +0.15,0.51,6,248,5,0,0,0,support,low +0.69,0.76,5,255,6,0,0,0,technical,low +0.61,0.68,5,225,4,0,0,0,technical,low +0.86,0.58,3,151,2,0,0,0,technical,low +0.55,0.88,4,252,3,0,0,0,management,low +0.9,0.74,4,206,4,1,0,0,IT,low +0.65,0.4,2,141,2,0,0,0,IT,low +0.81,0.92,5,259,3,0,0,0,IT,low +0.65,0.86,5,250,3,0,0,0,IT,low +0.47,0.86,4,169,6,0,0,0,IT,low +0.93,0.53,3,200,3,1,0,0,product_mng,low +0.77,0.9,4,104,5,0,0,0,product_mng,low +0.87,0.82,6,176,3,0,0,0,product_mng,low +0.87,0.84,5,137,2,0,0,0,product_mng,low +0.65,0.75,2,151,3,0,0,0,IT,low +0.21,0.7,6,130,6,1,0,0,RandD,low +0.75,0.59,4,199,2,0,0,0,RandD,low +0.72,0.86,4,191,2,0,0,0,RandD,low +0.88,0.63,3,273,3,1,0,0,RandD,low +0.66,0.58,3,205,3,0,0,0,RandD,medium +0.8,0.75,3,181,3,0,0,0,marketing,medium +0.22,0.55,4,261,3,1,0,0,sales,medium +0.92,0.69,3,192,3,0,0,0,accounting,medium +0.54,0.77,4,271,3,0,0,0,support,medium +0.91,0.56,4,158,3,0,0,0,technical,medium +0.77,0.83,4,231,2,0,0,0,management,medium +0.61,0.51,3,156,3,1,0,0,marketing,medium +0.48,0.9,4,201,4,0,0,0,marketing,medium +0.25,0.69,3,187,4,0,0,0,marketing,medium +0.91,0.7,3,132,4,0,0,0,sales,medium +0.72,0.58,5,147,3,1,0,0,sales,medium +0.77,0.71,4,223,3,0,0,0,sales,high +0.41,0.4,2,194,2,0,0,0,sales,low +0.51,0.49,4,234,2,0,0,0,sales,medium +0.72,0.79,3,149,3,0,0,0,sales,medium +0.47,0.57,3,162,3,1,0,0,sales,medium +0.53,0.67,4,238,2,0,0,0,sales,medium +0.65,0.52,5,149,3,0,0,0,sales,low +0.18,0.75,4,170,5,0,0,0,sales,low +0.61,0.48,3,250,2,0,0,0,sales,low +0.86,0.72,4,167,2,0,0,0,sales,low +0.14,0.77,4,166,5,0,0,0,sales,low +0.63,0.8,3,205,2,0,0,0,sales,low +0.79,0.57,3,250,3,0,0,0,sales,low +0.78,0.97,4,142,3,0,0,0,sales,low +0.14,0.52,4,217,6,0,0,0,sales,low +0.85,0.54,3,139,3,0,0,0,sales,low +0.85,0.75,4,139,3,0,0,0,sales,low +0.91,0.76,5,152,3,0,0,0,accounting,low +0.76,0.74,3,224,2,0,0,0,accounting,low +0.62,0.72,5,180,3,0,0,0,accounting,low +0.53,0.69,4,216,2,0,0,0,hr,low +0.97,0.63,3,133,3,0,0,0,hr,low +0.48,0.53,4,271,3,0,0,0,hr,low +0.5,0.55,4,148,3,1,0,0,hr,low +0.32,0.42,2,99,4,0,0,0,technical,low +0.58,0.77,4,196,2,1,0,0,technical,low +0.81,0.83,3,196,2,0,0,0,technical,low +0.48,0.84,4,228,3,0,0,0,technical,medium +0.96,0.88,4,165,2,0,0,0,technical,medium +0.56,0.9,3,235,2,0,0,0,technical,medium +0.63,0.96,4,167,2,0,0,0,technical,medium +0.21,0.5,5,255,5,0,0,0,technical,medium +0.94,0.78,3,184,3,1,0,0,technical,medium +0.94,0.89,4,239,3,0,0,0,technical,medium +0.96,0.54,3,153,2,0,0,0,technical,medium +0.49,0.5,4,187,5,1,0,0,support,medium +0.82,0.68,2,285,2,0,0,0,support,medium +0.6,0.5,3,274,3,0,0,0,support,medium +0.76,0.5,3,156,3,1,0,0,support,medium +0.69,0.64,5,265,2,1,0,0,support,high +1,0.94,4,144,3,0,0,0,support,low +0.62,0.66,4,143,3,0,0,0,support,medium +0.4,0.99,4,214,6,1,0,0,support,medium +0.94,0.91,3,163,3,0,0,0,support,medium +0.76,0.84,4,236,4,0,0,0,support,medium +0.58,0.69,3,146,4,0,0,0,support,low +0.85,0.78,4,106,2,0,0,0,technical,low +0.45,0.52,2,105,3,0,0,0,technical,low +0.13,0.67,3,181,4,0,0,0,technical,low +0.24,0.5,5,174,4,0,0,0,management,low +0.64,0.69,3,207,2,1,0,0,IT,low +0.63,0.61,6,118,2,0,0,0,IT,low +0.61,0.99,4,251,2,0,0,0,IT,low +0.71,0.99,2,136,3,0,0,0,IT,low +0.9,0.89,5,249,3,1,0,0,IT,low +0.17,0.76,4,171,5,0,0,0,product_mng,low +0.93,0.97,3,256,2,1,0,0,product_mng,low +0.83,0.89,5,141,3,1,0,0,product_mng,low +0.58,0.75,4,186,2,0,0,0,product_mng,low +0.76,0.5,3,258,3,0,0,0,IT,low +0.5,0.78,3,228,2,0,0,0,RandD,low +0.22,0.81,5,205,4,0,0,0,RandD,low +0.9,0.88,4,174,3,0,0,0,RandD,low +0.7,0.63,3,155,4,1,0,0,RandD,low +0.73,0.85,5,245,3,0,0,0,RandD,low +0.84,0.87,3,271,3,0,0,0,marketing,low +0.55,0.63,5,184,4,0,0,0,marketing,medium +0.63,0.98,4,175,2,0,0,0,sales,medium +0.51,0.92,3,224,3,0,0,0,accounting,medium +0.81,0.76,4,177,3,0,0,0,support,medium +0.8,0.96,4,268,3,0,0,0,technical,medium +0.99,0.97,4,208,3,0,0,0,management,medium +0.9,0.87,5,219,2,0,0,0,marketing,medium +0.65,0.67,5,128,5,0,0,0,marketing,medium +0.75,0.75,3,273,3,0,0,0,marketing,medium +0.62,0.49,4,218,4,0,0,0,sales,medium +0.61,0.63,5,230,3,0,0,0,sales,medium +0.24,0.6,4,195,5,0,0,0,sales,medium +0.71,0.63,3,254,3,1,0,0,sales,high +0.49,0.8,2,275,2,0,0,0,sales,low +0.44,0.66,3,162,2,0,0,0,sales,medium +0.75,0.87,4,193,3,0,0,0,sales,medium +0.74,0.84,3,239,4,0,0,0,sales,medium +0.62,0.87,5,149,3,0,0,0,sales,medium +0.51,0.58,3,155,3,0,0,0,sales,low +0.61,0.59,5,271,2,0,0,0,sales,low +0.56,0.49,5,163,3,0,0,0,sales,low +0.79,0.76,3,160,3,0,0,0,sales,low +0.68,0.75,6,274,5,0,0,0,sales,low +0.9,0.84,2,199,3,0,0,0,sales,low +0.83,0.93,5,241,3,0,0,0,sales,low +0.94,0.82,3,187,3,0,0,0,sales,low +0.21,0.65,5,223,3,1,0,0,sales,low +0.58,0.87,3,268,2,0,0,0,sales,low +0.52,0.38,6,169,3,0,0,0,accounting,low +0.18,0.67,5,285,5,0,0,0,accounting,low +0.94,0.91,5,254,3,0,0,0,accounting,low +0.69,0.5,3,208,4,0,0,0,hr,low +0.65,0.83,4,218,3,0,0,0,hr,low +0.46,0.62,2,187,3,0,0,0,hr,low +0.72,0.62,4,256,3,0,0,0,hr,low +0.3,0.37,6,278,3,0,0,0,technical,low +0.51,0.51,4,204,2,0,0,0,technical,low +0.43,0.75,3,108,2,0,0,0,technical,low +0.56,0.94,3,226,2,0,0,0,technical,low +0.63,0.91,4,246,3,0,0,0,technical,medium +0.61,0.55,5,260,3,0,0,0,technical,medium +0.53,0.73,4,248,2,0,0,0,technical,medium +0.87,0.75,3,132,3,0,0,0,technical,medium +0.68,0.7,4,185,4,0,0,0,technical,medium +0.78,0.84,3,269,2,0,0,0,technical,medium +0.49,0.95,4,156,2,0,0,0,technical,medium +0.96,0.81,3,212,3,0,0,0,support,medium +0.83,0.74,3,221,2,0,0,0,support,medium +0.48,0.67,5,273,3,0,0,0,support,medium +0.63,0.86,4,271,3,1,0,0,support,medium +0.87,0.38,4,183,5,0,0,0,support,medium +0.21,0.9,4,271,6,0,0,0,support,high +0.79,0.58,5,165,3,0,0,0,support,low +0.8,0.96,3,257,5,0,0,0,support,medium +0.78,0.82,4,143,3,0,0,0,support,medium +0.67,0.65,5,156,2,0,0,0,support,medium +0.67,0.71,3,190,3,1,0,0,support,medium +0.26,0.67,2,242,6,0,0,0,technical,low +0.89,0.83,5,267,4,0,0,0,technical,low +0.7,0.53,4,152,3,0,0,0,technical,low +0.51,0.48,5,136,4,0,0,0,management,low +0.53,0.88,3,157,3,0,0,0,IT,low +0.76,0.51,4,281,3,0,0,0,IT,low +0.86,0.93,5,208,2,0,0,0,IT,low +0.63,0.96,5,152,3,0,0,0,IT,low +0.58,0.86,5,271,3,0,0,0,IT,low +0.58,0.83,4,163,3,1,0,0,product_mng,low +0.9,0.82,4,136,3,0,0,0,product_mng,low +0.79,0.57,4,233,2,0,0,0,product_mng,low +0.8,0.74,4,221,4,0,0,0,product_mng,low +0.53,0.65,2,189,2,1,0,0,IT,low +0.52,0.84,2,226,3,0,0,0,RandD,low +0.82,0.59,5,201,3,0,0,0,RandD,low +0.68,0.9,2,133,4,0,0,0,RandD,low +0.21,0.61,3,173,2,0,0,0,RandD,low +0.81,0.5,4,152,3,1,0,0,RandD,low +0.57,0.9,3,256,4,0,0,0,RandD,low +0.99,0.72,3,119,2,1,0,0,marketing,low +0.9,1,4,207,3,0,0,0,sales,medium +0.76,0.64,3,189,3,0,0,0,accounting,medium +0.56,0.92,4,172,2,0,0,0,support,medium +0.5,0.93,6,150,3,1,0,0,technical,medium +0.48,0.89,5,179,3,0,0,0,management,medium +0.99,0.97,3,257,2,0,0,0,marketing,medium +0.76,0.8,5,229,2,0,0,0,marketing,medium +0.93,0.97,4,227,3,0,0,0,marketing,medium +0.99,0.78,4,140,3,0,0,0,sales,medium +0.85,0.78,4,251,3,0,0,0,sales,medium +0.63,0.95,4,137,3,0,0,0,sales,medium +0.63,0.78,3,153,3,1,0,0,sales,medium +0.5,0.65,5,242,3,0,0,0,sales,high +0.52,0.57,3,150,3,0,0,0,sales,low +0.63,0.99,3,247,3,0,0,0,sales,medium +0.78,0.5,4,212,2,0,0,0,sales,medium +0.98,0.53,3,234,3,0,0,0,sales,medium +0.14,1,5,174,5,0,0,0,sales,medium +0.7,0.9,3,225,2,0,0,0,sales,low +0.88,0.6,4,224,2,0,0,0,sales,low +0.72,0.62,3,270,4,0,0,0,sales,low +0.88,0.51,4,139,3,0,0,0,sales,low +0.71,0.51,3,248,4,0,0,0,sales,low +0.6,0.85,3,172,2,0,0,0,sales,low +0.88,0.86,4,224,3,1,0,0,sales,low +0.55,0.72,5,232,4,0,0,0,sales,low +0.85,0.55,4,260,2,1,0,0,sales,low +0.84,0.51,2,117,4,0,0,0,accounting,low +0.91,0.61,4,243,2,1,0,0,accounting,low +0.82,0.62,4,202,2,0,0,0,accounting,low +0.6,0.91,2,168,4,0,0,0,hr,low +0.89,0.71,5,194,3,0,0,0,hr,low +0.6,0.97,4,219,4,1,0,0,hr,low +0.64,0.52,4,207,3,0,0,0,hr,low +0.93,0.88,4,177,3,0,0,0,technical,low +0.81,0.99,3,239,2,1,0,0,technical,low +0.31,0.49,4,165,3,1,0,0,technical,low +0.68,0.69,4,225,2,0,0,0,technical,low +0.78,0.59,3,212,2,0,0,0,technical,low +0.44,0.42,4,159,4,0,0,0,technical,medium +0.64,0.93,4,233,2,1,0,0,technical,medium +0.81,0.63,4,108,6,0,0,0,technical,medium +0.5,0.49,3,214,3,0,0,0,technical,medium +0.69,0.61,5,229,3,0,0,0,technical,medium +0.77,0.75,4,223,3,0,0,0,technical,medium +0.69,0.56,4,178,3,0,0,0,support,medium +0.87,0.68,4,246,2,0,0,0,support,medium +0.85,0.91,4,145,3,0,0,0,support,medium +0.83,0.83,4,224,4,0,0,0,support,medium +0.68,0.51,3,259,3,0,0,0,support,medium +0.78,0.65,4,207,2,0,0,0,support,medium +0.78,0.89,3,253,3,0,0,0,support,high +0.93,0.68,4,196,2,1,0,0,support,low +0.54,0.75,3,240,3,0,0,0,support,medium +0.76,0.56,3,255,3,0,0,0,support,medium +0.4,0.72,3,139,2,0,0,0,support,medium +0.73,0.81,3,168,2,0,0,0,technical,medium +0.86,0.98,5,233,3,0,0,0,technical,low +0.38,0.68,5,211,6,0,0,0,technical,low +0.71,0.48,5,114,3,0,0,0,management,low +0.58,0.97,5,202,2,0,0,0,IT,low +0.67,0.59,3,177,3,1,0,0,IT,low +0.55,0.76,4,233,4,0,0,0,IT,low +0.76,0.98,2,111,2,0,0,0,IT,low +0.7,0.82,3,178,3,0,0,0,IT,low +0.66,0.46,4,204,4,0,0,0,product_mng,low +0.96,0.72,3,272,3,0,0,0,product_mng,low +0.6,0.77,4,157,4,0,0,0,product_mng,low +0.54,0.94,5,229,3,1,0,0,product_mng,low +0.85,0.9,5,202,3,0,0,0,IT,low +0.96,0.84,3,264,3,0,0,0,RandD,low +0.86,0.62,3,256,3,1,0,0,RandD,low +0.53,0.87,3,151,2,0,0,0,RandD,low +0.91,0.95,3,251,3,0,0,0,RandD,low +0.33,0.7,5,271,4,0,0,0,RandD,low +0.75,0.73,4,274,2,0,0,0,RandD,low +0.97,0.8,3,169,3,0,0,0,marketing,low +0.68,0.51,4,176,4,1,0,0,sales,low +0.68,0.7,5,168,2,0,0,0,accounting,medium +0.57,0.87,4,171,2,0,0,0,support,medium +0.87,0.9,4,214,3,0,0,0,technical,medium +0.5,0.91,5,224,2,1,0,0,management,medium +0.76,0.59,3,191,4,0,0,0,marketing,medium +0.79,0.61,5,96,4,0,0,0,marketing,medium +0.17,0.9,6,217,6,1,0,0,marketing,medium +0.6,0.62,4,135,2,1,0,0,sales,medium +0.89,0.67,3,226,3,0,0,0,sales,medium +0.69,0.87,3,202,2,0,0,0,sales,medium +0.68,0.85,2,180,6,0,0,0,sales,medium +0.61,0.87,5,174,4,0,0,0,sales,medium +0.63,0.5,3,140,2,0,0,0,sales,high +0.5,0.96,4,147,3,0,0,0,sales,low +0.49,0.74,2,263,3,1,0,0,sales,medium +0.83,0.55,5,261,5,0,0,0,sales,medium +0.59,0.71,2,176,2,1,0,0,sales,medium +0.75,0.93,2,98,5,0,0,0,sales,medium +0.66,0.48,3,192,3,1,0,0,sales,low +0.68,0.51,4,157,3,0,0,0,sales,low +0.73,0.58,5,230,3,0,0,0,sales,low +0.98,0.53,4,192,2,1,0,0,sales,low +0.86,0.65,3,161,3,0,0,0,sales,low +0.5,0.55,3,176,3,0,0,0,sales,low +0.76,0.76,3,216,3,0,0,0,sales,low +0.3,0.47,4,176,2,0,0,0,sales,low +0.3,0.86,3,276,5,1,0,0,accounting,low +0.64,0.59,3,174,3,1,0,0,accounting,low +0.59,0.75,3,106,2,0,0,0,accounting,low +0.85,0.63,4,154,3,0,0,0,hr,low +0.76,0.93,3,271,5,0,0,0,hr,low +0.63,0.5,5,246,2,0,0,0,hr,low +0.65,0.86,4,264,2,1,0,0,hr,low +0.43,0.68,3,197,2,0,0,0,technical,low +0.83,0.56,4,165,2,0,0,0,technical,low +0.49,0.77,4,218,2,0,0,0,technical,low +0.67,0.73,3,203,2,0,0,0,technical,low +0.9,0.47,2,107,6,1,0,0,technical,low +0.83,0.96,3,179,2,0,0,0,technical,low +0.92,0.84,5,264,3,0,0,0,technical,medium +0.83,0.7,5,154,3,0,0,0,technical,medium +0.64,0.55,4,167,3,1,0,0,technical,medium +0.93,0.97,4,158,3,1,0,0,technical,medium +0.6,0.87,4,227,3,1,0,0,technical,medium +0.74,0.69,3,230,2,0,0,0,support,medium +0.56,0.75,5,143,5,0,0,0,support,medium +0.61,0.77,4,142,3,0,0,0,support,medium +0.63,0.62,4,184,4,0,0,0,support,medium +0.24,0.62,5,169,4,0,0,0,support,medium +0.17,0.56,5,218,4,1,0,0,support,medium +0.46,0.64,2,121,3,0,0,0,support,medium +0.68,0.48,4,251,4,0,0,0,support,high +0.68,0.6,2,192,6,0,0,0,support,low +0.16,0.71,6,227,5,0,0,0,support,medium +0.15,0.56,6,140,5,0,0,0,support,medium +0.55,0.49,3,152,2,0,0,0,technical,medium +0.72,0.66,4,202,4,0,0,0,technical,medium +0.91,0.89,2,219,4,0,0,0,technical,low +0.3,0.91,4,248,4,0,0,0,management,low +0.56,0.68,5,203,2,0,0,0,IT,low +0.94,0.94,3,255,3,0,0,0,IT,low +0.82,0.63,5,177,3,0,0,0,IT,low +0.66,0.86,5,185,3,0,0,0,IT,low +0.74,0.64,4,101,6,1,0,0,IT,low +0.63,0.5,3,246,3,0,0,0,product_mng,low +0.65,0.42,6,220,2,0,0,0,product_mng,low +0.56,0.81,3,145,2,0,0,0,product_mng,low +0.32,0.73,6,194,5,0,0,0,product_mng,low +0.8,0.9,4,241,2,0,0,0,IT,low +0.34,0.87,6,175,4,0,0,0,RandD,low +0.62,0.71,5,149,2,0,0,0,RandD,low +0.5,0.86,3,253,2,0,0,0,RandD,low +0.58,0.98,5,218,3,0,0,0,RandD,low +0.94,0.9,2,263,3,0,0,0,RandD,low +0.67,0.99,4,247,3,1,0,0,RandD,low +0.2,0.74,6,148,4,0,0,0,marketing,low +0.91,0.59,5,162,2,0,0,0,sales,low +0.91,0.67,2,255,4,0,0,0,accounting,low +0.78,0.87,3,191,3,1,0,0,support,medium +0.82,0.55,3,217,4,1,0,0,technical,medium +0.54,0.96,3,201,3,0,0,0,management,medium +0.53,0.81,3,253,3,0,0,0,marketing,medium +0.47,0.55,4,122,5,1,0,0,marketing,medium +0.87,0.5,3,269,3,0,0,0,marketing,medium +0.5,0.68,4,161,3,0,0,0,sales,medium +0.59,0.83,3,156,2,0,0,0,sales,medium +0.89,0.69,3,173,3,0,0,0,sales,medium +0.54,0.49,4,152,3,1,0,0,sales,medium +0.62,0.85,3,145,3,0,0,0,sales,medium +0.91,0.85,3,248,3,0,0,0,sales,medium +0.84,0.99,2,184,2,0,0,0,sales,high +0.69,0.65,4,232,2,1,0,0,sales,low +0.76,0.63,3,162,2,0,0,0,sales,medium +0.8,0.54,4,269,3,0,0,0,sales,medium +0.4,0.47,5,108,3,0,0,0,sales,medium +0.8,0.99,3,248,3,1,0,0,sales,medium +0.76,0.4,2,122,5,0,0,0,sales,low +0.55,0.9,4,273,2,1,0,0,sales,low +0.98,0.63,3,285,6,0,0,0,sales,low +0.54,0.56,4,227,3,0,0,0,sales,low +0.63,0.56,4,248,2,1,0,0,sales,low +0.88,0.63,3,257,3,0,0,0,sales,low +0.5,0.95,5,194,3,0,0,0,sales,low +0.52,0.72,3,253,3,0,0,0,accounting,low +0.89,0.95,4,141,3,0,0,0,accounting,low +0.55,0.9,4,199,3,0,0,0,accounting,low +0.51,0.81,3,143,2,0,0,0,hr,low +0.35,0.52,5,244,3,0,0,0,hr,low +0.54,0.71,5,173,2,0,0,0,hr,low +0.72,0.84,4,186,3,0,0,0,hr,low +0.61,0.93,2,247,3,0,0,0,technical,low +0.17,0.93,3,218,4,0,0,0,technical,low +0.71,0.88,3,140,2,0,0,0,technical,low +0.88,0.52,4,166,2,0,0,0,technical,low +0.48,1,3,216,2,0,0,0,technical,low +0.16,0.97,6,235,3,0,0,0,technical,low +0.62,0.72,3,188,3,0,0,0,technical,low +0.59,0.47,3,143,2,0,0,0,technical,medium +0.14,0.9,4,198,4,0,0,0,technical,medium +0.96,0.92,4,148,3,0,0,0,technical,medium +0.96,0.42,6,101,4,0,0,0,technical,medium +0.13,0.89,4,249,6,1,0,0,support,medium +0.64,0.61,5,249,3,1,0,0,support,medium +0.64,0.67,5,198,2,1,0,0,support,medium +0.57,0.72,3,202,3,1,0,0,support,medium +0.49,1,3,176,3,0,0,0,support,medium +0.89,0.79,4,133,2,0,0,0,support,medium +0.94,0.75,5,238,2,0,0,0,support,medium +0.51,0.58,2,181,4,0,0,0,support,medium +0.8,0.85,5,242,3,0,0,0,support,high +0.74,0.51,4,185,2,1,0,0,support,low +0.66,0.85,4,237,3,1,0,0,support,medium +0.66,0.99,5,244,3,0,0,0,technical,medium +0.59,0.62,3,178,4,0,0,0,technical,medium +0.91,0.57,3,164,3,0,0,0,technical,medium +0.83,0.98,5,189,4,1,0,0,management,low +0.5,0.91,3,212,2,0,0,0,IT,low +0.69,0.97,4,233,3,0,0,0,IT,low +0.87,0.91,5,268,3,0,0,0,IT,low +0.37,0.43,2,155,2,0,0,0,IT,low +0.9,0.98,4,257,3,0,0,0,IT,low +0.68,0.41,4,254,5,0,0,0,product_mng,low +0.93,0.63,4,143,3,1,0,0,product_mng,low +0.95,0.45,3,225,2,0,0,0,product_mng,low +0.99,1,4,223,2,1,0,0,product_mng,low +0.64,0.9,2,101,6,0,0,0,IT,low +0.96,0.37,2,159,6,0,0,0,RandD,low +0.92,0.54,5,141,2,0,0,0,RandD,low +0.22,0.52,5,147,5,1,0,0,RandD,low +0.82,0.99,5,252,3,1,0,0,RandD,low +0.75,0.89,3,196,3,0,0,0,RandD,low +0.2,0.89,6,244,3,0,0,0,RandD,low +0.64,0.73,3,142,3,0,0,0,marketing,low +0.62,0.9,4,155,4,0,0,0,sales,low +0.73,0.59,3,219,2,0,0,0,accounting,low +0.52,0.51,3,213,4,0,0,0,support,low +0.63,0.67,5,263,3,0,0,0,technical,medium +0.84,0.92,4,274,3,0,0,0,management,medium +0.49,0.96,3,140,3,0,0,0,marketing,medium +0.54,0.78,4,176,2,0,0,0,marketing,medium +0.52,0.78,4,206,2,0,0,0,marketing,medium +0.66,0.63,6,223,6,0,0,0,sales,medium +0.73,0.41,2,231,6,1,0,0,sales,medium +0.54,0.64,3,250,3,0,0,0,sales,medium +0.72,0.68,5,266,4,0,0,0,sales,medium +0.75,0.64,4,247,3,1,0,0,sales,medium +0.77,0.57,3,189,2,0,0,0,sales,medium +0.42,0.94,5,227,5,0,0,0,sales,medium +0.13,0.69,4,127,4,0,0,0,sales,high +0.73,0.88,5,204,5,0,0,0,sales,low +0.5,0.95,5,137,3,0,0,0,sales,medium +0.92,0.62,4,265,3,1,0,0,sales,medium +0.73,0.66,3,135,2,0,0,0,sales,medium +0.74,0.38,2,126,3,0,0,0,sales,medium +0.76,0.78,3,189,2,0,0,0,sales,low +0.53,0.92,3,207,4,1,0,0,sales,low +0.65,0.72,3,134,3,0,0,0,sales,low +0.91,0.85,4,203,2,0,0,0,sales,low +0.69,0.76,5,222,3,1,0,0,sales,low +0.56,0.66,3,232,2,0,0,0,sales,low +0.55,0.81,4,267,5,0,0,0,accounting,low +0.74,0.5,5,131,3,0,0,0,accounting,low +0.86,0.86,3,155,4,0,0,0,accounting,low +0.82,0.74,3,232,3,0,0,0,hr,low +0.35,0.8,3,137,5,0,0,0,hr,low +0.93,0.99,4,136,4,0,0,0,hr,low +0.55,0.77,3,237,2,0,0,0,hr,low +0.99,0.68,4,190,3,0,0,0,technical,low +0.91,0.89,4,144,3,1,0,0,technical,low +0.24,0.65,6,194,3,0,0,0,technical,low +0.77,0.67,3,186,2,0,0,0,technical,low +0.64,0.66,3,218,3,0,0,0,technical,low +0.58,0.76,5,260,2,1,0,0,technical,low +0.65,0.99,4,200,4,0,0,0,technical,low +0.44,0.68,3,140,3,0,0,0,technical,low +0.59,0.75,2,156,3,0,0,0,technical,medium +0.99,0.56,3,193,3,1,0,0,technical,medium +0.75,0.79,4,145,3,0,0,0,technical,medium +0.77,0.49,4,217,2,0,0,0,support,medium +0.85,0.64,4,162,3,0,0,0,support,medium +0.77,0.93,5,182,4,0,0,0,support,medium +0.54,0.95,3,221,3,0,0,0,support,medium +0.69,0.82,4,208,2,0,0,0,support,medium +0.66,0.65,5,161,3,0,0,0,support,medium +0.51,0.65,4,269,3,0,0,0,support,medium +0.74,0.59,4,155,3,0,0,0,support,medium +0.55,0.72,3,110,3,0,0,0,support,medium +0.65,0.84,3,154,3,0,0,0,support,high +0.2,0.77,6,213,4,0,0,0,support,low +0.92,0.94,5,248,3,0,0,0,technical,medium +0.57,0.6,3,202,3,0,0,0,technical,medium +0.75,0.78,2,251,6,0,0,0,technical,medium +0.68,0.84,3,239,2,0,0,0,management,medium +0.97,0.7,3,203,3,0,0,0,IT,low +0.79,0.48,4,184,5,1,0,0,IT,low +0.66,0.75,4,203,3,1,0,0,IT,low +0.96,0.69,3,214,2,1,0,0,IT,low +0.73,0.69,4,161,3,0,0,0,IT,low +0.29,0.58,5,234,2,0,0,0,product_mng,low +0.58,0.56,3,151,2,0,0,0,product_mng,low +0.72,0.58,4,149,3,0,0,0,product_mng,low +0.94,0.87,4,240,3,0,0,0,product_mng,low +0.48,0.56,5,140,2,0,0,0,IT,low +0.6,0.99,3,187,2,0,0,0,RandD,low +0.97,0.58,5,156,2,1,0,0,RandD,low +0.74,0.41,4,250,4,0,0,0,RandD,low +0.97,0.61,3,165,2,0,0,0,RandD,low +0.88,0.67,5,260,3,1,0,0,RandD,low +0.5,0.7,3,274,3,0,0,0,marketing,low +0.93,0.98,4,160,3,0,0,0,sales,low +0.3,0.7,5,280,4,1,0,0,accounting,low +0.69,0.53,3,142,3,0,0,0,support,low +0.69,0.9,2,155,2,0,0,0,technical,low +0.53,0.67,4,167,2,0,0,0,management,low +0.32,0.8,3,263,3,0,0,0,marketing,medium +0.73,0.75,3,259,4,0,0,0,marketing,medium +0.77,0.61,4,223,3,0,0,0,marketing,medium +0.59,0.81,6,123,5,0,0,0,sales,medium +0.19,0.51,5,226,3,0,0,0,sales,medium +0.78,0.95,3,270,2,0,0,0,sales,medium +0.84,0.74,3,139,3,0,0,0,sales,medium +0.65,0.77,5,241,2,0,0,0,sales,medium +0.38,0.43,2,160,6,0,0,0,sales,medium +0.12,0.47,3,258,5,0,0,0,sales,medium +0.74,0.81,5,106,5,0,0,0,sales,medium +0.67,0.82,4,171,2,0,0,0,sales,medium +0.5,0.79,3,186,3,0,0,0,sales,high +0.99,0.39,6,214,5,1,0,0,sales,low +0.79,0.89,4,240,3,0,0,0,sales,medium +0.72,0.51,4,164,3,0,0,0,sales,medium +0.83,0.57,4,232,3,0,0,0,sales,medium +0.69,0.55,5,242,2,0,0,0,sales,medium +0.5,0.89,5,222,3,0,0,0,sales,low +0.82,0.84,3,139,2,1,0,0,sales,low +0.68,0.56,4,272,3,0,0,0,sales,low +0.82,0.69,4,262,2,0,0,0,sales,low +0.32,0.81,2,249,3,0,0,0,accounting,low +0.93,0.86,4,219,3,0,0,0,accounting,low +0.42,0.73,4,208,5,0,0,0,accounting,low +0.22,0.44,3,166,6,0,0,0,hr,low +0.56,0.88,3,174,3,0,0,0,hr,low +0.77,0.75,4,225,3,0,0,0,hr,low +0.29,0.48,2,116,6,1,0,0,hr,low +0.97,0.65,3,219,2,0,0,0,technical,low +0.91,0.7,4,196,2,0,0,0,technical,low +0.52,0.67,4,210,3,1,0,0,technical,low +0.54,0.64,2,219,3,0,0,0,technical,low +0.54,0.98,3,197,3,0,0,0,technical,low +0.67,0.52,2,102,6,0,0,0,technical,low +0.72,0.85,3,186,4,0,0,0,technical,low +0.68,0.51,4,224,2,0,0,0,technical,low +0.65,0.98,3,283,2,1,0,0,technical,low +0.72,0.98,5,197,4,0,0,0,technical,low +0.51,0.79,5,267,3,0,0,0,technical,medium +0.8,0.58,4,172,3,0,0,0,support,medium +0.83,0.93,4,261,2,0,0,0,support,medium +0.15,0.86,3,204,4,0,0,0,support,medium +0.5,0.73,4,237,2,0,0,0,support,medium +0.8,0.55,2,212,3,0,0,0,support,medium +0.96,0.62,4,217,2,0,0,0,support,medium +0.67,0.7,5,159,3,1,0,0,support,medium +0.98,0.96,5,139,3,0,0,0,support,medium +0.88,0.59,5,230,3,0,0,0,support,medium +0.85,0.79,3,157,4,0,0,0,support,medium +0.75,0.7,5,269,3,0,0,0,support,medium +0.38,0.77,2,170,3,0,0,0,technical,high +0.55,0.82,2,197,4,0,0,0,technical,low +0.63,0.89,4,246,3,0,0,0,technical,medium +0.78,0.51,4,278,3,0,0,0,management,medium +0.99,0.84,5,138,2,0,0,0,IT,medium +0.72,0.87,3,238,3,0,0,0,IT,medium +0.14,0.83,5,175,6,1,0,0,IT,low +0.81,0.67,4,216,3,0,0,0,IT,low +0.73,0.86,4,196,4,1,0,0,IT,low +0.58,0.8,5,187,3,1,0,0,product_mng,low +0.24,0.85,4,155,5,0,0,0,product_mng,low +0.31,0.86,3,205,5,0,0,0,product_mng,low +0.74,0.63,3,230,2,0,0,0,product_mng,low +0.86,0.69,5,157,3,0,0,0,IT,low +0.22,0.8,4,287,4,0,0,0,RandD,low +0.66,0.7,4,161,3,0,0,0,RandD,low +0.21,0.76,5,239,2,0,0,0,RandD,low +0.95,0.61,3,267,2,0,0,0,RandD,low +0.24,0.55,5,208,5,0,0,0,RandD,low +0.66,0.95,3,133,3,0,0,0,marketing,low +0.88,0.86,3,187,3,0,0,0,marketing,low +0.67,0.61,4,140,2,0,0,0,sales,low +0.75,0.58,4,270,3,0,0,0,accounting,low +0.93,0.48,3,147,3,0,0,0,support,low +0.64,0.71,3,181,2,0,0,0,technical,low +0.51,0.53,3,156,3,0,0,0,management,low +0.98,0.5,4,207,3,0,0,0,marketing,low +0.72,0.63,4,241,4,1,0,0,marketing,medium +0.51,0.75,4,154,3,0,0,0,marketing,medium +0.54,0.58,4,206,3,0,0,0,sales,medium +0.99,0.76,4,204,2,0,0,0,sales,medium +0.44,0.9,4,117,3,0,0,0,sales,medium +0.74,0.48,5,144,3,0,0,0,sales,medium +0.9,0.77,3,156,3,0,0,0,sales,medium +0.86,0.58,4,211,4,0,0,0,sales,medium +0.66,0.52,3,149,4,1,0,0,sales,medium +0.64,0.96,4,152,5,0,0,0,sales,medium +0.5,0.59,4,192,2,0,0,0,sales,medium +0.88,0.68,4,274,4,0,0,0,sales,medium +0.72,0.47,5,168,6,0,0,0,sales,high +0.53,0.53,4,205,3,0,0,0,sales,low +0.83,0.77,3,228,3,0,0,0,sales,medium +0.24,0.52,4,228,5,0,0,0,sales,medium +0.66,0.75,5,227,3,1,0,0,sales,medium +0.43,0.63,3,156,3,0,0,0,sales,medium +0.75,0.66,5,177,2,0,0,0,sales,low +0.42,0.89,6,188,5,1,0,0,sales,low +0.54,0.74,3,185,4,0,0,0,sales,low +0.84,0.85,3,153,4,0,0,0,accounting,low +0.95,0.79,4,174,3,0,0,0,accounting,low +0.6,0.61,4,209,3,0,0,0,accounting,low +0.95,0.71,3,251,2,1,0,0,hr,low +0.62,0.89,3,153,3,1,0,0,hr,low +0.89,0.73,3,210,2,0,0,0,hr,low +0.73,0.93,5,167,3,0,0,0,hr,low +0.86,0.94,3,151,2,0,0,0,technical,low +0.76,0.73,3,158,2,0,0,0,technical,low +0.91,0.76,3,116,5,0,0,0,technical,low +1,0.81,5,178,2,0,0,0,technical,low +0.98,0.78,4,155,3,1,0,0,technical,low +0.65,0.89,3,151,2,0,0,0,technical,low +0.62,0.79,4,216,2,1,0,0,technical,low +0.83,0.82,5,179,3,0,0,0,technical,low +0.75,1,4,135,4,0,0,0,technical,low +0.82,0.63,4,232,4,0,0,0,technical,low +0.69,0.68,4,168,3,0,0,0,technical,low +0.41,0.96,6,171,5,1,0,0,support,medium +0.52,0.64,5,258,2,0,0,0,support,medium +0.74,0.86,3,221,2,0,0,0,support,medium +0.33,0.96,5,97,3,0,0,0,support,medium +0.8,0.69,3,164,3,0,0,0,support,medium +0.82,0.89,4,237,3,0,0,0,support,medium +0.59,0.65,5,161,2,0,0,0,support,medium +0.98,0.8,4,134,2,1,0,0,support,medium +0.93,0.94,4,188,3,0,0,0,support,medium +0.49,0.95,4,181,3,0,0,0,support,medium +0.6,0.94,4,160,2,0,0,0,support,medium +0.34,0.82,6,197,5,1,0,0,technical,medium +0.71,0.77,3,145,3,0,0,0,technical,high +0.6,0.64,5,221,2,0,0,0,technical,low +0.12,0.78,6,260,5,0,0,0,management,medium +0.16,0.87,3,99,5,1,0,0,IT,medium +0.57,0.61,3,243,3,0,0,0,IT,medium +0.72,0.8,5,244,3,0,0,0,IT,medium +0.91,0.55,4,179,4,0,0,0,IT,low +0.95,0.49,4,146,6,1,0,0,IT,low +0.71,0.9,3,262,2,1,0,0,product_mng,low +0.9,0.69,4,174,2,0,0,0,product_mng,low +0.66,0.81,4,148,4,0,0,0,product_mng,low +0.48,0.59,5,235,3,0,0,0,product_mng,low +0.82,0.82,5,285,2,1,0,0,IT,low +0.83,0.79,4,143,3,0,0,0,RandD,low +0.85,0.82,6,141,5,0,0,0,RandD,low +0.84,0.47,3,125,4,0,0,0,RandD,low +0.99,0.51,4,232,3,0,0,0,RandD,low +0.54,0.72,3,172,2,0,0,0,RandD,low +0.64,0.42,5,283,5,0,0,0,marketing,low +0.67,0.68,3,189,3,0,0,0,sales,low +0.48,0.54,2,144,3,0,0,0,accounting,low +0.58,0.77,4,145,3,1,0,0,support,low +0.54,0.59,3,200,3,0,0,0,technical,low +0.25,0.65,3,264,4,0,0,0,management,low +0.9,0.53,3,215,3,0,0,0,marketing,low +0.48,0.39,4,272,3,0,0,0,marketing,low +0.76,0.9,5,142,3,0,0,0,marketing,low +0.72,0.53,5,240,2,0,0,0,sales,medium +0.95,0.66,4,168,2,0,0,0,sales,medium +0.73,0.55,4,171,4,0,0,0,sales,medium +0.93,0.7,3,159,2,0,0,0,sales,medium +0.89,0.61,3,175,4,0,0,0,sales,medium +0.7,0.97,4,244,3,0,0,0,sales,medium +0.98,0.57,3,198,3,0,0,0,sales,medium +0.72,0.65,5,151,3,0,0,0,sales,medium +0.49,0.69,2,188,4,0,0,0,sales,medium +0.15,0.85,3,199,2,0,0,0,sales,medium +0.57,0.96,4,257,3,0,0,0,sales,medium +0.21,0.81,4,144,4,0,0,0,sales,medium +0.46,0.57,4,275,3,0,0,0,sales,high +0.56,0.52,3,243,3,0,0,0,sales,low +0.81,0.66,3,181,2,1,0,0,sales,medium +0.93,0.59,5,172,3,0,0,0,sales,medium +0.82,0.97,3,244,5,0,0,0,sales,medium +0.76,0.51,4,242,3,0,0,0,sales,medium +0.97,0.81,3,249,2,0,0,0,sales,low +0.38,0.81,5,128,3,1,0,0,accounting,low +0.46,0.49,3,213,3,0,0,0,accounting,low +0.34,0.57,4,152,3,1,0,0,accounting,low +0.63,0.76,4,245,3,0,0,0,hr,low +0.57,0.56,4,113,3,0,0,0,hr,low +0.17,0.76,4,280,5,0,0,0,hr,low +0.74,0.67,3,273,3,1,0,0,hr,low +0.59,0.56,4,221,3,1,0,0,technical,low +0.49,0.61,5,133,3,0,0,0,technical,low +0.49,0.58,3,136,4,1,0,0,technical,low +0.61,0.71,4,243,3,1,0,0,technical,low +0.81,0.79,5,135,3,0,0,0,technical,low +0.74,0.63,3,231,3,0,0,0,technical,low +0.91,0.98,3,259,4,0,0,0,technical,low +0.71,0.66,3,238,2,0,0,0,technical,low +0.73,0.71,3,210,3,0,0,0,technical,low +0.44,0.4,3,120,6,0,0,0,technical,low +0.6,0.56,2,203,4,0,0,0,technical,low +0.73,0.88,4,148,2,0,0,0,support,low +0.8,0.54,4,258,3,0,0,0,support,low +0.97,0.5,3,225,2,0,0,0,support,medium +0.99,0.75,4,208,2,0,0,0,support,medium +0.96,0.82,4,274,3,0,0,0,support,medium +0.24,0.7,5,147,6,1,0,0,support,medium +0.45,0.39,2,167,3,0,0,0,support,medium +0.74,0.96,4,154,4,0,0,0,support,medium +0.6,0.98,4,195,3,0,0,0,support,medium +0.67,0.56,3,237,4,0,0,0,support,medium +0.57,0.99,4,222,2,0,0,0,support,medium +0.87,0.71,5,145,4,0,0,0,technical,medium +0.25,0.83,3,257,5,1,0,0,technical,medium +0.98,0.84,3,286,4,0,0,0,technical,medium +0.3,0.64,2,137,3,0,0,0,management,high +0.21,0.52,5,130,2,0,0,0,IT,low +0.56,0.7,3,214,2,0,0,0,IT,medium +0.75,0.96,3,138,2,0,0,0,IT,medium +0.5,0.77,3,166,3,0,0,0,IT,medium +0.61,0.92,4,159,5,0,0,0,IT,medium +0.83,0.59,5,160,4,0,0,0,product_mng,low +0.66,0.76,3,155,4,1,0,0,product_mng,low +0.84,0.68,3,231,3,0,0,0,product_mng,low +0.87,0.57,4,227,3,0,0,0,product_mng,low +0.48,0.37,3,181,2,0,0,0,IT,low +0.84,0.79,4,222,3,0,0,0,RandD,low +0.49,0.71,3,196,3,0,0,0,RandD,low +0.67,0.93,3,206,3,0,0,0,RandD,low +0.12,0.93,6,257,6,1,0,0,RandD,low +0.99,0.67,5,153,2,0,0,0,RandD,low +0.17,0.59,5,250,5,0,0,0,marketing,low +0.58,0.66,3,250,5,0,0,0,sales,low +0.5,0.73,3,148,3,0,0,0,accounting,low +0.35,0.69,3,141,2,1,0,0,support,low +0.93,0.95,6,147,3,0,0,0,technical,low +0.73,0.87,3,142,3,0,0,0,management,low +0.91,0.54,3,210,2,0,0,0,marketing,low +0.72,0.66,3,152,2,0,0,0,marketing,low +0.51,0.39,3,149,3,0,0,0,marketing,low +0.55,0.92,3,198,3,0,0,0,sales,low +0.66,0.76,3,139,5,0,0,0,sales,low +0.84,0.41,6,255,6,1,0,0,sales,medium +0.81,0.8,4,229,2,0,0,0,sales,medium +0.81,0.69,5,134,2,0,0,0,sales,medium +0.5,0.75,5,255,3,0,0,0,sales,medium +0.78,0.68,5,189,3,0,0,0,sales,medium +0.76,0.74,3,183,3,0,0,0,sales,medium +0.49,0.71,3,154,2,0,0,0,sales,medium +0.99,0.61,3,167,3,0,0,0,sales,medium +0.73,0.48,4,139,5,0,0,0,sales,medium +0.88,0.74,5,245,2,0,0,0,sales,medium +0.79,0.91,4,200,3,0,0,0,sales,medium +0.83,0.98,3,159,2,0,0,0,sales,medium +0.21,0.44,4,163,6,0,0,0,sales,high +0.87,0.52,3,158,2,1,0,0,sales,low +1,0.89,3,194,3,0,0,0,sales,medium +0.49,0.98,3,267,3,1,0,0,sales,medium +0.51,0.63,3,183,2,0,0,0,sales,medium +0.63,0.64,3,174,2,0,0,0,accounting,medium +0.91,0.63,4,240,3,0,0,0,accounting,low +0.54,0.5,2,123,4,1,0,0,accounting,low +1,0.59,4,174,3,0,0,0,hr,low +0.64,0.91,5,246,3,0,0,0,hr,low +0.65,0.96,5,173,2,0,0,0,hr,low +0.15,0.93,4,185,5,0,0,0,hr,low +0.81,0.83,4,259,3,1,0,0,technical,low +0.61,0.83,3,112,4,1,0,0,technical,low +0.86,0.55,5,219,2,0,0,0,technical,medium +0.71,0.62,3,258,2,0,0,0,technical,medium +0.72,0.82,5,287,3,0,0,0,technical,medium +0.84,0.37,5,186,2,0,0,0,technical,medium +0.38,0.74,3,159,4,0,0,0,technical,medium +0.75,0.56,4,230,3,0,0,0,technical,medium +0.93,0.77,5,106,5,0,0,0,technical,medium +0.71,0.64,4,189,3,0,0,0,technical,medium +0.75,0.96,3,252,3,0,0,0,technical,medium +0.56,0.68,4,220,2,0,0,0,support,medium +0.57,0.82,5,218,3,0,0,0,support,medium +0.63,0.83,4,145,4,0,0,0,support,medium +0.59,0.91,4,142,3,1,0,0,support,medium +0.77,0.62,3,218,2,0,0,0,support,medium +0.65,0.7,4,157,4,0,0,0,support,medium +0.84,0.49,4,178,3,0,0,0,support,medium +0.9,0.45,4,241,6,0,0,0,support,medium +0.6,0.83,3,230,3,0,0,0,support,medium +0.9,0.74,5,249,3,0,0,0,support,medium +0.94,0.7,5,147,2,0,0,0,support,medium +0.56,0.9,4,115,3,0,0,0,technical,medium +0.95,0.86,5,143,3,0,0,0,technical,medium +0.97,0.85,4,219,3,0,0,0,technical,medium +0.55,0.63,4,218,2,0,0,0,management,medium +0.79,0.6,5,235,2,0,0,0,IT,medium +0.49,0.76,5,237,3,0,0,0,IT,high +0.49,0.58,5,186,2,0,0,0,IT,high +0.57,0.65,5,177,2,0,0,0,IT,high +0.89,0.81,4,228,4,0,0,0,IT,high +0.66,0.59,3,204,3,0,0,0,product_mng,high +0.94,0.77,5,210,3,0,0,0,product_mng,high +0.98,0.95,4,250,2,1,0,0,product_mng,high +0.18,0.52,5,185,6,0,0,0,product_mng,high +0.57,0.73,3,146,3,0,0,0,IT,high +0.67,0.55,3,217,2,0,0,0,RandD,high +0.12,0.61,6,172,6,0,0,0,RandD,high +0.48,0.95,3,184,2,0,0,0,RandD,high +0.61,0.97,3,148,3,0,0,0,RandD,low +0.23,0.52,5,236,4,0,0,0,RandD,low +0.4,0.38,3,280,2,0,0,0,marketing,low +0.57,0.6,3,218,3,0,0,0,sales,low +0.95,0.98,5,155,3,0,0,0,accounting,low +0.93,0.66,4,242,4,0,0,0,support,low +0.7,0.88,3,166,5,0,0,0,technical,low +0.58,0.9,4,175,3,1,0,0,management,low +0.52,0.95,5,234,3,0,0,0,marketing,low +0.98,0.88,5,232,3,0,0,0,marketing,low +0.93,0.94,4,156,3,1,0,0,marketing,low +0.34,0.63,5,248,3,0,0,0,sales,low +0.87,0.75,4,218,2,0,0,0,sales,low +0.52,0.96,5,251,2,1,0,0,sales,low +0.58,0.91,4,173,4,0,0,0,sales,low +0.65,0.51,4,157,3,1,0,0,sales,medium +0.74,0.59,3,274,3,0,0,0,sales,medium +0.63,0.7,5,182,3,0,0,0,sales,medium +0.74,0.74,4,233,2,0,0,0,sales,medium +0.65,1,4,249,3,0,0,0,sales,medium +0.48,0.94,3,162,3,1,0,0,sales,medium +0.84,0.75,3,184,3,0,0,0,sales,medium +0.6,0.62,3,135,2,0,0,0,sales,medium +0.56,0.57,3,143,2,0,0,0,sales,medium +0.13,0.8,5,203,5,0,0,0,sales,medium +0.83,0.51,5,143,4,0,0,0,sales,medium +0.91,0.42,2,142,3,1,0,0,sales,medium +0.97,0.97,5,171,2,0,0,0,sales,high +0.9,0.96,3,223,4,0,0,0,sales,high +0.57,0.87,4,148,3,0,0,0,sales,high +0.84,0.79,6,140,2,0,0,0,accounting,high +0.84,0.74,4,226,2,0,0,0,accounting,high +0.17,0.93,5,183,5,0,0,0,accounting,high +0.97,0.86,5,135,3,0,0,0,hr,high +0.94,0.66,3,236,2,0,0,0,hr,high +0.83,0.61,5,257,2,0,0,0,hr,low +0.91,0.73,3,155,3,0,0,0,hr,low +0.9,0.76,2,211,4,0,0,0,technical,low +0.95,0.86,3,207,2,0,0,0,technical,low +0.69,0.95,3,126,6,0,0,0,technical,low +0.49,0.98,3,267,2,0,0,0,technical,low +0.45,0.37,6,226,2,0,0,0,technical,low +0.21,0.9,2,239,2,0,0,0,technical,low +0.67,0.61,3,202,2,0,0,0,technical,medium +0.76,0.62,3,150,2,1,0,0,technical,medium +0.19,0.78,5,156,6,0,0,0,technical,medium +0.52,0.73,2,233,3,0,0,0,technical,medium +0.66,0.59,5,262,2,0,0,0,technical,medium +0.95,0.67,3,183,3,0,0,0,support,medium +0.95,0.78,4,225,2,0,0,0,support,medium +0.57,0.54,5,216,3,0,0,0,support,medium +0.48,0.57,5,227,3,0,0,0,support,medium +0.95,0.5,4,242,2,0,0,0,support,medium +0.7,0.67,4,224,3,0,0,0,support,medium +0.48,0.61,3,223,3,1,0,0,support,medium +0.62,0.58,3,202,2,0,0,0,support,medium +0.58,0.76,3,220,3,0,0,0,support,medium +1,0.87,4,129,5,0,0,0,support,medium +0.79,0.65,2,193,5,0,0,0,support,medium +0.58,0.73,3,165,2,0,0,0,technical,medium +0.59,0.79,4,209,2,0,0,0,technical,medium +0.66,0.8,4,183,2,1,0,0,technical,medium +0.71,0.59,4,138,3,0,0,0,management,medium +0.9,0.74,5,152,3,0,0,0,IT,medium +0.74,0.63,4,170,2,0,0,0,IT,medium +0.66,0.93,5,185,3,0,0,0,IT,medium +0.92,0.53,2,249,2,0,0,0,IT,high +0.55,0.51,4,155,3,0,0,0,IT,low +0.51,0.43,3,204,4,0,0,0,product_mng,medium +0.49,0.52,5,188,4,0,0,0,product_mng,medium +0.88,0.52,5,264,4,0,0,0,product_mng,medium +0.6,0.8,4,146,2,0,0,0,product_mng,medium +0.93,0.65,4,212,4,0,0,0,IT,medium +0.86,0.59,3,215,3,0,0,0,RandD,medium +0.78,0.98,4,239,3,0,0,0,RandD,medium +0.69,0.55,3,188,3,0,0,0,RandD,medium +0.84,0.51,4,259,3,0,0,0,RandD,medium +0.48,0.62,3,200,3,1,0,0,RandD,medium +0.63,0.86,3,245,2,0,0,0,marketing,low +0.54,0.61,3,182,2,0,0,0,sales,low +0.85,0.53,4,181,2,0,0,0,accounting,low +0.51,0.52,3,164,3,0,0,0,support,low +0.88,0.86,5,257,3,0,0,0,technical,low +0.87,0.93,3,178,3,0,0,0,management,low +0.54,0.5,4,224,3,0,0,0,marketing,low +0.96,0.67,5,170,3,0,0,0,marketing,high +0.58,0.75,4,233,2,0,0,0,marketing,low +0.21,0.57,5,239,3,0,0,0,sales,high +0.5,0.56,5,185,2,0,0,0,sales,high +0.52,0.54,4,184,3,0,0,0,sales,low +0.5,0.7,3,188,2,0,0,0,sales,low +0.74,0.86,3,186,3,1,0,0,sales,high +0.69,0.63,3,226,3,0,0,0,sales,low +0.61,0.74,2,143,6,0,0,0,sales,medium +0.5,0.82,3,213,3,0,0,0,sales,high +0.79,0.53,2,217,2,0,0,0,sales,medium +0.73,0.68,5,190,2,0,0,0,sales,medium +0.49,0.69,2,147,2,0,0,0,sales,medium +0.7,0.77,2,235,3,1,0,0,sales,medium +0.27,0.62,6,136,3,0,0,0,sales,high +0.8,0.54,5,261,2,0,0,0,sales,medium +0.45,0.6,6,176,4,0,0,0,sales,medium +0.63,0.64,4,212,4,0,0,0,sales,medium +0.76,0.52,2,148,3,0,0,0,sales,high +0.42,0.74,6,218,6,0,0,0,sales,medium +0.41,0.87,6,262,6,0,0,0,sales,high +0.74,0.46,6,145,3,0,0,0,accounting,low +0.82,0.75,3,230,4,1,0,0,accounting,medium +0.82,0.65,4,210,2,0,0,0,accounting,medium +0.53,0.73,4,227,3,0,0,0,hr,medium +0.71,0.77,4,142,2,0,0,0,hr,medium +0.5,0.9,4,171,2,0,0,0,hr,low +0.68,0.89,3,241,3,0,0,0,hr,low +0.68,0.99,3,247,2,1,0,0,technical,low +0.48,0.86,5,246,3,0,0,0,technical,low +0.59,0.72,3,188,3,1,0,0,technical,low +0.21,0.7,3,104,2,0,0,0,technical,low +0.99,0.73,5,197,4,1,0,0,technical,low +1,0.88,4,191,4,0,0,0,technical,low +0.84,0.51,4,173,2,0,0,0,technical,low +0.86,0.82,2,207,4,1,0,0,technical,low +0.52,0.54,5,247,4,0,0,0,technical,high +0.94,0.97,5,197,5,1,0,0,technical,low +0.55,0.81,3,242,2,0,0,0,technical,low +0.79,0.59,3,145,2,0,0,0,support,low +0.91,0.9,4,174,3,0,0,0,support,low +0.82,0.99,3,195,2,0,0,0,support,high +0.84,0.94,4,270,3,1,0,0,support,low +0.72,0.68,4,238,3,0,0,0,support,low +0.68,0.85,4,156,2,0,0,0,support,low +0.99,0.96,5,261,3,0,0,0,support,high +0.74,0.85,5,135,2,0,0,0,support,low +0.8,0.41,6,185,4,0,0,0,support,medium +0.55,0.55,3,197,3,0,0,0,support,high +0.56,0.95,3,241,3,0,0,0,support,medium +0.88,0.98,3,263,3,1,0,0,technical,high +0.86,0.49,4,251,2,0,0,0,technical,medium +0.64,0.95,3,218,2,0,0,0,technical,medium +0.82,0.58,4,183,3,0,0,0,management,medium +0.66,0.8,4,252,3,0,0,0,IT,medium +0.64,0.95,3,98,3,0,0,0,IT,medium +0.17,0.78,6,284,4,0,0,0,IT,medium +0.75,0.68,4,220,2,0,0,0,IT,medium +0.45,0.39,4,275,3,0,0,0,IT,medium +0.99,0.9,4,164,3,0,0,0,product_mng,high +0.93,0.67,5,237,4,0,0,0,product_mng,low +0.88,0.8,3,133,3,0,0,0,product_mng,medium +0.62,0.52,5,256,4,0,0,0,product_mng,medium +0.94,0.88,4,270,3,0,0,0,IT,medium +0.59,0.92,4,196,2,0,0,0,RandD,medium +0.93,0.89,4,209,2,0,0,0,RandD,medium +0.71,0.39,3,261,3,0,0,0,RandD,medium +0.6,0.6,3,221,2,0,0,0,RandD,medium +0.71,0.69,4,180,3,1,0,0,RandD,medium +0.91,0.57,4,145,3,0,0,0,marketing,medium +0.78,0.96,4,111,2,0,0,0,sales,high +0.52,0.63,4,232,3,0,0,0,accounting,low +0.99,0.7,5,195,3,0,0,0,support,low +0.86,0.51,4,211,2,1,0,0,technical,low +0.74,0.68,4,194,2,0,0,0,management,high +0.15,0.84,4,275,5,0,0,0,marketing,low +0.57,0.54,3,140,3,0,0,0,marketing,low +0.67,0.6,3,157,3,0,0,0,marketing,low +0.8,0.93,4,258,3,0,0,0,sales,high +0.83,0.82,5,273,4,0,0,0,sales,low +0.69,0.53,3,135,2,0,0,0,sales,low +0.64,0.83,3,188,4,0,0,0,sales,low +0.95,0.52,5,222,2,0,0,0,sales,low +0.97,0.52,4,231,3,0,0,0,sales,low +0.85,0.86,3,255,2,0,0,0,sales,low +0.72,0.51,3,254,2,0,0,0,sales,low +0.91,0.85,3,244,3,1,0,0,sales,medium +0.81,0.83,3,132,4,0,0,0,sales,medium +0.13,0.67,5,234,6,0,0,0,sales,medium +0.95,0.81,4,272,3,0,0,0,sales,medium +0.82,0.54,4,191,3,0,0,0,sales,medium +0.63,0.93,4,238,4,0,0,0,sales,medium +0.55,0.69,3,225,2,0,0,0,sales,medium +0.83,0.95,3,211,2,0,0,0,sales,medium +0.54,0.98,3,217,3,0,0,0,sales,medium +0.89,0.91,5,156,4,0,0,0,sales,medium +0.79,0.55,3,147,3,0,0,0,sales,medium +0.56,0.73,4,134,3,0,0,0,accounting,medium +0.89,0.7,4,235,2,1,0,0,accounting,high +1,0.66,4,238,4,0,0,0,accounting,low +0.43,0.72,3,258,4,0,0,0,hr,medium +0.71,0.55,5,224,3,0,0,0,hr,medium +0.98,0.59,4,149,2,0,0,0,hr,medium +0.81,0.7,4,219,2,1,0,0,hr,medium +0.71,0.53,3,186,2,0,0,0,technical,low +0.99,0.6,4,259,4,0,0,0,technical,low +0.34,0.62,3,119,2,0,0,0,technical,low +0.58,0.91,3,223,2,0,0,0,technical,low +0.77,0.49,4,184,3,0,0,0,technical,low +0.64,0.5,3,238,4,0,0,0,technical,low +0.13,1,4,157,5,1,0,0,technical,low +0.98,0.6,2,249,3,0,0,0,technical,low +0.72,0.84,4,195,2,0,0,0,technical,low +0.55,0.79,3,162,2,0,0,0,technical,low +0.62,0.91,4,231,3,0,0,0,technical,low +0.74,0.91,2,264,3,0,0,0,support,low +0.69,0.96,3,210,3,0,0,0,support,low +0.6,0.63,4,192,3,0,0,0,support,low +0.54,0.43,3,192,2,0,0,0,support,low +0.56,0.75,4,249,3,0,0,0,support,low +0.58,0.86,5,206,3,0,0,0,support,low +0.21,0.66,4,165,5,0,0,0,support,low +0.52,0.85,5,183,3,0,0,0,support,low +0.98,0.7,4,253,2,0,0,0,support,low +0.85,0.97,3,256,3,0,0,0,support,low +0.62,0.88,2,263,4,0,0,0,support,medium +0.63,0.61,3,234,3,1,0,0,technical,medium +0.84,0.97,6,223,2,0,0,0,technical,medium +0.71,0.69,2,172,3,0,0,0,technical,medium +0.36,0.55,6,226,6,0,0,0,management,medium +0.79,0.56,6,205,4,1,0,0,IT,medium +0.59,0.55,4,235,2,0,0,0,IT,medium +0.5,0.53,4,263,3,0,0,0,IT,medium +0.88,0.66,4,271,3,1,0,0,IT,medium +0.65,0.69,6,131,5,0,0,0,IT,medium +0.71,0.56,4,238,4,0,0,0,product_mng,medium +0.89,0.54,3,214,2,0,0,0,product_mng,medium +0.83,0.84,3,267,3,0,0,0,product_mng,high +0.73,0.53,3,184,2,0,0,0,product_mng,low +0.71,0.67,3,264,3,0,0,0,IT,medium +0.53,0.66,3,109,2,0,0,0,RandD,medium +0.74,0.7,3,253,4,1,0,0,RandD,medium +0.6,0.52,4,207,2,1,0,0,RandD,medium +0.47,0.6,4,263,5,0,0,0,RandD,low +0.88,0.88,3,214,2,1,0,0,RandD,low +0.62,0.67,2,153,3,0,0,0,marketing,low +0.24,0.48,5,123,5,1,0,0,sales,low +0.15,0.36,5,159,2,0,0,0,accounting,low +0.92,0.82,3,185,3,0,0,0,support,low +0.74,0.7,4,167,3,1,0,0,technical,low +0.86,0.77,3,271,3,0,0,0,management,low +0.96,0.61,3,140,3,0,0,0,marketing,low +0.54,0.6,4,141,3,0,0,0,marketing,low +0.99,0.87,4,190,2,0,0,0,marketing,low +0.72,0.73,5,134,2,0,0,0,sales,low +0.96,0.75,5,176,4,0,0,0,sales,low +0.73,0.73,4,194,2,0,0,0,sales,low +0.67,0.44,5,212,4,0,0,0,sales,low +0.58,0.72,5,234,3,1,0,0,sales,low +0.9,0.99,4,190,2,0,0,0,sales,low +0.99,0.37,5,155,3,0,0,0,sales,low +0.89,0.58,4,232,2,0,0,0,sales,low +0.72,0.95,4,216,3,0,0,0,sales,low +0.77,0.8,3,207,3,0,0,0,sales,low +0.8,0.94,4,200,4,0,0,0,sales,medium +0.89,0.86,3,178,4,0,0,0,sales,medium +0.59,0.81,4,173,2,0,0,0,sales,medium +0.24,0.87,5,268,5,0,0,0,sales,medium +0.94,0.59,6,212,2,0,0,0,sales,medium +0.74,0.5,4,216,3,0,0,0,sales,medium +0.63,0.62,5,212,6,0,0,0,sales,medium +0.63,0.59,3,155,3,1,0,0,sales,medium +0.77,0.65,4,164,2,0,0,0,sales,medium +0.87,0.74,3,209,3,0,0,0,accounting,medium +0.79,0.61,4,136,3,0,0,0,accounting,medium +0.54,0.84,4,223,3,0,0,0,accounting,medium +0.59,0.83,4,239,4,0,0,0,hr,high +0.86,0.87,3,205,4,0,0,0,hr,low +0.98,0.68,3,203,3,0,0,0,hr,medium +1,0.79,5,152,4,0,0,0,hr,medium +0.9,0.79,4,236,3,1,0,0,technical,medium +0.34,0.6,4,114,3,0,0,0,technical,medium +0.95,0.93,3,209,2,0,0,0,technical,low +0.79,0.48,4,178,2,0,0,0,technical,low +0.13,0.91,4,175,5,0,0,0,technical,low +0.72,0.69,3,270,4,0,0,0,technical,low +0.63,0.54,3,145,2,1,0,0,technical,low +0.81,0.76,5,134,2,0,0,0,technical,low +0.71,0.75,4,272,4,0,0,0,technical,low +0.49,0.76,3,208,2,0,0,0,technical,low +0.59,0.65,4,219,3,1,0,0,technical,low +0.87,0.59,5,154,3,0,0,0,support,low +0.66,0.6,3,179,4,0,0,0,support,low +0.78,0.92,5,137,2,0,0,0,support,low +0.65,0.7,4,211,2,0,0,0,support,low +0.8,0.97,5,271,4,0,0,0,support,low +0.56,0.75,4,192,2,0,0,0,support,low +0.85,0.67,4,228,4,0,0,0,support,low +0.14,0.46,2,267,6,1,0,0,support,low +0.74,0.62,4,272,2,0,0,0,support,low +0.86,0.93,2,260,2,0,0,0,support,low +0.71,0.96,4,161,3,0,0,0,support,low +0.83,0.99,4,226,2,0,0,0,technical,low +0.52,0.49,4,249,4,1,0,0,technical,medium +0.63,0.8,3,243,3,0,0,0,technical,medium +0.92,0.93,4,247,2,0,0,0,management,medium +0.66,0.87,3,186,2,0,0,0,IT,medium +0.77,0.7,3,155,3,0,0,0,IT,medium +0.74,0.97,2,135,4,0,0,0,IT,medium +0.81,0.76,5,198,4,0,0,0,IT,medium +0.67,0.55,3,175,2,0,0,0,IT,medium +0.75,0.92,3,192,3,0,0,0,product_mng,medium +0.65,0.36,2,282,3,0,0,0,product_mng,medium +0.81,0.6,4,179,3,0,0,0,product_mng,medium +0.57,0.77,4,245,3,0,0,0,product_mng,medium +0.89,0.66,4,235,3,0,0,0,IT,high +0.5,0.56,4,266,2,0,0,0,RandD,low +0.21,0.42,4,269,4,1,0,0,RandD,medium +0.79,0.67,3,264,2,0,0,0,RandD,medium +0.66,0.57,3,161,2,1,0,0,RandD,medium +0.82,0.95,3,203,3,0,0,0,RandD,medium +0.85,0.85,4,258,2,0,0,0,marketing,low +0.72,0.96,3,143,3,0,0,0,sales,low +0.52,0.92,3,214,3,0,0,0,accounting,low +0.5,0.62,4,166,3,1,0,0,support,low +0.52,0.82,3,192,3,0,0,0,technical,low +0.13,0.87,3,185,4,1,0,0,management,low +0.87,0.98,4,173,3,0,0,0,marketing,low +0.53,0.98,2,163,3,0,0,0,marketing,low +0.15,0.76,5,277,4,0,0,0,marketing,low +0.64,0.86,5,274,2,1,0,0,sales,low +0.52,0.44,3,119,2,0,0,0,sales,low +0.79,0.67,4,267,3,0,0,0,sales,low +0.74,0.89,3,160,2,0,0,0,sales,low +0.81,0.84,4,198,2,0,0,0,sales,low +0.94,0.6,3,193,3,0,0,0,sales,low +0.67,0.84,6,250,2,0,0,0,sales,low +0.93,0.84,3,237,4,1,0,0,sales,low +0.52,0.96,4,170,2,0,0,0,sales,low +0.48,0.74,2,157,2,1,0,0,sales,medium +0.57,0.92,6,267,4,0,0,0,sales,medium +0.71,0.77,4,192,4,0,0,0,sales,medium +0.9,0.74,4,218,2,1,0,0,sales,medium +0.58,0.61,4,210,3,0,0,0,sales,medium +0.66,0.48,4,229,4,0,0,0,sales,medium +0.59,0.66,3,186,3,0,0,0,sales,medium +0.96,0.5,3,234,2,1,0,0,sales,medium +0.13,0.91,2,149,5,0,0,0,sales,medium +0.93,0.92,3,205,3,0,0,0,sales,medium +0.54,0.72,3,148,4,0,0,0,accounting,medium +0.54,0.77,5,270,3,0,0,0,accounting,medium +0.87,0.62,3,176,3,0,0,0,accounting,high +0.79,0.91,3,226,2,0,0,0,hr,low +0.83,0.57,3,232,4,0,0,0,hr,medium +0.73,0.6,3,137,3,0,0,0,hr,medium +0.29,0.42,6,253,3,0,0,0,hr,medium +0.8,0.7,6,231,4,0,0,0,technical,medium +0.29,0.81,3,189,6,0,0,0,technical,low +0.43,0.85,6,168,2,0,0,0,technical,low +0.99,0.93,3,261,3,0,0,0,technical,low +0.86,0.51,4,152,3,0,0,0,technical,low +0.85,0.78,5,263,2,1,0,0,technical,low +0.66,0.68,3,258,3,0,0,0,technical,low +0.57,0.99,3,205,3,0,0,0,technical,low +0.31,0.64,6,183,2,1,0,0,technical,low +0.88,0.88,3,153,3,0,0,0,technical,low +0.72,0.72,5,194,4,0,0,0,technical,low +0.75,0.66,4,202,2,0,0,0,support,low +0.82,0.71,4,164,4,0,0,0,support,low +0.82,0.67,3,213,2,0,0,0,support,low +0.15,0.52,4,265,6,0,0,0,support,low +0.16,0.88,6,218,3,0,0,0,support,low +0.95,0.4,5,286,4,0,0,0,support,low +0.87,0.73,3,172,3,1,0,0,support,low +0.85,0.89,4,251,2,0,0,0,support,low +0.58,0.6,3,110,3,1,0,0,support,low +0.63,0.86,3,269,4,0,0,0,support,low +0.69,0.68,3,151,3,1,0,0,support,low +0.53,0.85,5,161,2,0,0,0,technical,medium +0.96,0.71,4,210,3,0,0,0,technical,medium +0.73,0.83,2,167,3,0,0,0,technical,medium +0.5,0.6,3,270,3,1,0,0,management,medium +0.81,0.83,3,133,3,1,0,0,IT,medium +0.82,0.59,3,249,3,0,0,0,IT,medium +0.76,0.72,4,266,3,0,0,0,IT,medium +0.27,0.82,4,276,2,0,0,0,IT,medium +0.64,0.38,6,215,3,0,0,0,IT,medium +0.57,0.9,3,262,2,0,0,0,product_mng,medium +0.49,0.84,5,193,3,0,0,0,product_mng,medium +0.66,0.92,2,102,4,0,0,0,product_mng,medium +0.71,0.36,4,278,4,1,0,0,product_mng,high +0.61,0.63,3,250,4,0,0,0,IT,low +0.52,0.89,5,193,4,0,0,0,RandD,medium +0.62,0.91,3,133,3,0,0,0,RandD,medium +0.98,0.65,4,216,4,0,0,0,RandD,medium +0.67,0.56,5,174,2,1,0,0,RandD,medium +0.85,0.62,2,280,4,0,0,0,RandD,low +0.84,0.85,4,246,2,0,0,0,marketing,low +1,0.53,3,142,3,0,0,0,sales,low +0.72,0.76,4,144,3,1,0,0,accounting,low +0.66,0.75,6,100,4,1,0,0,support,low +0.64,0.71,5,212,2,0,0,0,technical,low +1,0.76,5,201,3,0,0,0,management,low +0.75,0.59,5,206,2,0,0,0,marketing,low +0.81,0.77,4,197,3,0,0,0,marketing,low +0.31,0.98,5,232,5,0,0,0,marketing,low +0.32,0.97,6,272,2,0,0,0,sales,low +0.48,0.5,4,173,3,0,0,0,sales,low +0.62,0.42,2,124,2,0,0,0,sales,low +0.77,0.86,5,282,4,0,0,0,sales,low +0.76,0.8,2,219,4,1,0,0,sales,low +0.68,0.41,3,106,6,0,0,0,sales,low +0.72,0.79,4,192,4,0,0,0,sales,low +0.87,0.91,5,190,2,0,0,0,sales,low +0.59,0.57,2,156,2,0,0,0,sales,low +0.7,0.64,3,180,2,0,0,0,sales,low +0.73,0.81,4,245,2,0,0,0,sales,low +0.58,0.62,3,169,2,0,0,0,sales,medium +0.64,0.66,3,188,4,0,0,0,sales,medium +0.89,0.66,5,224,2,0,0,0,sales,medium +0.95,0.71,3,263,2,1,0,0,sales,medium +0.84,0.9,3,262,2,0,0,0,sales,medium +0.6,0.99,4,225,3,0,0,0,sales,medium +0.71,0.63,5,224,3,1,0,0,sales,medium +0.6,0.95,3,266,3,0,0,0,sales,medium +0.91,0.68,3,218,3,1,0,0,accounting,medium +0.75,1,3,102,3,0,0,0,accounting,medium +0.7,0.67,4,181,3,0,0,0,accounting,medium +0.23,0.64,5,150,5,0,0,0,hr,medium +0.73,0.83,4,270,2,0,0,0,hr,high +0.99,0.49,4,270,2,0,0,0,hr,low +0.62,0.68,5,265,3,0,0,0,hr,medium +0.98,0.89,4,169,3,0,0,0,technical,medium +0.61,0.94,3,224,4,0,0,0,technical,medium +0.52,0.92,3,150,2,1,0,0,technical,medium +0.65,0.66,5,239,4,0,0,0,technical,low +0.59,0.9,3,245,3,1,0,0,technical,low +0.71,0.8,3,182,2,1,0,0,technical,low +0.18,0.7,5,182,4,0,0,0,technical,low +0.21,0.93,4,243,4,0,0,0,technical,low +0.15,0.67,6,209,5,0,0,0,technical,low +0.97,0.53,4,195,4,0,0,0,technical,low +0.39,0.48,3,190,2,0,0,0,technical,low +0.35,0.66,2,140,2,0,0,0,support,medium +0.88,0.58,4,147,4,0,0,0,support,medium +0.58,0.97,3,265,3,0,0,0,support,medium +0.61,0.78,3,238,2,0,0,0,support,medium +0.59,0.98,3,155,3,0,0,0,support,medium +0.55,0.41,4,132,5,1,0,0,support,medium +0.52,0.8,5,257,3,0,0,0,support,medium +0.71,0.77,2,255,3,0,0,0,support,medium +0.63,0.82,5,229,2,0,0,0,support,medium +0.17,0.84,5,216,4,0,0,0,support,medium +0.95,0.49,4,269,4,0,0,0,support,medium +1,0.73,3,205,2,0,0,0,technical,medium +0.73,0.96,2,151,3,0,0,0,technical,medium +0.8,0.64,4,246,3,1,0,0,technical,medium +0.63,0.8,4,256,4,0,0,0,management,medium +0.95,0.59,4,235,3,0,0,0,IT,medium +0.75,0.83,4,229,2,0,0,0,IT,medium +0.64,0.72,5,158,3,0,0,0,IT,medium +0.72,1,3,197,3,0,0,0,IT,medium +0.72,0.53,3,151,4,0,0,0,IT,medium +0.85,0.63,3,167,3,0,0,0,product_mng,medium +0.24,0.94,4,146,4,0,0,0,product_mng,medium +0.69,0.53,4,281,4,0,0,0,product_mng,medium +0.69,0.7,3,212,2,0,0,0,product_mng,medium +0.87,0.59,5,261,3,0,0,0,IT,medium +0.78,0.91,3,238,2,0,0,0,RandD,high +0.76,0.74,4,235,3,0,0,0,RandD,high +0.35,0.7,3,107,3,0,0,0,RandD,high +0.88,0.59,6,243,4,0,0,0,RandD,high +0.78,0.79,5,233,3,1,0,0,RandD,high +0.36,0.42,3,206,5,0,0,0,marketing,high +0.24,0.7,5,172,4,0,0,0,sales,high +0.55,0.82,3,248,2,0,0,0,accounting,high +0.91,0.53,3,147,4,1,0,0,support,high +0.66,0.61,5,259,3,0,0,0,technical,high +0.57,0.82,3,267,3,0,0,0,management,high +0.64,0.64,3,263,3,0,0,0,marketing,high +0.63,0.98,3,160,4,1,0,0,marketing,low +0.49,0.92,5,176,3,0,0,0,marketing,low +0.7,0.7,3,224,3,0,0,0,sales,low +0.3,0.71,3,155,2,0,0,0,sales,low +0.51,0.52,3,132,3,0,0,0,sales,low +0.71,0.87,5,173,3,0,0,0,sales,low +0.64,0.67,3,165,3,0,0,0,sales,low +0.67,0.66,6,272,3,0,0,0,sales,low +0.83,0.94,5,156,3,1,0,0,sales,low +0.92,0.96,3,154,2,1,0,0,sales,low +0.84,0.53,3,237,3,1,0,0,sales,low +0.97,0.75,2,271,6,0,0,0,sales,low +0.19,0.91,6,152,3,0,0,0,sales,low +0.86,0.51,4,152,3,1,0,0,sales,low +0.71,0.69,3,172,3,0,0,0,sales,low +0.76,0.56,4,214,2,1,0,0,sales,medium +0.68,0.88,5,201,3,0,0,0,sales,medium +0.61,0.99,2,275,3,1,0,0,sales,medium +0.85,0.79,3,156,3,0,0,0,sales,medium +0.84,0.89,3,234,2,0,0,0,sales,medium +0.62,0.63,2,123,2,0,0,0,sales,medium +0.77,0.76,3,201,4,0,0,0,accounting,medium +0.79,0.93,5,160,4,1,0,0,accounting,medium +0.97,0.5,3,173,2,0,0,0,accounting,medium +0.59,0.61,4,141,2,1,0,0,hr,medium +0.93,0.62,3,231,6,0,0,0,hr,medium +0.85,0.54,4,174,2,0,0,0,hr,medium +0.7,0.57,4,211,3,0,0,0,hr,high +0.54,0.91,3,249,3,0,0,0,technical,high +0.42,0.86,2,108,5,0,0,0,technical,high +0.96,0.75,4,165,3,0,0,0,technical,high +0.58,0.8,3,181,4,0,0,0,technical,high +0.61,0.59,3,237,2,0,0,0,technical,high +0.62,0.97,5,180,2,0,0,0,technical,high +0.68,0.7,3,209,3,0,0,0,technical,high +0.6,0.73,3,191,5,1,0,0,technical,low +0.7,0.91,4,181,2,1,0,0,technical,low +0.65,0.55,4,250,2,0,0,0,technical,low +0.48,0.59,2,179,2,0,0,0,technical,low +0.75,0.73,3,225,4,0,0,0,support,low +0.69,0.78,5,267,2,1,0,0,support,low +0.34,0.46,2,169,2,1,0,0,support,low +0.59,0.49,4,164,3,0,0,0,support,low +0.94,0.95,4,155,3,0,0,0,support,medium +0.98,0.77,5,223,2,1,0,0,support,medium +0.72,0.66,3,160,3,0,0,0,support,medium +0.79,0.7,4,268,2,0,0,0,support,medium +0.54,0.61,4,151,4,1,0,0,support,medium +0.73,0.95,3,156,2,0,0,0,support,medium +0.82,0.58,4,136,3,0,0,0,support,medium +0.57,0.45,3,189,2,0,0,0,technical,medium +0.98,0.93,5,203,2,0,0,0,technical,medium +0.91,0.65,5,174,2,0,0,0,technical,medium +0.72,0.91,3,239,2,0,0,0,management,medium +0.48,0.73,5,152,6,0,0,0,IT,medium +0.57,0.86,4,268,6,0,0,0,IT,medium +0.86,0.96,4,146,3,0,0,0,IT,medium +0.63,0.85,3,232,4,0,0,0,IT,medium +0.81,0.52,3,255,5,0,0,0,IT,medium +0.21,0.37,4,129,4,0,0,0,product_mng,medium +0.9,0.66,3,261,3,1,0,0,product_mng,medium +0.79,0.78,3,101,2,1,0,0,product_mng,medium +0.95,0.49,4,229,3,0,0,0,product_mng,medium +0.29,0.43,3,162,4,0,0,0,IT,medium +0.81,0.52,4,270,3,0,0,0,RandD,medium +0.21,0.56,6,277,5,0,0,0,RandD,medium +0.7,0.83,5,261,4,0,0,0,RandD,high +0.66,0.64,4,204,2,0,0,0,RandD,low +0.16,0.86,2,215,2,0,0,0,RandD,medium +0.72,0.8,3,219,3,0,0,0,marketing,medium +0.51,0.5,3,147,4,0,0,0,sales,medium +0.59,0.63,5,243,2,0,0,0,accounting,medium +0.66,0.4,2,155,5,1,0,0,support,medium +0.69,0.84,3,253,2,0,0,0,technical,medium +0.69,0.94,4,235,3,0,0,0,management,medium +0.89,0.79,5,257,3,0,0,0,marketing,medium +0.52,0.56,4,225,2,0,0,0,marketing,medium +0.91,0.91,3,167,3,0,0,0,marketing,medium +0.96,0.53,5,224,4,0,0,0,sales,low +0.8,0.58,5,127,3,0,0,0,sales,low +0.55,0.77,3,256,3,1,0,0,sales,low +0.93,0.63,4,233,2,0,0,0,sales,low +0.93,0.86,4,169,4,0,0,0,sales,low +0.54,0.48,3,152,2,0,0,0,sales,low +0.48,0.76,5,236,2,0,0,0,sales,low +0.19,0.99,3,154,2,0,0,0,sales,high +0.95,0.71,3,223,2,0,0,0,sales,low +0.96,0.81,4,211,3,0,0,0,sales,high +0.63,0.89,4,192,2,0,0,0,sales,high +0.81,0.8,4,227,2,1,0,0,sales,low +0.5,0.88,4,265,3,1,0,0,sales,low +0.76,0.72,5,228,2,0,0,0,sales,high +0.84,0.49,4,152,3,0,0,0,sales,low +0.2,0.95,5,169,5,0,0,0,sales,medium +0.78,0.92,3,169,3,0,0,0,sales,high +0.8,0.68,4,157,3,0,0,0,sales,medium +0.94,0.57,4,251,2,1,0,0,sales,medium +0.44,0.74,5,253,2,0,0,0,accounting,medium +0.92,0.85,3,155,2,0,0,0,accounting,medium +0.54,0.8,3,232,2,0,0,0,accounting,high +0.56,0.56,4,195,2,0,0,0,hr,medium +0.66,0.69,4,198,3,1,0,0,hr,medium +0.8,0.91,3,246,3,0,0,0,hr,medium +0.6,0.81,2,214,3,0,0,0,hr,high +0.73,0.73,5,249,3,0,0,0,technical,medium +0.55,0.74,3,211,3,1,0,0,technical,high +0.7,0.71,5,269,3,0,0,0,technical,low +0.53,0.68,4,214,3,0,0,0,technical,medium +0.9,0.94,4,231,3,0,0,0,technical,medium +0.8,0.78,3,175,3,0,0,0,technical,medium +0.51,0.6,5,175,3,0,0,0,technical,medium +0.86,0.96,5,238,5,0,0,0,technical,low +0.63,0.79,4,228,4,0,0,0,technical,low +0.83,0.93,3,220,4,0,0,0,technical,low +0.85,0.55,4,233,2,1,0,0,technical,low +0.8,0.57,3,225,4,0,0,0,support,low +0.79,0.97,5,187,3,0,0,0,support,low +0.37,0.71,3,117,3,0,0,0,support,low +0.85,0.9,3,184,3,1,0,0,support,low +0.76,0.56,3,216,3,0,0,0,support,low +0.99,0.62,4,140,2,1,0,0,support,low +0.55,0.63,3,201,2,1,0,0,support,high +0.69,0.69,4,167,3,1,0,0,support,low +0.68,1,5,203,2,0,0,0,support,low +0.69,0.9,5,231,2,1,0,0,support,low +0.65,0.7,3,141,4,0,0,0,support,low +0.17,0.88,6,226,3,1,0,0,technical,high +0.48,0.65,3,199,2,0,0,0,technical,low +0.65,0.59,4,192,3,0,0,0,technical,low +0.57,0.49,4,247,2,0,0,0,management,low +0.8,0.67,3,164,3,0,0,0,IT,high +0.8,0.6,5,234,2,0,0,0,IT,low +0.5,0.6,2,177,3,1,0,0,IT,medium +0.95,0.87,3,208,2,0,0,0,IT,high +0.69,0.93,3,233,3,0,0,0,IT,medium +0.74,0.57,4,172,3,0,0,0,product_mng,high +0.68,0.59,3,141,3,0,0,0,product_mng,medium +0.68,0.55,3,213,3,0,0,0,product_mng,medium +0.65,0.37,5,128,3,1,0,0,product_mng,medium +0.85,0.92,4,151,3,1,0,0,IT,medium +0.49,0.48,4,247,3,0,0,0,RandD,medium +0.19,0.8,6,143,4,0,0,0,RandD,medium +0.95,0.61,3,164,3,0,0,0,RandD,medium +0.63,0.62,3,183,3,0,0,0,RandD,medium +0.83,0.8,4,274,3,0,0,0,RandD,high +0.62,0.78,4,261,2,0,0,0,marketing,low +0.74,0.98,5,200,3,0,0,0,sales,medium +0.7,0.87,5,177,2,0,0,0,accounting,medium +0.28,0.38,5,139,4,0,0,0,support,medium +0.39,0.56,6,228,5,0,0,0,technical,medium +0.62,0.63,3,230,2,0,0,0,management,medium +0.79,0.54,5,212,4,0,0,0,marketing,medium +0.87,0.74,4,265,4,0,0,0,marketing,medium +0.29,0.75,3,124,4,0,0,0,marketing,medium +0.37,0.88,4,155,3,0,0,0,sales,medium +0.68,0.55,4,215,4,0,0,0,sales,high +0.9,0.51,4,214,2,0,0,0,sales,low +0.97,0.65,3,181,3,0,0,0,sales,low +0.6,0.77,4,229,2,0,0,0,sales,low +0.58,0.79,5,262,2,0,0,0,sales,high +0.83,0.86,3,165,3,0,0,0,sales,low +0.83,0.73,5,136,3,0,0,0,sales,low +0.94,0.71,4,151,2,1,0,0,sales,low +0.69,0.9,5,226,4,0,0,0,sales,high +0.81,0.81,5,215,2,0,0,0,sales,low +0.19,0.5,6,143,5,1,0,0,sales,low +0.18,0.64,3,223,4,1,0,0,sales,low +0.58,0.63,4,271,3,0,0,0,sales,low +0.76,0.65,3,220,3,0,0,0,sales,low +0.26,0.47,6,182,4,0,0,0,sales,low +0.78,0.87,3,190,3,0,0,0,sales,low +0.71,0.56,3,198,3,0,0,0,sales,medium +0.76,0.61,3,141,2,0,0,0,sales,medium +0.44,0.81,3,248,2,0,0,0,accounting,medium +0.26,0.69,2,168,5,0,0,0,accounting,medium +0.75,0.57,5,162,3,0,0,0,accounting,medium +0.64,0.9,4,211,3,0,0,0,hr,medium +0.79,0.71,4,271,3,0,0,0,hr,medium +0.96,0.61,3,271,2,0,0,0,hr,medium +0.63,1,5,244,2,0,0,0,hr,medium +0.65,0.55,5,261,3,1,0,0,technical,medium +0.76,0.81,3,225,3,0,0,0,technical,medium +0.26,0.9,4,266,5,0,0,0,technical,medium +0.84,0.73,3,146,5,1,0,0,technical,high +0.74,0.77,3,233,3,0,0,0,technical,low +0.53,0.45,4,180,3,0,0,0,technical,medium +0.7,0.56,5,208,3,0,0,0,technical,medium +0.62,0.69,4,165,4,1,0,0,technical,medium +0.71,0.68,4,221,4,0,0,0,technical,medium +0.5,0.65,3,215,2,0,0,0,technical,low +0.53,0.5,6,264,6,0,0,0,technical,low +0.88,0.89,2,160,4,0,0,0,support,low +0.79,0.83,2,192,3,0,0,0,support,low +0.69,0.89,5,201,2,0,0,0,support,low +0.57,0.96,4,264,2,0,0,0,support,low +0.68,0.8,4,186,3,1,0,0,support,low +0.6,0.82,4,272,3,0,0,0,support,low +0.7,0.9,4,216,3,0,0,0,support,low +0.71,0.76,4,142,2,1,0,0,support,low +0.49,0.51,4,133,3,0,0,0,support,low +0.74,0.7,4,260,2,0,0,0,support,low +0.2,0.93,4,101,5,0,0,0,support,low +0.57,0.5,4,230,2,0,0,0,technical,low +0.83,0.48,3,242,4,0,0,0,technical,low +0.22,0.64,3,193,2,0,0,0,technical,low +0.67,0.57,2,234,4,0,0,0,management,low +0.54,0.84,3,132,3,0,0,0,IT,low +0.54,0.53,4,183,3,0,0,0,IT,low +0.64,0.61,4,191,4,0,0,0,IT,low +0.23,0.84,5,140,4,0,0,0,IT,low +0.88,0.87,5,257,3,0,0,0,IT,medium +0.83,0.54,4,219,3,0,0,0,product_mng,medium +0.88,0.67,5,141,2,0,0,0,product_mng,medium +0.9,0.85,5,162,2,0,0,0,product_mng,medium +0.49,0.61,3,181,3,0,0,0,product_mng,medium +0.55,0.49,3,191,3,0,0,0,IT,medium +0.92,0.69,4,149,6,1,0,0,RandD,medium +0.72,0.67,3,164,4,0,0,0,RandD,medium +0.63,0.5,4,235,3,0,0,0,RandD,medium +0.98,0.66,3,199,3,0,0,0,RandD,medium +0.76,0.52,3,248,3,0,0,0,RandD,medium +0.42,0.56,2,103,3,1,0,0,marketing,medium +0.58,0.65,4,248,4,0,0,0,marketing,high +0.85,0.82,3,153,3,1,0,0,sales,low +0.67,0.95,4,241,4,0,0,0,accounting,medium +0.58,1,4,258,3,0,0,0,support,medium +0.84,0.76,5,172,5,1,0,0,technical,medium +0.56,0.68,3,149,2,0,0,0,management,medium +0.63,0.83,4,217,3,0,0,0,marketing,low +0.51,0.92,3,243,3,0,0,0,marketing,low +0.95,0.81,5,120,3,0,0,0,marketing,low +0.85,0.55,3,137,3,1,0,0,sales,low +0.73,0.78,5,150,3,0,0,0,sales,low +0.2,0.49,5,199,5,0,0,0,sales,low +0.78,0.79,3,203,2,0,0,0,sales,low +0.83,0.8,3,273,3,0,0,0,sales,low +0.87,0.56,2,214,3,1,0,0,sales,low +0.98,0.99,5,141,3,0,0,0,sales,low +1,0.81,5,243,3,0,0,0,sales,low +0.7,0.55,4,159,3,0,0,0,sales,low +0.62,0.88,5,146,3,0,0,0,sales,low +0.67,0.72,4,159,2,0,0,0,sales,low +0.86,0.96,4,196,3,0,0,0,sales,low +0.44,0.57,5,183,2,1,0,0,sales,low +0.19,0.86,4,192,4,0,0,0,sales,low +0.76,0.83,4,246,2,0,0,0,sales,low +0.89,0.93,5,191,4,0,0,0,sales,low +0.25,0.97,3,158,3,0,0,0,sales,low +0.68,1,4,167,2,0,0,0,sales,low +0.38,0.5,2,187,2,1,0,0,sales,medium +0.64,0.95,4,199,4,0,0,0,accounting,medium +0.76,0.62,4,157,3,0,0,0,accounting,medium +0.26,0.45,2,157,3,0,0,0,accounting,medium +0.69,0.67,3,178,2,0,0,0,hr,medium +0.98,0.66,3,154,2,0,0,0,hr,medium +0.86,0.83,5,208,2,1,0,0,hr,medium +0.14,0.68,4,273,5,1,0,0,hr,medium +0.58,0.63,4,159,3,0,0,0,technical,medium +0.63,0.97,4,234,2,0,0,0,technical,medium +0.7,0.91,5,139,3,1,0,0,technical,medium +0.73,0.62,4,210,4,0,0,0,technical,medium +0.89,0.52,3,164,3,0,0,0,technical,high +0.17,0.61,3,241,5,1,0,0,technical,low +0.86,0.73,5,259,2,0,0,0,technical,medium +0.59,0.73,3,159,3,1,0,0,technical,medium +0.22,0.51,4,131,2,0,0,0,technical,medium +0.55,0.57,3,266,2,0,0,0,technical,medium +0.74,0.6,3,153,2,0,0,0,technical,low +0.55,0.54,3,253,2,0,0,0,support,low +0.67,0.94,4,141,2,1,0,0,support,low +0.64,0.8,3,199,3,0,0,0,support,low +0.58,0.71,3,205,3,0,0,0,support,low +0.9,0.6,4,252,3,0,0,0,support,low +0.89,0.9,4,153,3,0,0,0,support,low +0.74,0.37,2,171,4,0,0,0,support,low +0.78,0.91,5,150,4,0,0,0,support,low +0.97,0.53,4,247,3,0,0,0,support,low +0.52,0.92,4,150,2,1,0,0,support,low +0.99,0.86,4,206,2,0,0,0,support,low +0.76,0.44,4,192,4,1,0,0,technical,low +0.69,0.96,5,164,3,0,0,0,technical,low +0.59,0.69,3,186,3,0,0,0,technical,low +0.95,0.63,3,249,3,0,0,0,management,low +0.69,0.81,3,214,2,0,0,0,IT,low +0.76,0.75,4,193,4,0,0,0,IT,low +0.7,0.84,2,114,4,0,0,0,IT,low +0.87,0.6,2,122,2,0,0,0,IT,low +0.44,0.55,3,170,3,1,0,0,IT,low +0.54,0.91,3,151,3,0,0,0,product_mng,medium +0.55,0.75,3,156,3,0,0,0,product_mng,medium +0.81,0.75,5,170,3,1,0,0,product_mng,medium +0.5,0.55,3,188,2,0,0,0,product_mng,medium +0.93,0.74,4,201,3,1,0,0,IT,medium +0.64,0.5,6,254,6,0,0,0,RandD,medium +0.57,0.78,3,206,4,0,0,0,RandD,medium +0.95,0.74,4,216,3,0,0,0,RandD,medium +0.86,0.67,5,200,3,0,0,0,RandD,medium +0.82,0.58,4,202,2,0,0,0,RandD,medium +0.18,0.79,4,217,4,0,0,0,RandD,medium +0.58,0.7,5,151,4,0,0,0,marketing,medium +0.57,0.56,3,224,2,0,0,0,sales,high +0.94,0.83,5,148,3,0,0,0,accounting,low +0.2,0.97,6,224,5,1,0,0,support,medium +0.73,0.75,2,243,5,1,0,0,technical,medium +0.94,0.8,4,238,3,1,0,0,management,medium +0.99,0.61,3,254,3,0,0,0,marketing,medium +0.22,0.49,4,218,4,0,0,0,marketing,low +0.67,0.66,3,237,3,0,0,0,marketing,low +0.49,0.67,4,185,2,0,0,0,sales,low +0.78,0.95,4,184,3,0,0,0,sales,low +0.15,0.74,2,176,3,1,0,0,sales,low +0.91,0.89,4,260,3,0,0,0,sales,low +0.7,0.78,4,254,4,0,0,0,sales,low +0.6,0.95,3,221,3,0,0,0,sales,low +0.59,0.57,5,257,2,0,0,0,sales,low +0.59,0.93,3,265,3,1,0,0,sales,low +0.55,0.64,3,138,3,1,0,0,sales,low +0.42,0.75,3,163,2,1,0,0,sales,low +0.57,0.81,3,144,3,0,0,0,sales,low +0.72,0.51,3,146,2,1,0,0,sales,low +0.83,0.81,3,242,6,0,0,0,sales,low +0.89,0.93,4,249,3,0,0,0,sales,low +0.55,0.59,3,245,3,0,0,0,sales,low +0.53,0.75,4,201,2,0,0,0,sales,low +0.74,0.59,4,177,4,1,0,0,sales,medium +0.63,0.98,4,160,2,0,0,0,sales,medium +0.63,0.4,6,177,2,1,0,0,sales,medium +0.61,0.97,4,153,3,0,0,0,accounting,medium +0.76,0.79,3,197,5,0,0,0,accounting,medium +0.67,0.82,4,246,4,0,0,0,accounting,medium +0.51,0.95,4,258,3,0,0,0,hr,medium +0.67,0.55,3,137,3,0,0,0,hr,medium +0.16,0.94,3,178,4,0,0,0,hr,medium +0.34,0.85,4,123,4,0,0,0,hr,medium +0.58,0.73,5,162,3,1,0,0,technical,medium +0.5,0.71,5,210,5,0,0,0,technical,medium +0.56,0.48,4,197,3,1,0,0,technical,high +0.56,0.98,3,220,3,0,0,0,technical,low +0.74,0.71,4,133,2,0,0,0,technical,medium +0.69,0.99,3,198,2,0,0,0,technical,medium +0.15,0.81,4,160,5,0,0,0,technical,medium +0.58,0.67,2,180,2,0,0,0,technical,medium +0.8,0.79,3,217,3,0,0,0,technical,low +0.5,0.57,3,223,3,0,0,0,technical,low +0.66,0.92,4,229,2,0,0,0,technical,low +0.81,0.78,4,159,3,0,0,0,support,low +0.14,0.68,5,253,5,0,0,0,support,low +0.92,0.85,3,235,2,0,0,0,support,low +0.69,0.91,4,186,3,0,0,0,support,low +0.66,0.99,4,263,2,0,0,0,support,low +0.85,0.39,4,239,4,0,0,0,support,low +0.83,0.69,4,151,2,0,0,0,support,low +1,0.49,3,106,4,0,0,0,support,low +0.68,0.65,3,183,4,0,0,0,support,low +0.26,0.97,3,125,2,0,0,0,support,low +0.35,0.41,3,157,2,0,0,0,support,low +0.12,0.58,3,241,2,0,0,0,technical,low +0.91,0.93,4,184,3,0,0,0,technical,low +0.65,0.67,4,144,3,0,0,0,technical,low +0.78,0.72,3,255,4,1,0,0,management,low +0.61,0.82,3,261,4,0,0,0,IT,low +0.64,0.51,4,207,2,0,0,0,IT,low +0.58,0.73,4,205,4,0,0,0,IT,low +0.63,0.76,4,217,2,1,0,0,IT,medium +0.94,0.6,4,215,2,1,0,0,IT,medium +0.26,0.81,5,139,4,0,0,0,product_mng,medium +0.59,0.69,3,146,3,0,0,0,product_mng,medium +0.78,0.8,4,175,3,0,0,0,product_mng,medium +0.86,0.64,5,188,3,0,0,0,product_mng,medium +0.79,0.73,5,155,3,0,0,0,IT,medium +0.89,0.73,4,171,4,0,0,0,RandD,medium +0.34,0.99,4,184,3,0,0,0,RandD,medium +0.29,0.77,3,164,6,0,0,0,RandD,medium +0.71,0.89,3,244,4,0,0,0,RandD,medium +0.93,0.58,4,222,2,0,0,0,RandD,medium +0.94,0.76,4,231,3,1,0,0,RandD,high +0.91,0.72,3,213,3,0,0,0,marketing,low +0.71,0.96,4,144,4,0,0,0,sales,medium +0.67,0.81,3,221,4,1,0,0,accounting,medium +0.54,0.42,3,138,3,1,0,0,support,medium +0.89,0.58,3,183,4,0,0,0,technical,medium +0.94,0.91,3,250,3,1,0,0,management,low +0.15,0.89,3,219,6,0,0,0,marketing,low +0.45,0.92,6,164,4,1,0,0,marketing,low +0.92,0.67,4,161,4,1,0,0,marketing,low +0.63,0.56,4,274,5,1,0,0,sales,low +0.8,0.66,4,181,3,1,0,0,sales,low +0.45,0.72,3,148,2,0,0,0,sales,low +0.72,0.54,3,226,2,1,0,0,sales,low +0.84,0.36,6,256,5,0,0,0,sales,low +0.61,0.51,3,141,2,0,0,0,sales,low +0.63,0.88,3,177,3,0,0,0,sales,low +0.49,0.54,4,173,2,0,0,0,sales,low +0.68,0.51,2,196,3,0,0,0,sales,low +0.64,0.85,5,179,2,0,0,0,sales,low +0.61,0.64,4,201,3,0,0,0,sales,low +0.83,0.55,5,247,3,0,0,0,sales,low +0.94,0.51,5,238,2,0,0,0,sales,low +0.27,0.66,3,133,6,0,0,0,sales,low +0.6,0.49,2,194,4,0,0,0,sales,low +0.83,0.69,4,232,2,0,0,0,sales,low +0.53,0.75,3,232,3,0,0,0,sales,low +0.79,0.97,4,204,3,0,0,0,sales,medium +0.96,0.49,4,252,3,1,0,0,sales,medium +0.5,0.56,3,164,3,0,0,0,accounting,medium +0.68,0.81,5,266,2,0,0,0,accounting,medium +0.24,0.54,4,226,4,1,0,0,accounting,medium +0.8,0.8,4,252,6,0,0,0,hr,medium +0.62,0.74,4,155,3,0,0,0,hr,medium +1,0.85,3,202,2,0,0,0,hr,medium +0.64,0.75,3,214,3,0,0,0,hr,medium +0.51,0.55,4,267,3,0,0,0,technical,medium +0.74,0.5,4,265,3,0,0,0,technical,medium +0.49,0.99,3,221,2,1,0,0,technical,medium +0.96,0.83,4,132,6,0,0,0,technical,high +0.59,0.62,4,227,4,1,0,0,technical,low +0.84,0.57,4,234,3,0,0,0,technical,medium +0.16,0.84,3,238,6,0,0,0,technical,medium +0.62,0.75,3,149,2,1,0,0,technical,medium +0.79,0.67,4,152,3,0,0,0,technical,medium +0.53,0.83,4,249,3,1,0,0,technical,low +0.17,0.48,6,270,5,0,0,0,technical,low +0.57,0.76,3,200,2,0,0,0,support,low +0.65,0.82,4,207,2,0,0,0,support,low +0.69,0.74,4,266,2,1,0,0,support,low +0.3,0.8,6,250,3,0,0,0,support,low +0.99,0.92,3,220,3,0,0,0,support,low +0.5,0.69,4,177,2,0,0,0,support,low +0.54,0.96,3,147,2,0,0,0,support,medium +0.69,0.57,4,227,4,0,0,0,support,medium +0.5,0.85,4,272,2,0,0,0,support,medium +0.66,0.73,3,244,3,0,0,0,support,medium +1,0.93,5,182,3,1,0,0,support,medium +0.15,0.61,3,146,6,1,0,0,technical,medium +0.31,0.54,5,259,5,1,0,0,technical,medium +0.65,0.49,4,184,4,0,0,0,technical,medium +0.72,0.69,4,149,2,0,0,0,management,medium +0.84,0.85,4,185,3,1,0,0,IT,medium +0.55,0.8,3,254,2,0,0,0,IT,medium +0.6,0.58,4,249,3,0,0,0,IT,medium +0.84,0.48,4,269,2,0,0,0,IT,medium +0.68,0.87,3,168,3,0,0,0,IT,medium +0.13,1,6,225,3,0,0,0,product_mng,medium +0.88,0.98,3,160,2,0,0,0,product_mng,medium +0.64,0.57,5,149,3,1,0,0,product_mng,medium +0.19,0.95,5,193,3,0,0,0,product_mng,medium +0.83,0.88,5,171,3,1,0,0,IT,medium +0.17,0.41,4,232,3,1,0,0,RandD,medium +0.44,0.74,4,250,6,0,0,0,RandD,medium +0.52,0.55,4,243,2,0,0,0,RandD,medium +0.66,0.62,4,250,2,0,0,0,RandD,medium +0.96,0.55,4,153,3,0,0,0,RandD,medium +0.19,0.5,5,126,3,1,0,0,RandD,medium +0.86,1,3,192,3,0,0,0,marketing,high +0.65,0.57,3,137,4,1,0,0,sales,high +0.61,0.97,3,199,3,1,0,0,accounting,high +0.53,0.96,3,181,3,1,0,0,support,high +0.14,0.76,5,260,6,0,0,0,technical,high +0.74,1,4,199,4,0,0,0,management,high +0.47,0.62,6,171,5,1,0,0,marketing,high +0.6,0.56,4,260,3,0,0,0,marketing,high +0.81,0.58,3,243,4,0,0,0,marketing,high +0.95,0.59,2,154,4,0,0,0,sales,high +0.98,0.8,2,201,2,0,0,0,sales,high +0.52,0.8,5,234,3,0,0,0,sales,high +1,0.97,3,216,3,1,0,0,sales,low +0.16,0.74,5,205,4,1,0,0,sales,low +0.19,0.83,3,225,4,0,0,0,sales,low +0.94,0.87,3,229,3,0,0,0,sales,low +0.58,0.43,6,132,3,0,0,0,sales,low +0.92,0.69,4,180,3,0,0,0,sales,low +0.65,0.8,4,164,4,0,0,0,sales,low +0.74,0.74,5,175,3,0,0,0,sales,low +0.6,0.53,5,103,2,0,0,0,sales,low +1,1,5,142,4,0,0,0,sales,low +0.81,0.96,4,212,3,0,0,0,sales,low +0.54,0.67,2,129,3,1,0,0,sales,low +0.18,0.81,5,140,4,0,0,0,sales,low +0.82,0.88,4,149,2,0,0,0,sales,low +0.9,0.96,2,258,2,0,0,0,sales,low +0.62,0.62,4,136,2,0,0,0,sales,medium +0.77,0.76,2,216,3,1,0,0,accounting,medium +0.58,0.86,3,151,2,0,0,0,accounting,medium +0.27,0.47,5,217,6,0,0,0,accounting,medium +0.78,0.72,4,219,3,0,0,0,hr,medium +0.98,0.66,3,150,3,0,0,0,hr,medium +0.75,0.5,4,98,4,0,0,0,hr,medium +0.74,0.67,5,140,3,0,0,0,hr,medium +0.9,0.99,3,259,3,1,0,0,technical,medium +0.73,0.71,5,215,6,1,0,0,technical,medium +0.9,0.62,4,258,3,0,0,0,technical,medium +0.68,0.91,4,162,3,1,0,0,technical,medium +0.9,0.74,3,260,4,0,0,0,technical,high +0.64,0.93,5,198,2,0,0,0,technical,high +0.63,0.9,2,242,3,1,0,0,technical,high +0.87,0.89,4,219,4,0,0,0,technical,high +0.6,0.55,4,204,3,0,0,0,technical,high +0.7,0.74,3,157,3,0,0,0,technical,high +0.15,0.94,5,244,6,0,0,0,technical,high +0.45,0.75,3,122,3,0,0,0,support,high +0.43,0.9,5,282,5,0,0,0,support,low +0.92,0.46,5,195,5,0,0,0,support,low +0.72,0.81,4,134,2,0,0,0,support,low +0.94,0.84,3,210,2,0,0,0,support,low +0.74,0.52,3,170,3,0,0,0,support,low +0.48,0.71,2,140,3,1,0,0,support,low +0.84,0.76,5,215,2,1,0,0,support,low +0.53,0.86,3,150,3,0,0,0,support,low +0.45,0.88,5,268,3,1,0,0,support,medium +0.95,0.67,4,270,4,0,0,0,support,medium +0.95,0.58,3,163,3,0,0,0,technical,medium +0.7,0.85,3,188,2,0,0,0,technical,medium +0.19,0.93,3,110,4,0,0,0,technical,medium +0.74,0.91,5,135,3,0,0,0,management,medium +0.54,0.59,4,228,3,0,0,0,IT,medium +0.5,0.69,5,172,2,0,0,0,IT,medium +0.95,0.72,3,168,5,0,0,0,IT,medium +0.69,0.69,5,160,3,0,0,0,IT,medium +0.24,0.74,5,282,3,0,0,0,IT,medium +0.96,0.7,5,184,2,1,0,0,product_mng,medium +0.61,0.5,4,217,4,1,0,0,product_mng,medium +0.76,0.53,6,281,3,0,0,0,product_mng,medium +0.61,0.64,3,245,2,0,0,0,product_mng,medium +0.37,0.48,2,285,5,0,0,0,IT,medium +0.81,0.9,4,165,3,0,0,0,RandD,medium +0.59,0.9,3,146,3,0,0,0,RandD,medium +0.73,0.82,3,133,3,0,0,0,RandD,medium +0.87,0.57,2,181,6,0,0,0,RandD,medium +0.67,0.66,6,152,3,0,0,0,RandD,medium +0.96,0.78,2,284,3,0,0,0,RandD,medium +0.98,0.51,3,157,3,0,0,0,marketing,medium +0.5,0.58,4,165,2,0,0,0,sales,high +0.49,0.71,3,255,2,1,0,0,accounting,low +0.13,0.65,4,194,4,0,0,0,support,medium +0.57,0.68,3,102,6,0,0,0,technical,medium +0.51,0.94,4,247,2,0,0,0,management,medium +0.99,0.69,3,206,2,0,0,0,marketing,medium +0.8,0.77,3,171,2,0,0,0,marketing,medium +0.56,0.39,5,263,4,0,0,0,marketing,medium +0.96,0.84,4,272,4,1,0,0,sales,medium +0.96,0.5,3,158,2,1,0,0,sales,medium +0.87,0.53,6,216,6,1,0,0,sales,medium +0.61,0.9,5,113,3,0,0,0,sales,medium +0.18,0.6,3,140,4,0,0,0,sales,low +0.24,0.77,5,178,5,0,0,0,sales,low +0.86,0.48,4,153,3,0,0,0,sales,low +0.25,0.62,6,271,5,0,0,0,sales,low +0.25,0.82,3,269,5,0,0,0,sales,low +0.63,0.55,3,160,3,0,0,0,sales,low +0.89,0.68,4,258,2,1,0,0,sales,low +0.87,0.82,4,251,3,0,0,0,sales,high +0.87,0.78,3,170,2,0,0,0,sales,low +0.71,0.99,4,238,4,1,0,0,sales,high +0.98,0.87,4,152,2,0,0,0,sales,high +0.16,0.51,3,262,6,0,0,0,sales,low +0.83,0.68,4,273,2,0,0,0,sales,low +0.65,0.77,3,233,2,0,0,0,sales,high +0.95,0.64,3,262,3,0,0,0,sales,low +0.67,0.67,3,183,3,0,0,0,accounting,medium +0.53,0.88,3,150,3,1,0,0,accounting,high +0.74,0.94,3,132,3,0,0,0,accounting,medium +0.77,0.79,3,200,4,0,0,0,hr,medium +0.13,0.72,4,148,5,0,0,0,hr,medium +0.82,0.92,3,187,3,1,0,0,hr,medium +0.88,0.65,4,224,2,0,0,0,hr,high +0.89,0.5,4,147,2,0,0,0,technical,medium +0.85,0.51,3,153,4,0,0,0,technical,medium +0.93,0.87,5,154,2,0,0,0,technical,medium +0.62,0.7,5,270,3,0,0,0,technical,high +0.58,0.96,3,202,2,0,0,0,technical,medium +0.98,0.5,4,264,3,0,0,0,technical,high +0.52,0.45,2,145,3,0,0,0,technical,low +0.76,0.49,3,138,2,1,0,0,technical,medium +0.73,0.91,3,238,2,0,0,0,technical,medium +0.74,0.64,4,147,5,0,0,0,technical,medium +0.49,0.48,3,190,2,0,0,0,technical,medium +0.91,0.97,4,183,3,0,0,0,support,low +0.74,0.92,5,255,3,0,0,0,support,low +0.86,0.82,4,252,4,0,0,0,support,low +0.52,0.47,6,141,5,1,0,0,support,low +0.95,0.81,3,260,2,0,0,0,support,low +0.65,0.98,3,136,3,0,0,0,support,low +0.7,0.56,4,182,2,0,0,0,support,low +0.14,0.66,6,142,5,0,0,0,support,low +0.92,0.53,2,261,4,0,0,0,support,low +0.54,0.6,3,209,2,0,0,0,support,low +0.76,0.95,2,156,4,0,0,0,support,high +0.78,0.66,4,214,2,0,0,0,technical,low +0.85,0.86,4,250,3,0,0,0,technical,low +0.78,0.8,4,197,3,1,0,0,technical,low +0.55,0.72,3,149,3,0,0,0,management,low +0.68,0.61,5,271,2,0,0,0,IT,high +0.91,0.68,4,187,2,0,0,0,IT,low +0.76,0.56,3,154,2,0,0,0,IT,low +0.15,0.67,4,264,3,0,0,0,IT,low +0.95,0.6,2,144,3,0,0,0,IT,high +0.74,0.37,6,200,3,0,0,0,product_mng,low +0.92,0.56,5,197,2,1,0,0,product_mng,medium +0.64,0.89,3,175,3,1,0,0,product_mng,high +0.96,0.9,3,161,3,0,0,0,product_mng,medium +0.21,0.72,3,245,6,0,0,0,IT,high +0.85,0.67,3,167,4,0,0,0,RandD,medium +0.52,0.86,5,168,3,0,0,0,RandD,medium +0.54,0.81,5,261,6,0,0,0,RandD,medium +0.56,0.81,5,274,4,0,0,0,RandD,medium +0.59,0.79,4,181,3,0,0,0,RandD,medium +0.88,0.58,5,266,3,1,0,0,marketing,medium +0.7,0.84,4,184,3,0,0,0,sales,medium +0.95,0.58,3,193,2,0,0,0,accounting,medium +0.83,0.88,3,217,2,1,0,0,support,high +0.76,0.62,4,197,3,0,0,0,technical,low +0.82,0.92,5,252,3,0,0,0,management,medium +0.55,0.97,4,136,3,0,0,0,marketing,medium +0.89,0.55,5,194,4,0,0,0,marketing,medium +0.66,0.94,4,190,3,0,0,0,marketing,medium +0.41,0.61,3,185,2,1,0,0,sales,medium +0.83,0.77,3,232,2,1,0,0,sales,medium +0.88,0.72,3,200,2,1,0,0,sales,medium +0.56,0.66,5,155,2,0,0,0,sales,medium +0.53,0.72,3,228,3,0,0,0,sales,medium +0.8,0.41,3,188,4,0,0,0,sales,high +0.95,0.78,4,245,3,0,0,0,sales,low +0.9,0.88,4,205,2,0,0,0,sales,low +0.5,0.97,4,269,3,0,0,0,sales,low +0.4,0.59,3,207,6,0,0,0,sales,high +0.52,0.85,3,250,4,0,0,0,sales,low +0.51,0.5,5,251,3,1,0,0,sales,low +0.84,0.62,5,217,3,0,0,0,sales,low +0.78,0.98,5,252,3,0,0,0,sales,high +0.91,0.71,2,159,3,1,0,0,sales,low +0.59,0.71,5,169,2,0,0,0,sales,low +0.69,0.97,5,105,4,0,0,0,sales,low +0.87,0.93,4,268,2,0,0,0,sales,low +0.66,1,5,145,2,0,0,0,sales,low +0.5,0.54,4,165,3,0,0,0,accounting,low +0.95,0.75,3,253,4,0,0,0,accounting,low +0.77,0.64,3,254,3,0,0,0,accounting,medium +0.66,0.5,3,218,2,0,0,0,hr,medium +0.61,0.98,3,138,5,1,0,0,hr,medium +0.7,0.87,5,239,3,0,0,0,hr,medium +0.89,0.71,5,182,2,1,0,0,hr,medium +0.6,0.78,4,152,3,1,0,0,technical,medium +0.62,0.51,3,222,3,1,0,0,technical,medium +0.59,0.9,2,219,2,1,0,0,technical,medium +0.69,0.59,4,266,4,0,0,0,technical,medium +0.36,0.94,3,113,5,1,0,0,technical,medium +0.59,0.93,4,146,3,0,0,0,technical,medium +0.5,0.51,5,238,4,0,0,0,technical,medium +0.53,0.99,3,188,3,0,0,0,technical,high +0.84,0.9,4,237,2,0,0,0,technical,low +0.51,0.95,4,201,3,0,0,0,technical,medium +0.53,0.56,5,188,3,0,0,0,technical,medium +0.98,0.63,3,137,3,0,0,0,support,medium +0.95,0.81,4,263,3,0,0,0,support,medium +0.13,0.76,5,217,3,0,0,0,support,low +0.5,0.64,4,213,4,0,0,0,support,low +0.93,0.76,3,244,3,0,0,0,support,low +0.5,0.87,3,252,2,0,0,0,support,low +0.66,0.84,4,168,2,0,0,0,support,low +0.89,0.79,4,212,3,0,0,0,support,low +0.46,0.43,4,258,3,0,0,0,support,low +0.67,0.6,4,210,3,0,0,0,support,low +0.96,0.9,4,246,3,0,0,0,support,low +0.98,0.76,4,221,3,1,0,0,technical,low +0.67,0.57,5,215,4,0,0,0,technical,low +0.72,0.72,4,175,4,0,0,0,technical,low +0.65,0.49,5,221,2,0,0,0,management,low +0.72,0.67,5,219,3,0,0,0,IT,low +0.78,0.58,3,154,3,0,0,0,IT,low +0.93,0.56,3,266,2,0,0,0,IT,low +0.73,0.85,5,224,4,0,0,0,IT,low +0.2,0.57,4,269,5,1,0,0,IT,low +0.47,0.5,4,159,2,0,0,0,product_mng,low +0.56,0.62,4,247,3,0,0,0,product_mng,low +0.72,0.86,4,137,2,0,0,0,product_mng,low +0.91,0.56,4,251,4,0,0,0,product_mng,medium +0.79,0.49,5,210,3,0,0,0,IT,medium +0.53,0.75,2,123,4,0,0,0,RandD,medium +0.14,0.51,4,253,6,0,0,0,RandD,medium +0.78,0.92,5,242,4,0,0,0,RandD,medium +0.52,0.74,3,238,3,0,0,0,RandD,medium +0.94,0.68,5,151,2,0,0,0,RandD,medium +0.83,0.8,4,158,4,0,0,0,marketing,medium +0.44,0.68,2,120,2,0,0,0,marketing,medium +0.72,0.74,3,187,2,0,0,0,sales,medium +0.84,0.58,3,140,3,0,0,0,accounting,medium +0.76,0.99,3,164,2,0,0,0,support,medium +0.92,0.94,5,253,2,0,0,0,technical,high +0.58,0.93,5,235,2,0,0,0,management,low +0.85,0.81,4,189,4,0,0,0,marketing,medium +0.74,0.51,4,246,3,1,0,0,marketing,medium +0.74,0.87,4,258,2,0,0,0,marketing,medium +0.72,0.8,3,158,3,0,0,0,sales,medium +0.76,0.98,4,173,3,1,0,0,sales,low +0.85,0.72,3,201,3,0,0,0,sales,low +0.82,0.49,5,185,3,0,0,0,sales,low +0.6,0.93,5,270,3,1,0,0,sales,low +0.39,0.64,3,152,2,0,0,0,sales,low +0.83,0.53,3,211,4,1,0,0,sales,low +0.7,0.92,3,162,3,1,0,0,sales,low +0.84,0.97,4,253,2,1,0,0,sales,low +0.9,0.77,4,236,3,0,0,0,sales,low +0.18,0.84,4,231,5,0,0,0,sales,low +0.52,0.71,2,231,2,0,0,0,sales,low +0.87,0.51,4,233,3,0,0,0,sales,low +0.6,0.79,5,217,2,0,0,0,sales,low +0.72,0.93,4,174,2,0,0,0,sales,low +0.48,0.64,4,227,3,0,0,0,sales,low +0.75,0.53,3,222,2,0,0,0,sales,low +0.85,0.55,2,207,6,0,0,0,sales,low +0.39,0.41,6,115,3,0,0,0,sales,low +0.61,0.68,3,254,2,0,0,0,accounting,low +0.6,0.61,4,170,3,0,0,0,accounting,low +0.57,0.64,2,206,3,0,0,0,accounting,low +0.19,0.68,5,149,3,0,0,0,hr,medium +0.48,0.77,3,197,3,0,0,0,hr,medium +0.69,0.75,4,261,3,0,0,0,hr,medium +0.7,0.55,4,256,4,0,0,0,hr,medium +0.65,0.92,3,219,3,0,0,0,technical,medium +0.81,0.96,4,143,3,1,0,0,technical,medium +0.85,0.95,4,171,3,0,0,0,technical,medium +0.93,0.76,4,207,2,0,0,0,technical,medium +0.72,0.94,4,235,3,0,0,0,technical,medium +0.49,0.55,2,173,3,0,0,0,technical,medium +0.94,0.47,5,131,6,0,0,0,technical,medium +0.81,0.84,4,143,2,0,0,0,technical,medium +0.92,0.78,5,193,4,0,0,0,technical,high +0.97,0.82,3,135,2,0,0,0,technical,low +0.98,0.61,4,265,2,1,0,0,technical,medium +0.44,0.45,3,133,2,1,0,0,support,medium +0.72,0.87,4,184,4,0,0,0,support,medium +0.8,0.73,5,135,3,0,0,0,support,medium +0.6,0.72,4,267,4,0,0,0,support,low +0.89,0.65,4,184,3,0,0,0,support,low +0.69,0.57,5,227,2,0,0,0,support,low +0.54,0.81,4,257,2,0,0,0,support,low +0.97,0.75,5,235,3,1,0,0,support,low +0.37,0.4,4,161,2,0,0,0,support,low +0.73,0.52,4,215,3,0,0,0,support,low +0.57,0.69,4,146,3,0,0,0,support,low +0.86,0.66,4,191,2,0,0,0,technical,low +0.83,0.85,4,261,3,0,0,0,technical,low +0.19,0.52,5,200,5,0,0,0,technical,low +0.55,0.93,4,239,4,0,0,0,management,low +0.6,0.65,4,160,2,0,0,0,IT,low +0.62,0.71,3,177,3,1,0,0,IT,low +0.65,0.55,5,215,2,0,0,0,IT,low +0.4,0.48,4,97,2,0,0,0,IT,low +0.82,0.78,5,231,2,1,0,0,IT,low +0.75,0.69,2,257,2,1,0,0,product_mng,low +0.83,0.53,3,232,3,1,0,0,product_mng,low +0.77,0.78,4,212,3,0,0,0,product_mng,low +0.59,0.98,4,198,3,0,0,0,product_mng,low +0.8,0.79,5,240,4,0,0,0,IT,medium +0.84,0.55,3,242,3,0,0,0,RandD,medium +0.88,0.71,4,250,3,0,0,0,RandD,medium +0.37,0.9,3,229,6,0,0,0,RandD,medium +0.88,0.66,4,133,2,0,0,0,RandD,medium +0.69,0.85,3,200,2,0,0,0,RandD,medium +0.54,0.49,2,155,2,1,0,0,marketing,medium +0.76,0.57,5,139,4,0,0,0,sales,medium +0.51,0.58,4,272,3,0,0,0,accounting,medium +0.16,0.52,3,100,4,0,0,0,support,medium +0.65,0.6,5,160,3,0,0,0,technical,medium +0.54,0.81,5,195,4,0,0,0,management,medium +0.66,0.68,4,152,3,0,0,0,marketing,high +0.95,0.65,5,182,3,0,0,0,marketing,low +0.83,0.57,3,137,2,0,0,0,marketing,medium +0.98,0.84,4,182,3,0,0,0,sales,medium +0.72,0.72,3,217,2,0,0,0,sales,medium +0.71,0.62,4,192,4,0,0,0,sales,medium +0.36,0.65,3,116,2,1,0,0,sales,low +0.55,0.65,4,170,4,0,0,0,sales,low +0.64,0.52,3,223,3,0,0,0,sales,low +0.62,0.57,3,174,2,0,0,0,sales,low +1,0.95,3,193,6,0,0,0,sales,low +0.91,0.91,6,167,2,1,0,0,sales,low +0.81,0.67,4,225,3,0,0,0,sales,low +0.71,0.92,4,248,3,1,0,0,sales,low +0.97,0.74,3,104,5,0,0,0,sales,low +0.75,0.86,6,148,4,0,0,0,sales,low +0.68,1,3,148,4,1,0,0,sales,low +0.87,0.68,5,187,3,0,0,0,sales,low +0.96,0.57,3,151,2,0,0,0,sales,low +0.41,0.86,6,215,5,0,0,0,sales,low +0.81,0.61,4,142,4,0,0,0,sales,low +0.68,1,6,258,5,0,0,0,sales,low +0.63,0.56,4,228,3,0,0,0,accounting,low +0.6,0.84,2,221,3,0,0,0,accounting,low +0.66,0.97,3,263,3,0,0,0,accounting,medium +0.69,0.82,4,273,4,0,0,0,hr,medium +0.23,0.37,3,247,4,0,0,0,hr,medium +0.52,0.63,3,225,3,0,0,0,hr,medium +0.65,0.86,4,269,2,1,0,0,hr,medium +0.78,0.4,6,174,3,0,0,0,technical,medium +0.6,0.65,5,201,2,0,0,0,technical,medium +0.9,0.62,3,254,3,0,0,0,technical,medium +0.59,0.95,5,254,2,0,0,0,technical,medium +0.89,0.78,3,185,2,1,0,0,technical,medium +0.96,0.85,4,200,4,0,0,0,technical,medium +0.68,0.76,3,190,3,1,0,0,technical,medium +0.52,0.72,2,160,2,0,0,0,technical,high +0.68,0.94,3,264,2,0,0,0,technical,low +0.6,0.59,3,172,3,0,0,0,technical,medium +0.28,0.83,5,279,4,0,0,0,technical,medium +0.98,0.54,5,260,3,0,0,0,support,medium +0.67,0.52,4,262,2,0,0,0,support,medium +0.86,0.6,5,134,2,1,0,0,support,low +0.83,0.9,3,195,3,0,0,0,support,low +0.79,0.86,3,139,3,0,0,0,support,low +0.54,0.86,4,205,5,0,0,0,support,low +0.51,0.86,5,212,2,0,0,0,support,low +0.75,0.65,4,148,2,0,0,0,support,low +0.51,0.67,4,228,3,0,0,0,support,low +0.73,0.74,5,230,3,0,0,0,support,low +0.17,0.4,4,286,3,0,0,0,support,low +0.88,0.59,4,142,3,0,0,0,technical,low +0.76,0.79,3,161,3,0,0,0,technical,low +0.29,0.77,3,152,3,1,0,0,technical,low +0.62,0.97,4,266,3,0,0,0,management,low +0.5,0.85,2,143,3,0,0,0,IT,low +0.16,0.65,5,165,3,0,0,0,IT,low +0.18,0.99,4,204,6,0,0,0,IT,low +0.86,0.68,4,170,2,0,0,0,IT,low +0.68,0.52,5,203,3,0,0,0,IT,low +0.68,0.85,3,199,3,0,0,0,product_mng,low +0.89,0.78,4,223,3,0,0,0,product_mng,low +0.86,0.88,4,220,2,0,0,0,product_mng,low +0.43,0.41,4,190,3,0,0,0,product_mng,medium +0.85,0.58,4,143,6,1,0,0,IT,medium +0.94,0.8,5,111,4,0,0,1,RandD,medium +0.58,0.71,4,145,3,1,0,1,RandD,medium +0.43,0.6,3,138,3,0,0,1,RandD,medium +0.72,0.49,3,203,3,0,0,1,RandD,medium +0.95,0.96,5,175,3,1,0,1,RandD,medium +0.35,0.67,3,119,3,0,0,1,marketing,medium +0.77,0.79,3,157,3,0,0,1,sales,medium +0.74,0.7,5,135,2,0,0,1,accounting,medium +0.5,0.6,4,200,2,0,0,1,support,medium +0.87,0.56,4,121,2,0,0,1,technical,medium +0.55,0.48,3,162,3,0,0,1,management,high +0.8,0.65,3,135,3,0,0,1,marketing,low +0.49,0.52,4,183,2,0,0,1,marketing,medium +0.54,0.92,4,228,3,0,0,1,marketing,medium +0.21,0.87,4,148,5,0,0,0,sales,medium +0.77,0.77,3,219,2,0,0,0,sales,medium +0.53,0.73,4,147,3,0,0,0,sales,low +0.89,0.49,5,165,6,0,0,0,sales,low +0.25,0.59,4,218,3,1,0,0,sales,low +0.53,0.59,3,231,2,0,0,0,sales,low +0.44,0.45,2,124,3,0,0,0,sales,low +0.7,0.44,2,131,2,0,0,0,sales,low +0.54,0.76,3,199,4,0,0,0,sales,low +0.9,0.56,3,220,3,0,0,0,sales,low +0.69,0.8,5,215,3,0,0,0,sales,low +0.78,0.59,4,180,3,0,0,0,sales,low +0.91,0.49,6,272,6,0,0,0,sales,low +0.92,0.61,2,228,2,0,0,0,sales,low +0.96,0.88,3,168,2,0,0,0,sales,low +0.8,0.77,4,205,2,0,0,0,sales,low +0.52,0.67,3,244,3,0,0,0,sales,low +0.52,0.97,3,185,2,0,0,0,sales,low +0.93,0.96,5,135,3,1,0,0,sales,low +0.89,0.9,4,160,2,0,0,0,accounting,low +0.83,0.61,4,262,4,0,0,0,accounting,low +0.7,0.84,6,225,6,0,0,0,accounting,low +0.89,0.74,4,174,2,0,0,0,hr,low +0.21,0.37,6,266,3,0,0,1,hr,medium +0.67,0.78,4,241,4,0,0,1,hr,medium +0.73,0.97,3,245,2,0,0,1,hr,medium +0.85,0.51,3,261,4,0,0,1,technical,medium +0.54,0.85,4,157,3,0,0,1,technical,medium +0.74,0.94,3,286,6,0,0,1,technical,medium +0.71,0.65,4,263,2,1,0,1,technical,medium +0.76,0.52,2,229,3,0,0,1,technical,medium +0.85,0.5,4,159,2,0,0,1,technical,medium +0.82,0.89,4,196,3,0,0,1,technical,medium +0.71,0.79,4,133,3,0,0,1,technical,medium +0.79,0.65,5,228,3,0,0,1,technical,medium +0.86,0.56,4,247,3,0,0,1,technical,high +0.9,0.78,5,215,3,0,0,1,technical,low +0.65,0.8,6,233,3,1,0,1,support,medium +0.53,0.74,5,237,2,0,0,1,support,medium +0.51,0.91,4,269,5,0,0,1,support,medium +1,0.76,6,246,3,1,0,1,support,medium +0.92,0.82,4,168,3,0,0,1,support,low +1,0.59,3,168,3,0,0,1,support,low +0.23,0.67,4,163,5,0,0,1,support,low +0.52,0.77,3,142,2,0,0,1,support,low +0.8,0.83,4,183,2,1,0,1,support,low +0.59,0.72,4,264,3,0,0,0,support,low +0.75,0.55,2,184,2,0,0,0,support,low +0.99,0.58,4,138,3,0,0,0,technical,low +0.57,0.76,3,195,3,0,0,0,technical,medium +0.87,0.95,4,251,3,0,0,0,technical,medium +0.52,0.47,3,108,5,0,0,0,management,medium +0.57,0.9,3,144,2,0,0,0,IT,medium +0.32,0.77,6,112,4,0,0,0,IT,medium +0.66,0.81,2,201,3,0,0,0,IT,medium +0.53,0.8,4,204,3,0,0,0,IT,medium +0.55,0.62,5,226,3,0,0,0,IT,medium +0.66,0.9,3,217,4,0,0,0,product_mng,medium +0.69,0.92,4,149,2,0,0,0,product_mng,medium +0.67,0.99,5,237,3,0,0,0,product_mng,medium +0.75,0.37,3,256,3,0,0,0,product_mng,medium +0.7,0.98,4,194,2,0,0,0,IT,medium +0.71,0.74,3,202,2,0,0,0,RandD,medium +0.97,0.6,5,133,2,0,0,0,RandD,medium +0.5,0.48,3,246,3,0,0,0,RandD,medium +0.34,0.92,3,206,3,0,0,0,RandD,medium +0.67,0.74,3,204,3,0,0,0,RandD,medium +0.78,0.98,4,157,3,0,0,0,marketing,medium +0.52,0.91,4,187,2,0,0,0,sales,medium +0.91,0.51,2,211,2,0,0,0,accounting,medium +0.79,0.92,3,204,3,0,0,0,support,medium +0.83,0.53,5,182,2,1,0,0,technical,medium +0.74,0.76,3,244,3,0,0,0,management,medium +0.77,0.97,3,184,3,1,0,0,marketing,medium +0.49,0.71,2,117,3,0,0,0,marketing,high +0.94,0.89,3,230,3,1,0,0,marketing,high +0.99,0.91,3,241,2,0,0,0,sales,high +0.69,0.84,3,227,3,1,0,0,sales,high +0.88,0.59,5,147,4,0,0,0,sales,high +0.89,0.9,3,240,3,0,0,0,sales,high +0.8,0.58,4,238,2,0,0,0,sales,high +0.22,0.89,4,262,4,0,0,0,sales,high +0.87,0.83,4,215,2,0,0,0,sales,high +0.66,0.66,3,211,4,0,0,0,sales,high +0.9,0.68,3,156,3,1,0,0,sales,high +0.95,0.54,4,180,5,0,0,0,sales,high +0.49,0.56,4,260,6,0,0,0,sales,low +0.71,0.68,4,228,2,0,0,0,sales,low +0.2,0.96,2,249,3,0,0,0,sales,low +0.95,0.64,3,242,5,1,0,0,sales,low +0.68,0.8,2,254,2,1,0,0,sales,low +0.93,0.68,3,272,2,1,0,0,sales,low +0.85,0.57,5,210,3,0,0,0,sales,low +0.82,0.68,3,140,2,0,0,0,sales,low +0.87,0.42,5,252,5,0,0,0,sales,low +0.88,0.84,3,266,3,0,0,0,accounting,low +0.98,0.79,4,138,3,0,0,0,accounting,low +0.89,0.98,3,220,3,0,0,0,accounting,low +0.92,0.51,5,214,3,0,0,0,hr,low +0.48,0.6,2,121,5,0,0,0,hr,low +0.67,0.49,4,195,3,0,0,0,hr,low +0.84,0.55,3,135,3,0,0,0,hr,medium +0.97,0.78,4,261,2,0,0,0,technical,medium +0.65,0.53,5,205,3,1,0,0,technical,medium +0.79,0.87,5,240,2,1,0,0,technical,medium +0.75,0.75,2,141,4,0,0,0,technical,medium +0.69,0.64,4,200,3,0,0,0,technical,medium +0.85,0.6,4,257,3,0,0,0,technical,medium +0.34,0.41,2,141,3,0,0,0,technical,medium +0.97,0.68,3,185,2,0,0,0,technical,medium +0.39,0.99,6,235,6,0,0,0,technical,medium +0.54,0.81,4,264,4,0,0,0,technical,medium +0.78,0.67,4,260,3,0,0,0,technical,medium +0.49,0.79,4,158,3,0,0,0,support,high +0.17,0.83,6,195,5,0,0,0,support,high +0.98,0.81,3,180,2,1,0,0,support,high +0.9,1,2,114,5,0,0,0,support,high +0.24,0.89,5,228,4,1,0,0,support,high +0.92,0.79,5,243,3,1,0,0,support,high +0.36,0.72,3,179,3,0,0,0,support,high +0.19,0.76,2,158,3,0,0,0,support,high +0.75,0.76,4,254,4,0,0,0,support,low +0.91,0.81,3,220,3,1,0,0,support,low +0.72,0.95,5,171,3,0,0,0,support,low +0.62,0.64,4,142,2,0,0,0,technical,low +0.97,0.75,3,241,2,0,0,0,technical,low +0.69,0.64,3,275,3,0,0,0,technical,low +0.98,0.56,3,157,2,0,0,0,management,low +0.62,0.53,5,169,3,0,0,0,IT,low +0.59,0.82,2,233,2,0,0,0,IT,medium +0.73,0.98,4,160,3,0,0,0,IT,medium +0.71,0.79,3,189,3,0,0,0,IT,medium +0.85,0.58,4,273,4,0,0,0,IT,medium +0.8,0.94,4,141,3,1,0,0,product_mng,medium +0.48,0.38,3,134,3,0,0,0,product_mng,medium +0.64,0.4,3,248,3,0,0,0,product_mng,medium +0.19,0.64,6,222,5,0,0,0,product_mng,medium +0.82,0.69,5,219,3,0,0,0,IT,medium +0.99,0.96,4,202,3,0,0,0,RandD,medium +0.45,0.58,3,200,2,0,0,0,RandD,medium +0.89,0.89,3,138,2,0,0,0,RandD,medium +0.75,0.78,4,158,5,1,0,0,RandD,medium +0.8,0.86,3,136,2,0,0,0,RandD,medium +0.78,0.49,4,222,2,0,0,0,marketing,medium +0.95,0.76,3,236,2,1,0,0,sales,medium +0.68,0.67,4,135,2,0,0,0,accounting,medium +0.82,0.97,5,235,3,0,0,0,support,medium +0.9,0.69,4,274,2,0,0,0,technical,medium +0.59,0.99,3,235,2,0,0,0,management,medium +0.66,0.57,3,169,4,1,0,0,marketing,medium +0.63,0.56,5,286,4,0,0,0,marketing,medium +0.73,0.78,3,166,2,0,0,0,marketing,medium +0.63,0.93,3,236,4,0,0,0,sales,high +0.87,0.62,5,197,2,0,0,0,sales,low +0.62,0.87,6,169,2,1,0,0,sales,medium +0.53,0.9,3,210,3,0,0,0,sales,medium +0.94,0.83,4,156,2,0,0,0,sales,medium +0.94,0.55,5,231,2,0,0,0,sales,medium +0.55,0.64,3,101,2,1,0,0,sales,medium +0.58,0.72,4,259,3,0,0,0,sales,medium +0.98,0.88,5,203,5,1,0,0,sales,medium +0.74,0.76,5,255,4,0,0,0,sales,medium +0.65,0.48,3,131,3,1,0,0,sales,medium +0.97,0.79,2,272,2,0,0,0,sales,medium +0.58,0.75,4,253,2,0,0,0,sales,low +0.49,0.77,2,254,2,0,0,0,sales,low +0.69,0.98,3,214,2,0,0,0,sales,low +0.55,0.49,5,195,3,0,0,0,sales,low +0.65,0.89,4,240,3,0,0,0,sales,low +0.87,0.49,4,149,2,0,0,0,sales,low +0.12,0.7,4,276,4,0,0,0,sales,low +0.65,0.84,4,247,4,0,0,0,accounting,high +0.23,0.66,4,212,4,1,0,0,accounting,low +0.62,0.77,4,256,3,0,0,0,accounting,high +0.86,0.72,4,178,2,0,0,0,hr,high +0.85,0.6,4,255,4,0,0,0,hr,low +0.74,0.76,3,224,2,0,0,0,hr,low +0.53,0.76,2,204,4,0,0,0,hr,high +0.99,0.44,6,104,6,0,0,0,technical,low +0.48,0.81,5,113,3,0,0,0,technical,medium +0.72,0.74,3,243,2,0,0,0,technical,high +0.76,0.72,3,242,5,1,0,0,technical,medium +0.41,0.7,4,177,3,0,0,0,technical,medium +0.85,0.88,3,235,2,0,0,0,technical,medium +0.62,0.49,4,175,3,0,0,0,technical,medium +0.16,0.78,4,280,6,0,0,0,technical,high +0.58,0.61,3,205,2,0,0,0,technical,medium +0.73,0.95,4,243,3,0,0,0,technical,medium +0.28,0.76,3,150,2,0,0,0,technical,medium +0.77,0.61,4,178,2,1,0,0,support,high +0.85,0.86,3,231,3,0,0,0,support,medium +0.56,0.76,3,134,2,0,0,0,support,high +0.81,1,5,143,2,0,0,0,support,low +0.83,0.87,3,156,3,0,0,0,support,medium +0.49,0.48,4,249,3,0,0,0,support,medium +0.81,0.97,3,247,3,0,0,0,support,medium +0.56,0.92,5,222,4,0,0,0,support,medium +0.77,0.83,3,160,3,0,0,0,support,low +0.73,0.5,4,224,4,1,0,0,support,low +0.95,0.72,4,235,2,0,0,0,support,low +0.69,0.68,5,167,3,0,0,0,technical,low +0.79,0.89,3,104,4,0,0,0,technical,low +0.63,0.57,5,160,2,0,0,0,technical,low +0.8,0.79,4,168,3,0,0,0,management,low +0.64,0.61,2,153,2,0,0,0,IT,low +0.92,0.9,4,249,3,0,0,0,IT,low +0.96,0.75,4,177,2,0,0,0,IT,low +0.56,0.85,3,225,3,0,0,0,IT,high +0.37,0.61,3,186,2,0,0,0,IT,low +0.5,0.82,3,133,2,1,0,0,product_mng,low +0.49,0.58,4,213,4,1,0,0,product_mng,low +1,0.73,3,245,2,1,0,0,product_mng,low +0.82,0.75,5,160,3,1,0,0,product_mng,high +0.52,0.54,4,212,3,0,0,0,IT,low +0.76,0.96,4,135,3,1,0,1,RandD,low +0.2,0.53,3,149,4,0,0,1,RandD,low +0.6,0.9,4,178,3,0,0,1,RandD,high +0.69,0.9,6,224,4,0,0,1,RandD,low +0.93,0.51,3,196,2,0,0,1,RandD,medium +0.7,0.64,4,178,3,1,0,1,marketing,high +0.56,0.54,4,191,2,1,0,1,sales,medium +0.97,0.61,4,167,3,0,0,1,accounting,high +0.24,0.65,6,275,5,1,0,1,support,medium +0.83,0.91,3,168,3,0,0,1,technical,medium +0.55,0.85,3,152,2,0,0,1,management,medium +0.68,0.99,3,263,3,1,0,1,marketing,medium +0.48,0.53,3,113,4,0,0,0,marketing,medium +0.75,0.95,3,253,3,0,0,0,marketing,medium +0.61,0.5,4,271,3,1,0,0,sales,medium +0.5,0.74,4,165,2,1,0,0,sales,medium +0.78,0.54,5,257,3,0,0,0,sales,high +0.61,0.68,4,244,3,0,0,0,sales,low +0.48,0.5,4,179,3,0,0,0,sales,medium +0.93,0.92,3,248,2,0,0,0,sales,medium +0.78,0.58,3,224,2,0,0,0,sales,medium +0.92,0.99,5,236,4,0,0,0,sales,medium +0.71,0.98,5,213,3,0,0,0,sales,medium +0.15,0.42,4,238,3,0,0,0,sales,medium +0.14,0.83,5,153,5,1,0,0,sales,medium +0.56,0.72,4,247,2,0,0,0,sales,medium +1,0.84,3,154,3,0,0,0,sales,medium +0.77,0.82,3,147,4,0,0,0,sales,high +0.86,0.66,3,150,2,0,0,0,sales,low +0.88,0.95,3,137,3,0,0,0,sales,low +0.85,0.84,5,179,3,0,0,0,sales,low +0.95,0.56,5,194,2,0,0,0,sales,high +0.65,0.65,4,224,3,0,0,0,sales,low +0.7,0.55,3,253,2,1,0,0,accounting,low +0.6,0.55,3,177,3,1,0,0,accounting,low +0.84,0.83,3,215,3,0,0,0,accounting,high +0.23,0.59,5,245,5,0,0,0,hr,low +0.89,0.75,3,134,3,0,0,0,hr,low +0.98,0.91,4,273,2,0,0,0,hr,low +0.88,0.83,4,163,3,0,0,0,hr,low +0.87,0.52,3,152,4,0,0,0,technical,low +0.93,0.96,3,268,4,0,0,0,technical,low +0.13,0.95,5,149,2,0,0,0,technical,low +0.99,0.56,6,128,4,0,0,0,technical,medium +0.52,0.51,3,218,2,1,0,0,technical,medium +0.58,0.98,3,146,3,0,0,0,technical,medium +0.85,0.57,5,190,2,1,0,0,technical,medium +0.41,0.59,2,182,3,0,0,0,technical,medium +1,0.8,5,162,3,1,0,0,technical,medium +0.63,0.64,3,243,3,0,0,0,technical,medium +0.63,0.58,4,141,3,1,0,0,technical,medium +0.63,0.9,3,142,3,0,0,0,support,medium +0.59,0.62,3,203,4,0,0,0,support,medium +0.88,0.77,4,168,4,0,0,0,support,medium +0.72,0.7,3,149,3,0,0,0,support,medium +0.67,0.81,4,168,2,0,0,0,support,high +0.41,0.54,2,190,4,0,0,0,support,low +0.3,0.68,3,229,6,0,0,0,support,medium +0.83,0.84,3,249,2,0,0,0,support,medium +0.73,0.93,4,162,2,1,0,0,support,medium +0.87,0.9,4,163,2,0,0,0,support,medium +0.93,0.74,2,169,4,0,0,0,support,low +0.97,0.91,4,257,3,1,0,0,technical,low +0.7,0.54,4,150,4,0,0,0,technical,low +0.66,0.95,4,183,3,0,0,0,technical,low +0.62,0.66,3,208,3,0,0,0,management,low +0.56,0.52,4,158,2,0,0,0,IT,low +0.32,0.72,2,240,5,0,0,0,IT,low +0.55,0.81,5,251,3,0,0,0,IT,low +0.69,0.91,5,205,2,0,0,0,IT,low +0.91,0.63,4,226,3,1,0,0,IT,low +0.33,0.82,5,249,6,0,0,0,product_mng,low +0.37,0.74,2,197,3,0,0,0,product_mng,low +0.95,0.57,5,216,3,0,0,0,product_mng,low +0.17,0.91,4,260,5,0,0,0,product_mng,low +0.95,0.53,4,263,3,0,0,0,IT,low +0.27,0.69,2,177,5,0,0,0,RandD,low +0.91,0.95,4,171,3,0,0,0,RandD,low +0.49,0.61,3,148,2,1,0,0,RandD,low +0.6,0.56,4,138,3,0,0,0,RandD,low +0.52,0.57,4,183,3,0,0,0,RandD,low +0.54,0.65,3,202,3,0,0,0,marketing,low +0.86,0.53,4,160,2,1,0,0,sales,medium +0.78,0.87,4,264,3,0,0,0,accounting,medium +0.6,0.81,4,245,3,1,0,0,support,medium +0.15,0.91,2,207,3,0,0,0,technical,medium +0.72,0.92,3,225,3,0,0,0,management,medium +0.94,0.85,4,236,2,0,0,0,marketing,medium +0.92,0.56,4,170,3,0,0,0,marketing,medium +0.6,0.88,3,261,3,1,0,0,marketing,medium +0.41,0.68,4,273,3,0,0,0,sales,medium +0.5,0.43,3,184,2,0,0,0,sales,medium +0.8,0.91,3,202,2,0,0,0,sales,medium +0.67,0.83,4,195,3,0,0,0,sales,medium +0.71,0.88,4,266,3,0,0,0,sales,high +0.66,0.85,3,266,5,0,0,0,sales,low +0.77,0.74,5,263,2,0,0,0,sales,medium +0.62,0.54,3,142,2,0,0,0,sales,medium +0.95,0.53,4,162,3,0,0,0,sales,medium +0.89,0.75,5,258,2,0,0,0,sales,medium +0.74,0.83,4,170,2,0,0,0,sales,low +0.19,0.8,4,249,5,0,0,0,sales,low +0.83,0.77,3,171,3,0,0,0,sales,low +0.53,0.64,2,177,4,0,0,0,sales,low +0.98,0.75,5,188,2,0,0,0,sales,low +0.74,0.99,5,146,2,0,0,0,sales,low +0.22,0.88,5,154,5,0,0,0,sales,low +0.76,0.68,4,204,3,1,0,0,sales,low +0.89,0.91,5,224,3,1,0,0,sales,low +0.5,0.84,3,156,4,0,0,0,accounting,low +0.17,0.82,6,259,4,0,0,0,accounting,low +0.46,0.38,6,165,3,0,0,0,accounting,low +0.68,0.78,3,264,3,0,0,0,hr,low +0.77,0.86,4,215,2,0,0,0,hr,low +0.68,0.83,3,133,3,0,0,0,hr,low +0.15,0.7,4,220,4,0,0,0,hr,low +0.7,0.98,4,176,5,0,0,0,technical,low +0.66,0.96,4,103,2,0,0,0,technical,low +0.54,0.52,5,155,3,0,0,0,technical,low +0.57,0.57,4,141,3,0,0,0,technical,low +0.78,0.58,3,150,3,1,0,0,technical,low +0.14,0.83,5,171,6,0,0,0,technical,medium +0.73,0.86,4,179,3,0,0,0,technical,medium +0.65,0.97,4,145,2,0,0,0,technical,medium +0.31,0.59,3,176,3,0,0,0,technical,medium +0.77,0.55,2,172,2,0,0,0,technical,medium +0.68,0.85,3,243,4,0,0,0,technical,medium +0.79,0.69,4,209,2,0,0,0,support,medium +0.92,0.62,4,196,3,0,0,0,support,medium +0.77,0.96,6,225,4,0,0,0,support,medium +0.48,0.89,3,261,2,0,0,0,support,medium +0.63,0.66,4,157,2,0,0,0,support,medium +0.92,0.49,5,259,3,1,0,0,support,medium +0.5,0.85,4,224,6,0,0,0,support,high +0.52,0.91,5,193,2,0,0,0,support,low +0.73,0.79,4,157,3,0,0,0,support,medium +0.99,0.87,4,223,3,0,0,0,support,medium +0.91,0.99,3,188,3,1,0,0,support,medium +0.85,0.79,3,217,2,0,0,0,technical,medium +0.95,0.69,4,207,2,1,0,0,technical,low +0.67,0.85,3,153,4,0,0,0,technical,low +0.86,0.55,3,269,2,0,0,0,management,low +0.71,0.54,4,198,3,0,0,0,IT,low +0.99,0.95,4,102,5,0,0,0,IT,low +0.57,0.61,3,167,2,1,0,0,IT,low +0.98,0.72,3,252,2,0,0,0,IT,low +0.62,0.58,3,192,2,0,0,0,IT,low +0.74,0.79,5,237,4,0,0,0,product_mng,low +0.7,0.6,4,158,3,0,0,0,product_mng,low +0.8,0.93,3,260,3,0,0,0,product_mng,low +0.65,0.69,4,153,3,0,0,0,product_mng,low +0.53,0.52,3,233,4,0,0,0,IT,low +0.43,0.62,2,180,3,0,0,0,RandD,low +0.59,0.65,4,163,3,1,0,0,RandD,low +0.16,0.96,6,211,6,1,0,0,RandD,low +0.84,0.8,3,151,3,1,0,0,RandD,low +0.78,0.95,3,249,4,0,0,0,RandD,low +0.66,0.91,5,199,3,1,0,0,marketing,low +0.7,0.74,4,247,2,0,0,0,sales,low +0.73,0.63,4,174,3,0,0,0,accounting,low +0.65,0.88,4,268,4,0,0,0,support,medium +0.79,0.59,5,197,4,0,0,0,technical,medium +0.57,0.68,4,154,3,1,0,0,management,medium +0.24,0.58,5,279,4,0,0,0,marketing,medium +0.95,0.78,3,204,2,1,0,0,marketing,medium +0.38,0.54,2,112,3,0,0,0,marketing,medium +0.9,0.78,4,261,2,1,0,0,sales,medium +0.5,0.4,3,180,4,0,0,0,sales,medium +0.68,0.61,3,261,5,0,0,0,sales,medium +0.5,0.78,6,138,3,0,0,0,sales,medium +0.85,0.81,4,164,4,0,0,0,sales,medium +0.95,0.52,3,144,3,0,0,0,sales,medium +0.92,0.92,3,244,2,0,0,0,sales,high +0.83,0.87,5,233,3,0,0,0,sales,low +0.9,0.78,4,225,2,1,0,0,sales,medium +0.21,0.77,6,215,4,0,0,0,sales,medium +0.94,0.86,3,223,4,0,0,0,sales,medium +0.7,0.85,4,232,3,0,0,0,sales,medium +0.54,0.76,3,157,4,0,0,0,sales,low +0.77,0.65,4,268,3,0,0,0,sales,low +0.62,0.49,3,158,2,0,0,0,sales,low +0.93,0.55,5,222,2,0,0,0,sales,low +0.81,0.86,3,210,3,0,0,0,sales,low +0.99,0.79,4,133,2,0,0,0,sales,low +0.78,0.49,3,224,3,0,0,0,sales,low +0.66,0.63,5,264,5,0,0,0,accounting,low +0.9,0.72,5,237,2,0,0,0,accounting,low +0.74,0.53,5,141,2,0,0,0,accounting,low +0.65,0.78,4,238,5,1,0,0,hr,low +0.99,0.52,4,167,3,0,0,0,hr,low +0.83,0.72,4,161,3,0,0,0,hr,low +0.6,0.82,4,194,3,0,0,0,hr,low +0.55,0.93,3,217,3,1,0,0,technical,low +0.96,0.71,3,170,3,0,0,0,technical,low +0.83,0.94,4,243,3,0,0,0,technical,low +0.95,0.7,4,267,3,1,0,0,technical,low +0.77,0.88,2,169,3,0,0,0,technical,medium +0.83,0.95,3,255,3,0,0,0,technical,medium +0.87,0.54,4,211,3,0,0,0,technical,medium +0.69,0.49,3,198,4,0,0,0,technical,medium +0.67,0.58,3,246,3,0,0,0,technical,medium +0.55,0.49,3,146,2,0,0,0,technical,medium +0.55,0.82,4,134,6,0,0,0,technical,medium +0.39,0.48,3,169,3,0,0,0,support,medium +0.51,0.93,5,232,3,0,0,0,support,medium +0.39,0.38,2,106,3,1,0,0,support,medium +0.96,0.93,4,260,3,0,0,0,support,medium +0.68,0.81,3,232,2,0,0,0,support,medium +0.67,0.71,4,173,3,0,0,0,support,high +0.68,0.44,5,152,5,0,0,0,support,low +0.56,0.58,3,173,3,0,0,0,support,medium +0.9,0.7,3,274,3,0,0,0,support,medium +0.69,0.59,3,233,3,0,0,0,support,medium +0.99,0.71,4,232,3,0,0,0,support,medium +0.42,0.59,3,156,2,0,0,0,technical,low +0.28,0.51,3,124,3,0,0,0,technical,low +0.55,0.65,3,207,3,0,0,0,technical,low +0.91,0.53,3,273,6,0,0,0,management,low +0.53,0.98,3,219,4,0,0,0,IT,low +0.87,0.74,4,207,3,0,0,0,IT,low +0.57,0.6,4,248,4,0,0,0,IT,low +0.59,0.77,3,169,3,0,0,0,IT,low +0.76,0.89,4,181,3,0,0,0,IT,low +0.59,0.42,3,196,3,0,0,0,product_mng,low +0.5,0.54,3,254,2,0,0,0,product_mng,low +0.55,0.55,4,191,4,0,0,0,product_mng,low +0.92,0.53,3,238,2,0,0,0,product_mng,low +0.8,0.51,5,196,3,0,0,0,IT,low +0.93,0.66,4,228,3,0,0,0,RandD,low +0.67,0.57,4,165,3,0,0,0,RandD,low +0.78,0.55,3,144,2,0,0,0,RandD,low +0.61,0.7,4,243,3,0,0,0,RandD,low +0.74,0.84,3,206,3,0,0,0,RandD,low +0.5,0.49,3,180,3,1,0,0,marketing,low +0.84,0.96,3,161,2,1,0,0,sales,low +0.89,0.55,4,196,2,0,0,0,accounting,medium +0.77,0.89,5,152,3,0,0,0,support,medium +0.64,0.71,3,231,4,0,0,0,technical,medium +0.77,0.89,2,215,5,1,0,0,management,medium +0.74,0.58,4,233,4,0,0,0,marketing,medium +0.88,0.96,4,155,2,0,0,0,marketing,medium +0.88,0.96,5,182,4,1,0,0,marketing,medium +0.89,0.88,3,165,4,0,0,0,sales,medium +0.74,0.59,2,257,4,1,0,0,sales,medium +0.63,0.74,4,155,2,0,0,0,sales,medium +0.63,0.8,4,243,2,0,0,0,sales,medium +0.68,0.92,2,184,4,0,0,0,sales,medium +0.14,0.81,4,138,3,1,0,0,sales,high +0.86,0.94,5,209,4,0,0,0,sales,low +0.73,0.53,3,205,2,0,0,0,sales,medium +0.57,0.56,3,191,3,0,0,0,sales,medium +0.97,0.75,5,270,3,1,0,0,sales,medium +0.67,0.36,4,97,4,0,0,0,sales,medium +0.89,0.74,4,174,2,0,0,0,sales,low +0.8,0.96,5,124,3,0,0,0,sales,low +0.3,0.51,2,178,3,0,0,0,sales,low +0.14,0.73,5,266,6,0,0,0,sales,low +0.91,0.8,4,181,3,0,0,0,sales,low +0.49,0.81,4,233,3,0,0,0,sales,low +0.57,0.68,3,254,4,0,0,0,sales,low +0.59,0.62,3,219,3,0,0,0,sales,low +0.5,0.7,5,166,2,0,0,0,accounting,low +0.69,0.97,3,158,2,0,0,0,accounting,low +0.81,0.68,3,151,3,0,0,0,accounting,low +0.79,0.82,3,98,3,1,0,0,hr,low +0.55,0.91,4,187,4,1,0,0,hr,low +0.92,0.62,4,266,2,0,0,0,hr,low +0.94,0.59,5,250,3,0,0,0,hr,low +0.67,0.55,5,193,3,0,0,0,technical,low +0.53,0.92,4,223,3,1,0,0,technical,low +0.77,0.59,5,189,5,0,0,0,technical,low +0.57,0.82,5,138,3,0,0,0,technical,low +0.64,0.97,4,268,2,0,0,0,technical,low +0.35,1,6,186,2,0,0,0,technical,low +0.66,0.71,3,136,3,1,0,0,technical,medium +0.59,0.84,4,245,3,0,0,0,technical,medium +0.49,0.93,4,184,3,0,0,0,technical,medium +0.91,0.99,5,152,3,0,0,0,technical,medium +0.12,0.6,2,194,4,0,0,0,technical,medium +0.74,0.68,3,242,5,1,0,0,support,medium +0.84,0.94,4,246,2,1,0,0,support,medium +0.51,0.99,4,211,3,0,0,0,support,medium +0.94,0.71,4,189,3,0,0,0,support,medium +0.74,0.66,3,254,2,0,0,0,support,medium +0.52,0.54,5,239,3,0,0,0,support,medium +0.31,0.92,4,133,6,0,0,0,support,medium +0.72,0.59,3,255,2,0,0,0,support,high +0.92,1,3,212,2,0,0,0,support,low +0.56,0.64,3,270,3,0,0,0,support,medium +0.76,0.45,5,177,6,0,0,0,support,medium +0.59,0.9,4,261,4,0,0,0,technical,medium +0.5,0.74,3,220,3,0,0,0,technical,medium +0.88,0.72,2,144,4,1,0,0,technical,low +0.86,0.49,4,274,2,0,0,0,management,low +0.66,0.99,4,195,3,0,0,0,IT,low +0.7,0.69,4,158,3,0,0,0,IT,low +0.98,0.93,5,145,4,0,0,0,IT,low +0.61,0.73,3,165,3,1,0,0,IT,low +0.57,0.66,4,270,2,0,0,0,IT,low +0.84,0.91,5,208,3,0,0,0,product_mng,low +0.76,0.4,2,245,5,0,0,0,product_mng,medium +0.64,0.99,4,180,4,0,0,0,product_mng,medium +0.87,0.7,5,225,3,0,0,0,product_mng,medium +0.62,0.69,3,261,2,0,0,0,IT,medium +0.16,0.99,3,213,6,1,0,1,RandD,medium +0.83,0.87,3,230,3,0,0,1,RandD,medium +0.36,0.59,2,198,2,0,0,1,RandD,medium +0.47,0.51,6,190,5,0,0,1,RandD,medium +0.54,0.51,4,137,4,0,0,1,RandD,medium +0.83,0.83,3,186,3,1,0,1,marketing,medium +0.96,0.68,4,137,2,0,0,1,sales,medium +0.91,0.74,5,192,3,0,0,1,accounting,medium +0.56,0.59,4,164,3,0,0,1,support,medium +0.73,0.66,6,195,3,0,0,1,technical,medium +0.97,0.63,4,151,3,0,0,1,management,medium +0.75,0.74,5,231,3,0,0,1,marketing,medium +0.49,0.76,3,257,2,1,0,0,marketing,medium +0.57,0.94,4,257,3,0,0,0,marketing,medium +0.41,0.58,5,274,2,1,0,0,sales,medium +0.53,0.7,3,138,2,0,0,0,sales,medium +0.93,0.6,4,184,3,0,0,0,sales,medium +0.58,0.9,3,151,3,0,0,0,sales,medium +0.6,0.54,3,265,3,1,0,0,sales,medium +0.74,0.8,4,241,2,0,0,0,sales,medium +0.62,0.52,3,148,3,0,0,0,sales,medium +0.7,0.76,5,165,3,0,0,0,sales,medium +0.93,0.75,3,243,2,0,0,0,sales,medium +0.75,0.9,4,197,2,0,0,0,sales,medium +0.95,0.48,5,214,6,1,0,1,sales,medium +0.43,0.98,4,164,3,0,0,1,sales,medium +0.77,0.58,4,243,4,1,0,1,sales,medium +0.67,1,4,145,3,1,0,1,sales,medium +0.51,0.72,4,163,4,0,0,1,sales,medium +0.94,0.53,5,257,2,0,0,1,sales,medium +0.9,0.85,3,253,3,0,0,0,sales,medium +0.8,0.78,4,234,3,0,0,0,sales,medium +0.34,0.89,5,266,6,0,0,0,sales,medium +0.45,0.53,3,181,4,1,0,0,accounting,low +0.97,0.66,4,193,4,0,0,0,accounting,low +0.5,0.48,3,163,4,0,0,0,accounting,low +0.89,0.62,5,144,2,0,0,0,hr,low +0.76,0.5,4,245,3,0,0,0,hr,low +0.66,0.84,4,197,2,0,0,0,hr,low +0.74,0.63,3,180,2,0,0,0,hr,low +0.69,0.74,4,237,3,0,0,0,technical,low +0.59,0.57,2,170,3,0,0,0,technical,low +1,0.85,3,150,3,0,0,0,technical,low +0.61,0.75,2,100,4,0,0,0,technical,low +0.98,0.42,5,226,3,0,0,0,technical,low +0.59,0.71,5,222,3,0,0,0,technical,low +0.22,0.69,4,182,6,0,0,0,technical,low +0.71,0.95,3,150,2,0,0,0,technical,low +0.86,0.53,4,244,3,0,0,0,technical,medium +0.65,0.59,5,271,3,0,0,0,technical,medium +0.93,0.67,5,167,3,0,0,0,technical,medium +0.49,0.69,2,128,2,0,0,0,support,medium +0.78,0.77,3,149,4,1,0,0,support,medium +0.62,0.7,4,141,4,0,0,0,support,medium +0.72,0.63,3,149,2,0,0,0,support,medium +0.7,0.56,4,107,6,0,0,0,support,medium +0.54,0.93,5,189,2,0,0,0,support,medium +0.61,0.95,4,169,4,0,0,0,support,medium +0.84,0.95,4,208,3,1,0,0,support,medium +0.8,0.58,3,197,3,0,0,0,support,medium +0.58,0.5,4,225,3,0,0,0,support,high +0.97,0.87,2,175,6,0,0,0,support,high +0.92,0.55,3,172,2,0,0,0,technical,high +0.96,0.51,3,237,4,0,0,0,technical,high +0.73,0.87,4,155,3,1,0,0,technical,high +0.73,0.71,4,148,3,0,0,0,management,high +0.53,0.83,4,246,3,0,0,0,IT,high +0.17,0.82,5,193,5,0,0,0,IT,high +0.75,0.76,5,175,4,0,0,0,IT,low +0.76,0.44,3,121,4,0,0,0,IT,low +0.76,0.77,4,223,3,0,0,0,IT,low +0.92,0.55,3,259,3,0,0,0,product_mng,low +0.82,0.88,4,171,2,0,0,0,product_mng,low +0.38,0.5,2,170,3,0,0,0,product_mng,low +0.49,0.72,4,246,3,0,0,0,product_mng,low +0.53,0.8,3,175,3,0,0,0,IT,low +0.56,0.59,3,185,2,0,0,0,RandD,medium +0.69,0.98,3,168,2,0,0,0,RandD,medium +0.62,0.99,4,171,3,0,0,0,RandD,medium +0.71,0.76,3,201,2,0,0,0,RandD,medium +0.52,1,4,148,3,0,0,0,RandD,medium +0.2,0.53,6,189,4,0,0,0,marketing,medium +0.93,0.61,3,166,3,0,0,0,sales,medium +0.74,0.81,4,150,2,0,0,0,accounting,medium +0.78,0.45,3,253,6,0,0,1,support,medium +0.85,0.79,3,243,2,0,0,1,technical,medium +0.79,0.56,5,250,2,1,0,1,management,medium +0.92,0.91,3,228,2,0,0,1,marketing,medium +0.58,0.97,3,186,3,0,0,1,marketing,medium +0.68,0.72,3,213,3,0,0,1,marketing,medium +0.9,0.67,4,233,3,0,0,1,sales,medium +0.67,0.71,5,265,2,0,0,1,sales,medium +0.79,0.73,4,226,3,0,0,0,sales,medium +0.23,0.48,5,221,6,0,0,0,sales,medium +0.98,0.99,3,253,4,0,0,0,sales,medium +0.8,0.75,3,134,4,0,0,0,sales,medium +0.77,0.84,3,188,4,0,0,0,sales,medium +1,0.91,3,160,4,0,0,0,sales,medium +0.6,0.92,4,164,4,0,0,0,sales,medium +0.49,0.54,6,214,3,0,0,0,sales,high +0.91,0.99,5,228,4,1,0,0,sales,low +0.97,0.52,5,149,3,1,0,0,sales,medium +0.71,0.76,3,175,2,0,0,0,sales,medium +0.62,0.91,3,195,3,0,0,0,sales,medium +0.61,0.92,3,222,4,0,0,0,sales,medium +0.21,0.6,5,249,4,0,0,0,sales,medium +0.64,0.97,2,226,3,1,0,0,sales,medium +0.61,0.65,2,117,2,1,0,0,sales,medium +0.58,0.75,4,255,3,0,0,0,sales,medium +0.41,0.9,6,155,2,0,0,0,accounting,medium +0.98,0.73,5,185,3,0,0,0,accounting,medium +0.5,0.88,4,275,5,0,0,0,accounting,low +0.98,0.61,3,226,2,0,0,0,hr,low +0.4,0.85,4,198,2,0,0,0,hr,low +0.63,0.92,2,198,2,0,0,0,hr,low +0.75,0.53,4,251,3,0,0,0,hr,low +0.82,0.84,3,237,2,0,0,0,technical,low +0.55,0.62,5,197,2,0,0,0,technical,low +0.44,0.36,2,136,3,0,0,0,technical,high +0.92,0.88,3,184,3,1,0,0,technical,low +0.57,0.56,2,159,3,0,0,0,technical,high +0.73,0.86,4,133,3,0,0,0,technical,high +0.82,0.92,5,198,3,0,0,0,technical,low +0.54,0.75,3,260,2,0,0,0,technical,low +0.64,0.95,3,154,4,0,0,0,technical,high +0.99,0.76,4,185,5,0,0,0,technical,low +0.19,0.92,5,193,6,0,0,0,technical,medium +0.86,0.96,4,167,3,0,0,0,support,high +0.65,0.66,5,165,3,0,0,0,support,medium +0.52,0.81,3,253,2,0,0,0,support,medium +0.85,0.49,4,142,3,0,0,0,support,medium +0.61,0.64,5,186,4,0,0,0,support,medium +0.77,0.57,4,203,3,1,0,0,support,high +0.54,0.94,4,217,2,0,0,0,support,medium +0.76,0.74,4,187,3,0,0,0,support,medium +0.79,0.9,3,152,4,0,0,0,support,medium +0.89,0.93,5,150,2,0,0,0,support,high +0.6,0.8,3,191,2,0,0,0,support,medium +0.51,0.58,4,140,3,0,0,0,technical,high +0.2,0.72,5,123,2,1,0,0,technical,low +0.93,0.6,5,170,2,0,0,0,technical,medium +0.77,0.54,3,227,4,0,0,0,management,medium +0.8,0.87,4,220,2,0,0,0,IT,medium +0.8,0.97,5,258,3,0,0,0,IT,medium +0.62,0.92,5,149,3,0,0,0,IT,low +0.79,0.72,4,192,3,0,0,0,IT,low +0.88,0.73,5,267,3,0,0,0,IT,low +0.96,0.73,5,169,3,1,0,0,product_mng,low +0.34,0.69,2,178,3,0,0,0,product_mng,low +0.34,0.65,2,165,4,0,0,0,product_mng,low +0.88,0.85,4,231,3,0,0,0,product_mng,low +0.66,0.61,3,260,3,0,0,0,IT,low +0.55,0.71,4,181,2,1,0,0,RandD,low +0.59,0.51,3,243,2,0,0,0,RandD,low +0.62,0.73,4,191,3,0,0,0,RandD,high +0.78,0.93,3,200,3,0,0,0,RandD,low +0.73,0.75,5,265,3,0,0,0,RandD,low +0.71,0.94,4,246,3,0,0,0,marketing,low +0.97,0.86,3,187,2,0,0,0,sales,low +0.21,0.74,5,141,4,0,0,0,accounting,high +0.52,0.96,4,246,3,0,0,0,support,low +0.73,0.88,4,236,3,1,0,0,technical,low +0.74,0.83,3,170,3,0,0,0,management,low +0.26,0.71,6,189,2,0,0,0,marketing,high +0.52,0.78,4,237,3,0,0,0,marketing,low +0.69,0.54,4,180,3,0,0,0,marketing,medium +0.79,0.59,2,157,6,0,0,0,sales,high +0.93,0.62,4,258,3,0,0,0,sales,medium +0.34,0.87,4,283,2,0,0,0,sales,high +0.77,0.52,4,216,3,0,0,0,sales,medium +0.36,0.73,3,187,3,0,0,0,sales,medium +0.93,0.58,3,215,3,0,0,0,sales,medium +0.7,0.58,3,211,3,0,0,0,sales,medium +0.51,0.49,4,182,2,0,0,0,sales,medium +0.83,0.78,3,165,3,1,0,0,sales,medium +0.89,0.89,4,265,2,0,0,0,sales,medium +0.94,0.59,3,137,2,0,0,0,sales,medium +0.8,0.55,4,269,3,0,0,0,sales,high +0.74,0.66,3,177,2,0,0,0,sales,low +0.5,0.91,3,240,2,0,0,0,sales,medium +0.54,0.84,4,174,2,0,0,0,sales,medium +0.5,0.54,3,134,3,0,0,0,sales,medium +0.17,0.91,2,271,4,0,0,0,sales,medium +0.57,0.53,5,216,2,1,0,0,sales,medium +0.8,0.51,4,213,3,0,0,0,sales,medium +0.45,0.64,5,133,4,0,0,0,accounting,medium +0.87,0.5,4,267,2,1,0,0,accounting,medium +0.98,0.64,3,263,4,0,0,0,accounting,medium +0.55,0.8,4,260,3,0,0,0,hr,high +0.53,0.5,4,185,3,0,0,0,hr,low +0.75,0.48,2,284,6,0,0,0,hr,low +0.96,0.59,3,229,3,0,0,0,hr,low +0.71,0.97,3,189,3,1,0,0,technical,high +0.7,0.63,3,209,3,0,0,0,technical,low +0.33,0.94,4,166,6,0,0,0,technical,low +0.93,0.94,3,183,2,0,0,0,technical,low +0.64,0.65,3,181,2,0,0,0,technical,high +0.27,0.45,3,239,4,0,0,0,technical,low +0.99,0.99,3,158,2,0,0,0,technical,low +0.81,0.62,3,187,3,0,0,0,technical,low +0.6,0.91,4,236,3,0,0,0,technical,low +0.32,0.4,6,162,5,0,0,0,technical,low +0.48,0.68,4,163,2,1,0,0,technical,low +0.87,0.51,4,173,3,0,0,0,support,low +0.91,0.79,5,273,4,1,0,0,support,medium +0.24,0.89,5,142,4,0,0,0,support,medium +0.66,0.56,4,141,4,0,0,0,support,medium +0.94,0.59,3,234,2,0,0,0,support,medium +0.93,0.97,5,255,4,0,0,0,support,medium +0.19,0.55,5,148,4,0,0,0,support,medium +0.88,0.45,5,274,2,1,0,0,support,medium +0.76,0.47,3,223,2,0,0,0,support,medium +0.67,0.64,5,248,3,0,0,0,support,medium +0.54,0.5,4,146,2,0,0,0,support,medium +0.53,0.95,2,101,5,0,0,0,technical,medium +0.67,0.92,4,265,4,0,0,0,technical,medium +0.5,0.38,5,175,4,0,0,0,technical,high +0.49,0.76,4,202,3,0,0,0,management,low +0.82,0.71,3,160,3,0,0,0,IT,medium +0.86,0.71,3,235,3,0,0,0,IT,medium +0.5,0.5,4,267,3,0,0,0,IT,medium +0.82,0.6,3,261,2,1,0,0,IT,medium +0.95,0.78,2,148,2,0,0,0,IT,low +0.64,0.87,3,239,4,0,0,0,product_mng,low +0.91,0.5,3,178,2,0,0,0,product_mng,low +0.79,0.75,2,221,3,0,0,0,product_mng,low +0.83,0.56,4,269,3,0,0,0,product_mng,low +0.66,0.6,3,262,2,1,0,0,IT,low +0.92,0.8,4,263,4,0,0,0,RandD,low +0.59,0.47,5,191,3,0,0,0,RandD,low +0.6,0.83,2,189,2,0,0,0,RandD,low +0.68,0.97,5,207,4,1,0,0,RandD,low +0.58,0.73,3,265,6,0,0,0,RandD,low +0.93,0.77,5,224,2,0,0,0,marketing,low +0.66,0.5,3,229,3,0,0,0,marketing,low +0.8,0.99,3,158,3,0,0,0,sales,low +0.28,0.79,5,202,5,0,0,0,accounting,low +0.84,0.59,4,216,2,0,0,0,support,low +0.86,0.58,4,220,5,0,0,0,technical,low +0.46,0.45,2,172,2,1,0,0,management,low +0.94,0.92,3,187,2,0,0,0,marketing,low +0.8,0.76,3,270,2,1,0,0,marketing,low +0.13,0.63,6,219,6,0,0,0,marketing,low +0.95,0.73,3,243,3,1,0,0,sales,medium +0.93,0.88,4,261,4,0,0,0,sales,medium +0.86,0.81,4,179,3,0,0,0,sales,medium +0.67,0.93,5,133,2,0,0,0,sales,medium +0.73,0.6,4,224,3,0,0,0,sales,medium +0.62,0.92,4,198,2,0,0,0,sales,medium +0.53,0.81,5,135,2,0,0,0,sales,medium +0.68,0.68,3,143,3,0,0,0,sales,medium +0.69,0.55,4,234,2,0,0,0,sales,medium +0.66,0.92,3,177,3,0,0,0,sales,medium +0.98,0.56,5,180,3,0,0,0,sales,medium +0.57,0.39,3,193,6,0,0,0,sales,medium +0.64,0.78,5,148,4,0,0,0,sales,high +0.71,0.58,3,194,4,0,0,0,sales,low +0.94,0.7,3,271,4,0,0,0,sales,medium +0.8,0.85,3,135,2,0,0,0,sales,medium +0.59,0.94,4,136,2,0,0,0,sales,medium +0.95,0.7,6,243,3,0,0,0,sales,medium +1,0.39,2,210,5,0,0,0,sales,low +0.53,0.59,3,163,4,0,0,0,accounting,low +0.35,0.59,5,268,3,0,0,0,accounting,low +0.73,0.66,3,244,3,0,0,0,accounting,low +0.89,0.63,4,164,3,0,0,0,hr,low +0.21,0.93,4,260,3,0,0,0,hr,low +0.21,0.85,5,153,3,0,0,0,hr,low +0.6,0.83,4,216,2,1,0,0,hr,low +0.94,0.69,2,198,3,0,0,0,technical,low +0.92,0.68,4,196,3,1,0,0,technical,low +0.92,0.78,3,218,3,0,0,0,technical,low +0.71,0.98,5,167,3,0,0,0,technical,low +0.69,0.83,4,264,3,0,0,0,technical,low +0.26,0.51,2,284,2,0,0,0,technical,low +0.21,0.78,4,218,6,0,0,0,technical,low +0.36,0.42,2,192,2,0,0,0,technical,low +0.81,0.92,5,255,4,1,0,0,technical,low +0.54,0.88,3,251,2,0,0,0,technical,low +0.63,0.87,5,248,2,0,0,0,technical,low +0.86,0.75,5,157,4,0,0,0,support,low +0.8,0.79,5,240,2,0,0,0,support,low +0.55,0.58,5,262,3,0,0,0,support,medium +0.18,0.6,3,130,2,1,0,0,support,medium +0.88,0.98,3,152,3,0,0,0,support,medium +0.65,0.86,4,256,2,0,0,0,support,medium +0.99,1,3,139,2,0,0,0,support,medium +0.88,0.93,4,195,2,0,0,0,support,medium +0.67,0.59,3,205,5,0,0,0,support,medium +0.53,0.59,4,265,2,0,0,0,support,medium +0.83,0.61,5,246,3,0,0,0,support,medium +0.36,0.71,3,100,3,0,0,0,technical,medium +0.62,0.64,5,150,3,1,0,0,technical,medium +0.72,0.67,4,147,2,0,0,0,technical,medium +0.79,0.54,4,244,3,0,0,0,management,high +1,0.87,4,256,3,0,0,0,IT,low +0.65,0.52,4,266,3,1,0,0,IT,medium +0.84,0.91,3,199,4,0,0,0,IT,medium +0.81,0.59,2,236,3,0,0,0,IT,medium +0.59,0.51,3,203,2,1,0,0,IT,medium +0.78,0.53,3,156,3,0,0,0,product_mng,low +0.22,0.52,5,109,4,0,0,0,product_mng,low +0.96,0.98,5,248,3,0,0,0,product_mng,low +0.85,0.8,4,254,2,0,0,0,product_mng,low +0.12,0.73,6,166,3,0,0,0,IT,low +0.6,0.68,4,264,2,1,0,0,RandD,low +0.93,0.84,5,266,3,0,0,0,RandD,low +0.73,0.86,4,138,2,0,0,0,RandD,low +0.7,0.66,3,151,2,0,0,0,RandD,low +0.18,0.59,4,132,3,0,0,0,RandD,low +0.81,0.6,4,133,3,0,0,0,RandD,low +0.28,0.9,4,275,6,0,0,0,marketing,low +0.74,0.79,3,275,3,0,0,0,sales,low +0.5,0.74,4,272,5,0,0,0,accounting,low +0.83,0.85,4,201,2,1,0,0,support,low +0.55,0.66,3,164,2,0,0,0,technical,low +0.77,0.94,4,224,2,0,0,0,management,low +0.92,0.58,4,201,2,0,0,0,marketing,low +0.59,0.89,5,169,2,1,0,0,marketing,low +0.45,0.72,4,149,3,0,0,0,marketing,low +0.76,0.97,3,271,3,0,0,0,sales,low +0.89,0.69,4,137,3,0,0,0,sales,medium +0.73,0.5,3,208,2,0,0,0,sales,medium +0.65,0.7,3,231,3,0,0,0,sales,medium +0.14,0.96,3,196,5,1,0,0,sales,medium +0.3,0.47,2,159,4,0,0,0,sales,medium +0.53,0.82,5,184,3,0,0,0,sales,medium +0.66,0.89,3,257,3,0,0,0,sales,medium +0.84,0.59,3,234,2,0,0,0,sales,medium +0.74,0.97,3,239,4,1,0,0,sales,medium +0.56,0.4,2,255,3,0,0,0,sales,medium +0.42,0.47,4,146,3,1,0,0,sales,medium +0.29,0.8,5,103,6,0,0,0,sales,medium +0.54,0.72,5,206,4,0,0,0,sales,high +0.8,0.52,3,253,2,1,0,0,sales,low +0.89,0.93,4,245,4,0,0,0,sales,medium +0.92,0.58,3,261,3,1,0,0,sales,medium +0.87,0.68,4,217,3,0,0,0,sales,medium +0.76,0.82,4,172,3,1,0,0,sales,medium +0.64,0.61,3,221,3,0,0,0,accounting,low +0.83,0.57,2,246,5,1,0,0,accounting,low +0.55,0.6,3,145,4,0,0,0,accounting,low +0.83,0.7,5,168,3,0,0,0,hr,low +0.58,0.62,5,184,3,0,0,0,hr,low +0.67,0.97,4,186,3,0,0,0,hr,low +0.65,0.57,3,238,3,0,0,0,hr,low +0.89,0.95,5,203,3,0,0,0,technical,low +0.84,0.5,5,195,3,0,0,0,technical,low +0.5,0.7,5,264,2,0,0,0,technical,low +0.7,0.51,3,256,3,0,0,0,technical,low +0.79,0.83,5,268,3,0,0,0,technical,low +0.19,0.72,6,243,6,1,0,0,technical,low +0.89,0.5,4,136,2,1,0,0,technical,low +0.36,0.6,2,136,6,0,0,0,technical,low +0.62,0.66,5,165,3,0,0,0,technical,low +0.84,0.93,6,166,4,0,0,0,technical,low +0.65,0.87,4,267,2,0,0,0,technical,low +0.65,0.7,4,233,3,0,0,0,support,medium +0.87,0.92,3,141,2,0,0,0,support,medium +0.66,0.73,5,249,2,0,0,0,support,medium +0.83,0.9,3,102,4,0,0,0,support,medium +0.89,0.63,3,268,3,0,0,0,support,medium +0.91,0.97,4,139,3,0,0,0,support,medium +0.91,0.56,3,168,2,0,0,0,support,medium +0.83,0.5,4,259,2,0,0,0,support,medium +0.87,0.82,4,248,2,0,0,0,support,medium +0.62,0.79,3,274,3,0,0,0,support,medium +0.54,1,3,169,2,0,0,0,support,medium +0.84,0.53,5,190,3,0,0,0,technical,medium +0.33,0.82,2,114,5,0,0,0,technical,high +0.79,0.58,4,191,6,0,0,0,technical,low +0.31,0.41,2,263,3,0,0,0,management,medium +0.68,0.81,3,166,2,0,0,0,IT,medium +0.52,0.7,4,247,5,0,0,0,IT,medium +0.54,0.64,3,203,4,0,0,0,IT,medium +0.73,0.78,4,181,4,0,0,0,IT,low +0.49,0.74,3,229,3,1,0,0,IT,low +0.37,0.67,2,159,2,0,0,0,product_mng,low +0.53,0.84,3,151,3,0,0,0,product_mng,low +0.58,0.75,4,222,3,1,0,0,product_mng,low +0.2,0.51,2,163,2,0,0,0,product_mng,low +0.91,0.6,4,163,5,0,0,0,IT,low +0.53,0.78,2,138,2,0,0,0,RandD,low +0.99,0.72,4,136,3,0,0,0,RandD,low +0.97,0.87,3,207,4,0,0,0,RandD,low +0.18,0.93,3,245,4,1,0,0,RandD,low +0.83,0.93,6,130,5,0,0,0,RandD,low +0.49,0.47,4,285,3,0,0,0,RandD,low +0.74,0.93,3,204,4,0,0,0,marketing,low +0.7,0.6,3,183,3,0,0,0,sales,low +0.97,0.91,3,246,2,0,0,0,accounting,low +0.92,0.91,3,250,4,0,0,0,support,low +0.94,0.7,3,176,3,0,0,0,technical,low +1,0.98,3,177,2,0,0,0,management,low +0.5,0.51,3,169,4,0,0,0,marketing,low +0.77,0.89,3,142,3,0,0,0,marketing,low +0.68,0.71,5,135,4,1,0,0,marketing,medium +0.57,0.43,3,167,3,0,0,0,sales,medium +0.57,0.61,5,191,4,0,0,0,sales,medium +0.48,0.97,3,224,6,0,0,0,sales,medium +0.7,0.95,5,234,6,1,0,0,sales,medium +0.68,0.43,3,161,2,1,0,0,sales,medium +0.62,0.68,3,124,3,0,0,0,sales,medium +0.61,0.51,4,242,3,0,0,0,sales,medium +0.83,0.77,2,186,2,0,0,0,sales,medium +0.99,0.8,5,254,5,0,0,0,sales,medium +0.58,0.72,4,170,2,0,0,0,sales,medium +0.93,0.83,4,225,2,0,0,0,sales,medium +0.66,0.5,4,263,3,0,0,0,sales,high +0.52,0.98,4,148,3,0,0,0,sales,low +0.5,0.6,5,216,3,0,0,0,sales,medium +0.16,0.7,5,257,4,0,0,0,sales,medium +0.62,0.74,4,173,2,0,0,0,sales,medium +0.49,0.49,6,188,3,0,0,0,sales,medium +0.56,0.91,4,188,2,1,0,0,sales,low +0.96,0.59,4,108,6,0,0,0,sales,low +0.5,0.75,5,179,3,0,0,0,accounting,low +0.99,0.99,4,195,2,0,0,0,accounting,low +0.54,0.51,3,265,3,0,0,0,accounting,low +0.52,0.9,4,285,2,0,0,0,hr,low +0.81,0.99,5,202,4,0,0,0,hr,low +0.5,0.73,4,271,2,0,0,0,hr,low +0.51,0.88,3,202,4,0,0,0,hr,low +0.41,0.47,6,171,2,0,0,0,technical,low +0.62,0.72,2,180,2,1,0,0,technical,low +0.56,0.68,3,269,3,1,0,0,technical,low +0.96,0.75,3,231,3,0,0,0,technical,low +0.58,0.64,2,249,2,0,0,0,technical,low +0.66,0.75,3,228,2,0,0,0,technical,low +0.56,0.75,2,264,2,0,0,0,technical,low +0.56,0.93,4,210,3,1,0,0,technical,low +0.67,0.91,3,256,3,0,0,0,technical,low +0.72,0.71,5,137,3,0,0,0,technical,low +0.59,0.79,4,272,3,0,0,0,technical,low +0.95,0.55,5,185,2,0,0,0,support,low +1,0.93,3,264,4,0,0,0,support,medium +0.56,0.64,3,238,3,0,0,0,support,medium +0.52,0.49,4,98,3,0,0,0,support,medium +0.88,0.9,4,248,2,0,0,0,support,medium +0.58,0.84,4,271,2,0,0,0,support,medium +0.86,0.92,3,180,2,0,0,0,support,medium +0.19,0.64,5,181,4,1,0,0,support,medium +0.6,0.6,4,182,3,0,0,0,support,medium +0.82,0.87,3,204,4,0,0,0,support,medium +0.64,0.75,4,170,3,0,0,0,support,medium +0.83,0.67,4,139,3,0,0,0,technical,medium +0.57,0.75,3,159,2,0,0,0,technical,medium +0.98,0.92,3,254,3,0,0,0,technical,high +0.54,0.69,4,168,2,0,0,0,management,low +0.72,0.66,3,256,2,0,0,0,IT,medium +0.89,0.87,4,209,2,0,0,0,IT,medium +0.41,0.57,3,193,3,1,0,0,IT,medium +0.93,0.62,4,142,2,0,0,0,IT,medium +0.9,0.9,3,274,3,0,0,0,IT,low +0.38,0.59,4,276,2,0,0,0,product_mng,low +0.52,0.88,4,155,3,1,0,0,product_mng,low +0.99,0.72,3,220,2,1,0,0,product_mng,low +0.69,0.74,2,271,2,0,0,0,product_mng,low +0.76,0.76,5,175,3,0,0,0,IT,low +0.42,0.46,3,128,2,1,0,0,RandD,low +0.78,0.9,4,104,4,0,0,0,RandD,low +0.37,0.46,3,173,6,0,0,0,RandD,medium +0.89,0.39,6,190,3,1,0,0,RandD,medium +0.93,0.49,5,167,3,0,0,0,RandD,medium +0.98,0.56,3,187,3,0,0,0,RandD,medium +0.65,0.56,3,259,3,0,0,0,marketing,medium +0.3,0.61,3,138,5,0,0,0,sales,medium +0.97,1,5,251,2,0,0,0,accounting,medium +0.84,0.49,5,189,2,0,0,0,support,medium +0.76,0.76,4,149,3,0,0,0,technical,medium +0.5,0.74,4,246,3,0,0,0,management,medium +0.48,0.61,3,146,3,0,0,0,marketing,medium +0.56,0.63,4,204,4,0,0,0,marketing,medium +0.99,0.77,4,184,3,0,0,0,marketing,medium +0.65,0.94,4,174,3,0,0,0,sales,medium +0.92,0.81,3,196,2,0,0,0,sales,medium +0.88,0.76,3,223,3,0,0,0,sales,medium +0.99,0.86,3,198,3,0,0,0,sales,medium +0.96,0.93,5,141,2,1,0,0,sales,medium +0.55,0.85,4,273,2,0,0,0,sales,medium +0.71,0.94,4,209,3,0,0,0,sales,medium +0.72,0.68,3,135,4,0,0,0,sales,medium +0.23,0.5,5,100,3,0,0,0,sales,medium +0.78,0.61,3,193,3,0,0,0,sales,medium +0.82,0.61,3,229,2,0,0,0,sales,medium +0.49,0.74,4,104,4,0,0,0,sales,medium +0.96,0.82,4,201,2,0,0,0,sales,high +0.5,0.78,3,206,3,1,0,1,sales,high +0.98,0.57,5,141,3,0,0,1,sales,high +0.85,0.57,4,150,3,0,0,1,sales,high +0.72,0.75,3,166,3,0,0,1,sales,high +0.78,0.83,4,252,2,0,0,1,sales,high +0.62,0.43,2,106,2,0,0,1,sales,high +0.64,0.38,5,171,6,1,0,1,accounting,high +0.24,0.5,4,232,3,0,0,1,accounting,high +0.84,0.78,5,172,2,0,0,1,accounting,high +0.61,0.61,4,239,2,0,0,1,hr,high +0.79,0.71,4,222,3,0,0,1,hr,high +0.86,0.77,3,152,3,0,0,1,hr,low +0.7,0.54,3,198,3,1,0,1,hr,low +0.53,0.76,5,143,4,0,0,1,technical,low +0.58,0.88,3,157,4,0,0,1,technical,low +0.45,0.55,5,268,2,0,0,0,technical,low +0.86,0.87,4,183,3,0,0,0,technical,low +0.95,0.81,4,238,2,0,0,0,technical,low +0.51,0.84,4,214,2,0,0,0,technical,low +0.35,0.41,6,244,3,0,0,0,technical,low +0.99,0.57,3,221,3,0,0,0,technical,low +0.73,0.49,4,200,2,1,0,0,technical,low +0.44,0.48,2,226,3,0,0,0,technical,low +0.43,0.74,4,121,5,1,0,0,technical,low +0.81,0.77,5,249,2,0,0,0,support,low +0.77,0.83,3,204,3,0,0,0,support,low +0.52,0.86,5,256,3,0,0,0,support,medium +0.21,0.92,2,211,2,0,0,0,support,medium +0.88,0.93,3,162,3,0,0,0,support,medium +0.48,0.8,5,235,2,0,0,0,support,medium +0.21,0.63,5,226,3,0,0,0,support,medium +0.81,0.53,4,242,3,0,0,0,support,medium +0.38,0.77,3,173,5,0,0,0,support,medium +0.67,0.77,5,167,2,0,0,0,support,medium +0.87,0.94,4,256,2,0,0,0,support,medium +0.85,0.41,2,229,6,0,0,0,technical,medium +0.52,0.9,5,176,3,0,0,0,technical,medium +0.9,0.95,3,133,4,0,0,0,technical,medium +0.85,0.56,5,203,3,0,0,0,management,high +0.77,0.52,3,210,3,1,0,0,IT,high +0.61,0.97,4,198,2,0,0,0,IT,high +0.74,0.54,3,175,3,1,0,0,IT,high +0.56,0.85,5,245,3,0,0,0,IT,high +0.28,0.97,4,102,3,0,0,0,IT,high +0.86,0.68,2,192,3,0,0,0,product_mng,high +0.63,0.78,4,160,2,0,0,0,product_mng,high +0.85,0.96,3,211,2,0,0,0,product_mng,low +0.84,0.84,6,261,5,0,0,0,product_mng,low +0.98,0.6,4,191,3,0,0,0,IT,low +0.51,0.78,5,225,4,0,0,0,RandD,low +0.71,0.85,4,157,2,0,0,0,RandD,low +0.88,0.69,3,248,4,0,0,0,RandD,low +0.16,0.81,2,159,6,1,0,0,RandD,low +0.98,0.86,4,254,2,1,0,0,RandD,low +0.81,0.76,3,203,3,0,0,0,RandD,medium +0.17,0.79,2,126,5,0,0,0,marketing,medium +0.22,0.65,6,212,4,0,0,0,sales,medium +0.67,0.69,5,225,3,0,0,0,accounting,medium +0.72,0.83,5,193,2,0,0,0,support,medium +0.67,0.91,3,147,3,0,0,0,technical,medium +0.47,0.55,2,156,2,0,0,0,management,medium +0.51,0.75,3,234,2,1,0,0,marketing,medium +0.88,0.71,5,246,3,0,0,0,marketing,medium +0.48,0.94,4,231,4,0,0,0,marketing,medium +0.66,0.99,4,209,3,0,0,0,sales,medium +0.58,0.5,3,144,3,0,0,0,sales,medium +0.23,0.96,2,234,4,0,0,0,sales,medium +0.86,0.77,5,230,2,0,0,0,sales,medium +0.81,0.99,2,156,5,0,0,0,sales,medium +0.75,0.54,6,138,4,1,0,0,sales,medium +0.49,0.89,2,233,4,1,0,0,sales,medium +0.31,0.5,3,262,5,0,0,0,sales,medium +0.83,0.75,6,215,5,0,0,0,sales,medium +0.7,0.55,4,227,3,0,0,0,sales,medium +0.49,0.99,3,199,3,0,0,0,sales,medium +0.57,0.92,3,238,2,0,0,0,sales,medium +0.37,0.45,6,100,5,1,0,0,sales,medium +0.69,0.75,3,179,2,1,0,0,sales,high +0.62,0.98,4,107,2,0,0,0,sales,low +0.5,0.68,4,274,4,0,0,0,sales,medium +0.81,0.73,4,272,2,0,0,0,sales,medium +0.2,0.41,6,264,3,0,0,0,sales,medium +0.22,0.58,2,255,5,0,0,0,sales,medium +0.63,0.79,5,215,2,1,0,0,accounting,medium +0.68,0.53,3,156,4,0,0,0,accounting,medium +0.52,0.49,3,146,2,1,0,0,accounting,medium +0.22,0.52,6,217,6,0,0,0,hr,medium +0.51,0.82,3,206,4,0,0,0,hr,medium +0.66,0.92,4,239,3,0,0,0,hr,medium +0.26,0.37,2,232,3,1,0,0,hr,low +0.42,0.4,3,160,2,0,0,0,technical,low +0.86,0.77,5,237,3,1,0,0,technical,low +0.52,0.68,3,162,4,1,0,0,technical,low +0.95,0.64,3,138,4,1,0,0,technical,low +0.63,0.94,2,228,2,1,0,0,technical,low +1,0.54,3,151,2,1,0,0,technical,low +0.54,0.58,3,169,2,1,0,0,technical,high +0.9,0.7,3,147,4,0,0,0,technical,low +0.49,0.99,6,205,5,0,0,0,technical,high +0.81,0.6,3,140,2,0,0,0,technical,high +0.5,0.66,4,150,4,0,0,0,technical,low +0.7,0.88,4,191,3,1,0,0,support,low +0.5,0.85,4,150,2,0,0,0,support,high +0.98,0.66,2,255,3,0,0,0,support,low +0.86,0.51,3,230,3,0,0,0,support,medium +0.93,0.77,3,202,5,0,0,0,support,high +0.62,0.75,3,180,3,0,0,0,support,medium +0.64,0.57,3,179,3,0,0,0,support,medium +0.66,0.94,4,198,3,1,0,0,support,medium +0.65,0.86,4,267,2,0,0,0,support,medium +0.89,0.84,3,166,2,0,0,0,support,high +0.77,0.58,4,162,2,0,0,0,support,medium +0.4,0.36,4,128,4,0,0,0,technical,medium +0.36,0.44,4,114,4,0,0,0,technical,medium +0.3,0.48,2,104,2,0,0,0,technical,high +0.9,0.64,4,139,3,1,0,0,management,medium +0.23,0.49,5,214,5,0,0,0,IT,high +0.24,0.79,2,175,5,0,0,0,IT,low +0.98,0.92,4,175,2,0,0,0,IT,medium +0.49,0.48,2,186,2,0,0,0,IT,medium +0.23,0.48,3,139,4,0,0,0,IT,medium +0.79,0.71,3,202,3,0,0,0,product_mng,medium +0.21,0.76,4,165,6,1,0,0,product_mng,low +0.38,0.92,5,238,2,0,0,0,product_mng,low +0.17,0.59,4,179,4,0,0,0,product_mng,low +0.56,0.69,5,239,2,1,0,0,IT,low +0.97,0.7,5,195,2,1,0,0,RandD,low +0.22,0.78,6,206,6,0,0,0,RandD,low +0.84,0.88,3,194,3,0,0,0,RandD,low +0.64,0.63,5,105,5,1,0,0,RandD,low +0.78,0.69,5,256,3,0,0,0,RandD,low +0.23,0.4,6,110,4,1,0,0,marketing,low +0.99,0.82,6,185,4,1,0,0,sales,high +0.15,0.76,4,255,6,0,0,0,accounting,low +0.24,0.96,3,174,6,0,0,0,support,low +0.84,0.71,4,273,3,0,0,0,technical,low +0.82,0.58,2,248,6,0,0,0,management,low +0.17,0.86,3,286,6,0,0,0,marketing,high +0.72,0.71,5,248,2,0,0,0,marketing,low +0.86,0.91,3,234,3,1,0,0,marketing,low +0.75,0.55,3,162,3,0,0,0,sales,low +0.93,0.82,5,272,3,0,0,0,sales,high +0.75,0.52,3,260,3,1,0,0,sales,low +0.45,0.55,3,151,3,0,0,0,sales,medium +0.44,0.87,2,140,4,0,0,0,sales,high +0.55,0.9,5,237,3,0,0,0,sales,medium +0.78,0.56,5,252,2,0,0,0,sales,high +0.5,0.52,4,178,3,0,0,0,sales,medium +0.96,0.66,4,268,3,0,0,0,sales,medium +0.72,0.53,5,244,4,0,0,0,sales,medium +0.77,0.55,3,225,3,0,0,0,sales,medium +0.89,0.94,5,223,3,0,0,0,sales,medium +0.58,0.79,4,149,6,0,0,0,sales,medium +0.75,0.96,5,190,3,0,0,0,sales,medium +0.77,0.8,4,167,3,0,0,0,sales,medium +0.76,0.87,4,161,3,0,0,0,sales,high +0.87,0.76,4,218,2,0,0,0,sales,low +0.95,0.74,3,212,3,0,0,0,sales,medium +0.73,0.54,3,150,3,0,0,0,sales,medium +0.2,0.56,5,181,6,0,0,0,accounting,medium +0.55,0.43,3,120,6,1,0,0,accounting,medium +0.21,0.53,3,229,5,0,0,0,accounting,medium +0.91,0.74,3,139,5,1,0,0,hr,medium +0.61,0.87,4,151,3,0,0,0,hr,medium +0.89,0.59,4,230,3,0,0,0,hr,medium +0.65,0.76,4,193,2,0,0,0,hr,medium +0.7,0.48,4,229,2,0,0,0,technical,high +0.79,0.95,3,222,4,0,0,0,technical,low +0.99,0.67,3,200,2,0,0,0,technical,low +0.52,0.77,4,134,4,0,0,0,technical,low +0.71,0.97,3,219,3,0,0,0,technical,high +0.21,0.58,5,197,4,0,0,0,technical,low +0.4,0.62,3,283,5,0,0,0,technical,low +0.74,0.75,4,149,3,0,0,0,technical,low +0.79,0.6,4,161,3,0,0,0,technical,high +0.88,0.58,5,264,3,0,0,0,technical,low +0.89,0.93,4,137,2,0,0,0,technical,low +0.61,0.72,3,144,2,0,0,0,support,low +0.48,0.54,4,105,5,1,0,0,support,low +0.81,0.98,6,196,2,0,0,0,support,low +0.71,0.74,3,250,3,0,0,0,support,low +0.92,0.53,3,253,3,0,0,0,support,low +0.99,0.71,4,199,4,0,0,0,support,medium +0.74,0.55,6,130,2,0,0,0,support,medium +1,0.94,3,257,4,0,0,0,support,medium +0.81,0.55,3,127,4,0,0,0,support,medium +0.59,0.7,2,153,2,0,0,0,support,medium +0.9,0.58,5,260,2,0,0,0,support,medium +0.98,0.9,4,247,2,0,0,0,technical,medium +0.56,0.55,3,250,4,0,0,0,technical,medium +0.86,0.89,4,136,4,0,0,0,technical,medium +0.82,0.59,3,210,3,0,0,0,management,medium +0.94,0.53,4,183,3,0,0,0,IT,medium +0.68,0.96,4,255,3,0,0,0,IT,medium +0.81,0.69,5,109,2,0,0,0,IT,high +0.59,0.59,3,173,3,0,0,0,IT,low +0.54,0.82,4,266,2,0,0,0,IT,medium +0.77,0.87,5,257,2,0,0,0,product_mng,medium +0.62,0.61,6,103,4,0,0,0,product_mng,medium +0.58,0.57,5,105,6,0,0,0,product_mng,medium +0.63,0.84,3,269,2,0,0,0,product_mng,low +0.78,1,4,154,2,0,0,0,IT,low +0.82,0.78,5,232,3,0,0,0,RandD,low +0.73,0.86,3,215,4,0,0,0,RandD,low +0.53,0.74,4,272,2,1,0,0,RandD,low +0.88,0.62,4,221,2,0,0,0,RandD,low +0.65,0.6,4,200,4,0,0,0,RandD,low +0.57,0.61,5,254,5,0,0,0,marketing,low +0.93,0.76,5,187,3,0,0,0,marketing,low +0.83,0.64,2,192,2,0,0,0,sales,low +0.73,0.45,5,232,4,0,0,0,accounting,low +0.78,0.67,4,221,3,1,0,0,support,low +0.9,0.62,3,233,5,1,0,0,technical,low +0.59,0.66,3,166,3,1,0,0,management,low +0.67,0.89,2,173,3,0,0,0,marketing,low +0.59,0.51,4,184,2,0,0,0,marketing,low +0.53,0.54,4,257,3,1,0,0,marketing,low +0.56,0.73,4,226,2,0,0,0,sales,low +0.72,0.89,3,221,3,0,0,0,sales,low +0.81,0.49,2,205,5,1,0,0,sales,low +0.54,0.68,3,158,3,0,0,0,sales,low +0.91,0.87,3,199,3,0,0,0,sales,medium +0.51,0.96,3,192,3,0,0,0,sales,medium +0.59,0.39,4,190,5,0,0,0,sales,medium +0.64,0.86,5,222,3,0,0,0,sales,medium +0.95,0.68,5,225,3,0,0,0,sales,medium +0.75,0.69,3,274,2,0,0,0,sales,medium +0.44,0.38,3,197,2,0,0,0,sales,medium +0.55,0.6,4,176,3,0,0,0,sales,medium +0.6,0.81,3,226,2,0,0,0,sales,medium +0.84,0.58,5,186,2,0,0,0,sales,medium +0.49,0.65,3,226,3,0,0,0,sales,medium +0.75,0.71,4,209,3,0,0,0,sales,medium +0.35,0.81,5,182,5,0,0,0,sales,high +0.68,0.78,3,232,3,0,0,0,sales,low +0.52,0.53,2,286,3,0,0,0,sales,medium +0.78,0.57,3,177,3,0,0,0,accounting,medium +0.44,0.92,6,268,4,1,0,0,accounting,medium +0.18,0.86,5,267,4,0,0,0,accounting,medium +0.37,0.52,4,211,4,0,0,0,hr,low +0.71,0.76,3,246,3,0,0,0,hr,low +0.55,0.83,5,220,3,0,0,0,hr,low +0.98,0.78,3,197,2,0,0,0,hr,low +0.88,0.53,3,188,3,0,0,0,technical,low +0.79,0.9,5,212,5,0,0,0,technical,low +0.96,0.66,3,230,3,0,0,0,technical,low +0.3,0.55,6,178,2,0,0,0,technical,low +0.59,0.9,4,226,2,0,0,0,technical,low +0.72,0.55,4,202,3,0,0,0,technical,low +0.59,0.87,4,191,2,0,0,0,technical,low +0.93,0.68,2,150,3,0,0,0,technical,low +0.49,0.86,5,235,5,0,0,0,technical,low +0.73,0.95,3,258,3,0,0,0,technical,low +0.53,0.6,5,247,3,0,0,0,technical,low +0.77,0.83,6,271,3,0,0,0,support,low +0.45,0.62,6,129,5,0,0,0,support,low +0.95,0.78,5,246,3,0,0,0,support,low +0.86,0.69,5,157,4,0,0,0,support,low +0.59,0.58,4,233,4,0,0,0,support,low +0.95,0.63,4,153,3,0,0,0,support,low +0.7,0.92,4,142,2,1,0,0,support,medium +0.56,0.64,5,241,3,1,0,0,support,medium +0.5,0.92,3,186,2,0,0,0,support,medium +0.76,0.92,4,154,3,0,0,0,support,medium +0.85,0.77,5,263,3,0,0,0,support,medium +0.98,1,5,150,3,0,0,0,technical,medium +0.65,0.4,2,277,2,0,0,0,technical,medium +0.44,0.97,4,240,5,1,0,0,technical,medium +0.55,0.97,3,222,2,0,0,0,management,medium +0.16,0.8,4,140,5,1,0,0,IT,medium +0.16,0.9,6,213,2,0,0,0,IT,medium +0.75,1,4,272,4,1,0,0,IT,medium +0.59,0.57,4,261,2,0,0,0,IT,high +0.48,0.87,3,236,2,0,0,0,IT,low +0.18,0.68,6,154,5,0,0,0,product_mng,medium +0.8,0.72,3,271,2,0,0,0,product_mng,medium +0.8,0.88,3,154,2,0,0,0,product_mng,medium +0.15,0.52,4,207,4,0,0,0,product_mng,medium +0.62,0.86,4,181,2,0,0,0,IT,low +0.21,0.99,6,165,4,1,0,0,RandD,low +0.9,0.82,3,203,2,0,0,0,RandD,low +0.51,1,4,197,2,0,0,0,RandD,low +0.99,0.9,4,177,3,0,0,0,RandD,low +0.71,0.49,4,273,2,1,0,0,RandD,low +0.89,0.93,4,141,2,0,0,0,marketing,low +0.74,0.67,4,158,3,0,0,0,sales,low +0.84,0.85,3,243,2,0,0,0,accounting,low +0.4,0.64,3,188,3,0,0,0,support,low +1,0.71,4,216,2,0,0,0,technical,low +0.48,0.51,5,286,3,0,0,0,management,low +0.99,0.6,3,262,2,0,0,0,marketing,low +0.73,0.81,5,173,3,0,0,0,marketing,low +0.84,0.91,3,247,4,0,0,0,marketing,low +0.55,0.7,3,237,4,0,0,0,sales,low +0.44,0.99,5,119,2,0,0,0,sales,low +0.95,0.67,4,227,3,0,0,0,sales,low +0.76,0.65,4,195,3,0,0,0,sales,low +0.94,0.7,6,217,5,0,0,0,sales,low +0.85,0.5,4,267,3,0,0,0,sales,low +0.57,0.62,3,154,2,0,0,0,sales,medium +0.67,0.49,5,161,2,0,0,0,sales,medium +0.7,0.67,3,179,3,1,0,0,sales,medium +0.67,0.55,4,214,3,1,0,0,sales,medium +0.72,0.84,3,167,3,0,0,0,sales,medium +0.71,0.53,6,203,3,0,0,0,sales,medium +0.51,0.8,4,231,3,0,0,0,sales,medium +0.98,0.65,4,263,2,1,0,0,sales,medium +0.52,0.83,2,227,4,0,0,0,sales,medium +0.21,0.9,4,235,4,0,0,0,sales,medium +0.43,0.93,6,127,3,1,0,0,sales,medium +0.91,0.62,4,158,3,1,0,0,sales,medium +0.74,0.85,4,105,5,0,0,0,sales,high +0.34,0.81,3,257,5,0,0,0,accounting,low +0.28,0.46,4,260,2,0,0,0,accounting,medium +0.7,0.79,6,145,3,0,0,0,accounting,medium +0.53,0.59,2,201,3,1,0,0,hr,medium +0.97,0.51,4,241,4,0,0,0,hr,medium +0.96,0.59,3,214,2,0,0,0,hr,low +0.74,0.53,4,166,3,0,0,0,hr,low +0.79,0.86,4,173,4,0,0,0,technical,low +0.61,0.47,4,181,5,0,0,0,technical,low +0.36,0.4,4,114,4,1,0,0,technical,low +0.15,0.91,5,267,4,0,0,0,technical,low +0.61,0.5,4,216,2,0,0,0,technical,low +0.59,0.94,4,265,3,0,0,0,technical,low +0.58,0.77,5,272,2,1,0,0,technical,low +0.49,0.92,4,229,2,0,0,0,technical,low +0.92,0.96,5,174,3,1,0,0,technical,low +0.72,0.92,3,264,3,0,0,0,technical,low +0.77,0.85,5,221,5,0,0,0,technical,low +0.6,0.57,3,202,3,0,0,0,support,low +0.21,0.4,3,262,3,0,0,0,support,low +0.83,0.75,3,150,3,0,0,0,support,low +0.71,0.95,3,251,3,0,0,0,support,low +0.94,0.46,2,230,2,1,0,0,support,low +0.59,0.99,3,185,2,0,0,0,support,medium +0.59,0.59,4,216,2,1,0,0,support,medium +0.99,0.68,3,181,3,1,0,0,support,medium +0.64,0.7,5,140,4,0,0,0,support,medium +0.54,0.5,4,160,3,0,0,0,support,medium +0.78,0.63,3,192,2,0,0,0,support,medium +0.7,0.79,6,257,4,0,0,0,technical,medium +0.9,0.62,5,236,6,0,0,0,technical,medium +0.14,0.74,6,160,5,0,0,0,technical,medium +0.33,0.69,3,125,3,0,0,0,management,medium +0.73,0.53,4,139,2,0,0,0,IT,medium +0.8,0.87,4,217,3,0,0,0,IT,medium +0.17,0.91,6,246,5,0,0,0,IT,high +0.34,0.91,4,284,4,0,0,0,IT,low +0.61,0.9,3,263,3,0,0,0,IT,medium +0.18,0.95,4,241,6,0,0,0,product_mng,medium +0.72,0.94,3,258,3,0,0,0,product_mng,medium +0.32,0.79,4,136,3,0,0,0,product_mng,medium +0.85,0.81,2,223,3,1,0,0,product_mng,low +0.85,0.74,5,170,4,0,0,0,IT,low +0.8,0.81,4,194,3,1,0,0,RandD,low +0.36,0.82,4,218,5,0,0,0,RandD,low +0.8,0.99,6,178,5,0,0,0,RandD,low +0.55,0.9,3,181,3,1,0,0,RandD,low +0.69,0.56,3,183,4,1,0,0,RandD,low +0.71,0.61,2,198,2,1,0,0,marketing,low +0.74,0.56,3,203,3,0,0,0,sales,low +0.76,0.89,5,204,3,0,0,0,accounting,low +0.81,0.62,3,257,3,0,0,0,support,low +0.59,1,4,169,2,0,0,0,technical,low +0.97,0.69,4,203,2,0,0,0,management,low +0.98,0.74,4,260,2,1,0,0,marketing,low +0.96,0.87,5,202,2,0,0,0,marketing,low +0.82,0.63,4,199,2,0,0,0,marketing,low +0.97,0.93,2,270,4,0,0,0,sales,low +0.74,0.51,5,258,2,0,0,0,sales,low +0.14,0.52,4,108,6,0,0,0,sales,low +0.3,0.67,3,232,3,0,0,0,sales,low +0.74,0.89,4,149,2,0,0,0,sales,low +0.85,0.48,4,214,3,0,0,0,sales,medium +0.69,0.65,4,136,2,0,0,0,sales,medium +0.6,0.95,4,164,4,0,0,0,sales,medium +0.53,0.85,3,236,6,0,0,0,sales,medium +0.94,0.88,3,270,3,0,0,0,sales,medium +0.57,0.63,5,156,4,0,0,0,sales,medium +0.2,0.73,3,250,5,0,0,0,sales,medium +0.82,0.92,4,196,3,0,0,0,sales,medium +0.62,0.92,5,169,2,0,0,0,sales,medium +0.88,0.59,2,144,3,0,0,0,sales,medium +0.82,0.62,4,160,3,0,0,0,sales,medium +0.62,0.91,3,142,6,1,0,0,sales,medium +0.74,0.48,5,165,2,0,0,0,sales,high +0.91,0.66,4,163,3,0,0,0,sales,low +0.7,0.96,3,263,3,0,0,0,accounting,medium +0.84,0.9,3,178,2,0,0,0,accounting,medium +0.35,0.57,3,109,3,0,0,0,accounting,medium +0.28,0.83,4,206,5,0,0,0,hr,medium +0.37,0.37,3,168,3,0,0,0,hr,low +0.75,0.5,4,155,2,1,0,0,hr,low +0.34,0.6,4,154,2,0,0,0,hr,low +0.55,0.5,4,179,3,0,0,0,technical,low +0.97,0.92,3,168,3,0,0,0,technical,low +0.91,0.57,3,158,3,0,0,0,technical,low +0.48,0.63,3,180,2,1,0,0,technical,low +0.53,0.71,4,227,3,0,0,0,technical,low +0.84,0.67,3,139,2,0,0,0,technical,low +0.31,0.69,3,120,3,0,0,0,technical,low +0.81,0.62,4,255,4,1,0,0,technical,low +0.78,0.95,5,273,2,0,0,0,technical,low +0.64,0.68,3,272,3,0,0,0,technical,low +0.41,0.77,4,231,6,0,0,0,technical,low +0.74,0.81,5,281,3,1,0,0,support,low +0.89,0.86,3,208,3,0,0,0,support,low +0.26,0.43,4,215,4,1,0,0,support,low +0.72,0.39,5,111,5,0,0,0,support,low +0.84,0.74,2,168,3,0,0,0,support,low +0.52,0.8,2,144,4,0,0,0,support,low +0.65,0.95,3,266,3,1,0,0,support,low +0.66,0.56,3,169,2,1,0,0,support,medium +0.86,0.63,4,162,2,0,0,0,support,medium +0.91,0.9,3,243,3,0,0,0,support,medium +0.84,0.6,3,186,3,1,0,0,support,medium +0.87,0.57,4,231,4,0,0,0,technical,medium +0.57,0.54,4,167,3,0,0,0,technical,medium +0.68,0.5,3,139,3,0,0,0,technical,medium +1,0.59,5,182,3,1,0,0,management,medium +0.86,0.74,4,261,2,0,0,0,IT,medium +0.7,0.99,4,248,3,0,0,0,IT,medium +0.28,0.7,2,164,4,0,0,0,IT,medium +0.84,0.9,3,230,3,0,0,0,IT,medium +0.68,0.92,3,226,2,0,0,0,IT,high +0.45,0.6,2,98,3,0,0,0,product_mng,low +0.37,0.74,5,117,3,0,0,0,product_mng,medium +0.98,0.84,4,200,2,0,0,0,product_mng,medium +0.67,0.57,3,206,3,1,0,0,product_mng,medium +0.74,0.83,4,142,3,0,0,0,IT,medium +0.48,0.46,2,174,3,0,0,0,RandD,low +0.22,0.63,5,284,6,0,0,0,RandD,low +0.14,0.79,5,163,6,0,0,0,RandD,low +0.93,0.92,5,189,2,0,0,0,RandD,low +0.83,0.54,4,189,4,0,0,0,RandD,low +0.94,0.79,3,256,3,0,0,0,marketing,low +0.7,0.98,3,215,2,0,0,0,sales,low +0.74,0.86,4,221,2,1,0,0,accounting,low +0.83,0.85,4,263,3,0,0,0,support,medium +0.97,0.61,3,208,3,0,0,0,technical,medium +0.61,0.71,3,216,4,0,0,0,management,medium +0.77,0.71,2,242,2,0,0,0,marketing,medium +0.66,0.73,2,135,6,0,0,0,marketing,medium +0.92,0.99,3,190,3,0,0,0,marketing,medium +0.62,0.55,3,108,2,1,0,0,sales,medium +0.15,0.67,6,195,2,0,0,0,sales,medium +0.82,0.68,3,160,4,0,0,0,sales,medium +0.7,0.48,5,273,2,0,0,0,sales,medium +0.18,0.39,2,177,6,0,0,0,sales,medium +0.99,0.59,3,163,2,0,0,0,sales,medium +0.22,0.9,4,106,2,0,0,0,sales,medium +0.61,0.83,5,236,2,0,0,0,sales,medium +0.78,0.91,3,132,2,0,0,0,sales,medium +0.84,0.61,3,253,2,0,0,0,sales,medium +0.87,0.74,4,151,4,0,0,0,sales,medium +0.73,0.9,4,266,3,0,0,0,sales,medium +0.7,0.86,3,141,2,1,0,0,sales,medium +0.98,0.71,5,217,3,0,0,0,sales,medium +0.85,0.49,3,258,3,0,0,0,sales,medium +0.56,0.83,5,275,2,0,0,0,sales,medium +0.48,0.62,4,210,2,0,0,0,sales,medium +0.65,0.7,3,243,3,0,0,0,sales,medium +0.84,0.59,3,234,3,1,0,0,sales,medium +0.17,0.73,4,274,3,0,0,0,accounting,high +0.84,0.61,4,261,2,0,0,0,accounting,high +0.96,0.59,3,158,3,1,0,0,accounting,high +0.62,0.96,5,251,2,0,0,0,hr,high +0.57,0.7,3,158,3,0,0,0,hr,high +0.98,0.87,3,246,3,0,0,0,hr,high +0.72,0.99,4,227,3,0,0,0,hr,high +0.43,0.46,4,169,5,0,0,0,technical,high +0.68,0.57,5,187,4,0,0,0,technical,high +0.69,0.86,4,238,3,0,0,0,technical,high +0.91,0.66,4,139,3,0,0,0,technical,high +0.42,0.37,2,284,3,0,0,0,technical,high +0.8,0.99,4,255,5,1,0,0,technical,low +0.79,0.57,5,230,2,0,0,0,technical,low +1,0.94,3,272,3,0,0,0,technical,low +0.63,0.75,4,155,3,0,0,0,technical,low +0.61,0.51,6,163,6,0,0,0,technical,low +0.78,0.98,4,260,3,0,0,0,technical,low +0.72,0.96,5,223,3,1,0,0,support,low +0.64,0.51,4,247,2,1,0,0,support,low +0.79,0.86,3,126,5,0,0,0,support,low +0.64,0.55,3,147,2,0,0,0,support,low +0.82,0.88,4,259,3,0,0,0,support,low +0.51,0.86,4,196,2,0,0,0,support,low +0.18,0.51,6,227,2,0,0,0,support,low +0.67,0.58,5,161,3,1,0,0,support,low +0.65,0.85,3,213,2,0,0,0,support,low +0.7,0.8,4,183,2,0,0,0,support,medium +0.59,0.59,3,194,2,1,0,0,support,medium +0.56,0.76,3,237,3,0,0,0,technical,medium +0.17,0.94,5,273,4,0,0,0,technical,medium +0.8,0.89,2,166,3,0,0,0,technical,medium +0.91,0.62,5,169,4,0,0,0,management,medium +0.51,0.54,3,154,3,1,0,0,IT,medium +0.76,0.59,3,201,6,1,0,0,IT,medium +0.82,0.59,3,178,2,0,0,0,IT,medium +0.44,0.66,3,161,3,0,0,0,IT,medium +0.5,0.48,4,269,3,0,0,0,IT,medium +0.54,0.49,3,203,3,1,0,0,product_mng,medium +0.56,0.63,4,271,2,1,0,0,product_mng,high +0.77,0.66,6,181,4,0,0,0,product_mng,high +0.39,0.38,4,135,2,0,0,0,product_mng,high +0.52,0.62,3,275,2,0,0,0,IT,high +0.63,0.91,3,252,2,0,0,0,RandD,high +0.49,0.46,2,129,2,0,0,0,RandD,high +0.2,0.47,4,230,4,0,0,0,RandD,high +0.21,0.94,3,287,5,0,0,0,RandD,high +0.85,0.98,5,156,2,0,0,0,RandD,low +0.54,0.82,2,279,3,1,0,0,marketing,low +0.23,0.88,5,156,4,0,0,0,sales,low +0.65,0.96,3,168,2,0,0,0,accounting,low +0.19,0.85,6,259,3,1,0,0,support,low +0.76,0.58,4,188,3,0,0,0,technical,low +0.83,0.8,4,149,3,0,0,0,management,low +0.97,0.47,3,157,4,0,0,0,marketing,low +0.67,1,3,201,4,0,0,0,marketing,medium +0.53,0.62,3,185,3,0,0,0,marketing,medium +0.34,0.71,2,160,3,1,0,0,sales,medium +0.58,0.48,5,251,3,0,0,0,sales,medium +0.96,0.68,5,145,3,1,0,0,sales,medium +0.72,0.76,3,269,3,1,0,0,sales,medium +0.58,0.62,3,213,2,0,0,0,sales,medium +0.39,0.67,6,276,6,0,0,0,sales,medium +0.24,0.57,5,232,3,0,0,0,sales,medium +0.64,0.73,4,184,3,0,0,0,sales,medium +0.98,0.55,3,260,3,0,0,0,sales,medium +0.64,0.99,3,214,2,0,0,0,sales,medium +0.56,0.41,2,194,2,0,0,0,sales,medium +0.53,0.74,5,181,2,0,0,0,sales,medium +0.62,0.57,4,215,3,0,0,0,sales,medium +0.85,0.69,3,194,4,0,0,0,sales,medium +0.76,0.85,4,190,3,0,0,0,sales,medium +0.69,0.5,3,260,4,0,0,0,sales,medium +0.35,0.67,2,171,3,0,0,0,sales,medium +0.54,0.47,2,193,4,0,0,0,sales,medium +0.63,0.49,3,252,3,0,0,0,sales,medium +0.58,0.58,5,171,2,0,0,0,accounting,medium +0.7,0.93,3,185,4,0,0,0,accounting,medium +0.48,0.51,4,152,4,0,0,0,accounting,high +0.59,0.92,4,183,2,0,0,0,hr,low +0.96,0.8,4,145,2,0,0,0,hr,medium +0.99,0.77,3,190,4,0,0,0,hr,medium +0.73,0.59,4,214,5,0,0,0,hr,medium +0.7,0.73,2,139,2,0,0,0,technical,medium +0.85,0.88,5,236,4,0,0,0,technical,medium +0.66,0.61,3,156,3,1,0,0,technical,medium +0.94,0.97,2,221,2,0,0,0,technical,medium +0.54,0.64,6,278,2,0,0,0,technical,medium +0.78,0.47,4,129,2,0,0,0,technical,medium +0.64,0.85,3,213,4,0,0,0,technical,medium +0.68,0.56,3,146,3,0,0,0,technical,low +0.92,0.84,4,159,3,0,0,0,technical,low +0.72,0.73,3,198,2,0,0,0,technical,low +0.78,0.74,6,251,4,0,0,0,technical,low +0.35,0.54,2,124,3,0,0,0,support,low +0.97,0.77,5,223,2,0,0,0,support,low +0.57,0.65,3,163,2,0,0,0,support,low +0.9,0.66,4,242,3,0,0,0,support,high +0.31,0.61,4,97,2,0,0,0,support,low +0.17,0.5,4,267,6,0,0,0,support,high +0.8,0.4,5,199,4,1,0,0,support,high +0.19,0.76,3,107,5,0,0,0,support,low +0.57,0.65,5,144,3,1,0,0,support,low +0.22,0.96,3,213,3,0,0,0,support,high +0.15,0.9,5,284,4,0,0,0,support,low +0.62,0.67,5,259,3,0,0,0,technical,medium +0.61,0.41,3,103,2,0,0,0,technical,high +0.87,0.81,5,236,3,0,0,0,technical,medium +0.54,0.75,4,199,2,0,0,0,management,medium +0.71,0.54,3,201,2,0,0,0,IT,medium +0.66,0.67,3,123,4,0,0,0,IT,medium +0.7,0.68,4,143,5,0,0,0,IT,high +0.53,0.5,5,159,2,0,0,0,IT,medium +0.92,0.54,5,203,3,0,0,0,IT,medium +0.93,0.73,4,168,2,0,0,0,product_mng,medium +0.62,0.7,5,180,4,0,0,0,product_mng,high +0.65,0.53,5,142,3,0,0,0,product_mng,medium +0.87,0.98,4,266,2,1,0,0,product_mng,high +0.97,0.89,5,265,2,0,0,0,IT,low +0.76,0.77,5,257,3,0,0,0,RandD,medium +0.96,0.55,4,234,4,0,0,0,RandD,medium +1,0.8,3,223,3,0,0,0,RandD,medium +0.99,0.85,5,261,4,0,0,0,RandD,medium +0.67,0.84,4,197,2,0,0,0,RandD,low +0.61,0.52,4,171,2,0,0,0,marketing,low +0.62,0.92,3,228,2,0,0,0,sales,low +0.62,0.79,3,141,3,0,0,0,accounting,low +0.97,0.76,3,147,3,1,0,0,support,low +0.86,0.56,5,237,3,0,0,0,technical,low +0.15,0.44,3,199,2,0,0,0,management,low +0.14,0.95,4,144,5,0,0,0,marketing,low +0.7,0.98,4,146,3,0,0,0,marketing,low +0.95,0.7,4,139,3,0,0,0,marketing,low +0.63,0.86,4,169,2,0,0,0,sales,high +0.45,0.75,4,169,2,0,0,0,sales,low +0.9,0.6,3,268,3,0,0,0,sales,low +0.15,0.87,4,194,4,0,0,0,sales,low +0.75,0.86,3,249,3,0,0,0,sales,low +0.14,0.52,4,122,2,0,0,0,sales,high +0.5,0.94,5,176,4,0,0,0,sales,low +0.45,0.45,4,168,2,0,0,0,sales,low +0.86,0.92,3,260,2,0,0,0,sales,low +0.52,0.62,3,179,3,0,0,0,sales,high +0.79,0.48,5,200,3,0,0,0,sales,low +0.47,0.56,4,165,3,0,0,0,sales,medium +0.76,0.64,4,144,2,0,0,0,sales,high +0.52,0.72,4,186,2,0,0,0,sales,medium +0.84,0.54,4,156,4,0,0,0,sales,high +0.5,0.7,4,162,2,0,0,0,sales,medium +0.52,0.63,3,269,2,0,0,0,sales,medium +0.76,0.37,3,127,4,0,0,0,sales,medium +0.59,0.58,2,267,3,0,0,0,sales,medium +0.65,0.79,4,196,2,0,0,0,accounting,medium +0.68,0.83,3,144,2,0,0,0,accounting,medium +0.52,0.72,2,247,4,0,0,0,accounting,medium +0.92,0.5,5,258,3,0,0,0,hr,medium +0.53,0.84,4,219,2,0,0,0,hr,high +0.5,0.95,2,208,2,0,0,0,hr,low +0.98,0.77,4,184,3,0,0,0,hr,medium +0.85,0.6,5,178,2,0,0,0,technical,medium +0.49,0.83,4,194,3,0,0,0,technical,medium +0.52,0.73,4,245,4,0,0,0,technical,medium +0.96,0.77,3,193,3,0,0,0,technical,medium +0.86,0.85,3,254,3,0,0,0,technical,medium +0.35,0.59,3,281,2,0,0,0,technical,medium +0.99,0.97,5,229,2,0,0,0,technical,medium +0.52,0.92,4,112,2,0,0,0,technical,medium +0.75,0.91,4,243,3,0,0,0,technical,high +0.67,0.66,3,151,3,0,0,0,technical,low +0.49,0.37,4,216,4,0,0,0,technical,low +0.51,0.62,3,110,3,0,0,0,support,low +0.65,0.6,3,142,2,0,0,0,support,high +0.73,0.8,4,251,2,1,0,0,support,low +0.46,0.75,6,276,6,0,0,0,support,low +0.94,0.82,4,159,2,1,0,0,support,low +0.53,0.69,4,257,4,0,0,0,support,high +0.6,0.79,5,154,2,0,0,0,support,low +0.63,0.97,5,146,3,0,0,0,support,low +0.75,0.77,4,204,2,0,0,0,support,low +0.69,0.53,4,156,3,0,0,0,support,low +0.81,0.5,4,170,4,0,0,0,support,low +0.74,0.84,3,239,3,0,0,0,technical,low +0.72,0.55,4,145,3,0,0,0,technical,low +0.27,0.39,4,193,4,0,0,0,technical,medium +0.86,0.74,2,178,3,0,0,0,management,medium +0.5,0.59,3,260,3,0,0,0,IT,medium +0.82,0.5,3,198,4,0,0,0,IT,medium +0.73,0.51,4,249,5,0,0,0,IT,medium +0.7,0.72,4,202,3,0,0,0,IT,medium +0.9,0.72,4,143,3,0,0,0,IT,medium +0.72,0.95,2,178,4,1,0,0,product_mng,medium +0.63,0.85,3,151,4,1,0,0,product_mng,medium +0.84,0.99,4,134,3,0,0,0,product_mng,medium +0.98,0.92,5,221,3,1,0,0,product_mng,medium +0.41,0.48,6,165,4,0,0,0,IT,medium +0.72,0.58,4,255,2,0,0,0,RandD,high +0.87,0.89,3,140,2,1,0,0,RandD,low +0.63,0.71,5,141,2,0,0,0,RandD,medium +0.6,0.96,4,99,6,0,0,0,RandD,medium +0.58,0.79,5,197,3,0,0,0,RandD,medium +0.64,0.52,3,240,3,0,0,0,marketing,medium +0.74,0.62,3,216,3,1,0,0,sales,low +0.93,0.7,5,206,4,0,0,0,accounting,low +0.74,0.75,4,257,3,0,0,0,support,low +0.98,0.6,4,160,3,0,0,0,technical,low +0.87,0.82,5,138,3,1,0,0,management,low +0.76,0.99,3,216,3,0,0,0,marketing,low +0.15,0.91,6,281,3,0,0,0,marketing,low +0.18,0.57,6,238,6,1,0,0,marketing,low +1,0.67,3,199,4,0,0,0,sales,low +0.98,0.63,3,135,3,0,0,0,sales,low +0.73,0.97,3,165,2,0,0,0,sales,low +0.67,0.72,3,180,3,0,0,0,sales,low +0.9,0.74,3,227,3,0,0,0,sales,low +0.54,0.53,3,251,2,0,0,0,sales,low +0.15,0.39,5,229,4,0,0,0,sales,low +0.58,0.54,4,199,2,0,0,0,sales,low +0.81,0.51,4,271,2,0,0,0,sales,low +0.17,0.51,5,221,3,0,0,0,sales,low +0.68,0.73,4,251,3,0,0,0,sales,low +0.68,0.49,4,153,4,0,0,0,sales,low +0.7,0.93,4,241,3,0,0,0,sales,low +0.49,0.68,4,201,4,0,0,0,sales,medium +0.55,0.96,4,267,3,0,0,0,sales,medium +0.48,0.84,3,146,2,1,0,0,sales,medium +0.63,0.98,4,210,3,0,0,0,sales,medium +0.83,0.69,4,233,2,0,0,0,sales,medium +0.48,0.87,3,221,2,0,0,0,sales,medium +0.98,0.96,5,183,3,1,0,0,accounting,medium +0.57,0.72,4,221,3,0,0,0,accounting,medium +0.72,0.66,3,167,3,0,0,0,accounting,medium +0.9,0.8,4,240,3,0,0,0,hr,medium +0.64,0.59,3,200,2,1,0,0,hr,medium +0.55,0.98,2,144,2,0,0,0,hr,medium +0.56,0.59,5,209,2,1,0,0,hr,high +0.8,0.55,3,206,2,0,0,0,technical,low +0.65,0.76,3,111,5,0,0,0,technical,medium +0.75,0.78,3,241,3,0,0,0,technical,medium +0.69,0.79,3,207,3,0,0,0,technical,medium +0.91,0.76,3,197,3,0,0,0,technical,medium +0.78,0.63,5,200,2,0,0,0,technical,low +0.71,0.68,4,242,4,0,0,0,technical,low +0.79,0.96,4,180,3,0,0,0,technical,low +0.86,0.72,4,173,3,0,0,0,technical,low +0.87,0.82,3,224,3,0,0,0,technical,low +0.76,0.99,2,183,2,0,0,0,technical,low +0.76,0.8,4,226,5,0,0,0,support,low +0.74,0.66,3,257,3,0,0,0,support,low +0.56,0.81,3,165,4,0,0,0,support,low +0.54,0.91,3,142,2,0,0,0,support,low +0.84,0.79,4,258,4,0,0,0,support,low +0.55,0.69,5,193,2,0,0,0,support,low +0.69,0.51,3,176,2,0,0,0,support,low +0.79,0.88,4,188,3,0,0,0,support,low +0.21,0.38,3,275,5,0,0,0,support,low +0.57,0.58,3,132,3,0,0,0,support,low +0.89,0.95,3,246,4,0,0,0,support,low +0.72,0.98,3,181,4,0,0,0,technical,low +0.56,0.58,5,266,3,0,0,0,technical,low +0.84,0.68,4,151,2,0,0,0,technical,low +0.94,0.76,3,257,4,1,0,0,management,low +0.29,0.88,6,183,4,0,0,0,IT,medium +0.54,0.93,3,124,5,0,0,0,IT,medium +0.93,0.73,4,153,2,1,0,0,IT,medium +0.8,0.68,4,199,2,0,0,0,IT,medium +1,0.73,5,142,4,0,0,0,IT,medium +0.89,0.56,4,159,3,0,0,0,product_mng,medium +0.6,0.78,6,211,4,1,0,0,product_mng,medium +0.49,0.94,5,136,3,0,0,0,product_mng,medium +0.65,0.75,4,153,2,0,0,0,product_mng,medium +0.6,0.71,5,263,2,1,0,0,IT,medium +0.51,1,3,168,3,1,0,0,RandD,medium +0.74,0.89,4,234,3,1,0,0,RandD,medium +0.57,0.42,4,154,5,0,0,0,RandD,high +0.82,0.84,5,173,2,0,0,0,RandD,low +0.19,0.63,5,206,6,0,0,0,RandD,medium +0.5,0.64,4,208,2,0,0,0,marketing,medium +0.91,0.68,4,178,3,1,0,0,sales,medium +0.19,0.86,4,198,6,0,0,0,accounting,medium +0.94,0.84,4,220,3,0,0,0,support,low +0.88,0.67,4,226,2,0,0,0,technical,low +0.9,0.87,4,231,5,0,0,0,management,low +0.49,0.96,2,206,2,0,0,0,marketing,low +0.99,0.55,4,179,4,0,0,0,marketing,low +0.72,0.81,4,200,2,0,0,0,marketing,low +0.66,0.69,5,202,6,0,0,0,sales,low +0.96,0.51,4,237,3,0,0,0,sales,low +0.49,0.69,4,270,3,0,0,0,sales,low +0.73,0.49,3,168,2,1,0,0,sales,low +0.48,0.98,5,132,4,0,0,0,sales,low +0.57,0.78,3,162,2,0,0,0,sales,low +0.63,0.82,3,269,3,0,0,0,sales,low +0.46,0.87,5,254,5,1,0,0,sales,low +0.64,0.5,3,261,2,0,0,0,sales,low +0.56,0.73,4,148,3,0,0,0,sales,low +0.97,0.75,5,228,4,0,0,0,sales,low +0.69,0.68,3,138,3,0,0,0,sales,low +0.23,0.97,4,200,3,0,0,0,sales,low +0.77,0.48,4,258,4,1,0,0,sales,low +0.76,0.57,4,266,3,0,0,0,sales,low +0.98,0.66,3,204,2,0,0,0,sales,medium +0.92,0.77,3,236,3,0,0,0,sales,medium +0.63,0.67,4,149,3,1,0,0,sales,medium +0.91,0.69,5,240,3,0,0,0,sales,medium +0.4,0.67,3,115,3,0,0,0,accounting,medium +0.82,0.62,4,267,3,1,0,0,accounting,medium +0.81,0.88,4,149,3,0,0,0,accounting,medium +0.61,0.69,3,224,3,0,0,0,hr,medium +0.3,0.57,2,158,2,0,0,0,hr,medium +0.59,0.72,2,107,3,0,0,0,hr,medium +0.2,0.56,3,217,5,0,0,0,hr,medium +0.75,0.56,2,212,2,0,0,0,technical,medium +0.59,0.79,3,270,3,0,0,0,technical,high +0.63,0.53,4,243,2,0,0,0,technical,low +0.77,0.68,5,162,4,1,0,0,technical,medium +0.82,0.6,5,232,2,0,0,0,technical,medium +0.6,0.85,5,187,4,0,0,0,technical,medium +0.83,0.72,3,259,2,0,0,0,technical,medium +0.67,0.6,4,209,2,0,0,0,technical,low +0.84,0.56,5,97,6,0,0,0,technical,low +0.68,0.79,5,139,4,0,0,0,technical,low +0.74,0.92,4,258,3,1,0,0,technical,low +0.63,0.64,3,208,2,1,0,0,support,low +0.88,0.9,2,233,3,0,0,0,support,low +1,0.81,3,168,4,0,0,0,support,low +0.7,0.87,4,252,2,1,0,0,support,low +0.5,0.71,5,171,4,0,0,0,support,low +0.94,0.66,5,219,3,0,0,0,support,low +0.67,0.54,3,213,4,0,0,0,support,low +0.8,0.88,5,199,4,0,0,0,support,low +0.7,0.88,4,245,2,0,0,0,support,low +0.24,0.73,4,273,5,0,0,0,support,low +0.98,1,4,202,3,0,0,0,support,low +0.76,0.65,4,240,3,0,0,0,technical,low +0.78,0.5,4,155,4,0,0,0,technical,low +0.42,0.91,3,209,2,0,0,0,technical,low +0.83,0.64,4,210,3,0,0,0,management,medium +0.98,0.81,4,266,6,0,0,0,IT,medium +0.64,0.81,2,226,2,0,0,0,IT,medium +0.67,0.75,4,133,2,0,0,0,IT,medium +0.26,0.39,3,99,4,0,0,0,IT,medium +0.97,0.64,3,237,3,0,0,0,IT,medium +0.48,0.6,4,230,3,0,0,0,product_mng,medium +0.84,0.55,4,149,2,0,0,0,product_mng,medium +0.71,0.74,4,206,4,0,0,0,product_mng,medium +1,0.84,3,185,3,0,0,0,product_mng,medium +0.6,0.76,5,269,2,0,0,0,IT,medium +0.95,0.37,6,233,5,0,0,0,RandD,medium +0.56,0.56,3,162,2,0,0,0,RandD,high +0.75,0.49,2,173,3,1,0,0,RandD,low +0.98,0.53,6,253,4,0,0,0,RandD,medium +0.7,0.72,5,134,3,0,0,0,RandD,medium +0.65,0.92,4,133,3,0,0,0,marketing,medium +0.8,0.81,5,143,2,0,0,0,sales,medium +0.49,0.78,3,264,4,0,0,0,accounting,low +0.32,0.73,3,180,6,0,0,0,support,low +0.88,0.54,3,235,2,1,0,0,technical,low +0.8,0.97,4,232,2,0,0,0,management,low +0.73,0.74,4,181,4,0,0,0,marketing,low +0.72,0.58,3,198,2,0,0,0,marketing,low +0.58,0.78,5,211,3,1,0,0,marketing,low +0.66,0.96,4,216,3,0,0,0,sales,low +0.63,0.79,3,197,3,1,0,0,sales,low +0.69,0.56,2,214,2,0,0,0,sales,low +0.49,0.59,3,185,3,0,0,0,sales,low +0.6,0.45,3,173,2,0,0,0,sales,low +0.5,0.63,4,229,4,0,0,0,sales,low +0.34,0.81,4,116,3,1,0,0,sales,low +0.79,0.6,5,223,3,0,0,0,sales,low +0.98,0.68,4,154,3,0,0,0,sales,low +0.96,0.97,5,240,2,0,0,0,sales,low +0.88,0.89,3,139,2,0,0,0,sales,low +0.6,0.61,2,275,2,0,0,0,sales,low +0.62,0.73,3,158,3,1,0,0,sales,low +0.4,0.72,3,204,4,1,0,0,sales,low +0.16,0.82,5,121,2,0,0,0,sales,medium +0.81,0.98,5,243,6,0,0,0,sales,medium +0.69,0.69,4,195,2,0,0,0,sales,medium +0.66,0.51,5,149,3,0,0,0,sales,medium +0.66,0.62,5,214,2,0,0,0,sales,medium +0.61,0.53,4,266,3,0,0,0,accounting,medium +0.99,0.77,5,222,2,0,0,0,accounting,medium +0.73,0.54,3,283,6,0,0,0,accounting,medium +0.63,0.72,2,161,5,0,0,0,hr,medium +0.6,0.91,3,157,4,0,0,0,hr,medium +0.44,0.44,3,126,2,0,0,0,hr,medium +0.64,0.95,3,131,6,0,0,0,hr,medium +0.91,0.81,4,139,2,0,0,0,technical,high +0.55,0.59,4,230,3,0,0,0,technical,low +0.7,0.73,4,240,2,1,0,0,technical,medium +0.37,0.59,3,134,3,0,0,0,technical,medium +0.16,0.56,6,196,3,0,0,0,technical,medium +0.69,0.97,5,240,4,0,0,0,technical,medium +0.96,0.47,2,233,5,1,0,0,technical,low +0.62,0.91,5,267,3,0,0,0,technical,low +0.94,0.45,2,211,3,0,0,0,technical,low +0.67,0.83,3,260,3,0,0,0,technical,low +0.89,0.57,3,113,3,0,0,0,technical,low +0.6,0.63,5,267,3,0,0,0,support,low +0.89,0.62,5,196,3,0,0,0,support,low +0.6,0.89,3,232,2,0,0,0,support,low +0.93,0.95,2,156,3,1,0,0,support,low +0.38,0.78,4,159,5,0,0,0,support,low +0.62,0.57,3,223,3,1,0,0,support,low +0.86,0.86,4,197,3,1,0,0,support,low +0.61,0.62,2,192,2,1,0,0,support,low +0.77,0.64,4,192,3,0,0,0,support,low +0.85,0.73,4,174,3,0,0,0,support,low +0.94,0.62,4,191,3,0,0,0,support,low +0.59,0.59,4,270,2,0,0,0,technical,low +0.9,0.92,3,139,3,0,0,0,technical,low +0.86,0.65,4,243,2,0,0,0,technical,low +0.72,0.7,3,238,2,0,0,0,management,low +0.84,0.52,5,189,2,1,0,0,IT,low +0.64,0.5,4,189,3,0,0,0,IT,medium +0.81,0.75,4,206,3,0,0,0,IT,medium +0.66,0.7,5,254,2,0,0,0,IT,medium +0.75,0.55,3,253,6,0,0,0,IT,medium +0.54,0.67,3,243,2,0,0,0,product_mng,medium +0.98,0.76,3,224,2,0,0,0,product_mng,medium +0.8,0.85,4,139,2,0,0,0,product_mng,medium +0.68,0.7,5,270,3,0,0,0,product_mng,medium +0.54,0.57,3,257,2,0,0,0,IT,medium +0.88,0.84,4,170,2,0,0,0,RandD,medium +0.71,0.62,3,222,3,0,0,0,RandD,medium +0.77,0.58,2,247,2,1,0,0,RandD,medium +0.6,0.6,4,201,3,0,0,0,RandD,high +0.53,0.75,4,263,5,0,0,0,RandD,low +0.85,0.5,3,168,2,1,0,0,marketing,medium +0.59,0.75,4,190,2,0,0,0,sales,medium +0.23,0.77,4,140,5,0,0,0,accounting,medium +0.7,0.6,3,224,3,0,0,0,support,medium +0.92,0.49,5,145,3,0,0,0,technical,low +0.95,0.37,4,285,3,0,0,0,management,low +0.39,0.43,3,154,3,0,0,0,marketing,low +0.85,0.8,4,200,2,0,0,0,marketing,low +0.98,0.7,3,255,2,1,0,0,marketing,low +0.15,0.48,6,204,6,1,0,0,sales,low +0.68,0.54,3,270,4,1,0,0,sales,low +0.24,0.91,5,177,5,0,0,0,sales,low +0.77,0.59,4,140,3,0,0,0,sales,medium +0.36,0.69,3,165,3,0,0,0,sales,medium +0.5,0.89,3,187,4,1,0,0,sales,medium +0.2,0.98,4,166,4,1,0,0,sales,medium +0.86,0.56,5,141,2,0,0,0,sales,medium +0.84,0.63,4,135,2,0,0,0,sales,medium +0.9,0.98,5,148,4,0,0,0,sales,medium +0.4,0.51,3,120,6,0,0,0,sales,medium +0.63,0.62,3,141,3,0,0,0,sales,medium +0.73,0.95,3,222,4,0,0,0,sales,medium +0.25,0.67,2,136,6,0,0,0,sales,medium +0.7,0.57,3,180,2,0,0,0,sales,medium +0.6,0.97,3,187,3,1,0,0,sales,medium +0.99,0.66,3,202,3,0,0,0,sales,medium +0.29,0.86,3,251,4,0,0,0,sales,medium +0.53,0.63,4,259,2,0,0,0,sales,medium +0.83,0.76,3,262,2,0,0,0,accounting,medium +0.18,0.92,5,251,4,0,0,0,accounting,medium +0.14,0.74,4,117,5,0,0,0,accounting,medium +0.5,0.66,4,155,2,0,0,0,hr,medium +0.36,0.89,3,197,6,0,0,0,hr,medium +0.34,0.56,3,139,2,0,0,0,hr,medium +0.51,0.75,4,175,2,0,0,0,hr,medium +0.5,0.52,5,137,3,1,0,0,technical,medium +0.69,0.93,3,228,4,0,0,0,technical,medium +0.52,0.51,2,232,4,0,0,0,technical,high +0.32,0.5,2,143,3,0,0,0,technical,high +0.88,0.99,3,190,5,0,0,0,technical,high +0.6,0.87,3,196,3,1,0,0,technical,high +0.72,0.8,3,213,3,0,0,0,technical,high +0.65,0.9,3,200,3,0,0,0,technical,high +0.82,0.78,5,166,2,0,0,0,technical,high +0.67,0.92,5,258,3,0,0,0,technical,high +0.44,0.87,5,104,4,0,0,0,technical,high +0.52,0.85,5,173,2,0,0,0,support,high +0.54,0.51,2,176,3,0,0,0,support,high +0.67,0.76,5,181,3,0,0,0,support,high +0.16,0.64,6,143,5,1,0,0,support,low +0.81,0.73,4,186,3,0,0,0,support,low +0.77,0.85,3,136,3,0,0,0,support,low +0.84,0.99,4,219,2,0,0,0,support,low +0.56,0.56,5,229,4,1,0,0,support,low +0.67,0.97,5,239,3,0,0,0,support,low +0.65,0.7,4,182,2,0,0,0,support,low +0.39,0.57,2,132,3,0,0,0,support,low +0.77,0.75,3,272,3,0,0,0,technical,low +0.41,0.96,5,167,3,1,0,0,technical,low +0.59,0.67,3,180,2,0,0,0,technical,low +0.14,0.72,6,100,5,0,0,0,management,low +0.6,0.82,4,134,2,0,0,0,IT,low +0.14,0.98,6,221,5,0,0,0,IT,low +0.88,0.8,3,166,2,0,0,0,IT,low +0.6,0.91,4,214,2,0,0,0,IT,medium +1,0.49,4,227,3,1,0,0,IT,medium +0.56,0.98,4,207,3,0,0,0,product_mng,medium +0.72,0.54,3,286,6,0,0,0,product_mng,medium +0.59,0.83,3,240,3,1,0,0,product_mng,medium +0.74,0.75,4,111,4,1,0,0,product_mng,medium +0.52,0.69,4,164,2,0,0,0,IT,medium +0.77,0.74,2,187,6,0,0,0,RandD,medium +0.48,0.81,4,248,2,0,0,0,RandD,medium +0.99,0.56,5,210,2,0,0,0,RandD,medium +0.23,0.78,4,163,6,0,0,0,RandD,medium +0.63,1,5,241,4,0,0,0,RandD,medium +0.51,0.83,3,136,3,0,0,0,marketing,high +0.54,0.55,4,208,5,0,0,0,sales,high +0.53,0.73,5,174,3,0,0,0,accounting,high +0.72,0.84,4,250,3,0,0,0,support,high +0.57,0.61,2,189,2,1,0,0,technical,high +0.81,0.77,3,204,3,0,0,0,management,high +0.64,0.57,4,217,3,0,0,0,marketing,high +0.77,0.57,5,162,3,0,0,0,marketing,high +0.83,0.55,3,257,2,0,0,0,marketing,low +0.6,0.71,3,195,2,0,0,0,sales,low +0.86,0.87,5,156,4,0,0,0,sales,low +0.5,0.55,2,128,3,0,0,0,sales,low +0.6,0.75,5,233,3,1,0,0,sales,low +0.85,0.73,4,260,4,0,0,0,sales,low +0.4,0.87,5,250,4,0,0,0,sales,low +0.38,0.79,5,176,3,0,0,0,sales,low +0.96,0.59,6,133,5,0,0,0,sales,medium +0.59,0.57,4,197,2,0,0,0,sales,medium +0.56,0.5,3,156,3,1,0,0,sales,medium +0.84,0.96,3,162,3,0,0,0,sales,medium +0.94,0.99,3,207,2,0,0,0,sales,medium +0.72,0.63,3,223,2,1,0,0,sales,medium +0.82,0.7,3,149,2,0,0,0,sales,medium +1,0.95,3,275,3,1,0,0,sales,medium +0.62,0.77,3,271,2,0,0,0,sales,medium +0.76,0.89,3,273,2,1,0,0,sales,medium +0.23,0.74,5,219,4,0,0,0,sales,medium +0.7,0.99,5,135,4,0,0,0,sales,medium +0.71,0.88,3,158,3,0,0,0,accounting,medium +0.32,0.37,3,167,3,0,0,0,accounting,medium +0.69,0.67,4,274,4,0,0,0,accounting,medium +0.66,0.59,3,145,3,0,0,0,hr,medium +0.7,0.67,6,233,6,0,0,0,hr,medium +0.91,0.76,3,159,3,0,0,0,hr,medium +0.2,0.7,4,221,5,0,0,0,hr,medium +0.72,0.83,3,132,2,0,0,0,technical,medium +0.74,0.93,5,140,3,0,0,0,technical,medium +0.53,0.79,3,206,3,0,0,0,technical,medium +0.99,0.92,4,229,2,0,0,0,technical,medium +0.75,0.85,4,272,4,0,0,0,technical,high +0.86,0.78,4,164,2,0,0,0,technical,low +0.93,0.86,4,145,3,0,0,0,technical,medium +0.81,0.95,3,212,3,0,0,0,technical,medium +0.49,0.67,3,254,2,1,0,0,technical,medium +0.97,0.72,5,260,4,0,0,0,technical,medium +0.62,0.89,3,201,3,0,0,0,technical,medium +0.75,0.79,4,176,4,1,0,0,support,medium +0.87,0.58,3,140,3,1,0,0,support,medium +0.93,0.65,5,201,3,0,0,0,support,medium +0.74,0.68,3,206,2,1,0,0,support,medium +0.68,0.57,3,197,3,1,0,0,support,medium +0.49,0.63,3,245,4,0,0,0,support,low +0.75,0.84,3,145,3,1,0,0,support,low +0.95,0.58,4,131,5,0,0,0,support,low +0.95,0.75,5,235,3,1,0,0,support,low +0.67,0.65,5,242,3,0,0,0,support,low +0.71,0.6,2,251,3,0,0,0,support,low +0.81,0.73,4,258,2,0,0,0,technical,low +0.79,0.36,3,114,3,0,0,0,technical,high +0.57,0.52,3,143,2,0,0,0,technical,low +0.85,0.65,3,187,2,0,0,0,management,high +0.15,0.78,5,255,3,0,0,0,IT,high +0.48,0.87,3,267,2,0,0,0,IT,low +0.92,0.91,4,247,3,0,0,0,IT,low +0.73,0.67,4,153,3,0,0,0,IT,high +0.68,0.71,3,237,3,0,0,0,IT,low +0.88,0.55,5,182,3,0,0,0,product_mng,medium +0.8,0.55,4,144,5,1,0,0,product_mng,high +0.66,0.9,3,176,2,1,0,0,product_mng,medium +0.19,0.8,5,203,6,0,0,0,product_mng,medium +0.3,0.53,3,148,4,0,0,0,IT,medium +0.8,0.8,3,175,2,0,0,0,RandD,medium +0.66,0.84,3,211,4,0,0,0,RandD,high +0.22,0.67,6,175,5,0,0,0,RandD,medium +0.57,0.59,4,206,3,0,0,0,RandD,medium +0.83,0.73,4,262,2,0,0,0,RandD,medium +0.57,0.5,4,177,2,0,0,0,marketing,high +0.78,0.54,3,134,3,0,0,0,sales,medium +0.88,0.89,2,201,3,0,0,0,accounting,high +0.48,0.69,3,105,3,0,0,0,support,low +0.91,0.82,4,259,3,0,0,0,technical,medium +0.3,0.97,3,171,4,1,0,0,management,medium +0.63,0.98,4,228,3,0,0,0,marketing,medium +0.62,0.36,2,137,4,1,0,0,marketing,medium +0.74,0.72,5,196,3,0,0,0,marketing,low +0.5,0.53,3,207,4,0,0,0,sales,low +0.36,0.74,6,280,3,0,0,0,sales,low +0.57,0.65,4,162,3,1,0,0,sales,low +0.73,0.55,4,267,3,0,0,0,sales,low +0.77,0.67,5,207,2,0,0,0,sales,low +0.86,0.5,4,196,2,0,0,0,sales,low +0.24,0.55,6,231,4,0,0,0,sales,low +0.83,0.62,4,242,3,0,0,0,sales,low +0.72,0.63,4,207,3,0,0,0,sales,low +0.52,0.82,4,206,2,1,0,0,sales,high +0.99,0.54,4,236,4,0,0,0,sales,low +0.15,0.68,5,246,2,0,0,0,sales,low +0.79,0.94,3,204,2,1,0,0,sales,low +0.19,0.91,3,268,4,0,0,0,sales,low +0.59,0.62,3,212,2,1,0,0,sales,high +0.15,0.74,6,178,3,0,0,0,sales,low +0.75,0.72,5,260,3,0,0,0,sales,low +0.47,0.71,2,241,4,0,0,0,sales,low +0.64,0.64,3,234,3,1,0,0,sales,high +0.66,0.76,3,207,2,0,0,0,accounting,low +0.8,0.91,5,242,3,1,0,0,accounting,medium +0.82,0.52,5,225,2,0,0,0,accounting,high +0.8,0.98,3,161,3,0,0,0,hr,medium +0.98,0.98,4,259,2,0,0,0,hr,high +0.95,0.96,3,250,3,0,0,0,hr,medium +0.88,0.61,3,236,3,0,0,0,hr,medium +0.9,0.97,4,239,4,0,0,0,technical,medium +0.66,0.83,4,266,3,1,0,0,technical,medium +0.99,0.62,5,133,3,0,0,0,technical,medium +0.86,0.95,5,275,2,0,0,0,technical,medium +0.96,0.95,5,189,2,0,0,0,technical,medium +1,0.63,5,171,3,0,0,0,technical,medium +0.46,0.38,6,140,3,0,0,0,technical,high +0.19,0.85,6,116,3,0,0,0,technical,low +0.73,0.6,3,145,6,1,0,0,technical,medium +0.63,0.5,4,167,3,1,0,0,technical,medium +0.68,0.89,4,227,3,0,0,0,technical,medium +0.78,0.96,4,245,3,0,0,0,support,medium +0.79,0.56,4,132,3,0,0,0,support,medium +0.86,0.99,3,254,2,0,0,0,support,medium +0.98,0.53,4,166,2,0,0,0,support,medium +0.89,0.79,2,208,3,1,0,0,support,medium +0.86,0.87,3,197,4,1,0,0,support,medium +0.65,0.83,4,263,3,1,0,0,support,high +0.52,0.98,4,272,2,0,0,0,support,low +0.54,0.65,3,147,3,1,0,0,support,low +0.68,0.73,4,197,3,0,0,0,support,low +0.88,0.65,3,268,2,0,0,0,support,high +0.75,0.85,4,181,3,0,0,0,technical,low +0.17,0.93,6,192,4,0,0,0,technical,low +0.92,0.83,5,270,3,0,0,0,technical,low +0.79,0.66,3,183,3,0,0,0,management,high +0.52,0.66,5,184,3,0,0,0,IT,low +0.95,0.73,4,238,3,1,0,0,IT,low +0.72,0.49,4,148,2,0,0,0,IT,low +0.4,0.41,4,127,3,0,0,0,IT,low +0.61,0.59,3,162,2,1,0,0,IT,low +0.49,0.97,4,166,5,0,0,0,product_mng,low +0.32,0.55,4,283,4,0,0,0,product_mng,low +0.82,0.77,3,108,6,0,0,0,product_mng,medium +0.9,0.79,3,154,2,0,0,0,product_mng,medium +0.95,0.74,3,139,2,0,0,0,IT,medium +0.55,0.6,5,271,3,1,0,0,RandD,medium +0.91,0.78,4,153,3,0,0,0,RandD,medium +0.45,0.41,3,216,6,1,0,0,RandD,medium +0.65,0.6,3,218,4,0,0,0,RandD,medium +0.88,0.89,3,171,2,0,0,0,RandD,medium +0.78,0.76,3,238,3,0,0,0,marketing,medium +0.77,0.71,3,134,3,0,0,0,marketing,medium +0.32,0.75,3,255,4,0,0,0,sales,medium +0.98,0.38,4,140,6,0,0,0,accounting,medium +0.51,0.76,2,239,3,0,0,0,support,high +0.81,0.59,4,187,2,0,0,0,technical,low +0.64,0.9,5,279,5,0,0,0,management,medium +0.73,0.94,4,213,3,1,0,0,marketing,medium +0.49,0.56,5,202,2,0,0,0,marketing,medium +0.84,0.54,3,265,2,0,0,0,marketing,medium +0.81,0.86,4,249,3,0,0,0,sales,low +0.77,0.5,4,281,2,0,0,0,sales,low +0.24,0.83,3,208,5,0,0,0,sales,low +0.77,0.78,3,165,2,0,0,0,sales,low +0.13,0.88,3,146,5,0,0,0,sales,low +0.94,0.66,4,230,2,0,0,0,sales,low +0.61,0.82,3,209,2,0,0,0,sales,low +0.95,0.49,4,178,2,0,0,0,sales,low +0.22,0.92,6,220,4,1,0,0,sales,low +0.65,0.56,3,142,3,0,0,0,sales,low +0.95,0.67,3,153,2,0,0,0,sales,low +0.98,0.62,5,254,5,1,0,0,sales,low +0.88,0.72,3,193,4,0,0,0,sales,low +0.94,0.69,3,248,3,0,0,0,sales,low +0.62,0.75,4,216,2,0,0,0,sales,low +0.81,0.96,3,226,3,0,0,0,sales,low +0.56,0.51,4,140,2,0,0,0,sales,low +0.52,0.86,6,103,4,0,0,0,sales,low +0.88,0.57,4,185,2,0,0,0,sales,low +0.56,0.92,5,160,3,0,0,0,accounting,low +0.36,0.63,3,130,5,0,0,0,accounting,low +0.56,0.85,5,230,3,0,0,0,accounting,medium +0.89,0.46,4,248,5,1,0,0,hr,medium +0.95,0.42,3,189,2,1,0,0,hr,medium +0.48,0.52,3,280,2,0,0,0,hr,medium +0.75,0.75,4,266,3,0,0,0,hr,medium +0.65,0.54,4,260,3,0,0,0,technical,medium +0.4,0.86,2,264,5,0,0,0,technical,medium +0.52,0.53,5,182,2,0,0,0,technical,medium +0.52,0.68,4,233,2,0,0,0,technical,medium +0.68,0.49,3,230,3,0,0,0,technical,medium +0.72,0.61,5,170,3,0,0,0,technical,medium +0.78,0.72,4,258,3,0,0,0,technical,medium +0.54,0.9,3,164,3,0,0,0,technical,high +0.18,0.46,4,249,4,0,0,0,technical,low +0.51,0.5,2,235,2,0,0,0,technical,medium +0.63,0.86,6,206,6,0,0,0,technical,medium +0.83,0.86,4,139,3,0,0,0,support,medium +0.91,0.82,3,145,3,1,0,0,support,medium +0.79,0.66,4,139,4,0,0,0,support,low +0.52,0.95,3,171,3,1,0,0,support,low +0.83,0.94,3,160,3,0,0,0,support,low +0.92,0.74,3,137,2,0,0,0,support,low +0.14,0.72,4,254,4,0,0,0,support,low +0.8,0.38,3,215,6,0,0,0,support,low +0.79,0.72,3,216,4,0,0,0,support,low +0.86,0.6,3,229,2,1,0,0,support,low +0.95,0.47,6,215,4,0,0,0,support,low +0.77,0.9,4,163,3,0,0,0,technical,low +0.55,0.72,4,273,3,0,0,0,technical,low +0.42,0.91,2,176,3,0,0,0,technical,low +0.79,0.86,5,270,2,0,0,0,management,low +0.41,0.48,3,182,2,0,0,0,IT,low +0.66,0.72,4,223,4,0,0,0,IT,low +1,0.65,4,237,3,0,0,0,IT,low +0.87,0.74,5,248,2,0,0,0,IT,low +0.51,0.99,3,233,4,0,0,0,IT,low +0.63,0.79,2,206,5,0,0,0,product_mng,low +0.86,0.86,4,227,2,0,0,0,product_mng,low +0.4,0.98,4,154,3,0,0,0,product_mng,low +0.79,0.97,6,113,2,1,0,0,product_mng,medium +0.7,0.9,4,254,3,0,0,0,IT,medium +0.49,0.91,5,231,3,0,0,0,RandD,medium +0.76,0.62,4,190,3,0,0,0,RandD,medium +0.89,0.52,3,190,3,0,0,0,RandD,medium +0.83,0.86,3,179,2,0,0,0,RandD,medium +0.19,0.69,4,269,6,0,0,0,RandD,medium +0.68,0.67,3,228,2,0,0,0,RandD,medium +0.62,0.68,4,251,4,0,0,0,marketing,medium +0.87,0.49,2,251,3,0,0,0,sales,medium +0.66,0.75,4,200,4,0,0,0,accounting,medium +0.37,0.41,2,146,2,0,0,0,support,medium +0.57,0.49,3,159,4,1,0,0,technical,high +0.66,0.81,5,135,2,0,0,0,management,low +0.63,0.88,5,260,3,0,0,0,marketing,medium +0.65,0.96,5,226,2,1,0,0,marketing,medium +0.33,0.85,2,127,3,0,0,0,marketing,medium +0.66,0.57,6,278,3,0,0,0,sales,medium +0.87,0.95,3,242,5,0,0,0,sales,low +0.85,0.85,3,182,3,0,0,0,sales,low +0.49,0.51,2,182,3,0,0,0,sales,low +0.87,0.8,4,197,3,0,0,0,sales,low +0.17,0.49,4,286,5,1,0,0,sales,low +0.55,0.46,4,226,5,0,0,0,sales,low +0.91,0.71,5,156,3,0,0,0,sales,low +0.96,0.62,5,185,3,0,0,0,sales,low +0.53,0.5,3,231,3,0,0,0,sales,low +0.25,0.59,4,166,5,0,0,0,sales,low +0.98,0.57,3,229,3,0,0,0,sales,low +0.83,0.36,4,242,3,0,0,0,sales,low +0.71,0.83,5,206,3,0,0,0,sales,low +0.74,0.77,4,206,3,0,0,0,sales,low +0.56,0.7,4,135,2,0,0,0,sales,low +0.23,0.9,5,234,3,1,0,0,sales,low +0.35,0.64,4,147,2,0,0,0,sales,low +0.48,0.98,4,174,3,0,0,0,sales,low +0.83,0.74,3,259,3,1,0,0,accounting,low +0.73,0.87,3,227,4,0,0,0,accounting,low +0.85,0.97,4,104,5,0,0,0,accounting,low +0.8,0.95,3,247,3,0,0,0,hr,medium +0.98,0.74,4,139,3,0,0,0,hr,medium +0.96,0.85,3,186,2,0,0,0,hr,medium +0.67,0.75,3,194,3,0,0,0,hr,medium +0.58,0.91,3,124,2,0,0,0,technical,medium +0.83,0.86,3,273,3,0,0,0,technical,medium +0.9,0.57,4,186,4,0,0,0,technical,medium +0.89,0.66,4,252,3,0,0,0,technical,medium +0.99,0.92,3,154,3,0,0,0,technical,medium +0.89,0.5,4,238,3,0,0,0,technical,medium +0.79,0.5,4,151,3,1,0,0,technical,medium +0.64,0.41,3,231,6,0,0,0,technical,medium +0.22,0.57,5,174,6,0,0,0,technical,high +0.94,0.6,5,278,2,0,0,0,technical,low +0.56,0.97,3,270,3,1,0,0,technical,medium +0.85,0.8,4,158,3,0,0,0,support,medium +0.8,0.62,3,191,3,0,0,0,support,medium +0.86,0.53,3,163,3,0,0,0,support,medium +0.96,1,5,152,4,0,0,0,support,low +0.51,0.61,4,251,2,1,0,0,support,low +0.73,0.95,3,149,2,0,0,0,support,low +0.31,0.75,4,220,3,0,0,0,support,low +0.62,0.51,4,175,3,0,0,0,support,low +0.55,0.91,3,179,3,1,0,0,support,low +0.51,0.8,4,257,2,0,0,0,support,low +0.54,0.54,3,196,3,0,0,0,support,low +0.65,0.95,3,190,3,0,0,0,technical,low +0.65,0.75,4,270,2,0,0,0,technical,low +0.9,0.64,5,226,2,0,0,0,technical,low +0.55,0.71,3,211,2,0,0,0,management,low +0.59,0.89,3,192,2,0,0,0,IT,low +0.34,0.67,5,96,2,1,0,0,IT,low +0.31,0.92,5,197,5,0,0,0,IT,low +0.83,0.71,3,243,2,1,0,0,IT,low +0.8,0.73,3,168,2,0,0,0,IT,low +0.66,0.85,5,271,4,0,0,0,product_mng,low +0.98,0.39,5,158,4,1,0,0,product_mng,medium +0.89,0.52,4,243,5,0,0,0,product_mng,medium +0.64,0.94,3,148,2,0,0,0,product_mng,medium +0.95,0.68,3,165,3,0,0,0,IT,medium +0.96,0.85,5,171,2,0,0,0,RandD,medium +0.96,0.82,5,164,2,0,0,0,RandD,medium +0.63,0.81,4,265,2,0,0,0,RandD,medium +0.83,0.71,4,196,2,0,0,0,RandD,medium +0.61,0.72,4,182,2,1,0,0,RandD,medium +0.89,0.66,3,272,3,0,0,0,RandD,medium +0.67,0.63,3,241,3,0,0,0,marketing,medium +0.61,1,5,139,2,0,0,0,sales,medium +0.58,0.77,3,180,2,0,0,0,accounting,high +0.56,0.76,4,206,2,1,0,0,support,low +0.13,0.49,6,227,4,0,0,0,technical,medium +0.39,1,5,204,5,1,0,0,management,medium +0.94,0.48,4,218,3,0,0,0,marketing,medium +0.63,0.61,3,205,2,0,0,0,marketing,medium +0.75,0.63,4,261,3,1,0,0,marketing,low +0.7,0.83,3,159,3,0,0,0,sales,low +0.28,0.83,4,162,3,0,0,0,sales,low +0.77,0.42,4,98,2,0,0,0,sales,low +0.79,0.64,4,263,2,0,0,0,sales,low +0.51,0.46,3,176,3,0,0,0,sales,low +0.96,0.99,4,233,3,0,0,0,sales,low +0.72,0.99,4,156,2,1,0,0,sales,low +0.97,1,3,198,2,0,0,0,sales,low +0.55,0.9,4,191,3,0,0,0,sales,low +0.32,0.45,2,188,3,0,0,0,sales,low +0.78,0.65,3,157,2,0,0,0,sales,low +0.17,0.57,5,286,3,0,0,0,sales,low +0.88,0.5,4,216,2,0,0,0,sales,low +0.97,0.5,3,188,3,1,0,0,sales,low +0.74,0.86,5,153,2,0,0,0,sales,low +0.26,0.45,5,187,2,0,0,0,sales,low +0.87,0.92,4,141,3,0,0,0,sales,low +0.29,0.47,5,139,4,0,0,0,sales,low +0.91,0.95,3,189,2,0,0,0,sales,low +0.71,0.77,3,193,3,1,0,0,accounting,low +0.6,0.63,3,182,3,0,0,0,accounting,medium +0.5,0.61,4,135,3,0,0,0,accounting,medium +0.49,0.85,4,238,2,0,0,0,hr,medium +0.53,0.92,3,199,2,0,0,0,hr,medium +0.42,0.38,2,115,3,0,0,0,hr,medium +0.53,0.82,3,133,3,0,0,0,hr,medium +0.34,0.62,4,158,2,0,0,0,technical,medium +0.68,0.51,5,158,3,0,0,0,technical,medium +0.56,0.77,5,238,4,0,0,0,technical,medium +0.72,0.71,3,242,2,0,0,0,technical,medium +0.76,0.55,4,250,3,0,0,0,technical,medium +0.87,0.57,4,175,2,0,0,0,technical,medium +0.97,0.63,3,270,4,1,0,0,technical,high +0.8,0.62,3,171,3,0,0,0,technical,low +0.67,0.81,5,175,6,1,0,0,technical,medium +0.6,0.97,5,145,2,0,0,0,technical,medium +0.88,0.5,3,170,3,0,0,0,technical,medium +0.64,0.74,3,267,2,0,0,0,support,medium +0.85,0.7,3,188,2,0,0,0,support,low +0.9,0.48,3,213,3,0,0,0,support,low +0.76,0.84,5,249,3,0,0,0,support,low +0.55,0.66,3,134,3,0,0,0,support,low +0.76,0.77,5,234,3,0,0,0,support,low +0.87,0.72,3,201,3,0,0,0,support,low +0.8,0.82,3,178,3,0,0,0,support,low +0.54,0.68,4,183,2,0,0,0,support,low +0.84,0.91,4,207,3,0,0,0,support,low +0.85,0.64,4,147,3,0,0,0,support,low +0.95,0.49,3,188,3,0,0,0,technical,low +0.48,0.56,3,229,3,0,0,0,technical,low +0.53,0.77,2,271,2,0,0,0,technical,low +0.8,0.82,4,175,2,0,0,0,management,low +0.4,0.46,2,109,3,0,0,0,IT,low +0.76,0.69,4,253,3,0,0,0,IT,low +0.99,0.64,3,174,4,0,0,0,IT,low +0.49,0.64,3,142,4,0,0,0,IT,low +0.94,0.71,3,175,3,0,0,0,IT,low +0.54,0.73,4,266,3,0,0,0,product_mng,low +0.13,0.93,4,253,5,1,0,0,product_mng,low +0.91,0.84,3,237,2,0,0,0,product_mng,medium +0.73,0.56,3,215,3,0,0,0,product_mng,medium +0.65,0.97,3,171,3,0,0,0,IT,medium +0.23,0.51,6,194,4,1,0,0,RandD,medium +0.23,0.88,5,238,6,0,0,0,RandD,medium +0.89,0.51,3,249,3,0,0,0,RandD,medium +0.81,0.8,3,183,2,1,0,0,RandD,medium +0.51,0.74,3,271,4,0,0,0,RandD,medium +0.35,0.81,6,256,3,0,0,0,RandD,medium +0.49,0.66,3,169,3,0,0,0,marketing,medium +0.51,0.8,3,254,2,0,0,0,sales,medium +0.66,0.86,4,112,6,0,0,0,accounting,medium +0.74,0.96,5,222,2,0,0,0,support,high +0.57,0.96,4,177,2,0,0,0,technical,low +0.8,0.74,5,181,4,1,0,0,management,medium +0.79,0.84,4,144,2,1,0,0,marketing,medium +0.74,0.94,4,255,4,0,0,0,marketing,medium +0.74,0.8,3,219,2,0,0,0,marketing,medium +0.4,1,6,206,2,0,0,0,sales,low +0.14,0.71,2,155,3,0,0,0,sales,low +0.83,0.87,5,248,3,0,0,0,sales,low +0.76,0.52,4,259,2,0,0,0,sales,low +0.8,0.8,3,271,4,0,0,0,sales,low +0.95,0.38,2,103,3,0,0,0,sales,low +0.88,0.76,4,159,4,1,0,0,sales,low +0.92,0.85,4,184,3,0,0,0,sales,low +0.16,0.88,4,201,6,0,0,0,sales,medium +0.7,0.63,3,157,4,0,0,0,sales,medium +0.71,0.93,3,287,5,0,0,0,sales,medium +0.52,0.82,2,242,3,0,0,0,sales,medium +0.49,0.58,5,246,3,1,0,0,sales,medium +0.5,0.57,3,219,3,0,0,0,sales,medium +0.86,0.94,3,212,3,0,0,0,sales,medium +0.49,0.99,5,262,2,1,0,0,sales,medium +0.69,0.91,4,128,3,1,0,0,sales,medium +0.96,1,3,231,6,0,0,0,sales,medium +0.87,0.54,3,260,2,0,0,0,sales,medium +0.36,0.4,3,160,3,0,0,0,accounting,medium +0.86,1,3,166,3,1,0,0,accounting,medium +0.79,0.74,4,222,2,0,0,0,accounting,medium +1,0.52,4,171,4,0,0,0,hr,medium +0.88,0.88,3,220,4,0,0,0,hr,medium +0.49,0.65,4,176,3,1,0,0,hr,medium +0.52,0.62,3,160,2,0,0,0,hr,medium +0.76,0.78,3,162,3,0,0,0,technical,medium +0.69,0.91,3,167,2,0,0,0,technical,medium +0.69,0.81,5,217,2,0,0,0,technical,medium +0.75,0.58,3,159,3,0,0,0,technical,medium +0.47,0.47,4,191,3,0,0,0,technical,medium +0.88,1,3,125,3,0,0,0,technical,medium +0.49,0.43,5,210,4,1,0,0,technical,medium +0.92,0.67,4,241,3,0,0,0,technical,high +0.24,0.48,4,145,3,1,0,0,technical,high +0.69,1,5,237,3,0,0,0,technical,high +0.81,0.57,4,213,4,0,0,0,technical,high +0.61,0.48,4,257,2,0,0,0,support,high +0.75,0.86,6,114,4,0,0,0,support,high +0.69,0.86,4,214,2,0,0,0,support,high +0.53,0.49,3,191,3,0,0,0,support,high +0.93,0.96,4,223,3,1,0,0,support,high +0.15,0.67,5,249,5,0,0,0,support,high +0.48,0.41,5,286,3,0,0,0,support,high +0.67,0.73,4,251,3,0,0,0,support,high +0.36,0.93,3,162,5,0,0,0,support,low +0.35,0.54,3,138,4,0,0,0,support,low +0.65,0.62,4,235,3,0,0,0,support,low +0.8,0.5,4,125,3,0,0,0,technical,low +0.97,0.96,5,210,6,1,0,0,technical,low +0.67,0.64,4,136,3,0,0,0,technical,low +0.58,0.78,3,223,3,0,0,0,management,low +0.61,0.67,3,188,5,0,0,0,IT,low +0.97,0.66,4,214,2,1,0,0,IT,low +0.87,0.97,4,160,3,0,0,0,IT,low +0.8,0.71,4,200,2,0,0,0,IT,low +0.91,0.55,3,223,3,0,0,0,IT,low +0.63,0.73,3,272,2,0,0,0,product_mng,low +0.79,0.96,4,170,2,0,0,0,product_mng,low +0.89,0.57,2,235,3,1,0,0,product_mng,low +1,0.87,3,274,3,0,0,0,product_mng,medium +0.6,0.73,5,203,2,0,0,0,IT,medium +0.7,0.8,4,236,2,0,0,0,RandD,medium +0.79,0.81,4,203,3,0,0,0,RandD,medium +0.88,0.72,4,249,3,1,0,0,RandD,medium +0.87,0.48,4,133,2,0,0,0,RandD,medium +0.52,0.58,3,203,2,0,0,0,RandD,medium +0.59,0.75,3,168,3,0,0,0,RandD,medium +0.64,0.75,4,172,4,0,0,0,marketing,medium +0.81,0.83,3,177,2,0,0,0,sales,medium +0.87,0.57,3,149,2,0,0,0,accounting,medium +0.74,0.61,3,231,2,0,0,0,support,medium +0.73,0.89,3,226,3,1,0,0,technical,high +0.97,0.58,4,187,4,1,0,0,management,high +0.54,0.81,3,145,2,0,0,0,marketing,high +0.59,0.55,4,138,2,0,0,0,marketing,high +0.99,0.95,3,153,4,0,0,0,marketing,high +0.79,0.75,4,168,3,0,0,0,sales,high +0.96,0.37,3,111,2,0,0,0,sales,high +0.54,0.67,3,154,2,0,0,0,sales,high +0.79,0.84,4,171,3,0,0,0,sales,low +0.64,0.79,3,253,2,0,0,0,sales,low +0.65,0.53,4,160,3,0,0,0,sales,low +0.87,0.86,3,196,4,0,0,0,sales,low +0.7,0.59,4,178,3,0,0,0,sales,low +0.89,0.81,3,268,3,0,0,0,sales,low +0.61,0.58,6,146,3,0,0,0,sales,low +0.9,0.49,4,185,2,0,0,0,sales,low +0.49,0.54,4,247,3,1,0,0,sales,medium +0.85,0.97,4,210,2,0,0,0,sales,medium +0.54,0.58,3,234,3,0,0,0,sales,medium +0.64,0.57,4,271,2,0,0,0,sales,medium +0.81,0.77,5,102,5,0,0,0,sales,medium +0.49,0.66,3,163,3,0,0,0,sales,medium +0.58,0.57,3,144,4,1,0,0,sales,medium +0.62,0.49,3,172,3,0,0,0,sales,medium +0.8,0.84,3,203,3,1,0,0,accounting,medium +0.64,0.64,3,192,3,1,0,0,accounting,medium +0.81,0.86,5,159,2,0,0,0,accounting,medium +0.8,0.74,3,159,2,0,0,0,hr,medium +0.92,0.81,4,206,2,0,0,0,hr,medium +0.66,0.98,4,225,2,1,0,0,hr,medium +0.79,0.89,3,252,2,0,0,0,hr,medium +0.74,0.54,6,113,3,0,0,0,technical,medium +0.79,0.74,3,238,2,0,0,0,technical,medium +0.87,0.94,3,217,3,0,0,0,technical,medium +0.49,0.57,4,145,2,0,0,0,technical,medium +0.3,0.44,5,128,4,1,0,0,technical,medium +0.85,0.89,4,177,3,0,0,0,technical,medium +0.61,0.97,4,256,4,0,0,0,technical,medium +0.68,0.55,3,182,3,1,0,0,technical,medium +0.67,0.67,4,226,2,0,0,0,technical,high +0.63,0.73,5,168,3,0,0,0,technical,low +0.63,0.94,4,145,3,0,0,0,technical,medium +0.5,0.88,4,172,4,0,0,0,support,medium +0.7,0.55,4,233,2,0,0,0,support,medium +0.18,0.46,5,202,4,0,0,0,support,medium +0.77,0.55,5,255,2,0,0,0,support,medium +0.78,0.61,3,257,3,0,0,0,support,medium +0.54,0.77,3,185,3,0,0,0,support,medium +0.9,0.69,3,231,4,0,0,0,support,medium +0.56,0.76,3,207,2,0,0,0,support,medium +0.63,0.81,3,215,3,0,0,0,support,medium +0.68,0.75,5,243,3,1,0,0,support,low +0.96,0.54,3,198,3,0,0,0,support,low +0.85,0.87,6,232,6,0,0,0,technical,low +0.82,0.66,4,150,3,0,0,0,technical,low +0.44,0.39,2,188,3,0,0,0,technical,low +0.86,0.97,4,155,3,0,0,0,management,low +0.56,0.68,3,109,3,0,0,0,IT,low +0.69,0.94,3,170,3,0,0,0,IT,high +0.91,0.85,5,214,2,0,0,0,IT,low +0.99,0.94,3,244,3,0,0,0,IT,high +0.76,0.84,5,137,4,0,0,0,IT,high +0.63,0.67,5,250,2,0,0,0,product_mng,low +0.21,0.62,4,247,3,1,0,0,product_mng,low +0.63,0.43,2,222,4,0,0,0,product_mng,high +0.58,0.51,2,100,2,0,0,0,product_mng,low +0.52,0.84,4,212,3,0,0,0,IT,medium +0.89,0.64,3,184,5,0,0,0,RandD,high +0.81,0.81,4,177,3,0,0,0,RandD,medium +0.62,0.73,3,138,3,0,0,0,RandD,medium +0.83,0.5,4,167,3,1,0,0,RandD,medium +0.85,0.99,3,201,3,0,0,0,RandD,medium +0.52,0.61,5,162,3,0,0,0,marketing,high +0.57,0.97,5,126,5,0,0,0,sales,medium +0.93,1,4,145,3,0,0,0,accounting,medium +0.78,0.89,3,211,3,0,0,0,support,medium +0.65,0.59,3,167,2,0,0,0,technical,high +0.42,0.74,5,256,6,0,0,0,management,medium +0.22,0.61,6,237,5,0,0,0,marketing,high +0.71,0.96,5,135,4,1,0,0,marketing,low +0.44,0.68,5,209,4,0,0,0,marketing,medium +0.6,0.52,4,190,3,0,0,0,sales,medium +0.68,0.61,3,134,4,0,0,0,sales,medium +0.53,0.41,2,148,2,1,0,0,sales,medium +0.8,0.82,4,202,3,0,0,0,sales,low +0.97,0.82,4,176,2,0,0,0,sales,low +0.47,0.47,2,221,6,0,0,0,sales,low +0.96,0.93,3,156,3,0,0,0,sales,low +0.81,0.45,6,98,3,0,0,0,sales,low +0.86,0.65,4,134,4,0,0,0,sales,low +0.59,0.82,4,203,4,1,0,0,sales,low +0.53,0.97,3,189,3,0,0,0,sales,low +0.57,0.86,3,258,2,0,0,0,sales,low +0.7,0.48,4,237,3,0,0,0,sales,low +0.58,0.59,4,224,3,0,0,0,sales,high +0.43,0.86,5,125,3,1,0,0,sales,low +0.92,0.82,4,207,4,0,0,0,sales,low +0.24,0.7,5,194,3,0,0,0,sales,low +0.67,0.52,3,273,3,0,0,0,sales,low +0.68,0.84,3,209,3,0,0,0,sales,high +0.54,0.75,3,181,3,0,0,0,accounting,low +0.73,0.63,3,172,4,1,0,0,accounting,low +0.59,0.41,4,139,3,0,0,0,accounting,low +0.22,0.64,6,260,4,0,0,0,hr,high +0.49,0.83,3,168,4,1,0,0,hr,low +0.91,1,6,242,3,1,0,0,hr,medium +0.18,0.97,4,206,3,0,0,0,hr,high +0.71,0.41,5,107,4,0,0,0,technical,medium +0.56,0.66,5,216,2,0,0,0,technical,high +0.84,0.62,4,152,3,0,0,0,technical,medium +0.59,0.49,5,122,5,0,0,0,technical,medium +0.88,0.62,4,138,3,0,0,0,technical,medium +0.8,0.52,3,182,2,0,0,0,technical,medium +0.53,0.63,3,205,2,0,0,0,technical,medium +0.53,0.83,3,267,4,0,0,0,technical,medium +0.3,0.67,3,150,2,0,0,0,technical,medium +0.91,0.7,4,134,2,0,0,0,technical,medium +0.32,0.66,5,116,5,1,0,0,technical,high +0.73,0.87,3,181,3,0,0,0,support,low +0.87,0.54,3,268,3,0,0,0,support,medium +0.57,0.73,3,129,3,0,0,0,support,medium +0.62,0.94,3,151,4,0,0,0,support,medium +0.55,0.91,3,243,4,0,0,0,support,medium +0.93,0.57,5,143,2,0,0,0,support,medium +0.3,0.47,6,156,2,1,0,0,support,medium +0.57,0.7,3,210,2,0,0,0,support,medium +0.9,0.85,4,279,6,0,0,0,support,medium +0.83,0.79,4,270,3,1,0,0,support,medium +0.38,0.64,5,160,3,0,0,0,support,high +0.97,0.95,4,173,2,0,0,0,technical,low +0.7,1,4,261,3,0,0,0,technical,low +0.26,0.73,4,178,6,0,0,0,technical,low +0.58,0.58,3,122,3,0,0,0,management,high +0.69,0.57,5,227,4,0,0,0,IT,low +0.88,0.6,2,168,3,0,0,0,IT,low +0.57,0.91,4,252,4,0,0,0,IT,low +0.94,0.8,5,170,4,0,0,0,IT,high +0.94,0.58,3,135,3,0,0,0,IT,low +0.46,0.49,5,286,5,0,0,0,product_mng,low +0.49,0.57,2,213,3,1,0,0,product_mng,low +0.96,1,5,148,3,0,0,0,product_mng,low +0.29,0.95,5,117,4,0,0,0,product_mng,low +0.94,0.69,3,164,2,0,0,0,IT,low +0.56,0.64,3,262,2,1,0,0,RandD,low +0.18,0.49,5,250,5,1,0,0,RandD,medium +0.84,0.83,4,222,3,0,0,0,RandD,medium +0.58,0.96,3,192,4,0,0,0,RandD,medium +0.21,0.6,5,151,6,0,0,0,RandD,medium +0.59,0.53,4,216,2,0,0,0,marketing,medium +0.66,0.65,3,234,2,0,0,0,marketing,medium +0.58,0.82,4,268,3,0,0,0,sales,medium +0.66,0.49,4,194,5,0,0,0,accounting,medium +0.56,0.78,3,200,2,0,0,0,support,medium +0.92,0.78,3,194,3,0,0,0,technical,medium +0.56,0.69,3,176,3,0,0,0,management,medium +0.57,0.59,4,158,3,0,0,0,marketing,medium +0.99,0.79,3,271,4,0,0,0,marketing,high +0.76,0.93,4,187,4,0,0,0,marketing,low +0.78,0.91,4,202,2,0,0,0,sales,medium +0.99,0.48,5,202,2,0,0,0,sales,medium +0.71,0.95,6,204,3,1,0,0,sales,medium +0.51,0.96,4,204,3,1,0,0,sales,medium +0.88,0.82,3,244,3,0,0,0,sales,low +0.96,0.83,3,234,3,0,0,0,sales,low +0.9,0.64,4,217,3,0,0,0,sales,low +0.77,0.51,4,142,4,0,0,0,sales,low +0.95,0.5,4,186,3,1,0,0,sales,low +0.85,0.67,3,267,2,1,0,0,sales,low +0.46,0.79,2,108,3,0,0,0,sales,low +0.57,0.95,3,274,4,0,0,0,sales,low +0.93,1,3,148,4,0,0,0,sales,low +0.78,0.68,5,168,3,0,0,0,sales,low +0.68,1,4,185,2,1,0,0,sales,low +0.83,0.78,3,257,2,0,0,0,sales,low +0.56,0.51,5,256,4,1,0,0,sales,low +0.93,0.78,2,188,2,0,0,0,sales,low +0.13,0.53,6,173,4,0,0,0,sales,low +0.71,0.99,5,208,2,1,0,0,accounting,low +0.98,0.74,4,202,3,0,0,0,accounting,low +0.83,0.82,3,134,3,0,0,0,accounting,low +0.78,0.65,3,154,2,0,0,0,hr,low +0.35,0.58,3,103,3,0,0,0,hr,low +0.67,0.55,4,256,6,0,0,0,hr,low +0.86,0.88,4,274,3,0,0,0,hr,medium +0.33,0.61,2,163,3,0,0,0,technical,medium +0.3,0.86,6,232,3,0,0,0,technical,medium +0.75,0.63,4,268,3,0,0,0,technical,medium +0.8,0.98,3,209,3,0,0,0,technical,medium +0.98,0.53,5,238,3,0,0,0,technical,medium +0.72,0.48,3,155,2,0,0,0,technical,medium +0.82,0.52,5,270,3,0,0,0,technical,medium +0.91,0.59,3,134,2,1,0,0,technical,medium +0.84,0.78,3,221,3,1,0,0,technical,medium +0.95,0.74,4,258,3,0,0,0,technical,medium +0.53,0.51,6,272,5,0,0,0,technical,medium +0.5,0.5,4,184,3,0,0,0,support,high +0.36,0.95,6,276,2,0,0,0,support,low +0.33,0.38,4,186,3,0,0,0,support,medium +0.38,0.47,3,189,5,0,0,0,support,medium +0.7,0.9,3,224,3,0,0,0,support,medium +0.44,0.45,6,237,6,0,0,0,support,medium +0.32,0.66,3,144,2,0,0,0,support,low +0.63,0.93,6,171,3,1,0,0,support,low +0.56,0.54,3,232,2,0,0,0,support,low +0.56,0.78,4,193,2,1,0,0,support,low +0.81,0.78,3,166,2,0,0,0,support,low +0.89,0.75,3,167,2,0,0,0,technical,low +0.63,0.87,2,101,3,0,0,0,technical,low +0.64,0.66,5,266,3,0,0,0,technical,low +0.46,0.53,3,135,2,0,0,0,management,low +0.76,0.56,4,137,3,0,0,0,IT,low +0.99,0.71,3,191,3,0,0,0,IT,low +0.85,0.76,4,262,2,0,0,0,IT,low +0.78,0.99,3,174,3,0,0,0,IT,low +0.91,0.56,4,241,2,0,0,0,IT,low +0.16,0.57,5,144,4,1,0,0,product_mng,low +0.71,0.57,3,218,3,0,0,0,product_mng,low +0.92,0.68,5,210,2,0,0,0,product_mng,low +0.21,0.98,6,208,5,1,0,0,product_mng,low +0.74,0.6,3,232,3,0,0,0,IT,low +0.76,0.6,3,140,2,0,0,0,RandD,low +0.62,0.95,3,189,4,0,0,0,RandD,low +1,0.61,5,264,3,0,0,0,RandD,medium +0.67,0.54,5,157,2,0,0,0,RandD,medium +0.81,0.87,4,161,2,0,0,0,RandD,medium +0.84,0.69,4,149,3,0,0,0,marketing,medium +0.84,0.99,3,144,4,0,0,0,sales,medium +0.97,0.97,4,242,2,0,0,0,accounting,medium +0.7,0.5,6,214,5,0,0,0,support,medium +0.52,0.74,4,174,3,0,0,0,technical,medium +0.46,0.88,5,169,3,0,0,0,management,medium +1,0.87,4,268,2,0,0,0,marketing,medium +0.91,0.58,3,257,3,0,0,0,marketing,medium +0.16,0.69,4,187,5,0,0,0,marketing,medium +0.58,0.62,5,270,2,0,0,0,sales,high +0.75,0.61,5,173,4,0,0,0,sales,low +0.96,0.62,6,193,4,0,0,0,sales,medium +0.92,0.78,4,212,2,0,0,0,sales,medium +0.35,0.63,3,156,3,0,0,0,sales,medium +0.56,0.96,3,244,3,0,0,0,sales,medium +0.27,0.96,3,255,4,0,0,0,sales,low +0.66,0.72,5,152,3,1,0,0,sales,low +0.66,0.98,4,163,3,1,0,0,sales,low +0.98,0.69,3,150,2,0,0,0,sales,low +0.51,0.58,4,169,2,0,0,0,sales,low +0.51,0.83,3,133,3,0,0,0,sales,low +0.53,0.94,4,202,3,1,0,0,sales,low +0.69,0.7,4,169,2,0,0,0,sales,low +0.66,0.74,4,270,2,1,0,0,sales,low +0.89,0.76,3,251,2,1,0,0,sales,low +0.74,0.64,3,267,5,0,0,0,sales,low +0.82,0.75,4,224,3,0,0,0,sales,low +0.66,0.9,3,250,2,0,0,0,sales,low +0.59,0.97,3,258,2,0,0,0,accounting,low +0.13,0.65,2,209,5,0,0,0,accounting,low +0.68,0.74,4,215,3,0,0,0,accounting,low +0.5,0.81,3,183,3,0,0,0,hr,low +0.6,0.82,3,143,3,0,0,0,hr,low +0.87,0.98,3,174,3,0,0,0,hr,low +0.51,0.89,6,170,4,0,0,0,hr,low +0.78,0.63,3,202,2,0,0,0,technical,low +0.66,0.96,4,160,2,0,0,0,technical,medium +0.72,0.73,5,211,2,0,0,0,technical,medium +0.57,0.98,3,236,3,1,0,0,technical,medium +0.5,0.49,4,236,3,0,0,0,technical,medium +0.72,0.62,4,252,2,1,0,0,technical,medium +0.41,0.48,3,155,2,1,0,0,technical,medium +0.55,0.65,5,138,2,0,0,0,technical,medium +0.49,0.94,4,195,3,1,0,0,technical,medium +0.8,0.94,3,150,3,0,0,0,technical,medium +0.78,0.51,3,172,3,0,0,0,technical,medium +0.69,0.56,3,240,2,0,0,0,support,medium +0.83,0.98,3,229,6,0,0,0,support,medium +0.89,0.73,3,169,3,0,0,0,support,high +0.94,0.82,3,246,3,0,0,0,support,low +0.51,0.53,4,260,2,1,0,0,support,medium +0.89,0.9,4,101,6,0,0,0,support,medium +0.99,0.69,3,190,3,0,0,0,support,medium +0.79,0.66,3,154,4,0,0,0,support,medium +0.98,0.97,4,196,4,0,0,0,support,low +0.98,0.97,3,209,3,0,0,0,support,low +0.97,0.67,4,223,3,0,0,0,support,low +0.71,0.71,4,221,3,0,0,0,technical,low +0.49,0.6,4,141,3,0,0,0,technical,low +0.72,0.71,3,135,3,0,0,0,technical,low +0.58,0.61,2,191,3,1,0,0,management,low +0.65,1,4,195,3,0,0,0,IT,low +0.18,0.55,5,217,4,0,0,0,IT,low +0.83,0.99,4,184,3,0,0,0,IT,low +0.2,0.76,5,188,3,0,0,0,IT,low +0.96,0.93,6,240,6,0,0,0,IT,low +0.59,0.69,4,226,3,0,0,0,product_mng,low +0.97,0.99,3,196,3,0,0,0,product_mng,low +0.14,0.99,6,251,4,0,0,0,product_mng,low +0.75,0.96,4,150,2,0,0,0,product_mng,low +0.71,0.63,3,249,3,0,0,0,IT,low +0.84,0.52,4,251,3,0,0,0,RandD,low +0.57,0.75,5,252,3,0,0,0,RandD,medium +0.46,0.55,5,261,5,0,0,0,RandD,medium +0.77,0.94,4,225,2,0,0,0,RandD,medium +0.44,0.65,2,151,3,0,0,0,RandD,medium +0.68,0.59,4,147,2,0,0,0,marketing,medium +0.94,0.58,4,159,3,0,0,0,sales,medium +0.73,0.91,4,241,2,1,0,0,accounting,medium +0.51,0.5,5,176,5,0,0,0,support,medium +0.93,0.87,4,218,4,0,0,0,technical,medium +0.74,1,4,219,3,0,0,0,management,medium +0.82,0.9,3,227,3,0,0,0,marketing,medium +0.86,0.91,4,182,2,0,0,0,marketing,medium +0.99,0.86,4,196,2,1,0,0,marketing,high +0.58,0.86,4,257,3,0,0,0,sales,low +0.96,0.6,5,182,5,0,0,0,sales,medium +0.72,0.67,4,192,3,0,0,0,sales,medium +0.23,0.94,4,142,4,0,0,0,sales,medium +0.99,0.79,4,172,2,0,0,0,sales,medium +0.95,0.58,4,188,3,0,0,0,sales,low +0.75,0.55,5,281,3,1,0,0,sales,low +0.95,0.54,4,255,2,0,0,0,sales,low +0.97,0.84,3,223,3,0,0,0,sales,low +0.98,0.86,2,219,4,0,0,0,sales,low +0.79,0.98,3,195,2,0,0,0,sales,low +0.54,0.91,2,156,3,0,0,0,sales,low +0.51,0.51,5,259,4,0,0,0,sales,low +0.83,0.91,4,266,3,1,0,0,sales,low +0.6,0.7,3,147,2,0,0,0,sales,low +0.58,0.83,4,207,3,0,0,0,sales,low +0.55,0.68,3,185,2,0,0,0,sales,low +0.5,0.64,5,195,2,0,0,0,sales,low +0.46,0.41,6,148,4,0,0,0,sales,low +0.61,0.82,3,157,2,0,0,0,accounting,low +0.91,0.98,4,146,3,0,0,0,accounting,low +0.5,0.94,3,262,4,0,0,0,accounting,low +0.75,0.82,3,169,3,0,0,0,hr,low +0.74,0.87,3,192,3,1,0,0,hr,low +0.62,0.53,4,147,2,0,0,0,hr,low +0.87,0.76,5,254,2,1,0,0,hr,low +0.13,0.72,3,244,4,0,0,0,technical,medium +0.71,0.43,2,100,6,0,0,0,technical,medium +0.7,0.9,3,173,2,0,0,0,technical,medium +0.32,0.87,2,197,2,1,0,0,technical,medium +0.84,0.72,3,256,4,0,0,0,technical,medium +0.79,0.87,4,253,2,0,0,0,technical,medium +0.97,0.64,4,152,2,0,0,0,technical,medium +0.76,0.58,5,136,3,0,0,0,technical,medium +0.97,0.63,3,141,3,0,0,0,technical,medium +0.53,0.4,5,212,3,1,0,0,technical,medium +0.61,0.57,4,144,3,0,0,0,technical,medium +0.94,0.89,2,118,4,0,0,0,support,medium +0.52,0.79,5,265,3,1,0,0,support,high +0.91,0.67,3,143,3,0,0,0,support,low +0.52,0.63,3,230,2,0,0,0,support,medium +0.59,0.68,5,243,2,0,0,0,support,medium +0.61,0.71,3,152,4,1,0,0,support,medium +0.78,0.78,3,252,3,0,0,0,support,medium +0.44,0.67,3,113,2,0,0,0,support,low +0.8,0.97,4,259,2,0,0,0,support,low +0.54,0.6,4,139,5,0,0,0,support,low +0.96,0.91,4,228,3,1,0,0,support,low +0.98,0.49,4,214,3,0,0,0,technical,low +0.83,0.91,4,210,4,0,0,0,technical,low +0.64,0.89,4,146,3,0,0,0,technical,low +0.51,0.78,3,155,2,0,0,0,management,low +0.31,0.42,2,169,5,0,0,0,IT,low +0.53,0.68,3,258,3,0,0,0,IT,low +0.81,0.53,3,258,2,0,0,0,IT,low +0.17,0.85,3,168,4,0,0,0,IT,low +0.72,0.98,3,211,2,0,0,0,IT,low +0.49,0.49,2,245,3,0,0,0,product_mng,low +0.81,0.95,3,204,2,0,0,0,product_mng,low +0.75,0.98,2,161,3,0,0,0,product_mng,low +0.74,0.73,3,267,3,0,0,0,product_mng,low +0.82,0.73,3,183,3,0,0,0,IT,low +0.36,0.4,2,105,3,0,0,0,RandD,low +0.89,0.55,3,260,2,0,0,0,RandD,low +0.78,0.87,3,183,4,0,0,0,RandD,low +0.81,0.56,4,262,3,0,0,0,RandD,medium +0.61,0.78,4,244,4,0,0,0,RandD,medium +0.23,0.96,4,242,6,0,0,0,marketing,medium +0.73,1,4,146,3,0,0,0,sales,medium +0.4,0.65,4,252,6,0,0,0,accounting,medium +0.99,0.63,5,229,2,0,0,0,support,medium +0.62,0.54,4,170,3,0,0,0,technical,medium +0.61,0.93,3,250,4,0,0,0,management,medium +0.9,0.98,2,243,3,0,0,0,marketing,medium +0.93,0.67,4,135,3,1,0,0,marketing,medium +0.52,0.75,4,266,3,0,0,0,marketing,medium +0.77,0.72,4,223,3,0,0,0,sales,medium +0.59,0.76,4,234,3,0,0,0,sales,high +0.51,0.59,4,187,3,0,0,0,sales,low +0.67,0.95,3,229,3,0,0,0,sales,medium +0.95,0.65,3,155,2,1,0,0,sales,medium +0.75,0.76,3,246,3,0,0,0,sales,medium +0.54,0.61,3,152,3,0,0,0,sales,medium +0.45,0.71,2,172,2,0,0,0,sales,low +0.66,0.66,4,255,5,0,0,0,sales,low +0.36,0.69,3,98,2,0,0,0,sales,low +0.3,0.47,6,141,6,0,0,0,sales,low +0.61,0.63,4,146,4,1,0,0,sales,low +0.71,0.7,4,213,3,0,0,0,sales,low +0.6,0.99,4,160,3,0,0,0,sales,low +0.19,0.61,3,272,4,0,0,0,sales,low +0.91,1,4,125,4,0,0,0,sales,medium +0.98,0.69,3,152,2,0,0,0,sales,medium +0.9,0.78,3,162,2,0,0,0,sales,medium +0.73,0.94,3,251,6,0,0,0,sales,medium +0.52,0.56,3,225,3,0,0,0,accounting,medium +0.77,0.56,3,236,3,1,0,0,accounting,medium +0.98,0.62,3,203,2,0,0,0,accounting,medium +0.79,0.5,4,252,3,1,0,0,hr,medium +0.73,0.91,3,135,2,0,0,0,hr,medium +0.97,0.95,3,257,2,0,0,0,hr,medium +0.38,0.6,5,145,5,0,0,0,hr,medium +0.59,0.48,5,267,3,0,0,0,technical,medium +0.73,0.79,4,208,5,0,0,0,technical,medium +0.84,0.53,4,206,3,0,0,0,technical,medium +0.61,0.59,4,247,2,0,0,0,technical,medium +0.79,0.78,2,228,2,0,0,0,technical,medium +0.73,0.91,4,248,2,1,0,0,technical,medium +0.22,0.9,4,209,5,0,0,0,technical,medium +0.84,0.52,5,171,3,0,0,0,technical,medium +0.21,0.85,6,221,5,0,0,0,technical,medium +0.44,0.69,2,173,2,0,0,0,technical,medium +0.2,0.52,5,218,5,0,0,0,technical,medium +0.51,0.86,4,223,3,1,0,0,support,medium +0.55,0.98,3,169,2,0,0,0,support,medium +0.24,0.38,6,109,2,0,0,0,support,medium +0.65,0.77,4,273,2,0,0,0,support,high +0.44,0.42,3,178,3,0,0,0,support,high +0.98,0.67,4,189,4,0,0,0,support,high +0.69,0.8,5,203,2,1,0,0,support,high +0.71,0.56,3,177,4,0,0,0,support,high +0.54,0.71,5,253,2,1,0,0,support,high +0.77,0.98,3,273,3,0,0,0,support,high +0.53,0.43,2,139,3,0,0,0,support,high +0.64,0.72,3,185,2,1,0,0,technical,high +0.69,0.59,5,182,4,0,0,0,technical,high +0.93,0.71,5,270,2,0,0,0,technical,high +0.58,0.65,3,139,4,0,0,0,management,high +0.33,0.46,5,261,6,1,0,0,IT,low +0.95,0.57,3,238,3,0,0,0,IT,low +0.65,0.9,3,241,3,0,0,0,IT,low +0.9,0.7,3,223,2,0,0,0,IT,low +0.59,0.8,3,258,3,1,0,0,IT,low +0.88,0.55,4,205,4,0,0,0,product_mng,low +0.63,0.83,4,243,4,0,0,0,product_mng,low +0.53,0.61,4,198,2,0,0,0,product_mng,low +0.63,0.64,4,178,3,0,0,0,product_mng,low +0.96,0.76,4,158,3,0,0,0,IT,low +0.7,0.73,3,194,2,0,0,0,RandD,low +0.73,0.36,4,253,2,1,0,0,RandD,low +0.94,0.8,4,228,2,0,0,0,RandD,low +0.82,0.58,5,227,3,0,0,0,RandD,low +0.44,0.63,3,162,2,0,0,0,RandD,low +0.58,0.9,5,257,3,0,0,0,marketing,medium +0.55,0.97,2,140,2,0,0,0,sales,medium +0.92,0.84,3,164,2,0,0,0,accounting,medium +0.91,0.59,4,177,4,0,0,0,support,medium +0.69,0.61,4,260,4,0,0,0,technical,medium +0.23,0.7,4,233,2,0,0,0,management,medium +0.21,0.81,4,227,5,0,0,0,marketing,medium +0.51,0.6,4,140,3,0,0,0,marketing,medium +0.73,0.74,3,254,4,1,0,0,marketing,medium +0.65,0.67,3,245,3,0,0,0,sales,medium +0.64,0.48,2,157,2,0,0,0,sales,medium +0.77,0.49,3,265,3,0,0,0,sales,medium +0.71,0.79,4,261,3,0,0,0,sales,high +0.2,0.38,6,212,6,0,0,0,sales,high +0.99,0.57,4,216,3,0,0,0,sales,high +0.77,0.57,4,238,3,0,0,0,sales,high +0.8,0.56,2,204,3,0,0,0,sales,high +0.97,0.5,4,216,2,0,0,0,sales,high +0.89,0.53,4,208,3,0,0,0,sales,high +0.97,0.7,4,218,2,0,0,0,sales,high +0.23,0.99,5,176,4,1,0,0,sales,low +0.6,0.75,4,144,2,0,0,0,sales,low +0.52,0.63,5,241,3,0,0,0,sales,low +0.86,0.63,3,271,2,0,0,0,sales,low +0.86,0.95,4,184,3,0,0,0,sales,low +0.76,0.58,3,262,2,0,0,0,sales,low +0.79,0.77,6,233,6,0,0,0,sales,low +0.35,0.52,3,155,3,0,0,0,sales,low +1,0.97,5,141,2,0,0,0,accounting,medium +0.2,0.8,6,251,5,0,0,0,accounting,medium +0.57,0.62,5,141,3,0,0,0,accounting,medium +0.23,0.46,4,274,5,1,0,0,hr,medium +0.82,0.97,3,160,2,0,0,0,hr,medium +0.98,0.8,3,166,2,0,0,0,hr,medium +0.52,0.7,4,219,3,0,0,0,hr,medium +0.96,0.61,4,158,6,0,0,0,technical,medium +0.69,0.64,4,190,4,0,0,0,technical,medium +0.92,0.77,5,191,2,0,0,0,technical,medium +0.91,0.43,4,117,5,1,0,0,technical,medium +0.85,0.96,4,240,6,0,0,0,technical,medium +0.91,0.77,4,239,2,0,0,0,technical,medium +0.79,0.55,4,145,3,0,0,0,technical,medium +0.74,0.95,3,157,4,0,0,0,technical,medium +0.73,0.72,3,166,3,0,0,0,technical,medium +0.55,0.98,4,137,2,0,0,0,technical,medium +0.79,0.97,5,208,4,1,0,0,technical,medium +0.53,0.51,4,174,2,0,0,0,support,medium +0.7,0.6,3,267,3,0,0,0,support,medium +0.74,0.56,3,125,6,0,0,0,support,medium +0.95,0.76,4,220,3,0,0,0,support,medium +0.49,0.57,4,141,3,0,0,0,support,medium +0.79,0.9,5,146,3,1,0,0,support,high +0.99,0.86,3,166,2,0,0,0,support,low +0.56,0.79,4,197,2,0,0,0,support,medium +0.7,0.79,4,240,2,0,0,0,support,medium +0.93,0.65,4,258,3,0,0,0,support,medium +0.46,0.66,6,229,3,0,0,0,support,medium +0.24,0.61,5,252,4,0,0,0,technical,medium +0.32,0.41,3,138,3,1,0,0,technical,medium +0.5,0.78,4,208,3,1,0,0,technical,medium +0.58,0.72,3,113,3,1,0,0,management,medium +0.83,0.81,4,209,4,0,0,0,IT,medium +0.57,0.42,2,248,4,0,0,0,IT,medium +0.51,0.83,5,161,3,0,0,0,IT,low +0.65,0.96,2,246,2,1,0,0,IT,low +0.52,0.41,3,283,3,0,0,0,IT,low +0.77,0.7,3,145,2,0,0,0,product_mng,low +0.42,0.77,3,270,3,0,0,0,product_mng,low +0.68,0.79,4,273,4,0,0,0,product_mng,low +0.83,0.92,4,187,6,1,0,0,product_mng,low +0.66,0.63,3,166,3,0,0,0,IT,high +0.75,0.57,3,158,2,1,0,0,RandD,low +0.65,0.48,4,229,3,0,0,0,RandD,high +0.49,0.6,3,191,3,1,0,0,RandD,high +0.77,0.96,3,232,2,1,0,0,RandD,low +0.65,0.97,3,198,3,0,0,0,RandD,low +0.65,0.49,5,238,4,0,0,0,marketing,high +0.44,0.58,2,157,2,0,0,0,sales,low +0.61,0.72,4,134,2,0,0,0,accounting,medium +0.98,0.89,3,150,3,0,0,0,support,high +0.68,0.88,5,256,2,0,0,0,technical,medium +0.58,0.5,3,208,3,0,0,0,management,medium +0.81,0.92,3,136,3,0,0,0,marketing,medium +0.76,0.5,4,136,3,0,0,0,marketing,medium +0.14,0.93,4,180,4,0,0,0,marketing,high +0.49,0.91,3,227,3,0,0,0,sales,medium +0.97,0.78,5,156,3,0,0,0,sales,medium +0.91,0.6,4,133,4,1,0,0,sales,medium +0.15,0.98,2,96,2,0,0,0,sales,high +0.82,0.63,3,171,3,0,0,0,sales,medium +0.67,0.87,3,177,4,0,0,0,sales,high +0.5,0.96,4,274,3,0,0,0,sales,low +0.57,0.39,2,145,3,0,0,0,sales,medium +0.99,0.94,5,221,2,0,0,0,sales,medium +0.97,0.94,3,202,2,0,0,0,sales,medium +0.93,0.58,5,238,2,0,0,0,sales,medium +0.62,0.6,4,170,2,0,0,0,sales,low +0.62,0.51,4,208,2,1,0,0,sales,low +0.96,0.61,4,199,3,0,0,0,sales,low +0.98,0.96,4,253,3,0,0,0,sales,low +0.52,0.57,4,239,3,0,0,0,sales,low +0.56,0.77,5,279,4,0,0,0,sales,low +0.14,0.41,6,114,3,0,0,0,sales,low +0.29,0.38,6,105,5,0,0,0,sales,low +0.76,0.81,4,193,3,1,0,0,accounting,low +0.39,0.58,3,152,3,1,0,0,accounting,low +0.96,0.72,4,228,2,0,0,0,accounting,high +0.84,0.93,3,242,4,0,0,0,hr,low +0.81,0.62,4,197,3,0,0,0,hr,low +0.51,0.51,5,222,4,0,0,0,hr,low +0.87,0.75,3,222,3,0,0,0,hr,low +0.94,0.77,5,233,4,0,0,0,technical,high +0.69,0.97,4,264,3,0,0,0,technical,low +0.44,0.53,3,132,3,1,0,0,technical,low +0.85,0.55,5,182,3,0,0,0,technical,low +0.18,0.86,6,264,3,0,0,0,technical,high +0.91,0.74,6,253,2,0,0,0,technical,low +0.81,0.83,3,193,3,0,0,0,technical,medium +0.82,0.59,5,143,2,1,0,0,technical,high +0.48,0.79,3,180,2,0,0,0,technical,medium +0.92,0.84,3,220,3,1,0,0,technical,high +0.94,0.88,5,150,4,0,0,0,technical,medium +1,0.56,3,182,3,0,0,0,support,medium +0.96,0.91,3,257,3,0,0,0,support,medium +0.24,0.74,3,269,4,1,0,0,support,medium +0.62,0.89,5,243,3,0,0,0,support,medium +0.55,0.76,4,257,3,0,0,0,support,medium +0.82,0.52,5,233,2,0,0,0,support,medium +0.62,0.56,4,267,4,0,0,0,support,medium +0.61,0.69,4,160,2,1,0,0,support,high +0.72,0.52,3,143,4,1,0,0,support,low +0.45,0.76,4,143,2,1,0,0,support,medium +0.51,0.93,3,162,4,0,0,0,support,medium +0.42,0.53,3,181,5,0,0,0,technical,medium +0.69,0.64,3,286,3,0,0,0,technical,medium +0.61,0.66,2,111,3,0,0,0,technical,medium +0.5,0.98,5,177,4,0,0,0,management,medium +0.25,0.68,4,279,5,1,0,0,IT,medium +0.88,0.89,4,135,3,0,0,0,IT,medium +0.81,0.66,3,160,2,0,0,0,IT,medium +0.75,0.77,3,178,4,0,0,0,IT,high +0.77,0.8,3,147,3,0,0,0,IT,low +0.55,0.72,3,204,2,0,0,0,product_mng,low +0.7,0.73,5,151,2,0,0,0,product_mng,low +0.96,0.78,3,209,2,0,0,0,product_mng,high +0.18,0.73,6,225,4,0,0,0,product_mng,low +0.22,0.62,6,142,3,0,0,0,IT,low +0.95,0.49,3,158,2,0,0,0,RandD,low +0.37,0.71,2,139,4,0,0,0,RandD,high +0.84,0.45,3,263,2,0,0,0,RandD,low +0.8,0.68,3,160,3,0,0,0,RandD,low +0.57,0.55,2,173,2,0,0,0,RandD,low +0.98,0.63,3,169,2,0,0,0,marketing,low +0.95,0.62,3,161,3,0,0,0,sales,low +0.8,0.65,4,172,3,1,0,0,accounting,low +0.52,0.7,3,257,3,0,0,0,support,low +0.31,0.62,2,139,3,0,0,0,technical,medium +0.71,0.59,5,245,2,0,0,0,management,medium +0.71,0.85,3,260,3,0,0,0,marketing,medium +0.5,0.96,5,229,4,0,0,0,marketing,medium +0.95,0.9,2,129,5,0,0,0,marketing,medium +0.95,0.77,3,184,4,0,0,0,sales,medium +0.65,0.85,4,204,3,0,0,0,sales,medium +0.94,0.72,3,152,2,1,0,0,sales,medium +0.72,0.85,4,142,3,0,0,0,sales,medium +0.94,0.79,4,136,2,0,0,0,sales,medium +0.79,0.94,4,216,4,0,0,0,sales,medium +0.6,0.58,3,201,3,0,0,0,sales,medium +0.62,0.76,4,163,3,0,0,0,sales,high +0.94,0.74,4,224,5,0,0,0,sales,low +0.24,0.5,4,209,3,0,0,0,sales,medium +0.17,0.71,5,257,4,1,0,0,sales,medium +0.66,0.83,4,234,4,0,0,0,sales,medium +0.65,0.56,3,221,2,0,0,0,sales,medium +0.51,0.62,2,186,2,0,0,0,sales,low +0.41,0.75,4,199,3,0,0,0,sales,low +0.98,0.99,3,235,3,0,0,0,sales,low +0.96,0.55,5,211,2,0,0,0,sales,low +0.55,0.97,4,136,4,0,0,0,sales,low +0.99,0.71,4,155,3,0,0,0,sales,low +0.51,0.98,4,269,3,0,0,0,accounting,low +0.74,0.9,3,285,3,0,0,0,accounting,low +0.81,0.87,5,241,3,0,0,0,accounting,low +0.51,0.87,3,180,4,0,0,0,hr,low +0.53,0.55,5,224,2,1,0,0,hr,low +0.67,0.48,6,107,2,1,0,0,hr,low +0.68,0.64,2,167,2,0,0,0,hr,low +0.69,0.63,3,137,3,0,0,0,technical,low +0.71,0.65,4,239,3,0,0,0,technical,low +0.64,0.56,3,239,3,0,0,0,technical,low +0.62,0.58,3,148,2,1,0,0,technical,low +0.81,0.5,4,231,3,1,0,0,technical,low +0.84,0.54,4,179,2,0,0,0,technical,low +1,0.67,3,181,2,0,0,0,technical,low +0.72,0.73,5,184,4,1,0,0,technical,low +0.57,0.67,3,207,2,0,0,0,technical,medium +0.73,0.99,4,152,4,0,0,0,technical,medium +0.91,0.59,4,133,4,0,0,0,technical,medium +0.98,0.85,4,178,3,0,0,0,support,medium +0.58,0.95,4,173,3,0,0,0,support,medium +0.73,0.52,2,113,5,1,0,0,support,medium +0.96,0.95,3,236,2,0,0,0,support,medium +0.57,0.98,3,188,5,0,0,0,support,medium +0.77,0.73,3,269,2,0,0,0,support,medium +0.3,0.85,2,203,3,0,0,0,support,medium +0.85,0.75,3,214,3,0,0,0,support,medium +0.49,0.83,2,185,6,0,0,0,support,medium +0.77,0.43,4,265,6,0,0,0,support,high +1,0.99,4,184,4,0,0,0,support,low +0.85,0.74,3,157,3,0,0,0,technical,medium +0.87,0.75,3,258,3,0,0,0,technical,medium +0.9,0.79,3,222,6,1,0,0,technical,medium +0.71,0.8,5,248,4,0,0,0,management,medium +0.59,0.56,5,162,4,0,0,0,IT,low +0.85,0.74,3,250,3,1,0,0,IT,low +0.72,0.82,4,231,3,0,0,0,IT,low +0.73,0.65,3,165,3,0,0,0,IT,low +0.9,0.54,3,272,2,0,0,0,IT,low +0.59,0.65,4,177,2,0,0,0,product_mng,low +0.52,0.9,3,133,3,0,0,0,product_mng,low +0.85,0.49,4,159,3,0,0,0,product_mng,low +0.35,0.4,3,130,3,0,0,0,product_mng,low +0.7,0.68,3,185,4,0,0,0,IT,low +0.58,0.86,3,182,3,0,0,0,RandD,low +0.89,0.5,2,238,4,0,0,0,RandD,low +0.54,0.63,3,211,3,0,0,0,RandD,low +0.55,0.89,4,209,3,0,0,0,RandD,low +0.77,0.62,5,190,3,0,0,0,RandD,low +0.55,0.61,4,272,4,1,0,0,marketing,low +0.6,0.77,3,202,3,0,0,0,sales,low +0.75,0.9,4,185,3,0,0,0,accounting,low +0.57,0.88,3,176,3,0,0,0,support,low +0.69,0.94,4,239,3,0,0,0,technical,low +0.87,0.98,4,238,3,1,0,0,management,low +0.69,0.36,5,269,6,1,0,0,marketing,medium +0.58,0.92,3,232,5,0,0,0,marketing,medium +0.87,0.64,2,148,6,1,0,0,marketing,medium +0.71,0.77,3,149,2,0,0,0,sales,medium +0.74,0.78,4,203,2,0,0,0,sales,medium +0.75,0.53,5,235,3,0,0,0,sales,medium +0.5,0.54,2,269,2,1,0,0,sales,medium +0.59,0.86,4,260,2,0,0,0,sales,medium +0.81,0.84,3,216,3,0,0,0,sales,medium +0.34,0.55,3,136,2,1,0,0,sales,medium +0.53,0.87,5,158,3,0,0,0,sales,medium +0.94,0.85,4,180,4,0,0,0,sales,medium +0.76,0.77,5,133,2,0,0,0,sales,high +0.2,0.58,5,199,4,0,0,0,sales,low +0.97,0.67,3,169,2,1,0,0,sales,medium +0.96,0.72,3,195,2,0,0,0,sales,medium +0.81,0.5,5,205,3,0,0,0,sales,medium +0.2,0.48,4,156,4,1,0,0,sales,medium +0.53,0.71,3,125,2,1,0,0,sales,low +0.75,0.76,3,171,4,0,0,0,sales,low +0.55,0.91,4,199,3,0,0,0,sales,low +0.58,0.65,5,187,2,0,0,0,sales,low +0.99,0.64,4,218,4,0,0,0,accounting,low +0.96,0.86,4,268,3,0,0,0,accounting,low +0.82,0.92,3,257,2,0,0,0,accounting,low +0.88,0.77,4,224,5,1,0,0,hr,low +0.78,0.97,4,221,4,0,0,0,hr,low +0.46,0.47,6,101,5,0,0,0,hr,low +0.88,0.59,3,224,2,0,0,0,hr,low +0.91,0.55,3,223,4,1,0,0,technical,low +0.6,0.68,4,271,4,0,0,0,technical,low +0.82,0.51,3,210,2,0,0,0,technical,low +0.67,0.56,4,241,3,0,0,0,technical,low +0.55,0.61,3,209,3,0,0,0,technical,low +0.73,0.62,5,186,4,0,0,0,technical,low +0.59,0.68,4,273,2,0,0,0,technical,low +0.4,0.65,6,172,2,1,0,0,technical,low +0.56,0.99,3,209,2,0,0,0,technical,low +0.87,0.57,4,175,2,1,0,0,technical,low +0.5,0.53,5,239,3,0,0,0,technical,medium +0.98,0.79,4,231,4,0,0,0,support,medium +0.71,0.96,4,131,3,0,0,0,support,medium +0.72,0.89,4,217,3,0,0,0,support,medium +0.5,0.83,4,242,2,0,0,0,support,medium +0.89,0.56,3,224,2,0,0,0,support,medium +0.56,0.68,3,208,3,1,0,0,support,medium +0.32,0.55,4,167,5,0,0,0,support,medium +0.96,0.88,5,269,2,0,0,0,support,medium +0.67,0.92,4,156,2,0,0,0,support,medium +0.26,0.7,3,238,6,0,0,0,support,medium +0.51,0.9,5,193,4,0,0,0,support,medium +0.16,0.78,4,196,5,0,0,0,technical,high +0.77,0.71,5,233,2,0,0,0,technical,low +0.67,0.52,2,152,5,0,0,0,technical,medium +0.36,0.77,4,252,2,0,0,0,management,medium +0.69,0.82,3,262,5,1,0,0,IT,medium +0.72,0.76,3,261,4,0,0,0,IT,medium +0.72,0.81,4,144,2,0,0,0,IT,low +0.88,0.95,4,234,3,0,0,0,IT,low +0.91,0.55,2,234,2,0,0,0,IT,low +0.96,0.6,4,170,2,1,0,0,product_mng,low +0.49,0.8,3,238,4,0,0,0,product_mng,low +0.59,0.97,5,242,3,0,0,0,product_mng,low +0.8,0.87,4,209,3,0,0,0,product_mng,low +0.91,0.67,4,206,3,0,0,0,IT,low +0.18,0.79,4,240,5,0,0,0,RandD,low +0.94,0.58,5,215,2,0,0,0,RandD,low +0.44,0.61,3,147,4,0,0,0,RandD,low +0.96,0.59,2,265,2,0,0,0,RandD,low +0.55,0.97,4,162,3,0,0,0,RandD,low +0.99,0.54,4,239,3,0,0,0,marketing,low +0.75,0.88,3,224,2,0,0,0,sales,low +0.66,0.78,4,256,3,0,0,0,accounting,low +0.96,0.57,3,263,3,0,0,0,support,low +0.6,0.86,6,272,4,0,0,0,technical,low +0.64,0.78,4,159,4,0,0,0,management,medium +0.85,0.8,4,219,2,0,0,0,marketing,medium +0.3,0.53,3,210,6,0,0,0,marketing,medium +0.74,0.95,4,237,3,1,0,0,marketing,medium +0.14,0.8,5,226,3,0,0,0,sales,medium +0.93,0.76,3,212,3,0,0,0,sales,medium +0.75,0.48,3,250,5,0,0,0,sales,medium +0.58,0.63,4,171,3,0,0,0,sales,medium +0.59,0.6,3,149,4,0,0,0,sales,medium +0.2,0.9,5,228,6,0,0,0,sales,medium +1,0.84,3,215,2,0,0,0,sales,medium +0.51,0.51,3,272,3,0,0,0,sales,medium +0.16,0.72,4,192,6,0,0,0,sales,high +0.77,0.56,5,226,4,0,0,0,sales,low +0.61,0.47,2,149,3,0,0,0,sales,medium +0.73,0.51,3,244,2,0,0,0,sales,medium +0.52,0.85,4,193,3,0,0,0,sales,medium +0.13,0.72,4,247,3,0,0,0,sales,medium +0.73,0.62,3,181,3,0,0,0,sales,low +0.39,0.68,2,137,3,1,0,0,sales,low +0.92,0.8,3,211,4,0,0,0,sales,low +0.34,0.78,5,137,4,0,0,0,sales,low +0.94,0.51,4,229,2,1,0,0,sales,low +0.82,0.65,4,168,3,0,0,0,accounting,low +0.26,0.69,4,180,3,1,0,0,accounting,low +0.78,0.53,4,177,2,0,0,0,accounting,low +0.61,0.95,4,191,2,0,0,0,hr,low +0.5,0.53,3,191,2,1,0,0,hr,low +0.52,0.96,4,125,3,0,0,0,hr,low +0.89,0.79,4,152,3,0,0,0,hr,low +0.85,0.52,4,174,2,0,0,0,technical,low +0.62,0.86,4,135,3,0,0,0,technical,low +0.38,0.67,2,117,3,0,0,0,technical,low +0.55,0.49,2,180,5,1,0,0,technical,low +0.83,0.84,4,146,3,0,0,0,technical,low +0.62,0.65,3,249,3,0,0,0,technical,low +0.6,0.54,3,136,3,1,0,0,technical,low +0.62,0.5,4,198,3,1,0,0,technical,low +0.23,0.88,5,201,3,0,0,0,technical,low +0.13,0.74,6,132,4,1,0,0,technical,medium +0.96,0.63,4,142,4,0,0,0,technical,medium +0.5,0.74,5,256,3,1,0,0,support,medium +0.66,0.72,3,135,2,0,0,0,support,medium +0.61,0.72,4,209,2,0,0,0,support,medium +0.45,0.48,5,287,5,0,0,0,support,medium +0.5,0.95,4,222,3,1,0,0,support,medium +0.75,0.82,3,227,2,0,0,0,support,medium +0.88,0.5,4,162,2,0,0,0,support,medium +0.49,0.79,5,206,2,0,0,0,support,medium +0.82,0.87,5,273,6,0,0,0,support,medium +0.92,0.65,4,135,3,0,0,0,support,medium +0.4,0.85,5,99,2,1,0,0,support,high +0.36,0.61,4,166,4,0,0,0,technical,low +0.8,0.99,5,187,3,1,0,0,technical,medium +0.68,0.65,4,134,3,0,0,0,technical,medium +0.54,0.45,4,137,3,1,0,0,management,medium +0.73,0.69,3,175,2,0,0,0,IT,medium +0.64,0.49,5,188,2,0,0,0,IT,low +0.12,0.39,5,161,4,0,0,0,IT,low +0.6,0.7,4,145,6,0,0,0,IT,low +0.36,0.62,4,111,6,0,0,0,IT,low +0.63,0.76,3,176,2,0,0,0,product_mng,low +0.67,0.94,2,192,3,0,0,0,product_mng,low +0.83,0.9,3,179,2,1,0,0,product_mng,low +0.48,0.9,4,224,3,0,0,0,product_mng,low +0.89,0.56,4,241,5,0,0,0,IT,low +0.71,0.96,3,201,3,0,0,0,RandD,low +0.31,0.59,4,138,2,0,0,0,RandD,low +0.89,0.84,5,168,2,0,0,0,RandD,low +0.38,0.51,2,120,3,0,0,0,RandD,low +0.88,0.92,3,179,3,0,0,0,RandD,low +0.64,0.85,3,250,3,0,0,0,marketing,low +0.65,0.74,4,237,3,1,0,0,sales,low +0.65,0.81,4,192,3,0,0,0,accounting,low +0.54,0.97,4,258,3,0,0,0,support,low +0.69,0.76,4,257,4,0,0,0,technical,low +0.77,0.78,2,271,3,0,0,0,management,low +0.28,0.66,3,184,2,0,0,0,marketing,low +0.33,0.4,6,214,6,0,0,0,marketing,medium +0.83,0.68,4,198,3,0,0,0,marketing,medium +0.89,0.73,3,274,2,0,0,0,sales,medium +0.76,0.6,5,279,2,0,0,0,sales,medium +0.83,0.64,5,272,2,0,0,0,sales,medium +0.57,0.85,4,152,3,0,0,0,sales,medium +0.61,0.89,2,287,4,0,0,0,sales,medium +0.96,0.89,2,239,6,1,0,0,sales,medium +0.17,0.5,4,274,6,0,0,0,sales,medium +0.61,0.6,4,121,2,0,0,0,sales,medium +0.73,0.74,5,199,2,0,0,0,sales,medium +0.3,0.39,3,175,3,0,0,0,sales,medium +0.42,0.67,2,115,3,0,0,0,sales,high +0.65,0.75,3,194,4,1,0,0,sales,low +0.17,0.45,2,119,3,0,0,0,sales,medium +0.12,0.82,5,162,4,1,0,0,sales,medium +0.7,0.78,5,264,2,0,0,0,sales,medium +0.87,0.88,3,179,2,0,0,0,sales,medium +0.43,0.44,5,213,3,0,0,0,sales,low +0.84,0.65,3,269,2,0,0,0,sales,low +0.94,0.55,3,160,3,0,0,0,sales,low +0.89,0.76,4,133,2,0,0,0,accounting,low +0.69,0.75,5,201,3,0,0,0,accounting,low +0.18,0.99,4,160,5,0,0,0,accounting,low +0.98,0.69,3,274,3,0,0,0,hr,low +0.3,0.88,5,245,4,0,0,0,hr,low +0.51,0.53,3,237,3,0,0,0,hr,medium +0.76,0.9,3,279,6,0,0,0,hr,medium +0.67,0.96,4,207,3,0,0,0,technical,medium +0.12,0.84,4,218,6,0,0,0,technical,medium +0.42,0.41,5,240,2,0,0,0,technical,medium +0.69,0.76,3,153,3,0,0,0,technical,medium +0.63,0.96,3,144,2,0,0,0,technical,medium +0.66,0.62,2,159,3,1,0,0,technical,medium +0.5,0.5,3,237,2,0,0,0,technical,medium +0.67,0.82,5,148,2,1,0,0,technical,medium +0.59,0.62,4,205,3,0,0,0,technical,medium +0.75,0.78,2,264,3,1,0,0,technical,medium +0.88,0.89,5,189,2,0,0,0,technical,medium +0.99,0.75,3,243,3,0,0,0,support,medium +0.44,0.42,2,199,2,0,0,0,support,medium +0.65,0.78,4,205,2,0,0,0,support,medium +0.88,0.63,3,184,4,0,0,0,support,medium +0.58,0.79,2,274,4,0,0,0,support,medium +0.99,0.9,4,181,3,0,0,0,support,medium +0.76,0.71,3,205,2,0,0,0,support,medium +0.14,0.98,5,172,5,0,0,0,support,medium +0.57,0.86,3,164,2,0,0,0,support,medium +0.52,0.82,3,138,2,1,0,0,support,medium +0.71,0.55,5,262,3,0,0,0,support,medium +0.27,0.75,5,264,3,0,0,0,technical,medium +0.49,0.52,3,225,2,0,0,0,technical,high +0.59,0.5,3,199,2,0,0,0,technical,high +0.24,0.65,6,210,5,0,0,0,management,high +0.18,0.87,6,226,4,0,0,0,IT,high +0.73,0.62,5,134,3,0,0,0,IT,high +0.78,0.63,6,111,6,0,0,0,IT,high +0.94,0.73,5,142,2,1,0,0,IT,high +0.86,0.53,3,213,3,0,0,0,IT,high +0.97,0.88,4,139,2,0,0,0,product_mng,high +0.49,0.54,3,145,3,0,0,0,product_mng,high +0.82,0.48,4,149,6,0,0,0,product_mng,high +0.86,0.64,4,147,2,1,0,0,product_mng,high +0.3,0.39,3,193,3,1,0,0,IT,low +0.7,0.38,4,270,2,0,0,0,RandD,low +0.8,0.78,5,266,3,0,0,0,RandD,low +0.36,0.63,2,278,4,0,0,0,RandD,low +0.4,0.61,3,165,2,0,0,0,RandD,low +0.8,0.58,4,175,2,0,0,0,RandD,low +0.98,0.73,4,140,4,0,0,0,marketing,low +0.92,0.67,3,149,3,0,0,0,sales,low +0.68,1,3,205,4,0,0,0,accounting,low +1,0.59,3,253,3,0,0,0,support,low +0.8,0.54,3,222,4,0,0,0,technical,low +0.85,0.69,4,216,4,0,0,0,management,low +0.69,0.6,3,139,2,0,0,0,marketing,low +0.57,0.52,4,252,2,0,0,0,marketing,low +0.33,0.72,2,173,2,0,0,0,marketing,low +0.19,0.48,6,178,3,1,0,0,sales,medium +0.5,0.63,3,160,2,0,0,0,sales,medium +0.52,0.88,3,261,4,0,0,0,sales,medium +0.13,0.52,6,188,3,0,0,0,sales,medium +0.18,0.73,4,219,5,0,0,0,sales,medium +0.86,0.64,4,263,3,0,0,0,sales,medium +0.86,0.59,4,165,3,0,0,0,sales,medium +0.16,0.76,6,218,6,0,0,0,sales,medium +0.43,0.46,2,239,3,1,0,0,sales,medium +0.79,0.63,3,212,2,1,0,0,sales,medium +0.51,0.67,4,133,3,0,0,0,sales,medium +0.83,0.55,5,250,3,1,0,0,sales,medium +0.61,0.45,3,114,3,0,0,0,sales,high +0.65,0.57,3,168,2,0,0,0,sales,high +0.95,0.83,4,252,2,0,0,0,sales,high +0.63,0.64,5,189,4,0,0,0,sales,high +0.72,0.6,3,265,2,1,0,0,sales,high +0.8,0.57,3,176,3,0,0,0,sales,high +0.7,0.57,4,150,4,0,0,0,sales,high +0.45,0.79,5,97,6,1,0,0,accounting,high +0.64,0.85,4,265,2,0,0,0,accounting,low +0.94,0.48,4,260,4,0,0,0,accounting,low +0.57,0.76,4,164,2,0,0,0,hr,low +0.35,0.56,4,142,2,0,0,0,hr,low +0.75,0.81,2,247,4,0,0,0,hr,low +0.7,0.92,5,182,3,0,0,0,hr,low +0.7,0.47,2,238,3,0,0,0,technical,low +0.61,0.62,3,191,3,0,0,0,technical,low +0.78,0.87,4,178,3,0,0,0,technical,medium +0.97,0.77,4,208,2,0,0,0,technical,medium +0.51,0.76,3,256,2,0,0,0,technical,medium +0.56,0.71,5,243,3,0,0,0,technical,medium +0.87,0.55,3,233,3,0,0,0,technical,medium +0.64,0.78,5,200,3,0,0,0,technical,medium +0.6,0.85,2,226,2,1,0,0,technical,medium +0.9,0.76,2,150,2,0,0,0,technical,medium +0.54,0.62,2,141,2,0,0,0,technical,medium +0.23,0.8,5,139,3,0,0,0,support,medium +0.8,0.81,3,199,4,1,0,0,support,medium +0.23,0.78,4,154,6,1,0,0,support,medium +0.81,0.51,3,247,2,0,0,0,support,medium +0.35,0.6,5,239,5,0,0,0,support,medium +0.67,0.8,4,137,2,0,0,0,support,medium +0.46,0.6,4,119,5,0,0,0,support,medium +0.84,0.98,4,134,5,1,0,0,support,medium +0.92,0.79,3,243,4,0,0,0,support,medium +0.75,0.93,5,210,3,0,0,0,support,medium +0.7,0.57,4,265,2,0,0,0,support,medium +0.7,0.75,4,204,3,0,0,0,technical,medium +0.9,0.81,6,273,5,0,0,0,technical,medium +0.8,1,3,177,2,0,0,0,technical,medium +0.5,0.65,5,285,6,0,0,0,management,high +0.84,0.72,4,222,2,0,0,0,IT,low +0.48,0.94,3,185,2,1,0,0,IT,medium +0.98,0.87,5,151,6,0,0,0,IT,medium +0.64,0.96,3,109,4,0,0,0,IT,medium +0.58,0.53,4,192,4,0,0,0,IT,medium +0.66,0.89,4,139,3,0,0,0,product_mng,medium +0.76,0.98,4,191,2,0,0,0,product_mng,medium +0.32,0.42,6,114,3,0,0,0,product_mng,medium +0.49,0.87,3,212,2,0,0,0,product_mng,medium +0.81,0.51,3,162,2,0,0,0,IT,medium +0.42,0.48,5,191,5,0,0,0,RandD,medium +0.17,0.85,3,234,3,0,0,0,RandD,low +0.49,0.59,4,265,3,0,0,0,RandD,low +0.34,0.69,6,283,2,0,0,0,RandD,low +0.86,0.81,3,232,4,0,0,0,RandD,low +0.51,0.71,4,208,3,1,0,0,marketing,low +0.49,0.99,4,258,3,1,0,0,sales,low +0.49,0.63,3,175,2,0,0,0,accounting,low +0.51,0.59,3,238,3,0,0,0,support,high +0.64,0.52,3,166,3,0,0,0,technical,low +0.62,0.85,4,225,2,0,0,0,management,high +0.81,0.52,4,221,6,0,0,0,marketing,high +0.95,0.57,2,263,3,0,0,0,marketing,low +0.88,0.66,4,218,4,1,0,0,marketing,low +0.87,0.68,5,236,4,0,0,0,sales,high +0.73,0.68,5,133,2,0,0,0,sales,low +0.98,0.73,2,237,3,0,0,0,sales,medium +0.77,0.48,3,204,6,0,0,0,sales,high +0.76,0.99,3,166,3,0,0,0,sales,medium +0.21,0.93,4,189,2,1,0,0,sales,medium +0.72,0.63,4,251,3,0,0,0,sales,medium +0.41,0.56,2,121,2,0,0,0,sales,medium +0.9,0.56,3,149,2,0,0,0,sales,high +0.96,0.9,5,198,2,0,0,0,sales,medium +0.61,0.48,4,163,3,0,0,0,sales,medium +0.6,0.8,4,222,2,0,0,0,sales,medium +0.5,0.76,2,107,4,0,0,0,sales,high +0.79,0.61,4,162,2,0,0,0,sales,medium +0.32,0.69,6,192,3,0,0,0,sales,high +0.85,0.59,5,236,3,0,0,0,sales,low +0.9,0.62,5,225,2,0,0,0,sales,medium +0.74,0.54,4,167,2,0,0,0,sales,medium +0.21,0.76,6,219,4,1,0,0,sales,medium +0.91,0.61,3,255,3,0,0,0,accounting,medium +0.9,0.66,5,137,2,0,0,0,accounting,low +0.74,0.99,4,193,3,0,0,0,accounting,low +0.76,0.75,3,239,2,0,0,0,hr,low +0.45,0.61,5,179,5,0,0,0,hr,low +0.73,0.63,3,205,2,1,0,0,hr,low +0.6,0.73,3,140,5,1,0,0,hr,low +0.8,0.77,5,256,2,0,0,0,technical,low +0.53,0.7,4,243,3,0,0,0,technical,low +0.97,0.63,5,163,3,0,0,0,technical,low +0.64,0.99,3,167,2,0,0,0,technical,low +0.92,0.59,4,190,5,0,0,0,technical,high +0.6,0.57,5,145,3,1,0,0,technical,low +1,0.6,4,265,4,0,0,0,technical,low +0.69,0.63,4,272,2,0,0,0,technical,low +0.53,0.45,5,140,5,0,0,0,technical,low +0.63,0.58,4,236,2,0,0,0,technical,high +0.57,0.89,4,255,3,1,0,0,technical,low +0.79,0.45,5,131,6,0,0,0,support,low +0.68,0.92,4,209,6,0,0,0,support,low +0.56,0.61,3,250,2,0,0,0,support,high +0.48,0.51,3,201,2,1,0,0,support,low +0.59,0.67,4,271,2,0,0,0,support,medium +0.34,0.76,6,237,5,0,0,0,support,high +0.98,0.87,3,239,4,0,0,0,support,medium +0.36,0.45,2,135,3,1,0,0,support,high +0.6,0.58,2,182,2,0,0,0,support,medium +0.24,0.54,6,193,4,0,0,0,support,medium +0.67,0.72,4,192,3,1,0,0,support,medium +0.17,0.6,5,144,6,0,0,0,technical,medium +0.57,0.58,3,251,3,0,0,0,technical,medium +0.7,0.85,3,161,2,0,0,0,technical,medium +0.73,0.62,3,171,3,0,0,0,management,medium +0.61,0.86,4,153,5,0,0,0,IT,medium +0.95,0.96,4,161,2,0,0,0,IT,high +0.85,0.55,3,226,4,0,0,0,IT,low +0.72,0.9,3,193,3,0,0,0,IT,medium +0.84,0.66,4,204,3,0,0,0,IT,medium +0.57,0.47,2,158,2,0,0,0,product_mng,medium +0.69,0.69,3,236,4,0,0,0,product_mng,medium +0.57,0.68,4,191,3,0,0,0,product_mng,medium +0.52,0.59,6,104,4,0,0,0,product_mng,medium +0.56,0.55,3,245,2,0,0,0,IT,medium +0.75,0.74,3,186,3,1,0,0,RandD,medium +0.98,0.75,5,168,4,1,0,0,RandD,medium +0.48,0.55,4,262,3,1,0,0,RandD,high +0.35,0.67,2,116,3,0,0,0,RandD,low +0.66,0.93,4,187,2,0,0,0,RandD,low +0.79,0.9,5,184,3,0,0,0,marketing,low +0.86,0.53,4,155,3,0,0,0,marketing,high +0.88,1,5,190,2,0,0,0,sales,low +0.83,0.64,3,242,3,0,0,0,accounting,low +0.8,0.64,5,204,2,0,0,0,support,low +0.64,0.69,4,232,3,0,0,0,technical,high +0.72,0.59,4,245,2,0,0,0,management,low +0.67,0.61,3,251,2,0,0,0,marketing,low +0.75,0.7,4,179,2,0,0,0,marketing,low +0.65,0.95,4,153,2,0,0,0,marketing,low +0.98,0.98,5,210,6,0,0,0,sales,low +0.68,0.8,2,257,2,1,0,0,sales,low +0.52,0.37,3,137,4,0,0,0,sales,low +0.68,0.93,4,179,2,0,0,0,sales,medium +0.92,0.74,4,213,3,0,0,0,sales,medium +0.86,0.79,3,106,6,1,0,0,sales,medium +0.5,0.99,4,272,2,0,0,0,sales,medium +0.35,0.37,4,153,2,0,0,0,sales,medium +0.76,0.97,5,172,3,0,0,0,sales,medium +0.66,0.95,4,224,2,0,0,0,sales,medium +0.58,0.71,3,230,3,1,0,0,sales,medium +0.55,0.97,4,222,4,0,0,0,sales,medium +0.9,0.53,3,270,3,0,0,0,sales,medium +0.75,0.71,4,205,3,0,0,0,sales,medium +0.9,0.63,4,134,3,1,0,0,sales,medium +0.14,0.54,5,275,4,1,0,0,sales,high +0.86,0.57,4,183,3,0,0,0,sales,low +0.56,0.84,4,143,4,0,0,0,sales,medium +0.54,0.63,5,259,2,0,0,0,sales,medium +0.36,0.8,5,186,4,0,0,0,accounting,medium +0.82,0.59,3,155,3,0,0,0,accounting,medium +0.49,0.42,2,266,3,0,0,0,accounting,low +0.77,0.97,3,215,2,0,0,0,hr,low +0.64,0.83,4,179,3,0,0,0,hr,low +0.93,0.53,3,217,3,0,0,0,hr,low +0.96,0.94,5,235,3,0,0,0,hr,low +0.6,0.97,3,164,2,0,0,0,technical,low +0.58,0.55,3,178,5,0,0,0,technical,low +0.52,0.49,5,170,3,0,0,0,technical,low +0.74,0.79,5,241,3,0,0,0,technical,low +0.64,0.99,4,222,2,0,0,0,technical,low +0.93,0.59,3,233,3,0,0,0,technical,low +0.76,0.49,5,243,3,0,0,0,technical,low +0.5,0.54,4,175,2,0,0,0,technical,low +0.79,0.55,4,266,3,0,0,0,technical,low +0.97,0.95,5,201,2,0,0,0,technical,low +0.6,0.49,5,259,4,0,0,0,technical,low +0.84,0.73,5,105,5,0,0,0,support,low +0.75,0.99,5,189,3,0,0,0,support,low +0.24,0.91,4,232,2,0,0,0,support,low +0.24,0.91,5,258,6,0,0,0,support,low +0.51,0.58,5,173,3,0,0,0,support,low +0.5,0.88,4,147,3,0,0,0,support,medium +0.66,0.36,3,256,6,0,0,0,support,medium +0.97,0.77,3,206,4,0,0,0,support,medium +0.61,0.5,4,175,3,0,0,0,support,medium +0.77,0.49,4,274,2,1,0,0,support,medium +0.74,0.64,3,229,3,0,0,0,support,medium +0.92,0.98,4,161,3,0,0,0,technical,medium +0.78,0.99,2,188,2,0,0,0,technical,medium +0.56,0.57,3,205,3,0,0,0,technical,medium +0.82,0.63,3,246,3,0,0,0,management,medium +0.26,0.98,5,161,5,0,0,0,IT,medium +0.69,0.85,5,246,3,0,0,0,IT,medium +0.78,0.83,4,158,3,0,0,0,IT,high +0.67,0.86,3,175,3,0,0,0,IT,low +0.77,0.91,5,268,3,1,0,0,IT,medium +0.8,0.63,4,211,2,0,0,0,product_mng,medium +0.51,0.51,3,274,2,0,0,0,product_mng,medium +0.77,0.52,4,241,3,0,0,0,product_mng,medium +0.65,0.71,3,170,2,0,0,0,product_mng,low +0.58,0.53,3,287,5,0,0,0,IT,low +0.67,0.39,2,235,6,0,0,0,RandD,low +0.33,0.39,3,98,3,1,0,0,RandD,low +0.78,0.66,6,105,5,1,0,0,RandD,low +0.58,0.83,3,226,3,0,0,0,RandD,low +0.63,0.59,4,171,4,0,0,0,RandD,low +0.63,0.51,4,153,4,0,0,0,RandD,low +0.59,0.55,3,183,4,0,0,0,marketing,low +0.6,0.9,5,139,3,0,0,0,sales,low +0.93,0.9,5,210,3,0,0,0,accounting,low +0.78,0.77,2,177,4,0,0,0,support,low +0.65,0.6,3,148,2,0,0,0,technical,low +1,0.61,4,198,2,0,0,0,management,low +0.96,1,3,137,4,1,0,0,marketing,low +0.54,0.97,5,233,3,1,0,0,marketing,low +0.98,0.69,2,204,4,0,0,0,marketing,low +0.34,0.59,2,164,2,0,0,0,sales,low +0.71,0.53,5,162,2,0,0,0,sales,low +0.64,0.64,3,180,2,1,0,0,sales,low +0.71,0.93,2,199,2,0,0,0,sales,low +0.58,0.63,4,190,2,0,0,0,sales,medium +0.87,0.96,4,151,3,1,0,0,sales,medium +0.58,0.85,4,162,3,0,0,0,sales,medium +0.87,0.67,3,139,2,0,0,0,sales,medium +0.72,0.86,3,231,3,1,0,0,sales,medium +0.67,0.83,5,269,2,0,0,0,sales,medium +0.53,0.97,4,249,3,0,0,0,sales,medium +0.78,0.61,3,148,2,0,0,0,sales,medium +0.19,0.63,4,233,5,0,0,0,sales,medium +1,0.88,4,240,4,0,0,0,sales,medium +0.75,0.75,5,229,2,1,0,0,sales,medium +0.29,0.66,3,256,2,1,0,0,sales,medium +0.37,0.7,2,188,2,0,0,0,sales,high +0.78,0.5,3,167,2,0,0,0,sales,low +0.24,0.64,5,190,4,0,0,0,sales,medium +0.49,0.7,4,168,3,0,0,0,accounting,medium +0.18,0.64,6,154,5,0,0,0,accounting,medium +0.76,0.85,4,135,3,0,0,0,accounting,medium +0.5,0.97,4,217,3,0,0,0,hr,low +0.82,0.94,3,253,2,0,0,0,hr,low +0.97,0.94,3,180,3,0,0,0,hr,low +0.72,0.9,4,225,2,0,0,0,hr,low +0.98,0.64,4,134,3,1,0,0,technical,low +0.76,0.73,3,192,2,0,0,0,technical,low +0.72,0.88,3,224,3,0,0,0,technical,low +0.96,0.91,3,260,5,0,0,0,technical,low +0.62,0.78,3,178,3,1,0,0,technical,low +0.25,0.98,4,166,5,1,0,0,technical,low +0.82,0.56,5,180,3,0,0,0,technical,low +0.59,0.9,3,189,2,0,0,0,technical,low +0.94,0.73,3,154,3,0,0,0,technical,low +0.72,0.88,3,236,3,0,0,0,technical,low +0.53,0.78,5,198,3,0,0,0,technical,low +0.67,0.83,3,148,3,0,0,0,support,low +0.99,0.52,4,205,2,0,0,0,support,low +0.64,0.53,4,133,3,0,0,0,support,low +0.61,0.57,4,160,3,1,0,0,support,low +0.89,0.85,4,201,2,1,0,0,support,low +0.61,0.7,5,157,4,0,0,0,support,low +0.9,0.74,3,260,2,0,0,0,support,medium +0.96,0.51,5,152,3,0,0,0,support,medium +0.62,0.55,4,218,3,0,0,0,support,medium +0.89,0.57,3,252,2,0,0,0,support,medium +0.52,0.67,4,216,3,0,0,0,support,medium +0.66,0.99,3,183,2,0,0,0,technical,medium +0.96,0.6,5,269,2,0,0,0,technical,medium +0.95,0.89,5,132,4,0,0,0,technical,medium +0.75,0.98,4,170,4,0,0,0,management,medium +0.39,0.87,5,257,5,1,0,0,IT,medium +0.93,0.69,3,138,2,0,0,0,IT,medium +0.44,0.54,3,115,3,0,0,0,IT,medium +0.9,0.67,3,165,2,0,0,0,IT,high +0.75,0.81,3,214,3,0,0,0,IT,low +0.45,0.75,2,246,2,0,0,0,product_mng,medium +0.42,0.6,2,188,3,0,0,0,product_mng,medium +0.99,0.82,3,255,2,0,0,0,product_mng,medium +0.89,0.91,4,190,2,0,0,0,product_mng,medium +0.96,0.9,4,164,4,0,0,0,IT,low +0.5,0.46,3,165,3,0,0,0,RandD,low +0.59,0.59,3,141,3,0,0,0,RandD,low +0.57,0.69,3,154,2,0,0,0,RandD,low +1,0.87,3,165,2,0,0,0,RandD,low +0.6,0.59,5,266,2,0,0,0,RandD,low +0.21,0.85,6,235,6,0,0,0,RandD,low +0.63,0.83,4,159,2,0,0,0,marketing,low +0.8,0.82,3,218,3,0,0,0,sales,low +0.51,0.96,3,149,4,0,0,0,accounting,low +0.89,0.96,5,239,3,0,0,0,support,low +0.83,0.58,4,225,3,0,0,0,technical,low +0.77,0.74,6,247,3,0,0,0,management,low +0.79,0.99,4,183,2,0,0,0,marketing,low +0.63,0.85,5,214,2,0,0,0,marketing,low +0.68,0.48,5,113,2,0,0,0,marketing,low +0.74,0.69,4,244,2,0,0,0,sales,low +0.49,0.67,6,286,4,0,0,0,sales,low +0.46,0.55,3,139,2,0,0,0,sales,medium +0.9,0.91,5,176,3,0,0,0,sales,medium +0.7,0.67,5,136,3,0,0,0,sales,medium +0.84,0.71,4,222,2,0,0,0,sales,medium +0.89,0.77,4,269,4,0,0,0,sales,medium +0.59,0.87,4,183,2,0,0,0,sales,medium +0.57,0.72,3,206,3,0,0,0,sales,medium +0.53,0.49,3,158,3,0,0,0,sales,medium +0.83,0.89,4,136,3,0,0,0,sales,medium +0.51,0.66,4,182,2,0,0,0,sales,medium +0.78,0.61,4,268,3,0,0,0,sales,medium +0.52,0.69,3,144,3,0,0,0,sales,medium +0.42,0.5,5,286,4,0,0,0,sales,high +0.61,0.38,2,268,3,0,0,0,sales,low +0.85,1,3,255,3,0,0,0,sales,medium +0.17,0.85,6,245,5,0,0,0,sales,medium +0.79,0.52,3,134,2,1,0,0,sales,medium +0.56,0.98,3,251,3,1,0,0,accounting,medium +0.5,0.73,5,165,2,0,0,0,accounting,low +0.51,0.53,3,223,2,1,0,0,accounting,low +0.77,0.67,4,225,4,0,0,0,hr,low +0.84,0.9,3,196,3,1,0,0,hr,low +0.21,0.49,3,253,3,0,0,0,hr,low +0.65,0.57,5,222,3,0,0,0,hr,low +0.95,0.87,4,135,3,0,0,0,technical,low +0.8,0.75,4,217,2,0,0,0,technical,low +0.77,0.85,5,192,2,0,0,0,technical,low +0.57,0.7,3,172,3,0,0,0,technical,low +0.92,0.55,4,183,3,0,0,0,technical,low +1,0.71,5,186,2,0,0,0,technical,low +0.85,0.67,4,163,3,0,0,0,technical,low +0.57,0.8,4,262,3,0,0,0,technical,low +0.66,0.68,3,202,3,0,0,0,technical,low +0.85,0.8,4,248,3,0,0,0,technical,low +0.99,0.5,5,214,2,0,0,0,technical,low +0.91,0.82,4,260,4,0,0,0,support,low +0.96,0.97,4,260,3,0,0,0,support,low +0.49,0.52,4,251,2,0,0,0,support,low +0.39,0.85,5,179,5,0,0,0,support,low +0.87,0.74,4,178,2,1,0,0,support,medium +0.19,0.85,6,210,4,0,0,0,support,medium +0.9,0.83,3,273,4,0,0,0,support,medium +0.5,0.5,5,166,2,0,0,0,support,medium +0.7,0.9,5,246,2,0,0,0,support,medium +0.52,0.55,5,192,3,0,0,0,support,medium +0.71,0.69,3,274,3,0,0,0,support,medium +0.4,0.41,3,232,3,0,0,0,technical,medium +0.96,0.53,3,158,4,0,0,0,technical,medium +0.86,0.92,5,137,3,0,0,0,technical,medium +0.68,0.85,3,209,2,0,0,0,management,medium +0.56,0.64,3,206,2,0,0,0,IT,medium +0.65,0.56,3,230,2,0,0,0,IT,high +0.98,0.61,5,239,3,0,0,0,IT,low +0.18,0.51,5,159,6,0,0,0,IT,medium +0.66,0.65,4,244,2,0,0,0,IT,medium +0.14,0.51,5,259,5,0,0,0,product_mng,medium +0.94,0.8,5,245,3,1,0,0,product_mng,medium +0.56,1,3,141,2,1,0,0,product_mng,low +0.56,0.8,5,202,4,0,0,0,product_mng,low +0.59,0.89,5,143,3,1,0,0,IT,low +0.63,0.62,4,286,5,1,0,0,RandD,low +0.97,0.88,5,173,3,0,0,0,RandD,low +0.76,0.7,5,195,3,0,0,0,RandD,low +0.85,0.58,4,167,4,0,0,0,RandD,low +0.23,0.73,5,197,4,1,0,0,RandD,low +0.68,0.62,3,255,5,0,0,0,RandD,low +0.71,0.73,3,274,3,0,0,0,marketing,low +0.5,0.59,3,192,2,0,0,0,sales,low +0.61,0.7,3,225,3,0,0,0,accounting,low +0.99,0.65,3,209,2,1,0,0,support,low +0.97,0.86,5,222,3,0,0,0,technical,low +0.82,0.71,5,208,2,0,0,0,management,low +0.72,0.68,5,162,5,0,0,0,marketing,low +0.53,0.74,3,135,2,0,0,0,marketing,low +0.55,0.87,4,200,3,0,0,0,marketing,low +0.52,0.53,4,159,4,0,0,0,sales,low +0.8,0.81,5,156,2,0,0,0,sales,low +0.51,0.95,4,169,3,1,0,0,sales,low +0.66,0.65,4,154,3,0,0,0,sales,medium +0.56,0.43,2,169,3,0,0,0,sales,medium +0.5,0.84,3,233,3,1,0,0,sales,medium +0.94,0.78,3,218,2,1,0,0,sales,medium +0.42,0.8,4,279,6,0,0,0,sales,medium +0.6,0.61,3,195,3,0,0,0,sales,medium +0.55,0.71,4,223,3,0,0,0,sales,medium +0.76,0.72,3,275,4,1,0,0,sales,medium +0.84,0.74,3,234,3,1,0,0,sales,medium +0.33,0.62,4,113,6,0,0,0,sales,medium +0.61,0.95,3,133,5,0,0,0,sales,medium +0.91,0.93,5,158,4,0,0,0,sales,medium +0.73,0.74,4,214,3,0,0,0,sales,high +0.87,0.67,4,272,4,0,0,0,sales,low +0.38,0.42,2,127,4,0,0,0,sales,medium +0.8,0.51,4,141,3,1,0,0,sales,medium +0.69,0.8,5,263,3,1,0,0,accounting,medium +0.99,0.92,5,174,5,0,0,0,accounting,medium +0.92,0.76,5,246,2,1,0,0,accounting,low +0.6,0.88,3,201,2,0,0,0,hr,low +0.89,0.93,3,181,3,0,0,0,hr,low +0.91,0.93,3,238,2,0,0,0,hr,low +0.35,0.52,3,167,2,0,0,0,hr,low +0.88,0.68,5,224,2,0,0,0,technical,low +0.66,0.69,3,182,3,1,0,0,technical,low +0.21,0.55,4,189,2,0,0,0,technical,low +0.78,0.64,3,169,2,1,0,0,technical,medium +0.21,0.96,4,287,5,0,0,0,technical,medium +0.64,0.94,3,150,2,0,0,0,technical,medium +0.68,0.95,4,146,2,0,0,0,technical,medium +0.99,0.87,4,162,4,0,0,0,technical,medium +0.85,0.55,4,158,5,0,0,0,technical,medium +0.86,0.51,3,185,2,0,0,0,technical,medium +0.89,0.98,3,214,3,0,0,0,technical,medium +0.49,0.85,4,200,3,0,0,0,support,medium +0.76,0.97,4,219,2,0,0,0,support,medium +0.79,0.87,3,218,3,0,0,0,support,medium +0.89,0.64,4,237,2,0,0,0,support,medium +0.34,0.51,3,105,3,0,0,0,support,medium +0.81,0.92,3,251,3,1,0,0,support,medium +0.96,0.7,3,227,2,0,0,0,support,medium +0.7,0.87,3,158,2,0,0,0,support,medium +0.92,0.61,4,252,2,0,0,0,support,medium +0.5,0.76,4,198,3,0,0,0,support,medium +0.75,0.72,2,192,3,0,0,0,support,medium +0.42,0.38,2,139,4,0,0,0,technical,medium +0.29,0.4,6,205,3,0,0,0,technical,medium +0.91,0.48,3,224,3,0,0,0,technical,medium +0.55,0.97,4,267,4,0,0,0,management,medium +0.57,0.81,4,200,3,1,0,0,IT,medium +0.27,0.48,3,97,6,0,0,0,IT,medium +0.7,0.43,6,253,3,0,0,0,IT,high +0.63,0.68,4,191,2,0,0,0,IT,high +0.97,0.63,5,199,2,1,0,0,IT,high +0.28,0.52,3,127,4,0,0,0,product_mng,high +0.7,0.6,3,187,2,0,0,0,product_mng,high +0.83,0.51,4,215,3,0,0,0,product_mng,high +0.22,0.76,4,176,6,1,0,0,product_mng,high +0.55,0.47,3,194,2,0,0,0,IT,high +0.33,0.77,3,216,3,0,0,0,RandD,high +0.5,0.78,4,185,3,0,0,0,RandD,high +0.93,0.88,5,140,3,0,0,0,RandD,high +0.77,0.66,3,260,4,0,0,0,RandD,high +0.93,0.97,5,137,4,0,0,0,RandD,low +0.72,1,4,151,2,0,0,0,RandD,low +0.78,0.53,3,152,2,0,0,0,marketing,low +0.55,0.75,4,166,2,0,0,0,sales,low +0.39,0.86,3,261,2,0,0,0,accounting,low +0.67,0.78,3,235,3,0,0,0,support,low +0.61,0.89,3,201,2,0,0,0,technical,low +0.6,0.69,6,250,5,1,0,0,management,low +0.48,0.64,4,146,2,0,0,0,marketing,low +0.75,0.84,4,195,3,0,0,0,marketing,low +0.87,0.58,4,259,3,0,0,0,marketing,low +0.51,0.54,4,166,4,1,0,0,sales,low +0.63,0.9,4,188,4,1,0,0,sales,low +0.6,0.57,3,203,2,0,0,0,sales,low +0.7,0.99,3,167,3,0,0,0,sales,low +0.5,0.99,2,258,3,1,0,0,sales,medium +0.59,0.51,2,126,3,0,0,0,sales,medium +0.52,0.39,6,246,4,0,0,0,sales,medium +0.55,0.49,3,205,3,0,0,0,sales,medium +0.81,0.62,5,201,3,1,0,0,sales,medium +0.94,0.98,4,197,3,0,0,0,sales,medium +0.98,0.61,3,272,3,0,0,0,sales,medium +0.83,0.84,4,206,2,0,0,0,sales,medium +0.93,0.62,3,184,3,0,0,0,sales,medium +0.99,0.54,3,199,2,0,0,0,sales,medium +0.55,0.57,4,220,3,0,0,0,sales,medium +0.96,0.83,3,233,3,0,0,0,sales,medium +0.28,0.77,3,221,3,0,0,0,sales,high +0.97,0.6,6,168,5,1,0,0,sales,high +0.8,0.78,3,251,3,0,0,0,sales,high +0.75,0.55,2,188,3,0,0,0,accounting,high +0.89,0.88,3,203,3,0,0,0,accounting,high +0.6,0.76,5,168,2,1,0,0,accounting,high +0.73,0.98,3,227,2,1,0,0,hr,high +0.88,0.75,4,159,2,0,0,0,hr,high +0.5,0.7,3,159,3,0,0,0,hr,low +0.53,0.78,5,275,5,0,0,0,hr,low +0.95,0.43,6,283,2,0,0,0,technical,low +0.94,0.53,5,169,3,0,0,0,technical,low +0.49,0.8,3,227,4,1,0,0,technical,low +0.59,0.57,3,147,4,0,0,0,technical,low +0.51,0.91,3,227,2,0,0,0,technical,low +0.66,0.66,4,166,3,0,0,0,technical,low +0.76,0.94,4,168,6,0,0,0,technical,medium +0.12,0.59,3,229,6,0,0,0,technical,medium +0.84,0.65,3,134,3,0,0,0,technical,medium +0.94,0.81,3,196,3,0,0,0,technical,medium +0.63,0.84,4,181,3,0,0,0,technical,medium +0.79,0.99,4,177,3,1,0,0,support,medium +0.85,0.68,3,272,2,1,0,0,support,medium +0.74,0.52,3,213,3,0,0,0,support,medium +0.23,0.75,6,220,3,0,0,0,support,medium +0.62,0.51,4,274,2,0,0,0,support,medium +0.36,0.56,6,242,6,0,0,0,support,medium +0.7,0.83,4,182,3,0,0,0,support,medium +0.57,0.75,5,172,4,0,0,0,support,medium +0.83,0.99,3,226,3,0,0,0,support,medium +0.71,0.96,3,132,2,0,0,0,support,medium +0.23,0.72,6,121,3,0,0,0,support,medium +0.59,0.69,4,207,2,0,0,0,technical,medium +0.69,0.61,2,141,3,0,0,0,technical,medium +0.63,0.81,5,189,3,0,0,0,technical,medium +0.9,0.59,6,269,4,1,0,0,management,medium +0.31,0.57,4,200,4,0,0,0,IT,medium +0.92,0.62,3,199,2,0,0,0,IT,medium +0.96,0.87,4,213,3,0,0,0,IT,medium +0.66,0.51,6,105,4,0,0,0,IT,high +0.48,0.97,4,141,2,0,0,0,IT,low +0.15,0.55,3,255,3,1,0,0,product_mng,medium +0.59,0.79,3,217,4,0,0,0,product_mng,medium +0.66,0.85,6,165,5,0,0,0,product_mng,medium +0.69,0.92,5,220,2,0,0,0,product_mng,medium +0.65,0.79,4,241,4,0,0,0,IT,medium +0.58,0.94,5,274,3,0,0,0,RandD,medium +0.72,0.57,4,224,4,0,0,0,RandD,medium +0.65,0.99,5,240,5,0,0,0,RandD,medium +0.63,0.77,5,210,3,0,0,0,RandD,medium +0.55,0.87,3,215,2,0,0,0,RandD,medium +0.74,0.56,4,254,2,0,0,0,marketing,low +0.58,0.84,4,150,4,1,0,0,sales,low +0.71,0.72,4,177,3,0,0,0,accounting,low +0.83,0.37,5,101,4,1,0,0,support,low +0.63,0.52,3,183,2,0,0,0,technical,low +0.56,0.61,3,224,3,0,0,0,management,low +0.88,0.55,3,263,3,0,0,0,marketing,low +0.82,0.55,3,207,2,0,0,0,marketing,high +0.69,0.72,3,243,3,0,0,0,marketing,low +0.57,0.54,3,157,4,1,0,0,sales,high +0.75,0.69,3,242,3,0,0,0,sales,high +0.6,0.98,4,265,2,0,0,0,sales,low +0.96,0.92,3,196,4,0,0,0,sales,low +0.75,0.67,4,135,2,0,0,0,sales,high +1,0.61,6,270,3,0,0,0,sales,low +0.92,0.97,4,201,2,0,0,0,sales,medium +0.84,0.93,5,225,4,0,0,0,sales,high +0.82,0.77,4,205,3,0,0,0,sales,medium +0.74,0.42,3,131,3,0,0,0,sales,medium +0.21,0.39,2,118,4,0,0,0,sales,medium +0.62,0.64,5,187,3,0,0,0,sales,medium +0.54,0.48,3,275,2,0,0,0,sales,high +0.55,0.97,5,125,4,0,0,0,sales,medium +0.84,0.55,4,270,3,1,0,0,sales,medium +0.61,0.56,2,123,2,0,0,0,sales,medium +0.64,0.53,3,281,3,0,0,0,sales,high +0.92,0.51,3,223,2,0,0,0,sales,medium +0.86,0.87,3,268,2,0,0,0,sales,high +0.6,0.74,4,174,3,0,0,0,accounting,low +0.86,0.92,3,162,3,1,0,0,accounting,medium +0.55,0.51,3,192,3,0,0,0,accounting,medium +0.54,0.58,4,178,3,0,0,0,hr,medium +0.49,0.9,3,250,2,0,0,0,hr,medium +0.98,0.72,3,262,4,0,0,0,hr,low +0.55,0.55,5,194,3,1,0,0,hr,low +0.64,0.5,3,146,3,0,0,0,technical,low +0.54,0.53,4,245,2,0,0,0,technical,low +0.58,0.45,3,131,2,0,0,0,technical,low +0.57,0.37,3,108,4,0,0,0,technical,low +0.65,0.64,5,206,3,0,0,0,technical,low +0.6,0.4,3,146,4,1,0,0,technical,low +0.59,0.45,2,171,2,0,0,0,technical,low +0.77,0.5,4,173,2,1,0,0,technical,low +0.55,0.49,5,240,3,0,0,0,technical,high +0.5,0.6,4,199,2,0,0,0,technical,low +0.43,0.77,3,237,3,1,0,0,technical,low +0.58,0.84,3,258,4,0,0,0,support,low +0.66,0.68,4,269,3,1,0,0,support,low +0.7,0.8,5,245,4,0,0,0,support,high +0.82,0.54,4,164,3,0,0,0,support,low +0.49,0.49,4,256,3,1,0,0,support,low +0.99,0.79,4,213,3,0,0,0,support,low +0.96,0.73,3,193,3,1,0,0,support,high +0.7,0.57,3,179,2,0,0,0,support,low +0.22,0.89,6,278,5,1,0,0,support,medium +0.91,0.52,3,256,2,0,0,0,support,high +0.18,0.76,5,173,4,0,0,0,support,medium +0.84,0.68,4,179,3,0,0,0,technical,high +0.66,0.38,4,145,5,0,0,0,technical,medium +0.49,0.65,3,168,4,0,0,0,technical,medium +0.88,0.89,4,213,3,0,0,0,management,medium +0.69,0.91,6,150,5,0,0,0,IT,medium +0.83,0.75,3,262,3,0,0,0,IT,medium +0.56,0.84,4,149,4,1,0,0,IT,medium +0.95,0.77,5,139,2,0,0,0,IT,medium +0.56,1,3,272,2,0,0,0,IT,medium +0.93,0.73,3,252,4,0,0,0,product_mng,high +0.84,0.52,3,232,4,0,0,0,product_mng,low +0.84,0.48,3,266,2,0,0,0,product_mng,medium +0.52,0.65,4,264,3,0,0,0,product_mng,medium +0.98,0.8,4,142,2,0,0,0,IT,medium +0.66,0.64,5,208,4,0,0,0,RandD,medium +0.92,0.49,5,178,2,1,0,0,RandD,medium +0.71,0.8,5,192,3,0,0,0,RandD,medium +0.65,0.92,4,242,2,0,0,0,RandD,medium +0.23,0.47,4,277,5,0,0,0,RandD,medium +0.71,0.97,3,173,2,1,0,0,marketing,medium +0.21,0.65,4,276,6,0,0,0,marketing,high +0.7,0.72,2,189,3,0,0,0,sales,low +0.9,0.5,4,139,2,0,0,0,accounting,low +0.6,0.52,5,140,3,0,0,0,support,low +0.58,0.63,5,191,3,1,0,0,technical,high +0.73,0.72,5,178,2,0,0,0,management,low +0.56,0.67,4,184,3,0,0,0,marketing,low +0.97,0.57,3,144,3,0,0,0,marketing,low +0.92,0.91,3,160,2,0,0,0,marketing,high +0.77,0.68,3,225,2,0,0,0,sales,low +0.97,0.81,5,266,2,0,0,0,sales,low +0.7,0.69,5,154,2,0,0,0,sales,low +0.78,0.82,4,142,2,1,0,0,sales,low +0.77,0.87,3,207,4,1,0,0,sales,low +0.66,0.53,4,162,3,0,0,0,sales,low +0.25,0.98,6,287,5,1,0,0,sales,low +0.89,0.87,2,270,6,1,0,0,sales,medium +0.15,0.66,5,160,4,1,0,0,sales,medium +0.26,0.91,6,113,2,0,0,0,sales,medium +0.74,0.58,4,178,4,0,0,0,sales,medium +0.52,0.83,3,153,2,0,0,0,sales,medium +0.95,0.62,4,255,2,0,0,0,sales,medium +0.66,0.82,4,257,3,1,0,0,sales,medium +0.79,0.66,4,243,3,0,0,0,sales,medium +0.98,0.94,3,179,3,0,0,0,sales,medium +0.4,0.37,3,123,2,0,0,0,sales,medium +1,0.68,3,132,2,0,0,0,sales,medium +0.71,0.79,3,134,3,0,0,0,sales,medium +0.48,0.45,3,277,2,1,0,0,accounting,high +0.76,1,5,265,2,0,0,0,accounting,low +0.61,0.62,4,269,4,0,0,0,accounting,medium +0.74,0.9,4,156,4,0,0,0,hr,medium +0.24,0.94,6,237,5,0,0,0,hr,medium +0.79,0.97,3,271,2,0,0,0,hr,medium +0.75,0.98,3,206,2,0,0,0,hr,low +0.6,0.98,4,192,3,0,0,0,technical,low +0.72,0.95,4,230,3,0,0,0,technical,low +1,0.6,4,261,3,0,0,0,technical,low +0.55,0.88,3,173,3,1,0,0,technical,low +0.3,0.98,2,109,4,1,0,0,technical,low +0.89,0.59,3,247,4,0,0,0,technical,low +0.84,0.84,5,163,3,0,0,0,technical,low +0.67,0.64,4,149,4,0,0,0,technical,low +0.15,0.48,6,218,6,0,0,0,technical,low +0.59,0.75,4,194,2,0,0,0,technical,low +0.5,0.59,4,157,2,0,0,0,technical,low +0.23,0.68,5,244,3,0,0,0,support,low +0.95,0.58,5,169,2,0,0,0,support,low +0.31,0.53,2,146,3,1,0,0,support,low +0.47,0.55,5,207,3,0,0,0,support,low +0.26,0.95,3,195,5,0,0,0,support,low +0.55,0.64,6,148,4,0,0,0,support,low +0.89,0.58,3,272,2,0,0,0,support,low +0.88,0.68,3,185,2,0,0,0,support,low +0.98,0.62,5,260,2,1,0,0,support,low +0.96,0.48,3,182,2,1,0,0,support,medium +0.85,0.65,3,195,3,0,0,0,support,medium +0.96,0.85,3,168,3,0,0,0,technical,medium +0.85,0.88,3,198,4,1,0,0,technical,medium +0.59,0.93,5,172,2,0,0,0,technical,medium +0.51,0.5,4,216,2,1,0,0,management,medium +0.5,0.75,3,232,2,0,0,0,IT,medium +0.53,0.59,3,148,3,0,0,0,IT,medium +0.44,0.83,4,210,2,0,0,0,IT,medium +0.99,0.55,3,197,2,0,0,0,IT,medium +0.73,0.83,4,241,3,0,0,0,IT,medium +0.51,0.71,5,154,2,0,0,0,product_mng,medium +0.5,0.84,3,259,2,0,0,0,product_mng,high +0.52,0.76,4,106,2,1,0,0,product_mng,low +0.74,0.74,5,262,2,0,0,0,product_mng,medium +0.69,0.89,2,202,2,0,0,0,IT,medium +0.22,0.65,5,174,5,1,0,0,RandD,medium +0.49,0.89,4,240,2,0,0,0,RandD,medium +0.7,0.57,5,247,3,0,0,0,RandD,low +0.68,0.63,4,148,3,0,0,0,RandD,low +0.66,0.84,5,187,2,1,0,0,RandD,low +0.99,0.58,4,183,3,0,0,0,marketing,low +0.88,0.59,4,240,2,0,0,0,sales,low +0.2,0.54,4,149,3,0,0,0,accounting,low +0.56,0.44,2,130,3,0,0,0,support,low +0.68,0.85,4,203,2,0,0,0,technical,low +0.85,0.6,3,218,3,0,0,0,management,low +0.95,0.95,4,204,3,1,0,0,marketing,low +0.6,0.77,4,163,3,1,0,0,marketing,low +0.61,0.53,4,183,3,0,0,0,marketing,low +0.55,0.55,4,211,4,0,0,0,sales,low +0.64,0.78,5,156,5,1,0,0,sales,low +0.64,0.6,3,196,3,0,0,0,sales,low +0.87,0.54,4,162,2,0,0,0,sales,low +0.2,0.9,3,218,4,0,0,0,sales,low +0.99,0.64,4,135,2,1,0,0,sales,low +0.96,0.7,2,273,3,0,0,0,sales,low +0.53,0.65,3,241,3,0,0,0,sales,low +0.7,0.39,6,285,4,0,0,0,sales,low +0.68,0.61,6,236,3,0,0,0,sales,medium +0.96,0.48,4,222,3,0,0,0,sales,medium +0.64,0.64,4,242,3,0,0,0,sales,medium +0.86,0.65,5,166,3,0,0,0,sales,medium +0.87,0.84,3,172,3,0,0,0,sales,medium +0.53,0.56,4,249,2,0,0,0,sales,medium +0.72,0.98,4,180,2,0,0,0,sales,medium +0.83,0.59,4,197,4,0,0,0,sales,medium +0.97,0.54,5,185,2,0,0,0,sales,medium +0.92,0.76,3,171,2,0,0,0,sales,medium +0.82,0.95,6,191,6,0,0,0,accounting,medium +0.59,0.56,4,250,2,0,0,0,accounting,medium +0.84,0.95,5,199,3,0,0,0,accounting,high +0.71,0.84,3,139,2,0,0,0,hr,low +0.49,0.98,3,224,3,0,0,0,hr,medium +0.78,0.61,3,227,3,0,0,0,hr,medium +0.84,0.81,4,198,2,0,0,0,hr,medium +0.85,0.96,5,165,5,0,0,0,technical,medium +0.87,0.93,4,199,3,0,0,0,technical,low +0.94,0.84,5,203,3,0,0,0,technical,low +0.82,0.97,4,243,3,1,0,0,technical,low +0.78,0.78,3,135,3,0,0,0,technical,low +0.47,0.55,4,100,4,1,0,0,technical,low +0.5,0.48,2,150,3,1,0,0,technical,low +0.75,0.82,4,252,3,0,0,0,technical,low +0.36,0.39,3,98,3,0,0,0,technical,low +0.91,0.61,3,262,3,0,0,0,technical,low +0.87,0.68,3,257,3,0,0,0,technical,low +0.97,0.94,3,160,3,0,0,0,support,low +0.71,0.65,3,190,3,0,0,0,support,low +0.83,0.65,3,231,2,0,0,0,support,low +0.42,0.51,3,190,4,0,0,0,support,low +0.53,0.51,4,181,3,0,0,0,support,low +0.56,0.88,4,273,3,0,0,0,support,low +0.26,0.7,5,214,6,1,0,0,support,low +0.53,0.49,4,192,2,0,0,0,support,low +0.99,0.73,4,224,2,0,0,0,support,low +0.48,0.43,3,96,3,0,0,0,support,low +0.91,0.5,3,276,4,0,0,0,support,low +0.76,0.79,3,162,2,1,0,0,technical,medium +0.67,0.8,4,190,4,0,0,0,technical,medium +0.58,0.6,4,147,3,0,0,0,technical,medium +0.57,0.78,4,143,3,0,0,0,management,medium +0.55,0.57,5,280,6,1,0,0,IT,medium +0.79,0.49,3,137,2,0,0,0,IT,medium +0.48,0.98,3,259,6,0,0,0,IT,medium +0.68,0.69,4,176,3,1,0,0,IT,medium +0.19,0.64,5,231,4,1,0,0,IT,medium +0.99,0.48,3,104,3,0,0,0,product_mng,medium +0.3,0.76,5,224,2,0,0,0,product_mng,medium +0.81,0.85,4,202,3,1,0,0,product_mng,medium +0.58,0.74,4,180,3,0,0,0,product_mng,high +0.74,0.61,3,228,2,1,0,0,IT,low +0.59,0.74,5,165,2,0,0,0,RandD,medium +0.46,0.63,2,177,6,0,0,0,RandD,medium +0.58,0.43,3,194,2,1,0,0,RandD,medium +0.77,0.95,3,192,4,1,0,0,RandD,medium +0.79,0.77,4,171,2,0,0,0,RandD,low +0.51,0.95,3,187,2,0,0,0,marketing,low +0.7,0.58,3,205,3,0,0,0,sales,low +0.84,0.73,5,230,4,1,0,0,accounting,low +0.19,0.9,5,172,2,0,0,0,support,low +0.9,0.52,4,167,3,1,0,0,technical,low +0.19,0.91,5,145,3,0,0,0,management,low +0.96,0.53,3,166,3,0,0,0,marketing,low +0.87,1,3,148,3,0,0,0,marketing,low +0.5,0.89,5,223,3,0,0,0,marketing,low +0.88,0.58,2,123,4,0,0,0,sales,low +0.55,0.99,3,158,3,0,0,0,sales,low +0.89,0.86,3,223,2,0,0,0,sales,low +0.58,0.69,3,252,3,0,0,0,sales,low +0.58,0.96,5,143,2,0,0,0,sales,low +0.34,0.88,5,131,6,0,0,0,sales,low +0.54,0.65,5,206,4,1,0,0,sales,low +0.59,0.54,4,210,3,0,0,0,sales,low +0.88,0.96,4,262,3,0,0,0,sales,medium +0.72,0.69,4,147,3,0,0,0,sales,medium +0.79,0.75,4,259,3,0,0,0,sales,medium +0.51,0.73,4,174,3,0,0,0,sales,medium +0.84,0.84,3,150,4,0,0,0,sales,medium +0.95,0.67,4,219,2,0,0,0,sales,medium +0.58,0.88,5,178,4,0,0,0,sales,medium +0.69,0.98,3,269,3,1,0,0,sales,medium +0.17,0.64,6,205,5,1,0,0,sales,medium +0.81,0.72,3,232,3,1,0,0,sales,medium +0.41,0.5,3,193,3,0,0,0,sales,medium +0.12,0.42,3,110,2,0,0,0,accounting,medium +0.71,0.6,4,208,3,0,0,0,accounting,high +0.32,0.69,5,157,4,0,0,0,accounting,low +0.83,0.98,5,187,4,0,0,0,hr,medium +0.74,0.92,4,226,3,0,0,0,hr,medium +0.67,0.85,4,266,3,0,0,0,hr,medium +0.85,0.56,3,159,3,0,0,0,hr,medium +0.49,0.75,4,259,3,1,0,0,technical,low +0.7,0.74,4,150,3,1,0,0,technical,low +0.44,0.58,4,152,3,0,0,0,technical,low +0.5,0.87,5,245,2,0,0,0,technical,low +0.63,0.74,5,227,2,0,0,0,technical,low +0.87,0.77,4,261,3,0,0,0,technical,low +0.82,0.53,4,162,3,1,0,0,technical,low +0.97,0.89,4,193,3,0,0,0,technical,low +0.9,0.81,4,144,2,0,0,0,technical,low +0.41,0.5,6,151,2,0,0,0,technical,low +0.58,0.94,4,225,2,0,0,0,technical,low +0.77,0.5,5,170,2,0,0,0,support,low +0.89,0.75,4,246,3,1,0,0,support,low +0.64,0.72,4,254,3,0,0,0,support,low +0.31,0.79,2,193,4,0,0,0,support,low +0.6,0.88,4,175,3,0,0,0,support,low +0.2,1,3,123,4,0,0,0,support,low +0.13,0.6,3,178,5,0,0,0,support,low +0.95,0.9,3,259,2,0,0,0,support,low +0.15,0.96,5,201,6,0,0,0,support,low +0.22,0.98,4,185,3,0,0,0,support,low +0.33,0.51,2,166,3,0,0,0,support,medium +0.23,0.96,4,213,4,0,0,0,technical,medium +0.85,0.79,4,138,2,0,0,0,technical,medium +0.79,0.57,3,168,2,0,0,0,technical,medium +0.6,0.6,4,197,3,0,0,0,management,medium +0.89,0.74,5,220,3,0,0,0,IT,medium +0.65,0.92,3,101,3,1,0,0,IT,medium +0.61,0.7,4,175,3,1,0,0,IT,medium +0.4,0.79,5,181,5,0,0,0,IT,medium +0.49,0.57,3,157,3,0,0,0,IT,medium +0.95,0.75,3,247,2,0,0,0,product_mng,medium +0.85,1,5,244,2,0,0,0,product_mng,medium +0.24,0.39,4,152,5,0,0,0,product_mng,high +0.85,0.99,5,176,4,0,0,0,product_mng,low +0.99,0.98,5,241,2,0,0,0,IT,medium +0.49,0.49,4,240,2,0,0,0,RandD,medium +0.56,0.73,3,226,3,0,0,0,RandD,medium +0.65,0.66,6,240,4,0,0,0,RandD,medium +0.62,0.68,3,253,5,1,0,0,RandD,low +0.78,0.68,4,174,3,1,0,0,RandD,low +0.54,0.7,3,213,2,0,0,0,marketing,low +0.61,0.77,4,195,2,0,0,0,sales,low +0.49,0.99,6,230,4,0,0,0,accounting,low +0.29,0.85,2,248,6,1,0,0,support,low +0.64,0.79,4,274,2,1,0,0,technical,low +0.93,0.94,4,217,2,0,0,0,management,low +0.16,0.66,6,229,6,0,0,0,marketing,low +0.68,0.85,5,173,3,0,0,0,marketing,low +0.71,0.8,2,146,4,0,0,0,marketing,low +0.62,0.82,5,151,5,0,0,0,sales,low +0.74,0.75,2,137,3,1,0,0,sales,low +0.81,0.5,3,198,3,0,0,0,sales,low +0.2,0.82,4,190,5,0,0,0,sales,low +0.51,0.91,4,206,3,0,0,0,sales,low +0.55,0.99,4,238,3,0,0,0,sales,low +0.45,0.41,3,193,2,1,0,0,sales,low +0.91,0.61,4,176,3,0,0,0,sales,low +0.73,0.59,6,121,5,0,0,0,sales,low +0.98,0.88,4,145,2,0,0,0,sales,low +0.62,0.65,4,212,3,1,0,0,sales,medium +0.57,0.62,3,198,4,0,0,0,sales,medium +0.99,0.57,3,189,4,1,0,0,sales,medium +0.82,0.68,2,200,3,0,0,0,sales,medium +0.24,0.81,4,217,5,0,0,0,sales,medium +0.84,0.73,5,245,3,0,0,0,sales,medium +0.9,0.55,3,260,3,0,0,0,sales,medium +0.13,0.73,5,206,5,0,0,0,sales,medium +0.6,0.67,3,249,2,0,0,0,sales,medium +0.72,0.87,4,154,2,1,0,0,accounting,medium +0.68,0.61,4,147,3,0,0,0,accounting,medium +0.51,0.72,3,148,2,0,0,0,accounting,medium +0.74,0.58,3,220,2,0,0,0,hr,high +0.86,0.73,3,241,3,0,0,0,hr,low +0.85,0.51,3,242,3,0,0,0,hr,medium +0.63,0.85,2,156,3,1,0,0,hr,medium +0.74,0.87,3,155,3,0,0,0,technical,medium +0.6,0.5,3,211,3,0,0,0,technical,medium +0.69,0.82,4,137,2,1,0,0,technical,low +0.56,0.96,2,269,2,0,0,0,technical,low +0.5,0.67,2,142,3,0,0,0,technical,low +0.84,0.5,5,267,2,0,0,0,technical,low +0.93,0.48,5,134,6,0,0,0,technical,low +0.12,0.5,5,287,4,0,0,0,technical,low +0.52,0.58,4,134,3,0,0,0,technical,low +0.6,0.54,3,185,2,0,0,0,technical,low +0.71,1,3,181,4,0,0,0,technical,medium +0.21,0.81,5,169,4,0,0,0,support,medium +0.15,0.84,3,201,6,0,0,0,support,medium +0.38,0.55,2,215,6,0,0,0,support,medium +0.27,0.86,3,222,5,0,0,0,support,medium +0.86,0.64,4,137,2,0,0,0,support,medium +0.17,0.52,6,176,5,0,0,0,support,medium +0.66,0.69,3,257,2,0,0,0,support,medium +0.95,0.51,3,224,4,0,0,0,support,medium +0.59,0.92,5,226,3,0,0,0,support,medium +0.49,0.61,5,196,3,0,0,0,support,medium +0.9,0.88,5,256,4,0,0,0,support,medium +0.98,0.81,3,153,4,0,0,0,technical,medium +0.52,1,4,221,3,0,0,0,technical,medium +0.12,0.95,3,236,3,0,0,0,technical,medium +0.91,0.67,5,137,3,0,0,0,management,medium +0.99,0.62,4,256,2,0,0,0,IT,medium +0.49,0.8,4,161,2,0,0,0,IT,medium +0.92,0.51,4,167,3,1,0,0,IT,medium +0.21,0.84,3,194,2,0,0,0,IT,medium +0.89,0.9,3,231,3,0,0,0,IT,medium +0.84,0.81,4,152,2,1,0,0,product_mng,medium +0.72,0.68,3,150,3,1,0,0,product_mng,medium +0.57,0.46,3,207,3,0,0,0,product_mng,medium +0.9,0.69,4,172,3,0,0,0,product_mng,medium +0.59,0.75,2,273,2,0,0,0,IT,high +0.97,0.69,4,134,3,0,0,0,RandD,high +0.56,0.85,3,109,2,0,0,0,RandD,high +0.78,0.59,4,124,3,1,0,0,RandD,high +0.64,0.72,4,253,4,0,0,0,RandD,high +0.58,0.9,5,224,3,0,0,0,RandD,high +0.68,0.58,3,217,2,0,0,0,marketing,high +0.82,0.73,3,148,4,0,0,0,sales,high +0.83,0.78,5,240,3,0,0,0,accounting,high +0.49,0.49,2,226,3,0,0,0,support,high +0.57,0.95,4,176,3,0,0,0,technical,high +0.66,0.93,4,248,3,0,0,0,management,high +0.78,0.6,2,206,2,0,0,0,marketing,low +0.55,0.8,3,192,3,1,0,0,marketing,low +0.98,0.62,3,140,4,0,0,0,marketing,low +0.89,0.51,4,141,3,0,0,0,sales,low +0.67,0.83,3,220,3,0,0,0,sales,low +1,0.49,4,140,3,0,0,0,sales,low +0.67,0.44,4,194,2,1,0,0,sales,low +0.2,0.98,2,228,3,0,0,0,sales,low +0.71,0.87,4,238,3,0,0,0,sales,low +0.65,0.91,3,207,3,0,0,0,sales,low +0.82,0.82,4,164,2,0,0,0,sales,low +0.48,0.89,3,224,3,0,0,0,sales,low +0.96,0.9,4,201,3,0,0,0,sales,low +0.52,0.63,3,171,2,0,0,0,sales,low +0.24,0.78,5,131,5,0,0,0,sales,low +0.92,0.95,6,239,4,0,0,0,sales,medium +0.66,0.89,3,202,3,1,0,0,sales,medium +0.93,0.68,3,137,3,1,0,0,sales,medium +0.77,0.59,4,153,3,0,0,0,sales,medium +0.6,0.48,4,219,4,1,0,0,sales,medium +0.78,0.49,3,194,3,1,0,0,sales,medium +0.6,0.53,4,228,3,0,0,0,sales,medium +0.31,1,4,177,5,0,0,0,accounting,medium +0.49,0.68,3,181,3,0,0,0,accounting,medium +0.33,0.95,4,280,3,0,0,0,accounting,medium +0.76,0.91,3,133,2,0,0,0,hr,medium +0.65,0.63,3,237,3,0,0,0,hr,medium +0.88,0.75,5,152,3,0,0,0,hr,high +0.52,0.92,5,280,6,1,0,0,hr,high +0.48,0.5,6,253,4,0,0,0,technical,high +0.2,0.59,5,105,4,0,0,0,technical,high +0.93,0.84,3,159,3,0,0,0,technical,high +0.55,0.92,4,257,2,0,0,0,technical,high +0.73,0.64,3,202,4,0,0,0,technical,high +0.57,0.56,3,241,3,0,0,0,technical,high +0.63,0.8,3,267,3,0,0,0,technical,low +0.23,0.88,4,175,6,0,0,0,technical,low +0.93,0.53,3,257,2,1,0,0,technical,low +0.78,0.86,4,240,3,0,0,0,technical,low +0.75,0.73,5,181,3,1,0,0,technical,low +0.61,0.82,3,271,3,0,0,0,support,low +0.36,0.97,5,151,3,0,0,0,support,low +0.59,0.67,2,168,3,0,0,0,support,low +0.78,0.63,4,265,3,0,0,0,support,medium +0.93,0.53,5,204,2,0,0,0,support,medium +0.67,0.72,4,223,3,0,0,0,support,medium +0.52,0.63,4,136,2,0,0,0,support,medium +0.69,0.95,5,184,2,0,0,0,support,medium +0.25,0.8,5,186,4,1,0,0,support,medium +0.4,0.43,3,128,3,0,0,0,support,medium +0.98,0.83,5,211,3,0,0,0,support,medium +0.92,0.89,4,236,4,1,0,0,technical,medium +0.57,0.98,3,214,2,0,0,0,technical,medium +0.81,0.52,4,274,3,0,0,0,technical,medium +0.56,0.67,5,165,3,1,0,0,management,medium +0.86,0.71,5,235,4,0,0,0,IT,medium +0.74,0.9,4,189,2,0,0,0,IT,medium +0.57,0.61,3,112,5,0,0,0,IT,medium +0.9,0.64,3,163,3,0,0,0,IT,medium +0.8,0.57,3,162,2,0,0,0,IT,medium +0.22,0.8,4,149,5,0,0,0,product_mng,medium +0.73,0.84,4,238,2,0,0,0,product_mng,medium +0.48,0.47,3,160,3,0,0,0,product_mng,medium +0.52,0.94,3,263,3,0,0,0,product_mng,medium +0.53,0.71,4,271,3,0,0,0,IT,medium +0.97,0.48,4,221,3,0,0,0,RandD,medium +0.97,0.54,3,255,2,1,0,0,RandD,high +0.54,0.88,4,170,4,0,0,0,RandD,low +0.99,0.7,4,190,4,1,0,0,RandD,medium +0.79,0.76,4,216,4,0,0,0,RandD,medium +0.71,0.54,3,249,3,0,0,0,marketing,medium +0.82,0.76,3,174,3,0,0,0,sales,medium +0.6,0.7,4,265,4,1,0,0,accounting,medium +0.17,0.88,2,206,4,0,0,0,support,medium +0.73,0.6,4,222,3,0,0,0,technical,medium +0.69,0.54,5,152,3,1,0,0,management,medium +0.86,0.61,4,221,2,0,0,0,marketing,medium +0.67,0.55,5,239,2,0,0,0,marketing,medium +0.25,0.96,6,217,4,0,0,0,marketing,low +0.65,0.66,3,164,2,0,0,0,sales,low +0.81,0.56,3,142,3,0,0,0,sales,low +0.58,0.53,4,181,3,1,0,0,sales,low +0.14,0.57,4,207,5,0,0,0,sales,low +0.15,0.37,2,167,3,0,0,0,sales,low +0.98,0.51,3,243,2,0,0,0,sales,low +0.91,0.5,4,231,3,0,0,0,sales,high +0.86,0.71,4,250,3,1,0,0,sales,low +0.56,0.63,3,145,2,0,0,0,sales,high +0.58,0.77,4,190,6,0,0,0,sales,high +0.54,0.64,2,128,2,0,0,0,sales,low +0.59,0.99,5,254,3,1,0,0,sales,low +0.92,0.88,3,145,4,1,0,0,sales,high +0.82,0.8,4,246,3,0,0,0,sales,low +0.86,0.68,5,246,2,0,0,0,sales,medium +0.66,0.77,5,236,3,0,0,0,sales,high +0.85,0.66,3,234,3,0,0,0,sales,medium +0.8,0.6,3,247,2,0,0,0,sales,medium +0.99,0.61,3,154,3,0,0,0,sales,medium +0.25,0.45,3,228,5,0,0,0,accounting,medium +0.93,0.99,4,209,3,1,0,0,accounting,high +0.5,0.54,5,173,2,0,0,0,accounting,medium +0.68,0.71,4,206,2,0,0,0,hr,medium +0.62,0.87,3,151,2,1,0,0,hr,medium +0.99,0.54,4,196,4,1,0,0,hr,high +0.93,0.52,3,229,2,1,0,0,hr,medium +0.2,0.75,3,235,4,0,0,0,technical,high +0.58,0.61,4,200,3,0,0,0,technical,low +0.94,0.76,4,261,6,0,0,0,technical,medium +0.18,0.54,4,165,3,0,0,0,technical,medium +0.18,0.62,3,165,4,0,0,0,technical,medium +0.7,0.74,5,255,2,0,0,0,technical,medium +0.93,0.92,5,185,5,0,0,0,technical,low +0.5,0.76,4,229,3,1,0,0,technical,low +0.54,0.71,3,153,3,0,0,0,technical,low +0.74,0.63,4,238,2,0,0,0,technical,low +0.66,0.67,3,199,2,0,0,0,technical,low +0.61,0.87,3,185,2,1,0,0,support,low +0.74,0.98,3,196,6,1,0,0,support,low +0.48,0.51,4,201,4,0,0,0,support,low +0.65,0.84,3,189,2,1,0,0,support,low +0.94,0.49,2,250,5,0,0,0,support,low +0.91,0.79,4,254,2,0,0,0,support,high +0.87,0.65,3,212,3,1,0,0,support,low +0.23,0.79,5,196,5,1,0,0,support,low +0.4,0.73,4,146,3,0,0,0,support,low +0.68,0.85,3,250,3,0,0,0,support,low +0.95,0.88,3,266,2,1,0,0,support,high +0.63,0.96,4,133,2,0,0,0,technical,low +0.47,0.53,4,181,3,0,0,0,technical,low +0.2,0.5,6,282,6,1,0,0,technical,low +0.72,0.84,2,173,2,1,0,0,management,high +0.56,0.57,5,237,2,0,0,0,IT,low +0.7,0.74,3,202,2,0,0,0,IT,medium +0.59,0.82,3,162,2,0,0,0,IT,high +0.78,0.96,3,248,3,0,0,0,IT,medium +0.62,0.64,3,165,3,0,0,0,IT,high +0.71,0.61,2,216,2,0,0,0,product_mng,medium +0.72,0.45,4,143,6,0,0,0,product_mng,medium +0.76,0.77,3,254,3,0,0,0,product_mng,medium +0.83,0.56,3,186,3,0,0,0,product_mng,medium +0.92,0.99,4,245,4,0,0,0,IT,medium +0.67,0.77,3,157,3,0,0,0,RandD,medium +0.56,0.45,3,184,3,0,0,0,RandD,medium +0.91,0.63,4,210,3,0,0,0,RandD,medium +0.56,0.86,4,137,2,1,0,0,RandD,high +0.72,0.95,3,145,2,0,0,0,RandD,low +0.56,0.86,4,181,3,0,0,0,marketing,medium +0.92,0.56,3,174,3,0,0,0,sales,medium +0.74,0.88,5,183,3,1,0,0,accounting,medium +0.88,0.84,4,171,4,1,0,0,support,medium +0.69,0.72,2,190,2,0,0,0,technical,medium +0.87,0.78,4,142,3,0,0,0,management,medium +0.98,0.5,3,198,3,0,0,0,marketing,medium +0.9,0.61,3,185,3,0,0,0,marketing,medium +0.49,0.87,4,171,3,1,0,0,marketing,medium +0.78,0.57,4,264,3,0,0,0,sales,high +0.58,0.98,3,175,3,0,0,0,sales,low +0.91,0.88,5,210,2,1,0,0,sales,low +0.92,0.75,4,212,3,0,0,0,sales,low +0.36,0.66,4,97,2,0,0,0,sales,high +0.55,0.53,4,214,3,0,0,0,sales,low +0.95,0.96,4,244,3,0,0,0,sales,low +0.5,0.67,3,246,3,0,0,0,sales,low +0.42,0.73,3,115,6,0,0,0,sales,high +0.75,0.68,3,237,5,0,0,0,sales,low +0.88,0.7,4,146,4,0,0,0,sales,low +0.53,0.63,5,159,4,0,0,0,sales,low +0.84,0.4,4,246,3,0,0,0,sales,low +0.49,0.93,3,226,3,0,0,0,sales,low +0.71,0.91,3,261,3,0,0,0,sales,low +0.83,0.64,4,242,2,0,0,0,sales,low +0.88,0.93,4,177,3,0,0,0,sales,medium +0.87,0.53,4,144,3,0,0,0,sales,medium +0.43,0.82,2,221,5,0,0,0,sales,medium +0.8,0.9,5,265,3,0,0,0,accounting,medium +0.32,0.67,5,224,4,1,0,0,accounting,medium +0.77,0.56,3,167,4,0,0,0,accounting,medium +0.97,0.77,3,245,3,0,0,0,hr,medium +0.98,0.63,4,232,2,0,0,0,hr,medium +0.62,0.64,5,229,2,0,0,0,hr,medium +0.53,0.94,4,128,6,0,0,0,hr,medium +0.93,0.49,3,211,2,0,0,0,technical,medium +0.51,0.91,4,194,2,0,0,0,technical,medium +0.76,0.76,4,214,3,0,0,0,technical,high +0.69,0.89,3,216,4,0,0,0,technical,low +0.58,0.6,4,222,3,0,0,0,technical,medium +0.98,0.77,4,144,4,0,0,0,technical,medium +0.58,0.54,3,287,6,0,0,0,technical,medium +0.57,0.97,4,224,4,0,0,0,technical,medium +0.84,0.79,4,157,4,0,0,0,technical,low +0.15,0.67,5,216,6,0,0,0,technical,low +0.88,0.72,5,181,4,0,0,0,technical,low +0.69,0.99,3,133,3,0,0,0,support,low +0.56,0.84,5,154,2,1,0,0,support,low +0.49,0.58,3,265,3,0,0,0,support,low +0.4,0.45,4,113,3,0,0,0,support,low +0.67,0.36,3,280,4,0,0,0,support,low +0.79,0.5,3,213,3,1,0,0,support,low +0.47,0.44,5,255,5,1,0,0,support,low +0.82,0.54,3,243,4,0,0,0,support,low +0.82,0.87,3,206,2,0,0,0,support,low +0.63,0.57,5,149,3,0,0,0,support,low +0.91,0.53,2,273,3,0,0,0,support,low +0.89,1,4,226,2,1,0,0,technical,low +0.96,0.93,3,238,2,0,0,0,technical,low +0.83,0.72,2,226,3,0,0,0,technical,low +0.75,0.92,3,199,3,1,0,0,management,low +0.75,0.82,5,202,3,1,0,0,IT,low +0.41,0.69,2,152,4,1,0,0,IT,low +0.96,0.94,3,167,3,0,0,0,IT,low +0.58,0.79,4,130,3,0,0,0,IT,medium +0.74,0.89,3,229,3,0,0,0,IT,medium +0.78,0.74,4,261,3,1,0,0,product_mng,medium +0.5,0.72,3,182,2,1,0,0,product_mng,medium +1,0.52,4,198,3,0,0,0,product_mng,medium +0.85,0.91,3,244,3,0,0,0,product_mng,medium +0.82,0.89,4,275,3,0,0,0,IT,medium +0.19,0.81,5,245,5,0,0,0,RandD,medium +0.9,0.9,3,147,3,1,0,0,RandD,medium +0.59,1,4,275,3,0,0,0,RandD,medium +0.53,0.46,2,167,2,0,0,0,RandD,medium +0.57,0.5,5,149,5,1,0,0,RandD,medium +0.85,0.99,4,233,2,0,0,0,marketing,high +0.64,0.67,5,167,2,0,0,0,sales,low +0.57,0.54,3,159,3,1,0,0,accounting,medium +0.86,0.85,2,195,4,0,0,0,support,medium +0.6,0.7,5,229,2,0,0,0,technical,medium +0.17,0.76,4,199,5,0,0,0,management,medium +0.54,0.63,3,174,3,0,0,0,marketing,low +0.35,0.78,5,275,4,0,0,0,marketing,low +0.92,0.77,5,217,4,0,0,0,marketing,low +0.66,1,4,192,2,0,0,0,sales,low +0.83,0.9,4,195,3,0,0,0,sales,low +0.89,0.86,3,261,4,0,0,0,sales,low +0.94,0.61,4,199,3,0,0,0,sales,low +0.24,0.85,4,160,5,0,0,0,sales,low +0.69,0.8,3,177,4,0,0,0,sales,low +0.45,0.46,3,179,2,1,0,0,sales,low +0.78,0.93,4,161,3,0,0,0,sales,low +0.91,0.38,5,279,5,0,0,0,sales,low +0.63,0.65,4,246,6,1,0,0,sales,low +0.71,0.8,4,199,2,0,0,0,sales,low +0.73,0.69,3,161,3,0,0,0,sales,low +0.69,0.52,5,219,3,0,0,0,sales,low +0.52,0.57,5,162,3,0,0,0,sales,low +0.78,0.66,4,258,3,0,0,0,sales,low +0.94,0.69,3,269,3,0,0,0,sales,low +0.55,0.73,4,201,3,0,0,0,sales,low +0.43,0.38,2,278,3,1,0,0,sales,low +0.77,0.66,3,147,2,0,0,0,sales,medium +0.59,0.8,5,247,3,0,0,0,accounting,medium +0.65,0.54,4,191,4,0,0,0,accounting,medium +0.82,0.37,2,280,3,0,0,0,accounting,medium +0.31,0.72,2,191,3,0,0,0,hr,medium +0.84,0.65,4,264,2,0,0,0,hr,medium +0.15,0.4,3,236,5,0,0,0,hr,medium +0.64,0.52,4,271,2,1,0,0,hr,medium +0.48,0.63,5,129,5,0,0,0,technical,medium +0.82,0.58,4,249,5,0,0,0,technical,medium +0.99,0.54,3,188,3,0,0,0,technical,medium +0.8,0.52,3,147,3,1,0,0,technical,medium +0.94,0.92,3,273,3,0,0,0,technical,high +0.94,0.81,4,237,3,1,0,0,technical,low +0.77,0.79,3,273,2,0,0,0,technical,medium +0.48,0.54,3,190,3,0,0,0,technical,medium +0.62,0.68,3,226,3,0,0,0,technical,medium +0.61,0.9,4,216,3,0,0,0,technical,medium +0.27,0.6,6,205,5,1,0,0,technical,low +0.89,0.65,3,208,2,0,0,0,support,low +0.58,0.81,4,266,2,0,0,0,support,low +0.64,0.77,3,249,2,1,0,0,support,low +0.73,0.88,5,134,2,1,0,0,support,low +0.74,0.85,2,189,3,0,0,0,support,low +0.75,0.82,4,143,2,0,0,0,support,low +0.78,0.84,4,173,3,0,0,0,support,low +0.18,0.95,6,248,3,0,0,0,support,low +0.8,0.84,3,186,6,0,0,0,support,low +0.89,0.64,5,191,3,0,0,0,support,low +0.84,0.5,3,227,2,0,0,0,support,low +0.64,0.38,2,269,5,0,0,0,technical,low +0.53,0.82,3,254,3,1,0,0,technical,low +0.15,0.66,4,180,4,0,0,0,technical,low +0.66,0.62,3,144,3,0,0,0,management,low +0.49,0.78,5,137,3,1,0,0,IT,low +0.78,0.72,3,223,4,0,0,0,IT,low +0.39,0.75,5,286,5,0,0,0,IT,low +0.9,0.83,3,151,3,0,0,0,IT,low +0.96,0.74,5,244,2,1,0,0,IT,low +0.63,0.81,4,216,4,0,0,0,product_mng,medium +0.63,0.74,4,173,3,0,0,0,product_mng,medium +0.89,0.81,3,186,3,0,0,0,product_mng,medium +0.93,0.57,2,205,4,1,0,0,product_mng,medium +0.87,0.59,4,202,3,0,0,0,IT,medium +0.56,0.53,3,189,3,0,0,0,RandD,medium +0.97,0.55,4,181,5,1,0,0,RandD,medium +0.61,0.51,3,207,3,0,0,0,RandD,medium +0.73,0.46,4,240,4,1,0,0,RandD,medium +0.61,0.69,2,164,2,0,0,0,RandD,medium +0.99,0.71,4,212,2,0,0,0,marketing,medium +0.57,0.75,4,151,2,0,0,0,sales,medium +0.74,0.96,4,197,3,0,0,0,accounting,high +0.86,0.61,5,265,3,0,0,0,support,low +0.68,0.72,4,274,3,0,0,0,technical,medium +0.66,0.63,3,201,4,0,0,0,management,medium +0.86,0.89,3,250,2,0,0,0,marketing,medium +0.85,0.78,3,165,4,0,0,0,marketing,medium +0.98,0.53,5,186,3,0,0,0,marketing,low +0.14,0.73,5,273,4,1,0,0,sales,low +0.2,0.54,5,162,6,0,0,0,sales,low +0.9,0.97,3,141,3,0,0,0,sales,low +0.51,0.96,5,268,4,0,0,0,sales,low +0.63,0.77,3,176,2,1,0,0,sales,low +0.83,0.88,3,223,3,1,0,0,sales,low +0.67,0.72,4,218,2,1,0,0,sales,low +0.96,0.52,4,228,3,0,0,0,sales,low +0.69,0.75,3,204,3,0,0,0,sales,low +0.69,0.9,4,148,2,0,0,0,sales,low +0.64,0.94,3,221,2,0,0,0,sales,low +0.62,0.48,4,271,3,0,0,0,sales,low +0.55,0.75,3,191,3,0,0,0,sales,low +0.98,0.51,4,223,2,0,0,0,sales,low +0.83,0.78,5,250,2,1,0,0,sales,low +0.73,0.77,3,230,2,0,0,0,sales,low +0.58,0.86,3,226,2,0,0,0,sales,low +0.52,0.67,4,182,3,0,0,0,sales,medium +0.91,0.7,3,195,3,0,0,0,sales,medium +0.72,0.64,3,231,2,0,0,0,accounting,medium +0.7,0.74,3,224,3,0,0,0,accounting,medium +0.86,0.92,4,229,4,0,0,0,accounting,medium +0.82,0.57,2,158,3,1,0,0,hr,medium +0.83,0.78,4,242,3,1,0,0,hr,medium +0.99,0.64,3,183,3,0,0,0,hr,medium +0.88,0.58,5,213,4,0,0,0,hr,medium +0.68,0.74,4,263,2,1,0,0,technical,medium +0.9,0.49,3,237,2,0,0,0,technical,medium +0.59,0.67,6,126,3,0,0,0,technical,medium +0.76,0.71,6,168,2,0,0,0,technical,high +0.23,0.63,5,151,4,1,0,0,technical,low +0.8,0.85,4,239,3,0,0,0,technical,medium +0.62,0.49,4,174,3,0,0,0,technical,medium +0.28,0.46,5,277,6,0,0,0,technical,medium +0.81,0.97,3,133,3,0,0,0,technical,medium +0.64,0.91,4,150,3,0,0,0,technical,low +0.76,0.6,5,244,3,1,0,0,technical,low +0.79,0.87,3,232,2,0,0,0,support,low +0.72,0.91,3,267,2,0,0,0,support,low +0.22,0.59,5,162,2,0,0,0,support,low +0.18,0.73,5,228,5,0,0,0,support,low +0.91,0.49,2,180,3,0,0,0,support,low +0.69,0.63,2,252,3,0,0,0,support,low +0.91,0.66,5,212,3,0,0,0,support,low +0.67,0.84,4,224,3,0,0,0,support,low +0.98,0.62,2,240,3,1,0,0,support,low +0.69,0.62,4,183,4,0,0,0,support,low +0.96,0.74,5,160,5,1,0,0,support,low +0.69,0.68,4,225,3,0,0,0,technical,low +0.65,0.68,3,268,2,1,0,0,technical,low +0.7,0.75,3,221,3,0,0,0,technical,low +0.48,0.94,3,173,2,0,0,0,management,low +0.48,0.51,4,103,4,0,0,0,IT,low +0.16,0.89,4,196,3,1,0,0,IT,low +0.72,0.97,3,239,3,0,0,0,IT,low +0.91,0.71,3,171,2,0,0,0,IT,low +0.74,0.54,3,243,3,0,0,0,IT,medium +0.56,0.56,2,153,2,0,0,0,product_mng,medium +0.56,0.41,6,142,3,0,0,0,product_mng,medium +0.88,0.55,5,168,2,0,0,0,product_mng,medium +0.86,0.9,5,180,4,0,0,0,product_mng,medium +0.66,0.84,4,186,3,0,0,0,IT,medium +0.41,0.45,3,236,2,0,0,0,RandD,medium +0.68,0.83,5,267,3,0,0,0,RandD,medium +0.59,0.47,3,129,2,0,0,0,RandD,medium +0.52,0.78,3,181,3,0,0,0,RandD,medium +0.3,0.54,2,99,2,0,0,0,RandD,medium +0.44,0.67,5,170,3,1,0,0,marketing,medium +0.75,0.64,3,195,3,0,0,0,sales,high +0.23,0.94,4,149,6,0,0,0,accounting,low +0.34,0.46,6,132,2,0,0,0,support,medium +0.52,0.59,3,164,3,0,0,0,technical,medium +0.79,0.83,4,250,2,0,0,0,management,medium +0.5,0.77,3,204,2,0,0,0,marketing,medium +0.89,0.65,3,210,3,0,0,0,marketing,low +0.84,0.52,6,98,3,0,0,0,marketing,low +0.26,0.47,3,241,4,0,0,0,sales,low +0.57,0.96,5,203,4,0,0,0,sales,low +0.14,0.99,3,257,4,1,0,0,sales,low +0.94,0.62,5,201,2,0,0,0,sales,low +0.3,0.58,2,124,3,0,0,0,sales,low +0.29,0.43,6,175,3,0,0,0,sales,low +0.82,0.75,3,161,3,0,0,0,sales,low +0.62,0.75,4,183,4,1,0,0,sales,low +0.64,0.99,5,262,5,0,0,0,sales,low +0.17,0.52,4,184,4,0,0,0,sales,low +0.75,0.56,3,207,3,0,0,0,sales,low +0.49,0.73,4,185,3,0,0,0,sales,low +0.84,0.58,4,180,2,0,0,0,sales,low +0.48,0.96,4,224,2,1,0,0,sales,low +0.54,0.53,3,184,3,0,0,0,sales,low +0.76,0.99,5,252,3,1,0,0,sales,low +0.77,0.84,4,196,3,0,0,0,sales,low +0.95,0.97,4,203,2,0,0,0,sales,low +0.72,0.83,4,181,3,0,0,0,sales,low +0.74,0.67,4,148,3,0,0,0,accounting,medium +0.9,0.55,4,211,3,0,0,0,accounting,medium +0.67,0.55,3,246,3,0,0,0,accounting,medium +0.97,0.55,4,258,3,0,0,0,hr,medium +0.55,0.59,3,231,4,0,0,0,hr,medium +0.32,0.95,2,184,5,0,0,0,hr,medium +0.4,0.42,3,146,2,1,0,0,hr,medium +0.66,0.54,2,136,2,0,0,0,technical,low +0.7,0.77,4,266,2,0,0,0,technical,low +0.69,0.89,2,220,3,0,0,0,technical,low +0.72,0.57,2,248,2,0,0,0,technical,low +0.21,0.65,3,183,3,0,0,0,technical,low +0.91,0.9,3,169,3,0,0,0,technical,low +0.72,0.71,3,132,2,1,0,0,technical,low +0.96,0.72,3,197,3,0,0,0,technical,low +1,0.89,4,152,3,0,0,0,technical,low +0.63,0.51,3,126,6,0,0,0,technical,low +0.24,0.74,6,106,5,0,0,0,technical,low +0.44,0.38,4,128,2,0,0,0,support,low +0.92,0.57,3,191,3,0,0,0,support,low +0.51,0.51,4,189,3,0,0,0,support,low +0.77,0.71,5,141,3,0,0,0,support,low +0.8,0.97,4,220,3,0,0,0,support,low +0.84,0.46,5,118,3,0,0,0,support,low +0.91,0.88,5,223,3,0,0,0,support,low +0.64,0.61,3,263,3,0,0,0,support,low +0.15,0.59,5,209,4,1,0,0,support,medium +0.74,0.58,4,193,3,0,0,0,support,medium +0.94,0.78,4,211,3,0,0,0,support,medium +0.57,0.58,3,192,3,0,0,0,technical,medium +0.92,0.63,5,156,3,0,0,0,technical,medium +0.76,0.54,5,278,2,1,0,0,technical,medium +0.73,0.92,3,199,3,1,0,0,management,medium +0.24,0.6,2,194,6,0,0,0,IT,medium +0.42,0.47,2,125,4,0,0,0,IT,medium +0.92,0.82,4,96,4,0,0,0,IT,medium +0.92,0.94,3,234,2,1,0,0,IT,medium +0.68,0.55,6,181,3,0,0,0,IT,medium +0.49,0.86,4,246,2,0,0,0,product_mng,medium +0.57,0.98,3,171,3,0,0,0,product_mng,medium +0.3,0.66,3,198,2,0,0,0,product_mng,medium +0.17,0.81,5,280,4,0,0,0,product_mng,medium +0.91,0.49,3,267,3,0,0,0,IT,medium +0.83,0.91,3,251,2,0,0,0,RandD,medium +0.87,0.76,5,182,3,0,0,0,RandD,medium +0.71,0.8,4,157,3,0,0,0,RandD,medium +0.88,0.5,3,206,2,0,0,0,RandD,medium +0.63,0.94,3,237,3,1,0,0,RandD,medium +0.99,0.58,2,166,3,0,0,0,marketing,medium +0.99,0.81,4,229,2,1,0,0,sales,medium +0.77,0.53,5,256,3,0,0,0,accounting,medium +0.64,0.69,5,114,6,0,0,0,support,medium +0.61,1,5,243,2,0,0,0,technical,medium +0.37,0.82,3,199,5,0,0,0,management,medium +0.19,1,4,188,4,1,0,0,marketing,medium +0.96,0.87,4,187,2,0,0,0,marketing,medium +0.8,0.62,4,216,2,0,0,0,marketing,medium +0.14,0.63,6,215,5,0,0,0,sales,low +0.15,0.69,6,213,6,0,0,0,sales,low +0.52,0.82,4,198,4,0,0,0,sales,low +0.27,0.55,5,121,3,1,0,0,sales,low +0.97,0.96,3,212,3,0,0,0,sales,low +0.52,0.93,2,271,3,0,0,0,sales,low +0.98,0.89,3,186,2,0,0,0,sales,low +0.96,0.95,4,265,2,0,0,0,sales,low +0.28,0.92,3,151,3,0,0,0,sales,low +0.65,0.55,5,206,3,0,0,0,sales,low +0.59,0.63,4,153,3,1,0,0,sales,low +0.64,0.48,4,267,2,1,0,0,sales,low +0.71,0.48,3,161,3,0,0,0,sales,low +0.83,0.84,2,149,3,0,0,0,sales,low +0.95,0.94,2,269,4,1,0,0,sales,low +0.73,0.49,3,248,3,0,0,0,sales,low +0.81,0.75,4,243,2,0,0,0,sales,low +0.71,0.44,2,207,4,0,0,0,sales,low +0.8,0.56,6,111,6,0,0,0,sales,low +0.85,0.53,3,226,2,0,0,0,accounting,low +0.41,0.7,2,151,3,1,0,0,accounting,low +0.51,0.84,4,224,2,0,0,0,accounting,medium +0.49,0.57,4,146,4,0,0,0,hr,medium +0.76,0.55,4,163,2,1,0,0,hr,medium +0.57,0.69,4,255,3,0,0,0,hr,medium +0.54,0.48,6,196,2,0,0,0,hr,medium +0.68,0.74,3,227,2,0,0,0,technical,medium +0.7,0.5,3,251,2,0,0,0,technical,medium +0.77,0.87,4,209,3,0,0,0,technical,medium +0.95,0.51,3,254,4,0,0,0,technical,medium +0.5,0.64,3,249,2,1,0,0,technical,low +0.99,0.53,4,131,3,1,0,0,technical,low +0.94,0.51,5,142,2,0,0,0,technical,low +0.83,0.66,3,239,3,0,0,0,technical,low +0.64,0.81,3,225,3,1,0,0,technical,low +0.16,0.73,6,170,3,0,0,0,technical,low +0.83,0.71,3,254,2,0,0,0,technical,low +0.93,0.73,4,156,2,0,0,0,support,low +0.32,0.64,3,151,3,0,0,0,support,low +0.12,0.9,3,200,3,0,0,0,support,low +0.5,0.5,3,184,3,1,0,0,support,low +0.57,0.74,3,257,2,0,0,0,support,low +0.25,0.75,5,194,5,1,0,0,support,low +0.98,0.56,3,139,2,1,0,0,support,low +0.81,0.51,3,273,2,1,0,0,support,low +0.94,0.63,5,261,3,0,0,0,support,low +0.83,0.57,3,135,3,1,0,0,support,low +0.77,0.4,4,207,5,0,0,0,support,low +0.57,0.65,4,265,3,0,0,0,technical,low +0.18,0.96,5,208,6,0,0,0,technical,medium +0.67,0.71,4,159,2,1,0,0,technical,medium +0.35,0.47,4,151,6,0,0,0,management,medium +0.78,0.44,3,97,4,0,0,0,IT,medium +0.72,0.79,4,154,3,0,0,0,IT,medium +0.9,0.58,3,264,3,0,0,0,IT,medium +0.58,0.49,3,135,2,0,0,0,IT,medium +0.64,0.56,3,238,2,0,0,0,IT,medium +0.91,0.79,4,166,3,0,0,0,product_mng,medium +0.59,0.51,3,156,3,0,0,0,product_mng,medium +0.76,0.8,3,202,3,0,0,0,product_mng,medium +0.76,0.85,3,204,2,1,0,0,product_mng,medium +0.51,0.69,3,135,3,0,0,0,IT,medium +0.54,0.55,4,252,3,0,0,0,RandD,medium +0.67,0.93,5,254,3,1,0,0,RandD,medium +0.68,0.44,5,165,3,0,0,0,RandD,medium +0.97,0.58,3,200,2,0,0,0,RandD,medium +0.5,0.74,3,155,3,0,0,0,RandD,medium +0.81,0.52,3,162,3,0,0,0,marketing,medium +0.77,0.73,4,159,3,1,0,0,sales,medium +0.59,0.75,4,266,3,0,0,0,accounting,medium +1,0.96,4,155,3,0,0,0,support,medium +0.74,0.95,5,170,4,0,0,0,technical,medium +0.91,0.52,4,172,4,1,0,0,management,high +0.77,0.65,3,187,3,0,0,0,marketing,low +0.79,0.98,4,185,2,0,0,0,marketing,medium +0.82,0.51,5,232,3,0,0,0,marketing,medium +0.89,0.96,5,260,3,0,0,0,sales,low +0.83,0.62,4,218,3,0,0,0,sales,low +0.72,0.7,4,217,3,0,0,0,sales,low +0.7,0.74,3,212,3,0,0,0,sales,low +1,0.89,3,189,3,0,0,0,sales,low +0.57,0.66,4,158,2,0,0,0,sales,low +0.55,0.54,5,168,2,0,0,0,sales,low +0.47,0.7,4,134,3,0,0,0,sales,low +0.95,0.77,4,213,3,1,0,0,sales,low +0.29,0.57,5,149,3,0,0,0,sales,low +0.71,0.5,3,201,2,0,0,0,sales,low +0.89,0.68,4,146,3,0,0,0,sales,low +0.81,0.97,4,212,2,0,0,0,sales,low +0.72,0.64,4,140,2,0,0,0,sales,low +1,0.85,4,156,3,0,0,0,sales,low +0.79,0.49,4,163,3,0,0,0,sales,high +0.69,0.84,3,154,2,0,0,0,sales,low +0.97,0.66,4,218,3,0,0,0,sales,high +0.61,0.59,3,157,2,0,0,0,sales,high +0.71,0.89,3,222,3,0,0,0,accounting,low +0.96,0.76,4,152,3,1,0,0,accounting,low +0.77,0.73,5,263,2,0,0,0,accounting,high +0.57,0.99,3,231,3,0,0,0,hr,low +0.92,0.76,4,258,2,0,0,0,hr,medium +0.99,0.92,5,213,2,0,0,0,hr,high +0.86,0.73,3,159,3,0,0,0,hr,medium +0.78,0.66,4,156,3,1,0,0,technical,low +0.85,0.66,3,235,3,0,0,0,technical,low +0.38,0.6,4,190,2,0,0,0,technical,low +0.63,0.93,4,238,2,0,0,0,technical,low +0.66,0.72,4,137,3,0,0,0,technical,low +0.19,0.79,5,171,3,1,0,0,technical,low +0.63,0.59,4,249,2,0,0,0,technical,low +0.32,0.74,6,205,3,0,0,0,technical,low +0.73,0.55,3,149,3,0,0,0,technical,low +0.75,0.89,4,139,3,0,0,0,technical,low +0.7,0.66,4,168,3,0,0,0,technical,low +0.77,0.61,4,181,2,0,0,0,support,low +0.83,0.8,4,150,3,0,0,0,support,low +0.75,0.49,4,246,3,0,0,0,support,low +0.97,0.54,3,271,3,0,0,0,support,medium +0.75,0.55,5,204,3,0,0,0,support,low +0.66,0.84,3,170,4,0,0,0,support,low +0.56,0.49,3,208,3,0,0,0,support,low +0.77,0.98,2,226,3,0,0,0,support,low +0.82,0.81,3,149,3,0,0,0,support,low +0.85,0.59,2,264,2,0,0,0,support,low +0.49,0.79,5,177,2,0,0,0,support,low +0.24,0.87,4,262,3,0,0,0,technical,low +0.32,0.74,3,211,3,0,0,0,technical,low +0.77,0.51,4,141,3,1,0,0,technical,low +0.77,0.83,5,197,4,0,0,0,management,high +0.93,0.87,3,154,3,1,0,0,IT,low +0.22,0.74,5,178,5,0,0,0,IT,low +0.24,0.89,5,169,4,0,0,0,IT,low +0.99,0.99,3,228,4,0,0,0,IT,low +0.61,0.5,3,231,3,0,0,0,IT,high +0.6,0.91,4,185,3,1,0,0,product_mng,low +0.79,0.7,3,195,2,0,0,0,product_mng,low +0.94,0.62,3,147,3,0,0,0,product_mng,low +0.18,0.85,5,192,3,0,0,0,product_mng,high +0.51,0.73,5,241,3,0,0,0,IT,low +0.55,0.92,3,151,3,0,0,0,RandD,medium +0.73,0.74,3,221,3,0,0,0,RandD,high +0.41,0.63,5,263,3,0,0,0,RandD,medium +0.88,0.66,3,178,3,0,0,0,RandD,high +0.23,0.56,5,169,5,0,0,0,RandD,medium +0.78,0.56,3,271,4,0,0,0,marketing,medium +0.34,0.69,3,155,3,0,0,0,marketing,medium +0.51,0.41,2,164,4,0,0,0,sales,medium +0.8,0.86,3,226,2,0,0,0,accounting,medium +0.66,0.57,4,220,2,1,0,0,support,medium +0.62,0.63,5,153,6,0,0,0,technical,medium +0.5,0.97,2,252,4,0,0,0,management,medium +0.96,0.94,3,182,3,0,0,0,marketing,high +0.5,0.84,3,150,2,0,0,0,marketing,low +0.73,0.69,6,273,4,1,0,0,marketing,medium +0.47,0.39,6,215,5,0,0,0,sales,medium +0.49,0.83,3,172,2,0,0,0,sales,medium +0.92,0.62,3,264,2,0,0,0,sales,medium +0.24,0.39,5,158,2,0,0,0,sales,medium +0.61,0.58,4,142,4,0,0,0,sales,medium +0.83,0.89,4,137,3,0,0,0,sales,medium +0.88,0.66,4,275,3,0,0,0,sales,medium +0.61,0.55,3,245,3,0,0,0,sales,medium +0.68,0.54,4,165,4,0,0,0,sales,high +0.51,0.7,4,142,4,1,0,0,sales,low +0.88,0.58,4,215,2,0,0,0,sales,low +0.94,0.84,5,240,3,0,0,0,sales,low +0.58,0.88,4,255,3,0,0,0,sales,high +0.63,0.98,4,265,3,0,0,0,sales,low +0.81,0.49,4,285,4,0,0,0,sales,low +0.61,0.86,3,238,2,0,0,0,sales,low +0.65,0.63,3,137,3,0,0,0,sales,high +0.67,0.63,3,270,5,0,0,0,sales,low +0.64,0.62,4,145,3,1,0,0,sales,low +0.25,0.76,6,182,3,0,0,0,accounting,low +0.13,0.62,3,264,6,0,0,0,accounting,low +0.14,0.89,3,212,6,0,0,0,accounting,low +0.74,0.51,5,198,3,0,0,0,hr,low +0.8,0.81,5,200,3,0,0,0,hr,low +0.5,0.56,3,263,4,0,0,0,hr,medium +0.69,0.75,4,249,4,0,0,0,hr,medium +0.91,0.53,4,212,3,0,0,0,technical,low +0.8,0.51,3,159,3,0,0,0,technical,low +0.93,0.52,3,181,3,0,0,0,technical,low +0.57,0.99,3,100,4,1,0,0,technical,low +0.51,0.58,2,218,2,1,0,0,technical,low +0.98,0.54,4,178,3,0,0,0,technical,low +0.85,0.83,4,219,3,0,0,0,technical,low +0.73,0.56,5,239,3,0,0,0,technical,low +0.97,0.9,3,255,2,0,0,0,technical,low +0.52,0.61,4,163,2,0,0,0,technical,low +0.31,0.38,3,173,2,0,0,0,technical,low +0.49,0.77,3,147,3,0,0,0,support,low +0.81,0.44,4,166,4,1,0,0,support,low +0.52,0.8,5,209,2,0,0,0,support,low +0.69,0.56,5,271,3,0,0,0,support,low +0.7,0.74,3,253,4,1,0,0,support,low +0.65,0.85,4,233,2,0,0,0,support,low +0.54,0.71,2,194,2,0,0,0,support,low +0.57,0.49,2,237,2,0,0,0,support,low +0.78,0.9,4,238,2,0,0,0,support,low +0.99,0.92,4,212,3,0,0,0,support,low +0.57,0.83,5,189,3,0,0,0,support,low +0.33,0.58,3,115,3,0,0,0,technical,low +0.97,0.58,4,159,3,0,0,0,technical,low +0.95,0.58,5,133,3,0,0,0,technical,low +0.69,0.83,5,225,3,0,0,0,management,low +0.97,0.91,2,112,5,0,0,0,IT,low +0.4,0.59,3,111,4,1,0,0,IT,low +0.67,0.71,4,178,6,0,0,0,IT,low +0.96,0.58,5,178,3,0,0,0,IT,low +0.49,0.95,2,181,4,1,0,0,IT,low +0.56,0.66,3,139,2,0,0,0,product_mng,low +0.99,0.78,2,177,4,0,0,0,product_mng,low +0.49,0.88,4,270,3,0,0,0,product_mng,low +0.53,0.69,4,135,3,0,0,0,product_mng,low +0.75,0.5,4,166,4,0,0,0,IT,low +0.51,0.89,3,230,4,0,0,0,marketing,low +0.65,0.9,3,163,3,1,0,0,marketing,medium +0.45,0.66,2,236,3,0,0,0,marketing,medium +0.98,0.91,3,264,4,1,0,0,marketing,medium +0.9,0.74,3,185,2,0,0,0,marketing,medium +0.37,0.62,4,253,2,0,0,0,marketing,medium +0.52,0.99,4,253,3,0,0,0,marketing,medium +0.96,0.78,3,135,3,0,0,0,sales,medium +0.99,0.7,2,182,4,0,0,0,accounting,medium +0.66,0.56,5,202,3,0,0,0,support,medium +0.84,0.54,5,186,2,0,0,0,technical,medium +0.16,0.87,5,163,3,0,0,0,management,medium +0.75,0.59,3,242,3,0,0,0,marketing,medium +0.52,0.74,3,160,2,0,0,0,marketing,high +0.86,0.86,3,173,3,0,0,0,marketing,low +0.75,0.53,3,154,2,0,0,0,sales,medium +0.73,0.99,3,160,3,0,0,0,sales,medium +0.98,0.84,3,139,2,0,0,0,sales,medium +0.8,0.84,3,251,3,0,0,0,sales,medium +0.18,0.48,4,176,4,1,0,0,sales,low +0.37,0.72,2,163,3,0,0,0,sales,low +0.97,0.86,3,257,4,0,0,0,sales,low +0.56,0.68,4,159,3,0,0,0,sales,low +0.32,0.65,2,183,3,0,0,0,sales,low +0.63,0.88,4,260,2,0,0,0,sales,low +0.36,0.78,6,151,3,0,0,0,sales,low +0.75,0.49,4,246,3,1,0,0,sales,low +0.42,0.86,3,160,4,1,0,0,sales,low +0.96,0.66,3,155,2,0,0,0,sales,low +0.62,0.78,5,250,6,0,0,0,sales,low +0.78,0.96,2,174,3,0,0,0,sales,low +0.93,0.89,3,262,2,0,0,0,sales,low +0.93,0.87,4,257,2,0,0,0,sales,low +0.45,0.42,4,140,2,0,0,0,sales,low +0.44,0.56,3,123,3,0,0,0,accounting,medium +0.57,0.55,3,264,2,0,0,0,accounting,medium +0.77,0.51,2,254,5,0,0,0,accounting,medium +0.6,0.98,4,205,4,0,0,0,hr,medium +0.25,0.94,6,199,4,0,0,0,hr,medium +0.59,0.43,3,171,3,0,0,0,hr,medium +0.29,0.57,5,98,5,0,0,0,hr,medium +0.5,0.95,3,166,4,1,0,0,technical,low +0.91,0.94,4,264,4,0,0,0,technical,low +0.78,0.65,3,176,2,0,0,0,technical,low +0.73,0.76,2,166,3,0,0,0,technical,low +0.51,0.59,4,169,3,0,0,0,technical,low +0.65,0.82,4,257,3,0,0,0,technical,low +0.25,0.87,3,265,4,0,0,0,technical,low +0.5,0.63,5,167,2,0,0,0,technical,low +0.53,0.58,4,134,2,0,0,0,technical,low +0.57,0.76,2,176,3,0,0,0,technical,low +0.77,0.91,5,274,3,0,0,0,technical,low +0.94,0.77,3,201,3,0,0,0,support,low +0.5,0.53,3,121,4,0,0,0,support,low +0.47,0.57,3,97,4,0,0,0,support,low +0.92,0.54,4,217,4,0,0,0,support,low +0.9,0.87,3,220,3,0,0,0,support,low +0.54,0.46,2,98,4,0,0,0,support,low +0.58,0.97,5,265,3,0,0,0,support,low +0.95,0.87,3,201,3,0,0,0,support,low +0.52,0.71,3,151,3,0,0,0,support,low +0.83,0.51,4,199,3,0,0,0,support,low +0.54,0.92,4,175,3,0,0,0,support,low +0.8,0.85,5,253,3,1,0,0,technical,low +0.52,0.57,3,183,2,0,0,0,technical,low +0.83,0.8,5,223,3,0,0,0,technical,low +0.74,0.55,5,168,4,0,0,0,management,low +0.87,0.71,5,244,2,0,0,0,IT,low +0.45,0.87,2,268,4,1,0,0,IT,low +0.72,0.72,4,218,4,0,0,0,IT,low +0.27,0.85,2,277,6,1,0,0,IT,low +0.51,0.88,5,225,2,1,0,0,IT,low +0.55,0.55,4,257,3,0,0,0,product_mng,low +0.89,0.69,4,170,3,0,0,0,product_mng,low +0.85,0.86,3,179,3,0,0,0,product_mng,low +0.29,0.85,4,211,2,0,0,0,product_mng,low +0.96,0.5,3,217,2,1,0,0,IT,low +0.9,0.68,3,135,3,0,0,0,RandD,low +0.28,0.94,6,167,3,1,0,0,RandD,low +0.93,0.98,4,189,3,0,0,0,RandD,medium +0.51,0.57,3,162,3,1,0,0,RandD,medium +0.97,0.76,3,193,3,0,0,0,RandD,medium +0.71,0.55,4,273,3,1,0,0,RandD,medium +0.52,0.69,6,138,5,0,0,0,marketing,medium +0.87,0.84,4,237,3,1,0,0,sales,medium +0.78,0.61,5,260,2,0,0,0,accounting,medium +0.57,0.82,3,149,5,1,0,0,support,medium +0.34,0.49,4,149,3,0,0,0,technical,medium +0.95,0.95,4,137,4,0,0,0,management,medium +0.72,0.73,5,167,3,0,0,0,marketing,medium +0.61,0.37,4,165,6,0,0,0,marketing,medium +0.39,0.39,2,131,2,0,0,0,marketing,high +0.72,0.59,5,138,2,0,0,0,sales,low +0.86,0.91,4,234,3,1,0,0,sales,medium +0.69,0.67,4,141,3,0,0,0,sales,medium +0.5,0.65,4,266,3,1,0,0,sales,medium +0.62,0.68,3,134,2,0,0,0,sales,medium +0.76,0.55,4,147,3,0,0,0,sales,low +0.97,0.88,4,237,4,0,0,0,sales,low +0.78,0.57,5,114,4,0,0,0,sales,low +0.81,0.89,4,166,2,1,0,0,sales,low +0.15,0.95,4,173,5,1,0,0,sales,low +0.72,0.5,3,205,3,1,0,0,sales,low +0.8,0.5,3,219,3,0,0,0,sales,low +0.76,0.74,3,173,2,0,0,0,sales,low +0.19,0.73,4,231,3,0,0,0,sales,low +0.75,0.75,5,133,2,0,0,0,sales,low +0.94,0.49,4,220,3,0,0,0,sales,low +0.93,0.59,5,158,3,0,0,0,sales,low +0.96,0.92,3,182,4,0,0,0,sales,low +0.14,0.57,6,275,5,0,0,0,sales,low +0.75,0.71,3,237,3,1,0,0,accounting,low +0.6,0.59,5,146,4,0,0,0,accounting,low +0.65,0.48,4,144,3,0,0,0,accounting,low +0.59,0.79,2,195,3,0,0,0,hr,low +0.93,0.78,5,191,4,0,0,0,hr,medium +0.5,1,3,149,2,0,0,0,hr,medium +0.62,0.55,4,137,3,1,0,0,hr,medium +0.24,0.58,3,184,5,1,0,0,technical,medium +0.66,0.87,4,139,3,0,0,0,technical,medium +0.55,0.95,4,249,4,0,0,0,technical,medium +0.91,0.66,3,168,3,0,0,0,technical,medium +0.59,0.51,2,145,5,0,0,0,technical,medium +0.74,0.54,5,221,3,0,0,0,technical,medium +0.43,0.51,2,123,3,0,0,0,technical,medium +0.85,0.99,6,153,6,0,0,0,technical,medium +0.46,0.54,3,183,4,0,0,0,technical,medium +0.48,0.56,4,271,3,0,0,0,technical,high +0.96,1,4,167,2,1,0,0,technical,low +0.55,0.9,4,177,3,0,0,0,support,medium +0.82,0.74,3,256,3,1,0,0,support,medium +0.24,0.65,3,143,4,0,0,0,support,medium +0.69,0.71,3,241,3,0,0,0,support,medium +0.29,0.68,4,210,3,0,0,0,support,low +0.53,0.7,4,155,5,1,0,0,support,low +0.65,0.77,2,248,3,0,0,0,support,low +0.57,0.53,3,162,3,0,0,0,support,low +0.6,0.5,4,137,3,0,0,0,support,low +0.79,0.55,5,242,2,0,0,0,support,low +0.41,0.5,6,257,6,1,0,0,support,low +0.79,0.72,5,245,3,1,0,0,technical,low +0.5,0.8,3,234,3,0,0,0,technical,low +0.8,0.76,4,135,2,0,0,0,technical,low +0.61,0.79,5,269,2,0,0,0,management,low +0.99,0.68,4,238,3,0,0,0,IT,low +0.77,0.86,3,101,5,0,0,0,IT,low +0.7,0.52,5,200,2,1,0,0,IT,low +0.55,0.87,3,241,4,0,0,0,IT,low +0.87,0.63,3,143,3,1,0,0,IT,low +0.97,0.6,3,169,2,1,0,0,product_mng,low +0.56,0.99,4,270,2,0,0,0,product_mng,low +0.99,0.81,4,246,3,1,0,0,product_mng,low +0.57,0.66,4,151,2,0,0,0,product_mng,low +1,0.84,3,227,3,0,0,0,IT,low +0.97,0.74,3,134,3,1,0,0,marketing,high +0.81,0.54,4,155,4,0,0,0,accounting,high +0.76,0.48,5,173,3,0,0,0,accounting,high +0.95,0.55,5,134,3,0,0,0,IT,medium +0.81,0.65,3,195,2,0,0,0,IT,medium +0.8,0.65,3,264,4,0,0,0,management,high +0.72,0.57,3,203,2,1,0,0,marketing,medium +0.68,0.65,3,243,2,0,0,0,sales,medium +0.21,0.61,6,159,5,1,0,0,accounting,medium +0.46,0.4,3,145,2,0,0,0,support,medium +0.8,0.7,3,238,2,0,0,0,technical,medium +0.57,0.64,4,151,2,0,0,0,management,medium +0.58,0.57,5,205,2,0,0,0,marketing,high +0.91,1,4,211,3,0,0,0,marketing,low +0.63,0.67,5,169,2,0,0,0,marketing,medium +0.95,0.86,2,263,4,0,0,0,sales,medium +0.87,0.67,5,143,3,0,0,0,sales,medium +0.22,0.53,5,160,4,1,0,0,sales,medium +0.95,0.65,5,142,2,1,0,0,sales,low +0.18,0.5,4,169,4,0,0,0,sales,low +0.87,0.63,5,214,3,0,0,0,sales,low +0.23,0.84,5,131,5,0,0,0,sales,low +0.93,0.69,3,213,4,0,0,0,sales,low +0.58,0.75,4,244,4,0,0,0,sales,low +0.68,0.55,4,169,3,1,0,0,sales,low +0.76,0.71,4,156,3,0,0,0,sales,low +0.68,0.84,5,161,3,0,0,0,sales,low +0.99,0.47,3,152,5,0,0,0,sales,low +0.64,0.55,3,201,2,0,0,0,sales,low +0.61,0.83,5,269,5,1,0,0,sales,low +0.51,0.5,5,242,2,0,0,0,sales,low +0.69,0.66,3,113,4,0,0,0,sales,low +0.85,0.6,3,251,2,0,0,0,sales,low +0.55,0.89,6,99,3,0,0,0,sales,low +0.56,0.89,4,263,3,0,0,0,accounting,low +0.69,0.68,4,214,4,0,0,0,accounting,low +0.61,0.46,4,172,3,0,0,0,accounting,low +0.47,0.65,4,172,2,0,0,0,hr,low +0.58,0.79,4,196,3,1,0,0,hr,low +0.16,0.56,5,152,5,0,0,0,hr,medium +0.53,0.64,2,109,3,0,0,0,hr,medium +0.82,0.82,5,193,4,0,0,0,technical,medium +0.68,0.61,4,227,3,0,0,0,technical,medium +0.6,0.72,3,181,2,0,0,0,technical,medium +0.93,0.44,5,190,5,0,0,0,technical,medium +0.58,0.49,2,107,3,0,0,0,technical,medium +0.61,0.96,4,161,3,1,0,0,technical,medium +0.74,0.71,4,243,3,0,0,0,technical,medium +0.88,0.91,3,157,2,0,0,0,technical,medium +0.94,0.8,6,147,3,0,0,0,technical,medium +0.44,0.46,3,121,3,0,0,0,technical,medium +0.73,0.52,3,274,2,0,0,0,technical,high +0.9,0.68,4,204,4,1,0,0,support,low +0.97,0.49,3,199,2,0,0,0,support,medium +0.86,0.96,5,246,3,0,0,0,support,medium +0.81,0.98,3,141,3,0,0,0,support,medium +0.24,0.76,6,213,4,0,0,0,support,medium +0.92,0.97,4,199,3,0,0,0,support,low +0.34,0.62,2,257,6,1,0,0,support,low +0.95,0.53,4,143,3,0,0,0,support,low +0.94,0.81,3,150,2,0,0,0,support,low +0.54,0.82,3,284,2,1,0,0,support,low +0.87,0.57,3,149,3,0,0,0,support,low +0.54,0.74,4,160,6,0,0,0,technical,low +0.75,0.49,4,208,4,0,0,0,technical,low +0.88,1,3,248,3,0,0,0,technical,medium +0.78,0.86,3,210,3,0,0,0,management,medium +0.88,0.71,5,219,2,0,0,0,IT,medium +0.51,0.94,4,155,3,0,0,0,IT,medium +0.31,0.7,4,182,3,0,0,0,IT,medium +0.22,1,6,244,3,0,0,0,IT,medium +0.56,0.83,5,157,3,0,0,0,IT,medium +0.38,0.63,2,182,2,0,0,0,product_mng,medium +0.56,0.47,5,185,4,0,0,0,product_mng,medium +0.55,0.9,4,206,3,0,0,0,product_mng,medium +0.74,0.99,4,156,3,0,0,0,product_mng,medium +0.64,0.92,5,211,2,1,0,0,IT,medium +0.69,0.91,6,247,6,0,0,0,RandD,medium +0.99,0.54,3,247,3,0,0,0,RandD,medium +0.66,0.75,4,235,3,0,0,0,RandD,medium +0.79,0.93,5,169,3,0,0,0,RandD,medium +0.92,0.54,3,246,3,0,0,0,RandD,medium +0.84,0.49,3,172,4,0,0,0,RandD,medium +0.31,0.59,4,218,5,0,0,0,marketing,medium +0.34,0.52,6,265,6,0,0,0,sales,medium +0.88,0.96,5,173,4,0,0,0,accounting,medium +0.8,0.84,3,195,3,0,0,0,support,medium +0.75,0.92,3,160,3,1,0,0,technical,medium +0.71,0.7,4,237,4,0,0,0,management,medium +0.66,0.49,3,206,2,0,0,0,marketing,medium +0.54,0.72,6,222,5,0,0,0,marketing,high +0.47,0.4,3,113,3,0,0,0,marketing,high +0.87,0.79,3,244,3,0,0,0,sales,high +0.9,0.52,3,162,2,0,0,0,sales,high +0.51,0.63,3,234,2,0,0,0,sales,high +0.62,0.71,4,168,2,0,0,0,sales,high +0.47,0.43,3,120,3,0,0,0,sales,high +0.59,0.94,5,274,2,0,0,0,sales,high +0.87,0.62,4,202,3,0,0,0,sales,high +0.59,0.97,3,209,3,0,0,0,sales,high +0.87,0.71,6,224,6,0,0,0,sales,high +0.89,0.93,3,168,2,0,0,0,sales,high +0.73,0.68,4,227,3,0,0,0,sales,low +0.79,0.98,3,217,3,0,0,0,sales,low +0.8,0.74,2,205,3,1,0,0,sales,low +0.73,0.89,5,223,3,0,0,0,sales,low +0.96,0.9,3,175,3,1,0,0,sales,low +0.66,0.96,3,175,2,0,0,0,sales,low +0.53,0.97,4,254,3,0,0,0,sales,low +0.86,0.56,5,215,2,0,0,0,sales,low +0.92,0.86,3,166,4,0,0,0,sales,low +0.31,0.95,5,205,3,0,0,0,accounting,low +0.69,0.73,4,233,2,0,0,0,accounting,low +0.7,0.83,3,189,3,0,0,0,accounting,low +0.63,0.74,4,202,3,0,0,0,hr,low +0.24,0.53,6,165,5,0,0,0,hr,low +0.13,0.94,4,213,5,1,0,0,hr,low +0.47,0.41,2,140,3,0,0,0,hr,medium +0.53,0.58,4,251,2,0,0,0,technical,medium +0.96,0.96,5,243,3,0,0,0,technical,medium +0.92,0.88,4,111,4,0,0,0,technical,medium +0.56,0.59,3,178,2,0,0,0,technical,medium +0.51,0.88,5,230,4,0,0,0,technical,medium +0.22,0.85,6,172,6,1,0,0,technical,medium +0.83,0.92,3,268,2,1,0,0,technical,medium +0.85,0.48,2,208,4,0,0,0,technical,medium +0.85,0.92,3,188,4,0,0,0,technical,medium +0.85,0.9,5,247,2,0,0,0,technical,medium +0.73,0.82,4,205,4,0,0,0,technical,medium +0.18,0.52,3,213,4,0,0,0,support,high +0.63,0.87,4,145,3,1,0,0,support,high +0.5,0.48,2,106,2,0,0,0,support,high +0.63,0.47,3,180,3,1,0,0,support,high +0.15,0.95,4,251,5,0,0,0,support,high +0.96,0.69,4,156,5,0,0,0,support,high +0.96,0.91,5,179,2,0,0,0,support,high +0.31,0.51,4,229,6,0,0,0,support,high +0.59,0.49,4,149,4,0,0,0,support,low +0.75,0.98,4,198,3,0,0,0,support,low +0.96,0.51,3,241,6,1,0,0,support,low +0.69,0.67,4,156,3,0,0,0,technical,low +0.92,0.89,3,220,2,0,0,0,technical,low +0.96,0.82,5,185,3,0,0,0,technical,low +0.67,0.7,4,222,3,0,0,0,management,low +0.49,0.56,3,221,3,1,0,0,IT,low +0.85,0.65,4,280,3,1,0,0,IT,medium +0.85,0.53,3,250,3,0,0,0,IT,medium +0.91,0.77,4,167,3,1,0,0,IT,medium +0.7,0.48,4,238,3,0,0,0,IT,medium +0.98,0.99,4,132,2,0,0,0,product_mng,medium +0.48,0.48,2,245,5,0,0,0,product_mng,medium +0.39,0.6,2,161,2,0,0,0,product_mng,medium +0.66,0.89,3,242,3,0,0,0,product_mng,medium +0.6,0.61,3,104,5,0,0,0,IT,medium +0.88,0.9,4,152,4,0,0,0,RandD,medium +0.85,0.83,3,226,2,0,0,0,RandD,medium +0.76,0.81,3,175,3,0,0,0,RandD,medium +1,0.67,5,241,4,0,0,0,RandD,medium +0.79,0.74,2,158,3,0,0,0,RandD,medium +0.63,0.52,5,226,4,0,0,0,marketing,medium +0.5,0.83,2,220,2,1,0,0,sales,medium +0.83,0.74,4,233,3,0,0,0,accounting,medium +0.71,0.81,3,141,3,0,0,0,support,medium +0.94,0.87,4,157,3,0,0,0,technical,medium +0.56,0.57,2,112,4,0,0,0,management,medium +0.78,0.71,4,216,2,0,0,0,marketing,medium +0.34,0.46,5,131,3,0,0,0,marketing,medium +0.62,0.67,3,212,3,0,0,0,marketing,medium +0.82,0.74,3,163,2,0,0,0,sales,high +0.42,0.5,2,151,3,0,0,0,sales,low +0.51,0.79,3,137,3,0,0,0,sales,medium +0.63,0.78,2,158,5,1,0,0,sales,medium +0.43,0.81,3,102,3,0,0,0,sales,medium +0.5,0.49,5,256,3,0,0,0,sales,medium +0.81,0.87,4,203,2,0,0,0,sales,medium +0.63,0.7,5,177,2,1,0,0,sales,medium +0.86,0.7,4,197,3,0,0,0,sales,medium +0.92,0.91,3,202,2,0,0,0,sales,medium +0.72,0.78,3,229,2,0,0,0,sales,medium +0.78,0.63,4,181,2,0,0,0,sales,medium +0.76,0.65,3,254,2,0,0,0,sales,low +0.84,0.63,2,162,3,0,0,0,sales,low +0.78,0.54,4,102,3,0,0,0,sales,low +0.57,0.59,4,197,3,0,0,0,sales,low +0.15,0.42,3,98,3,0,0,0,sales,low +0.69,0.77,3,232,2,0,0,0,sales,low +0.73,0.6,3,252,4,1,0,0,sales,low +0.96,0.54,5,161,3,1,0,0,accounting,high +0.91,0.78,4,169,4,0,0,0,accounting,low +0.58,0.97,2,216,3,0,0,0,accounting,high +0.84,0.56,3,266,3,0,0,0,hr,high +0.51,0.58,3,141,3,0,0,0,hr,low +0.71,0.95,4,249,3,0,0,0,hr,low +0.63,0.82,5,268,3,0,0,0,hr,high +0.66,0.51,3,192,3,0,0,0,technical,low +0.5,0.8,6,201,5,0,0,0,technical,medium +0.56,0.89,3,163,3,1,0,0,technical,high +0.57,0.46,3,167,4,0,0,0,technical,medium +0.7,0.65,5,202,3,1,0,0,technical,medium +0.84,0.62,5,245,4,0,0,0,technical,medium +0.33,0.59,3,243,2,0,0,0,technical,medium +0.64,0.94,3,204,2,0,0,0,technical,high +0.93,0.54,4,239,2,0,0,0,technical,medium +1,0.58,4,229,2,1,0,0,technical,medium +0.91,0.49,3,213,4,0,0,0,technical,medium +0.56,0.59,5,254,4,0,0,0,support,high +0.62,0.52,6,253,4,0,0,0,support,medium +0.98,0.68,4,253,3,0,0,0,support,high +0.96,0.85,5,211,4,0,0,0,support,low +0.61,0.99,5,98,2,0,0,0,support,medium +0.92,0.66,4,133,3,0,0,0,support,medium +0.58,0.67,5,265,3,0,0,0,support,medium +0.47,0.49,2,112,3,1,0,0,support,medium +0.87,0.7,3,224,3,0,0,0,support,low +0.8,0.64,5,180,2,0,0,0,support,low +0.54,0.53,3,203,2,0,0,0,support,low +0.14,0.83,6,275,6,0,0,0,technical,low +0.98,0.76,5,168,3,0,0,0,technical,low +0.13,0.58,4,203,4,0,0,0,technical,low +0.64,0.81,3,209,3,0,0,0,management,low +0.91,0.75,3,166,2,0,0,0,IT,low +0.24,0.71,3,187,5,0,0,0,IT,low +0.34,0.42,6,287,5,1,0,0,IT,low +0.51,0.85,2,248,4,0,0,0,IT,high +0.91,0.7,3,193,2,0,0,0,IT,low +0.86,0.9,4,162,3,0,0,0,product_mng,low +1,0.61,3,188,4,0,0,0,product_mng,low +0.37,0.41,6,101,3,0,0,0,product_mng,low +0.46,0.73,6,256,4,0,0,0,product_mng,high +0.86,0.8,5,134,2,0,0,0,IT,low +0.36,0.68,2,126,4,0,0,0,marketing,high +0.52,0.93,2,243,3,0,0,0,accounting,high +0.51,0.73,3,205,4,0,0,0,accounting,high +0.69,0.94,5,259,2,0,0,0,IT,medium +0.67,0.5,5,219,3,0,0,0,IT,medium +0.6,0.99,5,161,3,0,0,0,management,high +0.71,0.57,3,207,3,0,0,0,marketing,medium +0.65,0.79,3,201,3,1,0,0,sales,high +0.48,0.92,3,234,3,0,0,0,accounting,medium +0.67,0.58,4,158,3,0,0,0,support,medium +0.68,0.63,5,185,4,0,0,0,technical,medium +0.74,0.85,3,176,3,0,0,0,management,medium +0.9,0.77,5,163,3,0,0,0,marketing,medium +0.67,0.83,3,171,3,1,0,0,marketing,medium +0.64,0.66,5,163,4,0,0,0,marketing,medium +0.54,0.87,4,163,3,0,0,0,sales,medium +0.6,0.73,2,180,2,0,0,0,sales,high +0.72,0.67,3,243,3,0,0,0,sales,low +0.97,0.49,4,213,2,0,0,0,sales,medium +0.99,0.89,3,273,2,0,0,0,sales,medium +0.75,0.93,4,195,3,0,0,0,sales,medium +0.84,0.98,4,246,3,0,0,0,sales,medium +0.76,0.5,3,196,3,1,0,0,sales,medium +0.96,0.51,5,205,2,1,0,0,sales,medium +0.12,0.81,4,287,6,0,0,0,sales,medium +0.54,0.79,3,211,3,0,0,0,sales,medium +0.69,0.98,3,261,4,0,0,0,sales,medium +0.77,0.71,5,204,3,0,0,0,sales,high +0.96,0.86,2,163,3,0,0,0,sales,low +0.53,0.62,4,162,2,0,0,0,sales,low +0.54,0.72,4,259,2,1,0,0,sales,low +0.89,0.64,4,151,5,0,0,0,sales,high +0.52,0.84,2,266,2,0,0,0,sales,low +0.29,0.65,5,110,5,1,0,0,sales,low +0.93,0.6,4,271,3,0,0,0,accounting,low +0.71,0.68,4,208,2,0,0,0,accounting,high +0.23,0.5,2,150,6,0,0,0,accounting,low +0.89,0.96,3,122,4,0,0,0,hr,low +0.51,0.5,4,246,3,0,0,0,hr,low +0.27,0.64,2,188,3,0,0,0,hr,low +0.9,0.53,3,167,3,0,0,0,hr,low +0.88,0.57,4,261,4,0,0,0,technical,low +0.91,0.83,4,235,3,0,0,0,technical,low +0.65,0.63,4,199,2,0,0,0,technical,medium +0.68,0.5,4,166,4,1,0,0,technical,medium +0.58,0.63,4,272,3,0,0,0,technical,medium +0.68,0.62,3,158,3,0,0,0,technical,medium +0.59,0.76,3,264,3,0,0,0,technical,medium +0.56,0.57,5,274,3,0,0,0,technical,medium +0.74,0.44,5,169,3,1,0,0,technical,medium +0.5,0.91,4,148,2,0,0,0,technical,medium +0.85,0.65,4,162,2,0,0,0,technical,medium +0.57,0.48,5,221,3,0,0,0,support,medium +0.89,0.58,3,167,3,0,0,0,support,medium +0.76,0.66,5,206,2,0,0,0,support,medium +0.96,0.7,3,169,3,0,0,0,support,high +0.81,0.68,4,179,3,0,0,0,support,low +0.79,0.85,4,100,6,0,0,0,support,medium +0.63,0.66,3,177,2,1,0,0,support,medium +0.92,0.82,5,252,3,0,0,0,support,medium +0.77,0.74,4,202,4,0,0,0,support,medium +0.73,0.87,4,263,2,0,0,0,support,low +0.74,0.98,4,160,2,0,0,0,support,low +0.8,0.74,5,229,3,1,0,0,technical,low +0.82,0.85,5,195,4,0,0,0,technical,low +0.48,0.81,3,212,2,0,0,0,technical,low +0.79,0.54,6,190,4,0,0,0,management,low +0.87,0.41,3,219,3,1,0,0,IT,low +0.96,0.88,2,193,2,0,0,0,IT,low +0.96,0.58,5,197,4,1,0,0,IT,low +0.69,0.66,3,206,2,0,0,0,IT,low +0.42,0.58,2,140,3,0,0,0,IT,low +0.7,0.76,3,173,2,0,0,0,product_mng,low +0.97,0.76,6,142,2,0,0,0,product_mng,low +0.6,0.59,3,237,4,1,0,0,product_mng,low +0.63,0.63,5,252,2,0,0,0,product_mng,low +0.65,0.82,4,196,2,0,0,0,IT,low +0.85,0.81,3,205,3,0,0,0,marketing,high +0.54,0.83,3,201,3,0,0,0,accounting,high +0.23,0.74,5,120,4,0,0,0,accounting,high +0.95,0.73,2,187,2,0,0,0,IT,medium +1,0.51,5,274,4,0,0,0,IT,medium +0.77,0.93,3,227,3,0,0,0,management,high +0.8,0.53,3,245,3,0,0,0,sales,medium +0.88,0.56,4,243,4,0,0,0,accounting,medium +0.73,0.68,3,132,2,0,0,0,support,medium +0.54,0.9,3,206,3,0,0,0,technical,medium +0.92,0.58,5,205,2,1,0,0,management,medium +0.14,0.88,3,162,4,0,0,0,marketing,medium +0.65,0.79,5,266,3,0,0,0,marketing,medium +0.17,0.89,5,261,5,0,0,0,marketing,medium +0.18,0.67,5,209,4,0,0,0,sales,medium +0.58,0.5,5,184,4,0,0,0,sales,medium +0.63,0.67,4,229,3,0,0,0,sales,medium +0.68,0.81,3,180,2,1,0,0,sales,high +0.91,0.98,5,135,3,0,0,0,sales,low +0.95,0.94,3,174,3,0,0,0,sales,medium +0.89,0.76,2,278,2,0,0,0,sales,medium +0.76,0.76,3,197,2,0,0,0,sales,medium +0.96,0.72,3,157,3,0,0,0,sales,medium +0.78,0.63,4,156,3,0,0,0,sales,low +0.98,0.9,3,186,4,0,0,0,sales,low +0.76,0.42,3,217,2,0,0,0,sales,low +0.63,0.49,5,192,2,0,0,0,sales,low +0.39,0.37,3,127,3,0,0,0,sales,low +0.91,0.67,3,257,2,0,0,0,sales,low +0.8,0.8,4,229,4,0,0,0,sales,low +0.89,0.64,4,274,2,1,0,0,sales,low +0.75,0.41,5,196,4,0,0,0,sales,low +0.94,0.85,3,137,3,0,0,0,sales,low +0.5,0.75,4,239,2,0,0,0,accounting,low +0.75,0.95,4,177,3,0,0,0,accounting,low +0.84,0.78,5,164,3,0,0,0,accounting,low +0.55,0.81,5,229,3,0,0,0,hr,low +0.59,0.82,3,149,3,0,0,0,hr,low +0.58,0.43,3,224,6,0,0,0,hr,low +0.91,0.59,5,179,3,0,0,0,hr,low +0.43,0.92,5,151,4,0,0,0,technical,low +0.51,0.79,5,222,2,0,0,0,technical,low +0.81,0.96,4,219,2,0,0,0,technical,low +0.72,0.39,3,257,3,0,0,0,technical,low +0.89,0.99,4,258,3,1,0,0,technical,medium +0.61,0.74,5,185,2,1,0,0,technical,medium +0.57,0.7,3,248,2,0,0,0,technical,medium +0.74,0.82,5,154,2,0,0,0,technical,medium +0.87,0.64,3,187,2,0,0,0,technical,medium +0.58,0.62,3,182,3,0,0,0,technical,medium +0.63,0.59,3,189,3,0,0,0,technical,medium +0.89,0.85,4,195,4,0,0,0,support,medium +0.49,0.74,2,154,3,0,0,0,support,medium +0.59,0.59,4,244,3,0,0,0,support,medium +0.71,0.99,3,228,2,0,0,0,support,medium +0.58,0.62,3,218,3,0,0,0,support,medium +0.84,0.61,5,202,3,0,0,0,support,high +0.92,0.48,4,208,3,0,0,0,support,low +0.91,0.59,3,266,2,0,0,0,support,medium +0.92,0.78,4,177,2,0,0,0,support,medium +0.95,0.65,3,183,3,0,0,0,support,medium +0.53,0.62,4,201,3,0,0,0,support,medium +0.89,0.89,5,179,2,0,0,0,technical,low +0.81,0.84,3,198,2,0,0,0,technical,low +0.78,0.67,5,209,3,0,0,0,technical,low +0.66,0.48,3,203,4,1,0,0,management,low +0.37,0.71,6,266,5,0,0,0,IT,low +0.55,0.84,4,200,4,0,0,0,IT,low +0.79,0.88,3,195,4,0,0,0,IT,low +0.89,0.83,5,269,3,0,0,0,IT,low +0.54,0.76,5,226,2,0,0,0,IT,low +0.74,0.8,4,200,4,0,0,0,product_mng,low +0.7,0.47,2,176,5,0,0,0,product_mng,low +0.37,0.85,2,185,3,0,0,0,product_mng,low +0.84,0.71,3,179,2,0,0,0,product_mng,low +0.55,0.58,5,208,3,0,0,0,IT,low +0.93,0.79,5,241,4,0,0,0,marketing,high +0.97,0.55,4,166,3,1,0,0,accounting,high +0.64,0.53,3,216,3,0,0,0,accounting,high +0.62,0.64,4,185,2,0,0,0,IT,medium +0.26,0.91,5,183,6,0,0,0,IT,medium +0.93,0.49,4,255,2,0,0,0,management,high +0.27,0.61,3,213,6,0,0,0,sales,low +0.9,0.63,4,173,3,0,0,0,accounting,medium +0.16,0.7,6,246,4,0,0,0,support,medium +0.75,0.63,3,148,4,0,0,0,technical,medium +0.72,0.74,2,238,3,0,0,0,management,medium +0.68,0.51,3,185,3,0,0,0,marketing,medium +0.13,0.77,4,201,5,0,0,0,marketing,medium +0.96,0.92,3,150,2,0,0,0,marketing,medium +0.71,0.72,4,137,3,0,0,0,sales,medium +0.85,0.66,5,189,3,0,0,0,sales,medium +0.87,0.91,3,229,3,1,0,0,sales,medium +0.86,0.93,3,199,3,1,0,0,sales,medium +0.49,0.85,3,250,2,0,0,0,sales,medium +0.99,0.59,5,263,3,0,0,0,sales,high +0.75,0.95,3,268,3,1,0,0,sales,low +0.61,0.64,3,187,2,0,0,0,sales,medium +0.89,0.84,6,196,4,0,0,0,sales,medium +0.77,0.7,4,232,3,0,0,0,sales,medium +0.7,0.79,3,226,4,0,0,0,sales,medium +0.5,0.58,4,96,3,0,0,0,sales,low +0.61,1,4,133,4,0,0,0,sales,low +0.98,0.53,4,214,2,0,0,0,sales,low +0.61,0.77,4,252,2,0,0,0,sales,low +0.85,0.56,3,199,4,0,0,0,sales,low +0.42,0.85,3,150,3,0,0,0,sales,low +0.56,0.75,4,141,3,0,0,0,sales,low +0.88,0.8,4,239,3,0,0,0,sales,low +0.92,0.69,3,139,2,0,0,0,accounting,low +0.85,0.77,3,146,4,0,0,0,accounting,low +0.66,0.74,4,179,3,0,0,0,accounting,low +0.82,0.93,3,160,3,0,0,0,hr,low +0.14,0.58,6,205,3,0,0,0,hr,low +0.6,0.98,5,213,3,0,0,0,hr,low +0.92,0.65,4,260,2,0,0,0,hr,low +0.51,0.72,3,242,3,0,0,0,technical,low +0.85,0.46,3,123,5,1,0,0,technical,low +0.43,0.84,2,285,5,0,0,0,technical,low +0.98,0.56,3,103,5,0,0,0,technical,medium +0.84,0.55,5,264,3,0,0,0,technical,medium +0.7,0.52,3,227,2,0,0,0,technical,medium +0.82,0.82,5,267,2,0,0,0,technical,medium +0.94,0.67,3,142,3,0,0,0,technical,medium +0.55,0.79,3,254,3,1,0,0,technical,medium +0.98,0.5,3,251,3,0,0,0,technical,medium +0.78,0.63,4,158,3,0,0,0,technical,medium +0.99,0.77,5,160,3,0,0,0,support,medium +0.74,0.58,4,215,3,1,0,0,support,medium +0.5,0.74,4,237,2,1,0,0,support,medium +0.25,0.8,5,237,6,0,0,0,support,medium +0.49,0.55,4,268,4,0,0,0,support,high +0.63,0.74,4,234,3,0,0,0,support,low +0.68,0.73,3,250,2,0,0,0,support,medium +0.62,0.54,4,212,4,0,0,0,support,medium +0.89,0.52,4,189,3,0,0,0,support,medium +0.31,0.37,2,104,3,1,0,0,support,medium +0.89,0.61,3,211,2,0,0,0,support,low +0.72,0.65,3,109,5,1,0,0,technical,low +0.84,0.75,2,168,2,0,0,0,technical,low +0.88,0.71,3,184,3,0,0,0,technical,low +0.74,1,4,242,2,0,0,0,management,low +0.96,0.95,6,215,4,0,0,0,IT,low +0.82,0.89,5,182,3,0,0,0,IT,low +0.7,0.64,5,260,3,0,0,0,IT,low +0.61,0.84,4,265,2,0,0,0,IT,low +0.65,0.83,5,182,2,1,0,0,IT,low +0.77,0.64,3,191,3,1,0,0,product_mng,low +0.81,0.77,5,167,4,0,0,0,product_mng,low +0.87,0.66,3,270,2,0,0,0,product_mng,low +0.96,0.73,4,273,2,0,0,0,product_mng,low +0.48,0.7,3,251,3,0,0,0,IT,low +0.78,0.96,3,217,3,0,0,0,marketing,high +0.75,1,4,222,2,1,0,0,accounting,high +0.23,0.87,5,258,4,1,0,0,accounting,high +0.85,0.76,3,197,5,0,0,0,IT,medium +0.67,0.56,3,193,2,1,0,0,IT,medium +0.71,0.81,2,182,3,0,0,0,management,high +0.72,0.7,3,163,3,1,0,0,sales,medium +0.8,0.77,4,224,2,0,0,0,accounting,medium +0.64,0.86,4,143,2,0,0,0,support,medium +0.54,0.42,6,218,3,0,0,0,technical,medium +0.73,0.67,3,208,4,0,0,0,management,medium +0.73,1,2,229,3,0,0,0,marketing,medium +0.55,0.62,5,184,4,0,0,0,marketing,medium +0.63,0.41,3,180,5,1,0,0,marketing,medium +0.15,0.8,5,121,5,0,0,0,sales,medium +0.6,0.5,5,203,3,0,0,0,sales,medium +0.38,0.51,3,151,2,0,0,0,sales,medium +0.81,0.77,4,239,3,0,0,0,sales,medium +0.75,0.53,3,166,3,0,0,0,sales,high +0.52,0.92,3,268,3,0,0,0,sales,low +0.51,1,5,196,4,0,0,0,sales,medium +0.66,0.62,4,241,3,0,0,0,sales,medium +0.8,0.87,5,251,3,0,0,0,sales,medium +0.85,0.69,3,263,3,0,0,0,sales,medium +0.77,0.73,3,224,2,1,0,0,sales,low +0.29,0.4,4,138,4,0,0,0,sales,low +0.15,0.67,6,167,6,0,0,0,sales,low +0.73,0.83,5,266,5,0,0,0,sales,low +0.55,0.74,2,116,3,0,0,0,sales,low +0.2,0.69,2,160,4,0,0,0,sales,low +0.56,0.68,3,144,3,1,0,0,sales,low +0.55,0.54,3,190,3,0,0,0,sales,low +0.9,0.49,6,175,4,0,0,0,sales,low +0.73,0.55,3,206,4,0,0,0,accounting,low +0.48,0.99,5,180,2,0,0,0,accounting,low +0.64,0.74,4,157,4,0,0,0,accounting,low +0.95,0.75,4,203,3,0,0,0,hr,low +0.82,0.66,4,238,3,1,0,0,hr,low +0.95,0.65,3,273,4,0,0,0,hr,low +0.92,0.9,4,179,3,0,0,0,hr,low +0.22,0.84,3,131,5,1,0,0,technical,low +0.17,0.77,4,151,6,0,0,0,technical,low +0.51,0.55,3,261,3,0,0,0,technical,low +0.67,0.64,3,203,2,1,0,0,technical,low +0.6,0.66,5,143,2,0,0,0,technical,low +0.99,0.55,3,97,6,1,0,0,technical,medium +0.35,0.71,6,204,4,1,0,0,technical,medium +0.13,0.72,4,154,4,0,0,0,technical,medium +0.97,0.93,2,160,6,0,0,0,technical,medium +0.49,0.61,4,232,3,1,0,0,technical,medium +0.62,0.71,3,255,2,0,0,0,technical,medium +0.35,0.54,3,128,3,0,0,0,support,medium +0.81,0.79,4,222,3,0,0,0,support,medium +0.57,0.75,5,171,4,0,0,0,support,medium +1,0.66,4,173,2,0,0,0,support,medium +0.93,0.71,4,272,2,0,0,0,support,medium +0.89,0.85,3,166,3,0,0,0,support,medium +0.64,0.61,4,143,2,1,0,0,support,high +0.54,0.95,4,149,3,0,0,0,support,low +0.52,0.85,4,257,2,0,0,0,support,medium +0.12,0.65,5,262,6,0,0,0,support,medium +0.14,0.49,4,115,4,0,0,0,support,medium +0.57,0.54,4,142,4,0,0,0,technical,medium +0.57,0.64,4,144,4,0,0,0,technical,low +1,0.56,5,247,3,0,0,0,technical,low +0.94,0.58,4,216,3,0,0,0,management,low +0.93,0.48,3,276,3,0,0,0,IT,low +0.91,0.88,5,123,5,0,0,0,IT,low +0.85,0.77,4,264,3,0,0,0,IT,low +0.8,0.98,3,189,6,0,0,0,IT,low +0.68,0.69,3,148,2,0,0,0,IT,low +0.91,0.6,5,150,3,0,0,0,product_mng,medium +0.93,0.9,3,172,3,0,0,0,product_mng,medium +0.81,0.68,3,236,2,0,0,0,product_mng,medium +0.51,0.74,4,151,3,0,0,0,product_mng,medium +0.49,0.52,3,168,3,0,0,0,IT,medium +0.55,0.55,5,256,3,0,0,0,RandD,medium +0.17,0.51,6,213,3,0,0,0,RandD,medium +0.8,0.79,4,148,3,0,0,0,RandD,medium +0.61,0.67,3,266,3,0,0,0,RandD,medium +0.59,0.73,3,195,2,0,0,0,RandD,medium +0.67,0.77,4,242,3,0,0,0,marketing,medium +0.96,0.81,4,183,3,0,0,0,sales,medium +0.72,0.66,3,134,3,0,0,0,accounting,medium +0.72,0.76,4,189,2,0,0,0,support,medium +0.99,0.61,5,196,3,0,0,0,technical,medium +0.22,0.61,4,150,6,0,0,0,management,medium +0.32,0.52,4,191,2,0,0,0,marketing,medium +0.64,0.86,4,248,6,0,0,0,marketing,medium +0.9,0.49,3,256,2,0,0,0,marketing,medium +0.86,0.9,3,158,2,0,0,0,sales,medium +0.67,0.76,2,210,2,0,0,0,sales,medium +0.9,0.59,3,247,2,0,0,0,sales,medium +0.52,0.8,3,156,3,0,0,0,sales,medium +0.57,0.89,3,202,2,0,0,0,sales,medium +0.55,0.83,3,157,2,0,0,0,sales,medium +0.2,0.83,4,258,4,0,0,0,sales,high +0.89,0.66,4,176,3,0,0,0,sales,high +0.15,0.56,4,214,5,0,0,0,sales,high +0.8,0.6,3,212,3,0,0,0,sales,high +0.55,0.48,4,271,6,1,0,0,sales,high +0.53,0.64,5,281,4,0,0,0,sales,high +0.62,0.77,3,204,4,0,0,0,sales,high +1,0.58,3,112,2,0,0,0,sales,high +0.31,0.75,3,120,4,0,0,0,sales,high +0.62,0.51,5,134,3,0,0,0,sales,high +0.73,0.61,5,222,3,0,0,0,sales,high +0.52,0.61,3,203,3,0,0,0,sales,high +0.33,0.65,2,239,5,0,0,0,sales,low +0.88,0.5,3,142,3,0,0,0,accounting,low +0.65,0.54,2,177,3,0,0,0,accounting,low +0.91,0.7,6,201,2,1,0,0,accounting,low +0.83,0.91,3,196,4,0,0,0,hr,low +0.2,0.87,3,140,6,1,0,0,hr,low +0.96,0.8,5,195,4,1,0,0,hr,low +0.75,0.89,5,154,4,0,0,0,hr,low +0.93,0.57,3,141,2,0,0,0,technical,low +0.87,0.49,4,213,3,0,0,0,technical,low +0.94,0.58,5,222,3,0,0,0,technical,low +0.85,0.72,3,150,2,1,0,0,technical,low +0.63,0.5,4,172,2,0,0,0,technical,low +0.78,0.63,5,261,3,0,0,0,technical,low +0.87,0.92,2,248,3,0,0,0,technical,low +0.77,0.76,5,149,2,0,0,0,technical,medium +1,0.61,5,178,3,0,0,0,technical,medium +0.93,0.81,3,212,3,0,0,0,technical,medium +0.5,0.4,2,108,2,0,0,0,technical,medium +0.9,0.66,4,160,2,1,0,0,support,medium +0.61,0.56,2,160,3,0,0,0,support,medium +0.57,0.97,5,196,2,0,0,0,support,medium +0.43,0.5,4,121,5,1,0,0,support,medium +0.6,0.56,5,268,2,0,0,0,support,medium +0.56,0.92,3,232,2,0,0,0,support,medium +0.57,0.62,5,263,2,0,0,0,support,medium +0.56,0.82,3,208,2,0,0,0,support,medium +0.64,0.9,6,143,5,0,0,0,support,high +0.53,0.56,5,236,4,1,0,0,support,high +0.19,0.6,5,198,4,0,0,0,support,high +0.5,0.8,4,261,3,0,0,0,technical,high +0.86,0.97,4,258,3,0,0,0,technical,high +0.92,0.66,3,230,3,0,0,0,technical,high +0.82,0.97,3,137,3,0,0,0,management,high +0.54,0.51,5,258,3,0,0,0,IT,high +0.23,0.51,5,139,6,0,0,0,IT,low +0.65,0.71,4,186,2,0,0,0,IT,low +0.99,0.98,4,259,3,0,0,0,IT,low +0.54,0.59,4,202,3,0,0,0,IT,low +0.99,0.68,4,235,3,0,0,0,product_mng,low +0.76,0.89,4,224,2,0,0,0,product_mng,low +0.57,0.54,4,210,3,0,0,0,product_mng,low +0.53,0.75,4,240,4,0,0,0,product_mng,low +0.86,0.55,5,149,4,0,0,0,IT,medium +0.97,0.96,4,250,6,0,0,0,RandD,medium +0.13,0.76,5,171,5,0,0,0,RandD,medium +0.73,0.89,3,139,3,0,0,0,RandD,medium +0.62,0.95,4,132,3,0,0,0,RandD,medium +0.59,0.37,3,125,2,0,0,0,RandD,medium +0.63,0.7,6,141,3,1,0,0,marketing,medium +0.64,0.52,3,269,2,0,0,0,sales,medium +0.5,0.85,5,249,3,1,0,0,accounting,medium +0.58,0.89,3,256,2,0,0,0,support,medium +0.32,0.87,4,179,4,0,0,0,technical,medium +0.72,0.67,5,210,2,0,0,0,management,medium +0.61,0.74,3,160,3,0,0,0,marketing,medium +0.97,0.55,2,267,4,0,0,0,marketing,medium +0.87,0.64,2,169,3,1,0,0,marketing,medium +0.88,0.81,4,235,6,0,0,0,sales,medium +0.52,0.99,3,136,3,0,0,0,sales,medium +0.95,0.81,5,210,4,0,0,0,sales,medium +0.96,0.62,5,230,2,0,0,0,sales,medium +0.98,0.58,5,186,3,0,0,0,sales,medium +0.51,0.51,2,271,3,0,0,0,sales,medium +1,0.63,2,105,2,0,0,0,sales,medium +0.97,0.67,2,147,2,0,0,0,sales,medium +0.79,0.56,4,177,3,0,0,0,sales,high +0.64,0.45,3,135,6,0,0,0,sales,low +0.84,0.76,5,243,3,0,0,0,sales,medium +0.94,0.57,3,166,4,0,0,0,sales,medium +0.7,0.79,4,194,3,0,0,0,sales,medium +0.64,1,4,201,2,0,0,0,sales,medium +0.56,0.88,4,248,2,0,0,0,sales,medium +0.32,0.81,5,111,4,0,0,0,sales,medium +0.75,0.72,5,174,3,0,0,0,sales,medium +0.78,0.58,3,241,3,1,0,0,sales,medium +0.7,0.49,4,173,3,0,0,0,sales,medium +0.21,0.39,6,132,5,0,0,0,accounting,medium +0.64,0.96,3,274,3,0,0,0,accounting,low +0.54,0.52,3,115,3,0,0,0,accounting,low +0.79,0.98,4,170,3,0,0,0,hr,low +0.91,0.58,3,172,3,0,0,0,hr,low +0.76,0.73,4,148,2,1,0,0,hr,low +0.77,0.95,3,246,3,0,0,0,hr,low +0.92,0.88,4,151,3,0,0,0,technical,low +0.53,0.57,5,141,3,1,0,0,technical,high +0.44,0.52,3,269,4,0,0,0,technical,low +0.54,0.52,5,170,4,0,0,0,technical,high +0.93,0.5,2,135,3,0,0,0,technical,high +0.67,0.68,4,254,3,0,0,0,technical,low +0.66,0.99,3,228,2,0,0,0,technical,low +0.7,0.6,3,266,2,0,0,0,technical,high +0.79,0.57,4,152,3,0,0,0,technical,low +0.5,0.75,5,178,6,0,0,0,technical,medium +1,0.75,3,237,3,0,0,0,technical,high +0.61,0.52,5,255,3,0,0,0,support,medium +0.72,0.5,4,245,3,0,0,0,support,medium +0.78,0.95,3,155,3,1,0,0,support,medium +0.87,0.84,5,216,3,1,0,0,support,medium +0.57,0.58,3,251,2,0,0,0,support,high +0.85,0.96,2,260,3,0,0,0,support,medium +0.83,0.67,5,132,2,1,0,0,support,medium +0.4,0.37,3,169,3,1,0,0,support,medium +0.91,0.69,4,259,3,0,0,0,support,high +0.48,0.98,3,257,2,0,0,0,support,medium +0.94,0.58,5,190,3,1,0,0,support,high +0.65,0.76,4,171,4,0,0,0,technical,low +0.54,0.49,4,190,3,0,0,0,technical,medium +0.76,0.81,5,270,4,0,0,0,technical,medium +0.88,0.59,4,227,3,0,0,0,management,medium +0.9,0.55,3,195,3,0,0,0,IT,medium +0.64,0.75,3,169,3,0,0,0,IT,low +0.74,0.75,4,169,4,0,0,0,IT,low +0.45,0.54,2,184,2,0,0,0,IT,low +0.61,0.62,3,240,3,0,0,0,IT,low +0.16,0.97,6,282,4,0,0,0,product_mng,low +0.67,0.74,3,226,3,0,0,0,product_mng,low +0.74,0.74,2,254,3,0,0,0,product_mng,low +0.53,0.57,4,250,3,1,0,0,product_mng,low +0.75,0.98,3,143,2,0,0,0,IT,low +0.76,0.98,4,258,3,0,0,0,RandD,low +0.72,0.72,5,265,3,0,0,0,RandD,high +0.65,0.54,6,181,4,0,0,0,RandD,low +0.69,0.66,4,178,3,0,0,0,RandD,low +0.7,0.74,3,194,3,0,0,0,RandD,low +0.66,0.84,4,253,4,0,0,0,marketing,low +0.13,0.48,3,210,3,0,0,0,sales,high +0.67,0.53,3,264,2,0,0,0,accounting,low +0.99,0.7,3,219,3,0,0,0,support,low +0.51,0.86,3,198,2,0,0,0,technical,low +0.61,0.7,4,161,3,1,0,0,management,high +0.9,0.6,3,255,4,1,0,0,marketing,low +0.61,0.62,4,233,3,0,0,0,marketing,medium +0.15,0.89,3,251,4,0,0,0,marketing,high +0.53,0.85,5,268,3,1,0,0,sales,medium +0.41,0.48,3,135,3,0,0,0,sales,high +0.9,0.64,4,201,2,1,0,0,sales,medium +0.67,0.9,5,171,3,0,0,0,sales,medium +0.22,0.7,4,225,4,0,0,0,sales,medium +0.35,0.56,3,144,3,0,0,0,sales,medium +0.66,0.96,4,185,2,1,0,0,sales,medium +0.63,0.82,5,275,3,1,0,0,sales,medium +0.89,0.67,3,269,3,0,0,0,sales,medium +0.88,0.75,4,201,2,0,0,0,sales,medium +0.73,0.6,4,166,3,0,0,0,sales,high +1,0.83,4,280,4,1,0,0,sales,low +0.99,0.89,4,254,3,1,0,0,sales,medium +0.12,0.84,5,230,4,0,0,0,sales,medium +0.64,0.43,5,269,3,0,0,0,sales,medium +0.65,0.72,3,248,4,0,0,0,sales,medium +0.56,0.57,4,161,3,0,0,0,sales,medium +0.88,0.62,4,237,2,0,0,0,sales,medium +0.54,0.68,3,144,5,0,0,0,sales,medium +0.77,0.8,2,255,2,1,0,0,accounting,medium +0.66,0.67,5,148,3,0,0,0,accounting,medium +0.54,0.65,3,185,2,0,0,0,accounting,high +0.14,0.43,2,238,3,0,0,0,hr,low +0.85,0.69,5,273,3,1,0,0,hr,low +0.9,0.66,3,256,4,0,0,0,hr,low +0.81,0.79,4,177,2,0,0,0,hr,high +0.14,0.76,5,215,4,0,0,0,technical,low +0.94,0.96,4,270,3,1,0,0,technical,low +0.69,0.82,4,272,2,0,0,0,technical,low +0.66,0.67,4,268,2,0,0,0,technical,high +0.75,0.61,4,272,2,0,0,0,technical,low +0.53,0.61,4,182,3,0,0,0,technical,low +0.91,0.82,6,280,3,0,0,0,technical,low +0.93,0.61,4,205,3,0,0,0,technical,low +0.89,0.91,3,264,3,1,0,0,technical,low +0.84,0.79,2,150,3,0,0,0,technical,low +0.94,0.86,3,150,2,0,0,0,technical,low +1,0.86,4,195,4,0,0,0,support,medium +0.79,0.68,5,272,3,0,0,0,support,medium +0.62,0.61,3,171,3,0,0,0,support,medium +0.45,0.43,4,253,4,0,0,0,support,medium +0.54,0.48,3,158,2,0,0,0,support,medium +0.13,0.97,3,156,2,0,0,0,support,medium +0.99,0.73,3,181,2,0,0,0,support,medium +0.54,0.75,4,249,4,0,0,0,support,medium +0.52,0.38,3,132,4,0,0,0,support,medium +0.24,0.65,4,248,3,0,0,0,support,medium +0.12,0.7,5,277,3,0,0,0,support,medium +0.52,0.96,6,166,5,1,0,0,technical,medium +0.44,0.63,3,193,3,0,0,0,technical,high +0.81,0.53,3,148,3,0,0,0,technical,low +0.25,0.64,4,226,5,0,0,0,management,medium +0.63,0.91,3,233,4,0,0,0,IT,medium +0.61,0.46,3,171,3,0,0,0,IT,medium +0.51,0.56,4,157,3,0,0,0,IT,medium +0.66,0.54,5,191,2,0,0,0,IT,low +0.86,0.59,4,189,2,0,0,0,IT,low +0.98,0.89,5,181,3,0,0,0,product_mng,low +0.99,0.37,6,219,6,0,0,0,product_mng,low +0.78,0.91,3,166,2,1,0,0,product_mng,low +0.84,0.53,2,275,3,0,0,0,product_mng,low +0.17,0.59,6,160,2,0,0,0,IT,low +0.48,0.72,4,186,3,0,0,0,RandD,low +0.63,0.66,3,256,4,1,0,0,RandD,low +0.58,0.67,3,156,2,0,0,0,RandD,low +0.7,0.48,5,99,4,0,0,0,RandD,low +0.61,0.85,4,273,3,0,0,0,RandD,low +0.91,0.81,4,135,2,0,0,0,marketing,low +0.34,0.82,6,202,3,0,0,0,sales,low +0.56,0.49,4,256,3,0,0,0,accounting,low +0.93,0.81,3,143,3,0,0,0,support,low +0.56,0.81,4,216,2,0,0,0,technical,low +0.99,0.5,4,173,3,0,0,0,management,low +0.77,0.83,4,154,3,0,0,0,marketing,low +0.76,0.61,4,172,2,0,0,0,marketing,low +0.65,0.65,5,180,2,0,0,0,marketing,low +0.5,0.76,3,174,3,0,0,0,sales,medium +0.59,0.61,3,210,2,0,0,0,sales,medium +0.68,0.58,4,186,2,0,0,0,sales,medium +0.85,0.82,5,184,3,0,0,0,sales,medium +0.83,0.77,3,260,2,0,0,0,sales,medium +0.7,0.58,4,207,2,1,0,0,sales,medium +0.16,0.76,6,210,5,0,0,0,sales,medium +0.66,0.95,5,206,2,0,0,0,sales,medium +0.81,0.84,4,173,4,0,0,0,sales,medium +0.96,0.74,5,194,4,1,0,0,sales,medium +0.66,0.54,5,203,2,0,0,0,sales,medium +0.83,0.53,3,186,4,0,0,0,sales,medium +0.99,0.9,4,175,3,1,0,0,sales,high +0.99,0.83,4,274,2,0,0,0,sales,low +0.67,0.78,4,193,3,0,0,0,sales,medium +0.54,0.61,2,264,3,0,0,0,sales,medium +0.22,0.69,3,212,3,0,0,0,sales,medium +0.25,0.82,5,244,5,1,0,0,sales,medium +0.73,0.98,4,216,2,0,0,0,sales,low +1,0.88,4,252,4,0,0,0,accounting,low +0.4,0.58,3,135,3,0,0,0,accounting,low +0.45,0.5,5,99,4,1,0,0,accounting,low +0.61,0.81,5,136,3,0,0,0,hr,low +0.81,0.64,6,176,5,0,0,0,hr,low +0.61,0.76,4,135,2,0,0,0,hr,low +0.57,0.94,3,230,2,0,0,0,hr,low +0.9,0.65,4,221,3,0,0,0,technical,low +0.43,0.82,4,138,5,0,0,0,technical,low +0.99,0.98,4,169,3,1,0,0,technical,low +0.62,0.49,4,174,3,0,0,0,technical,low +0.63,0.65,3,162,2,0,0,0,technical,low +0.89,0.99,4,274,4,0,0,0,technical,low +0.61,0.84,3,206,2,0,0,0,technical,low +0.62,0.89,4,254,3,1,0,0,technical,low +0.86,0.61,4,181,4,0,0,0,technical,low +0.75,0.62,5,144,3,0,0,0,technical,low +0.63,0.54,4,147,4,0,0,0,technical,low +0.69,0.8,3,212,4,0,0,0,support,low +0.71,0.76,3,134,3,1,0,0,support,low +0.63,0.95,4,134,3,0,0,0,support,medium +0.89,0.7,3,256,4,0,0,0,support,medium +0.71,0.36,2,132,5,0,0,0,support,medium +0.88,0.82,4,109,2,0,0,0,support,medium +0.73,0.52,4,141,3,0,0,0,support,medium +0.52,0.83,4,180,2,0,0,0,support,medium +0.77,0.65,2,162,4,1,0,0,support,medium +0.94,0.48,4,143,2,0,0,0,support,medium +0.99,0.87,5,211,2,0,0,0,support,medium +0.89,0.56,4,225,4,0,0,0,technical,medium +0.53,0.52,2,135,4,0,0,0,technical,medium +0.23,0.64,3,228,4,1,0,0,technical,medium +0.87,0.73,5,111,4,0,0,0,management,high +0.21,0.69,3,144,6,1,0,0,IT,low +0.71,0.51,4,202,3,0,0,0,IT,medium +0.75,0.71,5,147,4,1,0,0,IT,medium +0.63,0.89,3,239,3,0,0,0,IT,medium +0.55,0.4,5,219,4,0,0,0,IT,medium +0.93,0.55,3,134,3,1,0,0,product_mng,low +0.53,0.89,3,167,2,0,0,0,product_mng,low +0.94,0.89,4,192,2,0,0,0,product_mng,low +0.46,0.82,2,189,5,0,0,0,product_mng,low +0.59,0.53,4,213,2,0,0,0,IT,low +0.75,0.56,5,231,2,0,0,0,RandD,low +0.76,0.63,3,198,3,0,0,0,RandD,low +0.96,0.89,3,163,2,0,0,0,RandD,low +0.55,0.93,4,251,4,1,0,0,RandD,low +0.52,0.82,3,170,3,0,0,0,RandD,low +0.55,0.5,5,231,3,0,0,0,marketing,low +0.52,0.98,4,165,2,0,0,0,sales,low +0.49,0.5,5,183,3,0,0,0,accounting,low +0.49,0.89,3,213,2,0,0,0,support,low +1,0.89,3,230,3,1,0,0,technical,low +0.97,0.62,3,167,3,0,0,0,management,low +0.97,0.89,3,264,3,0,0,0,marketing,low +0.21,0.43,2,249,3,0,0,0,marketing,low +0.24,0.7,6,153,5,1,0,0,marketing,low +0.76,0.79,3,111,2,0,0,0,sales,low +0.78,0.6,3,232,2,0,0,0,sales,low +0.59,0.52,6,190,4,0,0,0,sales,medium +0.54,0.71,3,145,3,1,0,0,sales,medium +0.34,0.69,2,193,3,0,0,0,sales,medium +0.91,0.82,3,183,2,0,0,0,sales,medium +0.49,0.61,3,240,3,0,0,0,sales,medium +0.71,1,5,210,3,0,0,0,sales,medium +0.64,0.72,4,152,3,1,0,0,sales,medium +0.6,0.61,4,140,4,0,0,0,sales,medium +0.91,0.66,3,208,4,0,0,0,sales,medium +0.92,0.6,3,198,2,0,0,0,sales,medium +0.91,0.52,3,178,3,0,0,0,sales,medium +0.88,0.77,3,279,3,1,0,0,sales,medium +0.86,0.82,3,263,6,0,0,0,sales,high +0.81,0.54,3,215,4,1,0,0,sales,low +0.84,0.73,3,181,3,1,0,0,sales,medium +0.56,0.55,2,270,3,0,0,0,sales,medium +0.6,0.52,3,236,3,0,0,0,sales,medium +0.71,0.87,3,271,2,0,0,0,accounting,medium +0.62,0.79,5,172,3,0,0,0,accounting,low +0.73,0.65,3,145,2,0,0,0,accounting,low +0.56,0.69,5,198,3,0,0,0,hr,low +0.6,0.74,3,175,3,1,0,0,hr,low +0.55,0.64,4,260,3,0,0,0,hr,low +0.5,0.7,4,135,3,0,0,0,hr,low +0.42,0.73,3,108,4,0,0,0,technical,low +0.51,0.94,5,260,4,0,0,0,technical,low +0.66,0.94,4,176,2,1,0,0,technical,low +0.79,0.67,5,222,4,0,0,0,technical,low +0.3,0.66,4,119,3,0,0,0,technical,low +0.57,1,3,241,4,0,0,0,technical,low +0.74,0.93,6,225,4,0,0,0,technical,low +0.98,0.56,5,188,3,0,0,0,technical,low +0.17,0.73,4,188,5,0,0,0,technical,low +0.62,0.77,3,225,4,1,0,0,technical,low +0.32,0.4,2,132,3,0,0,0,technical,low +0.58,0.91,5,185,2,0,0,0,support,low +0.59,0.9,4,173,3,0,0,0,support,medium +0.59,0.55,3,179,3,0,0,0,support,medium +0.8,0.58,4,189,2,0,0,0,support,medium +0.84,0.85,5,246,3,0,0,0,support,medium +0.54,0.76,2,166,4,0,0,0,support,medium +0.51,0.98,4,245,3,0,0,0,support,medium +0.66,0.56,2,104,3,1,0,0,support,medium +0.37,0.52,4,151,2,0,0,0,support,medium +0.49,0.63,4,213,3,0,0,0,support,medium +0.88,0.71,5,255,3,0,0,0,support,medium +0.66,0.9,4,268,3,0,0,0,technical,medium +0.25,0.53,4,160,4,0,0,0,technical,medium +0.49,0.52,4,267,2,0,0,0,technical,high +0.87,0.77,3,190,3,0,0,0,management,low +0.54,0.95,5,255,2,0,0,0,IT,medium +0.24,0.95,3,168,4,0,0,0,IT,medium +0.65,0.74,4,228,2,1,0,0,IT,medium +0.58,0.87,4,181,3,0,0,0,IT,medium +0.77,0.54,5,252,2,0,0,0,IT,low +0.86,0.63,4,244,3,0,0,0,product_mng,low +0.62,0.69,3,207,4,0,0,0,product_mng,low +0.56,0.48,3,134,3,0,0,0,product_mng,low +0.75,0.53,3,244,2,0,0,0,product_mng,low +0.8,0.96,4,160,4,0,0,0,IT,low +0.56,0.93,4,260,4,0,0,0,RandD,low +0.83,0.6,4,170,3,0,0,0,RandD,low +0.51,0.98,4,171,2,0,0,0,RandD,low +0.82,0.9,4,232,3,0,0,0,RandD,low +0.81,0.91,3,184,3,0,0,0,RandD,low +0.52,0.64,4,268,3,0,0,0,marketing,low +0.79,0.56,4,248,3,0,0,0,sales,low +0.83,0.5,5,274,3,0,0,0,accounting,low +0.97,0.81,3,145,3,0,0,0,support,low +0.61,0.88,5,134,4,0,0,0,technical,low +0.84,0.66,3,114,6,1,0,0,management,low +0.9,1,4,218,2,0,0,0,marketing,low +0.82,0.77,4,152,2,1,0,0,marketing,low +0.69,0.76,5,174,3,0,0,0,marketing,low +0.18,0.73,6,231,4,0,0,0,sales,low +0.33,1,2,210,3,1,0,0,sales,medium +0.15,0.92,5,164,3,0,0,0,sales,medium +0.61,0.78,4,198,3,0,0,0,sales,medium +0.92,0.55,4,220,2,0,0,0,sales,medium +0.13,0.61,6,283,5,0,0,0,sales,medium +0.18,0.48,4,240,4,0,0,0,sales,medium +0.27,0.85,5,142,6,0,0,0,sales,medium +0.66,0.61,4,263,4,0,0,0,sales,medium +0.21,0.81,5,142,4,0,0,0,sales,medium +0.92,0.9,4,203,4,0,0,0,sales,medium +0.97,0.5,3,266,3,1,0,0,sales,medium +0.97,0.7,3,253,3,0,0,0,sales,medium +0.64,0.61,4,136,3,0,0,0,sales,high +0.75,0.9,3,140,3,0,0,0,sales,low +0.9,0.76,4,252,4,0,0,0,sales,medium +0.81,0.75,5,101,5,0,0,0,sales,medium +0.99,0.72,3,163,3,0,0,0,sales,medium +0.49,0.5,5,170,2,0,0,0,sales,medium +0.92,0.4,2,238,3,0,0,0,accounting,low +0.74,0.56,4,190,3,1,0,0,accounting,low +0.37,0.37,5,173,2,0,0,0,accounting,low +0.67,0.61,4,145,4,0,0,0,hr,low +0.74,0.89,5,182,2,0,0,0,hr,low +0.85,0.64,4,188,3,0,0,0,hr,low +0.72,0.71,3,133,2,0,0,0,hr,low +0.75,0.71,4,155,4,0,0,0,technical,low +0.91,0.4,6,153,3,0,0,0,technical,low +0.84,0.62,4,138,3,0,0,0,technical,low +0.64,0.51,4,177,3,0,0,0,technical,low +0.15,0.91,6,98,6,1,0,0,technical,low +0.66,0.66,3,225,3,0,0,0,technical,low +0.2,0.69,6,236,4,0,0,0,technical,low +0.97,0.78,3,268,3,1,0,0,technical,low +0.59,0.73,2,230,3,0,0,0,technical,low +0.88,0.6,4,162,2,0,0,0,technical,low +0.16,0.73,4,197,2,0,0,0,technical,low +0.61,0.96,3,247,3,0,0,0,support,low +0.52,0.79,4,234,3,0,0,0,support,low +0.82,0.49,4,276,4,0,0,0,support,low +0.75,0.94,5,217,2,0,0,0,support,medium +0.62,0.5,4,156,2,0,0,0,support,medium +0.91,0.88,3,189,2,0,0,0,support,medium +0.61,0.98,2,238,4,0,0,0,support,medium +0.79,0.77,3,201,6,1,0,0,support,medium +0.9,0.93,4,263,3,1,0,0,support,medium +0.75,0.83,3,146,3,0,0,0,support,medium +0.81,0.64,4,213,3,0,0,0,support,medium +0.59,0.88,3,159,2,0,0,0,technical,medium +0.56,0.83,3,236,3,1,0,0,technical,medium +0.98,0.79,5,257,4,0,0,0,technical,medium +0.59,0.72,4,168,4,0,0,0,management,medium +0.61,0.67,4,151,3,0,0,0,IT,high +0.78,0.7,4,139,3,0,0,0,IT,low +0.55,0.93,5,196,3,0,0,0,IT,medium +0.2,0.97,4,237,5,0,0,0,IT,medium +0.79,0.44,2,236,3,0,0,0,IT,medium +0.52,0.98,4,265,3,0,0,0,product_mng,medium +0.97,0.52,4,207,3,0,0,0,product_mng,low +0.63,0.94,4,219,3,0,0,0,product_mng,low +0.85,0.99,3,208,2,0,0,0,product_mng,low +0.59,0.74,3,240,3,0,0,0,IT,low +0.64,0.6,3,135,3,0,0,0,RandD,low +0.8,0.67,3,236,3,1,0,0,RandD,low +0.61,0.75,3,140,3,0,0,0,RandD,low +0.87,0.61,3,162,2,0,0,0,RandD,low +0.75,0.59,3,117,3,1,0,0,RandD,medium +0.96,0.51,4,225,3,0,0,0,marketing,medium +0.75,0.92,3,211,3,0,0,0,sales,medium +0.19,0.58,4,173,5,0,0,0,accounting,medium +0.52,0.97,4,170,3,0,0,0,support,medium +0.6,0.6,3,242,3,0,0,0,technical,medium +0.9,0.81,4,175,3,0,0,0,management,medium +0.89,0.92,3,195,2,0,0,0,marketing,medium +0.54,0.93,4,184,2,1,0,0,marketing,medium +0.99,0.55,3,170,3,0,0,0,marketing,medium +0.66,0.56,4,185,3,0,0,0,sales,medium +0.92,0.64,4,259,2,0,0,0,sales,medium +0.19,0.72,4,102,3,0,0,0,sales,medium +0.39,0.37,5,156,4,0,0,0,sales,medium +0.41,0.68,3,191,4,0,0,0,sales,medium +0.6,0.49,3,239,2,0,0,0,sales,medium +0.95,0.54,4,235,4,0,0,0,sales,medium +0.51,0.87,2,130,4,0,0,0,sales,medium +0.54,0.74,2,166,3,0,0,0,sales,medium +0.16,0.54,5,206,5,0,0,0,sales,medium +0.98,0.77,3,191,2,0,0,0,sales,medium +0.65,0.75,3,214,3,0,0,0,sales,medium +0.38,0.5,3,196,3,0,0,0,sales,medium +0.95,0.71,4,151,4,0,0,0,sales,medium +0.6,0.62,5,165,2,0,0,0,sales,medium +0.78,0.91,3,177,2,0,0,0,sales,high +0.19,0.63,6,241,6,0,0,0,sales,high +0.56,0.99,4,230,3,0,0,0,sales,high +0.21,0.71,4,270,2,0,0,0,sales,high +0.83,0.71,3,234,4,0,0,0,accounting,high +0.5,0.64,3,257,2,1,0,0,accounting,high +0.74,0.87,5,264,3,0,0,0,accounting,high +0.75,0.83,4,133,4,0,0,0,hr,high +0.85,0.66,4,155,4,0,0,0,hr,high +0.93,0.59,3,202,2,0,0,0,hr,high +0.76,0.7,3,136,2,0,0,0,hr,high +0.91,0.78,3,269,3,1,0,0,technical,high +0.22,0.54,6,169,4,0,0,0,technical,low +0.78,0.52,5,192,3,1,0,0,technical,low +0.53,0.8,4,241,3,1,0,0,technical,low +0.58,0.69,4,165,3,0,0,0,technical,low +0.99,0.81,3,183,2,0,0,0,technical,low +0.62,0.64,4,163,3,0,0,0,technical,low +0.59,0.69,3,162,3,0,0,0,technical,low +0.13,0.76,5,219,4,0,0,0,technical,low +0.19,0.63,4,278,6,0,0,0,technical,low +0.94,0.99,2,273,4,0,0,0,technical,low +0.53,0.96,4,272,2,0,0,0,support,low +0.96,0.85,5,168,2,0,0,0,support,low +0.62,0.87,4,221,3,1,0,0,support,low +0.81,0.86,4,213,3,0,0,0,support,low +0.63,0.78,4,275,3,0,0,0,support,low +0.92,0.68,5,177,4,0,0,0,support,medium +0.83,0.74,4,249,2,0,0,0,support,medium +0.49,0.37,5,246,3,0,0,0,support,medium +0.8,0.66,4,223,3,0,0,0,support,medium +0.54,0.76,4,244,2,0,0,0,support,medium +0.37,0.72,3,169,2,1,0,0,support,medium +0.93,0.56,5,140,3,0,0,0,technical,medium +0.88,0.99,5,253,2,0,0,0,technical,medium +0.79,0.87,3,194,2,0,0,0,technical,medium +0.65,0.88,4,173,3,0,0,0,management,medium +0.72,0.7,4,172,3,0,0,0,IT,medium +0.58,0.49,3,167,3,0,0,0,IT,medium +0.37,0.51,2,153,3,0,0,0,IT,high +0.87,0.97,4,243,3,0,0,0,IT,high +0.63,0.72,6,163,4,0,0,0,IT,high +0.72,0.79,3,221,3,0,0,0,product_mng,high +0.36,0.55,3,191,3,0,0,0,product_mng,high +0.96,0.7,4,272,3,0,0,0,product_mng,high +0.52,0.37,2,118,2,0,0,0,product_mng,high +0.16,0.83,5,173,4,0,0,0,IT,high +0.63,0.55,4,200,3,1,0,0,RandD,low +0.92,0.76,5,132,3,1,0,0,RandD,low +0.82,0.49,4,180,2,0,0,0,RandD,low +0.18,0.54,4,145,5,0,0,0,RandD,low +0.73,0.48,4,139,2,0,0,0,RandD,low +0.44,0.61,5,230,6,0,0,0,marketing,low +0.73,0.62,4,247,4,0,0,0,sales,low +0.62,0.95,4,140,2,0,0,0,accounting,low +0.94,0.8,4,266,3,1,0,0,support,medium +0.76,0.74,4,261,3,0,0,0,technical,medium +0.89,0.49,4,275,3,0,0,0,management,medium +0.9,0.88,5,254,2,0,0,0,marketing,medium +1,0.93,5,231,2,0,0,0,marketing,medium +0.71,0.9,3,138,3,0,0,0,marketing,medium +0.73,0.97,4,163,3,0,0,0,sales,medium +0.97,0.9,5,262,3,0,0,0,sales,medium +0.6,0.59,4,201,3,0,0,0,sales,medium +0.82,0.67,3,229,3,0,0,0,sales,medium +0.95,0.48,4,228,2,0,0,0,sales,medium +0.88,0.65,5,228,3,0,0,0,sales,medium +0.79,0.49,3,273,3,0,0,0,sales,medium +0.52,0.96,4,171,2,0,0,0,sales,medium +0.22,0.61,3,148,5,0,0,0,sales,medium +0.59,0.96,5,211,3,0,0,0,sales,medium +0.84,0.64,2,211,3,0,0,0,sales,medium +0.54,0.41,3,175,3,0,0,0,sales,medium +1,0.86,4,245,4,0,0,0,sales,medium +0.93,0.59,3,273,2,1,0,0,sales,medium +0.96,0.55,3,225,4,1,0,0,sales,medium +0.56,0.41,5,152,3,0,0,0,sales,medium +0.49,0.66,5,194,3,0,0,0,sales,medium +0.89,0.51,4,185,3,1,0,0,sales,high +0.57,0.91,3,193,2,0,0,0,sales,low +0.96,0.64,3,166,2,0,0,0,accounting,medium +0.65,0.89,5,223,3,1,0,0,accounting,medium +0.14,0.66,5,281,4,1,0,0,accounting,medium +0.64,0.49,3,241,3,0,0,0,hr,medium +0.98,0.91,3,165,2,1,0,0,hr,medium +0.71,0.59,4,143,2,0,0,0,hr,medium +0.96,0.49,5,137,3,0,0,0,hr,medium +0.9,0.57,4,185,3,1,0,0,technical,medium +0.52,0.96,3,271,3,1,0,0,technical,medium +0.78,0.98,4,207,2,1,0,0,technical,medium +0.62,0.69,4,184,3,0,0,0,technical,low +0.6,0.8,4,253,2,0,0,0,technical,low +0.82,0.62,3,152,6,0,0,0,technical,low +0.52,0.55,3,225,2,0,0,0,technical,low +0.13,0.84,5,189,5,0,0,0,technical,low +0.97,0.93,3,153,2,0,0,0,technical,low +0.63,0.9,4,245,3,0,0,0,technical,low +0.68,0.78,5,233,3,0,0,0,technical,high +0.74,0.83,4,210,3,0,0,0,support,low +0.89,0.57,4,176,4,0,0,0,support,high +0.28,0.95,5,191,3,0,0,0,support,high +0.61,0.9,3,224,3,0,0,0,support,low +0.67,0.49,3,185,3,0,0,0,support,low +0.86,0.64,3,245,4,0,0,0,support,high +0.87,0.93,3,173,2,0,0,0,support,low +0.7,0.95,4,231,3,0,0,0,support,medium +0.68,0.84,3,270,3,0,0,0,support,high +0.69,0.75,5,196,3,0,0,0,support,medium +0.97,0.83,3,238,2,0,0,0,support,medium +0.62,0.89,4,261,2,0,0,0,technical,medium +0.55,0.87,3,201,2,0,0,0,technical,medium +0.61,0.73,3,252,3,0,0,0,technical,high +0.15,0.81,3,191,5,0,0,0,management,medium +0.84,0.86,3,199,3,0,0,0,IT,medium +0.87,0.64,5,234,2,1,0,0,IT,medium +0.93,0.86,4,192,4,0,0,0,IT,high +0.14,0.73,6,237,5,0,0,0,IT,medium +0.96,0.7,3,207,3,0,0,0,IT,high +0.41,0.63,2,145,2,0,0,0,product_mng,low +0.84,0.96,6,155,5,0,0,0,product_mng,medium +0.94,0.69,5,145,2,0,0,0,product_mng,medium +0.6,0.86,6,247,6,0,0,0,product_mng,medium +0.7,0.73,4,182,3,0,0,0,IT,medium +0.29,0.91,4,183,4,0,0,0,RandD,low +0.31,0.51,2,146,3,0,0,0,RandD,low +0.73,0.99,3,241,3,0,0,0,RandD,low +0.51,0.52,5,261,3,1,0,0,RandD,low +0.58,0.77,4,140,3,0,0,0,RandD,low +0.59,0.97,3,257,3,0,0,0,marketing,low +0.95,0.9,3,186,2,0,0,0,marketing,low +0.84,0.93,3,159,3,0,0,0,sales,low +0.28,0.37,3,164,4,1,0,0,accounting,low +0.94,0.52,4,217,6,1,0,0,support,low +0.49,0.59,4,137,4,0,0,0,technical,high +0.72,0.5,4,164,2,1,0,0,management,low +0.19,0.85,5,249,3,0,0,0,marketing,low +0.83,0.95,3,264,2,0,0,0,marketing,low +0.79,0.92,4,208,2,1,0,0,marketing,low +0.72,0.61,3,175,3,0,0,0,sales,high +0.97,0.74,4,209,2,0,0,0,sales,low +0.92,0.83,4,268,4,0,0,0,sales,low +0.95,0.53,3,264,3,0,0,0,sales,low +0.76,0.64,4,234,2,0,0,0,sales,high +0.24,0.62,5,199,4,0,0,0,sales,low +0.89,0.99,4,205,2,0,0,1,sales,medium +0.69,0.63,5,140,4,0,0,1,sales,high +0.92,0.98,3,257,3,0,0,1,sales,medium +0.79,0.61,4,227,2,0,0,1,sales,high +0.87,0.94,4,189,3,0,0,1,sales,medium +0.89,0.88,5,241,2,1,0,0,sales,medium +0.75,0.77,5,199,4,0,0,0,sales,medium +0.78,0.6,4,206,3,0,0,0,sales,medium +0.13,0.62,5,268,3,0,0,0,sales,medium +0.94,0.86,3,221,3,1,0,0,sales,medium +0.94,0.88,4,262,2,0,0,0,sales,medium +0.67,0.6,5,253,6,0,0,0,sales,medium +0.6,0.73,5,241,3,0,0,0,sales,high +0.62,0.94,4,252,4,0,0,0,accounting,low +0.38,0.52,2,171,3,0,0,0,accounting,medium +0.8,0.77,4,194,3,0,0,0,accounting,medium +0.61,0.42,3,104,2,0,0,0,hr,medium +0.61,0.56,4,176,3,0,0,0,hr,medium +0.66,0.8,4,192,3,0,0,0,hr,medium +0.56,0.74,3,154,2,0,0,0,hr,medium +1,0.55,4,186,4,1,0,0,technical,medium +0.73,0.86,3,200,4,0,0,0,technical,medium +0.6,0.66,4,132,4,0,0,0,technical,medium +0.78,0.59,5,236,3,0,0,0,technical,high +0.48,0.53,3,211,4,0,0,0,technical,low +0.9,0.77,4,273,2,0,0,0,technical,low +0.16,0.76,4,223,4,0,0,0,technical,low +0.5,0.75,3,204,2,0,0,0,technical,high +0.66,0.65,3,196,3,1,0,0,technical,low +0.44,0.37,2,219,2,0,0,0,technical,low +0.95,0.67,4,261,3,0,0,0,technical,low +0.9,0.65,3,254,2,0,0,0,support,high +0.27,0.48,4,185,2,0,0,0,support,low +0.51,0.74,6,98,3,0,0,0,support,low +0.68,0.76,3,260,4,0,0,0,support,low +0.97,0.93,5,137,2,1,0,0,support,low +0.91,0.75,4,159,3,1,0,0,support,low +0.76,0.88,5,265,4,0,0,0,support,low +0.88,0.61,4,177,4,1,0,0,support,low +0.83,0.73,4,247,2,0,0,0,support,medium +0.78,0.54,3,161,3,0,0,0,support,medium +0.52,0.38,2,103,3,0,0,0,support,medium +0.63,0.49,4,151,3,0,0,0,technical,medium +0.9,0.74,3,193,3,0,0,0,technical,medium +0.48,0.58,3,194,3,0,0,0,technical,medium +0.7,0.6,5,208,3,0,0,0,management,medium +0.68,0.66,4,229,3,0,0,0,IT,medium +0.7,0.87,3,166,2,0,0,0,IT,medium +0.77,0.5,3,141,3,0,0,0,IT,medium +0.73,0.93,3,249,2,0,0,0,IT,medium +0.87,0.48,4,264,3,0,0,0,IT,medium +0.65,0.98,3,252,2,0,0,0,product_mng,high +0.62,0.7,2,134,3,0,0,0,product_mng,low +0.53,0.51,3,274,2,1,0,0,product_mng,medium +0.59,0.39,5,200,4,0,0,0,product_mng,medium +0.87,0.72,2,154,3,0,0,0,IT,medium +0.47,0.53,3,111,4,0,0,0,RandD,medium +0.96,0.81,3,247,3,0,0,0,RandD,low +0.79,0.74,3,169,3,0,0,0,RandD,low +0.84,0.6,3,250,3,1,0,0,RandD,low +0.68,0.49,3,178,3,1,0,0,RandD,low +0.86,0.66,4,251,3,0,0,0,RandD,low +0.73,0.98,5,272,2,0,0,0,marketing,low +0.9,0.67,2,229,4,0,0,0,sales,low +0.63,0.64,3,180,3,0,0,0,accounting,low +0.71,0.72,3,271,2,0,0,0,support,low +0.71,0.68,5,226,3,0,0,0,technical,low +0.95,0.62,4,150,2,0,0,0,management,low +0.51,0.86,4,260,3,1,0,0,marketing,low +0.77,0.91,4,161,3,0,0,0,marketing,low +0.48,0.51,3,136,3,0,0,0,marketing,low +0.93,0.91,2,238,2,1,0,0,sales,low +0.83,0.86,4,98,4,0,0,0,sales,low +0.61,0.73,5,156,4,0,0,0,sales,low +0.97,0.89,4,248,2,0,0,0,sales,low +0.5,0.81,3,170,2,0,0,0,sales,low +0.84,0.54,3,245,3,0,0,0,sales,low +0.58,0.38,4,203,5,0,0,0,sales,low +0.59,0.72,3,182,3,0,0,0,sales,medium +0.77,0.83,3,175,3,0,0,1,sales,medium +0.78,0.4,4,145,5,1,0,1,sales,medium +0.6,0.96,4,220,3,1,0,1,sales,medium +0.53,0.77,4,259,2,1,0,1,sales,medium +0.73,0.69,3,228,2,0,0,1,sales,medium +0.76,0.94,3,189,3,0,0,0,sales,medium +0.12,0.61,6,257,3,0,0,0,sales,medium +0.2,0.98,3,180,6,0,0,0,sales,medium +0.5,0.77,4,180,3,0,0,0,sales,medium +0.79,0.65,5,215,2,1,0,0,sales,medium +0.96,0.68,3,132,2,0,0,0,sales,medium +0.26,0.69,5,213,2,0,0,0,accounting,high +0.8,0.72,4,173,3,0,0,0,accounting,low +0.43,0.71,3,186,2,0,0,0,accounting,medium +0.87,0.71,4,157,2,0,0,0,hr,medium +0.63,0.75,4,175,4,0,0,0,hr,medium +0.58,0.48,3,135,3,1,0,0,hr,medium +0.2,0.42,4,256,5,0,0,0,hr,low +0.62,0.71,4,268,3,0,0,0,technical,low +0.91,0.94,5,159,3,0,0,0,technical,low +0.66,0.91,3,191,4,0,0,0,technical,low +0.53,0.81,3,275,2,0,0,0,technical,low +0.52,0.98,5,217,2,1,0,0,technical,low +1,0.88,6,201,4,0,0,0,technical,low +0.73,0.67,4,205,3,0,0,0,technical,low +0.65,0.67,3,240,2,1,0,0,technical,low +0.5,0.95,5,137,3,0,0,0,technical,low +0.94,0.59,4,241,2,0,0,0,technical,low +0.48,0.86,5,198,4,0,0,0,technical,low +0.67,0.87,5,254,2,0,0,0,support,low +0.73,0.94,4,262,3,0,0,0,support,low +0.63,0.71,4,244,2,0,0,0,support,low +0.84,0.84,4,266,3,0,0,0,support,low +0.2,0.94,6,191,5,0,0,0,support,low +0.76,0.57,3,148,3,1,0,0,support,low +0.55,0.54,3,233,2,0,0,0,support,low +0.8,0.55,4,178,2,1,0,0,support,low +0.64,0.91,3,165,3,1,0,0,support,low +0.59,0.97,5,179,6,0,0,0,support,medium +0.92,0.98,3,149,3,0,0,0,support,medium +0.75,0.76,3,269,2,1,0,0,technical,medium +0.69,0.74,5,227,2,0,0,0,technical,medium +0.82,0.93,3,247,3,0,0,0,technical,medium +0.88,0.85,3,220,3,0,0,0,management,medium +0.89,0.91,3,233,2,0,0,0,IT,medium +1,0.79,5,171,5,0,0,0,IT,medium +0.66,0.91,4,234,2,1,0,0,IT,medium +0.76,0.92,3,176,2,0,0,0,IT,medium +0.8,0.62,5,190,4,1,0,0,IT,medium +0.58,0.86,4,168,2,0,0,0,product_mng,medium +0.73,0.93,3,205,3,0,0,0,product_mng,high +1,0.73,5,189,3,1,0,0,product_mng,low +0.18,0.9,4,282,4,0,0,0,product_mng,medium +0.47,0.46,2,152,2,0,0,0,IT,medium +0.92,0.64,4,217,4,0,0,0,RandD,medium +0.51,0.5,4,130,3,0,0,0,RandD,medium +0.81,0.62,4,153,4,0,0,0,RandD,low +0.52,0.57,3,270,3,0,0,0,RandD,low +0.95,0.96,3,220,3,0,0,0,RandD,low +0.93,0.64,4,253,3,0,0,0,RandD,low +0.98,0.67,4,209,6,0,0,0,marketing,low +0.79,0.79,4,231,2,0,0,0,sales,low +0.99,0.73,4,240,4,0,0,0,accounting,low +0.64,0.9,5,266,3,0,0,0,support,low +0.54,0.44,3,153,2,0,0,0,technical,low +0.79,0.59,4,187,2,0,0,0,management,low +0.55,0.98,4,185,2,1,0,0,marketing,low +0.18,0.81,4,147,4,0,0,0,marketing,low +0.56,0.81,4,188,3,1,0,0,marketing,low +0.92,0.67,2,252,2,0,0,0,sales,low +0.99,0.75,4,163,2,0,0,0,sales,low +0.77,0.85,4,189,2,0,0,0,sales,low +0.49,0.52,3,156,2,0,0,0,sales,low +0.98,0.58,3,183,3,0,0,0,sales,low +0.18,0.54,6,209,5,1,0,0,sales,low +0.8,0.82,4,271,4,0,0,0,sales,low +0.81,0.77,5,251,2,0,0,0,sales,low +0.13,0.61,5,198,5,0,0,0,sales,medium +0.58,0.97,3,274,4,1,0,1,sales,medium +0.75,0.63,4,209,3,0,0,1,sales,medium +0.8,0.94,4,271,4,0,0,1,sales,medium +0.78,0.6,4,143,2,0,0,1,sales,medium +0.92,0.6,5,236,3,1,0,1,sales,medium +0.85,0.98,5,222,3,0,0,1,sales,medium +0.52,0.63,3,233,3,0,0,1,sales,medium +0.95,0.84,3,270,3,1,0,1,sales,medium +0.81,0.92,5,258,3,0,0,1,sales,medium +0.16,0.82,6,202,4,1,0,1,sales,medium +0.91,0.74,3,150,2,0,0,0,accounting,medium +0.62,0.51,4,193,3,0,0,0,accounting,high +0.24,0.42,5,210,5,0,0,0,accounting,low +0.88,0.51,3,208,3,0,0,0,hr,medium +0.94,0.73,3,196,3,0,0,0,hr,medium +0.76,0.79,5,187,4,0,0,0,hr,medium +0.49,0.67,3,140,2,0,0,0,hr,medium +0.93,0.9,4,256,4,0,0,0,technical,low +0.92,0.66,4,113,3,0,0,0,technical,low +0.19,0.94,4,196,5,0,0,0,technical,low +0.66,0.76,3,170,3,0,0,0,technical,low +0.16,0.94,4,261,6,0,0,0,technical,low +0.83,0.99,5,132,3,0,0,0,technical,low +0.69,0.53,3,153,3,0,0,0,technical,low +0.82,0.53,3,147,3,1,0,0,technical,low +0.88,0.72,5,244,2,0,0,0,technical,low +0.31,0.42,4,108,4,0,0,0,technical,low +0.83,0.49,4,218,2,0,0,0,technical,low +0.94,0.52,5,133,3,0,0,0,support,low +0.65,0.79,5,233,3,0,0,0,support,low +0.6,0.6,4,147,3,0,0,0,support,low +0.52,0.43,3,176,3,0,0,0,support,low +0.66,0.89,4,169,4,0,0,0,support,low +0.87,0.87,4,144,3,0,0,0,support,low +0.2,0.99,5,151,3,1,0,0,support,low +0.63,0.91,4,252,3,1,0,0,support,medium +0.69,0.98,4,180,3,0,0,0,support,medium +0.48,0.61,3,251,3,0,0,0,support,medium +0.8,0.8,4,263,4,0,0,0,support,medium +0.89,0.74,5,260,6,0,0,0,technical,medium +0.67,0.63,3,227,3,0,0,0,technical,medium +0.37,0.86,6,260,3,0,0,0,technical,medium +0.93,0.61,5,158,3,0,0,0,management,medium +0.69,0.52,3,186,3,0,0,0,IT,medium +0.16,0.61,4,171,6,0,0,0,IT,medium +0.81,0.55,3,199,2,1,0,0,IT,medium +0.97,0.63,5,258,2,0,0,0,IT,medium +0.77,0.59,4,273,2,0,0,0,IT,high +0.75,0.78,2,259,3,0,0,0,product_mng,low +0.88,0.82,3,265,3,0,0,0,product_mng,medium +0.43,0.51,5,168,4,0,0,0,product_mng,medium +0.99,0.99,4,163,4,0,0,0,product_mng,medium +0.59,0.65,5,265,3,0,0,0,IT,medium +0.89,0.71,4,190,3,0,0,0,RandD,low +0.54,0.73,3,157,3,0,0,0,RandD,low +0.32,0.86,4,266,4,0,0,0,RandD,low +0.17,0.55,6,240,6,0,0,0,RandD,low +0.78,0.55,3,143,3,0,0,0,RandD,low +0.73,0.68,3,121,5,0,0,0,RandD,low +0.65,0.76,2,170,5,0,0,0,IT,low +0.8,0.71,4,161,4,0,0,0,IT,low +0.61,0.86,3,239,3,0,0,0,IT,low +0.67,0.49,3,224,3,0,0,0,IT,low +0.63,0.57,3,242,3,0,0,0,product_mng,low +0.51,0.58,4,140,2,1,0,0,product_mng,low +0.82,0.59,5,170,3,0,0,0,product_mng,low +0.79,0.67,5,156,2,0,0,0,product_mng,low +0.49,0.6,2,113,5,0,0,0,IT,low +0.7,0.59,3,138,3,0,0,0,RandD,low +0.13,0.5,3,137,5,0,0,0,RandD,low +0.83,0.52,5,217,3,0,0,0,RandD,low +0.83,0.91,3,155,3,0,0,0,RandD,low +0.19,0.83,5,280,4,0,0,0,RandD,low +0.8,0.81,5,248,2,1,0,0,RandD,low +0.49,0.67,2,190,8,0,0,0,marketing,medium +0.92,0.99,3,176,8,0,0,0,sales,medium +0.81,0.55,4,217,8,0,0,0,accounting,medium +0.62,0.91,3,269,8,0,0,0,support,medium +0.21,0.7,3,238,8,0,0,0,technical,medium +0.95,0.74,5,243,6,0,0,0,management,medium +0.51,0.8,4,198,6,0,0,0,marketing,medium +0.52,0.89,3,188,6,0,0,0,marketing,medium +0.64,0.56,3,257,6,0,0,0,marketing,medium +0.62,0.79,4,268,6,0,0,0,sales,medium +0.73,0.88,5,233,4,1,0,0,sales,medium +0.32,0.86,4,214,5,0,0,0,sales,medium +0.78,0.96,2,285,3,0,0,0,sales,high +0.65,0.91,4,224,2,1,0,0,sales,low +0.56,0.92,4,224,3,0,0,0,sales,medium +0.96,0.89,3,142,4,0,0,0,sales,medium +0.79,0.82,4,220,3,0,0,0,sales,medium +0.66,0.58,4,244,3,0,0,0,sales,medium +0.67,0.68,4,171,3,0,0,0,sales,low +0.86,0.82,4,274,2,1,0,0,sales,low +0.57,0.72,4,214,2,1,0,0,sales,low +0.86,0.87,5,171,2,0,0,0,sales,low +0.52,0.59,5,150,2,0,0,0,sales,low +0.73,0.61,4,260,2,1,0,0,sales,low +0.78,0.63,5,259,3,0,0,0,sales,low +0.95,0.63,3,153,2,0,0,0,sales,low +0.75,0.61,3,263,3,0,0,0,sales,low +0.83,0.52,2,149,2,1,0,0,sales,low +0.48,1,4,261,3,0,0,0,accounting,low +0.3,0.58,2,189,4,1,0,0,accounting,low +0.72,0.85,5,237,4,0,0,0,accounting,low +0.61,0.52,3,224,3,0,0,0,hr,low +0.31,0.87,6,240,3,1,0,0,hr,low +0.62,0.81,3,245,2,1,0,0,hr,low +0.48,0.49,3,268,3,0,0,0,hr,low +0.97,0.89,4,208,2,1,0,0,technical,low +0.61,0.83,4,153,2,0,0,0,technical,low +0.93,0.99,3,169,3,0,0,0,technical,low +0.89,0.39,5,218,2,0,0,0,technical,low +0.95,0.9,3,155,3,0,0,0,technical,medium +0.36,0.44,5,155,3,0,0,0,technical,medium +0.29,0.39,6,105,6,0,0,0,technical,medium +0.65,0.83,4,251,2,0,0,0,technical,medium +0.72,0.54,4,219,2,0,0,0,technical,medium +0.51,0.56,4,198,2,1,0,0,technical,medium +0.54,0.53,4,158,2,0,0,0,technical,medium +0.66,0.58,3,157,2,0,0,0,support,medium +0.59,0.54,4,178,2,0,0,0,support,medium +0.45,0.48,3,145,2,0,0,0,support,medium +0.15,0.91,5,230,3,0,0,0,support,medium +0.95,0.53,3,174,3,0,0,0,support,medium +0.49,0.59,5,140,3,0,0,0,support,high +0.68,0.97,3,174,2,0,0,0,support,low +0.7,0.76,4,173,2,0,0,0,support,medium +0.9,0.73,2,203,4,0,0,0,support,medium +0.94,0.95,5,170,3,0,0,0,support,medium +0.8,0.86,3,203,3,0,0,0,support,medium +0.59,0.53,5,169,3,0,0,0,technical,low +0.43,0.96,3,109,6,0,0,0,technical,low +0.7,0.54,5,263,3,0,0,0,technical,low +0.51,0.62,4,185,3,0,0,0,management,low +0.12,0.49,4,191,5,0,0,0,IT,low +0.14,0.56,5,259,4,1,0,0,IT,low +0.86,0.91,4,253,3,0,0,0,IT,low +0.97,0.5,3,216,3,0,0,0,IT,low +1,0.86,2,264,3,0,0,0,IT,medium +0.49,0.63,3,181,3,1,0,0,product_mng,medium +0.9,0.93,3,209,3,0,0,0,product_mng,medium +0.82,0.89,4,239,2,0,0,0,product_mng,medium +0.59,0.48,3,197,3,0,0,0,product_mng,medium +0.97,0.57,4,150,2,0,0,0,IT,medium +0.69,0.88,3,164,10,0,0,0,management,medium +0.73,0.84,3,216,8,0,0,0,management,medium +0.48,0.74,2,271,8,1,0,0,management,medium +0.94,0.49,4,176,8,0,0,0,management,medium +0.74,0.73,3,156,8,0,0,0,management,medium +0.65,0.63,4,143,8,0,0,0,management,medium +0.93,0.94,4,233,6,0,0,0,IT,medium +0.57,0.67,3,138,6,1,0,0,IT,medium +0.9,0.49,3,259,6,0,0,0,IT,medium +0.55,0.86,4,169,6,0,0,0,IT,medium +0.59,0.73,3,172,6,0,0,0,product_mng,medium +0.72,0.98,4,156,3,0,0,0,product_mng,medium +0.87,0.52,4,140,3,0,0,0,product_mng,medium +0.86,0.82,4,212,2,0,0,0,product_mng,medium +0.61,0.5,4,269,3,0,0,0,IT,medium +0.45,0.63,5,111,5,0,0,0,management,medium +0.51,0.63,4,198,2,0,0,0,management,medium +0.87,0.92,4,263,3,0,0,0,management,medium +0.29,0.38,5,191,5,0,0,0,management,medium +0.57,0.64,3,188,3,0,0,0,management,medium +0.69,0.83,4,252,3,0,0,0,management,medium +0.61,0.9,2,142,3,0,0,0,marketing,high +0.96,0.85,4,247,3,0,0,0,sales,high +0.16,0.61,6,269,2,0,0,0,accounting,high +0.96,0.82,4,244,3,0,0,0,support,high +0.77,0.81,4,164,3,0,0,0,technical,high +0.85,0.87,6,232,5,0,0,0,management,high +0.37,0.49,3,177,3,0,0,0,marketing,high +0.68,0.65,3,173,3,1,0,0,marketing,high +0.87,0.6,5,165,2,1,0,0,marketing,high +0.95,0.8,3,225,2,0,0,0,sales,high +0.84,0.63,3,121,3,1,0,0,sales,low +0.44,0.51,2,219,4,0,0,0,sales,low +0.94,0.73,4,204,2,0,0,0,sales,low +0.85,0.94,5,235,4,0,0,0,sales,low +0.75,0.51,2,215,2,1,0,0,sales,low +0.76,0.67,5,243,3,0,0,0,sales,low +0.13,0.97,4,162,6,0,0,0,sales,low +0.6,0.79,4,262,3,0,0,0,sales,low +0.45,0.55,4,206,2,0,0,0,sales,low +0.49,1,2,125,4,1,0,0,sales,low +0.19,0.36,3,167,5,0,0,0,sales,low +0.68,0.89,5,218,5,0,0,0,sales,low +0.53,0.91,5,181,3,0,0,0,sales,low +1,0.77,5,269,3,0,0,0,sales,low +0.99,0.86,3,167,2,0,0,0,sales,low +0.29,0.75,6,271,10,0,0,0,sales,medium +0.54,0.83,4,201,8,1,0,0,sales,medium +0.25,0.9,6,229,8,0,0,0,sales,medium +0.71,0.76,4,148,8,0,0,0,accounting,medium +0.96,0.84,3,147,8,0,0,0,accounting,medium +0.8,0.9,4,211,8,0,0,0,accounting,medium +0.82,0.87,5,145,6,0,0,0,hr,medium +0.19,0.97,6,269,6,0,0,0,hr,medium +0.43,0.74,4,129,6,0,0,0,hr,medium +0.62,0.84,3,270,6,0,0,0,hr,medium +0.75,0.85,3,250,6,0,0,0,technical,medium +0.56,0.48,5,192,2,1,0,0,technical,medium +0.88,0.91,4,233,4,0,0,0,technical,high +0.63,0.57,4,192,3,0,0,0,technical,high +0.75,0.93,3,247,2,0,0,0,technical,high +0.74,1,4,192,4,0,0,0,technical,high +0.55,0.68,3,178,3,1,0,0,technical,high +0.87,0.55,4,197,3,0,0,0,technical,high +0.13,0.9,5,264,6,0,0,0,technical,high +0.33,0.64,2,274,3,1,0,0,technical,high +0.89,0.97,4,147,2,0,0,0,technical,low +0.56,0.94,3,154,3,1,0,0,support,low +0.95,0.61,3,224,2,1,0,0,support,low +0.57,0.59,4,250,2,0,0,0,support,low +0.72,0.53,3,179,3,0,0,0,support,low +0.28,0.44,4,170,2,0,0,0,support,low +0.54,0.61,4,118,5,0,0,0,support,low +0.54,0.95,4,256,3,0,0,0,support,low +0.99,0.8,3,209,2,0,0,0,support,medium +0.37,0.69,2,146,3,0,0,0,support,medium +0.77,0.87,3,275,4,1,0,0,support,medium +0.7,0.88,4,180,2,0,0,0,support,medium +0.8,0.74,3,228,3,0,0,0,technical,medium +0.52,0.63,3,204,3,0,0,0,technical,medium +0.69,0.55,3,172,2,0,0,0,technical,medium +0.6,0.62,5,274,3,0,0,0,management,medium +0.74,0.64,3,136,2,0,0,0,IT,medium +0.69,0.82,4,252,3,1,0,0,IT,medium +0.78,0.89,4,137,3,0,0,0,IT,medium +0.77,0.75,4,191,3,0,0,0,IT,medium +0.91,0.68,4,132,4,0,0,0,IT,medium +0.54,0.68,6,249,5,0,0,0,product_mng,medium +0.48,0.77,6,274,6,0,0,0,product_mng,medium +0.55,0.96,3,194,3,0,0,0,product_mng,medium +0.17,0.36,6,191,2,0,0,0,product_mng,medium +0.77,0.83,5,216,4,0,0,0,IT,medium +0.93,0.98,3,241,3,0,0,0,IT,medium +0.65,0.91,4,243,5,1,0,0,IT,medium +0.67,0.52,4,207,3,0,0,0,IT,medium +0.95,0.88,3,199,3,0,0,0,IT,medium +0.61,0.97,6,286,4,0,0,0,product_mng,medium +0.57,0.39,4,132,3,0,0,0,product_mng,high +0.65,1,4,229,4,0,0,0,product_mng,low +0.85,0.81,4,260,3,0,0,0,product_mng,medium +0.61,0.96,3,214,2,0,0,0,IT,medium +0.65,0.9,6,217,4,1,0,1,RandD,medium +0.92,0.93,4,225,2,0,0,1,RandD,medium +0.37,0.41,2,113,3,0,0,1,RandD,medium +0.48,0.77,5,250,2,0,0,1,RandD,medium +0.82,0.91,5,271,2,0,0,1,RandD,medium +0.84,0.75,4,135,3,0,0,1,RandD,medium +0.57,0.46,2,100,6,1,0,1,marketing,medium +0.8,0.75,4,224,3,0,0,1,sales,medium +0.49,0.91,4,134,4,0,0,0,accounting,low +0.79,0.82,5,158,2,0,0,0,support,low +0.48,0.67,3,183,2,0,0,0,technical,low +0.28,0.89,4,97,6,0,0,0,management,low +0.47,0.56,4,226,3,0,0,0,marketing,low +0.91,0.6,4,235,4,1,0,0,marketing,low +0.75,0.6,4,186,10,1,0,0,marketing,low +0.61,0.89,3,242,10,0,0,0,sales,high +0.47,0.79,3,284,10,0,0,0,sales,low +0.22,0.7,2,274,10,0,0,0,sales,high +0.5,0.48,4,130,10,0,0,0,sales,high +0.56,0.87,3,146,10,0,0,0,sales,low +0.84,0.85,4,207,10,0,0,0,sales,low +0.69,0.72,4,210,2,1,0,0,sales,high +0.53,0.64,3,143,2,0,0,0,sales,low +0.17,0.57,4,116,3,0,0,0,sales,medium +0.48,0.71,2,162,3,1,0,0,sales,high +0.94,0.51,3,242,3,0,0,0,sales,medium +0.77,0.89,4,153,7,0,0,0,sales,medium +1,0.72,5,194,7,1,0,0,sales,medium +0.49,0.65,4,233,7,0,0,0,sales,medium +0.93,0.73,4,283,7,0,0,0,sales,high +0.38,0.43,3,188,7,0,0,0,sales,medium +0.6,0.54,4,182,6,0,0,0,sales,medium +0.5,0.82,2,286,6,0,0,0,sales,medium +0.97,0.55,5,212,6,0,0,0,sales,high +0.93,0.95,5,176,6,0,0,1,accounting,medium +0.5,1,5,264,8,0,0,1,accounting,high +0.52,0.84,3,261,8,0,0,1,accounting,low +0.5,0.71,4,163,8,0,0,1,hr,medium +0.55,0.4,3,139,8,0,0,1,hr,medium +0.95,0.84,3,261,8,1,0,1,hr,medium +0.48,0.42,2,275,6,1,0,1,hr,medium +0.51,0.39,5,132,6,1,0,1,technical,low +0.96,0.48,3,202,6,0,0,0,technical,low +0.97,0.84,4,177,6,0,0,0,technical,low +0.97,0.66,5,234,6,0,0,0,technical,low +0.71,0.54,4,188,6,0,0,0,technical,low +0.82,0.49,5,203,6,0,0,0,technical,low +0.57,1,4,227,10,0,0,0,technical,low +0.48,0.93,3,150,10,0,0,0,technical,low +0.71,0.64,3,267,3,0,0,0,technical,low +0.63,0.61,5,186,10,0,0,0,technical,low +0.99,0.84,4,142,10,0,0,0,technical,high +0.79,0.83,3,126,10,1,0,0,support,low +0.65,0.85,4,201,10,0,0,0,support,low +0.7,0.85,4,142,2,0,0,0,support,low +0.99,0.94,4,167,4,0,0,0,support,low +0.65,0.62,4,258,2,0,0,0,support,high +0.92,0.85,3,207,2,0,0,0,support,low +0.24,0.5,4,282,4,1,0,0,support,low +0.39,0.89,3,188,5,0,0,0,support,low +0.82,0.85,3,214,2,0,0,0,support,high +0.78,0.89,4,272,2,0,0,0,support,low +0.62,0.79,3,259,3,0,0,0,support,medium +0.6,0.61,5,191,2,1,0,0,technical,high +0.49,0.57,3,192,3,0,0,0,technical,medium +0.82,0.82,3,164,3,0,0,0,technical,high +0.48,0.81,4,149,2,0,0,0,management,medium +0.69,0.56,4,149,3,0,0,0,IT,medium +0.4,0.89,2,165,3,0,0,0,IT,medium +0.72,0.8,3,222,3,0,0,0,IT,medium +0.75,0.84,5,222,3,1,0,0,IT,medium +0.5,0.77,3,265,3,0,0,0,IT,medium +0.78,0.5,5,247,4,0,0,0,product_mng,medium +0.76,0.45,4,147,2,0,0,0,product_mng,medium +0.94,0.52,3,273,3,0,0,0,product_mng,high +0.24,0.94,6,144,4,0,0,0,product_mng,low +0.99,0.66,3,181,2,0,0,0,IT,medium +0.67,0.64,3,198,2,1,0,0,management,medium +0.76,0.57,5,255,4,0,0,0,management,medium +0.76,0.77,4,169,10,0,0,0,management,medium +0.55,0.64,4,201,10,1,0,0,management,medium +0.74,0.6,4,274,10,1,0,0,management,medium +0.81,0.85,4,134,10,1,0,0,management,medium +0.98,0.67,3,190,10,0,0,0,IT,medium +0.98,0.98,4,170,10,0,0,0,IT,medium +0.58,0.91,3,154,10,0,0,0,product_mng,high +0.18,0.75,3,142,2,0,0,0,product_mng,low +0.57,0.67,5,235,2,0,0,0,product_mng,low +0.7,0.62,3,110,3,0,0,0,product_mng,low +0.49,0.77,3,211,3,0,0,0,IT,high +0.7,0.56,4,214,3,0,0,1,management,medium +0.16,0.93,5,210,7,0,0,1,management,medium +0.58,0.59,3,207,7,0,0,1,management,medium +0.66,0.57,4,161,7,0,0,1,management,medium +0.51,0.55,2,102,7,0,0,1,management,medium +0.48,0.84,4,186,7,0,0,1,management,medium +0.56,0.71,3,211,6,0,0,1,marketing,low +0.81,0.62,3,240,6,0,0,1,sales,low +0.57,0.7,4,237,6,0,0,0,accounting,low +0.66,0.53,3,164,6,0,0,0,support,low +0.22,0.91,6,222,8,0,0,0,technical,low +0.96,0.71,3,205,8,1,0,0,management,medium +0.87,0.88,4,140,8,0,0,0,marketing,medium +0.61,0.42,2,103,8,0,0,0,marketing,medium +0.66,0.85,3,178,8,1,0,0,marketing,medium +0.9,0.51,4,137,6,0,0,0,sales,medium +0.64,0.67,3,143,6,0,0,0,sales,medium +0.76,0.82,4,170,6,0,0,0,sales,medium +0.97,0.41,5,135,6,0,0,0,sales,medium +0.69,0.76,3,174,6,0,0,0,sales,medium +0.98,0.55,3,166,6,1,0,0,sales,medium +0.18,0.61,5,174,6,0,0,0,sales,medium +0.62,0.91,3,251,10,0,0,0,sales,medium +0.29,0.37,6,187,10,1,0,0,sales,high +0.87,0.48,5,170,3,0,0,0,sales,low +0.91,0.64,3,241,10,0,0,0,sales,medium +0.53,0.79,3,221,10,1,0,0,sales,medium +0.69,0.73,4,257,10,1,0,0,sales,medium +0.14,0.58,4,275,10,0,0,0,sales,medium +0.7,0.77,4,245,2,0,0,0,sales,low +0.77,0.75,6,246,6,0,0,0,sales,low +0.77,0.76,6,263,6,0,0,0,sales,low +0.76,0.99,3,133,4,0,0,0,sales,low +0.66,0.49,4,157,3,0,0,0,sales,low +0.5,0.95,3,198,4,0,0,0,accounting,low +0.57,0.9,5,145,3,0,0,0,accounting,low +0.97,0.62,6,118,2,0,0,0,accounting,low +0.26,0.99,5,184,5,0,0,0,hr,low +0.72,0.62,3,243,2,1,0,0,hr,low +0.83,0.93,3,247,2,0,0,0,hr,low +0.55,0.4,3,158,3,0,0,0,hr,low +0.77,0.74,5,243,2,0,0,0,technical,low +0.24,0.63,4,203,5,0,0,0,technical,low +0.8,0.96,3,161,3,0,0,0,technical,low +0.5,0.59,4,214,3,1,0,0,technical,low +0.66,0.59,4,179,3,0,0,0,technical,low +0.66,0.77,4,188,2,0,0,0,technical,low +0.66,0.81,3,174,3,0,0,0,technical,low +0.96,0.83,3,177,4,0,0,0,technical,low +0.75,0.94,5,194,4,0,0,0,technical,low +0.78,0.77,3,244,2,0,0,0,technical,medium +0.57,0.82,4,269,2,0,0,0,technical,medium +0.78,0.68,2,159,3,1,0,0,support,medium +0.57,0.88,4,140,2,0,0,0,support,medium +0.84,0.56,5,224,2,0,0,0,support,medium +0.23,0.94,5,242,4,0,0,0,support,medium +0.53,0.37,3,180,3,0,0,0,support,medium +0.82,0.71,3,150,3,0,0,0,support,medium +0.59,0.64,5,269,3,0,0,0,support,medium +0.5,0.52,2,178,2,0,0,0,support,medium +1,0.74,2,187,3,0,0,0,support,medium +0.94,0.61,3,140,2,0,0,0,support,medium +0.86,0.61,4,193,2,0,0,0,support,high +0.73,0.49,4,243,2,0,0,0,technical,low +0.49,0.94,3,144,3,1,0,0,technical,medium +0.79,0.73,2,147,2,0,0,0,technical,medium +0.83,0.5,6,165,3,0,0,0,management,medium +0.85,0.67,3,176,2,0,0,0,IT,medium +0.65,0.37,3,170,6,0,0,0,IT,low +0.94,0.65,4,213,2,1,0,0,IT,low +0.76,0.81,4,242,2,0,0,0,IT,low +0.77,0.54,4,139,3,1,0,0,IT,low +0.77,0.91,4,239,3,1,0,0,product_mng,low +0.59,0.64,5,123,2,0,0,0,product_mng,low +0.69,0.9,3,185,4,0,0,0,product_mng,low +0.51,0.85,4,186,2,0,0,0,product_mng,low +0.8,0.67,3,178,3,0,0,0,IT,low +0.98,0.7,3,153,10,0,0,0,management,high +0.69,0.72,4,185,10,1,0,0,management,high +0.14,0.76,4,142,10,0,0,0,management,high +0.95,0.9,4,221,10,1,0,0,management,high +0.53,0.61,3,148,10,0,0,0,management,high +0.64,0.52,5,258,10,1,0,0,management,high +0.51,0.73,4,229,3,0,0,0,sales,low +0.36,0.73,2,111,2,0,0,0,sales,low +0.62,0.97,2,271,3,0,0,0,sales,low +0.98,0.58,4,133,3,0,0,0,sales,low +0.53,0.7,4,223,3,0,0,0,sales,low +0.8,0.95,4,272,2,0,0,0,sales,low +0.73,0.77,3,233,3,0,0,0,sales,medium +0.82,0.8,3,162,3,0,0,0,sales,medium +0.62,0.75,5,165,4,0,0,0,sales,medium +0.87,0.48,5,242,3,0,0,0,sales,medium +0.43,0.65,4,124,2,0,0,0,sales,medium +0.57,0.6,2,163,3,0,0,0,sales,medium +0.91,0.77,3,144,3,0,0,0,sales,medium +0.75,0.59,5,149,4,0,0,0,sales,medium +0.76,0.8,5,217,2,0,0,0,sales,medium +0.85,0.49,4,139,2,0,0,0,sales,medium +0.56,0.67,3,270,2,0,0,0,sales,medium +0.86,0.84,3,177,3,0,0,0,sales,medium +0.21,0.43,5,175,2,1,0,0,sales,high +0.94,0.59,3,151,2,0,0,0,sales,low +0.98,0.74,3,185,3,0,0,0,sales,medium +0.42,0.45,3,227,3,0,0,0,sales,medium +0.98,0.89,4,218,2,0,0,0,sales,medium +1,0.93,5,167,3,0,0,0,sales,medium +0.95,0.52,3,183,2,1,0,0,sales,low +0.95,0.5,4,259,3,0,0,0,sales,low +0.68,0.53,3,138,2,1,0,0,sales,low +0.64,0.38,5,122,4,0,0,0,sales,low +0.24,0.62,6,225,6,0,0,0,sales,low +0.37,0.72,3,121,2,0,0,0,sales,low +0.67,0.4,4,274,3,0,0,0,sales,low +0.86,0.89,4,153,4,0,0,0,sales,low +0.43,0.38,3,119,2,0,0,0,sales,low +0.67,0.67,4,141,2,1,0,0,sales,low +0.92,0.6,4,161,3,0,0,0,IT,low +0.43,0.46,2,186,2,0,0,0,product_mng,low +0.52,0.8,3,252,4,0,0,0,product_mng,low +0.16,0.42,3,182,3,1,0,0,product_mng,low +0.49,0.6,4,264,2,1,0,0,product_mng,low +0.37,0.63,4,167,3,0,0,0,IT,low +0.98,0.68,5,171,3,0,0,0,management,high +0.33,0.97,5,130,4,0,0,0,management,high +0.14,0.79,5,271,4,0,0,0,management,high +0.54,0.79,5,249,3,1,0,0,management,high +0.63,0.48,4,180,4,0,0,0,management,high +0.55,0.69,4,220,3,1,0,0,management,high +0.84,0.53,3,210,4,1,0,0,marketing,medium +0.51,0.97,4,258,2,0,0,0,sales,medium +0.15,0.75,3,150,4,0,0,1,accounting,medium +0.97,0.79,5,259,3,0,0,1,support,medium +0.67,0.69,3,231,3,0,0,1,technical,medium +0.48,0.67,4,220,3,0,0,1,management,medium +0.69,0.58,4,149,3,0,0,1,marketing,medium +0.6,0.62,3,238,4,0,0,1,marketing,medium +0.82,0.71,2,209,5,0,0,1,marketing,medium +0.86,0.95,4,149,3,0,0,1,sales,medium +0.69,0.59,4,264,3,0,0,0,sales,medium +0.87,0.87,5,207,2,0,0,0,sales,high +0.17,0.78,3,239,6,0,0,0,sales,low +0.94,0.51,6,239,5,0,0,0,sales,medium +0.5,1,4,258,3,0,0,0,sales,medium +0.16,0.72,3,203,3,0,0,0,sales,medium +0.89,0.99,2,258,3,0,0,0,sales,medium +0.69,0.51,3,257,3,1,0,0,IT,low +0.5,0.51,5,134,3,0,0,0,product_mng,low +0.16,0.46,6,240,2,0,0,0,product_mng,low +0.75,0.99,2,237,5,1,0,0,product_mng,low +0.64,0.66,5,157,2,0,0,0,product_mng,low +0.78,0.43,4,275,3,0,0,0,IT,low +0.81,0.74,2,228,3,0,0,0,management,high +0.55,0.58,3,254,2,0,0,0,management,high +0.53,0.53,4,257,2,0,0,0,management,high +0.69,0.73,3,231,2,1,0,0,management,high +0.8,0.53,3,217,3,0,0,0,management,high +0.77,0.98,3,286,6,0,0,0,management,high +0.84,0.8,4,236,3,0,0,0,marketing,low +0.64,0.55,4,215,2,0,0,0,sales,low +0.78,0.57,4,157,3,0,0,0,accounting,low +0.67,0.7,3,149,3,0,0,0,support,low +0.81,0.77,3,221,2,0,0,0,technical,low +0.91,0.82,4,238,2,0,0,0,management,low +0.75,0.89,6,250,2,0,0,0,marketing,medium +0.78,0.96,3,202,4,1,0,0,marketing,medium +0.54,0.52,4,173,2,0,0,0,marketing,medium +0.77,0.71,5,250,3,1,0,0,sales,medium +0.89,0.63,4,270,3,1,0,0,sales,medium +0.16,0.98,3,232,5,0,0,0,sales,medium +0.77,0.99,4,260,3,0,0,0,sales,medium +0.69,0.48,5,232,4,0,0,0,sales,medium +0.61,0.81,4,134,3,0,0,0,sales,medium +0.59,0.81,4,189,3,0,0,0,sales,medium +0.58,0.8,4,113,3,0,0,0,IT,medium +0.88,0.67,5,264,3,0,0,0,product_mng,medium +0.51,0.63,5,260,2,0,0,0,product_mng,high +0.31,0.7,3,132,3,0,0,0,product_mng,low +0.52,0.52,4,168,3,0,0,0,product_mng,medium +0.57,0.46,3,186,3,1,0,0,IT,medium +0.5,0.77,3,267,2,0,0,0,management,high +0.74,0.63,3,180,3,0,0,0,management,high +0.74,0.77,3,211,3,0,0,0,management,high +0.82,0.51,2,268,2,0,0,0,management,high +0.74,0.71,3,206,3,0,0,0,management,high +0.2,0.59,6,113,3,0,0,0,management,high +0.63,0.48,4,179,3,0,0,0,marketing,low +0.19,0.8,6,157,6,1,0,0,sales,low +0.4,0.62,4,127,5,0,0,0,accounting,low +0.71,0.37,2,179,5,0,0,1,support,low +0.84,0.73,4,197,3,0,0,1,technical,low +0.59,0.84,4,251,4,1,0,1,management,low +0.57,0.85,4,250,3,1,0,1,marketing,low +0.81,0.61,2,176,5,0,0,1,marketing,low +0.8,0.7,4,246,3,0,0,1,marketing,low +0.49,0.66,3,155,3,0,0,1,sales,low +0.55,0.64,3,178,2,0,0,1,sales,low +0.68,0.4,3,213,5,1,0,1,sales,low +0.55,0.67,3,150,2,0,0,1,sales,low +0.59,0.62,3,166,2,0,0,0,sales,low +0.91,0.8,5,169,4,0,0,0,sales,low +0.48,0.9,4,208,3,0,0,0,sales,low +0.84,0.66,3,209,2,0,0,0,sales,low +0.73,0.54,4,167,3,0,0,0,IT,medium +0.28,0.59,6,281,3,0,0,0,product_mng,medium +0.77,0.65,3,156,4,0,0,0,product_mng,medium +0.67,0.65,3,265,3,0,0,0,product_mng,medium +0.5,0.53,3,142,3,1,0,0,product_mng,medium +0.32,0.47,3,143,4,0,0,0,IT,medium +0.57,0.78,3,134,3,0,0,0,RandD,medium +0.51,0.8,5,268,3,0,0,0,RandD,medium +0.61,0.6,3,255,2,0,0,0,RandD,medium +0.83,0.73,4,157,2,0,0,0,RandD,medium +0.87,0.97,5,151,3,0,0,0,RandD,medium +0.7,0.63,3,157,2,0,0,0,RandD,medium +0.78,0.65,3,139,3,0,0,0,marketing,high +0.71,0.53,4,196,2,1,0,0,sales,low +0.68,0.99,3,159,2,0,0,0,accounting,medium +0.75,0.53,4,224,4,1,0,0,support,medium +0.7,0.53,3,215,7,1,0,0,technical,medium +0.59,0.94,5,157,7,1,0,0,management,medium +0.64,0.87,4,157,7,0,0,0,marketing,low +0.61,0.88,5,146,7,1,0,0,marketing,low +0.77,0.49,2,286,7,0,0,0,marketing,low +0.51,0.64,3,203,3,0,0,0,sales,low +0.49,0.49,3,168,7,0,0,0,sales,low +0.77,0.75,3,170,7,0,0,0,sales,low +0.31,0.86,3,266,7,0,0,0,sales,low +0.54,0.76,3,183,3,0,0,0,sales,low +0.56,0.66,4,264,3,0,0,0,sales,low +0.65,0.77,4,205,3,0,0,0,sales,low +0.49,0.36,2,192,3,0,0,0,sales,low +0.82,0.79,3,176,3,0,0,0,technical,low +0.6,0.52,3,183,2,0,0,0,support,low +0.64,0.63,3,156,6,1,0,0,support,low +0.7,0.68,3,150,3,0,0,0,support,low +0.65,0.89,4,204,8,1,0,0,support,low +0.69,0.78,5,131,8,0,0,0,support,low +0.93,0.74,5,248,8,1,0,0,support,low +0.55,0.52,4,168,8,0,0,0,support,low +0.75,0.87,4,146,8,1,0,0,support,low +0.47,0.43,4,246,3,0,0,0,support,low +0.72,0.88,5,216,10,1,0,0,support,medium +0.59,0.92,3,203,10,0,0,0,support,medium +0.98,0.49,3,199,10,0,0,0,technical,medium +0.39,0.52,2,102,8,0,0,0,technical,medium +0.93,0.87,4,139,8,0,0,0,technical,medium +0.71,0.97,5,208,8,1,0,0,management,medium +0.49,0.54,4,215,4,0,0,0,IT,medium +0.63,0.93,4,233,3,0,0,0,IT,medium +0.45,0.64,3,169,10,0,0,0,IT,medium +0.77,0.64,3,190,10,1,0,0,IT,medium +0.77,0.63,4,236,7,0,0,0,IT,medium +0.5,0.92,4,266,7,0,0,0,product_mng,medium +0.45,0.42,4,156,7,0,0,0,product_mng,high +0.81,0.47,4,153,7,0,0,0,product_mng,low +0.83,0.67,3,175,3,0,0,0,product_mng,medium +0.47,0.76,6,174,10,0,0,0,IT,medium +0.25,0.89,4,154,10,0,0,0,management,high +0.89,0.55,5,251,10,0,0,0,management,high +0.97,0.57,3,164,10,0,0,0,management,high +0.6,0.65,2,225,10,0,0,0,management,high +0.67,0.72,2,134,10,0,0,0,management,high +0.89,0.77,3,144,3,0,0,0,management,high +0.6,0.91,5,211,3,0,0,0,sales,low +0.64,0.79,4,139,3,0,0,0,sales,low +0.57,0.66,3,268,3,0,0,0,sales,low +0.56,0.98,5,171,3,1,0,0,sales,low +0.6,0.9,4,260,2,0,0,0,sales,medium +0.17,0.66,6,224,3,0,0,0,sales,medium +0.74,0.49,4,233,3,0,0,0,sales,medium +0.44,0.41,3,125,7,0,0,0,sales,medium +0.51,0.89,4,233,7,0,0,0,sales,medium +0.86,0.57,3,162,7,0,0,0,sales,medium +0.96,0.48,4,198,7,0,0,0,sales,medium +0.87,0.82,4,198,7,0,0,0,sales,medium +0.58,0.79,3,243,3,1,0,0,sales,medium +0.24,0.56,4,281,7,0,0,0,sales,medium +0.42,0.8,4,259,7,1,0,0,sales,medium +0.65,0.94,4,184,7,0,0,0,sales,medium +0.73,0.92,6,189,3,1,0,0,sales,medium +0.63,0.6,4,258,3,0,0,0,sales,medium +0.95,0.48,4,225,3,0,0,0,sales,medium +0.52,0.83,5,145,3,0,0,0,sales,medium +0.96,0.55,3,164,3,0,0,0,sales,medium +0.66,0.51,4,254,2,0,0,0,sales,medium +0.98,0.44,4,154,6,1,0,0,sales,medium +0.56,0.79,5,248,3,0,0,0,sales,medium +0.97,0.54,3,154,8,1,0,0,sales,medium +0.72,0.92,3,242,8,0,0,0,sales,medium +0.74,0.78,4,194,8,0,0,0,sales,medium +0.2,0.6,5,261,8,0,0,0,sales,medium +0.73,0.56,3,245,8,0,0,0,sales,medium +0.76,0.79,3,247,3,0,0,0,sales,low +0.65,0.54,4,147,10,0,0,0,sales,low +0.66,0.5,3,139,10,1,0,0,sales,low +0.96,0.97,6,137,10,0,0,0,sales,low +0.57,0.55,4,177,8,0,0,0,sales,low +0.61,0.82,4,184,8,0,0,0,IT,low +0.57,0.69,3,212,8,0,0,0,product_mng,low +0.59,0.47,3,159,4,0,0,0,product_mng,low +0.92,0.68,4,178,3,0,0,0,product_mng,low +0.79,0.56,3,149,10,0,0,0,product_mng,low +0.95,0.66,4,223,10,0,0,0,IT,low +0.24,0.81,6,263,7,0,0,0,management,high +0.49,0.52,4,161,7,0,0,0,management,high +0.49,0.68,3,192,7,0,0,0,management,high +0.97,0.51,5,215,7,0,0,0,management,high +0.55,0.78,4,261,3,0,0,0,management,high +0.76,0.56,5,222,10,0,0,0,management,high +0.53,0.99,3,223,10,0,0,0,marketing,low +0.51,0.86,3,182,10,0,0,0,sales,low +0.57,0.93,2,204,10,0,0,0,accounting,low +0.58,0.91,3,195,10,0,0,0,support,low +0.6,0.98,4,146,10,0,0,0,technical,low +0.65,0.74,4,233,4,1,0,0,management,low +0.91,0.75,2,147,3,0,0,0,marketing,low +0.65,0.55,3,156,5,0,0,0,marketing,low +0.18,0.49,3,240,2,1,0,0,marketing,low +0.66,0.9,4,177,7,0,0,0,sales,low +0.78,0.8,3,135,7,0,0,0,sales,medium +0.82,0.65,5,178,7,1,0,0,sales,medium +0.54,0.64,3,190,7,0,0,0,sales,medium +0.95,0.84,3,240,7,0,0,0,sales,medium +0.65,0.85,4,172,3,0,0,0,sales,medium +0.83,0.55,3,271,7,0,0,0,sales,medium +0.15,0.6,5,188,7,0,0,0,sales,medium +0.59,0.59,4,197,7,0,0,0,IT,medium +0.99,0.94,5,151,3,0,0,0,product_mng,medium +0.76,0.72,3,263,3,0,0,0,product_mng,medium +0.64,0.67,2,223,3,0,0,0,product_mng,medium +0.95,0.75,4,151,3,0,0,0,product_mng,medium +0.53,0.66,3,191,3,0,0,0,IT,high +0.59,0.5,2,162,2,0,0,0,management,high +0.69,0.86,5,195,6,0,0,0,management,high +0.5,0.49,4,222,3,0,0,0,management,high +0.89,0.96,3,179,8,0,0,0,management,high +0.56,0.39,3,106,8,0,0,0,management,high +0.77,0.68,3,214,8,1,0,0,management,high +0.15,0.75,3,259,8,1,0,0,marketing,high +0.88,0.58,3,145,8,0,0,0,sales,low +0.89,0.86,4,153,3,0,0,0,accounting,low +0.65,0.52,2,117,10,1,0,0,support,low +0.58,0.99,3,207,10,0,0,0,technical,low +0.56,0.85,3,265,10,1,0,0,management,low +0.25,0.72,5,279,8,0,0,0,marketing,low +0.87,0.89,4,225,8,0,0,0,marketing,low +0.62,0.4,3,158,8,1,0,0,marketing,low +0.72,0.75,4,211,4,0,0,0,sales,medium +0.49,0.94,4,175,3,0,0,0,sales,medium +0.57,0.91,4,224,10,0,0,0,sales,medium +0.63,0.65,3,190,10,0,0,0,sales,medium +0.91,0.63,5,240,7,0,0,0,sales,medium +0.7,0.68,5,225,7,0,0,0,sales,medium +0.66,0.95,5,192,7,0,0,0,sales,medium +0.77,0.48,5,262,7,0,0,0,IT,medium +0.68,0.97,3,250,3,1,0,0,product_mng,medium +0.34,0.46,3,155,10,0,0,0,product_mng,medium +0.97,0.64,4,238,10,1,0,0,product_mng,medium +0.57,0.75,4,249,10,0,0,0,product_mng,medium +0.66,0.65,3,272,10,0,0,0,IT,medium +0.68,0.67,4,162,10,0,0,0,management,high +0.49,0.78,4,254,10,0,0,0,management,high +0.72,0.66,4,184,3,0,0,0,management,high +0.77,0.89,4,269,10,0,0,0,management,high +0.77,0.73,3,201,10,0,0,0,management,high +0.59,0.73,4,247,10,0,0,0,management,high +0.41,0.67,6,221,10,0,0,0,marketing,medium +0.94,0.64,5,247,10,0,0,0,sales,medium +0.91,0.61,4,135,10,0,0,0,accounting,medium +0.7,0.84,3,260,4,1,0,0,support,medium +0.51,0.52,3,188,3,0,0,0,technical,high +0.22,0.7,4,159,5,0,0,0,management,low +0.69,0.65,3,153,2,0,0,0,marketing,medium +0.2,0.68,5,167,7,0,0,0,marketing,medium +0.9,0.85,3,158,7,0,0,0,marketing,medium +0.76,0.85,3,180,7,0,0,0,sales,medium +0.88,0.51,3,211,7,0,0,0,sales,medium +0.31,0.63,4,104,7,1,0,0,sales,medium +0.17,0.66,6,174,3,0,0,0,sales,medium +0.91,0.77,3,195,7,0,0,0,sales,medium +0.97,0.38,5,211,7,1,0,0,sales,medium +0.61,0.77,5,232,7,0,0,0,sales,medium +0.74,0.67,5,216,3,0,0,0,sales,low +0.65,0.82,5,265,3,0,0,0,IT,low +0.87,0.73,5,184,3,0,0,0,product_mng,low +0.56,0.71,5,244,3,0,0,0,product_mng,low +0.78,0.69,4,202,3,0,0,0,product_mng,low +0.73,0.57,3,146,2,0,0,0,product_mng,low +0.66,0.78,4,161,6,0,0,0,IT,low +0.15,0.81,5,280,3,1,0,0,RandD,high +0.52,0.69,5,208,8,1,0,0,RandD,low +0.44,0.66,6,134,8,0,0,0,RandD,high +0.7,0.7,3,162,8,0,0,0,RandD,high +0.63,0.52,5,209,8,1,0,0,RandD,low +0.89,0.59,3,265,8,0,0,0,RandD,low +0.96,0.85,4,173,3,0,0,0,marketing,high +0.98,0.99,4,261,10,1,0,0,sales,low +0.62,0.82,3,204,10,0,0,0,accounting,medium +0.62,0.73,3,144,10,1,0,0,support,high +0.69,0.43,5,113,8,0,0,0,technical,medium +0.5,0.91,4,144,8,0,0,0,management,medium +0.71,0.93,5,140,8,0,0,0,marketing,medium +0.5,0.68,3,245,4,0,0,0,marketing,medium +0.93,0.6,3,188,3,0,0,0,marketing,high +0.95,0.77,5,199,10,1,0,0,sales,medium +0.17,0.61,6,154,10,1,0,0,sales,medium +0.92,0.68,4,138,7,0,0,0,sales,medium +0.64,0.48,3,147,7,0,0,0,sales,high +0.27,0.42,6,173,7,0,0,0,sales,medium +0.66,0.87,3,223,7,0,0,0,sales,high +0.59,0.69,3,200,3,0,0,0,sales,low +0.93,0.98,4,189,10,0,0,0,sales,medium +0.58,0.67,5,133,10,0,0,0,technical,medium +0.96,0.6,3,160,10,0,0,0,support,medium +0.69,0.85,3,153,10,0,0,0,support,medium +0.41,0.38,4,142,10,1,0,0,support,low +0.36,0.41,3,167,10,0,0,0,support,low +0.71,0.78,4,227,2,0,0,0,support,low +0.94,0.9,4,144,4,0,0,0,support,low +0.51,0.76,4,140,3,0,0,0,support,low +0.83,0.48,4,220,3,1,0,0,support,low +0.22,0.62,3,180,3,0,0,0,support,low +0.66,0.89,4,173,4,0,0,0,support,low +0.14,0.58,3,179,5,0,0,0,support,low +0.16,0.96,5,137,5,1,0,0,technical,low +0.81,0.78,3,165,3,0,0,0,technical,high +0.73,0.94,3,177,3,0,0,0,technical,low +0.7,0.58,5,168,3,0,0,0,management,low +0.62,0.73,3,245,4,0,0,0,IT,low +0.5,0.83,5,258,2,0,0,0,IT,low +0.7,0.88,3,159,2,0,0,0,IT,high +0.53,0.73,3,163,3,1,0,0,IT,low +0.87,0.9,3,174,2,0,0,0,IT,low +0.59,0.6,3,214,2,1,0,0,product_mng,low +0.94,0.67,4,191,3,1,0,0,product_mng,high +0.2,0.53,5,272,5,0,0,0,product_mng,low +0.42,0.44,3,183,2,0,0,0,product_mng,medium +0.43,0.66,4,135,2,0,0,0,IT,high +0.43,0.76,6,154,2,0,0,0,management,high +0.77,0.86,5,238,3,0,0,0,management,high +0.76,0.98,2,235,3,0,0,0,management,high +0.82,0.9,3,215,4,0,0,0,management,high +0.75,0.66,5,234,2,0,0,0,management,high +0.63,0.98,4,187,3,0,0,0,management,high +0.51,0.75,3,133,3,0,0,0,sales,medium +0.23,0.7,3,123,5,0,0,0,sales,medium +0.77,0.58,4,202,3,0,0,0,sales,medium +0.54,0.63,4,140,3,0,0,0,sales,medium +0.63,0.85,4,182,3,1,0,0,sales,high +0.55,0.45,3,179,2,1,0,0,sales,low +0.31,0.63,3,150,3,1,0,0,sales,medium +0.98,0.74,4,151,3,0,0,0,sales,medium +0.16,0.95,6,117,7,0,0,0,sales,medium +0.54,0.78,3,156,7,0,0,0,sales,medium +0.73,0.48,3,211,7,0,0,0,sales,medium +0.16,0.63,6,286,7,0,0,1,sales,medium +0.57,0.82,5,233,7,0,0,1,sales,medium +0.88,0.88,4,222,3,1,0,1,sales,medium +0.95,0.81,4,258,7,0,0,1,sales,medium +0.93,0.7,5,231,7,0,0,1,sales,high +0.91,0.58,3,220,7,0,0,1,sales,low +0.77,0.82,4,134,3,0,0,1,sales,low +0.24,0.94,6,141,3,1,0,0,sales,low +0.74,0.74,5,160,3,1,0,0,sales,high +0.53,0.59,4,259,3,0,0,0,sales,low +0.89,0.77,5,232,3,0,0,0,sales,low +0.23,0.77,5,272,2,0,0,0,sales,low +0.69,0.66,3,215,6,0,0,0,sales,high +0.52,0.72,4,222,3,0,0,0,sales,low +0.9,0.58,3,244,8,0,0,0,sales,low +0.92,0.63,5,224,8,1,0,0,sales,low +0.72,0.59,5,200,8,1,0,0,sales,low +0.92,0.61,4,143,8,0,0,0,sales,low +0.79,0.86,5,238,8,0,0,0,sales,low +0.48,0.89,4,145,3,0,0,0,sales,low +0.27,0.76,4,108,10,0,0,0,sales,medium +0.67,0.49,3,247,10,0,0,0,sales,medium +0.48,0.7,3,213,10,0,0,0,sales,medium +0.99,0.6,4,209,8,1,0,0,IT,medium +0.49,0.88,4,240,8,0,0,0,product_mng,medium +0.39,0.45,3,100,8,1,0,0,product_mng,medium +0.99,0.92,4,265,4,1,0,0,product_mng,medium +0.78,0.57,3,209,3,0,0,0,product_mng,medium +0.5,0.73,3,154,10,0,0,0,IT,medium +0.61,0.79,5,230,10,0,0,0,management,high +0.88,0.6,4,208,7,0,0,1,management,high +0.44,0.44,2,141,7,1,0,1,management,high +0.73,0.78,3,262,7,1,0,1,management,high +0.58,0.84,4,206,7,0,0,1,management,high +0.74,0.98,3,166,3,1,0,1,management,high +0.32,0.48,4,117,10,0,0,1,marketing,medium +0.88,0.83,4,273,10,0,0,0,sales,medium +0.81,0.9,4,270,10,0,0,0,accounting,medium +0.59,0.92,3,138,10,0,0,0,support,low +0.79,0.65,3,235,10,0,0,0,technical,low +0.92,0.64,4,190,10,1,0,0,management,low +0.76,0.85,3,192,3,0,0,0,marketing,low +0.91,0.65,5,214,3,1,0,0,marketing,low +0.8,0.84,4,242,2,1,0,0,marketing,low +0.73,0.72,4,233,2,0,0,0,sales,low +0.88,0.53,3,218,4,0,0,0,sales,low +0.65,0.4,5,125,4,0,0,0,sales,low +0.84,0.5,4,178,2,0,0,0,sales,low +0.93,0.5,5,272,3,0,0,0,sales,low +0.64,0.6,3,265,4,0,0,0,sales,low +0.66,0.72,4,271,3,0,0,0,sales,low +0.76,0.56,3,179,3,1,0,0,sales,low +0.34,0.72,3,118,4,0,0,0,IT,low +0.48,0.8,4,196,5,0,0,0,product_mng,low +0.79,0.61,4,173,2,0,0,0,product_mng,low +0.82,0.67,4,156,3,0,0,0,product_mng,low +0.51,0.71,2,180,3,0,0,0,product_mng,low +0.84,0.78,4,263,3,0,0,0,IT,low +0.66,0.79,5,134,3,0,0,0,management,high +0.72,0.88,3,189,3,1,0,0,management,high +0.53,0.91,4,167,4,0,0,0,management,high +0.81,0.8,5,132,2,1,0,0,management,high +0.58,0.9,3,209,2,0,0,0,management,high +0.82,0.56,2,227,5,1,0,0,management,high +0.72,0.99,4,239,3,0,0,0,marketing,medium +0.9,0.54,4,172,4,0,0,0,sales,medium +0.98,0.91,3,188,4,0,0,0,accounting,medium +0.56,0.74,3,265,3,0,0,0,support,medium +0.77,0.82,3,153,3,1,0,0,technical,medium +0.61,0.89,4,242,2,0,0,0,management,medium +0.97,0.61,4,262,3,1,0,1,marketing,medium +0.64,0.55,3,246,2,0,0,1,marketing,high +0.99,0.97,4,211,2,0,0,1,marketing,low +0.61,0.42,3,145,4,0,0,1,sales,medium +0.72,0.71,4,256,3,0,0,1,sales,medium +0.67,0.91,2,245,2,1,0,1,sales,medium +0.9,0.56,3,151,3,0,0,0,sales,medium +0.9,0.73,4,245,2,0,0,0,sales,low +0.63,0.61,4,171,3,0,0,0,sales,low +0.64,0.88,3,252,2,0,0,0,sales,low +0.44,0.65,3,175,2,0,0,0,IT,low +0.64,0.94,4,210,3,0,0,0,product_mng,low +0.65,0.95,2,180,2,0,0,0,product_mng,low +0.69,0.9,5,103,5,0,0,0,product_mng,low +0.93,0.51,4,110,3,0,0,0,product_mng,low +0.73,0.9,5,184,3,0,0,0,IT,low +0.83,0.6,4,161,2,0,0,0,management,high +0.82,0.49,5,210,3,0,0,0,management,high +0.39,0.91,2,212,2,0,0,0,management,high +0.53,0.47,6,106,6,0,0,0,management,high +0.88,0.81,4,179,3,0,0,0,management,high +0.8,0.6,5,217,3,0,0,0,management,high +0.68,0.79,4,184,3,0,0,0,marketing,low +0.66,0.6,3,210,2,0,0,0,sales,low +0.61,0.61,4,246,2,0,0,0,accounting,low +0.74,0.55,4,262,3,0,0,0,support,low +0.61,0.83,4,245,3,1,0,1,technical,low +0.57,0.99,3,222,3,1,0,1,management,low +0.68,0.54,4,146,4,0,0,1,marketing,medium +0.75,0.79,4,263,3,0,0,1,marketing,medium +0.29,0.57,5,134,2,0,0,1,marketing,medium +0.81,0.81,5,250,4,0,0,1,sales,medium +0.53,0.68,4,173,3,0,0,0,sales,medium +0.42,0.96,6,173,3,0,0,0,sales,medium +0.64,0.67,4,252,3,1,0,0,sales,medium +0.63,0.5,2,230,4,0,0,0,sales,medium +0.81,0.81,4,212,2,1,0,0,sales,medium +0.71,0.66,5,187,2,0,0,0,sales,medium +0.7,0.83,5,241,2,0,0,0,sales,medium +0.53,1,3,164,4,0,0,0,IT,medium +0.16,0.93,6,218,6,1,0,0,product_mng,high +0.17,0.55,4,194,3,0,0,0,product_mng,low +0.7,0.95,3,158,2,0,0,0,product_mng,medium +0.43,0.88,2,149,4,0,0,0,product_mng,medium +0.49,0.62,4,161,2,0,0,0,IT,medium +0.5,0.9,5,226,2,0,0,0,management,high +0.57,0.59,2,111,2,0,0,0,management,high +0.68,0.75,4,258,3,0,0,0,management,high +0.62,0.61,3,266,2,0,0,0,management,high +0.69,0.75,3,253,3,0,0,0,management,high +0.63,0.7,5,160,3,0,0,0,management,high +0.76,0.62,5,230,3,1,0,0,marketing,low +0.62,0.76,5,198,3,0,0,0,sales,low +0.82,0.69,3,250,3,0,0,0,accounting,low +0.2,0.7,4,225,5,0,0,0,support,low +0.16,0.7,3,178,3,1,0,0,technical,low +0.2,0.78,4,196,3,0,0,0,management,low +0.53,0.51,4,240,2,0,0,0,marketing,low +0.71,0.63,3,204,3,0,0,0,marketing,low +0.7,0.93,3,250,3,0,0,0,marketing,low +0.92,0.94,2,224,2,0,0,0,sales,low +0.81,0.92,4,268,3,0,0,0,sales,low +0.79,0.62,5,167,3,0,0,0,sales,low +0.53,0.64,3,168,3,0,0,0,sales,low +0.51,0.56,4,168,2,0,0,0,sales,low +0.78,0.9,5,158,3,0,0,0,sales,low +0.5,0.91,3,240,3,0,0,0,sales,low +0.92,1,4,261,4,0,0,0,sales,medium +0.59,0.54,4,176,2,0,0,0,technical,medium +0.77,0.55,3,217,3,0,0,0,support,medium +0.74,0.87,5,224,2,0,0,0,support,medium +0.67,0.97,4,196,3,0,0,0,support,medium +0.56,0.59,3,223,3,0,0,0,support,medium +0.84,0.44,5,131,5,1,0,0,support,medium +0.53,0.77,2,167,2,0,0,0,support,medium +0.86,0.71,5,273,3,0,0,0,support,medium +0.77,0.68,3,98,3,0,0,0,support,medium +0.97,0.94,4,253,3,0,0,0,support,medium +0.69,0.87,5,174,3,0,0,0,support,medium +0.73,0.9,3,274,2,0,0,0,support,high +0.42,0.47,6,174,5,0,0,0,technical,low +0.4,0.47,5,173,5,0,0,0,technical,medium +0.33,0.41,2,198,4,0,0,0,technical,medium +0.68,0.66,3,238,2,0,0,0,management,medium +0.78,0.8,3,256,2,0,0,0,IT,medium +0.92,0.6,3,179,2,0,0,0,IT,low +0.66,0.66,4,273,4,1,0,0,IT,low +0.6,0.45,3,104,4,0,0,0,IT,low +0.86,0.83,4,208,3,1,0,0,IT,low +0.61,0.49,3,275,2,0,0,0,product_mng,low +0.71,0.68,3,231,2,1,0,0,product_mng,low +0.86,0.62,4,186,3,0,0,0,product_mng,low +0.96,0.59,3,241,3,0,0,0,product_mng,low +0.7,0.54,3,194,2,1,0,0,IT,low +0.38,0.49,4,196,3,0,0,1,management,high +0.39,0.75,6,185,3,0,0,1,management,high +0.49,0.4,2,148,2,1,0,1,management,high +0.78,0.62,4,150,3,0,0,1,management,high +0.74,0.79,5,121,5,0,0,1,management,high +0.82,0.76,4,266,3,0,0,1,management,high +0.6,0.42,2,109,6,0,0,0,sales,low +0.72,0.99,3,143,4,0,0,0,sales,low +0.73,0.97,3,174,3,0,0,0,sales,low +0.89,0.55,4,159,2,0,0,0,sales,medium +0.74,0.94,4,157,2,0,0,0,sales,medium +0.83,0.57,2,222,2,0,0,0,sales,medium +0.24,0.88,5,199,5,1,0,0,sales,medium +0.93,0.89,3,255,7,1,0,0,sales,medium +0.96,0.62,4,253,7,0,0,0,sales,medium +0.16,0.68,5,149,7,1,0,0,sales,medium +0.21,0.85,6,285,7,0,0,0,sales,medium +0.69,0.54,3,164,7,0,0,0,sales,medium +0.66,0.96,3,243,3,1,0,0,sales,medium +0.67,0.39,2,207,7,0,0,0,sales,medium +0.85,0.58,4,186,7,0,0,0,sales,medium +0.37,0.92,4,211,7,0,0,0,sales,high +0.64,0.64,2,190,3,0,0,0,sales,low +0.91,0.82,2,241,3,0,0,0,sales,medium +0.96,0.68,3,206,3,0,0,0,sales,medium +0.74,0.7,4,273,3,0,0,0,sales,medium +0.94,0.99,2,157,3,0,0,0,sales,medium +0.37,0.72,3,183,2,0,0,0,sales,low +0.92,0.85,3,151,6,1,0,0,sales,low +0.86,0.72,3,217,3,0,0,0,sales,low +0.66,0.49,5,235,8,1,0,0,sales,low +0.19,0.61,4,127,8,0,0,0,sales,low +0.65,0.61,5,167,8,0,0,0,sales,low +0.92,0.44,3,260,8,0,0,0,sales,low +0.83,0.8,3,240,8,0,0,0,sales,low +0.94,0.82,4,187,3,0,0,0,sales,low +0.42,0.69,3,126,2,0,0,0,sales,low +0.78,0.53,6,168,3,0,0,0,sales,low +0.58,0.76,4,197,5,0,0,0,sales,low +0.5,0.64,2,170,8,0,0,0,sales,low +0.82,0.76,3,219,8,1,0,0,IT,low +0.97,0.92,6,137,8,1,0,0,product_mng,low +0.8,0.93,3,225,4,0,0,0,product_mng,low +0.82,0.84,3,194,3,0,0,0,product_mng,low +0.95,0.99,5,251,4,0,0,0,product_mng,low +0.88,0.51,5,195,4,0,0,0,IT,low +0.5,0.86,3,180,7,0,0,1,management,high +0.53,0.8,2,225,7,1,0,1,management,high +0.82,0.74,3,229,7,0,0,1,management,high +0.15,0.74,6,144,7,0,0,1,management,high +0.92,0.7,3,129,3,0,0,1,management,high +0.53,0.74,3,172,10,0,0,1,management,high +0.58,1,4,220,10,0,0,0,marketing,medium +0.88,0.74,3,273,10,0,0,0,sales,medium +0.85,0.72,3,245,10,0,0,0,accounting,medium +0.99,0.68,5,264,10,1,0,0,support,medium +0.94,0.73,3,268,10,0,0,0,technical,medium +0.63,0.94,3,172,3,0,0,0,management,medium +0.85,0.9,3,245,3,0,0,0,marketing,medium +0.95,0.66,5,192,3,0,0,0,marketing,medium +0.71,0.66,3,268,4,0,0,0,marketing,high +0.49,0.88,4,244,3,0,0,0,sales,low +0.71,0.69,4,222,4,0,0,0,sales,medium +0.52,0.62,5,239,2,0,0,0,sales,medium +0.48,0.72,3,143,4,0,0,0,sales,medium +0.82,0.79,3,160,3,0,0,0,sales,medium +0.83,0.76,2,255,7,0,0,0,sales,low +0.85,0.87,4,152,7,0,0,0,sales,low +0.57,0.64,4,226,7,0,0,0,sales,low +0.16,0.63,5,266,7,0,0,0,IT,low +0.85,0.64,5,256,7,0,0,0,product_mng,low +0.82,0.67,3,198,3,1,0,0,product_mng,low +0.9,0.89,4,254,7,0,0,0,product_mng,low +0.92,0.64,2,104,7,0,0,0,product_mng,low +0.9,0.48,4,136,7,0,0,0,IT,low +0.82,0.8,5,205,3,0,0,0,IT,low +0.84,0.81,4,236,3,1,0,0,IT,low +0.92,0.65,3,176,3,0,0,0,IT,low +0.82,0.82,3,148,3,0,0,0,IT,low +0.8,0.8,4,146,3,1,0,0,IT,low +0.6,0.85,3,242,2,0,0,0,IT,low +0.14,0.38,5,115,6,1,0,0,marketing,high +0.85,0.89,4,150,3,0,0,0,accounting,high +0.55,0.81,3,239,8,0,0,0,accounting,high +0.49,0.71,4,178,8,0,0,0,IT,medium +0.82,0.58,5,263,8,0,0,0,IT,medium +0.59,0.77,3,272,8,0,0,0,management,high +0.9,0.82,3,133,8,0,0,0,marketing,medium +0.62,0.72,3,149,3,1,0,0,marketing,medium +0.61,0.68,3,193,2,0,0,0,marketing,medium +0.52,0.55,5,174,3,1,0,0,sales,medium +0.79,0.87,4,223,5,0,0,0,sales,medium +0.49,0.89,4,201,8,0,0,0,sales,medium +0.73,0.67,2,139,8,0,0,0,sales,medium +0.67,0.49,5,241,8,0,0,0,sales,medium +0.52,0.61,4,187,4,1,0,0,sales,medium +0.72,0.64,4,192,3,0,0,0,sales,medium +0.48,0.5,5,142,4,0,0,0,IT,medium +0.19,0.79,4,229,4,0,0,0,product_mng,medium +0.49,0.49,3,104,7,0,0,0,product_mng,high +0.9,0.76,3,255,7,0,0,0,product_mng,low +0.49,0.49,4,212,7,0,0,0,product_mng,medium +0.6,0.53,2,235,7,0,0,0,IT,medium +0.62,0.85,3,237,3,1,0,0,IT,medium +0.64,0.5,4,253,10,0,0,1,management,high +0.22,0.94,3,193,10,0,0,1,management,high +0.9,0.55,3,259,10,1,0,1,management,high +0.74,0.95,5,266,10,0,0,1,management,high +0.85,0.54,3,185,10,0,0,1,management,high +0.33,0.65,3,172,10,0,0,1,marketing,high +0.5,0.73,4,180,3,0,0,0,IT,low +0.38,0.53,2,157,3,0,1,0,sales,low +0.8,0.86,5,262,6,0,1,0,sales,medium +0.11,0.88,7,272,4,0,1,0,sales,medium +0.72,0.87,5,223,5,0,1,0,sales,low +0.37,0.52,2,159,3,0,1,0,sales,low +0.41,0.5,2,153,3,0,1,0,sales,low +0.1,0.77,6,247,4,0,1,0,sales,low +0.92,0.85,5,259,5,0,1,0,sales,low +0.89,1,5,224,5,0,1,0,sales,low +0.42,0.53,2,142,3,0,1,0,sales,low +0.45,0.54,2,135,3,0,1,0,sales,low +0.11,0.81,6,305,4,0,1,0,sales,low +0.84,0.92,4,234,5,0,1,0,sales,low +0.41,0.55,2,148,3,0,1,0,sales,low +0.36,0.56,2,137,3,0,1,0,sales,low +0.38,0.54,2,143,3,0,1,0,sales,low +0.45,0.47,2,160,3,0,1,0,sales,low +0.78,0.99,4,255,6,0,1,0,sales,low +0.45,0.51,2,160,3,1,1,1,sales,low +0.76,0.89,5,262,5,0,1,0,sales,low +0.11,0.83,6,282,4,0,1,0,sales,low +0.38,0.55,2,147,3,0,1,0,sales,low +0.09,0.95,6,304,4,0,1,0,sales,low +0.46,0.57,2,139,3,0,1,0,sales,low +0.4,0.53,2,158,3,0,1,0,sales,low +0.89,0.92,5,242,5,0,1,0,sales,low +0.82,0.87,4,239,5,0,1,0,sales,low +0.4,0.49,2,135,3,0,1,0,sales,low +0.41,0.46,2,128,3,0,1,0,accounting,low +0.38,0.5,2,132,3,0,1,0,accounting,low +0.09,0.62,6,294,4,0,1,0,accounting,low +0.45,0.57,2,134,3,0,1,0,hr,low +0.4,0.51,2,145,3,0,1,0,hr,low +0.45,0.55,2,140,3,0,1,0,hr,low +0.84,0.87,4,246,6,0,1,0,hr,low +0.1,0.94,6,255,4,0,1,0,technical,low +0.38,0.46,2,137,3,0,1,0,technical,low +0.45,0.5,2,126,3,0,1,0,technical,low +0.11,0.89,6,306,4,0,1,0,technical,low +0.41,0.54,2,152,3,0,1,0,technical,low +0.87,0.88,5,269,5,0,1,0,technical,low +0.45,0.48,2,158,3,0,1,0,technical,low +0.4,0.46,2,127,3,0,1,0,technical,low +0.1,0.8,7,281,4,0,1,0,technical,low +0.09,0.89,6,276,4,0,1,0,technical,low +0.84,0.74,3,182,4,0,1,0,technical,low +0.4,0.55,2,147,3,0,1,0,support,low +0.57,0.7,3,273,6,0,1,0,support,low +0.4,0.54,2,148,3,0,1,0,support,low +0.43,0.47,2,147,3,0,1,0,support,low +0.13,0.78,6,152,2,0,1,0,support,low +0.44,0.55,2,135,3,0,1,0,support,low +0.38,0.55,2,134,3,0,1,0,support,low +0.39,0.54,2,132,3,0,1,0,support,low +0.1,0.92,7,307,4,0,1,0,support,low +0.37,0.46,2,140,3,0,1,0,support,low +0.11,0.94,7,255,4,0,1,0,support,low +0.1,0.81,6,309,4,0,1,0,technical,low +0.38,0.54,2,128,3,0,1,0,technical,low +0.85,1,4,225,5,0,1,0,technical,low +0.85,0.91,5,226,5,0,1,0,management,medium +0.11,0.93,7,308,4,0,1,0,IT,medium +0.1,0.95,6,244,5,0,1,0,IT,medium +0.36,0.56,2,132,3,0,1,0,IT,medium +0.11,0.94,6,286,4,0,1,0,IT,medium +0.81,0.7,6,161,4,0,1,0,IT,medium +0.43,0.54,2,153,3,0,1,0,product_mng,medium +0.9,0.98,4,264,6,0,1,0,product_mng,medium +0.76,0.86,5,223,5,1,1,0,product_mng,medium +0.43,0.5,2,135,3,0,1,0,product_mng,medium +0.74,0.99,2,277,3,0,1,0,IT,medium +0.09,0.77,5,275,4,0,1,0,product_mng,medium +0.45,0.49,2,149,3,0,1,0,product_mng,high +0.09,0.87,7,295,4,0,1,0,product_mng,low +0.11,0.97,6,277,4,0,1,0,product_mng,medium +0.11,0.79,7,306,4,0,1,0,product_mng,medium +0.1,0.83,6,295,4,0,1,0,product_mng,medium +0.4,0.54,2,137,3,0,1,0,marketing,medium +0.43,0.56,2,157,3,0,1,0,sales,low +0.39,0.56,2,142,3,0,1,0,accounting,low +0.45,0.54,2,140,3,0,1,0,support,low +0.38,0.49,2,151,3,0,1,0,technical,low +0.79,0.59,4,139,3,0,1,1,management,low +0.84,0.85,4,249,6,0,1,0,marketing,low +0.11,0.77,6,291,4,0,1,0,marketing,low +0.11,0.87,6,305,4,0,1,0,marketing,low +0.17,0.84,5,232,3,0,1,0,sales,low +0.44,0.45,2,132,3,0,1,0,sales,low +0.37,0.57,2,130,3,0,1,0,sales,low +0.1,0.79,6,291,4,0,1,0,sales,low +0.4,0.5,2,130,3,0,1,0,sales,low +0.89,1,5,246,5,0,1,0,sales,low +0.42,0.48,2,143,3,0,1,0,sales,low +0.46,0.55,2,129,3,0,1,0,sales,low +0.09,0.83,6,255,4,0,1,0,sales,low +0.37,0.51,2,155,3,0,1,0,sales,low +0.1,0.77,6,265,4,0,1,0,sales,low +0.1,0.84,6,279,4,0,1,0,sales,low +0.11,0.97,6,284,4,0,1,0,sales,low +0.9,1,5,221,6,0,1,0,sales,medium +0.38,0.52,2,154,3,0,1,0,sales,medium +0.36,0.52,2,147,3,0,1,0,sales,medium +0.42,0.46,2,150,3,0,1,0,sales,medium +0.09,0.94,7,267,4,0,1,0,sales,medium +0.43,0.52,2,158,3,0,1,0,sales,medium +0.24,0.46,7,224,5,0,1,0,accounting,medium +0.91,1,4,257,5,0,1,0,accounting,medium +0.44,0.5,2,148,3,0,1,0,accounting,medium +0.71,0.87,3,177,4,0,1,0,hr,medium +0.4,0.49,2,155,3,0,1,0,hr,medium +0.43,0.47,2,144,3,0,1,0,hr,medium +0.09,0.85,6,289,4,0,1,0,hr,high +0.43,0.52,2,160,3,0,1,0,technical,low +0.9,0.96,4,258,5,0,1,0,technical,medium +0.84,1,5,234,5,0,1,0,technical,medium +0.37,0.48,2,137,3,0,1,0,technical,medium +0.86,0.68,5,263,2,0,1,0,technical,medium +0.11,0.84,6,251,4,0,1,0,technical,low +0.37,0.57,2,133,3,0,1,0,technical,low +0.4,0.46,2,132,3,0,1,0,technical,low +0.14,0.62,4,158,4,1,1,0,technical,low +0.4,0.46,2,135,3,0,1,0,technical,low +0.75,1,4,216,6,0,1,0,technical,low +0.11,0.84,6,300,5,1,1,0,support,low +0.46,0.49,2,138,3,0,1,0,support,low +0.11,0.92,6,260,4,0,1,0,support,low +0.38,0.49,2,132,3,0,1,0,support,low +0.7,0.89,3,183,5,0,1,0,support,low +0.09,0.82,6,250,4,0,1,0,support,low +0.37,0.45,2,151,3,0,1,0,support,low +0.1,0.83,6,292,4,0,1,0,support,low +0.38,0.57,2,140,3,0,1,0,support,low +0.9,1,5,221,5,0,1,0,support,low +0.44,0.51,2,138,3,0,1,0,support,low +0.36,0.5,2,132,3,0,1,0,technical,low +0.31,0.84,7,133,5,0,1,0,technical,low +0.1,0.84,6,283,4,1,1,0,technical,low +0.42,0.48,2,129,3,0,1,0,management,low +0.74,1,4,249,5,0,1,0,IT,low +0.73,0.87,5,257,5,0,1,0,IT,low +0.09,0.96,6,245,4,0,1,0,IT,low +0.45,0.53,2,155,3,0,1,0,IT,low +0.11,0.8,6,256,4,0,1,0,IT,low +0.37,0.47,2,152,3,0,1,0,product_mng,low +0.84,0.99,4,267,5,0,1,0,product_mng,low +0.41,0.46,2,151,3,0,1,0,product_mng,low +0.76,0.92,4,239,5,0,1,0,product_mng,low +0.11,0.87,6,306,4,0,1,0,IT,low +0.84,0.88,4,263,5,1,1,0,marketing,low +0.39,0.5,2,147,3,0,1,0,marketing,low +0.11,0.91,6,278,4,0,1,0,marketing,low +0.45,0.56,2,154,3,0,1,0,marketing,low +0.37,0.52,2,143,3,0,1,0,marketing,low +0.4,0.52,2,155,3,0,1,0,marketing,low +0.39,0.48,2,160,3,0,1,0,sales,low +0.11,0.8,6,304,4,0,1,0,accounting,low +0.83,1,5,240,5,0,1,0,support,low +0.11,0.92,6,305,4,0,1,0,technical,low +0.39,0.5,2,136,3,0,1,0,management,low +0.45,0.45,2,132,3,0,1,0,marketing,low +0.1,0.95,7,301,4,0,1,0,marketing,low +0.9,0.98,5,243,6,0,1,0,marketing,low +0.45,0.51,2,147,3,0,1,0,sales,low +0.79,0.89,5,239,5,0,1,0,sales,low +0.9,0.99,5,260,5,0,1,0,sales,low +0.11,0.84,7,296,4,0,1,0,sales,low +0.43,0.55,2,129,3,0,1,0,sales,low +0.31,0.54,5,132,5,0,1,0,sales,low +0.32,0.5,2,135,5,0,1,0,sales,low +0.45,0.57,2,158,3,0,1,0,sales,low +0.81,0.99,4,259,5,0,1,0,sales,low +0.41,0.46,2,160,3,0,1,1,sales,low +0.11,0.78,7,278,4,0,1,0,sales,low +0.1,0.88,6,284,4,0,1,0,sales,low +0.7,0.53,2,274,4,0,1,0,sales,low +0.54,0.74,4,164,2,0,1,0,sales,low +0.41,0.48,2,148,3,0,1,0,sales,low +0.38,0.5,2,140,3,0,1,0,sales,medium +0.37,0.51,2,127,3,0,1,0,sales,medium +0.11,0.85,6,308,5,0,1,0,sales,medium +0.4,0.47,2,146,3,0,1,0,sales,medium +0.1,0.84,6,261,4,0,1,0,accounting,medium +0.89,0.99,5,257,5,0,1,0,accounting,medium +0.11,0.8,6,285,4,0,1,0,accounting,medium +0.36,0.55,2,141,3,0,1,0,hr,medium +0.4,0.46,2,127,3,0,1,0,hr,medium +0.09,0.85,6,297,4,0,1,0,hr,medium +0.4,0.46,2,143,3,0,1,0,hr,medium +0.37,0.55,2,152,3,0,1,0,technical,medium +0.44,0.51,2,156,3,0,1,0,technical,high +0.09,0.8,7,283,5,0,1,0,technical,low +0.92,0.87,4,226,6,1,1,0,technical,medium +0.74,0.91,4,232,5,0,1,0,technical,medium +0.09,0.82,6,249,4,0,1,0,technical,medium +0.89,0.95,4,275,5,0,1,0,technical,medium +0.09,0.8,6,304,4,0,1,0,technical,low +0.27,0.54,7,278,3,0,1,0,technical,low +0.1,0.91,6,287,4,0,1,0,technical,low +0.1,0.89,7,285,4,0,1,0,technical,low +0.77,0.94,5,226,6,0,1,0,support,low +0.9,0.82,5,259,5,0,1,0,support,low +0.39,0.5,2,135,3,0,1,0,support,low +0.76,1,5,219,5,0,1,0,support,low +0.1,0.93,6,256,4,0,1,0,support,low +0.87,0.9,5,254,6,0,1,0,support,low +0.38,0.5,2,153,3,0,1,0,support,low +0.77,0.99,5,228,5,0,1,0,support,low +0.78,0.87,4,228,5,0,1,0,support,low +0.44,0.5,2,128,3,0,1,0,support,low +0.38,0.52,2,153,3,0,1,0,support,low +0.43,0.46,2,156,3,0,1,0,technical,low +0.39,0.5,4,294,3,0,1,0,technical,low +0.88,1,5,219,5,0,1,0,technical,low +0.45,0.46,2,153,3,0,1,0,management,low +0.4,0.53,2,151,3,0,1,0,IT,low +0.36,0.51,2,155,3,0,1,0,IT,low +0.36,0.48,2,158,3,0,1,0,IT,low +0.9,0.98,5,245,5,0,1,0,IT,low +0.43,0.53,2,131,3,0,1,0,IT,low +0.89,0.87,5,225,5,0,1,0,product_mng,low +0.1,0.84,6,286,4,0,1,0,product_mng,low +0.37,0.5,2,135,3,0,1,0,product_mng,low +0.37,0.51,2,153,3,0,1,0,product_mng,low +0.87,0.9,5,252,5,0,1,0,IT,low +0.4,0.56,2,149,3,0,1,0,accounting,low +0.9,0.97,4,258,5,0,1,0,accounting,low +0.37,0.46,2,158,3,0,1,0,hr,low +0.44,0.54,2,149,3,0,1,0,hr,low +0.85,0.95,5,236,5,0,1,0,hr,low +0.78,0.98,5,239,6,0,1,0,marketing,low +0.42,0.47,2,159,3,0,1,0,marketing,low +0.92,0.99,5,255,6,0,1,0,sales,low +0.11,0.83,6,244,4,0,1,0,accounting,low +0.42,0.56,2,134,3,0,1,0,support,low +0.48,0.57,4,270,4,0,1,0,technical,low +0.83,0.85,4,255,5,0,1,0,management,low +0.4,0.53,2,151,3,0,1,0,marketing,low +0.43,0.45,2,135,3,0,1,0,marketing,low +0.43,0.53,2,146,3,0,1,0,marketing,low +0.1,0.97,7,254,4,0,1,0,sales,low +0.1,0.87,7,289,4,0,1,0,sales,low +0.37,0.46,2,156,3,0,1,0,sales,low +0.38,0.53,2,156,3,0,1,0,sales,low +0.4,0.5,2,128,3,0,1,0,sales,low +0.89,0.86,5,275,5,0,1,0,sales,low +0.45,0.46,2,155,3,0,1,0,sales,low +0.37,0.48,2,159,3,0,1,0,sales,low +0.46,0.49,2,148,3,0,1,0,sales,low +0.87,0.91,4,228,5,0,1,0,sales,low +0.11,0.84,6,298,4,0,1,0,sales,low +0.79,0.87,5,261,5,0,1,0,sales,low +0.79,0.92,5,254,6,0,1,0,sales,low +0.19,0.59,7,192,3,0,1,0,sales,low +0.87,0.98,4,248,5,0,1,0,sales,low +0.6,0.92,2,258,5,0,1,0,sales,low +0.44,0.45,2,156,3,0,1,0,sales,medium +0.11,0.81,6,266,4,1,1,0,sales,medium +0.42,0.54,2,156,3,0,1,0,sales,medium +0.88,0.88,5,232,5,1,1,0,accounting,medium +0.11,0.84,6,287,4,0,1,0,accounting,medium +0.46,0.46,2,154,3,0,1,0,accounting,medium +0.82,0.97,5,263,5,0,1,0,hr,medium +0.44,0.56,2,131,3,0,1,0,hr,medium +0.11,0.78,6,260,4,0,1,0,hr,medium +0.42,0.5,2,139,3,0,1,0,hr,medium +0.84,0.93,4,251,5,0,1,0,technical,medium +0.11,0.95,6,286,4,0,1,0,technical,medium +0.45,0.53,2,129,3,0,1,0,technical,high +0.38,0.56,2,156,3,0,1,0,technical,low +0.38,0.86,6,139,6,0,1,0,technical,medium +0.44,0.51,2,127,3,0,1,0,technical,medium +0.11,0.84,6,251,4,0,1,0,technical,medium +0.81,0.93,5,270,5,0,1,0,technical,medium +0.09,0.96,6,296,4,0,1,0,technical,low +0.11,0.9,6,254,4,0,1,0,technical,low +0.81,0.95,5,238,6,0,1,0,technical,low +0.1,0.97,6,267,4,1,1,0,support,low +0.74,0.89,5,229,6,0,1,0,support,low +0.09,0.78,6,254,4,0,1,0,support,low +0.82,0.81,4,233,4,1,1,0,support,low +0.1,0.98,6,268,4,0,1,0,support,low +0.27,0.56,3,301,3,0,1,0,support,low +0.83,0.92,5,267,6,0,1,0,support,low +0.1,0.93,6,289,4,1,1,0,support,low +0.38,0.47,2,144,3,0,1,0,support,low +0.4,0.56,2,148,3,0,1,0,support,low +0.11,0.83,6,306,4,0,1,0,support,low +0.11,0.79,6,292,4,0,1,1,technical,low +0.82,0.91,5,232,5,0,1,0,technical,low +0.36,0.48,2,137,3,0,1,0,technical,low +0.4,0.46,2,128,3,0,1,0,management,low +0.87,0.84,5,231,5,0,1,0,IT,low +0.41,0.49,2,146,3,0,1,0,IT,low +0.11,0.91,6,308,4,1,1,0,IT,low +0.1,0.93,6,253,4,0,1,0,IT,medium +0.38,0.51,2,146,3,0,1,0,IT,medium +0.39,0.55,2,156,3,0,1,0,product_mng,medium +0.4,0.52,2,147,3,0,1,0,product_mng,medium +0.45,0.48,2,136,3,0,1,0,product_mng,medium +0.74,0.84,5,249,5,0,1,0,product_mng,medium +0.45,0.55,2,151,3,0,1,0,IT,medium +0.12,1,3,278,4,0,1,0,RandD,medium +0.1,0.77,7,250,5,0,1,0,RandD,medium +0.37,0.55,2,127,3,0,1,0,RandD,medium +0.89,0.87,5,255,5,0,1,0,RandD,medium +0.45,0.47,2,135,3,0,1,0,RandD,medium +0.37,0.46,2,149,3,0,1,0,marketing,high +0.11,0.81,5,287,4,0,1,0,sales,low +0.41,0.48,2,145,3,0,1,0,accounting,medium +0.1,0.94,6,285,4,0,1,0,support,medium +0.1,0.93,7,305,4,0,1,0,technical,medium +0.11,0.95,7,300,4,0,1,0,management,medium +0.4,0.54,2,139,3,0,1,0,marketing,low +0.41,0.49,2,130,3,0,1,0,marketing,low +0.1,0.81,6,268,4,0,1,0,marketing,low +0.73,0.86,4,245,6,0,1,0,sales,low +0.43,0.47,2,135,3,0,1,0,sales,low +0.37,0.46,2,153,3,0,1,0,sales,low +0.11,0.94,6,276,4,0,1,0,sales,low +0.4,0.46,2,130,3,0,1,0,sales,low +0.41,0.54,2,153,3,1,1,0,sales,low +0.82,0.84,5,244,5,0,1,0,sales,low +0.61,0.47,2,253,3,0,1,0,sales,low +0.11,0.91,7,287,4,0,1,0,sales,low +0.37,0.45,2,131,3,0,1,0,sales,low +0.41,0.52,2,135,3,0,1,0,sales,low +0.37,0.52,2,157,3,0,1,0,sales,low +0.88,0.99,5,262,6,0,1,0,sales,low +0.1,0.85,6,266,4,0,1,0,sales,low +0.44,0.48,2,148,3,0,1,0,sales,low +0.38,0.57,2,140,3,0,1,0,sales,low +0.11,0.85,7,302,4,0,1,0,sales,low +0.09,0.98,6,271,4,0,1,0,sales,low +0.45,0.52,2,145,3,0,1,0,sales,medium +0.1,0.81,6,290,4,0,1,0,accounting,medium +0.45,0.47,2,151,3,0,1,0,accounting,medium +0.77,0.87,5,266,5,0,1,0,accounting,medium +0.44,0.51,2,140,3,0,1,0,hr,medium +0.39,0.5,2,142,3,0,1,0,hr,medium +0.1,0.91,6,246,4,0,1,0,hr,medium +0.09,0.89,7,308,5,0,1,0,hr,medium +0.37,0.47,2,141,3,0,1,0,technical,medium +0.9,1,5,232,5,0,1,0,technical,medium +0.41,0.56,2,143,3,0,1,0,technical,medium +0.37,0.52,2,155,3,0,1,0,technical,medium +0.1,0.86,6,278,4,0,1,0,technical,high +0.81,1,4,253,5,0,1,0,technical,low +0.11,0.8,6,282,4,0,1,0,technical,medium +0.11,0.84,7,264,4,0,1,0,technical,medium +0.4,0.46,2,149,3,0,1,0,technical,medium +0.09,0.8,6,304,5,0,1,0,technical,medium +0.48,0.93,3,219,6,0,1,0,technical,low +0.91,0.91,4,262,6,0,1,0,support,low +0.43,0.57,2,135,3,0,1,0,support,low +0.33,0.88,6,219,5,0,1,0,support,low +0.41,0.57,2,136,3,0,1,0,support,low +0.41,0.55,2,154,3,0,1,0,support,low +0.37,0.54,2,149,3,0,1,0,support,low +0.31,0.62,6,135,5,0,1,0,support,low +0.09,0.91,6,275,4,0,1,0,support,low +0.1,0.87,6,290,4,0,1,0,support,low +0.76,0.9,4,263,5,0,1,0,support,low +0.41,0.54,2,145,3,0,1,0,support,low +0.72,0.96,5,267,5,0,1,0,technical,low +0.4,0.5,2,141,3,1,1,0,technical,low +0.91,0.87,4,235,5,0,1,0,technical,low +0.1,0.83,6,258,4,0,1,0,management,low +0.4,0.56,2,131,3,0,1,0,IT,low +0.82,0.86,5,243,5,0,1,0,IT,low +0.1,0.82,6,266,4,0,1,0,IT,low +0.37,0.45,2,142,3,0,1,0,IT,low +0.36,0.51,2,135,3,0,1,0,IT,low +0.39,0.48,2,141,3,0,1,0,product_mng,medium +0.36,0.57,2,142,3,0,1,0,product_mng,medium +0.86,0.84,5,254,5,0,1,0,product_mng,medium +0.73,0.99,5,262,5,0,1,0,product_mng,medium +0.56,0.71,4,296,2,0,1,0,IT,medium +0.44,0.56,2,158,3,0,1,0,accounting,medium +0.31,0.56,4,238,2,0,1,0,accounting,medium +0.77,0.93,4,231,5,0,1,0,hr,medium +0.44,0.45,2,156,3,0,1,0,hr,medium +0.38,0.46,2,145,3,0,1,0,hr,medium +0.45,0.48,2,144,3,0,1,0,marketing,medium +0.38,0.51,2,159,3,0,1,0,sales,medium +0.36,0.48,2,156,3,0,1,0,accounting,high +0.75,0.9,5,256,5,0,1,0,support,low +0.1,0.93,6,298,4,0,1,0,technical,medium +0.1,0.97,6,247,4,0,1,0,management,medium +0.45,0.5,2,157,3,0,1,0,marketing,medium +0.42,0.57,2,154,3,1,1,0,marketing,medium +0.78,1,4,253,5,0,1,0,marketing,low +0.45,0.55,2,148,3,0,1,0,sales,low +0.84,1,4,261,5,0,1,0,sales,low +0.11,0.93,6,282,4,0,1,0,sales,low +0.42,0.56,2,133,3,0,1,0,sales,low +0.45,0.46,2,128,3,0,1,0,sales,low +0.46,0.57,2,139,3,0,1,0,sales,low +0.09,0.79,6,293,5,0,1,0,sales,low +0.87,0.83,4,265,6,0,1,0,sales,low +0.1,0.87,6,250,4,0,1,0,sales,low +0.91,1,5,251,6,0,1,0,sales,low +0.76,0.92,4,246,5,0,1,0,sales,low +0.74,1,5,275,5,0,1,0,sales,low +0.92,0.93,5,240,5,0,1,0,sales,low +0.76,0.87,5,245,5,0,1,0,sales,low +0.47,0.5,4,254,4,0,1,0,sales,low +0.73,0.99,5,241,5,0,1,0,sales,low +0.09,0.94,6,257,4,0,1,0,sales,low +0.91,0.92,4,246,5,0,1,0,sales,low +0.82,0.98,4,233,5,0,1,0,sales,low +0.28,0.45,6,218,4,0,1,0,accounting,low +0.84,0.99,4,262,6,0,1,0,accounting,medium +0.45,0.53,2,138,3,0,1,0,accounting,medium +0.45,0.54,2,142,3,0,1,0,hr,medium +0.91,0.97,5,233,5,0,1,0,hr,medium +0.42,0.48,2,155,3,0,1,0,hr,medium +0.82,1,4,229,6,0,1,0,hr,medium +0.11,0.9,6,264,4,0,1,0,technical,medium +0.42,0.53,3,199,4,0,1,0,technical,medium +0.82,0.85,4,223,5,0,1,0,technical,medium +0.09,0.96,6,268,4,0,1,0,technical,medium +0.1,0.94,6,287,4,0,1,0,technical,medium +0.86,1,5,257,5,0,1,0,technical,medium +0.4,0.46,2,143,3,0,1,0,technical,high +0.45,0.46,2,130,3,0,1,0,technical,low +0.42,0.51,2,136,3,0,1,0,technical,medium +0.74,0.92,4,261,5,0,1,0,technical,medium +0.55,0.6,3,180,4,0,1,0,technical,medium +0.37,0.45,2,126,3,0,1,0,support,medium +0.41,0.52,2,127,3,1,1,0,support,low +0.89,0.65,5,195,6,0,1,0,support,low +0.41,0.57,2,160,3,0,1,0,support,low +0.44,0.51,2,150,3,0,1,0,support,low +0.87,0.84,4,264,6,0,1,0,support,low +0.1,0.84,6,309,4,0,1,0,support,low +0.41,0.47,2,135,3,0,1,0,support,low +0.11,0.85,6,261,4,0,1,0,support,low +0.43,0.53,2,160,3,0,1,0,support,low +0.77,0.9,4,237,5,0,1,0,support,low +0.41,0.52,2,136,3,0,1,0,technical,low +0.41,0.48,2,139,3,0,1,0,technical,low +0.36,0.78,2,151,4,0,1,0,technical,low +0.77,1,5,229,5,0,1,0,management,low +0.81,0.98,5,245,5,0,1,0,IT,low +0.39,0.54,2,127,3,0,1,0,IT,low +0.09,0.94,6,283,5,0,1,0,IT,low +0.44,0.46,2,143,3,0,1,0,IT,low +0.1,0.84,5,298,4,0,1,0,IT,low +0.36,0.48,2,159,3,0,1,0,product_mng,low +0.81,0.92,5,239,5,0,1,0,product_mng,low +0.81,0.9,4,226,5,0,1,0,product_mng,medium +0.85,0.98,5,248,5,0,1,0,product_mng,medium +0.1,0.87,6,286,4,0,1,0,IT,medium +0.37,0.54,2,145,3,0,1,0,RandD,medium +0.09,0.97,7,254,4,1,1,0,RandD,medium +0.44,0.53,2,127,3,0,1,0,RandD,medium +0.86,0.93,5,223,5,0,1,0,RandD,medium +0.77,1,4,255,5,0,1,0,RandD,medium +0.41,0.48,2,136,3,0,1,0,marketing,medium +0.4,0.48,2,137,3,0,1,0,sales,medium +0.43,0.49,2,135,3,0,1,0,accounting,medium +0.43,0.5,2,137,3,0,1,0,support,medium +0.8,0.53,3,255,5,0,1,0,technical,high +0.8,0.85,4,273,5,0,1,0,management,low +0.82,0.98,5,234,5,0,1,0,marketing,medium +0.37,0.54,2,152,3,0,1,0,marketing,medium +0.37,0.48,2,134,3,0,1,0,marketing,medium +0.09,0.95,6,292,4,0,1,0,sales,medium +0.9,0.92,5,245,5,0,1,0,sales,low +0.41,0.52,2,159,3,0,1,0,sales,low +0.1,0.85,6,260,4,0,1,0,sales,low +0.44,0.53,2,149,3,0,1,0,sales,low +0.89,0.85,5,266,5,0,1,0,sales,low +0.42,0.56,2,149,3,0,1,0,sales,low +0.87,1,5,242,5,0,1,0,sales,low +0.45,0.57,2,134,3,0,1,0,sales,low +0.11,0.87,5,271,4,0,1,0,sales,low +0.09,0.79,6,275,4,0,1,0,sales,low +0.76,0.83,5,227,5,0,1,0,sales,low +0.11,0.96,7,277,5,0,1,0,sales,low +0.37,0.49,2,151,3,0,1,0,sales,low +0.1,0.79,6,274,4,0,1,0,sales,low +0.77,0.87,4,242,6,0,1,0,sales,low +0.42,0.54,2,143,3,1,1,0,sales,low +0.38,0.52,2,145,3,0,1,0,sales,low +0.32,0.95,5,172,2,0,1,0,sales,low +0.38,0.49,2,135,3,0,1,0,accounting,low +0.19,1,4,192,4,0,1,0,accounting,low +0.1,0.83,7,276,4,0,1,0,accounting,low +0.76,0.88,4,206,4,0,1,0,hr,medium +0.53,0.56,4,281,6,0,1,0,hr,medium +0.39,0.51,2,151,3,0,1,0,hr,medium +0.11,0.83,6,244,4,0,1,0,hr,medium +0.1,0.94,6,309,4,0,1,0,technical,medium +0.84,1,5,218,5,0,1,0,technical,medium +0.82,0.99,4,263,6,0,1,0,technical,medium +0.1,0.82,6,244,4,0,1,0,technical,medium +0.59,0.49,7,263,4,0,1,0,technical,medium +0.44,0.48,2,143,3,0,1,0,technical,medium +0.89,0.95,2,181,5,0,1,0,technical,medium +0.91,0.84,5,265,5,0,1,0,technical,medium +0.66,0.57,5,161,5,0,1,0,technical,high +0.11,0.87,7,282,5,0,1,0,technical,low +0.43,0.51,2,155,3,0,1,0,technical,medium +0.78,0.83,4,217,6,0,1,0,support,medium +0.11,0.97,6,289,5,0,1,0,support,medium +0.83,0.98,4,259,5,0,1,0,support,medium +0.39,0.54,2,158,3,0,1,0,support,low +0.38,0.55,2,158,3,0,1,0,support,low +0.37,0.57,2,155,3,0,1,0,support,low +0.44,0.48,2,146,3,0,1,0,support,low +0.53,0.85,2,164,5,0,1,0,support,low +0.09,0.96,6,259,4,0,1,0,support,low +0.11,0.89,6,293,4,0,1,0,support,low +0.83,0.96,5,275,5,0,1,0,support,low +0.88,1,5,219,6,1,1,0,technical,low +0.1,0.89,6,247,4,0,1,0,technical,low +0.09,0.86,7,309,4,0,1,0,technical,low +0.44,0.54,2,151,3,0,1,0,management,low +0.39,0.51,2,129,3,0,1,0,IT,low +0.87,0.94,4,274,5,0,1,0,IT,low +0.74,0.99,4,233,5,0,1,0,IT,low +0.1,0.95,7,289,4,0,1,0,IT,low +0.74,0.82,4,239,6,0,1,0,IT,low +0.75,0.99,5,221,5,0,1,0,product_mng,low +0.41,0.56,2,150,3,0,1,0,product_mng,low +0.41,0.45,2,144,3,1,1,0,product_mng,low +0.09,0.9,7,289,4,0,1,0,product_mng,low +0.09,0.8,6,301,5,0,1,0,IT,medium +0.39,0.57,2,145,3,0,1,0,accounting,medium +0.4,0.56,2,137,3,0,1,0,accounting,medium +0.37,0.54,2,131,3,1,1,0,hr,medium +0.1,0.84,6,246,4,0,1,0,hr,medium +0.43,0.51,2,136,3,0,1,0,hr,medium +0.75,0.85,5,240,6,1,1,0,marketing,medium +0.37,0.56,2,156,3,0,1,0,sales,medium +0.11,0.85,6,305,4,0,1,0,accounting,medium +0.45,0.45,2,154,3,1,1,0,support,medium +0.87,1,5,261,5,1,1,0,technical,medium +0.11,0.94,7,244,4,0,1,0,management,medium +0.45,0.54,2,129,3,0,1,0,marketing,high +0.81,0.87,4,254,5,0,1,0,marketing,low +0.77,0.91,5,236,5,0,1,0,marketing,medium +0.89,0.92,5,237,5,0,1,0,sales,medium +0.43,0.49,2,135,3,0,1,0,sales,medium +0.78,1,5,236,5,0,1,0,sales,medium +0.37,0.47,2,149,3,0,1,0,sales,low +0.37,0.5,2,141,3,0,1,0,sales,low +0.85,0.82,4,270,5,0,1,0,sales,low +0.41,0.47,2,138,3,0,1,0,sales,low +0.11,0.96,6,298,4,0,1,0,sales,low +0.75,0.99,5,254,5,0,1,0,sales,low +0.82,0.85,5,248,5,0,1,0,sales,low +0.79,1,5,257,6,0,1,0,sales,low +0.43,0.53,2,150,3,0,1,0,sales,low +0.1,0.9,7,281,4,0,1,0,sales,low +0.46,0.48,2,141,3,1,1,0,sales,low +0.43,0.57,2,157,3,0,1,0,sales,low +0.43,0.55,2,136,3,0,1,0,sales,low +0.11,0.8,7,296,4,0,1,0,sales,low +0.09,0.86,6,279,4,0,1,0,sales,low +0.37,0.53,2,131,3,0,1,0,sales,low +0.4,0.57,2,160,3,0,1,0,accounting,low +0.1,0.77,7,291,4,0,1,0,accounting,low +0.41,0.53,2,157,3,0,1,0,accounting,low +0.79,0.58,3,294,4,0,1,0,hr,low +0.11,0.79,7,310,4,0,1,0,hr,low +0.1,0.97,6,282,4,0,1,0,hr,medium +0.44,0.51,2,134,3,0,1,0,hr,medium +0.25,0.46,4,214,4,0,1,0,technical,medium +0.44,0.52,2,137,3,0,1,0,technical,medium +0.73,1,4,252,5,0,1,0,technical,medium +0.75,0.97,5,243,6,0,1,0,technical,medium +0.36,0.47,2,148,3,0,1,0,technical,medium +0.37,0.49,2,151,3,0,1,0,technical,medium +0.39,0.49,2,129,3,0,1,0,technical,medium +0.48,0.78,2,198,2,0,1,0,technical,medium +0.57,0.72,4,275,6,0,1,0,technical,medium +0.9,0.96,5,243,5,0,1,0,technical,medium +0.39,0.55,2,159,3,0,1,0,technical,high +0.44,0.51,2,145,3,0,1,0,support,low +0.81,0.88,5,242,5,0,1,0,support,medium +0.74,0.87,5,242,5,0,1,0,support,medium +0.44,0.56,2,145,3,0,1,0,support,medium +0.41,0.56,2,154,3,0,1,1,support,medium +0.4,0.51,2,139,3,0,1,0,support,low +0.46,0.57,2,152,3,0,1,0,support,low +0.8,0.83,2,211,3,0,1,0,support,low +0.87,0.9,5,258,5,0,1,0,support,low +0.39,0.54,2,155,3,0,1,0,support,low +0.38,0.55,2,148,3,0,1,0,support,low +0.66,0.67,2,255,3,0,1,0,technical,low +0.1,0.8,6,264,4,0,1,0,technical,low +0.37,0.54,2,132,3,0,1,0,technical,low +0.1,0.77,6,255,4,0,1,0,management,low +0.09,0.87,5,263,4,0,1,0,IT,low +0.86,0.84,5,222,5,0,1,0,IT,low +0.11,0.9,6,263,4,0,1,0,IT,low +0.37,0.46,2,157,3,0,1,0,IT,low +0.11,0.92,7,307,4,0,1,0,IT,low +0.77,0.98,5,259,6,0,1,0,product_mng,low +0.84,0.94,5,222,6,0,1,0,product_mng,low +0.1,0.84,7,250,4,0,1,0,product_mng,low +0.83,0.9,5,245,5,0,1,0,product_mng,low +0.11,0.79,6,292,4,0,1,0,IT,low +0.86,0.92,5,252,5,0,1,0,RandD,low +0.38,0.56,2,161,3,0,1,0,RandD,medium +0.11,0.88,5,250,4,0,1,0,RandD,medium +0.45,0.49,2,134,3,0,1,0,RandD,medium +0.1,0.85,7,279,4,0,1,0,RandD,medium +0.09,0.95,7,256,4,0,1,0,marketing,medium +0.39,0.53,2,127,3,0,1,0,sales,medium +0.37,0.47,2,138,3,1,1,0,accounting,medium +0.81,0.97,5,243,5,0,1,0,support,medium +0.09,0.9,7,296,4,0,1,0,technical,medium +0.1,0.88,7,267,4,0,1,0,management,medium +0.39,0.49,2,144,3,0,1,0,marketing,medium +0.83,0.95,4,251,5,0,1,0,marketing,medium +0.45,0.57,2,148,3,0,1,0,marketing,high +0.43,0.51,2,141,3,0,1,0,sales,low +0.8,0.75,3,268,2,0,1,0,sales,medium +0.1,0.86,6,247,4,0,1,0,sales,medium +0.1,0.55,2,247,4,0,1,0,sales,medium +0.36,0.52,2,146,3,0,1,0,sales,medium +0.38,0.5,2,140,3,0,1,0,sales,low +0.78,0.98,5,263,6,0,1,0,sales,low +0.44,0.49,2,145,3,0,1,0,sales,low +0.41,0.46,2,156,3,1,1,0,sales,low +0.72,0.85,5,244,6,0,1,0,sales,low +0.46,0.54,2,144,3,0,1,0,sales,low +0.1,0.9,7,286,4,0,1,0,sales,low +0.34,0.67,4,141,2,0,1,0,sales,low +0.11,0.89,6,260,5,0,1,0,sales,low +0.38,0.56,2,154,3,0,1,0,sales,low +0.82,0.92,5,225,5,0,1,0,sales,low +0.39,0.57,2,127,3,0,1,0,sales,low +0.44,0.53,2,140,3,0,1,0,sales,low +0.43,0.52,2,147,3,0,1,0,sales,low +0.84,0.83,4,227,5,0,1,0,accounting,low +0.43,0.48,2,153,3,0,1,0,accounting,low +0.37,0.52,2,128,3,0,1,0,accounting,low +0.74,0.97,4,228,5,0,1,0,hr,low +0.73,0.97,5,235,5,0,1,0,hr,low +0.37,0.47,2,148,3,0,1,0,hr,low +0.58,0.62,4,238,3,0,1,0,hr,low +0.4,0.54,2,141,3,0,1,0,technical,medium +0.51,0.83,5,249,4,0,1,0,technical,medium +0.46,0.5,2,151,3,0,1,0,technical,medium +0.45,0.54,2,129,3,0,1,0,technical,medium +0.46,0.5,2,156,3,0,1,0,technical,medium +0.39,0.45,2,134,3,0,1,0,technical,medium +0.09,0.88,6,269,4,0,1,0,technical,medium +0.09,0.77,6,290,4,0,1,0,technical,medium +0.37,0.51,2,132,3,0,1,0,technical,medium +0.1,0.89,7,308,4,0,1,0,technical,medium +0.77,1,4,232,5,0,1,0,technical,medium +0.79,0.86,5,235,5,0,1,0,support,medium +0.43,0.55,2,130,3,0,1,0,support,high +0.38,0.53,2,146,3,0,1,0,support,low +0.77,0.91,5,221,6,0,1,0,support,medium +0.44,0.5,2,130,3,0,1,0,support,medium +0.39,0.46,2,136,3,0,1,0,support,medium +0.78,0.89,5,274,6,0,1,0,support,medium +0.1,0.79,6,256,5,0,1,0,support,low +0.1,0.77,5,276,4,0,1,0,support,low +0.75,0.85,5,267,5,0,1,0,support,low +0.46,0.62,6,213,3,0,1,0,support,low +0.91,0.97,4,274,6,0,1,0,technical,low +0.1,0.92,6,258,4,0,1,0,technical,low +0.72,0.6,3,153,5,0,1,0,technical,low +0.11,0.95,6,245,4,0,1,0,management,low +0.11,0.94,6,264,4,0,1,0,IT,low +0.46,0.57,2,154,3,0,1,0,IT,low +0.37,0.46,2,149,3,0,1,0,IT,low +0.46,0.5,2,157,3,0,1,0,IT,low +0.43,0.57,2,127,3,0,1,0,IT,low +0.11,0.82,6,270,4,0,1,0,product_mng,low +0.73,0.89,5,236,6,0,1,0,product_mng,low +0.43,0.47,2,158,3,0,1,0,product_mng,low +0.86,1,5,229,5,0,1,0,product_mng,low +0.1,0.83,6,269,4,0,1,0,IT,low +0.4,0.49,2,128,3,0,1,0,sales,low +0.11,0.87,7,278,4,0,1,0,sales,low +0.86,0.98,3,158,5,0,1,0,sales,low +0.42,1,3,202,3,0,1,0,sales,medium +0.79,0.84,4,240,5,0,1,0,sales,medium +0.1,0.96,7,255,4,0,1,0,marketing,medium +0.09,0.92,7,254,4,0,1,0,sales,medium +0.09,0.82,6,257,4,0,1,0,accounting,medium +0.87,1,4,228,5,0,1,0,support,medium +0.36,0.49,2,145,3,0,1,0,technical,medium +0.42,0.75,3,218,4,0,1,0,management,medium +0.84,0.86,5,268,5,0,1,0,marketing,medium +0.1,0.83,6,278,4,0,1,0,marketing,medium +0.78,0.71,3,249,5,0,1,0,marketing,medium +0.35,0.99,3,236,4,0,1,0,sales,medium +0.1,0.81,7,291,4,0,1,0,sales,high +0.11,0.8,6,306,4,0,1,0,sales,low +0.43,0.48,2,135,3,0,1,0,sales,medium +0.38,0.45,2,156,3,0,1,0,sales,medium +0.46,0.54,2,143,3,0,1,0,sales,medium +0.89,0.82,4,243,5,0,1,0,sales,medium +0.45,0.5,2,147,3,0,1,0,sales,low +0.44,0.53,2,159,3,0,1,0,sales,low +0.74,0.54,5,216,3,0,1,0,sales,low +0.45,0.54,2,152,3,0,1,0,sales,low +0.79,0.93,4,226,5,0,1,0,sales,low +0.79,0.91,5,271,5,0,1,0,sales,low +0.11,0.87,6,255,4,0,1,0,sales,low +0.42,0.48,2,140,3,0,1,0,sales,low +0.64,0.9,6,252,2,0,1,0,sales,low +0.4,0.55,2,159,3,0,1,0,sales,low +0.84,0.98,5,270,5,0,1,0,sales,low +0.73,0.92,5,232,5,0,1,0,sales,low +0.4,0.51,2,144,3,0,1,0,accounting,low +0.36,0.45,2,127,3,0,1,0,accounting,low +0.43,0.47,2,131,3,0,1,0,accounting,low +0.11,0.78,6,243,4,0,1,0,hr,low +0.91,1,5,244,6,0,1,0,hr,low +0.8,1,5,260,5,0,1,0,hr,low +0.42,0.49,2,139,3,0,1,0,hr,low +0.31,0.87,4,184,3,0,1,0,technical,low +0.44,0.47,2,130,3,0,1,0,technical,low +0.38,0.54,2,135,3,0,1,0,technical,medium +0.45,0.56,2,146,3,0,1,0,technical,medium +0.43,0.46,2,149,3,0,1,0,technical,medium +0.45,0.46,2,153,3,1,1,0,technical,medium +0.43,0.57,2,160,3,0,1,0,technical,medium +0.43,0.49,2,160,3,0,1,0,technical,medium +0.09,0.83,6,282,4,0,1,0,technical,medium +0.43,0.47,2,128,3,0,1,0,technical,medium +0.79,0.94,4,232,5,0,1,0,technical,medium +0.85,0.58,3,226,2,0,1,0,support,medium +0.38,0.45,2,129,3,0,1,0,support,medium +0.11,0.92,7,255,4,0,1,0,support,medium +0.83,0.99,5,258,5,0,1,0,support,high +0.81,0.91,4,229,5,0,1,0,support,low +0.42,0.56,2,143,3,0,1,0,support,medium +0.11,0.87,6,257,4,0,1,0,support,medium +0.11,0.85,7,275,4,0,1,0,support,medium +0.1,0.89,7,291,4,0,1,0,support,medium +0.5,0.54,5,153,4,0,1,0,support,low +0.44,0.49,2,154,3,0,1,0,support,low +0.11,0.9,6,301,4,0,1,0,technical,low +0.39,0.52,2,134,3,0,1,0,technical,low +0.11,0.78,6,245,4,0,1,0,technical,low +0.36,0.5,2,132,3,0,1,0,management,low +0.43,0.51,2,130,3,0,1,0,IT,low +0.4,0.5,2,127,3,0,1,0,IT,low +0.86,0.84,4,246,6,0,1,0,IT,low +0.38,0.49,2,145,3,0,1,0,IT,low +0.46,0.45,2,138,3,0,1,1,IT,low +0.37,0.57,2,129,3,0,1,0,product_mng,low +0.43,0.52,2,150,3,0,1,0,product_mng,low +0.66,0.93,5,253,5,0,1,0,product_mng,low +0.37,0.48,2,160,3,0,1,0,product_mng,low +0.77,0.92,5,235,5,0,1,0,IT,low +0.38,0.55,2,151,3,0,1,0,sales,low +0.39,0.54,2,127,3,0,1,0,sales,low +0.41,0.55,2,151,3,0,1,0,sales,low +0.1,0.9,7,290,4,0,1,0,sales,low +0.09,0.93,6,249,4,0,1,0,sales,low +0.41,0.47,2,131,3,0,1,0,marketing,medium +0.39,0.46,2,159,3,0,1,0,sales,medium +0.83,0.99,4,223,5,0,1,0,accounting,medium +0.09,0.87,3,214,2,0,1,0,support,medium +0.75,0.81,5,227,5,0,1,0,technical,medium +0.44,0.54,2,127,3,0,1,0,management,medium +0.1,0.84,6,293,5,0,1,0,marketing,medium +0.42,0.46,2,141,3,0,1,0,marketing,medium +0.1,0.83,6,300,4,0,1,0,marketing,medium +0.1,0.86,6,309,4,0,1,0,sales,medium +0.31,0.77,4,149,3,0,1,0,sales,medium +0.42,0.54,2,159,3,0,1,0,sales,medium +0.38,0.5,2,152,3,0,1,0,sales,high +0.39,0.57,2,158,3,0,1,0,sales,low +0.1,0.97,6,254,5,0,1,0,sales,medium +0.11,0.93,6,294,4,0,1,0,sales,medium +0.1,0.92,7,269,4,0,1,0,sales,medium +0.11,0.9,7,247,4,0,1,0,sales,medium +0.44,0.65,3,271,4,0,1,0,sales,low +0.91,0.96,4,232,5,0,1,0,sales,low +0.72,1,4,245,5,0,1,0,sales,low +0.66,0.66,3,225,3,0,0,0,technical,low +0.2,0.69,6,236,4,0,0,0,technical,low +0.97,0.78,3,268,3,1,0,0,technical,low +0.59,0.73,2,230,3,0,0,0,technical,low +0.88,0.6,4,162,2,0,0,0,technical,low +0.16,0.73,4,197,2,0,0,0,technical,low +0.61,0.96,3,247,3,0,0,0,support,low +0.52,0.79,4,234,3,0,0,0,support,low +0.82,0.49,4,276,4,0,0,0,support,low +0.75,0.94,5,217,2,0,0,0,support,medium +0.62,0.5,4,156,2,0,0,0,support,medium +0.91,0.88,3,189,2,0,0,0,support,medium +0.61,0.98,2,238,4,0,0,0,support,medium +0.79,0.77,3,201,6,1,0,0,support,medium +0.9,0.93,4,263,3,1,0,0,support,medium +0.75,0.83,3,146,3,0,0,0,support,medium +0.81,0.64,4,213,3,0,0,0,support,medium +0.59,0.88,3,159,2,0,0,0,technical,medium +0.56,0.83,3,236,3,1,0,0,technical,medium +0.98,0.79,5,257,4,0,0,0,technical,medium +0.59,0.72,4,168,4,0,0,0,management,medium +0.61,0.67,4,151,3,0,0,0,IT,high +0.78,0.7,4,139,3,0,0,0,IT,low +0.55,0.93,5,196,3,0,0,0,IT,medium +0.2,0.97,4,237,5,0,0,0,IT,medium +0.79,0.44,2,236,3,0,0,0,IT,medium +0.52,0.98,4,265,3,0,0,0,product_mng,medium +0.97,0.52,4,207,3,0,0,0,product_mng,low +0.63,0.94,4,219,3,0,0,0,product_mng,low +0.85,0.99,3,208,2,0,0,0,product_mng,low +0.59,0.74,3,240,3,0,0,0,IT,low +0.64,0.6,3,135,3,0,0,0,RandD,low +0.8,0.67,3,236,3,1,0,0,RandD,low +0.61,0.75,3,140,3,0,0,0,RandD,low +0.87,0.61,3,162,2,0,0,0,RandD,low +0.75,0.59,3,117,3,1,0,0,RandD,medium +0.96,0.51,4,225,3,0,0,0,marketing,medium +0.75,0.92,3,211,3,0,0,0,sales,medium +0.19,0.58,4,173,5,0,0,0,accounting,medium +0.52,0.97,4,170,3,0,0,0,support,medium +0.6,0.6,3,242,3,0,0,0,technical,medium +0.9,0.81,4,175,3,0,0,0,management,medium +0.89,0.92,3,195,2,0,0,0,marketing,medium +0.54,0.93,4,184,2,1,0,0,marketing,medium +0.99,0.55,3,170,3,0,0,0,marketing,medium +0.66,0.56,4,185,3,0,0,0,sales,medium +0.92,0.64,4,259,2,0,0,0,sales,medium +0.19,0.72,4,102,3,0,0,0,sales,medium +0.39,0.37,5,156,4,0,0,0,sales,medium +0.41,0.68,3,191,4,0,0,0,sales,medium +0.6,0.49,3,239,2,0,0,0,sales,medium +0.95,0.54,4,235,4,0,0,0,sales,medium +0.51,0.87,2,130,4,0,0,0,sales,medium +0.54,0.74,2,166,3,0,0,0,sales,medium +0.16,0.54,5,206,5,0,0,0,sales,medium +0.98,0.77,3,191,2,0,0,0,sales,medium +0.65,0.75,3,214,3,0,0,0,sales,medium +0.38,0.5,3,196,3,0,0,0,sales,medium +0.95,0.71,4,151,4,0,0,0,sales,medium +0.6,0.62,5,165,2,0,0,0,sales,medium +0.78,0.91,3,177,2,0,0,0,sales,high +0.19,0.63,6,241,6,0,0,0,sales,high +0.56,0.99,4,230,3,0,0,0,sales,high +0.21,0.71,4,270,2,0,0,0,sales,high +0.83,0.71,3,234,4,0,0,0,accounting,high +0.5,0.64,3,257,2,1,0,0,accounting,high +0.74,0.87,5,264,3,0,0,0,accounting,high +0.75,0.83,4,133,4,0,0,0,hr,high +0.85,0.66,4,155,4,0,0,0,hr,high +0.93,0.59,3,202,2,0,0,0,hr,high +0.76,0.7,3,136,2,0,0,0,hr,high +0.91,0.78,3,269,3,1,0,0,technical,high +0.22,0.54,6,169,4,0,0,0,technical,low +0.78,0.52,5,192,3,1,0,0,technical,low +0.53,0.8,4,241,3,1,0,0,technical,low +0.58,0.69,4,165,3,0,0,0,technical,low +0.99,0.81,3,183,2,0,0,0,technical,low +0.62,0.64,4,163,3,0,0,0,technical,low +0.59,0.69,3,162,3,0,0,0,technical,low +0.13,0.76,5,219,4,0,0,0,technical,low +0.19,0.63,4,278,6,0,0,0,technical,low +0.94,0.99,2,273,4,0,0,0,technical,low +0.53,0.96,4,272,2,0,0,0,support,low +0.96,0.85,5,168,2,0,0,0,support,low +0.62,0.87,4,221,3,1,0,0,support,low +0.81,0.86,4,213,3,0,0,0,support,low +0.63,0.78,4,275,3,0,0,0,support,low +0.92,0.68,5,177,4,0,0,0,support,medium +0.83,0.74,4,249,2,0,0,0,support,medium +0.49,0.37,5,246,3,0,0,0,support,medium +0.8,0.66,4,223,3,0,0,0,support,medium +0.54,0.76,4,244,2,0,0,0,support,medium +0.37,0.72,3,169,2,1,0,0,support,medium +0.93,0.56,5,140,3,0,0,0,technical,medium +0.88,0.99,5,253,2,0,0,0,technical,medium +0.79,0.87,3,194,2,0,0,0,technical,medium +0.65,0.88,4,173,3,0,0,0,management,medium +0.72,0.7,4,172,3,0,0,0,IT,medium +0.58,0.49,3,167,3,0,0,0,IT,medium +0.37,0.51,2,153,3,0,0,0,IT,high +0.87,0.97,4,243,3,0,0,0,IT,high +0.63,0.72,6,163,4,0,0,0,IT,high +0.72,0.79,3,221,3,0,0,0,product_mng,high +0.36,0.55,3,191,3,0,0,0,product_mng,high +0.96,0.7,4,272,3,0,0,0,product_mng,high +0.52,0.37,2,118,2,0,0,0,product_mng,high +0.16,0.83,5,173,4,0,0,0,IT,high +0.63,0.55,4,200,3,1,0,0,RandD,low +0.92,0.76,5,132,3,1,0,0,RandD,low +0.82,0.49,4,180,2,0,0,0,RandD,low +0.18,0.54,4,145,5,0,0,0,RandD,low +0.73,0.48,4,139,2,0,0,0,RandD,low +0.44,0.61,5,230,6,0,0,0,marketing,low +0.73,0.62,4,247,4,0,0,0,sales,low +0.62,0.95,4,140,2,0,0,0,accounting,low +0.94,0.8,4,266,3,1,0,0,support,medium +0.76,0.74,4,261,3,0,0,0,technical,medium +0.89,0.49,4,275,3,0,0,0,management,medium +0.9,0.88,5,254,2,0,0,0,marketing,medium +1,0.93,5,231,2,0,0,0,marketing,medium +0.71,0.9,3,138,3,0,0,0,marketing,medium +0.73,0.97,4,163,3,0,0,0,sales,medium +0.97,0.9,5,262,3,0,0,0,sales,medium +0.6,0.59,4,201,3,0,0,0,sales,medium +0.82,0.67,3,229,3,0,0,0,sales,medium +0.95,0.48,4,228,2,0,0,0,sales,medium +0.88,0.65,5,228,3,0,0,0,sales,medium +0.79,0.49,3,273,3,0,0,0,sales,medium +0.52,0.96,4,171,2,0,0,0,sales,medium +0.22,0.61,3,148,5,0,0,0,sales,medium +0.59,0.96,5,211,3,0,0,0,sales,medium +0.84,0.64,2,211,3,0,0,0,sales,medium +0.54,0.41,3,175,3,0,0,0,sales,medium +1,0.86,4,245,4,0,0,0,sales,medium +0.93,0.59,3,273,2,1,0,0,sales,medium +0.96,0.55,3,225,4,1,0,0,sales,medium +0.56,0.41,5,152,3,0,0,0,sales,medium +0.49,0.66,5,194,3,0,0,0,sales,medium +0.89,0.51,4,185,3,1,0,0,sales,high +0.57,0.91,3,193,2,0,0,0,sales,low +0.96,0.64,3,166,2,0,0,0,accounting,medium +0.65,0.89,5,223,3,1,0,0,accounting,medium +0.14,0.66,5,281,4,1,0,0,accounting,medium +0.64,0.49,3,241,3,0,0,0,hr,medium +0.98,0.91,3,165,2,1,0,0,hr,medium +0.71,0.59,4,143,2,0,0,0,hr,medium +0.96,0.49,5,137,3,0,0,0,hr,medium +0.9,0.57,4,185,3,1,0,0,technical,medium +0.52,0.96,3,271,3,1,0,0,technical,medium +0.78,0.98,4,207,2,1,0,0,technical,medium +0.62,0.69,4,184,3,0,0,0,technical,low +0.6,0.8,4,253,2,0,0,0,technical,low +0.82,0.62,3,152,6,0,0,0,technical,low +0.52,0.55,3,225,2,0,0,0,technical,low +0.13,0.84,5,189,5,0,0,0,technical,low +0.97,0.93,3,153,2,0,0,0,technical,low +0.63,0.9,4,245,3,0,0,0,technical,low +0.68,0.78,5,233,3,0,0,0,technical,high +0.74,0.83,4,210,3,0,0,0,support,low +0.89,0.57,4,176,4,0,0,0,support,high +0.28,0.95,5,191,3,0,0,0,support,high +0.61,0.9,3,224,3,0,0,0,support,low +0.67,0.49,3,185,3,0,0,0,support,low +0.86,0.64,3,245,4,0,0,0,support,high +0.87,0.93,3,173,2,0,0,0,support,low +0.7,0.95,4,231,3,0,0,0,support,medium +0.68,0.84,3,270,3,0,0,0,support,high +0.69,0.75,5,196,3,0,0,0,support,medium +0.97,0.83,3,238,2,0,0,0,support,medium +0.62,0.89,4,261,2,0,0,0,technical,medium +0.55,0.87,3,201,2,0,0,0,technical,medium +0.61,0.73,3,252,3,0,0,0,technical,high +0.15,0.81,3,191,5,0,0,0,management,medium +0.84,0.86,3,199,3,0,0,0,IT,medium +0.87,0.64,5,234,2,1,0,0,IT,medium +0.93,0.86,4,192,4,0,0,0,IT,high +0.14,0.73,6,237,5,0,0,0,IT,medium +0.96,0.7,3,207,3,0,0,0,IT,high +0.41,0.63,2,145,2,0,0,0,product_mng,low +0.84,0.96,6,155,5,0,0,0,product_mng,medium +0.94,0.69,5,145,2,0,0,0,product_mng,medium +0.6,0.86,6,247,6,0,0,0,product_mng,medium +0.7,0.73,4,182,3,0,0,0,IT,medium +0.29,0.91,4,183,4,0,0,0,RandD,low +0.31,0.51,2,146,3,0,0,0,RandD,low +0.73,0.99,3,241,3,0,0,0,RandD,low +0.51,0.52,5,261,3,1,0,0,RandD,low +0.58,0.77,4,140,3,0,0,0,RandD,low +0.59,0.97,3,257,3,0,0,0,marketing,low +0.95,0.9,3,186,2,0,0,0,marketing,low +0.84,0.93,3,159,3,0,0,0,sales,low +0.28,0.37,3,164,4,1,0,0,accounting,low +0.94,0.52,4,217,6,1,0,0,support,low +0.49,0.59,4,137,4,0,0,0,technical,high +0.72,0.5,4,164,2,1,0,0,management,low +0.19,0.85,5,249,3,0,0,0,marketing,low +0.83,0.95,3,264,2,0,0,0,marketing,low +0.79,0.92,4,208,2,1,0,0,marketing,low +0.72,0.61,3,175,3,0,0,0,sales,high +0.97,0.74,4,209,2,0,0,0,sales,low +0.92,0.83,4,268,4,0,0,0,sales,low +0.95,0.53,3,264,3,0,0,0,sales,low +0.76,0.64,4,234,2,0,0,0,sales,high +0.24,0.62,5,199,4,0,0,0,sales,low +0.89,0.99,4,205,2,0,0,1,sales,medium +0.69,0.63,5,140,4,0,0,1,sales,high +0.92,0.98,3,257,3,0,0,1,sales,medium +0.79,0.61,4,227,2,0,0,1,sales,high +0.87,0.94,4,189,3,0,0,1,sales,medium +0.89,0.88,5,241,2,1,0,0,sales,medium +0.75,0.77,5,199,4,0,0,0,sales,medium +0.78,0.6,4,206,3,0,0,0,sales,medium +0.13,0.62,5,268,3,0,0,0,sales,medium +0.94,0.86,3,221,3,1,0,0,sales,medium +0.94,0.88,4,262,2,0,0,0,sales,medium +0.67,0.6,5,253,6,0,0,0,sales,medium +0.6,0.73,5,241,3,0,0,0,sales,high +0.62,0.94,4,252,4,0,0,0,accounting,low +0.38,0.52,2,171,3,0,0,0,accounting,medium +0.8,0.77,4,194,3,0,0,0,accounting,medium +0.61,0.42,3,104,2,0,0,0,hr,medium +0.61,0.56,4,176,3,0,0,0,hr,medium +0.66,0.8,4,192,3,0,0,0,hr,medium +0.56,0.74,3,154,2,0,0,0,hr,medium +1,0.55,4,186,4,1,0,0,technical,medium +0.73,0.86,3,200,4,0,0,0,technical,medium +0.6,0.66,4,132,4,0,0,0,technical,medium +0.78,0.59,5,236,3,0,0,0,technical,high +0.48,0.53,3,211,4,0,0,0,technical,low +0.9,0.77,4,273,2,0,0,0,technical,low +0.16,0.76,4,223,4,0,0,0,technical,low +0.5,0.75,3,204,2,0,0,0,technical,high +0.66,0.65,3,196,3,1,0,0,technical,low +0.44,0.37,2,219,2,0,0,0,technical,low +0.95,0.67,4,261,3,0,0,0,technical,low +0.9,0.65,3,254,2,0,0,0,support,high +0.27,0.48,4,185,2,0,0,0,support,low +0.51,0.74,6,98,3,0,0,0,support,low +0.68,0.76,3,260,4,0,0,0,support,low +0.97,0.93,5,137,2,1,0,0,support,low +0.91,0.75,4,159,3,1,0,0,support,low +0.76,0.88,5,265,4,0,0,0,support,low +0.88,0.61,4,177,4,1,0,0,support,low +0.83,0.73,4,247,2,0,0,0,support,medium +0.78,0.54,3,161,3,0,0,0,support,medium +0.52,0.38,2,103,3,0,0,0,support,medium +0.63,0.49,4,151,3,0,0,0,technical,medium +0.9,0.74,3,193,3,0,0,0,technical,medium +0.48,0.58,3,194,3,0,0,0,technical,medium +0.7,0.6,5,208,3,0,0,0,management,medium +0.68,0.66,4,229,3,0,0,0,IT,medium +0.7,0.87,3,166,2,0,0,0,IT,medium +0.77,0.5,3,141,3,0,0,0,IT,medium +0.73,0.93,3,249,2,0,0,0,IT,medium +0.87,0.48,4,264,3,0,0,0,IT,medium +0.65,0.98,3,252,2,0,0,0,product_mng,high +0.62,0.7,2,134,3,0,0,0,product_mng,low +0.53,0.51,3,274,2,1,0,0,product_mng,medium +0.59,0.39,5,200,4,0,0,0,product_mng,medium +0.87,0.72,2,154,3,0,0,0,IT,medium +0.47,0.53,3,111,4,0,0,0,RandD,medium +0.96,0.81,3,247,3,0,0,0,RandD,low +0.79,0.74,3,169,3,0,0,0,RandD,low +0.84,0.6,3,250,3,1,0,0,RandD,low +0.68,0.49,3,178,3,1,0,0,RandD,low +0.86,0.66,4,251,3,0,0,0,RandD,low +0.73,0.98,5,272,2,0,0,0,marketing,low +0.9,0.67,2,229,4,0,0,0,sales,low +0.63,0.64,3,180,3,0,0,0,accounting,low +0.71,0.72,3,271,2,0,0,0,support,low +0.71,0.68,5,226,3,0,0,0,technical,low +0.95,0.62,4,150,2,0,0,0,management,low +0.51,0.86,4,260,3,1,0,0,marketing,low +0.77,0.91,4,161,3,0,0,0,marketing,low +0.48,0.51,3,136,3,0,0,0,marketing,low +0.93,0.91,2,238,2,1,0,0,sales,low +0.83,0.86,4,98,4,0,0,0,sales,low +0.61,0.73,5,156,4,0,0,0,sales,low +0.97,0.89,4,248,2,0,0,0,sales,low +0.5,0.81,3,170,2,0,0,0,sales,low +0.84,0.54,3,245,3,0,0,0,sales,low +0.58,0.38,4,203,5,0,0,0,sales,low +0.59,0.72,3,182,3,0,0,0,sales,medium +0.77,0.83,3,175,3,0,0,1,sales,medium +0.78,0.4,4,145,5,1,0,1,sales,medium +0.6,0.96,4,220,3,1,0,1,sales,medium +0.53,0.77,4,259,2,1,0,1,sales,medium +0.73,0.69,3,228,2,0,0,1,sales,medium +0.76,0.94,3,189,3,0,0,0,sales,medium +0.12,0.61,6,257,3,0,0,0,sales,medium +0.2,0.98,3,180,6,0,0,0,sales,medium +0.5,0.77,4,180,3,0,0,0,sales,medium +0.79,0.65,5,215,2,1,0,0,sales,medium +0.96,0.68,3,132,2,0,0,0,sales,medium +0.26,0.69,5,213,2,0,0,0,accounting,high +0.8,0.72,4,173,3,0,0,0,accounting,low +0.43,0.71,3,186,2,0,0,0,accounting,medium +0.87,0.71,4,157,2,0,0,0,hr,medium +0.63,0.75,4,175,4,0,0,0,hr,medium +0.58,0.48,3,135,3,1,0,0,hr,medium +0.2,0.42,4,256,5,0,0,0,hr,low +0.62,0.71,4,268,3,0,0,0,technical,low +0.91,0.94,5,159,3,0,0,0,technical,low +0.66,0.91,3,191,4,0,0,0,technical,low +0.53,0.81,3,275,2,0,0,0,technical,low +0.52,0.98,5,217,2,1,0,0,technical,low +1,0.88,6,201,4,0,0,0,technical,low +0.73,0.67,4,205,3,0,0,0,technical,low +0.65,0.67,3,240,2,1,0,0,technical,low +0.5,0.95,5,137,3,0,0,0,technical,low +0.94,0.59,4,241,2,0,0,0,technical,low +0.48,0.86,5,198,4,0,0,0,technical,low +0.67,0.87,5,254,2,0,0,0,support,low +0.73,0.94,4,262,3,0,0,0,support,low +0.63,0.71,4,244,2,0,0,0,support,low +0.84,0.84,4,266,3,0,0,0,support,low +0.2,0.94,6,191,5,0,0,0,support,low +0.76,0.57,3,148,3,1,0,0,support,low +0.55,0.54,3,233,2,0,0,0,support,low +0.8,0.55,4,178,2,1,0,0,support,low +0.64,0.91,3,165,3,1,0,0,support,low +0.59,0.97,5,179,6,0,0,0,support,medium +0.92,0.98,3,149,3,0,0,0,support,medium +0.75,0.76,3,269,2,1,0,0,technical,medium +0.69,0.74,5,227,2,0,0,0,technical,medium +0.82,0.93,3,247,3,0,0,0,technical,medium +0.88,0.85,3,220,3,0,0,0,management,medium +0.89,0.91,3,233,2,0,0,0,IT,medium +1,0.79,5,171,5,0,0,0,IT,medium +0.66,0.91,4,234,2,1,0,0,IT,medium +0.76,0.92,3,176,2,0,0,0,IT,medium +0.8,0.62,5,190,4,1,0,0,IT,medium +0.58,0.86,4,168,2,0,0,0,product_mng,medium +0.73,0.93,3,205,3,0,0,0,product_mng,high +1,0.73,5,189,3,1,0,0,product_mng,low +0.18,0.9,4,282,4,0,0,0,product_mng,medium +0.47,0.46,2,152,2,0,0,0,IT,medium +0.92,0.64,4,217,4,0,0,0,RandD,medium +0.51,0.5,4,130,3,0,0,0,RandD,medium +0.81,0.62,4,153,4,0,0,0,RandD,low +0.52,0.57,3,270,3,0,0,0,RandD,low +0.95,0.96,3,220,3,0,0,0,RandD,low +0.93,0.64,4,253,3,0,0,0,RandD,low +0.98,0.67,4,209,6,0,0,0,marketing,low +0.79,0.79,4,231,2,0,0,0,sales,low +0.99,0.73,4,240,4,0,0,0,accounting,low +0.64,0.9,5,266,3,0,0,0,support,low +0.54,0.44,3,153,2,0,0,0,technical,low +0.79,0.59,4,187,2,0,0,0,management,low +0.55,0.98,4,185,2,1,0,0,marketing,low +0.18,0.81,4,147,4,0,0,0,marketing,low +0.56,0.81,4,188,3,1,0,0,marketing,low +0.92,0.67,2,252,2,0,0,0,sales,low +0.99,0.75,4,163,2,0,0,0,sales,low +0.77,0.85,4,189,2,0,0,0,sales,low +0.49,0.52,3,156,2,0,0,0,sales,low +0.98,0.58,3,183,3,0,0,0,sales,low +0.18,0.54,6,209,5,1,0,0,sales,low +0.8,0.82,4,271,4,0,0,0,sales,low +0.81,0.77,5,251,2,0,0,0,sales,low +0.13,0.61,5,198,5,0,0,0,sales,medium +0.58,0.97,3,274,4,1,0,1,sales,medium +0.75,0.63,4,209,3,0,0,1,sales,medium +0.8,0.94,4,271,4,0,0,1,sales,medium +0.78,0.6,4,143,2,0,0,1,sales,medium +0.92,0.6,5,236,3,1,0,1,sales,medium +0.85,0.98,5,222,3,0,0,1,sales,medium +0.52,0.63,3,233,3,0,0,1,sales,medium +0.95,0.84,3,270,3,1,0,1,sales,medium +0.81,0.92,5,258,3,0,0,1,sales,medium +0.16,0.82,6,202,4,1,0,1,sales,medium +0.91,0.74,3,150,2,0,0,0,accounting,medium +0.62,0.51,4,193,3,0,0,0,accounting,high +0.24,0.42,5,210,5,0,0,0,accounting,low +0.88,0.51,3,208,3,0,0,0,hr,medium +0.94,0.73,3,196,3,0,0,0,hr,medium +0.76,0.79,5,187,4,0,0,0,hr,medium +0.49,0.67,3,140,2,0,0,0,hr,medium +0.93,0.9,4,256,4,0,0,0,technical,low +0.92,0.66,4,113,3,0,0,0,technical,low +0.19,0.94,4,196,5,0,0,0,technical,low +0.66,0.76,3,170,3,0,0,0,technical,low +0.16,0.94,4,261,6,0,0,0,technical,low +0.83,0.99,5,132,3,0,0,0,technical,low +0.69,0.53,3,153,3,0,0,0,technical,low +0.82,0.53,3,147,3,1,0,0,technical,low +0.88,0.72,5,244,2,0,0,0,technical,low +0.31,0.42,4,108,4,0,0,0,technical,low +0.83,0.49,4,218,2,0,0,0,technical,low +0.94,0.52,5,133,3,0,0,0,support,low +0.65,0.79,5,233,3,0,0,0,support,low +0.6,0.6,4,147,3,0,0,0,support,low +0.52,0.43,3,176,3,0,0,0,support,low +0.66,0.89,4,169,4,0,0,0,support,low +0.87,0.87,4,144,3,0,0,0,support,low +0.2,0.99,5,151,3,1,0,0,support,low +0.63,0.91,4,252,3,1,0,0,support,medium +0.69,0.98,4,180,3,0,0,0,support,medium +0.48,0.61,3,251,3,0,0,0,support,medium +0.8,0.8,4,263,4,0,0,0,support,medium +0.89,0.74,5,260,6,0,0,0,technical,medium +0.67,0.63,3,227,3,0,0,0,technical,medium +0.37,0.86,6,260,3,0,0,0,technical,medium +0.93,0.61,5,158,3,0,0,0,management,medium +0.69,0.52,3,186,3,0,0,0,IT,medium +0.16,0.61,4,171,6,0,0,0,IT,medium +0.81,0.55,3,199,2,1,0,0,IT,medium +0.97,0.63,5,258,2,0,0,0,IT,medium +0.77,0.59,4,273,2,0,0,0,IT,high +0.75,0.78,2,259,3,0,0,0,product_mng,low +0.88,0.82,3,265,3,0,0,0,product_mng,medium +0.43,0.51,5,168,4,0,0,0,product_mng,medium +0.99,0.99,4,163,4,0,0,0,product_mng,medium +0.59,0.65,5,265,3,0,0,0,IT,medium +0.89,0.71,4,190,3,0,0,0,RandD,low +0.54,0.73,3,157,3,0,0,0,RandD,low +0.32,0.86,4,266,4,0,0,0,RandD,low +0.17,0.55,6,240,6,0,0,0,RandD,low +0.78,0.55,3,143,3,0,0,0,RandD,low +0.73,0.68,3,121,5,0,0,0,RandD,low +0.65,0.76,2,170,5,0,0,0,IT,low +0.8,0.71,4,161,4,0,0,0,IT,low +0.61,0.86,3,239,3,0,0,0,IT,low +0.67,0.49,3,224,3,0,0,0,IT,low +0.63,0.57,3,242,3,0,0,0,product_mng,low +0.51,0.58,4,140,2,1,0,0,product_mng,low +0.82,0.59,5,170,3,0,0,0,product_mng,low +0.79,0.67,5,156,2,0,0,0,product_mng,low +0.49,0.6,2,113,5,0,0,0,IT,low +0.7,0.59,3,138,3,0,0,0,RandD,low +0.13,0.5,3,137,5,0,0,0,RandD,low +0.83,0.52,5,217,3,0,0,0,RandD,low +0.83,0.91,3,155,3,0,0,0,RandD,low +0.19,0.83,5,280,4,0,0,0,RandD,low +0.8,0.81,5,248,2,1,0,0,RandD,low +0.49,0.67,2,190,8,0,0,0,marketing,medium +0.92,0.99,3,176,8,0,0,0,sales,medium +0.81,0.55,4,217,8,0,0,0,accounting,medium +0.62,0.91,3,269,8,0,0,0,support,medium +0.21,0.7,3,238,8,0,0,0,technical,medium +0.95,0.74,5,243,6,0,0,0,management,medium +0.51,0.8,4,198,6,0,0,0,marketing,medium +0.52,0.89,3,188,6,0,0,0,marketing,medium +0.64,0.56,3,257,6,0,0,0,marketing,medium +0.62,0.79,4,268,6,0,0,0,sales,medium +0.73,0.88,5,233,4,1,0,0,sales,medium +0.32,0.86,4,214,5,0,0,0,sales,medium +0.78,0.96,2,285,3,0,0,0,sales,high +0.65,0.91,4,224,2,1,0,0,sales,low +0.56,0.92,4,224,3,0,0,0,sales,medium +0.96,0.89,3,142,4,0,0,0,sales,medium +0.79,0.82,4,220,3,0,0,0,sales,medium +0.66,0.58,4,244,3,0,0,0,sales,medium +0.67,0.68,4,171,3,0,0,0,sales,low +0.86,0.82,4,274,2,1,0,0,sales,low +0.57,0.72,4,214,2,1,0,0,sales,low +0.86,0.87,5,171,2,0,0,0,sales,low +0.52,0.59,5,150,2,0,0,0,sales,low +0.73,0.61,4,260,2,1,0,0,sales,low +0.78,0.63,5,259,3,0,0,0,sales,low +0.95,0.63,3,153,2,0,0,0,sales,low +0.75,0.61,3,263,3,0,0,0,sales,low +0.83,0.52,2,149,2,1,0,0,sales,low +0.48,1,4,261,3,0,0,0,accounting,low +0.3,0.58,2,189,4,1,0,0,accounting,low +0.72,0.85,5,237,4,0,0,0,accounting,low +0.61,0.52,3,224,3,0,0,0,hr,low +0.31,0.87,6,240,3,1,0,0,hr,low +0.62,0.81,3,245,2,1,0,0,hr,low +0.48,0.49,3,268,3,0,0,0,hr,low +0.97,0.89,4,208,2,1,0,0,technical,low +0.61,0.83,4,153,2,0,0,0,technical,low +0.93,0.99,3,169,3,0,0,0,technical,low +0.89,0.39,5,218,2,0,0,0,technical,low +0.95,0.9,3,155,3,0,0,0,technical,medium +0.36,0.44,5,155,3,0,0,0,technical,medium +0.29,0.39,6,105,6,0,0,0,technical,medium +0.65,0.83,4,251,2,0,0,0,technical,medium +0.72,0.54,4,219,2,0,0,0,technical,medium +0.51,0.56,4,198,2,1,0,0,technical,medium +0.54,0.53,4,158,2,0,0,0,technical,medium +0.66,0.58,3,157,2,0,0,0,support,medium +0.59,0.54,4,178,2,0,0,0,support,medium +0.45,0.48,3,145,2,0,0,0,support,medium +0.15,0.91,5,230,3,0,0,0,support,medium +0.95,0.53,3,174,3,0,0,0,support,medium +0.49,0.59,5,140,3,0,0,0,support,high +0.68,0.97,3,174,2,0,0,0,support,low +0.7,0.76,4,173,2,0,0,0,support,medium +0.9,0.73,2,203,4,0,0,0,support,medium +0.94,0.95,5,170,3,0,0,0,support,medium +0.8,0.86,3,203,3,0,0,0,support,medium +0.59,0.53,5,169,3,0,0,0,technical,low +0.43,0.96,3,109,6,0,0,0,technical,low +0.7,0.54,5,263,3,0,0,0,technical,low +0.51,0.62,4,185,3,0,0,0,management,low +0.12,0.49,4,191,5,0,0,0,IT,low +0.14,0.56,5,259,4,1,0,0,IT,low +0.86,0.91,4,253,3,0,0,0,IT,low +0.97,0.5,3,216,3,0,0,0,IT,low +1,0.86,2,264,3,0,0,0,IT,medium +0.49,0.63,3,181,3,1,0,0,product_mng,medium +0.9,0.93,3,209,3,0,0,0,product_mng,medium +0.82,0.89,4,239,2,0,0,0,product_mng,medium +0.59,0.48,3,197,3,0,0,0,product_mng,medium +0.97,0.57,4,150,2,0,0,0,IT,medium +0.69,0.88,3,164,10,0,0,0,management,medium +0.73,0.84,3,216,8,0,0,0,management,medium +0.48,0.74,2,271,8,1,0,0,management,medium +0.94,0.49,4,176,8,0,0,0,management,medium +0.74,0.73,3,156,8,0,0,0,management,medium +0.65,0.63,4,143,8,0,0,0,management,medium +0.93,0.94,4,233,6,0,0,0,IT,medium +0.57,0.67,3,138,6,1,0,0,IT,medium +0.9,0.49,3,259,6,0,0,0,IT,medium +0.55,0.86,4,169,6,0,0,0,IT,medium +0.59,0.73,3,172,6,0,0,0,product_mng,medium +0.72,0.98,4,156,3,0,0,0,product_mng,medium +0.87,0.52,4,140,3,0,0,0,product_mng,medium +0.86,0.82,4,212,2,0,0,0,product_mng,medium +0.61,0.5,4,269,3,0,0,0,IT,medium +0.45,0.63,5,111,5,0,0,0,management,medium +0.51,0.63,4,198,2,0,0,0,management,medium +0.87,0.92,4,263,3,0,0,0,management,medium +0.29,0.38,5,191,5,0,0,0,management,medium +0.57,0.64,3,188,3,0,0,0,management,medium +0.69,0.83,4,252,3,0,0,0,management,medium +0.61,0.9,2,142,3,0,0,0,marketing,high +0.96,0.85,4,247,3,0,0,0,sales,high +0.16,0.61,6,269,2,0,0,0,accounting,high +0.96,0.82,4,244,3,0,0,0,support,high +0.77,0.81,4,164,3,0,0,0,technical,high +0.85,0.87,6,232,5,0,0,0,management,high +0.37,0.49,3,177,3,0,0,0,marketing,high +0.68,0.65,3,173,3,1,0,0,marketing,high +0.87,0.6,5,165,2,1,0,0,marketing,high +0.95,0.8,3,225,2,0,0,0,sales,high +0.84,0.63,3,121,3,1,0,0,sales,low +0.44,0.51,2,219,4,0,0,0,sales,low +0.94,0.73,4,204,2,0,0,0,sales,low +0.85,0.94,5,235,4,0,0,0,sales,low +0.75,0.51,2,215,2,1,0,0,sales,low +0.76,0.67,5,243,3,0,0,0,sales,low +0.13,0.97,4,162,6,0,0,0,sales,low +0.6,0.79,4,262,3,0,0,0,sales,low +0.45,0.55,4,206,2,0,0,0,sales,low +0.49,1,2,125,4,1,0,0,sales,low +0.19,0.36,3,167,5,0,0,0,sales,low +0.68,0.89,5,218,5,0,0,0,sales,low +0.53,0.91,5,181,3,0,0,0,sales,low +1,0.77,5,269,3,0,0,0,sales,low +0.99,0.86,3,167,2,0,0,0,sales,low +0.29,0.75,6,271,10,0,0,0,sales,medium +0.54,0.83,4,201,8,1,0,0,sales,medium +0.25,0.9,6,229,8,0,0,0,sales,medium +0.71,0.76,4,148,8,0,0,0,accounting,medium +0.96,0.84,3,147,8,0,0,0,accounting,medium +0.8,0.9,4,211,8,0,0,0,accounting,medium +0.82,0.87,5,145,6,0,0,0,hr,medium +0.19,0.97,6,269,6,0,0,0,hr,medium +0.43,0.74,4,129,6,0,0,0,hr,medium +0.62,0.84,3,270,6,0,0,0,hr,medium +0.75,0.85,3,250,6,0,0,0,technical,medium +0.56,0.48,5,192,2,1,0,0,technical,medium +0.88,0.91,4,233,4,0,0,0,technical,high +0.63,0.57,4,192,3,0,0,0,technical,high +0.75,0.93,3,247,2,0,0,0,technical,high +0.74,1,4,192,4,0,0,0,technical,high +0.55,0.68,3,178,3,1,0,0,technical,high +0.87,0.55,4,197,3,0,0,0,technical,high +0.13,0.9,5,264,6,0,0,0,technical,high +0.33,0.64,2,274,3,1,0,0,technical,high +0.89,0.97,4,147,2,0,0,0,technical,low +0.56,0.94,3,154,3,1,0,0,support,low +0.95,0.61,3,224,2,1,0,0,support,low +0.57,0.59,4,250,2,0,0,0,support,low +0.72,0.53,3,179,3,0,0,0,support,low +0.28,0.44,4,170,2,0,0,0,support,low +0.54,0.61,4,118,5,0,0,0,support,low +0.54,0.95,4,256,3,0,0,0,support,low +0.99,0.8,3,209,2,0,0,0,support,medium +0.37,0.69,2,146,3,0,0,0,support,medium +0.77,0.87,3,275,4,1,0,0,support,medium +0.7,0.88,4,180,2,0,0,0,support,medium +0.8,0.74,3,228,3,0,0,0,technical,medium +0.52,0.63,3,204,3,0,0,0,technical,medium +0.69,0.55,3,172,2,0,0,0,technical,medium +0.6,0.62,5,274,3,0,0,0,management,medium +0.74,0.64,3,136,2,0,0,0,IT,medium +0.69,0.82,4,252,3,1,0,0,IT,medium +0.78,0.89,4,137,3,0,0,0,IT,medium +0.77,0.75,4,191,3,0,0,0,IT,medium +0.91,0.68,4,132,4,0,0,0,IT,medium +0.54,0.68,6,249,5,0,0,0,product_mng,medium +0.48,0.77,6,274,6,0,0,0,product_mng,medium +0.55,0.96,3,194,3,0,0,0,product_mng,medium +0.17,0.36,6,191,2,0,0,0,product_mng,medium +0.77,0.83,5,216,4,0,0,0,IT,medium +0.93,0.98,3,241,3,0,0,0,IT,medium +0.65,0.91,4,243,5,1,0,0,IT,medium +0.67,0.52,4,207,3,0,0,0,IT,medium +0.95,0.88,3,199,3,0,0,0,IT,medium +0.61,0.97,6,286,4,0,0,0,product_mng,medium +0.57,0.39,4,132,3,0,0,0,product_mng,high +0.65,1,4,229,4,0,0,0,product_mng,low +0.85,0.81,4,260,3,0,0,0,product_mng,medium +0.61,0.96,3,214,2,0,0,0,IT,medium +0.65,0.9,6,217,4,1,0,1,RandD,medium +0.92,0.93,4,225,2,0,0,1,RandD,medium +0.37,0.41,2,113,3,0,0,1,RandD,medium +0.48,0.77,5,250,2,0,0,1,RandD,medium +0.82,0.91,5,271,2,0,0,1,RandD,medium +0.84,0.75,4,135,3,0,0,1,RandD,medium +0.57,0.46,2,100,6,1,0,1,marketing,medium +0.8,0.75,4,224,3,0,0,1,sales,medium +0.49,0.91,4,134,4,0,0,0,accounting,low +0.79,0.82,5,158,2,0,0,0,support,low +0.48,0.67,3,183,2,0,0,0,technical,low +0.28,0.89,4,97,6,0,0,0,management,low +0.47,0.56,4,226,3,0,0,0,marketing,low +0.91,0.6,4,235,4,1,0,0,marketing,low +0.75,0.6,4,186,10,1,0,0,marketing,low +0.61,0.89,3,242,10,0,0,0,sales,high +0.47,0.79,3,284,10,0,0,0,sales,low +0.22,0.7,2,274,10,0,0,0,sales,high +0.5,0.48,4,130,10,0,0,0,sales,high +0.56,0.87,3,146,10,0,0,0,sales,low +0.84,0.85,4,207,10,0,0,0,sales,low +0.69,0.72,4,210,2,1,0,0,sales,high +0.53,0.64,3,143,2,0,0,0,sales,low +0.17,0.57,4,116,3,0,0,0,sales,medium +0.48,0.71,2,162,3,1,0,0,sales,high +0.94,0.51,3,242,3,0,0,0,sales,medium +0.77,0.89,4,153,7,0,0,0,sales,medium +1,0.72,5,194,7,1,0,0,sales,medium +0.49,0.65,4,233,7,0,0,0,sales,medium +0.93,0.73,4,283,7,0,0,0,sales,high +0.38,0.43,3,188,7,0,0,0,sales,medium +0.6,0.54,4,182,6,0,0,0,sales,medium +0.5,0.82,2,286,6,0,0,0,sales,medium +0.97,0.55,5,212,6,0,0,0,sales,high +0.93,0.95,5,176,6,0,0,1,accounting,medium +0.5,1,5,264,8,0,0,1,accounting,high +0.52,0.84,3,261,8,0,0,1,accounting,low +0.5,0.71,4,163,8,0,0,1,hr,medium +0.55,0.4,3,139,8,0,0,1,hr,medium +0.95,0.84,3,261,8,1,0,1,hr,medium +0.48,0.42,2,275,6,1,0,1,hr,medium +0.51,0.39,5,132,6,1,0,1,technical,low +0.96,0.48,3,202,6,0,0,0,technical,low +0.97,0.84,4,177,6,0,0,0,technical,low +0.97,0.66,5,234,6,0,0,0,technical,low +0.71,0.54,4,188,6,0,0,0,technical,low +0.82,0.49,5,203,6,0,0,0,technical,low +0.57,1,4,227,10,0,0,0,technical,low +0.48,0.93,3,150,10,0,0,0,technical,low +0.71,0.64,3,267,3,0,0,0,technical,low +0.63,0.61,5,186,10,0,0,0,technical,low +0.99,0.84,4,142,10,0,0,0,technical,high +0.79,0.83,3,126,10,1,0,0,support,low +0.65,0.85,4,201,10,0,0,0,support,low +0.7,0.85,4,142,2,0,0,0,support,low +0.99,0.94,4,167,4,0,0,0,support,low +0.65,0.62,4,258,2,0,0,0,support,high +0.92,0.85,3,207,2,0,0,0,support,low +0.24,0.5,4,282,4,1,0,0,support,low +0.39,0.89,3,188,5,0,0,0,support,low +0.82,0.85,3,214,2,0,0,0,support,high +0.78,0.89,4,272,2,0,0,0,support,low +0.62,0.79,3,259,3,0,0,0,support,medium +0.6,0.61,5,191,2,1,0,0,technical,high +0.49,0.57,3,192,3,0,0,0,technical,medium +0.82,0.82,3,164,3,0,0,0,technical,high +0.48,0.81,4,149,2,0,0,0,management,medium +0.69,0.56,4,149,3,0,0,0,IT,medium +0.4,0.89,2,165,3,0,0,0,IT,medium +0.72,0.8,3,222,3,0,0,0,IT,medium +0.75,0.84,5,222,3,1,0,0,IT,medium +0.5,0.77,3,265,3,0,0,0,IT,medium +0.78,0.5,5,247,4,0,0,0,product_mng,medium +0.76,0.45,4,147,2,0,0,0,product_mng,medium +0.94,0.52,3,273,3,0,0,0,product_mng,high +0.24,0.94,6,144,4,0,0,0,product_mng,low +0.99,0.66,3,181,2,0,0,0,IT,medium +0.67,0.64,3,198,2,1,0,0,management,medium +0.76,0.57,5,255,4,0,0,0,management,medium +0.76,0.77,4,169,10,0,0,0,management,medium +0.55,0.64,4,201,10,1,0,0,management,medium +0.74,0.6,4,274,10,1,0,0,management,medium +0.81,0.85,4,134,10,1,0,0,management,medium +0.98,0.67,3,190,10,0,0,0,IT,medium +0.98,0.98,4,170,10,0,0,0,IT,medium +0.58,0.91,3,154,10,0,0,0,product_mng,high +0.18,0.75,3,142,2,0,0,0,product_mng,low +0.57,0.67,5,235,2,0,0,0,product_mng,low +0.7,0.62,3,110,3,0,0,0,product_mng,low +0.49,0.77,3,211,3,0,0,0,IT,high +0.7,0.56,4,214,3,0,0,1,management,medium +0.16,0.93,5,210,7,0,0,1,management,medium +0.58,0.59,3,207,7,0,0,1,management,medium +0.66,0.57,4,161,7,0,0,1,management,medium +0.51,0.55,2,102,7,0,0,1,management,medium +0.48,0.84,4,186,7,0,0,1,management,medium +0.56,0.71,3,211,6,0,0,1,marketing,low +0.81,0.62,3,240,6,0,0,1,sales,low +0.57,0.7,4,237,6,0,0,0,accounting,low +0.66,0.53,3,164,6,0,0,0,support,low +0.22,0.91,6,222,8,0,0,0,technical,low +0.96,0.71,3,205,8,1,0,0,management,medium +0.87,0.88,4,140,8,0,0,0,marketing,medium +0.61,0.42,2,103,8,0,0,0,marketing,medium +0.66,0.85,3,178,8,1,0,0,marketing,medium +0.9,0.51,4,137,6,0,0,0,sales,medium +0.64,0.67,3,143,6,0,0,0,sales,medium +0.76,0.82,4,170,6,0,0,0,sales,medium +0.97,0.41,5,135,6,0,0,0,sales,medium +0.69,0.76,3,174,6,0,0,0,sales,medium +0.98,0.55,3,166,6,1,0,0,sales,medium +0.18,0.61,5,174,6,0,0,0,sales,medium +0.62,0.91,3,251,10,0,0,0,sales,medium +0.29,0.37,6,187,10,1,0,0,sales,high +0.87,0.48,5,170,3,0,0,0,sales,low +0.91,0.64,3,241,10,0,0,0,sales,medium +0.53,0.79,3,221,10,1,0,0,sales,medium +0.69,0.73,4,257,10,1,0,0,sales,medium +0.14,0.58,4,275,10,0,0,0,sales,medium +0.7,0.77,4,245,2,0,0,0,sales,low +0.77,0.75,6,246,6,0,0,0,sales,low +0.77,0.76,6,263,6,0,0,0,sales,low +0.76,0.99,3,133,4,0,0,0,sales,low +0.66,0.49,4,157,3,0,0,0,sales,low +0.5,0.95,3,198,4,0,0,0,accounting,low +0.57,0.9,5,145,3,0,0,0,accounting,low +0.97,0.62,6,118,2,0,0,0,accounting,low +0.26,0.99,5,184,5,0,0,0,hr,low +0.72,0.62,3,243,2,1,0,0,hr,low +0.83,0.93,3,247,2,0,0,0,hr,low +0.55,0.4,3,158,3,0,0,0,hr,low +0.77,0.74,5,243,2,0,0,0,technical,low +0.24,0.63,4,203,5,0,0,0,technical,low +0.8,0.96,3,161,3,0,0,0,technical,low +0.5,0.59,4,214,3,1,0,0,technical,low +0.66,0.59,4,179,3,0,0,0,technical,low +0.66,0.77,4,188,2,0,0,0,technical,low +0.66,0.81,3,174,3,0,0,0,technical,low +0.96,0.83,3,177,4,0,0,0,technical,low +0.75,0.94,5,194,4,0,0,0,technical,low +0.78,0.77,3,244,2,0,0,0,technical,medium +0.57,0.82,4,269,2,0,0,0,technical,medium +0.78,0.68,2,159,3,1,0,0,support,medium +0.57,0.88,4,140,2,0,0,0,support,medium +0.84,0.56,5,224,2,0,0,0,support,medium +0.23,0.94,5,242,4,0,0,0,support,medium +0.53,0.37,3,180,3,0,0,0,support,medium +0.82,0.71,3,150,3,0,0,0,support,medium +0.59,0.64,5,269,3,0,0,0,support,medium +0.5,0.52,2,178,2,0,0,0,support,medium +1,0.74,2,187,3,0,0,0,support,medium +0.94,0.61,3,140,2,0,0,0,support,medium +0.86,0.61,4,193,2,0,0,0,support,high +0.73,0.49,4,243,2,0,0,0,technical,low +0.49,0.94,3,144,3,1,0,0,technical,medium +0.79,0.73,2,147,2,0,0,0,technical,medium +0.83,0.5,6,165,3,0,0,0,management,medium +0.85,0.67,3,176,2,0,0,0,IT,medium +0.65,0.37,3,170,6,0,0,0,IT,low +0.94,0.65,4,213,2,1,0,0,IT,low +0.76,0.81,4,242,2,0,0,0,IT,low +0.77,0.54,4,139,3,1,0,0,IT,low +0.77,0.91,4,239,3,1,0,0,product_mng,low +0.59,0.64,5,123,2,0,0,0,product_mng,low +0.69,0.9,3,185,4,0,0,0,product_mng,low +0.51,0.85,4,186,2,0,0,0,product_mng,low +0.8,0.67,3,178,3,0,0,0,IT,low +0.98,0.7,3,153,10,0,0,0,management,high +0.69,0.72,4,185,10,1,0,0,management,high +0.14,0.76,4,142,10,0,0,0,management,high +0.95,0.9,4,221,10,1,0,0,management,high +0.53,0.61,3,148,10,0,0,0,management,high +0.64,0.52,5,258,10,1,0,0,management,high +0.51,0.73,4,229,3,0,0,0,sales,low +0.36,0.73,2,111,2,0,0,0,sales,low +0.62,0.97,2,271,3,0,0,0,sales,low +0.98,0.58,4,133,3,0,0,0,sales,low +0.53,0.7,4,223,3,0,0,0,sales,low +0.8,0.95,4,272,2,0,0,0,sales,low +0.73,0.77,3,233,3,0,0,0,sales,medium +0.82,0.8,3,162,3,0,0,0,sales,medium +0.62,0.75,5,165,4,0,0,0,sales,medium +0.87,0.48,5,242,3,0,0,0,sales,medium +0.43,0.65,4,124,2,0,0,0,sales,medium +0.57,0.6,2,163,3,0,0,0,sales,medium +0.91,0.77,3,144,3,0,0,0,sales,medium +0.75,0.59,5,149,4,0,0,0,sales,medium +0.76,0.8,5,217,2,0,0,0,sales,medium +0.85,0.49,4,139,2,0,0,0,sales,medium +0.56,0.67,3,270,2,0,0,0,sales,medium +0.86,0.84,3,177,3,0,0,0,sales,medium +0.21,0.43,5,175,2,1,0,0,sales,high +0.94,0.59,3,151,2,0,0,0,sales,low +0.98,0.74,3,185,3,0,0,0,sales,medium +0.42,0.45,3,227,3,0,0,0,sales,medium +0.98,0.89,4,218,2,0,0,0,sales,medium +1,0.93,5,167,3,0,0,0,sales,medium +0.95,0.52,3,183,2,1,0,0,sales,low +0.95,0.5,4,259,3,0,0,0,sales,low +0.68,0.53,3,138,2,1,0,0,sales,low +0.64,0.38,5,122,4,0,0,0,sales,low +0.24,0.62,6,225,6,0,0,0,sales,low +0.37,0.72,3,121,2,0,0,0,sales,low +0.67,0.4,4,274,3,0,0,0,sales,low +0.86,0.89,4,153,4,0,0,0,sales,low +0.43,0.38,3,119,2,0,0,0,sales,low +0.67,0.67,4,141,2,1,0,0,sales,low +0.92,0.6,4,161,3,0,0,0,IT,low +0.43,0.46,2,186,2,0,0,0,product_mng,low +0.52,0.8,3,252,4,0,0,0,product_mng,low +0.16,0.42,3,182,3,1,0,0,product_mng,low +0.49,0.6,4,264,2,1,0,0,product_mng,low +0.37,0.63,4,167,3,0,0,0,IT,low +0.98,0.68,5,171,3,0,0,0,management,high +0.33,0.97,5,130,4,0,0,0,management,high +0.14,0.79,5,271,4,0,0,0,management,high +0.54,0.79,5,249,3,1,0,0,management,high +0.63,0.48,4,180,4,0,0,0,management,high +0.55,0.69,4,220,3,1,0,0,management,high +0.84,0.53,3,210,4,1,0,0,marketing,medium +0.51,0.97,4,258,2,0,0,0,sales,medium +0.15,0.75,3,150,4,0,0,1,accounting,medium +0.97,0.79,5,259,3,0,0,1,support,medium +0.67,0.69,3,231,3,0,0,1,technical,medium +0.48,0.67,4,220,3,0,0,1,management,medium +0.69,0.58,4,149,3,0,0,1,marketing,medium +0.6,0.62,3,238,4,0,0,1,marketing,medium +0.82,0.71,2,209,5,0,0,1,marketing,medium +0.86,0.95,4,149,3,0,0,1,sales,medium +0.69,0.59,4,264,3,0,0,0,sales,medium +0.87,0.87,5,207,2,0,0,0,sales,high +0.17,0.78,3,239,6,0,0,0,sales,low +0.94,0.51,6,239,5,0,0,0,sales,medium +0.5,1,4,258,3,0,0,0,sales,medium +0.16,0.72,3,203,3,0,0,0,sales,medium +0.89,0.99,2,258,3,0,0,0,sales,medium +0.69,0.51,3,257,3,1,0,0,IT,low +0.5,0.51,5,134,3,0,0,0,product_mng,low +0.16,0.46,6,240,2,0,0,0,product_mng,low +0.75,0.99,2,237,5,1,0,0,product_mng,low +0.64,0.66,5,157,2,0,0,0,product_mng,low +0.78,0.43,4,275,3,0,0,0,IT,low +0.81,0.74,2,228,3,0,0,0,management,high +0.55,0.58,3,254,2,0,0,0,management,high +0.53,0.53,4,257,2,0,0,0,management,high +0.69,0.73,3,231,2,1,0,0,management,high +0.8,0.53,3,217,3,0,0,0,management,high +0.77,0.98,3,286,6,0,0,0,management,high +0.84,0.8,4,236,3,0,0,0,marketing,low +0.64,0.55,4,215,2,0,0,0,sales,low +0.78,0.57,4,157,3,0,0,0,accounting,low +0.67,0.7,3,149,3,0,0,0,support,low +0.81,0.77,3,221,2,0,0,0,technical,low +0.91,0.82,4,238,2,0,0,0,management,low +0.75,0.89,6,250,2,0,0,0,marketing,medium +0.78,0.96,3,202,4,1,0,0,marketing,medium +0.54,0.52,4,173,2,0,0,0,marketing,medium +0.77,0.71,5,250,3,1,0,0,sales,medium +0.89,0.63,4,270,3,1,0,0,sales,medium +0.16,0.98,3,232,5,0,0,0,sales,medium +0.77,0.99,4,260,3,0,0,0,sales,medium +0.69,0.48,5,232,4,0,0,0,sales,medium +0.61,0.81,4,134,3,0,0,0,sales,medium +0.59,0.81,4,189,3,0,0,0,sales,medium +0.58,0.8,4,113,3,0,0,0,IT,medium +0.88,0.67,5,264,3,0,0,0,product_mng,medium +0.51,0.63,5,260,2,0,0,0,product_mng,high +0.31,0.7,3,132,3,0,0,0,product_mng,low +0.52,0.52,4,168,3,0,0,0,product_mng,medium +0.57,0.46,3,186,3,1,0,0,IT,medium +0.5,0.77,3,267,2,0,0,0,management,high +0.74,0.63,3,180,3,0,0,0,management,high +0.74,0.77,3,211,3,0,0,0,management,high +0.82,0.51,2,268,2,0,0,0,management,high +0.74,0.71,3,206,3,0,0,0,management,high +0.2,0.59,6,113,3,0,0,0,management,high +0.63,0.48,4,179,3,0,0,0,marketing,low +0.19,0.8,6,157,6,1,0,0,sales,low +0.4,0.62,4,127,5,0,0,0,accounting,low +0.71,0.37,2,179,5,0,0,1,support,low +0.84,0.73,4,197,3,0,0,1,technical,low +0.59,0.84,4,251,4,1,0,1,management,low +0.57,0.85,4,250,3,1,0,1,marketing,low +0.81,0.61,2,176,5,0,0,1,marketing,low +0.8,0.7,4,246,3,0,0,1,marketing,low +0.49,0.66,3,155,3,0,0,1,sales,low +0.55,0.64,3,178,2,0,0,1,sales,low +0.68,0.4,3,213,5,1,0,1,sales,low +0.55,0.67,3,150,2,0,0,1,sales,low +0.59,0.62,3,166,2,0,0,0,sales,low +0.91,0.8,5,169,4,0,0,0,sales,low +0.48,0.9,4,208,3,0,0,0,sales,low +0.84,0.66,3,209,2,0,0,0,sales,low +0.73,0.54,4,167,3,0,0,0,IT,medium +0.28,0.59,6,281,3,0,0,0,product_mng,medium +0.77,0.65,3,156,4,0,0,0,product_mng,medium +0.67,0.65,3,265,3,0,0,0,product_mng,medium +0.5,0.53,3,142,3,1,0,0,product_mng,medium +0.32,0.47,3,143,4,0,0,0,IT,medium +0.57,0.78,3,134,3,0,0,0,RandD,medium +0.51,0.8,5,268,3,0,0,0,RandD,medium +0.61,0.6,3,255,2,0,0,0,RandD,medium +0.83,0.73,4,157,2,0,0,0,RandD,medium +0.87,0.97,5,151,3,0,0,0,RandD,medium +0.7,0.63,3,157,2,0,0,0,RandD,medium +0.78,0.65,3,139,3,0,0,0,marketing,high +0.71,0.53,4,196,2,1,0,0,sales,low +0.68,0.99,3,159,2,0,0,0,accounting,medium +0.75,0.53,4,224,4,1,0,0,support,medium +0.7,0.53,3,215,7,1,0,0,technical,medium +0.59,0.94,5,157,7,1,0,0,management,medium +0.64,0.87,4,157,7,0,0,0,marketing,low +0.61,0.88,5,146,7,1,0,0,marketing,low +0.77,0.49,2,286,7,0,0,0,marketing,low +0.51,0.64,3,203,3,0,0,0,sales,low +0.49,0.49,3,168,7,0,0,0,sales,low +0.77,0.75,3,170,7,0,0,0,sales,low +0.31,0.86,3,266,7,0,0,0,sales,low +0.54,0.76,3,183,3,0,0,0,sales,low +0.56,0.66,4,264,3,0,0,0,sales,low +0.65,0.77,4,205,3,0,0,0,sales,low +0.49,0.36,2,192,3,0,0,0,sales,low +0.82,0.79,3,176,3,0,0,0,technical,low +0.6,0.52,3,183,2,0,0,0,support,low +0.64,0.63,3,156,6,1,0,0,support,low +0.7,0.68,3,150,3,0,0,0,support,low +0.65,0.89,4,204,8,1,0,0,support,low +0.69,0.78,5,131,8,0,0,0,support,low +0.93,0.74,5,248,8,1,0,0,support,low +0.55,0.52,4,168,8,0,0,0,support,low +0.75,0.87,4,146,8,1,0,0,support,low +0.47,0.43,4,246,3,0,0,0,support,low +0.72,0.88,5,216,10,1,0,0,support,medium +0.59,0.92,3,203,10,0,0,0,support,medium +0.98,0.49,3,199,10,0,0,0,technical,medium +0.39,0.52,2,102,8,0,0,0,technical,medium +0.93,0.87,4,139,8,0,0,0,technical,medium +0.71,0.97,5,208,8,1,0,0,management,medium +0.49,0.54,4,215,4,0,0,0,IT,medium +0.63,0.93,4,233,3,0,0,0,IT,medium +0.45,0.64,3,169,10,0,0,0,IT,medium +0.77,0.64,3,190,10,1,0,0,IT,medium +0.77,0.63,4,236,7,0,0,0,IT,medium +0.5,0.92,4,266,7,0,0,0,product_mng,medium +0.45,0.42,4,156,7,0,0,0,product_mng,high +0.81,0.47,4,153,7,0,0,0,product_mng,low +0.83,0.67,3,175,3,0,0,0,product_mng,medium +0.47,0.76,6,174,10,0,0,0,IT,medium +0.25,0.89,4,154,10,0,0,0,management,high +0.89,0.55,5,251,10,0,0,0,management,high +0.97,0.57,3,164,10,0,0,0,management,high +0.6,0.65,2,225,10,0,0,0,management,high +0.67,0.72,2,134,10,0,0,0,management,high +0.89,0.77,3,144,3,0,0,0,management,high +0.6,0.91,5,211,3,0,0,0,sales,low +0.64,0.79,4,139,3,0,0,0,sales,low +0.57,0.66,3,268,3,0,0,0,sales,low +0.56,0.98,5,171,3,1,0,0,sales,low +0.6,0.9,4,260,2,0,0,0,sales,medium +0.17,0.66,6,224,3,0,0,0,sales,medium +0.74,0.49,4,233,3,0,0,0,sales,medium +0.44,0.41,3,125,7,0,0,0,sales,medium +0.51,0.89,4,233,7,0,0,0,sales,medium +0.86,0.57,3,162,7,0,0,0,sales,medium +0.96,0.48,4,198,7,0,0,0,sales,medium +0.87,0.82,4,198,7,0,0,0,sales,medium +0.58,0.79,3,243,3,1,0,0,sales,medium +0.24,0.56,4,281,7,0,0,0,sales,medium +0.42,0.8,4,259,7,1,0,0,sales,medium +0.65,0.94,4,184,7,0,0,0,sales,medium +0.73,0.92,6,189,3,1,0,0,sales,medium +0.63,0.6,4,258,3,0,0,0,sales,medium +0.95,0.48,4,225,3,0,0,0,sales,medium +0.52,0.83,5,145,3,0,0,0,sales,medium +0.96,0.55,3,164,3,0,0,0,sales,medium +0.66,0.51,4,254,2,0,0,0,sales,medium +0.98,0.44,4,154,6,1,0,0,sales,medium +0.56,0.79,5,248,3,0,0,0,sales,medium +0.97,0.54,3,154,8,1,0,0,sales,medium +0.72,0.92,3,242,8,0,0,0,sales,medium +0.74,0.78,4,194,8,0,0,0,sales,medium +0.2,0.6,5,261,8,0,0,0,sales,medium +0.73,0.56,3,245,8,0,0,0,sales,medium +0.76,0.79,3,247,3,0,0,0,sales,low +0.65,0.54,4,147,10,0,0,0,sales,low +0.66,0.5,3,139,10,1,0,0,sales,low +0.96,0.97,6,137,10,0,0,0,sales,low +0.57,0.55,4,177,8,0,0,0,sales,low +0.61,0.82,4,184,8,0,0,0,IT,low +0.57,0.69,3,212,8,0,0,0,product_mng,low +0.59,0.47,3,159,4,0,0,0,product_mng,low +0.92,0.68,4,178,3,0,0,0,product_mng,low +0.79,0.56,3,149,10,0,0,0,product_mng,low +0.95,0.66,4,223,10,0,0,0,IT,low +0.24,0.81,6,263,7,0,0,0,management,high +0.49,0.52,4,161,7,0,0,0,management,high +0.49,0.68,3,192,7,0,0,0,management,high +0.97,0.51,5,215,7,0,0,0,management,high +0.55,0.78,4,261,3,0,0,0,management,high +0.76,0.56,5,222,10,0,0,0,management,high +0.53,0.99,3,223,10,0,0,0,marketing,low +0.51,0.86,3,182,10,0,0,0,sales,low +0.57,0.93,2,204,10,0,0,0,accounting,low +0.58,0.91,3,195,10,0,0,0,support,low +0.6,0.98,4,146,10,0,0,0,technical,low +0.65,0.74,4,233,4,1,0,0,management,low +0.91,0.75,2,147,3,0,0,0,marketing,low +0.65,0.55,3,156,5,0,0,0,marketing,low +0.18,0.49,3,240,2,1,0,0,marketing,low +0.66,0.9,4,177,7,0,0,0,sales,low +0.78,0.8,3,135,7,0,0,0,sales,medium +0.82,0.65,5,178,7,1,0,0,sales,medium +0.54,0.64,3,190,7,0,0,0,sales,medium +0.95,0.84,3,240,7,0,0,0,sales,medium +0.65,0.85,4,172,3,0,0,0,sales,medium +0.83,0.55,3,271,7,0,0,0,sales,medium +0.15,0.6,5,188,7,0,0,0,sales,medium +0.59,0.59,4,197,7,0,0,0,IT,medium +0.99,0.94,5,151,3,0,0,0,product_mng,medium +0.76,0.72,3,263,3,0,0,0,product_mng,medium +0.64,0.67,2,223,3,0,0,0,product_mng,medium +0.95,0.75,4,151,3,0,0,0,product_mng,medium +0.53,0.66,3,191,3,0,0,0,IT,high +0.59,0.5,2,162,2,0,0,0,management,high +0.69,0.86,5,195,6,0,0,0,management,high +0.5,0.49,4,222,3,0,0,0,management,high +0.89,0.96,3,179,8,0,0,0,management,high +0.56,0.39,3,106,8,0,0,0,management,high +0.77,0.68,3,214,8,1,0,0,management,high +0.15,0.75,3,259,8,1,0,0,marketing,high +0.88,0.58,3,145,8,0,0,0,sales,low +0.89,0.86,4,153,3,0,0,0,accounting,low +0.65,0.52,2,117,10,1,0,0,support,low +0.58,0.99,3,207,10,0,0,0,technical,low +0.56,0.85,3,265,10,1,0,0,management,low +0.25,0.72,5,279,8,0,0,0,marketing,low +0.87,0.89,4,225,8,0,0,0,marketing,low +0.62,0.4,3,158,8,1,0,0,marketing,low +0.72,0.75,4,211,4,0,0,0,sales,medium +0.49,0.94,4,175,3,0,0,0,sales,medium +0.57,0.91,4,224,10,0,0,0,sales,medium +0.63,0.65,3,190,10,0,0,0,sales,medium +0.91,0.63,5,240,7,0,0,0,sales,medium +0.7,0.68,5,225,7,0,0,0,sales,medium +0.66,0.95,5,192,7,0,0,0,sales,medium +0.77,0.48,5,262,7,0,0,0,IT,medium +0.68,0.97,3,250,3,1,0,0,product_mng,medium +0.34,0.46,3,155,10,0,0,0,product_mng,medium +0.97,0.64,4,238,10,1,0,0,product_mng,medium +0.57,0.75,4,249,10,0,0,0,product_mng,medium +0.66,0.65,3,272,10,0,0,0,IT,medium +0.68,0.67,4,162,10,0,0,0,management,high +0.49,0.78,4,254,10,0,0,0,management,high +0.72,0.66,4,184,3,0,0,0,management,high +0.77,0.89,4,269,10,0,0,0,management,high +0.77,0.73,3,201,10,0,0,0,management,high +0.59,0.73,4,247,10,0,0,0,management,high +0.41,0.67,6,221,10,0,0,0,marketing,medium +0.94,0.64,5,247,10,0,0,0,sales,medium +0.91,0.61,4,135,10,0,0,0,accounting,medium +0.7,0.84,3,260,4,1,0,0,support,medium +0.51,0.52,3,188,3,0,0,0,technical,high +0.22,0.7,4,159,5,0,0,0,management,low +0.69,0.65,3,153,2,0,0,0,marketing,medium +0.2,0.68,5,167,7,0,0,0,marketing,medium +0.9,0.85,3,158,7,0,0,0,marketing,medium +0.76,0.85,3,180,7,0,0,0,sales,medium +0.88,0.51,3,211,7,0,0,0,sales,medium +0.31,0.63,4,104,7,1,0,0,sales,medium +0.17,0.66,6,174,3,0,0,0,sales,medium +0.91,0.77,3,195,7,0,0,0,sales,medium +0.97,0.38,5,211,7,1,0,0,sales,medium +0.61,0.77,5,232,7,0,0,0,sales,medium +0.74,0.67,5,216,3,0,0,0,sales,low +0.65,0.82,5,265,3,0,0,0,IT,low +0.87,0.73,5,184,3,0,0,0,product_mng,low +0.56,0.71,5,244,3,0,0,0,product_mng,low +0.78,0.69,4,202,3,0,0,0,product_mng,low +0.73,0.57,3,146,2,0,0,0,product_mng,low +0.66,0.78,4,161,6,0,0,0,IT,low +0.15,0.81,5,280,3,1,0,0,RandD,high +0.52,0.69,5,208,8,1,0,0,RandD,low +0.44,0.66,6,134,8,0,0,0,RandD,high +0.7,0.7,3,162,8,0,0,0,RandD,high +0.63,0.52,5,209,8,1,0,0,RandD,low +0.89,0.59,3,265,8,0,0,0,RandD,low +0.96,0.85,4,173,3,0,0,0,marketing,high +0.98,0.99,4,261,10,1,0,0,sales,low +0.62,0.82,3,204,10,0,0,0,accounting,medium +0.62,0.73,3,144,10,1,0,0,support,high +0.69,0.43,5,113,8,0,0,0,technical,medium +0.5,0.91,4,144,8,0,0,0,management,medium +0.71,0.93,5,140,8,0,0,0,marketing,medium +0.5,0.68,3,245,4,0,0,0,marketing,medium +0.93,0.6,3,188,3,0,0,0,marketing,high +0.95,0.77,5,199,10,1,0,0,sales,medium +0.17,0.61,6,154,10,1,0,0,sales,medium +0.92,0.68,4,138,7,0,0,0,sales,medium +0.64,0.48,3,147,7,0,0,0,sales,high +0.27,0.42,6,173,7,0,0,0,sales,medium +0.66,0.87,3,223,7,0,0,0,sales,high +0.59,0.69,3,200,3,0,0,0,sales,low +0.93,0.98,4,189,10,0,0,0,sales,medium +0.58,0.67,5,133,10,0,0,0,technical,medium +0.96,0.6,3,160,10,0,0,0,support,medium +0.69,0.85,3,153,10,0,0,0,support,medium +0.41,0.38,4,142,10,1,0,0,support,low +0.36,0.41,3,167,10,0,0,0,support,low +0.71,0.78,4,227,2,0,0,0,support,low +0.94,0.9,4,144,4,0,0,0,support,low +0.51,0.76,4,140,3,0,0,0,support,low +0.83,0.48,4,220,3,1,0,0,support,low +0.22,0.62,3,180,3,0,0,0,support,low +0.66,0.89,4,173,4,0,0,0,support,low +0.14,0.58,3,179,5,0,0,0,support,low +0.16,0.96,5,137,5,1,0,0,technical,low +0.81,0.78,3,165,3,0,0,0,technical,high +0.73,0.94,3,177,3,0,0,0,technical,low +0.7,0.58,5,168,3,0,0,0,management,low +0.62,0.73,3,245,4,0,0,0,IT,low +0.5,0.83,5,258,2,0,0,0,IT,low +0.7,0.88,3,159,2,0,0,0,IT,high +0.53,0.73,3,163,3,1,0,0,IT,low +0.87,0.9,3,174,2,0,0,0,IT,low +0.59,0.6,3,214,2,1,0,0,product_mng,low +0.94,0.67,4,191,3,1,0,0,product_mng,high +0.2,0.53,5,272,5,0,0,0,product_mng,low +0.42,0.44,3,183,2,0,0,0,product_mng,medium +0.43,0.66,4,135,2,0,0,0,IT,high +0.43,0.76,6,154,2,0,0,0,management,high +0.77,0.86,5,238,3,0,0,0,management,high +0.76,0.98,2,235,3,0,0,0,management,high +0.82,0.9,3,215,4,0,0,0,management,high +0.75,0.66,5,234,2,0,0,0,management,high +0.63,0.98,4,187,3,0,0,0,management,high +0.51,0.75,3,133,3,0,0,0,sales,medium +0.23,0.7,3,123,5,0,0,0,sales,medium +0.77,0.58,4,202,3,0,0,0,sales,medium +0.54,0.63,4,140,3,0,0,0,sales,medium +0.63,0.85,4,182,3,1,0,0,sales,high +0.55,0.45,3,179,2,1,0,0,sales,low +0.31,0.63,3,150,3,1,0,0,sales,medium +0.98,0.74,4,151,3,0,0,0,sales,medium +0.16,0.95,6,117,7,0,0,0,sales,medium +0.54,0.78,3,156,7,0,0,0,sales,medium +0.73,0.48,3,211,7,0,0,0,sales,medium +0.16,0.63,6,286,7,0,0,1,sales,medium +0.57,0.82,5,233,7,0,0,1,sales,medium +0.88,0.88,4,222,3,1,0,1,sales,medium +0.95,0.81,4,258,7,0,0,1,sales,medium +0.93,0.7,5,231,7,0,0,1,sales,high +0.91,0.58,3,220,7,0,0,1,sales,low +0.77,0.82,4,134,3,0,0,1,sales,low +0.24,0.94,6,141,3,1,0,0,sales,low +0.74,0.74,5,160,3,1,0,0,sales,high +0.53,0.59,4,259,3,0,0,0,sales,low +0.89,0.77,5,232,3,0,0,0,sales,low +0.23,0.77,5,272,2,0,0,0,sales,low +0.69,0.66,3,215,6,0,0,0,sales,high +0.52,0.72,4,222,3,0,0,0,sales,low +0.9,0.58,3,244,8,0,0,0,sales,low +0.92,0.63,5,224,8,1,0,0,sales,low +0.72,0.59,5,200,8,1,0,0,sales,low +0.92,0.61,4,143,8,0,0,0,sales,low +0.79,0.86,5,238,8,0,0,0,sales,low +0.48,0.89,4,145,3,0,0,0,sales,low +0.27,0.76,4,108,10,0,0,0,sales,medium +0.67,0.49,3,247,10,0,0,0,sales,medium +0.48,0.7,3,213,10,0,0,0,sales,medium +0.99,0.6,4,209,8,1,0,0,IT,medium +0.49,0.88,4,240,8,0,0,0,product_mng,medium +0.39,0.45,3,100,8,1,0,0,product_mng,medium +0.99,0.92,4,265,4,1,0,0,product_mng,medium +0.78,0.57,3,209,3,0,0,0,product_mng,medium +0.5,0.73,3,154,10,0,0,0,IT,medium +0.61,0.79,5,230,10,0,0,0,management,high +0.88,0.6,4,208,7,0,0,1,management,high +0.44,0.44,2,141,7,1,0,1,management,high +0.73,0.78,3,262,7,1,0,1,management,high +0.58,0.84,4,206,7,0,0,1,management,high +0.74,0.98,3,166,3,1,0,1,management,high +0.32,0.48,4,117,10,0,0,1,marketing,medium +0.88,0.83,4,273,10,0,0,0,sales,medium +0.81,0.9,4,270,10,0,0,0,accounting,medium +0.59,0.92,3,138,10,0,0,0,support,low +0.79,0.65,3,235,10,0,0,0,technical,low +0.92,0.64,4,190,10,1,0,0,management,low +0.76,0.85,3,192,3,0,0,0,marketing,low +0.91,0.65,5,214,3,1,0,0,marketing,low +0.8,0.84,4,242,2,1,0,0,marketing,low +0.73,0.72,4,233,2,0,0,0,sales,low +0.88,0.53,3,218,4,0,0,0,sales,low +0.65,0.4,5,125,4,0,0,0,sales,low +0.84,0.5,4,178,2,0,0,0,sales,low +0.93,0.5,5,272,3,0,0,0,sales,low +0.64,0.6,3,265,4,0,0,0,sales,low +0.66,0.72,4,271,3,0,0,0,sales,low +0.76,0.56,3,179,3,1,0,0,sales,low +0.34,0.72,3,118,4,0,0,0,IT,low +0.48,0.8,4,196,5,0,0,0,product_mng,low +0.79,0.61,4,173,2,0,0,0,product_mng,low +0.82,0.67,4,156,3,0,0,0,product_mng,low +0.51,0.71,2,180,3,0,0,0,product_mng,low +0.84,0.78,4,263,3,0,0,0,IT,low +0.66,0.79,5,134,3,0,0,0,management,high +0.72,0.88,3,189,3,1,0,0,management,high +0.53,0.91,4,167,4,0,0,0,management,high +0.81,0.8,5,132,2,1,0,0,management,high +0.58,0.9,3,209,2,0,0,0,management,high +0.82,0.56,2,227,5,1,0,0,management,high +0.72,0.99,4,239,3,0,0,0,marketing,medium +0.9,0.54,4,172,4,0,0,0,sales,medium +0.98,0.91,3,188,4,0,0,0,accounting,medium +0.56,0.74,3,265,3,0,0,0,support,medium +0.77,0.82,3,153,3,1,0,0,technical,medium +0.61,0.89,4,242,2,0,0,0,management,medium +0.97,0.61,4,262,3,1,0,1,marketing,medium +0.64,0.55,3,246,2,0,0,1,marketing,high +0.99,0.97,4,211,2,0,0,1,marketing,low +0.61,0.42,3,145,4,0,0,1,sales,medium +0.72,0.71,4,256,3,0,0,1,sales,medium +0.67,0.91,2,245,2,1,0,1,sales,medium +0.9,0.56,3,151,3,0,0,0,sales,medium +0.9,0.73,4,245,2,0,0,0,sales,low +0.63,0.61,4,171,3,0,0,0,sales,low +0.64,0.88,3,252,2,0,0,0,sales,low +0.44,0.65,3,175,2,0,0,0,IT,low +0.64,0.94,4,210,3,0,0,0,product_mng,low +0.65,0.95,2,180,2,0,0,0,product_mng,low +0.69,0.9,5,103,5,0,0,0,product_mng,low +0.93,0.51,4,110,3,0,0,0,product_mng,low +0.73,0.9,5,184,3,0,0,0,IT,low +0.83,0.6,4,161,2,0,0,0,management,high +0.82,0.49,5,210,3,0,0,0,management,high +0.39,0.91,2,212,2,0,0,0,management,high +0.53,0.47,6,106,6,0,0,0,management,high +0.88,0.81,4,179,3,0,0,0,management,high +0.8,0.6,5,217,3,0,0,0,management,high +0.68,0.79,4,184,3,0,0,0,marketing,low +0.66,0.6,3,210,2,0,0,0,sales,low +0.61,0.61,4,246,2,0,0,0,accounting,low +0.74,0.55,4,262,3,0,0,0,support,low +0.61,0.83,4,245,3,1,0,1,technical,low +0.57,0.99,3,222,3,1,0,1,management,low +0.68,0.54,4,146,4,0,0,1,marketing,medium +0.75,0.79,4,263,3,0,0,1,marketing,medium +0.29,0.57,5,134,2,0,0,1,marketing,medium +0.81,0.81,5,250,4,0,0,1,sales,medium +0.53,0.68,4,173,3,0,0,0,sales,medium +0.42,0.96,6,173,3,0,0,0,sales,medium +0.64,0.67,4,252,3,1,0,0,sales,medium +0.63,0.5,2,230,4,0,0,0,sales,medium +0.81,0.81,4,212,2,1,0,0,sales,medium +0.71,0.66,5,187,2,0,0,0,sales,medium +0.7,0.83,5,241,2,0,0,0,sales,medium +0.53,1,3,164,4,0,0,0,IT,medium +0.16,0.93,6,218,6,1,0,0,product_mng,high +0.17,0.55,4,194,3,0,0,0,product_mng,low +0.7,0.95,3,158,2,0,0,0,product_mng,medium +0.43,0.88,2,149,4,0,0,0,product_mng,medium +0.49,0.62,4,161,2,0,0,0,IT,medium +0.5,0.9,5,226,2,0,0,0,management,high +0.57,0.59,2,111,2,0,0,0,management,high +0.68,0.75,4,258,3,0,0,0,management,high +0.62,0.61,3,266,2,0,0,0,management,high +0.69,0.75,3,253,3,0,0,0,management,high +0.63,0.7,5,160,3,0,0,0,management,high +0.76,0.62,5,230,3,1,0,0,marketing,low +0.62,0.76,5,198,3,0,0,0,sales,low +0.82,0.69,3,250,3,0,0,0,accounting,low +0.2,0.7,4,225,5,0,0,0,support,low +0.16,0.7,3,178,3,1,0,0,technical,low +0.2,0.78,4,196,3,0,0,0,management,low +0.53,0.51,4,240,2,0,0,0,marketing,low +0.71,0.63,3,204,3,0,0,0,marketing,low +0.7,0.93,3,250,3,0,0,0,marketing,low +0.92,0.94,2,224,2,0,0,0,sales,low +0.81,0.92,4,268,3,0,0,0,sales,low +0.79,0.62,5,167,3,0,0,0,sales,low +0.53,0.64,3,168,3,0,0,0,sales,low +0.51,0.56,4,168,2,0,0,0,sales,low +0.78,0.9,5,158,3,0,0,0,sales,low +0.5,0.91,3,240,3,0,0,0,sales,low +0.92,1,4,261,4,0,0,0,sales,medium +0.59,0.54,4,176,2,0,0,0,technical,medium +0.77,0.55,3,217,3,0,0,0,support,medium +0.74,0.87,5,224,2,0,0,0,support,medium +0.67,0.97,4,196,3,0,0,0,support,medium +0.56,0.59,3,223,3,0,0,0,support,medium +0.84,0.44,5,131,5,1,0,0,support,medium +0.53,0.77,2,167,2,0,0,0,support,medium +0.86,0.71,5,273,3,0,0,0,support,medium +0.77,0.68,3,98,3,0,0,0,support,medium +0.97,0.94,4,253,3,0,0,0,support,medium +0.69,0.87,5,174,3,0,0,0,support,medium +0.73,0.9,3,274,2,0,0,0,support,high +0.42,0.47,6,174,5,0,0,0,technical,low +0.4,0.47,5,173,5,0,0,0,technical,medium +0.33,0.41,2,198,4,0,0,0,technical,medium +0.68,0.66,3,238,2,0,0,0,management,medium +0.78,0.8,3,256,2,0,0,0,IT,medium +0.92,0.6,3,179,2,0,0,0,IT,low +0.66,0.66,4,273,4,1,0,0,IT,low +0.6,0.45,3,104,4,0,0,0,IT,low +0.86,0.83,4,208,3,1,0,0,IT,low +0.61,0.49,3,275,2,0,0,0,product_mng,low +0.71,0.68,3,231,2,1,0,0,product_mng,low +0.86,0.62,4,186,3,0,0,0,product_mng,low +0.96,0.59,3,241,3,0,0,0,product_mng,low +0.7,0.54,3,194,2,1,0,0,IT,low +0.38,0.49,4,196,3,0,0,1,management,high +0.39,0.75,6,185,3,0,0,1,management,high +0.49,0.4,2,148,2,1,0,1,management,high +0.78,0.62,4,150,3,0,0,1,management,high +0.74,0.79,5,121,5,0,0,1,management,high +0.82,0.76,4,266,3,0,0,1,management,high +0.6,0.42,2,109,6,0,0,0,sales,low +0.72,0.99,3,143,4,0,0,0,sales,low +0.73,0.97,3,174,3,0,0,0,sales,low +0.89,0.55,4,159,2,0,0,0,sales,medium +0.74,0.94,4,157,2,0,0,0,sales,medium +0.83,0.57,2,222,2,0,0,0,sales,medium +0.24,0.88,5,199,5,1,0,0,sales,medium +0.93,0.89,3,255,7,1,0,0,sales,medium +0.96,0.62,4,253,7,0,0,0,sales,medium +0.16,0.68,5,149,7,1,0,0,sales,medium +0.21,0.85,6,285,7,0,0,0,sales,medium +0.69,0.54,3,164,7,0,0,0,sales,medium +0.66,0.96,3,243,3,1,0,0,sales,medium +0.67,0.39,2,207,7,0,0,0,sales,medium +0.85,0.58,4,186,7,0,0,0,sales,medium +0.37,0.92,4,211,7,0,0,0,sales,high +0.64,0.64,2,190,3,0,0,0,sales,low +0.91,0.82,2,241,3,0,0,0,sales,medium +0.96,0.68,3,206,3,0,0,0,sales,medium +0.74,0.7,4,273,3,0,0,0,sales,medium +0.94,0.99,2,157,3,0,0,0,sales,medium +0.37,0.72,3,183,2,0,0,0,sales,low +0.92,0.85,3,151,6,1,0,0,sales,low +0.86,0.72,3,217,3,0,0,0,sales,low +0.66,0.49,5,235,8,1,0,0,sales,low +0.19,0.61,4,127,8,0,0,0,sales,low +0.65,0.61,5,167,8,0,0,0,sales,low +0.92,0.44,3,260,8,0,0,0,sales,low +0.83,0.8,3,240,8,0,0,0,sales,low +0.94,0.82,4,187,3,0,0,0,sales,low +0.42,0.69,3,126,2,0,0,0,sales,low +0.78,0.53,6,168,3,0,0,0,sales,low +0.58,0.76,4,197,5,0,0,0,sales,low +0.5,0.64,2,170,8,0,0,0,sales,low +0.82,0.76,3,219,8,1,0,0,IT,low +0.97,0.92,6,137,8,1,0,0,product_mng,low +0.8,0.93,3,225,4,0,0,0,product_mng,low +0.82,0.84,3,194,3,0,0,0,product_mng,low +0.95,0.99,5,251,4,0,0,0,product_mng,low +0.88,0.51,5,195,4,0,0,0,IT,low +0.5,0.86,3,180,7,0,0,1,management,high +0.53,0.8,2,225,7,1,0,1,management,high +0.82,0.74,3,229,7,0,0,1,management,high +0.15,0.74,6,144,7,0,0,1,management,high +0.92,0.7,3,129,3,0,0,1,management,high +0.53,0.74,3,172,10,0,0,1,management,high +0.58,1,4,220,10,0,0,0,marketing,medium +0.88,0.74,3,273,10,0,0,0,sales,medium +0.85,0.72,3,245,10,0,0,0,accounting,medium +0.99,0.68,5,264,10,1,0,0,support,medium +0.94,0.73,3,268,10,0,0,0,technical,medium +0.63,0.94,3,172,3,0,0,0,management,medium +0.85,0.9,3,245,3,0,0,0,marketing,medium +0.95,0.66,5,192,3,0,0,0,marketing,medium +0.71,0.66,3,268,4,0,0,0,marketing,high +0.49,0.88,4,244,3,0,0,0,sales,low +0.71,0.69,4,222,4,0,0,0,sales,medium +0.52,0.62,5,239,2,0,0,0,sales,medium +0.48,0.72,3,143,4,0,0,0,sales,medium +0.82,0.79,3,160,3,0,0,0,sales,medium +0.83,0.76,2,255,7,0,0,0,sales,low +0.85,0.87,4,152,7,0,0,0,sales,low +0.57,0.64,4,226,7,0,0,0,sales,low +0.16,0.63,5,266,7,0,0,0,IT,low +0.85,0.64,5,256,7,0,0,0,product_mng,low +0.82,0.67,3,198,3,1,0,0,product_mng,low +0.9,0.89,4,254,7,0,0,0,product_mng,low +0.92,0.64,2,104,7,0,0,0,product_mng,low +0.9,0.48,4,136,7,0,0,0,IT,low +0.82,0.8,5,205,3,0,0,0,IT,low +0.84,0.81,4,236,3,1,0,0,IT,low +0.92,0.65,3,176,3,0,0,0,IT,low +0.82,0.82,3,148,3,0,0,0,IT,low +0.8,0.8,4,146,3,1,0,0,IT,low +0.6,0.85,3,242,2,0,0,0,IT,low +0.14,0.38,5,115,6,1,0,0,marketing,high +0.85,0.89,4,150,3,0,0,0,accounting,high +0.55,0.81,3,239,8,0,0,0,accounting,high +0.49,0.71,4,178,8,0,0,0,IT,medium +0.82,0.58,5,263,8,0,0,0,IT,medium +0.59,0.77,3,272,8,0,0,0,management,high +0.9,0.82,3,133,8,0,0,0,marketing,medium +0.62,0.72,3,149,3,1,0,0,marketing,medium +0.61,0.68,3,193,2,0,0,0,marketing,medium +0.52,0.55,5,174,3,1,0,0,sales,medium +0.79,0.87,4,223,5,0,0,0,sales,medium +0.49,0.89,4,201,8,0,0,0,sales,medium +0.73,0.67,2,139,8,0,0,0,sales,medium +0.67,0.49,5,241,8,0,0,0,sales,medium +0.52,0.61,4,187,4,1,0,0,sales,medium +0.72,0.64,4,192,3,0,0,0,sales,medium +0.48,0.5,5,142,4,0,0,0,IT,medium +0.19,0.79,4,229,4,0,0,0,product_mng,medium +0.49,0.49,3,104,7,0,0,0,product_mng,high +0.9,0.76,3,255,7,0,0,0,product_mng,low +0.49,0.49,4,212,7,0,0,0,product_mng,medium +0.6,0.53,2,235,7,0,0,0,IT,medium +0.62,0.85,3,237,3,1,0,0,IT,medium +0.64,0.5,4,253,10,0,0,1,management,high +0.22,0.94,3,193,10,0,0,1,management,high +0.9,0.55,3,259,10,1,0,1,management,high +0.74,0.95,5,266,10,0,0,1,management,high +0.85,0.54,3,185,10,0,0,1,management,high +0.33,0.65,3,172,10,0,0,1,marketing,high +0.5,0.73,4,180,3,0,0,0,IT,low +0.38,0.53,2,157,3,0,1,0,sales,low +0.8,0.86,5,262,6,0,1,0,sales,medium +0.11,0.88,7,272,4,0,1,0,sales,medium +0.72,0.87,5,223,5,0,1,0,sales,low +0.37,0.52,2,159,3,0,1,0,sales,low +0.41,0.5,2,153,3,0,1,0,sales,low +0.1,0.77,6,247,4,0,1,0,sales,low +0.92,0.85,5,259,5,0,1,0,sales,low +0.89,1,5,224,5,0,1,0,sales,low +0.42,0.53,2,142,3,0,1,0,sales,low +0.45,0.54,2,135,3,0,1,0,sales,low +0.11,0.81,6,305,4,0,1,0,sales,low +0.84,0.92,4,234,5,0,1,0,sales,low +0.41,0.55,2,148,3,0,1,0,sales,low +0.36,0.56,2,137,3,0,1,0,sales,low +0.38,0.54,2,143,3,0,1,0,sales,low +0.45,0.47,2,160,3,0,1,0,sales,low +0.78,0.99,4,255,6,0,1,0,sales,low +0.45,0.51,2,160,3,1,1,1,sales,low +0.76,0.89,5,262,5,0,1,0,sales,low +0.11,0.83,6,282,4,0,1,0,sales,low +0.38,0.55,2,147,3,0,1,0,sales,low +0.09,0.95,6,304,4,0,1,0,sales,low +0.46,0.57,2,139,3,0,1,0,sales,low +0.4,0.53,2,158,3,0,1,0,sales,low +0.89,0.92,5,242,5,0,1,0,sales,low +0.82,0.87,4,239,5,0,1,0,sales,low +0.4,0.49,2,135,3,0,1,0,sales,low +0.41,0.46,2,128,3,0,1,0,accounting,low +0.38,0.5,2,132,3,0,1,0,accounting,low +0.09,0.62,6,294,4,0,1,0,accounting,low +0.45,0.57,2,134,3,0,1,0,hr,low +0.4,0.51,2,145,3,0,1,0,hr,low +0.45,0.55,2,140,3,0,1,0,hr,low +0.84,0.87,4,246,6,0,1,0,hr,low +0.1,0.94,6,255,4,0,1,0,technical,low +0.38,0.46,2,137,3,0,1,0,technical,low +0.45,0.5,2,126,3,0,1,0,technical,low +0.11,0.89,6,306,4,0,1,0,technical,low +0.41,0.54,2,152,3,0,1,0,technical,low +0.87,0.88,5,269,5,0,1,0,technical,low +0.45,0.48,2,158,3,0,1,0,technical,low +0.4,0.46,2,127,3,0,1,0,technical,low +0.1,0.8,7,281,4,0,1,0,technical,low +0.09,0.89,6,276,4,0,1,0,technical,low +0.84,0.74,3,182,4,0,1,0,technical,low +0.4,0.55,2,147,3,0,1,0,support,low +0.57,0.7,3,273,6,0,1,0,support,low +0.4,0.54,2,148,3,0,1,0,support,low +0.43,0.47,2,147,3,0,1,0,support,low +0.13,0.78,6,152,2,0,1,0,support,low +0.44,0.55,2,135,3,0,1,0,support,low +0.38,0.55,2,134,3,0,1,0,support,low +0.39,0.54,2,132,3,0,1,0,support,low +0.1,0.92,7,307,4,0,1,0,support,low +0.37,0.46,2,140,3,0,1,0,support,low +0.11,0.94,7,255,4,0,1,0,support,low +0.1,0.81,6,309,4,0,1,0,technical,low +0.38,0.54,2,128,3,0,1,0,technical,low +0.85,1,4,225,5,0,1,0,technical,low +0.85,0.91,5,226,5,0,1,0,management,medium +0.11,0.93,7,308,4,0,1,0,IT,medium +0.1,0.95,6,244,5,0,1,0,IT,medium +0.36,0.56,2,132,3,0,1,0,IT,medium +0.11,0.94,6,286,4,0,1,0,IT,medium +0.81,0.7,6,161,4,0,1,0,IT,medium +0.43,0.54,2,153,3,0,1,0,product_mng,medium +0.9,0.98,4,264,6,0,1,0,product_mng,medium +0.76,0.86,5,223,5,1,1,0,product_mng,medium +0.43,0.5,2,135,3,0,1,0,product_mng,medium +0.74,0.99,2,277,3,0,1,0,IT,medium +0.09,0.77,5,275,4,0,1,0,product_mng,medium +0.45,0.49,2,149,3,0,1,0,product_mng,high +0.09,0.87,7,295,4,0,1,0,product_mng,low +0.11,0.97,6,277,4,0,1,0,product_mng,medium +0.11,0.79,7,306,4,0,1,0,product_mng,medium +0.1,0.83,6,295,4,0,1,0,product_mng,medium +0.4,0.54,2,137,3,0,1,0,marketing,medium +0.43,0.56,2,157,3,0,1,0,sales,low +0.39,0.56,2,142,3,0,1,0,accounting,low +0.45,0.54,2,140,3,0,1,0,support,low +0.38,0.49,2,151,3,0,1,0,technical,low +0.79,0.59,4,139,3,0,1,1,management,low +0.84,0.85,4,249,6,0,1,0,marketing,low +0.11,0.77,6,291,4,0,1,0,marketing,low +0.11,0.87,6,305,4,0,1,0,marketing,low +0.17,0.84,5,232,3,0,1,0,sales,low +0.44,0.45,2,132,3,0,1,0,sales,low +0.37,0.57,2,130,3,0,1,0,sales,low +0.1,0.79,6,291,4,0,1,0,sales,low +0.4,0.5,2,130,3,0,1,0,sales,low +0.89,1,5,246,5,0,1,0,sales,low +0.42,0.48,2,143,3,0,1,0,sales,low +0.46,0.55,2,129,3,0,1,0,sales,low +0.09,0.83,6,255,4,0,1,0,sales,low +0.37,0.51,2,155,3,0,1,0,sales,low +0.1,0.77,6,265,4,0,1,0,sales,low +0.1,0.84,6,279,4,0,1,0,sales,low +0.11,0.97,6,284,4,0,1,0,sales,low +0.9,1,5,221,6,0,1,0,sales,medium +0.38,0.52,2,154,3,0,1,0,sales,medium +0.36,0.52,2,147,3,0,1,0,sales,medium +0.42,0.46,2,150,3,0,1,0,sales,medium +0.09,0.94,7,267,4,0,1,0,sales,medium +0.43,0.52,2,158,3,0,1,0,sales,medium +0.24,0.46,7,224,5,0,1,0,accounting,medium +0.91,1,4,257,5,0,1,0,accounting,medium +0.44,0.5,2,148,3,0,1,0,accounting,medium +0.71,0.87,3,177,4,0,1,0,hr,medium +0.4,0.49,2,155,3,0,1,0,hr,medium +0.43,0.47,2,144,3,0,1,0,hr,medium +0.09,0.85,6,289,4,0,1,0,hr,high +0.43,0.52,2,160,3,0,1,0,technical,low +0.9,0.96,4,258,5,0,1,0,technical,medium +0.84,1,5,234,5,0,1,0,technical,medium +0.37,0.48,2,137,3,0,1,0,technical,medium +0.86,0.68,5,263,2,0,1,0,technical,medium +0.11,0.84,6,251,4,0,1,0,technical,low +0.37,0.57,2,133,3,0,1,0,technical,low +0.4,0.46,2,132,3,0,1,0,technical,low +0.14,0.62,4,158,4,1,1,0,technical,low +0.4,0.46,2,135,3,0,1,0,technical,low +0.75,1,4,216,6,0,1,0,technical,low +0.11,0.84,6,300,5,1,1,0,support,low +0.46,0.49,2,138,3,0,1,0,support,low +0.11,0.92,6,260,4,0,1,0,support,low +0.38,0.49,2,132,3,0,1,0,support,low +0.7,0.89,3,183,5,0,1,0,support,low +0.09,0.82,6,250,4,0,1,0,support,low +0.37,0.45,2,151,3,0,1,0,support,low +0.1,0.83,6,292,4,0,1,0,support,low +0.38,0.57,2,140,3,0,1,0,support,low +0.9,1,5,221,5,0,1,0,support,low +0.44,0.51,2,138,3,0,1,0,support,low +0.36,0.5,2,132,3,0,1,0,technical,low +0.31,0.84,7,133,5,0,1,0,technical,low +0.1,0.84,6,283,4,1,1,0,technical,low +0.42,0.48,2,129,3,0,1,0,management,low +0.74,1,4,249,5,0,1,0,IT,low +0.73,0.87,5,257,5,0,1,0,IT,low +0.09,0.96,6,245,4,0,1,0,IT,low +0.45,0.53,2,155,3,0,1,0,IT,low +0.11,0.8,6,256,4,0,1,0,IT,low +0.37,0.47,2,152,3,0,1,0,product_mng,low +0.84,0.99,4,267,5,0,1,0,product_mng,low +0.41,0.46,2,151,3,0,1,0,product_mng,low +0.76,0.92,4,239,5,0,1,0,product_mng,low +0.11,0.87,6,306,4,0,1,0,IT,low +0.84,0.88,4,263,5,1,1,0,marketing,low +0.39,0.5,2,147,3,0,1,0,marketing,low +0.11,0.91,6,278,4,0,1,0,marketing,low +0.45,0.56,2,154,3,0,1,0,marketing,low +0.37,0.52,2,143,3,0,1,0,marketing,low +0.4,0.52,2,155,3,0,1,0,marketing,low +0.39,0.48,2,160,3,0,1,0,sales,low +0.11,0.8,6,304,4,0,1,0,accounting,low +0.83,1,5,240,5,0,1,0,support,low +0.11,0.92,6,305,4,0,1,0,technical,low +0.39,0.5,2,136,3,0,1,0,management,low +0.45,0.45,2,132,3,0,1,0,marketing,low +0.1,0.95,7,301,4,0,1,0,marketing,low +0.9,0.98,5,243,6,0,1,0,marketing,low +0.45,0.51,2,147,3,0,1,0,sales,low +0.79,0.89,5,239,5,0,1,0,sales,low +0.9,0.99,5,260,5,0,1,0,sales,low +0.11,0.84,7,296,4,0,1,0,sales,low +0.43,0.55,2,129,3,0,1,0,sales,low +0.31,0.54,5,132,5,0,1,0,sales,low +0.32,0.5,2,135,5,0,1,0,sales,low +0.45,0.57,2,158,3,0,1,0,sales,low +0.81,0.99,4,259,5,0,1,0,sales,low +0.41,0.46,2,160,3,0,1,1,sales,low +0.11,0.78,7,278,4,0,1,0,sales,low +0.1,0.88,6,284,4,0,1,0,sales,low +0.7,0.53,2,274,4,0,1,0,sales,low +0.54,0.74,4,164,2,0,1,0,sales,low +0.41,0.48,2,148,3,0,1,0,sales,low +0.38,0.5,2,140,3,0,1,0,sales,medium +0.37,0.51,2,127,3,0,1,0,sales,medium +0.11,0.85,6,308,5,0,1,0,sales,medium +0.4,0.47,2,146,3,0,1,0,sales,medium +0.1,0.84,6,261,4,0,1,0,accounting,medium +0.89,0.99,5,257,5,0,1,0,accounting,medium +0.11,0.8,6,285,4,0,1,0,accounting,medium +0.36,0.55,2,141,3,0,1,0,hr,medium +0.4,0.46,2,127,3,0,1,0,hr,medium +0.09,0.85,6,297,4,0,1,0,hr,medium +0.4,0.46,2,143,3,0,1,0,hr,medium +0.37,0.55,2,152,3,0,1,0,technical,medium +0.44,0.51,2,156,3,0,1,0,technical,high +0.09,0.8,7,283,5,0,1,0,technical,low +0.92,0.87,4,226,6,1,1,0,technical,medium +0.74,0.91,4,232,5,0,1,0,technical,medium +0.09,0.82,6,249,4,0,1,0,technical,medium +0.89,0.95,4,275,5,0,1,0,technical,medium +0.09,0.8,6,304,4,0,1,0,technical,low +0.27,0.54,7,278,3,0,1,0,technical,low +0.1,0.91,6,287,4,0,1,0,technical,low +0.1,0.89,7,285,4,0,1,0,technical,low +0.77,0.94,5,226,6,0,1,0,support,low +0.9,0.82,5,259,5,0,1,0,support,low +0.39,0.5,2,135,3,0,1,0,support,low +0.76,1,5,219,5,0,1,0,support,low +0.1,0.93,6,256,4,0,1,0,support,low +0.87,0.9,5,254,6,0,1,0,support,low +0.38,0.5,2,153,3,0,1,0,support,low +0.77,0.99,5,228,5,0,1,0,support,low +0.78,0.87,4,228,5,0,1,0,support,low +0.44,0.5,2,128,3,0,1,0,support,low +0.38,0.52,2,153,3,0,1,0,support,low +0.43,0.46,2,156,3,0,1,0,technical,low +0.39,0.5,4,294,3,0,1,0,technical,low +0.88,1,5,219,5,0,1,0,technical,low +0.45,0.46,2,153,3,0,1,0,management,low +0.4,0.53,2,151,3,0,1,0,IT,low +0.36,0.51,2,155,3,0,1,0,IT,low +0.36,0.48,2,158,3,0,1,0,IT,low +0.9,0.98,5,245,5,0,1,0,IT,low +0.43,0.53,2,131,3,0,1,0,IT,low +0.89,0.87,5,225,5,0,1,0,product_mng,low +0.1,0.84,6,286,4,0,1,0,product_mng,low +0.37,0.5,2,135,3,0,1,0,product_mng,low +0.37,0.51,2,153,3,0,1,0,product_mng,low +0.87,0.9,5,252,5,0,1,0,IT,low +0.4,0.56,2,149,3,0,1,0,accounting,low +0.9,0.97,4,258,5,0,1,0,accounting,low +0.37,0.46,2,158,3,0,1,0,hr,low +0.44,0.54,2,149,3,0,1,0,hr,low +0.85,0.95,5,236,5,0,1,0,hr,low +0.78,0.98,5,239,6,0,1,0,marketing,low +0.42,0.47,2,159,3,0,1,0,marketing,low +0.92,0.99,5,255,6,0,1,0,sales,low +0.11,0.83,6,244,4,0,1,0,accounting,low +0.42,0.56,2,134,3,0,1,0,support,low +0.48,0.57,4,270,4,0,1,0,technical,low +0.83,0.85,4,255,5,0,1,0,management,low +0.4,0.53,2,151,3,0,1,0,marketing,low +0.43,0.45,2,135,3,0,1,0,marketing,low +0.43,0.53,2,146,3,0,1,0,marketing,low +0.1,0.97,7,254,4,0,1,0,sales,low +0.1,0.87,7,289,4,0,1,0,sales,low +0.37,0.46,2,156,3,0,1,0,sales,low +0.38,0.53,2,156,3,0,1,0,sales,low +0.4,0.5,2,128,3,0,1,0,sales,low +0.89,0.86,5,275,5,0,1,0,sales,low +0.45,0.46,2,155,3,0,1,0,sales,low +0.37,0.48,2,159,3,0,1,0,sales,low +0.46,0.49,2,148,3,0,1,0,sales,low +0.87,0.91,4,228,5,0,1,0,sales,low +0.11,0.84,6,298,4,0,1,0,sales,low +0.79,0.87,5,261,5,0,1,0,sales,low +0.79,0.92,5,254,6,0,1,0,sales,low +0.19,0.59,7,192,3,0,1,0,sales,low +0.87,0.98,4,248,5,0,1,0,sales,low +0.6,0.92,2,258,5,0,1,0,sales,low +0.44,0.45,2,156,3,0,1,0,sales,medium +0.11,0.81,6,266,4,1,1,0,sales,medium +0.42,0.54,2,156,3,0,1,0,sales,medium +0.88,0.88,5,232,5,1,1,0,accounting,medium +0.11,0.84,6,287,4,0,1,0,accounting,medium +0.46,0.46,2,154,3,0,1,0,accounting,medium +0.82,0.97,5,263,5,0,1,0,hr,medium +0.44,0.56,2,131,3,0,1,0,hr,medium +0.11,0.78,6,260,4,0,1,0,hr,medium +0.42,0.5,2,139,3,0,1,0,hr,medium +0.84,0.93,4,251,5,0,1,0,technical,medium +0.11,0.95,6,286,4,0,1,0,technical,medium +0.45,0.53,2,129,3,0,1,0,technical,high +0.38,0.56,2,156,3,0,1,0,technical,low +0.38,0.86,6,139,6,0,1,0,technical,medium +0.44,0.51,2,127,3,0,1,0,technical,medium +0.11,0.84,6,251,4,0,1,0,technical,medium +0.81,0.93,5,270,5,0,1,0,technical,medium +0.09,0.96,6,296,4,0,1,0,technical,low +0.11,0.9,6,254,4,0,1,0,technical,low +0.81,0.95,5,238,6,0,1,0,technical,low +0.1,0.97,6,267,4,1,1,0,support,low +0.74,0.89,5,229,6,0,1,0,support,low +0.09,0.78,6,254,4,0,1,0,support,low +0.82,0.81,4,233,4,1,1,0,support,low +0.1,0.98,6,268,4,0,1,0,support,low +0.27,0.56,3,301,3,0,1,0,support,low +0.83,0.92,5,267,6,0,1,0,support,low +0.1,0.93,6,289,4,1,1,0,support,low +0.38,0.47,2,144,3,0,1,0,support,low +0.4,0.56,2,148,3,0,1,0,support,low +0.11,0.83,6,306,4,0,1,0,support,low +0.11,0.79,6,292,4,0,1,1,technical,low +0.82,0.91,5,232,5,0,1,0,technical,low +0.36,0.48,2,137,3,0,1,0,technical,low +0.4,0.46,2,128,3,0,1,0,management,low +0.87,0.84,5,231,5,0,1,0,IT,low +0.41,0.49,2,146,3,0,1,0,IT,low +0.11,0.91,6,308,4,1,1,0,IT,low +0.1,0.93,6,253,4,0,1,0,IT,medium +0.38,0.51,2,146,3,0,1,0,IT,medium +0.39,0.55,2,156,3,0,1,0,product_mng,medium +0.4,0.52,2,147,3,0,1,0,product_mng,medium +0.45,0.48,2,136,3,0,1,0,product_mng,medium +0.74,0.84,5,249,5,0,1,0,product_mng,medium +0.45,0.55,2,151,3,0,1,0,IT,medium +0.12,1,3,278,4,0,1,0,RandD,medium +0.1,0.77,7,250,5,0,1,0,RandD,medium +0.37,0.55,2,127,3,0,1,0,RandD,medium +0.89,0.87,5,255,5,0,1,0,RandD,medium +0.45,0.47,2,135,3,0,1,0,RandD,medium +0.37,0.46,2,149,3,0,1,0,marketing,high +0.11,0.81,5,287,4,0,1,0,sales,low +0.41,0.48,2,145,3,0,1,0,accounting,medium +0.1,0.94,6,285,4,0,1,0,support,medium +0.1,0.93,7,305,4,0,1,0,technical,medium +0.11,0.95,7,300,4,0,1,0,management,medium +0.4,0.54,2,139,3,0,1,0,marketing,low +0.41,0.49,2,130,3,0,1,0,marketing,low +0.1,0.81,6,268,4,0,1,0,marketing,low +0.73,0.86,4,245,6,0,1,0,sales,low +0.43,0.47,2,135,3,0,1,0,sales,low +0.37,0.46,2,153,3,0,1,0,sales,low +0.11,0.94,6,276,4,0,1,0,sales,low +0.4,0.46,2,130,3,0,1,0,sales,low +0.41,0.54,2,153,3,1,1,0,sales,low +0.82,0.84,5,244,5,0,1,0,sales,low +0.61,0.47,2,253,3,0,1,0,sales,low +0.11,0.91,7,287,4,0,1,0,sales,low +0.37,0.45,2,131,3,0,1,0,sales,low +0.41,0.52,2,135,3,0,1,0,sales,low +0.37,0.52,2,157,3,0,1,0,sales,low +0.88,0.99,5,262,6,0,1,0,sales,low +0.1,0.85,6,266,4,0,1,0,sales,low +0.44,0.48,2,148,3,0,1,0,sales,low +0.38,0.57,2,140,3,0,1,0,sales,low +0.11,0.85,7,302,4,0,1,0,sales,low +0.09,0.98,6,271,4,0,1,0,sales,low +0.45,0.52,2,145,3,0,1,0,sales,medium +0.1,0.81,6,290,4,0,1,0,accounting,medium +0.45,0.47,2,151,3,0,1,0,accounting,medium +0.77,0.87,5,266,5,0,1,0,accounting,medium +0.44,0.51,2,140,3,0,1,0,hr,medium +0.39,0.5,2,142,3,0,1,0,hr,medium +0.1,0.91,6,246,4,0,1,0,hr,medium +0.09,0.89,7,308,5,0,1,0,hr,medium +0.37,0.47,2,141,3,0,1,0,technical,medium +0.9,1,5,232,5,0,1,0,technical,medium +0.41,0.56,2,143,3,0,1,0,technical,medium +0.37,0.52,2,155,3,0,1,0,technical,medium +0.1,0.86,6,278,4,0,1,0,technical,high +0.81,1,4,253,5,0,1,0,technical,low +0.11,0.8,6,282,4,0,1,0,technical,medium +0.11,0.84,7,264,4,0,1,0,technical,medium +0.4,0.46,2,149,3,0,1,0,technical,medium +0.09,0.8,6,304,5,0,1,0,technical,medium +0.48,0.93,3,219,6,0,1,0,technical,low +0.91,0.91,4,262,6,0,1,0,support,low +0.43,0.57,2,135,3,0,1,0,support,low +0.33,0.88,6,219,5,0,1,0,support,low +0.41,0.57,2,136,3,0,1,0,support,low +0.41,0.55,2,154,3,0,1,0,support,low +0.37,0.54,2,149,3,0,1,0,support,low +0.31,0.62,6,135,5,0,1,0,support,low +0.09,0.91,6,275,4,0,1,0,support,low +0.1,0.87,6,290,4,0,1,0,support,low +0.76,0.9,4,263,5,0,1,0,support,low +0.41,0.54,2,145,3,0,1,0,support,low +0.72,0.96,5,267,5,0,1,0,technical,low +0.4,0.5,2,141,3,1,1,0,technical,low +0.91,0.87,4,235,5,0,1,0,technical,low +0.1,0.83,6,258,4,0,1,0,management,low +0.4,0.56,2,131,3,0,1,0,IT,low +0.82,0.86,5,243,5,0,1,0,IT,low +0.1,0.82,6,266,4,0,1,0,IT,low +0.37,0.45,2,142,3,0,1,0,IT,low +0.36,0.51,2,135,3,0,1,0,IT,low +0.39,0.48,2,141,3,0,1,0,product_mng,medium +0.36,0.57,2,142,3,0,1,0,product_mng,medium +0.86,0.84,5,254,5,0,1,0,product_mng,medium +0.73,0.99,5,262,5,0,1,0,product_mng,medium +0.56,0.71,4,296,2,0,1,0,IT,medium +0.44,0.56,2,158,3,0,1,0,accounting,medium +0.31,0.56,4,238,2,0,1,0,accounting,medium +0.77,0.93,4,231,5,0,1,0,hr,medium +0.44,0.45,2,156,3,0,1,0,hr,medium +0.38,0.46,2,145,3,0,1,0,hr,medium +0.45,0.48,2,144,3,0,1,0,marketing,medium +0.38,0.51,2,159,3,0,1,0,sales,medium +0.36,0.48,2,156,3,0,1,0,accounting,high +0.75,0.9,5,256,5,0,1,0,support,low +0.1,0.93,6,298,4,0,1,0,technical,medium +0.1,0.97,6,247,4,0,1,0,management,medium +0.45,0.5,2,157,3,0,1,0,marketing,medium +0.42,0.57,2,154,3,1,1,0,marketing,medium +0.78,1,4,253,5,0,1,0,marketing,low +0.45,0.55,2,148,3,0,1,0,sales,low +0.84,1,4,261,5,0,1,0,sales,low +0.11,0.93,6,282,4,0,1,0,sales,low +0.42,0.56,2,133,3,0,1,0,sales,low +0.45,0.46,2,128,3,0,1,0,sales,low +0.46,0.57,2,139,3,0,1,0,sales,low +0.09,0.79,6,293,5,0,1,0,sales,low +0.87,0.83,4,265,6,0,1,0,sales,low +0.1,0.87,6,250,4,0,1,0,sales,low +0.91,1,5,251,6,0,1,0,sales,low +0.76,0.92,4,246,5,0,1,0,sales,low +0.74,1,5,275,5,0,1,0,sales,low +0.92,0.93,5,240,5,0,1,0,sales,low +0.76,0.87,5,245,5,0,1,0,sales,low +0.47,0.5,4,254,4,0,1,0,sales,low +0.73,0.99,5,241,5,0,1,0,sales,low +0.09,0.94,6,257,4,0,1,0,sales,low +0.91,0.92,4,246,5,0,1,0,sales,low +0.82,0.98,4,233,5,0,1,0,sales,low +0.28,0.45,6,218,4,0,1,0,accounting,low +0.84,0.99,4,262,6,0,1,0,accounting,medium +0.45,0.53,2,138,3,0,1,0,accounting,medium +0.45,0.54,2,142,3,0,1,0,hr,medium +0.91,0.97,5,233,5,0,1,0,hr,medium +0.42,0.48,2,155,3,0,1,0,hr,medium +0.82,1,4,229,6,0,1,0,hr,medium +0.11,0.9,6,264,4,0,1,0,technical,medium +0.42,0.53,3,199,4,0,1,0,technical,medium +0.82,0.85,4,223,5,0,1,0,technical,medium +0.09,0.96,6,268,4,0,1,0,technical,medium +0.1,0.94,6,287,4,0,1,0,technical,medium +0.86,1,5,257,5,0,1,0,technical,medium +0.4,0.46,2,143,3,0,1,0,technical,high +0.45,0.46,2,130,3,0,1,0,technical,low +0.42,0.51,2,136,3,0,1,0,technical,medium +0.74,0.92,4,261,5,0,1,0,technical,medium +0.55,0.6,3,180,4,0,1,0,technical,medium +0.37,0.45,2,126,3,0,1,0,support,medium +0.41,0.52,2,127,3,1,1,0,support,low +0.89,0.65,5,195,6,0,1,0,support,low +0.41,0.57,2,160,3,0,1,0,support,low +0.44,0.51,2,150,3,0,1,0,support,low +0.87,0.84,4,264,6,0,1,0,support,low +0.1,0.84,6,309,4,0,1,0,support,low +0.41,0.47,2,135,3,0,1,0,support,low +0.11,0.85,6,261,4,0,1,0,support,low +0.43,0.53,2,160,3,0,1,0,support,low +0.77,0.9,4,237,5,0,1,0,support,low +0.41,0.52,2,136,3,0,1,0,technical,low +0.41,0.48,2,139,3,0,1,0,technical,low +0.36,0.78,2,151,4,0,1,0,technical,low +0.77,1,5,229,5,0,1,0,management,low +0.81,0.98,5,245,5,0,1,0,IT,low +0.39,0.54,2,127,3,0,1,0,IT,low +0.09,0.94,6,283,5,0,1,0,IT,low +0.44,0.46,2,143,3,0,1,0,IT,low +0.1,0.84,5,298,4,0,1,0,IT,low +0.36,0.48,2,159,3,0,1,0,product_mng,low +0.81,0.92,5,239,5,0,1,0,product_mng,low +0.81,0.9,4,226,5,0,1,0,product_mng,medium +0.85,0.98,5,248,5,0,1,0,product_mng,medium +0.1,0.87,6,286,4,0,1,0,IT,medium +0.37,0.54,2,145,3,0,1,0,RandD,medium +0.09,0.97,7,254,4,1,1,0,RandD,medium +0.44,0.53,2,127,3,0,1,0,RandD,medium +0.86,0.93,5,223,5,0,1,0,RandD,medium +0.77,1,4,255,5,0,1,0,RandD,medium +0.41,0.48,2,136,3,0,1,0,marketing,medium +0.4,0.48,2,137,3,0,1,0,sales,medium +0.43,0.49,2,135,3,0,1,0,accounting,medium +0.43,0.5,2,137,3,0,1,0,support,medium +0.8,0.53,3,255,5,0,1,0,technical,high +0.8,0.85,4,273,5,0,1,0,management,low +0.82,0.98,5,234,5,0,1,0,marketing,medium +0.37,0.54,2,152,3,0,1,0,marketing,medium +0.37,0.48,2,134,3,0,1,0,marketing,medium +0.09,0.95,6,292,4,0,1,0,sales,medium +0.9,0.92,5,245,5,0,1,0,sales,low +0.41,0.52,2,159,3,0,1,0,sales,low +0.1,0.85,6,260,4,0,1,0,sales,low +0.44,0.53,2,149,3,0,1,0,sales,low +0.89,0.85,5,266,5,0,1,0,sales,low +0.42,0.56,2,149,3,0,1,0,sales,low +0.87,1,5,242,5,0,1,0,sales,low +0.45,0.57,2,134,3,0,1,0,sales,low +0.11,0.87,5,271,4,0,1,0,sales,low +0.09,0.79,6,275,4,0,1,0,sales,low +0.76,0.83,5,227,5,0,1,0,sales,low +0.11,0.96,7,277,5,0,1,0,sales,low +0.37,0.49,2,151,3,0,1,0,sales,low +0.1,0.79,6,274,4,0,1,0,sales,low +0.77,0.87,4,242,6,0,1,0,sales,low +0.42,0.54,2,143,3,1,1,0,sales,low +0.38,0.52,2,145,3,0,1,0,sales,low +0.32,0.95,5,172,2,0,1,0,sales,low +0.38,0.49,2,135,3,0,1,0,accounting,low +0.19,1,4,192,4,0,1,0,accounting,low +0.1,0.83,7,276,4,0,1,0,accounting,low +0.76,0.88,4,206,4,0,1,0,hr,medium +0.53,0.56,4,281,6,0,1,0,hr,medium +0.39,0.51,2,151,3,0,1,0,hr,medium +0.11,0.83,6,244,4,0,1,0,hr,medium +0.1,0.94,6,309,4,0,1,0,technical,medium +0.84,1,5,218,5,0,1,0,technical,medium +0.82,0.99,4,263,6,0,1,0,technical,medium +0.1,0.82,6,244,4,0,1,0,technical,medium +0.59,0.49,7,263,4,0,1,0,technical,medium +0.44,0.48,2,143,3,0,1,0,technical,medium +0.89,0.95,2,181,5,0,1,0,technical,medium +0.91,0.84,5,265,5,0,1,0,technical,medium +0.66,0.57,5,161,5,0,1,0,technical,high +0.11,0.87,7,282,5,0,1,0,technical,low +0.43,0.51,2,155,3,0,1,0,technical,medium +0.78,0.83,4,217,6,0,1,0,support,medium +0.11,0.97,6,289,5,0,1,0,support,medium +0.83,0.98,4,259,5,0,1,0,support,medium +0.39,0.54,2,158,3,0,1,0,support,low +0.38,0.55,2,158,3,0,1,0,support,low +0.37,0.57,2,155,3,0,1,0,support,low +0.44,0.48,2,146,3,0,1,0,support,low +0.53,0.85,2,164,5,0,1,0,support,low +0.09,0.96,6,259,4,0,1,0,support,low +0.11,0.89,6,293,4,0,1,0,support,low +0.83,0.96,5,275,5,0,1,0,support,low +0.88,1,5,219,6,1,1,0,technical,low +0.1,0.89,6,247,4,0,1,0,technical,low +0.09,0.86,7,309,4,0,1,0,technical,low +0.44,0.54,2,151,3,0,1,0,management,low +0.39,0.51,2,129,3,0,1,0,IT,low +0.87,0.94,4,274,5,0,1,0,IT,low +0.74,0.99,4,233,5,0,1,0,IT,low +0.1,0.95,7,289,4,0,1,0,IT,low +0.74,0.82,4,239,6,0,1,0,IT,low +0.75,0.99,5,221,5,0,1,0,product_mng,low +0.41,0.56,2,150,3,0,1,0,product_mng,low +0.41,0.45,2,144,3,1,1,0,product_mng,low +0.09,0.9,7,289,4,0,1,0,product_mng,low +0.09,0.8,6,301,5,0,1,0,IT,medium +0.39,0.57,2,145,3,0,1,0,accounting,medium +0.4,0.56,2,137,3,0,1,0,accounting,medium +0.37,0.54,2,131,3,1,1,0,hr,medium +0.1,0.84,6,246,4,0,1,0,hr,medium +0.43,0.51,2,136,3,0,1,0,hr,medium +0.75,0.85,5,240,6,1,1,0,marketing,medium +0.37,0.56,2,156,3,0,1,0,sales,medium +0.11,0.85,6,305,4,0,1,0,accounting,medium +0.45,0.45,2,154,3,1,1,0,support,medium +0.87,1,5,261,5,1,1,0,technical,medium +0.11,0.94,7,244,4,0,1,0,management,medium +0.45,0.54,2,129,3,0,1,0,marketing,high +0.81,0.87,4,254,5,0,1,0,marketing,low +0.77,0.91,5,236,5,0,1,0,marketing,medium +0.89,0.92,5,237,5,0,1,0,sales,medium +0.43,0.49,2,135,3,0,1,0,sales,medium +0.78,1,5,236,5,0,1,0,sales,medium +0.37,0.47,2,149,3,0,1,0,sales,low +0.37,0.5,2,141,3,0,1,0,sales,low +0.85,0.82,4,270,5,0,1,0,sales,low +0.41,0.47,2,138,3,0,1,0,sales,low +0.11,0.96,6,298,4,0,1,0,sales,low +0.75,0.99,5,254,5,0,1,0,sales,low +0.82,0.85,5,248,5,0,1,0,sales,low +0.79,1,5,257,6,0,1,0,sales,low +0.43,0.53,2,150,3,0,1,0,sales,low +0.1,0.9,7,281,4,0,1,0,sales,low +0.46,0.48,2,141,3,1,1,0,sales,low +0.43,0.57,2,157,3,0,1,0,sales,low +0.43,0.55,2,136,3,0,1,0,sales,low +0.11,0.8,7,296,4,0,1,0,sales,low +0.09,0.86,6,279,4,0,1,0,sales,low +0.37,0.53,2,131,3,0,1,0,sales,low +0.4,0.57,2,160,3,0,1,0,accounting,low +0.1,0.77,7,291,4,0,1,0,accounting,low +0.41,0.53,2,157,3,0,1,0,accounting,low +0.79,0.58,3,294,4,0,1,0,hr,low +0.11,0.79,7,310,4,0,1,0,hr,low +0.1,0.97,6,282,4,0,1,0,hr,medium +0.44,0.51,2,134,3,0,1,0,hr,medium +0.25,0.46,4,214,4,0,1,0,technical,medium +0.44,0.52,2,137,3,0,1,0,technical,medium +0.73,1,4,252,5,0,1,0,technical,medium +0.75,0.97,5,243,6,0,1,0,technical,medium +0.36,0.47,2,148,3,0,1,0,technical,medium +0.37,0.49,2,151,3,0,1,0,technical,medium +0.39,0.49,2,129,3,0,1,0,technical,medium +0.48,0.78,2,198,2,0,1,0,technical,medium +0.57,0.72,4,275,6,0,1,0,technical,medium +0.9,0.96,5,243,5,0,1,0,technical,medium +0.39,0.55,2,159,3,0,1,0,technical,high +0.44,0.51,2,145,3,0,1,0,support,low +0.81,0.88,5,242,5,0,1,0,support,medium +0.74,0.87,5,242,5,0,1,0,support,medium +0.44,0.56,2,145,3,0,1,0,support,medium +0.41,0.56,2,154,3,0,1,1,support,medium +0.4,0.51,2,139,3,0,1,0,support,low +0.46,0.57,2,152,3,0,1,0,support,low +0.8,0.83,2,211,3,0,1,0,support,low +0.87,0.9,5,258,5,0,1,0,support,low +0.39,0.54,2,155,3,0,1,0,support,low +0.38,0.55,2,148,3,0,1,0,support,low +0.66,0.67,2,255,3,0,1,0,technical,low +0.1,0.8,6,264,4,0,1,0,technical,low +0.37,0.54,2,132,3,0,1,0,technical,low +0.1,0.77,6,255,4,0,1,0,management,low +0.09,0.87,5,263,4,0,1,0,IT,low +0.86,0.84,5,222,5,0,1,0,IT,low +0.11,0.9,6,263,4,0,1,0,IT,low +0.37,0.46,2,157,3,0,1,0,IT,low +0.11,0.92,7,307,4,0,1,0,IT,low +0.77,0.98,5,259,6,0,1,0,product_mng,low +0.84,0.94,5,222,6,0,1,0,product_mng,low +0.1,0.84,7,250,4,0,1,0,product_mng,low +0.83,0.9,5,245,5,0,1,0,product_mng,low +0.11,0.79,6,292,4,0,1,0,IT,low +0.86,0.92,5,252,5,0,1,0,RandD,low +0.38,0.56,2,161,3,0,1,0,RandD,medium +0.11,0.88,5,250,4,0,1,0,RandD,medium +0.45,0.49,2,134,3,0,1,0,RandD,medium +0.1,0.85,7,279,4,0,1,0,RandD,medium +0.09,0.95,7,256,4,0,1,0,marketing,medium +0.39,0.53,2,127,3,0,1,0,sales,medium +0.37,0.47,2,138,3,1,1,0,accounting,medium +0.81,0.97,5,243,5,0,1,0,support,medium +0.09,0.9,7,296,4,0,1,0,technical,medium +0.1,0.88,7,267,4,0,1,0,management,medium +0.39,0.49,2,144,3,0,1,0,marketing,medium +0.83,0.95,4,251,5,0,1,0,marketing,medium +0.45,0.57,2,148,3,0,1,0,marketing,high +0.43,0.51,2,141,3,0,1,0,sales,low +0.8,0.75,3,268,2,0,1,0,sales,medium +0.1,0.86,6,247,4,0,1,0,sales,medium +0.1,0.55,2,247,4,0,1,0,sales,medium +0.36,0.52,2,146,3,0,1,0,sales,medium +0.38,0.5,2,140,3,0,1,0,sales,low +0.78,0.98,5,263,6,0,1,0,sales,low +0.44,0.49,2,145,3,0,1,0,sales,low +0.41,0.46,2,156,3,1,1,0,sales,low +0.72,0.85,5,244,6,0,1,0,sales,low +0.46,0.54,2,144,3,0,1,0,sales,low +0.1,0.9,7,286,4,0,1,0,sales,low +0.34,0.67,4,141,2,0,1,0,sales,low +0.11,0.89,6,260,5,0,1,0,sales,low +0.38,0.56,2,154,3,0,1,0,sales,low +0.82,0.92,5,225,5,0,1,0,sales,low +0.39,0.57,2,127,3,0,1,0,sales,low +0.44,0.53,2,140,3,0,1,0,sales,low +0.43,0.52,2,147,3,0,1,0,sales,low +0.84,0.83,4,227,5,0,1,0,accounting,low +0.43,0.48,2,153,3,0,1,0,accounting,low +0.37,0.52,2,128,3,0,1,0,accounting,low +0.74,0.97,4,228,5,0,1,0,hr,low +0.73,0.97,5,235,5,0,1,0,hr,low +0.37,0.47,2,148,3,0,1,0,hr,low +0.58,0.62,4,238,3,0,1,0,hr,low +0.4,0.54,2,141,3,0,1,0,technical,medium +0.51,0.83,5,249,4,0,1,0,technical,medium +0.46,0.5,2,151,3,0,1,0,technical,medium +0.45,0.54,2,129,3,0,1,0,technical,medium +0.46,0.5,2,156,3,0,1,0,technical,medium +0.39,0.45,2,134,3,0,1,0,technical,medium +0.09,0.88,6,269,4,0,1,0,technical,medium +0.09,0.77,6,290,4,0,1,0,technical,medium +0.37,0.51,2,132,3,0,1,0,technical,medium +0.1,0.89,7,308,4,0,1,0,technical,medium +0.77,1,4,232,5,0,1,0,technical,medium +0.79,0.86,5,235,5,0,1,0,support,medium +0.43,0.55,2,130,3,0,1,0,support,high +0.38,0.53,2,146,3,0,1,0,support,low +0.77,0.91,5,221,6,0,1,0,support,medium +0.44,0.5,2,130,3,0,1,0,support,medium +0.39,0.46,2,136,3,0,1,0,support,medium +0.1,0.79,6,275,4,0,1,0,management,low +0.1,0.9,6,299,4,0,1,0,marketing,low +0.36,0.49,2,147,3,0,1,0,marketing,low +0.1,0.97,7,306,4,0,1,0,marketing,low +0.84,1,5,242,5,0,1,0,sales,low +0.38,0.51,2,159,3,0,1,0,sales,low +0.41,0.49,2,147,3,0,1,0,sales,low +0.37,0.51,2,154,3,1,1,0,sales,low +0.43,0.56,2,129,3,0,1,0,sales,low +0.46,0.53,2,161,3,0,1,0,sales,low +0.09,0.84,6,269,4,0,1,0,sales,low +0.78,0.86,5,274,5,0,1,0,sales,low +0.45,0.53,2,159,3,0,1,0,sales,low +0.42,0.47,2,135,3,0,1,0,sales,low +0.46,0.53,2,147,3,0,1,0,sales,low +0.39,0.49,2,142,3,0,1,0,sales,low +0.36,0.51,2,130,3,0,1,0,sales,low +0.43,0.53,2,147,3,0,1,0,sales,medium +0.85,0.87,5,246,5,1,1,0,sales,medium +0.11,0.92,6,281,4,0,1,0,sales,medium +0.11,0.9,6,253,4,0,1,0,sales,medium +0.38,0.47,2,128,3,0,1,0,sales,medium +0.43,0.57,2,129,3,0,1,0,sales,medium +0.75,1,5,223,6,0,1,0,accounting,medium +0.11,0.92,6,269,4,0,1,0,accounting,medium +0.1,0.9,7,269,4,0,1,0,accounting,medium +0.1,0.81,7,244,5,0,1,0,hr,medium +0.37,0.5,2,154,3,0,1,0,hr,medium +0.11,0.93,5,140,5,0,1,0,hr,medium +0.45,0.46,2,159,3,0,1,0,hr,high +0.44,0.48,2,158,3,0,1,0,technical,low +0.44,0.56,2,133,3,0,1,0,technical,medium +0.11,0.77,6,247,4,0,1,0,technical,medium +0.79,0.93,5,268,5,0,1,0,technical,medium +0.8,0.9,5,267,5,0,1,0,technical,medium +0.1,0.87,7,251,5,0,1,0,technical,low +0.09,0.93,6,279,4,0,1,0,technical,low +0.7,0.84,6,161,4,0,1,0,technical,low +0.72,0.84,4,256,5,0,1,0,technical,low +0.11,0.8,6,304,4,0,1,0,technical,low +0.39,0.51,2,137,3,0,1,0,technical,low +0.4,0.49,2,144,3,0,1,0,support,low +0.43,0.54,2,142,3,0,1,0,support,low +0.76,0.87,5,262,5,0,1,0,support,low +0.4,0.48,2,142,3,0,1,0,support,low +0.09,0.89,6,282,4,0,1,0,support,low +0.37,0.54,2,157,3,0,1,0,support,low +0.87,0.91,5,228,5,0,1,0,support,low +0.1,0.86,6,283,4,0,1,0,support,low +0.11,0.86,6,286,4,0,1,0,support,low +0.43,0.5,2,148,3,0,1,0,support,low +0.1,0.81,6,245,4,0,1,0,support,low +0.11,0.95,6,279,4,0,1,0,technical,low +0.85,0.87,5,245,5,0,1,0,technical,low +0.37,0.49,2,138,3,0,1,0,technical,low +0.44,0.52,2,141,3,0,1,0,management,low +0.1,0.83,7,302,5,0,1,0,IT,medium +0.11,0.89,6,268,4,0,1,0,IT,medium +0.87,0.88,5,240,5,0,1,0,IT,medium +0.39,0.49,2,127,3,0,1,0,IT,medium +0.1,0.94,7,264,4,0,1,0,IT,medium +0.44,0.53,2,155,3,0,1,0,product_mng,medium +0.4,0.49,2,143,3,0,1,0,product_mng,medium +0.76,0.98,5,217,6,0,1,0,product_mng,medium +0.46,0.55,2,147,3,0,1,0,product_mng,medium +0.9,0.92,4,271,5,0,1,0,IT,medium +0.85,0.87,4,273,5,0,1,0,RandD,medium +0.1,0.78,5,285,4,1,1,0,RandD,medium +0.43,0.49,2,131,3,0,1,0,RandD,high +0.2,0.5,5,135,6,0,1,0,RandD,low +0.81,0.92,5,239,5,0,1,0,RandD,medium +0.83,0.85,5,237,5,0,1,0,marketing,medium +0.14,0.75,4,277,5,1,1,0,sales,medium +0.1,0.84,5,303,5,0,1,0,accounting,medium +0.91,0.98,4,242,6,0,1,0,support,low +0.37,0.57,2,158,3,0,1,0,technical,low +0.42,0.57,2,147,3,1,1,0,management,low +0.39,0.68,2,282,5,0,1,0,marketing,low +0.39,0.54,2,154,3,0,1,0,marketing,low +0.44,0.52,2,149,3,0,1,0,marketing,low +0.37,0.45,2,149,3,0,1,0,sales,low +0.39,0.53,2,146,3,0,1,0,sales,low +0.72,0.94,4,258,5,0,1,0,sales,low +0.37,0.49,2,148,3,0,1,0,sales,low +0.82,0.94,5,236,5,0,1,0,sales,low +0.42,0.52,2,134,3,0,1,0,sales,low +0.59,1,2,155,5,0,1,0,sales,low +0.82,0.86,5,257,5,0,1,0,sales,low +0.73,0.97,6,189,2,0,1,0,sales,low +0.78,0.66,3,164,3,0,1,0,sales,low +0.09,0.95,6,271,4,0,1,0,sales,low +0.1,0.97,6,280,4,0,1,0,sales,low +0.45,0.46,2,149,3,0,1,0,sales,low +0.83,0.81,5,219,5,0,1,0,sales,low +0.43,0.51,2,128,3,0,1,0,sales,low +0.4,0.47,2,128,3,0,1,0,sales,medium +0.43,0.46,2,157,3,0,1,0,sales,medium +0.78,0.93,4,225,5,0,1,0,sales,medium +0.39,0.45,2,140,3,0,1,0,sales,medium +0.11,0.97,6,310,4,0,1,0,accounting,medium +0.36,0.52,2,143,3,0,1,0,accounting,medium +0.36,0.54,2,153,3,0,1,0,accounting,medium +0.1,0.79,7,310,4,0,1,0,hr,medium +0.4,0.47,2,136,3,0,1,0,hr,medium +0.81,0.85,4,251,6,0,1,0,hr,medium +0.4,0.47,2,144,3,0,1,0,hr,medium +0.09,0.93,6,296,4,0,1,0,technical,medium +0.76,0.89,5,238,5,0,1,0,technical,high +0.73,0.93,5,162,4,0,1,0,technical,low +0.38,0.49,2,137,3,0,1,0,technical,medium +0.72,0.84,5,257,5,0,1,0,technical,medium +0.4,0.56,2,148,3,0,1,0,technical,medium +0.91,0.99,5,254,5,0,1,0,technical,medium +0.85,0.85,4,247,6,0,1,0,technical,low +0.9,0.7,5,206,4,0,1,0,technical,low +0.46,0.55,2,145,3,0,1,0,technical,low +0.43,0.57,2,159,3,1,1,0,technical,low +0.89,0.88,5,228,5,1,1,0,support,low +0.09,0.81,6,257,4,0,1,0,support,low +0.4,0.48,2,155,3,0,1,0,support,low +0.76,0.83,6,293,6,0,1,0,support,low +0.4,0.57,2,151,3,0,1,0,support,low +0.37,0.48,2,160,3,0,1,0,support,low +0.37,0.53,2,143,3,0,1,0,support,low +0.11,0.96,6,280,4,0,1,0,support,low +0.37,0.52,2,158,3,0,1,0,support,low \ No newline at end of file diff --git a/data/banknotes.csv b/data/banknotes.csv new file mode 100644 index 0000000..c532ca7 --- /dev/null +++ b/data/banknotes.csv @@ -0,0 +1,1373 @@ +variace,skewness,curtosis,entropy,class +3.6216,8.6661,-2.8073,-0.44699,0 +4.5459,8.1674,-2.4586,-1.4621,0 +3.866,-2.6383,1.9242,0.10645,0 +3.4566,9.5228,-4.0112,-3.5944,0 +0.32924,-4.4552,4.5718,-0.9888,0 +4.3684,9.6718,-3.9606,-3.1625,0 +3.5912,3.0129,0.72888,0.56421,0 +2.0922,-6.81,8.4636,-0.60216,0 +3.2032,5.7588,-0.75345,-0.61251,0 +1.5356,9.1772,-2.2718,-0.73535,0 +1.2247,8.7779,-2.2135,-0.80647,0 +3.9899,-2.7066,2.3946,0.86291,0 +1.8993,7.6625,0.15394,-3.1108,0 +-1.5768,10.843,2.5462,-2.9362,0 +3.404,8.7261,-2.9915,-0.57242,0 +4.6765,-3.3895,3.4896,1.4771,0 +2.6719,3.0646,0.37158,0.58619,0 +0.80355,2.8473,4.3439,0.6017,0 +1.4479,-4.8794,8.3428,-2.1086,0 +5.2423,11.0272,-4.353,-4.1013,0 +5.7867,7.8902,-2.6196,-0.48708,0 +0.3292,-4.4552,4.5718,-0.9888,0 +3.9362,10.1622,-3.8235,-4.0172,0 +0.93584,8.8855,-1.6831,-1.6599,0 +4.4338,9.887,-4.6795,-3.7483,0 +0.7057,-5.4981,8.3368,-2.8715,0 +1.1432,-3.7413,5.5777,-0.63578,0 +-0.38214,8.3909,2.1624,-3.7405,0 +6.5633,9.8187,-4.4113,-3.2258,0 +4.8906,-3.3584,3.4202,1.0905,0 +-0.24811,-0.17797,4.9068,0.15429,0 +1.4884,3.6274,3.308,0.48921,0 +4.2969,7.617,-2.3874,-0.96164,0 +-0.96511,9.4111,1.7305,-4.8629,0 +-1.6162,0.80908,8.1628,0.60817,0 +2.4391,6.4417,-0.80743,-0.69139,0 +2.6881,6.0195,-0.46641,-0.69268,0 +3.6289,0.81322,1.6277,0.77627,0 +4.5679,3.1929,-2.1055,0.29653,0 +3.4805,9.7008,-3.7541,-3.4379,0 +4.1711,8.722,-3.0224,-0.59699,0 +-0.2062,9.2207,-3.7044,-6.8103,0 +-0.0068919,9.2931,-0.41243,-1.9638,0 +0.96441,5.8395,2.3235,0.066365,0 +2.8561,6.9176,-0.79372,0.48403,0 +-0.7869,9.5663,-3.7867,-7.5034,0 +2.0843,6.6258,0.48382,-2.2134,0 +-0.7869,9.5663,-3.7867,-7.5034,0 +3.9102,6.065,-2.4534,-0.68234,0 +1.6349,3.286,2.8753,0.087054,0 +4.3239,-4.8835,3.4356,-0.5776,0 +5.262,3.9834,-1.5572,1.0103,0 +3.1452,5.825,-0.51439,-1.4944,0 +2.549,6.1499,-1.1605,-1.2371,0 +4.9264,5.496,-2.4774,-0.50648,0 +4.8265,0.80287,1.6371,1.1875,0 +2.5635,6.7769,-0.61979,0.38576,0 +5.807,5.0097,-2.2384,0.43878,0 +3.1377,-4.1096,4.5701,0.98963,0 +-0.78289,11.3603,-0.37644,-7.0495,0 +2.888,0.44696,4.5907,-0.24398,0 +0.49665,5.527,1.7785,-0.47156,0 +4.2586,11.2962,-4.0943,-4.3457,0 +1.7939,-1.1174,1.5454,-0.26079,0 +5.4021,3.1039,-1.1536,1.5651,0 +2.5367,2.599,2.0938,0.20085,0 +4.6054,-4.0765,2.7587,0.31981,0 +2.4235,9.5332,-3.0789,-2.7746,0 +1.0009,7.7846,-0.28219,-2.6608,0 +0.12326,8.9848,-0.9351,-2.4332,0 +3.9529,-2.3548,2.3792,0.48274,0 +4.1373,0.49248,1.093,1.8276,0 +4.7181,10.0153,-3.9486,-3.8582,0 +4.1654,-3.4495,3.643,1.0879,0 +4.4069,10.9072,-4.5775,-4.4271,0 +2.3066,3.5364,0.57551,0.41938,0 +3.7935,7.9853,-2.5477,-1.872,0 +0.049175,6.1437,1.7828,-0.72113,0 +0.24835,7.6439,0.9885,-0.87371,0 +1.1317,3.9647,3.3979,0.84351,0 +2.8033,9.0862,-3.3668,-1.0224,0 +4.4682,2.2907,0.95766,0.83058,0 +5.0185,8.5978,-2.9375,-1.281,0 +1.8664,7.7763,-0.23849,-2.9634,0 +3.245,6.63,-0.63435,0.86937,0 +4.0296,2.6756,0.80685,0.71679,0 +-1.1313,1.9037,7.5339,1.022,0 +0.87603,6.8141,0.84198,-0.17156,0 +4.1197,-2.7956,2.0707,0.67412,0 +3.8027,0.81529,2.1041,1.0245,0 +1.4806,7.6377,-2.7876,-1.0341,0 +4.0632,3.584,0.72545,0.39481,0 +4.3064,8.2068,-2.7824,-1.4336,0 +2.4486,-6.3175,7.9632,0.20602,0 +3.2718,1.7837,2.1161,0.61334,0 +-0.64472,-4.6062,8.347,-2.7099,0 +2.9543,1.076,0.64577,0.89394,0 +2.1616,-6.8804,8.1517,-0.081048,0 +3.82,10.9279,-4.0112,-5.0284,0 +-2.7419,11.4038,2.5394,-5.5793,0 +3.3669,-5.1856,3.6935,-1.1427,0 +4.5597,-2.4211,2.6413,1.6168,0 +5.1129,-0.49871,0.62863,1.1189,0 +3.3397,-4.6145,3.9823,-0.23751,0 +4.2027,0.22761,0.96108,0.97282,0 +3.5438,1.2395,1.997,2.1547,0 +2.3136,10.6651,-3.5288,-4.7672,0 +-1.8584,7.886,-1.6643,-1.8384,0 +3.106,9.5414,-4.2536,-4.003,0 +2.9163,10.8306,-3.3437,-4.122,0 +3.9922,-4.4676,3.7304,-0.1095,0 +1.518,5.6946,0.094818,-0.026738,0 +3.2351,9.647,-3.2074,-2.5948,0 +4.2188,6.8162,-1.2804,0.76076,0 +1.7819,6.9176,-1.2744,-1.5759,0 +2.5331,2.9135,-0.822,-0.12243,0 +3.8969,7.4163,-1.8245,0.14007,0 +2.108,6.7955,-0.1708,0.4905,0 +2.8969,0.70768,2.29,1.8663,0 +0.9297,-3.7971,4.6429,-0.2957,0 +3.4642,10.6878,-3.4071,-4.109,0 +4.0713,10.4023,-4.1722,-4.7582,0 +-1.4572,9.1214,1.7425,-5.1241,0 +-1.5075,1.9224,7.1466,0.89136,0 +-0.91718,9.9884,1.1804,-5.2263,0 +2.994,7.2011,-1.2153,0.3211,0 +-2.343,12.9516,3.3285,-5.9426,0 +3.7818,-2.8846,2.2558,-0.15734,0 +4.6689,1.3098,0.055404,1.909,0 +3.4663,1.1112,1.7425,1.3388,0 +3.2697,-4.3414,3.6884,-0.29829,0 +5.1302,8.6703,-2.8913,-1.5086,0 +2.0139,6.1416,0.37929,0.56938,0 +0.4339,5.5395,2.033,-0.40432,0 +-1.0401,9.3987,0.85998,-5.3336,0 +4.1605,11.2196,-3.6136,-4.0819,0 +5.438,9.4669,-4.9417,-3.9202,0 +5.032,8.2026,-2.6256,-1.0341,0 +5.2418,10.5388,-4.1174,-4.2797,0 +-0.2062,9.2207,-3.7044,-6.8103,0 +2.0911,0.94358,4.5512,1.234,0 +1.7317,-0.34765,4.1905,-0.99138,0 +4.1736,3.3336,-1.4244,0.60429,0 +3.9232,-3.2467,3.4579,0.83705,0 +3.8481,10.1539,-3.8561,-4.2228,0 +0.5195,-3.2633,3.0895,-0.9849,0 +3.8584,0.78425,1.1033,1.7008,0 +1.7496,-0.1759,5.1827,1.2922,0 +3.6277,0.9829,0.68861,0.63403,0 +2.7391,7.4018,0.071684,-2.5302,0 +4.5447,8.2274,-2.4166,-1.5875,0 +-1.7599,11.9211,2.6756,-3.3241,0 +5.0691,0.21313,0.20278,1.2095,0 +3.4591,11.112,-4.2039,-5.0931,0 +1.9358,8.1654,-0.023425,-2.2586,0 +2.486,-0.99533,5.3404,-0.15475,0 +2.4226,-4.5752,5.947,0.21507,0 +3.9479,-3.7723,2.883,0.019813,0 +2.2634,-4.4862,3.6558,-0.61251,0 +1.3566,4.2358,2.1341,0.3211,0 +5.0452,3.8964,-1.4304,0.86291,0 +3.5499,8.6165,-3.2794,-1.2009,0 +0.17346,7.8695,0.26876,-3.7883,0 +2.4008,9.3593,-3.3565,-3.3526,0 +4.8851,1.5995,-0.00029081,1.6401,0 +4.1927,-3.2674,2.5839,0.21766,0 +1.1166,8.6496,-0.96252,-1.8112,0 +1.0235,6.901,-2.0062,-2.7125,0 +-1.803,11.8818,2.0458,-5.2728,0 +0.11739,6.2761,-1.5495,-2.4746,0 +0.5706,-0.0248,1.2421,-0.5621,0 +4.0552,-2.4583,2.2806,1.0323,0 +-1.6952,1.0657,8.8294,0.94955,0 +-1.1193,10.7271,2.0938,-5.6504,0 +1.8799,2.4707,2.4931,0.37671,0 +3.583,-3.7971,3.4391,-0.12501,0 +0.19081,9.1297,-3.725,-5.8224,0 +3.6582,5.6864,-1.7157,-0.23751,0 +-0.13144,-1.7775,8.3316,0.35214,0 +2.3925,9.798,-3.0361,-2.8224,0 +1.6426,3.0149,0.22849,-0.147,0 +-0.11783,-1.5789,8.03,-0.028031,0 +-0.69572,8.6165,1.8419,-4.3289,0 +2.9421,7.4101,-0.97709,-0.88406,0 +-1.7559,11.9459,3.0946,-4.8978,0 +-1.2537,10.8803,1.931,-4.3237,0 +3.2585,-4.4614,3.8024,-0.15087,0 +1.8314,6.3672,-0.036278,0.049554,0 +4.5645,-3.6275,2.8684,0.27714,0 +2.7365,-5.0325,6.6608,-0.57889,0 +0.9297,-3.7971,4.6429,-0.2957,0 +3.9663,10.1684,-4.1131,-4.6056,0 +1.4578,-0.08485,4.1785,0.59136,0 +4.8272,3.0687,0.68604,0.80731,0 +-2.341,12.3784,0.70403,-7.5836,0 +-1.8584,7.886,-1.6643,-1.8384,0 +4.1454,7.257,-1.9153,-0.86078,0 +1.9157,6.0816,0.23705,-2.0116,0 +4.0215,-2.1914,2.4648,1.1409,0 +5.8862,5.8747,-2.8167,-0.30087,0 +-2.0897,10.8265,2.3603,-3.4198,0 +4.0026,-3.5943,3.5573,0.26809,0 +-0.78689,9.5663,-3.7867,-7.5034,0 +4.1757,10.2615,-3.8552,-4.3056,0 +0.83292,7.5404,0.65005,-0.92544,0 +4.8077,2.2327,-0.26334,1.5534,0 +5.3063,5.2684,-2.8904,-0.52716,0 +2.5605,9.2683,-3.5913,-1.356,0 +2.1059,7.6046,-0.47755,-1.8461,0 +2.1721,-0.73874,5.4672,-0.72371,0 +4.2899,9.1814,-4.6067,-4.3263,0 +3.5156,10.1891,-4.2759,-4.978,0 +2.614,8.0081,-3.7258,-1.3069,0 +0.68087,2.3259,4.9085,0.54998,0 +4.1962,0.74493,0.83256,0.753,0 +6.0919,2.9673,-1.3267,1.4551,0 +1.3234,3.2964,0.2362,-0.11984,0 +1.3264,1.0326,5.6566,-0.41337,0 +-0.16735,7.6274,1.2061,-3.6241,0 +-1.3,10.2678,-2.953,-5.8638,0 +-2.2261,12.5398,2.9438,-3.5258,0 +2.4196,6.4665,-0.75688,0.228,0 +1.0987,0.6394,5.989,-0.58277,0 +4.6464,10.5326,-4.5852,-4.206,0 +-0.36038,4.1158,3.1143,-0.37199,0 +1.3562,3.2136,4.3465,0.78662,0 +0.5706,-0.0248,1.2421,-0.5621,0 +-2.6479,10.1374,-1.331,-5.4707,0 +3.1219,-3.137,1.9259,-0.37458,0 +5.4944,1.5478,0.041694,1.9284,0 +-1.3389,1.552,7.0806,1.031,0 +-2.3361,11.9604,3.0835,-5.4435,0 +2.2596,-0.033118,4.7355,-0.2776,0 +0.46901,-0.63321,7.3848,0.36507,0 +2.7296,2.8701,0.51124,0.5099,0 +2.0466,2.03,2.1761,-0.083634,0 +-1.3274,9.498,2.4408,-5.2689,0 +3.8905,-2.1521,2.6302,1.1047,0 +3.9994,0.90427,1.1693,1.6892,0 +2.3952,9.5083,-3.1783,-3.0086,0 +3.2704,6.9321,-1.0456,0.23447,0 +-1.3931,1.5664,7.5382,0.78403,0 +1.6406,3.5488,1.3964,-0.36424,0 +2.7744,6.8576,-1.0671,0.075416,0 +2.4287,9.3821,-3.2477,-1.4543,0 +4.2134,-2.806,2.0116,0.67412,0 +1.6472,0.48213,4.7449,1.225,0 +2.0597,-0.99326,5.2119,-0.29312,0 +0.3798,0.7098,0.7572,-0.4444,0 +1.0135,8.4551,-1.672,-2.0815,0 +4.5691,-4.4552,3.1769,0.0042961,0 +0.57461,10.1105,-1.6917,-4.3922,0 +0.5734,9.1938,-0.9094,-1.872,0 +5.2868,3.257,-1.3721,1.1668,0 +4.0102,10.6568,-4.1388,-5.0646,0 +4.1425,-3.6792,3.8281,1.6297,0 +3.0934,-2.9177,2.2232,0.22283,0 +2.2034,5.9947,0.53009,0.84998,0 +3.744,0.79459,0.95851,1.0077,0 +3.0329,2.2948,2.1135,0.35084,0 +3.7731,7.2073,-1.6814,-0.94742,0 +3.1557,2.8908,0.59693,0.79825,0 +1.8114,7.6067,-0.9788,-2.4668,0 +4.988,7.2052,-3.2846,-1.1608,0 +2.483,6.6155,-0.79287,-0.90863,0 +1.594,4.7055,1.3758,0.081882,0 +-0.016103,9.7484,0.15394,-1.6134,0 +3.8496,9.7939,-4.1508,-4.4582,0 +0.9297,-3.7971,4.6429,-0.2957,0 +4.9342,2.4107,-0.17594,1.6245,0 +3.8417,10.0215,-4.2699,-4.9159,0 +5.3915,9.9946,-3.8081,-3.3642,0 +4.4072,-0.070365,2.0416,1.1319,0 +2.6946,6.7976,-0.40301,0.44912,0 +5.2756,0.13863,0.12138,1.1435,0 +3.4312,6.2637,-1.9513,-0.36165,0 +4.052,-0.16555,0.45383,0.51248,0 +1.3638,-4.7759,8.4182,-1.8836,0 +0.89566,7.7763,-2.7473,-1.9353,0 +1.9265,7.7557,-0.16823,-3.0771,0 +0.20977,-0.46146,7.7267,0.90946,0 +4.068,-2.9363,2.1992,0.50084,0 +2.877,-4.0599,3.6259,-0.32544,0 +0.3223,-0.89808,8.0883,0.69222,0 +-1.3,10.2678,-2.953,-5.8638,0 +1.7747,-6.4334,8.15,-0.89828,0 +1.3419,-4.4221,8.09,-1.7349,0 +0.89606,10.5471,-1.4175,-4.0327,0 +0.44125,2.9487,4.3225,0.7155,0 +3.2422,6.2265,0.12224,-1.4466,0 +2.5678,3.5136,0.61406,-0.40691,0 +-2.2153,11.9625,0.078538,-7.7853,0 +4.1349,6.1189,-2.4294,-0.19613,0 +1.934,-9.2828e-06,4.816,-0.33967,0 +2.5068,1.1588,3.9249,0.12585,0 +2.1464,6.0795,-0.5778,-2.2302,0 +0.051979,7.0521,-2.0541,-3.1508,0 +1.2706,8.035,-0.19651,-2.1888,0 +1.143,0.83391,5.4552,-0.56984,0 +2.2928,9.0386,-3.2417,-1.2991,0 +0.3292,-4.4552,4.5718,-0.9888,0 +2.9719,6.8369,-0.2702,0.71291,0 +1.6849,8.7489,-1.2641,-1.3858,0 +-1.9177,11.6894,2.5454,-3.2763,0 +2.3729,10.4726,-3.0087,-3.2013,0 +1.0284,9.767,-1.3687,-1.7853,0 +0.27451,9.2186,-3.2863,-4.8448,0 +1.6032,-4.7863,8.5193,-2.1203,0 +4.616,10.1788,-4.2185,-4.4245,0 +4.2478,7.6956,-2.7696,-1.0767,0 +4.0215,-2.7004,2.4957,0.36636,0 +5.0297,-4.9704,3.5025,-0.23751,0 +1.5902,2.2948,3.2403,0.18404,0 +2.1274,5.1939,-1.7971,-1.1763,0 +1.1811,8.3847,-2.0567,-0.90345,0 +0.3292,-4.4552,4.5718,-0.9888,0 +5.7353,5.2808,-2.2598,0.075416,0 +2.6718,5.6574,0.72974,-1.4892,0 +1.5799,-4.7076,7.9186,-1.5487,0 +2.9499,2.2493,1.3458,-0.037083,0 +0.5195,-3.2633,3.0895,-0.9849,0 +3.7352,9.5911,-3.9032,-3.3487,0 +-1.7344,2.0175,7.7618,0.93532,0 +3.884,10.0277,-3.9298,-4.0819,0 +3.5257,1.2829,1.9276,1.7991,0 +4.4549,2.4976,1.0313,0.96894,0 +-0.16108,-6.4624,8.3573,-1.5216,0 +4.2164,9.4607,-4.9288,-5.2366,0 +3.5152,6.8224,-0.67377,-0.46898,0 +1.6988,2.9094,2.9044,0.11033,0 +1.0607,2.4542,2.5188,-0.17027,0 +2.0421,1.2436,4.2171,0.90429,0 +3.5594,1.3078,1.291,1.6556,0 +3.0009,5.8126,-2.2306,-0.66553,0 +3.9294,1.4112,1.8076,0.89782,0 +3.4667,-4.0724,4.2882,1.5418,0 +3.966,3.9213,0.70574,0.33662,0 +1.0191,2.33,4.9334,0.82929,0 +0.96414,5.616,2.2138,-0.12501,0 +1.8205,6.7562,0.0099913,0.39481,0 +4.9923,7.8653,-2.3515,-0.71984,0 +-1.1804,11.5093,0.15565,-6.8194,0 +4.0329,0.23175,0.89082,1.1823,0 +0.66018,10.3878,-1.4029,-3.9151,0 +3.5982,7.1307,-1.3035,0.21248,0 +-1.8584,7.886,-1.6643,-1.8384,0 +4.0972,0.46972,1.6671,0.91593,0 +3.3299,0.91254,1.5806,0.39352,0 +3.1088,3.1122,0.80857,0.4336,0 +-4.2859,8.5234,3.1392,-0.91639,0 +-1.2528,10.2036,2.1787,-5.6038,0 +0.5195,-3.2633,3.0895,-0.9849,0 +0.3292,-4.4552,4.5718,-0.9888,0 +0.88872,5.3449,2.045,-0.19355,0 +3.5458,9.3718,-4.0351,-3.9564,0 +-0.21661,8.0329,1.8848,-3.8853,0 +2.7206,9.0821,-3.3111,-0.96811,0 +3.2051,8.6889,-2.9033,-0.7819,0 +2.6917,10.8161,-3.3,-4.2888,0 +-2.3242,11.5176,1.8231,-5.375,0 +2.7161,-4.2006,4.1914,0.16981,0 +3.3848,3.2674,0.90967,0.25128,0 +1.7452,4.8028,2.0878,0.62627,0 +2.805,0.57732,1.3424,1.2133,0 +5.7823,5.5788,-2.4089,-0.056479,0 +3.8999,1.734,1.6011,0.96765,0 +3.5189,6.332,-1.7791,-0.020273,0 +3.2294,7.7391,-0.37816,-2.5405,0 +3.4985,3.1639,0.22677,-0.1651,0 +2.1948,1.3781,1.1582,0.85774,0 +2.2526,9.9636,-3.1749,-2.9944,0 +4.1529,-3.9358,2.8633,-0.017686,0 +0.74307,11.17,-1.3824,-4.0728,0 +1.9105,8.871,-2.3386,-0.75604,0 +-1.5055,0.070346,6.8681,-0.50648,0 +0.58836,10.7727,-1.3884,-4.3276,0 +3.2303,7.8384,-3.5348,-1.2151,0 +-1.9922,11.6542,2.6542,-5.2107,0 +2.8523,9.0096,-3.761,-3.3371,0 +4.2772,2.4955,0.48554,0.36119,0 +1.5099,0.039307,6.2332,-0.30346,0 +5.4188,10.1457,-4.084,-3.6991,0 +0.86202,2.6963,4.2908,0.54739,0 +3.8117,10.1457,-4.0463,-4.5629,0 +0.54777,10.3754,-1.5435,-4.1633,0 +2.3718,7.4908,0.015989,-1.7414,0 +-2.4953,11.1472,1.9353,-3.4638,0 +4.6361,-2.6611,2.8358,1.1991,0 +-2.2527,11.5321,2.5899,-3.2737,0 +3.7982,10.423,-4.1602,-4.9728,0 +-0.36279,8.2895,-1.9213,-3.3332,0 +2.1265,6.8783,0.44784,-2.2224,0 +0.86736,5.5643,1.6765,-0.16769,0 +3.7831,10.0526,-3.8869,-3.7366,0 +-2.2623,12.1177,0.28846,-7.7581,0 +1.2616,4.4303,-1.3335,-1.7517,0 +2.6799,3.1349,0.34073,0.58489,0 +-0.39816,5.9781,1.3912,-1.1621,0 +4.3937,0.35798,2.0416,1.2004,0 +2.9695,5.6222,0.27561,-1.1556,0 +1.3049,-0.15521,6.4911,-0.75346,0 +2.2123,-5.8395,7.7687,-0.85302,0 +1.9647,6.9383,0.57722,0.66377,0 +3.0864,-2.5845,2.2309,0.30947,0 +0.3798,0.7098,0.7572,-0.4444,0 +0.58982,7.4266,1.2353,-2.9595,0 +0.14783,7.946,1.0742,-3.3409,0 +-0.062025,6.1975,1.099,-1.131,0 +4.223,1.1319,0.72202,0.96118,0 +0.64295,7.1018,0.3493,-0.41337,0 +1.941,0.46351,4.6472,1.0879,0 +4.0047,0.45937,1.3621,1.6181,0 +3.7767,9.7794,-3.9075,-3.5323,0 +3.4769,-0.15314,2.53,2.4495,0 +1.9818,9.2621,-3.521,-1.872,0 +3.8023,-3.8696,4.044,0.95343,0 +4.3483,11.1079,-4.0857,-4.2539,0 +1.1518,1.3864,5.2727,-0.43536,0 +-1.2576,1.5892,7.0078,0.42455,0 +1.9572,-5.1153,8.6127,-1.4297,0 +-2.484,12.1611,2.8204,-3.7418,0 +-1.1497,1.2954,7.701,0.62627,0 +4.8368,10.0132,-4.3239,-4.3276,0 +-0.12196,8.8068,0.94566,-4.2267,0 +1.9429,6.3961,0.092248,0.58102,0 +1.742,-4.809,8.2142,-2.0659,0 +-1.5222,10.8409,2.7827,-4.0974,0 +-1.3,10.2678,-2.953,-5.8638,0 +3.4246,-0.14693,0.80342,0.29136,0 +2.5503,-4.9518,6.3729,-0.41596,0 +1.5691,6.3465,-0.1828,-2.4099,0 +1.3087,4.9228,2.0013,0.22024,0 +5.1776,8.2316,-3.2511,-1.5694,0 +2.229,9.6325,-3.1123,-2.7164,0 +5.6272,10.0857,-4.2931,-3.8142,0 +1.2138,8.7986,-2.1672,-0.74182,0 +0.3798,0.7098,0.7572,-0.4444,0 +0.5415,6.0319,1.6825,-0.46122,0 +4.0524,5.6802,-1.9693,0.026279,0 +4.7285,2.1065,-0.28305,1.5625,0 +3.4359,0.66216,2.1041,1.8922,0 +0.86816,10.2429,-1.4912,-4.0082,0 +3.359,9.8022,-3.8209,-3.7133,0 +3.6702,2.9942,0.85141,0.30688,0 +1.3349,6.1189,0.46497,0.49826,0 +3.1887,-3.4143,2.7742,-0.2026,0 +2.4527,2.9653,0.20021,-0.056479,0 +3.9121,2.9735,0.92852,0.60558,0 +3.9364,10.5885,-3.725,-4.3133,0 +3.9414,-3.2902,3.1674,1.0866,0 +3.6922,-3.9585,4.3439,1.3517,0 +5.681,7.795,-2.6848,-0.92544,0 +0.77124,9.0862,-1.2281,-1.4996,0 +3.5761,9.7753,-3.9795,-3.4638,0 +1.602,6.1251,0.52924,0.47886,0 +2.6682,10.216,-3.4414,-4.0069,0 +2.0007,1.8644,2.6491,0.47369,0 +0.64215,3.1287,4.2933,0.64696,0 +4.3848,-3.0729,3.0423,1.2741,0 +0.77445,9.0552,-2.4089,-1.3884,0 +0.96574,8.393,-1.361,-1.4659,0 +3.0948,8.7324,-2.9007,-0.96682,0 +4.9362,7.6046,-2.3429,-0.85302,0 +-1.9458,11.2217,1.9079,-3.4405,0 +5.7403,-0.44284,0.38015,1.3763,0 +-2.6989,12.1984,0.67661,-8.5482,0 +1.1472,3.5985,1.9387,-0.43406,0 +2.9742,8.96,-2.9024,-1.0379,0 +4.5707,7.2094,-3.2794,-1.4944,0 +0.1848,6.5079,2.0133,-0.87242,0 +0.87256,9.2931,-0.7843,-2.1978,0 +0.39559,6.8866,1.0588,-0.67587,0 +3.8384,6.1851,-2.0439,-0.033204,0 +2.8209,7.3108,-0.81857,-1.8784,0 +2.5817,9.7546,-3.1749,-2.9957,0 +3.8213,0.23175,2.0133,2.0564,0 +0.3798,0.7098,0.7572,-0.4444,0 +3.4893,6.69,-1.2042,-0.38751,0 +-1.7781,0.8546,7.1303,0.027572,0 +2.0962,2.4769,1.9379,-0.040962,0 +0.94732,-0.57113,7.1903,-0.67587,0 +2.8261,9.4007,-3.3034,-1.0509,0 +0.0071249,8.3661,0.50781,-3.8155,0 +0.96788,7.1907,1.2798,-2.4565,0 +4.7432,2.1086,0.1368,1.6543,0 +3.6575,7.2797,-2.2692,-1.144,0 +3.8832,6.4023,-2.432,-0.98363,0 +3.4776,8.811,-3.1886,-0.92285,0 +1.1315,7.9212,1.093,-2.8444,0 +2.8237,2.8597,0.19678,0.57196,0 +1.9321,6.0423,0.26019,-2.053,0 +3.0632,-3.3315,5.1305,0.8267,0 +-1.8411,10.8306,2.769,-3.0901,0 +2.8084,11.3045,-3.3394,-4.4194,0 +2.5698,-4.4076,5.9856,0.078002,0 +-0.12624,10.3216,-3.7121,-6.1185,0 +3.3756,-4.0951,4.367,1.0698,0 +-0.048008,-1.6037,8.4756,0.75558,0 +0.5706,-0.0248,1.2421,-0.5621,0 +0.88444,6.5906,0.55837,-0.44182,0 +3.8644,3.7061,0.70403,0.35214,0 +1.2999,2.5762,2.0107,-0.18967,0 +2.0051,-6.8638,8.132,-0.2401,0 +4.9294,0.27727,0.20792,0.33662,0 +2.8297,6.3485,-0.73546,-0.58665,0 +2.565,8.633,-2.9941,-1.3082,0 +2.093,8.3061,0.022844,-3.2724,0 +4.6014,5.6264,-2.1235,0.19309,0 +5.0617,-0.35799,0.44698,0.99868,0 +-0.2951,9.0489,-0.52725,-2.0789,0 +3.577,2.4004,1.8908,0.73231,0 +3.9433,2.5017,1.5215,0.903,0 +2.6648,10.754,-3.3994,-4.1685,0 +5.9374,6.1664,-2.5905,-0.36553,0 +2.0153,1.8479,3.1375,0.42843,0 +5.8782,5.9409,-2.8544,-0.60863,0 +-2.3983,12.606,2.9464,-5.7888,0 +1.762,4.3682,2.1384,0.75429,0 +4.2406,-2.4852,1.608,0.7155,0 +3.4669,6.87,-1.0568,-0.73147,0 +3.1896,5.7526,-0.18537,-0.30087,0 +0.81356,9.1566,-2.1492,-4.1814,0 +0.52855,0.96427,4.0243,-1.0483,0 +2.1319,-2.0403,2.5574,-0.061652,0 +0.33111,4.5731,2.057,-0.18967,0 +1.2746,8.8172,-1.5323,-1.7957,0 +2.2091,7.4556,-1.3284,-3.3021,0 +2.5328,7.528,-0.41929,-2.6478,0 +3.6244,1.4609,1.3501,1.9284,0 +-1.3885,12.5026,0.69118,-7.5487,0 +5.7227,5.8312,-2.4097,-0.24527,0 +3.3583,10.3567,-3.7301,-3.6991,0 +2.5227,2.2369,2.7236,0.79438,0 +0.045304,6.7334,1.0708,-0.9332,0 +4.8278,7.7598,-2.4491,-1.2216,0 +1.9476,-4.7738,8.527,-1.8668,0 +2.7659,0.66216,4.1494,-0.28406,0 +-0.10648,-0.76771,7.7575,0.64179,0 +0.72252,-0.053811,5.6703,-1.3509,0 +4.2475,1.4816,-0.48355,0.95343,0 +3.9772,0.33521,2.2566,2.1625,0 +3.6667,4.302,0.55923,0.33791,0 +2.8232,10.8513,-3.1466,-3.9784,0 +-1.4217,11.6542,-0.057699,-7.1025,0 +4.2458,1.1981,0.66633,0.94696,0 +4.1038,-4.8069,3.3491,-0.49225,0 +1.4507,8.7903,-2.2324,-0.65259,0 +3.4647,-3.9172,3.9746,0.36119,0 +1.8533,6.1458,1.0176,-2.0401,0 +3.5288,0.71596,1.9507,1.9375,0 +3.9719,1.0367,0.75973,1.0013,0 +3.534,9.3614,-3.6316,-1.2461,0 +3.6894,9.887,-4.0788,-4.3664,0 +3.0672,-4.4117,3.8238,-0.81682,0 +2.6463,-4.8152,6.3549,0.003003,0 +2.2893,3.733,0.6312,-0.39786,0 +1.5673,7.9274,-0.056842,-2.1694,0 +4.0405,0.51524,1.0279,1.106,0 +4.3846,-4.8794,3.3662,-0.029324,0 +2.0165,-0.25246,5.1707,1.0763,0 +4.0446,11.1741,-4.3582,-4.7401,0 +-0.33729,-0.64976,7.6659,0.72326,0 +-2.4604,12.7302,0.91738,-7.6418,0 +4.1195,10.9258,-3.8929,-4.1802,0 +2.0193,0.82356,4.6369,1.4202,0 +1.5701,7.9129,0.29018,-2.1953,0 +2.6415,7.586,-0.28562,-1.6677,0 +5.0214,8.0764,-3.0515,-1.7155,0 +4.3435,3.3295,0.83598,0.64955,0 +1.8238,-6.7748,8.3873,-0.54139,0 +3.9382,0.9291,0.78543,0.6767,0 +2.2517,-5.1422,4.2916,-1.2487,0 +5.504,10.3671,-4.413,-4.0211,0 +2.8521,9.171,-3.6461,-1.2047,0 +1.1676,9.1566,-2.0867,-0.80647,0 +2.6104,8.0081,-0.23592,-1.7608,0 +0.32444,10.067,-1.1982,-4.1284,0 +3.8962,-4.7904,3.3954,-0.53751,0 +2.1752,-0.8091,5.1022,-0.67975,0 +1.1588,8.9331,-2.0807,-1.1272,0 +4.7072,8.2957,-2.5605,-1.4905,0 +-1.9667,11.8052,-0.40472,-7.8719,0 +4.0552,0.40143,1.4563,0.65343,0 +2.3678,-6.839,8.4207,-0.44829,0 +0.33565,6.8369,0.69718,-0.55691,0 +4.3398,-5.3036,3.8803,-0.70432,0 +1.5456,8.5482,0.4187,-2.1784,0 +1.4276,8.3847,-2.0995,-1.9677,0 +-0.27802,8.1881,-3.1338,-2.5276,0 +0.93611,8.6413,-1.6351,-1.3043,0 +4.6352,-3.0087,2.6773,1.212,0 +1.5268,-5.5871,8.6564,-1.722,0 +0.95626,2.4728,4.4578,0.21636,0 +-2.7914,1.7734,6.7756,-0.39915,0 +5.2032,3.5116,-1.2538,1.0129,0 +3.1836,7.2321,-1.0713,-2.5909,0 +0.65497,5.1815,1.0673,-0.42113,0 +5.6084,10.3009,-4.8003,-4.3534,0 +1.105,7.4432,0.41099,-3.0332,0 +3.9292,-2.9156,2.2129,0.30817,0 +1.1558,6.4003,1.5506,0.6961,0 +2.5581,2.6218,1.8513,0.40257,0 +2.7831,10.9796,-3.557,-4.4039,0 +3.7635,2.7811,0.66119,0.34179,0 +-2.6479,10.1374,-1.331,-5.4707,0 +1.0652,8.3682,-1.4004,-1.6509,0 +-1.4275,11.8797,0.41613,-6.9978,0 +5.7456,10.1808,-4.7857,-4.3366,0 +5.086,3.2798,-1.2701,1.1189,0 +3.4092,5.4049,-2.5228,-0.89958,0 +-0.2361,9.3221,2.1307,-4.3793,0 +3.8197,8.9951,-4.383,-4.0327,0 +-1.1391,1.8127,6.9144,0.70127,0 +4.9249,0.68906,0.77344,1.2095,0 +2.5089,6.841,-0.029423,0.44912,0 +-0.2062,9.2207,-3.7044,-6.8103,0 +3.946,6.8514,-1.5443,-0.5582,0 +-0.278,8.1881,-3.1338,-2.5276,0 +1.8592,3.2074,-0.15966,-0.26208,0 +0.56953,7.6294,1.5754,-3.2233,0 +3.4626,-4.449,3.5427,0.15429,0 +3.3951,1.1484,2.1401,2.0862,0 +5.0429,-0.52974,0.50439,1.106,0 +3.7758,7.1783,-1.5195,0.40128,0 +4.6562,7.6398,-2.4243,-1.2384,0 +4.0948,-2.9674,2.3689,0.75429,0 +1.8384,6.063,0.54723,0.51248,0 +2.0153,0.43661,4.5864,-0.3151,0 +3.5251,0.7201,1.6928,0.64438,0 +3.757,-5.4236,3.8255,-1.2526,0 +2.5989,3.5178,0.7623,0.81119,0 +1.8994,0.97462,4.2265,0.81377,0 +3.6941,-3.9482,4.2625,1.1577,0 +4.4295,-2.3507,1.7048,0.90946,0 +6.8248,5.2187,-2.5425,0.5461,0 +1.8967,-2.5163,2.8093,-0.79742,0 +2.1526,-6.1665,8.0831,-0.34355,0 +3.3004,7.0811,-1.3258,0.22283,0 +2.7213,7.05,-0.58808,0.41809,0 +3.8846,-3.0336,2.5334,0.20214,0 +4.1665,-0.4449,0.23448,0.27843,0 +0.94225,5.8561,1.8762,-0.32544,0 +5.1321,-0.031048,0.32616,1.1151,0 +0.38251,6.8121,1.8128,-0.61251,0 +3.0333,-2.5928,2.3183,0.303,0 +2.9233,6.0464,-0.11168,-0.58665,0 +1.162,10.2926,-1.2821,-4.0392,0 +3.7791,2.5762,1.3098,0.5655,0 +0.77765,5.9781,1.1941,-0.3526,0 +-0.38388,-1.0471,8.0514,0.49567,0 +0.21084,9.4359,-0.094543,-1.859,0 +2.9571,-4.5938,5.9068,0.57196,0 +4.6439,-3.3729,2.5976,0.55257,0 +3.3577,-4.3062,6.0241,0.18274,0 +3.5127,2.9073,1.0579,0.40774,0 +2.6562,10.7044,-3.3085,-4.0767,0 +-1.3612,10.694,1.7022,-2.9026,0 +-0.278,8.1881,-3.1338,-2.5276,0 +1.04,-6.9321,8.2888,-1.2991,0 +2.1881,2.7356,1.3278,-0.1832,0 +4.2756,-2.6528,2.1375,0.94437,0 +-0.11996,6.8741,0.91995,-0.6694,0 +2.9736,8.7944,-3.6359,-1.3754,0 +3.7798,-3.3109,2.6491,0.066365,0 +5.3586,3.7557,-1.7345,1.0789,0 +1.8373,6.1292,0.84027,0.55257,0 +1.2262,0.89599,5.7568,-0.11596,0 +-0.048008,-0.56078,7.7215,0.453,0 +0.5706,-0.024841,1.2421,-0.56208,0 +4.3634,0.46351,1.4281,2.0202,0 +3.482,-4.1634,3.5008,-0.078462,0 +0.51947,-3.2633,3.0895,-0.98492,0 +2.3164,-2.628,3.1529,-0.08622,0 +-1.8348,11.0334,3.1863,-4.8888,0 +1.3754,8.8793,-1.9136,-0.53751,0 +-0.16682,5.8974,0.49839,-0.70044,0 +0.29961,7.1328,-0.31475,-1.1828,0 +0.25035,9.3262,-3.6873,-6.2543,0 +2.4673,1.3926,1.7125,0.41421,0 +0.77805,6.6424,-1.1425,-1.0573,0 +3.4465,2.9508,1.0271,0.5461,0 +2.2429,-4.1427,5.2333,-0.40173,0 +3.7321,-3.884,3.3577,-0.0060486,0 +4.3365,-3.584,3.6884,0.74912,0 +-2.0759,10.8223,2.6439,-4.837,0 +4.0715,7.6398,-2.0824,-1.1698,0 +0.76163,5.8209,1.1959,-0.64613,0 +-0.53966,7.3273,0.46583,-1.4543,0 +2.6213,5.7919,0.065686,-1.5759,0 +3.0242,-3.3378,2.5865,-0.54785,0 +5.8519,5.3905,-2.4037,-0.061652,0 +0.5706,-0.0248,1.2421,-0.5621,0 +3.9771,11.1513,-3.9272,-4.3444,0 +1.5478,9.1814,-1.6326,-1.7375,0 +0.74054,0.36625,2.1992,0.48403,0 +0.49571,10.2243,-1.097,-4.0159,0 +1.645,7.8612,-0.87598,-3.5569,0 +3.6077,6.8576,-1.1622,0.28231,0 +3.2403,-3.7082,5.2804,0.41291,0 +3.9166,10.2491,-4.0926,-4.4659,0 +3.9262,6.0299,-2.0156,-0.065531,0 +5.591,10.4643,-4.3839,-4.3379,0 +3.7522,-3.6978,3.9943,1.3051,0 +1.3114,4.5462,2.2935,0.22541,0 +3.7022,6.9942,-1.8511,-0.12889,0 +4.364,-3.1039,2.3757,0.78532,0 +3.5829,1.4423,1.0219,1.4008,0 +4.65,-4.8297,3.4553,-0.25174,0 +5.1731,3.9606,-1.983,0.40774,0 +3.2692,3.4184,0.20706,-0.066824,0 +2.4012,1.6223,3.0312,0.71679,0 +1.7257,-4.4697,8.2219,-1.8073,0 +4.7965,6.9859,-1.9967,-0.35001,0 +4.0962,10.1891,-3.9323,-4.1827,0 +2.5559,3.3605,2.0321,0.26809,0 +3.4916,8.5709,-3.0326,-0.59182,0 +0.5195,-3.2633,3.0895,-0.9849,0 +2.9856,7.2673,-0.409,-2.2431,0 +4.0932,5.4132,-1.8219,0.23576,0 +1.7748,-0.76978,5.5854,1.3039,0 +5.2012,0.32694,0.17965,1.1797,0 +-0.45062,-1.3678,7.0858,-0.40303,0 +4.8451,8.1116,-2.9512,-1.4724,0 +0.74841,7.2756,1.1504,-0.5388,0 +5.1213,8.5565,-3.3917,-1.5474,0 +3.6181,-3.7454,2.8273,-0.71208,0 +0.040498,8.5234,1.4461,-3.9306,0 +-2.6479,10.1374,-1.331,-5.4707,0 +0.37984,0.70975,0.75716,-0.44441,0 +-0.95923,0.091039,6.2204,-1.4828,0 +2.8672,10.0008,-3.2049,-3.1095,0 +1.0182,9.109,-0.62064,-1.7129,0 +-2.7143,11.4535,2.1092,-3.9629,0 +3.8244,-3.1081,2.4537,0.52024,0 +2.7961,2.121,1.8385,0.38317,0 +3.5358,6.7086,-0.81857,0.47886,0 +-0.7056,8.7241,2.2215,-4.5965,0 +4.1542,7.2756,-2.4766,-1.2099,0 +0.92703,9.4318,-0.66263,-1.6728,0 +1.8216,-6.4748,8.0514,-0.41855,0 +-2.4473,12.6247,0.73573,-7.6612,0 +3.5862,-3.0957,2.8093,0.24481,0 +0.66191,9.6594,-0.28819,-1.6638,0 +4.7926,1.7071,-0.051701,1.4926,0 +4.9852,8.3516,-2.5425,-1.2823,0 +0.75736,3.0294,2.9164,-0.068117,0 +4.6499,7.6336,-1.9427,-0.37458,0 +-0.023579,7.1742,0.78457,-0.75734,0 +0.85574,0.0082678,6.6042,-0.53104,0 +0.88298,0.66009,6.0096,-0.43277,0 +4.0422,-4.391,4.7466,1.137,0 +2.2546,8.0992,-0.24877,-3.2698,0 +0.38478,6.5989,-0.3336,-0.56466,0 +3.1541,-5.1711,6.5991,0.57455,0 +2.3969,0.23589,4.8477,1.437,0 +4.7114,2.0755,-0.2702,1.2379,0 +4.0127,10.1477,-3.9366,-4.0728,0 +2.6606,3.1681,1.9619,0.18662,0 +3.931,1.8541,-0.023425,1.2314,0 +0.01727,8.693,1.3989,-3.9668,0 +3.2414,0.40971,1.4015,1.1952,0 +2.2504,3.5757,0.35273,0.2836,0 +-1.3971,3.3191,-1.3927,-1.9948,1 +0.39012,-0.14279,-0.031994,0.35084,1 +-1.6677,-7.1535,7.8929,0.96765,1 +-3.8483,-12.8047,15.6824,-1.281,1 +-3.5681,-8.213,10.083,0.96765,1 +-2.2804,-0.30626,1.3347,1.3763,1 +-1.7582,2.7397,-2.5323,-2.234,1 +-0.89409,3.1991,-1.8219,-2.9452,1 +0.3434,0.12415,-0.28733,0.14654,1 +-0.9854,-6.661,5.8245,0.5461,1 +-2.4115,-9.1359,9.3444,-0.65259,1 +-1.5252,-6.2534,5.3524,0.59912,1 +-0.61442,-0.091058,-0.31818,0.50214,1 +-0.36506,2.8928,-3.6461,-3.0603,1 +-5.9034,6.5679,0.67661,-6.6797,1 +-1.8215,2.7521,-0.72261,-2.353,1 +-0.77461,-1.8768,2.4023,1.1319,1 +-1.8187,-9.0366,9.0162,-0.12243,1 +-3.5801,-12.9309,13.1779,-2.5677,1 +-1.8219,-6.8824,5.4681,0.057313,1 +-0.3481,-0.38696,-0.47841,0.62627,1 +0.47368,3.3605,-4.5064,-4.0431,1 +-3.4083,4.8587,-0.76888,-4.8668,1 +-1.6662,-0.30005,1.4238,0.024986,1 +-2.0962,-7.1059,6.6188,-0.33708,1 +-2.6685,-10.4519,9.1139,-1.7323,1 +-0.47465,-4.3496,1.9901,0.7517,1 +1.0552,1.1857,-2.6411,0.11033,1 +1.1644,3.8095,-4.9408,-4.0909,1 +-4.4779,7.3708,-0.31218,-6.7754,1 +-2.7338,0.45523,2.4391,0.21766,1 +-2.286,-5.4484,5.8039,0.88231,1 +-1.6244,-6.3444,4.6575,0.16981,1 +0.50813,0.47799,-1.9804,0.57714,1 +1.6408,4.2503,-4.9023,-2.6621,1 +0.81583,4.84,-5.2613,-6.0823,1 +-5.4901,9.1048,-0.38758,-5.9763,1 +-3.2238,2.7935,0.32274,-0.86078,1 +-2.0631,-1.5147,1.219,0.44524,1 +-0.91318,-2.0113,-0.19565,0.066365,1 +0.6005,1.9327,-3.2888,-0.32415,1 +0.91315,3.3377,-4.0557,-1.6741,1 +-0.28015,3.0729,-3.3857,-2.9155,1 +-3.6085,3.3253,-0.51954,-3.5737,1 +-6.2003,8.6806,0.0091344,-3.703,1 +-4.2932,3.3419,0.77258,-0.99785,1 +-3.0265,-0.062088,0.68604,-0.055186,1 +-1.7015,-0.010356,-0.99337,-0.53104,1 +-0.64326,2.4748,-2.9452,-1.0276,1 +-0.86339,1.9348,-2.3729,-1.0897,1 +-2.0659,1.0512,-0.46298,-1.0974,1 +-2.1333,1.5685,-0.084261,-1.7453,1 +-1.2568,-1.4733,2.8718,0.44653,1 +-3.1128,-6.841,10.7402,-1.0172,1 +-4.8554,-5.9037,10.9818,-0.82199,1 +-2.588,3.8654,-0.3336,-1.2797,1 +0.24394,1.4733,-1.4192,-0.58535,1 +-1.5322,-5.0966,6.6779,0.17498,1 +-4.0025,-13.4979,17.6772,-3.3202,1 +-4.0173,-8.3123,12.4547,-1.4375,1 +-3.0731,-0.53181,2.3877,0.77627,1 +-1.979,3.2301,-1.3575,-2.5819,1 +-0.4294,-0.14693,0.044265,-0.15605,1 +-2.234,-7.0314,7.4936,0.61334,1 +-4.211,-12.4736,14.9704,-1.3884,1 +-3.8073,-8.0971,10.1772,0.65084,1 +-2.5912,-0.10554,1.2798,1.0414,1 +-2.2482,3.0915,-2.3969,-2.6711,1 +-1.4427,3.2922,-1.9702,-3.4392,1 +-0.39416,-0.020702,-0.066267,-0.44699,1 +-1.522,-6.6383,5.7491,-0.10691,1 +-2.8267,-9.0407,9.0694,-0.98233,1 +-1.7263,-6.0237,5.2419,0.29524,1 +-0.94255,0.039307,-0.24192,0.31593,1 +-0.89569,3.0025,-3.6067,-3.4457,1 +-6.2815,6.6651,0.52581,-7.0107,1 +-2.3211,3.166,-1.0002,-2.7151,1 +-1.3414,-2.0776,2.8093,0.60688,1 +-2.258,-9.3263,9.3727,-0.85949,1 +-3.8858,-12.8461,12.7957,-3.1353,1 +-1.8969,-6.7893,5.2761,-0.32544,1 +-0.52645,-0.24832,-0.45613,0.41938,1 +0.0096613,3.5612,-4.407,-4.4103,1 +-3.8826,4.898,-0.92311,-5.0801,1 +-2.1405,-0.16762,1.321,-0.20906,1 +-2.4824,-7.3046,6.839,-0.59053,1 +-2.9098,-10.0712,8.4156,-1.9948,1 +-0.60975,-4.002,1.8471,0.6017,1 +0.83625,1.1071,-2.4706,-0.062945,1 +0.60731,3.9544,-4.772,-4.4853,1 +-4.8861,7.0542,-0.17252,-6.959,1 +-3.1366,0.42212,2.6225,-0.064238,1 +-2.5754,-5.6574,6.103,0.65214,1 +-1.8782,-6.5865,4.8486,-0.021566,1 +0.24261,0.57318,-1.9402,0.44007,1 +1.296,4.2855,-4.8457,-2.9013,1 +0.25943,5.0097,-5.0394,-6.3862,1 +-5.873,9.1752,-0.27448,-6.0422,1 +-3.4605,2.6901,0.16165,-1.0224,1 +-2.3797,-1.4402,1.1273,0.16076,1 +-1.2424,-1.7175,-0.52553,-0.21036,1 +0.20216,1.9182,-3.2828,-0.61768,1 +0.59823,3.5012,-3.9795,-1.7841,1 +-0.77995,3.2322,-3.282,-3.1004,1 +-4.1409,3.4619,-0.47841,-3.8879,1 +-6.5084,8.7696,0.23191,-3.937,1 +-4.4996,3.4288,0.56265,-1.1672,1 +-3.3125,0.10139,0.55323,-0.2957,1 +-1.9423,0.3766,-1.2898,-0.82458,1 +-0.75793,2.5349,-3.0464,-1.2629,1 +-0.95403,1.9824,-2.3163,-1.1957,1 +-2.2173,1.4671,-0.72689,-1.1724,1 +-2.799,1.9679,-0.42357,-2.1125,1 +-1.8629,-0.84841,2.5377,0.097399,1 +-3.5916,-6.2285,10.2389,-1.1543,1 +-5.1216,-5.3118,10.3846,-1.0612,1 +-3.2854,4.0372,-0.45356,-1.8228,1 +-0.56877,1.4174,-1.4252,-1.1246,1 +-2.3518,-4.8359,6.6479,-0.060358,1 +-4.4861,-13.2889,17.3087,-3.2194,1 +-4.3876,-7.7267,11.9655,-1.4543,1 +-3.3604,-0.32696,2.1324,0.6017,1 +-1.0112,2.9984,-1.1664,-1.6185,1 +0.030219,-1.0512,1.4024,0.77369,1 +-1.6514,-8.4985,9.1122,1.2379,1 +-3.2692,-12.7406,15.5573,-0.14182,1 +-2.5701,-6.8452,8.9999,2.1353,1 +-1.3066,0.25244,0.7623,1.7758,1 +-1.6637,3.2881,-2.2701,-2.2224,1 +-0.55008,2.8659,-1.6488,-2.4319,1 +0.21431,-0.69529,0.87711,0.29653,1 +-0.77288,-7.4473,6.492,0.36119,1 +-1.8391,-9.0883,9.2416,-0.10432,1 +-0.63298,-5.1277,4.5624,1.4797,1 +0.0040545,0.62905,-0.64121,0.75817,1 +-0.28696,3.1784,-3.5767,-3.1896,1 +-5.2406,6.6258,-0.19908,-6.8607,1 +-1.4446,2.1438,-0.47241,-1.6677,1 +-0.65767,-2.8018,3.7115,0.99739,1 +-1.5449,-10.1498,9.6152,-1.2332,1 +-2.8957,-12.0205,11.9149,-2.7552,1 +-0.81479,-5.7381,4.3919,0.3211,1 +0.50225,0.65388,-1.1793,0.39998,1 +0.74521,3.6357,-4.4044,-4.1414,1 +-2.9146,4.0537,-0.45699,-4.0327,1 +-1.3907,-1.3781,2.3055,-0.021566,1 +-1.786,-8.1157,7.0858,-1.2112,1 +-1.7322,-9.2828,7.719,-1.7168,1 +0.55298,-3.4619,1.7048,1.1008,1 +2.031,1.852,-3.0121,0.003003,1 +1.2279,4.0309,-4.6435,-3.9125,1 +-4.2249,6.2699,0.15822,-5.5457,1 +-2.5346,-0.77392,3.3602,0.00171,1 +-1.749,-6.332,6.0987,0.14266,1 +-0.539,-5.167,3.4399,0.052141,1 +1.5631,0.89599,-1.9702,0.65472,1 +2.3917,4.5565,-4.9888,-2.8987,1 +0.89512,4.7738,-4.8431,-5.5909,1 +-5.4808,8.1819,0.27818,-5.0323,1 +-2.8833,1.7713,0.68946,-0.4638,1 +-1.4174,-2.2535,1.518,0.61981,1 +0.4283,-0.94981,-1.0731,0.3211,1 +1.5904,2.2121,-3.1183,-0.11725,1 +1.7425,3.6833,-4.0129,-1.7207,1 +-0.23356,3.2405,-3.0669,-2.7784,1 +-3.6227,3.9958,-0.35845,-3.9047,1 +-6.1536,7.9295,0.61663,-3.2646,1 +-3.9172,2.6652,0.78886,-0.7819,1 +-2.2214,-0.23798,0.56008,0.05602,1 +-0.49241,0.89392,-1.6283,-0.56854,1 +0.26517,2.4066,-2.8416,-0.59958,1 +-0.10234,1.8189,-2.2169,-0.56725,1 +-1.6176,1.0926,-0.35502,-0.59958,1 +-1.8448,1.254,0.27218,-1.0728,1 +-1.2786,-2.4087,4.5735,0.47627,1 +-2.902,-7.6563,11.8318,-0.84268,1 +-4.3773,-5.5167,10.939,-0.4082,1 +-2.0529,3.8385,-0.79544,-1.2138,1 +0.18868,0.70148,-0.51182,0.0055892,1 +-1.7279,-6.841,8.9494,0.68058,1 +-3.3793,-13.7731,17.9274,-2.0323,1 +-3.1273,-7.1121,11.3897,-0.083634,1 +-2.121,-0.05588,1.949,1.353,1 +-1.7697,3.4329,-1.2144,-2.3789,1 +-0.0012852,0.13863,-0.19651,0.0081754,1 +-1.682,-6.8121,7.1398,1.3323,1 +-3.4917,-12.1736,14.3689,-0.61639,1 +-3.1158,-8.6289,10.4403,0.97153,1 +-2.0891,-0.48422,1.704,1.7435,1 +-1.6936,2.7852,-2.1835,-1.9276,1 +-1.2846,3.2715,-1.7671,-3.2608,1 +-0.092194,0.39315,-0.32846,-0.13794,1 +-1.0292,-6.3879,5.5255,0.79955,1 +-2.2083,-9.1069,8.9991,-0.28406,1 +-1.0744,-6.3113,5.355,0.80472,1 +-0.51003,-0.23591,0.020273,0.76334,1 +-0.36372,3.0439,-3.4816,-2.7836,1 +-6.3979,6.4479,1.0836,-6.6176,1 +-2.2501,3.3129,-0.88369,-2.8974,1 +-1.1859,-1.2519,2.2635,0.77239,1 +-1.8076,-8.8131,8.7086,-0.21682,1 +-3.3863,-12.9889,13.0545,-2.7202,1 +-1.4106,-7.108,5.6454,0.31335,1 +-0.21394,-0.68287,0.096532,1.1965,1 +0.48797,3.5674,-4.3882,-3.8116,1 +-3.8167,5.1401,-0.65063,-5.4306,1 +-1.9555,0.20692,1.2473,-0.3707,1 +-2.1786,-6.4479,6.0344,-0.20777,1 +-2.3299,-9.9532,8.4756,-1.8733,1 +0.0031201,-4.0061,1.7956,0.91722,1 +1.3518,1.0595,-2.3437,0.39998,1 +1.2309,3.8923,-4.8277,-4.0069,1 +-5.0301,7.5032,-0.13396,-7.5034,1 +-3.0799,0.60836,2.7039,-0.23751,1 +-2.2987,-5.227,5.63,0.91722,1 +-1.239,-6.541,4.8151,-0.033204,1 +0.75896,0.29176,-1.6506,0.83834,1 +1.6799,4.2068,-4.5398,-2.3931,1 +0.63655,5.2022,-5.2159,-6.1211,1 +-6.0598,9.2952,-0.43642,-6.3694,1 +-3.518,2.8763,0.1548,-1.2086,1 +-2.0336,-1.4092,1.1582,0.36507,1 +-0.69745,-1.7672,-0.34474,-0.12372,1 +0.75108,1.9161,-3.1098,-0.20518,1 +0.84546,3.4826,-3.6307,-1.3961,1 +-0.55648,3.2136,-3.3085,-2.7965,1 +-3.6817,3.2239,-0.69347,-3.4004,1 +-6.7526,8.8172,-0.061983,-3.725,1 +-4.577,3.4515,0.66719,-0.94742,1 +-2.9883,0.31245,0.45041,0.068951,1 +-1.4781,0.14277,-1.1622,-0.48579,1 +-0.46651,2.3383,-2.9812,-1.0431,1 +-0.8734,1.6533,-2.1964,-0.78061,1 +-2.1234,1.1815,-0.55552,-0.81165,1 +-2.3142,2.0838,-0.46813,-1.6767,1 +-1.4233,-0.98912,2.3586,0.39481,1 +-3.0866,-6.6362,10.5405,-0.89182,1 +-4.7331,-6.1789,11.388,-1.0741,1 +-2.8829,3.8964,-0.1888,-1.1672,1 +-0.036127,1.525,-1.4089,-0.76121,1 +-1.7104,-4.778,6.2109,0.3974,1 +-3.8203,-13.0551,16.9583,-2.3052,1 +-3.7181,-8.5089,12.363,-0.95518,1 +-2.899,-0.60424,2.6045,1.3776,1 +-0.98193,2.7956,-1.2341,-1.5668,1 +-0.17296,-1.1816,1.3818,0.7336,1 +-1.9409,-8.6848,9.155,0.94049,1 +-3.5713,-12.4922,14.8881,-0.47027,1 +-2.9915,-6.6258,8.6521,1.8198,1 +-1.8483,0.31038,0.77344,1.4189,1 +-2.2677,3.2964,-2.2563,-2.4642,1 +-0.50816,2.868,-1.8108,-2.2612,1 +0.14329,-1.0885,1.0039,0.48791,1 +-0.90784,-7.9026,6.7807,0.34179,1 +-2.0042,-9.3676,9.3333,-0.10303,1 +-0.93587,-5.1008,4.5367,1.3866,1 +-0.40804,0.54214,-0.52725,0.6586,1 +-0.8172,3.3812,-3.6684,-3.456,1 +-4.8392,6.6755,-0.24278,-6.5775,1 +-1.2792,2.1376,-0.47584,-1.3974,1 +-0.66008,-3.226,3.8058,1.1836,1 +-1.7713,-10.7665,10.2184,-1.0043,1 +-3.0061,-12.2377,11.9552,-2.1603,1 +-1.1022,-5.8395,4.5641,0.68705,1 +0.11806,0.39108,-0.98223,0.42843,1 +0.11686,3.735,-4.4379,-4.3741,1 +-2.7264,3.9213,-0.49212,-3.6371,1 +-1.2369,-1.6906,2.518,0.51636,1 +-1.8439,-8.6475,7.6796,-0.66682,1 +-1.8554,-9.6035,7.7764,-0.97716,1 +0.16358,-3.3584,1.3749,1.3569,1 +1.5077,1.9596,-3.0584,-0.12243,1 +0.67886,4.1199,-4.569,-4.1414,1 +-3.9934,5.8333,0.54723,-4.9379,1 +-2.3898,-0.78427,3.0141,0.76205,1 +-1.7976,-6.7686,6.6753,0.89912,1 +-0.70867,-5.5602,4.0483,0.903,1 +1.0194,1.1029,-2.3,0.59395,1 +1.7875,4.78,-5.1362,-3.2362,1 +0.27331,4.8773,-4.9194,-5.8198,1 +-5.1661,8.0433,0.044265,-4.4983,1 +-2.7028,1.6327,0.83598,-0.091393,1 +-1.4904,-2.2183,1.6054,0.89394,1 +-0.014902,-1.0243,-0.94024,0.64955,1 +0.88992,2.2638,-3.1046,-0.11855,1 +1.0637,3.6957,-4.1594,-1.9379,1 +-0.8471,3.1329,-3.0112,-2.9388,1 +-3.9594,4.0289,-0.35845,-3.8957,1 +-5.8818,7.6584,0.5558,-2.9155,1 +-3.7747,2.5162,0.83341,-0.30993,1 +-2.4198,-0.24418,0.70146,0.41809,1 +-0.83535,0.80494,-1.6411,-0.19225,1 +-0.30432,2.6528,-2.7756,-0.65647,1 +-0.60254,1.7237,-2.1501,-0.77027,1 +-2.1059,1.1815,-0.53324,-0.82716,1 +-2.0441,1.2271,0.18564,-1.091,1 +-1.5621,-2.2121,4.2591,0.27972,1 +-3.2305,-7.2135,11.6433,-0.94613,1 +-4.8426,-4.9932,10.4052,-0.53104,1 +-2.3147,3.6668,-0.6969,-1.2474,1 +-0.11716,0.60422,-0.38587,-0.059065,1 +-2.0066,-6.719,9.0162,0.099985,1 +-3.6961,-13.6779,17.5795,-2.6181,1 +-3.6012,-6.5389,10.5234,-0.48967,1 +-2.6286,0.18002,1.7956,0.97282,1 +-0.82601,2.9611,-1.2864,-1.4647,1 +0.31803,-0.99326,1.0947,0.88619,1 +-1.4454,-8.4385,8.8483,0.96894,1 +-3.1423,-13.0365,15.6773,-0.66165,1 +-2.5373,-6.959,8.8054,1.5289,1 +-1.366,0.18416,0.90539,1.5806,1 +-1.7064,3.3088,-2.2829,-2.1978,1 +-0.41965,2.9094,-1.7859,-2.2069,1 +0.37637,-0.82358,0.78543,0.74524,1 +-0.55355,-7.9233,6.7156,0.74394,1 +-1.6001,-9.5828,9.4044,0.081882,1 +-0.37013,-5.554,4.7749,1.547,1 +0.12126,0.22347,-0.47327,0.97024,1 +-0.27068,3.2674,-3.5562,-3.0888,1 +-5.119,6.6486,-0.049987,-6.5206,1 +-1.3946,2.3134,-0.44499,-1.4905,1 +-0.69879,-3.3771,4.1211,1.5043,1 +-1.48,-10.5244,9.9176,-0.5026,1 +-2.6649,-12.813,12.6689,-1.9082,1 +-0.62684,-6.301,4.7843,1.106,1 +0.518,0.25865,-0.84085,0.96118,1 +0.64376,3.764,-4.4738,-4.0483,1 +-2.9821,4.1986,-0.5898,-3.9642,1 +-1.4628,-1.5706,2.4357,0.49826,1 +-1.7101,-8.7903,7.9735,-0.45475,1 +-1.5572,-9.8808,8.1088,-1.0806,1 +0.74428,-3.7723,1.6131,1.5754,1 +2.0177,1.7982,-2.9581,0.2099,1 +1.164,3.913,-4.5544,-3.8672,1 +-4.3667,6.0692,0.57208,-5.4668,1 +-2.5919,-1.0553,3.8949,0.77757,1 +-1.8046,-6.8141,6.7019,1.1681,1 +-0.71868,-5.7154,3.8298,1.0233,1 +1.4378,0.66837,-2.0267,1.0271,1 +2.1943,4.5503,-4.976,-2.7254,1 +0.7376,4.8525,-4.7986,-5.6659,1 +-5.637,8.1261,0.13081,-5.0142,1 +-3.0193,1.7775,0.73745,-0.45346,1 +-1.6706,-2.09,1.584,0.71162,1 +-0.1269,-1.1505,-0.95138,0.57843,1 +1.2198,2.0982,-3.1954,0.12843,1 +1.4501,3.6067,-4.0557,-1.5966,1 +-0.40857,3.0977,-2.9607,-2.6892,1 +-3.8952,3.8157,-0.31304,-3.8194,1 +-6.3679,8.0102,0.4247,-3.2207,1 +-4.1429,2.7749,0.68261,-0.71984,1 +-2.6864,-0.097265,0.61663,0.061192,1 +-1.0555,0.79459,-1.6968,-0.46768,1 +-0.29858,2.4769,-2.9512,-0.66165,1 +-0.49948,1.7734,-2.2469,-0.68104,1 +-1.9881,0.99945,-0.28562,-0.70044,1 +-1.9389,1.5706,0.045979,-1.122,1 +-1.4375,-1.8624,4.026,0.55127,1 +-3.1875,-7.5756,11.8678,-0.57889,1 +-4.6765,-5.6636,10.969,-0.33449,1 +-2.0285,3.8468,-0.63435,-1.175,1 +0.26637,0.73252,-0.67891,0.03533,1 +-1.7589,-6.4624,8.4773,0.31981,1 +-3.5985,-13.6593,17.6052,-2.4927,1 +-3.3582,-7.2404,11.4419,-0.57113,1 +-2.3629,-0.10554,1.9336,1.1358,1 +-2.1802,3.3791,-1.2256,-2.6621,1 +-0.40951,-0.15521,0.060545,-0.088807,1 +-2.2918,-7.257,7.9597,0.9211,1 +-4.0214,-12.8006,15.6199,-0.95647,1 +-3.3884,-8.215,10.3315,0.98187,1 +-2.0046,-0.49457,1.333,1.6543,1 +-1.7063,2.7956,-2.378,-2.3491,1 +-1.6386,3.3584,-1.7302,-3.5646,1 +-0.41645,0.32487,-0.33617,-0.36036,1 +-1.5877,-6.6072,5.8022,0.31593,1 +-2.5961,-9.349,9.7942,-0.28018,1 +-1.5228,-6.4789,5.7568,0.87325,1 +-0.53072,-0.097265,-0.21793,1.0426,1 +-0.49081,2.8452,-3.6436,-3.1004,1 +-6.5773,6.8017,0.85483,-7.5344,1 +-2.4621,2.7645,-0.62578,-2.8573,1 +-1.3995,-1.9162,2.5154,0.59912,1 +-2.3221,-9.3304,9.233,-0.79871,1 +-3.73,-12.9723,12.9817,-2.684,1 +-1.6988,-7.1163,5.7902,0.16723,1 +-0.26654,-0.64562,-0.42014,0.89136,1 +0.33325,3.3108,-4.5081,-4.012,1 +-4.2091,4.7283,-0.49126,-5.2159,1 +-2.3142,-0.68494,1.9833,-0.44829,1 +-2.4835,-7.4494,6.8964,-0.64484,1 +-2.7611,-10.5099,9.0239,-1.9547,1 +-0.36025,-4.449,2.1067,0.94308,1 +1.0117,0.9022,-2.3506,0.42714,1 +0.96708,3.8426,-4.9314,-4.1323,1 +-5.2049,7.259,0.070827,-7.3004,1 +-3.3203,-0.02691,2.9618,-0.44958,1 +-2.565,-5.7899,6.0122,0.046968,1 +-1.5951,-6.572,4.7689,-0.94354,1 +0.7049,0.17174,-1.7859,0.36119,1 +1.7331,3.9544,-4.7412,-2.5017,1 +0.6818,4.8504,-5.2133,-6.1043,1 +-6.3364,9.2848,0.014275,-6.7844,1 +-3.8053,2.4273,0.6809,-1.0871,1 +-2.1979,-2.1252,1.7151,0.45171,1 +-0.87874,-2.2121,-0.051701,0.099985,1 +0.74067,1.7299,-3.1963,-0.1457,1 +0.98296,3.4226,-3.9692,-1.7116,1 +-0.3489,3.1929,-3.4054,-3.1832,1 +-3.8552,3.5219,-0.38415,-3.8608,1 +-6.9599,8.9931,0.2182,-4.572,1 +-4.7462,3.1205,1.075,-1.2966,1 +-3.2051,-0.14279,0.97565,0.045675,1 +-1.7549,-0.080711,-0.75774,-0.3707,1 +-0.59587,2.4811,-2.8673,-0.89828,1 +-0.89542,2.0279,-2.3652,-1.2746,1 +-2.0754,1.2767,-0.64206,-1.2642,1 +-3.2778,1.8023,0.1805,-2.3931,1 +-2.2183,-1.254,2.9986,0.36378,1 +-3.5895,-6.572,10.5251,-0.16381,1 +-5.0477,-5.8023,11.244,-0.3901,1 +-3.5741,3.944,-0.07912,-2.1203,1 +-0.7351,1.7361,-1.4938,-1.1582,1 +-2.2617,-4.7428,6.3489,0.11162,1 +-4.244,-13.0634,17.1116,-2.8017,1 +-4.0218,-8.304,12.555,-1.5099,1 +-3.0201,-0.67253,2.7056,0.85774,1 +-2.4941,3.5447,-1.3721,-2.8483,1 +-0.83121,0.039307,0.05369,-0.23105,1 +-2.5665,-6.8824,7.5416,0.70774,1 +-4.4018,-12.9371,15.6559,-1.6806,1 +-3.7573,-8.2916,10.3032,0.38059,1 +-2.4725,-0.40145,1.4855,1.1189,1 +-1.9725,2.8825,-2.3086,-2.3724,1 +-2.0149,3.6874,-1.9385,-3.8918,1 +-0.82053,0.65181,-0.48869,-0.52716,1 +-1.7886,-6.3486,5.6154,0.42584,1 +-2.9138,-9.4711,9.7668,-0.60216,1 +-1.8343,-6.5907,5.6429,0.54998,1 +-0.8734,-0.033118,-0.20165,0.55774,1 +-0.70346,2.957,-3.5947,-3.1457,1 +-6.7387,6.9879,0.67833,-7.5887,1 +-2.7723,3.2777,-0.9351,-3.1457,1 +-1.6641,-1.3678,1.997,0.52283,1 +-2.4349,-9.2497,8.9922,-0.50001,1 +-3.793,-12.7095,12.7957,-2.825,1 +-1.9551,-6.9756,5.5383,-0.12889,1 +-0.69078,-0.50077,-0.35417,0.47498,1 +0.025013,3.3998,-4.4327,-4.2655,1 +-4.3967,4.9601,-0.64892,-5.4719,1 +-2.456,-0.24418,1.4041,-0.45863,1 +-2.62,-6.8555,6.2169,-0.62285,1 +-2.9662,-10.3257,8.784,-2.1138,1 +-0.71494,-4.4448,2.2241,0.49826,1 +0.6005,0.99945,-2.2126,0.097399,1 +0.61652,3.8944,-4.7275,-4.3948,1 +-5.4414,7.2363,0.10938,-7.5642,1 +-3.5798,0.45937,2.3457,-0.45734,1 +-2.7769,-5.6967,5.9179,0.37671,1 +-1.8356,-6.7562,5.0585,-0.55044,1 +0.30081,0.17381,-1.7542,0.48921,1 +1.3403,4.1323,-4.7018,-2.5987,1 +0.26877,4.987,-5.1508,-6.3913,1 +-6.5235,9.6014,-0.25392,-6.9642,1 +-4.0679,2.4955,0.79571,-1.1039,1 +-2.564,-1.7051,1.5026,0.32757,1 +-1.3414,-1.9162,-0.15538,-0.11984,1 +0.23874,2.0879,-3.3522,-0.66553,1 +0.6212,3.6771,-4.0771,-2.0711,1 +-0.77848,3.4019,-3.4859,-3.5569,1 +-4.1244,3.7909,-0.6532,-4.1802,1 +-7.0421,9.2,0.25933,-4.6832,1 +-4.9462,3.5716,0.82742,-1.4957,1 +-3.5359,0.30417,0.6569,-0.2957,1 +-2.0662,0.16967,-1.0054,-0.82975,1 +-0.88728,2.808,-3.1432,-1.2035,1 +-1.0941,2.3072,-2.5237,-1.4453,1 +-2.4458,1.6285,-0.88541,-1.4802,1 +-3.551,1.8955,0.1865,-2.4409,1 +-2.2811,-0.85669,2.7185,0.044382,1 +-3.6053,-5.974,10.0916,-0.82846,1 +-5.0676,-5.1877,10.4266,-0.86725,1 +-3.9204,4.0723,-0.23678,-2.1151,1 +-1.1306,1.8458,-1.3575,-1.3806,1 +-2.4561,-4.5566,6.4534,-0.056479,1 +-4.4775,-13.0303,17.0834,-3.0345,1 +-4.1958,-8.1819,12.1291,-1.6017,1 +-3.38,-0.7077,2.5325,0.71808,1 +-2.4365,3.6026,-1.4166,-2.8948,1 +-0.77688,0.13036,-0.031137,-0.35389,1 +-2.7083,-6.8266,7.5339,0.59007,1 +-4.5531,-12.5854,15.4417,-1.4983,1 +-3.8894,-7.8322,9.8208,0.47498,1 +-2.5084,-0.22763,1.488,1.2069,1 +-2.1652,3.0211,-2.4132,-2.4241,1 +-1.8974,3.5074,-1.7842,-3.8491,1 +-0.62043,0.5587,-0.38587,-0.66423,1 +-1.8387,-6.301,5.6506,0.19567,1 +-3,-9.1566,9.5766,-0.73018,1 +-1.9116,-6.1603,5.606,0.48533,1 +-1.005,0.084831,-0.2462,0.45688,1 +-0.87834,3.257,-3.6778,-3.2944,1 +-6.651,6.7934,0.68604,-7.5887,1 +-2.5463,3.1101,-0.83228,-3.0358,1 +-1.4377,-1.432,2.1144,0.42067,1 +-2.4554,-9.0407,8.862,-0.86983,1 +-3.9411,-12.8792,13.0597,-3.3125,1 +-2.1241,-6.8969,5.5992,-0.47156,1 +-0.74324,-0.32902,-0.42785,0.23317,1 +-0.071503,3.7412,-4.5415,-4.2526,1 +-4.2333,4.9166,-0.49212,-5.3207,1 +-2.3675,-0.43663,1.692,-0.43018,1 +-2.5526,-7.3625,6.9255,-0.66811,1 +-3.0986,-10.4602,8.9717,-2.3427,1 +-0.89809,-4.4862,2.2009,0.50731,1 +0.56232,1.0015,-2.2726,-0.0060486,1 +0.53936,3.8944,-4.8166,-4.3418,1 +-5.3012,7.3915,0.029699,-7.3987,1 +-3.3553,0.35591,2.6473,-0.37846,1 +-2.7908,-5.7133,5.953,0.45946,1 +-1.9983,-6.6072,4.8254,-0.41984,1 +0.15423,0.11794,-1.6823,0.59524,1 +1.208,4.0744,-4.7635,-2.6129,1 +0.2952,4.8856,-5.149,-6.2323,1 +-6.4247,9.5311,0.022844,-6.8517,1 +-3.9933,2.6218,0.62863,-1.1595,1 +-2.659,-1.6058,1.3647,0.16464,1 +-1.4094,-2.1252,-0.10397,-0.19225,1 +0.11032,1.9741,-3.3668,-0.65259,1 +0.52374,3.644,-4.0746,-1.9909,1 +-0.76794,3.4598,-3.4405,-3.4276,1 +-3.9698,3.6812,-0.60008,-4.0133,1 +-7.0364,9.2931,0.16594,-4.5396,1 +-4.9447,3.3005,1.063,-1.444,1 +-3.5933,0.22968,0.7126,-0.3332,1 +-2.1674,0.12415,-1.0465,-0.86208,1 +-0.9607,2.6963,-3.1226,-1.3121,1 +-1.0802,2.1996,-2.5862,-1.2759,1 +-2.3277,1.4381,-0.82114,-1.2862,1 +-3.7244,1.9037,-0.035421,-2.5095,1 +-2.5724,-0.95602,2.7073,-0.16639,1 +-3.9297,-6.0816,10.0958,-1.0147,1 +-5.2943,-5.1463,10.3332,-1.1181,1 +-3.8953,4.0392,-0.3019,-2.1836,1 +-1.2244,1.7485,-1.4801,-1.4181,1 +-2.6406,-4.4159,5.983,-0.13924,1 +-4.6338,-12.7509,16.7166,-3.2168,1 +-4.2887,-7.8633,11.8387,-1.8978,1 +-3.3458,-0.50491,2.6328,0.53705,1 +-1.1188,3.3357,-1.3455,-1.9573,1 +0.55939,-0.3104,0.18307,0.44653,1 +-1.5078,-7.3191,7.8981,1.2289,1 +-3.506,-12.5667,15.1606,-0.75216,1 +-2.9498,-8.273,10.2646,1.1629,1 +-1.6029,-0.38903,1.62,1.9103,1 +-1.2667,2.8183,-2.426,-1.8862,1 +-0.49281,3.0605,-1.8356,-2.834,1 +0.66365,-0.045533,-0.18794,0.23447,1 +-0.72068,-6.7583,5.8408,0.62369,1 +-1.9966,-9.5001,9.682,-0.12889,1 +-0.97325,-6.4168,5.6026,1.0323,1 +-0.025314,-0.17383,-0.11339,1.2198,1 +0.062525,2.9301,-3.5467,-2.6737,1 +-5.525,6.3258,0.89768,-6.6241,1 +-1.2943,2.6735,-0.84085,-2.0323,1 +-0.24037,-1.7837,2.135,1.2418,1 +-1.3968,-9.6698,9.4652,-0.34872,1 +-2.9672,-13.2869,13.4727,-2.6271,1 +-1.1005,-7.2508,6.0139,0.36895,1 +0.22432,-0.52147,-0.40386,1.2017,1 +0.90407,3.3708,-4.4987,-3.6965,1 +-2.8619,4.5193,-0.58123,-4.2629,1 +-1.0833,-0.31247,1.2815,0.41291,1 +-1.5681,-7.2446,6.5537,-0.1276,1 +-2.0545,-10.8679,9.4926,-1.4116,1 +0.2346,-4.5152,2.1195,1.4448,1 +1.581,0.86909,-2.3138,0.82412,1 +1.5514,3.8013,-4.9143,-3.7483,1 +-4.1479,7.1225,-0.083404,-6.4172,1 +-2.2625,-0.099335,2.8127,0.48662,1 +-1.7479,-5.823,5.8699,1.212,1 +-0.95923,-6.7128,4.9857,0.32886,1 +1.3451,0.23589,-1.8785,1.3258,1 +2.2279,4.0951,-4.8037,-2.1112,1 +1.2572,4.8731,-5.2861,-5.8741,1 +-5.3857,9.1214,-0.41929,-5.9181,1 +-2.9786,2.3445,0.52667,-0.40173,1 +-1.5851,-2.1562,1.7082,0.9017,1 +-0.21888,-2.2038,-0.0954,0.56421,1 +1.3183,1.9017,-3.3111,0.065071,1 +1.4896,3.4288,-4.0309,-1.4259,1 +0.11592,3.2219,-3.4302,-2.8457,1 +-3.3924,3.3564,-0.72004,-3.5233,1 +-6.1632,8.7096,-0.21621,-3.6345,1 +-4.0786,2.9239,0.87026,-0.65389,1 +-2.5899,-0.3911,0.93452,0.42972,1 +-1.0116,-0.19038,-0.90597,0.003003,1 +0.066129,2.4914,-2.9401,-0.62156,1 +-0.24745,1.9368,-2.4697,-0.80518,1 +-1.5732,1.0636,-0.71232,-0.8388,1 +-2.1668,1.5933,0.045122,-1.678,1 +-1.1667,-1.4237,2.9241,0.66119,1 +-2.8391,-6.63,10.4849,-0.42113,1 +-4.5046,-5.8126,10.8867,-0.52846,1 +-2.41,3.7433,-0.40215,-1.2953,1 +0.40614,1.3492,-1.4501,-0.55949,1 +-1.3887,-4.8773,6.4774,0.34179,1 +-3.7503,-13.4586,17.5932,-2.7771,1 +-3.5637,-8.3827,12.393,-1.2823,1 +-2.5419,-0.65804,2.6842,1.1952,1 \ No newline at end of file diff --git a/data/banknotes.png b/data/banknotes.png new file mode 100644 index 0000000000000000000000000000000000000000..ca7833b89ad6759004e6b40badd824fecf279ae6 GIT binary patch literal 576420 zcmZU)V{j!vur_>R+qO66NwTq>jcwaDH@2OPlZ|aBC$=`WxiQ|o`0l+`-_-n=>F%d{ zx~FPts-BsjN(z!l@c8fm002o^O6&&!01g2FfK9+c|C6XiW@7*Vxb#+{qDs=DqNGaB z4(3+2W&nU@SgIF{DyIB`{meA=K$44u^R$-pG%yO3#NI|JEDR|Y93_PcB?g8j)-Qz) z23HhG2^SSiOIlEl3y{7;5#GM``SQ8?-a2!dX<<`Ym4Eg7cU~4$U~UjDK7M2o7%44J zj;Trc;QqnIK!^{FQXs@En6{AQ11!Q)O9LB()Qij4bpr=tLCqV&Pez@ux0kQxS#R$! zF91M`Y;}`;k^;8>2_V$y8JaWz*5^v$+*5ut%h(lY2#qd+3i#%Y@OELC#(2>aGTiER zVe5)k4F$+clA?S82sIC9)65UT)Qg5W4$VXPyh2e_-oh^5+)#Og_bmsXM8ZIY+3tEl zB6NO55aoY0oPMrQC!XBnT*sJo?)-fp5P|qP_m#hJ`^6+2gck6+8loy=kd!#JoRR3o zfC9_9IgkQtkLcc7C&oe)od4`)f9|lWybVk7ruX3$&!T5K4Zsje+ej|Ah%!WmWEY2A zwYfIdBDd;fEQ)WqLEvuL7{2<2nyvR%KDHx-(5S~p*P}lYa6?tg;FT=O_N5zdG$Dw}rBQXDKMUMLQOB*_lKOp-E0(_{+K&Dv;ep2v?D^kd3 zh~B)Hb+3b!X$%MN$4VGq2pnP}!#Q^W&Gn2n{5}FXzV+O>;u;)U* zk^;BCgw3P=bSKQ&Il+ChhX-632^hYzUbBj3z)dpj07_eGF06?jWJy1wfha667?GSI zn{(|HT*sd$1yE?q@RmePyaOb=apoe8U~ouw$8D3a91Z=n46L#>)?2wV7fR~ z%!HYE-w;LGiCD`Dj|$LY{HAd7Y}829NLIQPU@At*L_Yy8^!q;k8{|(gHDIKy!LuZF z1hq?{ITA0EUk~qYo00l8pT47oJMwbQX9*?g~{IXfOJAmg0nN5v4nL zOW0-B!x9Usm{u8)Rw0E{2EHU_ULv#TLg`Iepj@;ZR~7vXksd`YrX#3Q_`Aq=QKUj@ zrF^AmmOwf~>I|H;z*Hl>Rdn~DZXGYS<)V> z&=yIb0+ho2*|J%jxx*8DSH4%MS0Zn)4+7CXN5dhON?el|j1d@&FzJy4V-U*|E74d_ z=EygrdQIwTRCTzu^l8n23$zP5Te24Xjo`~s1!Ej19zq5M#Im@?AvCAmHq$>)e~@(9 z?E&1eZ((J9F8gM;(4IKHECOKp(Y{ZtG=D zjjlYr!n}UGiXD_4=p9@g(%u<)@%rgoAp(g#DLoOxEG7c`q9btB8PW;k8FUGBA*aX-EDQAPG>u%1I4<-qSoeT?HUz$C>}VWWd|A#3 z)Cqb9lqvxmfDN?`<2f!tmVC-o7Gu;Ux(>_+KOaOVekY6%{u|MwGBRcaZ3NONS{!YS3_lHD4~vH|466p;jYbV?15bj^giVauA4MAt8HpM7@Uut^OUzIF zUfgF`$vDc`-#E(=nr_!bRL2F~uM)K8h89!YXZ=1Fi#%}EBoo=bFpv6b+a z_{%a#!N{b`^rjUivnEO>SS7qLG0>lrWi#{9N+z%;@KI~fJjv_JZOMKny~{#*L%D<{ z!`HwQM9D-^4$}_NW#5pvSXrTRcBak=s8q33~OR)onpmd zJZW`dq-)e=SY(QBGjA_rWo_d<_t2eLjyGQ2PiSUuoM-kqBGN~`TC|L=iLYa>6{iKK zMbzMJ7~9;^Fx~oTNMYi#Sh|q5^;mG}wn4>5)QQ-+@;LB__E>|wi2NHF3wa{WJMNf} zCg)dmNY2VQ$)CK8cKb>ArtZ`pf?qpr?b{SZH?S3et)Dgk*-`tS?72fOb zw8!O^Y(2L>7n3z+b(-5;?e6pI7hT!!8l_QWoUxq&GP~8f=(BH~Z5?-6_$~T1_#XLk z`nmWWf4F`yz53mA-!b1AAlD(bVb|fE;A#?uqBtW|qLd;a!`h?l!UGBCN$9b&2zi~P z{whruLM72vd_#oaAW_Ge4(vK|m4ubdiS)#&K+7a~VE~bxT^X$p_D6IUix;aDTNoo6 z|0WhDx#gMnPI)@HExtBxHmMyFcDiz^8GVkUBFc{Aj$sy5@aNxozK1*wb%7JaAi^L> z;z{01rdGtwE0-&kp{9z@QRUN030An3J(W(C?M`^*n_{nF(Bu8i?e~!~TJd{Ga#9?akV*+|=ZqOVhFOw7hwy#ggg0X_?vABrxNiLqnkTg#YCw@*cy> z+{+E;nK`Gs&VTM{PpL=2-wjMs*t*}j&|Jskh76v!qnBj;9q; z2VLu~aIvuIzVdD_Ku9qsd zlxkgi_Mo$)K2#Imx@nKH&Dy=-t?^>N^gYN2>fhd$EeUbXaUwMLG-J3;yM6qn{#%1& zjr2q!CD67!wvq9baBC!i;id9p!Q4ge-dNUh;+-O2GPwpu$DkG1jMSpj`sAA7&hKS= z(^jL>+4%DFHF>10Qt`YqrPDf}PN3>k{iNqhclYIkcsMUhzhtXJAhjp_v-?9HA`2p3 z|D@ZK-;)2?cFeduVAcQmF!FqCNOmT@u@>CGk06#%&xhy>`kvY@#{8Q{j!D;Z&Dh2n z-0;tc>xV73-d4Xa?|GBE1=ZEXSJ!!%frvkNSD8^-YilFGkoKPVHvxqJ_>U&8{P)a9 zmwudG=BFNOze{~b?Tk-}*Or%$MU-Wd6@So|tzMHhp#i+MwvNKv@N1Q?xL1kGl9QV` zqcu@$UMpF{+|9}<=xpos=REG`* zfSf@20JnrpQ)I`gtw}~mkQWw{t(!X#%ogaFR+;CWrye{V-4kk*B%K1xD#?t^+Dt4? zxrceu&!gNr_HBCS0xyHghl4-^Dm&EQ@9CjW{1}*DX1i@jbryxE6~`<209ny-SlZTVM=4+aEf~1xn2Q! z$(-o)L-;-Mwt@`K?MzIWIZ49~Z_)^X393w_@YEr!#EN z_$KX^Vbg9apmKsW?rYV*8Uda1K9X0zFT3mBENtkl3C@U@S~;8eJ!d_?jNDYjU8H4q zi*uHnT8b|}iCW^Z__TO6^5pn0FTLNZYu@JWNAk|Lx_avTH^Bz_qH$hAwnX6vGjwXOHGhD8`A*dse^bmbazkl4u$K>}%4^cS`#h0q{aZz$}x31)) zbcEeSnC)sk*vauP!xEM_dSDatqbW%R?Gy5U#dmI=Xe z!A{El`Y6$iOIWMdj7^U?7`(7O8I+L;8uy%K{kPi<^v$Hkc}qO~wQgsoyIuIxs1ljK zpc%ETs?R^sY8ERAa~v!1i_^31B^zZ=YXFBaD@vPc2V;jbBWzp$Rq|=JxwBBW2Kgwv ztWCN%jtI(8OBw?UKAdj9tl!XYddOl#lTMxDwrIqjMVT@$(K_z03t< zb>y^yJQS2*o^2`dxlVc*NM*`geU^j>DCCpkLo!3(B>~V=0il7I2CJ*?Dx> zJT8j2X=c2(XM_zzdc&DQ{VDw7-_btUt>+xZ9W%XOu9!azX4G}n1!^B_RP1ByYkP4m zBjgIxX_;{mEDDBayEAaBG2M|pu&!mP#al$S#FfSH#On%^N=l3Li@d})L^Oo+hfya^ z22BU6r^yFEV;$3669Rp6Lt4XX1GzKF6WQG~Af_7^j|CUQw9JGZegXT(~Vy z{>ff^uakb~M>h7-+wip;^c>P*@7d~a9OM%?s;?+Bqg-pV72%uWx9pewvG>soE+izo zb4$8u=;|mr_EYI{)*ymjdU`BV56vF$lbxK|+2O!b_1$QC5T$t2IKx;XUX@rr#w`jX zPKS3HJKyaOjWDw^$InAZaW<(>FK4zxFKf5;3fDclmxZ>4Vhek-U%5zQ9Q=|VS5C`4 z)h`zrgqOOx_jEWnI16`W@LJ5{*cH0!?L|u8)W~%~KB>(ykN93dEhx@C=`-#>_IcGE zS|5AMuSC0@Oi$CB*R^KlF29*Aajk~8e|Z>ezkJ@}G=!8z^u(<8RFfR~<+4-%O*_+DRDHF5u!z2vWmwiZ@4ZK|uQJ2} z8xy&ci&&7#g&=Lj9%m;3^vNLyVu1npumX9tpp?SZ0PsAwPw#;VLm2S~IdXvnkpM5s z1r7)%sbyc>U*vd)NVAa8eK2*%bHd~a*hwVe!exoRbr4x%!nFD+$RG?i^zl1rr79K@ zTjbHc!y8!qcy)1@LfP3`7FS#qN(!4n5lu#0{uZo={>+`}J^eke+n{G}Ho{B_E#Mk` zJMabT&I}$Q%2|e^gwKpXI50uxS;S0oDbkcTlOym5bqceF-HtgIY*W=hqcEu2e& zU_`nU*8H0bQ#7e8Q5DqrHy!v+#5YPwv@*VQ+!f}lQGQ@op3lKcop0^SHM}V-G<+s} z^iNbVY_W(T;z)y}$Yj^lABpA(`Uzf4K6*@QTN?dh%0GT8TdBM>g4)gkwO6)~|GLL2 zOcB>8Uuxx2eJ_X?-y__Db&xX`u>u*6*f2R58R6Nc+HG30+ey}?dpNqsxOH6oxnkRw zsW*5H9PBT)FBu|!GRS+^Z`q>p#rMZkU&3m8knXda+ zLsxrJi*_ql+oxgifyYVdy!(4#OD}L1%$*e0G>Do7<~J$qP>`Gw{FyLw1~dUG1|?Lc z(3TRpD&qIxt>Rf)vJ||i(2huJQNJ*tp~^F@E|Oy5+APFC3dIC@HVwDXvTyFd&pqNKxMW%wIQq~DRZP{03iI;Z3Li^E zOKnR|%j{Fv(~c9n)6s-U*HqRJ>6BBvdopb5G<SH>Zl43$B3W&^ciG8v^r01j;Ks#pYrWS`12c4M2bOJxl ze)!ki>BU;tHgziW_VRt1W=4D7dt+o~n_=TT zUc_CHaR(e-2tpIW0TscypK%sRK*Tfw*AzLifWI8-HPTq*v~WP#tXw$*n=3qd2ip^( zCOl4dfWW-$^IbRxpX(9RUds0Z;r#xoV%v;~)78fWhdX!WgvV^z35pEzP*8p4g04 z&wLgrMViS1a}2>EL89!hyWt(12a(;@g>4G|lMl^LFTXkC+rLTI^YhLJcYl~y47wRQ z7*eZ3mu8oOIK!H|njOwZ&WF!!2;2#{0|t9@{kK;`xh}bD9cltHT5~QQZ^4w$0D*Yh zf8NPp0at_og3Rn}o8jzi0xGG7Tj;>FzT7XjmKl6}0Q{DHA=6ypbHG>conX|;6e$!u za@IczA=gS((^XSmj@QJ&j>*W>!Ptz+)6Vf9s{jD-d-DDp+L^f;k$T$M+Pm<2ekcD= z3*LX@{}3~ilm4fPtIcgveL%7d79a3idos2*}MFUA;8JX$^W1B|3A(DM*KfWt^Y-Ga034?^8aZ58_Cc79|`=Q zg#N2q|0(@fE&+Ic=Km?Z06Yiskq!VL1dtXJR`mqa?Ut;wTl33rRp@&9lcVon`}X%d zr*jT=iaPt3_*$A}6@MKF0$CGZQ|t{ZGNCrl{^fP_Vb z6ylf#_7FNK(7e9+pXXeqJ^4Ltx;*Od<}YabT#ujxJPb+~&(Th)S8-%dC7H0%VFbL) z@9CO&_w;+r#E$N>;m6K5t^INc@sHW{`b<%;n%Z9XX3I;dH*u>6f#;w84oX|7+oufxrl{utd6-I*X9822!GMQ5G{(v5r8F_#8)whA0`89Cri&wm9x`oV9$uY&RfQ3H@af*`_*~*`BN615H&}7as zeRLTw*>3|KuUcSnViR$Lv%b~}rytA380a7;xO;cwaLJ65h&DdD+d9`YC6|`cy7s5> z^D(!d^PDG0eZZlY#eWPdXh&)zZRJq%I}N|SdQS@b22amQHc~IU1GF>G`s-k`md+_3 zNNIi&Wpd*AlQ&H=bvWu?;|8<qB|0 zdjtkZP-00#@dhYwi(ePs_{w_=oGO@<6<-*Z+39j&f)9)tDG zpVBf@ex=i&_ldf=KnY+F9Jb?1!^zHqGipGIaEXk7Q1kauxP9&5mn&**$sP~+7|jQC;&98RgVCOj_SZ@0t8-WBTKX&%JZek?{=W&f8X1_Au zBW(^fC_1!_s&B%|Vy+SEbp{4;%*RsV(0EF_ZcS6kOf}p8F-R1@`P47=QvzC=Ya>k9 zodtY;e;%Db2p)XcaFu{YVwO3KaCeKOZxH1sS456!rjg{GXQ%P3MgrbZ{N5S5L!C;a z@07Eec9Az!S{8xT-i_oqjPEclx)S#>k%4GF(at@Cb8a>FXx zX_)EHeI{ANkj1_Tjx7VLkTPR;`Pqpu?RPC**Zah5Zc~ZJf(*Ga`E7?OhpHZx-{uYD z65T@uis5>YGeqMnVxp^E(LehJ4J$)ceCa4=T^C7Gg8U_X%bL&ysgXXBY{gQGK_Ph8 z4` zVrnn=Mv+WO@1n832xL!3ES0a5CNK&sRKaam!W-qBG1FgjTB?hCu=IZHv^;bi+^3*fJ=Q+zuB$?02@92)Rc#Y%@fWbPhk()%>sB82Al zGkk<8uUXP+=-PY`ghoL7=MM-&_~#&aL&~l51^ljZh#`Rnrd(RWZWZz#TQqPXfDhH| zS-c62Zb#+wvda3?uktu&#bi2|3Q|YMm3>zT_A+nj^D=+1fykCjwxs8W+z!OzIn-IA z_zaCxlK?XIzEi{+Z)6hS|Fj__2%)uM&r^VjRR=RZ0J-SbM)2qOKM>|az?3cS)@}se zxWaqjmlC*^4)RPp@y0=z%31Q|mipH;l-Uv!5v45*7PAR*$5Ys*3-^-bljWnA?{Jos zHPlRwwc-F0`jIS15Fu22Np3co5D|2adL7cR4f!TA-0Y@=n114a^Ayou zy49u@7eV@@E;*%f;IZDTy0jj@&Kj0XRC5nB^@PABw*;urCL;@r!Sc>gFHkRliBFOW zAt)h+3(fyRVU2P8HG&BC(@vG1m1x5$E7>YM3+;4_M;{-l>fRy{K$v;ki)tbhN&4$f zje3Fah7H_=be0s?Y&=H)uOavsTwUOu&6l<6(8@_NsgxP`6D}NIpwGJ51>%sKQ?jr@ zgd}dIvAVh1egZM#{UO+eL}=q6>8KO>1IrVxiPe1!s~u(rP$yF>BoG#Hr5n32$O$7w zLuVtjr)7y2-ztj9oS+OK*K|#BI!(4g70RD~DzJzg6Y}K|*1x#H4n1)p}iG{b{aonbkVpQuAgA|mCbA&u)H5>WvIlUaS zR^c1j7;n3H-#;FYsJ{Cod)VnBTkHgxo!mHHcC#qOYdDwNu3R0Hk5*8%x?e~%8e^U2 zG$M@#WebR!6_H|lY>Pf(Q94I;*>_tN$DL+;cYUQ|1HcQC?BnF?KW&q+3ZP-f<`_! zs0Y+E!s_A@jCK!fThL&W4&(X$JL*`DW+6QKF*flan zmHpHzARsY>EwU%HCFlMoi;e!WDfdhtoYOG&Le^#@66FK!aWuA|}IR`4-RcF%z5X($MCeW#p8rzjYz#%JbJ;LiFVDHYW2GVf05C20}i5BCv?ZA2ByibGLIWt8mhGNbOvK~yoO zIaCHC$^L{eX+%%4)`-2~A*SgSls@=8}E1 z=c73ccp-~NUzHC7%0#-@LUT)^UE$^1D0;C8OJVsVCC<8b!WFW|e_5^CVKgiCpRg}K zE8OCMOFlUgnsKd!GWnh6pH`ADa;2v2-MR6uDEGYff(rK|Z0H!wnfTbuQ~!cYdNnf6 zI7y92cPpG3F4@ujFm4#!#o_e?kV-II4#a)DlE0TF}XhEmrEYG zO%GHvc{}Iql+A;L_rG<8lciwq>7Ggw7~&=eNqi+ZjK2J!4&KnPv(Tp4cGHJe;oM0> z{u`MCBhfo^^LyXBbYO-MB)3z`BLY zzl&n=N0NscN@}|H+Iy01P#L^>2yFj7`zz0goO$@(k?x$Rk$B55&FQuL@x*ah*Kkp4 zI{#Dt-2AjAw@*CeB>~?2t|a0bdv2G|^oQu-f_TXta0>|c9;mm-ehwZCVyn>3C`2tV z6v^C1a&opH;h&8nG@D)KKP+#`sz)`1U~XlG>tcx(=msUlicr6=M@HchyVsu5?z_d4CK$~&=Zc~q|@ zUNtfY*{^GnX;^Y-ll^#&Ve#eBDfSgvR>)MuvBH8XW1cOFnVMH)!$J;BVPO}~iaEa5 z5&>b)WfM6~=0+JJ#*VG$Ll>QB4(JC|HALECMghZ;9mIYv!L2bJ69PnLS?W|hZFEAi z#|jSMa^5+!R8LA>I1LveOLF1t*ZYNbn=gJCP2DuTROWL0oZ~!~QXR|KLxaA-u|m;* z5eTW-Q;rRYoX*%&9(_W@J<@eFL+*u5-d|VDu^15%AHSK7F%FS2lyW?fOq_J+S#)Bk zU<>!_Ws7?7KzEOS0xxEV$*K7kCda_lwvtdm-EN7rSJ zXmr~mNrO^{6{3>ZN-!*N8oRQW~P#KnaivM1ct3uhf?^?qo1>r?Q=#B=M zW=%3VtV@0eC~l~=BNn_|00}mFL`eC4C0Z=*_I{eKHB~OrG2poO(S>MEkrEnc(hIcf zFL7KF5-1f~r6S1Ih*VZjBBrhV#7pxN-xhsNlE1_IIZU?1IfXdr>t_E2P0FXL<$85W z#`&vL68v&@9GabIwgUp;k{kwcII@rt=Xp0l;d7kdzlII_^-w0Y>ZAoa)%_IRTL^rV zd)7$X3rL_yRz)F8?NpvVpMD)@0_WjQ)*wgnqU8moT5K{H38b0ZzY*1|HOUt8R9#np zcD?wk+e~M-ur5TY>P8$0xZ=%Ufo#kq71y+xB@<|73vE=TKCR00^WxzYU51yqd|Kk9 z0@En)TV@h1n-u+mzpbW%I8lAcy7!OOSN}*=pI`Q}3logqnlfDxs4<6GO(k1*Cf{et z^$bnVDPQ`5j=2+A^FU})X;1{oKn2%eaD1!FvSa$|A5lT%dlAA;5^u}E{~7Nvso6w; z!lO7M_=VM-q#O5_Xg14zUap6upuI=T*LxHAo0WQB%?Di2>Uu6K4@2Q)kIa{GCxN1V zDW`QnC97`_Sg4Zzk|VZe*ykhyk<9c#)t^koAFI$X7m8#L%1Fb8hJ{FDBbdi^|u|M!Z_5B;z^ZC?tPqVlg&D7B89U1ZVs6jm$@EAMGGHNMu3g`RdP91)D zv^}>r4%T zD|xMT-rib>N6V?a?)-v5S8a?)r!BOJeh<@OniEZKx8+L?y62!U3Y(XYZXmY5G1p{r z9h~Yo1#Kk4p@Hef3ilVyaWAq?#C&&%mqLay8a?Z?{_fWubJK5yAoDXMmLa8EjS7T( zRQ)gBne?0;pX5NLVHZJh^H=mZ>$Ma#rv<|x5l+}MfWZ_wRPFo_inDyqutD+lGggZh z!LD3j|DRprwyI)K9FMhuG3p`;bghIFJRilQB&1u+sehO$HV9?AcxJE9A+;OvAbreh zCxy`0$*YixcG!nrk?mk1?3dd*ud4SI^&5X?nj`4u^&6>K z0`u)Dz$MrakPX!SyC9lbk?CxA4b(Q$4I7;K`^Aw@MWM8CrYIkHApT*`f|`5S$+3K+ zo|%L>ts&_$G?q}7QJUs-ib!DA>N2W4Cdh8JdmJn)G@#u+r8)LKc`IdeI6Da30O7Ok zr>Oh=ny@979juS#YKi9UHz1N>=uq07q&kvfKkaX0Kh8$h%^LSGjo_MQ%z>L0Ev8pg zhsH-8i&<*f0~X7VSWss9o<8KHmRc3-RPd_jma~Y(ik1n9*f{;}m1l<5HJxJcP5+#q zqgb*t?SbPDdb0t;`<*NBeu4n(Vyfjo&x7EHcwFcMY@Nvg4L%SZEweGfgNduw&DTxd zOFkF-)Ge+PGyc7oA(yputCT@`jhVe{DS^Q^t=N2_%J4%v2-@^2N#wxnK?55HbUO!x z+SzW|Ds7f3BkiQr(4QAy$nP|!;+*b1$Ncm~t50Ytw(4RcE)T5>gOB$v{Jf ztGBwYK^h;JCG0(uAMu)2Z9sTKir|zd$b2&lgCfn5HS_e=R)}wT8E9hx-V1fm!XTIa zW3j0s0|rU0MeSthO~3OWIFoJ#81)-;T^FiN#shXx?!IT=a92)ymj5 z+|1;n88!3uhD4z!`W4*Pfk@$JQr>2&g^V`dcG+&fjtKpMYh=acQiN|AOG<8_?ah$O z+BU=ZEzQ1a)axY_UM#qP##cEZH3QN(p^r7x;F!-Ikv?E`?Bs~L__)Op)ee@4_2DW`_ z#+S@M9Nbj8+!R$*=EimRoZq})ik1YNq3Ix%^#!&GaE`gv%uQ-X=?!Z_&IV-Ii06e- z@aJ~k+kVs+FoTun0qz}}cCj$x9e7KWsZ1Z9#h3Df0czKI?T%Mvidm?*in}UIcx02G z_kp)WvK0LsCGqcO-;-FA_)GKg;(UXaaR>TN=U1itD^aMCre!*ptxgefECWE5tvigL0@OjQ8bt0kyciDR;d_B+_;OF=`u;? zS@C@1V);)=>Ta)7 zUJjZ$lH>F|YZQc?%^-N`2WjQ4X5{^F?rH{`F3C&qh<(;rnfQ^Z41oJ0m= zFb97eBDT$!wj>L#e>>gB7s>COsx%p;*1=L|P7!@A&j&dj9z%UegPg*^zuD z(+B!P`~}}qagyk<?EtFd7GK| zHM)9Nnf0_v8ypfw%}xx_ z%HIqbQ>+{RR;(8vE|O(vyqq!)Z#cwDqJ2jS0usx3`2=w(ux)2Rmpn$PP)R-~417%x z_-)WpB~TfAx;;?_YWan892awSvcg$-R_tj9@@wLzjTwK9-{?pXyajCtIXST3RvMxT zA}teI7``lcjU09!@YF6}EXa>YJkGR6f>r{J0>`thhp@{@s8;ZHc(TK?qS^z?VfO|J zZUPbqU(UciApOHS+0w6XJc%6t7>E|6vZ%Z>O$d#(Yxg4)k2oKl&)|9O@&TE>fviIqiVJp}epmieyxOE;Wu@DjKLW;@I=v_dTylLP_&2xQS%SvdMVQP&8Z zv$id`ND%55E|_8D?oh^wKuIsiX1q4QIkaAq>*Sgr^tN>+invb!z8q4ngwv&$gr0BW zE{ei3@8?ee!L#)8A|8V>ja)W6+fF(NGEeVIw#=PLQrH(lcqm-D3X|~e8o4bXB)Nj= z75gQ%GBA&B$BI8XdeVRw3O!63+lQSM;}mr{qHFpDNpwN-$As85$$fK6WUaUO5A%+d zA}H5G7Pv)m6F$1>1^x{6rZKu??&XLq+U@t&mXn7F0-gD4ow$K+`=zx8nDqQix=|qt zz94-m9J&`wHOfc@ky4J2`_VqF4A$>mN&-TeEHCCT3PO7^2nk#tgrIG>AZzQXm?Zxy zcHoZsugk%~!X*`G32Lj_cE zz(mA@KBsfp299c~e-|}Im$bHl5oz?l6cAo+GZYs?xcYEQ=;>QazCxlnX^(Z{oxT4N zu@A%Ww=;Jzg41(I-R!o@8A5|gKz2Z68tt3keRZ}hiTUYa5g6JZg2p9*=fFH5`|q&6 z`k|$(U3}05pBK{5>C=00Vay&!BD|rXrLS+kwNP!-NlBAy(HbveH4;uTc1U-_#Aqu4 z6W7P^?-LT%KE!c|w66rp?v!C@NOsf2>+A5{vrCP0z?*)%(>amri^7^FFaq&gs>w(( z4Vwm0J6J~j9V`K>VCxXG^x98%@mO#guUK7~{F}6$vSAND36DRqNN6KrVNe&{J<+I9 z8wkxMcWa$%u4xz-sXQ`Okj1mwpVs*_W1c9VxRlHE1f=94BSGs7myKW!4)%DO;yHn^ zFihQ*v1a3hTRDan9l7n4+;>`DS%wo!YZ95o-&+EO{s?hOKoYXj@a{gq#odT~0q`HL zi@)Y!vME?}PvaG5H-W-J0ghdSdr8DXZPeiq05_227yU|jD>}MCq>vEzuoQaXw9Z8`5)Jt> zCa(L<7fGWhC!rK|H6^Fd5~lbrvDqezF~b)+w8rsxLgsE%9eaT$F1{wV#U&})oT0Q; z$T~sp_n~;DLvyDYKgR)YBP`T++zbP(a{@u|kZEM&2V=fn;S45BzoYe!k!1=i79t*p-NuhZdl&ToCAsZgHKj3ov*JbbV#{Lrl-x2dcyJfJYMmm1QAv|B@aD-}AKqe4iREjP|j z05>Qw5a|ul3|bQRCm6D11YN93S}=|YrTXV06*7gCXEX$fN%fSost{4@yN;fIm?AU) zIvp1|S41)gcCk+nU%TtamYnk>XZEZGu@;+D;+H%GrkT=IVIo!}utu}k0Qu?BBv4z= z2>|W%E1u2nrYTTa{b~d*HuNqu+Z{|aPL^9mRA##kYJ@yeWw<5b zmd8=wPY~!9tf~KoCK;>-xxc?F6D-axI51biF>1C!-msQE6BX0rU}*>USQ-GO8j)b+ z<%A`Gnt}K@e#b@F(S&mZqRHQ8E+%@21>b!7Jk4zo8|hEr5ou@}-k<;XeUECDpPzE| z1ZiSAL>d^BK4C+VGhcAA38Z)E-egehi6Y7nZ5@B#lr1`xeZ;2V3|D~s;W*p8d|?L` z2zO_KrF`tezZxPbStyI*^Q$W}(6XFwCvym(%Q2e_WU~mdH$BRLKSb5-K0k=8Tu19q zvUAHKAV?2vhiP}BpFP1mu43dU*XZ4##0pusY=|&9PxkuW_JL;%MN%-8t20Igb_ZI{ zZ16wwUEB0Z2&`RODs)65+SuM?`Va*d*l7g;;|HnRnJ`R^(X_HfXFA7@21DK+ScOHB z`m|uysFYT8hkLXyg^<(W;G0Z}fu_!uo{OYPnnIF&Sl?A6)=%C5FrP0L*XT``#WTeX zLJ6gE53XH$gyCH1?>RG~Yu|&op!wH_UZ8U65T95AP5j-uq3rc822Y)M#Dl}jc_p^R z&LDZe({kJEGCvVtr6L^Xlk!}ohM0`l6&0)cFO6b%Y!_=rLw?Bfp+i6tcZ;o* z-(@L709*renqv8d7q|v`dL-%~^36&w0jtnyv|BYNUr%aVFhYb9$aMBqudujL$U6 zEF6DOPcLt2M%<-Mmo-h4(BsqwCj|LO(96PpqNvj**!zlTDV7!F{~~~K5n3{R)VJta zPnLx(><VV5=Q$xESP>dpS#l(9SlNMC7m64?%yeS z;$+3INF;df^ga__ri|(}v~_UZK@!tpIGnPqZRlK{Iqw zzm=@zN@{(R;?1{Zf|Og4C*}OWFEg`lhq3akLTPYoOwpzhCSmKlJl4cV1q7COl$|O0 zG6oG{4MtoDF_+FlpwBP~?aJ7!ZVrF(+w@@&^?-`Ou*<>vf4;#Zsw=vIa2vcZUF)I; zjjpiqawVE;>W#2z^|Q*LjZKZ4*kP9wxmjE>APfz$(zI*pz*!g}*n6AURtXc-@`)V= zw?$noTOW4soh^zV#z;GF++gRBTst5k=4Z?bxj6O^B(mzkNcPf>3e9XxaURaOrF3i`ldDnP?~cq-o!*Bcc0fv6}Pao^0Z8>k2vy-psaTMvv| zxYt@gZG-JVo%_!us?D+YK`MD7GiKkOxvZ)^=oMI&QdDG-OC?L8+xGm9yVn9lbn$N_3}1HvUbw}qO6##1Q#U3cVHLaUyr^0~r_?VeR zIGfd%-Q`J1Bl(xGBC5=eX#DKXA%+ha(&gPJn?Y#(urJ7 zaR)*Inym8zFTQZaSTAHupfG>q^6xzO>E}=G6AL!qo(3fCv~XSuAoh;}PzR93I29?;16jTm{kuR}2qG0CqI*^p%<{G5mEil+gs(!2t_NEM zG!ns?w^$mo3gd=K?oM90;IA|@z#j7BhLFLRp3cslG&NR;gN|`T&P^%nBEiRCMa)K- z+oa_@amm8Ku|8$c*5@OPcGz!jz$nNYT~pFt!&pls6zbWqJ%`X$3E`+}l=I~tOc(yD z<7U%h@blv422Rcri>46+@HMT)#rJdQ!2%eQgN!`)PM}58nE38ht!V$27tm?3dR)~) zwSt`wc3WZA*10Q(8CvcQV*#2x%u*Nu0$V(QP$YDMMQ}P1PbCB`Pf&KbFE<4 z@dY6;2c8<`T0?v+>_nBx}k0z2thvSU%uV|n!d06sv$ zzvf&7l?fKmVdpfncFoeK6-K5QcYx9LZYOUo8{@DnFCVby#`3CiJc8$j!~^7?mgF5v zEKlJ;NfM~xq|84gTWk~Pwkg|AsE~EY9lJ!h|nI2%m2t3z?T*}ffRZ-kJVy&e&$>>X?)&tyr+1)K@7lvC}M&P~4Mc2;Pt z-ZVh4qs*hfC{O~7BpdXd?^p>y0=PaVqmI$lksx<{mTpqj;xnCq!FAnvoI{^##{yL? zWQ}TR7l*|F%t0BM;P8+onq4YS3-DoejUaq(71^Oo+(9-JRGlIQTv@b~Y=D@3CDMRv z4VG$LLelOHsrX6v?7Pv1EMfS8$KX!;Ao|&m%|~U)joNWo=xKj&SROvO&0m6aepgs# zTqL+93WNTD%ovb1GHofkX6yxi9Y$wj50Do^vdE%(*8tY&8i;74$NbeU8eHhm7s+yM zFn|v0=a-QamY4Q-A^Ut;quS_seTeg+bkL6=37N6_DnE5r>aCR$1d=hKi4YnvDAV9B zkF;0%jyZx8)j>H|j&!Wa$PMi1FD&{8ZM#X2K17;2u-|DO9uKie&cpy|TOAe6pr`gt zJ90|JV~*@zIjj#Fg9bQem-^;i4#3{|qaAQ4U430jFh~Q|?0M6+`3tWyCwv1Y&8+x~ zBOk*{hly|WtTGC)epe=48mZL?bXiBoF^6xMBM|HlSt2_?*A1wc%UHCJ{ki|(pgew+ zd1CkZi_AM&XbO#}3|JShWZm}NGFa*?$j{xX0z|qM#zouWQxLECI|MC4dO(tnDWeg(aIa08%23U<5%Tzc7xuqqI!TS=vGvl-9t- z>|wz*MhF~6>109DV8SR^{1of~8+r_4yl7cnAy(;xkEzp#{}EL6wc_V@#~Qn7$q)Ri zJ7Oz7MtXr2xXdhKjDlaKp>WDz4{u%43D0&aw;DJi;POX1$ zl+~3pzz|3>W-?;S;3^hlDRho0^q!qia_eH?EvKqvj^o-@gbYLt2(0KRG@u3@s)EYH zY{t=gsi@$@KS)JibqwB&JOL~^Nga6t7`_|vpq6SG4gqe_)@2=qq$)KN(Mv3%5Cj+U zQl(QCjE)^kC3acHEYR^?U-Y^U<_IucPXGm`%C2j$;t%&|FH9O~z!zrbpYJJi(xq7z z&067wYx3#CJPLtws1pQakws2%PRwuKA&m#L8*xrLiHo#6IM_$F%$^;hI!)!$fJFYu zBZr&ajg#OIUgZ8^=5w56y_p?=fxBih$S?A#3>lcpf0@)||3C~6KpKP~Q2eWgP3)X= zWWbgT(Ex-or8fF3jc5`&kUr&_rB!!Nt1p1cJY=6|v7=mrUp@}Qd$yec$Z`z$0 zS!Pfsk|8GBN5*vcEK6B(HABjdaO7B;y1r_n;F_v&s5`Ocf$9+%l)g-6W}VEJJ`HIF zcYQcZwSl@m!BdXlp(3PgGe{GCm9C?mJ!~RN3RDx?l)VjF`t04Y!f@f-MdZ!pOG@kn znyy7tM&K9x3{J5-UFNKboB;~sJW>$ZNI(fP>Y{R| zjOrxjkX_JCKr*6z>?U+{kIeEi2@E*9NpYfFgka4jROQ4m-K5t;_SAcq9+U%vs`TNyw!})G%Ln>K zWmP$~k2ay&IF{-d--?(1w1aYJcg#d<<&yv$+vF1Ese8t7@|pncrMk7SpfZ6E0fDwf zo;$XCVC2Wp{U}IMhouP5`IurWMfdKpyv7pT!qR!FmBwOieF%caOeZ2;q+x^%feQm=yoPByukAfl ztkBN6A)9>-XcTgrXawCbrBlu`t0fn(I<`jy2&HDa;L{=cgEL&0Csh%(iYj33BmHH( zyy7$CPY~AWV2Rd8C{|S_AmEZqAC|t2qWy_uV}9Gn2kD_h7iW(eSO8{_9iE(0hHR`?`toHt57+OHdO z7T8^z4MoZ)@Vf5XXFYZ2;e9st?SZ38Kc72ZT(5T@MGT`QaDFtl;^Rt6v3J}h&ajx7u>QIKg93~2atJ|i}Nou0Uqhl3<2*V&-C>;oY9CZKVXmUK{W z&BU!(0dVjX7R$q_^zpea2XZduS#@z(cK5f-?(sf+qMiaPJIpUHv`q}5iiYQ+tBP)-vPopILuB@hPuOPRyQwW!Rr zsA}Z4Y^n##Wbkgr)VK?q>-93E&MoU?4&fB=c+@r~911;Bz-9LWx!Fve(mu<-tno9B zIEup@PD5QZ;MH-fM{cq)Yl zl`*(Rbxl5dO(5M=4C=3!*CkFF`jdrqewg%&OfpdI` zr~xlZTCfM)nQ}xiA5D zXaIo8TENd8ui_0mX>0p>Eg3}|m*mBuOcl#ruW}*R>CZnq1?~g^(86&zIfYex92lp8 zQjX1p#Xq#F4tGF@cCtYEWyS(Lv|#|j=1>VVGZhXu0(mF|;xAo<&%$B?tcDe8G$)f0{(=jfdqIC?KY3CFbTKDkN{+XgF3P>$EHagyoQ;E>Z?TW?=jDcK`(f) zufU3d2C>#C&5iARUTJ2V$$t8eI4V&;DwJ3EG-bKa%lCg*2VIb%7i+2@CQ}0et zE@ylb?j#S#+=0QE9`1iKU^1f~KraKcYQJPX0K+q83*W>;c>83vwqID}&L94QVvc%u z5PMMAkSLFIz~UnRbm+E~#xh+ep3n45#S!}XUAUuH@KBDcTLyRD)-I2Iw}C-~KG8iK zCKF?-9@(2l9||78N+rU|fJ=J@G{Pv{I(VyN&MO_1#X7#6gI0)Zvs0J)4ygtJBFn8*T-dwCC)%t3 z)mEw#@#U4g5Ki_>KtBPAk;;JER*YD)6O+kOYBMS{a$$6h*z74~xK27^JQ-MLBOx5F zt{uaa7$(cE_7jk)a3gTl2_xvtZ8YY%mM{{XAt-S@5K-t7q0&&rnN=aWMs~pLd>Y$q zKFMehG)4x(KwKLLw~?XnN$^Ch!V7cbEHwxSztN&y=+3;Hqp=aAYe_J*TH}XbJwZ_X9F8UaK2VqR9X}m;j0d4W`q<< zM**|IQ)!_=7Ai}Y;iFcGqh5u^(u6s3&W3ajT6|14=U8^}KOG#fxu-ySN-iCTB|G`4 zTu2Alg)PAtand1kKQpv(X+XoQ44=BDIlb;Om)Wt|(cB`Ny%@{Qbw?OUZzD1k>Tw%X zbuN@_xkb&H%vi+fl=8PuC&mTZ`h0qgqsr{vAMTOS*jutrW`Gft2WG{xOg$qfOF*Pt zDT{I>B|GJk&0ZoH$EE!G!+Gg#_AMN4VsrgkeN%rlzy=241+b|f8JF=J7#rzn5R!Qy zSZ;TfdeT{-_^T22a7iy!9|M5|oWKYSmRr4DZ*r*q(tgTo?@BmkS-_3Er-x)OI7a2( zB|~-CjOOHoY?htpV=`5l_PGJQ-U=XIf?#vi`)d27YV=ax0%GQ61oc3kx?B8| zd3A!>=mt$0GPGqHj+$)g0M(Of6NR78aklUz_LRX1o-7-Cn6MqNAHrZ#=a;01aZl0N z*g;~0Bx9AZ;94R+U3^UB6P(HRV=oxjc_-Q+equkMk2Wd4&IN6h7wwlzKH6O8kgUR_Znz{N zt}ZiF`wyQPmoA!B4tju>uo&PbvdNqo0)un{ecL}@`d-%s+owK(JNmrRHkrNoe0L!pOU&-=lY~-7<7}M-0S`6Jv7=b zNhB!YyUHpZgs~3I_!=ODQbPlmF~~-f%!knHKm!M38|!KTm?_ReV^s~FMnH##(M8Ht zW)oWlbr$sti_U6Bk8J27x)vuDR@z7xsjZ;dPhrfXIJqJm0$kTeb&9kFT%CqT-C(ET zVIF<~CS&WIEQ@;Rfb0~-Va!DGD6B@u`@D^s&2Ge9zQ~VCBnRYIRxsY|N17rv)vyC! zqI24WCh$vKz8r#f(%nM`tbue?h1Pk+!wgn5Gp|AbyjC>4U!Q3S3Rth@NLgG~@FOl( zIb0^Ny|*^SsS^>5S^rgG+zcfhG$_t%wyy%a`@hTn8DWeQM-G4h!%%}!=ZRb}r;0EC zlCigL_ME1k~WDYxG5? zH0-z;j4Bz*HW?^#Bzy)F`}?e|W0W*B*N6CIGY}MJ)ME>U#|IxQ@xD^&{I5rz~ znh@k1?sHo$@O6-79hQ8TCeGnTU=gxH0VP5^+VTbF&>vJOC))}&)*oZ1UBN1A@^Afl59y2gB|z;oL%G?E)X!2L=a3` zH}{raZLrIzbzcxXg6{@2%Cq*~Tbz|~_XAm#P)_431pqRbuu2>4z8fi(uk2}(;lQl! zFbh0%uY^IGl}lg+$9|tH=zHg~uElHkbb?;cSgGtrd_KubfsTNyP+U`(G;RupP&<~& zFMOVhGvJDId(?I{nhrelNn}PJ8SeWP;#7pqIq9Ym1BLXJaJ9U|*i3H5;K;N2jY1XN zYUsIu@$tt2{OcUf8$2D9QILhuPRFAn8>FZPM%1X;|_ z;=q8#pf~qoPjSmSz0Sw=YR*|1v4oo-6Ivvb$y8EkCgZwx+k$t3UgmHvzthJmnbih+ zB(Onl{A_TXKob7+c&LrfIWSW;@LXP9V_tEGMwDxvcgS-bbO!D3F z$S<7?z-EEJ%RWkwHo>_Y(UsYrjLJd{FoS}ZYv9U)w17vVT*CDzVDx33vEV*yWmfB$dUBxya}NK7B?w7MHz}h|tD;D1aRND_-iM zaxQMrTwzzv`SIBVMLQNyXpd4gGJZ_uCcEN+>68Z}nP_?Yob*sOnU&O! zQM`W2C+?D(>k)i1zjXF)7T2Pki5}DH6iJuP3tfcR^cM}Bqr9Bj9(idm&x~oWlz7ocXK#7kWg}_il2h)e0{_FKV}b|x0C3tTt5F7RuA6&{tHF2r z+K;hKXtWUqMKc*W!7jTkz~BNhNXqD_cSpGo!+ZIyq)c%B%AiY~r#Rz2`y!--L2fpp z(q0~DL*(7S+l7VS=+NvMU9h??oUt=}H`&nnx6v7^Ck77g88Hw^5<-7z7TX1$%6&FY zRx-wpVS+P{Hq_)ndwIY^h+INg;`Yvd9)RU$RA9*5=slyxXVBh#q`5-unJWMQKmbWZ zK~z``u?nWqF-l~>7&jUr^jWv!oJth~$AmIf<;}t1LQC9~F*E`ds9F{>vNW>M3A-MX zGA4ag`nDw(h%C_!1YCmwwlGWhMBI6tTMuAgl~F|&2ES-HITa*@PjEb^Lw3iwhE}H` zwlXMhaGJr+S&d625;X8U@GHC;VHuVu=Vf@APJ5AaF#fpofC&J8B0iKiC3i3IPnZ+z zOr3xwqf}6sLm^M8ADomtFiUAnTwN=3d^25xlP=0^CBY36p}U_w9G{T55!y!!|J(jt@Qam}TM7p-Mm6Ca6*| zXj@3C zrt&DmX8)DO!d0tIDs3`Z3<;wJY@Z5dK~{gC(2YL2Rao2(+Q(6>A1gMW^BXb=x|A}D|` zwAY{uh$;Y1@GhZ(blz%Jv-OYO%TL7mSx@vewoo6W8u z*<_QPcau%HBfvBU3dV7&`tD(JQ=zaaSK9a$?xL`Ar#x2GMuwqu8$K9VR_%j_(1;;8 zPsSYDGCm95RvPOPH2h(_=n^<7*V@<-H0kmHCGjGIgwXH~+^h(=#O*`2=8)Y5Zs)Ti zXO+aIyp-UX$B7MMTW06rr;47ibAP!9ZJ?z|unz``X&{hDrq5hv+g&z?W{H~bj_F2I z?Lw0cqXX`E@F8OQ%;RHk8wGEwD86sRm-i*fjX#0!(7H#EWtrYPFy_F`z^Mf=?maO$ zI*vW#_GIXNY{0{K(Ot#^N&2eSE?c;VMmYyH4*jj;`pgMf!m~rDmKvBccc0Hb-W;I| z{o_aZ3>9l{l{lF_-xc&(R-*94F==%9tTO57HH;3D=t{;-9d8^4pHtcef!S>~8fvAO zp%aNJ-V%VXF%~MBisg>)+_%jbT?nnPDGWx{aViWDg4z+{DZC1C4P0o8g7^>)=dry? zmV57+TbQFs2yT?0Yhtfqv7fQO?I9my^VzEa#r>Dy$0-dFr+lb}!ee<@*bmr+PXs=fTP8l0454^9~PS&ld_iDpS`CnQl?iP3A^4c#>yEvXCgZ_p9p9J@wIh}ksO!Lg+9PXL zJftmuaC$md&I4!k2znlpB^!XM8}6HsC&803lYjxU^6dkdTmsV0RGgF_aF?HOOgZ#? zstD+*8y-1HcFS`MXqP1+##vr*89^T6>`Bl7B{tSlyMD^2Q7UWND&HX!wSspZ%85RT z*JgyD?k8~H%MuTa^3WE!A@6`-#_C3@7i<9b?hQAbs%JV|>BeQo18@AmF^|G;v*b7n zgfa(0=jOi_x2F%0DMRm6B#{RbEuULrmY-Xip`F2(RlciFJjUi_pR!o*2%r;`F`#70 z5Xiu+s)+NHfgCmWsP z`j|pRQn06pF<_z_U8K*UM;Js*;1whV95cr+=OcuwnMzre&hhkxmUbc%jtv4Q+pq?m^hSJiMLd{2vmTP>LIhJ9T&wKZl8kAk)(^tiIO(yrCV=N75 z#(g?!I3PBKt|*((H8q?FhQ`WGXcOA&&_^&MkJ5!WK3rwU&fYnhj3MY#uIcgM3@al( zsZAdM`sIYrTU%#&Z0=^c&*L7s$a!#Q{!?~SyUsVeA68>hjZUAk%|VQYwC&T5dIESr zN!s)fTxsb#kelEV0Wz6RMTQxbx-(s2@Ye_!w!~1UtSWHeHFhls-15Z8Y=j|8Ba2bN zU8_=vPEn3Tm2{csQMS5F>f4Vqj z7|8B*3;~X>#W%Y#(r+Z zGE;V$qs!cgYO**t11iHh5*5Tp$Lb&xFu6ugq^)yTCWYOntGQ9|_=Jsz$YmbgEXF!+ z6n_a?8|@!rRI)!ojS+76>N6XZQD5~S02V(J61&Q<&{{Oh9K~;!9_IFGYWNhj)>f zonb%-Fnr0BwC%Jnm91-?vi%d*T~D^ret5{(LrS0So6!*-4-X={p(#&|j_iW#!M5*< z=$6lK9+cnw_3g57hB;5sH`bi{z?nzL(#}lG`@x&wgvgOq!CUZo$jj0$KX#EvE>FtA zkjexye(->`PvmN4!`s|^wgDRzF?#w!`6Z3T>E@lA(Z^G6b?cC^cX@!?A3q5V#pme%L0Q02xvuU#YFQ9YS0E2`P za`ubA{dL(|Sw*e}JZE5~+`RDxn;>xl;5$NhIzE#hee96U8hF64l$Ot&JCFRBEgy61 zE$=hv;fS$m3%r{~xjp3Rn1=+)YtVj;GW`Gg-G5nr`^`7Yo8S2kFDyFY#dh!&9wvy! zPEo6?0R(d99KKh?n8)4lFoMt8L6s1>*1LMUEOIr*skfWZfm7SO3&SeQl1o+4Z~OYA zvdEo68$8$v0Y)xxswl?x_CuziKc9UrMMoXbe_?04-ipdt20q!?iS58TF*o?5zjw*L z0WJaC1UmBUU7m4?qot4gO8ThS5whRuVUwwzJly6H69tdaT1O_fT6O|GmfddO z-Y@^dpZtr$^E}JH^GAQTy!YvSWNWvaJIjkY46eAd>Dd<_FF*RpkIKFiCS)q!kIWM0YaUYk5(9-Q@&`}m9_?1HS-~I5N@^^ms_sij<{jz^|zg)O> z8K-?(cCO#!5vlje*=rZeKD#OJ-nqlDo$~58UgnXc>*eR)`$btfvs$h__f)co1J>DI z`NoSFh*5d}gHL1B&B)&S)hC75T9k7<2KDy#XXW?adXxUEWh&a)S{%C#q-fTB1B@Ha5nL%F3vZdf8HWc>5mJ zxMsQb&1bV7IlvHaY;KmH{P^drOY&@XjDjyC`ToE7K{<0}r9AWE(`9{gv0Q%qLb-{- zbd3#rgiMWiKSGa}Xq+hz?roQkZ?Tp<+QWfyANwv(Zey;Scizd)?H_;tN9D>>SC}6| zx3pF6;1qP4Ph5ViJh*$mT)A=?W3^vy+`I+N_b~J|n|cw$y|TImKY2em&;7T8vb()o z&Y!zf9_;LtkKya~-3QRVTh5%@Oon91Zj)ztKe)GpEV`cR2C3t+#EW*UXzcEAk3D8> zz>fLVtrZOTe!2S6RRWndZ}xncpt8Yu8U{Ct-T3H6stgIeqk~TzLISbcUd0_oV#p@Bcyh^pnrZkN@;f%hJ|kDJ_5T z@cr`Q%iqCC;*NP&g~q(qpD!oib?%k31WsfdIM@ppF7k}{{c`t%+vVa5Pb7fdzyRI3 zajWcqai^Sn>;eJPe0g;LZh8H!Z1dH)CR^Kz<{a&Tv-Y`)YhuYBkAa_h$Z z^2E!3Snl)OhF|~ey;3glk{}Ri?oADfs*1j7L6l96qV{BE?rdmmX5S+?Yd#v3fAZhF zQ!YJ@72+|+d%QSjLY8v0eOT7cUnqMIPRiY1-YNIWC%)gYeB+sy%GoQc-1a#rFMS(l z&JzPa`r8}4U!hUH_<~1sBU8=BNqG!M+~(ygZJyKL<*}=u^CGV~obA@yM)~ZIS2n<6wIPjBDpf25^phIK2TSd|#CF@b(VX6P}q*p#ST4-!HE|@eD6u zBtu5VH!oiTPb6>&yM;l1{MxnB+jxkRy$5YrqFFyn8H6V+Vw`(qbq1a*Ypb-Kl$)P^ zQ8v$?iveDwRPUpKx3?eR3~{hj0S5dfJt^A+NGAg-Jxe^@5c{x+y;x>PxGw_Q+BjS8 z+}vU3KNY*lTsg*qub;t5pGD?)U&`xmzg2$m(_fX3e{-um{rqF)>8GD2_+Kht+`L{k z9($tPL1%~9;10O>M#z=*mGaShAL8|K(7>>^wpO;zoeOT~&Ymj|kn3X|G|!G0lG$HD zrmU)&kln}W8W`Ndw*K)y`lIs7tFM&n%yZ0hAbgQoo+&|wYmjCVlF~nPNZ^V+H3PQt z)5kd(($52r55LM%gTX7AwAr_MX^`x`Czsz&3F53)AM#{NHw&Kuf0NUbM^rj+c;3yz z19Xsg18ou*T^jvNkcN0}69<<;Q?a#zg}gea&yg@mAk0d2I>9wT!l}t7_T7NG&0ZJZ z<1sj@$)>(deID{sJMZkla{{v?puddNW%=UL3m40O_Fw%ckTig#Enon0uK z8=GY8yu9oD27Fj7mkf4Sy?c*j>E5FRGd?iL2giALKsK(53rBt8BF>%w!Ky|BU!dQ# z3TEZpzO=rdjZFN#^?P5 z)dL)*>%`xA`;FX&v%h^@&RiszAd8UUj}I=A`K}Ws8j+ua=|;N5m@vg`!Oc5_p*Wu1 za`xh-@{KpX%?2Lsi}mF#F!=t%Z4|s!E~4CfKCW|t@*Gn8*b`UEyT>1CPbRUPizKjJNSD;sM>&97tw<<7&0<;}O> zEDv#BO){H@M-R*S_Jz`AyvhAZx$?}D<&ZUPvz+^TWM??Oi;tg+lRi4!W2{BW+}yLw z{-dS)+&YLnn1yzzR;;aT5L_LW?$&ZSL(nzAIQj_LySE=g1K!+rW~Hn?MP~Nk0q-@~ zDXmR1lE+s{e-R^2N;AZ;PjEi#8!Kes=m@+%w{SIjw0?${&1}q<^Uq%?`w!XBMbOh3 zE>bn=ls(=X@yuH<60APNc)!jYLLb2os!BZ6DznRf6DCXzlwVn!FU| z%wt?Tw~ic)$_@^Eu(e)RAAf>zc>oiy6@L96{(gDH!+jQbEUmAfJ;Vm|sr-ES>8E6h zD`mTn>{6}riJm=PVC3UuHS9fhR(tEJ>)w`%{W~GcvSOgwI3WA&El$eOc#%M5rK}S$ z8kBa)biJ*!4Q$yk_3vXy*tB*GY*t>j2}kq$K4$1i3x&Q4yc%$68`>0&T2rpuE2iTIIe(#s%@-n*r&C6w% z;MXe3A@X+j*8TGQ^G`Ca8EYw@U%yp;^u521!9RQDF@kkoLWEuok?T2}$Rnx_b2#yh zW%deC^;_WuTPN_}x7salu9pYM?0ibH=qg$D(i#q&z}^bz&3m5{5N{HIZj?K>chPl% zWZ>(A`=f`vYIt;5u3oxU_OKVH-12(LyAQUmY!M`*?`Jm3%`fhg#8Sa{@UT4f#Itd- zBZ9S6bgF}n{?(uTReAhrf|m)EOLpituoG{-@e=&MQvT|%evYi+=y^r`v#(smp$vh2 zy?pq=$7Rf&4r{!r)XZ^j{}?Cr1iDM&!DshzoKlW{@Myctvv&UA0kW{tD8K#Iv*mAo z`t$PGl}qK)<=-kJUT~D<82F^KnkQhEh*kyXc^`<&x`vEPJVQX=ae|CcK*0gJPXfYY z3Vdp*)kvLpO4-;VFInj_m^mfrwhYuo)(qBHuAFhDAxWeaY>EOD6-lf}s`NW<0@Pt2 z^F~qmo!dQ`D0{kqrQ2h_gpM&!n&fs_9_MVZumN&lrTKS8A^&|Y$7I+|s&3#_(#5@H3`?T#5 zbeKf6(1(3+HURSOJS!y@P^|vyZ%y7!sPqleMf#;80DdkB>fqhCHnIALud*8GORReM zkpZ^MW%!YL2OX{I`lxi70X02jOI z#qcAbDPM9~qfl?pnU-C7(T0RXrZV;zfp@32Z?Ky11g|4E>JYKC5J>yFHudf=e@!&T zqZWyfZr{GatUeYL1B3l@Gs!7smIq|DSDzqDDwMyg?cCJf@Ix4%LkLRZ6Oq`P@KulMHjjz0EshZp={TaTL!y_Y7ID55C}$v)v*0 zZ7!6p&9f-+7FqgUxpnh)BGe}yKaavMl0ojXigz(c$=ddLE$<>_zy%`y zWwK3P8HurKmb0s8%59#6_kf81nP<)>Alb#49iyNpY|0vuvG~*}pBwKwqb0^2f(&FL zOg^F7vHge=7*51MWpk~(^3orc>-X=m;cNlJyIn3kHcHiK1%AEu>KhoEL7uR-gdsbooWD=G zo;S3V=U;k~%n;|zGvW!CG2Ydp7?&~2&+ zb3BD_1UQWg!;-xJ(#|4&pPFzbz0aoE@p_IN&W@U9_l`)@v;)U|j$Dac4LHSSr%m28%^5zT7 zy@vet%Jq*vDu4g)y~&&EnmluUuYC8PeYaf2Ieh!=e@m3rL<09-xlNY(=imK7`R(8O z2D*Dx9x?uNue@CLyk!eK@7}nRCoewt($m4wtoG)0WcYxr5d-qgH($i*tWjM+H`o*K z&fol|y!^~l<*ufIck(<7?%ZF^+g~ z)Ia}|{{usNTAp}ft6X~SJcewcy!-Rd%a6YQz4G?k{{hQX@DKgiymYbrPyg+IUtW6S zx$@Kt&k$2k1LSq%fBJuazkK$=ugc&52Y;t55s2Qq`LO)u|M-8ESHJxqmh)7uv}N}R zI==fS|8sfu*~{hP=6Ps3D4Xjqmb;%lDnGmNvjpI0wzkSm0>mzfz{A^AmatPp0=fm{ zuY+TAEqsI=9PJTg!Eg7pj9lL2{36dt@Yxq@D_cAocDHPD%LKva zs4nbt=fxT9)&iA{gFRm9O#pg!d8?f6s;|5t2{~$@@2gwbkF%G{5C7~h%NuXLfs_9Q zPG(fDy>Yc1@pr((qYjQ9Q5{<>fBC(imT&#u>t&AM`PPlw+~vXY1h;=)yLPqQrAoHT zQceSp+yEYbkB~{%Z9f0})AH=o&y_6_r5m4p!doq=G<@=LdExcv2v82oi!VG`Za=tR z*3Pb!*WP{(8N%shS9 z-mBviE3tch0@$MyU_rKBa%i}WgN!@(!7*?6+rG#0Z37>|TQ~Q2!aw(y%`p~V(5Ep^ zmt3PlyNoSg#$3PnyIgtgg)+|@ zH^*bD8CKHW+ar$%YBrGFhr1u++gQ$9UyEUlv5 zKZ+hQE|W8^OC`vsOJ)Y?NV)qytRDCd6@9x8nR0p9y>AHyQcA$}>CAQF+2q0SHgLzO zYlr9s#*=%ES#LAy(oy3<QUwm+@{Q4I^C)(p- zAUN2YcW5UVray`Puh>jKkY2PyWu65eC&Fi0(=im4SYiE1qlTSXu@U+V^<+$@#E|kZfe!ZN%e2((t zCgZM_n;%_A0FI~tjLPE}nHRqOB5xFBhd3p}-R*<&*(cY_ryt%d_lT-jD5<-#WC!PG zF!LlCnzyDXc&>XlV9o&i*Vg9C#~-t{$6ER>@JuM*o?u8_hxcV4tr3|lSXmSz6eeIQ30++kuPYw<- z4hR=z^%Y83J1D6;V%>TC`nSJRe)_Y&E?1wvT=rSY*rv?<)N{|4Z@u+f@ZL>6lwY@c zWELMGe9dz43hV#8vG0W7X+}Zjtltkb`PUwq&=d9 zx=0lL@@p>wKh>uPM`iQeDzEl+-vC^K7MEC>@K8~OWr>&YERq@a2m**T3Ctdri)UGK z!m8aN+dh6oR`!7TsZ^XG>t+@yk&;oa@g~FmNAH#k7td#H+dU<&cV2jEy?pEMzKY>l zjV@@cfAi1(b$R=DUM**@UM#Cu&zC>^2mfyQU;fEIE#G|Wg>sSVnY;N-mR=$dBK;{p z{nf9a!F+k};op?kzViZAAYNSx%-atd=&JkRlEsb+q1X_2%zm!`a?UtYZ z_$TE*divi(PYJrwwnr=v4NrMBDvppeg=Io2NMu)t9QKFj?{_J|Q;oX6%R`&sxtsBN z0|Fg_@jexc4VKMTnmA8*zQ&sl|KQ&~U*3D~_3{_r`*Hc%5C68j{@T;!^*3KC%T(=n zS9JOCiwEVwJHIIZ_`mpLf^h<8eqZ?J)8$|OcmE8>b&lnYi>0wZ05Y##;l)4%PQGHf zO_uC>-Qj~~`PpCmge=u}xAW2#vTA%mx%%7-WXnI|9KqghzufxZxcus!_sd%>`It3& z*T>O~F6;6)dF}3b;{&v*X0N`gcSQO73`-d|A5t;FW;}o=D{J7+Qr@HEhv*ztPRhu0 zya!~mO-6@YU%dKwxpwJHdBm%q_o+7B{pI`Rgl9FVrz4g=jypaHbHA+Pybf?2kheVg z{04i7PRr&65*Q45pCIk!7q1b-@j7hoXWyo}RCbyyD?N%HT{?rUJA1YqAY1nc>QC;o z%s>@E`|`!dytNP;{tVT-6$08D1k~@nf1P*SKgROF2asz}-ucD*1RHw^+}5c$te-zi z0OS50aAA3(iv#`qgAb?xxU7dBKDUlOKaC@2*$`i_gpO?=G|S5b{0(T4C*BQM-V{qp z)qS#fpT^u}1Ku9NwHfy@LHc{|eqR3UfBR{Yl02lT&m!kC4i`L*?qlV74fY@ZqqmTa z*UKX|slNX=pOhc}#Sd8m`53s?&{Lf8mP;$h4dw4`0;nUBjHN3*{0n7!c-AHPTET8S z^W5d~;ww*;6=dDp0`q1=0#qI87oR;K;rxuH!%xcX4{i{|vo!Mz5A(ss-~8|n582|O zL*TPXAiBdVnOp2#SlAkuHI^5jdG@LD^o!@q*2QWS4QXYTPBpnv+(Hc80ZCduP- zXG;Ipbpje*DgEBVvPd$xMzC}4GIQLyTPAxh-%>%O;@h3{Sib#~Ao#c}k`SKaSMz9Y zV09C7s_@X$r(Sw%s&6Yrd^t?s3Bag!j7X~8!*uLJyP%y*idGSZ&^U0>R=@9^b|(Hl zQ8OC|&E_1)Xu|^)OM|RE5NU+1Dh8G&QHTM9?Epvvnl%yt&JWhm$+CyQU?35TI!e~T zZ=cApJ^_lX7b9IC%?hw&1+KsNG$l(OD{Po~>9to&|Lj)z!4H1MIvmj^uy0W28#S*`%G)R}zxpi3^YLt!@s<|XnyKDVk+@er z`kQyk{r``r_YTtYy6!Yj$FFnF-9R_c-DqTh07(!e7(`N3qAANkvPNFJcGpsQW~XZW zhik`EuC4KGt*dq??bdFUU1QJKHMZp$Cygx03Zy9J2u9=v8ja35=iK`|_amo4u+d+C z-}~P8-g8g*o!>c^)~tts{6rc&pSlQlwhqLhjr2v=k?wf!^0l~q{SNbrK_{18L)1G7 zblHF*D~70N{%(oQw~XLbVj!AYo8#l_eUt;~*%57$J1j)m%zz;1ta%2wM!3ECAV#n} z+Pa%r2M`3{Gva=KS^_<0cqksm- zqW{jFIEKN!e)T3O#(ebM=|hNx&`3EDDYmw?q6Eo}(UGnO$76M6Ci>ocm$`068BRuf zR|nByWqk0#$I*pCE$@K5JWx+pm?BRu2Sz-pYlNKPB>$~I|}xyc1Klp7GD&KiocG!H%kkap!R?;VQe zQ5+bYwAEz{2Pq)C>kUFU^PXeF6Yv?DqYTc)j#ghGV;@-V`pfw;B`8efl^aE`ztUnD}aJY*zThY|U34~)* zI_#|T85B73G&Qt>vnOE;v2@oL5*&a;OfHYa_T+YS)*iuOgaJQ`l0-+GyLg7N?8gVM z-i>KcEdSP_T;-&caNoN(`x!I53dv$zr#KNYLAQvuJ?&7wK`AYe&z;wql>-Ap#QOB# zxRab;Vk4qYA|`baQRqIWTduQV_c6GIa8mMcO!L{F%gD?g`XlKP-m}kM*kmK3Ue6%CJ|1wVE*$Xi;J`wfRby3|`2~Xlp2x9; zsZDmn`I8eM`Xjnf0J)Axj%Q*%;BtI~j$EG`Cr}AexogpT>&%TO5Z3JOEA5VV%3Ff0bDjEvmL@dRB{ttf@Er$;vYen(c(-#OpO7OEuK@(8* z-sq1Xy!3HYeeiBP^CV8ogXfSRbTzhV8v`tlAs>5Yb&zGYOQv(tAIn8sq+Z~fATx7t zsWLdgrsHQp@ahOyZuJhPbfAH>fs@rtTtuVHxUt45Euf9U*+Diz}3%EY~;n zL+pn9lkK)8jH1Yc~ImQLxWMN;G)Eub88b-k;O~tMxjAu(cI=UL+LS_offEQG1PtiLlALJ!G-7m&Z~^^fnkIe<}q`j1E5ffSO`s5m(~+ewnjhi zDVXpv@*pbC#UUJ<1=1$Vc&A%1>l^A0GcM8&M$<%Xaye=-QU?yU;Q*8+g-}AuK&Wzs z+ScM)aD+BJH1iDxjLy|;Ra+zzvz+ZcGx zL`Mowow|=okYSt|CYU!Wz&d+6eL4e1!qq^b2Rl#4JY11oBFO_s@m`s?V&-U&yy^i^ zj7Flv(U}=ON4XF4Rdt||NV@?zx1JQnFisne27H0Z$w{KRmSjkTziLsAR!_{49~~wC zYt8i}p12Cyyl&BswdWX1(jvnA8yM*JgDosH@&+v3(cX%2U*`9u5Eg&}iS}zan)Pt^ zLqMhzDFRW>YDgPdRPmWJUS!X$lcq3LoLkb8ptWn-V<64@#w2Gp|IWtwHW3>V@w2ji6BO?Es|N7nd z^(@c>HZpPUfp#K02%jJ~Z@#`7Q}2^| zZiTqSoNkitsV-?JMYa}WyEme(s~!GK8GD!UV=Nlb0p??yaeQTa8)2Bnlhs~#sFl5e ztTGM*iggTCVJQ_N%-t@ej|}@(rv4jmei$8RyAlGF$D3PQ>SGF{)6jY@kvC2C73Q$U zOSy4#`bs?a^G`)3M)BRZZPEkD`w~)VjR)Y-Kq}T9C}M28IIEMa+wtQ# z-MM8k4QaKAeENOo&c#hosV$s$AzYzkNxKy|2=*3O-ds&E|G?-J&@-?w&%8W86CIy< z6oW`wfhaKLr_l?`I0t1o`}1(1s+s%KC(b04VQrPv9nL}pPFz85Ir?S-W{R<#S0HG7sv&U$ttOaqD&qH({qUk`{?8M!y$pMV|tLN)O28mT>teeSK@(- zmoTTh$mKY5j?+xAP)Zc-TpLJ~Rzs$p7>}_#w-p9#Loi=$aJ3+%PR$UsRK=Ccx07C# zX=ch!1alX;m1kq_+t+vS9C~lz%#a!xV;?qvM*Y$+{Uh|x0i0PPdmPL{%2+E3LCN4t z055>Tk^3&$C2C%Z?|t`YARY_x`JcZOM|%zf`NMI7%c7^czPBD%dV6DRY$gtZmMt*H zySt=tA!7P2fB1LtTNu!@=g#9qe-v;2@cnq~bC1S@Aa14A zM8^b8iR*$s8NM<{P_rJJb(7J?_1p_JjJFtJX=pBw_Cqak{LB#?uWRuafAyo7!Wn$z zGiSI4`W?qty_m`xc^2m`58bf`%3|eIF+u1gK~FKfw8oYOQiFH0sbKWvvE$w7+3{p^ zvrW0E%p#?zJ?4_h2D2q_%EZXksURGr@J$t{%e2Y(A=pHlh?z>qFGEL3y5EKks;w@- zSr-jXWygF{E=b;QeCwOP_o?ybH6Gwo$AHBJ&e?^WWIduOgG3BW&H}k^E|ePV5EW=l zbs&sh{44yRl5>!LnKiI3*`LkP4Bj2aAkZ0#2$&D>S-l_X>G5VV8Jz^q zZjEZZzf`itwavph$$4z>@xg@{xO0z^l7%?;@CB*^&ZXRMDnCRFjaZBrSMWspZw|AO zr>LKXNsFQBL_jL)fMB_I>cy_|2ZE~w3L`TS+vMbj2m0dN{U;He6KqCcd?$!SwZtY% zMA?qvd!s1$S&TW+64z}f8YmO)!GU5mQK~p4Z2oFq(}5To8UaeB0svB((X>okiHJHN zmUu}(EW+RypE{r%i2a7NS`RUlT+VLTb8cjR?GXu#vHGQWRxC)D=L1DpSz*{G;&GYF%dIF$42c5<#h<@e3pHo1KV>oQ`9DIgU z2aH2t?X+BoIlSzfH*T|mQ2QXg)=@iGW5c6K;8!tbjWtvfFs|mFPI7xdfUH}~!H&3n z^A^q*wX|HX320X*V|fwQKM09c7LwcU_T57n-N8_=lZyv-W6nKB*Rq>c9Id*B8l2NA zj6i90Q@K#zAk!NXBeJu{=XD%%fSdPlBy!lut3;|+k<yUa6#2)kK>k_4=@6JTmxx=vii{YA-MdKmJu=%reqFZE6jAHZRi(h>zj-0B)s9Zxv z^5fKb9D+k0|EqCaj5mJrUR=1?6Fo$@&X}#RXK@f~>#O5XR|}?!E^3hCUi;a*(RCQe z{Y0w?R1_LAKv`Kaxz$3Pr6T5ggOWq53+iwb+i`>nFf5z%^RXmjpZPd&pc$uqg*je~ z-rjy9z|uI>3A_%+X9Y#RNC}->kRlwF1wJ!MD(qdHjeET#AUrj(vqI@4#%GUQ{2~O| z2C89H(hVS6mJ(Jr@mZ8p9Zu?dSnqtcOKib zPfF}bWc2|0mw=ExxrH2h?#&!d(VMT|!f__RKnHDs;2k3UC8}6RaI}Rk$|vo10B%id zM@`H^uIayV4>_NYt5>hbxu=fCr6(RtC?Zk~866$L^-+T2 z?FFH;qC+Mb-)aldKy9nN5G-GpNVo&aSwR}wz|*$m+Hv(8Z)5+tO%Px|q!G8FgGMOZ zC?`uS025%70?>c*JB?Fn{*sgh-UVK-UWwN*Vo_MVxF?$_U@AR^&I5QoYHNW<#;0zw z*^ed0V+R{U_|h(fG-8Za;L>}yScrjf$U8&PMm0bok)dBj)<@!D?clLn*IB^kZ$oJw z#3<_NfKYKS0AIXZo8SmZZa`eygOK7m&(sm2BpGWSlZH{3t%ClcnFJ6yf*C|qO_cKV zVJI_r#&tw3vS0aNGE&S=^7hOz?ordchSx6>pDNI3hAj;8$Mc&*hrF1^!V8R{0OeN+ z%20`M9>;+0wg7VxNtDArH{G%VH=v5&7jWHq*!PR`MBMyQ;M%D$knAD)U=*SOsfEmw zi-RC3(aqv~?6DyVshi$0MZjjs2TEMx_r*9}=F(-jT7I&Lz^$=qX5kF1q7Z7~GGs9F z{r!-?NULD6fviAM*i3Dmoe=hhVwW*5fk+(g?2aR_t*3Az%wtawDeYq<51*uz4@3Cj zJ0HfO?oQ@+Cnkp`V_=Za(kH+ahpClx=m%3`xsXW5CgZeKW_JA2u~ACJ#^TuhXE2BZu||2=BI%iZ(4-AG7Is#vDXAidJIRz5C#JRKlhc!9RBdd< zG^9i!)@q!a)SVCSyA*?JDbK|0WHRhWx;tVSr=*0n7A;ZPiTFrDtifqao^`=$?4f{n z_Zv_q6F4zLN#PqwPU5I|h)yjeDsy!ut0kmJAdC{3?-C94UcVJ*NPD$Wt~IhX4HUh> zy4K@Rl)&OA*NM^+0g!g_rF`!7b<&89edrW^S{!b)@FDrCOvAWnn*BSa!F ztD_~66qtT6=4svO9`IEO{sIGmI5_KWYZ zA8`;E!vcukCZxN6_`xetQdCAM9jFeD&_=^*y#3~t)X8lOqOXXCNhis0U zI29EHB##}v2pql=Q#g{!zp}5a>jdoKP^{uuZvrEuL6I5KbDP1wnqfXMC^%C`%Gy)j z+P)AQ%o~)6^j>@9d!%0Zw05AgTF$Z!-uLkt5hE0^I z1XzC=BqN8C!X~&I7autpKl%Ib$1AVCA3et!;{FFfd<#flZzAXU?p-2jiI=R0M{rl+ zxY%fD4MbXWu{)=O`N$*S;6W>}EjjjwD2RvPwDevdh#&p^ThV&BDT-@xp3pfMD<%X- zg}GQpwdyS9gA7+gJd{*xC0S_^Tpm!4Vgn5v;k;aQ2B}J&sMPy`beg5KJG{rS6k{hP zXZrk}S+EF?A%nfLK~d6M1Um*?84x0EyY{yPIc0j&oHEPE0lI*Y!)W_ulZ`~2 z;pY;V=xY$G>@v7TG^D}I#gZ1l#vHpl&Oq@{F`QH5l*;X%ND;m+vZWS`K09VUV}AmV zm#jx2%W~aH2HkXnDG0{O2HnKdleH<#BIK9{29}tvX;_SxiP$2F(xJ(RlvDs*X!K(f z5Gw&>nsTf3rSN(kq3&Hiqt|Q>wm2Whf?>(@_seERs!$y)J1v@iNehJ6x5GjU{kJx^ z@;WI7#@Y@XJv2Co!E~`pQ~iAj+=E&e>oXW_YuEi;CAr5TlxGf&l?rIaF)=hwIZ|~D z;4~Qxnin7G|2XR4K@_0GS0Fl7LqeOHm<5u;;bE+jJP96XY_c3jG2Ba}HY~%bhOjs` zJ_5=i>8lKfWC=&$9#IQri>#+7WWD(O^KtUjiBu*f(r^H1?u8${K!j#qp4VC9c^J9f zM-M~BTxI?+z^u%;k@k-ao-)9{JTGRs1n;vR!Z%?Sl=+JPgi?@Yl zA@f>9l)l9^CP;}OR&kWb_4bV$aR?(bhf%zJZ!jSgI-;#079&HW%+m-_9>gEUX+E=< zwJRrmQNf%F@szMxI)U&tf`fNQlHyw4TPAHo378Q-N_`a%esf|KXR|Fq?wbgL#JVy_ zolPJJCFGsUs(@urw__wxA{ZczLkmW}s`3cWMSpl4z3CB1q?CO&wsu4hHUFzHkY_Mr zl^B4wL+x=BsPp}|--}~C$D_OFKrG<^3kBc2I|fr5cvr3i#%b*Ncagp2XdzN7!N83U zFUFlK&dC;>fX29XWgJIh5@Tff7Vu(a4H3>@sm^EdNma#xfqSN@4b_p z%0=%>c~@mk6BRM09$@UVmuF{$unnDNi2XUI%yZ~54?=Up(sbmt+StJ?u^0i$C#C(SYrXh z1i}WFW*mrLJ&=p8sbVf9``x0<;7lyWj5MK}Sgr1jVWNuL`j7xLaCpiOU3Nw#0L6%Rgm zlAy{mRSYWuRUYJ4xYML>sMdj;Hw#hJc`gCc-vfrvpyM??_AC*Vu`{9_{t6gN6UP5& z&!KqX+f;14|8bnXbb$a7PEvuk05n?tMNqJXK3JSwi&b=%i0k35&KS5m2tjj@N{@3? zQ!T{k>Re3Tz0TY{jGn}9pidY&*CK65ATBavpvhyixA=wgAP0cJ+w&{5Ilf<8r_Hnv zNlI7XIOyn#2H@W%JME_v5P)9G*OL&^7Y#^IKU0hyF3H4uTt|&TRZEwQ}X= zW`w+$P`h{61M$MeO#NO+-d5$eo2Zw>XtD@sj zcl5!=-A2K!kh8o&BPhMqZPv0dV_w@e^_lnCpl}g#=0G5Tv2m!JFQa06>?_0ra3MM^Dkqu*XR)GVHV*p~*IL)hOK@qBe>MZw>yl6wIs~>)h ztYnfGo#cdyl?segE6m*{a>_L*)^!|<4Js^lAlcZ=#8S*sqUH*qPM^tIOa4KkWmO2clJ84WEMObr#5b8`(C^GlOy$Qnr6VX-N%^EG&AA!U|BQvR>DE5SBlY zA*q;kqUKkg|2U45QaI4w0!%&#`DzS#-Q~J>K`tmSLphI8Lb?Ewkh?=9f`e(`uz@n( zWlwnxvR}ZERj}P@T0~i76;b;V{V~eQ$aACU3aA9QHv-eXVKb^=H!o88QQuk}W4s3+ z8E2vfq-7x?1@1E&Cv8IpE2*@rjmR)DgWFly?p zyq*qw?Co;O7qM7G*%i@M)PW<2E<)xEhw^YXdd_uYL`g59@LPd{Gc+!exLdgitDJpn zZ~hGs6FEy8MR0cZAY`FeMEl&Y7e0H23t>?7RMB_qo2*HuGN#w&q7p)1d2?wj;A~ZL z?G-*}WlaWIn*y22MaS%7_%`|c94V+$iM;HUS zI*0{(2;L1&g^~Q3`!CS>kES-r$RzxmJUBzu?ah3SlE6i{3&`z}Cm#oU#X!+-V{mo? z){ke+aT&7<#%B!LRpcfivRMKyFa)ZgxL^+4*H%4@}CHbp{5 zqB{x*Dk_jC1IOk=^o(FnZZfZSDKsrBT%Ed@BJ1rP#|UzUu`!;RV5_B^IDGakAS^l$qQ7#=cGx2x zZM*{dV41!BYIFv)*U2Vhue6)m4c9jj2$M16q5RT7GWzs~|D}hqedQj4${3Od;`@@} z_ni(*!}y6qp%GN6J7V9jkf*vwye&H)*~9!KIrv&O$U2*K7Y>2W#Yx_8O}sfK^R(;a zvSC-D6NExFfRiaGM`vi zngl%8>`?LcF!N3b!h>e_(P;*umr9K=g5|584(DWN>t=a{H+g^O!aR+i(Gl_&>2R7) z90-55ltrSX^J|oSlp5%onrt^RBbRLqaO@rD`S`eV$K~02%m)HxEi(eLLo}_CJI#2E zQWV5o@}+q|?k?LN5pE8Ov6#)Pq1|8u;&U)=93q@PF2yL#8&yq-4(CcZND+(jMd(?Ex?~L2mm- z9|pBHp8VVc$S00FPI4g+rK7fsGa^?3Y?P&9o>|KjJs?URm0ILlr$^H4U`bMQI%BCbDJW%E>FXc2~p`aT?`H*(Ic|JW^1rvv5v2aHde4 zMP5fkiCoN6Nl}Es-32Eu#GuvE#Od(y)`Y5+Q#YSF*-=_}`ccS!P3v*?^K?q2j59+@ zB{%m74%sGT#HsiL0I*SW8|z7vl3i z^RUf2?NP<#DTN}9mK^6Y2liKC6sZD7rM<~M%TPt3Znf`=?0x0Sz(f{5f|$-E;Ie6~ zmcr7Ok@=&)1;~f3%GCiHJ$1+~tap`xM=+y(K@3$A>M?W=ztZ3_f<%bMa$ zIw#5#v&cR$&_{NY*T*lsfSW_(n>Gl8^}rwGmI0Ih(L-U-$tZb4CKk~`unWaO4WDOXh4oXHG&Ze&7}gof4u)fsW;&LQ=8zX(-(G>SJ|82_DN<90 z2OKnqs%gQnA83kBI2WxD_~chijtt=l04uK25QqpqN+AA$EOZ}fOFb$aqz4fR>nXSC zkQCQM5)peN9XJAP$Lyg%t5~#LaW&c|7Lad?M#7@cCjG>qV@I1iL&wTg=!c4oh4r zVXtNismBNX;ru2DTPSRlq6SmGO==~M{F;i>$vtJM{pE@U9X8fT*{AXl0c z<$jW`GuNEvi2bJSD3a*Jn%mGuIkDYv4pATe015<%6{BF=*(AF-nX8~2g^&q#meHvt>~(!`Z-2r(8H=QGpHImeuA)A@v{!Ms1(Ct6uyRo zW3W=peXIq~!Qf5M`EMCGUsCc8PP9?6rF7UQ3=-LG6tEo-H3m!D3*`0d&^--7`*~0m z&?wR(Tkx19PN#q=8C|$WSUAfnMF1*vu(>ERG1)d}ALlp`RgTyr70V$x*#KWIGLWwhaFYO-?0c51i(q4YnX6!1P$d9GT1?&Ndsq6D2 zkwa?5&WLs>EN{kvWsSFZO;fPTIJV%A6r$Jn3wGdUWzUT9$Z6%pGc%m*={W*Iu3H8- zY6axUHpKPldHr(yi+}b{;xMS~Cik*DF)a=IQNnfTB_2F+1cT?MWb!3TfUK-S(3lwXfD9BDf~nF>6Rc7s&dTEfOR1w4 zX%JexNj|Hkjm~7eZs#y-hZ%VKoXs8Vyyn===VnL)WFSE~xq4GVe>-@ADSu4^plLb* zPC^jdV6%;lj>f6`dhmd0C;{Bf8nXB(N+vNwO>BJ=c~79eLh_L{g=}P=!)OUFhDCRZ zxe3oD0c>J$B1Q(rIq;;5#w(A}ZH&Awf+X}~q&zY>3ZZ0~16dA48}+?$qgs&9NqEB)l-^2rL?4PbvWg{eIT=Jg^V2K7U zWu8KaF-eXO&Z&klTPeaLC8fz2iPY>BU`@Q_ObxT`RZ}l;UaMkbJ0Cm-ik^LilHMlr zv&>96_f)(Rlp+iX#sFE7Nzj?d0TG!ccRO_RRy_XH1>W!PF$@^0l6})*q9w?$b3?SR zQrAh=$#h0FP-WCI+k9(@l+%{*H+fLy&Jsiou64*cq%F!xk8N&MVJPUB$e3M!c`DVA zY1iRWVWyzq*K0C!ks7_xl=ODp!P%b!9c4r4X?8F*?QYR(|e*$1%c<@!_@p z7`u0a;ANWJGkhDKd2{t%95`H0IaqT{k8vIbDU4Onge?rj7Di6tl?3ekd&pHT&MYm_ z=#Do>g~WPvKXC|_cstw$=3CKcFQjxL^5)ly(J%X8X$d5aNp7JsL1V8WR=;lWj5VfE%F`q#b{Mu4`ib&p$SX@!OR-YOOMwO{Ui_qI`^GQ+Qvakp28a-(+HAxN>( z=u<~RohtFvHnwuHEc+JC6`j(_a(zAWJLw&-jec0;8XE+D@*nK($uIHaW-v}PEMq?J z4NfOyrJT0K8Pb}?=n5S<36#tlB-kQkv;+St~gA z%H1S-Kq$NnnJGk{Z1Ri={p2%N!>G4b(GjyS`^zXfv`ehdAbOF`K0xMm_N`13;W1TQ z2+7$Bq#UllM>==YfQNtEV9$yH4}UAfDc|M&mJTn{1ETN{WK|rFLe?#Z_wew1Cv{a@ z0U8W92OXnhqHeSDjk>&;hm8Ia6+LrQ+LhHc#b=*+4jF><$F^YF(c{=xWF(JNm^w&f zs62=cr^Z1nq&mwrOHlnwx@7xGFA~9l_Fh4SP|DDPxW2D zN8LBXt=Vz%n|X9VY=a1NGAT!umXWRyn@s;=jD!Z!$S9|t0WoJ9IiqA9R~t)sI^n&W zBXOq}!v%`*WcLM>tA;_c2V=x2+b{gh`8e$f`{ zq1-3oXVe3od?y=gh( z5{9i5XG{LTJPsh_fq4D-%kgJ___xSJMa&`ZCr@?9*;D6vHsq0L(Q_k)hG*lYpWTV; z*FKKto_#bPJ9j)bNi%KYVA%H7eiMrj`C2Fogs0B%Afqx5A6&f`zxz-BpZMSZzi&qE ziQ~vD&^k*c66JasP~{T=EAytT+=KERb_hb`IqC41R}_LUP%(t=vO-6gxeUi3AqzU5 zynmHQyO6mP>X$5B02heKW{-0Z9z%K14a&jkm!a>;jQPm2f8Ecvww4RvepenfW;&d9 zwX-F>rGL1x$?4yNtEBT`KYn$;?U=KBM}!h*m$BFfe+?96WuYHF0}dHP)5bbh8w2EN zr+e(Z9Z0tF9SRZ1Ldxwjxs>?9g_vQj`fgLd4~fxKE7&jhU{B!0%7K!+Sq=)ewgT!m zJ_pCAiTUF>+1qkDvXD4>OT>zUk8a-@WSyA1%1qp(vg0WEdi%my5hf~Yv#ngx;-2kd zw_Bs>HRO8}ViSue&VTww%K|*wH(%IwSy^X zCXaUJlB_K{g>_KYbLg|6Q?RzQ7w>*_B_4T{^byZ0@~v@8HkCE;{adaf&#lSQR_f5J z)79hZd#|TcX4>46Vfhdn{M!Sb)G79p(ODMR^x!7 z6}OD%bqFvTVLL+^7ik1i#L0UT>C4TjMsaKiFKrF0H11Iz^>17^aoS*~YG@G>NXmgyVWwD=EkU^tjj%GcUZQY@( z)a5tdj@Hv{asSg#MK3Li*C5A;M>Nph*u#U0P}zq4K!H0op2Y|t62@JE16jHgo7f%- z<&;)2#VJ*g6k(bP)&~RZ9J9XZ`Gxq6T-~f`H4vDz;Zefd2(Jcvp9n%DE6Sh*X*{w5 zDU^pH!;?2hYu+84D0@BEE!l9c%JnrCn?%*FqvLkKd0a1#wU;+waD-0b-{uu@B2WgV zBWwWVU>&254L3|en;Zn*Cp_yl&A|(8`Shi%_C*Psk)9=EgiD z#*fV*6zmPN$1CITumKBEBsPt5<9UR!(L+kds9BkUPnARtf+VTQ1#?5{B-<=V$kjZf zsWuw|8HIS_o$00`q7t1sPeh!V;S@fur@|4&Pm#SF7bP!ZQIdfjPp86tpz@aH20o9n zW$Z$T%pNkKQE@GpXxGR2Rz8G32}6zS+>59IrXK}|!Z&ZJBeg|Tw2ji!I4gxaDWA)} z;+pbESPtfd4vecrtq?D#rzt6AovZ?}8b-Mgy4NTffn=RU99VwNR^LFHLn$fmW#ol( zId)fX*=ATadeTric6Ef$uX1ElGY+1KXBXWtA8eJ8%Fx4aytaQ=Ks)l-OUdz7VIp&$ z4#yT}YSHAzl(sE9pFUu%jdPKoCcJKcKzxdE^W|rjx;D1cv zsSwmi{pB7lM86vGX73Mb%6$xgTu;v=QN%_Fs_Az?X*CA<;RhOtyhWXM4hxCWA8|*3$ z4|CW=Id(o(Xr9?(`Y9idhPdU;>qD_HGD5(SC7GW+dk6;zGA%^K3K(Ko&Tnb&Tg+5MoJ^tw6_qTKG+)Jc>3q)IjBtpL>P z^nJ(TnWrA5;;Aa$pgQIL`;fi*a&(3cvf7_Db8M`wdNUia+3yE*hBbHZxWAPH%MV3m zvicPV6C^_JpQ(>Bs?-We?I=5bR+&>4Na1i3Ru7rUevn(bF7si=YBT~R@kzN+;1@iz1z9%%9*2i^pgYuCSJ#jA$x9i7RxSsZAkPDz3ut2I~ zeygyv&dLDqR|uV3>$R<$mX~2q1M^m?gwmf;E{Sx+EnIE|)qfeK36pzbo=PPV&e$E; zNWPE}KC1%rKpmr3H;0d?2dy#H$(QQADi7P7TrN{LNw1C#A7^41txrZ+hPA_Sfw z>87umS|+|9!rr8h(r~zXC)OgYbflR`lk5V3m?I@pN-Fa_I~zG1uS)1 zB@?-MhDO?h%&9347tj{fA_a~u54o~jYlpdFw{suHqzpk|bAP#q9cMa=#0gLH!MyNK zTzV=O=BY6^y^)PVl2X!UBYP5`jN)}bl~JQMm96XT_jFBU!pJ}IEkp!xPD(IvyP{33 zgJYMwvyGw8>JnywXW8cW+l)KCCt*y;J8R}y*W=6s$H@aD zw?uP`^IP%ePp?KH-7uf#J>`_$7BX> zUZ(0V_F}po?@JsFWr_W4UlU<;_qDR2LGk1}WnIWShg97nj?>cgI1fqsfq;fjVw`FC z!#OQ?`xfGJpJ@d>gom(Y4*)6^IEP^a+mcRTMaQ1#DT`w#OxMoG8uIk~D{mzd>iGvB z1|_paw1ieT9T@!s2RQ|Br#tDkBlN!TxZhlKQw4TJ1aFRYe(#+d(R*_MnZZ%SS^UPg zz8aU`{g86rk4W>Z(Y^Nmln!$*!n90Btk+V$yTx_XdmVJ$Y;JE(sm~HBNDyT7>`sgi zqF=5|BqaN-w_l52`RXr35zWgMAVu0>&vn@3exlMvG_*2c-T`3}@yjLsr?Jl2B?W`* z&dg0FTQthv#?|5(*#@kP=~wNo{H*kTzNbCOYkp;Qv?9UIV!wH|ifG&_NRsxTKwgok z4iaiGs9xt&>38X9WAu(yCFyFW3UmngoO>|6iPcL6$n&PTLsD!GO@ponl9>7`cYo$H z$(HybelSi+1LvB_$nf1r&l_(N0hX6m5?w42iC>MfyBWM}N|vhGkiZ%^feakcDJ_jF zANONK?+}e6U?@73m766Og>61g@7PXxt3vrF5}u|ZoIeA;YW=1E?(*qb;E0vw`}Kc;o;H&jX&p}JsTGL$j*Whn$!q(!{cw9?ORpf9`9O?0JZmvtdzR#A)j4js^ zIADvk+r87Y0dYWnHN2sUt*&=2@Yz~)57co22jyGTFjaUBY$MLOy{dGd;Qa&R|(|JUH z;T&a%){8j2{e=)tvsB^o;^W^hA!#b~n;>gv> zt^s?TYdEELkxjaQiB|_&QImo|B5Y+uBDsc3$JW``_`5b4Q8BKYkSfNZv2j6`NPn%6 z>N46C{k5r@hJS?=!1T;55WWd|GjQNmdux1rZ6^NVuX~BMsZuGU6CfnJ8qNe6qd}B< zohe1$+5bG_2Ar{!M<*3@%=1=|$5jk?{zhT^?8hI)z`!^?J&vSmj9`*rbi~@-~7&B#@yCj zP6$009dO20;3`$_BSWkWSuNH_(vyakI$n1xN`r-I( z!Qn8a=b0IX)5Z#pE&CTI(f6Wr(go6nN1>#R$~zQ57hZ+z=CV7OpH)y8O?oX6P#A#> zX_ck7anCBOe%1kh$}UwAXmpGsZ0&1JN=HOeAZ@S>=-;uv0(B4aTJVwAZ=V~t&MU3+`<=cc|h520VCF-ryIWS1^oNaG)* zm%%ks63ax~cAqFE!YY6`xUdN{NeNUj6HrrE0@J*SQwk5psguWP2y+;Zj3?!}R;l&P zC!h4i=PrR7tYM69$7TU+&#QN0?A<;NrlE$Os@(Gzx(vEm8kx!f3niDb2-T?MkD8m!i;Fr;%FGKFO<8TM- zH5>i(LujFjpt+-&T67N6p>KHu@}crd92UkVWM|aGlrpdK7KE@}0*FN@I>|+aI#4{X zo6rgs=OBl2LUY!BPO_czwhnx24DHzidf=NxJvJe-JD74mj)Ka71XyMyjAw(U^vtwd z@%k$3B4En~+9T^s%*@Orc@?I&JDENGw^7n>ifJ_8R@}Z}h_@sc(qSJlh?c?etdo^S9#ZCm!dynFH=!YP3#(!C+H4t8=h{a!uvA zaAvkhLFIxnrLr)dp%{7EBb{=Wv{WUAyS#~`gb|Vwf}7gr&X}N8^vrt0f63V=0O5gGZ zjXjjobS?L#X)AkEBsu0YDGlIWb?mUCQ36puYrZfx-&L1kYieIVj~bQ}jRC%2|xR=)(yCRk3V31vWUz`xtCb z^|T+12u2A!uT4-WHG}D3s)*x<-}`{0(T6!Rq%Eb9^I6AT4B@LKk51(Ye{L}c$Klxs~`|-Va@1-$d`4adV za5iu-@*ptQ!^hZWofbJl`iI|r1tkXui9^r^X;WOtp;y~D$5WdV@s+PU6VH9+2~Z=* zfSk$U{IUc%O*jsBN0ZL1KnafbTYZg%g$7jW2E!-WOTUs2!6NkW&f zcuCLaVZTlNXu;iEX)~vPFi3t%f6{k;nGBB*5DVnRRoE&{>#+T-hAl;S7!##aW#W4b zK~faN22`;8wKcrf=I=wA`0THLA--JnWhMf+2speLkLsCcAIFnFqTL57ktD~)W@8|d zX&f36%M5)G(FObV=ex~tgpySn5=F|WWi5r|m7$Kc zlJDiz5u0DiCAXRb_Uj#!K}^>Lo~T(Vg` zl&6$u@zgw7xHdA8V5Rr0;>7A=l^H+UA}b=&Bmm*cCgb^JtnP3gIjhL{h{{K$=6gH{ z%1yG0V!1om4<}=cGaw|X$wIdkaVDQA9Al&+vhA)CzfRQb{FNdbqF zKI`*{N^F4Sa9%uXmtb6ELCDw5w@cZhvLMp6Vfh;oWhoG+hm&~d)+&r~jb^^eo;6O< z7bB1jENoZl5#PwYvTj3_9nuY^Z(2EfqP&#S%Dj!Z@y=>|@2`Itzxo@$n8s~4Md5U# zdpRJ=9V_t(R4LNIPtH5*;8Uk`9x}cK+gKTMFY$6(8|5EsoSt1J!&XE&BeUDg8P6ma zK&aS?78MjrmRQTe%*uAEhB10aZIh3wOEr`LO1Uh&IC#jvbx<-cx!#XuK9CxqWjVI1`B%`-V*&262 zFTv>{D*K(^{x|VZ=dq~iE{`vK@wxcPN@2Y7{Ey=+-}pMm-*RFlh(!VNmQzGorOm&% z4;F+vcw~Td(5pXufkSH`e8G8=_mX4Kf#WeULCNOsojA&=mf+0kINnqDwZ~Imdk{|2 zoAE5X70*F%4>-qiDXg1U>FZdk$W{DC<=Mt?*$CbK^6o!%Y;kfDxBzqJYoC%YQy}+= zlacm0x9}@L!tPtvAq5WZSwGDBCjzH?jvz~IA=I9b8TTXa7k%Sx*=sNdrXLGfv)%0_ zs-*6bs+fVhBhgh?l*UOw)45cetkOFC5FG>`zE~N5@CUC4=ds3O=rkiNNix+&==S6e zV!f*w&kBFHXLyx8M%58ooA>GrMSSI#pJhBb(a%xC^LLj?^}u7;o#r<^Ie(ljX!`t91d#WCX7IVHC52C)A} z1dm(?+IiH1JkPF-fATZmC`nHn1Y-J;gQYkYJ#pmt&(WysFg$^h?Aa{vm>47o448om?j&BHnms9NmGw;X0z9+ZaUG zrJS=!3`(3og+9r{PAP9X%_-<&hLbbK^`Kxl zZeU`Rk^-etRKcekG5~Ia;?Ov%^ieL{BpX3_L9XjYO$yw+6rKiuRia)mMICs_{#)Tr zgcI(i(zWGeU52u*rdnWF8SEedIe5xdz(X}%iJa)kWGaD8KBFO%1u5ideYv%nHiS@| zZIY8DmGMZ};*JSkDx#ZPOKS}yry&fGp9C(oO{xSSN-!eYAp&)B3YaXFj3g3!1^D3m z+&cp_@6ojkfcuaRz+0`MF^$S@3wT)MK*xc-nTDXLmjGw^h(&~5qL43mBGi_;&lokG&1ol(MK&UH`>e7dlC6oj5vx7sn!5QgmoaH`2 z4s9B8XdzLdN@{MF)C*3Yu&7=9@=(|ZI$P5rC|E+u4etTX?od_;NfW4&$Ky~C=Z;Q% zYeX>^z6#*KBF3+5t}FwYqKH$8k|sv}(OZs`P$}1yHwn$} zu%4SbAzZHr<>xsV-Z)!HkktW>he09tI{1oVqNLGAFvxly`@W~= zQ2g`%>tE6_^J?6Akt23*jl?hg;*;_F|N5_E<^TTUxcG%9qL%ix)$oSC^=qG}^)hXk zk-rtzYI8DYXAtlTCD>zVAcUR;MJS>rVFmW4LzmkeJQohV3NK^&zyfU>+0ASbCavEAKdC(HF zY2NLE`yUIQahRk$%fUCQ0u7fsRjX2zPD+DHcxj|n^WZzblSsV z7Zka(s{@43L&O$1?)?}k&P@=#J2(-IaO1Fhtdow|G&=65&%YLZZ{3atK2rm4!gE_h zvrLn3AS3I{smtfmYB!RNWsmYSNoI7k-A(RE_l0ZgsjwNI)jlEW=RM@iDylsC>5vOa zHqGlL+pc%6l0cTS0_4v;xQ5A%r&7^)Se}A;U@!`kMuUy4F+vbiz8L{C%2CmHO}{IP z$qUt}qvS1-(LglT)3T98c>Yg*Nd9gs9{>8KI0-v9laJTKrR_54 z;BFp(BRo}jB}6eYt9KB5d)6s@ZgdrAhWl6}?E6x!J@e@olsu3RHXW8l*nO91qnOgS z3@C$hy$59F2A7~#%x88P^Cl9ip;FQBkp94F#mIOv6_p51BI}T4je9-jm2t>UPiO7HBt%1sOyexhrZ`}h-1+46B!-_3WuPna1U&B9(!64L z6h_qcd)NkP$}gmBkTqE(b#UlVM=X^i7e%Zuz25UoC*{DsU}8Lvz^a2SjWZic`E-Y= zC~f#-z4K-=h!{J@>}yG;8Su9GIUFuGpJP@TOJ4J!CiC^43TVB)bgWI%1Cqczl&g%q zu~Dnt4~vK(KTSKR2sFsDxBYH&7*j0Hx0}o|t2t5|8tEL)A9Pu&Ac3 zY&%iOpZ@#zIAdZlp8bU{LQo@$Mds~J=~#1t<#pCvTlcdB!W`PXVupzHaY#tn<+a*s@8vp?A zC-Tc4cAkA^=h~>qgP;<@l0C7h)8a*(XUzil@OpA<%49yfzZi?DBaL~6XBV;Yv^%@a zt?9@o1B%SS3nA$refQ>5FVQ8M9=-X~S6Nq(ANJlhhXyJ81t{57zL&9P%L|ZAC&%OT zBgOH*{?4~B^jG7rzWXYB?6s(-94>>NP@a3QT#MoU{`iRFZ!3s$FJbgAzw}OQJ`b|O zwGD=L)g_cEPW3OuAHMJ(;)#@-)|-+y#;f5(w35tP-Be!F!W@`HLQ=(!r2bv^bUX@hr&(VR5usenx#GYNt?|HY*_2 zr(JV@6@ci}fdW+H+_f}t_JkEN%&~!$`FJbC)cK+-qIO%@Em7_~So$7Ktdu+3HW3oN z$*}&Gzbn&y*GD+Yy^V5eP9sE!`e$k3+(7yenb_qT>J@ub%pjLH=~Ga941^gdf6D{* zcq&v7&IzeVxGmm81X;AeJ}3s++K&|I@*FmUGHsBx>+C_UUt-H;0^z0g6;fjaQS3d7 zB$*QC1RH`)Fo@)Q2sF1}Zc_fL*o~l^d@ra6Vt?aYCeaOTG-hr&!FK$d`VOdc*t{u+ z&85s+c|)&keoZB(&Nbg@$GB}Q<`xT4f1;V*JS?7GJ_^d{T*K+-^h)()G!}ZjB~0Y) zzM**I$1hM~(#kQtP3~*{;wTWEl~Omlva}PU-l0rRni84AoRR zy7Soi`{GDvXI#717dPI$%p$N|EAryt;jS2eCY^%~T z6uK<*HTw4-KH3?%M6FY><2O0xG!GI)~_mV?VN-g}QXC4O@-;US6_YZib z6^S&ab2c`_VIQ1?mjQbAz@dqe0fZdEZf%Y;58WRtlhb&j{cL{b6p~tM;mp0NYOA7x zqgTg9$AS3Pum7*Z`IuGNRc}zD3<3`z_pcDHa1?3!R z49v%Fv$**>LCILDd`MToBPhp6ud+r~5$Mn;cjmsefjUiVIAtnvD^$Fvm^&-OKy&8CP;pz@_Fwf7V>R=#G)`RaAJ6nzLvcG|7$I5zWlxd%Q(iVBJ=MkbfaJno`KGcKUHAMgLaAc@0 zZy*q=EkD3vS#%uM&dfz-Vh!OtmCK;qL>#I0Ex5q z(`#d~N0Tq>@0Zu6Vr}duI%1z^;W=?U+?ToRN8EaJPlo-+e&0csQr;Z-!C>l0c_L>K zPQ9+j4#sv52g5TT^mW!ar4@1DbUx6g9C#q>mIRWnQ#1@*cy|8F8akdqqn|1qFut}8 z-o((Ep4woqm@1YK>3!rxiHb;$R4>|^K5aMx8qrvtw{4s&_pucg$zEwtnIjJ*Dqs$o zpx6LCbnOzx7ENH$F>xgBf~b(=5^@ifGiO+1 zIG%j!2^iirsh>U)PV}!rNF!hn8lF!CpYhr6x}37RJ6EpL1K>;?JbN}?{OOBPybVbO zg5lMBcR8QDF@~p&Sa&&%Dysl1=|0%fb|~I_={3YZKaQX8p@d^OhB2a&P_DjzHNNmm zKNq8OoDGi@pSmPVCsxgG;4|50#^O8>vYKWTF0vw-1 z?J%T4IR+pyzIXX!`oN!tDAy5}-?+xnxNXtVb1WI}D>rY%08H1eW2fTp{_?-YW1oF8 zZbN9)Kv|${h=XLRIA8@;7tM9`M57!(3=&cagg6anppY{f5LJ*M$YaQ- zC3q^vY#lwKh&-m+c$_n#$WLWiHouXZjYaZ7Dad9gS+s0Y<8E3dNhtqw%b2GrLjF|L zsb(G}w+m__fyk7Pj)pSryh-lEMNcK9_E~paS(tP;ZQ4=}rSZ@e=f~@r8c5ec_U9ll z8EI%NZ3tufKq%kS*)}nrKYS|w=#PFBt%nNY(o>YQVJJkbbl$D;SK;{#epZ*D z7?$%2@;wY`iQ%EwDMi9iJ62)YG7hh?tLN$(4W35FVrhIQ=7%xB+f{Hf<~ciIlhYyL zJrISL)#|it#}Z`E9L94s{~nPK6%rg1Y!}B&=~f&%N=lGppvR`BF#@1HL@m1*AC;;d z+k~f8sCL}bSyC0)he4M8>?{ZM5R}xn9EhgQb{f*Gum?Ig(Q%G(O{5bK*HM!8AZhL4 z2w4>JgvbEKs*oo7%9xRH>aNGylxH{+7xGs+X8^tB$!_ny@qUaUcV#$IGpjQoQs^Vf zz7X_OV(4DjXC4Hjd71s zDj1CF>^!)SVN8mhYuI~5xUDSd#`$>%CLy4W)UR%vxy zO~fhra+`ABO?oA)bD?~Q+}l(|h|m>kfY}e3Qb>Rp>+N-nJ?myW?uNC&_|>m>Mn&sE z=8eD+J)uk)Asb}c1Iu}S;Yhc_9d|Qgt&`NiSRf#;vYByp0j{`6A4ITRcUac z1gYcv*#*olAY67SVK(&Z`|ZO$D!j`mumG2BeFS1Jhz`HvY|dBy>c***gr; zyfJ3S7BT7^9#&ijDj*sPnuz@8z$u!W8l#KhJf|9R&WB`ZP#VW3H_OQ1J*xw6P{ph! zy{w(oarT~~Iey8P%P^nv2Hg8{bVR5{{X_=sJ3=%8;(<;_&!}toFY63=K_@uD3rvJJ zOhg2gI)jl#YDXlGnN*>x+_MJ291U~J`+Tj0`d24WPbAeyI}kRW4v-}zJ8Vo(WO5>B zX)*cMOK-5bYvRP&6H!gnfcuvO)N6gJoP9VWl@)}0g^7Fe8{bGw$_66+=YHewjYR#k3JHkgM;L?fni~1*HhIX zG`&qkHZ(O6bq5Y`ruc3QPfW&%ofDA8N}`KqDYHYvl%FkARs(^B<|U<7jR@mbj80Km z(bCDH(?%J#Yxk+6>FC#~u{Gf4^*DXvLDnJ@_dj|muD|_GjDUcco1UFoil6-Gg?QkB zhiKTuI3cNMNsT#(-ILI|9_cU(gk0fCZDbY5_x2^O$Qm28La&1wht7qBIL9M-)c7-+T`F zor-_>?)z{E4#fOD^1TrDw&<3&51hSSi~+{LtzzIrM)sRDpb}k!BYnxOla46`Mqa(U z60f}78;#i3`@c*nB>8iD%WvZF?7{gE#^fQ8D-;)VXcQ;;ax1Sg8TL#a5jB1K?azAS z=4^cMvlrsC=G-x+1>}^=non{{9|uK25dH9@rTFoG`dgg$rg-cZ9*&mII^>i^m9N1( zj!;JS?SKFM_{ul$i?*J2g5O$HR1U}A-i!bI-4|n^?{<9Y5qJhq9R-dq1wEuh4#KGn zE6*Ru<=hL~9k0`2vXF6m)bHi@KZrvhiKmZuC&jDgOzVnFcvi<0&D37}o0sCH=l>?Y z@jw1AoO1Y8_7w^rbVEc<7X3a>+7%k(EDrR?#m{l%FmQCfWoaymP_`W^dob+&5m|A6 z+UQ2aww$B1Q^!x%S0~F7;C;@2SfaGK3O0Wsx?=+vdhFgXHS-*Y%xRJ_>z7V9s#V3|e`HJenDma3I+J zu3a3_Q|v8U@_Rmx?T6jxA`(8Yt?x4s!%d%?GP7Bi&y`YpIEQ;6H|}S3hHD@a5u8xC zNsoi>cG8rGo6=gZ6NIk9S$dQM*h=Wdu+BUiOyyGnH4p0b=YR6kxOM%5c>1Zw=!w&k zoNIN8_Yw(0o$}qWGnW|k#5>}dea%yPeFk}Z)m2r*JD@s@Pd`ehH;1xL zb((TwkglGQJCt+zgZCJ@Uu6Wuf_$;Z@9f?0#ESqVWx~G`sY~qWI{oYk0l0@&5l$)O�bzO(KYkI>pU@(|L?;r?* zAi)CmB2uCxs?b!kWJz|Oi%Q&*_wqTh6We)mqR)QubCkHrvSnGtvbrdWMQj3l1wjxX z(aT@}41npq&%FO%2jh3a;mp1FoPG9Qd+pWBYscb+S9ZrA{ob#{HFw^Q7DMzjn`>kN z4@k{M0ij55ROk@sg_}Yw(p)HU%^x;S!s$9h5E+pxk-;dv>Mt_TMuDde39lLfLW$E& zSBq7$HfY8%4CpYrS678*N~NngOi||fNB{M~w)(m?@s;sxYstHT<77qHR78Sp zRQ(u)Q>1i5MMfi}-9pF~tza>+5(qbl;4r}fuEh_W8Y0A7CL}{QFmVcm@$Guxu zjUq(VaHty47JxeANq%xm92j^M0b=?heO7AR?1OO1R72oqfR|cvRt>)F?=28i%Q`xbb&?+R7A>s@(?2|F5D&sw9oly<9RNpwS8H1%?QE%L#y+;u zU!a6k(AC>;X>b5~JI|u|j52@95mRk$F+yG~glTlNAKaCg6vSnkd}a@WQngXP&dp#% ztq#~}!4=@5>xwz~xqeRb$i)>GkpXecOYL2At?<$OW^3p1BnS`&=04$Jh3IOc9e1zL z`lit~`bl@q6f(|^Rs7U+JXcx<#Ele^0FrQ2^swrq0b*G@9k`m~JxWuPvz_O&KY#|m zF0}ONvC`Q6?Ed)Gk6jV(|Jdzlec+JR{&@?ZXrg8Q?jZ>(_e}io&z_A>|CgI% z`;F@emPV_Xq8lMX(Nnu$iO2rOeuLD^=J@gd=!n`j0y{CAPEgZfR8ueU z2KKqHp}S)RmMr5sDqw8JMvPJbs&Du-BIN{3qb=H2*2k~@=0<`pDZdKLEa(F2Vum&N zil#Z0b7&LeIoUKKapDy#?W%08TSb zhC9xaj=Ld-nA646Q}N`FUxQQ=C0JOt1Nf58nR{+3I8@-O705lQq8oV|TGe6@gRqL1>})+7iwKRtSLAdG1`SMtLen zP=0>j!8p0+WPIShs}RnxDxu$%kkNvJIu7l-7!QBvfq3uTm&aAN-x-f0j6L|R@5HC> z*%jBkdl!takqv;_VtLu~>XA72)@$+p555b_4nfyyqnydT`#a-5f9`+9fB%E+ar130 z$ZH4|;A!tvO?>I^_s6y+ees@mT}}!iKJT&W_|yM&Dt`A9?F97VD}a8@Kv%2_BO{&R zJeYwqZ0U9^1XZ{R@qlAe2Zs=Psv9;F%hd|L;?u?gRzXad=SO!yRuP1DSO#0JSdZ1J z3L0y?n3e~Hja2(D3H3ftnkr9|M=8V^xj#+N;es2GuZhc1C@(U!v`j)3Ik!+~;vdBE zd1!prNkM3uM-WxfG#+RcI%_tE+PVTj9kgF1TE1zV(J0@`?-n;BT!9Das$d>mlJm+; zGM+CZx6AAVLPuveJ$tA++eff;2Nt0Jcpqu!SOFA( zbRWpiGQ$AQZ#;>;9#|l_#=PMHCBR_S8iE%IiY>A65;Rj<=2&IF_Upg)#}ct*RzNRJ z5H1RUk0IF@d2Jewl7&7#AC`#Bdx5R5Q$nb40I%aa{>KM0GhZ@rfiA#hf|k5Id5By} zabKD#hCt1(JnOGeUp*VBLO&JrRtGT{`!`Hy| z^)UGcB)ul2bfcAR*ip&-B6|hTYQ*|cgH&txw0iE(=K~*`+|&`^)j&kK?K2gGjH%F+ zC9|y9%B;eHKPQ><9C+#)avk z9vlPS+Ey$@DlW?|UrS;58@Fu8COj8UX)Y%CkU+Smw#D>#SPaMr+(US>+^+5o5zG1N zqg9iT`KG^+Lt?K1PgPnpVBESL+*996P@J;@j3u$r5mFM@o#dJn#vIoGQSsEOW0ul& z+nlQchC-0>EhDrMR>{jhu6Ayg<=hReR z606p(%&MQ3EN!Bs^Ro!ohP z^rNrs#=293#n9?e{kvw&JowWW;^1?y z#Myq%(NGVW2d%^@T*U3SIbM5#vfD4c7F)M$f=jxHVLz4rV&7%ht{4Y7HJ@suig+(|NH=2KC%4>kejK&uCqYU$NuXe>PSGE(^1akz(#5xd=d8^={bkK6zo(0v!bQpA7j7uGt?q}^QUaSZOD`B#~K2i?GsWW`0Z5Fk77r-CkdhNL;3NuRAHLM_@p zFBblS&?KFbALXe^MqQjW;}A-TAE`F;gIJuZ8iWqwPnvPh)N;OR_*@z^O|@Jz%v8eA z(US%$u=w(Pdge>9DAq!Q6^e^gK+dmPI1^K$mR>0QE0|RAxq+O#$+G;D2!?N<5Z!Pi zLG@UCw5Bt8|6^UcG!RClrTjA>(lK;-8qZe;J(Ct^{}|?DaG|avd*7scfbW_RP%3aA zYISlA@z6N zeK|oElIAO}kr1n4HqlPl&T{5xyK(y3eC3$@F6LB7*$bPisYn7{5X!<_YO@jG?(Ugp_4Ez6P)nUfG6Yq5 zJ_H_Vw;Y(+0gY914WBDG@Jvl$N;cJOw7s(#E#E7^IF=@>d6^0Cy>6aO_a3X`83<)g zXep7&>@){gQyBso^RbFl70>gTWg@u5QXvJzgk&%;<^(ZLe}783GC%#J)|%%BWU`pc z48cv1R<3t1iMYFBy@|L2MSH0O?-;tH3Aj@Di@+KHz%I zYNnJ5>IGcWLL)P+LnGJ1Ap;$z6m&O@Mus6`7cTbTI;n~!%NAn=XpR;F=B!RFffS&+`Z4*y*7vQgBAKmX! z+7laKrvR$yU+amusD(md$`Z47kW&CPa@)x0#A~i`z6_i-7V7HpdsD<@Ic7+U8}$scAY3|UXlg<0HK4?pxO#GHUV&pN_@=dn0f3U{0vVk4TCl+eg$b6kGiHcF~?gKG%Z z?E56{vc(YHU-;DRv3BDY?u8Iz+N{N@REB`5kDo2XB)N?EoK+A?gn5Dsr?7HN%#yV; zIZ&7+VR&^_ixDtaq#3+-usgo~kB_j2=wJpOtMw;tRL7V8>>uOwk@K8amqH6(4J;9=dV+F3jz$7eYNdHyqW?5%+xXo;XI) znL*-zWMT^CX&-?G+;iVMDGIcMv@c5Hj+MtfG#%QoWi8f?sc32~iB0@HW|}8`6ilNm zCEm&Nec6_4V(I$LG0Dc5<~+-MyK#xka&6SEi)k2`(fy(Xl!N`8gUummZEQn!KuBcm zS}%tQCVh$Zyz>L^jE{c${y2H8KZd)hnz)$mlH})q>2Dt4oD-wL+Sz?jk+YAIqV?tf z{_}r`E`;A|1XIL6&NU|rIO(P;Lt&VNsg@C)X;4}TmZpiRL9A=Dv>M(K)lD@0fmRzc zP{Dqd*I>b;TI#QV=2u`w1bNapXl&$g4D=p|!+Q@fzP@>_uxQZG$8mm-lcn`uN($fi z@$E5*fBV~C>55lg>>>LCI)t*JGAO-Ca?9+;5gw-z;zqc z0x&m7N(;iQ9-&3G#s*kcxRh#u&;z3Hmo%Y#@wxhg!L9%j5+ohwoI&H&a6Jdob$<%2 zTzczUtp#fM3JwbQ3Jq)$mpUKMa0OBPWi)yd+@}4OBOFlp8X8VJY39+~h;m7s(=x`SrXLxe?UYDr+kSTD+4U*(}>_vaySbYCm55-r$^iT9% z>A=FZjkAoPrd0$BL_u$gIqJ5T)~T>d>tyoAKv_}NdMdsY4#2?NXD#6A;@}!-tuRqw z@+FvDw{v02PFkRHu2_UjR^P5fPEEvg9{GS(!n{_3z@!)~9)UPSC-#!3}>fEvLv--B5Pc z3)x{!`SbXjCN(D~!{S;OUp$rjB;w4&Ta+|i7n|q&6;Ki>xlh2#aAXvz8FJ_imJv3^ zSO`sAFF_GgWWDJ_2bm01nS@~rH!US-Y>m!NHjV}X z7ILT&5WJpivkwDOUAiN9@4O@o&e8AF&#i@n=L#Jg1(oB5F-0u%c42hxse*^dpY;J) ztJw=mtIp58a{C#U`7>`m%IA2<+*dw#&4q?6%nRh1XKb%C7C;vYqbIXbSX5qi!0a=S z&=LXl6=EH^UfN9QSLRoWG+x62J#`548AQKrRdclC z-|i!D%+ylN`@N)`nub$?RivCq@wF>flKMmm~mYqHF>8iYcw%TTh0tTBJ^b`fx69s1{u(l;Q-L#6pH1!UH$06B+=FeP$f&ip1J zqy~l=Kj5B990msP<QrOQq{or__5 zVYqHmw21g_!a`&x$Z1j)cTs=;_|dNDc>5@fV=Jr;%K+M$7*~$TxFmnraY%)(2u-Gy za|CwcI+#V1t$~J=l0jr}+c1L9;7orkYes_wPLm3tv`L@B2S0=6hy5oW_|7x&$%P;C-=S)k*|4gmBIV@<+T4(|q>nr{doC+yD|lY`D!}+EViKYlx*< zM6SJ@(X`%q1uhtw^tchha(O%cUi`S{E=Q^ABoQcW49s=1q;=rDWH;xa+vP}&f1q-5)&I$ccAzH-qwydHrOEtKF z(DCf?3sL(94?}B~>D&Dj0+6){RBFU&l>lQxRQ$YVmH@*FQi7*T5YkcgmteUx4hESf z&!7s9_nDExwy>uPCD3_@lyNH=Hz93PF#)#?VD;>3LRYBwmCxmxSzIS-{#r7niQ>!x z6D(*c{0$JBcIcxuAM~wA_61ftZd znbl|K%6P87i@7i-q(>3K-)eQb3`8E+!_I>TFh3EFYm^=(WSXwr1cf0PfvJYxr^!b` zp()0D83721MhHhDCu0b7pT~aY+I)`hQ?LyVsip5s&fo^{DUfh9w6UvU7GR{h@fyT{JgJroJ@LOv4?j_dovnp5nx2LmVopTaW2 zq*yyeCkHw z044s+;U}J>df_BU0+m7duZlr5_)5N?Ltwb&#!WGcRpg;>KZ2?JJUDX=RsISBXC_Sv zYg&$8&+&#~u$%a;H4p2f?Ks{WODl(f&9%@7_KM1Q#-NOl5?N)S*l2Y;|8soelx{Xi zSJ}Ik^S_j$WTlv&)v&7kka?9NWZL+sRGbG%lE6cAs)7G3LeA^Y?T=S_ceDSx0x3d7 ziscJW9F5IaZss%Q1AQ;8H(LWUu?K?lj@<^Drq-q~FWmsIz^xezI3WnBz${-$F!j2% z@$h3W6Zl#lo36fNtZ6U5qsfuJud~#&3U?3@B<%{Le3c7eNF1qhN(lFa=EO zCSi_bZIl3`)EEtZgyBme%ILT^3(PEothIC0lE5&QqX!RA9{E`8yrGuDZ{@Ld$%-gl z+8D=v{B}&7!p9F|NA*epZyo_+0><+2Pu_~1yIP4InTX%{{B^PYy4CTOuOLCN-cd3& zj1j28yl(#z7)@%fT9^&sGuL@)8iv=h3U_E5f(Ak(L4DFGdCNR!%=43UlTYO-g>{*; zg7TMH3E-SG&g+s&d7z~~;HRWb0_Xkyt+J-FxKLcH3S~sRF?iFIM0tu^m45$A{6X4p zPaE%%mU*r1uNCALw-7WtL|v0XtRz&TR9To}jt!KXHk#jhH)9CD6AD|<359_aq}V@> zU+$%8)V31WEo!{khwp!P-0{vEal7=z^A9{r$OUv9%hLpB-R5;R^poGZAg%C)>k`3T zA;8!r@Ci;2T%C{bHP%AQgLB}qFjiBott+B+GikePlo#+DS^y|7F$T5ll)wQXB#*zj zFbO1=!RQyXAK~mvvr$5jzXf<<4k!P*y4AnSL$<@P1+ELJLU{h%g6D zz0NapZoQVjHT$OD2>2-B@i9NecM@q~sZY_;mC2YHGvUY=25CBOF?Ws*;}t@V^T0IC z`vvQb2%Kmj0|&O6o?V;8i&CT4I>A4$_qQ*Ft19q7p~HK;Uf8BTI;CbGkJiRLdC-_k zx;vP^Qn#O_`4PcD6Zxf`VJvh?qI3<2GmypS)!`x-yf_?h?0*ZNFJ{Rhhz`#lAMcGt z1e0-Ivy8Mg>Ln7}cU?v4*X41h<3#%8s`2M}P%n^ev3kw&SdUrPI0^$SSFTz?Ui)&! z!gPohWQ4xm*~TYG(SztKbQRJ$BLg3n%EG`i2#Q3)aWwT=EC5(Qr@zZR7tZ7OJLky5 zlt}<4zEeW?z>}vf9zyhnS%XEhYKh12peG~IjE99S%aitAWPD)7-c0gb@j!eLFa6vd zQ>ypu`P&#C<3AKCXLyd5q**l7R$M3+dg`YzliH@Gj1ZaYGDrIjQw%4Kd1IA+o<`JkFM%Mmr(9M&<{7K6>yZzI;lV;&Ky4 z$ob5lxCJ##;9)A}7%6tTY;gWS#N2hxbQyMf@M8>jl)WY<@lP8x7MOdruBc7DIX|;S4zWqJa{kSuh zYq97*1-^lgjEOoDi@=fU5n8D)?T-)NcXw>Q{g(LVKRpaA8ls_W8A1iYn+PnXt4$Gb zc=2pMZb1Y{1kP;5jbNa=Ys3N%2y4})J;XsAjT0wM#NbPPaqX^cQQCk7kMA$vQWi(A zS{#4(volfqo+aSAilH$VtQ!l%(V_Bq@ef{$PyeSKvGcaIWb#le1^hx$hTfLMhzts5 zm;#|%vsMYtksU!v`iQ3G?Zjg&10N|K1iT=U zZs?&i5*JRNA$w;KSj>|#HW-bQEex#4&bSC0DqkvhTC|yP4 z!+sHdE==>#2oDC(FPqP1?jEib;+TT~Eb7Z6sPJAwC!=2=q-wMdwomA{Yi#0D;A9~mM4&XsfFOs~Hy8)dB zv>7ny9(s7RLNpK%*FX&m)4UwpngTY!kyz+X(Y$5=k_=2=DcH`uF!2#7KMtcSg+WVn zfFglw&HUg$XN(0`f#X<7t;P%x&lArqVGoiib2zmC7&~F@0hulTrIz9QDWaz>TRZ}x z9i}OcsaD5NbF0|TnM^XG!L#@zZw?`#cXJBWGsTgpw{Yt^R=!xe58Z<8F0kf zAs`YI0*1gPv{Zy6t8v0}VB~1NFCB_W(ryh*?e6N1=YH@^R%(;Q&yI0s5H?Ejt6EQC zaJZW)j4*iu4i$V#fy)$raeN5Cj=(y&xpaL7D~n8j8s<1gs#BU$SxZ$ZslaIa_Vjr2 zC;MTbqjCEk+o_e&6xA?HY=IIYv-)x^Q>0-%_=6|nG?t(y&Q%3#G3a&)DS%JDxi8^C zF@O{tjF))rsTYZBz?GogK32uo{^G$ny#EN#Wmm?Nv3uq`6^%RIn={J+T_|boKI8^e9bDv6fs5 zyjk?Dq|; zu3tq|S}uQ)PNh|yJ5^E(K|ol6_rLMk&-}5I^i2U|h<^f$Ewx~an~!M+80Vw}jIRU` z3{~dqpuj2tn;Ir#3B*EU1vuQJ6qA}fh&^}_B1doQL;Fv}(+~bIT2?osxvcO3iA;Gg zwK_0PGTBQLPmJI*A>e`>*Ugm)xLC*cCGsRPxq+AFo12OTq@Oq^x-em`6#?=l#`byz z1z))q{$B_MYJSCYMN`dY7Q%7k3u{UN0HsqmDVaTUECeLy%xDM%1!6*k{Ro5>ej>Tg z@I&Y495g9;kH}NFZO|kkSk5WU{(L9Hcby_rT6Z`A1p;%8V|bugr%UxPDNyj({4UqW z7`}Xd;Swn{d!EWQTn%$~3}KyP$SiVPae!wqN5^&UT2y2}Dbzq*Y30WJ@LO?>L3PeU zK}`7gym6{2?tkqNDNP4r03o5e0pdgCw(A(Cz)k~_bOVP-rh4w|InpF)NJIqp+lLNg zL7I;C)ypxvkHHkqVgYCZj^p%6KMtdkSfIekm zX|A}YW3^+2FRdVj&?s;e?2Obkd&B5pH5Pub9*9#4E(#GcS+fkv_)cNMeK0%0(#l0_ z0XP9;u7H>;XaZHP@t~?bxUYnPVe%ITjM|^X$2mb-&;Y_s&&6Kgu6BrTk-3-!P=*$7 z_J;&a!qvL0g>);b5_X=W#za5YS}Ptc9pZ523?}sUN(88NzyK={4@&_Kyct1T-TTU( zIP}KbaqV3@qmsz!FaPlmzBr35BwxfzHun7xq4k(ck|W6fe=Xsi<_Str5;E_EXI`n_MvleaPRBUj^(F`Y?E5E zWm@awhU<35%1x`O`HqLagLdN&??y$%0{N~R>1-LI^1#z4^H(UyGl8=kd7erj4=d)~mpO&;WtJ6hhlfx3xFLga7bP2soo; z2dpNgvn#&&rEf+(X6}36_a3aBmgi+Fp<%UHAC}NsyM4umcETQ{;0;cUytC>vJBcVw-~tf$Lf|g%rVe6f)J}p>Pg>hj?34Q)d9ZGq3KUz{nE;} zWdq$pmk{)d`)h6t+@y}fz5}E5At0-Y)IV#q7zmw#u;6WGQc+8wrfqZ7;fBbV9js;w zdP%3CElCH#C@qxMrO5_xoC%pbWFzSjR|8$?SYg4;zriIfb7@g!9O;$Ud2XbUo-eJT z^9b}RSt>qR-W{bzt=k{z-U1Ji&PktjX-dlr8eQICD6%A)5vi*&dnfX zG4BzoQmVCABak}>Yt&c@Up#_hCoh#zE09VbYsnmICZ1*UwoPbjvvGmKa64((SG|~6 zCuox8hf^qEF7j$!;nEn_oIFdb9V^JWvR>l{vhpXNN{6R`f5tx{5HzCvSj5lR3VB_| z!#Jj92M5m|ZcGBt1;z^Kf3&edrRFp~gSJ7eSv*8c=%%)N>0WN-C9rrUASM1R9Dpc+ zS!lxGsrgB)0+>N2%Ln7mk6afY{`|YLP|!4zcZJ#}5|hA7ZJdX=srFbG9kOB)3rz-_ z{ym>nAcn}K6(ETb*QSQc+!RP8fN2THbvY8-A+ycfVTAmxc}0Oj^KB6%!!`j#7wVV- z-F0QHeb!Y*9D)8gUtX8#b0B14_6I3oHsUPM%CTh}1vAu74e5dK&Q}4p0%j0% z;iLfJGcqfL(OmmNkr3f!t^HYgKBOrOZr~od!Zd{ezidXuoMfB~#cUK@6x0%Ncn^GG z8U}oxInfb&_r95BsjD#eTP#E&(7mm}#JFx_JDOT4>34&Go{n3zeKiiieEY_YD>Lw> zhg36j^hNqXnwpeh0v*B!Iz`Z-k;pQC@wE)xa_$CS&6tV6)@u^X+5s>lK_Vf@ehWOa z42y|dZXqL~pw?>eDN_SRGJS+r)?IE-diFs<$bDD4v2VDhOMTgVf-jUT0`cEH@y>Fg~a)?F;DQtIs{ANs!RRlMk$1-6coEi;jSLD!-)3WIUWwME}>5wu(yu_>4^U#{dOu#wRd)s+t0yCej6$Vucx@6nC$-Vsf3Qjn*ec zZ5@n$X!ACzv`xm!l`ARbdO9X3%7r(8eePq2v}`PiZJS}Nj~t4B`0@|QMk+&7-cG9E z3L@dD`uWD2376eJdNPJj55(=CxCfzgZxZWPs#dOD-WZQRN|B|n{Wx~sel>eg866!x zn9ErfQTn4;l^*;4-YCJ{P;*mN?0NS26b==*=I2I00M7huJ@8mcm%FaG_5KP3jKTQX zvronU`PpBMQ%8?eX_QO~X_@XLZq-?C+RC&}zNx(6+qvzOVZJF$r92NRAz6OdQ|6fg7FviM z3NR#|OD9lOaz4_uR6Nkcjg!bYwq%qH;EQ>9rab5}KIyCVa0*35MM@Wj=6m*xXB1g+ ze2>*m8lq6ZBzTWCOqy`%TH_8p<4m6Q&ByZPbu=8p1%seutM3V7Cg!LtsIbaFNedmb z97Q5a3M&ji3$>ma)^Yh|Yh!-HD*9g>jK{wFGH1Cz8s?glFUg-Rf@XPg73AbOz|_yp zI;bG4L8U_YS#L(VWEO(Ogyc81q`a#DOo?x-Av4wBi^Ugvy3 zqx{=VwQjX$7KMhi5OAIMfGctb09TlVG|8k1$&KbqmhrF8mk6o_@=;3c&QCyUIFh6PPm>6u|t@RBk4y;>xr;097UH2||JPMtg(uRZ;GbfZy>!sNJ+TJ03taee%) zfoKbr-1=c`-SlgyLWt8G+oqRU>~MfeAoyrzJ#H%CkhNHy<;MsM2o1$yF;gZ`={vZrMT)3(_=!={%NwI0x@LwN1k`(A|4q3pLr|-X z6XcE2f|w|Bi=fmHO|P)NnDtg+nXsI%iiSdvX|JZUiGP}zSFCD_9$X~L+FRn*+ioF~ zq(9DeUZi=@arPN9g_XwW?izwB$8mkwRA{J=B3)R0s%n`R-&^f;2^k4}^dq@=mgoqsLGFx?{xoZfdnX=VfhE&a$PF0Nz-@;zd;0O9WEEU&QU2-!Pf$Umy!AC7~%uUTdEdkPIXoj?0V}a|jC|bHc2uRej)Jh??%9?s$ zgGCcMA)LII;{(A0*b*uJZdq zGPx3&4g^)-N9KUyI%%O{%+Oo?@zB>Ejp@S|;}`z$p15+?b~eXoRRd1+H_6Nj)bM#u zEtw+oO7jSxXcEz6>ipc~g&(;WpXT>!-Pv;;Vq;LC49Cf8`ju3>Xw5VV07m{MQwA_z zV|+rcooBn5GK54-$8e3gZV`uhiuDBmF`89sRFqc4x_O4S{bG<=ZJVGIwUR#7ljl-Bg_S@Fm=+5%zezC3Vy@X z!r!;&?da(2BEOlE(4^K_X1Rg`1J=TzN;253>s&Y2oW*s}NW+>%G-T?e>K8~2@^+r; z#8N=7c@EMNOq?DLvlH}Bmms09z}&WIG1?fgBLd!c(}oT&9G(s@kRNtz_y zak{y9s{jB%07*naRE?%RanCd1f{XYFEgA}K;DsLpqcIM;aGIJQ0>3!W93`_2v_e&z zyG=k^fv+55m{2J}QhD%&uUZn3{ran|QdvcM92<>48X??6iGa1XZFMY#C>RlJH%W|= z(RG2eFYyT&=$@*i%G?yD^K)Hid2T(O3Gk$psbb_=gQ}QI58OH$3Km3_%qGkp40T31zu^(rS zcH`bSo3y3^U#Km+#~8l^W@F8edHn2I!<|6m1_YcE?ir(s-Ra}UqK&3hTuyEMdge|> zI0DB~t5V7=sARZw8BM*YP2pZ-8(a3LycFgqA;iyH*9gu)clxjd{Oo%V#cEm>Z^wmj z#TDydl9<0aiFFXpdB#0*xFe1rXbtsI#SX%M@WB3^#z~U^Xqb0`zXXP-}SpzV* zy9!~biuAC_QG~qik=V2U<*1_>+Kd(vj>$q*&Qg5reP_c<#Mb8v>2vP#n$WB zMD3j$qoH*N zwZe-nZ;i??m}!av$)xlXPk;ad%==}UN{Sx5!pts0E%;YNUJ%@I9gBYw2G^}A%s`Qa z^bgk}0}-KQrUi4C3+sncT9iRw5*6uoFT4}!oIi-`IrV>q1k1i&TC@1z z7V1ayd$n-Qxu8Z~;~p0NB=&_($a1?p+s{myaZQQz`Ap5-ri&HUhK$H%AG0zZYe|a$ zM8~;gpruki@G0&GE__}H1mXzeGB5CtLsCs}+lA;pYmI=q=*K6XL2Qhr`^9#lc2=yT z-RS^UgXU&x%A-k|9WVexXrS4UWwGa(a}RyTm(#CYhIjG8g~Zh%a+epi5Pa24a~|9{ zGAt$HsVTZas--hWO=w0{8-U~9nrE-jrz=bt6mb&3k`6ey-R z1PRk+JqN9iyp`8Utstq;!l3_bRSi&DCmj;2{$kL+F?_dqLkIFt0&q zQNus=1eOTQ+ty{7t};7EoRh&qbms8ilLDw~s5lq=78fxPPZK~mjjCTqje>RS8lrAB z<(Xk_V>HltgmSv&r6bY4rJXUzB7xb}V4_x_V1rOMsY}2=g?i))8j2y5pG!z@rpzyW z6|6ts*Ebn|`$aH8070+oq0Ybv zp<)XFv^y$re_NK zhd=-HYn}1Xm!68P1miBce2^LnC%|oDMyMm9CDMXub69n(5u*jrek_#+djgxubWMSC zFfd_l;U{UfX?eA{C75&yVMec)V%3>67?8D2&KNraO-J0AC2wMsyx)2X2UT-E2Ef#$_{IeNk*4NZOo|KPWila6Xd_DA|;zl}C5U7z~QyW?Y@ zdI#B3=ZPJA6p!DQ+=F7x7RwuU(i7vK2XP30M!rIhRhRtjCY4)%}l_4Dd8_Zt4l&%9qL z7!VfP+a)ID^|{ZvJ{S;4r=X!_$9#85117e~8jxKc-a7s8s~ZS$^2|&KHQ9Ub>hlZdwK_XQY7Ih;@no?be zmADjU2#i#a0TXiGp6T%kqWlpM6hbnO83Jc~iuzACisvv@tLZsOa#!pOPTA!t>-3&#N6qu?Bv?`mS?Kq5pSpFEG&Gwx%=egqA zs}V#L0<`vVelf?7_0LkK`cSN<;MB6!tK#&jo;Y#nc>0J2jzyD6`!acHXGyZh7U^PyJ!@YYC#kv(Ov9zs;J*_2%VLD!Y z`*qCpRB@pu39{rKIhVd}SUi~Vn1h?gFIF5YqPow4Gw zRlta~!f48gn;Gb)rves--XjNN^Kaf0t(!K)55N3!Tz%VQTzShX>JG3ESa58(*4fh& zUH|e#G?MbS`Mz6Y&r1j5=MTIXt=n*oRd?W;Iu1joWVx{*#No{Gw*rw&VuF}3{V*lq zlpSZ2KC#zom1V~Ka4c-JrE8*ubD=c?rzI8=aFVpTS<>&yu=*(A%|Oel?We&RvC?2U zsinsM_-brkhjni~cu7MhEMX~>!~AqLdS=q}&oBS3?VI>dZeWCQA0Dzxr-zqWE zI+ab90=>;U_{ex8X(}U0mr!)(nU@;8&rD@ZLdZ?h5oue63IJmWhr(6CGn^J<_TR|D)1uaqLo8>!~dKNV~VHz{>@BgS)1;1oI%*lBh^)KMvKsQK2I0 z6;{rYxkH2VKJ!$Sh7*BZ3+q;gawq&;UzbeOJ@cU=o6pQhcz*l$zna0ERGty;g|Mas z>UaRp_jzi#UZj>;d#wmBLU@#bQa(dCyIx^wZFwQA@FMZ_bNyw^KIdE@6XP(30$342 zujQy1Tj|s9+;^@>Yt0ZYfc^d z3(G(mK0pJ9OkF)q5Zt-WKJW%+$X<(^nkSnn=%pa!rk_7WUx)VDjMbS@Fi~5A2x)z? z_J_1eg6=sJr7}AJxH(>CMs!EK^%SBD(at3hE2f^Qf@&sJ`@zt-zzx}OG$C}M(oY1H-EJ4jtBqy_v53#cYo}>=_-N^wffD*;}1U{U;o1YjJw};9rT8N_5?0&xq5rN_{P~7 zIrTd2)vruH`MiP8x5UaV>te;IJs<^n7k% zDNu;!S4?(-uLJO-n z3+)J21S!MxwCXsX0hiL4g)+yPVT2|i4Hqs3ach~f7LTzH1sy|hhX=X`v(SVFyBg|_ zW54Bh-sdab1pXlaL=qzOQ=Rg*E5F6=cRT+P}ev?Ts{5tGAAli zZCt6Q1z%VxL_bYK6fqhc?Im!7R1UyeLB+9(1`v`B0B=}_(i{s-iHUhJV~Lz>Q+I>F zRpK&FyV!Kr4{-F;dcT^IKT&eK^|UPZO*Z_a-R*cWpmgg z&%FBq(`H@zg1Ci)P)O2ly#6Ikb3#JBQ0oN{;BRy2M<6srscSy>K0XzR4Mtpq^l4vk zn~zw5D`CYoDO7m?n6N%~52@*QBA5r>-+(ZSjo5bC204{zoE`%Yk<57!jJ%C%f(DJ5 zs%Gu}2~3dsfxFHVTOi>=sx?nP893|LQgQs)p=fVyj1_C!vmNsodH5y7qqHqwPI?}` zYo4v|udK}a-IVmj(xA5Lc*4^{E@}^nzu>NLRshSI3#`e*B!Tc+T{LPXnoOkxR*+Ns z1L1NnN+6h~Q`V9r4x8n$W4S2!xhKMyWd7>FsryiVT)5Q%LB zUlGJEUObEWAE6o;)lgBe3=Pvd{-7H%H~7uT;V#UEGgu0Gv4-?Aj?vBHE}8&tl_m6a za6L0*IMmk?d%+`)9qFbQ0kIcU>*HLH1Ya|$)AOD$QA2~j0++;P3HUd?V9ogvq4i^B&m#K{xq zW5vb|xlVvge}g%)3eLtSKlO*r$Z!gws(u!d|WHU^y0 z!t%@udt&?hHpdpKH%?4~TY2_r9K-&RC`TYB77mES9L%wjN{#P%|4s48S09WkySri; zRrOMcHbAzVj)d>K0b#H&dd_hspk<%29UvFc1B=G zWgsyHYY*4zPJ>jit?oU7dVMoh`mV%E)=I_+aTDx+;!_Uf@L&vMIxhhW6fb=yko{c7 zC!_KLg@j`7@(mx!pA5M6d=^E#3gttk&zGM`UmaPx zr#`C`j+2pxfUojq`QaH9 zLDyv$Qs!)IfAd`gwO&O#a4ZwLA$Bj>TcoMCGv02H@@{!3XypJC%E=9#;yz~9H#0NfcHw`FY zqC_@ps+R@9@pEGm5g<7G37|Q!cYiEdMdJ{FQOCi1_q*?owq#y&Lo~{c-GOvoQS8T%!OV=lm5b6y@Mbeqyodkq30c^ z&%}PJqY%TAN3)=D~R3#XZprb6rHimKh?-x2$Q8Yj$quSSwf{M5xm8 z0z|yP1n@wRW%d9QXQvB1aS_6k!)K)bK<_9iGj_s6U_)9>i5aZ%VCaLiE1b;By;1{G z_`$!FL0B@_5wz>J)hn1cu>@Sdc-eZ^7jg3F>7s%q?uXN-&XUVbGZywpoK2=*OoMSb zd`jqimj}VQgLhUDbnTJ_-=}ur{s6mi%D>LjtN`NM@mXMT9=vjo_yM0Sg>0O} zqGntL$7mwNKDXdj83VpHy%N`r^e;u=^BxI`ziq-IVb_1`3sDWTJ@4t3XjX`Un+7P( zBlJwNW}oleC7uO#6=pm~ z*Auz_(&I0H6Fdhv^`1P>STa$skxg3f7=c}@tUVmuFjM+!{TxB9jDXmt_A9X- zwcys!0tNjQkE9XO0`b9nzc%X>f9<=`{NIgcv3!bn*7PdZ!5v%G#*Hy`{);a<23 zr%buzI?rg~AmxpcUYZ9PT@6j-QBv|IwZ9@75e*umon|7y&D8S20@`bhT-5xjNU(r7 zPQuNzUUNoqBSqVjUUP-Mk}CY8)euGQ&V@P;C0HY`onRG=cm0m-@n#2&MsBzcv+|O7 z{P9QP)xCS-j+<|xrZaihD_6#f6>I3Jy*QcmtIs?iPdxE>eB`4a!XF5c)Hj4c;$fE1 ztKrGCPIsQBsLCs`_l-AV)rysruw4VeuR*Bblq)$g?>F}yAjO9Ar&nDa4?Xs9ny7EQ z@y3k!w!qA(Q>Ww2x88`2Td$7;SUN5|{$hOagYU&WhgOOo{nVLr@$Ab#j}05IAy0cK z9(eSL_{2v)7%ebkrLmEb(Rk(6*TBL#TJx@sM<4rH9kxE|!8Tn3Akv|K{6oK`$$qKb_Q2IbVG4ak^{OWBP2y54nh5>lbM^`h2Wi zvoU+CpMB=Jc<)_z;g2`HZ3IOC;)(e?bK+r?OEAT+ShGG}{@GLUUV6RT0qfg8{00oU zDz3bmA}k7Q%vWRsM7h5%CJ_ugP?!=o6ab4u@6k+jMj*hfPL921=hXNi`t=A-w)M3& zr-79-2q>eN(Tr+uqVSM=X8MiIIIPnzAyP=FC%(YFJaM9vzb#NiDPl_1&LU`TzI=Uj zApk8#n5m;QutZ@7txxNMe`_|A;DBODBsF6f&4DB`q;U};mx2nm z`dz07a+hYtRq!Uw;YB>O1x^d zutOXb0ntQKz(UAtdYmRiob7T`OfsKkl4!m>)EP}2~ARJWU zL$1T}QAtt%tOE}dm&PR4$V?EzrnydK0}~z3x76{n*#G*0xV!asHW2iZAwbTi(7NYS z8y}1ctRHJGUlAYp^mQ?O@kqw~h_@KfQ^1%S9{`|e@JwxW>sHF+u8n~+MxYaP^MZ z^^14V7vYI$Z=t$p-xb5yer%rXQvR}*hJZI0!h6yg)@H3-=sk*z%4bT%Tm(# zCqMdWoPXnJ)UR9>tt*%2TtWZT;9a+hr!aFiS~@*zKGR@tk=)rkT>_g%AXsm{Bg;nXwO8@7xTA^uXqHy`T3Gbq}zOW-8gFWa@nGq|E!x2Xa8< z{*EEisiCDr1XLN7Lx8ma;+fBI+WGVn2pEl82#k2_A9lw$g#5n${E@igx+|iD++Yg~ znXm1f6he&gvTbSu2fKmKSG6vVT~}WnZ@=<9nk0TIns^wU-9RuF*c;36hum=cP4VcD zPH-rDV>#NqwdO78lg(uWE{G$7P2ulavt}KCQ~s8+sv--xgjRy@nbae5m^)9Oj%%*H zKDJOQbQt1&ZvTN8ze-|@iJQQm6Q|D*z_dCpM{90cy)qvD?sua9%=u{8v8@R#%)ldxjFFbg5&$J(zd9F=yU!*KM&5^XM>}d=7KyX&s0Lj6opxPb5)b6OJutE-NrcuU$rUvgOOrX5SP0 z5q7p-Nh2T_oSIt}?tmB+{yh=h(^MSpWZ>>0AT6{@w0r!?l}M@em?(!KP*w<(*$)yB zCowYMWu^jrW54ZOXhwvAY93I7cic1kTTBm*1GBzZyP+KhSsI;3F2oWF)+}09ALot^ zQSFWSK~zRzm}Vzro;)TuyTv)j5lo|HXy_K?L0Qi^+9)Q41Bo+*i6*c-*mT5<0R>|~ z!eK$E`h*98QgH|@r zei|!b%#96GtW4Nw%>gP4sukGX&*=YY)`YqU!vbfIb;mWk*c+a!K*HeQfJ_{pIE<-a z;QEvqPev;-yma$KU^^k&JoG~ z@L#+U8`jmvyYGJ&OxNbJn4sBuw6s;8x) z4NNQnN9+KI^acz#ueie$#&`=8D;T1}h|tjtt<}_YRO<(fV=H{uA~`pCSH9;r*Qw~j+IhbBGd6q1>XRl3L+P7>0)t%=7T}TGKh3iN6V^(4Ff`7@ zP;U{)4EaJ(&@C;T<&9Vaq4PtydR{%*9X%aKvKC%4aE{LWCsAqY_tNUoTP0tD=^XFX4Qx| z-cCSQZ+Aa|B_M*x1d{jl^$?_fZ#V@Me&I$HfAk()+=wh z4FUi`1MF3}SgyZu7n*7XWozl~ci|iw!WxR$pnVcxqg6yR`4ZC6CI|W;5~Q^eXVKkt z9s;snU?=hmbMe4AN$gE!DFy3n!wQc^+Ha(bAcQl6zFv&cHZE<+Sg90f{t#mBM z)OXA|gRpowJsmJ(+(Zg+W0?F~TB)HsxTeHK)1hR-PWbCf*Sl5T2ct?>OP)p zUAJWo76t1P(9i{9JP)p!)}(N4Klo|VwVaO?6zz>Lh1)`b)g}`{q8o?+YcH z7qqy-!h`?ZKt(h|1xs`7C0c4T`lyY1)(v4keFi38!aE*@V1~d4?P2;bb1ZXcOe4T< z2IjAcx(b2+2VeggDSb=nM?gnM(kCnF%J;!f|6)AystI2_=eIr1Z9qfB6d^JU45;vAR9%dZ`XU;5n-$Le(}Ik!VFesGBMQ4YLs z*tspf_g7!SD!4jY*KbVWUSD(x_;Z1reFb&1bF2YBgHZC^<3Ec{2;~)6U}!rN4}W=mzy^pfSwct9b zqGZ{e?>wtAY35ah(E_pli@Jf!XDU#QTl;}A}t>PmH$LU&CSwb z{l}A}C8{OsnyG;%+DhF0&Kmj|4?}E=8;A&JpqY$Ifmj!VaRp;oU($lczJVYJLlrcd z+D7rP4fv@QX8oA^FVU5SHtNhEKa;PxK`fj3G6w%iqnQ%8C*SchuH_{ilx`OcpBr3~ z7x3F__$!$-m~!C zf}oJrW$qK6(m`Lk6g@+(!!>B(6aQ6YnrKnoKS&)4&a48i3|#neA?~O#+ZhhSPV;*XUL$|> zjM_KGb7Y`#4d+7I?B1Bs#;BZA0jjdYz&^+eT(Che`CH&{fs4^hTt(!vlGDF7uwj@5 zQ%Ny6-+_SHvX%qmclyI-F9`vTY1cD@CuYd8tt9t%^NuT`n!vGUii7|`4j|8GKIWbm zUGfUwZZei6L@-XYv4aN>lE=D?>qu9FsJk$Q1`81Nba%(`lSg4P%NZA+IfR^1nH!7b zrGwd{CHm+rX1_t?|W}Di%|&4 zGz_q->nvFtow0fS+9-!H&hTujlbL5&}Rj+bg}SRAt-PS2=5# z(n zs{fr&t42Bb?J5Gb{7eCl)5ng-sbhy2;|^Ss2v{6*139Z}OX9ZoTpe56-xm$-nA6MZ zqK5qYa5G=UbM-L@x;Z`v6u3X6oE~?!2B@s9UJL(u6QdAt+)IYADq7zz?6m&)gdKe|QIH+p_@7 zC~<6t;Pty2;@fX+ji3JLWPIr3;tf7>Xte>KGC2hpjuLoIARBH7wN5uc8t5KL2Na$Z zKKaNakpi|>AnBbNdEu8gbIUV7pY`q4LNzv*;KEwAnhcDlwa_*3hOzmdjL5U3!X^!t z`4!r<8n@cMIH^FONgh1nx47t!6ZBs3L`^%baygdP1gvC55j@MG>(jUjde0zcp2x+7Q0#R`ddb^VgypZb zC_tvpd)9@YXVN`1_`hgZ46TqC@>!K}39Mm~l;I-2Mz|Mq_FVt}f{nbBbL!^kYXu~j zBVe4Ka)6sJ7s%2T21?N6Ws>?YnbW0J6^nPEoDg5=lJV&+0HO zo6NFS z9+RaSBieua@>MX1={VDQI}2=kb5F((A4cOx%YJsx^YMXu-v{zw3I%E1J7JP$ zD;U~1bHdGs_AwK$?cImgJHfm<<6ZZ>lf$bCoTaV@QkqmXB%L7&;kGiBzYla?S0^Q7q(*y~HP z&8}LJQP!F+i?mpB?;(^D{Hh9K6|mY&;4f}(U4{@)8D~xr&`1nKrctq8s>3-6)V_V8%M7 z51bpLroGo{Y{J~2!4j;3RhY>o*b+}K@DXY`;|LWya6!GbdtW^8FF%eQH*6tgQ@n>z z5f^duZCA&|-Y%HpldIf2r?y>-#UtG5XOU$KaX%(%Q^2m(-}Qyz)@gyz6Vz!?!rpy^v~gpQeZpK(n!pM7y7L zcRW)TH{Dx8oW#-CGfYnoG{CHB0xfFXxSA@6%>M#HFEJByR9LiWmis3|bZr&Thg9Ym zS9e4u`=|gQj!3^#VCSsq&(A1zo}8V*kZe=>lR-8L}S{CWP*Go=yIFX#j~#brsOowqbe6cH!Yrj5^X z44I-xWAI+$k89)u?@^er;G7)S_u^R6bs%i|a=!fH(#!Q2VK1E*?|q;`NoxD7+3|~# z#O@F;Ze3vX@&xIfXTy7apJmw@!_oXMvyp(aJhh6ht2O+n+*wG;XRE2ZPUA$*p6ieQ z^6&qdXB>@pz5`3u`ZeGn^dHzrTNUK(y10;VQHFsCO^`O?Hr`H(v!xTCXAfG zi@m4@_jCzp)yt&-hqO%anP*z4q-Y_~G;z2nz|BQ`!vvg!=?!Ue<7%x6>6hVw{~uNF z`D5vo9{8PG=~ms!IagQcR2|rCc9YFCS(@Q!!tO|`S*?JzS6+-H%f=c8{LNnmUKsWt z;7DgllXenCQly$>lkC7w>`Gl#T{-7m{{5b}YYg9Jv2NY_zUMvXInQ}= z$TV$%db}N`oF$A_QRe zavm}!)&^o{^U~_tO;B57XIE67Yocy?NdP6pOcZko2y4@w63l|O&NV2{hB8VC!sr-n(DJ9d9Lh@ae@7n=ry&9W-}uH`)Y5NF zzkTm!`sn6+sTXF}(%#ADf|S7GRpJG%zw|=50RFFk_iv)uOnED{++j3%4%ZF{y@s#w z(u-H9+(#dIUi!)Je5@17rG%_Rs)QZ*13G|?e5Q2FIG7tl(?o7q!9}q;w+S%@ zFPMWq!(FtmC^kjVlV`iRjVukU3o``Zh4jt1vlFYN=hScyZ9Zq0(jF!?V?~aD?<7&T z60BO{8lDWzVhyTEJNmE@s(bqI&6EFa`kzs`28J>#ev9k41XzcKO4P>k97Yd>1YYgQ zrb1dvth%NN_mFIqX$l!>>MqAUF*-yod}2WkxK4p&0~4!JzqW;D%Bk;MH@Jgf0Zxj` zY$DG>5M~|*e(Fl_2NXk~SR+$qJN2J$r1~H!hG(hBiT1grm4E3t=)y^puerOXA?Tem}B|IBVcT4yIOLolF1ZuYQ<*@$N^Q+csA;+nKOD zjeIhcuDat>-v0Sd(k?A{Wdge}+8j(nZQ8)Tmj2ds{nZ;`1^LDQ z^zTxk5kU<9w_L|_tlMRWIEyMwv;Y#JdyicH^Xwf0D|1xqEhZ@N^_K_IxikMwnweaW zIvFGH+((#Q0v^yF-E`l3i<%bI>GRveG@ZJ`m=I*}_y8b$=?B*dZf;L^AC9H@@!3=$ zkaU0yg(+fQZvFjdoFi05_5*^FYH{nWEZ#};8g>C_- zO)QvYSV(d?I^#jpRhA_ELDPc=u<87kaaqe@7x$i#^Ti7DC>v_`bxi}f22Mclo4Lq0%CK^U*2=wV#43GQozGHA4asLX*6F~0PS>!m{qvobZceR13$1rjI(W5_C*Qz)P^dU4({*cs@r zbjAmJ9ztn^sY%mnZlpX<0QH8=0$)|9v4#vz!%;%{LQ*@o8O zuKXAO@{iKm2&JP@>egq#l@fY6;OF1L%2o=`u!f2*bNBp^y|s0@mOy6qTffH_2mLKUE@j?I)7rIb4K}ho+CJ*>Rl2W6N z0r^g1;{<#unSj$FY5KRD=#RpIn;}ukfvnpgq0Ik>|K)d6zVRQxyody6@Gar=DHiUA@Re46KwruAm{!jn^-wj`nUoabJ)s*$4O&LSJU} zVSAaEu*mj0vxq3jfgA1)_#~03rN=;bPaDlymQrCy%Mo1&(Sj8!8_<$WsZ-Kjo~N=N zrDE+O83i>UatBA%sf@JAIou?r;6q>EDNL;^WJxT*IH@sDP4pVv9paA`g@J*l=)fn; zjj%NU&3P!??C^e#^2RwBS}_4uk#dC4menICkO$oH94IWxtnGKO6_y~~DhF7!=BYM! zH*G8fGvK?0aDq$@lW&cVVg*dmx;ScB?;4ftES4mF^Bky6uMme4IER4XzBw1o`2A;_ z$tG#V&9w-;s0)DKSsa`gnTMGzK!iDqq^WhbkuphE1MNn^`I=OFxh0K_lhN|vLBzQ1 zVI{FDqcIRoRAiLM9T7(%?$pu8V0(uGO}HR*e{I0D3?{>n2JCg~;m+Zo1kM|rvu8!k zkq>e4v6pB!2jE^Q@Kp3MK0>Qhj(|vm%c_V(H;B)aRnNVQK5D@uP!+-arJzRYhvEQ? zqk1Txhi1w-t7|T#@BQ$r>0tAEz)#6p3yI=FzYW#o|z|iQ*L8|ng;}Xp)8c{TRVa{0y{nDy3&`whHHX70g#M5Mu|NhCHN% zn5YekuT_z1s!$;>(RJMcJ?_Bux7XQ|COE&Jeef88fjA{_GRMyW0>Sb!ojZZQyk2(V`IIiG=kbpQ) zYSR1{8kqq?z?!uKJ{XfdoMmtxyc5B}!|L`Z86NoqAk-e%?zl#COy)<*{GS`-WAE+P zr3M1L9ieUQ@t2!((s3(M$PAPIl7hGGCz&*8gr{%rcy z@DsGT#njV_e^}%M0wRPj=WGg|Xkrh0>wH&|jo@>_&2#o$>LSODw*WsQN;gBQsHmP(U0Ga+4a@2bAbCT;{TY5TntJ;Os7Jqu_P3F$AoNyf(`@B> zR@VqVKsf@Edu)r ze92TIgn^lY<{ob0d$)H%7uvF#;r{Vvyq8oeL0jrt#xGMePGO6_7*@rs;GigE?Lwf# zKdz;M*bLoC?!9Xgr(Kr>WCsQ~52I#_s0GoR9xjjZ1Y$nuRd1PL1=_9cO`d7DLj39o z0VU*HFD%Xn6R4@7CIK+B46#gC*qe@3s(=h_cMpY~L5f?HbQLZ#Q<-F2b9)-0e!v!i zig#{5re!Sk9}p}K5eARZ82U~RAlx;k&+mMZKK%PTa%h53>Fin9!X&SEuSa_sFc@Ny0c2nw?X*>0nG>qp9A0WwR# z`T|EhnEBq^=xTD3M(LEBMUI*8iJo04Ky|+C31&r z^5R+$R0$#YgX>3OhKC>+a|S9^G`N9hDnRFHOD(GEf;%#`lD#hE?Gr)J6~etVN+Fc5 zS(n5Zx&_{213^h(|G9Y^joST?Ca7U5+?17(RtNo2ldL6J5-|u2(2B--$Ofsx8jyqj z_-yIrp;B|41tQ0pcag3V=4?YFcA9`nEKiJIj$pk(8|c-g;Z#>VLTnDbDe$G2a_+TU z?4mg`abUHcO4&y(E|M~>d&Ts6sIOxUJgbP}RxvxQfzq*ZvQCcK6kT477Hf3wM=U(d z*x-)Ei#+3Dig%xZwWYZ;x}p@D@rFaJqMnC{H{f?ECg`%Nc7#AOmSTJt%}}gQIx9TY zLgO=jhjIWMjr|cO5qkjO;yNHMYvxD@9mdEM4PhpZMC^*6v%g*+%$a9Ib^!EG#_avh zIqqekP*#1oxA{Nri+?^d*6e!R4FpFStj~d7abwJ1Jn|*2QAzZY@2fR^(^vn|eK6o%tj@>b8&0&aqvzx+5ozH>K~c66q;`cBH0 zL$CH0!CUXklvn9RtPR{WBOy{0_rW>fA%B&QyI!sEDy#+%OXrG-OAtyG&<&U3T&-`g z1I<%eV=AfmM}PjKAM=~bd?}&Fj&P_nF%g^x@~B;9z)(s8IRrYB$;>hyIwe&B#R2ns zUINQ|1f++}1xQpxzE!k8qj}%`+xOEu|LW(dy{{2wP{ZUk?1Q!*^q5eVL;1xprt~j{ z(-InO4wIxV0_Q1GsLhTKkEWY9Z>HggH}Pe)rc>Qr9JpM1|AU(p*TL6}#_b&390|2U z`}Y!sdOrE=ll1V>qsUcXCc?wR)KEvk5~QY50B361+rR!b-;YH#yldC5G1t~e3v`33 z82hu^_tNmlNP6_>emZ~pEGc{EBk0V{H>%&FLwD}nN0=B-UG06;);|r=krA_pFpVc; zV`=!o5R7mteR}_Hx{NT>)6)}kC|9$9!N31^@1>{D=A$NiZ}+LxOK?+#L=8k#`W&5n zhUs)Jy>Rh`hy?)hz!0e(H^nA|Y4CJk>hJ3Y$v|`tf-v`>$06gr zdC>Qt45d%*+~eR-0vL0-)(C^{0_i22#y=o5!~x}As84nn0j>l^T#&gK__Ioc^rMGQ z)3ayKU^Fmgn1g1*t&Q!}cczExaUl31#e|yL!UsM%HqG~N7GTss6}<(rFSbEieXhC- zme{8`%&evvHZ_sQjYVc#GdOuwHJH)s7_Yh-W>kT>6o0eKJ?4kj;9-$CDkuT{U|3pL zOuMnkj!W5u*~s{W%rZE#vP_U5<138h>C$G0yP3JU)Q+XYECv}-If0D@e(d5VqhF)x zi;S~CK0+91HlcpFW+$ZDQ);EM{Wj z3D~d2m338zx}0t-Av&7eZ-hFbLK`sMIoH zE<7h(aY%mVYRhnBsvuN);Y(CxBuqjSRZ}!i-42@(bSjgU2?UvuhG>a{5Qboc=Ed~} zUm2s5S+a0d@O_lc2DhM8p%~YN>)rlwgG^!V;!B6O4y( zwpZ9wq6u>le$TYNVg;3L+#kBiw8nT2v;+x1X`xD>=h-zx8Y%DDZXT8i_?dtu!{I#e z&pi+q%81n}ukWIVMq4n$BF>drDbjcMi~j|VIO}lBGNdq;F2wgdBkMlM6+BCP^1Dn3 z4^9QnXkBnDKn3oF)kpMU-r|X`jNt=Qc@59HbOM{V4XIPqMw@jgS$q!Ob{> z{LlS#Y{$tcqI(X^fQ`ejB!}W2p2cqIC4(E*Jj|P~dOAzO@lYVmRVY+i`ICZzSrv}b{@2RF#(29(kP8W+=E5bo5w@Ql& zcI**PHY-J*Ei63qQIQZOY;}o1ZJydz<;19yk%+Ydq90#troFhb&XMnWK&F;#1k8tNMa zLY32$OG^=UCEQ$svVgw^`7=bQ=pm~58U0syfgb8cvtpuU9y;{}E7MKSBzln(5 z-hnF+Ll^*zypigA&1h}5f~>^GCZZY%AHoUDK+Q=+<-C#m-Ojy(NZ52ZgMimyqP5A7 z+wZuo?QJRFP?0XZaFwclUBJUbo-sdN30+8XGJ@WIx`*}lQTmmB^Q=Q+V!@j>e1?UZ zLORvcna-a(9c5;Ow`lO5sEXr;-cWi~fA1u_g0Om*@6xnO*nxrK|` zSrn{LD*}=BxOWH1vWIo)>ZpOiScoVH2m2i^3--qYZp?%SBRg;+xKGcXuQp(HHG5Gk z&_kda?Rb>}PWq|L$8RK6vz}T8HPxo1;p$i*P!W^(CPD%upy8seV+LJ@@mJ8YSXlbq zA{hkck(V;JM%u?pyyoX9M8sYD_}i+;`93>{?-v5EDLC9y9%%k;;p;!!cewm9W}3KN?O#cxc`%Zsdcs5G^mZBMlXukK@s z*~Uz7_JMijQRvVw+-h5v%H2WjvPO10L>q=B&{1w6-W0Iku)={~?b zIX~85h@KzpuZ2_Qv1%=nN_vFm8$D1E&NgZ8l0%7*-fkjLtYCSoz`SlN-%aMfg&Z+U@M?18DV8p@Wd2^6MaaY?TMk|=A#g6O5g?U^Yb$h%I&D~s5`_i zizPhAz7YxrEA00;0-FJ$77&{n8RhIy3jl^$M*ZgnvY(h;)chD59!ZB-b&6>*JT^3) z=4U3c3Jud=V}f~1LR(r1FvJ=Gc{4B;y)ELGO0jAz;C?Kk%H{0LMjCrO0xc$$m3kDL z>sdh|&B9u!q}?)vjHP8(PM{lSG~7P`Tepoul@^(}-tSqfC&V*ls-i)(#t7^n7%M#O zlfJ4}pC@akyozqKb)9i`Lcn8xERP;z$WWzAz>1kK0Z|(5h91g-%zR&-Pjc0I{KnwE^Zh%eD1QftwY?#snU)ztZ-oGZ4~@h`|j< z26GAY3~oV8WNKkjLE=T_9 z>Gd~WMG|gExk{v(FsU&P#2^bk1905q81)SeXnS?=3$zBbT(E=ZGnSi*#;7(_W&L)f zccvA{Y<0b}y{9-dJ|7^+DR>hMlKH#2GV(sI2{Q>dh6RN0M9UydAQE>|w1l9=TstHJ zO92Q_gikndK`D*9`OcD-z9(|sToPF z>2edyj60a9xzS-_^8&ut4A%w>+Nm06<^-fN1T%wOguh3p84E;f6A~ZNjcZiY5aBF^ zT0nTZa`6H{01$2qpW8&o{S#Fr-kOF(a_5l+gujbt27;)BP@@Fx{(7Hh;Q4do@ChS+ z;zU6d#2W<>$F-Z6!G;TS3rMk;tso?7fCe3i55j47YBufGPzQnf35&RO6hd`R_O-ks;aoTs0U8NapjjJ+ar5eudD-$$&x5r#I>cSPy%nB_M3UronMAz>jJw zR_b=}peqO|9GHV!0<(4;1F($9wcf-gSscgsx=S%T?_(ytcl#j$kXRvBEJvKu_|!B~ zI@TA;j*fjeNeU*GAPOEGkW23&-zVkIvr=ALmd>2(54V$*^@Oz=v9UMMn)DJyb9(8o zpm3;_gQ*c$!(k_9f0;ry>&s-Euve>V2t14@A=^O0hauLmU)EeuU{QcKQoa7h ztEsK6ovMfn>EY)@(IZ^6kW~^EAqdCJ1gWB=?KRdz*nyovp9=eXN951L{KAY3r0ruL zLcPU{XrbGEsyl?V&p&^Vwr7c#z(2o>aAk&wgjpfLsAnx!YW#j4!Vh@Cwt@7VVqhcj zF_PTEQud=)L-c#k9v?in$^j8fp{D9pfWyN6S3mnr`qp=TFFl(x+8)Y zH}SbI5>(p$t!uyuoF>rpw?F&a^!h6_6e2kD$?!yI+f!o`=@MnZ?|=T7b46AM)|y}b z$6ustZ(PCZr`xA2-F-BT<)bux{Qht{Pj7-|x)staAPqep4S}Mama|PQ4QY~8(~6>s z^x4v_bne3Wbn~}&(wG0>WpGQ)vnUNcoK6?dc9ZFHnBMvMhv{p-cRsBlqzvEvFts*d zRjNNqE9*Py_Rq@GssFx=0$K_i+o`z;!Lh!Zh*0*H_^Q!+#L9G0d615U4?dhqeSb{Q zBegBUZ3gZNJKd^+(V8q_1?58pevfWsfv^X{y9~dz!dH~B<>;y*hcGW=^lyG2fXq9T z;Z_TESJc$)nel4*l6WDlmcPJ-vU?cF@1!B|61VuttPChgehg0Kcw?tTuXS9fq7oZ) z4q;gwmjZ`{8`@~lp99Hvv=9Xh10lJMy_9C0SSEZQN`}B?e&T-cNakUhcMkWB^ifwS z=$pB85&BK>lU_z_9w$CJC-RI^@a2F$6b8*6AnfZ>Q&@5Muw;>vt5wsI#(WfX)Zp|` zvY`jU$9^rw0Z1RVIJX6?qh(l;tg~Vb5@D?CUjCzN(6xBJ!n%Qg!EZG~7`u#;N&28L z*SK&NBEh!xtQ&X?vSmIT0psSYx%!zmu_DHBlLdm`ho%8iSPNbMosCqEA#iyjvKKMG zzWeKUk#bTRe6ct6_MXL*K~Nin-?o?{p~&LgB+{X6FjsSkk6EJIS{6PpEqkak&^j6E0_ze6Jf>HUYX9H~fA10-N6@=QxP3XeDh9tZ#oJ_Srf z?(oC$ECYXJ9x`Sn?=ZjdJ(qG1&jW5iGUlalz^eEgGb&nzPv#tE4C}doA^Zbb8QY*q znT?UZQ8WV~$h>(0E>j523z&EajOsU^{Sah7)<@2J5mxQSv*r9m98-SWF5&9;GFNBl zytM}S>^ytmtAxqv>n+AgBD~yt_caR9Fi~Nz@F!E%M;1Yge6QI(4j@c+9uxQ6_*7~p z9d83uy9dn_I?a|7#9CAk@qhK|*MVaZOlycnE%aCb)^!l+TC6)8n8b^biY?b`2Rdu2 zTa?IyVV6T=SoYA?6$IDlsW8yjf`Do2ojukG0);VYJ`<;fxmra5ON6Gha(uQjIu*%_9<>IHKCY-NN?-Z?S5hxE^($e}yL$w1k$yNeHHv#+ zmUDv@U}2a3_E^#I_tzmbD)dNno=rYuZp;Tb8sTlq?rq#U3Qp&+K5Y=#xPt(8ySPs*(dHh6 z5XQcn%H_E?s7ZhN0eGeGZ~${}rbKh=sa~p0cBZL2kJB8%l|?Ytwt*fjHmd}vcBiS^ zGieqVP8+FNmQb#sisWy8^B#%^H3|?~&YV3*uajF*Y^uGlhf>%OYY3=j_8MT}+zr0m zMvyS$;L^pbq%7a3yI>cz3V{o_tZ!o_|+yWMdL-zM*w+#4E8E$8RxnpUVFQoaY{Zx6nB0YM%g5XE?NI5u8|CJo^ zdzG{X-cQSEZJt2dHfoyGw51C#V%=%Vr)7j}o5JmYm|Ez9&VdJ>C6F321wD{%agL?S zo>R}ah$+q+h^PfZMyK`1wTIRWVr8k<`l=1=hL)6&olr#fQZ<4NE;ZdWkhyF;=#Ro} zMj)kcGC`ig|AIC#4=n=Hn-Bo_+n4WySMZ&TO5w@-9LH;Uth0>Ioipg(nl(A z#27I3LkOM0yZk?UmV}&()YM(4bXpUnG~F~^pD(e`+*v+5d%o^5>D&q9cT!qgoI~bT z;Vmy=8SC*myn;3|AC)Ypd$P8m^)YuXbSN_X93wC&Ku9xp!R;xmo&V$i{J*7rXyTWy ze?9e{BUTDUw-_Si{5^{&&tjU;eq){tkjCOg(6i4}m|w=)XIIw(R(HRTO#&iedEq$% z)%`Ip&PisLU9EEPufP1O|N6%+CEGYqgvAIW0T<~{_@S5!pK~Yy;0Z%;@xElH@d8*f z2Bi`O3?&r5IgtPjZt#E~QS*J7&SSd-ca1+BOJDr*Ug~^-3SVs&v|&;pXk5qSo)7Fp zG-1G;*bF`vxJJf0XBkp#92Yr9pL?u1hI^drArecmJX0nh41}*gT*#W)EY`wXt};5BKqKyRU!pJupK1yd zwqd=Ad&JCa?tByDgdoE;!mo^ZX=1lhA6GH9F#s8njswJ}uE|&Y=DqWEDm>PSWG|5M z&aK;MFvMXH1^>)IMhXup6>n3*bP=n-tFK*2XD-v?mHg$gp$XyvFtK6^KRtLl>IUqg zg_pBFV^Ov-^R7~Jz_s`sHChX8gmnN3*MOSdQ_Z+_Xk!gw$isAO@q1!66;EWw#b`z) z;s}CjEfKuJ)$E1Hm;wI!_{@bi=+U;rZ7>;YOALMX1!;^;>GTWzq=H^ay%(Et&D0=p zt!-Y^xKzXmL44%=Nbqdgk<*F zWTb?3qRlHbOh0{=?%#iqo;-LIC7>VNyHBlwO59qwhOlBp8D`>y^6Y&r<*O^Oq8MBY z*~1h`Cc**feK!%X5sD62mj$4Nn?<#PNP_ReH3Y;UL=Y|DFHx$)_o;cBjy~!94YZPC zn41hm%YrG1aSlDR2;dO9Kqc`V(~0NLG+4DdQy9w$nB$Aof36>Rmt&P{AU3BuZBZ(C zi*(Bd%&fI!=tNBuERQX$zlN-W=8m@Xc<2EsvQ1P4MKI#L7`u}vCgzaySb+wv&t9f; zgeF#n>3?Z`0Y7~uF226NbqwY-3F{@VzdH3&^>7;vdY%AaYa~<>5nhg!tAupDJb{V2 z{q~_hYb#SQQT+W{59c3Z$(ex}p}E2E3#kdW%|SXph@eQoY<&;4L#m)@N6l&0z*wqi z8go)ywwfBjodPb(iYl~wew%x*U@pyw%q4`EuxfFBq;Ces8lWaaRbI~u^8j;c0*BRe z;rW#bOHa+LQ6sjpo%sBh^{)y-WYn0aQnIrhzS6{c}8C8G@SIR6aB@ZLbto##S?2CP_un-{HVpIPO?D;UJEV7onV&Jly)2axys*+^ zoE59D;?lsy;%KHuN|;KRhig+gl^K`d?^j6j^U(fzuM%s#nDJ%u5TBzG<8`hz_y`jW zJ|bu4C7*L*u36gbIx-%EFa_=wVR1Kh#xt;ohALmSc7t;$2lgs!uT%EE_v~P*q}uE3 z(}^^Au?NA6G(_fReHi`v1|4gWUf zV$ui=4i!HcQpEOQ?l!u2jRG-=$lR~}@Jp%sN8h0mnyF=!W#ymkIKvFh1`AjTpeC(| z40cceE}+#~oujqTmFzX`nIh>1sx3yq5kU4Z9AZv$Oo_d7Mdk~QoPnfsF->WW=3>oi zvS$fWAnJ2KiOi&;I7DjV`w(vNSND)b*j$X+|?!IZU_S{fG>Qt@O2voirZ8?@v=5rRxG3QzNki zHhbEFsa3&P!n{ZDURf2=I#J=%W7DJ{(ntuw;)pqSP<6AbyB;l-jE)l0>FPT;h-85X zOf=M%>gM$NYxs}nw$r_jZd>6u2>TIQvN*X1qc^qFYz&)vZD1KGRBYe|Xy;sEDT7(> z0MlwR3?4lgVVqT-Pp<;nBd_7(u5Q2rSGOku(^^sxevRP)fPfAG1Y8Ewz_mkSb#~KEem?ZZw z;oH&fm|7THE9`BRr=5%yEEWeezS*NIq*kgt1%7foXJd&VWAMwEgUaeU1R_&DkJH6V z13ZDg5ybawt?j0c%0_SzO%H9o2IhO?jf=nw8bd5Yo^-qBMhGSG2|L7^)DZvkVlh=u zOE{_EP=O%k+A1@N^6Aa5zXq|~OiR=A1Z`EMzSEt=iqQ99fXaGQfm~mj;Xofm!Kp)H zP3j1E&LI_DJlmC4$m}U8$E7p9LT?mHXQ% zrMOUlj}5#g#+Ru?%9>fv=Z|NIHNd)1-AXF)R%)fbLKQ-aaTf-$7B02=IfBNGlvm9B{v+557?`kp_sb zp>cDG*GiMJGPqm{-QdfhbuxV<8R)TeAG##1<9aJsmQWp3W^AnjIaOp4KnFr0;<8Y5 z#0uyqY?g5moT1~=g&hJkO|3iDM9&a`5tlJci2zU-s?CEK9q7bye!qP+Xvx~=Wc^L-Xm??p*pCg=l#wJ$r`NU zSwYc0yVT}zBM2+!8vK^~5Qt<549;ShelSOgf%_T^hIb(tKuq0=a)_qdDd!^lp3#EQ zi4XxC5P*kf5)zY?X`_u92cY?1iAYIqhrlWe0<|?0@BjkH;$-4#WNxOwFp8h~$Qm!=eZ6F=(J%Kpb8*n=VGizot@1zhPoKc#+vn-DK{voyC)-L zT{0hWNg+uKhL!>kx?T8Wk_tc7lqa_6k1niz_TH|5OcJ4r^|8q|=kZ*6kia;Y^g2IO z_9K<6i1DK;8Hculw6#?N#{TYCpQhQd+4SW9H`T`-Pz-&ER2b_(?+)^Lfy6gAiHAv9dOaRHyRofau+3^UgksMV`P%Ng#D zmdoM%(JkUwL8`^VOks|FqM5f#PV=_KqH|z-}y97k(E9Cx}V>D zoKE+XX>;)mw_}Q*-AV8L`n~kho0rkH$sWOcxK3OMs+q#()2>|0cb9g~nMZ z6QA6?oxbrkx|*IUKwA#eqq{?7!4U8XgI`%DU6=jp?mtfN{fth4U%m)VVvc|E1Q_Pi z)mJdPcXp-uXRGN~|MowpZ~y66(=Gv<&!~*4uyy&BE9w2WKft8Fl)m#v-%d4H7N)1y z(kJh}lP(ePd!KBi!OLgU^e_Sgd)RiilZ`B--~5Mn(p%qsB~1>&Y&RzfQXI$CgzyIA zH<#oo1%&FV>44ZoE2J|6X#+<6o1Z=-6>@@7$Bn6_w=smAy&2pL2sI`32kGt?Yw5LX z

)T45FCO>UtUNt9R0;A8uluBL3v{u5|1D-SqM`f(^Om-lK{12j3dtY}mZW7Vk1a z=pXxOEQe>p1Isa?dL~7**!KcfQWczCf(N5B9&ju);T|BH!Lx5$dcXqd;y!4AXNkiZ zG(?8TNAQ&A%n^DeEznY+(xB@iNGo*NGwFEJ6z`FUd7VOfFk}AK^%3Wm@v};^Dmc(` zu9E>vJMDmLe-0bWaWq^G&(s1dU4#J=D5nKr4@J|ts&si#2osDEN)&L&=HdYSfS>U< z^Ov4W>-?M{8AG1v82n}(ekWg735a|7f6!qrcFjTa5RM|#jx*u<4ybAx1@+)ZW{2oP z{pC;opY-J8TdDgrR>!{Hn3rmmIOSTMf&5Unr+6uimOk4Q$-v?UT&odl#M}aI@FoSX z9o*$1r~r8D+*DTK4kpf}h&cq{nYNZ}`1Mm@0> zPg9wt(aE%mzjha-+~em6%h5c<{Cdv|Xt#Eh<9nEf68t$@4_|rlJcM}`;>0{SL`LTq zQQp;95PfIS=9c+dM%cL-)3QSJ_c3$c-KI7@>(rGb9;{NF$ee$pZEc-f#`|NUuJ@3f zEk|ssV;LH@y*DI;Y8U#?SJ&rY;zZ1^AJg)8I=%6&*Dx)UdRU3jQbIZHp@sBpbPCtT zBn@P!6Tx^$XQ2spo$g9)m(M`7D$>M*3HmzFwUFp?yNG!68$7R&?`jG8xL^mQcHT}jR7(QOq=Zwq00cmZ5ZMD z;Hh-)!#nuzvAAJ!wu_k+4c%mgrv@w&3a<+kfD*nXSpURT@mR}MR(e)+F>OjXa#i34 zNCO@_4^c4ujjYFNo#L9feMG>jd$a@5@vI?_^F5Xf@R>sv&)p;Yr<8ldnk6zKs;e4l z;MGNz$O737XO)Oj4-CKi)G6X0&ZYN1`X~+dUqBFiMokZTDv-6ayMw^8W<~&2Ey*S* zhf!7Him)O8TtK70WbOa~a*q!5z>m_!SiSaFs?v>D`bapTE(@@)tz5_5K@jW&P0*f+PXv{< zV}(1U_DH^-Dx{0-CBf0uUg+u~t$DVS0Nz82v0+`oG8J)1z(qO>2@0lR&6ss?)BTV1 zQ1-W6AG;)@1ouWmFCAs;*-h0&{|_3td(g#5PZlS*Rva*JHnihVzL1{vTkn-JfNYn*WlbQlX@tV48Plo>Owynw0k zSS+hy4rgA_SikhFsqD%urDqXf%;e>7u1ETt(L7e^yhG6OzDzL+I>&qYg|yF?pE*|0 zN9OKLu0>+$GQ%>$inN?*-LP?x#p8DAZ{oSolDdhT^vTo7G&V=Y*B-6$S&RUOo4G-^ z9nZD#Ox>75D5KX|Y>(~&pKl7Hfuz0^_7qTpW^(q-W|HG+EpUy}0Oxix_Y#5Yq+=n@ zpPOwS;^GB3{3wXMi_f%2ro{xq8o;7LNMJEO&>a?`xS5G!c7ia-$o)Ia{0wgZ*2?+{ zO;t<;rYzWg5k2FpD8AGrDhhl>QF8)UN;MqRYxyo<_P*mvR z`j|7%6b~>;2T=91Ap*sk`Cp8Y2@xW<5Ai?O$0h(kKXWY+1mgF=Cm1luZq%+YaYBv} zNW?ti9_AvTW$?nmO>r&ue+Zus_sF1?9G$aTs#Vb}_!GpI?_?ao#CgvEPB#-I6xv)n zFw*QUGI{_s`NtH+8sBgMLx-TjulPs;e_|C0VSzo9dAeTb>X^=3p}@aS1fP>mgbHG! zcs83%@C%qZM?N*r+TgJ#)J+&0eoEp%c}Tr0OZfVMr~S^&wY_}tEYbD(^mJsB3V3L- zSOiALXH&;O2Z38uP9&v9WIe#_Ej$|V->#6Z=UyvFc|c@rM%bH2zm67bcd&IBrA49| zF=yA2%%0Wa78iGT4>O`ReRLuNCn^Z+ld!qQ@J-ufg@|d1_5p>Do(?Uir;p}|8E7LQ z2SSO~yt`hMKKl4x`rH5XQTpuNu~cZTB4~^>Jp{b+0)ordak}}z5YqjF^crbGtphFT zFJ(Mq^1BG8J6@J)mPvnEVWD`(G58>+5rQE7uYHsG@^O0&4rjtOinr;(8n#R{1U zOyB;a*U*>;G1(JPsBptt*64({vbYXz6{n6BWRiTZkjJP70!@E4NDdT!t)>w>30@y z3|O@+x%Zl;X%|ide50Kzu;ys+y>S5u8(0#^;Xr6W6Wzoegdk?2Ea@3#AJCqNF`%Z# zgIm=6XNR6H{^>S(w$J7)?YX@po-im69Y*@)GFK+KER&!IU|OP>Nr zm6RQ>B#3eut7I!x3_tzoR%&bSPCc!sV4$1}OnfiDd4;mr?P>6(qx9jOTeuMlq-yrS zI`hO=;4Z)lRK>b-Xyb3bb)LDvRB#b=p6gAI?~kOZjp20d#Wy&g2p)%H#7AL~=-p4% zRA$^@2V*SDJ*}(%g zGjJMuB*y4!l{QF=!tJUu#hwSP<};a@?utlf2A?wxT8pg0K&H@X7T28y1q?VDgsQ@1 z-4t=ddk?WH=ja#WJVHBXPR2<2tSH3u+?pD+418ncpwrS0&xoIgWe}jr!(6lY%0si4 z_|H!!va%vR&uE?u*)_Y)>|e$&xF0$d{D6ytKQfYhHOtK55619sjt z$%ugEkxW8hsbvckCn6Eq2U#+t&|C|{S0p4Tv8APn{QC2lU5QX7FZ=*0$yUTN^oWFK zLHheyKab}5ytkl64j^zIWnynR z-Uj(FPuG}jaK;ET;+7$?OfrNK2%m_?V*-g}G9sc3)xbP|A~g-`i5Uh855kgZKzq@@?>u^F(Y#C`qLl}k4Z;Ue*7#;CU}$4co?%(&$^za@ z8|2{YTi>M&^BzQn%?x5><*jH+g!N&TDuLDbRI5p~v!mqPEI#(l98F{v(`WAur|);B*GfT9(H7dYfkG7!@gw%Gw&pl> zQJbQ!=?n7PHzCOD>FeKrIlcJuC4%@U40Zbv>5JP~F!Y-fln0LN?Xo@u>w3~m?|*tf zoq~u~vVP6}rdC$c$qdAT=^v)vYxtx?N%S6AGq@tYyQLC42_#}ZKkPqeFWh@DVhL+0 zLbU`nmxo4>&CkfaNg43z~&IqvD+iidu z4n*+iKJFF+5ih+s$XVGp9963PHX$EFZ;E{ON)j@9% zVg<^z(s4d(>!=_JKFjgbgL^y zKxv0gfp5*V(3*A>9*A}Y!KEcMZEB#TZ&h7$X!FO%3#q@Sg3OZ%)`F0Uo2aM^*OzYM zM1VB_y!H|z8Zg{HT1_wCXiIgZRp){8;GmTNrANe|yumy-G4(^UuHl9~#s#LOZ;zhm zDoV&*n3lJpI}}<%IorccrcxyhlkvJqJ21_vs$K+wW@sZcgjE|yz-B=QvY=3Dl6WFL z$!G|B!PwH4Qsx>;jzR`FXde)tq2)?>BC~(VfL&?OAiy*SA zMU`xnsM-k-_Ckxtk_t_e7+N_|MxUihX3SigsC51s(OfeGwd{6*QOY<9Up!BB+4C2k~7wIAz@n z9?hAdG9cEwC1OrShexSKNi7QKowq|y;L*;~b0)wURAp3QGWHo- z>72#X;BN{Pz+cO~?lNO#9B_bReBaQ72rvRWtR!Oe79nvb%24*Mb(>r7DrS{g!bOoPW zYg-r3B*+UWODIHq7rMckd;Cq^R2)FF6ShJz`&$ud(@2n8l9;h7nu%@|*{kyq-tKO}^ZB|RJ2W-sYjYyusy1sQtP(Uldwm2%YS6|=hkbN=G=2EnkJAQbZm1nBl2X-+bIiRm{oxP4pS~D+ z0&%aWXb3H9JNq#qkEVNA5e5i)>pOcoP2Qd&Na!e?eX$vBlV(J_XndG%3Hf2&%nx{b zb~1Mu@dq&YTGG|ZfXf=GM-6oNtcGaZx_LK^-yTQP#H>6@F9X(5M=)Z~`EJfpZ(2h` z)>2}ff&(leWePc*3z?bBLgwB;aADVJ+JIvTF&7&^f=e(p2y!MI>$1|KmHC%J<-q5C zV5?SH%DKP_Nl+Q_1l2V6s?dVLIf6(p(U7VLv%2vjk@Ab+qBbPc00o%?LZ$CvVg>NP z4vWQQJU~g?Im&z>kOt-D@NGtX4UAr*?>RCzTRhKWF^R%bFxM)IcZu*uYfIQ8P!0wy zq03iek|o$~7e-f)73b)XD1Y#v28}%P^Fpg2;AOZQ2=C_}*1{YO##1mT#$s9Ed}r2B z&mgfY;EDu#_Yhw-(Om1q0U%LD+{()2owPFk_oPDBrFw!374nL~y(0wAZF0$L8=Bb@ z+9c!NDg|EqSV<*N+XkI_Mv2_Fa$qs>BrG19Oh1#FR?^0%5&jVB5EiXES`MAur9}G{ zT~JGLNeK(HO3I)U2SHPyl?Z`{%r(l$^9;{ZHCM03Pqe`u-xZ0wjr1PAC|SG z>Xy^c0%#lmNFU*OR;=SX=?ktO@x!3ps2(YO;Ggi6P89)5>2(MKvL#(bz)OY5rbJMS zIExV=?0EbGMS!t%#xcYb-ZK}^s5DO)Nuz@S^Im069;I**&*Y|HzKoZB2F>=_;J36{ zy2n?{C9`~~A^T+Ui?5)Me9vzcJaN!@#ChZl$V`u6#E!rT0Ebu`{~S}M>NpObjm`Mn ztI(*R;9`P?131r?f{6k^F+!`tYZd2vg4E>y<$wJ@($u5R(m#Cb9}_dug9U&9Uhv_F zfZ7~<&%cGC=afkX|8>sm;FL5w0?k?H0S)&&CkCh=P^vftF*vJj+#95W?2-FmI=Z~p z@e~fCQ4uTUa0&$vI>d;dY>_}*0>#xb4?pvvE=coVte?+hVsSl;D}cw~GDC|2DM2`9 z_>5KPE4~bC;N`{xBK1TA>AoP8gi) zkjc9SA08&H=YSH)g28hrBj^Su<4ZHI<}OWCdzd#3d~~yf(;)|Wo75>`pi4l6bfY59 z0a#_v=J`C=nTd=6Bc2^TT7Cy|13N7PZmicTRXa!L;mfrsMW0BuL9Do5Aq~LA^Bu=I zsnuy>(_|H9U++iK3{8+R6$*+V&N5e#L}Kf8(Y%DC8)Z&;meObl8r+{*3YZuS#vsl; z>Zm`PT%g_YYy|vmvn~s8T)TP||1Sk_F!PU&K1JiGW*qXv+nZTCC4Vtp+Y0vV=|Kn* z2Zf+GI0M@JM!I)r}<|a^t*4x(OS zMulL?ayzIVXdvOE+am-Zb^s%aEXnM^4fj+c7r|i&cM?S789)&}C9SE7H!BDV9Gcb_ za;dWq%L}P=rRCx{8^M0BE~9O3VabB%n@zC_Oh@h`9M1DSB+}2pP;d{4fgSOg(hyw^ z)_GS-7dL}>_#OXb9$MUVaT(J9qTsuiEGx8Rcr4y~2E=&_t3&`YCW|7pAG1Y5xZ#Pq zGosiL_eswbQj8tpBn5732|NI&ttH|dLZfx2072TPkDA~TTn5Cz@L3R4n8oTML9%0? zQG^J=4fj!=IG2oWdiKFNTn#O!&T@Sjy$`T*F@_eQOgpj}E|$}mVTE*d~OxPTKlnleuS$+Mr|3|N$gxHp&|8=3*dMP?h}Zzp|H zoX3aR_uS?tD?~OMZTiRm#rIO_zrcTiKXwb19YG&Nk?`;!@JDl^6W$@B``o3M(wR4I z#CAlZmgd)q0PdiAAvNqVHGlf} z#s;$HJlBUH*Q#GK?=vplWYR(6|uS62F zO|bBGJu)YsBeT-1Wo>GXQiep#L*gS``6#XrA;G-?F-05bF@<(&=4RGl6zx`+nQ1;Uv5zJ1>a*sOC?2qmeXB&#V^3HTkt2>kn5W#-Dd}F zZ3LhH2wMJ2Uw$QBdgaB4eE;eH`A%xby-`h}tOWuDhdzG<12FoZ!aSRc1nyDou(lFO zoKm4g`maK~F232CzWlALMEKXTCz)0k#djp$r2IA1H^tVwXO1TiapTiv?!JVI5jGhpKmoG(+ zhc4=#7Z8k=iQ&-yZ-ln^=Yy?j5hhh#a_qO&NX5UvK@hlr_I>sm=i!ASOqj>1v77jY z8ptPReYG8#@-d9Jp^1zKh|R&lDi(v{RNY9SAsT_rPaXg(+6|i*MQPnJnPqMO06+jq zL_t&%gaVmr9vlpM!x_vpdx#l=q|Cr99L>VQQ#V1-D;Sh@)x}MPm9S947@cRt=RkKd ze<^23BniR|V`q($ztEyQ?>yVM4H>8}$9Car{GKHVs`VT+d7B*(XNK|kD&8OQxdPZO zL8_~BLokkUETII3GMvP{6lG`w3rz|5<~qx9ag^h3H~=rp5H_~g@ZWN7RDO40=DM@g z>Z3(EbCDKW{?`~Bs|LC^!bv)2cO3-p@lQ!rD}ZW%d|cQ?b$#DN~R} z>>X0b3biisEd;)p_%M)dzfaSuDwAT5M-l%*yPMN@x*fYNnnBWUqh@<%xN~2X>O>GwD(yb73 z)CwW*^SQpn8)xn33Lpv>#-kYbV->=%$Z~;#OjxnF z+P#;KIuGY6?X{PM0&J`?#(O>o<{Ql3xo`uk3*6*a;GTk!R*4*yOXZ1cv??!wx17dh zw%6H);z1zc>O{<^1RP)(rYTK^|2P=)(1q@Pm|lG%{P@hMLg{l^o$0^QY}d^%ELBZx zC&9fI2rETc!_DqqnU=32Kqpj2=RtnRSi#I(fWTD{K!FR%A~Qp9S~)3W-3bw{w!0qEYQH}*a!|JZ}-Wk zZavqUsyP&mTrm7(guddB)3?6=15BMnQim&m0G{)wN$G(R-251~0Ee9QnAWFMFJn`Z z+{V8uvy%}STcEJxkA5kMkHU-JtCeIyDS`%MfaR(W!*$?LHdl4h7GyJVD zR&$iZ&cpBAV@<3(w0S?02_um!7y(yg z2(QG;diXpe#MxR=InpeV;I}@y3-O|sHXBz%p_ab>Qy^LnMn4ti@D?hyIsZAd-m1+i zO5#qY_U4wO=TjLgKQ00u#KiJEfi>V2}jwONaax|TaG(+}IgxcKY;1Mk5{;UvyxP$4~eeW4) zi@lhvnxZI8W4iL{*;I*{caPfk9dsG{##=Y2Er6C*vzu=49r+Rn4-eBEnGl6q-4~6i zvxnLMG}BsIoK2krrx6Z!((v^C)LYaSdwJpV06i0WaB)$5hAmiHn}eyYN3?%^LsJH8 zX}UPZe$|t8v$2LH3v*u%tHJWKsWia-R_puKzqyrO`qJez(07iGi8WNMqc;L|_Iu6@ zrq2GZw1uGHzKdT91v1oHN?I4Hsv;(1hfZnsD;UDcu(S15gqWt#{6JsMgQn|DNC+*2 zae^iQ>+*X1_TX2|0Spe}o(`BWIBpcbxFVqo;THzMwxwgLC?0YiD;o~TbuRzRX5dVVru&KO$6I71%25|jjKk&MycTJc=Mp4G?5@LdsB#0q?6{+@ZG-1UQc z=5l6@gm#qCrDH8t;ILM>-8ef;+fxAEIZjwQS#t%9Dn4UwDo9{IbK?KN=YYUL<8{{8 zpVC|4ZYnvLz?6@l7kW^Ph11>}I|!jU=8XQzegd<`CJIRb6y|R;8!awYiDaWNdz;~{kD+vju8gwGU0_UIY039c_tY{{fbU`ITV%7+Zj?y$vVSAa!)mno;= zX4t`j$W`8OBDk2H}3#sA$`_FY=eUWh|%dG)hi(jBA0rj0c!$lL;HrPI16T_!ORyjUl~ff)Q8cxU4_$)xmjRN(=*fW8C3<6yBk0TCdBFEb|vZ?K<*xgZam0QL(AF=slYNtrvC z6WW=8$kHR+2qaS^GawOCjs!Tydr`Y3&p1Z6jvYM-*dBUzblex za+N?TfeWKRFTUDEThX+g2T`gyXa;K8A6#Z>6CA5f9r9V=2J1O7oe6U{6q=I}KISK) zYt9dWL8N1DBC*IF?}2&7g!z*3ox9SpW5r8EkOK2(Xa-#4nq@3SaiB$Pk@$H`gNN2R z`3&ai+`?>%CJ~3)fKQ1jf9u*fv8s5zh$h^?eHne5~*p_$=|Mhm+PU@m(dktE$QT`=pD&tS5(iFMf6+~kH;LpB8GZd^otVac; zjV4SZ52vDnVH?#d?RQ|xoXuh8dEbDRuF!CZZ`i!~9I1vmitFf-5PlwxEh_s78?`-_ zgWCXxhMPjacufsa+(2n27OPuFh@ zQl*eu0+`*|%=F~*hcJO$y8O~5s`}N^9O^Lrv%mbqv=5OU9vUO)4_8f*@d^r^8KEgu zQNEXRV>Ex%9S7E)O0~yjIv?&3{MN$SE3r~kQj8`Mkaqrsb7^yVCq4LNJe@w@pWdOY z_c5)Tzw+{12uuiCxZt)+c8DrJANBL=C~0etf#z2FTOfQ{MY9$GZ2D3!pPk3tj5!e? z=fM#Lc=1DFnOTGnT(fo-XbXb|m-b1)DX4A~hW~8#8`!v9jh?5FY#uJE_GHpmapG#ab zVZNLI%{?p?VFiE@Wm+Y3;oh(yc)+PE!dr5enYIb~-MO%UNh zqOSsCiRG<@X;KwGC;e}jS_f2N#6?w1F)IDB3bUTQI@(X~lF|y-2$ zpd%Xp$ZUp zqA1l;+lBV&tf4@?34=hLpL26|p56anodG8*a87*KGL-Ov0Eh@M0AUSE@H#iaMWKer z26(Mnh%XOY_a@8_8r%6NDHurNgv)YY-Jxt1nj`eopO z9pB0@lQ)y{HGF>vpY{@(D8XxJC5I3v=p#6?MfEtM+L4%h`%ZCKi^2!)xXZLkU8k@2 z>tDSHAuLe!jdVMr{P(zb?%4{R`esraQR53p(FO*tQ{7O4+0oS+t_N|h90b~BFUpzQ zF*xG*c43SR1rRJUP#Lm*SICxU|Q7M2FhmvyB5 zRa#{bZP)#8!=JBE=e~8kc_a2l4Q}G`L^L+C*G7Gt9WQ%0g!o|5q|1y5h6#8Ww_z$Z z_-6I_u~F;^OpYnpKqNNIJz-8YQ~?~H9z!_5nnt?VxBt;A1Xea-k=aNU`(5cwUu#6a z&wf6FC8{L#5nr>kw7?qjRD4_{piGlH!Cu|ea=0{zmRe6wkTa>PP!J#SDd zVa?~l+p&TOvhU$<*7d+rv?REn3PYa1D3r#T3*p2wM}xIpg>C%1`@2h|>W$N(P)pbf z0u|FDCq5JRv%clyH zLWIOWEPu>>6=u1$DQ&4F=#(WAgmaG@>RH%YTHsx%k@;&b~ep%-X7k5k5t9iQ*jl$iECmD!RK%O(+BBG zuU(+q=_%I59AVmP#IqbRuUh(L=#q0k0aH*J;jig?dTfdVPdXeq@I9w{s5D#4nh?~X zH+v{PP34q{CRKBdS|nq`6RGP|7uK+vaQVrk#4q<#x|sz8vzMHY6E}c7C|((v^HRq4 zKIjxQ*bgE-oO{Fr_d+_OmC2Xa78}39e(Spr+JL1*6wa#EN=u>J?59ekDUG632m*{F ze>j)oum0i(Y5Py;R!Rlc zJ0Cm_%ZqdNtmzICM-&EJL%7kHjP%@0g7sB`P=nSBGrQ#?T;n>`V%mTu)wL@0)nGM} z=Y-`baGf*f8AmvXu7!fd2Skp)zg;-L{gDuYmtMl6GIR7H5|kUk*DT(Wi2TL-2*hB5 z!B8N=?o}{PHU*Z&f{3Q2fz0aKBAZ@F*Ut^6V|=RB^~zn;!{>Tyj|1%xFhT?O`Al|k zhIX!Z?oy$QR>Q62V+#nr(+?J@d>mx`SaL~&hm_QmR@LUQD#e^U>;f-#G~2q^JQ=u~ z>3ZEjH~1uOLUWPKy9mitgbdA_BxZZyj&O73rOV2D z9B^6=xrQZK!EMSZGaS1R~B& zO{U&~PLQ-b-NWioT2@WY_9;3Y646fpVJX_A!GG0Q9yFoJ#F`-{<-pcGHFiK^ZgsL% zB5rGFZ(T#X-YtA)b|q9$mG~Aj{sDe$I~NMitquI?MvF^4SgWSCCR`kwWJ=7>&8K;! z`U#&j1E6bD--zhNgZ0FoozdfbXr?!Regc{@Uv&wn_~(x zO@i0t%C~mFjPdp2!pd839;T^)7W>Km*HLqSdWv8}%))s}!p=|Zq=oTi+I|;Pbm$B& ziCumOUVFBk{_Z!oB2V8n%-~X)csfZ0Izf-XtQHHzHdd5rTn(+K+8}UbLX1wNyCZX{ zWba&h^{dy?23aXKM-c~PpqiIM_yiwi=EZzwe2BzeTr!QxmpBHo(<_q2m&CRxaV~Wxf1$qgFl&oev==3xg$jym&O zNzX<;NqfsrQb&{Ju5pW%BOriF7JMnAoUEmei*ehOgU5%^l?t9=5w5l6S@ss1w1whi|9b1j=r2 zucm8QjTE$>a1P)5jLa1neK~Gt?RxRNeFUC00=rfILC=Aa|>9Mg|1yHGa$ZGnu@2s&J+1PQWrFh8VU28ngJv2rHI3V^wz41c1fA2E(d6=oLZs~OZ_LM3esa%eO@ z1K|R=1cLCH@djaLXJK(K$QEQ2agaJMD8$~7Xr za~4?z+=+x5<}2py!c6fJIh1}KDg6Hs91ognRA6#_&Z!vdk4Sq$;IrrZ88hHwiI$s^ zL%X$L(7V6BO(U0@bdGq9w)S>X=kSMfNWM54i@FZwm>HKgXwU<0G=hjcj@tZPn2C$i z&=(JhJU0p&=@vpPVj8D1M8l%uSq>V9rJ?lzCbpU$JQ%0*+>PifuOw?}-vWrPU|}Tn zJk{D-h%0d2buj#egkOT5rEEab^dPHCx=1`jC;7fq$A#5Pz)}aYqJ^dnhcaTOu zy_dfH^{XL#EX-hDrm9+NT_*yNm31;rQDUiULZV`!9yKcSid)EO@9eEdAf|Wyb}^Cp zv!v#(rqdT_t!v?(a!k5Jcdu_@Y8=D-&Ri#+4#mFeN_jdtL0mz7z^tmeF`5QhKxqdl zd1h`S%@SX*L5kWjX8a(E;*vu~zBHAAu4M7Gb?H+p0+%pkS+8~UBu_%o2-ha|R*D8%Lr`m`jf{Oj#sEDXE}g?%55dRuZZNemLDDXpBiUT0o&r)-J^~)Z6*(5}GW$2I zQ9;r=E5}%G3{KOsX~jdeZP#pUfb%zse|~xy6TL!od747llX2v6EgT<~V=2PjS_KUN zhjl$j1FaiSQi`?AwQ_&74d<+Q{+Cu(0XIdt&>)NHiLi^c?XTY(NgKE>2HC&Kq0uz6 zI-gozAQ-o@KK<(61On|8*)ylowXa{GhSE-Y=e@fj>^#FF_rW^|=hr*a_1ADQ};pL1HC(#CUl(m2=+;4TgqA+NGIMvnX4lb+mNe@fNf-%4`T*K_IG(Bi9xG2wb4dLREZu3lWCVn%H%vKtm@zcyQ zpwjAjh#*AftN`E{(xO}e9h;b(P5<)0{og55J(2$EpZ~Me)72ew5ymnw+OrY6We1oX>5>Jy?zFvzWb(mg3-qZeL;JnzGHK#Q~wJW*{G6q z>+SbL!>cDk(nD?G5Ve6(O2qDAeYkLeh9pSj4k00OJU7Hf4w+^xamfgh)toe2**GF{ zM%gIWV^pbtRWn53WYL->-TaJjh#>qIaB&RtbBzGEFo|tMHLh!lcV03&H^>-k0(eM-ZwrSy58 zaMlr#^$QU9)*<75$I^@noD>9n!;fu?9Y>^BD0H1M7ydRzVv8L2$3)my&`vm?ho}Sd zrVcfd5_0Q5Ptzl#><`h>6(#8$e(m!J3#ZSKJ6i$6BEoulj&j48IqkaFK%ia;n#BU8 zX{}6|LwizqI)zoBqqCK|1uMXon*aUXjXKmF^s z)AkZ8$Wuj*G`&1ps=uX{K`Gv@ ze%30^a#qwX#4CxbIN)az3-J*!@;(p}dIymLrV6X#(=O)y9f~_is5~>$k!=dv)F7~z zW6It@yR^GrEoSu`OszPCaD>%E2s^^p(##!{5NlHqN5UDRW^v%W3Wc!eG4W%YZZ?g% zA>@Or$5{`^GEpe-mZ0gq@!CW&lxA<(By(AWeOc80|AvxU{Gge3uNN8zfbd>XBy6Zl^`GYmi z0b1rBZZO+stBI-WMtl;a&R}J;Ts)czD%RncTO`eOwK#o#XCG`BQR=C~xS?vVvX{M5t8V<=;lspnK{8b>&_ zCxz{q7un~x-+7QWMn+Nt?!Sp=OKEOmF7=;jXYZ*|KvAwkXqYrp`WY5g@djl|=Dk3R z@9FV{)DCRT-m-p-3|>Lgb14lf<1E^&Cu69Yf-1erm?L-z-w{VbA^=CiUE~>OuZ64D ztn8H$KrZ+2@dMrC4^Sba1z>>Zf|KZ=T;gvrPMR$pkoURQj-#T-dG(GMJ|+-<%R{`+ z;6JbT`~|INJgfX}Y=V!+2>tAVrN=M6aUt~*uhas}Ev??u+k&-{AbAd*<@77Sk+5J^ME}FP|r@Leb=Jryi+=!2p~-i_5^k zdnOE=0ivciq*V~bg-Be2*@Ju%3M~XOyI3@v=0P-&#z`3vWc}iWGqR*9iZ;)2_{?(7rXxFgJO4B+ptOZm?hQ?AEOh#Q! z{YL+?*6JqR&UQIGYoty&QB!9`KK@}N7>@!`f^dpNG)B^fmW8?(10DPlbBilKaO2_AU^gd*YPVSE>1rAl`-;?N^~vGfyDl z1nwO7Tc1zYiB1AT38ur}Jx8pEKCdYl&j6@U4Uz2(4}WW8z^k@-m6#Rkb91vqzE|R# zFJsI*ST%E?3N=vxMunsjfi}NRa1m?aJp8GmWr39{I<=X0xr3!#MU8+GBDkdBL z3eww5tI@Bz$Ht37Xqj3o+#4}d{IB(CJAakA;Ae-P6tJEeRl8!=q#Rd;ZicBzn%HpY z%muE-Wzc-8J#}}rI3>`FlIY1WJwBf%pwlPLw$Nbb86tgvYGA%H`4DZv&H1gz1(i>^(6t0o{|)Ln>?;DP+^6b^0aq^i0dV!dhm0LX{Tna-8x% ztr1Zk>zu1B=X4*iF6+3+;JYZ`Dv>I@G;jhgw!VWo{A14r+q%3>pq3z=RHxX34YV96^ej#551P6TzRH=J1iUrwYf7-FdKA~U&&f>zKqbv z!W?+;9%qJ35t{6HcEh;f*#SMr+IW^UT+C9yuWojbpM%z=`8CF2>gWF2bXp$!kZ0Vd zWOP|n#6c_`Y>FIeLDa+>(4S;o)_weAx)MH~gO9`e{iP<0Uk&BYAg`h#AAE zpsc&{a+De<8^m#RqG)t_vMW6 zOg4c<7n0lq&Md;Bd+XXespO*@2qJ>LsIP7z6&bpLgtuBLHat>}P#B!+Dn&>1^OnFk0=j}hD*&`G*#c6ENEd`DsSJ6s zk*1D5D9P!vE)gq&RdZ+=i3-TD{hX28Rz_2p_+=9vtJ~fB_znzXC5_q#fI>j42!LXI z_yz$@Z{sHG2qtMNs8P6DcEW^3|EAu!BfSs9FqnMJIkf+7}NYiCoc@0w&o3)AZKPP+E1zI5_R8@1{iDYe^^o}>o< zU?0VvC_}qN)xp)YM#cbH1wh>TlglZ8YhZ9G3f36ukF9MTQ7Q2N*T%fD9kcX(0JV|6 zoks-YA@G6*qy^vLgt|Xkp01ZCUD`FRP(`j30k?shKnADfn}a3~3TR3-F@)=G4L8m) z_yNKVMXs`3Wn?2&5b3@L{60T^4~6d(us6yCYot=HpOhy-{~3dhpu#Q2!r3u9q6C+P z{?j75HwN@!lmJZgKE!DxZ$y_JQ{BQRWfwrQqJ@*;{-@h0*gL?PF2&;1)1q;~m^C z*1_jsXEp4ulmb66Iy=tMEMcb@M60#_PUUyHXPGEFB^@evQ~+2q_t97QL-{0foBgiQiLy)FkV4yk zUK>&TC=q_f8-%#$I+a5A!98&uGX)fuX}kiGK3ot!SEE+r$=@-Ayg(yTWy3Qf`eYnk z@LSJJ%#-&Suj6)%%p3y{O&Gei-c2ogzD5DD|KneNH|^r8x%})!7%fUUsAe9tsQfEO z-Z9Fc09Zh$zkTmvz^MGvI2Gl9u@74QyBZbn!g7!+>mcZM8b|rpjk<+vvK~VvGhQ=< zLsZ3YQDn}vb~O{@0U^w}p$9&E$o#IxTjT*?;Ua>Osd#V{u11PQn_l;pO;OvBNh`4Y z-39c^`?{(2koUkH>29OkYhk+n+TC>j_rFPB{OdoVB=OS-nmRt?##nHK+r!L-<6ip0 z3lKP3JNJpoXeu!5TbX&4Si2=?vX`H{l1`t!5SzWJaD~t+fa8RAB9fCqIp)yH_+6#L zjZ>f-{F5mK*&MYTw4xQRDoSqOCI{bm0GV{O*<^sC9nRA=)XJ8*tC@)!Opi^X9p6nu zV-K-TY!U;*qBLn0`P@F!O*9wTR2kC~g+8dwggN z=7tr-_XgIqHTczr=P90J4!yPFBh3(@ptZjNa-s%ai$(9}`tA*;&d%1*jCVm}6l5!l zD+ZWwIP~X-9^sf-EEU zK3cdt9(HNYpSy88xV^p+Xp4-e-2ciH?t*+f_q`m1!m}-nOY`~AwY){tVRwUgBY4#k*3|r?_i$rO zM4IXW%3^Uba4QPt7J;D$D(FnR5Cjm7kf1^K8v58oX+6M==UFS{e2J25fC@m`)F&Yg zjB{)40GCW8z{-*l_0PE!q1<1imIL(Lh%z@jvj<#^;z>aE8oa?Zm9KhF<(Ye-n=j*M zC~6djnq1tWN5?wZC1jusET-8tf^4C~U9$-21Ea#ePG5*+_GJgx&MaLw*RlF*=*6(c z*)`jskhvD2s4G0n;a|D!IpP;^3jpKGGA4-rZ#{hq#bG5~rhdlyFv#EhR{EHIsHRv@ z6Q3J?IG-LoSV@2S_0K~m@L2?(1(l>NPo+XO1U2VvhcrfAM+bStM~q@jRJVmCTY|Eq zKn@F@Yvj!;`P=e9Py^S&*EF!C3-?r-bv+7E#12apOPiu?3TbIre$PnazF{;VwEgFr zhMbA#Jf?qzy6>wq%V`eCu zyt)Hg+0HuNy-77nO!|BX$@0+h0Rxxu+rTSOkl|k{-tu#KV7Q`V%*+oyW@dz|t8B3S zyKxT>RWU>2>_dq%$oo6RMd8Xg=f~(CgwH9oFU-(~*-6bO-x-l$bp@$oy#f zIh=3^D-Mg0W2u$9w4%AM_tWY%z);9dg7V8qaCkps(^AnNhoJS~Fu&+>#pfKOOiks- zjZr&4e9fIvd$Sy>@9{x|y4oj;gwmtD@UvQ1YF66G`;5){0}_PgB3gAYA=45zUHH>=Sfh^mCVt{LWH2>}a2*TLeGCeO8Op5D zl^|>g8i}aTx7WAT*i4}@jZm~l22X!Y~6L|&`4YW1T%n}M*6o2d#VF^@wL2aU0+AVoASIl1|TNP5O$4Tdey06!!2 zxee_~Tc(?;jCr735aTRN1Kq@>5{yRWj6Fro!xxJcPq0^3uL0~z8fUL-u|D^3`9O@p z061eo)5G@%(n(qvU%q@HAZ5`58`DTL`<^wSKK8q!7JBA91*)U#NjMqiW^}c_=RBCA zu?;oEQ;d&~;Y%m~n1IAb_Z~)|7=ODJ=O+at9ACNiD3TvJ~c_!P>f1Zj>DzIEF-;(K?}26ebL$hp~Rpp zj`m+mGq#_eR6%ZR0sS~zF>Si%MhnnJry>`6Tt z1%^h*J6UmPpK7aE_tKROlh{~-Cv{VhwZz|h@B@)OOtPS#VFcsWW+^cqA`GBh)H0dJ zB{MooW)4Qc0WFfXoXxZ`6RR)>|3Wc-m9o`^#Awt}nNl>a8o&KIV{2dD&n4}E(8F>!8pEJ0}_zli9LxO`5LR6)QBgO9;bZ}#6HL}>C9|bZ*80&2TG~VPg zU*|a}X{OBDJK<1Pc{Y5uaSR72U;o%ooLkGn1aBowl`ADQYNA`i^l@3w<^Knb=f&fX=B`Bhm;ooKwyEG$!w+qZ#qpDCpf0A!eB>%Mnc0O%XZ?feXXT ze!@^8cDZNG77X-(Rj%Bc1hjagiH6%X!Zz*eT&sYJj;6;x^hd>K5mg+ECn zRzd1USOw5$J6@kz3ZV$wSh>w;_814B3uqa_GPp@d$k#)omLal0huWf+u*!((K)N@y zhD8@te=>Lq&6C%3bEvF99av(M0i6$zjAHRM68zRnboWxa@!>~lba)gCfwhGh<>N=& zK*%3Ec@~C;)kN;6F%p#=bh}pFdgDVF&PwV!dn_G2bpflF0ytQZACHZu*T3^`)2E)g zoUT0e1c7kCgN)54FQ!-d<;H5=IC3>C?5KkIIz8!w6o_*cNLtGcy;kZ!O9QH^OqJC=Y_xV9`?GtYw(pCehPJP8REj*(92Wi>enQt_4L63?i3~+8U&XToRAGTYLFZ%baswwl{0CUgwnFxh zE|FoN|GNR26fQGmO?O8GWODLUZZ|;+qUJjXVh>?z-t9aEiW+DnR0*P>Wm^REQ(N9f zL9>Yu6Jm`B$U@Q4_vX3K9U%=1UAs;)0pHujTHD9c*(5T1a$=HF%tHiLb*Ix8PD3Br z^L2;F08C-j_osEOur{)Ko$(Q#M&l%d-dt<;L3+~MgmD;&?pbK>Y9qjl`V3VBpW$LK zw%{@ak5WFxTA+j0_RDGP0dO!%b`@~-3Q+CvgK>fmr_$+*M=0~$g@uW7HU)GD-IlVx z?adu&WMGn%$oUZ7>!e5O+t#h(9tWh$8b&M&d?644&WUuxAY+|9kug*_02gyQ@Ut`D zGR_k61=?N;7fj=kBY=qb#Zipv>zaYO5#lu7DaZ1k9_~Zw6MDxgUZH>!bDW@JWo=Cd zG=Tud2vB*m{($GibDGEgFU~xK-ZsghrcoKv){1s*UB^R_DcNc!@U5Gk2-6gVs^L9- z&noSiF<}s&g^m0!v$zzrZp!mEJgb-q?ahtRXsI8cH*;ZZRaAo`2N8Fq84SbIg zAehmLg$gF?O)v>)n>ArCHQE|#8>m?TG6<44gB!~fO0y$$%^EBmUofEH^PD|y9(-S+ z@4m_(Lb!));yr#^zrw7bBF@x5yvO;~s8cb}($7+1;V;m-@dcua!5blN=_A}hR@a0s zyiP$ZrH3*jA5fC=w_h3%9tBbI?40;%D9`i5dDhVIj4QN}Agl}YAU{DiaHlj$-v zYoR|c7M$N5gux zg_3TY>>9LigoKv<<_^J3tcizE0ybz-($KH8#v#3T^FbOJ#-DGz1QvG-OezAPxJHYA z257b$>$v-PJ8=Ysuj|&)s;I&TTm(b0z=oCQj16fcGTusil7{J&qBRP0{r`5eR6kw@oiRX3 z8r9Y18W^_{Ng0>TUF^u{m&%3;QBWhj4Nsm{GO7#2#6;3U&g+R zm1ca1<1`>l0qQ?fB2{kJRX%vl_QEQ>rb($-dO+<)>7Gg7x+7G6MIol~#ST-Uag5pw zTHj5?R@lQpC8f3rBmt&BIxw5=eMJ3$t9L=lN-5j@S)$vm%7>t5q@^f7T1L*npuV{| z8r7f-$;jHNGEHm?5ijM4{`0SwkM%@9^RJdjX}Q1VvD{Nd-#U z9$5j?DE+k!EeI?sAacKAct@-)sE)B21;l1VdEAnkvQY;A(2F-%l-#&?~{OxtamZgKyhu@8kB=h|#^E(%RHORl$mFzS#qYv_uf&CRHfsmN(Mv{<)N2)rbOBnmU@= zP(%#6r4SHk@;RPE`JXP; zKpl9VW6>aRCMp(=!}l~)_%-&*=lD6t&L!}1+d-b_o|1LC5~u=jRtv?06&0>A>xyk(M3 z-0Nad;<`-mxG^En9WV>IK|qeg?g|Mr>%*KJp5~D3q~Uwh>CW%2rS9{+K!zMn?j|Ix zU~`XT+5qQg|3RNCs-Db^1A1+UFX)cldQ^-P_Q_&nW0!Fd3)9oEyhMR$~ec ziu+2GK2xC-X@XpLsA%|12_?qHwZ86HuD)@VsO4dr@^n%6o`ZP%7Md+SIGFg$U;H8g zUL6F)(SLyr7=MU00~0sJY!xO^2O}@xFs|c6HONLE`#7-%Gx(NE5$w;t@Eie<7m2{1 zOuzWSuVL2plx98)f|8fs`44Y|ps&Io>ew8+zNAo)7`KX%YaX0}dCP=!2^7Py9lHeJ zXAS6deKvr|w315FL(cRqd;e&@X z;Hjd8t_sR7HR#)D--_R}nW$rx4g}pI0d!NNBk?@rM;KHHTmA6{tlH?wDr)|1eRHj8 zT_GwR(q>c~0bT(S!n8beYVu21xzc(TcK{lI0N4UnW_g%fSyW=H4zxj~ zhIPd9FDISOm;;QeV0>1{oSU8@r+A3vN9hUG1Pg#eYJgo-tz<7eFQE{`p5Zo`pMypS zJmgI7uH~n>2~iQO)tDC+6#H9lWH?N(3?XZfTFbGT^we|bQ820dj+<(EjsQ*I^q^<7yc8~;&53NQC_vIlwj5QiL^LHmJl25m0lw%7z20K7>X#0ZSu`ZWP^`M6|oL$Uv*2*zUe)q*Z>1&q<8O5r?DlJiF(%srI}K<)r?~o zUOPH4!7ro!O8$#ngVchjk(C&D;T**t{T<=ZRE+r&4_AeV*xAx^T*I@_UXG8aUJ6xg8< zsu)0fo@HK)-`xo5mE*}5jcgA0 zH@i%_$%L%weYz>+l?H$7UW0>jk4#~ZKlv51hUe&VHZ~+s2#ijjrP8Xw9dQdhZjEY= zfWRm(v~Z^|Q}2~i7>id@0m|q6%xdaA(+TZC%REnIMSAco`lW$mj8z5a$UxGNON`Gz z^eTF($PbrrAw(fLu89~cpU+4vf>oevi8-sBXR#1`<}bhXt#1be!UM7a!|2c^e9Z;l zAu?ZvXC*7GzKEPuLwYP+<0=+Njn;o!4Ep5M$`nvqJdx|n!nhFnhVI?DpNcqePki=? zboq&&(#8bZJ;1b&rE~`XaLUG*lLe(nYHCYT&xxaSvV)nj@%2<2)1C6p^>0EmK?W@$iU!{#~ zSGXV86o^_&DN|Ykm0=Rj$@xpKLZbTSH&xOgQr9TU9D%s~0Be`Qu|}O{R*cHg9<*Rk ziq$5k=!Cb7dt-|OQU=4IFOe!J*qNcta?HShsP^al|W_y@ss&x)21U)GHwd7c`pnDZy z18GGp6nH+vHm9c8*=WVJJ|28d3Z6X=q}c;La7Em5bs> z9!8ZM>r^P{OlLJ(zJh`*DsVD2&z=Xj$ZX7`E+Z*C-6rhzq2( zvpx#>l))4{G4p)ZIFD**sTf5^MXZ9onkQ~&fp5=11wvyDKkw1w)cgQqHo#D~nse8Z zk(Q*DtxeD4ZbY@)AO~@d)k%B@!q~CeR#*$(y;r~&0=sHlxc0`^n6Z*ipqRn4Y8pm6 zmk=LOUPQ*q#yAb1C`Db-!nJ%hzJYSt->9*{TvP;&r6?>QFqV`%)A}aHACZC6!JJT# z*vp8)!5CrtLh+Z5rCq;WZ-uTkB23XU#gqSs3vX|Gn4S{&`4MRHIq51aF3%83P!Tj^ zHNaB3YDRN1#=gBx;~fOYK8oQcmaphZKD1&nAcci)O@%-qJVRx03nM^8QRT#P!x2-( zK5MBS7=wb4+Qwj#f11H$Eshle2j>aStAciQo2}zs>}jba-H;~$;VTrUX&e3C=w3RD zi)!fMSi14vebP2TlZaE|mVtClV5GEAyJK-{kvN@l?pK+*JA2d2;8ObCTW`}Hb{Q8F zfqc*b-ot>ES2;T>JzFqZX?$^NIfPL6g`>FKrqi(#$7szxopumj2J>3!Q^Dlr5kM~pF?zI{>EN=G2JvADY9nq~&7#@R2IVJ*U@HN!Hag@ia;VQ)WJg@OMZeuDh z@*;Es`J%=nG{onWb)n3vjPfmCFu)n=2;ORuwJ?&yh0QJ$e%7I0Rq!1J5(zTeRbK$Y0ttqE#9v8Bxg6B_z!8t0Mt-30*815X_Bw}fx zJB=Xe#PR9I*A2sphfLG8uJKchGOPFob5ZihC?6lT~vG=H=lHA%h}-b|nK)`%_2>Pgp!+53OdMN>(-aK+D-6YtgM?wH~xU}mEi9$X7Lr?zkl_&VZDh6y!XyKKx%WTgVM4W zFI|XEiz_pA>CT5Aq~~9LfqM33q&|K`unxh4%=$;l4 zFy%0-GS+?g(S0Jxd(&rL{B*kg@y+x<{j0x8fAL@cS^DI2FQzwMdo^;=KmF2ksQ@9U zQWJ-O@rU9Djb5U^-yVYH59hR>_di__<}1hb8^QZT!`J+fen~l0Ya{w zz{s%?los|>-@4uTESh2)=&9+^=l~c3o&9`xk3u8}BHL$LiA;+TZh|jNHxPC85tuf- z61q0M3Oyle5rnIV=dYmv>})}6jJE)~QA1WxmlBB8+}Mzs5PSn8g9!Hh)Io(qSQyL$ zC>$EH5sTRnemf%tfd`K>hv3GSN+FaQlq`L&3+!o8QDe}W3T8fxV%NYXstIaEY=BxA zjHYE)gB7mgBxIgrjz$OR6ZBviT&Pm%p_djzn`fad?6O2*7ORbw(i5Rl2pKe{LS+iZ z=V7g+3#Ty*MbMjq!#z-dRpSmZXMcHpCib}d+=)~+NP1v<6IL|V6G+J7!W=$r=$YU{ z$GZkxY|dC7=X4GzR|Ydj7KZ|=4$IcKhc%TFUYE(M!0UgUp29Nkv}CDgI78&LOgsyo ze1BI!Efd9Wxzh%eKHV#(7@EF#z?oFB$zgc}D#9K+lYmrV-ZpM2g2C(3l6G<^^*Qco z)y7;o^+w15$cle4D7dtB{DWz+-k#eX0`oL74zM1P^|K#S~+JWQGh>tCe+KS+##r_OL6S|hi zF#_I00r#KJ_UsY_t?c%&hjQXa7>P=@gOBxbWfcM;EFeCafbfkE^)-cK)_(vCjm`7# zuryf!H$lH*l=J1r-bZUw%|%U#%Xtkg*p1WWz*Bb#R%>c(CR%qO{op%40K%J2|H)r} zo~9|6fDh|9hzJQSGw;Lwy^jl_PgvK5Fn-oi4M>DVky-L2e$Oo8P)KkgM5HR$d+4qE zt{{s7LNQmA8>Ef_Xd6^`b2U^JoNufQKYX^YIp0hPa((fS;wOIh_g4{s>p&@QorwO!s?bY9qW51I6?>|aso;nN6|0K{G6`>Fa`l7Yu zE&eh+JB31lz?dIQ1Ea%fX^s-I_}YbVj3+V5cVLj{Uk=*IlU?bD|JUEA7yq*_r1Q@_ zn{K`RKCXkk^y!zMLl6SFy1VWH^Wp!oPtHZ6Q8Dms4_)jzYbsgzdsw(wV;&G8do9~6 zu#$rWla(nONF-!!9|oDK2t(w%k~iK=F^jey=0?FFT?q3qrUL|CXGd!k92x8z;=my! z5CX!>w(%@L$wDOt1>gX3f340ngRt1c3>rhg6_MVAHE(LzI{UR>Ky#n!Mp9-fQ_rc| zbmVj$e)35U20m2MZ?aa^_~jX=n!i5nT_Uw>i%2!39=fig;u2SYgU#Vk;Wdk6n>Cc> z$P}bA*K8Y?&C=2=KD`-WVuI9A{zRB;AG?N2MO4WuZz_zNJWtER!w2Ov7h+OyVOT?9 z4JL8`y)J+b2-mM+g_RL+k(XB&%~`zOIDuW1C970st^#hyer%zXRFPd#L>lSh$}Yd7 z@?dQZ_fN*YRp49oeX_;4Cna8qk1$}*niV2XrNoKAc0(b!e-|sdsU<99GZ`u?$@7O% zy7#8rO^y(Vc$C*kjkL*v$=~B(JHgqSpd{8?+@`R%lqI(CefrzZ41)M9cFXvGg1@0-BJov#wJMj^=F%qJ4|6Lhi3Cd4oajz}^dDbI z?UeF17D5<7UcJTI!1*GWtr%sugvfMDY=7o6m(t+kOnT?$0B%uIs3)gG*-_9$+h)$S ze5V|%wE~`C5UJ^Oy*)kjLO@ZWC|MaUm;z88V`w%w7aJOpD9kEnB`Eop5jTRLMZx%j z4&6v(lL%$dLh$g%JYIGNzY44SF>PhV^E|(te)dTLsT-6RxPKP6!HQ>s5c)Arp^)|6 z;OylQ^k~sHBo+J5&G{`u1Gu@ryJ>tY6XX~1yONFd(uF9R<2bz*D&%!#ph6is_u8OO z_uKfpVo){c5Sf@y>_|O{fx)A-XE8tPeC_h9axbSHV&7va_cP8b&hboD%vO^OO1bsBEH-1qC0>tY$SM z1TPcyixdRs6ihL$XAn+WVn4jzX$z|h`^p$1kV(xaB_GgZR3Nx^2dLe{^%S3d1@t?r-nmP%Kg_75DRm2 zj5&`Mwda5qVKxY}HHxKZMZSOS!}Q9(|EbH3PwpgXRjcWJlz|f+UFpyM^sA(TjitZ) z&flibeCZF<^Pl}}`sL4ljzFtSPks86$W|>%<{%^GcV{2gl!VCNVR=DJEG6^RN5>wi zB=BYWkL9CXpG~aieFU9*ua@kgT0^*vPYg#Lg(Cb}Wu&DESJ_=qW!nyQ>#O_e!#A&T z;J4EWYMZOv+G((i&}V}ew>U&<*pA77HiHTwXZD+>C6OA504j&k5dc?KP!D51NWzuE zstTuF1b8_CPgMkYfrSDs6FuHRz}ny>W1+whYqhip)DGjUWQ^8^Ut5t`<8Pm*vKlqz z)ueM2Tp_P3;wa2&UN~n~hD=H#7g;8ZI?^(wD&q ztnjr1qpn0~>yuqsvvl$h)-I^a<03m{yuJq$)zVKe@xIx?)YXHVjQ6$PRlsbU8?C6J zT!Yp&v1XTv)ZQm8w;W+rfNP+=gIXQ4vqZet6TnpgV_uCjvI1R&FokZ7sS))Mwl@aB zcBw+6Dlxhi6kOKe7yU9WqXLDZ|Lz!pOSqwk>WAo|2-XOi(fx6N1vf+5*D^ll&ST98 zYOFT`2UXBYQ4FMO#qkd1dv!T1FN!3nbi)iyqh(~K)>WVk?O+k*vzF2+#vfl6Vp4(S z8t7FkDug%Jcn+=4F1@I1X#^w!>J0ugf?8A};*=mjoRly`?(mqeDM;i&DrkpM;sEi1 z5U5~mEK^J<$2n}GN+T?=2w||to*n@E8{eZvrN7@bEaJ>W5E*MB!k5QS14Y+}`Kg2- z7~{eKnFD7G8rRKGNMNL66Fn07l11jDY!sjz?K3V5D_LX2;$R{S9@kJppf7&mJZT7t zQeRxZIGr4+$*?27^`Eips1Juxub(K>DM=3PZyqkK3zOr%*Qj04*FM2`0ffG7U|(r&5wZ;y%|&Y56%}4{p52!Bi8=tS@{j_)+}Q zsynp))$m0byw-1(1ev5?G8VQr-M@7=-TmkeJ-OS`y?YN}hPia{nG4j2e_* zY3rm~A26+OUC-3^1!Pxzghj9%mZ@%{IpAom z$RZRo>BXJ}7Q)FC6An};VtM$l7dYU1Y5dkmI{&GY>FlM`2yTQdO5qYN7NcW5KtlX2 zEw$<5g>Do+H4qANz=$^qj`F}u$Oh4ssxY7+d4P)5!ci0qC=KXPYZzu^GQ(=28qRj5R_K^2a~kemlnB! zoL0ls3Y0O*3;fEgC-wna^);v+vX)^RaK$}%M!@&bw+4YRAJ#HiTbV-8;j+j>@!IT* zfJ5U4w4Bx{C{!642m~2I8%1OeL_Y!6P(wn#xI~Jo%%=chX=X~9a6d}Q4z#WECg5gV zL5`r#Limj?1%212j9e^l2ioE~c_B1gzMBE)cLMm#bEw(|a@&=35@L0~!YMPu`NEfg?zy9?v zfM9k+0k2&IeKGqG)nOsd8PKb%?|lGzJ4YWTlt9)q+<2_NslVi2rqcwPw)FG{Pu+$F zJX5TAw$_}JSq!H6DV|^7PAc*=Sx`d=yh>bM1?gY^4}VWhjNWwe^s!hc8I}7wF=2dz zJBUzYoeK-Mp-Hk+h(D3O8AR}F1$-d4@Mx`W3CRo{xLUlA1VfH6;rQaS(4o9cYhTOV z`VzXk(AI(nY5A+56`}0A50D?%WQLR0ws*=#B?V<)@~%Tf-F*#Xit#wEeB^@2w(=v8 zDaIxr)mYW|a-3S`+8=8ePI1OjV#oW((}U|D5|6e*ELKhGBw)M@H|B;$8GKLU#C38E zhcS81N`%36s3vYl`6sG*s03@sRT*3hT}4ndX9N<5r)cmh^A3N4mVNV^-}tr*|u zQjHpyg2SlS9a0NXs^So+3`9y1H&Mtlu1urg;Dv_qc%>YO0w}&%D1TQN^9Z!et!PTI zWVg4E@2CEIcd%$FxP!3Z?8jsk{+W>G@Gx~J=#FGfc+kZ7C-V+h2KV%_E^eS3`~lyJ z@wyN)5;w|i^z$-Y#}|T#1vWU#g@R4+&EI@hrNa9kq7Tkvggo*O-g-B6w6;@RXBv&w z$oDnM26v;4pQASXgETcb9#Ee?sjqzFFUT7B6#4S=Xvl+U@W#zFaQkCwbhp85ES$5Q zhRDbzuD>;ET0ks}Z2&ep4&^?W^yS{xixAwX(PucP~e#vn>U zBLoM`hb4IV6PNg0Ig#`WFb2vpQ&dRpUjgL9Hi>pNhkJ`AH`2;8pQB#|>4B>#5ku7B zUjkJS@zEb_Z3NH%3I&VmK_x0HEn0*^0`nG@Rk*55)i+ha&`s%skt$Gl$NX|NW?^xQ ze#AkC23#Z+5(TnUYZ*|3!R$3|Z4HQ<@f%SNg&<5-q!ch(Qz`_~wj9KD)n9Hp)$HUb zJp`~iiIrGI09s^A_m*`RjGt)1RiwYT%rrYH&@E7N-biz6JZ#`AU4?N=zn(MOCXYfB zqcHzlz_a^UtNnfbD4qzR3M?uRkbPVU7P+aU*MDTqj^1ms%{1%If_)zmdR!AW1$P5R!YB4~&;@l2{zSvga|V*r%Jjl>8n zb?lx-Ia^lNy$TDKbr-4)-ok$9UXUI$;?>gCnuAZke4~Z~N~S4V@_>C%l<`MbDTagV zh!ni_jXA7*_FlLc8ZiSx*ti_mQ5n!}9s(jzPiR9|)FwfTatl)_?Hf^!6`U1B0{Ul6 zDgXt1XD$>VdG=8bq~-6LZ0lYEO$i>voJ)wqQJ{El&!X0y#c}-J+yJElQXe11GUs0z zF!vUUW=ktDJaIRxtXC1)O6)R~65-D!Rh+R|5RWC&j|nX0-YO9)O1hPLPj;j)fB7X+ z_lnc|H~OH_2donn3x@^*Z5$ip{6cTdT|MyXDz4EDph|?&iUMQi#WZmO%P5jZn@dwq zPh%S5_u)sgk&>uV;MrW~EH9y`8l$1`>3Z=(DkigKWN0FN_DXO1@}Is84cL{FMGe72 za3UEm%M_-9nBd=J{Xlz1x{V)IH_tM}04bo>RAbwIOl^~@Hy!vQ`WWqb%%TN7^ffLOa7F}OUBK?7YUEP8W@@yz=snp_~y6% z^4pfofGdA@Bht3fdmki_Fbc`|wbx;bfLN2j0)ein50)2n^aq%9MjF0LpuY z;O4yzQdXw$OIjLpbaX0>_T7x4DvcD^$uro7b(L^q@{EBI#pGkqK8x4XihQPH#^?`Y!Gl%9Oy)2a9T z*)()-5Quh(AiXIHkTj)BPhLPE?2`9;lYpFUx&t1=FE_-zDQ(%-%3L7LPy#$(LaCWH z>lz#?IueQsp6lm7Q4qCktupt)PLdK-hrBbt*0|pie|2 z5d30P479q}3WB_-crQHzx?vA=p{r$LCl>e~H#UOGcx@f+tTDdL@dXOzU}>{2TSR7` zzXIdHnpq^~Vva&gORR;=T^B|n8oZ2k4f>hq{kCp;I1tciaL@`3jhu`A)*TfC<}Q-p z{+8pOunezpBBm=ENVp0FsgOTxT4kdeQ@M5s!jp-KcvV)B{>gO_e<8ha@I9Pi2|+-j z705f7G%y@LLzs(X&}DFj?1^fE^^6jpnVTRGkRAgl0a~Y0osqsP#%3UR6a@226P&nJ zqQ$wEig2dIji6l3POhcfAB?5<-@U_i2wMH@92Aw0&aNi1Q}8vmw$guL4Tg9G^u42`8shc!;fU@Nm} ztVB7F)jvm#`r^kGGc!e>bL(d~FP1+Q()QdzQZRL06w;mdQE21-se#!S6X)Yzs+48C zG|qNr`FQ=~dvL}*x5h0=zeYo=B*dn2f1fWeh-ho}ZxEcx__YkpOV5Kz7BPQbWUn!bK#W8h?f#iVIF#ysf<1_= z=^9fhG6+{XEwLLQud&h0879toJ^(#h1|_nAR0-Bqk#lE?(iNWyH-WBDh59bSh>L<( zO=HQg+dqP;erq5QW@%JYPob>|7hO57x9%QV|!F0#*m@fp@(8=gVm2I`uKKsI%@6MF!(&$w%F6*Y5@Ey@hn)EL`CYB_hQAZEvX zI!~XC(`U#)pd9wV$Rt@p!|7O8TbiAsI1y{6;$tarjvmdDc2d{*p44<4Uc@t32)G@c z-AqqV6XTPYPBDK}49^hrT}1hPc!vgNpk?xU6~1Cnh^9s|i*N}QqXa4RJ?CM_u=l$d zs-Y0T5u&$)Yt8yu*CPj7WpzlEE9vmi01ThG3OvtNY{?(&nUjx8!t5BU0a7f2Z=@ea zK`0&2k~HQ$f=4pu3=M~}pg-NNBCqm=FrxoKQRS3#ooTG{RSOvH;l7r3McS5dU9OX| zX_itsE|Saiig@yQ(#{bV{kI;bW2{>l=$vtP$}{QT=Y|pt-&V=7?vH4tl|x02z*A`m_~4vL2^1gRRCgv}ts;^Y9tadzS?n5cpQ7O>6q;NAe~J1IT&(#7pH31QRneX&ue@+~p_8n=Vh^|K1O=Bx}=CPhCkJ$GbrU?$Y%z6Cf76sjX|Ge*cm5 zt6%*#wRg6WCw?wnf9K8A+j|`UImJ&{lkgi!u&kkrcBs6$RxW^h=^KZPI8*qD-5?lk zd}Kadd-FOFFkmj$m#v=dRJe&^q+d|@u7dcF2I~uOSSQC(j+k>5LiF_6?il+9w6j3k z(C`rHmk;|=?}d|8Xgm=FsXuI!TI{o=YR*tQyQz&RXq1Yn(Fp>g$dx7ltEsu39u2+h zC4N8d9kB`=k_8ZhC!XygwXzdfdJoHDjyXu&2qDHLguFoNpn}eTKj*q7V`guivj;^% zY^seyQkvQ%(pkY_bwrup7Qu&c$VHgAuQ4crAV4EBJ{FZj2)%$97))uE!_76C6^+j0 z5~?MwieN|-j9RL}S%+Z@cY(1F3TSbAvjz^&&kRc5Ec?GnkYN5EZINlda~C9FfNFvU zUg~xz#)oK(f^ixmT7v_$)WtH?6;*<=QPaRr_T7@Vln05_N!O`_+! zi_^8&-%UqP_7Knt^9Mn&gP^V{{j`s6^rtgt&(kzU^aVO%F}AhXC@Ed4U|{N&$90WE zSz>MF1;$i_1r%p0Q>rs4m*vMTqoGkkIondK+7c9BT`*Z{Z-xpS z09f+a11)}qjeJJBb${5>pmmXseS`vk1=66h8}35|HkS7C#E1CW?-09#a?HI;>yKjW zfDSATBS`RJlrIO#x&7{kX?c{`8IZDKVs!RErPe_*&{$G)ZBaUPN*8B; zdg_TMu>R{&wil>Oxs>|gZ-ZFvckVq(?_9l=`mRr=;rpX$aa^Uo1Y~PDs(sR3K8Rs zZak9~@iL%SR87t=(XcQ4ZNCLAV`)TsR#y3~Q5gyZ^eAGflWH6EDE#{p9mM9d{HMaJ zGVi!~L!#!JcNp6qdoFKL!PU(nf+$a6w9pjiKGN)UX+h(BhS*+s4RTC2f`V_nSRM;3 z9Ze6;Vr+KP8XZJW1djX4pXK4o;xLYwhxga&w=(b=NTEs;cMBdI&u0vAEpxQ2v;cEJ zjK6a*HCLCXbQemFXNdU}{MA4Et8Y7zIA%_Yi%pmCfLXC^WpxfKZ!rcCf|dcqg!x=t z!%cjc=~TY%?=Ey`WNd0&rQRbp z+@E}_G-$=ha9pI1KKzIP89Q)or)zKgE}cDfDV;ofDvAMp^uZ0F9(=p_b^h?rzY;YD z25#R?Qyi{J;OjgB3(b=r?jK48K($NrQ)zy5nA+1nPJQD?sru>cjZ#5Yip+W!R<8r@mRX_%;iu>Mg|6e#7of9=h7(< zi76mL4~FXv*I|7K^aI6t>&*|)`hgvR@~4Rz zuyKe@Zz}M`H+QsRC1zt+qc^Q+ba;e4AYYb9|BGnk3$;%@ zx|5!H@k$hS+60=^x^}-k*rklqJ+%0cUkZMOmHiux2M~gnDeFp+p@{C-2~5GKwYLHT zRS7OafUcncM;(6XOJ1)cDcxwv2??7WAYx-~wSh|g_b2d~E~iuHkEi}e<7t{=D#c_D z6cgdS2UD_n%%giF>Hdv}Y2@KF9S(IYYx@4lpu5gH;0o-9+w*!+l;7k9oihyQ_ zb>J;|T+DnApsO9wCkqrYRpJfcaq>zG7RZWo3Pg>fhbkfC2?4gio)i>T0V4x05`5a! zh?@}z8p|WyfsV`~n3+WeqVAEV| zbCDhw)tt!@8iGAQICp?BwPKicrmhP|=#)4@Cc*|vJCy@XQ4O@mz9dsYL#=J35DpBd zhBEpdQ1jp+l`-AFb!$(+OH3QI0FE{KD=9l&Mg_w0!GSdL{*6@H(1`K@Vv3?w27f9B zB{7I_iWrv-YIRs2#5C0c(1asL8sIh19;-}A_ zBtGGj>8IcSdFp$3Cp8{Fnr;FqpMp75x3$4nV5Hg;G8p~^0kFmqti@7ft{&D0!5fel z?i%66p)nW&04kLa+?jOy&h5yuSjH0Q9~~ri0K%uXxhZvn4~Icv21zBv>LifO zgWZhqFRR%h7^)~;o@+@TymuFXsW5#3-)GOUvw;dIxbx7iRYq;MEsaSedopu^0K=CL z4X6|e^;%e~DCkuyfB~{R#&K+H&me?_$btQ}0-zOPV69p|B*LYeL2EXc1gmKl%r4fD zg_zb50xApo@2bd#XlrgruU;J_XL>F50ugTVtY825<1}=80F0R|3HIY?V~fsc5RXJt zp--Yj(x7RIY?E2)0_5G`(Z$Po(gApg=3 z(a5#90#03^QC8|FYPqL|EQdLiHJ*|49FYDaso>?^=5MROI89 z0L1(c8kgba?Nf{jn$V?^1HNBbc$oHP-z7W6Aj?c~kTBP$Z>Oq~CNe%+)4{?d?w*b) zyQ|>dqhG-u)g&XfM5|9%8;rM#x(4ziU8rkB=Wk%e7U1i)j=VvZ7JN~e7BPVsxE?eO zchK4*$PT)Nnv`Lun!Fr_#8HO_U3|Ip$8&c&M3H zW(Vo?>2@+aP(~5VHpThei)TPfaO+JF^ME0gt3!#|EFh?mXVN^&0Oi^3!c<>H+zi{K!&JF6)lGPOlNts+pTt0b=3l#x@iu)mo%?S>xc)du)4h1dfQ`Z0pk;a1APf>b5luupVqExshK$w&fVV$#C`|xe)(Yxvf zlfDn>*Vj!~r0@c-AuIXaIGIAuwY5vO_lOySMoX$o)2SEFr~DRZfHcExj24aC1IBLi zGSeS39>mPJz6jo^p`$Xy@ZmeQTDN$Zt`Xf$oEzrpiBpa_I-3=3fD{>k3fUo};cNW# zd~$43!MBJR$OLb!l`9#O4&Mh>h;{01VB!WHYW+szE0l%&R3sdpfXoC2BU4c8GVsu^jEQH+f;Vy;HhmGoQt%r~pe16h0DtWgEfgDeE)-+q(oMvOP_dx&lRM1UjIG5E>Z_S^=!KG=@((rQ|a1I_4D_@TqunS zjH-YA!(U$oCdRi-3fw-|bsarQyH0%ZAP7CDPNc@JcDfsq1pq?w;O>3aGncMhxePim z4Rd9)*-{Uf0_^<7Gvw{Jr4drr#>Yp}3on0;#x7HF;Od$iNq2lRox5}eMm|aJf?CoR zo3gcJj;@iD6Ah4l9tega#HZp`12e0tE5;|D16Hg^T^&u-S!e-5JC;seITt}`^Q@C_ zu85Ea&XiPPW$VhD>K9$dSa+>_y9hdG(@s?uY*=OE7!Q!K7+NPXl?pm#mQ&ANOV8lP zh@&8PT+~5&liod)S_139oVpIAQz3lg2^w4Uy#nQu9rEgruOavl5HOboD#@(_16By> z#i%EkTvFRMs=V&8memjq7h*Prv=; z>(se##`*(=VOQp;sZau%B|>Mvi3%(e)4V!yL)d3yn_B8J(S7beI!wbV_BZpVdUjxf zxK$9@AO|R9Si|OeAHY8Xa>WNM@Kjtvu^cQf@zDtW;>n&_d5%6!&$m299wK66c15@t zSVI|K0p}_XsWi-&#!IH;@i+g4AD;c(WzUW5&fi&1>*F_4bul#_5R3;HHAb6Tcf_*6 zdwB%fmE-oqg;HG6z^#b`(L!f$yPkoSiT$gju9)YmL_*4=HwL+G{*u+Zu&GoTVv^JeC z(QbE^(#LhBpuOzl2qlL-UpC)iN&%T~Fz-^J{_2kA)OGGSaa52?aK;H(2FuLG@&fjKX3$sh9i=tYULgn%%_Cn-HqgAFR^smebWmADotdf~8 z#g@2+_N6b+wa6B4hv4)~xi4Dl(v-jJ+LMM<^zz}iWuUAU15@b=1Oh(k^%}zRgSa0G zoUS0{k4Updh_cFW_tS6bH~6gA20dqEjR0o&`u7|D5!Dh9EM}iLXes0M;204q3}!1O@*bZN^Q?5Y@uW3#~3nYgImHF%>6azKMxIR zlC-VvV?Ak~*B)MdFP$dJzv)O1%{kr$EqIy~w3XEN&f944h3TF5-o?73VNNS8nlGOt z`0q46@mbsfgQ>f{lQHh5%THd$s#r`tJ>6Ke1*x^ZA?;Lwq@01_!T3jqN7H-n|2BQ{ z>6g;+lP8JbT}s!8=5GWt`{RG|<@EFyUP`yGzE1wWRmKPy;;>u4VF?NjwDfMgft?IHyIZjK@|bHw`s!bOF8%m>W@0SI z!B2FTtDv{Q+Ai8WXh)8-b?voxBu#1tw5G~7{MO8~9^|Ql`L}g`IyJBc#dLk_Bpu91 z_fp2MB0D=imqwUctFl@zj4R zbM1q^lw+FPB!4I)6wF6prc z1Z8H$(>QC4EuX#!`BZQ$uW3m8E4ehcc{^28>R8^g0rR!E)&bA6kkTIW3dI9OX$Px( z7a>wxN&JO%G6>Mfv3@1+jVPGLnKp|f$Juh+``j;IWe7zo+>~agD1?}Ud`cP=*2c7A ze*C0RP>xEC3W7BYWuYV*U0(qG?tng2GVXzifkaVET0+w@oQ$68&c^gI6;QAK?(I|p zs-QrVj){7K&(^|QD^ZkDXjz8_1m4u}RCSK=kN2un#ZjIdddcP`GMUi@XSd1to||Mk6NXv>kzVFeABbnj zMy74b!=xXT19_G%RmXUU?#8+^F5cjEZ^9fP5P6+)%)OvmTNn=(H}X33^(}6;g#w#n z&&=>)``EKgrm1K;SY3l=WQZtO(9HX0K6(r;=fdZ*SeER0`D6?^KHdp>P>D26)v;KF z@L*{p-MW5*xQR*V9|IbivgS&T6hqxerrhf;bIQ(JdQq8`5Bue_c@nRo+^{CfK#_CT z!!xAI!r*A-o6YJpXfpZDso{Q}v4U@W^PAs}b@FPyoP<_Y z&>d1{5kl5AWgid#{)Mkk&-B{jBcdmUzk9C51u(oTkz6#lR z0~fuInzYxe(PTayxQCC7f#aKG@-h%dqj2|tnL-q+z^nc(F?g8N1_QNV;rywF6h#=g zw@QTCk)L;N`T>QJ3egZP3Un9P-wfKwldY{p@LxvIc2O~Ko>alRsq^^p^wb}`$hlrg zv;7a!I5oOgSg#p!?fZCt86`r$Q8_-Kqd<3-ApONF{|-M|P3k#)iac#98vf?Bv`aK? zQ(FrGXN&3DtG`R{5sR=*NjU?1jvVcY9tEqoBqlk$b?5N!F@_C-`ri8WZ}FM8$I?8w zM^5=9Q7QVINUd8PpTH-497O@k7SzQJcW>A-m@~pw?a|F+-m!_XdhRY|gegNhPBbzL z9Ym)krN0yI!Xc(l0>ov34pZwybBqnBCT>6^qnn!AuH)^S^pz*5^7Q#LX$=lDJo+Ft z5M2-ZN>^Wdn>jV`=mJ~=<1lPGATl0N5S2?)qAX|>od{8O>QFKa#Ijz!fi@H4BmK)2AHQS;5M z^$77Jfjs0*xvA z7NrWtx3sv!zTjgAHqJ*7SdFp__ka+lnGyOYjU2P_5eEw81QY~|GGaMcR~9c~PYQGT z%vn1=8|Tz@f*$=+QTEKrNM(4LRmZsnQV%A`vt;6-+-oFxrWt4O0%%DZ62&ybLuD*) zbqpDBm(LK1Z;B)e;a0wBga~dc4wmAwEPxITup~O&##bBjH1$~=1O6q;0_9r^(OMGn zI?oL%2xFk7J8>5Kd%)_r9faV~0Rw>)Dz?Cj?8=UX9D1H1^MCAy;k-rHIt&$qM|E3i zRY&%ZE)3?EWk&#&lZQS_k<`&qm8%lmi3aNCr)&S=?X-#kQ`<#%LgrLMeTZ$C|2nRZ zhDK6t35v}_5wOQg83;`sN@YF@(s2~?Neqj+%H7m+q9Z*;7u72k0b)Jgdgn%JZAEc! zZAo|UKY(}HmjJW_ez*e-i1hUK)TXcf^RJ|a?yA%`LA(l(d38-odelF|`C$GSZk{pu zxTwn#wK~>77ey)xFf5KfLG}Vo=|)J^e)>#X>Z&6PW}A2$6t@*BEUH-QQr5V^981S= zHH})5wJKf+j^6<)O+OUX0I$Jb^YHk#y|- z`#cLCL6(e{?yv-puh4kR6zc_CO+Wd6uBN~L(JSdh@0qB$+EB-Squ5K|K}+x*j!N)x z>0Q}nP`yZP1SfLF74RDEK9`XMFLPWPZ2lBIcbNhu=B}PIMw8t$M&@Yhk#2)1&{ zr~dqJzL);_fB)@N)K-+<-Pun+`o(XEY_0}k?@AXx`(k>D;KN${@}|1jtGxzmYyn}g z-$GRH*f{Nhdr}v*1wQ)y8|jxn{{?GJF&V6zTuUhdcr)q5#iMBg|Ih*fepUGD4hUQk zZj}(NcqLpbQxUw(#d_-|Q4zx}Lm-^p30Fzq+a@kxheNSJtj8)rY)zyVR;pPNGpTqW|W@fSZq>KEfQ>Ys!||@vMf(_r8yZVKmzao?6y(j_im% z7)@EAK#@Ym9=M;FG|Z_cTpop$)Zy<0+Jadd?e3wjz;~N#t^&Sp3hRHBv^VD@S`vyK zK6O(N_YqnaAS%Mb8-FyJMt7$vxT0URGc2x6J_jE_fYN=CeEB5`JXyZ9>qvK4yhh$z zhoJ=KuO+&;I0c=k&L`YJ_={}*?NATEs%E7qR5nT4q@D6I)dG8akKwaSsgcymwqsNYTqmAk zc?z~hHM`-l)PA&f<=s$ia;XxSyfhrphCfd3Js!CF)iY(g*5}y z473VbFi##TWxch2Jmb(V%de}+KSaBP&?RnRch7M#>%6uzg~IwE)v(64G!95Nge@+- zGTUoYn*#j>zRowWI&{9bG6VfjBaGk|AOtWncmRR~G*cSoMfR6~(N#Ju7LqA~l3S2x zJqv>8FbK@9vA~sMJlJJ#$;jEA@RR8h=YV;_JX)lw&6k7h=d#IBgt z(@JXZHup6k(lWqXq_h=v5wy)Yt|YT#bcmEzl=tVKeYeIk5*EG8v?nY5@61L)CEA6 z>0T6Nvay@#hAJZm%DJFTlx~Q}v|Ht(h1;Z84OxRmb&JVMm7BVb9A6$h!ryr_Z4nf` zkBrk>CMsP|O@Y7oZ~r{~M_+xJG}5K?-fym_&pdlF%7U*_$nF67qrjJk>9$`3jV!|j zuglC<*SZAdi4Z7?iv08cW$MjiEIqF~y|?y#-}j}ftM_hpi#sXqqBOQVlExm7$K!#c zNnpg1jUba?kRU+d7zl#ouOt`)GYEo-VIVVOTh_>uEK?F`?h-|+xpcGHOLbLs?fYJJ zZ|!-W^RbLnvshL4e)s#{<-F(o&aR@CxfQZ>O6I`oW$qE5sq0Glh*HQ{Yz1B%nhuwV zIG7`X540naVS=I$BNYokn|2_}4qdh>(Q(UD#G?BZ6X$bGmFw9E1dpFr5G$19Z|-Go zv5jUrx|`BtU%Wzd5|{|S-SV;q?tx%tvqd)hFVGs# zJDEp}g~j&J`B}e!s*zz`HLO&O;pcOz(u588581f>aB=Cw{1g$U1Ju}%EY z`c^hbfmE-464wwe3$2^`|%A{6+fKfAvJV_VhDRo>(3xSFxn1wH`LN*V6y; zul_h)e)1AN;5xL$_SDpcc7xEDQHF~HN?)E`BnlcNPgM8@0Zs=TDjoG z?J;hYx!U;&5D-o8vc7o^uUeVi!nUZ0l>^;NNSc1j5PF(c&F60*%VBHXYJa>A6P#aI zO&`7YAsS&mz5Mkj=#^8D{`}wn0F!bJX=|4NB*&y-E|3n{!&qpu2~)IYw$`WuDjVv1 zcOLp*ckwM6w6%rra(R9ku+hjtz|6_>t4rwGM(UE|mXREioI6dRr{l1jUpZRLHgN<- z%&t?%KU_r_bq1}>qt$4-?(I|4z=Fh{iwJfA0a`PPiqUWYwF-Ju8jCRV2}+|84NO+w zuiAl;yV014HEh6g#Df3}ba7K7gw~Ayt}3Sw1;DU^E^I6u*DKtlt39rzg>H@}GK@h0 z>}PmfYV1K9Dy-o?GFhGtC|xEiz$p2~rgj2QslteV)wqPNp1Rc0cZ#{|D>Pv07%iUc z1ooh@mD07?l8z-@Rh;5#W5ay8{3DetkpSU-22>wES2I#ec8Y0`c7b574 zYh2GNgrU65-Wdwk;3e=FY3G2oEx`=#=lx8M^QKL*l(AV;!0ZIu0b6O%Mpc$j7MPTx zIU9&w&Sy188_8}ZJl>3X6<0P8S>8d*0O|w)Y`BD45?Em{|DV0kktWtA(jqN{rNv?_ zQCg=|a@KN70pw~a{Iv_9+rbUj4X8Hwba8biZ66zT-k)Co+Z*Zj_;`Bi#V>|7{!419 zeD9T4(@@VKsh5CO__Zl=v*UB5#X@6U-D#4u`)~f&KTE&$&j~0kspouKVe^Q6#^u5y zs`(0t3IU0;59U&y;$+N}GhRw8!V)R9GsH+Wq*MJv=?6c06F^v;zWCy!5ezHOwcDsd z&1!p|rO2aazay?K*gk-d>v$=?)%xWDN_#c+eH1ICja$v`D1enuyoca+&CT^Urbl^a zrE+Q~MP-Ztgo6?HL7KuNL$>p)Ae4FYIKiDXBj7Jk z86W`A43ntag8VvASq>Rz;_H9ku@ zTonwd0Lz9!JY@=f-YUTqrbZD!0DFT$YPV4RfEBtS=P>@LjJ;3QGy#MFH%(ygSHQ{CzMd&CwH`72Y?=T&-~ zORs$IJH%38CaNn=U$}fVwY7FfGmiqagp1S;_`Prc=TvU|Bwe_6g-G72)J9RFWg_)8 zoymyI+uq>NbMf+FQE`Skhn+L%d z&8;7o<)j%=JEkj;JKB;dLAzLKY7h>_1(-^d$1<|Ia6oaTc6`eX0H39F`}!yV$^HuK z%pHq^LY`+Su)Jv=p(xsyNZm)*U$=zroq2MX+j^QwJ*`bUROvb(m8k;esgF8i?jm7a z7XY8uc1)o2xD6CUjTWadD(q)&fv60fS}tFd6S+0*x92#2N@#)dU<%F^ndPvM}DMsY!%6sdz+pTP>~< zGqeR!j1E`3+yYc?<_M(Sv_O(pE9MLXm8J}O*=Kx^EJ0IQ;UF2@GI0!^wa_TBL~K!H z#v)e=8_m{@%}rznAUM!sHH%ss!C0I51u_rT0Yg}I%sgnt$8SkmO|kkP1%@ljv_fth z2nH~C_Ec#52HP4KSb-&E6DvtwK~2=QpBh;tT@m0y*SdAu>T)Df_gTOa?8g$-t6W=o zBr{il8u+V&&0Y>Lb`H2&m|DAgY><aXDYN=R<-yEhbtSAbEJpffDF%N|TiJ&)+2Fw)U zQOL6ksG(3&*}~q^=Rx5NKvftDVx%2;32(;pq$W^1UKTLH5IKnKT6fBL82Bc7-`J@?|1#FpgK zcVGQmf)tn2Q139YMt3M9+#GvV-vofoH&S(V61T)!x_FiV=C6D+y+Yj7>%Y96{=2U| ziuI13D_9U%)Ucpxx-MzN-2w>Rr`lpAmN3(VwGx!$zLa0j%#Ni0;a~m^fzoFwwlza$ z5}+Q7huH(+;^P|SN+^SzZ{2PF?q?OO&Q)3ppE+kie&n92(Mk)7wTvpc0vB$6>=yn^)!++VYDloo!u?>@_mm6aL>theE_bZ2Bzfl~@y3W()hz=q(l zT6zvS7oO43-l2QP<{Y#r*xp+uNItVhK;?h@x8F$%xPc%3^~bTAwgDPA5AgBG@Zz%( ztjakFASxlya~ne zogtslviUQMv{zF%K!=zBKH!G9Hh!yxxIiK`JHsh0_1AiRjFaoVhhG60*gXBP?G)@; zB!~L{`QLw(YSL)>FaG%VQvdK7y3xTPG~004)#UsN^zTIY6T3h#2M?5*l+4)iI9|u$ zJk;XL4Ge-oxG*+7(u!dkp$8|%3&F{7Wb%@X%!wy~rYy9BuNXg}ebz963x?hj1MW{%n9?8>sUy4Q#4&xGND$QGLDna%i4K6s{IZlnqU8Y}Re(K<2HCqox6}q;rydYs!Iwg` zB^mS%g4aN>&E+*_$6VMaBeP9+EJl;GQks?_Q_?gKE-%mvfpehWeaDy#>iy4;EvHpn zBMR}k`I*#P-2?4n#XvYsvo1z_tzogUTB1RETLcm^0L~6UP>joe28AtC?o~lOc5eb} z0yQE4Ef7@7!njdUc|p`(2%&0=A)5YjF#hP^uKOb`G$NtAgxpkjWG>>z?k z`-dB`>LF+WU^#l-uPtF&A(OyLghv#osluIP2TEz>Fswe%7Y(8mPL3;MjBFnlc%Bvf z99>?A-|%-ZR~fbR&R*_dRSdr;`y{;{U}^G9%IF0b+pO8<+$~Jl6u^PW?qan%#;;$< zK57mwt{_m5eKhXa1${H>jYS> zPC-#XF8mRJg~xzt&_ujuba-t!y(}s_m;*Ee9n|2`IsiPV5ZKge7aGu_r0BA&wAWOT z#UXGK7?%O8ivgX+Jy_7HmW&21DE5uWlUa0&c%=R2%mQj;c^PKn8u-LxFFl*CfA|S; zBy(xo`%vEknF^@GG>>({c$@v*_4M*Lo+RL}HGRPO{OrStREf|x#$}6mf-k@LCEjbK ztnniK4<@j%QD*~suVZa){QNe+q%i%XuRRMeIKw;%f(-VYf%rXY5-j3gErr<~a2^K` zYNxK8POtpU&jDPJA8WkhXWzG&f#{uEr7 z@%l`t!M%fqlmoi}t}Mt-^-rZo0Zodj^br;%gdl)Ww(tFP`4tNKa7ij~ONbj0l)K%B z_-(XMx|i$%ukqQSNqD8P3tVsfLI`ANS9v8sjlxFksj1GU*cMWjTN0ALhP#^u@GRH| z!b}@(LwpN-firXUnTONr`2l1gH3LZBKIYs=n_64K%@9H0y0qYpJkMAI=N(p60RZE( zNFK)~++@mh-2wYPGi7lF0)wc%!>v7g3Rc0Xw2VB;kOi;BgnUu$B23OaFgAgk#pHR2 z?{gm}!V+^Yg{}zN_q~VO=81d2!}|Hk#s=ClaUYFZlTi;rW`FQM{uZ5?Dll~uJqcn} zJJ7G=qA76QG=>m=OAvnPzxTH+nw!IiVAnYj?g-!D1N%HzbnItk;EpF2m2I&^rA$VY zuYh$S-OxZ%Y?x8VisnLo7ufU+av%QS0J3>7&M?|Qg$4LpI|w%G=sCt0 z_%^i*F4NHCEOWqo&s<6&u&&w>ajTX#d2CN~XpLDtcf*_g^E{T}yJ(cXo^f;|nF;nK)vxZhv{Va$CUpwK?}?(B3j2Y#V`CM}OdsK3e=zDCLkAv6~3( zBdjUm|7Q&il9Pti_&p0oo3Ai`>T7eqnpE4|iCfb3%>>mU+UzE!UDpvXn*=PH-lwa( zvdlj8MlfTlhUslt?|mkZB}xDMEI#AnboKG`X{&sPeioRSNAa_}-vC$p7HD;XqW~;+ zFzI8l0Q?M}KLt~-(UJf&&53={?<)X+0R=Cxqh-c}wA^78U@znj z@)dov3P=H-8hWW9n7A4pu@wmZ-7Vq(h)W>(9&!Yrkf~zb`D3g+(#S5LHd4<3Wzi9D zpYD{EooSmu(Oqc8>=T(#G`%4f#^>fxdI~wimC#8E^pGQV;IN1|5qbg~23;X2IPrqS z9I+(@oRx9_ND=(2xR@FT9J~U|%;kWj${0TZu>fA%N1Fy)gs`fBMzsnYlyySgM(Pvr zXoiLJMA)`;0jS9!xIKNF*R9)MMA4x3^!)QrQc!9j4fVC9_ix-vs}H6r#{t~~yx0u@ z1y%t92Z!1^;bn*E&;H$a(-gG;u3bFO+1f~b9n>*7bDDYy@Tnqm;ISN1`LY7RZYylf z*af&7{?m7`Om= zl`gM$iQ&MySYqJiF%|a;pkv~6(1%zX=mLJM!e}N&6>bz`2TI^Wq6qiOEDtt?Z%ywi zbkGU>Tg}&VYX1!_ELuY%#*J%~O~F?9T#0)GZ#p1-^uV|ScB}NrQpd6y`LKePu`mv0 z5l`^AvS(}v->{L;=#7h!_6`7Ciqr^TL>Q}DX}Jh_$bAHZd^&iiGE7BBAsk9Fv@T7{ zmFsGb(=#tUgknVS_MM6J*8lq>&MVey;yR4o(!C+LVOfF>wJe23&zcKlj5{!Z*bFgS zKx@ra;nI!b(6hA?a5H1xJH~Y`&ld=&@Rh(XJ}){X+TtNx7z~)^{U%8>LWXYNd57H+d)q z@mcnh$FLEZ7U$sIh^X((>oVCBWGEmI2*kMLLA)PLKQtdXAr|6@O;x;Tx(f8ef@&hl z7Ky@1L{p2<75+Zov`Jgu=Go9?x_1>en`>U41_yi7@Hc;(!YmEx_Pg(=>u5j0n(Q#1I*_I2^+OoDsVO;#veeq!{4N3R zu(4Z2dtW*;6lr3XkF)}s>2uCG^O41@(SRz_F44~~{>HDTVY>W%cKcR(<5oqfmC)EHcuK1>-LJs`<@UnrjGni|sU$>eARjx)5bT zrzRg@lC^a%;{$oA;TXIoVEgR$1JZ_a)CHi{K~Gy+K%-ow>}g9+CjbGa4RN;-oc8I+ zc%*CYArQmz!g$;#_s8*QotT-PL1WrU-S{ZisDkJm)F^U`Fi++*H?@`C`}tk&hi@LM zkTnE~SgSo~?HEB|$HP2XF)i!?VlJ&S4hy~%aDUDMH0fa|Pwi%4P#JR_Q+Q`h4~*G) zQH_u+4w+jiUGB`|4~@IO7_hSuhuMJIL;S?Lrq-$0d58*Bh@~P=5T=5}##AzwLxR_K zD4TqYP&ZI1%#RSw{K5=igaE%;;ysv?hK@5Zd`-)FnE%?!9t>g(_dsUd+Jo`hD@ed3 z{T!n~uHfRBr;=bEp}2wtKr=kD1xv$18YDwtaG(!1hu}eIYev*x`tT!H`5aacK{4r$ zf`AIr&gPcpqV%y=2DKZt?F!EOE(M3w+|7QC+w*Mw?&Sy=n<*7yB`agkIOJ@qS_;RO`^%`L(<2Btv)swh1O)Ju z&#eKTcQq!P{~U9VWnxPXISX}Y!$lCXdEjBqfR!U4fmz8KF;*^D#7BD z>CE}zw2x)s?Hl*g(CHe0$XWIjvlT$nGqKBl>NY9lyi`+2PGu8u9Y8?kNv;<)ZlDEC z-0pK&kwH%e!LeBgKhCw0dGG*bN9GmM{BwhIPasaZa)b>=oe2_TIkcbM#}fuQd5-r$Nthdh50CatQa*uYTiK2;`zN6=OR1 zd=YKD6DC6L>tcEzHF~WE&_pb#hf_wTx%@=1F;uovML>Uy0Y)+z7u4VmK>%+uJDH91 z)r}A(8yRa9Ug4)>EmGQWGb;?PP=&C8a;z45X#iDMz|e2M`!ha|S(7oaLOcg1AL~ct zI@-NKOPbo+x?5AxmtIV39LODN4YU!AwL$P&1BE5lVK6NXe3o49&Gm&;j};;}vyz6s zaE?YkbW{Ui8R%pXpEb{&W1vemL<@z8QjOiZ{1>mBPmjKU>5oc@pS<;c%)w(M!DUvS zY%e@aYFaYsXk!U6igJD3LluY>Cf5M-5q;0k5b%Q#wF;jCB#*h;0!kYM$t_IH@+p}S zrHF~5*POn=dKrK?JxOXB45hBABh|JUlhKq`xq57Lf;H?(V+hiA0`*!Dz%%2Rx_K`I z05q5FjbqRD+n~Ko2z_Oqs%8XjB5FxfLbt8=T81vBT|kuwEQh(=62`h?M(&W} zNruNE{^ypK=Cos^FbCFoD@p|Ras?0nw_Q+A?d17#S@E7xb%3+!r}sCY*8lG9*wV^x&~{c zsV)P2OqbLwtlxhNZLS1*>>lig>I>6npWLJk_C;uFpOV_cSa)`aU7;;CRp%^p0^dmk z0|U^)7|n`iBTcOi|MB8H>6xU732K-k352zmYvXR8pVYRaGmg)B)7CxwRy(A3maEC378>aG>)@D~@W>F;3W z0R-4QMkWfEi*sk`T4MoWE$)l~6vsmWrn}+Ne+UMNtQK3%eUe1~ymNmf#(CC<( zU{SrX5|FWXh`R<2)yR1(WC}Q&S;U)G%WwgKHWfae`DlXPd^ z`|Lh09Ab~ocMxPqtM1~KbZ6{A`UJWyrhv@~`;~)Hmg=rz40U8ql=0KR=OSVkwoyQ= zT6cl;!k$5DqO??}_QqB~V>bYc^lvO4whuS%#UfQ(%uD63gV=!SW$q1#9KLvkV9T1c zM2ad4O@_rPc8J3&CXUC3T0eh#JoVJKq*`2^ zT5l|$E7%Kxi*hCJ4r@@v60j74O4WAwuJ7q0$a)oc=H(|;K0!e1{o!rO zFz@F$ZBwm_GJ+#LT72uiH=ag5uM(cQ?wJeYIRNnmua~znZs&K*>+(R0?6Fv)CLX{W zB90Kg{2j=M0YoWLUN=}rq~?aGxv@6Ph1X$-9^kMd!0Xp4Bl*jO|(a~ zJ$^<91Fgs{(v4Sso-RN91x(9(Y4rW~xtDGa4hBroJY5!!vFfjcuz7tO zv!%MtP0WHN2pntC?{m;RD6yvu$7=<5uBD&xZ&%iaC|nr(>fwPtvVCK3DygI2)8CPP zMpeLSgkGgSasa|EAZ6cFHHdeY^ra&5&r7*h##xNOw0*El-?GxS6*kolI}41-CO0+d z_6WXCQjj!lv4v4_?0ApVHjt@6C%`6ac#=0OAe6Se{s93_yO{U7VPL5QtrDxw^6Uoj z1azE(Vdarb#tLj;I+q#OG{E@K_>cBG(6Go0r;txQ(cA}(6i*_aKstm(==WWV;KeEh z&6bhX;$B+MeHZY$#a#8@D!fY(1WlwenrClWSsNf7ag8R<^5O;~+Bi z#cfC_T-!jSCe73$K_v(#^U~L_R9IN4nyikh!}2sWJ{j(TZ9sBIS66!C>Qzj?7okmj z)d;OF3K^B*pEQN74im2~DbG(OzUVqqx>f+JQZvEZT+;7|e5jrz+jQH4BYu#@4hga7CD_wQ#1*7|DPvjvcg1yKpTCU;1K`XfK-rW1{6gB9|0RK=WYMq}yF}lY5Qk9& z&@U*&O+eL1O}G1`IUeq2@jn7&nPc2a4Vr>M3Tt`WF=uQWP5zL*wMdn&JX6e=QD})r z1b`l5+Apl3K@UIO|Eyvm$CEWy`0DT7-=Rw(j9RlbrU__;AUaYO4{@>=QvArkQ_D&p zV^ydm;~-D=NKwhOHnXJ=+Nr@Mu`o^Hp8yP4Y5;lGIk|UlJoQ~{pdUp&?a=qq z&q#gFu|JhnC?aUP8vp{WJA!zFUv+P4F&pgdN&n>6{~>eEr$K0>jw+vLDMwrZAKN6j zS%4(HZzH&CHQA$>X=Pg?qo)}~;E~6MQDT|_lej-BuzJjv5*WQsaWY*|RJUuyT0-#P z{MHICml_(79jDFl`vi6ivIt~FvHJEu`*Ji>DH3KFY?cIV(_gPpI8n zP{_bbV>J}Ok)DneRF1I2d<4)ct)N&4Fp6=}gu=o-1Hf`kfCYs!dmb7$pLD>%bGeW6 zQQo4Sa{j5SfLt)UE&)7&jOjRequ)O zb-TtD!ceUvpb6vvvxGt;B6zuxCTyRo5H`>ZNXVw}83v#rR+9*1&Rq!c!wRkEfi zB5mBO1EJZ*p`Y(1@Q9(77S+;so&ZJs*)@DFR2ei9OTKc$Fk7!vSuT&+u(7W-z46o6 z(@$P~jl)FLy{Uy%nbTBM4MQ}oO#oZKI@x};!0`f()I?a62u$;L3&)sie=NA;`@&<7 zrYGoHR!yMZ8q6n8a9Bx8IRQc&Fpi24LhIb89>!n_l~w;_81{7-qyl0c>4a-&)y3-t zk?vT0LlSezjv;HYPYU8Hhg=^VH4W-0*ugw1sV;^qGxpmeC@u6=ui-WQ>ZP@s8nrx_ zHNhcceK$bc=6_cLib@q$oC#xL%m{JQt63+z26BD^RY&t9)^?LXs};=rpJ4($W^7M9 zei644W)8rFz)g8a-J(2u-_kSf53SJ&E^E&qPP&52j%|W*o^zF9gUroSZKSqrxQA+K@4t|8u}L;;GUVC zn50}brLkL^(!}@(F$2RfreXq}8WB80r!S@XGrc^sBCSm<5%5`$yNfc$MZIZubcM_j zN*rU&*&xPYADS*DuEK&47Nn9D=oYGKDvco1L*fN0h+nZNmD>FtTI~VCvl>m-+8OF` z#jJf4>4B*movp<}rsvsa+o25h7B@~A<5S7-jBBBcilNZ#5rKev8@I>|g62{FJ;}xi z6`)*{5g=MrNeu?*sep94eF`%j9cYfXiYhfI)V8^%5x3IuAqq)YYAmP)b1m;cNUWeh zz<=On0{e1kP6gl??W&SMV~?UiZSF$|E%u~<@kg4MTDi;@-m*hgNd4di#+m3w$P=hX zF{C2gMpb~w9V`X=CG_8@zJ^<)p0#JMp*u4ciVCQOLXjlnQ0xs8EtcW4Pd@%It-DF> zt72}XXUo%&0|ayqK^yS2RmTeeWej@+sDVJ!6mcDsjAweG4da^CjX+j{s@C+Xmqu3buZN2gLN<+F!}d(&2)V9P4N z6LNvAi9quM_RBo@BF+m(2XIaWQ>xI`5uY;-AAf1MEj@gBkbrU4lXb^d69Kc;WQpw~ z91l=tbSEpIY>*_tVDiD&gSSE_OqX@nz5KaC$8-D&nqeOVkEUu$LF^81=o;Wp*4*_u zAj8BOGJfC?D~Ym2OOuRJ%Sj>meg}+AMYIU3Qdo%M{?H@Wv(xY@tpw1Z@=001y|heN z^4l+lkpT*<9D)nB(BXXkCC$KJ*q<_>y64eM_VoIA_sn76L* z9peH}yj51UEE)TBl3k~@+l(SDbeS@qS)EkY1t@|8};g0r`ZveHf zP~vv);C>Xb>8Ddx0e-$CHhvFOYIQpo%|UB&c7tVvj;Txm1`T9|6hvY!bcWtU;HCJU z3g8OX4cA&Ah$xcj!$87%z&*5lIJ+1e0~GPO02#CO-dG5@S1qYI3*%Gqp5rP;P_DrY za(k<667!mqDN)=5&Fq-NZg7#2rVd#1l;3z_94?W*_)rn*m6(|u&=8Hbb}E`Ct6|i2 ze7+GdU{jt(wClYb0eH;INFvRm$V|Q%H%M0oY57&PQ%&1G&wP0J4;l(YgN9r}31Z_P z8qhi|yb)`|K7#>aSnM<3XloeP<7!w^cBa@JmFW(?QL3R+ySKFg7(8jZ-ArWzsCmNr_qm4C-?| zB&e>nvo);@5v6{20-*%+ldcf#&P{CT{tDRKM*$|Qp4Jy&=*&d`*;tL{&2tVx^KF>x z2QaT!P}aGo9?czrZO;1oAt{ZxFU-|fNE*DQC2AL+VKs-Y3_+}GCx^8|D~#)FoQTDg z6p|KwF>P*Z$GC~Cx?Xe#Q`3M{*XcK~MWEpp3~zQ4Gcoa#Z3xB6dJY@`rr^^EW-KE= zT*lJC*o{MYfVMY%?=u)Q)Cj}wJVX5rVpHzjn@Y2Hm($F|48pjDz7Y84p_9dhxj1($ zM%0l|8#ddVhnUwsAMqQdGz~_1220Z7PclkUKZ$ zgUOXp3!xUEuuWur;V#w!K#H*#9%N$&!peq;vxZ>9f^w`a(3ozy17d{CwYH9W9*!D8 z$Dg0cP$W15o=ZVuXjd@MBhJpgYtO>&?98C0BeXe87JFjKFiF$csMJTM#sT|sNP62L z=cbSfgSxq-0sX!z9me{suPt)6352Y}*RN0CVnLiY0g2^-ZU^ZnKYWcW zC6pR8`CaEoJjEnR!YCayuQfNPVS-YhyE;tU;t8HrN}qx4^o7SCr*}awe2n-Qn8_-x zfl;*m1U*}HESFnPW4My0$EMSZ&s~O3kOf26y>;R*w0h;X7$;}6rnUh&L3Rw0r)v); zLpGGMZu>~X3hH7M78CW)df3shK(jTL5tS3;%R&)FTUSV$9V2g#xHDydE;==1)(H{` zz9n!}zWBG+7zMJ{0sbc=XCHz+@~iFv`6%vc0Gsa#CJLb23@9jHkUi2Da}Rl?JA%Kn zB3SVV_=7+KizxFkqemqso*5vN-(z5z)izVMLY2>f~6k?rJhRK&K^PYp(XxVU7KHu0Geu?=SZ^xz|oh&X2#LOTYXW8^n6R_u~&P_sc^PH)pW^&b^tihXLOiqw*?+z4@_x zJPt-|6gSarpvgsm;Fp@W=v&u=_lfXWe$R7Qs;lbL&eCrB;s5!4dbSgU^51?t^`03@ zJCy|1fQF0Nu*}b)whFT4zTp#M(2hF@06`D}0jT7H#xs~`q&spC>wFW9$b)&G(K??J z0EdfW<+N;^nKmi{l>qz_#5mkT2*KhRW1c+Fi7v0xD$*98aC@PYcxKK13_9ez%9zl$h9S z4zP6PUK>H{x6H5{U{%H;3YrsqFb=g=I|WwP1C}@^#Rz#jbsfW0v<@s{wNQAw&f8Rp zt_=%zk=L*oQO zxD$VCOR6}n+0P{|CWhb?bEf+q+H3)?kYnhify@C-xBw%%BM!(9Gr-6LSXvgLQ5AwXvw^an^K~Nd4F@KkCRX{XhLvHXRo>`1QKSD#oy;urOxLCUF z3ZUCU+7cI|_3y2YrS-Xc#NIS<&P>5vBHfM%dD8H-NLpw{%itkEF~3c*9(>p3q|gac zb`kdWt~lJ+FAFGT%prI~{XE5L%fJ66&CVgpaAH@L54Gm3KY7OOqci9u_ zBjY}RMmV1(72TEVY?!{-oU%&DmXUJi||;$~Q#Si~KOiv^3$CTrKhk@&{1Jp&(TB+Cl0Ih{+_ ze>qA!^10MROh5%-FBkDJoMV9#V-B7}@M{%WSG8!cum9+ibh+;gJzIvEXB>^7K?}g0 z)S|G%tes1h1C|4q&a>Dv)&SrjuM#Y()CnZ`GoB~tly2k;{`CD=OBikhCd-dqN00XB zatUtBb8#WV4^O~=QZkFR;@0rmBY^==RgpBsm0NoWZ)O(Opj&S0UI&PTdCB8Lxn&HQ zY~?dN)cw^08FbBl9O557B7jf<7($R4I%v)L z8ESDOGws?Hi8Klxk}+uq2;=8{7sdl0k-i8|k%!DQyGJHyU66k6g@@y-64do3c?LLk$K#baS)97me`Ic~o0!gx(KR-R2HsT!q- z$j_8>4~fLTB?xyz)5wX&>G)%Dd9p+lND56@AwSK1OYxUW*mz1A`#OO*1*x5GfcnD6 zMn=(%}x%&LhE^~l0P~#!DFozNO zGN*kQ+5z`-Ukt{qU`{eaXfFh|zM&=7aejUR#!!Yup$n}{^D}+Qd#OLqfnOuC-A;xc zC=CDHlf&a)ySS{2=sVkMm<9I^iwSFEEqYP*gS!vX&3A7^N!d+73)Y4+=Y~^HTQ|(D zDgAQo0|4JX^KClt4gaG- zM-%V$_I9UxACH9AnTNo_bc`ldkE^DN#y$2o7l^svB4TN6A2VJhrfs{m)wJ zhWo3*N+DKzxpQfljO!Gcg3UD`aj&FvkLJ~=b-0AX5=nSY7&O}czG!QioE-B2d5Dx-&j(8fhe|Se80BKRM3er0biaJJ}(>C;UuBQiA7cM3&0CO}2vxDghSsER@KKIEzcmiPQ z7$MC(R?-gjDpGpmmt%nOgcYGLogM5-{qV9Cfa3`1fLw;R;^P^2mbJ2at1d5 zbAZ=1vOb*`A4yYKIfmfHg<6?mzytciSC@Lf}n)eewnuLhMkxK{8NL3Ypq z=kP@1W|#RLcN!o}9;7@_Fvfqrz^5bVkJq(GsX(&LoMYZY78rlRfetyLOv}F9UtZ&N zV+!JCa4ltvf9fJG^d=#TxEI%HQQ)0;O`s!q%we5U!Lc`mZp#7{4Cw6$SE;ozj!=wh zP~t9MIggcaH%%`tq}TuAZvki*8LI`t2=0Ri`6X{vwh9bA560fb9HABGVrr)#DTF_C z=~+>x=PdNbdWVaV*Q8HNss~(RVeLIZ)|o<*`@w)iP_S_RR7fa5Wteaz1fSZHizisf zA}&wN9uCr4)Rh1N{S_xdR+EMsCz5kfE!}AHz~j-$@%xJsf+>Ld@QMd?ZnE4q&gM8dg^hVBEv!qN$mxQ&f z-B1@-lc-46?0^~?C~2QBWz(BF+GxFeJ$>QgxpeO04+DDVqWa|Q%DzndP$L#kkNdGPJg74iL zO%*+DDL;S@Fn5Dg#dQ}HpU@* z{PA_Ph8I#dn)fKBnD>e+)4*VVx_5g7KmQu(NL09MYfDT0qV-u z1rk_n8@!0X_TDHe+`EYT))RO{y?e4S3^>Z|=!4eBM|=s_So=Tvb|V%ls-#2Q74%L> zn`m9Qfi(9Q>6ho?NQDC+SqN!^Ys#d1XxI7!`bD*X)Ik%aq;qMZDaAt23KO;?*_LHM z@w3~sX!!hT>Io3kM@2gGuMNID-_Qe%mZ!^)=F`=uW>{{RJVKzfg3Jw4P^~$zMh1X_ zrGZ$H4M5a>j#Nkdp8D-S8@ZJx$8nE9-)toXuc%xJlP)!$#}%KY1Tp~fkQjyB9Q`wvFo#cK7H(>I851^{1#3&`3{6o!qDYP1DQ#?|nbsHxGdLOnA5T90 zR0x`}k$b`XOk-5jve?w*9n9Kl z>IQBG{GH6j_0{qy!;P}woNKL9ntBxg#s&z`WrkUFKS}~<&E6G<>$oU(7U@Ws`L(Uc z*FZbwBGO+Ks)t0xubc6pwGGYPHpG##%)04kwe+t-%v48(L%HVdIFDI82DfAE6z#$y zazvV^#ai^)uP@KB;#oXIH3CfL%h6%XSTQ9`*0vboO+^f7lsR*wLv!Ut^2OEE2sp?3 z55ixGAwUS)g|V1=5QqrYQY#+o$DUaiWSbz_)zw*^k7C4lEknJ5ManY9UwP>n_O%Qb z)?&JG?{0vzB{B>uuuhmwaR0O0>CEXqcnkcTtbzv4%9O89E~YsO7md$Or>7sj3Z1l4 zHMI$V+JUe+1`y7rn(fRc8by9j+H;Wz_ z*k~q(fH{vw+u7TjYB;}lKD|ff(3CE)hu`=oFQqzKkrxp|qe5qfnV?7OuW>nAS&ZGP zCDz6mA${C=Dzh4w5ov_*r?BL52K1B5|K;w=3i&&-moMc*rscB}{3(nOEI_Bwt_6Sm zT^d0c#rxjJ*QMdm?EQrDgs(&BQCa601PaOt!G)huA=O%zDZk1$VvjhWx;$m70&LUU zxq$P^PuxwqCGx~#7%*x2szL3W@Q*it@=jX#T@$U!c>skVOU7Y5%@O;fr6az4nKj{d&>)NLmml;yLtI`c zyJ8X8C?Bc-6MY?k+V~s<#zt^+g;;DDXjY->B8!H+mjMm_R2!DD$3}zrJ6rqG)Yw#d z_xt|=%RoW;%CCQw?tgs*%CG?(N(G?L_c_7&U<#ReomaSzz7zLDq0MD59TpzMo}oAc zBhY%8uo389mw_DjBSTl38qK{gLI@rjC=!c_NzeRkzj&Tt!C<;FK+7gbt&RxUG9q8k zpT(U)irL5bVqF7E9%T3Uh_vdN&+QXPA>j?5%$EU{O zhl$w}A%fS~=w15?K*VY~np*8HR*Rp%kG7wMg9B+3^ZDpUpU{dHU;Tgc->06_r%4Ad zB)fqQiI{V*a{s) z`Y5`y#`9^eR7;Z^0Ok_rYb`-ptp$jl*VbXKod6)sytPEemx8MAUZ*hCV_$n zg``yWda&Jg?oaNxKKN}+(iJ>Q7p4*T+gJkfMBH1y9%5wt_~8|f?jw7(OC<6kTG!gb zGSUBY1a#5r6ehaD9;{&|9=bdf`@6YF>ug*TeW&nA8+}Cn{~EC!T?4(On>9d-WK4wF z(elt62<)<`5Ng117w&}>^5y4vhP4qI3Hr62G0GR`u^50{9Z}zw#4bYMMA{PPPFgX; zO5kndUfFvU79h7h;R^fp!ifuy`hz}VQ>l8)GyUCr8@ zDGS^bqxIWBYKQw;DCk(=fQDC2@TUsG9zbcAvsDDJ+d-Hq5K1t`8(3Wkkg%W&zc6Qn zJMNfO=x<|-sQ%LKuo!@rA`8K@R%D$8c@41xWfaN6Sj_^+0|iD@4`i+lSQa}?DWu0p z9Y9mi9KLt1-&~m@5SJiH)=T%+joY84^~LqHy7C!-nljO~)oC76K&?TB+}BKpCIH?x zv}1R{pS_2If(zlynXc4EGqbL)PUc@ihD$wd(XY`*Wem&b1Tj(eqS#I&(+g=11#4t} z5t>_|SH>ER#~M>D-*c3zUZ?O`Ip@JfV!BTj7{@A|LhIYxBL3;|OQ%v#R}CFZ6o%bsQlt7KK=Yl%r153zHSD$r)hHb}<*v($#nYIwdiNZJlrtFK)%KrAg zD36*G<(}{ddkd&s_`pMeZuCCk`C7S5D?R|AZ*AMb(iA|tX%ZxEEARyZ!ryrRcKZ71 zVQA90fSuG{O79u031uM@;Zs;jb-(9OfT9F7azoc?fi#c2)ncke%}f~Qo7FmSHI&V) zBlM|aC5U(ZT}Ssq+4%R3isF-eB-8v^1gFM_4OBBXIP+IEHaYUs$2)?$yF+K4Zr6U(tFs0v4AAILWY3SV9)H=|arbepLxkn#KGaQ)f zufK=Mm%QOVI>dE#5G>h@Z+{1-i?)JEJBXIeG%jI7Up4D>jgqjMo+Q=-Qq{)q-XX<| zsB(haRx!JFU>4e3MEL&VJp^Je#8;T!dFSo)1wcWxrbVc9^|VJB(Tf+(AcV}1_F!P@ z7O*jYcjd$_poZ%KWF=yc+^>mylL+ZK{KVa?t?n0Vj^pz~yX(d!Ao^Vg1l_%P8$auM zI(_j}YI^C3)CGVk;ZRFtMeMJ22F%Nr>Fxu1Ag9zn(32J@C%lDQAx}i?F}^^{_&%5- z=eVzjC}x;AzDX7b#(O};LZZ<*7)uB^1ymVYyX}XaQw`nDY8yF(_*AQ?WT~5A3&DMO zptjC_qNyE`LvCFF&2u|2L9H$xdiOaGGPgIw3JkOaT9(o4maxfA&tP8!O=?;zTE%aP z)x$pE<*bM6#T5BzjeLG`unrI!Wfcdhe-J-978(P^w#mO1Oy}2E;+aq;Acf!_p6U3C z@SS@ejLk5*H>^?yC;=GD%v?YdDWDkFJ{FNZYAWQhzPO0SfJDVS=v>gVN9@Hs8lf$u z*XVgrj{mV7SAd-is{lZYm}JWldMpQ;I#mN_rlP2cRX8moq(xv8&{d7kS0*$&JIi@y z-B4!hNLienMZnA~q=&9OLaAZ8CL%~Y8y1fW?TYGrAz+!4!Ku=h7LG#JKr5Xl|A+xW zLwDV4c~8l&MqPvzL!KLqjnA5aq>IYy{E~;1R~fq_uVG2}-_GoPgxMGo*SM}==KDSu z5KxKcuSU4NjH!Ha7I07VCFtHgu;7y>Re_v*z;rAX2$hd2(h%i!TE!qyt|dBz`MF2T z6dH!M02cue*&nOI9Ya^1l}#*kVUT1EO670dvluPhPLbM@Euz+d1?up)o-mWG2r2-<(Hfap4J~q8jL9m7 zla$#$15a3^4EhGN%o1}RDD*`pK&2WtfzHbU8R8{86O#l2-n_k2Pck>m!*loIk5|o_qRyYM>?Y!t^RdpRh*lqxcXL zc0d&EDzPyY#FW(bccpdurxZ~qW0$%KhZJIxAL%Lr4znLvTWCM7OVv4Ul5SZ`khuit zd65R(7?n+Z+|q_}idT3!6LJD?6&ZFku7x6?1(eYEw15kGl77PFAY}=mxR(7_re*iz z5`OpA?g_-51*-Bhb3@^D>=NVtW^lmJe{e7g9a1ZktEg>p? zX4**eTD=aaURnv5|IOe2N9jxd;Q2H$F^!`9ZaTa&00_sjhK1&slvIU&l&)q^jIAi* z{2L^$OVjn#9c*JK*T;D%Lu2j2N}>X6d4S9{Y|y;1HWpX1!JL!+|G5b=K@4@qLIjH7 zP)JZtBnp0b^x|-7zGDF(b{A2`Y#(@Tp8*0s7l@e$i*Oy71C_xjkhah^`cAc`$6mgK zppf};;KFpxPdA&-8%U?ws1mn>xsrkG+(HpN6Y;*BrXVQZjIp>8Y8bvBt_n>m!BF`- zm>%tUb5ql_M>=C-{sxxZxpyml@Z;Ch^Z)c4RM_hZjsN;PZ(|9V zPP+)%hSoNEl0S@3cs0$;jMIMhA{qq@6z!y^yPM5t-C=A3R~a=^hFI7se$NO+<_GkE zk!jjm1?*U>Ky$EVl2=Fzszftj^Ek{Uky5ux^n3*x{}Szoca|5>{?Rx9O#{6>v{x-a zaN~aj#OzZOpsTlwn1P8jH#S2_+_`l6+!^W?&;lACe;y#Pg=yT>z|Gm!^eI~H;OU{% z+cm&`*=Py$jK6svKWJ-PN9^mu;xy|5(Gz3R+|Wr;94rvHIywhB(%lb7!<;O@(Y$=P zOD;Qyy#x);s)KpZw|?wu4pkHJ99jnq5-Uc--_aTXy*3afZ`8N7%*|fFqDRa^J;y>b zHC--Yx} zZxg|?I5z{$(3A*%07t_mM8FefZC1Jf1#h}m8AQhU9b_D5L9r$`9@AcPsC>KW&a@K`B9?ilA~zdQ(vH z2wqqI2_U_%IsE+2Yloz!s-Q6(u7@T+2a#GS5(Znq2z7WCM@!dR~i-+Xl<6y zGXlUq7ER_P57hM{{o0qq(#yONF&OfGS4$Z$U{DfRd!XoBfAH-;a@t`L_BwLG4-nMydawmtj&ej!dJBP30L1Y~M6Zgh$8U{$y(Ld0pSWHIz&b=lLEfmrT&)0DTwJCy+=aBbOd$<6s~slUe`+8C9OoB6 z&DU?HJY(-hV6QxwN^^5_>HH&f^djx+?|%A|v;;tCz!WE#YQ%J3gRfbw+Y+3eef?3) zLyL)s(zUce#~d2mHWlR>5s+7(dYVA7?)2&P57H0+T-JM;V%Rj=>{a6K0O@c)A#BmnIg0IR~edrGf%$#J!5)>#5_!~?=TJL!LzpzHk!Ew zYii6caur2}OnVx=HBM~AK%mjLUV8_V^%|c&pijZwG)bz=Jm%;-x9_IA_a4w-=8)bA zYw43)_efpREkdp~rp(G}eEtxy{@fiR&6dcKwxYU|ov!WOEq*V=$JC&}J^ufpavK zR0gf}3$_-nLSv7P@KdX$XNrN=JF^R5^zaAw*~}v6r|H)k0v;^m1*|-3{D>JdWyDDA zP*Y&Pq#H0WfVYG~W$;n~ivZYr+t%2cC8POHtB=o zls(3^Fo63MlP+VVggf9#Q$7nrY3Sqhjc1=sFFx}W%0eG52hRZabp69}M_dNyeVw^! zWf34~V(;#u;1xm8b_4YMD0lR8OBV_|YXa!2_dUNoZ^6?QbkKGt`(sX|CWCE`m3q0aR3lU`X|*O%j>a5!UuIr zp4`K8C%rirfBMCW1P}Kdc{WwPy)K(CF4C}8dR8-+mg~v^V~kqujGqG#u@26k*H}`h z%AY5{dl)r;XiCtOFB0P{aCs)^4LI|GqG1cj=pPjAI6gI=5Zv6`Xll)W62E2=14s02 zzWHz8NNwkf(>MR?-$SsTg9zB{5dKV-!3hx5Is_x-2tR!_q0z#W9h<>$A|mtM)#N?i zVJ>1Gen!;eCbK(SE1uEh4eCexKN0-?R5-fWe=j6mF#ZXqw)pNHJe_WSb{8g_BQKs( z%9PYyK!ZLi2AxwUyq$o($(iZ&>RplEM;{UF}pPpVc(lZZrn^4FJ4U7zVs3+TAXfP zznwN?di&;bLnsX>PNiyVY>G0v!p+f!%laz-VhZ{IxLCxrK!g6sP-6k&`}=#@@M+ zUi$hAl)@cK@4tU5-Mo1(b&=0(zWp)r70n3O3W#tSfwYH-UY~Otdr%K?Yx%i({T_sZ z@W#w&9gA9gzXtcMlk;4GHaa$fPuO%iGB|7rov2!B1DZV1xwTj$Dyg_-8s`C;bR9YH zjTCY^Li;bGNsg`rd!y&c$YAC$TIhqbT*blj%v;8@hK5N7wq*sPI2eG)bpWcqZ5iP9 zCUFJO%jz<|e)&Wpj0_i81!grPmko3>P1V4-GP40_$!uMWL(HWm)YkT_lri2?tN|9I zimr?vSY!47F&Ioult zqq>J2dB($jA|R$e!a9U`yxzTHT;MOv&(@%zoi^3yY5-rJXFFUPqwt{uBpx5ToX4<1|bn`P5vEo^)G=;Jauo3xoWIRFu6ap4A^C$qvN%IU- zVwF;Yff_S3*o8c2(x5?8pVU+p2J#34tm54AcW6V>EBA@B3$O9ZG^^PW+-|k7=E^$O zgPQV9^!vb^ZKc7T^(kU3=18SPbHyB93m9+%5DU;f0jAJpSTh+LI4l5*%1#YnR5z&n z!eGFC==6Y02$^do>3}LXo5XK0nP8ZnAq96SKrGK%2^!bvFzp#qYY*B%+ug((kOMH3 zG+n}aau(X6O);9jYvZ*$fB@x%LSqNMvJX*O^eyhe@9xJDu8m#BwuOMrZ`j-j4G$N@ z3|RxV7_P!PSIa)_?NeBb^CGaU8yrg0q)2```6>LN1wM;1r>me15WrGyP^4@ImrwND&WbX zKyzxlnzQR6~?^>;q4;60g;%u9R}eohX#+O!ppiV*PTsfRYs2c;?1 zGN0bVQjYebZ$H(Ze)o_61$FNs>UIj5fUrt=?g0nP=lLZg7R7siqk#R2&060Ro=QdlvC^!wlbR+vFG?OYf>lWu{?{^U>ouk@RAvHQxe{Tc;r%F=XYWj7U`}a)?|=1&|7CjqOJoyJ3*0iy zW1rnhZ@u#4^x7-e)7O5h7cJmI8k-zTQ=i^Pcw>@lZl$_mA3}PXu@0w>-X_-ED0xT_ zL@TCdi=0mEOB^VO)PrWc1r8L1-cs}qXvVY{Rl_jhdsxaLBvanhB3s+2hmZfV8vowF zANNtpv@WbJ=I9H4);CGl;!xC}Wg2K%th&M8nBrGUAsmIr1eNU~wge%WBj4YaxB9Ji z@v&QOcO7A$9XOCJ63tY?)~2=y=v>1Dj7JtB2T0_qY8cfvHSyKXy1Fs_6Xl$v(%t4N z1)vI6p%eXtg{cM5wun}2c0$gadk%n=0gnj8@_^+CkaE1H18x$-pmj)>f`_K7vp43j zM65>@rA##`mr0YD;xuBpu9gN3#sJ;Ozzt0GAn);dFMa(31!Io#NdwWM>94t)5PDPmR5 znKxLpu$*AIUb~-SI)xWV>?bK^YHu}|>IE6{HQPv=Nn`M)ro;kVm3sikJgv#?7qE|| zsk(ubQQT3M+1^6pN6ZRJiQOJGGiT=tMMwb1^HgNCYFb6Elzs?>Xn0k1eGEfEh=qXn z1t9WAgB*2*DL7PYoY+fKu~z?TyuM1!DLW*Pv5&cvCBy6T=}-!l8}M;1 zj`i|Al~XeXG~Yup&`zeGE9E z(xA`hvlN`&qI8AKvrUxDX)J#eX$pmaS{TGCS*yUh5-L7|QHBt}U0UW>=ErJ6V}gXt zRW2Q|rqUQP$$7cvA@ksQf3NhrLeO4}7k*Oo```N3A7umP<1Et2n=Xg~e-EuihG$U^ z5tz}4j>cjjS#Vl*Ge2ieuKpqgcck#ZIAp4R&Wcn#fQ8sgGn1rNk)Pa(sk4D7{aQ>R z2J=K7q$VW(2?DZ-#m52}2@dqzYS!?1LMzQTGB4-g`#~hEg-k$(BqI{7J0IWoI}Q+I z6$E&_1smMFKt~=dW*AMC0w}2?9O7ecL35vjS&%Y=4{k9cYA4goEWudqU6_)orq@oR z56tGTzx|_>M?*2b-G@@ZJb!b~I{));gW= zjA5v2K#+0p4BG7KZNn1MP9YoG{F0w$rskygX3*I{@vI|Y*_SwVt+-I3ZlI`IQ<0vs2xgydN7PH34F!g;_D8kBUsPFdqR z_Mqof7q>Nz20tNlY;3I~C2^17)3IQf7W9&l?h$WbpAoCY84x^+E6X$Kej4YYmeGj2 zB*&iZvj4{Fl+#e?ktZ*wZi2uL00(>9CAguewg_mk_=+ii1`O*?5O^ARrzRw=1P|c# zO*9?dKvqUPB(Suq79V|$pj>7KBSpw*wvnl^G(oeT(O`ViFLb^qwe_4O zCg&Uik}8i_fC{PNhtrkkqRrF%$Gwn$$RhN~YZ8?S%U8nO3=fcxg}+skE^B8m3(diT zr5u$e85HvcOt81oBU}t{vc;%0$Fk12x*V7EEAQ}}a9dnnxCsu)JgC8a*3bv7+0j(q z1m9#V&M9b~x$Yo@Z5AY-GaZkWgoX{=#IgnB*BZD^%uXKQvTKz}UTFk~=XbQa3NQ_n zCK4ZDE?w)2a`i?hrcyUG3(gG;Q8-KHkHBRybZe9XOiQr}?2`du=g8GLno(gvGlph* ziueTFRP`N{LMK*gX`Db(_Ne)EZyLiYSOf4pbM;D^xjUN{?v4@!jY|wVJOVf^6Js$% z3Gyn>6C-WHJ)!lgwqzp>4-F$zDToCaQUmu}zrB(728-*CT&KMC9>BDJ9cR z;ruAp1gI)<;eY1^t4F#I$_xmH^KH&P-_Ve&iIGCeu zZ+U@&-@moUh6MtJVuuuH_r+cjRn(u@B|!X@@4uG*;{W*fSn|l`AhT+)uak6F+?MVg zbQ8US_+6S*8TMYvE(N{&8#8AP(o<&rjYZ%+gN~`I;x(+3J9IK0?;{<<22#-<{NW$| zQTRUj%ZnYj3oK#jW3xzxf5+AQuw`t9&NR7$iebdT;#g=`StjWhG~{k%|BJUI5lkYW z@x^gWq4-2!|LZr>#Q05O25Ld=XuvFf2zM4#q3u8w^chIuz%Vu^>gGnzXx@v-eEwQi zBV6X6X-yK4pK)A%&hf}ZH4!@&7u9>oBwS3d@qJAyF=xlkKP?%))IPyhORY4ZL!K|5^`8UFAS zkCMkuS3`X3H{bgOsXL45$>(28{ry-4MsB7TUcMH{+Sa|t_&wbMg{*;H;Sym@+%FeH zLPeIv+(oM!M5S6+8!(K?dkw~DAd3D|xLjNh^Fzzb(H(CI<}f=$LmPr9tp;eroY|>a zK1)3SQq`m)Yn1ORR6Nv*8HkPKtZgD zJOW(UAJg-UgxVzlZk@nFU06-z<<|k$N{aEnqdn%x7-$A)_EOSQbFtC;K1W7uRY}YD z+S*g*UWy>I?5@@&X}l1D<$3^EK&QW1@l6K5frevqt?)C$ptKg$Vm_`R%R!AIG#8jw z76C3(0>wi^@EYC+qyYH5huWF~a%+n~MnHoCqLjijTePtqzqdeE$_#NdRD|L9$mq?s zSeVC>0po8XIL-q+M^A@Y(z~q1VII5bh4u8QXs2xSCK2SDxDbwcZ8J|b!Dav|CVoNq zz`3(=Z;Yd?1sl$Kw|Bv4un?>R)Vz;$qMJh+QTw+6j}4j{o66G{9=k$nES)uR3#=^y z=#BwMfD6awSl!26I%n=07og(6dI;Dx`Et9UBdsxZf84>3UDL3~H#8vcP`kr&coIA) zd^NS$b6AEJT*19<2fVcKQ7R|;zMgqCGj;YphOi-w@BbiAvGHcb0s6^+Yu?|`l589{@l6JKJ_Pxn(*u)LO1!*ra4pG)f-0Iy~XtT#ylnkIX7NQEe+S3ICe>*_PTQ_EntRI0w3)Vi<^|ZQy_~}+i?Ge_y zgL8fPv8$}dZhB;RFr7bl2GDq%P7SuFzFsUy0PGULu>3fz0x})I0IZk&k}h(z?nM)3 zEr-ty@Qf6^R;!4-N-LrQjf2lmWRu_#tzIqOdxQm)wTvrR1NnUJb zh}qZ}gR&zCham|@1fH8@Z{%_aVCKY1;7TKYfP*qkTJ(^+33 ztBoL6^={l7diKr&r7(~nGo?r6oifpN4!Oy7{_Qvf6wv~i&l$`w_>SxXz(B0lxBlQ; zf8^qYfMp@wFn{;p>|!>}?ddPWe;?)#7nPy#U{RNcAPc&X0U&(*Eb77EqY^&pLtKPF z*DSb2NT%;U;7|cJ2>xpC?Lf29BuXGmT$>4V#}HaP3+}xggC5EEL^6jt3T0QsD3p8|TP4E2W_vupj6E=>Z95)L9 z<2D7v~oSOPBhi3&% z)uv5#wN$7>uy^=IEs})*ZbDLlx&Bdko+-2HETbpxVPQcI}QSdT9bLcfe zZyQv^c(pjy5PyIk0vOQ+K!iI*bsAeKUIiGa;i%mY9$H%Vz`()G$}j)*1To*V-2 zQOJB(DaPYC>#0w8l;AB>UC z1+d=Tgq{E)O@LLM#p}fA4W;TsKx3D`g=Myv~(-ulvmv^@3>&4>_2J>X~vUhK&ZXQN190gY%Wg1sV~_^dG= zfS)Zib2Tudw5y0I&_ZR=AH|K94c%TM>Ln~=CACx@?YM?lz`hVDG>pqwq_CFCtl^zP zao1#r_bg%*f&;#xmCwg(l9slLp_MXX4|dVi^#L!E4P#CGdSX8yAL#rj^|KcCGBHET zyz|J*2e4LgU(=Iq#8V4cU&cl7vm5WGW4a#J5NlA-j70~lPi~nGl+bWalg`>6XN3x( z{M!|j@}DWMcgDw~B3?OT*rx8qom+H9#Ol|Cg>0a^6AJ=Cy!F(m03R&fpH5$XcqmoT z1Z#161&x=$Rhp<-XQGlgkL-)}k`J=Sg!V#r%TbtXg7^aGQ$Z|H4gAC4P-TnYOav7s zaL$+uuOcX|c@KZj1a8Lb1ejK_^)m`ywO)2NfTuF6h;`Yge?|ecr43pjs@2EzQG;{c zBYA*X4(@{mfuuz*wV;x50bCt|Tp8j&?;(GQW@}s*0GF%ewFKdCEkc*VQkLs3C_pj6 zx+XBTWpiltfLPaL=(D!D<)ge`G z1f0hG#C)Mm1wI1{ivoi|z7f;o=cO+J!{(T0P6TOL_dQRpSoXOyf0KI&3D*e{A-=wEM z{nF_SXOfliWfLKU9Az-yZyB6Wq@MIXv0SZq8O#ld@=E&qcgMa6aphXJO2!cQo~mUeui85X6iQ4?SX4AbYcVoNdDfVD&3D z)75YPdU_vW{@|~E6i|4Xp&o}MfPLe)-{QIO9I;kUzWz?se}DSXFVZi6@D~We-ZY9K z(F+_KU8*=xyGNM?UFP|=%3EZBm(y!+y_Meow|_sqc>I{eya(y+_uox@BV*~)&+kM% z{j=xy)AXAkFkbd*y7PDP`DAo z-0Wks{Bw9~gILO}BwZu9&T_F1r{)oYsAGKO=&3#myx!Hj9;L7*oqBKHz_SyN5#z@lG0?o!~%twy}k(7(`5tKj4l!X

D6<=+RB*bk0@wMI6s5tSwo;`Vj zAxc>&hMQCLdMIl(M0c-tkNkuqo@pWm)^rl1mew_}?PYJ$=hfFxaGWh77~U3Yh4*b?&W-S79FGh7p36?unqZVmO83hd$+9j3{-Pc*nj~^s-qG-kh?}37>lZo1jjfm-!XS8HexK1jh2WPI^%sk#R4~-;VKi zUZZk_*23+BZ&Eru5`3p(uo;@+C1bYcifGtru(%#W8X6ff%#3yVy_w!_fu(0Ake*=B z*`LEU&#fq`0^uD;BIiMahR0}t1@!B+Dxg)n$Q=#2Zo&xOTL;QY2Xj@r2&Y`1m`}fc z`z^%kdD9_a@q9Baw2^p9Lgpd47w^7*m1?7>k#O2SqC?1(S6$fPe9i;K zr~*AFe0qcva)nXa<8(O8ao-Y+%gihDQ(4ZI@PE!2BU_ZmbBPJM$T^NW&fY_hq-W02 zTpkTV%i(oMe7E{cqwJJy|0)%7Do~xgCIYQf2Hj~S>XZ;dvCoI}BrnL{A~vshUHUT5 z$Q}ZotqyYJD}0%oW#!LB;~C^3b0XBI>PbU(F)Zxi^R&6J1S->m zV?(=p9XhV9UebZIQ*0fyBFglkWo4Kj@>1wEcs&vnH5#DP3k;D63-PS>Y_T1-&l}D$ z_jMoR{pkIW!{7bmKl;8GlX<*g6OQ3w5eh1KkpUl$cXD_f2{*BFAQr%;2s4Co=E5#q zwu2VAl1C_-;qQeoSTsL7Y-b0r$x@>OVnr1^D@Vf$qq^x{-}egHdtHT_f>uSQQQ_YM z@_;CsP@qUf^V9n^twdBH@0YoSDviS_z*IU40trfdhPS!Uc;tThzrgciS{(4%3Z;dQpD(1h-+Ko|Na%q2`#WU+PmYbJxw%=Y z5H6)11mOwSJfaSDVQnQnSbR>HtQH|#D9i0eom<6%B^dZ5)M;BHjqB~^e!?| z#ZgE<`{{>R^aqp#eUPSKyGjDkVw#&8O&@&Y{qWwjgIReHT0AGa9)giG^Xz3V_dy0W zCdVJ+zB^>`|Ku%p^-##8|28Q2BTGq;6t3qJ_&nIUZ~ zQ$cBVaSsVgN5J84y>lbI@$U6BJxi(FHtkjK(tVKlr%J|8E#CqHrI#3|v}Ea?Mva}( zGy=P5!eYsviC9M%0}GHohX5&jw;gSqi}dO@7050bqu0)%ClS= zn+OENx^rW$^41#NB-K8nlyo+2yIn=u8}3}*@hy9w)8e&V}uZizo1Tb85F6KkCXt;K zHm-Yyz&_hupw%#QB&as&8k!{2y`O8a#|N7ZtfNq;?3=X%vYnD3INo4vg6D9{MtLK)anJ&RM14*%YbLnMHmLVt`yj&R7<` zdvKgSzw=T0*6Z`>{Wo4`TIgt+o*W_3bRHh*M;Yscl`&$G*$$)vY1CO0qW3wRIH@8P zZLPy&4mrXECzpg!EIj5QJdG|9UTLP;T9~iU`6~s#G5>D{+KNCWWeDE&<` z7=WTtKBv0L`zw1jP+f!c)HIOP-S8Mcho17fe2R9tL(*^;ydu3h-@@y}4$7>&!oA4; z;dlS=`+nm^eS;VBg#n}S`#Lca6}HSOp+*7>OyvTER}>yzHWCZDu9mRZQQ^EgAeFqt zsx@~ARCRzQc*wl%KmTw4hNQDE5PFvpb{$?m9!BG#S)Yx7#}M$I-X+$@+7zrFuGe+l zA&^-Kkkm678*Yt1CVG)knat{b}^p&3NYLAO9ki7$+>eO)C_7*AFrPWRZjDhWWN({7jm< zJe|Js)pydZn{Uzpr#sEf&!j6iu7_2;LBil3aNO`nFKummP-rxQAvXIFM!?d8J9IRh zO7DN?+tJM9*@Fk^Hca@HZ@!E7)=8Z?G>qkMR<4RnVJE@(&u90!Jm02=)HKlixs_O? zR{K8fFf#~;zP?EO)Ro&VfE`buHseDa~p+jd0!WMWCcMa=@`dkZ6yTaA+gK@1l}59kZtzD z@_H&SuCVt#WNV8w(ebQ%kXrlov`90WA~Ak*1NuQ-EW5Nx%`w7#k7p4T zvI@X_21GE=3tE72RstS80&4bkh7N2ST%!!}0B`(&__p04HF)Rdr@3w~&u+)WLyRK- zz90J`J^EfU*|;|2k9j^D<)|3jPzFM_wl#L>mKo%bC&B;^#=S>L7O>bA4yW`lFu|t= zznS3Jig$P_!$WgD{U}%NqgO9X-o-PvBA`1#d1~etP!j6%wR4uIdQ^BI!=t0nHOa3S z+Ln2m2Qowx7zZw`EH6R#&zy~q+~0qJSIqQ9Fo+U)0z)IS5q7EVt)XP7_F#Qz3-TjO1jWPVSq@NAhV@*B z6t7aTDU+yB7%6PL2E!3f$jPB$EW;OioWjF88a@kZA)Fp%0}7Wt*MR8i9_E_F)=4gm zq*V;6a~ex^_A$!0|2k6$N1<|+l7gR|p@fZ}LICS^I_g|r67u(1xdow^W=W^{2$p3_ z56U%->{Vj)d!Rp~)S7FcN(ZTc@q(OeqpGBX@;f_BKE8J!MIq{8k{H!FAhnzD%@(0c zt1DHC27z5qu<9lDEGKzVYYtPX%%@OWT zDR&d4lPrpdNhumpHUQ`UbWsYJDd!1+RfX=g2lR1&q=2xf8 zWyqrZ`#}PcLg+~qDaIzqUj?~RqGk8+1jD(YX^p9nS3GaC+?0pozd)_g3y~z~UZ{8Y zSzZeL#g#21=2!80J#~A6_;+Poe8BWOJne%306+jqL_t*M21KJU_CNaCpccG#)ZOzU z6KwrdZsutfu2Ukq;PoO=(1SyM2+NDWO1q*EhGepY0BmKQYo+Bh$v>`3g8@wy%G|1$ zqY91fD$pqTIN>0~GZBKO!P>1i-$=jn2mdDBLp#&GFCM4)`7wrBf$&O)$dXt0l!kS7 zo9{>G@sL5Y(5`Z=nJ1?Kgky_LRtB5wtWkA%NU1RN?1%f}b^HkAa^ar1_txMDqT#D> zvI^S=Y#Ic7&pjhC5@rb~hxfQfjR<#6k6Qxb^8eo=`IC^6#D=x=_n$s@3j$4xRNG?s z5-o-)(R%pl9oBlD=B_c$c;<5Y1%`% z-r!mt2w!1Stxxw?;&GKSP7oy5(Myvk3NWe3C~O0JWeZDV;Uw#!U?wlm6U*(O6{#NQ z86F}7hhU5j%HWC&7b4+-kVgk)X|rjZgvbJQ$-}_SH|UvQV%{EtXKH?yal7*}_r3Pom899igu70R^7Jt8jc8LRMW#6l}5SX;OrAsn{IsNcmq^Z9K!q=Ijy=Yfq@ z^o%=-J=|jmMF>5j{3Z~X8d@7m8zJ=jflBkNrv`J_KG!U2zA=&a*Zd{?#Wg^-onS%JPx;*yhk`gVHched!Pr(mas0uBAkh> zn3o=JrNhk%ucZ$=#>F8>hM@#>JG@V*s@Enyya~S3Aac))jW$|pOqG0?R_^@_Xg*Jl zz!jclm~bt|AQc4=I{W563M2a!2phVNCO8P_2<^fDud0qjo;37~tJ~+nsdiTJDBEmk zrK~Wc-AwHUN?GA=>t~Hq`xDsB?^r{)V+iP+{szY+)*7bBcBG-nuchMP4QvTeHUzI> zDSP9?c7X^eKa`9762pYA$eU*F6*Qnht!(0dC1^-qX?Sn=ca8Y@%F+U7$sS>dD~pRL zl>)D|a-f@}WW!L#zt2ckZg4go80pSWah8Qiyan@Xkjr|eAumBRYdo`F`F?qW{E}4+ z#J1D}9c9Rnx0B=YbBxj5<@B}p-c94s(%kGc3&auHUrWD(0}>^*9N}PpDb1t2J3+BT zKa{b0&{hyN;ANGq3Aeqp#O8=1q*kGOrt5JGb`3|NOpA4gYni;;PibsB8T4ly=qYP~ z3PO&@-i6$^T7`W;`KsJS0+h?-_8o>6VbRLdTXmbQa z=~xs;!9~@3(3a()G0aFMO74I>t1R`tac}m|3KcGmQKP;=u7Y^vI79np*r`+{YaWd9 zLw%+p%5T_9^3m$h868w@HWydsJ{jb-O^ZY%D>W`jz`A&q6PA8}DmHjiH@pNZfmos|78I3TT{57s@4dbvW)`gIf9TH-Ev_ zu_0d24-Z1G>;xgjvxF5ZajPU$hALCPcY&`y6mAMjV{u^^aILUBc!^dwZ{$E5Y4Hh( zOT^lG2bej|f{IMuiksjy3ny7J68|`)W_%Irl6!d#t@Wlcz+toLdRPJL^VRihAb2Am zFpL}SsfF%_YQcH9DnHjRgc3$U5R)*Iukqj^48GSB)5`KS&3m#;?kVi)S~Ntu`} zxKp;a1mtX~;_Aya1{&?792CsWn7m$#-SEu57QQxH+Z++s>(4TijXI9#HQz~#-%0W| zObqP7f;JJd2UKKa1cYE|2@loACNMS6Z;$pP;=DtIJ(@kcRV4NlAVCh{YMGz|TTG&i z`yfQk8PTJ$#ApCdWny}iumX*W*hQI1y3~WSuRxTqK`Z8@oZ^*~@cI-uW=?16G-!Du zwrMb)^c$!dG#cm{ycG?0czp*v~X_;WAYYBV59UC zs5CRlxsOS8?oBtj4sX488+`zR1FV`QQ+;=h5DHo5RT3JVJ)q(b1?bMSiYAm0WHiay z0|6j;%$%ThPyLr5Yxi(U3&cP|lE$QF6h;1+}k%CVXDSMDMN&lp~IleXPs*iImc zbk(b23@Ve(@P0L#io{ljN2lW23SIM&G=TM(q#fyBepZ=#hbDq3#LA~=G4xjB{PhG( z=8L356$Jdj;xH&t>|gS}og=#$uy$N=PQ_g67`~E<-Ip*5NOt3_3fxb5VOUAIBmD^< z%YT->g=3{M<6rQnP7Na7b^2Ov!|%B%?=d;|f-~y^q94Lz*KjkFzZ*l{o(IzXAhbDv z{Jb`9yp^D+C!LJhczNaWYTd0@X2QeCYNcg3Z6ZCe0>^R40 zn;g27Zq7{7_M9PL@L7hn^pe1KnM$X2WQECR8YaLyRl}QMB zl#HA3YD3&W-z*Or!jMT_tjy^%hULZgz9up^Ax?$5F;XrP`y-lRe}S+5!{10VSLf2> zzx#Pw#k%XELgGDscY=_$C&9|%%XG9sCq5qT2mi~z#0UUFX0n-{Wp%%v9{ueXsRigX zhj(Guy6dmqOz$y2yqC<}Rv2X)V`J+XQwnchqjcvAh7^f(WE7hu5^*v2L#@qMq3jT@ z?3siZWpNr=GB3Y#etX12p-_z;pKW`U!Ad{*6+3RmTRz$@vl#(b^Pp)L1<~0%PHd}; zLVuQ~FHf^yi~}aixr62}3m87T%iDNw+i8E3T6maYX$45vBsx6GF4~ZmiOpIGAcLFO zVqCUP*hp(tG{lT(>CqT}2-Ogj7;Wrz-foI5R1Ay^py>KBe#`_XnTxZo(I}=H0r?L7 z8$SQ!3&IN|2_Xo(2m4W=XH4xY2fVJ(IwZ4Ni#bY^@DhhG=GHLOjBz7}FxH?c1ohD# zYiOym&xBvtyHg=;63tNQtku#$6g~7D6$sEz0fye8gxsA%w9Wl*G+3{&blF;*}@oLH#kA4!WW(z*8i{e#ey<%pKQQLBvb z(i^ZdT^r$pLqY;Ff1czoB1gd73@jp!D6(U1s@ackm*DLZE>5)FgR-I zMY=}vYspXr>tw@Py7=y)no|E@84L8;^+$j3Rdp~d(u zhIq6`@UxVuA{D*R%*;%Gnw zJ+_&=hSa`5HdyQL9@-<~?2OO?@9CSk#{Fpxi%_-mpN(%g8u&(fZlXYj0z6mY{$mUn z4YUqW9pzIqAq^yiH=Qec;2|Eq$!E~lE@yv&cRY7xhHH|D34@-yUN%jcyN#jP**N$HJbM&IVjg3mg?=IOEARz-y$Ag@y+4g>@2?W`EZc$XGbTr(G|R|~EsHgQ0hu<5_{YL*%LM7lmW7Ix{v|nVeIW7v*;(#+G@TE3K{xU4rEwofzb0? z-}p+p{nm7 zznVP?ID2@xz8!e#KS9=L=|k`NK*;d9v{sE@`3%R0p-8)&b*cf5{Zx=9B>Wc zu2{co4a?KN%UJxZL7@@x3K`I&7p5~U>;z^SgPBHdy_P1gPNwC@i|OGhzT{T6=z* zk{)XHQ9@y;!QfiD&1`CnA-J4fZ=N9n);tVL{XDP(oV!!gvi50F5`UuB>9Lut&5O-QGA#&zH7=FFVo-nb#)%mDhLh_<^xm zuluCoS110iWqN)_hdda~cxw*DI5IXEO@tae!!e~=6$S!#c2CzAG%lthCy`WSv>u5wnjE(nw{_!1l1wn%nGgm_zKf>$w!`y+$#)S!m z13M53Gk90R$9f><0+<0WZRjEI5sO!8Ta&M_+CQc%BX{e!nr zB@O6Is1q9trGg?Q)M8>%(_^yf3<{35SUx3VdtYnHeP+88T5i~*u!bU>Kd?i>=m8Cb zs_d&}m@UBKPP5yg+oFb3?+^odP)Z)E6$9bDabA;DF7!^2`Aq`Z*Z?)(`FZYLN%o{@ zqnz>djZ;D{?Fh%UbeOABA78+rA}$#=fn^$0|^Po10`S%lXK!Vh&)SW zgNCo(xy_GM`X=a!AQ`jIdr^=iP78t9iWklMnA2ca$Tq$=7er&=6u!N&{ENfm}dJ6wC;Aj}72H)yr$-^STECa=7h?N9dzE^+Zvc*s@ z&!|QdAH8ekp+;sT?#V;EP@aL|;HjpLQui1Nbd8}XU4zaMG@;_d8i5^@3QZZJG<8ldRo$=`~1+q*%_EQ^b?ELc?33!=Qaz0-u5U?L!Y)!g3Ay6J+6>{b^+| zR144JXXK%=Z#*jGM6MCCOnSP&kT|2K{VB#kqsEwV-fKmNT_~GL_{c=g(_SsFzk3Df z;5eyYgzN`#+lFrx`g$^#eVA?h6qrKnsKXfDu+ zTk*Y0hXa45K=~!tWC2*fRhV&OVUbv1f4ce2cgUK*LhITt7RRANFkVk)3L`_emH$*$ zuhtl01AeIxQIV>FW5)%pMhOs3dwc0t4voL(o0J*W>ydFpaV^{C0 zL3P34By%fW>5er4d`6+60I20TX=c-eo zq9iHJFjCuS%Cui6`Sl8h5O6$vkbzf^I9r`0(KZb*;beOVk@W$#gvP`&7$z3k3?RvkW`y;9krPs%4G5F$@_eUTQ? z5lT>wM$VCvL&%@6?4L%YH07A*EOKm*#LjB1OwWpK=*CbT&BmaO8GW)PXXn29=SR)T=gR*BF3#zlu=}f7?AE6NBt%_a8H4mSeg!_N|uRloZcNU-} zj1~;f;URLB2otF@e4q5KF{Tp|#tL*BJSQI^SJXiP{qqb_HKE1Dhx9I=TRGD-R@r}F z%e6w^u}8`>`rtGf#;;9JN3S@p!2?RjWc|WOa$w$g6EL<4C={ytjD#PFlWq>sC*<_wej<1puV{)b4|gCpx-_saR#`5V~u(1 zI}jAZN3uYIuBjEPv(QWJ{^%@<5APp=+XL*{hC)Gw@H!L{Fe0fcSkM?Y5UznT(Tma0j`DKKVU063 z80W~{W|CycqM#XLzf)5aFaru2MdBHo6n1HHD)s_);43k244e*>y2+NpuOaLZOe)U; z0>XTO=Q~dkcGj8W$&>M{axdUH=+z>sq8zXt&&!(pja9n$v6uEQ-^2L10BNx$vgL|4 zH>!h7WLXOYMJ7FQTo9K$%BRBl)JVwdBK})hUPJj&76+v7K$kiS&XLzUWX}spW?MSb z+R`p9s28XPSmRzAKg2s(Paq2j0m}k~ge|Q!bNCpAb)tc}vlT|r2}s)N(k18>l?3m& z-x^CQ&tb|pozYM#PJwz+j}Dz4RX52ou;U=joIs48Kc%#kJ*n>_06_>=PB!RDcuYAe zrJv++?CpSH;K5cv1kQl;i&Q}zQI&B*z6iGgy?~zKC5Ic?U%w4$y|uIqt!<|1>m#Y3 zL|Qrbcn3j`0Vz-BP$WIXu2mGr{7&z%&2m(FCphTJJRHM|h9>NNask@r`%FGoPDMi_ z_(x++VrrGXVn$x+vNu94vxRan*IXBgq*DEbY&`vmeq zb&LE#*Vyr)8H~LVJZw-t`T=Y%-cJWd8&t&5t&%2Dom6Pl>d-&3aAS2P^=8*Wd+7VY zeGidQNLu=8OyQa0!0`+PdRnw~k8^N@oj?Fit6LZemdN5*VTk5CF$Q))DaaeqTUVYt z=!esQXOKZBjMH9v4!xGr0W^6;Q>xB>_Lei)-&{!z6*8z%p&fZ%+l>611_oej8|O=l z=S$N!(mo2_85FG~b?$CGOlx=U<6LxcFFQoyq&TMn=<)!htFQB`C@-3z!9N@8PtpbF zy+NpHaC91k4MTyx5eGC>YwT{)K#Rd%=%cG|ybaxLAzLv9Gb1G5GBp-C(MRcIHq!DRuXKZky?Q2*GKbOz6CZJBFCSc2b$ z0RfGg3nj``r*B0jkzYfF*1*&#GKO9*$PFEC(O*kX}`ufyZkobn?sM2#((slrJL zOuY^4!%(I%2?`<6e5qb_6AJZx-Yjm&A64*v2*1aBQP$_=sxAJ>$LWjoApJZ4)qk4i zZ@kW26q7g%iZAtNpQybfiIlJ#)(D6ORxx-}7xheZjvcd!sYW`wGEPGj8m zu=c)LAVgGe2sxW;n4w()8ursQSSHp??BNMml4s(|0yROwMBOQZs;i$;DU_8b;}dt| zr6@Sh*dxO&Tg3L;P;{1Q88T=g3wD4he|FVVA=VH|?!ovZ$!ARZ!^Mm87fcRN24dJ) zyFRNk11>OlY^BOWAp96$GDw^nPj!8BHLa{H#rjT2>a%}=Fkvqcxtadb3;Yq#sEXLc zrsd^fDl>M|3<}rLsg|DB*@I?HFU$$8*_>mV3WKLWZToo15Hhrj(&s%6pMp}M5%(QL z2&OtC2HZ!>UxzH6f*@28rXq|QC>65DJMc8y5EwSm*(P(}vP%uIY!(U33r*PTA@`sS zL00Ey8;-0qEiRwas3HD62wK6ToT8k&@K!AMqRxSk3(5#D=bW!C#Lpc1vi4#D;~Q5S zezOx=3Fd$J`LnbLns)W(YY2R1dytp0wWDX#MH$(4(6)%nG4XTT5^I>XWKcMic~)|C z>ccRKJQwJ@wUZbmje#EAeE}WX$x-hZAqA4-_}nkC(h|=@5^r zf{~HWFbrx1&k1Ew#0bg(UuUU;u%o0yp!6uKir(TtnHN;b|(DFXYP{gMBc-&hsSgbq=%K zzEmfczfbwMUNu&L#v03gH-X4dqkLVqoHG>bZpHO+`f(WBPFU z38+yo4oIF3k&ja6upKIMpoCN;p$LmzBb?U(RBnd+HaSUmQOXO6Y)I&u667rmTEeIf z_%SKDg0a&zaEY@**<<8yZ$8BiLdi88=0&d(!+6ZeIl(dL$x;aeuXc>nz^iXE^y+&^Y^`E|z=+YklWreTErP~j zk7+s18ci7OK!%yar5qpD7~-P`8gyc53l%sWB1~2)z`qkyb`-^sM{Y<=B}pCs%Z65@ zjvzDPAN7H;a+I0VLSY`{<5}v!Sp5Be@{iIP>wJU^cy#9z2F`thYZ(Gnu3LSDtl|(A zi-vf0?aZN3UUXt08LH9vh>#s}7Zu8T;00c%{)>=}(jNVzo>EroEc%|%S3aCfqr&i0 zW{#WjzrTkN_`Mfx@VDsBhE*R>IuKweSqNOEsRq*z^lj<$YyzhZ;_=v znCAZLKLEA`G9RR6EN{=k$ml_z5J5$=AgmnB8ScyXC<7Bc6f$~!yePaGA1Xrvg_ z&e~9{D7_w&Ov3A7)9ZS+tjWWP*g6|va+%FjyoRq2#p(4~tM%Ztu%+00e4}Xrrx{d)Q?B;YqGRuMG15H4QdS=FcXQpQmhFfv} zO|s`THmuYzU1)&pY)k|M7@;F*)^2zm=O82`mD$?13-4?cLub$D;aTiCV40e6TgM0= z(SJ2)0S4{pa9=@-E~q--{3>`Hb_dk++(VFUFEf0|WJc(!%ySsGzTgb|5XvSX`>eH4x10>e9IusdAI!xnbbgV&p| zd5#`LG`)cy%q@^!ddWJsBy1C-#x8h2`tU;pEr#u310;ZEL+rT`^nT#Ur;nG@gHN{b zT$zaZ+8DVBbf{ww3t2)-pnIY#8P;FmcjqS{b2MG*pq#9Y#JZj3WkOwRJVO&kFOWgq z$vRIDB~FYGUR&Lz^l|kLC6R=-ps9$>BcK~cThIbfDaKe7xwOSO*rBq}L2nCa zUYVfRYYvNoOOMMWL6Ip9NfY<{5F*wXvgAv+JPV(i_?*Mg(ks%~+e5+RG0NJ29V;Y2 zo;GGuOAjs5F$4-I5GVH?Q5qQoqS)tCjbYSW1$rov)Y?i_Lw9~Wl1X=u80^CkCS%R1 zZ4CYZd1IDChI6X2AI_@i8J?#N`&D>@b>h8R3DQmuMui4%#bJ_M=_W{&C3Uod$e0~p zppg&89-Zj=!FI$1u*3g9QwH zW%3~?rLAjqziefl&0SAjGxP8fvJ<&s_`oTIt%Q2cI@xRTl#WCuTgVFnHEDqca`aYc z#ZVh4jUeABljeC0{k4J~9o&6aa{2to!hEJp{XxR#2FY9;o+fOC<>__`qccTwz0{nP3oQD@uO(A|txE4%?M#d=8ap#SFcj*5FIZDh)@lLC`u#H2mR6 zJ0=GXR^kC8NlwTh(aFgvlFXQ4^kN4a4 z18;mxZ|{`Yvawa4-!K8E$OgC`6f$ekLdsDFqaf5^3FXgYg<%q2fiL1Y_+HD(wP{_& z>~^jh)5rK4O-B%ddP$aiwK7@CTISdvHiE}P0P=VK8DCbgMogIX`a4krW5X&W_kfr3 z)}|sx-|z|)Jno^ta~(cQi;0o!q0M#_?wlwDrK&Qby=N=XymU;<$Jua~D*; z#+bapRqOJbFazC-+e48}?9%3D4OI)sPG;CG#6^7>iMqz{Tf)sP=%q zZRB$8t2c@9cBPjKPf2cU3hfdCBu5hH!t+&PVJRfjz z7R6KK>@^_l3}?FlVnCh0R-Y*YgKGHo0Jn>BydaOEGy(&|)CVNvi3Ft~V$c{2S%gbW z(}S@i!4t)xQnE{?1EboR#P;&#DwaL4H|0O)(6UV4jgew9odaD4@HTcB+EOQcGD&Gx z|KLb^LAA_Yc{hzwE@Ll*I)ZE$gUduhTQV0(COZLwFK^JBoxdG2XMT~1i0Atyj#eu>aumC(}x#)3YK9qpP(9*K37*ydaI7(HAjkE4sQ$T)(Hq{v+m zfn5*;;=e^;RcBlndv3ss6Ib3uDUy=}A374)eiVKfr$4h<6YzA0d_Z$5Vf7Z2L^v-Q zt0O>OP*P4=wINW}P=QjObsKWa_e{Wt^dTTVecHw_9-0XCfC@-M*u{LDVhD|?~^Pk!Y z8EBYzuPz*e8VWbxi3iF0S}L;tTFgXp0b> zVl39;j0mUjtex$XBnBcj;fph_5AqJm2gKctEaIQZoZ&#^``|T=0)J*J#x*k}8Y|>5t*t$ETb12HgvoxR~f}-3LG!WA)OE$ix z+jUVP+LasskMJaGw)}Qr=1Q_l$7D1>sa>qtPpV9nP%zVRd3V zqD$TIh7(_Z_?JIRAO5o+r|Iw9#u1r9N0<);|C)r0O!Up_Cyf$MO`V|P4+om(md-T} zup>Dmjaz7q=TyF{S6O_#$8-1n1&ky0xV)i^CVVcns}LX<4qQV(qd=-w`720hR&jE%_b~U*-`y@w#jm8%Y>ILi7F-M{K0VM-zStV}nDnE>y+aG(I344#4-R zl!cxhbY!M$Uav@d3nJ49a8QNNFIYn;;UJjG;y-<)>wOq--bbf@d2~gJmUmB&g8coxdR1^4hsuBvhV(wR93olzxP`Om<^|JPT`t295|J)LG*h#9g96Rp;0xl6Cgd2#UIf zN8K#FlaAR(-p|HB^s*z>5UhE6l9EU~zy?tE*2{Gg8Hd6f-ll?~2QOL0>b`Xl3aH}c zA36uXm_MFxJGI_<1XhNcdu#L?5#zMsP+1EfdIERJDOKJYfRVEGgrN8^p z-{R$w{{aM8q-Nc+yBd3YiZELLC8eZf5%1CN*@>Oz4Xjfg&`F7;gOpa6Y;1FsmidZF ziAQN-DW#dj^jo=>XKFaaEavD;hTwUnAZ2U~?8qeNx#U@Yr{EX@x>wli4Yw24sA7b4 zj|`{To43+uCm*LOnanT{#tlh(Z0X#!>yfxAZDe6)Ll6b4Sz0hOaYQV`Ji~C6_Vt|W zyYLsv$5P5py!w^`FJcYRAP2fQ1}bd@bvp(IE)owOoOlEJL!f)+Cn$$RO}s|GTHkm+ zb^L9Gsg&)UfbO}!0-9%UZHIoOXoVlNR+A?P7iCaJ$Hd4ZyhiVfc6bWz;d%%?7)@g{ zW);XQ@NgEsHDq+o#69z8@)&|=+|#lrM_~K69Ihb5fyayN9{O6Xt{nr~pJ)->pO zevNfbBnh}{V}{&LvEPVnwQ5pyJ)1Q@@4Nd z9F#8?u2X8@tql<_jB&#s7ldNYSbqny;vD(pb1LplJT-6SobZAkYF*EsTnkPpT3;Wr z=js+ae4617WW{P&7W^Z>HhZ?n%lwT!52TlK3FXSyb8;c%u`~F#aoRNGMYuHPBUA~* zPkM8lZ;|;3JPN!cT+MsYA%1UZbZ}~*%#7>hObq>Drh{b)M(u z>b^YuUZYZ@cD93~O0EHkn*;sR+|w{MG|TPJsVb>yIEgg#{tBT)t9Z^Zg!T@$D9r|y zAVbEcWR}vphcTakYgf>ZMG`>2_FLadGuN*}zm@d((}x&N6WSWA1Nq56tL&Qcu@a@4 z{w{O}dzNEwbnI-h)JDZrPJM?g)OgoWSAN(prIpHw9U9x&JH&)-bqG5HDT*Gm7$}FI zVHCdiQ^6RU1p(w?Fp>SJ9rYk(9&Vz-wLy>8qH_4Ih2qQpfJB$vjYM)WzXLmjK#LRh_z;v2KqEb1t4r+G=v%?xafBD^C6pk+aN>Y@$K#ON;$#+6BrHI4`rO$ioWJ(L~w?V%(45>P0UCulhWdh+OV_!8wcBxJf zHQA+)gUwWGD7hMQ5A+uO5dODBPJS^Y;2t*jRAKyO=t!D@&JA&iB$;4pqm~d3!05$7 z4;?az7emu~gi$ikc`Ilg?s(9fUVo{J_aMNm_l8iQe>@R99g|BHgiXOO5`j|2GZd+- zF_wA#=`!adUE|e3?+#<>1?4djYH#Tay5Bv=1HUTAqey`C5vJB-XLO$|^~&|8M&~33 zg)lu;1ia2roF#9zZ0@0MUpb&M?5BZ_371DG+f(+j0PJitAu$OBe7pyqaSvrFyIyM8 z=+x->wU88-%iFb5)C_r}N<@e%LyFulc$hOTu{ZL#UGn5v!x3G`oeuUj3^0(dQ$kkC zmJ;a00sRp)h9d_=o1FKWfNidg26z$US&vm-jAT651RZulqc!N>GBEQt^i*A|yej|m z@+f=F3bS&3ohEx=9AzyRB)5fKZNXwNcf#j0?}tm_?Q(X69YqsG2luwu(%|qYh?w`+ zi$wOzJFt{z zW&Vcr*`Tb?P^!*}6C?8|W;Ndh9ViRzqlT;d#Nlur@+H?pUNk#3vL@FVpWeCYAaSSA zV>)lr-33mfA!FsFD6=OZtnU>$X~{VTHK84#J?ILBsxe^`F!!Lso?qa+onO!yc6EUe zTRUOIHLmG7a8??R$nWyjDl(DK_tXs6z?s-t0rhjrExLmcQI4-goasi5Ph?_)kg0^| znVPp|h`0@hw+8Et5Kb&}z?*~%4OK@eBK&WXGLMhUA&*QW0G*~TQm?q5kO6F4C*MIM z843^)rhGV0!uu%*O#{SsgR2j*G8lwUx|N1=HR7Mq2)w^|_&9%xL2wp?=PzFlrKy7Mz&kUhTj10BZaXv%j{$80*Q-d)=WxoJHMa^X zvr05hJu@k`m0Ev0%GH2TE3BClVEqU?nAWzl8oh>?JU5lSp2i49hw;YonM=XUdsKip z$O891#wYPi!N7 z<<`KW~6K-ISZAinOhBE*? zY4ild&AvPFO_?OW`pha2`}0e$`xsbN6L?V+@~r!3GPKu`AEit8LIv%IVJmb2>*IM? zmr1Dw3=Z3{ACOz3pl_Cl`D&aW*5Vu7CzYu4AW#8}EM{MM7I|E#Jcl7rC#g|r-%>{; zFaO|KoQ#8=P0sfm^lJy2#&Cd^4YkP+yK75$kMt$M__g}ug6C{O4#S}Fd{#_lcusjY z8u>tMo~bmajP|Q&t+L2-2pP=Z-CrHSK$k*Mb3KG6r@=hc6wG-zW2Br>u}E>D#XntR*p zguc2-B0fw9+Ze3mA+(%uZ_en5a6k?o7VS`P*qf&v{k2C}@=yQ8pQiu&pZy7Rk<#q- zYlO*w`WYRLP1@8+e6=@5g!|ZF9bbMG`cH!k^}sc)Jn;X7L`iDh+1Wx)E#TlRr)5gq z*=0~oa=t*mqzTU^{&{YH_($LUzDgrLxv)ap8-y`{6+Km6+-Q=an(0X!KGR7U_Q1hw2GL~F&(01sH)XM%{Lc||-U48{F? zPM=LC4W%#BO8i>1FhT)n+a$VOV!NBP*A*_`rIoPoY=1dwS~71@s8cQ5`^G=wcMk!Ae1=15(MiZ1d_nIBYeYJ6+o`JDS%x+$H>pkeQ6pF zde#aR&(lK=WI(FtdNPxcy-0|{Cy0QBxXNc6~2nz*{HS9j)4g$oV&Bi`L z;R-8S(_TRdI$_Z3?vRi)Gdqy{O!Kfc6#eovcOUQ(;@A_PVRDmmC7xdE%{|qTrlJ zD7{M@1|?^E7^R{MVumAR#-G+Q>0kflUq`itc_0z;U{4Nce52>mg7Q*1*jCxG zt%x=D%y!iKyrxQnr;W4*^U6nt*{t(d0E+)bSc!3ktVHMw-cj#9mpN~D2(0)GH{zIkv$|Ho{(v^@q$e7 zRRn!Iyu)?n8R;hwFV0g>-57d-n70sRo(dFs8E$6p2=}}^Nw>d)(R7vgE{11=eXCJj zp%YkR08+8{7H2$zz$9M)xl`xUMmsqWp)-|`{II{=fQ$Td!QAA4wPU6qqzNI#35iRUe1qw#4d!O9c)L}V{Zd{yNgiOs;U7sw*l z&`t@bAwdWg<%0r39(vYRU+HbTFYdJtgb0OY+N>siXL4Z!W5V-=g#zM@$_@|?5rlR! z#FZ`P+Su3sKn3o8LhsJ#&+s5@& z`p8mH0d_BbXH}I@yCMy@C*-QehsKQU%ne&KKsePsIy3HlhO@A=ur8lKGv+p!Bj%YE zp&MW8dFu>1#OXW`SQRA-mvG_U);cnpkOj$@?S#IL%9OHV=s6Y9mO!02Ovj*(%a87Y zMo@0bYWfJh?UL(r@3SS=PpLaoI8TmW2LEQ@MK$%dh1MY`=telBH15i~klRF%if|5LL>W#U8%)rK}SXChWDimDPh-g}8;s$Xj z9Aemf+{gGvSjGr0Jw&PGg1BiBC}fvpte^e&Kjb)nkpBJu{69%IzjBl0lCKvW002M$ zNklFQD&~d+7?z%Ej@U6KV83dEoDj8`NfBS zmu6??(lnnclNhcfNdmzOIUz-OzebUJD6z2zSb!(Ql0N;}&zLLlCdos1C9FlpQb~q@ zM@c}DToXu%cS7#+8^(i{vrHh=h2Zn7_$QropR5H+bF}gdJ8TkbT_S%P=I851)aSlvkHY3Y^1J#|To;13y+UR`xK8_VLO) z2l@zMOfrY!MNHE(QIJDPUDW1(^LM`!<5|0gNlJsBMF>J>?h49~r#0E~m~|M| zF|Wkj6{l35bDpix);S4`8|=H@pb1s2i~*J&sHqN_VfkHjB}B$Vb~^IGpO4`89N4bNFwvZcWxGuXp629p6f zR}R;hA(E$`!f~4FA+B7S2t`%E3qK*3Xye(lG&wgF2AG^>HI@m1CjUi(Fb2Hgibw)x z9pHQLAu~z}D8eF%gyoHwBvkfBiLyLvY4jNm7+NGXa7Ya0 z*o&ghrvso)NLb~7A`I8cGh9?MY4X-p`h_r=6r<{luvZn~lz}E!mY?!^nlvF3dkC>i z%+BB(Zl$N6-$~O9t=s2XdC-k*(1C2Ohj}iOsfg@rC;V}Cz@w9Yr12yopeQymunvrG zC)D5iUE0_G#@BH;chaB#kAFdF;Y29=3a>vwmzZqNw(?%WTF3!qgVjfe=6R75pp&NA zWRp2_dDL&J9}UfODlandv!S4Kbg-cr@_$2rXfXN_IRnTHwp5!6`SIny`0JPd3r`;* zu7?#~Gr!l{^&^@h@V(xTN=Ud|1*?!yajC4DZHd1WVBD*|yva<0Z2E)$;Bx! zS4*rkI8=-QUB-J^C)ctc`tTUZWq8QTi!WI=h8v&4WgG$bP?<7ZhjW(MHDZi;S5cB> zYTerre48r_HYy$?RDfKi58fxe%w4-0O8()!2gE1I7ht`4&ZKW>fJ7KP9R&Wt2A(&9 zyN|qp^42=9qcI8RWwy9^0BtBPV_>!%HTG+gOo4=$g=gzDQemncd!o=)+6tNL1?nva z?P8d=a=scjmUfxLF!#pQwDMO!OXY_o6iyDNBLx}R;3W3O-W)P7;F#`W`&&C0oCqYY zc?LZ>b{E-)wXI=5#RZ6gP;5H}j-{n4+(_)AzrgsV$&|%|{^^fDPQwT_4Pm=N3O(-O zW%*ni>t&MlXktRmcR=jWxI!-)T=BX-stTG&2QV)c1sX|P(4yA8<6q5TXeVxMcqEMF zFg}|`=+62UhF5b8wIxLyVW2&FH7XF5zEjc82)%THiVP#P%WHJ10}0FHjeY0$z8)Py z*}M=!dR{6qOA#Gp)k0#Ehb)q$*KBhq^G9?F6n2I$G*hk8C}IrtV$f6+Ko}f3y3}JZIR}HHDY#GBt7#T+q8s0b8*0&-M71U!;|v{AudO;4Bh03Jg>48RKkw zoy>g7ugT}OMm(#`az0@^+ixN?Wzfcq3MGuiJVC1vb{#2liavzD9 zpvmcwFjl@tflUq$Yt2#qe2xKSeEI-r+PMcO#~8r;%`(&-=&6E7cZhM+k3oLM{flXm zx-+AgVn{EY!O~|Ja{kY!W#0Vo%;W7$|+l@DmVq5 zIN4iCS^9~TS5`>eC0<^qy6B?Be3OUpFvtW7u4D2Fa*i+_{7~bp_7;~Y=Q{+2$fW0w zX!YJRgb_G^eYlJfWcXvmu8v$f)j!P-7ztiw(dVk zCr=hr>y;UdJaT&A0S7i!4shD?RPJyVt>mQ~>qMf+QQ;)^5t2sEIhP~QTZFfBJ=!?G z8I0;E+dQQdmT*9})SCvoCZZ$i9!=89R58`by_%dGC(%ea!x-gSuwwA4xhWS^?0jhq@E893|9z-;;sYhbf{fL0c|MK7K*V?e!V8XH47eS| zVp5#7gQ5s3b1xxmuaFWR(=)F?aPtZ66UVM zkSZh50^?}=#(Yt%M;ye;`Wmy(5lkp4TZ67O)}jRE@^#uAW0jvGP!wX%9^OmqD~svY zJMZ&41R&3#LW~atXa!6Amp}YDB~g=6wQ~YZ!QlM~*kOT*>64b*At4{^ar)!Hm4xZcn z^uxGj5uqYkwt;HwA!K}??R-7%Gt1bxzGo;2L|6hP>R1?;k;F zwKI=>G49tx&9llmi=HmA@5h{H&?AkY$?*QtmarwVr))YzY0)aIB0IwfL+ zZ@qUT{TwfRV`BqhL+v%0^^R-Ko7jaiia!4nPL9B zb{`ySV_YuVuW=_$Yfw2pSY*R6&BzG-4@g+rwGshCz~_zg<$Q!64TqegY=s)PNDLg9 z9K-XYY><({8cZhJ9#=cLHV6XeZ?49uo;60mlY4j52Oqqh#>U>m>!HIV@n^0MeZcSV ziPtpW!Hy~s!hsJX2}%Qzb?7n6^RCI)+tSxM>`C?!TmgEv0Tl|ju?j-q)XrY=7v84o zfF@YvptPXa;yRqKF=`D0OTl>hbpPXDrg=gfJzRg8#Lmd6p&62mZ}zD!sWd3%oSkKu z)hseaLZMbrDO^g6uA3=4+L=snfyR9ax` z*vzSb;yXiF<_YH%Q2xh`pzX4E04R!6<=Bris$=#)`w`Ddb1uqD>v_6ABD8tpv=1uK zg%Yko`_6N)BBTpLsA@$(5maq*F7+`W>S(==vIdn|eTrAxmDblRm+d6;pZ*t=_?io4 z;_M;Di?#gSy@b&?Pe&8?jgE0btxT$XkzSC%E1EWY^-6f}8d4W{pBkN64Db`0EY&gW z9Ui2TiP*m0W}fgHsL8b}uS4^z&^-Aqhfj!aBkz#~&Vtx@X#=B;G(Y=CYpAR(CrakYC|UEdIs22QCUK9I27yT1Z^&Dq?@f(O;*3`j7tu%1Ie^#yvz&|Na!tZLI$emxK$~DC&=?UlbvD|9wMR7_XQE!m z7~swPQ|PL^n=vk5L@ZEdMv+F+7=Kq0z4Cr}Y1C25tTGc>CxlZ4V? zqxEV&`skBn7Q6!g((Tza`^GKctwvgTxs;whd6M?9_HKRsYiX1Tg~l51G9B;zU;Fhm zF*5_L3RiIsVJJ1dZ^I^RN^|qsn`N$ZKmu77g57}8Y@lL{+S>V<`Kfg6-8YzSMqNMM z&2C+L4VWE*W|&r=}jsK`J=i=_Br{znhWtk6M=Tzb5(udJnh z;ChqzE)e>y2(o?Rm%dI~&lZ9wO`T`EOv)|^?3Q$`)67Gck zg++x-H6%I^SSEpKh^P<`4>&uJjUHyIV>N-&^rvT!o~67>mdcc7e{n5u5g$tO5FEzk zOr&#ec^hlY(3NZlf!oBoQd3xvU=G&J6uUb}IP_fj{HXEi)aSt5e? z+2fU_;OxYBWA{wF5~4J#z8??glq~;UJoY}6M2+fz^_O^|WJm81m+u+tPOratD=jaq za1T66`VH7pwVe=`;WK0B(qomFU)K=c8z@2<{;+Lw7lL*l!M;-lvP77Vjb7qhTGI0B z5@!zd%l#At8h`G&hL`)-&VDp_X1g3}c!<{Qab6mfLc-QS&tIXQ9+c$K7mw4**&;^i zLHg}~;y78>q zF!)5jPEbY#5H}r*3<{@3r3e&U=mg#Cn?|82BuQF>&s&JkJFtsw4iw^oe4NA8mvr=7 zPa_}vTDt$2|7SXUOsOmIYiA$y3zM`$FB-N-JKIstXYUJp?Ay7n8$O8e3cPJqN2#Nm zJwlj^NU)b3D26ROQF+!`7v^S|6szpZp^#dL_vTSTJ=TNcnQCbDkqcA7qqC;pVc*7R&t%M8e2>ZdY8AJw- z1A> z&M0*)VL)cMUi;8I=n;k+GlnQT{#S|T!!c5JTIWD zk*lvGllQ_fD1e4SkX#clJ_ibhs1k8&>mYv4{&N`o&Sc5Hl%EH^<8LjNI^uj~N%k!0 z0Pwp~7xEDuL&PyW;7*K?F7!v4u+AF!E8ANqBnvL1M006&?3{Th6Ua%`DQ(c%e*(%l zCL`&DlE!fAphLr#Hlwm^)y}Xbnr20A0rChP8_yVMHQ$=>*&b*Wp$rhn$W`Dy#~AN9 z_G13>GE98p7$A0Lfx}MMj zoQpa<`^Vq=-uL+)!Gi^^rGtRcvhYS`y*lv0M4)pRUWqKj`w>YtUWA7V$eC5>Y2>lu zWXk3TmWfuK2gsoXe9eKaEf9mpgX?(r@bD&4j6-30x>)BG_p$-Tbxnp_U0gv4butWQ3PS)-ZG0fT_pRSZlUFX2 zK-n}N#(=j_!Gc4g9vb?hh60Kh+!f6nM(ZT(Mqe6&4 z3pEs(j4usUA$)7$EsHWy&ymFDn`r6psqFg^hMY+aFSU!9xtaWj5WcZTlLt+>5|P>8 zGl`Lgy$Ii4;8CB?@v$T0V__(+t*v4VbdzWXy+I>O3qX3%Xb&0hRSYN3z-O;POOeOI zK8i|ckwZKIHa&jyL|`jTPgC+ra*y8CDMGp(FgJ1G2lVAQ;4e*#JG-++M>YCLs-l;fK(-UWUk!26?;Q75m!* zdSy9Q6=Oh8ZGcQ-;X(6iW(nUMk{!Qs|9PrmSe2;zzx^%>3|K<6Do4CG;B2lV>ery* z%F=yuA6D(7fdPyFFTy|eGqAO;SfI$0@*^ZIw8MY&1Zbh1Eg96j#*TUe!yE8EQRm`S zJhw^23ZXmXh>nP8phmTM5GD>|wa}>(dbX?Krw`J=bqvJeZd&YaqZsIFXFLFpk+(u8 zph_Th=RoAPt958pH!WjNNt`Tj{S5K!evF}R=?g@ZQxu?u(<6bCfxr z9^;5$P>%FroRHmaFNl~72;5wQua$&--9td+&SIz%zkQm+FyS7S+XPM%cZ5X&g9Pw29wFT-56A5a!UU7-+Y=L;DBsx9He{C zokjn9yei{a%?0J^PKyUih z{k?Sm4k#%Q{MZByqv*9!rBB2dO_^HzE~ST07t>FE_-Xp$A;uaqZ+do&bD#uVC5Eir zCtUK&k6xyq{P9*Rc+pd6~@u|WULWa`#ooImc3AJlv z!q+uIGf(c^1*OvnMA2g;*^B0oytpTiRzZMhA|{$lV&^IJZ!aBPZ*!@d?c=3e_@C#X z-9mc$lGe~a{}_EpXoB7*hg1bPE*&?DcZrlC^Eq$PH`|8GI|Wb%J6cw`rlDOE4s{Y* zWI#SmFjW3&Fm#eQ+Com62z=yhA(M2Pv)}!r?|xq!`=Lmn zIy-6L)i0%`FCG#1{|eSDaY=+%76t229hJO_?$eJxrq}j*x=io)%h#`xS-+jSiHDBO z13w|?ZHUrG?DYk(?+)>$VG@dZu-03E35~gSu+|o=au4SfT;G9`+9$DOb)(tj#)PUf z825;^4v+LRAm$R*D&5}@Mz7tx4&;VVUS3L*mnOnfkkJpz4EK0OmN3`9!1K)U{O&Z{ z!hXTP7-xnEv~S(-2pt5OK{C8h?^xJYL%=igJfg%2Eg<+-)@dUZ4FMT} z06?@qR^S_Qu@$XxV&nAEjHGi)ZxyzdXHJaHQFF=XVo8CiZ>b zw?ggJRn>d5yV*^($RH_7qZwP4?9s!_%ZTF4MEJ=MesJ)`5B8J8F`@8`C#6=Ijre#|u!jp)q!?b>*V6n+VJk+ICb%RJA}jL3BxpB#cHNc&i#Di6a5 z`{Sgs1M+wc^u%Z-9kRI%IS50*O2ra934}2tzMDhqqK+2c{K}tfyQQ>|N(e`wP?vXwmKyt!3i8Ewn)H1y)67{kHK_ zT??Ft2`Y$MCi$JaTKTHz5l%e%NTfp@?DV)goCS^L0a4xjyYGcw8bS3=k{3?^dxOmQ zx&!(>G$8LO?&lOlr=DnV2o#U@5_H7Ngf5hzOmq@v>~R(toAZM_7SRJK39Lt?Xt;h4 z4EzR+Z7pJuqYZQ&h(jaFw3#0GHmNxRCFmRKW0rFa-Vu#bLK_q+c{rAIepGSwK9Yx#jin`1Y;vwXeSw=8>(XCr=o? zJ`B15k+P{2KKpEm3a-21+yCUv@Db(1%aFLAzj{3eM3Q%(E*ym){C__UZ+-Kn&@|Q; z{;$9MRd}9Gl-)S)wm?2Z-adS9J$&@ukHTBO`&M}RhzX2MJ2>OLoanmn>3z!I<`=?0 z{oU(f^y0OUK5ArA;6ixe<#EmfsVxlOpL5MFJOf^*o?-b;F<6fU+W!f*ZlH$&}MYxs}<@85>k3AhFfNZ8v``4lXH&W46lMAQIB zU8&7dF0GIe6;qdZCUgYkB<<}$Fo$H=0z%o?!q{HKP!%r*$A-J_&`IES8t*aOB=Z_t#O@+8=F z^l=v@&<-gQu@lXc{M-!UXF$_LP$mM|h~BjFsfj;pxVEjS@jw1CfQ)6I-~Hq7eqUi# znZ$1&mM57eLu$s7T1B%l;tZdJYA(Rc#@xxo6ho!p@fCP!+$S<9PaN^`IH%6~mgEmJ*dFz9Z zSomf(0!WOtDzd>#q$(!Pk+(y+7g5apL&LCgfqM^jm>>oN7)9KV;hdja41e>(zrmVn zun|cd6w94v9!`f(e)(aTom(JcW%E#4dVxtkTc=H^&(~|{qVvT%yGO3G4uH8{1y@wY zwd7V2NE|)YFF&Znom^b!*M{_deWLLbHY;>K3iQ}=5vuDWW!05PJG);r#TeB zkQ^2bi+^_-rGt-5lJtv(8qs1jE+x`5}G2yYLEPZ zebQ8N1I)MDJ456`=d}TaC$uM5qmD@4h*2cRDTS6J+6velsWR`B#xBYyO^c;h7=4O- z9^iDXL&Ow_^Y6||w_}}WO(^n!oTrg^dxyDpqAvFoMbVBEVcl^=efXV_py$aR5iO>6 zFy793@9BrxOzPzf_`8lUWN>tlsFgA^O5}P;Q5b1@QBl5#svswx?Z_Kp;^5*v^6Fbe z8>$IzQu(tCG%}shAv&0frl}`qOEl17w7Q=39UQ$5oXqU*5z%H{bOs6xIXdG$jZUI7 zqZ}i$5};x_k{_ycNHF+^tXVyX+IahTSX{`2Mb`KPLt5vwH_-shNh|l!j2xq6Kp?1` zpxm{%ixWw8fO)ASSl+BwRFcKxJx~a$TsZTcysrm?)JFc5@+#QmIFRVBzIK!>?DQmt zp>t@G$Pz9F)dS|x!AT;?FVA3_vx%#r_sXlG@A6er2R1Vq8lBT%%+$4_2M0oOK7s53N*64u0jVm~+I2l0uKl|ibIwS-~0}9LpplGZSMPOE3KR%`r@&NG^Er2^H2XF z{K4As(5Jo4#fXx% zcJyPAn|L2~5Y$_4+!}L5D3PHod6O6cgb~LWUjdzi9mFPVL%bFlFsNpu!b6bg3~3EJ zZSG^Iu3VW6{S!kG4f2e4aE_HNZiD~;jt9CtI^|qXq(_Iv9ua=~oPK$(yzkg#h(Dvg z7d__p>iw9`#mQBlqo<4#xo6(!p^s4%KWpsKCA!U=gZT;d@OEf{SVGv&|x!o9QRNdKljM!N;Mir5Jwed;cY@Wpa*quyGg& zf@xk{B~wIEmsp${%Bj+uPw{M;!|2c;pF{qb9Qy&#i}!NI;+vbx@flVCQ~|XE zAJ2t>OIO3?-~Kl6EN~w=wPJ_99z1T{W&P^!A>S~Ok2u@On73C2X6iT)t*2M*foG>bTI211{SQl8g6~^ko8%|!7>hS2#4;U&IXs43>tI8C_D3L?RcCZ-8fqG zPe77dA%!-xUXLCD&#@npl-7wz2F3<)9H`mfYk~B)!9i5?I6N3bM;dq0(|;dNIZNt6 zk5?4t(aaO}W&-weJx+=PT*$!zX>V@qK)~B)2pSM9|JHvFQr%VxBGaRA?!rLKt4aE5 z1<^6Jb0lMyXS5%HC6<;yCV)313dUYK{3ll+?+45`GR9=Yt!%h}qd9(Y6bFv{F$YK@ zR@FYaZqg~~`?C=;HtKf(ljVXsTIL9KT=q*a#);-TaaiPYNEAFn_LU8mnf(KE0Ug+& z4p;-)K<-#4SW@n>16)8n8t~}LK=ckvvZPZ7seqx&BJ+KTK@2vLD#o3Cj=_NVS;R)TwBqO?W;jXQ2M$3Qrg!Y}2oiJz0d8RUH$#@Qy7iZT#>I)Eh`2kD zLzE0QpE6Mtn>>t!X_Yp}WHiKTp^bGr4$lmo5tV}$p4A~z9UZikHYG+k#v|_^eUl`z zZ0JI%GA!np3INN~c4%>2(_C@F4zu({;Qo#&!8@Z4yzly}oFQ`YM~uYfX++v|<{WM8 zmknlgcG`sUYjds>3yXDLkSf?^bN^X~7LG_bic5yrOjh1j&T0?GaFN_V@$K(P;KOVZO zh;uXsKf|u2A*^!tSMS{pfAIS+Acr^`^#o4`t~&iSs4y^KYoaMn=A?sEBSb-hw=>dK z$ppLtoPZM?KW8G8sKzMjz+oe*B^Q@zpoW%Oo%@Vb!2oBT(c1W%weXpQ+0~`Cg4RB> z(h<>+ylAragllZ2mp}^PF|oD>bRIm(Q{G9*b1izqw%AauaY;@HD$A7gat}$%mT3$H z5@}kr5#ET1@h0i)Jo*4uK&ijGmK0AdC`OV6z5ddRVQFqHWH#aVY;R+a=BTo<}@@ho$X%5a&pZmPjSd4_oE2^D-Bh=BGygQF37CFm%>O2~0H1IVUGcbkUBo2WQE zJePVMrvc%_@bj-27ryyrEKNW-g-@_4QAq7Et>TohCgc$t({MOtDSKl^@9}piAO$v} z23#yQApypUZ4tSq^^ZpHoqbK=5C4ZhU?wy*#=xd|BCA>s3Tuv{rWp%4E{$0UL#D@L zcey*C+=>&qWb)bw$or0sWKcFO)Va6gId`Ct8zg-Im-b^^TPZ#1>F+0^915pj6RAMi zvWS;&JQH@8*_7Qi_yrgggkgMqG)$r#SAeGOz&{v&;W<3)8$`RzrbfVwv|=uwh*qdh zZi9_A-uTvcSR;%AMoB}U0z2UTijQXyg4QrLIfdb1(}-x3DA0>nZ-#CTot^H6M#hMK zM-Y;RShv1^xQ%e4#EGK%2Zp#VYa?vTeMh30Q7!vqPxUj_DGvHz{VQF&WMjvDXZ=wm z2u&5lEWf0RX!P|6kpT7?p*PilSLk|6I&|MXG@THSzVgO%;ptFs_{C4&3DsE)Q?0WG ztgoi|2$1S<|8T6PuxU?I2g(d*t+=zzbhP%+gR@r6Frmigo8Xh_*~4fMbl7z~^9=`elg5e`c) z!5@w(4;v?i;iMk3zLL+Do~(!LMj_mI1tkO4TYUm-M;bu~L+4c(RtH2L1+gIu+`ab*w*D3~S%^4Q z6a@yDV9*|1=I-zop$e_%c>kK&4!84Pg>ChRd z+%C$%0binX=HtD796!zZ%VN9^iHuu_$gDQduhW^6oM~HZ(W6cx7gGbB-8~Uy+Xvxs zfRNl7&u5C%#t~7k_0T04&#gpB%C-@jn2#yJBzZ-ZqD^T`H=SW*bvpQ8Os@sjN_f$I zC=iv}W)(FR&(Z-ySW+pp`T-6Bb=smQyBjdXcOk~IS0ySd3_-lMk(lU>c}v&Ab8Ud( zw+@zR7t7S-DIGG|FG>Esgd7n3zWLze4mnk&-1<(V10Y} zpTP6*yd2_``B{BHyT=&7?Y)(7x?>R06P*Oyo*4aap|lSezbl;D2ZF>4hSNqXSB%0*r5TZ8avDJr%@@3QI4LKTY}QfpnM$>UU7V4Au4$#gGH;#;79Nj+=Z zg#NruYwBhCzDy2uk#1QfV8BU0W*qH~tHZvK8@Iv=IVSdHP2ipJOeggE-J$y7?avoO z`u0rdygY<6C*KF>WMTq>D{F=>!29OeL=LS6;4Gl;M0S?+ql7U-0_M8~MA&-QVdbKaAz5Aol9p9eU0K?71VT8_|kd<{qd|0%E<8S~8c=@-^W)DS8_8I=@+9>XibV@5G& zU2r0o2E5SNiH_?zFyc#yyBcWx>Z>ou&-Wu*5qP5$+2}%LcJYeQ7XRp7`dCI8Jt$!B z+kB>r5_8BX;O-ujM15eqjK!n4ZXP?u} zinaW#L9>ilzC=cJ1pK;AQ=z#h55w(`Z$UD`fZ!}0?wyA5iAg5jb>l2>fO!U?MDNc- z-U$1;p5_zggHuMLC_(#in~o6u@Y-?(Dot`KPF(yw_pB>uWF~LJJY{rxh|&yUA`6xE zcR!3!qNB!VDpdRtQ39{+$~nc%b+C-@D(RPIn985OcLy)^IE;-?vfeOUN#R6jx(7xz zp6Ncw#Q{0S91++FVQ(wmXA=h4!5AYK#)0>Ug19$3xyf755$Ne24&$U;R!HeAF|9A1 zroI|9p{H{+KEu}bYFuxfD?Mua6mvV&hsG?J9!~DsqhM5za*;rLQ1!$W1c* z`u*Esbzu|2CtMVImp7ushX+TA7U`(RdKEGH`zVGZ6$aP0KZ3@h3ZaFx(Rr7AK0>! ziIL41#5ST15(!}gBx4ukt4Y29hunKGrBa~$tut~GoJI+5&%f=@J`IyJlCiu~V{5m! z1gL}%qNxRyNsK^QE&C#*YLO9)Ns(yB3X)274kSE`qP!Vojhn zWVdg;2V|ns%~Cz0#3>JouTFsHR)MrOTEx=m*XPHsvUfzq=#Mzh0a-t0zC;yzrw&Eg zz`&&>j^^PGjgH_1b@z^dHf>{UQI-TEHq^@H`PoRQNFYMlXET)z`PD7-59O^X_#p%$ zrZ#LRYkS^S2$=hnr`hUPV&}mI^D4S7(=08A!?wpd9Yw<5F7@)oh1;Qa{0b#yeGvgn zaejsKVUw{}=q2__{!0>v>X?VEq1OK4%v?Bm`=jvl_umiy;-7t$bj?t#@QCTUWJ_4t zDTN>Y@ZIpU2M@x3|IdFfjNm}S+M(o>21G=71_VhAfT_J>*5$y|9A_a9x669@BYFr_ zGh#T8vvq(|WRz&YwX?HBSzdS43k^6aqAEI#Io^Lr6C(-1RCmT13=(XuucvXAK`AJW&Xb17ah-;4;P)=dFF}NwI4fn0_Qv82{Vw49;LHpU zo(Hib7$x0nDs}w)Mb1?oqTrKAcHT&D69_mI4F?({+kDm*wvf}-`X1238UmvyAT#y` zpx**IO~RvnH;zGp=im!`^2z7n3h5^NuV@#vnML$b?2Q3r;_J1`Uvi;DCOzNUC7qaN z(jDp_kr8{bM3Omcs(n7@e2XSmPMUU#v&{K3eQ8>=f*)uR_=O5cuhXwe>r?O(erJ?v z9$S<^G}*pdyJM%;kNZhgpSFN14bH(f9xM@BTDgnHmD7 z{}%P8!#pr#yv8=J!38i#-j5HhvatPUD-fYw#Zr7mfzMJ|3V|PC^i-oD zs79?3?})n)w&TfpV2z+T8<_0CWnCCFS@@MIfC}_BG&CG0$ESEEyg5DxS3O4lIs=XZ zb>;yd=an#6dgMMciiclDsF#mQ(Pi;k_gC;X^(ZM@lK;TLY{6Ka@(el-0wF%52HFkv z&Si|dvBK*-8vl;LB9agi=AZoqpF>nn)D#saYY;b-`*Is~EOh3g!-64mU!w8nPw&tD zseFm%xXvnr3jF53Ny72>A|JLp9X|)rW^jmd&Mk6nvy{!yFp2&U+Zg}D0v-5R-%}a^ zwT|{OfsRRjI5)OBJtJz_U!i^T%37GDE8S?U_;3p01`hw?|a z!V9lZx`raQKY{yP0@WyB%o9HDF;AB(=##<=OaA0cb|2#%_@;2Mrnn}=v$~J$1Rehx&H#T!`Qs$um|HT2MT!+DM>uCXT8_1@MV_@E4tH`4cd@`vRVff424BHV zsOjSQ34P*mbj>(JH5l}$toYe;;Q4gwVN4mYzRJ2zfhd7^LLDiE6w&{Feut7h&M)V$ zg%a1!4#o~!5ra`ofogbP3C_UU>N3s)3b?KnG8>I<;1MKnYCJCvA7in(-&+2i7TBzn zV~r(xiuSn=hnY>3C}p1XXE@@}7HcSbK6ML{QWzIL=4T9Sj|d;k1*aa1jVW$Z7Xn_x8X5z_#>>4G^mH5#5S zuM$LnPL(=18#vR*uBDj`+_T;IGTR_U=)Ly7A)EtxTmW0!P^z2-VZvb7Kx#W9?U~03 z*riKdBhdN5&LSx`P#prZ;{Fou;{ok-v!NBkx=w1zpNAJlTf*1hd?BpTiuX@`PzoQu|898od5~4& z_RaOD;VUmrglDdh&T4N6Z@u#^YKH3 zkrd8$BJ^ME4>txWgZw8iQ)by79<6VOgW2~%d?@{W@EN6u7*`rOH6oj*$emRbSU}bb zIZRB4G18P{@J=pW!#Sr?q?ey_^!GSqZ93b#!_4gcFqWL)Ex`Pg^0r>R5!TX6*b0m> zW#CDWl@=T+Q*N`fI0(pGOIIfyE?2Nkt)Sfm5HR)6(qj;$ab7??>;qCNRgn(w4%<7( zA??gNy9VG6Aos|S_AE=fs->+q{MJAFjqvIlFLOWn@Y#Exq8kW$IWsx*g*rxg6&;rU zWs|%Zz;Y-f4~#SFaJf2Cqmq9yFR?^Crs$Ci%f*jGIyj5a8IfCbkG8-U@}-`lsgz3J zqv==0XE562mr*I0@3fpEHq{}T*YIo56L@7RFBL}Q9dI2FtOi9Vz}k54K6>{29Q!M) ztv!J~zy-FS!*?X{)1Lj8%^RW)mc~0>&x#4g{rI zbk!@lYnBXUqcT3m!#8Sb=3sJl{*K~AF&f=_j}a00V!gG38U&vOZzVcnIt*S{7Q0b@ zbPBk4|BF!=uT@YKDEHc%^EE2}IFyRLbzd!;%g{Zm0J$fD_iDL|xh}gIR*_TIc$bNW zPx;&;hM)zf&We)+k#ai`blau&u(rL)K2dSNvkAAE*KQ|Gl0^YJDz}NoD`m-(bo$!I ztE~cFg?mp$M;o=u84#9P3`R0cPEB#>+KH@bF}p<$H%0!EgRx7rQ3pC>6CfL^G;}nE zp$o&*&woz7vn^b>I?l6Nfgpt61k%OiM7;WA*24*LI&(T?-d}>euIuPPpiFirtY;TV zee{Rl``*{X*rm?!-p@XaEl119tIez&Uepem>ip$%tOY3tPOy9x^Ol|iooWrdt#F4% z2Z2C=yIG$DN-$&3_eK#O9W`(c)?9hl_(dm}{Z*VgNln-IqSwi`g2-ucll!YR>N_cNnm;qhYV7=}>{A+&^Xya`8OK27I1^19bwcry%+^&@NK zgMm@2xt1Ip;d*63L?AY3LC#f-u17@uKn+CttO&5y{s_fZV+}ZRtm9-_LkC-A&na{w zH`b5W5(#HDkUWpgni4{SI-U{gMBWiUodA&lzeLGIP0mVs<^3}Eb zAZEQ5lSF+cT2&(d+sFP2?H7^TI-A3=$Bhv4N;n4+IwKmhjw}!*_w@Hgo{J8DBThh( zJ|#Pl`^uyeTzFw(CoM{Xrt3Rs3VjeLjVloKpW253M?HrkKOq`!97hk4C*OGb3C<2_ zr_N!F?gkJnMy0EjpaOmppHoI}?vO6IbYU>uxQ=s+q^~bAp{`jd9|CQ$AvPWAsx5~B zP{QZoIQ{2e{4(^>r`};(XE=FI<4b|AmEaxZx8Xxvdl3@ zMaRmOEgBl_Mb60%GEmFj<$<8f7`ZYHv~nc|aGf@VbgmTUK;EuD%fwF3=mN;;enUPi z+`b3&P5OXlUCVH(Aa0QMqJKl3`XIyxV+VT>fN@lAK6@h~VP_ciH($RL?tk#(@ajtt zAA#6q+S?~&a~0!B&Lx%-*T| zR`UAxI=YrFh$3oWgPcEtQU0c0kVhAtb#(=2&D62MkpYI4RXPd=$j%}0?AR7t+okR( z;=yDMY}v0`_TiZK8lamFsid8-K`|obG*%2m4E<4xq5-T32eJyqqftqcuhD7nKif}g zNceTU0e`QO@ER&L&UK8AytYw=IZQ{Va%U_ia13Ovfx#wnEtla72%$rM!n>}+o0fE> zVe*<4<%n`3*DL(3LqFg#N z*rB{WDmCsyOKa*Oi%`riQua481RS`I8-*g)N#ffGvKw*<9~euA%&}S4=WK>NO=E1T z(gN4PT6&!+za>t^wdAvO5cJ$cDxx!k(||t{Sz{5ttR9WJm~{-0C@eZxoT!1dt6`=N@c z_uO+=aWXKZL|3)+lgPm)FXY%?qQ{A$J`NSmfZj4>9&QnXRDt6%yO71mxAydmgs*<{ zMaoY1!jJyL&qMR;>^}~H&ej%ivh(b_=o+>~uK$=ExoHa**6LtMf7bT4kOoRGfQV4} z;NHYxF*+3(UsE9-Y_^Svntul>N4rp;-yOQojfClYPlFjYXCb)mr^w0{24-bxfl{wm z!u4042^Vn!$da;$I)9RuYybq3fClL8hb%bW0&|;GlxUgPfKQ@PjE$#wjvP^CJmajp z6XcY46_+xav-dfvjuSfb2{#&T30amb#pLfs=RT7oc?+a79BPBAiyR4^%raW92r;;h z2*~)}9C{TIjEI1WOY!pkI=iN33^LRO=0xkG?xAM`RR!+L5vh{eJQW+g@K1n6O}}Ib zFu0kJ^IXw?qK3W%mVad_Ijm_06+!VGQF*XNsjGcK8hUts470q8vrVEca?Mh`?I>BT zE+R7L!Z)>qE_gp|OKmkCbPFTD4Hh3a9 zU{x6$(Qcd&?zej5HqTCUR|iVSM7s_;5P}B~*;D$}HW0dZAkXf85(dV`!%62z_|p~0 z&cN)GQx`BOtR70=;HsV$$X)%k!KMD+5@3V0)_QyLx6-OxVl9q4rKos0VGxJ)S5Ibe zAW8R)UJXxgy%VnAxEXrKZ=$1UR)lWpAEI9i{FoQJCxEN(h7LN#wp{pX$PkcpBQw=? zpNDrpn+x9=dWO!g_uyqfYAYb~>u@@{UkkOp)#2Xa7IHR1Fc0bQ{^#Mj*Io?GgEyH+ zQwra1%!U8yfBu_rZK9hhfyVIgqhE&?o_jI$PTe5ykD=_vfy8j{{QPlvV}i(?PKYJe zM?2KfWi$A;@bCYhABTVY6)L@GoBW@Db|?I|zx^!1mMKC4N%W%g4dOUrba?rUHr2@Y zF+oci=Oa!tf|2XFo;1;b>7iV z=obtr$QP$1B8>97;<$D?Q|1qmGel8@kz<5@fl$mn9D-z(&)_39aDEA9Px$>2*E_+s z)vFKD2|xV7--r3f3y?vtL9})}JZF+}V*`T*?o|SQU{XSLF&iO>ptUj?^-*A;OvbTtx?Ee*a+vr9m){-Zzs?)UwG3Z#!7(a7koa3Key z6!Cl=f?ye#(5Dfvktr{W@6jN8F}(}D7LC9E=IcB}UP#BmYnlHpq2LbI?D@XURHZrU zrVq#;)5VVbj4d|(!uG|lXk2-Z?-vSj0lsuFBHaDO>&$nU7j}^>{yIKBGxtcsIp| z)mag-u*|R;5C4GZb!C1&-1*h5u(n9&Fz&(Dv>H=MJb7|ZTN~RrcYR#I8_mEHi_{|@N5YVhmf|Am)-q@VBJ9O znhuAoD+kDQ%Mm52CGw}v1h72u7~yZ?^DGt0Qf1(KZTyh}%Da8%DKIOQ5_XRS6|!Zq zO|*_66lKU0;&sIo6#;JCNDtu&#G)b{@g%qlUjt~`#9Cuz)qRXmJkFEE zv$63p^6e9JBqYj&zmuXYP-CEiFoM@PX&@>*H`NJ^enAE`8?#8?u5}x6BvEcg+%o7f!aH0ro!`-*xzcSN$!~lBUHnC*+*`x zFwRy;$QE}(VKWipA+jlX)7<+JO0uODB4snmp9%(EPQ;87#u=)IwA|R+MMR10l0P@# zkQN~P56>=CxAkL``Z1VIq{56mX|)bCoS^fbvny&$Cos!kKT{4L(waKGI1dpq#ULqQ zc9eBBO`IBePk~(ZFDQAw{rG+u#>kCbd4>*(sqpq+|F1ZP*TcDU7rDMc2-q17jcP&P zPPzULJug1}1Ux5Q)~+wT02CYc%_!7e)VQsO{_zpT74Vr0E0BOd)*pjju!$ zM*^s`TiWSk@N{}QJe{9M-gm?A{MK9WEBYd7)`3wHe4orNLEPI2o2=Vwue?GYyc?OK zb{&Udm^AL~&z^wfEzsELJ`PACeD%$1oCnje><>-B+GrL0t9KrSCyyUPNIVH|{^kpj zi{juij%3JE>GSrx_ri-8=A*@j_xuh11 z|3jZ>7Lf-@g*;9SvXCbJmGtH@W7Stc8?*GffLA3)t(9QW^X7EW1hOb%h8Cx<2f+dI zr?OFBCU`bmpf?d1*$beB()lcDtx?F>Eg*ZbvJU6N)S1q@dPNSJ>AFZdMt6urI%`Dx zV_@p@d7A83<2_4sHwbMeAZo!`)S{Sr^~_alBlhQyzWYbtuN=a-hCHxlhl7ryaCY|@ zjwQdX7$hz%QX?zbg?23ykvj`XUPUDmZ|Fyo;xsV^cr*hg+1) z979yQOyttfyNyJQtaUbgFP{;w>qg*g;PF&g@4U|c`1}aR^KXs;{<8a-EK7~1&k^s7 zzi4bxX)GQ}4QJrqorgeAkjaSMI@;`2i0 zMI%(iecAth;od@+d9=v0Gd&QYDnUHU?@+=;w9`xz5(l^(qipse9NBJnn~1UsB|Him zbK&YGa@^D=(?V9b*V=e*OlGzHx{ukz9KtMwYsa-_B739UED+f#3PHo8bE%~`Bt0Rt z99!s;j%Xy>&@rfi*==;YIX}mxX@$!*{ER9NR1N8;Y80FIT?c`ziSj7;_+j?;eWE6q z<&;+?Xk(g0IkQq21Jf56Ve-~63vo!z;gbsEb1X-!slh1YZ5L>~l_R}S*9D}B(%*yN zwYy2q5|pbI!>t_JKin_`4CY2iJ8-a!ogxyo6X4(e@KbWZg)lxi2H$|DCKzYaIj)Ta zU*#g6M^3TMyHz@tDw&ROttG1}Ys#vqpAM{C3<<(UA6$m}H5LlEF|bDD)ff*eC3Fa_G_tN*Cp)uV4CkMx+F?X_X5CSi8u*Hoa{}0lilWBY zvWHeLsf15W^KsuvDx9)UKgG}zQR9e}U{crM@Y*uBN(YmDi-VrH9n%rj!0Bb2LOX?8 z>gi`mJcirJG}3JpwEPF0R=X4;qe*1u2%K0*x1^(lGoh8L#!w#dj1o~rC)nJ``A7j7 zRF!s###kd{tqi)EBIV+stR&^4DM*%pGkkGY*$693y2vG8xo{y8@Y)DK3!cFCeD|IC^OPBi%skW3feeCr*HU zENVE5Kv-}`TEi&LqR7QfVD@&6A~IlYy`4F27xpHe>9je(n- z>JO7cBjK4FX-LoTNIdHsbqnUP$H0wJY&{ zOBY20PjGmw9@yT3bHSRH2}Y{W56$getR*}IoQNG9u8{#M*U86JfA1Ei{3$l+IUawG8`qEg`c{4W|&kCe*HhmOWG-ZKghFRKDAB5{1_ zplDRpV!k&1PHFa6{GTa_Ygf(_`Q=b5c(p)5wqT8YoKdbm3$30*EA2RM;>~&=UT+g< zJ59r+k#nO&W5D<-E1oH?l|~9JuCnpe>t)JGV5#`Xia`5}-j8ddfJKivI!-<^hr(PW zZ_pDpN9%P}*na7~sW87>bFUN87w#cO^Ss8$G@&!beZ>4LpKWDwVqC|qiA_O@O}dkgq_|T47IkkjQ(PX3n`aY>YF?)Yb)tU z+A;dY9zpOqK`Ak01fXkcd50FMeIO4gCL=o{kqnBk5qYvP&kt~vsGiD270L-PP4b=&}Rw+V^hOnu48hUdB{A6t4K@G zMjQ?I>yW+x?ZD8#|KGeEp4?xg!(}=wE^yD(uggB>MmXS9#h_3WH~A<|Gj#sN9(CwQ zDn?%eLph!mG@PkMB6h3@sVnD^llw*?O_GMm6M?o9;WrL)U6jQ(+>7R(4!AXxp&}cR z$j2GGadRyE;Q#mpXs|Z?-hcgVh?eBFHHyj)>*$$wYNiV945;5I&$2ec8KEc}J3(M@F6<$| z8=_++ddFWe)*y~t_ta3|U&NFKS5c4XsG`X1wkAhL5mf<;D0(hhFgAyql-kYT4_DuK zHJnmWAi7rtAH>>kXF1f7UduxsllP*rVt@H~xz=%0CM>m9ni_s#| zW?gODoS^xO$^K&sJuI-h5xn5tm8j|^hGDVxl*J~d}HEU<&* z1`#nS71E_tdSg6Iy=p^rczjm4J*-15ogsZ;F-FvodsV*i>b ze_w})c~nyG(&z_NsqUD*6$CXx^Lf&fI?JM-WeiG#=|GHkfimCuySF3ilLBcvE)pc~ z7U}T#S$IH@+CpbbD=UtY0ejvkn@3oiQCrgA0*A1769C zI`i_Ra7pqTd=y$-6}$-gXXz5viqoP2`*L>0yBK&1cKX zc0&;Z9uA@6%kh~iC!G{Vi}_Zme#I1RR#h6+&QXH*lrAEH$Jo#RzK_&&Uf#xe{e z0h6?D``*rGTuA4>8@&lj33UpcOUjcZRfmGJy=xc3s3&GCOP^DmLQgG^;d3a`DR6i- zi(6$UEC59j0XM+3fIX!()+#+4=;R>Olv$L0^O0OrCn0`upTawSxt_cgq2gM6)|aG3 zMOH)3#p62oXLLw-QXL!D!+d=_90-XJuB5k!+;CkE-wty*28wqONL7in08NGLhGpk4C*4g#o_pc-7su*^yVugz89CUWnr0}8$xC42&_ zf9B_ZOXS)`t{g?YuozBQlV(~e*P=seKmZst5YesJg^kG2!C<*<5E$%u0s?7~y6_?l z{{|FfiLr!^K5y$mNi#WehelQ<&SWcjXM3CEae9i>xLY~lJr+Q~lH~j~tVg7=YRC`h z@aJ(t3oyR7S7=?`L*z`l!q?^wadtU{b&N^YIdczOSM}nV>xn*9cgU%7-HlJxO;x-$ zPQ+x7H2_ttg-)8PNR*N-MISOg7gWlDHO)9GXGHgQT|C2qIDz1EMz=`&RYW}+&phP4 zgF@KT!Neh`Wv$dlEI12;e6Yt}JBhw7!ujxiOtYy&s_;0}!%?^3G?vf>rZlXuIHRlL z^j*d(!@a0(wA7fOrAYP29th5X!Xrv#PTL5ad*TeTlo&aQZaAjg=gKS%ymFh!2%mwj zTwR)rBtTKGEC%%igc{qZAXZR9d{l%nUd!d+*Q^JQ0{WR{zr157gAMrr22s%S*>{x-oLqzY6=l6X&O~T&ppZR!|RU9;h(6B8C1;iSz zVV{Hb<@MO`B#Vb#jes;`Xlz`QrQF8JkVOo+4Rrc|t~!SMAOQhk0nHAM55m}QAZI=p zCNEt?*r+b|CdM&L?YOcfpxlv&h@7C1ZJF#`g7q~-Yepx}kX{3(S99vL6^KN12CQ0LkNdD~6tPZ-=`g z4U=~1oLG%hmf*XST&@Vs8PQ{b^*3M;F(|Q4&Il-%2?juRx~W~y!$z;80a9b*AooK$ z1H*|&%InZ?$dGNO)lEv8_s>B`w;>(qSoN_et*E19XB}PPWSy#`Gv;?t8oGbD#u-jm z=DEO|IYM5zWZb7?nlF`UiRxMK4C}1AH&vtyYKX9{MK`)EfijfPV;W^=9*CHpP`#6$ zd&-#+)h&mewRvJ8S?xOBM`3B^0gfZx_ox~<1uZ_tanM+|^^Jv$4mq7Jcq2{~y$-mh z1GkCVw;MQy``c+2ll(htmf2Yad0}+$;!N0HdJsk?rdW4UZpf-O z&~Ill>_Q%2dpb+6ki$4gC_{D5G3U0(P_Gl(S+6cW0nIuN9W)E#<>4OPVnex^Nvxy; zNK2LZi~^;Fr=TMVsxvm0mq>vP(R-$u0B?+yFj@n2&4`n zmJ8EY6(+7-4Ch{EwgqUx%&#AzThX(mlp;?7r_FZi&Lq&OjwE&ME^DVv@ysgoD)~sb z=d9JT-#T>aGMj~2rrd}FYq}|cj#0K)2HxXqaM~g=z+u&(#Q(Ukf7h_u>>yWwjKyMT z@bzTkd%1*8fdnSuE#YR_-+CJ6S2dc#)0PYhU7Mp*F-e+A05dMluEmnEIlrC~s`ZVqurMDFM$EnPIt?XH67NOBY4o9;^z*%6 z4;#OZ_oY`AQw-eWm(Gri&z0plCWx&w`x_Q;JH`%&z~0e16h@tL420@WSp#BnZAVzd z=)e7=AJaFypVF3Y7P=~|q$%aX&<%`@0p<3F4(400BN%DmsScEgp0&ADBe?<)`W)VH z7d5~(lIa}j4;|FJsu+w8T>qF}aWB|hpToV0DFW76575mQ;`J+X4%ko~o5~JVjDti$ zBnhR={-L!aX^aE9!tkSo#|xwdgz0eFaMV&wtu$Dv4-=5=#;?*7-5&M`Q+AKTfzqzW zNO4+X$>!+f2qRuM7*sNivXjKNfs&Z#kmGD&SXJIQ|It9W_iP4&OgA`+j*QpX_3guueACuzb@w47PyH;FMT~XZ^RMjFUtPjsdolmk^jxsq?+4|tr-~pbc-D76Z|UI+~e7 zKzhU|p~9=-WD?*h2R5#{|LGPHK?zdf1Wrk99JXZ?u583}!CHG>BcYeQ6~b3Oodx09 z5K;3iN^VkFRpSgLPU-W1un}fIrjuZr$O&Uo20Gr)(;^yDWDSvv5WVNow#Pab*e9+P zKegiIu-}C=<6K_`xtZXcV>En?DT)}S61jLr{d<{vQpOu_c&f8oVef-qFgR#FoPYUi zbRpaihcnZmpVU&8y|D+1PI~P5p+kWDR*g6S_ zIt4rHkUeK{SWOe5xH(gvpDLL7M*L-}77_$l2@Gj1XjKxUZ5K$Lty7FD_%04T2n*j; z@MIE@STj~c5P6nZ>r=?wDRgKp1i~)lpq!;zfG^W;?q7Cuja1egXxI+ds=??pZ4g5& z+}}w4yp#JXa<2AhrCZIt9Obq_PS)wvi6efv71rjTVt{xZz4lL#$D_j;o_ilXMU;!f zU)bA-_f}6u&Kc>AosA_*TWLnt1`{9osLn7|cIh^bF9_iJBC@hX^#^?nM7>ChtS>Nw zgBt#Fj#9%DDs`wvX@NMGK-cEBfWkpt28RdfB|@NpY1v#{3N1LDB`QYtnGxdW^-<~N zz^?tBO&muM9X?}sX^9cjRQ9Cj!ZteHxfFT2hUWKHW234j_!5UAexwZ~`_^!d7pI?u zOnL?G7`lmd)#&GO=Iqp0!kIe;0W6_Y`X{fTL+ZmL=G>f}5g2t1@^3VqqMK|UK2^D@ zIW+JLDFZ)IQ}n+`L;C3g=~gQ{jPU!o(*)=QrHY`IkyC@bpP|Dw%9t(sFzhiWf%QS| z4mTKAKGZ??Ra)!&{5UawdEPze8hwL7dzh#{v=l=i0YXj@8#c z6!Tk8AKnXnJ;UU7sWB$vxOnlRkBkDSM99(e<-X8EpcxPzS%e4)@$VXS?@vW2M6VGs zQk(QZ^D|zi0=^H-TC-q4qHc<-d^B7d3`%dqlC9k zq~apEF+y0@pYw>(P*#R#uto@vYhQ8Ld`6)>zWBe`ivcU6hiDGSdVU^&^#_)wWNHZ* zb6eO8fo~)dZG{g}jUsc%4w{UQJ_##$#zW*dg<+G_%=XYn+}inq(J|}La)xp{WVSYI zlz<#~ibvf~8ejp(Cj(?F`Nhe5qAYgPv*j)i6q<+z(mc`rboNgRO~VRV|iP{6Fk z5#E2+&Ry(R3dJr&f{RtRq}Q? z6CzSO^eab7qw!8z?~C)G$86f;rLVsj79TwdkMGQdbC)Mc8Gsz|Y#xk>u?cFZ*J1we z#p~N-#bzCj|Fy!QiZV63L{>Fm@UNW<E3$6J&U*dy>6ih5=5FQFsUYLHavPT$&1ld?!6{{C)!jXCG&{ z2DCxNAt}(5mFGmlr%qub>62;(=-7H0;SPWGmmkCDXbW%r#*0L4of!5?s=z3$5`8LP zI0T%x6og7nJkckL5?JFPaEGITHckJ5z&R>td`@#`td&`3Yo&lCvh^9 zjC@Y%1 zcy0bM=bB&(r+61sXOLj3xm`4Ydqti~bj|F2<|bVu8<3El=v4QPjnXQbfndDvG)qvx zrq?t##qt2-!bO85RDF!1 zk`WxE0PaF%C(~Q#&xk;Bi~nxKD9ql7(I;8JL`_OqKAR2?ZheaP(-p=p-UR*}DXoO&sFfwhTHPozACKBF#5C%ssQAGee4$Np;K_zFSAiY`JRq6yuLaBogvI|Rm zo9|}etl{&M(QpZQC;9Fok}x-IZ+gd}&eLyv^8D3sj!K1(KKT`O!v|cKJk#wvjGTmx zzPXK8x&xR~2m^S3b!?6ik>tu9lu3%s=_IPG=8z^}T*rusHP&c-$ssTw=!QlZmiNX# zab{!&m$545iT3fl*Ma0WVW(zx4iMlP5Dbh|Gr3-fd)7tOFp~C+NM#4Zl%w%UX6+MF zHyAL=CoQ>B@DjkL_Ux}EJz!3~duV_@5hGz$RxD0I56tCL8VBVWVsf~@OgaH40-+OO z*yFkftDB)fx}<>v*K=;1YoN&ZJt{k#padM+)PuuN1T|S%T*f;_@v&aEpKT`sT;HSV z2xKHXuUSbj1J5DPy~f@Xgb)Qf-1Rdvpq({ar@d$mNQk-n_8!W7a0aqCEqlyMw*d@` z$=ddY2LNI~oxgXdxz`*OB0XUU#Z<#!7~#==pm=#B>1CnEEs!g`d0I*z(jX;|lORN2 zi?dY2;U9+W)Q9Y@LvDQZ@bhr-imc_A!}8KFZHzw&j~Lh8YL1&}Y^GS+sbBBx8I4A- znI0Rft_wMBBe!i(7~5n|Ju@YB3*>;Pi2mi8APLmc=Q_OYY=5fo$VXvCrh$ zNuNl_B3$FzA&gF53V-+4pNG#s{yhB4Kl;OPjxs#l#8@V2eZRHV2~amoQatanx%mO3 zj*`$CW8g%@%BQr6Et2YhF<+vYN)-@pf&AtvO;sqHR+I2MAV?6D0%<*m9g&2HhBG?R zIJ-J6>Vp)rSE8|v23T~(GEeXQ1hh(Is0@s+QZp^V)x!~Oj2AxqF*Vi);oNV29mHfe ztbFzXXN6}6Hn*QX_5fuE8bgYt9@3rtIu40;C68ez=;;7SSWf~23r925Le%Q*C$e9j ziBVgsv5}OMRRyGGh~Q7iVLQKJcYOCemmh5 zE=(5kYi!H~VONep5vZeQ@IvS(ij_Iv(q|O{yG*ik95j}yVjcP?7)K0h zR>R-(I1Pt19_nl&K;ynl#a7{%6j*DW<nJvZ)WR^&jKNLdY-+5mU_mrVzv?*h&1a{Y z2%rdhN~}l!`3r11!5nf~!inLdqOns3HJ%bTPmsR^_dPs$krRPIMPDX(j}+}{nv~&R zhv_Hjklg{rI^O}JVLzBWvQ0`8JE#t=rfP&Au#cotX?>Fdz2wqSUt~asx*$^45zLkd z#3ZVU>Kef1K!P1PZFpvkYU?&Q=(L+wVMNahN=ZanKVr+7T9x(F**6PIA@u2Y>gc|3Gi( z#;{66_z1>j6|F99K(aiy7(V&ngXlmw?QoL=U|G}-hE~|q&)6nEyiA|!*_j1C%l4p0 zbimpS%RuFQLxaGTlcA-D<{jjd(IfG>vzZ)orAbLha^V>cF`}Qp_cp13RfL~boO5$D znCT%3)a(0VFQNyaNLnsb5sEsTjvX2)?J(PZb72kEc{*IWej!|X z<_ak@)}JUZ#cPZNW}Zy5A4H8Pks=Djltwk=RAFHiiC(?@o+gxlj<7^Zoodr&M+GOe z&2cXfDtUfXJm=E%p4=D7wUrXZCX9or5Tl+*G)0LyuJ^P!hcbi1f#aQO>4B5b5LQ0t zbK4Cwh_ILnS1IFV-Emaygk~@izu8y&52#zBrs6G`^?aCmp(+fWCn8tHA%{A2F+a{{ zi&_ZR;v<9%GM}6IBwQkjKf?3aoSz3Gr(p|qYNwnp;d_pc+ZCg(T3}+MS@nn{$%A#+ z?XbKL=@pW~VCFzPZ2ASTV{fWh@ll0AZUe%#DVo#is_+i*$F3Eb>>?re741{UEHfC`|1cj83O4oFkNX#iPb>r|AQeuqxWwKpeTMtSCS)l~6 zwh5A0imDZm0Z|6!&1h7Pgw-C^+*bpw*^g05R#%ulGv!c^%v$PaCq5V7mrmUylVXFQ3atB1_!yb1$71E&ULE$VBGTdl9hz*|*fy4Q4z zomZXJ5W7D{U5E3=_3DV;tGS00bh}7wEBU`_|da(($9BFXX0dj5DO zb#nrEsfA$6N)DfMbtX-a(Gq&lBT3fJvQE#mfuP8+0XJ{sUVJjws*)ymi(;T|0M2@7 z?|hFf*&W8_V6#}Qz~1RRRDb|cLY#r`e($^A_b+;HdO9)x><92cGFXpgsH#HZ1K>$; zg-F=rwMKt-;nVwYN|IinkOrT@&z7bTr4lLIYu{17vbhfq$<^HZ6cSojc=5mZMmYca z^N}4~kFeO-DCRDB&^Q1IV=(>r2?wbYbYPtY1LA$_tMs*Q3L8Yb8#o6-$U9P29 z!iP93mXs{a&xP?z7sAx}sqpZ@U6f8ay!_3t!8~pakMBziw~wl4SBcTVQS>r zlRU3G!O_dH_l1D73JJ=E%2dkujgWITcRskI{Fv(K7K_c}s z&(KV&LIZE4WmI7P-@4p(>ZgxELW(%K)?CZHmGwU}ORkYVXYF!4kVnTvw^7>HKXNV{ zY=T(KJfi(*4MT$lqT?%xXagf&4IF8&gC^Fjo%@p)<9;~Vt%quZ!KuzLb!~zc%=9M* z!Pv)1OEax*2`AAUU&ml)c=3&w!pPWAyuY=TEu1x;6=zeFH{J(da=iegPciG6cv67)Ic6ltg+U} zbI*S3(D^4hf+ zr#{G8C!il?SnTzj9S4}5lJiaRr#h$1{zE#U10o$MxpqBg@-PGMi8Uc}5Aln9Jy3rg zaBZBx86kQY`H=qX6saE2!8QuZ;UId@JY^@KK(z!rZQTR((eH?8$O$>+8lvhls2M4A z3=57`L8GWr)j$w+zkw zRu_s8MBWO&HzlI3ifnMscI0<(mSUM47S2IWmK}=5aM>7H8kI^0)-0J@uJkG38mK=b zXwloqI9IXorO}SMUL)a)c%SoJ+*^BQ#MCdwR%2vk#nH|NI>WZh=ppW}ObRE(8BAd$ z%dBUWAv#EoWxNp$ROzx4@p|mNK@J`SsTxSFj5I!_D#YoFIS`gS--j8iIgGGDPq8WT z$|MQGR~oY_$#Ac#$hTqCBY9%A6Lq=wFzTzXm*Rlw*|4OM1PnNGmwHi2#igrZ>X zpHvU!e|eCH1FqK!H^+u%8gK2N=hQP2d06~LouaMOsLS7R?HwoH%(?6u!Zx5MT-Q2? zf%dl$J+fNJvnc{E8L$adD)t#6$T|f5dq~&E5B~Zmv4q-w1N|U@P3T%l#iFDU0boB2 z%v|?aNyREwQsCGi(r^YUwpx#AeAd3wTujG+N*Z)(3;Mnl8)&Gj7 zLtHQZveJ%K6Yhd(Kv0daMjc`zQXpekL*&0HY=x{LUHMM7*)K;Nfc6oAd-D5XKhv)pCU-^G`n4`meF+%05}{b$JmKgWnfeN3=9+f+8T# z-3cUFB&W6t5>X~^RUoHdfazarL;`Bi(Az@pshM1pWVYi_k79MibSHaIMcQTu`1BCv z=UU5OFpbazs?$R1B!eNbBe~I>YzC5)>9KX@*5hi0p|RdDMmgo^ z)Hud)FkF4{a+tU{9)?I8aiihxomBBd(_9)EBMr}bJnuk?Co~tU zHoZi*$>YpYC@_()hO#=NT1%CbLCW;ZuIZ<*FcugIw-n$D=h^}d)olF=^qtMwG zBF`l3{4$Q6gRgv_=_nlt(MkIVh)9Wgv>?YB$!c&097N>U@MDn4GoCXKYrYr5zC~WX z78$0Zlu3^>5#2F;VWb9ofUb+6O*oqka6v@DBs3SfxBVS*??BrL*3HhNXjF`~#uno6AJQ zA)4oxsZ3w5gCRfVlxSIkvAr=Qth!&O2aI-O*)nZ(XYbrc)<9BvD53N@@D_T9hS?9!H%>#IKr2a5Bcg}4zy@%(&~2takLgR0%ffZY@H1n9 zi$|1+61g8!k+!o7^2lDK=eNT0lWm;UPWu1rOnT3O01j@+A!`o*qfj8_w@Ruz;rt1l z1On0>b(Ot3pkOi{ezq2{4<5#X7 ze8$bkCRd{2BHWUowP{)Ot4O*!NW-pPvQ$xdRSrz0(-|u~ey|*-?=xEhbU>%D3&&kM zB@f5y0sE4~eMbk#l{2O6myVlzexwt|zD4pr@7H0_DTwEf1LARS!fAFsN315`8opO~ zch93UpodvG$eMG7m5mX;U{$kt)dzUU!iV*8jxeIU8Ud|kr3^U zPK@I{Hb5lnp*`z(6rgKgg_MUOk}PqFvW$tTNjd{w2<=1U;8E6>E>Ws+{#=-R=3*GT zFc}>h%b-*ojid$IF&eXXpO7Ei#^AO`58UVQpd3uum!k4v zy(CDj%`X6TZ$gZuvlwI-YY!^ONi)vNI`?%EFBL_?Vd)2T*jP>j0V=53Fiy0iLLV3z z41;hHx`u^xK`yxWMhs;)-eDh(%+lHlvjHF%@okwFK0Q#nWuGovBBBzD^Q0E=pgTt} zC^$W~0p)Dbdxx?)Itu1>0C12}DESryt&szKV!jlGR@%mRu@*8-TZx{#2D*6-J@s2@ zG(warlx)Ybqx5cAy89G3ZH7Za1c?G`@1gGi_najnGjg{?u?NHJcxU0U0?>ScXk27K z=dT7My}d!x7@~^4m|CK8fwedxk9ml*m&NJQ;5ML=h#?NZq*y)pAx3oQEre6SjLmdt|(Hy>*S%I;jntnyB>lnB3M3 z1iTBfqchuqOqB8NtxK0V-_t)#P87y6hM*Rx-C6HB4tgG<*&6Hq;FD>TL>AH@hz1;% zYB@AGQw1E9CwFegI`kZK;SX_|>OeFc+LT^OhlPi<zxu#Jk3(fdi81%VS4)O*vPoz&YTqg2A+TRw)Z^!@uKmbWZK~$tBznap~ z{;;*cIcQ{okSj;n5(;<lT1921CGp6KwQdX%TVH=K4S^emq!gWMir7=^%H3p>umrb2C_A=%Z#^AzYeflL#H z={O{WW;hS0q)AVyv9B&-I1^lhJ!}NdCnv-?bWM%?D$bT$4u=c0Gn7v;!^ zRb-+P75llY8?U!QBHLb;j$?AR=l{cG1mg5IV*@X6-{jfL7r*PtEjES(P-EH&A<8A-xr$Kx_H>-W10W^Wm|~jSuutX+R}mIC#bgn>YAB4gg+|(F4D;w%&!= zVe^+CKjMZV++3$E!Egwyc%FXUd@gkKE|TW;POP+#vJo>@SW8Fd$x5 zo~~B|80NBHV3n?Hpi;37_i$_QYEDv5I0@ zhFPi+S->D%fBr>e1a-mtItL*7pve0n*$qP2>%cI3pu7HmqTVb<()2ph`(nx1bKm#O z+IKd)$!4=ju}M)9Mj8QxA;6lsk${1Lktx}i1`OZu(l@^K#lY7F1j85%MuP1bl0&hF zY?8g#UX@i@x$k={84($g;ph2+J(KKWRc1!~@h{(Z&U@bTo^t>=B~S$HNdw`OL-U0bG}oBGX;v_ZWpd;-7>gko zl(B`W*tg(>XC<)IyzZ>6Qc49d;5j5?-VShP6u_GL^jE(QW72wnLXBY!XDR~_pVUSlO>qW!AKQuO9i{}j za^v|HN^n4m&xX{(#MMQdj{}RyJMQmyfsB+Q*L#f9Ip_1;M`Ik*RF-slAN%19LG1<4 zzrp^Kiq(*MJ`NU(z#WG!P}CQ4X%R zrHR7;^j_9bmGw4_aBKR`H%JjJ(i6jhU7JMHI0oKhfkzsfVwvy-9T#&rO&KgH^h+Yw z4A+hfnR`NHs%Wpti~<6fGD1wtc>9WIWZ1eHz)6KPK!fw|wYNe2EZQN*V<%w-I-Hvh z$JXCiS4l+fA8cUEms6EO`c9^_h7O{6u#RmaaO3%209+fKmlaxB?3&8?6dn4S=Tz`; zoFZww9>)I)6ypFk&eJrG0zAcOIvs7Ox{}7u3Uw0=m?Y~Y5U67R`dFhe7Y$=(U44_1 z#EB~lbl;;giM@S+y-1@Q8k$^SPcSSA7DAv_-d~EdBZ|F?>?KkXfT0SdiAA&+hZ{>_ zl6{$?`rs5`V;_I~B~iE_kv+nGXBBYIb?2;OfQZkv46BpDW_A10AkfDD<_TDuRJdGn z-%^Oe?N4A}D{wJd=Rkl4*gjs{rnGW*`Bj)gXK~3|(#9UFZAO821K+|JM#^asE~5>x zO3ISJQyjQjonictrRlZuQ8;+>3|qOyea!;+NHZKFNX7Q22`0HIJX?LJJ`09{w5ll< zMePmPgeD-4Z(#z{G0511mEL``6%JMo@M(;@rX{hR81=tAD*g=^WSz$;o*c^{A%mZY z!g78dbsji;_oU)~fkec8tX)}ZJ4RY&Nv;^s4G@Uy$dm``VxEj>NXbXHW}gMg&+RC+^5#VtogE5y z-@PAZZ(paw8XEv-k;CwLTytoCzW?@^f)%MMjfHCcL4-6|Kf>Kcn46iym^$GJ56Eke zXarLMrEA2zcu`aq1g+4^k_(xIJ751A$IFESsNo7fTfB86f|Zyz0Te}+gF9#rO+X{% z?Zfa6siGBCn|^Tdd!3$Z%-^wD-09I_dH#GI?jJ%cBii5`rFm7&pY0!nDV+Mj-g>yo zu$w^~tVUlDq~lYeDpjRgc2M>G$Pj>sra#bn(P+k{<)&zdwUzzw=raZik$OR{iO@-* z+%U(q?v>O4BDxE5b?O0XyVM?IxRL;|IA;LIlIOg72Q9Xa#d0I<0$i%e-732RGhafnU{m3EF+xCKB|h8D$E9oUJ`k}WAk zs}bgAr|BYy?g3Ty?hA&MAVeCxhT)i{PXLQ}gXSR#HrzA<%>mdVOH$NfNE=_jc8zGA zsD{PwIN5`p6LMg^lutqR13ngRT?q?|^K5o#z+D&)4I9Q;YEuX4{k2)tJ`I%)q0C)V zy%>{SoUaCbgnPD28J2nn(+7vtJ@0RtB2s9{v1RlzLNXLKm@749V~aYqftYR%%SmGrs}Qml;6dc1{B! z&`VY)ior5XCDrJ-)Kjz~G8t+Rj0y$-4t6Vaj}48C@HaVH7=}_m6evc=UiX z^>D!m*_WRHuC~~pL~cflQ9s0*HJHHOboVW5NAT|6F|@EZzRy4~UEOYlJKsx^Cb9mW zb&iGLLiwBj;b5Dv1rWj57IOWY>x@`tAHZVNHr6nj*c-f}BCco)I9_BmVJDFCE3)rv2 z&6gp=bM3JAE7&iF9FVF-%K^K$_w?h?KLdb+@oG~sb?Gx<%_p!I_QuG=)-+i6J1bAw z@03E)geVQeto^RRGMcY$;EPugF;Txb85(|M-9X zyYS)9e@!`K0Y;jJL(Fv;qZ_PXNT6cS`IUad)RG>?AlE&w=F1=<4tvLtf&Cqx$dE-~Qd-{zPZy$#QnlamSP8TZJZ-SWUoWCmpmW!_70A z@}#85B16DQu~OoOh|ZDMMl{Ba6bMKq8)?Q0gBm#$8nf)J?T1$==II{6B2}kni>4t*P{V5t#5Z=SAm< zC{(p>yxD-dIt^Fu+(vT(D)M?Uvfg09hu0>B!0zj_v(MjufyP4lr?2^#rq&=6;r^^Re{U?sUO1%Fv6(E?64<9Jqb zr{yhbjLEOs8a2Uv$wF^S9~XJP6==IxbQH8YAjc+?J`-6d_+NP2{p_8)R+&m za5veYCwp6AkcHXLhF~k8+Yt5g{J0NJy_03C;MgtzaWl+)xb?^Hhckf5;U_fz0CeU# zznR5_(6=}l_CVx^RGm1_+}dQH{qv{K&`nrTLCzRD*4l1M+T0B0Dn;c2IH9Q>|D*?u zfyzs7va&T&xuU!VAfBUIhwjaS)N%vLAuTT*ALKBIerfK z8G_N!u$};bO&z(}UAwW}sB8dh$Divk%$YkyO$t8G{p%YZ3BUX0M^P6t&+sivYtL~q zmkd1Wo0{crF^-kz+d`C;>m!;YnmorzY&`3st6G&jJC+c8p|NqVTO#PQ)~L7-3>XX` zq#})|o2(*G4y^JTyz<`m}(<*LEfsX)W@0;tqpG}s5`+FglON0pEFprsi#4VYH- zeu4(51OurZ)FIa?om~6$qX z+JDA*a1V&lGgf=<8Pj&&@OR%<^1ZYn0(^Q$rT{@O(>!~@VJ!b+ zP0K!6BI#O>;Fmp&Q{>#JvcWg1tCAhKAP^XwWbFF2>pXw@q->Bjh8Y;4^xkw~++&yP#WD+SObRD#&*(E2%ks%H&}}2kGIyKH1XZ#*z2UshXhwCmdG45> zA;O9O<}{>ebT%r_Q{)|u*1TTt2ZxE#yawBRjcCvEoiP^DDU}aZ9!3e!lH-B3i6-W+ zUqO|R01;!P;j?A0k+^ycpGl-tnb5(jJ(pfjS~bb&=fgy1;Vf#Ctt1c=nA&G*?FAt~MiLWTrd zg2aXDV7D){}b_gtF(OWK!+}p=Q?XLYk_M>VTjF%=Af!qaq0@- zh9-#UNdcA2;ZtkAx<=}Q^vxt-XyCiOF=x1^IB_2uca&i#i1BKv!LW@pJ~?1IAO@lr zhC&gd6Ta$1A(jvhaE_Mh+5Yoz>oBY(*QmOfr-YU1hya%Kc{kE z-*|8>+~9dGudjsXM3Zkm-U|C1Yk>66wQt=Cdx%7zklTF5c-ItbGK)B|D0R*{Q4Cq; z{#xm=aAPLC^PRUNn_;w=PFLdyZPQZfGR|ZmSaVq%yv}uRe-B{G2xX$9Do#+9u!cy= z&nQX?UFEt_OPkM0F_yQ2F&v(sLJN=&i#KnE5C7p27;-4w`sNh3jgb%r6Q z*;uOY9u*~%oGS`tH>K;Fea8ybI^YzI`Z2f|H^G30C^Bp8<7A{S;}(hZe+)8sr$F65 zo+~jOKj{Jr^SPoUevC%LTsE=7&N4&8tXcw$&{41o=#$m6kUPJowPzPYXnheX&@S8C(uQPfOEIsfdbq;qT!jTKMI4zskjys z*f-0&DgYQ;#Wqp9_mZ+|S7*a;9vi)qENp%KEl9I%cDNu6ad;->(=^Bip6 z$PDaJZ|v-s?;Q;@BUf0H09&YZThCh7tx!;=W%lMfMAv{lf}i3bHx=90ZJ+FUAS#}D zm!c}P22{Bmqh0BhMoyyv8ok1CcrBg(_Md%D3Gqf4V=Xq(y;K0H+BzAt3XJ3Em3yK0 z!D6VA%E)$biag2`sZPghmuSpX*nUGlkyXk&+4tbTDIZSEuYo4`Oli2}t~uE@SL z9jA|SAGX-@2nX<)1l9mL|CqjTf2t+(Tq2{*IqSnyKZY4_WBL^l4NlPSyFvwWe26rR zP>s&{A;0TxT%D}1^T7IUzc*qr2iip?8Vi2G&+SMkvT?j?8J55r|FIhb;qAY8Cw%>b zZ$^c%O59vLwls=20MLL{@K}DuD1+l`fUFTU^6;#U2s{O8Vt*DR3@*%@q!IKLmM-~z z#b;I~8135CZFlVr_X=?lf);O}t$%rW?5UtZH3y{F!(5t|uXFbWc8s&cMDXI5H(Q!U z1Q+Ko@EU=GtU<4}w>Yt3^Z-|H-ymJk7jxMPrJ6(!DGaCxE*emri@?VFYQF?OPVl4Y zHTP!}xXiu#^j8lVym1)sjR4KOk4yCcg zYlKMCj(JAveHb{Mb3c8x`*5V@1{=|L7)i!|HTgJG~ffDYORdZJQXUB8JAAaTlPxj-3u=83st{SZ`h-SNQa| zpT#z}Ru`lYHYox+fr3n6+(#*woWD6A=I$(n=`pk;Cyns(pPq;9?G@M^23)~L3~?O0 zspYvxN8}_Ach5NA`7kj*0bPw@Aa8w6+0)kA4u5pWmV_}4jXl&Lf*qWp0n*eIQP*)C zViMUX8a+8sDUW*Is8klfsKdxrR-_lepeovy$Z7=aF=52M@?wpAuH8ae^hpLv0m7Pq zw+i&HYprMSZMv~hMn`mQbl8TbUwT5B?w4pSMsWP-5!|Oy)vj%D`{;;Rv$2wZd#pio zZ$)7t2CA`}47a}*0F_)1=WHc_d(Dz7AByK~^Rg_FT=jsy6-PJ&_DmZP%S+?&O%dkF zy=RAJcvjHHDCRX2>X#J8R@mPe>`7W?g7b5m)^PMzYMA%UGgl!&>6(=9&>Z&?mJDht z+Kf8KN)S+-b51E7n_V?esVYjs3MmTA(rn0a*Rq^#Y}x6tC3S-U3x-h{B=F~uG+-Z2 zQ&CuAh>_^`-h**N)Jz1Khb=0R8~5Io2B*nw!`6{P$YFy@gEKrk`t#GY%Ut=u`1Oz` zwUoo@*ey>RTp;>%SXGwpg-L8}1}eFbharJl?9zC+>gW02I89*!Eu_7+wk`o?Q~qSAd}`=7{h) zzt*1gJogvzV|waVn0Wh}*q15xA^?AwNSQT0#1N?J_Bv7i>u|BX6-sCv>O}B)ipjFj z?dPx&2QSdyw9)c>@6SVF@m@GW+mZAh^1O;@Mg)xM6!wVReS;R@4n=aHQ>R6mZvbbE z-OCE{&=gsb(jaKLAOLMqR;UiGO`7!V&FhfbT_K%$0;^#8VvXzM8FK!6DXJWe$SOxWfC(5F8ZPCq`^?P-SZ%}tQP zHG|*CGO(^?pJm1Mkyb%j0ik%%vg|s2R%&OYZPAcLJae(L)BRb|d zQv7~tEZnGNB46`V4f0PLG+^nW1*%TeNT~!0v`*Qm++G2mnZNrg!tjJWJw7%dt_%5DBthqR1ETZX_?ZKSCPhCym15M$|ffI&S3;>;j3`yY;}WN zFbf_-JA?ppa1;ZB)3aM%jYzt@OFL(bn}dFIqD5%)L4=8YMA&J@44=>i?__-q#)kU? z71}p6hTw!!GS2acsPdRRT$YGrfM}#f#B#~vw`ch=dG~Xa#~tp|5$gA2%ITbdHaP;i zMx}d!@asafj&sw{)!CHR@y=Yk!sq70@#-4u;xVtI43o0J65y$KYCJ|RiV^M0&|t#| z2ggZ?>`||OOv`60N%EvF&Uv5fV-%sDtwBv?*-_5w7ONZ59cXguapXX=?EK8Sw=JhB|l2uFgGwAK6$iCsnT;&9Z-mTz9mivhdT&| zXzqlAC;;@v=umi_DwdmX-wYGOI4x?JPq#>=yxwI<7f~e2G~4@HerEF&SqPQem(cQL zb^%BS;o;M#bcCCYIq%x;G2jtH%9d?D2{%cXlw@X!1~4x7-_c& z_g+2$z^ssZ8N`xdw2kXECNYi38ddcjmFL)s7&veu5ghOuOU7zD2nat&L@=NTQU*;i zm0#K*?S-R!)yo{ME#oj?XXYou34+ZA1~kVrYSS;)RKV!s4UUNefZd5~7H8wE_!{ER z0Y*??02Yq{nnNR#tOfQjs(k~DM3xi_OqC2~of5NyX9oyIPovN+Aq9)(W%q!J81|;k zgZg;(aot1bE24E@+G$Y$ULieZdQrgiRjSpAs777(yYKX|{^xG-jM?7+DgzzYzo`!U zu2}Egb;{ZyYyypg&gbMSYBw0yUyt z9fF%d`zeEy#QE@6_73KRbrG2Z?>A`@o)&KG_X ziytLO09te2ltlwt<6t@jk%|h_q#bk9S3-7p0UZSuPOuwiu#iI+?1!~4!``RAAVtQW z!$wb|@oI5zI;A9nTU&9Hp5z`E7v2h~J9k5cwNM;o%<>^axmXL03qHe$07!6w0B;<7 zKU+_eO$j4eF1orA+K6J?dw?3)KYh6>`%x-9Y{+wj z%`C7t`(aWG3wP-jIZhgn*3tk)vO53((n=?YL%EY3p5G8bhc-Nee<`qj1)}F=0$+j( zN3mC6>sSo{a~wYBVowOywKm1)5rbNv1V7VP>Sr%_ZtAPP01TW_@pI$;t-v5e0xUj{ z-XxcFcC}-tX)(dIenyb5-!&L;|LI$02n+xX+AK#@BL!w<|94aAf(HHF0ANiqwM?n$ z{^*l9pR@;y9*1u{s2kUl=fAkYyP$x)KObUeBqMG&Y?}oXPl81n8!*I8?Phdi@DMm* ztVsMj=F$1yY6Vq~yd^yP@G*U^2SH_*;m*5ng{doxu{=aWB5D%Rc%oiFmoDkjiZNox zAP5koMEuhQB_fOD9uz!G>qOnP9~--IF`V`(lni6 zG@9JU1otsbG%hNuHnp&aadV4UKT@gj$?kl`!OgOT?W+ajjz2!6t)NG+2AuY090uZ zNtcMmjsP$=`PoFNd!3(O14Il!rLQk96R}x3hH4woVj~Y5@$}W{cK}$jgQK$mR+d&- ze^8bP=0<6l<65p9l|vD_P8Ohw$kAs|q@2*G&fy@i>hy;gWy0MiX@VsxKFH}^g}ERy zdGYzj;UE9a--oxq|A*oFHy%*ao<}UXA68$lakK<1!Bk8G4Pe-=y+<^E9aVMW>lj7E zR7WrxP}F7a%Z+#DxK@Dq`cE9u^mq_BTRs|H}km{r$zLlLKy1Uxl4UX5ox zh%@Stw%FTW!(JgC{YN6XWVt7xU{`NiWw?4o?!)uBRAKHoF-W*HFWR0mUKIm#nz zq~A6^|Np`;;BV~yJ${Eag|)Q->uU?@)MXZX0R94IEIp|d$|v#M*KS=8HyH_^ zA4D+Ou@qJRhFG1y4FtL@fPSgVz?(wQR~k$=0pqMr_B$X!V8myuHIqruZ>pcrk9!{M zvdAdAesxy{*r|X0H-Gb!uUG*$V|3ziOYs6e$PR>cnlAX2!HKG-HCN%LGphAHA`~yG z`)`p=VBnz=H^fagV*A@xj$o>lB@#%?p`C22gbzw@a`(=dve$V)8vFv@al}} zoU;vzRM7VU7IY38nuTj9{wF9Wgod>@!S#DrBJJ;fp|SfP=|<4<3Pr=L6~8bjbmW1uFBJOQ}r z;aTKh1QfzK|Ga?#vihb4%5+{sn&(#nJY*@G%TiM0IXN9~hboFHq8}RpS*DVvT&SO( z09Z`Lw6qGQjWZFI;7Gd5=vhU$f}9?Vp1CKd=h=s0XP^A|9&L5WHQEJGI^52IN$#!X znnTcq1Aso$CRNT)icA3NXJ5TbkMygH7!+#fG1!*?38~K62RA}#7W$U!*js)Bz<{N| z2uZK5!H)EDkwaW}1u$YKIcM0L?l2QcEEYWiz_GOru zdbE~a5X|F;mwZS~IR@&r`b+FHkq_M>dx*A5*q{#k#g3(p5VjLx3nSk~ zuVPBhXWoMOsi6_baDIdAnH0800olm(G=SF;<$b})qjlbArBRhZID$!203}jQ_W!8D zf;mRJkFr^{FPB8RNx*cP*EC6W#grk2)HIZNe4Tv}QDqX)-$H9qIpO9Ty~898EKrHT zn(J|IvljjG08l`$zZ!i&+LzdMQ9FgnG#z*hOR~_qqa@>?J)w-8cn| zQ0;(<^F5fxjddE5vDX*!>?2BRQQXsZ2WD`Z^b9@;2RcN$=!78YoHFYH9QY{%e+IEl zC8`}ZzxXA3DVSZZp~`(Uo#Qy=GVJBa8QmROS1pcNM#Izrh$qKx#CulczF)A$YU|h< z*7pTIrNQ$b8-^i5{C-3`e1&>#SVOzF4w3e}fSuXd*a`FZACTU$QjBtG8j;y(%D_~+ z-eu5P>+DH=f?YQac(d5wBZ85Ym)p@nx7t;jWuXT{cQr&ww?4KD3LGY8NvTW#zK;Lt z>wH-DKXA_o4zyEN(6GWHLu$_rnJ6o!1`v|>`FvP^YQ*#je(7)1Ix{}aXV0cn?a7P$ zo)3(F_%IQ?k+m%|MfB0na}F{03d*rsK(OpddxHMgJ$V5EG$Y4tlT%R~Xw^WD8|~+w zvzQ(|dK2Dy_w7&sA=~QJla9zH3Sp!er8smTI)5*mWAkw0SYAF)dK`BKa_>e<3W@xm zods1>Tki7}TOmksL}nJ``qsDKieSUW5|?aR&$&Ar+WZV30&+C!(U5609em>aZ&7}Z zDR)_nQXH_tIeEUKW?t%DjSs}KKXW>=3`Y1KC+aEKpt2vHt&c zQ&90IA3Y8)DIFYzGS|o)EhD6(j4Z)8Q2TCM8@_|0*=}O6_ZTm(2M5_cLu3Z+!i| zoaHIG{|ivLS3L^YFb{o9bC+~#2ZYb$LL9ms#ZLDaBbtL^;~o*DM#oo4puFx7{U8*4 z@#$lF3ee050o#?gZld-*;^#+U|H(5@EE|AGX6F8F^5a$LY08*jK*os9&)J~;vx88u z$?*K+6{tMwelb#m1NMvO`SBc5Z1e$g`bqk&Um_430>r&}whEK5$}@rCpv=?qBMq?> zp#8zmpnMw_q-59_QfSiEH5`UcsyKq$ocmRWhOeBUgk}x&V{q?(_bqzgpM;m1nx!9uXS^?_$4aWF9Ody)HOQPV_>6{v>l{Z9q`;=G53%39vCGvwsq9a+SB+QLnDf=<9H|{S| zF4z}7<=*zAwr+6jXOC8J8mIi8mdyYY*V`~m*ggj6kOoUjFJ2&~oerbZGokMlL#A+; zPw9lVL0aSby{YiMAAFnXY;?jz)&JldfRGs?T3D97H;imv?u7j{#JYf#WS;$KQ4qF5 zH*ekj#gS16#5Vh|$KSIzvpg$(q7BKU$&(H!(y_DW3@W0LV?PtSgyJ=r5Tee?r<);% zFe~=zXFpv6ERb&!VWBMubo$fw@ZJI?l1WkpRfabCj2+=B5JXxQ+RTA4KYvIHphya- zdAbMN$(OY^qn%tTT)k`wwjeuSpVZXV@== zESdr${kn>IUWebK*8%x(mVbfT*a8wsK zD*GlxW)erQO+2MZTMJtI>UYMV$hBz|(qRk(0|4)>zYcv>7%k4F&c3U{s+{qBl63|< zJ$Vua8Mss+RdR_hPFma9QljIF&se zkY5u!F*ubEyENv?XGcRL2Qc86ZH(n9Yyj4Z=Ql^-w7@)x7vc2bzekLkBIm8}Q#OcJ z!_es+7#b@`rYB|*O%hEXQNaSuf5BeQP?B3C@N8mFI;8a)^+WU#G-%r(^}&KEa(=ta zFxcsIg~m;sB@{2~B@vc?`w_YdDEuBquM_y}ynIMACn`1)Jb4(d1oy?h1D6PjO}k)q zIVa8~qr(p2xJ97Lnu{fSoL_XNq*<#K$}Y8Zq;Kr%nC@wX1)P8ETFAPHsa*i|F}(o_ zE!Y>>ohr}Cv<4_HmKK`&G4eK59eqM%hsf!pud-3l#?nrB0;6+Ch0D^*T_SqgFr(G_ ztAFt$fCCPmD~w$(0grJ;MD(MUd^%XG%b@EcT_-HK2s%vdnS#l~5?khL^D+Hc6ce-0 zV(8BDi~v+$B-{S4ZAZ*Ta>I6`Xa32zA`a)SpHoNaXj^-eYcv&-@mJimqP_p}K29`7 zwKz*7zj!SE-OU?vYgmZ3K&(Uetvr1VJq?}2hEq5(Oxs0=s2Gv^$wo3df6qe)Yc4M4 zMp$^UelvmsZ;%(vMlvel>_ki{9;6+~B6#56I$K!^4PXQ+yi$73Ho88@n2z}U!?#A$ zlAZ#N*c@wAYvSltg=*gNpnuzPdaN!iA*%pj5Tpn=y1S_j{Zp%3dPQ9)N<>ThBy44hma!IWudX`q{8o$W70ZV#xKw zMi6CP&DreC_VtFpSvlh*F~UH!CQ8 zDTzUhR3oLaNknH0(P7Tnu9!)Bke`r3Xm*I)_zY7Zr4qS*BRQjRDi&B2tO27-j3MlU z>sYmZWVLv9&W`YTDhw_1?DK#C$J!b;DGo9s)OZVebvjim8!%o@9dtXWV!w0u7GO7o zU;px#F_N>_Lq(88L~E0j8qUx(P!mIcP9(Cqw#8(_Eg}MjHXSzs0z|kvJDnnQ-vEPV z$~dtjnwh-(-Q(~tfBYBWum06vh6ium#t1Xeg-FQBlqn2i2c>ky5x0pd4zPrlVV3g5 zS+oEQO1gWMz8bd?wH?#UWG8}j{tuvlDx7_`N6&>3v;+&+7fBNwGSq0DdGLEwC@`D~ zvD#<9{EWHmuem?069zI3GIefvJWrIJ4D+}0Vdhpg49x(r5wdAjs|e0C^85vCgrX~-3l5Vl#UD|)G$#NW!(1jh?6lTk1aNGC zM_UBja@8hb4s*&3AyUI>))DWi^mlS!FVC*JNuE1`3mP`z!1F{xeXOerf~ratLEteR z|M(~)ek)1ph({eqt3IgCalAJIMJqKf*dvzbf)b;%R+-`m=QGx37VU-;B@;Z`lL|2_ z%$oWK8;4oKTqTmm35-fQCGfW9haE_J6F#z0>ZBl!rTl?t0u*%wS zkDk!^6T=9Auh1P7tpOUMg}1+j=J+IRefIy*$Y&&Wx@(Yz+1emVCa|$eYnZ+ZYG161 zGOdMM!8XxcZvGaZO=XzkN9g$7*RR7U)iiyS1D}*h-C*C2_W((NqtOXKKR~j`IcjHg zZPi0MiT2OXq-P$6lrq7UFT+5dN-2DpYj$K1I-hC^qF?+Cvu>!KN@0)s$-~=_EX(t` z#-OkwEaoX%noHQ2dKEnY9XngJKgO$&O73C0>2T~-V?TourMlxYXtyTj0u!1;hxL^z z!XjZ0oyfXHX?7YrSAbD)fje4tW= zfAY^96%MOH5 ztAc%Y&$$l$qMG2xKhY?9;7CVcDB|~=qz|PkeX_f`Y|H{5=IdjG%fWPpI$Wax z{=tb$y<+@1>FD@$@@x`^`2aQ<81y7;Y`hFJ^VF1+9$0zvhGUU?BJz}i7D#wXvI~L% z&o)L39$NsyFQxDXKtB_tj(_AlT(yZ6mo!8vt3JMWXK=3=;Bk7X)DG#Kv@=iox= z_A=+pj4t@SAjV?>pt)!p%~a`A|2(X%tjEvF;&^N++dD!#Uh-~6r71vwGY^tP|JD{e z;m=aK9uRd3W0o9em=FfZMY+du8bmx{|PcFsWjQlE-cZ09_4 z?B zoMFydH@bGRrr;&RJ(u3>@az;tnMY3X>|8H%i_`)Wm94IBL~v}!N{xR8MkFO;#4_36 zXS(7Zvl6z+a;cmvsl4l~hTqu~hQ z@BZh%32%S<>+BEu)svf)!77mJ%>iC*R%Gf9%Nl{w>CSOjdA>?IWeMhr7O#|b%~PTA z*4?kc0#J|rjKNm94db}x80meTXzz9>Tz{9cyld@n>-|!=^9R{*^Sw;Cb}vT@@dQq) z2hl6SU~=_FEgc3txo3@HSe0>KyFaYTF)(P-iz9Ko3-OeFHS7r z=%Jizv<~Nf$+lUOk2U9Bji7lLrWw;D8V_>+`v_}sLNz*<7SKx+c-9$2A$DZ5%&M&+ z=YEbLl(WMnav>fY`-Rj@8qj2_B+0XtIyZlATh}&BoBR8MC_4w+RuojShch@c?LdXD zKq~5|@7&~G=_If`6gx!R+5u8}EgyO%xUy29fD^eJP6X3uk9nt;f{*eu`M zVjAHgshRTDddTryn+=5L?0@4VI~UGg8KVr@?z7V3>`fe=Oe))#am;`u#K$W%B*OKx zZ|yHY%VA!B4j8&%x@rL%bVy3EjFU*hq?8ZnuYhPcLweJZ?dRCjvzIHOvbN2hI%BPq z#)bE=`k)t9NKIms^;u)u>j~n*Ggz33nK?$f&rpS8LJ}BI3@lB7 ztDCX0k_>qXrt^XTV2xJh23E(g0d|AcSDm3}x^Frf&6Ih5*Nnnb{cN0y$vukSSz*cwrV9o5BEafy%=ez>USf zJ&6{AF;%)6!swLUz?@7}(SxXcUH5nV9H*$DFNzv||3NBv1rBb6uGo*0C%1H3IUxd> z3bQjPRoUFqWNt`>H`45?LOmBLIi0f+gHF|mM!*n31D|IE)eADV!HT*9k0b3Es|~uB z=hZ~VF12FI*))+=bke^E1b(Jn1$FfL_JmH1V|i_|5>1^rul4%9)(X+88{T^1ukM}s zcgxxQf%hTm0Jx`W0lsQD(XEW=0tF*fqeUJ=yf+={jU6oV@UzF^1oe1<>nT#!reSPj z{HsJR7c3ZV5jkk82tW^)AZ8bZ6YUYuh;_P~Pe}dPf5cRE~a;N1-DB;Zph{6U~;Dy;K+KtZOpkW-yBUf;4rVlbBLm>~7 z&|y;_an5#QGdDI#6@YokNjd=|WPi-4ETR5HB8sh$u~jpWEBS<9;D$5Mp~W62*AL(4LchfxO|)hWm}H%o`hxCK%lnqvtO}Cei`2T;kQWdy~930 zc*z>hL522@kv_;aVE}NP(v_^C1P-G~K;iy3)n+w`MoFV6n6QFFjSvJ5ZN(3a3D>@3GO;yVd5x`*>vXc^a97q z(!ZWm3;Wu0DgpM!$DytTr|hW&Jh|N%tr{6XH?qrfsS}Cz@JMX^+XG-|;-uY+7d$`v zcT5ej#>jtPV9;&Do??GGd<$#Oj)v*bGjSbd8s!WD#9FX6*)&}RamM?ca}fa3k1GAR zOf<{u%Tzr~v*vA&YwBc--2N%mGUo_@TkP#R`{s>~jPpBX54>4@NNUQN2uzNpO!672 zvc$$l@`(cg06+jqL_t*ZFmV^%RdqC^5yEY6JS1P<1G7d?4Vo?u3{p`+-wBxWFp3>J zfr%>Kxr?@f&%{3UU;}F90~ke`J2kr1I|&%P;}dKZT?mIpu~s}29nKl&W*}xCeubx2 zIZ#T&^wAM?E;vP)-#UAS970%H-Jy%#HN>;nMAl}7y<4SJu1Cg_^C%;xJ))n&#o)8h zf&IwB#%x!12~wcTNeT3FpA&$yGWT$Vz~K}pxwTxOg?k_GqwVhi-TtukCCWAvT;JNO z&%+SC0TQHWtp2h);2FV(jHd#}BN`wXwhj-Dg$-REapq>XDJ21{tb6d#k8wAFYEz<|_Z+)Q6&G<3NFU!5O-rt!3nB|C| z>qJH=X;3J}G|K1_h9Bz|J9F8PrA|cOWD|E-m4N*F0?r{GU#LRPdn9uTySMhm#>j&S6b1M#6Hx8$2%hC z6*3nz(n%`XU^66WNlg$L*S(bt{DOaDxJp!Q5N*n~x%R!6*61t3buSyKCqTSs^qx-~ zye1{UePRuyp!GQfuLW%2I0T8RX^>jOJS70IeRJgiUCMCrDFp z9`-Fc;l61jWF72CSi=D{03`MU=)Lw9qDS)LtdFCkHSVSJ0|c9GK#kEaOc@by0Wq~* zL$d&|;`AJmIyrP4#b;l<4ENr8i(87&jAuSU$yq|=k=^JAK=t%e;WTFt7L@%^>EN&^Tuza4FrDg1^Ex^U8?$*o>`5^>MKdjQ z5ea56=m4vnONMe!0bmd3e!9B>qX;8O;4(t0a%`Nc1$nh(9s-!2 z{`oL@`x}4;95t!M(d!FW5m$KpJ8_O}r)E&}${wqZjIZn?@{?$`d>24I>7 zQQR8`Y1#D2nK1@4GD7=%q#Ia+_7%`?I7Zw=uPj)Vb1ZT0CkUU7>J7?U1e-UQY&tdz zn8bhC$j*R;r5LZ5L&d;XzvY*J-{4o)KvBK6*NQlUXIar6TPX7;*^L2x3u~!6@QK~W zF+FZPlHd4!+?H%czkmW=XN%e$TNiJJ&ef1 zZ1eIWBg-|^4XE6-eWcEwD`(MjJ)D1IrC4oqxP@93yHX1WKHHoEFCC%Z}KMN~EUIi#OTj!~0_8fXAk61%>WANsQ1KjIKI!nX={kXfbL-|r7Owp7_aae;s{ey^`ny^Yc zJL}#8u8X`ahWT)B8)QBN*dTSpz3!)DU92NU=xEv5IH1#6=oRv~nLe2jq8bdB!pk05 zgCYhXPg5p#It~jE%tmr^SqfzH7AZb{fkAR;iD>~g6YIq0Ee^NoX(43d_jqSSm$pvD zIe^xCdA4`1kdKFM#+8Q&*nsi(A3)zDh9bo=NzOO*0EPizHjPfg#!xaZO|JEjdzmD< z+ap>lVI)gLQ!B7AW7vd+cOGC67jPhmNnMD53V~UR$Rfq_NpMc?Ayz*0Bat3EI*$>a znH>oK&A2kX8S^;k zpZ(i^3On?SzyHpiFwI40 z?t2^v#&dO@8ihJEDg~X|X3h5keA76evI09C6L%lbJQ`-lxyq$&ibS|(46&0u1#KGS zbAa0^tilk{ZE28cZ2;FQ<*5aq9g$NS;n=}00yP5!*fhH_p3@lTf;}RmGzNG&+S(up zpg#%g#b?-LZ>30!y?OXJ3}2s(`+aI^CK`ARm8mJUM~*5-)I%y`Bs3N80#5UzFabx) zfB}LO6!;4Z-{5mhEkOli>`MSb8H*NrgaYS$R!oK)S7`JD1CW8a8mfX7=k4n z;VEG7y+2EY+jnNkduPH7-Sf1IEuQDdFyMA?6JU;UB)=2- zNp;lGEI4=l zkByU(M;;Qkcc?}wk|K3o19Hy^N)7;%dG52o@f0vnf;rJq3$SJNbjVzGd>(=}ebgzo z!YRHpGt+2)05*Ud83Idn?Qs$Zd9f$_(!a>mmFRb&ey>aO%fJB^2)6XmrvyVb#VVn< zusM^{O#5L!QoJ_??fNqSzM#aO3vNaIb;{WUF5viCyokLS(S*jM&0?@wjCnnqfW$9e zV;)^LK*t?L3%~!BrFd})5`PS^qG!6B*e!$f;R&P?WCsJl!z9 zS5TpG^QP+{{Z#K`oHM{Nn?&EX3qCrigNPyi#3Y^yI^#fMRCs1mNF%P<$W8s(0Z7t#d={y zo0CM%MSAJ?IXfE#bcqd-W<$g#P@M5G_iJTyH6%y@4C8o9bHfOdr~p7&75SJ4ILvYo{zgB%f_>^gBUADr2;GU7V(*~ z4ih-HQ|R*w=fRi-bOdW*8-@NDz{Eh>J>k$8*QMPYy=Q~uL}%z1VD(OgpP5>qZF?L9 zwfo{tJZ2SLgpF#PFqY@O&D?uHH@czl^Phf59r>Tpta70=yqM{;-d`G4Zk21_@mnn!(UcrjsOf-5N$Gosna2ueBRRRF8M%a&TT#Zp0 z>fNSerqNVEN6ij_059N=Y!^2UKyg8JNBVdpDy}a8dr{$yZLqGjm+9A49xz)p3Ldpu`A3H#DgGlghYG#Ch!aDZ8I-fhrM71pGHK`&q@E?{)jOE|66 zvf48Ql`@ugt;@r9VziGyv2SuuWT;7pLXCkZeJ&#Z3D2OIKZZf zJ?UZpXJ8W*l1|S|@mv6c1RljAY#_%lUwsKppJV7ziUCtSxgng{1R#qNQJy;|9vzwX z*Y#o!xfhVf!=Z-^sT=N5d22JAu=l+;vK#_nvzj(}a{b$cZft6bdvp@UZc`C9XVeV4 zvh^C91L)>nPtx3pi^0}&jl6$jdxK-}8Q2AxB%|d7!oYW02Rho-*aZKD0ZLlQqP;*S8qlvcT~*-QZMs;U9O90HHgthcyYq z=AN^os5WkZHssDGa7t-p!}V>fGv61%fR2h4!Cu5@@yAW-0#Sg`Kv~}A0ml+JK16S) zvE*pHPUnl`#^HH_F(Qo4u$xae!d19n#O;~uq|Cjqz38S1%!S)0zDzW%ffzyj(vLBh z;>8kjA$(r^VqtUA=1mlSNlVLOsQ8bDgL62FJ02AjKaC|Kt(h zncm-qf5&h68^?lyjSW+HuQyHF-bG;PnM_53&1a2!%;)leyvgQ< zbY7+`V&umC@_k;Dphcx;4*Eu6%fru~M;a|pG~nkRvtSY!Qq}pkk+fnW>!#)0Iw-n< z!Le(fJpMf>zbrLK>q9w~}TJ-IY9s7XjryR>MyUsP}8=nouaS$SC-N}xY4K^`e zb#l7)`OiU9_L-_dC|Cd}6aWwfvhx;K0noP(qFs? z61VY>6X96#@p)K@Fnnb)8czF|*HI*=p|iYq+Z#+lBLz~#@eCvQx@0p|i2M#$wrF9x z336qT#_otri-Shn**ywJ)cO|bmN+#<=R^!-55`oaPb>-ordI%rlaWq^WBD0P{vAOI z4zk2OA3@8I?a=j*W+O)E{T#na1X&{*x2$PwbQB}Tlt}Kojw(s?Q0FHhl?J`<`wa0)14Drwm&x8B8%Q)->qCm%UTjMU^cBv*=|2bHbEPyS; z8nC9^iH$}Geb!Lp7*2KpPSh`NP-*g?fBu{B`G5QcLxbKTQl_y^qKHs!C9JQ!0jSWD z8bOomHqW)&&GCfy*_%BJ=u1Pb4~~+nCD0k2r&}RW^P8ue;nA}<9LoVhunibaa6_~a zu4$P7BUZLC`xd5!C{_l~J=)!W3UYmdwDjh6w%Tm~4jWrbtaYjfa2lor%&Vrc0p>Zg zFa;MxQ7r&&Ymc%_8aFxPewg)J7izYJFw90vvJVPDEeRBS^a6@XLx4=W zie55QNODIi{DiW@Op6o|Kghv0&0k&M{ZQ-(;o5-11pB|v-ZVuM`}31)R%^mei+fln zcWGlSZbD}92J|%1Hw@M(RP)HlG){V&nF!OQE->KQT-}HJ5H>eK8X|>#IOjZLX&K-K zYpCVnnUj{I>z=KZ+YX@OH`>M8Il3uy6W(j@ueu^zt)BwcJ1}2)_K1UwETPqbYUBJe z&`N+r1xY@SHuu=dkOb>J%f!Lj<_b2Ga%ya!Y($5MwS{v$LKG;vRDX4X<|jXKH6%zA z@<2j@cFI=csO{>*CfNu`75oX$pg`XT1ESeMpDf`$Dt8S*Q-N7~h)L;`% zUcJDjc7>*bp+oc%4$c~a;gMN%$j=_EPZd3zo+6PTSXo%)vj7rro`M+&3?jp9Y6%eA z@8_u%f_-G|rn%4C8FYGg^L$BTS%OJ+R8?`*F zRsFQ7GoSb<=~5@>+J#pJDl!GUHm3D;c7Eynb#(E2e&zzhN5+F1J$G3E7lR)JPyp#0 zJDC%)zqqgG|KjV6enmf`ES;jLL{MN~d0TX9zBHyWuMue#%9wg5!-xO=(@_6@1J&_$ z79|(KF$5+YCZ0=yNbmrpX8(I11Sb=3aw0l%oEDLgovj>!?Dcr{4K}v*oM#x;8f8Xx zC`5cW>lpCD4N~Fm>ve?vM6GthQj93N=0tgrrVdP#a7{E0fj`4Z5aIHEseD`XTC&pa z;EZ^Uiu{PUI5!8%*jXwz=@Gr+h-3{!em=Nk#D0%He?fFb$%}@NjdqFg?qRbFu(BAj zJPyOAKZ*epNw4-hKpdTo{W3nujny9pKghC?#1hHV*2giAEZ_`-G_c4D??x zis89bb`jDrLid!^!Xz6ydv5@myb_ivb-Ua_Ee?9MEvom{iU1YuDztY1G{-o(LFo1# zjF~?rX$@%6ON^yp)G|cHIOm819h++k#d5bx*AVw$@7a?u!!Ve0L1 zCYUXd^Y0I@*4JoSM8t=~v^>wTzP1hS@ce5yP^&8}HL~$k2crc{<+Boi0Omc=P%1|U z#XfSSfBM&d8AecNZ*Gxa&skgK z;{|d6nS<&&4;Ro4i0I2s0hWop$nPKSAu8isoU}PW-FSxPN~h=&vNRw&WBu4jC}fEg zG4cg~&nnb-9gsRWHjO<(0J{GI25cte$w%AQph%+_D@UAJpI~p-SWo3D`vPF+zV^Bi zaS(k@!4_bs0W?*HC~>*`9*05B-B}EM(^FInF_jae_tgv*?jD8+wg9_nP}D()VVSY_ z$XfZRC&!tbQYn$ZcBEL35yX;4=(o`j*JB%M$BNqLNgyLX37K+C%dFe02UGCVo!SzRoXJw(Z}aJlMKB&QnZoIuxFaA zm3`U6Gg1~f#;<>Gl150#>vnMd*vfuDZ5zfWJ+Q!gp2=wdH-5J#FW+GlUtYs4UQ7I2*<^-#vv7*w6X zqUjVJWMw<^9DBTg9o(j($?vU@Fnw`=Xxehb61M!5$_~?vEr&kA292UaP*KF9mm;4@?n9ISD{`8g9JPlJ#|ohX!r!kR?jLWBq(ZSA{W z#{TOz!fBCH^%?bY&w8N4F1Xi?W%@bT`<_id3`ojSl4R#X_+^ZpYyxQyT59GgaVqfp z49{T_qL{H{SnN`1}9$ z{|x=?!JA*Zjbo(K8dKzCW|{z)a{v~WE2Iz!^+Uf7(3wuLs40*l&-TFw46))_DsmjK zUjg8Bj{VZAu>WBarifyfUoEjupVRg3cBrv_Wd%z_cs+=Y4mPO%fY~@j@jW&)39`&Y z5oq%SkcHqZ3!QsJ>)Bub+b>`*s1A9T`3w)Pll#vD8laHTVwBkPGIMc8yOAGv1S7%v z?b@9tVh{mzFGll>wR?$yJj2!`VR|x9!~LuYOR%a^t6`MiW6W>CGzg}f{n#8j;bGS@ zMRXAr^7N!NY{knWjloFY;>|D!NNnyi#uz7df$$5%Mb4dOTzHd_EbIDcidNK97+&Bd zPONc(ZYd4Z#`7;x!aC2j$r99AEV4>xtnmhRM6si+M7!1<9i8BqebBNM0JGipa+Ex- zJo<=rdlS3C{(xE@;dz%~+t6jQ|FL%qsX~?E&t{jmGJpE$H|j0;`@OB17oAxhcH!&@fZq=r!S&^^zovw& zKFDDEjt&mO1T1nD@Ydw{DIPb!KRi7h{Xqf;nS^=CT)e>9;~a6I3CdY9Q(@uCZ20oa z*P-W(lnrdo9DNzi+f+ClZ-?_Y&)AuWqiJOx2Kg*RzYed<5}+kaBNKpFHfnW025cb$0-&<>>Lp3vQpl&^cm5$6dOqqZql^5Gkk zFfg)Jmf;&j*>K3zQv}j(IZv+pU;JkT192+~0{G7*7Ckqc!--F#jqc5K*pB&iK9twS z+IT3n__y!EvGC6LC9n{Y_@7AD{9+Wffc|9=bZR1!Nuo>7Oo~OtwVy}AD17*{FT&k* zL|KR=>T0PIwLHqtSft{qNBu|0)Vm=o6_E+<6()_~oxY4@!(C^ z>tTE_8UEmpKA_L|09~*eY>55v`pK*C5C8i=gquIO8s@GpqKYSXgj3An3@eIxbTZyG z9C3%pAxXquf~{~dRAEmX&)i3J$qNzV_+Baoh?Kpzz2x96i#*0C=xVYX`=EOAx6q}- zP+|=>_z{LPN842ei3;Bm7{C(FAqm*gvEhYqly`g8uhn z3TJX^1_7kQcXml9lw+IHJWixYBq^Qy`qeTZ@hDCubmqOF%{k%;)>xVjW&IQ6e^Ed; zaLDFHUqV~BfLw@YlwXiNO{#TGDkdbL3Hd0 z#xv;!_+$hbY}zE%8yUu~x(Q^)Y|C6@(^|n{jc}f6fOp4lg{#;9m#|B(_=g|HyaMQGftzboQ2`bLmsTb&iZpv4V*@06y;J6gJ`E$IIar6(H}tdp|a| zDo|3_O2fvGd{*Gs#u@7RVtS6XVoJ}3MG6Hm6F8gWFhd|PJuw&d>u-qi2ry^|tMSc| zH?IK@V)~7>pnwvy6`3AIpGGmx?aasNdq4&0q*Ef$7D2@MAz&S+l^sSTh`ud}5HUp~B}s;0zD6akzLeRr2wA z05h^QNf;2It z8Ps);(=rXg+BT|?2UKx>*0bT8Z4a(fHl3BUx|^Q<^F6!=97 zC;o`E&efZwb+8Xd(ELQb(=-~AYQKOfJ3B%>Ps`*iK;j5}PKWz-c}af+j#Z!v#@6?? zQSZP~G$@_k+gDpgY6>T(ek~8Xre@)kH09>9xqpO{teNV_gQ%fcfAxyVphV|PVyv!j zQzlA!4iV-E3`vb+o)Scq{CmG z>_(l`C?K(hJ$CL)4v^ggvvhDGKH9j=QZZ>1rcfmtoxUi;l~(n z3?vWu)zdeWAkh$Ih#V6J!8V#a>FAWK37sNh%uyG=`Fbn7diEmblNN7X$H9J|5}Ugq zb_N{Lde&}Lc42Emp&c;q;2ipwpM?F#%XFeDr@TO8ANu^$-~E=Tb_LN=IehIsrq%I#=ciBe8Mp4=BJVrTSlTMB zUYCdvp?uhM&hJhVjp(3b;}LFD91sGdqJYW9IZXsoSvNh-M1^zA`589wUmF_E@vJo> zk2Z9eJ@9>2R(8Y&7CLVbw2LK8sN*-@l*u4=aii_zH{z6ygq!nCF+~c{)Z}cGQk;=iKL2 zz)-VB4i50pBH}RhR6>`KCTDvNh2;VtCr_{5<7^G#(()z(JnjvP*Ac=X8lo$xSSY~V zm2LV96vN$b+#}+o3n1v&vZDdOfa8mMc^(zk=P4ZvTNnWIop}IDhHFwpWd6`nM$-;8 zjL`{3UurM*>n2LthpIoo2|41_`SS;W8@N)aP#h8WqK;v`4oI#9=%;%s#Mj%`wJmn}55Phermf*x07O10C1UIhYnaLcF!T zb_$>(YT^D`{-icx5@F*7&&K93bquzV^ugW^!0;S^I8IqrH7uchQ0%E7vJV5+N$F+* zMmSB4Lsunj>W4@Qb5X;lkhl)*t@UvJ@;?zhk4HU+6n>tlUWPG=2r8!|N5S4WH8Mx{ zL9KiTkXNgqAD}kB0aMi`ph$5nojAccQ9G;x;4{hnZUSP?$bV;Xm={diOlmmE-5n?Jbet_I#-p8mKpyG0vt8b2r3m1haKR={+W^)k z_n`)mOOY4P&}66uxJ|4+&dLi|Mu$Yx(^2?k&wfPb(vRA6A=QmhM* zMJTTV{3sb!BWCXz9oHnH+dgd9@~gF2?>~$UF(um0QocBSmDJuIwgCN0UjR}-t-mj8 zkLn5b*xt$-6$XGX)|BIfWkipuUb{!x-q{(!56>XYp50!7K`ai3P4=Rif-G<794yB! zhgMTG0I!0H0rrD^Br^COCk3_vkK?2U5`*I`7qmwRoGYZMUcXw3sYH82ba5#TJLilT z_9=FvcLH%VPh)?b256*2>^(3s#R&JQIfTGxVd>TL@Ziq%*h@vHY+73zu9N@&nR>4v zNwe&}@21bJEbo1FbyeHx9=|&?>#$gZT`dqn5L7@?ghH<*NCuzzhzNzG2)*e=Zw%sr zfFcNmpcT0U1uTeJt(%#hX>Y1cdGCGN$}IhUH+LAU+1~D|%KY;C?mhRI|M{PDG}G?8 z9W>h@L>ECNwaYdblH6Xwc3A#wPXcEdm~v?+K*)j?$<=Vii@cM_8^P$eIBikI8OQ(j zOAmoRItAwSB2f^J#gYVn=mN{U|I&FdKkiNVemMXn@G%bh^SoRGgEwalswE_TuUBIm zMHPVLrkqeRIdAKrjo!{#>@){p=I%FQY0c}oB}#4Z3L(wS%*^0XkA#{KBP{g_o^+iB z$r1gvaVU&@%6R`@+!e7n@*TQwTUoaV%RDO$3A42 z@dQxgIleNA$Wg!3vpORfyJC}u9$$pNP5u;*mWV1_4d3|Tx5C)WEE@vRgnJbO5$-F| z@Z|zl>Lt#`IRalJa^wYg@fd3qjAd7o@6sleQl$sK{v^D7{3vu(@?o;~R)i1FG0Yhp z5*gV|*3u116A6g8#JXyn1}9ZnUMEUm`PU_ALKY*Oq9t#gUjFugs3V+lBr=9f!&;L} z#A|IhQl$lSjvShVz6-2{OmmS9;YWcOr>;{oc=rwgYb5FdkuMTEbAFL#Trm?JG=#}2;>a(6OCBmkfVEIhA2zoq=s4p znB?!{mF=*D6LE_sI}S!ElV{xGXIq~y0L@dEPNSFsoX4XQ6(V-f;$X;2F`_E54@Q2c zoGlaOXB`aPDzy5v7W?%5cEs3=|+SN*s;T>~I#KK~PSFth0`N0|Uqdju<4) zM28JPkQWRltj5@BvQLs8(PsjZS%tF3A|+qP5X>q#MHNy)o6C!_tZj?ibilgyKwf>79eE)Wo ziz*0BMph83%l|aSumLDr(ZV zP?m5S>{gd3g)R(xlT=M52NIcp&CWHGK+YPgBzn!JE_M1GoRa=Z;ds^Bk-_2d7&+@4 z%F}7bfi3bpwxF))kdwBnvvzr+%p-UK%>t#Xby5Kg1nDBRcyx$!pu;@=UL1HHo zjs_MbhdyxBdfyo56~j{%JwfjkaVQ+1bw)$3Ci4g?=RG00cM#I(pu~m4jw%>La`i&) zK+GK&v=m*HR_5nv0vpevh< zC&#d_(a|zbuYP#^AUNo_-QR?u!ULcXLg`ktB`6Er$9XY$JVQrGj(=twK3Fl=5r)%=7=zvqki|;LS+EG$Ca@ViZ)eo}h!q$Gc!R(7OroSG+ z?`Xr(y!Q6H1VIIcxxEg3B0}8j4#C(t!KM9Y3Y_;dQoBtQo@VjF5@v|miS7Ypg9cce z>u_y)!nNCPvQDOa(J=$a7-^0e-t)W}{?xI9t6Q`WCvcIhE6Sn+2P+SRhZJ8oRVL_Y zr$G|Kqu&WcK!dc&8gaX&VtLTF^i)8eJm)$M_GB>1m+0*4JSV!_v8M-Unw1ZPHRw*? zi}m8Q9KUGyQ~&gz|Fb{UNDJrtr85vq7x=z{@-cdroS?m6o&CK3>4n`0vhMq+89xue06D|kc05lX7_P-kuk3v%QA8)0Z>h(k#a zYzE*QPzrLgOlL7*oft_wVTVu9NNN=2eyz@JH$Q}6HGwg}@$epari|=U z4*v!b{@ROYC=KhbsoR~Rzw|Vn_8iC8e@m9bl@Nv)nQUNXhZ-!YnC-h@H^|~Eupc&kjmG5FW3^!5(h@(h(UC7g@Gk; zme9<390(*RDzz$6Yyp97!vQe&?mkPbG=iuS$(-{{NGc>3dfQ*WickXk!`9tdVZaXX zdw~>A6DQ*=lBpPD%59HOqLZT3Ykvc70tc-^1SXX390$81=5RRlPV;#9dkb6KBT)zu zx;@{E2(+CZFNJ3j;&U9SK1e;MJ2c?|73m=A?;D>4Rt5${(OPqSuzNxWFi4KIgD`vR zI`AFJjpsGDStfcL85zNWPaEU^&E%ITRs)149aU7E}dpZANGd%h6 zCk$Si4kJM5l7;LRX``0}QGb%CmcxdEBa)M+f`h74YP=@Qk5NPyWBp!qcBU#z|l_GU!ziBl!3?k1?1a7dXZCMc1gmeE0;S(-do# zBj0<5UH~y+-73i65ahn$@e!gTDm74yrcF+P(v2b|VTpVQeT!OYxQ=m<7M?uAP%?dP zq#s$}oN3e$`lx~YH*j-t~7wYV1z9 zXs7cY>9X$YlOaW9R{#MjQ!3kg{c9mRaEmzxlyZU$=13Km*ze@TXvmIU3k~i$OEG;F zg`657S|f71AU$@8!8tE*jRI92obS4o1e}`^5n*P4Xr4$bMQLDm{03#P)7WnmG-SdQ zT&4_2Rv86*CTW$=LL(EAf|{`g70ze^gG=5Er=c3Q*XQ9oQ8Q2de3sPI367PM4;v_R ztEv)2ec8@|XpA~o(;9lR%KL1YyhBQ|i2-xE=`pQ)&v$k)bZ;Oh<00uecOCk##Or1u z1l!mw&EPJ}36b)s?+R4ALNbd`)OmXE*eCg z>{p31rlVseSA%{jNnq#<=wdhPbeSoWx;UZa@Wap?oFa-QJ;0oeUXa0oAuFtSD}kkL zsja0SCgA9uzRSJfv{2bW7Dw|!B%6nHYu!Dgo4NMt`e``lvxjHj3dOr0g}%4n~lLOxCP_Q(d zg^63UAWT%B!njW{i}-Gh+*96sA6XyZBQk|T6#Y@UU)*55xsI)e1rcxP-A zF2P-tos$vE^F`QA!`m*qMnEhVz$RG+*&22y^UAAfgSVj5Unf96B8Y6j-|9oBccCXz zq!vV%%m6eAuC>=`A$}o!{fbt^&p-UaSZZu*kkllB@ooGQn;h_sxqqX6d~V(dna1bm z=UyioRC9RTq@*dd8!zz!ItbLa0;!o>ZbL9-L^^0>Z*7GLmq>yKS$Oh1OcG7^;+fw5 z;4SKyvteg`jy&f|xTDfS35rnIJ}M@*4TkD5>`@)7EXu&L9nlQo;uHpY7}(WLi#w+qIEyesT^fwV8PT}L)AqN@ zlX>JaYv0KpaC|VBvS^K(Fao@fo*L0XC?i-Jj@Xz8Z&pX548aOdF4Qm-ar81#Z4rTc;CI?Rhg*n*Azh%Sf&paN5~M`ZL!)z zFYyI<0PQG}go+Gf+rXgZxW_643y1OSu!ar_vfqIuzAQwRI)<*DgH$D2IYkMWQzT{x zT^!O2Q4o-e6mWl&DESP-zkNuAgpu#yu*!XQMusCl9haQLXypA|t}s1yg~#Q3?5i-S z-OL;oByhQNM)M^|mcFN*Nq>3nr2?-YkMUOKP4x(2Mk7q`i|FzL^|k}??QnQse6bR? z`wzpdH*V8vmx+V43qAvG+y`YC1}a^ddrjk>&gi`Eu2PAB1Cr-C(3sdPs#}ojIy?m< z<%69aB0#Dtx`t8cIB?|ebh3|iu&7Syro2*FwUR?8y-cK91tsa>dVRu(SGpM<^hNkL z|I5D)zxUt%et7r0?}YEoPK8CL8Xm&ISbKU99VzqN8ynHmrdFY7FZ2ve!I~;-%k&>JgQKABq5bHPwpMLT%y#LXAVW4L)>;o~2 zvJK)Kabi%OoLf5mm6;nq2-$O#DwYk>JZA?)(C!D0=>@;D5~#b#npgY7U;VHDDJ=c| zT6purI}xqWA+RsSInIwW?)O;RGty4=Gpa@Eq$V)-NDj)24r^Sq43D6*4>D@oOEO68 zClS1y0ZCs3P^1fZZuYKkXayAkSy0EFDAp*eS;4@rL1w&UP6H8s78ZPkJbQ+yUp*!V zp%ZS$7R0Vo?#am1Q*Z9K!uRbMRYV*80pF#4m0WQr2qU_P&$XG45o8m?Wqo=I18KQ! zg@0Gjv#{hs4ri96128;!cGfS4qnST$hPl^E5sgSJgEWF5BogdB2B4E5s)?+=0{sAh zBE>)-g~SF1Qb@fX)(&1F+n_ScLa1Nvh4;U43m6|1foJC6f2wbwk?ai{=iJN(LqQOz7_Fq(!PfVd?{@tihsSUKbNv*@K^RTXF9 z_+*`y#gy?KFje)z7ooJZ9E#UwqMja@y&I0q_)Ojjxho6dl35c@ku2dL<~mpl&PawJ zq)Zv(;lq1jXm$poC}h|p90#}owoE@|?Xs}-n;D$kJGbfR2*TP&RR-td{B)P7e+fhk z?dWiL-_+EYLa9s)$!ls7}Flu!G1V#8{e-brTHBHLy%I z$@vgDi$p-=+%I*Pj(`EQt>Cq@lJ0GarX4=zXEFW8n)KpKmqCyG(oSo?bSkuWBKlqz z0wDsb(Tp$i5%^Ez6o10Qb6GtN`2bkg_#s%i=vDd}BT*fK)&K@h2pbgh8eBJChYvEp zp;u#FzGWFkUN#G{MskNun4f#jkd#f3FUs6Fz@Pu*v#``V7p}ZTPwU>1Fg!K_+mn() zV0{}1*?dIUNM#ut2;nK(6_9T^c;x=PXB4o%cfqWU)eGVrM}$JiMA#~i!mXe*s`0ul z_GH}61*+zG$>=}*Hj#(n_e-!^51?SqrF)5XAYkTy4g@rX(s`qKw= z=$Kcgg980ugsa!D5dpzE=RF-5+C0%f!RmyaW7x85*xE#xhV|crmwL&1R&bijy+(q2 zVd>t}*iB64`{3jlZGHRbA-)GB2{M7>FbiTq)j9e5b&NQlkaOo88&bP^zawvSHef%_<)=x$N+mMpWzUtpcG%gOg`DAR+#VHTb;{Z zo?oMTkN5CVdph3u^p(jAY<)Si(3_oZvj{LFaIK}{^MmhG=t&S|L^DF+Ra-yN^Q(VD2J!(ABUT7u7r2K@^J%kP zkcLW+bH}`fB73ClL^un zFtFt~2wfBX?5^+Oum{1aXM+9U?4z{K;RDp@i;yIeGZmgehHA)E zp_`~)Xr0C|Nve?YC~s2=98b;${UkWYNzwT(002M$NklYL1-OJ0z^cJ(%`Ey@hjh zpH99cz!Qw7ohYm9X9<1K2_jV{QZsdG)3FBcvo)?rl$?(e&xksWl?8T~vxi3!(sLOH z<(RR>M$D%9YVbllb0u_6y^BFu?8P-wMZ2VJwwAWS@Dyc{=)eR<-9a_BP%hyNs<=!y zo)Rp`15l@F0xk=~q2rxf7=P}Cy)(eG$w!iFR9Lf4&?{@_s|a}e1c(8AoX&pMjkUGB zRXq$PgZp5;F!Cv!t1fEV0YgIrCxwV0TNdQaP-1|(SfXEEMs?AWU`I51hXYb zBM^wS(*&XL7?KUTXO19;>O(jKMfCFpK}63WfyESZi(}+?apl0tnFXTj^WEJr0)k|< zNt!5M<9VTj%Q@m@=w=+dno}Kd$dLUSXknCj(gjw`Y;WvE4$C%a%$IX};m(_P`Po(^ zI-lU|j)9Jkqw7|dHo`EK1nLO6Jr|rCQ)Y2k9{PjF0%ay0jXk#ahdny90kQcWx+-Vz zPQd3MxgOq|ofR!1HKpoT>>TEg(HvT^X5K9R8u9Z4y!4u}M zBR7D*zwEW_#e9thIJVZsh?}cWhQ91R=(S{@`Z~Mx89iQ*L$;hSTi~FO$6j4qq*ike zXmf~0E8{2|4j>D92ASyyHtyvCN*Kj;4l%7cOoYt_8EJ@02$95QNE~h-!#UMHi=#3L zGUGzIX_puxVQM|h3Wr*LgUv)NhwOl<8%vV7cORw&$GGqS!b10UR3l7xx>@|fiO~Tv zS8Nj_7tYbS-avzc(*yHVVpEG$$@60rU89&^LNz)r7kUJO>zZZgafC9^mjx7cDA=zf7XaYeu&T~$a{6t8O_E= z9LaD=!whqm=Lqlts75{y^az@;xk$}7CwUYUnufB_!6+DEP*C-TMw5G>I2B54q2z~@lv`&3#i%ri3d z%4~~eErP-ZMW+^nRG^MO$9^KJ$QM%`Ap>2qXIE3RKzoOb6P^pBGsAEoXdTQm6Mu%m zD^o-Vdr=mzOizbL{jb7Y@BoeFQIx|VT$A~Y;J41QJD7l z1@S46?lCRsa3E|2QJtw89KxH|dB*+l7ys(tf=F~B$EWZ?ia@(Fq$zOVAO!A!v|O3J z5&rW3_%lXcPq6%aRxP5?~(SLi58-yF4kNdF5Pa%I|3=0nx+ zlYjl=@YR3#gYfvX`(gOa>*%Iz_{$&vMfij7{!wU0(f`MveilCZM;}o_`jAFWZA8z9 z;U?*ieNtN|T*oPmJ?!f?ZEMpw9ru6!DE$6^|9#SFreBJlcv^2-Ks z`lJ5}a^P#`O*{xw!{aozN`=>RFT?B%=_Y1U9MH6@3o;QK;*Z!u*hMA_yysl zXMmaPMCs-?^}?J%U~aRCOY0C5qn?E)uZdFI!^qTF{A~Q;==hj#aRh0j#-Jt0G<)02 zMB}7BP*mOB4chEpK`@DaO=qw;LidrI!T8M$81ais&te&jb@_t(C&$O+7Kxk?e4$Fo zbvj>Z;I5<|DZq=Znj0J#jieO>ml*d3Ynz5>lm{ww+SeJ4Ktw)L7$QAp34z-$UlFas z86eWK2X__}B8`%^d)V#^pj4E34l-5y6lF)G6prTh8KJvG?wLkHkOdvUBZ5*OhiY_H z0>)2pGIi{lI#~RSf1$J_+gLJ$pmHB|IRqR`bB4lbr~Ir+g-Q|UqYrp4GFxdZVu{(- z@+xwNrw{sI%VH<%C5V_$H(`m>^3>7G=2DlIVWuza!XrRKUE+{3zYh5afoKAHev-m)<0Gsokt+(%=2Mbs9F=TULz1*aov2+14q-sn zKwsc8w9{lnCuVDTBlf)4S-e2OoE(5Gpm=?ck^YpZ&*O#g>%ably!aFbay$I{|Ly+@ zE6>;1t0s9<6cNtz`pQa7%k<)~*`MBFD=OjyhgJ5zQ`auZAE&80(XbtDDI37b7)ruE zP?uiTJD_|HkZmGQ*7gho+Kn=4BZ}#!Qey>2$N^t>-+zm1@i-a@uuliSY;8g^j?cF+TbHi@gAH3 zP^+sSGRJ{&ut&AiFgQI;Pl;KA66@TPlm+*O6erG!|7t8`Uqd4-Ug2{TmLj@J$Gl9c$riwJM{+nX zh+srYHLB+K>wJ!LK@4^rh}HDmp(nAOG0^cdHDhH0fQ+^VBQM%w4qoEADObtXmfdL^ zBGVp6f!pES^7)`lR*tC$ZAtF+JX4;55{?lUj?ddgiZsjTp7X5Qx-x;ERWVI%2KGa} zWeZ?!q5+pB!Wv^gPvl4Lfx)oOhJn@^4z*)~3#0;%n9a}t3F`pi`s^WXopW+8(&6(@ zo`g}zxpuV7px4_7NKLKV7)msC5QlRgLgo+ysd~o;V{<0ac!O+H&a4nNhkHiPTEc7E zJOK(9yE$qnu*KewJrZn;X5%%3Y$qIAz0!gHu@4M8Pe2R0jg8KtUsBE{5DtvdKfm^( zdI}Nl0E)5hv(^xjK{2q{M*kW#*WHM!^*uYydt;wzuBCU_ z!LW{k-dW$`bD4QPMl}GiFo+UDC(Pnwk0irG^3lmQl(k zu@Rybl$D^YibRZ@>1_NPfqFu<;k`-Vyz1BA1?i%R{;rr%3ge4g1j*smoZO|a1 zL^Bc1FtYUJ7EmPKJ69K9v#C93BOwVU(r;@i#D3k`5iKY>wGcnKtIJ z4%f+Zr#LrdxDy0EK%2IXHI-2VQP|`?&N?7JO|JZu9I7)5gsulrfQ}{JKG=mtz7iWu zWgx#5a1d-dvqI&!}7xt(G9wQ z{Qf4j+vj^U3|fUG#`<>;F%}jCu*yCrlb{5&IE69Rt6 zyC1$2qi%as=-|AXpATyfUx(EfuQ6g7v577hz!*#3=0y@SHj=d05>zq-C!nNbvv4p4+ zBgz&-UEOEPcuPkeF`huaHH116I=+$w?T_IIZyf{EMd}+Y+Wlj%oDOs`9|_TMne{_%knJP( z=Er~kD7-OE1r`C}*2X!lhHu1XQwSl~K;N=P22xIgmB4*)MAN3;H0d7X0mn^_oKp)$ zwe50gn{m@Uey(G|Mao5+Fm|k|=n75-I$dI+=>vc6e%Z*Y1AFVak2acT5H*O^MKLYF zrtm*^#vSxueEALk&tERS&Vk(tHGuxno6v()VHlmaHUtxkkU5kj{+`#g7D@w)5oD1p zH?)C999)7%YxPGqrw*}>5~NOqwX?et7Re_%uiAkQM<|8_O!Z9WYE(#igDQ0A3MkDA zu=V#wS5;UY+bjEFaF{$Rhg}FqsLL_4l9X6AJUPmifW&hcvRoD;f_E2%pL@^)PIIk1 zb-)K3x%EGelgcO;#Z#pAAH&LpR^V*59 zx`70j$rO%C56|i$9)WCBChAsh9k`PNK|+LxN@NFfAUF#i zp9Xs*>0It3Eg`2~r5viX&|yn38td2lD^)XFm%ceE4ljJ4c9S zX($6S^z;!Zj{yNPyZ}6V2CtzAqGU9-vAPzKwBs$xMRA(8F?<`4W39q*ok_A$@BJd4 z!EsUyItrhEelLs+;Xrey?6UdkC!dn$xdNh;1;rT(V>hmc`#<{?=MIu0XWVwaSyD7} z%ZnH*kTcHO`o>Dg4l_f-*2u{14rP-Xsj;h&%#g8jjL-7IOSmd#s=0667MPW9{XvjBBaX;`Z(C(Qj{S> zP$fcTO30ZIjsq`4ER=+q2Q_G;%WMR=dSw@VO`agdfW z@{xq|=Flx2fz|m}G40TVc-O~Xo#KFX6Xjk|LVI+u9b+WV=l-E}_ZV!Pdn6S^5u^y_ z{}B%V?yG0K4r5B%s18AM{n_(qFxx>@%5;!CJzk6lx(Rw)#fYatgASW($S-n${G5_D ztkRF7V_=MMlJ>@+r3R8op3i|;`*btR5B1U65Z(~$(n|%;yR!pSY;SV({~$J zKpPsp2g!jt1Aawk00Se`@FjsSIt9EVIt?hrcr$qKG8er@m1uj5W zq8r=I3M1R=KTiphf^ELFmwD-DM7O+=cC}Z5kVo+(QOvB9ut)=M&QYYua2%9#!XjUw z(2MjYu+dN~*TY*+cu-h~L+ZX49=#->qj?7&5irrKM~^U6Jm0_&n~o3y`82FS#ps)>YjREN^Chn(V3XImew@buj^;W^EOLMf z)NBq6>6}AIf_VNl1l@`TyA=Yep`^$~V=y!%?rZq~hAD?9MJ_Sh&rl*F?lVe=DnwVE z7}X>ZdJoZ~-5>Y2x2aX;kb{bJayYXn@+}BTChodXeD;z*e7(lnBfyaT`ptnr*8N83bm8Q5DX6!p&PI^I5P zYD#UAM1?}kmTB7dc8Rs#SXl;vftA~hU~~B0&tqV=o401e)ti$XDr5@ogyp5@I1hC` z>x^9N5cx?&I`U9zz}VL0TEVfuxkc*X80QZLFbe1pu7)jd_fRypbhfkC5-5YpOX837 zDk>QHUC@&nO0UTto*~Cpd^kTN&)KNsa2A=!IXuDe5^~$?FD3jzw4-U#*d%@JF=}hD z^M#l_Lv1*7Io8H#Xm^j##UV5baIKvPN&*+fgW_U=)2xZ}E;?AZUK(dTdodUH`N~al z`n;!36B(eT@b&M!AKw1pE)McA2Ad{IG@9B%4u`MMLt=6|yoR{>-iPnS(WeV97I2X0 z4#&C`LDIU3B7{ZlPUr~eofWt~dnlj+y)MY*#x~^M9}%PHJJrN#B`0gM73Y3L9YMbi zPAZ0k4u;Qh{8Cn1phQ6%vKZ7fvZe#qODbk%{xxVDkTJ5ly0DA`vxJczCBi2X-?JVc zL<*Vk=#7lwz*76)7oW?fG{f*RHZbH2$idkhog61sHwpM9$#UL6sgtMM9-Z>C1R8g~`YxZn7>-{rU>pue8C-;kiOI118bbj}k^zF@h$C}M zoy3VTrP_^yvwO4&3N?qpT}B+aM`917Y4>6i$HgBcP}Yl!3pl?7L^x0qskaUo)&;8P znOI+1LTAxZoVC{=bl{A=c>WwYpjpq}W*7ybd-Zeylmw?AN5q~9y*N`3?%#{>v}J7V zd6@Kc*4td(Mu+y(+>1Y?;w%YnA~y-V-UJR`f@e9#*({TmJ=k1@j0Z9Eoaa5+qUS)F z3K6D865u3|F&&BdClBKI><%2tt&L?+A_9@p5v1F7_8n)Qlw1u%dA`3Hs=IrrCfYZ1 zcAV6Bvbh}3V~xHbM{7%*bsJVm$jgR<^%Z)cz>6Y(pG7yE9q$n2(F2BnNjb12x+-4? z(qb7TsX{sRIeM;51I~FZQI+9jR9k-MKs)wv8goR^CDz9PrC=nCu{?l>mM0iXpbITw z%yy4*hL9mDr?S0N@t|`qK^61xzS3_5DkA0n>H_r8oS!g^K0k}Af#AshOliT zmo0+m!>4QE)=Uo#_$EQO;TgfZ5(O90$>V(3Xvp*CAU2T!14DI&sestr4@cH<>-MBE zAXK-A(D!qGbXuJ2g2`8H#@}hzQ~%^o{>h(y*=R`5ObB9C$MgfA=-)D9JwO*Y1Iy1>Fet!;M3`%ovp6BHlc?wz zMbC%htud01BV7qg9b$dI0Sl9*6=qlbStkYG5P!fkl=K8g8%6jY(cjQG=mhJTK}apBTY0?^ z9)5N&JbrKw5A&R!)^HVALz&!q_C*eL?A}ONuR*l?ozX$;EX4sXzy^2jeIM&nrLoW9 zbL#ei=~T$>>Ja3i3{9HOF-Yfl`dugvqXKh!yWF>|b=$!@{?y5Arz>leiuJ(W1?_OM z9yz`XW;k>a@jH8>r>`fb6-qb{g9AY0G^0c5cR2B*(XfHYz<*Vzq1;pkU?KS8wHPSdCq z%I+9P#hfG{B1(wpnpA;9auUFuW6UWSrUPJ!$hjL-=?ulOv${%T-4|9-<_nLWu@>bp z_w+?rMDaiR+nxy95gqF zGnZyo#dvu7%U>f~o2+v_4oGSsGix-6k?U|m-o{1h{@h^}ch*_hZaA?Lc@Hp5Q`3$74KA`Yk_P7b5_5dXc z7=R(^r*3^Otm0tVUn0wyvSgQA!H@t0vtB72m6at>pCia+0lO=2@(t(U&=T(%mzxTHi+L z4&(5S0Lc$rp8A7`@vMqoy7iS? zK=lMKd|nr0z+c~g9gg|=)a>__V2+l>Dvnq&aQ|wuWZhP(hj0={(!P&7thXln6Jdml|?@*>kdV;7u zC#rxEa+p>!M|y%j{3sC48OR!Zq(aYNoUc*f-%Wyr5_{c-!L>ZQjXH%Bw6S&xMBY0V+Nnk; z^pEn4ybift!ucDXxgGkZt}(m~P7h?`F8W14#K6F#+X!~D=$KPd9tL@mVsk|T8>%`? z=~gKJ$n$T+F9uPWb`ebU6Sl|^%yx3cM~Jcr77ee;-X3xgsE$I1i-r`@xx$LWpm}?c z-v1u1(91_S)l@RQe7HbL(2{Y=T+yLc#I4WKn20ozsTEt08{PZ!4I1JNf_llRSXp}> zzV|!difJ|b^Qe1Gc8f$C^r-J0wuY}nx&&T^dVxQF*-TGjA&Km$BTS)HdH!<(n0~I` ziQ~dS#ku#1Ox>_9IIO8Z!5Q!ZIsx&-@^7Pi1u;4WL{kpI0knw5PshP8r!k2LfD7QM zn?_K`HT*4yBL2-Kbr5`5CwEDbXu!-_e7*$PViyD6PVebW80HSu7$hPBGRE+Uu}Potx4l+3g6;FCvTd2x}bY%9$2JY6UR zD-rDU*5Dc^y!HZbR>6pw9}IFAQLOw2S-a->PY?9u;R5hF9gQSJydH#1f~TF$n$-9A z0?Bs`_5x?p)sN@uAm?ZgffDriwjj1)SPW28?2 zs7)JA#>qZIT{wJQG*q%wFN=XF0|)P6?CV?9dy{vUpeYPVYE~))7j5{@HUH`3!_HI1xrF8_3f<#-tC~w->p&Rh?;_Dfh_;QG;Y@ zVvU1q^q6PQJc1%e_NkYrV~#e5Jf|?u%P;STJ{oq#&aez==>nCQoF2mnfhZxjWzdVo zr;9jnsW5xz4bBOjFByb%>(*^A8Xnzy7!^bUZ) zDItQD>mY2Y=O6%Q1Y<-ub3&S&7&&WK9gs0jVk3&yuOy zk#}>bmz)htZI@oW3LA^7;hW$6Zq!ZoYfxWJUYp@(--$|4GTV#iFJdr}z?iZXF;{O& zZx|zEcT#JucZejv@xAZiq`>07|CswH4Y>_^L@?3KdAxP!Zg_J4X>>r8ZF>XET)V+| zS>`mn^A-clFhZbmV;}_@b+iaI=8yc^=O2`F+d?GIqpk=L&gZC#K@RwnJWCc5K$)u+zxINqUyAl$01 z?g2O-J7M;%Tb!dtxN-f>m^wv((dC>yoazK;&K9}}p#K~Zzv({n-n}>_UC7@e^DnyK zFtra*!>@kiHCg_)MAV8AQ=GXrO86+lObVMr(oSOB{nNm(C)hU$&%2zPES!qri7PA+ zC%=+I%Qqb;?@R|iXUfDBFK6awkX{o+>Q2f% z0)f*eie$B_(NbX^5^*>B#xrX$sX-SxK4Xus&P;=rc9XsvB7k5}R!^QvuR-n;6qje# z265b3V~}w^-Rb}x08ur$LI&%W9%_5z071^7fw<+3R-W0Jc7QYB^k3IVa-scdH)eHI-fA3eEp2PxSiKD<< zW>H|%EO%IiY8bKehm_2=CEG`BF;kjh7Pfp2^0RIYs*sjz0^5*HzA$I7|9Rq{?{eSpH zyjNi;qq=RX2O4x>8=M*o-+ce0*s#aLl&12aAEVvTSq%4ovlM>)w_k*@X*^V->H)fr zB~S=L)aJ}=0sMDA`;3SkQVE^$j$y*rFs^p&suEGX@!mTq=&L9w94?Gz34&T2q{87; z894eEy&O@4GY+`KJU3KcM3$({F_hIJQjsGoy6@VN*P|LE33Mp)x<T(F<7#@0R#It5O)d9nv7(RppSOhM1phyK6K8r!~naV_rM^$DZJ| z2~r{$r4&v;1H;ve;v5+p3$GtPC8{ARK@qIIT7r$g5lN!g z0a;c&L~y9aha zgUdl=Cp783*dQrQ%W0?0sbnK5lKpDJXEEQIW(;yFL;kr6w99!bK~6<2#pqh4?I4(b z9IpkO=3A`wOZT3}KVU*&A+7a5X$a%zWr_Beu$yS z`s&JBC~)(Z#dUBF#?dYL9F-GSXTk{AxyR>>PF<%mgz1Ynuh4~a1;l9~y#40e;o8-q z*tAB&rql8K@nhtQd&EGUv-UaCX+0RvDhmJ87mvet08l`$zkl!}(pE1qK_@WvPs1{mA(L-#Fd@QQ%P(9UTi9Zp><^)? zwi-%qghba8Y1^(T91S>87xroJ_u@M`o4y>B-Pm$o9k-?KV>=qUZ><3W6HCr(hF+syl|Xr&l>rAdM4N}B8_u*4l-)$FUR@I z!qq6=#c}71E&f8f>(*0^}uIY6R?qi>U7J-0w>J|9qtK*lK;}75Z8gmZjttAXf97L}024qya zgLrjplHO6g9`EskE$MR}JUh)rPzY$o0*7W`{0hdG+F78eIyK<-`z9!ghb$@>ys=9> zpi>@Bm|3sGArK`ZEC5PiMHYq!DA5+y@syl1q86I6P=h$N0@~B2z}{t)gNZzKiD^3fwl#3F9ING z?1V@l0gPxpt~Jx51JpW&CS@;3aJ=3H>n)kmvbTL;^8~`lTOfpRh{*YGyjY3OSw;a< zi9n>Q(iN@-+~qzTLB>>~@}^EOI8}S(Bhc-5iQSVlih)B>!Z~U{z)TS}4-&!Zt?rTo z?73vZSEDCnD4Pl+@D8>?T1Y3PAj;IJ^(~<2&*{>|;{wqU@geYOI^5}Cmic{=$RUsS zdyXP$a%eP=N$&X^=c0rxBq3OpVDYCxJS_F=rABuHV?LZ853^UN!yu8+tJmajK}D=n z)+5)(C+9u5o}vwSo+wPB z0AN9x`xPPz72z3CwVwVCX{W~zAEQ{4;fqi2V+iQ)0AyRHPs8->S%#m`WB*tghnxrO zDG4x7{qitp!++P12TPqQ7}yHwku*b$a+LZdITIpOR{S)1Mmt~1X5XUULIA_rvW2F-lx5DD(@C}7-V!NC?V3($u)eAd+3ZQ$csFRDYk6%X6Ss3d=}xst zs&MhelQ=ZVcFHU!ju7Vy<5mLEadw2z=Oje7I?p{ZIv)Q1|M}~1{eyR7cgeTke=jU8 zEr#c;Yf58)BCqnETjcv!7B^!}ym~2z6S2O#6A5u;(r3FEkrRd#3DI}ZviS@|=P8yg=Bo1k3dH)k-!^)QG7dI@^`{PQQ_hu`_#u*AJC z|9mwz3rZlX&Mh%-Y?ntndaAKo)n6^nm(Hhpdn+8W$HwQNy(oAC77667ekl#2=X@Av zFSd^$(xDe6IcsbUeC*{?5^2H%dG%-sV~S(V=OO?x4Q3^j4UMdtvSPuGd2j8w3w>$?{B9?BzVR(`>A~!@hG= zZB}-`d9#ye=A4-nG!na*l!sBH-M*ZTWcbCe7Fmg6_|6Z%9=6eEKl#bugq|?WkgNGP z55n^1lB27SkpWWHk3ps;m?J8B}<(# z5a#I@b0NcZo;{ss@gclncx?hCoMPfZ&+Y(2J%N$Zc-hem$qYRh4Tae`234YEVMw7= z@5^548uct*t2~3X)n$ko`l~LMhl!k0k`(T^nzHopGT<%&r$J00r1OBE>_?WsJRpM|5_g@DSytxwklg zhN#;Ty<uiR`VQOo_VlI12lGj%7Vv zlt!BS+(ilP!QTGO&p!)qlZyG)4}TX=ovDaGoLeu~h;$q&4xM-9$}_0KE-*P`>Gup`g?;OF=0Up^jw@DF}3vbIl_ou7V)T&2UEuVbuP zr;@eyC>UEP=hzR=UI$2s2KEeS+v#nCpckeJj;LMEBg4+McTPnl)mcc3{294C`Q$#i z@Tssize+UQ4AXR`6LmN~*yl4YiHxUWj`;ECbK%#2^J)0efBl1S_nkZ8=Rf@g+=?em zEbI^WAHPHv$qAEBw9T`yEF_$;G)J_%jPmIuu3+426DQUGWQtdjMU{&^(2;;x0g+)H zjMjAA@!%+@W$Nb#Lm)2;%v*4(VJ~OOynaiMShaM5j5_3Mi(d8>&S8$31P(G=dGJN} z#_#_j@N_=R&d$)RuyZGADf&+|IP1F` z5D+1Qt^Ar=@N1xqTfnemI4o?BvFaEV4k0;eK-QZ5>6{^%3$x z1P0GVJs1%|WF-w>!kn+`9I`OL=2U|zwOG};2fNS@?gJ_ z+qSR@qEXj?A=?}W&Y+R2kU42ooD!Qk#i}!W13#_cPI3JyZZW^vQAUX4|O%MgM_d@cZ;-DO|fY8#YNx zFK@0xmNwGXP2qXbH>S?o2u9TJdSa(IyrN5%Y&t+py&)e!q`nh*IR;U7e#s~)KGRJO z4m&vl!N94{aj&KmMU0~!73twtb)F-7z%>%Av5lH6x3mN?&w33F_F+Q_%t-Ncz!9n; z6W&)IWG|-m?>)SaGr)o>2%2JkDI3>b$L1L-w7>*l#M45_^8vBU5P@o;0X(XC0iI5N z0WV^4Tcv&)XuaJS*`N>|yDL$l$)WpCfBiE$aS^@oT4$kO@R`LT!*ej~wzJ(`gWXGh zILj~-^M_e5^T?tkujJvWN@il?k08}_B4m9qNY9C$WPvO2H3ai$517;3_vJ1`8FKzS zqr+5EL@?HF4-$PsTqURj(q@5Ny%2_7o4&Oqu8vD7wK+QEoJDsT-HLU%R`TC8z*pFi(rM@8yk9(ACqcrm+qFpLSCMUz@3e)aTNCV_}U%psIPoe-&CPtsa zwH-K2eZvlL!PzRI0j=FPivHqI1|F7mXW2&*;ggOBL6l)Nf}X) zUTUCVEnT!7s%b7Aq;m|CdBHnheVb9)J>+)x!`k8kL>>mCKwLY=A@ehPQShE>^X=9W z$00J@qrD|My5iewk(w2XtBr$WJoOBWzY4N69LsjA@(5Ca)lgVQ15 z&jvUp?j5^}vO?t}f5fej_K*c+V{dyKqxA){3Pj3vcuL+&Iolo`5-FEW_T|HGK87dq z02SLuzBIv^yYU0{F~=U(AmaK`A7(Z)G7n$4mIOviNKfLQ5ZXH< z_E%DLL--42n`H4+u;yIPkP+|cl0&Y3j9vV6dc990YvfTqm_R@27-=Be_?!ktNnV>4(I=QA89QdYaL>vd;fFP zEguodg37--U!*39u2k=P?f6O|1J)r zV5A~~%%emDqa5h?R2c{)iCi=(mZB3xWO1lPj!jpzxD>GK=}s!4u^SG?18-9hC=XF9dCn=%THL&$!=c z!}ttepTsb?qYJ!8hn(3rrJd_@Go(}4Z}wQ^R(qrI)$BR{#{M>Pz$zdG`vj5NLmlZj zei|ELLnC`RsGA%VWd)gO*cdpw{lB%NEHC$g(}SLpi0j%~1?BUYzBV{j!CQhTf!Gpf zoBKsXiT7DSpuEewFi7nrMZ|`Jidq@eL4^~aYyBomUCkTDr^P28Yf zj5VyX{;Mc*J+l-_)rGM!gkP5BDb&J9!dbR*wfsbKk;=P3eg;GvWr={Y!D(_zgaP#!=H zy@KfT%7t)U&rq;>j7~Jv!!DC^FA`~5E+}lwqH%2+;ULg9{fH?XRzVM1MZiwt(L1a} zh)hQYXpS|o*Mf5$RAdD_W&A4Mr31%jk~+|FDRi^m2u}g;U-ott7+e@sXHa5~%|39E ziJ0)fGjJYwZZ3-PLqIvOMb=&CF=alS|LlO50Gf!oQgc`9jUz&Yo7C=K2(0;Xqe4{#kD<<$M*s_{U^##4N6KG*!X z&a7Q5%^*nV^mWmB<V*6qWvDfw++U%d4JD2 zdW4?=uhIx8>6t@Gm(Ba5Y!g%|a0R;OrNU4CEe(ABioG2`)*6uK$bWLUkTZ-cI=~ue z?b6x2LVGIL9U4QKdpp+_%CwdyZ=LHI3UnyxYj&XO6LSw6Om~(lHnmiI!rs- zU)`yw%BiGD32-iiicDQmLTUOuqJ;hZa5C7l1FC6+sbdo_Rsl(gYsZ4~9)cR2zDwjn z_&deE8W}|+!mE%JW_Ot8LQNo-PM`DB%~jj?-Nre2qfG8Ys9QpBil3QVS1J4a!rk%! zBu}dwBBz4Ol}S74Y{ikhdSiT+d+XFYN7lx!dgunpVF^oYSp&~Ri%`f4s0uHK7XSc2 z07*naRJ&M9qfO6|&Wid&{dDO%p)1sd>M9?YUm<6l9l~>?VUa?v$_scNoD&VDn%{`h z`$Qc1n{&xIQ}4BLrd$Y}84a18QJpQ(-l0oz)GupcS+M(71)WfyeZA$~ zc3qUm<+Gud2qthcxuzXqZE}?%T8~vM?AtzMYaOQ!9A(pZrdnKQ&%z0E>Fd}4_C{x{ zMfOtON(W zyXLy26}fIZYu3v!v^3}dDk$!srHa0vK}85Z53N9`0NK9({Jq|ko8@ctuzZb5Uzo=~ zetr4=n1fMSMnmfvYI%*Z`hfTAiF%MOPMTL91gel=kx1$@RTu1@eUQR6ghD&6gQEl0@8x1$^CH* zW7Me7MWaf78QTy)zjf~@G+-*5+vsc!&^ueglK0^EDlfMqtpVU_b_R=0UHA-%bMBR9 z1=YjH;|c1OD*SZ}4bF=yP6L$S`k5lCQ7nu#%mR(8H0`OKgRmo?p@aSmDI74Zk>29uU#GN& z@>A*RNq6xSu5aI4@KexsE{T)}|Z%>X6lyB@BuAY9U$6wPc2K*C=c`2kZlT8TE{> z<2@xjMLVZKals*Or!N8oQ%GfJ7yIlP_sFxm*EL~#J|xSUXgJKBvSdK-AT}sjC*8R< zF1j-5xv9i6%ZD=F*%VibwQN;Pa1Zp@*D=$8xvp|=Y_63vvS5GDArePp&pFYd_uR$u zUxXOxjz$Ct=3Ejjve%NgOnv5v9OVt!5mUCe_gVoV(iM^PY{1Y&j<`vjNA!V)L5GH(YE(eW1l^u3D#5xF{TyR zmon86A^`265$bUB*z!g!b* z>1-OE2yP>miK?eWHFUOYW$bJdGE3y`kPZHeXPjp(gLs-&R-WYd)OemYhpr(fb~ugh zkZZ&yd#?>0I_|?WqS`ByZYjfYO5q?G9LeZ6P(}3P;4Md`XVn#29(X>klNDV$yq+KV z5w5Qen(C#AQ*Z)@s+|giLHIwVylc&x=!|n-MH{sj&df-oKP6zQ*Dc+(f=U?{$xL%j zbsGFqexjq-`i^TUYX+XA=#e9hw?touRcXf}DY47K#eez5d!piM{TxN>@A;!qh~5}lEh`10!s7;^Q0wGKBHW9&Z-a!GaxgE70gLQM zJzs=d<6psO*jrvzV>$sbKu|Dvel`NB(T*#?OR5~|CgqJ1Y7`JRf?ePb_sjhyI0TXV zQ03>`KS+60@J&fjz8*s$^kt2zf*kLKjWKtmGBaN&^Hq=1Ipaw@THDk*kj60FPF@Xi zkj^Ymb8i|Yt1L7yHV_dKvR^k_%;(_kq3jh9?wE~7U|AcXAtO;eeb-QBt(UH0sPP#J zj_V?nR8L_Xa14xg&G%_gE}7D%BK37mKHD1j1f;KQR7N;!FwWT?p2s}_p>E9^;NCzTQV1HcAZrTw3uupjMvu9iAj;I}@u#Wt!k%!smXbhuUa+PbH2dY( zfVO2vC(!b;iXES-w{Kr^6^HqFg)hphYs2kew>g@uJ?~2sZ7Tr^eM?^1I1Z$HUu92J z%9cQhCYXP7PDB9*FFK#>a~+0fZRJa`uF8D$`H!T)2(biVm)KbL#) zb?g+M!xI{1@H&wJWu=aR*PvHub|r$u2BBnB)*2HbZ`3FkGf(Z`T!!DVF0PgP%lDoR zk%KCR=aP-ji5Ph%cu^9WPE(PhBc%c~O6uq*B4l!0g6?y|wGqnZ{yRt`8C8{mr|mnD zDjx391KSsCwCL%iA z-n-lc4YX*d5U(T7^9;LbdXBkgapn6GN4Uz_Pw@Kav~k}lf&tr+ zM@Bf?=^0ZWDx!oAkw8$5_2*?*u!)sr$V3Zi~=ke0ek zovfbVq~K_}qugH>gTcP)M2M`Kj)+Fa{3vT;n`1r|_#1=enri`)WLSx&yg2To8)bQ_zxN)aUS$n^t?!NGXB!`&8Y&8r4Py+ zA1*wc1*TRRlu#5J7Ngl3?}_L`{5;;vgEGi^!jF@{Mhe|ta9!8Sjj`#CUUZFT zR}A6|Ym|JM_2SOsL6BVMfFPTe$RQB*aBWSY_*n|0l^TxNT^8_4h6rEl> z2hO~(irTfdJuaU@RL7xVFAxi^&03;d6{HmTTr4CG6Z_8fWc4@Ms+e-&x>>H_IyvU` z0%aLMh zQ#wW#CXg9Y9u1AS5vqGl*p)#6<{|i<(`jy;veOD=SO+3GQB+c%E}dt=eXWs(i0MDh znJUoda}VOjA|FEM%2GLrD@#8Gt3V{EMODZ;tJWokx|SMLHj@2A-ke3um#HQlqdW$~=)dk6Wx147q%rPQ z8#&kLI4h^TO{1*S;yNpvqIISUbrh0ZkJvKaSC$B`iD#js;Q7%R7L`(`@$ft&AEgf9 z+2W8O*1)^+oRx@C0Y12%`HsW*xmTEsIV zbNpS=5nvs%qF%_2PNe$1fPQoyi~CTdrvqYJXi+Gn*mabGbq;r=x=!o@Zd@hcu!U^a;|!dfy*t;f|Y&Z%-M@Lxc{x@HtH((UFC;R z>HWH5+^CNrH+bjx{S4G=Zg zK&VwtLPVeVY+vIV5|Xs!jCD?8ApC^}L{V|CBq>IZ+0SGjl?NBp>qG^H0x`d*Y{Y#; zTWCDFXmpCa*Q7r~wnT(9{w)ulJx9?g$G+T%KjwZ>Fs{1Ml{rSwxQ>I*7C)GER>69Y z9`a~J_+D>cIpgImG|MO9vqep8=p{i*C8e=6+KG+8R6xM-aYhHud3*-;0;!Il7o!uL zvncmIga7di?yGArBHpeQA3#oh_LpU30ps3z_&618~0_g2He+X7Z! zM6O8+1A5N1wfIb^vJ<;#!YrS-I!zEj*;SG*m*X^U=^;gcTadv?^O+mSmU3##XLUzG zVwh*peM0f7yyAW#Q$-p-Wm7ilasPOBj%I7X6HW>8eux1PRqUpjmCt45Znwye-ht>u zozZyd9P+5?u9$n~b39ujEHQP&>pidDkX(_7XmW3nlf!0uAFhRtWozH5(I>bNW_Asg zlP~pvFK}IS&Xfn&(RK45?!WK%GvbHwbHA6X;b-cYc$WN~XHi{hJ-PfK^_ss^@9sc0 z?x!Z*4u%e;@thbDNA3m+MOpL0b=D?2>Ix*cAo)#w9nT6*l+R_9sZ%O?;#r8f{&*kA z00v7Z+*IfpBu3LU>O2ivTrckQ%bd4*TXaf;td5Fn$Lr0ZtD}97`EzAY$JX~d_)GSG zlzHS`Bqz_a>U!^r{xsd{Oavou_rQF+sHCZ8<=v`;n36T{ z;C_8x?XY%98`R1D*;&&2vCLJJ$kzB>R2prrGYu9LfTgEZy1EOw<-07;;rk_`yMKN~ zCmF|2{U9GfUW1Lp{Bpn5jXHnwrA!aF4+W4f@7pyoaL|ZbYU1i^J^y! z(Ea1*4;1Y_+e&Tg_~db#<&H%ZjOXIVM>w|v# zRDK^72?|=Tkaxrz)u1ahzAPFIKFq&094cGoO@-OgoperPn58%X#<7U1=0u?@!;G{|3tPW0`#TO#cRmC z)XR^;--=8$HnAKEfo(Y$tOZiyJ^NmlUN2oT2)oDA6bbjQ zP)4K9=S62mj})QTP|AvLeIf8D7mX{XH-2tpU-K*~Y&~?nJvZ3=oQGAVV+5lms? z3^`cd&F?Uhe0GFG$-(ON$0!f9L4zYw~-+KK#9^jS3ZDnFKy zXK`;a0DLdJ8_$i`WUZr|u|Fybqk@R4aIM&S90$NgIw_(qqbyS*Iv_@>8UjCCh&$5_ zqNH(gpHS2uR2>XqZLgmtM_q+HTRNc>jwV!mGNpw1Fm|OcPEG6Vq-3{)Yq2g)V)R61 zya(hVLcba`uB(An);dw1PXEkOs;k4A!0EFZB1WxubsBy26ZSTbYbTV{OlsRQKzJ{}^h^f5Y%czWh`#Z^Au3wUX zDH>mXs~qbzs>_r?dk5&G@R)o)=bF!r)8~-QsDJpZ=mun! z<&Ql-BA4!G=)?%GM>#-7l`GG@@Uw^~PY`9@eToiHbmlaWqN?Qnx%bw1dS9k1seMqH z_!?6dqK%#-^Z<>`(r2b)590Z7?F>jfH=ZM(%XRYHI;m6##-I7jPSPu|G!9==c71*8 z`C8}$!hmCkzVr(Gp4*M*De4=3#$`BH|36=U_H;>><>z@{%n=z8Sy@$GJplqigG_AD zbRjbt&2*tV(oDM2zpX35NC*aT00_3w&7P|(D>LRv@AKQoBNM!kN1X2*ci(&MHLtY? z-yS|O(TLcSrmyH7zn-|FLn6=!XR*V_6LD;b?iy8+FnC{v=km2Jd08hbz=q+^ko?W2 z_`dGz>Udwy-~LV8PPeF0&ZcmcmlqsK+s7(3+7FMI;Wd9sbY7M3tC3@ri>`oYx8d%7B|`lSe)p3ThUQhM( z{!h@(EC??HrpCm5QOB9LniY(Y3F8)|)=^OA`|%_>(ypa2_E4ZnQT zmK}YL0471XeHhA7n8O#e82y05M|16+ zJNzY7aJ0kW55Zswx=X5}-~6FH4?bB*>`}B^PuM~#Kb5^6x1mfQO9li^d_k+>eOdjh z9?h|e{TU_cp6y#h0Fr%?OGX`@+T}bPa5@|67-qCK`~(ymRlF$cG|$cP4X5zdGjwk2 zW=}FO{8tS}aZa*Oj>Y`mo;=A3k-?XSBMqy=$$S}?f;SctQb060W>gtOHKK?6;gsDu zc+xSv5O6mX9_~+a($}&2trUjq^RjoXoW*qX`N&{&1Y)|Ko(i~vbxrm=9qioV&LsoY z=X6F>PH90P*z37)H1*8QsS83wE4sD!v{4g|%@Z5DygpqC&Tfva{r4av$Lxw8{b+|WZkC&7r0W)&wPsrGuAU0JYi_#H3e_HZ$z z%US7(OeedG0TSIk@18u+f39ZV>A>R>4=>9y+GO~U1C<1M0hQkGyB145`Oq-D)sL0q z;FYygt6)ZnK zlpOF8*=n{ydCqpSwkdwununZY*F8Z}wmTV4rA-XJi^S3Tilku+U3wh9#wD&t91m9-(Vw>N&FR19DFYw zgO}t(&@!KYMi(RkXbgHg_P zAj8WegaTPCNlqt-&rc^CGSt4I_A|0`f;b#KN^8TNEzXlfM2G2L3$m}|WurgIfv$^l zXw*~pT4;$;zqk*`_Fpn%sriFQ_x0CO!sXhJJ|NiNz%O^r^k*vzHK_h zlNv^d`3<^k;iu6ibfdA0{)97ybC%qf2+)LyCy)unP@o>s$#@KhaRL!bXc=p&lkyne zQ~uTisX>8}a_MP`3@76@WWClWI0z6RrNulM7R8oKSkz!h%?ff!ihyEIXL~9eK2}~3 zmid?#u-S|HA1l|*8Ko?I`*>qQILPfh?&TGZxUhNJf?Iwgz8@!Ru?qp7BqxU!enhvR z66iVGgt@f>wdJ2hFczBN8wMN7sYpCH0nj4Jy-^YFId<+@S;1vWm*S0E6GV679jChy z7;p$MT0Na{dK-qkGkVSge>;5Zm0JD#W%JG9nt$TlhBFn>Z1~3Q_?vWc-sZeHFLJS# z$~6g`Qr$kun)hrtvpZuV>8ZoBGM>(n~skpL*6a zR(e=aMI#Z9?ue#OspmeXX!Q2b!|^ycPrYq(o`*;Bj+{b)V)J$d(9cGmatzurawLJP zW4v=ol>oS&adfi>dK{P2+vE{0k{C%vZ0HE@etX>1NP&6}tx9i-;#2d`@HV6zkTWGQ zCtRWto_2N%S~?e>nm06(Vi6Jd*4eNR!4r6j!~kL#V^`_eG#cX1>>vPq=r@sYhmRjTvIs{KX> zp7%1ZPru0_w>taxy(Q5|-RIvYm)d=L|JOYS-M$wk5}am4g-F1_&5#}i(>j<(EpkKe z+mbDh&qc&^ULwVg_UKphF&4^skHWh)4-+80V9MOJ4u+TEc&`M)$ubix`6$WR{BnM- z1&$JDi;3?Efa!ri#0EHjb}E5j5qX@+bZbnKjl@YpY(!&$JsM+e{HX1G9G`$L^7VRg z$A+)dJH0)-oEjmypT8wfPo1c5G-_+JvOSL{+c*Y$=o8;W?&q4}_m^!aYz;xf%X*jL zOfK+ec9#1sdp|kjyuEvWk%;uX*Vrwm&B+t>Wy=3;Rj)M7ei$k}lH`n>7>8y3!s;}cB z=2%cDwph2Jr_I;uKz^?5+x9@YCs;>|HlH>1AlPs5ZvNqQJn3?(*&YSq_HCQGz3&MO zdo`Hug?rDZY;Bgsj=%o(AGX53_szs#y1>TK#lJ8G+fuuhC3Y@p&35BWf?cxoDt*}c zmiS_%)#zFid(k51o{piXJ*<_8EnClKM30}`8jc`8N?!a1oLdx=-Y0Vb!m$j2h%*Ek zhk}g4ftWMr6~&O`-4^+7Os&ka$3St>l$!EUg8dE-;Sf~3D$7Z5Y5bm(Oo0UwiWiVE z)^OB=hYjULqM&8Y-y=e%3l?xnOrUU*l$ewPd%yjdE5jq?jRfSFD`>7{3%EkY(AB{) zBw1YtTywSkl9gGpS)!3rXv@8oi7s&Ay&h}dddwG}I1-PT81CM}yo6%kZyB-xB(pQr zY`<)oC2N&LqZ_}E11bRFxhAX6AS4xfSmx^BMrq-?VA{O}*YJd^U}M4Hhn$<95WZS$ zXbA9LPQYH<=Ka4ZKtJoHBZjEHYbQpogJD|;^sc7`ynlkSnX8i&;=g3$Mb6t0t>NI$ zJtIyBEF{Gb4oGrBc?CgFIK0a1dMCuo*X{XVqJ#H_9VHzya=L(6^KE#m2aFGfTl*1Q z&R(xvxtwS;!Qa72CEfAXW-**hHRB6?F3AhtR@ruSa*SsS9Pv=%M(+g_PC=bb7le>! z@FfN2JJCTLA9~V(;iC~O@>(*$xsioPIk6RLa&8{q@)%bp)b)50&ZQ@fp!~3F5~ho{ zba=g!Vb9sN5mVdd+L9YD$?#>)C6jH4mL4R(dcxLfuqPv5>xHC`dbwnRhiE(rUwU4d z4?R;2Z#>k)aL?mzoTPT(^ttICJ&1?(cm#H^er&5%qZuz-2xWM1@(CBcEj>H9TdZef z;}^eb7(clPWL}m1eH;1E&*v>n-0**+7Pcn-?w7xAnDcCMWevu9LPet`&B>8|^gkN) zmKvgthwNgVhv?M9_C~}7ndJGnrytn&`$pXM=x+W%nHQe5jtuXYFua<2OegpjdW~Q7 zz#>XAhdX{qqAWfG1OEJkJsWfw1l-5jqM+K#Yp2goODgz`D`|&|sU44yHS{`N-s0S7 zbKo(!Iu3eyrUT}a(t#g->~Xtv!WPex7_0OJF}-6wz>UI$v%Nk%ddi0gh}Ig}z-v$R%#Vex=_<#g7NHsqVNj=cT@0w**ZC#z zlrp*uFS`Z0AaJTayAF50mOn9^E-T+gJ=McIF@zsZeG8VYi>VBs#4gz49v=;;T{!W^ z`mC32A02bHcFKD}yflvO(G@<%XtQL`6o9o4{Ns;JNg3rbrRVu!Nx?7L!0X%g1TZQf z8KP%=_C^H4PXfyC!;>v+&zh#}?2BSY(!^PtVqmska?CdDNO;y}wQeAsB{r!{a;oj_ zi$^+FZ+>hi*Y-HTH;-_BGR=9jskzMfy?qA4qXteun(|jjub4pe&M?%Y5cX`|>eDh= zi*g7MF_2WxP)kLpR5DBk9Dfr)2qk=WG2w$6QcD)9>u~)X$0?W}HmvJWL7AY1ewwKf1oyRflC-qJUl=A)&y>Ku@#7S`9j^R!K zF<)C0bB@#f+Eth08RjXu>d>~K{*))B*&@Dp($#1&x8Cr6$$-al&Ylczp4QZ3P!bEn zWfaDaet09088tYI5AjOiJjs9n!U=2R#(;YQ)L>rpm)@t@FGdm~6CIPfkWeX2*oF|b`b$_d8mliW2zG^a7g zbCLp2bS#mI=X%+CdY)8R;L70WsgJs;D-ag@MKelq!;uh(B0F{=bRSjHAk;ZfrOs3 z?*;$lU{3vgyevE)-A=y*#5q+XVd28&AGCp#0Ca|S>wP@U8Lu5XGUf+NUp3VGscAHu z{&)=5TAI5jukQZk|NRf|e)Fd#BRQjYZAJdHp0y`)JR|%ADj>l7zfZv>oay z4^RGT(=zc|Tc!p10*Ssr7SWsD;_&J3Ml;w<`iqC-Blnat^H;M6fs~Ek?0&w6U&}5e zLK1n&#OL1pNhjz1`U6*cAn0uyU47)8Aoy30ls_d8daq5v%&5+@^jWe>AJNDjwjQMG zPfDa-H&V1UEAdTR7X9^u0G62YAAI1}A>m;*gBI}xKLVW0OPcdrR{GaNojpm=C?Y?E zK7kWn<9)hIe)c5r?izNUYDagQt^KYo-`jKIdHV!Nq<+)JRi;7zq1|DB==#fEU}opS zw~cnt5o-qcT8|mR(V>l#khUHy+#Y+uQZHv(hqq+U2I0uSqF8yKivYY|M-f&wBISgr0 zS!HT|PFXKqZ;w&H+rI7&L2>&+*QVg$*yC84^Kpna<2dtiUSY{upZTNQL2YUPJPr=7 zdiqe_Fl;a}gP$W0wpZ5v^`HNTgFsXmt~Lb! zi(Z_Qx8Byd+p8f0!F-dlH(nvR-78ZCX;U{AzWv2t{zZ=|Hvg5pY$uB;oUO%+8^YCd zXgKUa%51*_3695wddqx9Kt?%?bnEYWmxDLK{b4WHp*Qc#gr7W?kXdx|kK@^w0tUCq zvC$K}PpQ_Pa}J$V&;^K4bh02{{N&Wg%=!knS!Cx5-f}dUYDdR+?GWklA^h4D!eF7x z6v_!khC`3tcsx~)T5rfSQT$BLANOnRE2*rv zi5G0f2!kzjZ4hJ^KKfuv=scUAT%+;$r<_-OqCxLlIA*w&%uhmSs?iQ|_wK$+Px&PN zLr^mG%Lnm2dYYTljWcg+BLMyC$WD~)PjX`)twCsn1fSUN>)zM$q&+Jnul8NgGowG- zeK32HG|z9uv(zRSB~J18B<%5%pUM`zvRW`T3Kvz=sk~jd9$t7fP$x|9-aogarqwl8`y8R>2W3+0Q*p0Zxe26w3F%k)*b!r|Jr*W;_-vx%%A?rpN{tb@E`v?`_HeXFZ6=V!Zr5a z{5(6fptg7uzm1$}M`x)%Ny$XEL7%M)`;?xw=Y=U2dxr?}WGKN)ZKv~*y=!>qi7p*8 zx<8Gq@Q2puNE)8y7wA1i=0DSwZ}Q(BkKQz9zBlQ`6R#6^efMK)y#C$)@Za~on!mjJ zFaPYnSaMGuHgw{9eY_XK2*;i#pfn80Kl2Y9@8$~ytB|yRy^kHP82>j7zs-PCdix?% z9EMWdI}WbRUJPwurbFO2KLBSyn7_*iet7k<03)ergAyyt6Ex%DY&mjSDh?Qa%%XyS zVAu#`n>55k4$Urv+et8n>U3;J!hYLb>TMtUG7}WWJ!)QDf?$r*d*;_rZE06y>%B$8 z<1*6pe8c3Q)-!}#LKA?hyPkM;JfkhkW~{{ZrA00G_xl*kRvb6f{jf~fqharQCj4#h zBrrEaVLX;H=UbMHZoz!Y9Bt;Uz-5qvDkb!ojSWB~8G2fCE}_ohcy50$If>VT_mg^ymNc|9tn`zdgfGbO^&3jh>GctdcLu)7uPzB3qyFWB7dE9{ce0 zthFhqSN~X$?%aO;k1_;KkbG=AZBrBhZ$pWZM&Dvact$^3>1`kFND__se7-Nh#II0# z6Yrn=qIa)H2ZJ1r!7zLeWk%`sqyqX69)Y9B>Ae?ya7LOi?P4TBGU9^djc!%FIYhgP z*|o99GB>oFqs`df^hCw$Hae-RU)yH{>2ZKRHnR3MW9391wY@gOq!ZSD-0$PjBg5$C zaqINVu}c~_!1G+SH3{`ZT7U3;>oz#i`pbGSdam7UWF{MU)^w0(@%v|*h+X4P z-f8;?)X*FZXDo@hm)*Yn_BZ*0bT?Yfg&WP-O7ryOUaPl%{hz(Q`xpPW=XZbg@BY5- zNW9CoybHlo4-cPzx%;#K)3?2BsdrEO@o#$36FeXEYU>Yo|K!j9=c8pb zV2u#vF+UfSxURaJqlaA2u5)bLv_zvOZJhJEgp=d*N^GMfwnl%NA2O^>mxU$)o36d- z)yRMI_y6C!fB$d)`(BRI+W{Mq`SzEsiHQ&Q;=Kf%wrmYaa*>YxqW3pE$?rMXqa@*e zyx7X{$`FL1Vtcq-kmAD^>jnP&; zLG(uZN#wIPL&0#8c$J7T;b&g)U3*#Nt=+R}&3C{2)uswktGjQ%F`{T;o1SZREHJCG zz-Zy6k0)~UDB0Af%5LPLU=xuyKa-Bc4I>j0rMyf!tcRT*6>J%9(f|1W`FG*>bcw92|QWj2DlkGiWglVKj{|e8LyEUO-^C#d>SR zXP?$QY$_yNy$8g|U&7epP1B7YZPm%5)Ao>H=im1-v$wrl!P<>~{N3N({g?mp&*IG= z7E5%ji-$JSiuaOdc0@1l{lEU(e`Q*FN~9+O;VqttdESBjeQ%7jK#bAZSAX+zA#b1Q zd$MNpmkDamSr-7!wLNJ!DZP1ny`P~Fng%CUI4@t|kiA(^b|}-8G#Iir?D}nQEi~QG_*P|~tq1nH z`KZk`*Oq`MSQvVJ*-K0eU0L8qRo*p3t+&Q#^&~}z6S$2w7@-ib^d3)u_b8a>SoOvX zyLzlFt4j%fTk!ksg!rhr5;$Ob_|^b?`~26z`h54>@Bc1ZTK!&-F{DJH{`znJDy6DN@lu(pMHAZK z{9SWd-!|<056$zw>dk>N@qZ-yjMs~t{^*bXXv$`T3ugC=%D%`5DChtBSO2lMQTB47 z_@$RjxeQ;EC%g>%$>#r{w>?_rYB=rh{{ep9FxYEb3yPZ>SyEK*Q{q;;9EF~lto1wF z;Fi5h5+#?MzlC~ufKH19?>7yAFv$S9cs`h87eu$HF*x2jCYe+JQNjE3=L{iwWch~T z>oAM|D`Y!#jt+W-_-`o4W zjFm1maqw~7r&l8OAM!5 z5-0i?nno$7hcWeCJL0Vakk4X2bQfG3seLJUDknKVJ59#tba_3wY~w>8$6_-8)_I(`;B8oiMahEnv2H$L#C_v~#+QuluBgD%Xh!{b)7vUmFHas7FT;RhA(Dg zvsddZ!cppJw8NrdI)pazzaL)(clxxaX5zj0YFZKiBdXRci9hrl9@YkI1SY?Sjz>*T zibtdiv14FO^d z1LSB0LrP*VZA04H7d$LZl&wEYxeU9{5M#i@dQh8cD6rSW0)oKGYP{i(BSny2Oj?(t z=xv0JV3-riU5s&Wb6f(D#9OctsEk%TDXDl?cKW{L=XJuQ@b4?+^}}bQhm!BBb>ajx=casu?(2p&&nN){ zYHl)xoLoxAIDWztl*r+m&Ntkc(kR1INW^~e;tvx~+spL`1< zhAtWY=KoVL?JprBhdvw+=eTK)>RP?Z(HP2oos;LN%v~)3E1;19g*5j(2NI7ZJUury zqh;9RS?>~E;uP%++rpjKUIU!-viEizjgE%yiq3lxP;dnbyq0hnVeuXZys$aQ7P1-D zO7`@NvFR-vxguvy?tNLi73#`zAdjPOI-E17*G6MJ+Sku`Wd1OCjppo0n%e9_buH{` zjYdIe!-6Hlc9k<%ECSmP{bK=-8l0r2;9i^XHg^vOU9niw#l5yP9t32L`i11EZA0%T zqo)Pp$9wNV@PauGH5Q79vb{^XqO z&$^RzQi2eT^uRFf_*>VX-1QT;<*$|By_l*E&C>5i(K59LZ}Z&su5##h>HFM#>iAps zfCqXhaXy@LYVV@wVZHqJ`~N6tJ<{Lh#FJI_ZtGhdn@EF_UZ5H!6nSawxJ%RQwJ)z;fguv>>qmZ0ek@l zP8{{dPSb}i4lVH8>X|H=9~|}0>7$-LJ#R64c%p{Q#|&FI$CR!Asod68b)ODwGp=;P zdKP|Bk57kyo#}NNj-Q>RUt~;=AD5&)3O}$-)mSJOhcIT8@U^26{^Z|>EqM8yq>pbz z@A1ZD+}ZS`fY)!llBnRZz*Zct4*z^cWsL$zm`pd}mk~Zb$pT=T9Kj!N`6qIdK+_Fy zGm7B|F59G!*W;91a2wm~J7ZlDT=2Du)j=B`l0(X-u-!7iYrsU;n@V4Q=hn zvBdDr&6KGN76c6ui!L~z73};~SQo+L1a|2!7vX^ zf_gG#s0!4Sdp`x^GdXqh$v>Lmqo zZBiz~Vgdxx_5O!RZRyD~1uxvt8=v#8ImZ{-Sq`5Qol>M|0?T@h)!AHGyx^elXzgaS zQ{2w27qH+*0MFAduxIr%3Xeq^cGnyB3@{_*7%m<$`meREipm!c_m z+70gbM~VUw0oSFes`6+$kf{K-#ZbK|6X_& zQzavYCRR6?-nYVQPG6(U+7dhhUy|XieY{-Mce795n|7$K?XqKTaxWkoC5jGu6*4KL zk>3+k;a0KHy-r(9WsiKcDFk~!Y#KB?=mdK+qU7jqdfi%k zA#h40ypw@1q!&hHmn2kP=R^Xr>44r|s1<%5CyiL2fU9Gz9rx0wn+)N?F3_nRvez5u zGXy{Z-E`*GyhO9|=gBPrGk#SO?*}hl(mA$^vwR94WU2?NkAD=v&s30h;T_`RJ)e`= z%x}hpe$<{eYh$(%Ts{5SMY1u9aym}IM;E!w=V(2cm67B~z(#lF*I^GQHcxjU>b)6H zTNL`ofAYtT+Wk@Mz}aO{BGn=)nTS!wv+z}h6`*iV`Cu5qFBV<1Q~V>aLdP641=8CXAY7=?osWq*z6{XtnN3Or6oFF@)4~r^3RAoc zkYhcfC;lsl>CqpdV^Goxv1m+ygvfv?4}p#887@W>+Q|YFG^hm8zdcTp60KJshq}Cb z;BVXT7^%f6eOLjc|Mp-H19MH-HZ{;)MX!6mgU&bO78;P z`oSPLO8942Q&jCa^w2-$=pVHR(7(r(dHLncvoTh1-sfC7m&q$)?&qAwhv;EA6q{3! zbOK9%%<&stl1y^&=o0W4C0ZWWg@i9>1o!E7I>?c1MCfp8e1#u_ z-2MXL$Qj|SYf-#1{Tw@7pFBEu|IkM|-RDd&Hp6u&3uoKu;@gXd-%c;CbsuPeH+X0k zKqUf82qXsC2OiByrF*=|5{VQUPpo7{AE)uY(Geqg&TM`I3zRILCbONv0 z7mM0(D5oJ2YIjuaK6)nq$?pV3y0g*GWa&OIqd^UP z4v&Mo1Vlo_(!wDfA3vvyN9Oe2{ZtqU^QGfj3Dt1f^{#aD_zoR0JOY!Pl5ciumHfjm zrw7{Qkv^WQ>Ou#tIl9fyRXaTOYzfjoI6i6$N=FZWzIpN8%DWB*-L$3okymQAx)RsZ z2AN3i==0$@eGV>L2*U373*HwV{p>irU~}~F>PVpZ=#VuUCEVm0B6vHVb_%r1kCPky zQKs9OfTWUKZ!x4;0oI<>2#5r2Q!CZ+i2Ak|j|X%KeoNSbvB+Ne?V~WGh;urz8cks>6Ok$caML9r#8s6#Lq5*c{@~Z!&C1I(XZnRO*vUyo@$K_orTZ6+-1#4 zjK@pmnVN{!qP-b(vLjb{;SZ~U4%(QX~gyGM?`gnQH{-rcBWAj_< zO;VcbUD?=Ch;gU9!JX*epJ0ZM->x1-V-`D0G$&|Ne%x1%QvWB%z(z~g-JzK9GPi7w zMo;=#i4RAvE#Fi8g!GjT0;?W8!2xLJ_{+$69|?W%!lW3kB%lIwY2`Y}9OgJ@{y6N4&y=O|PWqdvc(tr@k@_Z|~A5 z(C@e4F}r98ebX@#HMVec987$Jn4}gzvP>REyt+3!szXQMi)g-9;1K<5zNF%eq)i_yD`|8XDP2!GzRzxI zj~?m#NM@{;xuF>DI&8-tB$9lAo8)lmCtR)#+T4pX-4nPDo;qt*yFck;ic#`T?)u(eI%9k;K{uH(oV&rWh)yWu?9Bo+Kp<^=SEyL&zW z9o?xdViS}QLGCee>u=Kit84`d@I})Ox`7V67V;7Jfye7a!m0b(#zRSn-$v1uv%bJV z_Gs}6WcForXjA0jA%^i?d?tpgcgmNPvc<)KLmz&Vi9c)rzmz@Gge9m&W;Bg&mGjiW z7o#V51BH08c+~HWsFjpli3wer58wyJGq}W)z&#{1Y$U|7Gb9}v-@kEHmPzSSloZXd zF_BRO+0uDM=b3*tOlkp{Vc>fi`n{I=Q)EekUfdZ9Jpph^>`@wR+}bqnuDAQJ`C-}T zHc<#uM$Aw!$6V;wg*O2--0Kv)3bu2F9&*fnoy31k8!v zpC2`ihy9@x2`dMB1zk$Mo(n*~d=@paq8CQssA;(^yH_{3+t--t;CyxN!yz;OLi%ro*K5jcEYvXU{td3?sBbZ!Zq zVKTDnrbO~=C}I>rK=!GfKHIqted~>+>vQmU+tf+CTcE_l{u`9N>f!lA`V)**uN`t^ z3-nC=$=bze9Inyi+InZzBbyB;2a7Qq8hu>S!pZ2lt%pNs{YMu<1r;=b2Qqk$i%*kh zmpIy$TN@24=9HWl67Qbh;Gg>ifSl2KBjD2iaPjEvUXYax(E2z>xIlux;XeJ%cGx+Z zt(GUs;lb{zv)AH=A6lL_T{Qi@;Xb`2-^zk#A=j${i1zWq{Zg0Ug%2CQ(djo8=XmKz zKx_8ryymR&1y|T3Sy)?QuL5$-!G<$k(uUrU660IH9q1i@k&)fn&ttv=&x5;>s1@wb zZ8U&0NB^drVASvN0?Z+EllNeO1LvdTDxMJ&NV84%j$hyxug(CTFA?oN`~T8HO0dyF zr%c`P0dNK1Vl~voO)VUnqXGWcW;PW7!r%TiN>>oWAG$c*ucm1t`Z0SHSQ5Yq67jDw z<>&1NXqu5Br^g3aM6?%&R9!_fcMvn1cIwp5+t6Dt|A0w5pk zH<0iY1rTy{S|W84-(&AbKk)D3kBakA$-pR^=@fe-C?hCa7et5Aga68G@%F6^+*&>s z9RJ3T@HlcMJ3bfZVRqU_xwnCKYcMYvSIGYz@IHK@BaxJxt(&3mJ9bTJP^;G;(r==V0}c zJkA7p855uwXP#k0xs|L)LZwV?CecdMB?GdNx`!=XtscZ6d7R9y4B6TV5u*dL$<60P zNFrQ9uwES#aB6-+7W}UyYY9X`9j`gnYTz@zP>3T3*TaAK zG3?VOn&A#G87%A5{pn+<&OOhA zu3|V2rz$d{z=sFD>42y5@#QFB_?TCZ-qZ6@=HNPf{Z_WmWRw#~1v)>DeKM-b$@Kei zLl@fntnt(SB`??Uk-UvWL28*Z%c2vV4?jtSB*A=k|MZUgS`Z>rDo-C=J8VhE+(m7qImbkTWAaGM*y?Sl6?Ij$cmk;uRUpDfi70 z&T*^L;qUY}y4mUQ?CR$nAK0T|%*na5fYcrsg0a!RM_XumOZ?-D1*xaEeRS;MlBqZs zPFmV9qr}SDboTbU`@_3y8`;6~XcVZwxz|QXIZ*TO$H7YsTBPN?>w4r{AA#=JZtCZ~ zA$y&cu6>p7Fo@QhZQ#fFU0ZNIy|&7i2}l^PfB|!y&1DQ{`~jC*OwPNn1m0H2kxVNz z-g3eR2RDKi>>-+>;K!yBs(y6eN_o>fd?fuYm{#tLj%Kfwr<1$4&Psgl{K%G12~dbB z=jQ@sJT=FSR}v+>VmsYF{Op<&I^vkF#CsqjVdXsX_smN5F3tyb53OqK`TYXS+V1`m zx^SP_RNyR_Je?YJsHcsi6F72{!`eRjz>ZJSAlW!0$Lh9j*11BUBCgJ>tNUUB^#86T~aFehQ z>@3CxUeDhGzH+q6WYCqDan6X8%c>A;0}YQqC`RFxHZ(RrJAfwu0}fe82>#EkPOmP9 zjlpzz(+L^J=3|1h;kEEthECu?Hy=ME>3;7zISkXXwj92$pH0ym%0Q^31S3*(eTWqx7 z$0;PJ#j2A@lZ7B&Vl^<;^dEzQa0UO#d`^QSPMcaYpp~yQRNCW3Q&8>K?iQ#O41zK| znBj&D>6|udb4K0$@%u(Y#SWaV^wR)SAb=SI=8xO4$^ze7`tNo)hD_z~F4Z)L~{sikP58n1k zsJ{8d!HB?P)TbxCWTSSfJ!fEHo;KjiDH#Pg+jie%*tp07Od0&_BOK=RC{69011^04 z^(Ri6{Ib^#84@+*4%XNdMB6`JO- zJ^A!G|HF6j7cZJFIXY+6{aIaZXaJ})J-M-;=@wbq5e^)D@x34rI&?vhI`3a`fxW|r zbicR{Jfu!$%zy0JV8`AsyJR*Q@oY6PVai zbF-s#cgJx$`H(ticvS&*U=BLu@@&Z~8GlXsssuj(>FbiOaMtnh)YixehLMx4Q|X$8 z&tD!3Qm4)FrTQNI^c$Vp^;;13o6dyl*H6go{#Uz;uW@SalOdd}azD0<&T#8KmVmNQ;2gP;&9VK-GCG}$S<|KJSxidzhd1559h>^>H`sK^_kNd9 zsEaL<^pEL}@d!-=sG|0MidBn=|N7tjn@l~2 z-`taDnY{$)3||r!7m4ryCs4;SHOxg^2w1hfRp2qrBV|@Hav+z(u|kyL5Aps&N|s{Y zX{#7@{?-Zw!mL&**NeG^%`ke3R$D8Fp#B}F>{2-RAY9pgYXjDd!hs644<&>V?z?~? zhtadoN~rI%v060(A?WB~IQ(6vRxkqkM=4ROXVA^59t@ zy@avfXEf{ZV@;tin3EAc4u|B}x9Ovw>KPF@yc0;_Pj&}JYET<9zFQe>AKkmrr2MY+ zryqxY@aPd8aqZCc_5Lg_Ji3d27mq4>JGve&Ds!{~(lsAFfc=@%h%R+GL{5OtI5@4+ zwc&LGILG2GdEn_aF@8?#O1SC5d5n*9Ize$S;);GWIPeoiTierlP1f$gbMl~L;X0bs z@*hucc!FV6N!#d~?u2PgcW9-1=5&!!V_UVJ4|1HlevR8l{(^P5ek>udl3EgA5C1Zb zwPEPfhyuN_h|ne`cEs!5x39yFod;fOsG4cXoaC=-nBKFlylUu^mO&!%be`??`TakAHmwIheaw zTk&W--Ffu&k3O8^=q6k@wHBR+{w`GJbX2<5sq6HEpXzM<-gH`Lmmks2<;UQ#Mbs;6 zO5HVgAKLi_tP0<@9a;9Pb+8F&7b zrhc26DimYlX%|rw1cdsxz}7u7-gCD7Sk_$yitvGBsW$*I%6au-I2?8LOo9^3A6M-%KIRES@h`1;l2=ZwLITB~)_U2zyln1*WWsOtmwmy*ap}2M5-YxvF{x{F1`T zu4mWxrJM(m!ymuZKgQr&o5La;HGB}euAfYrk}Gpleyiti^e(%ON(9d*2Ag&lMwx)^a2n613MIN1UQZFWKk2RO%*$C zUpG>ZE~0&l9w+uwhk+iLY8|+O#_74iH#!COWHo-R@F|A}XrHr4hTdI&VW#YO)dkl& zyY+GpFD8#$eJwMB-1Trd31mT*9nW^pFt0rv5T@=m$`OL2^}vfyiiFFJA^(ZIE_t(Y zhjX|i>GC~?&d`}I9Qu@9P(w?f%f{591J*ixZrbvcYg!ZDUAKne>5~FucpK3TyJU6n zHB3GJ2;u?7IdZ%fFP;giXbtG-g=_vvg0c~-66(F{!+oXte?6+ZliT(21!6lOark$1 zw~OQD@lk%`-Sp|k7qp^z$zM1!pUYkkUdM)47pw|jyoASv`)s89yB3UbW8ciII=3FX z>&n<4!Z-Qg1(j8ujUJkCGg-`bTvOitL0%cV1oG|53x+=rn93>q)%KRG!TkhPbtDWG zs2HHf20pXhR3LD(wZUv}N^RDZ2{&QFn<~)$Bf~6N=`+>ArI|y7S7~ zni*>@9-rneo*Y>%=@|~;A$hEh@@dGLJ?P$O?ed`|{BE{vI&IfF_bo{|?R6dm^h;_@ zt!>|%l%gi;MB5;(Jzz?fOpl7E)?thf!Ex@O3;2BEF55aIEDtF{>USz;q%vuY*C3=% z#p8%nGL(B1u0$XP580S!*ym&Q?`0&{&@=-U^evj(lLHM)ZVz?OItKeN84T^81%_9< zgm=M40H(voF#+xbE(u_INFb-c7^lZk*$I}tB#b%E8zANni3^swH}q*&@8F`nmM4s_ z4z6kpw5yu~2LqlfCoud>k%E#^u0;18xAy${O3ZEqL$cua!Rt7@+6b2&k#^cSr=1Ls zK>EM>K(1$V(ddEzltQYzkLoqCR!&8gAvD12^{IBdMnBxa(-SOew|lNGyS^zb{(Plr zko0dw`%3Y_#zjw}xD$&;Ky z-Ux$hTin+7bb5{fZ-Y|vht0Th4&}+Rmc+Xp<}p^~m4d?@V6dUC{2Y00I@bo-9qt{t zE2A#Q7hEs?+B|T&8aHpWb?-2|Ud`dP#>7UnANr3hFI}4rlTY~4x3vw29PyHkTGOOf z&nN}j4vaa;8x0oGIo5{q(@A>SNjNM?A8kM3K^MN(@uTxysqXOQ+*d|>=jU_r>4Yr2EQgZ;J(Me1UX~z#oB-oDM9PE7}3eo9x!s@nz>eSrh=$hv~-TN**WZ!O1<} zWE14C@cjI_?p^J!z2SYezvfRpjdtLHy;<~D(Rc;9CAf!8tBl^CA4{+U;qtlnQxL-` zaYYMgaZEq^J~BAp^Wk)yK~x8vmA>IN9;3DEN9ISyN`rI3>hvf0e%CfQ7AWHZaA2HH z-r=Jp`r!T(e=EFlDtwjufv~cs`rtY4uYE9%-SNGbUT6!BfA_b4KX`V|wI@axtUTEE zFZs%Ag*z@h{Z{5n`fE#VbY7!J>|w|#beu?}YOv2aKa5f7Lg*_K!u1eV<;qjuaVjFb z=i6dJ&#)U2pxodc2YNAFs|`_9?`%L5GPR>^jPYB$PSfQnz}LTBKSyO^)_Rwi*Y!DW z0^tE~#m2CZaL$l-KSQ$mx*teeQ+L1uP~fAdh_n zoKv1Lwoq-yX)xvDrf!$|QkL-1qyBbe?3yx+^dvPhO*n)b*t5Ij`KQ0gzi^;_5GME z;6N|FR>Z55km=4*>fNjy7K3q&M1|8nd>r5%UK~8;tb0la!12hUT+Z^z_O8Tt*UYxsEhDl=TrSUtMoT7Skn?M1J{UL`Qr z0YP)OoE;pJHJ&WVr*z?e?2isuy^Tk~s)jc7)ZrC22h0o!Zbx_U!~MygTdBT(heO&W zkE2Hxr0x!d4JW+S_Iy<3PC|BI;1gI!Z%4rK73l5y)+`MAk@b8+cE8{rKBv>*{E|!c zqUBt_$uKmWSHzFeo#GC+;o0Q{{E!{5`yPF}sq*m|R}yFF91WL#ai?ct;h`0};Jw?^ zGJ(6ynE&$;KSR{QMw89tF6VZH@_06)3cV{;L(-xe9R0^g)7#rfJhzS zdp>7~;>u23)0%c5JUni~Q4b1)aN(!?=3XgI_bJOs+9F;#b#ID$!5i$s8dc#(89ANf zK!+DU6;0~Q;cK`$`+SaCUniigc8hkxXE&K#Y?>7f018JRI5qlT$j*r!rk% zFFn|+>%6OLO2g{jaDwkS?S9VeayHJ^5+zoAjfGpk1Tx068?JX8o(i59yn{a)LT&fq zc^%+g#<*l5BrYerk)GT71-NjC@!EaugXMD>?P1|Kb7SZE4TXbC^|5K~Qi`7$bg+-({fRf% zu;>L}Mw_1<72D?oP@=qH|!N(+~SCT(}RP>Ky&8Je-CGZ1Ar-(YK_+jgEuTjlc1nuc_J&^}${;=-v${ zx2NkXs~vuWT(W&|`&_sKgbeLC=#&C*6wJq8I#eNiXYW=B;5>ca>#Vh#ELtU4J0+F3{Y=K6MjEa-skUo36xSw9>EJ>4;JHT&$BcUC8ls?k zB;zvl8)4lVaK?gx9Qp}5nrIcOz4Z6Ui|6Pw?BKDbk1Yt|?9>_I0fM9#p;)xQ8C}A@ z?vG2sfX@PT!q_!bjVXtTtB0X_O~LnXN~u)!SNhf-*y;*`6&(-uW7k)5<-s|^XKc5* zn|Q&Az-8_9J;S}hIW3*`uX%64l--bbtr6}F^{1vr)7DwY1aHDR=mfDJ@Tj5Tb^Srd z6@XnMJ7tw330P=nNA0`gnk0ip<2qb0{`@lf0`|f4? z@z!w^zejJnxUyYSK2SG3X26%D`8j_$BM@$ji7KPcxpZWN2R;t8E00d?u!FC2%iUCO z5@E@X0YCan-n$wDRt~W7?a-vvgUf+)J2{OWXoIIN-f$Yz)4l~{jtpKu$>yqbzUh*> z4!nWC;Ghn?PEynLcmV!3E*d;?y2*F7gHpXC4_FVa)iGLUgu&r{+HfluZJcx0-Ny^V z`GZm8$F2_^crZP>&2uY*Cbo9jE_*t`y0SM_8{KdRua>~@>Cb5E*5OTcU1zgl3Du4x z&of<7oi3|d)2oYj^mcx+-@`Y3y=g_ht~F9s0PQ^LeDUm*(f0AJS^_h8Ro+xwH!a+z z%X*3E@R=UNgKxUEG@mgDbQ2`UTD^U{My5BWbT+-u!q9_mrJbDGokt{CXq>Iy+Lwqr z7AVtaZPStIT(vKFYwL!}_^lH9Vi-Emsj?_IPiPmbund>wcPb~+Lcmp#J< zE>gjR*}*|!tZ)ZzlU3i-KY;pub;3?5XdGIq(t-A)GXYrn@uQ1J79ii~#RE8nGm_!2 zi3RI?o9pUm=b}UH$+_>V_ukL1zSXD|SdQx(oi}S3J%`6fR;QGbht@EtOy|*g>CMs8 zQyxFaZaWZS=0Wa8P?ayEfr8*a28{Ruc%-Af<`_8MFp2R^|NqqgQ;gYRtF;S}WrHKiN< zJaV}4flT0Yl=xsWLmciwB=E0P`+1|yW$ile;}jo$qWCzzV@U30sLA;{SNGIE^*{q> z2mApGcS*`gM7kC(cK4gH2r4-;yldT|4}^czpC0 zo&meTRul~1=vh^_&yQ}b=`I|My58a1`J*WNLvwo3e7NJtAC3ng(j5mMu)0Do@HH91 zp$3&0*vrW)r_RC8{nP9M&2Up+o!W9U8s?l=?x%ZeFE||7bST*?zsFMp3$hNt2^d`u zH}p=fHyq%ht<8J(tej47YBd$51vP-m7R>x+`o-f z+<185RDr{f8o$aP-GZ}wV1mqlkSqRakIs-y=LfZ&U%XOxc7?D0Rc7*DS#Ti*EA1Sf zM0D`7!P=2`D>Hi6kusfm%C2s3cOP;tkJn(r>RdXPYeBtWU3}jzv>^m1WbnCHhi|&^ z)n{CID|hi2RBh1N0~a1k3c`g|2V8%OOHp1~ zG@NUJ>YS{}P9g-aV%cGatlC`A$*vCp8iGS*`xYRM@yaSB0bcr}hfiTN?#+CHB!lx( zm9ybU$OQvC{FU`vLjY-rojKW`7)LQMXwP9cc5;a8q8lC4t>9CVz|l2M>tLu7r8$bAjpN)nvVeDcJ^T2K7wYT_oEtrO`zYF- z9wj|Aue9qOU~M!(yR{KlHv~wwUl*yw=Svy2Gx?9tj3%YC3Y{$TLa;{-=z%+DA*RmS ztsQu!=0|?$>i2kb$*#L(&!Np|fw`EtYlAdp5j;<_d$k#?+MDr7MAf|=^oSlSPrmm( z+XPg{#a}(;!^j&I)$tF!m5Ucg{+FS;dVYg(>B8YccLLMpuZ9f#dP#`W_P)XVncTaq z2Qi*iK`}TumQOB z$K0ZO7kqYpM##{XKJ~dq2jBvRZ@Thz)GKh{Yz{Tp$KJt=&N+c@c3iyX*zk_7?nn2I z9RwS1f+rZRTrlX^?pN;eCHS^7m;F>`@H8|WPkXZ~CI)E#w^`2o!L3a&*^f_D99=u* zuLNpjuOp;H@;6%2k81?4OT%wcU$83pbxqp}Ui6^(oQKGM)t-cL`f})T{oo+Dbkd)F zuY5iv-~UAriWnmgexXa!HvYzkB@pptBO~tNVHXe2v?Br1Q`UYEQoxh+p0*}86eMFX z&l<7ll}L5@_!u-Re`s0ar3Kd@)b(n^ZaU|&cJWKw`l8^j+)dsiVx|2#?c$9CO!02C zcD{fZJr{iC)xY$P-Mcc|?0fRvm7x`Cw`8Gvg7S52jZ!$OZ9Dp(&;Qdwc8o45GZ{@M z@vtkii2xmLMA?lmqo6;|m3P^Cj3Z+*>FD}7z&)^ajTYzQn`7;P5g%fnWL0J$fS)E6 z(ujiRxSUAj(AI$SiGaW|EcAyTdJjDW7Tn-nAbor5*b%1sBmX$A zP9l4-V^wv2N?;g`Cie%te(v`!DtiR)4qRs}-7~sDR<;aQ=9F{4pqJv|H$?%uo8#w# za_t@79GR>KMS;P;!6_A9J$f{JuIr-%?TDzAcmjvv8#`#&;SYUqS+Wx^!ez1qhk<}j z5B7EOx(bfU8urzrgC{v3$o)_um}?Ve@Yto=Gei~q#JXz=aiD>zt?2IyeI9l`$&~7F z3#@vBcbbxAS9);#nqgOl3a$8MpZ#Bf)8t;O_F%BOM1Q-Ul z{b@Rl2imVqD7(A;<+amqRj$ANjMVHh`UUAZTzG~9T~QLhI5EGKS-U}U&{ulm+O|3E zngDn4OL9N{3=j8?!#}v^aLx=t?Q=+B2WS5v?i*kFg*WziFmm8Jh8-Kk-Egl>nNyoQ{qHUU-?iw(M(^ z9HSxpYj)QjSv1_uYkqj7xq}AfFsrig_NK!nXn5FtbKWacp=}BSXvfw~^lfhcx?hz| zLE&E)5B{R|8a(xsMWb(;3B$|hbaJ~Mzr+A~1x#hw^26Q%Gh747wiY8yC$HkEix%X>?UF_l)u(eCu9kVzvexT!~pXi^^aZei^ zhwoJkS8af8MBv;jK6HJ0jwfBjl}e01rw};wMZMr|L1E>Fu#VtKzO?rxXE5&_?{|NK zt86%mdBYF1K*IebrAO|o-@S*jg27(v2vMOw5bvLi)lPxy%^L*}JOYLY6;IZtvfvl< zdW+!)3%D=}0jZ9p!6Sy}Ri1}fO@K`qF6Mzka2)iM3_*E>Yo{dUr`c}yr;2^SkueEs zGp0B(Vr$#sw`6dN#^HyfULO#9^hf*DyYneS_w||_6SO)ZyUms=J4?thxaM?i2294d z?6G8NLY+4_?c)_EIdN5v^WlWOKKongA#2WV^mOAmEBCt_PJ09_IO7YZcbuT% z{*fO@(@F56Yh{$J0C?k3zbE@!eXwVy@k0WKueHAKTQe;b==vIoH@zDB8p#@m(WoJ^ zUi|}akbnvgZ5+6vqEh8f@9rlY4<0ztk^cIH_6qNu42%FRA#fGkzSYx)vy0|21`d-RN-S0vjo~Du z-8g=$-&yzgF&j9U&%A6By{AVR{_w$Zwuz2gJETDWwXq&`=iI(?2i{!%iQkcU4WI6> zE?A15;-?;*cTt-M+n?aA;Vvtr1;;5vc9JMMblK1fbsf((l5r}WTH(MxE_#(Um7C{2 zwv(*b|4>;Cx`FoV!wQ0Z!(+7G{F#LD=QyYX{_0le=(+Q;^XMNRbhGzUp3afYv1RR? zsf`nhl<`PB59{7!z<$8=r+WMBX4lwQ_vzfhwNCDBbax$&>5QZ{T_LBzy0rx?aKSvX z5R`QQ`E_oO{sg~&3-;;GHJYHz#iLXA_(<2fbv_4aM0CM5JU)7L=y1!mvr*8Azo+tv zMRAU7qTx{po#}gZ4$pmC*f_Y!sG5CF{f9E_9iWdu3^;-6qYO{uPz^Mqvy0oVlVz?`G7+IDVZo81ZCLrh>e48Ge0v$o*b zzr(1XuE^TJkoLPjIQ@}?Xq&>TgJ}TnahQIg_XKR;)l|L%qaARZLhKCdjxlI!pt`Q3 zvrQ|O>DQbdlD97o=kQsUeYRYN8eWx(4eoKk={a%2&#iX4Yrf9#)4{t&hCf_6)>G^#xmQ-B4Ufs^qXZ>*_sVwB(&g#E z=$r1`_@7nMCB}H1Ma@@#BRBwdI2U}q5_{*TYX;$%idojvHFW~5?3&lmhTO9wf?$yrKe$I zFa>^Zf9#aydef9^5SfxxpCNg-G)HY(!KNTa0#5Tt#^C;K*iM@v1u=}gIY{M~8Fy{R zjmS~rcbBJ36#Q0(kUxBC6NVe{m}SUM&vOi{4m^D@VQ&oU9$YZVfd==$*!2t&zW!G` zr7M{BZn)SvI!#^NwSW3U2>>3&P8%dbJC90zDPOKc8r(Zc;6#+MHdeJ6yo4 zjPnxP%WmMY;2v&U`#}!N2r5~<*#LdG;d8LUU(Sf0Bbh#*DJi2~+dKzzTvzYPFtk5e zqd(qg^Mqyr9HBQZF~=NSf&SgoByEX_DPuRPn}P1akydBMq^u%i*4UxVKoiT1wjeu)=L z4m%$%@Tj~x$B$|E1V_N|ULEvrw1T~1V#f)fr~Jx>+vGRgkDe)~?)&tV-?nxJNrt%X zZ0F@@>YOqX*&K|9xNerWc)zA1*pp22Dpd1hK_~DvwXe zpZHKqN=9rBE~mcV15}iXBWHG_hcr6F& ztQk4Q6y5HjYHGWWDW$KnMwgKy@h;C{8aJdGos0g9c9`kOD#1-K#BY0)|w=+}u-(5D_DV z7C_JQ#pi8Wn4&C!a8B1EBmyxUWp^;n?Q?+{6Z~JDz6IU~B_$j~rv*&&+u@OOGK>S~ zz{kWh{K9lFd#^ICErDe_X;l`F=)(KAG=wqR{_%AiLB#ZeWYsEDAPe?8@3!u(j}Log z@BR2|(TkzaV;txyNQKbonlp?K8RnV4*GulLjwNN@i1*~1myNtUt*%#qCeTJvzIpzl zciQ)==a}%e7gbOo3-(^WejD%GO)|ppM1ZC2CP1Ei^Q>|ybjDx*zRJetzr?bj-^<^$p|rY@hLK5iRHNP*TT$gZ29R-`&0W z@pYSTJ-hqGuYPs+_~pyHFO8^h&~(YcXl*0PSOqltx&#)fdUtG~r*^DdXHVqA{yy3% zG}t^aN1v1$opS{`cD%^h@^r`TgtK z?9G9_Fa;kZm_EOM_2%yFkDppB92()X(TFdP@7^~Ov<0LouATfQK`Iiy@2m6v9T`g! zv$1Y|PFKJAMSAzV>BidBW3#O*zmwvvEV}XHBioGz_A^>5C*V7d^NzSC5nN`)rJjJngM;-q@OQq_bZ0`*3fPgZ906{^s}pn4girziYeL_KKI7 zcJQU|`7AFwy8k2@Sc_3|o}coH-?wkyhs(3kWt7aLyEGGChQ*)t0vbsOU-dqnK-)uG z0EaJsFdn66&)9qX+{gyo{**82O@3aGBki@72TxX!%0+>{Y+)QoHO{ z2TgL~HSUsN_P}Oz{!Se6c1G&ymC}4k`qRCPVmji&hhUs3Quo_WU&0U}>OHBg3f{f$ zJc*CjW_548S(jY~fK2E;SWBSkMY_qp)TJkAAu~brNj~*K z9U6X&zS0SC=e^PG^e=|pz3sg{z<9CMro5_;UWa!0;E$bel(NnC#1#I-8+obV7Q)uP z?SkJFOYw#;{g@5!vD5gz{3RXCLmhsvyq8UQT)Si ze|PsPW>7N9L-`2fDsL!!yMYD#BZhx?Q#lOyG$(CH?{mUs1bat!?P*7Em?n9%7lIf7 ziDHs`Pf&xX72(Tls>fN`*k~D1Fy8hWRv8iJu>g~jaR404=DorVuh6)jO?coR=ei86 zHVRvEk2--eEsAJ#p?12iXCw3DxZW0UC=^9m0+okkaBtrJkRZ`iudiPDS?Kh*jUfu& z{oAV7UQ_u#{_VZ;@$y5CL2rZ8U7sOGApOKw^i!nwIRhE~v!?~1&dJ2u1^jxS6Myyl zH?~zB?B0LbDAkT zC!j4oazQD;9pIdRI{Cyu%4isx(|?x^eIxi(*E_l6cI_O#P8EZ(j5vHa@;QAx2D)?j z(a%t=_|Z!`8X56V&*dZ+_^b>^0DritvMppc{pd2REjS;X!kZ#Q+v;c| zoZq~C70q{dPoH^eL~?bUdAFwzOKfwB>X6UV_`gIj`Jp!vr?aL)svE8wcCIpBZ&YY6 z%Yo-{&Jut##UhF6(cL-RaOac?d~ee+_{ZE3NCw%*gGcSnAFtl^vXUnyp3j~>U&06v zMQeI=)_B3;WjK~3u+jDb`Tnh?(TQL`*Qb}|Nh4X(C07j-Mx76tXCoDv>$)E`-4B~{tw^Zy(vikrr%GV=Qs;& zZ+`m^cmL=A>JRSz*+2h-G(3CvI^_gobY;AZUiOKPY2tJMAB|>lnmP#;nEl}y!3xM9 z<{uuH7)gTj3C{|IIdDm;_rIso$yc(*7HT88uV*JuNqOGU#dtG^9iQH1m#=>Op+NcM z?&*t{FiH2)5%AviD%i)*3lIWB?Nxuh&v2*zHr4v_cRIu&ttdMALsty3g{;=9-Y5lJ2#^T~auc1vb-!oKtx{;pp;`Jc0U~ z602{X6`bR{k%{+$X0~IhdanZxZ~hMc^auO-qu2RnvU*zb#7{4w4v|F(a}*{g&3;*S+r(iMI4)wTWO?|$qx!Cv>R zQ&Ix7J$JJA{LAr`^fA4NZ+y+W{HVun1@33r!rNExW;6Wk`(hw{H6noa<0ngu)Ava3 z-ic56e-jx&MoQ_dnkKKmP0g=I*;c z`4{OToUp*3_=po2%ZdA7v~cRa#yRFWXpUxrmJDDPC)0NY1+Vvd+SS?cR24rY=moy& z%XFXAJ2^&IfJo>H%UU?}F9j`u#(SB;i;@MCDPL_(fe322q=Zq;*sVptc#M(#7=qM0 z5g;iy!?i0Dkb50wO0_`KJzDfJWuw!QhK)*~zw=s3du4#ZqBvkhUlQzkPN_hwRI#pe zK_^+RovP;b5OFD()j^eM*UczgfhQG|!Xy}*9Io__7hjz5>Fe#zMjppWXk zJ$#%4NEY7W_#q|1FTovN4_lk@?3?E5C##ew-px^3sMkU_y%V|dR6M-Nfb-b~O+1QW z+IS!#8 z;M=)unUkV#8zQb1I3FYHTI{8Rv35G)d>L?jHiYZ?0&1QG56Bp%6^qC4lgxH*6rdmP zl8Hw|1l)!h5T0_W?DZ#}x4FazG>RC-9k{hVy|5U+i@;r;x1GHk>JJ)F$FWP4@v zp)rFJu!|u}E|mQoyn7`N-lcATc5?ijo^u8W!7B;N=XkrMH+;Q(M1XnQXi}0{fbn|V zy)-7e;Cw%4{!R3K)J8V>IOpK;P~$mZKYH@KA?^|?(oRPzLe;~q#9PY+n2oljr=O~4 zJLLP{d^f%f&v+mKLEpV^8$tMIe{%Qb*~`xLUZ39m_HTc8_uEe|;>q*7A9_LH4<#P2 zU;jRSeXNa_ch4*H%`d;)ee-R-Nu8Pk%i{v&!*9~7hb3$2f@v8&?pT*O-7g5esi5Sr z9_s8YgdH-NILAp#4kTo7C$G=>7dm~v5fEiIB9$;c_xt~1R;Aho%OK= zvQO)See+GSZUo`?uYR1q;dw?IYx6Ma=*=vXiAB%sSD>wazrkL6I(Kxs!XL)B^glm` zhox={RPUA~eZG7C^7-CZLzd`z{Pg4ABpIm6C-ZRDL7~s|V!iZm;j7*i-KLM^R;Oyy z8R?TG<$ZE60xOPel$KA+ml`GIwqE|?mnA4VB-zSibn#cw+K1M?N*4w6mquhdw`llT z$_4;+Ouc4JE*^%<(_#~XL^X;dmaMP<; zIvwQ=p1p|1MkmPUQ5^}1z=slC9T#+h@wgtv=@6#F@mP{+@wZVw$sFJHV^jH$^J%~T z;nj42ZGY1Xxqd7Oc$*BKzI<`_PyX5et`^goy#_lzhsSlq=fmL1zN_cvDY4#F*C>uP z102p49VKj!E`_D0k^_vq6pw>qcn(4|Z!ROHs3+ssqZSlTFd%dz22b_&9pU+?O!iB-Y}lqD zMl0V17>hg}$cXWyHe_*NeMliAb50B`b5oTyyhK4cdGy}T&?76wlO%zeLkgC8ZHdC? zdM4mJ@<)VKxVnZPO?TkCOz%m~PLiSbZw}i=81G)cs${rUPr&=sP^!TGG(q31Ei!!8 zy(M7r@ByA=P{the+a8YTkSG5*x9USvwW z;b%8DL>zxOB?&M54DBvkPiA!W3_~XG&IR?Ur$Ar9Fy8cKJxK}x06+jqL_t&zhc21% zoN-L3iSW|q^j2aM|2jwe`s%Ke}hTpLfG)?V#%2$I2f^DHqS9|H}o#C;Lg7z11gU3O?E*Xb2+pyazeV2f-pV(OfSow^Xtr~)Vo3nnAqZb9% zF$%x+5JQD-75$S*ekXpM1T@*im`CZsIZC1u%A-boe4D!$vUDCclpfx1b;1%n8CgBf z*UUcgxN>|M+c7;Mc+i3QU`eG>op|xXM^lRR&Z9$8yM(NA7ASr$@banp zvA{@3%}jUs?Zmo{muY4^rHk}>{yru>ibs!|E<%Gq7s27kE_2|s9hcVv z@*mzcY8*+=8u2hH{ye?KFaD8_cpGk!)@YE?+;Br{=VZ;k@CVNyHI3mF#a*ZkBaT02 z1C3UcIK4`K-zLlFrmMo?4}SgY>Cxx>@aslxUN^cy2frAp3bFUS*yzWm2A@8lnB*9!ATAs|!K zo1da)M3g};!5`4e6!24?D|yvYbY9xKa>QZ?*yUf zsJ!6$-kd6>VYp9Zy-yd&nx3s^QilB?g_waJ<(Ksa8X75WficCsUp9#j89lyxsnq8C zQl8Dn#siBBUH_bO*SEocqbqt#C!tAJ;i2~xl_|8c1(7+SBp7LWqpx2zqLD(HbFS$e zOWAaeXm5Rsr<}c{;$Cf`3C|xl?6n>T<;|e+F5&1_$c^E)?CNqPX#pd$Yh9K z-k(GB^hE%U)23h5=}PS#M@*GJNU-|$(i_5kU~W5_Hb+?Kb>P{PXC;iBZhE)%Bx#MO zMvk+LPw}+=P|Or|F&FQ^iacS!yV-eqLQmS6ow!+fS10WW zKI=+N$hu54>JS#CFs6 z$@KvXdz^6siL5DsC9k{3x$N+ww(7N7yXxZD`8FaA(hD2gu}`Gh)t`^{4kA7Fp_UYi z4n_xJ%|jA333WZMfAnuKZ z-t>VwouW_9+WXi@j<4P*KlkYTK1lKbvDovdsT+@9ZJ~Xp20yb5XQ|2RKf4FMUQMGLiN@*=%iV zg}YMbbh^CCn?%NR#yZi&&=7^I$NYfTn6}aGp-bGqV9)>DI~|qxkm?k)Q|P0)aqWxX zwHD`Yn%1CBg*8GppxlJ&ug3=n&OLuON}HfenitRg%x09m5AI35lHKrD)lXA_0yw)t za_px}tf@eQl>>qv+;p;`+!)`(Y9OzI4%e>w+FETYMxSH!T?RzR4C&LXugJ(aE1&0q z>g-Vhgh_;}19EYqBMoz+hkYG?>JcOrPX$aZ6fCl|SEVA=Rvda<~mbR85`r>Rg!WeJnUyRCoXuvA@Msm>;O7HTZd9` zjcxX&jz~+I@sK^R0@;IdUk-TB9(#da^Cjg=o|FUGf?-kl8bNhO2(Y3G?1wwsz^~BhpThsgA)=o3T|qJx&#SYxR=G?SWxD^rAJ1yhq42zh+oa_X*y4% z9qB13Db^|Tk#bP(C&*Y9#YtrQN93(qls<)%9cFKKh?=vUXA`dx916-bNESHl;8+b6x@(3lNs%-Aog6CH(IN15(5bo%qUJq^Mgl~RM;LX}HJFUFKN@eN zj0V;O?oP5OI7_Jyg_~<2l}WHQ{6`eI>5x_II?ml~&|sRv@sxGI=J=E^Wl;ds#QXg6 zSsIB3<@^-FCgjpHkabbnr3PJN9mZeE*=r}`%JFy}N2b2qGuEg())A!PCfue*x{hns z@P3V>pQ~(VEYQSpq=#Rz2S%6a90Ya9h6SAU$X=31WNjCuQx;$}=hznwDCm}# zln=DA_WgAnUui$u$fY)#vve<6w|ZKO)7#_zG(5!}7lQTrN z-~qTH<&I5M_X(Lb)Pf-$;};J6r+`1OqM27-^$_UMhIp<-IjH1|#wYoPa<&0eJRM zfNfEj!H0Lxp>cl5zP5_{LNJjB7)s<%+u*%T&c9og3?+x)H5z*KOL z6ku}JUR!78(_q~{*`bzH$HKm`@4MI#uVKxDjx&t|cVBtG0gy$=u2)?|q|-iRE9?#X z-uN@{oA#dwm}5z{zk%x?a6i=)A#XAF!``LT0dgfRtq+q4#r&m67bU9dChx05HUy!j zR%?>;dEno6oj5n&q7bV)?P~* zYJIhsbj%=BIq)l`R}l{FO$`BpAV|5{kr(&3vncMnagWw7C8gBdlJ5FOV;XMC1-hN=A5v2NK7Gq3V%k}ti}tP)J;H}*kP>L% zlu{8Fbm9*ACJ`d0C-%0XVCEK(5)dj2*074)tx3>vX?pxf1zy2Ud2l|f8o{%n2(F6b zrdlc9&cT_>_I@?$>6*M=BxZWSNKGn5g9tawCUZ!YdN8zK(-VNR?G_;I#;%_av>Qmy(JXG?fvAbpHs0duE|i3qV1tQGxNjsa*|_ zU{$P6QefoA)+2~sLr1R=acdaTD%cZ=SEG*Veu*I6uT-GMeK+X%R1lm|Q?40g%vvz! zUdMlHEEAw|pER7jU*pHt;k-nq)dCoS51)Y1!#yJ8MneiDqQHBI$^nw@ejU!#oUaP6 zLp?;fq`Fh2$%`$r(%Gz+N@;(a0De1y5`Namh1lMd4^|1wW$rr%=)sUDCV(|t^CHS_ z&E=9TSn*%a;g}QL<6ez)vMK*or3saddgT|HQ4XaiO<|}9b;wyt|qec0YSb>JGaqo%RbOh*x>y!@n31mj(7K(ZP%@lY^D{2Tm!xSAs5t??(<=T*E z423`x`AE4@-m?drw837~le4z44z1x#I6vu8oI?%w!T)n#7%rPFS7B@IM04?iXq>i9wfV?NVC_|-8I&&if zXs8@O;g&aJaeg!MJy6hqX}`8GTvFF%_Bg}ZO)IKHf;78tk`d=#v->z12S1^M>X~d= zgZGOJl_`L$-D4g6+-h>2j^H-skx94c01xPfNX5OpUme(n)|I7f?PyEIdz)OZtD`&0 z8|7G|`=gt#4~^(SQDX`V$r_YXPZ9Cu+Ix|wm``9)CbF#ndKzKc1PP046ayl!R=HaY zU1iA-0=^OmMz@S+lQCBVyfCtB#A)qH%3bq0I#=aDJ<`@y87zT?1*(FYqa-W&_PnRY z@2j>s9R}}ff^wEM(kUpD%AkL%+sZgwlWc-E)Bwerj+CP1HQGo!zgAY(SQpG*zJ-1E zY}gOhZvmn<#9~RAjy;%QpHZU+(K;Iluo9lwsAIy`<9zl3lom`IA%C$R?QCM+v^SnN zYi(rj1WBpuf;H$UEuxc&@dMVkE&dZM;TMooizPj88B5P+lb`MKInzYMIf`ACheNLC zmq3qOLmt^{K9dC`+m-AW@}o@1q~ru=MEZ$w#f1 zLy`|ZI|VtMzp^S@zQq{}hFht};0^%1fOjGwew|ok*Qm^UM#_M|x3o#YGG~xvz%?L` ziABQ(m=ZJKQx^8{1GNA*Q^MBb6n80PRM)wV>}4ue)OPXO#JK7Uu($dWgH8^BedoPy zK3}zo68DEc0|Xi@f2KD|xm$n0mx`5u0N)!Crs5hFB5kQNFB9?Fej$Zb10}dTI}?}R z`hdfvwGgXVr}M%%Z>|?oG@@|syLnzb2}ve8I`R~-?4*JU4Ve-m+G)Y)m#9cSWHY33 zHx@UeHkXgOwnidkA_JU;o4JQE-71j_L18>7=@y;Nq0X$8!@yf?6pL}NwI9P1<7piW zSMSEfU-?RO4-Ulj&p(SS=)Z~lW?_9f)=>x@atlJRzOlhNa6GKv>fhQO4C4xg8blDC zX-Li0mi?QEB-hrCfMbkNUaWrtN~RC$$xrR0ted4m z^bhr6WUa_nV0FxURD2K6PGmK+Vu~`ekFr1QeLXQfbw5@Y=7^Yxk|;WQ>094SG}En1 zH`#0GLGEq-#&ooFkt^=aW1CqImDolu!{f&hY@*~ta?R}3-a$F?{hi5~7dihnjF=Hd zsZb<-N1@h>$w*`|E=l=0yfO}d9vP}&tXtaKS$kuwKb%I+HllUtIA zkm|ghDa1#Ya9-ReAB|JrPDO}ZnEMqF!Wi)Ldg=;f*tVcM^Q~=BC=~dqKu^bljG>1) zENQJNK5iTf1Q3EvLT($3PT4D+gYBTUq)HomVWZF%ipS<>kZFEUheJPrQD}hK+UGSj z(7YB@?&J6bkL7JG2UZY$I@+f=jKabL?y-&{$<6IzG~xhtxOISv3;-d4d*r&Zjt&qA zX^^!8%7j6TwNdps(_ez@dSvi!bdL@u8ET*yQ@zPi{aqoD$^Ps;m9mpRIbXUzii>N} zJ3dB-MpMk+Lay6etFn*dvYtU_zP(Y1R_w(F)#QCc$I_mzuC2wu;9!c_4XO+vlu`FO z(c0`|fo`#UXM5T^M=5u9cTy;dy#-L$B$)*GU{_nwbvLDOZ8pj3!>KFLe(nO%e@o;n ze1lEYCanpnp$*^)^L`91%9{sa5)8d1_t^=?Yh3wz*T^)Uz8aZ zs2cS0kECP7jRbwlT9{7xxG@XrY4jf&bAIc z_H#D2HlnAuH!`fXr>`@feC|o)pZ(N7vk$JTk(7o$LS5h|>5l-*^sI&3)~8gz00K%F z>(d5s=O9zw!ak(@lvx27M2d_jQ0 zA&cg4{u;g3wj2V>=@T6ePn=BXu8b1yvD59HgD7J|Dk>@g96EV#XLm;|F3iUs%3z8j zhjP0AxnA-=Tu-6N+4sugW}Rva`qF59>l zC&ow8q5Ja=a=rq=3QlSC)M*rkb|wH)Pk(=`uCAs(mO=Lqp9GY3CFNHRF5jAoV`F2H z>+6rg>M{mqAo3$4Nl}fq+MwzhD%&wLGZTvdx?b-8)X7I;V`ClkyoNKbDt}ksFho%~byw#%Q!n=1^xv@d(?oaJh^@ug?;eZRMgY;Bt3;MKmWLEjjbVIN z4x_kL1%cydFQRw#u~FKH<}UUKdvTZnw4uXgYmb=Auz34EdaxShm34M0klFEQ=ow1+ z&bx2jjpL7>r6>!dj*;sg=#RPgZ%6B?K^P_i0Sv?Nsgv<-6h`HiCsD1K$kI`+zeW>p2;BuYVAyp8RSwvZu={3$T^g zA3TERb_6BT+5yPZDK{YN>*eT2&hKA&5M84q(S5utuDt(I^fz_HL3<{~pL{y{1l_Z< z$+_(UwrT)-o9nBwHnS4F9UU<@Ux)$M0uXL)8i=OBo&?0(P7Xw=WOosJbl5;dd=y=S zeQ`h#QH$JIF<$}r)c|xm4Zv`=tz8|ljr}ZPhq_LUQ3pa~kIh(GTqS+e%fA741|fiv z`E~3pwy_K#%K;Wwkn^T4KsP#LMf%v!^&=Pg=v#jb4?^mPSsLq`rO07JGW>g!$h&1| zD3)*Bh+q9z|6M$dja^xurX=!uhz0{ zvp3s-FAGxZ@qZR9%jnqsw#Q!7r$B)K3qO+w@ar^-1PgTpsH(i_;f7S{k8i+Enu0|c z(>$$0&=EP4zWc|25a~~Ny9$u#mMPn@sr>Gi>M!}#rEW)cY?Z{1Y~RD z!Sww&`^bsZC9t}_7RwKpqO?TeV?7-q?3Z;&25lCvXEU6u`^s9f>_aNVWw{1U`WFLC z83Xr{&A_wk_W?Er2%lg1oT5yBAx7Yf{}UC7a->a4#kE+)S!{zuqD^1;B0lW+n_}mfCij*iF@)et*G23aw~HmIVfH$XPaotX+~IG{BnVao8RwX z407$A|m*`|-bxVnzf-%8Px>lP6j#fb7U z7>sQq$U2;$Xv_AEVriX1jt-n*Uo0;cF!+T;9gg5gYl+rOU%0Lo*5_U~V*r)S`?qeT zYkLYtZh{P>YXwz=Y45nXqiPEjP7Hyxy-QTL&KbG4&MZi29nMcs=OMS@Fu$M{&Gn0n zR~DDz1O~qsXI?|rou zIRqK~UEPUUSSOm%?Mocyy9Q#Nh`m%;0G#AlSq;vdUUtN-j@+I_Z_;`K5>rR50KjHg zfCCv7&y};cqIVsTvQM7)*x9r3@Zn69rl(^anK?;RB1O8+8hZM=WAe`JL=ARgNV|sm z({+bOhLWJev7mNrJnNyevo99r zSCGp+ob4J+&ki7VE&6b1CEjcCrS$sP&{#b8+_TX$Fc5c=Gg0x_ULH zZrzSAJ^OU@4D|w70D_xR&b4v#$_?1LyK&*Am!Z+?qX>9vbLbKJXWc@Xy+1evG~#Fu zkLaH-ZpEGZ_hOl|6@)i;V(drG6J-K~07Vw&?UZ0(w$LS<0--U6lH7C_DjI0f)ip?t zm8c3JSl5t^Vr<6R(tQ}QvngdT(#ISE*r~l#{6+MF>^_`ZjGNbQ#&chPC1&PU>0GG9 z_{mXd0)Q6G7hXQ{M3J^#?PJ_(NqM~Y?)&=bc$_sG5ZGyvf%R*^Xs1?TW*cOUfMGLk z-nk$3ocXyY&P557w@1sBcBF)J%hnTsPd${828KpcK&5ORao$-1ge#w2ihFnNMICLEN628N8Cyk=^3`wuGUw9+ zsLjT^pL`nkuHOO}9>mKpeHoeVjV)wdySa`nJ6zw2Ap;R~bmtKJ2P1Ip(yb`1PRAn? zkHpzWAC2arE?AU0*r1iTa`|!`0l=TV_+;F?HyyV>zY+D=44K83E^rL6>$cLRG=H@NjwARCcOxjFYI$17* zOcW|b&imZ3^YA}IRIyJq(W>0Jqw<( zwD>swjY6$&2sV&Ggu?m^q&xjFR3IQl#ZpEJ^)$pGXaE|Ne!Mz!yE*1nJ9`n z47k+fCI&0zU@^E3VlfA$L-KPhI+Tg1fRY3mo1nuU@}Xy*dphN55;)1fCK_C{Y%7m*XiOen?7%)|Kfqt6lmdG5uRq8kU`B*cB* zX9T|ljkV0*Yb(o%4sPKZS?>AH-PP23On_t&QY!ODkBvu9PY28fQ794Y95myd zJ2$wG?_=p&NbzMDGID0IITp!6@*RzBBFJ#4*^`Bo8PY#7Lzi0W>y2+(I9m!aFNC` zccrpzBAilJ77ogSG~t{DB#TRnI1!LP>(>Y#)-d#>tCN#Gzz`!q0G+wHxp?HQHsTfZ87s;DjJZX(Nm|8H<%kJ zu?)aqhLlD}kGbD1BK;1|tPk3BozEtR3%Hw~nMpvTiJp1)%J!qwkIbT_*NcEQqo5r7 zZOz6Pw4^=z%6kVCZWAaeuoVz-@0HoyX*wZcY#ey(j)6+%Ng#6aB zE{B1L(ED))yPRzk&aM#|GxfB)i!&smT3lWLT=cT1+cA#P{^Ga4Lms;i$J-RwF5kl7 ze-e+q@NzT`_Q$b_6Y=4j@5IW(#d!RMF99|IP=FrOSZB^Z54P_;|JZ1B_MDIT0?rzzGdK13(c9M;k6(l#sM&$dp#6)q+~q5O6Ay0wATB)lby6jP z^D4wkuY4K#htkFA+YwRPAjN=;X{fq!(x1NlQM~%{m!qS-Clyt06B)ku!=J=sPd^@= z0M`sGW9#rh{NUgIyV%BgKKA7=Sz^kbH^%k%KjHp9if{k3-#~B4!NN2)L6v{+fB9cy z;`DHweDtZG)lbyL`yYH9w?BR-zW$wW$MC=e*rOr-&+kj zH2QX%E9IMpZxYeg-vMV-s{WO z!5_uB$GDHPCsXD5Ar9m7k3NsPS8kId2S6YzpM7{ahQB)+gX1U3ftw7fiML;WBR>D| zhx}6LU*0-~jJ^2581Uzx(04@tt4)R>QmvazN|} zHi2ulFtkhgHi$6j<*%fRvXHJ-n^I*(_#PePmE3tI2GQfIKYl;*kM+baedX7qcsOs+ zj$O!-?(706PZ2CM#`x)xcyNC<0gG*HO-&7;4cnb%K8AKvFk)&-mcBKm39Uo0VAHx8 zfCrN}?Sk;jG_e3uBW2OBzJzB1@k{=p1Mvsmpu&a4zzBn`*aY+7Y2+|}%M1trEN-wk z#GIHcf;mi$s~f;Yk^?eA-X{V-ViT-@-6pD%!f<2!JR?f>8spMWPJ1ZMou0rj4X5jD zbo~NNhFO!VS6ls z>gn!I%*Omm)tTp6gZp72R4R@{#OqN|3z0knyE;q-xVL4gZ3M5YqlcoF-eg>tmKFd% zHWu&jZCAdT*q!YrE30R-w0-kIqKurlTXp-oXDSqIy+9!$;cJNc3#&^pFgk(LAm6ySfHQAPg*Mv-ya=zW!-4k=w#EFyEawfSsT|U) zeE0fw_MvL{SSqQGzL+ad0~n|^0CWtHM!Cal8US*g{Mlelt(&jzl`*f-+Lne)(_=paC@CRZO{`R3Q+%^$rTpOALB z`N2=(sV`lKPU<@lsAR)tZq6lYwY-*%4(d_10KginHo)=h%zdcYkBC^l$+_i_xs6y{ zycYYlCt=u56MbQLch;i#@CNe*x}a2%F_?)g#gNO(vvKv^e^1NdGjad+XRvF9DBWj$ z)wS^5*M5ig(}nEJ`0;iIs29B!@}x&1Y8P{l9t*@R*H9G5-6c znsV%4{@4hV`^PbK@j@ylbaH4G0_@Bi;V zh^6~?q8q?lq9)~#j)2eJ`YamD*%*6tFdir3|Ng)Gv*_vQ!)cKkS)iVV)aL%tMhpP* zj-Njr)7P%W3VJdXDGr~S;Liyh5j9)T-^&D^&j-Y|o#>3t{;pJnJ$Pb>$(ihX3pE(% zfR!sHz^bjKSt4$M;WlSFiTz%uer4tcKx!Mi%C8#QU}ypQrZ5byY5?|o*x#m}dQy^| z*oJoe)lgzQWj1$6T}kEZTea~9#M+>?u3QXXcs$lB*Q0B!Bi{ePd-2%0aq0uGHQ18& zZc^q&>@R`aAbxW4+6~UWn_V>Zfr-TC2!=K|Gl8*b4jFd~S+!xMtpX`@KoBq1e_MlK zErvmesrwY%<1cvFoX~(g3l~jaAeMw$_}-scHR})*U*}8wP^ozx(k8}Rg>8p^7YtY& zBU(%Sni%66^4aW7qJylI)=*i!YXsB|P^dwukfC^toYL6w6BKZ9qc{k2KUR4knR|zJ zkvVW!gOkpT(Cdl5En46&(g7{&@!vD0_&gQzHgV&a-L2`|3zBF2N9IT5tQa`udajEMd>$sgX2sRuZE z7PdHjC$@={x^MtmK&8Jz=BbRX^Eie+QUrti?BfqVj61g`6FO@m>fC?@$wSpzaomJ4 zx7H%j(e-k}{>~;`vp;`~umwB-mu{lSv56*k!*zv?n zm^yJFhgHi?Jluh971{0*si)2Y9CK$61t?t4ajA}yO{kF;P7aX#E%X-qD*!A&U(Y>! zn4(_OAKlzzhTQ1w+mmtj%o#w}0>F^-=YD#~Q?3Ho7G|c2SjKRey|ffEhy&*$C>c3* zGEs0j^4d~?j%{}AYQq@kf-&ZW3Qn|Q;H-w;!TBtcXT132GpXKW3Xrie_b}!19c*;} z-X!bjO0s4m+bZW-?iFAjow7xw9F|bx4r&~FNg?d8*Bg5!_G*diVqma97G(DJ4`48H zwkW2#$W1_~N@D@1X_+?isLgo_*+@}YU}+z?GH88_a%K^z6YaVv1QjsO%+92`0=ryt z?BfOiA;Z6&{Iv<~--^RO;vAP@MXdTaqA{(aD({;_$Z7AN#_OkQ1uNh}w!!=3O|gEc?8{ zpcD40vWSkt0HK$Q<;7^L?Mj^xWztKSMV#O$&XFR@-9jATJb&L9r&l`>+Lh;2?KsU2I`rw>F42_W?QBCM(i&0IZpnPot6Z zGM!SSpS%`U@e~wxg|j0elt%6@qSp<`^(Mu>7B%XItYwl2Zo+0&0AA%a+9Ls{-N$-h zl_)x6ExUl0I)Jz|Zv*>ir;%OIs1WoyKotFbSfmaDJ+-^zfQZYpJfiQ?Hn_?rgRmgCi5 z{6;hZ{&$I>Y~S3_vEnRR0n4&qJNt!r{;SXN+WNS8^JaYgYcB&hD^VagYJ-v3Bad!+ z>_9-65ofJE0GGTp= zJTew%V37%&hc<-}Uk8SH1$%4^#FEJjSDh+|C54`e!r)&Vn*EFB-cz)S^RbQ4 znbtijerkKBwYtm zAOH?>JJKi_qN-YE66kLZ=@zJv(X_w!B=p`6#f3)43yX`rCZO0aey1>0#;cQQ~1xa=Q ztifEgLTxuv{aYr=RJn!*#}bIxDwkpy z$7q3z48_JS1)4ZB%3KikMv9r{;PauOIFnHTkciVK)EOzv0szchnE#V{T7W?qIYtBt z81UT8Yf8=8JMWO0-A!BA05y-_@V45Mvth6&vYE`7ExNRo}$4K3YTDg9KbOEKx)OAU%&c!tj;bGDNy4vc`FqK zQT+i(rQmN%c!ff6Ux&y^dl#Jmq&5VH0w(S*$xRpMA|R?EDtC_h&^Xt|2p0hsG7gkA7bysSiJbk)6qG0B0hQlW_(0m+W84Z z?%8x+4Ms~KX?}EW>Jkypqmdtm)`xQ5kAe8?4h2%=$t!E*oB;@>EUeqyX6)3lUmFYP z8AWuHTk)me9wGhF6W{yOKY{INi}A-Vpg%-m+vGouabVUmc^p1nLi;%H9LB0b8mNSv zwm^OFF>^qtoFh^$d6v-Xbs1|3D4GQj?O^;qeEY5V`QCrbo&)kL6!v0#t^29NxbE^A zRJXcsID-#=^yB!Y-}%iLdggg-5h=qz`s1iMGeH+cYpPGNtrm+(eG=&tqEW)0sBoTw z!qUSBfcVq#kk34O?koTi_LJ^|I-I|TwwplW5H@9PgF@gut!aB}@#)8}#f4`dCmooB zwZiy9TYI1Q=2Xpogq6OT|lWv^Zju-yX*Wxrz{ZIdozo0f@9j5a*OcDT$bL=1PieLVx z-;F>1zy65gK^=}70P9hcgNB}uyLTqzsVAO^BJ$bHK&cGV^$IW$YcLPjKYX9Q&~5Z2 zA76U$=~S;^fBZhFgS$7bVO#JI)R1ihWHT_S2OOGvpMml(F}uR&tXR{s1;AO`Jc@Vz z_C4%7>z>;om2(Oze3aDH=@=XxOW;>KV^C({;Tpl`t*K=I?*u{FeCz-MK6>Zvc>0+~ z$mU3 z+i$!Tw|@9$eE0W$J9P9V0QQvT1VvZlO&i;WOBK{WAqzf@|lJqF^ItIo^v13?g>;UBf1P7!?um?K; zj9T>3`7^T0jrc(s?-D7XTK=}{227TMsMH#d{8X7|bp4oEMIlef@7W3xdmfUOGVKrD2VdZ@mi7x87px<)?f&dpni`jp;o#(>)bmpm)iA08Q{ z=nI;Q+^DQU7slI`7W3LxeCl+*_&i(C9$@s0$|fFpG|pal1Rx+#V9`2k?&*udMk&dq zxrgM!=^9`oau}B(1go8B&S=;7_*w@<_;-#7V2d`kH98PX4LteuGel6;N@*6AUawKK zZ?g#9K0EV(!ayP-guERfGc{hRCQ<&sv&2}QMMv4aeiHB!@kAe z?a)R=9Aho_CGBMoxWz1uL@KtL3=ysO0H9=9D$vu*tIM1pv^T=&UW*`CmR4dQ0fLAH zqLVEuuZJk+v3PKV_s-4E@tH-aZvmX|uTLnq9e^h|T*L8;PRlrEpcH9`E!IAtfZ+P# z3QCQG<$QBE+mREecn=_K`d;jj^Iw^tPpx>(7~p-rUtI$H0YaqPm5DMy%vQ((PRhu> zhx=S0GPfexLdH74R1XgO7KZE?sUukj^Q*URT#pA+_c218DNfdL$Sv$^JNMAdpLQ4< zi}pq^5@RRFsYvhUJeye;bTrlB0-ii684E`(0vf>S=KvU+IGIKaPo6Xq3?#s-06UW7 zT0N=dwG}5kx3I)M3HorHC}@B02+B$72YHt!6&QCAX;sKgirfbQ#P*!aQV1f8L@ZV$ z9}q!WoF?P5w!KQ;p2APg=hEd%@%H=g$9W>+;q&LwiN?74>1R;ET{ubf7cgKY`Sn{j zWBe2;wUG&mqKMLv0T_L%S9386@a-HLkqxC7aWd}Sy~Vxk#^}kj(KT=uN7YK*2oVep zW1n-V$+3RYT`f?gEm)yCp0)9C;aYSyAEz^7kEoW~5mFfzc@++LV2XzSW+A@$8!yGg zGmpj0>SnzE{hz?R9j8c&2l4={jBr08k3ZBim~!^mG2T}btFSY^X5!Rw)&jK*h`xQ} zMqGaV!+7?auW&EST_<8)C;iww*v+hiPCx_pfGCiRLSi*)Xu%uD$=lXf2824vQRg{$ z2HKnVZ)_uLM8oS_t2occW7DV#!|I4vL3=Bp+UHD|qn)8}_06BWhAc!X80{S%i1W{X z3Fd;=v#tWn;Wh@iqnoY*jPAw)dPaTH8$W#`3gqt(=>RbAO>TptXk-ybo1>C^jg-^X zk3WmQ`G39_&p&ZK`Y+J&0Z7^d2w50yD`_jXahalCnbjP6lp{)9Lw^MBwltfP6^PHG zgKH&fl>kC@1QA)DFqxx%WrKaL5cwDBR`7fq==8ArL3v%L(0Q3O)h@QNe|Q+XeS@jT#v4C+J-R5sws@|wt`a97 zdzxamQuL3)x&TgPcJv>j>l%WoRnmZylh@I`5h7v=+a7zAG{`H_NX>)O@^)FPddH5X zfX$ivlh-F>2^+i$AS-UJ#8b~b1;~0jby0XOc1ihIa*GeILZ@%c&BWH)N;GHM(e3tV z?QH|p!{)(u@sZRnVQ&GJIo2{&*owuOd;E?d?760L`w>xDT0+Xq80lg*Oh>>uXZ?A6BVR($@`529}j#uR&EAiW1$Ws2Dp zYQZn2hlF`1$!+5Y_-*xz7wag$_^Q5u?|7lL1l3^_ znV%VFk)*~EhmG^|L;YLoG=1@AqiSAMeGN|8wl}G8otZ6QyDZSuLMPFJPHdCnsxrcw zBWg_*@dyEUlIwU+6w;xTa0?iI3>^!w)4{^q-p1zS@^@sW8RZ3v zedI^lyM|E+^VRex;}lzQpbr2m_HvJ%qEDCx+#iW{W@I+%kNY(_sD&5chIDp3QEpFV|XIKj7*9jHf%=~~}a=4~D zEa0?v-B!3QoKI`ct^nko_jT424WNuZqe9w0!#W!|lb+|h5@@nRqezZ;e*PYS^CVpm zCnCQ{@eyCvD~yg)>p+p_-(p4vddA-D)wCd2w05Eo_wU?B@sVxi1O2l2a{Bru zWEy4-25lLGC5Y9?XE2saQ}pusE3i-r`ntXvU<*VZ@oaVXKTFw<2T|u!NKMNxoOVeKm6eDNav6uB2}=(-mU@Q zv#jUd!~3+Y5k0d0b>z7R>U|Qn!n3q);Q@6%Lnj}N*Z=;nlU_Ty&Iz0~$hb79b4)q_ zt0-;i`mok%`3^;WK#~anw9WX@_x?TU1_m;5J=xD@f*LzSlm`}<>OVSK2pFiVc>@p002M$NklL8A+ev>{=-4ua)Q@f6#G&tzn27)L zU;o<}9&L@c(Cq=(*?#Ou-XdL`mu=amqz(QOqXiq=OzJe>-WN|?cr>1P^2wAI*|&>@ zeW;;cLH)}xlG}$9`4A}6+5+GW_SsafDIe(xhD5TK+pyd6SNpgTf8gNX+4nviX9;*CWc`@ zF2oFJmXF_gE581#1bd_*4lR%bwBXJFZ0OA*tTt(kby|)qbPYXr;R1HE7}u^`j&sZ@ zDIllIMEJJ(H)6M%NErwe5AY|Ze6y_6sDF!YFbf{DoWE(`4)jenW)mBkHC4oo8d%pb z<5>G?An$(+X|iar`lSQ^PaptC<%_-m2s&Mh+tLGTF!X-!6Ok+i{36=^PpD6b#scl* z))1D-TR97S2Ku%IYWU!YNC*L4AQzIu>FLxqK)n_w9@J@MnOa4X&i-)kZ5Ji88r~jn zTeq-e7%Nu9XM4|9nx<+$AGN!J6F_Ey-h zt811>>@9?xo`AG}YuwX)qVo*rSK;-yDc&*9>Ml6v zz_}D#Q0ry$wIKbK0y%$-;B@UILtHRY-19ouID!&pDl}lSF@c~pA~g#jXQyX)&r+N^ zb%Hj$xtO1QkY?z2;i#7=Z0aVe@+|LOy&hkB{<&x+%CSIjX=*loo>RGc$kEr~)YC&s z*gu~l=uC?aStvjSumE|ZkdY{UYqLo7Lwh4mGK=EXQ)OO@+(N$bdMHSGhJBJ)10Yj* zZRzQt^%4Vt@vR5!+D+^Xd8}trMiKo8#$+1<(ogH3oiybNZL|#(o}L`0qh*DCX2t{c z4X5+Rlk8l%{5dkyNd@=`>JTtQL_ziSNAVEgRluqDBFj3-TJnw^T>xqG?woC-J^dJg zR-DcXm0YU@?gpgQ*yfbKwwR+hFK5#gT59@MZ(*_RM@y9Jq7;AJ@9j-&hRymh# za>BOg!PnyyOoc)F0yZ+#6jUF?gt3RdZ?3nN1mj;`CIvK2ODd7!VNV>QQ)v<<&iyuL z*>ZOtoq-3fSg;HTad8Wxy?fsg0u1n-3xb_{#M$7=hxmGP2%~ZO0)(bpvJ_NRYR~ zid1kIwu#CFX6aNYlbRVFnjivSB7H|U5bdwE*rP+}*!-~$&K(;AlQ9ZFBd%O=INdDU8JH?7{q5$F&3S%6Ahf5}j^yE}McG4A~(OB&yB& z08u3W8;EF~bFy|oVJ3E|58JSWEz1uM!Fus{>I6CnhLC%0fazOa4)|bysrfj<0cj&` z#WTpOA@}~`H(rg2v*+T&Pd|tan8)jPZgH>FC2+2`UutV@3D)WDQ?OcQ4hFY_V{VG! zVbV8S3$P08F`q4))C4Gz#i~$)AkZu05L=Nqqu>pEf={c|Ikge|$;SEsxkEs1GcquW z)4qO#LP9!lMky>5*p&bf?alQ3L*ti`9f5Bq3(L#(@I1*sbnrUm$Qly;#U^ZCp3k&) zZkwQ~j)K$vV-zY9U_Jc!eQf%}7(9L^)wjrOH{(Z&jQ2K}+~ui8KIdWpdGIqWUOo#O zzOXPuN}Yo7o-y9POn}K+ng~^~M|P|+**I3#3HbDh{3lbJBV|(rSO|dhOLnPQH)ef{ zAiypQ83TU9d0~HbwgQ6x9|%-IfZrzvs8d8TaD@mH`FDLKg4YN-)mhZw2%Sb|i=30o z>O@BT+aknvtHKXJPdIiTq62wIxmoH)N1Ku8x`T*p7sh8V?K z3F_0*beguENXaNPMv#z1I|@={CcW;{37e>xwMAu{NnrM%3M||sA1cHuQwqbU znYH5Z4iQF?Vmo=gZJeZSm0f^^O&lyIl+q)DB#X~{cK0UvF6%aGSz{gpVU&}{nAUa^ z2~d>O0xjA_E-O8!!E-{0QdK-uSu2K1s{W7yBnvWKw+{A*D8MI#Im)+%D%Q#lmEH%S z$95bY!eL*p51uiNV(P$tUI)57{q&RUR{%5?qlaj$sj)dujvi0cb(VDu;)J`1&Ju&f zy_oCUV)9`p=hE0jw+0N*{=taCqk5BLU5gP?8$HN??2Rd$IShgICnv^^7{uCw5C6!jUQ@1ty|A3Z~EuN^cE#ZJYoBUalQ+faNA9`7B(XpNs3 zrCrS4Z>N4CBPf&fyas9mDs+c6w2|(yZlV*XQruWebr*sfE7SLp3*|-mY~Y;h>M=0L zsRf(ncaxDz@(CUTWC&U}NN+ijPs^&FS)AI&S=zGX`8E?dSY#+Y=ab@whX-NER!Cp8 zbFXw3H2Y}aY;w%Dc9o!x zWa?OySEm4+WETMN0)u_lzD@MCR|lYDbes`ctSI*wr7VD;3)$ujNxG*Z(=t;a_ctgg z{ER|R_F>@SMZf}skDz`V2B-&FTLOduUUBsMJkqwbXW#icb38C^yw@6`0!Fy9zZ~6T zCt#WQH__D=ky}0gF3@6GOM2&k;Gx!lV~L2J^g#SkT6zGi0GnEh3yDZzrC`u7toz8y9@FRqm~H57h4erp zfV}}gum#w2z)|_ZO0=Hr=U&-joOx?Ic8qJF={T&GXoY&OXI%&Adj`F%sQ^j=U^S!_ z8@cB_Kv3(k0SpOyJ2Q_g5=kmI+$Q)mJzT27eVQM3RQM6p@(xq$GE~}|;@SbU=s z?k=`wyRt;ZJB7LREP1FvBBsjK?$e6SD?#@ znv(i4hquu`&-{!U>Ll8W=+MRjb}P3-$JJ}sWB+0{@~}D^HS5?_Y)`U302TCF zdu74z5$&2B6b(lVoEo6371$tE1?0cV!kogAY06Gtt8a+828} z4x_Jw6xzWYvO(I86lXn7wY{@HcJKie0?iC_H1@D{KGClZ*5%N&ENmV;M`Bd=ks0j{ z7?HIyKn&f<@VYKouW<&oQFQ{~W3~YFi@*jmMG6eYg{iakQ@m#j3(MGLnV<@wY@fY6 zs_9R_0{4^(^PD+i-B}Yl(1CrqLEX>fhgV=gMzJFR52k}<0Gw&S9R4I~H%OVTL>IL> zPCqrBv-GeK>z~d??M2dX$lf77=(8)+@zP7<_%GOPYG)d9oYO9^M<3*WHvvuSMf3oh zP+PM`dp#X@7#i!^_UV>N=fO=HEb1#$8dQgmMPy}~D}g{2L8J%$80oSDzGjO}(K$$& z+aBoOI%3DNrdb0VwoHH%q>SzdN1@y?nj8GwS?nfgtl)+fL4l3Bp;R$q`)dmbzyl&1 z22Vh9=vXbT_=0grj@v3*0EAC@k|B_?wOZaU4^t2zV_}q-4gu#SxX2NS`#>S1eAkg4 zc!M@2FaljFDs!ByG+=>9ViX$10?Fz_g``h79PULb$+50}?o?? zTB)^g4#E-6y4HR4_pCP+BOySJg0?WP3CAl~Dw2b2=RK`NKULmGFh@}s$WeM&%HI?U zt}V&D&^Vj0x8h~b$}Arlb`n7ErO|KZ+yOkav}r6_ESV; zH9pnyoU7Mz*bQ6D7ls|hsh6_lUX&pvPo>pJm}04Zu}3Jra~6z7vN%sCs2QEuN#W?CMLzS>~|_K9K+n;376ftKyK@Z{sB@fjtCh*HrRLRHi4)Es~kaUy#`B4`>O2ktDG2*GLJ4b z6=M``p`g>mOpEwjdegl`pd5liPNwy0=xe1=;es=7Y3Awlp!0x_A{??vJN` z?Q#0gPtgC3!zF66aJ3E{@*yZYC4d8AoNc56V++qL5K2XW?kh&vE(GNu)d8`tI;=zW zsd6|J)_n2#SGgY4Av)p%jC@cK;u|l2^V{eb6eEVxJhbUNRl~<;Z}Pbf)D8&b4FYP| zOP~GVcw=pew7lsQhjPgpr3a_*W~1~ioVL$uke#!|w3FyGPe+eBvrR?!I(0Fv)EaFg zx6RP=?SQFG^8SLYZeDx9*{$QqYB)1)72Tpj8yzV_t>yua``DjDYEEnkHM*?;h}2`d zKGH*xhGkg6ZlvxRJC51(kKGrts3MJB z0JbgA_NqHDOQu!k!iTPDakaHNHz2^h5}>n=VO6`J zK06;r3mEAJzvub5sN*qQ~8}%sFUgTH+?MnSv%{ zld;{kq+y)E+6diUrl9f=LuHLome)F;MrLr2b7+O_t0Aa7qGix@gDJ37r^CJafF`zu z<27xKe#1I(bLbn6n&EZ3=3vm*G-QtZ)|aTW+P-RwH?Jj)qi>UmsIuhMzfJwh2I9Rr zS0+O?(@C^bt*7&M%{kZ#hmsN4<*5<4du25qBe411|LRn1klB!Juto4Jb|?Ffv6F&Y zKHrq^i@#2BFszStadwL-XxdTh^SDcNknRy=Grb-}+Q8=@(W$V-xf-0v5~PLmmp&nZ z0k6PW@`EZ6NQRq>`sHD((JtI5%*fdXsH6y+-&-h`00K@U%^2Y2I&xos@BSo1Ic{Uj zC}6;Fn&)*wR3j2B8ulql2Po+_&n}SGk)80fRS2D`&R!)*&X?txlGr7}nIpH@Gl;>2 zwr#<1IXhem(9!BF=Pj`3cn->EpDLKH836m}pDJHkLOEIq{OVOXGT zZQpBvDi_!3+}suMwd4}gLv0W~^Z7bvYZ-jBWEpzM z;xV^X6l;N@lm9fhoAkhH1l+p=_R}__W>O1A*cm8OI#}2q3=a2G;j=uky1Ka_L|QU;5pfB-wJwP1R&bO$om}Z&1Kh!QgQ~eKAwe+ z!kUBBS_!&#>}3P*mpXGQo13%E?`;kAS?bD5O0RHF+BX#sG9&>xOKh#taJIeHk_ox# zY?Ja}knBemNXbZOECfg?s9r~iaWvA?M&$?O^ecR}ic*9o-hifc=n*#+8{Cg|7h@-n z#o6;`lJPu7@n~0fH)mUjhch#&sMV>Hwxc@LF`uu8scB_mB-O&)xA$kajAKQ0{EqMR zE6x38RXTA&p3YHPPyJCY6fn$ddXGAh3PU-6Tbf#7b9@NN8phelX0F-4eWbQi(Nsp$ z4o>gv!HI1nBRXTrsT|S4=*f{()xO2^D<05uUW@U-0;kAtm%VZ@i}_D=uz?NV+s4T^ znqwxS(>ZW18amt6G?EP%W{UxR#(>VtC_SYM(WPdtT|UIf5}C*dS+FK>uO;%Yfnq&? zbu)4^BGIYTz!n}*ttZGA1p4fOav9mj5VAedT{R106OaX)7}cWNdNfItriE=R{Iz;Tk?uCzn!) z{G*QbC_g)b0i2toa4p6y0xm786c}5`mBlvrIC1Id2J-BJ%|s{jeLFU0mo!8f{cfSC zH92wCBV&oCvXNXH+hB)Q0)3pV)Goh)M&{qhs&yU~s~Lp(uqHpp*UEgA0e7B(0DBL+ zqI?(?dL}jePN2^JQe+4`;rwtI=oPm_lugG3a-_rBfw}U_HMt3n?3IPVTVS7Iagjfr ziy+J=#>$W#z{t(O((DrrKl_bWV~(^%8#0u~al4nC%Zi8sn&BY zUZLQxHhSs->aCrz+05ih?l}YNVrr%U zc7+0Lz&5tepi;l){g~EpxRGBxXGrtU`?)b)S=9mhx5C0Ic#}e*Q4|IGV)M=lYXcWD z(qOl^sPm>VAnE4}E}$5Wq1))gEL*j6o zxj}x-W*b%OAh7b9@vbfh+QYrs z$GwAB^dTJf@2dqy2wOxMv$J#utS%B!mE!jGYebL}ahizQ5ytL?PwZ3CQ@sGUqVP!L zn^#sL)Daz+!nbd#fOXglYA)~IU5BMe)5Tr&qHTF>a{SfsS8 zjEjP8VUgFUKw*1Mj^b>gUCp)bdtWG%DFg4t)PRoIsKJ>5K2=RemIRZ%Yr)vM4gmz3 zV@$!l5@{fO)<1|G{h30n(UzT2QDs^@ZwDCpS!t>m`{%RHrL<%T5|hBf9cAg>JM2Q# zoaT(O(SDATF%E|)07G_Qu`E@gA zVz8fQ3viZYl*=SORNS!GkpVlV$`ND`;gOG*l177iYI5u>{NY|MF z?wfN0T&K~xEJ=~pH09c^2I~*(GJs@cABd!Roplo}6hK-9UQCeN>xCbLFO@1u9JHQ-==m_eZ?VEu47gW&rOe60PKDl1s}35 zfspd1O!9vKR16&Q#kj}^Ic@wR?q2~r5FNOqJ0$iK^apE z0jePQu`2>V2pf>q5pq8(RM|t80sN0*75e_MC!U}#g?Sh{Sa#W#XrG|hj6Aqkcx~n- z;CNW4dZuAiU(AWC-v$LTjcjm|FR(%SLi}N!tc^jxd7XcpX;6*u(S7d6y(wW^Q&Bd+ zqCQg%1~viNZKUzE)mS3_#^EPh%x7?YJ9)g$4$P_m(e4=K+xuyT-Kt0Ck8sEx2i39Z z8_2T^n^xg~0y+!)1YY~d4}A-f12)vQ@O+k|5}iTJM*nV6Y4H35?0sU*8^m% zLW^W0Y3*(H+!UFQFt`58x~E0}iFIB(oW1OFksVsh&GGS``xhKgke(@t-KK z8g2Spl_fbYca*5_5o!Pcqy>Sgu{W#E_Y0TKSw~prK{sC;+iw(aDGH?Y%KSeV?B}^B{O> zCb>3F?USp-0IL|cuGq8vUVQfMJIqCRfyr;s&ek1Jl%rzW3X(zbyk}9jf@8#FtBXj} z-t{FOV6-rE50r@`q421^jl2^%^d<_0>OjPpz~qq4_4#PdMvRh?j^Kh*OwLUTPbAAH z;Vc0f7y{xRgqPQ;7~FRSI$p46+Y`5s^TPPRO4OlH4LGAi9F|XL6IA)tfaLp(1J5WS zT-HGvi!~ra{O8AOoU~2WKxo*rAnO{|Z{%pfj`bV}3ZRRqfb&iiGv}?sNg*~t^&JrP z8EvCm+&63hg{Ti_XA{V}cJ(U%o=Jl_DxB>u>uf+NJD4q@QYhRSEa~U@sRt=F;gc(C ziG)YUk=Jp3qZCI&3xqTdEFdu`QmZ~Tx>{)qD@A0VqC!w=Lek1EYj=#PPE+(MVz<7d z!Zj06#*x(^qyh;+jnAcUolYtfsHV0d1|s>iG>1!NI7H9Q$mhs>H?Pfiv@j%zk*}#Z zkz8q>RN784<|&x$d*)fLMa1LY^FAYxRQ$&>np<&{$VLW`P@gwv2q<8mHHNYdGC&ql zniuwrl!-LX6fi4OrEyDx#V}q@Ni<^8K3Kr&+>kwVu3RDFWDl^?fKOX56E~68ipFtW z^gt)#9>Z=pBZE8O?0pXw9xLMg5*%`GMCbswe28s|A=xYv~4L+GP}ysjIO*hVPMQ=UL=Tjo~crEHUimrDvmkcr0c=z8W_#e;nWV)n5Q;;potZ3ZJ*S zQi?zOpZ>S_m4ES_cOmNtUFTWDs{O+$sg?rDrugU`;uB1iSe_i0HR&dMX_UHp%DM=Kl`o7e)reoSAOfCM1}KAPn!ei2qtSdt5)omd({lP zpp7+RR40_ldTbN|tO%m3q~6dWbxB#aW!n~0X@1A&W&{YmDhs2LYTcKH?6s*|!A&iojf*Ba-E^h8n7VT~H|^pf(-eIw zpkS9oO`0FEPh02F#w6?#X-(|jy`2>R6tq8jvkyIg07y7u-0>kY*#NWTIOYZ--2x2N zdSNHln1b2dOlvO>c{-pr3f>w!1-rl+Yq6OEgLa(#3YGucthN96Np!=ON$e}eA+_CM zlXh6o4xhKOSRf@uY6W;+S^~HnWB<5UgUA-51Z~R zX9`?AN9|DywFCEVeiZ-V4}PDAW_83@zxx~1Q*|L<=s0#iJ%$(|u)fa%U^ZEc&)Jf1 z@aKG<0g%2@A85y#c3C@#1hE3{U%5yWs4w7;zvN803@<=wH3TZXe>+3J0jg(WH$RCd0nU(4n|Yg#I+mAVK&iX4~L)9qDBp4~7hkW5+R8p?*b);^L&~;L6IKzLq^bhgXZ@!vx zns2=JxAF27Lt%X$G^O9CX^5#R5yHVlV~%xh&-xH3wo)4*`!$jnVSSx_S`XfSW34dLVX3`sfU zgToblTfHnjXfEA*QrJxidEYu5^N1M~*84>EE(YelPe-`_KN_E_wv0 zv~^C$R|D1OB+7l-DR#`AaE*G-*2f~7iV&k%q-*=q_7Z)^%$ub8!S|iBX%4;tuhD7i=8t% zHm8khd$2Uf5i)~Zm}>FtHEuqLNGexZ;>YYGBbB(P1Tgh|d}exp4S-L^;RuTQ)QO3h zqT2nnpZpjgvqzl)BVs9JJ)mak5IM*m(an&p#M?jqNvh_bV3?O@wRq)LoIn3G?OxUM zYheh?(gU7jQY0d4qtFzChU!;0>k01({bhgjd&SHR!M19#r|LQm+cP=pk z*jc~9^kO3o;z&8+r2M_->AqRF!oQNu6A!`C-5LG+V2 zf8L8gv0;vktz#HWI}fqRQuSC`*^24U?jRc!B=Y+9kpUvUjWjGp#O}ZcBN;cq&)=iC z#46P+k(2ba0_$vorP;Z-cjHzJGN{Bym*z0=ozR=jL=gpws4Q~HVZ;_lD^#eev=DBE z`TZqEP;L?}KA4_j*7HjI!ms~lj6;1Ph9-{l@T0MK0~+hrdvC<#<;!gTL<}7}o@N`U z2vXJ>IB8U8-)pQLf+CGqVwlGav&?-;Uy=UhPd~rJgIQjU@BE{0r|Nhuo@>&^zSOnp`Z5wm$i&RF!H94kU6>eTofsfrX;4ENR>W7`tto`4~&fcGm1ARobz;t-^i z`HUpUdQ*hi^*BJo>m^{q`_zAaqZnW`s*!6dF60ArQW_HPwF*G}-dAJ5G;Vq%E?|0Q zyHX@7n~h5!eVSSxSE(*{$ckfqo9QRtA=P8c+3-j&Et@~)CpNJ2lB%`KfsI>tCmarY`}kR0PDjT#EoRu`jHs>QDiF7#&Yk z5T{HC$YJ&QnSnqx->EZ9!@hW3l1=u;wdtHpQE_V69McaJmh!hntQG@07FA}$UjIgI z1#&9IuUra#wd4YZWU%=Rw#bxcmAW z@opmUl~cYP{m`~T>A5AZtA>(29_7lI%F z0w9PEu=gfP6iM}N$+Be2jvYHrVkb_VwmXxuDVrTfNU?X2AR0-4C?tBH-|xL*_Q^a?E(HO&xZn4^<-F(oPlxFf=P*Ut?%q=!vEt56 zG%stS%PVc5N!zo+o$&}z6IP4)XkFe+uZLC1D){&}zaG18zA+Vjk{K_lY38$>FRqc# zdOoz|n6V)6R!PXDJ~K}=fGwC% z@Jukrp^H5+b?GD-MAr~xrcO8EI>B84K{h_Zqz@TH`!&W9pT`xN%oLzV-$zEC$gFPPK$#VHQkqHoU$B z+AQK6%HDL*Wqu?6I!)gXzV~WZL zK!Ee)-f91FbLf(uK>p?cZdR{b8xSGYX$Ru?!L!lbaXi+zPQV9wrJs?D%8T7EGX>-W z@^mxEEL=8%!YV48DMKM;&;6IqB3Ht;85B(1&Cd|T`wW`Fao_YMAu0eQ06~HgjQKnS zI_D0ULpfyny18#Uyt)`%5Rw0(y?fDUhN5NtM!K!-Ocl45)K^FQ@uP7KVcPlDc{;C& z@-Z&L{N||SRa8_#|LjZztX0P>`>Q#mh~NhYRDh{+WNL`q`)&fNh=ivM?bIB|uc8LT zz7#((jE%7vXE4y&6VsHAlnL}vG$U(3~=r$KHM`jzS>szWQP;sIF#Vu?kQP&0sVGAnn3<;H`Z`sB6ZeC&Hz(ok~6Q7D3ci#+{XhcBZBgdyYhlyOqdfhLt%u663?SX#6%%QcGfUm?@F`rdbE=j32 z?W9GGQkiTqIlW^;5b=p~OuhqiI=(~*bKTZW98UamUaR2ZWg#3kHVJIcl|QG5Q$Fv@ zeG@ocNBPo#piW{+!76O3*CmvRR%sBQzFLKfTBXcf#*%0V^D&q4H`%AeEy43YG==;^ z5wr7k4RkNCN6?bK@-)^o2Cn2iHEx;EI6_|QiXA46-X9$t1*MNd2Snwvx0XLHCTG88 z^-5Bc1c4MSq3dKB(dAb-gjZ~A)S%@EUo+b4ESjrYtNkV>(9UFT@W}*-5(72@4!Rcj z86*Y)F&DuJb7Xw894OOi1x_+;!Qes~FZoL5Qkan%m*7Ex>RS42)YW$mgM)R$~jQMjJw~snn zt}FK&2QVqvGw)}#e$R?oJFc_w6-iie9hW4nRxo1gao$2>RhvSXGS4Ce(W+JJLZKIWROpO|};;<|g_Cx1G=|2uyh?kfia4}yU$mB#McE^d0Q_+K7}$%2rwk?H_6KgEDj|h>Di_DL=4MhOv6S#7 z7%0F^5P9e0g{Qxt%*I=8-4*}k%YRF`>^jchY`px!L4-L#i6?2{5;PkZks4Gn@1&Tq zmhOQ7TAFe%5`D4H;8N&O{_9#3OH1%yCO!a{5j7PI$TqgbI17U;xnbIq#0S`St$_)2 z@_b!lYNUxD%kKqXJj1f`awtM3w6Js)c}Z>BClGj%!W zc|Z`Kz;gR2%D+RQ79_k8X=s^ zY|}LreDCjtN{_r)9%j5&Av|-KAkBQzT(!(vlR{T@0s}DTTn8ZgPNzdnj~j_@WPbWi z@-QizQ*KI&1Y(5p^=L|{BfV#YuXWfxNy&7;w>brZ8b<54 zf}Z9cO=y#(xMj0}6$piOyEjvqgm%OTlV&!z64!*0()KPe8gmY&Qx1~6{l5ES{nqWN z=KlH9W<{JrD0DjeQQre-$*psFJ|T^6Gf=_1B^aUp9Be zZ<;YP_fb8Nqn;RqZ9B^mgsvA0#Lf61#Hkt9SK3}VC+ng=H~DoT3WLlP1R1ms@+Dx! zeHIib^bF=y0?hN3#rU-*NinH-4f}1dVapQfL566Ji<%i+SSuV+yv!NVHj30?4vM{seghbr#8ogN~!(cP)FNV@SNqX zt6BF!G7Q?=&+$H04Y49=b{AdSXiCjSni0&Y-A|FeDHAqbF^};oAYB`^FHPQ>(_KJ? zJpbn!G+(ZrE#yA)Xfd3LNuu0!`$+m~$!fB?gJjTV$`}}$tN;L-`B`ZPA%`aCx)$Qs zEF>RWt!`2iF7Xmp6SEVi%-`1DqZAC900fmXzby9Hz+5BnD_6A=doUQUz4~U{$(q;J zHgQe?D=+0TF%5CoIG^~y23Bc^W9skjjGYz@XL?I!FLbAm}g?=XC9@}V{x25b|eWQtt!_5{FM#0 zv5Tfp6PKi|j+i2lD+>m!pI$)FylG8b#yXe}Sm+~?-Ztv475D}}H7Rq%|J?nNPsXZs zYgjL=QtZna%GqjruA(F7iFc30uDkDsj>{8$z!BI-1upaD%t)htDZo>v6?4T6YbnZs?xAPTvY^mf9N4BrBLw_AwEC5Fb*H0mkD%a1;rT@KBMSO)8?VXsR2HtKsR4?3rlp<-&nLya?jxJ;v*+iJ_PwhJuRdr?Ysn2~D0NBhJNHb<{7m;~V zKtG6i$_i`Mvadi9N`ds7O)-gV_Q-Q<)`UD=P<&+nG3qN2qPmO?m_`P%+PMTE+FUGE zNlo&c^8o*nF03Le9q7ilH;^tDwmO|vd7O&9{9Bh(*8cbQqZsl72U88vmkd$OVhWSx z5Q4QAUxznO+9DU*Gg?GzP@V4;u{aWDYG}fPt;Tl#^ocli=twNzv?WSvYSV#Oz_o>- z5d-<`J3qllHWWKZFlN zk=BCmJ(z;qiLa=rs!NPZB57K-jEGyR%?w7O*Rxd z5}}%czUPdUAoI6*7=!DorZJ6>%7UrLC~SPhY}qeCSO#3$NJEQ{DVILu0u1-q@ncv5 zu97{_gQ<^t-TI^%w?dP}Om3ScMBkQCaHExqVM`k8IDiw;cDjuNFasEBi^VsfmSbfSeo=4+6Z{#BW&H0Nioo2-qLw?bZuROatm zpfdZ*4B2DXWdX%S3_^46`h)Gv>GQOZl%R>pI8$^z*Q)hd`@rW~2SAhW0L5gIm4-uW z#C<7Rj`!0YC6hlwx?$GjV0`QopQZw1C9|c`k5TBHFZV;io=o`Aygv&@Wr$jAJlBMe zqp1+l&6=gT@|gsbFj-n%(S4i)uwj#i-Z?*vUG0SxVx>qQ#kFSIV#)|XNNc_puv;K$ z7?56RrAC9o@HIbZ zCLSnIx4f+dd^l3@Se#>TaQdei=T-UW|s)mOZ&PNAl zIUo5z3?AvZ`7zjq&z+sAY{sI7D`=u0;mMi|ja((=IV<`{==h4>y(G%{6g^s&RYw7F zLSqDy`|Qafz&Z2J1{~z^s&~e-#kE|INLz_oY{{ z0-Q`K!qts62?(3Hp}V9IaAIwZVd9v^hEO)3c`eWdxC^b#QvoQs^Men^=9?&Oyo8t~ z_}d7;zLO>x<@v}zs#}($Tq=#siqSP}uxA#$x`a7~|13s!Rh4B&J>}oCh{?)>W=zMQ;~rTD z4jv$-5z65g_B#=*b(m%LlYoJ%fPsqyZRyu>(_{vT5kfKgJN>M}6-r9Pq`*|jo;!7d zsQ=?p45G>*&8x1uHX6z+lOO>M`|-q}M9wK?PU`phP`CGYOfq9XD0AQs$(LjftvU17 zR@VQhnNmg~BY><^pbmfwYUTkjEm3A_Uc#b^)C-&&KO0#olkv+yE|)+dEc5mNNK^`6 z^$?kjIoUEHg}Vs40F6&Upo_$V3O{r7+=Pup%Tkykxws|+G(25AGBHuXkHTOWW-W8m z$C~EJch{ZaaX>LOS=kKYNs;`Fvk0NFKql{cgJN<)gGumnpiS*k!z!TDp_-3EKSi1X zHe?$9Ep0B}B$8B$mocQSjtEv6gxLZTkLh>{1;^l;sPN0eG8G)v&@v`=wJ=eoTBd8m z>=P4~$+%Az{cx@VD+NFTNH8n+1W?a4?7jQJoK0WT^5fd74PQ9d8K>~Go$F|a;hITcQDeN#%HX%e57_d5v`F^2%UL*L3adkD+@3 z_Q_y5YzRGR!7PP&)n_3P7(#MIGR-0f+(d0Onqz|P| zb(k$R@tZB3&zj^=q{xntT_@?|0BD|v1`~bqe9wb!E1xpQS+LCS5bIhD z7}d1zUgaY!r=Y`Ptwp0)LP-C!+o0#VA8oS)23}Z%We5hVaw6EW=#dsa@9)|1Ok0aU zURDB4F+e^e@8Ld}g|h*41!%;&K;URmL7Hm;K-Efv!w7U^Jgf<^2n&oZpsRu%&QvZm zs=G!0W9HK^3X8S)6YpeB7A{J0H%xej$a}MaEHvgpHeh>Z5;rgH5_4hP3iu4bg=<3} zf-b9*dhX=~!U6$^0mr&<@~GD!T^n^yTWDM8M~K*@y_RaDaiE?@z!ZEWBk zlu{-|&uqB?0z^%FwFiO$=hBarOs^1xda<(uH&8Dja|MPFFtoL>J}4>x@<*sw_T#b>&n#n zeUy~eae7|Z<(8#Nv{L}jv`lmt7SahUq`DeAE>M+{;J{lSyd!0x6p`ViP}lOMMbCN@ zuD7lNd9UYHSLh7Dpkm>CENf_mPXPp!eVk9h06fVf!j^MLMAo7SN#?S27z`flJWquFUp^Zf9{Wg?-+Lc%XqAZouLqpv7iaua zYUeUbQ>qkjGf88^&w&*onFnP;Y>NO%9)4s+zObUSFd{He2TxQ0hfR%AQ8Xoi2I^f!A z>NMX!2UD7C$wTfYXf+W}!&hK-3K$Ot0vS`kzOcj`7{3=Ov=k;uz_PhoBo@GQ3b=-| z#bJdxLxL<5Ru$O}z8?=RTDKZ$()1Me93~slXllyrE!q_TK_u;7+69omBq5Zk%EkIa zsQU7aB$0t-^2^mY*aL*0f>MhEAB2Gej3Bm5G&5s&|5=O_5$jx7KS7K^qFR7tSPLLA#Xy}R1Vvee z4TL75hhQI5eRAm&p+=jJMy;uSQL@r-xL89i5c$;nH*!}1lq>3*u2E3O!F5;nHgo?%@_$nrrEgKik3 z%osWuCMIK&R@QdCoJD}lFn7~XjTJG&K$PJ9)BpfL07*naR7?FN!N0~lm?dN*sH_E* zSe9t*%lq#FjAq#4GqD>kJ=?V~dEJT#nG^R9Fo`$;)HzYz;ZLk91EqVt1vJf@P-J;Rmr&p90o%0^wjcOWj~* z7L0OEX}iM_hjuuVrbn~XiQfnu4V*QYQ#w?b8@piEgRY7>nl<&Fzl^Y@hYD+GPYBcL zN{H(igGUb2`(&W4oqilsQN4Nzd`asp09msD`zq+02mBa3&Y@;Ma>@88C39m3LZ6r( z&Sv7BXte^1DT6_I$zugkc@;E>8Z9LwfTni@4bIM9rL6lE)`EQd>Q?32eT%Qp@w7`2Iz>cACRv_UQ$(fL9AaP&#<&0UzsBm;Rk7{G{mqrra;U{t#bOE>=iKJ4jd+ z()&qo#X#%}t>&)(O8b@!B?W~+lrn$KBtFyt70r&KMpHL5KN+>#7CrAEDwQaw>*7{nbO8abK5k6 zae@%p@stZIlNqOQL_W<%inz`$RdzkIM}R)7d=AAd48v5uX@tFMT|R_81LL>7Z4M}_ z5N0arCXYCa@#GbPSXuu95Prk57XIeQ*=vyR70@?qfoc2)gdJNG=eBnId_Fz1;Jo z7oz>_30i}1rn@B!7^Z18vr(Bje0)J3nkh`h#wmpW*g}~51TY^$dXNi3`J+{el zjqr!6y2XGLKpgQk6GWGfBe3imSxxSGs%8kuEATH}xI~ow#aOd?O&osvI2Ixr-&A0| zfk$1s2vF$&h(lZX*;mP$LeSD9c|YIq;~wTq+1c z)7A%=V=py{tMnP@HqBXJ2RLIY9~mC9i2F{L&@&{5a^&Rq4_yO<4PT6^#SO7=aU%_@ zGW8%l+ZJldLio?XEXwL?5OMG~&vhw6mHVmj%XzhS8^433h41kkpQNXUPw80GZN}yi?b>{6I@z0YF)ofq-4DT=1$kZWFv56dd2rCBwo(d<$`N z^qsmKCvx}1MCX;*@QIt?Z@DN+H0*KOb4p{Z%Te zE~#g3%yAgLt4y;-i}JXbe{*v*onkFvYEXei@Q_{nvpa1OS!^jt5m}tE3@N`^6D?~Q za}WYGu{{0=v=nLSSHtrVQRpj5BHK2%AiBALtn2w*UrJ+0>l6 zQ)&K6epS%5CQ*fr=B#8QcEKUC<0lV9=jl@re@WCfwIXl^C@0yE5GsQxm<$!<7U6an zBcR6?t&JkqymE-Old;oXs+PL#ET+77QA-Wijz{0w(~$?mUE0{1dW+A1rmN}+;$U@U zIAx3Lh}N&g?1OoE@-hJ=H&6*`eavC@eB*`ZQoO*O_df_Qp@ZDT%W>}DL7sgvnp>C0 z>YH~bv!*3yd%FAMBq=04m)bCA6_Sxaek#%Jm%7iyiZz?aZ*GX5^KGOF9>sOig77KE z7k&zVS{*&P?~8Mov(6lTBbwH%OLeq+JKHmjWcb|W^XIrHRS)Z$WAfr4k-6ui^`;Fl z!)(k~XH$#Hh0J}B0yWp@VrVSK%sAyO(MHNhO>Ek51M?V&izkmoWo=W+pH&;JUAr|! zeV;vYAa>sNK&)SP1JV1ZsI_pAptZiJTD>tE8&+XzI~C*P+^*ib6W7Lg9D4I*QhZiH z6*&}wYKvV&-}b}Ij=uh*$Rj|LC^i5L@MM-e*p?MBTd+8~&K^bh&d2gCJL6&({m3aG z^?`dIjpaKwlRgSvVZQ9YgpfqD83K@`6efTm(Fdq%l(a4YTtRD^vt{DR%nR+7(X^+S zW>E`Z&^1K#UMAy0b1kQYE@i_UYNBn?jC5&R**Dk4!x#A zL4^Jctxno@kl9J2w=TTFZ^?~?zt!uE2eBiXMP@YpYXUdjPB36hg*7<@2MY0GTpn`- z5}JNk#9{Y9+6VW6XY*il-* zu8&o_He)eZ8b|lP9WOlhY<&9jpO2Om8(=(W$E@iTYuiWVz89YVVLWu(Jp@>-h|adQ zIPrrg3``dN4e&{O+ZXmk+x{QL z&JR9FL7*0_BYeK+LOk(j{}d-*eLWuerJs+y`la&LI84!}{?6{W^W$b6R8n7LBA)xf zbGWw7B!FdMvD(I^al=hJ<5cm9`1W7E5ufs2}& z{_qD+$1OMA80Ga1apJ(q_?zGRL%;+b>2R&yb|0Tbxha6g`zaOt2fy^i$X+xZHEVB< zWjC&iRkv@6*};;uC%50c4J~$cqJ1kK9(nr|wACFq-F7p@b>`xg7xu@Qy>G?skKTti zP0<=$P+9Pnv+%YbeDm8W(!8pvA(mrCE~T2{nYNzz^6&m>oLajtw%>MlG%eqb#iAtk zA3hSN-aACu=uyBRpoFK>wTTQ)^o_hfwgo6p71|J;Yud70oGW=nuf5UU$O{1-<;1m=)#ulT5;#_hxgOMaf&_Gs%en;_~0dK$+Vyl)S;;30^%Oo zo^8({pHYF;1)PVl)T(*S_S^(HD&vx?hQAqqWM2}s>rns*Dqzwyq~kHNcTxt7;FNJ1 zyCToX#%!3fCy;fMq<5-v2bj$QOw15VVZih1 zUF)I~zwi08?Qzqx7C)rlO1wohkFPW_$xcl7EQLCet_**ZiYt$wgGVl5tsuN|WP>x88`i{^6hF*z+%t zgopPnWk9VVb}+`M2(H4{L`K_C~`gE*yG z6LVJ;zEu&QIoL+a+JtAx;+nYF-9btr+8^K#Im|(vqDTq*&i+gEqTCb%0gVfW{7RA0 ztgZDkG7Ab1x1rgqi{QI3Uo<{YSjV`<>;`fmll=3tG53?henTV{3Q+EoHU$((^4kJCA=o-hTeu(L*KC^QTUr`5lg@|NPJ6(Bn@a z$h*kBCqf;tzX*_HzmA;`eK49v| z;a9)U8rwUb{b4`HiQpc`o$}t(PsN_6o``S!_dklhlPB1ZDY_b>xsxvT&a1D)JnLoM ze@*;$9h^j9?Rn+3II#CMEL)Vh1%TD9ZHtt=*%*EIM4bNWx8e_e{kP)zuYH3S%pI|y9u1j{q7x_!fAkxG z0@_he5%gwGxk4}>p7Pe;z8Y_T^U26!>{e|Y!_D!+-$=~tI zkFx&%6sPwchF%mlIdSlv*W%lM{s#oe8T3qxV+tQlGcG~)AOAo9IojTNBZ_#A7R;Ak ze3Bwc=W)S6j|Bc{J)NT*`%hX~!~`7aiT*u?fDg`Ie1X z1fV4V^87FrTLE_q$dbt8J|jcf@r5sbGrsq&J-8E4w5}rLv06ru%F+&%;HGGH?|TG=L&Bp0syB1fwYc{Fzzc=PmM8MAlkIM@KyV^>4=WPyGw6 zxGCRENnCjZtZ; z5O7e$-}ObxkPSd_(-;GT;ULT4h^#C{&<%H9iak#}ON-lz*tq3p%v_6ONyWL;!~UhG z_QV~x+#1W)weYMl!Z!+H35a_h-)Szf0!@|m(Xj1STJ6#zw0S;Ou5XF~wC>*17vi=@ z9!%!tEV^9f!i+Y;G|zIdyZM_vzHixmL$vI?A^I?Tb@y~f_0pxWxUL~y+OsznQcR?} zbtP5?($dOmiE!02QWzJ`oB^rz#Fp(lqXG@Io&~=~z{%b{FHwK|N-W#j8e8tXJ+jG1 z$Ez7P(qQAnTW_)sW%1xgJ_e(t$`OBd#Q);YV-gq9=z|a*tBa$)Yh+!-F?^M zweS45ID3GCJ)~IfM0l3~TFS6oTthhR`Nwa?hWqX&)$^9Pf*{BO;TvGrSYIFa{l`y5 z!CQOcwI`p59JHTDKKvnqtjP1{psdCmolhicF<+HviM@U2Vo7OJY`EdZIDZlI9m2D9 z!}{1+Q(M3^V1*wh0=oNMytlcor)s87OHCW=1TA9ltIhyozTIderGMF`=odW2}v=F46mPGH;YdY*6 zM$SnR;2bjJD)=D&$MU3sOi^MKjz=s^#vPGTc+g&r(-?VEj)VeON^^hJ%WzAW%G8yAI?P=fLw>KVn@ME## zo_pi;{zIv%Uulpo3~i6IrakQ^*q5ca6$mV2GUaHLAA01`IQPymimvo=j?5L0`0!^w z|9;t8cAd2~SgQbw%p}5Me35*pAc5~^p7~yU^2a}hITN!#JE+oON}1jCbRNC;?2B{SIqNKZ@O3B9DCYNrc}R zYdJ=adLb#nGYB1DlWI_|5A$+u%1W!^t`9#HU;oOV$HTqEMKsrPON0a_*<7p*vuJx+ z^dNZb=RX?{f8w!Z0=G8GLonq-FTWYje)X^8!;d_a{O51J{8DZBZ_a}ckzVLtjE^d*Lxbcn$qn=>6d}wwOe`D&3dhv8rFPw;9`r@xZclfJ016nEX z>e?DFyt+3ooE(d-TPv`<3ew12z%;IlO#igjJvH-Lz<-JXp5ts&9{pKiuNkPp~?^MyBKEvR_? z_B$94?iVuQiWg4CAn_UHjN3r$JQX1hesB9=y#CKeV|Dppth|3WyaK=uptZv1EEW-6 z8rS2FCMJpNVEno;bPdcw`#h(hFNAn0BewbmkG`z z{NSQYj*W#8%3zHXNP&giY?8$>f7U8bS`MsTZQIK=x8D-k3k&H#O$8{*M(Pg~nQ&(| zMD&CS69lB$d}98Hk*KoeqlmTj@VLaB+i6Nlo` zrOsqUShlP_)_m~~Ak0EiG7rbMAODA_#9gt4%2`9WMVeabV>M}-1AV=5=IFt=>Bilx z8=4y?^^Hxnv2NS?=mgMQZ95(L5MmkTq4n$6$EgF`|b2e6%Ay`{KzSYXO15;x^X3p6N6BI8OvA=YZO@CbJo~JAZzI_ z(azx@2ocR$c2|PmKAFcj>>g$-wPnG;4g4|UR6xO@2I$}0{Z;PI0=v}~o50B@nl^Yje zKMFxMf#MF8`vHOw{01S7si_ky;dsWlW{6yN15XW3HRW{-W@Q<h3NsH7dqrId&DF zB>wXDQyr{J2QHmu9Q2GkgzZg?NvjC55Qb&7IxRGa2Ee$H$d>EX=K8Ll7tfKbwsYl5T zpZQqi0zxG;+iqLy-f&phWX$6CJ%9Fmy#3m~w7i-(Q|ycy8``g}iw%0MFRF>XJspw# z-T^dHG(Y}Xh0-$NYH>2PLKyq6{oe1!MwEirsa)C39pBjVW{kA=#3CZe^EiiN@DTT3 zp_m7#Sjd>t3vDfRIwS(#j)-%_I#~3}*ZzHP#clNz90IV7vp$+*)jmyED~Gm9Q18!^4<5|Np-!hs2RzM z%~%D?aEU(s&8Jhw%=)cc=oE^qLb7ULA-=uElCr2zqL4KP~>0}oE2h2xK}3C4NDgLGCB<3F-Lh^lVe6{qR25YoFvnVyu}-sOJaGw@%!N^P%Z;!WEHKcB0jb7R zX@Oo(+{thM)e-N(32?CIf}9yFQ7R@r-(qYEe)&iOUC49Y zl?>QPybp>*06b6^D{>c9ffoS+5pBsjj0Ux#PAdAqrJ5|*D+b6-xuL#NBQZ0+R#JQj zy0b;90e(JI#?^nNFIAwLB|S%fu=h`gNG{5!Qi)o)`5@^(XHOqZJ?p#L+RzS1=pa~+ zS!)E15})-2?nC~qrGzh@I2{8oycm;bd!qfop_uEw6or_rI?;gNLpa-+uCjS48dD$s zb<&FHZbdjSWk=tMD^EWY9sAynO9u|d65hT>3R?w5UskPJ8xyCxV$V0e8Snnf;edp8C7Li@iVmKB+jx1au6N3P)*T0wT{I zKMXjUh-GUx#-X!qapb^zaUL`J#S_OOkIt)O10%#8T#c8$|2<*|F2qFd6#&5Tn8BJ+ z=mKMLd1U7;Q3tR(gZXikahc0LG|(ISo_QutKJgt~6PKgs_=za&ou;V8yVUx=8k=w( zv>iMW&wTS+XbWeerlBe}Y~96L+=S_WD-6Flx{sZSiR0Zdaqd#|A8U(K@9dASe&Z_y zgApJGNH~GNbq^Zl%isSO5OM(;-bYAPTZL6%f-;@;vGeX-(N0j)u>hkC#`J185c` zrlv`Z(3s?d92p*h9uYavokCB6Y_%^na4RVmAVl){d6uz=Dipc`UIByJzMs$3iqQP; z5R75~af8T>d(p42)>DF6QO&-Ph*~x7hONv$lg_HrYGW>jm>bP!$(f7@`%t_ao zDL!TxSY}ryq_CGcYC?5r9&jVW7c$3LtZy-iZF-I+1a+Lu?I}GqfK{4^K1RT+FxqXD`KVci$B?C?=zTkwP^3g=n_P z-J}M{3u84_6aWGDDP>KFs->JdreI#WFziW@SF|WD96p-jrjTq%bbQaG0PBXa+oo-P z3)n+D72frshvLGeYw=IN|Cg~8q4gWY9%PfMX(2K~<=9`eM?QN6K2?VgdF`gn@lXHr zTe0R=O!A!nrL{HD*?s}*0qcaqp%}H(;hHtefF}iabPdn4E)(O|2;#gPHDy`x*aO?+2j6}V zrR^HAQWeR1GfGVirHU3Y4r0n8nPQ#Bq4^nt)Df4s&H&1QZqvVYD@;rgv`0*s-5j$C z{4*`E03a}piC-x;&3RaWJEzFnHPQ(svdhb8>sygU9MxPjHx|Xp)-no_5q!HCE0R__ z0D~I70kXCwR$y8bEE_Zb3~OvtBHev_jPt=*_-qmJO1ZT3R!E|ZQ`cmYZl?v5LC%d8 ztyrzg3ZsVVf_W%|(`H2gwAB)HnOkg2*O`IfW_>C3lBpj0H+9*-!*TdiHZsHjce5%o z&5s}}uJ<0sK6vFQGBF3si6!ZW;U^3ZdIhi|tE^RHl~!HzrUUDKw;ZtY6--VxmI8x)0N3t|h*8Efs2M zWtd?M)LMk=;DJv*CKtk5kQEKh&5?Kit(cC?G?uA`dQy5*RB)D{cT@`q#9 zul_0s3*RpbxaOzUM%Jf4iV$La+;`W5_Yn0w3D7K#yC1wQZrDLuis&xQlN#wTgCdyi zPyWg;urm~LzRMckRY4XcPl5(W$ug-d&hP@8v9`T>^k^-F*{{ zx$uDjpVzKi6H}l6bc%+qhCy!ri!Z{rNK=EbRx~w7{g?kfrMH#imLMk~Zp7@^vSKBu zw}x~ba`QRFkNx&9B{SU!1l77JKkjr22sk=Q`Vi%=7h-)f%}{Mxu-Su~$08^dq!V7R#cy+;3^^M$VQ(L0dIU>F}fMRHSQwU^JK_3q-^qNd>{4J#w zLffV^T|=|i=c}nyb82b`gT`%;(FoQwwV(u47(?og$US|g8i8MCKiGXvB<~^SK&0nn zAs8(?t6QyX!D9LpbV8ee1OSzJ@)pc8zT(`ubMg9~7ve)7{$!>G0QXYJGWf)p^=)bm zVbK_`DVu2i%*`r~V=#`PA!0d#ED+8`F6(3Jl}J&%?q2@vJ8r{satbA^unEf|%-NmqEle0w@o+SWVndACJqFBj37_ zAhdJGlWPNZ&3qUeT)3i)o*?W~9bmt47e!*`u;?i42;f@;?W)nSJTZoK@Js*ie~Hik zAIuAF2zz|odCSeQvY{?jh?`*_au>0uoaHf<84j%L3%g>CO>Sfl(C*#8ECCDdK3`L; z(HKBW%jj!Z%Q`Qe18i?+Er`%Y11?37>e{eT5*y1}A*`Us#ek1WH0g(b<`Yr2a7i3I zd@wP53pJVgWk7=!JP#qyhOrANbTY+Jc5T2^h0xAwdSP#=vi|M5S>r+@r|k+%xv z09QypWq*qSt3?FnS%l6$B8AL0r+SLnUK7!;~nexY#ziWLn7BGQ?06RGeR zmJI8csF}~=BAA)Zi{2ps?XoJ;Y^h2(K#JqWt(eb2hVYbPVi#tqP*|8-mI|#cBzJyx zp7n=*Iil%28;6tyGCK?<8=zY{0mJ;ub#vuuEEh8F;c83WXifD+`AZkU?5 zahZFNv7mDef6K-MpU<4Ct57nE=$CMXIl?=2C27q<*t-@J=#xJlnEMkti9e?+5{M{dZCDze|@22}cME!!&xJK8`D)|-wZ~)hr z;6^#_-s`fkthsHdt$3+|zX+uzhj;`nXjv(~fp=L8t)GZEC(6LM*agY_%DcRmi6wB+ z01Euy+;ww9Wwu%aB)IE^VniZhayL_xsalvVM(b8=k5yalM1VIj5QRI)1?@`4$;Z=R zO+j0LPjEpaW=Du3Sp*iM5W!l=v*2E!KbV{gC+cP44AQcLl#@}2Cvz@`(puY# zd7cMeONVSHrL@41MEz=uU_lmyzkvn~qNuK~VRLW;z{oZ8O>jUAaLFe6k^x5rW}-~M zBLvGPJ3@1KHSv}*nZ|~t@2?e1ABL>vSY=sR*9r=CE;Hu&xl(L~7)naX#WkS+EIXU) z8IObmVoIqli!0G`*cZ#OW?`Zw5)88%J#A)&bmG!`#j zK-pzd1{tG*sHMD~YXM)3&$P4DVUDr8UTiG~i`v^s=wt|3e^T?x2G)Uf1Thy?lHb2% zakMO7j)ucNFpg1#egy#R#+$dokUfboaO`vvKZB#BG(|Zu5wfwd80KA&z#>{Gto@xg z55}1@ZMX-}li1tERdo3xj>2@wN`AIjikemy#J*VB}3_ut4 zxc^vR8Ul?$lLZSHFN%WQ8x0i8V%&?G>f*pZABxZa#;?Y0_pgeR?;Zr)5_AVGNw+rH zD#kt4*ie(kor7>+z8*IqVD!ivucfx-@*!8oHND0jSXHp=^zpcS_G0|z7yeUh*}a>1 zl*i-m|MXAe10VcQ+#sliZXxLuus4mRfKvyZGgN%QS}w-bni2jd_U}*6ZC<|)dWSEN zrSr+p{Y?DuJKv38`}{A)rt0OfuyH9RkMrZ!TX)3j?c2zZ0l+ZND}CLV=Ut_3kPZEg6IH{6q4Vv|@Xth&dNq}Qe1%Tc?1W88Aj zj`-fd<(M_ajk!pdL!@r@0qh*hAi;-wpL#kT`SBabK-fs^)l_`{d*6y*|35z%txG=^ zU;4Ah`P|d7o@%G#&`jw-c6{m=cSPNqT6huX1zqkR7+Ae zpdkP{XFHGcVC+e@?k@PG`{dm9``c7VKBtL30e0xy3bn@kSa8SpluKFiJ8AS5sYgyvfNtjkv(QUSj>@s3+hK*yvbvT9_E6GQApWoB91R17S z3BbxEL7sC0M_eui2p(Nn0wnM0!)6S0ga?%_Du|CfwiDW##QMXS`f!(WE=O_M&LFo` z>Qgope23wtI19&U>T)5L7Uw%eHeCUrCC!bwI3MMq03zozpZ%FH$Q*sSe)5H6`hiJm zT9^h=C?Kty>|aw+4Vfnkr2x(>D#C>YPKyLXG@9}XB^f7)Y;7iet$GV44IOaU7My&BQUJTmuYA_4{TA01aBBp66)a>F~;;@9^!%VJv1jT>`NoC^m` zVJ!;fLS?9^-+-)9koYVDArXKAn9l<0Fi#uV%h;Kd0uX6V4zhTC*NwG#9*Dhv8~ zKnj9_{YhzM26Cl{d!9Lk<~u>;ZZ7xE0*$6hfxHimaj%RvsHr`5hGTC0!1}m`d;pN) z!LtJ19LzM;W^mj93)4yz#2yxNZ(T5Mp9qXUz${@DIz74@ zjRdHL$x4R#JX@dMByRE1Kiz!9xJ768zxH-MMH#*PiHX<*MbxnpBaAK#5Vn;1W!(&R<%V zz7;?oYJq6FFKeF;Hh1wLqyjiBlWQll68IX8D@an4wzq~fBjZkg1DFaTyq{}sJp;Jqr+jE19Jv&Y9cf)!ug#! zb&~oHz0taSW!l@b9rXI>rWzxHzwhcreBW1T3PaR0g53P@g2EM;!Z+a}DUZIPi&TN! zgy|d03TxBQyp_0^`c&&+V4^<;+TV#e0?M`$uT#~4We=@M#X?41OLfwv3o76l-Eq0^ zavV8w6f4~>lmL_mKr~7bz?zc5xQudhOJbm_gG`jd*!RZ1*woS-jcZz>(^sYtf8n2u?f^ZNwVf^YBB_vT1$Fx-tE#2+h8$vy0fEw)oIT zKTH!S%BQ30k3#!+e)6AjUEEBwqlcjuGMw7Z$GTf~#M&J<$2wAh$MGuSKEgPQ8zO=617zc5ce*a&dj{84!SJW?4 zXl4LvE}yHYYQXYXNlN37$dby5zN07TT`(D2Z{Cjk0D6X27qDiI?X7o?WA?6%wOiM) zPpb){>?K>|T)g&rPkitrH^kH>o#p5BdaC4 zdk3Nj;JAAAs_2(xOAqp7c!)AARpaF5zOUeyH>>}< zg`fQh42xh3Oca{^Wul^egSyZ`crsUr%2*(QfWbq$4McUuA82Lp?=G0k*?0xVArZ&` zW~DR{4qv8R$*i4+8?0uPum1@`Ou>r0Z>2(m-;w~}dbJ4&)qAFNGk#Cq{DAH1=uGa+uG~amrErd5_LV!duW`1cx{my;Y$HpQ%6*PnVShaCI!BV|(@xu97 zwt5AEfx;@Jl=ctw(^U+{MLJwhM;DB;7$8uMU?yJ~8WIG!ubQHLX(_NgtL1tHe_COz z&SeQ=k$)C0mm)Gfat(IHY-xOq^nG1R5P7F+ZyYk)IhzwL_=7Sz)Cg=D0w#6$)oOJf z;wfSWY&0UB8`xvv6J0RUQUX$bhaL;8>X$$@pqV`r5E!?hPgmE&2!(wniR&<0+-`0Q z@F^PrXD@?Zn&X&dP`wll4RCGS@uUR-z*FIrfdR4&>Y}!}Injf$K+?Zjrf1FZ+qG}c zv)`d93w7c-XP0OaH9DG)f4H7;AUasHDO?9*lSBASH{haJ#rg$q0?eaWWG?q!z(OU% zp*9HT+AW+#GaTsaq-1PQY`*E%7K`|f+u zGIL2!qvR_l;&HUrDKyq$stwNKuRn9{e6*cB39!KhMCOFr<1ir5+7wsF!R{d~xMJ-x zisO`|R@Yb2&<4p;=>|A9ZP-B5vRdlHU*+D!G!cL|*hh1jNs1(`S_ObvOdSl`7dk=0-y3pb4&msV@nzg-hxj!}Z>f`=4_8Mc| zvT;F-axRXZx)1{h-lZ#Ov&`H_iE|o4s9fpq1%&lQ`C_az+-nhgIn>($ty0g07R@L2 zUyPNj7L!Vc^|X;}B;pv1xiElp?FN9siWd3%`OLZJB$? zH|6`OaS-Rh^3Qxcz2}YO*YbPEB%|ZD{t>G&d=KqC4_AgMhqC}2Es#FXtR|b|C5t2H z&e|c~*9;0R8L*sWk-o-RvrDNwF_pCDGuQgZ z)W}kWYdEd3jRI_rG_5xicLm!mZMqNpSG9k<5K` zoEl-{XJIO$ArXr;1&lgZ3sRuVw36_EK{65$$b6hUawvMcXc2j?EiU$V#+DtoP=sT5 zDxx6@bTL!L_qWwPR{)I~VW1`$i1* zUxTS&MPNLhGUp|;u-Clf_j%U{LfWu-6H&HhXo7o_+h8j>&j#I{c;^tY73Hy{sWy7i zpekWvw!F0}qkyE6R@7?u*R27T4c0p09JO9B@Z{IC?}07^_r$%>Z|otTf}RCPf*Hr1 zSyw*98Z+FKmdGvB{4FYEiDQH8TsQA+5f#%1M=7&xArw=444}(WbK`fj1Bw8uG8-$C z6)<+Q8}v&X;3!HH49M*I`Y%Jvn(?uguy3XxF2bebS-5b%hhQp%JMURl^28AWYzefL z&I)OR?AW_6T!<=MIY0IjpF&%#f*_?2=Fgr>*W*~%=1J{){l%x^um9waW9b?!c}1k) zO;Qz)n(x^N?yJL{#1UM=Ek_hN7KfQB1n^idv`^uak|wMZj2#O>b;DK;P)@Y>ze5Ez z)+wi!x)UV;+#)OlhsZ0z@6VT1VyYksT~SLck=mer1qOTi;!J;s_LTHh%XiKGhWPdH zRaIA;&h<1_vX0Knypws=1ouy2c@gzB4fyms(;sj)k*YVI0_Td$YocrL()COJ_4^Xs zX*u{%dnj6V{Z+~j_dWLGG_lzg%hs$+u|`ZR_CEKc`1Akz`)O<}BQ8P!QB=jkRkhF) zSw<(xM#7)%YsY=}#)kEqsU-MH^qx2xUDR0k_g)qJ0d5tSI0M&Tgmp$0G~6@gO8xsU zqNJGP|9{>8{>h5cnndFZ2_il-aN>XebNaoiYy~d5K}aJLBjKBsQO$3;vAKb2j-6NI zRCK_Xi4`EVbRqBOE&;@F-sl$2%j@QGhb)U9zhgser!wLQJeA`{T?qM*LJ=Xw*_%di z89ShIlC9-{nl8myj}?xixVx@l{;prKF?9#@c}c*@r}(FwfOJ#3oCh&gwS{?b7mppE zg|;|fskjibAqjm1q&!c{wBzt>q!22z!{TA^cZ9Z}Uss`l zhS`A2g;<%Cg+l~YXOqEj{ZCylaw(iOSELAEyn_89tq?a;Xvb9KSPrM(+E9>ClLkSG1>52(lXqkf={wUF; zy;q6IN6VPOOw3v^crJ3$SwuUUsd<+W^yMNMjGq=h4FU8#_=F1i+h>*y^B+4qr*eE|44gF=9(1!iMh z-S?55Oi-ZVD`UNIX-bvWjf4gnmEYYTeYtLKLUjKs3>1`^`$t!nL~MkhLeq{KyTMWh#|gI5dh=Q5YQ%CP zUE*eUo&Y=K~)ySpdee*0~Lf-(iD zlJ<^f?x+)3B0ND1}V;h`PtnPlHmX`Pv&MNP1jxG)91)WazA7Z9rgeK zKmbWZK~zB}tDrT6ze!)NXR?U!Icd}`eVXBti64gM+|{l<1Lk<^J}`3L22bPAf+cbb zcrYxKz2{oF3jj@5LLr)+IoZ>k32TUJIWTTQFp&zWVD?;4O!qg>AE41fN(TImp*fyD z)rQr82xqiU#5v*e4LW|&_E_^(5I!D2zMYYyeIb0{xeK)Ti}KbxYL zO(1PaX+u<2)W^l1Q%ny)1mMk^zexF1yG2q87&_G2#nERaSXYc3Ct^oIdAX~!M=6Z@#*2pr0@;al49s`A$1kTSwn0!tOuZ( zc#|S{l;^~lq7q_F$V7%-1wwK&U2+I4tut5_O@A(AUJZ?{lorO_MC!9$^Q0SHJ;PUq z;_cV>Wa5G}53`Na1j3Dyr*7L?>jBgPSe9YluEdmH3DB`&(%B1V5q3m;vxhQ$dmXr! zy419QWYShw}^sWL@A=%nK!l zaVdE76AGkgj0&mymUs=n z7wZ4z_c3U>kTtTr@)fG`4q{pAICB;dIuYCN*ohU5Yz15x${J;k^Kb^!(7p3YG{jou z61ZqxiI&BMoHK$^sTP|04Dl?LTV$exW>5?~EesELU@oS_4?R& zd61w$Q)m(}T&ua=aXF?89q?QhT8%0(bnc~QD5G>oT?mDwpH(O%ivx#H%Yp?tT*A!r z5M~fq3ie|$HMuya>!{Q5xduKr33UmDwYk1V28!Tx&k&$o3=7+84j$))L@e!nh+WqQs};`hEu6J~B{ zpJ2aQJS_C&jvJsQJhE$-_w+EhCh0)%If=ygGtZ_sf=H6RQJQM*PR~ukQz4a^o54a} z<6#i^r65cg&k)S=z4zWDxTYt8CVQmo_fB;#I8eH1sw{iC751lVg&(YbA2+ zJtGrJ8uFG6S}jI%OaRn<;d(6*?o&3LbQm`PIfLwZ0UDa^WEem9vZ%;niba_cX?lS3gpj}_i7}2bw zM0!s`Tcvqr_?B1l`xKVJ!MI^TrT*&o8_xZn)TsW=*_@X`%>U zLDd*%#WTQi@}*T0rirkWrldXTtiVhX_F)Xbn8mp>Jxqbj&NuO=nw2GkD74RnBdw>0zcAC3wdW)Gi)5DBU03_C>#idkpR2cA@ zg%$;+sYw~vYdy0Ze3lW(Y^3{aj|i}%%L@$xki0j%k3px@vv~w_HWs)M&zu<+f^Q2zh!5SuI)FWZ!v4;P}c4!He@zE;yZB#+xSNp>p>!0)++OW~L_r z4h7yx>$lBe#*E6~q&g=g%HvuWfmv{4P!dEe0x@5F|7&|=5azw@zPn=mjvb_W5d`!8 z#_5Chpc|-R@Rbq91qdI}qdTc-8#a*`2Ml4#u zNQ@c(9&5(}`VsTGA#zTlfp`i#O+KkM0@oDsA@eiM<5q}r`}B8(qrk~m1_i>D;9%4E zdU84J1so6sjSY3uM#1pRAn;&%oeXL^o72kAHnq{D%&=K<)(q`3Z44Bj&D`b@&@y=z zh8bkiQS`s7;mCN>4)SN(+u9RoG%B{S zp$VoxmV)WnmdIhs)Jgpoed%GbDlKf(H94Wq-zrK9=hV+z~9|f@TF~2ic z*K7_!U>u6&PTd#pDYKa(!dGUWm=WVgWGDJdt%F&E*3j_T$ekJ_vY&H3 zL=BK4`U6m3enBz&vxF2u^5G|XDagfqZS5+fHuY10*#q5`Q&BMo#&!kkqwa@nG@n8= znZ@jRO=~m!1`x}$X5kS7)Db!U*4r>Mdnq6sINznDAvSDWhV`Z-PQGy%s{+BstdAwF z1(GTxGeoV=&>6C317*J(TS=F_82jFPm;J!P!*iwk5`d}gdks?d3=XqTC1edOgtrw@ z5KP~B5rT0}8dJCc1pM0!pwFHgGk^hpgdqb6`A!YJC?;^rbEFwNi+B&q-4>JiGz+Z{ zV`0c=O*&F{F)gi}U3i6ssnp8LNhP%ozWdhL+)5Y0&bV;ySQ6g&iKv4Bof!X*Af-e@x)(0PPy^1ShM@4WGS45pX3tbG@lQxAbXUFS{qEgo(H4}w&i8Y7Znc3 znE5y>=j+cb3G;SUaz6WWpZfxDrO8|m9FqxpW1|oCODBQF4OQD+B%?Gl8Z%qLBKxou zHvofD$m*l%qt|mk0WxY8i&ihEJZ^I=MeEB&I3`5K{S(8LIdhNe(bW#idpS5YK6lKh zeGeo9aP<*DtXz8WT>{1rk}(-EmUN}UidML08?ec0!K@Jf`FS>#@5m?KgP3H{%-0Rm zY;54!$dLVCtncnWxz^?_#C>ae92^O z4l6{N5G&Vvs1mAV9qn?ZnTKg5p{>|*ohx7Hi)#4N2;kg|8S6(=uZk*Rf+qQ_z)>-@|HH?6dcDy-Nw6D?=kx%kC%eNi(?SUYjr3 za7b;}s&%@g6zFQ)HI%>|BBiPq0jDL(ztuO?ru}vee71cr>?|hJ5De*Ww-$lHeS)Gi zZy1Yvoq!N~%S?1#~`s!4#6~Kn=ishfxSPlIw=OO6$!h9lJCkeH&|$ z02sgP0!S7M?rrc?DwQmA;(0~n@0YR;mQyaGPC^3ftkE2Mm;^u1*P2$aXc6>1Nqv5T z{Dv{z;)0VddI=yi*wBC>P07|JHwMD^pB$J#7o~&OuUQ)vWEG_GFjrkaf*Sk9|1Y-Q z14^&+Jj{Hj_m06}3V<0@qLLuN1{RQ%L{X9zmAJ@jNs%}9IZo_2_8xDX&F|k|>dqC{iRO_5y-vL~jFNFf+guOt1Sq@5Lya&HfZLGyi}8d%y4f z-d;0t7i1Ol2M5U+x+>G8+=+0+wQKZHXW+{W$zt<(VXT;$86%#F0II+nGskn!zkM)9 zjy|6WdLvV~*ij&67Y3rIuZ3y@+Idqg;x*s;cVCG?1YQ{mUr+DaWR9(zXLIN3s6pUe zJlCH|gWc;kBLI77TEyTnybj;|qkkD|chH@0bqkPyX7NG_qn4*{R$xPz?z-W@xmj6}UvYu83&S5KV9nl+TQ@h%23t>wNvudb~# z-g@&W+&yCR?%SeyE%QcDth!KSYT8y)KR+H<2M1!y?%ibn^DL?<%E-$&_RhQHf1H8I zSL15$j&&RRGQXn(oNmFb+uGF~=W!F8ME2GH_*c=@ggc%vM9dj<8JF;RW!E|qGB*TOgK>^r3PTg!o0vC1vL>7at_yCcWk87ORpq|&NNL!AK3iEJ z?@9j2It`CV#~B{rV;Eb~r+h$7L7Mg@C3`QH%RhK$-UFV?J(NGnHhYc853F|aI=#BZ zH~Evly+_JP_^Y(zo37LUR0v#?-^;Z^*H(WB*J|X0{6R05cT`TvPc)+Q+rk@urSYR6 z*OTRbgvlfx8rwM6!~1Z}r&7C`3X=tRzRAOeF!gf#&+ra!qzpH|%BDoNgO(q*5(2A5 z;VMzq2*-Ru|9(LLg6nzkzP|!2H{#*X3Sb!Lf@NfE((%DEN(LLG(jZe&d2sg%Gqt2_ z(16U_aK{c@K`nR*=o3#eg_-*%ae1E;GbK<+{4zJZo0zEYCI6mU-zHu^m_uY3_)FrmB6MzcJ_)j zVj`bqF$!X}C-;~82e7VFL5!D~dx@NY3Q|(QI)7TPiuL?vh%5LV#W{-qevm20s=%^q#K-w=Ym8| z6%LV`-?(k@o(e$fzoJaM2SWzLjBRufS4eDE9~sn5?saJKnwNdT(W|!b9TE z5uxDLv=bdUXBnMJuV)3u<=r>?hlfMmD?lq#*d*-~0y>BQM0xt(#)!?Yr^DAq0TY?A&r3{OKEU^yEQ215>eM z&kj27-4n-H+v{{wyzP}2qjS@G;9O5`$@Q2+A$;hG{h7#CPkh#})2WB#>EdruRMa2-8HVCCADWHeWq-IA%zYZfvQeRr=njLTF#3W$nNz zl4QU3R_ypU|17rBcVHAoZY53yp_Qjz{caq3_UYKQd2_60=82rco-Iz@{PLH+5r6e( ze;$AI**}WaTel&I5iYF9(zT=S9FK!vemYJZI}`ulcYiP5^TZP|$zEqE^QLm9?HFnB2x83-Jh~^o@{JSm z^bcN*Pk-i7yar|DilI1CDs2yj8D05=3^Z`GC#4g;rl~xGb7e3x`M4w1bwT@bjzcVhNqXX$ABZp;t$C#}vXO!%KhlJ~L#N}i!y z^Oc4>v^_!ol4az2@#Tv?OF39D36&s)6O7vjb6o)tU?ihd(g`Rn5O0Z|qvPHab?XMe{*(!a9|?tAn|Z z!OOVR`p+W3VE9;M3I|<#bJSsLEmhX`kacOc`zfr=3xqo-JaduQ%RsJm{y znt&gJ5e*DoMR}N`V`57t3+YZRybM^2z;p(9T?ETa&%=!n49 zwOpah=LTg@4Op(7l+QWOUdC*kbA;BqC#XeMdGdG^ChNP`rxk6fSh}`wSq@yi0uvs> z5?e=2ZY$S%;DsXKS*o~r56{7v+$cgqvdEH4;9X(QSzd-|JP#E;Jq*6YfibL;Gv`j` z_~4$d4JaI-Dvyv+NIb>0oXD+nb;wTt#VeU4c9XWyHrZ&T`=AWPMjP%?rlJKQG7A&& zZ=8~{^h)u3gh){!oRB<+(s1$OMb3SY{dj+HoA20_%Icp?FaypNlWlPlxNX?62W6=q z<*`t*v$h#NkQG7<(kTO;3!KvkUGXYx$qNp(lXz5B0~`@*btukG9IUFrnxgC55b^$g zEbBF0k5L*-eto@`TpeXm(gkk!VdL(=W`RLSxY>6-xGx^L)E|HGmwy^B-@YBsK^I($ z7$*wB!W`#_LVf6k7h+ZS+W67uzmjKa+vm1ek8Z+!*;)nCYUJ`IW|K_8R2k63IO8G1 zO(5f@joV`Xdp;7cfB8$a(0)8V^?Sb)Pyh877(e_@^lqg;0x(%bKv&l^#^ybD$4f6h zM{DOboDv>U;5m=}BVRdtfv^<)_#XSn$KwKCfQ<;SDslxT36YEfpArP>;F)uA^6lf% zfBY0P13nmYG#VS5n2%rl-A~75nhvd>-kOSzC5F?KN6r#2?_9&|lH>BT?M&q(-vaOE z9C%&7c188=X~02m{w`H{f&cke(g-}q2d7|%Ppi~tn1Ii{NaHBK$u<6-v;w`$cjQ+p0$#72 z^9u!?7vEixgI?=B3}MKF-M<1?zGryW@Tp5HWFP_>Sh;?cm<8yx8qapeY9{egCOQXw zngm-y$zSdPSXDqDdM@l;Vy=_;JdLNqcFQM@9AYL3{T=yUE1fv2sW^yv^R6&J`A_9Y zgL?{ZsugG&YI?@gOUk*HV6-T|!WAwz?D1Yoe;&Odaf=jWI%`2c}&@*V4 zGEI|_=$M_bxF(gW%v>NJ}oFcXkj_EOwxv6|g z3R)qyGtMMPh+Ud6w?hTjPcz|`3srQ*_jL6^z~)1!$OsFWQ(6kF&7K`9RW?BpMiS%_ zpU+MdQ_$*Y-D?sYpu^otrZ(>bJ+1`@S$7kIhoFp9dbxFUqXgJbK!#=#)ZoC47-KZ9 zWkhv!^_#%Dn=$q$ zpIeCGn?qEEZ~&6fG}HI&i1?S^j2XN}3$&SCW@=6;&n3G8x|@r~KmKd6{{tV2?|%Ec z@#VkyzhmQr55#mep+|07hKI&du^WuLo`!Y~zwm18`{4V4H}D7VItaJiap&H6;o0xR z+fV->+CTmG2@C9wAEF$5;_v@ftb=wY=y74cfi6M>|NY48yN ze=muYRD4kNQUb3j$30ugy2Y6bls$f8<3@NXhq<6fGnglGF5da^^8gGwTOvn*WW-9I zRRe95^PDQRcwUAy#Dygk>k1SxQjoY7Adj47`s5zM99WOUrho9`XHX>Q=1IbCXE(L_ zl$rkM=|l0Gzxe?a0TT33mMaiUcii2FGEfqS-nz)t*VZ(u3}wmtbyG{vi5qyFSUfZh zMZ&+$p|If>xMk~Mjv+yWzO~Q^l z7#`qG=I{95BJT@TpX>b#uczKn3`k%uwq}^&mV&LHK&71@{x83)-&P)CHG^+@mVhaR zviI}N3=>KW>}#H070razt`6ZDMgTW7m7wGoW$-Gawji&BPRfxt=0fo$|$EB7isS zyE`gA@Gz6Ny0hk)FXVlSPIw$B_jFc)u4NguKyzUtgD>x|ATvw50p?|Wwc4Xz2-^#9 z-MBUGy8B^-Vi#+gi8o$85Qk72R#95kKxV8Kjcajj-lLmNR`=YuKUS|;(19lw@`_XdNK4lu*Lwy8ZjTRO3HOXJAV zqw!sywGWr#CpLY8mYk#U65q3d%_9%I4?rx@#&mW3<|jS{lP!s3$4|r++(evk9;_3} zWX$@`WIUDRW|&!R9NNDA6U3FN7eVe;lUA(uvkSKsCu+^y}nYG>(s zHUdK+YaGQWb3#z4YM5pyMKv|kBKO=yLNy~O6uqgytFWZ^hx4`}m1m}PBy%yOH8DbI z9$^=mpl7knBun!nglq-Ye1__{zKPC|jjI`#3jZ?MOuSl}rcJVcgPSU2U`TfMf_6@q%~3{$?qkES;I(UU`R`O;;) zgM%b7GTQaYZ$~$YfPKW^okx$K2AFJ&JN7;jhrjXlxa$de>bEixZtHDv{O!ZB8n2mo zMl$17Yg(gXcZxPb2wG?{NX+6k!RimIdIWsLQ-03C@-h1EO%>URO zH&CqS!08GU_1Ay=Z0z1x7meMWG0{Jm4bPeh(^O&YPJ=UB@4cOI>W@V)Zr=*Rp+o1d z#mhhZaX1LAipC7T`a6FRtMFJ^~r<|-X1AkEiFdIToU7O?7PUO~e7I!tODg&l-X<8Gk;C`Q4vf8<#}4# z3Oadq-hdx=RxMr#dg+!=lXUn$m3Adu@-of}YUVvesqz8g=r_~rYI|8eRrcgM_{)3w zx9)q0GWlY`1b7a6RhiJBa6K8`h8Ltv~MPGh6ZoO=B3SCW2raz006CSP@YQr zJo*+~421(H)~Di=n|H%9^}@9Rz__E@RT2dck+FL)#l zX@u)(m(E%Npg?oh0OoxnQw_1mauEC`8Jsq8aiEWx&Z3J$fl^aL=xpxmi@h+B)jd5} zu5HnR!gKb@**K3N>*(Id0aXzzhcV+JxSbegSI0(R!GZAp*S_~9%6za|S-&M`jg%{W z?88sQ&h0y~id(QyKmrKj?5RWiREXm80a)v3OKQgXITEb2PKARTD9ZUbJK!(EX>Dhs zB``jG^4)lwEa_kR=&z8!u^K@F!ojSM9eE`-_jbgGKlBM0>>Ad7F~0HiHyC=;AFCQk z+9GGd{E(#-g1Dg|pc@F8OSnsGfZZTj?{k<(NuOrA@e)7u6sg#$iB7-DFPAt00OMuurKLoAGr zLz$#_^-6#2+_4p;!W!qyB>)AsxKs`EvHGJ(3d9nY0i?SVfyPUhpM)-Ru$n`hbE=%K zHa3$l_h!gR+?P?fPN$DqhNeLEyNS`@rlA6@iW#4e0&5sTg~*tG3VFjYyqB&u5AIK1wbKX)`<_txQKE&tg?;bKL}guAje-s~S3m0jp>j zDpc7zcls2qZO_NuA9x>K>F94TRT&R_^cR>vu`O=fvK|;O#p&ZGq2sj~e%bX4A0+W~ zfYGqb9N-9Mz_s@7b_S3=9{>7{=gDU{0*n}aiy8gSE3d@8k3A3-B%I2GSAl0|-^GJD za2ZBTcnW24ivIfbxU(HYJ1Nhy?>*tZ%>Mvyta@qy7H3bM<;+K7)9$;X7CavSAMgDT z1KEJ-#*LffAc~AVLR5ek#To9O-46*5Re-0}z_)EpTkLq`fjBXIIa(H{V$c2e#n8FS z@GEkJ;04lD73*-yq%V13&SOErUH~r`XaMVi27*z&cnMdxx^{3IIB#6nl^&hVJJv?i z>MilegAdaY8Q$XgQBg261ucOed-wLm-+up@c>CS{Shu+YbXUNE3yeILzr*3dMZ!(s zqd0DE3WpDW;H<$s!X4%Ct19S|wzDKvwqsC{7<}P$bd#@8xvGz5!qN}> zQmKL7E8sKsoRN3&zoa*xB^R+0OJ!R{+|pX{QGE5fbaitM@)Ez4-{&_4q-tF5;g+1x za!-#XxaYO$<>Ma8p?m?#^hlV8z|F;Z|F@!;NbGu5%^%DDFM=LrEqjr0-f5-tJ$X$b z6Ty0AC%iFpEW9K4@H)%vZ5nj-GA)-0L{$=gQ?d76+%}cm_As#=U!D z`~CNmaD;n`@2QdbJz&TI^L+dusp%nHv{cevYc2o?xd@|>2u;k=GI9;YVJaN(LSoS@ z(W!0#Vm^oFxw?5Z2uVu@6BQxkT9FAvR+u@>aAg%TuU_f5@=|h>pxag#hciafTZyq{4tbu*VaBgFZ`>5UeSPX9S-v>~(qD(6HNueGt7VJX zh=v_660@6TB4auC6_Him6mr?G9D(4$3Rl-DiCCs$l4JH4KpBzomNPi$?%VIDuDp~Q z_Ew0goSy$3u^M;Y9A}C20ZH)?0bsRWg-e#E5Jnj$>1D@;jWJApv%Tb30dM*oD6`oum;@H9{<+D_jeNw z$MMeSy~=E0Xv_D^bCD4$yu=fgjbt|L-LRZVMe?qB80|E!V3jJvX=NnsS?%HUKLzv* zv2sTy+vU(1^Ce^ajSx|Zs3FmBl0>kZtlK6}r6sj-np~dYyY@0Ia4oygZ3+Vg7vuyE z=u(-h!yC}jS(iy&GF2IsG;0E|ihylZSsJjQ(GX#o>(}T|Xcjs-CqzSNudC$;-Jo1c zyG2776JdSEB1-3lxUzUU_BU(=&N5x$#Q{O9?)3|Q{iXP%ZqJcHm_Lk|XKlS}cf$A3 zv3HM89&&cWz0&6J{h0OxzGsWJ{ zyn7)IKL71_=wo!#9KIO8`rE$|UCd*7>OX!lD&IO1HHH(4zEyKh?)>-*Ngqwx%a->C>d%V?DdCzLjL+T_A`mI&6O z!0E2X+GB4fNlGplP0}oR0%hdysL(91j!N1qH@0^JMfflwK9g#tD{)TzGGVp|4S)mu z?FV`Woc4*$z`Zn_P{@G0C3o@_ZU7vBt+I-13Q<-FxWrlREq&@&S4=cQ4DIF)Xdf(}35|_BlYDpHh^@K6_=2rD_NQNM@*&?Fa5q zAjr%LO8}Q7!aqx=jNJfu9$)-qvA$&X-b-!7sedvpT}YJ;B>imN7;Q|UszhV-8TlM7 zFSR)~;qz8P4M3Vd3&92GSgAK&`g*W+7X`kVOn7d{sk zkGvYY_S}z!!W?Y`)FO;)5~isJ#irs+|GD_uSN|%$^u<4m|NO;&7tcQXUE+IhQ>I0m zND}{2>qYsov_vMY5>bQDZh{cASqVs9X3aRRUX`JF)_dyoh4}iHzswr`nrAN2eT)(! zln#4ocQZP;n}IE_z4fy=e&RL47|+FX&pnmX$&^pi5QQ9-a|H46Mj+^4dhtMf{p)`d zZ@l#~LJq5mby&({O}4IU5wDEj!GVNZ8BC*yje*P}s0Uoe0AtQ+PFO(c3TLtf6lp z)?bZMP}RtU#CBrM2!2ZqJ)0?V8?5^`6WoqyRV3TgajjkLCSW)%EsQ)Jz6tZ0&9IXA zQpCl`xaYj)5UMWJxZ1L{>M($E>%RFG(&P32c(vmmH7LA0Oc(V1q2h1Yz zT#JwUE&*5vqIf(q4CyD`hx}eiXE?1HC>9*Xx(6R`pgihfFk{=wkQ!X)aFJqW!+I$$M?k#{El`s}tpPE}RNV3v6 zS?-ggmN-_&$#>7k)&5H;0eUlNU5YYcp1~w%A+yME2TEfjqpMf7;#FyaHh6fhi#@Uo z{;@*nQwy&KC2|~(-Hm}$;1UWt<>ohs>A*NbI1vS^nqfY*(64K6Xu(hz9*mzo_pGb~ zcm6h*9o7q9oE2_d)3b47H1h---i(r<+t%JeQY{P=7!I-SSAO(N^lrP2T$JH>{s-Ry zXGo$V&*aJ(tb3F!l{RxWn%Y}p&%JlXyC<%Yn{Yku+qNxw?tU;{`{DPa1USzi)URE< z8qatEqZgGSQU;wmAftO|-Hq2YOxf%)oy`D_ZH&*d(9NfjbM_yoNKsarq+q zyGc1HGY#OEAPveL-Y$5RJggGUG2`tBN5Fr*?IeBXy{@Ln08VHt(yY?L^IFD25Q1c4{BOe z2__ZsA_S48;hdMiQ{hMhTn$J;lG+syWN$D}F$8Ah23VBL+xWbtF)9aaDXot526#wl zJ<0sotgc*LP~M`F>-X$^C|arO1&YZqjcIU0mJFg0|HZ+<6HN?}DWg3BcA4Y^jHLpB z(TEVX36Pr46oWo;s1S?Sy=ok*k$BWv;((3BT?YoPBADOB0wTV}=4(I#pXE4L*Rz^# zSMPo3J#3KrYux2?C^kPka3J0}^lG%zySpBZtb`1I53)>c3VhHyt+T-dYqB1klLa<3 zKoP-w58>wejd`<5;&})V5esL10K5n`1+5w@ z=*GP*rMpRDXES&*gi|-%!VLZO?(dg;y2E*0bAs2w4hd{4_ zEn_cH!BL06-nsP-#%InUWR52C>9J8!QK)L+Nfe6^zD+l7&?9?%42uh7UcnO;gL;Ix zHUIUNOY+j=Wa-N^g2^dk^(|TzC}Et(5Xo`kr9!?O7%Pa!NSZU>qN#ZUD!hOl)6Ek z@Hj^H{vs~@s`V%@;DXG~1mDUkJPcU6TIAR5InLP{o|xgjh5*p0QPDn&axx));j%Wyu6#gVMNqps`+ZeYS3Yh_0E}V)sY)5%Y)t zkvn84Cc|_sH6$b6A9w6~FgmI0zm8W$&su$ZTh#W{MfaXaXrw07l~*7ANSaF$L9F(M}IM^g}(B+ z{}dnp*rRdh9h(^P1)bCA>%*VEJzjhHV7x%*$a%aoEzrr1$4O>xtBQ?G9Q^RdJ^=ns za5nJF4#FvvhgK3=$dDK~+PS_dKKm#CW4!vz!8mD&;PSF)pVKEQgNe3o?PNERF zwrT{8o~CkW%jQa15+~9T_EdaUQ(CK_vf`txt0$TeR)w*Mr%VMv0nMG{u^JItukv~G zyHW!D>yj^XZ;ffgBq|lld`}rB&H0jdxF6w{2C(-B zPRcshSYArkNsI%H5BXv#vO~k0)v-PeBn&Hr`)#|n$Eu!AaBm{6Tp+A<>P*tOrG^uD zx2*nY#HcVtqX8j2EH6&@umO!6m8`6!gMQ5^b4@ER_MmtvUJ7>sDf4wHzTAY&R3>EX z)I-bRD+p^Dp3Gdp%k)xdFodA{lk0R-UOaP_Ar==9fYi65L6=rFp$%D9sPGf)3XkGh z-p6st$BrG%cB|X(x|{59daLtsdJ|wsi9}qVb@trfd;vAz26~?B-fVgK6@*D#2!WGb3glev3C_6ts@Qs`dwgz{z8L~wj3grbD==xbe=*|HH^)9vh zbXg+gOwzOde#_>KlppqG+27O8JQ?RNoFi1hL^TdVw{T0#s(9jkACJ+y_ooJTabzH# z`u=y(>WCNPpB0f6S_@bKtJ+%P@eh1Bwhs-)^Dn*-Cr%uXH4NOr^a5|xOku#peH28H zC=41xA|u%P;3B)6*fQs2eCX^MTKG23;7Y%Si+ViHFe$K-TD4}ZY|Ep}?0@z3*W>F? zeH(XGbNtq?eLA*px|7fZ7AFdW!oa)(v+id_PHVH()n#7$|^&i3uw5lXnyDb<|8OQY97fjNrn z-*q(5p=}&wA7@{s{4GM;>wK2v8#9y737tmhy%d<$FrevVZdjkt zKn2;=mP$F6S*D_O;#g>}&(ce9xRS1J60X_NrF>?`wlM~N4Aafc5#2Mu!yW)OOwxN} zNT3#vMgvKG*747RPuvU`N)Ni&QHE6l(dfl5U7igHLc6?80z;DuYe@E5$&-;8=-RWf zmQ@osvEC=>F|Zn(kmhs~-XK&mF^OUULvW~=O-9TTHxpSVDD!M3r^OrsUCx#`I@96A z>GQFJ62%RieI4#zy&p2`MJz?f-%8sY8j2MA#!{Aj$(ub_lc9T#htH6Vu zae=-9W9^i(HLS%QOt$*=T?p{Sc=8+Hr~L3@Jp0^paF+S_z(@WLUa01H^`)OB^EFY= zT#s_rZhwFVl+Fn}ddE=!HtyJlm!d5W{K>cCo=-m#!#t^LM$b|uihe!Jv<~Kba{)F0$J*FLHOLRX^?jas3}t0+TCWfr!lWcN@7%<=Nv-*;`kuOgc--cw)}LQL5qzmXTJG>M@)03dE? zSucX#ffWTK6Wm!tzW5F-4W5RQ!1pvnSxCXV;H^a{y0}ytlm`{YFLc1?DeP}OTO-cr zx)$%@b@Cf-mU7F4z?64B2R`Fv?nl!}W!f^`iVDh(=iuewl6*qiazBV-?g_oI&YO6T z&YnIKH*b)X3a#VA!W&6X6$L&mtC94nZ1Al-C-=Y-l78hs?%WWM{4M!4pJ_yKajspD z2)`7XQO0)xN&y_A=K$3WX1t3H`+h1!xk*2VQSiB&*9!BqDS%*$PF*(k+dhB#NL+a7 z)!6;9_s2T4U4^=U(mL@-4#jBz06+jqL_t(}-oyKPpaR(4Pa+@&DckD;!RiqL0&N&3 zuY0?JY$SU#+i}SzDGO@qFiB7*nsG0;A?QvK_gjJ(*>h^|i)hI?NC<{z2SO_d6r@Pf zWbR}Kr64erAOn?=)OtX=vH|oopSuRFMGwFUh1&AhjQzvE8faNsig0aN)d9iLT!Ywc z#)%!$L7PY|cc0bSvkt*C%dGX+qZ2oMJMl_ONS0x&c9Rn}cKY(W9bH|_4)2NMM_%V| zN_1*gacm}SA^>^5p%Z(SPm|chFt}7aj5X^jc3kiXu>0HZeV^;m1hI0gPI&r-=VE== z+6)8C0JFD=J$~_fUya8fdMqA(@cvkZ(xPSTI8EJ$3U&K(>o&C!&kf?Z*9M2;^)t99 zFC2}rSzL8xwAaK^U1&j(QS(qZbd35{+aqRjG1*8`Pc&GrG;AfY}b`q#u zw{_@al!_VWDu*!+4-e8L%7F@;-Yu9?n&jgmR$+A-@iB_+GIz0Cp*E@U&oMxTlnY4@Y3DmViDH7s%F@tLLJ3PKlhWxDgNBx>sFSC3ZJaYz`L#~D6oH@% zR+qALJxxg{N1qCSo(Q2%Dj?_dX)2rVz#O;s58=35*Ef#sBrc{mc00|LTw9 zBmd$z;*bBuKmD(+>g2E5>W=u*Yq;0{UoZTE>38%k<}?CtaL7M+QCx+O4nyEa5v10| znYUif>4|-(w^ru2Ca z{E9p+;@0;0&FDUsIPvqNFCL;i`I(=uGe7+Q`M)OKTbZZWRMJd%q8>V~kCFbx_@BS~ zm;cQ-e&Nx(qOPSi{`dd$-~U&i^_KU>k53(pn@_*Q`*Li>*nj)#VWQn%z4li851;*H ztm&oNg<5uL*BmI7aXSryq}h|fl1%YRZ`BgQtfrwk>etYA9$YV>gs_t^&@wo%G&7z! zq?=q%a~hpWD_{QPeU)%u@>+R>g5Teb(VG}&MVK-|d@H0;p%5s?`1;QUo4E}zb@(3w z7g|!jh{(#DR37rV@&h~#;;>)kz0@O$+a%tn_gB|HYjF*JxA01E5wFZg;63Rj@9TB& zFTJ|yeNbkKc)WhDOeEahviD+5T-)ASAD0L4;=wZku}jCu<36lk`nS)(TW`D*U;T@} zh}*&DO}}&>$+PX`%c1zYFZN)QJo#?s_96VGO}!H4_~^k%r4ND@2JYFs7uQg1p7;FS zSH8)+{!}Ix7Xd7w>`hJJGrQH_wfbw>u-BM$rKOjGjC*N0+o8-vifIy1diUNFTOWLs z`d1p@v|)L3*d{qxjv`ESy}K|ELMBsF8NcQsko*PwjvhId41OIQ z$x1RUx^3=OjAi%01F11s=8zP+={47cUK7j0IcLQQp&YLvoIY%b(`=SlEsF|>KRXlb2WbD81{&@7gkJF-*QYK`d@(+Co;XoV_ z#mgyx^T5qSH~R$K7#@g^KKjAfyna&*P0YqK&p*pdb`nI_Z@Hy$7Dx~15gca0>Pp1E zs;|l9wkeWIMLA0y7qL=1Xs2ldrYW@E40(vmTz~xv^XC!roiu_e#a(*=YYm_ha%zV$ z;US=+z>a-t&p>BNaMasJFDbxAw{bk-wbYwS8iN~ME+7MhtQpujwJ>=JS7fjs{@ zCeLMyWp=!d_O=rGEbVxkuyBnNTV5y=%~rw?`zQ*pE`I4sCDeQfr#xOIOMZl$imUx2 zC{$DN;6ry29zgn&k6}AgncW0Rlu3E!oLnEIhX7@D5gRvL!BW>SFcekisseD zenJ#8C<9c4z%1qoLD;f187=FT`7JOgW)_@XmNZa24AI%*xC%v0#aVe^@~7HPDT!+h zbhWF%id}5n9o?1pU?I~#058vVI`lO+Ux^3zJ8yDjdcPDF3ON&Mmmu25&TQh@gqCXU4N?#8mq9mF z*AOe+dq4RYa7V9)RG=}HT_#|{M@#7?GO3}%TD2xq;K64&aUcS}ALluhh9IGTl;!L~ zOBhPJR>%kwjjRfId7(Tb8}JHLQZlV_H*@JSUPyX%P+>AdIMt9GD@Y?yW~n& z?g1tx-OH1Nc{y;btJh+ePN@c%BfkpofV@e5?7eCr_uad8MZ-V+Cvok{`IK#TJk`r? z*}FJvczTkYp-ggQA@be~sqjpnYinhk(fMqvh|&{UY$D}Lxf^#|8J7~M?5uDh2w?u> zb7L;KX)ctp=X>1Thp8C}1Ro}nJ0;8--AWRIw3M0do*1&JP~$-#>9%b zzW_AhLHCm-Gi$M+ckkXq9sf_`z>oimVJC}m&z+CO4uD~@hm94ci9z1PrTos3x8lmV zGq_@BW9ZnK*t>s!?7jO5T-|LM2GB)R2^HuDd-JW=;-%Mqf_kqzhK%!x;nco<;TJxR zCCTJ24rLOn=qIndfQ5B26F4r?2KOcdO_t+%tm>Y4^x;P+KeFo-jbKP(d;1N_aSqdT z2x95Kb}k;i=ke%U+l$4V%=QwTSp8@-4!oOt2asyB_1$2V)MG zw{f}F7OF9bJ=p@aiZ$rkr_z%u0$li`1F`G2Uy8oo9kB)%^&vW&oj_^3@9uk}l2R?L zP;n*Qd%!>(QYpKR7sY%L6^yCb!uo7zszgcb1d(yy!|0X}vJPz-Bfr2|6y4oxxz`e| zZCqk_8!Eves|*H6=9)xs)|EFVvfEt9(Yw0P`{>m!W1B_@Wfw8#$TVGL37E!K7smULs8l;AhRVi`OS@IY36jYO&QPWgMgCktS z2+ElOtZeo>jqp~dLC8xF8@6o7L|287LfN*o zh7w%M0={L#RwH;phR7x8zi4tqfr{rI6m2sfgK*_5st*e za1|4Fz*|*k3>$$$+#-cr`nFJVhsZFWXDE&N0O@T)`7?7_<~xOAvAkI13D_{mIJ`V9mZ>CC`6yVUncJ)lu8N5#_cu?j_!RH}&}Duy7Ig;2(l;O^>}M zB7G;Z>YjQT2is3uY=VIR4cTOj=RK#!;fmv9e66^`0w2K)xws)@Xrm zL-QaP^kRaq_mnTWhbELhhd7x)?7ddLpOXel935MDLP3@Mp2??e-CcA>B!Lfw%^Z@c z%co-I>ap0`13j{qlJW)mYILy!LxSXo%#P!A0Dtk4?tAbKjHEWKZ_bG4>9U_AG{r+XXM>$i8kzdp%4I!1_ApinJ zsc5REVU_2JGE|A7RM)zi22Eq|=ULiD-^TvQ1>x>X;0TDu8iWs?G|pBdM_NNy;g$fE zmthfklxxk{Iy`{OQc$}_@j)CzGUfFkRsL;z-J*Q3m;s;*++=h|4)e8qZt(^GOemmJndUn_R~czI&@UEB0W`#Q zCP1b_#QV;^sH2)^8YQ4qLjV|yLyiED&zOHyTiXvu%&re4Cwr{d~G z*c=gvwMwycfUb5!PuH{W2o>h~ECvWK>x_tI^N1P2aX z;0SUR3AN+myATeDUQM%wz4z^lHGLa#Z{s$GXjf@vHP9U^4;O8fWv<_NTddu(jfNL& z2IkfHtF_eFwnjT;e{3a@-2Ex!MZQKt4)^VSI2o;>iYiK;*7t5GlJs!ZWD*MN*|2VX zbP@Asaq$3$pQB4zV4jyGuC%+ zbYtb3Jd%tD?pIExcqL5nHj*YQYq!D}Kw>Nc6BkXMNvi{G-6PkEok8<&#hbBx3yPG; z0<*WA4r80P&Mk59?YHCLk;5s>wEi43{Oh0i_1Lp#Po9ge!PG7}ms-x@10VRi(MG*? zDauPZg8$LG@4|wBDRBP6cttT3jTCBwmNOyPn~0$=BOvYEXkv{GHTpL9A_#(bA`PO5 zHNNt*H*(!MuN|+6f^U$_Y42m=n|00;WYyc5tqjIjPx9y_+0Mq~bSGMxr13F|a#L2; zh9zNz42qyc%HApvo-+SgGjU~H2soLd_-d)4Yj?j|IpX6aak){vE@M2i425jyMt=-n z8_T?jNx~Zy1fOg9&Nx*KHxW{f(bfYcX=Q>P?sL5b!+0^YjMflBsHq&syD~(s!A;ux zHWSNl0B$o7@F?9JaXupqM(9nkYBe1!`7SaFWoB<^ ztI;Y2Jua@mgihf+#`;wTR&#dE2(}vXX!J@<5pJ303Ta83gYpPOw&@z8I%)=qXb+vWMLwz`62S2ER}+HOhW@DFx?66$RVADX(z_WcNNNO-`e5Aqt@b=pDvsZiV-TiLfq(A<83bSU^eCn{pG+r1;e? zKLCejP_E3=s0O#Hp*eF`~o8`QwsBS8mIYr(=1p*i^2{^oDz6+HVCD4-j8!~f8N>^9o>4VVcQBGMn z-X0SEP=tx`pu{7n5a4=Vh%Uw~3ZpqRHY}P#nRfc20?Bz0C0e4;u;;PBnJ*)dgsTbC zb3CgKA@7;b5`wMao+@kR3Yn0bVKw$uQP&bpYr2z0N6s-E>CQWdhtO(#iuJ;ql(C9% z1*J6SUkcOoddkCjps-Z7ti0skD>BJ*^CLemuJEUC$g25`_chYQE9t}`S@HxwO9c=w zt$jsobu4|$d^1GGck zBrpX=0W97Z$b8Me3oT0+a+olN|HAl-!_8|sV;}0qEw}Jrc|#{)` zNOli&4IJcF1gPucZn<`=3Ai2KK{%;BC9;)~kaI7Z7G)S5i0(!arW8v?w<}v0D7frZ zGAd}|(n~_ldO#~ffcRh>DZD|nWvry0j!u$=dXqu&7?=RCg-91LwY5Mcj1t$+zSl6b zzMF8$f_kuD&Wd(>x#Q!9631$j`>r92w8wgme;%oiGz{4cU z8RGutg$_uB5BD=i13|)m?Jcf?Ww~NKg1-)J-7H`1c9`k{!+CBem!di@ zU+K^DU%k4M&SKZ&(z)~GJ#=L_YnpX`MSt0-Rxy*=fQzNN#g3Ch!VPBiJ2} zTFhx^Nd{{yQrdFgmiZ3S>qGplYd0ZMdXr{p=}joid;(qW#v8=}U*!Q#4^Tmtgb9Cg~?^!12EDZ?rSBtsanCpGo<}elq?%3 zIY34WcP71hC?TxBL{9)lQ@UcMAJ*=@b?uuuFo$xf0Fd6?ng3IPkZxFQER7FF*~oc% zaP&uW4=#T~9u*|8nm>}2OehvAvO8GbD4Y(y-Lf3G4;-5pJe!j^8=g` z>l!?>LWlxi6leulDr4}tDilPm-f7AQ<&6%WvVoO?sA3s!14*{x8zKT6(g}+viJvMN z^C$#*UMf%)8avkk8#;duu>LOa*9t3&X>7P<3tpdL!gHb!2V~xhyi{7tJOW@ZzDj?} zgj_H1@+Dsv-;_PRBDC=@OMK~CRDN%)(1S0aks#mdt!aYDhk5(!D6vr z0wXh<*D{$(;mG?-rIw-T%GII+8J8d?sFy|(SODAu*jf+Fn=o=dXKzhdYYiY?1=^d* zlDT%^la~QI-KJ`&CcS~S@IwH}{;J8ME=K?^@;$rYNrQz~Nz0Bs03)G4hLCquaUDWm zCCL`l)gY*fo^uam0<|<%TAGzX(EthtXM0{15j`-rDVA}k%ZvAIu`AMNJ^;9>k|gn^ zGRZziNmkmj6ORc3M)6=%9y@Ze=oFaZx6DDezW6eQm1;~{7*tZ?DX}OAX0R+3pt{&b zh6r!)SWp>;2qD40T4>e0zJd1Ftj7ut#}Eq_|LLZ#BY(q8{Pqe;NM#(r$Q}e!?El6H zao^_Zc<|8&vqRntIRsh&Hb`nfSs0kVmb9YcZD{2RLR>}5(1}*<5(4ynw|j%Yy_bPI|nlk&_AujKSHXfT-{3@n8waFte69<|)3 zNW8Qe$}-lq`6Md!i+BS}w3QV~v*KOrnr18;dRowXy$mZz+MT3Hm9Aodle7ib0KSwv zCLe((@MIaIEL*{4%UQ!C(yIVhxvmGEl@;ayun%xp<~D^VfUTzWYD`=!wg$ZCTkL@( zV8RV^cqK5vxedMpaU6QHItZH%8mFTsYiq$nHcmOOefF!2^CNH*fDnRhkDY-a?&(Rg zABl8PLLZMwaxPRb?VMOk@~QZy0^3f4tFsg4aMxC|ZWTXs2-qO}#1IBBWq;Dt5|bUL z$@iEqAqjW%Y}8B-MeQnF#Nej)1SMH*rp0CErn*=6diULjYW>@GvYV?=#M>$Dj=NG@wM`#7zVr(_KBo{b%TK zD87_)KNGj*-ODHl(pd@kS5n!`a|t^QT!HtI=-suE^F=Y@A?BmlG^-LCUXd5_QBJ8i zcYc>wC$6$ad5C=6=cO#*cV&&*i0^@V2}_j#$Q@fchp5RF05pssgXZoW#_ZG*agEDCx_5NVKBWL9Ow#XPtrfaZT@q|X8ni9&iO17YGY)XyZ?s$G)v2cMWQd3;A9$~f)+X%s$`)7ai|fVCOb=JBM7v^9Yt48jPB*k^P$QZ33+JYCR)h(2sST6tW$AgUIe89N0GNEljrbiU z61=f#%OoXXHbyBYrYzC=9ox=&lSR(yCKild7RR^_50az^Q*NU!`^we9sBOVo2Hz_X zGBSOI+%!y@Xg|-v>Q$Km{yZw0Xc%Kypwiw74B)|d18#)72nFHw}YS#RIIsu_3uKdTKaZCU~!=gL$-NsL@exTeji zkcLpm=eUmG;dWCtpJ8r6Yi9{cNEsoxDwH5P9RfQaTF#!UP_RJzythf8*r+iDBeeg9 zy07%*ONJ%WRk3sWr)Qy{tbzAF-~DR5_gDXJoH=K12cu?nfwWb z0v#A-L_>jh;DM=7tB|4CT4G(M7q4v%NvSs#DFgT{6&&!EPm<>yd)FTd|g z+RxVa-pBjq$0%A_5?q_11=gVK@w@UceoGmo;SBIm>=&a6{*~Spv@q9QXh+H%fh2GQq+j+LOBHk>`+!0_D}ixQaLAA;8{sAi*pbYqzv%ps^9dX3h+&-GwL9$oy3R}nu? zCfCV^1pth)NFtQUA&9wY3VePR`$a%=AFZL{e(v3U`@AAVknNIP3NPOmJA6Km;efIF zw0aTRW#uH@QI{N5sxydvG;3p+Ce>+asK;mHCijLLuZ*73W&vlJ8-E+m_n6$H_ZCsA z={3GwHo$Yi1~w;i7ir5%hC#NI#O>>FA3Ygm#4Y<%8nx# z&LiBVes$Mdum(21JV%qq>=phi+Gdvg0Vmhzd%jcvEaS;8YW%FwWeD7c z1_$E8rSnvF5T^%cM(`5&J*QrZJEO#6dwcsBZqt;OKrV{s*|pI2!YwEecB<1-w6}q^ z_2zEab*~y%aWgg53P#UJTyepz2vNNfmj8*f4TKRah4VAdH*pr+DUe@RzH3FH19DoB zTAf->hN4VVPNoWq(nY~p^;Q8`o#Zgd7aL5yH=8 zL>Y)LJy0HR1y+As4|xq;&D84S&S&qF<0@c<_XvF^Mz7HzDsu`bqojRtEmKLWnUaVT z5kUc?M@ez|nheo@x`tJ%i&8Y`3wn|s^&qHtx-Zv}N)P8Cje3pD(^(IClxCrm8p1NG zfRp(v>lr@Qe~NhO8*c*ZQK(><+!xLdbhlL3Z2qO>Vmtun13;Uk< zV4OWa7*#E+qqVm;wjliVhK$~z=ZBRyB}`#Nn2qA%*M)0elQEN1#W&;VC_lB}ys_zF z6qHUvdG>pl#U0tuyEaR$2T2@$@#{~=9Md!#@k)*}7ep^(6UtIY*HpB0&yiQO5#FcJ zWi0vH^_*u*y!u>!ob9KSb-6J*w|6u1;JtC>GA+-|Wtkm|dWJ%wk5YMcHLhM7BJN-0 zUukfZ1EXd02*iE7trb)mEW=mzDCi}zdcwIQ<`|_S2JV~lVwD!($TQO0BAz2>Fbpkm zGd~Aw6=MOyigJ>!tAIx{%G5YBVaC{JC;bIVQLIFu6$OtQCQeHKD?Hc4IdM!$ZK9mK zO?m_sIB!D$h0w|h1o)l&Q2Y=#{Z7G~_!{5yZ|8S#Cw6Z2m+i7qaB0pni*gT#hHoO@ z2r0?0{OOFD1wy}8Rul%ET%b?{G^kuFH)f5>DhxkxQm=Rlaqdy@M2*v1@<+v%{rGv2 zjEPc?0_7XE_bsCPhDJzL{ze8#iUnDB_YZ}64BtMQOFVXRc+X*8kr@S8{D zkN?U45eGi^@1vaFC@q8r4ci$mOP&m_yB_J>^%k^*)L~7A(_NqY&%L=Y-{7C;pbVhT zfG$2aub^_Xe9Q_3l3J1pJzC7hY$0&~_Fst88}OF5ORZk_zi~cG_AKF>;Ah9qyJEv# zk5H?+j!bYenqibCJ9&sQ3!5pZVS5j)0Ar%Y^K_56Hi4z$;09f~8&Qif2Av9l>lY1B zL>6&f3jkkgVO*SyW(h&-J$$AdA~W5&n@Ywq>-A;Qk@u64W*H^lw@lI)dMX>-x3GK* zVIsna*jai7UhIR^-L+jt5mMwD?M4wcOL3JAQ4&z7qZHii@Ud>%wx!hN<(&v8U4 z&tgBiUU^Tj<~cyLl@(L~lwi4(l8A!b1wm)x5!J_Kljj_p|d28p!e&UsOyyXFUkw zbwL!|5B#wWv1^^cMJ#5xKZc3r#5ZwI#bcaUxNy0No4CLKGLsCXU*MRL_$mpY@1X zden^j+I^bKAe`*{s0(%Q+EDcN_NFH*!*bpfxcZ-y5oOj2?6fXfXL=~W<0@LIjv?U2 zZrselIJzr!1%tG}90n~*L2F5KEKjxC}R8z^pU8hbhH}xHw+>}ZZ#m`2zY6TXpxYK zc`k3g`4$S+n)IHIT)B#H@8sIKxcJK3gdh;ueE%bV`1^74;1Rq&ohVdSfYZ%rTNsGC z>EY-i0MiK3xk{bx=wg>*fmikqN`f`7?pMQFn}X*|f6 z6r|vRxev-6}-jPIpk3ZHQCoP6Sq3PM`*TqB-}5MEvg z^+GA}4Hb)Olp+lS_b%`9C13JCanNV4tRdwd@KAEOp22+v0cr+3&`M zlgFT8!l!szydO8>Cz62*J9)c(Z!+`@pyx42<(De|nJ=c?bkBUJ*p`Y^u0kIJK;m76 zq8o6bGR;Ne-D+a_B|eu4iz>z61re_R(~ae*R0u_4DzCsLzRb`HQr6qn^+a_mgMhGn z8ek+QjJW~b@2*ND^;J9z@LS_j;W{Xt;TLY46%ZeykgnlOzHb7`G(k$P? z;sDu2IzCruXqjrA`zUi0(x1d1E19N0*OoYGl}xE0qC0ln9j83XnNm*hFM08{8O|`v>AO@vSBVk=-T7=`A3B^>i1F zb&SDk$#XJT$+%CkVl7E^N+Gx6dEA)$D>j!{i0AE)EEPvXQW9=GLUM{&sl+aEDrjA- z*XXIrN(1mk!ONi|bg1;e+H;VH9WBY$bZcoTP0&BW{jFWwLm0vdnUoeHP*0z|5Dz}^ zFw^NaV2wg>;4)uC!NNkPdSnu2K8)3hJ%U@gXuM@olu3UR5OWotm$tTALJlp_(bEGx z5XJ!~(HVg+3{cu(?W;Og#n8x5!lSKiHTx>EidEKRV$!6Fjo~(PGE6M92~%wLDg z=m2gdF@R9CN@W$E7h~JH=51emlO#XX07gK$za3nR#FW7YTl_i~Lj1NBw=k{Zx(bsn z8HfTW$5p8U&%hj#2xpdPDLet=Bb#22SvjAj0tt?Y8)m+X_l_i%Zd7Vas5FU8uZ2mw z>He2?p(kl-B@xTmt2mhPXx3vnvYGrQJ}NZCLwS@Wd=tF2HERucGK&&@`@MHXDN0}) ziHcKPU&D1}D8J2A^XO@k(QDP)X1r%7AvZi2-D5Lx3Z-@9uG^TuKwIAOZ83^JwsXst zxT9$mHYROi`Ts>Sy?1l}TD(yWgs>W^geiyN8XbDz(MLF6!by~E-t+$b2;p&(|2pZ3 zfH!7jO>9`x9;1|gm2=)!oOphZx+h#(orA6H#H_Bv3Xt;=#ah*u9%UYxGqaBOEe|!sEKiQ2@-(vK_Ns z0_PDjdPUP43BF6SOIXdq6>gW-r3vBoe=(U;+V&hwpfyof%T?n}o}m)05^HaZW}0Z( z0Pe=cE78FWmQ`Cf!*39D(xqVth)ViYA-5Z#0$YB}Tl`L*3%J5#lJ<&nRp=3ylA_5H zb@OqAm!*rvRmub2!=eVsz!QEJ-%f?!=YWm8S11GGlWSd(Exv2+gn~b13-__qJ9!uD zSdo3XDDI+10HEaDG5ERA(_8)FroqpKG$#?AgS&;>>jXX`!n z6q-1lE&G9+vRIkt(lv5jUmZ!k!rVQ{Z?Y327o;Js)#N8;?7J}mqC1W^xZHY27%YF9 z6sO=b@y!P-#7prc$V5agH?E-O>U4p&m^pp@S{(k#GrU#+&} zV7@|X(Mu;Fs5&&`&8d;sR8UU0IE=fBcq10!O!)wKaTjo;pP0x~fz`WkG^%D{>J^lm zp%|1bZQ%ZOtPA+e5Wh$Jtg7k;i6w3XH+#oN!TlhdlC3BZyI^9LEipw*qyX6+1&Trm zGQ*G-9!q4f#Bc%ElIJtO#IPSWQ(cZ5-H^sSmH@~I-2huoM`H6lK;nfNnK1tdKV<#} z%-2LAcx@7Z2&J`Z-MdpAb?Xmu?vrS#GuIa5$|Z6EIJa4v<=C^m+OkU+#@g<#SfDn1 zsDCJK+_*v9b24`By@Q?Z-mG^@0Flfz>Yy|w0g8=akYV1Su!&2XAcDY(g-bn z;{I!aVXIvmQpoTZiq9Nw*$U3WkVjS-xIN$iYO@!WMwmNzWXy6AtG$!P}IDz8b)5u{clnqK2DE=S#kvG>91f1P6tO#-@v8IwT%qP z*>%^pXkBfkLId6#CT0SgS%%u+TaI(*&SEvvP>aMuTPV+w5NR^oa+wW=ikL1o8*YB8 zC0J92#h2G|VF&<48_Ylr=&K$3=`Ta}4qXW+%VhYvDvYA#lzjFn+gUhKcj$l^_e z80YA|h_?x0(%MaU1)-;+I&k`QbTA5dgwo7<#{af;t&PhEk47_9JPjxU(N;z&=Z(08 zRbB=SweKyIT@eVPhXa=SK+-s*}-KH%hnzlxBUtPTW z+OatB{2Ou4y?bEz3vv0vXsq2xLT>dq$)+ThQVmdtqB_`5Qfvb>jn}cfo}|8WC@6T0 z%wZV5JQy9F4YW}20oUL`&?yI!JQilfKJ=JEAJCSaGcD6KnOQFv%nrO@BM7NF=2dj_vx&srz#FGvluvS&Qkh;=Lt;6K{1(qpDJVP@y6crY8k!17=t9B7dc?t6 z5+LorqUEoWVD5q8fUM2;I+YCQ-0QQB-;f9IrGb)o#Tw*e+;>Hp##QUG@;k0o<-za! zO2N*3Wtc1PWmtl%G?@L|u!>azKflK7k(bIE6$F)nypMZ=M=z-u@m-a54Vg58(@0_8 zK1W#s-?H){r$q951A==BkJrkY^w3&0GjQQX9C+>p5Q$`KTtS_Lt?VQVn*qN#AI}ED zGaPJ%!W_J!84s+=lZu9YZA#%qbI7;Gq;nO5BDq~*nx%yq(~x>oM0zL%KwL~FJ+PrH z^WmXd(-OSQf_?Dva8{Iv;t*v5ZnDbK5<2tQMQ|QQwFI-BSBkJ0lZP_KpGe?+3QYwS zh>mubV(`Mn6!=;gsE|b*86s}M5CU0P`GT1zJ< z8L^FZI1A4%k;FBpJ6wfF0I-}aK>?5%8v@bw2xMnBzF0a}j}?(HCZ>*%#cH*LuZ9~{ zR9RxfVG;_^3S3^I@yC)$m&W0AYa^`6v4qir>&ofMwLHwa@qDnbGTxhmVXFjGB8*J1 zGLEI@y+{QC;Z@*6(ia*$8A#EHD^tyWt^})|W~v_cGKrl*hIP5)O&Qg@R11uO{Ynf; zWK)5gn^qZuVN;$W)|S&kwVbd;39iagnvP_M0ObrF96E=obC3CDv{QhS<%XO=1)d4L z7G)@NODZKO1gWJ%Ahxls!%~nrUm3U*hmMfg#iKC#5GYuZ%rTh5I;|oGy}&)45n%?l zvjZ%*Yr`90b;IVZeMvx-OARqH4N-w33rtLFrpCKW=7hje>C_XI?tO%?iLJV!wR{Y* zOq2Yyv`8KXhsFw%Fzbo!dbZ||xE|0KG&89NSf${*r3k|m?4i!?XuCX0%jGM~);LEz z*G3=fi079Q^R11`XRpLNZy%;Z=Gjb=HH+8KP5b&aS!$~LUAj4W_6*7tghyO^Xz&J2 zWh_6W^B%F+#Uxs+YrF%7Vq{=EHmxXoM)a(2CpKPzfVm9Zp|$^qsrQbpEK3jk4*B?) zb52FFimcQXx~i+XI?hbbOpl~d8cDkfy9z7Yur#x_0UKUmVZbo-k73Aw4Z#o$V-2q* z>DbBB@C?F9G}$_S`b>KN z!;jOF3Jcdekn6Kp`fW8`>BjAQ>EHdUKS=-0zyEz^9!#d8;a>KM5PvvIMn4U(%4od8 zJ?E(i8RaaF9O+JDQoimZ4EIgk;K9k$}W35 z+v0q-fvp1THs}8M21&bkEL3n>&ex=giAi+2+BA0SE`pP?QRrub22-u%yp%}Zy>)w( zBwiHT`47{xr+UCoN+fgLX{WM2{eOQxOE{o}g`d)2{f7?;srIL1Bfa1gWyyFbZr>hH zwJ5B0y;TfUdxUT)Pj~N6(W#P>(E?RH)3oKrYM+^e7Vvg#-o`>~t4QP1+v(oNkJ5ks z-~V#@=#BAouw>6g-*BTo&Y)^rx%}M$G#PS^18E3v+d%(g6$- z##+$gk&1_X94sj{+10Xahu|UG(MwdM;So>nZ;KIm(hKMP z{L--d@t41Hu|I-$vUrt(u=<~D#I=RN92P$7^uFMwpV7LOE;OPvb~VoYUDD=VKgr+h zf$RP0p7lby7QG3=#wF+RsPEymvSVpEvc-GXqKqv~ETlUh+(f_KPVFx|7lK@QQii0^PXk`PLuE(Wi{F)nYBBuBfqP(TH7uXi`z>G( zwKg{@Ve8h57Q$#?5qk$%W;_cZwG2V2oONdRGDv#r#b;wEiY+&*xW6Sgfh;}?qOp9* z=fr~I6mW4uus`~%KTVCDOu9n&?~yR`Dabi|{#?5J(u=7aSExM&3NVOwUVAOgUi%P6 z)k^!|+0=J*IDO_TKSvEb0)e#wPxg>$q8@6L5ppml{<+7TnLHq=f_A$w36bH>Ily8- z6V;mEEx*N{TCwubq)Ft-)ldesH^JwbHg`a$zrslvB7zSgy;mS+mPd2oxhg&)KvnK2 z`(<)p@qTKl8lf9ob7*ts8iSnAF%`kWrKL10+%yFK~Moh5kQG| zaE{iyA3mtSW-jtPkR_}xWW-jQRy?9*gIG=Bu6uIaubJ<-u|9VXh(?=@Jlu02QS zpvpF+C==qJUmLhD7Z(--=dw;)5Ek!gnYDIQrXvF#Va*t?ZUld#N&ysjgizyQM9u1K%F^@H^7?|g?YaVS*VWPq>X!liVw zzrQoezh3|T4^kKSIW#oHfSV37*l%(^FloXgjkvL$qzUD)3mKbU33mizlWsVldGb&%(GchE?Ym)h)mAk!wUN$mC=A==QY?`N z(Mb4U?$&)8C1IJO1VlNi3Ksjr+~h}G^W;l3Qaw?{Yz-9wg?54U z8XB+-u8Q0SG+B?3FGm?LCufHSK@o;S;j>&)o?z>2t7(dKdpsy+O`cR5;5woB7%Gt2 z=QsPe-3%)Nsh8BU;3YHLECW}-l;c1=%P*!B)o?Zduo!AqujQT<=@0<6fxU%;n&gIqGxb0 z5-yA2$L1!Dre@~we9&ZztnN;f*cM*A zaVV4+HEmjr^bc5G`5^U@;F=g!TRK2#2X1$7Os3xYy|g-BNON@?=}WI(NDs!wQ0Nf; z@XO^zyoD%b6)^Myl@EEmO_yIdnmP%wz47)9JRB2gWPp$)c+=935>VHk{`gP+I(_Yb z`X$zNBL9ekhaOVQN4HB|>l=yDtLhya!|A$pl;Yo$?YN-sdo223_`sD*N zd9)>LP0b{|0=qSowcc*LWdldyeWDK{4iB>4Rq?>2P=%u|c`ZL|Bi`d1q*oZ~F;kwv zq1l7i^4=4nDP6)g;x!FWJ#Sjp8cSRh-=Jc4fByD<{{N8IE3f>LwtgzuR!sOQu7{dVmde==p?mzS7)t0E$)iL%HOb{;%0413-~US>e^@=P%RC~Q)tz@NHn zV&oyh-`5=Ts?f>20mcY3V0ox&DY`z@PP9TyqFI|ki`~GTb>s-GTic?f$Ya~VBI1%* zjEmIGvyTNEeU&+|!81>%XTSJmwAe1{byw2|Z@x+F`F>hGe>T;VcviwCcKzDBX@>59 zul(k}K$wtN1M&UfoBu#>c-(ER-9W?;17N_?S6H~!Ko)-20ac4J002M$Nklp&MPSr8EOmCWm5wfa`G$X{DDvjtPVnHJ$9!Bsvcokpo=!ah;YbmvD!| zes@Xs!Ll#M+AiSAE>tjqt^5=%EMa!IrS|t{=vMnZ!Vi=bRXk1`MclgS1ZzZb*nKmS z!#4Ks5j6RyAU;iHfMa+$KzO_2-M#%VO-@ZS%Y7Zx%g4k)I055W$qyjWXos=Pt$1z9 zabwll8kv}Ik=JCRy1CWd>QI8rB%i){JCzaNZiD$p-1CXxw1JRyxH5}ct~H#Xr@(sb zZAz@H^_H0SD8uor6>!y9UYwEg)f4a9qIeu_+Dyd>}z*lNA$!WIX#lb#wQt#I|cIx zUvSym^>THAK|+)&Zj(4^98cG&J@a8TFbx$q`qLZg;M8>0)>Y%>K?-gm)MZAt8&=^2 zozjJ8o+h4OoqqV8chZ|bdMlLcO{x{dkE3`m+UQ)^(cX=s2(x4RRqS<>=bD3&H|Yx{ z&E(vDl5LAJ=qF6fSrxUB8=#=(OHPKuYN?cc=`C&CT%yWiQK1ezpdT50IkeRX(=z|T zo*V~w&Fq6=;;jjRo{Q~zWzOD5!JuO6*~lwwfF;vXRZ~fM`qD+*;<(D8pE6v~*RFm_ z=hA1u*Byiq=SVneo5a2yVAFqWC_VSNEA$FjPE82e=>=MJV@ULkFqIFlNRu7+j?s7v z1+=ffpJqL|baeQ58n1c;N-vTixRtt}ek$!w%%t{Xv_;0HfA+!|lpV%c)3>3ae;{?^ zO_*i^U?=_d&9v|9?L{f*pzCK<>N|Ec&E0&67osh7li!iUSgD}*NHfXOHF&cYZr@KU z}8nRs|3 zoge8;H7K|Ra)DmDJV2NOFCulS-Cd1%6HYL}U|94a>*9{VPcr2qJ{rb@_ma=JOyyu^#Df3excBvWmSyuR_zlko zSEM<2rSTE@FwlT7a7{ibKEnk%1)_fj?>W-my)Msy=NLq`&#vNpV7|~4E`AJ^9gJgp zpy=h$8*3b2{vApVu#S)&&sV0HIBwpPFjH}fd<);xwagPK@JNd&Am-MIQ;T737@^vo}P zB|Y=G&!VA1(5ieuE!>hkAIL@g)q}1kAwoA!4YB1qVj_kJ>bvR8N9*D7NB2aHI1H7M za@KO?<8YQ)7|$i!_iXWN%6i7 zCqzQ-9550M^+fp7z3M)*ANL+E5@m&@JGl1kE&dY1t}o?w@o?-DLuYUH55SgTzs7C3 z2OY<92W_1FbXYKEb(d(YlrLv8BMn{l%VycPHO9njK~(UI+y>g)(jaGHVJ=P2&w(4P z55o0~pSpC3X^s79^!_~(sc4;9B%X@Z-PQ|i*sD&kmD$H>gk~D7HdRnAvxE@7|IsxP zWx7)>WlLsmFBdk5jgu%v_WA}*ciM4ND$Ga&WL+qtSRyqfWT|v&J=kK^W=6HdIh}o= zFfT(HtH7Ne-YtZc_4u$C2t(`CSfaJwCGcz_jq%+#h!qNBH`(sS$2Zd_SFfkOGsl?m zPG`j_#zH?{NN1ioL7xDU#ORFJfHimSX7vZ-2Dps7pI!s6fAW5M`h0hK=F$aR zdN3yFN7^aJ(ldcaqPEH)Xbq&yV+Bi#)l3!~>hDVT@NTRXR>+5FU^-t-`r!5V)71UR z^qHUiX=YT6r-`?&LRWR+J8V{R6p!xb{%4Shuw1i0ZE@`Mh8nXvhK!VZniXHd4GZSZmM#Oc&I zaGdZ5v;y3!i0?}$8}tb9Ax}SjE)0-v_=DcFuAy#N2{?%YRknWu`lgx!rfHL_r(Sw4 z_>5yU1b=A(<|aN`%`!M_SPe{NT|>jipaI>n zC?{mj_r3B`T)zVjHPWKIMDpk!LbRUbzs}uzNLb2KDIZl?>uR?dlZqZ;UvPT(^bi#s zOslMc7V!wlFU$>UA-u4MlH1qu4EzDlDMk%-7O8fKBw~~Zt=*F+2BZ3;oiK!BfvYNe z*b776x=#fzw~|kCfJdegE8Z;f5_r%-%1y_Mcv>;M03_T<{!Ydf-q9TISAh$Av^>_R z+XEj>0<>oc2^0uDJS%0bBrp<+VSk0vYU-oK`2k^Iy$ZVh16$xbx&R`y09`7a!zzcz z^Nx}fs~DPvPx?<`B^{fqlQ*=$s+`%e&pi%cjM7ScjF!^UXISD~Bh&QWaZ`Rom;ktj z5cg%?^Zt>X$Fu!h$TnXC_YN(06&1ULa_6`vTN5ym-vS#aC91sonYgFV;Qm%SNv|pe z8YU|3D%2Xe(sdY`TpQtXm1WN80Gy6wNPhQAr6dM`;TenkA!P;xRK>k)sHG>Ul90hJ z`6CU;gBu@wnEvSh__wKxWRA`b>9_6~$xqjr|1wQT%Q^%4p(`e8(qU#5 zFyjr}h)Xc-J{nM*c=p*eIB=Ah7IAOx#cfzacAuD^M1lr&QC5jN&!o(Do!8BflQ_>)o1qiN5#q-=lcsuw* z{IVY0M8nXI%0W&Lu__%0fLI934cOlo`A?+9t-FNmnLw5w$^;4uNZLC|o$n)S34Aum!)cjOB%6eF=n?2D;2H(#u@K1 zQ@w{wZv+ntPp)*4Y1~lm;2X2d;Ze!FPFY!@iIBz`i&TDW9^fLS;f^-R9$ufxN7HEz zr9{`PLi6azF|z)9qO9ls&6{NBkEWMDcNrWgriTwE@m6i6lc%1-TF<4?dt=Oy=!g*1 z9?02F*+aex?Z1SOdMNNkO z^)kv#W5hW0y1A=&3mA z*E|KLxK#&jm67n9by7tD@m$*jiyIESlGa?0@K<<*eJPT_L)@Jn8x?pJCSAST!UuR; zkFVfaVTMKNG2yq>>lkc!EV^kMi&Ak=g5SXNcBqb00k`ZgkAh~$KeP13gChLOvTIBE zqS6E&CC>s~SQlPF@X6d5li0WrFBq01hmr^H(Gn?(^)&}5gHuE)qne4bZaEaM@!no3zWIv^v@$94GzcOrVU!d9ahU8F$bg4&d$04{4&UQ%@2R5am!4#C z%6o?*z;(vpy|=HKEX)(QpGE~|!+V*$^p4;N@5cSuvvN^h?%*t+FW*$TjC?$nrYF?< zifax|69>u(0k;xn+@U%{W2R?( zJvn6W5P;`(>l*!(S@>#uTJ9$C^&dZxYH`yw;lfhpIF-#q%QQ3Y&!=2abRcB)3Xf`B zjY|*5(|5<{`o<#H7b(d>GkoROe+hRptz%hd#9Sl_*09EKlt*{(rFXvneX@Jo(!h!1 zCwiDZ5PI1rUjsp#ky%9uRs23!LR^NN zWt8!dSceN;_y;ob(-Y1?___T-tP+t6i>CymDLaC@|Mj$9yu$#aS0G#%5C7CeQOwzX zZ(1q;9v>$QK3&4%p!Bd320(+P>b(o>73KsQy559mq#`|&+Vht(WCdwT6}XhQ`Rv~3 zv0h|ISR5!%mT0-G0`A%yH}9q!ckUq!Y4J-!=dlwf(lE97GMWds?xfk7*)($I1h6h5 zaOd#G5L>23dxx_yq;Q(%J&uarK)@a#4D=kF#9iA!R{zT4S{gXgi&9j_bVw4n@Z{9t z!rg)p8i?g;(HF=~alhxdkKQEEi#4jvvorQ3)*8e1YlBiciNbjaTeL3@3y8!@TR_)P zGImgCAd|f}4W2}K#nPXlq_B&1oH_9&hGn&;NoveZ%v&O1RgcOXb>&@5B|I@Qf->Zg z5jwJgI|bfXp&i0y{nE>4*(2c=yl3VQWZnprMud)G4q>0e!e}P88*2qWwTAU})KRk7 zafI0a%3R>O_2E}OeLpQ9My&Aw#RolbQZRLU*TZO0 z-c*QG3_^MEV)kR}V}CWYvu(%(TC&@ruv2hz$Qdnhu7C_ih`)%JvksK(D`W|l4>(|p zaFZj$T@2kxlV;1SNZ2l0n)5Ziq0*iL$LA@e#66$q-#jpW2H%tWGEm3_wT87DX@Bzu z6&%nnihDUqiS5iwT<=I`8MgBTWZF4Gim=LfUIBN%)ht{VKQ)>n%Uu4<2DJWs&2?K# zo*6fYVJvuaA&MN5ax5>bz$ZgN&Kx)(yi_vhi z>ZDSIa0zQ_8yqC6h*0V##M=?!i|uu)3z(sjhXw_#$+KRs(%>1XB8G@{F~B#%13b@^ zxj4%wGDLZ#z;)P?%8l!b{v1vc<#juc=FLF>RtizQr7F*vK?jid?+JsItm8dj%UthV z&))o-kBefVuw);}gteXo@twEg=ixn6fP^2cDLyX`@r<(4NAO$b!oDImfDJ3hyxu&W zP%ycp$+Y3A@TPpZX2XI82h8t?BtzgJesQZfQ^Dfrgr&+>4MQCsQ~A-S`SR3g)@goDCD z20!r(h(LnH=O}=l0F~E%EQ~x`-;Qf|J^KyDf<_F%D9EG<6#;)X(vW2wckjDzyb*P| zoiySY963QfFYz`gmM6v`IHJ*&NAjXf9Kfp0Rl-z<$%3vz_^;W_<&&#uMC+*qtMh;| zH%m?IZ7?-4o<4r<`)U5(L^}P_v+1eluK>VSYV6Bm2D+M_8fPYWK|F}b??@tJGkKH+ z+ph{tyvpnc#td_;pqm$7aWrmi9i4Pshn8L35jjX|tK;H`v!h%Ina7VM&L90Bu0Hty!@r5phOBk!b+T;T? zB1BZ$#e1Z+XFfpMhB>f~GAzufEC7idHCzo6S-*et`faTBI|!9>Cj2d>9^AT}or7du z-%JljA0SBEQ-4n{rD4Rm@DvqT(++27+;#ZG(KJ3W0W;$qM<>(lU84ir|A{Y zz+|-*atNv!b9*G+;5lm~C|Xm$0Wwv{1go;i z8HSL$oRVmRAkofJHM4?y2YOP^)D#sqvyl(ch;?u4-;3vurxgUg!m)B=Cyg@q-WI*~ zb6BvcxE-t>e-bdJwR9)fm8cRxs5PKOSuL`LC!hcw9hN4G%ey4YHP>Popgd^R z?QMboC^R-K(t20Gdc922J|TJ_w4nVGMk>#89lez@_~140D3xa!cN6@<<}4v75w^Nn z^}5uTMWy9C}j7Eb>q|9I1wHJa) zi*qvcjIWXVvOV(=h9Lo`OzzQZI6d{efhcG9xc<#Hii5JOS zEEy*}FvrgjI&7USv1bGdv}QZzN-989aHT!VcsHm9SiEru+DG|mBqs@%vtc!pa1HNS zbyb0@Uk{Fc4!8^k1wtM?FJdj)wNlSPg~FZ6qN&lxgaqh?0PgK_%^v+ywpUOb?_H&L z!!};t7f_N3ouc^c5N`EMYcPZ~V1!QyJJ%1~#5qrrV~8(>lJN5^awr}ufg7|?bVR&D zaEmaKeOW9a-lZzWW@Po`Csd;l7kHM693ba@N_apOxS`DPFJ&0;5Fj74@?itDlNaSApTYAp~xUV7eIAQTo*%6!*f$#qP;%)!` zpIk2%W=gKN%kKY=GC{oa-old$!QV>CXem=ijk5Enp57UF<+YDK;w~r~$gLjotW2&n z$=fw*@R-|U<37C)(uaG{+g8F7cjk+U_j;kEJHr`%1>Cr6bRY~NC6Kw{kH6z04i98e zkhuX9m=0q&9-dZ5z#rhdSg;v{;6^+{jj#@Fc4c*ziD|@m+qJsU@*qMFN2Iq#TOCBr zM;D=9ihT(hhS1(~B%QhPTx#m<1o0_3B4OvwJ0GT=z5%jVd*hG|3w-}C|0a5;|J3jP z2FX5yAif#mFbmod)T1AFOfs(b+qZAivUeqQGImoEn1@k9N8FQ+ZU}(R{tn8fj-_>K-&g3f zy^UpWeB1uqotMt0#*U^mIW|gb({^0{)cbGEr-jAk)J8*|ZM+6DW*N1KbvEy5q|0Gz zD|6JzHxOipu0a_=glvGDr9Pgi`5+#SO>k!c=ez;toxuaP)7N|U7`#L_X)jYkYuu#6KyS;^jQH=L($ z`!4%%_D4Ec=h-MJ5N|zUG$72gA#T?0Z-HN&sq-TYhm|8_bPx6o98F*N@)y$ecdw=e zy5Ox6B2WRTWc^bUlZ0Gg0N}sgfvA!IAH)|e+Yo%v%H>kKi3a((-wx5#kky z?r@xkAm^bdRLr^H+%(KoV$C}e4kZ}BywVBOIV?&2<6StFsZGF?w8=Y7#cYz5oQJA&_?hc?j0c}&2j|tK6@9YD#wO58*3X; zM0eA~+#?cerOiTm>J%YC5~<}k@{F0;`7}qbhBbJ9JOmZqA7_I%ZnUSSYYG4(#1{RszE8FICLBjwQL14xwUm~AKq*0BM8yYYa zt?m<^3_TS#Rna1~R7=LJHfb!h!g~XU1DP7XtL-}yRHXK%kXXbYO@6FGL1D#MTC|pB z#&{kkP)Tf8gfrdMP!r%kX2@(^?y(TE+BA)t?__M zcsE?TyA%&VO3!KZ!K3u>-dM!0mM8}_KcX5USS69LOnAXDS9yI8CCZFjv@SaL!31j= ze$z$wL{@(jWnzsQ@Jg(ZNUR~@%u%|N4TM%gua}jAkKkumbNnvSd*&({;=0LH;;uL#aZ3jZ;t-TD8u1{63mTlw zmvRVj=OAcF+o^9GH+Vgvh|C2IAuGIak8cy#yYu$_^zb$VW#|)7-9{XbGg!~j(GUy! zBwnt%8m&5+S>`6TKZ2!B`{1JPWL?fGp2FR8lu~_;QIdGLvzO7j z&8#*F$L!!~Q>Da2#?4KY0ndn*slLXuRCN8e=SFxAQIKWM;$oijb%Lp#IWx;0(8zyW zr)-IP2rt_q+c&`+0Gl&a5^t9Fg_SfbF3Na?ftm4o1Z2`a=dfM5J^NKioGlUfA@2Zh zWSo0c=FmnI4xs?y3^==`sfVe!_)!|@geGhI<67h2yWmb4>)6AaXLGXsJPFlQiD;}y z>-JPQz!PJge-T%IiSj`iJ8?3EHnT-S6Nlar(0PQoV}rK|B}B3_`;vY*|T zO)nQhZzoPPlSjjh4$m4q+o9@8x4ZD(1%7%IVR@__8pjK?Nd?!PJCsk-oM_}Evo#PR zR?5_(U{_I(zQF$S?0M+I`PAA!KqzlDP23`pcH}s%hY2-;s}=CH0{35_)p$3Jf;<;n zn`md$Nk^QaN|uV5`D7+_UVD$QX6;5gK5`CuWx_dO7T^`lidcN_U@waABHpcSLW_&3 zfTGhiNPiMwArH1J*xVa&N4i#a{iFPXU$TEo-u1-Vv`2;5!Yj(A@<$h%b@lz&_r zYqYvZV^{hKEm<53G?kYiPhhUf4CS73Mcyb5h3AO8bX<%_XC6)?rAJS~&w z$|v@XvSt}+$Tn|+A?w^9YJ-9=9`4zVOPx_#7<+x92)L<$6h97s4;KrUM=xm^Da=z~ zA8Hu_B!KFHz!TTTAtBa4*8ky@`SX(#0`#P5A39@m~5c!f}uVeKXBetYzoh2z(#YqmKJ_AL$2) z?QM_=Vm$#qH=b>!1cbw>!F<)IGVL%E%n&sUSOf`;G7eeyBuoLMmk5PRAc5C_G{%F< zu!a=sUgtfX_tvP8SKu^I}KF-G^H1#5Dc6BHX5{?XFjhReE% zWJ#K<@LdDbhN8JQ%#UTeE}w7Wj*XUTS+CD^ETstU;d)PzK+Rq4kjKQC$y_BGKOe#o z=6kpw2}a9N6wq5yggN`A@bE_Zk)zC6p)-wPbGN8o^Vvn(kaDVH1x4zb0ME%v!Wd)@{Zlng>avrl6gle2`e@zZb_vhUcF zcq|iv0V@FgXQGd|6p3muMdP}{Mxy0_xL;M(Z=~-+qwR7d+2xk{BP8=g^XR zkM@OiTVT4-jY)luFfV5sVU0>Q_~Gvg`vVl`ooX1Z zmLl$ZRjfJ^4EX_EQ1B4YF`NuWRH-M9&#Oe3;3++6^$V9uGq~d%xOdQN2CujgYqO$8 z%f}9wUN4ObA4_-*`Pd}OXDW202R#E=7hKEpSY0IEaesM$XDU8O^9l^tApWBb$2r$> z_QB(Lh6#(1KKFqK0>5qgOYFjXifd!3Zu3s6CqcA|5>msK=HTq^u7R7-g*Za!t*!+N zyQMdj2rczpLT2_|$Qho1U+p76RK)G5XF{iWNYYx)OnwBv^I^(R77U^6kmP3`%_dbH zq}!y~r2>tVDDy+%TU*;rNBdClYOoIBaY$(v4Sjg7?3oRq_`?@a>R^t9^=MW!i>D0( zp|z_na(KFq4p9j~3wadniHCPlbT>)leF+Oa$KWyAsxQx{PC~#_3mfTsOlkb=`Lk*G z_)xkzF_Zq{um3jv7Q>WIJasyKLeAF*Z@-uR`A>hI{vkA;BaEsr+Cu?WF@&rm`PVR6 zBRFPn4~2D{1u|aYX=TOc_68kIksrj%E1~bsF6Xsqu*iEXrn9<$hGJxP(Esa8NLkVme0pJ!LP&hmP1qa0{{!i|G@j}S!$3%+?7vo7mkoA z_9&QT$Xz|?8b>MxK~uiYjx$Ax&@QsJiu;tnzaNK6xPsNkbHg(rw1kb?WCkPt2v`9) z01+PqIb~WhG&ManZA$?I7y?*8xETOYh48W6DXL4l^Tr!#>E^9;`4@gZoqhfVtT=n3 z10)XI!|@)RLL97?jmb4y%wspN)9LL2tykyLB*_1zSAQa1rh1@;4p<&mXm23U*wwev z*qy6Ee7l9|v^}1R^7QVvu&QF=8Kvz38@yE|a|8yAMHcHLX`~uU^?xuNa@0V!Fy9zPaqj5)x7jSHZ zIak(dDQLOr8m0LNuJZXwTF_p7K>htXS?KkVhMM?JgVj$W>8Eu#Zq(q^XWw2_KUo->5=_byUQ)K07f14OFC#-foyM+3PS9CmmYG0~UeY zC{hSBr`2t4QcoT3P&1I(7ckv~+1h$JLNVa1yg>yH^d~ln^2YvU5T1Q_YjEGQ(>P~t z5x5Uh#{I(E03KDLxJf5k)vfHU(lRuN{mAjYz=7&I@*37Q(u14V(rGO20m{`v0CCn5 zzY5nj1i8jI-4^;UI6TSwfljPN!HA*)gD~;Wvoh;Hhrr0A&=gT(@7|;ZZ|@6)N!HVA zfB&7-0rPG;(w#bR`EQUvut82nktz}sUu_a&Hh6^Qc*sU1mRV{^hVuMksw0P|2Ctj* z7pz?l%Yw63P-?+Mt_jf6E&PO1vCe2XgCN<*TB*z9H9^o6aB*B4g(}l81R+ei8iUi6Sk0RpzAIn54<)gTYHv!OWoryfxm_{D}}Z`}HVU zDBOkRR9Lu6g%K4Vt(k@A{w$G;dqP_~mKgG^`er(!wseC+SY+@3XIbyiI^4uRnZ1)N zg}IelP+aEG1ajt%fK0rnFwz^LD6L4#;OE%P0{EJzugU^~m6;QGT2vm0#)Rdp623?N z(l*@+-KRn)JhuQn_=esO1jj1PoOTT9;6>3J(MXbDTmK+DEW@rE@gD*@FiE-48xYH|TJA^3*`OH8!8FPLqrB*MFDJ+*2j~}F|2e;BM{M4%$L_1NrbL`j%M5GY~&xcO43bPF6(w4j@dV)})F+N5w z2t0}^{2gT3%cJ#@snB|E!JpWx=Or4j=1oq&tiMwkJ(L{~!Z16_!m znXpu@0ejBT*D?bOTtdl|uZD68zQ)tQdGF<;rDLy08-qvquF4H~!x?4k<4nD$UtH#u zE*iA+msr0_E}sg%;d3jY{g2K(o_Y@S!qD z3Cb@M6$CU-h-+04x(0_*-|{Wm{IgMHoU@{3oPuYL+Qbu(uQgT?CD#kw>JDH_?ZMj5zRm4}hZ z1Y*7XUSVAr2}O2+v)jKtytU{}iVU|V{zDZU-HB#H7`v;)@{?IxMp(ej56B?K#Wc^f zG@r3bNm@r+2aQ;I(#=n=Fucp;`+M&|y zB;Q<{2Ab(@&igYnQ^B;=y1@!E`|CJ=T$V_ZslBl@c=Ra5P)YywWfTRH1R+N8tPX2z z&p0+EVO4||_EAC|KBP<1q_o4(7stZAV7R;vhvhwf67SVZrNWb07ziVn%K;;!bF4$S zE#ZdqH5saBpV0>u30j2`893O{UQf~(J^LvktiVdv+w%wuY7#fz@lzw|#TTydSrxbd zQb4W0>^c5a88KX7RfGzut$0nQi`)#>FOJwq?y-V$AwRhhH+n9_LVRf>y=A#M*a)I2y^w1sEy`#Ju)jOXVt)V1!iBs z3Tp!YLJ1IPy1T)rNW5eZeyLPD9#;IxNyF6tSF)!AN}y~VZN2^O)-Z~l%bAtPCU?Ns9S+gAGcz_#y4_u3$573`{M|^bO=t7(!eIpPI z#@fw2lK1G!wP{bd`Bg&TOLjdp2PlVUPT1j}LqTADgqBox>-DtZF^Ka9Hj8r;D4L8H z#x>s5)P*&w#m4y}T%+_5hF_K=0gJPu(LyS$e8MEdu_$HDAw(T2qk>0FF|2ocmsFD< z(9rBG2NZsk=pB@pB4vLH8(YNct~R06Gq=>Z1m0=|3RkNpSZF9j1$c!Du9IL#Ng`cd zT#vpTgY>2=T*6-v@uR77wd%9BWZgyx)WA)eI9FhgrSoGlLp#TF$B_ppt5iPWo}n9BP;q75JGW(L?XDo?fMB3u?`*>_pjybSxW3D zLLIDuw*nS|uj0^c?nW|g;n3CL2C;g%O6wvN8Gs^zM!U&i77&Zpl|;xjmMcWl9yblr z*OS@YiF>!2<|g%6sg^OAVBt~~f(qzeG-#Qu%-)&oDmS%s(rcrB+?rmsLtR^5qsGtw zxJHYRwzJ1ZV6-ssD!MVj%(CGa8DIsbmgQch*CPl4dNsmjpL^Nh!oxAMTr1jrSE4{@ zDccakBun%e3;vyTj|<6@1zRKL5{z4o`cB~ zXJ!^U3PPgS^g|eL|M3wLjF=OT`*w|Folk!7Lo{(174G39B+;}m{cDC8U^xP_3ybpX zg{RWV-Bal?gz%St{>}9C?Q7}TmtLVI=@3?h3_ygE*`ay5PS?YZSvq^*Cju&BpH4_* zEGqUUOomt{```$&^F*aA5UbSE=7cCSTBY?au3lQ07I(3_a8r_a3}Zn#d2}C3g7>+1 z3rdMy72kX3O> zw&<3Sy=M?J|BLKt*4NT%wMY%UJ1FbILN?y}(R&}J18{b5XefR5OU)=Q>zvIf79D*O zSc~O@PyoWMITSE6%nzCo@<9#&*z}#(Q)kBo_Cq72N7qx&@e7n8(i36yjWqP! zZ^U^_-S`$UbdpKWd>LU(4-AAz@9?vf>5`}j{8es^J#TPE*5ntN257ZTWxk7ZG{*qz zpEWA{Z57R_h7cEcdmBrszMV!tC@Y%?y&S@?p4jUiVYppFQCyi8wh^FoMBSL5KoD=D zgyYpgK{Qvu92QtPE_@6Llt_FJc##N~fZK)H>u7^F32!;Hhu2YhKoIy79U5r?ZStbt z5o`5p8d^gUP*K<=ug83VaQ(u2qOC4MNM^n#jPY>DTf?h?SFIWa_W)kBPgr0drAfgu za`Z?l4i-@eXxXh$WR&qbic1}yDm|Db&bX=$4+Q%aNAvJc`JIW3hLwsu&%PyVj~7`o z&4+kzl!U|Qc<1IQ=R~O49tiSx z;2H)cCn|lZSS#%01$saf?wOq7e$bX*zAjHt-UVj|CVn{%T^XYX&2Wu!F_VXQC?FVT z^YF;{To}as5upe^UxpD<0d3o=TP4yy65dBImd{t=lc%UasOaqC3HE&Cws!2~tysUb zuh&e^yIzu-25^>pO3V8wP3=c})2j_XlWLKzx2|7L3zMVlzk+HE@_C@+nvh`_=4{Q- zR+cbIM^zG7pXY08 zXS#NE|FIYlD?^OP@D)HjL15}4l2QBl?9jNJl0T?{CO{A#%vSBI8ltOaAdm!Y2Qyu9 z(WwtaE#uHQBcKKX*ux)!3-sW*fkaQ%sDR~To)-56QQ~kxQh;|r43CIk8ohZtz5W+p zPj_L)N3T3Xoi|g~5P~a@Xpf59yB{L9R(6*GFC#BpPSa?%C4|lSGgn}&RcU;DGClqL zvr#>-+oG4`zh){T$23`DdFAxdzn5wO6bNM><~1{ansR@2?Az*&gYCTz{Z z5I%hOeS|r$abE@O;`AKhjAj_CQ~uVX$ACg_^zQ8_`)ej?Zjl^=F=C31bZpy#DLKZs z7G^g(ItK3SlA%tkVk}3kWd*o>?{&B8+O=1KIA`ZLE!u6YJF5wFh1Q}}b#%aR5l%7% zaVC<}c(0MhIO3H;!~7M0&n$>1$}U8#D^A>YA2Jj1S0a@`i_iY9qGfnY5C@&`4Dm0R z4ZoKo91Sb%;>sSq^8iI_KV5w8S#liu!4;kl;fmW{ufnD~bcN~)lQ?b5EWT^~$V6CT ze0zp~m-oOKKCj1Qm9B?+M9fs)CR9>jjIfgx^=|0_Y9HuM!z0I1Pj@$hCdU|E%D>=$ ztB+UlK+%)IMnMQy=Uv!?-_Vo^dp^r~^Jbvi%%}wcDUR#;3r$!i3hk?4sys{kEH&2a zc~xQcS}wXVe>XJ`JZ&lf&B8`gUB@tIL{~x>a|JlCwJ<@oMJ-bfheFYkjw`vqG-Q(s=2w$^)X0Lr0W(T8dz(@d(JrK{sv-2E1C%eWOk6*g^ zPHLybQz!~zBOhrYpmJ!^Z;`@tQOH0_LPV>fd^ z8~{~BVe4q7Nfq}(w+Q_8>?#l}nQ%aH0Zt3Fl-?`=3kKg5foWH3L#lx;5pQ&p>`9x@ z<{DndH$J?Zu8qzz5b73*fi>yN&s<1f_}t5c$?$TbNEYxAwGzu;0H2pB5qv!Um=W3Z zhN)xK(2xey@IWtN#M9}yQx{WfeM@@#-n~>wpOg}wf-=fWyN8Bos6$1>774;CKq_;< zOl#b)ZK@7b`W{hwY$b#fLz^ill|W1!4#Cg$+%bqJWEgamS>kaEXiAugGh7njGqj+0 zE(=BYy14Y8ejUoB;G=rS;1eO_!5Llh;o&n!4PKz4;m<6KA0LT_T&llolR7N=u`op_#OG_VRGGp$wQZRf*VA zpF^u#BCkNm${3+Xo&w+io^6gj=m4;<@_Pt7kRVrOc!C%#t$Gg*CP9QAh?uxu>0?S2 zA7D9{Y0DU57}s8LjAWLpbfJ3)vQqYS&;!HKm6BPDi-jk@4lBhPmiSb<0oi7vzAVrKFM=)#J%n@qPH^@ z%qRGhZ>7^;eg#+GdYT-4$g}p+$)}!TE_hpdbo&NYsm zGDurq-0~k@gE`${NDkfTaFKHu;VM#qWN;G3z=;|3y9d`{k~cWNF1oqlO#l%K2Olyu z?X|e3g2pno>ea1gGo!8Io3x*O6K@M{XS*?SAGVvOrkMDK1;>kMtP1E2>guWQXAP56 z6O^AJs7MGJeK?9oV1d0bI0r%TnB>XkRxAMUq#8z|o7Ti3t#9M`3SCRY#0@=7;*d#v zGJ#B^=Wm$ZI{p3a&Sj`D6QI|JLg*gBZagSTmIK8aF= z=aM{tP;^wZIX`hzo~E^5U8RyhX(1RFVLI@1cXI{dxB}U*C+QTB=V8WHc?e5HfNB6Z zujek~i5ggXTMdb-!prC#K&EG>o*`LFG-4ZP{PzmR!#W-*E)5StT^&jd(;9aXCfkGr zOGVb=yb^>-iIL@-^cY#+t4|x|H7%HAivr$60wmUX*Tr+`Q@joTnqfyvH}0pu{q~#b zNK<+GonQY-`sttf9Nt~Z-S8yb{q#N|EbtBQ<()^<>2KfqAie+o`|14$@1;u@M@V>c zou%~Jx85clTx=)3`)q9U({eSkx$ElHypr?k90TZoitZB|( zUb{nXk^LuDmZ5LFV$QwkqDRR-xT4&U9)+PoTbUtFC>O-raMdFKL-5K2pmDAE5XPLH zXXb}O5#VPgQ?T@<3I3D!_)nwP>v$zm%&`*Bq~I}BWLku`fCzx=%G$?|pltV)IF z$sNE2@8h-c9Oa@v~c}e8o6*G5_7BJ z{Z%ygD@J&fJ+XI_@f|!SRf{)zEgaaUl7JZJY?y2aedpm9%3X~lc^=9pKnE})zrfL| zbK@?^#rdtKW;|9z&LL1sXoLZ5H^jrTE8}Chw|JlHwcfU1wkMu{o(40W%z1A`Tczv- z>(fSz+h3Dk4N3_#n^61zt|o0d^2; zBlEJHmJLD@{{R3$07*naRErRyWgOL2tswtntl=XNxmw(KYHuXd7~xmU8`XdyNJbdc?vX~7HRBq?d|u|-FL31^PhhnK<3h|H{K<4xSkAd z7#pKP>pR=1v7aIvwujQkc9afs13>cHVFr%;cfUexozTMQ9omvYv^@NS58g`8U3n2t z0tsPQ&$mAOAWd9*KfU~OUrEP?PNX;g;oD@^e=7|?|6+Rf)z7C}w{E7t`is9vFMs(b z($L89)IjaBUCtC*!q@s}&zC}X7{PsFyYy$LLDFUwf_`f})oi!W!uSoCCe35^M*{J8 z4(_2j(qM!c1zV+mppxp>c%39MlAac6BIN)c5vT;ScA{RM>1)$iO|53U^Q<+7@_^Tj zp*=)RIP@1PF!cK1D zxynJf&3T6513y=X1r8aow9Km4nl=mg&@~x}ZoF;v!TdA|DBg&{<42=hOCf6fQ&yoO z5>`LQ;Fq|r_bdCsHAvZ5Grt414fpG*0YACZ9PKFlBa&ZiIKv` zIrnPHxlCA{LUF8QPt}wJE)cd_A`GR4-_(mc_VX{Kb!OgQ`{Xv>8A{rChL(YyF2h;? z(e*yq*Ib1`fT|41SX_s2Iv_2*3NMSUZk4tiv|9w8OAE893NGVZ`+|*&D5KNWzK$ic z4y%9%5q~d`FxtsyIae&@0`%$#IXA0{>N%sr9=%V>J5q6p z*(IEHuBj(&O^&7BhCZ%^b`Usbau;;Zlh3d)2Ta%BVRSR$F3zYDWxXul5+!w8o0Ptx z)RyrqCqz2hw+3&33ft<+d?wt1kub@juvH<%9xvx;V%Pbm$aCZXY~(ZT^1xoqzUg>D=X$lt7lH zs~_A?^BZ%iW)D0?@i6ZwLV9?V22ijL2>T5VRHdF{$I_o+=zRIr&!nTLj;3SewJhJ6 zPXE`pf0Q~W7t*=DW2v^gHGTEJ_zDI&We)L4hlmf}9e~AWCi%cSYJT=Yq%nQ&V z#vSzK`S0x+#s_kGPEiW0QBZRj*YY$Cu$^5d&%(P86&B$WrJu-IJOf|*J^OOYC_^W5 z1AH6*KQI9g3nI%#)*Y6)Rm@C}KI#Y_Tl)&=LwAXay_(zt2_pIot8f9sIY4e|!ueTg z_AC-t4Gm*7te{%%VSHbUrHJq-XD&b_1aXZBp;Z^|v-m6tK@bcu;~S`{;bGP1_zYw2 z05~A57=|Euecu}ISsvfVA@w29WikjKW&l`@RFxZ`S;GKpgV4}Mc?{R<7=(FAJ$waY z1hGs~0{?lPL^fPn-~GF9;N~7pm%sE%TB2&={>M}_uqKlqErYxD!?%cm_NOXhm)lb- zxY9dtr;;^K@|}ZPR;Zu-@OwW@j~|Q?M_xnQg(>#;5eH-sBp9_56SS0P_Yk(%Wx-J>0_$O`XBGMFx>e4cO$c1H2M@WlJQu4a0DB zc>^ydsqO90v0w5u%8nxB9I~WKjs`*H)4S_FLpW)ZDc$0~Y`x~ccfvl6EFn9n=0JP3uA!#Q#Enh9}N|D2DupOkTq|Z^M+9>>*TknN=uKYi?4w01N|?`; zX@pYgXMjr(K4;>&sHE9m*Mv&%VUlYw5Z<$mu1SeO%>1oV!}58e0)^~vnDq4I3=aVR zS#RHwZiEmO6d<0%m|_SROlE-))orY|#YtKsLsMV;2^7r1ZUh&xeb&c~SrdX0!5x{8lPknn6jMOVwRRi5=6)5XGRH zWV>=K)LpXD8}Wn{HyOn{eJynlorW*mr6iKBg|sJMo4OUa(cE*46-etS8|=%T3kvz= z*@w8E>G2Q#>}=DIf_@LRDECDw7ZezIaAT9ui8%ySh7f?+#_VXUxwGpCXFy)bGD>*^ ziXeEdBDl0VojS4XH&7rJXDFRpMcK$VL3@LoOAX1fcc2p*HI+A|Il^}vb8n}v`W+Oo zPKcj`Ks*@IqrEQd@d0NdCxJ5~N1%#?JPigbD-JZ6Fg{eeQ~=BYu;0Ks&A7D8>|e6M zJwUWnOIXA`)SxVwAE7c~?VY@)3>wn1G?WyE8BAY~r4<~j8+&Pfo@eoQ1*wJDw&QSA4Yf(_r{AMa@wiz1F8f}+#a7DOZ^=~@P#%M z9<2G*$8--pmcH|?4^lgO?&D1E!84apQhONMG=j45{EJ^m%a7;M_ei*I$Tg;i_aBiH zG0RlOc5tC4ye=A|6XVn16G}4ZyNz z5AX)b5C)%$vI(7snf=!5OTQc*h|j0_nJEB1l`n4|uVtQ~!@re_QFbp61I}9i8kC4d zo|FmqFv=A4+&U;I?!`LbU*WEYziY%rC==$9Cm(DJ&(scQT!S#zkj#@0QVD-8L%ZH5 zM6?4AkDNuhqKl}F!Ssmik+fa|OiYB=vl>bbbYPE^CBpXW%d5bZhGQgfBLu_C=5y6k za$ozGU;8~57hhbY2Be!t*Sw6@j8}nb&VbsMmY0H4ZOW}?@q6RV_#gP%1zD|!U*n;B zOj^79@q6j!H@*`LvzvstO5E0k;`NB#SCyk>m(8cG{SUED??;TfDvt-j4qG5V0D1Qz zjN$v-ndGU|jrOS3OSxEBz&=xeQpN@`3H^KpF;7PF0%6{=VM8~}7A=_+Bd`P_G%o3( z;jSv30-e}X1quSmP;M~}m>&@X;sqJJfkf`DMHwD+`a)U;oJ; zvo^};&Yq9H^<8M?c7l6MO?W#Q@Auz$n*=z#6RfWure(aQtF0|P{oFI@^2^WR4Y-t! zK$LYbjcu&&J(P_NdJ}ArV=z5C9fHnM$&WsMH=Taw1^WD7PWNd+I&u45steA+EbG%J zB$V|>OI?@%Ovv*w*((~JxVL=|KTF!n?={ktm^dBGrjda}6%~}~!B99&&Y%?+JPeII zgPQ#>0-Y|1pQ}Np(a}et=;<=n66)#ikH!}^Ur`}kUS3QiCq`(}lMQES;%DF!u(4h3 z#*!_6Mu>@h`?{#;eO;^j7R?kAdNs^dF?rT7fl9fo!nMiFR18$C zBYy&=VR?Byjg5_=?W53PH#ld(Y)BiDXieBlK(?h2up^-ffmfctn9h=GvWZfU!3o^7 zylm6Ej>1I<0t>>>h04GjimHvF`i>0%N7t=y4y*tcerYgdA%l$3uFa38z4^)1HEGqv(LAR8ql90B&LwYdHb80Pp1PC+ZG|53( zwk*!3LIvPlZ#gn>o}ZhI^RBn!BK!3{8EN|wlo71r3gY@}2+A^GufSQj_huUIERqky z5FnIjtt=Jn$W_uvB8=nkH3e@KN`k|RoP-HTiFG?>b|Y{sVz~m4{fFTM(>AeJB{!PF z@VBLedOXEPaYMl#l`J67E-vu`9@8BJs^O;sxS}h5c?C-!7rgWkcm=L^Q^8P6LNysa zsUG7f&-ErZI(<<2y+jpCJ%V7D{n^Z^yskRknp;g@|KZhi?b8S8_+WGT+Hd?C>#0xw z;jjKaEu#p0`DcGJV)iqij;6l0E;9QcvUa;kvL5K-^x#l>;e|`-^Dn-Dx4~B6bnQeT zwSnB`N+Eswo3GPa7x<8eAkCjWbu4W+)uq?oekWbQgLwJMdBVyY=`ZoLzD?NZxwGfe zIXo2#c|&O`ic56DG!MZ9Lp@ntZO!Uh(4LLppee->v?I+ci-hw(eyIj1-2E&{Q^42I zk|9-J=aazD_p^jV;OVtIAVNFvAMfY;((d8Cf2`#5dKfZX$FFg(csv(pG5O4(&ZhrGWq7+o70r>qO z<;-QAmAGi4y-lO6z>6?9&(j0yx~1_dym`&^<7yl!rK7A=�kU|zPoBVKbP`RJ z*fc_@n0puEBwIAmh$X#8Z)>eR7$a+|%?%-(bzRV9Zu>3=_bEsXkju$9_OK6n*%V1# zFmjo=F)uU39j9wZAjhyB5A1-%K~~E1sR2jW1yjR{J3v9GEZ1s4XflL{ZVe!X?jsRF zW}NLYE74P%)CxxEuz!j2tvBCDi;rd~>$(VmOyG)roPOn>|8_cl?hHwOE$OMVr)j@D zg?3((ZoT^nNWPpdGBe@DmtIKcUU(**ym&DkKYKPE9XS>m^p%8FR2~M0hp3JiK+vB~ zLuXImzO=XePMUoC6WlHnSDj`YE_UBfM`zM)_ycWz$iUVYJ4 zHsV|y5A?zpuA&2Az`?_5L(8lv4Whsdf_w->N(>Ppp*-wDu=^#N9#uS#yrK0iqe^{u z73D;CEGH0W--I$FVJ(nDP(lE1;N9ryBgv75JB^OoC2SB(3eUk~l1Zn>CP^&P^2su$ zw@A2Ca5lg={5J6}1R@HlLO4&Hj0b_ZxwN`K3>ai>VdjL%YP#|~|5jq>cIPweU00W- zbRu~puSc6;@e##Ersevy4)iqC@U69F8)U0OY<5-48YF{=)v_)<7czZ?fF6f>tYxi0 z;RMp~52zx<#X)I83nGiLvuyrl$_(p)&?4sqI`JA^iIbC)>CvM{!L%9-LIX#0EgbNp zHt%DM@A+I^hbzpt-@+;~OtOImr-#WVBsQrssY*stM?)_w7n}gshAZ1r)w5?$rDNdK zDjpF#PA<)p$j12|=0g}~bdOdI>6NQPFjS*3_v3MLU0OT7FPYmEDaIPJhRDO zPECYH8oRJ$_*>@6xi$CF&X)K)(5L4H_W(X^M@|x|X^Ytv74+9Ap@=qjP-fVI=b)$p zhH^&CU)S~yXJ|~mzJYi@t+(qNk5HX*IvrR_ssz}r1(({x=CBpNQY{Aep!dAz%X5R2`s@RFmm$Zb<>_*ks%yuvAjn%R|qRA&pQnVgBX@$?(hM zS@6+)-m5ZxiyK(wz;l;s1MY4WCccZZr(&U!=vnxA&)|^gsUo zzfJ$`SAUuN)u$D%X+rSa9h;znsEN=I-9O>$6|BD!C94tIsQ`DvQ_JdiXf$PM_lc7u zoKsCYeQub9>W%d2tvhL;tAqI-ZR8A0q+0>I9K=kzLPkw=9@A7o(-otcyXc(_o zFJVgE=F$U`OyRXQ1d>;5g3om*t2KCAY}#cGf;1@Qg@@OV#5ey#d5ErlV55RxWvc{C zL3*x-=PQUgS9!lQ?U%yX`$@yf!cYo$-6w?CkF)m-lo^rS&QJN2f<99hR5~~y7vWv` zArH{w6AFpL`a^;^~!fj3vp+-S~t#u4+Wx& zjm>jgZ>W3IH5nU?m4UDVQei1W%oGAGb%irOAjWo@ZJfSxDwWZ~w3Y*_A{nF-*H1d= z=9$f~3bYhl(WQeqVu-k>cL#CzqjBcfuy$K<8}$;KW_0fU3uy zt>g(T9y%cALnZC5evnJ07$&g*@aT$ z!2$q@k`IyaRF&?1@)1cKSIHKCnHH`SX?}@>B9i7R$Z*vazpyk71EbEKnAW|A57W!9 zTuP@dJrm5agqs^jFncF%O*!TGB(Ap`pQh=VXE)MSPR-Q$+Sa#>WS*x^wWZS| z7t)m%pG{Zk;z+wDNE^14m-S_DarU6|xrFvRY=ChdD={0rLy0ATqPqOT=~St0+mq zwdT4)qZJ7Nk_56!CbI;jRjKmTim*0oy^f?dhij}XE=DsT0a=R%FJZ|X%t2Yf%5BAx zS2>9O6uc+WDimd$DjK@IwCHVZokQcb%&Z(PScc%Sp;QA3hheHHedTq}*yq&am8rmb zmZ%ni&lXBdGfd3vdvgw0ebA^%f{w@f#tvNQcqzEA{Rgb$ml@Qdyi{Q^YL%I=q(@*A zYg|RdS@u59scKpxAuJ>~1h_(0c&jYiEj%e1d`l|u&F>MhB6$GvKWQjfyZS9PECUmhv z37TCb?eb{pYk}}g5lh3tGlMUYs?(gIJ=ks|ynzHbH z&QhFrf@m$-@ik5Dp&sfsNA93h5n|vRZMt^oeirBb+D4(*J7g8YDgw5VJO_avxfw}o z9)2XuSeqUB^s?@vq*y^<4$D3vP?g(~p@O|^lItEgY{t1>t9=x&8v119p&b$|NCL(> zhrW=i{KP_B18;iz)77a-k}a##qem+w9~RRT-i6B-n$u5z#qj1I7UtzVTR@O=-&ObN=amiz3zd#({xmf#taxYFhqt^Ri@(| zE#YYzJaHnOdTNAO7<4bC3~q{?q4URj(=f`y-i1?Xj*6G>e*Np|3$MNcjuz6t`TK9v z2Vo@y*cUH7m5%nKa00m)6EcFs$9>)HsV7U4&=7&Ph(%AgR?;wCs2Uz}-FZ*b-+ zW*VvxV(=mbBu5*c$)ufRnuQSkY$yfXSA{CfO5 z!ejh!B28VpnvQ|@RV55;U}IvnywmaE?nDJ7^FZh+&?AasiaayX+EUp}K~*kDXLt%E zY-l0`yLI)(yuwoun?M100xCI{UF3X#E>*QDnV>gvQ$8GQMw5XsvGSp2`p%O;boCu3 zW3?fBXsfNI1%axXtXBkRFlmF2l{Kqu%g)`|(|Kt}LgL{k;z|HhJZ96BgU*(Vs>GMDF%VAml#h?72se9xM z33r=m^wTkf|2bla#dPoePtw@TMC$J8OC!h8kRis;|Lm7jXK!!1`mNVe70F}gKl@Tz zSeRo-%@5gc5pBIC&5li_qo;?`TR-|yI@)tIlBL025#40LPLg_{8q8rLx5^l8MoKvDZ}%1g|x|dTIv-%N4(s!1QWt&z};*M z<5grcT_=OY|QoD?tR@zmhOcrEYM9agkbQ-Q|W#_E2=#YzReh+qf;D z0S8b{uzX5br8011_EsC%(lhgV8Q!1?3rt)gkc~msg2lsuQoBh*9TWeY3TMfm?%h2t zLzK}_dZ7x3SVeyfAi6}Ry_$V3ISwo}YVvm=LSw~EShF&U%|dPGdj+<=Kn_}n2=6gUg- zVe*kBr28<|v0IPQ5fu3vT(P>Ztt485Nt@@R0v7!TP#SHPg^mvu)xxL=LxA79hQ*x& zctth28+NX9yfIW5^y>R^Zax;?4VkRQLnZkn038b*1&xqME#-0Ynku|@=5^?mE8&v1 zysiN4Z!u&?g+~rxvK6dXW)^!urQmF7LWZ!0jqy!8W=axmRlUs_IY**M95%v>Fzp>^ z+{DOTl>V6~zm$6KSMo37oy&3WOiAk0&9W;o3)mC`@F_IK&@$&TnUI`QCf`tCP>kS5?Y zPBm@8eGTaZUL9+vY?%Gz3D@j{pSGdDMW|qdAxG((Z={pG{UkXLrz1lHY3$)>mIz1# zvJ0QNNGO!>O};aYj*X_D{`u!3hw7W(`9}KUm6uX0hD9`N3ac5K0e$q|t-`Zq&Ej}D z$?2SO7_%TZbYiX!w8$A)?rCDPApt9bLfCQ|DqtFBB?O)dgaSdCrnRgnm5#!F4qj;l z`JQ2GX-5IBv0_Oss2t~|j4^y|h+MCMih$2j0E6j##@`L6a+ct=N=S6ywTg{@A$uhR zp65D!_69jmTaTzjx>kVZHIDnu!cr25bozI{@%l2MT?tD--_k zA9ke6HuDMyJU42Li(CUTAh#jxTh~8LYu|a3Y}H|eC#8jazOup?o(T`QDEWMTzaLM) z5f;kAO#V`sbLtAN>Krlug8>*W2_slFu1!G^8J#RghPfv|arg5{6ax;E)?rchRW8Bu zJjeox5cfSmS;%U?v6ykA?2|<)T^E~gLqck|2>2v;P-Y>$@$&a%k>pqY%eZy7}&P7)?2-!*cq?Yp>&zU!uxg3$X!b$gxHk zV;xsPP#?VY27+ZRed5Je2tMqfAHX=1z{3ypHhyC;9VLjz+<%#+)U6LY(_|qQguZ(g z%1)5JiW1cMgfRG*0!vL(VJ#zb-N#18V$Y+_J%sH+Tp`C;LDSXU8No$!bF=LE9fWOB z>OR&3(G%!|04n9=S~K7fMs8r=8bM3tSf{RYjEixu0p&-77=(;ziwb0`5n5_iMrXG* zHRxWfik{v!tmvA696590K2Z3}L_K(RbIhy#a`4mIOrL8Y+#-88 zi#6mkwKl??z*yXvQfP_+wG2=m4eFbDh0c!_N)ADA> zDd)gaau;ipTfyPZr2=4LvXE~8R1j1E8pr)LVOv7;-h zx!%7y7OtXA)^Xs&kJ4}cS6@Ln$)$ne(e%paUZy9^cDj1w!!$^6^HXOoq(1!mKYRQA z^e2D(Z$UCw$Q;5g!g@F!_lAj+IYy6xX8MVs6z)Jr_0Vz!^Q`9_)KX_+ZHYP@V<-_Q zF;8E-KqIfJG_|-ux5Q0Q%sN`npGt4PKav_iU@p*o^QU((kl<^lK@Te7V-_zv0KHN8 z8jk@nr@sEqP{uvS(w5_K-8}#DGwH%J>KXTsJnu>But9UmJu~SvYDK?9*F2-%FTMJ* zK)>1BkVkGH&-EShQ;{rxB1VY)mTskA`Ii3$J^Bgnjb}is4R7|26_&__Rw(@|D)giZ~o8$WiUc^4zj}+ z>N48i+k_gNxL>*fC|FDcsPQp@f3%=HMm}WcHxQ1ePo_pv3!~B+kaGA&5##`$2y7Oc z^tZ5VklSuVFl5$bm-d+3Sox08_sTf@KKngmB$QM@l%V~^MzOi14Vp(TgNYj5VTc?>A}5$^fT(lS8&+3V8F#_xH9l=sz^1GSx`Dc?f|tb+o5DA6%yy&Hx?5+S6(37)WpUMDZwkC{7m1lha`xW z!xco&_w%#!WH*fAqg;=DlF^tBXh5Zq*rm&turyZFwO@XKKqyHk&z%bGd=;h8a+%vG z0uVhf_uC=Sh+7pEl~P?^75LEAvVDgA4P>fTpJamZY%OBPWbDE^g?zluXNX$p3sjr- zfC{k*(^~S{&WytSGJC7!MFB1@a=m2KG7WuGn^@)^_%W2UVfI-;r|^>*>F0KhL{W5S zDDVwXEP%2EBVo)NR1MR5^Mvd(-YuZQ>4~{?=jPprsnDgc!*$NjSP8p5dKL|`vLmSb zxr`fU1M5#lx`W^_ueiYeZIj8OC16mYy&hC_Jj8-%rUtaGPf!ss!eSyFjuo4GG1W>wgI3#6vk>6kaW2p%D(3uLCf#PVVI>7 zyuo{UM`39utxVkjM!ye}tki%`%ROBFE*GIHq# zo06wsY_b2VAPlq9*?E#?^+_M=X~rd1g)+l?c>fy3iRR}}HmiueAmwz4K)pZzvmXcg zwt+J6^h+0mF7IM-wj60oZ@u$w`sAlBr}YIY4W58skrDN8{?8wzcmLu)rmueUo9VNk zdNGYqENq&zQRgorG;?n-{k`A%YWn84zL-v;Kz=YVgwjgmIL`daCp8UL{jzDSi0fT`H`eN@x2{r9b`a9|wB2Zj1wN z1FM}H@EVcwD17y#7fKHXyZX0EYMgi0PbENsC=CTa$By#nfvYkmz{jX zm6^bH45nEwl1;Ef9E|g_$Xgxp7RS$BNbToNgY+;i&Q;H;9>xb>fsS++iFhcpRMO<- z2GKeSq*?T7aeZoNEnbbX=KF%@DHr%dY9Yt~gMRWy!64yDlxka1Yn(&mjY5V-^}4v3 z4Z^k2)~`$n9SVw z`(v;UZ{$iLZl>k;9AX#S!?I8MV9GthD}e?@q%oJVAVAdn_YnSU9ECRygc?H;xXy}? z^KaY-QS*Rj!nkGn`bV-r5g~MmiUZ1+mx1km^!k5F{k?toMpO7|W>;n+^{w;7vD9<% zY~*_$r8MuSzVLbc{;jn3eU#pN^{sTYyCdxY<=r0`X7PbdvFu0gKL(0iPXqVvrz!l$ zrjY0#o_ah?+q*9dRNoq(7$wN?1g?WqX$3*C2~+QG2Qjf* z-P9B;W0rVGHOZQb@Y$VcdlXeATT8x_dnn* zsff#l1|Oz-_wNT2TL7`JyrrpeGA;Ms3S-+ag^#XX1Ia0g#yso5rOVVaw+uBe3fR!@ zV^cHpQ8g`cULkVFV*?^BwmpPjHNw0f_lm-@zd2p=&8q-1HSSLw@#rd$-!j~d+#jIk62zO0n}A_iwi_ZVX> zpa5GN#W@)#VgVSHu`S9c!@S~{iO5t_OJ76Az%Z*S3Kg5ywu`cHh{3gE$|1r&&-{!F z&~2k(W#?6SR3N(0#-WA8r1&E1x_;AZl;=U;p*L zPt&Up(;xj$|1^E_%7xTTKZ1JVf^5(1IlFY>Gy&1a)0InS;5`-T7?$cMPMk=msF->V zW8~Sh=TaxUthcW%wRN?n)`liB&DPUjzx`@@{^?6(U>#3?@$+|SP_~{%h{Kv?537k0 zdgY}nX_=h)*M9O=dhfw-Is;#8ZfT%1Dw$f;W!YtK%zQBzII97Igkas22`bnAxcB}< zOcOjneicQ;LDXDE(zEANru{m${pi{(2zoSDTH`3iiGci?r0SK;Ep7%9a~ ziTzCK?R0ACIl`Q>cr5P?-p;i#H|D4Eqfw=+QYmiSTy@Dos$t!VI9q><3^kH{a3h_+- z>>7uVh-duDRYWlsm1sSv5d+QRhbw|9Y*83!H%Co?9ES~wzC!>^K(oIfU>S_l>UeqF z00)PoEEo)&djbJ~;pSMSJpvC4JFm0x&7|&ia4+tO^cIJl8t{h$EJg>~KQRYIH&H4^ z81EQr$R=t-C;x_dfIJxd=RBN)+M z2@c~@+9lfiIl6H*w;fG$!{h0v-~SPCVkwNa5W=j506`*ZrG-g=JUpQ2Nk!`I=_dylx4=BL-ccr|Ac)b?NvvzE zGxkC2yo;hm>u8QeFs!3pT^Op&4~sY$Cd8+eqjsGIm8b-PMzGcrqX9WW_hm4l0-F8M zW9CoBfR^YSF(9s!foV|{jM#}TTpmqF8bevpO0I1pW`LA7t=@ANF5%`_PIIJT&Qq>* zk+!D=AZ0d?oOCR0n8`fP%)w|&;C!VhOYI;EGQ^q589F#lhteZcXkaM|Xh?P@{w3RIGegS<$WKuB$~lbL<8tnim}v`*>s&bAg^kX^fkYG~8Pmp-P|o z83kKVj!ZYKBy+$R8G}rVz|S{8Y%J=d+faXZVev*P+j)rV2TMAvDG(ME8K0Zy43rbR zXrQJ6gDQ?9N4xY67S6XPz0H4gr-^!G-57Z&G-MlM6xqY%!$rCX&pLMe7(A&J#PlG&_w(E7%4aU280XUuzyD5Z;{4X3++O|g zQF`h){asF;NpHOQPWsNvFQjv4`+_fp>zZtuL*h{CYbch~Ksqrp<&Xi`-Z|m~IGcgU zu!%v2tlu6o26ADo75;9KJIoIk1kdN5Kw`L7*N=1*a*^xYL+;=n_y&8cQ1!=0c&|^= z!ahW1sJI%NgsGm)}YXFcHDpIg-66$5Sdii`=2eTOE?pznU+B-qPogt z$0MDo^cMf#@Bg=d7+QoA@MgNO zwPRXKYw3q9`aR-8TQSlONtQmw5C@m<8j3ptHg^ ze8qJhgf)c0ty^~jp4Yc8UD(QXnV>;^oaI;|?NpCz>p+1SN24DnD}n-3M$B#zS^V^~ zPoc$v)Nr5C#uL;yA9*+uho!B%jr?qU)A+K9fMlN!dEY9%7+O&x8Ui61!(X|Ko2kwe z8rD()C|aOUw&ki8cvnvgfsJ(8Ll8Xi)w`a;!^V9WAD{&)eQ!a>(t}p0)`8ZsRW0RW zrf+E}1YFO)_`Njj0k?R_6BJ7N&!L!_nj{j!iOZ}w1dZB!oE=^wJZYT3)W~@1?(CrO z%2C=5KM29y+SL*8^CA)1BM-+A%qu82wBn{aoVnC%RASQ)u0MAf1ZiS)DmuJr)oY15 zmS!N=bp+-*>mv+bhjrJ^JM8XeY=!yrc?3oQp{FuptcI?mMXE=FgN4#iKzTHFX2pyH z#;XfOUwS#njA!4ji?b*nbMy1e5y-r#mbE1P4d$_m>tPc?pt7>Qg5aT|;~M{-wGYB7 zE)rb28*92R$OY$Yt@7SVlr#=K^q*Nv)|2pjM+;-#$KeYal(yIme8HAvhM|H&z;)t2 z$ElT{x$vG?V)AyB2$-gfSyZnYdZ{F)AQ(S!Mk+=M+b#A;hMogOMoYOtCTtKdDjfnHp~gG5IcJ>Gm^W%|Sab4bKQZ7?^md&yutFV@ z`6ZMx-Ytzw;O#wq^o8gq4hiE3C2)-_3X48P71i4Iw1BmJ^P`W`;^au`23=cQCV=_z zV47Q-ODEbcaOSV2b1&h)|Is6=UEWCl%Rl+u)X1|6oav1=nLKxvNtDNA(D92=XZrUX?^DVAl-i-Ebuw`}7|`qFQFj##Mn^nd)jKS^Kt z!Yfoytx6wWy+drlQ2Nck^978C_0-qf!JZNHIyII$JG!7JGn&XqfM!J&TbeC4#{OX5 ziEh~t%ti2wFtqp+t|F9UQ9zYsvwgylWjz)4uB!j{#JF|+<%=rS*|U^;DudF8!V|F# zkCAqje zF%~GnPS%NvW)8(x9x(pV?NqT!5HhH*6;zwa*f_)mE`qPI;C=HLr=ShZ^p;x107SS}QSQk4_@Yvj-`=Y~i*ImNq< zA{-C^MHeCHM~r)$0vP=~TS7p@8=yf{y{%p&!c-b^gZMF8-l|Q_{T&Fqsc6UB)^m=g zD&1+-$Z&}AYv1}!+A|-6u@9wdum23Zu8e4V4gkd3+uuuB;zH!;FE7xSpqc!Apy8I* z7T$N5J{p@K|9vAJ0WmRnu89pchTtL3>NwIGWlo33MpGRYNk<3p9KOS$fqOvzG?eLR zPZyqlk=*gQG|#=KPoKgXL1Ceh#qjV5+WC1p%ax_MsYzN4cTfZghUWp{=t$_okTOw) zrEs4I!vIZBkUiT!w%ssRkBx7ZsIa&K3SeQ2Xb!|@?xPUn!qg0cevCcfK3o?Epe!fO z^brJUp%AhS5IT#q3%D`X(q}&VB8m$|d^qSL88Wp3j6p%rbNX}y`At6>Npmn41zjnO zwzjdB_yC&P%ma55h**a^rUC19Xl#IcL0ZB}!b*cqM5Hj>L!ojWx({UJTKM}MGX2>i z8q%v#@%re^Pq*gzDv{qp(WVUs1K~jKL7&o^&6-pqw#`&w-E5#EB+tobep<0A4Ki_D z9i9W|e1rKGp-7xK(NE4b`SE7c16%`&Dx;RCiGDBR92_$D0%IzMft2AksseeK2Z~+ZU=6Xx zjdpizDzN&Ub>A5^zBy+R8!U5BEYmf$C{{^9R4LuzjOSrC)6mb`Z@xv&c!4?({U`?n zdGfA?R!Zf9`s{-Cv>oqcZ72(j3&+$xVOh&amzB*011=)U`lZj(yoWQVz%4Vvjd{qR z%CU~L_N`%|0=`WkaCCq}z{+1%5xmO3B{0c zZbQ4f1_(kcWw^i`gDIUtxn=C3XVA)lTKi=v9ac(I>2lXLF^oh;q*;{#g^R77*Pu(| zrKB8WL0O|yC--i!hDEpsN*mhQ&q`qC z8Q#x0skm6*(3-yg)A!QPuH8!eOJnI1pME~Iwj52b{qSb`oqzZR{L$4IGQUXAew{ig z)Gzq)Ygf~WiD@xGY!P(Oim;C*~=TZhbeM)izZ?4ImTmr%RYNoL@dX{hxgM4 zu9~COjp-68&#wa)$Pge-Xd=`;9gmx5e5kaD#g%{XSj=?i!5$|=fR`2+#Q?oOQN0@dNU|q>))Vz zi$t|`w5Kop&UY}J=m0x5l}7Imq|@h*MN4qAAodA}lXvm*P*QZUDVL>D1J!e&F~tz7 zzi0Exl$*#N!T>xp zMljEfO(Jl%(gI9&hr`0{XfSAHC=t7Pf|yKmBUMn1z5?Pe><^O?Vj0iV+>c=AWe3!h zSG&@B-`M+*g$BYbewq!g34s{mJqcnquQL-ikuf(9oQgDMz}(?@I{F$%#n{HBn}j zi2m-*<1jgV?5h(5Egq-J8}-8(Kek28HHhB*Ls(?WfQN=XV%@J@y`Ba+)E2LiCYH!u zSBY99#jd@h4Q;e3EP1Wkb@tb08jigf%d&zV0B0|qh2Uv@46-pjJVj~T`{`3({d78w ze{ph(ZkG6K_dyG$#z2mcKu3@DQlp?b&9G*-ai8cf)`IX^%^gQl9~Mj(D1>N*&~OEZ zzkwXwOII#&SZG7b=R&F0`*-g=5TV^OA%(ecS%Je8^J4`>7~;U7JP1>32^$#X-v-o) zQm7nhEvor@K&{8GW}VSI8bABwS@7_CJ`}13>!4p!h-xkkKN!Rhdn$EPa@Cf}HcDH02;s%}qx+ zy9!|~kqlYeEHHkcXM@qIfskcF(ffnd(+ZLRw3dY{ReWU1Dn7wS5FBCcu!o*UnU=gN zx@fX4A~^0()T!{v8ZIyzo8)8$3g?OOSf3or&N5Gs#giuUqV=P>+uh%hZRYh7TW8sQm>ba|Ge2oii{8&5YJ`o=vvh0j zbI$ep7hydTDQ}jI#Er6Z2qIz8qYm74@`|d)P9#+W3N5iY?Dsr~&jBgFrw}6R6g9i~ zi|O?FZ=T_-HK(zq!F2KYXVQQA4B@!k>`zI0>Y2;zT`s-z^J~NeZKl4y zZg@y5?^;X$*Bfu8-pl9HyEpHq7l|D>(jp4jkglV!437_|T@bTVCpyy<&6C)^bP**% zSz}ss0c9bV+l-=Pd(=ZQ1}Ka>guAg9u9*S2$|nsT_dr?+LC+Zo3tm~qnul!TGakV6 zp)vlgqT%(*Lbyr@c*H}Tb);eZC;j<-F@jh$!t0(u?jk-aggikn4cDPy;MypKZ^@H< zzY2-+Ko^>PNSUi*5SE=f0RyMc`@4l79XCC z#dC1cB*n7Cd!L4oodnhB(C&l}^T3k&6%TeUaZo#1KuT(E>bFC4XKX@_PBM?hM4c0? zQ?`lwj0EPm!Q2rFrW8`MV7K76bo`=D_km12cuFy`qkIj z9mIU~?RT*P=`7cL1R$X%s`xF@`m?>W2SO=JV>I-b8Xl&!D`N&(7`k;Uow#(47yw$+ z!u+SkXVTD}JL%%(rw}&%K+N|z*aYn9OM_|dV-YRWJgBa|iKt(#Y$EZ=F)o96N@>EP z#w?@B_L;xgN25{MfPkjws1;rVJimzLXQ3Vyr8NYR%`d8mRE{D|Gr8*{S}TO6e;L*hnB~< z8ieoFoJ&v!nm|CRanab&rjvlAax9C{fgzNUX40KrqAFSoijakM(4tWgZ1Jm{mr;92 zMFp~!s4xfqtwLp$Kj$j#MM@jY*=TOjgXI|u^H7EvH;#hd)V(}|lTz{76x(WPDh#M{)U7veuIX zfi5pL?{FW=tIlK&WpzRSW(VC2g@K%V$#9HP?)y~h$}6hheXWZ zCoqsRUyK4?*acak6JaGv*&$YkDV2F*1mq>U-l8S>4h@s|PvgQ=zfxR2GD27`-$Q#? zG-g^Dq*co2rc%NdVQ@y@XF-S>D?2d#Ojv82XpLpcF|0P`_Qar(55drQmqltwcVyn1 z?9nQ+zjAjmm8?8w9Z3D7fR6iUpm8Ppp^MH)e_LYLHg&Lf>@DSWcQHz~=!CdK%BAVU z6_vF>(lBp$Upe&@M3;=`*@MZO(y5W4@~m>TMy!yiK;8l}qDYKO8j?3<$~mzO<-~L# z(AQ8Rs%k8j1xnx*L{?=2<68hBv`4o8S>M z4{oP5Hnz>`hzO!h{(bZqDAo0wpos&_vnV|p8A_l2(#iCg*285W49`9PYPish;1Qt9BWO_xA&#v$BDyY-xii;f%kDOQB24>EeWKnx{hLVM?f~# zsZKgs0{YOBdND@MoSa7qfCn*70m!M@B_@D^CX~m1je`hwwl$^izWP@B(#8H%(?ef` zY1*~JPwg!+^>BtW|3&6Z_gAXhZUdjM5p549$37D8fjrp5__Q7c2QK7Oh3*>8q=>H- zWW$o@Oh-W?=u_DtRBr&YGS2hN^07ahS)a$b;)T#N^FzV3w0jVY#K-qfTsO+XpgF#0 z*FrE$|MC~OG2`MLoJ*^M8mlF5Q6&s|l^=;X!k?t$EQU#0YcC&)oIyhy&_)@2cxhlb z{n@|z7pa#kpZe{;8{J7c>ChFljiDy*kdMi$9B1@TaU7tu%F`{ngsO0q@|`1<_8q!t zo%|35RP85YZZel_f|)jMW|-JMbC7VqKR$ zkuHD!%XH%FjzAl>CNvl);Nd7U!ka}aDyD=iLO9?!n1PmzKQ@<9IG5!+(0F(+)|td9 zqn62)!&rpVm?S$SQcBc;UIo310>om?J8FcwjK~oj4xtY9BuwO22&P9isUOg5;1HIM~*6G@U$o zIt1rB8#P04jl!yjCPwv56bYJ~q8w}1{&#u|-!aO@0&r*}*8a}I8rR_#AS$?q_m{Du zEd>6o0Q=4>sHt-Ji1>x${e7v2&u_y_4p9K=v7mcSQsx+DRhXNhu|)+CBq@kM?)B}g z3j$jRRzg*I%d#gd|BLUQwX}K6G(ss#X|gCbBg$d589QQ=8`}^EO2h#XO^~S>peH28 zBMC%mP2F8Y`?3ZLtkVK0z|+($?aZ&%1zJ-1Gy~7qh@R&4uwh$5UMn( zwdeiP^$J$9gyMlQFLxIu!uP0HW?DI@6||=S_s8|IFjCeFJfo?CSqliE2vkGxYrBdt z$qW>5`rdK~h5r6t4k3~6oS{nSx2n0CY?GI1;?hF1s(D-i^pFpYoO`%_ZlQztfLQ_t zDgVs-4NRMx7)LN3q*JHPgc2t6n!zn&3Fz8t0#W09lG6?H)Pk~9rQ*gKI2Vf{VV|eA zRw`r8p7!lk~PS2)>Smt z*5G5zxpW_8Z}v9AaVd|#(Pz-1Xr7VyG+<Xqx&GVXq^XCYGB{2R)WZmX@Vs% zwJMAlF38eS8Iv%RX^kp%?!i7;EcV_wf-<>{AAX&B0Gm8d1c!lR>WDb36T3k(G-&Zi z{|V+v>MGaF6NvhYJ2%sfn>W*`&W;G|wTfmZ`~$~FdN@EZ-}AqfuDyGYdM3D!7^{0# zfsr$KYcL(um!-#(SfiYmfk9k!iv<)0Qcs!RqoGHvLuLABfArtM_t$VS-bm+9UP>qX z`qSOfk#zO?ttfP}0cyFjLa{PjEjip-;o{t@;7Tr1VVZewUY+?lUerci)WMHl?h?c z!s`tNwWf!0NI^ded?2+zXk-BVa3?$pw_Dqo}rfL3npd~S&CP3RfY*`!i{JYn zkxkQ~#8`7gBcvn`QpNnttYJ7jS6S#gkd5#Fhvs@|&>QP?P=iv+Jahc+ePJ}Q4!?>S z$o&5$s1?8+zT6+)$3(TXGX`9v|B_U@Dj?uI z%%c*YzGZ9OLF#K4%d^Fz{aMtH%7y93qO3vrpAV1S^6$v7L}qs0$%KhW^mRFfmGW& zs~`cFQuoQ@C^^)}$Kvls!ErGcM@Ol>JsZ|pIac1&=g(2RgOb24?aTuoIT;AVha)%= zSpkpI9#+3WeKV6BTCCMQ+#t1Be%q{p)%RY0;YzfrZEk5KVz!pFFw&b?t0@HaFW-GP znD)uj=Yhx?(>B&+J&MS)gF8fq9}Qs_{&1}lAVgM`eaxavov(x* zYs|u!YBoW7Pt>w!%}mqd^q|$!)sKVI%ot_9!dynN>+jc(W*zcossgq_tXgX;1kbG! zc-DxoUnOvAVkDKKK%P2(HVr|#6U8hKDsh1FXKId6;VQ8R2IuH|&ha+{18h!(H-$8NocaER-GrhMKpq&C3&=xy z6VXv4Hki#rq}ILccDiLjiU1Ecn{vD@akjxpC0 zFsgrFt3nsX0aj`)=i$=xm&0G|SRAJo`xf2(np*k@ux-WXI+{j@Ct#EuegdctVQ@@^ zij%W(tyYc5iOeH&p&6ZzP(WezkExs`!F$ii*&ig`dBj{s_#LgktG6x$W}AH z4gLTjW6@_!O+J>bht`;urwTvdXhhT3>=H0o!8t|Hy7ePk(A*xVO(0$hI~ckg?ZvW zVZu~F+#o|j>ks%E#mE>8M$0;3WmEJ25dLbAtn=O^5VJtMLCh+bTf8&D%nz}F1AGhvw!n1{y2T(+h4`tKv_foVS`ZO3>M{C?3s|av2C7l&!vi~ ze`~l{1HwQ*%S0>Z+%uJeP)eZz1#=~5#{j#iipu^PfNEBV&rzw9=0yEOG&49qlR-hu zyhx)+T2{Eo2mRY~RgHVs^4EUv*pzY7ef;sE{H|NWSQT9h{?Vngfgxw7UDNB4Ot@kQ z3bKf!yykZpHzGXWe5f^;sn4 z>T5qD-+Vef_tMMh3rE)6-lq1-48$m=lvT!um;|mI#7_ zR5?-cC}D;cuF-PPI#L^wDTPmwFr7x%R&pwY8-;j7*G(ZpyBj)&cWH{X&+DxbE-1Rg?n<^WD z*4S7B0Z*Me$vt-v#8^bG8&Rg!lm%U;73<@n2UvJiQUg|6n4KoY@I*lSc3`u`slhf{ zC(hY5mVv6}>RaQJSdaBh7@yD0Hs2E!bYK8iSh^6nf^7pxQpRW0Z~ajk&~$ad_{-8A zx+%_1OpveMOaYWm35m{*^Qo{)`-fFI%z=3tsCPLNhGAgB*G z+jmQcFj54EC=TUtK!T`v#``VJTTlFgKdS_DhJb=DGWcJ`4uJzh(&}qyY=Qw2t73)$ z2V98OxwA0wPT!+qD*Ca3l2eOPSF5GXbW0+12hlL_u#8NbJVI)gU@O;ZcZ8S( zV@^C93P&tN>8YCLUnK}B;pm2)285N3Tj=e_b0smEf$uOS(Uiv(12Z{)GN~t)j*7Di zl?t921S&J0zZfe_G=lPYuQ2ug9;u+%k~>>4U<9`@Kf;jg5K4}G1e%gY*aw5;Tq9-+ zjp5hT!jWfiCf#TK;+6^5s+O6F?3g*D|5rvD0e#S|aV;w7S)7K*N5=d-`=Un%(5YlZ ztN{$sa?Fmyl*7nqSszaeL+_{3Bdi z7|g$jd$iD0GOU!k4aBX_-}J#|3e50Q&@Wm6Q-*exn$(R|C(|+udq`ZzE<9<2^~&c^ zkYVmy#1pJi>bkS7m%bJK@P&GclA-#e`0GA8aqe{b%$Gi!K6v$wh`_frw!&a`axC4W zJLGeqPk;y#2Kz0d#TujVYGl=MmT!JEK)N!|3n2n>MS8DpT@?VUay}lQm=NxT-cw!a zOYleCNRNpj*h9gtWH0K7Nti}?TSS1hBh2$C1TaYG0~&$`i0}n%SRg~-C^1Wec#Cl{ zv~v&2Mm^7{AbswcPh2MRgVMVwntSYx@fya}NDnHISuFr)O5VjgwT`vkMTbR|vziss zCo%__0)+*D}TqXUT4+ey{Q-&H4C{C(w7qzv%8zE~+H(pOj+l znrhm(SCERCgC;|EA{#??@@8e3=Sw*x>K30fW(L5!oe#W&_1|xPyAp=$;Mk8ToJw%qSG~kBEg+I>43FrY|_VnN*7+E>pzWPbcBRvtT#X9-Tpa)mK`xogx!HZw~`~M|-vzHzYU8h*c0vrc8 zox&!&1SwfT%|NZtPMr(NkBX4_{wfHvu?JPk{G%$Jehb}vx?q>>1Pk_SSgYYEwVGBm9?^uPFB?`LtAbUn+ELsW%+=K

K26l(wBX|jEdRoGaoqf?oQwu{-DK=&xa{=*iXeyWw48j0H<2OWbR1zv# zuPXLq3Zc(bLUB4kNa_uq9?%unHPKIzBn(LvvC?_ShRlT`=m$Dv&KUayh7_N8pgm+^s#&X^p&%Ka!hVu zkC>l~&h%1I5Nj7G0AO>0II4&!wA^?7=GJo8*KTU?Jn7B5vo}*$GqlV1rNxxM=Ir}^ z(*`R!I|glT2`@t%+bC6sRPEyckc|QTBOJ^;k+IrfOeNgCwz_4sy@r;o!|z_mXbtMx z#6?!3y9M}ro0L11ao4Jx9wHSeP9-REn`99&h`6W1u}X)WC2MS0EK6UynHDAW%&X2I zNnC;CM(wdDx*5k;?}O4&brT-4flC6eA2ehaMMO9rXORhb8tW(z)`is!J#Cew$R6kA5vhP2n#55Ft?WxPr z5NiRY;xTE!TKkt@{uI3q7SpRAUQ3@oOI!A1ebgx#PJj8mSJSz^qk*Q>>xvv7MDB!Y zH#T&q{Lso)i54AFx!~(KCkkT)ymV{edl3rL4#t`MNLt?#l|t63sOTnB4v19v0MAH_ z13qhEFZprM7;Yh`gR{SsW`@Sn&fsLKKieDct9#517C8m|*B7sem1l}uA%VqEA1JWDNDKTKm|ZeQ25Y6!r;QcPtei6mMaS* zV|E-Kc$q-d(&v4wAB%{Vrr)1HxbVL)SPRjp{g~Dj|==5V5*w* z{FUd^0mA9_z5D6Sio@m*7-NZ+AWV=!%m z*1-Y3V%FDntpZh$v5XR+GYo8e?n;4Ro%!_6_kKVPgYxt=T@%}Sj$y?5! zNuT-Fx2UC(PanMT27(3wz}oOcg8%4h1)!-Z9eF$n4=s>dNZ=d?^MhYrMfuxEpLpr{ z5bmR6BM={l3R>I1`ZF(B-@l#ev~GYc;xHHpW46Xlp_=G>)`Lt7{cOeTRjn4WN*sHK z*2Y+YO|=RjCDR|9VJ7aemG-JxE8`(H2sWyt0-VsOG+2&+_JG>W(h7d=`3mC?=$*O9 z4n(NR5mv&6(v;6vgSOC)^rE5~jY^<#F2(wz<0KFyli)hOL%HEG96qcJ-5k)3)`W~? zmwoqu#%W>?^o<*Irc0m-^Q;A=Nchz5kt&YM^N*u~U?VMnx7V|PUDvCjxhb@Kt?`u!tN5GBNY@~C^RWkgy}DjYK2 zSUi4bX}CUf6>N}|WEfQpMQzxy}Yt z%cJ*Fd))@bgWMb6;i}6!KnOU;c@Qs)3LP3)i*jl#$u`P!w7JD{a!e|qx=mD6wDOEe z(wMOcm2QAC_B&4iqG;c~0)V+~5j<%zGUgJ>WbSqoh@o>oyo+FN&xQ(E;xQ(IAC+a(13TWYUn~i{#l5D2(Nd zf^QazeB0hH`v|oA1oGY>?YO=1^gQD zTGk$y(rS(%*a=N?K zf)aI*KDs>_0g0WsB#lKWhR4f)G;YvUIX^1x86%h0Oy4%OP`)oB<9hEgr?`eaQVD=` z_*=b9W7YsxG!J-^vJVTD@A;b_BmSi=pDs^T>EPkqn<)_*j+ugrrOn#OQ#i!I&*Y)j znUHT8CnRslgm5Nr+$rUq1(astp7$DAAXdE=`eZj z0`EnB6yYXP>9gd%4f{;r_3Zkr4CMm}r5=GyN#$B4#PO>n8ap9>bvE3ju;)g;cM|$3 zT(HpQ`P{&qEJB;XBGj^0j3@(YAYRKW;y`-XSw#Iz{)j4!0U0+`Z$$cC4v43MK{^oE zSgX``$SFej^B%PW)|{WrT@WP=y_kckU)Bu`s1#M(R5k@@6cwQs!6AgS3q0q+E!u%8 zvnf`1a}#Ay?vH6n7C_OL>rZSNbMSAW9t9Eq!UDoy$n`l0b#i1PJ^JW6Iow!b5Q+gi z-9T7cp)&P}>Djb+^H#bAOxFGNuh6ex62HzCDT5S(fnl%W6GpdSo!ksb4kE=05T^6J z`c-8xYMS9kf*{NUEn@vzPWA?LyfH+}P=ffD7Diz#EvXpz(EvRC-ae}wsM;V!qwDMW zZoaYs;sEZ05u+BxdnH!0CR}s1V!mLnfZw^s-sD=p+Z=qyq_ESMtRiKQT?6p>E=liNU)M)3LrjqNGtwU|xn1Tl8a-VoesJ zQFA?jhBC-3gW;qnVLkuMQ(M29DuYG5&m8s&ls?~Xl3iq zb*wcsZK(#<72ya$#b?e(r7jaXs9B6rg5L@nLvS%Sp+uDm7Mt_*#L6Td!qh&-Y`lbl zvAVyu2^@>2C_K}4)J25HTWwL{6z?TQ#%rVdARJaiZXK7xI)YlIB&*3`>STrh7^@Q~ z0q3!beXVC7=B8(89#a>-&N-|*)ANk#mpQq<(u7cJG#EqR9T2n>g~522jFjlRphK2E z)>*odx!KNHG$scs==vCcppRTD9&(R0RY8z(sUQbB<{qe|GCvWVV&<#xfpS?>Xo!8S zs6;5@@^Ehy=JFu-J$&|DRw`p%pT^BMO>{kJwOn8UHMgZ0MWqY_rJROSQE&-_%S@pI z=4-W6`Ii|c7QkXV@pYTJiZR0YMI;rJ!mcV(k-yDF@&fsx`>gTeniLarQBqP%&yv=3 zSXG~vA%opDxB!A>V-J*SZx&v}*=0>OQI45bIw1Gn*_aV!Pm16T(tH8mJbbH4el$DE z^RaX*FtSQS3_Q1>d{hur$ulFWhB-^0urP#sBHm~s4U9cVr%>v31DF-nK(jdAS9#V@ zpSEddz^$QJuzJj8C;b1HE}VlOCH`HL`p&$}*CsZxubs-0NeuhwsG@!UZ^OYESDw#gtxhmY` z$^=jJeY&_b^4#<2$-=v=Z(*Me&qm11pcH2!nW{*MguCw=#3D!xT7nlo_AYO7Kn_j| z%LmB_^+|X$XCfBan5d@2;)bw+LA#JvcRS>84ZQzux;b_?J@fT%rxTZ-#$TC1 zA=_M|5A{jJw+rQBX75Kxaj(qFphDlJACh5lfY8)oE@d3PJPUR}x{-CNOYK%@0U;us z4`EcLSoI7QmxKWdq9I|x9bnL%IrZi}>-@lnSf z2a$Ri+CGG0>0sALU-=P&0_O-&l<9<}gk@~rd=Uq8i|GFLD;E)1#bi4?V2`r4xl;%l zeWy7Hub43r#S!}~5xS?kBt)3ppV+Huqj%xz?FJ{#q29IG`L%;eCU`EGQ%$FT=Qu1(1PGZl;jt3vwb>@pW7NAkci^NJ4u?L==B^0bG>gNkB z%0MhkV=CeN%3LTI9%k2EK|DG<9xfrHvqd8g2_##_%G|}8jg(txt`z1Y{qyj6zV!;W z$bBwsO+c?VKxxhqSAlXUpJ0ttl3XW);$*D8OJBdPJOAu4u0!VQK3GS==c>RIaGxl^ zTxSDiW!73z9Mez&gw0j(-8X4A&)WDd=ONu3V#WAA6$AHkdy^O*5R~mTVpSU86U@Op zdlf`m?3NNUP*PgQ-pIdrEzhv!HG>beS%XG;mr0x2SP5(`QYe&f@M;-uFlD8C82rR_ zWjr$WRrYS1bMEy7U!PMnnSO9r@Bis^>F{ zREaPZfdmv#?9kRZJKT@(YHY2gj>|O5rxIMvc_h9Gy3Vmb>;i(ll6PZhappyYJkHO* z@FHulpRT|9<1iSEt*W7B#p2>dYA2pY;TVUJ_0z42%E~*L81EYaoov9(*TnU=Cx+9< zHy<-cVrAe3^#t4Ay+it6LwWkjH(pNfA-wz*b~aq-OfAG*O+TWb9EJ-%LxmCghgl+PRIELg8jhb#@6bm2ka_K*@SeHcPCE4k zWPqJSZ6yv5V&5b16dJPZw7(mtA|ESx_SpF?qy?|3<~ z#BueomczLBH~gC^oUS-<}S{oZh)e6=f;in$N%!*vo|y8E5G@z)ZNj}eK>_MTzG7p zAr1LZAfZ1|_)z8rn)e1BhA}mJ^B_c!)xlUorv7Bo&@c z&WXh$@|j423@8?k#S0cyNjW*ydn@A*FF{HyW+R1z%E*a7ef~mvaGzp5* z>sPOms`qoMcAcRe@<|Fd?WUfm&!*>jrVUlr@og^QE5%lWX&G#mp$G1rP?9bKi9n$h z$tqV>OM`lFS|w zg?St@gw5TX0~~h(EW2BwLzpKPpv=&G?E-UAV7RAR!}Ig=p)436Xn%WAu5}{8tyk~& zA~YUsl^w@mV46*o44~xKc&`dU9f*Kbx`t(91vAs!TpNXeFs}-11eNjLb^OMeGNwhK zfT6Xk2#fwZ*3A770WjEc6@Rm6#teaj-Q69jp9tauU~6GJvjq$+%AocPy;%j)&p}5X z?(tD-OHi~$MchCrO5_j_NV+R%gJW}z++z+liexD?G7tT&VUdv?1Kl4mmplqi2?8FS zm%0bbz|!0ctvqqv$w&qI3yVYPNcSm(5$(vWEyB8&FqwT*0ZHfkTT2Kbe8B#1Z4yKV z+QIGyk8qt-fR#ZCLfv%=R^fN!QffghR1)1|i?zsT72Z`Sg_s+13EVeC^z*rjoba?8 zBFtZc|Jlr#a?Wohl{X8^1emWfffe9 zN({`T4+w6>&1vgx$hILU2sI+p`Ay4KK3oZsW^mr>2Iv^iD{L%-G(vNp&lTdMHlcTv z%2+7a-Ub_E30&*hPf^q?2S0p-5WhC~0HZ0NY)CXWKNpIaXkiaE1R79MpSyfEy?jBpO{(0x--D);0; zeipI~lvLW1p1GCpIP~1dYeKP&E|`3zymPhX6@U9&o*D1wGkJ$R&F}sekpo5boT@Ab zgb(fdTw~NCn9sfAXNPg^k*&7?WqbKL+m>zup=c%T>Hl6DTF0w@-tsHrzC4nn8X zngo^;V&*^N5oBK34^{|!ATm;mMcvqpVlp|#xbsomM`WRj-0Ovz#njIF$z&F=M(wAN z!@B9JIm%RVxDU#fwiokx$Q#W z5#PcXg+1pfI;ESyU_OC4>##&#vC+%hxWZIo%BkqrLiNgJlrIBYR~GPPqrB(_ zGcw;A0xH2_p|iI7nPqYYXUZ1MNH`!KqLtbdx^7lb@Ty2xl~GNNO@x(eL6#B}TLV9h zf3UGwNh#SN%(b{QvvLfG#IeKPhIK(jMR*Z&@qDdue~tjRDj{voh7t0@wYn}WOpT# z>!M^J#Diau{eV&;GR0-AJyxt|4dtpBUb?%9b;(&RDrJ38lyGxXOpN#CsrA1(o7NTy zzAb@I;6|vz%C>~NN?Z+RjV)&0Dy7T|Xme)+#ST|pQBgUSISu@SH<9XD3tZfQa9v-* z9T)V(Iae65SXMVgn@BSwW9iyEZ=^N?Q>}$i#8}>Z`&MeB)8NSTdiwm4(kPCGwiL>< z?Sl8=L(Q$YQ{X9Yet0*HQbg_YnPchZ?Ez%-E{Y%p({R-sC3fK~#?tVEf%N=KFQsEA zPo(d^{YDy`c$BUjKbuAn>mJ{iAf27>7!fpjr$GDy60UHc%nfuNo9=2Zf}7 z!t!`voVMsMq|xgib8c8W47njWt@fJ898LEa@=$8m^6lzY5r*BC=+~d#0v0P=l~jI z4%|g>qW)2fQ9GCE2lM2!tWuvo4(7psRs{qJ=6bbtuH(sm9_RoM*U~dHV3kTy*M9IL zESKeU`swEogiir2nhHdqP6S)A2?!#srqEb;rbQpzP_~sr52TpK--mTy@SyG?fOz*o zu@Iw+$5;+6bqwR-{dxRo3V>}g84l@2D12H>(UcN==N30|9x@dX2Q3p7u_t~Y7s@fX za7O!DXhx=`RkXdeo?3g_()r)}W~7{z0$&gQ;@vd&!hCAz>_}4+QxSZm)z#VAmBv5^ zI(mBvJfwUwFn=kGeFw|gln(u!PY@PYlc_TQ46R@bmx~JrO}Vy7br|k$J$fVSHGARsUmi~vL}=hE2Rl` zxZjeczA^jUOE|g`TyJy1?c1Q>Gw8E}rc5F=^FaNVKlNhxqAd_qURz1IR;)spj}Y({ zOkK#{#x|@fR(dDvZO|x84Hv@1_&6y=oje~TfiBpe z_$z2`mY57_Vg-x8`>++5{8vytn)AaukJ9WM{UbV>nU`=G=mK-vLirH+@ckZaQ2@ve z#W8EVWtrDS6c-z7S+7Cgy9Zkh+C%IbnR2;>(34)*c$ZlfGL=n&EUiFS4Ffh95i$b4 zB^v{@%PxCp7^%R!tw>o%&8>K_thXst30QKjcBL=EyFiljv%O)`5+7nYrAP+ zZ-}(aergX;mK($&V1ELint_M4mMgG4%ec=v0tINZ3b?hqvn>R`1bNv@&#XvL% zl13n?Jem8AN*)Z1v&iS6)bY$GE-Y9#$QX4N*w59;;j}}XNpWr>bycrp0VDL-|3rFM zX$i6GXp=tE4xYtW*jpO}%)um8u!M@GW&emq=(cd}%0UsN(P)dzdoycFI2fLV!lfZm zKtP*KBkhO|SdQINx%?kW5Sa?3D>CI&#NQTCtE7QYg@Padd}VHia?(r!vRRlV<&Z$f zJpwz+;9Ult?OMH&^HYZ6SdLX(-G2c@qAtxL_zRQ?hh#&D+F&PpHAr?mk zS!6&Z+%(X6=xLr7!F-e&@wMAVdlKX15Sl&J-Iv;`hfunxvBH46YFpFe`HeJjdm^p5 zZVc1x3l-=0Ui&3A2YS=9Phr%c{EJXL`|LBwUxF`*HTcd;pGrR|uTO8jPg*q!QG4%^ zG(0(hfri_Grd&scA4We5v?us81O;8xkb$+nbdZiU7p3E8UrLkESUGOiNequM=ST60|`( zB_INOasp_kT*ZOIQJOo8P+@XFWu=EbjLjw^Y!+v~{IEX)bhZz$NQzG4M{0=YtCc+& zt4t~+%#-)9DK5T&g~Easjj^P%R^=iARb?EuI`YRii4tCT3@QO*)yG>8eAaQ|7>DDH zl!x&jaKBKysWDDN3oR-;ve;pXz-%LcjCFCYZju*Dbk^Nx2(dv~4{k=x=XD&wMwE(G z;OvO)zL56J7k;SJD*eCx`RXsiCYf4et$d;E8o$;~4<+ z{}n-Ua9j(Kf=KTS=CMyFvo0#(^{0oU_X$qnfJwMmPt`D$B?w4pxl~Jy=;`WO6$eKT z0rIS9PQ(6oc2Il>W$=ko84>hQ?IJnD7J;#Ojxc>n69`q)|D-VKPUuc$lr>^b23Uq> z4w+3(%#g|mo09qwq$-OmRO=hTf+#1ScN1T~K4npdJcT!)LWYzNE8pk&4vrr}$D%}_ z3LH`yiCHkUG(VDQdYyq|Lh2rPi#2K4Yh}33W+Ozv7zebszYoD|SHXFhb2X`s4QUA> zuT{Aa~t^IkbTgc(DC`o>bL&)_N7!irFGvy>zssftRql zDVf`}w>HSFsp$w&_c<~!j-*AH?c5B0XvU-)#3DsnUn)r@DDG9zpaEXO@d_9BNg=ue za)fV!J>mR7Qw)KhJZFY>)vNf|5r%e_D-f8vkE>4wJ5mTiUEG7pN(Dag0nlZjk$i99 zoPtXQu~?xCpUEsZX3m~^oj)>Bp#4r8U-}|lf(;vM> zy5%UP&)b>nej39ab-V`@ggrY#4V5!g6@25?gVe&l+4b@|@csgsVV`{Vg>>P_mGme7 z`Y$P_R!^0{6V%f%xS4v2W_lpdwcbTtcc{2{6oLKXGtZ*bRHhqm-%g_w@J!D4@veU2 ztL~+dshPCQ+Eyb^;Pk-Z2rz=6>2-g4!C!G<{qk)$?J`A5^d7B2-(E>hh4?_4nfRXMu9nathD64aREHc z@8b{j7y=$TlP1FA=RAah%^C7tibLb-xR8G{7yio>1m5dC{1?asd#-@?UDCVSn*W(4 z#Yp3Km4_|P-5~pBx9{?5AH$#RN6AASm_08;s|MI8Yh1sa`4q@qQL3 zAQvxilDuPwa-fvdA_A9p%OLy;;jo87kUKobK?Qy%A~zM8jsyc>D2IoXqAhv`p@T0I zxXVq-Hk%D*Y|uy$fq{?yIDR2N7s#l379cdb3Ved|^Z{?c0v;ZEn7TnV`cI!sHCW4| z-EA=5@pR_Q$#nXuOVJVU(I7eYL?E|zb>Sl$O69Fx)Oe@kS3TAvV{)FtcWRyCr{aCt zxU{&a3D5eP=Wn49*Hai(b*rhVDK*n)VCMc9^UtL(fBtjn7!7br5U67}Zl^7LqBq}t zKW#IIzEh_t`P-OQ4oFADub5}DQRg1!By1?djvyAt!tbtoru;z|5U7nu+S)tPsJqaC^}?43M0gq=_u&Nwh}q5f-^RXkj6Sy>zAG^t8DO> zt^$j!2+7LuJuDflFESuevR16We#rxbq+_fA9ntDprKIX07Lk^ll?L~KPD?<1^pV@& zK#SA#IsdJoXF{>gl9PhN#$I_)|E`V<7&%;v3I$uP&u=J?bYX!A57Un6ztWpVV-T-8} z4a9DR&+ucj=4Nwj0Q;L#Y0ZafeBfKSADV$@_n`SH^2w`Nv%_M1&OB!tfw05(M(%65 z`W%IiIq2)-7o#;G(S0;`D4xp?JLYAgX{XUR8k!FisFp?ls6FCqv6p`I&te9RACw2PqC zy&0$!?^Gers?c!{^dh~+ydj_i5J@MmArcTV*B`KUD!MXyp0 zpI1pu?LXO@-ne=@jGak%_;cL<;!B@TA7Yiaa2|Rtw4_el2HlNKobhP_p*PaSXD(7; zxrqKE57L!SK9x?M?MNe7u{YlTI9)pb6wS&gh&BqU#+q2VxQ03!WzfgWG}%Y;FuEkZ za)SB-1V~mL-KPEg5z1Qar>8o)QUzyk3AbniXSD;R1-v_Yricbr^tH1k>=SF8BUa4y z7x5JlkgnVdHX@WBc}8UKu$S^-QG^oETItF?lou$-;f6uq3Q5Q<_=aY#|C4v~LH0iW z9T{od=Z}I_7o@z7H!=>5Jn1G=D#E43c-$k=BnWbs(nO&Akp|s=QippYCsG;@a~ch|2|YLTX4Zj7-S~s(rEE zAsk}OB+`AX6MUlp?g$eejPJPuzo83M5gW(B_vEvXq7H5>S5aMx;nDy_Msk3^(!vgI zj8?Oj8jnUBViVDpc7RFs4;SYN_#+Bef#O`$`c0KN#FFq{#~WD@Dl8t_&=%crtsEB$ z;$VJu8Z>aI3_(?f<(os88zfcL@GMPr`Z)M0-MxJ$tzaR~&jX!byv((gv^buG>DH!W z=P#ro+ytvcxUa1(L~xpJicN@5nASB`2MPaYwIwvp zsUwSGn)`VMKK@nSC1kdawOmG!l;^9SASz|<>?kQzSce-hE$6yPu$J}l8-T%=@x}XY zPDdu7SqV>G2^Og^wt;904k3FFwuCKeW2L|~_FiTU@xT;ORuQ=Cz~O8o@S+y2&>;++ zL!c1RJrU)NIjrkIv6k-LK_FPX6uJ^oQNa)` z5S=kas+i3%jng)*v(%{=xIdg8J{TePf=GYnT1V_eFhB0zBF<#~5Cx^VGD-`FLd$bj zP%tc`-PlYp8c4;c449amY65uOFS`}W6il5fj*5E-57tRVMYn+Hnl6xHP&b3%R9r2& zTuxclO#%Xh$YpvQXPTw(f6&b$fru+}&=m0YArDYFks%dmhi%omvSKPlN^AU4`C}NY zH96D>W?fY>ZY^l(K*p?(d>;XR`hn-yb>ourOV4W{ueO(s|144GPQ@ZfFI%EpYaBX)&B9<|z?FVO@D$Zlp4V zpjR+$Lif4qCgLpE+wuFUz2^)KkU%{#cFI|=L$0wv6+=Rq!x0Pb$W2?K8WKpDTmuk zW?NOE;lz1m?-!ucS`4%Q{6G7A8XKHXw?4c|?Rtf1Qzl$DCRDJ|`!i{H3{VlkUue>jq^paj)$ z?H0=1rLN=Y)%S0vv9T5UCOk?PE?&UMAXSg7mLkrT=tn7Qt!#)qd(LnKLWW%7*({1m zo_njD({*SQFWuV(;)$Xe6#M92W-f2sUB*jd0_aamK@Kbr!F73D1Q8KFun%2#| zhFmIeUae4iz}{O|fj}kr9EIBoxb#$zP~e}qFLZ~6LIkY_kJXfBy^2{ZBp`F(yzzdP zCU{?D6G%jS!+}Sq;RGuj8E-6r{&ktL0X>@#oB~sZY4^9#uAs_*Wn{WcK&^+VA(-_4 zOsCs_^EwRhaeDE$zmpoDe=Zob?{bkMsDc+M5JOO-t(U?`iYNxNyF0`JPV2=@t+|D^p=iJjh)01a5%tl}rITM6Hh{+_&EFVXkS?iJO5f!jDn?yw`Pl=P4X$D!vJrHG%%pshd_qJ8qo|Uz$c6YNB)oU3N zts!)5^PbgZ!mfm+%#Dh8FDz`rL$p&KXlTGqUQcwp_04Ml3Z0Hug@;l{XuZCkkXP)t)6YaGz6Hf^PYu5tWm|ktpr0Y#GMM}EvrmNQJvBWQZH)Es zG-M{mC)4!!41x_5HwM7m45=09)F^;!a~`=NNCi*<;HGuT2@ehX(_J$$q{(}*oOHA# zrh)VY5rE}our2I&P) zbe8@NbIqzvdYFtmwUE>XI{>p*<@w| zgUsrgT0Ba1l(HqxipR1yLVasTdg|Htr`LY+bG&k^YO27sV9dTj)Tw}hXn3HPuI{DZ z|G?Af-+t@=#UZGpE8$$4!Kr!w*@1N7^l8?_td^D0G>@X{Wvz>A;2N;(3W!*3?lbTT z4AqF)&^%{BzTBwf2F8~-2Gf}WHdWf(mb2hM zRhk$wY(k#j^};xhK+xkuL==U6Q7$Vl_$8m!A(gt6BLYYD<~1hd2@F1sRri(Ot4DNT z-A!qv^V1r?Mh5 z(24SG5DUwSK}C@h;ep+ZlbmvZVK4%0KB6GjqcGGV5z4IYmkg>9KEygv@VaT{gGK+E zUlgR(dhTpG_1tr*9b(EjY=iF`1@INo1^&(h7(6(334vC~NYPYu8!H^(Te5B)1ohD! zLSe%QU_!5j00}dMJZ+jm&XMEb+^1m3w?bHAPjRhIzGr(-tuH)sUDWr8C88UwDMCAJ zW`vr!xBvEF6uLO)skO5s)d2!D|FX}at*q~-{tHi~^Or8eNJVLKY&cDfJWLl!6I^=! zX}TU3rF*}6BQ=quHGI6p;i)*SxXDC0wNf2>8 z;eMkIZ&H~sKRU!etcW&H3HsSpvybg)tjE{}8rz!QY=Q)Kq$<(&~ zUI-dj4#J)_HhU}b&fPs=HFWRzpGwBYL3$dMln|{0 z>M>_*4%ex8yD05^?wcDx7w+*aitX&h-qggXVSAF7abG)dt;|wk05dw4w}Eiu8oBvh z!qm>DIHH4=cmumv+CWC+w2COaFpQ!`1bHPMs(`9ya*TRbbF(u%KL!o7SPh25D2VAO z6^ab%67uM86{w&i@eCR-&@sIpR7@&L&%T&5QIPw2hZ2>%m)mb|qq>9lG=_>0>W1M3 zP4$Dscc9cUF+#^wiyx?>gmK2jNkXrU0leGekzuaf^KOCb`3X@}^llLYw*w-+4rz^5(dQ#+2RQ=BK9d z`lwtX)T@zMilSR&pEINeEXCUa5b3ii_@tSLpm3h{+ux*=Q2}$p(>Z=tuqZ$jZ~~CL zUePg;Gr)zr2Wx;h$t`c)O%*8M(lV4U5rlHQ@mk7m?P2dsh!R5dMh&(|2^4~OHf`ew zV5jnh0|K82gyRO>4{#H_5WK>@oSUEkwvPLNJSsYpy`WMA1z51NKokm4AUuE^4tz%q zxPe9t0lReWk}k97!0N(q+QV?GF%pAf)flwNQxy?4BMIJPg+I>H5D(PK1icKjafE`k zM?zU6DKo|l?~@*KawwJ&yo<6ynRsI(2*rh9Az(Kn1IGZF<#*E>I!|?!66nqD&}|gh zJlG~M6VUT!MD#^QN8N=?}1f!(h&vb!JkK_w^ zO#?|RMF3h+9Kl1%7WPu3+(AO^9WAM~gNdp4#xXMI(>3~*+`LO(zPc%0A;LMky_$v} z45!mqaV*{dXTbo4cc+)rA6~kiKJw!8L?jo|H~#8x3H#Gg5nBA|w|@?8&ZOQR!uow( z>6P2JQ*|pdABce5C32Bn^0R4+ z^;@0w!ZX*XYN$(p`|8{2!-DS%;4u7gu?TjFy4DS>)9eq$ofYoYTw3 zAB^(pqttwQkmeBspsE{FjP-$#&E3d|epi9u%Y$)KMTHjQ=@%9~Ak9EtxoCi+B_Eu_ zTe9mJUPulwVR1<}OC|pX6CPlZ9_~*frw~tuWJoTHo_EWP}r zpJMVJZp^&89>5R@hRjr^z>}reErRI@9lR9 zp$mXKPE(U(oNwOBYykJs#C&qT08P-z5$j*(oSVhl0;K4f>QS0EE(YVVK{TTQyhU9D zJ<%!A+eI06w6v44!lU4KTqbD7A2zv;r{no}4jPhC;|{Zm#8simF_xWGlfG%Dfk`Xn zoHCTt6Du(Sni=lm?^WU|JPBPv>AAaBmA(e35f1w#XxUpipjGc@HPS z%>eAAO;bFDggJFR4iNN}L{GX;_fR1~+h9s1D`{q9nOP~HlUC%55C|@idkHerOLRh` zDKG_CDaM70r4gg(R1;Il@OWy7eAGA9P?6D^x+vMQs-TMX38pjBaD`}3DWE$eJ(dwh zhe4i6hE{>fyKqueF2opXB2`9x0)xWm>|r1VM9>A7$}4NaTOY+)4blAcP(4C%Q0?^n8}z;09Ks^Vg$#3>tOhIG`K;Q6;r`*=jOxo_N|wxd}_xy zXeSbT49pB+Po(FcxSlQ!^rrKJ=c4z;>dZ9Q4bqIYq_Zf)<B*mO{p-=V1GVdRnJry2n&duceT$vAJp$lqfBu)Al|S(xI%%D1wdHk< zIM;)2Gj&HwypU>v*51>hYfLPSVQ)lGxU@P^r zZJF zjpiCg4&1aHB_;P>doxP)&Rx35w7$;BV@2MQhtp#==cBhDxei)V@>QOJkV>|b`vQRA zo`Qr_?gxY=_sE@9mOn<$o%Xmqt9Mq&X9@vL?Jsdnn4{4af64~F$Q(^_H4 z8yvg<6RoSfF(Q&bnjP^>@p%M+USeklC40ZTk?On3(;9%VvD>%O01AF_dW_sW0*Nr~ z_=6Gh`km?gh0CdceA{b3{6T7fNF76&A%y6LS0b!3y#uVDQX_=;0Yd5suvP|u*b$!G zKKq~-(!|i0y4n`3=W}r`@7{hpP2L?&WeA13nr5Pq73nq+fniEau73U#X>jOLYJmxN z$mcBq@@W}33o-4b+55NC`=9mca1t%)bW#5%N7|kKcX!O#nW( zV|-{O0@4<>$L8%JVCMrEF5aaM-!Q-P8ua=W=N1X|Q+Yv1dWTl4dw9KNhcGn>o*fk4 z!~0|D(zRNIEFe&x(}7f{@P^kBgv%HNhW#v!Yh{w5d32vi_RIGa2Nwb}m7+BCu59=r z)9Tqf9*_;d6N6QA#LHpx_V5p9-i^xy5&&SsM}=H3&}tX0NOiq>6Eg z@YFbP7KL6`&44`(;;=SBa&n6MX(dKJtY}26fakSok7a|f27+&o9__1|^dVHFk7YoIhM-r7(r~lX zMJU@I1ctfeg&bI&TMngEg^_Ry1LKfuE|)E)IY5JL^!%`$vQeN$3>*cf{rtCyMrb6J zqxkf6tN=)qeeMvgF(hmGrMLl8g`t{RR~6x6mP^g^EkJ}<(q6@>)I{T$#XZ28+`HVq z0(5{g?CEIa?9NCkp^IlVIdR5Kq;fim=5Pe|E%l_Yx)G*r8f7g^4X2*-S2<^$4ep6d z@t&1+2scttb9aA+@MG2l@&HT~`-nFj9uYjnHH*bYpiFIH?OX}lB8!oc2P+t=RCs8~ z71xFCj*tzz$c17e7)C@@7Dxt=`}HAkmlkGIIiD#ca&m-Ol>*&*a%ojO$TL{m6Qh4(5Rf$3U^r~)zH+~0*w&W16NgmfwBj$ z6?gYw*jA+)q9}(NDV#&0auJ1A$(jnd;32fI&v^(k-KBG4sS#4vY1##(27;Y6v44@H z=8R2oAOYcZWH{mdOwmqiA{sFI@L?KYrpYeC;gG$%@%@*g`eqkr&gjV(KL6?T*I)Zq z`it+po<8&RR(kP;>+EMkI^ES4Morg1Tk7oZgP-W<09NAzA9)Ugt(4|Ochco^mx-9Q zM}^AY|Kv7~34H}99o(4SW$G%e)k&AM_8g}xFFc5>cJVbjk8esq6rQ>{+a zIJDYHJ)@D~d!@yB@VMB!03pT`g@lNo0;|BCjR%@?*hD7?q_q!-@`wdvzz~^+Pw(A( zK(*3rszx3)C_~^6f$l~e)!jPP+w7kakzyQH9eX2IMl24IYo?Q2TLyz%edr#zmIL;s z@QeTCi(k=#P|^GF{?T*iFaD-x7@_3+Z}yf8!WeEO|0z7&EG?e+9+!>9L#Q#!8c)wT z?F*CRX?=n)CbQa4wRP}dcx*J_&{UK`?Y?CaJ_}gMbi@7;9$Stwnc{8^g*KqGnD3s0wuS077LQxoasAAFy)0C^2c++333c7bs#c*u`E`)ryZ zlF$ig>cZ1cNA0Pz(_NQduZ#5jJWmN$l60TOCMVLbUiu{p6;GAxtr1Q&^j{0WsFo;) zVbnFkvNlGs?98S{w%c7J$J*3Fhe!4doq-}T4FZjD0}aj9)fLXwHpUJcK|y2f>E$|Y zPvg-^gMQxjx?0hClIWZDu}%`R)ajq1LS}R;^dJ zjy{f@g?ViwThghF>pk*Dpay{b5vXT}*@K?>+m^L@?}88gTcL5{H5it&oK}zC@Vvl6 zmJE%lAk1UZ;+4JfXZa-0`2T<8Y>!gF2xqbmwu>|1EI0#GF(Fif{`fq>gMM4X=oZAZ%hVltwBvVmC!o7b;Ojslrud4VNiz*f-h+*S66#iGeZOj{qFj zNA9--gt&s)>uPWv(O)}58s>0k1_SX8&Kxhix*hM79Pj2t+FKb<&2^nHCc+GFdHUWj zd4DVbbcGc)q?Oo%wdu68Fiu$5l1Pl})ki3FkoJVc3kjW9W1ve{1$sH;z$>V_$r4Uq zoaA%6&=zU5^+nQB2CI!^4&w0y4$0bnJ5x!^_HWazeI2OLg$DDS#tV0*cIS znh))epEeI~lrY+*V;GAmK$=8!W))%WaI7*?fEhgS`Zh)pViCML(Y~#hZPt_dWW8w^e*q~7&(U6$cccmc~Ss%fQ9QB{PXiyUQR;;gXxK9 zpJuHG>03YfX?pz9`80I8Bi(%TD9uu;x-d4KS{s?niNdd~DMP3epNPq7f&l1}Ekauk`j?!|CqbNAUbndj7GV^vPfQWV#Dof9=~pN>5Rt zHSpL#TAC#aNttNph3@q4{^l3yQy;jPKKt<(pmB|5BQ44BKxgdJQ#iURM|`)iLmQ5mn%K!L#sKL=m~3 z`)c&XD4o15ur%a}|IhD@26}$V*tjt7=hvX|qO*Y9^REomNcfn&rXenGs$FL$o`6`ke`Lm*9>YF8gfFpVI zrFI(E)v_g*>;$d@(g4<87GN!F5M;?uWmMpNEN8EO+y&wYvC&E{zQQm3KZP%m1P;sf zMvjs#^!a1`JcH}?z{1+(XGtW*o}3ksHt8| z(+@|;HLeB<`|Rb5G>BO(O zrF%pjMn}fD7oktUadQCc8WDmoeCiYF4AF?uhr{V--~D!KX>E`G_|qe!>F&>7p$>R~ zzVa)nvyW;6!pAGa(W*EKYO zKfn`#aEcI8HKzdiVRWcqDiAVVJv|sSJ5gF^gQA6rNy=av=t%(4dk-kL6ywcYmqg~C zsszo6D>zFqHf$MdNn9oQZP<#IxpOdtz2?mw^Gv?rTc6jaJI;)-8Ig*whGs_{9jzEl z2q3^k3ieGR4wm%U<;-~ldf&c0TYp~RcSaywySX$OM59APz-WUh50$?H{^a)>Ax4c1 zzo~4k=?^0S;b3$`diQ!Z`f#nLC(O6|JP{#-e#2xC(>AeiN3?DTrW4x=qpt0EM?j8K}zY z42mBUC$JbxU^LiZ&ZvwDdUNT)o%<2`HoR=@x}izW-10yTB%4{ONHhpMjsOs%ASD;~ z0#gW@pockz4w-A@wuku)pg=&l_(&nZZHZk9ojG5^bd9vI4X$FJ(75!f zbD@AN;w-V}$&-(<9xzC5GQW3!O5p=%lVD**%1Hy)IRumB;cGE?$^`S#5D2gV!6CxE z1sF!#Qz^4G%RXUb&x``_ZHPTzo}+{pIkLXG5ETUFDC(7&v9xsmB_b|VU{IEAi*z(- znw=d@izBa*VxdhffIs^{%#J;XRFluMvo=q9sU`ksu+PsQBwPbFMNPG}yB9G}h27u_an8zmUwPvp?<8sj zXe0+%k?;DSnn=*KMuBogZ(CEnLLNu1R8 zBqv60zWuzT$E8=-b^xDSrfcK7jz%ytoL2#<+>nv1(e8(ZU;6Twzj8t}E-oJ2(1#a5 zi0u*1jb6%bDvR{N-Prt#fB9uz{vA;Q6)>M!CYN47II$eWeHkT9c2PN|S+@kVRY)bO43%==z|@Hf&=zx#K93lXRYCV^LTb9hA% zdkeY9W56?;=J`-GIlP#~(djfnPX57bH`Dk#cToy>aP+5N9Gy&kgJ;q?A`XK?=P-`S z(%U!QNzV;3Jig+5UxMQD-tNELEx-#!7a9EUZ6Gd z=z|BTr>{4{%}eB?8{6CQV#tTmYXCzWV*o))M8$p88s|2YC+0y|DiZ;IQJq4UKy&xz z;?4VOw1u~hf;6n>b81KgvvbH=)TKO6TYFPJvOrEPm=lH`CkN^GZQ>$GMk0}hJ!3!P z&l;~@%WHc-qc3`}(m)LckBn((HG0wW+|r2(-AVz8Ow_nN;Z^>2v$VOC-349GHfbM$ zkUq2JUMdfbYU#{<)}shRn(OMZ=*gI}2t$dm>^i7$TOn`rJZmT?r+rROFQ)zhI<5_L z5$u9*5Pps1s|9R|d#I+4c!da#>6Nyg&Y)lC!Jj!d6o$bnDV)`L(Bc>y^6(MQwZMA? zXm}$CstApr64M$81i@w+8b&u3h(ah}#0|(uuFFV?#{MByMa|7a zen*rLgL50@m_Zn7v^grb%3dc#nCzXwaxow&{YA;{*s&2FH+)(OKNrKBo)H|w8B+I- zvNlcR`jvgoH;|`%PZ|)_UQt=cwJQVNE_S4hs)qSl8&YZXvTyVe*r9V}O$#76(l0fA z*HUfoV>FUkrr*R&>N@v4_>X#&KZB#V=Hc1`26t;ZGQ|aNO~L=AlmedW1>D!x%Nl8N z#dFWiPUDnNfxx=J^I<3;%mU5o?m3}6={&Uk$Vgf zYEI`aoJqfU^NnwZvpa73+w4qzeeMgsBK zuUf`hdX>G=Y(4w@OI;=Zng$K!%!#VxmH+A~<&Z|7d>sY>yzk#9;eFrtdw$OM!w_H( z{W-3O992ImSB#{aW-`qjMu+#tSO`pxl!PphZ=|Wfnjn`=)1Kgz9IzDT8j-LaK%3J` zbQwjC8Oc(2h-uLvF~WLiL=1Yc^nVF}=9x2;I)kCw!oc?a5p73?nF{eam47-lrZ|mO zmSF%l(DvCTVwQQiAECjOeWL6`VDly85d!TL3=vX6Ir`xvtlJz5M;^cgC|;DSUd0i) z5kD9CiZ}xvnHw5@sijtWb_&mx@cALcfBAjS(USNwUVsNeKm4O#!v zhnB7|GKN6$G5Nsk^Dz2C+A8`XMnWxDHv~!^rSKFsK3*O^MKR%6_L;>P-ZQ+)@Epts z`wJA%-Am!m{-6X6;rKJF;o1?*;IT?z7DA2YB>V#Z0euv;iIyZPBEsW2k zg{8T4dayeUgJSlxiwK-S+Hj5$8F=(ym^@5b`VardSJU+mekeWj;tS~mpZ-Ynmma?R zAdSED3J+75KJ@JS0?=X8nJPdvT@9yF#q&=vl9Kvb1WE=$*4i$qWt&CQB6+FMDE$TdE2gTQBr0w#eqU45V}7b1+XcOrEKQqZ6ajI+MMYc&43h) zY&Y~J6UkVf3yP3?iGqh}I3H@a2|=!`P0|#G1}CRsbgm<#WU2d}nVt(KQYq^#YdKrq zCGah(GB|8Y7Y$!)%xnUlI|G-^%?^hI*+F>AgCU|oK1obFnlY>#iQcV2!@(n2JP@@WXo{+8VLA0JVxu8_YoSh ze-T1FQZSG|>=f%sm3f0{%Mvv_3G?5k7pwqiK$pJ;u;r@{vb(>^wQUeXH$na@FD5LF z@;WXCv$Hk>-@u8*bo`{R{n7CRUa@(5kott-4>0;dXoBr2t9=qY0YZszWqkvsz!+$U z$K+d~lWn3%Ys+&OCjbe{ddRoax)+672xt>Z0gZy1Mj;dvaVW0_i&BL$Brm%Qo?~+b z1B854HL0Qs_`|lt<+WuPe*hh!oyrCjBuc|F(%#clU~mrGq%#{xU1d>7Mev_dAU!F> z2z!ex15;o{fpg<=h48NMqI7z==MJfhZH&I$0XPeGcAvfqvkS@;j6tTT?%@4qcgvaC zfkC}Cmlg_F*$*N}?A;b6WVwPG8j68^sKcNFzhW=?gFQ-jnQ(Xrzf~}z_=t7q7)n!H ze}*0(7zjL{XQ-EJ*;$Ug(>OvzBfC{zI8g|>EHbc^-vuZfUaDp7+qMe^`=CM4gpB_D z@BVK3)z4o8f3=@J`SA||8oZId|L{TTrh29d#UbwLfBMruPk;0~pHELRaIFuc>(w8= zo>m`?g`qS&Ih$_$#f|jokAFB7H+&@BWpw$!{HyOJEJFkcdxD(lYp!PQ$_0Eu^4s9U z?!5Id-5ejI|4AD;Z$j-n+w9uI^asEGdz3gkrCgZ9mpXVF10Ltr$VHmSl7-sgKpV#TcZ(x{8n9lR|dmSaSG%bn~aMuWVl z!5+#>!Nnitm`1P;ibg;<6v|GNtO`CVm^f#vBtm9*BmS-MGit5=@n;MAv6H2{3hFbsIlRKLrK>5j-~F&pVbL`*I#%( zedpWXgc-Nfd6e(lZ{JMMf8c$z_gqac{rqLT7DDSZ2q|Nj&??^DxBlucQ|H;9bm8i? zXwlpAh0hZq;gAv1(|EGaefp!UvzT(8d#Qzrf*P!5dxY;IT&A(yZ~pw%GNSd+JO z9sZ;+M8CzE+j4gi53~@aZvO$B`v{1V;4Q1Pj|02Mo*+~(3M&w-MP;YL8>o&+k|=o6 zBMl(ly`My>WDL2UBcLdZmh!(Zyx}aM&?PR z#;TJjdxcr_ss+>>sMz>f#aD$P<$VP(sWipF$V`P)o@l)2G+0Uq8SnsL4^S2jtgnnY z7t;5pXfHyqKFk5i%7G-NChRj`O7k!tgNMt|8-mgi@Z# zrZoE~Y%d_zViRKn;tL~4q2(Gq6GNXHmcXIp7U#J?Q4hNux?gisvvD5*vtle%(6&&P zE;mUFboF%e3=F5@ne=x1*pq4u0`VH|gZ&*8gc?7aUGfk3uhTJv_1B7 z&Wyem@SuXOtFsreKm#8<@AcJL&XzOg%#V>n0+0QpA*MX2WzX_BAQgsKqkJyC94~1H zp2TW{hl$*+EJhfW4?s_(zo6@V)}&l8Wb5#v3Q~s0$g}OEHU0+c({uq~*CeCLk5gmU zH7bm7b|}+ThS`m=jP~90v(p$q)c^+>F11Wbp|TAl2OI(O>BR)>VGtL>V@~!|vu8Be zFc^-IcR3OMP|KK-c|q4VwZqc`48U2UX7F@#FMH~jh6|9!gL z)0?hcdtYj3Yh*q^4Gsnd5@&RjPN!)i!C(8o{vWD>_R{rch6zz&(9qDFn(^SR%9BU$fBt9RPM;ZSPM`VYi|}+~8lRrV zI3}{def)cubH8}uG|>z9!^koJA*)r~f%NBdp|_A1rr>fIrzg&dj$&YvP|h~{@n!YK zNs}>^wpCER4C|}p_3qV<8do9H(4guN6|P31?T*!d{!yhW|MF7^VO&0AYS9V?BaY#r zt4}o!pznw}@Og~_KdT|5(Q-&yYI}?C;8-fl_Bm%uG>fvO%y{TYh3y#jNM)Z<`gSm$ z&lDwtTqg@H>xA*4kcm!JjrPRogk!KQS-NOOWP&ndzjqStC^D?!!cJcCGynDjzT7+o zf`q1(CR=GaTUDU&4KEYxC#(@}ZoXJl>j9pQHROZmJLzZzx|l{APS}e&VkI221da=O zu#lkdJ%m+pJBa$%7)C;fG1J3=6520D=`gJ@Tkr@TU`%ngi7*rZAQmI?I+z0QO#qf* z89hoKobTor=<~<=Sa80aLw&_Fvx$cYUlHrj2LhYFFbYJAW+`bQvlE6&eh=6SzT-5l zdJx#pJ^e!Z>Gyv?1E3PXg9GW-yEntSt3=?s{~LHF7oUED$z5mglvYu+lj&do5C0-P z^}go;+EF@&AgCtnXnE4QEqoENHF%Y4D8`YoQ9`IRotc_RGY>}a{OZyZAATX#QZBUl z?kzkB+9OlmbNWIrUioTzFg1}bUwanDU!~&V)%2hIr@u|PP-h5ZLsu#*Oz->|L6Fg` zhO;$gplpVA(=YFf?K^;wOXkA4qq1*M( zvoGg691dU>6db=(`A8di?zGN5aQN{~nfITr?a7@a| zyk#|M2yqx%`9`knYwx5-1<>j;X{QO&N$iD1VUnQZZ(kgrfxO~Nh>@(FX_V;x*AFX zbZu4xbB9oK&#N)8cDJeSK+qPW%v8Mcu92W}gmekUKn7&`A(4Wu>@3Qk$`pEf9D@bQ zptOz|xmr=u!t}}(I!|J3A~=2SU7|^LH5AG3pdicZ6xOzub`Q&|7#f8~=|H6;0BG&~ zfb}rYDGW*L7}z=U(#`atIHr8D6$gW;VpJnQH|6Z}D(B`%<~@3qaF?fqLIwNmYjN!Cj0KDLK_nS^(q5bOr7|W1OvE($KZ+j|vL-P$OG8fM3Ub4c+R+ zve)d%!t|q5K;y1$QfkMW3xJl%_3CjW=WJoTjR9GKk+Y5SwF~%~EE-Lch@KINsUXdF zz~>53CQ|7!IHU$5Jj>9Y=^@v(MYP0dL{U>;`m_J-e@$QfXJ1aA`~0sFne0g4`0n=r zZBq%`XT4#aU32NuUdRFI9eLvKl%E;CD_`rBgf8LBVOV($ehx#yh4S+Kd@4d7<6Pr? z6H&PYZ7a8wyROasP$m@q z(I3-ifM2>;-_2VhHYb45S%iQMD+*#GScq1Qo4~QMS#GSG!@uGX5WWZ(tr9_Pf|-^< zdRuRwMaY)Gmuq|Q2tq%PVgK5V?7cR ze>B!SW4`1eB0c2S)I{I+`j&?D*3H+6WZ)&ia1-OqA4kdA-LJ8!Azgp*MZl8vSk-u` z5b*_?cw`VlH-7vx#uu;Cg>O0Cc z2f!laOp#?l{N~{G&i8osV!U5_U`GpJOFKEk8WevG_4B)U5U$Tk2kU$n7Up4ky04+& zjtSRuN6JQ9xIQ9>Gcxxq(R=@OgujDuYS<6&?MtDnq6**@inq2JR61YC_tnmXN9#EX zQneBwpMN7Vfs%3{hs}=^)rNsJZ0x(B;b|{|J($L70*wqKREFv}J!pRKV3y&aVyHi}xKoXW_J0M3~0zysSp zd2@x_I?C1QfEvDS9ql3b*1&H#q)4S{Sl_Ci`I+Sq0=7jq1yY2xk#E;9%#4;bo&tT( zbuHbLFRaW^i1@Q!tspfgD@IP7hc2O)MtcW_IbB~4cEFb4sg;uRSGXL}M_>nloNL?Q z?{dn0^_((C3#qAs(n7EV2N>_-MVZfecPrfrg2mVDOi*2bMW% z)ETv`#JJWIw^Y`O4Z)#d6LU&s(1*0a%K3AY#z#gtw|v>F(Ew>F*2tdQ6GNIbmwODz zvWTgym8AO)FpL(de5h}~6f$w~(Hr1ty3?tyv&aw5dUcM5TlewKno{riXW$1)3`gD~ z(gBcL!iM-+PVd$(fPh=Q{-pY3ipoc7cwgtxK*^B+@*FO6xB8`>lPrml` z^!cl2(?9Wq+FtV?6rXSGkuqp^EwY-BX;ff>rsps%yLlPH#D?0}$&uz5}OU|icZus1q0 zMz?h4)sxN8s!?ClN$y!*?;*$j@QZ)=m3U}w8=gJ_?GWO3;fB;~U$_m!=i3sqM7~*0 zXvvpMCR2E0KOZRtzN6yUW=pfMd1mY1y;XHu|@A%MS{P=SK zcOG#V0v${bWMNW;!2yh8>ZAhG1Sz-2;QvhYm-1UGLCPbo0xx z$LFrUAMbCQ>mRT`-Kl425U&=+Pp<+!vkeY-f;>?%Yil1o&3TajotjQ9gHO=H^9t1k zBWVR;@*BVNTSO_&V^DDp0r>Kq@(4<@z6BBj1X;s+_xj7%BUVMyObXK&NR^T)DSVmEC|knktt2>3xMc~!U~$z^7VNyTn@WRVO^$mVD_g z`&}8j1}ofW(WuZ8cdz7~s7OHBD@gY6%-4tvd0(GjYh7b3JQ1G5{i^4g?aa4DTESTa z_K7zSDX(n-#+#X(QR*mV0w-W3#V&ba81TOR<(;q4N_f@hnFsV|--javpYt?!Ng*8~ zcndJ9H5>$nDjYlus~H?zBW)|U6c*B=XXBo(Vj!76*Na6|0ouc8K*-b(`fX?$0CY!s zzd4DK z{SYB))d2*{tXar}F*OxE#VPLff z{^HO7yFW?yR;IzMoJ*IVraw%3Yq~#0#BzEz)e%*ho?1%Je)w|gzkDWr@9(~qUZC`E z2LXQX-5crJ^N&#mm(tA0WEwi(n=-X@AnYAXFaPvLsvv5Ur6Od7eYyVRMH;9*mG0kr zkpAo&|1ovK-+%PmpH8P4#-m~Hc_D#m!@kb>6aX}RfNUK?_7a(cr)q0x)y(?!wKc>w ztfga>ul#2NB9*gztbX!Lm2NQ$Kv|||2%q?UKd=7sRZRX=XIDOtC^FxR>v0XQ?>#l1 zB>?#-{#HowG8*7#bPl8y|3sN%yoYS&THZ%*pC3d1D5tp*w4j1ub`};xi zwxrqFsdV!d(9-;Fg&Fn(1E)cI(olo2j$U9(M`tKJTd+2F4@I4BjvP_n`3vOHYSJT6 z{qMf^dg{A&AvN^Txo~zijZmT^VDJb7<5U+VT}`d&#;Y%%a3mOfbX{fVgeE z6Zu+*JUms;#B)Wsz#VBC(9b4$WUB;Vn-B!=zVi;x!>DHzUKVePE#(|FvJjZ8vlK;A zjl!|^+#U;B`lbV2B)Zj#~f+Ybn*V z##>`Eln$S_0z*%11?JyeCk?^RB5Lx`>d z&tn6yoYyHuNQ?Tnd!kqY!@_}I;GTv@6$&bNOY0Q+(K(TSuM?IRIA{3OY6F?zfN;7^ zfLbwTor@3=5S~oNRyj-a3VnIP6oyLQ&uH*ib)Z+SF`)3!2v7lNXc<|sj=7YsgDrGZ zY$1(Q2dzXZg3m_Y5|2gid>iAyDUMvOtlWG%9S=c- zS5&T3I5e?0JxyK-t%l$}tLMt5$)WmPR9zSRV$4bdB7x99cmX^bVOt{|Iu}_C|^H ziKztWM6ha16NQ#kzT$lNp{vI zgbZjGVA629p0hZ#u>uGkj z(Y><*Yu;CBpC~}1!eR#ed?;|}DzC%x#z7bt>NIGJqluTFlh;EB^0T)# zr5O?Hcn^y<(P*V9>g3}^tZ&M`dAG(5d~B2|tub?x3qc@~ZQ+=O@*s|k#f(4~@;qg`PI zM*D2}yoP84|>c%l>kg}ub5emhne3wtrJ?(W{8mhL=vo(@bC{0ClN4& zGzk|<97QFDp=XI!yvx_bb;>_-eNfl z9g(DS3v+38m(U~8lldDDQZbfXF}bpOnjTrcck_ooq6KJo`oQNtN#3-bXEZ9pnX_k} zn^tlhF#ibf5zmYyCyYwS@2$5OfxAF>5P;%a@6c0zF~a@zSmUl!1iFIMy{ratY$=~< z0{dD=B>|x*XC}B0D%T3U$myxs0KHX!l&>XZZ;C}!y!2tNPLEju9J31`PILN(*)%X^ zdb_2qJ*X#DQVs)IRbw+5vjchv z8W}!=HxqHJ*Y7BIsfU zh0Sj&NXb-UfNAy1JND%$13w_Zu#>KWoA9S#F4H6vqYSvg2-)PUjgZuzBKp8tjEzl% zk~}e5^qLPbqKqiSGhoE{p8d)->;)#u$5tPdmZD?;0&3iqlPW4>_P_>0OQf@9QAY6u zQ#lfRZx^}&6H`NLS@dZD2{VOzslN}yfo(RN9T6VBCm`7lr%*57wX(ngMtlh2x=;TQ z_c+H)f!(pUNd+-+k`9K2G%a#ubdIRR(LQC98#A#^y&<-q@UdP$=@f)$go~vK3>rap zb|cIJs*_KmbQM|=gl7l62>D8r?4jM}R2(N~D_2>XnWq&UCazDu{)kZdQLcj~N!_4~ zC^4jUFBw}(hXrsEPbp=#2#UU}z5{GSW7@;>&-svC$!An4dEY!1A&;4{4~KlH4ELojr!MaMhqSI~Xi5@f%f$ZrxMSqs+^x|_*Q9gMl-5nW8lXs|)`s=?> zXNEe`KmPnD(+kg04RsojD4&xr-S1+Is1-&VZxX@SBN}<(d>{OIKx=OH6eH?H@wz7` ze0JiDhEj(|I6??ezILzq2Y-SlcstMUQXcOqFW7KtNSLhG_I$#__d5QYGl}o>@4RA% zcHnE@Q-7I;b+1iFghAo~^1G-Q;5*7wpCP(JqF4NyfZf1JVc3+AzSyR$aB_|c2ngge6+DiY47iCj03GW2uHl)Mv`_cLl5~Z!$roX81SHJkOJ-GY$KiUQ{E1U!vlJLI zRV4&$3ZxzZe)ra0tl%Yj**8S>Kx0E2VOw&zgyFUcIk&ZRL}+_;iBK+hK#0UqRUiNdBmTCR2pJ4GkJ9Te~C+!E8r7Q^$fr@A1TO_aXCzP#Y0q>8!o z#g=*^#f|c~pYBBkR=guw&4n8x74&AuLSN>zo!n?cpB+4RHY$kHkn9c(Px3i5iO}oj zd(>+{3f{ByZ3D&+(4mF^hNodyJw;#EYo9sS%lq`YZ)=A!N&=H2XwT5SOxyrKQ?FiN zl`qTQq*0mAv(z*9nYIv`GA^eI9f}x+2Js+`S~NBi=H>UTRCly813{#I2ved7$9U=1 z_G_@Xr?m)AjbsIZ$}0>io&$3szi#$UhL>k7a}2@GZzUzuBM=mV*mkmdutvRXb_6|2 zr_ip^5RH^_ymlKZ)i4i3qsz1C;Q4&EH7X43vu=~BRVq8IvnP`SikvahP4#$X3t@x{ z_VhV?Mg^Hd&F?D+eO@aFGz?ToIXn?l3^w&@YGeKaxohzf$M9Xju?>z$84*D_C8{wZrMpSYi(?0x&A|@hJo@KU59l{=v9(%2ErlXV?`K+QF!r0x4g-vR zG)*S2nPzl2n5mB=l&&Bvg}&7(C%NOi5arBy&pfQgsn6$GA-w_iF~b45lFc*{x$gq| zfMZg{K2Z@-N9v=N2v7#&$4+miGc;0FObTX5C-z@s(PxzAnJ3SFz(W{m%2DY@UF{T=ta2hlU@bbm^n936KV028v+ZJQN zb*;crSFr_M7%5z$8d3!nUCL9`h!m{RN%Q{O_tP(FK2!(oJ#}`_lTX(l zJDpBr)SF|k2c&p}Q*)v;jXY_rn~*tz4rx0{?-t518=E-4d^A7|(re%O77?XNW|=gB)vAXUNln2Qrm=N~dfDHb;9by5ppdx&hsR?O8w#4ReI_%40=IdM zkqYvU#njjmxY|D&Vd149joC~4EAvCta;Vxx_0Xtxpu1n1A zMi{Knc;(hxZ-AB9N$-FEhtty^{CH{`=!y_=8DFv)P$+wL=!l93I~(SO7dcVRNcM>C zQkN*aw07%i|8p@!5*1qMtNO3AcA z46{M0*oM`9_p7uKUBv*5@=p|`IruRAPyl+g8c;l8Fo&T`OWO2k4SySTQ6O83uScYp zV>nRjSOY`=kseTcmko#PJ5hkqMO6XV>~7O7!oYCNp)`s};n;mqFs=$y%ugV)5#-&S z8g>|U2p-EBLqTzG4UZB8Sq|gakP`n7PZ3dKU)Cn*#91(sTKh-~of?G4NjWhgaerw7 zw;5wz;mjALk8;A}(w!xpkSb9L3=#l@_Jv2-AUr)UR^T46?^b!_I5(@36x30E$?p~3 z%8)fYQYQl{xJ~;w3`UPz<>6UFX>?rVyh&SHyKk#sqbj>Q>@{V|`}|!{$@~WZm;0>E zzVsQsE6u0~EZcN{!VhLo9Lg0+1P(Eh=1Wjm>>qq%>S7Cinx2_v{O}y|hLi#6B?ojh zH8%x_wj3j|65f2+hzQJ$xfw8al@W*WL81SKq>T0N^(d76|^_r-#Ve{0dP48k0>f zrdQv*mwxn<@1`aU%DL&4^!6*SrvLVz{b%X9=jd0^gJVSK-}2K%K-Kl6D|nRPJ%8AP zMmBJgjB1qfnbQOP82SzTO6Lrv#%J6cD|D2p(f~^hx#nNedSF7>;Q){Gp6lnM{DGG_ zdyNI&jq{fV{KFw(kRjJ0B6)6FDk)%$_F3J zC@7bJp7HrmBxWy1ao<*uy)Dj>~euVQaR?fyxu1a}v#Gg&hZee1CxfL{vI|Zno z3pTYe7pC@9Y+L~I*#{ji*AlV`!$x_hLl={K*?=Zwx~0isdBQs6l^frUl*#EbC2 z(WrsV_M&<-5~+;lhWlXt$qT)_Q6OX67$%r9ED=%Z8!^D8@9JaZy6Ul#VJ6CD@`!5> z&kf`HEV>jhpMABrvsgK4fWsFFO&%mi+uh^aEYzkXoNlnc_pDU zge4D0&2TddlEk*ziOF4%`V3 zZ5NkDMm1E2pyWRf-Mx~Sj2w9IT8f5A1s7ThRM$|M9((dCWrh7|d~}Q+0mEr{{C?!T z?eU+(7^p>ob@ui1eC!3D68 zwD5g0&q(EejKG$V1Wy*jC@Ogk;4rq>V?&UI7*y8zAEN9tcr?9K9XL>Djd|juk4Dmi z`*+wI8%gmw2u>x`+R?;!X%!5kn)7q590FdBQ33=YIa6^T8T0G(zTZJGt}{wgZ}JGG zX~#vouWiwm^oa16Oy}|KKr1TJGCW-YoAwLX2Ds+D0{g!k?$Vf1@f!}0fim33+F6?* z`51OWG!%J+P`0C)eb%QYr+IePhp|(Gm%0nbEfGewDnhWQG^~;r{94Ffog)0M;js?j z&~-WjR6%1&VF@Va5)|SNhVaA)$X%ix)ilQuRHo81k`f_wp2=znQRSv8A{@z0G)}e1 zHLTq?Eqn!#5w{RNopg>OUVV2P*w^3(6FacOb4ThXQ#Fh@XHCwkJnG?hXyI7#Y9R-gB74SN>FIK@IemR zQHB6y2s*S8jCKE|q~a9Xhu{PPxW%*Y(UiwEK$J9m!o#G;eg&m-=J)L`S48Bn2wvEj zqq3lQmbTvAfwV`3!>{0j)@JdXmx%mX9!j4H?xnF-435UMk2)wq(K({s`Li@6z=#r$=-l{NzWkGgE+PCslmrLO=3?E|ZfpfeBd{<2Z^j6yfCq_;PG8 zkwbJ%xkfGLx5ru|(gaOpIS-wNofVuoWOOa^N34`fkq*TEbPz@P+#mctl_i^LWOyRo zdhJ(4%1@_izE_G|K7xLn0Z|UU`yA4fbfjJm83(^d8r7TgsOlj3Gam^<7Ac|s;lq3= zY9K?Ka4|ltC1ZF+MQFI=h*C1W8I_>|R!{llmCwzx=Uhk6z@|g92;USZpEv*NaIj#T$aE;BVLlKYz$zJ7`XE5{4!!q|fM_!aiE+~8~)l^(W z!SOtJ_{BU!K8)icSsaJY)r!s{oB@vwyoH(n=UADiHuyKo`(^`8!Oy*&Y@CdO&bvp}!& zsWcB!DsW_Ey?wsdYX2g0Mv>JTb2_h()ZY>Olum$Ll3Hm>-hZkRJWvNnSKe= zGv)Dn_#uo0OGB#wfo-gl_Q0d}{Fj%P_&44L#@0#H$h}d?_|l-)>Fxr$-r0cj>e zr_Bh)#vnTuMuP9#XMO1WxikYNVwu!{ z9(WOG_vrZz!&VcOFwANrAkV>TXy_;eEYUmZiQxTDj7bHN=OT~jMeC{Am&2WL?WPKL zs2S&x@Rl$jp%Fv*Uc<&;mQ6<3kT851Nc`nx44O6a-ke7XG^`gWUZa%|qC%3(a&JTP zcz|3-bg~g0qau3Ao>}x&z)0Jrl(B~BfK$(m_N-9aCMZ?KXe8@+pK1*ZlhXQC1U9@x z?z%|g;6BcHP>y(J{-+30W*oqyHorN>xH!f`6p3#cUoq?7VkEga{-|Vt7p)zsM9J^W zjnJ)+vb?U|RMObVn(*YQx5|>+-`ijY0)_@uPAbJ5DTW!(j<)5V;x7Pal7F?2fkv}k zNssX|wT?1+l$=iqO2$Y)_JD4Z@bj^s$LP=F4gg+N^8C=1Y@LN>a_}A^iorX~T){SK zX+M{$I?ftYbR}CQkUF)FF@LV`h|~SR9B|H(_Lw9MIc@-J^ol<8tCmxS1*;M(|zsfavv2O z2-Kdo+SJ#=Xm=GK{BF~(97b;^I-!SoC+qO-F3(m1Z|^PB)pg)pYD9h-jj;`{Y1PQ- z^H6zxmG4i&szQznoaW)6NB9@nWp9CfqGDO@QPxn`AbrY-S!${f=GN}v0 z5vP)llB;x{6+cx6h&Bgk-t_Y}&TQi63R(r*0oeX0WY91W;8o;G8IIEyM${9Oo=MplTXICE4q8z4EQSNlK)^JR@z8SQ|0x{CARw=yM-KrW!FVp(&}1@6ZW}SV)F1u@YDgzeg}=!SN1CoyfrcJVF+4rl6BI02|VU zOD5KHaLs$g8&lCWD$GmR~IXfrz4GauocOU@q+MEfmQbK;l z%WzgD;aCyg#el`iQMg4!I3gs8lGD4@aPiu%)3C1jH9dl?mM81ds4%_bn$!ScF!1>k zqCJ2Z?$Kwwm1mK7=VqqT@U4fbgW)7aL~Z8C1*&8Pomt0QOvv4mw{n#4A&SNWi%>bt zBalqxpkh8ERb#$Nt5y%V5CRnqtHGex>&p_sU=-G1S*8r+dYt-avy>f6QDGSOGfIGr zLh-YqQN6LAzFvP5YdRTG9E{94`o6s@`ucmIgFQwtKTKPA)LA^OY9cX_1Liq2Py`!U z-yCJ5+|Aa&GNO?!Y20aud#hj_cqY>d=2gwr_V@Q;7=YnmKUDY?G>)lb&=QwJQ1J*n zgS)N~V>H11k;eTwC=B7}*-1~*kA{}l4`43*!s)T^fRW-V7@p9FU@9>e(p=CQ=WaAk z{7yA|w1r}tUs%F>Ut|xhlHvYFyii=$&-++&2pzVXHA)Yx*Bm!%)xft(KyaE>4hnJ4 z(|y^+DfO0}7Is!^PBoi_Kb?s&sz_~UJD}s12Bjju)qC2QINT*>9o6aGxc`SQW1p_N76gs%u4?Vt#(I?R>zrLHq=>?uuxXJnFwid`9ZaZ1EqEX^@@p|cPEs=>k90tZ0ZUSm7-fx*h2 z$>&CbOh?KqubPoy?VG;=6toe_J8NNhf{G*-Y!=!3mQu1%eO8A=AFo}tVd z_l1-a#vSsqm}YK!I!DlahI&je z=!Yw3&IEmJFH*^XvikLpe~bt)fLV-@N@VVnSNc*h^kQY$F^1dzth^`F9nS8+MxY9E_f-FuhhZrsHp4%3|IK$HCIxh3RoB#Q>iZRjF@mi~EGWgD+2% zzp~B!4zMzE!t;{XmAh8qltBMk(lD#Y*?Ri5sK1OH>>*nwhHs{J9GF8#y<;SoAio@C zE$Foj9@!yXP(;6(z%B55|31QLn!Z1pzWsmxhjcXgRvP-~hf+&@GkapXI;2djna0iTk`Grr?51bwYy;#jKyk3bnR)K1rd3mM9Ar^dw zuwn_y&F}@}Pbi!N#xiq~p(ySnHVC=O`zmLXyM!$ZP)OAGx;WQRhUe=n_O&9Enp65E3n4m~qIHp)Z9KcR$!?;X>3Sp*ucZReK=6Cgn4xRaDtd;7_61s5?h|2rg%HM$68SoBCB}MvzDL@c@=O?M>OkwPmWK5 zK&BoVCWxNe+*1OQ1a0+u<^px>2-ioXXEF$JD+l)RV(dy-55hhA5Ku*6GzGQ^ z@mH{?8dl^^AUiuL!oTzm$P@rpm-|o*-LFiM8aQOEaSLgdrqg`4no`)Av^G16A%K8|o=T{d&)|8l@3D^JCL(_| zsRr=b7Dke1U54;ip)GC~rj}|VMg=QGI%e^%0o-xlA`E{rJt#r){H#|4q=K0MhJdlZ zIb))BbVY}_pU~w=EJwxx3uC6l*(sH|Xev6O!zaMyB8<0V&aSZ(gBqn^uaFg#WJ3dZ zECAHq|Yc+pQY6!z-dU7t6cM>I~eX{8#u@GsBEv=iv$7vLsJFI<)OG zh5*S~BC&Mtjp+{Ndeniahnc_zL)Gab_~rvsV?AF|IM0b7gXh z22C`c!+EM~>&6fuM8TT5GtYp6gI=ZE6U8O}NM}%V@Shkb4bT-*W?3pkO3(?Fbz(N^ zIY(qQ&&yZ1w+6e;7=|3tAyd9FZIx@8N|~CSgzj;AQJkk}(o~MIXyn%Nbt7m#L*NGZ ztURimRz_smd&C$K3=9TR&pI;8lat`UFly@sz8hhp%{==s*m;`GCqhTBhzvZji;=sx zN9c(Z4+Wz*x>WO!nyEr@bGN*6!Npsa=;_+xRN>(G&DcK76fXN(9Q_jOP5 zdI`RVuXWUIg68ktMV)!EI#~>flb8HoBr+6j6avR#J%y~ya81_{@CY|C46PMxZEqcfSB}M8f^ZZOo*}eiI2nnOhea<}9#Y9p#6`zj3t02I9S7n3#`Ln7i2qa(O`hu=%WAqH_Lp zSem@21#7@{H2L#6LCp$3BhB_946#B3MmlXT4y-w~XbVI9V-hAv!5J!j4$95`>z zb(YeU>09q2@Oe(2-x5MYR4a1`EB3wxoWlV#1Xl4V?6Xj`C&HQVJLj#(ssgp-(CC9q zrIHex;F`^&d5&7|=0(K-RHLwJ0HL~-Q}Z+7eX^D8f4=!pIo7LabJt}DN;Zt=M>wLK z9HLZ((1BzzsxTF~e?DCmj~=vBj3L?G-$lOqAbRvWY)1x;iIFHD@fM~UV)U;DCQ>b? zfXO69gxWaA3OX^CQ$?`?D&J}v6}R`%2+cxcu}?$@T%&`s>Q3Qhab9bSi*)4Mk4}+R z8mOeJsPEsjotWpvwJK2VmjB5+0s#d=s)RQ9d~`R6wi0kJ26#P#SABgih{$ zkrCD4GVDTmh)^0IpQc+S-j934UK%ag!F5$QG@WYYGc-fuESj6!Ly%~^m7-iUWK9jo z_|aE_HE2ZpdxeGro}yJQ#z{#v&kWV$k|SL6xp~jjNC@#b2JhgZQ_fpPgB|msQ5ViV z_4KU_a*ajg>of3VDGF(a{VzQLE5dw{t&K&jH~J?iMNz)TDDw3=`jV_YfaWN1!y7B6 zN@HzhF0GB-N3lS@j5OXMjG7_e>JX>n3R)dE;9x*|VUV%@9HoY9n~S8pNViqX9O{mFaf>o(SEs-;Yl@g_!ED$=a3{CBAJe> zttNWLJdE}pCQD)@&W*kUK4X=hBmDq-H*ie2H-h>Y*>K3dnu^(4p24_aG<91C1D?c= zz%tSzvY-UMTwIu8q%Y@A)N7p(dsAC)+NQ6Ew7a{v0#5--rC&)U`(1@hwr4>hvP!RY zXJmqBOP z1j~t-;f-_tD;TAR+u%%~-`SaI*ci2p;~Z}Oe?+}$ zjHT&y-}l_Ad+XM%ec!9Ps(N2$>6zhh z-{*av^PKZP=lsuka4e9SOf%Yq3k0hBI0c{pI4`6+x7JzHrqnSoz&evo&>7IF;lABO zFLy}oHZ{_7f_ZPpb{%ferFCoqSuo83aG(@3gUoF%J|eZcN+e^5{f~}eOnJ({tMI2z zk%!iyNrad5H|xH9{~p}05nvOKLf3j`L<4DV(?Yv+S*-0~dzr^$Y!AZ1{IW-Q7tbUy z?Vv;4O{%wr4wFmEOKI-byIc>a?F9ac3JF_g1i)`?+N5nnO0X&DXMWg3#7BOc(FD(6 zIF45J7(sp~(93F6^zt8bpr2VCpbo*^;gnK|>pZaXdfQT%c@IOgnK1(5s@H&GG4d}yp8UL6o_bZ--VKJ1a z@i6RZh+U&-N+S3N7>B@VP9B>3Bu!(CZOWn<$M81M>8&=)Gi+`n!bH)d%vGj^Y(EP9 zW4Hr%=*7(e8HCXU5wfVB0d!#{h}1*c&W(sqVBmE;pJ&)5 zP4MKJI;SdmiEj4icj6pt8=+Z7khaL_qwi3toP5XU_R4GsK5I8Z&vf5d{SmSQE*<85ewQaMCz4K1y%u47A_@D19J`qpz5D~pHaqAl=KHx8Jt$i56TJb5I7FEfUHHIRjtwUrpi!vcS!o4<7J_k9p{pfp*H~UlRSezk zUJnt5QN~QDc7;eKOoC|)8$Zih(uHsC9w`$@)EM>6O4t65V1emjZ zatAr;gJsraV-+FZCVE`=&)veHpk%-Vf`sHYUMKrl?*J@1Ao(5={X0VDb-*|H)6>_Box-{1%H7q2 z^u~{WiVQpqpkE-;ddR)mt)YM71V?tEd?%x=a)`7`>Rg|jLBF`yOURV=#mSO05UG9i z27m)Ig%Z~2)jJQ?FII{BGrc`MarSiFFv^ChS`AE9<;1{$1ai3l0*%Vg9@O) zcp@ZDO2Drmc_AMfe0vfsF5)eG0>sQ!d!H`D_$X0^Ny#Og2;SqA=+X#CdVr=Vb~anO zb2rUCd`$BhN=Iov<;jy8H1qEfmgd?j<5Q83j0}diut&Y_{QP170wXudsfNznuz7jc zCJZlY;`e)$9GW__EYZ|}b7}tty$ivv>u#B&`Q<~%o}P=K_j`)R&a~CZjVJ`e@}|`U z93_-YROKMYmQ2Z?5Crg`c$PWqGU3wzHQdC_+)Mjk0aqR{*+_k{y%VzJVhxOzP)yN9 z5F=l2)RIZVgnBKnv?HBzrQDjfP*w$wlF@um8zq@OaSoI@Wz2mWz!KSVUX(2tQ`yQA z@;)fhn2YwbCkO0fWY9y)?Avi-7?^cZVg(@{4P88#jd%Ab?32t6Kc^!ii<)bo{0(Ee zy-EldgQGm|uFr7r5Z*sPbMovMq(1WE5LlJb8Yzw<4Qwb|NJn@=w%YaJojpp~nz;8q zRRtrLo=Le8B3)G8tZm#!-Bt1O_KE%s!lyv_?=Di(dj?g3*N6wzMMcII)g!GO_*L0{ zh*3j60cit$&oEc)d8359kBz_#3paC0qWRl?Iw6jab8r-(XcYrf;qNS7n!K1{$A;Wk zRe@$8T8YkL&Fw0B!YPIW&3%LIa6z(IA%W0N6t_CqT)HRYy22Z3B}; zwvhjf{0Ec!zQ30guN#Ymdl-9&K0CrO1k5OymVI}d|8rD2f0A4+g4x{2N#VEpu&mG5eaHrTX5 zCYFwlBND}04~~w2#aMA!+XP_rh#*wMiKT3yLbm1}j+!VTY$+gm{k=JoTI?0m6 zD!O#w{B(ft4osMpUq{I0DV0T=`?a(R;BbFdQjA}A3Fb);Zp9|vV~ z?nW9V>QvxpZ&T~;R~w6&%Bgdzv;pW5bi4asgWn8Mwv6tw1hk=h06lHFw_rdAji?Sc zF+%~2f<~D;cq2oxr%afmvXPJ^p)HV3OJ7&I zc8$Y_2&J}hU7pRR!hb?6(;%{POs=R!50_9n2-9ckf%>;!Pdr_P$w>)shVScMJDvyY zk>N0AjOY<4FPFKT8mm(w%p9o=p^(A)XbmBNAa^>zyTJ};A*poy zU}j~8gu??2x21+g zZ#u}2DMI%2@21P(6XO#(VcyYs(<>KrNRm`}7$NDVw%y2+22x>mZn_Dfw_wy=(k()- z&3Ms+!;shrgKET@0VXvJmvhlZ7|$=~(1#dG^z4G_Q46~MF!jT%-=l8d+I_uVJ0MD) zQ;sBeMRW(_V+BN+&8~cV9zjoUcjRzw0;Bxzx{;V>iEqkr2?clS<{i8sxe-(!;Nf`e zsJYe}>}Ml8aX1L?RW`MNEcBy;7_)E0G2IFC>?3os zI3j$WG!2Y%%k~cNo=z}axl>s1+@na2y+i~>GL?~x9YAyorxqUJnQd{b_CAKAqn{iy z_XV<{?CI;@HHAT~rv8i1N2kv{KC?%8Utt2iheGw(hnGapc@E!}- zoGwuYcgj3&(>*Ukc%YHz+v@e09PJUZm>)*wYc%npd61n=dogTzjvcQ7^w*a@q-^jk z|E2@yF^56*n?4}IMAWf=;5=)_-iEDhg@jQM^Rg;~HpX{qyK{_t6`896#M%fC=f|GK zh(H8pzDF+s{!q@RjIn?>iExE3Y=)Re3_^Cs1jvO>& z&c+y|ta*JHfw4Rv^)IX~e&?K&&zxq2?7iU0sW07*naR1HJd z#0G9AS`d0k5bPdR#<q&>B)guIR{B90MN?kb2yFzM19oTlF>a4)0CtAF_>sTCD#C?)o&m?c%sJ2J9_%)H@(8lEH#m~KtKa+eWIr>}=p%SH>R9Zadi1Ys44=(D z@#y0!{?E%#5zYV!pBNDpr$Kn`8cL$B90_@#_@kXDFQ(^Y_`Du^G{g-<8b!TJIh}{c zWJW>$^iXHI;~ow|MOA>A9bOkNQ1@i(%ybp95du9NJy#8gW76BQjLE#Qxgv=XNC@|& zyBuK?y)Fe)CbSU><_aSLQfD(~S=5XZ&pS%asV|706PF-NhzTJbNI!Nzw1R6fkfS67&+qh3qgsLaIsm;ZAk8Qm$D3u0as=$ur-3l{ z?t2#rM+zKxY3{-M@gPyFE22@2=nV@dkxU#T08yyWtjvMoV}}4>;C_Zltz#Fwlzn&Z zt1&m^Ey+wSgY0b(Qh1CXB-YkS$sOk0UhAgvxgDVu`E3h`r!#>dEUJd<5!>*sfcGQfG{Ml>9RJ~_NP%U$Ggg@$gnUi?Ar0E z$tXj*f8%Ca%Ppo+@}(10K0J6IMl{bAt+%3x>s{kag`iB>$j*WM3?M0Fz&_-k`EDg$ zz#QxV296<_#SzBN55IHlB50#CZX(OntV&TCd7(9hyaR2yP041rAn0Wc5#z1s%EKeiU#+d51w9g*N|dQM2b`; z^JE_h!Ie>$okh+H*(=eU>H=V9gep4}C7RXUWLA~oLcjclX!+)MLG}Co zLVLYJu1Bw^Yik%9JG;6|jUKY|kt2-`oCfria#BN&Iffh&1E1NzQPX*a)W!$ABS*KC&82PMG}+ngB`aA~1M3$Z#QQJ->OPIA4wuAgfxCP&@8KFc&m`nRU#V-1z`4g7 znH-yg?cgZLWy|2)HCpw8?CJ@t=Ud>X#VMA6fE;V$Gu-=G^dXugbcHD|OGkB-jbKD| z4Ej+fzC1Tih~#d}p*n{s8gm@!TI^3v?gHSxkJ9iAy4_T+X#%@v@&LvGNYQCT2YZZq zaea#j86||IB#zj7HtG|22>d#_`p_4QLq`rTc5fF4f{4-yy1~7Hmw=7J8E3Bwz@w2C zvg4dcdRH&=$cP9!@4ztRkr)>H+jrCPcLNB>T#XP$JpnI@e_%v3Am)Qqt{Ql~0F|P- zR3{*my#|Sw+?LU4PDUfEF~YnD5@$tV67z2a7jgxwh~aSJxPfR( zV=LNg;K35Fn6OYRQR0LG(IdBYY*ZfbEIAIQP6R0`Zb5(wJworizxVSUZCc}8_!{yg ze1~JaA<=bsaTrV2%g;MD0g_+NtL1Qlt9nX84-eGM26TEgcuXjYA9VkTN9^}v|$8IQ*01^Efa&2Af`f67ECY5vM-r4MFEH|-AHG=60Db13^x`3Krgb#pl3oP~ihek&5=Iz8qnGk<_>YbZCr!wVQm9V)= zPpxc3fw{iQVGtfc(;f=sX04Fl-el9+WpEF|P#!sS{!4@k{oCFUmZ9z1L6I?Q2=@W2 zrXVz$hTILqR{(xx@_JSebkT>v#z{d$;`+JSh4kSE9Q=d_K7MAD^=?Qr3v(zO+9wZk z$O_7P6GEnnMK9fP7!tP?v!E(RUb_dwwoe+sh9m;HrP<|Z(cA!G$sDcq!Zwjn#!QU~ zeg%l8e!QpA6^*@o13{2jc~Z1FEqDf z^z4d8NPUPfHv8y^0{Ipy3Ob1fd0>%^a|FRvyh-~Bm?i>7u|M*V_&A;!Lf7CJA$@+b zyEv0p?tPHXUF=Fj=gvZaBX5f`IwDH4OOvWCa>X^gqfXZQ7?3Q|XuuG}7*KF6j8&jn zIsmLNt2y?NDW$4h4bnm#9En_L=S+C!&@OKU?~StNL&yk#g=+;9?!i;{K6`h6A7IWt zX8XjulmPL2M8wR23s(C8qn^1?LDnkpYnma2Y5d%C0%>^$viBt~E6XZx76v&Y9M9S` z02nG>fMG#>@&(vp4b-Vle5CIftC1ON%eUYjZjE#k@1Pg2Y{_Xsx|A|!*0x0ej9c#H~l%1kaB$uu%F2`}(g5*ogVVlw4mJ!B0u|AH~ zO0RnA0Q)1LVJ@{HPrj(Ca7OBe#hF$?`xD+eR^Z9^8X`Zd@R$dW>sSmCTouFTglb4+ z+Uu=Iu<{&$b1#1bf<s6B`{ zyC5Oi?NmCli3x?FBnloL1G%N;%rId@z9;_$$O?lit2~(GOjLBT!@w(2f&c~clnsTC zfsRp`B2Y|Vh4JnKFhoqppg6m9IhkFAV%zcNL`{4QbVpBi1aAfQa|i5rTP&YY(`t|P z2-))f(FPX;8k@mQ#C#p$UE8-k&mU`SZE6w~0?dH|?gkQQxfaf!^P-`29gLzl|2Z~i z2~Wojr9pQgW3ibx0h+r^RBi(&!`K=Ch1jLkXuDR{I)|)@q2fb&1Vob@1kh$SzJt*d4T1o%uZKBft!j9OZgeh)Q`RKo zY2<7rs|%x{^8A5DJc!^-Fm59(eKg!rNexYm1^CD#@NOs%U|C*S$NL_S)A-ch0*E6v zozVa$M`?B%V`C`sh6GRhAmG5(-n1DK^P~~A;g5#gxpTAFmC|{wpb&kQO58(ks)Xh} zIZ!Xl$_dB44h!C4m?gUuzv=H#o5P;`Bg=6C`gBeJ2~vOWbA zke-g7rR!=h1B9!-H(4Y1tv_>)HAGd?1uA}J)^3h10AN8_765Q)_ejQSCpI|;tr*6f zIeg^d7>d88a~|QHhpd;S6ih`aaH^Nx3idDpv~@TlbUk+N0-x(9g0jGQ10SXHX9v;{ zO>PJ+pdb3vF2G~yFm#%>g}OU9-+#xCpvmKVGYHOs^;UC0AfhkR;QM~u^-CF z)FFE|%e{IpT?z(1{|ut3<*Y441k1dqrOtUg?LCN*l6CWx8{*bLwgYe=t3vxS`;^y9 zHHd9A<4YaPV~w?H?-@=T%zY-J2c)Rbc?W=z5(-us5|lPEx90B47`J8&V+LUC{&fE- zkl|G#KUUl*rG5#}T?hZzF);_IY5>@Hq^*b22*P7e1F+oUk={bq^>)+~HQJO56q?~A z>;tCc^B9d23}m>#{cp~{Sy>?c=eVOE1%^w5rm0h>*t^9xxSRB*7)7rM5|yPI(U=1W znAt8pTnrOBr;5C&OG=PGYswaSvYB;pPUWO%BM`LE3q~&LbHJuiU-8-!s5SB`jVyYz z0=Qn8pHJhYE^_TWllj*hk2EJT<+Ic;jd<>1_8;6dogMlZ&4Iy#id|AsH!sxRxL{lmW6=eu3UVY@hxs6K3Jg{XC8UPpD z@S`CY7f!T%074%co}eq&8N#I0u!3X_|Nd2z7w!{nKT#wiSe2>w7bUI1HWyV(x@tmc zbxD9B*W1DOEeM_sagGr}H^b&C9x4QuU6$Cem;!DTfGx;pA!J|x+6a@jf!I{|B5*y) zMnYT?ZMK)@31PBHPy`vnEsV<&NSDC=?~Xya%}|!nh)23GJD28X9!B^lfBqs~ie4IX zf>3a4zRbB(R>Ct{Fsv?s-e*idO8xdnAE8`N)7aVbyaxuGP3tD|%MGjo2xGy!Ij?#e zj$5=>KP8Wmq6~eGMmnMlgk@C-88)=W)$pHWKc*qp@5yGANaA=joD$_sN0?8yd5xRQ zHH>!07_1tM(-Ps<6TCp5{bWpAbi8wRk@L95vA48v;vrxyPdjKgN;BZV@$9Z`5;ftN zW9D$5aJXreEE~dl?-D@6=b7L4{q!yn1R{kEX?UCzh0y_{Ef^;OnV~|2BAtQ9u(7co zb7S6117v=dD+Tn(l;M692lAvxlH4(I_KYS3@}^sUqb@vm=ugitwU zY49j4BdkI?bKO+Z^+UTr{oLG>J(aahKyW8adyfO2e>lemCkg}ap-2gq2Pt*YGs2p1 zOf>6=|HPj%5d*mgp86MFnF@$WaGwfjC7vn+f_MQ?7(PIgXE-P$k*=eh(Y_0DI2G%( z#yA8Q%4b~;;d^k9N_qb=Q5OtrrVj=+pc_TkfR{{ZLCoPPIovW)n3ylnyNy(89BQNy zI;_m5mD_J%SP#NyqPtuGPAF!nq8Nef}H zjCxk6^Rszal$%PP<3HQsMnxL(Xx|KVP>`bG69}x1*o)irXs|I`*6JEQhjvl9FoOah z_cptmc{GY?YVU~wGk&nOya=(8lMLaa2nhLDI6Mq6QY8)Sg$=qp%DEapbD6p0z5+aS zjk-g*aIb_8VvqQrva9}%W@6&xwV? zTp#uY&YwrM_m9#@iD&O}jQj~}m*K3O9h8m7SZ|Rwv@@oASpXt%l{9Vy$mi{mzL9u) z?#feXYU&c@#Wan3|9##AIVTcyY z9K_r44`0}cmtAf%mB^7WIf~*bO2RIACzR$Gig4n5fH$+%Wgt`^$URiT5xxZJE-pMy zx9;6a{hWb*`SO+2Jc?lQlF@=zMaF>2xbu1)1ZC3Qdw0{uqj?zY=ODNYV`SNcutO_& zmdE6K8>w%tU>t0h8pf7TB2XxvvpGA<3X*yNk+pP>rZS%S((OBtkz3RCPk$N`OLv5S z5kUl(3BrI_Hn)P;HZgvNI?=kKaj^}(*@ItY=vn2NFrX>jy>*Kcpsh4`=^BJ5NN5-} zW-)-45s@a0y8^omU?@n0B7Ax{JCp9c`w{0AJdM#^3?ul|vrnN62%iBk4FCVt7YnZu z!kJE|c|%s93^t}n(>%6O8$+22u}Z71q){YDv^@yIYi02jX31b8TfIt!DN+r*OZ4^z zJRG7t+c7#-5aL?Ra{G7RPh2O@2t1R%ySS#B6Nj)qPHTbD0plFy2k?H3?e>qEg>oiOwG zF){^tb8jmmA*~ofyZsp&Y{uAB@IYigR}G2c%AglQ4m>GWjh=Q5I+B zVc1iWhS4jMrV-t%m^>)T(*VuyZ_s+rdv(!(rtX`dFaai>PNqy|Xbz+zur#TNaXSQ@ zD<_9|vjIR^4%_$N|JT<JWSbzHNa9ZXnbIf?rg}WHdb@p48HovGA^40*uuJJVV)Mp_XPLj%?RB&gVgO?tp zzEKE_xSmq_Y+z)4z9|O1&PE#192A$44N4KyFljaB54o;86)py;5XP_vfwvDMyfL!? z84-ZWX?}LKw6s)H+Q2z04{uXei5#>bGlr=*;be5QnbO1=Ey+gYhh|u8y38UKEc9gP?5BJg@N-JUppzq|<={vLH5%E3ejWgL zX$LA8D1zLKAAMn@fIX;(EPMVKIV?lQZQ<{wCAcWeZ!6KEeNvSmL*|9~5gf68+7o$U z9zAWzwvnO+BFs4q=;rJr`Y&vxY3zk0XQNVi$a^*RPz^a%eh+a%wl){i`3u*WYf>~k zvlcuU^tL;P`(*%Fd+^$FI1jdEFJb2-YTHA>s3(^&@A6I5DO``UD8Hb_d+!moUcCJg z;l;{CVYWzP_4BvRJFe3yty=aHXy8|Et7Yoo`sUFvDS z)X7IG7lCJD*%#Y;>EOItG9+-r{E-DsA#>dD#o@ZlF4-YfDgUzwQ#1`;a zhR~>TAH0hZc@!O` z>=Ky8@LL})iuDw&3gJP!KplYWRv?D$Qu})A=6mVQx84BlRnp_R$J8^Qrt2@fmy7%ojdnEVqoXu@K}i*eFj!(_SXqFn2>LlaoZh~E024|Uqu^;;{R2bXi&nR6-c~#W zbM?*4v1fGq&Vg((sLG4K+Xh|RoX4YmCCM0GRS~OZ<4Z)uTj~`HhV%%GV)gZT(qRjE zMq2KYmo*w@$35$Hj@VYGgx~J&;>wyCv1+y%mx%$Z2 zF$BxtMn*=1r?AGsPZC@WA*A89w|G=BpY4QG!Niv+KipddVC~2XfPlt5 zbQtz%yE{1uNN?t>hP0f{J^gg7zs+5a;GJv}ML0gStdu-8wfv2FSoKJXZHG@#rh0rW zLl+?$UW@(Rh%wn-e4K9o?BAxBu0BJh0P8>`AwV@Cz(!0JxflSE8m)Qd9O%;6kmdyN zZU;=gIKdS#o4tnNIObp{q{Vu85A~8XeC(;IfHrm^X+xrq^j0`N!dP*#=`l@(8cw#k z24eIvWtVhHW%@}0!bM5+VBqtm)f?n^Z_yU`eC*M+*$1pS92Qy*dlGDwY6g!rJ|g8< z1+dua7ZIk*=KFZzM3u?Z@DdRPE9 zS}~UUbQIiMn@0{|%+vdxK>-9F#&OV{1AS?Z9spJX+1#hHyP5VDAAoZxN31Y**1$u@ ztPnEw(M5W+T-uH5qHXk~z)hz^;8mu=XP1bgW69$E8|A3*E_VN0dVHVnIdyYk9?;Ew zxn^f+9-UzmC&+tTyFoY919~f*vPJ`dWw}QFeB}-Y)1fOiR#&3*(rEHB_58MC&H~6D ze(*L1yzUq+-2Ra04lT#gnc9R5j?K#5`>D9RMEN8f4N}bW5ASfW(@^YTKgX1_zvgM5 zEKu0u9RQ@o9f0Z_-a6#!O`1k+t*0{4nIiy81(0wGQEv&Su1L>{B73>UKF)K>qWfj( z{sS6iNti~Dfj-cPL1f*Se?Zy@;lb8)Py*T7HGm%UaJUtm<8Df9w^L=0$o9epX>Y5G zIKyRkJ>*f_vjw-vGD%at?(q(EmMOv;KYKgPy#AM*VKExc!Pw*gkyA*#>PF;CJs%Mi z_N2~X*mK4a{cdpZbaHw-bc_Je*qw+VexfTI|MuVcPkzfAm}f9_qEZu$X-q70+GjC? zsi`JMaheZOvHCer`0{5eXpK-r3%E{&vq4V1r++k!f9f-7@`dN(;azwe?6y!)F;5Jl z-t?dj1UyGx!k6Jb?$dzaD5k3zf0o|=25O4p# z|4(}Rl|M?Wi?jwEnV|8=3S`&abng5#lf}d`Ngk9TV|I6aE#3Rz13Un_gAr=$$54na zjZ)MJB)l)1VvS}QYfBH)#I@(xOq=Qc&DYX4D9zleC2WaQd{Mo9)xp>G2dlF*d8+uonaoFU%TyT zG|dO<>7&g6XryU0EX;|i8Pg*oK^NEm>X87{Ac7>g2ylR*_RHgnRff({5s%RpzUv#L z3b?1&8~qXCnRB$<(8!NQPy(Bw_X38(BUc3vRw!t!M9YGKP5@tld5JPlfdlJk?YHEb zC*!luy_?Qo9X(xP#Owej`N%U0eC7x|0l|*%U|L5|=rfcVpVtBi&=auvkS%rng=1&% z%#j}L$y!p3tBSDDm8tW^`M>$@Cd>Y__=z+*uVi`gbbFBeA#NgUaTBGc{35F%? z=vfEh4_T48=l9CIV8N)9K*;Nzd#^nJ7|+iw@EvB3wX!>)=LZyt!YnMTM1!Y&_yjvE zC?HNPbgczj8gx@GhJ7Oq#~f+YBr|$6w)y5F>tep&23oOalpSQYgKJ%L!G@J65l#98 zh_nNOTLHiB^OD|}bK_@tW-pNhBOnJspv3msY^&D9UYdm5$YDGjT`VUjQCf#+a1Wi7 z6QTigl&TUPAtEPGZl-6zX$?YSb(I`8(X@fXbm8)t=$EXt|mlFvWIHKkRtfj1EvPg3yc1H1aMD z7``|?ka=}42<8Or9^6yF(`%FG0WU#bGhk&_ao)YNF`!~E7T zIMDcT79OOcT{ssXrh|=H#)>?b=sVz=Q?Zf95Fb*C*@WyI(R8P@2k4-a-#!tsb_}G) zCYw&N-hKxlFi51}5CaCRCse&bPlchBX(fcudu}}ZAoWsNvx%PR;`G68`gSz2<_j3) z;_e!i7Cjh5Wbx4>(paWd2P1vBMfh7l(oHW7qj%l?JygIjR#FaGI3rb_-Nb&|*Qm0d z71BBtz=LJITj>8?-meJ*v@~-+?Jmrv@k{4u;Io^S(YZrLHjv$cGkDVIa#{E5>+3wH zzDDZ8(l&>nZ3D!xL2?p~aH{Nx+k{sx__5}{lZunAb&on`&oC}IPo^I{hvA5(T+Vqf zQD0joH&aDmx#1zQb;8)WARMqg(g?!ZMX)_VHZ0bPmUh{aVDPDCh3^ zNMmrFV-Vz8avHMFJ~hnQ4}kCP?q@I5^+M=xb+yJM6fFvl|Am4O7(|GHJzvjh8zSL` z+}zKblThJkFpMT3{Sm&=^AH>P<)G|vcK{mCvXQ$reuPi-N(3J&VGWNd1&N0$aE*?J zy$NqfBXZ~c59vMLL|M^znt$*ZW51C4m|$N~&x-9A%AHq&?6yld{@wJ~zWk*q{~}LN zF98F2K2P^UTR7^`TH7kQZVN%X_2G?l^_l0>F!#5+mxd&AQW&;lm4@hwcRfI8k1FKb znbct-5zV=$qGW1)gEq1JdF9Xk7-N5s1}7#Vf(!<6?gZri!skEBJC)MicRrxaZF9Qu z7ALV0TFW7@?Szu&?|h8s(TMlB0a%y+_{auX>i4Hx0BL%i5lO58kWqCogsLl|s$WR6F$Rz?zNBTBl! zLwedd2`q?iyrlCHZA$gRF$zX1>eoo1k;M-X;xl98Bk6B^;q&Rk_diN2cp*l2j1(Cu zFl64$Mm%@sOxi(--nnxR(x@E=F-COFlRMxVSW7KY%)^~L2S6{}6qe_&EBm5ymDAMJ z6f#{Pv`l+f?r+qmnFFa9A>l>52Ef%mdql!zgh#cqY+UD;rH#2JW)$mKB}Uzbp>VCO z9>_CpL4ajOrrTV1|82C-BVYycMt(Z+$oBDaWX>C5=t9BUg>oODHh>4>I(lFE7-N&u zY4RLD1VTjhvlTig=M52j$^>S^Cxgy-o1k{db z8%S9Cgs~M01B9sQ<~BFa`v6Fp3sVZG%-i0<2ADC#UEMS^arb6^79P)IXG zU38AO?xnZV;j91o#z5>Ee2X{pcT_ zKnJ6DF+`HMt45ZQi7?be1x%-?527*z?ca!}Es=F>lt?1`{0ML)FF}H086A_w*sE*o1=0Nh3I4s3^eQd0Ra0M`a}R-;Hf zXEVb2Dy07NXNf|UQy-(+(6gMm zQ-oi&2fuB2;sU7*?vHHg2yEl5X~>(1EZQ_khtP@yZ{LDG(;Kc~Gf#*R3FeKO3i7qn z9%Lm*(g`*Nb^uYi5dxw5!HBX$QfPHr5G{Vj2N{2SIdM(`zYS$4nJhMz6VKD5Z!()j z&t1S^YgqmY!|kR~kUWz>(vFAeEE1wwyd`01DE+lx{H2tcJ_~X+G*Jf~3b#ttd#J?1 zGiA{%#k&9DEkaPspwzDP(?9t^dhjPdP7|MbCLOY{6}*`vl(W}vfjB*D{+TcS&Ggs5 z_3Jb`>L;%Z*g!zvCFE2>@DW|!PsC5(02D?MGS|Cr|14d+cmYD%1w2>CbTD}>xl*CW zfVj#@b+CgN9uf0LAH0XR){+L{7|hPhf_zuf+`|U|4K@?kE;E*~@iB-hXVUU~Hhuis zU#7VS_tHyW_(m{=7jL|m9?sn6Na5LZ<@rw|v6Zw-=F`U?-AwPi z`BUb#g|N~p;ouy5vVux3LoukSw9!BkJKbBGz_yVo;({ z4@OUc6@dyQHVD17(yeP~cmzYc8U!POm4c>+Veb5hdGjwJlB0xl31em4|Tu;G5c!fMA za^-A*!J&Q><_qa2QJrP-q>FRQY5LqG3V=usk)KYKVFx`GY&*OSZ(^M)22ppH3W7P3 zP{d7vbD8j-^wb58=05E>CI}MXDtnei*1AcTFuwhjgNC~AXkpUc&$}S*!RHnCv4?xm^vd3tnoiN;#qqbv! z@cKL@G~YQ4=%)K%c^*$RM;E}JILBV1ZD-}Nj7WlS3+55lgp^?fJs zBSJ~#jbL67(tu$#N>-q85?he1&$|GSB7Mg!G-A{XIXrLX&A6RyiRGmAqqpr~Sm1i% zw#c^3etK?Tm~$Nh33M#;cMv+Khtu^E1`vg!g&^DBBV=vE;=%%9Jh(X(YsTH|Y-@C^xFDK@NQ#hAi`O_bymABtWSHJev z)D1D;3Y0ub&q$*jJJUPbV9BWUNEfnV7on&OU06?RI2gQIzqvO=`2q_F(O_&C-~gy}c!IvtJ;S_? zd;vEc*NL`K$aR!$&Q<~(6TwDVeE0}7ItNk)(a;+B%;m{6eR-M?$r*AlEF^=&r$~1` z`Y1iPb2nXk@l&aHYLe&Sts*qm%HF^KQ5qTUO`CywoK%%2NQ#ZF2Rg~UMnQ;(D7hF= zH^!m^B^5okxh5hT2%RXZ9S*|9XP-_Jrb(`(LcU@FJ1ZNU!uqVW_Wtj(~j550b~oJj7@AL(`mt< zf8nJxKf?hSD3oi@TuW!B&musEuB=B#DYG6iKE`Z$SA>Nyj{dGfxrvKrIKA%W)Quxg ziS;!)!Xx=!1H|LVRS6bG21gMJX9J}HC=l4q-g)fGlJ8rub2tDW5-MH0eGHS}$}jV@ zdflFhZX>51jC}hT@59eb`)Cw*G5R)I0A4_$zmj8O{{bsGYBU4UARDPU1Z;VdoqY`S zFl?e?PRj$UWNhb9EWv9qiohR1LJqKW2#a=;9Qx?U5T8eik!5=?1e*3;xtHWfMOiQs zhasUnT&qn&t^%6po_{)h*zhsi0C_XQf=6L`XqDgFL9LarXDeR7GF*^C2fg1x>lz2i zm|J|Ni!h)(6{d={XH7LEY|w4ePe$f)cx8^=h=YJPS0WEOvlxasDgb!@zLL@-qntTocgR4I|HBD59l2TGA?Tld+#VlBCW6jkPITYaO5s?Yn6k8Qhp+4Vd zHG7^12f%dn;6Y*ZinTQkqA5^f+RIt){U~ayYSt)$LWU9mtM3ekj7UP~5`?#6T4ulZ z@v|Pzyx&>joDc}E85$b34-$qi05)6t@ybkHqVS%7f#iAvfZ#P`3wdfAgN(KgV1j%{ zKDiO)e@e(c%jffu-Ku5u7Gn=E&4LKtERFRDW~*RI74AW|K06Y6JTnp$AzGtYMwfE@ zP7q{Gd#oYPaGe{<><;#f&X2Mn5ZMP3PVJXg=mXB637U8c8F$ z|J?inN{P_{ZZV`MjC~(qQ-HmnR zv1-_x`F9KRZF;Rl8m2;YQ6s1fsh>@Q9_ux;zijMN(dYoc^>9tsaJCZbD>I$vGN!ZF zpJE(#!-OOWFmulJUgzgGaSAZ5bO0`LpjGTYqLmru^yrkf+l<}DHyNJk+@D~Kj2v$* zEmBQ&HqJCS=7dRLJt~X2!?Vxxxi)l?Yb zRAuhk0dtTB^*q zod_+FcHdbxtDf*A$PDSSW6txi9dh21MF2eE7-n=5$h zD3*&86KS2WXpZn`FBJxkQ{nc@(Cq0aIih0>)F1>8Lr^xWsYfUT1A3Kp@|N$D2Tklj z?t1GdKTXph>aTt0SHr6-U=)J&%mVQU-W%x!I897UrKzzA1b`3_LVE4;Sv=%M4#Jp5 zV5ov%89YeD1u=i`S4lDv3YLAEM$TPIW4vb;g%Dl8*d(TDRJ@V8aZ~tj#vT7T_uSvp zyUde0{s3M)->8A_<^uV>AvnL+gUHbCQy^&Qei&iX@E!mL${0)Q{yW;~We)4uz7gi_ z3Mg|w>pYo(f64Gi8c5b8m>;#5Gn~ntP&puVzw;JLs|pVz%qv?K{P;u zVlxU1y%(GdUMt27M2*mOV=t8eW27wDAcg>=`4NI)Kl{anC5$@_aX62_MmwgOMB`=h zr7euvw1GBW8C3WMc*=u^naBoiMaG`Keid(~CEdRFfbe4d-MZ-dXL#7-QOC}V#(Qi7 z(2Tt3@mDb@%_wbijW%)#Lk}RW0(2~ub0fCn-8@OVxjybKQzt`wZi|Wm!}J-(>+g)% zV5VZ6`*_hRP`ya+bA%^ni{t=AysP^~UV{7AYK!52Gsb+=m>1V}ACiTu5WXgLI`sA>uI^y-<+|xQ;Q1A$!b^ zf4i?UkYUd^Z|ZV=x9UUtB9v= zM@y;>Id#$0l^q2wYqi`EZGpGT9?tcq3-ng$;0WPHq8mqq{B!IFNw^*bU3Yre0u$EJ{cXy@sF5M*5^`%9wWnjcRx{+!*C3o-p+puNgd)hL`BgepZp~oCE2*33 zbt1z9M9(y_Hc~1Bs!y2*g5dy?YMNUsN13Zmf$L~1UWv=L7aqV1Zv#B-5>j4Vo`*-Y z!qLhAH|8`?ABj$m^gXJwBhee3U7jjg=Je71)B}m{kZPO^@6t~WUl5Za@}oy8e*gp%;0E5pO$fw!t~dQeF)#V;)yn zH+Umd;xrwzzVrsU|L|i@LcN&sl#8-5APkjOm5!7%bOr5XEVN|j0HKL<7ct7LpAHi1 za)R!TQc=crum$e{jz_-BbOn2v^w>6$S)+Bndj*izijxu53m(zUSZz&@8Hp4{lw|Wm zc@-D0KcB8V`z(&hY`XC}l?BXu8@gRtGM$t~2OC*2vf>c&%p#=?6&+72ZG z$%zx%_Q)-o4=>Ym*$|pN0t{DctfEsL_lW!OK%)ZQ(C$`!D45$_CG#k5Fs9w!8jjhI50RkI>Xv#TZiV z?|W&?RBjO^iE;5x{9EHa_xLeLxG!CT5pBp^^yq;q8sli4$pSh*QCh=hMngn6(N0*w zx8UC{zWE#Ep64-_+}C4tRRTWOkPW|KkpvcXpk!H|;Y~RW&a>=!$LjZv)2NNc%`xg_ z`?pWh@Hj?CFA>kVcG{=M7~YJ`5sbJ;#ncY4AA>KrYh?xNc6de+j$to zy`Bg$chghe5V-kibKgGqkagGdcN{8BfrLO|4^LLKYI|jYh8+&Kkq^P4<5o6QAUiv| zOdX*{z=L5g6|v+_d-2z+0|--N7+n`ZkBD4=($@#MjSUki3;uQv9ka*`*j~U(?jdj9%Q*v_BHS3T(ZNZ(P46jJEVZXQy*poEKbHn1(OA>Ua%$p7}g z|7Ypvp1%e+X*l-%-MbIdKl|su&oRKa(%bL8ncn@`o3u!Pp$O+QJWp#;0Lt2fPTY^DG8-~H?K${+pv z^zp(R4E_((^=Cg-ul`}ImcoTsiKn{@$ob3H-b~;BqgT_9fBaLTLZ#F@+!0kOp__Pj zL^I8;AEwvexS3vk^^G(;zl0&?{15a6%M*LVh*gzCl-|2PpI-aXkJ9U}{{-Dt#c|_Y z8~9fE$uy+Pr8hsim;T~s@1^<0m2{8DWhX~%cfq?*pP4E_v7~*F{|{finQp%EYPx!5 zlC?u_(UIyq!81b&W5@%7ti8luzWd?5bocIulsFEB-pNqPXhnqN>JFm@=qD>pJiyL% ze;cRa=EsXXubd`vJOu!@Y~Mw9x#u(J38M(xI7L>AbVHbI2Y6JmXNU0FHn&a1tE-8G zV8@D(M44Ki$Gh+j_CgT^sH2W>-sC*!Fx|g-_td4e+R)DfG7ZIBg)Z5nwObp-)kNGLI-m{zFb@k5f?@%C6uhct{ZC&jl?cJ zJ`JDOYxLXz;oaj6`@6Um|ECg@;b@u5{JVda_AkDi2KrT0wnOA%pU<^kQzv{eV0NGb z??&m{F-uPdt%*m+eVH>SQPUYYEz%RdX&t!ug4y)w;eFVs%h4}jk$ip^o9XJ6s}NuC z%v4@%D#JI1#GRZR6Ri?8mty5Wz1yF5t_})RrZE>h$q0dY!*dW{WRF*3b`d1rfeR>& zlZ;VUkTsO4i=>iQ&=o-asWR_j6vBCq(+XJ-pUu8!IxuJ`Zr?djFmsJ0fsj;fDlO5R z-=lE!tTp~z7@;f`2TI=ea&3Ia05g2Xb&B`k{R9$TuR_Wrw9G=9q`^puFgq`rnxDPK zX1K2;pg2Iu%oIZC{IFy z%*Fb~dKjefkrAFl-93uiratp1nbA?wQH;S2QNY+~gu`R^ozY6pjrWN8WgR!J^h-dh<&hU4k=9O(?g>eUDZ>%JeE(z~T}MNR0xNPs^x(ae@8#4rfRc@X zth%Y-z0{8T)27D-BMUpU8!m2^kiUzxQSHJ=tpNb=<}u1$oG7>jnW_Qf+XgYTKu?21 zO0Mibut%iekmgHenjYy-b`6a1PJj-U06Y)-Txvz%D%NluPFyE4tcP;W&eQOJt1Df z53yek4Waasy=+e z-UopX05r(Z4p9IAKmbWZK~%;2e*2rhfWdA9=mUayrf0-R#I#Z+2QdDPZ~aore*H`7 zqmOT=<;Rb3g6dUXo^jy$5w;h$((K><;lEEGK722I{l(AHD`PzU_8-4b!>Zl%o4@im z;c1{_`Ljmzt^e_N{?Byx;ZM@v{>m@XEa&6&d;iPtrr-S+|1@2?dXbzx4hY8Vom=

*dEd}4R=n#?5vY-20eA_JlG5l2G*_8)&gz5V7}>C#Ah z`WLU>N`L?BpG(g^J&cOrpej;VkPL8$A*2$W06C_0cyc5JMCc8uvzTvS%zG_3#qaNz~(si;L()nrP0!k?t~?4 zOX)+JZ5?vzr>DcV;CS*$fc0*A=P&;v-6s9~{L3$=OGGTXh&&1|?H3Y}d)D#@uqFvo zUBoa#juEQ*xcHfRPCaO9TZcs*qzq~dmOzhs{embryP+EoYdOX6Y1@5ALw$A*v`X$O`&w=Q9HWzA~ z%>x--k$~rTxOH6PylaRo^9hYrK{>a0Nu~=FGy#n*Ve=^b zrN@ucYU2XRp7XR(!Wz}{moDPTdU_VF9`|lx4Bp=+L>Xiuhj2CFJxPAV2SK?~x>RUS zw^1a1b#Ty$Ont-P8dgJT^NUNopN0?Aj*&Nlz%VEsvn4BKeRPGC=vf;cz(_(=p5-+!M2pgK|DcC@sF?u2`~Z*8z52SL$o5LhxUpYL1?RwZ}#l18(E&;reo zMh5UQD3cl-1GMdt`q<)F9 z8{?gj5xw6U&6D{3L5c7y?Dn07dDgutjUiKQvc6N&BS+hd%pdQ_-ag@8mi9GbST_k{pHhw& zbBShg@38}7z1eNC{+WKsI?GOI1wEabT4@}co zXz4!h4*2MuOvU>jq;AH1>FindE5|BxPn|s=A_k9j)f?ycXQn3seY^C5D5cq%$I-~B zrD+t|CSpYzrU8D!EaywC(MajP_=T^e7hnEdsuYG($HZj%z2EsS(^r1(Dkmx8twYMY zHM^4TesClGlYjW@>8Z=-)ADoYQ`^*ddiC9#Y4YqO93l)I0QD_A{{Q^TpGv>{x4r~l zB$F;&I-ma0KmJ$gz>_uRF#gy;PI6~@AfY8O-8o)!Q54{xNUw_Z*E^WXm-HlsiNuMiq-FGR3$l5hC<7Xl@~B7Y zGn5C6=xp_p2L0-HzMWqF`M-|NtfogF-cOg$j@KiY2tt;32QQ(=O>e1p>W+|3Z}gHu z2iVl?n8=*7W%t+Ml`$su3vKx^>=+`$sahESmRuBilMUpHL}*ik$Iqi3C(2*Xz;L71 z(lRqojLLJ7xw#_wQk8JlkQ_$Av%=d!V{LdmlB>K&D$wy6yl{AR-v7y$ z{RJfQg(CKQgsTWjHUi>xMk`d>PB;@$zn*dErC0D~Rgl5vWKw;G;KJY4{{RY5p7z!j zKt+Xyx`Bslu+2dScYt>_=Nse@fB{2hv-=(>WX8bDe==N+z2DZy+{VRnLqDyf@0|*N8XE9c=_mDnq8ew^Gge{R+*eY0Kv>#DWWYz zMi}#xu84-mY%*136AF4no`Nnb4&+-HZPAk{ASbrWbc{VjfYvuxBR}gHEfEte7!8n% zP{hz%lGS%G0&j#mXFBi6)F0)(0|O`}HiMw3ep+QcZPM4+6a0dEr90{T#q)%`M6D^Vd0iXg+;FiRH;lsd57K2 zb;^Ywrv9;R))p_Q1tmxx*E(x~^4`X3gyA*ZyC_P#?j4dM=m+dKHRFw8q)&|&>^w^C z%#V(QN5l%Q-H)+fk$JWlKQ~%LbcHakdr)$rd+3Q1;(;-e31z_-&|6F|5da%{5 z37a{_SJJWU`wFFWYg>;}D@^u0o_@ZYn*EKv@KBr3AsinWt!FFDrMkKkV6sO|{T6`e zX!9Ytc*^4>9c2htBa1up_XtyOq=B;OkgXwGAKOK1VVeJ*zte7#kvDJ9zap zHAtOQNgUwFusJxBfnElXtWTP#wFgvmp_m>&{4kv%0`w1l^FLyLk(R<4u=j`MY>iD5 z>E1hc()FLaf+2%EN9D>lu3k*3(o<6y()qNS12j`v*4i@&UZ*+N+}E`UU>Er zqsXLBU#_L!CYrbW{!W@|rGXQb6p{dY;g#(Wv8t9x!8B2Jdw(yrU+PS6y!}!7G^vO( z@~dNEd1J2a3cYFIyPzj+KGpzeKA<}52zi-Z-cBoPw#cSkJaV*86QXt;qN-^ez^-~= zu$%HvfRu9V$&iic-)$=1OwZW$(bH0kL=$R&NZ@!xyNnXbQ;?SxcA0m1V%zHuFYAK- zP`4U|79gkzwKeKR?H;xk?ZKBn(CfF|rJklYvM0JqSMS4iv4RFcfS>?;jOZI`z;H8Y zcS?zecxHgiYdw>-+aH6Z{wy^Occ+)X@>P%#b)|p;AM7U5z*ixZI7q{1(Oia!x7F(t z;~$$a#)nD}Fz{@9s5@TmvWn+`hCRb0W5KXh(H2nzvcL@+IzHQv8lKlPmWi*EWY7HY zoOxFPhDJ-IZC5zC2GPos_c%srAL5BL%ZiU{1Um@h>T-m;^{NKPM%Z{59F&P?na9}y zC^KipUfX(TvWFRRY%aY!7hNr-SEB10zv5fJ1Ya6R6_ubT(lhbyC@kj2bpD$Q+HzYMCn!`C|{Oh+GMI5a-!v9 z=7IAlYr$a;e+%RU1D;`E^+7xN@B$GD8#?u%v;v^<4A;=qL>PU>uM&Rv_5P!$wpDwkl)Ef9()8$l1WZq2kUG+PZ@ia21{B~k zf}&A;1RgC5GB?)-fmHzLTzXKEOkNF!6%i6EZB?!D)q@lm7@FOIQ=`Y955R_;3i>_) zyn6125&gI68Ozv4$H#+EC+KVA_pa_1T^P@vKc8NB;nV5v{Rfl-&c(6LM<`{}GOpLo z>PDRWD8InHQEIONm{!v;l`tcNH04@Y4$@qn_Sm(Z`$PiP(r$_V17-FJt$FpJfTS2U z+bH8dmN$6@Iddxm5aAr4{or6FKI;Kjh#0ble6j~^JY;QoPg{Rl!AokQb?W%oximNP zh}6&^d$)vP=s?-8GKWN!ny9(vrg`@^WI@^7J47dJf!$0G15+G`E;ayiBL^F0F-%Jz z|CE#yhOm+Fxdwwu5#42`JoJhllIcuC^|qXLz0?V&-VQK&0%oL|wJ_Spesn*f2W!;$ z=P<@rqd3==zscP8cifG+a4)(?xgUGgx_)IoLoIjdkP=G_KxJzoE#7?(u-2M(QQ%do zCOQCib`jiNr9&cKWLwV|5e}MoC9dHhp~}uebPH_Edq~?-YAi#d#xR>gvy#V2mv6I8 z&bUG+)U_3iJ(1FzZ*Iyg z&3xObPgyCUL#FBZvcf?>cW%Bz10&w?Xq_=WNXHjp(-W=fAS#k65&@*|!O_ladZ7nE zPQJg4*KN*xm2^aLf0dF+a_Dr3%roz%F<2)>GayW_errG zr*RyqT#XXm7D%ed+7_+n*{1y4Bf*hbBAtiq>D5gPJRx8E;uMICH9)kq+i8w8LdW1Z z)j4!MC1u${q@WpDZ6Xb5)qtgjTiCfD{qWDz{0Fzv@KwM&(Fnp*A-8sURKHldsEyF3 zdM=6f(~2Y;Y?w;)DUW)=|(l= zUT^pVYT^6fE1(>_m!G%p(jbS1OG7jJ;9;7%eJ4#l^Awxhu>vMAzK*>SCBR%qm}hNm zJ-XHD?Rby)9OD!O$kMhpvyrhZ(?v`s_yIZSDl zFyuN1draZcSw=(o7z!c-II)yNZ&;FKj*yxNUM>MvD2x(X5&37XnKSdn7LDt`EyB1ej`~*@6~??fsO0@a{guddkn96 zZx3`b45dLeg+k<%u>UE=a}lG&Kf{-IDP5sU!@eTJN@jncW|6ga`o>L(CzUFBEw(}%%--@iw=*LP*( znp(4ZV2PS-!?@FvXHzfv_ggpKr78r)#6DbKSqnwn-9s+{6we@}v$f@)rUJ6`b1z@V zgJF!c{q2&VRo#IrK_is8k9n5Ha)8d97{DgH6bMfl`nT>KF0%L06&|jFaxRtWBFGxq z4!4blH0$f7a3;d@HqV8TJtb#tFZII~y5wDXmiFI^0s1{BAOIe$Z_7jb$*V?3QTAb( z$b0DQ(Vd*?J??dft5*!lQNArq!5Y=9&Ek_&GRa-=X&cT(G95 zG))n>|J;+{00)cQ5b;`{XPvBKfZ#Q36axo{G*rz}(`N0(AIq^6(O*lHj+nX4|^gj$>Vg2F*1$S$eytRMLEO0i6e&}<9)M()BgQc zU#zUQQTXXCJiD{K=@!?FV<#pTGJV=ZyEJ zZ{lV5P0?_PvnuxHC6A+nhepyr{+EB6K6UNcv{BwkHy*8}U;E5CBJB{27uM4d(UA)2 z=oYvvhsDnHU;qB^@~*Av*S_|-H1YH_P9zai*0=#X($Z5+y+jgrPv4BwaQml+iN*lp zFyezoSs?#5wtkdO3-o9~=CjP(>4P0~BvF`tQW=zb8u9V4y8e;#>9m9P=A@`*mq|Um z{V095k4W=prV{z*G}e2m4yH1#I7g&CNImZ@E~Mv&o73O;{7dQ162x^D|EbZ5)KKaI zL;#+Vhso&+r0j?e&`q<3@gF!#ldl~B4m^fFBBq`lQ^rBeB2!%`+@f|B8_-E_i37?( z`31I%NE|@RGc1f^TW&gpF0R`6j`geogp9`Ypm&WLSrr(z0zIbDH@c>LYVqaO7@5`q z(e~=#3kJfL@EILNsx?FsC@Tcq!Ki3d=Jg9e%qVxsamSzz^qKdK9Hi|0Cn07(>(3?W z@nKLhe^9i;lapzR#p$w)OaVq*qd5^qL8GU#vu@Y0q#<8(+x}d|r&9DQ%pNah{>)sl zB{(NYm!vYD$nWto;Uk<927do%Kf#E=Xh&1q>Q|Jj0rH-bfOe@+uv?zxetK@6gODf1 zFf}zD2g)1}a@-ulLz8hY9pY^6YewbzP-N^$gLeA9vwbI?}all$9iv$%{H5ccvLV(21FnN z0dy7{AJoSZ>3Qk}%R*-P;@`HXjqY0fERONzv!*g!bkjY~tK<^DqSdl%#P6NgMsm6^ z4gkVDpY<<*=FM9_d~l2MPC{h#%5R1wRUt*t+JeG@jA_H12A-vmd7NwqiZ^;qu;vHk zw~KHMjC0t}|MCi{mhoA^)L|o)PmH@~RC2Q=*MaXcxV2+v-=nzj}<)5E(En0St1xo(W?A!l(^ z0l(dJYs=ydd%BqN>3J0z)?E<&kf*XCyNk@L9;BpC(*%N1qZS&hBMvli?iwVE@YPBv znVIDM`jI#CpoAU=H~`B-gKT@<(bklfXJ*oi^uRcKx(n zl=={Wd~tCeSt+G&|HgM|oHd;0=I7JY^mLR{wYHwYbaVCsfUf~Bxr|qrX{J9sh98}i zT9wZh4yNIB!i3j+dd%TL2eU{Ioev?N0n4I!OPQ2HhH|eX@{+AJ(uC~Y;wXUXJY-(x zu*`9?JuudHDXsG0sblt;C+iuR!5;(UbMOzL{DvG2!tjn7=UcL}ANBaB_^AkC)6LeI8zuz%Y)DG(seB6BUNr(yI?ae_*YLi+I5jo?gN z8^27C2al9?&(HvkwQS~?-z-tqPDo zsdqem^VhzeZr?ncN*l}Rndhg|#jE7b@4o}Mz&M`03`up8^b^g8ApBi<>ACbzCPveZ zTlfEep58M^((F3ZyXmtsvrLxvUG00Odprg+gMk^)LI7yQ-3?OWE?0{sKq7(>`k`Mk zKM;zLUxlR5YV~JhV|OW0Ah`>W00lF^U@#VAdTe`F-kZ#-$}(A5l~sD4n;6xg(Op%U zUw+@c=N|K(_nZ?J?mr00uFv9(IMV?qnME#A0^QR+5$+|fvzPSQ9~?&)Ag?@QD#e&} zbXI%&Y^cHsNR~!uT*O%|GH-y08^uBkp`))$j)`DCtiEwmGD<@d>nplycquA zkA5>`upha0`d*A)AT4O04$>>=iW=vBiiww321<-v9tz`+Jc1+icj0qSKaTDq_~XA+ z0;jMaRGG%phv<|nJb*fS9#|q=xZDG&)}c=tY>pDh+Af4V?Q0Sl!#e~yz((;o2o7tG zLrzLl2Q`n={`^;dH9Y#6r%8{jhWD<%A5-FzRCnMF+4~|Q&YVVVvk0ugzCn&0s$)`I zA_x&BHn>FBt9K$g%r#;X+9+8?brKh|WrP!4EarMy>|+dyPD7Mh{@(~PNtY!L8jdU< zpoff@W3hxAVpRe+vAMBAV-7~P(s;z_X(b?Bo;ot3&4&uRD_|OaVQb-Ay;37$KhFoz zkb7O76cw~YEh9i3hAITJJO+4kX(3dX7hqH8!YUBx0Gr+5u$v|j@^ZYaEbJxVA&~)Y zHC%q=(Xa@-lmvd+LP(Z~BF%RhRh%AWOfHVW35P(3Ws@j*@;Z6wvln?*#DeEv=dkxe zY}+G^aDqbE0vR6IBSZ+0GZHa= zL@R1xEA=F063@=eMu=Q5x(9*RC<}KxM5j)wK!xhHBm^oqh#CsDfdZ!|JojmNn{ySg z2(eVn21W^3ox-w?RW=uI?th;(vY)razIGy?EPKLD<9J|fxQ?&2X8`VLB*eKoq94kJ z$bfBoW%e88D?2`?hR-~#(VLz9bYy2Hr$PYUzw+c`A>YZc9}H+315jPr;63yTz_7Mc zTWsBZ+yW1;PMz|OlbRvg)1%fQ=4|K3z6W0;-V*^c6~1WbeG03nHX zrZXy}SJ)a1RT?OK9j68ZMV>DUInh0pM`B7~pZ9E1&gl1c12hd~6Cl@E{)KyEyJBTA zD`LU^#k?Pj(hh3!$}6viWP3V%?)lGxB9uA&I8sNH1kx_nv8W}^UY%6ThcCSqe&tIq z&>@rP0|HhL=d!ocbdkXfW*y_*R>Wz^^6YyIA?m;=&`x)o;a@ovY?+8Dldwz+RKQ_9 zAoBS%OzE}(&H;`U`~d=;=&W1i(T)RmfWy`YI@mjSinCS>gLx5@I?hNB>rc9A8508Pp_AF&dIUO}PJILB`#xu*_?W=1rn85cod$Q`pG19hpRz9;_ zSF&b(uZojN9X+YQ3b3!|Scp3nQ3s!$$P;6b1L|M6#kk<^vrHi{#X$;&Yl%LoV@`B{ zKyKnRP0o;?VU#afSRIx{CS1sW{?~sI{(E#;#{lUGp4*YgYmCU{DNy{PwQx@`0yzv# z8E3r%9>pPLaF2ZY^WlH|pZ~k?m7U)R10ZY#?th<-fhVMC`bkNUXbXd%c@_d8)hlo* zhAy57iyyrj4v~=xj)C>}Ih;*LMN=8cnPbh6<05A-_G-c5*``wDi0E{i{`{h7J>BRb z*68tPo)7=qzx{St`TM^fh8`Zo_<}rQWyZOO(=WV08Shpk!u{YU?|>4~7X!oDO-gc? zbuh?Fl5_6?ff&ZQ?IU3NPyUC=@D-r=!QULj0k`~3tp$37ZYK#3`aqC|X+L7GEse8r z*$J{N!SUa}@mk1`3TuM;+?*vX2lt@+`>%#y|CP@m^L!po_+8lk|KEqiuAFI-(38LyXI5vm&FS_)fXhmN>)4d(m#H<9=yUqHb-W%j$gZ1$%{l zi8ewb?t`}e&*-T2M_zzNT_KH#0dMfaS`f{P&VxqWMHN|y=>rrrzlui6a2Uw8 zm&3qAPln(4^6$`T3njwMwh#e{gY0MYUff_7h0n|orFnC)?24c102tls@mNx06m7qC zCs^r7*e3Sj&pyrV19_;7d2JCdR^`qEL_|U7!37cOHc~60q)KoAHgOP!M~Es^vKLT> zL=C1FRLC9V2S-m&M1|}_?VTf9#h}@j-V!@I4VwQOhSYM%I++s|x^+67y$A9fI$!Gq zM-_ncx@#D^OP3xB-6$H#V#1FaZ4HC#9-sS{Yp$Ue%J+FSZhm?1cHeRz+_SjJD1Olv zg(}ufqm+gI_246$9eHa2i6NVOwHyO^3hsgEzyShNBkG)Am=Eh~YkY>h3K0&<>X;0v zXz1*n(6`*^TLtT9>s;AZSfkxd8JUiT(WuVb0m}3QLo7K?(x`iBb&AM=oB<=^!2xRe zlOQbYUlj#s8l%mW39{t1Et7Ly{QN^Af=|*edGoed*l8l-!I2T*<8o}QqMSH_)Y2!{ z&5nR}V{D+!)+sr4I%OGxVO}JF=j*_c+r$}BhJ9xD6kH+hq0g=?Mn{#OS@ze7yg22t zR4x#GKgQ3}IFKu0WvN0l7MkUtRG0a8tO(&5Y!u}PWF5r>21e9Nxr&uBETi5!9}}P3 z{p|o@@J#Ij!MZnIUxJ_`pf&s(G*D6Q_fQh}8my-+P((v0$wT&j{&zpcC}hGTk3LCV zbT`oj#6plC*Kva~%@3*Ze(t$vaRkO0jY~Uko;iWBCCN>MOVrP2AHdtNn`EIxfe>-*r`JkI4A9$TG7?0S?8mKJ zHv^UruIynTL*g;py zr?F<;*4rh{mT<-`joxhJh zqDKXLJMZ8sUX}*+X$4&1P^5NWdSf9>|-Mu<%C}+KpxOtN*V_Nzt|H#(_l!AuC6jjQ>V4~0XSHkqa6Axj!BX zee<7DuFvFa&E2>#dWNp;Cq^o6s^O(xFKf;6M(51e`+aMVSSN%+gdqV;%~r?HbWQws z%nxyGKP#dR)SuKa-|s!u5L|T&`u_om-9#eLPS$6w=sF5m~j9i|inOmL;m$p?aW3H$WR7 zwG6-26h!|V9LaVn`~)Se)?yDpNZOHzh~iS#lu;eM6zic38QqyOk$cibx}bp4n7mKJ zDBg4W+-aVXHN=bWVq9*GrZ&6e6kR8~{F#PfGovHy9z;$7MpNT$Baj1XeaDcI-Y+~8 z=E>Jj-=ASj>N3Qjl?WZ@fsENL92?mCWf<=m7aIt%5FCCK5&Pt@ANSQ$tTBj)5AUgg zP>BXf;x*mn?~D+}CeDN{*5&HUuSFz5q~Qd4Qy3gY+lFk)ZTaiJ`rEixPe1i!RDebm zckkW{wUuhP{LsZ%Zo7q|jLtpJI3er7J83?XN#hDlw`sM(lG%lz%bB9pS*k;9z+JtL5;owo6C~6h@99%`*7G? zEQeyY1Q6GTakVrFtE}R5^@X0%Q*j=>gJ$IC9HbBEg!oWwN^{6a^<#J=EARd+j21o$ z<#Yd0nEd!wjLva~BWh72Vr-M`4}!3bGEGt8V7hNlM}afkKLC0K1HMw#@S#BS$T#_F zQylg|ImURQHMn0&Eip!tNjVT6JW?iBfzaZNbrah4{E3ANoJQvhwo3xVWSH6)1W(@+a59^Q7A{Aq0&ma8em&1>L_>*vxR_57e zF1$GTe)!LS?++sCQ2}Mrfjh?Gy+1Qavmr=#=#)BZ{qMj3TKG@@>6b$fK~L;ELf+^I zr}Thw$B%E^0Y#lBa^#-5;VPVw7k~0*_|N|FZ$WlLCP-BsARF(!0k?#6bbk&`3eAq* zz4`(E5v+R3Z2QPrca{6YDn{=w|IPm%rmjB|&O@?mV#L0~$o4P)_E$p}d$^CzJKCBj zx8ELSKfFx}4P(fJ!}s6+D17N$TX^i#UkH=y5Grx14j2mb-~8+EgezouAN$m!A%}zg z{&hOZPTdIuzyBEP#<=lgdKTc^I|_Lpr!>zRRnSYb5C@k&x*yJrQBgw&!ZN)9KKuB^ zkb-M~9gbVK^@DdpVXqv1_p6^{jd1`m>^08X)Z|R~;*(F}{O*JedOGYtAkKqK9N+}V z^l!6#)&Dq)=I1Bx-3z@-v*8c__{&Vw9E@eY|JA?!dF1m950AjP0wF%qTdPqGAvc3YcZ@OOmlnqJUxRfo44S;^l5DMmkk@+JBzx~+cGHW|qI zjH$1ESKDhw@cs|4>817>a;FOrM$qUddGli%B; z17HDovXdbsc2Uza^+PkfPUd;bBhdf?qv`p0W1Kf9FY$bM$&v}ZCZEH@s@%B^q8U6T zUh4oFJustH$!{K})Gr|&$pyYvXFyLDn-LYOt7d*$!`9uyy>VZDV?=LlW;@>t%2r0R#-WxCUeMb3is7qxJ0hz2CWuta4uCwAZ zC@eXIqQQGs*4D!`!g}+)k13a_M9xJK_%jb&Zc`EoqgF}yJSr>e=0#>YKtZy=*4DKj zK+rN}uq>#cq6u@680@q0f{mOYx0^%7YEi9ty#d!`+9d>toz$k}lHY~w1dZ_dBBuP>Cz z)3(wd=FL@V=Kk1!?#XEQ0HTR06Tv2kPSQZQ`yf*Gn9%XFG&K_Q zh_Z_qn*=f(xkbocgEXU^+pOV_C6QD+%)b3nXk7ch!&ATZM-geNOurP<8}>c$eC^}N zaGFs1rX5{lJNOw?z)|9i*}~cq(guV(r6^`aVy1(v+aI5J@IRo}!v5$t$jkeK+ zv3iOwXov}pp3Z=XnKD9}fM-$Xa8(>oh;bO&HO`l#sCRM9t%%5V^by%Rp4c>CdgWvy5xI&FS>W2s)2ML90+?QeiTtK70y{}&TIK1@I50Nv*YA;N~t=b8H_}jk{ zt~~NMI;9mU?sMK>ee?Bj{k^v#eIJHF+7vH5xD)>F&;L4Hc=&QScji23(GDZ(`@)mY zet~B@4zIk#0G;K@@chGP!qd+^&zu*K*Qx993CrR3y~Xfv{@FjHie)h@Ke!z(o<19X z<3IQv#_*1TYQgEKkb(qK?}ignWxam<=G)oX5A;22`pUca z!+-H#|F_}py?Fx8EqWMChabR?xcU;qdj@HrJpuOx!mJLRNCBtFY=3y^`n`~*JLYrb z_K(>=12?Kk!}UqHQONntsg*EI;B$@ZzW&aQxc8?gMtGfE1Xd5k;RH13&i&=^?kg{b zZ~Vi*2M?&5=Nn+a8Rek&KA@%fvozL%b45v`Wxl46A-#ambVnIi*Esc1;%dtfd+L#Y z&mRG(NQ}DQ?xt&?E{C;QxDt#S=3HsdL`u2{tPk1$I_THRawVJ}EQhxKK8#cgq4$ag z8p@HKVGXEE>!}M-73gSWEJZtMI9wuj28srV+LOc^SKme&qkZ8ALSXh-7f#2k2GVl! zR-Hq|)5PCL*qRbL%f&>eZJ0F&(Cn@z<4I6ltgTNV&QT|khSeJ*5 z>7n6&971ELRfpQHyO#Okx~GY!0i z%y@sSvr!_NCqA<wat75&zu#HoWJ!o+xf1S!dddx){OB!LZw% z$bibY2SaEcewR`%D-!fz&Bd2t=lgs*PAlu{7*Y-}`|6m|at|}sd5-1Th1j_4NK>w7YMTbuk9%M3}vmtvPGJ!oZ~T?Vp9}YkwWief>WU zLo{c(_LIK|o$y$6vbYjw2L~2spp~kibu5l+krY=Ke32?aO3R`1OcO<;1NM3DG%1ZD za*)fACgEP1M6yRbXP!vevR0kMZT2!jt~~NLxF)y7{R{J=8~GDQBXj;$2y8L;!)Mns z46z}70Ic6P@kr>Mcr2v4$8nTesWcJE0#1rLPeP(x0cCL?#I68oIfF76v$FpHH_4e| zEpS|QZlcqu!$HToBxg2B#lXhgT)ba71_^TUAxk40uAM-C9^<&!$Z6N-16@h0Gmv%D z8}=QLQy|v`AB403kTvVl;2hx=l9QqR^9D_Gc)E7>!by1?I7;|NNgXi*fcu@l@gXE# zcrM*NkpP)80>*Zf&zuW$%XE#z=|9G49O&yMC^EH&(~BI-HNoFNhMc=$V4xhLZz!>w z7@r9Jz3{Fu`Znw;GsgNZWqq~PS@bdbPtF3)fN8K^N`day&LRLP1@ls49r5U8OhOYXXAH5P15CSt0jCW{kWkakT9K)v`9ShHY`cnif ztp;AT+By#PV7Pv7Ib;vF!xgv%O?1Kh@_M*8N3{$nz{J=@>=kefl4SSGB`TT*hsLmp z2B)HMExuC^(X&H{Qru7Lz{J6qpPSnMAY{N+3&L?*c;8=KZrS5=ZR^U^g-k=qeDQ zPiUS~K7`c^Mvq&NH;WwpGQ9*$wOB*D%^@&y@^iaIgU~EOQVyJvZ{av#5r-4J*c}`b zOEX24L=Xna*SQB3jCGazc}ocW%u{Di!^Y>@eBKrZQm8)16v0Cv;7#hKt#lY1ABl|L z9Bb1Fg5a8YEs+^CAN#6lwI6?pNNp|Le4ps#p^HH5^asF+^sAG`JzJnzj(PO}X|R>8 zh~lso4V(?TK&IJuyKdSeVV#KW#*J%4PQBs6h0|eXaRDeAL&2#klb$dd^9%8WP^uGz z;^X?xTCikrd1-|`5TXAj1rOT zMW7?7Q>X)H|9hiniI(rZeT!%IUNJZj3ERkR>aH&@T*qhw!?TZ7^6dRIQ{jVKGRFCJ ztz=}I4?l*?bwoXXl5(j$u=)-yQ#EoR?id+64z{L!THBvRVF`0LX$Vs+4)7kJc|K1B z#x979pfab1$yLM5Kfn;AR9MLSG1Vsp^2EC+>YhM$&)|KPPqa2-R*<|1BM=vL&Zn}fqaAl1Nk4HGL zSxOZ#ra6dhB@9T4?r)-=repL0%RT+%xxE%q6%K|nAVQ$JQSNmN3Y;Ig6f(2x!mZph zq7jijtCd7Gl$#7hGIQIBI?a{d|1Kn10u^`}k~-Cm=HU04+GkG43A10d=Zvk`#>7BeOX3)W$H*nxAual($Y$-zKGtOH12fd2T8UpY10I7zq94VmQSR zr~>;BxD>XE?B4`N6aGq`30KQ=H*qK+eY2n2oV5-j_hFE^~F=!;jJ?_&$6|qV9nn^bEZ-80uEpm_lcpek5&370uBu`i*N1u$Gp>ugu>GDdf8? z&7iQ=MPy8_3g~BNCX`QKiU{=y=#6$bi*C;o6?dUO^XyqyAA`ZrDcT3DW_*nnK~l02 zORV_A*8164tr%R%d1({Tjp!R%5qlMN9J(|0Pe>DJ$Sue5hZ-mU_RD{pCa_+fYeofW z_cM)LH0oR_s#27v&V+E8IgTyz!8Ib#ZlaQrN1h84mmtmck{gcDK2Q|b*ANPUYt&Uh znpM*jMljZ|Ke+jEtdpLbo&vrvg@NJG2+jI=(OKYrjrb&D9J`4+5NuQ=*P#Hd7k>Y( zcf(sh`d%12e<92?1pSQ2u8g|~xYg|1I~ zu;Yb$orspim|ENEp*G4`g5aU|C9K$j{6s#uU+&fC)5y5AF&)6OOAfKMat*`yfSmTs z+f|@03h&PJRl1~&TPK(tQ-9*0yB3ow_0F|f@ zc@}c4kalVngu4QIgaWW>Pdh^H&>_iIoz z!x*z3<(#$Iu40HFhINn{>L5p5gpApXVe0}icH)~*v`%#&yc7`{n=*}#j$ovik8t^+ zaG9~nB@mTbb)O+LGvqe!QNjpu4b;T(wUL>QJn3lqY^bZ~U=rR%MUcW6etd0;hEa>L z6x3>-ttwsXQ0(PF6dX!@ABCtRvVs$|N3>h1%&|9XI4oNzv1Ov33Qix+AT5ZA%P}}* zgxAR1+$VC$vzLf^O+gn(zxQYKF35&E-~BedBBoeJ z_JAlf)>vbpk2%}+5|HH9hI3Tr`7)4Rb(nLs-#tJ9N15Vxq5|8_2H-vBh_@(%+n4pt znR8BkjTA^igc3w?mo%5T*DMG^0mE11Ea-IV%sO1jXE23{$VcgGk$zRS?u>jCkk++p zVPN7M*GYt>nLEfi`#{IRI#UqS5Zr3)Pi$_)bJ!-ngVfz7I>()E z&cinOcT2{a=(-w)Ps6-2KTlex8-012&!j=n^z1`n85E zq1fX2D0EUTh(2GRx=nY)JM0xQLd69i6S_zrr#Z7$BJI^yiL7@*d3XZjh7rS{Hb{fn z>U?{Zc{BZ;Vf6e(`Ww(>ijv5so4-IG(@c!A$1435hA&(WtD7~N_fTF(ABS>RFM3RL zlX`rRLmkr+lL(gW8XYKS)A#DJnlLyg6(ZP*@;D-)x;~64PfS~k*_l=%?A}p>O z7}6z^*&0WUGG%?pG?h2fKSUgpT|=NLpvj=y?mB1y06+jqL_t&t9q5Guk$(olpp!X^ z9Sq##??hW~?09%cMF5Qu=)Q}bL2ORtIzxH%5-Hlj(B3zWlQRNG;0*l+PDOOQ!P?v3 zBDSQ*@gKxNJoDJYp*T7i?%kda7g)z4I>c0`x{Sv|mw`MHgvlY(hHEbjPz=y5<4Cvv( z;9`hCdpXE>f;1Y+p~c%!s%an(kQHtYqr=VXgcz8~j5ZpOpi+UU{NVQO(8&Qy5Va5B znO%JJiI_8v_3(N?c)~VR(7@_cfGuzj+^5G5C1Wn=rfJ}x`z;|^fxLiJijbtN*0%AfpKq#r$6;H&IwI;c%i+d zcQB$tg)M8CQn2+Z(k8a*qNLy$>VPwkMMCh96g4Kw~g{XuRu0&>5fvv4eUxFpP zk7K36m#hZ_0bC6$o;A=rPH;UttksD;b#}~C?^zZJM3qIkTl<`4kJ`xp$%HQhjg6lS zaHy70Iy8WRFTjg%kXr2Y8WBvan`bXgC3yex2W+C#hT)8jWjOpg1e+*95h%;&?5pn} zr!5q&%0cJEXLM?pUT+gG-+ML7l|vmaPt| zGU0t0CE9=6VL&}pGOR5xqj-q0Y8*yjOPks_npK(Z>1C+S##&gKTcRp~*OT7Tf!#;G z>y*A7^E`3Act#t@^uT3UT3if!tNS1v{h|Bm%XBR}6>fffD@@xo;-zc~*a{^9XH8fd|jNR%mqW$;r!5l0tLKIiR#Iqe<&AOslgG{!Os zT%D|Q9*=1zrQxJCa3N08ANFybu z7*c!wOQ1c#c^ez;3H>9Z7_4<7-7Z?K0$FoSq1jxHk})9rJfoG_w3t@ffdprjfl4g{ zlz9RRyS{WIeCn%z7*h0HnEde%LigBN8s=~fA{}`U+w}2h;CNVNWXV}Ouz3tIFnl_b zIos=E+&L}b)TQpQLY^4^htHw;7T4$`wRp$_h@>G{I5g@dYSuwIPLLa$1F1KJu~8ZP z8%F@dz@}3=b81gHOKm9R1JMayB&ujf&J^Uzj*bFdOXuUDof38WgX8p^=UEcFf_ys&GQ)-9^I|V)X#w$&=$=A9o@bXxpC(SUBR^rCPAGHj zzxbK3#u+-vp9L`_$e|Af*%`zK-iA;GjDZIG)1=ZN%lwNb!>^jO1}~0WL9gSSuy6a= z6BeE4SC)`r?47+N4mp1}W=K1>jnX2Ta#z}9caZ;2Vc=~=y|j2gv{NOKETAv!altyE zq*)(Q=m=1TGo@%q{zFobEhaT~kI^$@l|fw_7<&Q;hHcf^2N5PC`aB4SD5|=?x{mXX z4B59t+k1#ntzaXzuuDfck5&&Hi@dv+IIMaC8vhs+vv_u_G;rfpIKH5N{7$FgnDZph z$H0g!j9=RO)HlERr{5Buw=~bl)s}|7K{%lW&C+_3H&|}whd7)=G~v933}1rV2!p@vt?dta^+pCFj`r$sCnl@5gWbB7E@r8{~0lZUej6PH~P? zH8R@;{(j@9FNf*rIigj@sZxi&L0+dDud7(ni$n<6=*a9;Iq-R+2rMt@kD2iDD?i}+ ze?uyTD3ODF=Hi9$#Iw)DXk>AXT=D=t-T9nD44{xVXOid_=K!VYI=k|%)Cy(>g(X9K z9&}-5nli!F4fM-NBuW-=1|ms>D8*cJnrGEm+Y!$kYA>F&#?{&9o7BcvX~JR6v+#YH zvOy!yN=yTwq}e~yG+mUhx&HPhP*AN|*SQnoH!trnqR64(zPjKBxYxGDG}Lv)`9>A)wfWke@~TaUM$(i@GmX$Osco~XkpUUb3P7}ko% zvRKyLyt+hMT@%;6v>iSBGkT)X!@a_;A%{wWW25k(H+;Ff7vM2diO zuu0cHp?k;v8u{9(QMq*;SPkSJ1C#_AV88bcmSN$OGjG}mi~T@uZCYfv!3MCeQFn@K z*x$egP!g$?ZF?S+kX;s@>l;XzMj%bV^(7W-Sj^Ac_=?9z{hKJ^i}PVnb;!Eqy3U4< zb5G!)6U}iZau}x~sen$-Padb+K{X95=?P7W2>3BD@M`Q;*r7JZ-s4q`yq%*gY?YUXBC2B67+-`WZt0tXsfPE0@;KC;7ZA zuTAsWmNFk9^BJ>JS4Kr=zm&Ih=P5 zWWqh*Gwamrwe*9 zR_T>O-n~LaK?9w=NvB0qN;})MAO?w4wqnHxs@MJ#YirY_w?OEMpb(r#?V)IDte`?( z*hn5;ajs60T z^sP{ybN!`EYB`RM6R#5 zGhDuW3FpDQKFYv>Pu#gk%GC5sc<0@#7-f~T(NwGdfUNl<=`-)cHL=Zc%+Gs{IbV6! zQ)fsh+wO{sq%r{a`8>#!$anA9c+9zKup%D?11LORLirvbOH1T3SE-RsQCpv;n+5vaVd}+{NKx$U^Hgag;zQ@s&`9xZXHDI#1=Y&I6SNC`$=kw$$#xu{XNanb!GL zURqEqjdzd{&tF7GkvlmQ21%k^(fQylF=feft9*si`4zUoXpGNbtrCzYC7;DA67)<4 zM6YEyNLg?nu9?og(ZdOj5m)B?a2KqrpNr;azu8NEljq@#upNc0Zf%u{ayg8a6;jH# z`|Y~ge?-oS!Ot&U7j_i~lQnZP;{k}J{SRWwQ7k{|8O}QE6w`0qmrLSV)VYe>9PZ6j zm3ygkFG_3$j;Xud?NyM$Rd^WiNw^_rQFyJ`Cx9s4Y9#mGGjxE=TRr2m=W)8W*JcTV zn50QbDeWV{bLb7Bj=;FuS=C@>w+6A5v_woZb6v};T`SYRaS|@yAJHoL5aMVDXQ_$a z%2LIo;XL8b4!SQ^Frh<5QCI>MHTDUokhPFp83SBa%ZfPl!7;MA2&W@ONo_mC#6wye zi~Qyd5^+%E!Ks^c82xfjbPRHQt|=wgt-*O693BNp1IdlL*z#hWQ_&RG(z9)_8H02T zx4a)^i$?@G%Yi2JgQ7sbWLoMd>7Q-FlPAbTuw>xN{}#~eEsu%CXMC!hi0 zsxF*Avs>EES~YZz4TZsT7pO}ej_|0pxq3%_mIui43)==ye)L|r_SUQ6@n8SlaPfs- z4gKS1*u;9cNzVU+S6>hJKm0Jf{deEN;Fe)-FNe2Yd?~j4?FP=3G^CPgU`Xy_3}5^4 zk3tdXcJ%ZF_1}|GxR&SU!u-vfVfMj2BIe~VbLVb&^Ti*9YahH7?tbtAFgcBBFfdnN zeTh6fLnH7uufF<=@Y5gs1lA@8myLMq-Pd_G6cwBK_8YH;pMCc`(Q&X9@+1cH8}y?f!KpT82`{OW5;gL%%#@$;G7hndnn+y- z01wvk!G2Hx58XDAH_OJqaUu|ColK!jqehz-S$fq2^ckZ{_uA_TmNL;=$Op@rXTH zTV2H|gZIGms5qvl=1F(m#L%foNriA-qgctkk~9l^md_?JQKRbG#DmScc`h|V8Zo0p z`O6NEb*=149EXe(1TVjao=JC&h0Ze%(;y3^fa`O`cyxLbza;JEHpLF(o)hC0)hVY+TOCYD4(BFlk@Zd1pK0ot&RfXxYJ@&o-K3)t`m8FH6%_Z5lsU7wGA(&eXxgd z#oRl=Rl;&n{u3S4X_E-PNAP8v>KxS}9KPrnXxQ=P`QmffU!6jSv+eIPRVrS<32s8E8W9}=zub70vmTjf zf=bv2Q4riLna{gBjA|seId}a!tj-E0Cujr&Ep`tCVG#Cpl;_89y-jJ1P#qpJu;4Ky zklAY=hhO}^e;YPXN+&ErAD+*-ho1n-sgPrz$FV5Vh~-oyt3|`HwjMtE#oOV*dmm8S zI)@TG2+Q}FUkzj^)77#inc&v`*4fbA8l9ec$zy^TsN|3E#%5`%aY)qWyypiu@6arx z3T!(brtaSgFaP8RA+TMUu`#&DWxknGO+12|vBQO8>FT)TdkxS3MK*y~HX_Wa;rK!d{Fa9}D=xppV_0qS$ zjb5VvHxX$+x$R&7-LHnHo_hwN!pL~o5Jb)Z2i?IjyW#$w`*bOrA-ZlS(uK>w-t2(f z?BH#?XBr6Wtu?qR*8)aQbcIW?k02yK)I#(^p4P9oaUf)&7Rguka}U-;7g$Go0qk;U zHW@S%k&CGGQ9fMDQN_2XV&4FHCT0-zi^_a5;ia$nC%U1T893*82LZM;3;v?ip(w_VVBLx00{)r`* z$fu=zD$F7TyfzH8dDvK~q4$h@__Hce@fHr2{S=I-T&Jjjcui5o1RK5rY_CJLwg&l& zdp0e0^__R9H=d71yp7za&R84kV0vvIC9sB!Zt!etIBe#TO@(Z1RATwj@&d3SXT}Nz z%Q@%fmLQ`N{o+syYa4l4niUOFG@KCYD7`AMMxq6hKx5?uH|yHD?(U&cX>_7^0G-s% z0<-N`U~|(#Hctn}0!E;X$W|7)QKM1l=K3V1e>aJM=_f(gyJmtj8I7IY2{D+*bQ1(! z3DkvW(zH2dikyp7KvCONOT7Vi9D}jM{Zbi2^OTNkou)xJeK;Zsl=3mHghd%!4Z)B@ zAyt%Zym#PW5gO~j4hGhtGsBrd%{3=e0<#3{IRuakG(Gk@W zvdwJ2Zn#2#v&3iEJ~u(GH48!R2&cfl4n^uMbI7>4e@q*4iU9-$KG+3`AuVW|WC^eS z&eqc`Qp=qdkVbjqzGV`3O*Niw1829WMJZ>KkL+370F#>a*wK(DW zJOs~aaD|}-u}m|}W_N2bq|loO$XB9`?vx;H4h4(tfI$=7t36U02UK))lEM*Y_p>9B zo9J|(AxPdKT3U~g_rfpWoWux~^LDhiNksyV2G5gVj}S?mZJZhO)gcZ8$tLy_qlCe7 zq`VHYkjv)^Yx1baZovV1sV5{lgHyv$k!<00aByh%7rW z^2azyMamTSNhcqH^lG4*q>O5OMgbimgst(aZBovv5o5pQdF9xj$Ronws#jfKBj;Af zPK`amDyWNS-Ol0`U1bIY{zKNqX8-=4AbG zAs!%An}sf*{r6^MdPag+QuFa}QmMJc%~iNJgRdf~??od)o^5mONaKu0Gk zO}%^$fwk5~eH{plhx*aAweY3i{@n=Q+`Ii@c=n5*505MDXnUNgI6rb6`H`n62^$Tgz_1Q3I%1=DiTqbF*k63%E1~c71wIpTVr|lT`5-S7m#?tanV2ckxEF2|T--g|6 z3(|$jyP^2d!&E0gg2E{*kkiu1a9+GM`)w#MQ2`_HNPH8D#j$kw($Mfgbav`YjPvzu zD(lI-26F5+y{ci{%=yQ84;(7J>KzQC^|H#ULa$PD#=-2JdpK?9NDq($Wxs5AwF|$a zqn~MEJiDlfGC6?br`+yyjo8o1frf;biuUQK5l!ZM$^J0DW##z}8MEaX2u zf1R0p{vz`msBK=|Kqgxxp)S_wiLOu6dUPpVef_P_@j)>>^w=X|gfx|{vGbR4K5!g1 z78&6RG`GD~$2nMw>odebPW5?a^3*MNF)l5KxA$dC@VQ3k%5|ejlJW0MJqbG z`Y=LNgK*vbJ?4m@ypCx{+#srLmFu#y{0^PVx}(IA|2l(_%)i^>TN$S50KdnvA__~h zSGaA!{WJ&?#ut*s@mIk)!{La2vz}*J>yhEl?^U!Bt-^RDFi<%n!44x#^2waIsI2SA z<}pr!`Sd;3-E-ZI+Az_}%L$9+kn)VLT4?$O9;du=`% z{#}r+Y>{!$IEu2?cQ72gwC$5?bwXt7SbCN?1|pJmQ#vZ^bC6R9*fjQnVuK`+y=JHl zV?(k6N11dVL%#FKc7g!U^hky^JOJ(JE)!AXB=6IsqK=o80tFFy2*QQU~i!Q;~H?oVM*f zN;yfFZa{Pwy)#&8>~Dt7VY=)>hPA}kREC7eW6p%!B3o+5X}RbvIbfS`fjE#n3xP9w zEz8eiTVhD%rVz4Jo1~GwLr5bjUKhu5qXY4V!p8J;cn`$-^Phb#bW?80E9jbND%jy# zFk(47rj3+1eH86nOkwd8`BZrvgf?`I_8u|icP-tfQAvH{n}7PPc$oOGPjU-hKm%mI zeP@7s*FJ^WPd;qfx!D zHs0Gsq@UsE10zGUKORO9S`8$X4SpMdNG!`a1S4MaH1P1_c>gZGV&jByWRa1i($6uAq| zHuAHP&@(psrNfzRnVP@G^?P20?qE8Z>g5 zpO2A|0xJ~V$NiXV5)!xM#|X%7XI)fL*b!?GcCQhE#J>W@B~}g~T(RVodvvcX&D-JN z=rGDf&@m7i_G^!O5-G5zUSqt2^4JtjLYOsRG2c(rE2^;zeCPX|H6T=}4&DUT*HD&- zcDts}?qKt}0Z6C>$k}gk+^X zP%67i+CV79URiZvgwRX=v4hXv1WBrpLUEl-$hRHY1oABNXnc`Z!czKasYQG(Fp z9<}3*C*jd(^en~e0?D!5Rl{!%*gdk9=;YKi_X=5)_qq>4huiQIJd;sgiFyuktZd>X zpJ5w>!Ksf%jUsgMJmNg+1jKX6bz<&QM+#3tG+_r4)dobS9mWtlxG0a(u2oh-ef1gx zwfaH{w)NcfA;{PiDHoik{2*t>#zCAZ1`gTASCU~n#KZo62(?T)Y~pw@h77~B%FjVX zh`tZ@H$ry_N2-VP6%MwoxFgSpMn)Ng+?r=2E1et!oU{ND60-z!XpQ>#0cCYmAvEWa z@lse~Y_V&WBa+rwi4tZoN;*4DP=y2F{nqRf3^IX&ii)M>=dC}M)X8mvW5<0Gu;3uu zyvEFV6UY1jL)pPIfqBLH{yeXBQlRJ1XihoyntsLf2IoL4YpTMMICZ0(1@}(mjsJ@> z>DjGAv=q5$gB;lgLbwk?M(_+rNgjgFPVOB?#15M_63SroO2gx7p3ZTC+r_O$?P+`@MURwh( zQ!dhyNg=CZ*?1n&9rVJ&B=-Qp7$?kh(+TUP?h+l`;QjmX4TeT12uMlqz_pm2y2T6? z(FL9pUW?@3LpW1ax+Yes?>9A+vZ{uA+u2$UT^aP-%7ds^?L(2qus3>umtE3F_=*O}P)2YGUR?W%^oZY%XE-f~ zggD_7eRm{^po7CXIM@RzO41ht)I_r8FgEDP&pb!D@^JX*LmZXCRuE-3Oam5mt!G{o z3Y8aiiUO+>*g{Bg4%qWk*tH~0w6ss3e5Jnr%|H1TPsj_69*o{NRQy}vw|S2wyO>Mn z5GmkB0t&Q>D+)Uwp4J6KzBxoFf9}gfMiLLo2lvKAJ9v3i zED1K-r`NF&z82<)k%Yp|O(pRjl6a&Z<_2g&YZ3X2&#@HB99AS`pu8m7Xe1?MMZyg0 zrNXr*y({8C88=1PD55UBo>Vo8h+H2E*`_`k5mqc-$LDm--9SHA$SvwZt`U(Ko_mv= z?MGMNXPC<^3>^j%0-1ZVOWxZY`!2?JpM$}hBilZYQz5b-yeW*gg@C!A=F*KKjB4^c zYdgYQ!kF&z^XaKcJWNPBIBjeh>%{Y+_~mx&BVZ8?;xl!CG}^nnd@e%k`yKwHQqy=D z#p-;RO7h-Bn^Xit9KzAD5h?(7!@@NAPP}wsx;_l4sT&R0I_QP)xHb2V+0?PHd!I1A zn4ERttgnr>wj=>8aaUN%lloIim4g? z#BtP|OC4C#AV)X@2_iWS>k;>4*^#+o(E{Hu(h!MNNSCP_^SK&9%SW|QI=kDfdpy@kZ0TBIFwsZvq0~VjO#A3$?GmY^nd=^hy`aF01slrru?OgiBT1b# zj?^~y)ub*R$Kioe?sWZzxEmdo9o_Bz;9l)Yd%ApwSM0miN zJ~XufLL?k~gaawx2F($AKo@nQEVXLqc}&N71PyFlf8lXqYT?!vhs2Z$ikr_>|5;sS z>G2`m6?M#n;*Er3`*hE7JpbxS%j|&Oi*RkI-qA7Lufl_1?M)RlG42a@n6l<}vE#=_PF9q7W%lK?CBm z5C3Cl{s!`k-r@`;DA7{~iWVNy)4>$WHUz#-0urkkG;(XVUO|tbt4K|pU$J~cEQyx8)pecNs@__-WI78hJev-*G{MEN2gdewmCnGcSyaFlEcVX zR%UTd2tFYkYLjZf`nBb0jB`JztO&$Gn7K!~866=L`>Z`Wns)`t_Lg(J|OYJ`D&7okNj%4GwBj|A}Nu0yGe) zq7x2q`s5DSr@>TmUdIXr?Da&tJDBEMWS>*$E_;ZmOOvc`mOv>5LbI?mN01870Eftm z0tvR@nz3u^FeR&JM#kAUQt-&594>?TmJnl~cxLUoJUtOoQ~#al%wYmtNx<5c))zYC zkN@-=--?k0Lazb!LK-zA3?W8)ZgWM1PNRf;Z~)zy$V}AOpA0<%llV6VmQAzAw;L>EXe6f*@%omCZLF`wweh}O50x>?#yYmhMJ~EM z26P7ek~m{-%v`-Ip|bZ^d>cJy^F-!|-8>c19907Ezk4;_V~H+YN!TsX;XoO^4|gUtfvxV^x5qE;>d=+maZ)hZ5yP zPD;yS@O2=ayeG-fbdLN7|F+GsrHBe%AN&Q;96eym^o%N%MNl&#-5T|F@@#0*v_&uBZ$~Jp!NpWNowHHw>S?Ni$1!1aSyj| z-HphL5uhNPiYK;QhI!sYZ-LY2FT^LFy(zTgXo? zZqqeUbWo+H^UB`QOW^nj2L)1Qo!a&!h6A(9IUu*)BtHvLN_lF_kU}FBc9?)T$>$|d zxP85xBO>{H8iR$hZq{)WXmpbRF6-@{aw zDd?;QTC}tuM+{zq$eB%>4A5+A+yF_G=$eLKkSPs)x|w9lfNqN|=IbzrMM59gEL4bkhwJ_jx2Fq$NSK3>>5vHZY;OSEOgg?Zsy6b!~p zOYOz6U(vJjfcw1$*!SxN2WH4wF5TmD$1F!?Eya5z7e)dwhd-E2NXq6oCS?cns7v}d#4wNYtodP2<+<(@I zkHLFvHQQkQ@Xq~m4UJB0_F{h39Fsk}C51Hc9&g>a&U8Gy>vAtW-4QtMS*ONUx=Bm9 zFy?if7zrkIo>|fuE<1JPMC%wx+Z`X{9Xg0cM@>)Bw293v28XEiMky#rHuRCOX$g?) zsj*C@N|0!9&XzYRty?CSJQhct07gK$zjkBDHP}aW_y`=tT9whnz{kaYqHzr?QoPIa z?{ZJp6Wf1(0HL+#fJjqp;|gaY!`%CB>!*={1cJN1x`6U0AJ4kk%p{TQ!C=k;9WI0k zkr}+&b_Sv!m3*Cy@yh=)HTlLTM=%PEVZXfTALiNjs%EI@(mz zsSD@B*x55c@Kp$a3t^sq7Zsd<2C~)8TDPAXBUjEIn`dT!SLnqrH$wP(0Efca3`az? zqE<%wn>f@m$VFIm(nKe8(49c0(^0{hWo5t|;+Xaj{J z!zJElJ6QL*)Pq4n5x@QJt#I_Ii7>JW$AbSlI>wL@lv$emEs$38SSPSOEYp*rwqu}~Od4M_X3Pj&=kMfeY> zndsQL6YcFp!x+vUoD1vD_iA(!+?t6c!W*;?wq0`U^2rHNT}9^rxs@B_+SxMzbPAs)6|~Z7a&FRq`Gp6gKQeb`;(2H0#(S9pBMVwXV09E zlB5Db{lXF9O9X*yS*pmP(V0x?q!5gF59)Ret|-$Hk#HybQ|h0fkq$Bga$y;BmTPh8 zkmwo@oycejCsyN>WsQ#+s?^+E40TY!@~QLjtXkzz?v#%LB#e{Z0KHKcbo4>ivo8Vq zLA_(Wyn3x?_#91;&R`^|J|PIRJFCv1$VxBwX+=bd_RNyl93N~dH!<`G&MgQasVtGJ zB+f{C5uHlgV{8aS$JMZY{T2Sc#rh$CE2OfBSTo4;<|L_?wL2kGUkxY4OJVTzQ?U6l zsgMKPkV&0wXDLh&=s}=T_-`61!?h&kZm&2RFWidw6;JwW9M3}Gif#!1yzl1!oignW`LvZjHT!p z#02LdlOu}9B{P*^ch=AR%CBIVkDLR^*f9l0U}X@bb8TR1Fs%`aJu?Ud z8k`Spz7AiMWA^cLZM1l4*}BSk-6ue}S;>j3Dvf$(@pD=SL~ z7TuqSJRNc)Ja1GcRHxCk3C|9Yjn5Htg(!Xd^V_WD07HI&^4jCiDrAtcu`^+o>Hu?+ zTl}m9QAz^eAcx3!-}b$x9!60oiX{x|Fy=dmnmsH!1OuaZg9wgrGx!S|fD@qe!Zm%pPL3>j6?Z!ZdU0Vs z+`4`p0oo12^r_Z>yN03&mah1G3YlxCr`$a>65HO!j(cmc#>r{hq{;P?e_$S~&(b}h za~lAO2rOf?Y#Hpn>5w@CUCx4zLXG^FhFo}FIMnEC0ngw5=`(u|q6a?6I=jD;$|MjD zjSK>5i87p`0n#k@OjDC4`AZb5=?C-omJfE~6jWB%VnZECeZ>MTRC{{qI5~i#qAjhB zJy3uR4q%2hwx$mHQQlb`1Z643J?C_KTsLGu_P(hJhb?ts%&m+tRj|Q2xc(h@@S+0_ zIPw4(!S2JVm+0pD6pL^YSo33=kSNdYsb2N!yuI2xBBvvrAvZfW9j;&fIP6~752I&J z;fN8oQw{<^?r=|`3slB#tM$X%w1-XQ~F6X=ear}>acyYhS76rB=0P9 z^RgmBRUDBjPVwUWQY4RA-X=Qa8v0BFIIKDL+mW!QPmYr0GEGyX;14i-9`rU~bDvAa z=iWNnwAG^2vxdN6G~0CAao{yl12njLFbiy(oDSztPXLoMaA=EsCsWu8u-S|GaXx~S z%>G(P;E;9NkcQ9a_)x`ylbqfO%Zq@QCmlEf7(Qm%H!w){^&cMweZe6s;q(HX(vGIi$uiYAB(@>XI*NOb(WHGW!t2iM~n zeRlt-6XpEGUIWOZ69?^qP$Tbcd-4QO{Vq*$>=RG`PHynGWx-99x?Nc9`N4t1c&H~V zCqy@J<|9hMD-P>K;5>&8Q5r)dA{vQj^kUHgP`{Y+G}oPDP|}fW$*woJFM~qo#UvUP zVEzrNw%!Xz%pWLq($*OVs=n14l9a&_I)LNR+~eFLABP7M(TJu%|BflUJCJk=+Ekz$ zWHP%5((?g4h$WoHEpqDUSRA0{9&kVRC(*EROd7E`L5}~K(7^zr>b;jkIZvZA6zTy^ z!{X|jI7qh29*7+ucX2>FM$fUvW9;i`&=~An25uG3UIQo9JqRf(b6A5cJu-^yN2UQE zhgRIXI}7Mk(hxZKTLdIYS_c<$pr+8;*VYN_N@E~9=P9=>hj}X9N*TB;aAh{=fC#LO zUL`GoKG>e@4@sJhwRc^>sF8Xhkl5#pkrP4Yuw4YGn93+CNIe6sNV#z~@}Au&$;b?H zqr53=+6Xj0`Zdp#$mhb7pLzzucqRPomDeF#ZzJy@MC^HjhcZnlY1;Sc3&u)6&aw!h zX)M=GM?>2lzmOqy68}%|{L61*&L2agarY|OXv(H3<}?#9 zFRLpsUR9KOt`PO=Iu$ICrALxUvf@r&&%7|kri~m-CsFj=92*P*AlmWpr)WP3r0X^0 z6eQV@o4aSIF!J4ZU~3XE!xGvS1W7u zp1u_ing@ipqqv14aZd1JBk#e8ii7I=Emd2`@T~(Mn>w)$-{{yqk7OSXzCW*{-1aau z3WO}<9u$lusn*zFywv|NMTFT$zxn0w)wJW8N|{^Rk`f$J*J;7AqT01L>g@^kofTFYw& zPSP4ZCLSIci3W5Y_P@qjGHD#d!Ty-57SeBH?F;Y)B$`>Ww?vZ~;mvkFE6(=T&?5(y zVp&e5V_8G#Sk~iv(j08ZP21LYc78GJFwM@k!~;C%c?jQ8o+*0`lG?Js^)l`H)R4k|Ubos8OSy94zxV zzy}9sWO$f0tA}--*R$s#H)pKU7A^4gd#tbB3T+D1NeQp1jaUlCbL!NXD@D}UmsZ+D z4o0l5L3SKDou{EqmNKIxhWExz(n|ZQVd6|NEU&{Us5V3A5nK)+>2g0#_Hb7$(R2ul zN=RAG6TPlO>a5c%-f`0>tf46v&-ykfNgCpAt^?LHGwBa85*k+n39Cyqh$2&x$b64- zZcaasF{n`ze3GPl9ZKwwRMi?|dXJ63kt0zzqr2Fghi8iiBVc67Jl7i#>1N9_w zFLCh`{b%)o&!B$ub9GAWxY~kZb^6sKyoZN$9)f(Q7H7#`7O?$2e7`ij91R>m3^1SB z)icJ>wzXJ!)0U%rnBYJ~LGLG&0y-Cm&Va2E5mX{*a^7w1i8^2h=Rs0;83$csfwBNq zXoE0ot8yF&f*a|Wf!+iNJXV7w5j41j3Y?9XA$Yg;*NL}>w zs8KR{0;G-8Lk34!_ z#E!}c(v2yq1op6IhoFb;eUFFy=;apK5~p+H{!d9EfTV&HWa$8?1MVpFHqsEy%1)TC zy%7?0*X$oAkSU#JQlk}T=za9Eb^b>*sOscwWt;TFS$K!k3jBl$WJQoE`5b%ua*@U& z5|O9w z=oKCi+oL;;pCtDcVNJi)E}p@`m#zHom!zd84S*C@|Ax!MTz1*mt+L+1|T zMKww>UyTvqR7IhaXeE0*vaH{Q)gy6D?@Zz^zG ztolScCc^Cq|`$evRk}rp35BcvgoC)ej3*?eYbjXSm%7*Dwh=S;+ z6I_`T0U=V1jF0froa?QovUZlR(BaP7T!VAR6=hq)fNf;G3i%()4&p4}QF zDm$j>jPRJzf!iamB)L$&L6x+C(JtE(uWd&>_pre|x>ou4I%;{TP%y$2qSavNsIV}~KtyA5~;H2vYZybn1HHnAGB z>=P7WVQ!vhAdjjtCgK~gawC)}Tb!o7EJmt>l|f$0D2UDEDr7fmeu*5jDEVHU%SjWdlnB2I^3X=BVz_PiFqa6=DqXS`Pa*ENyzX)Sz#$zdI7dh00g~f31qdA-k z_CGz(LB=C5lk-DXM4yVRPw&~T=m@CzMLf1xmm`dd&g}*r{3DwJ@k+O z9hRpk3w?fJS;6ua$dB8+ylmj%OS7)g#F^5+>bkDu!6(Q`f99= z@Eji1JR(}hvCd(jP9Qs`K`k5}mLB9OS)t?s#tbI^LM+9bc;fSKrvNFG)7y3M9t zC08dg05@;n4{yBu<8Y3EhHyFDd-rNMH!(!SoD0kM7q|xR=ghSufAV7XnfuY*hw-9Z zaCROJ2IaAzdg3wqSeWj@FamY2QF>VJgHg_tC8!dpZmhz&>5E8@o`8<^4lMVLn^!r- zRrCRS%Xa1=wl#Q0ju*jDI!wJ7S1&7UK@*sv5Qec&oS0@~X zLwb1Z%)TA=R&KGz5b-ejkPpatGYye6Mgw$+SP0Y)y@vD_Qk^*9|6Uq_Sm@=6L2|PrW8Z{ifBZQbqkxSL@hoK9<3G@Duz>FjGH0Ky}pa6+8 zK^gYU&7Xz#qe<4?^H1P}fv#}|)zjKFQ$+iquPLDXd>O6*2-!CCWV+DZy~{U$-nKC(76MDLB%7AZOqSXvraZ@w0)rP*-lso&z+vSDrdW*9mDa5xt2BfZM% zhZ4GC_Q9kg5}NIt6AWpmDKg|pnbux%X!wI|AP8BweU(a`AU6AQxF@#?S97 zQ)7x!b~Bs;7RgWCyEUvng9NV>hur7(dzC|rT~Fk|L3VxfY+#xk=e-Aa!h`EKNfQ83 z;cZKPaaSxIo!5#w8kK=Xp;O%zRgfMoDy<>Oqxbb`;R_WMeiT>mhr~u7rxoCDavu&=!bySEQ z4DnD7D&+E$blEfFKf>wI7?#Mx>&#h~?#v1&DN07{f=5ut2x|bH{>SX>+7kmfv@g3vxvQ zNbG9?wXmvK+{tFM+3XprM;b{Xd3)g(4o5gFk7a+2`80kp5e`}57*BY{nrKarhTSB) zNfufAf_>i-iQG5%_q$1gU0nqrGoRBfSx=YMj=&YmiE@{pqswJUVf?bJnt9* zNsv~$=sY%w$id#Z7aR=@GM_9gZ)@7vtHtkeQjF|WaSn)SVT1tE(NXL#dTb;KlA@yo z;Zp9>$;Pvghrl*T>7gmD8v4s;y>tH^dLuB_y?Ow7EJYjIIjVzT-;>u?7v5X_IqROr zFrJ4=*73~;Z{l!45X6x?JtOD7OVkOUDarnxY&~N}0wsY!>K*tX4I^c6JE_>L2;=t{5ky4GhmMQJ$Xv9<4q0*tY*DL0<@iSf;NLk|?tbaz4TlY(FnM-MU(Bm_iHM#)`YJqm z3`q?yR{_w7*)_`k0XiGjF)JX}Asem4oHj;^W#=;?z!>$Td{id3>9yzMZk$xkljO+f(C~@8o^mR-#d+ETt%uXY<^Rq zyV`o;0o5~C;rSmQ#=RWF*-(}>F5aKWjo0$5n1Zs>!Agn>_v6}HHF3DV7iHh(Q5x+8 z4v2>P3Z$%gRv}W#g#Yb-{&(Snk3T}GPq6;vX^B`CxPFTYiE~m|GM^VnE8KhYUHSr0 z+6Zz|vy4oqf;0H_Z~s2BrIm39Hr0Vl-K!?ZglRa}-e2%qV}96BOa&aj^x?D$7L zVFx(Tsy^jpDm*(_jsihf&g(dnkS+;KdZaXTWYVmI%F~=|3a6@p1H`9=X(K%LuS3(J zSb~LK$`C#3iwm_XlrcpXRRBnU*F&z8D0m|+K0U6jX-SFBBm7C?=qP)-E_MgC&8`id zJaZ*F<@Ly2(}VqWCSeyh) zwCUu@o60pk3h(-G2r z5zRb97Hc&ccug#^N5kqQXEUgAZP9G=ogzl?nt%6+&Ue21o3Qf!zYWRpMeY|O=>7{j zzy6L2fSbrOdWyYr=$O4>5-Fnp3-%owU?676ai885S<)e6(_@glIj=a++M5gkN($sc znKX#WBL6*{sx0!~1s3T-dQ9N3j8S=Uy8kHT(WR^JeioYq*-IY+ zahyXeyPxA3F><$GfU_Gc%U733tWL2uc26zoyrbU@CQ~4E1{(&f+9uC)Jc}Zn$dR(% z2DR&$ipHT*=SBO8O*KWVElK__|NbxjQX|J!xU13V8fAN^BxA+ea+EEaFm9k8vhbUR z!1t--jH*QjEalQzY;SIa*RR-k7FjY{oqUIl8l0YI4Zjh!9*!|oBG>7%3zm6B z+4I8MzQ)o=^VpUbj_`e+=b7O7m9q*^mrjUlceJw;)^FV;_fNSW5z#Q+l#Mm{3U6E! z)?SZTWg{`t=Qm9goj`sr<6W}h6f9|-Oo@CtO6)vFO-D=TkAHIzC2Dnm3C*Y3TH5k0 z>gD3vNZc{+FUiXegp=%5m*~h=++ItAuusas4vR=EQ4&T5gQn~YT_1v&DMKOvIs@*X z4&D(&Ro71CYK`(K&-|x<_Idd8fBmn*+wZ*_c^ndStz>ZUl=ozm@3}jry!C?XRe@rU z_YT7D_G{#@&D6)4aD&uL9wOxHm#>gfOT<(vAU?>I1Ciupn18gVfQ^|v=cqtr%1kHE z%stoZ+w2jkCmcol986-YZ{4L^CP+v70we$hottQ)q#%HSW{i*0y^;uYX)VKG6bOf= zk#G!RG=hln`0=_9zVZI8_Gr`4hD9emuu2qza^@UY_O>Y}dlYlz$=VU;7RW~@6+>iF#{f^9a^n?#-bEXlHjT&n?lB3$Dyo{qo zX&U-RltA)Vi=6yE{S|Cpmd=2r5#c7-gEU5|db-VXorn7mZiG8;y$Qkj3ga|@R5(v- zPI=vETjMX>*nZWtS8PmY&gj!i;n$9#$7o;VwHS1+6P{g>e49(t( zvMndWAx4*5^kZO9Py?hy#LM|Gr#MQUhgfpTYjoZ#Rd@uWppQh}naP`>Ja>m?K9#Wl z?cb4ppkx`n;D$*qHNaz+aDs@QMTEK5beZ%LK|`H%S!rqk=TsszB;x%Yp1&C`n0ruw zGobBIzOu-k(@2v%O9Ney!toVdxL_2reG5zrmltorgSx_5XV1}LTQ9x_C0(N02JQy( zqTLW26(t%5+;+>Q(Hai_v&T=_zl-q4KYRgtxJ$Y6QMfS;aeVzYx&=ps7i!?OSElg# zazD7Hdeq7hZH1`vIOlf;UY)^`DL!>;3~>MAfB*M?sgYBFRbaxoDk=Zy4AfDc8c&@8 zje%bpXaBADGDHjFPq`3+4=lBh0^8nvfdDZ~218?iWk(_#y*lJZ$H9&EZ+keay!C>- zX$RK02s#;l#b}ay^M5)W{#??Lhcia<+wC?Nd z1n6`?iBXRB)x-6G*b>tL9748shpP(_^I$pvMRM5AUGH#;FL|#`K6KE^5NH zu+Nr-Fy>(vy>M@23AcE?Gas@--Q1IFX6{*teR>W>%zfBINI6o8Te0C>a_{$&2;FkV z68sYx=tv_lXoqfUyS$dFl+_hTOXPC7uVWCK$iU{xo+Amhb?(2ya~vEn(i;Q3zDB!P z5D>@cmTB4j&PP8Zx61Ed)6;+mW@&yQ{15-r{}?{`(_e->&Py8^bC``j>=?OQ+XzcQ zwB)dIMviosb4LoMN?O2v3U+N=y0HwBF$wHEi;`dAFof{x<;ytEIg1?G`q?Uun8PNb zbFGamVmCLGOB`{FOwKPYfdG|219rmR$s?KuorMg-SD0pc z0N3Hhjag*$oX(=K_-REupx;OrV_yY|HK&iJiorqy$Epc2Elr-`{Opixt>VNBITI(- zaqr|6b?g}s8qd+iG5iZ0WY0Ex*C6Gf1FB9?wry0UlbC=IC&FfQ-+-Oo$Eb58*bUAS zd3fbbCl~BA>ZdEv5OqP0y%srWVd%I)3=}o$$d3(;gtL_yE*Aq8^#eLS%7)h#1u#5O zcPLX)*Qm*fpq&kHLFsCmTuF-3$pTSr8l!V^yve$yV`slEJc&N!Ia4q_BYZmHUC}!r zKT!zl_uqvsFcV%pd=d_Jc4JFr%U^eQ_9=g>VxSJf&hzghigJ#z830u~17l@<0X_)^ zePFlI@53Ap-x-d3r%7LqaXL{RZ31tD%5c^PI3yWTBcAPZ$jIgC1)N=~YbfhHf$)bP z3(827psr{n2p%YkvaSOq-jN29O@SDQn#7uaoVsOtD)cFTcH(Lmw5WUWG6ojzle$S= zR^_@HKY3NY7f%=R9_bU)GrYH0nuFj+`Vq&ePsv~N_!Vb{vSHRq2VtC4g)NCKxzxEZ z4aF~_4A|1zooulWA9P-GeVdkwhWyo(*n^yFS&|u{9p2;gzygL;&+-ZZsv*qL`9V`jf{GD53MXSE&)#VeFEK&`ynko3 zv$Yss8ue5mya3VHF-V+2qJ>c5_Uh7tR>@nk;vygNvntG40}spCW3vd!nB&Bb?=6olSKO(Jafbly&#l zfi#w78V$E_0vhD+B_VnyTv6mfmjDGWnbQ{7u94?s9wfo?RwuF@ zkpd`^2Dx$TCi2C5iN2PIzFfy?9Ej=i9FaE!MGUi*F*k19rIqSx_z-@;>aDe?AC;Fe zK3~MENyI38cn%V9hSTA-+uYy6(gMnN1w@HPEVS1ir-ZMML2Uz}W{FHQI82N5iLh3F z@6jVjio1v<#t>x)aL#^__s7yHf2A=D2#$^@%{bA$@N9x;#&euSV9x2i(ZpDl%B3&? zM`Q$Mc8N}eWAvGroGRh~&;Y8y?2bjNXN0*S>1DicssPBh<{;`>2VbM4YnQ2n8RWQ& zq8y@T!`C-4JRO@G;S5hvN8V*E2i1)jiRfPrT)GGdP7w`Z`E{lk_}R!0Iei;2Cil^Zd3D8K? zk#|1aPvZ}F!1?rVWj_w?;a+0tAEwh3W^6h%wip)feFh6Zyot^& z$N4WsNPd-_@1o3)PA=gjfK>4;mOQ&ob(}gG?czX10)dFQQ3f}?a04C(<`>7Jy7wGK z2x@|!xV$(F8PY$-(WaBEtw+g4?!Z;;GRhseD3CVkIx43UI8sOyj`>75c>V>9f6g8e zs)*Gv^=KznDr&gCY3dqi0gDqWsw7z_^0TDFNa-P$qN_Ff&$PIQD|)<`F7;ifT8#KML6xB*9HMgWa`vy3esm=_GNf4wK zshRzAdagh`&6bx!!4}fo>$uf1=ncuTO;8)6F3>=nDOVBMC?F?INZG45%h9ehn1eA6 z@iqZkB~f^sz7IXp5u^Dz`lc-4D8WtP{8k}bmr3zz)Dfi^s7SP~azBR~dtm}Ht=)Z1 zx%%ApEV;QdPmAI^an^+gz&+I=@I=Q-7UVQb8VXa7tP-RVOo_ylK#fGubR2&AVtcu& zM)${`=ut$Nk`Gl8s{~aR3XDcro2)U_SnDA8UX7;_lb*4oHH~^L2Ws*eLa`d5Dt(#l z8|}q~j;(z*?;O2xejg7ouTS%HzdYFHj9nEsQy5jaT%#jV(XSX0aP8r}djJtBZqNu{ zv>~!}F-GzCKmObZ!b6qe@DK1jN|h@i@s8*6`dq{H979pJX=-6a@9!g=$!i>uYd$$G)X4R1Dx<3MnN)av+4kJ4 z$icWh79bVw14}E$mO(l3%g;|OEW}1J(Rt!?`G`0j&{nnQ=R}>97!61pC?}Rb*`r+} zmmtS{Lce?dLF7A!AtA+pL61Z;?!@)5&8~eOs=g^hF*_al~>?WJV<6tU>E**3D8tM+)me={yLT*-S`C*OF1MZ6xii1r4b% zz5Idl3_S_>Ebmddb?2O9_B9*V)Uad|>*_3>%gqA$i6+>bKVG$ouKt4J(slt5Q>FFB7YO9euh zQHAr}HxF@~df~0NZvk5`(&vEa8so`=ks_eR8i%^geoVj}5gyJV4@r9!eoTos41VZD>`)>22bS=HL^k$U7ht8JZATepaQdQMn(Nbcftr z!y%HCs52=GTm>caWFr?_HYag3RrbohIxGfD$e?GBpT+@a)@Xn_nht1s`bk#K#RX0PTJc|QL%|3k;I+SWo(iO0Egi`@YbpGwnX%}f#-1N_oEL+Nnoc=;*@Dcde(a+^ zZr-^|Fa;Tyvyi|U!$-wv!)QY08U!TP@!PpFol{ShD6KsY(^;N_^E_6*2@!o|=rF>K z7^NKd_2Vy@bjyAacv!V`bV9`v=akSRre_WhaXK*MrV&$C&2Tn*^sGtK2W2ch%{K;x z$R+oF#@S2a@JW)bQR3*mX>&|{R|z)cLM7?UXg`9=8E1!%Mh?-Ea};@M1PLgv7*wn4 z)N{I~vAT*D)@80~uwt8iQ2y#_!G)BuPP7Q$nRxxTE`DOgRhZ3+f z%gEVCO2uO|9HV32!^g!B9Kk`bo;Kzs*^~c&6z*I>frXos3Qf5@zIiPCZ>rkRR-ni|B9TV(OAM@w-LU$rz zAIC)Qgm-#&Mzjw?pdn5%WajjO@;aOhd*t7H^IkOWTM*t3aa1gib4>BY8O=_3uFDgq zTh4I5IH@{@kpRd7Sa+@=H02O$-!UBW5bRm8O0?`ed!0##4qZ^HCoC>nAz~nFAhy|N z9pmUxKDz?+s!=Er702kAy|txp4x{Mjj}k>nf~-_=RQR3fi!yPrzs~`r2}(4k7%k** zf$JZ`(Kt9bU}#T?{P_a+(+PX~yS)B{MpsNW#F$(HF&?6%E&tO&?W3$!GRm~WSn3$v z$KQNUI%0;Rb^xyp3 zI6UhF82<9~F#P^EzoFdhF!o|7Kz7xM$`CzH%+f9w!`!oG8H7bXh2?~P^^2; zpK;`9*{cIb1Fwpy6(ScK&GZGIpkS|&VFERB#W>O!RHuv1F0V(ZU8gek&j2G$ zbM`%xLZ*_X+LV4|aAfm109n!}v6CRLF`?I7Q6(gG1sqm6Hqb8b7= zEMB3+r~Lc&R8$GHUtS2-MmGa&L3sR{esm&VB( zBVYC(h+XJp=MB)gJS*;cMEq_)_!+-DhNMX+%=;gN%KlEc`>O|d8>#U4ci&UujAK9) zTH&lOO|HWuU>Fu;(#VIxAdWNOrqz(3OB1&HYg}(Q2{OUlfpg^3%AYi?e2w@$6J?sf z_0Sa}njCKSg1oxr**r^|JyadrRkQ}GmC^NA1H`!J8o|o!owvj6jeDWbd7dXC zZsSn(am*x8USZ5kFWB#6lHqA*IHVbzTKNy+9(C?>Wsz3rtnEI;VJk&aI15)t>;dvJ zNlAEYxPx6%xBI1|e|^QjA+k#%RBsv3mUyl@|2_xp>hKInp2-GG&<3L%S%H$1pJhrr z8d{xd(_kP!As9L-Q)k2=vsuHgK(dzjJytf&2;zYQ zl+sD2qlR5KZJgFd=UaALK+r_xdN>8A@C!!ScLPhSfC>;7-MbuXU*t7)kV@wjT%&j7 zfoZ3PX=xpcVQR{Ch(V1y58E*gf@_O+%hKaH#t9gpQ=CaLv>e((?3_x&9|&&!^ySYY zERGTpzPF{Q5Q;ab!Hd28d2uY~oe~#9r$9sLzax@CbUEy(H@sgz z%V>&=0++Ceyx-pJlHerB3C~2ufa4O&BzdjZ_5RE$>Qq>+MKH)mi9-0F&H}GNNt&bb zdn|W+F4rhNn+KT73W>W(Dn|*4=Bb{cJZ*+kWTWjlZG=65Oro)j{mS+BFyfY`iClPJ z{)wNX@F3(l$uhjo-r?5$`y4`7B^q#eFT?rbMoo~?fR>E-B~0pGIP1H}bp>`>D9-|L zr2YPF+Z?Nda7)jLCM#!W)aWuo6`0AM4MyH}z%y;q!Qc#eA51d@iMS>|-N7jNd<~RN zg==1i^>AZ+o!8>*X-I*le1>Y(wwwqxav)(XN#54#jn^AaE3*@z1VYJ^bc@3|>2k<) z6y>g%Cv}ap7&ON~8v*+|;WVG${D!59Q?r)u6?ukBK_|-w zxm+E%EMgETfg9wDt zn&j6}*y-w&Joo?3uRg?JQpv&n>-^lj4Rmdwfs^#{=by6gAccJP&p-JD86wri+Bp+o zl=~?0ISCw_Q#cq2(2y!lSu06_ zRzG+q)Sv3oF7qm`I0tr}H7KyN

UCo3z0&T_LF`FI*C$Nqj4LR8T^U* z6+w?&9nnX7Cd^LIJWfM;vITMOX;}I2*XTP8ErF>)NscpLk-NhAH)vA#lyMNW4Ka1e zdK<84uj~%#9_BLBF}RedsslYaKgInUh?3F)d9j>6OIO7{XG-UAKt)uWvYQUdy07BlN6@C@AlX_K>IKW4J8B5{iXK zSn_1t10ThNF9sVWxqki4=i#^y$zEJne2xdJ!o=e zJeYZEQ!cg$_EJ3@FCkd-$z{BAjkVp@B&ivBdngJRTOnV2tK*Xo*MJ*!xKf?QK9X*1 zZ7X|!g7=H2w770mXb5l(1AlqU1T~`UaUg7`=A}6(Mxc`Bgnq}flhL?ao9h}%`qL;m zD%tkSPD3=3P+@2oENd(?z3`Gg0Uh>v!2X%qxpVh!eAY9ZkbT(jO<;cWiV5z=sgXJ@ z5*>})Si0yK>V3P=SL_7>%>AXQVdg&RFlUP43Pl%3Ei*pWXvFuLa#EH=l=67ZD%>GF z&B5e7LtX?<9h>XDjsef>4QjkJu%a$?47~l|b2tsrc~n`D+bks~!xoeEiY*QsQBMM0YHk2I6`AMbnb(ZqappHP*QWQgQ-Up@kesNRusp46<_y16dMcmnc8S zIry)C_20u>w-q;0Kj%Rf^zP;sb?nPwVQv)%1H=L-ceD?|leES-NP%gZCi{@ivxX=! zj(oVWdXw|e3xE9b3j*+7Si8Lv-u{3RM;guKAWV@`Md_ljP*8{f%PCKTGwQt~8>1N5 zD^f*mqJ0Bmq1V{@mkJNbtXGG1kS9_JoYxT)^iLHc@hl)aB6GZrbP9bps009;;*Zgr z{~n%WjXRG@&X>|d&bJCPi(b$fjA^)F87qc`vprFe(2Nt0o>4yzkP!!$d5(1k3_PM) zM}ZB`EzSY5=I2=3ZC5~p93Bw^%Kdo{ARM?Vd@hHC&+9NRK?lc*s`BD0Xc6a=^+;e8 z(mcZ{`~akj3L$hIpJC3wYJQyes^~SUl8bv>OKymr5mTH;)J{x^jAFDa=#mu94)Jc} z%-H3!QNIkcx8EarCqN=d02e0$UX62EDxyj}S?q|2e8x_peBiK=9C0l&UT597Y5std zqO&~PSZE9>x`7r&rZY-7k+|`!nOzMTd_}Y@Bro5>G@*K5LnMjKp*}nb&unCDN{RD} zvFzh0RA_lzhnP5h^F9208b+a?iUa~+lriWqJtkh8BXU>vCybs!qjNMCIzvXUa0r$_ zu?$8>nYZDvJjZSKXgi+Z^W|Z=wk0BG8^ZA&vQfZcq(mCoZlV9M-8>t}2iKrBi_{0s zWE;7{@Ygl+oc$WIJ4fow#$lPFdI$&d`~>t4#}dv?3TNDPvi-T03K^R5iAJS;IHeQsec?7aeY)&B8*IZgwke6~`( zrrf!{1@yT=pxhR1SBuYX;xLtXejVZ1zku@)IbN(mO6BZF_+_N0;74!P@7Z)Abs-ST zo{W@YcRK{ZdPM~vKZL(AXIx#U0j8hP}}!5$6-@CgF#K!qMHYSC7Bj1$aTU*Yb6&iSK4 zIY+n}`={aR;Dk~v@}uSu*+_HY8q1i&M|kY}U7)j57LtYv-srPTRGTF-ja|I(BF)u! zFL2a(H_#k4_{V2QkURDuO)+T=0akhA4scID9y|{0D5MfM#wbyyxTL<>*_qJ60GO*0 z@_F%m6PEeuP?70$uxU0NQC(e+;5D*d@+l<13FGvg(~g4G(Q${GL`p531Jf0j$HlTm zHg&k+Y&2_b>rsg{rUxPtz}QOf)ZjTCvg$hF{kts{2rL>!8AEHm1agCN>u+QhOrIT;efj07&JbFPv$ z881&k0EFO!d>z4q$VeAQ}Y}UzWyJlCoNy4Shd35M|b96oYcj zfz%-|C6OUwvZPacw!2D}85;{n1zzj~A9G=;8p!iYW4kzacSG>NFsE0hWDI6#R8QsiwDD3Vbe*fjV3{N+o=y&92?;-Eng z}U_4b4J!krsSq`g3L&}~=Lv>RERm4WWy zs|IHzj|Vl1k*^^4&VsNrBMKYCt3!c)KzHawCNP%z#u*H&l@RI?(GdfiB4;7X>knVQ zq*`Vg`D(|rFveNVavdE*ly%gzeS)SG@-nRK(i$6x0HyQ%mqgMw7xP+833ccgOPEJN zD65>K6g&=R!x+riq|4GlyS=L0x;W9<0wsRzW}os@ay2oy5+O28V-!9Dkup}taP}sb zKnr>2CI6OxvatSubwtmQD(YefYC1pgCY&Rp<8J!84*DpXCVH#B*HQOtf|(?yc0|!k z7c~e#PCyez;b*XPvC6|KoscF_{04FaTks~Xxc?~v5rc;|`a<%1B0-ra`YpDury8rv znM!b`I;6tnpIyrdqv=)?#Grjt;om%;^2lC{!^7#(>beI?ljok;$;j!kVychRm1Zw9 z81)K{x0Mw(i96#n&e1Wian6%G`}y`h!q*KqZ>>cX_wohvGx&TW2#cjT7thW9`H93?Rl_O@P!tyeE-vawBW4QGKC zoH^hwYiuuos_REbc=aRP!yLj)DuChN^^@n}5X`dAf=$mah2`}dz(q9U!3Y--7~$g! zjP~Z^=V9w9wVia{$`f^!fvu({m>|WWd&%KCV^WpnPH((or$=G)yN5hi zDy-kT8*blw6OU~)yn3|}dKfk%=6KjpL3-tiY>NYFjjFjbO9>UuVOa^A%K9kWHVQHa zrZ+7r(MIVS(YSv?(s5uEuX8@R(bn*b4Mw?paAz=XB0hTQGIG;Ja%=ofg`oo^IkJR< zq*G@~B2F8`P~~u{L<3Zm=HI^i=8thN@;X+mvGCS__j-7`92z5b=Q3ze_wjHws8d9^ z!dbG7V~GxjLq&U8arE<(aQn_J+QLqwlQh&odpy?}9r-kH9?o$bz#0yQ{r~$oJXbg{ zN$yEUFqSBy!1}!R6s4q+H(!rfDy-2_5@{F%)sX)oKgD%3wWNW}L0+;Kh7slkvMN?2 z6W_Fy9Sg0eXGw6-V9fLW1db!IVLY&|vl4G)=stKqK7S7wu}(9Y8f%hfuOz&B4fAr* z8)s-r9J7jCdX_jb(a9dp{vZ-20#1QQZ2{+&9()o${p?Sey7@idZ<4a1Du=`VUw-qS z!~U%u$cc+FinF(XPR{UN3t^mgv_^H~IAICojME;GmT@ABMM#9U-EL6gcZu`ueoaqL zhZm2ZM1|_T+VS#qn>p$rJEg^ON*ifK3~X$LhXz!`V9Kb(S(DSTxnX|*5IojD0rEFi z&M|58BpmJjr*QV*et7?*4{-ibd>Ez)y1=#JKR8fKvu)k=6iU_J0oN$^!(9S_JkBd?}f=*_fgP5wFk^BSy}^yV?6HS62=lol4w)H*MMeR z1K@W1545>X8E9DKqy{uCha$Fg=3cJJ_1Jn_Zjl{0y}tbqtS-T~=d;u?1WU&UI3UP7 za&w7sS$X3Fo`-4)jE{Nm+Tm6#{S&5Fk6dG%?Db+~ZVv_q1o=}(ipZM6G!Q|YktJu=)R5&@lon#facrp6 z$7YdQMQ0?q&f+5amBVkDp$Lb8m`IJfyv^CONmh!Vjm_W2Yr}~_)=cNvetW<^=gm|$}1Q&I)XkS~|RSK+q^7yAUKK~#^ALtiSp zJgOBMTu&6!GpTMB{S<{#=lDmRHB8w{SmkVJ$o-+wrwb7eiWlIIMoV}arzI*+FBS)Y zAb7&%{0~7v5&AAZh>t)x*a{&C6sLx4W|3%y$j!2$4nm$M^6d~6ZasR!hXPllFt~&oswDjGAO9gVw>MC9i{b5$KY`e?$R>(t0Y{?9ws$rl<86djj~|9b z82t}E`FTh#EQd`zvG4!!3ntbbhV?h^h7W%IFmFNzuMd83K$y{{k^vy zghk4fMsQp%XhnN@25}9x`s>YSVe=K9Fq=@K7S@PggRc=5=2Pf|+BGt^iL@8_u#}1Q zLqJtr8fha+JN3E7dbu$l&1YIpBb+BvV9ASnVLNv_?*HdwV-Zg&sQLd1pD~i$wY4oRyslIcV$i zy*IfbI;(Oml+&o_`AlW9%)JybXf|3B&TQ&5AiokjRc;BOR@v zXl8saD)JP2aY==bQC1NdVyWVvINg#xXNhB^yT7#;Vbdx4AebMnvmZKc4fe{?EWg|n zC*CzV*C}B3ysfBF@Fn(4wB(p;|MmapE(=kMoE=LU*&?i>w_3 z%A8mS2{S>iy45*C?vNc|V!0lyGBSigLG~r&i3VOX($)$L(|@*7x5Hi^ot0z=ga}U; z$eHDe{1hYeE;6OnMbt3<^vb~C4m+XJBO?Kara|QmN|qI)tc_=0{TaFx=$TTzNhWvJ zK^#55_R2TCXL`={x;oev!L+&SU-$^mec|{_?QOLfT34LYDDLpKR%sv zh;xR6lfYn3&4WIWMoFVHQM6%zp7MT0I_GcSWa8@U*qLg?Ugt7TI;0fTQvi=>e)4_SUMrQ$QG5Bl~8KS}mN9@vuW7wFIXler8 z!n#hv%W_bfy$rJaT=Yu>*$ znUg6HK}s}Hkvlc7#A2V&P~!-rSwYE70%5)T`M(OQcW>f2!SV%S%^8JZ%#7@_c$<3S z=EsBwzy9LC;Gs6dhaY_umT%vW9?>Wd$!&6->#&0oJBA&5!lIrZUxd5w+zW}7d4zVD zdoQr4V;Jx;P>a3s=i$ZoUx!JYg$DW7um0&v+E_NjXaDkFhg&GxB>BUnP!>`y6m>+( zV0Zf!t#K)k8sID}bmoH2RnZl3R$i<&Pdc#yB34CuX<|>mcc`ivV=fRA(Ug zBSst|0{myUyFLfa$$IA2tVtdAng9Sm07*naR8bbTmjz!0j@5|SS_W36}1eEveZ)rHQnZkQ&h;kipN)M;@bkUSHOJjXQ(zfx_3p>e!%9nNtMTNdSTic+d@h|MF8GT}`H zd(Qos9?B7k#wrfvNDhGGVN0Z)Y>H$TvMRa8K2WB7naJn((aO5sI##AUjM(kbpd;qJ zNd}c$fxU_6&gjhu>l($sh7z+a@ZQz|?`-;KntJItn!a3)9u(Z3L^5p*1DOOu~*qB7+(iGdqM2IZP;Z|`D6 zcB705Z<|_?q%@AaD@$9iUPpsAHI1{3%uCi)Df!hyZj4&h$&{Q!Q&`4Q`Zvy;K86a3U6%4cAnLnf3kI7VZf&gDx!n`jleP8S$# zhTLD_93{vD8OaWCx(#+jz?vAJ0iWl{+_Vk|BYb7Hr>TYzF>T`5+Ol{A?hFiQqH()r zz6_ZKQdb!FGRj^=sx^Qt%)SytCoi%!UY_Q>;5=~N>u0+t4%C^50M5#QXSGCAB?Du_ucu9Dk6~`f2PXGT_`vMAdMP z;aEE~Y&17XlPFLLZZ2a3AyCfr2tftuA5){c#ZK()Bkx(rjUwtzkSleB>EtdvpKfW5 z&n4xG^L!1l^8y*UMt7E-sX{sCXa>ZW&*~12;d7u@V+pH)0_i5sk1dlI36kSvScbUW zd3!ykoULlI^}hFOdS3M2FLkuWUYlSLI?6QE1h3I&vu}tx?^`5RUHfWlfUKE<;50)+VIkX}ImMJ>U(x^wXc|w`g0v_(q z{^VC-nL2ArEMhG%3#hSnP)Y-WS67%B1>a-9gWc-8L+HV1V0%O|LZ^CdLR=a?UVtJVdV8^& z0OO)3YpcmPvzq5&saSKKm-|B+Q3^$fG#D37SFFn55iX8TaPs7I2uX7vD9|GCyGGgd zwYgE31AlB(&-0g=6A;@NbI4K{UJd<+aQ*_GUoa*`dw)T^*`1 zmc$8h_P-eAnQgl)dN2lLZx8awrbdR1c&>Ohogeo`FWjCM9wT$pLf0w0`y7L4@|-FA z3n0SL38+%~rzby7zF%3eA>+{q7lvTOyR^7f9`vc?MoroB?8H&yc-qWH~qY0cVjRQTs2^Gpq}#5P_E_ za?`{?E6(4b)pi+F0-Z$%x4wD_V=zJ5Z)|Fv`#~?wfr#krjI=Ra%Rt8%c~J}G*>lpR z6P?c640-c5&Yztlr>15jTG7XNjO1rXe-g!??UMps1)-$dAiB{=ZqT{slz% z=SN%UA5bDX{#_FQpu$)RVCS6!I>gDmM{Z!tH);P|<4+z4U(SFnyYp58@LV+fN4`jD z5otyvNbB8;&Ar%OItd3U$DR*xmQo-!HJsTQx&i9U)qunu{H2WLaX?0Onm{tJy*P|G ztz$TP=vvX=Gf;&(dj~IpgG>o^uXYFx12yCWiDVN3hvH_f>s*=%*99}1LUL#D79ZpcuBlql>k@cxA zRY5#s9{yDyJ!7eJ0S;0h`(njT69#`8r)(_4fo#E9y2V@qDmCO{Ic9yVyufGc(DJ#I zyqXG1vo3mKW&0rHSHd^nK4j$y2)Um;&Ypq91Ss7V4wU<6lF{mo8hd5?bXF~f`X)um4%NefKWcLWy(uqQU`& z;-=!-*tc8ls`#u@EU0K173}AGnC?iKrqrkRYe=H94$C8xCE%;$GYX2i;7dD5hsALn8XO zd*dmF&@~k*c7}j$r5h;FGg1cLAfMt=E<{bV1}fg;hvg0G9OqaZ6JBF zh+-JCe*j9*=0SZFq77=sW+uWf)|SK5AD)mZ`vZCAiSW)l@5Wvbg+Kr2VeRN{M452w zX%2*A3OsJ=E6(?j&Ci}pFD}3npppTn#1_C8RT{a#3#c4^8y(T&%_Sm_ySzEh??C8M;WqQ?cY~9+YNc92heN3!K)&re`EJ*>l2F zRNQ-H-Nr{1(prD@e|-_&`T5=O<|MV)Nepj(0V8c$C37brnPsO}SVIs7_J0J${Oa`< zO=$=m3QI(ZB@mp=kgo1iqkfO;gSrrTYUraBeNl< z*9dw*BnXhY7=r{iV-=DJknd}myJkH`aD*pHZ*oR3tmwk!g?Ug}&hYbZ!)S9qtl-EV zv$z+R5;h&cg}s2IVd<^uwKygm-CLf9e9Kwuf||?|1hkR041Xt)_qk90Tb!xQ(Aa(& z#)#gFlk^ebTBCXN8Yvo)nP~{WBjkPB$YFtU$I02ZXgv+u$4KB@susppmOv#)2Qn~g zZFQNTu?HUlgN`vCBtdenCvoV05t5}DN)>CQlGmf2v1dmWqI#P1HCrOJ_Np8%_I@BB zg@Xk2FZ!jSHr<ugw%&b^cbq48(_-EbUnIE)BHl8 znts6(1>$DWgqY_Tv@rpSAPds+MEw8{N6gi5|1!>nXyg6!OdcYMKOGEbD#JnKNZH6p z0*4NV(WHC=VQU?uIgAR@f*~G~JgoZ^zUJkTJ#HF><>hnvY!wXm$~lVbCaZXq+@T%M z+>AU1-kI@za-2r269|?H;u=NaI=dkn2M=E!Vv5&^P(Kbu+y|71YivYoQwT?PO3c$} z8{ujoCt=#_-BpR;I^^Rr7&2cw0Z$>tVbXEwBItGlY@>W+fsf%;PaqUiOyAR(S0L=| z?4wwTG`wfOCV;=q2Ob^lB9voPgsg=T4yoyZnHdfWM#a({kp>YCp)s9B2V%ss7S>Q+ zLMBZvk5oV?^~meZMZ@W2u^8=RKx#ytS3tQ|960*e8s<7^#Ub_jmgdPL7{h2=>w85+ z>W-Q|s5F?#0Q?p^3}Uc_yd`5g5*UHNxgq6&qLcCOy2d^X!1G>Lp^Ah>qGL%mI!Ha> zRl5=vMR)X~s|g@NCjUV~bym6+BcdhQG)e)v^gSK+?(F0^+`4y%HmP{)tXqL-%XEwD zQYE^z^p9K$d(EEnPji2wY&D!G_uVMWGbV{nlFumGLZhZrXq~p~@)1JE3W&rMgv`(W zWI8d_O{8zhIw{t^Q#^Sq1^IHx((Bo4mLVLA;7 z5vA3~AUWve8u_zF{s>T{y#gfg3h5hIn=yYUgs+7jKpW|$ez?*PHt(^|DIt$36oE1rUaxz4hM17Q3tFpR~ z(}c?Hw{JtA8YHz2ve>g?fF?I-B0$SS?bl(%na^P~IfHGG3B0HnBml?2Gl09nHTQSU zVEm&i(E}L}5DB_j_PY*R!vpaaf;sZoLc>*Lco=wbCeTG0Mn+$QG>i=3Vq9*ABBaGS zt&y82FTxB?5T*r3M?DH^1*5;my*siQ><%4`qs$(w@4D2oOKwb}Z(DSFtUmnPFtH9P za{g{ebH?+_zYK%YjnLS9j3fRUv;)Hlih?&7?TG7i&SxdFkn&D8!t5CBfC(5HtYw;E zLcJ8JOoBuSOAWXYDSAC*aHLudqVn>sFn0UroPnjV`Sdw*Od5u$zQ=wiGwA#(drPzr z+!NAkpM)u#l#9b}AgCVUtbhz7)7ldEs84srGUsw{7f#CAEA$`(;M#jXI&pG52v!I> zayVL6CCMe3CCIrJ4$PbHhbX`FfM!Yatb_Gwq-@YzNnR&GG6~;94n{I*>XtMCj&-ev z46&v?DrT&*m@0vGurw!UC*gy&4`O9i4ZXa23-n9h~91k3UBFECer5BWi#R-On%&@hot~#quqc7(hlqpCimd0BU}+v) z2SG>8=*p-%i$h_=ro$i#qBGzcOryY!^kwr`g_{xPBG07)Hf3N5lgi){#Vtd>MQ*uB zUd-|_S^JgCDyRWDGN9kC3WMuTkPgX`0=NM3J3l6eiL+(2tU;TEXxJkX^><$1Qq%@( zmv6{OAF|SgG;1ipItC}l?|5O97oWrGffEdFfkWlbEzwC5J?f;IE@)iiG_a4#*9fv8 zbT40^DZ_~UoP-!9;nQ})8JxEqliSSa3I*EKge8mJw~qI#80}L$Y$7QR12&l$3(pzH zjSJG{j2u4qE-Y+M3XM^QGSn#dr!*%zJ;(SF@gT30tg$l>tnD=wHF`$m$=@yR$*9vq z7*Pe3l_aH%l_n^1p*o2=LjRsKonBi&%MRCp8V-4}(tx}oYiyIM5y+O3CbkZok2_!*_^0gt$pf z@qYV)NiG}Z`{}82SisO{IZHc72jPzof!TSj!GOFJCu^F!&Y-AuieJB=buQ08yST*t zQ6fj$Vqsw!2ZYoQ@|4a|28vN`5jCqPoYKg~5-}kYM1@wWwAo`mGR(n2>EZYZ759jC z&vsPY6ZG7m)$xF#QeC1+^uPf5?vbV{vgQZugEjMw%Y8mOA5O`gZ*2a+`Vl1bC~d{z zx7(U5a%;aGG^NuY4Lj#b{*gS9*eeD3ZJZwiZF6?&)I7WG{YEZ0=63E&$(r7xf1sTAyH%p@?q?!zzP^}#4 zRalS1`Wqj`J_Swm@C2~3vp-&Z|4sP#(_bM!%AXYxpeGoc*wGY+EyuY>P&s4h6pZ8` zVY8wO&_$wk$~4;`RuePt4%={pVB|StMy~3|G;)f1K{)~T*Z zvE=@cmw4zN88aEUm_TnEG7Lq0}F2^4v5AVrW(j4pecr^>+cIyqlDi)m1VETqJp zttTLf!20Ne`L})%noIOash+TBAXx)@t6b2!S*ur%y(tFU{}@`xOoDV%g~nkW*1SdO zbqCqjL9SC0TV%pwro4_G;L)))-dmN9o9SbSo)w%q`VLq*p&byV)YkSvwreL;R&6{9 zr8PQNvfme!7*^q^oRbnCV?9l?8BA<&{^pk#u{+~o?fxyC(NpXfFW^f)l$-|jg~1Z1 zmOaK%!nT+;9j5rPU-*Ou_Xbs-L$)%m4bFgG0R|C8CFbqH(Loz&k+9Ci7-WAg9QnK zX}V}h(9%oB7s0FNU=tl^+>I3U*36+cxHh_%_j?FofNFp+)*>A)olu;N72mePD zDPfD7k6wDek2eQV%oKpggZXbas)WJ3=E64!cgK))8hBz~xE>lQWN?5tzVRr^Y%+J$f{@#1<;{@23W1HOnN^DVU zN<{~Deqkj#QQI$wyx|Jmf9D;H$uw+qS;eGcP?Dk#wn1Ga{bA#;3y``0_*ef2DWmx? zkx*%I26(1e&rf7;^@<%KO_QW?Se&0RwMaKa9K$BjP34q69E{qvB-n0?8I1oZ2$&K2 z__YMsW;miEC9MJDoIoApzUhI_vp)I#@1hK}iQ0NE={wK)lyQFy+NF_u^MhY9gMKf( z`r*5KqVfK)By_#>~MQ7wJk( zLgTn22-SV0ZrqmbuVxxQRI81MM1(rd8Wgw{au`?MdWKV z{QZCUPvIUN2J0A?*713mBrUY}3gu6usU&iKN-q^$1oR%dnDbo_ML48vjx&C8!Mf6v z$4Kw|7{kfy&o*9!cWG8tXV{avIfIi(&0=&;n^a*mac)JXenNe1m{TYW5zPTP>)E@X zlZGJ8g7Y=flYH3>2m7z!yv%_h(qf!_9B}p$*axpW?B9UyC2gD`Qg=kNDYFZlGF$x0 z2a#)LGclHyfR5WizS2~CwQvd&9Ps4DKDysvE)^DduVt8{eEt|50QEfK63Q3d;B%a#&t^ePudp*DhOiez`RExdgyjG1>~E6ZCeWy$&q+N^Ev|%G z3Bq5R6b-tSagt%2yr!KqwTFe$`LLN0M8e4#hHy<<;tXoVLrn4JS6IBu@F`awqsJ2fEi#9~Jj(rOBAV3u{^H*tS8=dPK-vP5!ct|aI{ zXaFB&fO~?FYc5KokDp*(ioauohgUBHn)4G4Ki|d=mH6iGWg^-FR|6D{6`wQmqhN^` z_$4%3*8p)KCn0mG#Of%uF1e;6`IOK^$s&|#4qT5L9p&eiW2l5;c@Ii0P9MZv$NP+i zb_n}LL(aV!DLNI9e@2HS39O>ganb$TU+5Y6Ii@jmWUvbu6`c$D4}60mQfPg4y|f00 z$EY)smv9#BRHw0Wu!@m`pP^9m$Ot_5jiANX;!J4_-4%1j=HuHaT;Us|43(3{+h@yS zB(0e6KiAOa7UtK@_ZW$2P+f=2xOJnv2iV8xQP)dmeG-VP2psLc#adaO)7Ln;P=jHv zxK3%#xw+lAFO;02ARNYFW^1p?}5{5tlH6;Swe^`+Q1n|{TPQ)QQl^++ z&pPIT6syN47<%ADLN{z`tS)f=d2}+lcdIg7OAnInu`?PfZ5Y?=iO*yNtHI=#QRa(avdD zSy+P+KJ1{^hGStW#ImV7x0i7;=^w%O5>qdUSX4F9=?o>f1oX3q_h30`22?_Hz&}?1 zT+miobf{rkgy^(L`bv$c?CM16;FqaHaK!XDIcizijBNE+Gy6dknoNuU(+?eNuCzmKiM=V%9fOb`F`3`PgX zAd7P~#hP4U**vpT$hFWrcw!7VW+#P#(Jd%X4amtBvnha_t2k4Rm$ohV5__Ru)bU)o zcLOJG2IAUy*uo$caS%W17u=TbGZjT@<#fMr-*v4r0;9sP19AeoxXSz>X z!rm$)lxAKNQ70ijqXnXqlOHAJg+pwKT#txW#6bQ*9o;VICMUwkyau9T7rv;cgQbF` zz%aIL^zC&O#{qo@c18fQMgT#Y46-t(4(^LEw&ziiAuvTY_yxLxR15#5DgEPR=mU-^ zzq-WvzaXVFHH)5r`;;QJ7aOo~|CSB%DWFz3!%Su@66n(vnL4c@lG-CWr zL^>su7o&c?4OZMg>=VD{Ki;5$G>`5896}p{VWL=8#C)NLS*TM3=!e-|O@CiyJHRmZ z8D3)9g+xLP>KS#Fu{_VnkA^){L>6O2p$$IU>q&Mnud5+N2BK25afbW^i4Kt1Ihoa60a=$uC7;TFC()OTu2P^5A=Oz8MHlJ)(vy zt|b9aR&0ShryL5$v3d_qc$+~;=U_n#>z?6>o?&dKNCODp*`2P>XK92Ks`&{9l@OI5 z?$Njh2WAGR&Ot5bbn4TgvfZ;@ym@$GQk&ekKSS@+yf;s01i@NZ=Q>Z+sgXC=uHly> zB1&X03XO+Olj|ib-}DD=6`T@MNXKW9-(io0m8E6KMmR&HA)JV2i)y=-u|voXhn4%X ztju(QTowBOBp2B)-lN<)s7UzQw1w|6eKM3iYtn(4Sw|05QfEK}hr=sBL+E&Y{YH#D z&GS3s-YOXVaHArp`uV;k?rHwN`Zp1c(Q%o?0N6)C1jv@rE4Ock7DJ#cTk65r5FwCT zBR4_`GL6AOi3iy=_0XD<5%%2SaC;_g=X|^iq{_cP`Q@*|V;q8mU6c-M(Pr<>50^;& z{B$w(k0g-*3_;i*%MZxQg zSn6omp7&ucIuediIC&g5Yvq;O$?|lRGb>l*wiJlGxxv^SPQp?ac`m#RnUoxqm!uk?Z}uU>Ket_an6Gy zm7|k^Y{^lOxh?tdoM`-Li*wCch%+~6GWOjcPUFz13OVh$0>}XlY8r!jvb`O97L?hO z*RNlM)sWi@V!@~%v+LUSpdEa?vUlhtQiC#B$HhBIC#!uf4Uw`#YMAc>>omww$ z*F&4(bct^54R4ph0#5C>U;aKkxP1%#XUQ)OcR=cPw_Y=*`|Yrg<9JH?%MOs&tX&?1 z)x2byDaMV^DD;rox=z{YapW%Cd-u(-jU(U087s495fS6r$EQGuSeG_k_u3flUu=@panbKewWN@y{dAN_Uu^0Ur;(@|Ur$BX1x4#R;8QN+CYqY5fKl$IpF1B(L#vJ#cTz z!>rQucN*SkclnSZTnr(Oi+X`L6o?P@v!XKR^)|3DB``Y!V;v~Rg}DT_w)Qwj4n>&u zntu;R;hHZ;p>qvOuE5!eyo}(-g_p$z)KDJLg-a4$jn6p7@XSolQyK<&2ceTOpW%MeI3rF3 z9Darl1Y{Z3MdhXPmRRV9sJv~4;Z(NM(^H}o4k?Cblsaf`G(zgp>A|b>UNnF@526#I z0j{wM(k^v27m*Eb6n-Vt&y+J3A+D)4;R$M|&4XDs*#M49fKq7KWN|wM%pL$bOGe-c zjIC)3yDOe2iB3>z3oA=_$_;uZ9J43X))Vm*xo;b&oSgAGgl%dX1rB<1c5==@juZYZ znUBbm2%$toX4F?lx$C58eC$YfNtCD&Wi`lOVFZ9l3n(&EE>|ds9LCc=6?VVlqvB8= z*TISajeqr0zKLrCvVsEFIkU20Z}&7DaKL{4%U^O|6VbS8nBE$F2jzbmJ?QcjMhOLI zSz>|Q+9-scLdga)kde;eg0Qy2)AsgnaL|s(=UEatyUfHrhXdij&MhxN^dZ_odE2N+ z8O`GCUa}r#oLlD}BuQm0EH9vVVCYk3wK%f~gnk|htbdNzZ12)BZ~Zp;Jy0axzxnJH zxndMFQQ_(hd-uN=PH;kB{P6h4gQ=rxeh@}AXGpl)HB_1?(En(7 z{=*N^fk+b_5+p~yiTUFU3RJS(7-zvztaiS%g|URE5oM1EN~BB>;D5JjObGDfK|wqH<}uhZmS%iGbYh&*!FbZ=Y22wp}9?MT_; zzODVf+Ir>Rws+ZE(i2?ICRj)G5tv2?s;_jITXo6~+3Ry&TO7X?(X*u+ zYeS`dMx(K5&rB+O|J}DCjlntGYJ(okK``VRIK{0?$e9?ghhKaZX4Y3g9@F8B`4e>l zo&+-IbW9COgR;#|22>{l;@3ehfPfWfYShH|b#O@8l9=i#f+p4B3pDxJ?8<{shh5M9R8C)qarUjtL-hv8_Gv$+xtwKySprSODd6u05x=S0$_0G}NRb%n zr$|3tR_HWKY9w2vWizsoz;3i4VOo84&Sxii=CKu`Wj_CG;}wy(Xf_Xw{GM*VWOZ;N zscsuVZq7;1w9Y_qfaN8q%k+;P4(n(i2GQ9}6V4URrm3)Of&LgQaGz9m2SoXBgSO9O z1UQ_J2GvnjbnO)ARgbYs>Hw-Mbx7ygVQq)*PR}=vNBkGx- zf>+P1hAH{){@1_wOAR*`EGlL5(zb^*&lO9c*mQ?EShMI`JjfCe{PJQkiq}B$Mw=u_o5mo|3MFI8_81%03T-ZH^vH6UcUM>1Kq>>AY(9ChllWbSsv1! z|6PQo&Vrty?2Zn$I7GmWD4X)s3=b&@i$%e(I-Sc%{fb`v=cgxlY}5#23|DX7ij&{a zI~)$t4x(+C_!rc{KmOr+O18cVn<$|kUR;f`k}-%?GN;W^4=6>EEav@~=dYMIg;ZlJ z$|;bIrS)|nW1vsgN#kyd(*f?6lR6{$%@XBq`WFb7W*ueh}w-P-E@Z(NtD#Fz->bjTOSXK z!1qPc0lrSe#-8Wq?G>UqVMZYL3K38RDF6Rw>Q0+1J+1@4-|DX3_XYb-f{;W~luRx5 zSYyY89bR5|zdPXiBn3Q4}aHAixFzHkJl@udc4H^8a_TE;vu) zqVDoMnJ3SFPM*x<;oCRh`nA%QIas$p{J6ro3V&XEu@;;23U3b;D5e+{RZ=GA@BnTO z&yHA}1MBJ|VVm`owol>e>*Z3)9G$7y#l$hho!g&PsMvY#85{KiU-rUJmMi&d(~U2J z*>s9yYA?1iz_rHWWXw6BDM!d&>8~U}C*!w!IW0f?(LZcH{N;O_8?U#=ea_6^f4{=j ze|~rK@%!&)kUN{=`U{(%zWdY75B~al&5d4a3DechhZ%&w`@jBug@~mNi#8tQAU#5oV5jgNkLD;hU9T{JhlNrq3_+sYe}(uur!yr9Y+&ZMIm zs;jm8=I^}SvL?I0<#;A9zsU&f<|x1T);Gow?i9(KEs}TuJ3z$0?d2CYfAk;!C!6b> zhANmm_;>Baf2!!86aFwI|ES{I=gNdB zAd{&(Q<_|f9$#dO#(|woWr3J&m4Et^_sf`7r*!pnmGnQ` zy!H0)WH58$ZnUx}TF!}!;ZKqBPH>#Nd~F&guU@bEeZQ3h>42y8 zr^xYAJa^u%jmahl;!2quk>}%#@u^a@*kX<$Zd~U&ZBW7DrK``!y!DHxav1i$_#mBE zYW$VAi~McERH0sHO>!VgAoVnVxN_^`4hUZ^-Bf96zl!=&m z?)Y8?ssvqiKxF{Rd|tW!+U9IyxlmAZs%-az?7;Px-rDRGR0()biiqPE_wSxo{M?Fw zGEY}uexns$9rRYwAp3FScY)ax$cICyEc|OZA+0B8tR=tTmCN5vQxw+D2Oh5hkN1MBU z_m7)*{?l()FSC;lzSDjJH>Tj(R`P1poL*>}l)k-`!~ELsy)(26?cJje zu8a*EUQl79Ha6NmGPCM0xwpB{YdMs=Hp2;bvWX7s+vPRz3`AFy^IZKQu)GZs>Zxw# zWizvV-75nf>kNI7MnGT4KwpY*=ku7Y$^Oxg|F)YBHm|+$W^G>YUQ-i& zRb{aQRAytCJg%eG2A?lAP02xKRRzOvpR^0t5B}zFH@C|&d~&-@Im%q{)b3}*fBe0_ zts?Y3P1e2?{D7wcXXVusIw zFN~uNY0fo&DXo0A!+%Tx+|Bb8gpyEf)mUVXK6aK^awoYf7psZY;YeE`326jjHC^{>{#j7tTX z(Jgk*;V6|{w0O02@0GFvRwR6{ z_wpE+7hf#}|Ir7Ng8lkC@8pf=5XOVQzV-g*zxwn4et7LvQw~;%*b87}At8JmY&V{3 zJ~?9E`sFX%fG35KvtnD@FTN-m>U#xgu*My{m%!g{7fwzPLvQK|4#q%+Gs0{sqf842 z7GKQLxnz+ewqL4KHbrXvLQ3+@uYY6nX-sIl;P*Qs`bNscc?;K@60$1dSv+($ejPe6 zUO7Zx*3Oro?rvUw{k06}DgY&~Qth&WjJS-E-6S~@U*?d}3yihG%!}dovpYYVIu%EU zKTTjuX7t=n#b&pAwzN27-^)_V>%pm*bz~)_Zo0-%tTwUQD{EjL_)PU4JMB*BfGoUH zsn+IOZ@tdP$XUs-BqMgZdsP2F_}~|tZ&ZMH^G2tmmM*4T==Gale~@81yZP>){%N~9zQ1|p^;auq&8aLkt*Gx#PVS3uy|ww|m+u$pJ{a8J zNO6MYX-@H%%@do>v+VL-QT>I>WhXNf9Fg~OJTJcVO4C0T_BHNLS{m@u3vZNCk3Yk| z{{VXRV*Ts|yR%blj&=EFJAj6(hrx2T z*Nyn(rLrfF_d6>kN9*_h;9GO#uPxDEdF^Y>S+~3`dfa^J+l7gpPMFiFaPv`gKRVfT z)TFs9x+`;ZzO2aE`kHCA0ujNL0PVrS-5k$vRaa5A=5bESJ8$NkwQobTJQvO%T}{u( zT4ltqT<93?9MsHD@@CJ7bY`mpE@j|$gZn|-O&?Wlf3fuZCR#q(Ka)e1^VAA~IZiov zu3vs3UA^1NsMo5&IJ>!d;>PCL^=b)jw1Ou+aQ(8a*KRLpl)1yWpvT~9Hg48Ffd#4VtQF^ zRo`96S%g5x51TgJsaDG}G#9*lv)^PFI;Ymd#kk`w<6)!@BMmn;Tt(x$(B_X2R|zN65X7^a5abi$RU35loJR! zbOGH8qv`@0rz~?mbua{Tus+NwCoBRlPQR?3K%7G{tIo3Xqn}eqve>4}_tK>&Wd_ns z{TL!sP?XCQ5>na;yd#G#E%X~lU>)MoM^?@MdTcTa^F_}`{9C0;4paVih`Lu~WuD!> z@C<;Iy6FJviidf8U)=d5rM@?(;l2819$X6F*0Oh-k8#%Z-IkHvNwM84^4p2Itd(}? z(y5{_+cm!TtDm+}O`caoyPuMHoOKXUDd@7^I(MdBuU@Lq=+%MH{OpGxeAt0IKiK@m z|M_oQQ{6f2dD|EBBwu{_76`Jm`Ujxz6=P7g%(+j1&C|U}e;7B=N zC`#i|e}N`NP?ld^%85~YLP3k_Z~=v(@?E;mstnt%irz%+H%$wa8nhhHRLD&6fU_s< zyU$^nsHM;Nh?i|#ri#YcXJjmu6wS|$j6JE1`|%l%U(u)a_c9b5K@6_2@Kj@lt2m9F*YWibv@j8545)*pViH10o7mf>MVSnvPr z-Pu0cp5{+ms(I-~iadq=2Y>R%k&mPB#T5M>yzZq?ve^)t%8}Qw*hUL6B)Qv)Ol1UaRnCH zhV%d@$yA^$mZi0p;Xb3AiuQkX>sOOaxe@IT;(bBN^`hNt6%;z;Nde-dp9>0Z6dl?? zO0CAJjDus9XN&K~AqqFmb1@@yx%cn>2LvL<5_sc0 z$--PuPCqTnaAS;qK~MN_28446;8NYuh08gL!Hq^vWuzCZFqwT{!poJa%|E#H@$6GE z2MT4ZPG5Q6cxh^+QubF{N$`0) zCCa*9WuP`i#HGWHiQXXBriah8hQA4c9EHjX!=J)OXQ-%0lRX+9jt?K+e!sme3b20X z+d0J1H~s!JVKh}RI-<7l_N5Fly|EumPvhCZ4TreBX@vCf81jA_qnbX(n}vY=$ARh3 z)3Tl){-VD3HZOhcou+4!>l|B~v6<#MU!8$77o4*pcPeT&jd8wdAF{WWgXRFFdrdo7 zHDO;2hYC4ndOzb&Z$!0dtU`JnZ}&H7}=g`tHU9woX=4^F{Ro zm&zcWi?{yy-GAPE{^6~%gRKI3{mpcC8J6FC7-R*p(b;zFbC6Q^?x!OkR0Hwy*Iv&i z6dXSJWb^v(eKUh@>OMS#CJqz*@zqKJ_z5mSJbE|6rZkh894#05V;9N*7MX@vp2A?V z*23pBC^Eo=nB08Z)?t`}gP3yCyxjFJQH;ub_h9;i5PhuzKhc1KFw!sbxmQZbcCDB5 zo_!|^uouJJ$$PhNbaFLOs*}g0I2`L44Ts>4%alfxrs5G%FrR#UtK~Vr+I;xqpJZHG zLtlpGxz1r%#VUJ12oFmC|Mma<7qfQz{%56q>+f-1x*CHU3CN38^qw#s&@(%w5wEm8 zs`=1+4?f%c?f?33W=YlAmWW-gc+UFr{RHZ9N)rJ-|M>Riul|q!y|!bv2=&Rw@3&64 z`LsMh^Pb=Q)|;DGUU@a=rL=fsj%C-}oh^Mi<| z{ijv&QsxTu822fRqtD|d)wRT$KyzpmXxh8pQPPit@kS{zd)u2^{v=~;YCzH2xfIUq zz?i_^&*)zcw$F1UZ~gki<`-KI*4p6@Z@srUECcYhZ-1i-?CYDaf9H?eIk0ui8S67S zd#`-sLPp~G&FQjFqQ{FjPj3G7ci$NY>!S<}Wq7mHA|AZd;Xr>FZtaeEzb&ZGr`%p@ z?(c?Fbq4yCaQ4D$^%D;|^v5>5N3AhZ*?uNN{OTJWuJdY3_Im$eUjIM*=*OFjjo28SFTGaHLCQEZWRS{)#di*Jdfdi3GAdGh4DGBzio-YoH-pHG5IX<>KmbWZK~(K0 z)ezjXZ#u=2Y%y@6opCCIhkl{#WSS1z7WhQ%+%H1m5U8Yn96wl@!pTI$kg1gtg z^UbzwZhwjo+IqLB-FDHpe)ZuvzpCu*yYQ$Y-B(KWp4hyfk!pM?!|T_gUGQIwzb(i8 z-S2#B(%R_$v@LA+T9bdhDC|f7_J7;F^Dq9@Op{$J({r-vs8a1Lk(`D)z&V`rr)yte|Ip~A*+TIjrHa(a8aGFw> z71=ev%ptWWN;>qQY?tY`+~^9oOdSRw3~%if~QbZ5HL=>V6FG1i{ppV%%!1E zUuea|`7)u==CGXzPup$wFhk#S`wy#(uf=mskA%Q+_%BuaA)~OD17S}YM$&#RPd>5K z?(@y{-~Vn?zSTfQKc_ODZ_^!F!*1OiCienMS!g^V_)_@o80lwaPAHpawVm>uAR$I; z`nD;LYGNvmif_s?hI5YFy*sxzFMs_Hb3Sq=d&CAvGGglAYyxIC#*=LYj+Xsg%D%l^ z0^)q%_tgXzC(_p<>Rf}|^{gn8n ztB+DdH)GPzT29lvQv*0GinVwD;pygmFii;APci;uX}NKkdpf+0vKWJzP@Jw9$`+b? zrFYJpE&ZQ&H9H3;G}0~CUi?}SM$B80k7aB>{ik>5_nW0(&4<`3RjN*Uk5ZK?HP^~f zQ8*UVDU3Y1K$Ep_`r+$uzM0`I&3Us!H2O`Z;#a@;=c=#om%6pnnUfLo0(poT{~d}h zAye;gs@>miwnp^%jMR;)n;m4LSV+Wd+u$=9eZ?OkZwf(X{wv{nTy{Z92P07+XG%TW zf8I(A5gWWnIiGE*&gqoqHvJn}lQR`km&Er%QMxosL=vU(~$VS}D@Nn2T1=pXu zo}#wpYN_q$`J^<~wdYG!7YSKjs7B9#BJK%7?r?Qc@XvUt+$%?D@b zWT>3BiRa0sgIp{n)i=E$STI+=@Tn@)b1R_HsHm=%|Azn7n^&%_t|HYa!;K_({?>Q zUDV!Kq)#h$Noi*YRO9EwT(6kXa>%Ej-`@P@)<@%ze7!l>hixvjo1r*Yr2qT>-TyGP zK_C9;XPf80^LEo9pO4|XcCmVvGGf=8=e<+G;+c%+g$qUN!694rtYyuNsP!e6TLqAE z$~icidjvxE_#gvh*YaX#h#cg3&S{^u^?cF%=NWYJdK8~Y=U?mlrv+IjW1vT6>Ntxs za3W<>mY-Hg`h0Woip}mOhes93Jx9ctvY_;9s;emY)6M;8cJ;=~1qdhO!+1)7+1?5hSNE*!nR#wTN~RJ|C`8?7$l|}F z?zehEfB5cxyew;UE_xruPx!|f4PV6DccS-=xBjD+FJDVmmtnLV(B@tZGJ{HoWfaRa zvvb=*#od-=K5SW~H2brPyPaL5Al(vs+0mzsKLtJk&V%sd&@0&{!SP}DQwn?8D}j(8 z+cwo4p9h?|Wamme{89Sndb)b|UdKr{2Io~=${y^e6EA01K78+1#iX}GLpm~9$2WG0 zwcK41tRVHd8x_E|z5me{)selL6O-MVZLgcs!GEUOI5l*>t>qO!3mok;U=NZroR|1& zyC8sF;egGlg**#{l!C}ohj8-<%K=bevCdiV37V(N+GC7k<$&mVcB89tOqED)&gD&i z^Q~7~Yxz-8=9LupYm>6EieOGuYwrDS^KDm)zz_4*>uMtAx=xVt{>n&DGOUgj1&(7B zJ=ng`{$}CkHHO;(D8ikHXYHvPDS+{B$Ai4lk#;K%(GHP zpA=E=^J*jVD;aM@K-4c|>fH?f%dcOVRR5Xg#}10BFmFTdm6z4?7g9Xt6VK$)U(Gw` zKq*u)ha~zspF+La_YYgD5={qZb}yTK!GrlArD?Y)bL%H7SYjNc#h;aCiq(QTFE)?a zyuD0~DDr94JBkDBCU+_2b-PVv?3j490x9dUF}DnaH0a%m+bBWnR9|TPU*s^^#p-&I zwGDUTwpsr4aZ%4JufH)0SgwarzMaB*E@$a%c(*Uab8UX&Bs`HM94RmpwJH1(L2oY+ z>zx?)bb?G^MSv>VMd|Ru5brf#&l6S)Vb#EP37>69Ez|p~jEl)9GTMD?|k%EI~kE-W7t3b^{sg2!RF1k-<~3~FIz_(Gi4-h zZa)6#H{&5+4tLiorjy~>4gRz7u&Jg8&9_>vbJ&!~mF~aXY5<3j;CuTeI4EiqsYoM1 zw=;v`=Q*{~;f)HHc3Wlei}=~j zj1+KFLaj`B5-f+wFM}>)(XOgF0;PqMb7|-O_V*AtpF$s zceyCV^3$)q@oIdN!HkzEIz`4koRTgBBCC*LI~|-4+ZTTCzA2>r%}<-A`C0R+zyCYm z%;D>t`O>epk3E@!d+A0SjKzCj{OW_vn;E>@w{Nwn%om%t-+HUPvZ9>^omn5!|dpQ`&H@R$$2;tJa4}JPR?pe zDN|0@Uw*Es(Ayc~rl87-{qtG8_9q#X{ml=5@{{yTCNMoGOS5!%u0@|2T#lXe zIC@K~3l?N3?47|0Y&uU+5#+5hrCZ9e*|e^*}xA@Zu9gZp-`w1TjJ3^R z7=qhHUV*eZ-Q1g$xA|bvFAv9#XFOH&M~}Pr^3{}NUYsRXQFIg}=fwb}lb?1f*y)VY zZ24OsXA>w}v!kmH&X{7^8^~qlBl@iCGw$8Or!s}mut1Vzl1!nj~Ocx@+o$$buB_vX>lbXzc ztHXdrDJxs?iV$qxg!yh%n5aO^oT^kUig0Ai-P#1mk~T@4y*%eT;ljo{*J3DVsH?%S z!`pL3K=DNeyD68(zEl4X>c`H0=)*hwqC&qbIZ)c?XjpgsAjA3M%dbwh!F;3)iaB32 zIA5C7_P?B+vnlE?nu})~$Dzsi5vrBNDHRs{969TK)d<+dkP)S5%*mUIQ4@0gN>d*V z#=IRT^kRZ-JfdMbkr+2BWFKRrS4nE1XVfiIR$cii^Tw7uDR;FPnn;Co0+Y#<*kqv=NZe<>+P6#t^SfN0frMaZBY7b_qnSEd#2Jo<7nQr6&~z^}o5 zDktV-!H84xZro@it#s7A+nvteE<^eC@BBf!IzA8G^pBlDEnPc`u4=L1 zoY6fQz8t$N+OFa78+d5eOR!?wbbDqTbuK{e$v8SO=NNXYMes4+n?SO0kliz_+~UY` z7H+iM^g(!dluQ|`Oh8@714YthXe@0$*|e8!&KcJ+;>n=ZPiq&>_CiUQK8?2(sFI$k zh;J&^uC#U3bZ>uybtjk)a>Bf~|A^oVJ!Q4&>V}f;N)Q{Pzs#j2gZPPToyZznUfU?b zf6hyeEPKaZ3N&SnWur`S(jRmj2j2=W+nS$kCB-yeyZSp7-hTG(KTh9eDgHkdfL)yIG+Oi#>m07#|1k{&cI>MfeY2peD_3D*l>icaRm{M6nvCs2~QiF*ISYOW2S9{)e-Pgw$c> zMcvbHAqOL!mU=o&Ss_kyqy8a|VmJG3KQ%u@D!UY;#A`8To>c@|bCC&u-Yx|_`&S3^ zn$8%I8eAS{+&crTZxU`las^N4a~MuG4i%R1?mXarI}<7(bE!(F)D!K9nIhLl|LynP zZVGsmcyJ#SwV69QRYO5BTU-8u81N*+d3O~#x< zpHMIW1jHP0KSmQU072a49e5L(aL%YnjjEnCCme|Ut65TWDjdOm=p6hqxGJg@Kr)0j zKhhk*g(C~hJ#X96#4zW}9^M%jywNQuj*KURTXbQWqveyds8qM{7_)o9hL;>PDT?9Zg6 zQzTYYb7G`zjmhRNR-$m-r1?kLrL6mLc#<%WQ`o z;EW9{-Q(qwkuqTQGqPY~+*4Y{Vg(6>Q4`}#s68=w3V7R(c4nRuK7)OochNXfr296j zik{{0BG-a}9GI%Bf#y#ajE5O@5foJ&0x)$`0tyHNt^PShru6XF$;LY=)b3SFb5K!N zq$*-Qz4>?l<`1St49`MH`N|Ezu+FIHU0C)J}iNmF$wD+lRr6_Y|wjZaPQeLP(J1 zv{d<24(WrOPA7zp0nI=#Kx%b%OW&KCvc-8?IHQnb*|U%9cO1ihQzYr0n5!%g7#nwK z`orY^WOU-pGTL%$6Vb)%)}$Nbj^anZ_q-@oYC5T#v5(V`yxNYN?mXMeW^Z?L5H2S_ z^wGnV&V}%HvK05@bU@JNP~y79*3!^c|IjaUI%0g*yTyYD5e?`qju%~zzZJ8dFE|r% zsvCj}A~(~P$&kG*R{dCGi^uT%$poBkn|1EpjOO$Z9ZsG^(E^6R8wVM)noi^tTiWce zdJIuMSk+oQd0ZXI&6oO=UTS=%mYn{l?uk4ji41_6BesfuGR>ig&iKJ~w&Khh7(N&{ z<8ZiE(=v5U-RC4iH8AH34CpU1jZcl8Gp#_IELkGT#>GnUS5O7ZjzgbvzGYT8-{pKK z@Qqo!Cn(}shf-O2vG?iScD1a?yXnQT7sEH{jP9kUg1ln)PD@NTpS{v%NS(KG^TyHU zPyYOWj7QaQmA%YacWN&R_egl5{gzJSNC?2rHYNB+-~MLK_4U#DY>-#>>{wwpfKj6T zmA0ZFWCKPxBgCn`qogqp1H<^+i{LN;v6(^gme3|pMdW|ox`3mlo24!1&6G>rKa1uH_FI_N9p^%0F z?`Lv5?K8v(x1SQ6wVWwec%Vu#Bu8PYfTJ+QyZT00DV&&~drrh`#t3f8B}tmfY(lQu zbkZ~R$J3PVBjlVPOa&(h0UIvH0ONZ3ZTjdpbl`}1R^;vbHO6pLo9w^oG$_pLAz%nE^YU_7idImoECF{dZuWOTB0M`6B$cqE4Vz{SRCa$ zO15MtU2;vgM>-p_d8h8 z*tq(OmIF6==o>W}XfzK6x-3Fzkijnn>R#Vnu5v;8ty4;pv<+QL`{<$BXgPlo?jk(^x^KPd(Lw2YbMaumAL=S;nI=Fb?C z!!iaZ+tH3gm%8k?>M7zcWD zKCchwuP_X7HJHqKp?~2J|Jj!y^!9sl*fR%3#4clwWBa-v;|&?i3FPXVBLSu{=-p0^ zWLnu5nLN`Hb(fyau%`=ZW^~K&Yd>)8N6r_U&hw`#7RG}zn@2rk)efCWKd7&{*MU&i znr1#-^v#LeI)P)v<0CS8RDW>om}eVbdCoZ}mh6u1Z%%&<``C*?$>>#kW`L8uB0BW8 zm&+6^KB0phdrpDEF=tZ7P4);4*+(m;I1(q)FZBG;v27X|rd#2x4(7MX#6%N3Q?~G= zLX7aFp6E=6J{5m)L}fLHuJw;bbO4?cu*xWo z?lDfpKrqbaOAbJ4aex4bXmUJs%+g&tvL<~BhiZHbT+BKOt8M}*FC|ApCLn^GPB2^) z)5(;h4Q7VP0+3*0*l;xjV5Dm}1m~eAxR%tZuAi(yu#Lko@KTTzrU*A=CR{E9#;_;r z3)3K`KBUcOPNeV5a}j~=p7zY+EsuAleJLu+)8Rh;j>2sm0X_W?dSmsB8VGo3qqa4M zX_X?%EA1W?v6Kgaf#XvN$avD>kmDlSb74lmd%+V#`^`OrxA2S+5EWshu!bSV_=MMl z#0rCnbTe>pGEN&N2yO-kg+&tZ!(my9v~<}hN;FG($CM)PIUY5oqHhj?wEN&QuX>DN zf<1JuO>^r{5>^p8ToVvu)-Nn$QpS*AHoUnQ_^B^}<6t#@8I@Q8v^@jIi%$5B0`UyT zWcai9FbB`0e4>dlYljEjhiKn#SPh+fFKQM&#WoAi-J=oD!4ICCT{MGXne^VI9JN5H zQIyssj$*E1xZzaHSZj2qwHhEip#!*G<1_^?qYV!2xhT~kbbad{U|^fR`a)#l!V{Dj zBkItfRD3OPP?NQXdTBOik)GBquS4#sZG&zw!*UH#%;G^UqMmj=gsJ8jvvQ}iYUYmPgP8abBz*ePSC z20$GXeWZ3~P&o2y^B0bInKnit{Wr1~9!{o&8Pm~EbV=_|*Op5p==fqX1y=`t%i+Ka zbv#bZIO*ZQygoyD&{}mg6$!#4gY^h48jC_*v(kho(7w`4>EYFX$wV_a4bzdPIT=nLZl1mRofqP zEa-BlXyWUwOdeGD_oyZ14WPEzjWQd-gSMt?82A_3@l!3vUIp4mGCkq=ek&Z%9DWk$ z`Uzi+xn7&XZo{kLMffLI;jfIbY0mw0sEc-iUwdS%kNrQK z<~XvGrZp6O)3fx+rA|V9S{mljeSCta(!uF9wsCZAFqSw77Qa>V6BCnF86A#|>>iSz ztW76a!lA-)flOrYtcT9NILZ+!6F94ox|xlzs>eNe%Cc?tisevKr!Gh!X6$%92^skt z2XvG{1jE3LDduc<#$mXg!HKq2vDs5z+(D`$_X9TVp77o-j~Wv$Uko zqOWa{7{D+$=JK!&M<_(w){ckNcf5Gsn}d=EjpJ)K@;4rQy&0ks$V-35Eh|Ac$Fa~BqyM;qci@rnHJk1iB9tkg$1qE=J5pdr7 zI0B7{ah&YJ+*^xv>_s7sQ&b-l73;U}We_GiK}cc;Cl;cO6uohvis_2BhO~Vl-2tRdFf6*s_!^30rYKLOgKh7UG;!!I+?9zoN{PVp5Yo4&6hyG=- z;MMQj>4G|%=iCSWg*OU19Qmz(aJt%Llok&J~g;(F^s=StHzcd9qyT%JDLJ>922P;#j8IL!FGBFM&zW*I{3?@y&1 zXIdp*gnv_$PF$SRR2$dgTu(1vz<&y?$d^dUC`TUaNBhQv9~gK1W^Om`o=B@(r!Vxe zQsh}qUp94k`m`f`;U{`;|5~QVYAMbFn@b-q>D@&)bd(KirA;d==qF=#zpRM1@HiTY zWa$`2RAlMe20%we?Q`FBw0JoZbqPkK=ojoYgz)LeoR#P^%YNNO_x4vxem$f8;22pr zc4p&gxCe{-Ps#-L9T}QHqQ3EmaWP`>Yg!Yo9mCAoBKL4WkHND!d1E9?=qQMgd6Ko% zhbgoH48I-UhiK$UVW#O2#@$@}y$tcSR#==qvsT?0$DD;y&C2<*U`~?M=e_RboEj_M zofR8w2D=bl#$j)aPg`j*tLuUTt@ps%co|@pfx)*&0b`Gcw57OJMifn#K3sZfRt%(H zWk;Qx0*5EU&5W_<)D%1$yAdwxV<&hOqIScy6*0!KM)%=~aLr+|tFG({+a=>GV}|F* zGM!>P96@qyzn3+w+!&()T-5x)?ysVAx{+<5J5BR0`lJthH+`fd2bgX!Kn&sn2|T`F>`v9 zGNGAhKf`um2F)ocitMIsn*lzID-Gj4<_oMrgeaH-L{RN3S_;r5C?N+T73K_L2mr(+ zvty&I3}D~lW!si*h|!RI`kmp!JL>?ipsGJIGBmHRt@8m# z_-fbGT+gY{zW-&407>egtH{Hu8Gc<~FD6nd6@f}@@}e<4T8 z%#AVhfGi!u5R>-(GL$j{rmiqSqvF{OTnxANt*K}5=^G9$UYyi=zmMqGE<*wraA}U7 z;h#M^>d%2#zMu50cHlOAhm@fQn!qi-AjhJ3G(e~SkWcZlOQD*=ML4E_*Hq$i;=mw4 zpdS{G<@D4Kq?_I$cUhs~t1+yN&)y?of_E31=-ZgKH1@m8_u!lWB;Ba(RfN2pJhb+V z@qk@cfFTe_ktMCrN0UD8zLA&O04v^5XR_7jc4TF(PNx6#XS&h&*7RDmgopDvF&R7t z%}%pcf#?^UVD=s_&on~%&DPBv2&T?ImuU{NVd?YKc4P<@@^Xq4^qCsmd)DSx{nJ09 zlW~uqj$be57{~_Nx_F%5#=%iGU5&5l_|VeO;*D_jAO`~ZQ4{SZnxFT{f1gJO*6%^^ zI8e>XE%?MI;A~Lie6nTd?M~QdI+kO%8xCZ!Y{K>7tzXvZqs?1yyi+l3#ne43II$uJ zje2bKnVJdoS;m|v+CAyrusHX@6MKS2^xV46L!aipYhTV4AL+IX0^P_yo7=HEjlrjsdq%Z1V`HE$j5>@iXG7ccEJdm?g>i?(5whULl)Qcy zCcre~X6P^2wgN$MfM+6S_tzK2XCBY@Qxj2FHeX?6E<{k^P+C&96vz3z)2R;cnbSos z3@}FD3h_2d+X^oNY1`*8vIHqZMhO!d&yVtr$=nld!nbG+;V9{4GLk_^y>PH=6%$ zs^CmpdiQZ)GVZ~9Mq}nen>P;yt)E`-=##Biq!)NS6YiT6-Z{##2)->2Q|zPEj1@ojJ^rSnI7JK(WKS>?P)P$+jp0&* zu;>+!MkjO>*-mthZnZhG7H#Mc4peWy;uT8S_|5I=6VK?E@g+-!igxse@lBRQH9uHu zXc_eN4B1pwPvJYqfDWWLb+&3b=;m$Tu(KR**#>ENazt+QM~9RBp;2vt#rxr>Xm9-Z z%3J)2XYk6vRm(I58jM4!t?mT}m`q3dOb;-ivN*=VN#s1~$9NTw>u<)Xqb?4TdtB@n zeyriXThduS zWmt~Yel)Wzx@DqGrN~m^LAsXCNS#d||tONuTE8sTkS2QkIBZNQ7~$6Xi=B&2%qGG9>qI!@i^7dLI6j{Pr+q$_~JLe z%;|1}vsUq_C0dReJ-PIfagPnnsp|Hbdf#ug&t&!DhY185!|;e_!b3F!>kA(;>j4o$ z#&Gm|LM}CYt~n#pj`2l+2YHG-EQMMOpwB})h}Ce)$T$sbidXuca+F>bS%0Mf^o?12 z7z1NuhJDU&uWiC*4vT<;Q-9NiZoH`vUZKRRK;9~@cwM+={YPu#C@uaJ!xUJ7) z=rq&s+5?9Q`ZGB~E2YV+?l*+bLsr#3SNBa6AES5EFr3)!2 zb3v4cxp_;=;GB8T4x^1wt3F@};__5EDgD+x@DwTH?||HWs7|3<5nqNYco{jo=i<;{dV=m*#+ahx;Ph*+`beRgcdXL|4?YXF!A3A_ zFXM25AN^+@Fa>Lj6rkc%1&xb_?xTQA3+ZQFv-4PO;w`&;Q6jUc$}knqtiLoHwjca= zA6^_Mw0rRLq=$n+L||@z+Nybm$VCZzzx_PC7*62aZv@=17z@8agCU7Z*E1qhW98s* zUW>}pYWC=u^lX1UN9p>z_&#~B-N6m?1SjL9xY5?j&-Rm(<~dKFjko(9sP+U1pr)CU zwZ;rS)zWrdI~OiD*DUKhY-670Nh>Bih~|ey@sI8$mo0m0<{%mr;i<|;^Wb-o8MqeT zlVmCG6@bWUjSlFutllU|Frsy|!fy(ymctR=;kRe#q?#{1+q8fRbGwW7&$u~eeuqHm z;K4_DV|?cM&?_Y?4er82L!bJk&-6`CST?CZ3_14Vr_mCat1#tq#+3U$*I+DVqz`t&qWnrPB!z z1ETr^U)ZKOTGs~HNW{v#(2Y4S@hCeoMme6tBQv(zd)(IA!(S?K>4b1Rs~zg&WOXb< z_a2}R&nl!%78>2iq|B;z1&Eh3&};z*E$L`etd~d5);L=#+c>9yGQ2n$mdwEs-Gg_~ zb*Ib<{bZVevpWNAur?G@oAa>cnGZU_@nQ~!0H*=hKf2&gHit82e0WsBX3l305St-% zc#_OaCO1B*Crs`?>{DZ2#{f~x2+AvW1EDa7L>K#x0;Ql4beOA~&L}?PeR`ll@!J`* zVW{K3-n+Dom;|Al@%$ibRYL+}MOHjd(YnEz9}*ohhLgGI*@+lNK!X>jxi2H<(*8CQ zf)w*PkgTX?<`xM;ZE$)ZLv*D-efe&yG?${CCZ}>9qjFvl8$z~58Z7RmY#0J#L(FOK z_&3Z1M#UX)G50nmk;F14`d?Xuubyvw{*7S-Z*77bapBs1HMtZyyw|QB1gEI3Uk1*o z!I%(wFsQ~KBj0!6n04}fuPwC%TlgumGp#S5=(Ff|7{0OTBMzMYZAWX|1Yzjj@B5{; zv<1(TK>~AQ#1F{iao6xh0>M9yh3~>6T%jk$I8A-Q;5mUu&BI*5<>z4>$Kd$}pGuzuuuNP-q;J;tw8rU;+n@ z0SCA7KWZ(%t&97nv}loIG(OWjsWh;n*dQK$z@rO}CGTho7Gouk6nZ1eF%b=tr#cJ( zQ(aS&l9D9TL-lY*j@1^Cs|TfuN3QzSbNgi^$S#~ryC)a@L{DVtq-+4%w`9{wl7-`A zc?l2Tg7a8;$x$$d_IXb}j04RXV3*G>4vw+lH9ExxTlSM*Jb~Aj4C5i^u;^oSO5X?R zjC&gDlWQAE%N&ByT<}gaE5_=xyC!|#xJ^Z3SoDGuI?_0X{?XxCbN2KWaa@jhbUW`*aoDBDlPN`#jE5*NzSJ8W8M<-j7kD;oa!D~Hoe(<&zV=oXH z*=q#a!^322@l08^@R{Ejty_Pl9buYoAh!9+&XQ&@o(J`IO@SmBblym|67te-|l{L=c?z@r6?2Pt3>%}23zJ@d} z?fV|DvJZ5sdH)quuYFEN_JUJZ0K<8{7Hccrd^~+4GjZ(?{$+)m8GG_w#@;m1>2SRI zmw8_2(r`k?ruI7=nU*656Nnze>KQzgGq9L_%kY>7z!8T_S4x_gw1?P3~$6PVwh#}3r3RxCWAZao95{xx)?JTPSneIVwjDrXOhsaS5{m6(D zIDN}v`0F7(I|+_QyA{@%o(LAquPy0dOzdv&8I5@|W`_@#dsj_?$h>Kj{$Wn3Jbe)o zXJdm=Kc3SD=SV@C;9Xy;ME#|lMT#zpbkb2ApmBA>hw;?Tz*jrlHZk=G1fq7YK3tOl zw?9b0LiZ;8eC3oB3D!(~#k} z*p1G8!{m*1@k$D=f7%kItZOM^lEqm-H$bgb1HZ*D=3fRK&v|AU1hDA`fA|i~N4eJ4 z2xQ-d{<+{w`{*(F_gkNr(>jv9c(?nthgPnwU@n^X|N0~kLmde0f+ziH-@o1j?{a{a z^Sfv?x;tWP)2rKpg(59#@ADQb(`f$#tCx1S(`bG>%&@|Fs&}6Co%=Y9!)y3z<`F?H z4Ze6E4tL^hQxF`!oPOwD4npnCxPl43@zR#B&E0T;kU;-1s+ItPIw%gVgW#-nW_tZw-%yGfE){gK_D`ht*w}-kRV{ zhslul+p}?0irYfZSeTOOdlaM||DHyGerG?^+@p2%}HEF(@8b)fs2K`&Y>XWk7?h+n< zhXMMAu=`9w@N6(AL}Ctu#PFW?zoo=D8$5B)Ca4j~P<)p1IUd-w;dhUEPO;S77lQnq z+JSku3@rtWDKIm}@+?C$1k6(-j3bEP5CP=y7$fCHoF*XY{!ws^0Z#Qj2Ce%C{=tow zm*cY7qGyj8WX9|{FeF%nkYR)?Q7MMu=^C^BA+&9pf^yt45;`+Fs+~pQtGF>b1q|Uu zcgwnJa^4T^8^iR)vCI38eZxK4FGgDmQ@fN{&Q5S`m7?~jDKw+#RuqJm3yx4Sbi|I` zHSI=`h3kGBAR%3*yC`08jDykViAMWO@lH>{BGS<&E`U?l z{C~@%36I}-@*}+c?yr7v*VeIutAVF`wR4nH=(gYT>T(LegKn#h`ig%=Hu}KlV8uhj zyVGyVy896W-0-{<%kh2DMSsRV5k&W4rEyN?sos;<|KL0LB9HDt54f2BYGZKO*hN~L zh*CnM*ev%`m$3P%Hv%#zQ5;5eeSc~g9*4n*2rWHp(M zhUFQ+k>dl)%fhRaDS&1k9xj4W0TsMh&+lGxs586e#)uQ7wql!y0A$(o`(4n9KV;|x?y z&KUjm!9Q@>R|9QFPsKqTf^lRhhsHzBmq9SCuv)sEj$PD9Xit<7`sLH;OH!nI2TvmDnXj57l^MYDN`dV9w!_m4g zN5$@&3566pxW<{SEpVbKUQqmL>7i}coyZEqbn#5<)YfDWIJS*(@Dbf-HAZdd)1@u% z$)dy02Cw0xN0^w#rGB6>_sp~4v2&}HcD6!yE)Pc=Jp|DB(qDvwuUzKZSoq@nnjWgd z;m^@=gPU{`Iz!ydZT9mRz5$F^*RZl^M+u0X!e)b+N%w`k8XF}RKp4%K7(#^S`5TmU zA;OJQ5M!k#22s6^a z#VkEEW77n|USp%IV$cAXz16$N^9W6`=!3WDP#oxzLiF27b7#j!lXvwrIDEg;JXUXe zF*1wcmf?#?5uGr?(+DBDM_CN9uEsdTO*w0%{wN=~Gae25-m}_PZGA$q))1xd`)%6p z$yG7l*hC_xcBCYF?kI269ItUP)S@i&`cqjxg361IX*f^Nr_bQj=Xmc4EQMp!3vHk~ zA@qJ2x%<#)<^X$^;^K5*2<8@3&#r4RpxT0ol6uxdo)=9rAnqUK)3~)4;o{d7QGmsG z^a(y&kvbG=j9WC3nuKQ;{JCe0b~GLyL;GVzgs&J-JfNd3u4mju#Q{9gdBFGEavDZ( z`aC$B{)0IMJ5vpPzpFT@>Re7bnnhOoLN}epBx8fi7qUG9$;Fz!ayd1Kk zP4d;TD>Ze~Lv7h36PdPO^K(ISgMhkReU`maa{7q&6oMUP$>l zbW0`ztPk5d+0K6FE*8a{@7~~z`D<&*!-+Q8P+1S}*cvx53<`6fb_$@>m=yI<2f%F3 z#%qvN=Yg0J#+Qm3$+E zAI+H!$29?XZbgr9P_bQo+CkI)_B#_1bKcQ|(qFp>?$rn5WjyX586?a7PLEhVY0LJ- zo5y?tr;W`$%jnU4%X#2%&$GcYj$Lh{AslPZ*51o#q{O?nypE0Vjl+pJE%@AC0cbq> zMZJLgIbhw)uz~?xbiVE7-KP%$+njITSX1Y*dO=oX(HFk2fi+J20lxaE*)Xt-7C5%f z5i+{yAN3pV-(KVrf6)bB>9g*KljXb)3k=TJO0u;a6fjcz95c@;23$@@V~O#fWryfi z{3<(O)s<|Dy#RD5Ypahn)tr&8R>a0?lRab5Yr}lGHq}uGaOMQV_+;?aIEK#A9nT%k z^2hp1pK>f_r`IwPf?zm<4}5H&o4xiom?hlF`&TOy!n2ce&veL`gSGB=W(=q3LT75o zD3DE>3ccoltG9}5tj9yP6ilORkmli@wdqDWqg!}^ix?D>llTUZ zm`4gpTLfFG1Y=^rzFZDM_oyxKoB`ut{IuFjS@aolw+uR58iTsW^2V9lYrrf07Sr}m z8in`hG&RUTph<)2TZ1DeD^l}2VFZ_pH_eM4A?^982k5s&WKqacQ0_%6_}NCwqg+-q z(}Q;1;#u&zPv!zH^gDyAZH(p~55a@`eAYfkL*bBnz}TOG!SC=&IF5%C6NJ;~Vy(AG zUt5F{j(l%RU4?2+Ra*uj15+B;wVgItb4i>D3XZUc(b|zFL>UZi{W$vCW83eT5Bg@V zI@}>IB?aDrzwy{!Rr$Sp&~sgD?Aicl1Di2{d%o+h@o8rw*TGL&7Sl3~l_3BVSbT<4 z&rJ~tgQf zGh>`L6D(+ncVuHSaE;$J<4-OYEGu%;r?G%%oT;y1<*+WETaLE-I5*2+DjdZx>L&c9 zM0oX_Mz}b6Ob1YsW9>`L5APngL-=iaqJ6yL0)tJ&;D&6CLOGO0S#2;@m#$sdTzl?Z z&VcP$VZn3t*-HVYB1>>SYK!g%_pADrDh)S}Iuqnv3iq-|2X8-(?inQW%_G0?&+v$3 zQ&7g`f>)6I1}{FZdK1%iDZ=hC zZHKl=Y09zpL&qG8Eg#nJmQG6-m4lT~*?cm58qZpSY#sjNNfR57{Yn;Z zFdix9oOPe^0Y`mwM{tbcoPxpSY!9z>A2}SE;NI5Z%sbaExnC#27m1)C=901co zjk$YlnJyS)Y#z0=6OOc@FUyrz7APG+rr{>}#yfPUar=&OM;qfpU*mM#yKIK2eWxXM zV6pGX(~1buLfd3`3eL${|F-e~?_@@%!Px0MQwZ?y9zoHXhAl#G9|?2uGQw%$3BvHB zY^*-Xi`t9{ni|>l&e^fq9A{;#Tb2!IjNQNFbY;1_eeM}P2qzaV<(%3dqrOgL?BR$k z4h^PFLFvlQdX~JRv%bCX|LB`gOb@}snSwu4FS1siw7ovNz-}D&g5Pc(oa3vUIEp#N z(8G*E9F~C9aYZ%;yAa7p@o;%wlo3ysSDC_^K`tiAcFZ7V0DVu0X0U|3!BLdV!}QsA z+Lo^75Fo@1wl*Px*T0yiVIydqhN&Q7%S05=7>nTcybEzBE!TKN!Wd(#jI}XHgw&qd zAK?yrbtDY~IW{|4TQ)9%1^5_`ydesS^1<}loLBwYGkitc>pMiz7g*L6E>e19Xkzq% zx#vZMj4#24%UQ13UxGOJ7-E|%E!`C@T)rQVQvdz)SwFHG;2DL^$%#&ORuh#;8-d%s zl%&-M(_TtAtVV0q)zJs@)fUg5K)82}Whu{9U?h{!bJ5o&MTfjDcoAItjX~sDe`T=h zV2d-j(I5C1e=YjLix-}8!gfQ9X_8e7|Y;w~o3l?Q4~b zC5-s#sEi4@Hhz`vxiB+sFxsBl(4_aLrpA4Z9g;T zKHcgAX>rr$BKy$*059}OL_t(#48OnzpXhZ39`es#A_v3Nnp?{`QJ9==I z$C(H(z8`+9zu6{x@VuPT{q|sxC9$Ri1+XLH%xjG^y+H$2^YxY{~I`qM6+*v*mu>Z-l9`{HsE z;A~45ZQ)4{q^+`-ZkOSqU*oiNq`qW4EvIDE$pd(|x@58twQGPJD-MMv`BsZGxY09K z9^?s+DAGHe4Rj&nWZpBzW?AUToMpK2+ByR81c&Hj!@miB!!^A%vfKOh+sa_G6`Xr* zY8y`&w?ocs&wZjk?V&SzN=N-S_6M&ZBxLifY%U=kL&yzyqPPecx0gO^#5nfw~}JNI3cc8{Eb) zjL}E1P{&i{pF)Ij@MF+KcHjhqDTOgK$GEDyiQXgcC{S%|_ca(Afv>*M0kffnC17Ye zz}5Ef%g|gZap9T}p%Z~5^o*@16vQoj1)ny0Y14Pw@%uO_jm>53b7}ba>c^XAS{c1m7{<^oO^MbLtps#`3b^)qZ0@In8U@CK&2R zU$zfjd`KZP{_$e)GO#s%%+rmq--bsTx2z5MqTDBB^RUc zFvI@1C4x5WIoDqK&tAANg<=y?gI!6=k)kH)KOAA9sN?F!DVg4Pdu#d(Iq1*Fd$a~pfOn8Kxcu~ z3lAn4LyK|xj`24EQ&Tg790AVK&87&`IX%WilNbCt`lt_J!?z6Rl6`k9eSl}-44e!Z z-Gx46eeT)96Z{ihMEe*1wvt*Y`y6Sd}GiC=37c)v66ee zw5?h<2zw4OrTkVJX%THp;CVc_5uJ$g@bVgEvoW-D#V3oh{G(2uqdbo5 zA8>8=U^aMwUukHo0tf{MVr}|D=~LMC99=|m;~@6?D6Q_V(ZMfb!npew=~bD&B4A2z zcog0}(mkG^d9T`@G-&*0PI|Zf&p8<8c@KDx!Q);qQCx5YHxv%u#Cv`0`;?UXYJXrr zzs5#!ppJC(YNs3ea^@z(=|rAY?=ni13Vx+%B4Pb4XBJO8VQqxDw$!Cqc|u0uM`QsA zwBGhH^WqR^%taA?!z0=+);jJLUQTv$T3ZW;vCTmafwR*0yXi!G#b4|n#4+NG3?;3w zjv+j_A8hS=f92-+^h6RBZp_!7>YyIc*+G00C$?@pBiGnC$iP2WF&SBVT$TT%tQ*_F zP7eEioXSNDx`j!#(yD^PEtIIJ~IiZKq5O3&LWURRI)bWn6 z=z@z55_(3-23OC>ez*X;6&BCTkC#Cs|A*=FG3vo!SmYaT3Lt2?iB4;eBQA4tBHb=J zCKY6W3>mLJ$2scO26K3#`lh1sqYO9r zPKOutqDRnb^m2NCYLF&SY)fcM0uSQ#>IvYJncL5KrJLaJRNMNFa}|$2t8et+xY{?S zJWK%69gU&(#(?&WY1RiFL62t{baq5B>}*#~`f@6UhV{{~22Z>3`>FPkQ5$nUhjR4N z44gjTsC2GJS%TR(D7!fsf{?I#ymWA^O85_DL)$r&Y?Y4$V&Bu5-S1F9vM~p}ad3Js z07SdoL(&!86%E$6<-TaeS@fAKp5Pqz{hsIOvhJ9I!p7BxeIY!AFtUgP@h(bOlsg+E zJdE&y`6^1xbKs)5 zCMK#axYMFktZRzVk|_3UwwA0-?;QiIKlAX19b$5nr^`WjT%56ag6g6%nVV0 zMymuNJX6|~?yw15WsF2i1ZtE;L_h6xuxtV6P8#p9G@bTW)`g;=WCEy53XM^TW9oT1 z36#NphjcKOmZEVaMzMh<*t|G95J|z}F-Fh+(HrZw>Yvt_5AEaki4b~bc&>3giH7)eBB=0V`Rn3Cjb{YQ8d0#5 zi3r!68+4W0#nAWLmz+;JV3e*z(c9WQRuJOsbMV?@# zFA4&3Zk!*mmx0p=BZ(U=Puw~X2O_`><>S_jqcfwaKX_-n;Gr74g{$aEZ}np|2(Iv} zFUs8h2&bBtMw5hNiZV@2;2-m@fj4xTy*YkEbSU8ef}1k)=p{yE;}m+tTnd{+aLSg=Y48fNT1R;W}tOUVt@@ zqX@Bn#vxBR(ki;kzFJAc!)*xBnnro3ia?5Mg>5w{V9DQa_{c;SxGxK#KZFM%ZRPuBA-#fEb7R zq##7HQfsGzccP3)yNZ%hGBFjE>z{Gg>>#rd)mpE{K{5D?AEjO0G^yr{n)KF~{9v8* zaE~}-1FU0o7?r*Q%LsQ(&6Gw=yxl~Cz>lIfPX%uq&b1QNV(F#HkIqYdY0rSxKy;G-NV8|%KOIIVj|Q3WR> zLI7s|)%z1GiqZ%C%2shYv^zAb9ehHeSzYq1!5$@)+vv-nwZ}POB+zl9%-WNZb&X&~ zjtXb^f#4V?6%jJtcH**I*bA~HH?$?G)Efw_KkHIa4(fV0Dq z<@r;j#*RPy4&UceI=)kDf?vUbZWF=QpWo04Z+$g}IzZQP$byQJo(k*kA%3u%C)1Pg@UvcwpR)g`)8h7;KfiSCW(xZ3=HA`A$7{|HH+PGo&nLSgB~JXkc2|qR#!wmuQ|$Q@_j|q?q2axvSjOj04zdivd{^I3(-B*Jc;ZPxRj}H) zO`nrer&}|i9Ku<;8&QtJvvJDuU23I8s;l3MSTjg74HYf#adi9PVfyjQhnB;gAII|k z{kvnF5%*C%r*eLFu8q$)zh1MFLJ%09@C95Qw(8|x4!~ag02Xp^Cj876)WMMuZXV?@ zP5+#xYGEGq`DqF;_ag@^yB4+aD;eXQ?G-TWb#B4w3i|fD?`at!eV$M5X2;B&mRN0$ zfu0>;>yxgn#(sElr*j$}s;`T(_bd%Ot8s1kV(sM*`}w_L1s)p zkM-U2%~yn$@DTqkMySHg)Q8pd3h2;)5MixDJDPoRR0LSr!eouxNPIGng|rV29F zOGx2@XT|`mdyfY^zjIt{?z7zt1Rk}6P#gz;N0|p3u;6x%7%P7s-hO0u0!5xE-PEZdB zZEA0MvA_L}k%F7SV~~lUX3qK;k7z$QjrL%bqIDT>kA;xwAO%QJN^_rRE=y!FCNpIo zeh8yT&v<#ArT!e^$MbC)_r+)@9JWU4;seU|*2jN}ER*b;Ef*`m-C%;d`()Tl7 zZx8Lu7gbh6x2 zwG`lL*xfsH@?8B=bmKtR1qk(97t=mxYj$~S>>_iA=D@drhOT&;vG)Z1g6_}YB=9L% zP7}SMJ^a7`ZyhFI%~eM-Qu>+HcVCiegG5WbG0S=DCGJhZ$5WgGbVR!bqvvwOq$50Yj427Ty$N(&A zH-jZ)?NlL9YisWvCYe&pl6B$CK96g7XyN$-a>j_at3W2 zidvlIA~mv@KSD($3JDITP9YFhVM&CpP4Y0sSeOWW!Mrt?lkUq zQs0L$8Mr(@id!qS7m&kL1R2xxv1{Fj_>}!*6#!C$vpgh5oa_e$(C^w=25t$<2={UO z^L{nD`qO;vOSN%KCe_$C!w0nmmjg#5avyfMfA`TuwP(&Pg=1*G*DM@*b_s7vVZK~O zcko{`B4!51MG&bR5xOqGHx5|zq=YCOxYVBSwV_E2O8{n^Ju~W|dkK?1mtz2?z5|># z`ais)Ln1lzf!x_X@ld@|Ju4$7|_OFM@&^SX{8eHK8eN4}A_F2A^?4jA!a_?llImkQq3% zMexZQpKpU1o)j$hP`^e?|KM3W6mWE;)O?R#pNn(E>Y^VYIeIgi~wTYMK&?0Tt z{_f3iY1}#q9?mmbX#}irt8bY}wJqbg^~2}|T_4kAoY;Dt&$Vm5Iuhl*#Lal1@94Ir zi;iiA7bwU)1$`OPjJ-Zhk8t<&x!<`E#+!Oxu=dP2+!?ng8OQ*h-zSq&OG|E}2OjRX z{fg_rtrt^{`f-`=*`GD~3%?W4$8VgqtlcMe2m^IYZ6?X zhUaeH+`Rq#pT#>h%Ylh@_^^YD0PPtMLR@0eL;jB7oC<*%o{N{8@5_s@#qZ(4^QG<{ zmVzm5Sc@vpb>bqZlQQl-4~mdM$V!3rKK)@Z+xarg2|?ynP8Ru&U>iU$hI@=s(FCzF z_hplmDfk#nX(uJY&>C3+j{zdr2-^r;;{${CFbyRR!5$x_)Auf8rC3DG;ME?Fo)I2K z(0unUrtEo$qI(zR6?_o9MtI!jv9k89#@szH>!Y& z18_0I(6|{qiidE5ad%+aj+fvXa{`he&8mhOKfVg*0jQ|*L`nemj#1MX8&exi*u4SOT@gD^k4gz8D*k@zIH)u4%AAhZlmlmwszKqxmV~Pzu+~=8XAM?CE(IkAD;@M8~Oz~mk<3y^Vp!l@AFfJPp2Ti@unCr|aM1 z3=J3{irl?$JT*n+;a(xA7Y^VEsP*dAx4jv-O|xMSeb00K4t}?xzxRX7-m7g{GL7!Fn~@!7Vwy}Z ztWIkFII9Tu;DEWoB|}0skNX*W$yZfZ|akRs`X=rs0`a}1jL4!w^38IX<-%dt%W7hBBBj*Bd z;Zry4E2bZfDZK;J)Gw;brZxQf^i7(d`5NnVFgtcj~1+|C34~E!|qc9HN@yU z?SfDLU~&!p`@6;01T_8X-|$-ZD^50E_XPDs|0~c&)5hBL1${Am9}Z0Q;FT*^uWT+} zt)3^IwIsDxrvGf;QetibynzmL`P<8~hQq_=m=d0IlhR*ll+&kLS#Z=gp@ci7LlI1o zS8ZTi*Az}9jMHX=Cuq60BeZ_kkHN?5_0^ydfzR0&Gp&$ki`XuV<7V^7)hUg4JH}GS z4H&`9KWlSk3sM>|3R8_kx^>>U6kb7lVBO_8n zn`j`MI^0FwiFOA=Wn)YOfEz9_Io^sR2M?1L@7@qsyD9Kv=K_AWQOn?b@U!R}YxNt2 zdMp>=#+^M4&;{*pGxb$hN4eZ8@(7v~lVf*~ynE>jZAz1zTryYiUlq1D7Mn=Ej z4+q-qA6W&<$XCul1D)@DFM=6PLB1k*xQq|`&3ymaWONzSFb5?IqDga) z9>5P}>ZZ@`_Z$V;+X21*PdhQe&`8^y36f$nGTEl>g@ztnvVmH4SdWAE?qABc@y9Q4 z09XHiSNEbMw{1jW*pe;9iIs}q|3y>fI9C4eG`V(#v$Mm&r7x!&4G;u4&acgo?*{1v zovd&p(}al>`Ahr2n9)l^m#>ozZj>axdMCleD6Q|6BjXs9tkFcJ?U1gzo3-q1su~Y( zI>F@a0P$bPTe_e8o@@d@H0Sx%(ZF~olnH4gS>0UGCDr&TnDG^ ziW3fY+0{M;l$Af3&$kRFq`&pa>Jiu5Es>u5JSVG+0Y>shZyHBteOmf``P>eXVXNJz zrM%=5djq=i)p2E=?QX!vH}0b7E^gpwVXQ5GC(Eb4=jD|LY_o-ay>>b@Fqll0%>UPJ zDgk%p#=JAQ!F2iOzy8(Qm!1K^hm+xc5U@DR zAs7wAtvY`?a?Y>-my#aT@N*sQ51(7j+BP6tRQ5Z|_I|bqBR5(A(l|_!?9sSHreNa& zMgYX{OaDz%mbIzxw*$|RuJZ4PZc;EunUm9|GG8cTBpmR&pPJ%EkL%b1(Ddu3yi?H1 z`mKNHbB(p0NdqATgS$#i)F4d={vhxK8|Pv``9<)halQqmXjt*;seEo(yd$!5=WOlB zTBE3Va>Xl5x6mU7j4;Ee1FY8wNkg|l0TYNAZ_nG;nAs&GyNZ2hI990df(rf%t_{!} zoRq|$o1x&W>RTKhI zFIFB|t@AYiaqKnNAi8k>fYZ@FiylXj)Ab9nVrZMs)QfZP+umVXj3k%PvwN8r=X z%OBMYP8OJwi7m}wklTBm8#G4qY)>TiSs?6_z5EW@wTvl89bAs@wucx;V_L zIIKl@%b;x~yUvL{_~>Rqa!&qVH$b5%tOb1dJ-yaxVwi4Qzkq-AhS3Dszwtx?4rHIr zbTk3*yfNox@}KVtAniRnV1kc#v@E`==sE{+U>!)M`S5OA`79>gg3$(BvFF{J zttdV!XYsBM!4$W(2*XO-u4D?vxq7|qVJ9_dv?a%|>T?}KW%=-qwZS@?WW3qHD|6Tw z2uCB*8wf>ezL0;h)!k}=?bUI+kZtf)-j16M#_+Aowm65wd;{}D+~6eq*SQCfE7yxB zhvR+^rn=8|rrBL{poi=LX!#_qJm?0Bm${cJVrtu9@oz?>AX@@u7!JtyzRu=G zMOLidPjx0<0Nz7Ier~T!i-CLQajP<;vk@tSCFE;#)3fh%8YkF2`*>OCptC28g)Fvd znbxt|T7WYU8Q9f{9Gxz>7!WX+z!S)uQfeT;nfJ?om2Y6S+ZIOKT#@7L>a;ROUSv8s za-64Q^FWYI4FyW$fDDs^Yml5g%Ov?6UT|kLi&N+$Ps915Q|^inpQT4b$6^bLsUy=- z0mDazbLP({0-{53kaG?H0vDqn9d@WpJiczb;$5W(ZZH~7@{{W@kI#`EZFDyf$hNy0 z>H8X=7UR4i<)=wGo!dJb5f^;lMqn0Y{SBL@>z=f@FnxRk1$8jR{~9TsIFwEoe!ND5 zl*Xz$qHNtq~cPVTC}8eqIvsQh}^MpIeA`VG+Qc*r5ZRsHadW`R?Ca-ek`lyArH24Vz2 zk1Q8_Zqb%Nc|ZE}22!$4;L%efIR%f&WDP;njs4}rGpv<%zQ_6NYCEG?R@mSE*=kE+FZwc zIvGUNDu*GzB1fiNd35P>&)FabpLUz*WGQ7b%%LyLJ(zzENbkXV3bBpNf z4-T2)UfA0{KAiX?TpwL_d!X-{-EKkX7Xjd+bc2X4irT^RN`HA|N5_Jh_#J~q6MvJr%Qu@lnm@CRpL1v12keO$jm{Z*a{@s z+mn|qsxXKBVlM_yFfcztj zfA3a>4tl=s(x{+hFK+6FV-j?-Rj$$9%uL@kn&tQ3v=&L%aE4Wm{^67I)vv@yooFWi zHAGa>HQY3(>7FcG*$mUtH=xZY&i)+cIm#DIVX^7C>V;^$?$Mrt>Q7zW?I5$k%!zTn z5yo)VxMA$P>XpmhD)s&CJSs38$FEy6uoPU_n;p&v1R=EeiNISxNpJQ*Pdd=})9loY zopiKFxowRNmd^*SEWea4je$0G%tnx^p)B}y4!s1rbTUMfEc5s5vq4$k$Bo{63&~!N zwX2c+v(7U5H(TP@3)a_3WIwOk8Qd-?A($>7ZIR81D892EpalCCZ;)_FkQ{cb2)=WV(VR^U4$bZ2eel>;c6{B=& z*c^cpqSIgem3{apBW%%_ZsT0J%Itz9rCh-9i|qoDUi_%=Ve-)_^83=t`9r*V=yn>N z{i}X-$(WAb!+w}6lgyRFmxpO5%YVS4=YDjKElLxEw!Wo~h>gyE`AYQG;Z;6TOMhoT z*7hKf&z2FZJjbx+04D!n_M$k{ac)Fc|=A3uxo(zoQ&%XtF#KOuT>uW|t_omA$k<2TPZi69Nf9^;T-euTYaIc0h#w4r9!YI=LRx0)OR}ic;IDfv1dy3hMThL zBtbI`;nqV`uA$r%B!?~~oRt-1qW`MQu2cOSoKx@Wru+qgpjiD1;e#$Y4}<5*Bd)t5(qetgIAI~>WRK0l?8 zJou4+>7{vI#X8MLXER>t3RvFGcNM?-*QU@S=lKI$U*Nof4c^2h+bf?kWIUObhn=sl zjO0O6TOa)}70B3l3xXfq)R~S^Q~qr~^wNg#c1*|oc+=)jqI$8JzU*L7q8{Gz$R*#b z7r&p5rIUwEMtA&+Co59`9JY6xg|C_x6(k+%%s-Q6vysIuvk`QL-DU{-B<(tAXYu6+ z@(qg7&_PRg{-2(`vitnyiA818}Yo1w*z_+@x!7q%2n&;L;cO1QCUCvamkw!;H{hxgIKQTqGqtz<=iZ7e$4{-(7T z3t`13=P&Oz^d%BM9&B}ovWLC(H51B!B3&k9@=NvWe1BW^;j9C;D&MV{EoAHyG~}WC ze%GVUkIan&8ho7};d${ieA7|<@SXnE?yX$PISY?r_zbr38TP}L1v<28oiV=gnqNxp zO%?|}!?UvDjSEq~Lx2t2D(BPNHq+acWX8IfY4$AHvi5iYLmR+=zGEM5XyGkp4!JT9 zo8ox4dcS_Ve$}FWnDA9IR(|=>g`2#?Nz|52l$N#IcRS8f~ z=5PcrQ-Cgf#I%YGm1DafCe8h+@rw8a&}agJ9LoCSI0R;>D-+K~#~S52tUl*_NkY(- zs~Xrmd5e4}uXAMu*J~{35z?R|uc_qNP3}!SMw<>Z?24XI?M{$kkb&0S9;m@-6ys94 zXkUOk$6)9=Tc5wBBfUMpAR$*{GIpjOnHN;jUAYA>c!j~AI80iewxGHhlaf4R!Ig#! z(h2_rNmy>$ZH@eN!n4$9vPNmW)e(fqyTyLVbAgGYDy2qmf<2Xx394%d<+<9}<5G3d zY*GRGH2+qvCtuO=c=TmKnV)z75}DNT7I1Ht;bxm)Ym1z#l8UF}H3p8U{$Gz-K3$C- z&^lccGE8CUm~4H%jaAy)5N3~Lxq31#Pnnk%^}W?!`Q&wuhRzrt=^q0aeoXg=F27Zu zAHQ}LbksjO8eIXhLV`1&r|a=QITj#Ni!KW4xcImOU5E0oEf=^;C!h4;9BrNdN6?=q zobQwC7J#`jt(;C++m6Ot2Vbwqbx8jcgJDyu4kk(V-V6^61b~ih zJ|!>C(|P&%K016%o+q@ii*wkJ)ohxywpD%DZTlT5gL(9~8o!Gmhr@EsRLQrCi$s2Bqt1&PLu$w?^XD@moIA3Lx@(s+`ki2x# zDZ4dnHq@X`r{yJs0VXZ^ zvodGf^?j9}PUR{g-!#u|xvXs*&%^M1Ut42C&?p=_p@b4js3N@!(n1qNdI=>2kRrq&y(A!2R7yfG(u)D4ND~m0Ep5kO1D2B4-u^pyJ=75o2%*(k7Kd|CdwEqLU zP~LzW$e`e$|L-YcWDOTlQ&TehFaE#8d;t3YC+pMr(*G@{DOn0YLrFmmcnbhLqWQn5 zxG4YIbAbO7&kg|OF#T`(cmG==005=HOjnhZRkW0^YN;rTC@X8JX;J`6G+^MrbQcSN z8vtr5s{gM42{d#x{{?zlS{gbAdIpC7Zbl$8kdcvzk%57Um5GU&g%TKmAU0MO(0}lM zh5VQOzg(1yg^_{rzZC!f!UX}q!N}0goJB(=3ZUkoqT!&r7y<}WXr!f~`mZbgCs3%O zX8=$$QURGL-{I^4DjMql;%NUP8$iWPMNPv&dl^8-sZ4*}mH{k^#4vJQjmxeOGicr8 zwj20F2HxK1Q3(-`&*8mM$t0l)e=#X(NQ9`Nz8u)|@k@nL3KgUR{D<=Y!Aea-O9!B$ zXJDj!)#ad&L`6YHO-DmZ!AQ+O1)$)(Ov|YZzHUoLK^Vt%HM^pfUTnbN6M2tYW#3Nx zhU#qw9tk+=VjjRkLrKm-!vW9(bRV42FV$Gb@8d`XY8o(|QR5QNEP3I)*wXz|7ED{4 z2O2lD%wBuNGbcFU(q_JukyA&|HQ7HGZcTdoRjF*8xg4$hE(>b;R!SYxX zV7eQeeyn*!+T@puF;tvRm3g;o3Q)nQKzZ! z;kO>8djc*?p^x)U%5>l7J^WL@(#+_e`I7Vb`H#DQ_b*u}MG$|U7_v~&yl}TBn>nw! z4&1l^^pu|B*)x@&r*JF&!wB5@0Fhx!Kw)2zBT>Lp9i(e^G=*fLovZK7+Fi20q8C;; z7m;cWMlA*XWST1A(0-=Jm0e24%99Bt(gk42`aXIE`=Mo~E7B~x51a}eR9aXrJ0lzJ z7kGe$4|iQI?I+gbqd83noj1zfs(*y7rM(1&!A#690FXIMxJT=?gYDi6z%c*EDK^*J zoUny-&BrkknwoN{p{yS)5;n1mUm8xb?T%;vdMFiN6%WHluAz(LQmf|JfYMJfw>*Mm zT`wtTklwVDm3OVfR#-n&*)`!lz7uS<@F&3gr7PZa$HxjE?9MU?OTX8g(u^fp`#=yq zy2gWlkxf2(oIdkveKOA<+rK`7d~TL{ZX&w7w%V93DHi|hKfA|!>+i*&oLcmb6r-*W zf+7YFq&D+8;$4F95DL1x0?_jjl^nOvpMI_L2wJK|W`(64SS}^GU>! z!fQnjDon7qzmbD+no**pX$ij>h7=P}p1&OLKQu{y>G$Baz-6%j`#Be~RFui5C(`jI zD{Nd`bzO;=otYEHd2^o#T)n7vUL;yzQNiK@u>AN8dFp?OG)ryY1)2lQoWT68 zC6xOIx$1fDT(YFS0I*Ib=uTcMin&h+^N>xV+KiJA-0L3SE0%?Z6kPz0#Ivr)$wr2k z$z#du>lskG<6v9?8*}lIl`Q!;)d?8u`qs(x1e_#Q8V3;?=@A5dBCCV|`DmCN33%DE zOSNLF)+DB+sxl2D{U4dE!t6UTTzk`+-GO?RinBlxcu%T%4p9>Opi3diko>`8FK3Ij zdVY1(DDK4f3~7&+;7>m`JM;J+ouvbr)`#pA?IlAe1N~!t97I}HNK6k8qpnkG=sfr` z3?Q`kaGSaB4M(;e+$HC)8`8jmrJmcHLKVy*(xUVX=+!HPu!47}6ZT}r%!1gci zpK`^|gV_IScwbpGY$?(VMpyyfMG=px-+gm(UdJUGVtuVmO}&QDQK-FGWque|_#SU5v5 zc=7r0)&|71idw8?4@a!B?(cl;9nE<5VzDiYnf0HN_Upns3lXgUlw}e6Gy$S(2N8sA zzwI~1CU;K#a-RRw4!rR=^Zut1jWR}0-nd!Xp&P?;N{hj5pgKuTz zUZzd2?huxHJ=coznrloJSG~XY;G_9@gJczty$+fB(OES#4_}r5^nTWI*7{L(&^&k| zh||%$ik08|0{|{3%LG*Pr!d>OY*EdU*k$3}VSmR=D3w)4`ku z5D7c;)17*K;hla};#SfHz|Q)3_`}|`lHPCl;XpE4FmU;Fb>1c@#Go9v6=r=mtA@=V zw?+R!Y%7be4zNP^(sqKYU9N8ZnU0ik)4U0Zu9avHr{L(X(eZ0ghsu;JdynMnzwo_hF#?4bfPdN#EoGM? z;JDWmcrK!oxYu=RCY2C!fLfw(XZVTK70PVY{rEIpdfH<%p2JP-4>{vGW5gxt&;fh! z1pwJ!drC~-gSn~feE6qi?r$nU5nPHN+{*-KI*ANH8#7bA%mrOK_8;ymty_FPcY5~c z*+WY)GY7i>^!{~(a=gC@wydhFJ?}n#-Agk2dByojNX<`@v`o9et?&x~)FG$xQUqQNkj!rNa8o5N_wwN>6xT5Ln!?~wTI=Y%9>-YUk&1bITfB*16Ol^7YSsFp~=a`sF&!!#*Ld-Exv}QhcB~ z5&vmU^t%I-k8Y{wnSue~6se)DI~vNWmb=jfkD z*EcEkGMW`P=Gu4~L<4-f%w3s$9KO3AhaetWt#k!%B_(ljJ@yD|9A*e&FP6j3l<`+F ziBaOSxCieVEbpwm^*Fi-&#>AnY!CHptf}n^$$9v*^N`TIcO-5Sl6HUZVB>`KC=^mU zQ{3~Wrtm<^=Ha#!;{|}O<^r&5HjuCA+d&5(O3P7t=^J#v#Pn6}Wd6-Iq}mnepph{+7g`z;cc&d8UDvZn6b+Z3T8PAQ|=ofs<0{`}` z!bH$!FAJ`+5%3Cs)$*xMe2K}{^6ZJk-y>>=fmA`VIr4V`A*p`teDuLdINWcM>UgB-r6_7UQC+F9TjiNZjoT~i zeUQ@LHuM7Uog$3Q?%(S1DO>OL>AO@z>4cV)gTc`Su>cTQ5(b&y z%iHBCo*m44W9MW|0(KAH9qkWE*XiYa>J&m`R_5tr^jn^6*329(>z_X+c!P| zTTE0=k9rNSB6;}(TueK-t{f5NY^4Ge-Zl9`fNC!?`pTSyzK9(MNdKu8!D~$0$KA$g zcU$sknn!f5Y^Tpq6%+2CXZI=DkM_7T-K$rwJT;N{yom$bFsLN{LQu~h4L8);YLf-B z6K4$WT2y*rzWaInb@D?*nTtL+vD}dKEFOs)>CpihJh1YiAB8Tgh!{9_h<)kfyt0)J z^Jr&1U42u=+uZO})F|ljcV!Z@Xxqe_<3Uzk_ec@E;9%|qi+^gdZp-12ApbyiVya_0 zay)ymjU4xsT@1TQm_jkwk*b%Kgrui}ljyl=So~uuj9wb!LI$ipi4mEikW3Le8hVyo z^FQ@mRc;?In0b9$pdrK5Re@rQNj}`Jo3bPtR+l`+FeJ zwZwLC+j`&!E_-mB`5Wvc+^-}U;sl3`1j;SF!+To!W^U_QdXP7g);ol8SIU%C@grOD zbG@NWDzzeB;uX-(t~zhQ6=H1Ek870g&J+>4pUvc7iV*QRzaF>vP9XSz#k3G6Mm5zE zjlAdB91aE-M{}wZCTyx%TlW4ygX_(Bi1^7~|6DgCS(7UTG*K-%C=h~`&_@*`d>>6$ z(+%@~bmjf3MnN@%mOLG8KbCVs-&dyP=N9_%@0z+V3#toP5>-Bo(V=gY{@^JXep zfD2?{NY?C0DuXl^2H|9k=38M}sbx4~jd1JEfk zW`nFkwzTe`y!=?I3`TdHSpU_S>O1WjiGq-^`J3_deBZubK_!_xr)Y1dme_UVg=)Gm zFF~{(i+iLH6~25r`8x~)L~4w6~b67T(jBU%V!xt_SbNkFxpat z$gzs|M|aw%U$`L>og#*}GmG|K2P~!1>0CBMP?z@CsGHD!8ZO*us& zG@b>p`|PD$&E%|*v0+iyS^&N#a@jqk>aP(lC{muNQTx<9w_TMtEd9O9JpJe3eRV?c zUjAi@_Ld@HAsorQ5x2lXS^M{TLLFH@rZGNufJKN9`^zWACM zS>k1H%-V-ZK1Z6v)d%RafEj4p=v0IT=11c9mM3*nCPzbwO*xgG$ePwxZDfdQq=NxJ zoZH;hAZ4mib;CSdZ%1xD>8wMa1LE5hAk8(`VAK(Ldd728X8jQjNU37zocsThCz`p=HS7Xcx{n6^Z`1P(FeuKi zFup9ePb(qpOZ|^b7+R7k^ zuWV&Jnj>{^-Oy?M)>f!hP@&SH&Kj#!dskE$C#3ZL>CUaox(YZr{ih7f3zX$rNzSIc zrGMYtzQ4IuqR!0}F~+9PkdRwn@^*6!#ZlU;xmb(b3I6&Gsw*&cdbYI+^g2BijN3_iv}We(zi=N;S@4_mQQ9{R&{ z^DE8Tz{Ee?y%J(&s&*q+PKGmOY2&c2=+eF}g(uH7xL-|}=q1r~+t^8BGBpFwi-blb z=YILyEw05h71}?+ke@rl=rIJ)d6Ctd+?ac<&psY-+)%P(ojx8;eUGT2B3MM2c7Wmi zFEi(;)w|!0$h}q3ID{A>zT5QC!p|~Qcaz|8^I-l=wIL*fT)xikSPcWh@)o9Yh1PUH zF*Hzq-S2HTVWY`hyS$kL{xLclDJ8^6ocvwJ**w!I{2({()_dN+b5`G=wa{BJdi zu2s8JwTbyC7FlDo}bYMs@T<{9qVdHs1ntKvc%qWXy25>?(X8`QB~6c?G`T1BBwZymI6ZvM<4h`K%|f{{ZWHGK7;ZiZ zA3D%xEFp~sHw8QoP@U;8KlEr zuAUSi{ikR56L}3h*6zYNT8J4WZr3jnno>QVWG;gR)|fp#hU+tn(gS?8?h+e5X?C@- zMQmnqeHNqtQ@@p^`|$!GO`O{Cl@=M0O=th0cV!EwyG+k@afUAP7*T-vukW?$4^yq5rW8_M*#oOyVn5tx;z-p2MrxLfD zLpJV}oeat(|OYb>aLpg*3jBWUhey z+p=OFPcP_%rCLwC92y8E)nQE`S4%%CEfbqm;)^3p2TQ(|RDUHcDe2#+z4(>v0P)Vhd*YQ#pM!p6 zPf%U^8i*6F%bQ!3DrX4A?YeE7PHWS!?)I3i&`x)Y#c1@^33siJnYcZ+YSC`y$SCOZ zrqS8ZR1PW>D;g#fEfZp=_5@Hv*RGFjlst;4u+IUgSNvjpX$+52^BB!+P+#cTn!xuWOI8f5yqo~a){NR=ofN2=O-vn1Jn-q z7k9x5Gt&z+@xw#BJFS$GEIV)@jD6dhv5`pZ*@xb-3Rt|saD(l&mjlVX%p31@P`{T9k`U8yX8a#HBoVAMjfX%MeTdUCAjG zSS8FK$EgtK))iq~7#~emn_5=VDw|QjPLZK5b=Z$>zf`TlIb6$m<9?+2y&} z{SdKqh>da%y zd4CTEA~xpW3rkUvElD9Y+mA@XOV-A`ltzYMYW8WZ? zrTG8MO$SK4%fG|*)6bDszikR#ZK*6;Q_$_w=&rlLlBX&*|RWKeGcL@xlu`%1%QTUV9rxQD-P$1Mi` z@xW;^V6e+J;w~)5;;UGJ#^pJoubg5GGS{Fw#|K2~Cn9E>@gdX;z^31C?c?GK?}ZIa z+tSYgeG)gNxPc>~- zaJ6XWa~rF9aAz6E12KAes@rI}7TBC^h-61mU|9! zI}0q-Qn}2@;zd}ra!w|*tBzC@h`%(nwC^Ag_l*&nCStn_xc3o$@ws3K-8d)P^$s=6TTXOY7Z_SPerx+D=kjSSq@mAamA6#F zY1&-+5|7TCD-rC459+#GPY;O()pfp7j3p^8kf|cbQGHN|+%l!@_-{H0eCFxbf!awb z91J>7ulXEg*4mma%!2O5d#o}Ujt>U+34XKXP1kLmbjc7DtEaDmhE(wu6S%hKkOOIq zgY&$&cQe@^4LyEKdZ9_CNd0szxT4Yi&SJ%4y2m%DR{4+;6N3&PtVw3z@{;KgPz6_P zxWd@_WrbdqaWih-@sf<8$WXfcpyL96+hZ5H$ro($(KDwO=94Yg7eFj8=;vli%I4H+ z6cXk+?(<~4lnUUSR@zXil0O(wP+m_|>v$!@Gxs`)#2j(W#UpX+6sbS7qc_ZOn~TqT zOyF`lB-K|NdELr?jl}Qrz(%IFU*2!~+GFzI(o;Kh=?#t`r(ZST$Ls1^AFp+RD)Gj1 zckk!M3Hwl1Jl|$BvsI=@6Y?6MdRqu1AY9&~UbB&MU~NvY|(Bnw|>o3sgK4Pb1G~HehbJI_Fe#Js)SQt^YMh zr)xV+9>nSDJB)C(zY7Y+p1nc5*;_L|uQ(&87M}{No;jE5>{|$8+pvf6Ufy&fMSqYT z1=X^QP_?9LQ%L;_iJuJ8Gley4%(zi+s*2D3KgoA{*^7Bbg4$;G3Jt>IeqwXdW{5Jd_VxYgfv0d z9X^$lTMLwz01U0BOWKOAvG`}Jz18@Lz{J_dXD3Ni+LEE%L%GU7;{CH7u?sfupd1^h z0wK3xn|LK53y#E~wvBkOF5I0R8r)c$mz~s5Kv7aHbd4E+gnXg*GU9xL^mhz_Dk*`X z{M|8o6GfkXSS9kH5iB8zvmf6O)+t5|Wo9w3UtM(@nfTZt8ZraYY%doiif!2Z43KkSz2VFisw+e`ETsEC8XgmV*qV- z^0?Rd(_BcA*IhzF@{YGTeI3O8E`j8yVmI^HL(0xxtV~F*I@}M7Wi}Pui8DY(UrjtGy83-UCwwE2$`$Yfb5Bb zoW$FAIM4)QEByk>WKwK5&S%u6B!^Z!I15u}s*vJ!@Kbh45XF;BES@(*=H%=7l6~Vq1Q7G!K+ZmYe*Dl8|_CDzx zMkyEVuN2FSDOE|bH%iiy9daQ@O>LbDZ*n1SdLT~yO&muDKb=IkTtq46Tj88W2P7iDp z8m6DYd_!-?8S^K@(4V>!_|p~+(Bl9=Yp>><2QgZ&T;9{-*~{-cT%N29-UXzb8^G9^83Kf$(u1UScfQ7 z$?L7^***@8jW~<^rab7N*_b)(d3g0S&=SdTNn}^JXlWBf8)oQ)4>@|$H1^N>XqcC* zp;yCTcLDI`FN^}mg@jVu&K|z^i0})>t~^*+)o8ejr^9+k$X?o@Xu@a||7%;R7^WYj zEW!03C>ax3HTSK!@`n?D*Bpg^5uV!vyNL*eKneQ`fD93)r8UgqQWK3bl4ae0n{zg- zI#cN>C@K6S<1v3asxZJp-7{V(lo}4Z z^wwIinNNX4Yo+olt6OtREXBm_mrTjT8v*NK)DCsGC(%7O+xIF30K;4s`so-ixZGz_i>FD&mX=8G2=?kU(Z8u1K|&g-eDzTinEOqMV~V z_tJ?{&Q|v@`!C$gSFzE&1=jYrxt%1?L>1ASwLN7$#iCxVT&AF1IMVaIOtlLq(-1_N z!rZi$c!ddjHaer1<|<4aTgl7*=1-oJ!17~0|I$r<@eos>Fy1VmpOrf;cJ&nZDj%7{ z!L`Ey!=lYNp~{1iLZ2#`=hms1RnIGhBnH_`mV}JQ)x<^W`ev)X^@cOdvtkb(Xmn6o zF=X+hA1}o2T4m-H1)W{2u-%2vFxdr%xV&xDEkRR?1<9s|hp@f%Nj3N)HM)axk zJ*ZGlS)63=p0n~Q5*XHzXKaCnoeQjEXAQhybg<2u{xDf}Vuo$*7)W??9S61!2tSg~ zy54E=Wnqj~!%&k&aRDI6Ii}ByM~8_oJ^43LrhBY9Gz@}!u!wI_5B`Y%emO))o*3Q* z{cxFAefW*dD>APTjnGNly26J(9+@R=Jkybl@!U*9g@_^fMRNz$9}l;NJ*;s-V{=^M z=;&u{yoBw|%~<#Q=Jqrboc-{FG%x8Zajo4`NCh&|DJ>tJVJ z`UOAdJ(Q}E3k%JjwNUp@@F5j&pj-2>Hw9HF|0Xr7uVIu}+|(QC|AU6E!iDC66qDYe3-8Ew9)%LwG^tOf{ly6s4=0K+@uam1&MUp~!VFLUrzDf7&e4+g z?EPv2oF`LLEQaY1K``J~pFGo-%#91ctWbOSQKlCCiIo}$=?4}c@`vKNAzpj;U_hcO z;h(X(k$qs|GR4bHpr%G|lY0Ffx#X4QYJtB!Z{3!n#_3R~ z{L@n0_UXJPBFOf?g2ISz>p5}WF<_?&6P7U_1B-6dK(7X*9tpnl=Uj^i~66{t9?b& z)?D+Lo#`*iqmPU-!D_UjP=Wrq41|q3KJqmgyc{1f+^nNdXlMWuuguaeqZMyWSK{kQ zSgRO;vis--+oCs#G!aT02wb;vYwg!r;PQh|938rJpYL3PvcFvXu9X;_2iJ}262Rs(OG``GNH@8o9VY#w=Ack=7)9F?M|aklEFX-smvny)$o$Uf|mh@fUO zJkc(1a@w>{(AT~9i-w6~o!MZMkYyTPx0xr&N7lsfM8sN0`;)ysB*P9dP(0W!Wcllj zWr(d`w(V4!I|+1%P@X_0e^5El7|f8k*&@ZpXNswO$~CR8kB2NdVgZ;-HH|9Zgp#Jo zA}JO>^>W}=L$e8;nsYQcqoI3_9PZafehhd1PQKReM1OL#r+$%~-_yMrFYqi4Mi*MT zu2s`W)5jCk2uA%#MB15m{vjJWTwkHf>(olUcO3g{T$fuaK=r?I>h(ipc#gqY^3x6; z=O{fq+A!NP7*(H5S>xx{K9rXkP3+0GsH3HDiH_vD?Wt9Z?04~Tu$!&TFTzhl#TO|d zPntA{z7G^)r=1YK!-h)V-s88d=H&Wm}lFwy7JWjxaztHs3CiAp>Hk7(zjThpQ-QLz7US;kf z2=ZsN7Zf?N%#AH;xaAc3a(hvLc<0kgHUj z4OeiCv>=l`vMF`UaJ3T2Q)03XfD{r+WqL7<@&#L-6zm~;iO#R(f!OIHR~sGjaMWop>1x(F6_ ze7dtGutwM{qlTYFtxffrww}U(bq_dtC_T!q^AFAM)_#NvfHZGi;X)d!~K_$d+sJCe2)4{CPI2&|B0vGj0s{e$$wy-TM*`1)`yGc=cfp6qwF z8+<|pby2LxI=@TD=`cI}ur9Y_Ia2=1b^usUht1|_o5bIHh-dosRMd?4zKnexH4Yo0 znvymeRu8Wp^3YfT_tEx{_&?^}w^5?Ii9I7b*B(=xUOj`cuT=u~9^D^|q5fwBG8DXG zx1X-wx4j7rjYm1#W!l$CZd}Pg+@eNN_1i_2%d_;PEYS3jN;AO?FWKRnaf{F7pn=CZ zRggt{-~KJ!92IEO88PCy!ndNoLZfX5Oc}1&Gv@huP&VsCT$+w(=okbRGC6`rl^aSE zpwkv$>}+1(m(e%R-}EiEL@gEX6HC4zqP5Qf#w+k-TJ4PUMRpZy{> zUZq=O@nIB-p>5JO97u;wUNtU;7-ZK$L!RnOKr8wjy@^*do?wkx?`Xk0=um?bbR8|m z(tZ}%mN7SGK`gSy0yo_)A%lgF(3Td9`1*W`UU#>{5Lub;*e4{DAGkl(2Tx<7iQyRl zL+Gj|=-yX5 z>?I=~DVm%Pq_?3n?2amMO%b;MAC* z&QDiqeG&UpjIkTWJx2X)OX0bWWFh}oB?Sv5apdRkP7v1L$;8DHotnJ}B;k zeHc$WGoiWJ6Xks?8_UzR0`6{0=`cT3WXuVENiA;xLyi2%7*C0)7*=tkPnfi1sTEdBD zHyz~z%+dtefZIWV3JsqquDn0uM5Tbw>=Jbtr33{Z&lhYz>P4mUn+ep+O^dgM4>!x_ zlELw}+Pj={Wq)mAU8$sI1)2um{yifz-cvup-|36%Qr07i%Lc+sjkYg>qtO+n7;2E#Bmpxtj_N=i-Or zUSxuD?Gz$qu^}j=A}U`!r*04dj}8{@-Iw|x(=y^bWj*C_>N+*g2^tZgO#*^DE&aBk zk6i?mGQgP&rUjz`*H`%Sjv)5p_yCc+1FPcQEVd;6dYw#01wX-7vghNF5o-2|HueBa zL$?2FycB=EGA7d^^ifdf6DO37H?542G1$&?5tX-dVz#E-7nlA~dF<0DNkC&l_#5O{ zus8a%Om>VsDSWu?+W;dEURh$CXq)FkfAup_b^8#afHf;C+GsaEC`5L*P&oSf3J_ii zR*ui!OJ}c^o2pbL>x-ZagERK@??}vz&NYV<5%l($7v2tyKD#=+VFKee;}j)Tq^f%W zBnjhCc!d7&l*xoIBQLXPR;cZ1<4D~}qRxL0ZNK$CCEzfX6s>w}MGVh^jH0u8n!7+Y zK++*%<2!#@6*r#&amPeO^w3w%qbYXSV_A#LPc@?G=OhiAo0HWfv-fo!J7w%?XG>UQM-4Mb z{=%Ba_upHyYi*G|Mc&J$v1qPP}cI#b^laOzlUja&|tqA9j&$l*=r>%BMs`>O|$x@oA2p%x)nn5K(N~l}K&uZL> zZ>zMo#UeE~ZYeh)Qt*`@_pjPA8jMXNt2MJ@y#JfSDAB@i<#<$6aD* zW{wumH?k#U>iVPRbE{ng;6%#~y4 zdr3=thy;$n!q%+PN9r1`X0N9a5Vv|eBC4>LM{lh0l+O6%lZ;%OM}q^3hHxuJ^xML8 zpWxQbGWP&x(;))IQmsNxCc5E%IK1zyCJdy%;8IS9pL&c&$B2DT`B6S!bL`< zmU57e#XC%$vcIb6+%_jkplHRxOR-+cuY4!*f!M+*!(5=UGGzAr%M;{nF$gx-m#`$t zlgqMZHzgOtu|!eyqq|XKjE}y1aAee%OokI13`2%Lh+fGO$Vq##o1Xme8;Np2f=v?5 zqn}~#b2xBD^@u?}=3B(?kxwc;Q}W{P*Lb#T9>na|Tdg8BxQyq@%%~;jVNXNFe#H9O zik@6v7joh|roC;V8NJZ<`BsJqIkT68VjyIjt}1~1qTjA2!@{}!bW4)WbkT1dii;tS zHWcz{F3DeYP?6LpMu>VwjQYl0UjS}Rq3HTPtRksnL368zwIfcf=<@nJOm9$IVQEDIAcS4Q?g@Oq*Jdu6)Byv)HC;x&jJ)!6()Q$@ku8mRm7jTufDuyadDGA+jW%;5hV5W$% zMSRNJQLgZ0HWqG>F#rOPuYVIUa;0WoA4@p#fg%)37+QQaLRKFNuXUXf6^f(^VA?h{ zB^+_%2MA%@xlnjJBYxhf->n)(Th~16p(HSkbA%WL)f=pVwQi>b!<|f5Sf|w_yu_G# zs~VKDeFP&Vq{Ayl%`?VzcG@9gbfSf}o4Arna13*`TRZI%yKT#W{i%oT0)4B#6nU@| zbu?P<66mHor%HYmt`JZ^b^=`%7 z4%V@&*}cdMfa1Gz0hBYZ-OcK2j=9EecM*)EZka;FL_EzxyoZ#9j+Lw^v2)*3LcW#}0Y)w5(-S560WmhxS1s(fk+{nhPQ!04uIE$`ED zxQJYMbl1)|&~;qr*4#2IUGn7^?Sh3_y$w3;>q*r*PEe9t2%VO?{+^tSyX0Svww>aWH}mcW$%O! zDw(7|@v;im9Dc~2ey=-}znsJ657frdZ;(j^vYC-vwEUgWJpiTsD@VKnotlk%(RYG6 zmjtX_01DJJpCsc!Uy=1&h@oFZ#SO|4uJPV6cg<6>+J;!+58Mv()b|F;v5MiE9?RUs ztcMqXaCIx!@-&*)A$JjI*yhnle4E@a58D2zH99lFJ?+9kiu>!mb?DyoffVaTZQ;?# z>%Ea6S1Kb-`{=VZqiJ>}*%k1AJ{K|J>sx_h+;%W1|T+Cl9C9F_dYC9Q(<9e+2J6^DyxfCrk8yTn+0V#e5M;j^A~ae0mpZ`g($2=C5*y zi-4aHJw4m7t{QFWo|RF%yyco**9Km+HX1M4*%ZLJU5C>pF?Rj^iB6j!r0j>JvmAMq zW}OVsS1g#e+kX>a5!t>Q*e9^uBssL|{p`uy8a|^*3ixJ`@C+5_{yeTvpzOWp?gU`Q zE0$T%x?9!6Y`98^e!c~Knmmu5Irkk!3w+M}l(PJlav&(u!BY~Gu?d*R2;K4?#ZxI#oj(KW2zfcXbbZoSJUZ<0f!+RD@D zl#BCkVc@Q{=%ayCa^8rJ-;N+(Y7~4J}>4xfLXoCjw@`rZ$il%Ad%SnFD^#Wg{ zZn#u4>g*jE*>fjRXLr8H`Q*Tros_DzHRPOA2|Ed`ZP3XSoE0ycs>ytD`y{;T+5Ab0 zt%Gn^R7KN_NO_-(f4#y7S;rf0&n^J+nk0m?v6w2t7L#PIHSmnhKgV@N*2oP0UXZ77 z3K5`UJ3SgP@S$HLHx=@?d0s}V6(O)d*X|%m&u0rCV^)LLqLPBz6gF~62u_Uw#yauH zmXFhxkA<2ZL@Jb2^seQq&!a8QqE3;9)BY=fn!2#zd!uHZTNE!P2AQ|^TMz`d`rvI@ z@nD?xH%_*#xDfWKuS*_gj{<+ByG4q{sMR0PWvU;i!FX0V?m$yZjirFEY^&WUPOlA> zxhh$#9v`ib2+#%r5z$l$YhY&$7-5=H-b@wUvvKZZ6jrzrL&cj1l^H<93hnRqQP&OH z{QzvHTiGDq5f|n16jXgRb?w4=(#2Eb^CMeC%cyi(9@PU8Eg&?^KfpPJo64+ng1_Xo z*lyyQoi~3s;;kU;XWlT$m~%QT#8XghN((57uA0d8U7J0b#pFj< zAo~U&ux&0*8)~_h_bT{16kSypmsmre|90T+4tvuv@%OBBLV$BLa@)Y0{_+o(bEQv~ zzn_gW`+gQZ`FVLh3OLXSSYhHlV*w@U^A5kWm7*=qNe&>kc0TZiv75K8F{P-FD6&fD zy?(Mw@kqXsFRA~FATgPnk$^=da=w{Y>Tc4j(cyUiw?))ld^aPZV}))?wYSn-{sClo z^qx&I<$N^DlzvvrkQ*_h^v+uvhHSi31nY z9$^8HWZJffg#E4FO<2TzDhGy1$Ng*lKNOv3IGgYLhwV)fB?z@wsl<$;rS^&uK~Y3n zdjzGZw)SdbQzJ%=h^Se!LrIj{-x{STVir|e)zabjfBtX0a5%ik!Smer=Q=;1<{^W;%+rD zdXdss97>AgMkXwmemGzkNz-%MN$?=Cvx?7NW6zH#d-A<$W}f_Bv=i;x>*#nJEs~jo zecZCLaB+Tnm?*g8@Ode&PApC)G=9%xwxLov(C)`^e{+xN>CL?SYeL!jX3&hG{DgWdww&uCF>nyaKG*K2dBg5s!=L@FIH4emw zr@!7zmqE0Yo?CYR=+kiWG9M;dQ9Of^Hv{9saJL*G8l_W^Ndc>Y=pViXQU)gSf(1go zl+SdBsXr@HjMs>(jNE~NiYtp0X(nX7OCJ+YBKGA4f6=us5?K9wJZu_B0@hTyt>2Ii z6HD%*pGmbB?AzMFFUAb8VR?E2>l+wm68W682vAX@j(Z5)>;K|fkr!4L{C!AXUE;@7 z-r#`yHPN6hF~tC;!}Nc$#-g;*!rkF2S5^q^IE^Q-h_drgqb=8j}7VZFfy?Zm>_s_h0Iv)~UtN`Z7S#)H;zn5t$-`sXfzL<=|^2 zO{pyPhTyOoM4fv$m5MFc??CB8GX{cY%#{7jv!bt-3l4OWmQ12&z>-8;N&I4vSS!*x zy$hcF@awyWJ7Wjg-1@a%NADO^@PdPfS=Q3RHv8U8e92;gzh-!>Zp*Ai&V29xiCjM_ z6AQ5!VkQxHPNaO9W z<)D(G5+RySmA%hLUU0`#Fb@SD_UeA8nz+6LK3bM^IA)xWDL?&ou$;!CaEL2=|KUsE z!1Y8!6vFlo)y9P%ZNDZsbzRDrt+d$D%a@#p0wous;t*R#phA70{5}Y&aj5B=Xh;=f z#IFHsr-Je$m2i11Q6Msp`RKsPNy3wN5i*|7MEjcBcMsmIt$3^Oa!mu%BxEl?vJkNbju8wpJpcjr`!!A`fc1}VX_Tv8?J{H-0qW$6_k@O1q#-*df z^aFiEU5JjuY=7HZl}KjY_F92CIFNtj)2&~(b@V+*<8UqE#cubqx_?PMD8Iy z)q&Ictz=%>lK2zWsb(F=+3NZGIN!J%UJ#D;Kh(}Xmsu4g;|Wzu()3m?33Sd}4=>mU1hzE5Nri648%>Y7Tc zj%nfeTK;_%luSR+SkZorPzwg{)jqc}PPA$JqJTC5w+{6jWav)cHXM3vKp}$0#Lahq z4a>e%@I}_aFR?USO$O~I-!dyaqh;tifX9Ps?+*329*n_?f5_x!-?+N*essg%M}q6h zf3q02j!Nz!_WB@#c7WA;WjrJEjC=)aFr7TJdJv4PqhqRl+u(#UaT%4-#~hR=g*7rL zM6h~`jaVzFG^qMXY1Dd?NNEka?&V;5b_(vmfF=m z<_bxuq1e97TI^Lwoq08>EybfT!VhJ{e9KmlKi?@}3I=__`jZ?arWf?sr3V=34XRQ9<@#oO=&Q*mf65wi$>lYBJ;zRaym)( zc;jwBWsTHiaBxMvEWWTBB2_$+&ZCI{vPbMkq|YBpm<2h+Y5yW+)5yY1zQxn-)Bq zG`mSbEB@dV-c^NR)q65_lLRr-ak8{X>tK0nq^wqc!WDzyi{^vzSeg~W5nB#|jq%+5 zvBoy|)#!CBl?Cbmnh(MR=c0p@`1zrINNo(~U?@)UYAr^0JQ$R4%jvnevO&+#Ry)&% zL)j0C`|^VE9QlHBFy7K)7e8GNpsywOQl3AQPPrjtjMhkRrA*MlCW47v%;XZe)4}Hq zRL(ld8wSHhD=QI?hp?QoZ=r@YtBg^AWEJr3!!8z1hES$o@M-!)WsZIdaCL09EP_F zkD@GHK~n7)2z%)R%E&?V?U_>|)JT~TI8WEp2|iQ1>P0NOv?{6*&wOMQl<=s6UG}3Z zvG`)}cS=GP7d<|wn36#E6*?$8av_RiE4k20p4D$|O#GK?mX1upvZ88AX{{o|f{t>$ z^0nfR$^lzHD9c}Dp4^f6q!)_+6MqG3hoN?9BJI7yxH728pek8iblAR>i>n#b2`d@!ZhU}ZR%>DE!~;oiAjwO{ z+S|FlD?j+g$eZbfi{C>N$)a0eG5_*kgIB`8o1PkxiU|QA@+R#@R`Fm>v*3p|DIV)VWc0*nti z^s2ru7mzOSTq3E3Dqkwv;uDAH+uf0o^ZEy?6U|#r8Vk?KDWQH6N7foY(D5pT^hl{p z@yr%zb*bXtMJ=+Fsmz2!9sKA;(E~4ZSdb~)%4|c)2xE~lZZ5H2H}U%!<*i>b4Qz%4 z1jHf!hEneMK9G_EE;z;BWEA>E?Xx=AUVw?SUa0eDew(ILstzVJObq%(q5p5s!Zhi^ zZYt0R)FnQONZ`wUFujDHb9^;P2>jX>2i8g$DIe88*h!c-8@rI@5CJy1i|i5^tbIq8 z6a)+JsjGt@L}e4utO|!+5J<`}d&=l7X~tLYS1%L_c(||-vrJd5b($T_XQyk0DXJX? zIjU)_!gR}CzPW+44DODF-x}3WQKB4{=9HZd(VCShQ1B`n#XPjLZM3ZNlK;Ri!zFZU zYKD8NR}dGGt8>9_jg@{@SIU=B;&N;SQQrP3gngv{VuUzj4Z{x);PdDrI z18x|pBq~-T(bkkTBuccRtCbqzd1I=rLrxh{d+Ch zx%|lRT@q+I;4J0Ax9-`X~bTtN&?4;&PgI zxF&Lny%)(C$8fm{gK{$O9gqx%p|0kuC(r(mu7X}Oz8E|g>E4P-S+WlxmrZKiLOsKB z7Ro7O^9#*Nc9SSS6Lm%#Lz4^bqX~?MrBT;|0s?l9F-gu@X7`4C5Spqclk^wO&Zefs z$<0yHT#G3XNN(Kyl^C3M=7iq2c5;F^gnttqsh7RP-g9cc%J65I`$*p=xEsi8Hv4B^ zqwcIhm`-kUAF0@2UmvX^i}`woLuzgC!pK`Sz?~#QOg)YfSv-+Iec*&MH*V3Tb z7r*PJK0sgqI)bIT?^xGMeqUA_UN~vH%Y-@0C_j?^i1Ts|wCw87o?UnDd*80%_Avp$ z=j2~ISpzg!PoAtY^g2HB1;J|;XMa3f&V92gUZbw0ON;O8Gvh=$inVQqjB-~v=9Ts| zxM1s=Q&C_j3a{r{Ng$@SH4O*`abQrNJ{)g&c-5(RrY%+>`^qq>0z8rziwkF{Ig z4X8R<<&silpDI|6CTb0ls|y`GZ!9Iz!TV82R{yWdhv6XOI2c z%@X_5w(95LSASb65n>zw4Kus#Ak!#zaAO`+@blSl!=E+ZeTJ0mRql}OC-GrVo94r@ zR~TPl-1kj%9ehqr7HfN_7@M0-vRK`gH$d>DWH-{{O7(~SP$fs8Jg|SaF@$hbIvBc} zB6#NUX;bFz={oFrFkWzHibE@}MxH}fl6`+GnQ(+}VCp1}=zaSlpk(o#k}73J)N>fB zyykI_^7HSNz$R7e^V}f*PmY{`mQB=-ChlU-Q}ITRXYgoWp!{az?7abtSYz8It}ptv zIPlDI9B1xuB7yUG>JXoEWUc=`nzAgQ2XkK%rzhwAz`o{+kD36OeOtFX=$4=TSe)u{4A9wPD*xLm(x|6)VL#b}#Mh^P<;I6Zhr?OV zI98-1gEX5X%Cc3=#Bp2{lnud8FecY@YOeyaDZ{|kDUn&nGXf*hNzRw^lhr(zO64;P z8HQ^;4Ao?twwmmVmm}hMIw@5Tu-z6ZpPj`y`802#F4)UtY5$zky68 zuOsD9xd|2=^{pR~NcEJ)fUK7|%{j-_py0NlLa9RB(P^feopyy0){<$3O+SYl$l-qi{S zBo=;$?wWpXW99oT-x)#e1iiEvZi-aZYT)LaVZiR2ekr4+sbcdaXe+o8s)+K_h}KGl zInoIAHH)yHH3_|!#I;oLWK%wqnHLFgExk0B768Qr=`>k|vVSO!#%>_e`JqeJ zand}FnYq8HrLP*d#H@32(^#~+PFX5x1G8&yTQ{F)@fCa~2;|&7eOS*p^H}bxS8ZZ# zEhZl$!}TmM8f@1E3QZH26nO@1iL7#&vJRK}B6%x>XBA<_*7LDg`tRC$JZoK|tPSa@WF z8wIrnL)8o|v!rsEw&7J34Ou|7?x7+<+VN{)=vMqnm(uvBDN7`=hsabz z&r2_9PS5$~K_R0Uf>LJg`+0vDJa+6@SP_&Sc?Hd6NbU11PV{xUB$}hyMJ&*qmcxEC zbLA-+)OrkKI!wz{Ix;=&)6uOpUsUq6xw(@jVoABKCG`XKor$)XM-q>oPPJ9?WvCNC ziKO?5fgdj5?wmaI<(Zu`z}ffG2RtA)?51%9ofpAwUbaC@)-08N0RKX2nCot*ny8m=AZ*_Nm^l!ayjJv;D z8=AP>gR1-U$q8UXDz82QOKI^@hc5Z`pm zMfYLx#VuZFO>=T_C6V>Pp>lWwks|)o6uRUXdC6ML?ns(@&Z3*MzV-=(#8k zvm7UQxa4O;kfqCV%l+Uk;Xr%3rN8LCp2-EjmeX$=_HrUW_HuVptp}3N0Z!Tqg(2G6dD|2C{Uq104{vs8x5E{#nNqBN?D? zi)YOH^9YL^Ld8gdp5S;VJZtbb$qB`nArU3Tt@~b!NNs>-6&ymFRLLBi!x{`6f>T|r zEb75ANQ zJzm44Rdx_3HxnD<$=tfY7^fakxF1!P`{<1F8IhYUYRREA6#o6Ub zvv$g>uq}gsZs!mJNiCf^C(s^>a}6|9^?Mc0~h%%oPtI${l7UnKk#~ zx5dMtqYW5v2YAuqt}-%V(Zd02m^Ib*I6W2*u@0ECV7H#s=q}Q_zc!R%4U9u!jX^$o z?2Mwxk^NuWOFjmO&W(YE`vfdif)t8m)ew3Sxta+Qu1Eb8gyuYpN+Q7zsfA`W zU1hv(rNzk8JOd2)G8a12mLO^M1#eMSEEw+2yLnnT3$nr{FwRNU@uKD}FDgO*34^2= zbZl6I%=i3W0n>$s8laH4^_iyeOD^n%D`bcR1!cu#BN2{L(6_tm|Lq2W_)8?Lf^_RYG~KYFySS_+ax@nX-Om(E*Tua zYYGzBJRVjR+mz8L!3EK?FL9=-c4=E(b8&0OH=EZr8F5Iy)@yBd(ZAM%(xAC)cjboX z2J!h*vZIk;yAIG8xWf|a7|Pj|BNU1KuaxBl*6K@8S3M zHx-cg0@p4LTv9p_T1gnMPf!iIMcKg^;Uwt zsPhev@P4i!_~EmF7&NiHA~>Dk?*!q`=9iTE(+P{TTp&2k zyOz8gWEZ5oGkqnE&~*125~*;Ba9Hl-&c{=wnd;&}@}l<`s|FO8*VC-f(!bHhT^y}F z^&ObmnH6b}rQKtT-9=a<9(fUa?)&J)`89)vl7C%tMA``p&ROO z%rm6^L=}OE3tCSj8hmaRy&FtY8VxGL1ie%^HTJeByz_`H+x_N+g6{i8B_6itD=s-( zB^tZ1l=fFmvZCIGhEGg2o`zfavBh##$rrYMvwGrZzLnCT$l$$z4FH;`|796J(d4u- z5j;avN=uE=ri!oJygvB*qVa5-MqN4U#Y5UA!rIcTnkHLG!eeVA;1}9eo5T+!m1D}g z>SWq`0ew?J8(zJ>h5wQZLP9{cy@^`CG4GACoKQ+qk+Dmf4ESLg}!sk9FD+DcpcqcnaBsr7pH=4snI&|FA*% zpC-Wln`EVV=7xr+xIQM<3d@W0XJ|RSZv0KF?jp1IagTe_k&;p&6e4>c(8HD4YxEii zyjp5}n1ua(a~a@G@58H2StjEz*_Y(TSC030(7GDcb{gs4l>C6>ryXk8X)z@ht86Wr z{Gq8r5gzr7jhe5sK$8ZWuZGzzDtNPGK`k<5HH-i`4H8V4| zpGA|aSU6)9}AX%LpZ0oDh)WxclO z9Bg`}d5I>AG6m$C2gy(DIeLd*J_$Az>Dj{ldOFWNN|r#tG$T?qBT5M~_T(L~=VvHK zKxm)VuO4br!Pfvql#Cl7)~Ff>=z6vTKbxbA2ru79eVkZp46^z;kJp+jVQipJq+HyIIqrK7wzfbJw;*gE3Wx&&@BcX#k>IL0l|_tF;p;x7aNs7QX)#a(F< z7fB1>#+K%56Zim1@~xV!vdXxTlikq5$Cva!C@IyzP1v%P`;Mr`f&P0(Uj#(4!0fM= zlB4UX=414(Egp_kZ9c^kAFiMJ-|2_mxjawZP~^#Ovn@dBBg9DLcR*+Qsxbq0*Zhac zw?Oy$xJXJKKwg-N`(2jc{M#m6{jeY4kgMJ$9lzy{Eg!E_s%@BSqZVpfu<{Z5nxzn8 z{(JSnuzm}e%iWDkfMRzoJajJgNp+mWo%djgEsrOaFnLi8kzx;ywyfNJ?i^7oxg@zE2Mol%AVfI3L2$*3cpyv9*;D@dTfhKhX3QH&wxZ56Z!E z8WjEl*~g6XV;MY1upy6zN0GT(OB-Jf8fO=YE;qBSGQ26>)p8zVi^y3E&yMYQj9|K_ zKAr!lPc%SXoosRD<$TO*Gje`v{Yp+7CyybFoVJmlht-b0a{nJ)pLEN%XNLC!7ElCi zx`bn)zdzI(E?Aoe<1pT%Tpqt$);Po0R!#zgzVG~^g!pn`7lvC7rx;fi6VvMy&y}uj z4Els;u=1%BcA+tzampV;BD48+`i zIaV`yER=oewMf0F?8-Oi-{@XViQ>7G_s-Qo;Vn+(BU?BqQBYJ|`e9H1ZL=vxxoTtE zs-az{s@!W1u{KBT|1tR5D=`0$u1g=vocy<5G@AEuc{ljKmRI2ynvPy{jt7glDljGY zJHGvUhH+8sJnH4Ojy+5!SXfp?XYGtZOrgcw(SGS?!={BHuq+96FdkL!b zKe|iqQsgGzlm0_TX13gYc%a{woY@`7iwQO$khuRY^5ZpO?bVjUoz(x)MJrCrkDeZ( zZZyTw53_aOa*ehz;I3sH^SU<#bBg3ghOR@dIf%;T>T~5Y!%^$}f+O z^Il0bo9BM`kMR!URLhe1pPx^YmL1A1-pv-^C!zDQQhFPqt6$cbolb*)?BgL#95Zve z5LhIA4uRWc#aH-H_C7@G&ty(nVGL&0Y2uAF&t_8>GPANU&iNmVyw7gZx}t;@U2vOW z|FeMlAD#A1sz}jx8A9=)H3KxM&`v`5yoYO!?%p?3me}WngRJFOA$*Y+2|N4odrDR2 zf7b3b#%lvfxU7vwbF`2yB`{pAkkph*Z@)9c-QtK3dssa8`;*f21w=Flv0aBII~bm# zYVTIX|8SV0x8z1A2w+Smo6e0G{!CWdb_3j=HA3|R^DPtD3gSYvH_` z%=tV2k*()-KsNRfao49+a5TDrYz?q0npw#!VVx%K&rX;;xl0QD5L?>Cluz>57g~1j zTu$sEN18Sv1&0ZQrs)#Kzh10?Cl9W!JKJp8Ett5 zLoq=!{g!#hD}J088K1>+D=lqzMub$f=ABu$kxOb2X(b0(Ue|ui{q!g+ntGFA!P_mr zUFnq@PC2{0^O%f(2$Q+~^I?!l1Acdv0eCatLbKkYzmtR4teGt)mL3+rto{wc z_(XFyh2;1S%u~PS#Q8ube?P&~;_7Q?{hZu|f`!vua45OwjkS&=n>{$Bp*UL^aWY|Z zqP>$!{xK;Qpc16z9Gw6Zp?mcSaSUOI9J|s+Q(Kc94X_H$WxXd>& zU9xq*?!3e`w-#N)k0`#bhWEiSO2LFC7BiT<(Is781k>j}cgg01swmB_YSh6pjaYYw z1D@lfasu}n=Qn+3D1~K`eByw_;E^|#GXAW^)*0p|JZ=rm@RM3ZSjN@0Tz{T+Re9#^ zD~QQr!+$;xPhpv#;aUrdcw_+Aw86ijOA6|`3GjqFXN7N%09MwAA4FOwt>kU^WCE#* zwdVy#6!6x+lBCuV003~YPh0YMp520E-qTh>o4C?vP&;L#DxwB0v%2lTk=0GPeOI!q zJOpW0ikEe4=Yf$zX?~y7kH}IC;IKtzmgcNEW@KjTiP|E`JYavaW$)isniY}(X5^mV zd2I&84unLpC4U#Pk+bZpJQ|(4hE(ksI6E$& zK7A{hT4N27JAQTK_hCQcZI|AaVfcB^McaVo4Ua!lhpD0N8OSF~;)OY7Yj$+5LVF{5Uqk&BAPjW#Qs4FU;Fl%n4mAq^Owl z-)p6W!E&Q{?fys}^Hq*(2Hju0%!EX;*kP}xEl!5@SpFPA>x?MoVD?{zJMrO9GdSu3 z_OSC#O-8IJ{jJo!dOav?U70xg63~wf0O_W4Ag#T2@7AQwB*NRb*>D#7-aTFuz1?$| z8oOm+PvF_YfW*D=J6t6>OpO=jD%q*x-Z_OXZcN2BXL$_CwCXw%^&lWJyHBK%Uwaq^ zuxoDPco#E+ORLN;N+_0Q_NffnQM@l?PSc2dF~)9FEGn%`k-(JxCtR+|zdd&dbGs@Z z?{xPdOZxKg_xz#8B~c9OAXWRAS^7iIxQ{xIl^fG2wi;Rg1N`2UMcZclA8cG~UjNE} z(^#Ywg4JI=v6L@02&wa~2vcdzpCq`O;QD5Usr{*Xmbr;mg&9-rK>q}ZOF8*en#;Y2 z0Typgh*2v6pNMm}x;ePN{x57j%_I5;sCBp&l(m?b&rOf}`uC`n7gj98(~*5|CwX?U zK8V*|jtUmm8(w8BsDGNsu8SGx?QjKNH3K#s|DZ#4y#vy?84?h;cdApN?=rhdzOQ~!Cto!LV#xu&z8M?&_Cda z8c4{C!RRlE^@0VHt;~uk839=HdikIrMVeaJr`FevqlPMb+VExWJZP(r4#wf5Qch(< zzmS}!H16xndl#3gEHm+^O*g*7w%1B}C6}2iqUY`=$YBFqUTp}xbMRhOj@mj{pK&XA z(GBLWPB&z|z~MW_{?evF4YrgAQ85ivJMvlS34Qq3y8N3`!&6;TQL>*ZJP?xHRS>)= ztcw}2q@z-2`Np>9*{&4Snl3bvuD;I45-VJ8a_tT%*5~7AY+0naDBLUjl091gpwGE2 zmN>L+gH9Idh=%I_9W^h}pnLEFhjNp4GO%;kfa}hlyw4HaEF(Cl+M(JSk z()HgmztL}JIO4sbA9F7KWAu*k8s?G<`~D>qsOo?!3)`3bK+fqjP35Uo5uwa5$i%2z z4{tt+-=CPqqn&@u5wkMh@3NvCh z;!n}%P|>rvV%&9ITe$iAy`j6AMWkY zO`SN-b<1rOvnf=!1l^0XdwY3?w`L~A)vNg2U8hlX2Rvvm;Bl?^zDM3>`DIvANf15! zTV}A-f^1jTDaPZ~C$s`ZQ$EDSUd3SPpijX6xf*MIksvpHY6!(BFSylv{dzOBO^A_6 zwv`2@u%A&Ien3KL&{24_BZ6B4Gaf&jKmvF+Cz&zYf4j+%|GG zz>iBU%V~dn)65!K@kUio_qwHzdH0<)fi9i(373a7{dF7p(5_46)gPpwmwUs& zMMi-IQN#jeK!Zd|-^#fBF^s_S)00J-Ul-6dkoF6(O>G&(X)WsN(S+&9a3y8xJHc{i zD*}lTNO8+95>xQIeSrU1HSG;OFftrtjLHapa_4*P62Eo5>MU@Z86%lH(q{-FO_>nj z!Fo=!JH64#>4Qm^#}XvG^j;7QU}<|S9pB&Pw215>bb=*-R?%Wfr82W|Is9&|@rGgg zZH3Gz@ApZ?fuu9E$ZcV261R(6kut8X#ed=T5TrrzMgda{TExfnG@{0jjtO#0v|uva zp&}kAlN}_2%<79c>I2?`C6yDk-nNZceRx00F7Q9PX6>(fN4_sdfMMHp_z;2LRjBIU zO3WidtfF3PtYQlsxty_pagZuvCU!dHNdp;;C{9;I+&+0i?BKCThSr~^?xFidPvdk% ztTsS4kXB4Vx2D#g`U<{S9FNPrTN>eKG*G(aQ_R)QySVE|I|gLI&v26??(}N$FBss_W0c-=xMLjPm-z4#td^C&lUbXad*RpMf{mn zH5~c)K4xCf8WcI=5mD$xersiE^IQz&-~-^&lvbS>7*KI6Z`*fIxi&Mm z$^vsv6^VTYoA7TiUTXNQ{ii9fO4DqFedt!HO)8W*?)R>(JR2Hu2WC4yv#k+M z>LRt27JPhuLZj8!=OX#npKt(A*9G-)$UPe!Vj|>ugM-CzrY|4|V ziI+*QFuHk9lM1a(j>>R3LD2SDm2l?K2YRig0L!g28?iLc_#!W#k-k$M>(*`nm#i~o zx)B56W#WoXimWd4wB{Y_ZllItlxONPkoem=L{r>dEUHbs4k!pKX1%d*5xrdyQbmf~ zXzMLK!L>DRxo0%&+k*D4*_XlZK*kF?`lGABXQ*4c?4T(rbj1D<8AW_<)3P zcGF2Aj+Crd^pRczuHM6ZSA*WAQo)rLT1sVk76`94koH<%ESs^Pr1gF}Vc>Zykd znS3(mE3s*Vh36pSz zqTjT2O{tFus2*^1_X!imM_ZCFdN|6Iw`%)|N7&d>VF`Vjw|uYfry3ULIK;JWd?eHZ zJjTHgvgU-MjO8}XY@Z~t0#fsU)IA5=8 zWkz^=FSlMaz0G@f4ek!)%aRwRDGIwx$JhI!FP$zYvFMcOM)XM^`dZoLHHIe-tQL472`tO@9Qj*Q zf4vx=7Xn%{hloN}FH-*aaiz7uhak%YrnoFg(qwbl_dGdF1&=AVP9Z?vZh!LpP4BQ& z=;#x!!Mzu)sB1o!Yi@)|sgAQ&M}`NgX-Yxw=<>7|_@)?VYbT54Cwfv@A$!(SZCNZj=PtWE$mK))8igLc!BPX%;d2w{3a|@a^7R- z_^%6ooP32*AnTS-nOV^(70Lb)Hvc>JAa!eYB%}Lq3Xr&3lES*WPh&#vU5W!oCcjFe zgrUMXTjigbu0GEed!{0VsZ=cz9m@=ZUIh8?{`rlTznu9{_B2XJTTm?ae{_iAtyS{9 zbIAtKH;-RKq&Tsu9IE0ob|Lk)f4|X&?l)vEb=$7aL)`CQVL3x&p>_l9D=$(okD6I- zIi6$Y>o)$Pdv7Mp2o{>blHJE=3r+jpygqWv+z~O=wXYoyu#Ec)>?Wi;F%MSLx&(Mx z5KcL!oj^y^iuQVW*!7O-^=83e)m*QpU8~8rM~(qT2Rp~xu(P#)9#&^#Sxt!y-s%!r zA-g^qLu`zTM?2<8eT++XJIR2uACYIISXXD*g`QHX9fORsjLxC+&c)1^&E=0d4_H*h zRQ6LoH)fJNA}!PDwU4)c5UjDJK)3sr!!{i4)$j1+#xBeRv*;D5gVk!*L zeB|jaSGxAvP;Pfinmw){Ey=iEJ7Ba_;=vq^nK$fqg~a<79S4g{cqj?>Wq| z(nJyR_Y1jka2awSo#^3CpXk22zEby6h2}HzjLgIOKeSH7J}ji?NhG0pcZK2RV)b{_ zLu8leN~DrCaO$h&T{*5>&0z~F5TO;Q9>@du^jH3_4o^aB$ zpvb4QJr+aCViAyU&D^R{{t9X7@LLz&W%Sb+#cLI{;d0H@9140*+bFm`!&UmHx5bX0 zV)IkgDXiFX;f4Y0zN@tIG;`~H99J%@1TyMGAI21j??2 z)8(gq>7^=y&clSqJeDqe41A3M&(>>NkUW@-(R&GAIJ58_(}mcod%wVeIz}h9vzHaY zv17}0TxOq_Pq8OAHWN~7yMD=cc^(}k?v|^ke&B9NQf%FBj!0MBE{RC`7><8}P*W6$3 zr7N)ji%8`*j_!etUznGB%4`_4sj)CKplrGI&ZEV)`d3Bao9sIYgoynqh^1sw;rhGu z{yA1E92F>`ke@&nVkg*2S}(^p@FGO_`qY!iID9K75taNhWn#qUM2i~iNj;_(-bqF` zKda;ugBEPdl~!hRos3-lNqu{BD>e4y%=_-PTh`uT65iEU8QQGJry6nJS5F zQeD#>aOl@_reck5xj~waQasY(Po)nTolb9+0u{joPPEd{=LquwU7CvC^xXfe!g#z5 z`NM<)>TL!FW(zm@;$kT`)&@Qy+W$`8uwFNO;{0y)5MUrKk9YT7YX35CA@sJbH+DN~ zFUH98=(P3F#DjT<7xzZ9CqHcwGU|2V>@Dtr;)-gD`q)1GB|$OLK3m7S+(SuMC$MGN1eD}@P|JMAUtt{3&n9vsy=b|T~8Fb96+XJ!pbmy0?9L$m1zU@mQ_H9*7wE z065*j#YVIBq+Vq8YqlC=7Anfo!^#bM7kRus{DcT{aT+n$Ck}q z#kcCV4C%(g9uyT`$pu!DRK&iA+yA=V-+%D}pi15Rsj3746y-|pieQK8nkjn6SyyOl zI9VX|S@;sIxdH2lz2)|kdIwp9Nwf~&==5f%+JqgE(3Gb4G6>PjsNkc)pS_y%(Op!P zN88l50RZz}I&+<=l>mKd9S zoxpQrVz&+xKAGDk?57C628&tkCNjrztJsXw)MU^%ZqqciY=E_Vs{FT2p&8%>;xs~Y zAW_F6e8zC-vrP?{Y2!9q--XD!0}nq*&r_P|j07asjS0gq>4gwq;q7hkc|XP^k)fXK z)^kR4jFVhuwC@k0#^@Kjk?rPSD;WZ#CRpj3fPZzqyV2AAY zgC+RQ^a4IBIk6+rMwMgYf|_5h^~n8wy2$(b;}EgJmYSqnyoI-lwWVfRM%Yz+WdkNQ zZRP_Reh{>Q#jwO;g2wVIPix*wvub z!gFKn;SqNJ#4Hz-z_&h5fi6JK?+><`aWl6Y|3U~7P6$h4zNRJc52o8n&@pI;4>8pg zXag8}EK1uwz<;oxGUJ+n()d2qSkIS~qPYzN4qFSG+j4Ub0h?jfyWTS=2#6JI4D5g6 z#%WYA_qBd(H-*pAb~kBuvZ8npwgta3g1>P;D>p0~X-d}xVb(ru))MGih0G2+1V!bT zv?lJ-oWYS{c``%1ZX&&29x2*_tR|RQWPh>q6thaPE@l=+LhBgMCi0uS8@lI>wGFG& z-7tTJX$Cd~OS46`13gC-z~WqBtL%M~z<*L=pl`|6#XzbNgPxLOmc3j{{a$(1L^(Hy z2*eVzjuRlY)GZs0gZO1Hi2E?wbeq^_O~1q;S2@P4QZ6r&97*M$Rv?1@9kmN*xqJdt z0_}EmxQPF@I7Si3a; zb&hR<z1QrsW1d8u)>vH+P7_c!=_;kRt>$5GT3)mIoC2r0!MmC%?I* zeh=)7@mbH>U~9{={he6D+nEr04{itaUx0@dl9-fe5>jH%_OOo&(WZc2>|(Be|NgjT z6#QN32SNz@M_Xo2jL%>R+&5J1YVF!+?0=1u>bJw3w6Z{X{PLoLl-A3dpeZKFqoyO` zNWpCfs`7snEgTZ$M@{tO8oC&IC1H0SG$Iv<8A2Ko)#)GsL^l$q%tRAXYnSJbyi@0tP1N*oYYf}Xz_&QseCY}@WqNd(wMg#57TOemf1TSCLs(?< z<~2tZ|H_EF9G_k#YOGs_XZ-CM$j>94pJq&GmGzMJbqthFu{4W9;l+j6`jPmpq=xpF z<6iHp)c!VWEM3rf0BnPw=XAK!){47o{~sM4wU|TY=^btzQ7*mz+Oc>QVTL8zbY>CP z(3O;@wo*zdXaYcQb~PY?!(pZ-J~3I$qmg!UcrEz=VM{ZCt@) zwo~2J5lS=9aH417TKj#6TX(%@xn8*siPzs?k>L4?<<^mTJZ?=-ln|Mxg zM;lL1qza((V!XPFXJxoP*TY0pqatds!>;h^!TT2_f zH_>CgtRl^X3YTf`lYY4wOM@M}jSk|1^2m}1xi|tikChdSbH4#_Sv4(cX7O~?8I8Fe z)B_OY;eihc^zi|Uz(}x88nF=AOee9*G}t{S7dueTb(WxHS##lHmoBXm3d;mnMdb7N zq=V+Ubjo)wd`uAWASm~$dNXQ} z8Nx&-8nq?X{x0?y%B-spwy)k!O4xIVa7~yvW}BrS^wb=eQ9y7^s_XZ|@!P21iEo-g z(g*rarAwR<;0Tc(CP4VO#@;8a&N1?T6rFc8n|~XJZ82+$StCY_HYj4(tPp!tQ7hHj zdpB+EQ9|t%dv991W)O-}TT!zpYSgIF>hFEtzjB--jw9#!dY=3Ke6DMEFV6bL6u$-) zS$d!Hg64wx3xdnL&ffqjGi!>gi+h$bN8_ZaVyV9idbvvEQ(3vVW%KV6jF}iMD^5+h z3t4Xk@DH;Ck?Z)xMav8M=G&+f9q!%edFzuPP;Ldd0ynJ7;`92y~l1(c9;Ff+MOB^Z925@;W@=m^;t^E2A1>b#eJ0Ofl`AMsuAIxrrR#6=C`(ut=WaqZwMyQG^q8HSZ7+ ziXwae19LK?zbgiwzHx|#Lpo*Behled_SepyVkKM8*GSr)5bZKa2suIbI^WB{Me^&J z!S;Gj8$ZfLg2|brKN-YA`I)C2yk3b1=JVC=5IbLM-6B(8u|dT3L&u32 zNj7EX?Mu*Z*gmoNTYc(Y3MP?ROznVW+cmXF?cm+a41VDTD2(~6pRY|v6$`+XEbl;n z?xfTSUEl?KNaBxz|KY)A*-VRmz4c6T*~Yc6JX=W_o!AZH#>;rF8Wz(3Hb!aMMEo+S zXHU-};Zfa{y*-Y!88>a(>mF(>{#h=c8lS#vHs@(gWoBC>!jr^5edXcPoHs#SIes27 zxfiPT47B?JL1!?!NdI?AQ5P? z^nxMbb=D^)RGKjWJQraQVg-^%%u_aSQ ziB1e({<*;YTp(yiME;arrvGKQ+xNa$@Zk~==)p4Un(N{GnT|cw^9hftHJewN-p5Oc zs;QcaJpXe?^py~8$7=_s=6b(a0*Yq8+lxWT0?A`a9i8Z8DZZPmoGCt)#60IW<%Zu@0f>?a6K0gKA%qI6*>47?)Ok(48osLB4DQc>NI_6H!0; z_UY|$Xi$9Im$SF(x{)K~h_z|Hl_mwp56$AXxbwc`{|Jgh#--}7M-bY2gRieq(CR-a z6w~RVzP$(Vq^UV(g6_u();9kU^sd;C-Lqfm|6Y_aUncra;Xi_ca?S+;;Yvr}QkneI zn^eP1hnv{DQmuj={*sdW6wnxE2PG2K-5d94#Y~8nLD^EcUnL||@p>}z*p2SUs|`EF z?!fmY)jj6;0@l{9Kxk4i!-AQ#dMy9c)IgD7E2F9VaQjbEk8E|dyzxWx%52WIv)i?u zRgvxu9V4aZh|`|`2-KsciL*ZlH=wC>N;Xm+?nyZBxe=Y|#tE2rq)PpR6?vHkh0T`H z!=3|=Usm?=QP9HFP4=+f%I$?+uvL}<#6##Fh;<_6#r%H+-G5K`k21~8?DxL>JKT=i zH)h$nNv+XK6MN(PAHndnDwNe!ga-Q5fH3{DP?5T8?@8=%9g|SOucJ>lHj;T{4pCPd)uWWTRaGt9|S5 z1x}jTMWZzCV(y>J?P26T)21OmF6|wK2qa?uS;3A9l5DFw=}!5wO~^U;pp^Aha%>Q@ z%iY|9nac%=`VNG3vPZPc?Z0-?&Z6p@E)DmYKU*R$L}Y`Dxpxjv`#Sc%Nm@A#nbSxp z-&aM`UIdiU*O=#mRdxy5uhr5^^-Jss+m6z_BNLqfck1MwKs(76fJWNlTX(XjAFbBV@={)ida7#|J)-Mi+3#A4YZ}D?F|z zBfHJ*^5lg!Nc^+nC#_``OqqG&wuwAX&)3*ZyG)UF2=d3#%3NKYVcnOf15cmoyfZD@ zXwKf|ZdbqFmit&eW^OwB`d*&pwRT?T5zI_|GbSbl164Y`2*2MvT#9GY-Eh$lr(GBF z%m8ibOn+7YAw;IX2ndRmkOMekG;}%uiir_ai+E}@TS!|sd5wcsMN}yu|0B@bBC1-w zVlXgN{4I5>L_P+(+*j=#Rep?%4;PG1_QP^DuWj|OiDz^Qx{ zf8+E`^SesQieZ>}?BbtNkvvLsEXjN0;~{8Pn>F1pTAj^5L#+oh<Q11h)|WT>Negxd8^&`w8QbrO$y>78T*w={e#WdQwhhtEosuiHPY6Xge2n*PhG zq6O^0Pb^h&_X;Z+uRDV6aK?zRo2_9h0`~~lR2hp=x2I59V&aVEYS>A}cRJE7!dV#6 zxP4*OHxQe85zuOn_o>8$pX-%w_2hOWZ$YtDMJVF*5|?wDwzr!0LOtUIa<1A_<>L9weM8$z;Ejx^yKtz zEmzwA&#ryw0Z#>KFQcJKRIMcTyZ1w`lC}YE_Z=ot0Hx^DJ|k#Lm4Bt_MxJ6s#Cz0A#=&egP>nONLr+{dNQ;B6?8lYj(_w&VqqRKA&FCWYm@ zV??u^Ok&;#$3FQ%Y;&I*+xT1%7aZ$CZRQlg>JDB4YJ+!I90JpJT8Pc*)@~&SUv4?T;I&{;`8b11)B`IuFRXQy zuQ6Ya9nmS>NP>A9Yu~~yvcw3{lJgDTv5*#1KhrmoPCAW%v~02-!j@BCb2`A~mA1HX ze?!GHa@bl~ctFpx%RA=nY=6Roxj1;(=TWE4clU&Jn(A4C$zX|cJ#-z-?@=6**E)q; z)J}Z+9)D2RIc&w`A&Gq8O z@%`}!L%-B@th`6_zdT3Pa|`=EeP~N(Nj)}s$CNE`>aFFz+Sv;9Gq)o@THe?^-j;5Z zdQgPdBB*4Xutx;*Njlhg-(|f%$g8Zn=jyHTLdrd_1NEmsh;^rfc3H#(VFFglNwi3u zULXh@h?2I82kI8`r6-xH;GtR7jz0G};z{-nlTokvv^$#j>a`f3njPP)KjOxmq$Zug z#YX~}HjW8m$=UA}`rp_Q8u7pRl_1UYAHjsuY8A>WPTB|!=`0G%t0G2IULcRWf5^lq z8r_>)e<4C4sZZ`xtU1Bp{RbiMeY9`W(wboc^wDGcCd~ZcnoGGW>w!WNHG$QtvT(BM zQtqJn`VxSTdOR0=jasJYuL<1eC!AFV;ge`q&u7mGNby)Gl zDdlb82-dZh3)dKDiwt_opAV9z;Js%yE<{mfJ;8V{-4cP%nV=B=}0Y$psE0yWqJ%5-2E0rnvIag;RMS(kDOSnaIZ!>}tTT}GCJYE?8-^y&ZiQ;z0Wb=9>#!>&lqbeOJf6UKC+-a-zk z^=n^l%kYyR0;ijtXcz}{#AsA9D0CTm$I%l^m#<{8l&*%#$NyIB%X=2({N|H4ukjL0 zsqKHTK8%s8&PZz%BVvqJE5$=g>RWRbSbQWaLQj~;dq0cbjp+%GXA<$V)9ZB;&M^Nl z4!g%tyJgz37kaUM^(`Z)Rm1WjNfS)UCy~Z}QI|icXOhg_Csk0xK@JR~o8XhgAZa}4 z>2WwmX#wD-jKiqrywoSDK?Q+dn%$29h#*y?s;%Hv zBe_pezq=BNgA)|ZV9$Z#31vp#(73TuRTKXB|E*BEKY^|EGDFlRowx;6!CelNaZlDD z0}?eEERAwGSz-0EaA)!uS06+hD5 zivw=fGnNRI)hSFOiUC=B4goOnBPCIfihWk;hyOO5&!Q%c6@EgtZpWJYuIGp!9ps!~ z_x>x9_jk}5@mD$@P$LS3G4JPt1^Q01w=ZhP4o9S!lbN_weUgH+w4^YCgN|lqh<0iR zfb_ciPUgoj+`d@Tdd{;XF*+N_;zolwIvO=bLar8bK0G<_A3^OarsJ`r zZjj2$;6y8X1oB3*ogZi10r*B{3aG&9x*n2{@~h#jI^o<%X4~5pqMkQB7BXdaxpuOO zFHv_5n+rEwSd5=>(j%{P*X^V^S+xf9no@<>OdnKGK1Lw5sNG*%Xr<%~kV_!|KUeC! z%zN@llGYZ~pb5PbuBw7(J#d<<#!tTneeyw@@^1M9=al@{S-e2-(9f5Nw6*#2l@>n- z-&@*6@eF?tn8|};_qXzuAxA`2Ynkt!l5kSCq7o#lF_kspkkGA?V#pFZqWL` zjGC*lO-`U%+2@CXmb5vL#TYoPd~|x-nDb-v%BqSg%YCBN5?^sjNt*0 zvdsGo3Mkjy-pa!A9a+ok-|e2fgzGKwjyO2WG+0iT>=z|I9u9wdX|POtG_Bfximxi| zfp}3=vN+*_@03$GWR_EDLVWrkoQGnCI^`+YT~x&2)6-19XAdeel+Zfo^vSod zV8MdNrtG70EZ=EeNyi+j_M!bt+=y#+3u$C0%qFv2h`6;py(_K)U4?joAb!BF3v29ar3KBdHHQ zV~y13@|6$8K9aJmOod-o7W=->^|j2s%fi<&XGgL|oBi46p``bnNneT09=c~OKfIxB z^7WxLoBY^?$f`%QY^yIejIiowwX*~bEK2*vRZWZPFW8#3u^MOC>F1ZrBs`&*>GmX7@<3m$-?IY3eLf zEoEic(MLERqxl8|VOHWyd5KgGf@L`ds^K}@4>kmi!k;|KU~8h9Li$|%%aTYX-VS4< ze|3U_PQR1)1bXz|8jW`A(c^AtJh^KIv(^ z34y8toA7zN*~5w6nk^y~JKq66mOormcgmlWZ)+(UqyR8iKcq`cEOISj`3_D3`zB@q zYCc@x$T-Q2n)1-oB+^CXnP+Hz4W_N%v+M_k;ns;5O=yy3^MZKR{Cb_dS{HkwFcrJU z^v{kd5GPVS3%Na!kV+T^h+gy*zGnS6OmVoDx;3dbNHR{k98a(R2Z zrZBpmpeHTb!-CS_Z*xK%r3f6dfco10nI|BIv8?J~BnP)D{%hxzC`aJM8D!fO#XqZs z24K$tNK3R9=WP5NB<&dkKhvzJ(^_( z8#Mz6&g$Y0HyjUelzxr3XSxc&oo{vRhA%yiw0xSWeY1{duHL%b4Ly%c5S|$l$=;o$ zb)YN_vZmO*LCu=_V#zwgOOwH0J`yeZTC0&$>f2m!Y&|p0!*ej3(n>HVPcli*rO`U^ zDoZ>O0;-xXU{g(l-poTnq!QL9leDgN1})l_4T(WAxe^IlR^tSc2G{+<uB*B$v;I?{kpp}WP)=mqnQVIL`-eMAyp0Euo}iW$Z0HO??405T@hZvOY? z_N3aEj^6PV?IMas3pntA81-{BXZN9dt>Pu%zo&4^J=GlInNT`Py zijix_(F#`~cJk)jyLtoggK5&0cj*PGQ-mt4gSr!WQoZ*e$Wy*~C5dX*qL)EQ`x1Gl zs&r^U3K(t8xILs>B-HFo0pQ9}y_f7>pP~vRTG3Bq+Rvg0_YXm_mD@%_Qos0vpS1cn zmnfq~+#@QT=37X@s&x5PS>xmX{YTJ66;D*ucmx+6rF1C!q0B5YNQY!>ItOk%Upl(a zObZBeixTs2@wk&W`BifI_ZXXO&1^|2sic z)>)yzE=?V5GTROOSCE*i;`9+WtR3W7w$?k&_ykL{(K7c*HK*OrjH9?4fzv6en5*XisG31nJlb|L|xut*A&15i5!4`NerS^6Jr~)Dp62uqd3l z5^5e+&IAN-tRHy4;rO!sAjHzhTc7BiA&6LOxCTIJtji1@2K1OY&sdufi2dTUjaHM4b@b(WzJReuxy=mcr|0wBWX( zr)l*kk#r9uWB62R6Nrim9e3Eev%_}K*9M%)9*aQwb(n9X=4|lg>xMARpH|#+dQ-Jr+{ZoSyD# zY#nMWZ8=Zw-f$3FV4RB}RaJ&cv1|5LG^p@KaHHvp!|M;8F%;L(W?uA()CeG`rU_Ps zhEx>qZ*#OpjA|8^>6M}pCJ|Z6Z_s21G2O;~OR}83Z@PbW>qg2|X|fkVitYIAffgER z)k(1*zJ#0S*=8UE(WU!$9^2ZPU!r;yPfo%cpbEG5FZvATMi3lB{kylyzoHJLF$h8( z(_?>~P_miv;d$7yh56?mx)eK1c(HcU=YM32d2{Aj3yd-1mQgzh^^g|fmH0h{*Z*Eo zyAGwlxoxs!tP(~{ry=`VzaQWB1ewHqdZXwzYUg6aU(29uti(U->@vQe`P8&bOmhTt z5&RF3ZYky%IQ{!pnrUdg%hK{2UvFOZkoj)fk-R>+>E&r^shF^vMlf<>4UH0GWl9&p z>8G|29<*+OmY!#tN<-3p!Z1{ht`xbVhHLiovMTy0N+C%rq>~#3*)O8q%gcT?Z%PKW zE?Frr^wy0&(f+9Glg_B}%S984xeDXxZ1(fTqrgPeVWa^@N1018f$o+3tLvNoCnawy zt1L&1(<&&(!%BT(_j+dtBg=%|3?eB6{lQ)S9Jk(E27Zz2 zzrt#WEq8mJ7J<>UqV4L`pKH`mtBxts8JUuG*Hioi&*Q7T;kNXr@f}f-Z1{7eCuaI6 zRd8m`b0KB?aG>)BHl*XJ402n0Y2v`MUh>Vm4LYNjWM!gWG1nFwVf(2NF~<|f%-GC zDg`dRp9c`l)!zdw4kdr!zNJq?vF6Lhy`&0X;1mO^HXk9k(O{=EMqo53B;*^@B0hn8 zGxk(q1f0CBAIs>sc|WtZ?BT@S_X~CeFnyerLAp?(7nMHu56;s;*ZY2>UVk$0J?xhr zdDg;L=tU0>DSU!`8RNQ3C`o}jkX+KeA1*9dO{=2e7S*guDeZH`Z zmYU}}IkqkYYNjtJ-d!V+b9dZ>L*4n-rrXr_Rp`t!&p=L15S=wF3@l zNIM-+dIkJ{)cIY_{{6E}UXW|0-f>LG89z-!iMfEUN$yGRw;!+DH3#2$q3TW(Xq%ai zBj+6bE!8cC<9W6?wNf!&+5rv5#i{%xGu>a7iMF24m98(*{S~T~uaozT389<@4Z5Un z0u7MF3dA)~{Lp!6TL1PV3LaE6o?x-bk1*BZauz8*i)k5Q8jX=W8<-<=h6&N-P|g6u z*I$opn+jMDVkAC23o@}}zh;C7mW=azX7Kv4C3tvUYCa`Kn|`H>zBFF4yrO$!Eobt0 zgmq9qr)PQn#%%z&yUvu;S*#QC4JSn=#nbOwUW27`{v#j*FEB5gq^!2mc`xD+)g;Ib zS=+OI56vczwpb}Rat>IJ3K6$o>>^Tg5&|mEw!>CldjiSLM8G@{s+UOR!$(i~ z`aWEBDS>Zm%Ra22Qldw}XQ#Q0yC#B|=;M>wzm4(7pWXqIcOr@9bQ)(}Q!^_9Q?mrY zTT|e54&d?>)#)l(7${O+=v9C|0zS|DD&RLj>X@2N5CsFDjH{7JITG;2`_sntOOIuk z&IbQI`DS@eEox*akLTE51r{93?=J3p0+zZ15k7A12j)A8pi$1K7YOees`nk`$9Et!PVFE5VOfoAv%vxwqDu)hv|F{ERjiiR5(q3Z3 zjzRc#9Ew}O{-xc!`*wI4&_U#%5gB}7#pFRaj_Z@!gB5$zY%r%BA1$-9Axtm8_#3wD zi<*fLW$Syn33Bo*{3nT~1i7l0M(lrWEWX_f3h2w*6CAxkJ(Cx_LK&~b(Xy>kHuq$) z_AvG?bMTJ9A#MD*UXg3xz1o7eL%)20o29#$UfYt)rqE-6OgrGoGHh?}OQ<%9TDAth zNjso;*$|?|{Af@~rJme5L=V5nE67?yGPmO{hH3l&Lxx2f2HOXaY+<`J8bix$%axqv zn-cmOR~GG}zY;9lhjk*vt=@-8aM;_$N`U9W_-8ksRTK{MTBMzWjl@a0n%-Lxpq`bB zk;#dFwv1M7#D(WG+SLk263F1Dgy)n`i(|5#v=(`rUE$dinoWEeFD5C;?0j(F zrigYAF%iCFlq=ZzqCbU56wAso2}>+}B@e~a&bFNeyMa4O$*-I{F?LPHCIjRMDdAg>Qn`V0D3^;i0EhA-yQ zUcso(BUw@2-3^iJm=m33_g^J(Cl;u0pJD@zNs_Yq4z#+!-!)I(COh3NSMd4HF`jNC zQR%7O)UWw54qx>Qs%2bbf8W1CmXxwoyB+_zk*0)<{pn*0{Gmyx8$T5i2Q~(xeuu3f zU1MN2%gpH`*v{L%VEhJ8Qd69k8dEqJo4{|T$M41{XZ>?q|DfXtwkt1w(9SC_6jTT;@FPn{K5Hbaf4q|MtPj9`qhuq_aM&ST>tL<-b%=g( z|31u}1u~OG&nP(<{8Hn6p2poBI21%G`8tTcMKf&IO=KoYmoq7Yp<72h+pG@rGMklt zH_8OE#(f{{b0nDzKn`cy_|f9zMZjO(d#tT!dch?0%=|noCQ?ceMRR?iAZ1BmAxU`#k1I;sGb# z`f;2zjSc>1aX~eleyKzTM{70#tbdTy4&y9c9!wclHys<29ovyizW~`C?SU!kj-g() z#pzqO6~sUp^PHR1gAX;d*RQWWCqLo%Skcw3a7R&oW+vSRwvf58AG@dd3o4RPmaI(% zU|D5wwQ*A6Rt_4I84SC8zV94T4I6Q_Q)_PU54unQ)W3~;4(LG;PLv^{RCe=DNk8qD zLOA-s5=`>I?KF2blrhys7+B6sC&xex-?VY(fEB2N1b?Q4>cSchqljf!VMe84tpIcC z#Yd*)oAqTLT>-v~XSVFs1?H4Y>mViXwvUryFJ}u=`8^}=emo_nr~-BZ+igX%V9ifL zlz#m}?mSPOIPmmVGX06=CXwbK+3N|RfI`v{RxpJW0NB~G=L3E?=XNxJ;3s2v(K6yo zj21K`ObFR;KnDrsGwg}`K2xtF$VG8f%=y3?wPkU2(f~-{Wh$9DW`=N#WM=xO_eZzX z?nZTS%SC|+AAEMAg+%mvKfbmF`a|B{Pr7h~^2RPFs&2ygu#Jd}34~z90jD9AR2M2| zGq3IaS8W}Vq>Kl1o7kX=5G-G3{P@|yTlPxjAsSG}Z1Abxk`eG<_Rp%%IO*ndu$P+1(EgDzRC7Pw)IP z^|O4}iL1yC0Jq(taa>$uH{8(UyU&K9`+oOtQ;&2}vd*rfTWSYB%9Mek z|4F)qwz8PkncFC35^q$erYP3%y4%Zamma+<5n4mSEq>1>(9-9dIL^ zsiwXoIcLtMPuS9Zt|mBH(KlJF*v%&iI9U}sZdgzz<^HTTR(4iplG3cB^f=VorbVAz zcqqV9@qG&l=~g=Qs~$wU)$s)LE_($<&}C4C`z#v__hpZA8#DAm3GYQd(fr+?Ao#~2 zqeXmALz+)tiD_oU-rS17c7~EfyN7!=lXuKZJb|Xa2V~+qd61;gzD&c(Yr~U9eQ$Co zG9`D#UV}F1f+`vL6Q-;2s*ztx_8^=?s9|ULzU6n+8(NU+c3AfN)Tm|sq8@Ue3%Vq> zRwnIbib7{PgL-C*qJ&Tpzp*b)0tIZ&>~;(2Wbx5%T>|2kTWDJ4-ghC- za`vhNq;-`JGSy$>VVA*?cYD2L+GId!wR>9z>7i0)7TcrQxhMkDN}#6}e>ZLDB&Mr$ zpWM7qBR-o^G3f}MK$-4B#T#OrN_Il>6R{V0!S%4laLR#^sBieW{!VDA@|sG?F&w~$`G3Fj3jhkbf4UwmuToB;6J@e zsAw?ARFOMK+>j{GOoR*Y3QU6ZPXrNko(mbPLApJlCz7(tk5`pZGZa;#ybqxQ6zwz4 zO$RcmZMN!B40Oy@h^XpydRU-P?J3K0xk5{kWBL!SL;WoCGB<>Z>dU{4yJ;t0MX$)L zV!BiPkfrF;`o&C9OZSGmrZF`GqxT!z<88?v*7ZThX7_osy!&z+>VfY9A#C4?0=Pmp zpB;n5fqQaG3P%}r-%URE$xH4a#|GC`5eh=fwB{lL8wMrbR_dCjU;-@N82&PD^M*4~FPtu?@24>x>TtpUR6psQTPPt3{u)30+I_Rjh%#5@; z9OzzcO+(&f!MlUlUMIF2F7u4&aw}&W(0;&q^YIwnAF9kR8Q{%Jdrhg=LY3~}UrcgL z87f&oynOSkA=d>^#wf`bK@}=`^3yvN>BTgMGeJ^aOTZ;7bEz{SQpEmp$U@linHAP= z_gd@TYX3{Ae}tL*5;aZ&&WmFD*&N4XH|x({f~nGSf*`XxU`Z9+%ZVStS33j5>=C*GoK zsjnJY83Xcjbo_ZE+fQF?P!R}f$KORty^ufnHa$ICKErbr$E$39e%6-HCMwC-evF0c zdRI|JNNlEZ2fzg%FnVn0DdKrs3bHPB_+`zXUsd{R*&Rd)M=jei}6!rD{2`L-=^Evi9pG&H@0rX*}o*6tJTG!P-7jflp>x-rpw1~F9V#* zVjzJYsRDYFbWuv|=^Ig`;qn@UJ-g-1p0TNhR_^z%rXitjcIW4x>2#wWoxa7~TngHTRWF(v#7++e2=tEr_3v-evaU~5ViBZh^y*rTQKi9X7KSslJ z5X!>Z5VtqqdWPvez(iG5X;n}O5tX!`uLEw9(vrmN=6hE@i0Hb4jPeXorumWFT@5WK zRw-N26KVlvRmaU`@;&hIV)tG2y{*qvq(nM%B)~|?>dmVYLHBIw)CU>wHoMo+4mvvM za`zs#x!ijV>ThKrpmfW1`re9Je}*2P%DvbVotIT;<-f93mQk@SVFV8kJg;%g&A6yC zao1^MHEm4m>Dk`MdWhwQ+9-DvymdT0)Sxy@f$MKimV3=4tIf|k#I%k{HE7Sbx8Uh; zzLL{P7o7X&ExqPCkw55MXuvt?>2c)BD-oT64;!-Y&``*$!|30(y8E++RdYU|unoZ0 z{V{lJbm{0nf{mF~E(k=BC>`c~e3Mf4;M<@OQ#+TManGemC_$DCaK2sqN1){1qVVGg z#|woL!X8Tzqm)04Wm-$~Rq`7~ronk=h`pUjlB9n3EC0)UiVQM)?e)S{STrqr%~OTK z9SY}PR)s@c^|Oslvjjc4y%nst6q<|H1(fN(oXH@56!ctirw^9y@!PRH0~U#tJhu)A z+-SA#=)=EqMmnJ>4qF8c^#oT>XGor?RejO%D9vk=q7UxPkQg?Pe`uUe$wOB&__j$5{xi?UjVA3O16o}J8X&=yCcoMY)M_AZLFa^?fH_vnSLAqHf#fq@DJar5Z2l3 zWhVB{KP32bQz}Q-gh;WiJ-}|Kxw)K>T*ug)hrmHbBuO<)Sn}v!ldc!30Kc{^KQyWK z^mH&MGb+ueGvs;dW~H(96LM1m)3lL2AI(-=@R-|41hm|Fw*BVbMw5=QirAgcZ{iCw zg#4a8tJ$)D09E&8f3|(ZRGDW*7euwOv+R7Q*Cd?;3Z1PoqTt6BB+H)RzDDeg z*8t-{CMHJ;)}}C(vfd?mtlJ!K@yA`Wb&AJvT725duk*X+SJ-`ijW-=abtsKD%>+r# zpqQsBwiV@6ya>{VP^(bV)>|d?uO8Fp$M^Ohx~s%6*lQdHpZ8{}gXgQ8sF@*rTsll8 z)kyB#WBbUDLKJ!833mjDvxQqfa_QQ}8Q+(hcx`JM3?N55Yd75o!1dm-!`O9wy!B=qSH2- z@2ZJMRJOkwjf$Ljr_C+ud#l{m%DMbh!M*B{S!9;AD&qo`<8`h(Zki!D;_txZZ}E#E zJ%4Imk2FSoVb&|OQL*`*?7isGG&(!?u`$|fyyLNmA(hCS>pxGG>%Hj0JT>Y`_4XV4 zPx+1 zScd(ZE2pe@62HL|nr~rLOa>$eqFQkBdFF8gQGBrjR-U~ZsFWR*3t#X^cUY5 z(h&e@0GnUUzzHdiP9_0@5S^)&%sfSYH1ME8zx@Q5u_7&((^H`gDj(h4ui91Id5M6t zmS-a|d75A#o&SpK;B)zDewGCv%$Ped$n|+K0FK7eEuT$tb%*R+>GNLiMiCb@h0AramNs)6T5jJ?aZxbJ)`2VVk6=# zE8-t1)JY3Xz4rs|kQDm^Psq&41U$4!G-1J9vp=BWoWcr4~ex336ulambDGCiICy zYR(LzwdoB#*tyOEE4P3KUROgLoH?_AJoDgHdNi_+nS)cwys|PC{Gx_FcsEi`QCf0= z0{)^NG1Gcil!0PE$$>J`;e`UlPbXf9c_Bjas%6@Aw{;;p!7KIdPZ1#Lme)aSH?O^8 zBp3NXorBqZhd9WW^1^X@0ZC0f=eG(an8NH#k~-a?D$B@r0x0j~{obf|dBk>v?oyk* zp_jkpMCC0OKpeTjOh5uA(bAQiusrD9c6dOEZ#^3n1Wb2CqPJ*iv<;Y!oqIT)UG0v+ zDE9%5^;Qu|FL%#KrP=)O-pM;m(%-p$-6^jP>*1>O6%I9+ByTS^q14$7-WbjJkap|M zP&O_Ezz)vtWPrcYbyS<_+0Jg@a(bQNZ)cvfuF*1G$F6#t*mTqxYnWSc*Ov!xWOvT6 zz%9%P?niqdml928(0m7dRGicnhwti3b zZ*Yaj|9;*vG9`%X(>Jr+C04Q2T0Gnvsi^MICw*N{qE8yoW|SPdR@*!wCsAM8qG@*k zAb+3FMB3IiNreLDR>p7|J=Z$AZQFeEkm?hdLOKBlmioc~+AnydA!p=@B{edYvu8cH z54bDqPrdNGx=MyLyM%K}yOFCk1WrGPe{Z%leNM}w z2F$AH?{UGrJGmlI;hv&npvIcTE!?^gi2S>I04B$?X0f3K{<=lRU*B; zajjUyRl&7A=4lJvf*9SfBK5*Wzu3f7xLTa+ja^29#rkuDXqcMput4!w2A(@&bR)ua z!MRu}WW5DcG~HrlMg2yzhgVLj4_Plv@D+NaEmMxKZ5vD=bU|p1<**oH*j}8m0E; zQ1jbjbQbmA#cOzS6<$AM9_{v|bZukA*-q;P&ct zx1whFtjKlJ#)rcj3wfCLy9>EFMI$7_vpr<#qp&B~wX_m7nZ0m!Be({nf=W_u1Dfd+ ziXt(g(YIN9{y zboLi~1BheK%m=FXU@1R#y%TA4{Nj>FQC+XR^F{`0(jMA^{i*!$A*Jx1*LE z{-9pT2cw=}_EpQ)rA*BMA6&;nVsK=TmJC&xRAMivjgN!qA$R-NM@FYO-gP%Jnd677 z0~}GGx5aF6B5x*dHiT>wgSh-5Sp*xH(qX>GMtnl-F`Wt2TwV6oEZ=jQ)pdEs*P~fp z5XSKZ+m$m`sd+#1*r3W$^DlYwul?odTsbY+skTVy4%0oY#g6>%G0jjxo1>aniL1U9T4HKWt#N%$uWhJlDevF+otVTmMd27)jv1rf zC?gZaUw$5iMX$n>j-_dSZDL8*HD*IqCKLne#WA4O7=IF-wfNMqHGt5=wtv+KXDERY zu)!;8v_smWy4|gP2UuLQNum(=ujOuZ>4?F{@)LcQ30t|9B2NgdUa)-%7ot}@P{2IK zckH}$3~HjDgohLULMF>Rxd6(>U}BVu2_EEtjPyFR9yXkY>Ee&}LNMH%H?%!lY~ zezDR$d>l`gaHcqGwuygn{c~TwiDu%%d$q(`;mKM6-8>KJ_quKJzj4 zY~}BW_U_`8crU_1$65D5aUQ}L9g=fe(nD7_?l0oSm~NTK)-6#-NVjcXLoMh+t;MJw zrH*!sOs^qX*QE;ztsyOJAE?{hdr<1==NVxA{G7GoNsk4pg0-N~SKiLIb@ zbG+}*V^tQpWpBXQv*@kIxtI_l{OP;bZ+yHDO{;#NU3515DN~VR2~`_15U!j9c?;&i z3NQ1yhm$J4ehU9e4LEE=_v$U1=krcF0m-7_6fV{^bCR&hOCY%11bhwx8;M=uSw11P zSbpFfueCeI*f%smO*j|2x}G4KQb7s6^@zx)yWw{k!J32V)MT@G-lxF6`~5Rcmi6S& zZ!8hvwI#G_U7r6(uq$Utd{22n)Rj%=J<{L&)l?e5rr?RZNrhNa=Cuorg^B`hF{+Z2u)^UM zjCfh*1`dK+LqNvJN#%t*uS|NBM)>WaEpE^tVRq6aVHBi;g_|)Gjv~=rVG`H$!Azr| z+XFJ4UrZFz;W$&9OWO%zk`iF@#?1UD8l^@y`eSC*D#vGq=KRu78OALEY1#*_Hf;mz zg$r;kj@p^DBvRDde>`kh2~0*7N(^HbgQsi`#I6vf9Wa`iO1WT_vmCLZLboR#bm<=S z3#bYt;TKxcZG)U+UC-2E7nund_07T@Ad7`I7)i%SGrksm5qu8e1yD`|V+dT;uXstm zHSaXxH`j2SCKjG}6eGe}Z*wwmie8hpFt`ndG$IURn(oV-)7cP}q?>ZbrNhXa58i1P z#s@8q-n{9hL*O62JvDj|B~kOh4pfvY=k>xbRse}4df}VAuUgPBoJDVWBp<%sSoJm0 zVZIs#ea&sSY3Ik-toC%|JrF zD}%k}@%F<+T?Y^Ej?C&KN7i5@7Dx1SOWBt zl`0H^dHlbBrYep@Sxb^JN!iN1dmjvsp4c&`31dW^UK6+J)9cR+l=UGd=hg>27Aumb z;EA6hZ?-6GpDJ#cADKBa`3@A7PLmq6nEn3%j1k@xH-8GZ`GO}5>{g`(BqUCwb0&WN zm?1Tb(cn6j;wpkS+w|WA9!^j+0fgr5P!BD7yjoP9Ae|%~q)$uXBUl^K9a>YT!eGZa z1oZy^I29G@QgoKw)R>cPNa?t@OY|7j)Gx%A%95{ytV}@@CQq1&jfOn>rh9I}UZSA5 zp8?toTX8Y-xV{r!q$`v}**yNd`Qy^sfzujWxduX~_x%PIrE6N!0X{9zcOT>L<$!V? zn5$kTg{iG62?|hxb&n6yeycWKIXI;}n1 zMOsp|M3o+c#n%;27G{;aOPYnctw?Mp0(?E!oC5~^XBhIx`HnCb-a(;@M-VR-N|13M z8Gjh51+6G;C{fx9{{XP^#`z14Wwaju09#HfDpm({*b*B8O4S7KwfbOsEV`P7rs^t| z$y$$rwTrI%$1BDc&YJ!rh643MkW>j8PtS9hr?N!C0@*Wa)8*x}EM>r|)LM$VE_Agmve zj$L{Fn0DY^2x_qjcCoanNzzKorCKD|?|Fm%Fvm#74ayFTlam-Z{gR!Qc4qZ$Uwu~D zZ3!b%3cO0V(mpNbEgaR;7sHh8@ZS#tvXrtB15n*WSWhwJBw?q3_-Rcts<(u&%G0G9 zq6$cYtKD5mjrqxexbr(XlcjE^8mB6N7L=9vts-|kpbwTKbGMLB3+S|ZCTXMp0QsvW zSDEY8d9^~cq@^*W0kVF)%*^`rIAzZBC$jbvPK1={lLg^xU@X#M3WP%V?4cY8=km*jz~~CH-Jk`6vozW^9(~xw>pU{ zP?AC1$5_8u#P*jyBJsRo!nvl?_^u_Ic3BDrVpX|OH@Sfm z%wh$`d}LqH(+O9G5|Tvdo=F$`gTKoL91rAJ`i2G{?sm#QjeALL6>6oULL1X4pNQIj zfABFCb39o{c}^)Rc%>i-j$VF$YzL8KZ)R0}@$SqO6_QB<&U$^~{&>pv63s%CrxV^J z1dx+rG>y4+yy4Ag6avPQM@mWHc1BXxxThs+DLO&2jg`-z%hTzJX9;D_)@g+;ZIBdJ zvaKoq0BAF@#9xN;XS3&LO4V^_xjgOr+tO{$72s#`{IO0{Ewm*?GPoC$15eb&u+FGs zY?Qq|jnbW?KSbe>QJ2(~8+ASqHLQ~a1E%I+L5ROBKG*TJKMB$)nr9gbOJNFeWCbR| z!gd_sY4!ZLuejT_N_>Y^23nMNvaa#i)!vBmll3MJ@rZ3EX!dneDse?qsEOZxzIXY? z64GQKiv#&uQZ_gS%eQ|Dz;lU>YwGV;-pSV{6{uK2GGxdj{ze`$_FO^~>V%L|1-wdB zT|`a4Pp^g_!^urEsZ~Psq#a8Hj|?5{_T@3OVb3?>)xLX%kl@lvK_8q0U@y;^pROz} zuVBj0YkqnGcLfrj?b?Rk>F zh#Q;g6K&1s4_RjlKH^p3Q^7b?)HO7c1!*gl#s2K zK^xlRkb$-w8)3wPd?Qesjf~C-dWMrJL^$gzRG1P3?|Art<#EdcR`G2OJ8;nN5}U|S zSSQb)QS!$&VD19--kxI~@|LJ5Z&FCqm@#mjDb>8+nFG}Nz`pvY9a2>8tC6G?5-oka z>~PxtfA3*QS<>5!_y~YiKAUax9(YBKRZfHiDM}!Kl%r8mkNk%F`r?-Hl^oPg)~O0> zgJ)4HDM?bKgCJ~~lXDyY09+SMTGNarUE)cY1qDGRGw}xu*$d>k_J^8Qc&gkPY_pwEVu9MdzFlkg}yD zDIrUeN#z$8iSc<4JZhu|7bI(QNnCGpxD)jB#@ZvoRGl(Nji>dGEE-9KkIYu8sa~|8 zsVO7E7E!Py3GkmU(;8LO1%(x)rCuSdpMVhq$m7>^py?Wts1iZA8i!tg+tUM7f~4pN zyi#U2Aw$z(OsWr_65=llnA21^N|%=FDk@UD$ccak@u(-Az`*q^_**T)RF4#rBp!zT zV;I_h4hTw;AlPktfM#wyzfpzRV@ljE9ZCl2wEaFq?c zZZ1Ap7_+IZFsLCTaCBUC+Hdvp!>>*amv@}GJ$q0*>H z2J)gd+~1|S;VvDO41^TXN0Gf;`X#p$-YFqkglY1(I~+{7f3vof(pI3J>YVFwWB^J* zH<`BM>OA55gE$#9$@iSW&g~6|ZMl->@&Nw3T=`=-&y5LR@XWow?vWuz0XkHvKON+Y z`QlkAxeG%}r@XrZ%8qu6T#T-r!AYsTKoH{O9Wn%fIRZUrm90=!sml6~1A|SqET4@1 z{5-m1cf~a>XAhRrl|rnt6{rCT@b9=XXR3URvm+(`5*%BDQnZi?k~bHy9H*8e+q_%( zPMN@aSaIbyxsuT2xiVgLN$-`jadg5$k}u1|52g8ukGrb6sRX5Qy5hhcV%zN;x?xPs z_j5eK#k&gT1QFER=>z*%NVsPpZz;IthTH@9mEcVeM##bK9SBa$k;<}4;f`GHd5L&1gfd)m4dBE8+F>o*X4y9$)2pvlquO);f=tZ z2}#{b76aD@xBmddWf0Sbi*d9s{XW)TLePAV#POYL2?kRdtt5#vraJYqH0y0D(v50N zf#4Pw<^mkbI8PCDw>y6z0{bLj}f)!X^a<|@j$3L60@bS zPymF1w3SCbvl#O(%3REo-YACC1_>n~`R+fy3jkR{;b&_~8k&huopMvF;S!_EefIUn zEG+}V1@)Y#!I^`or*pY%?gCDs&M*pUlGFuhxP#A^uKe&(G?gsQYeiZcyHXag z6{}ISgMU9S^N&!$=qJdFPx-+f7n30BJ$`)fvm>GN-1WsxXyB+_M=dE3&@GEW=RB~Z zbp1vMLm_C~!HNC(V-kXuKpgQy8j|M_a)wnlm039Px^OQC2Pv>d5^w~l;)b@+^#!0D zNGgCZi>;(8a6`#Du$s{#_-9Q{WTJt6GOOT68M!fsRkN&L0=mIUe*Tzd(1=N5%573& z#~6@E+XOAHqY1j5DaX5fA=7-6G$j5<;~0AC%s3!9Z9q<;<+wK{Kx z8cLW>52vaCZ+tIu7bn)LgjnE~s=DEsil9tR3TCD`3h3`jHymeZzE9&s?g%;rkP6eoV0XX91O=v;YtX~avuX6ox zZDaUnuBZvep~zg+jYHtroB;chjAczxl5j0mTqokkyOA(oDGJA+MjEPJn@$R;e|f`g zOVUmj=Td0C=z7IUcf(a`fiu$u)jcO{H`TaqZ+uGkCb2fv?yi_^tU*@Ta&{v44xmWe z6FJJN!egprgM2nspo1S=KGnAd{+nU8rKtpAPDIg3f~}D!0WFK|hpMVze=Y@8CFiC( zg)V!$CbcoAYm6r2WNn8xX`<1DRMwr-d~;Vh*urdaomfT6RVvtb?gy9G2|G*7V5-u? ziA=81tELe&m&4Pv(}Y~2lZLi5O*C?wLl8g47h$LyVRK8TmNsdLIQMN7F3R2HH!sN^OGa>NM|xT7qNgg@v)p zlcgngk^bB|Qq~?v_wvMXmx@i!4W_Ih?~g1Z+N9L=zIbq_uOLWPBJ5WP-v={Y1AH4~ zMjE7z<~m~dA)LghZgCk#U_qJN1u>aNJUB?aQV)IAj5WYoXAJ4g2@noFU3917$8|d* zYBH*)QQrZ&_y*?)J6!7>44sYzn^&_qYezGu=^)Y}dDoN+*h6gUHMLSujZ-C#g7!~@H zfgY^Wg4~#jez9AO4E06@a<8Gl?$vcTX5`kj5cO5}!0tbL91iVOu5g2uGJn1dIT~H} zByWH!UB>HtkuY#0?v-J!b)svj30SbKHC3v4;l{4xd^Xh*4%l;CyOb)-s~RW+zC9*R zGYq;+Xu?k#mGs8WECYem;Z5*Cz^-ww7Rqz>aGKOfzA&$*H70TGgtuRHn9ODqCUNQl zX($!~xB267P)X&434x7uk317sjz$NHh47*m=jd=693Wb7qi$*EY*5sfqY~ttD1(1o z3WtJCj`qTcdr5(REI1UGBM|3ID3x;<6%I%SZPyF5sTd&SD7ID01v0L938OeErA7&I zHKP%N6LLLpBTA8l+g6)n!NLb48a({)Lsvn-Y`6)6ciRLuvQ36PKwOJyR+;|*7+nj2 zz6EUR9=KhgX6M%hxe_h2f)OWG{Kf@f>bJ`UG9b?UuqiG^G75IEoD|Fe57z^>iAe_q zBYY=v6tFTdvq;sa1B2s{f+@))3@>uzt4P#w>um=To1A*uN=1dv7Hzz9oGC5M@Vx>s zxDWuGBoIlDz7_&7hdCw9UTFiCJW>qUAEp#Y19-;RR^o*Z-Jj(@Om2h_CNaLT=Zq@V zU@#UCi%K>vJ#eZ-3~1V50fh;HI8&8zwRpP>B)FeEDtt+{G{B=FX{`BU-6dDX#7;8; zbxpPu|-<~y5(rgYrUii^Uiwt?xq~+mV?qeDi^u`tR!hPqK zJ={>?C|A=7tn$Xd&OPq+T;sPQqgY81JL6K0m?bQNHW<$2E0!ESQ0+*x(N+m*vIOI1 zndyQNPI15|Ho%~f2!nzeV5CVNm{F!+?eoD5Gpikb5bZtENM!6VLoDgseK4vS@ZnT5 z9I!uBKSY>p>Duvus*qy;0HzO8U|ib+RRB}+!8VaO>7K0-hRVk8IC-o_8){pCPAH6| z?@V=U-)sW=6KKQJ^x|Zj;1}3~ikPN*ifMA2S1cweys+f9BO3QJha@1=P6e^BWOBh? z>*bF{Fb8k8Id<%=S#QII(w?~WrhKrkbdk>hTAm!WZF)`=?>w=EuckA*^TM3eZE{fy zl*z(~QJwLKM4OLHC=u5Q+L^g3!mne3&~Jd+K;AGzM1=2!xv7nJWU@?|=x|C5AV)k7 z$^lmRDW8kW9&JM8yJAioc#!~7Pf{ZeX!u4NxQ)^nKBFGBwpVe5Vb;9>Uk%T`HAXhg zYKj;BaN4?=IKk8Z0P7z_x*N(_$LC{=??}D}4uUc2R!xp1)D>i5FWw2p!F~;}iZHWi zCfLN(HBjDG+DY4{6=9OK&NpVCRq$m!8CKt>G3H`(T}ygK%z+qqp=Q`Zii+T$(+<>h zM$j>nGfJvCJfi5EB#b-KH-PBr^u@62M^CB_A(5psdM1s7A~5Mj&Jv-e@Zrvymz;dD z9Epu_O3}3hMjmKewgRH1xWlz2IUKPo)8luPbsIw5y)f%bPbUG;vk`}i7N>o%El=E* zrlgT^f)hp$EH6sVsF8yOJe}~ywG~!inv&njNGB zZGo3bZLsj`7J@K4jX~QS*%DsF(B&PlGU@b>z8)TLO12npsqmk+3wnk|ruP|xwgsqe z1YqZs4gslDV0z-Rg{?uTMm6svd}FKXa67M%W^lfuU~(is9Pzqe^TT@c zoACiiSBvkqB6;5sPN+B!H{u9MGl-sZpP%Ny8IZ{zV2IB6gp#Y`8=q(Y02hnzjWfLW z;)P-zpJ#-H4OsK6PY7EHTIak+;!xFyesjbGm3XnHdz=zgd_*&>;KHF;=Sk&V3?*-# zXOa{Ou@cTRy~O?T=5w1Ul4jV9=5@tIMsdv~sT;OcsDzA270w{X3s zV9epxf}Vda5v8Y`J5aDR&sDBS8RW+|f4f>BLuD#bnUN-5)fRLIcpLkeg+V?Emj z`@g0<_kN=d>82q=G0O`y-%Kbe!NSe3NZTIt(KTp>BL4u>9`|v+2tx!6Y?k`|m=`e; z95hLtzF64^A1o|c07xHfYoH}xn+e*xdf5o%G3wf#u&XT|cu`FC!kpCBl29sUO@!e! zQ|a9}aQAXdez?_4+V~Brt#u~1DdPVCv4ob;ICFNK3=ZW#mH@Fca7~XgVq^SZN7Z*cGIdn+zDsbI+ae z&H)n+63wDS94M6X10Ezm#_3EMoGr<_TDAfPHwYlf#;Cc}d0z|T&KGuAEsVz9*(TW4 zNg!a_0ts%ZYE%y_Ch9x8^2X&Pa>kBr7$-DRP14g$CI$toO{WD$l-mhBlI8_DuC(0v zfoYFi2C)jmg+p*5I0fKB@jlQpg$D4{sUD{Y0VfN-F9!&_AYTi0p%rUVs0Zo3JW`aQ zB;#3}B>SWsCn}Ar*D4Ov^TIDx6s86ccBBPK`e0}44BT&yy29Zd^0s!iRnG{Dldp5- zd}!n?I=-VC1syPO#=6&Zt0`{$B<=IYCHW()^*9+$X&2Me9tG)9k@njTY@Lv8_S!u) zK;Ch?btOrVdGqIg?LWE0YcCY5%L^sKi%33T$iuFX?6l<7K~MzE#K-IO!3{cfr%^q5 z{{Tb#`r)aS0-p)7^W-_-4s`zj_KEY85o`MT{r+XttRQqH!-PdU-P%+DS1GY7`5)f+ zAr)F~6cwa=V!|dQ->w^3d1XMYN%3hi1V`W3>*O%A4rpmV_Y(t25-%UWt{cA@QJ6*d zPK`VXQIp}mi06e>RVySZB1)hG8j?&;q+kZ$O4D<5VQoCT@Zm#1 zEO5x>AaIAH{*a2JV7OBv;x12!`U$_^?j_QPD@ru?iH=veH#=XIqthF=mMbe^N_soN z9t$NwMj%Ny-^-Uw9h0H#@~J3oP^A#H2^v5<8MKJOyHJ_?-%-scbWqDl)Q~sR5hIs5j(B;^YFW!^)WtKYb5DtDNdUTI&UEts0OC5BeeBD# z+Km3Or`@MfZ@dWwe+f}Gkv|FedSPzV04(sV()w|g;fw~)WN&6YojCnVYjh*K@OO5Q znAjMIJNbFy`N=qPn}u?{Whrf4+K+azcGU#)1_ib;fp}vgr^wOYz8hb16s0y-sVR%h zlhpH{pEeFY<8f5W#knbTD6SSsnf#6bZ&waq(&v-D%#+r7}>$Mk1N}FR$ zlfN!Q_Z!Bn@U4Gnxv*)5A5%!UI!c3S5p`|LtZ)ASmKfN{;LuV_wa>Q;&H+LqrT!qz z+^X>RDKLbTNx$7&^5`(_QI}M^Mc=xmE!QPT6DP&Co#)RmoMp#(c2EjIGStp-WJ0x^oL4+Qh`iA=COn$7B6DPC8d$xc!xN!o8YR@fLF1 zJ;RQCN_EtYDNXfQ+J0ELvi{DgatdU&r&}mUR=5gH=V8#8G5s*wjweS8t!>h)@f3mz z%=pvS;v@7vSaRX2w=;@$RMqJTP?Umfb~C?{e%^SRX%8e}YI<&kqut!29nPG2k9DS$ zHa-~yH zi2UblLaAwyMio@Fr@Xp>P!>PRCy}tc*bhuexR*O`iL-4qN&FVz6EF-L?rvk}h}L74 zn#!c5#dkE#o@N7t?k}~jIY-k69Hr+NSz4z2@xqPqhY-}~1+6-5CmHp9q2nK6`b_9lvD#()6P;unTg!ttq-k-jBu{aYb_tm8krrJrEGpS?=f@giNhBd>I zQlrwBx|{$VsXuToSC{bZ6P3jcr@IMCEEJ+e$=`mz)#p=$Z3&fcXQ$Z z%$|@h%Mw1-c(c1}_;o7Ox{U=ctPN!eun9KY^S54tV%Zl2EtLD!X(6Jed__975i@wX z9E{rw>IV(P_g1 zB%dvb8~rhXh0~OxnYA>OzzcC;Ta-`ACQb00mHB@PQZrpuROLlOn!gW32(bor9;2q- zcsFW~0V+KU2fgO&l2n?Zgd&wGr)0SFg%My?09pp(4#G#C5jjhA&5D}0lS^@8H7X4F zVr{oS>x%C=?asEb4k3_=c3dQW7Ogh~M3QY0X&$&?bBL-d>UB7@xbmQqK!9(s*lsqB zlhYo>9Hd#oPNP?)W*RT!vbWXRCRLQVuAQ?~sZ<5oARjJK`-}mZcD-4ewv_8zDQqYv z2uesif%%`Rx`?i+sypD4g#Q5Co548UnzO1>uftryvdBzDj??FhBZZjVlk&0k9;GqE z0BHD9=QG9CISPH{z$6_-P&a{l2^&e+UiMX*r84SHr5O@Wisyd3tv;T3jZ;z4p37OM%|h>$+F#mxW=DI9u-Jg2Hss_hBwdiYVb+NSZAyw`VI)eANQs`ksq;8%RZ`eah3Za)0#LEI8;!qkF@~uCD*pfp zxhe)v*QNbFm{D=NrQH%u6y}$Zon9{zh=5csH4dD=z6p25O9&}#D}WXx1SIZyh!++Z zZOe+^AOfY`C1T@92K@H=e6a14L?3-0b1xMuzm(jae z?Y zWXGQ_UYK*>UI}-MGiM)2?sC>vqT+h0tyY7y0kNDoRMOH=FSuzP;YfpYl%(}1`ENY0gZP6x6@UG&$qJjxn_uF* zNBzi&ByXYs5i=uu$oGUebN;NWQfbr^m$x1Bu1AX3NgYm;5n~*&6Qr}f#)pNs4w0<_ zCV*Y!CR(cHyr^utT+^XTydZQ*i+_9zUBWK5mV4Ouhf-uG!=WCXN2e@FxPpbQ1kN6- zb&%p*3KY#=$t$r}AY%6ziRb)O{&7(OE+xrO37tj>o#UvVlyku5O4u-|ni%12$aCRF z_?<1~EACkXyjGxee=#u|ZDDU;=EQR{aZWEzj`>a_P)u7@zeyA8Y)?_Z?YP5^x}=3d zmas`Yr+&ZKbP_E$3$;mGB)8!P0Xr(n3H9}~N1QROXu!(GbZ>j^s3;!~c6@8An{oES zY1>fMD%|QMfza6A-`K7*uVXXJ6GcwqgEYZFGLx&tXn`YOpSi@FiD)Y-5|$~NbKaan zg7kR1pbBl~Z+U^xoH=l3WesqJQ*~9!O+`|GEu!jFnVZh`+kc^m-xw!zjaLg&2wc&! zF=X<76c)FJ8p<+$><|4xxz@EQNstT?I&~2QE8>fiFNXH=2Po;>s;CYnZUrTT5u~X; zK*9d};}#bZW)zj#f`W%~hDMUWCC4;?EUSo7h?$#pz8PpZdZ&mpPVuU4>9n05BoIJ4 zZf_RUcIGfWY*SMk>8!9^KFOzoI27g?n5uCqDN6O1Rv{qBGdmDxl;Y0ejuOjqHmWP? zoz%_LNLXzJAQESOkC| z=q+w`!{ccK-dD|POp{7PU;*)fn7C_$!<8vpt)(osW+zs!zdxQHc)GTos&v!Sv!q4V zPsQcXeQr0Q+7=~xMyn6bB(BbD_Z#gO8Yr@}WP_9M5k~`JDk09nGAFd zl9{R=E0m>RCT362Z;ffvl$4cDn2{%!OnE%@>PoH!$sak|Blj`s0ZNI}>$pF^(-k+s zUq2_f*h>_GxCfkiVPeo&Nd|PsJSNy559Su%4h&PmWm}6yzPMyI3E<%Y(bAXwnGUbXN& zW$R)`CD4@L8m)Tpk{MCT!;VzQXgIASrh$3*`Q1QmqHDA7%2BxccI78gIYf$+~F@T<_ zo_O}5^0N}D{V*HK<%! hI$1pd7NG(*z{_qqV8;|T z7(sp$1EvXx%S9nvXhp^maiJE$P6-%EP05TCQgLYNUd8#>-BXPf?9<_R{etrlgw>EO;0RGH>aH(gvH1ZQbe{W8Joa#U|1u*hUsY zW0o~SG#NPAD&-jWrh6f5gSsK22(}bWkFFDF0fmLJ<^9W9vj4=w5I^$tm2Lr-3yeR{D zhdK1}!7XN2-^+YP(_A9cg%Ow#J}h?R#t!OGjLd17$E(bw$TNuBd63#;3XH=9iOsb5 zs_8r9MOM!|Gb=IFtDl}QR?Zo_3%Y61+MQSx`kr%vO>9^k4)tE4js+81l&Gt|_zl|G zHo`SE5>4$bo-l)PWtB!a@>Wy}cIjfB=o_hkk^awcB*JGXsdBRL! z$18(Zk33Uhwg++fIPqkgoF=acoF3{E8jp&lWKXO~uH@V^xAx7}eDo z3HsyGZ8^LxToRlPvCjmr;W!z4W7e*6*BOk)s$3i~scv2rVuL;j7sF~f@&8d5V;aCx)-Y7Pb>nJ#>WIUvones zlIEirT=U<25ZZ_Do&#mV75labX;P^jaO68twCfXdg4tBy22@3_g44K0fq4mJcBT_J1NwTelImLL;if^74YnBmYLAD4$ z=YZb4*pzK1LBR~9!1>`OlW;J*1_g&a4&*yg3=5=22upU6gc?*TV+y5ut+B$~<=axg zK*qr!jq#vV4~(r1Qpif9_A$8slcZJK+gVXi6oZlZ~JSNEpmu5^>9#7pVA# zHzGzb2*zLuwD#d@-q_fQ#;F9V2V5*0)yoT!*+;hcNR)KOy~$3*V24n||j363O zJ7Mjv>yZsBQgE;`FoP|?h{DY#a4qFAj>6p=VML;L$B9WIe)wIKYQvFkUb56|KgJhq z1c~`$5||J%vJzCd16DjPMZGB0C{NP_vWvuFCex%~mQ$x;k5@Y@bR%9AkKAJ$Ng@cw z*d9>rN#HtyVDEz$;RgY}AmNQkdT*!_Fy8xqSaYaucfd~~73UayYINTFR={tuCk}3; z6Z^IXaRPBmQ0-0Si~K)4cq!A!;NIs~EMl1EMj5#+-cVtI7|(bA0B#QMZxAt_>`x(& zY#~7kM31Tl8^dtk19Eqs~HzEj}Y8wgJI9Q0rC9ZfB#-!Ux229~ZO7<8~ zH5{>tW-rgLObeQrP8X;;cR1W0V;F=%u$*p$U(WzoleqRuvZFXHg&Bi^TSe?JOIyU@ zTT`QPL?-EsH1Qb$oAnrXYtIdwM$ztp^T9Q=i*>0UbyE+KIBxIc*x^j+;qOZIz^yA( z5s#XM)foCNXglo`h0im-7HLIC1F|{brc-NTEkdCX!e-=oV8&S_!NBaQ(-=CCLB>?H zj5wmHX>W0dYC0hsU~IhrnZwNkK#SutYEBO+N=g{zhgwt@aN9pev z9oBq1eDLu7HKzf-z!+I_9k!Y3nE+v~wGasrhsw6(#u{@3h`@Ceb4Hlz)uiFJrOWS! zD#4`@`r)RjK|JucNtHWVQ13oRJPPC2@g4D%F2(|Sr%1jyN{gnJdHCmq6T9(LoM3-Yz8X_jS9~nZQ77ex#_I`%$SyO*`^n;l`EFajh5>iKB`UDgHFw)cDbHd`T1Wq)YNmW5SGgoc!Q#J5xaKMVgF+1RdR`_pxP}c=3 zn`%PUeBN-Xa}qiI@f|sof6g%G`bPf%d^AXaMx;v23U(t1yO{DP5%uRYX~Hk(fDeo3 zj_NNR5bmEJ%|H=2Z>!FLOzOiOPIo2&!(C=@Rk6bxB92UOo-6a&wEghMnP+m6Cwu`} znUW3g&s~_wna8F?Epc1s*{M{`u@%kpa!Q2Ytj@fdlZf7JRpB?mHN|$+-<)QIl|jTu zJVHwOZ{NB(hR8Qppu zniEbzz87JE&jtIan_*U|M@&~6P^}nXo5%RU%rpg~9x+aNVAd(Gd{V}#rFIgOY~K#_ zOjuh2QPV*d!^Il_^2Lp6i{&X!z$0uF-8kMO8?jGeY!uT3j9VOdL%iA>-QyUh05~u( zM=!oHO@#~om~T##8zK+5AWUOm$5VxkH$jb((2D_r+L^s38;)4_xbnj3YiSr!Elu!= z8{sjwP%BBDv9cQ^%;2YK`Nlj;afNL})r>MQuXD^}R^cWF2yAK=!raAFZV4ZEwBa`y zfw#*CcXpVg zlYr_*lePuT2%~ir&s5A@;l8O6u*0=ldf~FDMiS<#6ID_P1e520)GuL&Dxe9&dXsoK z<;gzl%NqB7cu`U|7{W;#V0NM0RyNs5!3?u#`r#J&V8)Xp6fmKBQKtEv6w7+KVK&j_ z>4K?|CfKe&%9fO2f^b4u0AWgYffy+i_WNO>-IpO!!Ptx_ihfuzx@i-Q#VDKYfl}l5mTRNx1sqifIxpHVL`G36Lgz zFqv#1+X}XzRUgZRu4|I*qs4qITf!k%vBJsmZgJ%Tn%68yB+e8@*wHD|g#v-Vxweg` zx>YWLjaFwG;}obD$E|H8x%bM#CmNCe0LL1o(s7G$1jhL7tA^5(Sl1w7H8e)^7~CHe z0gozH5{MWRV+i6M(6tamU>8~jOhyP>yNST{E`TC%mjDqUYES@yf!$I|x2_xAerzYE`{539W12!vq2jCR>9z-3 zt^i>gR3M#3 z$HGrL<8)L(@m*W^VI^PN>4x-FLX=9A@d3Cnq0^QKZC%r{rRy4sL`K}BukUM37T*f5cnU3*Ba|J+YRva>{3uDkxHvl_VRc=}%wR>4n{JGvWUL>UK(0 zM9R5NJYtl!Or^OAR0P4l%k=tr;H;v7RnH~GI5emvrgrr7^TYQ5r7^kgppM8gN3$Z3 zw$`O656dTeh?@|1^~IyZJTXnfw5e0)#H}tTstjCti6d#g88Upbi-l-?>Y?PNNriWp zH;!j>Fb|*G4YgcXQ^eVekV2XG5F!+mkS9?SJ59RcNv0$gu>DrXkJDPgx#G{&I&o(b zo+HkZ+eb@nuSjqI0KOYs#B}=%NT_&G?2{{P150l>m|E8+FCH7f6S(Ry+rqg`2Mf}t zHm@DvOG@s<1pZPaT*%~ zPWgNA27gsA;Vu!&Dl-i)AbUSW05g2V0MV-i-#tsRUHWKT1zeb14=Y$0tVoM zpglMG;y2mX0{;LFq_|33Z%JFEY43dxk;5xFxo?j8$2yp-G>`}N?nX4 zL~LRP_x(L5#|A{v{3>+u$uyhFQzGF8=#-PCRSzplPzizOy@=c8eXoZc<@#Kfl`5)P zZ%`>|8Z?EGKMIeqp!Pt*D5+`e70hrg-adu{0UwNT2 zlm)24m^!C(e=fMnbDZbc6c^FEY%y&aB^90L!-(2$ovkTtYt*v@>YqQC?rhq&9dek` zpxxsH1wc0jXOR+ma`{a%{spAS@}yMOIrz#ULtH{9WbbogXQXw&dCq4`kWf8X>xn~Y zC9oDuIr*U8ZPdqvBt8bBfKzHHZglZC&h~A zin!coz2!X^Q#9!^vJLl(8xSB79R?eC&x-1}n>g=O;+L%12wtEB^7ZF94zi)Fl9(#0 zJ>oP5$qJHHaTTX!35~aZB2jx9&)Zzoj{i)Kbt>)=_wNz>e(uL~K2Qp@N z2cIE^w?5Dnk?GqTZRHAbS{@lsyp*|HRG_JGX4<049zu3EfwY5&XBhU2m*v$T_r3Au z69^KdBtVc()_^0YJVv`g?OLR`M8-U9dyTl^LpGu|`y=G3pyQgH^?vbCwKGVR5SGwNgnf4wznSZ3ZxnHAvznC@ ztpA3w0cTw9(cw5F1X_iVRmLUj1OeDC%0!wWQp)qWxrlV|{3-s0G%4LJPN zvGrP~QD8Q*mD%xxCgVvEOx`9Y0iRqvP|~U9!3NR@Ht_S21jwJBHOn%ER;4NK)`r!k zQ6SoFx7XJX)vHEJO4-(u^N>k_DHD4SJXgC5DXlk@+@%^sgiC2x=Nj&T(|m4Jw(4M= zNe4)g$_hyl9cR}Gu;HtCcWO~lRHZ9i^tSig5*{DnrMUV_?sq9ifooVE8--eZMf|+5 z=CcU}#N(8|4CJqI1#m+Hyl{v}01%y|o7&&kt)@w;q~Jyi4nx(6L0oGd7y!Zb9U$Kf z^?YpC3}w|cSzt?Pf}s72fk22-bzT(_akorDPGI#_XbWGBS5Q&$E97r6B6<%@4>)S0 z5rE^$l2>sHxvPb5tDFD?1dZeL{{Z4XN>J7Z1SrZuAq4LbEIMEHz*&Ayx2YU`MMz34 zWLTKm#Qo!Jc}G-S2?_9}K&%PapIlKD90a#+yLSaXW$ig$u?Y%JqNSA);Yl&q_oQ_= zCG5#*aS1X~)PM%W#7rKZxIT>^!8jzZdfokPO5}Ey%+wH0r8%Py2u? zH-XRhz3|6p+B+fXSGc0-o)0Sh-lY_sB?_4Wn2UaWZyw3R7J9sne%P%m#y z`U{vCQ--)z+{(K`2Y2x*2s?TC@{c2nuY>z5q{*^S>$*i$r@c`z2~a8_0LIaEPd$=6 zIFC^?A|B$a^#1@(n^7e+U~*IoDB!})3Qb{4S0K-X2$?1}zo@?b7fyOIg7Tym=_4r9nq{g0B!85@z~}MX!h-6y_qoYl5lr(}|ZOet=GAt3XZ0%AABo|7wc ziGs6i*tbnaJZNs-J>X2*(FO_f#QMot%yt~DPfGOn$?j;${u53~!WEoE)`~=TIcr2A zZmdR>jkN(XNc;V9Hg2wivrMTueJg6JsqU^53OcXiQT(s~iRXdyZqOB%Wc3vE!7MV6 zb*x8#f;=hn8ibqqP9Rko*nRY&E(y_~Niwk?Q?ccUGcmUcZ;s`CB#>$JQDZMWpC3gV z;_f4=&+|`wt6H3KKQzPV z2%Sfq9)5#tOE_<``h2+^+mE!T90}HSj|l$&Y+l=Kzt*4Nr3}= zN~o!s$(c<(Dx1)fB1)E}tE!4jeB++jY2uzbZkmne8AHl(I+9xg2vo(-k=zNyqHI$F z+>g^^VBIPEc1*linPi=u&^X{j?`95#2H0T7$#N_S7bXvuD&8l}^WHX6X^;?<)D)#{ zw%JNnZ3#P&bovdg5>0`^ygJo>a)ec-MIGTL6{Hn@PzW;yK<9Ibvl(3n4=tyu>05DW z1xQ|r+>N|}*xulJU}SI~`vECJC(G=LfK}fJ_7>j^WT{PJ+hsrk@C0hr@o5leRN7?k z=y3Es$0^Ft(pX7aQDh>?L@GRFlevXot~}%ZEiPtGzfk%}LQ)z?2UC}wDTB|Eo|h4T zcsC-eN2OZDzmHc zQiLy2N>Gpq@apr6-<9{oGl_VThlbo$B`Qrr&xN$OQbJ0Ji}MpU0G*E5c+dY&}3_2zkI7solrtor%Qez9uYFB^XY6h=UMYlEhv$xM@)mMN)k6bw;Z{A z@ZrXJ;H*kTD)lMAodGK(A3rl~#Nq>(Rr{KpDPM|VdlDw(dhPx3bTEVNar!Tp)yyMq z*!b?2&TE=^=e&Ng(OMk_xfRFR^LeczDF9opoQuR z)8+ksU%l{~jcQVF1oP{UTH8X>1_E3uB{Df}<&E^~AQ5lV1E)||i|>M|)RH9lyzxV0 zG>2~Em5M@}O|i2n)R{ZuXIvpZxI{mvY%#ng5wy@)_`u~Fw;nIo1qfdM0P}=Z0a1nv z8C>c-pvhzM+t#I2HPBAdERUFcm?yh6^a1 zF_ZykLIw85?7&_YoI5b+Hk?f9f~k?>!g;29Nx_WN>GZ=zEBcXq6x*|e8J8TL zXEgY0jHo?h7PVpovFDc>wf8J-?Hzk>YK59bQ4}FIEir1xENWM)^LOWe zKgpFVk8;krPI9i#=ly=Y2Dwg7OM0%Ml1+`$Ku0Yroud)6HuJ`;a#CdC|EQYEyB z8_oWsebOuwvq~GBpBpjU|1@5M@`cmy%#*kWsH-(xcFAkWSgSWoQRFsDiouoaO}8V4 z%M@h()5~~2qDV<+=__ z=o`Mo8Yu_4O`q4%IULsbPZYi9w?vl*eWdwwHREt1ofuL`=qkI~$8q(^+=T2I`H_+4 z4s~}11_*!U08Fp$1 zzaqScjh5XV&DPkV%DDS0OmBx<&4V7^#@nHUd)WFET7()NV&z94MJ^B*?(RGMSRgtU zwjt$JnzJZ#cSLs7n87eh_4h}8R3*6xw+Z$Wa&Mv5S|@3o0iO6w;7+BLQ7<8?UM6l&W`mkqO%@Px6&?qy1#wdgre6A0z$Chl@t)@9!v zyhto>Lq;ZVP$FybA_Q$kRJi+9mybkn`Xgj8LkEUPqb>eieRPeE8F_u`=94MeQzZvH zpF$G)AT1ixZZMEQQKa3*VMgHfAJNERiIPe@8!I3H&$B5>yiPb*!}d0m^|z}}z7xc&Y_gq^oNtyp(9qeo4?7^r^H-%@Nv`yPvZpChFC_RDa-1nzo3xhW zEw0aiUUq4LCcd|$o_3|q=4J^r|JIhp^jdy7zFWLFV>x;Q{zl56-0?o1dl+c=#Uwki zN8eyQ%i$h|CUxkw4*jp5F+#%pZsdo7C+E*h5$>Bm?N8p;uW@3TycJR=73=K&6>&y7 zrskE~I)Rk4R$TnD0`?w6mw(BbuIRpyXtCLdFhn#>Xg>MVI%xf0ejg*+R9?n zLHMCvaF4&@_Yv9@Z3bR#VBeIo`-kNHDEtd<4)z?joaGG2B?diqH7a00=dAY6%L)^7 ziCU(6CCPRr1#Vd3*D#4b$bcd+#H~z_MCJ<+AVAAPbr$P+6YKA>!@OH>PidaPz7f>+ zXBWej4aQ9}l?o5w<+bxV$B8TUawFcobl;#hPgU}Fdsw=!wr6tWM-2LW+Pew`$qEzJ zdGtOglPykxcI)9(fwtMRd<$fq#lv}+rImZB3cRF5JU}DWg;6311`y5^p@O$a-i^!= zknd0h9#k>7NVBBV48G;YAY-tPfJ0C1mB8_AreW*=8WNdysN`z-Y=hlC3I!`#>8?fWzeikbykP zCw=(BUfoUlLHcl;h4ghZNf%Kf85u2w+r&#Nvlz)%J&2@t1YU(NEoxOSYnP#}^`s7iqR@iqO?at}U z=ke3v5uixxdbWn!y*VJJM>(1-JE0hFLz?^PKx=U>%`4H5w}#NqRXHYlV2%$Iamgzv zPtuWZ_`^U77%frq=iu!j-r#xieomC!Nbv{_-^33L%16(vOi1Jz390YM`%o-j1KsNQWnXtxnV{6cx6l{$RxN~spCK2F1& zwN39w$MQjrJb?YmG--sKIGdc-lTAT@eQ0e>Uho@c&6;Ma2nYtns!0-iM{YhmgmTNM z-A?pJNoR&J3q9QooJciFRUc7Q9$Fih$2uhzzNLpPi?;IfCaM|i2iJ>8 zw7Yvtc0K@~XRMd^5_EJ0qF*uM?_B+!=5(c=St?v}N{p6N=I=z64RyhQ_T>33K#Lh| zI7?GpGgSa#>Y*cj3&-`f;j8cKsw^4r@!_)=c_^eQi~J6)WW@EsfO%<^D1c*;*QcTW zA<)B#BaI5-%t1vn&6s`$brc_F?C*l*jeFd9vijcjzN~lVtF;&}N;? zqat)U@3%dbC*}drh?>Y&fk0{eUmGvJ^;*nFo!7b!=XC!sF8RPH1DhJByOgB&#Qire zF}0O+K}5-9CE4)0k{8ut6zo$QgpLzllt&wK8ZR*o(YQ4l80|cGEAt4r4o@$}-%db~ zQ%^;WDX7v81i#|FpAXW7q>Lxz?T|`c)Zzx;sX=)XiYHpaT+bX#bG_1tW7*AHqOI+2 zM`(okNc-d)lSjq)99UuGKvNXdcC%>J1~Bc|(*Ee%mBg1lmmOl&BF%JzA0%S#26r@? z_%UJ%ledZmm}JeVP{Mrfny)-B2`95kPYCsxWx+v%TkVJwmB%kr@AYfz_y(sMB#ep3 z9!Rq(=qM|=iNoa3{E-K7DV%baa*ApzAK1ugWJAJvhuR`>1^rD&_j1+_tSz3+E^E8y z*atgU9NP}T6jXl*1Q&Jop>meX^sElxwr^+dv1DQvlrk3{N& z2*DCg15MKN^}_#1CIJiKm?=mZ!FEgd-9Wt>q#MX2oFoKi*coC6ygDn`839DEn{aqylVoyR8hpoF_Pw2k z{I4?FfoX-mSKkWToSL9l zo?ePq0MF*T89uZMd%Ks$fA|HOIiZ7JDpT9*DWHXe1qBM;L4MdTEASQXRixTC|&gviPa|HEmwrdcdG4 zkc{sz4s{aX5>R2*Z1X%&dksPp{;Fy;*^wj}Xhs3-@{gCvOL5U=GIepR0XsWk5*aM+p)%(jX-IYsXQ3T<)q?I}bAKy7hD|sNJXidF~Ub8W<%o{DaJsWo+<@BKA^J z#OqcOul9m6k9ZI@`zXn-qM8~yL9$dE(3~?TdziquNk#3w81jgOfA9%4PL!r zCf(P=B(lThtG&u&wrGxb&zjzU=;5$fV;y3$Wi6U0O=Tl6^>~VRIC*VBK!2340<#!j za?sv5znY0-+oCEVu$h9deI{wNxrc%CXK`jlivg!(Q=f(E)G>3dWU?BOOHi{lTMqy7 z&u(peNKPwWGC4pTc;6ggjv>#^-$3{y!hSn5@0wuJvYq1#UN=MmWa4F5&N9{oiLokj zL$V=jAUy9Z$6qYa+15@Z;40gj_Ag#ISQZS16E?rHPh>oH3NuJgI5bp?OYC2t)6%JD zYx1wv#0@o3x&6Ulm6WYIEg8gx6H7L5F0C(5;c=(%^G{+RCL z&X3Lb^bq3yoSS zA$eit$-=LFH@0mB@`Zp7e6TSca^Ol;YicfC_mH)?L+Phqtk7bioiOa5S(5AUkhf{Qc>1jqI66#O#@?@G(jQeSC-U5phCtof`Q(?!Ti3WW^kH)ti3{cbq^ zNM%4Zi!%%hslNAjrU8ftn49aouYPicgA?{Qv>D*xTUR#1Yv!&tw!Q^rdZ}Mo)pF!F zW*AhdaKF;O46kP;yX^@voeM4RGW5>R|NxU%^5V>*5M+k2TXY1LZcf4-un=BY@of-73=z zw-YtlNKo4P7)tH>OMioO( zk&Jf6(pF$HQ3jbyWhe1%Oz%rsB2Mx~)+61itmG^mdb zPVfJ{bySc?Lm^s(OgfmDODC7?*y0eNlwnNF=VDer5Zl(n{S5Gya3=e62Lc^=hnJFKbf|K`vB@P1g&j z>x};~)!e98<|7OPm;e;(j6-i9|0klfbdXmjUdYT=>N<0#nE0t@BhBY9il!(OTY@+g za9G0royNvAdXlOMuMj)`-e3u7GO)z~&*Wvua>YC%#( z{3I!A>9NOE)u_@+j#)fCHG$gts$%UtCx^Jec3@wpEZW7V`p|P=tE_m>V$b3xi-$s9 zLp>wwagWMObH2@frn%|?({{M5C->M1-|>e+10DOR-&IY8Qv90PLpOqVK;DWD zYowQf+};ym%RLb;3#N#Zlq0vmE^eMTlUi=pO=rbdGWFJah#cyKhb*~@Eys_eRQ%~^ z5~^j5$jbD2Bmjs3hXgh4d)886_%oXlO>oZ)nA62eI7LGF&un=Iq$O<2>PM&z!rB|$ z%SdsB9N`YSDetI6g)Yo&SvDXSIgevL1IC!A-n{njzZF@MlLZp09H=vp=omE^1o?Sz zRvjt(jA>_z2RIxhH1aSK<>YV+YpQeXiL1tjY_NGe9?xl_)Zx&liQ5(xgg3I0y?W)* zv}Ap8LWCr60PqXj<&9NVR;=9sVKa%WmT$Z$IH3!xe+%1~ug2AMo)?~RXo`k1_zYL{ zF7Zu03Qv=yRcV=EAyal>G~A<$r%ept-TgPy6x4(rxYhsISjeh1J7y#ip*Eg9s?3cs zH^2C5S{DK!>HWf|C-5)(>hAbhvwc=y0!i{?7qux?d?_Aa#MPmL36N7Cl*RmR=wE+~4 zIjvV&ISM3kA1?sMazl^O7t$>?S(lYEnynJv^zm!^$a9kYRi1xnzbpJ_PLY1M_Vs7i zapt&)>jwn1N&o!i0`jl^M?l`q5+dA+@{zxoNDRdi5{WC7A&zCMWG5;)-U#$tm)U6% z9usOxeXW11(DcYBsWJc!CLnomJgu2FFPOHQf3-l@ux+uWXur5OVq?(whY$5o2>txM zofr3XnZgTcZ)hFA%{1dXqGx;M(&WXJOAMAlzb+sxm#0m6dDGq&{K6{a+@uqEPLkd8 zGNg3;!rGXbAY^6yzS$h_O4Y}JL!tFWBbZ6dX&5Gbu|6O2h`xoAK$9`YSL?`MsV`S1 zske?xCKkLI%~$plIialNYOOD0Eq`q=)@(4Yq=DE^RmSWIF0gz1N?3Tk7V9K?Y22V} z;jpG8YMDmCNxpD5DvEtvYMvA2xl*BlZqRL4ZNSFZhJ;-7exO7&Qarv8aEu^)rTfz$ z+%y4lf+}lyqpmM{f*3pRIoVA6`@%p*_O-CV`;C7LWf1f%!bIV}qW-+jDLv!l$H|Sb zgV4%%jp$IH@%baMczK+AC4n`JThs1W;6~*3=(Qm8`>~K|>%?NCcsV{?tT;F&)8VBt zLGTIRzzpK?Ccci2c z)Sn)?FHfKEP{~KylsCkVL}JJng2f_AB5_)Z1W#lR!d!Cs5vAKNZ?7Ha8E~sXC8wbe zG|K22c_akU-F<1lUS!DP9B7;7C&4F1iDoEWHl~h&mq#pYY5X!oxi-y0!&rtcg^irIB{@Ix9a! z@Rl)xie|QGgU*_b#I@|PF_Ya%V}urjMj`~F35u>Gkma&FRHBYhAM1|tC~is;uQhE| zMcGi82r>-!MO44G< z2@TcnU4cLOG_Io1b5TA60q!YMm+U^|uhT3S+)bs(?CIyg);f<%&r&P_Kg5HZn2TssJ7_9^X@oico^h=jXS;ibI)G zZS5JKuDq}eJu_V{rrFYYkjz))duO>sK&dOe?}U19U?Imj@d z-p&4%d^p!w?qNSo+rXt)>&Xw33}|F%oQh*g|Eo+J`A#?Drn@_Lf{DamhO$+`aMOI; zYrZMJ@Dm9tOQYOcsntbuC!Cc&O1>8}AYYi?x7>efwm;2o1o%`uEFiWZ@>t;{>SXNnSPy*th-Y0wC!nr5Vgqe{Vd^1VGGMHCp!zvf3q z)H&}_+@l(~i5pcje=lWU=^gS@!}JoS*0~8^De!LKsFxI8_7}f-5Ao1zeq+af6WgB0 zSPYu{Fpar?n0B@`A7t_IlQ={JJp4)EP`)E&@T-c%;eX|ae+y+6L4>Er>xd8hIpveY zFrp&@PQMhJVULN&ls_WXU7ki?nB+fz;!^n$=KYIJIiGAM{XO(%JqYMSvsnl0C5heg zRxBH(GJYO&nE1c>tXC{7ujs4!lY_1}V9p|{>RfMy%VhaYxUOI}Q^bebb$_pjAAc3{ z6zf_<8($l=XqnQJjO4g%Zzjs{#INi@o_Y#;R}A~UM^VXq8{lX^)Y2KUe59AAM&X^e zHvMk>Mev?{MZgRFOlZ~6x$vLZ5UNY1sCYVM%^>(=!zWjBS{ixpr<1MCceQs3oj%ME z)S3k_oisc%2{f~CxmWw=wf?wq^eDP_Bgc99TWOET-=!Lk2V0TT6h9JbM+-YOe26E5 z4pWHB{LIl*0Rsd4A#m;n8?wBv7DbI`9(_HeGdDWLM!~~s8i}#($^uKAgvo4O^zz(K z)k}^Z7*V*2wBM8lqPU^g<@y2yOMH15xxiFiTSp63mQN4phVUJT&X|tjOVer=g;Es4 z+VXi98-QOknPlC6VoaebfR;znV51Ts4UQoE6*BS}&njw82I=bYi%wd@I{9u&Cl=_r zcxKfjj<7X#;6@}#y&PX<(YVRPIx6boy%j*oXp67xni5iEObQE_(55-G@Xst52 zTU+LQL7W=;YUFoM9`>mCjOX9Gc%14O?HEAi zr}NiBNZu-z6XY|t{f~eOl&H)8K{%B75XlfS$#$~jclKixm-8iMK$FX2g5pewSjX2g znGpSWm9lf_tESNmfGp2$G2hA#XC`HB-Zri1H0MKl{yzVFQ;Fu79n~v0q_P5Q@7oUO zD8Ss~JR)`Y`5SA;oX0u&8d{kz36=IIeA88`s@ECCz|BtaW$mM<5!@R@0|#y2CRz-< z)NnM28fJf{DejlO3jeGgtaJxWWCR||R6WGX0jEQ_o~=?TX5qmUIr7QF3itZ!$Ql^s z4jr>Fw*em9EQ=8IRy1kkmrOnkAz9n_tc*~qp`~$qlVFFdj@7yJreB|wht373_Phn$ zemQs z8CnTEBVRIKP}V{1^lRcq^Y4!nLfCx2)>50DN3qXYRsc_SzW6)SF~pp%v$-_jfz-D% zw9Lyceu;|Dew6`d)&nq_hMrlH=1|ep3QIIUzfRrInq+F)u41wsK3Cb8?dn)ip%jSL zmt{>E@lo++{btLQDy%Ti{3Es$PN=_|?z0_KSx+*^y2+bw;w^Bf3)vw??M1xsPiwV} z3I}WCw!9==_=#5WYM0nY^pTXwxY5$*{!Zumrex~t_$@a|;)pKGCrNqyOO^z>NI3%6 zlFvWK8r$3mIZiBDuW{jEDEd$*sf4R&Iosg66J@gL`1OYD4$jnw8qEBO&x=YgP)P~+ z=qp$rAI57r2}}^S)*Ikh9s@6GL{lc0jgByLgQzg5ug^an5}B{mL3We}2kTe$q)xkU zL^w0TgP7#4Y?;+|074oW@-`XeSE&mk=InMwHVOff@f_Ab6EDg5GAZ#?&~)A^gkNM{ zcFUmwgyMR%kFA9ZZ6=|@A2EIcr3)7%|GU5I0B!+^Lo-dqk8xfwC(Lj}Iw(o~J&#xjfh1Bas4}_4*$H_Dalf zD?aU{!ioi(i(dhS4$n6jXJ@<-H}(^(AP=yNTOwEd1Z6q;(=O(D*Q(LmiEK~HCvRnr z0CUjZ_plx{bkC?nngpp*Q#FuL((6q&p-;{ZFk!B>(dKaX5lDdD2=kUf)r_R8oyCF5y9L5u3 zn=vnjbO;AFLHN;Fr#4wY`wK}^hyHVUl(ciay{3(XSNeE+?C0DhU;A#N`d=?3tFO+l zc9&&6pjw!SIP$v@Kl?mTV|gErjXiFN+Emk9)e6rN1+F5%+nP?wEXG*J5bg#R$>F*| z9%JyI_C!F~FUOF}RM4R)8X)^ehs#;AD9~mWzm3VTdkf-!5zs2l(I=8X@Bf6>V~AMq z7tU=pa`&AW++ZMLcRj4-uLO2F9Zp+s^3aaaCb+>$i32z_1cG2q{a?+~H8@nqtS8Lt zm=;5&N(mP6VG>TmOpcr~$g8Rm>^p*8_W!;};0*W*nEO~Kd+3}T2wqyT7E4v}k;zqx z@K5&C*?!ics*wd}gd27MM&}w3xiR+LLR%9HR3z#<6kVzh?U?cL`_Gi-Z3$5Op>VBc zA-W1yzY0<|*B<84a8p1SgznIr0fLcHHqA7-N`Ib7lyVlMmWOe6xSe^h9pM<-CL-EV zv^sEu!CQOIo0t1lc@j$0DaiqHVB%OHHW=sUkby|iv3sgUIV49Und)l*=X)iz{>UMObYxY0T505VrkYqSM)Ly_xhT^^fUUg|x1)lemu3*Rls+VYeI}T$upWZ(7 zmQ#e-Imsvb^{}~0`b#twGdUqkJ>hG05q%JN3L6kotDYNgE4 z=U1<61q5%yiBag+6b^~_3;Zm{+4$SYBm9=35m?PLKlO-htfo; zvXxn*&xzh~-?2~0xomI)$H-?Tjr>OZ(uzaD{jr@;lCIKz$$L*rU5<{XQsoX*_|0gt zLp2{s>Kx*lf*_3w=Th?>Q}g&3rPB$18h93@6cSvXd5{W1!~LF*8(qmGOH<{VU@-UwjI^MvjBP0nw$8{ql>fSN+k5l=weV{qK}QaH{bzuISJ}c$(Die|i=tG*M`UgVa(cPdJ?uS@>Z^>dJ?^bUYogn>Dkow!D7KYYi zk@tSK7~A3*UjGKtg&WQJU;r394EJ)pbsfl|&y=4LPm=!*VaH8cm z6wo7m5*+S>ZckWOH-<7_O=HO+~o6 zuO*UyP2)&bsrWEaZ#q`1-6v@MJn{Le%Y$*_8@3d-Q`!LmVG=tWd%|1;#gFU-_G=xl zl6{Z4k`yI;Md>Fnv;F7t5J%%FcU+n+r#Q!=={_yzF{$aBHxplRJ;hrZg5(m1$FyF7 zd0(9rB^-A#d5nTIT{HB69nzl5q~FdOa;Z-q3SoOGUG`lD5X~HfJHtEd3JwGv<20TP zL8iI+(KZrAvl`U8Xq&U{py5l4?Ps)}md1jf>GPthMKlq0b5~2||J4td5e*E-5#U-p zAApJT{tQf%;Uuk?pZZS+0ftnx-2eFvQTdQkRXzi3g_tZ*L>_=Dhd^a*%kraotrVdB zm0f<{&T_li;4}_W)8gF3(>Iee?aS6>+O)D~<*?~@lF@#NO#@isA<$_MiWTbFJgb*E z{$pJ9r``b$YH>6wkCqL6)_56x<~3Ce^?BZvJ0#?lz$>b`Z1y9*7#)J>-?tP_Cc9^? zX$%^d93)$Az99A{MQF3Ue7!)h{8$d!BhMQ`ko&@}oko|Thc)2lwZ{(eKuuSfEho6p ziP*SYfAr;RNzzJ-frdaa!P*fHd}LhdU935s2;x zx(aLnkDwXYM7v3B0`>|N(!mW;#*#Hy^}jou9bvYe6D!`5HRg4ZIL-TX4$t~w%Zs&x z^RX+|5erKBn~78ti~BhhG8s83xZ*(D6WF0p{xAkiTC@z+EXGXPxB8Pd{;nzYCMLT# zB@U~22C7@sq~@!K!MAi1cT-0D$;drM9-fa59yL4KO>3^&EYCE%4_`);u{qppRK-?S zu$FO@p8gS}S%&oigPM<_K22l-5@H5kKC;V=M4C>mZ=!T)yA6rLhFK^U--yoSnmgPB zK5AShDHbFWMYIP<=awX4oR_(4M}Sv=iR1#gSWBo>aWCtrh`eAFaFlzublSG8z_l}b zsh+wH&fv=E=y+=OwBRb=iA67s%5lXcAc_aRY4v>fh*8gfrH|=@uuZv?zq5PHhXsnI zcX8}~#v9b8qLJ@?kov0sdDAEQ46$A$7X5V21>Hm=WN?C}pqE7oNBI0n&m{D4Kb5=> zUnF`_+{3{FC-{qpxP7$BlCaGZ_&A>{nLeWLg2XVG1_WgW8lSharjTqp*}K&9u}3SM zBja4ko~Ln(W)-tRm#-(C9i0I~1~}i*DkToEoiQ;HmXU;-9w*&H(ikWp0Sx5c{y!<#6<@U@IGB>s^yAwWD`y{$(><0Q#JF8@qBm-Gznz_<-#ma@x_sO zLe%rscXmQ&SC3!W$**E#BEAg?1hqGLhh$|3pj&s^DhL}R^^$vTl&>?6IM?$4l1$Et zKhD674989}o)?DvRJ$le%d0HGp8=i1!F49MW3uZ5<#x)Z6us2E*Gf4C|9Y2Y1DTXK zCzOMuy*D}#L5_{Vt;gXFMih<_O2WEXlWwv z)zHpYB0DRJ%>?vj|43~}fZDXB2a!TgyM9dUS+z^!x_=TAEsEfMd=mrKMq`_{_+b6- z5LywmItlHGq!YpLu_Fm)lmxECR~Pc>vNb0)RE>}ip@Gd?OWP*dS)lN$P3VEuIT9@XRz44cW@cpnH|AMYt5+7l%~PXnlhfFX*T@Uv zODzE)OupGSnmS)Ih_1ZiyEuA-yDnQ=J4y6hXrx|K|2Y5Gkpq5pPb{fwtA^27h~PO> zxBY5_Pt@J( zyhl?H^jyNHDy@EF*aN+DCHB^jFy#>c{2V7p+?=syMCt8#$t4{h{xK7S+Vs&6(hUgc zcUh>r{IEnD^y)vrdg!*Hu}#1PLx)XWH@sW8ytYwvkw_z*s$TbMHfpHoS?%7hsEQP) z{5oM%PcA8EwN1O(lru&HrXk+GWBQ@}Q(fa9ZW__$s~s_ZNi&mAKkRcUHqJWycuv3P zflbTBQDw&GE^cUD87}3haR?eVI+Fg6pfmTn;o)n!7E#2b4`J4%CyK^|X~E>>eUASg z;9l(+%B$=I1zHm8El4YsC!+7ho>Cwvb%h_ZP`C{XLqq%;q{cLmmAeMi4Jx9;^q3(qI{FudNt`cRK+P> zh7ARrcC}i3S^x?JG7C&sL~!|gh~JDuF+CsPL`e(jtT8IW`vq#Y=w_(xOg9g{(Wx@8 zm+3COna(8=r{~@b!b85=M>o@89dUulM-g$TMwvQ@ZBAA&K`_P8h8p*OliODo_S#2g zBM6zsS`TY$sfbIZxxa!H?7acwW@cfjh%i2fa+`NVvLUypiX4WJM&hQ+g4!>-*GN{g z@vkHXT0cP;!F+VipqE{^!EK&MtkBTSf=%J(!-A{~+HQoORQh&O2Uxp#z%6!rjjp1gdwT~Qm2ncFD*R-nO8>P?nwO+Z49zL*5 zRS$SXrAvhOwh_klu-`rp${%PdY509CPW3on06dxUVF|s&@|Y{2f2g#-G?2Mo-%lnM4%*=07dVl^CLh*d_ymlu5>Js@X=o05WB_A(uH$5CT z>oP&~3=4<8q9NlB7I0=5z>jj8q!ZsKk|l~+s9y`&?jd^)lPmnT>b@;WF*@8THbnXj zlscfjh z+<#Mp-*XBP_6Y6hkoZR7CCQ=d74iar)6Sl`hrX7`TgpqyLYG>Hu+8A|zWr&A_xCkO z(*=1WnBtQhSI;kLDJP4Hj-H!iZhrDlG%_xV_1Fsxx4K~2?Hql(Kge#(etTOP{drI* zwb5p=+|sr5@v|QzVbBYRZmD7Yb4R;{ltRqsev6uY(RyOThY5K(1b5PG+Y{7(496Us z?_K%o%)UNk&(eF+8p7)`(aK+5;v#^AwFL|sy{R>os&25E&FbW~rleP#U-J%qaq$~G zc}0=(A+Wp=YT&S7VPc1a>SUK7^(4T!Q8O-bA$vGBV_z9S6*G>f|X&h{CQ-C&?^N}qu zj*p6t_Mu#+YYUsN0d9GozJ$8Db-WP{OMhQ#o0>c+3Q)DqU!=Y9WNpfimN|i4#c?bV zJ=am_VcxA6^9rAVHq3k}wG1N>T|}zj1WwzH;)5q(7XFFqpT*SS*VI_IDbdbodLpK2 zjBiA6To1YVQZo5t@b#g`bKe3Fq{LF>j$i!J=Snw)S1wTkTjnR}4_h==>SATflpWM}9rm&Q+od$~J1`Gl*pr<*{%JK7X*YD>iC;Nn51T6ol zB4p1k0?0z=or@G}*5Qftmb*k@Aa4SOpchv-bj0YFQ^PF z1{-X{rq5`5Y>wMUQMvnf6}C^+N39WD>@gNu2+nP9N8~Orj{97BpIw_9ySn z{oC8TGkrtT;%X99ZBH(^NZ=EW?cucYg`(3$>Tko>4Nc~pOoqL;x*rWRY!1ErAoAPy z>DO&+U1v=*Ump5&%~#x!poEABHFT)4Nb?;}?Ygi>2cur=Etw+rC?`FhM-O;NJS7oIo7z^uaY6Q% zT|ZN1BkDn~8}uxg349LzfxkB!$^zfbuvrtrZ%Vhbp!Y zCcV|DdY9OqyDy_={lS#Q zwv}-H+wlhrgOH)ag4732(H6Dsi!VvQ2Iulh^CIi&HJ0=Gklf$?d%s)4ofAACUZiFf z|Cd5RpI7g<>Q^?kQ6Vx9#PvHo(3NG~*|vO4aPkfcntyQf{Zp=4Q_bMf=gVv%G6KWz znPtI!DJf_prhs$p;L{hMRJIng1P2oi2NnEA2e&R7#+uX@OWZOa%MFzJD-aDHWEK%(plhc50+hqm#b0M{A&xQs) zQcp33BR+;?{@)7;*~i4F_Sl<^r9f0yC5o?2S@J#HBI^9bS9eHkx#BnEp#OD&3$3cL z3`+5hK$vp-UCtGn{hOX$Ai{@I@WlP^9eVs3qly1>#x1C!)>HLI(m2njD+2q)ze3O) zyAq#Vr9}CX`VB}nhX4=kS^M)K?bRJzyox)=$y?4ECAIODbfRP1c%=r_Jhbzzj7{F@ zU7g$avSHM9I<+bZN5yqSQ8 z!zR5W%-4>}?G0sOUfzdn@GRcvyWc60SHu=DbcRpp~h*78)rwyj+ni;daDl@TI2i@uIVH=#7KUE9BcH8-=U8sBTxV~ zbZSCCHh(*(uKn!Zi^Rru%15XNmwpje#!17AIfFU^Sc z_0K7A)17Gc?&ehu*Q~1D)M-^{)hzVcEo0n*m&qlRYdVFlsPE8vbr$>xg<~&wSMpKN zXZ3+15-*f`ipLEDkL3F$7=4f&gAMFS2!)9|OzU8jDJW}7UrUJQDkneuU(rNa+z^A< zgtE;n%4Gte;j%ATV}?h|oXb(a@E=1qyNzGH_532)WXs?iZcY(H%(03WX;s0QJxB#~ zF;m{ukgcD%jY3~o%V0Rndt!#<3s?BE;VmCg!omO#eoqiyO-_Z%F^G%DR_G8NhihVs z86{Dj5)EO;NV6R&iANJ)3&00eX9^T?L-q(Q-po)htLl7`;lN|(mpw}RR&He4n^4*t ze5NM&4SHZ`nAzde&Z18yadobI9`j#Ahh#=G+$)#!i4;q8r6ve>QJ-^6fL*-wCO4F9 zGj!3Grc#{JzSpgnNRrEqD{KscvpFp)?0O3=rfPMJjPb$^p!myQNAM~P?IX2|p>}#{ z#irZnWs<@RcG8S)p2e}QxY4rWd3NHXq06aieD$&jT`rykwE>QBH5~;Y^uQs5{>=CH zpR3q)?hzma_VIZG08jiwb@BumKl0UTk4vB2AXm(R(}$4VqcXa8J$-GXG8j!c$!8r` z>1mQjU2N_E-4W$@)eRi@nzWy|4BJn7^?8?bA5#LJSUBS$y49V;Eq8020eF@S%&(yU8 zI<9~Zqr%^D`@}ZsKfeVr$Mj)Z%5}WG2d_7xs(lh#Wdr7*+6%h3}^0&bknAUt>Fff z;&%O-L_dGav_O)=|k-Xb>1@T4wLkVYB{2) zw3(sj?W481j{dhAE%SoGZXf%w6{|(xe&g7JI5mzo+vf)s^6>BJ6?PRp_(!1F72*iA zg|nr58J}tKg0lRIA2i)9b83h7bGcn^l%%D&wIGusbD==VJHyMw zX*_8pbU;7RI+6aB$Qtm;e1nV+BoE}J8{U#?C4U=)*O*$+;QSNJjC{% ztbU+r#EM+oM6qc!ux0Mp)v2|9p!Jw&&{8=g|k)b}jznG?QPKtl++P;6g3Gl(A!S;rT+WlSw z=bpNpDl(=3HHwPxWw9(5I8(^51Y~?>`8|j_Vq0jFFy7+*CDPy4lp#5|Oe7(Bn1Yl% zN-QZhO!;cCdH9V4wOAb|KrI zVCieL2^)P)S$apWa2-r}CsoyG=tq8oVcCHE}us4hDo@wDFmooqNq@s2iW2)D2^ ztvP_uB-&nghpDfc^&8V1=j=v>tVfIIKpEq1T)G-Lz+khZ2hS@O;Wcp9Hf0;3faiKE zwCIOXG+8vzGEe?nqs{v2zi&_uOF$v8Q+K zrZcty&T1Pl#AH^h2EDA2tyWa{>z_75?2Ozt0mSmKvNMO|i$@{%Az)QL)5vT z;0NE*snzs2+On?mz8fm5W5qKgmJ;XQ5xP1y63*sYR}+BiD}tu>^E===y4^`9?S|^Q z)hhFe+^mVFsIBX&$X4bjslSz@4fPdJLW~_J>-QK&qO70sXux$9fC0Vsx1Jo=0m2=$ zaEcZBjNLK56lL_OX%iZ(2|o{(8hi3WW5s)?uipkV6w?9HgW<@ntwaUX-vr zUL@)9b1Jk5pDZ`i)x!S(@jU+kr=9om#;Xc>wXE{-5=gf_`iwTFsV1cb`cgr*WE0oCW~e{+jlvb=#+ zxt?Ci+npf3wCO5^Ou-(5)6W%dK}+v>gJ_K^QA&Iu4KV=kKl6@|?5iSYB+Ke^O#{A5 zecNd=V$gh|1%!3-z)tG`-7CF6O}P6)lw^4oK4G4v$J}vDvQoL2Dpy!PPuav9w_ZP1 zVL;Yjm%QUCQ-qYHpB;n~B#> z09ElTG}P$t7THT+0(A12=Qe|LBw|h0Xl9m_(H1uRsc&R`nlqfXmtAvEN))GG*C8ee zf&T69=ZXDEZz!ZiJvam;6gD(z1Wx11ZvuK@$Ah>{d@aHZQ98F9Q@}0r&2b_X1j)aa zHp;TpXBGi3$T4PSM652^5i(hgKoq^?syn}>l_@g*+=hml!ifpZblLbVZ z{jq3p?+b=nDR!x|-Xi1?0W-8(Ol=s@jxYrki>Py?KHP-y+3r%7GS>awi7=ItXH$xj z30EP0R{Pq_$ZMJ5iY+Tgd0$fEQ0MaiqLI{)XT!HK<%rJ-3T&mtBqd$qZjN9mM3J{N z&HmVtaODU_W@_9mtR)2~BtcE=0h^c-3FegaoK2~a0JOb7Pefo}=$yF2J7a}7c}}fr zQ;M_%d`dU{WheT^DJ=6osp2Zw&)U z?M=4cqpwk&Lg7(7fIoh?apOGg(L|b7N>Zg0<7^Qsxg?}-FnuunRh2ixltsr77Nrut z?sTjuq;3EaU^nTAZA}G!XItOZyeVmuC1x~)Tw7NATgY!0gt^;}^T0Orv`kwPE(z>%mxccT^)*#J^=S$xNs!qw{{YtxqDJ@*tBffr zvo~0vbUc)j*mG6p2g5rJ?r`3oHmRwoZKOJ;)QbRCX5vW~^|l|SvOh1~U~A$Ie&T-0 zc;!-Z`fqk+wIvDgm4G~BVo5$z&zIGQKh4|WguL?Bzj=b7i9QkM(9YcO(_6+*Fw#m_ zrEn6c7Vzvqo6LQ&0OI~RczB#~CB-CyvOg}vdMKSb!k%8wQAf+ zpA>mc9-ZOzWb5||Vx3SmERYBXnZN1N9!VWnlCZTBzCvi>NAp*MJ>4xS@1E~8tw5Hh%NA>jeV+(O?ArN-CYs;Oxs zK#lor>ug5y6b#ALSJo>$=krN~{Lk4d+}aYo;2mPvz&t`U4?#cnNr?mNccNDa7+ za+-Ai03Z|bUgU4r08&?f2B7zpDNVgljR`U&4rBxQh3_%vi0upNsLT|%)UIn?#H>Ik zpXoR-K66^O(%Mu7v^6Dt-25P4Z!UcBA`2qY`o*onk#HXkyTrMx4J8gZbp@2p40FyO08MOauHF)HHalnHj+OMkt#E5 z>QUyeAe=U700K4)or_pXr7;5#T2yzP*llhvNJ>Ej7*ucN^Xr2%8U_2)bW*0?WE8qVBgH#FP`J43 zz52W4d2?uOPB-|)gQ;$#!iLOp1ORvE@|;Q8IUHEF}SI`y`vQc{*k1W38$ zk$z+LF=V($1NLyLkc6u-;w6Df7YDkgOzK}Rh=nCFBFZO{Po1B3Zk)-ge8(^2Zga75I`Ed%*;+HbA!l; zV!1!zd8gBm&Y>CLc2Ry9;0oR)Q%Yx2%GN+w1y&X+-^gG5V)pFUvpPN)N}KSmr9<&U zXHaPb&Ce@|BViFFV2%{ZX!6ET#S06kqY3<195UfSuq!Yi07{^5BYVW*ii%o#A9bfH zZj~Sf)H*b&)lJ-8q$UEqFlI-{ov00A4IC@k<3WMSBY~}r!aE1x#1M*)I5Kj86%(~407|@WB&m4NmXmr8GTQ9rwW)u zt5qThXOuC`xAPfNgv7p19VJg&Y}Lt1C*GYe#sZv;P2fS2{wbdz>+-8-uDSBHYTgiytW0>c*uCa#<_cApU ziE+}N?i8l!QE;OGo1OOfkDpvDY2+0iNr1BW__aP?bO#4w#tHwO_@p(Nq_=Mui~HRMc_(Gn!LeX>w`@rV@L-| z0=WfA20*z0!I_wxNQY@OygkECCV?n^t)`4RMyA_QCQ3j8B4>HA>x+a!F-{-wp^|Q~ zuzse$%8>C_9%X%t@R?IfQZq#(x=H|1Hy$w{*bSrUijOPfCo_t&;cZN}P_FrETZ(X~ zN5vM>M$zYZ-x2kSzBS^+)G11?sd0Vs%F>l3DF(oa156KxZ!9_H6m+?C6*#W+6(O`q z@!IO0pdH6QEG|f>Q8r5GwStIf!0vme*Xk*Y2BJV^DTooR!xn&LR~y*J%F%4?^O>IS z#2Rx@2@)icZTkIuuy+nKSH#NiRF_+2gbhUap*l^8GdClh@7E4_hF;cM-PGEiRG=&o zq!|DJ5`2>#U_rTpg}Y8xeyOh11F+C2jDv)nPEyM$3e=T?vnDSxqkm8aB&@ras9) zI*2Hnl`7j_{XGYy&GSAQODrYImr|6rxhV_M;_rQ=#~@&jF^%Zhr78@uNK&Qg&z#1cot9$kLec**-Fs;F0Zr?q!s zH<-~UV+2H@X&vLv0Hwsp zPSL0dRGIR^&Y zR5b%B(|NJIu*06#D>kk!Eyd|dU?*7#7UYm)=sBLJ4HYlB{{Yn1l%+*N{{RY8Hanab zOvr3^Q%kIhAxz4X<~&G-nNs`31xXRE*B6oVwj&Q`O3W&j8zhay{EhyYYkkGkSx3b; z9LLWZtwNX^Y3mjz_AQDbhi@wyO;K^mdV4=}C`y`TQ1q!vR-Fr0KcvjLGJ{0`*~otAr-gE)e;8N=ZtM3cO%UC;c~%Mx?v?UPB}%{zE)#QusXRbV zGi1qCF%kp}Y};ikx zm5kpF^%V24!vH9qNvYa%$Y58gOySjSUOw1Gbog$GU7sufx1dP2G*w|oJX0D>jt%7(Q03xqkX)Uxfv6_hzP#|OO4V|4qa9XMj&+nn z9Pm>Kl-mQ-qDBmD1vbMMiDuGDcJ#pwx2D4hu!tKR6w^|vzC8_GTn-jC%$YdbMWQgX zZN}JHH1H#QH?kZd3nP{^Q%7U+^TCC$$_L*Fy3DFE+frTdgCY(!EhL%3>PbnyHG$A! zeKqKEOS%};;We~oMhdMlrujm;$QQyzkWGwW zvefd%r3nLUcE!#?t(Y5Ncd78?S?F+@+0}w;S2Z)eOFXb6^pmi|>y(qW26l=?@!L}x zqjgk3i($RmVwFG`lT^`80e>$Owif29o0P@e$?1*TYiPrYvfVzo^|}Hr7?sTdIjuue zvj%WT1tL1~!lVWO@=3Wwl=RCSvNQ(rE0hsL%S)oVOEBl94#4YT`AOK9udgn z)NhT*oCtChiAdWCtX^=jKvHKKDJ3|muT0pGT0~(7o3{8Z#Em532MmkisN7dE8q` zG00&Rkfh+Q*R5(9Xc!shk5BW0oIyd4rW15>IOdh=ZmDil=Z5OG@a<4!!Rdf1TJpv4 zIZq~2V$fp=;D?*iaEpQtG@9#DxwN&$V=0bNW;t@eB;bY-sLm5*5@6uUcHm%| zh0aS;woV)=TY-EdO3dsqeKRHnut{afdS;AmhYD6f!W7K;VD=FS100g)CF#=!BMvl( zoCi$V<>=vVlFQM2o~>HPk@1 z4`*fQa7#GkSR4-O`CA&UqS!&lyzpCT0g$cKptE?wES{So22ioSD?QXJI#PW`Y_DkFbPGBZ~Ld=%AIqmBUv z(4CO>tS;R|ZgAL&j(Ax$K#Xz_-pR->Ns0CH#ud%y0Eh2vd+!P+#|5=|_M+C{(-VmQ z02DeD-2VW(>4zm$6NX+WdMT%rj1!xTE{(ahV?9n3*fD^frM@2h)@hP@j1K)ZjEsI} z-^dofw5B)M({L~gpd{^Y(+?GFkZ{`jM_2Cn2R5>%e<)BS<8(%=9A=Ft9)TE&M|+p3 z+Gk@9bX6KQIAdweH~nyRHAW?o7SYO(Q&vE}3u3N$;fkH}gBYkL*n&oszFuT~>;6+SV4mLD?Lfr-Xsu2wPBo>@(& z1=F?R-f#^v!mo!4ZMVdZMAB^#+fp#1TO{p`n@BrhWVdhK@G7P)nZlD8@hJ%qG3gV5 z+P&TqYk2Cm6IEGCqZ>ZoJO=jUV}xOO)S!zQj+D%tZj8w7d^9@Y7)aHrBl&P96t_uf z?OBM6pSA|5%(R{G*lWoUa5Y6_>~Ox0Qrz_9?r2H5j0sU(6gR_q>IpmH7b;2I4oYYoB;Z-fczpI$aXY^W-5==5MNbG#;+ zlc#Jq)(K2u%BR9(4fRJBH%<^W(7iu%zxO(K&*K#~8fE`{A8g zfKKG$HRfZf$Grqjb`$6EGo~crH#0JSH_r@e%?_XQj5(Cts~yp#z2v8NGYj7cIbGEK z@Y1}@3(f|AG@Xy%2G*71o83FRm;++02UD1GnEBzQ?9wJq1$Q&?T;hhu-6_tzCy(M1 zV^%ZYx$6z{_yP^N&`eI32~3ta{dz&7+mF+`>w9@;LCFLIJ`q9%B|n#4dGklrDI1nw6x< z-x?+I40+?ieDSFoU4jyUWC#c4jfaSBf71z}J}4s#B!sKa7sZtuo6V&eFh&YR^p88> zb_nk+f>|CZ#nF{IRg_-%F_iPbt@wHQVPrT4EsfohUerQVLbk@i&@Y70u(51y0N)oz zLBd#Xb-uk)PBc*EILW-@M_e16RMf_{!cEeon8HEMQ;nQ-93r;>Fir^(XbT@$1AGou z;(`AFIPq$O0~!MuAl1!kA*FV z=Z_Mwqic1*?M`A>yz<7YR_7iS0C9@Caov;o7+WF2Q-78>OVV(XJ`s-;sj$ZoDI+&% z<{pv06b3}#7TpOKKRhnmsx}*8dsBnEBGV^xjK+)`{PDU_W)I8H3UgPj{K+LG>fZ=D zi6mgfqmjZd0Twt`+E3h@>JTFh^^MQ3EIL&HMjNVx;Vx=pcuf^!oM0EnJUG^gJMzE| zi66e0nc;VIIYz4N!gZw@P7J0-8|fVbd^l4pVS^l^8RZznPW#}5NhuM5+Fx7{ z+klK3_iIw<1~$gweQ=O+L~L=j{ITcNFKHYvRt1O82^PRO-AawQV^FXL+J1QP$bhw~ zw}Zc2B0y2w8@%WTZSaEEe=pY^ki8_VPy|HV3A!}xj8mE}aEtX~B5*;}hiT-jaY8r1 zZ!AtWT}G~d;{nxF=-ZYA%i$Aj58NsV53ZmDpTl9B;d(|i*0m2jO(K2zZzzIbnS(Bgc#M=Wzkbk{bLZ<0~H)Hb-( zFDHL22BKVde-tPWk^a1}K?>BM56*4--w0B&w{)0ScA5BxIo#oazE?&8!d8$vW%9YxcoC=;WA_Njl9PAY+{%xZG$?bEb374TnNE6wP>bp1qAbzFhw(q z5_F(|LdfVsx4-3|UU+C~ncB?LKnhlsYUT$oKV7`>Ey^;ssj_z#wInIfdEF?1DIG2P z3?KtDn^G(;UZSmFa}g0ZY3k;04$54IMF7grpZ%r3%?{{ZhEaE(KN&8`0cP16?O4pbYDc%G>$@Bo!)Q)&KgL|SHG zo?Ni??DxRT(9^k^*D$c#dPpTALX&MG9xfNDq_-&NAD@00Wc1Y4~*VR0+6v#`wK~$uzZWd|$Qe=QS3)}5* ztTyo%9Dmi7NvEbNO&u9aOrut9OU!k_fjF|2*0_wOJi z_;slwW&t*szNq9kgNe0uOO>=wA*UOsOK1ga3kg17FE1hI7Z&GZa6F}H=z}AVJ(GWG z{7mLz+Gz5td`f-PiPL?$SVzNYD(iZ;Gs&v6I;L1@mo+w2NHE2Ep`fCFiETuZ$ z{mwKzCKSG$mBdmugda zaj5_)B$8*TH$T(TOsLMki#(>=)TUbrNP*&+u}~60pImftk;)diO1LG(<`qr2>&itc zXIUb3nfPz}zs$=k^MtSzmXbnJ6>>q?i~j)3ZO(AR!5Muzavy!EaWw6KnzL*daExl4q^vFNEqN%@uZY!~iV|W{#u?b%i{{RoCMH4Ctw5)3JEkZ7Dv|+-E zwN$R9wVg{*OqCf5GIs}@6XG#{oKEP8?5b>y0*5|UoL!$Pt^WDPJGypLtjmK)jaR+K z<8pV!ZN_|CUBxuXpv%^iN}WY+n-!~QFhraD$X8rUxWTXbozUBks-BT3g_66f@=C9B zF^Dd2#dO(Y>!zS6cS+H%{{RqzBhX3noEvoP4I7qjt5GAYar6GjJijAjAf{4XT9l;^ zfffNL%<{PyddM4_G1 z#I#&7mNQO=65EMD3o-eEg#0|Cms||fHH@Z|y(Am5=(Jv3A$4pulq7ElL<@z4AJ z0Bmom`f6DdHI}2xO|NB zh>~1WZPTam9bTXkbdM1n`Enfm?KE7QOw@ir0p&VUQ!gaQ7-m4L%{36RB%zesaA0aw zt8+SfD-0Qm{{V{S0orgB%2nO9rqG#8K%0|uY258NbxD830KBQdg?=C^b=Oos?W7Nezc^hJB{{T+~ zW-QRr=}kIUI?R-*R)w3~*ua<(^)8Q#vVP2JKZRs0xm@vM{{UB0KZc@`6i6pzf#Cv7 zkV(e;3z>VxYO_4W{`JJY-zpQL`o0n6K3fUc<3c$sU>fqVMuMHWZgim=QJMe z_*5B7B`SU8BfMLPZ4ic&7An;zXe93m!rUX0*7l>DHr*XFl=)pU(h*Kdmth_?0A!IH zL_&u1XUZJ0{N)s_y-nkMcj{#TfPkVjf+KPy+YapU?G{g!s)~ULO+r_#L}@9c1f(Dd zG1vKlDZgASYB>xab@UDN_H1jOe%vV+5>V0b9RjG|c|G$eONBBNb$`BNl!T5_dJI>b zRoWYzUY1&-Lg;d|_!P6@FQ}3Vm2iBLIS-~8c*BX@%(GQ8YZj(e4pcf;T$N3wbFAB; zKNcGQ0O}^*sY~qzCY>rJsVWI^SCatvi6Htx>4#}_?!EGx_(|2ihRE@K`~8#G5^+r) zNlQ=}VefZo8e2#J>sEmzYBDt$v9-@ZEIpgDEAtC^9F(jek_pW7EW_Gy?MO{GN?bO?!7q2W-yw2}v&uPj7!p3rJ@prM&Ks#+Q|-LS$6lBb{} zN>oI6iAk7?4gUa{YIg$}$gHVbdYNpv3&T=Hr63Ms#KnY>dpK*#s5sl&RR}|Ex5!u~1>pT}%L-NGk5|zX zRKIs+2UCj+2}(Bbq)cj#bI-~|?R^^x-ifLr!fL3^#}MZ2)3OxJEf@_qCS@c^aQ##y z$)7_4aRowiIefv)X? zI*%z;;_3uQ*b&nfV|5Ncn$%HKQ>DtSY5@pI(1h+uH-Q9^CP*UKo<{&{li%S{r-yrY z5klw>DXWP%gk*FHq08x;Wu&1xL2RZH4w;F)#v3x6k?PjH>D449l9jl!NI+Eo0NY5_ z^P5O9XvDik9VT1u$Ta=q=tyv(9~n$Y03Qh4METg;5e_rrL{!u>OO~b7)3d4|r+JV9 zL~cyY{+Q_9?WTp=h{QhPMR*8I!9(AavhqMng|T&bO#Dzz+j>SEvU+-CI)$mQtwK!f zCIsK1-*b3thIk!IWwlgy6qJ@xm7y}300AfB zF(m9sGZ;+HAY`dx26qYsf#fEZ_?=HYmS|Z^X>Q0_9|}PSP!kp;-0#n6!j5K@X6-n& z)G9mI0t5uA07`FTZlqe|P9*ht7FeachEkPN+d|NE>P`3QJB0PZt=G_H)U_3E(WNy^ zq_V{=lM5r_S0sR9K{uR7xudnMFT+SjG@7#R6sTsIn!2eAbrOK$$O#AYZ$5)PbqhqNG4Eb8S9?$)DE=S5>N!g5U}cxKg1bujVsj*VhfKIOET2b`FrOim%En zNRDRlZg_NBa_p6huk{x0>9Ak$g{(@@JRx1)$ng_zt{a}IAvzK~DiA=Mp1b`0aN(NO z2mTbPDNrc~&->dAwGD@t;Mpm>a`MH^j)x29rg1MoEj}?86Cd-BboYtZr{bT6*ZuzX z!j%-d5|sj=nSpc2i097;t5bvojWagnFk5egy06TWDIMexbiwn#?EbjfHbkEl&8_vu z0j!u$U(n-Xr7U=l!)QO-4BJUgldwxR2(UhT^Yi}L-6=yU6Y+2R^1#h%FiA0ml#*ND z#F_be;JZ;??*MM3qAGR#JNe@tFh%f+B?D_?Xp<)A9B3~(mOaZ9l#^^^cw-tU_k8i` za|7+&PZ0J5dX5Do)*Mt8>UxDCO;uhd#_oz{nIN=l(b znLA*29D@V?Fr&|iz;3-4oF(q?yJ)rQ+|pwkGW2u6k2+1K7{jFESGx(HMDWE;_rZ+4 zJn+p=P(i`;?nsHoY>vvInNHNJlZQ$mOml!R(MDxM4>@vml;07(P}J#4--icN(@qhf zZ(wlkOu)6hFteT!7g9y4PL{z;(gA`Rrni;|YM2AI7qq4CNVLJ}g4n0L;a2GijqqC( zk%HKly4RHS(rhqWEMFV3NI|&gwhU&UoM4M>a@B^f7&e-psK<;`NfyEM%m8B^bm5N+&7GUjwa~C1f$?NjMH4Q=iaCm4Zo)D-{L4@?tRud(AV)$gQYE7dO8swQ# zpDZ+1x8gH`Yf_w4cCwoOxNEDXgp-L4TOv*yD;V&oVe}9+M{8+8+YNOrM=!P{HEf=L zd^S}zy|8U)M48>ED&>S$)Qzxn@zZVaj(}BTA1pXwcugSJO(JlLsRFHs0@Uqrvtf9hi8#Iuq&+tFfc7`qI0W+*5gE4KKManNwljDZqxG^73L;SJTa|E zbB&-~UZWTt!z#f~GaRswb*AQ3>x!cZ5<1qS;Z6*v7x~~+Hdb(DI!a9W;-*+jP86;A zVZn-Scn*+!Ck~Xu4IC~m!cmHDcqO`Gb{O83y+a1F#;Zme+@zdvhia1eSKWy)Fk@81 zmN)J}=k~(}5bsTjr06i4jCgK7m~>S%iHs)YH1ff6mYJ5oi{S-Rk%xyV0lZ*$X$Uy? zXk44aI(+f%yzokx6VnNnVOZ{(FyuPf2V;cGWEjCkt8I--Ms6n_Y)82ZqgO0uk1w_e z?!2+#K*w!fZbB`iGBM$&lY+aO{_Tt{&rB0q6Iz5c;9)0eLEK@$H61bGrja-;shg8C z)HBNhIhP)un2;`zlZ4F&mI2JdYaFBJEeSsk6FGF;Cu~U0U90l^@S3vOykaRDtc6;Ojl^SBqzk~pi`xmTP6@6{YkQ&G1dCx6papp=?Shn!m`TJE zBzobylMux-Y#{P<9k5E1CkVbd zHV*i4rfP2(Zq+Gun?x|s!-Xq;SN(7`J5ht_)1cs2IoL%q(D`7dMevJfuUNqhrq~|o zD2h=caCJImSQeEqFm*C~urEZ^;Y;EXhb9{UK*Mbq=Z9Kv5X7%eVkwkOh6-(>u3zH` zQlfBcNsLbCCWfsN&G4dI>Mep2z=(;$iKiVfz02LGbTm(v6lthCUj!wK?S&Cf2W)oa zE^1A*TWl%_e7}Y9)j4lCzEncz9XBBxD z!b&hPif|LQ6LH~z+M2X+%k6>PchBpLdH#IxIb8F@*wmL-WUz3IXL+93|3MwnQ}Sc_MzTE!YtH!b590uiV z1AGpu*}gd#cVuyR3t)PRvDcmgcQDho5OTLs=l!r_h3|SrJyin%yH_TEV+grY39_&& z^)NBk6L#7m+JPJ3M=GP95qhivV}PHmC!PU%S^_EB@HyahRuyc1_yyX%CwwBhxHiY3 ztD5BF?<5(VD%Erw;ha}_{cxjoT;~Ryqzu*0#|1H1I^sUfQBDr0swD4@OHu}E?Q6_0sU6CHZK!- zzya7)AJ-d-nC5Uuk%jp`60pz2?(1U5pVs&=yh6A8;iHM)mI$7ot~_@LTI{RVovn0j znC11rwM|8U`(eg~1kgAC0FU)J61gJw{{T4r>5cXUd3MyzR>&mbx~89UF!4~4KfB-> zlu3`K67(CBJIs_ECPZPu_JO>Aj1H!!m(vhP)!=?m_$HN6Y1;@bF}6MLf)yBwLa1#N z;@h^l!A#VHV}^896#oF65XD67aSV=6VvthQa>K0+OkQysq^N?KICY|_<&4>#YNlmM zXe#2s;qx!7j(CXBRmVI%Wwk`x=ZyIpsA`x{)Xp8K-kV}AmsM?iKG45mi5(e4FrO*a zd=$yUeKXPq3}s-94#Jtg2&5iZ-T@ooCf95#l?90W*gdFsB%W?lYy|srd^k7{Od#?k zZH{XRUUd^&&1=2`eGq33k2f5!B}F+ru;#)_Tck~nl9K}il}hLJ!LQR#EF>w9Ogr$_ zk<`i&*#~?MvOvM>WRoWX)Uy}IH%&{|IRN{UYz(yt+x+0FhVQ-ud&Pn}WT7P#o1#V= z>imWbc~ia{>s{-PY$?0#Hdcu^Xs&ZXRq*9p^az|X<_^gwab!?}ymAh%t4QAs^%Y

|{UpQrRG&2+O#-g-G#rMPdbc1LK^WTqLY%29%45+Wa#W>hz0XrY_fpbu}cM0%R z0-f-il~Hkqgl1RY95A@GxnnS!~kp_D?_M#l&#WZax$o{?kq!VWtZ`3zXnX#<^D z3mkLL^usW1gzBfVBwh41ZB9Vd_Am0JBytQbtUH_+Q01Ut3YP{WbCr#5 z5H+M<4eQ$nRVz_A1!h!W^Th5pmgb~zr8;F((;lS(LmMRl8(}5LLsn|>Mi)Tmgm9`% z9C$fQY9*A(-Rd@FFqja08EbF8=^hUB&tRFp`}EmNZlF zH^A$t(|mcm3*1^+=Rr;IBd@{V8o5{Hfgh*|*x-7dm%DEzF6~e}@GG?+TQMax$wsKqO0>z}ZofZMfl~-!Cgfkm)9V|YCseg8-^Hrxw)XS=+X}MC z9wTx@e24~jh`8E!^}`t5$*hpwCDx>)EO8-Rv|bWP`4R+kP5yWul8hIjWhu~7n+g2G z`(U+Nmq89I$EpD-xDzuwkjlq+*PI!Lcz8_X|S5X7-(upuek$B$R zhpygpGvPkZnR2~7>NK>~(g6~+0trmt&VO+4Z2Rf&J@=oUD1pH&0D-qfrCH zZHSqGPSQ>rIO@Cju72uLy-L;-Acds^uawA}eq2i@xdvEhPhN;7rwuY3R{qg`ilLiR$GwFu*a`aRoG{^~YDS${DNS9+{at$}?Ee5>aLUxmlqu362$Gq(GssA__a7*~4rj~E^NPH|#{0E6vt<&Xn@p3` z3&*ESTHHOKBZIhAwW$hAk1Z*ZjbHhArgtQN!N$Zc>9CyTAhbyE2>=dM>bo*yhNulq zR-YWC1VGlQo?M24wjWkx?qp+8(o8B1_vGAlB zj%eLuC?%qn(g23kJWziB0OQvYdberYt2I?Ca9u*X%M_LfSqjqJ>oPWt{S+HO=* zq@Z~SG1u$Y678o~b#@Cu;3tY###+*!S9ax7pd=}C&eAWxi|vMt*NQ4~G_Si~<0J&2 z>pFCka76iw80Xg!>U{hzpuGCRt*EScQWYCOBbeofOtOhNn~qdfrA4FSLJ=M$$IuxE znZpEP{maQFrVYHP)khZQd`nU8X$w~Bb4UP<#far^-SGba!~L1F34XUrH1;km-VTvu z`p*3)(+bj5)8wx!-PvueD5E)=(OT~FK2}qaWslaZ6!g{4y3P`Bu_{dv?mpQe_xn!jeCno(%kop zLqMrFj~OFtf-pxGW~GO{*$+0S)O5I#u%mD-=N$h4t`*_#A9@u?+b&d8JT*JIbfiR? zJvwzfYU7*5u3f+2Z!T$DE2RHWF5j`34+ZOHlUk2o)~7jw#w;yHtz)hjC1 zr1(md6FmI5#1DiJ48)s)NC*1jobBhghbzOBxk{B!PYSvK zD(R|!D2stVLI}fH*0Hx)S#viayyN#rcE{SbQIWo^zKKbCp_EGC=|VKB{*pa5#YDzs zSH?NBV3n!oj7p-yc>~kRcRdV6s-JqX$XQu4c`~CXsorCp{{VS+2~wP!hO4tRCv7b@ zrJ0o&o^t>YPTLLO%A}@?JpTZ?osQ~BwY&`ei9RdNlT}`-X1li8Y@{TiKqUD<>xHNI zXAClsTua%Z@JX^;uxlE2{B+mn{CwLfuXV5PU9q%_C#?tB64=AX-p+l?e}N~bt!8gsK)RNCw-$6 zUInA2pv$t#TK2p8cL1n)2(fgOoe2iU2{L!E69(91;BF4B?U#?7d^F>9ERT78QLEjl z({fZy!5|&(RASLMmb!x%2^H7S3TTQQh-Tiq$)KMP2?j{HY5{hz8ek(PHNA> zvMBxAsMj1}TI{sf2sW(7fCc7Rt7@V`5REBqDl(*{Jc1IPR^*Z84xCw)p3L|`yq=M2 z{xQT&wO5$BNLr~GI(^!o`OAs~I;4{cDr}p;#@&Q78H z@&5p54e;(@jJB0YaZ(4nwE#4j09Z$eg&Urjn0EQvttB2(tjVS+=~+DHK#9jbWUNN023Odk^vC|d4tRxU7(Hg)RJ&JC_P2d z>HUm06H@a6Lg><=@T`L=H`GL( zqW2=`$@4UDH3dQx<8EgQr&hJV?&(t?cYsZV2m&J7ucq51(`bSMiXA@ZS;_FW&g&PF z(p6II0v+@)|}!BCa9Q7Som=hR-)zT+D%@FI#aXsSFpw+Cc zL|$gY>m06PogS8jkwf=guhjvIvN7^8*s z^eBxp~V!5Aagao6)yWuX1fL_)1oFEh$<7i6=^wr0KsT z86s~e&gfdC&RnXh@HVGXhMKwYX*-gmCPt!|nY0*GT_p+uWyd4jNqGDAPMj%~x5KSD znASFX#RiKk*aQgNqofJF!HEY7X8E(3{a^7)x`diachgQp>21XngQO%_r~@R=A%S>n zBFs4Jh?nmRQ*>;Sr$U{U%&2%2b$mbr26puW24`6#H3~~^KityMzEq7Qg0zsEfj3g1 zA1<+vBh!L+zm&-}wBDOIKhM=LuO>!k-#=LCDr~84_e3_9!6!)O03Hz+w?0@-rnnc$;M%>7runxus7~ME7@~4wjK%qc=RJ$baGpw2uCb*c*X3KBwJL{6TJ0rN$Csbf}<6(g`q;$N}_7 zkRS?AiIy<8NggK@9(9wHKfTdEh-^O z8mv+T&!p@}pm)wV&WnN2-6b=B`iDxC?}Uv9kt31h1>z%nVS|plQKR83yWDc;Qub|9 z2w!v${*-DErIY!hfBAhY+E(f_diNbY%j@TDXHtHEvcd3^3Mw+?Xa zD>VM|Qt|@3wQFz0U|PZt#eK{R8{$op2F_9MF4JjmS9TkTi87Qf4a@>eYzf01Fc@mj zW}WkYa$EuWr$)0%ZWy4aVI9+oN{5UrAQL;x8QgyMLXE1fE3fYyQrz#hneN&^k^mh< zY$VOF+~bsuW=g58s8@t3C~33>7fAe|k`1kLM&|Ys-^IPDuA-Q+PQ!FGq!j5OYFGj; zpm!HCIsC9a5C-FtQ=h8;06@b>>Q#)MI?A|4qOKip-YDeBg=tmBo`FzP1dHju_^;jL zZ{l@|4XGaPvRrXvT9+X}i;^TCOX3D|mDH^Y3vozrL5r6ZOl|s;hlCKNB%~!UjVdbq z(;W;5^Th4bhMms|I-gP{qBy_$pR+9Sb?b2j%}lnb(vzodN2tR)b^iTU;0Run_+*hc zG5U1rj~pwjS9H@#CI?MZ;gjk8@J>+USqsm*R@;hoG2ONbQj`)eH$6`yf@~}T!poCW zE3o31O*=F#%}bhGEsz_~d`djz5g%MKKUkNH1?ft)2qQ{)O@|{p3~O6noYh*0{{XrY zs}d%5^uTpmi@HJ*wMv{w8wB`#_QRvAr!3c2>j^sgjY)AJr)UI;1Ri4e8l5eo5~I1f zhzhh5g~(f@Pj{zInIu3=4!(o*z}?a%N>NVMCzs#rhU0*zcp%tY)z&blNKThE6qG?5 ze`}k0V0xN)c2ZN!jWY-2M?LVN330ofN*4;hja_#gagL;*C?x7u^C0T--P6}}_FN9X;Mil2|d(r_8 z?Uj5Yw?YN5rDb9#`rsEHE875ElI$EMRQ#AH2|m3-*hOv>Zg7!woBse@CB&oL3i0PW zT<|0A0&%zZigiAfcwHt z@S|=Kz9w{=lZI1+P6(ViQ9G!n_-Ce3U5*{H)NSjD9+?@Uo~R_oBpG4>0uC7RIf3%SqS=vb zBDM_ek5KMSs-=O1RMoaPbXz`H9o8=~fpYY4fehHs%N{{Uh`|n1&e+jN>M*w^wbjZW zNSk8|aeHBI@6R5F!Sll!j>1U|5;3=PdkVn$_NrRs z*6VU2aEpQm%Lcy82*9o)*yg6S$W`ru*R~0EdEjRZ3||`Y+@uxpD+nwViNOy7Ob%lR z83GO~LO5D!DLZ3enB|Pdv*W=BFH&wK12{>+)1DVnV#Hw=FKjWZkn0hI7M(&cO4~fJ znwyQpV34^AwqVW?b(!UZl+Y&_x?>w)n&WA1Os`X%2K_mij6Od|a4YnXHpTF`sAMUL z=4MCN11g-1JXF%aoC>OLn9+!mr!UG44BG@W)Zsx*0}C+3a>Z>4ay@NK&KxOQ(|jXL z(3~Ak)#TvFN!*C1Zf-y01u~ECgz3;D=YpDS8{ueoT2X|ZK>YA!J9BT5!0iz`f6ff2 zK_mBka^yoO>4T|}BWw>$**U}0uhBOKI%<)chxwZ4{g&;v(2N#0%R4 zx`@6QlH?%~zC0tt0}8m1o17xG=*K1Q+_5@<+ZahEG2vPC$ANd>9J^^-NlCsjOOb@i z`eRb4+~dO3O~S_)z3@A(>9#g?>tI)1)%)KbHLINUtB*m9CRfu5y5Sg4yz;}E)V;+h zY9Qla_M>BgON8zJ065oLfwmpBD7d3bv4s2IOboZr_`-esCg%jb-DslpoOrj0O|T)W z(l^2`*NFJB;LZ`Xzzn6TD#B-`1~s~WHUp`x)#ZWLR~HyPtIw2s)um~S3aZ5v?r-IR z-K|e_LEi(aumt>E{+Q;`UELVvR2Vo(RT0ksDzZt7VHYcO8)0rtYB~CWF+R8z+TA?x z3$^5(usZ4rgp+{|G>o(pVK^?kt`c&zZ8&UtuSwivRaKQId~!C)NUEpDTmtn;Rq&hD zQ_l#8QhDQs5fOP_y6I8h2`zl58o0iAL%zJivD?uG))J{y_@Q515YoxM1ww(j!tE*! zJ9VZxqq04RFm*Ddi{YiE6sp)dnb{V@652v}VPsx#TW*AiIBKV;v|yA}M#mhFb5pZb zQMMONZ=M<(sEY%Ikx`CGb8m#{?|_l}oG2fWwi`R}ak!~a7%U~Vr8sxzsl#q^_jr%r zTy5XnUT_X*^|zdJxJK4dT`5Gb{?|7j$$;|^8W%`ZijJl*;ZE@)1{mnoI!*BDN}@zY39$mXvL{Adz6fjA0@Kc` zV5Gp@V7e)elL<%%7+TaL7=h0VB_%^_F|aAR*+Dx_2(}P%kIN2=V^=&Tx@ojw&5e1w z(<{_McEGPv=@@)|o(1sVRLB;?n;1asWi`6UjlNh0t*{bAVb$~v;{aABQ*nwLrwGKB z6D?X}pOyf7;=`?IlQ?UtRDVo!q6&QOK-Da#o*L^N-6a12j5t<10{CaHbWF|{(N(q7 zn{y|is`zBDenG>IV^9b;{{T2(%xZwuCly5vBis{aZ1fUF7;7q`(}xVwv`M}rxs`8; zSM|n(aiqDyYgb#Q^MGE=K#_r~a}I`Z(N|tUzAD?<7a=@7nqEq4r7tJm(23GQRjOn(oQ}0QkAspG<0VZCjj2)tMRizWCGl znIGc=)3h#VQZt&`#~5q%ZmsbiMrSIy`r%aOo*5?u*y$}iDybs#gw1>lez<3QHh~1; zF`0vGdfDy;J**yEspGtFO`0nO-}-MoC>O) zO5Ylqf-u%UWn5#Z-PXW@5e)o4`Cn%;~JL;Tt*nZjVZybbF+;ZS25wx}O`D3A@n!3L6vt8{!=C7Tdu z1GJe{#tdN+1+Yg8*0R#A*+M>eEtP1oI2{8*aj-Fh+>53{IjW1n!A!q>@YI(y>`oVE zrVcxD9j4Q=DlcP=jYuiJ8vW~`#@_H|aqi%~VeF4n&^N%<5BcF0KQ29*8Q@5n-w7|HMKh;jz)99UB1Rf3l%UaC$$1rjeGriDYSq=x#xfJjet;j zNRbh_kv@Cib*Q%5b%g0ri7=R*hWIw^AX@VvSX)6)b~OkiRIc;qZcu%2c$SElRMY_!S z`C@TLMyDP3T5;l0J>!6+1c-}8gvpXRdSQ=->Qlp63skJBPgFgm>+t}Y1Y90=-|dM7 zKNmN`w9d2QIh9w4!69f+F{gOx^z+6%l2N9PSJvp^Eoie?Ph3fxql5TWRBR_&l!BR1 zxmK9ecAdlzKcpjt=^UzM%Gc1OsY^%%k*Fud$VL9UVcxc`r#*4Mcq!biON(-{d2W4t zep7+!tJ^};Ou%zXWAPS27fepXeExk73K&SoB==38LnUU~6Q2#y)4K6_#W$fOC9Q_B zGa`2yM?OQ&G3OA~(`Qv4?57jmrDIqnNsIHe$DSMWejslp%94QrYLFr4FI^(sELc2xg7fLNDaJgorS*LD0Rgymc&8Q(HjT` z{cUOIhE$;qwve9YqM{)H5Tx?hP5vRzY*h;cgcF3B9wTWDDEDD- zRS`1=*lx?XeOybJrLABo#mbi(l1vjCU~}~PVJy2Ob2HA@SzNaqOCd>Nuu4D@NQ?5e z^Ej4d&bO77IFxe>Qmx7e2cWciW1J{ZgTFy?WZvJi zDB+e;TU~8ao!e;yfQ`8ldh_$xeB*g4-OlT3D;`iO)>Kw}BT*CSv=VGbNhD#ri}=0# z#Hx;$Qd>X>)C`4!2qrD%&wsaNtmiAE+FxK;3B!swq-J@8$fqv2pp6g~G&Tj)Nw7}w zdAF&=N~teaRZJ^VggG3>->3D#2+k<-Y_U-1c>9uqut^0V1cgaaQ34M8#p4b1^^ZC< z!nLZ_oBsgq`}%r}3qTnu<>khjFqdDvRl3_OmeWqj3D#y41t9)y_rvWybJR_?%2ywf z2_FwqX2asdW|qCmXPiPyX-g!o(vmt_`E;If{85SC;Jh1& zu(LDbr9NC?mek?7E{&i>kIEzb~4?51?fvg1i! z1MJ#^BSV!n%2U;(>`70E0pmLr9=?A(F8*Ohl&HGWQdH)WH6kS>87J5GwgGOYqP3Aw z>eL(Y5)6Q(f&9CH^XKMbBgGlTMN+B)m1DX`go_cV?nk6z2OG*G8(W5tx@GOdwP9G- zx}{D01q(t|2~UJwK%0ZTqW+lY-YL$#{=EW{L z)2U=C3dn@Vua^G+`+V^G+HPq{!@M&=mD3^=;tP%}{#3|FGxhqPDJL}I@+g+m32l~A zZh(9`wumu!Bz1x5Fy7LOj&Zy6ivIxfJv2~AGNeLJi(}%|d*7BKr%50V;AL3dus}<4 zPB=o+Hd>-qtzG3nN)i6iGN=)Ibej{2zYTVJp~Lj7C8fDrn$#r-ApZdM6px5Of=_~e z(7OIDe=(hl3lrY}x2Ep~N5m(kINe~KvxO*UTIgwe2+ z_!6Q4g%jdbPl<7RkpBR~7Pg7W$yxw{L1?Cq6w{6Pil2tEDhf6l{v}wJy~cqJjSar) zmR9QGY=Lnkd?`pXWa7H*8#_-6&?_u`Z8rNZC0UhN3Raf_OfZom6m@`+Vk8xEm#VD6 zJQUR(EAA$@hm1Bp)+@ik6wR;t}7cDphi-8Ca;{{XpJl)xr_6sLWHMUoSbp@JQ| zSaV+-ubz9i+@x{Fe{}D`Pv!leR^}CJbKmo9!D=qllBKCj{D}(HZdb91F>{8#Gwm^q zyMx}#nEZU!tSX~3saih_D4i&26B3jsNF7YTQL%5ysH*ZnrM^4LhY+{5$keqHawZ1k zfzSxH8|nC7t$EU`92D!PrzERdf>5^zvI4KKPv$8ac}OG^X2!VZf!PB!T{y`cl@6(T zs=G9!?$)Mgn?f9WS`?Bb!7(rteP^WG7G(zkqlPl(YbxoI4OyCIog-UdDI_g-jYKNK zPsMof&%8Usbo?hk?PhM3+a}l`9Ui9;aI;zo>AXP8+EvAf*W+z>9c= zyupkcRYsbW_wPC!sAau+5V8Xa5KM_FB#6Athn^xiXB#t=R|8Xji;fR4Z8s@o7!1^4pf)xOGJp6*WVOpMI}=6a5W(i zh$+ExmW8CO(Xx#}vNWml9vQ!c9-IAb9m|*eA?E3+QLd?SjQ|ZY4~Bh6y|D0%>^GP= zU+-R1i_)Pb2|~H6X}3tB5U` z6XJNtGbdvt$IofRPl>x!e~fd-4I)uO!)Lo?0urJk*Bu9;n72GcYwK$&)u~85;`EdV zNJ>;9csfe$K~Qb%~>h*(LL3jw$Z6QrM>*o+<^O%%9C zjHXuWgsS6V={&7&xGN>h1v^hxRjpp`0+bi8QBsJK1>~rSm2M)_Y$isUuosZWXWVk8 z93PRloFxvvrrBpgmQ=OrNHAh`Oi%LtalT{PH4a}(+_2|*QbK~zxj|I;p&&t!0Mtk} z^R<1&{i9a#d+gECMGjudbr6JUQh`>V6hz1ZOxjap7z(w-vd)yauJO%|>ift@v9x2G z3EB(ICe5vlfX2+JJzp6wF=krs+ioFbu2p_O{EUIqo*BYdoHCamKl*moQlT&%kDkKc zxrUbBTh&d|p=DZhg~Zs94_^t3`VTxwAW>zFwAj|B#hQ?w@kD{Ep7x$r^TK3(5Y{aH zra^B>Wv;tZSf^L3`4~=}CLm0XlApJv%W_T_uFNv`9H*sq#IxaBr3bn~imViQstv?i z-9{OBM<*_34Y^X&o!yIwQp6P>$*y90-=F(&BI15A_erIqOO3ddkUPH$QwfbgZ6}(b zlY0pevn9ANf5LNg&5k~!&+n3q%=4-)2+KXfkzVnbDG=>qk>NAXNdVkl@OGHQMfRSl zc}gxTbf~RMCsp~%hb$?VQmZihca^0M60qUEp{h)Sy}UAZ<&4a$(i}*5>1DDIgavQs zZ{FT`=Q*qtIZ??Qry=A35Ucz~!JRwE_@>bl)20;nBbU=^b=K+IN(aVLl@y4G7d)?T zt}?GQN`X}~31z)11j&_ps!1DlIAP5ylRFVJncL9F!AEjnVJA@5L@ebT z_H5eJq@<}Rk6AM}2b6$4Fe|Di#Kw`g#FB0E^S~`ul2c(Z$c_I1u*ToSL#l!kstGVI zJcrW{4W*XnZYajdQlMQ)`u_lKSWwAw2g3x~L@SgT{rxbV6-#PXmm5@H$6%8YZRfAk z2ORo|mC6`8z7!Hhl^&#N`&*YmDw0AwCpHXOARwuja2V3RJIo%N&I@ZPaZf2r0Vc*^ z`Tq9CuW@3~PKNwM&5|S6_vMD_&Lnc6sLj>9d^>d83*Ps3L}Q7A+-*3nnH2sN5#i)c z-@osT+|1Zzm`NpD{qY`EcA{jP+V{qasZx%taB1X}qc8%R6P;dZt#%QC9jcLll=`9$ zHSf<+k1`aFk;J7Rc6R-6iFCmt=Nh{8iT;>HZzQ8hKTHYomga<_muulQED<IStcaPvfn5rvSsI%TcN7Q~A# zY(VnE9$cGT{{W0WP#X*{Zc|!Q?p`#dCOKj1gh?1=%T=+TOg>N;(~la|4mnQrXq|=} zY1`!(28Rw*>Etkb7jD8ShKATNhGxWIdUW4x9ZuI=5Nb+UmaRB8ot~roVJc)!94Xo9 zhiyRTB`Mh^_&T1L0k#vTMwH;zQyj2c7mL=I^1%pW9=4gn?I)nYbk~5|#@UfJ#=(xK z3o?nf*Bj^~mKNqOH+e%T9YzyzAYhdUI2rpK4^PS@E8Y=?`lEYb=gyP98|u`h3=d5X zCkxoU4o!7!fN<4T z)Eqok#9IxuK%5rTPI6|fMv`s%VZFhncy_KtiNjS&V93X9UIR!aDi8i!<5IahjBNOW zZKngNP;u)*G@*OQ3?{b!!Sr#YI-~>9NH^EISO0d?Uay7MrKX%6b=avNybHc&VrcM~tDNggt3MElv zfy#+C#@HZNA`-rsQUN!>=p=826E}}sF$U$b&?Xck3A(|V7$qZJ!TDh|fK2U%FL^<{ z*xoQRtzU2RgPu?PVHLNiV0NzI0;-9V)2myFog=I0QaZV@UIQQMk z4ZI@+cSFzXjPUK#3*3n!hQd-}>Wpj?0{Gh-1bN_tsS{SIL~Jm-NG1etzBFws-*{fAhkWNQJSht zMjPK?r+i7Os6iIPO>G$i9w+X!#`9()1Gv~D4pj_!eQ+zSe*XY}vx;MpdO1KifwmBF zyU7?i#=L)S7Vlk(8=Z3VdNw^6X!fH&MDngUE$C_t!;k(x) zJFi@N8S=piYf-Smh^H~OJ9-_+P}d=ig)EJ*YH4qU(MM^F6AD|CJM?`p4MiLX#F5%7 zNf>XcqT~iHg~~b9ZmO2^7zOHhSMKSJ$ zHBBb?xv4I4)rMm6f|*6r81=e%!l-U61_>u}*|7r!vVeBy~`pBF*Q&J9x8s+q&cEhDTKTJy@%B7)YJwKKlDCx=N zjaa9)9H}WF&Lwk`T9l=ygNF)wVxc(7T4)y^zu)hv>{G~qF)Q4hv~7~3g`1|0@Jm$i zBMY}o4dV+!Cr36~#i>V_Ge9d=zr)L~n#& zuJKsmt;*@bCcn?i1m=V;!f>dq1vXX!a=7dAz>e0Fb1A|rsMB%N%HO}=EP28vw!$e@ z(_@W&@D}8s50@-9Iaey&<3n5foB?()xHOJagSBOzTg-WW{{VcjE7gI;+)907a66Sc zg#Q3819qxyCj!;ZMm<>qCj&WOZ!8GwbiaL&PVW!a6cmW*xlHW$GS)JVWdS==0Ymv4Wr3vwI;o7ie*~){Xp)Z4B|IHV5bk6d$LA6+PiiXiiOXH*m$6KZ@w6E<;bwZ)d`T8^}#kY zr#O`TLcT=*0E|0RTWm7W5;WoBnZXipeLSxk`c72$!A&cvz-%gc;HFeHM)-4MLg_6O z$kl=n1aE|ChddP0WL#mPfeP3%Vn#J_0CmEIMiY5aB5+NO6J9%^Y7!4DHP#9J?T0Fr zh`t-@gw62Q#)a>`6HQu*Fx^(=@a0~TMB$>e5ziE{sX@dh`q!**(_ZxR!IjG?z8R}u z+~Azhn%AK-3ZRg1!g=oHH=5SOfN)J0=1vnR+aByfoqhNVl5yg*SP~V6H#1mX z@q|ucI9r-f;XWMGQHjEh<^jcGKHXs|nURHsa)I9*BP6cuq)gWV&jqzvJn`Mco5(oIg$grFW6$-+g=}$9*+lySv1rQw6Z-o26O#c8j6HAk^ z#>r799yUDX3%SDF9~7K!m22GL6R6{0NftcuLo0>CI>|}`NB72eq$?T%b{O3NtCkuu z%1g7t*()kCFtT4DV^-TKF@*zKlP455K)KBFR>5SQ!m+%C2*PLuI8{(ng560%`=r(i z6%(r)B!!D%KmMtWwQ0T@*CS^sHMQfNx#2aVk;002DC1QVH}%8WG8X_%q!x6T-v|_H zF)@Odwi5~f^y`L+7bLr&k$=+~C|_fOlxKV*oXjaGEyxVPqXB6OTZ&E=nMHcf!pAkpmjGom{X(O~Pjexvg6;(H4mQxGAI*Dkljv zpcS>SNR1XASXy&%vNkjI$C{5^dJsn`$Dtq`32J8b=B*+l8zI1*@vnL1gw(Q;d*iu7 zv?4=+Lws%?4U2!q0!y-F9Bzdb+XTA_XCA$d5_$e}jTYep_k0fX!X|Ocu9iPn%K^Ii zQGLk^ui_Gc9@(FFDkAE7O&K5-vLyrZGzuW2_}BH3Ds)A8@whlr8i~>B^%$K z8(vR~!gfE`4s~QHT1UmmVYSiWgY}*8drea3WYr`bT8fC}U?-gKgjRdQa8=Utg(^uq zCrS8-JIDN-BKrHaUv1;9@H}vw)|#V)gNZ8f5@T;m;Af>NRGB9VI_g{rA%A(Fz7c(r z1cEfj(+sK^US2SRc|}W-2lu`QE7HAj_;(X;4hUPi#fGEL0=klzl=A8dS9=Kk{Q(?MNQ8oKeMWZk9$3|aryS5x ztKpmJ*U$CCI%FK6ExzcA2Fuerhlm}v^Z8u;F!`G#)6upFSBRt(-9#s)&c;7Zh8w79 zLSIS&PMt|HBK)_VqX%a%CH%x81+m=t1oQKdd0hJX+nPr4O8A>ivQq4*rlpakw5csB z>hVRn`T731Kvyf`y5L?NPGy?1w@lNfOrum2AOXMc<$i(S z?4;1;>1~}&_Xw1&3Oa$(LA=J>UzaQvreM~sFHVWlJXZ;~KBz`TSELFBCnBIBXF*IVK zthR=kgWyur_{f;iDUtIh&zH*^5b1V{A!bXeCD`FMEvl{|ty5@eQK?s5^p0ZV{9NH` z$7%Q_h)a#7#Gy$L^poKiH#2#;>U!bLHEB*>?vRz)K&m3$ciP)x37#^n(zRXE)Z&~W zJ>bJ<-P(!VO)iv&BvdS#EXNn&v>l`#dulNL~2Oe#Wx!OKc*ox)t&8oFs({aNlF1E zjjtfg`Nk()HBP!}MJ$&!Jgr4bQ96MB-+Wl-P@uEk;P?BKf$C(@u$SFRn{9HW05qjZ z(moj*$=}HNU|IwGVT6{$tuojItgKFuspsmv41=IOVjr1)UQC8WkLgh-+;7BV^ghl!9C-uYO%n_Gmx>lj7B0_>8 zCvTkc^p222;LM!WGKbz8QQ{|Dk~}efqJK;Y#LVbYqgQqcM|cPxBO4B#F)pJdHLIe) zCXfd>Q@MdHw5G#_L^fCOgJ|o}Cq=M8GpPEx00NGpvekg>I~1*oeu>Tsb7p9`9L z8IcE^3&hFt!~XyZuBNG>r@U{xSN+LQQQqYAwiftE$z0h07*Ew%gX|?qWv3GNiAyT* zkpOw$o)h8T7pTl1a;~7fuJ7PRl_fKHndgZfM2EfKx_l*RLLeI^d^7U7Hj`nA6M1bz z8Di=lK&PcjXS`Yn2mRl!-8RNfqHqlbL~y=BHt?aGM%if$vgJjTB!rmIf;Wx%4?IstS^2sYER}y)RA|P*Vx3>6|#GIZG>Ymnn2PrC*J(yGX-f0sY5 z7}nb^zvW{*hQ5>U3(=~pJ;~`Dja5JT$J9Yrbd)DpnO8J~sGf#)5@Phh%*!)z=u4Fq zPfT-4l&SL@pDX!dO~Xl5RbG9VD5;fFfn+S-yALpAx;qd_Yz26-|4s9Xd5O z%@a~UOKG;0B|FR&D5#hs6K;0-#LCU{oP~MSJ#{`qR15q)lQau2)-<)0wxt<5QnCt^ zr9oE7{{U-yc>~OGMIL>euAMZr+Eq`NHU9u7^&%t;qW4D{VGYmD;p zc+X|8uX962o-3hNYb2sQo^ti}QI=;}-f2#%darj)Jui4PmXNtnN)vAy)DaT|1JL3@ z!nx}5=PS6+Ic2=dI(0!AR$k+!X?4Ro7OPpL-AX5TH-U<;wyxG|c+Wmzie`wQQBsi7 zK~t4ZtwU1G8NR^s5CBc$%A$BiZ;E^)*aR5XjHq$#OWl`fP7p(zn$1IT-Ly^?l((|wp#XSJnGSJojemfulIC|V?F)e1=qB#1y3HY5@O zWI#RphXV?y$J2{xIXNTYC&N4&SK2;rLzmO{jj}?Hmk)-Osoi2@QH_T)z9#%{O+%4R zO_7AX#8pfvW)<(DMY<+a;#E5++?^VfrE?}WOq$V-*Q)q-q2}pO{Y7KQIvy$@l__NR ziUgRMRC4%kAWf0kgA8Qc6_{~Oe^BK^>@-7dC`<3Sw4EVDnFUG^L<91^G^BRW4<0kh z&4rttw3DCMCZ}@heiF)RDyxIeEmY`kjisszyhBoyV1uYm#sO9%m07~7g+^yw;*(Cv zOKnq$079m2Ncu(f8C9S@H|>de=V=uc6>TcAp_Y+PO-9*DTc=K&Y@be3v;&5I(YU^% zw}%wNZFhQH2BpZ*0R#~fVG(45drUx%hBp#71C$!k8*tNA@yaVQ;wACjb95!e`?`rP zmlx+VeYE&MK3Gs=wAh;LdAnBMJl1zemS|<^H6ir|q(i~G%DoR$j z3~GGAkQ8qlPc5!v4m?Mjs+Gmk2NL32Au|N2Ml7F*iHq-xww7bJg$C`%b*-uDUCry> z3P^;76ctHRiI8qZx9UyE8(#(F9iOhP*9;{tyi)6<;VDd60^%ps3t*@6#BhBTD+)rM zsH{R%w4i`cl_&u>+<>J3NZYB5JmmDQX70FMak^Btj_`oJkd;D8qf8%*!*K_EEz<^M z@QKVX_O{7Q`IRj;OPDy88$w(_Q)occtri=oO~;1nzM?EZB!NYdS8*$i8kdz$(`!); zAgGd=+yHkbFMaU;0GV-iMv712xm(JtsDh{JNeO8L59cRQf@bFUW68LIRdw!D7XA9N zt^ylqsP|x*)?~?mNwh`gAPft4N$#p2JpEIQaYQJb{AcWxdxY4`>lU{)Q{|0?D6Q8A z<0wHP5=0~ma+~$BnJ#ft-?>kgt@cuoq$$+8Ql{BbV5d+}i5uANL7nj1#JRJ16V1|B zIGs`w;|OqwOx&0@7cnqTFec6G}A&gdiIj;i~4;G7&r#{Q~yxH?Vm z1P>jQf$Y+fm4u27OHy?sy(E<_F$9knA*ciM!+kY)_a!=?`zh2(0F@Gv3AsG}FF&NR z)#nMIVYezzcTS>~z(E61v?V^VcR)GNiLXNZMLeQ7!`^T7-g0varw${Mu*WZRvr zM?dRA=>-SPlSJlPekmZ$2cAhx=`bD^0XpWun+abn=#v2-v}&IQ+ZBk33A^ z8rwN4rZ~IVNzWzW_9`;=*5cbs6oE>0e*#qo;s(c;Ki3UBOPVK%bCn{UuqfMFlG4 zaAw|^L~SGAA+G^1RWn*PMlAPDDO+@nB`t+&NLI36v-L&fSwbos6>YZA4=qV(5_8T@dY+Q`mgX+EM3*&7 zsWw`aqoi6DaxY~be{qQ2Z4?fCt%%yow-2(DX531OT(!C;*h6qO1bz~KmUbfd>wE7E z)O2k=6!VS-+esq!QmibHcb_aa1@|a54{CA6SRg2BR`)#s<|D6MDE(s7QSUE0olrts zLNy(M**}y-Tf-e7!7;rtgOZ_nGPsuj08f=Uvu(CCx81-`blH-in7sM*^Xf4l%&XS5 ztxm7J)KYY6Do_*3N%KBac(kQkojX{{gJ~@#C0fsTHOb^e$iI=mim3~32mReZ>zF@Z z*R8r=*y1DHbrP~RkvmVW-902`-%Bb`(3L4fjdu8auZq~<2eo7B8hCM9w4j?xwS&o4KeL4$ zT32*}o_9Ah)Q{NU zSed=Bn@=5`Dbvv06aBHSr8p%cNSFgjl6f4cAxU91WzFgb073y_(N zYPAI8SA0#({{H}ft~_&)<#_XkaGKqWX{@$xcfwAt@-U}4bGX7)Pow}r`rv0?B=3aQ z?c#B#dF6!{QcJ#4f%p+@ChPuqOt=AzXrrmjOCz&{QL$?4!(wnV&q?&cl?WlY9I!qR zoIOyg1^##qxlU`7?p&^8 zpu_H7tx8T9GUEhqwjXE=>BoV&TwI?r_atqHN@2Dds1!Unb*3?VGiqC$oM}X0`ef?; z?}qw9K^DW6CHBKx8d-91rAL+=DbgTD1Em32F}<x7iJ-SWyc)aEcZq8zpdTaqi?bn?xj(jq$NM zkvK&wy|AKJq{cnkymDEy3dZSCNwyL}n4Bn?P@g<8s8LksN|X*U)PfE*WccLaLT3zW z<{{MF?l79u*Q^{6>TPTy;v~f2lMt@Af8Fpqh=U^rx}6Avz65kZj49bDnujX95sk5< zi?WAE#-)B4I8&2Fc1q(gk9p;c?>w+8)UsAmxS#QY*i?cwe(o?)nDoL+ zOxRrQ*xR+VI?+5 z!Ok%|VKuYj+wF=$wa!7Qlgk*EAkGW-bI|=U?{Y!7`(xB82I+5Mf*PfsSRtx;6M~th zfpLNkT!l>>oDhmTZGxGlB-~)6Qfb2*$`>ZLDD5C&x~`B3wj^%TLU7$zN(jZ!l^lvS zS4$^sH@!)7BN8f_Simn*`3!47v*b)_q>aWDW}FSM;N=jR#;B%+SYqZWQYfe87*Q1Z zjDdoir;CAwkxov-4r*FOntR~NYJPE#TBn19Y1tEe3LUE{nCLL&Lq<$U!Zg(WEwJ%L zO$oQ}_xtCCxypv6DJgw%wCi+sPnHg#hIKIz{Cmgb}% zUE=}NDoz)9eQ*=%w4PWk$!=;!p=NL$L$|{93L|6kz;78;Va;+@)RAzUYFz4ZtBNTW z!YgwO7Q9=y@QZZ9PE_f_F2BxjEAPoS$GcFu5bZ}(fhsFBoFM&JK)_WMM{<6cV_JpA zlI~V`rhO*~s=h36+Wlx8@QSL$Vd*=Qi?#Z%I1%c?vvYvmuNrs2u2yrL7DD4_<<&;# z1HWGu7zx_w=YXHDl|^1$xY>D+zrI;sxER>q~$cEN7OSFLE}E#Juav96;!u%4pWjCdW?Ho}wE z&MU_w3957wI%CC=j=$%CMMjlQH%&k%d=F*gS6^j={{Xek{{Z8Jt2X&zOtE1(dvnto zRh>fE_*S^=7M$j$x|G^5*I1dHJXNL!8f%ky#PYd%)}~t9DMt-;4-}j_W-A-qX2r$0PZZS=Y&cTB3WQ;er${q6 zK8^c{IAD!WzKVaRTqe_k8dZTm^M;ywtA4mK6%mFu6yWeeH(0_Cl1?=h0$?0!x91IP zMJ?$!&?5Zs4OgZLanP-Wuq9%(3{u$WA>H9NR=|^nY{fz&4w-_)OyP?%e8ij%#4WSR zXU!aqM-lwR=+%c@(yB=qk7hMmL{HxYBPy1)HRiPuB5@kcAGwq3hg{C5QC0rT% zO>47?8q~(1YTmgxZ+Y%`Ua@z;6%OgP9M-2XX#4mL`ib8jR6iW>8`S{w!#1V3SxPwe z;|MuXq+1C)Q3C?KQ6qd3T{t5B?shmq>Zv#tRWNtLE>uqV?TCO0Wz^hh#;K`Nmt%p; zlk>uj5R(M@V1qG~I0YDoh`|j#sBbs{E)^L2<8ZK*W4dUaS83IkZkyo7YJcMmOuMQl z{%})3lM{j2Iyv`NxM8+H1DowDvM5yhLI%p=4QY|iXn;*6m4)|t1_(hZwZ-P*X zPT1|B1wERz;vAlL!l3wP2&E%k@wzom4{wB>%WwhdjlzHy7*61F#z|d?!#1vK%3B(Q z6)GYyqiD7IVMfpe@x#hyc`H_1Ay*h7l!1+#V^Fxl$fpSx$8Jk#%0)=&g?}yZs#(48 zqSysC!y4chI`UAW=(Z7B)DvTZi*h%@Zc}I&E!MfMCn*+}22M6nDiavgh{uamSYVp! zOlTELRU=BKG3ZMzeNuPE zt03USsk>~U+)RuN>Z1m{pf5zC~^ZD_r7@5=S~N5qW=IE2dIcJB9!n0 zujzzbsMXH`xmn9r2YRrMcpd1rgiF;BH^K_3o_H0?qE7fvzcYc#CL$F11_m}uk}xV= zB;jV12*S%#67BqB1~vUKBS4h{gBczhVQyTOPlYjp89+$$!YCZ@QwA_g%FU%41_lXe z5}ye9;U?1}*dd{zvj?6zdbVY=7auGT(qKnCc*-FHMioHkfofw~w$W*fYEjb*1j2Ev zfJ}|BF8D>=Ahz`HY$ED{6Sfy|T!*Fyc{=TduSW?qId}sbhXZNf`{P87CfM=94amoC z?7Z5y4gxSc$-H9&fw2l0@k=V-9k_+uq!c9Y>4cq8Nq|4b7j=Cwg2-RX0_4`U4^U^G z1AQO~oEGx=U^n`l3Z<>?hg2I3CgVUI^y6m)5_(}8he|me_UVr{o>Q98Rb6Z)o5pXC4Ldk$r>*ux*aY1Ls6{aItA8apD_N_##!>}O47&=GW>4C$6 zM59tu0L1Kc{{VbDajb;0-sn{Xp>hB^ZbE>AfmGv%Qk1oYI1*Mw?;NjdllvwLdBB#+ zwI{+Pi8r^d16op_2q{+MWAgoQTdxH$`ANKiphm4pFfBT7HtB2nVS08J2`SaMLK3JY zUO??XJS2tt%FtFNBS?Tph)(|i)6)*cp-k&7xKqhMX_(s4hE+DtE1EI^M`hIOdZn?Y zO45%R6KFR({kQVQWz@d)R;4Hc+6Rav3lHTs!{%LTJxI+or7W_7qv1C& zXK3aCJn%ZE*`=}RLXQdwT31(@D}5>|5MYDI1cSZ$dG#>OpXT9CEe(){+ek_bnOB5z zGa`8y9(Z-*%;5(&ahfm_-K?Qx#g#M2`VLrWMnJce+dw5wITDyY5r$|q&{U8%;_ zrw$3qY7)|_R9WuRX(U*lewdO9lTT8I6g2{MFG>n@f@1PHAGgy6QWo-RDs~Xq{4{AW z3QCTXGD*Wf8Rv{rJlGB;&0$2q_{{BZJZ`nXks8BnWL$-5oMs7jg~T=g0CB)V$=PX- z?b3EWQ@%yRZcxQ`R>V>M)j28(l+cb!kdOEQPGe<*`t)FgY7zZY<(w zvlm>aZbLfc2=JjZzw2o`dSb^%e!!Cqri+dOj%GQHL)B1)^aPYm{I6l>yy3RDEq1YA zi1Jfm8cMIV;&#EttqfCltJap=0U(s>p1k_n*cFVyPqisJomYT1ND2v<`ETooG;9fb zx}NJ!TqThrg-NM(O4VegI(|?OrX~ojTdcXEYC@txSg}dwI?Q4_!$@|awqzF|C=gZ% z1aeFpi0Aag_b%b~(L#r60+XabM!D1=n7-Hv4WVuh(3*IECr5JiT}l*`rhB8T9e#gP z`e7>NqPnBKT2v5{5C*WIOmF^h`MG zO1CgJnEH8jw@D^6k(JJHZcb9!=5(i+Z45Tzl_m>f>46_ZxaVPp*0_7#SFWIh>A3*J z+t-z&2j#p{%Pm+VT-_<%Wb>XzHXC57N+HK5>Lc2>jNHS*UF|P1$z{9LBvxYJ|#EyXuejj|pAC4`!LfxLi+m*_Z+~cwqWONdEwwD28d?OODi) z>QsinAQ>|T1o`-U{Oty_QGU=y1N`yco z%48l~fZqcusib9<6^;c2B_0GRTBBB|ljJ1f&uyMCu|@Kt6*bPgS*_FFNr4j=+O(5; ztB{shlvxQXDqH|>;V4Pvapx5{RRE!drRBt@E&fl5n0Wb~WDnFP+cDFmI?bEahJh0U%6dn1kt9ivJ zp6MzFQ6)p-8oVapttYM{e(689F0RS=UqPa%hgIV>L+YM#Y~H_!S*q<9jVhd~;w~b5 zQ)QIM)RUrg6(Z2vC`ize8+b$j2#ofr+B447CnU<%Q|>^dEnxSKEn2}!Ji)fsI&EP% zd+k4s7sh;S%Na`)?b6V3t4TT(0`DFBfmYF4EZFADZuz-@mSPG?Zko~5R7 zAiA@tyrNSLp(?x(lBKHJLSn^HjfS)~g?5+AqkuBX&MV@yuA;q` z(uztzsBi)-5-;M^L?$j4F*4xwue6HSDyy6R9J+JfHqsVVPn59`bqV}O)<{TIf_2)` z6%peM`!M3H+03bJrR>_N)ex{x{)L|jOAMr&EyWU|M#(S$5=_O)hjK0)rs1kmnkMO3 zOSz-XkQJCz3n_ZjV9S39NHR*6u3`}DcrHAg4*)7O(SYIG$@B1{Zt&0l07%?NS4${s zC#NY}?w~8gp=2aXi3vy-5@tx=8GCr`GM_7?%Q$x?V^?x@RVlNmG?@v~lQ2n@4;6qy zU=k+`{jm0~_YD^^you#7r8r1XBqS;&OHYapl=CNbn{&et4{+i#jFe{?v&yKht|>(| zI?9&gs#$5)_mC%OojhZ7C!9b(XBFH_UjiGNWp!w^2&b*0i8q zY6b~WJDbej-%Kc+$ywia)9$I7780)j5R?@vK>$b^jfXM0Ckybual^`S_DbCD+FNZP zc#5PGtHm)EzfQQhfvp4{LW^;Io^4C&D!t+77-Lh3Z2`7|Hf#b(6FW&3-rhzcMvj{+ z&55aX$10MtxDcC@VLK!Pe!QYE=FbtMETuZqzyl~qWnt3lElX1U1dy{33ag|bB@Y6EUNn4AP1eqR0#0~yfXmN3} zR(p&1AI?xJHJSBVYE)F?jx9w*ktpst|S_ee4|ESpT9Jwj)1rX%@(4APp|s;f$Z3KC%Qk|fN;#N2E=@x{P2 z+5Z4^=;M*xA{ot>nHpE>n^(Egy0tbI2Z*b3yTLw&-Ej4ia9u|i<_~8t_s!7vi3|mx z>QiDO^I~B{5DXLPfjdX4*O*b|xmikSQh@8up}!NO!ypnh0j5tQjp?&>=S8+#Q=ab6 zQ)_dAIap6o{{WE_HcibAW|X|#kl0k+VSFcdkEZ88kT z*nlH4sp9S>Q?C@b-788{8twv#Adx))AKMPxK~mmVl(M%}rc(O#_>QHy%<2YrH-ivy z75+N5Y9CEFage6UU>lj=(_@9k-K{0rT=@ZTYZeXAfd88!`9}=~v&inbF zrY4mcYP*j2Lw*=g9FUmXk0EL0&jIJz!OB9K3j9?ABwxE6lh*vb50rsM^6C-a zR2fU_Q9=T=$EF5hEV}{pJEStocPJcDMw85m*+hs;^XURidfEBT zG-D%enpTvmtiqsbsVR*h&5#qwb-nQ4me9E7T9;i>Q?FgN+gMOQixqQ;0%LjK3UKCE zPfmv`s|Vr$q^XcVQq-df^aFcHkDe!!W#_kLuLNWa0iP+$CCZndXHPn!rc$|EuCH2) zV5Gp2%~sf34;h6`9!*ABZOuw*{o0aNq-jb(Dm?u^+%}96PfpHUg5#P|RpN0?pdSQ{ zK{IRVypSUexsFzfO0>CH;gzdbcG;CKM#P!gcl7g!`kSA*bby9-w4O@ixt&VhP*GR% ziSS0i-;{HS!=7VIw8|9X6jVjRJR?9*k`$xBx&RH&%I+GO?T z(EQLQt1@{=Lyr`zP$33EPcJBu9Jj%4bIsK#xvm;>bD)xsG>{ zZgV4e#*XI=(>R4T$x?;NipkV@!ge2gc>Y$pXCe1fPpG9t0wg8`$lQ`aB*dR1d?8TH zH6ox?C1P~I5L3{7@b9U$4ruKZhO4Yws!>|h=Hh&hh|iqB^cY2T3ME>Gr2t6*VI~jt z!DY$-l*{!W5?7?4LZn~*apRTQdt*vNs$9V&n4VLU*vgu)>VeXbrE&wy>xT9#3KpAbRDU?P_wyLv z-UoJ|r4I~5orgYid@0VQE3=t-P&Cxjiwe7D(xhh#^u2HcA0*09dXqvF zM~eu&&rB3s5Pl(q+%QS>32OhRGJJXI{nN*xU<>-{AFv~)V;p&8xgyXg* zHRiwHxmmQ@`69IQcig>!||L zFq*1$W5Coq(FUSZ>4aXWn@$n$1mPE4!B9iFZtKy{0zUViHGSFVfnRzK@sBoA?dw{H zL7U(jhdCT8Q2gLWoQso%xr>_QEm6MsZmV3|2GkS28*3fXNd1f@%}m^Ys&Y(WvaN7$ zgR2%N4Ry~QBu*0M_)Oe^t9DFI8)~X=f-4{Rq~Wfq{&V-j_M#42KJbHl1pD52%8H0M z703GEQEpzixG{v3_2O`wj}4F02$$sl0Bmv;L2^W28mY(;giD}*H`f}e;6zXL!8LMQ zz5{G-m-O?%g-|AOuYVll2G=FLcTP>eae`Q?!$N8Z!pzmq8rLM2r^X(i(+5+#0}M3P zPjMUkW7o-xIk|#fwGE9B8EK!r>uDd}^ff zI09)qvK471QG`@P&I)xT?aK%$7vCOoy=#z5{2x;Q>#>uA|w!wbysBCbnbiByJno8u06#Z~*JtvEAo;RkY zGdMn;k_HJ5AbMJG~PG^%LJm7sO^Vvg&@r#R6xO$)COY<($W)$7Ad*L7UxnXq$#L^ zOo4|QT6ohKQl5(c04c%L^kyxI+~n4^ZAVX~IC7?H*1{}O>?3R(!&+~N+~oG9m}C=S zgQ@A@Oko;iMeuWIIz|xZElu$?+@Y!u2tI78C+6|+qfasL1qA*SF) zF}Ba|mK1Flj+erAqF(oB3Lz3=G3pb~3U^>8*zOlCK$DG@FF4&T!f%Ziz6CALNhwk= zmK0w+CVV^KT#2bAt}ug#m^fA6>4Y8I9M#T9x_TT6`I11v4i0!7)RJ$G+?TZrQDCeJ z;FRFU!2~M;y4;AtwaIP;15z)5>MgboeFQ3S4Ne^2%#uP4*EhBTdEh4aCZxf(8!Fu- z;+7?^AF2ZZyH}`K{{W0?`;w?8a4WBA6Na^`mQ+;0oC8r;a&fIyLFb0|>WrJ<(p<8x zw(&R>+Wk8mAyW1Cz)#e4ICEN(jC(L7MBx?Jz=@nUuArpgcdH4oI47?|N#QuVmuU2t-sF#=O#xOB_8c;C0;CO z?NLdDk+$=O)#iExB;R3w-}SWb)a+#kzVyejJ_rqDPC{4HCXKZ+i zvQa)SN&cq`+L#+clbCoN&)*xi=o=rd8(FL+P*2R^cAt?Tdd@iCb=U~P?f1r|(H1xy zDOzMJ?~E#h#Lhf#%I8^2rN9RG!m@ebV5LpY7D}gl7Ymx}OCs$Ngz>Ok4YBAULj=$h zH!V_N<9utRYK&}LGh#3-(cG0h0aDoTt_1*xp_!0y$Ux&Ht-2BNCi zEvi>gG!|wRI;Ro*)%XVZHnz4o;gd6~1QIa1%4AeiE^PS)MsXRos~#BUz&L z6=C7HRD33k%C^S%jpp@JCl1-V^aWxsn>=LT+5+U;nN?~yj^@=;R3{D@ok;-VJ(#{s z#tE&;V_Jf*sJU!Z?`mYhb*lDY(^TiEL6tt_V1i-^>O;9_YSoX4@_^{nj`7?(# zsf}LLRDvvU3(vvFue?a#=Ybt_k-=?Cb*-IunZT|uyfcqnS)K5bh*jqdY8oe%sa@`I z;7}(XIoBIgut>wUibaKkd@LKr?Xe1wFu7t)usBO{Nu@>=2<8ShZG$m|5Z>7AA=tcR z6m5fP-6UXiqpk^IvXeOR!45b@w4kAGcqxu}8J6S%Flz`YAG_c-l92ZRmt@U=++g}v z%2Pc508ArENJ^p({V?TCMp3_q*K84tS1BJQY|C1NbM?Uu(vYhk77C@KDIezqd$>xi zg|tzmE|0yWTV(w4w{ov665BQgH?}wKO18cW2wsIW@G-Dpq+p`V361tR#Wn(G0_Kat z9ixN_+ddSYxKXxemIzHgwNC#4*9s-ABjLk1;R9%Jv9{!4WK)}88!`ap^1%(ZSIRK8 z+nlis!1ViL3q&YE_;5lS@a>I*1}-o=m#;~s6JRl`i7|763nX$sTqfuk9mRMZcqnp` z42{R%7zlAV#hA7=QH0E3nfzYzqk%a@G;rpc4cW_ zrZMjHds2#Y91BvgLZ=v~bna&ZyznN+0_gxo8)+JcH0^8yQ2zj)7OQeF+fe8ej_M9k zbk;pk0XM+zRBAinC!Qf&j11%EU>q~77i=h{KYj72a{J&?@mD-<+tP8(k$bj+J%wr* zA+A^nhXt@(OOb3baLPH4j{dkQl}{`J%Yw%TGHo~vcR=g3Qz_MK5YkCE^};Op1P)j! zl}X2l(F_Q}$N>KUOlpLJnHW*F;LPBF35j$KqhduY)$d1 z+b0VoX;d6+vS7mO{=2)6h_sZel|-omv4 z4%igm0)@+EI8HTFkT=JRR3UgDA!jC!5a2t;Vl0l4i>?)ez zws4i0z;$vJ&wF#e2=BZz%hv+GQk`-)Rs%MwYegi~{{Vsjj0o$xkKEdAq$y!4 zQPK>UH{bQb2B@}#m=+eW<~PRcc|GD(K~kb;slfFw0PqP)6W$TAiT?ipY!Pwpy$!4& z+|+`YQPpEHsFEV~=lw8=R5>uHQImcBKDbfUg}9WYCspqnK=}?@a5L+bte|Pt0_T}5nxCk(*#zxup}ud(g7=$64>&g-xF}R4)U8Qcbhbnp5S^o$ov(ZXUsF$Nl^t7{_;qu^ znKDLUUkEO0QmihLK_0OtEo>Z*u#PLSO4i`~nOs4ZcX~v;<8r+^xd3cQ^^UkFit>hX z+M)mo)B-#{B@j*ScLI3~IPgko@?4dIOKEYmB~oqTKi1;&&*&*B&vTS5z_QY{2-Xu8 z=hpGGVo2mWvBLTz80m~5hQ6Bg8> zNGi1LzsUJaW3!5O)k>$(hP0J}lG?$OAoGh6bLD-pFRxloRP)QYZ6w+RTHN>R=Zc)* zw)J|@$7m>R8puXBek49h~QT&sD+r`^Jn1wd-)7vFps?p!mR z*H}pWKvSR%T*ocu*f%@O5tC7=qJ=U_%A08xDN=2)B6c4#ac1BcJ1-j@zc~m#A>t-7 zx&l_Ecdimp6$()i8-D&DJTP$O5zMm`)jjx)wW(SK^^$z11dc-yX6jwy{wI0&Q{X`; z2nr=3HrVsneY%*H&{d|2iIy8vdWDmy_>z>SMeXKqc=N`dk{zwwd!=fnj18;>J6C4K zrj!qOfTEG2Y?A`_^E18~+dn!hf+Zx!ME4T z8@-weOt7I&H{GOo%-9ZNl&jBwwlv{mN4%_=bqD_dSP3fM#e2L8?*9NN8ik{ray|;Ro#-68PrswX2$0Jf8z*b)r-%n^__j#B{Hi{o_p`t?Kq!s{S#Sw29#-X zKki5qenX|EV{fJs`Xx23rd6e~42cZqEVrXlS%5^JgiNOM1dKZ8Tu9wK6uJ$SAS~|# z&i9-#=bU8LPSWXH@i^t=0jlX2x!Nb^h|Xulg{38wtML>GlPU_^{oZ)?Hr`5Gokp9I zQ`Uc-cdWKjTuRgu49se`DKo#@5qE=`>#uie(3GSkm?{cC@IU(AhB4vH7USWxI-c;9 zptbP$NjpRiSawS+xzV(-0(e7xKj}k&GDSBWuZ|-IHXg$=xccci~b@ z5(IwabLKH1R}eUi!4!1K@wcW3@B?86$78kQbA)ns&TSqZ?@F~0RS^R71b)fshrFtp zgysopq!%7hv5=?$f@E_b&&Xm|kycY%xu&f=(PS>6pLng(q@9AvfhI=rXvWl8L)ns? zO*qn&M8QZYfoU47Jx(0+N0OwZ{{Y)eSb$U@3DQ7_xA)rkCoH3>%&1vznQ3mFOA9L^ z=>W-5Q8uvHe^HFtq@iI~9-nddrZu9bvBv3G33cZVl0o=E0Q{|c^7Sz!;Vuf5q|`VP z-6|5|#pTEoq+G-RB+d?7Oz`3g8YNGDa(qxnnvKk9A3QK|zZ-jx47|2h7N&tx$RJo; z$sT=qV;4~VcCEc8nS9Q z98@Y7vbsl?DW07$T0K27`>Zce)pchz!qTyzTUB*I@S+MqNHQmwK7$d(H1`m*RD`s+ z1qlEGo=WLF#Cm!hO*8zE=Px(!E73~KtGgO?FU1kQz{V8SO-)GasAVj&qpcGXkruSi zG0UezEOt3bZe7k4ODN!kDGau?B|+119wi=0#Qy+nQcS6VwJF%);|o3gbT?g z=WVB+1Zsi2rJ7ohl%}e%B({aegs911J+F+YdD>k5JV|YlsbrFqsvwvoN`TmtwDiRd zX>)l?hB|$O@0w90VDETHAt_~qfv5}FF~0n_oG(X{ma_LLsTgreZX9&M zDp1q1k2$gQgSHvCUb*o5`L#g*0K8V)NNj0_l6gP|H9($YPSF^A6$z_kvfE2pN)-Fx ztip^+QUXoMA^-%9<}5Kx5bOell|+u*PH23oX9w`&E9zOxDbkep=?kx^l`Yqkq)Tmq zbf5xbsgL%NHO*+6W_Vun)F)in(`_k6UsDjI`wZUy-yiH*-Ym}GH>5YGw5LdNdlJ!V`ix;AqB?!C_Q z-vVAkWx(Q`M8ZeKvW$Q^gx(1Ny(2d{HGMTjN*YtOp-HD`tOpxOC%}SL7uc#V<%Foy zQJvLP)l|Hsv6rGy;w+UY#3dqZG^bCMxmd-TcxU`vm|L$oA;3_jDNKo*52n%cgNvb# zumXl}E+nbqvea;w54*$_>r>9Xq_;?i7b{xTr70y+N=5Y%@c{scF%zxLYx74Ex0IIK zacNM{0%l0prZyJz6SfB9em7$t-arP_xA=BhlyH;Y?8-xQXj0uTiBLDh!|0U=(Z0f3nQ0B`%S;hAv-PIr3SKdXnnf__gmTm;p8f>f0XGajG+_HrYd7??X;BG};^P z(!xYSM3dq%xdihtNEn82?-EvVMt&)3iKNAYtc;+RLf( zEVi1DFnM{Yapl#~2BMycpiq>`$&$4R^o4X1GCXb#cO`h&e{7ar4o{V(W`53I(ppQY zI)Nx@q79z*_)k$5i zx*sJ&Zf1>AB^3@fPmj9-RAzLN2F7tJ$!R^xk>sfj)1ky_TZ>$+7t^353zbjB774=x zf!bOg;)&03PJyk!G^l_9iB8HfZ$0AyQ|1m=skRH_-Ko>@DPu@czll>e-(%0pTeJ~j zC9(eisEnexqljvA7n!DM*A&{8188h_V%&mG(ryU`-7w+7IU+KOrz*1xrks~uK~Mp; z0CdSaS`1v^Do!Rx4!2WO!A*60gFt=6%WdjN0VqkiRm2_aEqpP53e0${hjVPjG}JF2 z#X!@oN0yXsO!#E4g==Ujw=GEdM< zj67!NFX3kW*@}d{T;h^}-4Nm!>Lec>_pu*CEcDrfxn&}D%E+xm6rLfWo@hGZJ$Ei2B-pMinhW178dAi+JJA?8xR5YrpkREMIkPV~`W+un_oFz+=wx@fP>wco4#FAL?X^qK&$_@6n zJW5$9qoD4>ySAy&l$H3Br6})t+R^hH;Tne$++k4*2j+Roa7Jt!acWC?p3;)i2-K9{ z;=Jx7oO$$8zc{B&Lu%C8suZ0iXY$4L{{T+A^~5#)DOjyjJ==k>0a4IWRW`Sf8x5>4 zgd6X3YP8JhT7t|(E+%c#Clkj20?HYtbIlan5*wzd2qi%Nms_vI&PHo?`^ zG}P@pww_XmMAR%ST%E+l<~KJSjs{r`h@#NpLO$aq$rZ zLTq4p364r-`Fr&tvV|y9uvAdt)hbj*sXVuV9L&Vvejh8%+FIMt(n4kTR@#YeF|uJ^ z8H2p@q> zg)Kv3o`Pc69H#@Y9<8rZo_$)}u>)8UA~c!k2TpxVB!)x34y7$1fI{yGyDjA)BlZBNMlxtGbwJ7Qhpp8;dCT9EjoxIK&>R;B@l`T-IC&TcQx!6p_ z&n{TqRcR_x6RP@E5d-`39PlYhg_EeMFr?d2SCn+}!&^Y9oxF-$_lgMBI<5o*@cr?t z&39ok6TAeK&fPC*+W!FO2`%8J;HOGbAOHagPfhPQ*-H0>=v#V??IJ~n_rAdT^urqZ z%8}9D4=c{`Q>99AQ?!{RObNF5*pSiDI+T(wM9Js*vUYR8(mWn)N*+Zv6gx`52+`>Se`D0gI3Uf*Le_UjpQ#|mu z9_yUYMJ>X@H^%z40w)QQ0;3xw7_s%l?ss*~jPMd}Csy->%3#|CDZZl!=m6OGeR1b0 z4r#QGJW4{g7+<^d#-u^ViAgY#t|J?13EvxI6g)G5a^@tQv9ZDqi3SHK!s`++f|5#b zry4~>6gV-38c8>tY!M3O>xB?G;arqO!-S(PV9Ittz7b(Mj9|u5s}5^Y&QTP}>FI;1 zkp^%*J3v6etS0zlQr?fE7mPeoAB16^kMiN#k#UA?MAs**y=5bOJ5jl9@W)887I#Ro}_QM?`hj_!4GsNJU)jE2ocJ?@MVcSgMmYMJ{bvxlFd^N3H zo!NWO1~F42Fwo1>f?KGazL@uF9obJUR9}1$-9(Swu+H1@&jdA9=Z@NlIXefZo;DB0 z=MAZ<Fg*mCoH{R212=k>@AM=cP=`n#`cKAb=EtgRi!Ygx};U^y&h@1YHMNjEC z2NJmwr&X#kh2;~!-vSzf3}aPQ$Nb~X$!Naz4b1xERX?W!DxwDX(N$hQJOOeb)L^QE zs($!Ys=PF+rVWqR9-^)e{{T!Fkpr9INGa<`KNb#RyTu^lGR0^%CkNBlK^Md0kt~Z+ zN_xFU=LfM5VV%#19B$(%ORzBwEi%cR>DGDJHO=ySs( z{%}if0IgVVY1lFj3}B7M9l3Hfl}6Yp3+I4aa0rdCQ!3?$HOV_s&8kKgZBjuP6}3ph z=v}bEmD`f59Popwg;-&5pc5EP&`NENUAY4DejE!>g9Ks0W1a=5M^S-tAX96fpB^uK zFHo2>^};J0@R<#$Z<^8eAXU@Ka75RzExjgLuNsD)EH5s)*c= zY0NIt^$$D-(t#2V7D}MV#I9AR?GwtKIBHEfNTAVl4 z(_ar&4PN*S`gyhwawNv>ESx9q*mZK6Rkjl}fO5lF<>iDEROT>4R8o;RC8}7#EU_YE z6gA0Cavh3Yt%n9FFSb2qns9S0K-&yzUgVQhp(7hO#3o|}A&p$ItwVZHXANg4TS+cKEN2I23YWH`KNU19gIMh#B`qts*k;^w-P&Nfg@(+I(A(-Xfv@UkhuJ79(wwZ`9kGjbi&yr!oCGau&; z6x7)Al9~*Wewc8jr-6mJ$eEJ8rlcTA7&VG;l;0S`7Qu|MJB&vom5o@_6LW$ZX8U7y zTJpgtWa-4NdS_*n?2th?GMyK~Y_;KorFz_|-@ zlxT7oA-45$#*H_ETTZ0o!OHc^1APWI?(w#sagCCWxCb?Q*Cf(BBt{c+dBF?V9455$ z$D2~zy z=Z6OxpPmPGf=1Y4YsH$K@jYynu!jN#4n zThjqmfJfU6YnM5ogvnfho?NigTHy;nOgvZqY%$lJD_5>7jY95IeM-pR0Mxw$d=Xf< z-wp4qMe$P-cV!D${{Sh&bwx*?_`x-cB5>PMxWgJP1Dv&a>u-Q+T?xkTER!>UD;7`u zVa;tI0>VzRuR>?^z)P#%_{x`L?|`0rNjJwiQ44J-?N#tQ)dUO<#;G`@rITk@kR`7$vgi5jC$a?=dwMwTIY#z27()pY$ z+p=&tUAEClcUH#>(!C140uBN&MH8BrfjC54L3b`fum0AxC-UKUog9uD@@l;_4af4~ zN{ZRo`eWkSeW5Jir5|_^Glu%NLEPh4>gMF&8k)EU_?_pnavrsNj55|-o_IR4uw3D; zq1iv@6TP;Du0m8=_!(!G2&iA4*cp4`M>i^lxnf-kFm30B+J8lfz-wNWV^I7Z{+Lk< z+6ncFyNmw-oH^0ff&`I>t5y0<^a?4jMCtQyJUCNkm$|_)4%IECuF@k8blHfV@eQWTvhCD>ZC>_+e%Fz6@pk zH^GJ{waMwKx#xuiQ6qdcw_68*jj4Xr7`){SX59(WR_q^K+V;fOYZ zk*%uU_-4#12_`UAYvu?C4V6og7$F^?7&uLNo3Jp!nmec{lZTwq!8ng*O1-eon527) zN@30%)i{gh>fDS-vr{ElkLDr1zYot6Y|XhUx7!Rkk|UN4 ztxs#PqdALkqD~oVlLrzk$(>V%de$_Zux(9co>L`LM5K&2)FkOXn0cvePS^$dX;fj& za&t&b&d5w3OeC~;wGT`>KS&1S0-95}!#7&(z?9zOcDMXt4J4d6xlT_bj7LF2w9 z_Q5p+uF!2$6`UBwAQy}*#U=K^NT%|(1i5+}JkO;V|jT{ z=k&v{rhkxvrKBocBw@yugxEy-V9H7b1OcaRxNxVU?*Wc|MmSQP(so*9v^xzjN0Gy` z6h0K5NgT|_-x^U<28G6y#l0}`OHLGxzjKAVC39Wa1RE6BzsvX63kpD`N&8L?MI-3#Y+kfdZElf4Q}m1|ie(E%9MMKkEGpFunKVJGel#O{VdMyO{p~j1}AtgBmXO!d-;+8yP}6$O6Lv)F8|Z zIywMJz8k6)d5kN0UOA{mwnsc9;RfX4T9*j^xD{(UunuufjvC4yrNUKXY$e_qxyQ8& zBI5(4-FJhI6Jn8ch1%Ut!QUD=cRCYwx+SzXz+JCM!Q{V^(36)Pjo)UG!I^)i= zcGReQQQcU_9)K@_RPh2#;Wuh|V0w$zx5{1Wf}VI0=i{CddZyS7`hssbOp=t)+DlZ_ z$~XF9vZ|_P_{xf%Q+x*NnzuOS$Vz2e)%uS-3SQTZp1u)MCu}jYQf9=nZq61$%-~k% zRq#V2o+^#@mgb`va?^vDUZG=#_Iex{PhbeejW|=g3BiChT>4<@a!PR8(KtStTB8E= zz3BFiqqYicNx*dKfr6V^+Z>oOjA6*LFs@RP$t+RD(Q|)MkXikf*DUd2FmYz z6w8E-@GeB!?v_%DhQk_!UikGY)MFdD5i@~DLeS)uY%S-6Ul1%XLeygd)TogI1BK|M z9YGpr0jY4P!Ox~f197|HSCmp~Upyk?gH5rsgM1>h9P#CZ(A!8pO~^P6-Trtq++aGA z0pA{nCN?8>k$J*fAtz%ofn0k)+}o}_d4F69QBYHby~>s}+Qn3b7zXzuIp7-Sh%%G& z>1=B4Kx#mX^5|#!;8nll)on&Z`C$&p!lkq@RxQAyKQ#UDi_ds0e8(yO065j<>meW? z40-;z9Z(z82`W*8=0`F0$DdT~sWqs!y+?29&-cC&T8E0_!c3l4#yYTCi$T?v@fCJb}h-dG`T1sO^d zl)w-_t>m74CkU(Y0VN7bWPBupF%vqso`2^QEf79RMT6;Su)zaX;+dofIf-elGDw#wSW|&(HebVS&_M z+6wI)V7wBfnf7o|Q%uSh;*!|bwt*u2hWzCHZ?M7qIZpLnYTF1>wJBf{Zj~gNH$EMs zpFBosUUxFDa;HjktdiWB)JgEC7UyET2K7k(C02X3T5TZ`Ri$u}Bo2K3XA6ch0@43dy{DU`C9=$#FcraDrth$QjnJxWkjFmo1T39`Cv{X zs6*9CYf_e^sHgx2i6B6Y#@%o`O|eMJ%Tw*4QK@Sy0wb3GKw`ldp=y@cKPdLIW*P}v z4wEWTT404<2#u^fu>|c)ipb1fVJ;{Z+YOUH1Z+J>CU5zP+yRHBW=*(sr0aD;Ob`NZ zHudNIaT(%@M7Vq-z~6~!7S^K|l#W|^VB_~n2VkGG`(%?vHSq3i;#_SaQrb<5K>S3B zlLY?YZOQVRG8MV1QW{rxVnN)%-1*3v2g?jxA(u0l=gMuxr@3UEOAZebZ(w<-&7ks0>J;Ok zX>63MN@hlz+u{R#r{@XCGlW-wT~~@p0Kn2?)OEv`7jXbaU)<9Iq@-v-1pFgR#r--Q zacB(zd3Ply4AVA3U2*qTokS$~qIQVit{SK_B)X@n72!&D0xWGD{{BPc3Y@5|tW+`qd`h zk%E(%ROj_>KKFR*t4yd8003@xgpP633{(}mDwN`Z?$WS8upvib7?DzDDeg%_XH&yX zq7x(%0E-JpJ7I;Oy43EQ{{Y1uK;o3zQrn*rw}C1E+w0Hz;%&loZRM!47Bqe{2<(aUZ>AEv-+Kw%U@o>Si?ke&BiGdW$1y zT*iys?5iE*BQVTYRaTUxm3X_koibuBYpI)ZA*(U^I0zin`WN*mz!5Ic!U7PT$b?&<2)bfe~!6hyzsKMW; zDd}U=24p#Nd^ppOyo31RDGB_@l@$cZ`HlB6z7p2BxSPUjS^(W#gJL47Qc4cWD^;@4&$1}YFkUHd7kl3Ktfj`q!Xx(?f@}hU?&yVY@A|>o+(n0&v#1+QwZO{nL-qN zL~0`bqZb(qS{epVDtAHcFLC3_7bU5y;;uMeVVJu8LyuFdye<`LSsJ9tRiQ9^uh$Zs z%86N*5GOow3QIK9Z2}tsNgtI70$>nH{{Y+#tvHNjO+4$=bgZQN#Xt*ij~0X!#?vYbGAQ@^iWbNjgx|v%MQ(eTH%~@X z;;NKZtsx~zQGiqb0Em)y7!Qpqs5nnJXD(ae=crm!jtSHXzzRuK{{S(c4$;qGW!c7N z-w5PsVu_!qW~h$nYxt53>L*vkttk<- z3|*yv-X8!<$_~#!zS&%7{P=q^F;iz?T6QLz4ArU)*PtiU=vhcQO{#KVM z8$ne@V4WpUb!ijf5=lutW`4FKI-wa(Qq@bUNljQ&thX|vqP+kc+>#uMi&P=7+3jdyKVJEvklm|GM!FmAX@bcTSm=&Zt*D5F7nC|a4;J{+E&U?+5!}(9Y`DR09&7z zQyXM$uDRarOH0K_QaiaMfKo=IXwr~%OznNK>!b38l2T5)iEFc(r4ivvj`xoi&=MS4 zq@^J#h!JSyBji4HQBg-q8+5qhlvI%6P%277t`ji=W_>LwV!PSzH+xJz~={(CxSkZ?*g(g)oV7p+uzx z1_4aO@45c{aOK0nRGAp!Cmca1Mu1raYHvYnVl1E{!!sawy z=anI?;x;l0{S>He#Z#(#-6unQf}-bK8(MeT^4*uFt2E9%>Y-{=BozWdN&Z-g+iOS{ z-h5bTeaG9bN@_-i-&&v15~l%CxifA+d33~?m%aTBC^w}qD3rELCIGU14?`TUyeY-R zV}$71F30GIr*zRc$k*OJ;5VNWt5T=JHCSJKI%RnS)vh+vB?@_3li*p_B*#Jh@Y9&_l{Fq>rBXiPTTF(IpB2n?={6!fUP5Jb zjTjuRJBb~Ff6G#y96)VrOR$w7l9($3B;4$J3HWdhdB#a;l{Cve;`_T2bhenVfCw;R zN~3dz9OsII^y;X3p>66O08j?7NZts%le7rJ+&h=IpD2X|cPI*ZZfZyZ6b6uznbjBM zBNK<0d)|sR(V&aT7)yx{)T{YmtX*4+59RXf_I;|VYPHoRtw~BkNda&XU~XfT&dWpjXUQU3sCTbj$-KIKTC;q_(IEYQ=I_6l{vU@WBBBJ&BDxV+n* z1Lji7mPeLnNb#@ExV;R8s8#Q z`E>yRdSO&?V>vA=ebogz8c2e*l`Oaco9a=%!g?R4vB-B~%7RG1Wjd2mvd1ZwqO@p8 z3MyQ9b_CyGZ@vJiLR6w0Qc{&5sy-QJ-h%3xUl>H7hAiXF{iRg8tk?Gb?t{T^NNi8FVtAsq_ba<4hFfBjvKA1_wDYBhr zHG(5VTd&I!jvL`GdSul;wKUIkrASCtuMOrof4BVLdTg<*%BQ?2?rBm~0dz>xY$Kl7 z@zYVH4%5H$lUA8>{IS~Q1cb_*)B;c=iz8P7~3_^ z3Mu=FLHKru0EMYNPe67**9@(`l{%s&UEsN!DDvNt=YVXEB`QWWoaCYk(*^-isY@3s?Eq>y!O1I&MaJZs(&dng0GJTAWKH?)@`5RjuPJ|1VL6DoyDkC#kp(t^w% zhH$EpF=+m{5PYF56;{1U`W!6LDqX#Bn>59{V5ZqARmK+Pgq_3+SXtJc_xs~s;G{^O z?Shbkn`!#tPUIBKW18P7F3CWKMecBt(Qhms;}Of{fnI@Q*Om)vTaflfF~}nry|Jzm z=F%2eDKcjoC_%!6Lb2kK4ie$nHO(a?5C%6(a$_3?^yAbwsLW%U+CW-DR-G}v4yQ&1 zWg1O~o(y1Ke6Yr~FLz{PDKQu=fourLD#4V=n8P-qM>DX&)Q%Asz$^ey&j(W{Y%!>E zoat5sVb+bwH^V(DqYhL~9b03g35oh)bW~}jX&pw5c!?(-rY_A z0C&R4c1!~}?W>cEbr@B;h&DKH4w;-T+M!lB?Wt+Sx3vkMmNuD2p@7+Ni_RABK@)-v zT(@z-pvtg<-0*zujB&}_VHX`bh{tS2xoYczE^r+~!2oz4YQp+_0sfv~`#Ekr5f zgjDG`)UIq!GG_qg+g9D_^7>=VXC7lQ;`3@zr^;9bbSM#9E#5l?&n8il~Sa>57`Lvp zxoi;HiRXY@T=T(ADmmeeauic))SPUv3Bql-KDb$5_V3dS+`D2$#K67-c{h)i3w2Y0 zs!U*!Z9vo}*B-bXK!rj70Gt%^H4l~ta6!V;8j&InGaDOv9C)Dzd`{-32QM+0%w`se zW)x{;J8UP7n)vXyqHie1)nSF2Uxp(BGw@)R)#1c%RW?LGBSo;YZd(GN^1{eEw!&PT z*IFSe=Z&Cgn8IPeMm9>hj3;(en6~cx@R>mZ{II5?MTRvdaof|I?nAiU?eaJk=J}EP z<}h=qfq|Y#>4MywVK+Y2@GH&f!;`Ivw=53p0O6aLo0Dqk%+56w@;1SaF?oz)Sdq3E z)UxcMQ%+N`I3bpNu%cP(f*NDX6)`Q###sp%EtakQajQ)EZ-SE87+`W0rht*Q2C2b| zZWDY8_?%Y{DGn*Js7?T=5&GfAq)9%w4c6pG(;9I!DCBkF1h%HzV?xOz`{1V;(|^7+ zak%B>i=%ZZ9*0X-zuOz7m@ybtEfQirSXs77zA9^!{n7}f<%QZ~MXJF-!s5 z1-%N&W=ciJJReTZ#Njq+;|EhR2*TXtY$--qffzBCZG2@r5-?M3MkJ7`n&g@r!6-=D zJu!)Ba~M?(@;H>5O%B4wlY3yc5fXY^2{h3L{{T!B%TOZ#ymC>b_`NVwBM7pNe>@b@ zU?fgCD|IEB@*Y?rzJOqMMw7QJ6xw841RA?~RSA-xJZ=OGYK`!s03&P-TC9f z#F_fwod?SscX4>fDfbi_+8}L&l+l>`92&NV%L%EN8{k~M?1L>&EF!k!acml-K#0Ol zHLUsJZeE~VY7Y2C#w{da$GY{xPPJ$l6y~OSrcSAh0P{y|J=8P^Hp6vOdx4JKNRvaT z>ws&Mr6&$`Nhwh=hOEN`*CE`Qa}q~9FlI{tswWS*m&NnMe!LN?eKCA$S(8m;vaPV& zRPdD1TXaOb2XWSSDrD-7jeQ-@e zfSfnhItD%EaKa9)dQ6js>W9os;F{M6AG=|;q3E$V=YCaGIVm^lVBlw}HKM~BRJbN* z0>4qF;&7)mQrs1@?*OS$!0W385 zIbv|y?O%@g*WN;o1=JDQ;3t}ToiQ8#05Sdg;Pz@t$i#h$nN-j3t{iBqWnfSF$BiSh z52}5pdzrWO!A(_lIA%p$!2K{=Pm(vsyKQrYgzksu3$pYkC+~)uccKK~=ARmO!0;(6 zYmvd?Z-oPqfP2#tFNK>_2%HM{X|z(E3dX(Rn_(XQKYL@|{U>Y|<=rw0+`LZnk2~vI z2`R!(6Ynr7jc=4foe?rHnRn-e!usP-xaW>c+u<$V7{;M$21&vybn-aYzCAFt)#VUg zAV4_KxqKj}HEw>G*SsRa-C$vEaui5W2OdZ&frLwvVt$y}D*(*lWy#HLA_N2B#>i3I z2&G)cHwp)y2XZ7!XIDGm%0qit-~_8loEt{1&Imaz&0Uw4)M=t`(;mB5*9~+vKl(<< z+CG@a>f~eNN99TGmZ+?Y;l8T3NQuHVb&z13H&s>1ncE3-Q-Q)(rmAjv;3ulDgsN(- zI0fp--1EX-qA)?5@!yyPs&B{8=!o1!@V6u4e-$9oGAq}!Z*PJrZCq{QQ?dc z?-s|cdSjhI94g^9`eO}InZtRgm1EUDQa8gxmo`F+cCeey2YR-|;CEkAtvC*$@+~+f zw$luil(kJjIBl+~2^Pkc6@@(T-C0;vsGL!@l6sbKk*=xLH^U`z!35y?rvVc4r7diP8{+YLE*=bHNPK>a<6m7G{itI5CP?5&JmlFlZs&e4&}532FwB5gxdGF4DPnoxyD^%z;IbgK#}m^S>!_sN9UN{kt3nD+pO(P-;M#Wzl8^<+vGT`t4e*O;D|&i8NRK%E z{V-(>Atfpx+t8e4D-e|pSShp+BzjoH;Wp%JjTNQm~x>&jWVD8r`G``;Do>z zCg*S8@2&`8!q>rT$sK>TJ85Go=6wES4|g{W06oHPkGjDXAeh z!6~E(f(8m{k)}pGSkQ6ZL&8|f98<~1il%|91V}q!7nULc!rbhxYaEa%ffyC{5|wX- z9jPFg7y`BJBOV`>?&24fPtQAGC*0;Ss_L~FCj-AxHaMC`Ql>j1(lrkA7!_`FoGS6x ze=A^Ro>-aBJ=I%HFA8;?@rq<8mN6ux&OHtTg>EU06c&LnBOVsWI9X~4FgMz8nZXGc zyqZb4ohiV}NF#h0@}A8*-YDnu~-R=4*P{7*hN*LDj@vvtFO-vuX9{*fTzzM`&7;Yx>ZGk{-mRXFj^q~^4RtIz7^fuDcE zpfT%?NB%e!=YrQ8UT}izPRJILsaW5|Abl`8(h9t%1g;H;`QS%apeirZ`{0oV-zg^) zgqs~&cM>cxDn2`>!z7t96Z`VPDmr{iBg50v2soWaN~2MZLQg6E{{Ws(p;$t>7bE2+ z#|SM1#l?)CeCGtIwRnCn5wQc$&k6TN3RGnisUUw`2I@SoMO_p-jf!>@L2pWbocvM! zAw%~tiqfHJ@X1IqaGkXMWc@H;WS5YVH7X#?Tlf7u?2FXuTdE(-qXuV6wQY`U#_XZG zz(5kDd_`(fd?p|Wh?pK;cuJ*&g-I!dnVa~J?hmi2gIqvPrpgnj%3>qxXVVBHONmvr zB%3ReRp1ASbmt=p!a%Y}+ zr8s(2tp&V28 zcOybz5jNkHTM>Q>$Wz(&MADY)CZQ;jNIoMbBKyat0nBS(%Nkum(WP&!f<^U7ncQtV zk1KDB7%li(8gc`25!^uVrfa-$dP=Mk7C~5oO{c_Q6X}R;UlS^+NT(XK+%8G*n_quV zp~m^=5!6*k2-0IqV@xLGNlCvTMUP&F88V7jU0aW(DAJWAM>})A<7`GWN^ERzJ$X(2 zN1h{GQJEUkIa|*Fn!+kR2Q};y zAQEP8gz7W&CZN=KecxKN0cp66CvXgHfzz6%xjp^dQiax4u!1)FVyMN7Dp_7Gf|YQ! zYSQeWr73J3WX8u}ZZBhps`}ztb-?RsN<5=dx(kb&+;#F8iR4vpRWzC=4V1K%2|AS% z=eFNL*AJ9*2Q;W@rMRRtf{<1=5O>@9VUFc_8&4%`m$sEJ#DyOMu7551$4TYa*AblG zFj>yD6582hsVX3lVoV76{LZ}^*o|}Sb+@j%8C-V7B#qK zSCi{8=gbUv){~OFl0XFxRKxhomFN_d;u4ac^FZ^7>X14~+Yk9gJJj^xEn3t}$}gnM zMT!32c!+SdZ@Q_sNJ^Ecei%2>cYt8WuU}Z7@TGG#we6wtufU>Im`Kzj#%2VKu-1?b zl{1@Q28^dXy|UO+pDIc~F$7#kDBNH4^Mm+%Cvp76E)=N^sCWrhl%#SSbiMigaF-2b zuGeM?UbQ8*K2SaDWoH+j?5)*)E|aI>Z88Fe+iqj70m+e7 z+6NmdscrXd_qu{5T8D^8-^lVC`C`<`S4}}u(`hKFc00l%btn){^EUptxw>)&;ubGZ zx%*m0T5wKBN0IPVIa*Yf=^IFBAIzhxRDsm0K>V^|X3?nEXVdeB^D7J58o{DSn+vDNEJsP%Z#`04N|0?;%@{yOnN?co` zyF&;FjY}(5sh(PiO~{Bhh&ZYSaosv;x_;at+2bQqMVx2#iT?o8G7`-)0u%vTgal8e z<~QkxesH$9uZfc4W8K!{Es!hQUsEzm!{RV2(E8R$8TR zhr-$kW~Hi%gm?nACPGuF1Nl@{5n@5{a*gNAQ?-&&Jkr1QRRvw-!b6HGG5-Ly0Kq0? zV@f#a3Q3Yqn+k{ag~yA`^BR1Hm2W1Mw$i6bC&qj`l&fvy)BUFn?NhF!Hf7iQw$g%< zqyih#1pfdo(fioJl{qRAp1oB1`@e}=LDSwSD{UkQNB~>Ypn+dwTH0s%k`=cj$aSCJ zIlZkRf|gz$^5+lsN^z!k-eFZr;sSfR0HO+fI@CFV^ALS4VSsWB{G7U}=ThdQJ=hBc zB}*x}F)_8g{cxWZIpFFr@`*n4|9$Pk8ZB zbkD^bBuC{xExKD7SwM#J#?;e_a;f5!t}O{Wn3*=PxZGiEr!8)aFJ%=DBfL-pyDK`q zEjQl_nYpFxH0~?(L@N3WOvj zJ^==2oRhaaCJ+JKQB8Yxj#HxRnx#~w@5FSJld4k48=DQp%=%%Lw>4FLdYovyl%z@u zi33c)QG+0uu#yDthJ4#IEWFDsD5bXuN&rCAzvbq6Zgwy(aU$XR2Qw%{VuF8rMf(bfAT0{ti9+#XtHNw>`Je82! zX=sv?T$MPXxY89dwa-snNs*8on!L5|N?*F8Ot&A1qF|D_J-@fHlJf>G5sGo>}PQV@F zcjt%BD6OQ(@`_Y7+^tS5CSXD-s^sBtf;j`LEL zn838xRMV-V^Nu!zXo9IQqZ$YDh}hfcB6rT~+BjD=tYdM?D~R*DtmDL7)R@u&2?<(e z35{M?+n-DWkY$U_YZ9a+cY47=B*&P%NZaZ>;Kk(id`FlwNPrs)2>}|0q^DKM@d9T5 z0R4ASi(4V#jIXmU9Bnl#?<<^;h=llJbwQXKj+^g=wuJ(xlXvC<=~p?I4?5Ly5mvtK zZWNd)lC4HUQX(Sa*pp@S$)lxllm#%7btoZU_Z7)RU+iKz;gdAY8sZ)xc$Xe=dhY;) zrBP_~k<$+KIqMlU3S3r_@>@@UC`y1ZsWJ8wZ(I8-K%n2zIu~1Q$Xy`d ztt1ohz$R4(%pWg2Gt%aj6}4)bhmyin6hbyiQkh7x6Mkl5Ohy@MYwNhKqq{;IYMhlQ zqAs;tNjJIQ$llnMWn3`!Pm-T_D(+P%F2p5f;sJ}55M!szOwV@PFFf{5j`#ZpJE3x# zRdEJvjb$ihsdajY0Y+?*1VP&IHkicgCgB7xThAX8YEaS?ei5AN{VSLYr*Hl(?X6r86>Z0KvGn@sm8n zo4f_36b9__cu{QOm8O+73r}#55*jX9OS(sddYLm3Y$pEz5tb;@!)Q`evXD{$_;~|6 z`uXkGIHIW;g<_Zq?`spOv?w@KhLQ-KFry@$;(i<*lW>=C8m_Ka{+&dixD%_rR+HgK znUMy04!A>RXbZ_%Bh3WeQJE=dN)~)6Pz|=2K}t@<#9yH^vD(rlWd&7I9C1ZzZd3x` zgv^@{J^ZibhmIm!4^=zvG}>vIFo2~6BmyVIPVyu{GA9l0=G3XBTHbw5DKY@kKpgq) zZ!VuEMrdwm%FfjX@Jeb^A+@CjW8%^Y2?k>4RCE1$;VOcs(4yK>+@L1IOeWL){V=tC zQ)_?0sktB^6@@8R2Lq+22na`bvjIg)JHbc-JjY4j6vrVTT7k?1kcV-VprjHsg~D6_ zZ|OT?Nx}RK_Yt_a2A1jD8s2gxC>=@tBhtp$a^TJZsm#e?paMrbeVFTS}ye6=uI#r}Ac^BG# zd*O5<6{LjhAP6z(Y&(pRmQIJ?4W<;bJVi&yM?a_7#wb(Lyi+Q9T2*fn1^LYFj~r}# zDP+@+%$nU~w1p@Tq=Tgx6Bs#~GO=N+7%5AnZ{a_o!F06cDFOtM`~CXi)k{7=0Z68p z199}hbo8ZS2=v0tQfg22!L-zoU@*P8%1=0?AGpG1F`}7`u3c#A!v}6yM+!I!u$d8syD2MGj(FD!6lyaV&g;tw zEk(H}gN)n8Fg{L5Eoz_p4u+>=S zi)Y7%$G!Qr?#4_OFk>p^ zIBlhLl%~SiIhE?enuLU645B9du(}ph)Eo$h3&~B2KZU!e{3SN%N*RnJ7*>^GZcbrDGGq~rlCJFGGD;OA3Xc+Rgt@8ha#tFVP;Ji`h0Te+G0BTzY0Y&c z-MEY*w&!t$RAl2jy+Zh7aGALXwz**yG&dk%?(feDy5E=64IH9Cs+=hE7|>IhvB9cp z_88Q$D*c=}p)J&gOK})k4cvO$8-|9f54IF(5UD@$iddGtX`#ytff&^Y(lDaarwnUS zi>V;*^}w%)!H$W*&Z2*&ER0f9lWWqUfZRcyu;lX>Cjz+5;xVBcly3zJMBz1}ZGx1? zL5)HL!NpB-mCo{#Lt1vit+H{lQOt}G(_tdx6gBB5JS=IvF4I!1dfEsv`xqgH?`$)2 zS#DO$Gii(+PQ;C{n=NcN!PM=PfrYuq*cR-!8{m{AOk+md)NO)WYAyR1o$2jz)eZE* z=xirpj10)Ij4aw<{_lz0m>=bM+a#OebfyN_*|xwNV{qJZ!uKNFwrvC;eQ>%r#)us7 zLr8&+yd|9Qlx;dwf)TzGN_vbcgvL8^;MA)qu|F&-l*9@1IMIZ_`QcyyGZ^d27ddQz zLB{1ak+wW-J`zq8Lu97*!69l(x{+)qw9fwkrVC3z3?{Z<$xqXk1;~)Sz&ng4wxB^6 zFt$>g93uCJP(Lgs&R&jCsz3wxY!2irVS=0o1FUnvwLPuE1@r=Uz%@-s+YXN-t^=uS zP@DstnXxg}wHRg06JkyzRm{ZUhcia^!NzQ*x`0vK!siS*l+N2?L6`|uy)eg_w+2AQ zlN4{y35L93rmT=p*AF#`BbFMf(S5O?#SDq9^xFW`rZC}C;Tz$$vB5JKp-xFa)yC6? zn&o)6!-ZS1x%y$Iy?fvMW0PCLZ>m`~oHf=t;{Mn=rQVoptvj4CR>orpSKTC%a1BG? zZGtLX!+Y+e0|(0q!lFC8q~5BP?;c|S)zr$M9BWrm2Mw=Ol_=m#NyttONH{!&N%ui<})ysKIpy32ka~X~~Qh%8XdywWVt3{%~_H z2#f)8_hCmc;1>CeEF9LH0@~nx@Twgf;5QI6G% zrOUu`!cINY2&wNV!fJFJ4)o2bV(=RrVRx#enobl!GlWn{ykSPwr8w@TuG)%h+AwxsE9ZvR*DBu*8GaboA#-rLx{dubt&!9E zVLF>mQ__=XASRFLEjlwP)WcqzZhJI+SRp1U7~Q? zQ&dLh8^2IS=MB|w&c_nHJ*@7sqPX7xy_gx1gz72`*x)DLJdP6PqH9quW+aOro)J}X zBYXmt~T(pAh5aOp=@M?5(O0+wa9x4FaR9Y`PyL^9fwZ>}G*`hyWT zV_RxTT%|M>2EgI!h5b-*8K8Q}z8)xF{fsa*L|g)p(^LrG?}AeCBMmgq9$&5uZPKLe zhBb?fp%kY?*+=V*6;T*N36+o}n8gi^CDM3ADewjbs;CLy8oK_GfNE-H(}%|zb0rJQn+!lM{yLSuPu5rm+t5ct}4}IB%(0S+)*+f(3>Fs5%DwW6;2vxc>mD zH&-?SHp5L)XH;R@wR)!bZK+Q@CGAgRuY|*xwW|1K%ow>R5*pNrj5AlD_^rfHjEDS2@8NQE(E6w zO3`Sf)0z@haJH|ZQl(#qlN^kBVHpa|T6|YJ7j6skm zdtmmcWXPE5f>A;m7C^ibeK}tpyRwPSyoAcCLfe`^*vF^uY!I4q5g>E8x0m_Df~eM3 zVKb+c+;4xjHboc;R7RbwK33>4+t;nIgF_`oG{8-O`QXMI4K)c6u6}sjH3qxnZNQO$ zQoiWpbXE1XJZti&b4qYwUOON0gQ@CtoHWzaq*~Zns<~Cp7}*j!d9?V;>C+(Jt_r7k zCdUjYt^mM0V21MuKNdT9DUOc``MQxa=Y<3Esp*DRvnVop;E&>IAIpz-3RAhI-IKB_ zK(?Qp;}q~W2bLM#%|I78)Mi?Yg&(d2x`nS8+BBS>tO+De1zusxRsw#udEh#Vz=cHN zZgr=K$To|ruAM|+3W}n!1pM$dO=${&f!(XsbAfZ{FE(Wm>!1zr8}$&Q7);a^3?k#g zFNs|1D%e;9LQ%?z!ePQNnp_7PDike+xjAeOvwV7h1;#vWVEu89xgy-~w>py>L{i19 z8v}lL)Gt8t#=7sd@v77{VLR6bQCQ=;_diS^@}!f6RtY;{CuZjpx%7$62ZSY3j7A$D zTq}Gy)vDX!uBZ@Za8bxt4+wW%Al%#60n}7UfrV-mM&|%NI{0=(=SW5+o?f0DmkZDb%7sA{B8UTguUF z8ZV+5mdcz_jY--gSN#33m%IDJYEV*qFoK}5U^$+cF%)u`Do`pQ^(j3d&F_3_;VV^~ zDcq4Z9Qxe-aK4^xc+wDVwCT~L6v(iTiwLa>Qo;O1DoTJ^_^xyJth z?Kp*YM%vJ};Ym_b6r_nfj86XmzI`zLL!6^A;wKQXr~*$)Nnv&+d zO46&K-0DvI3qb(L#aG2SwMAzT)OeMkFT!M7W2gG#TTDI4&BJXuWvEtlooaDSrMC2_ z#HtD0Dmh!HFC!~0Ewxe@NJ_a$x{7uw`ExP-Fa;H2a>{oQ*-Ov5Os>X2m^YFC065i( zq|ic8PPdFfBBRhYR*}fJ`fx4TpWSa4EcWSF~?t%luk zL@|IelQhOkXzZ2CGjmT&q$HA+C=<2MD~?mYo-y3l+>*7pRN9mwD?So^M&`yK0kQIv zIA4cVoL40+pe0H0k`v((cs{3=*WY{(#x#i)hMl9i0FsCaBW`2QpFCFBf$pbtloMll zgVl*`w4F*wNhAqM4zFHVIm(sfPBz;9C7q&fdGgzz^};!OD9ajzgey!Coj>;#GH*LX ze&+%;l~iYWvVrjgtt4-^`8(pqv{n>(CeJE!!fvVBbv%LMaD<{r*qgiS(f>@kszkxwq*!Qm(Q3_k2ac0uVrnC!W|_Tb>mz zG|p2`5oO1`T|=(Q>X)rWBg6nUPUmkyfK`{F*Oc->(wX!~w%@adsw{zd{cCHe)RLGa z5=Mx*7FO}+gR^Xfx=>J!DsFUh8k23lzF4BkA)!S?`;Q15mo4|F0@WeNfUyK5dQYEU z*Ang2=M+)oR*Qdl%Sb{kP3V%SkzO`xkZ@Y%|EJWA~aB53JI*62xC=944<6hZ60K^x2xIoMA4M=WBMw_bLvsVPX- z09V7d*Yfk*8B!5Mxk_~{A^|p!70I{t#_HCOl|AX#!AxKK)O~3 z2d#{&By%xaZZ^uol7`77x~Q^J0o%`OVTC!JUPQNQRFtK(>h9YjMw=Lz>2E@C?VQ&K zGWuEybZS$2QdWWRCL`y|VIFvoaoU^6=~T&EZ&WDRB+PQ_<@7j9ea9(sInAx5N3*Uq ztjr#Iq1RkxPHNEJsnVX2&+m%zu?IWP64S1R`<24}Ae~dSx^n$-AP45aMoB7OaN2VPdAf3Tv>Lxro%A4dZvYJxe z2~%t&fv!fUSJHnqxq}nW7Pn%&3_pO?W)GpoJ>qSkO_G>`W16HZZkyrDTcGumG?gp)aQ6hfEZg9<0oXGaHWd8sQv~6!x zcnF%7T4ke2NVO~9H6_J`qzIihh&Lf$LxT7NG0M1qJ*ugH@Y_ocEd-)-zJZJv^PM8To4eh9qqi#gum$WS5EG z(?4~!N!aR zXlSTx%0`z;LV$hJs5`1ok#EvqPLyKZw14qMC?pqRlyg3){v(?xhEm%FikFuiz-rS^tq`g#zFjN6|n|3+B}jiymOyp0X8<~?GDv0 zmmGC#Qk0OOf~AuQ0>_pA0Ja9pDHWPJ^44@Gn&mR9OabOdgV6Hi@5R+Lc~)Dc4i#!C zYyu@t%5I_MF#~8Erpz?C+Nm-mvX<4}Jbw&=ASNu4AQEJ&c=L=;&$%_&ph|D!%*lEF zdd)iyw&gxo_+vx_DO;&>2n30ambMyb^H&;%soYAc9bT^S77G6WcH+cxnZb?H{{RW0 zQ;sHTDlAZBYEp!6Fk;rUnf1fp3-E)9Ve0o7DNGQ^T=;-7U`@|MH;g5~-IdKO7KBb* zhQ&LD(x<#mt#kRd5`2uA-pRJu4yW+fP(*5WP^lp6ldvS%a>KO)CoZOXt>q_5T2i?w zP;UnDFn2rJCNU9ewaoW3?+r3(Ta8{Z2_PG3n4Y*7y6%%39Z|khhFd`XWyBwXl__aL zQjG~EO9OBszz%m2&Mk?4M_i5zt4c?7^;$-vkOI<|4T5e6CJbAd!!;dxD6+e(BT^D! z0BTpvo6L2!regx-nVn8Y-PNHVh)F40!BUo`1LL{0T$#^RW>jPaOFy~{Pv|; zYjk=c##T~Lgc(V)h*9Q5{Q&8Bj$=}kslc~YQCU#tyA^9d*rrW}Bw1H_)=uSH=u6Kz zsFGG8DkE}c_aL93oHo!hjJmN*p&{p#5+wMW-O z=^?g+4spC%eL9JG;Rb(%*0}R%RYgHSLJrDA?H_(yULyE^&FJ3#3GS?Sim0oHpKz0{ zYF5#I3Vso$_tnc{X!ESUv+S0f)UqnGW=foGf&fZQjLD)=Kn-2+JQ*glLGw}3n z#Xsa3Z5L;hiOegi68>WFTG2!e^w<)+*aH@ku&fnJIyJxh(u~klLBvf zfobct@Ydj37rCTu0XR}-Oy%sNl_72|ASrqU+)y4lCNzO2-|fegl=T&rsVHqq?>3Lk zVFKhp1PhxVmEHI|vzIu=y+zLAl9iPn^=_-SY>+kp+60q@$uj|=&+xpCB7Tc*&3Glc8bxMVkY&1b$ZR;ZBndwiiI|cHoMKGJ z4A5tAr}%2b^xFiejLCh`Y8G4#Q- zS(m-kq0n_YksWj<(l?%*`d=ASUgGx}TCqMhfYysr{wU+Ym{WHRJx`Zqjg0^_+Iz>+ z1dFIo!lNKXu@9`{*mt|5O+#(Cg{2FSl{%O<@WdbmTb;HMjTEZxFVDgmLyjer_|602 z5)4V}5I?pFrr<@=)GcnK@wLJXN>Vq2(|EnS@grj#xTZ;}e>-V9@U~FpRV#~i#@VN3 zDM<(*YWQR*&51n6BZRo)h&|OTwx*3!jE}(xQ4O*a8jjs}=4WhcnN_=&u-gI64It?N zN_6feU(5%F2dA8CU0au;nJ(5;`{Rv*p6!GvH+_-{hlU{dueK+XW#jf-&D3*8_E8+i zJFLwePk0iP^gswmFnJTW20=K=dPjA|KvGmnY<4~!ig|C&*53~qa#x+^P}6B_xMb@D z!93!2pAY!M>Np~){NaWvf~s6lN^7p+;kWOj|vh_E}Dxxyro73VNmG#XCR(RGo^|)(IUqyhbE_oclMqPu$dIEwbCt z2ri9DN`Kp=Ueo#xn6c_|b#SIoiYyNWZe zEqTYqAWsf#ou+)fIrs;*yP1a0kStBn!>7&4-qq(@n$qb4UeMRSQn3 zX(0*M&`zIUsKWxBD{)B$Nk_*MW6DXJo^!vJ2%%$A;Uj*dY2OFbcV(9&fbEp&QC&gb zflSM&OoZs~QYAeg4xIkj)s?b9323&PSgb4b1DWZJqRONKMx?|PnS*ax`{3s2fzk)X z%*mhJ;f;Absb+Daa1dx^r&lTP={_JxF@q_xggPXCVKMvk#tIUhwpGlpf4@u>OwnM$ z>&$P5?ZV6I1BzJISVGAB(bvxywtJBv;lh_RRVdSPnb@0p;Ahp}D^M24fcXh;tHKjk zDZ($O!bS*j8Zd*WP{6s!TWPwij}XIcSB!k{M2&GF_pCh?63j0>2&TX&e-3E@mF$XvZjw3)#yIe~Gq9MO&zg*r0e!L;wB zVVS4m*eR-xXAElO^uvO1a}Nl^8x>dI1+`fRd=eeW^_S9n6JUC)_LL0 zLhPsNdVnuDaAvGV_>Qq#2YeXKY>ON`Hq`EFkTF$)T7RL#9X)Jw!EM#se0#MCYItqy zV1}QQbB2~`^$5WY)d+!tUf52_ds1T?qM{4~hOt>9#N&4BIZg;QdAU3{QV%>3-A^!Z z%8J1o;dEAlcf*jUmTI)~!3nD!aL9_`rso@+!go@!%agjQz~_xcV2hu=8a?v+;{|q+ zy!`MxQ0-1nRD(Cbbrk^IV0Wvv^T4mxPdo}FtIvba0aZQ-!f#c1;5wSY5jabe09jR0 zcn1x6gWi99ZCP1+95&R{f?{yDB5%15Sp1tDHP=7C^}$t@8vO9jUs3U26TLaSA**U5 zo*FA^V8Ou^l^n^#J#}9>#IH|f6rEj6+YR*-ls3BiXzH#jn$po4~%SERr`V+JtfMkr!inx3huFTd9gRMi5}h8ky2(+(7M z9RC2WDq=~(ex|6MjvXl-n7$Y(9vF3^eDlRjDQWtR(}xOo1VrJQk?|Yh&YkJ!>xvqM z$-%YZWZXstY0E*v$#Mi>mlrHsku!nZI9b&Q-vU150~liSa!KWK!0tK7V;@;7-w3+o z4e%~T*Cjj8EN6Hp0+nj#jKWh9fX*`m2Z$SCR-6P*IeWDffzJvyIY!sQC~yOXlA?oz zzKS;CD3pRRupEXpLb+i;kS{onM&&SNYykrJ*$0+2#>iHjB{i)?5vWMQjjBKsd5Il=?>aMRde+#SKzT;WvgzRFQ?6L?7#gyNm7i z#w8GOLsFNmf<_6aXenR4@R}Qg`e2%506@bUxe~*7oEXY5i%5;|Qz_**Q_3c#nM@oM zgh{{W^H2$8lFLqEQ_Q@Vk+JlvVJ3{WQ?ECh*|!s}{oFq4gv zB2E_PBHKuH-9!uw;x0mmrVDeH2Y7jGa67FVT7z@06DX9#;H5M-2knGiPh0_VY8BK2 zYzp#Dn8A)FMhATar)(+CPHJe(5ed1(cQtOrfr&ME0R+YvGbGKY429ICm}N!t1VV|! zE?|(YSdwN;$lLtkhcRq}wlv{*QN6UI*@I+T4Asr^j6YYkhFrlqZH)-uN>?`1C1Qvs zaMN1lx?$HaR22xrEpguu>M7jR+gkAk_-m_vMX+^qop9Fo;^B>QWNowsV$9*Tp~;bl zN~X@4!)04gxsUOJ-l~inq}N)xIBlp|oH|w~l;8)Ly0E*oLq#UalotjY*1-xmdR;%3 z5i~_gkU8|nZXr3JDXk0=Z-SVnD^QtG% zF&vjb7C6{BJg^vfCu5C;Or7vMsR(H$5VyiiPCXA2C-uSxqWj}J!4rWpc3yPorIh(2 z39aMT3HQ;@8mZ!KI9r`d-swQ-IMlCA=Lwf5o)c5JTc$+jrPk;l+?;5Y^9KmHy=NMw zeGV4s3iNy<1A|nPg@XFv6t3y(f*UiuVI|AmsFZJoP%%=-CF>DBz%JRG=l3_$) zO+5}1LZD+|;oAqiFLIY=H^Yu!J?E5Rt);<|FyWUur*4?_uEhEl%Va!0Aq-Cj?WrN~0WwI#InG@aIJIn4B}yh}#YnOEMtg?QNw! z;3+0p<*)kULzcV^u@%dfL|YHpYtWoEps6KrQi>NwoIKDusxSUA8liqbz8@$ZFa%PC6VpDvwauV^?V8df|j8 zLn>ver;#{os-+~GVo3EYi;Onb)4+(wDmPk;R?^(zwxzNK@gl2YX82~WYf9q@a(7aO z6CG7FiNj@OEs4YX%n&CH^^9`BwZRiXBFc=^(@vr=-%`e*KdvN|bikdk-BC%X#t59M zqiG3=RB*YBBIPcjhsP;A6ZF9DQza{pr=B}-6NX?bav@90Iz8j(d6IMb#9h2H5ek6uyYNPN>XD zj}{hZFi|)D*kes`CfHpS1Ph!WP=sAE-9ERNN#E~{kfd zGM-$_JIe)q4%qQInQ8!58U5sebBquRz0{z7a%+Z>|-{RapDD!*Panmfx~{iF^fSX8lZE; zu5D#fh)$TCdjm&23|2 z)O3x#F{o7DE!P^o@!O_7N~IHs-0vu?lC@jBv8v)D8-OBCG+x&IF)WfQB5m@U>r!?D z0lL?CnIjG_C@R<$@dE?YI0>PE8%)(n_<_TFjQ5I}!?j}_IpMu+8Hx471IqW58mZvP zI9i>ZO1Lv@ZQLI71hUK~_;Y?yEfCO{j3^nAg%HlAMilOXQv>wHQPWVnAqL}6aj$m? zwg_0~gjO`gyjY>CLtvzJ6z_!-rDE9ezyRJcqCtxsP}FU4N)*CiV^kvkc*f49TM8vS zfW=W9A$5|qfia9&gE-ix@^|&dMX_{imWbaAw>M4^MU@yKrRhk%D-FVl-j>DwD7rqU1J6G`x>W$;l>tEL5fgq&ikdSMm6)cIj9R0eoMzOq-o z1*$UKgMuFkRn8mh9w|C-zEv^%Mo{j2Q`ZB&Bwq@E36X)_RH;DxyzrO)Wcb=hLOPvC z131xM+hDcHRfVvM(EuA|Ns0dej4T-{QNoQdo@3T|;9Q*7 zA^VV{Bn_;3;T1AUiAeCti}}VKJ=;@oMEOQFTLVSFpDuXq$i7opLO@K5sxKqxdSeYB z)3UW&Zk+!BrX3q#m8oY^XV=&D#w~%gcw*u|d*inuZGmZ>beGbYREv$^f5s7ADoPSz zGDOXc-_L7)xOiS(HIfWz5pM}2_xg-#^B;nuN2HPx9ZgOLDin_H0S+nXU52aUXc^;9<|z#%DY|l@WPk}95&qNA&LXu9Hp*29Z%N#dBn5wNUq38sY2)_TLg|1s z5bR}$KaC~DXe59NN-ZN|MEo}M!i~@+y1w;gUBf0;zlf-RH<w0T6Vr zP_$pK>4wjKd{DaNCSKGO4&E(^gLv}Ajc;IAmTTOav%K6crNWgcYA}G3G^YD`{e|#O zUyvs>TWEM`(sij?P06_D1DDSXb<}G`ODa;_RCtI2_Yh0?jr1xq-?;U_ivz)m> z8;_{-hYaSqZ&UX{T9vsmq)#y(x95S7;wf8fs5Yk5gBAryyv+S>C+&*^Y^e;M5=*M? zlid@f*ytodSMveZWLvM67G}A5Wh#LvZ&zLUU-iQ(gOybdKC+iIk^q$p4WbRL;=+_{ zKblvwtK^^!z~{gDz@BLp;?wsD_qo1ht+}Wk~K+-7!e!wjsAxfHGnh_qLyr+ znQ1vbSdj@+%hGOUZMo^V^T17|Z`Jp&4vGVGo9X8fan3g$csn*ms;1D|RN-t1xdOy| zSKrLW7R$2b6t*274~0^bJI==9#0`&K@GoxBep4admoN;UKJV7ZWkQ8I7 z+`;e8x*j)H`cL>tH;-9Ymbu=AE`Oufa`HWW1XgadhjCgOItE&Q=3%yV|@ohV3g zx>`oYrJahSYZ&#oBKyIJ_7D)wsI#;r)0?LwX(b^pzT$3yCI+i*zUI~!+{PiiSzP5_ zY?V5-1?jmZLrfc|d`Kv3Tg+6qLGMzMs3m?A9%gsn(0s8T?NX+iha*daN}N>cDKf2J zE=QTd+S@95+~&uEpd59@PjLok{5^xAhF7H8>Q&62Ej+fwv$8G`U1P5jN-3DqTyRQ? zhVUgq+fS7G7~g07Cam@SZv~~2P*m#w0F;Anv#Z1YF>Y~d?Qmv8{63W(!s-Eyj)aeh zpG$pwj9B0802VxLe9t8C6HjVfOH2GIIc8LaHukiKUIb}`UI6F?>`ac6g18-}aNiH6 zscCGf!iJd+iG>iUR7kQ?Nx$=6B5>2$w`VW$Yl(I9rk#k^RzT7=wDUV3B>Lh-#uZFg zXA~K0EACj!;Q;V;|3)RIY)dAt!gTcys|s^N~ExxJDvQq(zE%|q#POC&^+op7rW zdl{Yf-+SUe#2K-#;2Z%$bXes&?!1JuxiIGlXUd?ifYcAT4_Aoq(RVl6q+~ z%3`A{R%gcMsVY*b`_!;ZDjY&=NRuEKCu3zEk%80XnI9=r2#2E6CnIH2^TXS5dfvcIlDC3(vsV$6fFKZ2Izz(MFQeX zk_2;~_K9|6cE~aDQjqy{T~-Oui9VXT%z4FThW+8F zZS7AZz`aW)ZYUX0nb;mj`@@eJXAI=oePgRrYt3qww_SBh)LYm5qhT@tyu^9pz2QzF zg4z<|^(M$AQlqI*d0T%y&r=%Fv^9VZ%QsOWE;rp+`E4t$_q8<7B`zhcN?&+oq@GtI z_a?)Z_!63l12m;sQhnl}Yiy|`cVzx@2-zT;TK@oCAl7c%Z#YVnnqoo-15T8I3I~2f z^Tu$UOS$G{QJAeM?-qpy2C$T&37go!1PIgr063#g?pzjp%yn!|?^3YSt^2U=G?cSU z+Rw$PfL26B$&w_36>@DWc8kYf!Ls_CwuQ}9^z9V5`U;iaI%C8R@yK~kQUZKL{W56j zLvJa{>cqbGd_4Lh$|74AzR|Jk zk6A6`Sp^+K=iAm*EP1yIyDu95S?12>Hh$6AtHGZ zgqg~jrCO5e^(jdTan3`+M};#IL|%Ce8<=Ob89qx)!%Itb3Dcn~g)9F6B9rIkI33l( z?Szu&AZfCpnpHC6$Vf_xmWet7fwrIrD^Aem}vs!~$ha72720TH)3_4yHvxQXhA^IC=)N>$xmS^%NZLu8k0}1VFt-fw#YKI6J7u-0P85VT8x}Ail1|*uIJl9C;RH>pZ@?G zXo=sK2LWi=2ZSzV-tk3ZC}-Te zfoS9)n~k~yhiuO|qRJAcvUK>~LW7E0el*3>ouG9dzF39kS)%FQs9MysQtM?XSs;|8 zKrwie$i(??h}zQQ;35wU$ro#WD&ypE!)?*iEo#jx7Ld1G{{ZuJfI$fda(9vN-X?6= zmY2mft9dis)BJC&lQR-YJ95|^@eib?UlH*FmUI-Lq#0a@Pn?Mdp4hYab1YyQZ+a>e zzZ%pJ#G|I^8}jBN*t@3K+47PmGCqOA8994wWzD*@sZ6P1D{w+Z$k;sP z9C_y3?o#0>1RWt;M$$&g`+4EZi};~jN|tED4YyBDWev6h5LW_9&yXqSz8iA)+pnl? z8g=(&B%lJIfz3*Td)~)y4%fu(HqUUR$53~)sYXtknw+!ngJ?pRE}4X;O^Wp@cd(1$ z!j0`2a+{{6?^UW?dBm6l#3Fx`2(h--!+LW{Z+7=&BU8y*d|=L$i(93yH$GT=$?~UO z%iD4KlImPo0kUk`C&WMo{{T6(e4~-oz)x=AD6O(gkmha{(9ozNHh8uX?PhMw)gKva;Mngn=L?cO2Du#(eLycfz+$*0+(BE66D_{t?U0l&zLfHMvsi z)A*fqkIbmt^4MYz#r>x85 z+0+^i0#K3G&@aC^z8I>*bv21?q<##_mIchfGw4V@XArsWarY;64NwAtaAKI(RH@3B zl%&9)0VP)GW0)U)xOB)kBCm_{e(H&kTuWg@l>?;_CU2*d$CbCkhi5&TyPNlQswYb) z{{Ss%oq;Ci^BpJ9-3{fGTrHF(y0v1GQBuHvVB6xsS_uo_xs7?kKu_L6V_- zCD|HNRNG7?H43L1+;M9Swt}6_;YBA=gvI${+R1b5n}T>*RTXX0)mLarsn`TJN`$2| zc?L=NwzvwIB#cvipmFYJMVJhmCGRNNcxZUjx}_|pC&sC{f-Yh)?+Wl!i&FdNT&(wI z!___O>MbytANLlbNhH`L88f6wwi&31y}Z!<*F!W=nrPgAg=6M@xMmr$z2n|nYKEPm zt;U-)wCDgtAS5Yj1Cc5+MDGCBJYU+DVcJDfXedyse6=&FA;MKur3flogaS-Xn20a| zH^#NOK4IDha+aw(#bxZzjU!8If|xo%5U3FrfGh|xhpM_fx3hK_D(+u-wEh_=l*k79 zND*j)c07(J=*HSD$wKW^@?DY}-8a*4@XB&k)mEvhZtWp0DZ`~CgMI96cm&?qgJzkd zHI?qVg5_02kX&$xQSh4!#Cgx$NqPSO5#}6GRFyupcOZo}08&#Q%>aq!0f7Ukwi6T- z>{4qXN>V|G3V|+I{5pY;zdtB+ahvxn+2?KTXyeLnUTag`OO86*Ng9J_)SYVcgRnbq zx!Q0IO=G#GXMIxUqhTNmTv%V{>TpBtt1(`np$6mu@Po^JuthxsN?L$AbcBL+TTk+j z6i>`-F-E`$S+h(?$wJZP%I>uxDp^p{M&TD0GtbWsnQl{Ls3YTrNsYe0zto(oDoKd= zWT!{+d_U(8ba_U!%%r3MPftPnuc;n$yb#FFdm0+adqcEwq_};Rz0hLi;letJ{HJU~lGYZKh;cUXQd*PP8tQm|- z^vKq=b+I#s+KSUV<4VfQ?}pln%i9pSQOY@0a&B>{s`JBIs_&0eS0@X?B<_lf%;9FL zLEjAx)k(sw)bj@fhiZ6By$%#ZvS$r#)B$jCOEnYE9G2vIRm@>z9#|2VCj=pSMB|X6 z+Ef`BP&f_+L$G03SsP)9T#IFLeDJ$!m^cjv4V8kJlg|US3MH?JKDaKOQEUpsW0~cG zsnH6YF{_bmsP)0L?m@$QW)2Bu(g*p)3@L9;2m)`{z3f|ckqIC7_{(gpEDQrgu0 zPg45yope92V7lZ@wJYE^}0!n%hs;3yPp@F&t+xJkR*SZDt}9d^{US+MZPS z7eB5LdGLRKYzm6)R>m%%D)aZjhc6a9t6$XMcNQnp8$9SXz|Oiz#}_6sDqIm_F|U8+ zfy()lk2}yg;#a03L)cNb<70rr=bknT>w(;fsmT=p?}eLw@iH*h)A7!5LvDiPgMme{ zIU(_;_*pMOop^8ejZmIg*gq!tOVgT;5BcN3=~p}m77of7*gUA;SI-GfMWtG>suvd+ z6}K#tg%api0m#6lP=Bb#-RQvSR14z*`rtWUqLRB?3L#gSoCb$rz{1IN?~dBJ5R;`d zj8BN%;WVmjak3UQZ;slM<+6qBG304C#uZ7Ndm8VyC~96-11rLV#ecRFNQHV~MAPh!9BxBOwmI&^2?Y`K=v)2_hs(BnxYj04W z*BbX`Fk+Y;Fq)bm;)dEza7$>`aidH{qXf3zCvrBqVp{2ZY?i-c3n8-+ z7*VQiM{Edk^&*yfVRmWc!5A%yFn%HO!tK#$RfY?4EvW=jl>%_PRN8P;bjM7Q%L=tk zCuqRA>$apCradsbZ0Hg4!3khaHcMRaoy(ibL^T-nGr4zDCGr5^8pD|VUsaHBG`V+Y%s@NbdUx#n(Qc@f}^>D z2|HnzFl^thBw33(rf|<%#I7R_+?3|1-Ca2%Bg+9hPXgl)udzGfzN(z31-%n!WF}gc z&n!1oF?)AJcka4odJSM3lY$Ulmve`8TVsW>A6}|*f&|)#? zeShlx7r^fUa2ZP_0IqO$TqkpYQ{hzL>H&sE z?1VCLO8uy*8a`MF+Ne0zt@sd50d}g`&D({X(rpsuO|OBTcpvG3+^f}j!Y)+dFK>kK z>RZ0%tPXCivEg)+CmSV2MtS0SFqqd_Nv*Ijn$TklsXDQtFfl9DO+z|FOkpiVVP}W} zFgd;@k)78#mF}~TQk_>g)dVQ-g^)SnJ58={m9h{g1XHI`o>)Z)Dia@E8A!<{H^B(k zIV{s;rw7m?;9({y!P^d0RMx}d3p!_Z25#?Zo?5o~$x!>8K@w@;^*6f}}I`(xYi zsEyXt-|p})gqGOT{cz&CcpH4ME64z-9D9!FtoBWnO@lFpn&!#47<;QsSYf8R>4?PA zl+auPW2$VDaNAc%6?2Drl$}!;3Z%kk5J@Igx^hU$W2|Gl!(Cc@F^8PMcZA3MVX~zl z8;o>rS5c}7mZ1`2Fbj;5>_#1*5UCgq!>MHauzf`4aYZ-OHbvu~ObY8NQl>ECwFQ|! z4*al^&_W2)!I^(Z8&mL0)>VVH09LTC$9J=yE#PaZzusqMZn*d zH)@kxmOIJx>-52hrya~ENcduTd2fXnqaPVkf|DB^k55RPSq(JhE!=KGrk!l*P!Y(3 z22B3|$I}M3j_nBrG4Su#rLny$YC=*8R)PST1vWnqS;Eh=D@Z~}(*io}Clor0SvE3< z427mgNyaeAOMph0^B2FC3ra|s@p3RoB4T;+!mTh4;GZe@u(u0S*gPTMVJi?4Q(@14 zrV~XMb~K+)LHqr1;FNf8s&^(a;HA_x6NT;UymoL?W0Ykl?aLZ2lSrOh{+M%dv$(=8 zpm=0P66nogdsT$ix_j;Sz%>-6WDamg=RFcm^!QG|&56vn>L zz`?@Edz9f7f>pjXK$U*)k9ug&6pJe)W7Jdh2mYJr5c z6ag4fDWB60>EU=m$u($F-27M`rIENN2ENP*z?CL19zz7{84K1j#gy4l!6eA_z>hFOu+eMbd;N7#<)^e?Z}o*@$0J8FpF+z zJK;wi)Sd9=<$1KENRfnHkRV}DuyLx=A}1C#CvYVQNiJ`XTe^Zl{{R?Nvnuk&cREb- z#T$a=yDMg!gw7PQw>V9?i+;p2)AQwc+EkaTGt9lIZiD~3}IBe2Hdb3U6F+Y(fhWzlUQBaI{q@H%S(*e`QQ;F;nDrhR);{%p-^5ug&zYT^pZGudn zoZuVsiLN0E84Ek%W|%QyzcGUmKuNH{RM~FR`CwS|!0t?H1-1ekNCV5SENpV+EcjD1 z^cZwa1glp#yqqj4(xe07N|Z?l@}7|&JTGxX>rC|7Xd+aTsE^Hf`D4`OFz)<}Vc=4U z)RWIl0~`ML{{W17XwsJTi|7Vm{%!ZBHW6a2wg;cn2`Yn5q{rccRv^SE0|(`YH4fqp0GQK4 zu#~8au1xr?_c+*PD1@U@zYr$> z0Fbj=Usl7ab1x07pVmz?cQl>gI3V-fDh48&QV5ji_E+2_ITaVaS;$2fqCSV{_LBf*+xG?i{sAqG>Tf5SL1WQE;LUsi*5d!ZHW$4go;pBC1=D1i9UB5ZS~t5L)Zca(NTUd zqFzNz(`axhDM>fBl@3Rtow;F_iPcomB)bXJ0VkxJ&8_mBICh(xHmB*sP*kK1D%Lcp z4ug@~d@55_C5`sr|Naobxnx6{vx}pF~iwg^0!pG_`o@t$- zrGwrf!paB$EL@l%8QuXOTnogxi*;2>0mUIrz_Lh)vSub^fjAM2ysuNW4k&2_#ezpe zADi|DErq$zyz;*}^TSSmow$sh4F^@BSKL^0{l+tcDp5cR z)Jj(4krOJNJBgltAC@_-?okbO08U%5DuQ|5J!)V9+~T6@S$B#WOY-wh5mv?*wlZYonp zP48~Fk`$2GleEd7wY>g#Ql_ZpbqvwA&xDkffJcaKWX{&>gppXBlPlEne-TKz)(KF6 zW7a-ic$0Q%!|hfwipK)HL=cj*`jfQJ%M(cRl2(KjKqcL6+@B*-(204#5+nIk0o5}W zk+tvZgmP{idaFlzl`U#1D{#)W1M{`7w#Vg(En7&ct|>qcQzU>P2TTYM0ov1l>?F{i zc`9wB_*5anwTV(kq+Ey?fHu9$K+R)irp%&&s;tpLhLo*INaP9<2KS5a2YeCQEj2v{ z52lHtlsuoreCtX=PN|6Wx2$>0gN7E0ItS9yQc8SESA;1hJ{?EP^~6JsRII`O0C!`& zQk`;3fY>HY$S0^jEJZW78e$!w5PN>=J(SWVnpCX18)ZNpXV&}$b$mPj#oby`@FI3PGypIX~QoT zsk_?6Ad>3D7Zd@2k$4s}1e;+FkTZc~sPzqd%>zTq_lCG;hqHbOrhcU@rnN}cTMH`G zq9!6m;8^_eS=DDXeWG#0j%!kqmk1#RT2PtWen6k8!WoAi<~iYTsZM|D2=6{A1ll*; zSXwM`Gwh#*8_6Y(22NG|3^#^V(`CzNJg5YZa65!jVkE zXxT~uR1f=x2#rD~`KJ}eXT)UIsYqA<0Cc*NR3Jn`U~Om?`C?Pr4-zjo;osr(^y;T- zP$bGPAP`LR2jRBI%40bn2LAxmE!2KB*;$ZDC&I9uf!;Lq#PQMhy!l)aN$vs3Y^L3R?=IicBfiUQa~vZK;{9N+{LkEZDU5_c}KXo?E{Ke z^=@lL!abFiQSR+Km}#l2LuDzk3DT6o1V|uk1%<7OKZv-mz2a=y@TD$|vj_lc3RkB{ z0Q%!@KJ5~|zbo&ZaJk+uQW3QD+tdi;W6uz_n60hh_cRSY_2F8_hd@5PJ`)r3!#z7r zMZLsirh1gaXln*QP+lplsN%jQsX%c)=HV9aKQN1uKlgcG5uO@pR9VqON^ipAbU?DN zxW3n(Tlr#a-cQ}NSy<~&r`?=O4Hn7LZ`#@Kvu+r90_ES#d%5|+}Wh4Nh;Rk;y zQPMpzv}^LOo!t7|QCXH^oTDyEQWL11P9zg`UdDNm1mW8*aa4RX5bLip22{J$mr_0i!x!VgsDwD;-3U+SA_ysdD$QUe6Xh%XNb>pRXa`;-90+=vyBe+Qt;Rtijhz_+jWmszuu;nn5hT>dY38#LPEV{m><&&`8H&00;;NXw##cJ zXa`n~MKduZ0kn@iF~6O^mr$vst;DHF3Hawxw37f_$CO8&0n9UJa*i7AT~TRHAgKw| zC2En+`+<(!P8XX?sG~Udw1dSNi*)UN8#G||NI)m9l$0?*r>k`XmRbk%G{iQ(~e2<8dZF~%t2GG3P zO^{TFHL7)>%_<6>aRe>Jg^}m9T)^9|457$Jims(W#@f@Z$s!0drU@o(yx<3^hYYr! z`E9uKixRcitueR+f&sboINOVOkuPNFq^1f>Az^MA@j9VDK?e$H0ea^7!q{3o`TmyXdS4NDl&bQl0GAS}0&S$3 z1Er7u0EOj=Uj!{w6+ZBW(BsYNB4Sjn{Q$hl9I@n>7QKs`Q|jIyYld=E)xP(3?LgA9 z;Q>J^H%n+x5!09ws5ij*PIy}Z<{C{qB{4{me+)oTlPV`kKYgu;UlV5U<~%~0msDyV zaHI)dq>^AvO@#EsvV%CMq-Kp33hyb|ZdBPDs7Qh$U>=YzaT`rxU$v($3u;~(cQSIK zq4JlsD22HMC7o6QXKT+;eK12gg7TA4-8zxoyuBrQJZrQP3Xajx57!aA%d}d`=3Z^0 z8%K#`AOMg_9x{2KGE86$vo?8cORMjSfh68~&&3Ac%{=7C-C6Nw#TgV_3MIJaqPvFsFIe`W2kS;6ES%7 z-<})lvT)8^ryOnP7Ca~cBTtbYdw+}TsErD9nwmIBR1ic^Sin#3kpDgAkQ#362lzXwF+E9>000Gi@oNZIX$;v3$%V~%qy!`aZxP`KVL!}v>40htU14#?JL*<;0RI5o3BC0|)H#qj;qknZ znw)p_idVZRKvRoI3LLm?nko%EN&<@t} zqj@I^zgt{ZSaPGhT8acKLy9|#tLM2h%M+TJT$ z>ke5r2Dgr=AU?Dm3*W^HJ|%g9)?y9{?H`KMz&Q(aEIg+;p0&iS#|l9d z$rdS&YST9++LA~mFh$Y}4XmeWG`0($fH^1pDQ6M!E>YQE4<{wdDroAncMv=G(*ZQ< zOkF18WWYO+M1hEkvsP&`m#eDWRbF9Kl{VMoga*ooiDX_+l!(=aT(==#4N$RK^Dk7q z^eUaFk)$m~MzWGL!1EC)>w)Vs=Uh{t#3#Rag)4NDvMv&tn1eTuo*2=zQ2kPM6Bm#e zC=LMrN;`pgF?rQmswy)Ib{S*^Eo84!Q@j#D69fn+Wlq9zK4Fw`bwYB?y}FuwxuT~W zXq_v0b_rU@FaQ?3z>omd;e=Dw7U&Qg0lIjQpAu85!fZsDJo&5TiQZAfN$lT-o_ejC zk9c_n4Kxmtvk(f;BuT%P*p6pN4J|UOD-?}(gtXG2 zK|J6^fr4k2DSjj35nG$B>ZJ;Yl1M@j4wMMxI~nUZ+lu(n{M}1ZUhkbz1xwT63G&+h zcf(FumNh_o=hPHYsbK{&RejG}kGG}@9X%T+$>gYYdcDJIFwnA-Di0G;R;48>@gbrv zpbf_M76Q|^o;0js%F(PN!jT9k@{cXKN7n?c>Ws%Q)}h`ZAdc+YO!X(9KU@%ir^OGk304!>N34ooTZ@2FLcv+%bMZ8JUK$8PkFW;6tHgHt$Aa+<-Eua#W zcz`HDv7WMUiuE3FovcmANd4`CopiYD0jErWJ}93^!Y?aQd?S>`J#B!cb8P$}Lt%QS z^ujKHg?_jzycFR=0WlqHKj#9tt!t5vMS;Ri#Oh37H=C5)VBshFU}uvgf^C9oClOSe zp8_WWJ@H`I(FSlE=`$E}TWKzJA!-Di2I72D4i0rZfWVHX#Nm}#QON5;J_xk=;CB!~ zF@j#+aDx1JMF#%r|HvT5BKdvMH0K})BHb!A59fUg+k-X2v z6NQnP2tUSk~aw=QaYUSrO1nzIgI z;f;BXu#&SY?}e8pjuYdVm_M5XJ($~kGpjNrY6jf!levHcd@ak=d-d_p0>53*{V?58 zn9n=~Q<(YTZeEU2)tQJ&P8sX#{{Y>A>a#LLm0zA3>vI4>6YGiGn$@*^eBqY9wt3?# ztNNTY*4G1R#BwGzWnEwxZho@+2L!W<=cW)CJr}4kgH(@yb>&N;dmb`IjKb2aAKe(Q-heS zBYZHoP(k16g`2D+_qG|ia2B7DnF-$nGnkL&`{F*D;mqMi>qlSlhHhRdBUy+Cae}Gy zFi*wz#9bMHPRHein#^Te;f;Fof|oU4sBeXZaaQw)y*^+Ci8?n-V+fiayB^FRQ15!@1{Kt zVO!TClKtS}X5SIM07}BP#_3mF4)n$+Bve3?g%eN?8`A!fg;4bG^}spSoYZ)!n@%=E z*ZpuBT$BB*f?1g7T@QAEnT>ylJ{IF9OMog(NIaY z6-%NZoOaaB$nfA6j3|Y3z%0}Ro$Z1fc6s5AYVF9PU}MnXJn%4F>~XRklZI^WmgHgw zJYn&h3?ka_vNyqONpq5j-wGAl*hvJPjuc3fhsMO6$yUiC_#&M#^}x-LO|VNwz)mfV zy^$9p0(u;55EgN&4=gH_YEAm$fD$Ar5+GwA(YoVCZ;6q zgT*mYcR2Ulk4$=$=UQzoNBm4KW1JK&~hwDQ4CQeO#jV;qEPlqS)I*`<&t1tOda0fif<^1!CpNwZ6Buv=8X z^2Y5lO|Vlz6ORj#ZAdx* z7(v8qO}b#0Q>i#fLJk1PiLF8`UT{02*THUx@kg!@c>z0|FQ}S1K)#dH4fUV|&K#di zeK6ltgMr$Pi4|Qr!(C-O z+A*UUNqNN;6U-?f?dgUp>QV_YiH>1J6gI;xc3-A(bZ;s*w$w(loT_bxs=7IxN^58| zm?I4}l!o@j7lf^$Me3=cSO%h=+hO{)jOsSSd(_zF;KF05rITUhfnA}U#vh%doyG@p zl1xSLVad_EIZO{wkaos{FFQsb%@7~UjeW&9_j+TUoF+u&x`dCeHxvaoBKUdt2*xg# z%N@NiHwl>0N!uQZO(r7_ilu^16ExCi9KCCZ%5PmT3W)mQ7pbF`9lhHLyGRL)4&aZd zQ!BL6sRQ>oP1ay-hi53@`db3OOimD8;Wjp&>7Dj)GMfb74(`&J^ZhV0w4E@gJaC&` z!f#VSLkPOpJ@9(z$Tz|-F#_0L?+Jm}O|G^`oDQTAt*z^a2OILh?<1}f=OSxCLX(YF z;M2YpaS^r$bQqD>338~A0@Y5Dz45vhbnk?J`ldDl1{b*ta+Fh(xyH9$&Nb7@Fr#VJ zxZ54M3yE5`NL8>?3n>@Ip|V8bL^rDf=Otf+RXc!S#@1j#z%2+(w!v&ljuPd=lv_$C z1Tr;S1F_EqFoQ9V2P?-p5YT~x^6)~>;C9>*I8iQm zWE)~x5mgkqSLxRXx~RviU!D_Q*p=XgOI~RrxlrE;sXUGrBn9INI$>uh_gYN}09bmQ z5W)$zF)e^FvndH8*yLNNB^hFHZ8I0bRLPjO94T9oIPtB@o=GVYNlmK`l(ffSFg+76 zEHLdwPbYcB4U8=L9h9{r1u$^+moP?B?x2vA;X>V{;PyaF53U4ZKqVkxgepb1#gL_2QD_5fD%rLKW$E1DmTU$n zUe)CgfD~phq5?{G#*MY8TwzovN@D`#Es?;`NmK-YZHDKOD>uW1Or&A8*9uj<;VzI? z6>*YIP&JT|z8dQwlQ?j$a4C0I8*3A&Z~OYnpG2qy6V8YVM_JNys+0)vXx);!TV`wx7xCy{V6x`U>B-E zBzpYtoo!G_PzqMBF1P_tYBCM*1=OD#2^=C_e5FuEtMAts9niQWY8<-X_w>M`qFmi6 z=eOy6V|6gQAGo#ybCoTI#S~&41;n2Zs286j{xQ2GAyN5fZxQ8yfD2NUBUH%;^7-<< z3T?egki9-fbL24C-Do6WXrw}&DOQjO(*{I!+Y2^Qv_eXE5JvO<-h&CWj`giTTWyZ_ z^76*X@EHfgvGN^%;}%BjDBLoLX#gxH@~8t~4eoz`-yWp_&j<+u!7xXc`NsYHz)CI{)ZF%5)mf@{5;B$m;q zAlAy1sEc#LZqoRpP88;6@v5i9G4K>UZ^2Cy%kV1eMZK$M^d{4sl&b(TWDJlkVJwsfh4>eTX z1{>a|gSOZmx0Lu@M=7mz`b?Z@r%I&Yn#8Fh!~9@n1E%B80$W_CyWadSTX+>;8wUbc zAmCkPD#DHUhxx}fshh{;L@oUy*TR(V1q+-af+K8h+hHn^I5AX^xJ@DctH1FDV%8O3AEsat}h>K4(E#araN5Spd{9=SlUXHF^y80xx$E4;?}ybmC8#& z#xLSH+>2ito31fi5?vP2Yg}RR8{<`;Kuqn8k`9?Tp_GzZvl_0$=Z%Shgw(EQ6~@)> z++ldNK%5Bcgqgz2UaSo2;NKRpDoZ$C8{-l}6@lD%{IRN6*A8knv{G$+79CKxOfH2Ii8vXA6)OJ#d=wgl?SU;$jno%~ zL1y^bXg%EW=Z!-|sxU%YGaw9kwNV?bs8*TpF9&(TiKhfXPum0~y*2|1wN6xa`Hol@ zVKKa+g)q@?_{Pbl1yFh5lTKEs9KQG^nqWvV{jjGsI{bt!Jt0zszs?S7gl~N@7+sop zx#@yYN@m|Pg%UuHVZOR0FhprbHe2qj6 zP(cxEn zD=Trds1Fv9snU~ZyqnGwdXHa;1xnLlYij9z{&*(igj<|>37r%n4N29j!W4E$P??Kt zKU_>ZJ<3_84^%89s3k~j2niE%Nd90-fISKRXiFMsbiMhs^_3=5H&&2#KU_WJk2#jJ z-8NMYYFUDO9v!#e(r{ae1P)e~mWzh&$XwecMr*|?si{(w!mg+w1rQSg2j$pXsJARa zc+s?0=Jg6j$W$O5gaP)&hnO@N%4xs~Q_Jz%(J*6ce~dynih>JjK-7Fr7$8YkGkbbr znr9vKzJu5!$0`J#_1D(2;UO-h0sthAvSapfC}OQN4k-YHr$G=D0UjNO_WRgjiPwf+ zy#ubPBx#@J1yBz^EBRn5{vaQjwio~_=kpVKea%-yh_!pNzym^Z{{}ZhmIVpNvze~g(*u4kRwUyZ|N9_RcAlO zvqc0cWdxOUovtE!3`ugzRnuj<t~nlrY+ql*&Ss4xfZ`g$VxR>nUNb?Y`}k2_{ALTEb8M z=^mJs?y>+*5rcN0e}$m4rImgG3NDpE34t1X_8)vOt+p%khZfp(HrP@-&k~06Rb_M% zeFpP`o1=G$*2OE;9m^>JMFl`9Mt1X_clzOzkLr__7V^BY(W$}#4S0x{BocQ!%t(wy zE9=_cQySc50h)0FT4ly5oGH4J>cWx~sEZxoNZZWx7>4maTK5p=Et;)LrDh9yOaKP< z>(~DP6W0=o4j&nMSwrerS^`XJCKMAeFSwJw<}faF`<2hAp|tCLNeDmzF$n<2D}X+p zcvhW`bN5n?a9nnSg&*PkorTrB`@8A`adu{`*^eN)el@EXvEMWGhgCVW-I; za^>{%I1h+;Y22ePN{fjPDQP|04W#qG%j<{E;VDaPI27TfK!Sq_QldFtMD)gl?gBqH zmf8lIGNJrWU0QMl_p0t*aY)dBGz8r-aT22mgXT7q8IV=0CE?KPKNVujrXxsBvVP;2 zmK`{whnz-1RaIE>bhhGF6Q&Au{3D&j`R~dw)s*LgzlRg}U{j{0ArlG=n4Pq}&ZEC(CI#hxWajx&HuD)>1J0oy%om#>VY{29%%cd6NF;dOSOjk}Kv%3r#~WHWeSu}`rl%dML7Zl+*JZS+XHJ>#Q>f~a zOeByGFiD<3{IJc%tszY|$a$3|Gu{wmS-*&M`OXcZ%if{P>6>~Uc_?j5MCwv)r~@iI zt+pF`T&ZG`uiO&iRZ!bt)G4Bp3#0`oNIZ=FF;L0DQ0^g_7E?xF#LgkM!)r@zwgY6D zl9S;!9F6wCS>9@t)EZ`%r`%A~r2;I09v@#l@Qzj7R(GWuLTTy2jWH)o*!}%R8u)RS z^DO1p>H@VSk`S*HCsC4Q9#P`J*#y#KTVmb9ljYfJ`?kXNQJDz8@B8}0Hy2R3o98aL zwIwM^65D%0f;AtI`QmAnhADFN>Q5ZKrWP$XZd@;k}( z>tT=FZ6;&1P)OvIOKDxw4!u@WfJTu!@BVQz%4q4>%GT&AQ*@{qb=Rj-M-h3cxO9C5mI9_Uz;79dYSx9(lDRMSv|6*^pU2mmM@SKob!*q&Z^ zDw{1vLy=J^gr!x3z9|bDogbDX;Q(LEdR@HbqOUPlw}WLcf(Z!%Ou?Oi>G#59kX@AC zkvIr7R-uY@B|3t2$yh1@U>*07{&4-nd5v8rP?p~R0MgUA;8|D+E)t~dImXt$BW97h z%*VSYLR(l!gBnJtCwrLt;zh;zn=j<;(o-!+_fnKC#DN6O$UB>15<33r&Gv)vkxp#V z7MJv;O}F7n98g#yc~37cxKG}y^NlPaDpF=t5C}<=u~zZr_rSEYh*Mz*LbX7X0Y)a` z+X=O~{c$njEQuUDmp1)c6o(#0pd6h>6jL{iwl?3_9&Td=@=|0klAGBxJC@YATc+z`~RP8fqKWsbaDWb@kN*hX^b;NuEz$7NunF4uv;5u4|E2F7XzPM$Hss8}Bp7sE8 zLX@qHM>9THozht}nH(&vg|0;wgwyiMZuI?ih)17DUTzH&W@;+nQXS`5`*F0A>trZ9>?QyOBAZ zH1qD%vdU5v04gU@1bpxOro*PuojjQ>2kupEZB`I&aSKhQNoiFTRgMKlhyfyO0VJP3 zSH!b{_+Fv>wd&U!@UL~NZ6*j4AWQ?aT7F<~u3FYo!a)gf>VPU<9!-)QH{lV1)#_Yl*x<$XgmOo5@gX4Bm* zNuBpHA|_8r2GJzTxVD>z+IUjZAu44BNOf==h*gsY04HDoh}&rN=AVaR0N2gQew8rQ%jRq4C6h0<+}-1+LX0K z%1{l4!cQf6V0^BxiTLH&BfX(*$pxXMw5WmM1xLkb7LkcYOW1SVO`4@IzJ*g5?;mNh z?{twTO4dwlMS(ZwB$3@V#y32GPwW#Wl1V_0Fi8GN7bNXX?AtO^IVN1^yf}oZb!*h) zs6~XOKMF<9i+gVd1fqwsEZVxNmb$67*HYv>Kwh*bez7)zzTbD;n}V|b0jP4HE^AVr z1uj2OuN$fY=EuXjZFA>``X11n;TM#OMirS?Jlcc+JC>7uTh7v`fIeD8Hh$EO<9E|SJ^IY@7b+NYAOnPFI;h77FKqX znJwpnkjgbj|dRE0oQAo zW3S^@=;`~G5k}gyKq)EGp>ZS535h)X?8sW;-Nf1bhtXtugxN8-1NT2ww+V3F9Xan^ zeYW(CBfnG?L~M{Pxcd3v4k=Dn#afL$Tb0wRR3l14l0mVVRmd9-T}(3-t22AXr8uQ1 z$B3Dec|4;303v*$N_tS2!cwHIJoYe5eFr(-V%XD$GBa!E^%|z_*a9Mz-t=9t3<7L4 zn@-Yfd0?j6l%)lFfDkp3t)z25JS9lNT}ojM{{XfInGihsVfQ8Bx7`}FcV#HosDZg2 z7#?@tE(qTgZSu3M)>gE+Yi-kNUDX8uNre&lNcHr*Z+TQwrPpV}_ zx7QjvNK%3D+irW|ML3x$1I4tSU*`z8=_{Fy%mcOnG}<1R=dvAgl0d>s1Suwb@VkzF z9+4mT{{3*A&7cqHdf@hyy`zg-DWC=euT&TV2dV&*hUdkj9<{khdr)tm*8#kqM+dxv z&jHjT4C08wL#+tr*bVYi^|lUiybDm@mJe!6(|t|{QoLT6DdZWP467;#!E8gdAn}tC zf!3j`d=lb9g1TV^x2)r~CGAPviyS7g&kC0B(;7HH7QpQbwxk!nJSGM`aKXMbUf35k zF{v`WD3gtK>%KKv<&9KiUmS^Jj|7;;rR_EY?SxjSykQl+2d)Qd0@Oivd5mX%MX(~O z4?JjU2nL3%6OzRvJ@L&T+7*j4=v&ZoH=8;bdlGX~PJtw*LTpY?|Lc zra2DPAWmZh5OAQ(4)ciWYtN<>Mq>widEtpgsr^;+&l-Oc^TR5$Kt}k~<^&&$4sQrH zr{S6P#^W&u^I|+RDBR;@W+rgu+f;!$fG6U@gE6#hJ#imRcmi;uYwvUS!q66}0y97b zkFGIUm{;b*3Cs$H_|;X#BYX>xC&lJ|D;y?s5=@LTe-H}3JXT?Uh+%F-Ej%kQJI}5W zU3f`?eDK!ge%>r5s>2cv7Ubk}_2hHFH5rDh&I5k7RRG{Os^bZES0(D}`r)#!v;bh^ z%9@f+_;0FydEqWL;|L&QF`p+Xot9%U zn9MB-%w{tgj$E@I>p1fnj$DXhq=Ohbnz-So3N-mfJ=}{5Nl97~1@PrdSPxu9sjCc6 z&j-_2h@3I5UJ*)FO;|Ua9K~P)XAzoQ#FG;fhYD)UHK|WhChEby*daAjxx*86v2t)j zb-Im?2`4Gv-Um~S65?j~Z%tl2T~SWT!vR8^6;Kd%#=@+eG@7$9I8ilNEy$Xk1z7`Z zVr!!fzV;>|Six711JNgBW)LqpU7W`I;gjCHvASyD{{WmG^~y%Ybnb9#71rMohAYop z8&6+t@I6GuC2GG_$-xM!3f%ePKE-!agBYwMo*LN@?N1H9XYalhOW+&fwVJM0!ol$v z^t#Za%iehRTy1Ow9!%~>sKSBa$c!y|IYkG6z7#{)54{BVqZ=jegXx61$?a-6FLM1b zqi=cO1V1L{3by_3aJ|JbI5zK|6fg7`1rK@QM7Rz;4qS~(pzLs{ayj9>F8Td%vRo;{ zEFld>2MEH5s5@XZJFeJKDvKN#a_1wOa`PBj4#2hnZNhCBU4Dekb+YS`W-Ub}Rt?NWm z&n$XrBL}j;DccIBmPQ=Zw0sKE3dx`0XWKn7s z828*x*zEAT39-5uI9W6jEr%4*=o?{Hsb_Hm3=P6cZABih%Ys>=Bw+N?gouo6mLTng zxur1<)g0b1TTB2ijoVBZj3|T@syD(NYnnpYriSETgg1O@*qh;GBMNeJDPmd&3L&93 z7}>M{Ho}dj1pKhKI+1Pel&551gtP_|YINTOGN?t4CVP`(%GnM0af)n@<-&+5(Kyw` zfIoM{kCK&X6*f|-!fyC>!pbt4!Y^21CPc;|-a19M!0MFp!3#*+1HCEV3+m-NVoktj zd?M$?g%r8#gw&}RE$g#$i%X$ltkgKwvZ3_#mzLQb7?~J47{Y9VV<&v zIbvyBKre@e!Oc;6a#0Ydol!ed*M*1B*G*wu8_wj3X)69XFeG9oeR zW4KL=V8+ZiZg$P6K&~Uf7j0cZAxubsP@!7;{??VEx7reUY?bE_PEJ##3920l2`=uz6w8 z%6J$V)?!59cT!_$riWR;wGG0oFz)p}yG8_llaygDb*DE8sm7-WI?0HPIjWis$EThV zT{yrw%ad<$=Z%us7%5CehBXY3cEX(G=DLzS*OoR*Gidr@WHL#<7efbeh3-RnLk5&i z*i{Wlz6oxen~{PMOV1s-DfEYBh`eCNDZnCdqcr^E1UA+7=Yc@6mhTuXmaPLGGSpw5 z2yFyzKj$2U%VZ)2h76|=pDZHU02m>J=oc6^9E1)7x|e3}gw(6cYyxV6wmz|p&)?Hl zp+0|nHHy2${V<+Fi**#~-;SpXHuxq9`Qfd)lNZ4ZyeEHLAQ8;g=b`xwJPUsgRF+ggSzbVR{UJ!P|q5TTB1WSaBD8hAOn80dV$NvC`P7DIA zux&aEVrS`qsT_}%4{2l!F|NKB3*j!y+D*RrSU4hnm>8t#wlrI%BLe1v6C3PVSnQi& zwdL!Q4=gWLQ3;cL0_{L4H^zLXxK=|>$wFpNq=+9EPN(-6XsW3S5LNfV^$VRwBg^`J z;|+DH@Tg4x09;1r7jmoH;WXwIiAt3U@{ivh$N1a<&WPrrgS-SBP)Dzor^%UnRbWq}*Z3wYXfwr~KiTq?H?}s`y^zp$uW@I;T6s zsY&r|>9z$mAZh?=({D^IRsg)lov+UgZqyRBKoKNIUSGeLOfY8(#@P0dhznAex{d5( z8Q(UgK~jaN=nR0iw(Z} zkLiLNLDo51&^cimb`n6}ukZKE1vTMJ4Mxy6{`hNISqXA517RqJ%v^miu?h$Cbr(1L z<7QhWCOoJ2^T7=>-xR4bx zNz^0s#=t-hD_xkgp*;7(2`6Mw_Fh2FgM1*m^Q&Xp!zsRQV6`P>7(0;_LQ<4!#IMr|{?zzu5WfGSy;kr;VX1ghI}-vhl$5-u=_o3$~m z9F-ocrV?$2%DQN<7?9Po2Mx7tj(DAxnA+f`7udDN0I6;bu=84weiMKe!HFjv=Mt=q zv=dXPg8*Y&r_%;LkW~?c9coi}$1;IMC3aiVxvJPH2%U|vD*-5ie)u6S_<7TMf}b+Y98f+P{@odI+r=wu)R%@7*VnkZMGBBsKys*uv2^s(<5;vlA;K> zzw3-jdJK4!5N-3qs+5nnrX`Xv1*dRO?<fjeXWamjQgoao z={jsDm(L42)}Kr!rD;U%ggK&<8zCHoD#tVHfuAC9tFDqrh``kb@=hi(j#GNX@U*Ca zCjh$1aLoDOhe?YQfz;tbZYTQSn;tExjDP zZebLWTKl_36HDaZ3Ob;oK)~WcqH$zE6qf4VO~jorF=TBiE_Nwu zS9zQ*-WZGyt>6q{R+|h}w$%HxNkzI6o$#Bl1#-d49H+ zS3G#~=H~-C?<0z1USO@9bd!xkv4mFe7RH7BNAmq};g#TOEI)i~m%$KD0uB*;Zqu5s zP8ho=uXGuu~@Z z6_j5EGLai&&YIv+wB`){#tAAZN6P}!*v{%OHAHp%NW~y=L9sw zjB;yST9fX)u%k_wj1U>{?S&bpled-yz)~&FB_`7+RmKgbr|%38TzbnE+wFp>X>~3} z5}CQzmE&|_B{C0B-SBHP<+k=W>w+ohg2&!4Q#5*r)Hd8s{{XodOOsmCN)@_5r2INz zQY-{ursz_3)F+*+Kfd@dQH8dc3WZ<)04T=D%ha>^p*Jz>=koevfCU+IS;#`SNACAW zh;O<6_*iABOR%7;iTnQgVB}Jpgq=#6gaPILK3FLfWG2VNJTW_9hB!&y%fL;3;E@W` zcqG9B50@{bU+IiqSSi)1UL|Uo0^9BY@{BtgH8wPq!lfybCOYgoAFtO6d!QvJO8iGj z2_$dMXB^j82u4m*8Or4(8BVEyKquD-`2yldIItzEk}$>-;UIvZmA&own6+b6{t920eVt zaCXsUYH02900NE*Q=B-$KNC}hDu|dnVY{@Pi`{sA1)`Mda7dLvHw37UA-9$#*##g@ zV$-Wfi$v+Ulw$3GQFUo~79MI}r9q86VQ{mr!zo(uk(m37%`XLSSseUvl z%IKVHT3xJBN>-v&Rj14X0rfI1h^s1EQLSTCl|iv1mzD7K##NomYDv?nM^fRtYSk0H zhUO<@>k+1NWG0lz{6^YHGiy%6uRo?YA!$6RWRi{o2Cl6H>ROUD8_M7b`bU&tl{S6B z9xX~=<+R7A_`_XKdsSA2k@#vMM^ff_6TZ>It;6n zPMQ7A5oyId;z{u(#rW^c^Yp?f)a(8c_+(yr+#k~pYt5v&mO4K|;A_O0o zIK)pO38HPyE~XOQiH-d5)n8C*vv(AvE4x;v;E#r2ZydnCUo1B{e zl2GG|@T7uCNK}oyzy@P(a&cf}S@YFZ3jxC7oYDv47$j_==LUYgZ2;`yLYs%)d?_hb zp6n!UyWiKZE0Kw30p==gF08|G2ukAV^8zFuUYLq^Su00P3D^p;^7_R0E-6Y{lr-x$ zwDkG%-sck9Jj$CW%M#+x{<5eQHh@Rriy2q)*;5A61|eA?qOt+7Fp^1w z<>!IMLW*kEYhBXghE@ZS60T%U^J{bU67x@zqa(ftTseE) zB{dU{IyE|kcsy}3Onze#GA1|lj(l#t%2@2P7*L)ms#QBmXG!m>4v?D?ksI~DU(*F} zzDV9$^*hyyZAxVX%G4pUZbZ$u>9!Z4;rBC~$;yg_sZJ6?i16>oTWmJ=gPkJ3HTPOX z8ftdDCsOs72monR6EpR;DT+Of$;ysyzy#x+*VE_q?r9;$=~D?KWhnmuA^!eY1?q}) z<)PInEwqpeV2w*&k|%CvFi@qX;l3GD)sHsX)Doc4I#fWkN6QgfY6|{3&$X*pc9WxrQuBWj-cze8Vm6jCQSx%IVLQ)BvObh)tTX5&0lJm zsTqcDzX14FmaTpN0NrkY?IJN;aK>Eg8G{AKTRrZHLXr}z^)oWB?T;gA87s-VG$rY% zzlY{^$PQ_zr$=%LAWFd4e98G^UJs;Ft2}8VR-~1Lz#x-k$1}T1KFgtiXZf zKfeC}JTvBWPBvEJ$#KXf)skgOpIwe5Oy!Q`?fcWpN;}f7?nRd|VLG7x%wT$aiCjgQ zw@%s?l(3 zLa0)`O!uK+4W%Sn{OoUsF8BB?B2bhT*`x(6-ZcSzR*Ao*u*FD#inO}wTye(=mH;6C z0ADkSoOe3U9hEWL0BGeq*HpPvQr@=`;#opkLP67|DUUtK5jbP6t#YEZO|*3tCNzcH zeXeb8x52s2VEuhow&~nMatwkKDmrcS2j}&}&jxUDtZ2HlDAc5>=UiIKbf6fVBW-(% zrZ&8qQRcE0n)g9Mnrc(3NF_5CJuial^1`!Dh5j3K=uUu{0VDaQcf*E%qOsORDf~AH zQq~5LMULCsmiTAPX_s8xM7ZbTuESzex6>YOBmi)d@lHL{mkL%m)BW>DN?JSI1Yi5f z!>v|s=Mm?vlmOfSfq4qJlen?Cfy?QJ+KjPTUS7jcl!}3=a0-gG9pjkvoIK?@dNRDX z-V{)-`4YKUkO}x_tVY+qBaqX#eu}+2NgGs?AjxSPXt?Q2@{VIyh{sYn^5ufFZqQj2 zZ&J73B`xU)0!rcsF%iF(BKf|2lrWdjgs7;cC~XB}{{Rv%$c|IE^MtZYxis!2hzOONMofZANt6Q zYeJNu3#%kv0=_dg7v+Y|1*K>!S#74$+HT{HX+l-1N|P$wk32hZ4RBpkWh-&@#P^aC zjsF0YM_ypzauP@bvN+qxdJ?N6E*VRyQ~(G8G|N>Wzh!P1LZCRHj`kBZ)yc*&~V%o{b8$y1Fb8fn@vkdT== zk60k5r=BK~8s|UdJ~?oO6w_rb zsZfwml-gshu{q)Q>uFhMFQTMdbqPsRfvAQ^PU})h)OqUK6F7|U^4!ep+@)x_QJAG^ zNe$b(Bn2r5yZ|OlO|A(TnQ`A2H`y-__eiK@<`pSX4r$f`cANN#`5(=0SitoOoa54r zSzDST6jt}*xk2$Iaxze**1W1#k~Ecol&wclFocsLQhp<7K3J+a`?iHwDau@`nKU%Y zMwJ;Vd0>A!$udp09FJ3gID)pLiZcfvao4o0l2wPY)rA{qH zK`4Q*9_aKyQ=~RlPpNv`hT9DW{^cV6ZCjbu6(#D0DMciJvoQo}Q6$dB@%<-e5UH6_ zncQjs#8`R{*UJhVwK+*sPDptmB}kBx0E-`AE}mu#r=ikRl>|8Uz0u5h$IEEt=Z%K2 z_84C;HlujS%E~H5x#K6{3X%q`B-@-F`**-sCt>!m6v zR06U6VB$c=Oq`yPPB^yQbHfb)Y@uOz>3>-A#T)3-m9e?mAt%E*DO%Fv)|T6B5~Zx! z5CDzjlgs*H%Rk~q(@xzT14&IAC?Frs`r-nfL0q^HD|)g(3}QHZ?$ z&GC%T_uuyx(`|zQIO25)Aa64^!18U#w^g(YNQV`xQoz&VRHzAo5-vnV_MOf)X=MX@ zctJoApnWIL3cZ&EzOWo^#e)NLJ$VS3zptz&iZ8=XuLp)m00~#`<%cwiQcO4v3)NJY zT!ezJAr|w(h*E;0Fq`U1R#25{yb=cAUrw0y!}xzc`1;_BY+)~H2i%oSKtgw$KsLS; zL#o%SR9-}#zWBj=N2jJXX(=rcsNbijmIOAJj^26UW`VgKW6x`Tm`#8DaI)8JB!7?b zgi47w!Byog*ff)MdiEm$Iw0-2-vzC*m2HGxL|!mWOLL7N-WpRQ0=%Dy;OCn$Gv++7 zE9XVL@W!=D=UQ)lI!B?v&(4!J!EcEe2BBPu!y42MLO-#<&y8DQcifv{2SF*e8MOjI zKml=t76N=j>4lbgVHZ^?i06*liwQM23bysaYgarfpbBTE5Lx9I9f@v9JfH!QjS9k3 zJg}pJMh9F8PCH`ewvtZ7z&m3{4El|*qlpAycY!;c4%A5(mCFOTtDGqG;B~Bx@!L^t zTCH$*!aeVvF>al|V*|S8kvHhb5qc+g>~GtcXd zlV3dWE5g+I@BaYq$A+*U&4y%GUwnEiB*ct(T!UhF_ut&(J?N3X8q-+@CkiI8P0j%h z)aGhT69=x8(2raG7_R$Ant-t6GIC0lckW zToCG{k}xx(KDYwhA_WHhuNX`HxFP1`+XIk7q>N7Z>?Q)WA~2b;!o$bEENVwwXUQ64 zT$9FQBGZh-g|xY5GZ~D>igh0a*oSubQ1Ao3TReFx+ z4L<#**xTOc3=Tq^z3BDECaFZ>xK!T98>XP2JQn52$u%8M+aCA+cmXv4<7B>0$LoRK zn2z^@jgeEe@CbTN{{UPll^;xY^gC07RZwIc6vc0z8c@6W;a1;`@LPfu`%hcvgXwFD z#A%wV?}Mr9Z@vq4BOEC+6_aVfZN3P^dYZhBcsYvDMUFdq^J;oUKn6j^!lPBr8r!Rk zDw?}lSmn)XaQBGY3L>W4P8(BFN#6>#?Cx;4rzaMkwC*svT?*d~=ziPbW}dbaX44VD z-8QJ93}2rwA5@cWjiu)jIqivYYZLE z4XJKh)3N1)>8Z%Zl+6)`3RZ0xa}u1rVT=~dC8ja8GZ&MCn5VYbaB^QLRM7=;$D)Mn z1{{-4BKY)Ek|2yZh#Y}#l#~51vS{Ss#8U!pFrq2pFrk9vrL>d@WE^^$a5uqaohrwn zfB+{!*uF+MyRcomG=vD|1~v!){4s)*&;uHVk0{4E4&!u@3}1XG+D_k=F`eF?SWyWo z0~5Q-Hn^3uNa!%LNY!J6z=4GjqLIIzCwB^lx{~dr9l_rU1OPU|ZLDclHf>%jVplm* z)`X%J;*1j10|x^oa4@TCgJX#$a-ueXhzZqs#yA8_W5B2rK3MTelnBtCZnf(D6=9Adf^v7GlFZ9-OAN#F@zjCj`-clY~dFa0Klo-UOI)Lsrqq6^n3x!2&1t4>i8XUE zhCI;_AmO``UZVBv@;GU#rw5iFa}->VE$4=6kWV}`IMNK1+Uq4E=LkS6h{3NmdEpf{ zMi|rO8*L)$1Xy5owWnc&2;_09n*?LfRUx*UmM@PBV^-KHY+o7{NE3o`@MDxCjex9b z;xyVYQkvDv36_SPur6{Ypwx@O<%Cq$rC8h31~|+OrwN2c;{xU11p?zbM3Loy-E15> zJe@;q2DYVAIbwGz8qv21C9pbM2tL5WgQ$}+rvtpe#O_3!R?t4ZFgujGuZJZu2KT~l zG7^k0awfSmyv~!h2YH#iVbYsDTQ5#_d_C%Y|#*-vqmT9$eKTIx)K{7@RrlpkNcL11&YKl2w zK}!PT4h_=U!yB4uPT1h&nF;_ig&SuCnso!ZPuCuzoQ?2mcDUNc8s+lA32Y?JF{b%} zg_7Cz{+J!e@5;uJc{o|L>RsAN^Z{>4v1L zEO1?v?fFDD><#ck4{10A85mWPaXDfqJFreEd=cR|S-0SfH>FBdjuvHV*qkBph1-g7 z4ugy?>DELBO<8QOMOR%c?DV z;qNY3o$(XPYRDjT^TYOAR0f&D<59`-rF4%#oH$dzs>h}y^i`7t968cd4++ECmm_eV z=^lf89>dyCevt)Kz%y zHo`)sNFHCYgckWxf(JljZ}W-zu16;{7PU_Zx9nlLZbqOF*9+9GL_p`taNgsxNI&t3 zCUSgjBM5r6l&GCvr>+|6Y7E^;DduMfW-C%f$Lqcss;iL7w9ch$kPW`a?fvkP`BtPZ zHUbMUaVjd+rg?c`jK;R&!0s?s5@S}AI|~!f1ZE!x#o-A6Jt+XBRrpl4O^78rr0DK$n za|+O^M&n{NT!ZB9k$5&M-So6tx5UN zd}4*JbN&+SG*bybeq;Chz6csq1~KCRxPcL?t`yK`WclA57%qaBcXGVbqySIf`{Q;H z3bw|@0Z@`}h3V-Ewisg@SxJ%C!p`g{Tj`HWLLdxoTP^zGK+UE<&M0ea+DqI3Nz+rA zz76{JM_Q}rweRm()#3@DWuYl zL;PS|$*;rxaOYInK#VrkI2Ef<$B$qqg=0vd2~3qNDlRb7S4>o;PfSQ30EokFVk2RR zWcJ}WMg~btH4Gww-wS}^AAI)j9(t`MkUBwq+|RI=PC6wdoXCO^gleWeqJYJ_Pj z{@4}P?IQrxZD9t9P2nWF6NQ^^LEhNaOeneG`r$yy&?kI(Cgj5zy9mY{NHQ==UDO~P zH#DNBAP<%dXaEG@FgZjS+@cvA@S;=#u!>Hb94Y`+=jVku*|f$t7z=XgnZk*3U=lDW zK~kp*A$-OG&9O_f$x1q8TWltTYE+zIcq~CU+h2Bwk1-gZ^5F|jm9C8{2UY%fQwgZ| zw@;+uW@HcdVtKf*jkVowlnH`o9%z{$V`P8~?b90v00s}vaRZ!tFH30QAmVg`Y4XA! z5@e6@f_u*lorVN`cUGReb;7E`Ca{x~9Z(2SAbl`8z)^!3A@@Se3=Tm+>wt4p8$e|a z^I#Y|pDYPb(OI?*aV0`v?}U)nsS)(Yt!*Y30NYLGj08c9CgOA=H^YPU-d?^~6r?3^ zW9f%Ax5@^*au6=ILSs%5EnjRpJ4@aeG5zp6jA&F5>9#D1wZi8M;R+klo8uON7*$OZ zZ7aXit ziBW|cUW_L&ejF&21J4AD31)moFhWsnMBsKrV1$lwf$qC-0VvW*6X%86PNN@OXv%fl z1u`b*6f{ssaU7)@WQ&|G({f`TG=j89!tFFsc);B+cTh_-*c%Oo7HP5!PBdf#%J?Og z{8$#_E7r+)O0t5H;xp%isgg`j-v}WhH^Ee?xWJtDP3jP7E|hh`thXxwb?1*+V8q~t z8U)C|?EyQeQj9Vcu))kyXxkc7umIlrn8(>R(#*eWA^^0j4ys}2;51#jv5{qx4H zG!N;68K&4q7qk$W)cIRB%&tLBnZK{>oD{_>HGedG@$Ef5fsR-$6sUE5FdqSVyUNv; zj=2Fs_xpcu-S9&+a=ASO{`%o|m_QmrM}%zx{{U~_&k8clrhd_m+vNuQ(L*JIhJt{) zy*%$7aqqg%gr}6p@174d z`C|(NHbvADAW1jA`|ta{96OYQb6{e_dz)`=UtDVCIB0w-Qj`FLlIj#Gx=q)nj{ z{qWG5-*{~+0ZT$*UIIbi*BT9s6$`ksq>R3m_kpcO27m#%5=4m+%=5y9l+vjoOVs0& zBK}{$-P&^e$t4aYQk^g)Ct>R%OyJ5SyH%wq)f)Ovovrre<32D_+{es_;J#J?lRTFaD#p#$*;ctJlF{+zKa znBh?vu|Y|4%&b(?vfF8bqLB!J7SnjNo_?5+Qc|;%W$9^7HkE(gxd0Fh8xz;h3FTQ) z%lK-XB|1=%I>G?fqHQK`{!TZfWmPq->v<_tr8-DhN@5}+Mak#XeDRwki&_ZD8&m%P z4>q@{yNYFZfwLr}$U1i*PVsRwY4pX7!MS=e$~2c8?;Kh+0)eEZL{5z((4Q|ehFqsSsi>-T$I4YvQ{yqZ zQU}A*!+Y)q_rs+ zROr$ai>U=$kVeHnuc(-cT3s@kcS=;`r$P*!W^Q!_8RxX_pEz{Rme+FQ>nl@$>1_}d zsW1dydP(_oz&UGdW$zlgw-o7FJ=%fzrJCX&tOp9VP#WN#0dG$7zO8h7XU}DDN z;BGd)C%GdPdAkW^w!A4sIJt!A5j%6aJxs;yN@Hkf_NBl3vfU4&Ui(}8V$#i(O_EhMl@uv0Ye@^{ zttaWc@5`1cUfVdaPw?_->6&xCQsJSm{?bIGf<=j#k6dTQ;%5PUCY}S)B$@yyZw6Dp zOPRP_2`^MMpx9UwsbJf~9IetZZE-IW({X-NmGBm&Gf9@xwADt0!K!r0)DQba#E;5m zbgC*EnzZDop>tZxj4+1@*KmKZRQ#>AXyGf^mC?Ewwttt^Q^4kFC4n7-g=Nu~UHC(Ryk`n;ieXeXVG)@-dBM0;4AP(tF85Kqkakl$iPtURYR$WGNve9(#G;tdEn^RV-u+b&n2|xv5~Q;)I(`j1W2lh^01e z;dY!M3spmxAvTp--kbdf95{zERHm6_N^!>lnLa(`Lzx(kNghZFh*}sd1mnedojzfa zsqIa$m4t+Zcy}NHXv9Y@)ZtUBbSWtsQY?CH2iFc&c}jiJUE}NSU^oy;qr#q7^84Y( zgmQ{Z)IC{L@>`}#HQi)x3`BWP+XWn$t3xzooy&Zhhuo<>;nv*J-@ug%tyA#HJ9*+n z{eHZo-B6_^PY)RpaXU=&^us1`#h@cX8&Zp4p)z$Pq!|$%Nft44=Z7i~x|YDxtG-A| zKmkyra0mG1h3XzLN{u{atg@rogRXxPEYqvI?+h(#QBZF2q!Ml6Jutl+EmOMKQV`~n zpy5$6Px6a(Bc+e770KxZbwYsE-Z-(NSW(oa5qq9V20bwSo8(maH2`t<5#d^hPv%&g z3Hk5+u(v-HlhZD7Au{m`;;OQWiIAl}0Mw~G#k~c`OgJ@_s3}T$J>zVYr(WO?n-ujv zW2PK9YKbX+q4ergm5ymC09hgkjWN&k9$0b@<@`TF^UtZJIsZ`0Ra-l4!c#7KwE#)8&rW|T0=mi0H-Vv=JE8|Jgxgvca;fo^8YMyOK z4ym@);aNa}q2;FBk2n!{!DlK=+^v*W@JwBOyC0Yu!jX@I{t}VCA1Y|r}P3~^K<0{ip;cc)6uz3yi^_}QPHy{7v>+aQAerEh$1EMv=MS*RJ@GJ;sa*vegp_b-GX+THSDi zFaQt;u;0#cUuBt~r=ma(_tmcrDP^!z1eheKi67XEIVrdDx;-qZ3Q~#(fPy00lOhCz zZ(m#~(2{+~U8@YkIa5|Rv6@HHw_Ep$*dequfEjLfkY-7@K{2$PMR>zDe>|&0T6?s; z1fdY6At&=KL;G~bwE4>%CrMN(Lv=Nd1#5KNH9L?eef=lMU@j7-e>O!|dft+k5|E-| zcjl@7ys)Vn$bok%h)I-=%45KJ5XdOYEVwFMP%`JhmZdi{sFI)oGCFm>Hpr=+ezv3C zl%DvwQ0+k^fvAs%NwBqmwXYL_YO30#%hQ)LP^T4gLQ18-&7_%#Aa8po&T!?BW!2R* z`pZgZFNGzhn*MAZe2nSG@ z2$}H2A2KIvVy>-TW5#*wwRLYP%BPm62q2V!zLF*Yf_h>5KFw*3YmL(f6jG%(qr$G~ zJrsG^@{@;d5aA}1PO6&M+o#fncbbV2aq#urb+!47CMd*q^U3{Gx`~U<#_&8QT1s~5 zp6=GPr3vw9kaa3Kd01Ha^v3k`&t?kH(@HKq;0=W8R>H(}{@+vUGhDurxaFZ|%hMQf{W6{Cdpt`d zBQUJX^5pdKI$73x@!2PB(YeXv7srDz~K_}i811tbBnzSAF3)PO5@{K+Yl zkbj%cX@h^X`6!SZxkyS93Ir8+zW$#~JE!45=R7{`ENT>hP?D`F8jyl6L`;)^+2t5f z#3f}yK0ajZeI{bwn_k#RN(oX*VM)0M!U-F7A2E%a(A*NJffl@{r})880|66cyst~d zsY&oD9Ix?M{P43?31|>>l5aDypX>I*efU^PfYY!S-=W{1@0KwxrD?pTEq`BJ6G%LS znK0{WSx#zkG4PMJ71orcI}_9Q>HC}vlt__jHytpt8c=%NbtGI-NRxzB_>=26QPh*Dj#x~niM9zZb)+92 z6F33?02ZjhwIr1pz;6-_zPNK*leGm@U`geGDldE;P%nM31y#ud%wmQ$3(#*SRq2FR zwg_5z;S~^*z6`Z109+5McNp_x^(3VDqA-(*19OGlwXlQp7weAL ziK!AohWJUu*qmx5RA5suo6Y7yht{xCD6^}$a^ z%L2M%YX8&)Ve0e(*?B$ zO&27M@RNoWgwpvN&(|2Gg>=VlUTs>c`hh!P7h42jY4PJ#B&U~z{je@*?1c(JY~ySw z>tNvp0yo66M`?hs2;_08M@%h^2$O7Q$qHj!lE!0YBc?SXF(a5l_vo`3jK*LWi!qqY zW;t@qW-}R%T(&~AoD$Q}Cjwz(;aua<$|j@Psg8Ih6*12ZX;DC&EQe=fhBT$QiODrR zajrB5~%hlOW()jS_`v!p%NL z_zf!NFrrl#2M!KieG{7%H~Zk$YhcJYXK7?#1h(#zV}io;j?w&>Mkg;3#{$GcY-Bapem$oQ}$ zD-(hma_}(bf|I!!PXgae6wfKZY&j{67|90Fhc}eH$fhKfM>}Aq6Br(t>NqWriZMe1 z7daBrCk0cYOvVwX15L1HItTd0O=?5jilb<47;vX*;6??bMw~fQHzy9-l3bRjryIr$ zVw-DY%2u^rFl$YLhBXD!+LoI8VZxn|1mPANlVO9HNsJO5$y!$YSUHr9I1!*q?Sk8o z6MQkaOWl;ZQKa?s!l9AR>5UpmkCq5&qHJ*1xh?Kmw#XO8{nxG(NC+785KK-zE+q<0 zO@f&?Or#{+3TgpY#;QpsMhdAG4pM4tD9$jmpl^i|k`6J%$ln}F@y4=-bady9+f0q| zglgX&qQ?k$UPkP#!*Vvqp(L2b?OicAQ7B4`e_TxBRgD0xG!QZB1S;bSM2#mHrpP#* z>V_?l4w=Hu2y9^%fnF3u1=|_(D&r|kdWA>Cafwc>Xua{DBb8yj)~*4bCwVa z@XjYrUXvKnYZ`XGJX*-#2(9Q5I2^9r0@k5KSYTDEOwJUja%Tdq!8mgg+~u>5h`GXM zq6Xn38aU`2usYnGu+d%8(ylu)XX%05axQU-b_^4QR`ud=ZE_;zj=4MFb)Hz+#ek#J zt`Sp&oH?m`map={F7(2sz)tu<&T)z(bs=?fwIBfp2-FBLJ#n#e_WI#BT#-1bu2b2h z8{n&PfNJAOoE=bPkTBm=H#3K|$$wPWT?#+D;y;=sYCc$gtN6ZHW6XxKqlU(4q{)>V z%pl>Wp`w*x^0~NH+hMY$ur|dT()OmuTD%+%vHLhV#7W!J2$ac#gAQEODMwGHHSVVI zg3!#XV;IL62~3=Oy*ajmErW#IXpOLNW1M40Sb-pXvB`)PGZ#NxB;`DtVC@54=NhqGHA|X~7?HVZgh7lcjY>(sJSYTd2OO8VY!S!|Cd`eRkTK*o2TSViN7;XSUx*-u-1YL_I=G?@_?-2^D% zWvH6!OC@7Y6luslm>*Qz?}eBWsV57sDVveh?vu|BxpSrjoHbJ>1{^6Bpo|Dk8r z?W`2-M$raN9O+!{%4ZF%y`ekK4W@Xyn~|zNTpI~08Jf_Y8htw${l&k1FuP0AnMw5{ z4bd{IJ^6Pv7V1gAhiPg&!2h zND;mVa3TPua#l0IN=wU($cZ5o!G*B!7G3$Et!rxae<*-rxEHmb0p)h;L6q}1G@y-b{KXHdz#pzl2X8su4 z)213LoDG#E9cfOK4KQR|YwZV|dEjn>(S|n$ky^Xt4frRt?#(C z{Vj)jrV^oVi2q}*VF{%eo*}~oKRx-yauD#ev8}-9kJ>dl@R;iy}gZKR~ z=<92E$daY4AQ=V;u=4Z31&tvRKio9*`r%_39IXvIJCrp;fP||+_+n1cGyX80J7p#m zHD1>$BG%vKhX)uA9Vbqhj|j4dorj;x38|o!00yM`bB|qy4mV9pECd2NN0NQWBLsPzb+xsBrATq#dTd%&nrDqIOO&VPGhjmf)Q_;xdJ z;V9b>nfbsNTe>P(9ZnW$l1i?X6SoB=5e~|lcL>mTTKN#*3n(kG>(>42Uj8Kg3#oy z*wvay8lwa@*zV+X!#2{L&NY;p050I_S4{k{D`=aOf>>-To*B2gPU05oL36}0h)h~{ z#?g43dcTC>(YTBhnFE|Hc#xDkG3$bo;3=5G0kWk0u(J*71O2#uDMsfWEpDF@rwP8? zC&DmTZY>dno*-|J5_XPLWm83B;|$f*=URpFAgKjI4K?6Q#uDd|fE7_?F;u5OBbFPV z-XrgaYVaW64N4kUsNWOF+Z-y1CV~#3zxcy*@C*z(RCxaYOgGgqQ6%D0FszK0fKab6 zl_qfCP=FO5Tpawy5eVjREpKq0)CAQbLL zU?EAiHf0Ixg*nxfC77bMQ&8+5_`--_sXr`iQk2O*7nbAqd?>*QNSH`A9)5ndI76CF zQ0>~2LPKdJ^5hKT(o&aTst(5rDWt7ZKQ6@Hez@6|JF^qzVZIXN#$;Juxx9E_ z1Wq=nDb?ZY)^V!cD;i_xiQd{6M90}lxRO+FgnNR2f4@8yQc|zo@wyo+8)7#e%B{96 zruES#f6fwfF8~R@^}~wWC^AQeaG8&WKDd|N!d!p>bedeHDKIdbf)3G#XQ{M!fWv)5 zcfKf%gz|?4w1If|;GOmu4ymskj2!C{DjQ6|IH9co;Rm$vgiB^5<5ww^FCG)+ zg2f>%%wyFz_*!vOc}DIjHmR`H{O^Q`)GjT9S4*Ur!0t2?%M~;PveVq5l-!-Lld0)~ zSH3iHu&d&L)EKHkt-V-9)`{h87^bxDFpAN5AMuJCgc}epwlFizjzb5&*(TT(NsAm* z(S_*c0P7Qt4LIaS*9EDwJh9;%jv2x<3#^Wq@eSJ8DQ#*SW5G^E?}EBQ=MGY7Ne2tI zH3>M^xg&fi+6XroCb(Ww@fviAmG||%X|H? z<1L5;pG+3ZdZI=X&ncUTOVZPo2^er~gAg!1DhhWPbEGBWBzgMcc`R_58>}xHWQd>N zo(!b%D^j=R9Px=``H!df!t5}Tn{BoQuC(pLl)XJVhlL?ZR`EZ(;ZJnXh$eO>c7gqR z<7#m~ zi_T)-JRZd`C*iym6RYj}>5UUkoi~K3Ms*1Sc^LlyoD*xh8mutEL#e&-GeV6NnIou+ZRS}P_>f0#%+ZzA1qd~Qls#j@6s=R zSl*v24k)WgwaGgue*XYWII!N6B=~ll+sl4uFV)gXw8X8r&a*L0kdi0(R@XViCvG&1N(Y zx)J{XacD#W0l$zZ&k~L%q+J^tijKm?69_@kMO zX=rYR74iGj;~u{GcvxmA^nvXuCn z8kHSI`R#~qUf;U2Ao!pN=49`S6SCE_LbqO8wCP88peO|^slMhgx!vrbhB(dcDshwL zYIVe|K`HL^rU~Ec&R}|umLzeNBkyJ21&tu-f@H2@``!oN>xDRZ#a2GrP?a{6EmLTM zeK!$*QgHE_(|gnHq@_Vgw=o`*F^OY56;zf~cOb|aW~nQv3Q19t0(@67G6$w7l-xWi zS=N@2uK@xElCyi<;l76`aaAerQk3^`B4*Y$k1P6OQ&&=Z#zI?hDM~eX{{Y17HjCR6 z>Pf3rX?JniD^*bAIa+Dsyt-}*lcw?3+n+tWz)K=w#~xuS)RL9Vg~o*M%-gNv_}!8# z^JdsW)TYv~;RYncSYA_dHwNR#j7nUg6cv)aP3j6L(72h{bC13-T+(Evy(KarT5_N0 zvox_KqS{JZQ+nk#)w-=a`d`lxEY~n_I;A+F<6fXvvH<@8>#ToshuTKfP+Dia)Z@iY zEb9Rx`))b@#v+_wn|Jy1Y*Qs^W|)L6WR+`BQG#!Mk348-S}%o%u5q9gzl3vLPE(`1 zD{Zqb0k}Fr(kGOWiD$jK>#7RyIIjo>bfnl%mo54H;BLz@#%OZn)YhRr>byun0!W1r zM3{rpdVG_q;)JEQ>qB=@QE49%N~FS5es_ufY*{10I14|dV;hhhZI~k=c_ASxaD@~o zodGfmeK#LWH1PXw)>p8?Ro^*1;@1{PPTxgv{UK*Dec_5w&n(&7MF-uCP>YYo9dIAU~APbQf z+}jd_J`FRfqe5w0WF)O(G{@!#l<6i6+DG!@HybAg0B;k0I}NdH`$X}Inng7O3TI0Wx~CB!LcoDH9F(ZM zdRlq+KCS*ClTb9;kTle(Yb9jKM4o4Bq~33bX<<9Jm7&%fDWyDd9ZgE=8Kpyw>Fxqt z(5ZtSMBC-R$l$DrXNLGyUKf*Dn3Xa#h=gC5GrV<~6NY@P!(CXX7VC~V;XB-xQ5c&Y26_TCef>T<~=|=;-p6fO6?opT4+OqbRw5>^0>y+&yrJ#Jl z^TymemALg{>KZ9ZT$Y=VquvRfQ8D+yS-m=n)E0#>*cuXnXrEJf7ra{z96gz^D%sG4 zs-Bxfk_twyWPP`d@YhXI*hy}mbLgp8Xp|KEElEd2()DUWi82iB0FRxq1I?OUOVp}L z6%DB_u2d{$)As$GN;uY`TtUPvt!fDgO0}#^iCCENY$RcmGkdzEsP5LdD6veVQnnir z7C6si&MjQ%$8O2bhn`JB-C7czOs*t?nO8AAErY3=6?xKX9EVn=!U(sF*jxF0gkisj zmd!3)%V6n!w$vQeaFmnuC+CMw9ckrMI)Ie-Z6Q6{$ySo7Hi?@-!rbC4rZzp)md%S! zx}9iGA_z$V1oHs-P65qxmfNWJbTy~DOsw@1AeiO*>x|-B#XVIG{{Y-Zl&4q&NRSkv zPAxd5CU}VQ#{-Xk1OSg6jjA&yv@=9^wrd)EdwCHcXQ3WU{0VDGjNwvNa z>v+S>Yb&bE^)46P&XPe&Ti8w2C#{4N<^5x3Y8ub;7fE&P zZa5IbLz+N4#@8I}weY4_kh*D`ZC&Sbog|cq^O8Mh_Hm;*i+LXvla@4>D%<=vk`hjm zRq+wh3VQRxsoEOay`ZF=q}Y%UoeXt1xz<%A_Eam8iJd0UIY)-%<84 z7UArvjKtK`=7HA|OreI{?$x)3_mB?b)5-=I{iM5}C|!~=Kktk-w@U0xijr$EjHPxZ9u`4 zvY3wuJ1Cp^K=Y0GPO7^or_xs9>WgUOJAg%RU3)PsvHG2qJY}lwEqB+(hR1$ zo~Ed&J zsp6J>=ArK9mW{=D+**>2R+A+10&mJUyf;0>EE?3X!^)^smeNEoTDAgbXu!zr-1bS1 zKA7Fjr`{gQ8TW*x!>pqH*ekgNfDPo69LG#dUC3Riqf;nCS#4|7LL4eqkupRm&&qJG zXPhk04dkM&_S^T$q)VOb6tqeB$R=h5g#Q3s6`E$_FwA?ZSCSfV=sH(-l0f)KJ9*m} zGwL@;Slof#ZfNx0-Os`7n`p9NnxwT%5~sBS;aL!$RLu;`9PwbL24&TBWnXDM*jffa6>vym4m4=n6{LY z8=sM%Krl&csS*ItOu#WFaIbWfrrsp;F%XhP$M0{ZD)^<6;hs`Kl$lH?SHegz4EaYu zPoc(!ozC-7Uxq*=>c1)V{=)@0izzES?jvdCHoO2mF^Xv+F&er6yXu+8trd`#T5D-Y zvci_INFgvuP>&G#o>$t|^umi^BE;&r0_5uT9Qj4L;~yabLr#?ws7ca26VM)>UUp4Y zDR`u%DOW3aep5T&ry+(i$w-kb+I|??Bq)Al-^3?)*a+VnC1uCI-4=lmBWwQt_}5Q* znT7a@i6ZeE`r7=lg~b(xHk0rYWD^S1EF;(T>xPKU+VHxYj#sQ92-BxuEzE*rVg7OH zP+DaYrqg>JQ}+3Mu$mVtQPQL&DMSK%u(x+A5OpXYh;68I4yDMY}OKuyWSFm zeIOZ89uptG*uDoMBzpNAYD!aJVmA}NEGXhMf;_f3_iF6&luFcg<~nR}LjuVMU^n?- zWUTk1NVd>7^}%g898|)!Z8#J=fWcU`kdTx4cJduCn~o5W2f{2bjh%5IN8gyj3RGW~ z_&%9J9I{i;;TJ}gZG{|BKi>$tWSPP3OL88dz_uHnQ9I!Jg-wP6de;LKMiShFr~yJS z6RH58Tpdt390vM4ys+RBUV~ah#u0HLHjEVGcAj`a!6x`EtB{VQ5rNzga9ZMb!Ve_G z^uaDetaHLH&X_nM(1vj z!g{q|8mYppB42|TTay~gL}M_Ad+Co-xj5~swk6W&K3Mlu?4g9hq+c4~mm)jJ=Z%o; z^T4>>D%FA7hiF9WzxKxA@Kxsc5G)>e-3o&Dv$F@#1l2_TMFyH;Z{n9O*E zU=nb%oUoIB7{aQ$;{@JOHEuuc3}RGLWMk4aqA{*HsFLV*H^RtRz`)4DfmXH&3!7-h zowcy2b5YynfSY%rzdS6{ll`#fsodH}G_pMKvrcI?~;d@gN8j3bnHU|i{qIbg0Cvb2}lFivzQ~(Lajg2Nr#>g^GIdUPJ{Dv1s z_(7X|#ujB)j1y3wDQ1i-1v0WsU}lr3;FeHD`C-eqCE6sf1T>-$Ff%_M2yVhL%bbX1 zdWPFzhLi!otaHMs-vZ{^9oa^(>D6!edk>xJ4;3Bb+of*SZR=A^mErrjXm<{p!V_QaeR#en%?&2I=CQ-wPJ0OJl6 z_-$aqzIbw{g9j8bsSa{Fp4|N~burg*fT@!uBL~tVV)&_nA;hEUOoZXmk~GX=zLf;w z#*}FQM?5qNK<83%qXgjQQ*Y^jscbNFBG^5vw**TG(r{xx4hCsDh74gkjy(d5X*wrx>LKi8$0dJipErxf4hwZWqWLD1{Pjz6LAOaHA`gOyMqat$`Ym`G!3{ zBkP2azIfO=cahT(y~>uhlFbCfV|2F%&j=x8oG4wCZHOf~R7CG7K)4&>HLfmjnj901 zabZFZAd~Ye*y{^btDjsT>yls`ZsVKV13cyNDROSyFG~7h6`56zGrfSR!fSR#u)V|; z+XXFLP)cw!t!<#BwnUoX41;zoaObZ-2IwVE`tWCDX5y_Me0+Stb zeDKd+*(VQ`;&=4JO;Sldc)5u8g<-0<%GFb8Z3*s_8J+R{A z1gh7SXkY$N67Q$wisKb(JZH-)|)NO>j+?k%qophk>gkGl7FzoF#V0S6W z5rw&_jL1yywFi74<2J*qw4mU3Deo9du(>v^f{`R)7b)kK9Td*3#u8mWhWJaDF*TZL z5OJrv`C-XTfy;a*SrN7+PT*lTshGGJ&f-SH26samsS++Qv~35JA96$?yW=vxMw4~vUQ@Jb*j9?{O z?}X4u9(dRik+vL%r-VRr8xsQvrCO8M8|v`JIlS8Jj#KVz*)OQzKIfUkhGIgVRQh01 z;wDZQT|rM)kszRNgjNijbHPp~MiUK!m;>vDwb;t{ZcyPJagMf6hzt;E{42 zwLJzwQNA@&WJf$0s!~M8G)o!`e_SEp4iRla5J2AwA)>ADw{?B7x?6!bUgSZZQb}eF zl5j&Th{iMqsKE@T@rAh^1f@C(Zx}k91#Tk<(=)EogXt*ASf8djwo)EJ!A0flscReI z`hlWT7y^oyLE8?rD83z5qj$8YDiLep(t-1>H^WsbPPqBu){!ION%30@*rk%~JTp=F zU(*Ltxvivw;Z=x{ykV-H%Ox_Sa4qSFI&>cJ2<5ruVgCR)IO?e>&Af!=NRkjWO1j59 z5`~a-k*m%vhW2VojE|}PaD5mKDhiXaGx0*N6MKn_dMssUNPW~3g(8Xs#Cl++(n@s| zN{1`o&-d5Y0;NacD!Dty-vm<-TZkJ0*Ou7lHx`|qR=^hAO1wj*$dUENihT1QBaOS% z@(P$KGtbf@E&Y1nXMhJ<)ukNAURX<;VKO!jZ6f=DatZV#OyBKq>47WV6lzgRi3@L1 zF1=AE2;L@66sr!QL?$IBAQ8}5nYPO2)ttNV)reTVU0p1-|%&Xi?M(e?8{ic?(UkrBfQ7 zOHj1BP)HFWNsEcM`TF8{4G^z}M_44`FgVCsQdQwgfBwqV`Av zL9`42cxgApG|>C*hM;z^Wg)#3!&L~?^{IK7vpZG{A?QUSb@BlW@zQ9-`1 z7m8+1`0c`zU1JNtOKF7_D@}@lB7XaSY!Tg*xd4qj*nB_pjay_mkBImM#-TR1{C`Xl zNQG;SjNWf~-{pr#lrzZc+IUK#l9sKgn-~Yv4m1>`qftH;TxsQR-|S%)S_%Lg#8`|M zMHJ$Hn`y-xu}TvNy9q@!4T#3=AuCLg9$3XK4l2iPobiZX;&0Cs^)L`f+9^#P4l_wg zpqR$4Ii%Pht~N<35)LVi))Z1w#0bKyld3VQQ6^&qQx6sxrzbR5i=|q zEsYkaHpOig5?v(ifRdRtghx*I#K9JPffd?2QRcR10P zEhJkQ>ZaoZwRXYD2wIl(Y;eBYznoBj49VxUN(WsMQtPrz{y8=s~i^Ur7%R{0@w(VGJe=YoT-hsMv@M; zbzH_YEe%mSV|PJXVtMb4k^%%0I?Uh;jb$=S<*5a$Nr8>qCBY!$Zs;gXe~c)@B}Q-k zusg7mx4Og*^TJ2@!2k&J!fIfpKo8A@kOEK?cN^h&DVJm1RuqJ`oB5v>=cYXxNP=#i zyhLt&e{+RU(NlId0{iv#`QuQ~?&oet&VS<*x=-}3;QS=ZrIQI8nA+p_IP|SWaHW4- zY}_fblM%}vC4%9POfATE_DeFoBK*0WXLfa4;l|$YsVUN!APgcPW6x53p8-19F8^Ax6X0;RR*jDoEc3h*5~ft4JqoA*~_V zUOQ`rAl;|bjlS4xuccQ^KDsm_K){tPg{Iu`LtV6~sF1Y;SZCOpA;mP&C`=gWRW`y)YBZtC__Rx4B*+9FRU(9ca|8@N(LKLBKDs zLB)-2p^@GaD?kTsctuEsLF8~krNO9w&J!gk{&7PZLQd?YiUAv7chh*h-~b0f_`a7! zo$!L7SPWSkPbrOXLpX`^wgq{yxaWgbpDpk+sh`snv;?=hkm0L92m4_)v3>AG(wu6d zVt=MREkxH}D00*o{hVwQJe7q2Q8EYH7?d4YEtVIX!bG(vY;2afP6`5Xv1}YLFfVr` zTW-h1y9)fx%aV55P*GYZxJ> z&Zsy_odlmu76Aura#MMNV~0KNFPioNZ2U2!A!Cgs{`gRJCnBpwQ8KJ^fQAI zNR+El5}+(e5NDt1j17cDC#DK*g5XJwgiMq6oBsfeF}_mwY&l4V%99|e7m><;;}{t( zufh(f2?NWg^uet#3DTXn^pEe4MI0*0@T$W|h#t7>7QDyi0?_EDQWBD{&9|q^8QkeA zpUh<6S0VmzVPaIGMxvuCi%Igq2%}2d+fYaV$&>Xs_VA6a-ZFt=o4Zbv>l}|QzpfQw zmdQfKsF)C9WO^9E4pR8F#99F(akPDL=x@hAn|nahc%A)znBWQ)ge5~NaY`U{B!O*2 z&re@1yy1&IWhrgMg>wl2LFNzKSYlC9+LXOOBz!?aHlCdame^^`XwfNB)|0vk1y)a$ z`C1LIslP5($D^XlQ?>X38tsiuf@_pQTS(l{QAz=t@~@KL%B04Ly6OYRlk=sqpTO~Q)5nq=Fl^8MQj=1E#B7KJHVR1JYV zjFB_<^TTtst6@na{^E$_Ri~Fvr^}`+Ye}uCaK4ARHD+`xH7+GYt4iP}#7xYdf4`WN zXz1di=Srex1^k8Z@ELNkrC!YSt00XkNdTKbJM@fHA3~JB znZ$(h##q~pCKR9+C1YR5dvf`D;#ZQq7;Pv>0sypeG7-ek*+b zez@!sG9{|FNtQ|EN*6E@zW34JHhW7 zTx}^$fiv-Sv=|%uj(Csc>JL&flD%po69(OS-XloE#!#T!8eCdZl#l|1$v!D>Hr7);eH&*>F6?s>z-*UX+UTSAZg#B7vF1N zdtqm@QBv|;ac!lzEudSLGbh#p`fBHCM&Irx?8=g_BFI@}r7fxCc*4e= zBGwk?etfUWP|HhR=$dL`r6rrKVL}Ivdj9|}BmJRqbJ?zBw&|9po25!nE_^DG2)6w1 zu(wPl!1b&cVZ3yikESDePJZtd=8ivD?|D+$fO*`8{eQw-ZULs#e-vjd(s0roLVxuS zID|Am+DC})ZwKjy+_JgKnl})WDs|NP?E|mw2gn{Rs5Mj>SO-sb&{E|VNl^!Wv2T#U znF3pV*AjDb&t7bC86p(=Ti;c;mQD;5bIK^=e0ZHcBp!W=1d!ETio7T)?v zJxzzpdz>@yWIGHoTh@+t-sY%oVoJmHMgwKSNK1Av2 zF+QST4JtISzPAMtrKK5;X;PpLnbt_~r8f~XwC~7Dx3(6l(&u?j!dWuCR=f^EXYc2U z9%V|!6*98wRQO!~0P2K-T~W094wn`f_b%YoQL?2xRo`*|tKsTLkht98ABZ2B-(^d* z{4{gjF()l9uuAw`j9}cMoB7E@c!dx!C`IW3CW`Fb2UQSkbb z%0eA&MSeAf9YsA8er84R^^+QWs+B8I*Q>--2#rL--f=3Czizypp zEhXqnX>*w>QbzCw{{XJ|7lU7NqcKyB>2JIt+1Q~VT0Ku(YoAx1A_RIQb$t* zrSHoQnJz<3z!|zO=Ux)x=2V_ zogqr=9%sw1TsAvZQJJGnJt?K9XYfMf;x@dIY21DOOiYXLPUH(0yQ5@HSP=_McD44%~Dju_N;nGhh#h+Y{?GTN|~XblonWaor)nM^;dK>)z(mN>}0Q zAz~7Mn`&CQlW`q-P9#}(3M(t7r>v=A#M8o|L|sS3Kuzo<0TZ{~&mg8_FLhMyHp|6C zyz8N&qT~{0WRRY5JuPfDaV2}TYiXw?NJ&yq3c_1$B<~Zygb;cjM{k$jTy}-F={7TP z3m>XsS&C|E5|@o-}>#0r%5#qYjawznG#?F>lfU7@Sp*3l5~M!LX{>Dtn5xWyTV(YM}&w;1uhjO zDoIE|RpL3%JRq`w^YC| zj~iUyt{oc%SwxpAkrRvtMiEkqMb0rU6yUocYqGa-R*#+peceCP3q0@ufNy|bd?@*H z!L_I)a9XKwptyJA0Q3)Ctw4N1}?`LMH;(ZU_~r=A3T?>s2_yzmW6hXb{GwRQXNgjVNV zYNe8Q#<)wp0jeRuR^5xH2$1SCkT%%wRK&!5~{8 z-Z8cl#$%TyQmr^qCJqHkv@gpGpxYcm7bUQ>N0`9vm^fXp>5gdZr*c^;)rDGCs5nKh zj|#D}aK$^4;czy>%-nZC(*%?PBMB6g8;m8<+Ggdh zHL}h&DV|u=f)ylUDIr9)AQO#BI$=-#sf_siqY^$8VaY8A7!pa0Zlp?Q7?B^nu_L0S zcX(Q$6sv3~i>_lH#-!gHHUfF!TrWop7rs2kV=zn9pb#;Pua-4)mNsP^@LiCXB?z2s z)1+^WahUUR6jK!%tZ-9qVXY@gwiarrr+cRcGL+`0Am#VQ=yOnv1c$P`$og}UITQT`vmq4`oVQ7-*Ho}PbMg~iUWjIkQ3$_^6u0>#mIp9`IkV(O8 zh%tkpmWXTmV73H=;8w((5|4yn_NFD!h%=4Rz7hl_7dTmf6aoEl+fcbIz}(?fd_xJd z@MCl;#K)!uFS=D95Wy@fPR9cy;uusNB{stt)xgqnVaspngBejHZg^{^bemxI79?8* zw=1_JnpFJoOG8M&wCcf)Dtcj?P*_VaFMJ(NFM(M`45mp2aONO-DxDoL=}MT3TL4m{ zY&fu+#wcr29OQL6Ksa)vM4SOiiBJ)TT07qquq19rQnx2;8q8YOz|`Asf|%!rHK{Ig zI-Ns&9Ki%(zMrNXDQ0Xx&KtM79mP1)fJDX(r*F#uvP5CRnA&Fq*z7NCkwp~CdWG;) zbmNv2X#l2hQ$tnoRaisq;d3w8Ef3ec#e-x{SsM&}sn?Q3+xJ>{^IYr^cMiUC$In8uC0Cwyq@vS1&c7MRw7 zkhWis38`95@#ei2lZ{+ohS=n71H#{5DaPI88(>oAjnCH}w(uee#Ihze*-k9GCivY( zP5^EFDuQsod^(-+E7i?*DH4ZtnI^{yYn4Da4K5S57HvF^BbmaJqG=^8Q_P%b;-F4F z3kOg*P33aNV~JNaw2^gWUkINT_}RtG;CCI<;rildd?w+mS5*W0;T66IKTK~>u@UmX zhjm{99UW||Y!2g7zA9^!*-W(*{#Xrcl-S|+qLgyL zPt!rL!?&Z1CbGavryl6kn_!nI#7G!VL`+AIjHWRli!o=9>Ajrm{L<|!0Ay9BRY7Y1&yl{|OM=N9kV3YoEraVZ2 zk8oW;m;kIV0RYAoPlQ_uiy6l0P*9PEM(ZgqQXIi!zg7bdXfewRW=bZdM*~c%_^7uE zRH}@oafnQ=KU{3c1Y=}?l|aO)n|rJ%ltwYMce z?)>m`h#@z^S_T&BE0pcTp*y`ivE=9`+^|B^ZL#8MyTP&fU`}{lxPwIw+6vb@Uk()1 zg<^W+DX9v1VZxf9O|Uynq1|C+4J1XcIC`RBB+Ow7I&g1?I(lNH*nP0>$tL+q)1)fc zK8c7kI7W()%p5sVG<-k1;I@Ino<|Ufrffj4^}~e-O4gIVGlA(E)FAWo+YU`q29TQ- zD&&F4{{T^jM_d&Qt|abDQlUEJh*U(|4s4-HN`4ss0B*aa6~S$Q$6*(7d6T2Y!$jR4k=7H4ixJJ!D6y^TXDV@K{cel*(3;ejnWYpl^HuQIi)O zQ6W9+ZX{c%=6tuendl~2F6`l22VfINb*+-n)3JkogU|Gg4)n@NL6vMRVJ7DD%V_#x z*iq_G1dS>;wx9&{6Uzy^ND$IVZAC$3D4)zBHn_FV>4iFqwiw73nd=xU1*9oTQ)k4P z)v5qDjqE|^{n|4MT}FAQaXLEsop zi;h?2fNL3)f4ilyI40F?$e@~CY__?SCnxI-O(F6h_g&Q*CWp)H^qvY?_!| z&J#)u+a8)?;F$Eo9T*O!pCd_irOU-e=5d96FoYJDJL6FkMWI^ zvXspK0E`b%`j(i3YJoPxOwkUenmP{~M~H`E}cs@P18@SPv#%4T(? zC1l6026eKP1$p7o;ixE#0_qBsK^UKHg{9dhrRx_r!0uB6D*V`3HK|Ze6%@W3VshM~ z+i9u5HiL~`WHg*Os*n|1^v9-zlXS)>k)o|Ru5cJlZPDx8?~Rw2X-Oepe_T0xhz$?~ zf;wSD(VpxAEN|(E+~aAH$Ka-VdQwRqae_VDy5;BVhcQ49bpd}(@uQT>QtmDf()e5D z04g??gx;nJ1jjKp*zz7&@uqf@{xE82Ep=XX=bRWi zU*c^T)})O#9Qk2weVn0-gp1=)kFElH@a$&>_mn_U6Jd}>>j zNW$ITo5nQ>Fa&ePjBUb3`V^5`08C-NwKtwva&@9`6U-Eg;jy-gORSXC`k?%<4MKrl z{P5vc*_#jZfL&}%Ml>UCEiB<87Xxf2a=6fDHF1TQv@7priih@i$wCmYHCbjt)#RlU<_^=ov=a} zCv0wMwJUGa1-WuTv=d{6Q%z}%5ZxY;g}aah95JX|?V$?QIZpT?2x=Ih^7TRx515(z6N9kS};>7)U0=OEyoDjWF!fJ zhYDoK7sGpUi{Z+I6{dRPcP2H*x^Sg$Q3UkEqcr_JaNn1=sZd8eJW|ux3FnC1s*HkC zl=SdC{czzz&VezFY3agBNH*IJ6zvHX#O`u+0m4?DnS&TDhUb^p8n%rhX9P40g2Vh^ zQE(9y%#t_3wCsU=Ax;V-_ZTU-2TV=y4YP#I0cm8gmFhDXGLiv_Do;2u^71%Eg!hRN zVKZzSOvaONu3K##V-If>Quh*W)+LQV|!tCSqdo&B&Se2 z#mU@qv=5#ZOC%Z4o%R-+{{U~_JaLZ}yQo1!ihl4-iJi&Y1~r$53W+KLW(bacc=Z&? zD%4D_bq^8w^ZnZjtp!d>RkfraNfwKb*B%=<3%7ypNSaMMufldPJR@$uJZPp$&~*{v z+D@G#>%9KBE*3&%J|F$p`~Ki#RG=gz%v=C3XglxwIQJuzJAueUu}V}@5}h;gPb1R} zTug=2u~6ypHrYs#W6I`FmpI&fpNc{r?+%|4JBcd$#u~Vdu<{awqgJD&?e#Ng*q!$0 zgiVo!wdnJ0)C{h1?e(RMz*MX`_?`kx+!b0PISu@=1ghdR(zMtz97rURQwuX>@8yd> z+FK_Sd0T2%iE@}HU^Nduus&ZrQF-2MD;v;H{j`J`)A?f4jSUoj(LsIY+acvdc+QEu z=AD~YAMvxG@-WKD+5U> z7xTY4^*GUEr~(u&Wm!!*o@l1%oI^-5;u1%p<+tv6-UG-Il&CuKRKPGI3c9NJA2wdH zkfik}1pHr9xB2U0C@PfCc21>R%*h+g@a`IE3mPp+C~DR34TTjDk}Wf+e2wsBHh!9V zvaLw*I!s#j9(KIqE-Mz=$R%Tu-NvODmP6i0jl|WR;DV<-j>5AVdX*Fu^2~ObrR^IXZ`eJ>- z46ielge_W^qHW;br@a0nDgKJoHt~wFmtw^bsAM=rb$#J6Fj#4+XiK{6?ud8RVoS;ZIvhl zk~Ju%K^{}`z!W4?X0+fmd$}V>zOf)q_7^yNU5W`5N9R@rLjM4aQtH%@+jdYEl>iUO z5J`{t#7jP1MQvgd7N*e3$-9JU=`weoc$80Zv2dQ>uk{)i5t20Kc!4Vr{{B z5}VD_PSMk-X(W-QBFCtZ1ltx&>TMM)Evz+3vI+Tus}4Zi-$#&a%ggY_gOo zZ2+MO5wdT4+WfrnOXPXGsH$beg(P=?kt(><2$=JqmM*Vtss_{AU2>_?tu8j95=aTx z0Yh$|{b!yisy1C=DR0D-rCi37zQ#`c{V~0yVCe^WQpn;6Y3zs2bMsBa8I4mQq{5qM z6Q~J4K3b>$052>r!JIPdId{KRB}rvK5ag81#?W@S#C`O;TgE9t*5VZEb)hB#)L;#^ z5hVWrTv(iPp-oWDItT)kYF~DUNh*Rwc?@V*OaKolJ9pW40W{?Kz^=~f8%k59kaS)r ztj0CsSI%KU-5pwatdcKl@8k!e!#50)&32(-;*vK$D83{OmRe!wDgsoP(j-in0tlbn zVJ@I;bZy=(GG~vbwP{E~dFZ9&sD3sbR{bw@j3&Za4xpnbxgQZ##(f#tU^Dq;s3uZaNYp4L#JuB;i*W z%Gs=QQzfP%7EGx?2!SHoo5`O;g)6v*qcFaC{;v0tq%q2(z`c?u2LLsCJ4t@{4BjOrZXNfxb+5YQS2 z)fvL{>CN+G)4b7IQd1^$_(8a}#ji27_QZpTSZRbd*-~`w4=kys2oeeMtg+KxVz|y_SzK8d0JW{m0-nq8e2~8`1 z98Zk%R{V_pe6a4$L@F!XbR$z@$wBy0AOk0^8Z`l!B?F-+fSB6JQITc-_OlfW1t2T} zrKg!pOh&2S>xSMPrb{&MR4j(vsdT8gxYBQPVw>#-#>POjz43dCN=jMo()7lFO{80q z07l|@^T5?P3mHEPx0qK|rB6I$hQQWTseqBNam>N{|xL6rfg5GxzB}ULh|WH(n|sl&9V4TOhzB2bLs8krD^5^}`s_F1bmWq<}jh z6x+#cy5iGLmxL5*2?(13XxMM+cY}r{1S^ zK`uD+%G^polK{eR5v5-g!Jc>_jvA>eOG!eTd9|e{QQL8}pA<=%7d}{YGi)B>qn0;u zN;|{3LQ8$Zem25&0R*TU!64ei4zY*Vc-?)LQPe$1(_Z;j$zd)yg0Pgt9W!95FcbtF zI@VAzkW(QnhhD66WM1ls0!i^7ivGS+63loyyN)Z;&S1KR*^;nQNJ@y=AZnO^01*NW z@y=+I-0nOjxwI@CsB=u#aRcg8?ybgZk9tBJRH-s=GH>C6cfQzscP%-Wx-^=0Y3V7_ zN&#A12J?PIkOY$_!{>=sUqwTZ2dJsi+m1gH>`spf5+X+OZ9Dx5;oON;bqQ5bar$=k zD?kPcqGa5~f=m<39OoOrz*FuGZsW>(;LaaS242&vre#&nLJ$fyCA9ooObJK=Ob-bW z1~Dk4DnM~6Q;J)Q3MHVFg!w=lb>-7+G@`6z)cxbDN?w0Xgb&D($VR}6MeR6z;U?Fa zG2c9r65vSz2lDhjusrS0QH=SUg7Sfy!s>4c+LMTvMMb5k)bLPnkIWwavxzcq< z&*dA8OQ(&b;9(<0X7>&jnDhM{EQZgF72k>d?hWYi`dG# zbo=1W7~%6!g*#BT*=4^OUGHsL1^RkyJoN*e=T7G&B_VCL$x#3jl>Ee-+w}QR-gdQM znF$5*8}PNvv(V#S?%3|zN&-qXf!>X^6VAeYMjKy2Y>6Q$NcfG;uRqzwJgoss3QDx6 zNtKxx#~%u+g=y54K?j-oZOA}BHE+V8xnw2-h!Pr z0e*JpeZ250Ru!n}QnZ8P=`cz_^!|kSFR7r`Og3sWH+AH@ew>j-{b- z)<(fyKdAng)#f{o7M)5|5d=Y0#>9d5*kg3o5~R1}NRoU+N1s4`qaLkbX;3~D2wJXE zl<#35%1M~z^2e>U&FSpI8Tnzw2})HKJB1_|pRxMmMZ;oLpr{HW>51N8a-TdZ>&Qqc zN_6s&HUw?wc{b*8qV%g$m8nVig3-68`&{CdiV8j65(Nru*nT34i6Y>t*7e@o;Z_|1 zC;5_qU_sOC*8}&f_`=nyP3({ll#718e6fzLDR9h5GbsY&R@>M{9y|cL>mVW?0j~^+ z=mp2i38m-~vY1ZrM*V#wmJ@2G017Gdy@Y)E#xuQBsVW0Xq70Mkw_aE_wANQh;n^(N z3gl9Ri+OrZ7DGWQf_&rweZ24}enNmg6oWWdy)CUI8>i3D_kZt(A>Ih#Zv2%%**1_( z@3#2xkeq00XL!bi!c~Se*9b`oeL$w)@r`@WEGOPgzpgcP;TUFV1%<6cvuX9fZ>~(? zN1Y~cJFapk4P#PEttPX}1G>B43OwMS*UJOC?@oAn14~C7lWb^Jdz@;eMTaaVrF6$3 zShos}6H=sO#}*?9xa^6T7-Hq)iV~~g7kT5=E=Ce@&O-yWa48pw1m6QXtv@U;P_Z#S zcopSZ{{TF93y|)ZP6McN@Gw)x_zBfc1vQ}#`=AU2`-IL2s55B5bqb5)k)i4pYzI)h z6#B$qHhWeL8*z$~WBqQVu1ypQp%LP868{j&-kDe6l zlweXH8I4wXV_Zz+)wZ$cjMhByp-=}NYaVzVh_;lbvFDAjj4N@Fpq2`3w4)!SCObvYOzD7VgVi(|%42*VQGy+-&U zujz!FMixM{;9JU_$wUr#S&IbWG@z+57*z>`&iyduJC^A2;bzqb4KbSj*-_I6dsu8HG8=RreRYU(6nN3VQd_DreN)axroD% zg`vvW*SI5df|kyd{{U=ire|Y`-x@8*aM9H`!if+@7E@fYuXWK_jqxH$_b_a6>OhN} zZ>LSMgia%p5}4O5N;+c#I^!UxY|3ODc!BZXNqBOK%_d}cElfn2j0 zjK*V^Es&_(;D%}ngd7WxLWsdN*`y9{gy_vgUT{lw0FCg@#ZH3<1vK>Shb1RQ-=AC( z(&r70KO5kt9-H8XIbFRuQ@BCj1~TTG#v537&jvE&#qeX5$;qXHkbLm6Ng@wi0?UQ~ z7%8Ro!&d@OPL1z(+)JoMX^ItT#Tels}5A@gyFW3 z#vG~DX$K4#L%Nal&FUBV;MOBm@EtRdcHah5nYq3kxVawEWx2s^d=|ho>y<>{(6M4I z>w$7!4|KX-2b|+oxvXPdK_X}FF`;+EI1)fy?`{{p{*wo6BQ2C3M3HxC#;W9S&P7JxI%B~cTol{-k#qILQ#-n`v~Z4P z-xl~KF9JW#8(VZBSjHAbM=WPZ`&YwFM>gl4G<|lQB$weh)y0#1Myblh1E$y=#EnWO z_*pBFVg7NV(_?R3Cxphg$`xzWsOf~1n6beNZ=XNc39McSnx6R^TyP73Y{MX`aCul_JggOKHk5^$T0VZb$M7}YFKTrsX*yM)`_ zkZ+F^BY&hE}Vlg^uvPLI`;YD7n5i>p{_-^QV+ZH#-*9%f)!2_sW`ySl*ah&$!&F%6U^gI z>&pizspa;@p`S07IJi>c+bO+t=4>#F%|;zNp@HA0lZ2OL7R1uFbl`Uzl*S#OrGdB4 z0Y1i)j@^tdO^-7sMh8_i;mO8zVHF|`u$LjA4pVEiu&g5GG#QLJEsaMAy38stm!oOQ zZ(TU$zf2~&dF6*9%<{r3W1M1FsyX2|t&W2l_XO;4VPm1jif-4$u5k&iap45&BLlpd zGlL#P9k4o+$m6p~n~*gu!lweQ7sHFlB*p@HFl~jUxDM$&Y?OjAtXgq^#yJw(Pg9Rf zr8w7F!tJ&kOk#*#l(&p0TJtpuj14h-5niN+RsAqJ0a}FZ&lfo1XZw=W<583U061H_ z?*xo$(j?9bX&1gFdUI~Fv9`2}V`h+a$-kUoZ2%!w#sD-x!W{0&jBw#1>4f1JI-)VN zs8SZ8`DY%X0EswH)q9&>A&D~>DVlJh5sYO!NdEvhGM$h}k?V$rqI28bV>E^Y3Bt`b zLFs%h(qVpBHB^EmC+q8mHMz=0>ljJXvJLd%-jD?#LHV9o0-l_tPOlCeGV(Rv2RPpi z*-BX?JX$3QB~ztW`r*Qel^8tnr8+{A2>Xvr9ZgOW5~U3~j8F4}HkkTOa)4!iDo*Zde@B#;kQ6O#i!vuAZrkX+m z-G;(l04BorJFA!U`eD|TAy7`0TylU9*L&bb8!5jlE3epL#+?BOxYDHnZUND?tL;RHCR0#ZlADY%rIkt5Hap!66&E<%t~B}syt zfMDJ>`QgB02~p+wTRw?#YFSgul=y^%$pd*48}i2G#JV9NDQ8ue%~Cn_9Z%Z|)KVlk zs47y8<`0j1fNvXepX;?PF?A#or5S=`NF1OT{hTe$1Z6v|Rsch_N?URYMzsxunKKY0 zp8LUoZHekGBSleHzGX7Hfo=`7yFa_a6xUh@3)sz(;BH@r6*MRj4^ERx88}23v3LobFo1J z?}=0U7;dXzsZucVX+RSgOwxrLi(zse>5(+3^+hy|y+#Lim?U}O@~)S=KMdeEsUJBTmB(?6BLf2q#Lv zu(myNjBB^kd}qk)@k!CToSB6pTQCIS7wJZ$ren`|!^6~ROr839{{VarcnJf88pVtW?Aq$W&w>sCGSilV>OKH&r+Y8gQ2$8?(gq5fJ$1Gwz zDuI9a!rs;I;yuE`$5SdIe9jSZ**jrpU6p?~TqN^amm>+=V0>@Qm#Ol5QYHusuQsnEh}}2%T5LE&!<*qAv?KaO9)|U?wn{p|tJt z!pa&aYzpg=qj(=YTErEUo6iMb>49E?4itP&1$4lP^2L$Hy>n|N2UML>Kc*YsY!yZv zY8B^!9c-%ejR@O8C#FtH6r-jQSrN7fenG(Nu!HN07}O-v9Eier*~bVwV?|FaQpTmZ z>)dLit80AmyD2Kd>0lEvhP9y%^owj22>o%mqXz!~Y%Ycf<%I$YG3^EB{{SdaO&qba zY=oV#QDmq{3CF2w@JGuYZC>wMA(5vWp^=4KZ;{^$7PN~T71CRYC}lCv8Wy2Zg9AE` zJZ#-ArC$ZPEw1o_Lk4l{Y{I7pnod~oQpm?{T;T5M7Q_r0P6Ubij3$~j9q?@>C89pq zCCzcVOR$Y%P93uPO(i%6je?ROVe>9z6yXo@sBTVCRFv_s!<8j6q<){%2~ePN!-YBt z<%lG4wD(Y?MKVGJ92rWk@p#gWiADABSQM12;!ID5W_bw1n%`|9e1H#>qEe-EIz^z#BK>fyRGs24 zsVY*Wo%!GGIMtAqGY3hN5P9GGVPv=yZ?*7SeiugIFy*9$DoIa|Vh-5xz+GI*h0ll+ zdD_#zp7-^F8*l|DNk~k=f_z-DtEEd&1vXTGeSf{L%KdTMPlV?^gEoe!hOZiwd`i3} zO203r5PF@rDbg0ZB>;mX=RR@2JM+O$vG~aYi z?^pPp+FVH>+*r=Xe@=T06;#>?RKkLExE28)C?of8IB3t7w7QWRbsd2|8}D=T^~1Vf zVOcUs_>{z~^^N|=?dD>D?_yrxcfy6|4~HBmNY$ht%n!>0)7A}1OJO7?OoJCT!H&}{ z`hdU4m81{~g}MIu;CJZ~#Z!O-;am_l37k~d4XS;oeW#4No8MeQ5~j)U$<<-VpRNzg zX%$ZDP=Yln2?7L4f1$#h7eKVrxbKJtzyp62s{H)0Nuyi&o|L6dHm4GV4~bfez8L-6 z8S=OX?eMgrj27-r*+x=RM&6Zw_e3l%Nz*as<%?&AUZ>%X6Ze%k+A17IgaZl%MD#N| zZ?+=YMoOx7Y0&8jQEURPNl4q49w@0^&a+0+>Qrf|NJ?88gbUk!zIcjh2^V}VC__OT zLXmcHlf6}1+wX-WyrpPb$dkV-Zys2-@^^cxe&MmDDe#numBHI?zJn1C4y7reOUrM? zpez)D*5nAcKd&rLxH^woedSH7$Ec+2l4Gwi<&5bjZGctHjDdf#Lf6p>6(y7`_)1hw z{89O&`R~umX>#Gzr#C63D(>`>rB2ts(r2G6Hu23`nsrESRjE)2u;q9$1jj!vm>-3W zR%M*9+bVfo*hMB9d_H&EYYDj@EqEU$ zrs7QLls?;Oj~SH0NRw?*`eEa=m8O#}q-}*Ho5})!k-XX>@%xw;vz(D`=KAU*OePOC z-g@7DLu^pjdwE#$zj+|?pE$20MP_kM>&Q=ctt1G5kaXDj9$h2P5x&y6vV$ec)WeF@ zmXWKwL05?RkZr%2#OsNUtctX&yhDgd2uy%x5@OqsHjGj^yUk~Bs?F(f!cUCoTqsO< zr(wB+Y!;oQoy4d$6e)pcWf@ZQPAcyz31!M;YtU{5{_$z)BYaqyjT^|#Qp*Z+P(&4i zQ>#(@zbkqiNBAXGgB>IWl%N9)?8Y;4`u|Y z)p~~=>DqESbkc|6ES%EPHsi3Awsu(YJ81;T1dmw6zb;Cua&}vM2Afin6l38=uMq?N zyLt>A+5Z3lxZ06dUKW(96{L6x7K62~x_Whj18-{ClNm1rRX0MNHBUH{kbqO6B&4fo zB$5b$8=Zt4X2~D~uyU)0IUP>yxi8yRqLEx*nPv?sKJQ6PP})ekm2JmSDL%fZ9G#YD zt1PQtq+KAG*pVY*Jv|OCUurz^qQ8hLDVFM#%$FSndn!@@{U-daxSDbNg*kpgtie&; z=?6r9V*qp95Ha-Ln$yt%=I@1@>H?(p4mnQT5cMrBZe?3o;`_8WsWBRqpe@UKlZD?sFe()3$L_jIO(%46GG?7eym3V&tnQODsC~!J(k-48b*!i|%{r3dY{@1Js3s2~zxV5jb#jp(8CU69 zzF%>m5rQne< z7{-p8%m4vF{=RZnsdndIV70G&R=m?CDp69wBn>kgUvIt|_=}6_vWo2$E+qhkDD0QXO%6;ilHTi8mxp;OsoG!Nj~9Q<-MTY_*~2Nm3F9q6i;dhaqr1 za17I)TyU6m0RCQlDGNEn*@ZG+r;^*6Rsc?rFB_h|oczWO;e5WQJk1lKKZcNyZ+6Ec zha8KA6GF`$5)_vL6XQT4QwAW-h3&uUF(%j?EUKLTD)a=Xh}uYka9vJz zT~d<5RFIM0PUGSN6V~JHhGk|n)Cl)xokKdvBoiv}04_=DW1i=w^V$ono>qWhXbWn* z{)UOADQioN)9RD?omk~PEIDEo#1*-R7uF`F@bh%B3@{_ZD&Lf-+!+Eq@Lp?9^XO3} zN=(g(1kWw^Jin$LvMh?GnvIb1)1}am+Ckb0wbdlvWOE1SrK6^u#b#@x+$p#p2<{Kb z)Vc(+5_KfR7%4(WPxpM!KPZ#ZQllfNAxJ=RNC^ZDIs|z{7?Nf=^)NnP?(`$L4k>PO z2!H~FK>7(k`E$V;T@!15AAK$NNh)z*iAtaVl+5)4{INio7n5o&n?;<`UoXm%T~qC+ z;1MZ-q$t<`Oqj6Sanjg1hmuswPLh_=pBO)w$sm)tJiq3_>r0B(+d5icCM#!D zZwawC7;tALY|$p9J`%MMf)ubyXO*N(f%C%~u$w7zIEGkCP@$&M{$oJe0c7z^Y>gj4-Eo;?PVhJ!)Y3Jq2 zK3I96s(P7M@ivhq!Qu%~14;r!c&`(42jzolMLtd4tSyILaUI$WjXa_UsROOYmL_~N z!LGJjbklQ5&EAC zKxx|qMoCB8xhf6Cd`RyS)VQwayKO~22$gk^XPl88Fnhc% z;xJ_Lw>%M)a8h4oHBV|wC^IG$x3`q<{{Yu@w)Vl*j-}kZ_qv;9xI!92IUSUFCP0gv zSlzL=V?OKW9@onunf!JMw>Qs~nY`N!rA<>cr42T+H4-8UiQK_IB`2VeGZZC_EhG+P zsNd!1@}0-YN-AAdsZmL7Dj@|37Z=!EUu*QADDyR194bPByTuZ_d@&$E9Jzd_=TvPR z1(m4<-r`UW)#zTODJe6$m124RZLpFFsd1=1*@*y&3cc^;vGN!($~WIqQamBU2_|oT zL)1qx7y%8goyQR0h2<(qDT~0gOi3p2di1w#s|83w!TwP%w5ms3O4`y>@yr9X5d?^j zIM{h(T8iH8$#C40CfZK(eYe=(>SIvCo?fRE8UPb9J4Nh8k2xooL4@ja1X4DXG6IwY zm6aW$AOJ<~Zh8+qbZidgdn4brhYMt_E`%vS>LNA9m=@Z8d;b7zBB#5xrAnPpq%QhM zGC32~TgJo>K^F0Sl@Or4>}K14Z`@;ldu?IJ4tR%z>IYC8i0WsrGtf(VbcK>yQRmcF zq@@~Cpbo^zw%4}!^WTDWkhePOQo)$o!_()1z2G|7P|^}gKm?A5V?Qa|^~Rq5mQex4 z7z)xsHh_Hm@j#3o$a;VqYF<@NwW8W}nK})KfoLG}`kZ5fOg5$H(jq2cM%Ek70de7{ zR-61fP<%vM`|oUGtHO**qDd*8u-3QXFRh%Tnn`hJ)V1^``}HDx#y4z%q!4v0;4`?| zeP(avhW`M1@X88yh?~z}xBmcLg{kUN=uGJvxgEO1&msEYwj$~Rj%8y?K|UyvCx74X zmN)NwdVf#r(|GA@4y6{75DHY42?K42kJ#nuk6Qr?%!6zi&dUrSup>xjW*je{E3<~n6 z3tZNu9$u8-H{8PY3+sSt7Xo_WX^9Gz>KFy{I3@MSz^@!~E?cC?!l1#zC_J#X7u=;kmA852 zje(Jb@tEc2)T%ee_|dQFjmd$IOLEzvbzcggPtO`5Fd$)6SmB8;N~3%(gvr7!CUCkE zRv-*>TBmwhtHu^WH47Xj-#jeJdEt$2RBv+GDE*8o+jG7>ZN6sOo<~M zw4g3Sgn^G@ZH0TG<@CqB$W{kp_j(;o1#U5-srjVfl{5wuQaX%zL3-CAR@onv{IQ{A z&J0p@2*!$T*BA#ed$|TgV^n~7V53j-7)?yiEKc~XGjc?t*2ju$O@ZGeLY=9e9enV8 zJG0LW)bE{FIB=(W@rJc>c4g5Mf*Mc<4b<-1FjFdn7;;)UD<%a00E{lnr%1j8Wqh!! z3-NxqF~a0?Yb)o4kf}bn4Ywd~g`09j95oA_Xx5bi_+11Y@G2HSz7}m{3;-616obnI zFixxBCY2^e38!BoaNVoR3Cfz_LBoY7Q--=_+Q$wQjzHV(f@@H?+H zZ8GNP2hpq(ez>8nN+CHgl3qJw^21sZT#Td;aNyH~8H@u=FM}B} zFu>H8qv;i+4z!ECu+vSv;mVZh0Aa0Dr&@SBVaA)pow;GAmEBum%9UqKV3$2OvY-+N z*UJafs1(K;Lg7*mo$zfvMuP-%!L`KTrHdzwCt72po$$M_gsKOJ&kfDLD4D{|y##Ij zzs5Z@4p$6tj6?DOo&5I3rlgC0yzn|+)noIOuRk_rzw?3E<>cTMF$XdFvnG?SLSHeMH3-1`&Es*3*?lHG?0yg{L zOOZA+%0)_%U~#AdJn@Q3n^X`wdShtRn{~oucZAl_7@tY^8jtBjQ7%fRo21BF%+FdaLQV}g+HIZyV) z&T6r*6qG;!K^WLB*T$&vi5S=-dEpLCX(ejoA`D>_Gbd~q8EFYH zQ%Yh6Fwt+9kDIWOs=p{cET$$AmP#aa0UXY zXeMA`Z%k|GCg;>g>4y53NH{*WQVtrb)=9@k4WW_Sf*t2Z1E^iM!mq4EU^m?p7_u@{ z?&6X!5KNp5uMYTG!zTl{sQvGYqj6Bm+~I2Kq6o%gRjO4u^&$o;ZKd(b(QN9%F0u%W z6^$Jra>WgD<3#|rZ4v8)!$4r-omRqbqy(GbT$vjylp5P4V?{7y%LMphF|D-3W49*z zN)WP8cET@H>KkC?qVX6+fKD9Q5bX#8)E%*bn_BoW<^*kxP>4(shIIv6^J)+?B7b8V zIG7MHc|bTB*1_fS$8QA|dm)QqZb?l5&m5pkIvaOk>!EDrNF+Y587pxbG!ZTR>4;WrpDJh0-rU_avt zDS^uYVR)O1BpAnwYC$+LY{x7P;&k%F(kDhr5yW3@u!G38uv4N1@H>N2Es0#z-S&cg z5-ouoNtycK=Y*t>EDGlM@LzT670^k*jx?VS-xVVU$oEpJxDS;jvU~cg#PNJU@xlj4Rl+FcdI(=iBMbGcg4UMeh;ZscD4Rm^S_i` z=Z1RVY3>rGCLjVe1qkOjmCUS#d@#EK$+hQ04{AoDl|)=lpYQ%~6Yi@@kLB2y-skke zwZ$6XT|0^7N9_4wuBmXf5N@cw>@nuha;=Sk9#C~?6)LiM$sfP(fT~iIpYer_R1#7L zhtHSq?exGkRYAdTi*x31X2-NDntTK`K_N$1i>CI%Xsk<3Tb=R0cm}Dz@BV(c5y#T! z!aVlJgTkOSz=LbmRClV93>}2y)UHkk3Y9{+9q^$gDx6Zr(m9%4$|<+XT#3OQM=V;42kfvYmt5RZj#yamahUC zuNX;m;c1Bf0626M+LH$wu9OuqihfuV`?vk7RF}i7W3?1&$bdE;W!p%@=*m`1l4`QDk9HA+iEszNE!6AjX zAjRZzk?1G(FsW>VDYB0z%a!qnU}}id&~x7rKRG2et|zh`G^hX-5u$&ZC({Dvbc#U)2-SaE?mUhj z8>iCA3Lq#60Q2xi5)YNp$0l*3Tkl#&R))2EgNeUzcS&{70| zIYA@(eK7A^O{LpyxSn%{%EK+eP}Q`P7JTl%-t+N!mH`>(3rE z+EnC)bUf@Zs%g}+q6Vcw2IFt9&M|Dad~Qjw>BGyUCN@iQ@l z7LX3uLGQ#-j9C<65s)6pH7J`LBKvyA3sX=qE2Q$pjUEzYlmr^l7)fowk}y-Lk!%j2 z0%NW!Voy|{-vFCnH;_QV@3c?L?}Qf4u2`ZxAa;07&a_Ig>S_G2VyVD5^ST~iOj6R7 zeo{@aQXmW}+CR<}Lw1P5jWZhz8*sYtwGF|yE?C0AI9UyufIfIxG`z9NZgvppXhtwI z<-Q8{PdqHeAvXgYyQzc|Z24e>Q^=UXtrc%oD{=Ai(qyFlx`2FTo}T9@RaE0F2O`Ji3UapZ8}Z7UYzio zKxw`RVF?02o?pMV1-Hua&O8L8I$IE|5ab|V;TAv^{r1yIdhW`M&;ID(NCzmf@JT^Aw*OoxCQ=4uO zjrv~a>wWM;E+s%|)8RTu1RobMAF+U0sPNc&nH_$+V7gZlNJO72lN)uz!$3)MfZ(E1 z0*0CLlQzGuJ!z9^B07K0Jz)q!Y_Ao+f4-Pf>P%_y^gEB9J$D#Iy7EfI00~yO5CAr{ z`c5&{)-=L?Avy>O)A!tR7}+lkHt|@1bP%cOF>YU6dZ$w3pUWn~z$p4n;Ft%g$BnQo zrMQEO!Wr~MDbf^Flxzf(_2<4C^CS-Np71bI&L=lz6+tysBhO8{eMZSmGYg z8#MewR0Wf*L>;wwkp?GoKU{Z@Z0;(#9oP!)Uj-{tL7mg#ndfNqJu$}pv+&y#InsoM zDQi$9!O|uL`hok4VvkF3$a4J)PSPU*y_Y|Bid9RPC1+ApvZ4aE5U(Y1u2B2z_O=l%7D|=Klb5frZ%0bj=)6 zneg2zKZhlNP>|<{onU}RL;LuA@g(8=sSLcDfE!Us)hYlGcOPs=GOcP;K_yAka7^il z=gRi_dE!mOsV`HxsR~GKL;?=>kEOoH=al<07ar?I1^~dGo2yM)l!a zRl_+_7+|SsPKOFs1nE)b_7Z-0V&QHZda|cdXTpL>2q^L4J>&WQ*647BPyZ+q^G<b06$DfD6>PBQ+GhZ zQndh5d_aN${+zj-E0%DxnU+|W8xJM4jVfBMJx!w0IgB(`rF5^TB&tgE$Tupn2X7%8 zPdLUV;P>HeIv_pW)@Kzo)fs(L&IP#Ra&U9CS%Id%(?8pOR)^U71Mm`X_sP!Z?( zZ#{3e7~G-$DVKY+tMNiX+7gmCwZ!tph1otp%_dfaFnkTHxTCC?P#R(;ZT$uxBenw5 z-A%N(*~KR;?<-beUrSCxTx~jn$q5@?C(dMfPSY5YaK1p^QQkgK;*nz{fMgB4>^VmG z(w&y`ZZs-;Pj(leOR}9d8&1P+o>+CwE1E`NBdV& zMr}s>OV3VUm$->YH7Y4C6%P~<^(M+O1C*RsRV}GiPPmjfl~cB@01`q;++Y4YSey2m z;~A!PPRnUn4K}4N0f8`~7v4XnBYZrgU6?qBX}}JsfV(PB%z>t6-k&XIGzM<)uw2(Z zLIGZ6IXalHr&AyWBnIUQ__YLpImM5e#qZf?2DeR7MjdawdF3P&BJhwTkB}GNlwvoL z<;WZxaX}GzG7vGBi6-OUtYop33=t)v!f(KDE z8+G#JanoI+Wwbd}EmKc4uKC3!$BGtGTm$lp_(#_q*~S@Zt>cDUR+OdSolVdEr0THV z)+c;@Po~NpO+A)BsKQ!HntwO!vn+M@s%WXw6cXEE0E0FjB5&osC0*EaE~j-wrNosb z5MfD>Hv4?Om@V9%krfWpQ6;t1DWyYzpy<#pp=$`kjTJ^!!~8c)x}W~+a3!XjBV?0x z-Zrot{IO={xY)Iv=*tBXqRH?70E*GG-YE)k^e4oF;z>}M`hMiZvo@e-Hq2Z~1Ig}B zbb{M<(uo0Ao5!ul`A4{Zkvu`4srOb=67G~G1_AugBb;NSdlBqWjPHVTYO0o1_|*vs zLKCG(At@y#K=@>tJ6S(0dow`FL^Ecql}zOPDC>&%)dlw{T2NL2gUkUcwfgKg#L4V| z?4v)YQ$5;g)P$81u>dGQNeUo^ULq!K7ZY~m-IP&Q(5og$p+gjecap@K*h)g%DnLeZ$8%Qa10l;o5w(6Z3_KU7n zC&3G)q|1|0Skmh%lvVEGD;iomgXU+ZpU~hw72?lw&mDHHNoIu_l(m$V1b|P4DU|rR zNiiq$MjW`Gw8~xus&a!fLxtwasAjV$d8KQ8WERr68wMg)_R0X&)C-W-YP697WkLDCg- zs`n%LMl0?=_Jw=3nuc9k9&VPH6tt33l$4D+LDM39Bb1I&CUNzeca8%3Ee^1}fK31r z-J?`e@awIXM|RaiK}iIJmv6oKblY?Dg3~y>%QdH}bSWglmf99l5}~l)Zg+?~#w3*d zBURd8ALZ`V7u;=bA+$h%t^6q$pRmJCFAOV&xQe7L)VmHTvQ|`dh}(a!TxE3jGv#Ut z?1qX?RCMWPrN?SYdz6yt)QAbchv_E{FFy5K=?Pd;U<814=uezmrpEv}wY652C@Cmb zl2P!fN0JCm+j?6LSsOJK6)Su;r56^d000xX0Vx-N0U|%B#LjU7%3*czQqL9Sl+HR! zjy)4=1**rU*Xb}e<%XJ^{--%C_Xtu|tfV%QW&yn4$o+h=Bwq?tx}^s->N-FN{{X4) zVe7Z19WrheLk}gDvF_{%T9u>ng@!FKP+oT;al(Quw-lRXbF!#s&V?IG?jPN4;47-=EzCj z#9M8=kCcy=WUeyVbRp8?gd`(Ol})uChs(%fV8&5J!qwmUlquT9Ab`gqU=!h1l&5ZI;_@<&4Cm=?jmFujQtA}7IQ!*ERC0vsCI!LeGtU__ zLoTD-a6ETRZn78#){A$NFg}V+ndh~SDzW9b;#){kodtTF39tcbFru%XBDn=Jv#Rwt zSW>Dg456XmNYrPji0QYP!RyL1E+KKWA*zHXqC5afib8;e5t)P7f`S~DN;lq5&W~bF~2*3N6VT zgf^8a-w7?YQU;|9g#Q3p!qwa%Pmofm)Ga!-lKQ~_Hbj_{zc1Wkc}V{N5Aa4u_|8@Y zr8>2TA;+R+GB(wFY$n{Mxy%(++74_ggAP;W>RIm5GL)uoeq?owR~*}o06_Awb((O| zZshg|TD~GxOYurHx2L-<-D+_#E-qy=J4K1=C9b>OGAEQ=(x;zx`4@rzg9&-k;TmqeO1S#^V(8dNzRMNbjC+NY zMrED3Su#8%X+%P0CVG7E-u-!TeiuASxrni!>v;6^#djAOg4% z1aHrzeet`^`>SNACsL%Sq^nZ4zLIUf>(>Fcf`$|UlW++V58n-IQrz+d1iIewkl|S% zDI!;KAdaKfBYY;ZTxnCRSQ)e@ukXtnE|0oHZWMr(8yN}-^WNhc6{)wOU#f3xHKK}6 z;zm}ow1ky5pqT_mh7885^0EEz=X4MahUXXvWF*2A*i4`0T0q*we#f2@rAmA$Au3Wz zN&M2G6VJ;ILfjgpLuvx#9%Je;uv&s*d{Z%fzP`M%szOMe&yeSgebY0{l5LN9DcJ(b zDW^cVI+U3cJN&Sqs45m5x5IjBj2Y*J7^+ZT`*%3^XOw+mNY418#Lu0tj8chAkFWgU z67bmb>5OsdRD;ex&e&jTQ=U5|+H^K`NcoIv;=xwCS4@l{{W0JsCNac>(+28m(vS6;L~w|9dsaXf<(M^$PE?%R2FM;r~4=gF)nJweG+Zl|; zW7I85wf!-;8kHY2jav9Hr7)9zX9U!@B~X|XgS#q2xtH; zjaxuB!3{Nr&{Dn2*4vHnyGVn4YJ_RR?KD&{#}gdoF3I9 zoV`muak5({3Zl2BbdgelY!cgdK9xfv7urx zS!2&07Ub{s!0iZnh$S*{scuf#G_qo22`#=+fOKe^A`NYH!ey>;gA~l|ja1oACUX;8 zA_;BV`r}UT&jziVVIs^3#Lta6vLRO8u%4Yfuwt4g3HM%DmC>e&5c+MlG7g>azj8m_ zj|*gCXU24f$hGh}aAVOfKHB7c-5qs7V-5 zBd$DiO`vv07B|ld1E<6>s1c2ln?c7n3&gWdl%4QpElwNoq8u%ooK)9Z7bp5!fdcq7 zr^hTXQ&vEU!K~Lw-wr~anWzNZ;dY(`+YJoXiMhcIROvRu8r8|!r#SaqzF2Q=qHwz}bN!qh1ik6OrG*?4+T!>Hmq#OlT2!lV^N&|2 zDt9DK4yAWV!%Hqe25@CF-gsjW?oX7?iQf(sj)~l1j*g=H{{H}fyJ5|Lz^mdvNmHbZInq?jVT?(7dZ#nE!IbM0Y&Ed-3mh3tQfUhYpmkNCOP4JJSwSZ-R}!xMJk!)9@g4z3@wQNg_W? zHg~ctsGqhJL(^gOIA6-(?5B3>LWY^b$fzhp12}AApaZ0w5Zy=yLED}0g6eq)cTzbu z3Q-actZt`?16JK*0GG)YR-ci_hN=J&IGxDEcal+xSk(aP`C%8_?$6r^p~R H4&Z z2)$7r8TsLEN3>NClzHfj{dr+ExJkMD;Wr#st-iSNE4<)QZU~grs4l>dGCA|c>U1dn zZR7Sj{P2ru3RQ&ko^i_xDY3d^(+f;vTzD(XO}5(#AxTPiPmt?`R+5`f!;c$TQi^8V ze(iyBdktW(T|`_PV;hd-$J*0uC|OE=Bc|~D%?kZC$*ROH?%}#_4VqwiIX$x4t*-wHpiy=Nbt< z>&qK^sp*24rNZf>2bK$JTd&G)O9eK@EuBi+4qoH{n8Hh?(`Y#Dg?YS;CdZhZ2U5Yk zu=M3L;CJc7ZGm%Fn|rABOA&x7S>F;0x^7YaFwZe zZDEae!Gmj(8U!dt5P6wCANj$GObjBV@;LKy<{=A4XHGm*cDTaN7`$BVgx0CYZcgll zdA-E^@GGPhTLwOSMlc(s6<~Lzmu7-RXykBrCGUI*>NNj{GXXoTCk-Bk3J5E3L(b3VguABx<r$WHPs0Yst+^rz65Rau0f1wsCMm7thhFu5l-c>(M>!Hp=bFb~%NumS`RmIz>|8(?-=L3EC78k0U)SuFry;AY(^JKy6V!-^y45yWW;)CnY05tb@V4c3>t_-KD)~WcDxbwr~X&FPv$wso~zziAR6`59> z2|izZH-{j|I=th2EQ*B^5;c9ydHP_s_fzfwA}R=(QA~h7V$qDGQi>Ee)dZe{{K%hN zA|4AWNl}i1-#dKpLnlLk0d4l5-uR)7prLm*)a69J?I|85YVgDhdHVU`%77O6t4}g# z@B0{PpnJLs)R2^>!*7N*{c!0_=qZG#6BdKDblH|8Ff7A8D zl>=ZnlmZ(HGbGqY@AnvPq)HHEjdr*ba1WdTVmIr96Ht=kbeT=G+->FkF!r*r5}w0W zQ>$(*#P?|hB`0OyOr4L;*dmej3#(R?r1h}nAHVV&OC(9=0+bbhE?%Vi$F2>gc+@Yw zO3~ec3ERc1rTIzp{XNQ>Mw+`v(bE>`!qilx_)-!CYZ|)s!H8dU66o=3@d62wPm$Yk zzBHjqUr-;1sUai8H9;Wknc6}9#tmrLLSvWw;8NV%6qaU_-JOM^ z6ii3}f6@d%%wBA0s?!q>Idt52}-mf2}g^=rU~(S{c*KR;FP2RFhYnW zSHAxMY;t=*pbA|r_phc;gn~!_^4>4Ye_7~p<7ok{C%j5#2_&ir^*8duDtu{55~U$f zr5jp$3-k2mdf<0+B&`WLkW;sY_L!Ik=LvIdXvHIN+Dkh4N?S@a_h}meDp zL*^w%bK>6r0KY6V)~UwHRHivz+^|h$QB%YNr>N)q-vB#W3J4-nFZ06M?+W-^i$PR6 zq$sCSrh1+F@6!#{FDN*bPnHy~tV>T^LU|7?0R4E=Z;-_a%>Z&zuh$edbrXb3fhZKT|uc8{u%|CI%X5>vURv_*pfbP6{woZy@rH zQ-GN#38~bo(}Y69iQfshy(T}d9@3EJ&`UV%3mhVvf_eC`i?sv{WiqwcVc+S>4WOcs ztyjXy@$H1ri1fn3$j5>}63lg!qe<|_2v37xuPh3ZOimW2bfw$eV4Ejor#Mn`q9I^U zOdQKV+#CeS35!_Y*9X%pY!jSPuF~wZc2ZzY3Sb2YNQ`RQlCch8Sng|ZNJ ze{5r{6)HLU;bbTke6fYg;#nKtgx0fgq#LYhw)h#^LZrk`S;LEvtAm78*>P4p{OaN?bSWsqoi`r{m_69nB`4!D{|9u<+vVGo&(@|{D(q|BHTs{a67G}WxUm1l{~(2{V}@U*4cuY zo_@IU2onQOrVw>XEBW=`?}5s#rka#4C95c^_QGllid>6_@ zl6ENsHbH}pjX6=0a6_yBEHR*W!v@$O(pNRj7zj71<#!kv<{?l3!-1C-7~9?Ld_ACq z4tOOsrkMW#@y4&Upv+;(bn&;#1GvZ{*mEqKQ#zAs;Bv;LgB>tpsjrP)Y$Sf|i&_W> z8$~xQxC9Y?xDufdKU_IJ)waN|uu0p?7BMPDn@w&j#6}TPI*d3wPtORgfzmNcEiZBf zP08B{t(`bMOb~IRskICJ@Ya)Sz~l*N9rwn2xh75w6r`Leicceohvh);C^o6NMixT= z>^8xTQIdAS2%*Pkx?5!OfNqvKe6YGH3WnG@x)M&mVC{7DwF93Ss z!JN3H++c>Nw2iP^9G2MvZ*GJqVU3M3!;&fafs8`~RwxmgK<6gZ(U{u`CYVIw%iSkr z<4<=USQeq&;xd91)3S711SKCcgeaZ{0p)|30NpnjjIgIRhjp`PQjr!IS+tZUH2Dv&_c+y% zbU{9soDk8p5pBO*Fgmb_t~Rj*DLri*GzISJpE1! zX=%|W$xsF&bzme@gmcw40!g>b-wUV^zY6?B!HKxXq0K1vmgNu%5Z0 zhfmW9zVcjBk`t*)xKh*yK?iH|v~7e-g&IuqAVtJuWW1*WbQKLmP0j8uVB2gK(a0%c z-PvV2!9r3r^C=Q0c8Tk^)6Wh0%{ohI04YGBP-As@b+C*Wm8d?nscK3Tbp+g4nT_rJ z@GfxiQz{A5sSZFF@g+bR`Vx6t5$hwiE$>5kY{69>t!t~x+U|pBQi5R4@%jzoVD0ke zj@t5sF~l_G)g+;6*0_jp5zG%?zB+G?>Z#bw5X-AfXi^FcB&G-gI&LosWESLzVy!^MslHTJ8Q4Enq@f!+J4N(nZC4fpvEPMELr zT$E+>s%lb|cch(r5)6IM?&56jENv%0%r&VXDb*bST;6#>`VK=7-XY4|%<2}F+H+Qd zKq7TP5`B64$4mW`E~Wu%GgTNb$I(L7PKDJt+0>OMR+Ag_{{WnOLrbQ$Dkj>Ez$X5f zRaB1q=p-dtoVK5cLBHvMgum}DJ1DkOxLDK<@(ns*YI32>CjQo)N@PS}`mzYddJhI`r46(%D7 ze{ZLmz&Uj}qkWY+l>6cCT$Zc9wjbM)!qtbqS`eQn2Km-M) z40Hfe42>;i?5dr%n`}kMf^EnX>N#@5*9}l9S>Sa_@G`Wh+5}(2_BdIx26)!8C@MJY80?s zWocT>5>ic|tC;x%gWOB36MA4JEPUDMx!|x8l2pWk^g}}TI4xgR_tgdS+{{Ya?EyX+*bpi&o z#B4Y7+k8p$lGnSsfEC_2+LlNmyBu^fioDG<(Y#uJW<}DHoA7(QV_KRszu>nK7Lru zZST%jr0o9C7fF{j%721VzEqWk)1_LQ2mwk|j#t{zx5dj8H*fix-pdk{DVk+_#K|y} zcmzyXo^vA|DcUnX!Fw>T%wATSit2=h>om)?PY#{ox8wL#ClDdNBdtRLXHzUK)tS^@NR>b)2ILP;nCGnZ zH5oq=yL-V?ff$E3s4hi-~29K}2?Mns@1Pu`1N$s4Sb4s2KncU%0@W zMps*zXh(_3NKS(Rxqv{3y~X-@TLN(QWZw@|qKyYji$aJ75~mhSK;&ckV$1CBv09Ap zFHUIvJKf7K!-|b5WWm)wo_v#ysAH#Y?6BsL)pzcv9fkWoH=6LP74_BBxnm5H@|RHg zE>tKgbfp(0>4C5p9&sQ%X7y%c?)ffc^*tMUo^i)Yk{$6}>6tw?n8X)|Q(MK(x0K{> ztx0M1YSF4zBtZ%IZVBnWCD~_Z4{(PLn#|39?_BcbLHLG;H9KH$+HA+Up`}8L&V!}GpN1|(Y8HV6542;m{@JNp<97?ywU2iw?!%QXtf7#l z0HtY?4xfqwW6KrueWo?SnXY`c>K?76ON1f7QVYtPA5#(JcI${w0P*3V<0RDAv|FW7 zmm9K_q!J-J_=z0te=ISu;Mhs)99p$FhlnXVM$Pl5L(Vx);;3qK1O(7BT+)`BRQR`mAk4<|q|dxNBTN5)5#-RyOdC->ILQnFb3xWLD`F&o1hX63XmrJb=w*sfx z?+Z|6`cm6zcS_2Gn`=~D5%hsQHj{-i%6cq@nwMIY{{XBK(1Y=6_=!*?>_iSx(8DfK zmsK;swC^XrZQR7A#E$TiQWF~Np#md)uyrb$s_tqk9PV17ABWyV>I5Bu1c{Hg&*$~9 zyd9+BZRuXu$GWrfrpA5Ev#jm?cs)nM0 zVX0%`0(^mhP8xW(i7K;tH7cD-OKI9*X+O+QKeiiqUxX_7o}{|+*+Xm}8r?nwkf3!z zivU68xE_(|^yD4SG^v_hte`BX&d;)yWK>C2aqnEJ{6&U_p>yE_sJ|;;s7nfIaHJtRyTVNA zB{sK$@;CCcw+p3twq@?jquuHCCs|s~r2s)Eev`K->5m;SAnoBMR=K1#z+du;&$DU| zccsd5+_s%bSB3h;A!%BnL|8}xH|GayTN17m?53ABH0gB@Q)TRs^Nz_zxR6t*+}dK+ zpGh&U4a?B_p)NLtTPoJGsplZ`JcRFVTsj0zMHw*=4d=pD=^J6ntYk+dInQVPS}B_Lym!XCfnNnV%x<_#2img z#MMHX4Y-z4RDuxhlo*(S&LnTY%;4}N7{il1 z5kuMLUXxc=nykgfuiYUB$L48uRTv(%IHJ@1DXl1F3Ga2 zx|t4DQN7%PliimJR^%J_J7tb832Zp-Mrc1i0p*x*!lEZhd_5OLYw`1Ru9`m~=9Owb}mw3L8nn&sHVp zyRfEd}<1 zKQYf5vcf5!{8K7PR3IqoBdHUIo*?2}zJ)!`R*F~NP1jM~h)J~RkQA&+)K9J-}imkZ#tvGv0N)tCfr){=QckTO>K!V?jN8gTBM3$F9ODCzs(8#Mm_TVCFH z^?2816sLzSUwme>9I%IYkU%DF8~*^#JT(Czj26}I?yP1?eF{{Wl{?Mz!9cTL)s zb^c`h@GJE(Y$p9xx4@3nNt|}%O>L!KsFS`1b=kshK04tAz2|~OwJ5iI@Pn>_jU9X= zV}YKi^T#7=R?k1r0zC2MjCJmq8TYwkm%CSvxp<%Rf!%at9da*$+;bd^3s~y#JI;VN z$Bw=tC;Z_D7tH*;u(WGOT-0uDgdJR~%bqrIaxgoJ)SP(dE=jy~UjwgWh1Ovw1Gulg z0Wl)?!-R@RU&{)wWnne%fpX+C-x_g*NXE~RrU3clTrJ7X;U|p3gibZkJn$%%xXf*! zdE+z>JaXl(7Hr`?1J4_x#{%Kq3x*c>%w{tJmejF63@pIq9I%2FDM%Pyj(sr3B)t&I zdEkbTHaJbOAacP>Czv>3!j;KJ+SE3|EjI@qGLD!b2!S!_hBeApHF$(Uu)f0uvemGf z5=SktRXb-$zW8F9&099lJTBW)f4(uFiv>2+;fW4v)wZp+6%9u$DB2{(7fU`^Vx7%M zHq?uZC@IYBa6@$dED+T{mJ11PY79}5EIzoyMF2>gIwF>NV;4*(Y!X>&Y4>O`j8!iz zII5T=#2k6t4u>3*wKbY@lQEBbl zY-sH)3=;EdYg;8Yi(^wys^j#-fv1h}qN&0}frYuN#N27|s_F3LX^co1Ny=%q66T`Z zn;c}}B{W7HT&F3*E;Hqc+|+G)1htJ+(E|r}URY1K9Zn~669kAd(3lw2O%#k8s&Wq4 z(M@y0T^*(g5Nb^BF|T*$f|kcojY}R%7(<~<5+TcY^FhMKo=*7iwnh|TL?j6qjAj%f zF|7Xpw*p~DxoeEZ!2w1gSlbKeFKjHv#>mD(x{P2)TytZk>fBi=I90dE7)Ki*5r;Pk zJ<*L-;FfEx1LcOmVBu!Zo*dLk;fm`{3}UeL!wMZJH^EF*K#Vb|Y59t|H$S<-Ow~ph zS*s&sg4wK*2L!o3Gh63_Y3m?wi2F5H-v%*P0w)YZl>F6Irv+2hK^S6YuF1X$X13rH zf@&oormOSAr7d8In8aS5u$#^tDQmp&>a{ztrIeLmjqis#I+*8(l_p^)4)j@tx5HWz z&Qz+Bug=(Ur+5rSX>%yF;nI&Y1aF3IOE#p;JI@AF)Ifr9AEnG~6Y}YU8mKHlI4+*31p*J3t~o1`pV3jNLrT4T@KbNv=L~FC0(ZfU z*99u)%Y1V1W0dCIPNl#n*9ErliT!ZW+v0gn3T5E422+79Oxm0f;Wrr7PLbjy;8Z?J zY%#H!1YIV1a{c*WcwLjiF}0POlYVA#(-3X*-1NduauGJt#HBwL zH3UHs&k2*_-^xJ3h(Oc{z^XO}3n>xmO^lecT12y$9!jepki;xi+tj6C9Ag5 zP@fusnN5i46*i9D3Vh z@`K^)drV{10N75mr)}V0&j@pD;We!zy4egK@Q_V~ueti*%4F(aK8G5znPeGAyhrx( z!i|7cWo>)&+s~&ypG+mq?3&+ZN?9o)&|~R1A(qJ-VK!TZ&Z+y(3TZMG`w)_gbBcgu61&?Zk`4R zVwgpKQx$X8ID+QsbF-&?Nu}# zzs4J%r!q+xV_QfGw8d9TCf2|&Q;;HYA$p#04P_{s40VA_gU8(>0> zCio%BLvU8mCmE!T&&n~VAw2Pga)`mT$<{k9u$s|)ZQduYH7){XaZ6m1Qj6OPKq7X=jwlfW1-h5J z5^5nk^TJC|BN+OC+XFcKU|j1(fV_1;D*UjD*CTu;^+DQjnW!AjInKf+yEL|P!^44U z46Mc!exg&qt^;}SImQ>c6P7r=0|KqkcR2E*rvbTF=Y{S>ic`RCgrBMFfgGxlgdM0P zMmuus_Cz~VCMOB0Nr^ZVzohT}F@f-K$}85t%Gt!~<%CKCRfRjyQ;mK#+YD+48z^@` zDZT=ICSwjRfgd~u^JPYH#h|ZjAY5z{ae>`v?S}=o&TyNIiMYh>YHM9%DY43NjSFNP z9P1Iw2$s1V4%|*LTJ%1l=5eb|+G7aTf8JE} z$BA&Hz&LmmrgKP6G_Ms6@bNe%@w^JW{Zij*uAw&D%3OA0CK9F#ss10)yw&&0H{{R^8 zgr_);6M`R0gTy1y{+r;2*L!b(8dkG2xxCH(`{0B+5v4$Qg^Zbl_346ZQk}Rb8fv8J z_>-phk-isMaZSe1ckA@P6qP!b0<|Z5^B;T~)klj_IzoAvx&8gHSp^HSEiX!v^3s)f zbr_R_7%D?$N|kwl30KUY{JC<&TP~IUUSWNZDNid2nCt1zH^WOL7gY(4^7C!{u z>RQDpwi|I@5U}vxHcSJCZSICggNjcS)e>3?IzZAuNGXL(N1p!xLx&nA2fqtmml9Cn z?$)Homj3|OaLqv33-2zZq^Srdd{z*k4dPX{_851fLMf0n1uUq*Abe0$zn_G7zStdw zNw$rUo!N$|lBKO(-r7ZlfS8MjkGa8V3sY(eN>yCld;w2d9zvDj@Pv_j9sdAW z!;^Iy5}yvQ%zxd5yV|^QCk;d;)PSS`q^8=0N@LKRCh9|OsSWDVk>Q=lF>-p}3AX7= zPytAla)gs0?J;V9nZ$lL9KPt&yUR@Kia*btzubMzbek1wVhovABym8g<@ zQe@s{_utP1KU9|xv}x0(5{Dyn-e>AQm~UF9-MM#f0yclzT>$3PL{Dc(9^wfdDPM4zuiIF4`3RjuFzWnFTT+O$FG^#1s6sjX8< zK~kpi0$_dTt`n%LQ-;e`u0iK)H&s=sPRz<v6%>*msvO@N%t_%a=N!>^9hU)6o zB}F4lbK8I4>x`h9 zhV)c~og*5(R;Kyi4BBla*?v=!s-ausX6rPn#|-UOEh0&rDAi7vFN&jXGLtJs*iXr; zB{B}!UYfX*b9uufRaddWP1Ne!49GYt7qngz<8{(8w|-T5!(A(?(2mnS3R4f)P>7VYQdFB`4v=3c!~leGUcBXLMaUPYJ8klh+Cdhj)4P{qn;*d6<<+ zwiOj6LIJ`i;(}ylIH6jF%pP8N@TjBVaR3PJG;U^;q`PMPrwm>lEx_QHas_dYbnq{smC{mv$nltSrh7F%$G zzxBoy9Wqnl@)%8WvwmC5Z`TBO;VA$qL?lm7RNx2}jwp%lky?|cG~G5J^Ed{q6)ygs zxG~hFwkK4ml45Q!4N{7POlkdavf;o+=8h0Gs|eIp>LaX!{l1tLRT6LVw%A?953TuN zN2$tP{V#>MP(`;1MLVe*^6AeTG@wwStHP^`;Q$m2i|y!fvvN~67mPya@0ITA7PVVi zR-z-yd0=O#LP1g6*95$hQ-53G3Y0810(OYp;#EviilT&Zuz6r-QdFx9611qzzF6@s z%aB0A-F$@B405$;sZH>sdqy#EpAHmgS_TD;B-u)no>EH&Z;b<8;>yA4u+T$x7!*TI1>XEHMY1&F2ZSBB|_r@y-OUh z__|CY?EvI3=89d_@T2b25z7d!oNpL@R$tIycPL75=D8raoRrQf0qcx3B=WxuBshqfj@Zh%c;nNO` z<&n6-Da&oPDr-Sf^{WY?iV%5D3~Gl!+Xpv6pzVSMEwI4PDNc2S-kKn*MmH3IUNC>V zf-R2=BbFGKyB35L!9xj}O(zEyZERvuHtB|cr3T`8L6-DbjA~oexxq_L;Nc}V-dhXl zj#HZIz(XzxfFl^QJid4&u?q9TRX`yzA50Kv93}>uv>iidO{e=|5;+_ep{+632q|3g z&LtaT?vX-F?T0FHrMbguOszu(u!*mk6=2mnOl85`kM9E{+n29gTw1nudKf|8a005R$7 zgplx2nHySh>0YQKpQaMMZIgtunbeOIewfv@_gZw5zW3yQ{{X)%cvKf}>&qS?^drPH zl#PjvkI(mP5NTep0_>t3A+*4^rz~S`hZ89~;T1fW1QX)qBx7dM0G(H`lh612*x`+J zBXe)^qiLM6)L}oS3a72oRj4aUfdU5I4jR(wY$TF87~7T!VbDy2@c#PY*do$>;|b7K zfaTZXOb`vH?}C}D1bE;^nF7!+2YfNJPzQE^Ql9bvf}KeN(m!*D25OZ|-mn(f(WIb~ zohElOe23Q^xC{m4cYBI4$AVH)6qQNX7=;bM^S0ahV`l1>fSDygX#k6Io%TER-vgSi z`Gv1vgp&ZTnV5_3wDa>gO;02#D=XBci-2UONj$c_u)ymHoioc(PS&NuM1ryeN`Z+c z*E`Sj!*z8)MN^7WQnV;(Axn)nOi!3GZiYI?m1=OVPN1X!Agq~CBIECbllXP%fR@sN z46JGZ$nv=U-ewmgoB2w+O5?mZDr>enw`gnLe^^blm5G5TVgVc8K3J%8B_%A>2bNt+ z%`3YAm1*#kX*ZsmV)pippi3D;<*;=;l#~EIB}bUpa{mAZIbXFNC=^^a+l_>!ZY@nr z_>hueRvmWo2jz^-JIIo}mHQ{9xE(M(sZ=~?SKVd~D5!YKZDFMU0Dqk08m9}RO+hK| z0wfE{iiiY{ov;rXsMomIOPZG460)OlB2;g`o)i8fQkrD8H7unnNrFuC>*qeCd6D+9 zu$BO@=YRJLdnR1^gtM4vNJ@cPv`J0$ksWtGrX&r}_Zbr;sY=p2$TuMKlO$RU-=|DA z*8`a?F23h011G~fi6+*=)5=S{KFvdVoGJ~1S z-rM=&Nx<|z;I`g6lcixYWRrM_ixX=>F@(LlV^lDcCRLK&U;J9CVO|JK34pD{jJFKxP zZNTfuDc0l;mmA1G++c)c{`HeGP%hvFNV(9UtBLjd&K#-oMdchjQ2J7z3e(L%8{EwD z=61Fsd%e`JjxsWp%xKxB;F_S9JXHc$tioU@CilFMPWPKmBOExxPiAYR14>&3B%lK& zJiTxGz9y8YR&m0Vw0e8AvV{Ohf-g6K4bPSQunz_Ba3-TNAtbY?N>mC;jGaUdeq*8Q zgn|X%mF$2J7@W8hB@AX7Dgo}^3LD)jF%jz{c>Qo^5%Bt}@`{usX-bKc0ZLFw2YDNj z0@!1x;`KQ4(c)5;3@u-j&p0vvpSuSBz{VO?hsZyO}m8o)d7$f`66B%{xK39@7 zZ2<$3WiGjz(a^S5(`t88GSD^D;NZ5AkVwcX2+ajO~JWS)U@waI+pbyg*jrPzCr}p6Uc$i_=aUqE|#Z5I+D|* zOhS9kQ>U!So}+A8d5;q|&RD88lG|nB4vz6F2|Ij7<^hgfc^pqH^-XVe--YTr&jCa| zqN=KM44W-mD`_-pDkuR8Nh&IhQM_3E@3Kf7tJ`LFs;bB7!3t`ZLy7!JDv> ztUF4=UKp1wjbI=u^N8tctKNC_xuv)QNKqXJKd1P_Lo&>i+Ek$E35$~uO~19hN1V&J zlQRAt!}U!qekBM<88SasJ3OOgTc5+Lmy?{7%FJ+3%S-0L`H@P^r= zY-vP-60M;>?J$x^`RykkLG5J^`}bcq;9N_H{{X&K9oaW+^}UqliK?e<#Z)N=Qr3c? zfia{4E#>QhxUaRmverpsDlttzN>MZ)1OJy4>r_Y>je0@gPeFTBDx-PGtAWil*^)6{!Q(pTlw$7>0kuKQyP$!>0o_Mf0 zPmQZGMk}hrYN)G@=nWc)BmhdREJ5DZ!jxU1clC>T+D1iWk`&+yPOF$AE+^9i)ge_L zp6IIQf_Qax+;-V*l(3jkKz!;10RYLFB<&N6%Y;4lsV-%eRLs+-huQbUmKaNVQK=xQ zT45xOR+ups8)5~-XnKK#W{zeKrnO5*KtoFLP083qTVc8Nhn~mtHPCT$byaUHP-YA* zy0;uX;8gg+x49)CY)6j+)&yZa+FS<}6Q|%;yHMf`(aL1^4HPP^Z`3Qqr0SVb-eiNM z35etg4p|3c$;o{B-btat=$hOLQ9csm zI*uR8Yw|%&{{W}&Ql+W21cZc*GEee)*v=&xHc>~~TB)h2s-2}vl_^87R1)HpvQYsj z3P?&2m?T=l2)>*t!^x-MehkklMKYIPR)E`2Ey6-&Vn&;Y(gmb`m}{ltJkKMfr1zH_ zakQl?r)0Jg7Nnm6fFOy9l4oHUF6U@Ve;K7_S9WJtz`12{M|qi1tms3lB}rP6P5GT7 z@g$3K!F`DE`<<|7^{B6`_d0f4Ow<=NrJ$0S5Dv%Ui*&?c?%g<>F=O1baNbozQBJkK z^MOsJNFsElKMFxH0y(Fq4o+Z~`!y7qP;j=0a%GRApTX!Rs} zTDo^E-~s$4SyelXyv;HagjFmnQjh=yCRAV_KD|kZmuMMPCP=EvW?fZPD<<;Zz&*W-0scbP~hj|=RyI)E8OrwpQ$=lL@`goAm9aOnaUFSwFd|d zqys0I+C0A4x830Pcrz%ca+S7w*NF&%6l4HY3S#mtK4$>-ZNjVfhqDE#rrB&MD3UC% zMNY~61}rWe%W62Py|P$`pz?Ekv`-0%a5kCz1`uTJd zBV>0KYUyEb<|cr`i}4o>jt_Uc$|-y5h00qRH3VPcR7cX%ISsKNR|}&erxiJh9W05Gp;BuzH8Vn$`^J=l6RUYj0n-t9CO=$PTy4f{b(K@( zz`5QOpLwZ9r*&K%BT)ceWl?`jY{KUT0Nzh0{#V56n-^4?G&@osh_hN&suY~os-A`7 zG&f04Cr0E(kO1T$ox$X14Y^t<1tMy@ikF;l>ZYb_cYW%Kl*)lKd+a9~F_NKWJ=2KH zE0iHnLx%E_ObM6-?Tfdu{>t3SfBS!&_f)8Csnxprk^)i&;BC?^%wm})5l6V6`B`n# zyHP0(82%J*f_7QPeR;him(o zOKvwUwpC%P%v^Gv`rz)^J**kcC>~=ZdEa$dDOF>i_R=|kCs8pbz>6O#<=)XdRIAS1 zd8D-2ZRP4&DDkdOG5xXTjhdZP!=4ClggWW8x;7BXF79i;!rP8Jboy)nH?}q}Yd{5jOWii1+nscy6f_js1v;L4 zOUkiBM`XYwp4YeT%^ANHRp#z2ETuj5;GNT9w&2|P#tPzG(w)^QG=#VjVCu}wMlomePij3oOiuSQlgY<2GDmV_zz!urEs*W@?;3S&zH{_m3N6z zB|}oC3VgYAz73!x?<7)PRf}4JKuA-5B1~T1zvmcg)_?k=YD$o^5G+7|W^fYKD1bp! z#K$hazIfO;77_l~1QEJV>xVN1PWu_OQWxGSFf{7aAd%va?|-HUQi?{dGGV1}f z?PL4vjZIdeKWuj5yJ!U#r!52JjaN_;%3$D7{2kPJ`fZI@Ri$@6LzMEtZm_)#L_1Xj z=Yd|TjqQQzE5@<`AAjwD-pm0vIPJtP4YYH$a5uIGa=S^xd)1_wo&4~Nm4!U;E_J7{ zcSku`O6+hu)o^csl~@JN5q7gy2{Ub?*HlS~#)^EabAbKi)!EA`MGBQ_65VkKr}DH^MHgs9zr8F>K{QI~*dnKYekdt33DpFp`|p zxxlViU~fx=51@#TbFl1`W-&l)W;jh^_^jK`gj zp`8#T8ewIK`QbGt1{UrU8-=bj8H~dBBHXhXjK*M*EXK$eoNJBJAYe<7xZ!(@#$#lo zt~+X8<-0-zV73J57!|QM`e3$4hH%EDNQr116v)8rr=AOF2)V;Mq$260@AbirH)$9S znBFj3EAl_z1d`>tP(q-b7Q#lD!VM5k*eR6B0zUX+Lz;+fsTd)Y7{YYvCeec%ZqpcI zo$XsRfGvU=Xp@avOkbV|X{$`nEE81EYT2fBZ-N_WMlpu4LRz-iB$qXK+j4J@U1D#A znr{jg0=%$IKt&+UIZ}MRG2m#9SU0&51MiJ{k32D{PeCb=u3t=OS(C8CfnXeJs$Vaz z1q)Morw5qEtEW9Mdg*yaG%OKpa_1)XQ}QDks+*=9z1-u&N_u0LZB0g(PQw~4iLn@U zRVaUpzS~mMl{^Pu;-V z2y;<2H!*XZ6D-NN`r$iKZ$Pe`MiVsWpu>Wi{hTJYh&y3>LM_M=&8{$+ zWC6YoQ$!mKYNmlRrwemaHy}$r1~n|s>HA>9z);4kWP`Neb|T(_QzMo=41vhtqTeI; z7}L7aHu@Y1jS!I`-TC8E)N;WEvUexxk2}91^v9hvThd7eH;H^-ei zTpYE+iHVQq#=YO3Hb^7S1GN_9u^~y3jgUxAHIM`hV|?(&u5u-}4_q$WhIhcMn85(Z z!68MlP(h3q)m55&O;Ts$=a(8N~(}G&6^TRVW1Z{$vdz|2!gta|WRl$kD^tEzu z!A|*!!IafyCTA2i4O)`YRdX0~q^*v4i_=$Wi{Z+au2VQ*a$1uym;{TQ8%+dnpNTLnjBJ$^Tg!X^ znvF{%Z9M0HEEI>sWP(!`n2TH2*X!kvPy!rqi9*i9`{Q8g2It{7=LgRTvfxvbsxLFV zV1ykif~7zSv4vi4ZT8=9GldgMhBpfm@LuW(*j$Wy?-7;d<8iN%w)pZm5YiA`UZJO43vnz2d`vo)mFt zNqY0V0zpP;{BJEbdNK3V_@Pp+$+pP7%%_$}{4-VpD{{W}=z|`&rSGiJC z%0Amp6mjrjNm5-&_*A2)&s)#e%L&EWH#&tP+F2l^g>Cz>=Y>#(y9@IK6Fyeo<$>F* z0lg#(c~8{uf*E`9m48B_4edXq{P4W@TPv4da4+N$L151ElhK`iYr+-{7 zhao(@z$Jq9IUDrC^z9WKB!z`4$LE6>iJm}Un$VWqoUNH)^1)3a2r-RXZ0QCsv~|G^ zvk95{VU1ko;|pei)d%H*l8{CdVY|=l;I`@Y3yd>r7K2F;*e4jKBYYOyF*e4owQPC? zF55!WW9^y1bqte-cPXSz@GJECMet5)65>-GMLhDueN8wU96wc4S|<(FOrDrmPS-Wm zm@27mZN3@nsiT%8)l683!(DAH_WNL)8eEDqQ%~i9U!^-omLyd)XL!IbQt|@~>7?!< zN9rkvzgz=S!6Gprsiqw;-&0HvFI*|jUhYx)ntkp5aNku;1~DS3q?|U@($6dg)DGb> ztpz81c##7JzfB6h5OuvH9l|K>AZ}p%v6^|4j9P&8!VWwVt?+Gf=TIq9;7Yc}cd}+b z#s^c-E_cFes7M>&(KQ*Z0Plp~SXVthcnx*DrwRMvnVb&f0shU6qAlBqaQBGQ;igci;m-KT|qm=(qfa3(ZOLHAx*#I!-dUC2?!t}&yY6k3TuDvqbs z>$W{@s2_Z2@(F!LdGo@oEU7+!Nx=?K?IkJ`r2X(+HGxQ!+nuKZA$~92@Vj;(fu?Qq zwi~w#$KX*;6z`G}45lJ{t~z1LozRp539-K{Gqm9f36F;V0Kb+ErKmw^CT+1X_QKkM zyeEF}B@^f)ubwt#X$#e?D)GPTAJYx3z82(}D4*T1yLAf+O!&Fjo2%zIV_FolS#}ev zRT@{OO#C}@+C4@KrhQK%!lflmkOfQgEbvJe0uFr#BK+q5$ZwhwFz1z-_dolBAIZUljiS zm~N&}Ab;dZghsE^%LJtgKuWHad=~hG?|z<9iX&*cDmfiS_NN*;r4rqeuN;yHG3haf zT&ZD8C1*-fU_uSA9&?6zP~wt&NlKOBndkNW#t)=xxqei2D0qnkfKUA2)6*2R4g#OL zd#8OXeJX8bNkNdc4N?ZeBwGhlzPeV_O2d03m6DiHu^uH1Gt#UyuMdgAB|})Zn2tlA zt{f>d4Jy>y(&G7$LZF?M{U@*29ueUw)=vrcm16sVOtQb~mB8bS@=*;e?6ToX@N z0c~65#lhqiH`rSoN(R>PnCk z!gy*D5&`kqM1g6wfb{REjZkhT$=WyE3;KMpovNtC3P#mbBtbqa^&h^t0oQ_60NOd> z3W~){EUVDWpRNaftsUIR^926<@y@_hHbO@WE0&Zd#`DV!RaIIRtZ!9O4iFEP0eSGN z&)*WeCd#R;Ca5i4sEf>VBd!|jpYG;4o5mNcc#V!4Ybroge6W`^9u|a5HW!cA6u0Mw z`kLh}2;|A8J@{MV7nI{{Uz`!ijX;e-WQ=ngLKO7}=(vH+ZzWB!8 zCv$<;u&bV*TzcEZCL{b~g`N_g2Xx@mx?=nCoEu8;3W>vOD^{DFEXgQXGi*7WF z-FK9v+ZeAGJZh%~n;dwR36gNOIFW0@Ks+Mp7F$T15SKL>7;jZc9Pp(*P2ih#$7N1= zqK`w@^1|%Akgfjs2i{Q=I89ZWOn$f|TXv_U)DkRko7LUkpfA$)1hRf%Dc-EjBzk8g&b@pIPfxD9+*p^9E6bL!U@(0O^2QlO)*lW z%;C|hGNBzYv7ssDz82I2RIMmaboH;c^CgTgIE1p<*YMwzsG$n!u%Ng#I zhva1di6b7IoCEzZ=FmwGprgv7Buss4)Xz;xL+W^E+Xikv2-@F*`y=*htXH#DUDTs79P7oTRCHVU2C2$*2J_jIUMv z`e24KttNEg^_-tk+Xl6h0Go)#O>hYtiQz|6m7St~SY3>$i;;)JmuWE=+*70tu|#bg zgpI|;Gp8?swmnTQn?@YpLQdoSVI?6V#9s_)vW3kaPzq!u%ws#b+v|dsffz-83_dex z4&lO2PMc#_V@>d;_dEGx3t-`^-Nb~FSp##8904W<6mcItKWrvo8}!F6+j&E-RJ>wf zZZWf`P{K|*r($qir#A~nRApbd7(wt=d@ppSV*@;|6kt(qAS4v7X9K*hV+1~-H^6lc z=q7R7Z7?{2WoxXZQy0R`E>#!|)cE$o%sI?s#{vQ-xvt?nQ#++LIB=w>2^+@Wz3|G@ z#UV0qbu*f8IFZdIHMBTV3O7p94jdR&q?p4U1!+i#n{U$xH&rG)`tAO4E2B@0inQ{> zx?=q>QzWQ(js1SuW@ex)M))n7!eCF&SD*ahI}=z+IJ_k?4w5be{Wiy|bvmY1sa~>e zfkT9yrydsz+k#Z9lk&gY(;RS*X*?xOMy-|4uP?3^OX)W%1aAb~e)`8D=PiyME8lS> zM&G-Aal181)R2;^#isKg)Z@w?SFPRMIw9a9WmC$-8;8=L3YFp}M=8T%>rfq4f^V?p z%NW*VM!TQOWo)SAe!h73Z*)$s6S8aNPzfnYCP5++CSv}-QP&Go)Sx3&rA8o~e--_F zhwd=Sw*!iuDNs6rDWW~%9Y|a>IYvfzP-J8#t>{L#O83Mkfmv` znJS3gQ8?8Vx)lN67LAlh{L)0vKyc8C{R>D2`wg#!gVs!HDe&&HK^ODGY&V1+_nJ;x z^t9xZgCs@O;Tys7^1=^RBT5`WNK&kM1LSXjg;KkvM#5w4XZqo6o~4S4wj2Kdw%f}{Fb9Uw zCjPs1^20R>4GlYts3avv$2_+i&4HiaG_x$tbgZ`85aLwYQ*c0-=lkoAsAxMy6+il@ zr_R#p+R7emv=Uifqs(YehDQFU(+hTd!LQ3|S}8r+7pbmY2U)y=ZLspj+;vWK-V9;k z{{VYRNuHpO)*$@1(}rFh;!{CNns*f%K^7J>xId=*&s=ujZTD0)&E2$|Au2d^E@uxC z;|tVv1%tVeHYbvW`eJRuTq+;P*(wddDs5_?h9V88VtsACAgio(8S_MvQ1gUI2IQ~T zm>RKY@Jc(!n`^v)w>7|4nNgV=?Y1D+NJbWhk${zCa32i}zuoH|UyDdisVeb6J#DeS zrud(5TP^0fvz0F_p8}hOUr{Ef+=7>a4A?eMJAw76OBkjg4kMM|o5p()gKcmXl`p1k>bOZHWwk0LbX zH*mn!A_PG;H|6JVGl=a96PrG_!PBQunHE=52mb&cJ9(T)sZ|nRD^hgnDFj>3um0`) zumVfvG11Tz6mu!zq^~ikPq3V^75?oT1D<(pqZ#=F+$2HG4e`KjC zfKqeMvjkGt)3%q1b3%@fhEuC(k^7ynYk6v^o2Xg>l;ThTDPRnlWitjNP%0;XGt;I98BC5Y zD4iQ)8(M7ws&r(v%?F)IlFX7;d`SZHzsuHra7!7AjbqhrYH1Rp**^)if&|4p7ATmL2+7&Ly%SBDnAbV_w_h%pg_pk@10JHc0ogEa0d0L2?hb)2tO#^*ko}A z`;JPEX>P+W3Wx2RKdY|o9j4t{oM|qU=qvaWq$Etn@R!Di z3vr}K@W_eWYz6&oZ~H@5E&kSOs_C^h!;RguCK5oA(`e^!na4kNpHQytDF{+Kne3xP9y)<~Y{1StelGl(jKY zP)h#*K7^Gd1oDVH{{TY}{Q1=*Fr#(Cm3L(+iR28)>1;S~25RO<+S@g0O4QqpuEM|t zSwqvWr;v@-#>U1#9!>nLM>*0+Ecg_En*V2J5{s<;L*7vj9ygE;JBtKHGuuA#6&2UKZX zC=qCgH^d)1byw&OYL^O96 ztgaFnO+96E!kfEsw$!HGd1ZalQVb;m-XcJ`Jk!$^y-i``3jIwfrd+6~3s`l)odBDa zNfQ$%YlG07J7wHMRhICwDxPgj(5ToH-C$TIZg;oL^t&EKnPpF9RS&+V(x)Ft36*MB z<|EP~e{-T8R$LTqgpesYW?6kF1m<-OQr6Pu&Q>-;++o3`2?Pt9ZZ5U7w3_~>ys;lr1?le4GK{Fwmy??c=9(2O`1Ql_lNsa%-N)EnBP~ z6A1)I=CJd=Ja;oSG|62`Ty1JVTF}}wk|)Fon~-C8+ZGpRTq%*%p=(KWGPBowMkOdGGj#T9JWq8pm@_|Y0U)(zGn^m54ultNR$mJN)T0b9mwy^0U(Pe?mlhhU=@4 zb1bHuD78%D)uk&Fr&5Z6QYXcvU1Sl+#b(ZBQ(9SIGNib%;VBz}U_rO+oL)RX!?`bJ z{1_9Py-@SYI*`K}i;4gw>EFX75D5Y=Jm;kLilLOaTKlk6i-bE(U;RN@nsF=j9_LV! zQAEPSZL43vLQ9FqrfAbR5u zU#Bz+ad9pVSy{ygh%*{jD;;?)ywcT9(IF~uB|wyc$spMO0OP+rSpA4_ zGI*aoVzE-%T3&=r>_8z}qo1ev=WZC_?AJfcDAiW=LY}BvQq#TWq@gAR9;5-}B1r_Q zG2C5-@VU!7FmErVakW+l5{KQnAy7cRt8*e^#_<^WUs7n($F}U8FRJv{K4}Apz{;L* z?+E4jbqgV}-qZK0TAgr$nI-^DtV!5GJhsH^fpRvhGlujsl%>L+@R0;09$*kXWBOtv zK~qb^IRzRj2mYTgPjcL@N|hcN9N^#QzVJs6@l(00l@(98+9}f^0I&Y~q`(@E*7e86 zzGnhKwe}Ih9?+-R#$`pqwGJ&k)9RF{8ThRm`hsnUUUSAS=2a<6j8nFh_)yzdQLrEr zX(2#(w2!f$bM7NeMJsgdQz=CxPLnE`Gd97wWfoULhSc&D`-4l6g$*iHMY*JYX!642 zlRKOVRdn{?l-EO%yHr%;%J+Rl0uW^B-uHkbq~P4as!XM6PFqW^smNO2UXxCds^G|( zA5S}DeCvpEz?RnIp5so=k`RD)CP1(=BO4u;(XJI9&pp4H2HZj5eZX@C)Am@ zt~E5RbFv0LSI+vT0o-rJAo%-=oUYAVqg`jcJtR69B(^X50AdB8@4hw2`#P-RHrquz zDMdTWNl_=ns5>O=1@E}p_;$%Mm(xz$O;IwNpn|YGak`ZtX-u1g%#N6rWL#FT;i#%x ze(IYo2$dwl_n$T(Lb>|ZNhV^-IEcvvi)2J&%I)(R%u`rOSF{TUw z0A42$Ot-T2agJuD>FKH-R4r?8rVx}Tbxi*NU-Li9`z&uXs5RN8a!`~hEtJ422@*+O zs{s&XzyVX@7r`8J+IIFRRs#2aV)@b(!DLIG2%Brp*vzD#ctPT8nXPmzIiebwWJ>u z{#5k%jOy!!EBjJLXPWm^8CyvU8WGy2|NJmR92w<@X}Izp5i)~zUs z+yVhn<^=M_gl%~szxP=)Nef2E&HWUA{(xFfdsk6UO1&U97VM~=eiW5X{{Xncipr=m z+HFocrz}WqxSjdl(-ya1DLhfQnin6?8>MCf-FL#P!~iBm`S}@%z!g=mW+(puO488M zZQeRlWX*^X`kq|p7d6D<{{Tgv=CFc5q#LzN1V?sRwTHu~eQrF5JT+A1sn(L)N=Q!W zQQSwFKe@xUVC^PG`d0J5#3~i2kP^KEc$H4mYefJWLFK;wxR2N8ujVcVx}>EFL?N)E zAP6?UTu|3xX3ZJzNoxA~cIZ;eO=?4I~x zylBm*AyO1%{O~PhNDI1+{{Vl#*}yBT)oprk9Yt_TuCGieyRc7d0W^$qq{M@PS6Vg9 z;3so1ltBE`fK7QjpIFD6iRCe^0}0j2>B276Pdo$fVOtzvsRUf$n&nQ>RF+*%lhYVq zgx>+Gr=}BfqB-NP(KiUsdB&@$z<%&CqN-$Xk4GrBqE`O^DZ*vKa5;FZV~+!ek;jOV zswGM?aGQ>39(eIfw%AEZo17NpO>L}k!-Q6E7};wRgvpbR+`XWYdC$u}r=}1mTBnyG zjn*!&o)KEKw{CbP;1*Uq=mIAQ&v>~w#|)fcvM{%NCU6$2S2KjvBphtv#<&MyF6@zT zLKTfZB;i$!L0CsYL5v9D7R92{6fcbkoG9vK<51Z+^$ygDL0HD6qE6T&L5=aL1aiX5 ziX=He2W)wuVR$MZ4ltod^5C|vNP!slPng1m5xQ~bbd?(%cF?(Lr_5tC`HXH@^Tq}` zoOTf5ViD6DC6cYr(;J~9rWFXB5?Ly<;96-G!Ho#fhBZ#+r5hLX!7Mj7>4cg_pg#B}oi@H02ua$PWI=)Q7$GUO#x-OB znH?~yT7kX@6+4=@Z8B~D02o;)k&RkNJfj360$|{plIEoQk33;#1f{aQv8)b*3~ED? zDQC+bns^vk06(@iQ+`&*VR(Zy*w@{BuyA5d-)v{QW1NR-2i<(JhL$;C?(hAW!o=(_ zNRxW0`9>2}ESxzin)_o@OVnTpq_ooQA6yRQ92ty0E|he@?$PgsmZhdgDSWVk*n@|s zDCYvbO9pToQv;Jy>Emo9s(x{Y1+Y`L5nFtt3o)W<1hLTJC9-F19;SiVVHXk033O?l zkSc0CKx0yXt%eI*8jdtuAefCO33CvkOH++|uPhbaAK1pKZ>YlZn1$~A@vm??3>aFT zSk+973gjtZPQw~^L(A!c`>!l&QPUi`58Q=g!%rOWS8{Qk)NhVlge>Dbk315l;O&nz zd3~|v1YyYz2fohZ<+RNd&7%j$_OB{{T3OQr7t76%R2Tf5si?b1hPsJ?guNyx{u#j{&!A(aU@(Ad{#kl-%?Fn9&s}P=zU4Ne0+&IglesQj={^M4h(%aq2S! z0)Uh8Z{&WMS5vhvZ4+tD$3R5uQP@OB@BHC1>=Z$ij}?qboww=x+FRYt!;L}HtKl#W z?SGy%RbrlTL~7-KJ(rAY1q4g_)`D+ti{I zH{Wyh!!<2IN>pb`RAwSSLu?&KPzpc?QJIiUhu3laamD7*2*r3#w8u&fwAcvpgZ=Pw zRV^iF^JxSN!H7SqMtu`*-UcKMuhvV>S1BM{(OvHj2d{V+;A zeEIait+nAz`TqcK^MY7NZUNu*z_q>8vIUf5Y0{bV0y^NTPEE>p! z;F`o6jiOpnQn|;j45tK{I3AU`<%8*3w46I;7l4aOGLs_(u#F=cGKBNNEsS=>+k(`2 zV>_=bD1_@1g%a7DC+CK3UhlLj*nw;dP{pw9<2JyrQ-OlmfyTH@briRdFyB{CXpBf7 zr?thf4NWD?3=Z6-mni$xvMxOE-&IL@j7XoPz*RJ1LgNKghj!%~sG^a!8)~TF?TJlA z6apg+wRDmVvCEv>QJR`hEH~8B!2NL}siM3_8>*YIN|47#zf!Zi=-H~#>f z2;;<_Sy0~CO-2QV7U_|Oj_YMq7@5YN^Qk=XqP#-*)PfZw z9M{?|7TWyrsb5TZpj0ezs**xXk%u+w+^h+^I8#W8oKVLg+O+}(H%vvbrW9>9{c!EcZgJse6ar2)2s3Obgu#Gk1`RIS zyzcbvk9(qdV_=z9_}jb3xJ1`sBIP(*V*|TS7LP-NyRpcqeDIpl<^FI>*1QznrZgSC z(Shodq{p5d){iS-I`;I4Bc2xUDK~PgpE_Msk6dCDRH>g_W9c2~Gxq()JV7Zk75kh@ z)W+Y0yJxu|sL%Gc6icL(syvKx!YLi$-_HEH;bNdWvP33s3FSL=!y4iPajTfTe&#S;D#Dip=}yFMO!7SsFH8kap{PO9nFc`?9e;Da2tv{C9oZ>K zBT@cn1~%y=VEwyNUCp%`-CmUG3LETXr2MCC`Rs7L3etd;N_3R(1u#!M0@&{qnE=3o z2`6)WA5KygB|lz&d^M^$Hy&_}rYcsDBf?<-UO?n|&&v)JWk*Vq6BDa>ivVN&x9dJw zZeS&aLXYBk4n{3FK9SWZx2Tk#nCACl%>fE(xW0so%DnH z555nlbR^7gt8)kbMB%NM6jdZ_N92zTi(txUOG*jUNZ2IK!rf;0d~L;~la5ohD)h6h zB}s620FMmy_22ezVrmQ`?CHFMHE&}C7_qpFG}1a8SMw)ePw9LZ#Zd@Q@U1;bDkA$5 zN$JpS>4%F+-D3&Do$U=NDS0jIfHjh#zm7rYrv9URIyF?K>0fxYY5@peG50n*-=EJ6 z%sDF5kgn{+!uImsesFMEePu~M0)V&!PyBz+TyY5v8OnG?K?_VBGXQ{hBhGfQx1I{8 zu2avDS9y@1%@e$G+4>+63M2ummpR{a&&vU{_Fg)aftsZ) z3Y8@?W^R6a;d*+sBu>8yh%!i#ZR6B~9cK*;R2LE96Qw)Ixt+1^ep*^UUYEYDeYB(*5kZNbmySWRhVfW@F_s^y!A7n5kfDok|zDwXHYl zja;q-MCsgt%+B9$-SEA+PLC$hOR6flDk$FIl@Go&cD*GZ%gQh#*_5;4KC^LvU3G3; z*nMQql{#CtBa=B*!rD1r z)>NcwlZJZAq7+HO)wNQBXAL#A8ikG$=89Ig2yDWzq|D*EqPIwlYhLE1tIrM3RLI{0 zw+hHy0#c%a_!gs*#@TZb8Q=J>+ruM;X)d7Z-RY35ZF2z6~LAk>| zRPJz3NvqNY@Le^1uZACZn{>fURA^1(97#A+?c8lXd*}n#9;T!yVVqTYoNw>MCMOJQ zNNQu7Ln+Wy0Gpqj<78CnJK>$m(hSej39B+9z~hCKow>ClX1O6yPo6Q?(oL;~N@~JR z_Wf{Ayhz^!_iaTW2Nax}s?Z{EvsG#bQS?7Jo>*yas6_oRLltRW>eJLnzu)(44&+U5 zw<*9^g&=7g9|`N{j4xd(o>!B$0a;2LkW!mpq<)y$y0oE2>6`pf);63i?!U@X+TO() z#Y&x0kW!&-?acnhJr9H(Dgf%*!bre=`h*0jAZb@I>u>Mtg^`#xP@t6|YmKB|);9UZ zCvu)g(+H$sasq|8k>1VK`BxBg;_lQSXPDJ^)snM zp(LHUU;AQriWZp*e4`($Ej$jT5ws1ym{~Q+R+Fp6VSb%YpZ35-9tZ(C)MS|4$F4MK zvOrKb-=vPa&&vvPfe76TT5Y8qGYt*sNJ$BZl<(^ij|Ez#K+0h3BgA_C;{r)-^%b8D zgaZ&~^uY*1REeLbFF&{66Fs0MyLHos63w~hH2VJjnAuA1)4Hxi`D4~6O#HSUFRbI# zx21b?>xrGsuN#aG7pZM&HyU~ZFiT9W#MwJ@!nAaWQb2$-fnYZqe@qt31uBII^v8`P zppfMt-7r{*!3|JpMBv(LDN0Ow;D+glBptEkipormBZS&0^b$rk{v4&MPS|%%8bWR{ z>KcUDU??BTg|4%d%I00EPzE+d5>Ph7vgyD#!YZc;R@f%BE=PfsAG+$k7H)z?&J1Fh z8(Rc3ODe*M z*iF_TUmV|ZL!?b^Qb@S_U^<#1J7M$Pj7(t)iV&k=7<&bBl<7PsGexO)8~m}la{0K! zq9`vh{xCy%a2L~u)-878Qz|maGDZ|eRGs7Nhl4`~!x$)tv|@RXT%0+h!u5Eh!f=DC@mS$k+yN2K0lMUw2M&(=qH}=4*|!N%k+wZk zv&#u3>)8JQoMVemG4jKg7UII&y(52?HP?Nxirv($u$tb|t^BY%Q3jQ|)C#8wIG_eR zE7W9TM^_?wVU55HDQf?|q2LjYJX`B@D zK)wZVLBiW1Ma~i}A{TrR(E)LUTwaW0M_Qzu7D&otS_cT^JrD*Ar*?V#u-1n_usd&s zlInnvf3_FXq|N!^JTq1X#|AN3CUC@uRFV2%x@zQzg>8h$(O67xl>F6Ff`#W%Hc@1_{puI}6hZLq!wO@DZqNgIB~C391w$u3Xd#7dC_j}aWcpJR+(U=E~$ zuL(B8BC1qdm{1&v8{YBOF|WRNER9M{u42<7KYu?gOk3qx*Iy~o>fLG96xzI|=kMkE zW5m`VAvaEtQ&ewV{xtt)LRQoFRI4auYaBA7t}G9V=3-~>g-t*KK$L|-V96aWFXhi1 zd?UTXZ3N`qN?fNNsuo_#O9_v(Cx2w-ItapKMs)0K%SASp^p zyr6&1_)Y4>hSHK0l&V3KAb-FTJuutv`qCFE@kEj=voZ3vJZCWlX+RE#6bS_cPU`jK zNa-I;8OTnB#g7h5JVcf zZFt64-+COj*H;B|jbfP@lWq526roz68z@^$divo!<0oxxv|DwxIN$&vY5-rUJHYgu zBc0NzoZ_LqB`Rflj7_h9Qywg7#a;7mH2W)3bfhg~QPMAAy^PxZet7yQY=9LKI9XB_ zDBJ!Y-45{yrwI@Z_wtDT^VURDi73}YL9HM;p?)Ya@f}~(e2>xhEqvF~vh#~dT~O4% zlRW&V>@ap=!=k?|SABcPAiz+a$4i*`pDA&0VHQ-aE;fOGCvP>&7JlHf^7(Qqxbrx^Ol8GBa#iKMhSTbV{^)n^E6TIQ+1klSgQG9z*J+u7 z_>*oW4FG>J5TzZ#h~zhpxWO*i?ZfE4jlTG{r(u~4zNJb++%qT(2U3K{-Ys#=U=AbB zsJ3aH`v5^dEu;Phcd3bsVe3o_Z?zL-9F9t@ zc*!V103?);(Co>s>E1uJ-nsuoRqQ}FzQNL6Abi)RBm_3x`^%;U?DyVce z(UNSX5LFXsNc8jO9UhpM+kzQ21E)a$0P$G<>hp{DsZeAMY9VC8L5*`ePs{bhN~bVi z5y)9rcM5PJ0bV4Hwg;gYn(^Iga!$uG_gmDFS5Bl74v=9)X(m1yAc5=HcEhD}8fEfd+5GtFmhx)Ux{DMbMW$&unVJclU) z2#K6ox#ni#7Tq;6Xne9ZHlO88VTuFtB=ich>U`cNe5R)U+yPw$VUbYMc-J{QlKi==R9 zs#XUBXBBzoMuuvh3T~-oMl6z@dqmt_T`_Q1_Fqqw_G|n_Ee9OZl{&QiKrL~jen#8O z+W4b8I?g|f7F%fdoy!Vc=fsdoiQlB-p}1=|sm*&3sAL+7mTH@3Rq*Ii6bK+h-fm*h zd0P@l-kB6ASVHga43bSKu6LHAy*WK10$pa6g6h$zfivMj`tqC3_>A!uOlWG-=8Z3( z7Jx|Z$rrTzy)kNWUjVNn$d#ETs)YA-DP*Bwf{|z<{&DN}j?!?;S>0Ny-tN+#kbe>Z zGwE->22DUB!qCveW{wj-3N+&L#I3LU;TjejlX11R8TIn#iRMR9Rg`IM#JHs0XHX+q zoj!l3GuInroI6XFRw?FM)1V}%Y6>czM1wIT*g(V6E;cKiE~qIlF5n26lWt&rF$?9g zw&T-=3o0K`#Em0~d&Hr?d}Rg0BpoCjjrniN{{UPwamtv@=~Gyw_jQ#@)UXZ2o00Rk z$YMvCr3h$4&6rop8}^p|G85ON&Sn0U#039islYsyV8XW`}SjCJdv9 zGYWi_%3pZ!xawpfL*g3|=k~*fQJq%gnI%(BE$02@YFS*zcW)HlO}X+Mu#Rn!t1VL^ zk#&rhPWRws?FS}tf{DQ z_f+U?DcZ%WbF9oD8Miqba$@4%DtXH0+NDQ!3$o>USk>$0l)C!_K?Y3oI%n$ovN8&oXM^9BjB+epzhUfe_N5GYZG)a3fXHj;k z_VqS}D_{|C6@Y`!%Gd^jHmPerWGQZIOS;=&AeEsz6|EbCw9FgfGkcEGI9|r$4TH+* zP7cc5{{W@3x@th5d}TTsKySo@JC0`lw(}xwh4HRy*w+V9H%KZ~R;Tq>+q^MoNKmwm zwk8fL9?JVpr+X@Kt{kXxqcs|P)rw^4r?A~*5d?(-EpR$v;;B{4I3l*pTT^fB>T%_!bWcpewqXffO$RX zTX}QOXIZYMkBM4V8g6wdC!LJomNSZkW*Szsr7ZYHfM<7WzS>%jk8s^-*DlCj z%o~=e98#39qWhqv36W{Blhd9avaSeeG%7V!{_q=EAq}85+=-nfUL&_b_ZTyWvvw59 zyX0y@!jhRcR*-IQJDIQ-!N#!t4Pn$=Gg;zNEcQR2-+Kzji?<#I2A1 z+hM=7Za=PCU7*OCs8zJ8p#(uNOeIn+2XDS3y_t4Oit2xV&KhO9bm=8-x>TnP%9OS0 zBmV$z_?^gNZFMBN@!YSA)@mPSIKU+LBLOt#S=MR9)$NRmiT?VicpoVWbxBF($X?*s zi_F1^6@4Wi0_6@XFsyQ-ssh$T>vhF9)6^981QzZwKYeVHSxA?w!m@>^fq^(83pd2$k8vy_aF#-XCaP8(y-q1f%v8IQh zZQkO4K%tyv#`Tq@>ZF$qMPVYHq#p^?uvDn&WeZxu@oYdUvW&|)%~I1rRTU2qrRYhL zXGyf5_g|IfAWgyVxn^rtDYDum=1=@C)C#i75{U;+ohE-Qi*nxaFW^qh{{V!PS7sG7 z*?VdQL7}U>Qm+Y0MdriANCFP6@u>r&jhmc*UhCxb(a)%qFkN@96??&blrzD!^zY_p zR$!o3-8u)1d8qWit-W!#5Yc8;&iCzQ&pZLSDAbC1=OV!DFU;b3#3h`+FsP|}@fK7< z8fhg?6L<Rqkn5@cgYL#WPDO3xWBx@311~P8$r4knXGh03Su< z+Bl$$ZZv+DN|0v*B;i##{8uwhd6`1WsHmS#mehHvVnwWC;K!aTJ|yi1vxw_EmK#kq zJgd8DwM->Lkq4H-XVVC#q*pMiN^{}71b%5x!VHdGdEvy;HN%wbp@^xkcuMuRDQa!v zDia`?7MbOXTGGz;O3Ip0aM44^QTLjub9FeSIVJ!pQB|)S0TMk#;3|c#iP8wv;z5C9 zr2hW^t|fV1Qtd*NfVPt3!8+Yqqq`QE>$ls_2ysPTOTukvWh%_G2NG1`!+|ZZV`7m! z{P5nP9@OmhtkK-=U2?Kr~%xE%vTi0wqo*OOzy~DiI*=PdW9r z7gNqQ=8#I1ksOnxZElvwnN137j<^2+4Wr>&$sQF>+IJ??>T&LH^G;MansTJK0TQ&C za@YI%;m!F-Ye@GMiF?0FNP?YT1fL1|`QZm^H3(5klMx8($ol^M6Hg$JfJ}ojp z07stRY&Fzo1WJ^ko5Xa&+~q`Y;*qZAMGDjny*JweKU`g#-`5TAS1EgbQ+YdMK~hwi z{c*~H7zGw;7Mp`JCVG#q6E1%GV05}k{{U*Pez)h04uIsz_3Ms8T00`p<+tTH_rBzC zDxV<1Ho`8|^*AQEGKC_Yf6x5mRXh?mz`pS+xW*~Txj6R1^b1QD@4hfEt`JJKW6)zB zqeN>0^NoAYEGCup#ufC(BHENI>5WO8YDozg^r{m$<;_}S6=afegvrJcI2NKqDQVD1 z!Vas$0D0ht8HA8F!Y?8Olm2nrkzovxCmS!}IP{1(!X#jkB*>A3@Vkxa7)ZcY*imxo zw4Ic3ibM=3G@C{+qox6IC{-mZGDbB@NVtp?Q9QA!Xk*>WfkP}wxW%vX#unh-a88r^7|kb`$8KDP2r2&naL1k3L4r#o`EjDzjj`L8A9CImf^oMf*VJHGmTK) zP?JBd1*vX0O0u4#1+qr?L6pu4Z7?v?!kx)x6Xk;$7!{BLuv14(@#;z;u74~N zlCL2ImTs-FLRwKi6-Eeb$ig5>!NSdp*kE@g5#cD=g<(M2c>#pbnZ6cEb{K7h zhc#>(0DfPVFeX)V_ri^cOk*?;JbHy{8OOcI#`xR2^TQI-ebC39%6#ysM_g(2r zk{!s$g_~OhcYZ?|-FaY;;R>b?F@#GU4h~W}V^z1;3rlisc9?U(uhPY%4$n0r_z}bz zf-%TbQ?%F>%2Cq}@3FiL2)6ZG9uaHZ$+1iof5s47ICOE5f!$|Oz7@3_T$@zSOlqdN zV8t~XoNA^B!d%pCas^CzV-(Rmuwt8$gvvT%cSf3p4M2mZ9x1DBh1T4QV^SjtEGwI7 z4&-CP#O!cDGmOBdA;TR`Ftt3eybgmNXdZYS$Tp$NC#E#+y>MAaOnKdUV3&ws-QT~Gwx_rb3cI0ON02l5)$F2>fttGi$rD_|203RWR zkXNm%!hdP)UL9Rei0bkYzuyEmQV`+}wRm6>Ninyc_-CcB4Sm>y0P%0@;>Q8|axOUka0?q!LK@W0m~AxOAmyOcVl>VI*|}ac!{1$7L4b**H+L z7k*Iy&%!@{rW_e)r%#LF>-}&o5(3L|Q>(+z>E-w3gQ=y#0Qe%r&+c&DrF#An^tB-^ zi5h>W-v(2)rsQezS1b)nOjK-qJI`C->Q?*12^$k{Lwqx)61n`zW?F> z^TJfkg&=k3>w_7mC?##@hja)n_QT) zM?54>Be|Q}cK!Kb?=)8OaUIPT6jVm6PUmG7+fA?39aA_!)W#t4m4Gl z6LE~jDB4df8(mA5pcLNNP^=MbC#Y(iVtgu$J~u8zB~ovN5;+lsM~iGO42)XWA?&tG zacRPdY6kf7FNNAch{KxVm(MFi0je;fQ6dGgi$pGPpb#+DxeKXi+eZop!ftJkP&wg6 zHWhWXk~ zEmP~LDsY06ybuoe^1%$O6xiQ!&j5u0uMfj)D$3QWR5XPN^u#T&DLJU*tHJ*Ompm%c zp}qN7gL%L9`Wy=(WX=9qS)>J~PsAc4nz{@VepimNmO`&L8_C|?K3FlDw1jFO5V#=%bNTIqscLm0P<1LI z36hawK)tT7qPbzAf?HVlQmBXoLU!l#!Ia7liAYqWo^VO^k0J6Hb6P7LB*@YR6O}S` z>`tSkXx>iy{Qm%OaC1mby>qEaB1xMZHPcj-C>S45FKb8d?}J->CAm_Pq=m$l0!)6! z3actdUvzs;Yjmqm#6oldFUsDQ!Boo%M5$VpFjx6vI&Z(88Yv#` z!cynOpjh+!`uz{g%3Q!Ugq=fFYc?WJJW(6SNM*6DcjQQN*@xKS9zpqx8=6pSnf*gsP>&2 zWm>ePT=E~Yg7t?U-Mg71rRFf)!n?J=04H+-CvQL9x?y7ct3fJPGv^rhZDl3SzCw7X zbOq`vn77+=>3>Wn`^h6w5vt(KZ~Kfl>mce}>E3=Dde86A8;5(q06z&68;|dW7WYk! z*NR1|qfi%q5+ zUVJ0a0+oCy5EPstP9VU+ZMG0(1kM{)_)UfsX~ClmGGdpGVf@sb7Vuhc_QFl5r0x5RBow7{!i>*( z5gvUp&60xg&9QWfW#iq%->AavKLdOW5+(tjWaDPm8&;lkYv6ZTL(|2l22Xhd3ZY7D zB$FTu?{7WuH8aL!j}I?AZSOye2|UD~EO%0{0%qnSoN;nBtHMFrZ{@%A$Aw8+l12Gy zLEhv0<52#V3t(CSfGz$px=>g`QWN1Yd{&SwFfpW-GVr!rD`n*+UlL%hKQB>*Daz8Q z5Uc69H%fW(`_47*lB9`7odO^pT*N;8l43_OXyi}Z zdz?<{?7L_p!dbGFoia6T^6P>WQZ27em0rXD0FUpez+ukpD6&GdivU1Y7D;fY@gYf* zCP@CcmPZa(7LtsmT8K%WV{TYEwom}KEx%_0(xj;+KqOv3AFdrJThiZ*c&;a|6MfQM zhtrnSt&Kn=T7Rbaai^n_lO*+?cuJldO~0-Rq;xhf_82dqLqoDLgzHEtz6eV}e6TG# z&xQt^8%*Azh3ryH;uonxU=O}F_h6ATI9Ujd`CkepqNK(NtsDgr!VPQ)kJ!RSlUe!U z$K4LCu%al*6By|5fzJd|1vFj+!NDw3X**z)Ff~9pQ@R~+;!?|i!XLWT%NwDHGlkng zoxa#ur7BOu_QM*~r(mIjM2vW*ZMF+TV{JIuO#&`3#u_{!b4eC}4Z+(OX=HpjFftM% zJuQqSkeUj&2>nDJ+p z38%7Hb(9nAM=T8bK~4;LM*-EZ!bmuwpr*CKxlNTwf}?Rbzs_XD%Yb4y;lPQyH%@WhcVWOWiF?* zo$;dTi5t!ZFBK}s=ZspxPWWc(DA zi(^$dQ-Rx-@Tpvk6W!Shepcl|Kdup|T&mv^vFg{PP7+#(GdS(7Sj4lu4Wogq>V*0q#qzT!5f}-I7j$_aS2f+H_{4>%x!P38(XM{NSmk`k1wC}{{T2^ zL(0061jt;-J3;&M#Lw`mj2sf3Q&0qcXai0B@#A$R1_HHiKs{nDds__at_gj>l^=~D zeL%Ew!mZ{3I*b#hYzE$u{qViL(>C5y-7D$}Qg!K#Brg1w`}6*bCpHP0LR?LxkuhnU zN7a}uvmqdek~e?=^WOXU%wu+H(V_zNPNTl*-XL>~4FiP6$XX}_?)7R?uMU+c5(@Q; z3u*fUKQB1LTBjR;;;C{a^KSt!oRsdI%}8TPRA*eti(7A*-y5-9wCY(>ic&NH4aDATH<2GaGdW&`tuic~ zDlp)Iz4zMV3O7)e^%bv5lzbM6=l$?|7Y*Ihvhy-f+O?%xw5nnNOirIq^NdAes)$lb zU>^wvOq*;ENt?zR8>|5e?;$8!05N$7e@kP=vjnYefS^>NaUe%s=G^0^C~HCC32Tof zKbL!zt4@UJ2@o;>^Ba%r^Ra#PMGAu2O}+pU zlnLAmMj*Ya>whOwrCOLO0Kv7d@*nZb9{wKPydD?R`bVjVsw3TT-xxfszljzWg?Eoa zm&k<=ibUGv&yeeEIWs~0e`h)uS!CR004SO>CX_S zxZ%zms7nmAjXL|i0t7|GUc{67Ucz#dJ63Di?-10oUjG2mFp=RpLe!(A8}l>Md_*{I zsjSi00a}W?ooB=bnIOp{X#W85e5XDb3&B1XwA!G`+Ih;kxIsd-rks?gNG>fvjVV>_ zzR))vMhm7%&a*W$u3M0jps@o{x%>3OZRE~y#|7o7Uxoa^rk2?dpemuo9SKZMse#XwPAG1lc>%ss%gBt#?ht*baXnsVmF4sR z{{ZO74WYU4fJB(QO}gP~mn!LU#%oq$0$D+5i=`<|q(GaC`TD|n=2o-EDPi48H1zt! zlkkLtF)?#DBc2?T>v?WRQ0u63yjHZK0LG;gVmSov2i`HY4wMi83+Lq2@=058TTRwi zsppojc#t%el2k7ipT76oX_?Yy10b(WFocyMQesmEX2yOfDe{b0{2i9R?{yU`DobiX zQUbw^CgYX7r0fSwN^?h$h10DGQWEPz;B^4+eYgJr`LLOEhFNpKR70+8F&tSbOvFE) z9YH}VR46o*DS%BqKy*;Q3)TvQRN`j1{xI&#C$YIB!SS5y_LDr9JhlLUM> zB4=ZNt|?6Sj$dk#lm|*u+LUDqGEXh9Cs6+YK|b{r>065z3{j zJ}OF6sH;keCP?Kc>-NXez#KrlH~p3lr)VaQPJdNC_IG_%dEH@gN$|J$awk>EA}3-u z9SQWuNOm*EP11H%S(QA(+^$Q~fMB9E6CGh)KKSSU#&U6&xk8|limvfvPy@vhL4iJ( z>5D#@Ph^z|DRV}pr9lW015ml1m->BT*EmQ^LGk+|&_?C}=Xbx|bSm<%`iCT4BkJ#7 zacEAJl1WmPJ$L(W*Aa@Y8UFyM^Tbp4UE7+{l8_9IJAi#;^n>!i-HdjaDG`U=#>Cc4ema^xS|;BTGHxX9Gmk7+sdeW+JN(^ARzZ?9y8B) z!*3JQ)8>@Tid8n2)R_p7uIVwnlRqptXZ5Ey%v?)oZ@Fami%BC$jzaT21{z#ip3Bs# zYIL}k%&s9rpFWm2b7Klwq^m+@+!VZ)p|@)fyfam<18V@lJxueDEEkwm{{RX@bhIp` zDyT|ONJrucwwoP*Kdv39Gw*q&X?d%xr8M-K8U?Tr5}O40M7q;5?4+Z7GN+6l_bG*1`xL-EFONuMc} z=@@4%%ltuZ>OJG@xYSf7QEss(%;K)&o)@FY%Wbhznx@_pts!Dy+DfHLksP^U2IS6>pl@C*;yQnt}B?)CS8e%zenAmND zjjw5>G7^4^GHlYSikZidsyckVlA=ShQf9#Kb#t5xf-WZB*jD*oP9Tq}NsCN+j96Wtc2}G6uMP##(x#S)vXs~^K<$_^mN-g&j9vcC0hBIjWVC-2v$I@7T}JgDM4 zskWKRvRwAMly~SrqV8B!CIXa7Ly7|G1DG9P;}g^)X>Ia5_F5V_LmyQ|OgMLn#zEPk ze=%aYVxhPVx8UyOCPLO^i>ge6wWMDWJ|C<=QC%uM-VB1Va&35?od_FSd2-|a+4Jrs zr=`gA3QVCY6$#SCBPgeCl{*BBNdS|)@+SAhSB-Pk@Rcnyo!T323^=ru>s7XsdE}q0 zW8*cNUUrUtZGFe4YcLDH_^ecBt~&iKB5FSwXH$UqiPS_GCd%b`HpQCP6}6OQ4AU1J zh5$kWPOVA@;v^gIJj_R)Ip2Y}wx+tUW>sOaP~rSAkI8Pl$T#bMJI$Npx_Wh`pyE{G zMz_z6#T6)O2`SWh6SP@glk;+DK3STjf#gM^B*f9GDsmN0*(q(1m3|phX+V%PqzD2`cw^~? zYBdpqwT92rg_7M2lDBil2g-)$yfQNUue@rGpZ@?(N%8pm)e8VYQ6f$KVkSh#j}2yh zqlRhgP^NP9AcS1r@hDmSv4F`$-yV>y%1#0!m6zq=jq`i)mKY!!++C(?y>?7H+dj7zuF|M&NH-X3vi)sqK+)3g##MAQGR}yYU7^LX}dhj!s;ANJ!BLI4JUb0 z>V&8zw5WoV6Qt@Q0TX|R1myf{knoc|*AL}rr!{($KJb0wsYjSmQi&d*Ur(qrhkcrI zjOMbVKH|E%$^Z&M^}bgLQk$f4WUb|C@SRB~N<_wzMYP*^utvZ^ke|LuJ}F|$)GVml z0rykk> zu<>8~kCpYt+#g+EoD9DuYJ^d?xX{z6Th1v;7F+_Mv}`PWF&ED`U}OtRPt|+XP#TuS zA`_*ha|>{h&&Wv@oNPldXr_P{%}J+xl2nABnoYSU0Oi>w6OGWSown2CsHv%OARqvI zw%^ZeL->-VjMX8Ww7F5;Np!yhT+C(53hWke{6T?HgfUAjC|nVTg=2}^0% z0SQo!YU|YC0ZMYkBtByD0Rbvd5wMxPxf{>T=P=Ewa&_oJ(X9X^t!SMVH$N5k9Onlcttv)W0c`eY>d~jX(v;7FObfUEPLd@xotr700{qWdZp zw@;QD>azs2@)AmlV^rA5B-$?#x26@rOpY>hNQ%tUyxDh8-)a4D3hNX}M)!j-}-#g+cEb@mP`P&z=dqBG`MSONoTV?I!;K+X<=l1x)$lRTA1Jd|px!_;|VQZD4*+(3hxp;v5f=bI3>hdQ41>SJ#p)qt zHVc8aHNfpfxhCUh#6Oz@Ejp7JFu}GEaRjQv*8^0GoT0)r*yA+nF@=j@DkC1aok_p0 z7iQ6JLntN7VKuYLa6;Oick6`K3BwmQ`y@Mq)MIT2%L;^b#&>>rTH;Aakp~%tl+ZX# zwK(P0-z!Z69%vqTP&F99+@0~uzJ({<`QtmkJSe8hOk+|Yf=P3dXkfr>4e%qB5+ep+iWm-NiJSCAlP7r zlNj*~>cXwEX9UCr*hfz7kS-94w#--w3GQ`1Zm} zk}e4t9n^IgF-awHfnUA9XCAJsAzer#13c8;FM`}n{IHA3BOHYSv~~L7HM6S)Eg$@F znM4io$b(R7YVdHGZVyj97~^s#FoTGT;ZABXeUOE@<%CKKO|W4_t%TNsJn*MBlUjva zVZ^|~dvAh^bI%F5fxLY1mo+h{bv6}`6rDKSprpVU$T4w=-o!~fZcrm0_hv+6-3QAE zEu>CKl#!1xrZXNPTBSC)#@Nhe3vwN+F__GGpdHD_Ze6u|jEKeo0~wAkUV%$7n9ODc zdbUOs(`y_e3>+v7967E;)S?zh!BoxyCU4IH{6;~-tT;u+9NezjoLhrzE{_iVa1%8F zSRuD0#NpdeqMJ$AGlMDB_QP^q({IayY3gFYpEB4+-0WoD$MUq3s2@Zn1Er?^U$8<^?K0=PFhPmNVd;FRh!U{BKr zv0jm>DKckx{{SX&8>Xx&Tn)z}H@*vIr6E@nrrQT*Omjjp`E`+oh1M4Ir&3fE)YyTv8S_0hI7HTx zl@L_g&c;G?9Vkp{6%9K_%k}fazFwaH08PTwq$UWo zUSog0`0b+6wWfk}X30uQ1o%M;lNZ0mKAxC#%h0`A5Tunv86?2i^SS90hW6V-T2C&Y z5mzp~Z~p)|aHVV%#-%DskA!K}<_95eagN$eP+o9pJ5w|W)2me4{Vpf^;mVyTT86zM z2oRGRrg?Nc{{XHV>0MHsaVaZEzvhsU;T>k+o>7MiZEiG#r9)r`$~^skxT-du3Kvsz zNy?o-1gpiTdrth0{IGpJDpZ8{6s2jIH-bz?2B8`fkQ9|^OsB*|gUjOIZ=wEU4%Dd) zCJvCF2$EISdg0rAE_EEa6-7_@iBFUWwyR*|G9e%p3v%Co>(6`&%U$4`rr?1GY1n2?XH7Q8l90fdpPWu&Zqoz7`Eg!iZ;1DQKX$k0~(GK-(HR-lHQ0gj;NC zwk@_f7VinQ=7ep5UTd7;(bi{{1$CSYnuRpJ&=$aT4FWLjP|q+h3+-BPlr8}@)gZl)>TT*aFlNh_JLk%oHqXA5>0ZS11;$>=c8m|{Vg zv!-JVb*&x$0AmSv3&xr$hcirzVl$gIQmf)sn6zNxJ)1Ek-x0W*RPRv?)@0&4noo#M zC0WBdMk5)cM^b>o9cZJ}osEjn!zXuOlojE@&G1j-F;&*;zWKu;=lfDx!5^;)D z9BYqKoGok?X9_pI6G~#{*i{>0fvGM^q?Cxp=`t~(GldxEfpc(}-WJ*c7C7@k#`w%m z$PBGWDQzbIlO8x#_V9PzTG4Y8s=A&y;ClSq?|(mYcb^(_>e zAGR|=^26hDEG^UF+Y2D_!f8zIFsnnw2Nto&egYw+&Iw9LP7$X7iRpq8pavY*A;QSk zt78LX<6vOpV69do4r`L00?j@E1~F%rHYy=7Fq+qCIA-7-s5B zTVQ(hg(5j&V(0>JHCoP|xB6q8a8Wf<4LVY(9QktRf+>~WCJ7!BA1+_NUbq#6a~igo z9RC1+(+5(dvNdz)Cit8HsCGFhgcuj`e7C_3uUmRR@b9-gBGQ6{?ay(78%Tno8;Bp; z{{TD_T1pb`;cUW6lcZ_;Tg!jlx?y0sY7_B%BtSEN(B9v!5h+sL5*6a;P4?RN-<06w zG2EmAH1!fX`FUZ%yGByn<5m_l*f!G_lLYG308aQKoh8^RT2!?Hut$efn-5d^VKpTz z$O%rJj19+I-Y~LV1jgF*lNzu0xI~GokS^G ziT-5`;_>qzv4G_41(a=KAjj#y(;Et%CsYLji|-(MpZ(uoED}T70zD3(I+9eaDG~{R zB1pffFR}v*EC!QMGs3CUnm0NSSl#}}yDWxgo z=^yt8i*a#1Fvd3fsoht)le1MCQvk@0vx69`Q7K9ef{`GI6Z%^X6xA9}%YCq8FA{u7 zl^uj!f43GiP|A`{Y$y6kkm0udI@Nq zw%Jal(%7*dKD|F<2(Gug3M8ji`a}q^z)GxBO1i%0-#NlBRmoDNSGM?FUn||TaEx)$ zs&#~u(l7gr4(sI!-)q~R2B@wm6RQC`T2KBl5rW%=Q)2{LCaR>BO#c9E0R2e$<5wz) zHxYrJP&iwgg!sYWt(>VONH|4x1erKV#S|NQZ-iZRl}06X))mpvD=O*=><`xhxE8Kh zAR|@h7~?=23`+NQRJGYdr7$Gp#SKJ9^udi&Nc}ORtmroDggL=#M_W*8rYF}4s*I^t z7;<5aLJl`HWDW5%rB`fBH&@s%2jO`*WG_{h3-76cF;|J?4wK?4s`<4l;G7)fC0fxR1LxZ061qu+LbedC>;w;{vG$jK;)@RhUft%D^=1|ytw#x|XMjW_bPHY@Qc zn`+uHvk;RO!!m<#2B~_>N=TAEExzAhwilDda~JjffrP#N*L2ThI@u1nKMYUT`{8vg zgeFd@yh)Mkj3|q2FK<(PY}gCsx8D=GOHPS`=%LVrsoD6KAth712#=@fg#@qeV`QyDo&}80XyzKEwHT{WrO*3 zZ!yp17}d5E7pq3Yc)_hwmxivNuUt;{*+~urWqU|!&heqAizw5pSqof)l zJg{>#VY4>C?XSwDlgLU_kcG(}m%)f+tvg{Fb_pP>4h=Q}a4KiWMiw-Cu^)5K4pbm1 zF@aFnQJft}jRwQ#hFGN=?36=jBw=Qe18d_})8X^jVQPK$^1}A_Q@@&8_ayFcqFX5# zScIpR6luLlzB_3`Ta+%1827s|7%j#Cyo_ty&ch9jmXh?7XtnU8QOh2NPUK_I(bqAG zTF{Zya9)IcdI5x z@bd3@4yK|N7(lE}`0}mq9E=a&0tuW|z`|r~u2RZglRIMr z(s%mcQt5G4I8iSUVsJaWqHBraDyL@{mo(UnBi_dN+$a$P2GU0e9MXtOy8Q8raBqRq zxSU~MlmYk0rzY2ouIWb~I%02x7f=#l{!epnb(l$+Wyv2Zx6856%ucH$9lClrbm z5}5mA&wIQQ0(pLz5V#PVV^B(k&x`cOG2q~?;T(#vll;W;7{d0Hs9j2feWL)j^ejg# zW3`Z&ndj;I`QxM(FqqCQ7P{yvNgfhR^~Q>+QAf~!U*DD*+^s1>iTtJ_Jg1&DH7ZIq zYfh-zM&sv++|${5$p|!@&2hOPeP(vYzWja_NmBY=FVD};*l9H-ZOJ-RdGp4ruTXM+ zE1A5EYRe@~t~_wi7I5UnaHB0A44@YwZNc&OABG656f z#>sm^SKceap>rY%dh)%$axjA2CO14M)YX)uTE>_WF>Xfx0JDzxQ3tLV{O6hy~8tx%KId(OiIq5S=A5MDsm9{{Ufu4X(+OINc{@=AJd_UY$|^ z)>KkQ&-W(^3i9LbI7QqAP(;Dor%W@l_MIvtQWP~u+2Z z+d|npIXR}iNK$UJs>za~nIKHe!TA`+iK!uw0ad|DG?gYf@;GZ1!D>piwc-Q|LXb(^ z-}(%CoX7E!1D+)$n~~IQ*2G}8_*~}>Q@a(aDr|Ul5}hZ-;t?0U@q)Z*03kssB_IKG zCx4$$LVj&Rts}b*B`HE=2}xGKMiTe+DbWg05K;}(BhQrK(YAmzxzF}hr=`>@Mv~z& zJVSB^o%g`JM$=iQRP$p>d=Vo30Qy_kP2x-nn&Yk)-YF@xBpZW_a;3#R-YFp^TD1hH zeO{d;;-<8o5@MUC@ZhM9&^TP=s!QdyCY97Fw^9ff2Hs<)-=-?8qLKdq;#Fa^sl@k% zO@x&VDx0WZqWbA4bztZcQ4a)Q#MGN_V-!`lGT2op6yyzC;7~PH}eKO{A z!_Q@vpZa>Fx8GAbM}^e*wFv4DpXK_;a%Nf%_lr_gg0)Dr2;21fk2%8mr2~!C(bgp@ zZ@X$F@(KdoBdxz&dnQ0=$I8(pw3-);qqqr2CrVVL_l>0`M5F~tBthSK`=3~!ROKG~ z!L{W;cXawzqT0xUr2vvuHAF9o(y|2si$@4U8YMdrMW2hn)t#*{!mGQ>DLa^X~#^9&vaU; z>CLVb?OaB#Eq^Sakf!MAida-nhe$G2)FfJe#th=FCL9mhs_ELcyj9igq2z(eB{_~ZQv2=sh7kYQBPHxJ*tVNBT5Q1*aXN2 z^zz;?AAxIZ`Tqd8MBR1M5n1Zp$ZK-a(`|dgX~N2^6s0K1nYFeSKLGe>AMD%W5(PtwT!h;a;U5f%r+Vr(ZGaljyE=blz0 zwJ(}ou?z)Iwb`S*E5OYM7pW-@6b6whR1>iT*lOn_jz&yIsJK?MHl^=KN?P#8c(791 zXKzbHU+sHOjB4t0`nRd+2v%E0=tFISJGF$71DTtdGtUt``-q;WDWGjCZMPgspLbbQ zfv_Dq`kV}JFLg1Z{{X_OXuuh9s{K z?=FOr3er49N)xvvi}}X!ilx*tAw=b7!>8)VTmhloP`$QhibXAR4nCI^psi!Xbhs57 zK?kOjco97gD6TrMrliRf=>XIvMI>k!N!ah!0Q36d^X<1WrJ$(JJ;0^L)cH~zBsc-o z2?-;n#9UbQw>I{-pCHnmEvY@}1qmdLI&UAl++!YR7l0exYeE|t%_cgW?RAb-EwqD}m(zST<`pjo_3DPzYurcg`r-3}^VV4646HuAU;2b=04U7bcj&LK zH(JNGG6At%ESE^f$O#on%*Zq6DR_p2)3#Y#E+=kscb$(eo8rLZ7M#i}*{O5!5}1;H z6JRuvvEOOsilw)ldq2!vV1M^3iBe>EkeS+MC;Oh5mvILiFNjf=QYCuS*Z`132q0gS z{{Xuf{S#o1y0~fpw*HF5?6)^6Vy>XI9m>*}Qpo^7w?2k^!1Ie^AkK#op(#y41x*zI zr~nP%Uvm*Bm)fP_T7+fU8*Mq_a-+i904da%i9Ro$CtN+6F_u(@8V)?-^&~_qSu?U@ zYvVd+HpwGBmfnoXLAOAsOv^VyD_f^ujxBlHx)N zfxCpBU*i?m5mY@#pO=cYOOk;yR77+;d_2Fd7pg1GxOlvl$}5rrz!FjdR0$DccO1dP zn*0J4rNj~x?xwbtlC1$s@yg1sl=TGlzW!JfFXBACkn;|yOYe@Qgpmmr@l2k6T)gc| z=DcKUs2-wyT3hdAxgdaMECgO)-~3_6CE^FsN}5*t$5gOe)>f%dxROq(+k9Bokkt&+ z2dVcJJmzg(PU$5~(wz)SN>Wp(n29{1=5LH^jw&Aa!BnSSr>95Zw15Cohr_6nJRl1I z2{J9dA;0yLuOUIzrMDYGfLSqqpiRe?{v z37w~T5~<~gSg3+2LnOco8BxB?^CV^Y>$KkX8Esx3=_IMuOafp;^4yKbo-GP~$1+YR zVfSitjJ}$wzyoNjt!)q7T_|C)r6}{8fG$YIH<{NbhBLo$Vydhu<)to8lm!E);?k%b zk1eq-%R60fh4f{#l$jdp&w+V^tZ7So56N-_+`*VLCgf&ly9qJ4o=y@ur(=$Gd6>3b z%bU!V3R_M(f~1syAZbzB(RscA%)RqIdAF*na@tnzJEvB(w%i|wNCs^%Ae=byK0vyP zCo4}IaJ^%fDnm7OMa$npP^LyBuW=)^*;%HjM|{quD8qp|j?yH|!8e|tByQbSQw$D~~0$x?88I zeaf3i(!DxDOa**fYzQYDmBCdx21KUw6lE?YL4WqD^ghYh_{5FKBhZe69WhPY?-lT8 zX9~09<>-d|o)GI#bz|V%u(&n>3-|X$gyI5#s8r&z2z^ zDaKE6BXsX(H4Cn)s&~D00Hi5OBT-U_0BQj0(;UY+jdGNZBIBy3GZ#|b8)#8k0ZP{p zL0vZ zI}fmq1%Dx8l&Gb|k^!bcQBu{+sa_xx`ET`$;|Ey_8a9JPeHNEe=`!qvW8^)VQd7Fq zttHK&1;pT4?LN?K66>Um#@vCigwF{s5IJuTBh@9 znUQ>W{&kpfRZ3B&p{hp-QXg6fKqOyI=3~~=*9K)gV@bp1$`z@q+N6%{NhnX@n|Mev zsqzP}TX@ES?r_h5jzh$4aNFen009;QnU@Yc^4L6lw z>S@zOSmLtxR_}V-3JOY;kYthoCrtdX_WuAAjM4t4vBEpT9f z4!l3a+$}>yDe@&F-ZjRsMwF<)Fqk@0En{yE(Ew*1c5K~dPUE#Xo?zd3q!JxM0P#)Z z#BC?0CLr&_YKs{1~twkjuP00#bBt*;~EK0Ku3d?9I)!=RRnns$M zhMfgWq(Sj7Q2@o@$%7qn7pJLZjMAar5X)JkZJBPPI?akoSq1@GCc#EDi^$#vHrnRm z&5`;qn3g$engd7bR0lfD^KLDyONBMm^_2>`8ziktfnsOEFAxuv&x;MT{e&&WrmKlF z3R()KB&XcVs8h)kJ}A@^{{V@cOL+ISIu6Wfs)Fkt&NF2dAU@JSX~QIH5C)r`abPjd zoI}J}&mGmNDRI)v(xTWUL1kRzlP7zghn3B+%VXLod0#)Og`!K8?)V?&SiDcid>h%l zBI)wJ^N6!V9~1IZM8sMEAnP|hFx22@3n1WPhBKw=0 z&N7oRsCB=>2fNZ$JizjvSDpFd#_?fJ=7EBgT|f)c9ZFe1GdfaKI+(P1U>wIW*793z z#FR-w2{sytB;R{p)3=@n%=0qp(v4b_kVzz~#yrIB^TTRg3VwB|Ql$k0x?}X|Y%<9d zlGyCw6!l78B`HEsjkKr8T6*8~!X?h{N=Yfxqy+#YREQtGqZ+pAoCDzp$^@UTF|el7 z@fA$oB5z^x<>`+$s`v{C)Fh2MzTB{*U??d7CP>`H(4aRL8;)3Ax^+0T_-0IyOzJpMRDrT&gx{ab z_w&aJq?a`T-36*i{{T2u4Rf3Z!4C>n)al-A%FgXln z74Akn(;_kE)!0dqIMuLcY%Gd>YVyL(v3wN-D0bN^GJi}g+jfD4ki?y^q8U33dK!}F zBoj>{^Mz4P5HPzm#$@1xu>))t)Uxj=R5Ksr3%0>foGKX;g^AbMIDX>X*gpwNOa8oT#Hfo#83pUQ4SI482mpY2|El)gd+c9h^ zhV8Z$Ln3y^yO5W7Sj#|OFs_r(W7HrG{{VhiSTQC5`3_hll#odZlZ9GA9I>)#$ik>< zdEt%1c)ykQH9I{5roVoM*y1Ep`30N zVT9anPS_!EvS;DKWhCx!x1va;16NFHp`~}ii$T?maXYe!t3sV7`0$9v6a zF9^0RF@#Pt8HBFblOhf?3PtgRP6zIbrjy2FeFGVwW3q>0(;0;}#-%{=$8ANmYmJZr zH^-8mhaQCi%N@0L)tZ1iV{{z?F{}k&9^iwBT-L3HoW{xUk_I(F<&CiRJ#&)HuSuK` zhlEVvGzb%gk>D7muLTao(OKB zpr@#@76vfgPWF`CO{3RtxFstDDs8th`ux2xD7MhFbuB_rCPyRbJDvXk&iEx2!EDHg z*u|unBkhLdsDP2K6p&4cx$D1>`r~9S7vd+y<_{qU`eThR8yMv{uDe(usuGw9x%%(> z>tm07^Gh%ks3yR3k5hqr@S_G*rbL)OKTW=dBbF5fNCQ^8k<8!zKG<80ChfF!JN?>| zB|4Kk5pHpF`xq%T<;4W3c;{D7D8DQ^@l^7C4!PO!!Z@v~)P*9Suhr$%Ksz=`w z$(*J~V-$#bv%J!Es70i6=X?JEO};}K_ocLaY7$1o+-&!!ltmY(q;Bq>Tn^7xa>n4P|!cyyssgM!X0L;wm;gv5bxcAkBF z%yUJdy!ilQytc zp~^b^u-BA?luF9rz}_Z$TMsmCm54f}K{Esa9Xfe($8GG7Cxqij(j9C;xrGz_*TG2A zkd%^D0syy!Z~aKZG%X}Ka#W=00tC;N_#vkM028d76Ii^E@Dj`=PAc9mw!!pFomGFBs@GO2Cn~P(J32kkhB3f@!KmZdK-q<0gVFEQ@2-37*18z}+n{7I6 zzn%fD@Sl$9Mi3)x6vK1N3DUF_cZ?W@f+Ku2t)deO2H1Y7rh_r%hWeIZ?S(mVkJi)tSZA)MiTYwq zS543BhPujKLkn`|@}fD7ESxddQP|rP9L9@Kh{G0ROV0^&Q8~1sxs5a&Fy?fmiNwn= zrIB%bG3GRo3=AdFqEKAYgph5BzHLPXP%&U;ltvA)8O~@m0(9bMH94vWnNgE`NAntT zgSIBwl^&f|#Ai6AnF290nwahsWz^|bH3kj}t6~Z3fwUhiD#BT6^r};Z6sWMmRv(*u zdK|s)*7$23XiHHDJg~E31Wx!t7dTzJMhVM-Hq8lhaVwi4#|36)D#CKJ99 zQaX$fM2u>rl5n-iR~y>+OrRj(rKCpKPrLKL?L_2>1adgoBd!$g{PFIAf@@H%8yZcp zumC1gguw_@eQ=;44e?W5NPDH2QIA|K7uN!ZH1o#nyJ*9Mk!(b%z(nIzJ8jN1D)7!c z?=eFiNiJ$wIr*`wpXG#9u4LgnGkWH&+;UB^q~39W$i`#Vy2|G*mLmdI8EIenV6}LY zI2OD@56cdB)l8g_zx5AW-O3uz0ul_yq{)^2(A!)sMVr5;-tkMD;D-7uLS z5S!v|>c=7y;Rec3Gcqu`7buM_=>;Hw2ZTg*>4BO6!LjK$GMLHJwy2$qpIP(!Vu;*F z0Vj85vrZ|0hP4Ey#E?K7x&1c53>2rr0I}GOt>xu}LsBJ4(alF-m@sY1_*sRvl94>q z02tH>i5)**EHiI(Jd{FLpoE2a0HO&ZcARB}po8dn7FDp?@ z3FQz+mI=2@omWVdyq$I$gb^fMbU&o}d7OA1B@re!xZL%^ExX}TOxWoljAL$U*pIFl z*7qr73q=J5IHEN8cN+tJ{{VckwK|l9r6EdhNVqqiqtF?*t_L&vc!GKP z;ex3x^qd*1I_`SU@6QA`T2$mswgB|$hP1j;nFrxJ^}!Uc2!rW{N998^d?$)`RN#jRg>xBL<<7;UmKFkFF14YEmEz zaMi(zceHNjKQsd{^ax$rOpL1@w}qrPT{f`N$r)AvFE- zaIL&V$u=Kuop#5XOU>CMmV|991?9hOwm zO7}?zK#2-eSn{^h{cy8NwxU8*4=>;K!3$|BNK|;P1P-8K6ts0KQ1GPK{JDMc=HgV( zZE%ze4utdY-9O5x^7FwBt5wYEn~sP><17pjtE%2o)+MG#H)Q#tof#*J$L!3qt zM$%hkA{#J2$l(TxX?avd=|w%guwWEVH$O%dk-k<>4RBKf&Kpf0LBGC?{8(h z4Fs(u^1;p0nVcrV0a%OS$(H{B2KeNiwk;;ZdXs;a7j9w!#_X^(#BG8ZrxUh3u%&c$ z?gePlbeO@^skpb_2_d*UVA^CP4YB3gmP;HZTTh1HDaPnY#_cD(<$@Zg5zqVJn4@qc zty^f5g^-N`4?HNAk2_;@w*&j*+?*rYLP(^9&iL64z`hhn0W%oZWMY`xN_S+fgLb|= zQWAON(6}366}fxifD{CUjv`JGS%DZ^RP(|v-r!<}1vHh)@fSONaqErwV-evqjh4GX z#TDUt03i-QM*je8W;J<2X9KxZMjGd1DSIg>`@>EJsCHAfG1rQdI333(=LZ|dbUQ&Q z7vz~34xvD&Y!vgOt?=Jg;E2T+V!~)>3BIh5cf))0g6kfW6K-PwR60^O$D3>+6?TQI zR*`Hp)e|@SVZy2So8hvt;mZM3QH-E!>`&JKxcF|z1yngHvBPCR@e?>>Nb;!-G>C2C zGy3Bc^ckO~2W`kOPo_OmwO}3jlLKj~UiwUoV5lkQfs2r+Cmt!%k%xw)?IfcUQ~}26 ze^vaj-QGdA7G?WJJ)n((kq*96nI{6g?3?2qsvOP61*oY2#tp06XB={WRM2|qq~MJ{vxk-j{4#!bhI2k=5Bw+VHRLA(j_(!+BBb=%U@SmS4!0uJTtfBSW0=rfT-^&P!qS)W( zd=}!4zzDMN0wqb(BX8f+9(TkuV;9)+z&`R)uTc?=+;}MmO452BrwNkl2$@`zSg0#f zM~lc__)XUnq^OS!8+5>Eb`+wRQgoFNRrlZ59tTKqK_Kbeo8Jj@dzDLFT%%-{QkYVL zr=_+x$EtjRVy#gC{{SepqxZ|E07JisPL*m_lo9fe-~3}6d}<|Nc^+y$lfRw>#=YOp z(451a*aza$B$78V)AznNRcUyS7w0k{SlZug0L?*Li3F%~K#+IF?L1W3P*RkcKMlTP z?}divE8eHo9L;1QT1nM0xcGGJCzcmOu&)lC$n+mypROB?QFUG;E4oI}5zKAVnZnGH z;(!a3z#=(}ayW?O1h;>nH!78GvUO=DMai3wrZc{iASB5bI#l&L3DWDrc-(+$S8NoG)w z#8D}j9xpLHJU>sK2=7aSS`w0(xshl)i6U*&`d*f^IYQ75Q7L=AYrH}Dy7K=3I912W zPLL6#T!G|8{{T;x0WJyCsYpoFN_5FZhS>E>TW;z{{msEQk!c&>{0vzeep2@25Sw_< zEg9BLP#!)TI5)8ZHuXQRmMJGPgi}#fGVsup>L^${LGbzb)ZplU6fF343c1!NCrnVVGI z=l#jqN=TE-ezx^LSyp3C^)6Dn6`(k#P+J6or9_XsU|tu?*G8smno3gR!7D-B9~5aZ zU_pXRpSCP)qqFL~#-fedmV;@|n_8L?9xX~hQ6Kpv`CA^i);0nCg zE~N~zRqqQ*U=W>Z(o9dwoxaki0C3y%RkW;BYVK6}5H*z;B}oM)O`y!;*5M{Q?#44p zmkT}iN1P^oxXS z?&EdWbt&PF=Y%q~QK_YO6&1bRIZ}5@m8D4#WDpE`A6QUO>*Bn~vZS_@xP}XBzjhP( zV4vN$i@xzTSw_6}fuehsGS-_@su3O7{W*z)`H}h)O_Gwioc8 zmfi@QCC4=lW;v}rH8UwwG-yy7P&{iO8JWE4C&+D!2aUK6vxE^)g4&yVDt(#c%Fd8WY40N&*^J9RcIc)}6l5rIsOKrUkjT%CVyWXebxE@@w zE#i8&PX}g5rE}h#aiZI3Svp%%kA+E*Xo!$gVlB~Xw{qSErAw%L-m4bWI#5QI5;q4? z@{7(P6?|CQo^4F2veO!zJ|#-lWCWYuEOy#HS(9q|q%u6x+0y8aoEap*H-MV>Cn0)^ zEORKMPrYW(Y8RCT$to)_EJ>O4K3H$<7bd6S7d_F(J>s)Md-6yH5i*z_V{QDoV7?sA zm%|kmRekFwt6s9bViF9@Nikw#`vK0_f^iOT=M-l(Dsa4~pLHZ1R@@uUFF*Hhiert@ z`>~#Utj$!hzM26w!jWhBf@tb8I!XrHbx*XHDoIAl(_y~yci!r?@gCxy&=|@cG^lj8 zk`)GgNmP&mcjxlMJDI}rx*Dd=rs`C!Nm&GvkP>;DEBaq+;+E}SjOy0vf?ZRLq?Hn| zXHg*hMqowYfMnu1<1aQ9I(hnIDcd{D*G&7=3JF)e1!-AGl|hn5(;*s=TVVMe)o#uJ(^8NM3ww=a{j}}&Tp`ycE%_;X~b$<0no7Pl3 z*i((nD1f4=ozC$+I`y)7PHt)Q4)CpARU+!5LA$Q+QwvRJwCIRusD<5dIO6<9EEB2bHt-FZMK!BS_ve! zOrYAceL2A=4o zB1lb*_nx!J?}qIE06M8|lfGo3DnSV%HH{|($GJ|ou+FXi6$+JXpDR6&ADwHfvGKTI8*{u@ej zxleLT0zNH3Z@(aC)9Hco9M*-Vl;vKUiG>iC35~!hwZtFshc%|K7Ji~ZR0@vg8GpJy zpyHZN_HV#}XpXP%f++sTI3bOp}5PQbtNz$lD=_K6Wd{wkR2ewpAlbY^_q({HjB}%Gtos}Ka zWh&#Cjzg)%!IDtWc74NyW_sLZ)DJXaNtLT?i1zo_m zb?T)6IUS_i5S}E=9;vRusmY6HjM43T1G=eVJwhFKa+fkk+p7 z+AJa@%1n{Y_*1sTW1x})5oJO#vc97)_e znAEvbN`;wewuBqpf@~lHE^%~m%((T=9Uc3Mr>SlTn(Xem zDDHeor=&tVv;(KYqLCl~beJQ>7mPsrIPAUJJ{+X3%qZ(s-h`|;=vQ~7jl|d_8HE@J zmMli!qsjPrytOWBsH$3AEC682Mx9oZKg;AgjAd&Y8VLvCYI=Nxyflka&t`my%-@Po z>O3_LIBFK@AzBi7-qHe1`jPVOKF;!z?O1xDecpliQnC1k05LlVGZ1ZTa__Q_22{{y zZdL`QI*LI;fL4^5f-UFFW2@7iu$;=7w3u_eNI(H6Qn{X%+aCk2ll!D{zedn9;|&;7 zEUUAsO4<~>)2a`cTGpqOZaLhZW<5`-1Lm9^?kfzf)YK%Mf>bo59f;n*nZ4(I;ny!y z)HH3SOet?9CK*8<6#2~h{QR(%W5!h3YYsT#7N;PjAq6lX^OHCE{p~wukYemAod|KR zDKO_0x%1hZl$mQPr>AfwvgmyGiBH2C5~~gQ3k~j&Ps)2OTBww@)U65C1RW|=-ukC~ z`SkgE=WJPJ22z$&PTE{UW4%53)I{`{18)hw{X{foJ-D%z<$|V}Zmy{bDJ=k-f?!tawOq7YYsyWi-_8Jy}^%<64tG1f=dkGkCm?X9VRGS)UNN zlpMaHGC{s5iI7y3r794pCT|@9j4{Q{AR4s}$lME?bcz8k5j zMLRU;akc&m5Hz*|m9gI5B4nNIynxT1XEfO!YN~wQS*C56t`wSDMFgQB87U!902dcA zzs?!jAGAde24oL0!}P0DiPNtz%m{Hvwv`elfVBq!+yxyv^nTE_Ff{A5GGZK}+ zAS7KnjqE(J0pgz5ct4CW6cr821|e0p7Z!7m4NP^N(CH)^Q`%Zurp8O#vSXG1gBh z-+X$yT3pfg!!9aQAcch;P(=MV^FLf~mvEIuTdDA=Eykj?5TI|?eSU`;QMUm{l2TN4 zPuJ9tmFZapApA3KnD;i~MJ1nhrgrD`ftRIOkIAu%_-uWnw4=&d~wc>yZ% zXfh}N04a~L`(a^J+d%h7QnhI^p{fWs`kRhWPS7w?AAX?_3|eI*-BwQX>+{1`H()eZ zjAd;!KM~&TDv4PnO^-rjm)8kqO}9=`mV=5()KnHc_Znq3M4)IFU01$Un zM0K#XHh+fGOaB1f6%_2LA{;?prASxB_4O9Q-0ZHQ*)q0Ek2tia#3Xz$V`~Gr@)M1c z!i&0kPbs&S3Uze!YHYWu&Aem66efA!^uTMcDO98;8>a4tlO7Ry zOwZT%wiZi`G?Aq0D)Q7$8y513xsE`depuNGEe*)qY;%{56nRc*uI`BL&_t3Z2hW~1 zRY!PyN;aRK08Kzkgh^CdPced9bSqYp2U+ER*8-87w6GeCN2HO2*57!cdtpY^eg2ll z;iIGc;fu0LM4+H!(AgqzM|MW|*$5MULmuq`ac^WlcO0?cNdf`;VRy!nzBO%d4ZScp zLgbHk=ZxrLNf_)d z-jXTQ2q5EL=wWPopx{w%NEXtO2N;y6kix`9F}A@w4lqOd1I1`maMWOV+wa(SSgx#78u;HO0O8?4t1fLW2nI` zQ^3NFuqSL1#Way@a#~HQUO9PF+8wIDHJo| zh{A|x%LE~y6K~TSA)Q!aOV+4lM%Y;lfFz% zx7P|5V1HbC(|5x-OLr^Mj-O0oQG4NZv|`xZEL-<{dAV_FM@P#WgdUjRx(Vd3o;E@? zV8f8DLP}G7W;ZSR<1~TG1-K=z5I{G^(k3y9M?sA4?I#_$6fRm_M;@*cj9`TG$BJH| z5xzVwQ}VS^w5D;QlobLkj3x#VT8UQp^{%ztt=2(4m>Fu3d?@3vHo_`Y*kjHRq|~T5 z*B+@_jxx7hG-xZOl^#*PwAuscyT zW;Iihu%DhhQvC6v)fgmOZF;q+`D4vW9L_b=2IS*pDJI{pITqFCv()`@x*a=C6L9G^ z#svam_~bhh!O#uHJxYSM!ZJF2@w!#e5b6gI28&BJE!Y~1HCZDk{1SH6qR(sjjWDV!0B+DDB9-Vvx*xbOD&{Q9Vs(~(BURh zZ~|0G!3>fP9M@MUcBdwlI%C7}NkpF8*sJZl@!Ln#C@=fOAVnQ4p)u2&iwC%QnZxqD&}S_7za2a>EkI>yh>s=++X|S z5ch--d?Ryfn27q}Cf)=p{vFQO5&Qj&Ze*%-?q+{6GwFp$aJV+|h(pOf7#H7{(;gQz zDin4RxsnGc>;3RBbS20q=NljGjfw(LWPq3=`vV*P&LDi0RZVS#Q;G=GRHVq}NDyx( z@%m#`RTaLYDohe!f^Qoej(?^FQ5toEt&Zo;BbTkF_`tP?5TFLilRN!!JDp352r0pp zgrGK%cLMlzpsPw2qJ<=;=|TYkNc;Z)Q;7W=srg3B%Ja>LbL3B`f#NYA{3Z6u%3V9;Nxk#3!E*!6Rup9N&?2O%rwV_Aa&+aPty;S4XL-T z3QvTInNp@>qs6qF<`@jHB9zdSXqpq-GSRDKZ~?f!7_O{vnQufnAn*x1eX9*};+9+#UMrIMXV=( zm!1!&Wh+WR{{Wl^L_9Yh6+s}7VB5>rXv3v0mkio=9KYgu{{UPw5~gbOzE^@(cE1iO{xB$kp{EE^!x@cH zzBUF`7-LRS+|{tUFg0+5#t2CO-w4+(P$Ld56uF9wL5pqspDY_n@c;m44Nb3E(r@S2 z&j%ods2K3`2cPb6ma4f4;kOb{1b~}hwrfI;uMVT)nBRMS`eCx2&{QF3$O1m!ED*|y zR-HZ-Sc4q;Z~L4vu1a^5zC4?;P;n+u;8I zP%yF`J>G&7t9udp&#oBPt|HBZYtJbMLGYiMBzFLel_e?=Pe4ewt~YI303TC?)P)qnj<4&s zH*V@rUU(o+WGG?4_+wj2S943yttqg= zjjMRHUm77C=jDx)Wh!vS@|J75DVJ2Sefjxd%4fjmwT>HDcpb-_9k;=4DKow;-9RYh z$-;N0s0lzS(w|OPHl1Y~VWN@pdH(>M9LxSF!#UwFw+YBRbZz&?sC1+d02mn$g;*;a z_oYYE?~iJc7UJ5JDD}#z7ctFJ#il5s%R}qx=hCS#@r-9#>qOb*BAuhGC5Tndxg7h z_iB)Bf|{w3d<1T18@5O@5r~|7tq59eI5gl|x{MN*lB>;*8`x1yUj{U}yy9oLm3Y9y z+|r1##wMOof>L|LKp6FubsX$)2I+d#J8S`H!6|AHF@g}tQUMmm7Wsa-OWaB*-9;hX zfrVbWnlIaotFsE)#p~_7Z(j?<_(n_?97MfoSN81WBPC{f1 zCEJNbU~qw6UX?0H`e1sh9}Gqw5Z0wZ0AV_+aCYf&h6jqGgKxUjR;q}Vd10S6p-NC= z63oGZnGwqjIfW9JsGDJf>V?z-h1Rp7Rv%mj>syX$xx|Ap%Let%YCj1@`&rV zg|x^3^554BEhY8IT2goM6C?YdG3A754z>sd8jhY)Q+f0sIQ?*KB{*<+wGQlF55#<- zL)X(D?xSIN=HqZiQG}MjNlLZ=NHNfVOY*)H5c9x=eA0CU_<#hEB4iDWPuCtbOi~p; z4xtc9`3WZ&X~_^oSZ&Yu{W0OmvX!~@!c)7|x`|q@NsG_d39gt^_@)x1$lBZg0B^X$ zib9airCRV|JimXg5=*iar7T#8w&(QuVNMn>Q(Ir^Te5&ul23{xncjMI`TqdNjxX?~ zG5odzZ|(c*gc+(sG6+&a_a~jLKS90mvyT)vI(13Y>9zj=TrJH;*9xYh9YRvVZSe$@ zg0fAAGv&`1$`Z6`x~A|9PWQm9Io~N-bt*(b5vas{&9}h-l(}JPi02>M_ZUm=idb!B z!ET0!c^aq4Va}NXA~dI@@Atq=fCTB%4Tq7z6z}U)3{RfR-NNuuZ8VU80JLq>2h+7F zz67LfsZgVbDt4wZ+q|iq`y>=q6B=;kPjS8jrA$Da7}z4yfpdYvUus2DqIUeaDW;%d z8gLRP4lE=TMB#gTDIV^~VAqcYGT(<7S`#oZvuVAC8N!H*IZ80i;{`M{ru?viR8nMN zZt*=v3BM?IfD+pESda6Mb(z};w&^_Q`r~CN5d#e4gqH&D7R1T4^~a&TBYY%>2p0Nd zZu`L>t{uAgQjT)HQlM{yh@Y-8YMdqWnqEk{v}V^Td;c7QZZNr>CA1Qp(I9rWr)0msm>} zHiLv77RDC>Y%r6LK>q+Zb73lQ;0i{k4fTV-tKi3-7;UYn02|`Aje?VZG6tbgwPCic za8KI=Rn=*cIBlt_)OWy_WfNOL3s&@V!)-&r2*TCX7vBwawaH3uejIq}BLO-wo)R@x zULq#~sqK5=8j7H$OyLmWP{(XfZG>Q0i3b{ov<*{bU?EUaZI2aDRkl6aMo@`CxYglD%t5G*at$Ns=`3{rxbJc_ngwFTd|>3Tlc|@oGJ1pVtGb ztpe%sYS;q++x{`-)zWuNfqA%wmHva&0 zJX%SKB0)(^@4hruVkNceN_7v+0*F!N6Uz%NAv%BnrJJb>Uvv>a3cx8Md_qsi8~nNn z+^@Vh(ycp?;5?^Lz-fH6RN9c{+Ei8I(=&UKeZGSjs-!3dB_!#PVK)B&j0!flxlT+w z4aS8*g%A`j6Fqs~>@cHmL!T0gM&2c9NRM0sijb8MLM0|a2Ir~5%)O~Fbp!4u6>$m&mqYvKj9bM`=+sh}Nht&1j#JY7usX<6$kLrc zV#@JJx6W~d6$GkPVQcNa{#*U9ZD>KXl8R+z#HuxTZFunc@9B+_u-id;LDi`suH2?f zi}dC8Fe+Fj30i`_9ajcU6i7^@Eh?}#m>P)r^ZvbYNcdjIgJ|Tq5XzMYQh_8v6Fl&r zzBbEg3P>7(fv!JE-<}856XLN1i7Etqu$^1Q@<8tO7?=qg`TqWRp{+M%3#2uKwI*VO zH1Qx6D5}C$3Xd*Z{XH;`8Rl&9hh_+-Me3V(ym4n%n^^2(4*e(4;XIa!%wtc*@-L zEkm0v0nQY6g7Oib3z zKbfDf$6wf=~m)wRjbTaMDv58ifAI|Ki#UTn zttxN3qFW4+0VBisiJ0aRQh(a45RC1!#TrE((&_+%d0x`+IpfYN%`3A%$7LCcs}-fS zemO>z3lkt6JmmdMh8%B+v)X_IXk=qeA!dXXgw(v*;38I9+~F*pOYyvCb>_zy!bQ->HSfAXcrl%JUJ zm1+L~#H2}!;l7EV`cA3J`o*~QT8u41`jR|6{{SpT@pXFQx9vMSbB?pF`n_sR0$fg` z;`~J>;Utm?ADS#WlaHFz>K^GRIejjlPa9dkXutcE*I&kN@f$B8N$#qgNisr$6C^5A zeXc;>AVwQimZOHKlwEbSvf6vatPtmkKzKYPi`@MAMgZeJByy6ZqLHOHM)1_q$Ho#O zLDON@H-bF_7FEVeeZ^C_(eCKi-yZO4l}&^}n4hLKy*El&H+Cy0)wP?wjqQp~Tv5bj zjHM~5Q)u^;IJM|sk5?qxzzyyapOm%skJvPHnHGOo; zRTHH~p-q)31V~ArNfT~+@{3}>V<<{EOE_}16Q#!hbi@!+nA0SXq2jzASMZ%jagPzW z{{R$JDZrg7D@L>lG0UCEjn7;*tuJO=H{GL4&DFT0-YnTVgaZ@KP9u@#s@1VH1C>wH z@gjeXQ6(+wY%f^^!6^V($nu;p@y8H3SHuogp~R(CBUF-1Y&4#~r=BDk2M^M#GI5s` z6%D0eqyw)|BohKZXXq_w2a3KMRdNtis(OU7vVv3rI*2F5v;|uWkTe_nCbr0?oPV_{ zd$a`9JisVRidL;|n1Vu-B-%XwSd7y?^DeZ9P_0t|D-&t`lZ!Ww@|EPuabYd3RaC)E z_@_uoOsWr%COUmFUGZjJQr=xpRD*Wh9uaB3J9$T@DTIpK%*Lpg0c1SNFoN)TXN_-(b$#^Z74ir$Ba8_BZ7uBA#+XSzU{I*iy~pFQ@( ziz1eDb#KacJuayu?(P?#h_7o=)mih8RH@Qb6qr)hNQfulKc}Z$ zTb-C^wA8s8t7{OU?yN{`EFnu$k5jN6BJqgd5AeoVju~f5edS`@lA^zePN^eMx27Dj zss{4D8LOyu$#YtO1O+5U!pD1?VJ~ZB6bE%=FK{8wQ_P=^ka%LLeeRhmKtzO{F>pra z+>NcaBiWv8?r)d9QWdJ5Bq0f2qFYH!M&|Kzz9Jb~%~~mF)Tg_&l{lnKq>YIj>^k!& z5=!-0s|qvWLz>AoV=WB8-J*-nrMOo%GB`&$%XjE)pUXWA8k!d~H7 zPE%P#_F$BaK@^X++K+}HsX)P)x(=5OAwH6 z*3pR0N0xsF?!z_hyq3*^H3E;Q0GkW=h9`7>(Akbtk-e9;+rTV$MZ^%$2_T4oFNo!k zxAG@L0eSZ-^E~ZEs$=fCbuCpjI)4Z)*TU5k78cvYp})m@fh_}y8_iJS+(XV9bSf0H zs1i>h(|epH#B_Bz#d!)YEytXhGIjcD`FxHJUQpIemgb)E2~cWQqBK~T)4jfUChWl+ zram)79s+Fa^Ea%{xaFo0>y9F!z<}CRP!E|iVRL=#abWh7!0DpnntFF%V7aX+L#SGu zO3cBCJ|Wa!Zg#{++4T&)$8^s3E$K*7pe%endB)>;+~M=K&Nu!g#Y$ZhDruIH?yW6+ zk_xpdK%LB7^4}Fc%cu^^G_*8%%CzV^L9FA3DfoXUNmUL;l)G0`s2=^~ogk=)2}n_Z zkvGJLfM{9Dv$q|ssZCaISP2aSsVs#gl1Z4Go^~B3(JsMhSC)2krU7-Db${ws(gv3+ z+=7&iiO`;$^p1DLud-~p{IiQ|GyKV(@#g$2H6uxjm;%rRf%6#oZ&Gj!b4ULGSJZk# z33Ffn07C1|!!x>W3&`}4%4#Y?e*}qI$?$=Fy88Wbb8y2+T@!W7d9=UXnb51YkY{<^ z^ZvNw-UQ?7jLNm@r`u9kV5GK!fI@*bBJpVGF?aA^8CU02&AQ5-4XR4qSvo>5;YcJ# z#`iu}G5PkXgd4oC(X{Sn&A-CAtN5`w4qT-oqN<%s)u~LB_l^=yk^nwoKO^OaEQBYC z^MGrX_i*Ah0=EHhCPbuzH}LYEu?K1F!R+DW(>AJ?swHZ0jX}5rRfkYW2LK~)P)Kykx#`{JC? zlle-LQlBDco*c+yX)bpw7g4B@?bzGeq5MY0J9z?Wo_V=h@w&ncF7_n>UoH7Y*2E(} z$g*s&EO{?GuA&v(Hi81C1Oqb>J!Zz;Zd~Vvay}ky=BnzblIna+rO59mOlcBK-|~q* zn5KJ0%<>Q7t_IM$iiQ_12GXX2705}6BJxDvt~4~V?)I>+m)F1m-0J;RXIa8EIh)H3 zQdTcuLK7(fl!@}O>xjN*k$aQw1h(d&r7SJLRFG0&kL8oRf^l_reVjj>)i+H`meexJ z2aRh1O_3X^Fbo*6=gSX#by>pMJrjw3j*_0C;&r;!F-(voYD~Ze))8cmw$Nn68gozC zV9B9t#`cg8%I9pig&wL_mP(v+#7fNR0D7KR`db@4!8LUi3J3oHQ1CDk(yoPbB=ZLT zSej;(RY*s9mj>TuLr`=9*H9XFv`<0~8^;duC}Y2E#Wo=74QWbr>Y0E<2<14pb52Dp z_d;8TpY~D4IBoQPBj{5oCh>J37=;_|I&FgUZZdBx%ach?)6O`clohz)P#tU!uh$FI ze-ZE0hfjHUAS=R0JEmvlJK>u%{v4NlYHcAl(v4eA{xRjv|EyZ0S3EUoWGar8}5Hp%eH_~ZZN}Nd~cap2z3rr4H zBlI{?%>KVVT2Sp%iPU342ud&HEz`>dWM!iZiDAXr_(eIxl-YVvy4seR(ozU)Yf|sM ztpIE%pR5$e6w&0mjV&Uom7_>g@?v0ZBH-WG4KL6jG?3ELIVl1{X23@G{{VNdTWI|g zZByzlvK&g2;1X|PdyYbVaqDt2le7n5eyPVc<4XM9lHYpTS&co)At}^E0syp)=dYn5 zt;dw>PgjRxEPmCx?S&2H$ zq;K}en?)dNt^WWBbEGdxPdO&rhm;gEzlXYx$wypj+hiHS=t(B$9+7D-a`6r8!A!Ihd}`ZZZTIJb8Ad%x zO17U3h7?OiZ;x3=mIySV;YQo$ak5YezStzS>uA(3wiZKHpDbfYj!}h2g%ge?azwTj z5JC0E$wV9|rsQJ-VI!HxDbhs}W-)~%3Brr`vEeW=+t)nyN#j>7Y-~(nB|E6WCQeOSSNt+>vZ~^gy+7KnTWw5^wa!xJ)Rk ze0JpKuT)1YB;%ZhF;79a*9eyh$D5HXamg__M5+wVF+%e<{V}P8ow4ThbQTpJnAKh_ z@rqY7gw(s-;d{~TS%lO;xW+9&nK;z1raO8qi&YpCgjR1DQF~4kQBDVPEsI=h-g#rq zXUiHXcY%eu)S0zxOq^=7%N}b!Si#~qI8ip4wR#h(x94LiO2WHNC;bbqE!*?Ou zXol4UUj#6u#GD3&?R*f)5-*1}*1U6R9D;QV;D(eDYy#5CMX^K z^Mct%gxm94*luakn_#poEjJ!sg92S>L}3;d4ZmC{nwU+xpuICg*c&3=ZMl z5NRlm@ammkIX^5Ym()eIEAt;Ke(ix$<>Gno7~N|w8+!U-GD&z`*hn^&kcflf+n+z5 z?tHPU>Wu)9Edme4`xs3w%=NhS7{Xx$jWVl|Z?EsJA(JWFO(hLUDj)(ACr_33{l_kt z*-C{1lknUTJib^#2k}%2`@*e9Xtc*(xZEiq-APX<2W(HuEvB%Hry&m|Bf@T!S_$*| z;nJ9C2{S*Ck!jWX;hvDCbt((f8_a`$QHN?JEh{1bumq7NCuseg8(eOe9N|hBP<@c2 z;Mx{%BdPQK^@pseYGEfzl2nP5LQe82>5>g0J-aF9RtErldDp9 zzN^e(tZp)k2O&LBu#li`Q6QxkJNn05JY}m(>hP#|w*qw9EQiht)FuubA2Ejdm4Y$OZK6O`fNh4_q)r_wV5TtLRqz}w z&7``t(^$p!!);4e+Yc3DQ|X4AoD-CI+VjER%3Bq92t6!r3SG36VO-xDmGr_T^!Z~8*53+6u_#v@@qydOI3K*#YvW|Et_9Au z#iS*a?A)sfmqGlv(QXZ~uX;ka$8JU2D|G;Re|%?p0KO1$?LN5iE4}c>p+rhW@usnl z5THQ6E%AjGwj9?XcMEKK*M)XInDZC};)c5kc|-#v8!28X2MM6wF}5gUg7N$TlYig-FF#0>hjYO+d0!W?y*jNOlnDFboM9ROW8rgYB2_TcybQ8Ao zgBq&{V|_=+#0+y>0$ZDSMzXT%)MWUrZeE=~#uhF>9y1m;{+&O`z)ilG)S|8Ak+8o` zyM0a;L!~fD)D?Nd8sLKR2_%WtCj0!a<%KDp0TMMInYjAkG(yF;oGiu6 z9fk2@2<(NeJ<-j(-lk5d{r>=rEQAKqC&YJ-xD~x2X(B>YCMIL{FjIC+Ebr1Sf7AP5 z#yALGwo3$$3Gji}Z@w|Mi5K~fnAk5sNC`S(1mR|Ya{mAcwYp&UDO?YAq6rD*BOA1m zv#K=XWHe@ZVMH?q1{}pSi*}hDy>Pk^BO0=UJ7AJP5%%&Za8partRl*J z;XyjC4j$YE+j}AyaY0gWOCYNAfSQu2J7DGXT3=FRjnZoZ$+~E{~s&PA=g!tM?%EpinJP?+~ z<9rTPr=ApPXH=X@=hD%MpkRf$WEJCL&YoD^vw4gx6Dc3L#O`n*T^mOUHd=rq1~P&~ zMm45n6F+PemNbbX2V73-3A<@*(A2buj1mwu-cC8kJfU8v2@`;-pU{H>_$}wH7;UU@B&g05&T^Yrq#aM< z2|M}WwxOe^#5`DVQ4iejgkEHTPtq{!!dFkdsQpbKT-yF)4LOTNqXY9>Y)I=G37csr z4V6^sSWwe!b3Mv=97v#}>SU9kj|zOheDH$l^cjy8&Hn&@ztPp&FqJqpLVqu${{H=N z-lmq7C~HcA)c}~%aa&vm3&zGUQf;Tl{Hi8-+njWr{+^O%R_f5LLs3d#81#})uax1o zv04IBr0G_ZH`TbfCU=lLUcGRo3*wZvlx&}jf_ygT^%!ep1X@$Gmv&Ojx$zo8lAS&v zi53$B*5l8wGY)jl1tq@eAtA7kW02Z>gnHZQh=m1uRFt85+faoN1YdX&Hsyz`vo!%S zg)7sqm=lAjNNJTMEQuEfd;aIw>yE`_DclIaP6&7)$xg4yFi1}O^w{sy39N*b1fxov z@e(xzrYr;#{r13>P9gR}6)8~okrxsTtasa}-y0gzTOh1~ypjkezzF(%FfIWvlTTiy zOH-#>fSRIrVSA}1(Al)_PU&ph(+9HoB0>3K zjjEC@gQ*@TZLlYcUHEVXr^;tc&JST>QHE+asYAl{%pq zYo}h3Ck8g|qlc(uv6O06s|q%tl$;>arC3-HTi+Z)n(ZhS2KL6K``BSMD)+)Fa3o;1 zq(1mYBBUn@3ZS7FYZU}8*i|p`$ECST-?s?<^hD!TJ<|vw&_(g@dF6+&1TJmlB@3jT z@S2?j!N#h3*1|5k2W&Yd%^@gU0AV*AD>z5qfj7pb$=eQ$Bxkbq#ZCu#NgJGQWmC}Mp0c=s7+aldqiI7|J$RfoRaF#?@UCT77o0NH z))6y-?5J;oysfO06NY@kptz{Qm9^e1HPlsVxWPxtt8f1RirH??*u=f1K6n|o^(qO* z{pfFhz8U_cZEuvZGlbNjlQWG&!Z*S%JPP9-9!g`H&=CRsKh2K~Kvo3rLWD@ii&SiI z=Cw-DQA%>#VI{i&nZkYa37_+9BJ=t;++po)_Ds4NE$+7Q!odD%V#&f4@9<^RSqUdH$F| zRXS2t<>!TMPK_g0`PBs8E`0v}SPl2T5(KNE+Ht$D1q*G+Z@2v5C!8ogDe{qyb3h2& zl9XLcs0sLQX}$e$o2$~fP%*eTK)DMOt5(MvsqXhl3QCE%gEM=5a215p}#qzk}N1i&H%ux%h^EXF{> zEl(w5Oeso&Z{fd9t}&kQTWvulDbxf(2gEtx6HrnhCUndZa&PO6(^4FDH`Jv9vY=uh z`uX6uJHqmbM7ZKzZb4P`MyV=Qrv8?nQRf({wQ4FW_<@x~#r%ltfkj$ZC9!!RFPSoI zFS!Hngv04|DJjyQgoFzcBmOWZG|<~^IULn+PsXA`M8J=VcbpX6c}tfPRk*m-KA34? zO4V&X5EMic`MO8%rV47I14$uU0tT*Q>xGseYfl!Osp@;+1QVnaxIPi-&z=?vC~inn zE){s#az2080c%>2Ah_UBRltHs*z9*7Z>Be8J>nE5NG1x9qbcj@KP(R1uCfJEAhflc z6q92Y0Nk$6Tq2NColA=iM&sA62oHoR<4Tio zLEQa+&9OsT2e}iSZMCRUU?pBHyhh}nVka9VAS9@-l*Gt3o#zMEL&Ylx%Z2_!38H!5xjEghc%;=JAmaj?aZnro_c~hm%`m8HLK+&WQWPC&pb~he)a^bp{*X=b+P_!%E z^7e%@z3C|>3REh}8 zPqNz?b7fEn2`eO(3nbcL4O;+0g0-sGNp#Tt#Vg65mQ*(XNVNa}E^@8xA508!_; za#42F;uOF_5B;>o!bDsM78}fMw3CPU9+QSRRh}E5c`ENvy=}E4N+K3ir5()mpG+;n zs{a6{do<0ncd2z|UD}k^xFD#L1H?w=$6ODWxS{xq!2ukD`tJJ-rRAt$B{hYO>2P#rWc669p{FC7# zeQjfg%;U5csc4k-8(L}BcjVJ;#i zig*_B9h7w{Bl&l{*BKuhX1S(rw#v$Tw$FIz){vqFfxW~+M$j+4j639z843MW-`it^ zU?;9R?QQdzIGU=0me~nMb`_-Qfqt8VGD*0$D^AdRL3=RFs8Y-5ZiS_lIE6X~dY!q) zpu|_UE-R^Li4#bt5|&DdSYa*=W(3G$om=Z%Iq#M00!D+Xx9q!Z00xC66C_=k#FU24$VB8sA+N4hH1 zq%^gJ5J=pk=V7@66^{@;=3mE@Y-Ud_8l6L^3nefL!cuNXl288tTN~RGjxz0PqKAoi zdAzktqwfOy;s{Zd4Fx1mJBvslrb#!%PuiZUpk(N;a5%SHTQqHu0flMsszKyL$n)oN zF+I+9`8$eAk~YNMtmJaDi8E}Sy85PDb-w4l?t;*{D_7=HAl@KPt)~tADPKuhT~m@c z_;cLfSc0Q-bp(Mo0zXfb4>IAGcz%YJb*mlnm`NbWDO4p|lnAkl`bRrq!z$s*=IW^H zY4tdlDiXE2gDKRbrU?RO2mInU#wh!f*)gH*`l#O+Dlm=^D14 zrhP4l&mCtq-I?VXhFb7Xb6m94-cuxk0>sABL~kZHwj>>;CIWDIZD3y{J>O#GESG%@t0H#*m#31nAU&2mt_E2T6#uP4G^38+pD^w*--j;ZpgI zc!P_-+*LiCUgk^-mn!y(jTY^kzB9&L$_iSm~-SDdIx)Y}B7eIN$?4yqtYD2Tw(39xMzoS7$lCF^2Ly3% zX3gcbv^5`rPTRpHO|1mM7a}ZU<%cqMpY5NrhHX2VOWIX|*>@2qC}y6zyGw{uP_nQL zNsCNd*7zrh^LIGarB$S*njZC98bQ;oQ@-c>U~IF46`Ex9?6lms0Xoxgl}^{#kaqLJ z+$yrFI@P-4DQ1m*(?|=_rIjnfk$ICJaVHY)qIRc5@<0v?I5fH`+)7ZCnIIL7S`sHv z>pf5Thg_l2oj9d6sY{YcNrH6mVbgCecpocSZmOXTDYq1s6(p{8ESLatlRvLq6WCV` zRAw2^a)bprSmIQt6asVrt%UMB`3>g_BYl#oj$NbxwyxnfoTpRarq|+6foar2pmj0J z?}+acc5tOK+0f!bj-Uf-9p|5+{b$ZQ1&+?Lel5Te2a90!8@I@^OQl+-7P9Ves z;aB#=MyrRGDin}Pekq#}XPv$)40QJs_770@YN77vXG>}cK_b9zt@(X%3gRBhRhPWr zt_e*-MzW0~Qa~ak^EddhYh03ofQhqSxD?#$VnZPN_!k#3m6}66% zd2)@$EUeEhqRQ%)0(*@D44IG8Z}Q+%Uhcjp8`$mFZSDU6juGR|5O;_xGYX|G zw&>{)l{!#7I$%MxT0lJSiy>J>CU>6G1S~1K#uB-3$ST^>f0;0Sb~q1+I6ktEBF&mx zT2{>>kx+n*ASf+5PTc3FCXQ+$-Ox`Rjip!o50*7eNGd2A?ooF2t`w#Dn+sfhF)ZT_ z%wFO=zbmS3u%_u$p7HQerE4H4APrX1gs2c~X3}ui!g+JK9}KdTl%zP`>lQMpCjLkC z^No1FH>}|v$|>0zoUE#SFCfprkuYPJHa=RS_|kl&R^CsQlr-Qt_*0G)rDBn_)3%_c zJnCgSp)9nE!i>$%u9low+(FwI%qf}5GFB-60Eg55BlRo-9H>-TI^?LNNwlZp$3OOA zTUD6kl@B_lCBE-K1bD7vV4UCC6l_wg!-i-&D*V za3gr-kCc;29Q%3uFR*OeBd{%9dB1Hnd71#CFH^Adn%1(tPCQIn3EJnMGt|WMhqL-x zjJBEF$tqK7Z6N`*l&Mk^I{C!zIsLKEoG+5IP!j!BLX@QtJF(&b%-E73;?SYuM%7T; zMwuyZ!`(Cl>W!zLS-jX`?S+7ip-PMTRNje)@PJpg}fC&@9{Y9y+W?&MT9R)AFsyrft`7LENjwg3%5^1d#Ot*do{esHsOFWZAh z?4y7E3ptxos-l}TqeF%pE-gM0Y0?m#Mt0l`M0mT|hgc?zJaMtfoV+GS}u8X!!~V~W;{e+IaPf_s!A2!R4w$O z!XjXl=@aHA_$Gopeb!8k>I~o5sySZB&QxV;sm*hfmWdj`SW3i?2`EvRyxh#5y9Z0y z2MuJ4WtZR0E4$4rL#2eYhZC$s5>B~=bT=5e=;GDRXDkbd)&Y*pgC}s6a%6CsCQ^ejHSNu4egZrf^k1 zlF=wFbC=UpnuMY*2~g-Q5=rTUhIt%n{_0&uk|^7_jCLF-3hMYHfan=RPr02}FjR%D z4yi1qL0Up>0aoOaM03P5i91kLTTV8@X>!_0od`OJOp8jStC!OZ9iV44`Mzva-F+*` zN>Y@mq$!qyrpZpCJR&V%4>5+^u8$;m{{ZSU3fElI9n(yBVg~9f5`68Ac;IV5bBQPA zVCp5`>}Uh&{^&j;%om-u3M#5AEeQe5C`w`=ZytVwd`EKr&+BtlLKEIVO^NuRoB9rT zvzmX0at3?jPMSv&fTQmPH4eD0phlE}ce%t@i#ttu6;39Jl~JX@kX$PYbz`2w5>5Gf z;+V_0Xj#)V23aTy&Jv~J(8_CSsg&}BhJhu-c!kLPyN%@eUddHv%m&ii4W%vFAULHc zk<*m=gE#WTb^OhBi&BefDpvj@D^NBW)VQFXM?p|2{Jnj4o&JWH*8*lW-a3$y zppue8j-hEbK3-UAPL^CqQdG4^hzlN^=bz3oyK6A0HXtejcmBfz^0}`af>xon`_K|i zmGQ)c9l6BX{Jw8x(Pcjb*;XhxuKs&_l%Zue2yJ{0Phw*5Y1>xEl*zN`LWCesW2{BLeKG7>nVCxL1kwWttajAwQ+iGf}U7Cs0+I-f@IqYcPC6vF}WfzpiFYdZ9?ZH!vy1W zHydNt+kqzvByz_Aln#2tv3ucW+3WSfjRcW=5ZXaZfr3lilWmMFgmTBIZ&#;GESB%r z9D&YWvXTx8VWM!GOkZpm+CoM=BG88|n{SZ9i5#(*Q7P0WJu&9h&LD)NX_0Iw5RuOw zFb?sB^g&Ipj@p(vTA{ou5>7oxj(76Lz;YNB>z2q!0}8aQGmjf?M%Yodxg2s8>IqT8 z=)!4k4?))pCIVn!OHjFN6iQ%Y8#-5yG#qYIC+&`E8nm-!MhI!`f0t|9H^wc`77}rNaodq?SY8tc8anl@jT~75 zNBrRxElLv~Q-R)@w5^opoz4?mx`cxR8mT~BT=h8BOA~?Ih&6kx<3%r~HF3!>Fq)J} z+XK3j16Ip>&k3o0G2)DzBv%~pJCRi!B~-0g(5F?w!fJ4nj}+nNa3R1aHMfV0vN}CL8g!|b$;|k+*g_neTQkczJP807r&NVCPgt_H*)UjA6 ze0i*49{1B8>mzZ6qS%x=NymqKV_7{u`0-0AJu%D9kXvI_s@A?V?|pHimDe1PYSl}X z&Nau5EEDl#Lbwo43wMR%S>T!utn}1vntd#H13N}fxI7^zn+LZ4CxkoH0(!f+| z(r$Ogsca~3>*bA$X+V)Pgt>sGZ6SJ<0B^h<$hI&%5RD|N&}>YYGBKi}e)H2Cx;!B5 z&i??vz82{Q-p8K&x?$ri(n58VfqrM= z>pHPRPB}|(@D!6RR;ChM)e6;O2r5wJE&=4aCmV8RztljW{z@RO)2>$n8k(+92a@s>LZNJ$GG6hPTGB5gij zPdr9wY7&hKNsjFxX_0(MGMc1RE4x5WxY&ss^NcbuQk>v$qaQ!#tdngO}|VFOp&-h=La&l5%<8k6KJhe)T_h}Hs?I? z>WrLXVJQUv0LBOfD@q++hH!uVV3^|fYi6;Q&;c#)a8_in) zD%gr=El#UqW0@jk#v?hyS5X^ph+dnLp!v-?1wt_s&KS8QVr`wZbw?~kbB3o@A(g4^ zXi*%&sO5%wl@zO%_Yo7{W;o+W1|Xo<{(wV{9mul59R$^{!mh z;FsXY)XzLB!fgcThd~%oD*-rdYNV&07ZpH^0`=p%C2sUM(P|hSbrZ`T zrP=8i=GZB3N)^v6U{qM+P-hv3HNh`vN}+bbt*_4mB}FDi6=?GqU~=uWh(Z4VoNNSP zG&yLDZK@)0_}qsJY+&Bl%w{QTl1^4FLSC9?Diuv>s8zq` z1TwhPZKRM4{XcxLJAev>LEQaL7i5rj^u+tC3E+~KVPz-+ZkQx1mHxeOKwPCH4_P16 z<$==J0#ZtDEf>Pn>J1_kl=wu%+HL*%-50DLb_=Zdih|cT`D%( zZ5)T!4P)|!&EN#$$?*v=I{y7|N|Fdq{{UU~z;wzGl!8*I>mS<$B`qBFEvr7Hx8GhwdtU-O_-QzQFH;7;Pmtj1ENq0LBzR=ZYg!?atte z0GoMzFrrZdRN)q!frUHXxMyU4D|C_#vA#79NZT7WHGvo+>J+_dRj3J^6-waL2bKnD zvJMDk0VYls=OWGFIWmw$;bgWB*cOrfCJqWp#+ewI@vEqjzC8{CsgaGA zk+vptsHZn42uBDBzBDN37Qs$3G|Xc{n_WJbozAeWjxsV(#XaHM3bfFO7*I0`+X|te zPnIN+{esYiwk)q2NGXkm7j2&nu#s1GsQTc_bd?N6BZw-7$3nu{hG1>=!pKny{7U6or4e;Rv8%7ql%bKe7+wRdv9m-74L(`Ny8;lggrCDjs4YTEl@x~83Ns!hDMkMS6G zs}dj)yoiH7pT2l+beJY|nBS%x#Htd{rO?n zFMNO$N|9-e@6&y-%TA=B(oL^6P7J55E-v%9k<%2lwuh$D6q_xshR&h!Y)+vMimQXWfTDoTRV2!bv;?|_gCOLQ*VV5d|% zRd9Lza7{bmYlWLCB*f|S{XbygwG}}KPNU1|g_^1Y#C`Ak=Y&aRb7Lcvx}FMkBSn&a zx8Ht49>7t#@Y}7hg58ITh);`DTpnkv?p{@hK+DSJr?<1c(n6X}O) zXYGI25!zb6JRa3?2^YegY@*x%r2ha&?~8mpQauLe5qdh~YvIz5G4Vzjx5CZTXDU%j zpURg!J3_5W5(|8v!*sECq`V?z86cRoHw$v4B(VKA3Qxs*v%zfSt^+F zz^}Sz3oYpp^}w$$QQrl^E}j;l(lYl3ed7g5Vg}-XqfkDxwAkdaJ3y zGS_xTxltlMctLL7X94@@Ncg_{VKvtdw#7|$6z)bUs0-mYDs?A(2CC2#z7t(m8ym8P z&B7qm>Npy*vq*`+?pF6>d^c8Cg024ecI!nOe66eV00qt(YwLjq_(s0Gl|eXXtgR!S zJ==ul;L_VLte?$>TH2zeK*H6vnv;f_%BT_jam^=!jK(U~wJ&Nr;3wUkjx>I(>fZw` z@}s^P#|g1tbh2NLTVvF^Rkj6Fkg1G#nvje!sGUIN74Hg3g&$LmR^Xfs-)b^WJX@o$ z&kWmH2wdyJT~A52H7@E*&IfX$1``z!CV6es4QqR(?QjT={tOTJ!eQW}ggxV0ln3jN z3gFunGw8XtN?5C@zBN+y2qWu_3W|h->(?F&?tUIvZrmn0C{#9_BJq#Yo-x--Las>l z-vd8dG~VZ*mzD=@CN+BVr5Z?b57IZc(*r#InE)hC{Pq}1x}YmglY0~9e}8NOW3KlYP8blbMJ@JfH1f2yzK`>4J z6E`^Z&At-^dA`Zj%F@a%RSEEb6LO+D^ylb4SRECPIi!~r@TLkaHV5*J{{XH6RX}xm zl)YSl9vueKPo3iYry9QCN(z**saBms!+q~Njj`-)MY@dy;qQt`y!cjNdFu4r8ltU9 zx|Q9jI!~;Sb#43l;8vY0Lc7JnXW)nzup93<*$FEF8j_o&s2|HF0N>BPF5 zrrbJW)&vz?517FBU7O(=fRL$38kKTCHmI5T&tK5sq`4-;;xbQFe?f+}-%3*4Sb#wi zH!2(6@xQE%jvT3$LPY-nG)h4O)N{i4JR$E?ia;tlNKTzF0J4)lK;NM9>4FeYd%0en zAwZI?UW3!i0dIcuJMwi4Zo}-)W2#my{d6tx<7fZd-Jm zGma8=_Ff^CG*VWW_^ec+3iC7j^TLhlGS$o=D4Fo`+S~d60GQg9)hwkbQn?5_N>jP8 z-0$+=3n2w!Q>i+L7uetT^*wOSw}O|r-7gVJr$SVvX-a|75~5;ufMf``{>Bx|0coWq z4NCDUBhRSm^TAYU3^uVI7RJ%0etveCi1`RomXXT0Tna!ltHq?)p17&8n*kG_Ngf=_ zL8tFhr1!0W8jwCBVEymui+i#T1zu7ssw+^R{a1Fhtsp5ngq=i*GX^ioSc~PHI?`yU z=-ESk@j_%3g(*rqNB;mWeEDOjIB&8yMoq%>WeII>wvdS*_moDhA~}E+s%!|cIM!@o zjJKK#Thie!ceGk(;6Bc%GWU~NTEm6vp#-QAsnV-V^MPy4jwaQ)gUlrqAeLFDeMJlv z1(2Y0g>FrzcHKkyZs+_mlZUF2M$t=jbg!ZoJRu4y2-W07kv&XrgL9mm6t+9;aPv`utHO=t&SkBovTlE_&g|vfSD3)3`3LGJGbM zmFL_rizOtefCb31Z>A&96;)qoD$F>OigS9Rq#})JqRZfq07=m*@my+w5F~E}ARIY$ zt{{SI{^5Nto6}>AhgbdXtUU8DQOhbCY`Cg6mJ;Ft*P%oW;wC|oHX6(WF6 zd~HVw$UXl6WrZYx#1@b%zjB|GO#c8Jaayapme;7Loo7>VI~g~V0D1HTkt5-5DE=Fs zrzl~QQ1i^WQB)h`ttAK^lAv^uLDEMv4a$Aa5X-5{%16CbIFQS70)o~;Q(^xAmriqw zJF~va5!vq?CZ{lU4yL{JH&9wyQzk^hk}Uugdg{i^I~d%YSL#+Kr+eg~`uJ4cV%}#z z%p2}rQ`FUc$ZBWAKJYrmB^+s-jKhNR`U-@p=Ov{$;=oA`OnGdRbnWGd*KK?&mt>q> znN($|OK(LzR23rElFlN2v&&f|TQA2`UyZ^gMiD_#nER@_UD0-0KYD^UbY1cay_ zff8V*F#iBSmVfl2*?xNcVp9D&bf%e2FG_-t=fp%FLt~`v)Wc_O&8LPq+ci~kl}@@a zwi|4fcb*slJMNt@dRiv)BKBs@>FGV0nf@TX6u-nBud8rP>>FhTV9$&VT44R~xtv=N zefJ0`I#LR%c<+Mi^9<6IwfM<+CA2t^{{U@Dh#am}uo1j%F*?XNo`ZoqA2}s(QZq_7 zG=|oYN}U5vqDVJLj$8e3CuTfKt}^Wghc78C_ql~SklTtUTEdd8Lj1JMd7ie8`)xZ) zjylgXrfO0gV=!9FZFo~E(y$74xG9)1iQe9+YaNdGOpVpyH6!?{=Se72#*E*DOat?j7ZI$P=VFxuY*R#KF_ zu-!tcm`kidQnaMZE7r%CEIe>qH3F5yy1wbhUrSGdRjELT5qJmp)>o)zJ*8EqkTt+L zH)K2@>j_J%E+M}CCCxTEb??qCH@Sngu`%MXz9P&h=}Jmn)=4C)NDB4nIUH-AIGS!8 zd2Rmy+d{OsLN-W?ez;}f-Z@TTnmqfm%S@o5m02?)Zf}2{6ARq`0CDV@sAvFDvRxqyVH4YT45_F{@GvSGXA`bkw7=%^veKQHFscpm;TewGycp9Sn&(agq3|*yX zwYi2}OHxo6ZMjI5%9kGzJ3>K7Oh+#>4Ak5qo8~+?u43c&uQNNecaoLv@)NuHvWtw#^ zx~8EjLdl4+Gr8Pq^0xS+b1M40w}W!J8gvyeze}Y6N;TMOBVtTR#l^yWSyh@ApLH#> zRLWAf6wvO_*aCS(4TN;{z{#fq-Por?JrDrRF532KIW9#^-eH_BorfFLw+rAMN&<9{ zVo4<01&r;0duHvEhhEOys-#sb8GFmJ*g_f$ObJOJ2$6ANYg-(z#2(WbgSjn34OOX0 za1@pJfGU_;fDLNCbiD1Je-abp^E>hRblZ zaQ5Bpcf;*gRZ}pAUNrs|)`TSl`JEs^JkRSR9NXFtwM}++-c!*!mYRf(EdZTDz=@D! z=ZfEnb4TA?R1o9t2wt*Hr(jfipWi07a#tL7!CGx%Plo+x8qmVfJ=s}$ja$#Pslz$r z%*Qi&d&de>I!qD|&V0%B!(wxaiicxUitb;M_c~@d`u{_KI^1dijVJhy_k^!+1YtKEgJnXlFsB>N@6txYdbk$8O;3-)O5M*u$ ziIOMN7}}jnJB$pixOC=)Wbl}B2QvnEX_~4~q|{NqT}S|ugr@Uv{w61`ER^<@O~jlV zM(gDX%rj!DDv*mOP#^$6BL4shu{TijAPmcf)xlg*OH9%duYN+AaRT6KJny_--{%n= z&nEu>r*aI%#ui)mD#>LBbShFwz5f7b2#w5^kLab;GDz(`E|tC?$*SC}b4zq!Ho_Kk z>rnvd8$rL{$YLjzCH^_d-gdo9a;@d8Apq$S{G)h_eZ1knG0y7vp}KcnaXQ{`DZdzj zu$x4WTj8&Zc=etL%uvlaOO7BILLd|wo7(n2Z#!AB$MW){+%QSPk!G*G+161?614ln zfk9|O2jQFiQY{xgxR2)jp;p(_HeGQ~IpLMKqN%<4?a$Pl3)%*HwXF&(?_OB%T{?+{ z5(Hmy@lO8$mw3Z|SP)|-cfx8jZjl?~5Bb&XY?|-7cb* zo}EP{1$4oX-=4Kfh0U~)Y(%N^Y{}=+?plR8-UTE&(hQ|DvP^{ne2CcL+uY$qEXQfU zbpvaBlQ+xwVwnxN#&cOtp(O!?vXcl^!qij^&AcLH%s`Rz{x-~#hg+e`DjuP8!~s$} z#-=31@{fwb+g}WPX~t)URHbG#Rm!S)1S3LFwS>&dyTv3B2SPulA+Gk!)kE(#&StuI zjFtQ42BD@QK=*EVU~}8c6FIW-2l-tru@7yV_)BE48#H6SRJk$Wa$tL*9E L(Ch8exkSQ046Vh5lm7sT1S{nqd*aO` zJ4thizXg2$w@~Q@zy*EnRy=LMnQlu~lEqVug(p)@y2`uN0A!0O{rdXiDy|oKwd-N# z*+RS;*1bwQ__}oEi@K+XvUVsG+ceZo)hSxN;-JZKNdyGwNhS%Nc9Ss|t@xKA&3K{J zJhhh)u1z)@2!XUur<~(zH#hjXXI?}Nq9VK%u@+jHqSYiV-eq|i~J>V>QT z^Rhx9k?^Of5`9K0ZZZ~Qw>a%8KF4&VtCC@Ww3#%>zI=%%VGbF@JThwplF^cT(F{nsWtm#UQqE`Sec}XHaOfzZ!08tBs zb($%ab*HBO};cn)bnf`SgA*3*OO;V+Yvg4$DoMIl2`O^B3)^@;1wXBb&=0u8lZWA|^q z2}6{jDe-tvK_XLo>6z;tEsd9$FiV5G)!tr8goCtP?HCQFxkT3dp<4;@8PVd>M4yJz zo%Y|)1E~sA+b2?{>Omzp>*@MoXLVF5%_j0fNAv#o!frZ_`7kt_s6^=}Vm$!B?Or*c z3tJY#olscSad%FLM*5CtC1U9qbPTQ(t*X6&VA0omeD3tsr0qSr&O4Qzye*}0< z#2tavv~%9W1~9>G01ea#kz|t`hwpqdXbZ;=^)E_vs05u_c8$LH+#ter4f^9|Qk0=9 z3mXFy@cQ(K=Y{*Qq^4yjO#CxE$2<`OvQE-7Ng&$R;!+0o-^_mZ`C&C7MOX1DUbnyL zf*V$Z#H&(#AjrS$;Y6|XN(&h zYJ}fx3!6x8(ko1x;}(!@INZ-Mj|xIe5%m;>M^WI{J7b~kZp~15xBu3-mz)4 z<4_3`7*H7)PaL{RrLai~xW?GiS;oO$8OLqzxvs+91D-IXlZ;AvoCFmZDxJZ!;CAIL#Tw88=l(Fhv4I;|2H*3Akg!Jh?Wiu1Z3!D; za3tVLcVnIlZOvO-1GKIMEZ2lY;dcC5zL-I>CJq*DKo}V1)&NTexeRQS0Ijj>N}O*I zf%>7`lw<-TFsN(=Ni&3y2uzGEB#p2xpt~y|sBeWCPbtPUAs5E&{8r_TUA1~!wXuk9 zZbzmT2?Y>-xK9A(+me7l#>m?VpmV~AJhA5Vw=XrEd){LdnZ7Upo6ZMv_QF-A!N%p_ z2I=}?5WZ84E=A`9y(+T3Tb?P$iFD10#)@zbSH^|VIf3hr-nf94E~xKso;+K_Pwx0g zxdVTm6I;PX2KXMOq^*|eD*jw(UNHpWBDm*`7T_G?9=YKT)T*2(2)N+_!y2v5bA;Bi zPWbBxRxRkX<5e!#!fr38%LyrRd`DJ2-ifVVt<7tZIM+!g_)WzUajKkyZ-;CSydFa?TK8{sp2VKa{u ztvC(HwyhL2i{n)tXL;p>P@)aS6iTOT4&~cYnynL!ki9rWZ;g_)ivy0_ zyJ}qv>Hh#2T`K2+TQICFg>%CLknOZm3DGgO2xJM23e%Ef_Heomq;KhuL$bSKEslP; zA+c$|)a1t4B^M;%_afT2OwF*fK+KG2-zmb)z`<`qT9!&o^%zmRkCruPlAWU)W4Eqr zZ77u}Zg8_;o?r8XbjXYoOf3T(i-fx{fqs_r#ySDG{{W0=5MY9F=sHm!%YoXva>RlR zN$Z6c&`^W6#|fnBQ6xdfp~JBH;9T29ipo`;Jpt3qo}9mY@Iyr|I0}`dZU;}_@0<$Q zAozsfhF5gzAFucQ&KFrj$00jqDDKph>PobYyhBmFxAi{0n383+8Z1o4@Oel#aJSP4v@5^jCQC1a{fvd#_l#~3vzq!L3@`6bPVM?hg0n^I!7L4MVVSv+ojjz5%Il zVJU&RL)ATh>~PmwxmNfpty7b!rC! z?h~6yp1nGTBYDX9h9p^n^vLUo?rfrE1R{dMkV>U0SY6QBAL2$ z>isb!jZ9&+5zSjTj^;^;>&p_X*%A~n8O+lPkT%A2jZE8w&g#5SKjRvq@|}({q{7Yz zQpr2wXF8EpaEteVqv9Cz-u#n+d)ODo8i5<*gp1dG5lN{rU_OT%3aB^_y}aKTT_+r5 zUbK88g<$i-tyBez95yBLI^%RydEj?iEvenNjtFV(Lgo+ahRSM^RR;wn=oa~4zKgq} z!;)hPAo#EvUo#{AFtQ%C@JViHw6A#^+>d0=Xlg$z4tEGh=2&?;O6bJ%j*1T|CwhT3iQz;)`1_b<;Lw7!DaN_AHV)YNOz zWj$w>{{X+P3`2^EKVHAPVXYM!#7CFTeQ-lhsc1+fn_#e4BNDh&VRnI0k?Vk%Sy7L^ z3}M2N`?d|P>{q|(!YQA_5O0E6bf=yKX$3$Xy+#W|WhnK-MImdCbh=&e?>C>G3}MoQ z{I7soKwN&~1+ZaY6VDYxRFNY|$w#oGG55hur%i{YupLBOe~BLy_QLT3xe%I8?hT_a7uTrAoLgp=!m zwVA#Y6#%9Iz8Kph2%|PKiVlLCU(*`v@kd+?g{dooZOa>}V4IwAjMfoY1T3nkC{zO; zm_gc^W(236G5-J%I!+QuDjQ?gwuVw%(oZ;Ar3GmO^q9gba$JMU?SdRvbO4=4(+H)4 z>6K5QC;Q>8ZK5O!3p;}F-|v9kL2cOhm4ms=n|a|ES=PC=?|c}-^{uW`d*nDtDO7Vf zZmb%YAu;QR*Xfe9T>k)^1oa|xz}pOIt{0B8!eV`bl$A%ycjbUrPouMKO(vH- zJEzZV1nmNdkTl$pBY)rZ!`nzK-ct+kjY>wHh}bIJ_rP@pX-N2$q(G8PZ|B$dz8_z=YPw9oLvhNM~ToT1_Bz^C-u*B6ti+*dz z%LG$ALDe!jdEsJ+w5>+&dnd=L)TG3py|6o#Dhq%u)^HjtLesye@9T|)UZ0BzBKTZd z2o5D2)k2hmsQLQiWj&~N_WSIuaSoJyXTJ*^{|b; zP;NCz;f%^RIB=%SwF#U?TYeWfGLo>1PCRo#;Vnw3D|#F`(AJ5$wjz|Zys+s-T?*eE z){v!|l+uQ*>5zW-bfm5ZAmSrKnOF(Koi1T%J7AO&HA`BmNf9_v6(IBa;f9|v)R;b) zF`B(Yd^N37Io*?@s--^?aEp}yT;M-=frQ+uc%^Pjd6 zdaMEpxejOi`d})|$hlxK@6|dsAN3+Cs|K4+(IXA+)oKKSJpAyDWq1b0{Oz^y8gr(* zv)&I6C?lp4=U!8~d0SQ2l%$*j_Gn6zsuGl{ZV&hKKWr&cTTR`{)~n1wk}w0#u)R88 zZd69(T7Gx{F@;oQ0qtHs{(+{A{@V!$>Y=&Oav?QRx@h7PMZno)<8q;@c*WDpkQcyI9J}81zPtSkzjBKnaCr^y& z5JkbYu$iUzWa?PDVkf6xBj$SHOS0;MmYr!JLA?3z{xC$4y>H4Xw>1K#cabSn6%%ta zsLY;M-^&Xkqgg=H;em2Yq?sQ$2d)EcZY^-ym3<`0o?pMd7DJuNl)2QIL6HgFLvNw; z!ppp(!dbM3Qreb#!N0+6$M_@8aHA^?T#};T*nVsEj$FQdP6uaAGjpveOk5Hzdqw{M z@tBYb%06M&LjMgmo$G#xs>4^8IfQUq<~KDbmoH4sj(86fW` zt?)Zq$lBA+Oqt&sEkq(j0R)q43?F69aTy^UMue=Woi`xQC2!@loGnVd3eovtI%M+w zf%m|y4M~F}xGgtKUzb_sz87S!5<=9icZnV)3(WGq76~{d43c3ROxbBRDbpe&XzLS$ zkd&>2lz9`Y#mjD9zNFv=n;@ua(yfdQzIZKz-55}W$TK!4Y!h4V~%XF>xt~hL!CUnjAClQ)DCkANBJGCh-Ei);T0?>cA&lkr5aC?nq50=oU6PkBv zQWL2vNYqspH!=vHmiES$o)P(vZzxLdAxum z#={*c!8wXl-3Y32X=5t{B$!EE)}lo9)TMd|<^~`rtXoGb?ix`kdR9|2@V0}|i&X8a^{ukVTPx@=bh0YjE zJY~dgaSl_MHJA8YRZOOQQKMjbiB9B$_Es1>cJ2NCG~;?2Y_*puYMG>`%26mGTGWxP zz+xaRL~qM$UE4RKe}%Jloh`V{4qCx*kO)eYrC1KPfqD2(Tt&D?hiMz_89A0_6639; zHV{({Y9UA_1VI5)>IN{RnYDd@$9pU6q0_oQYk4Os)ycT6d@b3-nLb!talE;pnJWuZ z^# z+{^OncdD29Wk7_Wo7`(zQ5Ky9Y@rc8)cC#rCN(*24LVlIN}GP8LGUCHlz|gFL9~E& zJ7ec&n|zx`Jg=zJ>Ca5P)k6xVd_PxLSy4^@0Ak(E0;daKC9ts^c{mlFGGss)>~8DmPBxTb<4N!Hab5lF6kGsgdp2w=LOYp z#{p1OGV5<UIfdTr0e z)Zkvzc;In&7*#z=)1KzQO+6b8plSrB0SOTolW4;(Wt~>=ifHKDSGu^$(7KR-0+i^K z+>$&Xa_UJj0~*aPa|2z1SI@nrvL2bRt>$V`+7E426r(~@LV&i3FhY``ujVjGi0K%( zX>#`z>Z_}(RF^V_*H9F)Ri)h|pdIGvlW4N8bz_`6Amfy9)h>UWR0OLrs2#;U!BP^C zNpKD3Abrj7^}_w5W;u@qW^OxF=&Q}@OC_``NJs<36ffZbS}u7>m}BEK2VsxZCA3cK zHc#-R+)u`awu!WsC2Djpy$TA2kYx$nAE>q&`%U8HwANnB3qx;F)Ui_H0(B&*1uKap z?H^xR3@hTtb1dOmNLpQ@rSAz?KpKj-Qi(U6xmygi6b|QE`m*=jQmGtRQG!O0Vs$Dl zeSyE085|s8CDUxXQjchEAFAV8U*pdAiK@?5w;d&5lm`{4z&8GFyYt@V5~|WTEEMrm=^dV$t6yq@gNGcLP?R zrXD*q;6sykO73r-_h?N+3N0|}W>&Q*B_LaEQQzm z8vH;5A3lKMN5vd8`+3e~?!!esR!e3HAtOe_jpW;>rLh{%xDPYq?7odnxaCi|w75bw zN>d>~Z!rRFWAwm52(U?@j%kS%-3LO$xzTQ_r6_Kd#kMK*BS=yLfRvE{eCAFqZYs`b za$d&jD00S;-zjZ-^Q7*TC=EVIBbFB2JJ2Aas+^ zgNY{xa2|8SyaigYhZ|<8{{VVQ-X}=336tb)hdvgXJ%QmRlNOUhByy~N*r|ALvu?n$ zbu!y^8Iy%60#n{A!W0$tI=u#*S3DD&t2p3_yvg-@s8CA@X&{6VH`KdLqwDL4zC)4c zd|}4!F`PM3P?|QBw8?-*pa4kev5mJJju+4JEW;(r>S@?;cMXD|+hWemwZxc#)DN6t zJp$GilVqDz!!WQ&;T4i+Db9GI>Q@$!hV+4N2-1+>mVdr!#QDx~Ah)SJPaI#5OqHi}d zJ}vyQJn)8*w>GbaV&F@a2b|>vdE3Bj+UzG$7vIzS?a|{Y$x^;R6^vF=ZSK= zKTSO=mDNkuM-kfl>q@^MXra(yEF<_W%+NTkn`-tU7>*St%uU{ht3em)M`{g3R0Wp(~`M!{V;O!G*<++m1=NYSj^vf9+)eHNEP4&r@mw< zvSbjUGZynF=Y>xtw1BSDv=eli>xwe``L%@q0O{dCf+I+g9Q^QO9D7s1dD|rpJcKD4 z0Z0eJqC8igUu-sUd&0jhtOy!vGV-O!{HY26&LN7-YI7=ob$9U;*d+&;5-q=%rT52> z>4bo87~rJMsw{OdmC(E;#9%p==T(m-=G<`zZL&<1+;gSMcY=Fr=y15gSHN_wA*P`58z;&G-7e&O1}DJR_8c5akghHBSY?(Gz7Qdj^4_+X25 zxtv8a&JA%KVOYgjQdY2+&byItLS%uuNcnn3FI?}0o8XQlb*Gu`+t6GgU}{2n2=ga@ zt{{2-PMVG>s;W`^H62=@futlrxwwEl;%$6*bz4azxc>lTzrolUyr@QM7n@hHN|b3T zT2MdTc{o#vDVLUKDWyt}{+s|nk$L|B%b2+Sn`2s3JyXQys+9_Hwoaf*kBh?_YLRmQ z3_qB??)jQ$6$LBul!@O~+CMOiaey@sFwjz`FSCw6y-(X&m=miP%pJJmyl0 zg@>9?bcL<-H>X0?w);$U$4z!~PgTT~)H!l#o^i@{hkAt_A1h>83$mq-oMr5JSV`k3SIef;fvKqsgh&+*8m~ z)H$_Dr**=xFRdhiW08WH7=g3KZB=lyjtZXn--o;|h(e>`=c!W{u)mfe=BZJx&iy9{%)$Q0T@g)qv+^H97Wd-eC1Yb;^Gg#4Qa7GE=+- z2;NQ|hX#rSYID7+P|{_U=>b~34dQRq;;rFq%RAzHtKVIxsF~B>w%Xfl-U_8kzdMNo zOcO8-nUL{8ZzA_T>Z-1(V4(y%r^V?PKBNpfXFa~%)|aJ>8#G7#@Q8PTvV8J|RTTqE z)fzx;&>YpLnNhX2+(^S+XJR=fZA7HLl(vyAMLP&-E~M@i7ZbMT*pOtI7aF)*Q*2PO z+Q04swHJ{h{u_M6dSXLI!xR}Sjr-kdUd$Z_ylJ#*g=!m*%eddJBXq^14*fDyzXBvS z=8v1gqqDBdUdi*f6T|sW57V&NQddyAcFNuwu1bj3XLtZW2h$aoZX7RI#V>uBHI=-S z*uIKoHbUcMrt(FBCNbCP(1)hSO3hZN?g2utB1CIX;>l1cEJSVZ|uVbtW+6%_^E z9cgJ~DJXr^2NIw!bcF>ZA1|%OE7I#S96>7=)IB|*I5dHOvf*5ojjCXyQUt5nm*khvj=eAA< z;HpG4yt5>sc$x1_G8;lKF*=5?Q)^s_#7jNx1BJNpLF%qE%UW$gNxdGKeRWSw)`3v*%z9SihC~>z4apzSa0!i^F=55Z=7T*>gd04kB`*eAFPy}~O zHk}|?L=E}P@fy$Sa_8F9{8ja-U>!aw)dbjqr}CYRuQ6<26M@AnnVecpsB-CmN_(>6 zh+dLFAV*vLzCiUc;&QaIQYFNudB-k)v4WG7H&o`MR*gzO3xxQF+fPrv5Ua@Dq>Ms@rqI zuhKkP(zKF@0t~=OG45bH| zw0B^oa}bz~QDQXi3~z5tAk8w{DN#r!Bt@@`aavqbMxv<;B*Bx*#XAopd@QtD4aF)^ zp-ECyNlwS%B+mPO@7Ej9(UQ|@T34Y(DmK#|Q}P(qDF`XhTna!i4D|X=GMQcK(WX;3 zB%R3u0Q9_D3=JKZj&K6poGD)@xe8XTI&L5lyjuh|?5{NL$+a zPuCiv2!Iqxf;aO1k@UihyQpddacnHMQti&;pY_Ll72s}gP=4;Hx8?g|JAo`gO0P@F$Bx8Q)fN+^` zpu}UgCUq;7nDh@69BZs$R#VR$xHuKFXV1$DHc3Q`Y5*A73JCyV+fv+=PNmHL?T#W1Y!5uKvKJeicG8I~1e_4W2*9XZo$#Y;(Sh2Bayhi> zP810#7r^X4Jn*ttsKz^LUnrKGoGgXK#sfm3Q#f6v5^yL{O)Lx+%Y%Fcgw6A@~^a%|mvan|RHR7DKaRhSs0dZg5j>PX7R0Epj<48gR33 zYcYUQ@SWod2ekTNOIL44hYur-kg}7u_z4vfI^jfA-Vf`5u(=)-3L_fol+0lS)M@AS z#&__k7*m(7aO{W<6J(5RhdPW7YBdNL)V* zBKzW_{&DGcIsGsny?NtPPzj6ydL5{xzZM4xsmZxGK~*=B4m>piCJq<8AT1>mwR1 z!5iTM?508`h8A0F)XJ?U!D^#>N~3lmwMkC_u6nc zMYSwk0>e%w>FitVXnEQ7rI;|rpG93rKS?~IcZ zI4#ISQ7BLsA2`P7b6y8R^kGpX&e$uoJ5dN%+Y7d3I32s+1T}PE#|yTln&pG3ks&w@ zph9nhDb5eN=A#=(0}Cg`wh(GT0&rVR$-W7ToV`Ojl`(=^W_e>9Xbtc~O+mq757lB( z*BRXjoGGB4&M>qNIjCHGEI_>BX3|Bv<5t^~5rR_KPX7QF3u5k0R{AZz5phOs(+e!y z3HN?@Cbri)g20g2$GW^T%N{8{DIBegQdF(Z2WejQ2ZX609Bj*wEHIEnjpTk@DBFG6 z01t-P9iblLQ?_1GSK>2ZA~ub`rX8tVEi5KAUvVGae%N84bGtG{jvc6<(svfx_CG!G z?%EWE)SsxF8WL2cB%X2mi-Y@#bfR%5!cMI|f3KI9EJxa_Nx#Ky{G?#|EXTSLFqzs- z@8oggQr*pkDWt5_g-Ozriu+e%VZ;<84$kT>6_?r{yvs|JsX3U)~5 zJuvr2T9OQv9zbdr8;?)xibo1}1I3jw%WHL0gF3bVAeo(x#?jCE-wxE7iklZHHiJLE z?TCh7UVxjdmj;`EFrN_E@ACWM<&3~SnLQ*-UkAA*yj7`f6?jq-p`}tHL7R2My(L@( zi(k*r5ZXMz>gKM8pYQk2545$(OG!_Vf!5X}_4B~E(L~0c`BFMpRT|PfK8FrXRh>yA zq+1c%I{2|W#gCu#!-G{}NdziJ`|XA`$a-L9NhvBoPsKi%a-*%ZP9n5*xEjB{F1EPdb;zs~@^{h;G#-@tVa0137{ za^YjgW1yu1T0_-kxfdI^jta^@{69UQO) zO+X?rwM+Yn!);T9n8MtM4h71@i^wLPAtEuV5aJP@YaV2z7}etZ#Z*JE>5U^P0ywlONAoX zYiaxMz6fpewEZx|w>25w=~2J=#>jV&`iu%3z0UaErNO@Va~hK5Yibj>`N2&rD)?`0 z+u!~$LLKKHEKt^=E=MK6Wc;zZ9JT~QoaYLmN3JMiQcg-FEU52nED}+uPR*+A{Y!uLuafDFWQQHMJj#zMLL1ZjS40uKtWin?N(*&6V z%L|5v*kfHua=W@-oxq*X*9D>8@J0h=m{iX^6v_u&Ij5YS6nZl{3CfFxC%3E4ErKLZKcKvYWM9GnC4@$^Qh8(FI zj#w8-TqD{6L@?fz%wUG3Z}Z2DH>%hzmO&qFu#+L>5OF67J%pX{tj-8sDd~jGIUK*v z7U?mCTy6MThg1Y((2%{;^2ddu1jaFGP&UN-inmVNA%`trgGq?Js6^|(mSDb2nL@HnC(F}q7sdxPbT+oT{1V{dbd#v9cG0TXF^-s?oSku#%WiHaJnXN`Q=d*CKUrlx&A&D;}zh$s^M7k6K{1utD7YFuIbYuYW^7t{9gf z0A&c8a#ac#No*+_;m_U35R#em{{WmQ%>;>GshkrXLkL5GzzLKgNicqxN!oI+h(|aU zz8`Ax#Jadg#A9+f{>}q;E+Aghc)@NZdgoy^J4>lT3Suyl=}Ea8^Eh%{2^S(cdSN%I zp&ACl z3H?t`-&_{se+ZnIl}L1}Qf{GP(Ay2QbRkY@C&ZqL-_H_fD8W<#Cy40mf^&@Uq zAe=S4rMaMtsJpaEVR0TS&!3((r$|XMPV;kzXV@r8iH?Jm;74f5a4!Czvx9SSc9zxv zFuZD{r8-HR5l>iF1ls~QodEurPre~=aF&W0T_bM^<+^|nJXW?7arGe2(+#PtCg0Z! zDxy;#-wE7CLh;dxpqv`6C<&f;A-upX7-CgUqmBLar7^1$xDsrjV54c-%FSa5sb_6K*BCp zYPJP-q+`LtX4*@dlRwuQIQ$>o@G76ucfw|`TH_CD7XU&zHDyV;$BL;4FfbW=`DY#_ z!jXJAtwh$NgXE^)Tx{BstCJWFx`+`t*|&9b{{R@FjkVaMa#0G^=X?-a17&)C{{Z6+ zW%7`s4n1zPp-@lGcEt=rBL|e_p*nm@`E|yQIFO|2ScuwA8tOALdEiGgH7riUra97! zMCjTM6U{<`l3__!+YyHPfKhRK=_k*o8(qzuON#LYCvEq`d%4QhGUB}Y6B~Z|`IsHo z!lE{cyG2z#L$}y;J7K>tf4y3Yl&Kb66aDRtUE&86469TTy~)2hpFQxK*`gdml%(BU zz>l~54e*XYm7%5n&L?OiYoRUwA)^?5X zJyuTjIJ|)*lkpF??)WXCb_N1OJfM{5Do9quM*^?%Ej;2Tud(xas2 zFl#aHX>&Ap&8WwGkBPsL<^9eD&vpb`CBW!rkPEfhM+JR-% zw%G;G5@KM+o&5aI)Z-cnS=0hRnGz>KnZ~7IwG=69Do9D*HE-u{zC39Tl_UWOgD?%r z-%(o~~xbnW||p12{0k{eK!ctIq<1xdFqx4^W%3n6Dz z#=9ga5x>*#^}?D7(v+zQHdV~1ZF%{9vCVCoNRh-8sgDpICNPODGm2mAj3QH`?p8&x}Gg=%o>R3gouLONikGVM8uLdtwg3RnaK zanq;IrYw!5;YjBr*vm<-OsQIw0W&a?Jx<faH;KfvhH?s;IvSdk7WF2Wl_GXYFsTzakT#f;$j#BjS^^l_ z=eo$kOM!S@b@k$*NV#ytAuv>SoOIu2JPw3q>^E9emnm9H?u|o8L>RP)`o{N*VTZA< z&1l=~@`k#gC-K**Ya(Z#PDf~;i1fS0QN@dMid?4&ZkC3acZJ<*J@-hzgpv)f`K@CT z>b*n)VT{onmHG$t{{WzS2Btw^@D-KBk2OQU&60bR)+8kz-K?@wNK9@C7V`)FxQNp6 z9Sb~nQBO|eX{X7k+F%vD3S3o$Ze+aELJsi<3R(@?bP7P+>hf}o)!iJoRR zPeF(;XB<;R##N1Lceg~ziu2NmhvuDjkSQ8JfZt7Csd89;Ofe z(eo3H_~~2~*(F1(Q;Mq2f>Q_(q#!62u0fJXj}RM7d9v{aLruXn^ye~LYO2g!N@?1K z9SKPiv(n}{%$`7;SG}|Gg?AQ~awcToad2ii#?_T3V*rrEMk0-$aO%CM2bUY~k02tN|kQRKYhGm;A z6z){4w?c}6-6aU{Hbu2X>;8Nu$hbo<@N_DMFFvhtaZxqO51BqJ%@?ItIh`GOvSJtXnDKYF9^`LM0_>R zsHDO1q>Fj#fOo(3W6m=wbvCp?b?26ZQ@08o;+63@VkAmP0Pbzb#gCit3YEjzE7d7% zy-vclqI9V$I!s0GA}xKo+0n^F0#XZi*`S|M#5GwLVjMk^Q3lbNXAi2XyvPb-mA?W~ zK=^eP6Q=(Fm&$8C2+Jz-F42<3G&5OV6c*ybybR2(M)tL%rMhCq%5&84rb@cU)SSYh zB@CvFO5)xTBf?UUN{V+g&IT6jiz8ne_M)V!or)bxQ?+G&5XlBY3a4#^7?~W>MkjRb zjJWNylW5x$qz!KX9uyb0-1(l(bH*qT!dh~omr*2@9})1Y)mo?50B5{f=4q8=8FNoI zmivzJ*3b%6^MVGI#0?-Fy5A2yzT`^n8$773MJZFPofil2QiOycZv$44c|_t2mRsRW z<0(y3PSQ6{(p32i650YuObhsw0KM*TT6eL`4m_mI9D(FFk1A)vXsE2qsd9?95bKqB ziqzr@gruaDgeK~`L6H~V%*3O$-V~(BGmP7Z(AKol(V@+1I#Put0ziWbPs8UC@`U6( zc}>F^rB-#JN;M2PnqU#49az$XXpJ&d2#*p*`{GFFXtexQ!0#`{-CJP@T9y)fz(TAp z3|xGVlwgBS;NU;{r)-qc*D8C4DAbMy%sZyWr92a?f#N{9NKE)iG3$8qxcEOQ&N#=} zq0FU`%zC|TZc<*-UIzU27)KoV< z9YjDer_5sJ>~pjhxKA>u$}2zgZUz}$ zz`Pq#+9zXKwqjb5}Tfry}ADYDB#C?GVK_AA(x7Xy1gXE}@G-WO3=Y0Ac;pobb#APM=i?O~U%pF6F6)>LQXrAn%$8)OtSaY6NHnbLf z$LhRvndLLo_MekA+kHdNxSCA8x@9HPFowbt;6T4Js5{@+1$H@KN5=WiY^udmuPUf1 z4Xtvm8cYk4V#LT#{{V_pQ1G8;6ZE ztv{Jur;XrOp&ZWfG~G?rGepLSBZ^;ZMN{22G%kzf4hlMl-DK>Qq-$)GCeY zgw-ON{{V?}%Is#`zre>!@m5CP4DfD7@LHTzV-387BH<~WI(2MrBE*9R36mKb%`2k< zjoRAL>VwJ03Zw0Jf(H(wo|(4_O7|qmvUs*Qnym;fhuQES|mU^x9hf(u(`qM<8T1I zSti;{_4$(M+V2wDl7&Q*eG}!^&i3nqGPh5?`_((0*p#?PSrZ5Sq;7Zez%8Lw?{^Aq zGp|ZOHxbYYv|*)L+VVWvRMi1vOrph705>KM7bIkwYIJVe0aj-YwM&|D`;6DqwqDFB zoou*(5|X7LsA>wC+IHpXFg`x)!0`TYn>kH(=;;)qASOsDxWB`uPWYX0=4_#!QPd@b zt-kFgmk0_FOiYNI06v`zSRJk9tiM4;P{()tQMOWtP)*!rQDP?YJhsFv)jBDF>~YTp zQ6`v48FnmisougX7n$Xma@%Dtcdn|MtSkT&N`~M2W8`r?f3v3PxW9;yy+M?|m#I{v zt`d-ANfEgN(%&aq{sPMTH>2UzQH0aeXHBlL#)|ICpo9cWOv)AI;TO2X$2j2J!h?x& z{Lw5pLc%F(Sf$t}6aCbyRtCh*pJo6p~7Wqe_RK_uR#~W1uq(r94=B)V||w)1K;_ zoybr&0?C0l^E}BhO7@G9DK!pKr^NFQt+&(^bcH|`@{o7wjP}iPQ9La+!?rTu4pa{- zs&6c(5^nQ)v{=Lu0^GiT)*Q3`C_`BTw8>=q(}gZLsQ45KBbLX=ewPl9g;!0OQ@FC8 z?jR>#+D!idU$Do#T*EnSKX#;mrvOnT&Zs++`hQGSwl_#S_eqV;4K^uz!kkhbp;bjf z=K4^S9U)QqkCy)cOi8;m<3p9^YI*dj`lpFPLbf*sNX2iJtu0d%p*mCGh%gj)KX2C$ zoGn;ceh@~`Nj@ap3619+sDN!WIYSJl#&}&R!2D>M-X~oQ$^9K=_B&9v$%TT(nxb@~DeR0#g4_og! zDOGCQLVzk!jV9Xx5J-#dK3Mq;W}HUxmGt^KjIAom%KKfeVx2VYqe@g1d%~@1O{BmU zwMMhw@YpGLNt;Kh5)HS!N?J;`RZiJki3trXI;Rxk<~#tCxBvmv^n;2=hd742Jfv+T z($S^lcnXjlan4>6qExNVF~5{zVZv@xt}7v+eb66MN! zD0%F;x_XBcWhh<2Oh5{PE#*ACuOs4~&l=-e7oK>!mf=L8tiiA{kdrn7(;ITdT;l5T zH(N~wQ;fvJWv3x}d6RHX+m2@%8fz`~WRBgxRr9+16TblWP;N2d!JE}N{BI?vr&+L5 z4V7yI#-EBVc??4{Ud}je>Za+yZjEwfpx<_#{x1}yM%&`(uH)+5?zOrK$~LNM9#EH? z3PIHa!juCM&s5Kl#21e{5IKXcKCzfnrQ#6Ei+a)|Oa;l34&Z=COkUaFVXwl)n@Y;K zz&~D9bH}+6;mT&wmcL4^GLq`Yd{fL?`ea+4{C+J0 z&WtVCMLDNTLdK!tK4byNj*}d*Ygcv?+7}HKrm?qa+W{&ncD21S3?0?s-;v}RTd$y^g1Kk+zWYlP?+T2l6NMxd|Gl2xS2 zwggNYMX^s&r}C8_00FjBS8LY*lg0aw!|6jKCPgSofc z%;Rc`-{K2e^d(D}2?&W3GB36k=69q`aW`cm!VBRrr9dzNm?|V#iRp#d3JxR`r74uA z2o_Ale@r65LLE|dCDguK+=#S%oBM&m?e{=+uNIK}*%)1RI!-mF@at){)}69Mq#=e>6?KX4b~Y9pOrV zSA|-HUs8^k{SVjH2fZVA<**hYmXMICRNMxYQ1jKys&eXkk!c)GHY$mgLo8u8G@f>G)<&Lii8-=P>%p52TjA*SS?T>Y& z4qlk#Tb97V#_4u2mv|y)8(?;!MK=6x{{T2yH3=f;4dB7T$a2v(!0jOp)N(3;HaI1R z&c;cjx| z?1!VC6iq>$@Y0&13`xR`)(|)P;cjx|?3#@ue0XYSn8R{v^$o^0HDVwfPUoT9e51YS zsACOL8=tAef4#xq8k)&CTb*f*YCUxTjq#zZDYT!i0W}uBJT)Vh5?;G%ard*=?~RjH zrvCu08-3&Vs~daO_QLlsXd{&>W@)Dj?^CaS3011;D) z<3i@E1MPcw}axwbSe5+LJ6EGK*p<=YaaSCjt$I8AFYz7sEF zQt+GOw-mtDvYpbs@8yKc{wNSWc-3SP>%J4$9I@u)O=wFMtCkZgo$#4*2Kd!Z6&!oH zGiu#RAI*fFcqZ7<$71t=oOF|c-ie5U@B-LPZpPS0-bYjP#)^N%1mm}+CHv76jaK+h z*d1=p_|Zut-v%$edsija%o9rtywk#j+JP!3`Ns1_|*&!7bSQuubI)kqq>V5ZC}< zW>+9a3SiD0g)Y)cj{aD1Wdd*;0BZ&?Z91nM4p%j(mPQVy7!93<45u(K#pC`FO+?sW zrW-MYDTLhMpq~}KxaHxpy$yt?`s36!sLsRn#_4Dze_SY(!N;Id@N%&YgyB$tIb*~p zP?^U14n5_1aI`G~XBbK?Tx}7y7}ru=S{$+mJYv|?m=;f%!iwVmkNWRgA%6H2rY3F{pC{=0_eQnDC+q|zaT&G$(%_mm)d7!U>Gq&@~ z5q!1fCev=SargcGaQQ;LDNXre=<1Ztb`+9|r&4ZJw^RM_>rGuE>V+RY@f)G5DS!za z=LfM+Kb!jvu;#Ty?ZY8TXfp{~e=@DM=MS{Gm|8$d=4bc&-w@ostR^I>T6st#h)RUO`dbd{=EOkdwjort@VHU*-q>`b%m^uiYZFh9h>ab1NfWYd>M-#`n1cZNW5;|iTGQo8sjH0N?S~dCwE!beU)E#?_T1o$w7sU!VEH_pfMnNxtQ<9Yc}{$FJ2*umx3Lo)($4sXDh} zZ-%U9Vo^M>lTL|{%hOWWZIRP>xS*FOp01y#BeFn;)Jtb7n}{&1%h#wOgw z>C|w;nJk(8#vUu&fNzF8!9asJnHyS|vrGKB;e#=d6iy#ABPpJkW3E3I7U5}wgv*#= zmb^$-9BZ25_sU z6M>&l>+{62HFI3Fbjq-qUrcMLsZ;dEVp80q$y;}xSlKJ)FrG8L(x~N*4Mp`tq2df2 zD%$4rfeN5V!mO%HPo4>=T#jLKa6?NZ*x(jjgTJl_L!B`8geb(QDH2ZDQ4URx{IEMq z*yD7nM)-RWxe|qQ!3{V^%K@~xFmStT(`-=0qSR^?&kG^T#NPt6;KG346g8+Fgkl$Y z7+IxCX8|<1wh3u*iWsMHD1hNl&k5A8P=mfRyz<769VwqYIl~Kw=2V46FnYPe5H*r; zqjdL}^um=b5nkY*iD&v?hFK92g}Tb2xI>|WL|zUEX^kgr5ZyQ<8}}Md>ws%=xzbYc z0D*iFPLUrhYKC=Sgj386cB{edY?Qq1X$EOb$rvS?W2*%#-po1h^3n3CH3C<-z%NB(C(+x`R#Pf36(arPKian4U)(rCf3j3IS9^-%ba6F1*Gc(U+a$ z?T;SI!La=?9~e$(wH;PoNZSamjDrIbLzfi`4=f_QyPg)~MS9mJ1yM?5;~UH6HpGNw z8m*>&Si_VOES)_uJETmpNrk+;jqtLlp*9|t!@$b>wC#;oN&zDZ5?Nfp4=I$<1*Sm8 zH9}En`(foYX-U)X$bRO&Ue)RH4ZI{@6YAlGjtP zRDP<3YDfwsPTKcZ@A}{>%%xzGfhvd?mAgTpY6Q&3Pt)gw9ib{rfxkYJ``Zj_(Yd+! zQ9t17Qm@aH;CjrwrMNnPP3_CfMkSu=2Z*Op{eJu3{NP%QxFb?x#$rb(j=TBbw-dq# zP~}C}lnzs=ug?g&*-4Rv zR7!c^Ph^L=z#<%~DNXU>Y6_D$5!Lm_h;V^yFkmGY9_ZxM5OBLSGHr&`xJjHC!3Y9y zK(BXpPPDJ7TO2skRFs<>GSfc-_%Vm?z6WYshzb6dvy|b+lDA0z0634+)Ii?`Gg$^l z{Nb>)C?*O`O_)ZU7>vxMZ-~u3bY5^ma~t0j>`=(w%1DgQoc(a8@lhCzr!*R%oNO~t zcEN2^JK;$`iJdd67>v)9;yQCU=ZqPM)g<7f zta{d^?d+V~t%Eoj%HzuMfL*T>z6E}~b;FxW*GE}SE?0TrcdKo`mK&E^BIgLZSa}>4 z)#F-GRTVO40zF#>Po@xdw%5Rq)lWP)VGi7)9Imy_270)GAmB%;;NWMfO1a>&z1!gy z{dqk8_-?DN(s82d2~PNLs;JbdoC-a@Qk6A@UYG)+t}i(9qNEhe;l8e}a67D~HM>Gt zb%b-mE2}dxfmY#OJO@+>KA2-^7R0!yE1TmIu6RTdHW*Mj35+?5w$~_xtHB`SRXjoK zjZ(W?^~S0&V4OLtpT-dZT@EoX8Nwm&59@@~`PBgY@a8y#xZC6+)lhdQ{9y;`0#PzA z*4Q0&dJ}W=XuF4)_MZbSM5pg^!cC`@wX;$8N75ef)l|a*ZJK%Sp_^qeU&jOYA zid2~f^D*@LV}KQF(HN|y>MPyc1!|G2NVvQl2~hbiM}-wbjkh|+Zw zn?eIa_Ak@g{dcEpAa!3`@uHpf!$#(&dn_wq+4MnMP4t2qr;@${QR+t zZfsJN-o|H0)O`2zvBUdSbeWfep|mpODhp!C5zhPAZ8%3X;h%LbIF}OhPI$wJ0H<wpM&D5&5oceIpHi zCd?!$y(tNcBEp_BG33;s@7FsmwqK0 zfN@}HC53IKE$8z4$69=9NkL4gK)Jt*_r37-!8}y=2xm<_-8S_yfkW&%H6`So$0#ue z<;rmN+Ajq%swC%GGS>cATPlPo{{ZRKMbNA7=W~WQ2XK<-5t5;(QAkiin@LE31*SG8 z_}L~yWSC2Ep|$+IciwlwOl9kSbLI8Kgk+9Aocp>^ z?|I&f9YBe^9%2Xr_|6f^#b$inHkT8tO3tO}N>5Gt5zCibVsqJkNBnb+UtlF#Daw}F zRD`I6nH-2PBc3mY5^9wF6MQ9Ua$}iiZ?#XSyJZ^JFs&ddFclkE515{KyE`D@mNSi_LM%ld!Nq?N()eo~t= z%PPLFG zS=4lrN{rua&4KctlxCx-;^_q+`%Co)dU(^u*x@$N0az^Bys1x0lT4FRP_U$} zMkPrW+yut^8Ra#j$*argYrCgeH4iwV8f|)3m{yP!3EszeHx|O2FWXtl8F3X#Qfn#J zq8pQ|MvxFh1F_ZRA1p_>n~GW-QT$D{jV?HK_iEMO0HUHr_PLGEo+5P5vdaGeWvIy8 zO_Kf-7jAiry_;}jPEKwFHZ){2~UWXe-M zQEx5e?b7WlL*fC)J=B`XHp{u9@r2vjM`?#Ns&hNcCA~o`(bESA@Wc+H604K61qm~V zI`f*o4dATHF|Ar#%qyX)b}pw&l%stnE+o4@Udg>fg zu9CGGDk&*Rzva|U{Dv}*FGXWZqiw}YXe|Uu(uArAus1Or&&BB`E3%x*mm^}aLZKq5 zw7Ayd6rs-Z$_G*iu7Momuqjz>FHzVG)J2)KmAIS?Vv$c z2NPr&W=YweU&E+%zvCIBg>H9lNzj>Aqc8-5n4Vk2j5lWdcfq*+&Jt#x*sWt1E33 z^sc08C;rTmLFFU~=x#A&XS_o5DXyZ+n^N1*ky5m3R=6-hGGhLHaUASrw=$_ zRDIn?bx5+|CL-#zl@L=BF;|*#z}586KFZsybMXOj1H6S#i9&2oo$q0^*qL_`o+qNA zdZ9>hw!aCAYk;Ld8v}WZkU*Kf(lR-WAc1L-*#uY#zleCTt{ma)zb&FItyJwK7$r^x zX(etgM|TRQzzsHu7-gpIdoswIZK^_=RV~##=|2rbDVRsE|bICLlrmFwe&MD}AVTze|@>y2_U538+*8kU*6z z?PP@PBN1N7a`a`KI`MTyFIFt51Q-EVgzw7S{bLtLv!?{pd$w&=T-$Cu)gruQ5~76# zDOzKkChF-iHkn%hjpfAEC%aHyz|c8V4Fl-UxUpFqEAOcCw^c5zC&i_DQx>o@F|_=! z@mZY;EaSQ*w%mH8G}%*WRhFQHB`JY;u=5^fBD`qoct4FZOu?p{OWDJ)!U5cBNt;cF zKu^vv>6lYhIhy4xKH?iqI@-)oN;h#NsCn4(n4hjSng$5qtT~!CG zGw$8N7^F~2LnvChph{HKMp zN+;b*No~C@K2_cO!h(jO6MKsZGCD+Ik2ma@{v_cn{(%K8)K)x<#*t+MN|w;nlPViV zr1^=CQsE%&fqQCDs0`Kf;zRO5)BL&8c5ubc*i|a_dV_Uv(o|l6h<-bO8AR;gRII7Z`RY zn*e|*YnoA_LyeVdR)T`CqCP2;q@B_><*QsoGpw76(5BT(S(Z>Gmlz1s@ua3=FX1uF zT>R7QCq1Ridn(HE9LdDer-bQhR{2=`M>Q>OBo%EMoR7>Sm9Uu_KqaGsI8;LD$re24 z_FVbd>N38~`%ubSuL*M~ZKqg;p-D>IS``X|aiwG{sndJGF|6w^%=p)evnu!M64p~s zm?bMqZP>G`#Q;i2gj^rK__w=u>^b_{rfcc6qc3?#d=`$b?OGD8I`1Q#`Hq-OWXCMv z`pQarbt$~S_sj0$NF0{HJ?Eq z^Xp*_kc5g_a3By9X^E8szSF)Zotz?vi}JeWt8*61d0jFoXq#m!C4fE@r~Slgj)arU z!)ImOGew=(DP6$|%$p1EswxYviJg{gka>(t>hsPV?2|CB%N(QblHw(S7kNq9YEb38 zCML#6!e@|H)`Dp>PSd@-g!5dfPWURXpfB%RA*@F_8^s!F<6){>&~Nd+VudCY=w9pc=aWx1bx<6nmG@hhyv zMfrTbcsjE&RV{Lg2yrT%1W1oj9xcyJu-C+yi@B?9v{$4gOpVel_s4~&c<`8H9Xcl} zQQ03I3hchCho5yisX||*SRo`NC@7>Jd#mNE5)R$?jlA)krmlviOuLuA?yl%{CN&UK zsCjL2p}r|@5X}9{j;Y^wS9jhP%diOvRi~tly>Tw9eRaL0S7c6t;%nSUZ9>ObRinjm zzn7jRpGMZo9^V#GH(7BO9&A$R9w?!y<6a!e-K|PeThKv4Ot+{KZ#t|@pBGKz7c~uV zuIvS%>XN52(w3>@CRUY^B}D%KFN{HhipR5zw=<;4+h;IJUZ=`JTBlq9T}VWPubCsM z+|NT6&j&r1@$OkqK$RwzvoA^=ZMYWFQdU$G18{D7?T?$)P8vgb0NsVNr-V2co@;~_ zVZzLCHxK0QSE*FYE|ip^Xesyvq^HFslRq_sj&mgJKDm3W*|MJ z=FL}9YeT5g+7s}b0U`&kEUwXVzu;UwSeBbos)L=(r^BTrh>uZjRwu419LtC5YN^sz zTm#}JN`Qmwjek##g!KvFtnF)^T{=wl2zs9>ZPd7wCC304-}ZHW_I%-d(N5DPrrXk{ z&XP$gm_Ady^~8UO7w#F8DF?kv2>1yp2|HW^^Yy`*8?lnImi$gQ=AucNl6n0O+hb}* z0?Q$0M)D+~*;-s1#wg0$N*Qne08po7t$)q1A7SN-lDCZ%)g2lib!x1sAT);DDM~~F zr9n_SwgPVk;~ewDG{&B(l=pq)5Wf+d$d8roKh7<_0Lm(JoZYu-9&kMVl%rIIB_!{- zgBosQY<%voOCI3!*=uR_QUF@c>g&olnR(l-wCa=H(W5|02ue-BQHeNr%O7U0s3oMP zpGmo2hfl&`dUoG<{YE1B*A>$6W?s!bD+w!cq@v&{ajN>cgM>0hGj1;b0Mr${+ihHy z=b@d+u;_f_%QT9}!qksG*JQ4c;av6ZAEj!girl>@N)kv@LZLxhfvBjY9(Ef~Sj3AV zS~ET-PICTcscac@yOQA}U=joo;lG|amxVa;vVyC*qf?JIRy)PIKkgk{07Ps^+HK}0 z>)}o!Tv4K_38ZaWO8jyHj0lx~?){81D5Y<^n@N0;U=vl?u7u%C%7y2X?r3tcN+G99 zl>wHLq0Y%q(naqav1D+iLwOZCmZuwvgSd9upn^h)9S9#=7#O5DZnmD1qMf8xG^D-o zBowRXGwI7?zVUJJO%_z;5}o&zR8~EtxK_O=-b^GA1Wo>3FC5Lre}b)y)oed?Waa3i z&Cu9IYb>Q{@s%%9QV*HjTlK_8jJRg4jK-;&Du!xx0<=QGZD|o;dKtewJ!F;CDXs3( z(wqoFQ~v;WTGtT-L4Y>5m!2$M9!67BlWJ8XD%G)kB;qKw(~%Qs72Ito|ldOrxiaFdpkRmG^)ocY3k`zRF>Wh z8CWu8nKuO|khffPnuw=2WPB-IrF=kb0Q~S&M~EKFyF{zk!(F63k!HpZxfQRvaUjN| zAgF1#h9W1F+YsK=xcjs|%&D1UIj+n2o`ujp^ZKk^cC54$WO<`w^icjKMgSG2}K$7xb?{EC+>%^^V6u*cxKt)!w#(qt3N zSousJGUAGgZDNk1pSw_j-7PARZy=H3I(#$M`1%-Q+lnCmp?sdL#o4faoc+~%#C#W; zWbU}rij<_J?`0;}AamagRa`ex!v$d_DNW`=Q|0u5&l3F8Fd2nHkh-^$_rnVWM0~%# zBh`E_RMVQ8buWnoc+?8WF*ku9A&nT_ighd(G>^@c%09$Q^l8{=06R9C5K#P6+&NXQ+0U&Y& z$1`Ck>4F$#AgL(|-rR{Ey?p%e1g35$h3g?`DMV@tyeLSWju)qaq#&h9-(X1dnYhQP zLO=k5q=6&_gwL0$!3~nMHe$*;d&%3#UjG0*EiZEMJ=;yBomx~$gFatgys%Tv5ay}W zrFcQ>8^m+_Z`Q-G*;1gdytvdtfC=*-xxtA_PzI#85(LCTX6oObJ8cwgb}4F(?aFeM z4NgX~M}*A8D%;~_AnJs!)4zyq)>*vzIsQTM}` zE0C1=Gf5`wUar&oyc5_g`P{IH5!@Pw)c!cRXxJS>2qbe{@*O450H$L{#& zaJjM&lxd|UQhz7`Qcbq={fuv^D`_i_55vePo_C(USoNgnZce1>0GW>s_C9}XVOdk9 zM1?Bk2?7j%fPHX~!cI|cG`0i0WT`3fD475oT7K9}tV)Qo4^l1bIM^tqQhZVggi2x~ zpQ#@#c;j%XMzLtJ;2*fb>;R&UK+upQQWdIoOeO&9fx`grA6yvVSyX^Giyf`crV(33 zM&ELFoHcjn;Ucz_+Wh`l4M3@1sOg6yG=*Qqx7c7+q%L3|4=f8u!Y3ZZ0^&$igTL-D zg3h=zf>+^p_ZZnIONM@+V4Bc5OT5xRQurog8mt(>j-yV)>NdcRi584<2 zFIkDgYFXqwSkVt@-|LRH@`Wz}BIo6eO60~9_k$L~Wze%TtJ56UFGnbpxhjdq@p-_> zcf-Ct3YC9cdy^Qo+n^F?=L6>facADYh1io>u+o z3%A3J4iIMvseWHvVP8xk&hUo_mfaxXaPUedP8-tdld;C$@JNGzbFF)}_(yx!mK1KU z4e4|CF|u9jfnID*iK$X>vMS0>8(Ma3KU^vu2^Tm?aVSeunktW9^M%@}9dOXyNH+%y z3Yq7Ho9>5dbv1Lb#>lF-^}|vsCkiH_^EgYKyXu{rtP#ExML>%jHMag0O;MP{?zB`b z9_3xP!fAW~z5_L9P0lq->N}h)zL9N58jJ6Y4?+I`I1Da2{c*8+IpTLYcGO?JA1|&p z_mda_PKfxiuygisz38?hJO2PIVSJnh9?~t0@9ptp&Y~Ttqf|M@JnuB`feWP~!y1>g z?r;v1!tK6MOLv|zPU!&71`kfy*)KrHHbv=bP)yw8(&0*Cbm0)NlVOZgnuZIgylYaO z`RXyLcbV0Mu1?>4c%^q@E_|>;K)Yy5ch{TaRXaQ36s<>mYpP5FFk6u|iDLD)!fJXA zuZ>qBB+e5q0I0`qMC7vE5fOyQfjGk8)i}||WiSpr+)*{X*Q#Bugo}i3apKCk5Deqc30(BRu1X;?<`u#yFk=d%;TR^m zmsS$&pB1oWF~D^H0QVDusrSQ|Bk8^&gDI`_z$~gSI5maa9dx-E%DnJX5f;EKtC+z| zD^2m+(2Vk(D3n6tcfqZWhYi$4I&tW9?HD8}d}_7n#-->R;CEdrwiw)@I16WA)nWC*Z~%~TqUBo;rZ-`- zFCQ#7@`cSyHmFRVm?4`KkD11-whjLPX9Y1$tXm!?ZCHfLY%sHFAkQJs1T#z$ks})| z0Rl!BebY9r8y-2FE)JUme@Xjc7WdvTsuC1pey986n52^e(ew!$pZUY3G1Rdp-EhxN z_yBp}+G>plWp8{?#-36f;6*2v9SjK`w(Ei#tMP?%!%8Z=TaT^@Zm3QEy*9(RNOJ+< zJ<;X{ZTjKfj<|PFOm&Ith^-w-PTdaNx#7~5tdaT-xFY0+u-__EPg-FomfK;*j;dl* zM0%V?DC>$ykv>!Bhk8noqh)w`A1rcYjj*K@bp$0ccl+VSmbpoC$I}sdYUL$Y>xW8O z@fX1EOW{hXb16@V^TVA6Vq_3;5~s`uQHKgV&q*FVT`&Fd+sfk5RMLYn8g6juOPCdZ zOhYKML%ysz(q|C@aC@vF+eJ$ls??jDE$>pB97ovAjBkS(t=DPCn}}Y9*9ptsx}0ID zfj9+KT20Ooa-@AFXu~_BU8@B#fT}A-2Y$29mIHpT&jPvG z*ao7oo_GM|?$o38QZNl$^NnArk$|cy;BU_Y_bwPKO1gptjvDJ9xxN;xsfh;-b(Jw} zCvivZv^{J76<-Xs?g_z_ugL!ZZW?P|I9e+Szc5sZ!yaLAhibQCXRaCZ6-mO=SefhA zRjP2yS@8VM9rG0k!$oqhY)A9^(mVk zSXBd_H3L@I+$X~rV`E%glx<~85rP^~>+`}5_%N^^hlVw%Q4P8IaIiXr;AYhrRV(Ol z#-+N-AuAhxY$%s>rg>m=ZYK*M^21u}q3nub$T5N%UEtsr)qhM9h3dG)ZA&1cXHD?3 z9y8YhCDZGT(BM|b4q{82NY>UT{ip4ZUN*uFxCq}KmBHH-Zo(R(s@kUFxyc`!?}8H0 zBO267>)es~jtOZXrX&2~bo1b?8bn$=u(DVy5si?|w>Tk+csipU@`D^L8>T22U6y3r zf1E0YbqS0UO-m;D7bZ}vNu{3+h44i^FYASyrk+?bnvfX4o-HGkI~0*|&j(Vs1|o2? zbe>;qEZrnQj0km#UN*s{yDbR9{m7m1vn`Z}!pJ~Y+^`>%qTAgf+XQ1^(bYIuHcmF~ z^QGfV!jN>7H@L&TUqTWsdku`A>^YRIOn6&V>=8;oM|IaF!Hq-1(vf&Ovoa*~mB;&~c$m1UD+FeOGDZ$Gt)drW!n`+Op*Vjp^u=MaCao%dNMjHBAuSHon+nbrr}|?eJ4tXaE9w<2~P? z`r+X;RuV^tr$6nD9;Hf^AV)t-;F~p@2+dU{m#7NKI+Uc7Z~4Z8hf1Jr>;7=ywtJt3 zbl7wK?TuSV9vJ!Jw#bs!RoVgC62g+8e-SnwcmDtwO*8?=C1ZIu{rX|hv{s!2+?k%2 z`;2a;%2Ja7T)lAixQ^@A(F6da_1RXfS3VOK=l(yTz)jKVRm_rSeZ4UyT0)XUUN9=C zwK*_Tp}uH=Jr|G@>M#GlzF+)*FP64Bps9>V04nxQpYO^W8gX z?r@o^X%46&$^ryL-vQK87Q_+h^~2U-4k;iA`EP)0nJuL;e?EfN{q)0_`dO~GKa|T; zNu;S?zF2FhW?NLI+_3)o2}F9&mK!S?J}=AXhFI*V-9o#ly>nVzQI1$`sYbcC_`~jC z$v_}-=hqEYEk+(Mx*DXg0OSIv^ zw~GMO)9E;Rc8@}23k%Ah2 z4)||Nf@j6^!mT_xoEYUT)KkkfU;%;}tHUZP;|eCa+u*<|Ng75I;w!)1jgguFH^T|9 z@W7mB@eMrw_^LZdEd@Uu)MH_p$lnpa;xb}zqHCcus}2E9=*_7zGZ7Iu&*B1ZtVaF+ z0R7lm8G-BmaMraY?d+rnFe*;?)A*SOd^3L#jA5^nIQL>5so{B%+Gpp4*IhjD)9-qY z_`^`5a7|?{a&q^-_kHk^s)!f~RRrNMqE$A-wx#YN5cN<_5OSkc@RQ3k7)?$Y-MFY9!s{4K z4Dz+AtI}+63(x8^ING7`cff8hQMTAqT$$4)E#E=k7^lqP1TNV3yzvp!4{MjbG7%m3 zA%zoBs^s8cND2Gn(BTIRYVpk}!L@}ZKg?rS9ROf3@`*9^#wpU_f_}KMjY1qaM0e68 zoC^I(7C*C%Z|mjP2)>PLGpO1I9KAjkJiS}^N!)ZeOs!Ej7qPfDkMoVR>bWVoj*x$U zraX11T9Q5}j<9jfYW0>94$4A68o87E`r}lf6i%-SV8rciv2UOB!kyYe;2lXE`5)Mv zC=!&e%D6WZ{XS%<0Y~41b_rtx9R z3N=mKp|W;Tgx&&dZ?~V@1tyFU1ZtH`gAlG)9#=o}jf)xySv;X9lCQLNpZUUEPXRfs z9G*~$U^F!Zsas5@WBhqz)G}UDO46j1nA7n|>Fa_TV6+mige2a7F}3&QHpa}ftpI5t zD2onP27aga7zY|FgK69$Tc#+fPM`{ZDrPsso>iLE<-hjTskITQFiKPpkS0#|^YR!O zs&px7S@9=fB5|btd^N%oa6V6Fc1IDdBeByqX1{x`DZYZbDBFWK{)}`uK zyXq&3l}@ril#?UF>3nZTn2g1e)lBMC1gx2osJZfw>5q7GG5#dWlr<(Ab5fdGgoG%b zkzvbyuoY%l=2w_F%EFV~l%$z}ueGsG(fP2F9aulUR@IqXxqGE5P$)sN&}KYSKX0ZK zqiJeFmQdLUAVQVlI~(429Jyf3mEoAv7M@8{h|&_hL`VMsU44hs&jk#l+-ek3QU-zm zSh46xH|fis9>!r$GmX`(%2_oprr(LVAOR!}VsR+pP91WhpjLNFH0fGUnKS1g&B*2H z^$GgK2Q>2v(MbAz~_?vb~!KW^LRjiQ_7Eq>wwscVwnSn7*ChU(*!t zZ7tWYEz0ud!kSB!u2oc+Dg4DrFbIMqz&GEnE`BX}8D(x|UWEs#{p1N#y25-ZN>Vi$ z`K!fyn~AA&{wH8%E>*g=+H#_xw8B^Xi2x84>XIVnQZKn56Rgy4n7yHX%jud?7Mw=o zlpar)BPZZC>)s9&<`0C1$N^e(D3uirpn)RxP&*_O7s>0I&*&FS!qZS3)BsA4!VqsA zC&kx)<;2FGwvw0G_M(rxZR&-WoLnCfZ0XXJkY?o~z(w|t4j8?fG73D;j=jLR(~Z;R z?^P)Zl_cpKMxn79NuFHb&U;=RxyKZ=<%qC1H+~gOn0ww;omN!3pBv~6ECFS#01}y> zxQ)GV`NbSw)h7nhfCJ9w4bLsUEA7)SrEO~s<>mT?s(dau z7ci+CB_NZ1l3mJ7UJ`!0!< zf%~ZjQ$XHn!w9KWVW*`~QbGlxB|aiRA4Bwix& zrhhK+hIQr6CyCjnaip`B(e6prVY-z*V8G^LY-bjq;bu6RzU5eBw6t;CRCJ9u?(|7? z7Z#{fjs%-?@PGt_@`3Y>=NUadX~zkvTTRo^Qn?K_4~58&62U6m$&2rZ@k5U1uO^r} zAWx^H`e9M~eAfZsd~1#x>Ucau!HdvJ1X0e zF>|=;WG)P$M`>JnOx(n5Ls?vZ+{1 z4O*?J?lpB#{!xd2>i_}rrm-dMzX)-{xn4-!HCuFj+ik5n1B(*kQd1?!_@wC^zAji} z%y_Bg@g8MXnr5mW)Ldz@H8#?&WqQ9NM2Nlg+S7*KE$tj;mat&Gm0BLe3>g_Lo^%dQHmGmOVF zuj19an0JrV);LzTUnx;@QTTyTh!ZJ|fE^B!GEZ+j(M#vgxhHGN!TaFXHjpM|g{gYx7XE%jP-x^_*Xx$^C*a zv=!Gl?HW@^%q6vyf7@Ii9GR1+VG5IcJJ}N~@RAy3cxWk)g}5EFmC&-l*7K4U*aKFn z_*A`$iM7FiM0CaL*xzBfmQ_KWD>+)SdSY~IUo_=odNfznPK_`kAN zdos)EYZdM}eL7uFbxz{S>K{0rbA6QrqQIpkX2y`+@uYSl9joK=@Qo6<5{Wfdx0 z>(kw#39vu}K+`fr6K^}?$Rx6Hk0m2f2%tyl^j5}k#+jMnWYf~JTcxgbN^3yWw^qLr zzIzxJBYDNuM_oyf@edEU<1JIug1D{KAG0HRcsA$qlH+VCRg zFM^X$EJyXVJbH3Lam^(7x`vm7S*OVJHW)tvHl>+yFu-`rmsG2<+E9kJC>k@gtw`p zkjhF^`RrBZQ3f!`p2g~N{w?A5UwKYc2j6L@K=D0oX-2>k2_pQIJmKG$F2+A~Cr-hk zc~ob#>p8b){j6pgg(HqK&UDh9bp%R?Y^5X!De!_tfc*|2wOO5hMMT|0l?!EDK-#1% z5Vt^9r4u8USR3Q3dtS(?yI0EVINLK}KI=~D$zNTYLR5r}fPoT%Ni*;&*AoTI{g#;H zejuZyRa11TqhTvSSXPv!Lr~alCL|amo+yV@0|0+)72~6Et%DqWIuC~}%q7V79K9(OT)X$2v*tN@vkq5?oC z)0~`2xNRB7WDi#G>+T`8-l$2ZT|%`bO(+0#!ISWkEN*WaM1jG%6BKm$n?==o_YgX! zf)=!Zmcj87CJxq!<+eR@fXJ%53&yng8B{YF&UwO_^J}HdKlGGqNnvG0UGUY)IbWE@ zcDY@d<}{RfgU+qm#~fMEGix+$Z}lUGVI7Gsg0Wx{dQZ5g!D~$gDB&p7;9yPTMxY|O35M+d>sT*y5hS=#| z2kg?Pi?~XUEMX~Sm)4{gOJo+4tH!j6ADVUoFCKMoYh8;kfV)V|sZ{gT38h?j&JOLh zOcGPbBx-?kZkWv6L%pkGN43I4z)nIt{WtFN0!723gBNYC3SnqzIwJBZWih@q1L5tjz9EVU& zG@_4qNz_OgnpS>Sn3^hzaN3(mTGIz|ua^E|*u3}`gXyxKHOcb=rWI9AQWoeTI#o9U z@dA4M@yUD(QvGgl%TlL;T}jlFbV(nlsK;h!Sz{Sb3}lsS4=SPN5iPcKDQ-v_x7jnX z7|HcW-5oahwO6Oi$6M=#a2kbY`5tAL(bT0bJhhVHAwi%JK|6_qsZ%j9HU>xRtAr|e zYdw20N@^aVr=stjbT+@q2SHZJCNFc(rYin9*A`6+lrcX%5LtCp~Ctp%W2dTGE9(pj(^@Fc}D=%W?WUBaSmXo62&{I?z^y5nNX0M z{{XtfshNl%TFc?3sTI}eEQQvkEmI5EmWYDIQ|nLf~GyQgeZz+SYK z8A(voNRD8AV-OBLQ}kWi3-GlnQb+TffTOq4d0{P(?+qUXSmuh}d*O5KeLuVA&mn0_ z*5jqUr&45J(%6*LWsUIN6D)u`$01y#8J?bT>4Ee96?UGt-_$g;*_{A*Mx$X7`}*Ov zyxOCPbBc!oRHP(Lg_3+HA5nc)iZ~psErK^YaLM6KvX2!hTMhU7L=B9Cr}x*)#G@t7 zDj$74d4ydq5lA~oEqlp(@w(6ib{%Y@pp;_*SRx1jw}qHD|d+! z%_5##NS#SUOskf}TnW~oY4T~Z}TKr!AZLF8`)UNLKSe_vBuUUebG zHw9x)g($VJ$aC@-&XJ^LX*NIsAm`yucz1=Vcx}|B3Tm>WLR6mi5)z?cQc2!P`krwU zjIyUZ%&3xw8Y-t31tmIl5BEXy^n*O65yNBOt6i;hY;rsfKI%yt9g?gL&vMGlu(#f!ZM;>XNCiR?sRb$e z?>nm&zX$NLGm3;WNb7WJLBD#A^HjjnMxiA2F<>zQ%d?6)szolMrG%ld2tg=9R770} zNEWdl4@-2DaP3xMo|fFpYrWM?j_|tYi7GODJMK&;ea|5$3opU!epA}eC=9EMhd6$t zhpJNIn@Y5{l1B&g-pSnww`vx`i8!;u(la(3r>WoWlgC~HVk-41V-I)1K?`R z=DoDHRE1V0T8VTJ+GNRr8xl`T0!JZ<)- z)RF?b%`K@TnL!75{KNBNNtE$ZbTmpTs#6`+$RLKzq9$NtY}2#~XBlyuQA9?a`0ny7h2$0{2t@vzbq1d;hu2#b*^18h`W zN18uGhW+lNF0ExK*|n*c0p96fgqQ?IqhdZ?JDBAUJ(wx%qc^9jrEo)tbqa0U{{S&E zBYzE!-zYC=oB(rmI%@c6CZJspw%)$=L_ky|g-8c|AZ_Owu*zA7kJAT$cJ)jW!5u)aTA3mb=xr^>4{P8U{Uw5GKCtEliKt+?NmllMI^3E=ANnbi>M zFEI+cYS*X{Vm{cpDt)3j4>_+Qwwk4pp*|+tN?@3UK-d`C`{B2U_}_*&fdlw{WXiP# z0F_EzNQl&D`UtiyZm8bU(mvQ&vS``)n&5u_v3P3|1Mr+?q~#tOFTN8{15 ztuT|__%HRvg`IHiE@;z+p0!DHN8y4Jr2bn^peNFQn-J{dhqDSQ!m-`BsZ^O#hO2$8 zd{xzH7+LRy@w$#eVa_ON9Z`Ljw52z=ke`=K0q%t^wvo{~$eS77I(_i)r(UBR4X4+aKTIOG7^rzt(n6E@(x{IR<964G_0jMRIm1{`j1K51ye9t zXq1DcupkSNdhd>Nu|ay%cv~gCIuJ>PC?tW?{z>}zVRq0#Nm8XsDJJp+jko>5^2Uj0 zy-e~^0|cQm+H|Jd#A%UuKd02-+DREmyEIldg-S$fumj?Q=e`I?1tkdy<|KjQ9e3%C zo0o|iKv5fj3I71ydtioXNhzIrwy`2SxBdLY_*{=@0|g?wF!4%KH6{d-J}dqH*x7&s ziU&%$BmxYAC;NRcx`IeaTC{~;NWHyqm$+$iKs&~rpw9O4wmWhasx&P4g0$GclN)u9 zt~MbnLQ;~IB`PHBd0}sLQc)p3h9-Z1zEiXG%Rp6?5nv?zu5c@zE)bz4C`N*x5pGR|E52`t{cv?l-~c5lSFZSPs#26? zLfhd^aR^${a)Wt9D%;KxQne;Q^2YT9Z5F}~D3wR)fJeggQ~+R~zC25y3E2C zENqfQ3DS2L-^&HLd%`QcjlTF%wOm>!0-@eff*W28I@fJPCDM}y_}I8K$ig5_6-xvO zRt*8GTjL7lGla>LjfehNL2~tLjhj%IIMq-U7{rNCQ0s+l!sMni7)%Ug&HCYJw=BlR zMM4O^H3Ci)Z6Fy?z`1tfy5o$2i-B*x7gmdCL?z8CjBFlI!2RczF(<{g z65-``)KGl$INQFDTnv{a?~hceu*B|Xb=y+?@W;LRHj#l+;Z^anR03{sJDQ8VA`?^B z8+*w+U?S-z{{Zoi6!e=MOyp-6M=G;P++!6~P3H~ea$_Es3Brk71*3&Vp)-#SMw|oh zI#mN2uBLFc>OD0Ygkxh-35lFGd&~=calgEhWY1g{vU+sMOT7xrl3XD zk0cXp5jMTBlqN8lRNoq@akdj%gqWXPc;A)lNLb?a4e*&+9OoFNLB_aZV%ch)juCNi zak7`E38=||j!asG^f=ur)xHqM$y}UrCZ&migz<#w#)V{@7Uk9DD3b>stb>HLoMKOk zP6cyT_{?gh!Li17o>=o}M7GBF^1?dLmN!bK;~u%8a#IvHpdv(ZCfQooG6b>B-*dOH%hM{PCVGXpp-&n zTM7XK34<6=Z-U#E;qaDg!;fBLlg1)Z)UzVh#*paxaGFT=3wUcMRCzLzlZ;jzgM!@v?1kgxfl| z`gF#@alRNNUUca!3>n53Z4>jt9qFCEc=ue3j4`e#cG^&`3>9My%uW**O^o{EZu9{F zMjY2AmY(TAAYnwKrV?dZ_rXl00~jsojc0_bNsEqHK8QkN12U0rcEOAgk+#_M@`=c# z!5)}Kp~1@-x4}$<<$<4boa36%r*nv2_o|rcaI-4ZW6$Y0E5eH49F*CZHSgld#_rrxPd>fo{@vbFJDKjE)cXpXE(;UnakHLN+j=$?)>qwF^xbgGI79K^{y)$ zl4A=YuDHg~0%VLR1e`UouXn5irZx!ck5ZGd7*)3UoH?zf<%Nkr0274}HSLT*(t6`< z1fB8A)q=~6DBnD57o2X90~|7i%Y9^-Kl6nUd0`}&INuzW=UQ2_dmJv6z`&^63Z+nF zVura2DJzjN>y3i1V}x2TtSXV>@;G~3hm^V&LEjq{k}ZT&DO6)%tvAD3>%tc`SM{mx z^9Mb5!4&3EfpZh9FnT$x;HpJtoGe#0(Fs&OPi<}=%ND8bm;tlBihrwa;l3}H?bnHxo+ecMU4H)5EnX9T6PrNkT+O+-!O0l1@WUJ`V) zvSu*tMVCshF|8db2M*L!#E>Hjl4HX0)V!w41)yNYvVLG-`U*o5Q-?+PhqkiWuoyCvCzJ5tI>hjW(k5DLps4Nh!<8mNNceF5Ns@$%rw){P zK#0?idZ)VdNO(*XoIXrp%AX*J@Zv*Dlt}n~*fkkcm;(~^9l1TO1C+qlQX1G`%3QRY z3B$`-R45HNHkT>ug}pVCc}=vL5VVXsQ{@9r-%LADei<6Kpa{AyXWdRAo7I zn+Wy5?`6cUbl7c)EBStf*l&QUGV)4>{&9i!3>8(h)>8`TVr0ij<>!Iir|_&d`AqMz z!_9p$N<@zj{{VygoC)0q%8Xf8CUNW%W|L&bLT7r7NgxmT#>kxhWe&8%%=~PEQ5Ps3Y1>>D?V44BXW+{Py$K*m}jh_(g`0wfa@BO7&+nz zoCNx&X9KklO{uc3oP?PeYpO(F4|Q?f{{Vb6Rx5FiYiy;tp*FgR6OBTQ!0_Qko>rrfzYgl^O>4Zq%nI z0QK#R_mBn78ijcqIA+q6=984>s<`Kb*Iag-HY&W8TN<+-%-D)kFvWWPM{ z*4xEjWgT4=H14+m`BG~jQOhyH5`8(lMI8Ni`k9Q^3Z4#AQ1mio+78puxWA(x}sKO;W7zbu&c?`XZCTRFmNsMtB(0ARW?RE z&_S8T=^;bU85*}ZdjdB(Y}%w@K#9gQi`Zd92E;}wYf^hHR3L6KiAgA&D3Bv*k@v>I zMJ@7-P|FB*j%^^QLN@#3MI%_h%LFaGNs;ryYHdkaA8a|TwckXFl9D>=+UFh=X|W#+ z+pY*rDRnYAY<+R!P*upNf%L&H??npW@kmXTxhMDk03UyS*psF%n@sxo`QWzNPN~&o z-qCT_%jX#J#0HiCjO-vUx-(t=g(u)TY)o^xMTBn*P5@>y5&iQf%LMsFQV#qte*%DKTKU z0Gr=QfM;*q<7OI4z(ls7yWM3+(|?{8=OSy5Agp&NQscWwb9)Y3NcmwSMz&HE3Y1c! zl1|o(o={DPpG+#1Ewv>DYEp9D zOe#xiO0FdSU+?n5N>7b2b}{1RC!f$_K)jh1h*IfRr9nE-kW#H6NYyer>~PgrLRva> zD^hRb0Lo@>dtfTpjyRx%a3P&KRn*8Jnd(4S`NpM16)79s_@vr-gMu7*HWMH#Nr;oA zj<7F2b2t^!me!IMpA~}QZR97@>+-=i?Xuj0J17dnz}SrHm4Izz^x%lDe)mw zF*}76nBVJ-c$&!KFM6ZX^d@P;S(Hy?ye7v9Wlv@)N@%O;N~zsxV5T8+H;aNSBNEKP z2QJLgTGj6rfljy-K{}wU$%!I$UM(Y*sdQFe+qI?OwYa*%9&j(3)~PZ99xD$$@YmX2 zP~*8PnX`2|l-N}{)Zsniz8+-m4aYoU>b0Am8*~c&FVp=bMIQaON7+~0Lzt(FvPy)q z^NiIpedM-g=mJPP+`$~k`P!t(a>jVJwN&n%PGuD9s3Jm6r%#0|)3Tz#$1-s}%&Dok zRmHngR+n6P3YLm)OoPmmf9rU}bF<9Gn?3Dki7SvpOx2c9!wOj;q_ENv7yPmb(yPja z_l$WC*OJ}_SJB1+VB9irseHqUSCjDGV3dZ_Sf|~m6yng7lc{7(z?s{ZEC-eLgHze% z4Q6FcP?c3xHSVZDD%GToI)GUO097}Myu_Rkjt+9Oj%ul$57SdEPLCbRbu8HPzTTZM zj~{k^=Y!;`KX)^nsGDDX6{#LZqF4VrIMvgMa1+6=Bf0xI~?FZj?8n%RD^-8 zFtxaphSCP}7uCI@{V_>)+*{#H<+^oLGT(gCTq~aoD6|zt?f^G~2H;#`T5F{(`zm6R zK+x;t-wHLvbsURK6Ba!vQGqyLY__HI*=_*pobnPDcKq(r5 z1QFu8KpT1C^M{(O?OTfJY1l%QN>>67j_Cn+Qtl$xB>G^k*0ZW!C+$@^WN3eMgkEx~GvLw7lR- zv>>X`gqTr}A?1koY+bTbSLV#qP}0)-zO^Z8U`p$r1daay``SbZ=$%Fc0O~*$zmP32 z5sn?svy7geqq%Ca)VQJ)3z}9w8(QiI!_dYZxL<>^Y9IdqC^NOKEm1b4QZSt=b;1BC z2p91m3`m68M34wHxvjnKx~v78xxj31Be_g@rfiN0;D2~^J?&*dyK6$ACPoH7KO0s$h5r zM3vG=_YsQ#DwBt+DeL&tHLA(osuVPOo1_J5*5OboDv=kB`uSTDJ_E}0E-B8C)5%hq zN;|gOJ82@&I#`mfN0&1H0NKy8=*zfLk2ZO41!iB5PJ#}lpr42*r}y>6lfXThHr8YB z0Ird(7h9)M0ECE4K!q6aji;f&>NSzkXgnwA^e?`nxH&?0ec2{c!|JK6t7TcHV(9N$ z0IS{Tn*i!s!GcVU><=l!4{UsF=6^!gMMRG0C#Ng!f)Y}y(?9n#m?0yQNJ)WUo8m>< zUu}6e17%I+*-}+mm=dI|rxB?swU*+fPv(T|IgD34KcBb!VKtQr?-c4alBp_9>;RHZ z{IHm2aT|!h;T*90s1>&l@FIA7Cv8qT;#8%TqLl2>Hwsx)f_aMpwgJz3EzMN7s-OHk zy)LRDVZQWF#keuj02rL`W6o#UqN^IFQ+?V&Z@ryLNjibNk034}e6eHYJ)G6&`C?nF zeNHX?DLT+nhQ)|L0wUMnYwdzM!qa6FbOKiGv-&E(g19Yaf}Q25wrNxYiAX>l;za6E zh#&w7lNa*@V%O~Vw;acUUo7RUnl@0lZL}m5tyTeM0K6XvyiO;p>;VUa=_uN%WGYgp z)>~4PqLnMagvcVqT#zJ577;VbJ)fx)l_VCMY3FoESXYHg>Or&*p8W)&+V)BL#f}r5 zp>$vda-(_A6(^1w%iGPW8g2B=T|@7=32i_X60PM#7)ZQpw8@q74koPa4?D|g)>ZB_ z?dxbpmePdS&z1f^O4AK{rZCokZ#AB#u~w*KjUx!&Qz7 zW?oXd4T8InODNwv&^os1Z=_z$x5@ZYoEdraYE zIF$R+!DxpyNC=f_x&YF|ir;9T@*tVxK=G5&QOLInwl5~|=q??!t z({e|gQoK1x?MG~tS(08#lS59rWT5IEDpVUo7HhyE);U zqM7y(n(pVneQGJx+Lmm9Kbi;~B#|;s4$JdwyC_9t6${ekZ9>DPCe0~C_lA8zJNix> z#}^yq1fOJJ?!i5llr(AWFS7S3Ttcbos$5k=?IzmY(xnv40VYkr#5*|cK^!feWUs7y z%av4ZwnSe_d?*Bng%u!;jrm^=osIE}*(;UQbW8_a_lKFL)^#MQX}kbzQj_UFd8ce% z&lEXd1hbkjd*)GFOxsSFJ@S<(TD)JCCc;Sgg}fvRH#Rfx;HcdoCYj+>{@R(kc!!Gk zHm-?}{bd?Er$P!;m8d8Qk!uLre^`L_)y7oZDa2V#dQiz?k*?@1#7bOINGl2iokVlk z;=q2SRdJm@Sy0klPFB;;FyaN)wE>|$Ak4`Y0`N%!x}^4V%(%rBRk?*)97+nB0K2D3 zm8aq*S5%QC4tAZfL?i})>c{X=NY@kXANLBa?8btNIb%4g&9gMAwXeQm1;CWaCs8Eq zMv-WX;qC6&D7aI!N@{$foyXNslv6aaxzNc>5RwGzS6)-g4jsMwH~#?8yi>#ZMIuz1 zii#moSq>iQol&QAU{k1=j0?iOo#i||TB_xmjKZ#w0frJ%l(v+g2~v5TGh-aFp&dL} zHVTc+b523Q%CtwK#%L`id&0v$0;g8Qc|?0H7?;ifg()u^2cfMZwUM4 z1xLIw-ReT22t;_`2r_?uc;z0_G6itneB)~pg&PqdCsEq_VUf3P2V}|Hyb_n}QjHXu zn%1o?xTL5_QG*=7^&VD_Oj~>@oz`bnjIy_1O)Uupw5*ciloerphSM?g#bMbdPQ2c+ z#u`GBgxzKUfg*1r50{^;Td%OXEWQw>YGo;FSumaE$%&FLCVyDZ*EY^mbWFu76FUuM zSw#=<+H}=s6%VD_iiC|wZ6IusHaC)^%nKMZILq_)XwuQ8buM@7N*{N;8lH54;kB=A zjjp!@2`N+!)JZWqN!w$#EiTPFILcYhDC(Byc}YzUC%Rfs ze4zvsos4;Tbr|{gHH6c^sBmLh#I72;y|7}chw)vLMh8!i~qlw4bB zjrQtsVfMG#0rkT7%$wzo&wa<$OL;`*+zJWFQ%iesZv`hWt3`eV2xc5r}yiKKLWJR3a+ZI zt)~0e7CW$EP?8ARMXWcBNt)voaU~K`7)ourN5p@=9W%}vYNCl!3KK@zk``qukOXx* z^}}P8(KN>=bTYNF5cUofKQZEVnXYXpb;6||936z&AV=$o_DRFYt;mIA;jqewc?D^0 zEePKCi+zt=L|*Kj%%CQst)-zg5TGJA*pDulks6wn)3ZlLvKvm8iit9*JmB;L%HC%W zk`*rV!$*7P|nS5~3uMWA=SOv3O@YUkXQ*G%WXjv*Iz@;H0(7_;i z&KUS(h#b$UWi<{Zogap^BT|+u4DVn>TK;&MaE3zml&K84Sx(tZpcI`7n-ej#b^O0s zjt18XDa>=8{1ov=l;r$NPM2yaUTUxi3kV(3z%y&eK9PX)42qe>CBEnYkdfXAQde*U zUO!L0ov7VHJVKVDTOvcyog>f^KK$_{ORT#{-Ay6y5jywf_LFT^o#~1eX%WcBH1|DkDk1 zoX3l6TGY&($~cylmW?ZIydztF85i;c%j@J~CC0s+p6N@VLYY&jg4&XA2IA(xM#kIT z_L65uC$-{_l<3{f%`FKer{f|3fv}}?iOmY2IZ>cm&J?#49{H|o}8~rotSv~$oTTfEbPLhNz zOCn8)1`WKiQgNTL=N9lIDO2<{&-Z0oQo;*~2?^9eDKMLPo@Z=zreoV~Xxm-eEG3tc zR2HNyO|3TEkV0eSh)#L!9h_z$(^giz>Sy3|9mV`cchqE!tT{l&+&bMyLq7Oi3z-bl?h0>h>iTQ0pm>PDH)2r$&|9%q<~un>WfLefIE&{ zv7r{AoISPlSh}q!jNER&s;nQYdEXPwl?5VJV%~p2^1$MjlC1Z^DF>VonS;>%eSUbE z=efIe8dL7H%2LvjSEotx=K?>J#Nmzp;fIvBDZ*FCv_K^Kbhqx)M0w$792(^@ROD%O zdeE)!2Xap42e!k?B=3l!lDdvPmsPG9N~vljZ&p5 zPM|{PNc_X+fkI7%8cir!K+=~+z(76|7azaS;ntHbGUC(@n3FI(T)E-RXq>sc%CS#XR zUlIHKm7(Ex^Aw<{DJV&uqSm(m0H!7UDZ#YaI@11Pbf3teGVC3TZHdvJ}NaWK`Cs5ay3n-{9CRV+Y6fP z;HG+NAxhMd7zZ<}N(PkON*zV7`r-46(uzafBS^mg0KYs%Tq$izKR#IQ1*SFcyp$Dd zN>}qv_#MNkFh$fRWLW~Q+8P|w_dUp#qEsaNafC-ldv2THBs z+6O(p^N(2?o79tXBwi+POP8eS-@_Otl2)BZ9wvar{t}ymf*E5%Bz!m~q1>0JKsN&l zgxx^ccq~GU)64Z<(&$PUx!)c40Y*JFI9D1gV+a8AES2G*rQV103z^-YAIo;^Z&;U&w`>nl<<2*zp9kTJ191AJxFoKECpgo~4=_|^$V z7Fr-l!ZLrZA(6CKyy0p$#=ycciAWi<2ODXP{Ouc+2w*=uOx#Gbh+L!MP&M{BLf^d>o;m4~W;I|@Mhe_Du z(&0StijI>98uy-9?aPwE{{Sp%Y5+f*38`{1o#7Z@d0don!bB$;1t@aIn#nd8*B&Yew8mj9Ok-6lMl?}@gw(iHlfDV9OmbAa1AJ^318fi8d1F;N4&dOnE^04VhH>aK zfzavGV>rO{ZKV1f4#mzyV`LZ`;Q;-vV;cu&XvY?=YF`^5#t_yq=yT5=0ZW{S3cZdL z25=}}Tx=eWcs;AOqJoD^ZGqD4?}ZSekrQlp2$GmlE9h`GwI59R2`w1ggxs7c zl}(NXO1X?Ghd=^wv`%fKSvQ;#*&7@N%CNdzNayv!+~v(^MkP=%yDRg+NqX19%sVH1 zEpY%8a&&4MNmjFb@=A6uKkg#^G`& z=y1la+7T?6ykMpkaeM;9yp9WHR`VDo%}y+U4B=4hCjvC_(-=`J3RKP*0$hYzAU%7G zCZXOP`Qy}yI9-Zz;Z7Km=A_zSj1Y$4K*3DWf|~<{lSmD*%6EJu5hzSXHX~S*h0Qof zf-Tb;hH*q~Ny-;o#zfzuO7H*qX$f!9>U>Kg`#k3wG>|u!&G0z*Owg&$ITz2GbYLimtfE%1RGn&Yd zaSmd<&iFN~&rdt!w*~04%9t^m04{JquaWU$D#mLfCj=uj1We<%E*MXbSEP;bE7hf3 z@YcM?oZ%NM=bk%o3%O1YR>6{I0=<}WI0fq8JO@!-(+QEujmHSOy3l#x3Y^1Eslc^0 z#QtnI)YjX4PF#y>E&BN;{&*4kxxfzAX;ue%x<>PazX+PtTlL*e8|v#XGl6Pz0GrSF z!+l0!Dc=+BOfAAO?7~R^;3~TKyxqOue>jIAW5&XhV z_zn8m8{@}46Izt5tMkK6WmI#<)ismL4YieH3*L)jMzX5WIBBe?w)k4Eqr^@dYN|lr z3wkD@YZeuT>V@f4V5*mA08}b>`eJg@O7_Aj=!=gZa)E zrddp2Ow8!aod@~O2+P&3#9&ya_LT8RqNGT}r4w>6*_WfJ^25yNAB>z)*lOJCR20pgrHkwml3_EE>9N zNXLm_ZG|}6ph;K=WYdq|JRM5J>@l-6vZ(_O6tr++F)WUx=v+@LDCtPFVdE~KkvP_d zh!{F>`Iph`F*DwnTDGIh;0s~Wj(|?sT84lTwjC(w1}5cCCNhPl%RI2@N0vZMuw@=! zH;g&Z<)c@_k6O|)lVqVOa>)}Ia-zz05d#hs`D7z(IML<*0PWu%a;Rz>FUo;V+_2!B zlmWI2qooN0`(eeZaHiy(1N^ER##1sffRpgw2GV6bzSwX@9PThxGbdIjbC(LVJvLq4 za>Io^5Qzf{A+BcyQ?sbR#PWGf5>^6Dsy>4XDwjyXwA7(H;bl@tn83C`Ib0s{6C>1N z%MpQUGQk#4*AfRPh~!s^1wCuI17Z2m&<%g>nMwAx_+1frjba#oFurl-qhyJS86QfBA764M@)KJ1kN9p z!)T33)h0jA1A2iaa1ub}a&w&+BXVgp#ZCCIi}axb zY&g_7JWxGw-CFv#j6JSHBkW-{W&%`W4UVj+k*5xo(p5aL*;s8O6gKLTTQJ~+B}4#0 zIBlwICcxpwp;DPA4V6xTa(-AXq|$RpBLOzlohmYL4MS;G_%f+US+T&XAnF5Yj8N8& z6!J88O?7O7B0jifuBY&s#Dc9MONhf|b2@>x9aNLJU$sVRn;^)*ZzfZRn)+be;idLU zZG+@xc-!SRR=5Bl{qWITzEg*4_RgDg>xNq8kbZdejUAHRl7&%&^TKOUiN?;76Ko>2 zlAJKLA~1iNj{q%7~h4!fx1#Vn;b7NO|ph6bdqo~Y6% z1Fo_T{P2_RlY9*0fji;Rf>4(u4Odfz5l~L}Z$rS^aH3X4h8`NFdObBTak^?RIB!du zcRy?_+nPxGV6c>IqnmbcvK_Qe1537?EQQJ2%wV@+1DcLQwg(F~?3)}4(bSwQ#m)(? zNs)-=9Of`WUyDuxL)u38-7kzW%6!^8-UgeTY97Fy{HJ_)nt(arP8Y7R!Xl;n+~8%o z8{@^i3TLJVQ=G}d`hj}Zlgjd;!cO=R$0Wq#ca&4H!U}M8zg&4?F|5i>xIp#6 z4!fy4U{wRE`0=f@!qLLf(Wq^NR@qW^zbL^f8q)w{P@ba=j_U}EXe3%qp#K2Q7HP7z zTjIveX#@%Ro_JoFohsiHv=oBpAZRoDe45{VzCCq!rlspzr$QWiSc0+u_YZ z@Kiz^$C4ZS;d}`e|BT9hNAlP)p44^Fwno1wLR=q$4fGn%? z!7MgVtw8vcCU@T$8whBPN-$zQKj-g)cfx79rlFf*N^Wnwi|>E!g44n`wQ0j?RqXr;_NC0irPBmLq$w)~ z2)oh&U_f= zZJ0em*lkKn$*E|p1q748Ea-BfqVAO|S~Y zB?01#CT8Y9

+bVOsA{4I&nhMK91lr+pR7kEA*3(-!+2M^eM?Ew#|N^1&to0*sdbvN@Z6%jKbpluN&dxx0kB8ZF#E=8Kb9t zmSp@&N>gxPZm8)auGsQPh9ex1me_fD;BcZnqpp`Wew|r+H15|Xr7g%XkdmEBS@Zzj zKc*tRqHzluhXvB``)$;=>vc-ZGe=NT5T&T-Wg^5$K?)@7JUd}-0pgFKCXjgLCc;sH#Onby}&FQ&N|zBoL@lyh@KEd{__P5gR=yo!NQK$QZuseTuTOch!T2|iXkPC4hb8pe3XwVc9&k@V&i^e*=% zp&tXuNh9VrOvUCP5g5EP4kluS+|it^KJ48R7f9O5LWn|;g0~ej;?hi!d+u=&?CZ07 zN)8#UsHG`IMq<4b%?0XO(WHebMrA#DeL*9koHgb3_WuAWlj(_%Xg&KT9vb6!cvFGD zf>2VrD()9m?Bkss!f40%MQJhb~jC#qcEz>9&O6xwyx<8_*rPEjZQ0^ z0pgvocNunk*9+0I-5n#9FC_|kuBszhM&Nj%A_V-8n8OA|#lgNF%nH};xotQuR8^J4 z&xb&WlCOtY9B) z6zDLNCSp`Vyd;o5s=e`=>4V$>&3IZd>B|8v9M?Z8PVpe^hn~Yb5PP&# z)C|QTEw;3%I8=2GsU9K>9Xz??u=@=5R-@wT#?;e3??IKf2m~cMlt#+vbl&|=3EGU7 z6J&jWLftvT&H?$!P>#gCpK~rJq08HKpxrwzOTiLW>D97L&Xj}eacda7vcF{WU7d>h zhY~5YC^bqJp7f`3q<~-p1yZfLMX}Lcp7vJPW?U}cdrqo#H=(x_DfKNXUBX0&3s;6W zCJX~OL$sbU;m*tx-{w_~`}@*{C>^O48I4ghateZ@#S>v1_62wZ7aaIR>4_Uy1rGcw zs*ABIDmPp!cTi6%~aj0F&Id;!+kuhl|9U-bL}N zJZ)XXwJ%n@RopqL2&QQrc+#-V3V}0dI9Au<9it?BO&#)gE1% zQ>KoCxuI++N?Fvkl_$WEghVG%QC6cDAoT&qiui53#+IG`0O8>Wz-dC)Dq*E5A!=F@ zN_CWl3#`E)nG&2yI7^3#u5riG%PuyuO)3$(dYL+skaZ_a%+0I`lnw}657WL}QfN|A z;#%=)aOwm?^%TSrwxQ>7GrLeYY0ttx!pKFuex*fL?Dw-A%CYjFeRYL4vZYUjM{%oTu&|s`*(l9uc*2>Y%72EnOs3L;Gz~-$ z6bR&)w&0$4>kicNYT8$+a+k;r=0R1VZnmX3>nJi6aC`vFsy`u#gB2%fU7oKfsII7> z4mw@#+wiQottub|k_-vyU!xPDa*~2qtn~0ahxx$p4dwL?G?#)?3qqDP1)mB~70AqdqkD{53%YTK9&JN3dx;9h?5iQC z;m*%kcSelKN=;BC0JmKO!~u&9JiNNb9`jzm1-SK}JqIAv?Br=f8$33UulAYRzEn&FBn{u!uR-^l6c>By*UUhq`nloF*CsOi!o zMW!T=Tub{D;?5YQWx6(Ub5&5{(3R#DE7E|QNfT(?l4GAj1yQ}RipuW3^Ro$;*-x^{ ze20Q-xQ~eGP^{6%61IzlNot)22Zm0-0-aa2x4tKNd+zc6b5M#GDSh3vlKZW~DNv4r zEJ=vBA?Jw?Y)Yf0VLj5(Qd3Q#1$5<2FhMGmAlfWJQ4zmPG-Va^U%TKh`{{Sij+s;?Qyb;1rQq%B-9(kHoS#Q>~ zrm0y`H&PG?QiXJ14lnUU&t$JJ-D+?TeT zqLtc;_UTZ`OKh~+LR3i`CPbfy*7q2p`+D|9%{Zqys9JM$=M<_61KuiD+8VbcsC+w! z0&Tt(9L>8XzN+T7L4%(k{a-BmHR5IVTg47JR>65ILYi?P!hn&er0pUEoAZtFb+yDi zGoCgd_v(V530yZSX-X0%_97#u_r5G%+bxX=RGzlN^%1sQw9=wI@eHeLGvT#l^^|V6 zUYg2!f%rf<@B_{^)p(K17nfqW>u+Urn!&3}K|##`0+nnoZQ&--y#E04<1Ws-Ma*){ z!8vwv>%GX*lir@M=y})i_5ZpDgFaoT5_f2)7331EJ!INTqv2mT0rugVd}K6 zjM4u9>eSQBBw^aG-Z!qVsbR&?zW2EIsgx-SJ>~Y9xJ<~nkgt%8(J@&^+n!SGbT>%) zlUBnz$%LhFpk%5*IxQhe9E9S}$;Brg@C)AVr8Dlu1fKAvE-FC;c#MGnTX@57Y(1Jk zPnz&!$$6bLc}q0qw#Z2?6osuSR;%fmCwuNqg!`GZX~8x>WIIT8wBH^6Q{QXZwn?8> zy;j?l^r_IQnuH_7wP^uFB_ib@e4t~EdqS*N8fTePQg(m%w8a0 z*BNk_<0ZMi%Sc=DMJhGwb~tl3Zi&4;;QU3d2ZNyX!{$!nvqzg!hNPu(d{ZPVWAvX- zrXzeuRMj47QC#9>Pdu*W3+t#`RM&NHfR@l5JzR zo->O$`P|l>J;PdQnIsVqk~v80KQBBtK^lu}ZbGSK6iP%feHNxw61p_8{+7YX);Xenvgq;{c6Y?PLo@B`t2;+Z;6 z*54{B*-aJvsrWmbe#%`^+MLfEG>y2;A{fIg58CPPzPz`2Zsog1U116JGrO#P1ISAV4CEuhSXdL-EfeAWc_5GU;Y*@zRjtt zYiXINsBJ0@oezLWJgi7Fzvwy{t@tChET)Ssa+Qp(naYF%D|DzRiMg_(K^DJFqZW4x z_MexWs+=wAT(w|;x5B^+NU_&E!Q7bgoITbXbxCobeYwi~;C|C`%$|jo6#Xiy8-$b~ z=_xVP#`irWZ;M+X;)*sLY1CBrA!ruXpfwY4M9H}6&NsF>Mb0r{HEfKz{J$|}_Y$z} zBjs)wI}sO8p+66vEUwMCu7--8^ftpuQ_D$0`}Lr;JKt8AzvfA?jlm)pMnJQhSH|i% zE213Y+IrNbO&M2(E<0#Dbe@83^}wywe-o@zOei+vcJCcN5>GL2&=2hh;jSjB&g%^` zVYPd@AP@s;F>NVPPz0IW+s_it9IIvewkh8Qx`e0>`1n$xzT)5W#O%on% zhST7g?Dn{DvCap~GvJq$mTDV~$r@If^HKU7SKXy{IL3CT8C4}hYa3sUr(T4aAjpLq zTdZFeZ9iz0w4o_wY|@nivEHykO}7wI1a!Ha5WX&Rim6;e=_uT&WTY)x;E7G3fNkaH z>4iH^8r|fZUiDt{u(VPAe|5_IZS2~rns;9rBQ)+LN)}3rR-!iv3JEvr1}Hu%>^DBn zv*#I3R2waVlHdsJwoa7_Ekpd0Ng1prot~W zXPLg;F%9DG0n4aplHOYWQ%79d)CRVWl%$?SM0}&|jb~~jek_lo`R95y9l!!UZE}4V zv*!=zZml$l&9xv*IGDA-5F#u$H}bz zJh3n1q+|B9eaiArM$>KF`o95jgPnuZWi;zWL#as#C&zB?{P4+J*v?Nv4MkrNg$A=Ms+CPaxpL5NblnzHUJs9jYpW1ZPL zbcAZ|fj+#pyj$<74xqSEE9WNAWV#_^=L(R2E6WtV?vA70kdly+*x!-AUWcX*$oo5T zzOgCLmXh$&sRYP7!QbtRYbEwbc7nCHAABjDX;HWuMEp=xOaMVMaXTBs#}Z|YaPMUU*fktq;tjGX6zL!g^o~r?TpfD6dgc6x&l^XTVK_UvF8* zWyCKX01Z^`T}r2_P?pl5s7~TMT!t(T&bv0M&NDT4=+cy=*xE=F>9zfFKFfO|qT!6u zwGz!h2S5Nw)ysX)$|P@#YlHX=#$R8$(j`r)(Ft%_F%dJ+-$=>NmP8n z!bgTy%`}jo2p%MW05R*=_2-LEIpJk!OQ~%^3h64;n*+{v5JU~}3P}J+l1PvMJ8pO9j&kVq?sKp) z=dyy)a3j_AO`$3O0J+L6E`NLMF(j&`r{SEHNhKl1YynX5Se-+l=jb|^#e+|fH%XEq z(!g(06rm&q3rvts+x&;5()@E-Rm7RYjj-ODaC9XEh*AE$$s0}^9fsLP_`^*CqMS*Y zDyFegqOD4??)VL=1v*L5=m`>ky|A}c zaJ_Ba6(6ne4dYRfc#l6#uq$jAPW-MuSeZA$?o}sL9a}^n7nO{4=gZRyWZj&+5Y4o zgabOF_q5}{@>b!|wAy0(e_SV&#Ws+zXg@Kcp?!iYgp^2X&P3@r~&7Lx9Wwef+TxFM#ARu?pB zS&~iq;cjv!wE$VhrLIQ@R8s_4V0AO7!5AIOoX`p!qed|x&9F~#18jH^A|nZNf+n{K z9_~l$jPCsLx`0Zt=nyTw2XgA9KXx&n|I35L`<23goLXzVJ{HP$OchQuTzE8EZgcEeK4RQM*bWM3>+$# zffvA*uH`Pb3~w0mH4)B!*hNkiZ;vtCM|4QO_tze!$mjLIsVYv`_q|Zx1F>=~FHYZM zjga=N1P-B%(&0#fj$DpIoTCaQ%{Csm1rMF@swx5B0_EuC7w-rCxZN&-a1VdyjoWrk zJ8Jg{#it64$F3Jd6vhE*&UhgXfNXHS=uwTmqviL)$#-4Cg0S9SCz`%djhc4&70JmC z#en%75X!(-_yG%%BLuYM8{uo5+$TzRJpOnshb??IFzk#N!;{Yodgi$t+RV)I!Hg3Y zz$_U9`rxMA(~lZa2KPmwdQ6OZw`5>&=qDN87{{xemDVt;Z)q45FRnHVo_HL z5}V;r)D7_FH6_Q&7r3;Y@twfvFjsTs_QuIzoH-|yDru)1icuS2*6D4wH}`lOW8J8e zce#PM`(qJI5@Imr?(&>!s(4j~IEr0Wlqyg`wiZgcjBHp`MlmfB`ElasWKvq3*(U_B zts{I2(h5f0@VjDFg}p5t!;n9A!7VsN$-qc3Esc`lpNniQ>yg3nFmd9lFB@P|@Je^W zYN+Rg?nAj4Dxlcobmjyrd^ehb8;m05P)V8l;bq9G)8jd@Nr}NjHR^E}{vr{1#>ve< z8~yM*(%jM%p&6`*Do@uK=4v9x5wzyOZgH}+Nc`g*WJJ+~^yX!&V}R;28{xIw%n!|g z-^^yyg}KSiYH_K|>~IB6VLbl$1^Vwi2K9KKiwSd+Hrg@F#&9J@XQu#EW&kUE15sZb z?}WL@fuJKRb1<_LhS&2WJMVz&Yh;`@)K?MD6S>HDCl~V_UYH7_Fp>(A-+{V*f01s(C@j?IVH2)MI270Y!Hu6WHO zt`gR9n$MOPxhfNR2OA;CRj`^?V0z5URRP;un~ zmgAJKd2A}vlX$`yRfOz3u=XKwB|tM~fBR;XLV*GZ%09&KAq08{vDX zBNEiux82iFdii-R`DG1QYN z@Sdq2(aR1L&g#Q8GlNjWoil+V*e;@A*~2>TC||CN;E(r)msF94VU%vB0b#B{PF5mICH*ms(?;NVe%xb{J6=@9A+eevOOHHCXz2tAZk&;_pFJPT8n0I5jdnZ$wGB&5IwFp8KOukyY< zk;D*>O(6k8^E|Q~l07ihQ4{)nidq@8^UTpb}$k@S3Y6#u0v~ zMX=UcHig2)6{SIwGxER{$_PwEP8W8pB{%DQH&)jL^TW4Z6zz<)$SU#(Rq)MPxSTjt z)q`Si(_HBO*fxv8YySW$ZLTsECk-`&QtgKdw}CtT@Z9^ez8Dxs3Pcn3Okh>HHywVs zBB@<43###NhBdfDxnkS^k_HE;GBN9}^yP$9twRhAt`eN;z)3u=SP|rscfn4Bre_1Z zlM{zEBWWl{Q>0*b$Ob0`KV-%MeoChY9RikH;U}(DY%0^7jK&682sb#{E99IvauU>Y zPU)~S{V=m?Di_0hOC-(;Vc$G+l3dhc7o>xNT3oOH02~5WsLcGZT`QXL%}I7qtf~xQ zbSf}24n?q{T{H9g;j|K*+X-z%nVVx|x>Im)fqDcSXs2&D4y7+Pgjsq-kFFB$(;J*1 zrwrKRRJ-T($BuA0LgAE3Y5+SNXs3DLbv#X{8Y#j|U=Z+>QsChw3o3cz5N8^xzITjs zYj#&PBDLtka#Ri#?zOA>VOHsqQzQN`(%=#81rCaHJ9_jOA(}9wac|QbKx=Vq63ZrS z&-BA%HiSDnQX-8uAbd9GjoYP=N=6G5;a@Rt_`=AeEvDn8`r@I5ZZ!ZH*iXOOgpHjrt$12`rG< zQ9cxqZwHth{K&_zFhCM8=CuR+1Svo&pUpELzhAyFv}vF3f(u10h$%_bEf_&phAh~zwY>5Ecc;HSn;T&$h2+0>FI>rK$Tqd z=WmqYwvP#oaRUKr6a}I=fxM2k#;KJ%3QAItm>_S;2k-tA(4x3VlLyO|-@hz+r0G-< z8=G^#EH7ypM%f9$UNoYh3TLFnk3+XFOev-ekfk3AqG$Foww)26=~cEDk1S$WtR){3 zNds*#4?7(iEMfX(N|dINSu4s3dHy$0b3( zrT!dxf~M9^tw}K!H-og`IN^Ba4enTSyEJ@q^Kr9<>`eUbUK8< z0Z>fa!a*O~8akiEBp(v&0Ng=|$7L66EkPxp5I>m*P?`S#aX3lTAR z9K_>lm8`6#9RBHw-NFXiimogMPYN|&k<1fYOKbAmtT z%J?PD_*%L=W8znUcu5kE-M+Z-w3KO7l&LWuA*dVPPftuJ<4a`;hSZ&`u>?VZC+Ewc z!a+cZ{6ecI#65TV`db~E!tBy`r_Pg9fYo7BicyaItm+ErLAmS817>*_ySX7@#HtdK zJ`$7ZasEyLEb1u<1wl~&-=3MDrVXKeXenqQ>C!A!0!6;~=H~<<+B>f)+Y6mQmjO@2 z1kLaJ^XPHyZcODuo2q9=eM#ao1T7@V8;SW~#!`x(fi0_16K{j>`})g}q-`~hB`H#f z7PyO@fhS|Pp*W@%QQVWdjaplV>V;}qT0jlFQni`*2j-ZFiTh)#I~d@0(ZUoNsZN@g z1Bfaf9bf^VX+0!LjDB6<&nfVpPW1;Aq!kw_b2kvkAP7pyN(^*rVoSTJmcG42tt!0U8 zL=@d=om)>ZCUscf#Bjrx=8@V4T&-nJQq?3Zf~4tAtwQ?*_==)=#^jtm=JW}pt0pwI z+7g5m#0@EcY<#!C8JqOEc3)odl$}lYYbzwHT9th}z=C!pTt)HoOp%Upk=eES??KFr zM#7=py7rk%n{k&BW~phnnWJ4ta7vO=;QcEXUF1v{um;iuVsFRI3Z4X_ z$!L=a&L3^Z9JZDiK-5x^H=PMd{{U2!N3ZqMblv3L9<^)YSQO9X9{sTo+)Ob{In;zr$A45w@9*-2d=3g?w*)-;bM+8 zRdr@;>RYBtov2wL6}Y6P*CcLZ{{WEdiZ`t%1%#&_J8HofZSi>KDkP~!X>uW{jAc^*UUAptj4el%^7tI<3i#k`fgHdii0SJI>q7XxgQrsP5F;h-@h&Dq7Sv z!0Mqf=OcV-LN@@;_4+9$cGG0y)wRX>Bae1>Rhc~noW))L0DGtf3P8Bhk^IgqT*SgT zjpd=zg z2qQ^p143hV}uR;cpNhfe-+w~lWOeyTK?DbK_745jg z3R84IEwbny6p#eRSdsSSIPY%9djo@)wrP8^+CdWB_v#14;RJ0YSkB{YGgYafv9yCr zr#pj*!fEzn_D!YActN^~meQA!lH&BA2vIZPzap#p9pukJS5@Raf$-fJS!tbaDQ*^q zrRq-VF*Y*X!jj&gp(cmembTBh>%0?^{!e1_UW0E>821xg!pv|iZaUf8>6 z;;!Df>J;PIZcmqmskV}_4YZX)btyd5VPP=arVva z(DxJ9Jxi2Ot!>klB9*1N1xhfLtnyOe&XPgsQ;26^-Hc}Wrdgcl*`-BOd8U0(s;5Ks z2zH^h8PJOmkclT!QwbgkRj|Kg{f%W@C7Uv=&8GXd{{S7-Euf$lLB$UB0I>cbE z-95axN3f>rDqXFk4biYl8iEp~5_g3X4aCe&k+fk9Z1XsX#tLlDhfdmX7Cwr_;7-Ic z?iXcs52>2PQ#zHMWU3TN{$)(T__hMr6mQly0N_6kbEUlb!i~)hqPzZIgBgcJ>y)p-Y>hCOvaXzq$DFqJh}OeKb+cc z^_uN*s^(v+t$v|Q=`i9YDO3PdP*OD}KPdq|LPXu2m;V5-rxH$Ph>g_^qWU*Og!Y0B_44NI%NW9l1ZP7!ZejC@@x!}FRsvy4-r?rnV`1bWc4y>QbF*vi~M2?Sx2mmTN?^5 zG2!}7B;rruOAQy?TB;WE%Ct6??vfyL0P-_z7f*tFa*eJg$g4fntA+bMrQ)1{wdX2o zl}|95mj3_|A;RC}Ko=yQvCo~cTs6chsb;F1yfn1gZl$)vi`1u*ktv38ckM(AI1v$fV`1QYZh`9#4{R zv#i%QLYkJ>-8zuisCdjB2m;9|=Ws1^iqk9OA9Uiz==+c0YK1(9a}^~nCQtIET2m(1 z1zT)E1r99Zn&-PirQzjQFyFYLNhm{VO(i0fB!wgpJ1PfEhQShg1*q7I0V5to8;)O_;S;25XfqyflM8Us zboI6RgKAP>LOaBQQckOBB0&EDY$0FT2NUE@)8skRd^bw%N>WIjAtT|#8$Foux3o7AJemrQ9{&K+ z5j2#AZFotT1;r@^Mg$N=uMvDcFdAvVQbV741cQHH*-!WrhWMw1^8W6ZJ*ue7a|DM! zhpqP8WyvtE?P?_}lg%mwdE(CD{N|k;I^{Wa?7pZ1g|%42Z@h^hCsW$Ai@-bBPAI-4 z;J!TUPlIZya$JKxZknC+t1+ajb#5h)B}V=w}*q-pYRn> zvf7Zcsx*aKW>n!*a5UcE&AqW$X1p)KJa@z{IbBo3uO+=qw7NGMZ&krS&=L@2k>LrG zH|G()2d>R>E)Q+`it2V*4XCM_XAgv1e-XW=;7`v0@J$~PRB+`xGHs;k;h+5Z42?Mj7S_x}J*)8>uVDTE4a zv7EV7NYp@6@4!=vfqMWicq0|oYwWhy32@CLgFMJ{MN+ty``oguyoD%`K_rBzY6<3% zIJhae8?+wGdvMM;y06_byxO_dfA+^Xpf6IgU?xK#z+R9b*eCtaC5MI>9B0MV&%0S& zoMu&(Np`ZT6w5G`jeXlhNK6w6l1EF7Xc-<@8b~9b_*1mDH((t1>{9IHF6BH9%V-ZL zN&}S+B2KLks|mO>KbqexL$kg&ca5s4-Zd^#w?|HzYFd3|dSyhZ!e&*f6@NaMy|~(* zl8+>+MqI)w66#hI(H-KFkUk}E9uXY2$2#$E9p#)kkUdjC-4mI>A-Z&Elr&;Bs`_jM z*(FmQNfEW7=ZvOEcICgSxhp$1dx>}lD`K_O<+*z;rPEHetKKTyOu$wAAo!%JBoQ;F zG0t7N*F9CAd%K8BY423pLQ@ISlM)gVSkGtaA^8d*u!wQ7E>o=E`N z9EVZ&1KLxEsS%bYy+}(n4h1D)0O?9^B*gf+7!&$qHc0kMu;=KswDNC{a5T9qwTdTm z9PW*_8gsj)L?i(TT8T2F=M(3AC6PAvMiLxpX>r1mIRWLkjmI&*EC$+6X;P;tPk5x* zIRJQ%gq=1#jra1yUlZj`WG7q1n&*a)R-$1hWn;x?bK9jsm(2<>R4<9jpp$j{{Z6+R2kFHR4IfZP@%JTKJBR2fD^&GmPjab0hOn(lGtdb?Y%&)#f=ERyWD#lmhN@QHSfr^V@STh04?zdGyQQK$TJjX*?-`*O3F@^ z+s3FD(p4a7JCGxMJn)?_@l`vjnNAdxf`O?v^xu?Q%;9o4oRF0pK)_F&BUzWN<5KgK zYA&x>Y@=3*QSn|;A1qtkC&KwfZ7nrP&8b>afC&blzEL8@IzS-DJztu}F-PY)+gT#g zwy8}UiETDiIHd^qwjNfFcssL>(zBjC{{Zc3D@tixN>WlqbI)Z*Ap(T9BhBd9D2TWw-ANOCDb2X<$tm#7Z`uF@_gAz0X45M7YE0KDrK)V1 z_ll+Wk0gO)peX7dM^65@Cx?4(&*-bY)}E^Y+zV;ucr5tUa} zaqSve8C#z8%F>pLY41C;v`CQ?r+%27D}-uzcP~w5XlfjC5)!nPw&jNAFB@2s&#ono zfT#20m2<3{VZxtqZ)mxeW?Nb+DQlKOQ{6AXwDnA=0#4^(An&#%nLc|_Q(E)78%hvD zi3$QW01e6I=4a0o8yrf@Ie}B@Z@Tc33#piyB0;g_WQ%P$wYXb}Sk4#kG?}7hyP^uU z1rN#q1`WjOfH|CV;x%j)_Fl4j8(vDWpUUWSszUlIG`QX1xjK211n=h`+XQ5ps&c22 zDp@Z!lcbger6LTIvFkrQNHgfDrK1#T&7J;3GVHo1qtw&6RVIIPK%6l{J8-E zDN|}8CDei>6M2Frda7Xkaa-j)XP)q#LfNjNQmAGS@Cr&*D&7jVzWZX-;auvEG0789 zZyF&fvXi*sb#?Cq^R0t zNF>sZaGk>A+l7U6nT&pQD0Q5kAjf51fec2LV#LvaP(aJjY$3m<&#bU}kw5i!qDARms#RUdi zTBjXLe~1-2_VV7-^T9ViMKe@LX(>PlLP}SvZRAKQ2c@>hLAjVxy0BVLe51Ir8*;Jp-ag|Rw_K*upwm6x zp<)09C#jD-NBD_OX<7dOhk~iAk}G|gUCNT-EG6e+%Ono$bpXuVlZJj9_I`UKTh1-8 zj~Oa(l64zyB!DDxU7A`|t*8ke%X&x-hsmYz*mrYj4T zl_e^I0TQFmI&wJgYCZZVPki!OV!n9P0QmLtwmRno`y)p)? z00AG`_~z>d?Vv7~(7k|e0@o|{nc4eXFOhq)l!W)7r3hJ1!Uw{W$nE4~d*YkUxJHGQ z9_^;}gh_7R5$7>`-~3y%IH$4tel2sndDWDeCKuvS1V_SrBg)ugd)ebIrFYZ9r+h`Zw!J}VwO4#nfQdVqjX!Mvk z>`u`=o+|4d_j*Rw<7z4dH!`sz1&s3Ph;C)HxJbFMF~1V>B#>8 zo_=EmW%LDX1*s$-Fn+(k_)Bc$1?Cj2 z_*;c0H7?jLZ}-NX+&dW9RD>tf7^gz)aV}9+tWbq0bMnGLGN~V2Dusmz`*p^SC^jeJ zydN(-CEU{I14$>g|gBCoM=<3;Nxsy$E(f)Oo%wuW1baP%jb<124IYE%J5np zN#t;giqf1Fz6Et8uEPY><{rp(8FJY1DkV}eyXi3=Sk(zB5C$j>6pQM!K~a)1g&i=u zS_b&^Ge7Z;+EH%84K0$ZeQ>6pQ-upMZS)w~Ey8CE4J9omgwH6(Mdu1*H1mu)IL*;r zbhSbbtYe7KaH3E}@v(067cFdv#Bu=4^HJmHm-x{pO zz~kPUavjoCZG_gN7+G=42&r0C&Ob~WT8*v+BE9g7o&h*n{{VvnxMfp<+er4W3xo+L z3HQXR#~V}-QG_w>)}ll<;U*3h1`Oc_kBoi<{$2U@?x`6B6lA zSdoo8-B!k$e8xRWVBvdE|6fak%Hwug;&0Vz|nwhj=R^91_ z^gIUGSr1-D7I3{SPE6Dp!A(35?`$@*;X51|PG@W_&I`t;N>^lH>USfa8)=i&;N}cK z!kp{jcGTrg<)q+*IAX^DvP@11Nhf>)?bu7D%zNJY;UsO3SMZz@Qp?hbcUHvXbgE7V zLFIxO@nNO7L>!51NWm>2>c+Ip+XgXDq(B%r?F)?sjW(&1f|+htagAGR%LFvk9kD}H z?r|uJW`Q=tr3(Zc2SnVQI?=#5V^;@Z9ZHQLVCF4s4N8$0I5CuJGJoR~M%6pb@Q7&z zSC8?9+dwcsez?kZ!4ra7W6Kl|2_*JOqL?V}g#!?9vux<+g^N*wg~P#@v7Sm?S-Ls z5cLWmoC>;)JDd?xN`}~PeDvwh33465W7TBb91i78@RQEL{o4pF<0lDou(`P@cPh^> zrVw*7DLeh}JJm64H`P?>`C$dgn^UuSyc{f?-bKzMAH)h(y^o$fIk+6K8<&BqKyz?; z;TLmFM|?-unsS^b_HDiJ21IO6PiC60I1ZyQ9dOd-X(!^GAnkl@g*oZL$;I5lPWTo2 z>9{y=cE450!0%UDXA`;0w-iN9Z=M_KD*9m>nz=Xy`mI{9o#>L)HFLHBsHnBh6R4>Y za2-uiDU2!HE?d1{CipPI{sF5>)MC7ye z8{k)-zhCQw+;p2^7ab#faJ0RtLcW+yYdWx>dU1u-D+C%sCeq(o#^A`tr67-7Yy=EB ztz5PPQav!EPD!7h5=yk=c5v~+!N681*wa@jflFvQg0e zFv!?fC0g9ZHwhzbV@ZQ^%L+l*f6g4(*DXMdVjC+r+olvlSHIH=CA~?EP}ZfomZ2SS zv_=#{V}GE=(4Dr&n^%?+ILs_j(;D|4cn39kxc6F0dK`I;l#ZC!1JeuFEW+#v#*Cy9 zI8p&O!L_tdC^mAH4Asg0V~y!HPBqRIIh)D<0CC3Dyt?97B?lhq(w%Ss>xT*@Mey57 zlA(tRa8hHfvEuWT??~-{!;LGD0H3BA=-iHYaAnI*7rL;zM$p1`Vc;-zGvo|3Qz+^d z!Sw2bfOF`fYiwmZ(!C}@!;22U-wd>_nThkmgAc)(z;%tGb4X7V?~EA3fnZN8G}Ao? z{Ncix%M0L~>j+xwqlX3=)F2Es(mRKWBR9gqUN|Bcrj7pCI-ZydoF`7%TzxR% zPRxz4rxe)s?Mu+JdyG6%HV7ZNz!c5JfWw6;+Y&n~w^2@XDJOh7(1|Pj(&m1GN>VBq>xjj+bc#R|bmtRU}+q_Dhb zzEQy%motJAf|Sl1+pZ}a`Qc>dGB(0o&~lj_f|e?Y9WaZEDMXv&1Hocv3Lzn8P8HPJ zXsVmIibH#_U#JAF06aQ)P#}yT;?lB4J8*eS40{EX$m0Q%bnk$jZ7sbqY&+MW zA!gWasYq}^IAccB^-PXqbWoMl$$70&9I(|>L1_aIHKizO0mEz6ap6zb6++Sll~blS zwW+46j17;=t{UrU$`nQ&s@>A$pIkNO6+vma#gV$zk;h{tGuKu3Hp64}Nit`}hdjvv z)To?C>q$Zt%M>-XmhPZ`!b32wPLc`31$}5Te`gEkk10t}lZFb)?eB{tV&gBAopn%L z&KYa#5(H2A!nO5e&KYa!qGuH~w3yj!Qck|J!eIQc!CO{Co8YX%w4Fk5$5`nO6F8xPQQ$}E3eF_Grbxz&QP`mINN1ycOu zN{WLLFe}vr&K-4y%O8H+^+rJ~0HFwr+; z0}CPYEjSIyE*VF)R6&zCSX2nZdL9#OZijsF-E5N{nAvI(x281- zDONT@4xBS$^Kwiik|UM~rfeul_=Yj2H5*`sQ>C=WU%m`APF!th)ij&>1JeYen6hLJ zdt=&XZj&FrxO1mk9#`TeFsPH#-|>gF7VWu0Q7Ikdl>9&o#B=&#)rxdK5#rSZ0ye+z zmncyG2$+M;{{X+P9@gG%D7!0XazLTrL7jjb#Q9)4ieiMT z;*u^5PyG4Y5-h&IT2hLH>QD3k051HE;`?CAt{oMO6>0AhsE1HFbX0!*aMs2~QMPT~ z+fcPr7e&+PZEy4aaGI$C3XGlN_qFitU6s2;?vAI3VChUq~l!>ttn2GCu8OPys_^o-7s>S05A_<-1_6t z(GEiN?5P$r`}M)bkgX|7fo(!1NJ#o`ja;HxNKB+r&HEf?EOwIxajG1to;EGX$I zI)5-dMyqWee@riOWNxlj1_>%URINH^kO!d$3DhRqLwdDHGh&~=uhZp)7Jm^$MwlKL zB!v$=YUC-V-Ue082vH(x7Nf~Sc|aJjiU$mi?ka6fvU;mL6czm(j3UtDEE zmg*Fh{4fQ-EcA>d{Z^j}lBBsZPPxA^zf5;4&KHYtl@gMk@^zqynGqw?e-7VKD6-*7 z(h{9TAf$u~@(_N1rZy`pRHpEQmXL$5_Hns3lMmnXm>3)wTU@G3wnzYDgv* zDi@JEi(jPm8(^{F5=@(*sOcUV8i?~Sz;5%B3zf`jG#KKM=55Z{C+aR%JK zy~n518vuZ{B&j|a1E7nO2W$1^g>DF1(lV4oi!EtV(g7EafO0#Zm>Uc&N))FOR1$R^ zpx*L1_1^-t*lo!PQAs5Ek1tFd(QX@pH@Z+ol|E+#(VPUb4OvdvZ7#aD*4a;n5)1=x z?a*OrDv+w=A<_b+DmR3x1*4_;Z{>yZnofAH+vFwAoX6hDRNToHAw__YOjq@9Mq z^R_Mue9-3=HIFn3ed!BqB*%bj8}&a=TwwaPu!%ZMI2``V^?&IvNezHaAhLf|VNmg1 zR}*%5nY&NlDaF+4$69D(lPNb)+$T=OW*9(hcq8at-ev8hd`rt(M}x7s;k zAKM>nPvyDda$L7ll@yfhQMQtP1uX$S_X{AQ zG@uC(XT{+boXab)zElQ4OczMDwYM^QP7FxC%o{{V#T9+*t)kl<#NJA$}1 z9683-kFvD6PRm{6s5Tmwp8&P&FYEHeqbu!hmb;2W`q>n@TR<|>z*B2+5>jA9%8$kC zGB1d)8`4$RaFfiVyk%LK_k?Qjl%*qMsFDZe5=Skg6>dVD(=Xwi!!knD-d`TPT$xi&*0U3}CM5{)(ofGt27hTJL+M6$cyy-PLb#6Jr(;Z&(Y0 zI9887;$<3#+a1_1K2W$zEg+Q@SlZ@1&G6-z@x?y{b`3{QN?T58Sl+ONsU)Num8wXP zd{G;T>xeG`Sz$~QAfH#|`ex7)$c+FJJ_LIakF0D>cyyD$K zL?t0xrUBU`fdkXa7UyMIle|}!XWT(lp60%~qwt^v>qto>Oml>bfzO^R{s-XE#=Lmt zBgsl$crDOP$yW2}Y3KkQBNKik^)uLIQ0*OQ~zQu75~eBgC~G#F5vg*y^ToT230vTYMp!a@9H-Uw8zj=}CbT zc$flqwjuqU@Z(uNOiCLR@U*K)gApTfjfoQT!k1f#(Q zLV;3iY z(4Y!ZE`Xq6SAchV;gwSMXTc9u*Ci>;9$W6b_-t!+Yw;N-Mv`=>N=L&Oi|`)_Kb=ul zXH|6SQ|ffQ>cC1;wW$GR07RPtBnX6?><=Y>sTa25vJMoe;jFRdMr8Y{9`N4mjVVg> zfS{3}r65Tr7uMLT({x8x@H|rY)crxaIOyX1B7MC70M!{nz5I)Y-EB1#tSPrX9V{to zNm`Qv(k2pxMbtT%;9fKBi$3i;H20j_G%45dm5Z&aU{i|>f`O~d)$Y&=fQ zB`bB6wN(x!w!rbJO4N`=?_fbD@B)dlOm&xJAL*rElG3+R#T0p^8kEv%kUNDf0V7CK zv?M8H0xzVJAvXB5{}mMapitN>)+LZq_mPr;CWo>!d;B<7iko)ROLBMWn~Zn z57jzK+k&kc^#YXaq)C!xX&@WK`zQ7_&3)RQqcP4IWmQNHhT2k<-Y0TUgeeKxNU=~e zHjVoEpJ!)#Kgo;2k@~Eimk_rW;|hf#NpP$vEEd2DO2OYuCUlSnC7qaXbq#K2noQ1z z-Y8qC`~u<-(qC|>gry2`DiPuYfM5pB@B#aMFQG?PKtE;q*0cJOQgC+v06%rd{3HII z>(3}&71^F-%JeI`sP|IqI>wno;X%*KDbuP-k#XVGRQ9Lro5fv`=arPXg$tDKQ@Eze z3#fVzB2*7JJArU^-yc{idnn6jT1cU7ihGA!AU2b(LJ}cJjY`%?1_qh9kP=l^K~0}< z#%E2LJC)`Nab@oBGp0+4O_V~r%{}5E>9QP2I@4h)DXMQmh0OuLe+dx(08&gJhgtdH zuZ+27Yn=9dnKtb>afh3f>kA7e+n7~>K1cKz?9XBk^)t`-OE{y;b85PZhH8{R1Sv^i z>W~tI1f3+=MhWN+t9Ex6{{W?T4f|3&^G#6E@aw?`-18cGT9#U?QCiZQI;ALrlod&| zC?EEZoc`K=!kj_uAKT)1Ydu{FQ>~_}FRrB}NqwzA7!$aYB1Br_YpSJr*ak^I*tph?(G=gA)n{DQI7?viN0@jXu zs+~66lacVFU8Ux(JK7_TQspWxIOTzyxT&}KBb^=duU zDAu;nvWCK-LR7LMQa}P^l041@PIp5|z=Jh$r$31R8m88Q-ldTvOu^D7bt=TF@rGU+ z)sRuRw_0wlsbxSWX@S$o8Sf=SX0TuI-bs)wE?0*-?`p!bSug4&g(L=}Uge<>4h()eSm z;l`X&i*;I@_>(1GSAeaA3@x%X!(;m{>5z94K8tMDg1aqu-ZIzQcAZjG-Q#%c>SK5# z5-uF=8HY**T{De3m`arqq|Ww>KtEhXa;)HGl}n+id9G#JNhTooz~O<>^UUhLB8Lf(EFubqT60jGlVEi{fZzIs+aOorCg+pTxBGqTvmU&&5*SSjhR-hC@2-T?lZR>xF%N9on zcEy)w2yZK|re{)CkX%@pRKbmbBt`!K+B)DKI^bs8%+XZKVYehq01^{!M4J#zzuo0( z=Z&~>r-yUq%EH`csuYJ14wT;F^AI`T36i8c=!K;dE85Vyx{8@O4GR@4(>qm1P=vTN zER-oKO~`{bjl@Sdi@0T(mP4J_r46>tGKQwY2}v5PK!Q&8^YXqbKFPaEt8aptW!9dk zr%tAWZUUtZNt+UFVq|k2F(%14f|H9BUbfHsY95i}*^k zofqbLK<7PiVs^5P6l}9plBFo9p+zzgVafoDoyI6$AIrb#?kUWgX-V#C950}5o2dA= z+)T)eVgBPC736LmOsnTU%4s;KDM?}R-XuyKD@huKhe+G)&jTSwhbg5Mt4ppjJGW(e zQn^;<2=e+Xt}CqXGt4+|Jg2H*=0tvE!=XfOgVpqaEPfy3~`;}UQHCi;T0fkPO zB1ns$ToVWsoh(is;B5n&36k-4e9GEW zti7c!LVyvZf=e8Vs(T zu%P2=3I-Jc5x)C@^7}?QRvT-IOcDnNG$|EF6ggkR6z)E%j`oDAn^FG&?@B5uI-=k! zk^W=X4D@+3J*9BC=jGb zoyq?IIIeQ;I&*{ggSl}@X`N?WlXXq?c#rR{3D)elki2VzV23A;2jh2gl(&}Dx_#7X zOKK|@Gw_SwYi$~jQxZ(?hghM_ja523u%fQ^EEG-CzWaUtm0uZAGK$CFXXZ}I0AhYsV(T4fZk8OoQbtbYu`)-<2eD2ZF~azY}F= ziRj_C65fEO&4ei>Qg1f8Z~p+6BN--D+|w($alulN%H|S&{%{5frp}j@@gH?kRHjs} zXGGs`EniKqhs^6Qq|37^ddg+%W}ydljU&@*b^idEz6WifR&JsjCCxl0rE!VOG9PuQ zSX0ccE+Fco=a0=`2~V z54`?g?~ET12VBYU^$<_*(Bae$3YT#?3HKw+R4S4bThif4OprpAFiDep;V#hlW|0*s zQfZRkd8td%nF>_IKp2Z~uNPD^p38+|KmB|5IM4}~iEpF`{NILx~{tH>zZ0e^-IzaTa^k!F?7({W0l15;^Pks`@aokM&1Vo2Ip;>+PWN_%%Zm9A|?Q$p$=rdzt3 zAI=lEA=1-pjqiLtWc*I$L2jAitxgC%;2M&nXtvYmd`Y-^ijJ`@l_e@|asf~gCgMEf z>^$)6pLRmtZX2kf5~7+A#8eJEfHlY=Y4FOX=WE<`Hu+)WFwPXG)P)T?RT2n@Jg*iQfcCY=Pvlv0 z190PSA`5HS8Jiwlzxa-(9i?qZ3Qn=W$DYfbc&CFMMO&TePlv<_bMW^YiSooFh05C+7Nr7n}FZi5TJY~XarFq1aDg8@OOd<(C{dV83 zAo;%!x|cMBsUafZ0%LK1o&9lSauYzPoYuC$O_f>8ej6=GRI21&>M`jsJuur=nBe}xKIEC`hNOhm^eYS zfQNT9Q-ww!roueLZ zE8GssMr%J1{4kpf_>Jf3KWu9Ka1KHvp5$}HZH)0Px=;p?sS_U+{@B{1iPRI}14-UM zwg++HGjJm*(y8+5K>V?D^PA6^z^QQ{iBJDf}2t`e;$pWChzMs~Fld&NY9 zCsYrq+a0v`OEM10^|gYyG2uM#F}5^&ML>c)&z>5Z&lKW81u-@xAM1tFn5D#OQEeqW ziP&IH5pG8`!U`23AtLkB3Lqs(AZ<1ibB6Th2?a907LaTtdSertB`LYpt9TKleDFJW zF297bSZxZ9vtf-}qkuH&7TkDs4z?Ia_?udi0(A1&TknM%uL(gj@W6usL&y%8=Qh`y zhlEQsg(FhQ8bMZ&B%hY}U))fonHS^_ECo%Ox1dSVc7yuw{cu`qf=-PoP>yHq8~w1C zMna{oX~9C(!I9wMpx;5X{hrB1Iqs6qPU z&BP&dLE$u%mX@G31r6rVe6T>PS{j0UTaq?E=L!Z|bf_d0p9%AWdEXkQgGQrur$vYw zNH{k*6d|B+v`%75q}foJJjt}%_qH4uu1f9{AxnWL4Rr&*seFBn;4z0Ex)EYgNeINs_hFnTAW*mWSG;gCi|VF%-;|U z&xz_Ym(=}Bjx9>G>r#R|#n03G;cg$!QJ2*v(om-P0pbz+{p}|XiLnf1ra_})GVGr! z)Zp$3X1`O5Plmt(XGr?Y*nROi$hZ}Rwv>kSm?2j`4DK)HdT-=0U*sLC(PimQf`urg zNr?U4-ne^Xw*}0?buevN5ORMB&}sDQm?j~{{Wm% z_!}Xl3Qu?tl%#-wq6|jean20()Ld&wbyx8MqA&OK`ugH|*xzV~&T~Z95y7K-#(iW(+07ve6;SAf^*DR`gzF{o0D1saS z?l&C=mI<#e6wtm)Q6OxEk`-N3cK-mTp+cUMLKGA{Ms*|`gXe$Km9Rc#+nsA+$Bj#k zB^rjZ=7`uylK{ud&f^nGuVtZB+@_%_)1-ot6BZF3Us%Lfiv5one5nO#R+#`PWZ%n@ zK?Il)H}Z~d@OVHZ(~-~apxjsOnC4K0>CHphLV;`ovJJMpK!}-%#c@&oqxsb?W^}hL zsKN?XQhbTIx%m$)PI!mdltEUFDNdkyC02vWZgGh4_7Brorxcfz+KhqXASkF@l3>LB zuClkQulK2!>T1fTc!E(pPWI!TwmA)THEd^gRP}EAcblw01d$%df*u= z`xQQ?OQSy4nk%vLuWf!2%@o=kSZz+gCtt(*`ux1{GU4vm@-889E>dQU=|BGP0t9Y; zcKKuGdtS|)OHEXTw)I1Lbj8YleLWAZE>C9u$@r?5I7=@(QBYP$g_9=J8^@oiI5)~b zx2WCeQB}3pd@lOQ`$TP&rRJ61NKM!wN3O&Ca>TPP&?ii7`p-R&Tp^eCj^i~d)box104=pCAQ;>C^205Ii&5{DhMW5o*~I?J zc}gkNrs_I z5K>8jBdz{kSXJ+H;^x$o-K$`@NC_Ts*US@w>9NAxu7_Eu{{UC;x%Y=VUaPOp6vDMA z0pmi!2?E5bd0739CHdZE-SFvo3eusvN|b)SD_Zx%{&(1&7rZI#B8sjZp{lRVRP$~& zJF=okFb&BgeaPpF28xVl*-HWCB}z&(kh^L;t-dS%7UC7Lo5GT!2Zl|;=V89soD9qU zn#~({DJiFR>JYCF(Lz7Zt^v{S1hcCF z*i!r2I+W?q;M71Q1gd@#sUBuFk5h|Nv+S*`^0@&j?-Qvcl@M-hNU)B)%=udvc4@%0 zZ}9seO*SeMr{{4t1PO`dzCLzsV1h!|_gk-%PIUW+=ECK^&2r4kCgMk%Q)>xWg&hS` zw}@WSPA|UBI4d~fS~R%oD{0c$wxOjWE=f(4Ba}_LVpqT&o@IG^=&5p@DRc5fNgV!> z_Vk&?b(pV*=~@(}EwVf+AR%8pqz+z(2-Etbn(d7=3d5FYfWAuSo;K|IuPx6j0@?*i zC&ZKy3XO=5K0sloh; z$iCcs5uD}Od#qBp;uzE%C_x%lk_0FL%F4F)9c{fHmCtyUr{zY?KmfPSKj~FJ7IxoV z$N8OAI}Rnr9*`FUX#h{2(-JMYoJNttPw^#c8mVE$DovXqDgf*`h&ykv#&#W&qPnr> zYYR!KY@`sSg!ryXM=nFdIKH?qvlY{ERV7z;q@nZz+QCYal*aHji*Nkc>6+trm9G>5 zj1CwcQC`ZOjW35QTYcuEO746qP80 zBpp`*cH0!bOT)uR2U zsWW&cAa%d^$Feo9$n1)o8J-Wya_pZtXN@>golg{`zSJx(Q=q2A8JIU8Uo3CgMrM0B z?RPfG5_LCF`X6ip4vnbWv~<%ljzP@Xp6 zO-pGia-CX{q6utF$%)wc9kFGnEoU?A9ZaW6l4#VFHg9m5KP@01Ok_hbk?jYtuiz@Rtsrzh0gVGpcFt@)es_Y(EW}n-q&c=nQ=`Ett@wy4R=Tc zNm!9-K$38P%5 zb!u1$iRC1S>utmzqSr~YNMt>M{V8MmR6mHBk(0?6^;S1yJOP|=CkrLq)`F>uTEr!7 zt!T7FY19Vs9w2v5oZ|9hkCMj&xV9ZneA+vujazt5@w|_prSW}nrwwJay^rNIm9!1M z%QT(dgJL;Fj7`osr-`$gjt=6g))^5-rwGy%p{+WGn@PCaS4ryw<$WSyGk_nP2D^4& zLF$^5qMh1SHDRC*xR`Uv8r@N&| z)D%@Sq`^H1I&W{LBweu3du5yK$9CC&maxPDfM`y{{Y*<&h)bvP%_EE&G}s|#3k&xmfTP_L=s3Egp)Uk z`E@@yj~sC=Ul8!Cv}`~49yEg1=j2nKn-*{rJ zpqWxsP(T9wgj!})Epr+gxOU9fbGU!E zE7wY2q%7bAkI_0(R8nO5N@ywE9pjD#xJ+tVwgmJ55_(+p7=q_rlsVeh9%a-aw)?c# zg)FN{@R%hgd4${5LlExBc#|~ZUf6SiSfwV0g)Jojm<3X2&Il(d=S*fnJ>KOa=O zbU5R3sRQ#A{-4_!y2pmN#Lmj*lbDX>#f|=~?cQ zm(~&DbxBe{j+6aW*AW}p6Zf79ol7S1}1kOraRR1vB9EY zZ{~Idd0UztW3@9)EArNoNh2QsE~4$@iW|+i@`jC-x9*5#Er=-^h*Zeh03?7q0fzoL zb=pjUohmC*mXycDqMJ+rMg1ZX^M&*Bwl}rUI3(TnPrlAsdiy=gsRqOG=l=k!A3}u2{cSaw+e8cSxTpOr`vN_UamNu=IrA1qJ3 zzUXL28s)VW%WVzQw1llnPPCzADiNgbZhck$&`G|^lo^gw+cy>E^*$D9SV{oUB&aP? zp~y)f?nHd0kNrbvk(y_;AcYknhT$P4L3X&0D-cN*`eMB^K-Iii$mKiMC3$2;{EP%Q zXZ&ocbkYE{HKxFo%%(LHXowddBea}#XAJQX%Q!ZjN-d=>AU3otC&FM_{U_~?Bj8Nm zxphqIPk4_QB>W~%oxzd+0LFHijp<5K z(nm0@k2&UN=N)nNa_J+RN?y^PZG7~5{{R!P`BxWV-L+Cs)}er)l&8dig~3d3)Je1m zwmJ`ryGW$s4#%@31yhGnqNS-=??QB&4U9qO&N1?nfqP`Bq0N)1x80@58dqehY%W12 z`{Sv&Behz(z6?=X-tiy^?<5qIfh3bXJgj!c3)?gF#y9p?HInIdf$co0HwpHT)?js$ zrBS-osF{t2GqL{wI5UadqvFsSaD=#|=!8N}lga_*idQAg>S=hHO7E10)ZtN$Qkfzx zH;B_{Gx zAOb<_z8(05S#KHTMwmS)d1-nHxl#v&5j>5cMB{TtUL)A-=GJ4T9bos0JRrL>$Uo~I z5^c3K;#>$KOllqtR-S-ceY}L#Z|6sb^Ln~vsUhZ8q(VqgCspK5{{TE*-I?SF$@HbY zNe}@deiEo8L{B4Y+t(E5Z`>UExZbj*mK+VfzV=ZnNjZz>pr}Kwwq+!nO|Jlp{YCLSdyW>1bwsmgZWlv)Q05ezLBVyX zZB3e%9S8&y@XDmgGJh{i9H((4 zZ!^z)NH{u;tg53@kd-A+X2}XLK#wcp1(D{iHd{-UxU?OoVSiKWiGEF-2boD4lBE>g zYdtR)wZD7grE7pYP&u{AlDouoX2bP<5v<$Jg>HsriP z{{T;;O4M}Dqj58$Wby!c#^(|4^Zx+1a-CXIw8#<_6JayIIK->9z7KbXDAKT2JF*Y} z*r$0H{`UJrGFOu8?brtwdH(?KX_<}ov_|pI6hiH`;GF1zWw*M&^32cOI7zfgZE%uM zR79)N_|65VaONti3sRh9mo9Z14flb!o*@Y0pv4m`!3pq^1i}4Bme{kqDy^k%j2EBYLkSEJAwC)Wz?&bIA!`^)d~O6I zY0{^1q?7<$S@^tL+5nRqj+^2wnd70n8-i|vFl=+g>0*2S&(xH7Mi}NP-oH$kh3P~Du0Fr0& z`TYGc7t3pu!ZoP;Bx;|^dhfTKoIh0N0qSI*6r~_cPfzLy#IiK9Ku7)IBV|~+wSId# zaf6J#M3A(LfUk&@!SYt|_r=NW309ojfLvPCk*9GY%K368EwzpI$1CmZ~Ad3(p57eDKez@P=yG*`ut?BB)=GQp2m?4_7 zvQ;StKQt>=!gt@CVM<;gD9n=JSA{AzHy$fbBN%6_c|$W&QVyMK7PJsk_Q0qA08LPZ zB}tTsP~Kqk6OW#WqkWvOq;6eJ!ninjwzz|Z>nR45xRa<6WhPU-tpjpQT0JpUR2^`M$#&@ggWQ=VEVe2%;H`7i2$_?A+W86&Ddyi#w&nlKlY$SuF1cR}^ zB6iqL*rT(&%Zhk$dS9ZfxYR*!NdQ|^#q2pwJ7Tli3oLUlN*zK}Q>N=Fg!O^U8%^v$ z+*n2`yFuXIK4`O27*f?@wSg(s5vgEF=ge<|^xagCXlZTIOQiy>zj2kzJRjSpW5ezw zfTXD&C_0is^9JM8&!#U9&i$=lrD3r1z2aw41cH>v^%e##Ji6Ns)t!g%uM;P|r*@T2 zDKdf`J}Fc|+DP@oJzuj;Ju`7dSju+L2r2^bb|4?F$F1?a==V0jr5udYywRY3w5`0G z+6OD*dM41~+Aa7=NceR|BW{ zmgk=Q@HSgk^KJJvDS5RKv!)KyB%O|{^t^3@jpLS;&6V+;)P9PsqTz~%>Vgm@Uk;t8 z%gEtu-j(dNq{>uKj}PJyt9WCl{NmTFplepQ0#vEof?)ZQP4LZ|)n%&uC*0Gj0R$37 z{d(g{9bw|_J-V>r?`n~X;y+RcZeN&&({oYWG+#!M|r8V_>>5cl@nulwDQGGo;UN#@!Mpe(x=^!c7Wbj zSj!KUc%TbGGNB}M1cEtZsxm$?qT-y429nt-(xQQ+DN2p)Ve&ZQdTK>7;#L=>QUZp+ zU+o^hp^HPZuF=rcjv4OFRd0Q99W4*99ndK=;-tj6Foh#L(CPlqW%zwA0D0+S)qT;$GG?!56 zb5@0gh(GSUUw*%QGv!s)92=RWhb17AfK@jnK`I6hKA1S2Os6QF2$G9=3%99wjk>n< zElEBdMJ6m_!t*|OABwmuFXIYTl{DIxph6CT%v*msKO^Ne4`+R*e-ofe3*F~uof*45^D0AcC3_Fd4#vs7TP#e^tQ!y5weoUh)u> zrb<8q;gK?Lz0+?zR;{7Bw$_uSMa?=OU*+rMad>-K& zVuRpJvE0KvRWj8nc$A0|N}$K-XpP1!lD64QGC%V>vV!rC1=rGNDt?i-RFx5=x2wV@ zZ(L2g9PQG(fU{;8sZ#6^2`*}s$rc=>@9T?FhqFd1%YOFE6p$q#qD0J|hm@Q~y`#7j zBg^v2I-ICD-C;y345$zUTn>Q$0PP@eabBNMv;oLSYv9z|9w_4TCnCR%w|^Ll)cf`M3_C!|S{FrWS-X~kQ{U5Qar3aXb|PMION0C!St zzvb9RNb=I%kaoE557j9tIuPQ(B!ua?`9Qsg_?s@Di7EKoE0*=>P)Q;In@Hct{jkR1 z?g@Qou#k9Fwoky+bh&SJr%7xbBqYHW1RMEC^TZRi4hLqTFC|(?Ov_?HT4Hyezo_Yp zdx~;*GN!|fqe>)zL6Do<)9;GwjOz;4qM)s$k|Z1LwCx{!FR1O-RgleMf}t}0&Q4#O zAwdnPsY*OQ3a@`VV$sMrSv0IEVMif0!P(3|UciCJAbbuYV0frwf7qGH?Ohd6Z)RQtizs%A&Z zK^)K15PsYHR$fh=CXJ5^jEg#DN#AfSGx9Tl_*;&uvr2Ra7KQ23q6CSJr~1#|89IpG z2KM1y_zjVX4|Qtf8P0?h2fRKLxV7dCZwCrzRkfT?nkJr|pyCrCi180UP$143GAf0> z+Co*`tq=;NnFp5t08V(byFJV4+N)-*V@lyd{{Rt<@AmW_xL$@aDca?qD}+YIR6mFK zlBb6Ar7)qSp?X%2hw3`-(-$^X$4Soew3IxDlBJ{of)NRsuqSBcj&JRoHcdBaH4ZQ( zuJKS4@T`$|JjbEK?`Hj^J4%C0(8C>cSm8MaEbRp&HAZt7;wYKIj*cy zTty;^mcfVw%-GG~{fE*Tt}b~Y5~V04Xjq9#Q;GK%aYDGGCuK693GWYv7NTYa$lgrA zIIH;bjTE&>P(SyVB`|ti+m*10bw#pK;b=Cb18?0p<(a)sYTJyZP~%}FM~A%V1VntW z$;5mx{!l&jDJ`Yz0Bi!}z!4J>%V@(+O~mfd=1e%Er6skA0{uE|5@UasEag1Le~`aP z-ZJle(w50t2azRR3|nj4Zkw%=+l0yjwIW}hz8CDb zK5?Acy%L`AB|sa=1P`CiIdsHxiz+{ZW^d5A6Qy92aWVu0Gxzg7Y!3)#3Pn?DTH7jY zfN<2m)#QKS}*!;0H?9YnRU6fOv@jr%j02dlei(K25{K)gflRT+m_W{xr<6=@I znFhyru^W2w#JOlL34WcZEhUEv6Oz)@@Vk`tP9sITqECxjw-LBMPGb@Z4$_lNR9SGi z5};B-)i*W~=zV5zR&3=iahHT3x85ziBn{H3us(AgE$52kh_drblM0Z%NQ7X+-T0o>$eZ(qNO;jaELz;owFF)7ra3Z+5bXltvs2_&$3UE!7dY?Jx z=ZO2+!fLY#T8HBx5&`&j+)wUtnT1GyE=(yYQcPQ)i>E)7>@d!z(kW&1+Fi7oSJw*W zN#Y!lX;BAI2w9MI3m>`P*PPmo?fbKX!}*e(ZKS0IatWKMM3c9c-El4KdyC2&ZG{$f zQut?HlBD#-huSv=Qt{^tDIoqbP!!tw#KN|YW-npa40pU)R_LUDnoX_zr^@46cFUC> z8A{aveR=Zov~7!Du{@|&=B;Y*sx~qr;K&m*FlwFwS#J|GO9zJDw*@kbJ+%CwagCA~@Ulc=a{XU;8X z>x}uK$RsbChfqtdxcEWk+;FU?J#~)sRO&|M zW8#u8>k?u&IOJ|8tQ6c@q7Id7@d65z4)A0N^b@u%Zp8Sp#)FL{{xdEG0Xm4d+->^d zZiHRZ()9>>&TRQgmw5vodOan&jMW1agv&zHjept7VZQUc%? z6nqvUM~Fu1wf@5w-Cl6kZ<9F6RSBqRNmu(xi(K#ham}1a+VY+*)TKGyp}Qe#}$M1B>Hzer)0JEsr?k!Yws#8w43Q5*y#+}XmdVR(mC~E_1K{~ZYk}V(; z>wHIUJ|gS z5=8RcME!iQ;Kf)`p9-Xl86f`vU%n!A)k9K1R-^!+LA;Kno@1{5Sazq(l!sd-I#DVF zkSvk5{(rsU&25C75k*O9+zzMXPj}%?-lO!v^zN8Wg)3PyK%1XG7q8O{ba{dt(vlUg z!k8mTN5gnL?}HksC18=|AP=tle{2_fNR_q1bf%~dFTj2w0Q2=1-}lU6%9%yOAlXp> zC_vv(+sys2%|iHpl681fdk>NMew{Hb;jSKCdeR8js3kMv8qZz%^NGVtfXOLLp@Na2 z%9m1muo9g^P30h8anGkMh{NR%0o2sCrw|_0s3S-vN!s&1Sh71k>|&<5ogg;0$V!YL zkRxb_J9+Z?;_BgE#q#XGF8prkAzR!CffExu<110?5yWU4UdJ7~ZWkryJS4g%)E)l- zX@F0QpI=W~M8+82Z$_s4D$`&~KP~TaUgIO41By z3f&TZgzvXLxJA{F=9H)@KNMO$eLW)@q0*CN>Vu^IpX1jWN_R99NkU3VAi|U)C-U0~ z>snNp(l5D5+o1BoZn}bn9cfkLK#8}mJaNET_>>hA5=`D_^^cZ4;SSMw!qrbGrW2?X zfG@g8{=eHAd%z(`PU-}M6aN6a_k1XXrI&nT@Xv&EkO%$@Ao#WTQeY0dU+;}vd<2CwQ>%H_nNHu|(;mF} z3@9C1Q?hlKK9}<+fSQ9DvPxr#!>J*&Tg5bBO%f0E+2-1X^2=QL`=eL)i zq{wrQC`}g*46c=KB*IIJD?9YO-fo|s7Iw9QhuUmBF; zfC1GoU@Gy<#wU_J^=no+ws2`b(D94Zv|Yh-yYHi1sQ8cah&LDC(+TH!viN%?b3rI_ zumV6JOl?2;1Ij;1hSp}a4>|7&3sQoCK|UE4`(J(VR$rUD#C58ArNt?lIDrFAqtBM! zk<$>(r4(F1TOOb4MXuR@LYeschgF&6>V0yT6y}(V%v}Ef&)XGO7;xCj*i$P|_|g(0 zJVe4`+j_?Myz3GCZj?5o{{V2C$W$5VCPZ@c7=d=Z!-=KI6ze1@ZP^PJwC&1bdB)#Q zpKvj}5#@f9>AImS0CCEuxNYZJ&%21bGsn*OdPNlZhu8KGzKA8E$D#C%Ip9 zP;_ZZk`_$vPSMM3Lmr@+cKKFnG_5dhJdfc`IAgO_2AXZ=N@i465C)}mF%iqp2yqV! zQqWX5+sS1^NDDy&pFO@u*PLF@;0`0Da;1k7;zccMNp*f8m{1h2^K)K+AK#u zwjz90*j*x?9_r(*txJ*@%Kdzgt|rHea~>XZxu|cvr&o*@5#mo#<@3X~QQBr$^+H;H znZ&r}tp~!S5O&=4pP}@^HBFhMmgne?PUsJ`nm!d1pZ0y5aGH`Fd8gW$@GgB-f2rE| zV|}NV?xKZiNC1zB^8Nn+#ySg+G8H_HNM)aPaR*R{)Fuk2eKTn42*hQc5~Y2uN@yv? zASmbxND1C|>+|~JR_bZHoGhxkF5N=`RBuvd29U0hEm{=>Puu!>VM-1o&zY-6r91dT zZ-(T@QH#@scp8z^r2!0nEGO{^GCIINzmbWRCuEspDDl(MwxOmJqC%A;%=#amCU>aD zFy{WshUi})t>3z;cp`@};#V7Swx4lRC0cZYB%4LI8{+8UEQHZzjhEEgT$o;{0U({t z;Cb|cf~h!hIT{kCl7$5%co|4ZN_|0&T{+-~bEfJSpz2{$1z}ojP3GWzj@ZtVP#$nF zwIR{EHrFTWr=6Y(W+;@WN|2w(l6)%MNfBc`aVDbTuHuzRLO%sR_VvMo$X^h=k(y^{ zT2Of{HrW!8PUgqNAOQdlcD;?UrftNHQ>+C40NhsKpxe*a32w(6COL(_nK|}=-|?o3 z-FZ$qtKdR31jh60&ul<5>hk4?n%V#=DTp58RA-5kSDQMM zTI!Xj#)Ke|r;rvm<%sranbgoBH0>oUB}q~=fB^}S;kQgm7hF)4IZ*19r6EKEHnpuF zZ?*aIj70d0GdYDqjX3TZNR^c-LT%yaYlFN`mLAwm(ZE^Hp0YVg<=N26$`Vq9sjw1W zl^fb%P5DQsDZ>VPnxUGfgMH$A!WFJQ5~z=rt>qms&z$kN$`r2Qq`kT|tP!hg?dCdR ziT)=KX%F>^Ga6n zX;zbAsYL$(UU$V%dQ{KLMGrVr%j!`9wZ|&J;;Kf{+VnnNOhB8*ukWra9w*D3efI)q zREYq55Jz5s;o~jLDzn#6glR}rq$l}2;%DuLruYV_){^qwWm=#{t%d9{r3=3g`HogT zqA@*?oIRX4xNz&$6qVnG!-7K2$xtJHqsRfiFYKR)IA1Hvo2+)BlH$Tu0duFQP#~%S z>lW&9&8y*hoW7s%l652zAgMBZuWUv5mX|imR}LY@(q&Q%5j^Zp{N(*{S4Fd%y0wR> z)9e*z?7L$t?NcMDpzl{$&%3yoOgj!6+w)uP{csLx?P0>%6GbAWE*AA!1Y8m7cD^_> zG2$A=5}*BJyF>>Ll!5azhHBm>sCcPKTdLL6n8h*rFg%4>LeU8rWgq116@JzZnZd&8{+f=nqStP!SeWFQHhhtHlnAEvC$ z__~n|0^^Aai18Q*0M0-$zg30yF&5{Jy7nLTa&srnGfdYt0V%6(Nofc3E4&K?A0yV+ z$CJSpoum$N{Gx@i$4>gL%=Q!Es+^N4%ipU@jD+RoE&_Z=Qb#%b#Q6??E}Y>$BUMgy zPfQ#MZlk@FAe9pcQA_|#!4}^Y4`S*@QNcd;g(XEv?$8PG5<%o*NsrV0v1afKsrQx? zxKfnTq7VQul4q2iDVs+8w#Uos9lVPA>wHFd z@>YeYs@7G(PJ&`nw?iJ7cgj=zW~pvFtGfzPi3qgMTaT<^hm4*{?*K-WsTThLb-)U= zTkni{qsdzueL(_=QM|R}`_qe%r6rWf-cm_}^0a#4hmPA$Rm4=KC`)Qv0l_B9I?0nH zf8+J&sF6^D?p))pABD8000!pd^VstA#0R$Q$kFjN3gt~UhLVkF8b*|v(g5gpw*LS; zVd~pvm(+TE!mNBIj@CGsD=I_CaS8q!`$52%)Rd|KxIBWROhj`ShE`>C^xQqhOoe_L zg*9aswzB=Z(6w zs&b`Lg0rXLG6lu?eZ1yfI|$Ej`3vcUo2x3L?IG8=hlKLn&8NbalpSEkprc{{{{Y+0 zF$AJd@tlR{)Z2ach>!tES-s#u-x7WRbs3c|ZI!;R@wVNK1!H8EJTL z_+@QFF9mlgS!~$GnF2>i5>7VZe%6*A#~(#J@s}3J2O~dJW>uNb4`q3kAW|DjK?^I_ z;z1Jz2P5>JxIfxPuAhstYFdP{qKej#`WzlKwx9r5oypXl=bUYPMR)?K>N;xdx}jEW z;G{NAp`=*sISAW-EI8(sOb!UBVQEs8NdC4o69`EHQb6k<+SB%;77m~z?77dl$aiu4 zDE|Nn)ea)zn#_W&#e2a*l}bS|V>dI)%a$E`D&k+_93b{dT2z|MwbFuxfP6NH9W`nj zer!Si+<5+s_Q#SQkfGm*=$2 zsabAlH999(cDU>7$}!Nq7m(ljSF*(Yxggi^<{K+ZWpHGIq#r-7AM%FV z&79QViJF58BE!@Dr~6@kFyW@NJfv2!-1pS!P*9Kp(|f_(i0kQyrddx{M&orf#I}_k zDna-`+is`jvFKvx$T=7*I!2M(2-?T9Zq7KRFEXc_c0z*S>3uq;{ziRAOkdrIcB4g3 zz)g0f<@u(R)wSLUr(6&mMC}9)vJLTCq`HnCFeS zAu8dF(agG`I=j_{Hs}zLLP*oM&(w3mr>EE=i2c=CW|+t=HV^EsZYklcw~4E3GP>tc z?-+gI?9R76K+D68 zrm~bL-JJ_QF?dP7^Dsv#=5YJM{7*^7Dtjf)X%p`%3T_sS3MwK9Q6_Foh*#bL@(Yos zCuA2@0>O-C2zFMoxH}GhS8Z)jcY;_ z0*SGaa$-m~i$K`UG|%`GG3=9ymfb^dw?kMI5d~e!)2PC3NF!(h``+gbY;l8pJ((u4 zr74#g{5LEmVoi!q&+2@kF4Go`tT`MX@QJ#xUGEq?kMf@~T*ZzrrBfAecX`7qg`k}! zWD*r4$VBu%TmzW3{06x}#3|}^UJ(|OZ)@1>cJs#kVC6R!Q8Aq5=~HzYl8*5T0ai04 z56mrptl`fiWB$6xTxr)*irRns3o)U=dn>6T!}J%0wwQB)+;}O{JE$qYW93J<;-qlq zbw`?0r9zsy7jd`=)e@j@>JHX6ov@z^_N3hqBntt#j8~N0X7>qHE|RIG zR8iD`3J4mTyub%#a@sMJJ)maYpRG+Mqr7EJC=?xC+o=Pc_wzWF(qznbi^7jqu#WLB zBn7kp3u({^(q`rWGG^FhFqoUQ*$R2JO_}z=M!!^V0%!G{5nQVLo4j^`z@$9EA!&6g z1bBpQOh;JcP8fSr?8=9YpBdItrx{X$i}dTC!%%^1f;Lv&Fx$d8m1hgqC9=&!X=lRY zYuJbz^de*YTM~+%En=Fjm)ruCx`o`Jl|qe-+IsTmhDW|R0d9Wj59!Lvb_h*Vg(fp8hgOe$}4TVB~6hc&mPWFp=UktVRA{wYxVMSa2 z0Ht*3mZlO28x*K{3yuEFPH_fx!f0-!yHM*o;5gK#QauS521V~U@@U-ixrAEs85ahS%d-B1()##9Iux)>8EkcU4NVrq!iuK{`uNqa({>zAKJWTeeIUB$59Ba^lEK zR54vb!a@_OohnIk0G?3<&mlgTBBz9?IGT^%3IlH>f>x6SGA2)^k=F!dXm^M*w-re0 zec^!x2g9fhtVZ!+jkte_6~lS&x>r)EmfTuUuLh8wM2*6LGqEP`AMi9%VeTNbE zQCHrs;Hu8%puFV@ieb<^DNe5=A1R%>UGe@UdXA|oWQVEWLPP{#Yf1Z`F1Vkul~JjZ zU2QcvWk4wxN`y@AW)DLjEHPGgcGh3sIYLzRDv%3lP}G*kt-U=kTjPJ`UN#8@5=w{W zdBaq16*wD4q^J=a$vfQj-)}qy9D2He*RsVWl_nt)bz0|bqTmB)=e{Hq*=|q9RSC=U z1sXcUqe2z|6Z6^u-fibQvhgPhzrpoMrg79%HsMii(6uUjM046f6TatpFt)X$j1*fR zc148L-y797%28a}l%Zf-&_ zq@wQ~N@^MLC_%VMnNa8baLtwRXYf4D4=|**;zTS0VRx9dqsn7`xO-$S6x6ud$jC1T zDfYgauOg~!xYMoPH7LaFHv`Y69jJJtFsD*hR;3|ERwU|8jrrdCzF6|Jj3~3*y(6S}$RxU~u;mlro;_Zfe-3 z3DhEXB>23{>~Q5xpQ(gAnw2}<-DzE#4!@pa{h&j4qv@hXB4rqNOPhP2A}n451L z_CG91D`}SDQ!4{k<$y1+O1^R}z3`_IdsnRvt8P(QU={UuU>z-CMNCrtfuX zg`!q`COHW|UGX&2Y{)6_!+)7=N{r7U%v7%N=P6#4EP`e&u$!1C%EJyB*9MHjpHS0L zPN1MsDoxJH7oSN34pg1>V}srs)gsFPTx}mq^1;ky&r*lQ`Sd)8`l#HduRF>3}AvOTmbM+(3?}bS>*?Aji zQBkJ&ad`vq@_V+_X2im5I!&%R?S`Hr$<&26T|}U#AtA&eM)7Hh=gueRiw=hQ1)EAt?l(hoBNnV12;O!sm)HaO@~3(1W^FbaQgkR^ z$N7OK44If9>}-6@XJ@|olV>YUI^IdD5oMT64Y%4)>22kwgm{$K@Wm}a)U70ygE72J zPU7Qzy(1F7`RuXke9E1bIZl@o;3_aucQ!n~sKV!IU@fIam$Q`jFs`c1_;oB)tzG_! z)?#hfF4K%mRxU$a(Z8hG9DUX1o$EhH1%h%8jf^*?^;6mDsrIhOBICfoDmeEz0I_qlH;zU|D zHL|(vnMfs?CkzVI{D~oN6#+}EMJ_1lwB_>FZDY2N`VIIu5 zjVP*ep1tIyRS3{~#p(+L5JXSY%=3%~mAg^HSpM^sFLhW8jB z!n_U5R5w_{dTu!(Irf2GtmVpg>fHQbY(UZqjK#X!l;Q7y^Jeqhne3{)L*AGJLDXeQ zHwWZx<~n0;)_4>6?+L1=iAqzH$?x={E|GZhJINEd#CNld$u(KlTD29W)f6(dolvx@ z2P5$VvFKy0T?uQVzaO&8ovw;+ukM{{xW(QG;yN<4IG~ZB!QCZS)yVFBBhwKM*62-s zZYt?Qe;QI%rW8i=Y2W%`)7mbzt`E!`DDK?UL=@~mnFLSl$4nQ%`SxGOG!4RsR48aT@b#XL6dil9wsg0#HDbE>+_4{Z)$x zChjOWRpqd`Qx0pr!Kg6rghr9 zjgnknc7$mcvPbe<58U;{F|5he03Fn#+0y}JkR1QP?K^Zk7APYqYOlkuXI@_V{>TuO<8 zJW?+MndfeuFxt!bx(Sb|k!7ykeqdg58al=S>xk}37KqN0?EG6+;$5fkas zdg09^f~Jw6J8(eugvzo`E>34irqxd36deK0P*g5Xl1T8x#Lc>4F3vc%n=|5G?x8*x zflA8U1gFBQ+E!KJvZ14Q+eC2aGq+-eJWh;6Q{h; zq|8YEQ@N9hwC%X*{H)zZB;6kzl{(@+8bt>fHsv5sy7$RVwIqv+@4SQMY$=&>4OUH` zIiz@7Qb1OvKuUn~2a&z6hi)9tD0r19Q%*Pd$Vz}WQMSQ9U%x|!Uew!bF4W_0Bx=%P z-XX{nH@@DO=Cap@Kn8zg<(1T`uC2PH9bvO5S={U)LNENs%#1DCCTc1g@7zkY%6tn+ zI#tw3xjgXG**N?iQ8mZNUVjDIi4ben-_Kp_v2E)bRZHKMaAUNt3qMw*4@zzVBl7q}RDl`xW4J z{{V!fIipPXK$0~m1cD;}0H`+y`HUIG`FLwQ_h4njstGY0z>T0zBK$YTXroA#A%VG3 zR;?+$htuhXyz8|k)MqIuQdUwTNePpxQ+@CH`C?~7Cs377;u*9y@~+IBmgt)&Q+k^V zHk~Ssht?+c#J95^(c8kXpTa=Oe9$0e8c!T&|Dp6bTwg@XGz=<>RgJb=0&&BzrK4PUBXM4cnRWah& zB+lD@`It60-GG}VP_y<`ryTGKtB|^;97=VKAuYKvdy{z)=NN-G#cpuR$!?~jQ%WE~ zSn&N~dfqRKD>={ALi34nDwR);V_a$dXP=%aZre&KXq?b>IN=J=6jP)FXum#wgRV7U zaWvN~-9QZm%`~Po8I=bTBVT;lbr7Y3Mz0V6-b8iv#7~cCsc5Nt&>Bl=L=Xx=Sp-Pm zd*X@z0O=<<;R=UKPnD%V8cY};JO`Ne*O=#LO+iw(GcvDRn@kCxmM-X!Z?b{fi)pYe zNVuPhQB7D-g0B!F3e>ObV`10xb;Nz%KSJFlMIL~BCTFfA`Hg#(t(O2)stGY<{Q6=i zn%BC+iXJ^Fxr@Yg#lT{Mkk}bh&-%>@Qj!OT1%U#5ju3x|+i|S`9Z8Q7=lhe0BUP(u z1H`RA6oZ0QoUA24g?f#L_ro*UdAk%7wS9WuT&GG^xCUTcVX4=Y==@QqNu8o_3iC7G zYFSjK);oFnV^wB>$CWEcPs9iB`{TBh0prS9K#^gm&qtg%5_N))RTrY?TCL-=lm5%I3pB4qR;aQw=XrAySUDj%5qI9OA* zbtyL+!4n7Pg5JE^Ii$drOhhPh9RC2WJ%!09_xl)ka)3OTZ0S(FV zw0u_mX9KkpMTFM5(<4est~p?5YE;&teM6sLEIK^XuDhj38k1-Pd<#=R5#U&h>WRm2 zh0P;`+A|k5T&nTD3U0Wqq?HhF8-DMPO#)DEgzAfkywB^6+oVcXkUTvJJn`$CJRxgd z7oxRpB_xR2-A7+sdc4I!QjopDm?TdtbH|Bbq{%v?ake~4Ql#(kMZp_bbsw?mfJWQ$ zl}2WzIuHuAC~1Q`d1Da%v11(LY$72<9X=W9Bi9SHaVJgo1Wp9dO>Y@XQ$O6fGpJf( z4xo3zjMX96w1p`nZG<08HS5t}6|n$MpZwsucT$fD9x{A37+afbx25Zt1qr&mAOa+P z#v7ktsZf6`h>wV1)Vh}xqNJq-SCS_KI-eYXBJg=`e%L1aaJk0&BvgV-%->bZUC|LH~ZsPA4qJd{{Zekd@pUUTHu{M?IpchloFGsbnoZsjazvQ60oGDa+!z| z_xsKn%~DLOppbOOENsB@0Ss9i5i4;ll%K8Oy<3W zs2z;h^)tD^O*oefsVPzDpAYGc(9n56wv?qw(+DPY8S{*G(3yWJ%ALTJ=|7cFd0)>P zBB-`tCrpuXY4iO#{+McRp-mE@rCNeXD!$m%)GQ@GjJWmN3+bZjVL!26q`Hz+6Sbq^ z`}M&TxxrJqp+{FK0}E+Fq{&emPU1lq+HvExZ=;N)odYZY@8Nw9;f@@k;>@K^ zA&p2_FhU21sqn_#E_dsQ?-zD9C~6!_OsO~j0P2YU0Jg1!-Vbi`24?i6!} z`)h2}fA-A{jz}ntN&*g&Hsr2+&z2|oA8lCzT5Ue{PTGhH30X>SJfx1ernuj-&vU16 zHBxp2lqjgTfBdbm-uCmyJ@L;9ab+%Ivqawpl=Fz$#LS-^E}c{k?FexupBT zDLpz!#kY?stF{g;%y=a)1fxnDO#T@$ZbQq<{9?4pJ-Lq!=Biaws#9q?Kyhc3@ACv> zqqE)}%DYjb@hLTug?Q3JN=%;&8Nc}HiVwCQU|M|rPE^nr67r;{KvHy)1*DVCeq`UC zDsv+u!giiWfY~r3(VXjkDdLcb^*pcl2p8gRO8HzDk(9jM^FuqrLTj#F!rd;xH^fpDt+xQGT})> zmkLeAiHHDl>O6$YGb96ZR+K)I1lQ4aS8!JLcS)D#E-4MNtpq^?L~S-ahS<&{;Qs)7 z$@{dcQ`E!33iwQIY3t@JF<$mJ?EsF@kQd)2NkRsofU&0J-u4?}&LoS}0@N4OXE%s*NT9KDFx6}BI$vTGQ9gm;ip4hrGcU*)? z(gor~nCIz;UuC>UM!FXi(n3m(qP49&#LoW!7diRwd`h#|HMAfZP*Bm*IsN+MF(4Ttw96^asE>LKbRt%D5+{~NiYS$0(p43^V@E7hdv|ClT%6-LyGVy00>O~0LCD+ zmC9x1EiQg1G?eOrJC7`DpYb7bmq=g4QVykq_Sgf=Pd}y-5=$J$`-VH7>yvwY_C3yc zGmBiS$_+y))&N4u2b4h(CNDA5<#u)>mR6jfFIH+a)lfDXm;pM75=hwZwf8*)^qplD z4{6jYQmNCfG~5J~kv`jZ!?FsF8_L_v6G-u;0YwYZ7merp1COS2W0AnP(F(}r zm!xBEN0N}>zRRBDH$w<2ZBHO1O!!kKdHM35et5b2A@*IT?9(yJ^CTxz$#p7Ino^xg z24duXx5Yt__Sa9rS)Ds!DeoIPAzl!#7hYTW^Xrb4%KJ=CVZwPubFYOrRoy$NlNZ>F z`EuSlTM}v^hk5H0Rgc+dXryE;xPLbUp4Z_u_Ji4d2ORc_^A&|fik5YR3&D?44Z!8s z9J}oU*kum}j7oO}95BUzXUKeM6wPw;&!qFtTQdy}_UWNy+g_ zw5s9Lly)JJacebx@kyFCgt*izQ%lsL2L3DB!xJ9NJ)bGNXW(q&sha9`YI63}>?kQx zm?Xpz%EE1bq4^I1QsCz8- zmbwvOK}tk|NY%FUayP!%bmCm8JafUYg~N$jDq4dikfCWF9&tS*&lcCVA7m_WUuf?+ zP7<10#7Rh2l&MAxn9~#d+goemg~&L|{*!j5nxL;kD+^`-5ShA1)2BaJ*?YgVBySXN z>b`DBHppXmx;(Cu><+n4d(|7uQdH^#t8HYJO!$rF+iw>!y@mP1G+KK!afPjahQiwd zRCY9zs1)0=x!RVLC7jwT7g=% zei)sI<>meTaq`}sJ4~kXGQN&xk)(5YHT7RVIKzxt%DYL%pO-5(ABoC@we(}>SYN^p>4dC5@2qwV$cbX=EYC`pt-$o0{c%^CY-4))K!I$ zrGcqRLN@7XH|Aq}OglQ_cDSF0X&tJo?<%Nj&|F-UsF1X%+Du3RGkwYO$IxrFMCshe za7I5xnf*1VvdIS^i~VxGv3833t2;2El?e@kM~X$n6Ms*xIiEY=rZ}4}szq8*nx=Ij z3P`X>l=8mXcJt&2$3k(wa2xDKiPWv7BvK_y6RHXE3G@E==L4H4*1F(vE%$~%)$ph& zg%3$Fc<0w26%MHBWQtSqb?~-*Rjr#^_|7bvJ+is~0JlyOIcE&lFrcLOAiR_)fvBL7 z@XT$fZ4o_jOLl4O^~GFQo;{o7jX2{?uT!pt=}3|!ABccRGb8S2A4om6dkD)opV@_u zCdla$s)lGg%7r0jR&@B(OzmTBtTx{q6YOv8uUWucK&+MYGyFEER0RzyOM=BD$=W$V z+onFp*7XKW6J}_^qJH&|vb{e>%{IC4NNj;(xGKTz3F^vT3HKM0wAE6jC?YPK^aTF^ zTwC7D9g_bZsyjZU=;=L<>OPCy=+(AD?<4-7DD{BwdnuJT0G4 zi=!Bw!kpnib_2=zR5uOfDB`{>s;*T!Qp#OchJz!0VJzRmpZB8&fVS1 z(v>pJO9kmMp?Xx2^4uNvNb-x7-Ys{BID=ab2GvknOik6eGY7AS<~~)%VZxuqxW_Hd z0u=Q}bnke+Xp)}~%mPKZ9kD3w3cLzBTAvcNw3PT!@RX|O)@1bYZ__45ZjiWlAG&y) zGA73GZKl4;H|>?|!2bZXH3nBmySA4?oLW~p(xV^Se8hpq^OmftueF{yaWC2G4sp)OE|6W)B8`S z%9>J?-mu$&wSV0*lz^!)HysSeoKY1|MqU~XeN&~C?FUH?1IQ=2rF;7aaq@df;p%#| z9}=WGR;kga!a3Xx;9T^!ET3t9+s|j*Jep=wzX1f408}KAt9YIECzc`J$(@t0+3VTn zn!2Ip+pK*(>K7_VS=AzB?vc*K{qY~|Z!3R_xF0#HeP!pW*jkV@Y3`GzQfy3E9-j%` z@tdS@bf!lES3~7_>e0~}cSw0cvPCeia0b?{lc{{_i6c{{Utc!!ycq=ajfrQwfv^2?_}kOq&%1&Gs1c zD$U;P$F~|v!s=UTPNiV$2(ei3fJu@}*mU!?+J+vP@-n;A_Qj}gOkj%TbypE~Pff$z zT>foLgs1q80S?ItI*@J%AMKB*>5h8#$>1;g--+__3yG&`ge<6=CQ?E8jGq^WpTjun z4$-rv)nqi)ND239#tlP%nL|*xoauO+K6i-cil^D9f}hPPJJcm#h_v(QdhIqG#l2$|=W1P=W;rHMij*-8_bOY0G@U?B zsZk~j9A!@GdTo9#lQv-p*CU@2kDlPp-fZgv`fV&Mtn=`%9za44JjK@wcONWI`#0ho$02o+g}5}GC^9^E2YKty zYh&a+Thk+$^;^o{gG%VxZ8`lHN$35VCbKhcwuLrGl2A;kMA=)9?;!M?7JZxZF4VY7 zH)@Hn>&>v25EsmBdh9|^sOK|`?5DLRc!rs=QUY9s9|`dDfI0!VxAS$y{n-Y6Mjc0V zBT@t`5u}|$WOE)@{+L&#YhM_4o=jN9s5MV?Z)}y2MX#6nhX&U0uNA#RP&=2HsP5Dk zAzFffw~MIz`s2L4m%9q6?KiVJ7m|S4RXS2s46AF%pUOq#z>ZpsGJA0QG}F}avs_P< zv#F}Wd-l+S;8o0nKjL}qJ*EDhJSKR1u!h$AMaP&zLLJgP1QQc^0Ycy;3vZ9F^ldy^ zog|KNqA#_k`m@^kp?q{hj&qUlxEr>P4LzB0bCi$x7TVJ?ohMe>he1Dh<#7eh^16KZ zsm93FQVApwm`aEwh(9k(TYu`KR;;6mYAQt9sYx+%2CH=O4M4}2k;g1>UuiDYJR4fn z;z=Z%5CyD9&cu1!A2SP%#rKKz!(~qyCFfLDSEVN8CS(yMTUhetY&hneRY9Kco0KKy z{{Zz%N{LBQR5Z$LW+2YqN$HDWkhEWQ6lB=yHyzR4n)d$yn!8Yz!u!_{RCgu>-<`}} zZHLY@?R|Nwbh}39eBl6F=w;Fxo;FW z+eNl!QsN3Z_1K>~OxtS-+K>COi^`sNMHH4Uz7-e5nzL-lOKqhpbcI3qK`Ds(4wmb- z3ZWF)O*4YBpHhlab^;To^LrWPzB-Dpv;2_O(uA>3;u~qz-Pmm;{pZeb!`ioCRD4gt zm8r|o-B!{eE+Gg+AyyiMT=L%bC+4}M*enEEd83k0#*TlL%emb(FBH}^)iVvLNh*MV z0bQgh-)Z`N@M3+BYq*muRa;H6q$BYhGJFDex$xe8xM|5VmGG`^*-{tYHc46vqC~+2 zn+W)QFMM>DV;#Iw*HE`kQr?#Z^}v+*gUT;{SdK=$!*dl*)xH@zZxlSPN#iePdafCF zN}5w@S=1#3C0lj#F}D8zTrju5mDw3njv>u91R-V;uc@>j*O|vM-gM|eV^MK&At`wT?;Ps&dXW^Yp{{5~J$ zn~uD`c#35`pf4+}NJuGDL>V^j?*&`m9>FJ3m{V$W{tCH!e`bcWgdTrNQ{4z$kQA62 zzEii%%xcFq@V0b?W}U~xlodya0DM+IKz?Hq?$i53sLwK9Gt)-8htym9o;%V{Zvm1%%iJy+O~>QsY=q2ne>?H*Vh*9 zF?S@$X~@)-Hc|pb$QKhl#kq_@yENb$jQ251jW;Q5f&oY;^}oV;V%XxGkmYst8k_Bc#NCUf21tld?bwnEwVC{K0negWg zxx@K$&A68U*SSzmn+|XXBZf@jmUAkd4rx-EUX_$ANZR5$A1&>Ps+`wa&4xz{`9VM93zudrAR56aO!{tl26wIJ3uOl zm^xv~Wx=)n?6%S2(%BZ9E5#R{v-HK8Tg5*0z|{<`e+z{q5)v+xd-FYURpm<#Csv;l zNVrUbY<+FZ4o5$6nitsCrp4r$<_L|(*by<=verYRCE@K++N{UBt^{i90z5+3{rO;b zt4hj@#-Tfn@P$K(daMAh^HNL@NcjuxwiTiXai9g#Mp<11DIm!p9%p-f@moCKahhsMl$Ax(~w-cD_jHieQ@1Pe^q#j&X%z;IVdObvR5@I5ihb7sP{?=v74`ENczV&uuVs+_r` zxu;Yn42=e2z?%+utx-Yld8)il4JB6u?<4+waprBCKSI)+Nz>CpboA-yF^j1F?0~&P zs*kAaAF8u>ozzpdw6OZ!Q$=U=GQrKnu0Mx@Q{F#`?UEyYg} z3sZ_pNci?6Z>-JnIH%%DBGQvm(p0I^5J<3%=k&&(rm!+f1CDs8L z73*!tNeWp~wE&%fn}2*Vao=kES-@3CyYHT7Ym;CvxL54P4tazjDX64(@byAsCMTQ| z7+3zOMqxsxYmkk!g{-G&-aPj|rZy#o@t&hHJSgL2CI0~2XdwQo4xeq@#h22Wmh1jXa8 zJXh{^QtnMxsHH`qw5c(@qCb9P&mOl_)9rAjXZ|Nn@o^ga<#*?^{{U=!9uSpPJx-R? z0?pFmjm?3H)BfL1f^Q0L*Em}_r_)U9ec1$}(=tJe>a+`=PMG;OP_N;dRMk?OcR&EC za8va=`R|AB8RHz{l`zG7nu$o6vQ?%d(m7&zw6RU@B!!(fqsl)czfiuNS2vL7D^hjS z_?BZ_Bn6cIQ?ySxj79VQ%`(cGcNI>C#*ttklLwqci62SF6XadJaXvtX$bIEEI&^|e zBpsw3qs#hYX~Uk{wN&A@>l|ToQhY)Z^|3cQ2=O zv?VFjkWhe`RLMRV+Z5jy_I+QN*LSR!66T2kM9+lG5feYYlVarF)7d{1w+mW8R38}{ zxpJMOeshO9Y||~z5PO9O6rm+>6a?}j#Qy-tOi!`xHA|T@+5Z5vQs>J47~%|!Pve~? z+De6{e<{Rkh}fOQ=S2XPZT=hL1n&H>@HC+uW*zXxTmjqHcRsR5|l&qwcKo%!|LFqn*=^6t-v1=<^p$&fcjy||nmj>~@M+#;M zLyL1uBqR`gGe4At9mmUi+~VxvUehVFY_%?}*Bn*6U;(SjCh>}9rz51|N))M~4!Dp( zLg0mYM&dbj#78^MbB@o~-j4IRO7|zicD0NfbRxqM%-}GyjB-CLIsHQFY_qgQWZ8sk zQa&O=&x__KSC-RrY*<-098qya6Ny69rKkWznL#}F<;xs1k@oUm(uJu>aYvM-8QDZg z1z${993k72RI6=Bc_ZNj>+uD2u>kMB7q~oAf}PRG#{a&LA_96F$WT9;F+G-kZa!ADdd{SK9CPJ!o?VwUpHWVft4NX0 zLP41q{{H|hL-@P1lUq{{g)Jx~q=a~e-ywNFIK`ElaE(s~))kZ~NkoEC34zUCUn$1a z$wq$CgNQ;@n=JtIJ$5J0mIbl69n3gG88MG4yWsxGvb8ppy-osL~&Wz92cOZS{eNMH_?nTGDT+I7QNM1RsPKWZk}a!xhgfRD|eRokG_N zAFrM+T(>r(;#y+1-b=+p#t>rUbCF@|j!@6|au%0pj)0Ny4L~GpE)O{|>*a|zW}T~6 z@O@(_s#A+fbf#8HimkT$*mcIoMY1y^D-uXc4*2-+tp3qB1G;T>4JBS57$AjgMdEe? zdA{4mA>1d&75p7t3t!=+gp#u`sVDOjxx$^MQE_z=QsL21@CYGOZ#e|XGxZo| zJl5eCQWjQ2q#MC}+&W8%~|r;GY=^-?|&?GBHL+HDI`e;ouS zdo?6KD=^y-4M7ElAA=RC)zDb{QA9?rAzue?gNg(^TuiMLzE z<}q@1d)f+kw=Y{S1S!F}PzE}P=j5pvBN#M7&UA8V-&J9A{{RxRQIpp=g|^~U%E&1r zNu7cIzPL9k<6&P#-4_!n8bV6+hXJTn&kkvpDQ^V_lAr-3Tn)UW?hI}QB{@$AA=D)+M|R>uK?F^w zmN93A@nmqa_cg^*nXeAi)>C`sO5x{;JE)Vj{w{;d5z5TL+@7f}2M(0!Ab5cP0Ly$| zoucF|((s*P(9%zIjUXTxNS*9Kxv>8LnCG17VfB0-9i+%mJice?jZHS$BeE0dRhm|> z0P$JO=o=+kj0rk_+j$3=Bt^y$?H4Q!7lN0mwIsU456c6rTEu#*5S{?dPFTyIh@Zh; ztuv~5a{mCteGVj<&l8;5m6i(iDY+=RmEnbKCvI{6(Tu%joW~~MsnW?$uF5Y@MCD~l zT0*D35(cs3RC0~^Vf%;bYjV0Ip-CZ3lC%Ov(k-^>Cgk~G?#>rZGxVmdNkei>nHqn% z^o&fspu2y_+~9g19pUVul-4UspRHRumQWOAN$V$WSh5L7Xm>vete6>kWL`WfFSM48 zbY??BwH+%65%jhq6x9w>=Ww8+l>n$W3fd1YpMNXad3H{`=8B;Yc&)5Vb>%;$v0Udl zNuhlxKMFiLfrtS4ZGGncT(HR}5*?vX=F@1ad$Jxi2yeSnl9XJDHlLqEJn<~!ZYLRg zG_M7XGEz*KDKH}OVLxnAot);Ti!^Kv3Dh)@50L0jrYue%uJ_&aQ<{F8256ruIeMi5>G`K++!?TCHPvCP!Ze~wxEdKKYmzp%>MuqihLw@kOtR_{rvFPTa~&s6$?1p;2;oG zI*5y7Ps24miJHynjXIP44{u+ zx*d+n2Qtl+DpLy85Fin5Q|4z8?B6yIIzU>yD@u%5j}Y6`@8^WG%;|1A7N-iJBm~Z* zs%~z7U-O21!l5o#IA-b6J`#UkT>WuAp_`2<^s$Y^lm`?zlbWe^R-rQn>O8~|7?So+ zoO_0OPP90rrCtdKnIoaPT!!5KcZ@jjb!ymgwVBk}1eK5PzmVS8 zoz2+3lc&E=OR2a9xA>k`(`s>D+h@e6)qGtZVRZZCbj--h02PsE*RN18?AA~}6V_=j#dCe-wN?T!4K{u6bKR{+})=W*a{M`uDHK$W+f=MKaHU^3u{zit*+`kG1#vo41wh2=wDsT5 z$YH{pFbUF9Qly1Mk`AHE?frVKXl)#g!CV3u~!}voa zWc!$<)M;|8Hh`PPp9;(`{{XH%H=H{nh5B?QIwMN$JD-;Ne6cF*hk)JUl+&`%3Q~v( zi6K6>^q*dMx2ye>>)YYqcnu9Ki3A^sAa4Nl^PDP8Q)9!hiLDM5c^#=zygQYx+JpcP zi%Ms63LwD$0E=^rk z+8EjiE_LVpCEj%?bHbsd*bz6pY8Ko3;AD{daRDijak%As`uxH9?E8WAsYynVlLcn_ zWX_%WbB==ug^ue`(o;H3hu-`D08_pxjGA6QDNgY&l@#}dTYzE-yjnlojh%T*5=zpU zo?>}*o`3yrG+V!jN1RDZ=dvA{%NiU$xNs^;+A3rhEV}tskYpUsCD@u}M!zwBx zb=@XF>HGCfP3tg+o79t}g0$Go-_AN?5*C)ioCwmHf&c*6-o__kyiPW4^p&J3UL=ul zJVX7{H@*JbW3R&JHq9hms&Q_DN>WsH6%%7}BmV#&ENZG{hZKaMq!DQZ5zf=fB*#yb z>gj}}1t@3$1(KPNdB@M|jYH~MT+odQUcz=CA~qI3E|(XKAvi;<>r#>z;8L|fh#s8x zx3AY4sY(S!B?nLdT!N59$ulz^xZO(pNnWF*!MX7cv*v$e2?t0_LY1ZyBwp4geSY6e z3$ien*lbuyynr=A8&;lV3kV)}xj!r-v}j(ErFTPcRWT7K;<(@Ux2~(Z)SmPwK_W>f zR{nmNLDi{2de-)(cu6v;A6@$4E5_J9e(nP3$K)vm}4nluJ4K=SRy|p-?JVxoa z)PCn2ymOy+N+&s2yRh3DG?Y=n|TNv`C$5|#T_$_*y=h+lea(3Yt61NzSv8++CtLPNO>Qso$#hq!ON2U zO0?XG3mS>JwyTR7pG)E+o>jNRl@$~%qIDeGc$IV5#D|%+bJwDN0C$ zXhMKWL?^;WsF=m2*@pl#mvHly^=tUTQh=~7B4>L{bN+^LHCkqXUhaDZ^*)>Gl5T5T zcs5VM=6dE1Tc4?tboXmg5=t$n;?-`E>x!4POp(mLGIBSI=NM4pSJ47rBI3 zU#97%i%}NfRYlqsRFTBguQuURZy_rSQgvL%rLITFV7?p8jSg=0Dv<=Ex=I#EpXEMh z)b#U~ocg`ja=JyS8l7Zm)_gjEP(5w77OANfE~c%trAmE*rN|nBzngyye&ZSr_b@c@ zkjDnRxGQRcq$4<`N|KcKib+BM>p&F0(3K`7Ccs#Mu{`ayv7N5viLKxYI`(`nQ!Fy; zQ7cd%3WON3w<#Ej(s6Sj#4Z*Pf{#Sab z&YP-p@YI#l)F31Pl6$pCu{XW3PqwnN#e;1sdzdj#+CESg!|aNHg%Gg-lW5fw&>xrk zq((AIq-6QpvdrD2rRKaH=@OKmh!AY3P>aZoSch=`02|fthY)M0aOes;n{j>>nU1|< z>xpL?aa}(XG~II{EvNtvf-a~V`dj2Mr|KUW=^TT>@R=5#IR{W-!}n6QIFRL43ec5T zQkn2b8bkrP^_cVd;zPmp{5!-g1h~3-HykQQcCrGIH<1KM2haS|l)P@5Q}~CwaX?0( zPNC*G^TLNeW}(roe~O-MlAGEjf71MN%G1idKR_ zAg8U(_utp98eHOB+bF8l-X-S}e>zI83AN8IUV{-H9^$96z))G37kV^Z{~HXVA!x3<^AYx&JEsAa}nN?dG61wbon7zb`$ zaW%=fzLzp#P1T{doB%jV?+TfLcqbFOOp3r&v=ZAU$^w(NpWtr=d%MmgASGAQ3Tz^N zoWC!gB)M-Nx5b%Xe@?|wc}wvnU|9U)>4?W3B7w$&nN16BDPvenYzXtf{41RQ0Mib) zP}M~{h*1s{PN^!MQ+@XnhBh&>*~(MqH%@jwiedi%QrFR{U1=*M{{Y%}lm!pV%v=p$ zBjp&^Iiqf}k;fL>EvO&^V;-^64EcpFQj0& z9BDzd>X>OMgQNgFJBv*9KA5r{*arzxI6QlDs-7(3M=}P~*K^(rg4qEnNh4)MP3$pT z@edJ}!=2-5N|IDNwWu9Fam&aV_MN5U>CQk1a+Ir!X->@y=4_ za;F=lK~IS5Ub6>i8{e1Psm8=EYp4*gbq#Q{*;YJBSnB)~{v?u8ZdIW+fg9XkZ`RSA z>awnml}SpK_{2(qzwY~Qiz)6FON&!MrySCOsbvB;8-sr#$~tX<-|X=QrAu@vN#8&s z#K+EUzBcr(9m2)bxc>m8s!7focRO@KRILK$6jC|$!;VqHtbjE8sYNAFWI!9h6ZggowO0Fhq57?l!hqTa%8BN=l}gH+ zX=wbw7$j+(fRTpW;~~rHkfqk&%)mNNGmZAwhI>?Q%8rY14d9hY`Xk#Lj~x zyQm30bz1lS!2I)Mk9>T1Kmj@AJfc?lY?5yz;RH8e5}%H0{CCLP7_M&)L0X3EvPeD+Y&vvIYkBnL`5$FWsuI=^LD=XVt6tDd| ziUw456RH3{E`0rQZs!d(K!ylXTzyH^B#9)MHrmr4xWz--)1Uf>014IJ6)eX4UV2}r zFDzl|qqkV>zN19%Wdfret<|gl0HeH)xveQfMjTj$N`kE-b_N7kZ+qe`z!iyGl@$(Y zRXuYnV1zj`shX)sbEdfd(M-@y5BW3#s0b!zXb zD%Kk_34kvnc+_AG@hkn8$zzT?+_PF`r&MKly;c8!YG_6QjG9gMf>uDcjyxKk4`jmq0x;b^Xbw{K7&Y7d)E&wijvK3aaji7#Q*I#Y(xjOaW3|se zweUR+C1(t{<4vf!Ls%5+1W8J|kaWazeKX6g=-%g8865EBXj-Z_GPfQ&@A zFECNg9O3-K#Hw?un3H0zN!|qV9H$zMkkO%a%FhsnxLM^`oF24s9!*h{tHhdywIRhF zMM_LT-<Lz+VZ;${4d6fq z*Y&p8Q;c&bt14;pR=*9$8xJ%|J{Jb*-Z}m87knHaiM2RRRTTmk6HysZpTalS<67t^LcoE?H zZL+4wO+p(bN~Lsag~28Ph~JUuU|t+*uYqaPmu3vNSw@lEfP#EzxRE3SzRKu5a7J@n zQ5^iQTc>M<-Gjld6@J4i;B4(IRJ;pfd8>X=|H0 znpo5ntssy#=WCe6zlpdSgO0c%nnqHkDxGP1n1B@RIh|3uyfO{0AmR&^eOEcmG+RX_Mzl=h&n$u zlBv0iSexyLKMiqKY1#J~FWx)1=-vjNww#hRUNvqYiMIQ4)n&%w={GghM{g)6(}K;X zAonWb;6y9h^Rl$?>-7yMiZXUe^7X0T6=D((gq~`VxC7!Ic<21*FMA`+l}Vb>6xJbS zw~(~Nsz8_!ZeR(GuM>+uhAI)+*A}yx(5cFH)U>QPfv6HyYjhxq+WvdeX zh^VQv4*rzaGCQ@FP!g9@H;_z{Po4%HpP|*f`c|e}s5)O|UL?3c+;sVM!w&#H?nPeZ zI%*VKe5FZ2k`-|Wnz;xRLOw zHzgzk0{0uvIw^VbIQEL2#V9iMC`)c2jatdI#9U3_PsYl$ z3wf6wOw)pVB~f6JxgrgwZRv=IWqE)My_GzsT+7}wGzIs@!Sz+;J;;mn?rWlBt;I(C;{~_+vFi7HHxtX~W1Q zw*u%k<^hPCM_g~8c5K5fJz0>Hy-rGXw1OZ`#9zr<$2>MkZh`OJNel#V6hfypM+WBf zxrG;Ylssj|!iu_1kuz!awlg>4ft$LQLv8rTB?J{Eq0E2A9JAbk)wYoO0-JJmpqWuW zP-Ncn4k7vXXVu&}owHj)d&(6pNsVJ#dd#2D9C;Kmk_qKHStMl&KV@Wa#~2UbMYNy} z`BG2{Qjt9eA$wuVB2HsNR;QK~?yi6|6_W{7=YGCjabBS2h0vxvFDwWSAuzZ+rU&%I z%O&GV{H2E}Ge(U&ntTfG!547er&o0N-Woa|a)JAde|dAmF+x)i+ux^wkoO zve(1~lRLnWE=BFR1_KRFRG`w8;;LW`YtXa!XX|Ty$E;2`KaTQRyv52#omC@>LPA2u zl(=^~RnyimreVSDJ6h#M0ZLg?6s4da4BF}OSXkQop0*J4dkCcR(C>2yRn0b2RI;N$ z^KUjvNR<&gPVsH}VZVrYK8rtl{{T})} zsbG`y1W(9$^u(r%Kcvm*poXdvcPdV$1cPp-4Bq%-VRJ|$DNdE8hWQ?NRo+p+%;mk~ zZZ@R0rT!T~CIBMD@;$H6~P)viJ2WEV~gX2_!}W0Bl;{cEr&Z!fo&4t>O)xy+c9tg$v?;>4bNuwwRkp zzR`*HS6%N^Nk}jZ89G&Hwfzs4-0>gGI02-DzJ}7RBSiS)Wgl_^9(k!X%lhia}1q~h$gE>o&2DZzxR z#3b`E7Qa(t=NK0(Co-jBDOSjoIk{9u;E9txF(S%xXKEf&LUaVcB%5z}-^=K64#zRr zS2kw6QB?03WbD<`_nqH%^%R1zE<|(ZFnVKbhPheZRZ&Aw`aC*N*^#w|-_y^_6Ye45 zkjZf>0WK+KPLGXRf$I^=(-nsn@WILRr8v-2YLZ)nxwi4od*a{&+e9q+w*zZTs=G7c zJjKLTB}$?wG896S2?huwl=8ydL0^~gO%hy&+jscNu)807$S9ZnhQxT>Qqc`2v~ zaW5Y25p5H(1C_6M!xOZ1FXhTzE5S%Y)B*~WMwl}acLGe9_`I;Ory=`>K8ehb7SK|h zf%bFCS128R9%QJrd8$4hcLa;apF@Or%d^k=vx91=Uj^k;p-Mu~Ns<#bCy{}?bHrwg zF>zJ&wa$eyrd&eTq^Ti71f<`WIi0z|Ce~F$)wxS`G}@M$rr;7nq>&K=b2h;?LLLah zHnVUdl@r)9A~yy~zNG9% zDAXPJzIaCqwg4}Wgr^8871SuFeO=S2Ss_vqm8(&{`^4Y5l8zf+4xFlDYR;KobMrL`o4fM9@h zZ#xcZ-=9!1mm^&nTY7i(S`UOB4P#V_RXUTYva(RJ3cuX|`uy#OZXzhnatA01Qm=SI z7J#TELWRMYk^q4Q{&;E2XwuCsI@F}DKoS$BPAcX`;$d8bUjyfyPM!_TD4caGOLkfb zK>{rV?k&Xp}6ak_eimc(ia5K{n5Y<4z@=L88u z*@Z4_&Rd$cH2dQTZDCjZKtPXPo|nP?)mdtI&xD$-ZKSC!qgWReYCCC}iGU|#)2BkO@lo=LLxPyCx``Z@i-?gAT;H=$T1@10x2rAa>8@4RJjW{xu zg|G3upo6UM0^`nc3e6Vh33iQ9MB+5I;>(OJ1ZpWJQ>2c1wg&MtxfrE8CE|LH4}I!p z-8!jU1qcI2!eT5$4Xh+wV))ML*yFb7b1>rjz?~=t5>}W5F2i{u{NT)U=EcyEf%!@o zz1o=DXWZ4dZCSk^Yupy5*5OT44Jq1iOv;j*lO{~S`|>1XpL;y*D!YPnyuFnv#@lA2 zOS3!b0E53GL5`TWxVs>GhZs_n=9wu{bdMAjZF|A=#Z$yw8Y{ED{W`oZq&NyJqC!X} zNwL+92-??2T!oQ8Rg#S5U)`W_Qv)ePtq(Tf3M(Y28Av3X+78}WiRXM>?#7+XNK$*W z$OlOSpPY!gzuV4mj|@>Ki#T1nS6_;XL}&$Ms#~y|lODIioGZbjJI!36b?8+YI#hK- zi53a~_=JP{+iV0a74%+A_wL*eD5p4mtmiHjw985NfgqUEssZGEN38ndD*9i`6ysx3 zyOkt>MTiFQVq!0NFa_-xkW}Sap9AJS%WHL1t`v=6nA0PXA`P$3_%k@*>X&lV)c8w| z4FI2p2)E8mUlumT4|N&0d;6%nZx+!}_=!u885&HFkoCi-3vqMV9aD@UN=~&vC_fMc zn1MF9w$|Sa`Ibuc8dT`;xv42SbqyE4J@B(hYcP2$0HsOOWbO=(n}c{Bn_&8TQ1u?= zIL|ZX=6p7vd0T}fYDSUEH7o{r&Bql%r{{U}3UP3dD->A&lY=yXx2yNLv_WX~g{IMe8z94Tdu2nnfB|3s+ zjWay2`}!O^S8(+vY~4aogm{otn1u~MgCBi2z6YtX==u#Uu%TQB!p>!mx!t&}CgSFH z>pH&pp76gAie}J<7N@j=kTuwoFn6}c?}&z5oGT@)T|G$9mV6#CLbTY4AQC2eeI!mJ ziQ74Yz2ApYlL0XR@;;V7Q-#qkv{V44IjV~H+o+^Ul2QOVjGqXDJg@75Gn&tNq-`%a zp=7nH{#Sy0u^Y;>N~Ygdke=;cC?J^=w)mV=<;`(}45*Z$$r|KYC!y(V6TP0~8#iG= zc!IGsG|5sNYzc@f&{e7;#`nB^;}M_ZKxPfAy;sL72gTw%zqTfvXTlEBS2)U^R+XUl zWI+&3>`%~7&lQb*I`Zt%NF_;14}fX-px6V?mGH>i(k)E(^xeX~yB*Jc-Ip01=8#LE z72f{@xEqO@$zmEP77I*KWT`Pl#xp&R_8l!(Edn&s2{u@zWO#Hx;*> zGw#m(GE?z{#pAU(n%+)j;g-quijZ?a{DN6XF zNce=A7AoHr{{S2IWQ?ihDJ?k8kYE`wnY0pl`HWxHdDfJKE8$3sn@2)tmm&@$oN1Mu z-Gd$!tfY{S4xgkD2P<;(#Z8otqJ_-_dqpmAty1U;npVm1f&l=h(*wOq)oL}XPRHl; z#IKFGZFF@`DQMHEt4YxWT$tab{&3~7(%^Yin@g@P?i>}5CB!~!!SWs9C%ubspUxycHXe93K3%p5(MK0a*&84oLI%axQ&{{ zEMK6L*Vh^E9z8`wgUWH{#lk?O3e5Y*5+YIrkS#dI>q3y+^$K58dBYlO2_k&YJI*(6 zG%6-V&O9-r>ICZbYAPKeB#+8TJBgm1aEhuDOvpQP!+NU2iW)*xkRSp)=dL_b!-Rjg z^7&)Voi93`5f0`dLi)7zfp5MNRcHcIW5NVj#s2{3?Sb4_Qh`XYx2_UUF~2+DgF*u0 zG7%`L33Tn^F(45G%LF30D5Ua$U>)Uz>yMt zF^bH)qL6n2;?ecPezP__=HnO%7mv0)*tp0@q~xr~w1IT0!}DQ8W+!b)NsE)t`+4D{ zsLYeN-x!A!lRh9i^vAt0xvwDQKX>|!sb3M8oBGZ@aot*p)#4+7!@fIA3@gyAwg>Vso6xE&+pUw z;GIjGg}vck5D8MFqP|@4g2h(q z2;nO-2A*88>d-YpM3^631e&1PfDV}lr`~Y0PZyUF>Sug;?q2T)vLcS1UFu{3%g4_S z`9lsVK?xoLEda@Yclvzr7EevBKoO}*HrU1E?}>*F@O@2SZC%o|lXdb*@mmsVCJYAG zhJeB=C&^UeB`v8*__hWwH|6E~oK7-+4z3NMO|4~ReeU~FPQXNnImjObY ziPCzF#BL#F;ZOJ|XnndBwq8?n^+n%a0`~R+1nS;q>Ra zwmilbXS7_eEovKK#}vqe<4kUDV*4Mros!8904#TF#|#G194*-e6%{I5O*=YLAVAVS z9f3Z7VfBzT!qjvLNrnS`+LC0*O~Dc3k#Apz*AYD5w#O-H;jo0IDJnVu@Yq|QPyV+R ze--;g0P~&Yew&g|oje)7m^toPa@VYZJ?d8`Gb>60(wQ4#Lu#~67E%6&~Y2WLL z+q92rH@I4*wbACPZRHRCr0%B*fsU~rSfRM1j&n@hC^=Z_f~7?WB_RF$#vytaS5%Nx zwJL2Z7Em@9#)M2|RVth5tPb~^T|dEI-#PYQS*dGz%|Jth=?WIy2=l?URSNfn<~5n}BYC zd+pY5kD2^Gl4rT2t)_%jg(!d$okN-1{yF0M?9;MdG_0viN~QF9F1VE?K%js=A0xl7pg8F5{I~T% zs?)j_?JfyE2I5@Tg{qqsE~%8tLL`x^%)-2eFV4-oL2HPcWxAinY3q}s=~O}Gus4iz zd!3?FQ_`rdZKX4CT(*(Vc^ePD6w14Kq~XfcDxK!!D5f=qZ989_o|s|MxEo=w;bBYz z{NK@ae;9T*lyTNn<0?QQ=`u)x7n$S_uOW_1_JH;aXsuNlT{fQVM5VHc6E?7!G0T^p zEj)+YKQBgF5dBYZ<61&VSW+B;Vmbr-rr40>UeH-D7bQh+)3}utDPrHC0z9xTkhPTM z&`mrJ501j+Ucmbt%s4xW9&baG`a+~E%5@*4bL+M)Z1;+t94Dn=ExgK%ppqbnJ`uMu zB5`FgNtf5Fzo+i);*ZFA`Y13Nwo9>8ST4MwV4bh6oXI(Rl|B~+xH3+;5vY?Rc=X3g(&uQb%C&{}jj6cQ2tE@R z-^(9ADr##o4k1cTrhAtYvWij&Q0G6?~t zyQ)`z5z+`7^!@HJR`$!jZu!z;)0$r$&*-;q@_&-wgDbA+6n3YF}eLWrRlt| z@}KH0lcovCL~vIfE|Rsff~2&d86>|WNSnbXVev7pK0B3IH4Kv^OYa48^Pl!#w zl-rlnA1-*qwCB4$s4p!Gc`dk|X-uS%sEC>BBOS^9pFOwIai0mQl}@sgRW5gT+z3|Z zZ-gp7PAk-uIr&#|0i+u4L_Ij#ztFqQ;oGxmj8UhHI zN>$+_&I)lU;)AV?2T9Uk5F+2(A2TkY!J;=FaJ6NR*j~|H{{UrMa1RkR!(FL4NmA=+ zr>rC(0DMYOk~cd7cm8iI5A7W7CPTzj_1Rkq_k^vrlNSXlN{#Kb{@`N0?RzwTB<%&x z)z!7mRM zKSh@wp~ardwx9B+oxbEK?PIXYJnoSl^=@BG8!OZ$)TCKP0Nx3Y+2O9#a^_f}X0a(k z6{w_y8>rlv6SPIl3m&%ZKWDtfb=)yokU3DI+kyx;2^|1EG=Uun>yAbCi{P5x9OH%L z8dWs43hoL5fKp@xz$cK1CTE!Gv7yy%h5C1AZRGd)Q~IP%{8L`hhtVGeOTC8pwC5Zv zoMpY*lqp|LTT4k0ohdV5W@MESZPU{oRl@n=Xfpk9wLIf`^bs0N3vagn0JCmz_E+pv zH|!b4UCgK+ZkskKQWm!1vXvl4o3-w9 zM<&PJY5J7TV?zkY6hirz{;Op)p3@AtlCQ;EN?A}IC@BU9{_s6u^?~~fcA|?vZVHmh z$dC%4q#Nppi(<$B08)<3oa3(4DeIU@)~En236KuE_>Uq$Bg}Fza5rPT1l=8V0;5`c z#^pp2`I1UN>OqJ%$IAuAM@$wMh2olKBVd14&4qe&-DwzeHghaL{esHQ6KNs+1&3BNeo(42E8`g*e05cY(YpL5;P z^IGJBr2_Cfh11ii3GUlR#zc@Ua6pws;N$c?d`5S*&LA)WR#$&ddYn2v z6QYfz$ZpLk_h*^9sxzlD`i9f0nAua*$1S67cArc*cAb~Gn((7-pd-BR2qc1-kR%(( zyjnl5Ib+!;+JXMrGe)zA+V@I?zN%`LkOF(RQ@)`lEGN|Yf_n!f$Q;k;8VO2Q-MSQQ zCy?r6Vb=53aSWRyl()ji*25tUbAdOXs8WVKR8zuqYO;)M6AHD*s#A`9 z?1$Ngr?g($lbO~quH~0|^_M}^-kxbPC*hj|aBOECBUhF$jPoqNCTK!h)7}dN@37lp z9OibL#FMl<%O~u2fvV~|)F~{oRN~1A*5;kB79@?2UYL?O&LC$elj706vBXZb-LM7n zsvh4s%AYslFZy38_Yrd#HmQFUzIX<$5Uw04l6y95bf7gZIVM+Q_^12xf*jm&r+IXr6rkY%n47$2b{nIerMFcdot{fqlWAI z%2X*yvXBJmGk!`p=N2(17bhNY#a3;?RaA>%#WWZw_sZ7v zsKJ=OmYxqQf;d;Qk(_agnM;jn?=^yMm4zAbon8|W;=lF9`^28iw3#0WGg``0rxMyy zunm#C9ppfQEe1@+7V0~8$3|APa}E@7vJ|2k3oXnW z4S|~jv|iZF^&eC$4cK|BTan0m;jOw{H^-br=V$q;X$MFJNzj>qp0grF?bpi|7hyiq zB)ihOss>Yl&3#>_fM^-%)f&FAGW)T1pV)vu-;8OP0biNlPv`--a85~C>RB0UDE zxA!s9-JEd_TiIt~?^3pzs?!bKQf6U3V9ZY|V~qa*)9!)pI<8d{h|=1S9Bdv?NB;ng zKQqu{rM;$jbzO<&6lrnf>UaeNtc1d3Twibu+n1zbxgphhWCXNc>Id$#Ju)7=#*K#N zmlOMYW!aA&<_iI*97!gifRcPibssq8&JSEv{>om-xyNeUc~6m=RVl|%s8ZV_N|B~S zkO7Tb?T)ah%<_IXeMzVks&Pp+a7fY*Sr;6+nY?1u_GruUp2>KImpGi+<1&ckavQ0+4`&zWUi-9FL zm@|0&aZ+Y<_1&Ch?Xy&r0DuA3u?s0NGtbIC)|1fc1KIC6PS(Affrw(i`lu$j=QQE^ zx2aII{u6{K6$J#TJD#6gTN1tm?dANFGXd2)6p&H}!#CztKUn!;(cHT(;!Y)gz4qD) zabvsy1c3(X8*gpLEGE}v)H(kE7q*Ii>6E*uK~9~2aU0`%PSad0iQN;&3T>DBOs2ZA zr&O?%>lY$H0DQ4H;ooU$6;{)br*ycD3o?}l5~1Q3H@}7y6fQ4{&xt*m6-u_f#Ju8^ zH2`6K;=V@={{a07XIWE;aHCUT?h|j^$@zOqqKA|=~xUT85I{pTKQ%*SAlOPm1r$zZ~=>}|ZZzr=_>M(oud@Nl^%B+O!?bvM$#JXtt(62DW{vX!r!$GTUl?oxU~0aZV32* zB0{Wed2+%zXK$=!VPOyWZ!n?H`dbhlHQ>jJ6yR-5g0*NQ696ClhT!55=Lu$2D^eP5 zLs&?jajHf2Z@xLLW^W1KfiyNBvYYm?+EZLZURK(GQ3)jiAo-p4JMD^}Jk6C&R#&aQ z?0|Qj9#``puawCuI1e;swK%jV#b8NR!{R>|k;Q-70#?IB1n8d>$m{VRptqN<8K;e# zfNGtiBDD;z{vE=5Kz6eF6E^ZRRxy zeMt&&BHYgZ09;8pPdN;bRJ)Ap3a+@ITnpcXP zBtkwUndhW!=Z6m3yKAYVE2D4Hb=}Y>bz11dkso zFyFbiUh}RN^r_84V5o>cKl2!$aK~x+RVYhjDG4B`nF^EFf3>kxDOlV^nktTjpAkt-ibuqtEfKgp z{{XGxyWyQ#w-ZT1obeSH1HzyT8&4xV@g&ZxopUHs7FDb)kde%j>wmZ2+1S4gjQ5D? z)=FG(pUWRT=hM^d%|CnWxv~Z~DX+C!bvA@5CUlU$=AGjA-2Jf=;i~q=WZDS>QUv&d zfK+nFLwiGeHs@ImK#J5-xa&?7lC%R2SlY%S0h70cow3cd^y zO{bqr_TNe_$j0%xy^}Q`0WUSo(u4(# zN&*5kPf_T4^2N8=*J7EC2$z~w(*jVbM$;ZHM8^F(95D7-#1vU)6f&yCHkQ!?Q3e1e zZGS($JL9vg^MrV(h3SiGr}#7wvN=Qoe7EXM$P#g-sF24Hb48@;HH0`u=KE`v!TfF6 z{Z|j?i7KXBDOyO9h_N$2LOxiJRqz#7Y+gbeCB%TD5GOz!^pC%$J5SnYv&^cSAac5$ zX-b@yU=%2n#6*%VX7Uc-EKyu}*pr+jwLIGe#F4C^N|c_XdAuK{3O`Z>^;AE(lR+p)-_E~n+El$$qHBnAb;d~UjkB5 zrz_I7$`XVKvV0`XtvkjeRT;fTRl&#PvYR|nWH#%1hJ=80&a1)PpWo94RPePXY?UcUN=X0>5&*QD zpNH*ZiDzKlj#PHRnxdMCw<;8+BnH@ROHc&JA|`Fq`YJj*KK}qseBXe$W&G1JYxqqY zDDRg2Z9-T;5G)3%n+p-K!yBn+07xk(@aAv*WLn}J&xNY^e)Q{g17KxJfCa|?0N48A z=Yl(CuiGP^og{)jBL5n$S2;_gi zki+i~WsLE43RIP=Qjk`Kf_!ENpHcebn9mGWWG=YvBg#>17>gxjeDCzc>w&vkt;&d} zs`!#qq^VX3=N`Y*;x}nXShDBR5X4Q^LZ zl~y#T8cDhqWh;@fj&tS6V(Osc`c5Iskdmg<@c`Ti0xmv&obe6g4$dh!fu|D4Or>cu z+Ws|1FbVSOg|^w*6mv!SBotF6N3~9~O}j1}B~^8pYCaMp~q-C0DeK z)pG_!d49z5w_=q(>F$YAwIVbh#7Ma*lj1SRnV;7kVcA~`48t!-?-Zm?loAh&0n`ol zkC*b8TV!O7+TgN%OF<@%QAU+3$9od-L;*P+g#K5Agb@lBSZD+jdY0R-ipe zCL;cq#PPJW`%V&=@g^QEAHp4?IMXRwY5)pADhgi5R>u7S`i_GaA7>rEno^c(bw0?_ zJZnh_CuzRkQgO`eQoEKsdzCnr&Adx0wS>oA@cETKu<(_;I>L;RYft9h0g>g3w++{4;qq4J z8+|JdKA~v^!hA4A@5^_cH8}%lkT*8lmrcEK6YWE@Mk`%XkTq#48o-d1Ps&f1IX^pPZPHe)RSdk|uZbv1 z?+43O@e1R5<+qu{X-~x_E@VeIn{e7Pw+K`ae>6%4tV?m`JcY#9DuL zwA(UXTgLQy&>B*nM3NLzMdCNM+u!eu`Lw1pxv8vhk-Hy+{n-y~t!C8erm68*YabSv zHr(yyJib_R?KiWmzqC3h78+r~`bvUfK>~}-JaL>eV;&1 zkcFk7ekl?6{{SOsytA@iFJ~~Q4c6&%;fZkgmCi{b!arPId|kqnJ)q?dsVHGeaT<{9 z6)8LH0l1D{opC~ThuNFl7V>JTyUi`ED3VMY%z_Ma1lwYKz@iyLPT6@@wnoa_Va0TJ z4m(R(!s&9Hp-NCrf(e~ISLKFG`NZXfy`@@IzX(N%P#awJ<^7C7I}zJn|RN?WV zNxFU#orkU@eWz3u@T#9_DoALlK*hpLYKz>67n$<0lhtWNjH*K$Ts^KyaYE6bWiPhb zLyJ%%IupwCBcHFXC=M;*cWK_%iMcnCeZ4K`)9H!F40ef6Rav1*WhzN2BfJoh4)6{C z0Ja@?k0@t4%Zsg{E-6GS@Q63HpmMg|F_8;QPO3s2SmGQos{ErYQ!c4!Bn2T!1YT}n zi6{O{dbHH$eceJ5SE)(WsX)oRTg+Hr{Ni}-M(q=`rAbZhLcAtDe}0z42aWRQDYI7{ zY$zs5NgzN>%%%p>%lqPuL?TuzV3Lg|-XEqps*t3v>rLSJlp=b^++(791ols+?Hw&S zP^e{0s2yizMT`R=`FVf1#RJ(MmF7XHgp!n%Sn0OjzticC=k{>T)59D%l_h$Vom$cy zn~}EuyzzsoCMK4Sdn8FaqJ6iLs_xdknCZJN$(G}Rw$`uvV@HU>w%g^u&m4=|)?9>V z6$)V}N9eeHB+Vj;Zr=$)-RFt?uI($HzN$bC<`HnN=EYxP1m0E(_ zx|FgC!jvx;=5HPt=j3q@rn*PST=Q#Tvvng5BPoL+s9hd#)`Q)xCh$+C?{j=vnQN-5 z%baAd!UBQ?pvZ_f^Ej&V$8_e+$SKsc!6$UVvH8X?9*hMS>DD^0ZTG0=<)$9a;fs$MHmQd&?*g@BZp z2Xp%Ewk&L&Kmx!q7-cn^OgXl6p7?~X#OdUSn@>OZ!*B70ch)l5KbX#>+V~$bbU6A@ z3u;hDKgyy%Pb>o3h^R;k)OQfQ{KSk&DfbYzqG=2ZIEOL?^(YStRwZIbdq1d;z6{|U z!7VtJ#_5BgcuCTHkKg-ZH=4gSYK69SDga5HBaz<(aOG%XsSA1USw3Rh+mOW> zkY`1#xhN#*NlxdH5htnn;%Py|3aiN*0nnv)aUvBl=P}5Aai270;|t~b1WHKqoAYYX zmT?o1Qrc3WzX1XagAz&PdQHzkGUu~>RPG&0RG|xzGER}=H|6u&5I!P)D-`frik@S< zNKrDQ7m+*LeeZ|L9Mj&i`f>twIKfSTNmZjz6LVv2u>CxQ02Q90MmD&pFKIPlIsX89 z3cd&mz18P?SPU|?nMM92Bt-sDsf%)tpEHLZ)7b_3dWlN3jVTea*a3Zr=5Z2kur#10 zO0*LYq9i5K-2fyF%rts zeCXnDnEX>aiV#2^$90Xh%zomlyf-JYlYHjZ4%(SbJ*`UWe(7-!8b}4fF#K( zk2~7{=Rg?0>GbUSy6S4ow6+r(gn(zlV{OOp>5rej$#scsx_t`o5|RNRl#eS3GAFM; zJ9bz7L@2UE6sY_Wt6r0|Nz?1gA2aJy7C1K69Fx8|NV`y8CC_R2MQ=E}d_(e$R|En* zN0#1rsQX3jH95UPmEQ#SgTbY0At{aby~V%C!>4SitIccOTWN7jq$zTd5q^ClPWYjC z`!-!FU0?-jaFfvL1OOvrwC*2R>O!#`AUp?@` z&0}nkv*A^)4C*n{()cNi!PPpH>Q0p-P)@rU1X@ z1GwJ*0Io2+T?4?CYC??1#o`2}-1Ohm4Q91ckc}(UHs7AcFRSZ?8LUYfLQiN-3Zg%vcVX_%8HWW?|5f&KYUD_e<5 zb(tef=~ai^3*j>0l%$YSK=A?~Uk_{w`bAlVlRAX<09ZUA9=;hZm4u)-3REq4ipr<%El^MUop ziK$ptzY4XGqO^E!OcUil*9fWPrBf)>n2@c(fG5|_q)DW+bSCJL4R5Eolc*RHY3NCR3~XUkOww0Iw1A zB$8l3o1LehLNFf+*xf@sEfQ3=(+9*v9j)oL@B8M3Lc;$5Hk247DK|;|?S)qV0CrX2 z(Bj7G)CBbak!znnEDuoH9x*9Olw=8+kDdYU%I$&nMWkw7@u?bRKqwJ$1nxKA`wRn6 zguM#Zl$8Mlh|~{XTrE`8M7Bsr{Z;gw23Bdzo9sIeJNR1kd%!|CQ+m(>l@q7*l4as zf{{8@tIAB98-eHR7$*Fpa4+ElQ&N*r0Hr!sp)oKBl04vo1kH~u4D;%)DN2urebhc% z{k=L}MWCoTsHG|kDj-^9ZY{91%zn7rD`~#*D_VRqRA=&o>Gt%(+~Clk3r-pokA<>& zT(+3iRHZ0GKovmdAjP@G=X@iY_OVp*bUL*(zzIrNNmi638)}35^TP&j#3{@WLROI5 zYdSBnj&N_d`C=`bRVn2tA$ohY1jyXRz+Z2!*q5drcR6S`P-7cfQT$_?H=45ByXn-R zu9hEOzosC0?oU&g(^sV_{5KF~Q#yzfJMaB|xRI)*E7Z7BoJdlXBFL~YVr*lU7t7(t zD;iuL@uaK`Jjk0E>OlGW<2zRwY28>~W&Ja*{{Z&hZ#Z1z#9TVIDV)}y2n81;>GI#@ zfcSOgv-k@t{{Xg7fhJTBLB8E*7OrW-?Y)rKushECyd)J8NaUEmss8w`s_9irP}+fQ zDP#n!5n!RX>N)e|e5FmBaHH9M)0?)PqwmnK+-=qTgR`@5)RSR{6i@Bmc+QLxJK(x22~Mb zJiM{vuEFw_Du^AGf1l=W@U~{<8||e`xQ_rarXYD=pVIt5)4G@-s>%m% zIiD;a#0xw{M@n8uQ?zIaS?O>9@|gQy4ZKOi-s-A%niC-^3n5lf^PPq)g{*USIAo}2 zbJ%)~I164U%xYGZI?~jgSJgWc7vHI$QHYLR+E!u1HJSpRQ%W*L2!oChvyDsf>h|1E3q$LT0NDAg|XXW(7 z?fFkEVNDH8AzuV0XTyF#8Tw)Q?$(!?w9-~o`jUSUXd>x7 zFKj()NDW_!f!Fwe#g%G)6h8KP+F9$NgiS#eg4=JhEn4xM1?${bdw((f6w2{%&RKS zDYExsq%B%Rgq>Gc*K7oFJ(($TOw)ieqwC?s)~RI#HdIEjqe`qn5i26-Rv z(;7LeSu#l0nx&;iZBCr5_p5nM_&*IKT6q}#FZ$t`d~Hua`dKJTiA?Dc0arZzFzZV0 zP=?l~LP_2NRpR7ge|z=7dFKnWm?)Go;{6-v{SPfE zDbjy+4skwk}xwkG;iwTb9hFjC1DI!WQdrs!tdGCm&L%}s| z7R)GkX6ol3xtu;_nX(*VNhK#(@Bl@Q))Tj$*rTQZ2A9t2+~<;9Q<^H4r;vmxP9qO+>%3ZdVREw-^I+X~k(|1qx zCc|itt|ocn*y3I~q-^+UX%<$K1t6pupO~J8-ew@#c4)^1aP>GYl~g$eY5`h_R^~xB z{+O0+zel#hyaEKbVj18^>Hd__ZT zKbKX$1iMZzeT~TidYJoT9qqv(eP)gOWNS}#R_2IB4oLQ1q{@5sDnPoG1H=yT^2B#K z%@dIDPY%GXqXsS8(a;z610#hSNlRbJ)C6%=+%BtLPy_=L3n?TnD80K|thP>{LMT+WhG^yjQ2`9zo z0Ew|A?T;goz=s7~k+O{@n#_n$WbL}QmHz;z2uX9r@TkC;KknZU&eb?YS$=y@n6kAr z>y0J$oJ5UqV5l8YZ95S@Llz!KN^`yls7r-TxZ^8e08FH$9VX!4$i@KSe7&wV?DzGS&_g$aO8{b$#l34r!@!m3I$x>X@X%&$#QLX>_L z!d2yC0xiDSu)8qL5`gwx?ylv<2M{I$N{BxtOqic6d8}nLIy2oLrk`zq|Wn$pE;4(4P9X#-)`tn(9!{{XcP8K~@QHe{n)`5tgP#=Fo| z7Lx+x7?{4p`#wJhpXCg)P~12_vXpSI6VqhQ(C0a8o-4^5LVLBL6>T8xsL4?S`BffASpHl?_;ZDlGFqxySJLKQpqi=$$Wogi5~LG1 z2gr+&%Hh+1_>l}Mu@!yVnXX7e;D{~oLk zc&)_c*}Fl$^k`|osM4ZNnfiqfpCU+^<@`=~2Z>db=7?224RXk8rD9Uj)IdqT!Cd)o z*A;eqz@F#dR!||%$2csb`Ne6;#s{r#PbrzhD&pFazTN%T%~p7Rm}qRDeo$=jn!C9ODMd zEY=3wL)3avP}-Ls59WfYi0eCx+#ES^e+pA^Aagy)T~j3hJht1ike~p#k)}+W^}#vM zKihUbSFMZ+dvo#dr5R5R(AH)tL2WG5Jvt4Ptx5QWhz3uX<%maWd^wmiTJ}*~(}9^BTCMp7Lg>ztAAL;zaZjPJ3-2kL7aCj z)lv{OtPMpZ+~2P=dj!C?1{s|jfq1(8P->xUqL^y`08hH(%9={v7vkTX|8Rz8B1wxU7ui^UM`z?84WrfT%0SO5`ZV9w<^P3wYURByQL=^V6YZQSE00(xWFSP31 ze&Y~K-Lxvb4`r^Y>VFD~RwX2YFCVjna*FaFZnB)X%Bj{Av?fBER-w*rAVl;(AjdSA z#pb*B`=p(r=KJ=w=MvE8U7F_~6E$?VDOiUByt&_>uGnl6$DDqvYifG z@;t@wi3V@QDdLR1$ZfZuaU~j}b|T;tX^dAW;f2&@30sA1sW5edbdoQ$#lRm=JTg9; zo8b3Kb7c+#w_>aW@eMw6M6@CkUEw4E3Q4@HPbl@@3DITmX0+YQtR-3sc}&kUx9d2} zi-jp^GWPxHzV%NDWoTSD5(v6fH ztZA?V&7$czT8^(R47gCs=`wss^U0su8$)~7!FH*9e>QSe>5!8cmzsnM?AJ5lP zl{B>>P3VBi$<-SXVhAug9$3>i;mTa)hZRVesPLo$HBTZ4N$L9-@zOLJetZ;SC%LxF zf0Ydpnk@@)l-1IZ7cwV!Gt=w78Z$hunUMDGeC-P51uz=ST)xaJ+0TKF13@ zr8^+4%k%8r#Md}!Y6>*4`Uujr#lhwWDHnnA!Ck9mHQXSTR?$?dsf3UmxmJYR%z62E zcfKn+T-jU|T-#MGxZ8}mtV{(0AQS*j(lIQln;La!EhPc}-&#Zx!Bh8c?=MMyZ0{{U5Wg)Aw1 z$$=zaYuGB*7aeh0cGJW4`DRS4#+A1gmhQBUxBVcGuS{5(g|w5hiJD8Qqpfwmk=%R^#jgAI|p-BTZ8Nzsyl+XpDgVHojFBr zrfZv8i&_eFt4-AdsM~TQ@4p>(V_m@+la;i}@2Kiplq|_eBnT0?ownN<+V=wGSw9^n zvW+e<{{Y6cA%6iJfFQ=lY3JoKJgbdqvuw4zuQPZ!+lW$HTJfBb?G6 zG7n^Mw-i-Pl4pmCT6&dj_b(`06A8*Phg*{6;v^XhuOAFuG$HVW8TDH4(K zre@?16`^JV~04sy0%(#!i_@e zm{%?4K(zD1VTP5K4tr4L z84bST41@r6+D!S{dSB2GY`@#D8BUTBb_J7z@~ajbsNudNs?c0#P0=@${{S_knf1S{ zS^b^yJDgF&waf>!yxx~cDl(lHwc_H(Ve~N#7bU_xLQ5KyHA#+3sE6UYO9{oX?Z z@FiQEF~u#u913Qk9n*+O0z!lx%vkdN_VNDv{gZU@hKmZ{$g>1HNmSl|tw}Bb1nEB! z8`yGyA_gP9s^wqxZw!RfjWrbO54I8@6(n3h8yVZv9@OXKDa{$Lr!Ao_D5=3Pog@o+ zfjj>Ij3=09f5UTRHkGMNRkoFVD5j?lO@zS})Lsfq8l7yw^^&--3(Ek98 zP`qQqPw@ppoR0D4mnbCv0NfTN8}4I!9BgQ4vBS@0gX#tBdreUaW0|DqSwh-E^(m#x zMn!=ai|@U*lk>)zMriGA6Cp`cZY2oTO@L6ee(#9S2Jtf6&D)`=cS~;+qZPafTu@qeAu0yqdJt{6<_06^&6&>?P9!O7Z@Yse zB|vYz%x%-p4gH%8gNbhoaVD(7w=8vH zBoipp;*u|YjQ+h&8u-tHTVeMpl(}u>1)wPsXK)8gj9I5{-(%Kps#7EPg(u*gnM@$n zHsrSBQEj)956(87$DB9uHfa7ynJTiIT0@$OoB$G@sU*M=f%`Gy7r1>4u~Js$Hmgb? zpmiQb#Q6=cY4;fLvNIkVs!KsSnbfw-%#?{X)wveuCvLbFQ(jw1k9O#W-a?B|c94wX zg)LMeJ^D@5RxY3~9SG}uNb;QZRrFoU!%|X`P_BxI`SK&r6soJhq5y@*i8<945&%h8+GDYS(CBEh%<^S$ub zobZCON`yY%m1!v}Sb-|lxa$}VyvnA5_S|j6wwVd&H~6O3A6!Ut9NcGFXNf)}p+JCk z=Wd?3K5&b5W|PWzcBNc1?^2@9i#PQwMr*^2*3+peP)b2aSBw7uFPYod{n(B0-yYU*?sAr&DpF=s%JVg12um+rW9*ZoGAeW00pOb^7a1!8OA&n{3f$mO1rCQ5eH8FJn_bk67%_!)l-zb zX0G`prNV$p!G#rWOw4s0?YAg}=2;{3S)@XgnKt-i@4xrMpARfl)qBGQJ{f}(Jg*4*F6G`?57o39E~&WMw{fOeynBjX~E2w%i2rB|2jB=ZBi=cer`r7^q5C zqNSF^fJKP@qv_`r^()o+CSs*Dm8B{YX8MQaKEFInI7={J5aq?!7T%~YKR0}*pRQV>PTBQT51?kT7uM)rOz~J9&sGve6bIr?JdUhNm`ZN z!PYKPlO%H|sKb{KXMyB4;#>hvi=F&jfanYvpDahye)}qcGb+M*;QY-DypgFXR-pjy zy~vNH{JgD;`OM9{=Yi5fR9#pE5TGGI>}?b0jz`M#DvC_Wms>hQS8{LRh(2P|%cd?) z8SPGvn<`Z+j(!LeqgRC|kpOeV^XbWWa8zma1T?qGjBx^8r>b!XKlWuLa#iQA%Eu6n zEvQ~#9%a>P4S)g{umU;xUlMN6Go-y%ryn?KP*-m{{RuWUel>kRFx*+ zor#@^>x~FnR5Cc694h0qJk89VRSmSIC21-EjUWRfnLd1{5M=hozT>-nZg+|WH#4LS z%=z@g?`!o=R#lQW0wD7Mn{98+wf@+uSCgwUE~-+M3lIb)H@pk<2OBWN-M;0EG{n5M zO~323<|-Oj4hP zG=d|-InSB>&Kzs_jf%D}btr?R6KUu@K*2gOz(&{8a*X3F#hl%e7Jem2(f|oIkSA@U z(-qEflBGT7#3YDG0u(y$wjMJKgHv403K3Gp4V6So#+SMDJY#)_)x?p@}Jlcz>QC;$5`gF&jf%YD_ z7g@%^+V_@FI>~=UDKO3AVh3f!)FeDV_xD$l2Y$b4YdBDakl<3rx ztH27NZFs_E;if#~9=O2zLB0I?u~JNgMI zAu=NW059Lm1fkSAi06r~|1dPb*G5+1+q;&{$Hml#{pDY!yJ_0sjER zK%dMeFgYOvO~vd8#??Qu2xd##Pc0l%d#vEHnhjQv-wKSGgqwzW71cZ~YydeJoHa>a(0H&v8 z?)Jg$XTjMr5aWoc%vuXd6Dm*&3MM)MJwLb8&;H3lw;kag1fruutIM)_B(#yTTLDCl zW=RDSY<#!J#(IR^Pg9RfNuVr&-1fEJqp0ZV0Br|2fC(H9^uB)fd)uWxQp!tdQ)?kw zz(O=OOih60%gd(NBa6F#cC}5R55D3rGN??*zVJNp&v`cxs-OPawJAWQDhAxV_qHFX z7+z-jUR)5PBpzFN{{T!=HlJ&Yl$wnrTmd`}y0DYl9Zh{woKSE?D3W7Jy8i&gV`liq zvZ-MONK0*mhUGf!e9Zp$g*gW=q1Ayj_`;u-nSiY?36C=MfWy^W5atR6>xY zCQ<<&u?h3?$8>+Bm$O4XvUZJ;u~6Eo8B^pqq_h?i05_01$DO0D6Y3tM-5#H+{>tx9 z(eH4z$2sp}S@#U7ifY;i8F9wKkeN!=q~7psePgcCg7|;1T;n;WLRz7CrNIaxvuFZh zH?(cGkuhod&;F*|F-w#7p-02?`9(bk5Ag65^lC#%OO?v}&pNUtN<5CiBnYs^zv;W| zk&t^y_NzmY)D~IqkhQw5?@>Zfl1jACqDI2vXGwJo8^^O2w~Q^LG`kWyQHWCz&MCl2DL7i9I zeuVWg%x`v&QPFP4aHo1dF>kW^zJ9$Tc>T1q1^=)6{~5Ge|E(w#QnHtbydzOho1anCP|4nkLEQm zW-c~_BfPjK3a)4W052hj3LeetE0(EYNmK$169>xz=`WJDbpD$ds{`(&yf@pQ5Q={l zYLt~JB!vl-gB?aDd>8F2oMg3yXmw4wAw&bbbCRKmE=k#zXxpjNPVt`!@J_E;^XY6& zI9IUz&b`GrigyYe@akAL5hVOy)AbV!js()_pwqOGL0ui0dvMp&)wA!4De?HpAlx27 zK+Ub`i}Q#5v@(p{g4^|p3o1^f>jp_Sk-X2AIOeOd+`}QFF27Eu{{S$R5J?1cpFh4M zv^|#Rj%P`zN4zqWlA;pfN#0|BrubuG0B^OGCW}tylBV%1z807&o`-acFi^ z+HGeWK9z@*r68opF(yaIe0_TSmm`VGf{XtE9%Hc{LhZbn3{>T5dDWpIKwfN9)E;-~ z)7KOav?l}9aRb#2Q?{oPr$hndZ_i?Hiw}nLD(Z}(wzR8KhL8>PNu50p&~J&RN5FKi zG@6R%8G=USst&}H2ax+?FHq6>fTbL5+a-~K%B4M*J(Zu$TT6}yn^M*kK?N{*9)Jt- zpBC2e_n!~@JZ4!p1+eqP_iZ)eK?dnRl-xu~j8%LS+D22sIf$mFTOJaSOHg@D_k$X* z>(<>}*@tWte0{;nq;W~op`ml6D8VofPlS2f(;expXH;3Pf9Y0gCy!AHV@7*+Tyxq_ zW^K5|bAgWaw*}iN1cS)m%p6TW(+7s0J+M?|9{QSQ+NX8)wQ5pQK_UPISjgr+8^nxE zyI|nal4g|-qr}^j1u6gpn2kLQUu}TuMj3sUsXyp{XdIt0W}zvksan}~*{$i=MRLDxD7`ceUT1HE`%W7^J6jy2(`thZ8?TSk8f-su9nIO*JEMrG74-6w8&kCt1?tSF`#{4Ruv5etae;x4_T2rMh)D<*< zMySv>zQAAq0Cv{JiJUDeX$jQcl?7aacI5|_D-O`=>G&(RjHaTMB`xM?BBZ+DAxhLP zcHJ@vzSyv9{{R-1w@6g$1tgi7^8M|Po%K9U+ThVm&^XJcb8~GZdHODG_KT}f;&+Nt zd+K79ER^bm&cyQEdfOS<26%!OOtm@OR|yCp!i>!M#mCPY`$N=wmuN~zN>r5~YDJ)l zj=eQ)9}XeBC7KMAJ#7nCrrsopCQO(kmoAZwKUj>NJafh}+Wi(MrQz?4izNR5m3MX! z*SL17@OGhXQ@GlkZbg!z5xiW^-gs>Gvg~Q@JLB#h&9c;#`@^A!^d$IYLr(nxJKx4W zMdio-nC$~6(&|*kZA_=o;ep|REI*hKMD-Z9y`Ixa$JLcob%VTef~~TH7Edv`K4a(P zF&NZIVn+V}s8{QS^%^}m)Jn*!@|!+IB>Q;Dt2kS+7OATpO=V_M5a4!7K}uDs#($Pi zE<Uvxt?}sPfF&JZE z;;$ypg>Lri#w(}bAj1_u{X!Q!qDa#xm;-soHTyO3Gr84ndzYz7S*CqNg~y6OAtp~P zjraQE;_X{Mr>)8A8t|o-f=Pl*qzRdwtZ%m0#TV=_>s(XE{8*GW6x(i<86ihkcLh7| z;F$T_e0-a2&=H&w`>oA6>T4cHaDQcBQE=X4nR`s|?r6eN-8*duA6Cgi(4>)R-b4d? z>g$f9_Tu6O+4g(QopGepB{XHG)&BtA^;j>^N>v-c7bZq24kONKI4w09gN}qQj+sss ztb?RXfjsX&TsV73@#DNx>~T+7qwwoKq=cSme+F77EsJcZgP zLIETj=K1WapY-?4kwM4w-v$RGXoBb|u0o_zgrdU20vjn($Sm!ZY!Eu|=MnUtq} zBok}L$vEaeV$8*Pe-*Oo)Z*LH>x)QL+=7BF78}o(FBD>7!~9t15&K8h(-)AY>C}~L z1H`>4C0h}oN#wxIc{^1_o=F-bTInR zM};a>$>p+>useEBEB^qa4`^A~GRB-X!Y^QUZ!3T|(v{Abq-HmOs<;vopXv6;Ru&OV3s~8%h(cDpE>GRNTli zEjOD@<9F0&bNw1OcO(P)g1r8pmNrj3Zsv^>&mENm*#{Xp*{`+F7iBCb-SYh7FjMUS zi#G1PNgIfeN@D!^M15lHhcQ)O4l1;1Q*JFQ+$&LyK~iUVD13rU@|u(LA@p zweF(F4&Yzt7PA`1`gRZHz*AlUq<0~zs?QdsYpRr_6`Q0OD%{B)C@>>eJ7b-H)I*4! zyeon7^PsanT%6##G!Dl)X_^q_a*mpaH5N+xO0WaX@xC zUrE~?etns#qT0LFd$sjQN@iwY&497r6lf#qlRLhjs`*Ks*L!rpU}XKj-EoJqtqyC# z+<8#Wbyl@Jq$~tD4xpL%bgDGO0TZzo>DC-X`YZS)3rwX{<+no3<_4{|gS1cO9Wh$= zrPzD?5!(CNy9jx@dZyf8h@@#zP`4@lErs&FJZhSfhMngUl+w1uexu6k`_EDc{;aJZK<@uIcr7ER`q@fM&l~2TA?KVDY0xgB;_}Fky zX3EW-DsHy12`%{2nNcw*umaOQobhI4ygE3WhMYsAyiF>~6%(csJ}L79S5Fs~Igi>` zj##YYPvLZK>Sl#dfR&9ZI=KNMA|Q`1H5g}5$iT|sX7s}zSkadr{yV5`OSKieL+?(7 zDHRLW7O7WxDw&zM18BT&i%+orEo&jDsjqb_Q*40JwpOBMW=A6f17+DwFC6wx#Vs#$ z@04LF}@y6?y94nY2XSCiv{`9_=?I;_SJVG@;$NnUb(%?*IS@ zKiK(W7%W|;z8s%5p1l>=$Aepu;$W&Y6fB=GwzRa7fgI>T$$N$~=A6C}Xv*Vi8@ z{Yju~jWTdm8aVnA0}=N33$1vQv#gq~wZ*p7D_WEsZAt>rM*xjml^!(vwk6Oz9|bad1qVk#9UovtBvLxWUCOa1KLer3!SKGh{q@aH~#>p2WOdI3}m&Lj$*WT)QupOkVsh2 zsWHe;SlD8_{{T=v*y}q>;)mIwb>+5)6x(DSM@Up^k3u?IrKWL}Wo+c6v6oi3%{zns z+iO||nboAhydCCn!^C_ENtrt1?zY;NsTLsI?dX2f9WnPh{{ZR+YFO6S1CN!FqK(>c z=CY3C&&P$$c?AW16*?5RRGlg+Ai|{Yd+ivUWIeFImAKj#wRm8{2=I_nq4MR<*iW<` z70fBr@@d#wd!0x^(4WgAlt$f2+Z2x&{{RuCt?u0}1p)y=4fMiof0x%7u)Xp-7*xrp z4sW~u{TE5AxB7atsV)=Z8*07mEC995y)jgF>Bf{iNtQZ<9U$zR!hjbaxHj?_XY99v z>v)k#X~&lGM%dF2V~j52~hy0DNFc6YSSYAMBjOd7_v=1+9wKq zJ5KG5{{WRjSMe*HJDNGA)Q;_DbeNIWH^i^AF4^+hJkp)_Yfwr__<#|&U-|yEj~&xj z(GSIG%}NGj7**o;o_|bM`G#j%M_HvSQc6sZh{(5}kiU@g#hI){cqy@!f-vB$G%*auU(TzY|fLd@T>CU}KzX%Omy}Prr5Ihhl^J|k<;^lkab8DDg6|@{( zmiMgbQj;M@HBO^rAoBBr_L-Xqc-$_PQ2MV=*x(QHsyxetvdrU$Dx2<`Lz)ypl-)5T zf-FBUJr2{3OYMJxJ<~RMAIwxrVL&xI3maPZgBa{?(|Bm)^?mbBXbMV}VQIDGke@l) zC(9hg+hQB2;vlU}okcDX6$F%zTbQ(&-wc91uePly^$n2MKPsZ(&diaT=1jD-C-I2^ zU>NdDbo=4kjQccegWE%lg)2yz(gvewi}Rd0Wm$`q3YJoosk8aOIta8FIL8GIb@++i2;MPFuQ3^JV<~XyxFcT4>%JVa?juw6&7EE9WC5(n7ykfp{dr*%X~B0= zlKOR)@Vislzb0oV$yv-6WVL=nR?<(Gr}v8A+cS#k^IZHrPvKL9$e9UI9wf-L+I>Ok zgm@#h%8DGNG|6>(xyhRu+Wud!TvR=^aT0S*CX%@30FwrG-<`R0^_*5{-gO)A2|9hi zl2eZdXUeE45_Kqq*6rvCtblLPh$7nE^wR?3uHQjCI0(|_~#@)N(b-x!MiELY+oN>Lh0 z2-L2;;8@Pv5IGnxu^M4lm}T_{J>rzKn;q3RN%Mj)h5Bz&NW-1U2zB7b+=^Yu-wWymr|Oh0WA-TV#3pZTygKUCl(yzjN!=ErRX6Op()jGS-(xaF+6a-JxzJ# zGt=H(0d3>L10}Xwe~dN=B|z#X@jYbjM_#xU`iZSd!agM>M|BnXPS@vb9l~t;&kiV+ zDJ3IP&r^6Gf3_p}yV|s+C|8L?PJl-_x280t1Uiw%!L+WR_E1e0W1O;=Q>nrfN5UmC zm38>0dTwzV_L|En^6t?dML34{NCZeusevNa1V!vUCOz!w#s@2ZQ7Y7+pBW@QD+?s``>Z(>%`Gb@jwDHN#K{IIs3oX@SdKhS? zqDoy2fRx-A9IqGh-_IHjkZj0Wk(NmvKOtWY_RE=Z-w*c=xisr3o{$qAaQE5XZT|pB zR5w)Sl(^Z5<<8U3V}G_PjE{)f;XJdwbHt=tL=D7Tdf=WG;^+92K1f+ok?{m1m|AWo z1-CK2{#e0~7reECt!2vvf(PYYiP_g1y__^0bUK#EDHqkHKpzp33AaJ{Pn566TwO;) zK`$)#YLt`A$CT}ExNGc-k2rPy8fuZXgw-SfO40EYz=6wiwDQ9TZyY&1F_=^|zrtlI z1Oi8jKQ~Q|Gv=ZG(8 zKF*n!0OgFmn^QgRZwS`3suEy8l6N5fy>Z(dH|yxAv8nz8P~ZZF+(!mB;bm427hA(fj; zNOx-Ca-S1+I>}P1^8Wx6NeU$aU=VlIl6SSS&wN>#FD=dL5)!sFsYxMG)L0HsZR^(^ zZ$rTOu2|7UMKaRTPL;N2lt|ik_4C9lj{5|r;>UgR6rCa#*+P@A#mvmyktZ4*MsnPQ z=;m$hlb+lv@39|i?knt4uU<=E+%Mtrc&`z8-Upc5%;HJf@3kiz`%1Xda~>(q9&Bn_lV>xLZPuqt*Iq%g9T4>EjwhW`LuMsp6&vu+xBN=izS+R{SMNwBvg zCi`Q-sEzb4i1W&C;abvO&PsCOuEMj|-%U#D1UPkx)g~1up632=F<@j(*6_6%LYz~{ zY$TO}Myo^%+UMyVF%989+G?_AJBr5jC9tIG+fBfj{%9NTZ!-_s&uOTvpw&o(Da8pW zDCn3!e0%tbuB=i_p5spyN@bSulMgRTt4LH4;*390qLQ+fQ>9wGNhC=>zu!D_zY=kU zSu&QM(yjSL{XKBu!Cj?hhOsS;VKWK@l}J7wzq36|X-Cs|_j0r3(Z2UFUsW%!EpJ;2 z(&J`H-%X}}OB_389C+#jVx>+vsFfp818t=G`rm9q_&(8wwD_lLK6`w3W{{XSHrqr&{=BHDhFA0MLDEx;r&*z4o zBjJiRr*SD#R7xelsRY~RIUi3s ziP3Ey;YpsS>JHYjq`@2&-~1!QZSkEX0);0;04HN|o&NxK^N62py@S*79V68(9Y~#N zNCUwl!e;mW``;C(VST4O({yeZ8%k1ypsLB3i<|Qk{{YL#W2QKJHE)Qh(x&u{NPqzb zPa*f|7#@kMX|)SWzsd9mZl;hr_@_P>U62Q@X`AwQgSo7)Y!9%$7aL=||HqN|fT zM>F!rYIcR$9WM~lxC3g^XF(*LAdRk0IiIzz!ko*h9D0o^?>B_XwWfEuGs|e_hiz#T z<+U8K&Maf@o%mjggFS612uk$+Uxqo{^T7OB!VhKIoTYW9+)9E(C|>a!_2<;|zA46d z^EKeg($lT0x@4(HCgRqc9=425xPP~1b9P%p>q@QS6ROd%zT{iirVFB5`3gG*ZH*1ckTx8zXzTjo$H@5ZgNbQLbhq9Ff=N+Sa*fA4R@F2Vd{0Ug zoh$DyNkK?DjP5p&Ch@;qM6*1yw}xL+l&<(%CUh_7fNk*f9WeZ~(ec@Il@b~Y*3#0n zq!FweU0Z`~{V?NONX~NGhVsQJ>Q0ttBBzEx3?EYzdh01Ji4Nx6&fq zY1#cQcSi7al=z0EiPA;wA3JZp9TuVSk3R_8s4jI%Nck(7YBI)irqZ^`lJZ8NH7mlY z2EuQ7`}KjDcNXRx9_E!L#j`L%qUoPsBZ)s0_F+-Ol~oQmr71~QgpNm*&(qM%UJ-CQ01>g8njtlKAc}Zoew+|pniB6>rjQpb9zF3!M&r)$t zR#ufZqTon_0EH3 z?2Fu(nTeR|^}>HRqsos_pnE^N7auBplyGP84E~+Ub!u%cfC(eSnUbjAY*-v%$gkmw z=2X2+)Ha|8#iy!Ik-ts1+E}t4DW=VvLXxDXS0ghWeLi?|;{G6LWp6dDJ?4!-kVprZ z9xGd{i}?v?)fTdy*-I0TP;TXN4;gW*+z-buC2r|Ui&6rF+zz+>{PA#hL)u+86VQTR zZ@X9^0zo1to%s*b9MA1Lm?^F*cStE#xJef934!w$^uupsU9i8x`J*XYz8z43DkUb? ziN4=c>xD++AO&q}Gy(DNZy|RcW0oeXFH4O!4vz@@!9RP9MYyN4$1`H3C8akYXpv** z^MXD{%2w>Zv{tj)Hd|WK=X~6Sq7)Tvh#dNQ99vm-T~7KbYDr}GiPIn;*!^}RmqUsg z?X1Gf)65#}ju~9PMVl*u^Tu6L+|t?7Xa4}I4bRV&@zZ^i_Tt@6NLX#nDREMfsQ3rP z6Fc9}`}5bd*A0IJ%v7d?X?Um*0ze8ng{Ia6c=>Z-?2nHXLgHC<-vf4;(h{9Q`^LgO zA~wb@x*hG@6}pW$c-+#hFKGJrbNuBcv?;v{uDYV#kJG z@|3MgAPH2*q)5D;gPg`X3n<7@#_6ZksHNEegTJ365$B2D5q4*l_9NLPPGaLsxtmrr zd$z~Kl$6e{VB34l#_>3p)1d;%RB821+9Ne#aYNY=q0NwmsV+E@nK7&AKYI?im}N&z zYEU$(GGxSpIgCW}cNJH})ekTK0IDrY1nfLkJmwD}Ji1~2gI2cIQdFdXuCwQIf4(;~ z>;SJOb`y6WAexn@;!%?YTM78F3#6>kQ>5un!XaxCPULTFPdMqnc&bq?cyy3K}++5{~MP38;;*!})rOjsSB*FD4B zLe8MAQywkCfsxP4_Xib!3mXUvHhg zXECHQN?CgN*mFy(yENkZeA|bWNVhx3+iP23q}f1;9SJ-75BC_Xdq$^gHSi@VQ;Z!l z5_Kp|l{~~nqyGTH7-a0zj9g-&vK=3WxG0%P1y`Hz%F}PNuNKp)lRt54I$L;>0kDq^ zhme@`K7J6@$F;&mK8l#q(0ELFK2{Rjh*yOTsYDX83k)mny@n`( zz>5hke)s#0s=GBQr>s#@hlHvCT+EOS!HW_Azn!oXBzFYKRkax0rrmj84&9(D-LqPP z6{IP{q#3oxL&!+mobE2i??^Q3?$@K#bLGD+zL=cl%VIC|gwvTQrmAI11nvnI`pz}T z!)?A5tvVq(1c*wu>oMhxUkY)=$HYtmV^)~w)8~z{q=wx>LflD7NZ;Wg$mi1(NZ;+P z=*PEhD;p!K?y~(}5#SoNkU$?Jhpdl1M{|Dqc|j67-BLc>{ES4Iu2LyG&kBNoCL`)c zL4>l5#Gxf6L0XDIxl(7B(*FRmVmRZxFQ3&ki7BdanAeKN8&=j(HX1>=-f!tRb>Z5j zDvFhqsuGkGf(QzT+C)jWKjrhpLYFWPQL9qYrKp_*EO@*f;j#!;`wd|``!DHXhROL3bg@V{ll@k^qnGuK&v9D;&Wcjj# z>+l7kWGsAY1du1p{{UYp?LN_}o8wLpb%ci1?+8nY00g9xCi7t*ExBMdQWg+eRP$?$ zQuN*|6-E0uuyTr}Hf;}}_>BIC_X8bP&U7ECWukQI2{H&On_fEG9OK!=J2@6$g6fix zl3XP-btb^|>C5vEII!}LI}g^jl(?m8CrSjxx4zbk-_L8~=k?Aq%F;V5-A>KL!|bl^ zAMDx08k24H^eN|Aqv!{l%pm}Hb_Ypxu2lGX*GsDSdQowvFWp1 zU=w8i%azxe6s}NQ(w_=;l-Nf1K5_)$%4+=z(iDV+MURGWC!NpJ5%+5$?(nMKDJPdH zowif>uTvE8}9I?D9pjs2-KxU+o%i7eFvezl=+8w1xf*G zHWFk`-0=ye%%@R0wJ2}!z&nrA?T1=?=?s+ue+@(sA|fqpGLK}ol5hRgmAt?LWmxI~@&dZjnCT*0MbjH+18{@)`b+PEj}Wh5=V_T^Yh=&1h-I9bx*?=*FF+=-}>Q| zjM)w;Y3~p%X;QSSc)b4rPJTlR3c%=4hX^Vg9-N393*(7JBS03=oKsfXf~9^N5=jIP z7q3hy-UO;pu1O@4FX#K~fLW{80K4G}7X+ql8h6|8jA`+psU|{T10o=s&E#BjjB{MP zXccZnDxqPN>IynV{AyHu{{VYqR~=9rgxyde57_x(HM|t<)5}c!Gv&N(d?w?_OI_NW zj_jD%ViVT>nC;C%-KEQKcr7ytaSBzhsE816bJRzs6Zfqxl2xg-4M3(oDUbd)_n$TxDF=HKb9qkqMK0(5QUE4kV_ zieAe7=}v@{gci-bP&tFN&p-IWWF^fTdo3M2(X`n-rdKkS+%GG{oo$s*G^)}*dXJ~p z5zR_-jvq(?P1G{2E)yqI9iyqky4h2xY$ZzySKwNj z05Pg=H~r2i(@ZXpAuCz#7Sfxj7Mf%zD5qH_0pxj^AYfYeStX0aV56`mfC`noeIB5>4rM$73EGOIDzXnBy;^fxYBHmJ@T^I9?^uOJTTkM_r+tm zo00iXru}d(Y1xGyZ>cS`8XM{-ac)NhWO>lat5Uar8JA@aC;53!CRy(eD=4Jz+gcu> zs05{QCsxxu`dV%VCz5Bz`vqvm8un2Zs&#flSCZ8$x;_<25=N-$ji2oHu%k&y)u(MH zY;Ow0{ra^~E)vNd{$m$34Hs9vt9BW>n;bDYue5cO@zvW09XcTbw-BRmI^ArA@O@xDYjJ>pd(j zgDJQ@vh*DfrB?+C7bb6O^5r;0-m4|#8ws%JnsC#FL%rFCYEq!vt~i^h>@>*h_ZUsS z&ND=58%uzt3yvh}=u_#Kp8P&_q-`^H~ zLD{t{AoP+CQE0*>^-&?KqM0A3mJ0&M z>Y`jd!qtJ4yww}a3Pj2WArf!S!vpah5TJR$S$QH z4Uj+~#H-8ZH?|k;6SpoA%vdQDOw*854v0>IA)nW0v6-6Xi8A4Ap}H7Hyp?vMXoXEnnymikfhW$CbygVDtjW~ zv{44s;Yyq$NKp7~=ZBYjrbdMpyR^iDk|jiMA5W*Q4$X3bOrX8idX=^tEb!wJE0UoWbb?vsjM?kUm|w$tL!3Q%D)u@Q6D;D1bSK~POZ>G4h0 zI&v_7cEfEmrgVhqN^TEWHi7o^!-1?tGMfnlzc2uTqDL-&x#x>oS{5A54#`rA8o(%0 zR&<3B6Rkl~e53ww$DQX$MO16?Dje_`l6P0E-UM8E;L6O&G&GHcDLSLXMwl=*9(Fh0 z+ii%hUc$4y`PzkP(J4@aXqkcg{;*N!g$dK<%9B$gQVPq7OK47{M~G_Gv4cN2!!B9J zu4X(~wR+@=WtT$Jr@K@jO|&Pj_dAbFJ=AB(tfB55c`dg9 zuTr*F(r+tg;GDNMs2PiHEzNq0OedB6_rhA!&8f^M zI97gBROWA8Pe)6ozWAjIl>!u!O!W2N7Jn4+Aj|VLQME26g$A7jok>s@2GR16ab0#e zP^{GEMH-Vv(w32=9TEvoP0fY592Rr1ZdoII84(e}` zJe;^MJ?%ER^g4n~nK(=wi~Z;{@c~6x)E5sp6K<&ZN&fnBPew!eDQGu}|o|h()njbOaemuN=^LEg&!tDd`<(0(?BT zB*#6BVk=Pth^cg^yKyBhIFb@4%*NiE;&H)DvqfE4R*I4MMx8;bw zX-b-$@lLerRF@X5`A0Er#QFZ1dt3vJtK*K^EephqBCe{StqwQu15lo7G1HjpF$=5A zPIFb=m8mPGhRc@mf==>nweR)CfuCf~)^Pid4-<^p5I~dE8MgSU_~xZFH8k$F8`h~g1DnEPaE*HI+TQ^&gc*nZjn7Y z$4S9CpgTMq6t=r_amdI;aC>N=?RzVEr0Sr}8h0*rX-9bpbubCq!01r1GJ%3PCns|& z<0{OpnUkP@d!TeQ7ko69INQP^|55Vet01{?ZV>?L}iLj7f(-#M~*=a%rHg4CSx{!9m zkv8uIuA#R4H0~u)Vxg+i4?<-yIoqVuxh6>CE~2m@KIPy3CBjQ!#HLJcOk<)rJ2cC9 zxfPj3aPJ$;7*}?=m{5(a1cE-mZ+usI9$4QF@%48MSF!kYjwz;#l9^B>C09K6yly&- z7pJ(g+U(cxnd%yQB0zD%shiFb*&l0lSuI#=-6|HBDe3__7KJ1bP3|Y0&z+3fIsQjU z+J^`^!}Sg$#pBD|0Fc^&oy79;+WQ$1Z)@JlT~7;SdFOV&ddSo$Y5)*iLWZ;{Mj)F< z{`rht!9f3DDziC?yI8d|n|p1J*qB<4aK1?Gl5Y{{UXgE*lOoxC-Qb z5`CD|*7kd!)#Np$wLII2R)-1Fum}Vsd4fJ zJN{fw*o1>{JoEKTbcLs5ha7zr`?I={mS^(WxZHl4QlYM&}Iq-bqo| zuWKo;VCtZ$LXwAAKZaRZg##SKeTD8~Kg0Z0Tf((*SX7o#4K7I#FSX=c5jVK`;@4Jf zmhtyy9o~eds*Lx*82m=AVm$u~EDShhIArhT^>4jI>d@mkvmN7Z z6sbumJHWNZ(d8S01sBF$oMt_b@#%JzZZ3_9->s`QJf6n$MQVLC%#Gw+SGxi3IRl0a4t`wo>Che-8cI( z441B}-Z%E&xc0l}NW+-<}HW-?U}r^kXc2x0IBXB%qi|#;ZlG0%IFj(=R8e zDk)2pl|(o-r9e!`o}7U47?w7Xd;2F$TI1~%X~TzeSKrIrOUOszf>5!kDsd-bFTY$3 zTUxyJm#E!3!b*_~U*ZVU2Ysf0XA1BQYdMR~Q8smVi zF^Il-MVL`Kx|%elO{D2q{GtqLKPkWaeKByon@~4Mm6jBj5;UnllnYJ4(smrq8I!~m z^tGy`drLHKBJ<-)hQq|EGyO-NEQe6>`Gtj_sL;hAwz`V1cvFp%rMR)S%8Ltagt#fz z^6Ic#scByDQVRfO+ z;qC}?GD4{<)_ca!fm%eYKm|n3(;go)^G>UT)mYm#8Dq{e@`9A6$A}y9h=b>c?h@k1 z#$ijAW_0kT(+xb>C|NyJBKsV3T_6eo#0J$EF{S*b!&^G%~pfPxe{ z0)A%k{V^oSc#@f_+Emn|L3tWUa6oNDsF8mo>3mDLm@!$F%Sck5Y@{7v60#x8qyTbeO+M^=}WUigo3P)Yx$4G2v2#gS>qv_Unk&cbQe?d_es! zVwHEuUWJQ)H<#!wwC{v+x~Cb;l!T?f2?b(jN_BD*^n<U~tTsu&BuZLN2;8f)~ z(6|5?2E=l>xaEFap0b`7dY#0nwI|)zZ3KXBEO(!-F{CEGL06rCWE`Th3g>dn#igMx zILJytGq~8Q=Wd+tcEyLn+)SFfFxgv)Qb9;0NYl{XXMU#sSdDOYTFzqg!OsSe00lt8 zXW_K+)AGc!qlDX|$<+G_R+drTEeQw3q{-O$Oi7-T<$!CWKG%$>r0NH6YCf0>$DAn% zQ;nU!kiCOq1bR*;{Nyt|BkCEv_WZ24zsoiEqJBg$0rmFm|vca_h?& z^WnvXeFmC8V0cQ@)i+PUH4d`c^o6D7(2@)gV2kpDsyvPG#g%a*Zm-^H&XpvRK#`~s zzomfXZ$XV~Gi6g{l{7OcQj%IC(wl1A(mf6!c`p^c!#qLVxZmKsbQMWYgzQ9b{XFoX z)6+i-PCDEbfyQ)f=I@;)DGE<`fWHx$opdg$9cAa_G=On+F4piG7glGH{}-dm>o#PIu<#SP~k)BI)=TQjtVNPh6N5{%~Mi` znOal~kW8x3EzJ3Cj)cr|svbY=g*E6M^R2b+)o4xhD1i#T(qntyYvQl%b1!2mVVai2 zvgVf%V@!n*P5h1h2>CsGIrfs;Dl4*T$6NP0#vmZB0#|J-{{YH5L9n+=bx_qf4l<+B zYWMpFEK;N%rE`TV>nO?(c}C!Ikw2Dqk^aIl5aSo!XNw!Hr_@_6CDlZMB&4gIq{#He z`P#<^vey!>uAL2}rp|Sen!!K^09UQ6CD2DW1E}_rknQ#e*$%l(?4_WXUE?j{cHWK3E5V7;`JD z{tsRpPj;nfCSf4*PxAG>x9exV(6}v@GJ7ZSsoRjE2-62^@2GXfPQ&TTG&qsC6}DHI zHmt>-^(smhy+|-qI~hE;`+YHFWOXY|Ds;K8c>e%ln1k~94?I&GIh&_9%0oyYDsM;E1u^HO$IIltnF5oUH*%u+-)9SBJyXq% zDb}S3{K9S5eUJ6TlYzKc)=&o2k{nVK4ibENlLAEYH@7(HbXnr3>$3#ARLhCfLY+;M z&tV+Cm&1cxNXAQ=g4)oQU0QAkOitFD$2cP%NxTbhDD>`(oQnFUY{xBoC3#fth+X@$ ze-ud6o57tX+nDs1ejTc#f55#d)PjW_X#_&7KcsDmMt@OHoaN~xBf3#53nNSmT6J{i z0{;L!LuvSU8u)F+Di^9GN_K*89QjVi9UF_qy9k`!rjx_j60#SWsAWd#NFFey0Ad7Q zH;%XR!}HuW-xXzwZPBWs1G^)i*c*^RpZF=|UE8@*P*z=WCKW3wva>S3eUKnw{ z9!ipxDa9!(@JFXpY&dbHI_upkDx`Ks$pbDs=1Q)ZN}qX#zgKt2P`w?83K5H#W+-<2EeQz2a*mbBsCgR~A)e6)7*J$D5SN zlOPex>(>&#C*qvDHObp(uklt=pmm6npM;NH?+2Z*BXeI!WN0kL6)Ns)ul=B z>mZV`yy4ofh=oQ{+^t?1ASirE8j0Q_;Pn>z#`{Of*OunX2})Ahk2%r@PQ3Y!LkQ$9 zxT+lsDRBuWsgPn~Cf3{g;-^Octt zpx#H!4Y3Qi*{&7MaG`vn@{FCgn^K-ql%$&ie=jgcO|cN;t`MfADRqIXUZ)5v*8rY= zL$3IjJz8j)bR_C+Nr;~mK=_Tne>ko9?=*Kcs7xhcQ>2hKPdST_Fvwiv$|-0CUG|HY z(mj?fWhx49eOt$z{D-V!pQv@LlQ2?8cv($>ll8vi7Oxa!?`CZ+2@BLF=>`qr`no{= zn5{F;8e3J4B(G9}NYJyj;GOZUr*NtzV(KIQ=I|*q@p~v;73g25Pj_sDPp2GGcr#^_yJ(0Bj>j`K44VS49uy^unI_3KU9Gu24*KkNLq-2#bLhhp3>^wNI^t zU{%uFp2OvW-KtC95Q7~#&JbImCIOhX8r$xW?Wq+qPze`I$+j~{AHA@zy%Y%Wm2xC+ zjSGQFpD(UGLxIB8NE?HM)ZT-Il(g^5ZLz6bFL~uLj$Swdky~UOYlW6%N9C(065&b5w^7tETUV`;xJ9AuBIY2^smF>@S=xW55J9|sFrut^4snI;PTjjJ z(WPpGwlhbDewW6{S3o~oW7Hm4CCN1)q`~RyjMNpl!p{_|Vb=+S=`-hn+=po3 zKXH#jp!~W1n81OlHy&dD0DLV=M7pPRx8hWQJj~;X9oIFdvegRK;!H*Pe$EV{r$Qe| zAyegR;Edmavkn|^rn;5ta*`!0K}vu;$i}pe>5IsTnVJ3i;VyNLYI8h1FQdQxj*n(Z z;;(EbbAzWwLqzk^A_B@lNj(56h~LC_i+#K83$i{1_Nn0BD&TDTf`#nabm&_~p$Q$( zC{Rw3&hhY=@h8xHr~d%#YxsS-CivqzaHT!k8l)2@5~L`VCJ%?hB2DeIoOMTO-qk~} z{{Zzd$PoQ!bCvNG8gl1#ttrx?PK7`_&cq1u3*+;xLtg&?QI>Y{&@1iA%k}L^GQ+0_ z1RvC|k{;Y%#JR7r&u)2^Ls-+E=9ksoK2o63O^CT9Tp!)>ST>~Pl*uGQpl@jP82ico zv7X5^UeeyrkMS)N4gUZd$e7mhk^(}IpUq$;LO?d=dfW5w#(BHcTtMwIlHy#aTBI41 z$bGq3`D5u|lkrgr8Tb0Ay*F6-3De8Ve{iLlONPFr5PuF*K#P?5mp=QDju?*URpr(?Dg_;bF`3svyZ041qby4=D~ z#UpVSo>=5fS=gugb5iEcw5p2gq%Cyqg{iROlomqOeM%`$J4h$ce1G+W zgP9(hzcB;su8yJ8zE>ImbM-`jua{sswr}j)!~AoRvnk73NU3d)iAmH6QICj3k4#p7 z{fx$P=M?tS#CeTlj%vwrbr2SQ9`izPF@FT_`G(MEzB8(NFKTb}@N+L(*I4FhkOieJ zwiI;+?yKDLu!G_A#}fYl_B-95tFw;QyHlfmuH{s%Hp(SB6r`6It4JFtlb+D$`r-P(J(0&HN&H@u&gKDdAOR9rY%sNj6Z@lvmLD09701S`C;5^N@atXh64 z<`uG|9Y{WDTFQ0~O7xSNZr>PDxXUx=y#Ef=(Y`C>kt$=6g# zSA^^Ys(j7y<#BSUdQ+xUW)3vmC zpo`${5O+V!f?8~-k_zr^KRk4|XMW68>d6yPttV1V&BpOMX4`ergUfmxI)v@m? zOKA?It5`66UlB1e^7$Ne=11)l!(1~!lJ#o4y&e$4d`d7a@pB{M-^&@YO!v3}!bY=F z8q(H_P&%(=3ar+xDtYG{ZC8YYbFi@|atG52)B70G)3{ROi*-pR3{Iie57QD_pKY9p zbt+R-PAMr0jc)=^A-7N01JwIsF;`AoZk@K#xhf$}DDv@o{jhDm>of5aSGB8N7WPD< zX0^WY30O%G7pYo=`IC!lhkc!>SSkMi(8ByF_(uIl&fnJ&-p~7Tsn6S|TAoWyx`}L! zDI`qHk`BZ7X_{2_n$Ak%jaFioTTlYTs5yB2vSXZE^p`P&@)BLC)VH}G3GXTF8!e-H z?J|XE)uIxT1WW)UuiFl(;S94br<4SzN+QrnF}b{-*MBJIzSjM)Df0S<5Z-Q=tV$bg z3WXh{ULs?V#9t%!m_};KoE3FT{N5p&?_Z5w&X&P4wU5f@f?dM-#%UO`wpPakbJMU7OKn6yPD&oY1{mM}h$wW61hW zERSWZy`CP;q_!Jop|Fxoj*?8JDxZscMBmEXH&5FAeG`gp<@b#!hzj_Ue!iIRPh=Wq zdrs`4o~=bGsL|m>6L2Hsll8)76aXicvUKlcMZ&TAtM;e1jK74?&wQ;&bH_8JE_^of zkT#Qq*zJ!r?G?}A**JUMoFOLQ1q*Iw#{U4WIs3MyIL{GL(o(Db;*x+ugo!b#By|SS zj=c65?185^O;rv!J>kPQn_hPWO@QhBLS~O6d0#yoPM2}30a@P49?YoXywDu#spiV; zk=`f+;keRb2=zDn^%ntqI)C(kShq6goKtEuqUyb`I*skWnZZnTz4j=adQhDA?8(Ms?iq9kmAmW;aoc#9lV~;rgAv zCb)7B?5Omn^yHDJgZmXw`%}@YFXLRb zYpVWl2G`QIi#%JyABvFURgDxlo}h?Qe_U|pLBdY(A8Nc^!>$!JmTEoaq@9f0!_ats z`04Lt{@3VxNbLTUHBy%z?$WI~=kkdI=YF@vN$rhEPr<&?+$)+gd$n;DBeYc@b5aN> zGHfhh`cFK4WD|{Vr!r=rb4GmF>{hS!E{T!5d$XEW#aR_7aJu5nEp!i}|5 zCC1iCAS4xNBm)Kx`^;jW_ATt|IqZWu&#NliRWo^k{37J-q^39V9(s-BlM{Sg{5iyq z(^Mpap6|O{{Rmungp%H`_M`XwW%tZN!Xp_?Tb6MjOm=e*tdsi5>mIE zYMWcC1Zh%E_v%SIUehs-TlVh-06dFaypNGN)_V~WTrYxV@<{IougGSKJBa69l0{f`9vt4>vs4AB<_e&*W$x>}( z^wa?dk%2J-7H467oxFQN&bWzc_}xo9Cnc(nB}Howj~ciH=gQ2zjQ(#E8z(!C&oynW5h@qkUj=7af;SJ1~zlXY3D1IJ{i zZ{3>J)q6c=&Aw2dc&8o?@iqwp@j8_nx#y?;TQ6?`Qzu0WZkN_+7p!tWiK?Wz4Yqu7pXvnZMgnz z?fHD;YhJ?_qykO>Uo)V2KBV~AF+%dKr#LE?Htl^hzV4Mh-la$`2nxQSL76raa0i|{ z6Nagq$hdiy^rf`4+EM}l8k5V*`r@VRx3gMo%Z};znys}Z#ZopJOJOO4r$JVbECd4w zsq`~`-FUzLmf;TWlsDhJB!LMC2{3OlGtPYW!gTVtQrO7g0ne4GsBwl8%gH2=Ja$y~ zwf_JgRymcqmQmED#_J3aJSst$BYEq{@4hR)WR5m-vmPr|4Q{0~Q0asSgsYcMbM?el zzqT}H-L10aOI_P(3u{9BMMXdhL{F~MH`-yo&^@I&*(#gOTP1C&LQH`GToJY8?~RD# z5`Sn8GxzveIznS1?*9N$=f}eBFKXu4%sV%4GiZfsDmuXy0D^8#(FQz#-eZzj$ww3L zYmRE}-lcFxCcyZQ{yh#XJ|Fg>W43>0cLSAF{_s1KpgH3yg&cR@*%=?Vcv3AEgKYVyZIaWDFGH`_l3CaWp#)9x-M zE*6P8(5WCouK=f+2IqLhdTAqMn_u5KS9*SmNrBW=-vhuM*FW|XPh5DfFGVvBJxiDb z$b;8nK_kj+Jn`M$&wj``T^&;R-;ETCY`rK_Dce`VlB1$|T+Y@IC!7#{i#?VpcyZ?( z%uvE|{v2$ly>tX769z|AkU%?+sG6t!Lw&bi?HfLCgLqn{`fR5tR4w5s3R+IX#eKfs zSYgusB2r(5G-u?hwYsRZEdmf7G2_4;?M2f;M@-RDl7#GpEotz$Hj!wtwj%XeV;m`+ zsp>Sg8mgBFPR-0-$9oT_nZ-BRf3_Vj7I$IyR=!Ucx& zbIYbaEwH<((|-$An|(%q!q!kdhkI4586zz= z_j;u1Fp^Bj+TND`0LRZ2%?@orpV4*#2zz(ENo{{VOMdH(>r5IzF!VxFnC+^QM^d6TC~ zhW6=;D=p$oqljsxx0_Ov6D0V5+cW9Q8HR06mGvu6)F!;K#I>fri#sdf9H%GZno6}6 z(%TZCC%{xcDFQc7KlYy}U)n#2+T)zT_gQB{X#!A*N)WFKW;X+#;^cY3{3pRIS7vTH zslr*v zYlc=+bX#OHHQ(a?>ZRj;6r!n1$Wv%>N+euLf?$oln2gc;CppELcf8Z3FR0w0+@|py zv1bm-^G35JDfHi6(7%e?fqVR?78eXt9vnhLz0XAyld+IZ&s=M1pk5oXU;07U>qD1eg+09QA(vF$x`m=J`!xQ||92!E-1fBT14r-=u-(j{g9u;+i&- zrD|z5i7{(f={)0de)xfLR(q4{Qr4DKm0v&rXfv>dAI;Yf_p~MtQx6nD2liaCl6GUA z(;+Huo}j5Rb}{F%G4sQdd0ur)(`gEEDNd6*)ny&U&sqBUV&KoX+byJTO*u-r6r>w( zu{~n=gJylCW$cA0H@u`snG?`#XRKS#3OkN1FRJGo+M+pzXPf2e)E4qnAvZgMZ|E$3 zn0(+))~j;5uNs~zb4Ug}Tg)4Pdi0-6M);Ss{Iapcq9IBN)UIj~(svf0Ofsj7=|jg$ ziAs-!3DzW!?mu&ZX?r;d&Wm`+rO;W277irKl1s{5$BdJxq>w=0;@bG5ds*PM<~43A zohMea1$QD(DK^2`S81%#r7fxCD@TS*+WW-$pP=iBK2ydNnTbl)MyC=a6>145!@QgG z^}|_i%~3@OF?^~^{)(!h{7}=HfKUV-{{Y$`-u(Jv3&rg{Ou-6i-x5>#X8!=YUNPF- zHNzQJWT<@&hH3;MQc|NmAj$awh&ODVisesJJj+AAaRe#~JX(B+J|9cq-1kO9h{Dv< z>KP&1!CX0d_|N>`Ne2f4CTqoxxUHXshWb;L(Lt#dNX-CO`v zxzl^zXPke5gBMZ|%7S4o5p9VV>;5p`mu3C!Qk8EMi0FB9!eeb^A)td{T;9w)6uj#( zr9xU!)Z$FQDT_(z1~%Wz9h+Cd6}_Ku({&WOo26|DQSgl_HvnAP-)vBx#93PlevMF- zI8>1$1&XxHCNCsos(q=rtmIrHRHU6OxWI{2ttMdexgH&X_`Z1g?_Dq48aOIVJe#!z zuNdsOW47KgUTMb8lC!H(nJ2;Gn75GnPg_|2&e`i|OKMTl+E$c>n6<_4%lvb;C@#?* zR%gZwa0Kso|-fDo=<>76+d{+`;P_-jc?$FyDl~R%mlbT@~6+ zcoz;*fl=N!+(^~tZ}M-+mjr^RvBz+QQLw>UX8r|}!RCVFnhY0mCdy}(o{tKniN z#6(Q|M9JsKUf6=?Og%wf;uWZ<6+pUl3s27Yus8;-8E*^Gt=|)B)Jayr>^*Lw_rxQP z>(iNW64aeY0cJ|PR++a+wgvH>{{RVazQLlV-IubavbNtqJ>`M$Y9PkO@jjFK;O@~X z%}bQ;scBn+0`EGML?6@ce6Zozog;b9NcAWUxaO27A|_9)*x&EuB`(_dNqjiA)}h`u z@b6pMQ!zG^8~(V5RMOcR;<_JwfHJ3Djbs#@ZXHSZ>`y>_aG$gX9=FAL+l!@W zcg{E6te}7<4@k5{r<84MLpM;%O}Zg_q>#qr8@rWV@h=mvGtJV{1EH2eM9c>{`QKN{ z*tNR{;<^e9(Vu_Prd-n6&eJwA&_~bbif)gFUZ4qaAxtCAT8>)T!M0dB!FDAo?8*D7P%k8`?binB|Y5Xr=&_ ztY{|G{{Vq_*Egg}78b28XcSA#>~MP8H(3s-L)VidE`Tq#%+=R@?O!K7M@{B+h3e3qPk6 zkM`h?94k{S?Hh);hbv7o*kw+vYb#js9;2xL0Ly$gyV=%LoH`8{Ou-|Plq5>LHh~xC z>yC5GDDz$&eM%kT5hM);KlYwy5^uD>R#PkyCy*Kjn0yb0zpWG-p<16HM$EkiQH zVOkldvr`$}PL{j0t-_S)Ttd~>W>D;U~-M{FFBf!yDao2T_zna^d) zU8;K;SL8`j-=cP%N(LbzCBp~B(MSEjoKwfMoYR8yU&m?A>Qx%NT9Xskn1hbw;%+&s zT2!FtyfUDq$vzU0Ol|A6{{X#L#*VX?l_}a$slchwHv{GJ^!j6=bD4|3uPaD;uz2@3 z^fs&B2g|bVB*`0MvW}QMglY;X5`TYOEt&8r${bUT(lXf>B?wAjPxRl`dg02RrjH=2 zJ{>a?q7$dC{QU5>Uukp-ZB4qRAuvQ3BK*GiHy0D_2~q1LYpe_?ePf7a!jgzmBy3eM zsWBwSp8o(juxKwfrq@p6nx^p}sUvU==MVL{?n_qcfqAs)l0@m!Z3oan{{R?4HMv7- z@YT0`4w6J0PcphC_(~~de4V%E&BNk zX~XI=3_M!Taf$x`loX=~E~u0)6rdoJ`rm(F?T4-#;??8}0o6L^!ayrKiSzRN;xkL0 zbWD>4QA{vEB3s_YN9T5QglF<0SG=8YhEdG0at_0G~zm8oqxs3tU}C*d2%^z_Ar z*uQVJl-au}YM=zGLQh#pYz#eDUm?3APoD3#5tRrynYa?NhNP^DyG{gsDM9$_ji#alZWL zsO5?yihCxk;p)XHw>1Qr5d>{F^tad79nYL))Vb?Kv>S1ERmg)NU!?8-0LvBk7jP+6 zJBPbffE!-I{vNx1`r#W~!?-V^)9Zl%KR;E-XN|Ki3v4ZGb3+0(gQr1|KoCaTjl|m9 z;EHc)YFgEnpGzrmLg9WX1avYjiwm|M&C#3ER3$A2^v#Xu&ttbNa-Sb|OI?vyODojd zYblT--m^dOe5H+;JXC>bH%kno+k^0}%-e}*GsktX>Q~H2D!c$DX5U;5OPtqb4lL5X z=Y|EzxSJDxUr#-;M7dp>@U22Z*78zG0ztj^{V_1$ZqzC>4(L<~ab5zFi3AIMJiR(# zgBly{Lj4<>DaO^?k^4dBIUbPemEs91C1+q}1}x4K_MN58(u6qUZRrYt4=WEZQRj|s z&uWoVORY&MOlnEf&j83kH@{+?_x`wQpv;upsah1Is(eJPPzfN(Gq+rHAoxG_wwJ!U`{*W2D3c9Pt)i^p-KS*pD{7zZ$#}FmS=epNmI!w<^&RV zHi5aEMf08^doD+Gpfso9AlULCbm#NHnIB2IcQ_gfq0aJJib}_sR;4FYN+CM0Z%xP7 z)*@NWI zE4-88G9^ifo#J%)Z*8rJ%#LZLvlPJKr1&qkH!^zU_q94&m?3x6kaphJ{qn`VmUfQc z6lKbFqS~bEzbUk1i+IyO`_jFt~)2QF3}szG6a;k-{84(D)7kIfjsYS zXCFLs&L64Zob4nhONC&f1Zlkb3qik8=NFG+y|X!0M1+T1O+i9X<)cma-u8@9d%z?1 zQTmpIUsg44dqdO=_OY!cDpJ7KU_?#G6U^TGZPeluz`P(=m_pDKsWJ=&LZ-qZAV|51 zpCUw&ZyqQKb!+bx1jdk~0Lg>${{Zm3;>_&Ng4!&V28xSq*jQ;y9lm#q!BCjIcSoqg z6m8aRU|~5-eVOsXxGz0Rbp>0J0RzCOjXsgf&k|nLcptiCO_50t^YiU0ayNPsP;=r&=_T;vzr-&p9^VcW9)CtF#w zE1fA&C{VZlQEkB-tr*ObKXRW?-Sk9d+EP|jq%TpE`E~%_ z&@X%9$(kP!S$jx*r7Ck1?vK+gNz|Lf{$Mo&`~IS1tmcj}R)mqH>`68R^WVr@?r=SB zb>Ba(G@&+B+eDG|+vy!Ku3+;^TW>bB>3R<KbU$9DBxzLY zGGL9Z>pT9&BcW^eWUEk7AOo?O1H73h$EjU6zmk5QcuKv6(KMFSRjD$l z2YKI~E`hdqTKYO90uytNC%j0JrLkdRdj6icR)OIuEtIC<>_9)*;CI_8Uw9HV18qwh zqQsLQ{A_vQT&ZYF)`X_S-&C97(>8^z$6#SfGb*s&OdJYIwL(P4h!f{%`Qf7{%@PgB zRFuJ;F}Rq<+(}#i0Ob26wRmFE1da6b-p7_1@>T0`MOuF?iIcs|^tL2~iddSb67^wZ z_1^oaAnNY~@4uvx`}xGvCZ*SxL!KoKCP?1)@|gMga>aYY&IdwuDJ5wF)|j4Ozv~ms zqNP;%dnx!el&ibZsPC(3+-*2BA>IH=+Ez!~qkXAHU=P*N6=F(+|ru04E#+F(RRj2n!z$L5IHv%JAWvQ6f7rlnaZ`DAV@m6aNKzD` zerb?Mw=;9M#pP@`a8(%1mESJuQX&A7Eps#Sj8?t3=4i-kUPiwYL0<#_6?+d`V?HW; zp@)@+r8}v-uFCdu~+lm^{N@v2L zA_##anZ#GwH?%@)DbrH=Qm3iZm?z_i*mLDDdhdysZ|r~7d>@%pB%@N1sRclMK>EPH zmN9jja~`#??Q238804z26u5&js#A4JNdToGK$CKBJI}8!epmL7HxB6mNeM{_u-YOv zlh+OWMB|jzZXrWTRI*0mZ>O(M-uP{1y-8YEs#Muf2S`qxKi?mr!24h;N$tF;b6KH) zgWw4>sY;Qnsq+5VIlRqEUa*pw8nv5=-rwgC>RiDoP#V;wE0`cjn1KXa>4zG8$w_%l zsOi+NiXlSLyx4l;z2F*4b8GUcV->~L8&J{`kpN6i#Qfu)4QDY@6rp&Kp=hG{6^BS2k8VKINJj`P+4dbq$M-rAw(~3UWRXtAE488s z0s>NoOId9?+pz+p3_h>Kc3OfPaCo@k(Io+=4RLzQ${4^S<7A38bk>go0Hdk_VS8bGSs-8^K7? z)BD1bkX5Nt0s)!lzxKnERBh$Radjx&zr!j~8c5q^di^oBS(A4Rs-bF5+JFPfWOTzH z66Z#-`BFuWlnF_R=M%lY_=ZV09iXj9W9fkRWijyuN@{9}M5zvQDc(8aH&sxoYLzWW zNK2>_1gL5T;`49ZVfv^kL|??cAfM&`061%Wd%-GE9w||RENo*8+6!ofPM=!#y252` zed-qbh*j39ixVW0Nj%3bx#5#A%h2O0421Zk5CFK4eLnoLC#<1u8B(d#7v4^`)J@#+ zey5+F8d;+*X&Rv>1eox`Ok3%>#BxF|*U@SHQpFOZ&A9eX@<-w&2`V$qDLaV~KOivE z#Z>Pmy~bZh;naB2tvX5$u49q7>NfL|?j5xHVN-Z5Fy=HYC#LfO#WP6N&_f8t7mR1yX z^`*cT*(oqez=)84et3T1?mq7_$1>;L($fC`5d@uj75t~ydv0-GIhrbtxoP~$8kK!9 z*XQSeYV(yeuJykUk>}@co;H68)D+~FYl8+Ak6*{AOG<6VQkE1%g-3*2{NWld>bjTk zDs<@*KqP3tOX3lg@pE~f;M5&1D2OXfp#K1D9@bw|MN*|S6#(83#3$rG;~qOkBgYEJ z^~OPCDe?8zWbgaKPbrn6;DSIgyw8@{J1*_RHOk#_wK=Fcr3(-gl|5#zA-+`&%2t~JaWX}Xy#AIQ4{@92o$ghbw_4dchjdDcW@H$+-o?MFC`6kTRnu&l%Htd@jpQ-{C$#Q<=CqAE8$B zd`+5Ub!B3rp_>AAEC68qBwE)t5sNFcpJ@jhTWr*-pHw9}3Jj@4f#Nc6Hjn_m*yp5Y zS?leF^9B@`5|~QLLDo!k-=5Qk{JHAd+{?RK9CKNjZ^akbnb=H|<%nJB%{-Bh3W)t# zz~B(N--)=whl|5$32m}38yoep@*aofh`$qX{!zs=2?%kP>XU6{YEHF8UQW{%wf?xM z^6b|$pi^ZJE#_qWXLHEM`HNy%l{;0Px}NO{ZP>U4LP+1A&*zET8`wtE!mdqoWNkQd zq#Qfh((?MGrM0r+5F+X&Bm)vQ<>|H`xT896hBAbqN|zi$f)It2g%co5-Y>L`h9UWv z8CCF|8;DYz?-H{FkPO6r{{X>=ds&@+e^B9C*7lM?3OgvCMD*q8F{KP-o$o6bQzd&? z6P{tjZ{{@)A=UVnbr22H8weW<^})GAg-9jd^Gc+6dGfS+$NuayBPR)1eMD>`>Ss??(Ll8Jz%g=*7pAT8&9HMPuP~wV61Y4ADMa=K}Ej3k0dZ8-?J^%=kF9v_c7*| zL5Rjlmbphx+L`!L65pbEAKz1h>9dU)f~lE8yTxj;iJ0}lbHY~2ZqwadTpPp=((rPr z+d5mSSOG$HD@gctdhLCq4_rA;a;g`fs^+Z?3HXlx05CpZJVWx@hWJx1rBmup;iMFy zGpW*NZ!Zq-1E1g?25ZVQTZ3z*!-gm+_S;0^`A!=2`{BYGHEYmix#85rp z1ZhG~<$!K?9-Q#$z!`#{rBlui#&PWwz2Lw5I7wj45V6lT7ORUTiZVw3(Mv=Gc^z+4Q#T*}0wPoc3sY&;S`@;rGi3DzApI&Dcg3?@aqLirvSx^RS zKKlvu^TxfSQZI!#6uJ_nKA?z{9U)we;tT=)F|DP404&{Hc_ft9-w&F;AkJwY2~(8_ z3gnnr7CuwGrwL_wLil<1Qc87Gn`}Vo2K)5$7>NXL% zG3kJ68h)|&7L7$JZaf7hG=X`Zlgp+QU2ob>6)j+EL9D3#URw7F@lvZP`=wAN)GY`} z1tb-GGi%;G50)(s(lX}wtFhIF0-RP}>S|aBNCl+$RBg)I;}!i)Cx6*(V0`{6pFv@2 zkAO)~>+t}ojzn~ubFwV0bzCP=LOYeWm{Tf@g#rOw4F|(>YkCuk%?fZiAMlwQZKQqa zLuedcMNz}~>uXDtH66>(gc#73j~E>`({Iw)nRfTVDrT=N;!LErrBba9k_a;<=EO{2 zpx*mK9z{gk{gb-G!%O*1dRcKKAoz7FS2#=%pCWqVT}hkNQg(RDE~(8_FRGXkHj^$HC`OnYT$ z;|Cp&`zuQ>OSwy_rK#@J&2m)Rh)@TS1n*;UY*XB8!8IM1aY||2Q;DIdDpfP^W5Rqf zd5{W8i;>HGUc4Q|IcFH~?K|wLLAr*LwzZQego|pqkY?ry=x+*knb`_ER^Zjsu<}y- zVNM}%97+@opbex237^e{`h1lAuE5}=`h+(SdrkKWvEj_dkB?~|Vx>q^ff^jL3W9{( zAEEi2NU1V9z7%jW3yK;5LdrfQssK^zu#Z905H8NLx{R5}8mvO;>u4YD97zYqHl6%X zH^uMSo>xi7d6U^)ORI6`kdaETgpCWdCj6&tQLBu{c73WXE1Mt$Valtl&9fc_;ufl# zUv!pKl>{h8q{ur1Hn7^@8Q%__rtxK08!<(mF-h)q*dw5bj$2Q3ORqXfpO?ncfyb@S_w0NoAOq9n+Cr^i{__1Aa4J~J8RWvMSNL5uJ zyKmWE5MxL-pV;!j)zm8N^F8k=UR6aKj!umOQcUclF}xmMELsYz$@@>?-6EaW8>kc9 z7}ZMRMUOo|PcDRQY&s_5xe7@gPO>Pf&W|Rb;*7oLsVY(`6cwS#9s~JOPcK{%!&Q}K z<`7US-~040p@?iD9W6sO7u9`)KV@03P~b-Cw`#qz9x#! znBokH31wZ)Y9Ofq1h|4u=uqTuxa-#pWM!hc2lWfd9M}7I?TNsF`ZMs*m8~F zWrq?xDov$6akS1Q&N-I$&yuG|6x=~Vbb{*VzKEVc#k!yVy9uirrtvQD@Y_2C)9}bwjTg+G&^=s>SGRVk@r%X z44LMG)Gjxosg;EWmO#{c12KF@b1d?uhudZ1p7pX)T6F5=$jI0e zx;1;YeA)!)0Hy7}Dq~3A-gwT^`#EmECvL4REibbPce)8lYQPd=I&5QM(-*Rj7(NzM zvAv)IKI*pNE+{WoR8!L-DOAgiEpn-t@QqVz>~Soq>}xFI))e&{jZsv%0a^;78iycx zgUTarSctojqbtl?O+xh~l_d_ebP@y(yvZES_>fR>rB+7Dkm4JxrErv>>M7ANxu1)m z-^1r&cOz=`t}PVd`lgl8XPuSj2k@5j30X?gP@PJ}Sw@Wl}Xboiac= zkY@97>Av9q0J=5c-q5IX#HotpHp){VE$|eDC(hF_4=z|QG2uE!kgUTcsZ(~--Ab0* z(o#S&M(|9=;_(Jyne^<6T3UF?Z3-cKQ^e0wRwfi3b*}`HLRNv)OdIm@!qj|7yrQio zWhtY26bU4T$5RLN=z56*FX3w3`iWJPt8Eo6X$z(yP_)Us6TgRlJQqN^TFP}XSlXLy zP=(wLC$G~^{RRuE85=S3n&@R7>iQxpxXzCzuU$=W?=rfH2z9IXcLF^OpP=60M{^1U z*3>SyDt#4n?~~pk3rmV~sJA$cQxR#4!*3jL{$s(2aDXeaISgsL5obC`Qs;W za5Z3}m{AQU3I70yvZYczPne}awKh_lO{7iCnIPL}fId$7E@Y(Ax#HB@h*DOt2>=m$ z9&-n$hY98RtF<{|=<3o|g$XV$ciLbd^Y_GUg5?cznp=JtCJ9PFP#_Vu_B}@aSZ1A~ zToaJ8b&hl{+y)8-IgK-wH4QY6cdKSdC?`?#_2u)#(}DB$^V%e~`=w7dj}cJ^QfxKE zn@kH|%M>>f=SXLaUhZ8q&Q=n(#K((b1^#o?ZG(F{<2SONB66AH@|#b91PD?jZ!@%? zvFdT4?JhY`wqsT)C+%6nZspmEYa2;bEncNa0XkM9Q}Y)dUUCG>*&nv*9Os5=I7f&a z)tA=-hTSUgw60r?Lt%f{3FkHRdFtyj+Q!o3H3dWsU@1JuFh%^P${g`S@dis(*?(y4 zrJ|%#xKflmcp^c9Ih%v&KA5qs+`tbZEu@oVDW__j30c`UXmwd@&7^5rTMsv6xS8<8 zS_*k>e_TE>M7quxb1|kz2T?=|*q9N6y{j<{yy7Ap8f-tmH5LR>?E3)rGTwdQvx$ec)*!z-t+XEMu{ecG!_k~~^S zH!vc`PxiokWn9wS?kW_3s{|66l-&I+N1(**limlFrXf2^fWn7ldHp97@ijZhQ*G8X z;88&%$9O00KDfDP^1+x>C8WZX$ps0Blqkji zn_MPhZ5?L*w!BzAwcr# zd^?{kS4-kkO_{2l!ZbDqgTy{N1HSSt>3HUt_*w(nET>G0yl2@jadbUOtpO_h$>pSS zjU--VN1X4J)fN)<0?**7Y9c`bPcJ)SF5Z6DS;Q`=gy>mPRJn}=9+TAJ#mwb3%5k>C zg*$~CY3a{zJ@5^Tu#4dnW@Col>7R@8k(XwS)HGC=8C15T&_wCJ*By7mhiF-vxQm79 zYw4AyvW02Y1zseG^8m#4>*t1k&}y8f;o5rgR;0GD+u;HtbzTG$JuUHiW8MqT1N0E< zYH^BzvhN~9M9;uAY&!MEhfaW$EZ52bEOsqN_+&Ym=amfVQdH|@a!0_a1}ACo+|TM^ zhd9k2%6NymszO4LJG%)AOzH|CO|<=i#Dj_x{{Tqm^i@egQw|jnKqlIOH=c*5JUVgD z1GB}sdK_rC?-Zb|qL0p*2SHG`hs3EQ05>Ao)zj=1yMnQGUhqRt1zS81mZPe@j2 zDI4vO5Pr$Nr!jjxZ7X$2Q;7kk0-~d2i2U7o`QfUnoPQO|M5$fL_h%=WQh`L6fda#M zo8i+m$W@ZnCE$Dx>Og@P>PJiM>458K)@j*zPj;XbTmw;7lPSK^Cll%Ej`pi{cPxJ7 zw;T3xt>&MmY^COWA!rs-72*&L;B`E(&zn+J)zLiNQv6o}M5#cgJnj!XTs11E&3JDs zuWYC#;Fg@e$$=gM2T0R6is$vTd1YZ!>HHT~65E6gFrh!B{V}5HZmeZt#|Rd0l|p5C z9bXIPt`!9|%AmI4l?^u94)J0gUA zU4{{=6%6NytD_y=LKX*r5)@`*>A$Wgyg;;ZUkIroxq6|!Dg^>opa%B<-1PpqFJQ&5 zS_x^!LWOWo7o6XRQ%vL9RDq=sKqWwQ5#{y3d8TDkKvGk$LPCI4d_5=Vu3a%+=UG;5 zz&WZa*k5|f!B9$|0kO2$`T1gH!Mt$Remkm!sVcW1Z(u>`{ygvnlyJQhSf|~mT(39G za~CzC*OcDMlBGqWEO-6i5oV-zEV=iB&f`8 zBpD!s;_1^84kl%~CKT%m{1^oeA!6zSRCV6lZGdyQq;2_5R5|P>oCIn@G`A)~R3w0Y zpP=c9ClGL0&$w+>6wHR+R-zXlh=MPxp&KjadYnP{M~G;vsoiaEHq)0(NKre-J3+(p zIMv*mpYWU^EtwmTWJLLN^aBZdTu1{6&2x61H#7icO=%S%V#S=16afsbl3 z3VQYeR^FEnjR{DDsGCR7eQ@ocXXd*$@0@K()MiJ9RnM2#`r=%}8C_mX+wGQhsR>HP zu!R6(RXn0F_d8$!j(jAv2mVu4*r=}qQ!6M!TXB8jRI+9xO!L3)F<{bg+ga5q?#pUh z0!RdSO@wc2PW^B_CQp~%^xxMA<$OTr0~I!<1*SkUR62dWxSh}6 z!OC=Qqwt8&xE7Ha6Ur%4T_`I~n|Q5zewd`{^QxA!H!0mygG!V&6_sfrR}x9s^yO`@ zi+7AT%<&C5_fVv&*CY<{AOLyW_qHHe#!B1KR+v+W60q2fax4vuf&A7HY$`W&+;?|Q znY};=Kk~K7xM1-`Gih?qFoh6OMwKevB0h7t!%cSuKatk0qR)7MNPsLN{O0q|4xB5Q zy~Fv+RHCGUV5oc}q^Fqv!xk27(^;hgT~Jb6P?7PZ&z1JWjMs%W+9K2shjLE(t5QKa zh$vKrL~I~@x%I@VizX;aTuD$wOcZ%u4&eHat{QThXWOkx8Pr0Gl7b*!XGnlA{_kG4 zn@}uLwvx1^H-J<&(nrO9P&eNbxVSpiU@(poO+^E%{AHI4j2ocBk_M}eTi@rr;yYRV zJ2KKjk{n3VN`di3wGuCXOjudYWlEf_#23=q)Y^e11w|>+BwA$K(`(xt-^Eq6G<-!^ z+XqNfg=jP3iRI=3Qk@Fr@16*bxOY&(a62{&imwG>7YI60)61 zB?Og|7Z=~l69dK}q!8h833J3(dss*^udnsA#MpT`-Bzu7l%lObTUROH>5T|j2f1eI z98cXt^W3oaQyP;BfK#T&o&68f(qMc>*+b4jQdQPDfy*5wUBNV2o?qR*fQ3%7pp7JM zV&`qXn5X+x?BHc>snjJ(QcAQH1AnYyojl;0QtBadTWYChoKz)6MEFFDPOKv31B@B& z)jfL74O$aJ;ZTbhRN+$c9zvX*N>mAthwqIQKHKh^(@eFs;s!70Z#n0N+N`Tyts-ZU zg=&%Oi6Wgs%%{TypXQ7UU8N0`sak-ZX6JsS#y$Bh)j$B2HRH91D0xKZ&a7=gTCWiY17fjeF| zw_H0&dd4)1ZV#>#Qvqp`BqWmt(>$9P6pll1yGq!IBSO zOa${u2YfZI2{JUKLeI;lHiM>M{V}SN0pA;7oRr&H1fSip;a-!ELZI*Ej8L1#*zt1K zw=oGlN1_W6>P(>;t*RxaH#55Nhla`w`RNh27bRdRhX;8~jt zO}h&0UpDRYj_LSwBBpYyGO7f&+61V^_POb>z)K@zVSCL1%4BTbLmSCZpgLo~BIM(x zdu#syOCH!e5Xl?NGj0*i8>LcpDQ1;mCeyq@w@#SndhDvBE~ryaw6>f{BSOZN1JVuf zh&7Q;H$>n^!Z*NJX!4HWgwiXDa`9Z}b4I7om)wA@2r9YyW9t=P`WJ9Nw2xvmyiM76 z7gFX`PSf|zrGiw^0XGmrR3OdN0p8ZX$jWqts%$wPUwnO1{{ZZCyJM_JXj#V!)NxZe zV|p5>rKPN>(cUY@785p$0zr%8<$tUltJCSmw@UI0IULyk0EKRqrR*^Z1m^yWgFUD{ zia6uhLx|p?;#`)pm4vN9r`FjBbu(fQIUli#d@HJ>`s4NS+efok3VT-eM_G{ZURjoA zl@*QY6>S8mrKpJ16eq>eQcs>gK7Z|@0>nZ8*;RhV$A?iU(#AgHpEY*wIR zKiy$t=zIEa`l2sTh;vswqBF|$FkuSm^PkA8Qzc}g#9tKLknSHD;iXt?Tu1E z7x=OD{gwBXiE~oz{ihZ$vtCt8op#&8^tEXo=T(|hwCIs^ml6+NMsL#<@krHS3EQo( z@4@-H@*MJ(t+gpDrF9MhgQVG7zs4ukw7wTLxFi(qGq$`F<$jJo)f4?GxG%OpWA^h- z5Xk6ha~!ULpz7({NLuu!%8)0+1}}LYarxfk4h^c{&MnL`inhvXa`%+Wf_BnlV0!xF z^$q@(e%5(+wGXmy4!M{*nzZJbXr;^%0dTODAxS=S_s7Ry_2u>@bJ_FS0;h;*snp(6 zT<8jM0O(eu;85ORNVM%fza#xGtR^F;ko%ip-!>LzuU298633ES zq7!)=?Tdf?3F;16?5gXnsm)I2jwNuof|Miyyv?TbWAeu_{{XJebgE9@8B}Ug+a#NW zkvk8}lQFU7k3BvSCazoLllmyVX{FluNbN(y`vL4f+tyd@5!fbAQu~UjrOmRy)k+o; zV66oTkT)Qd$>c?*G4P-LTYZ{Ov!Aujc~4HuiOcf}g*w{GG$s`VAvcSOGwW*@>_7Ai z_Lp97+16>nmGy6G%AfC;XhM&6q44ew;(FNi#IOGVvJdPHJ)rh;lkxoxI{WHWCYq#5 zl;Kn+Ci@G3ouVzg)#)GDnc7!yZ~hiuzkZL@nIITdVBRb#);1!b(L)hTCEj0F+|Td(|MW=0NI+H%`gS7B@#{yEEO zoA{RdX-VHo)TjsRkI>g*`5WA0*$)lyLwc#{>1f$uWn;swP!x3UBEwGBH#&@b4fZbK z)bTHG96L-wR+_fnAObZd3I_iGIJWoN`27igru&TM-M%+M@l8W)6r?R$d}Sz9C_o?X zKR+veef>eF>+2(Eek(*3US3HJNRHJO5WOsK^+_0t!Mom z$F#1pwy8yBK9aR2bpBHo+-^6%Dom2G4e^fim6c9r^g z#3YkMAFm7GwNuupzl;&%3+AW)0A&T5H(SD75ZXL10HAJW3dz3P?s`gkW8$@H79LYz zw{V~!gE;!x{{Yz|@e`SrVZyX%Dbj|N;-r}lAFQGjq0wu+*Krp_uFe1y32oLNc#0J$9J5*&op=C2`yy!5!egM@>AxMs_; z)jwJSW@L>jM3mm!efRxh+w9k~cbRdzhe2#4B}4$B9OlaD`>}@2BLK%J+q7iyVzmeH%f_6*b_1Z>~@ZrW#aBIZ-wdG zWsm!cZCcf&z>yLJ^wo-si}5(Inj~ItK33(0x7?E(c0Pbnq*lFO zT2xe}B`ZovCLs04(9dB9^DY_e?E;mxyG>ToR8mplO8F6fa6Z0x;oi--0;7p4(%Mo> z#d^>pV0801@BaW~(5?lcrKNeqsh1En5Ooz2kY;CLeq4spi1kh`cx!trCfYRQJk_OM zZm&7*5}n$Rw*ntXE)skxkP2dYW4`@}D!b~c@59wjjU_3NJRv740W%?s?L zFX1I;NjizP(|@))+t~{;Vv$aIIhht%auF zIlcqUxN3^GG)+>*rzA~;6TE>ve@sXi;*y3v)sUqY#94Br`P})*_2+zQKhtcq-U9e& zHh#Q*PC{QNyBtq z!(UsTT zh;c0rciHY?PNtHl8`MFc5>Aq0+laJS^W2H5c*>yVyi(mlbg51s9=K4{2nU_O{{Zxc z1ol+zU7jS&swr7<2}|vFfwDxbjrsX*Km8Ml%D8=u%Zj^~k={1hBqdUicJt=~-+X+2 zyHMEX0iwo7ZV#2J{-msHh7Jx#g&ECrMN?9^^Jr3*hQtK|K?BtE`{7KpjHs(}+6={% zIG*IGE0uy!vmP5-dERb(%qhh*&C=J@QK%)fv~;Zo;7kxBtPpWk@di%+00r@OiY1zi zvY>^(dp4*|qHQ<%pQbLlH*^b|f;k7cL#3LhAe5b(wS#`9 zEpD8#Q2T3eMFve%Pn*)X%Pp(pN*qi@?X>(`dU{Ux^n|UJBNO@LU(rMBQ0#e?z331> zVxYa7XO3ijpk=kFbxBWo-7YMhDu6j|56UMKZ)<$HU-XN0$z#BkrNjgRB1%D3_5ctE zC6|z^ANEzR+1!(ULtMu<&6pU z$32eXlrpvMfEL)=LCIC0u*b9>Wx@HgNKHeHr(U26^+JIl7~YK3(;`8Z^sNvwP=G}oIV@%5$k5;@xaBOYC0 zwTtoD8`}qGBek9dX@t1il;Z-ZNs?hYlzQwh>5e7g%=qNoX`M2K0?j*wAc7=Z6Chu2 z7Q^D`CmqSyR}vmM?BgYHyJb_Vna2Xb(jcN>iGnvbf==7xi#uQJ+M}_~JmQ?XrH<{j zR(=D78zoS^DORno5>GCc#;2%APKf6shx@GfbfP_2co=Z+=dyX=emZRCnS-*lIO2R{ zuaS~;-<5>)C#D@7&0Wm0{`9F*LK^`1bfl5~;5wgNR~#vn7HHRA6r`ocG=l`EX&)j4 z&q?NBA6>*K_twL1X>G;q4x$CE2J;4B4ZQK*lPG44f!wVhP!5fOq~F4Y_PfC^akp%F zI+>?Pr&VKVNpobPWkSMsA3rQwzS&uVXmWg>l|i=jgsh1Wo^Sx`ZnrVLgYRKEB_|Wt zxtYDCPSC!x+Q=Nzk_4Mb3P~2(L!Ge!_Q22D&U3nIW}HKbX8KVQizz=~p%cjRjaYoA z+tlm#SNk!$bBiTU~4p?eR_j!ZK56t4<& zk_y6;sBZ=~-+!hkA7p&BA&l7$60Y%tqy>#y#+Zc3@myc~+ZVqCzH*gQrA^yfR7$`x z8$|yAY-Q+T>M;F(*yk(Nqr%I^nH6bfER?0A#wU5Gjo~YCH$FSGO5^-fi%32gzYDgwzu1BS`tCl!# z+OOID{>(k2c$Yt>ZRV-#3IKE}60-mwKu)2~$=_((*E6l4k`CgC`%=izpTlceF&J0PdWZdl`=IW@WqLqas zy#%E|-B*~r9gnPF`d|M5!kEYA82#3tsYdas4|W=CkDM+=_PF39!riE5Pi4crZR)i+ zg@nRVomy?NumGC@BV&eq>m+ZtuE#2}*EFjzrC~k*0=!TTpQOep8V)3Pf;gkRI+IHF=5)YchUD@FAd$bJkE(2EXqB9b{{WSlrEo1U zxbu*h{h7EIGvGcEuFLZ`TtjbFq_Zm^q!Xkdf9^YPU^lS5yJ+HCKEyi{Zz{{*ZCRdn ziCWuMl8|HqKr^ew1cG8m$|qHoRB@*eWo}a`E>NZPJhiq&Kp=?%@OA@z3Q|;r)zdoQB!nLhphr?>{{YS9j^p+x?bf>^dZ0YQ>L_X{`-dBVG=vf2 zKMWXGK8I~sg?3HaCSTg0XS7*SWGPfM$!WlXlL|^e^cPL8Y!qxr1}oavZh2R-=Vuk| zP`IUMRZA_?p$h}LQ6djBJM0G7=IKm~4mc#|v8zN|Z!Q>^9#J z>gwFjwGKOaqOzgIR6ellt}SXQ3FcyV{@Y>lxrOmx6Vv203TY~7u(j$`L?GD2PQ&Ml zr_Y7I&XQs?e_DwIsS**I-`YiSgT8v{wal`b)+k-Zb%?{V%Y5a+WL>Y zZIYJ!T0ux4SRIYzSPzymb=rBK7<5OD%gLsi!(?TF-A}Wux%R14ryEjSZcwW!R<+>y z5P9#2hI5v#srH)$ZWDD0I|(s7!TKCnYVBJn&slLY$a!c|jQlF_*iVrW=ub<;b9~W< zb9P?u5|pCCBgHD^Z(f@YxcK(PA&{4htp-ZYo-y#FJX6CJd^?&l^)jR^1O)|w-WyNO z{{VkHPdgUN)lr->^2!$5ib_D-@9_aXXL&cmIkinKZ6j(Y#Mnxe0zd>06vxldVYh@k zM^6e?C6YlyhFc+JAs%84&Fuu?(M)z%f1(MUx-pFRQ_kCRnyl##Fu+oj>J$yEr6h}s ze&Ax4;oi(EYP0mNt(757pn?>1`Og0Uul2>;IM$mp4b>C)kW_+n>Kpk*`OXxrLmBlR zrqSKFuLxY~BE!XTuz_oh?r(~{H&DTXkMRV6!P!#%vhhd%07n@OH61(Qx7-Qt)7}?K zQMr&w+;1llej4qwG2zUeFZ;u)QlUhqAf$8LTl`=?*?3~RJM96MUPFp$CrU|BOs3Wv zxm*r*BhCooo&i-pRLT;E5)`o|6Y%tasptB6#>~;hD?uXdRM^7?;yZa)PhtMnRe7aC zDV*;VVK5?0^D*27n~Q&3Wa|A~!g^7QD%~HZhx??;qI+8HQoAc#%K=JdDhmZ-F9d1T zv~~5xUr*ZYPID((iEx5p(j&zm&GY?Z7iVvI1sk*uQ?k=A0hEI(2Ht$;am#s)1Kcf} zsbLigN@Qp=1vmHUapV=s)u<*C zIv!`NZ;2lidn>7$X4_kV#V8#b0+Zr5ktEu}_ZI4770+S4u2N+=x4hM_{{T>Sk`k8A z;M^)xGic^IV)1vjDh?uTC<_dTfxbb20J4yOo@RBnj1t*3J(!-W+IAVnd=d>;L6S&O;u0f4NnpvB0NSnk68NoVdo|6 zlQ7KCl8SX(Oo0=tRj)tO6?GUgQ{AI!?P>Rg`%iUkcS?OnOaY-{73b0*bRL*+&$#Jz z4HpBdb4W4*h|>Z-XU_sV*j8_nQmJYRX(~pjQWfAzuh(ID!zF%4QJ}P$t`6`{KAuHqpYW7Mi=Ytww4ZPsW{~j+c}4 z822pB7FH0H>ez*e6ZgYzVMwLQNhMPP2K(>yAn$BAWr;#sON%N>l0YZtxD&Pgadc6( ztr;}B-`LAKMH3Wy7Ow3sKsv}D5RP-vUr#u>eX+Yxp{d|jY1j%5Jc3Eo0#I%VGH!I3 zu^Z1Jj(+x6u2VFLY&rOV=?m0KLSj1F-=~?4eW-JKl;(ZQi_(b~nMzDr1;vK=$@M)c zl178|S(%8vhR9ekdvf=bN4FS&lyjh@yr<0j4K`i zyBGBd1ZK#o$y7VU>CpyBk^#T<#XRKzcZ-q$@Tu7W9ORGfhw2_LRUJEsg-Sw_G)h66 za*e_La4%=H>&^HJJJo?FH?9jMsS?}aQd8aY-qViA;Z(pxDK(_j!1bfyiJ z2X0&Qp17%Mb1!?&l(Kbq(`k?d{{TP?dScw|N!IE3ea9Q|NU$8!6W9CVj-gte&3tJn z(g_pxjTDe<(39~S-Ua&q0DM@vcM~q2jZ$qpV&V2WSMbWTzV?nlNRnsHEKTG8031yBbmA{6 ziJSibfuUcRt(|Eak{}Wlq7@idrTf_8a-B0a zun?>+3F3t}k+zjAr@A3JkO-Si)&BsO^yUn?R%A%xO2uk*ETv8B1z>=KGB@d8CVMC)e%1BYZ=hJDMcv zQk3U*kfoRkF(1F495_a(QXwxTGvF}*r&YY7{&=~z7&k8_j1fxe%5rAvvgX#)s@6~x zkQL!3-^&|8+J55#tBzdAYD!d~ryB|gAxCqje>bn!5!|1R(8gJzwW%qPEeW^z=Ml@M zBe}M4_e9`iX(qykCXnI^mS;V`<%v>LSEZ#YQVBm2hR`{m zOe2+XuMhDZTs2tAwMj6f*mb_Z;+Nvy#&bOGw7wkyk<{vg$j3jFV@#K_y4;kx5AM2$F5)(_>K7ZKbx(KbjY47$SD#n&i(b{{T|+*OR)h`Fl%W zWbAJ~XRa}>EzM{&sSYVtu_IQYYXR5dzx1{{@cqK|rcMDs=beXCxD*(y(xWK}1dT(_ zNgv8SrxASju}t47Y`T|dFD?!)JQ*AAAB+Po7wJh!irP0 z<=TpSlIv(ANRL0?^t2t!*lEPBbnK#>75@Oz1tw!imYpprwFHSGLX$Fn{{W@~H)X1r zwVQBS5A3;V+N{lQDJl;)X*0?&=axB8;ZJ+sX_2Z-UT%5xHpTCnWch7p;vu$E-wP(! zGd4SY@ZDL#6qU(@Hrr~jK}04`*9X+jMiqls3x|aP$g+``RYKfxNmj~Q$t2%-QNNx4 z0JM&sioOh}_l6Rs(^~RXr98D?d@oPKB7wyv2TrI^SieaVsw`w-#*(8$E->Sh;L=Es zh;sh`oHg4!XW>sI!2E?N;2&s5TYa>+@l8M)pno)T5p%V?{ES|Go%>NZ*K*pQ0Z9OO z4S=NGJ*F23vO7XkZ4v6&^LsowWc7qT@bAeE2HxxY_LSrq(a&UsF$?#VE95j^@%I0Lf0 z{-LHCQ%~tig@`{2Nspvt{Pf-Rl!Sme>0k$3<~3XG6G4$SPDo4e~xNzL<`)Lgx?WAT6Mk zB*%C~hdb{-3|=fpTsk^{cm#We)s`%@StBL8enk2TJDv}^?Ci_Vj=f20w6D|Yb?5d&UxZ@0| z&xcVOfw6@PTWmS5EWin_^&uQ|;mYEXL78xVWu~E!(N2&=6zR69{{ZWO{g}4;b zFdJ8R+WaPDl-uRM$}!PAf7mWh#kpWT%2cF)WS@mGatzIgn}Te5-khxLNn8a~r;;2~ zX_VPNo9nz^`q<*AW@+}gWoFGZa^Be;?l9oBn5xu50@-QIEI}S59*bhr2XV@>Z0j5UC{Tx&Ht-w{q?xYl$dQ`XIOv zA_civPb*>t+D{2RTKbZdD@>?~w?aOkpQ!m|%cnbla?sPsW}K=_=Y*)UGNmaxl-P}A zo>uG6e_TcLPS2X5eM@E0X(TUAgza)aeKBP{!c`2l;tEamNkx}$?ayh%M?a}@k;Mf$ zt8jFc08~u#xW7<0!y}A?O)FKmUedPU?k=n0$I#eyDKl_P&p7^=v$7sIXFH?!bvT~# zE`SKrex&rb)21mJ{LU1zfK;Mj5=epk+u%A5IjPI4WdJ27aRv|H0Y03)DcW-5yai)+ zx09zmZI!f*^niqmo!}4txLm|~VlBXFe<05ZDwfm$F}C}hI^=w2&Ur|d-f>D+#6cdP zFE37l9;vccvo9DrPnimlK68XeA&6`v32uXINYpKVk-3BCd5m$rR#5IyP?uZMmfXC-vV=ebZTGh!i%YX^K6Z+i zOOB^YWlBg3(mHrZoxJ?F#n8;a7EY^1@68&uy`%Vwot_DCOIlRwPM~Cs9|^Vmh__RY zS;;u8wVWvpke1wDy%DQLxA?i8)qGeTyKya76L7j7K zYcxq+)Co!l^A4Nsvsq@4S+5Z5uYMv!@)~Up{%0OAwCf;UkK3#orWLH&FW|jH^LkbR%oAPWTmu~Oc^jm$@*LSVb`>F zJMJoZ3@Jq^CUqccN_hf7H|6W~!#z_cE2l!z98Q?=jl4of&P-bwR9q}Cp~H&koQjBX z9zf$@r6ji?8=on@@%F=VLh|}&kV;fSw5Hz|go}CGd*QdRJ}_#snw+iA!G$GYtt5lt z_+;2lr1RzHiDi2YW-4Bim3NZ33b*M!dT)Y^k_!o0dW+sc!hu)3;%e0-geWO;b_bQW z!>(DFqNSeg1T;b;2zSrY-JC)*)XQSOlyhf z*RSki!r&)bqNioV>Pu=!@mgf7=P*A}h|g_-Z)b9%M|^;-0Ho=+r}gEEbTe6^pQDnb z0C1{$l%zi@)Qu)i$xtDk4N(>fez>qyz-h`< zgp_DT#=wF^dKefV{{V0$$lxQYO`Ll2)s?)ZEc^s3oX6;K&wNbyO;?3sJ=|CUCIAyZ zzF6o^K5b6qH3TI?N!~0-xcc+{xaU0aUF~Ah=ZjXPfS3@UGt1}pyj;fTD|^xCL_H}=uq(~B`0{a&)1ixI%~0hCL)=}fF-xIsRMFJ8cFN$+BU~5#AA_JxGIoTYWKwq>l9#zIW1^_sL3W?8(NB(Pp`NlhmveH+C~N}F(y3vdCO2tK&^?byd13I!<*>Qjukmx0y+l&i#{U_^+4KTLL~3URmn zTb9$h+Vy+G30QC|Ps0`iRn3nhx1H_vEiU&5cvO0WOb-NdS1WesmJEZ8a|%@Wd$-|9 zBm$Yzp>A7^q)he12A$%!m7wW^5J9;8^WPVzwhs@iy-S(5Dfhq-WRjAkrYEoE#S_EP zTbQY!QWYe?AlvJ`&9SZNvI7-&ThPh65buO=t1Un)N>Zx&xr1)y&MB=V2G$Sq*nIy0bL)!R zFfZ7=jiJDil^~_94z`dMme!*r1L+`NYYD-$bui+jX+wu`wZuU3{q@9aDSTG0NLHm{;e_r`=oc)Qvsnfw#+-&N+?b2A76pq&vlBFtJvpEcb;*Kr%-!I5=6X z#UwoTuAR70(wI8Hv?@RR z9>3thM>||BWhbLY-C;?oYPBK)ij^OecwGbe;Dgc79r%_g$!4}qJ`^OC&U4iQdP6$=D} z>X=Q3FTJDt%Z9=eKV-I;3M zrlksI5~(KOg(L|)?QgyST|$@&Nz|V4dZj)@{{U|+Wld?FL0<@vNwENIU~lp`4fV=; z=_cCjZF}?Q(-W5E5pg*S9#fL97m7(Xxj&n11pB4HTqRB<4rq-=HiP^7PleQ!s2w^| z709ID&Sz`wwi6Amp|De_I`u-}l|X~(AxXHnmxXyVQyN?-SSU1?{-u>d)7Z%8x_XCR72Z=V^DiZ?ZeWKU_)s>|(W4ykNXTq+8k}y%mD+(U7i6o%w09w8kD!}+` zCe}Y*oUkBD#X_J3A#2oN5F~Qn&zDbJ9{LN62v?57X}3f7`j0#cri_hBOp*Tp$Eh6+ z&+Orwh;4*o##0_^MqgT#gl_^ad?b_C_a2ghvhfN4B{xYZAnp<-di^l>?#d`06sJl$ z85>RK(mg!M3De~(sWKLxq{qVm3zBVtbFq@BjzSHDj}B$6y`#O-+M7tyqsV-TowvYT zNu0M=TBTCAqMV@k2p3T|J6_mwt8vB{ah8^-M}u?I$e%nlJ(a>qSxhL1hU5ZFKVY>F|Y{!2SOAoc{o!4rfx3rqwF4%91WT#8~|B^_JynZoMT$ z9WVhV#C@m!I$`a3+bR4}r|@@yx3A0XfO@hWXJV=D(Y>3J${eVtDN10#Aer*tf0_L; zQ|G;vRpm~rQ)*K(0gck1S@iwRI%dB#uFjuQ7N-))U628fOB4H!k%AcD7IQQwS#7l} z$r58}jr{p}^u-YBk7cxH?pl~6EdLHI8t?jlcYc&)1ORP{{WIM zZ}$cjQ1eVA6-Vd!D>=4UnwoVhNZw*Xrohjqp4cmZaw>=F!!D%hv|C9ko?q8%V%D$r zWX^a-yeYPn>QtbGA`gfTKojY|Pdq*4eSlZ0nAEXKttk?qcGVN%oyE=ieUte3z}t2_ ztqzOLJc=uR5bQzqG%G39t;C=n1vxzT`P&yQVP^3)NlSVGVK2V zB&o?+W|eI@sj!q1N5$tdZh7M3$+&MSuV4zQc2=Z-u%aL+kLl%z-5@6URkUB`8C6UD zmSpuDJlpDT{@?%vcvO7<0C9lmdm+k`Oyj!L-jSqu;!UJ;+?-onTHaB@RE`9;hXRoZ zN(VTYlhdE|#aC5Q=5d*-0c|Qefa$aje1xAOFurgC^|6bxn%m%n=9NXJkd?5?gt}m9 zNW7TZ{Ei&6HPG<>Qr$BRq$w*YDo6xsCLjwF>mYgI`!8tF&?iaKAf#+1Gr5iabN%AE z&01T1!0x9UNKs3A%np)4wfT7r3tMMAC+-_*L-V|e%;8=8Pu~qbO2HT)Fhuw4_TKtm9mi8@uca9@PymvH}l1< za2QZYWZ?%^g*M)qDb_Uu{Ng6!ZDaSvf5mRQRa&ZgVx+A_Mq+vIwkBE4e}O0kI+TqB z$di7f$bspG+>M`4iKIF4NT90w&eva)~Wg^s+wRQwlaAb>K(g8o-@c#gpW%U%f z5g@0&c$g&JHW9tV@|x%SGaKQjILy|%WiqW_7>VZ}%}0@_Jaj+@USR5^45r0s%hMh}Fi4$V{E&ImNh zS??39sWUc8Ml{m(3Iq=c9nWLuvvm?IV6X4w){?IH?FQf#85Fl3lMbBj+e zqxYJGwA*f}dN)Z46M4C{xAnqZwB)JeVcZ*kRW0oABWaAWPQIn3UKvqV;E4d=&&v-P zo_<_;wpt!3N>(r7J#Kfl_+eiavBP;|bge8Zu{M2XbfHi@F*hTY5y*3Id(4_`q$x^K z*0o5Isr@k6&i1Iy^V)YTs-!PpS53F-5YA2@8cjusELb{BhzdA_Q~l5E>BF(wKjFBN8$l9 z>Q49H7<%Zoj4!VKpVf6_JFu9PTV{~3prRBHAY<2I%pXyJ^Bkv3)N4a-1k<)u;Wt*T zU(M10<%t$^PTS7v37sH|0F>^XA|}Ml4?H6M2pMaDskJ!(T-`H!&OU!`-1%RqXeKkQFL`lQxg8-dLP*UjZ(wu_{c|r3x=rmcWZ6N)Sx#wxPUl z>xLS1Ig~Q`l1piE1u8mp-9Ums^dDZBwK7W7X5PtfG_LVV%JZ@VN=~ad+hrui@oo3j z<%(mNvX9E=L%bgr-N%;uFcL`TCQs=xCBTGtB$uSo7 z!=Dho+UQ)Mj~f~a3W*&&Bv4_wCs5Q0A!yM_K8WGadl&vbNaI0JIRe|0MwG(=(3Ur zZ;R_S%)^Q^2 zKeUzmK>ImU)%VRNyC*59t1c)jNk}>^Xq13ImH_L4+VL2e90OlV;HHTgz0o)uBOl}{ zm#|L%0E2r#87*3rnsqFxzYz&SlO7+OoAQNkBOR65g+^V#`SmSLQ|;7cj{wVsWmRCr_5q^v6YZfkjosTp5z) z4y8|5WbQW6TIEGdkO4fTk)r;GbBJecotDw|&A^pRHrh^YmbRx70yQmKQl)FW_^Xk8Lt`wkI~*d!fD(D^t6nF4RBBL``=f0ON${#? zp29gCH{_ggoOX4@l)08lv_96PrlEoYwWdYld{&u{mpHSyr?ZAQgCot5+Sx@?oA-uB zq=TqL#r{^4iqD0z9K$7GKJ^>k>a9(x~UNLz%b_s94&^J&)M#4{)yj z9k0oIU7_zAN@;4|BvjKSV5ur1N|QW*iw(KPBH6zJRQ6}aeZ@--IK^TMly5lS{q#UK zG4Uog^7X?VGmr4i3UeH}T9GpE>jTU`+0kpR^o<_(o)g z*{n_ID+6*=s30L~0Ej01zx^y)-Kua)+#{7zy8Syf6zz};jhWVxV8=yC0!-o!#GDF> zOocg}1CA+{+|~jFXn+qth79fx^uwc&5F9^bxg&5ToxW99mhi4^!F)i5mMW+#=}DbH zr&KHAOxsD2BI0@C=IqC{C0A6rmu9F1x`dD(B0ItX^0m6p*uZ(7dqLWd1|ekozH3I> zv@HW(t63rl@SWq&aRU*a56qf>Hd9q@C*Knybwu2NVj|{zuf5EB_=~XNL~^|RA;W>e z;aD7N**h7s9ciS~`;)+y)*xtB+O5df7npRBjdJxrRJCUFn3K4OAgxmlucbqlxhhfR$CRLkc%kMkUuC9&Ir0P$^ z0oq9Au)%5d46LZNS}AV7%IBIV&2m*)NEGIo4xmht*UN9VAF{42PE^{PQe4ofBrG2e z*WM!H!e>$1Z6wGzIT;3Q^NG@wz9B+YV?PNdBmDV^kMXw;Kf=!{txbn1-SHL{nJBQ2 zQGdUt82+4vbTP`olay5t8&qV=3qz{dDLvqsJr5|~m-L;p9@OagvE?&fwB>aL34*Y# zDQBe+;CHy>Jm2CGyD~Ia6b?s+6O3B8LUcW5>`}~5hX8%7!Ua|zrHg1m05YC(<7q6(w3>YD7Wr70mz=rEve zHAtD9OLC4Y(uPp+(uHXXu^=Z`E@SV9rt-|cJFaq`wQN$=s1%_<0v#T^dd?fq2d%8h zRP7;736MbZvGU)Z6zRwMm#x#g6fH_9_*v?Dl;)Xx>T#LeENg{x2Wa_n7`C_rj6>AQ zrp%O-B_#nafB*xbPpn^TRy;J#enwlTTA{Y=3JOM)$Velt&tJUa(CquU&mO0zd%N!x zxov4t1Hxbte}=}};}cOab`D3CwG1JHcOL~!7|FfUF=g5(lJz^E8%iYUxEA!EA>tlz z-^Geu1!|p@YS#x?3h^X?ru_b+&ky`NO1z6XXTM=Vl|V7M@j!`-5=f8jIQO(#njG2Z z8+wW6>Mpc8f&`lmdlE=Km|mIQ?1curHTh|xoHE?m6tp05 z+ct^}#Twd3?^`4lmC0W@&;YiWF&hj;_%^%Ts8-5Wr8b~U1%VQ5U|jvNTjbrORQ7Ae z_1R^6sd|OFtpUg&wFJTBc8-5|CGhFJ<;=kuuPZW5LD(agAooH0LS;^6oKCmGREvkf zumF`szsu5k;nTKe5tDHeR8EGf6RZV~i=1z^ zD%{J6ROLcjlj268BjM7ZN6s+Fq}&B~Pjqx{l&gy}*YaB3OsPsrjGqZoIb6@$7kNPIZn{=` z;H3qun~@SEo5m!aiRMbKuWgXE1vX0C5=N*o8_vK+96Lws>ZZ4cYLKAXouOKm!s6vK zJEkmS?mkd{$+P2;aXWvVE$RydOxo8QUUw0SW@h+JauOks$2blY7edizs5!D}ij-VR z?ts6BcOO~$dSVgV-v%#+xUDY&l(z5+E13gUkT16P=ssr+JXOZER9r(znA6#p4wVFm z2_s1#J5NdVoLD`n(=W81$yv@BW#zq>>0+U96hchFCc-v>iS%)uz>|eus!h!`+xJx_ zaZKxVDSf0lt-@EYK_hvChn%fweN4QSB`I`Dq**H7FUz6A8FgzJhX}I%md|vwrFvmP z(vnYIht~tsGE|oW97sjfBp4BK^78)TZriv~?S&g0D{v|Lzbj`uqN|}?O#2Qx1S)mr0g z@0&tOSEQ*)li@bn+@jHl@3aSJuW%Yah|m(ccMrTmCQ%lXCSVzu6TTf3VcyOPifMKZ zpjM9#(F~rxmcE@y9m$Xa3T%EMBdCx5IB@oZ%+sCFW%cZ>DNvT6NsyHV2|A%hy|Fgq{G2bd>avdsrB1L4l@VZ}zt3T} zTpUD)bl#OH4``W(DW5MxeWCV#OHLnsrP8(N0yT)8&pzp>wrDSna=Xqe|k}sXIQbrw6=MD}~0=ugsq-?hi6Wv6*Imo;mFD zxh@&3rE)?LjnRAW)JLMQ!JE{nHI)E?-My(g$&#R{ymGl8ez;@oqlpufanfm?T2d+x zaNK&HtH0V70DWeNE2Wnj&XpK9Az9MyYKZ?O@>!zX#Qx868_rE64@1mD)! zs~zD3ljhBqz8!ke7L&Q>Z=B-Hs^S&ZQzcM)z%-o)NcpFq@1eq34GlLLCARgY6-h^p zAjh29M$tZgSSZ7X<}0Lo4G@yy{K8snDa|e^1OpJGylr84`C`Jz_-&{1eGVxqOT)lL z)I2s!oxX5!U*>!W=3PsyHuNOH5U3tph_&wu0lhKSV~tT;UpdGf4{v~C_!P|E$`lmO~f2BfP{794~Fa3{*bV>yQjF+|g>wnvBl+>3Sp z03SR#)JM2wPRHbsXeBf1W@{W$SsI)nM$kz4Pd<14lGm4KRXJO(HsZeo8{fqfalYL8 zU_84!dnwHur&7`qm81m%E-gQ)`VNB@g(nMB=eZJ|9ocxIAd?DF8(5#F(het`z&40g zY1$3ADDF#`CaQ^VFyfLWBKHPGuRpu>!HzJj=pvN6sXBC(8pbOaOP=kn+T!XU#IoTt<>o0F7o0a+%!o^u#WcX{uK+FpQ^6yR+rfsU>frDo`NE z15do`U-bHqIK7SCg%pkHrcNo(+j^T*OVy-FAZ|ojN|V2q_x0<5v;2_dR4P$N<2NZVV39LEv4^$6hJuap zl6Mp{J)zg-YSfqi00l+_{$#{?V>8|}{xM3P{D5NM_=L$E&fmVch346^ON!F37cfMF zfCmt%r0H?ZL24Tkd?Tg$&M0hPJ_ZlfWaq0;h40hGyT}x#ko_<)>2K(dQ^Or1mNm6my zTxog}c|UA=2A|g+N!xyy*e6h#!6r7lB#D!Z#_CL*Y#Y_L>ApPNmKsV=WdVt=V12sr z2eY4P*>4u`%}aEdzEz^!3)0i)RCJM2 zVf5)z#_&*KLIyuaJ&N#NdU6K%+p_*88Lms1p)dQJj+YWrtENQ2Cty<>UmuP7&*FU( z)UQrSjl#h3T!2=b%@RZ<1mAzE{M`Fxf2QAP-o_kXQJ3)sQCaS7tx0OJw#jYb$v~u$ z206j<#Vx@cYnk?Q#8mmFRapHEbsB=u>q;Pk2(^f@fxnhNT|7^o_I>ST!&O`#+D1h~ zMVwYQ-L9Usq-j|oi9sSJPb-^SA0dC$SN{O9)vWBnRh(PdcvfMRxV1XE0F7D@d7y2 zYgt!hRD5lhr3xWL0A!G)s2fc3!=JIAx9=GHEOE6x4r@_cPfp9B zDlVx=ag}Z2lhh5llWct6r}}m#N_Bpa;e(d;P1Whd!~j4%o-D4k{{UHk{>Se%>?Qom zv>wf<&SAs8C!eBeB$g8*6o|1%7a+t9@$x${%AU%qRKv(qZ#HzTDiNg2UUB-Z_5=R_ zQJxw0m+bwVkBXMfRUTl_qQ9FgI!*$~<-1JB}Rl zhjU5}?A=aNsVNdCc#W?!5GG>y-TZc($X0{d8A z`25~>5!$w4*q>_o9}&^5)@m}kq&i9#Q>g%rX^=&VN|Vpx^vCHh*hjalquL9yw&`kn zx3b*wj56ZN(n>Xg2`0o5;!wBc9R&P$sYY}f;i-&!Usv_-`mBFjkF672+!mfn;;-~G zqgF-P4-sV53R86%et7B%3UsBkgeR$;J zzg@q+JL|CDXO;UpdqVNWEh1Z|p{UGFLIR!eg0!T{V1XVT@6WC{pZ@@|D&dz86XZFE ziA}vsh3j0KYKSr-K?-y6`<70q+tCT;|)3*h7KkZwQ zx@vvimoe2w=qrS)SP)1Y>|osAY<;-x{{VpLyM6Xi;v9;lOuSyCH7t0>l&vY;AN)_x zPmrI@=K|;NaJLcCS5vJ`Jxc0bLcl%}l>=|SKSW-^y{4j zaz0Zx?Ee7SZ;AN1+7jMZRNFPKA(RyWm|CC<6FkP^_~}mBeV=l%{-;0m_HbFH%JWLy zWyJuHkgpfTw<+Ir`Qz``us34;m3Fo4<3mNmxn^3gb*JvC90@{{m%xPrLP43CFb(Yy zh5Co7OVn;wN$gmoG(n56yLp6 zsU@^Jd`VOSNSnz5Z)vp79=I1iVvi{VgZ~>T*1m1kG_~VyVCf0x&+63Nj90l~g zoznFG08M1F5?u3m-~wnb&fRwxxmdMqBoYkyY%nubP3Tc@4WtmChsyYlQ`i19F5TaR z$U71*f}U_CI<=)KCsdLZ`LzE4H(TPN4#P|7;b<)mYL#$r3cbeMM%^7Ubt&f(k`eyp zavw4E80hb9FZ7e+pJeXA_&2ny!iDF!TZ|Be)6|z*QA*a5paK%2;zpPwQbsA?WOtMQ z0MdmBP}BbasBTBZpf!({$FDyjkJ1PFoBKXxeX4(>ep8h%N`L9z9Hq=D9gRgLrjmA% zI)>&plg{Xmd-Z}Vp;mrQ61`@2>2x260^A5672SSk`#j+jQC{1xr}OI6L4^7GZ}dCc>&`3w_S3l7Koh)vo_K-rCQ$BR z^tKdq>XBrEC!GH5Fnw-sP-#IrQ+YBxN%{1{mkI{6K%^`=a0wfFi~jB8CYbG_)eys6 zs?j+^j69IO?@CO9e>n90{wq%BtgrP925QrOsH@}_%qu^(A6{XixrAihM z1g3n6!g)SshZdEs=tqQ)Ip6wXz;809cOlfn&A6m#k|091jY2B2cs9eqS&hHB~_Q>juEq`4sK6XAj6 zde76+db`*Yvd${@iOihJ@;Z8|yvmKf_$4i^%}Ewgp(#5^Gt`e4D^E46sTp&?JgrTFK?L$5EJ@@?(E5qzv)^si`9&=&DApWh#WWVZMCmHMrvCus z`C=)?966eHW5ktNKN4m2d2V4(sXg1t?v^=g0FM>_0IyiX$Ft^I#ddvC+QVhyq^&xL zl&fRU_vePmTSTo<={?PKHbBVA={kPes#|3s_kmG)GDhF$%hP;0_Ibt5agQ2PWt1;G zs;Z?a34*IA?49CnN1->wE3`bNoTDdax`5+^1*HZ#0S0aXkRaR72YVdwo@}nsSkK}^2k-APdd73=XR z+GEB2KdvY)*84rqcs_{LJ!Gh=AxhMuE(!5l`F_1|-TB69jN^(NuFV-rp4O)pB=`ZI zQ~QrxMmv7&?t_nbBBatZ&b6Uk*qt(WOihIDFa7b*<>8YI9_oj`PQqhzDBph`S0#H0 z_V)h(3ij=l(bl~BY3m*=C?t49?nykRI$k{I=%#6$44;T7>Pbpc+sVGLq@VcZw>`1O z-p}5|pTqk{{xJHG6xk3B(yNj#V)G+zd+m<7J_@p2S-fF4oN+aVvyr{(^3qlN>{&$T2I9qu3!;9kvxXr3Tj-_IIp3q zLS7XfB(_e)DG3qKN~eB)Sd8WQ%BncBjSnemW!iNzWD%fYoIm_OA|NO?QBLR}ToDEge7?M~ zP5WwPIkyvbXqv3CFFdMYaD+#CkgZ^!L;Cq%*5f*c9pXIEgs=YqyAkgQA~Ybb(+N9F z3m*yEcg1(vpK4Uu-r>F=YMJ(2r*gRpY=xs` z2(jpS*b8G@Q8aH2k}`S7?h~nwX4i@}_9_YOh1vS3c*=`4phJP=xG1V3bttJ}8_w`C zd3yx$YZdvTICC>~wpCS5_FfRPa#!%1$eY3bxM=pA;I}in2bnFcCb>G0RpQX#J{3qJ zE=9WIo4XqA2D7p*&`l|;TUCvzP9&^&npzd6H64$yKTvTGt>}HM)koNi^1IMAVmCid z@#Nc&XJB2R4ClB0E=y`vQO+Ir*6yt-Aqhzd5=ko4s{a7)z2gy&ZVu5G z#aXUTl`YoLa3&qJ-(`-wnkh4qx?n<{( z(d2$ zRCOsDh@IvE9XTtgn`xr*m)l?K7%}*&Q4=SnEsCbD4 z**uN!By)ovc&@nDGBnvLLiGczsHqAGAOrB+d?d+?d+8c;(j@sQUbihu7{iJO^;YMx z{{R&xvyWb+SaVCP*o6-kl>_?!0Qf$51N}>~7Fpqcc&7nRIE0m|49ZWyZ*oBZ$ljG1rLDFn5;z{)SVp;y7Ip6(DP>MF+9_vFy>#iA;l2iyL zEI<~CpB0Idi{oe#Ih=p-Bh+kZB5>x#cE%M0?48*;VuYuNy>8tG_LJQNB{+?I#oMv zHa;A5{{Uk-oB8JoBBr%P$2+Y$)(wF-`E(sVnE9;@!8^goB;jlNjBnJy&<#)r%A>ne zclehNS9gvmyxZkQBT$nc4BGzypv5PYc4q$oX_ZxtDMFnYQ)xtyHX?eE0NxKjTy!(J zOI$(5nch&30(Gb%Ch-7oFh$_{$6H)HA^x3thYfZCTg6P8e)_RSsZ(_+AtXRVZ60Um zkEe%GlNDtD03K4bKAiCp)EcIbrdJ?vJCz-q_E(-&)T|}SWvPlVR(wg)br_oxt&IL; z?KrM`9LSh*hcwS?lFN!ys0k#EK$Oa+V*XLL%MuT4z93%=ihP2Z-7TeRaqu;#O@J4l z7QpSgw(#RSGRRL6_IZ_2GNrc7ITaPFB&*@Q%Q2~nS^15VNhsH?JG%=nkuw~1>r%7Fg> z@S0MkA#MV+=+)GyokRJ#USpWOsBvvaYMr6caGpr&+@qy&2(*yknDGv?A47X$_U#k2 zm3Axa?%xjN%4&_o)1|j62AxVflD$TY;3a5%3QbH-*3m5(1B*Ua zA@-R44`r^`cSS03hYLtp02v-vlf8iEJn&ayoEMyAStU;rsR-|?QiKG$l`hAaDKI{` zqWe+fyvK@o<+L}du`H~2vb{u-WE;)R@6tIOc6YO7Rc~v(pHk)SgY51C=oh+ALR-<4RAzb6j zlzL&I&L$N(gs)G0l1GIE89%P+iw*r^q?#Jsh zekbk_TS{Ca5eHE`zE}QV(lLjpr`h2-;yr-g3Y>7O@8)!@q&eNEx+Wvyfj2zP_x}Jm zkYxG2Ll6R1l&B}q!_$4t-*JC44%|K2CSk+bLS9>GGqDyxxJ7G66?NP*YSi zIFdp{0$S)}c)zcUYhf}F$J;W2v4=BvZzw#wD5B!b*`-#rp7<2QjtwdRn~`xApYaAC zdqM2SDy-rhyDQ6-%ZY3yZnz0?MZ>ye8}I)B*Lh*9h;laDrCRCKT3moMN@PWhjjj21 zn7xd|SnW056t2|pQk5j7YWP>Sz{us(ndmX22B5j13=p~7wo^zq=d!do$3M$^65$D3 zjkZz=*d<9&25;%|j8K$aqh@`wagrLK?;cBvQji3agxdaA8h(CQk9PCNwY{c1rrUL1 z?wh6u#j8mvGIyJLdYG_1gWJn^D>Te2vzY;iCUGDru?om9Bj0Ra0z1i$47(&Ais2q`DmeY#1H_`+SCrOMv=rQqR9(h)W` z=VDCt+vg({=V?4p?-y~OblB9}E*Ni_lWU(})21zoIuVd$bgBqTX$^s_6oiru)wSf! zr}V$aYa)1)s_yIPAafc68_jqB01B(^k1`DL1I#R^N`{hTr>q}I@ZY8@J}1klDrjDH zVYNL5@#0EIwZAR#Jnj9Z)MlutY$-uuKt;#?=@*Eft|~V3613?mQA$q4!8hOcIQk6> zf3_R~k6CfMb@GAX9?KrC_nL{)mh_JdnDUKXe|9(x{MRwytkgE)akJqvP0B^CCu=Lu zY+0Nwn|}n!i$w`>N;=d?=Noe574$uE9d9K^X*_m>p$Tm-ENnh> zE@Q{ICk_Gug}P0MN`9Bes@Ntgr(;cH2{GTJ3ybmmMh-V_%QHC z5j@ie#Mg;>M9C)FW0ymRKFqk4%+<3>^8OSAp#ZSkuwH!m3R~ z6{#a!fD|@}lQ-J?{+Mt_ZM5|7L+z;uQSQMCK6A^QUjXR?fS|f5q@%c>-B?xJGC0Da zbj=!e%WVeaEiHfn6U0-I02cO4PlYh4BTNMk>HRThDxs{+X+)taR7Z%#VXO4%M8$<}2`nSdt88t~1x+E+G9!jX0p+Pe5>G-(TUT290g5=gKlYQ49Qz90K+ zq%LVg{|pPw$ILntvWDYS@-fzW z`hB|F4xQVn-VnnBTQ2I!P92qYk}~Yr(je$WB;Hh{ssPh?ow0FenWw(+6U%c-wKf2f z48^T|xka%`_IKHRLz&`ATT{*`$AA!32IrsNF?@E3!t3Gg&D7JHnOa-a;B=cww#Vnv z{{TEoE{Y>k0hLy?v=+1s;d2dkbE)?bm7A?VC=&^Y<@iyK9cptN-2|)Q(-U|TGO3uh<7=L{&h-7lGEq%opsRv=k0JPr)@xDm*NtPO*k@#pJ5M?S5EMv^!ZW`?pi-sxmDM?e4s30hKNF#ar z^TR)EJ+3uf!z)NiTT6P8=A_JonCBz(!vxYj)CLqV2XDw!uNr5EIpTDn2yw#z5&)e* zT4Y`fk<)Bm9g*fEhj@LpfeLU12q2jUZSHrETyt(uSZlb6D^iblA_*f;#k>gqo1Anf z3sj{!WikT%DNG3_>OA-T{KUImr?>zL$5&7UcWpdetlx!5R4chq1f=Pmgq{6ot|`tH z%#_x6kQD5s#B;n0->>hix3nDDY0KU~1MuNDHrN5{U_>8WLAZ5-a}8<#zUMO`sf~4FN(`lFz zZe!<(QWo_yPw5=B>jT0`yw28`o}9YDbJ~#QL!hlj@fyAm4#G{Od7Zv^?wv|cl(t8+ zggJ(pN=~m51c@FPOkC~1o+KF)YHo?BZ%-uKQ8CNq&k@y@%_}meG{A!_(Zh*D$=LkDb@(r zAsqRB#w2+bXH478t>CkzNr(UwaX-I5I~&>#VUy-{8gleJ+EfxkmNbtHizERy9J*m_ zaojM2*?9#qr;Cw7H7!jl4wC>_4T&FY7{-5==k(f|TMfSnn21%PE@S)rj7D?*26C$` z_nLaPJJb-8g{?^{gL4zo{=P>Q%bZPBl2)k;Uv^Mz6iG;rDc}6{#<0`JGbr+#r{3JN zD&kYA?*^6mUIx~mu)>*L67v@uX|XCMAV#E#xcxW87lpf0r_8jXsm|=gbNX+*{)ZNK zX3aI6)+NOLEju81wO^5&d?MWE82YUgky)%Oo2VQ+1xzaY3#X^yKjLdjQ}|_TLa!vA zap%zDq|d0*g_N+b3T~6Cd_6yXanbx^otF4P6sQ_drn|5J)A@EjQ+SxiJn;<@(xnEI zeQ60uJ0zGV_vMT~PuA*O_gORz1!QewneQX@QS{VTQNDtTg)K3wNLRuq?~hy0^BQ7- zsHmn2C(HNO2h-3vrCAo$a6z#Vf4&c_;L4V16tdEi%CD%lRUHSR#`J!nC?d*CnmC=1 z0*?+ctba&#wCDvgOpylDxarpy7h?UKvDyt~Iv!*2UI{)pQ7Xg_A>eVEYHz((q=}hP zCQXgV#f8~t6W4GiYKGDj+l{yggYfMjBoC+jPR5_q3&zvR$JgkogvLL5R;L>K7q-?` zrPD1swkXhck^b)`A4uvam^)qUQ#9cU%7^Kis8*A*HEK@!M1#~u+vC1_GwqR%CCb_r zK`L=6N_8wmoq}#Rj(b~s+iuYKTPovvCz|(U!iAwp0cAlu%*=Z3Jm(62qD}c&x=mUgTnr7M7TH=P6yfe5|pWgdmSNlxPs9sK`)Dr?FYCSwV`H!wUbF|-O+Emm$ z^EBa1h3SI?l>Fmuk2v|nFNXb!nB$u8%SddgOHGzEa~luoAKc$<@UnYst6ZccrsR+o0sjC$Y;^}}zQ8~9CZ#DX-=}f1#R60Ai98ZZ!n}QWTJUS+?FXCXN>ek|d zlu8tv+(dv1jmKVNra3+C&=vwzhZK|#5Fi_EztruAz7y@9t1hTYwUu&|ksHX6BO#9mmVl z6~6|1K)u~1H482&UJ^oywdB~?c~8$4Mnl?uS)H&{@^q<1DI(BJ127^4#__kF3;TfG z+LgjV?T}FWsg_0CLdZ)sPbjG=DAb@leLis)F>&T_FBs=k+(g2Vg(ba1c#Hn+_3MbQ z5!A6;+)&U=L&mP9`dBPJ0(Yc59RZp}ZVVRb9 z?+c}I^>>Rt2K96hBpEYrFFoJMWL9xm{ZvLedjZ z+8i2SgMSnV-fSmtUbu?(nb_SPc|!8pr%F_-$$*5NrXce3#ck9U8aY~8T~^Q-@D&%> zhH}WuVyVq0G&d>&N!(oGahm1L)Kkod1bFQwJ%30aFF{-JKLyorEkcS8lqF>;NY!qf z{{VA_*85^sQWS^ugsZ?+d&bf{qvr?8XgxUvh0cJNZeg_{<9v-TYf4q6UL_MB1RaDM z2peLQ;GY*;&xfZgA1oH&?(2I`BvK52 zvSTkfmz_y*F|^HubD6}af;&=fo}sYeQhUP%N-{xBry5l7leKLo654HfUgAL5nf>{U zMRRTotIC$AkKw17i6AK2+@qZBfG~&Ha%Q7T6UGQvttSyR#CdOpQ+PxHXuQcWC)Wn1 zy*VQYB&jNFK_(L#ZO#RW>9EBCk@0nAQsPiuDN2Y08JLUTk@Ogur;AmaHD{Hk{t3F0 zVh^l-xJTi-X9o)!O(`DIaIIwK>Cceocy&wyiMgIqBlqcuo@K)=@0JR^R8=X+layg|lJW_(Rh66>xqw>1N(%B0NCNxkp=YVH%w z9j2{p6|E^!bXcg55fQQ6&5t}wsi;&`rGTwkX6ILkeq2?ja3^_LvO*f;UDcn#TvQf> zw(|759pEHsunHRBenhKu=?8vulD}&$Af_R;64Zc+{h`9A%(=ewwCsfQPh%$3aISAiB&;d-kmeDQWUQYn_JfX zackv#O22y4wW%d*@Ck|A&(Ca7+$g7V?C(Ifh1>%LGA#$l`C`&ewNv-4-%;12PW#)- z{9$L<_1fq+KK!ep{wAVV3B1~ZbU4u(lx%!AnG+|jIk$*7m$=T=PKT9cT#^!GkYwL` z4!C&ExYnkgne;MzDz>r+)BLA#=kz#)H64yS(b?A&yIqvC_^4KdkW`|if(RCZM1q88oZvF@`WkDE=;CXYZ7nv=6-M< z%IgMC#BI_o#CL9mCh!PQHrvR3$DDLE7iMFOIBmw1Q{G0V?khxtrbVU*L-_H2|l3niRo@p z(+=75eaLJisl^bL5+sx7xVHXw^qB7igj7BqPyM$cQlFPkPEm)-=S@yvkdl+C$4@R+ z^YYsMLS}P7AS{i*I?9`H5{pcr9YK21L=Os1_VoHL5-c}T=h zgJ}EpwiBg5gvbflkZ0v%Z!AA%0J)iK9w7$%5}_CU^cXEWL!`P%)O&>{p3`%p#z^vl zw5p+I2C+J}>lVciny+0!I&~RIBjM9|x9s!li+8mg)kw*b+eb=X7YHz|A}lUokVn*Y z7^U+!k`$#_EhR7~;hbHIHW$-+B?z{q@+N!S$*X)NHwWbeAJZKL*jOl1RI{YYWQc&H z>HTp*@TDPLaBV4Glz^>q;T|i={rY2}J2KNpLforT!PIQcN)yh2lJK#qSuELj{uojF>B zlqo~JU5@j6Tc#*(+AF{Osi;6IAu51@V1NJ-=6)mBY(uAv39gcT7fRNR)yhkOc$wU; zy(GBdPK%POu1MuSztgO}n>h5;WYq1f!KZO7Dh8b?l1EvSG9Ys4jvu9|E!3e&8dYc~ znrD1p9?zU=?p>KU$_|sDI2JrQLU|Y>_BW1ap~jT0u}J-6L?n#9xLrNlen@lf&TCo$ zPCUsEpdIzd?kaj?QX*OnwvP_C!0cC zQ;i`hSc1O}k~~SCW32Cvd-jmwG;q%ux>#%_ii4>DrczQMNFHWq%~+OuC2^>Agwr|j zzeq_WMv@3nFi7;=*o$ut-qSfsbAA|ALv5v1G;aPR4}}B`Lw^VptK@oNA*Gs~{g29I z6FM18epf#5nu0SnLXMqAAj(PPG4u=AkAW!ok0Yh;(Ar$6Ygr@(0Iv}ii%bZ)xlu7O zkDoakYi~VHryv3#4-CfpM?cu*^h?;+F-}d8Fc9KX+@nZHkA#zNDCaRacdP1lMS_P| z?VjQMr%!Bt%2;E8T&kyIxpk1FjVSPo+6Wu+6Mmp$=jRqByt6fNC_+>vP)CM9fi@$U z0ypxt{)+ojak4WW1FkyTUcE$#Ag0=Zp0=@!eB0x?^{YB~Agl=~xYQGVvGH^3IFHaK zd)jxZbnWUzXFe>fMR6rSl_@?FMzWcm=cmsLQP(A-3oBA#JB^Q6ov|KoG9-vMxEGL- z`}M-@SEV2YDQbZR@wNW|Tzw;7W}3WoYE?s;Y5*M?RD_a z6f1=EA5(`&3h>03Bg#HlQ{Gdg8Rle@@n5I*j54{It){dC@j)Y=+xpHn{vwj*o@ycr zmSD!wd&~*Pu9Emd)`6bs)ynZOsTb2B5u|mr`QaCzTZoV+Oa&P{z_$KJ0(;t9QjDZ& zIwxRl9M4Q9ny~Oml3fiWnN?x6MKqdhoMYjF_0Bi?WRF=bv zA3esx>TwsSRLxE;Kqj+iLp+9)YzkhqfE4+}+rq<{jFq6q+aPM(lQ z+W{(xO`^zAnIh`Edh^4HhSM5Up|4aM->+Hu<4*A)SfwcgVm(Ln!tRa|TGPsFb)wnQ z0-+jIO2>C!*5FxbbQT}NFi4o_7 z%2d;dE7h@+1jh0GKA0Ci@VTUMXnJg;-kD0)l@z2E6@)-k3t=~?645cJD47G!Eq}kR z3}NEZWQ7t5J4$_T%kO~mTBD?dg1vJbz7zewOf0)8n}s1NXmlgT-Rew8DiA)gftaKB zfd$6f)KeidKVy5_8q_wag&zip2s7bK$1{9mh%6;RB>`Jn-$T=%t~+x^QyLE;6w?e+ zxD-~|S{7`9r%I%Ye9T~~9O({JcTK4%5+Wd^-=|2Qwj-4ls#0fCrc$7=CQjey*9T-e zgGq5I32>kg0bhroUFW3WT_!N7)6Hk-oM|W>;=Jk9geSY#q-!LUfMaqMWv5WHb#lgav{$ZIomK#%T zrUDM(DG}-n^XopAO!5%gUq$Ke4t1-UJS&uO5lTCz98~Em0V)DPFfF~0i~Ec_H`!KE zkx(cWn|V$*rJzBbq7ss1!Lb(}c!XqG@9}6qC8{?PqXWy&%M!e;Rr&2w z72Op!kfQ}s5)8%32ILdV<%!t{aJBUD>MPm>sKecpv6QXX++m1RtRw(*$dvkg`T86~ zIEy2vr0)Vpc9pA8)SV?hQT?rpZ;angSC^>1;#*P>355jcgE6t%{dx7bJ@${r?q)f{ znx%y$E)zXWZWS>b+YgP!=W7CEn$`{HHiF`o8miKiy4qVzq{_im7%2iw?04sgtDfnU zW*Wkhn`#{I%b$?>b-=t;#Pts)#*pDkl_Ju5g92?98|{Y1xPGaYoT+_b&0a3^yeDf~ zRk!%XZI5emRMJVf@sET@67g+CQ)_OFDYldfO2HbYWb^~xB~O*`!m!}U)B2A*JE#U2p=@M=RMvwvpx|y5*5VTNO-M?+ zuJFr>AV)ocJA!duX4#XOg-WWb7pqjo#fM2T^XYDw4b1uM&E?hAIsX80YET@L&q(sy zkhjpa)7L9A%rv2D@eMKv@ZbHgE@ziqEtXKtR46CP2G^TaDGi}pfTBk)FW>gVg;qet z087s+@f0Bd4;HPUUzFe125{zIOT+ncT~d-1q$Na?Z;<}jhVc&=yPW3IpTkdyC?MK3 zY&`9PZIgvNnj;?NAg`-vG@!DQ;=D%V!eSy~@rD-`Y2v9mymKItYi((_mNP0s>YeW$ zUwD*~Ad+PACiqV?{CAX>HKhqwsMr`6`trpAwSc92w4;U1{zuN(dg6sBWxfOBSAiq; zeJ9iX#y0Gig3{XRE8hu1o6?}-$*_~>yhon+drdORpQn6qu5QdIT+H)5aFr#nQb`3V zxw@}wS}%FT%ZYgHo(;?NWo|3q9STo-tS?$@3X>270)DuJ8AF%>Mw0mz`#%U@5ltKobcT5w|hQKduqn*h1#Fb(J*AbEPV^AiSMZty=t2 zB-_@+dig=ci@<1YRSK(gB~7x05Qzg)gmV|F=J6= z#Fohr-ISS=2J`#>02qY!e~}#OwUp}#OB}(vlnGQ1u)i*NvD`yRX(|pSEw({0Y)#Cb zmc|FF8yH_<{Wll~C?~je52@E3D(@7%FkCQ*Hdgim#|?hy8AVfYq_&7zwy6nBt8Rk+ zn_@)OSG(k1^0c^=xT1#ODH@a15P!M0D}KKjg(MJC zr5!#mGt2(~meV+J;syZWjcu<}h$$q*_)3#)nd&z%f+f5-}MZdS;G8Gcn6H@YeLJ}eqmmc;nWwY4iEc=c(rcZn0RHYN+hUFRI|5?*Q8s(O_qj}cH>6UyQV0GYX-TO2r6 zXM>M>HK+^!0Mt}G!l~Q?RfXhlac8RxFx=eZbdnu5R6Gm6T=~PHfk6 zRYvl|C13zFtV$1T_Qj9Gjk z#)$1R+2VsQ%pLDDN@kUn6RAlld8;8(6=G0PV-~mOF-zx-)NuZI&Tiuld&Lu>io_CS zNk~j8LHZHW@y$AT_J>4x$olvxnu&$7TfPs|$X8Z%Lgrh=ELFDWb6rC05-;xvkU~{q zBK}h&{{U>2=K`}De8Qatk(dblEsFa2k|*S&v|)>k+e)%*mp`OZRhQ=sq?Mw{3W&5p zxzq)>!_IfZ^;w5zth++Bip-{=FOZZK>Odf=Lwf|w^$>QroG?{5{4D@om&f&2&tbW( z4;|#S95YzTmzXAnMWarDr75s3sDgYm$Q}NWCxu4`alThqRD`mXEmV((5EK+jU}~_v z@5o{-#}&DiW_&xuS#zD;R$k&$Qr^D{%`7B13>yfWOjvD)?$WrCs>+(=mG`M|CccPi z)hJPtk$Vt92jV{|IOyYZ546}kgt?^OTd`ldh4IG&Cxf{5qb&ipd-|UFxKPqcltCcK z{K^VD-q#q7aF-S@g1cU<$a6-^Ig(#hE1(|&!P#Jq$g$gFJuzk0W^{e2H%9d`)$a*H zQc|^&w75Bfcbgsej90$XeVw-d01xH-ZInKjb1bO)wr@@eDg-PIYL!ZoZF?UUn1Bh^ zhu%7F6iBbXW%K%$bcmI%6b;wHoM&pL$#d3gAzjK!lIU*svUMBZ`KI2OE3&-zhqKNt zui?Dm3?nbhK@GTLN>onb_B;Ia^~6WBUeGe`(Rgu}1Ks=0q^0K1jY;*L_Z>IGGucuG zZ1Kwrk3B^0qyec#y*#39XRPceYmSe53z+K%kEhBlXcETR7(pEUeiO$S_IFX)2NqRR zCEtF^-U=<;=}=am3a{}2a8DuY3{)AND*MV}q_b9)g)|7#YNSH5EKV18{e552*clK-JY?+ z`HPhKOa0?6B!GtvoJ?}Q;yLe%Q#KW}nUZQ7V5QdF3Qz;WRU64ZM;2OpS~aSnaI|wyaMx=uzfj&^Sk9N3SRLU6 zD*VVW2>J8%#ihdipwt|#=2(3+`GWx~Z8D-BNlBGJB5XZp6`vMxGv%-16g19z!a|C` z2gCI9n zDRs2_y+U-UXpk==Oc)7(eEIo6J*Myy`2PTasxw@U%GWrWYG!jb78|H+lKK*e@kq1? zAElsj7|7NG-`=cW1yZs8otmZLFKb!kt#yp1qUq>x}h z)jpkM^q8c(8~F-Y+g9EUr61w?F4d@wTO+*8St;)&WccLT2^;c`ht47y&RbE#*`tg) z>XO_LbxL%Z7bEw+3(cFV?3<31_Eh7?DX3h0L0%aaQ4uzsCed#>mS(7>?I(sGtEIkR z*ecLrD^Zz(0sWZ15!A8GgU7;iT6bMh9Q>-Pr;1Zp^0MmfP1H7^rk0-!tD%xD>xq|U zoNZf>R;3PvyxN9{b+WQS_@Z`^*J#88JfRg;DNBthx`x-Jg{Mk|wmWUg(dUZ`v)V7? zRB2#^Eon&c9};8<7CVoa{zi34@bs3+S<;v@0u9dBAKwu?mYsC&B`Ex&!&pe4BRsr;+~RM;4%U|w zOr*FwvH}4FD0xplceehR`H?f5fWCrQ*&}(SZmPPQJ*8%`9paL!n+enbu>wGgiyt|Y zh?i>Fg6NRbYeGU^ZA*s`MZqI^=yu-zSbyOh%8~q`meS95>Qs~z0|QYSg@(Ywew|6f zR}`gACHiGjC-By!x!wS@l#^(%gBu=LvrjOvX?*sw0s$BLC`S(QW7%rJrf@9_gy(yG8z6@~SwKhhGS4sI;v!ue>`Oj}5+_n7w$$IIk^MkV2grq~1sy z`W!_maz<-1#L~XoedMXL2_Zo+V2i;dkru>p&#+R`Zr3WxhO{+6nMhL7RH!qn#3PqK zJVtD`9$K>u4(%`>Les*E)2Vu@mTi-EmU!dVh{M%dHocsVM*n5GGGO{PCTYc8&Zmi9d$cI^vm0 z0lg&7sf56h=Wd;1<0}l2?r$MGOCXM2uHf)h!NKmMiz=6vz7$?kd!hi-$_C?ot>wNc z9@DrD-phF5=AG{XNl^tvCi<>9aywjK7fO(-ej%r-XG-YxQ3p(nc~~u3#Lzi*vFQu^0c0qd)QcaH~#>I4xVk`M)Usw#KXlL zGS36?mSK|C*|(fp2%R#mKtP*+DF_qND^B!#4j{%yd&C>V33s%to=doHPDIZ;aKTLdR`X}m;{ zep80_ANOi(w>PG2LXtbkBgB#*gYU0RP%1%StxjlJ159tZ+7Hll#qiN0 z)^4f4+aard7Rkp3aZ3(1;!#FjO43q)Ea~cJkpBS0b-pi*hyw=K~02A8y_vdOiZ{pwWCLu(>7Dyd$|Z9AWo8Q zcH}gHTG@k^m;5-vPO3`8Ed4>xtumaXbTsl<-*0U=i9z4_Qi zAG>pgQh)V>Ny|TTzN1RR8dS+r0SE#_*iTKqzD6oO(zA!SSB%qC&;!Jm4>Cd1<_)C% z1+Fo8QSiI`O~Ul~qiIw;kg_+39#;Ni^F2l(9k1|hE^)#g;B8*=!(_u^WDU<-be?MR zirZJ^NoKjFVRl>EhFRLCM%@8*4^$-wyel3hr%90pIl+(SzV^Yn9$xnduBoSjROVk$ zl?!}HRf(VFJcN42Iajc5EvVq`)Tx|HpMs*9BjM8^9%edo*z&eI+ln}~tlpjG^vaxK z6$0X70o$#y9Lz0t&~eJH88@?aev8i4=+6>lPAvsZxjM?pBT{T6fNj)s#ZAF^^O+wJ zu7;{o%|s*%{Xyt2`;1S!KI1gz6-mo$m)*GvXef^gl@ObHerd!@w9XGzCSm+WnCVJP z0))nZ4gEiVH#Ohe+EhdVE!vsp88XEJo=DWoe}=M%5TE9s-#(`dS^iAA3O{|KTdlgu zNgyo90Q#H!L!?JgF#FlAW~}pt5|_&KtU`?Gh#O)m{{R*zEzI7_+!|q87PGa8vA>w| z^R^Y2eU)Se3-YJD3C5}841l!nckfK;NhI&g8=Gwgc`Mfu&OG7cL0aRWLy9R{fLXsY zJtv+K;jH`kZf~it{;X1>C&H_l9$!OpdI_^LtbrV1k$cirp*nlTCN(IKA`ax<-#mKC z;Gi~fcS@Pdv$~EQ%#&8!r79@^fM-eEkGIp$7E#W|Ws`u0169Dxjo=X5V0gd zCfogvE^{6-BMH>E=(C86q}wy z{trwkk<%#w3RzKYMJgJJ*DyaZ_34E>S<0MEd#XxQq%4xz9Fj%joZRjP=dL4sEyWGi zKiw0lNz)K@M*DhL`T@Q0L;}FNG6aMLaZ)Ll@(%2lw56~W1OSK|?FBaN>Q#|r5j!pc0NI7X>1$t@DCa*DB?z1sMIOcZh&A3Fi$`D^bvbzTsXto0-a@HEpbNb?@jA2e+SSeR36)_$w^WO3L;T1j>m<3v=Vf@(D`i)4G z9V1{PX)}P{s!^B_l4t3*7}lh@)R(AyDRKq&-f`eop%Kmq+SdM~0{4Ypzf35HblyHI zMj6_Y_gX2MPV&*GZA9|Nqb>;w5k7Itt`SXgwCVi4F{72F4T5<{oxZpnqqfrZ#**0I zrz{|)365PlVKqFZ2qzu{&Kb2J$hKO9TN-0Am?X84Y;E1&9t9DPOPJ;8rG+p*#x=&~ z>BhQA$ANKJ72=bH0R&ooaiV;__&+Pi>NAHlQnKYklkhf@rAJs7`V4sD21+==I0!on zi2ZS6dpGtYRqYAdH9rl|FHL1q7N*9Mt0YQ~kOQ6})w~y)P^2l`zOf13RMLR^kJlNH z=k@$0nX_G&)YMScFm)l;R8q97)E_weM);n4k|#D70P4Z;Q{i_`OL)h1*j=Lk0HQ~0 zJT;UzTbAXi%^6ZPA9Y`PK!Qbwh?5%uf0)NHcA4zm#$A!-N~X_p9Lj~n@_L+ga6XNgoUH z=v!Sgz!a$~N!Wr2`EQS=ALx(%v-!8OHyKj!j}=!vS;Do2Ei|{uSfuDKO^^5a^#1_1 z*Z%-xLz3~O4Ni60O=~pnd}yQ&7ZAJ8Ql!{{acfUF`5)~c>|MwH${bdzE-A??D0{U_ zZ>h80tIR6k$B{pz{S4CRJ!?o^N}89N zOVsrg$_Y~{B0&W(QlNJ8`r?M-UfQ^y*tdyU;ZD{m-OV^wvCi(BID@1nJSkaHNF*5& zCPqFv{{W)j`o?hwvacWIoIk`llg?!db4z{uo)Vi46EQOvJfvG6qZ%yFv)}a@_J4Jy zrk^sS%o!;#pk1VJjnbhoq2)0$G4ql7J2xFH$84Zs!-o&|QtGs(Kkf{J+sDGJyD{v; zhWMu_b1~rO>1%R&=G5}&l@2g9d}l?|CN!V-dgF?HyZ->ugR_5Y9MZO+KS(qOz{8vx9R7)T#$o3Y%IaCJIT?6a!tU z*}awfL-0ShM+DN=9j2%>3uTPv864HB)57kIs z`B~J9x9UC$`0Sr$9@@XtE3{CI){eTnhH2e_S4c|QK(rE)qM$9bMe+4>{W(9?QzGO1 ziJlAN_gH%`u1|E^&Vk@1I$>I-M3@R3tY>^p+U1b@sWwpG za{$36*Af9DhW3>I082_dzL{K0*}XzrZAZQC8gX6K&4@@o9gGB&iTdK-#Py!pup}MF z2kYk1x77at{Kb7g%Afm9`#WUbz+73IarXmc6nTdX@hgI&ur|_G-71NNEeVN(xxKvk zv}9aW*^jm#0XofgS(eoblxaVNm1razlBv0aCggn*TRo0_w5pi*p2_=Artc|gHBz$e zN)k&-AfYLOIfFAl);YJ^)7eL~Z(t769OK>urmoJrIn13E54BDTlSq{+bqzn36s}(g z9zd_5_^C^ncFHqWX#Fi#*FI(fTuXQr+u?Kf`jY@r@^^8VGh1-)rV(N^0C9yAgrVlNll z^fVf|Nx}c)~?Pw_j zlq799;*a&=>~5#Dp1^V(?v1rNx(3w4t)UX7nE^g7plJjPT77y8us+onS;MYnIgsw^ z+Zxh^NdZ924?!dit+=$=d7ozV-q8J#<{Udx({&9v2?cf>YWS0 ze{6l1$xRc4tqnXI{TJosD045b?w$NM8zlxrX}&(n{{W*WXm00Sf@N(j)T{V;O*%l3 zq@^+h8M%vJlzGR_kM$b%Yp?cu?cTMTnir^8%oe8rRA~ze(nYOe4##YC=lUJ?lkUpT zGDSLDS9q7%8_uv2cQMQCe6hXj4H9XaBTsO?(npE(hiJTAeH6R>cz6;1&ihE=&N<55 zO)Hs`Ng%XFty-0Rt?Fd(O*0M*_P$R5aZPbnQ^u_-nwYHUMLkr4f@JQw zSJTkp%l&RR3~|S@PE($?JLfXRB_x?qN=l8j8+s>e8{ALGUdKC8uk53=oR>e!UsXO~ zk=CoWQ;P|9J()zFMyH5Trfsp}n{=0mWUS zc8S9e7F$|eZ!)CT2B8T{k}o$QURM_0IsX9J%DH?k#AV0(;9GqGY6PUGRHO(8aAV|u z@tN;yUeq+5weh!QeW*~pmh!&QxI&(>)FnDnih!jdZ2&e=!?~>!uWL0v@ujfX(2|fq-5?M@EE{z5$JEI% zU}-tR$cIV}n38LAzi%qh{{TnNWjy|q+Ixz-U(B0%nkuHA%ISlI{vr%0tV!EY8{d0d z3jYB1L;1yL75hBqoGq3Wd*d`8#B2%Fl&M;Ujie8X3_-Tj+8u>ZA|98I{hoCbKp=}QX_CSD?9Q}K{~oJ z*z|6nb&_n?0OJcs*Yyo_acN>0Z2)|Ml2_&ys)1}jCsLFN3oXQQF-%0`sph#PaD!obm*u?qh$VYN1g4<^f>(~XBpaZPReq^v_BNN8bpUX zvfxEICL?1reX)=xb9JpPJ!+Pt!|J1cmuy?Xj2gj?%Nr7ia$fOH{N$8cfKa zNaP1hM{;zlzX*xdVf&m-J*6H_W!sk&RkYW1+xd&mAt3xIE)q6Ae{4oLaUrVK!qR*~ zJTYu*>i+=tnnUQUCr2Bd;3M3I(4bGk1k3~X=l*=K&tI86m$)2ZN@2icfTDR$#yX$e z(PKA2L! zDHW}#r3p%=Zbgh@y+~UX05_-TYui4Jao7Edi!)|zQVn@ z<@`;R9`ct*yVkZp`n@@Xr~*jRPLM{|9I?tAA(=Tq>O%GSV3`sRpWNbampYpCGE;3@ zQb*<@Hn%@G-xBLIt)4R*h6Rs5|dA42d^!!ZAUF#3F4z(G& zRtUGHx5v$B^-}2NIz3soJMy06>aw+v7C-S&6GxCoA0cx80AQW4zwHs4Qcxf%Ew({F znH$B5V1$d9JqJS{K|2!QN^S(IUh;iUTVEeE{ek!^H1>Aw&o<$%Bc^hm zvW(~&z(Q83iQJelpQ!o$PVC`sW_fK7fcTrd{Q3OxsMy%q4({A9u=KcNI#Db}$>jL> zQ|`{VLx;1<%Krf4jitWwkwLJ34J%fX0%ZPU78tK{ij?K`ZzYx-r=eDqp$l?kfgH~+ zN66yJsjQ{Qa^Cu-#)6Y10s#pSE$RsPu}Su?+O}HN8;et^N>aT5z=7p99L@2f%{Y>s zUv+`&x>ieD2o4@QsgDF_G?hzv2-X}n2_%SB&s%z!-xEdU74J|~BC4NDZZ<$5h5C`_ zj$+`R)+y^2mnf>5)PrOp)XaquB2T9K@|$Ab;a_MPwzF3K`JdvAtHY?PPNb7#c_Xi< zp~erZXdmb_)K&p(dWu#*-O-}9Uv$ORlHu1eQoK6-rHJMSC&%N zx1}kia$G3zcxL-^1SEX-#lx9!#|`$JedjHA-1An)iJ}NtQP>d|8w>vcj6yqD;N^eQ zPtjB(UwF!!u?AEDNKe;u=Q|0;R)#i%O*RV3*X|7k-Hob;jd;kaiz%zut55!!Yxrdv zhhBaq5!Xj6O;g5=u8)iV0F6+V(N$04IziH@NIL`8cbq3h#QyzHn{eZfB~_F!sQ8FU zL{6WE#A$;d$JZNVUFCa_u&1@^LHNSFUSB?Ok0YkPrvCsmZCe|9jNct`W4f1c{{SBj z(0G5|DIfQGrodE5)`dWjq7OK}{{R*ncyl|gZOZEB^ro{ZtV@JWl{l3VHaz|$#{N@m zSDaIp=Dm~W-^FPgQKfZSpJeLr$&FwFAYa$Z68_3K+MBez`k|5FOSEg$vn5F>MCvkN z?dy2+#m>?6jgn~adlaG?;cXeLgLVq(E;_4khxTfbay&NfsxW8_aV(G08sE zd?Kc*+t0GLlG|VhUs?c6?*I!y^u9YAPLQL&+Z`v^_F(T7c39?C;?(6{SE`ZVLbY1p z-9~;feSrtAC~niUy1c`JGt8ZqQk=st?-QlO&btWTaSDrcINXiBT_KFtFn;_jU;TQm z;_@!9$0`f#uOC(JF*ZCmd)*Xlc_-O%gXKk-s*FMyKAO-5~f~hP6d*F z0HTp%rCg9_)0~N<{hqr^cPZn_bk?-uYiMgz;~=Dwr~%KfK!3MPdwFnD`&OsOvs}5a z#8V3v8dhL}ER*oX^=&EgIQh*qH7oS5HDLbB=ykNlMW|<=*+nzX3d{Rb>{Ex0DN$Bd zJIaOX(%DD=okl`I3AV#)TG(pgthMb7xviZwl_?=-NSzR)q{!4D-~Rw1GE<1XE>~T` z94PACce|wp2nd}eXGsHM007Lu8;?9g_}{iSvYe+cWe>jZa)ozICTt42sF~(Y$K?d0 zPoi{G#~aC{Z=A~V7y#W|71P`?+XX!*7iJZvxeTU^1{<9wHGD-ng}yM52RR#qgA+n4 za~Bf|rzknMcmuARcCM z*n9z$(pKj5?bR$LmmP$ZM5$V)$(^P^uz-A{8XCF!OdxpA`y-Rnx+Si8$<1=CJ`YA*=r$*x__jM% z;uWWjDA-4NP}M*}SXX)ylw5@!GCwaZ>`cr7&p+yymoGK;Y_6k0N>kzhHb5d%eP7C( z6DR4sYx-1?$ku==#g+43qjE{Pq>O>`GMRtT>$gho*m$0{wxy)f)8+YysXEj@5ejUD zDM}}lf&T#VjCA*Gd6GDqn~Aemli_)_p{YLtQ6K@*NrBT>I2h(%^oi_|{?7fKGd%I+ zqLu8$zU-BQB&?|?N{NU7l1EdyiN*f_+dGZq-I>%hhb46gR-{NaBwz17qvwTboF6;p zCjij;1-<=3*x+PPG-LpIyp_y7ld=3wS%Q*#qPJ3j+2}|yYYWZBJ1?=03u`aQGTLQ= zT6i{+h=oV{fQtYwcIi0d?!|KIjKZm^Mgd!ktZXc%40!IV&x8Xod1JbGGdLf`a+)%b zl%-+-J>-POyTV@5sfFrg`j*<*l#rza zfF)Lvt-uyI@6OWm8a@H`ZTDvjJ+N(cn zD!#VOBXlkN&NqzX<$SvB$iK%uv*w|-NOG-6LJ@r_1O(}m%F+J-yRHrGM~|88zk%ua ze=Gb-=bA`aNbxBoiGmHuk#TS8`J8_Z;asMpJ8~Xyp-KQLJ|ao59E{#$VlZd1mtYlr zyLO&9mprCZv@N-)Ac3Vo4~NJOX@LjpkDr=o_q$Ob?}6ogb2O6c3w671y-Ou6NGno- zw=Q-h2@^i2>W3Tu0H$p}YZQUZ+M_Mu{JAaZZ{A;1I^fws2^xyIPMCl;ywKbM>;Xf; z9jH~%<+V9&bv|C=it8xX-m;JY1v3eVr;^iq|{KdrrS=U767y!xaI1q{OhsGtxi=1cVr|WyQNXnN#*6Yo<87q*Vw%u z9%O4m+fnZVwGnRa@eyeI{{T#U>h_fOEX$tE9$S@8Q-uPcoda@U2>>0+t>qiz;k_5t z3r9)k=&BPzD=I5S!vX<7+n9?EQPUJ}ZT*(}l3u8!rdm?j zQdOX73WIYSPWO+~7T*cize1kn#OO*B(yZ~%i>^w8n36M7Dg7a?7T;j~JOKCb>(IZCV z$a(etxRUn0!s*EKbvzKICAE{UL?n605O*eb^5uzFV)@M**4rfJgWtl{)JoPJz+rPo74}h>-AwKW=oz?6k^zsv40zC~87j5x?)Nm7BC9p6dV zbbtWq%N@6yc56e%4JAY)yg)1PpBAlF7Pn2O73UaxFR_{zgKQrJ13Z@|yapN3-4*r_6I?)jqUB$nmXnJAYvl_QkC!sSRY(&?`wb=vVy0G#TfpSWQ!t*DQ#T^)?0k)O8 zP5!Pdo2NdR4*}~h*)HEx*)NBZdleLdbPqU8J z9IXjUdfY;w3l(bw07>e3lWWIJMC!QZ+FJD}B}U!=Eu=^r#qT)K)9G0ocC@c#nn?)U zKXjiT@XxtXMK#-RNCtoI5+kpm_4ULrg1D#tk>VB}TT%oABv?kCT)eR=&v^9aRO)Qg z#-TDzf!qAgTtRr2ilaGwOQ&T@)%bT!h5WyF!yMq=>DqSKq7|i?)#Y4$#R+lMIO=Mt z)Z3as)&AKgZaN~6qQKieC~Yr zxxc0*l-;nc;-xc8l&@Z(QXm3PA<{~%=Y`1Ow!yW>c(xIOuC6qr%fIM`>Ka>p>U8T? zp~)~*eEhLMX7%ZH{V89GK-wcw=ku}K`r*>IjWeA6DN4?kdL#fBB;VF~{I|9xJR$7c zn(7(bDnXQ}sLWnBlj-)pD_t8NOOGnfkM_W&R(rzG@Ru}})nG(K`QNSyU1HsB zAUfu?YynqJv(o;(Zx7v~_Gg)PaQQ`3CAQRTxbUexW&!(uNrltrE;RO~oh^?U9F=b) zAo)jLxT-vhX|SV_hU$uNJT+OExuiIyHlUf1SEt3b=McU(;1A)AsJNAPkX2}pmF*LY zTYxyanT<+$dWuz|AYKmffxA*>n~0osst}T1OpAVF7xVjmxG%&?AGEDcP1Hsl8u3HQ zFg(MjQ3G(?1&-s;cXR%gwoMnz?wEg3V zg%E&);h&$DE8M4s>-aM=O)WwkZ$ghVf4`sK8xYL|gKJ&x9EGtanUan0fQtVBq>Ve; z%2IZVq`;Yt_x||1yD6q;G0PLHNmqo)A{V&Zm-p0pMk_kp+q|Yuq(l!AmoYz3Bl~({ zN7>&Qt1it#gNcO@m?YR(^}G-|fAz*GbGHqv2VVrS^13&HI2-s~XS^`V7Tly81gNNq z0MApuuRIIwGAnZa5U73j`?RSA5*83X(efWF8(_`^?RlyUuf!XfO45~(BtftO3Al~- zKRi^v)}GR8;tZv{x|p`wlmwRfCO{Gn%DBHkdEXLsBqT-_ev5pv?tRc)`;z4@W|`}W zLUj22MRtqx{q+7(H}_>6NaqBW%GBdYKuCfjeQb99?~2FS{{V+u&olBKLK3uzAIg(G zEnt6l6K`?13NJ0E)R259Ng!WOSoOoT(Ns#8NY~4-0-JrJIHA1uk*6ewbVAS$sQ`j+ z*7&OUb3OhL?zDu$K`;l1UvPO(F?(RH(eps1loFJ<*d(K0GH-eEKe)s$qOD0nlRx(i z#mE4Sy6=qrEHv63)jLTWO1*n6Y0f^cR;Qpwpl=KF^pbq`#8bDrWn@)`oG)5}%8j-X zE`EQg^TXG(mUOm7E&dd#9}EQE!f_k+lg!Om6)6OSq&lTQkKe=Te)!aPEDoDUW3Vq}h1 z!-oTuu8G8jq^So@fw=PNu>1V{libWDZKGtPsM|~RzygtQEl=l6SkUbAe&_?Hc~f~190ts)?)MhLXd z#xLqVQ#v=`gbkv6CTy364-nM%OH-Phb3rYWBG*m%ZTlEQwr^&t?jFj2icvb-&QNhMSA>-^qRHteygb-dEuKZfE`Zwg8}oy4DBzId1CJ)tV0`i!+}N+@a;kmw=@ zD7i6yR~!1on%!2SCx=FO?d58EY>XtwBIeG{dm7C6;Hi^MtDXpK4KF>$FI9#(@BY0+6FU zZ$B$yf56_)S*C1`?bZm@q^D3&{{Z9x2cPaQWH4!7H#AkOJyhdPN4ZCMe<4jyU^FF4 zLV|!QZ1}8aneyB3i+hDTC{Gk*%(302N=yJs5}>6)f%de{<7_-|ue0kMG*W6RH6^nk z007?8dqMP^Nvk_q$ooG^SwdNH^(RWui2N`>)z5PtxKs3OF7_#3>n?U!Nu>wNeVnU5 zh-wH*T5%9m9FU$sOzv>)U)U`*I$2uIg{0_M9v$M}INTncF)*O*!kaj0J|af;82_}?_EuXvY~lqqSmWQ4)#X#=2)6k2*T1r;QorKpr((wb#iMIQ&#CrXl- znOP^sdO(Quz%`w;H<#2YC|ZmK07{2}LJr5yc9CO`zhBB_K!=%h|sc<6m=9CQD4I*36Uai zz0I!}I<2NCnI@TPPOGE?xg%i)XXtN={Twu&7b;V0I${mr3(fqwT#Ezgf@wQI1!-wY zPlW1P2~d$dfKp7r#ZHBwTS^`cvC1*pM;+!FVqHR<)|9PDl1+rg#K+D$e5g)3&Jmqg zDNZZAP%0%w2giRizSr{}an!Z>MqR~Js!N(dbHOeEqok%lfzN-QAbd^i=SP}4;HOA! zM^Au)qcg~TK8LOajdj}6)9L^Lq^?-5$#VR`YS!1qsYI29MZw$TFw4*y^WN#@ZXBI6O z~amu2a2}pe5j>l#&bsAOjz6e>`*sSHkYO zKm)1Q;rOg}K6CowzwJ+gYN^~)h-O=Gn*?b)j=f^>{JyatU){8(#~~)1qZ}EWiX7RM zD^w+Vh#Q-vY2MfM#lN0rEY{_Ms+{R*Vr{sNat7bH$3N3H{#g2!r1(>EA{Fbra>Rw+ z(qC&WT`~@YIA@x4pRI-}Y?z|DXwL9jr8S&X(rOgam8C}F@i!iRe@s1a_I}7&B}?Vv zQ3;=&hfH(N5bD60~W2O&at8%U#6YFzw zx?_X*nYzamol)XQLFVFSI$NCc^~A1+h?Iwu-8fUEX$1?q?k_$=efP&ZWqf3&L?KFU z;E)f5z#ei;^TW>zc8O3kX2RCBCt77GJ15KKbL25UNE7W+YoYd&SzRqd#hHT|2@WYd zmAv%w!43AZ)hp^{`h2l3 zZ;z-mN>u(bei$HbBwk`iPp&v!t{|+ZQCc5#B?KGENWR>y>o&$Q+b(gD)es)koj{wP zhIha3Y*QOr>{{{K87PLI)pd^^@RctYH2#Gr!UD(uT4wT0MER5T6G3tJv)xTgkE)fW zHk8TL1wgCFbhrNiTjz(a0QQ7kVp&a5R-JLYsBA~A!Q@8XQ*rR$6VP!5(&K6{AeE$e zPTc&q{^u06u5Sqql1(_GKg#6F{{Uv}-ksGr!k$uZJ_Qk`$9d=m9kMiR4b@lYM_r1FD+`fjqDGF`12!$0THn{Q@i*>^f67V%6^v*0Htx5{hBnej2%a+31 z3=5|}>QqOrYpZxvBUQ`pTT`e~bb}rqYs`l4Qi&;gkOW zmj3|F<%thzIa0C)-U&i=f))u)hdAG&(kW_EQmaPk03Mw_L~MR-96#El zF0-UcN<=K`Dn2f@$DB>Xh|k$^A$pe(Bq~!La~qTLIA-4~y0ZrXW|a%tC2DeNmozxu zl$8{eSSdQLW=Ai+7kIfuP&&N_r`r;~4&oD+ zX-2g7dP39{3YdW&vJNZG70Rk;ke>Z3L2fmeBJ;F#^23#8ZgQ}bsa{6ie}7CzGY16N zT<=dN+6U~qD}i5cHm7N5Ei1V^xtWnZVt&}N6_k`xB&4Wn1t5XF;?a(5>^rnH<++Ml zeO?y`7AF2y8)K}v139A3a<;%)(I~*^a^$7Y8r-dDFJ{bmI zPzX-Qa&#)_U(Kyc5lQkWudm6UZ&D@fJ_9F)6VxK{$tQg zi;QZ;c0l8WNh)nHgC7r4dPIVJ@i$Lv?v%Q6VwQf7!0j2YSg0BMyOepH%z zcl<4&rX&KX^f%j=Q;BA4o-J)k;~)-hQ?DA*r5Uq~Hks13B!wPQe@n+KNq8@Zecvi^ z;)It9LFx28BarAioJKfyf}@D@M%`FSlwg1^v3u$21PgguWa8Ba{+gg$Wg#hXB@q_6 z=^st4@|$$pVX~Z~mPZ5ft4<=zUCJ}cYJ?}lu0qik6EX9+^f>DO0A@ZjYdfW*Y^VgO z0W!7f?*9NTlP7Xalh4o+Ig5(3^w;GIXG)UwIUytw@bx5EMB4b3dp-7^z8uWyUQG9G zuS(Lg2sa0Bm(oW$!eo!8a)(tLpBOE{8MS?TRPY5NGEtdR+3Ob&fdN3r(8%0lhC4{i z{o6l&nU@k$mo+6QfRh?;zuRw%pq{1ng6-j1hYLGOjVVx4iV6u4_3O%G&N0V%&2zcd zdh&|YW>slS9fv-k50{=37zOv)QKOmWDs_H}Tfv99qHL8UYL^Z5Xy^blZ{Jupfo@mk z;3TZLtx5y~b2Dr<(YWIjNlJVw36Y?YD!upf{d(cofvLO7)Vh?%cK{*?g9Gh+3!9SU zTWl*|fvM8n&<3W&1x=DI=jHYtOdVAAs>Q3}Cs&16g>?S_7(;}RDe|Q|E@>e^#isYP z;R>3KNhJqXtw0b!lRL=AX@Rm($WHJAgZ8zVrI3ctiCQif1j!qP85{hg)&*Bw>1Apu zCrMBQ4I*RL6K>SA4|%Ox2ChILfTW+k-)}rZl+mhr3P@UXu3(a)eD}poZY-~`(6?kQ zp_Kms+5IA&&6E(7rb3EIk_aPX(NpD%ww|>)W>Avcr@RSBHc^XM^5@npFN(LbY^_wu zOUd|T5d?Ifo+R8soO`n+A;?gR{%_0Yx0WYyx8N+FRGG!Wmz3^vKX_96$kLrNqQn8n z9>3UPwe7B$H=C*DIjK*6AU8U?bFuTpyCketXT+UKUeF{3c>}-9j7Pg`X->IL>i+;U zU`L2dpI%ptFQ!C_{{Ts_Xq8wUNmvCVN^E=)7v*znVsqJ^evGR;r+BMMP)bepcuwUv zw=TPRUJwn;0je%`j*>9#!}Wc`vabqKLiO0`G9do|k33aYwKY)}u(WqwyV>S@@4PGE z(pJ$*tY#8)`StxyDNkvPlvDAWue6Ysol#OENlLX1jP24u=P+-HcVPTha|(8nwQ5W3 zB!D$sPR2>`Z+rcW3+*kEq5Ou9wV<~e9Uc!jhu{Or|#EHuJ#h8h2WL zz56B-c~pH36STZW5S==^gpXy%r zQf9J7yb9yWllw&1Iy*A1aUud;&`3>yh!NLu_4Nbi?;6)BdHdv-6ycRF_a;b@1_6L? zA1r-j?K`n%bNf+g zB;h`Vs*DpF)X~Hp2-<&7@}e!~YGuER!>dV&vUdJ!KuMHXTB`Hct1lY&R4B2ff zm2M?1CBh5|2VpQsPa*X_Sa%#VRO@}=VM-HnHk(^{=02n4^;qW7bo&HyYXAv>Dw&Z0 zA5Y&bEXHi>ZTMDVBI=kOH^hA_dWTbEenDnPgCEx$BQpu`6sbzmOzRje)F~{mgGEXj z&V@KgndA)3fq-MC7GpO`%0OPXEI<~&#n+r)&&v_7eF`ZhUl2Bsn1k^BC+W)zjL@=R z5|v1|LwnvWj~eVHhC8~HBRDQ4I?0tJ0!`vh-ncTKFeO?RwH;OhNzwD0VkV5iYIRNp z$yYeq4aoEI!DBd6ZX~Dzm7o$MM*Exc$8Q(PSdY4sjLW!SC@DHgg>M6vpaO^MjhLxQ zwFIQAO@S&BKiYTxw#0p`$Su^yr6*%$SWNZgFNrq|WJ<0HQPP&%m6emGQ?zrNPtg4Q zbd6}YE^KAo1f?ce=44Wkj|n4Ci(cCUVRQQ!ex_=hhFkAKJX%s#bcJhHzzcKR*BM)z z({Sw?LKFCkP=v+GfRGQB&LXwBySaU}=A#?N$8r7OI! zkPJap4w(=L>(8K+TyIj8Mf90~sE@uD zYq~bP*C++0T1v`wDJqT35zn3yRVYKC%9X0q)m=BkiTcuKk08>2U?THr-WJ+f(eZm8m0xuILLZW8FlndajqlSMO3e=TMD3v7X7ml$U z_r$|6%Biv*9)+nPP3cG)br7v4-0fj}3!T|&=_4PQ1jE7WMpI4{wf_LzRgrtD2 zX}E5P(^9sVE;X!aR+)?LHy=pzIHP+r;y>Zli9=v_i-JfpqsqWoTK>Iv#QwW8TTIIJ zBqj<#Cu>?s++gH&4WWGogadBnLc4e4OvT1hP_--G3W*6O7O8@F+xmQlDs@slOwycE zTo9EKNd)iLad_v`7RM0*oK~c`Qu2@kKo}|l046PSq_Gyq1)?-)>pyeva`RaFymwu>s-&7Gt&EShqb&t z{{UpUzx*1Z`F{-7W;H2w(oztqU&R2BAWZolxG#t+*x~vP@zm%_N<``!oHo3DKAuJ- z{7;?I@b+HfY0{M?uYg!3Dk9hC7^AqeIjG{A^*rL6PNA?i0^14l{d(cC?vU33Pbc$o3TWN(5JW=6K(IY&v9IK(^S{+P*7+B~u)?{ok#qb3+Cc@y)r`a#WV9i0QacAqif$lpzqUGk%jI zw$Yv?F|`YUgJQ& z#ZV<`K_G=pTKvc9iQL`J3}EM!@5l?@oj9M2soD+E(=E00D?-nKQ)Jlge@~_)ToIBQ zJgqefPz!SF2UH0s&&>TXT=rYTE6sC;YM)w^m?}!9G^$17dR$`O&9f9!Q0Y?JZ7ldn zlhB^G+m*hf10WIm8gtzzX5rK&H0L>+wJfVzv?Ya0^egwQ)hKO2EhofA zh>0fl^}*ahni|A+6v18_4Fq_SV`$iXj`%Ao$r{S?@~2Xc@lifF@qZ{If0i8sNE?ca zP~moza->s)u)@`)M(LFhOvc!6&lc(%O*#&xJ-9Q|`)~bl<)_`>l$O+`M5+zWudu>( z*>85qbz_ob#6TA7%+JvL+FhCoYP^)slhdiE5|qeOfM`MI$|UpqTYO3~%(R^isQ8p% z=;jTl*ZUusJUy4DscLn?QkKrKBoI|U4*Omsta6ec9&jSMDUz~M4~bVW2Kx=*$MnH` z6uLdo`Sk-CZ99JUprn%_DI1=nV;e!hxi)E2Skq`K?%D93=_HM|oBjU)vBG>r+nKdm zb%L^~0PawpfRneE`*F5T3*Fmogr&B?NrEr-{ok$)uCM}L?{bw<=1W#wrovQ~Qz!&T zpWXhxSOX?P>gp6qij%Hmm^(-#_5SA>UcYs1EdK!YNC9ApAVf?~_&*?^1vAJxc>mON`Mn+k~LoZxngI-CC(z^0H}u}St4LbG5sg}971yX z!B0TT2}vs@MCh9v3-trnk;MBV&1tw7hFf{}8VXjFhLW(AsYNye%4B-T=NKN`C|$_h zGOQeyuA7Fk)d1@K@$VYcB`FDuCwT<=U@8tNR%ue>LDRSZ$P$w`Bj*RmVg%O_)Mu|1 zIO>~2nv^xIL?&zrxGI1R_p!Fvmhhfj)eRC|3l6y93XpXO3Nm&Vh_{&AmOipQppqBR z`b3ZFHK9wm-#BWEFQ=eOiB_Z_YecCaX&Q`mo?*b!mn zr=o{9>}SX?d31L6W2K6veO9AE(sDcvoSp zvC68lOqIGf)k^R~Y0K7?6|UC=BqnEmbJv$VSbeZG)?L6943(u0JywK-#3&MiZRKtD zm0~Z(Y`4QaF_>nonN!tjPJncRlC4qd0-}7nVbhPP8O++t6owVD9FWABZX*Yg+ZG)ccZR2?+oaX7gw}e_LRR?5R#vEX<+nkk0|cdmi-B4X-D)|A14sOi!??}r{7s!eBQd_6?=mY&Pj zQrct!u%J|}N1R-ZMD2yj+X2I|M;kyTr}_FSf3jB8mOVngSD|Ntl~NlRaY_RAj8LwwY+DE6ga?l?fJFWT((c z(|dXChv(d5G8uhAa3xM7K~Y4)(5NYyxsiCAnB_RKS&Kk-kQQuub~u)v0mf8YEaA+~ zn!k&;q6rE?3u;tKE&v5LGbh3aTsLr69{&LJg_M>m*g|tY?MzgKARB*ck>)V zEl!{Va+$o$?<3CF0~#7OiJR^eYX1KK?6Y-kFgx0816B1`A7{_2D)xEJayrDhQ07+u z0KHOp2}GS@e=V;E{P|)(*pF#+RW-SF zd-Taw9cziAtz?p}7L74YR$K27!>#Jlwp5~Y!6e8N zzw|JZr4nvs(d2xPv?JC!EwT^GRDKn++G1DP?`O))RF@Rp8;NS63nZzaR8zW+(>$=@ zk>=>){>Z5FjJPM?GB@GPAPr3tlP34-dL$7SFt%eyP1_%5^;v5#wrMlkGRsSo;aQcW zTb`uBGyZAsWlqzpJ22xKt_#oUT<f0T*`=dzt}_Z>CEymvuRf|jT&!D6MdH4?iNnEqKYq|LeV#gWGuYIu_;&MC5> zl_s&I)P|5slJ0?Y+}uQ%1l<1sv`jaTdoeVs%&2Kf6#!P#>0QJSK#+DLPdnUl!u&JG zPgC&q9dm9xnu=F@htNy`;@onAl6FrlStCZ_D?jgrnjP#hKmLAINs{I2?B_pXt1f*s zv~^CDtqUsBcabE>BcyGKPaU@QLhfJ16ik2FIx89rve2WvP2}!xH@L&c8t_I{#W~eo z4P%|lIf3_zXF=U$2vD8Dow}W{*VyG7I-gXzD6Cx~)a{o(=onl3Z^^YqFmr)ysxtxC?SD|ol zsRnx=3BIw!)>kT}#4@h!a=K?O;YbPOCQN>(0P%lkZof@SSCqfrW!1_nVQ5kOHzhKX zI)ea%$ok@W+Ghd(02ghysY5N)HWl5}A!ZzyfIu=wo*DZhE5 zge0htS0Ee67Z-wh0f3HbZsz3pPm@i(;7F0--qWhr!(YR5GTVQ?rctV$rl-tzB>Uyek;ki;(2V-%|&-5b?TyemS``uI2&S^^vF$Y>|5i%w}Fxo&C z!5kl0!N{BL)IwbFs=-P^w!cZ+)DN2=a30}{Q_UGR!ZF!w#c&xtEgPD&_hhY7WzY@% z2|uxbPiDzxow}NI2dUkahgJcVBzy%iHywJqSmHg0Y$lQ!rF$z(r4zc zEMGl>c8=XU`G*hYJ}MmH3P3Ippvfdi(r5Eq5DwEj6juvzgVfZkO+_xLM3R*POeCB6 z&8MF8k0F#anBDg9ihVn!j7rbA9H?InaV2LEQaP1ofCt!DbSJ_Tk~Dx%J8WEXyM;W)10WDS18z76<^rnXwZV`{BQha@92DE9gR$l^q7& z8w;7 z=}aV&NwQ$pzD3*I+9XB8itZN$2*Tn#Os6U7^+)tHr|yfU_uEb z$IdQy`E(e_)V%E>XvPNM;HBI#MwiN5QPNO1vD82Y_P8SWk|vSrb)=y>lRV^+=R4uQ zE}~K&Nhs2#2pUg@_Dbu{2uPr|5;{Jggq$B&y;O+E{F`zMYT z;&gu)a-H-v(0R2(gThjznSur2{{S~5Z#+416RlEEcj_rtl9>xSyd;aCO|Odo05hmo zU7b?YDZsw)1r?%ZCgX3n^tK#0uQ+O-A?}dorb`4Q3A943zfFz2@u?1+8a`LfY9=An zP`#z)iyh5#ODb(h0m4@?%z=AA#4?(sk9c4yX=%pFTucKXjmMl@?};`?pDQ!r#ZW%# z3&~!z5J^&!1(I*i)ZvRWPJrWxLXxFwlphgEjw-c^hx`r=AMThHl}fQbH6EtpKcAKPc)j zt#u!DTFS<>>hVbm8cf@s;PdH-red}5rxGdFh-bTUVQ~sU+z zrE;r|O8&>DF8()2%=lrq>4v2gPV%Iv#-rvyo?S6g@fKb0EvBH2DN#DYZ4g9H&jSpB z;)>F9NGaEVl8oyuLu+ZxZJjW8iP|^)p16!>c_Q-eA*e_~k=?kWfC;oN0=MZiepq(w z<1r}DQkfmwgHaLTDw&PsZP%wdlFCwoBqWU_M8rY2IK{!*&PzwdU6Q?9OuHl%wt{4WLWu_aze76! zaX`{lD~H%h(6k2T0Sk$cqdV`gyxSI^W1Mn$kAyQ!nQGLh8CsgKQni2xNb)hi^zh(W zZ6V`}MoV5gZt%Ivf~hFasvC7BDOQsT0Dz!Phe*FG-=U1*jLBRf#Lc|Zx@mjFmBF&o zRXuhDnCFRC8E^tA_==*Tg?DbKDP7o)0<_8J9V5;><{XL#DytNg9U0HzxfRQuHq;$R+->x|}d)~r*+Mtz>gaj&NgsV;W zKeK0P+(dK|HG2#9IS0TTOygWKXev;oy-rIT zoEn#d%NgdZO@4g|!hxY~qNaI%o4C%({>ppczQNZgBax1QLh^IW;?t2d{uZ3kE>DkViQtz6^j>54S* zhemBDROd$^{{XzJA3ETb=5&rVtw~iYl7J8a(t1Srq)0cvmKn0l#PH7%w@X$uw&Fl1 zOmg^)9=^Dq)n^UnIXbgib$F5xNJ52&*AWgbqNdHMg?cU-aA@R8Nx1sp;gfgf{{W>T zXvB6~^;7KghTY;W&ec%UYH|7y3RVTmN$PnYLosQ@SF<|yswnEIT`BxB3IR~qSdlwg zZ!>Y$(k{uk*i$syFD+fwQUfaj&<{IB$Ui%6h8{iO$GAI=l1uR?P{P_OE)%U$q*xuK zOnKtyTeK5)vt^jRy}T}X;~oNkggB)I8j}S?61kLW1RJQ4Y2O!1S-SHs6wC8p{-)v* z)5R0<3qksQus3TQ2~ks#d%97T-0z020nC$@;Q6J`}+OZ#?kZPn9iPJRed|h$#bJt4d9Yn425V)^P==&R3NcHlwAL6Rd(n08dS= z9dMSo@Ovih9mYsjN3*vO)6i#CxoumiZI>lz(cvXP#+1PjV*bBeBigqFxc3ly{U?F7 zBTI`uB!y}-rouf8;tP@1hI1yW8aiCw5y?|?K6`bZT=8!rxxOdi^rjHo?TKZ;=suJQF|;x*YWE3h(DW= z5z}xvkT%6_+J;x|6-jtF6KDc8D1dD{T!_HjBbpkgRMALQq(~Ax{QfUI6PsBm8sa^n zUfeIlEb$XAtt;j5TjJ;P)A#bldD=GtitNEpQif2L!ihk!8*FE#{W@Xifil{hwdU$V zf{~*^SaLy6^AHa~hwRpwLFFkbQ^`s~RFF=k1Lym&KA1h9>S}XbS^#)ZJ_D?(;rF|> zg(WH=q7-hDW(DVv8}E*U?1PAy&6!&OhTJ6p!Hqs*4acS{s%{sgtEX+y$xD%@)`;o* z+v$aqRsR4>mg*aD>TIPcgQgSb0{;MPMI(2L3W($^Ah-%ve`$T0RM+JSaVS%kmBN5f zQccM|VDcnlha4+ek!MJ$aX_V~K}eG-PeXIKo?ltVNpL4>^qg(OMYhycP{;vjD;ig5 zQltL>jv;(;!Nuy5;&is#wgXn4^KHCe=N?14wm9V*+aFVVR8e`Vb1HV$g66dZB$Iej zL`mA-xDm#eNu>^@Dz<=N$x(??rY~!6ji@+#_4vc!lv3yi5Iude#R$HWE3?S zWR;~Vh!Ox#md0o0g-Gt1+sdV}?-t^!N{TYP;z9~kmnKj}t-qijrY#;8&7L_+G~Os^ z_z+2*Czuf+bQ6Y=!)zM0DJV!XqX5mhUO9qi`rxdg<>c1x(x%k3oeR2oM>&fppFDG& zyjtck0YyI+OTH)CDo=_esU-gZ^7KDL*BM)y7_X1F?zZN89@1GVo1BOPV{+#wt(-T zesQlCG71 z{H_PZiL?Ablr2!7!@lQZhCK5$YO#=K^6m(k-xf8-@}qv$5g;f+lsD)}0|~#Rfm_OMfOZD>bNa8--?KMjp2!~EJ(g0}Wc(QJO5Jb@Lsf-HsR||mkf>DoPUFriF5SQT8$QQ7 zU8}AC0HSl{W%XLrGzFreC{>^+$9OsJp>sTjIMe+YKh(>$UI)tP_;DN!mT|Wak5AT}JDpj+cs7jrRWl-z%56ciKGmeL|eqg!5)| z%!wodfl==br628r&t8oh*v9l`C~uQBmG#otJycSDt;Z}N9#1CrI%ZJQ>#dV3U&$t zOvb<;EPX}xHU9ur9Gi>iX?SzAG*Gwi8d()DttGd19wK7=regqqsJHqJ@E5j@My@gJ z>B?M>iX+||sABEDqvG+T19P^d#{F-PvC`_9>JbJ$!<&$Mfe=k0QAql!YL!yLmeRs?IY#VwOpg$QAKJn`6LBYHeV~7)hi-Y+QJQAeS$!T# z;Btd74=E_9KsGWI3H;J5X7?g7e|sf%>Dt%&U-rBI07~)oHDfHc@>%a8LY}Fjq>X6& zrCaP(j`H@h>?gC|^<4ILdB)L9<$XmumeZ{)YNvFG7Y4?8%uVO5QcWJFKf>!kC(oas zs=|@eX(tlLmbhepzsOv_*eCjs@SnAp2Dg%Ng-a>S8PbYu(YXXJBnT-4iH=eX?hIne z;NNJjB=&62lS@$Qv#uJd@Qr0oA;zXPC0zN(I|+#~@c#hXYq0J;{{T+@*lKcYz*RR& zhZXMCBT`WEM@#Pn4S~l&do6#d`g0B+XCmT9RQ(RI2wMD19z;>&VLE1J&Q`oO-S!F9Z?HDxF!lemYd4q6737tfLx@{6IkC?ri`%TyOQO0z6 z?+#Wt2;5V?J|oaf=6!PqxAU<1h*g_K=b4-Q~v;0kM!EjKhvMJS36Ja>WS09 zd9%IlV?j?n-4e>@T2rbL2-RV4pqoSeKK-~d-Ywy;;Q5_GD>A&eu*0Azpc#GW$XhWNWKrB14Jili(c z>YY%uNVMt(^S_nx^MCy&`$lJhy`))Yp~5Na>6F``c$MG)z?i@P0E=z$_Mh6#_C2IM znDc5t(?wJ*YC}j^am9$xM9t)o4Ywru#2JHNV-Fbu;Pz0MO?23u(d! zI8pEbV4c&bSc$dq@UPligbxFD<-{3!n<@8twVfM&ZN7luzo(@SjnVT+Jvpw^>m3`e z$iI$P)Gze+_JUVv-|6AQRGEcJ-mL7?iCoLuY$TO8OHz*U2T?M7T7cRKjCR)y<|97g zsv5AhI6HwP_+%&hqz|0=Psl&?md~H!M!36#1wvbAGHI&)3Va|bOof7OV&Q&Q(s^U* zkFu3&^PUr;ZO|08jRtlL9vfWF$7^_ez{kw`v?47@08j*<)i>88x9{#i{gpA>XJr-L zrh8DQK5>%fUywG9L^la=k`>JF19A8=c5I!q{ zCJ2FJYr@yW@>&p%kwku#j~u7$U(_%ll#SvpH`w%^rNIDqF58M1cw_CT928^yV=Az*!YWdz;g=)jN+k z;YmmdDkSPXdR~97H8oQ^s^#>anIqYyVB5eS;e8Vf92$-=Pw1aJyB4-~bc(=2viVWtVnwoVrQBJiZ#59q#h~#OWBkb6CLnUV2d4Ny5tl<^}fRZ0SMr4MTs z8b$ZtYm1x4SE6bGl1Q6&P5z2+P}LZ5YxS*j77NSlXD?lXoq+n3O8uq{P~7ZkTTV5ZyqMfz*M?T|VC_#P2bp zLfCD@HR5mt^oxIcVVGqIYPVVrq=G>^0%qp~+-8)nmWqy2@ZWm;4L1?DE?ARgnF6U9 z4kVQU3M6<&soFg}@hIUg9A`6ODps9a^^!d&%HDpk_;^LS1{e900P8~1QhdiO3!JBP zmU5$9EmiI{l>O<_*l{OWg91Uh3gwhiab5nJ;S`QAflJZ{73CLYZ}_ z3aCgsD1+(r#F2T%TiLEohF^6fxJ{cyt$oanpT1KLE@2!6TH6a-ilnLk0JcmeNEhkP z6-TtcW|h2g!){k(&lNn&dW%UaI?!hJKW*{vr-B^TOmI7_Nc~CPo?WFl7td?*pk1|l zO4HJ|?MJ*NEVP9dz*e5{3E!c#g`U8eSR8MweZ0 z;;mXv=S)gL<#`q{wm!!uqm0lTpYRb|2@(o(j{~-Qm1*R^>PwdPdE0q@j-kb5G^

  • VA0oC;pjzvDNkgRL)(DjaU6oXXVN$KqUk;1l-rl{-A`vAq8P zE$;K(Ds93W@5}(&w8S2_AoAWeGlq^D&za-?4X7ySqS;9{O0Esf!85#BU+u>Ikz}l^ zF3vKVvf7(*YH=u^`*Gp5$=*(=i1SQi^Vu5c!?=e5#nItb{?eYsRaH5w z+;73P9`vUd-n&fNiqxPAIRmsL$cq7dRXv<>8&p}{RW)l)GW&28(!mQ#t#S-N`k1(p zIO<3Ei!|&qxyQra`H{FvTy573Hzp!32IK=CvxYv`I|InQpz>95HwwE)N1e2VD51Xy zbt2^}Kp;)5sE~ZM1!`(3*prjrv0i8->AQ4wLy_a@@RQ=s&hkFnyE4mO$_iV}GUkFR z#)8>)@pz3^6EQQ(9P-y^P4+w5g)Mb8PjbqZrkr9FfK<3jOvn&TwC#RaxILL$%{U{E zpUJb5rqx{9sexOXQk5A2P@{Vt#9SXNL;a)plA9;u?8_$2O+7Ycmz8%*ZD}ZQh*W}` z8<2dDTv6$|$sE^dq!tGWo}$)=Hh8dI$Q)nMNINa!L6dg9nNX5bO`B7Sgd`6DTtbs_ z07|tdovqNtPwh^B`X%jZmo{5ZIg@9J_gb;CQldOF=5BddUJbDz%y@)1lkndXQmbFN zx{&&ijY=pBg>FPyN;?~R;p^L*gxKvfu~({Tm#(6nq}DSI1o)Bx5z_EUy!m5uMC);n zfZ_TOzHeI6$2MxZG<#t7T*KO5WZ4Es!{7BbUhAyZKKfm7AxK+ok0KJCF&dBCV;3HG z+GEr`h-5rPLd`qQHUM=M4WZT(j?!d@mS>@hv$8(W-P9Xl}n^$ z#P`nxcv?t;wOETp5f&gvJTm9m+L?bXr1!R+QVwoU3(26ojcdLW#LEB-_YrBw@~BGYHy$;d`eHg@#s(tbxs(DVG57wFhVXFwR+* zH~3*X-E&br;>wJj{t?K3iIQ+GX5)NwLfKN1mUOtJsHk2HZhDL|(mF?8uw) zlNUZ2<^8bHzxngE4Cg#EmDQrD3hqdjfl*UQH;*H~K4axwcAxD)uEBW1pZ@?u@6S{>-P54BP=u>( z!MP@237%Lj4)4Q%Zq9z>G^cYm754G-+A(Y~p+Rgrv5Bf`p+a z&;dS&)Q?eHdqJ|`YKaaMuig|~0F;wsI=9$fIzi}hOTV+E4PoSX{YvdzlWKK6Nrr5F zhlHQ9M**SN+ssh5(#<}%5|Xs)TZT3U{#@3dw|?V&*r$ z{zH4kZ|wP!yOVG+sauNf>I&}?5}i@#P z7w5jf;y+IWMqS*RR%+f~D_Ot-)uq~xYiZ#g6;naPsplI}LXl}DBt&(e(D_f#KHoDs zz9!=)kyf(vVQO*6a>Yq71<(Fl{{U=s$F&}RPQ3k!cSD`$a7&5+s2M1Mxba+H)2WKD z*~i)PzqU>`tFEtQRJl`2C%tuYfH{+Uf&D!3X17>ljK|v?a&3K2rhiViq&4q;Xw~o) zL)o{p7ZCeRc7sWjP_a?`ErOLk;Y#$V19a-x01B`E-&pz?*%t)x{{XY!3sU6S8#MWr zX-3i-TAC8e3l=3Knyv{lZhtfwZBAp8_D_<3)BGsVZ@khTsX$MER-<(Z0?9KPcJmM- zLBk!LW+xzd6m;J8pH{RTLUoNuNfQT7_PHQ(^R^q?x$QFZiXDf^`A9nXqlL`Uk^!rz&|WhSdhjVUQ0r8B$`NF&o6dF`M6rdcOsSu@-* z!J(I{8Ao=u+9}gdw~56AX%KYSk_;1wPqzO6w7(kXU8rWgpHrHwuCpzC)7CoUMFlAY z0uq@3&F7W2#cS-@{+@Y-Rh3Cwq0K>MN(s4@C|>vL<&UR!yG!Zq9Z$_y zo&fqOeG~duUF!`RiLn-ObV(jcuayect40<$@7H2OIzYoYcr*AY^2}jQ|Y__Xe{gf z8#_p)&Xk<4fmL*=BqhlSn|(iin6eFSmVbN6vz*{BwP&ZlMHpltHKWBJ)qauqUBQ}V z$tzk^l}4ar#Uq^l_w&Uy?K$lJ&k*I$DXL{DP6cR*0R)@gZz6Z}+Sr)(XU3^bGfe`Y z8rcyrjog`+jy%yx`R> zq-q-MVEi-6;@ex-92WLPpEt!Ko|%W6ZI?kLs_9URT=@^aKJ)r(SstoCdC$uFO=gdL zK*!_vUAe&d!X9;+s&&JA6app+qE!SzBX6GA=x)rb5nV>x4tV51(ln^~fIOt$Hpdk9 zOU5-B3j&pW=IPdnu(9}h#GYrCI)Ad>E<^caL8NzSPUTbLR8LSxNS%kC5&c7>>5b9w zzE*fn>V7D5b z5`$oL>Ni%~YUMcQ-Ylf3?DvR+%rQ{fQ@L^gLR3J3@Q@}1`FZ26O?z3h5iqg|6CNP| z5GQep%eGz#)ky7YEiLUSAzDT5d{<9Mke#QeFQtc24IBReWv%JHr5{YgCPTqLvZVmS=@w7VVZAnrj6Qf^CkH;jSlZ zG|QV`c-o4QsELIQ#7O!5F}+SzPnaD_0YHKb5|shcXKr!Vo)Y+(WVe;tKUbBsIb0Q0 z?D1DZ;+LnpgCqb_cYzFjaHYrZntCS` zrJ+EZiv=g72(cFyo?{N&E5&qqOAjeQu(c;kW)zi`5f>!KLms%hxRcqnzAJZADRC;8 zl9EjRQY1hff5sSUeTFj{)^$;-4k*N2=}EAX0!6^-BN~wUlv1~A@T_QSzayzt+;5-d zoL846fTr71dO=o!eZc}RAVdQv19nf@vl)(d+Ev}Hn;1O6A_)RdKi%;n?GM>Aia17* z*HY7tBn22s6|g?LL7uVC5#G-;`rZ@FkSbYH11Gv!AdB_e(_`1J9SDrH^xbRCY;y>x zbJ<@NKF_p|<*mC$(onA@sX`M!eqII^jl)?9T1#74l0BlJ&9V#wpTvA}Y(G`hEsWTQVR z^NTnGBJHy;X@}I)bpugBT6Gro8hLXcxP#9bS<)?mCnNC-+LT7 zXPu{4@bk(Hl{S=niHn)MNxb67^wNL~M;;aN z>YU$fg4@{lR1R&!^*k+Btz*J~QXpD-oxfuSWO?R-&v;a&A5i z@oL%NembRRh90GTX-IUKZgodF{q@B;#@&)N#2LHQEUmPWASy2~ISyVNFt3R#a`Z|L zl|&IS5Nt;?KiB7o{&VdCm~iuIMyAlG09LXSDF7L~?nxbS=AYBQyk%pJp52y@rb#3Y z*!+Yy8}PdsJ4;GZlH#O=kdvs1xU`Yw{wAa9&j zc(o}{O0@$dnchBJqi-wL8NU+0p4Tk5@i?GGjDEg&`duD|LT&4B)C^jd3KdJCa&Fkt zjHwJHeq8`wJo@sHxa+NtC3YTs84_QjD&N8cv;N5on#f=KX)p7Xx&7i;dGMCs%l|Y&5}uBj!B- z#qQ$6+&bb=y-j`kT-Zm00*toZlzAZfU#N>1h>2bFb zgef4HBYtV>I{BW16Q59MlcZF0L)}n4uV%`ou5FkpQWO+KlW-tK_KWYnBwo(iS6mXM zr%Wh9))G8Y1k4@0@e1u*HBMp0FD)r?DoW!?@PXp!e6cz9bxW?)%6uwFQ6wANV*u${=*dLd))K4H62QAT7gIMll|@coL!t+ z!kx&};aZYX>Xb<&%!`xh`;1Vv4z8a(DM%gSNl5@1H{1<|^S=0-P~4(}G1*)3zG@$O zWj}|=3oDrC^R!%?4Uq8(plOD}=e~r*X`Y<=;XL)9dL99(Di_)%bO*X!$oji5G)bZx#=k)^o(Mxa!ngJXXTpWf5Y5*h|wd6y6pl2nw)CrSDf zJ4Y>s82E0HFRiq!rAjbOr%n06@cr?A@E2o<%`%27A5(q8kOHneDN*D=8+yzf42=P{ zrE~T>DgoJ=i?xYuV{jn?C!a4_`TqdoCfdxq3VVp#rKzE5O7AqOa7erY0U+}9>(>>A zV#8c5#?K`RN*ra-k!b?mMT$(42Qv{ng2?RuLf;pR|TamTa>Tv~5CPcNP)=tm_u zsVCJ-6Zb|fDcMJ}^>rH3nuFl*$XHaMq;J1FeMdu!jU9}&Ur5>>M~xfn5GSmEY(+92 z(d)Cv{0#)9WD-E=qX3_;+omL$_iLOD(R;s6wW5v_I`!~8D8l}{RdNkA(uDIf&zFiZmxKDNbS+RtqnKMT!1Sx%RnjUbC8 z?F7Z|7!QcMSFY_kr%8QGQvi`2?}Z`{#7Pq{WPi62jOjTBPS1T({W_eEXLTNz*kAAE zf)R_Rg+IB+bjH+2IOA;Vjo)ypr9lpbD5R`FJhqR%8xg?l_*|%UYFfNUQq^xOo$tOR z8INl`Jw#O7bwLfx4UDEhADgX@Df)&Q-r6!1Ig^Xq_oE~{4LSt{G{$DJ48=OBis*C~S-meyWbfC?LcH^mVp(&Jur${HxB4pg#^uzX9 zmQm*`Ta7r7RBk3fCNI~oJW(!i%?$xdl4Dc2H*3eX!j<|^GSaPV=sl2y9c5lQn1ur}Hb1e0G9J`}O(lx2%9P$k#2@Z?;%{{U$ij&YY@*=G^7q_)FqRL_V=pXC#9dGwQrWQFJRE3|&3 z(_4*wSImAk?5dsW2b@b^h!iJDNbz}{r=Fw!F;(Xr3saX>DJo@3Zb%S~(mKu0raqAN zf$W5?<=0q3+X*0~sy-od4WJHC1}LsM_I0ky%b?LLd_>AL$HU?YF|-@Z;;l1}2P=7+ zhF7$M^ec`lI2>1{E(Y}~;X0Q)^SQV9!`}*ae7Yu_?=`rX227C`^S0xjE?mR0~@NhLZU$eWqxfU0;!>Q>a*LQrb<6fpS;@PvgBR73;wJKvuv zz`5TUROdO8o$u6jCL(PLF>CVWiZ_RInwHy2POl0{xi;(e-|ZNlWSRTa=|YrKrY=f{ zg!1|xn2KmE%L+{xVX&rDd85Aclql)cy(u3MiHrSkE$Qz&D2M@ znq9%cowMcn!V-|;qAa-z|i3tIXMJyn4#;t!82eh>W!@m`vc{R?;-6Cs;XF1v$Uv~AzZgS z_Q9M++gwFY-2h6}Ai{PsN9*a&%3$f3&$OY_YF^A0#5_TfzrvE)E+HV>SSMT<0&V(q z!#lmAB9VGS(bfrr1|-j>FD~3WCthIUonQvikfO3YIw08ie}4~5a^Dy5PGZelp$$G# zl9Q}?8_%ES#n8#TTZ;NkI~h0TR(4CDGn%}Vs3p$uL0pRsL(li;i9>uS)pKe(J}4u? z3P=Z>^7>+#?9RFDzd1t{1zppHBK{pDk+rt_`Ci?L*?$C3@h=G_!m@{(8WwdVo$OOP zP2+#P$59P{LaG-HETeWpqO+`pG^ua|gt(J&r0x#izw?Usil_^1r9@940RnBx{c(Ku z;lS_kgHAq{f|*dU+yQAD%ukg0W1jPz{ZB7Ljw`@P(n%VAbBI|RiM8~fj$^A}LuA}S z=2ch$)Do>Agc3ROGmeAokGAEvPoYk!Iuw#1{!Wo^DE^kmGv+x{>sGWU!x8`%)yonN z63idU7MB!9he}4N8e^CE-wcuqXDbucA!Ne)uB6VmwazAWBrR?>p#*bSi635Z7sRu( ze$I_+J@U|XNHPHz@{_RVF^X%l{v=Lon6!rul^EB#h!*?(vDZC~Q8!VPB(|FrX_A z+q0bI*7F5Ytf>mQ1ldII%cMv5$5i%(K~0)vwN#ENwG*hpgUosIpIZ*5IX8))M+tGB zq^rAaE)g<+5g^3O{3LP{z97^_90(^XeipV!^Mzn>(pQ@B>n;KR0B^+NNIcR9TLCf7 z{{UQ6?Qr_2^C|qPRqzG`5C0H zaCd4_fQgs{6Sv>x2W)3)-Lu+|!M558X?;E08d32Qm==We6Fo60?E5Zt+F1oEQ3{e1 zB-lmp!CzG6YwR-EPLzb8=#+yOk^$e8^fo^xRu1yNU zLQ~-|49t0p;`sJ$&vJb67V_=hPfB7SQSyhr6jMda$@HNl;}Vc(j60q?4p+ zl0T=PF1TmynQ5w`Wgw?kffMCux0HQ9++gk+s!K}vl60j*V|}3i0QIBNZ8&A^XEIrB zxzv;?CIp)qiQfx%{=rLI)3GR3n~jCNsXzB*D2@LBt_q@Xp~m!|2qF&L@EfW+Q>dj{ zNF9Wlb$QnRicN_w6Xb8#jPV9(FUI8Q$q`=to+iM(A>+K2JOxd@TwSF73 zxmPehn14$gN_6Gm-vuH)Ig%yz1G233zA@kil#cn?{HbQ)!*AkE&kNJ(E)L z=4($@;7^DZIsiU9$=KV{F~xq?e$R~deVQqBtq{xCZD&e~;DTh#9pWSVbd_a#bHZze)Xncn!C&}6h+HrIIb>Igbel`nFsFaYLoi6#Kr?uV4) z!TdZsz~jjvK~{i#NsG^4BWn%g4|UvgPn9#Gkx3<5ZU|6B5G{KuN5!?axy60N9i^JK zlTS*g8>b^ui14aMITzE=d0ucGE^?-xK@K>rI%Q#ef%tdd0NwBRJM>;|V||SZUUN6A zd~X#iP?;yfPSz7|rU|F1hhS+^Qm6#@x^ z2)4M~+s@v&e(wcN_~_bqr&%aE4y{B0NT1pM!wV!5=_gl-3NQ#(l~3srZLkG0z*Kjk zI**P7Bu6`KgA%pNV5B8UBoa=jQRGL<)A}g8AX);^+$DgIX6r|tb>(Awc9BjX#XayllObr@BRc*h&t_!I`Tq@dAt5^yfOzMrd^TKA9Cs|gQ zP&SP-7Tz)>Ta7h&qm=r~nM< zBY&@4BCRSiN^B1>WJnRd{{Yh-?y!s9X&-nBNrdSx9jppT7qrF`?~B19B`GFMk}hV( zFth0h_)-Xz%#$Qce>bPs2)L3H;X0C{K_OA3eAT`Yj(ALOgoE$GR3$03fw{SWfBY}6 zmJ+P3bxYFpJiSdA(M2$8D$&(oJY8^&Y4_hy%=Nl7X_36be$P<)vci#|tRyT8EdnJ&rpJHg!Q4psZ#roKK%QT0{kl}TDwq@-TZp6+(q zKV!(@I{eLTQaHq^!k_?|k@LeFk`1ko$kR!?JL9xvPPtArDQ%w7nKhbi+W+3ikwbVg36_k ziwP&B#LoW!Z#+&ow~F%q7Rj7^1ibTXlpqy^gJi;|%bl^!y|nS2W_ZhvDgOWi=iou` zi*oWEFzq~UkcN<#sF+49WjFE99n$6%PSZ5+d)<->P+=-i`$t2yxniN>PAh(*xzvSe zLRVmffvbIw-v&_C1!n3>f|ML8K?vp1SG*pP%;BcDDRj}K9|mQks0X-a|A zWPDO?e7eQ?^|O9w#VO2lCh3}1q{xpFZxP}qe!o0VHN5+KCPVBTsU>!H)?Jq=Ehv|+ zHXaibc;9h|hFOpt?=W$78k|hZ{vs5jECD1>_WEJnbb&P5d`l}jg}~-4N1*#*!!Dy% zR?HTZnF0xq5aqmC5%jX?a3Rt8H2z$a1q& zSQP4!ulY$DOdePId0?(Cc`W7WY_@eNK|??%OejopA_vMZ9w^m{)i}snRJ5iDNS(fO zfHO*!XE~^DJU$QsCsIHoat*e%xn6HP=WR%J4lOzGepoGa&d$+w(;8-;lwK zP$4dAK_&!T8yK0n7mi+da-l7?PoNE2K!OMa$6jA-BV3a06NM;OjL9+KQ2=f}Kzd+f zaVT9~z7%G-1=f~Ow-lJrsEEGT+iUtA`Cz2eoV}*OBfyedm}w=5Z?F z$~Cb?sanpcg${R)UU7(?TSmOYGYHZ6dzq4be8(;N^f6^+ecNeCOKJ#0QcB6NHXDTz zz5af()B#8CL$LeS}wafKCK`wk-%3q3WiyS#r&?)>j z-0s#nCfbNmorD-Ow>h*Qg%tCYt8EKbmsXW1AYV*GPnD0a&k}Acty}p~U`c1YN>vI2 zP4~Rs#7{Bwz&RxYc@9xgRpD>DYd}E+P4D~ZJk6IAfd#coea$qQyJPOz;p$Ai3vGJb zO2Luhn1dsc`uSm#Ij&Y+MMR|qD5-?93T%-Q2mnNF8PtxpAI)mLX3Ki>G>eddhi98c`8!1XCZ3#fB0R$o`*zr3*FLZoWC z^oGu>Opa-h>~1l<5yu~@T=9t-T6sD9j_Z|pe<)uI=I!Pb#XjXw64gs&-6Y;%9$kFA z&Mt1*I90CHI~r!K)zmujmK4csrV#i_L6L4?SjF{k`D>ml;hL@;t85@?YN>$wEI$z- z4MKLE$FJ8DuE!il6n0^rWsi4?LrG0-I>U<^RwPOwjn5;@5xI;Wq!u_z)7*aObh(Ve z;mFDd*^fLF8ghKV1iIX~+6sWsq{h-uK0~JW!%w$A2RFj~sBpg@Wr<3C{Hd(Xum}Zc z(Wnu+N}JWzbdI9|A?4)UQ%_ogq@}{7t!K^z3rLZF_%UMUTqT!w{lInkajZ}A47~!U zOQyw1gq46yoxm~t!=@h`MmdC|gUAY5rQHdH@-h$6PPj?-dqwQdhdOUhzEY#zDn*W= z@gYD!At5Fp*xc@86)Gyz!kl@TGgO6|8la|^`A)6UxjP?_u{`aEzh&MhtjHTyNl>Jz z>P<|z(!fwviAscR%#Ft^J9dY_%HnM2G+S)~ohG43fhqwqsPYQ9>o|07F}$(j+IT8w zRFQ|Y(}(>kE&MF;cMnq0xa*ERM=sD*p{dZIPk`x?W2pmS<%doLp>K)8X>%r(O_?B+ zhe#>beB#5Urtyg78tbwSDsv@u1vIV?d8U5)+H@dVb}1$-ZQ(eZJ67KmR3%O$xvp3& z)I=dkc&b9v2E&}j;BSXXApm&fB}b546bKzN>$YPbvV6yBh7OR>GaXnyoB*4L#dOkX`I5B zbgJY6M3E+WdBk(J?#o-rGlweMXHH+3EV#c0p-k$D@T=wx$0O;9I>3_~x#d;(cShc= zCjJ=X73aJY+@LJ`nFt;q5&?@7{G*omW6bE;;))d@wx4*Vm9}7|#BJf8eEDO33d||E zYc^!Mg$jD3rN>Dc8`Pnso82)s6St-x`%~a&s45xGGW58|e9?3_J_nLNFfnx4!P?xg zfu~@7j9O!6dxbbA{uRyK%xIZyOGC*rB%g&qiyPZ~H`Z{9o?Sz<+G$(y1uzw;HmS4% zObbW^oHXQ>Y89)hVb1NB0aJ~S{-&UH0-wC})y^?8$e33XYpG#jRn*`blr2Ri#G7h~ ziy4UhF+pu0zTnyqgfl0q=`>~syh||ABuoO4;jzB`dHUfM<Ze;>4&a2;tbnArl+l>Q;$BD)84E~yTS-2Z)gHNFiuIrjW?P5ty)ycc=s;qGj%Fc zKQd#No(Ibp{{TmEg;q&aQl{J~TM8hgDoE=VJ|Va0W1Qw51=1+tdwC|7+y$7@_NA5g zMQqULG=*A_U5@+x$?8ur7z>WLN#y0JX>F+~K}eahlo$E{et2ch=_>mz?L~)Hkfz){ z<+-Iqff3Hca@!VSIF6p8q%&EiOuu%Pfv|xa@5^}K<L+BVTOem9qy-$F;{HSG*mN zCH%>@DiEIK*%2ZnfClqvnd$)Rivg|>cZTY_g#|bWgc#`tX5Db-~?-r->hOna=6mC0g|b&f?bI$L)MMwVWGBx1!SuJD0_|%n zN@-fHWlm{$rCVt;Y5n;QxG37t@BmrTPj)Ya!An-7mkVS+LCV7~*LDZyaM|H+Rf@v7;>Z{7QmHGD9}cutDjHbTuM7CTbaKGvcl9t zTM9`YFN$DuJj`$Tys>odYnU9Oh!&G-Kf>9m%QMQPI#sFW<}5WR9$%-R^Td-c%?)F! zS}diBwv((xPp%_*hC<~h5hN8UDN5C;@?iSn6zJ63j1+uQ2GTA*Ul&|Rcn6BroAA<9 z>e8nhKqX30pNIL6P0vz1@e|_3uPV=6rwyxBMzw)31l-S9JAX`141V$g(UL;ei&2_z z=0(K}h4@q6qy?BZBoXq7zxKP|ZJ7(X%{z5$6sc{u;vf&qdYCdV^}|;aIs8F}-jxUG z+|s=|tObVLp*w%O58w3(;w-H#I27TI?1ccJQ^@+_r&|bc`=gD`dk8(#UjXqsv+f#h zoz?y$ejRHnQk4UHP5%JDt`F>Qik;x@*l8)8Akx%4rW_GuC4Lenc@2m^JVP=nhd5h` zTV=tezVw1XixasYU$2%Q^QRbhJxircq2RQ*+<+8J_2_vB!=cUB1q7r}Aml5Xv~Ck- zlQ5^NrhO}Ia@vry;aa9e*+8+syA6hHvboXu*0+J#XJ{Y~cG1lolPBfuxWP4U#rPDNm zf9NTN+=inf&lxMye=s5yDAlCR%pPRmjL#!OS%TKmQmtB4pikzB-=)RuC#D{2tjNN^}Huh}d7R>lbAJF3+aqP1*OKZ~QJ!Am5kQFdQa)N%C4=`=IyurkUcXb-Xpq-Q~ zC(b&@EIU%>jplSoZlxtkQ40hRG^9;DCH6Fi55(Z?N|uCkj_s~KxiBI=O_B6l(^=5b!-`Kp!-up&Qi z%JI@2^f+ETmpFelNLsZvmB9dk6a9BH*A@;##cb3kRXc?tNHPhClW&K4#6OH)Ycrui zV5jj=7DeR?9$@YL&Kh!eY6~cFrxb@Y_=$w>XRjfTHj3dCd-+x;6J-d`m`Nb1#@v-e zeq{duLl|Rgg%^`ls4~CAN_AN_PumhM6MeHp-+r?Y0+L6=00Ml-k^6}siYwV_qz1#9 zQm8=$88AHWJf{iWyw?hc*c@7sc6r1rtjk=c3nZWevZRQ<-hzLwCRq|Y`h_-B98_5( zd__tG4_UWJRw|sEF;-Vy-m=?+ynskLQWFu^oxfuicMIo^B!@#vOb}&j_)O1D$0+DF z$F6V#Xh#jafK#^VJOvcrCQ7>R@8jIbBfNMiD}IVNruLw zDdr5{lzz9`#}+39R?${aB9^Hwq2mn@;J)B($j?~ZW7!=?eOl;Qjik~$BXPbm(zH01 z-A?+~sHO?F{{Xr3Fn1EtJ(SZWXHtWl;Oi1RE?Zbtr*%%|+01!d%zTGE9#DRjakfjnd zXe1^-e@r_+oeJLs_ijRNl18MZCi~h|x01#g+RM`E_mn|Pib=7PH?;hXys#UYlCsdQ z@s|oy;rJ|kR*y0U{#T4QZSWNDzR1do)YCeagNjm9@T`(aNax}>bf;Z9=o0A(B}+YJ=p{&HO^N|dnT*A_8pw%>e1_|q~gT9T5hkgFKgKe6<}^;}1(!W4W-BFT&4 zlZZ1kK9rqGDX0=|>|?VK=zxa(*l(u{RxYk2j%ENdDN+gSo{`P&wU-^B%zK z_QoiKwmiWgS&RZsGZ~Itvl)!WW0x$(V=Ry<=kmZdXvx?dFT!U<;BFw- z(KFJNrlAF241#{R`jh^g{?FdYeY|8jeoMt%cTbn`W@OWU`WGDcbq7jBqwyOlDh5FT zTlJiLv{)!GZPyD>*SnY0rPdsAmyl%(LW)$AL+RT18$L~a*tP_qyj$ zkpf5qp@_CE?iAvx9L|ihS5DfTbU{P9R24jise|V`-~G596mN;&+IGTwjt}@>GF-`Q z$ZZe8eXDR^YgE1NO_{S#TBJ#9R+S{5A-B&F9@#ydvQE-6$0_sNo`$WzjSr!Ocq9lS z+CccP_cy`)srxJN{{R{?y6mZL}iJ^V*+{eUkGP({Wl{&oVZO zN4>V#E;J?~N#$;4_TJ_--swLsp|pIC{{Uqxp)4S?J{LCoOMj)lYr?srt9T8^>M7K| z@pQ^uX}>FoBG5LTn4f>9547JM_G#MD?9+%UTVSQ7nszf9fZCOy2}%{ENnBpiG1Q%u z`&;&Z+nqZuWtp2SKH!p#Wjd#k5)_`0K{JSlwNJ3#Puu2K@7XW5=iu(c!q5yjqp00G6=!@g{7s|$(Fw(!SJtc*}a%}8`~>`o}uC_p_5hOPO{l; z*2oblScr)R-0{L3QS7P5zvvMJTKZJ+{`Fx&v#FlmXG5k5p|Ux5h8zgJx$p!`mFFrv_B80F3umO)lh(x6-$7t z;5V@oKbxufdhb)X`g-WgUD?AeBm5Oa&f3dpBp&?IslBEBox3;x090kWT%D?IZ{++yO>>1kqc1fJj)GIGbsx(!jXVE?tdg86@qqZ!^vz*ys(RXTl>{MvDFReM+pjEruKxf@-}P~%<9ccy2;1vb%R8`N|5&(wOqGXs* z@e|1Px6gW3q28US=*%gH1o%EswWdb&-^kz|3i)UM077xUu!nC|93RCL?^5R3E6YPJ zxDR(+%+9pj0v8kIZdS$C#~G(Ms-?`@R;DWum6U_wWn@aEbq2?Kj(g+lclw+E0H?nW zdu;YgQBY{xZ;Enu6!u?O&^_XzGp5_g1D@S%G4YOvhjUKD_^UJFjx8Ub#6G;Fl; z34o6Y6Tb0(l=R2S@AXOSRegkeOShOaN!-x9?|#dmN*n<~1dwET+kAF*O~-0mOx4lL zp6+F29ZFA#s^2ji9l6O!6WjB%R{f_vnUS2b(!Y!F>Qo5;DqBEJ(j%%zTsPCT4USOP zaO{27W}i_c6Sd%A9QMNK4`*)FvJN8lbK$4*>h|ih8j3d8P*Ngwf>bnt;Sxa>0tvk1 zjD zVIL#vv~_xu{{WC|q~O(k3g$ob$IJy6v@Ja`UX<2Ty56V+`3`&fMe+6f*)uY8D9m$A ziD$bs?uVNNdejh3+lT|gNVR}7kBh#-8N%`(Xx<-nzZRvbJ}68D2%jjo?%4Yk*&h??VBwAA&{vK1gRwj zDk;_BOzsTc-9O`(vOLCzh`Vm8%M#;ir-jpy*;0}q2v@~;Bu`FLgu>CV8sjVAnZ44H zdHqW3&thL_gk%k7h^nefbn0bw1b2`OAiz%X&LbZ@c(=9{c8TqI#||aV@eNh#3lgM- zB|sY1^*`XJc+Z1)4=|@? z#~x0)2yH4bO7#G3dzhauNxnbP)BPo?^SbIDIpU-_LrG5Oc-my7tPW{VB;MP3e=a&B z*$>&zhrOVY!|ZVwY1&-Apj9GFjY%or%0v<5H=A1i-oD;EA?#DZ$;mSJDBH|*7OAKZ zP?cUhL`k;)0McgJaL+cb0i=Z0SSRDc`fWd{N9l1FR_D0ja%}fqhn6u*!+n5OP*K%1 z{VrQgrKM|3=}Zs^5~%`78^Gs}oFD3I#qQ*u$NY5Rs8vF$m=tIS#olW=P2%bx6Fn!+ zE>C8T)Hs)lJ(>7#InAn-tBxq#uToNUpb+ZN5eT~4N(`B}ivm3~`Oe>@YomfN$6vJ9o39JwyHv`@NE7zwkE(nZ{+S(?`vveA;!e`@MoaXqCDqdR zz96AC)gy9t7xKqVc9Gi8WgqEN*nDNfE~S2*uIVcQJ?rb(As(g-&rEz$_VoV%P<|lx z&FyW+s`FGik+$e^nt`RN-YXT7NGglKiyTwXlT_n8#I>h@Kg#;eN393ehth?ShdhiA zr^@=x>>b-SSK8XM4BLfrmU7&Ud74_LWB@g!B{HQ!i=|06C-U=&u>SzpU$TZcr`Rtr z%oN2cUCP{Mpj0gZPA5{n6!Zo(#kcgHYX1O7EbUZXh_Y0bB?7WjB47}hO}WV@(E3MP zf2+@F3CjNf({GD=)>^3dx<(mCcuRV9EF`Q%T_WS<(;j*mjOyOn133G9tnXcbL#EpE zWKksZYnA^1(mS#~$@r()XlI;lmny6HrDwRu@fFjzPNi)qN`|ixJ|#?a5@pN%ML*Dw zAmcs)s^T8XvjrzKWwlhbL|aKi?fg)uK@uZiWY5+j_YF0JAqZZ!tQvo*h?r22|s%Mx@Qi9uQ=n zQP%?t&YxEH6JVZC%CB5qD;VHw+6b?K{IAUy6y?>tBbrua8Kpb)S&mxiW%_pztw_V$MKZ1uIN=}iWPNS=DTzxF@h5+uxXZmiS>RMXvL8JcaF~c3A zxkXl#us4; z%4x(?Wz9CG8G=7O^# zR0`z2l71k#37s)woxWK4L;nETBGPd0XMWzSWtvp>^2{X)A)%R4rv4d*qLk5QiOOjNA6)2SO32_TZ5Ko6Each|ieQ4Fk^#@cd6 zaDF}$y%X1DbaH+e0YriF0{ThqU6^MrG}~<}HVW326|8qC+>(9}4*LU$uVQ_;qcN%e z6PYbSt%IXM8g>3#fnsJZCfIW9tNlTESG4Me@=haCxNC?U@P?~2Dw?Cs1pcrOki?s| z4$gQpG^D2D8aAAvuctsuuhY5|i|k4SPWuSk9r%X5n_MV?k3E;hdc5K9E|gQRKMFJ2 zudtT^_VJZw-ShRCYk7!L>V4lq?__v_jDi7=%2T<%IB&M!{>M9qc(G1Z@Rt;2@6-jU ze(biKq;X1A5)`7M3ZTrV>5rnEEt#R}7Rwdv*D|3CQ(;3|V2=<~!Jl8(9K*)>cWa%D z`&;EXR}R+>AmAP}sP5_Mvl@==GOWfOq9H#Cr#FmVFDV&eQ!brlC?pZGwle@sTKM`!ka7E5 zM?pmHw%n<0a^{tk_>f~#W0u`^^T*0-wB|iqfELrAx<6NrH!+h%;;XfJD)`N~m6Xvr zM^pHe71K`Q2Z)zmZ=2_y%)O-7Q#VjQhN<$pM|JpKK{nrO`SSBI ze{mjWGklRXjE6i(4#)#gP#TN@v~9FUImXny36XnB@cOcx#eLRb)P|fy1pzS^SMwOZ zpF(kD&2Gl-9@9Xc;IERbro=>P zvHs>1_L%JQgS7q?$@r0~WcL}vDev9xh){4(=8-odVmIE{fN^)S7ZGq}Rc2dAR{Qkj zUB`8)!n6{Ru)pbxx7j3~H0mUqKdD3_@`4XDJaDgfBd(o+~2c0W}? zQct{42Pqvw2~k8_sggy+auazxml^H%|Or2)>lBB8-lAwC8Pyj)j z#*v6;W*LJ#5A7$KWlKwR^qf@Mo@`1G+FaA6e+UT@2|deD+^7J)p8muFHFO&9biVxTdUqPt&1Vigc)x1IkI5Hi6V)`1V}m6lNWr=Gj}v zQhTD}NCU)3B}5BBy1#KNf2*HlXC}|7xQ3FLl~B}o4gi=1qPZ}7j)H9#wjf@{+2XSl z*C7hhr>T?>=96uQ>Gv_p@c#f%N47>!9|VK^FQWA4b-ggg;YGF&li^nRre@l^MyxAL zrKK$mqgRNV?jk?>-hA=W{f%eGDarD>Cjwh)HTSy5j@zB%Y1@`LZ#&^yhWk>?8VVjN z%_IS42?7!LuTE#Nbq@<-z$ps}v zTWaZGFBbK}UAbrJ%xIZqms8#;!!4l6N@SVq1I6|7!?&^5W|VwqU72Rp&ZR8n##<$| zol7a&Nlu%A*L*Kf=Q=XlB%kuTN2ke=!~in8cZ0J4{{RR8vNb7aP;*bkW5{_&(Bhr# z^RvpXIPDgSt-5hhPnWpae3F!e5~P!IVnLWu1}}%6AL6r3mzLXiS!KIu{!m4%eByc> zCEi!@rFLN0tnOQMl@bIX#i9gxUw!Y@-k1Hj%x*dF@Uv!!NvaQRp5yALd@Ed{AR=$-W3+;1W*Io}@ornQm5 zvLR=I*)kn5GndRw44(J)SjJec&v*?K6{snFmWV&~Rd2snnOM zmZcIGqK&YL8$GD@lT$5+8m1sE z#iWpgivW4v0f^l4iNRf>_L)h*`CEBTSf*)NN+J{BFB1|?#qIVTP7CcLwA`<<&Kam- zFC+f|P_;U@PzZ6=D^8eHObE4(`)`VuvHl!aZX8`*omD#8a_qE)x`MDHnnWu8A+Q&? zkTBWyu$f*nzzNUwZBDJN(!^E1*Aqhy?M!36**+_P zwR8>)f=yJWfdn*p`LFW6di!sC9=F<0wmyHH z*{411pN%PVc4+fPRYFR`qLILb5@UTLL<{_}H};$V08!q~{hL>s)Yez9imFxVc?>b{ z4+R9k1SAq9ZE?80fj>XHQ2zkzm#FD;7g)&nPlzj1tfjXqD;i-XI)^6Aj(cNU)jbXR zsSJ;*APOtJ8~W2%9+YTwaT7$F9CPHaw;iQ+HJ1BZc0`xmqi&Cha`wtvbw~k7asdFI zV30cQe6jOq+8lAmv*veD#eP$nHsvb&uJVqN&gIDtWp-uv%j|ovxxi=OY!0R7Ey|8;B&bvh5Wz_Ji*?Sqjv<+2s>8NE$ z)+Fd4q>={lHXeAZ(_&pt!kJhN(qr; zJngl%K6ttKGqkE)(v=~lrAkN&g1%F^=zP5K{M+k3o79X=A0G=oINhd{#!fqSQy$d# zW|xZTluDagk|3dQs29`o-|dbY_LktPz8|W6)*AP8>yQwH^^H^O^T%{kXDQ4Z?v|wm z6R4FN8ITN<*Kg^F-yU`^L&mf!D{U%qTC~VYr^5un=69Y)5c(ggNu!hkG2L(JwIa63 zkEaWQdn4hT&pE89tg3#aOGE++LUkTv{xQ%Ul&R#^)2XdmRILO}fSs;ve75tz{iF73 zp3Ufz!%PJwABidO+}v}${@7Ep9wlQgqnDNVY9{I+Nd`PX+;7e?`iz?9YoPWleSYC? zAC#-phcgAV@)WhHC{Kukx=9;@%HPugc8i)hPRG5|uTp#{(g8YV{Ew7=#uCeOMymi@ zZfZ}2NWF*y{{Y1if@&!fo3i5$4)HG75+o;<#%E;xJkCBFQo{_^doI&EeF4H`;EvG3 zt5S!R2y$%-F|-4F{G%2fE?&nG<>^R4PP8Pf$>}rcy!4w+ivSvt| zfIr48{=&OYYd2saE z%4F$G>kKcO?4&{7| zo}BG8g`(db&6(2^ofqo<(1_r+7%2M0Nl*Y~WT29+cNn}rc`%a{YyALb_$ zOs|U4Y7&B=bt`)&ejgW>9y5HI97B_-hf=2!MCw13PX3Z7<%v4YnmygoK`~^3k2v}& zN{>8dnZVPDPVsP?{`~EU-wN^IpgSex>X0k|Hs$lTD~_UIJbl5{c^z}dLX+K;#fX76 zh~##QiTg+LZZ4>!eYTW*AtJ;{u~b|e4-vQfy(2lYh~I^+EN88O3fnqLrFThk;6f0BQP|C(cF);O-;uM5SseR*?s2 z`ry7R$_8^!sf9SrLO|}yc@w;(L5qLJDu+_m8v!#*t(WrNe#@VDquHxB?9(;x=o@mY zFHw{!8kCfv&hRW|*SE!c{nFZ8RB`J6y2G)Q#A_$G<5=`yqi}ad<7~1X>`fWoTdT!-Qy`O3_+~$>~RJ__! z=9oc)Aj}<%UIobe5-e`eeV($eC7^WobjVZ{f`9@40NVu3z#Hy2gE-?HtNx8SM&b>WZA!0bCKSa3IVR=wo5mY)7wQclQ|UP2H)| z%hUtfsGn$l!>Ri}qf%+o{-+9|Wno3LZLPM^{V~b?rEr?i>XJi&K_r{$m>_iW$I|}O z^2%;M%hW=XE*&8FZh1#vKk_lgUAy*Tt{$wZS9ao%9Gm=sf+E+SN%X}Yo2q+G*Dd`v zv9o~g57L(taW@LpQ`E0gSE^z{Z*w62{Qh%(!n-S8ZJDIhASo(HNETG`fqsPj2V6=s z?1>Il%GpTNMfNaAKV#FW`Ptor@R&7hp_FUVw3uuvWSJ2pe}BF{&6?+!_M9sw;4U3R8x1~NgM320s5=6n;cDlQhESyhN-R*=R*qM(zn(iE zu#Oh~2f__0MLpwSX@Z;2FE5?1Lq0ZEVAZba{r9wBgzs4s$p13Ng6yBm0DJ}U(RQ~{PKzxB;HSFo^;nyDS z)%e5_;kMk*U#1?oU$V@@DmvX^#^XrW1bA(Ga{k_D8?BLrg4L6{uso+sqbQ~BQsPjQ zs{a5D!6wtcPt;-$+7_ys=K@fomP`O5PpO@wVbuB@PSC>gwCP%kyVXh9LXu)f%6^_k zJZFJXpRGCnh zctKX6Aw%+>lc@^ zURI>Ig((gxIt;=Nn~STjU#2J=nFlq^+Dt3)oQVE&Gk+r|>T%Xxf@Q7I(75V#4Phk) z;z}<}jX6u}2021A&GBTbTc**$G45Gk50LP{A&gsk7SDV6Aj|nQVgC2YO zW1+iX%sY&g#4c0bB|=W}2qSVXV2|yJSF`H6SNP4eI;|rFL}K_u zr;xTXRGWnRBYTJ+Z75}4B_ybkW7OJa{vS`SEXDgg&}DflpQ`TD-L@B@Kp9jS`+?|pHLcVqo?6!$_8Qv;wIfO?`j#T z%!_GnQj*$WKqO4x@9A%*5_Qsv00#=#^ic5=cSLa!lS(&XhRSzi)ohmxdhUEVM zHqs^s_QRDqXD|rT@km%vkiD)hexGyJ&ox}|YqAtHK%=0h%J!zxn2 zqY9^5b^;`*k$wEXe7>Vg>Hv+h551?mLcx|-(Q8w|H5EEaUQ(~j!7&`X=MnxO;cU+% z1xiz)FaevC>e|QtN0ukN7QE7zNUII0pAic%Z*3>-*AuP+;FmbcvZ}VHN?E74DhA3Q zl)(~ulMy{|y+)#*I!3}BtzaeXT*+1ZLoINJi-=amOFsw`C->LLVnM;YRQrA2g*Y5c z!~!il@6?m_^TX$~)pb5rwo^{pd<#-+Qg0;s13scYaSiO(JEKivRZ^e(o+N^I6XF=U zHo5WdAudL>?64Jxo;9m-oCUn*l@SE0%Di&Gby>wz;3+O@&@KrEJw(UriK6n1nx`vE z?W&eyY>_i*A}tp@$M&!DeD$2OGI1>xEeSG&->1OeG-{gAnyYnakHuNv0^ z@@H1q86BkNbP6F$UX+MfxsU7g!u1*AY66p`B~Dxfi27nXU96R%9&`xxq; z!u_%8>Dr}gt!~Ps%8cqZ@eBMw4ez&={OE!(zE5B1vcyZ7`!A(OifOYG-Kha)Cg)VB zzz1%>zF1@89tq3%kvdH~X-SfZ0#YV95xi}RH?!YpdTi>IBfdv?oj>;6NK_Pq8^nSw zeg3$x@~+a<^N9^OlVSiPktfc_pQ!rA=tbBHIOLUrto;*D7yCZbR3XJQ+8j!RE^lt1 zUSqB+E+_02mWq^?6r~WP%410v+(zde4M)a}R{sFqUY8TRjr_+?@;{VHwKNpDvmOwV zR0y#eysa4KxUec4s&H_;eOD22_hLwn8#Hi(~=-+q{;_>0-jj;f_isSY-v zU;;t6BP84M3-SjY+uDz3<@Vlvw7aPxP=G9@UgFys7TbH@9Ld^H%s4`&!QCmcc_;-; z#F0Be+kZS!3z^%My$sK*jM|}VeVvt-cu*2_>?2pq`F~71W&MqZTTlw_)S+NjPLa@g zoyYD>;*Qs9D3q|ebEPZPWEq)CZlf|k+v|wyoxk@ADN`x}NiN*MdxG6lxOMTCk>ol&UIF*#>Gk5?9=0AN#9J1`))jwysauBB>Dk+n4Hs#NMJZVu}#|%D@(NE!p5#!ULK<~c%zb&xDjxVTb zzY$mBT0on5f5ro=t!}kavQy$EDkNz?KkqnmX4{0e#{U5I6)@qR-D()9OInoNX31RpX(dqu@%O9^fLM3E9fk>qYBY$KPPRK2Hm3c3cIagwX*iJut+ z9=4M|Um=2zSx0GGv1+4`0U`ZV54GQDx{fBvdx73+R7-|n3z&)AswBnl>57vra;G=1 zOu6A%P!S?T?_x12;_d~gqHv|w+}h;+Ts7o5a$>B?I9-1oHFRE->wxc7EjRK!;*tRT^jF-Y1;mP1%K0S&bVkDLRzd zPcVE#oE^o4Ty4&AVn4tg%{HLI^bs-?6a)*A9Du<(JW&fCePQ2)L*zMw{4t$2;XV|s z5(tU-ZNB^b@z-9@J+QZ#(f694Y*7Y0&X|uw3x#k7j5r<4~03d06sOSN1c@)TtRrxjH`I& zu%H(mN{l200--PjpS;E~rr!74juQPlPb5SNPnmXn-e$cdsuDs)z>z%s@iyR!Pjbwg zQc$f#q!VjN>;C{4uJ~(&YqFYl-gmrjR1yU59z=4*q1lFL%}`_{r@Tx+1VIua{{Se# z#jv~DRobT04gTtDo_CE4-NTWa;ehH*pClZ%(f8h3dHzs%<~}XY6sM)^5_(h9hZpg!kKb z9kGx)+lY7aD1e6&pcDX-cd;YSagIIhAB&#PxP{kNu$3g~B?Kl8shb$S!UrMO78h$h zr@h2Ud8CyjBf^7wq>Ijz`+?_*a=wvH)<=mtNLP?Q#ck+gJAKOb>}!dY zSCUb>RHUh;fpve}RGZ(BovtQ&&L%uvM1(Z;N)(cpf|QGuNg_ZWd7aMj%Af2{H1|i9 zOh<)5DUmw^z4lT0+v$s;?5WJpCU%}yw-L0J5_~)EAPv2JF`YX|chsq*ZrMl$S9~s` z{{U4bE+JC0Ye*`-(QnK3KA7q3o}P)mA8hLhagpIEyr-mZf1W75AK=weK9>}S7NDdk zr{PL=1PJ=aRPTIR$#Bw9f!--y=t-Fp6$fbMKA6#oq12P8X*A~HM)#PLx3P z^!W+Ey_xo}t3-4!{f|THn z@)ALqNQ2ILkD(rTHz;7yJSW0L5ooz0(d&PdY;9%aorg|SQBbujTO(0SDM7$Q$i1R5 z2F|ko0O8q+kaVX>)%@FS&jjaD+BgeB85kqG%9ZenQsXLG&XmCh>bKw55l+>d32L1J zEH(l)U)QhimL%LQP_$)whO2@g!nGz0sPu^Eh>vLL4pk(LYEndr0C>0S=Y+J}mupMY zUA{~BP+ErdEg+QY@Po_u&+Fxd8b1gH3Q^iQp0kAB)-^`M!vq5(pYMMxY}yi^36$wD zNW4cm>2dp*t9BRA8>KSr?z7x;%2##xQsCEUQbD!HIfF5d+3a`SPYt}7N{YLu0$fQl zHjx9A-_&%+2V`%S^b{#Q;5!TH@d%!0mdB@_I#;p|HFc^=cD1D`dYLMNeJV`PA$uPy zd5mHDuI-l9^Zu)+w+FYf6SsVYx(+l^XS|0Nl0j5x3g$jw4^z($+yO{vGH&#pDs59T zArhpHy+Qr$uO0sY`9|9>C@IH~tt%Yl8J{ySY)$Z+nZj}o8E}B4Y8rtg7=z{Y^~CT< z;~QF~o={>93Om}r6q=ge?3H*#UtlKY4?i=1zAB9GF+vK|lc!u1kgbvk^YZ737ZcaL zQ&8jQ!{02DbdRHph4I!>HoU8mMLPr5dJ)ARCfk+AYwJr!sN!XW4s- z&QG5yvg))pw5xao1F)DfZD_oYJbgRtqlwYQToX$1UZ)(VN|gr5vA5~IK2O%P$E+Vq z57fs>cDQ$6KYL)|x42KWDu)Ao%G-RDk_vmxji6g@U}LoXk$X)_xMrcS>XY6ymCD3u zNB|W1n<(E+r)y0Y?bE^yQE`)X$xC`FkX1AJt*8;wK(V&?+u5s)6+|DW*WHxTLO&03 z6p~4kxC$RHn8t*sev!UuRXGyEH)V8(ANGiZDNU)u=ew+hCs+j_^VO?s52>~(Uuf3T z$9xk|hP625I1Zu;grEWnfhV1hUo0!eyh!~`Jwt)eg(#$pl*dwJ?{UAD+?XlzW#*X@ zP_(bPd8IUE1bknV9)1|{dG#bx55tQe(MPXW0>VO~(CQs$`j(%S%=QZOO5~T+9 zHiZ(Dz|%bm^E~|q{P&vTKnv`maC<}kifvKGl-x5$q_PsHlcXgPx2gU7@g2>0%BP4{ zw<;ZSSAAOn9JKWGgXf6KDjiCdt~Wfl1D^LM`ePE{X>G~URpEsz;rrhN8qh5<#FN=c zDYFvmik}LVr9XsVndQ%?-0z1f6{VL_wR~R`ASx38Pd&UN>F0>e6-f#y9E6@jPa*4v zDhi^?QWCMHxk*3G<#UdA!k$KerPS5s0VOK%X;KI#K5_>8jkd$RBjCHa8b*^ABbVQQ zTtumA!YoRqQlay|_WJ!E^6Ih?Do&W>WkD&4-i19~VJI|g0*uodK zxlWBO0Ln@gylFlnk}qzuaI#O12uFq>fM?GDQPr&tDSCAk0RbQhxQIS{y$%dZ-XU)k zZ_s}JcvGE4B%T6PFTQkwtx+TZV^2Hv-x@h|5_~ZVnUIwL2*-gs4yC8Tq^Og**k9?5 z6tI;ftoVVs9uYcBk~&)pF0hHN?vQ+V^r-3o0P2KH=~qM7{9zTc8(L7YI*zFbm^1oD z6sazE*9eUYDS;Y*8x!*ToFS%M@CN|oBjN^kGv&(zwDV}3Nm>LY3sRv-QVx+mD3fBT zgyA~kw?a+%u+No?E1nJ6ZFUXzXoE3gVqp{*_3 zPcs9b?&sG6xY$b?wG^sSp}&NPym?K=3R;6HP)d>|T0s|)F>DU&YAV*?I&7qvFoHQ- zdF$kDf*exupp@59R-~kvuqjL;1l~G+$6c`AigLFKj;9qri3ANd>%ZR)i$D$qEGZ|# z0JZHC>yHHz>uM6kI!ctU4A`4;^W}jpJ(HNzbx8gP%gdRYK+4`SbeKt>AO@-#hZMRdmo)sAP@V8-OVu(52)RL2nD0n`pX?@1h+KC`tDN0A) zEza?T^N!Y;%t}#D;b}%jzX|&T8)BbTQ?9GF1!ZvW8V54etu3~aq6rZopM;GH!524w#IRFa}n%6v!&9~z1HOdmP7roaPaGn`Q5R6!|2X;qG( zIYHj{w0%cRCA2cdwWM>UPc{u ztlW=IyWTotcb@U0QiTZ`cOcHLUUr{eL!p|Zw0yxXtun8}Whnp^87G)g`5B1CnmAtf zi&ko!)-seIixpE_-a6~fC?ps`QT!odcRa|&Q`&Z5id?Bhq{F@x3BH-JOm*k!II+0P ziGnDUg)Yj}qBoU)EwNScQ%0?NmWY{zL6S8NeQguxjrijcR>A0E2ezsO^{L& z+Qi6_b#uPJZF77}pUDe(nJOwul8wO@jr^_u027ZL%NnIZN?S+9JF(6>;NBv2RQW1h z1zMFdk!{rpksN@>NhOfF7vZ%M+O?Vx~&L|v5YlV$E^DpQIJ zN@r357mPS@Ep0YaO7hN-mbF|M(yKt5`Tqd%!0kSiDJ=zBbWHwGJ#i21BZ$k@P0-V> z(0jqGozySAj1N3V9DPTD*;3~SnewAq-gf5|X5dKDR|tb*lm7s^_?z(VRNh+8b>6GH zRpum%-c6_NhAfjUXDXvpx|7}!1QnGO$Iqq@O=Fpgf|IE!ZWKTV!zM`e#kz+I*vtT< zY;-rflBM*|wpQ5%DprYvjXFtH#Lr)`!;KSt`}#;4T)Cew*!tm{h3QL;C1EPl5PX2S z5#@~j3GkdK#(s#)BIy7SxKtYlqE{&f-TRH z>FbRto;jPULqk$`L?d}I%=vAJ9!Zmb4X0AvL!I)7AkOx`J+a$?Hh)Dv%NR>E!=+b0 z2p%v<2HWq?o(QQ9G|Ezxl&pwVgaNh+qNPJ=lC-5>qT}?OY^DuWT9g&5NfrXdGc*1- zoD*CLpcL;FgM>SD9mZ829|;!#4M&(Adi29RQV_!pwc(cpNVkX6srAFQXJ4V!Xi~hb z`9%1AZ5*wD{{V%55-AHd)Q|wN1DyW(;(^W(qBu7wE>|UBr6~de)RP>q`~HVge0#-* zU-0TwrA;#dYXoX_Q@PYnSoJ5Qmtp?^+Dwf|WGPD|0!j~sHuK)!=Mk5wl4|?am`tTY zRXV56XV2FRYtM8J$l6j_Zd|aU>a{0L$A)d!ea0VYGjmOqy`=b4GQMf^2cG>utTxqC znzoarDru5sWLsLky#APN%yVSY(tEm9s7{z3EoWbr!XrNQhMNYbfEzNC* z5hm?xe00REA_ARHZ%E~mL#gPL8^qa@hsBwQJ| z0&!*J8LD!sw7K5|_hCvSyygUWpzZ|)m<*!bOhKzX(Lx1hAT2DdGYewVR_Yoc~L&lUH%bD%2e95EgDEMr62(p+x|yU zCwn&VwN-ZvX93Rf&*DwhJlHT$RD>@|lnI@{wyF9?4C5{z{x8E+Z!Ha{-CNV(7FUie zOhAaak-wC0?C-~BhqVl!ErmAQly%IkppmI6MBP$i72>!CK?y078W6bbC-3?x5aP(^6~`Ud=-_w zOTrvk!>U4psgJ)>K@p_^7q!R%O9Tzii=@`wsc@qY)aAL|0yQ<5G?txE{{ZT41wc)_ zphuK$V-!N&%`H53{{RY2L#m4od#H6DTJ1LwD=%9lxRRB&w?QddWJTr)fKzEV+V+$2 zeIwi-#Q8TBWu59M=iTel7AzK06ec-3EAz&_OyK>Ee7FJ*N#J)U;8op4L%{{XeTM74?qxI(+96DmSV zwGrbInI*1N?~tm^@33m_`wncioX*q8Q; z!i;6qS$`7bbt-y-t3rYxst~P-RQ;yJVll>@nl+Z^scxYP?;lw%Ad;0K$?<{*p4`1L zV|G1CioBg%EdKy|QQj?H>>L3}(xKvPdO;)9`C*QHUQHxM$=jCK%8%u3Rq;Cv=5$XQ zJo70j34&0%mdvQZ9}v84*RCu+%lM*$ww@TwGFsGWu5pzi^c2d9(>hdvGZGRHn8Ozu z_BWXJQJhldY!7(L-_(-5Ujm{uA1Lb>*Nie&TFqI{IC`NJ*@OjV^lCY_KDVeyJ zDb$6%M(U2Eq=_IZYybi|ct+NN_};O;)2Qe(XG3&3;~JAt!)OT#Qf(p+O-9>ui4fP2 z@gj3xAy!M6y1II&nNyi_t`gV^gQ*2ZK(b&Y+W69IE)7dYU@yTpRQA7mvOw{JpfP@A_{$WV2D1u2>|AY>Sl5;_9{b>9!jLmeSV? zBb6-BxHvhcfynRnPuwk-H^wwsr3GTU%2yMtU0Rw@-ATQU{{Vit60r%+_<#6sdH(>e zp+Ge5h)7yR^uZvWTV75yPYpeh<_mqgl&YQ-nugLKr9DaHU{9psyac_UBnMKLr|{o` zq^J;|h-?Up?TK7<^1n;)sX|xOzWULW_mgsEY(FHShpi;(clq{t+4=E0|ZUW5d z0(`fOSNwaK)aKO<)wGzbph{4vGY|#A1WwaB>n&rh+PB7nilGlkk zK{9M?1RdbwyWy+11zX^7`u_kbU6<13{j~Od zP8@kZ$8zwg0VF6Vm^S7@O!Cw}l*l|al++q8cB}BIlMSXd5|9ju8xd=5Y&vkC4tE*5 zIi6m=;l|ceP}BpdBub2O2cJWM zE!;&oWGeT9DBH_(9ZkEbmlCA_Qm=>!5GTw`pGm`(cgEUuvielwULU^;f+rgjh%Y^mov0A}NEa&b7$l)Sun$x2oX87kI69J!GO2fr`Jk45`jzCC*)E+607(X5#GgOc76^2(@nGGTgm{PM0xvuGZG!xg;Hw)Ld|vKCuXvH) z;clu(Do8h&GhhJ|&|tpJE5>DAR>IP!5(S|JTNsfu`eH}K{5HmUK-fxjEAy|yZjraA zl<$h;hZ9r7d~l`|mAIAylCZEwq|A-aKRDcDP_wBK1C^TD3{s4HQ?F<=ieocK0ZMr~ zd_aS!5(vLr;fJ*TDSnMKH3}+iPB#GB&_sPB60R$%OV4+qJ|zjY=1AN6ZHAsG;g|ph=nAHynOt;C(2u-Z2$;fYNZ))QVtW(>RlIMqtx%0+5-{{T>0??FHVK}p)vsvzx(Pk{61xMGr?iSVU2Bp^byH$JM1i~NU7 zTGctn@Vbf+H0g1&kU$Zn5<&;hmgaEzAuV{Iq>oe!PJAh^WiJf-gvsh`({-7!@)bu@MOT-!^<^p&*K!c3 z00L4@;BpaY+T#1d4`&JEZV;(qAzkL4@Q^iWSdBekow@FDGtKg(3R>!Arcm<^B?DL~ zkb@Eoz`oPV6&DUX_YY@}wV}kN!w32k>0#@QIL7f~kg_E`H&>oe)civ00W|7aO+_do z6l@Y8Lb+@?PAo3Y_>rv3DpeIjicLdgDIk+{!Rmf-z9C#;Kq@L5%$Z5my2u2SToMn9 z`W!b`R8-QxOPJ9p4&;qMTCQyEQE?7m#e5o;>cSG~-LkH8xIVWh z0Mb!4!}VRkEvc1QAcU%QT%CovPSYJPEOJ-?@)dG6fpbWrndq};YU-U6;sm##on9VB z@I>90cAwNE{IpSBrRZrzP z%ZhQ(g;=8SM8S>ri~Rj@qUL)6wUXH=kxJ~&GJpE7G)u_|?;UJ3;aE-Je>c+=7i_#B zx;)>yTWUybhWrG0RTJi71n-H?QNVY-wkB`vKeyqQeN{M*Nt8+%>MhGm|-&?;J< zN?tG($0tWhtNWLLmqC5O2 zjB8l~N?df5-18u$@62CpF=oiCr|#K_v#B6`|R-W|YxWsH;nz+Ci8<*Qf5nQtbc?y7(XUb}AxVpntH=-y zqAfqndI|P3%StCUhT^GL8GkE&qL!#9Qe=U?n6}@)vBQTBzNcwQejb8Jl=a;DdSM>X z^Nk!%@*MbryP{zDt{~j){yG^-p1ie1W2OL-EvumY{qgIgATDFS)p%31bWb@>@lSy5aFDECacZdB=8E@=`;5g>1Qx33|F zJ`>`{9->o3Ii^CU=_HMe%$~fk^`G$yv)&edoe5uj+{#GQR!UDkmOQZ|AvUOXplz|r zuJabDsk4NdZ9XDzsN8brxxV+_*Em}^%Mo3Z#W9Me&CbcNv5rPe?sminEYFnIarU>kawSzw!|kmYO1EMyjHY{A!tN^LB7*$OZz^q zUS7;AR+SPBjfZU*%fl%%E-0k%C1;J}#|o$tM| zQs$knRZ>3nHDAP)LdZ5qn{Ef*F!7_p^10j&QPNCOU8H1e=D~0j zl_yfP+s0`?OYRP+ zB&Sqr1qLI^1P}ScEk!!if&lnN#2>yjnn77E1YrWa$41}! zPx->tbnu8L&g5=-;1$y;O0b*lid#iZBcDk}fORSQ`e0S3Nyf!xv82v4Dk?X_TBUIX zd5p$mFh~|-F__G9<(SN7GaR{QFz<}UW0x;fAmh#Pn9OqJ-TwgS=l-jlFaDn#XHiGS z{hsCAVZ&Lf)85p8J@Si|qys5ZV3|pRdhH)__-nIYWH0r0?8D!|GeLxcHNkU&y= zjErLH{UNS#mK-?b-RJ$0&m^+OBQ7GiukyaZdvpH)_9;1rNlRCp_FI`Mt(0n7DIHi+ zif(M8Q_S<}kCcAVKEeH^`!MHK6nt01IhI}-aY;*xWT`F$#ln**kDflc{{W`<{{Uq& z8>FGgJ7A|;DiTu2%_*BoTUD&3pc21bG4tj15}%Fx4)*=*^|d(P4)GNZXxE2DGF(^+ z5((5K9-;@&6GyF@A7q^PKj5r)Yh{7kW)?jE0LuJxy3*KqrASg#oxvJN@{Bof?-p0^ zy>oRGRZmj9+Jcg{)>2YtY(eTV`Wp7L{{ZZ0J38$V+KkJB>ywkI;-#U4p7kgs2pT~J zBgm33wmxtBOn>%0U9I*yYO3;j598ErtiY#2f`WIF6@RfFc(uNz1IF1g^;(*JOj7_;>y>T9+(V>)Xf``Xqr`38~GJ-&(*Q@o%83yD&cJdBh37|MKe zMeLAc=lm6kBPG+nYsHG^l~en2f2H>n_D`8V#od)=6-~I?ihXpeQWtI5l~iEIhFnswC=SJstgz;5(wlJ20p3eJ)_X^4p$DPr<-s~nu=U9 zZ70q-z!Qppw*LTO{D-tG&-m^_+H(B)kQJ;VL)`R}%y}QKCz=*KSi$T^DU6M;ITvHG zq7^-u_Wjupw=P8HPsNnY&}RxA+7S9QJE}PY3R0whFjm&KIrp|-^rOvtISS5uIjl95 za;HroaZA!U5f(}HJcnC!HyL{saOY?&IL>>QuPM)|K>_-8X-ZU;Oq7qy@ZWJhu~^mQ zov-^P<{kc1Soarj>r2($E>!bK5vmoc0F#A27rHXicMk;%WONSN)6bPv_Al*C+6S`k zc&2L^uJ2Nf9`9FDtt5+TMbCutgvXtZI^(df^;qFvJY6$fdz7Di1BZzHm!OB*GUiQ0VjU6tE6vyWw7-~E*j)(n%*3Q7L|00Dp1m;D&{gV^heYO`#DhN8QN+**{ip#+9`!jDf& zcunt*sokl2D)H~Kw+_&g)`+&8hQx6#%Do7`un=02AF}tj0pVT7X2?5pLy4S>v+|nYb%jG->pZ>VjvK z&&!ppG4M;Xe%6u1nN=laJwuFUOra%O2}E225Nu-NPTeu}GyNt10M%J}HepA?JY8Jl zl&aFx4?3_(761}VDEdJW7X;(yA=W-0{{T;@1h5`_eEk%UsZUNy1o!jzUp{l%OwWM0 zq3pXdr&SeID$7+2ItWv0m>nQk@BI}P&$Blb)6^=zBFr4`7_O&NC9Hm56aF3;|I7qH>IsZ zo!Mp1?Zhksbb>9uqD?$r(l00AVWGC?9nqr45gh!#g?6)5BG60OTrg((%(3Z_~} z*4v>;P`8Rn+jG;Pl5E!YYJ1}Tqm|79RtEn7sklAB&O7jOR1k0&c+{{ZLh&J(TD>4B#%+ zxQeN;oWiy0suq^u6WyT_K(^Bp7T#kN{{S5=%8t-@ikTX_l~k=L4qZvNGE{Fo#C${f zMm9AK{6_h#P@q1FpIg@f(TS%dS+6UjxV^!|oCQ?tUL@2p-)OQxAb6nko}bj?=l=k+ z{(kOn?E%E8D;lY@4&^|?l#oD~l4onhw)uAtV0=)#-?KcmYe#sRHM>aoK?pix(;Uim zA6UmCaL-{C{gC@(@v~JdFWhq+&%I@B$Ve#cp-Z-~z-@`{#Pe<7sz^al~Ey-+%|rXmM~i_D3Q?PYci z+N-&z4W^oswVHaTsTWB23sREGj-aCwZVkD_2$;g*1^EQfpnQE5Q$5;HBsnI?&VNPC zKF!^yX1pQ8`TG_M3@F#A$#z|PN?Z>L!Vd&juYF6-VYX~-*OxmaRZvOyF zT+6io0B>B`w*ypgp$+cnu%Q%?Gmp+iDfq^uYq3lcXlQzCZ3+;{E4!#>JgmuB2a zo>X@RqMa+IE%;SZvv8DwxFo@}$I}~oYqw8TQ$dnYvK2>{&<0yXo9!JfN@hi~)G z*B?dZFN_tWgK9tqMpd$bvaQ#ijnb z9jbo~{{T-_WvyvTnUz~C2qh(8DC$qpjk1g^G8R7vnB;T*R~ zH!~-uC7QSxk>quH0* zt1qXb?~YrVp-q4mr71`yAyacCD1u@%nC1Z}{{W%Svh6=+osFk5sHF|PT(quMJ`^P| zp*zN-e>_b+yf~Jcr?pIylPnFq{$8|HEp5h>r&?3uB+Z7RB4mRzq)A1mn^O5TEB#mH4Md<6xm;Jf$=Cr1lnRqvX0pJ zUsKxi2z^;*Qitj2_2^rwCtX5?{4xTPnAtWs{Rwu)iheolmpaN{X)UvvjpfX{W4OK_n2Qh5FjkCU(cwX>}c4C7hO#&(VB_j!vGv z@PmRc>TPt7vX5k~_Ls-mZ5s{y!>+#xDMFVru?qF^YBLfQ$P9hm;ac36**~yqG8m_$ zr^s@``??N*wILgsJ}ZC;oz>|-IDgQ$u`c=7xU)H?4YQQO&|DrDRddqu9X~fqVqN~Z z-r4m0C)oJme7>d6;#^2l%FrCsp`c+~MZ7R}_=hP2H$V=jSY$jmAM&?`?e~dZ7*wnCgOKby*Zs%t!yHG27v)7x!3{ab0elY%h-pp)OKOPZLQ?$ zR=)GQFqIWv_LzyERU~YYj&b%5>?NKm;^#9uhTd(IFF+*<@kYTUo6HZtl=g=hakVdJ z)T%)p+iW382!IIil}CotKDNU>OH=rni$?;#Wvl3V5unimO}e}M^s`8DbCSSrDaZ5=y=IX zYh}^_Q0W6y50=)(Z>s28_B60j0{;L-6ZE}U-uVUYBoBr3{{V>`p~<^QuFH6DJg3WZ z+7;{m6;$DEE+nY2?BYimZC)??Ct)jd9^-J z-b=>x3eR$;^tN6;ClEBiTBpT3UPYqE8S`nuV`Xj889l*YC8E>F=Q=(d)BAZ{CH|}Z zlGgiNaAyqh9|gBio-W}tE!8mLOR8q-(*ou{-OOUj{{T)OYHZ`R?!+nhV~i>kc*}>9 zrj)mQFFKS-B|_KJxsAps_4e<>HTgKqco&Lt%GVB}ysDz4HuMp6w6kqr?J4=b#CTo* z0PR89vz@f|U7IzNH}1ScMiiw6+X!*=rWLdUy!DvJ3VSX4K|04AX51Z^wDwzFm$}`R zDtszJhLCKn!5(7qv}3(8UOj6*$|!i3FK{JKAuDwaf{kRD9vOiUIeua1iXYnd*zYgm zUOcDmJBFTbEX{Y3g@j^3R z3!zfZl@O-ZLZr9}BXO{@gn42K!u_sPa8Df6g*c|($*Vi35VsPL`(ia|{{Y%Z=PL6i z8oLSO6lW|eFAEL@ASnt-9u+{azWnhL?akHj#~jgT1U%z4a@9b-mlC77lPc2|AYDo% z?Q+w&O9P^JBaz?qSn_GiTCn#1Q^gD}o9(Z)Ivy0t^32w$#H%UIn;peMRzPiPj|o(g zM9(wJsKsO1w`){96WfIjX-84s)8PiA>l8^!kBp7Y(%pA>3R zfd^~e-jGH(!}R2X?ieHZD%Tl55E$YEPC@VT3i>SXZZuhU6fcH&g-!Q0fh(bXK{`lL z_(1;vHk)mV7u$ER+MJ!7n~iu~mn$C0DvRS3QORCli`_@ z5q_r(gHY(>5))wHgV{kN43e17AlNmURcE(P3^m$kW4V4~Pu-ea%9BF%MV}D=sgMio zB&dE7gW*g;7bC9TQID0JZpc*2tQ9V9%~7f0h~Af zh4g-q=4_H9R%q8?K8n@h4#a=!T-LKNr!=Z^oz(Y@t<4@}_)L#US)az$j(*TtN8f2Z7r0+KJF~%AH0BWyxWybYh>rkbk0U#FF-UNxAUFSN>B)~V-L_~{E$%!CC%3XQEG?aTiFj$W!cIzhzvBlbYpy@oNx5LIQ{X9wo_ zXS79s3p|9=yxmErZEJv)GZs+2w>cvGhFGdpIOS@5UIJumQ5O-thn_DV zZEnZuxScs49c9$%{wmXGq^Tf{NKeFtZ*yqyjm9fJ8sU_%+b&eQ-aMc+g^qhdQX(zS zdB)5wVT?+9jy_gypH@Uh3dl4``@a20wnD%+^ zeew6Irb?wcf}2S&EKi3208VkfF#iA)M5T=!m2_-l2Uo!357M z?Sknrsf8Y#wAhQu+G26Pu^$>bjMF+|wbxaaR%xe2&XT_gHz)H*PsslOF~vFBws_`o zP~}4od&9MA)vPN@Te(nIpcm420b5)L-Y%55}t+)zEE)S?AhD8dspDE;hE36x0v?{MM50#C3dpG zCPahCku%I31KRJieMb{eR8W5w%jk0Y#817rr9()FAVife2iwydo|@>6W#n`ASpK1> zlmQfU26;3E`CJ*=mv32zZ~eAY@Rts1u1~zBy;=!MRjB}}P$DUus&hVJMpkbqey`6hH_HM|IW5d*ym6@VZ3(P9rOK5QOQWB7u z2cn6$m9WFY9B`f@;taz&a;=sXLR@B%53I}TDFi71T}tF2Z97g2Ss9hxN~Vked9&QA zBbF#*ZjJ&Rd2y^7>^>J+=J_f+EbQMebA|HtR5?_DA9bxA;a4zD=jlFJai=wO-JEx> z5-JTdwF_-T%2ZMnq=0XK4UXV?!t)gCQ_jkW`=&V`CBN zizh$rdHyfpn#Qs~S$?;MsPCx!oAYc%Wr5tF9{?9lVM;AuNSr`ULp2BE%iOaTKQqcw3aX*n+jznQNqrKo0Jr|e2A-VhP&<+a#Q78DjXhVYNh^$v0E_Kt{WsM=1rs3Ja67Mx-o;r574{3- zzFV6!M^jGqJMFk3WAO&9Q=}P*>5tSmvUjv4H*LL(r zOI@pWd&U(BcQW7}8dH(uSYftQFC^+tph&*ZE%lRjciXO2*Y%66c{UsGe=&;2o3-@tZxN=Mx0Ksp=|Eb}q9@G6+j%_tW2HFvDmm8=JdH^TOL~HY z8w0hu8`~Tg+umJQ!`xQmx)j?gB#}S%$Tr{Q&!?RJA?O;`>R2@Lc1?DjvfF{OyK}P+ z(hm@{!`<_J$QnwdX`NGlPEq}_ckt7RtYs)Ex{{d|lnIa0KVZktUuK@yJ=&4B9(Z?+ zqq_lXm>NKsj-%{4Pb>q_A;NU@2ZKsG&oQ%-i}*~=VFLZqp*xY`k<4H}^`m>*a_KUm82zgv?^{jNB* zxuuPgw``nzu43$`whD%G7U^Gm!ypqnltjjn{_D*7`3b!^V?Iu3HHED!RFVk?N2ky zo?OfTudmMNt87=%xWRE!q$mSAh>l`EUAE{aoBLKxUk>p@i3=KmgrpKJZAARRjqTGG zdOXHPmL5|2d*Ur}>s|xx6lXbWODj^l#0g%#NmQ8vX2varc+0aKyNoGb4K zgcK;)Oc86$Tw5H=*%xZ6%d;IWEG<(C7ZWOh6 zB~f9%*mI-kNxflzdrtkW$K7*JYre%*6#4s^hFsz$D^kD*N|kXC43X#4?}u*7SkZlx|QmXx4Za+KaVp1xepIfpf>MnRq^CBj(+Er1cEz=#K} z&+nIhabF2j@s3L44kW2*Nl-DU6+nW1y1qvof7`!dj^ug6ifOegQ6fRu06aIm&zCn`ZD#*gtg!n)J zg#xW#O|22qI-GFd2+`DJ*^6Onb5_80j$^5wnCK3~`0V91OrdH~?*^3=ujBJQHpbSW z)Y<`j@2P0s$%L&xT2t=Vdn2Oay((&*pz=)SR416LsgX@ZmIPHTquFq9dP@<<>R0YUQhQ`En>C>hz4$C;iaXkxYa3j8Q z5=70TkukK~`T1I>utwd$_g+jTfx|((7 zUg3$)Swo=#Qk6>Lbl&zcZc5w5<&KQ)PqGy8u1@3aw3QUdS~L=**jxd(`8{zT>{qgN z@UIf2x|cjbQVLWfYx?cw<+e67o~61X*YcgN^#;ua@N3HGtd@*qoF32r08DyHH00(A=|3RLNlu;tIwmOgTOS=YT= z+8sk_GLYg{bgT%nYUf5pQE21amQZi&JiDN+cka5}De3;y-hXzuIzu z<-8-LAwA?JG2s9R5+;1V;~zn*Z%l@aTFRGIA=d2%$0wD=JafRytg1@bEvLdj@sgqm znF4HW`gAhemsC`6?IX;-+LA|v5;VeX1V-a;J@M0>kalj@98)D4N|miUiPE4<+~1zw zM+kdD`zzEo!e6AOQngrtEx{8cK_*l66Bh>jj6gfz37Oki416suJ{?3Zd(2R_GdG)Xr%ti}zcc1`z`3Of zqoFD(=NoJe_WELZo^U~|&D~Q?s!9CU(nmirZ-)N34>#=P+{|f0bwpeP;xRc$G<6OwMticPT#Is>AN+p!y*N{VLU=vum7z*d3JK9LzF^3-PwR?biAt&K z>Izr?0C8$u!2k)|VJ#$*LUUveVWjEV{{Uzdd@-FjQCB)!1eD3~a<#lNcitnMoLJfK zw_mvB=%vc3TuWeC$UrKv-A3^@fN@G>JSOIN^U6UT+I$K!JTh!W{(iq)F>y~1t0$@M z)Sm50BoMGkM~iLxd0?j{_q1V$AYo28VI@T-O!d9Ihu8Io9JZLXS`wry#$_a+-=W_C+Ap96 z6M8IQwuN%`AH?~VKoadB(5Avv+>Kr#7XnI6#-4i~xVrPc*q-BF8gibk2~|p42t&F@ zk5#;1%_N^g9=L^jH*oG>m{aPiTR}?Iap5IAhneSSxW%QP_J5ZzNu_04j-p{&w9V(# z3xT#E*F(P!3Ozolu{fV9km2fAm6|-$Y5X+m0EkJ_HzWGQ2>DBuUk^9#$KFxmOcSzI z;v2`Uv2E}#1XJa8uBqZ`6m=ylSThi82OvP()21`EP6ux^ruT|&>6E3i2@z<$$k@&^ z-3@l(K0Rw)C0!D^+lY8Ehh0)r;TkMN7$kxf={Js`UwMz_JUFJ_a1<46WC+uJu`$l* zD)KtF68cn>_<+<@H6#u9^uubiWL8wA3vF76*Q^4eyuh80_Bf&zk}NG=quMCZQF^xA zqoqqp9w!1|h#PeE#kbk&7~$T^s@4Kj{ZnA2aw5d?^W=Km&4w%b{IMCmLtzT=q@)X6 zTHkC=b6mj`+zzT%-B*RQrVz8#86H+P^7F;oc->j%Zwfwnx`AwOd(j^p0(j_m560KG-2J^rF z0HiwMj3-J`qC;x2l|_};e_ourT%D+R!%14&eY-Y-p-8T(;a5AgDaEpn2nA*WPb(eo z``aEfOHZEExZqN}ekdJ5ov|p*GBj6Hy(vOc$l*5qy}=9M4`C#A)r zZg0yKLqAY$amrkfSGkF7+kwZrx!k&+%OpwGe5aT6#8S02IU~w#*3_h^$dmDnzs4r{ zHx;!|xTq>gNZBAAH`D3#Kdv5gE(~uyrSUSIDusez#o&+YzB$g4Bkssu7Q!~TWmefw z7gH^Ni{f0~KrwttDYFVXq=ck5sE8wSj+U9W8+ePc3aV;^y-b}*wYJoHd7JXWIcEY_ zAt?p72A>kaM2+{_e)y@KIRGG}%?D51(v+^@rXG1NGTKn2lOhR`J$mnpBeJd_6Ok-(mc?J@j_FE9T~o z-R=taXO57%be(DNAtf952TA6Cu)%aatvx`u6RJ|L2)NP!{KK5{`HWHY++4J2NpUGm zD@fFCukDAL9NoOa8r-nTS71IP*NG)L$MtrO0m$d3k;++NLHlUDvLSRU? z=k10*HQ@}Sj8LSwTROIt19;ni>$$`>ilKp*rA5?|B5o(nc8Iq3xbwq$__@kQqrHW4 zf(3~d9c}$E9XlxzxUs~vs9$N`$n@EjHnwS;N}%XFN^K)ZBJ(%j6h9byBv)mqamMM@ zpcQyc=jXi5rZLuxc9)?|rNpOV6eLH`5xiVl!XMyorje5$2WUF zD%FS89zCzK^jseAWR+QK>H&wef=Dn=IK0GL^*Az*g%y{C_pCTvPUd3WeJ%z&VeSXX z^TreSZLK7DA}wxHf3Hk6@dvZ+QJX7RX|$5z?jTT+q_j15GC*8aa!j*8MXC zsT+Cu9$1rSorh->jFH@|p9+vgioD|1`}txanf7;@Q#zow9MYw#0_6RFy~Y91vEP)Y z#^#gxf*tI|4XS)Q*o6QMJIzD`7Xc{2#etgod{hhlL%`+$4c}ZGZS%&PR-fwY#FHZ>S zW2W=&${69U8)etfmekvNOaU@Qru`%8H@+FWGUCjqf$6F>A+)VJpcDky%tQ{ngkT=i zJ8&7TIHyaA?*1~ZK{IImV--oNv0NlOP-c^H6csVsVp*r4aczw{R|Eh6({HCPxa96I z&cB9cZUii)I@F*?B?$1}*Bw2_Z>u{~?4e4R0p>?d=5PKn&mE-pEt*$VIQm;sbge)b zu^LB<(mz~udk-aUdRT7`E8ZRBh1b%A10%wj2XW=kdBv&NojW1gii(t^G?J8FES>)V zPI#kuJBDjAOy!h5l_upR=?UBC`r^q}d~!^f||K~Mz7s1OIPGyOskJ+1D(n@{P? zdEC;ie%O0Q%D8(WZMIZ(_<$&~O`r`!oRBu;cjpD{zqHX&o;KKCoobyR+Cbm!KDeg% zkBjPa=N5+?amK=lL4!RfefjN&jtHlIiEO-&3Sf|Qz$r1$uJ}%uNz!IcQvE|jz|0l& zd$GRMDKcD#zjg10p&FN}WXCgU5fjtT6rZ$LYK(CXe)qdABKl61KuF~`owtbG#`vxH zbG6E+GUU@G#UwV@bdWhsg16j!@8y7K+p6L$*lQ}*rHFG;wdY_*D95ly;__Tq#{Lnp z%1JyTczc9h;`-GO0-KNu?bCh7?mCH&c8`&N)Ac>tgK4poVd9fJW2ieZ;HrKY;p9H) zK~X?aD}$gx1YD5<;^Z0i5zc+QJk@s2iNLx!kw6A zPUW0iN~FkAj3~{){r>=5cVDwV6B^eN%Jn8urV79x`AqNdiRp~}b6f~>R(`#XY1|Jf zUM%dT8=qie6vhs$?NoxV49u`*7dE8R}nQ#vIa}Yq0_$QNR8_ z*A3i##bYgLvK zbP=&5ar^#~N*45+ZW&t@Z;!jAyZ`cX;XKTs@irNbu%-*A)TPrftl)*s3`|YouB|l_?R_J zS<4_O-6KI#jHxs0*4TmZZnRgZtf?wgM2Wt~lw80(=ar5ojkzUgdPy6}29pv{qT~>f zq|5>T0O5K0x@!$wslUEW8sM>uUu@D6|9(%9JzY*{q@6~PXT=^ zc*ss!Gs!EkQBuy5f;9qWERlVWDdqCAyExBF4N6&msQ+$IlgpU#q?W z9}>zyToJJbV}4#+3`_W7F1JE^qNOD+>Jp_G)J39wV*G~EVjW{`v{rwpUfU}9$lnej zz~Y;ihNvR)B4_+!5!yc!_rWyngq;ObwaBqigZqpxljiPHrI!Yy@gnz=5WCetHM|N$UFDl|%S5iSr$O#B>J`_q${{TxE9$Vw+SF*Qg#oiWe4lBf! z1e+Nh3~qWs0^`gR^QVXD-A-WJh-|6Uq$o^kl7HMF?ydUyW37FeIGJ=#xl7)D8iQ_v zWJC_TfzJHnrX}?THQ*?HdrsF!yc~sW`(4pFo$#7!$|34{jRA70N=XI*n@O1m>xyr( zT-9_n>Pj^vDT8x(jz&$%5x##RyE?1l70WCs;FU$9 z%GKt7cIkWb+7l&BdZ@@B_YkQdjVd~}1Iz(8=ZhoQ%dli|rCmDeDRol0i+;fcxR?`6(RRKlB6lYtHdsM)Gr4d*P5zC z&K99+AzBoaxywa}`Voy?DNzD`DU$&|J6jmaJSjKSK=KC~kQbzYuI_q+{{R@|E}|@? z-DEg~mDnq9S)6Q!8>5s1V4`LwKXLcQA%&^EPNV&*(jX7^?>J7YUad2!#T_JaBhRNj z;~djx1rwWq5b0>vCre{WXG%r<192vL;pZf#Mq5@8fkHd^w?ABd5xB>=0%a!LH(eYfjjb$3pUr*$<*INObrlW4piO3u4-2Eg2q6Zr{KD@UlQ3+Fekvb&!6$5$P0eI_*w~kyD+0%;&_*6>BRsJoHTt%nc=g}+c zwuqwzp)=<#s-lp>n@UtSRPGX0C(Kw5Q`3Ay^SUFNAxcqk#X(WLi$|Wu1dsNc-w*sp zRO`P5&a!|(l%XeW;@I~uLrhRh$nO-8qPvI-ll<3>F>fzCeI}Ne+Y35onH58yaKrT# zD_fG45~3so=?9S$h}RHs_q&G>l9hL4fFxM&6FbCxacuD>P^5==u)MoBB_Jj#Rm|eE= zpYebS3-u~flclsM!J8+P$4}{xB)iJ@90Vs3=dNXWYmY54rbr}|&4BBOK1P=->l~?d zMM+V(B%iJv_~$rAYnV35LXaCUU~l5U)R9We>C<$X1Lt|ho}N9i_$5U(87%M-&sU|b zNIJC15%ABgu_ECNp>_IHO!tZgcfR{h))Ga0StPHoUMX=(~OkTkB>4fqMQ0+i@O4F_;ZbbfPu=C$j4Bkx9Xm-#Y_ER_Fp&m6xX_89QKg+H zy2(xXODfGOR_lsD)v0hvF%j48>xZ-gm(rMpC?!Hh-?<pOhPU`Cy#tLGXsEWvsq~yKt+$aCl0=PLqG2wj=Iks(Q0g z+QtXMk;@Vc#44ft5SHAOOp~ED@QIW9;TH180&IsNNzjxJ3YW-RdwJkm<9H~xwMO`g ztcp(IrQO2@!oY1EN1im`?g?`@tZmh=!r7ToQb-oI{Q*BQi6c29C_=sA3tX5jYBD3O z>?YA`;FV@+O*l#ur%E8EAtFqGOmnsRVa@i6NPb1MxR6yHmJ-(TMF+rFI33@Csof<4%Qp}aNC$wIQh^_vXWG7u^hiPcfn3|9 zcu^p!V{y_sU+?w6?mPs@#}}2+{gk1!@Y{XLQX6Hoi3CKOo?ek@!<}m_y+WnxOMU4o zC|Mo_0kzLRo+JI3)P!&|>N=9+%hv=)C;)$chszEb#apB%oucQ#@d7{)B`rHv+9*I+J;Pmu-eqOQWi)FK#?Nk*p85V zC$1&b`P1&TR9sS&{Y4^{0Xma9ppXExYWflKud}N4@P$1dY`+h>)rQD229+%!?HAL| zZ6`9xWay00eS zwI#|mmfg)C2v|FvM@_*X?IsD54lIqn`#%X1JiZ_Y&-hUe#Q0pZlJOo(RMK2ax?E_i zl+T2P0Fl?gJra81%h|t!-{Bq}c&U{<=MQHMzLvn#_)CPXN-#VkKbxAlnZ$ye9EXU* zoyw5TWtJkLwS-926i`4h)E-;!v4?!NkrY{VWqVJBGh0qqQkWp?Le0qjV>2R5d1Ahy zHY)~}TxbY1fL9v5nu=sc8FBT#7B-rUjg>H{AGkC z>ULZ#5K|?j%nO1q1o*A-c^Grztk|)@jn`7Tmg@2x#R!72E;8W+D2UQhH5*34Oc^+N zXXMF?_Ex%CC7W* zwxtX4DJoiY=^$K^g_{Z7o{XRXPSw#`J2`6Htcg+eeFA4y^%N zrejG+5<&PnVa;)4_8t!(RU6vU&ZD^ou&5mUOX1Emq0cF_D=V%dj=q$nuS%5&3Iv`+ zeJ7o;XK1_~n(&ERl={_GmAVp#5PUB)Awhp3eMU?Tw#AK?@Ge=!d{E|5P?a^8@dl<4 zP(oD8r5cf{@iGJwK)JyDdd+T2!;7SS3U@Zj*+_y&?}KU6rU~W}kKDs1m{=fwsZr_0 zIktR)6b7HQ8ocu?%c>tjRh(t-r$W$yFDCkgbCauSj&V40?Haj!UBi_1bc#(rd62l8 zgpi^ZqvBSf* zehs1G+^{oG-Li^$*4xyWP!d78xk-^DZC!9qU|#v_5f;PR&&gX~NmNUE}PbPtjGN$Go&A75@O3usiApc(x;wK8xrOK~_U2 zUNY*UJn?EVlyHhT*00lzD6b0By`P~uyDlNT z!kl*%pg;;K9}&5kw@gL*L-#&8qH?l?_c^vo?~R~gRc-3tdE9A}%M$6EQ6s~tB{GFcv4bO?ApNuO*zAk7DmwJGrdd;qYN4cU-L3%#aVaF9>xbk?kFZj( zbs3xljWtVIzYk^nL6s@NQA)I;zLUhTCIakE#t7#DSSG86De~8zewD2>%2u|KuxOLC zn}82l{cx>gl%1Y&!*$foCaWRN8`AJ>$U=|ijmIkyiDgbs*Ais!d$Jo-%_Cc8EK_4P zouqZbC7REF``I!bIE>k%sm|Exo8mqNac#7Oy+R5qM9+keir29t_c*Iq&xaInPw>jc ztyL7i_8gF zBa2g2O0>O}yrAn#O2E>UZjYCt#WDU*chn`#u)e|gDPG68`m2GI=2e(8s)fU$6S8$p z#FIB98Q7k9U3qYSi9P2iZ7sQL3x^U8;B5z_VP+}mGgmvOyT5m<5JEs5*^oef#)1*&AtWJnY2K@A=F4WSivftIXE4M?1H1GtjcSW=t`;k;j9-mcmNw4 z^FQ;8!?W%qM-lL>B?~o-lG~^Vu}C&LKnK$iHmI56dJQ4HZzpBw3euyt#v_)Q!{-7t z-b#vuI zS<`7kM~P)kK-1w-JN-w-W7*1SbJ~hEcZQy@c;whBXKqKAr^;mJ<6KEU$ z=MWAAX@A6=P*09@$^52bP5FOME7@Tv&bWQTQL3SU6tIB=X*TEo0FAwRVs|>9X!Ej^ ze=Aa!hZ`#KG_;h&q^3pFy}!;G`$Ec}{xeHlmdbRkD&I^gCi6a@r%SwLlTV*E76NAx+5=oK{!8`NA&SKIt3JQv4A+)&3NkWoE&cqmv#2-_RGEvGXqa0e0*C~1T3RBg# zqwfwhhZZgsa3*31K2Q$$jd3DPX9zV?3X-PE7HlC`7CgY*KqmhHTs!uCpZm=%MqZ*1 za{wY#6jVo9zT*Bz=dN(+UQJa`4e3{iA_e1g?;m)dwp*P?3tvw1c~!3%X75oUm)q8r zC39rS6XNFr-kgV?8+fyfRh`jNIIvQk0WK{XK~jMRRS*Od0!Y71C&pFFsK}MxPk7#> z=+_#O5A`3eBKc-vuZKuhqovf?cz{en^Yhr>4u!TYS0jNJYh2oxKbI-MQ>Bs#Aq7#t z!{z6Rw+_}foMh~};nMSKPPCo%D^MqM;gs!&a#Gb*JBU)0Q=|cMo?v{p7xTks1?Q^C zbGB*SaHX{@A$tvs^WOgep#D*Ud^@vw39XxD5y4jFdu`J;;Vb_Dwspv~+9Uh=9q|C- zDkjyO($}F0Y_{Yq%mS5lxZ2Ua-jiXslcPMPQ+@>(5L=NjsZQgb@yqjKzR%iTRKk>} zJSjQ}J|Q}-Xy`;9c8!GBq;=xddiK!W*$Ljp6QxO*1b7awBk6&%N56nPrWQ1| zp`s)YPY){|a4qIeB)y-hIrS|?^(DU$b5Ij$>*@79aKptk$fk8fAH;}~1ffDSq)#Kz z&Mk(+wk-K*#to*9F38w-Q|xzs1?nBy1OqZ}KQ57pGdYSY_&%L3_*|s}Mx_aG6>d5v z(dvARL|n|>dYRWsdhke?brgsKL{ZLr*&OS?I6v67~YxRnZWRu198%t$5;h5Wqn zUL#wDE;X$#_*1ypkBFVW;}YzF$C;;6+!_?lm;l_9=4Rf0n3d6Dtv(quzLk@jF14!HniP~ooJdZLo MSQ@EpJdEd)zx#GxsK4Uzf?$osCscZoY(n7c2)X%Oe zt}bCTig2=&rL=`>5(Vd-?fynAj@;4;&yk_0b9hBpxU7#cQmLKrszeQv4#vcPd`RfH z#aV*WMN*wEGE?1wx|3^9SsU#fv0d=Kc9&jPdiqshWlKL4{{ZE_AG2J=HL7lfMxty?2<<5^A99S>9Ki2nd@{Am@;auSn|6v>eRTCssmfP=3z zXBmmfGXYBaRi;2FB6O)SVrSRO7Q*sJKY=Qxpp=yUFi;i)RLFu($DE19ab1+QKlO<= z1Q|&G0NP12*OmA6izl-#&}sOSfvV}1sZ|to>Pqf4IE&wqixVDSS$)LsYN^g;Y;jd@ zY1}HT-nYG{Xe+}Y5PVk_C+GFU8Ozk#8v(Z@!B{r^?r~uvtslmoXLj7srsP}VRsNIz z0LKkE)iI#VQtEV;Tu@L1&Yuw4Reij-!F8Xyisr`J!i(muxs%hj63RuAp(xYO%>Lu+ zAng6qpOTa~kfz8~2q#F9z3sP8vBSR+WP>@SZNw+W$p$ZRZJ-I*eLT(>s8a6?*Ck|X z*((J8Q3gzl^8WzhJfVV4)Tc0j@^1=6{z!^E&%Bi#YLE=6NjpT7^B#DZ@TGWR;L_BT z>LM+$J4Nm%^7F)dI9rY-H7&`2l4Qi5U*FTz1Lj*?a~g!W%F}H&Nr*B1IS#lNNB*S9 zz?fQZq>G)8p!Dg92M*P=%k7uZ_%97Q<`S!fgS^GQ-gtoJ%&An& z)WCC2sSsmU(Ru6k^0c>x=@VB-tqN~Z8h`{OT6{xMu;=T9?;HhJOtz0IE!zJ81~WyN zrm~25Tv>2|v_P`0$er!WrXqC8s%^C_E<3RyMsLdge5V%nVujV^N@c}3r?f&fo5T&T z>%8K;rppsXG$lc|kb)s#E9VyV znd#RPz2K`G8E-0Gmr=J^+L%eyZ2-c69YMf6McHsPF1;P^BbEBw^uk)_c200*QC05^aTQij`q-=Q z5}$w}X&|B}tU2V$8K(LL5z#XvZ{0^Imvxx~yYj~)^+$ae%Kkgr= zOf~U`3D)Iwprc@bP+BB{ca8Un`{3N*4WW)RSWzmx#mZomomzCLc+A1)f47zT;;!Rt z%{8v6c1o4Fi3G^n{$6;VR%d~U!V zthq}&dYB3^K~YZrUWWB0N=QmHre-l3&vMlitcA9fC~Fh>tplB{hwd%N*O0zcf~6%u z5@eaZ=2T+m%x!!})0{YzDK3>M3W$T#es|v#HQmCGZ)#8;CCL;ME`+5=n1BZMpF8c- z5ZuwEQ)(qJV@U!$t=FC|S6^o}rCMAqxoA?s(-u2k(aY50w&RW(RV&L=Vp6d%M~ZFs zwkm>4G*pwqLV~`usq5-UNt4rj4^-$4s0Ahpr<8+@bGFvqM#|E?Wfz8)D)1YWCpm7ujQo*{|VVA8f!m0mhm}w5ZL(fSbWPOpJVW_VoV%>~^@9vbwsg&w)y-s8fG+a4Wn( z^%MGH;r1;50PKoe;uAxbaqErH)DRM1X&PJQz0_xasmIfP$^EZ*L$_`Zr>e_yEVnSH zeQ7pYTx=;rawLvJd}lIAw9ep^8rMZ`Ul=Wo$xS#?zl z^sCUm^$JFX4p-RN*x$<&k7j>t&Mx+8;#zvVr!aTj(&AR*1!__j0ll?uM@Z$5(vP%n z`gV3t?M;=`H(!9LKg(SKg zd7>1g&s4%WbPx_TBiBQyZplaLwjuQhq!jP?T~+>^pX$$$cIt|HN2`6$GiYgXr(DzG z@)PjioQvb=hD+LWImTF*8F`~nqaXqbK#ovv_4#A+bDVH59Q!kIywp+VSv_?dp&@EQ zkd?s}nE--$Z;z}W=@mT|+r?O4)Tu1X;*R3S%IjpKc+XYO$f<65@(D=={jsZYDel_pA5 zn3*Ha{{T_vhMe;({{XG>^*>2a{Uva3TWdz7C21zW!M(X{<%-3w-JQ$x*EnN}+Ep!M zWl5)X(4=>#U{Xr2ew{HBMSHm&)&{CsFxQNZ5BMvcztv0Gecbznob5NW^gl_QP!zdS zPezi3n7ryrt|W4}8_zle*n|CZc!RULw)k_692t!rF$}CY-;E1 z5-cQ-3|j3R8j-R1BZ8gjjt{m>XdL(;ue1KlzSCR_?FYji`HfLh z5)Jo(xQud#`j!6xrsDV)iCpa?gIiLvI^~t-EHNc?s#1X}AtZFX0Ws@85`CFHx%kW3 zqmA2on!c`;>Q@3tC&CnwV4!4L2J<-kW$Y9Fw|qC-=0{7zTyCZta-kmXt+N2EUZU*{>6JtL&x1IX@b3Mrl!;aNSr6B9Z03 z%1TuVLZq9Gh$3K($N=8?N40NY{{ZSu!zYA$WXLkiuZW*%O}Ac#(j{6zCtLtc#~~5` z@`QGs+4WztzZ)x!_*c8)F3)pgt1!yYt!Q8$&XoKqAvY<2Bas#e_QmXRYeD#!UB3ZwRu{{ZZJ zGtSBKN{%e-r#1fosWKMUw@|=QP$(*pq`@S3U=U~2Ispj;9cu6Mwf%$K2 zbSG~^8M+HyEPekpKYvxgFnGvNx(7OhI0OROpdfYb?znEcvILHK<%$onqhXSf4BZMW3o zySGy-zLx}x!I=a^L>mil5w6tx8qWQUy`x;ovl>?!rteg$YJwpvXc2NJsr!sA+G~y; zAZs>gC<>rg-UAxU`E3&b#>Z<$4bjmoyc~s?*KK%k9N^v!uKeJRIvgR{u589#+_&G; zx+G~pSy=IW?qr(~e6hy-c-=-x#=ZSoJGU#AmmzAfljnKg{{W6VNBuQ;iLNZ{wxX)A zu<~e-mSJoNZ9rRph6aPmLF;S<{;Cw&4rAG84(3!yrABQ_Tiv)?N>ZSo4b>Kim_EK! zr|I2EA~97_=glo&RP<;ghw-m*E}=ufE1x}@GtivJILg#il_;jD0!NApW)r=V6ivC} zXYD<~>CX5kDdGw=HqoSf3X+u#Py&2r2B-u2;+^bwh*!fst7TOINo|_Od#4FVjWY(` zcNaTjsd8MAzB1uV;~}U=;k=Cq@gyG*@RMs=Ih;cqcFKNoev9Q@B~yoQw+fV__Uz5Q znz&aqIb%Yir#qr;iz~-zT;fmqsm2cH48$6b%91%C|dM z$Qu6u>B5&gZ7NE0Alu-=iCV&-lD+o?T=d#8*q+J`(YKLTRU^1fa>5;X*FO>Gfz$-5 z3XeGxc^2OsWbJZzzlHKV%`T}f>TJ6^AS-miFl{`*n7#3L_Fvk|9hl{6t*u%cqg6Yy z;?zTEP!gYuaj_SOBdCX5Ml`i8`8l1#|K^t?u{CpFofJL!4K$5m3< zGCVN?=G}HY?JzOI{1fd-@4ncaNtJud(zjT)*jhdv2q^$TGLT?InZ4kU4c?;1OB3B5 zLqPqOf2L_mo*L`70#DsmALAzErKTp(&v|>ZZ6n>$752Uc>8#dG5$7S}r{XFt2 zoQK)-DX4X|GK|4%aRy{7#iSA9Ga@#fxk-+K$*Smhi;Qacb1_O^rK+SsA=n{EB~nUx z!H7@xIIVju;p4zvj_@u*5LjIpV_d3?$+4*vXhOo7X$V}%3X589 z3B1QFO+VE~wtg++9?EijmnCwcysJD%bzfNH>QdWEd?A#{Iuf*kqC{Am$q@tp07(w9~CRf&zfn017f@-!ax8#?jRXeLG`8+(+qLs=YT#{eGTnu;~)Q$!6ZT6#>+ir#VOiU<8TJ&AJv0B5X? z?l;b9o2bp4Y?^-ZAgH8`cNYRa;Pu5CdG=^_vo3J}e0;3mPmQhD$*P}*kJsT{l-Yh+ z>{sl;m*niJx^-o=N~x=LBto14N>S%v4%5q)J_dVl`({`BNBcl#nX`*=d3!D?iZ8{O zXc*Kl26xBOU-ew}imBr|M|dkLbxBoW)tJ78tPql^0%pYY18MpE<*)W|rpzkPP{V=J zKv+72a-HLl^7HGX3!~9##7FbESt)*-9G<7II{AmR8Uwe~E{FdBO)6^cBjI<8EUju) z)d(6$(p9*L=52V7l-Ju6C(NjLboXV=O9}v{6B1Qun~rn6r+ed|{{Yh4*=@cJ?1>Ai zYgfHC7o>$kl>>PuL|WI5SeE-!_BBAfvDVhwTyeya;w3=_NbAt6_Hj3+H?Hz|7QaXJ zUAlOh4GRO6@Qbv(il&o1ams{fE&$>R?ggx7Z@1iH`0PfccEQ=z8^)vm0Jga-QaAwd zDJcO+SOR9jJ}u;Icf{w~`>>XHe<`Y~OCle!kYs~0LEA`y(34;!805aidt1%>BkeV} zs1>P~TuU#sRzh4su}=0POn&1}Ri`1g-rvWCji=NyP-6J|FTB3Oym+48eV3ZyJ|cO# znyLzQWwk-?5|)4g21<N3 za?4QjI|4^LMn3*=2MJ|;vT$}~k!G~C^-b4PE}6o#YDrW_hHt&%(;Tt!d$+G(-0vdo zpEt?rsg~lX-&&eV5=n8di&z7Y>DSQX$YX4fZ*~iCett@p8Mr9Aw-)gB{6U# zZT)fagM)MaF6;-3=_!#^^OUr&C1nRzl##k)(2*7qc*oTK#Ct)b?U%E98st3kUP=;O zLgTzbg|0b+&hzDo8yIWD4+kUak6Rpr`=Ek2DzD43?ANev)2eD(TW&I%l~pjcE4&Iy zf z5~5*Esa(X6L6uDZ0DDC!vbXphDiqZYHkMANr)qf}=Wv zBtehu!e-za49nT?jPl+iX=UmrT}yAbasx_G)v8RG-fU+V-?Xk++an`$&`Srq>@b8N)r<*-u9jQarRwF$4_v-YB>vG6&ZaoMM(~6 zTgfn`5>w1vYdTE3xZz6EAt6b*>&(a``D3Iqs$93)3$dE4yESK3E?~(*kh7~vgW^b; z1bGo-K1qvDDU68U!Q?F&nq#@*ZycQDFOs}}k(|per_7S(vZ`>}m*OGCC&WrpO^jOH zqtgd=S;RGsE}5D_uKiD?!2`wDX}=-9=ggc){h_-Qt?V(%jvK7+6pB|%bnYtM^HU<$ zFan7AUjlnJ<#F1!SWA87GbZ6f;#6q@@oVaxtU8G;V+$hjmqSFQb`s+sl|t% z_K4PF!qluUQX65l6{wjGLU{?aCcqOD6E>PpvuYaN7|hzEuW3oFZ3Qlae-Ykb+w{VG zZN>F@%3jMF?~=+_q4ObK;z;;L`|JI8w0!QfR?RVVjx}HR3+p`>(dE}p-8)6!=srrb zeUp_(+F!Iy16i#*HQ5?g>q}{BQ6vC#DgvxZgo1pBTv$HReV?A@PJb~!}eY@{}*SV#*dRwu*(NtDQ&laA)>w~2T&+Z(fz z)glv5T~2g>^NA~E!D!SZ?2)mLJO}jj(n%rIN-3_uzRP3!!Wf$7Xta+10M;yy#P?jq zpK#V?kWjP486y4GyDLgz3f2Drs6c{SBw7gG)-Za_;n` zscbxu0+YN1n0rl5 zXsr%qIn7{AT@z?fg8(JXM4uE0Fg#EW;xYDRt#g024Y&6nE8%|z*9$Km?>vH~e%l?Y zW}TaG+tkIU7URw*TY);E7rJDTAG3~ebJ~lDvP{1(qu}ZlWp39IPf=b`?-ff?Qb7qO zLtrHAFKz5jKArKG1@PZ&ot$O0&Qa6WCorPbPPYO|3Ko$Y2>I{jj%v$&n0RlqeEO?8 zr>A8!l&e$zVEk#+fE&ob9h4F2V$sM%#_K1=4&QYn>|=>(J0tAk zotny*YO{**?^TY}x>oSjstJ>05y~yLI7`|S{b2I`2lkpp4oLFS%^T^buh6+_sulu@ zu1=vl!MacL96ozv_V(>XR%4ds*~0R=+`$TJL!~+rpc5hp*b@;yd~hCT>}Ok=XD&NU zng=QrOOA&YK~nV(%uUQh-X?LkrG_YU#yLf}@=7fPW7Ks+RVTHBfH?SHpburwX{sM+ z?#?LlT)v~;J?W0^#3{{Nrc{N69pJ=FTv)-!9RC2Q*9N`p)l{w~r=-jr%PQBc{_GME zr6>YO{=efK$Nrq2(40@~L)u+64ReaD$ZA{&tO#9)AiK;FI}PCV$Jp%u0ET!=+ZV9~ zQ@GVWVVCCAygt0$&fmc33QQj$pmZx`zz+CCHf#yQ`&Udr8|&#CGdFyqHq z07_#}PMb_X^a?XDF<^Ej#6v9J&V%a$A|>rqtN65-O7NODO|q4`0RywBIl@lFuTMr%fh zu#%un#rbvLnT$NPv{NHd*+vNwxc>kjEPhGqItOkhmAXAw_VR(^jtgS7m?;TLmP!|( z?J+)>tut=U6_V!~>A-E500I_OA6Sf9wK=zNwIOPdB?DD}5wO0}Mg?|-ti`meN>qF? z0DVWFk+vn%zF4WZg-_xE844ee(RXD5ek7!6w1K}~pY8tuj5cX~1B+70BH>mG4`IK#d`q*b@wyQfTSP4Bshne&W&hoj56-~&rG zNsMQB3ydrKF|OgP`3|(gz28zsgaSsG7F3hY;(GaB@9gdOvdUIlc}h|g-%upl=1=q( zwey||p-@pxGDDI8ojQ^xB0BHaV~XdEmeyNTpoWr$(-SuyXV7EmJwi9^2A7SInxnXK zKSWm*<>=x}wd!`tRo(?`2!zJ+B<>GGY;zB5ya`p5=Bub|DNVUL)YvkGS^*sSpF!z8 zC&Ss1sX}#KC{b0sBTlWphksmq#yy+m++Rnn#1yEJtIU|W5#<|vu5lKJP-2h-Q0fFv z+Veqj?`E0JLwSOjdRM73R0uj$C(q@!E-o0%9in-^iAqTX4N+;0{{VN!>g+v~)un7D zDN+ukE4(D9Ya6S~^SJcGy0}DTlu30ZKG)4&lXs}m4_OrpyWqGTLLRBd$ zaH=%ek;yPNQTq7|Gw=;Vh|Cayr7BPd#7T?60`|1;J93%D?b~+@oYy0LXbDo1 zBXMkV^&6_lbJUlb)RdJdtQaf5+t2oKu>cQkDA-~_;RqIC1j+is=#S73=lUl8%F-PkK}og$!Zd` zrApEQU@a*>Ba5rr6NVhGq<*D_RHbtWl**@Z)0p%)=RO{!d3luF5_uT~!N8l>m^PTCM;weg3|8>M+}%P$!7#T<|2SG=fKoCOtQC1X4Hf0jhX_y-t#;IzJ5QHiFQzbALHEW|THc?z zos|{ZZvxd(RyyMj1m1jV(xluNGJN??H|$r4s&Y*Ew7lU~lt2K<1rC%-{OWrv1C+ z?l(Y}X;ANU;w&zsrdoX;3nWEsLksVPi=flD{ zM0k1u6Z01r-p2v^KyY*1K$U3?=~*ZyM~E1-bbz7v#^!}{&{1mIIDyx>avxkX-l2(AW8uWl0Ifl_ZX@B6W~Pfx|?v@RE{;B4u}JC!!1tV%Tbg9B(H@qea1oKsZN@r4N1 zl)2w&NY*TTyvM9^^NM%2k7epkG0c}x!cvtem7PIHSKR*qd}(O)&fFOO7UqN0q9C?U z<#E>mWxvLpN|w%-AcHB|`;`-8Y4isdzh?b~)4P^ASyIlFhRKpOM2mC(0Lys&Fjigc z=H~|I?F2R!%ml-BDZG$L*xZYPF=%n^Lp&G2E@^QgNogS>-2*_m1ja zR;A`p*!%cYB`!fu*ATd%jZCDdAqhSna6ts~^Xt~nl}z_EYFSW9oNa3)pvIWq$CUp7 z&Ef^aJWQ@4;=tQZrOj&tP+0h+-UYXeS=?g_L#oTSK%6(hS4E_9iV z#iGX?*_&r8t<6ZCN=XGI-bBU|{;Lb!BxD19)c1lY3TY6w+|%AH5w?|eP5SEe9(auL z^$Y9GfOP>np)+|{2YtF6N;oTsklh0;)HW2`iSGb0r4mHk@{zYpJ8=&QwZv7;tsyFL zGh-o22ayRP4ZQcl=GBIrrbYmE=U}M!W&9%A`^{+5l|dkaEzjwHFFTl%E3){5~oT&5<(^<3-#FZ7(a)5c+0YS%`OJCwrvodqyu}$k^caU z*)>jc%c2&!(-3GRa;_E4xJs%Msak?c^aCRCG0wzo7_qotw2JylWV2J=YC%*9JwHxY z<>+CaH;fwuepIayK z(q7pbRPStV7UB9WQQK=&3Wt)Ez*LewJmnB3mxKznwOvK2d0+xc=Oz)rLvT&e+y7Pl*O>35z5$tq}++jSu=sU;v1Mv##t z^&1Yjv$I|sXD(%0m1M5g7r4FT?QAetRWU*W!=4}v!65I{o@0A+IMa?6?AlF)xi!yr zLYiXK z5JW`&zbL_9$8yZzX-R0QAy5ebtDxU&8~I_;w3Ba3{Bx@yu5HV>9egh8mVlJGAY6a| znDvh>yzu2&p1ng%nN#Rez%jk=Vb`AD+ZU!~!wfsAN<(T<*+gp8leakB?TXKjJ2Y`r z&U>ocw5b3H)C>Xi`EBQhJ(pTnq9d&`(`pZ@?#+nhSkc9C6{uw~x)Go(t%+oYYj z&MF#C*HIb^t4ew&c#p0Z{{ZPll_Vh~9V7z>V1K8UJEloXI&=P@t=BtRdZBRRa;vLh z$iSc3!c`n|M)^u#Mw{q?r1yJG=a?78XOr=(3s73s3RI;49q&K5!-9C3r>e9iaj7QZ zW=*ul{{Xo3z`3>Aanp+xg)yw+e6jS(uB8xUFHOgxwi%Ris-&1xC0_^-433*^<^7H# zdHq9jp6z|!vEb9;D%#Qi062%{S*gq4PKVUXYYI>@bcx(rPus6tEv@c}x_1NZaK!8s#o+?*+UCbP)N>x{=q{uQNXVl}*{*to?m8CDKH!9rP(e#Wpu5dZD=EpF_ z{_5$|pi%+Yj77n^t7%ZAwy` zf)#TLAZ`iiWAr~hYd7HGPVY^jXO+^AJ>RqneiVd&K`|Vo{xKEeif7wp!j}@6)J%{< zW0n4A)M7uvovXHVw6~Kfv@4-81I}%UTlwoby%&j1s!o*2Bl`a566zr=Dj^%#XoLp? zXB6tp8~3#(Dd((fyngYLzp+iV(7F-t-0KV<&^+HbPc6fdpj8%~K) z?~oLfs`EEC7RNSrwZTs0J@qh3l8_12u^k6F^v8Enc7aF68F|p9FT9l<1i|GSnBSl4 ziler^#*v*-d%`rMyBbV@Nf9$U%wBpbeDN!{?gX9})OtUzY;Q_YONDrDjm767$5E{_ zc_KIHN#%T9Ez?ob@RNiF_uDrA1+CJ}c~R^R)iB({luj4o%kTI+K>qjiA1re2VwGi?(bPM%D^Q-7+6MUOpJ)C!Vyi2sWo|UtZ5`T%zU-^( zw8;m{3fr)6Sz5@ws?6<2j#o*;38rD)E&l-9B(6rHNYZR3Y<)*5IOgs!s7r2ZB|YNB z!B9~iX8Zj5dCm3Ob2P}yY8OznIizVOPLQH)&(=KpW0*Mq06tw+Yl&ohCSfF|K7{`I z;cb(slcm$wP^`4L&rLmm}ek)cXAomO5*P%9~S;NtcZNY1;hvKP(H{545H0GIqIi zCR5r2IfHr^r9s5mV1uS)L`>c~eK3b<{hqa(aGga;K+?(*?XFfmbx43r@6IL!)A<&A zRYRCI0^FGdCQOSM5)Y@-d|H%zdHi1`OAa{TQ;33v0Xj_H@qSUz?~M6lF=dMy66mE4 zT-TY^JCxTvP`|@~06Qn>dRx~KjxpnkjMAmGt=I}ql68-WlLKp87Efw?G$`14Y_^pr zT8cF62Ov6)zP`Arvb?d!xPd5qX=zK4qa*?d+E1=1(cF&QR^!|z_bWSqJ0(VSmPtx= zDH1!uFrsZc9=p!olMU@Ngj~rg3LzSs(m?QmCgYyO;`i+CwYog6oE0{m5QSJ?_a|xp z0FIaowjK&^h-lMR!dKq-Lz+l}Hkq48END*)s?mCOzo98)hP!+UT`R_Fm!?= z#7LdJFX`uONjNTuW{OJy0zv)0rAlxtf)1||pj&7M?S>vU%Fa!kDX?_GxCY@s?>z76 zYhqE^%~EM8(ye;NsRS$}5(fHzF4GpqT$U+Qt(ZKWrv8e)i}S})sO1Bnj0F3Q_L{p zP=|aisWBuQNH99|lgRnt-0Fce)h;b4@lL1%VW#}8dtB^1uL8-qk=)L&P*PR0fdHA< z2mxPTOiZ&3&)%EWDoRumKqvD7xW7B~<%r!0jDoNONjY0oB}R?NT7M0d_~OceYj1Em ze{52D$SAB*kNve2lAdN%cehW_;^3~$0~8KOO1}!yEKCUbZgl*-@l9s{uBH&;w4{(H z;v#qb`QuYg?nztTlEXz=J(^^cxw90NM@qZG5U@n)AwGY*iws;G2SPYwK4D2&N>UWr zw1f}Kx38Wkp2zr^Gt3kVW5 zdaKL#&N8)%+QG4vwXm~ah2Vv!{)@j9~tZa^D+TUb~Q zc&c)zTzfI`IF(6EkVG3nAHOVGJSzBOC}|-0RFx!6*$@oj?#q^HoOnLud&AywVt;_ z#1spb(uUTp@66m^ZMXiI?(b(V(;2See7y~Yr7LMoon}pyB-q@*ng0O!ag*yWA}VR+ zGA(1^V?gerzv=^A+IuanXn+)@q!c9B9VX@{V>jMawXyP#ic)H`nuiRfdhO^46TB0# zC$2uHdvUs)-?IG13yWwEENgVy9CO0U!OU#yyNMMu&XZG0Ugm4)SAW8t&9+PbDypqDA-UfgrNyS zKma8POpcb1t?->CJP#0^m5&e!D}{{WllJG&w@PB4;9DIzok?ErNI`RyFB zqMOnn4RVM!6K-)hII^WWbt_Vm2$3S^p^xdzV^z|HfJ(em36*L>l6mPeVr~8R$BiVf z8q;*>4SY?dETA-B$)xlmQqu?NFjFeH|LE}P41DPB__nJ0um39 zA3gA*)HNW2VIxhII%AgG?TuP&)IOl3NrN_sBL*>q&DDjq9XP3aTwK8f0|qZ9Ok0*L z9?tTnhGyH3rA{S;YJg*75^Qa?zx-nmYBv^_5YtFgjz~xeQMKaN3Bor!syT zuFPImj}La4-V`o=soTpFOaKK{q69o)MflG&R%4#kKJ2L_WFQg@Ty!FNeQ*jgF_@it z_30r|DNKl;->202YGIha3sQ9`6&YTbPVz70K4TI!cU1H`8cT&my#&cRL`OL1IOc#U zRLgtIiJ|(aE14&H=x;}SQv`(WI>-m5{V_J+dbapsX;MN`LDY>xz=D2ramx&K6z45< zPKfUnDzJmrXP6sWOme`qOEqsDYH=z+xhb7Dk|ugj{{Sy6IExgngod~{a;^rr*<3+P zmcSa2qpirakUS*JbBP?jn2YCGLn>6bw-p{BB#6IVT`)fk=BUY9QuL`xSp=-XowgGL zpYLQdeC_A!bP|-M$xn8GM2|T?xbnnKZpYYPQKpx3KzX#5Ym&315|wzS0O!!pmCo3U z@e@@vEtf}n(`HCfStSbQV#Yaobj5*{ypqyOijU7GEzSq&^TlV{UlttFq_a+*?HWlN z83Sn(*4zI8d|Re-oN}8mU}}hF`KzlgAuXLrDp6GYL&BI6MEWrn1qEH)fJ}3l=ZLy^d3jX|pQ#=#GN%GQD@W2gPWaS~ z)HC*3&$o~pf!zh2zRwP2&`zZRBo9gYM=rRmv#uareNMMRd{%&AGN>C*Tsm=o8648J zO|`4t+f)Kb@eoDL@fB*3+}AKjlNyN%gYg19x5J@_Z@I~HO}K`)gk>sCTGFJ+N{UUv zI-`DGQR{#>&o?wQUCIgXG$;oXBbWsG`QlcpR_K~3LR1yq$?*Pbe@Q>{h({7In12vmvw*ds7X zs438+zUdMZH^A8|KI>4YOlwI>pg_|HY3Yq-kM*qC9sZRw;W|`s-dv@<;c-aRMw?sb z%JJxSgNFud*P7LM%%MZTH?+iJB6CNxYP7aWQkl{c2IExT{-19-n9w+yDg*^7w5q^~ z(oy-pTxDvSLEP?2bW(O4CpH-hT9)BTQvylxcyG7w`rz6plDATkr$R`WwEqB(ez=MZ z+u!QahLxqc9x`La*3;+r>uEJUV^5W3sat_ccq2+scT{ikz9Mr-liOs2$mcE8^YJSy4EvrzJzQro)85--qlAHOU+aV}&k zlqpbAs#74Hk|TKMwmG2PDP(O63I71H`cs(aN~v+xBvO;0g-k2veL3OZiYpOQS}p$o zz+5F#BngYj`9>DWQqKwSj=d=hWeFq@29;W5@+RGGpZ6R^veZAFJhcxJoGMWgKnH6{ zu#R4Msfu?tfC^cXHSb7CN>-s_Rz~7}EBRsfyk&}i5K#a@{%HjB^T0V^ZibKmP#X{s zux3-!c$xX&e9EE6O0Nh?pupbq*QN!&^Gas`3R;$#FRA6LN6dR8PYmzdSSN)$N*~gt@Cq_x@FF)1~p@ z8K8@B0@0Mu2B{Sqwv9_VyyVZ<2!d)E2|==q-h5MU7oft;wjH3D(y2%{)wvP+Mls4& zP_Zi?%g~Yg^1+Z-fxYPqQnaCTewS+Ho0SrgLoe zp$G{|QtDDc@SQp&s1IHJZ#d7=$!<0m**Y<_QP0&T#}B&Nso947EhKmb!qzb+30F7PNOO)+O8~mj{pDEw@ zys@h2mcAL{47KF=pUu$oNJMB-LJDM&xGI7VoEXw4Y8+&CrJE zs%~03{C*UCMpev%jO{xv8E0ZND_)&+^}h9@ZmmQD2^_D;fA~ftd|AV_uXc}?t;M(& z$qmb52?t2MkM25{oOZ<=RoUfLB{6T_n^S}U6srWUVP)p|qgf$09t8huO-U;vOH&sMiiDO**7Dwe2Z0;fdTQ zpTc7Z`zPmylD~*D=SPOUq&gbpqL>5_f7-7j5-dz%9u%!#XZ@nAAu1*vrf@C_fN*L0 z_^s+T_>+c`_q-j+m%(UMZ^VpS5(j%f0qqs716^t9s1)1|~H3vaSxedm67l6L!@m!He) z+d>P?x*Mp31ubb<+Cl0Q>nh%HCha#Mr0t8d?7_MUg(|55yuy*h5|t6ARGm^m(+6@l z^2Inf#p9Fz01wREQmQCWlue3?c9O1S#D#jy;d@;rKDgv2^#ciM`xM#0124~bi#Xx; z&|kLG)Fm_*3%Vfw#YO)B`aoO!N0g~dsl3vi&vt!jj_vfRMieh# zY)H5eZeZeZpLULn+Jc$N=hE#~UOR<=u!l-P+ym0zPdrxLqGbf|hjgW;p1&^%A=IoV zQY2`OV`v^=10R^48_Ne5W%N0qb4^cn7|dEEL#mhx1l&lu6U(!kpn2eOB>3uik+wN%=i?tRlXqEr!3ktDd07Jx|Kneu_1vc?12GCU^fT^rr7 zk^xa34&k@5%5`NKqKd3bZcJWM2j=JJe@qans*V<~RU=g{II4X`1qZ_F3U>1w+Q$A^ zv^#k0v87L)$r^*B!_&Jn~E z38#Jk0C?_f03Z=2$^f6u)9f)M_Mq&g`u4_qLYDp7oiOS`hl2MpJ4qibRXiJ2RYLQ5 zf_15El!p+abdX0rQb`x(i-XwcgPZ>VO2%|=jzS(e{uI5uwGAt}NlH|cDe)b@`E4_Q z>?V8JM-;JHO02&%Sa03+cWx>KUP)E?9fh%(W?w~~WewCeTdHxiT%me(BYj)#B4eTX zVY@TorDS!_Pg*|lXY1yL?j!RH5s1sRl`Xc*52anh#1OJ2 zF+T}BjphN|i{Tvhk+Dw8i5@1xNhvyp;?|N4y7T&s5YYhVD)7@3ICs>(X`QOZ{&@L~BbK05B+-ick z*wdsTVMp-Qst?!$&j@yv!PQlYr>axSMIRl0f}AbLKG*%#@ciik3jsl&p|QFd$!lpVt;vOGwRc3Z)f#d&|MrAy6zN z%+HV_{{Zb13C{AgD~PHB5TvJ)$TC$R8TIElsv5dcWYI$KgUP1i9RTTa6bK@9Y;XSn z%kF-54-Qv*zHOLNBq=`gPNE8YQm$n4+n5CTUeF2}1u>f;1L9HA4%+75sgGF1(t##} zHl}&c3RVIM{{U>K?nKX?7cdsRZP99OpmoJ(jFtFRv=awRiGw6;exn=LR6Rq)?UJ>7 zy<=n$7YQUA9qrHm0FR`;WmJv3!~wAiZBA*BRbesK+YB)F$*+f>rF8`=OKTv5@Rdl? zFB`=F0LYMQt<~_H)|P-u8!XLT;qEnMQjH242nmf=xAed4Kk=S$x*%ukTn(6n4wRb4^<8lYn{(P`k zY57x6S5!8R?KAj*AZaNibw8oCtr)BOFXCn89B$<{w5Prn)HM{J$|r9YEX>tveQmn6 zIHWfX9mcJol2v|O{{XH#qq0CkCh9}sqn|0KvZ|p<9i~|gxZw~~2U9*<81&WF+VTEJ z?-kB>XIfOXC`l2d^O=i!;mVz)P-Z$o(j4(1f(lLl0O#m%XBjZHQB&5oq^Y$h$-jNXJfo|!2Cf`Q^HxBHBBS%R#LJ7 z(vuf~9LT(w`y4%ShYYO&y0%f{O7)v;LGtO(%*D;Hj$@dN=O|HIDN>srFaWZK-!JHV z%xN@$;CmbumTb3aA>HRc%*MCatA_%79ALPlY7S zwx5)KTvK^dOQF(QUZx<+ay3u$8{)v>D&5S$GgT?IE4v9GN${x>03SRv_Qg`)5@nS28j=*<((bhqwC(W@eEL}V;Ee63 zYO>m-jXIlYUO5WXn@RK#VEpZh?t_UOuHpBn9!94SvZOC%1jUD>li`kMt{B)Thj>Xd z`%4N>CePiaQvq)2WeNb5s6rDveFhB7*;Zv*uZ_g1I-rm|COQ2_K3n0JC+_P~wjNPR z(-1Vw8Q*K~_CGoEd^|>1O5pfP14NnenbZ_7a~H$EDo)+N_*A>uEoTpB%BBlYZNjeY zYCjS|-T~hQd*wz--ld-x!my)adPl9XAmbKLGnA>)fVS46Pk5OZm^}vHQPg42JIE89 zWbRc%dR%EPN=C$PJ};gf)FgmHP+&P~-?APcZ$G1Xf~16{VS2X;Jm76R-1YLqy+s=o zIm^woq^&DXvV%96k4ts>2*q8)^{e3CB2=lu+KQ4y$N-q0c$gxO*yAx#c#-T@6Ll_h9c`;VW+II*twshZy8Dd!AvV)Kl&Gf=%s zPy*IUjBOLVl6_~Om+lF!{t2C_PU`Mz0oHYaGXgdcAbI`HD~y{uPFU`R&ZMkqg9p@G z)9>@1yPC6~W$n~3l_hZsC^~|AkKbG+t|I^^I*A1KMrQTGkBIx`%5*8fMw@BqKHGY4 zczMq=R$j~dwRp7vuyuoQMaAc@?r|PnN@^)I%2ee!ydC;{h8@^#HJmb_2Bj1oVnG(= zw9X1fi3lMJWG%6HQeFrxX1O^bNg7~80|@|*qA$0Xm9W>E@b7lv?~({e@Boq`RdLU# z`eDDaoY(k1Y`SL%RXdjwWQgQXPp_6H98jj}UDA&1rAY4*M1ymGm;n62!3wHe-T^s5 z@bxQsoiDrU@TEEggBBMg@4dYvrUS3b>bP39$O>QL3qemk`C4c1(12$Ov`b1*SK?ae z5UX#`oMGdNGG%5|KJY@5s3aRi1NFTAp0d5y?Ik;-fa*kWu6T#3T?;y3pE)tocjtaY z^^82^TzZ_FGEASqP}3llX}A%-+v2Fn>)gq6XDPyma-yXZ2FkU^)O@iZ%PW%YT3b+* zr9(&xDbzxvtnX?1PWX>)9I6=niaA$>J1yq)z58k-Rp7*5~QU`u^`Hh#PZYB zTMCj*m3a$6u!ry{u3XA^_PZsl4ZP#s-lT*LK|U$JSU=|y+><+Yx}mu`lw<^v;&X2b zk1@5swllS!$JLhRP6jo1DJfVnVhB9}fDHNh7%>mZ-Kogd8wJFKYJvbB5jPTd{{EN) zwf^R$``Bo!T9TaJ@JwhU`16?6)G1#Un9kWIOrQ_B^VR~kI97v4Fh z^Aab|eX(TrRm7~+Q8tyYQdA-&cmYj;-aSuI^5-xHrbhBzMMg6m-m`}@T}Y_#vSJiL zzdmz+*Am)Z(P^{%oS|v%-BKZ7jY+VNgkMklcfS2snPl!M|{yXnIXRa&t z&@5wZu;}hjQI^$~ z>NPiI0->k{N0B!F02pn}a^%*xsYxxD1)y0|8()?#jI?1vASTO3R3@*9>T-&u08evy z2K>D|hu;X*@e(syU_q5en~SH`{{Ytxna>RswB+hK3~Ns@h<;&6ti8+lH31}%_rR5V$9f(|702usFEHxgCxK|N0_HD(kV)TIIUnYaV` z;@Ew-P|V%p(@8`P@#Yj=K9Mtoz>|uu)J3Fnvl)!WW0#9Dn9OE5a?EBk8ID}D8H~nb zmn_C(F_`7cF__F|IdaT;0Esv!bwsQQUrS+{rFxm=~ z4D=V<<%#Cj!4SDz2h^hxyP97>y^z1q{{SWS{{Z#|;r=_|P9Schji}sumo&=hid<7` zON1pWM1!cN2)L1_XjTEtfBP5?-HkGwXDzO6NZk(5tzZ3e3X(Y;;xA!{{{XPRvi|_I zU$X}nv7d0Qer3XKx}dkq^~s~BaUlM5IIFel5!^b_GQeiaFm%z|<7uJ!jtsxdNM%p{uv$iCk|yw&=PBRk7Mz!VOCwcUJM z?MwX&dw=YS*ER6fMNw@!zYbfI{Jt`fPoX1xL3l%p`*Zd#&Q#~SaYjOm>kC+X*p(^q7l>wDQJYr(v~JVTi)${&b|_R^*YD4VD1MlD>!g1Z9tt;*rdzlJkJ z)d>owC~bEf!cXcWA58?!)HcJ~?}LJ~UF#Y*jgqvFsKWSZ>}&qK%BQHL%XrPD(bORc zZ@)rJ5wxgoH=B%oCG2O~+lKpj%ad5nVMm!X@+1jEfh5dK$Ui^6CH=5}_C0>jJ*u?w z=<=bJyrNdoXdrh=kLCavnB;Lu=70Tou#UdX-|Ln1&uuLZ(2}l*|a&fiugOb@0DsovwB^rr6G? z7n@VEKoxXFN=1#yK#~Z&PumJ{&u`taaPD%P%Z96}tEga=(7aWx25gjS-~RwCX8tBd z9iZdnTAxp>)ai~z{SFF?dpQo%yCdK%zb@?$FL~P9bRmy=?#d9dG=znu!3JY%Uw!dl zaaROz&uE2sV)3-y2B&3BE3yWzZ)7E_9PxVC0xP_EtU8H2emlWbdtyQuL zO~;GH%KHOyZDBaL=rRt>du5<*uZMF=S~{&mNB*F!2-pETa*}b-gTqfhZ_zRO__Y!j zIkbC&!Cbq?e#?AU*rT2G6N=(498fynp7Hu|AQfsP>WMRH7Tzu$4J~CRP~yvt)n)Zf zXmN*;t+0_|lAgX>dnhBMyJQx#OH&oY$+=ysgiR?eaf%$wM6c#M47$+(+5>}QGGWkRZsrj>eD%F2*ZLb+bV5O0st-xzj# zQIOWVS4x7KSyL-RpuwA+%tR7klgl4Jf7Dz3DkwW)rhkceMV4uEl!ZF`Odx=<(|(_? zOJiakQyvU*KYOciGJD#`<7>4nGuP4bfBl9Qcicn($VG{VF*eC1>r$FR~ul{=u}q*ZqK}Jj!Xk*E)T#dZwxxk9jGZ ziJP8V!0UW`e@|^(ckD~ryZILp3Y@C8mEzhKR#MxkL9&x3>E#hVTTk5&VSn{e?Awd@ zM=#-A?<}Rr+kZ<)b+o8zR7Z>t4z5<_O}ECM>S6wi{15)19hbkH@SC&>&jLI8I<^zy zJm852{{SPkt$BSiHfnU?laPFl)$)Mu$eAqCrwtl#wa17P#nR z9~5}s*;}-aVh+b*VsXOSLSdwhH<4wNy#u-N_=(*E9i93Ix4kW^4{ zO#<>>KH;|1TUwG6-h>^~s`r8W0(iGM;o6088{F@AlBZBA&{PU!028ZG5O#wAc?pgCQTCE}qkwZ7e8!;+w9Fb~C-G%T9vL&rV9kd2 zj8%Pyc8cc(wVZIpWeIMfikDwgj;xI-)CPh%oHWWtaX0r7o)oUC@oTYE3@ zB6z2Vgn|W#3FC4!`MNaE_)a5F4p#d7aKyCrt*k5VK4f|hvPjRQUx3r}n0c5#$V9gCJ zNEHcR!s?QtB|t=g4Yu=%wv;f3l4Uj;F0qr@7KdFsSaf2OZrArbN6BY@LK#{Qq1PLj2Ow&}nL&Ur|@mdzz-&1PR zbOexKk*Y|APV?a>X&7A5x<d)yU4 zol&VSYHpqBB}!2MrB@PCLA=~!;*SzmJog(`Q~zv%OOu+O)hf z{UgD;4BaJZT=-Il5~1RlAdXXiKuEj4(?_+Jb50e>65`u(qLIW?sR!apZYO)lAalRh zA45AZ_Hy7nvpUZ>`DpL6#{*vOz$umLLGdX-T#H)Uj)rhFQ#u#Pr5*VCt2GW9T}hq9 zfkyB4q^BQeA&S}onAWSo19XvVPTi$u?Ez1^UQ&*zSe1y0f()B^a~~EtuiMi*c7ugDMzOG{ zYPH2k5>fD5R@VpmZ6g{Y8kMZYfsd^(p3=xQ7ES><`O4@F-jbiRUdWtcp)I`i8q-$6 z@TjFl02^LOwe|oL&kenf<>+U>%o?U|{{Tx&p{yfhtHMEx*sq~g#WsWeW<1D(B zmAa$~<~xUA5TPU_2#d%j-YM9|__Vt=?DDgQ`#Q`iDs_9q&o6i?2}-;sRX!cLZajp~ zpp$m!pUwXOJgvF4$4e8UX9Q6CtK-<~wdy|9dpE1$+{KktR%MDUFT7b-df6TgF&v>f zuYLOAuiB5aul|o|{{V#3uet96lEM(8B_QmO4%hk*ttZ&FXy;)asAU!X@_pAbcld2! zQv5oUKngmE07>crGk#~Fy|cS9r{k{8Q=ZbcS67#Ws6ugStc{e{Q@~O`bgser*Du35}k#1bx+xkXLPx1 zC@iUzBpE&wfg3;rk>`qc+LtwHq&V14r6e25W@2yi9)n4qQ+;LiZkk714V6?j0!lO= z4E?c9_UqXWW75Mh=a?RHnB4sW8t@H+!e)KAiny$E3c(UUV^nCr7~5vpkS&*bc}T` z`aSzzRrWvH@^Wm+1x@8yiv zw~#UjUl%4oXv2YA9owg8E%3i5`k?sC59AzpQcq|e);N!` zni@VW$y<9e;n#|N_MInRbd{e9fj2Udw%6XqB%P0YK=7xumO!WS>V~Q65`>2vTEb4C zE+JbIE%~kosBhpWDd?K0;9etb%B;S%smq)$jSeCbLM{~rAli8o%|s4Y_P_RiU$cK` zG}-S1<~3PswFE5FBr3!ze>IHljUfKKVeuLxp9C!CLfGC}CM@HgS7koMcK~P1<`k_t z_%YuEnGT?;Bw9L+w>#c(KH&;lOskD3_}3yrQ%_VB)q6nANKTMIt6$86$>Q;wNkWSMQ zX2Wns8+!(Qu08B0i8vmy1@*wt!^m=>yJnUy;Wpr?ghP3jY95o+zMoUhS9XuIKKTt_^F1a|(Veq@_zPI_WhKp9;{m zAQDd2(X{Li;Nq+HTFW*L1#CB%b0-Sr5W=R5TD#UI1{n%D5s zS5(4j(y)a(+K=W@7K5u{8(Z#3wm92}KaOTKRJ8|7b%2D*f`T<0YBRsuAo9O2@sG6Y zoC?lkN1IfZUdz;$n9!ANU}6clow{LqT~wNi6?Oa-^ZIDaFLYw^txm{0Tdd0aQB5^d z>#3@)Di73^!b+@SEjvW)0Q1G^+cjHRhD}45tT(Ed11gJ1GG-0T$ISJ|1NK+ill*zc zxog>LDrLtWO5Jpn_!1T3i8cUo-rjcZPBUTNAnaY|nfym7SxfOLl^7bgZ@?f2JT@EuXtzpX;etcHmmIK~Pah6TkCDlQ#HSfq`i~BFN{+IQZdV5TsK?CYjuW39^;xeYFnADV|0hG&!;wAwKCfkmp zOibGr{{XY65@vmr9iVn*${{TLq{Jg4_4V9FIG@NdAs;sC&FE% z(RPzUnx6N#%qf2lzXMK%LyQ9KTl_aQ- z=AEs`n8m%F@dXEA95qVg7N~Dam3m41K&ep{*o4UuB+ae{CR}M>m2vlH)cLbXWpxQ{ zE>lzj37HBACvpzPA_g>K>gm{hwYU&Gg@_phn&3CsX%=e+)QhoNryA^Pk1YyTte5Zt z)^!~KN>wW43QsP!z?ts|FSJ~l%BmvZu5BtxiabbpF|-8_6oNfZ&kFWO+GbgqzfRi< zZ8?W@d+KmJM?nE=5CAbFmGAt=67Ds(PWN zB^3)HNpUbt1sMd5CinPE?{9lA#x$QE2IoA^!kTZ}iB^ z>YU9u{{SVdVwp9LGN)-AbuFdkt$GOwFaRAy-5cEFLq)1@NX0G*1OEVv;@j-hja(*% zNB;lQYDgbCbQ?zg9euD_s(iaMk<#1^y@`?VVk(?Dy&~42wgDsm(Z6|NG z2(4)grY@B?;kh^6+SfdLL(nCKh6+;%M!3`YiH*$v0JQp? zbEDm{f75yY0CJL~tqTbtCVWx`k|qw_an&BvG@;Ce=bMdbLZS%Ng(S>h=O5r>fcS}P zsN=^L;qLW2a0xn6Ir(qvwm$FB=KMoCZtNDP;rB#byVJ04(?5#S)3~LjEmSs@EoEPu zlu7fy^@EFItB6B%skW(FNdU>(37(Pn$0YV4#z!upO)?xxbO9utPz(?T(I5!_0NpV- zyziWB}zh)36rGyktXqd zq~FU0WSnT)Ur%}BPTPVLd5(C4t2S}RTtb#~xP@AFBdzy7U2zBEPSPC89SBl_P5fyg zF&yKN$Ij`rolGmHiS>Rw1=KW|i#eS#Q{qaM;u~Mjf85?MlMW2I@pPduZlxPs+j*Ox zrYb(myJkgRl&wlxR+N;l z;+)lV6wSWU(w#bP2>@OqC(rtCY&&pw7%`ntq$pfzlC=eEKQ2+Y7RTxypSM?~vT`|D z(zxl~3l0x{%C~nZdn9m$d`UWF9Wa>(?mwr>MUiI+sY{4jlikEb$>=%n&wcToq*Ecf zrLDb5+8=N(ei6r+9gtIpA+Oo<*{3{X{G(~069EnO6?Ov0OzxV+el4I^t?S1>VYcAvuP z;_ez$DZcq2#F3>!^RYg=Z#{9uJaCGh5aTyBl_gZp0zwH-F}IzC&Nj5#v8jy0X>4e; z4C(a&%IwY-;ssRHr8?xQ0M{g|WBGxDZO!p$a4!_C52Wi|=^Y z5pd-VT8UDeM(PBp=@A`%c0Ws8c@AQvIwfgM!6cD?U%kK1K7UmYPECWd$(!CwU26Ar z=Ch2ow*c_05fW^v%tCY`J>frBTG89&v-!9D!%@b41Do#a2|Y$icwFk zAue1C_?2se%G2~1548>*PIHqw(f})O{@F7L1Q7rdF9&1Ha>bfw)8Ix|pQ=|!*)1+9akKW%)rHs5M$pF9hT?tZujnO!OL#5;@ zKp{jK5IX(2W1D+m;2N$K&xK${hDAz%@M&x&OcEzan_KrD}Hv-j8uodFc z+0$dW^Tf`pCk2~n3Q~M=8yg;dF&yC>h-IbbTm?PK$k!TX#9mFTXQZD~iMCL}t66b^ zl_$9X#NA@uPoLWvy3g&ntE2FlYPc0VNszqI{{Xnoqocc!q=fE#{{X)D<=fjco_`mnJ5<+-?79}@t4L5XWbGnCk4#ZLuW+Nv;?-8tjXl|u2?bDM z^S3kgK2Sf??&<0VFVIh3X4RMv-v-h;qTI&>)?k`q?o2Uug{PD|v(>HtnR&d^Pmo}oLtf*@6i05JCc@lYJ=9g!E zsjr22rLY}RQl)9Qu^>brQ{|4?>_@bQ^Li%QF3WI`2s5VJjqQ2oZ>Bf3Q5a+oZ*`IC z8eti}6#F;JsVP?C)RdvborR2FXaYHP`(lswsI7Z5;pH(%RiK2D1f434z9D~D`-#3Y zrj27xX%7m;58O?Wo*64~ zjY?08SwUA@e25!wd~y$M+;3QpGkM~NLLFHEd@->3Y)pEMgk$JiAlbAWt$j2{Qtjgu zyCbsh7|HmnhLEHN9Z(afL?4%1b@^gF+LvQ&WlcEc8%Yc(ful`;)GQBM82*^8J&}7_ za5kD{xUTIa1nW@q-|LR2re(e@$;)mjDN2fED-#D{uqSWpjBQr<rJ<%uNpDMfNg~7h^6ULER%g6!GS#WHEh$rArgsE?#lHB5=Nx?gZ&;9r zRG^g$+|9Q2{{S5^Ji0eM=fY=2(owZ>@h=zA<}9Ttb(IAZtwbM)+TK&s6~`AmTB>uq zT7UycTXfw1#=zg7_`zAlTIxcHT9l&~k_=mG`gG@lhfCAI zR7TpxAll+ex>{Ds9#RyQOoOIvw*2k%!;V|pj$*=fs;$7J_(2XT$%vnepu}%8bhd>7 zsk@j8Ab?2ZIt*))G4HPTWT`s5UQr-M-nh{bG`HLn9~&zQ$7{6A!!e~vb>|nWnIcF0 zVW%_Ct17A%;dR3#ti_<-2VdqMhtnCt6bg0FmA9&X5_w_MJKFbHNokGur9Eb4flEaF90o{V?d}7qp5`5VVW#n(1rvG7=KEQ++A8+o;3lU&T4z zP!kJzv1qv|Ps(q;8uDH)ZHo5Us7Hw;+T4})=ZhkTIHGedY(jOU#K2adI>_|HqFHfDYB#p0Q`)`Bso8{y+tZCxu!`IBYp3D0iEQ`*V07_2Y9Bz z)`bFf9qp?XcM|0F*-cuDl17` z=l1o(hI351XOyNUIRiZ4kLx4P50VfYVP^jT<3mo+XL7M$_9Zml4Z1{Y-fzGI&( zM>DP)s?1m=H7iPfDH@eNb~nX&O(zc_h?z3T~VbkxvoHgHtGfW zU;N{n8LPBS(Z~%nf~0l5o#uV$N*&bUyaEhu)SoYr!I@_QX0(S-cvYqe5`Hf^AkG*V z?H4s_olZlGOv=ehR0$T7K3}FaXW9;?mZ2zcPO=JhiPWj+Wc~KT9Mj|`HaWliK~m>f z%=m4ztS!#*Jc7JMFgec9XMAl(+ZJU+q=k6`>pyx*SZ5qh57lIkH$jU!Cn{EyPa zdK@rjJ*m^aojuN#T&P?bn75SvzbpU-LHWKhyky_mbM&u&=VdF;hP|K*K?riAN~HKn zJw#q_^u)6*?dp=OsTB)pI*iG<5M~bgN3J;;&eW-r?vN4^Hn_qMcCOmAsV-@NYz~ng zVE+JF$DxJCAt(O;8J}&1+DhZBpFD3uyRwxXOA3RekKW$BaR=j$0;1xCsla?H(loXQ zj7GoHB?WemsUb<45|;y>w;`Kv4lAw(_2 zkOb{>(--{)SC;1aT1pVv)hAE_CN}!*k6km{g*=+MBRgbo3y=m+m}ThH<7!R!R;2?6 ztjAwJ4n3xHyzYeQBJz-YL+|E3qs}^0in~2wZLdlLV|`%>Pj@0<^cLy)e8kszzXZ}y zr6@vDnLi0gKU-~nxaR6R6vk^9MTJ_kPPLV29|#0k$-i7`;%gg3{wE+62gN)5rxT`f zifVJ+g(Rtd6fV~te|<2h%ITcgH{pbd8x7AtpQoM~)c8aAmLAFzPsEi>As|3XVprk- z5x+b+<$P|o)A)`kq6&c)AyP>b@*ht;K2&6sRY-)PzGM)sH~o`_e8-0AlF3pWN_V+Z zP3_8g-hN$17VL@v4%R;>_*q}YN~uba9bTQf=^M}W+*=XeBF$=Q*QE+7GE9IxI8QgC zc8+v{re?$vQmfccPF|Q|s?JwPrE3FjP!67=_#w0^BZtC$$t#_rtP6M*BqK>q{OltD zaeix2np7#a+wdgq8j1bww$X;hc+Cwt4=J(ELBqyb#B_BZ_cZAn5oI4kiR6rvY0a>1 zii*=@l{LALY$bZNrb0Dbk~Y7VABP3hQYTuOI;T$C+GBnH0InsuHeo=Ai-b0=@RK6Z zepcnn4|P02Nm$xJQ)*IzV_|YPk6baWJ_;AkcTftyq~T}kTuRiCq=-l;5pDVT;qkuC z$fJ_lq->oe>KE(J>1;_dJkF8%X$oz{Oo<;62hWlJ0G}%xg!m17Pn7CH9S$l}pr%x{ z4nTE+BhLc&Gz^6})_DqruA^@$UX=miF+0eEdvnBRh&Y^6w6rBk)u@^12>J9Fz4-Il z;<~8|aizADsz?hbkO$%<^~G^p?Aw`|wWZXl%_JnL8m}h&_rn{gh<8-SBxG)J$JJ9= zhiMg5HPG6W6(T|p!vu8opIlG-IqkLgDwC~FY6=>Qi~7LBhZy@fvqeMRhFnvM+(w`_ z+>Tg+x!J`=Q20n~%`&M4JqQQ%!TusAiYkxnN-3+NvJNb!;sz71apBQEb{p-5Gkme7 z(!(JoM^eUu5>K4;#UsM`quDqKD)>yvF&?96fzoFG04zZ?0G-jS z$)Pc2s#C)}e_z5?sauXKOJ>GmV0E9=8(V8)=iqMCY53D82wSa{BT8XpOcG3y^FLl< z0is^aDKnI-@f&f^4$29ON&WfbGOi+jhU*gLGpg`Hfw%!*%5S&$>2(SsoGDEtVoDW-9k~~_!6Lz18Z&n0G0m$-H3gEV&ow~NnXYvYPh#9QT=-1-+?<`daVgf zLR-|4a!?{f$kRX9rYCOajAk@Sc_UYaGB?v}&fZv2-USC?X?k|0k-u!2`mRLnle16Y zY&@-gCcs<(Y@TY>JI){+4ae?q-fJwXN|h5DN5pS#a6fm&>+M63R6R=KnM%}^_y`H- z=4Qjx405-)yOm~YZPYlOCq~DS7Z=`b%M@wp%%WG($)<`%Zf^(WU3sr)HM~T}yUw7X z0n;#iqI~Uxcz3Y6{Qm$h_ma{=eljG=x}Em<;iIwKnT{sUSwhn(B_;^hsEGo^n{UhW z9)lgH!rVQVWIP7T?lzrG{{Y=474g6cF|Z{uIEPUEDJqbWV;~Lo9LMX1Jmsp~>D1_2 z$ncAeWI^7?ao5OsVp*KWnxqFxHjTw}1tQtv)=X(|iAX4bk~*Yv{cJH`@xKLs4S!fd zTkgqFyn|uNI)j0GG0&?qbvD9}!~&9LRn!C5o$a8UMI?`IBz!88~BVAf46J$iT?l_VW*1tr}(Z|+B`+(&Xn&lJf|9;ifh?cuhwXo z`jLkoR9B1hIH^@i zk!^bjH`V52ap#LeBH%YG833N~Y9JUOLb>lVZhQH4&n^YkYIz(Q140Le^HpW_h;2y; zO04948!l8;cUR@*J9We>z zZS8zWHVnArr@Q;_-a_+(5#1$}tyWl2Aa0^e#QJ`?oo00^r_0+xD%#gk(-JLt#2X}| zURhe&R+39`Vzm=D^NAA%`wL=6UtXG&wuL9+lNakC1BrDE-tecAG6}V=b6O5jP&FsQ z)Cd~9QONmXvCL{#s>N%SDKpgH_tzE=6jt{+BjIXJl@tQKV1d>N21MG^{p*UFm~}*V zi9%F%=@W{W&>Fsz(#Q7sP8=UxthY32z@1JNgoxP!K>CP~OkeAcoa|4ERheZ?qzzr! zQdEdH8h0_sbMly($0y~r3oo{%4}$PPxd)f|oL-%S=YeWlLrRjgr@~{@Z#D<&KA4AJ zAGXR5RB0@=(RKNdq^GBISA|Wal2`lYaYc6D#tzkH2w)WHY;3hhJ*^&*Cg6JF*UmVE ztA^QdcyD#YfU9yMcJXP5^T$4Ro0*Kuh#y*(l_4vVH3AZ^3E$KcJx?d zeT1(EvF{3noho05=^|2je^1`_of-@Ey&N$)9H%jvg{^nS`7dcZ;bPGv0F;5K}jJ~rC`PX0DpeC=^tf& z(jTVbDmGnlYC|hfu_H+aNj^l7qrbz`9GS-%;tvp|zVU7;vJfxvYWPQp+>Tq%JY3$+ zdEuqY+iyZH`iRv&BLG3XK?45(*AVOB4~mNEp#l*4T}AB@(a*a&%_V76(}z(8Lex4A zb`$B+@$+AfX?u+7pbapG3PMKl{ds-*IO0wO(WyU+PNsD%0Cd_GsTUf8dU$OX zGxMXhoQUNdPgs``-MZ6?0DuOVJd!!s{_l+6LiRkz;c0q1#>(fqim=Gj0O^yeV`#Kn zm4Wrcg#!U`sH$ge$o`x8_42@U>;$W+PLN0hdg0cBo)e}72nTT@-8tLz>5ryz)RIpK z`W6XH&oCkssU0`Nr9BXLQ6V~0d7I2g+xKh>NWw_)4LX6i{JZ}EK{#@ySz94VQjVgR z2>?L^`E!rc&k0kx!;+L?4Xa6Bl@z8(1P=(@+?*KQC{onigsW0gcTTBLx#_+%Wwmzz z3DlDWNjsQ3-ac3=o|Okm!qwsM!6(L$cfZf+fOCKdTOe@ANfWJdZsd51$lhZ27*VQ3 zDLU4nqr#b)(n+``dY(~*ooz*M*b=3tK!k{k+($fYmeV@YTtcP^B}pU?oJIiG7P+=^ zcvyy#+0v9I6JiO}et5#jXRq&7x(|l;O z27+}BHi8E%acQ*3-AhHb7KI?CNts2AX#=PD!VWmuQk5Etf<(=Q!JBiizW5}zrJ_^{ zRT3iLA20YA9;+?xQ{hUMl%_kl)Kw4$+^|h=ltc@%R;twT)UuT&!lJWj{{YLy=k@~y zH%^utFqJD&<@v31>4ebI)%dA#)cjL2bn@7LoD$O8ZN#BH-R}iM!ks^--^&bKocK#9 z6qa!3S3e5dQ>iR7a3U6s)|v8Uw= zM4x(a0+5!`c_jFNHu>Sv=L_l3fIcpym7bz`bLD(6jM+i$K&SB(q}?Xb&(qd0j$y>h zTV2~r2?_;X9}zH9%zW|bj`&T7Q~)hJr1MknFS&H-Nd>@6q!kN6DjTaz^E}{BOXFIM(G5{4u%E$O>OBa* zA%^bQ%PO5UJc6DTof$+OC0-#01ccwqf78nvr!;Y;wAvJ&@x&=*BjQR&hoAuM`%#CA zP8?IU2~yCMraTBFLFQn2e^2)qO?fpvJzkv+lJHS-Z_8mkjQz2j)&$!6tt$-*!dobL z?8cpHRHc-pr%6ax<+m@d%jDTxz-e{299@&A#{}x;Eq^KGXA-QFDND};H{GSX89oq; zK%Xt`e0j&~3}gyzwF%HE} zQ+=xONz7PrEsZL0lz>S1XZ@l8o>9+yNV`VQMKwy=Y1YHeERZH4Am5w|dEyIKl{=WW zqNHl?06_DTB6`~!FvbNEvfSbh)~L=|kqpURKNJvnC3A3Ny1`@l{&O((oc^~ zk$Ku|c~4J6hfW*FTc!L(1j6rbezxnNWh}$F>yb~mUPQ5UfH+Q}0hdW!!eBl;Wf$t7@QnXE$WDKv3+wBL9jViUqGt2N?4wXbkson8~tCUGpR&%N17Y#$0?5RpD}=xy`zzB{Se zBs5WRPA^rsn#R%IB}qvH!pM)GUpVR02C_g2N`kd0g(F1xL<9A_dJjor$lmw*iBVRh zkVz_00KrY~5f}CQ$a1=H_F$A1rAbUC#tKz2*P;6km}78qrrT?5<&Sd9mQW=-NHOB) z^}m?Jb1uqNU73aIZOuxKq@>yi^u(u*Um*=JH1~uhS5#^|?W=Kn`d~f~qwgwHDDkuc z$&siHu13-?jt(@HVTs%LQWgm$x2wcJFa`FFT)(awUn;Mz4J0V{VI+$SgA-|i7?Wpp zNy&2Ol%=+%B^rq<)IVOQ*8c!leG|X>N1aNQ-Y8n}Af1J}W7x(riZ@%5d_!K8B3m;P z79Jua{{XE#x$lR55Y4-aRJ;`0l#~Y2HKy~)J$8$KX^UqBnsu!@leYJXCP2_* zE2owGN4z3ntn!{?W3+PVfswb8nE|KeUHy!>GX&~T@iZW=WlJjZjj!dtCV8e&?_uug z#VINTAfSlVXi4&e=ZN268E(9(<+!%@)KHfKN+mWOPr=jm7?^PtV@2lM3hvw1WeX#b z*vFwBnE3BipJcQb>YvjPhr%3hl^3ARk(V=AgaWU^&>&cCAFTaw-P!wSrmk+G)TzXf zvO?!cOb7g?h_hcnXOAAmtkz#HExr>8& zz z(`${s*2G^UQ|xg@XcXR;87VMLw1AN+dHkD|E#FYY} zq;uPy?-Pr<)B{I#BO$k!5rsweh_u%!y2e+j+H%?o<9$9G$+pV5{%M8Cf6%p$jDw5+>$4leCOA@cmMFf~PvBwwijyHg%Fg5jz!FMdsoN=U`_PQ8!1z zbor$#iA$M%V)d+@M5(s|gou$LKpwoK7e?vmYpVQ_Y+pMcFXf6_?A!t%&;G2)Uo#O_3QROS)9zUhcn^;pl z%Ps?DDM%zKBp>`p^S`OXws%6#UBV64sJ4-oth{ajEvP40B6b8I1F}g}?}s=N@O*^} zBmsnRn^9IpJN1;z)Rx;?!9vMeLR?9XW^ONe*!37Ah!*!}d@-IW$Mw?X`HM=g;TeS* z0t$|=0@4RQP<)eU$2Iovk}9r?E6jpb-R4atWoaVfB$E>+V-|N~U8YuM-IMVBMv$7^ zt+%q*$PlL#g{e0XE)t}UfA;xWOwMvjZqxV;Id-Po_b1*>FixFKg(*q`1e;En^4bA7 z7TYA;{w;IJk}a*~lylh|ikC>LI!d~fsZ>SEaM3aN3Qnk!W8>6yT;H6SX!gqB$MRkw zqT(tgH|_)|KHF$If^}&I$~`%a)%B_J-YKlf*QJ+Tr_8cfd#aQnWcQ6~P}X3Wx9Tx_ za5oSuw@%Be^2ZdHE0RjkR*gE6Af$xqkBK`*@zQai=IwU!ao^~(qnmRCRBy5U6i6BR%t4f-9-js&Xg>rI<+0Iyv?j`K+f?cgr%@a8mgKActx(;$GDhkW%PVy$ zs9Mzh6;o~km86jxRfl1&}8Kq&RQ_$5V#?rMo!oeya2s#!woxna`W?=a> zD=z14(QDF_9Zf;-yQM?JJvX)`+08SJw2Hy0%4CpSX#}V@HVR29J|Qv$ndgk-LoLPj zTF{3)Q?v3@J!M(UvhQ_qDel}tkhv08n@UaNefitgDt;vF(XIyKMIn&c%W4X{yZB0a zLA;4DPft8ti^^%UIwziC?)jRaRu+W-l(-Yi>wi<$(ahH`{{X47!A$5^ytY&=Dpx*p z>H8P%qnpPG8m*j4<+rEL5(*r#w-EC{r@MAaCR`$B z*C(#{U}r3Los*$ymd=n$zIu1-{d(ZKJk-{&m_J|#-%h6Dk zB-=!S6$*<8vb7WB4)O%yhk`preObG7>I?84iq+yw{%AcdhPO)aH?d~Pu4{=86q|cR z$sKmJ3v6jp0#c-#c)Hk)$;7v_Zai(rsd8-5N$x5eErq-BAyEQJ{ImDQoup-lh$<xQh-m%7d<7NkRswhMLyBy$6#8`?2u?d%pa{4Ccr-r!WXjOg9r zc456rOr{0Hf&dV2VR2wF0nQdtn7Hs(r4o~5x^#=_P3Y0JxO(l+5{h{V^ub z=~SwjKyY_z3LOA3DYW_hzEN6nt2or94Yg}Y2TW-Z>l2BEWl2t=>X3IPej=gfP8Tz% zs#@F1Q-vzfc%GlsD)2r^>y5pjX~ObahFt#uxWz`G2nJ;#Ha!ISa_M;g01f9s&LpM~ ztu4FYBgtBiuKxi1eC>$`Y+7>)8i!V>LyZNP695oNweAJ&iOcrL3a&h~f~lONG)wgj zx2&l;2?Pz*V<*l`a<(L#Tazy&%AHv{lKzz-1LBQcCOLKflL*b~e}L3`!(l4Yq?CmI zzI|^PusDXH981BJwG9XkG(%!w2ot

    Xs%7~zh-uoWu&`ZJU`qzZbLOjHbn5T$++i~wS@CL7QdL} zp#;f?c#s$;gfa!{F+!BMyP!yLiLVveq*CcP`@ z#{EjKWW8p8=f2>W@d&yc8W?^a|1Zvm7l&Kg7unidWtN4u7go9by*1MWn+=vPX0iFB z399{9ch^70w>J36f5AJ_7jwD53+U6Roy3j!@wiG%7`K8onz@)WU#Q_GdHcBeyqW3K zFki@*JeS-QFP9Vw49qs%@9eo83~vy7E598bMchC-j&6rxVxQx-V@b)+NLSZGlfn_R zy>MN0ym3r&*s9bO%PZ$sU8sVqv9$#zgY}8oXy#a^o9a=UpA6F6<(KG z35>_^FsFz^fwA_kK35;ZW{Ix!BiAbZ>o!n?RQ-XU&d_B!@_T6^FfD@)#1IzYNla!^uVGD(EtwG(0m z-vui~LxfYbu&h0CEO9RBF1dzUKz*v*$M5g|=xO6)1b2rv!?y{Uj!?+6evxSx6%!Yk&5ezhpIm6wRsg;RB8;jgUlc|W$Y1r%j_lc`4n~EJw8t& zWJXP({1?LLzv*el5w%(7U5+o#P4;#+to4^Q%QD-zvr<^ zB<=RBLHxOC9cy)>TjCGN!+Rlmj=ZiKS@o=XsbNpu4foZ$pVgj+n<6VmQ0){ z`AN&d55&D7?&kX?EoBE~SmicFP&!3XD`xP|vtEgY)H_`-kyRw?$jrrUM0H?ymtIkh z=gXmkenlO_b|~@#Y@aw9-EL}BHNX5_`HAw?6;NfD>dl6`MuxS1HS+hwzsO(6_#m(n z`Cls6{m}l_GRHlRFpMph?G(MjJ1}j~F9<53TX|dCT{~EvQqNQWr@AfwDXkVY(=N<4 zykGZ22ZCP%@ z+m71z=s#7ht8P=3YmGafgil3f*3P!+=5>yTNLTbTS{U~`-WEZkp2RNt9BxY7M$%Y# zK~&DaDgGkAEN&?;&m5fjS5u@tEN?AL(Q#aYR-?MA*(BYEJp{Z1%TuKk1|dLgfZ6N- zt$4$$Ds1g5J>9g~u)cbS&RN>2XhTtx;-AF=LtDpW*RZ;FH8%}2tIwHQCjO)d=$}au zcomuwolNQ>{KzenG?UhdK8ZgFmGbw>7OD$b{c}w99;WjlDVoObFL)w#W**2W)9z8U zz_-8_;1O~B^{0bQn#02*_7r2^vl%83>p^k0VW|n-tyJon)SB>7tvv#sSx4kyS z^b3ti{Sedq$oN=O59nJN3ZXxf6U^?+d><#`I z4vu^ekBQYrcrH_&)A8E;u(owA*5onOShpL;mMpB=XWXyvZb({x1wp_v#Q-ils}|HsMUSM!!ix=6F7EhWz+v!v}bEgHqLn`y3S?`r4@GIzc@ zBk!>4j{K^8W5yn`Fw&9umiPf#5Z?vsV_Pj4(_710gT6{!jj3r_)77xIyu;tUMaI(E zr7cTswUa%Es@)}OQ?6x|WmfH`*j>_=aL@1&)LHy+>>PX-;aiE2-&cTA%vDa3FI60u z?$M$fOszK|opCF&cge~)4KvT@mMMQoLsGv&#^{JXz&CLNnA^$eC<$=Z_n)V6WJ|Dz zV}m`z+0@?Iiq|!+cvLf9zon+LZiA(Pb#l?szq9q{th3Bd?X94Vv0t@#%k!Wf{9mL6 zlu5JD%mgk4!=1sq#GWJ~%SUNjX3x~BG(Xgl<=tsY<6xp;KRg%Wegz~WAZTl%ksHGdi9Eo;Z> z#@3cVzr(m%z2&OEM{H(b5?IO@L0gH-A${Rq6&rcurQ6kgvMy(i*8ak8 z$RjqCX5UbpRNs)DCV%Dj(cD%J=I|+_(@M)Iuo!uOotoGlSm@d6m%3V;8XNVsY|}R* zzBbRe*rL-<{MWWbUQ=!=FdVV8@-t11OD0sdw9EWB=k4GetRtlYV~O3wTv{e+5qpyS zy22{6OPeS%6(~hp`Sq*@%^oz`m0h6zkhMwmk3UNLxc%db%yHq`Xb%Qiq@4!D?$COvN=Dkf0h*GR{knpSUuL&Om8c9Rt~V)yiR*j z(ntwH;^9{u5jdRvvL3R1;vG^&MyVQ=@khE#o6$&<`(KVz`+UC)d(PceKV)6E?(Zrx^WKUG2ZZs^80sGYy^04Gjj5!r4au zNx#CRk93b%u<1=+6Q!Xu6Q`C9tg{oG{rpjjWHd$Mn6g7_Jdeqxh zrJDL|6C0!2CLbwWOWw+uNlN-Y2HU}0m>O7H_tHgo^wopD2xK+;37gqf( zEGT?k{7pB~K&jSyZh3d=I~w2F8b|YkqhtH&t%%=}zT_TCXYOg{4ndi0gp!~fretRL zHG{MRPjwNub`*HWwtYMC{S^#5wQ*DkMq^RIjH%JQ?-#`2Vo?*3$2Q_`Sf zt?7-+Yia1|hdl}<{dePN{A9{y>=@QONozrO?sLILg;Tai77_1IpmO$Q8MW&(h}vbU zrR;w)QtsAzz2yt|4hfqt$G>5gh&t1^r5x~3)S&1K?}705$UXn^I=!=-(`3sxO|Cqp zyJ+y%a%xwYiybE_cl?%>0JYcboz0^In-WJ{Urq1*OW|5@Z7hQQ%NRoLNTM)j@h)&4 z@ft}sDACz-v$kkDXAH`qs-%+1*^8PD%(Z8nl8?+dOmBslX)T1$DEraNu*LXzlwarY zwGP(U_nKB%rkl?j$Tf$`o0K!l2UnyjmQ}m#8iVhjq%vGP)WWT$2cMz_ct~be$O??c_SCgPpTI2Or#G| zp&HF*lk%u9snXP(XgM%F)jnwS$wLeLw7P4SnYDdPU(HL*uz9QLpJRQ^v%(#^hsGhb z3jIRIn8=OVifV)FX7GqNKbVjGL>LZtPYxoLQaGf26q@jsY%ELj<=x2+|0P%*EsOcn+!oD6cw9VjPFU8Qs(e?^( zqD|s+is`Busvioyyh^B-H^?ql<1`L+8*M*PM{22}O4%yy8~DVLv05hAB&o#bsTkU1c-!Os{L-8ur$)12fErOw>9~-36=A;Z6KZ zw2DngeFx0I&BP`2FXni*ms2Y0DsC(MC%h(oBRiPUBuk>{qV{IAP@fkg>~<1GTI*^d z*(@I_n1&?bF_{0LyRl>7IE3eCTKJAtwiCt@LkFX@c9pTb_PO3!!LAxt)xP3Rjml~F zOmxn%4>z4PZ#VX}M^YzHYm)_-?wJ3f1;8!pDc(>nRx(0j7OfTc7yS@77q6FIRFBmx z&6uP0E06KIv7fRLVKe1e*?yHxvX|VI)B-yW-4ZtmOCSt{28DdVJWP3aoK@ zYy>;gTw+{hT3)-$(#BEdnC|9T+4?@|Rqt)VN3VcyQ`?|X(dn_r!S-klg-V|z;In2h za11of&s!$q3&+X})w9$6)Beg~vT{iU_mAv)=CO>X^*&3l;ENGPqy><`zrfQd?D%fa zh`ND#w0*YYwxhtMv0gNjEba8tN@n$~$`aix3&+_yFw1_a=Ck339`SsH<^m~7UgBS{ zG_oT28aGYu_+Ip3OdL7vYV9!D6Sk(73)YKPt7V5x=E6l7j(WPC z`VloN?90M%>H^_kbf<&scxjJD4&$4!Pw}Fpr)jR=l1SsW7s^E4MN_3$q&Ue`=|ibk zc!)V(v|OvsBxSx6fOsIe5?)LG$fpZK!WQ`Mt~$dQ<7zi4gblw7hHPDoEQ7yho6cIJ zF+4N8x1VuSeQWCG=?qndsz>(G$N`*+kc8H{F!l=Di+GGvAk|2=u~fv?_%Xy0ygg}$ z#3H#s(O&*c(o6Q3|AZ6djN>g*t>-_q-FFM3ChCXiepweor;>scI*wSw`fTgIWEN`! z)k?FI&LIDyyI>J>vzR5^C49=aaZhq@2@yex9}}PiN93hyN2Wv4l6ao5kx)t=Eb622 zim$~mwlD4$?!CVEuo>4QC9(OcR~X#-d&cpWK~|MTX}e@CvTm{fHP0&>Rm`m0kBou2 zP(fVjIZ!jtevYi=FJf|-<7ouUvS?EvN2FBkls%M|NsbCe@R|$i1Z2@PQBd?$I#DfC zZ)2{;PbAJF-6D%v49#N^7#|VhL|;V<;dH= zT}qugnd$}{NilGhs0;DC@GdA9KAm=?kSVjVwUM`A(>M-l9bb?X5)Q*f@kXF7RtsGN z+aQO4qkucHGBG8wHqj%w5$+AJ@kQu5%w&uRa|Cl1K7?+ORwVyNT1&VxMB#VKsz%>*Dy#&=2eLLZWx+J)XFNylexrzSBpJ+~m6~7Ua$GgPG zN7eD6&|I)3G!6V4CqR4R%MuQNoXQ14iD`*m$w|Ov{2%;K>@)0r>=eufJeHb8I)Tr^ z=i}srM_4(f10#X$gK3T#f=Oc8m?wA(u047S`WyN(CI>qa`xI!D+Kl#N9$*?_{=roSgaO7U@jO$JNJ8C$wU2VX&ypspH9|h?GQ5M5>UZz?`%r?F+g9nCzeFhy(y|C{!AM6+a$6m&F~i4ly-yoUo8A!46FRLUtuCCNc;gxeK}F#LCoSlo{0*-Iub8@tz(h zoyPu$KZ!erS%O)NEyta}&m_(#28n;uE588z4+b!s2m=VGa1EndJR`loLyqL`RACB) zEB#A+691;4J=PrD3vK~tgZJVSYOqayqXy4fL)K1!U`geLY zbp?7IupiZcG>e_hZq44qtWTLtw2-DzSd{0Kxs)elh_aU2i1<6TJ24BOq@7>Fv?~XS zzxCw$ZGK0<0NPV`kt4yz?zn5d$Ld)SIuZ{=PDQ3g4u@Zcj)a8K$&m_p0Ja-u8j6dW z0c?Qs6HBOVSf3ap=?Cd#5*hgiyriyS(pi%jYgszVy7c~Qj~5bJ5HAx%B$$|i^C#CN zwj~!P$EIi~8-a};5vmF{4P6OO2y2Rfg43MlnY8hV*Os6iODk%)oE7Au-F?kx_%>rp% z8H;Hs#%!9LwTqQO-bV6~?@^{wR#2j(Hn?5rlc*V(T9zFzoyr()YZrjD}1Ra~+Gz>_fj#|3@A|K0ww|*py+Z z-EjwW8-AAtRs@&l{F^4QYIK(HKf zAQRX9U&~t7ffT-qrYWrW01Moyei%`o|7~W+k>FOm!dbI zcBMU>T4XcwAc2lO4oJhP(9p=5=#XfaSYw~f`Penh*)mWZQH1*kUwJ*=D(@|~K0Fjz z0_}&V!#J1$uYyc~4V8tC6C>#})kwIDpG#Qv15zmuflOL1UQrDpxN3KQGF%~F-{2&W-`_1k{ z-m9MOzBB%vzA1j1?}q1xcZVm(JJQ?Qvp4hrbj5SyCGmq`R+=O12GZ4tq#$m_G)VnQ zEC=pVqqIjdV}~7kKo(z`e)EoeH62W>lr$V zoTg-{xm|fhR5a!vAVhaa5Pdmrhj+f?kfpA!+SRCZ{=17GkA3;{rN^Is#iNRD8`bW7 zXK&9+pEODg3c-7#mGYqIgeps2r&ee<88k&VIgoKLds22VOOnIna?mpgk4bIlovGRQ z5CMZZlj;q$OSq6{v1UGWyo_{+t|F>Y*OCl47R5zxMfQbrJ)K-FJQVL*zp)lqcA{KY zTEA>a)r#7vMd=Hoi$c_%>21_powEW9To!%5df(K@5k~HHIS85V(-!L)LY~Sq&Bn^ zwH~1#=dzeAoGhvqd>4M?SMeuFc#<0umGqu;ti&goCpI$XGhQ=?vg+8UG4+F&OiQbM zhWE8{i?Wuke^zNIe{Wc6*kycYAQ*bOnBm3=Gw^g$enunwETe8ARWzM+o;T^NVN0LRZ%vR4Q+90-qMU^ss$ zlgKlvx9AWNlgb0PMR$d!hMz|c1-=D)`7G8)7QC&2{i=m$y_BwWS3JxBCOjeVFgO}n znED*+6quE67094_P)FcBFbtXli%|vW*QhG%nLsUgDd;U8ELf-Lo`tAl z(wQQ<$ilBDuyW&U2lE%c0fB~@o#Z1IeUNXzFYPPy&8`z!7udeqr`t>Gy1M$hn63in z8uu;t9e0lJR_IME1+9U$d)it%+MLd-VKjt}9*fjR|3+^_ts-cMcNsXgQ#vvGminXy z$T%qHsrP2>tmoIN>MhBfFYn4T^0x6*0o_J^cF|`L+v| z;f{yyfCuZ+J7&4MIs1CEOvH+(RaYt&m3!LmtUEcIvJYmvv#RPH$}XtSXmC02h5DM%BEHEB2qti} z)K#=r1P-|$_GBUx#=3wyo|EOqxW8JKTg}#39n1ODK&dcRW>&4Ocxd6eO`iSHOQD-# z7~CGY8EG0i9;-*5%EIukNQ&76@=_v$)Rcaf7ZRlzp@7Rj!e=nL;-tg~={dDCPaxRO z3(!;eAJ`a%ira$|;93(tQ*IE30OL^_a7uVhY>hkD`p`7QaMLu+zSA+kF4IHwys%6( zf3@}ZSY20rcAzz3J-!Y04Vspob4bqvU~jRjB%1}t*h3koSYq;ad=_&A`!;(6vk!AB zOGr-P`r}{YzYtH8Rpg;mfN_SbB$Q!&sd)))YI&k-u-N|D=5Ss1q5WO`exI@Ku)d*D zZ13h?=APp`5QBl)i7JQ)_62jIk$5qB73nC0Mxzlo66WI@;XB}$5lbltshue#>Tj|L z@5VPE^&&CIoyb?oII4-3$r?rHW7`640Ximtd6O_E=!tiURPsgI$KF45+kW2ecGX4# z(RvY0WDMv`24NEzjy;YqiuHwbxc&H}=?>9ktN?cit;3*juQAQApYel8wZucjxmaB4 zbLu7fGMa+fg#j_W2!;49xC-C^+#yk&n2Fv={6?8WY>w`N-VRK{bV_FUJYHe!BW!^_ z!Yjf4aU=2yISDL7dVq7`-0+}8SK@y-IkpFG9bq5#L>hUUP`{9NNpsqR+JNB1R>K}> zJS0dwO#Vv@#;`F>68VX%$$WSLH~+Q>tO#QPa;3W0_b+smE_0x-?*Ekf$T-}w!|f z930C=2+$?y8wi3w;T_oP?53=d%mWNO*^BLjYLmvd087InFuknX)Ia3=#P68<>A2Ym zKS(nOM=&GetD<~R0`7%A#ScK9*yVscxFXOo=nggtb_!n&*F`VI4oAwPgCS}9eE9Cy z`+E6z`uzbaI0NZ{+CZ(NUZkubpC`HTg{dJFIzPo;#~sd*FeS{3^cU2@^uzT2j8pVJ zq#P!Z6C~x51nH|cp$OB3Fa}qbP$1~!&ZIbb2?@k=!qYPjO~wWD-X?LO4z&;@{v-;qC+L@m7k1(umT8;vt=; zE?}kz>u`+-6Y zRDWg26Trnr!ArxxgXe--p}C=Z;a=fzG>N4V*Wzws?_%hfK?xkDEjdJbNgS4rVM}}* z|ABg)(uP7JyGWKe-rbQMG1D|9{3`5Bz`Hr z3@nO=QlHUV!PqTx;%DMetP*&g%EYZA zS5nTAUy{(o&4g7%9%c*n1hIfXA&n%3DEEj6&<)iOTYwd$Aov_om^hBepe*e)F?T~qUBoU+%>>F4BGh%3jZ;R$ z;|E}VpqHZ_V@lCOa9UC>wH0L-SwuUC-3-r6e!)G$cfywu=i%|dq(pV{6!aDJ!z;iJ z$e+|IU{>k~@ByFzGysa^dT)E*2G>Qlgdao(Mdb0BP%&5!%78||TjR+jhq06Mh>}2e zLG?i;Q)5w^2`O?RF-mMrlo4MN`Ix!{oJ@C9>1}BpY4sUP@#Ykm zHq{VKOf`p{a4Uofz44Fn=SK5Fq#!yZ44HiEy@P#Q{XIgVU~y=DaB6BTbxV3G&Vc_* zXoQpCA98cKrHqbr5$!e2Kygx+5;>&nlt1KOlywvbtsiz4ya(i3YXnG_lHHO%onnmbBszF=hPr+5lUU)3D0XBmZvCF9ai6Z z^fhcrW8S^Qxx{tATck;%Y4Sm8G5P_p2G=#+1DnVhLHd#U2gH)S(JP1-$Y}C#tQAgc zB9J%yF0d;&B-A^0K2ebxlZ+&%Bc~D_!3G|3U|D#1xCkr;*TttH*MPIhNvS|`RB8>X zIJK3L5PW8m*?1}j^8zqnoax5oXG?AWjPu9!Q%B{n_QHgyLjM4bSZrKTiHQLE73V>#im5lnPz)E-$EZv;O;twqDY zM$~xV3`&!jOMp3Q=6mKz`eDX*%7auxU_SOEE(gaX48Us$qlkY}&r-cnLs3o9uYe7N zYV2ZYIoJdG1nz_8LQ^3e@&Wn_MWA!gEAS&Ez=)DVBP*j9B4yDV(W&v*a8E>o$l+h` z3TP)%FCLGtr0k^cr8c3GDElbUR0#E#+>_Li+>$INQ%Q}8LClc!Z#oT}LElbKcJxQX z@GsB^kATm^hmkD!HaIrkE501$KsV#f;3?QEsa4=CxHDJ_$stnj;)&RB z=zpQ@k!ysuqzZx)-x|LGjRRGvW~7e9YT`TM0)n0}l{g1|47CqkiE59@#|%hw@KKlv zXe_!#8cHw0^v0e+-$>>s#HqrhHAzTP6CV>tll@ZqMEleduqfC(I@wcbA=!u8$JM=d zGlItGcVHrVW@>cOnP@}4PP|C&B4f*MNWO_T3zzbjbE&Ly5{t5c`i{mUIFb3OZg3$8 z!oy%&BCQ;Tw}nOqcZPRHhewK|SJA_X7qArI5i&Q?6M+*&nA_N)NZ;tt*sSP`*z;g} z&vSpj$e`GsNSo-(h#>kg{2g3G`A*f7?~xai-qPPv=Ft1I4$^ngm(tjbe(4FYA=D0p zFL*EEEa6h(0UVFt4}1mJCkLiAow>;!sYXd|{7r-!^F_VLeGCngM4raTF;=u;+#h)y z*c2S%o#k5^JmFsuTo|q&!o?R8){xH=stIabKKUKNL-mN3a#ymwthY=Wa|B};YgrnL znTZP0IP}ZJG*m{+9ulV2l#ftZ{24SWzCP3_vLN;={VpHoeA?02A8;qfBv8qzi9F<8 zA}{!#>!o+ISLYk$%k?kt&x;RDbEwTgJ=9FhYE(1a4t_V`Rj!k}i2H>%pDo~?6u1}z ziAM<2v3zVc{!pqFG74owH%rb34}j00*}+LZ3OEx^rt+|NQGL)qQxCAz&HYIig zZs>`h;@{`@dHZ^w`Fi-41Y1Qq$6A3;;{D+^@iU3u3? zbc}@~bD~f%9#|i|7`o*1x>5e7p$1`fxOX@Zf`Mz)%fuz5O=KmRO58<0FFGrp!T!tm zMnA%6P3JR2tb5EMq~j?~vM?n;Ye1U+N~||>6}CYhSe}5RmjmUYUr2Av2DAsY6gZOj zn}|Za!5he32!)&lyL(Rak|vP+Vd z_Qmc@S`u55K5&e8nESE!jqiVfLfevOGt()$K(?(5&vTEU+emX{B~lBi$>RhA zx&3*|*orjT?@aH+&y`R_Nv@01n6!s%Aqw#AF*D(4BoE?2LF749?ydCE!bjkEI{!YP zW~R~2%G3nx6!h=Z?^J1OQGBGYi>I3>?)&3!6}&ySJnVOab_;E<$Tu7rP6IwcfJ2s&O8Ur3lH$p^*~iBr6KQP6`H zGI~VE#BPCEwkL8Q{eKd{uSQe&I5G$J+3$>@)?FbZ|6zXPz~j)cNbTs==&|S~UJwck zE5xnJUTL1T*ullWbX{_$v!&QJ^ghm$Iy9|r+N$K`E}!$5V+Hq?IAb5RJK2{(FB*oP z%5B1SBrRH7*<+0W%*-Ms(_V|NfmS26p%9c{O%SKX`hcGB5`SB$D=rKN{6~UlhzytK zSH;dreKCZ#$xqaBvI2Px6{ttaA5(iK_f8t@DeTf6t2{1WZEiPXQh%V$k;hn)*&}u< z(lypvxd%|d`UcKllU7^H_0L8Eya;X$<(u2A1Lg;_t(l`=H)lo9=CsVm{P%(b!y6*q zBctUf&t2a-Z||P4*-fPZ%D5h}8fx-5>PcH2{lx zN`0btG&@<3#jHpS@GW1|V$fQUAaPT3m|x(i-NF9XcxonV;XvuU%lSnDGs20{;n7sS zh&)zuioZ&0WS0WVc|=b9ckd+cDVORP%Iacphurc~Qr0PVM5XjP5F7!EJC)#ypi#=~1bwj{S=&Gj|Dk#UQ*%%F_xc^- zQqiW-UC||CSn()()FpazwTKK6mE(QhqTXEBP)8T%NcM3&SD;@?&y=Iyp#W7o?HEha z)?4G9r2xk5lyycv8{WWQ;QL68Z53XNg!L}QA~X|rAcH{02X0;G*N4}J*GHbk#8_Rv zX0%}t3e68kL;d)5LQlSr-GM#L+-6?U1*op12kY%UTA*#RH??@&X6HQTZfEhhvQ8e% zQAy}C=pCrhTg2ga!vLq8+0Qbc)*+Dh%Bua(4n zBlq|GOaA(yNcd}LTN%w94Mk ztmY6{jp>2CHcILJj5kJMsDL>(x-Ht2&yemx-{DhmePg=x+WG{yv#wi;b;y#%H^EiG zKEd@7J#sTTISL2Mh1y5*VzBt9^n%~6P|OhL1;>7N2;G66MkK_E1uCa(O#0&f!M$`0 zbu{x1^ZZV?B=4hc=oESaLgmK166+{SpsSex8Ro*+A^D5tvzNnbp<&P@?G(RE_zPf2 ze<`VIDRqAMQEt)vqW-p^$^}Cm`Qp$$qAoTAEr`5BAm|_5kNVAwrX#LGV%hjEKHA;Dv%pz2u~fm~ zY0nbVoQvsBY*}swGnJYTwa_mbqm7;RexpR}b;RJSYLkIF;XgD7_9{iRyHI1;um)Sz z?K{Hrz>eUI5Fhyv`4$-)9S{x%`EVl7h^wWGd{y-&eb~9r@tDaVLi8ZqVCtnUE!Zk$ zqNku^p0m7jsi&UL=dK92jUaR$E{c`W7xJjEUcPLdvd`Nk%=diN=v1{b@*ecJ8eG}h zE(Bv2`3j;Uo)t5tr=g_0wfWKDmM|V}8Tl3(s>QI8nLVg;_Mtd#JdJAyauXbx`ajwDBq&{zs*0th$FXYYKkf_cG=Q%C!$I3RlUW9IO$V5Z)Y_7Hb&kCAO#1sIypIYzvl1 zK1Cb*g2@wnSL2?!Ke_*NR`xbZ{L8b;b=NiD873n5NIYz=hkGD%(QWWxqqaR*C>mNV zCCJ6)(Z+R{MM~&%<$j7&z94T=kAO~gMt<8oC4aHMQ-BYZ5BHBYFdta=%=Tt6^Q`^S zSnVi~vKKhwDtgCydwCAHe~s7N`A*4YyH0Xj=!c9(j3P@>bts*x1+})87^kFkb&+~n z`@={ApW!|=N9ZLM62FRb#hqGT>!5Hx&>(a()FV_p+%G&ea)~c3?BmmflEMY0tF%Y^ z)6v7d8sL|A=x^+7=B~@~ZT8OaUG(hocs;|No7wuD=Ge%sbd6zE(7U9WQ;a!QM>}X& z2EFzLy@61e-!D89CyJl6dgvi-7C^*qMh?Wf#acyw^0mWI;Ar4uphIvU$fmHwOL$Eh zBkJNG5EGk(DcsP+pf4frg!im_ou>mkl%4M$;NIh|=XnA?#M@|jxFIYfR}cfMfgOa0 z*dK-2{93WTcv-qAKZHM8^`tB%7xdm2O;+X9z>rMB3b}JrdLNw(zGu|j{Hv;G6 zF6f=T#A9)0?26D$(4SJ+h@8#1DE~``UU}0zNM<&XF+K{hTOG93^~YbH`gx zg}7e$RY4Hbq(e$6Fu^3~rTK0WFD;a+8$b>IioydB*m50sh# zglH5mMpuR?Y)7K%z3VH)R)cF=aY!rgrubOg;J8z+39e-Ka(A+`nqv&t)@3AYPX3YH z+EWkK)D)mF>1ck18dy!l*U{5rSMeOkR9k2iQjF}Ues6Sl?2_D{|4pbFnHD62m4j3$ z=wBX0{X?~yR1YejDrMHtcPOLHH=g8#WeEd)&DaT49A(hQ-F|PtxhigZqLFYh5p%bp zHz3>0FmjTZK+d6uLT|;sLId%h)(zkWue9R9`oU-7EVZt&M|+~zkZb32Sr7B31XlS= z2YtbpVkc{^S>0YL_ZE9gt@&bjLc;JQ(@9}_@mlCc;)-`>{8evf-;elbalVB8zC6bf zt}9)Z%XUzX((YUMf1pG2%AK{@#$e;984w4B??nI9{dN_zo4sGj$*G%hGXJ087XPAP zk>Kpm7NNMXU0?ueGgVj|ErABSbsbA_1aQlAdgsT)a7C8wJ3B!0N7S#W=b{p%pn_4+*Tl9YJX>d>cD&=X*w8rvW z|McyAm3>8MdBt2=fY{d9{&s&?3E|Rz~kAzZFL*_vBSt1G^Ve(JUt% z6OYNmfe&pX;5o|K6A;NdXpOcPLw&KAXc6)x1vEEyy?L%f|`!rya2iO|{ zTG5u5P`_CWgxz$_|&d7>ojwkhdzbfM56psE9m_C_7^v0d113;l-vj+8{- z0HkXZU6rPZDfnlsHvSxBLEIn-gwRH*WdU}*)2s*QBCi3y^d0a4{ndTi45PA@fi1z; zqdT!M@)zoaVs>BbD|!j-fb_u{*_Va7%6@&bP8$u4^X3E9r@l4U+nM%E=(+vLx{0-7 z3Q-}lEcFv$&*iao*dw^NQPu2jZM101w0FRtRZH5boCFHdd8%f-w*P^bq5a`25DI5Q zD$uN40hv_aQ6HLytwygK#{e4k#dKO{t(_KbS2Zi@r*u^xWt=fy=)3GAcr`o|9ftYQ z4(MFOi3~-@;~}gLz7X4kmB(VH!`fxPwyVRNq1{MPcpMZ$To_;)uqBuXaMST=_pVD*w6C-;c7idBqGd2>F{ZLz71?ereTNS zW@J-p6d52!6KC=1FbVZQDSR0=2fvHsh+uw(>l5qn(!_DRGC^T)(PGp!5U*w8>CltNlt`agL;a>z6KIYPt6nu*sbkEtpIO7K*LZVg z9nkh+#5rse&{b@}Z(&t&3aw;Uv?JC5vC9Ap+Y68Ua6x9V8C ztaQ7QUEMxqEwazpH|+cNVUWXF*5K6|`eOZ|{#qNS_tEQXjHTOiY{qV5-L`(MNIK`i=%ho-6HMGuNZP7?=Yz(jqwbT2VGTaY5i3-Ryqzc^D8f>02 z7n?y7HGi?6;Wr2mGDiQd?$*z1b1j(s2=s9KR6;AIWoSc9+n#Mzf_9>f(FN#Y$TS`p zQL`|TjjlvTW0rkN-=WVj)lodu7y{VMQ@8L)B+xhECd7HA2nB~l_W+n3k zn1v_XAF=67Rk{gXoQjd#fV-v`y~Xj0d&*{U@$55VBkm+hl1|bh`jEBA#>8->uRXvX zWp{@Nc$v9GDJZrPT8R#+x0E8ySB@(Kc`SA{#_~?S6@N(`Y+eO?Zy~L|s)4C@mGw7X zo_viLA+j+JkDv#Lo!n4PW^>s$YLPm(0{sWc z(qM^@ugZTa>y$s$9m;vpD>#K!LR;Y}NUEzG^9XTrHPDkh5&scuh_{t5a8Il#dKPJn zynq&>>D&>=Dy{{0i!H~AbWO)Jmyi8UCo+AQLhN%!qpskWK#gk*IM7jGW=Ml6vp&eO zDFL3+bgQDVNnH&1vCVP^xt2n!QGR`-kNnkSEeX7P-K;X!OK2vea=qEfEJ;;zpmE7@ zSK~8%i0`>~kS{N}e`?9ZN$&d2iEhhP-1EV`-E+cG8m$Z0K)<7pp^?@}dx3UQE}>Lc z_N!@P9-kgN7U&)t7z%_&1Ak zg-mmxj(O}oj}*T*?rvN|#|8WckwkrDhdMdXc}0-*rVEY-zsE(u_`zU`>@H1GRtV># zzSy=H!P6jn=t-bu-d}lvyheG=LPujgVtDvW-qsv8FFk(&-^l!7JhcU=0!Yn0VMVCj zjvZ#8d{;|QHXi0}*K zE6QRaxU!k49+2yayqGG#2l(q%enq%*-pia$xleP~<=699i+m8?OS`4rVsY`JI8hyC zj$l}C183CHlYQ)X;=1b&CDl%Ok+dM`E=YMT8Nc7t)OFV7asT7_<|;-FAkv{T@(#7B zR?Qq?^b!gFXkbeIhQPhR@1eK;{QTLOOF#Yo`S|BjU%r1?{_W?FaX$xS-OdbTT>qJw zdBMLq^oxE9eFR;GZW_sUA|B&16Za=Y6UM}kiJO!-BTY!#m~=I9N8;~EEt8Do9VsU~ zf3Okukz+Wj+%}5DjFa{)G*}GOQ*#CaKY4d=SsQXZ<_#v-4l& zy~`?}S2F5T5_MGRrnHcbsaw!ZK!G#Yv760c_p%{(AZ}6ozPN^QS#d9XvlCAwmWh87 z_u94FmF|A)-t2qJY4jp`1zw7br=H;N^!vhm*%oTWmc&@W2+z!H_G99Y#^1$n-tW(U z%>DN0+i;NjG$(6vt~2*i_GbSJ@fSf9R%rEf6>toRXKglDU_ znR~OtpPSIqezTaj_G+3a}g4zZn_O>tCrd@0!$TL&s-2Jr3tE%y_%B$S^H zlpdF(C!)U#Ua`3Jx4vEbru-v9a)Oy|SatzyJ2DV%ZJ&l3V~epT#4=_e?PON7qnY8% zU}_23kSWEscMNie9hVt}TtnVuezJX>r0X(BxhhBAA+v#+K9w#=c0~(YdxbNh=Mg>twpInfsgl$c`Wi!Xhw(Dj2V^*?(vOH;WE~%{2!0Tt3$KXQ_)9bheZuLcH${*0^*oXx)&To&octFc1j4ZcEnYIuI=X>5n| zPTVJ_>t{^HnuOY9MJhmM)7?RSa|7?W)NTd$qlaVK-rqw4jou*wSq2rczh=FIFTlKQJL!DjyE)1=wnQa6^Cz z?Twt_-w2zflX72ekbYn1pi4l9RU2xG*K+st?(r1&HU;OtqqDj9TiUt;KU0xpFUW3g z?wQZkWaf|reiO??J|K@^Ln;_y!$rcSB9lVxLznZbWQ_S<=?6%U&WQYMkkK;Z+gIdk z;hxiB3Dy_4(N)+so7JaF zxA<97N2wrS=AE(1p#iyXa%%cd_^bQx2HphNP_5V({;t$W{zvSrHqy@85hl!OTuDbu zFePVrx+k7UZJLsvvMPB`@{=^H0Gj$&((uGJ300E(aTVRP(}7>I)>!rJ&QN#FAQr{%>O8k^KGAT1z zN$#DJ7C+eeo6~Suj-K3N<{~?vcn|RUQ+6xsqIOV)3{rjpvYdZJR)^ZVE+83J` z%LRFOKSP~D??Nwl(OL#K|9|*9oCE(0@@&62WmjESygSJ^*c<1K_(sRCP7ve&O3F$- zm~tnHj?eV|Kihe#@119xE9fXf#-J3SwwPtimKsQPqC;~2%D9|`W-k2p;OqP^zkc5T z`TNIpA6tDW@V@Ye&L2RIclQ0vOPLq5yg3{5cKhAD3>+=H)k0>TodkuEu7pJYq|0&r zy{Vpkp0KC1>!t_t4vm|ZEF?;aw-Qpk8$J1+<-YE5vw-?_0=oj|@nm8Gj*w?@7kU+P znx_mz@2?g!uBsVIIctC=7%lXCxrq8!&XNw9Y0zS;y&2H|0n^z#%Z->weWVgb0B_7_ z<|MrfDCrHVEZ5di*frcEICgNFvy1zRC+hjdi}{+ks&joEH8=z~T3FJi}IYr++CTV~zLton0JRuzAGeooHUEKlZy%o7=O_Wit7`I`e5LOCG{ z=rXc^I-?h#pe{5{8PzPez0^RAIrar?9LT3HMHi#<$*R;`wy(2_^SZO1tE{t&qX^*J zBTlcYkV|&7a@}`jJDa$MIA1uraWY^VvjKW`k_O~8IU2Y{&Y>UCF-RfkhCRv31768Q z?WRhqEU1rz<(bM5WxE`wt_RMAG^4M1+RC%`+g@ZO)(&_`W>J3wmG==Q)iK$1%eB*e z&C|r2<*5LkdIR5N-$-vG?@G@E_cZPdaB!|eC&L8%HmIk-lLnv^7{E*u|ff zdFA_&?d(NB>OY=-U-^CH&kH}>W^~J%nKv#xCj2CPC|Wf}^7CRXw7rmJ zEr7m49g$&3Igoo%*0tX`(G_$3=X&Ni==|#YC2pIqKwO?L&G*#35@b!Kdc5wUu2asF zj*ye&meXlW5a^v65+BL#%oXekTnOH79R~B}M`)8BRFA7bH>R{x%Bx%Sb6QkcrMyuO zXw7xM+248(^+xu=U9q0{J0eQdBi!t6N7V7fb=d899dVR#?e+Z@_u1!&Yv~KQ-??&} zzj4Xjd7#FPr)Cm6iGNHT@ItGEIN?o911a>4^Jiv!&Cq|={8=HRZRXjGxbOYGs$a)^ ztMubQ#>-4O>qKsaJUh3yzkl#$V0U08-$naPTM9UWvBoKFw7CnP!o)L$LBH{y7RiDP zj#xA*{`(MJ^>9;lKIG5X)m=qB2UpZ*jlUxj?xr^Gt0Sp zjuYHSu7%^J`xoCU-)3J&PnOH=>EJo#+3nr#9_wo5hzE{<3ix{Sxc-+?R;i%;D-RJL z1S{l^0O@jla|Y%1$i0|7^=Gf|bG~o<+X5()y_FwV{S2U zOggy{+<5jURhsF^_GWt1dx%8*0s0#@kt|J?A^t#@+pvAfENUNsy@0uVV;0hjYAy7W zreqGc0@hSJU_G);xFysG;7Fwq1sg%!qHMAxafHkzOi-l*E7ACVa#l{5Bm#8Ii7G?z{`4xZiyS{Ej&b&Aj%Py@smbDi4hy{M|e3_ zCe|-jHh3WSXzm}m!*X6_GdX2)K4vH7Ovrhhlb!PvY^}KIzaK6cT^?Q#Y7_Q^`$y)= zca5OoH9F`^48PIeEQ2Of31mg0G*t|o`XN*qb{M;pnFdmW2XaB?8-0M81bP?9F`Jvr zZDB_;GwFf!6}Ad@6EJ3-m@ZTV&n5~}Bf%|@kN3q3pcj#!pr^eARfIfnFSsD+To#+3 zwWs(7$S~{(u^vw%=2O{JIl2selzGJdU|TuHIC=mcM`!jk zmzmX^#~Ee|GDoO1I8L+mDaI3JlYB~Q&UXq_%U>L9=wF{ZI(KaD*PMSre&W{bl*|hm zhqH#})XXcMKP$gV-jm$;fDHP(ic%l#xfBy?t6{B#G0~m|dc$9l@mMxd2RzeaBWVd^2zZmLRJTdDwom27DB*g`dX?VzuxZ z#0*@9F_88+8FnFC(c4&6tO0Tvt`EgStH8f73Qr?9kzcXKSW%)fxtUx`%?2~}GpY-l z!WCez(_87QTvu)iTMzi@hO>V&UhrlOyw^j~l z(zlDz=;QFE@Yd*-u#tZ_a4S?OxWYd<0EN~CTLxbR?||;2T1W`{Vj*d!#Kl0y3qM2L zC00`k*||oF_Rct9ZLxx80rWai6B!1%(DT?4^e}P?uTOO%PvCp;_W3azx!_bWm9_o$o0W3cn1Dj27VsMRefm*cPng=l$P9t)l%y zhXNM>JK81MD{?5@9%w)>@f&%kG+$pRXN$5@z{mr-vj8#zJ85~$YEWmaGx`j>2JVx! z$PRcDW)OXeSA>%m>2ylK%j4B9*@OEsLGDIo% zKA0Pv84UO@gvDry*oe@GKt|w3U?=Eq&PR#Zh{)_{QuMhPr)=O?2){`m6jr;XG&dI+ zLlj;;VYG$&!W-amXeQwG_uC*LgAlNMvvvq>IM(T9ApFoC}qDjxV2dL5Rd6Jly?b+mD~PNaUs zE!GvQ#@Yh*=nv@*(0LaC>VU@L9ytnJz1Q{PMtf_ZUQ7=g)8XrA3iKC*!{_Xswilj& zMbIm7OXMif#!kV%0#2Y4mW{o@=g_yALi8Bif&EIxf&1zwGn$DbSD{CdWB7br#J+&q z*9O~+JOaq=D10LNCk!^iVBatZy@1ZgF2X)!0(Ob&M59D6(oGJ)1Z**NhqKxC^db5^ zeVv{~S7wKD8grepkm^`*@-(&rPr>|nAGA48cx*7I>j}U?hH2}>`FwpjBz57-hdV@T z2q}CGegVIPuNB=Eo*vDJT@t_XZ1j0-d-Ts(u^28~QAoh=?UvRnW7VrtExnvMTDh+j zH?~?IjE~w|^Bz#$kF>f#f58k?z}^X!L;ghl;FDa6mH>D_SF8;6n$n5YcprQmDG@Kp z5rB7}P4*^Mkg44ChlD`oZ z07DqT#-TOv1X81N$Q+^^^#fGJ8uTNk7E_OIM*Sc31pL9VaVgvZ$!YaN-EH1W+?=8F+9`P6-jqQn|pw^jU8Fj6o z$9@%-3Lk(D<*~9}i%O;CJqqYMflDOMOgFy)#6I#Y6VHuc3V_a_HnWzhLCe6|lLg!j&jA{6m>7(u0(PV~dK#?{ zybPPMIdCdm3ay02VLiY*a~*#R*ol5XSNj1^B+ijN$$j_|;wCkcs!t83u2DmnCv+j^ z1;c=?Nng=Cs|7k8XzZE*Z^QyLUmqmjF?yN{Ra1VY?o*EO+XaUz%2$MBF(?iZhYC%E zRPhWyH8zPq$GfG?ieJcxK8*1(DK<|ysMgi4@j~prSVj6v%$IWYWm;FUt^7`%tWH;Z z>TYYZ@j)*Gv}_BlMb;<#Eqn;8NDRj=VB@jY*hy?Qp2E&xC8_`eGpFc0GMyovK9-;> z)90u&msfI&M&Z)Qf*%b9=4 zeh>qdfR{tN!REGBa0la@*4V78EduWI?P^Hds+3mGs7s~e;s)_DP|f@mV?$)9u*(}SMKH0HiK?y?ub8*qhML%pCj zQzZSCxB=3Y&Z4PkcgzBO0ZY^b3`0D+37!e}fl|O`sT^zqei3)#?Xei*$8l;78Kufl zCCL>;dtxySQO?jdC= zt(017ytY8ytT?6GVp;Jg&<50zEcvorTpb|J1~b0(JTdagz9q?n0iyE$s(TX>1ez6ENS; z&>l!*s0tE~gEyWYMir$h6Bkhx^qVt*rrpJiXSOgNViTeuF7z~hnH)veq=z65YlC5E zkIWrF6Y9fLEtmR8{wn#@Ia({TkLgq^DbHn0o*>_mzssu9P;IN6S3-a_m>De=tt=|? z8QH5Im1o7?0$=7@eyZ$H+}c{17RE(`v3RAZ5>o1DXVuE;2IY-5+E{Nm%qM0==q@q` z>kfSHVPrb+zE>wQnK|5X<_l$#&+$3L0eUa!$CfY;n8Lt+yo^XBTafihlC|~=GZ>SLPiqbiIx;i&!s<57swh!DSQcj z5I;@$si&adZVlPyZL6)BW*f*)+E0Afn`^QIA)#`brg}4icyFlNb%uateML^#2fX6;DQfu~s1muxscbd>=s(OOS3*MXU(1 z6AzOHwHNRN$A~<#5;>KuKuxB9V_c4T^c1kUu?{o|>I8IS%SaOb!)Rr$)+_1V%=J)x zR~mgJOwCHNol?`M^4hJX*Oi&ZpE#> z1Bpy8qEhsn@KR_YkCqdp=28c-uzW+lrnJ=R=%4jVKr7b5%r>e6&FxsY4DuUX1k1v1 z13j*a-XvO*ed)j0^6X}&GkFW#eMQI+wSlfn^JG~t<=(+g;?wauU{~T{d=}_C7*4V_1D?6RonZ^+Gpm5v#H?$^>%378;4;;Xn|d?-j@DaUtn^h9m0jvR-PDe2 zh?+0^z}E?-yK+`T(iiEy&{jGpSCrmJsQ|lI#p}X&se`f}eBWk;*50Z2 z)b{!igEH2D%2LyIA}?VTme49_I<^(-Nj#^1Cl=ymh~>lvvM_xh)5<1 z5?#sPKt4kj;B9@xM7%9I6I+0N#NMGg_}xe2XF=a~5YHsekh@6;KTnh;SWL!SkfW)a z)I6#`IUe5+FurQUFW5NZ8Fteg0$9W+&{4=VC%~)iHtKW0XzDGdRaR1@e~Xl<8TOwN#N8{@PE@-D@a2S`VRSJGjH z5!-;>Zhy&{Kp*%{P1K$!50uw(Y1OTHbsM;UJ6R3Qcqifl;~B3gnsei?CxxJlHa@~Aar3BpBOrcWbGKTF2N|xc|e?TK0Atw?A z@k&^6f}xIsq^H%?b@B&+lbyktKLwICV6qb#recHzbQ9^8Y?Osw!B0>TsLeBhOSqW6 z+^lZBwU_AKlryp=y#&})Sih+w+8{MaQ}nZXLEz?9R0Jdm95Y9my!J}1sGQLx0|p76 zch!2bCAI^a!`A8n{i!}o9wn_6t4gQA`*2cT2zsSL@>#i@dQI=Ae^nl7extRuz+P=< zLZj`$)@`^7_6Th405}Z37JZG}!n*;Ne}8fqaO4gqe+3zEy@~nw8@wc`(J^)kKs!Ey z%z?i_THGEk%{iFbh-ZLqxf))cV!1)=1oA$3ZV`MSnBZ=JJ#nKcjqFB62p)QBTs0Qk zG?Iz5#j4n{@=7cz_|**S15nG%)@H~p#PVWPI|{sgIVP-?QRm7Bq;4Q_>zuwte+N*n zm*zTvCb!Z%XnhPfY=c`i#rjQ2mC8w{)t<&g;HsXcz7Yjszt~mj3e-;j=nYgs+9>T% z5T%zmQTD6TfLl7rXbChTr4Z?Qx2)M^nrR)d4n`aUJP{2pY`7WTQuEj2J#ce0!LLJ zC?9@^eI`sW$Ls_s-ae!hT8}Evbfd3PRS6HC3#P!D3*K~OE+davma=I60pl?d5{oLjQpJ%MqMU6a65IIQbB8@MNGfh5p=ZA zfdY4*&{BM%IMt8pXf+vB?}2~Fd1#-s8z6@<7Vk_Pq!e;G{s@ba5%LYmaw|C} zHyq?{)Z?7&cJ8Tz;hKX?yLsGBfC4VyKC>z8TgQIx5>uBZL3X1>{0^p@bh02;5B~@C zS-n9bOb=^}2^$~GX-ZjPmb6NoCYAsjwj{NqNC_LI=fXa5m%Lg@aY25&7sD}C`wStNn%d{VW zXLuk1jkEYndaX>8HL)?M1CTObX`+r(C#ba)mpn^NHzt_t%==~zaAiNSROlCED)I@b z0MvQ^VK4E8AlK(Jv5Y!P^_VQ69)(IkNvH>{ z2ogG-$Xa`^!5Lw2h6n2p)JIAwrHz~?>wsh4Bn}eF2{*+a(lxo7a$hPhei1}zi29HA zQseY9+GBOGHpdueUx&6sW0A?o18@pXfP1_x-h(&=rqVPTW17&DsLo6yXEpaBcan#3 zcXXsXbk{@A9N#a#dv3%vfo0fukZ;$*@!1h!vZ+4gd9oVu6s?Jm!|I}53`2g?_emV+ z+s4ViDT3zIQ2uE+5}pQ94X^MOW*eo=appv* zB*+lUfKR{@@(O4*w_rH&9UlQu@S|vR=#cHUD08n>7qCn%b+9o&DGEMyUY?+S1xR0i z=@0P_K@c{Gb0t$OFHHrhpuOa2@^k66Bq<)Fi`5I74IQ=u`Zq0R9)ow|ag>j&jmt=F zbR-@i*RnOZ4giN=$goTsW-)t~Ysx`fqGONa4pWwVi5J3K;uzVR)~IvXXZt(I4u1%o zAw8_ERxf?7R8(jxR0JDZS!sbZT|CJ5;VXklv>nI~nGEizwkiXdr+C$)G?34z4}tol z9X=2L6Wt54U(aDp*zo}UozDIRa-}NMN!%^x4Tr+*;%;#kC$V+u6wsBYfGwU~$T}2{ zA2v&aT312+s?Pvfj?MHJ!snPAixV!31EoIF3ZWRkiJv6=Eo2IAafLWR395^*(QOp-EiMORsY7)R4R@hg}7eH^EWv@ia6CFUGkO>6I!+Cz znt^)T9dumt@O@YZ@Z5dqSGcGB$S7f~G!m@p#zd{UzExc=|1MRMM=Pw{N;)U)lIjBF zyMUY~50l5rrId~86YZz2YsEqOlww}DyCV;=o>(1J#~*`A=f}rVt=U^N&fMhg16|y0 zP}>E^Cr8xz#Ra*Wx!M7CU>ukQ(;S<)JizvjqZeUIkiEz~=p5LH&cW-f!)h_rr<9RM zaKoIJ_ev*0Qss(hiRi!4#<5-eHX+F8^RTd$pTg_>Bx#;HST~K!=38U7(aaoW??z(S zPNE?Bm{>?`BifTcskQ8WZV%wXi#hJF9D9?2>FrcJ-HqNtpCIC}WaKYvl6lq)07jss zep5Lj>Hr111hxY|21-LH78jWsJ_FKPivl!wY}ChZ6jp+1V4$!`SOltKsucukgCFpC zxDwJD%OPumJx6~z4>-#@&pBtfGChyuk0#jhx8v>j8}Z-c#>9<_yB60!ZdP2CIL6o1 z-GaFey293=M>q`TUcXge+b=B;>HJ9;-b&)+OCEAVSzPhfbkXb20o2rLOa z4CsMOkaw6Z43|8zOKvCUNPX2CR!#UI+6APw^}+wcjuSuW##~KjQ)dm3#Zt(5iwiK< zSk^J!QNj`9Is%VKDz+G%jbd08^ctE8wbz@131F%Go7`LeA;k*`{4$WL)ib&%x+>Z@ zx-RxF?*!fk!SM)0mllv)-`Ijlq{9unchq+F;+PT+w z+Ifb!&v_ntD|r`#H1eCCEuiuZaJ1u++0sl=It-8iov4i6M;gOhKn6y2-P8}M_m!T? zYM^mg#;5TTe<*e;_AFKfY%)|MP_#{KAD<))6>CesfNCI%Rh55KN~>bfX1s0NZJ<-g zA|wdB?3J(+#2&H@SsCcNpAlz3-o*znF$(}Ut%O6^Opq%30VHc#_FQ`{xKl4_%hhk{ z1!aY7%0uP)k|Y!oEWVUbNBGXO!fN3h$h!C;ya1^;AEZpVl-f)y0(@{;K*1R@FWE}~ zOH&T(3?{P~#Cc*F`G^_?+?qSNQs7o^#+_iFvd>tr!*on?oOOKX{7erf6YRk}N>8MZ z(E-v)+{RBJ`F1jd0T1AKd$D!a9HLECCa6__&Y`yZ3nrJR zYDMjq`chkOECAlIa`0w&7ud3)!*x&(_ABlIefCcRA!mZBb{J8y+G58$(Cmgij7?rdfwLicyR;hlqvC>Vt4^Hfl?-rnoU9?QA6_kwC#P?vG z(5dhcYmp*tX;-tOv1#jHi#&^Xa-wFT^(furENp&^)vjX26}z zt>#559vTa8g_GeWaAV{rbP;e9>=ce zOZoTtMf0pYEpJNx==`t#Z+ z|0-@3*k1qBJH$h|kGV#$o7s+JNE*T?h_6IM>cbmi(BJPTo%JR2eYP)qa2Au3mGyU4 z-|THU4RVZ}1v#|8x!7IaDUFkFORbf0px?_vM-fBuM|eEZ9lwrfcvbo^_(XQoFPQ$o zIeCj|;26qP2I}uk>CaY%X(_VOa#|HH&c`2$qHcZQ=#p zV|)fo=dR%I{-U8?f!D#=;iTBG=-|L7|E)mX{F?a>0_{U-;winiwn$9@h>`{7Y8SGY zBFVGl2=XF$10PY}9OIl%xc<(7)8~A}Wje}xUwShv+n-PzQ)$XnIx=iagn zIUKN89_}o-p|hAS>@l_uaaUXa# z>zVOjwv>q5z!N_dWS~;yB77Xt1sP#cMklSmSqHG3tl7?DtaVmYe;w`^c1Ehis%Q~o zIJ`>ipFb(IJXk&|%CD@OcDC|E?yB6EzbWy?9WxAdA{UVlh>CAR6 zarANQVmng(*dES1&LmeGcaGBwv@-2!jP_F3=?^puwoVm-j$mc5hDaf74|G%Crnk5D zS~ZNZdKzFmsSPar`_W}iO zAse%fs%53Y#!_gSg#kA9mDNoDPuUN-$O?3XUcKoM(>Pg_9er}Z4KFc9xjeJ>J zD0ea{8;UeU0)9lX2gp~6Girh)(51lRu*H53{yz@#JoA(eGM(ss?0fPc@y?ay(LpwM z$o0e(=d8&QK#9MHO?L1=VdC&ELnp}@YF~A;{-3tpyk<;_><(=Tg#zJVQXoFy3e3;j zogK`0@%`|(6JK6_KKk=b*2k<**~4>wI8NaCdii4HkkXXwcy98r^LlBTd4$LS;jfz?l3Yb*7#{ z&sqxZovzvnbt`?;#8`7}CGz<($~bmATv znj3qXb{Tks$*|MD8dXWzIfM7Hhj4RWW4+|2P#xcPpX^;8m;eIM zg7gjVn|(d=?bY{-8N;*A<`l^MJ>8W(HT!$+IRA)Xu}Bwb9psR) zY&&B+jonrc^JQD3cp+&)N?Ov-jsy^~eg!14QPR9ble>yz1fI?P@wM&44S(_<`0IxG zjKuCTETLzrZ?vW4N8&b_Ck_fc3RVrRhz5mUrMv1B|AX`=IrZ{L9~FETvilci-Gf?X zsrPNLV6*}5u950TVk~tKUbuYh&-4|;eq;!LcD1+8GxTMn4q+$e2{-+l0v*6M zyCk#&SEp%I3^feR#V%Lb?V=0}bQ z&7;pF;mE?s-ywTAT}V?I>00!R&_uc=6;`T~tEm2jMjDwn><^x@ZFawOhU|@PeQbRk z<(!`qPNi%}(GpKNS2;=KI{WP<>@OYXt%of6%~vcDesA418gEKa{? zto&5tGj0`KkD<9khONdvj`Q&c-FuyMXfC5PlV>HKKrK?dDo zY{L~{gY3`ZQeX41J#s5LAyNX}>xj&1--~89&f@}W1Hbssc>e=MHZ!m=yfivEwl$U^ z-y*K4)zkpIOBryL-eq_4zYycp=1|4_L4Rgm@~aJn=>pU$dNDg3%7;|jIqOIBF5^%r zo*jm^wl?n5?uqeV?0XIEz)zfO7-8N9x5*sCZ0sRx5`9AX0*OdCVZ}{iW$8tvO;+bD zEm!tfLd8O30*$=2bKmAQ3hWPE!`N|O=(8|h>978&#p!4CdPH6NCC=N2`Vjpxd6T-p zb~LOo{l+~b;;EDLBBmdE&UncF)t1k?+?;Cc!~e(BGe2-;yBo&k;gcAJJufnKEpKfD ztR3Nn`GhTfC=v=zh~$qJ5E=WJ;c z6JA+eqbyU#V`6_!eNTMgx-)&D`0a-6Pz~k~Tb-Lry(G(FvVNW&%P+L-wEk-xZZa6B zVDEm^(A3$<9p_$X*9=Z>2{Vj$8OtDDdY@qobR}PiaAdsqCA#b3p)HXPvCX0V8I~Vg zGiPNs%l*$A2owmu^|}Kq!H$T5I=V?*p$?_DFgmu5vzSJ#k4ZM&GH)}aprcuA5;4zE zEF%q3syOo+q{{qkK33-IL)(>0Z3M}FJ8_%oV2U%hHUGhXq?^%Ssi*8*QyX(>Q&mH2 zrZ=~l&5#es#q|&BB;|m#Q?IIS3*-j#qHeseKgZIf=kOOfapshl)8y7luDqUj##*rt zP37kr?m=<8*wmD7$*yH@7$T+_P*m*a77=&V*Wlz8Aoi+@wAX5qxD_PJYMb4pikdMIjFG07|KS>UvCCO0rnD1|k?3X>y^TfQr{1+vk=G1p<&%~xNk8o4#%1$u!GtM(Sqq-)>Q%Y>UuV^wajF_SF>&-fhTx^AX+Gv6s0I#{A#rxj3Bycqr!JB8K zt>k&7x%Po5!cVa7w4Zk*IRCOOvF&rnmQmJ)HkU2VIodVT9Wi?J&*VI!1GyOf^t0@G zH7zN(T9MJYa$-fl@s`lD)d79ou+b{TpQ|LY) zNJEr0Y9Xbb^jtZj^g_MG=zrj+D~-GRE8P=Xt`VGOZxvVF{ktn-8){9lAGSO-jyK%` z{dt+8uOZpkNbLrFRu2%z&&tD<(c+On{ZPxu2F!&gMb3xz1OuTg%n{2+D6m5$@O!5V zTVt1Fw}hVB7xjZ`A}-4}#rbkUb&uAT*hUp*571_6I+d(v=!d9FY-#IN>thRTa?zvd zZ_MwevaagR1`g6z-V_JFLYC2QUSOGPQLOna_e?SNnRo>owOr8x|7=O=_u$2xy51hX zr@jZs5N?g!pOxP2{`3B>0X5V=I3v_gXbP{+-||VVGJTG2#a%GC*roJ&?urrhl)aLx zfXitsX1QYg1y6VtYadr?;>frGacK_DXabjFzq4c9bLT8ab@LQ{FPqH1<3922;3Z$j zR^>XfCFHAtL*dP#h2ivAf#|1jTF%AqO|s`_+jEEH70+{NPRIZ`Zf=3bVKuC?*g<5OMF zOc>@v?A^ou(skB-(O$#Yle4hj**E+e=#sJwb+|!Pj3^Wla=ZCH`+G)iMl+(ng)e5U z%G{rwko(O)F?c>)Ibscs^PTo|4hAD>&}a76Qt4#9tWMD5*x`H}PeaZ4A5NT|oZUD9 ze`^f&ZcEH?)2XjyExMJVvH53A9K+l{)DdE=W@64751RX%%dls3i>!+ul&$JGeVe{o zTd7=-Gor(DUS?19RQI+F4g2PS_TM4@f4aA=5M4!#$%<&OG1t%f>NE1@?Og>XP>p?4(V6NmDnkZcMyj@FeP zVXF0+KFRRJW39AWlDrFFHpQPdE7;_4~vsax|Z0%+yQiL)prvnqUuVjnNU674qrk*j?^S7&?A_6>}O^Y_ct7qjrpR6!nTsGS+3n~G5(BIW>*?>Y@GY3 zE6x4ZebBOr4Kn@tM}~C6Nd5&|8_)bmIvdoCgVYB-zy6lkK$a%zD4pc%;((|&qU$yoVgz>kudud-7zo2K)bq0H-9^YRR_nCubiLKW6oey8?jUYpNY7Fr5f$D^yw zb8c|Vur+h^i$9t)D5+oyo%qW9!|>1&b*zco=b~Ii?SFA=ndAIl#^pwaKfp|9z=R?~ z+CpJ}bZTTqa5}hv$AhQ+e4aCJaqfQP14zgo`jOW;=S=Pi&vwr-|Nc1X?pxfV_+bhC;`_y)kDr{>C(V&^FQr-HPSXxP zzww^=o^_7-4^t`nqoTttGfQ5m%n&a}_ea8^ACZlbiTLgJ%{!mF%)8D%103H|xwAYM z^A31g`WE}Yg$4#}-WGx5prM4;?k*%H&&^ z?@4lIYOVZ4{`L8od=JykroNAR755~ezN?zk!3|S7Ye$hR^bM4;?P3f6b?<&;KSVMWXki@3-JF-_+dCIfZjJdFlj)29@aINH}mmXb;OVINjt_;*xq!Uarj~FEiDc zKFlgmuP2+HSrj{;*ePy>-Dy{BTOFLETbw81qjQ;UrFDpXgKeRtj ztUaVYQpL!@^mJ~L`Hl6wbu9ALPMPjl_Sj91O*YBuw|Xq2EEB9}9QExdEU&G#EnZ7` zb4TM@TaNXj>2Jd>?ml0JNus7g*RBu_^rkQ6Kcrca#GEym-Lm>-P0Gnb%H;J7BK_~o z6%fuTJ^UlGMnblO(jVN4VZ?SiY+h(vf?N_mTpPnI>+IECwcYDobKDV^)$RaU zy_|WP*=kv6Hkn>R6Oe4Uj(vG=b{q8qRLxn+40VS*3)zh;V}|IO(5$d4x)mGZ5s^mW z66kkcdED8};cZ~NY`~7)@m^n7-!lIc|L#Dc=zL|JuIg4jSIg8_P(QP6_`>$u?t;$8 z&UWsXah==~;<8gFQTlkOrtKwAmM=VGM*%A6PR#({MFX1caXMEPc_V7scuvRs)FL)^E z5A_hnX}`hOF~(TY)ZCbB%)m^ww7W;rqNH<)@rgSUg7Gz6F8BQS_3rKNb#B#F-&)ey{x=KU1pKvrIqS)nqnkk6X^nnWdXg%RNeLj z8@v6cn5lqekuBMM(S6=o4h+GdJ3g*ie0$89?QV_54=b@i#$X;c- zk^f4T$QX|?yG!<=?3A2;kdj&=qsjLr-|v5a^L^R(Rubq? zTe6E~cFM|4&;NaAdaJw+(Nj`C@M86;_>qk7o?h_97UATc?iXu_=of5L{O^Qn63 zoHRbIPRf_09oEZyA9D@U49jfm4vWgKS6ibiGOMe|qvT`Vu2Pa9)Bx|gy_6|@3RjAB z4K~fYlhZ!CYVM1?MR}?I4c?#g?4IE{`*UyO{;w)d6E6#|W4*&)q7S5-H0Wv8CAMPL zgGgOWHw|>1N!pwIB;`bM$;7ttf5kNiZSIy#YGoIDnn8HA$CBjPOM{!P}{YM z`eoFdH`!&_W)xv-lcmYNWGlM9ahCnKy_D%YZ#JcxE?O(bb&TugPIq3n4|fc(H?=LY zG%#(n$wzam);^D?DnK*e+}r{(zn^Vw=wiBH{o*ez0qLOHn&&ypDML*3P;T7XkKGTqnB($-pF!#6@ zyIVUf&Mxl4aq)4j9A9leth1pg9%o22ceUJM9MmhK13Zuw6^3?kOUYtHRQpeBCY=>~ zsMD0zGP*UXh+WG zKF_7l?cfa0&wf3$HPS9NNWQ2yA~s;&Q;qq;XzXWmYkMvC+~g@K7gGL9nUZoWrET)Y zBi84$YXf8%}Z`6cJgk7t=Lv(Kf! z{K0&m_xFk~Be-UUE z%opwy*(=pm>xy-ir9?$KnJsSUV2`(i`O}t#_QEdS^&)OxYO9nx3Dpup31t&}?)11N zNsm%2N&m!^a&2`~2N}1SX}f7AcM&>c*Ic1^A)!cO z=ahj-hwP_pg&gzkMVzVbyK(j1=k1*=Nv5FTXQRRL+FZ;Uu`jWRhNqanr|SEZR+?9x zEe?#{2xt2Hdxv`d$QhbbBd1D^DW_;g%ZxRdn=-;+9ai^F^{)1I^+}QaVhhorS#?&Y ziC$zc!yd~B+iJ%(=S}zQxMS{)&ehIVt|qQe@qH3oB`=R}Vku{S0jkLe%VTpf^8~gp zy^b!fztr;dXX*@TK4#*{Vl-?E<^Z#ZU|=zi?Zz#DH(T$tD+@k2uC_zv;i z<7VT`Tj6@>oXyt+A3a;GLLAb+so$kRVLtQ&)#K?%*>I=eCx83k!>~EFC^|jTATkkO zEf(7??w6;DLj=E&ADitX;$CT!@CJIq)yjIUjrIX)w;|^$A5EllfNQtyxVe-i z6~5i3&TDbEQ1cISw6%Y-?zL31mb8>N(Walxe;byw31nx1kF`a{g9}cSmhfj@%}vR( z_`3wU`ks3p=e5lnoBJhqk^d@c(4)a0!E=!{ktQLRpeZHw<8(Fd2{f5o>Bm$@z>3~m zhJp`1%$8=^Y^045Q*%oLM>%&{XK5R6nq!Re?F=0pA6&g%8yxkl56yS@qWo85)EsBd z;1ZbAga8U-ZC@~`1YY}h`b(hNU7Epvz4*Oe25`Z-3p_u0E9VW!vwA)LWs#TSM!B!n zpL~FKehD(G)>(3`sgCc~bQ58<*>+kpZ8aPdoqZi`ZA)#nt)nfkE&Xk4;vU7Hb$4`c zw5o8u9bp?;KVoNCl#__bN<*-@#>hjZd{H8@J=8o<$Nwg?!?(*nilqxR`(@5n)cluK({>4}^l{20Y}!#dOc)XgW^lOl;+a_N);spHa) zrnFAJnq*F>8Nbkd&6#7nfn=@D#tG&|#tfzn)mVELGlzD@{*rKuW*cuZWt+P?W}u=f9=98`SWDbQ_i^{z`0S~+n?l#1L6zVbcJEtYG`ab!Ksyqhj%gwtPq8L$GOU9K)I6Th%qI6uF{lm~6pT4S8Ck@>LMX=~!F06K1>W1IcC zeU@Vjp8Hc)3RU=Z`*LflCCQMV{!I2_Hqo23vWg@<58wCw@Qm=Z@|?<%viD?`Nw;PE zlJ3ZOocS!PP4@Tf_*_fgKY?lCW8nwUrm;s*d3PpOvm$FV{A9dp>TlcTFghKUpDg(u zXPr0VA1Ad*{?Ap^(!n+j-F;GA+4w!~&$jaBkH!&(viy5C2k#2SjG&+Biu5PUa!_e)L^DB(~f#c+>o1LrZ6!yBvdO@IoQ@;0~DlXxo&8) z9_P);U7t6?7x7o}Kl0fFAQ@9ZhAMM>Y1<5M3b`rRYqy1NECFWWWyE)aclZE4m_<4e6hrmU&(E)&>q zJr5;$KOm=aQD#x7Aj)R{np--zW%iWpi@BV)qVJWD3#KElL3!qv z92gt!9^EFj#e6lYPa}>oH+a9{jA;;ffd5%1*+029xtD^KQOEfV-R?Kn4aXr{vSWsG zto^JlW>w8E4L`VLNZTpIpJj?O#fYb3A*m5O9UEikqJd~MR5rXZn2hdXNA{KM%Q>#R zIPa9)XW9Sdp2@52QN7cGU&F!Z8}YMpPJ6E1B01(UQ`aQg7DBPm#F^kK?GD=q*(*D1 zIOjO8I7mQLmz(|C0EOZnZ*U2-|mT<@!mle$R*l!@Z&=$y#wNSn~F zzJ2~}extWaUYk5)-ijP1FW$4uQwpDbjlhn;^x(c|UAea23RC^z*0IZet-uzD`X5!2!0QY^P2K*cv8GyJqJAxK};CoJ>X$|DS^~L z4gV{D{%{$nhg-lSI765q?FIAltAR3f!WOr?v85&Am>3t1s~XqJJ;dG5ZE)3hCV|d! z+3^g$O%2?zxyCB|YiRYNqz|;lk5Y1EY9J|?7!C)23jGwi>9=|E=cV}<20Hme-Y=eO zp7x%2-*^9oz)!)ZfseswkyLT4v`8!>A5qLiDQ>qZ*O~#2dOYU0E3G#ilKWhIP4{4D zs%wXPWBkB`!3oy*x~|ub1jiCG!;ga=-}Jn~ zV0@j(9qtW*4>!nHA1PcjeVu~CksUWnC@MFHR;UV?5LKY*yG9IVs_}OW+n{s)o4;rr zWd7Gm+t=F-HX4(vVYZ-k$N#drtT0F#8XJznCHj!N%D!crbA#yy#87Rd+(;aT4X!TT z6F!FMKv`eZ6ZDk#{Sv4h815hKFYK@2f9`win-QuPHN3l+49?)V0w4m*4EMAMY|dIAs6X9V4r7?Sl)tS zcgyH9Zr}+JqyD9nNe5U=1@#qBYaOHpC=y&{i;TLb3;J%WZ%Gyi69 zZ~xvvZzQp751S&JLqh0N?3lDzeyx;IPpF6CO8d@K!FG~2?%?b2_4rLj+49&r(s~;{ zgw@8!hHA!dQ1eVT?lu-O5m3dYan-PE>Oi?^GuM^R1XE9wPDtCOS@H_)H~pS6PIwV* z4NcN~XuNg^e~OIAiTA|85)~UB_C&8BQP(GLP)y2X(JB>D8R87}lKP!=kiE$2)KR(* zH^boP$ADcC;EVBQelUnf`>{Vd2H(p{?m62IKF}xFnexmX(x}yurVIPUCh`e2Ne?Kc z$eRt?f)iY`W zahI$PUC45_Fm9Y@496;<2z2KjvLD%kEKmPImL-~#<3QI)r^`}rG$5FeGkFrfzkB2Y zB2Ig!^hH`?yfi}5)ICUqjVXRPPxxDmfNHjbK)B*ORD(-`O~ z%pS^$X>dsK$hDL@pdVjV!%A}{NB$sffitg#uvlCHhsOkXdz^wOESKwQJ;4b%OL_@S z*Yp9@TkH{jaLc(STw}U6D4~Bduh~6ZF~bhSFs>{ddd-*)@KmqiD)WhaI-N#N)GKQF zw9%T0>`&fOH^~E~6!C5BXWJ7agmsnQ2&rc_IMCJh6((WaC} zdgnQPm{tw$?*aNOau6smx7p&{8~!c-jsI@AW^8NjXN|MfH1norrao}2kHF@pqUkuF z#=l@n({-qY!DG8F&J(ALz-cH6qaJjF7^HrdhKS<;;m*WZ2K z(Zk_)OmoCJ_FDcnCKxyI>$%$O0_GmoOKYGkmL3SdV|uX_ed79{=5OQQ>TBxlMH#^QHg%QUF8!E zC6Q7)$+*in%)HOK-`dc+%F5ZUSzlXgf(UZcRLAt%a@o?b}jrM)Fsp|G$!;YbTzcuKgCzj|JuJY)Cn%DnGqs#Eov2}iNDIfDu=+; zEJBW=cG7*AEzC}^S9{q^)n{*L9U1zYbPb#f7O>HgTfjZ}^GF^?S zE`5}C6KaMQ$yFY3c{9DlwV(s&52+BcKO}Wa>96AE?i>=@VQF!*QHBb-35e z9a>>lU}l%dtfM}nme@y(*9+?niLSb)KGOa`s`c1d<8W^DN$h>BzmQMLQ$!hZ0>!RQ zR(GkjiT-e8PiI4ngPY2g zfMQoVDoa$qKABoZC6G&rHns`6Zm< zot2I{!RX9MkVxht(X|;hlRgF>%Pu&@8q!|s3S55oNey(q6jCBwR3b80&u9~fW5hIa zA$5fQ9e0QuYNe+jJLL!Ya}rq=47Vxd5PbKC2}P?2ZS6Oxd73Kgl$u~>w}Db|k2(}aj9AQJ6+aRYIg0DdR~1)%%MsnTl=owPj9Dp!{2;@*bGhkdpI3tBH60})Q@)K z1-x6cO;b!iIG!ENNpKDy;xBOnm|kQMTDnpMLA=rLYo8RWvQlawRu%q?3DIWJw^1?j zNB9Zy;eHM+3=RyY2i^s$1(yci2Fe6C1k-~4;D^W$Xw(WvW6>MpVZ@V^mD^iZskSWgZr zJ9GyqS`jvtuYmirzVU(CXEoXe*`l@q_EOGFRBtWtU#F~ht(`$VG&rt6;~g_>g9rT} z{ghasol^QMC*dx87~2?b5}4+{h#AFg-_O3T*j3p)yTSU(@AZ0L`vwN4hn7U9!r}T- zsEvH^DoQ@BkX{fDf>GpXx-6qHgV~4N3!`Stk393|=4X}*mag`;&NU9k@w>gF-DvM` z^IGni2b=pNU2g%`iXB0B)N5!%km0yOYAN_)!=mT^mn$BO1qO!Bga<~pM_iFT;aix7 zhCtxhDD;4jl|dG>CNGzNl9$P~;jiDOw;*bOPYM<=vk@efa>in&Jkuj{MN3tCGH9Zk zod?k|RJHr8N9T2sBB!DaV+LU>DhmSoPB%zo6uFVgW}0)nVWzR7c@27^sc;F5 zGtI%NItqKb?tDkKCzAmO+)E|}F6au>S`alS6T9$!^utc+KWaLCh5kl4$PUCKVg)#@ z*NB?vWeDg`?}}NXQ(OVx&!uPykSLzPcS6Tj#8Sl_@(7jCwyH(6DY}tpjIHE8?jQar zQhe_tv+$^4q){@Kgwm>xaf_j)A<9MA3+!xmJUfFu$0X5*soLZdr0e{QjNTd&DZUYF zOVG~C(~+EADdvuTiT*1r5!*{5Sa`hpT55wdxHUpHYPekWBJo;ps~&(FwwxT1$Ew?r z1^ybj?}K$pH|poK`owjrAkO=v@VtBki-P9Q@#hS=hR?=orjEuv(2U~#r@K&%h%wq> zka2RA7|y^#%2D|*XxA>IPBLqyQKsD1#~^#}Et1)v6Nf=C7zFwq&SvegdR9B8aqy?C zAiv|pw2_M_3*DR6=nG6DynP}5gdq`ngH1@p+ix_3C}iV%u&1aL;vo_u9)gp3Sh33s zg>%u(k9qBz^hY;I?eyW`pAOg1O90WZE-(87ni2o<#4Zt`NoXskn%3 z7ag)rU>e099+c-zdVb4^MtIgHq?Qk#h>@)bm^Yb#FV(7tF=F9M@ zhOvf3g9gGzPcD@^!p>uK>I=z}6^TToCpS`(rK-ZkXwztu=*UR_@OC`wzXs<7tijY! zTTs7vynCbIy2*<^5w=Q&@jLGWo@@(LbN%%=qA)p(I!ph~d}6jUZ<#(^s-cI`VH#|D zYkX?t%#@`L-t{Zyg640=m)M4{Hq^wR-xJxg_@TX<`NBQofC? zj?InnLQ`R6tXvi4$59WU|eUO zU`es1*z1Ddy4zOUJ`hzF2Tkx{OLg-$kncKj7nz~-8!{h$>f&kv`Ji|t)+*W@Y@ZW& z&oct={Y`x5z0bT;eQAEp_ba&nY#=2#KeRsFA`*$ziX9Tph>hf@$dI{7IO%`E@aVx$ zGdPS-jF-$CEgh|mY{PAHYw2SyQsI#6U!DS~@{l~e9>`Z0_{S$qP z8VmXyqwQ7N$;G8P;#jzO)!3=%{K$y#-N3dcnP;oR^wxcXMX>1K(1k6Og-(gS%t z5=E~m*RYLfLX0GLqcXff{|ZOieA><&#v~w{?F5dApB>FQ*pEnaXvwO~aHcQZ^PkBX zWO*_dPkJljvOZUDqrcT!p>okthh0ayG{QUNN%Cg-lG0OKpbrA2W`-_k_tb0ZC|xBC z)Zf%|sv{_WxtN3hN%B-WH3sCs^#8Fy=vPz?^g-7^|8CCSWkxfFndOX#TJtsXM}DW; zP|YbLRfdXCXJ`VO`+j;*ovjpBBFb{L4|=q5$~R<-91*LCitrT~_i;G;{zsaxApR-l zlNL)csg=A-o{fzAwn`VU;VP@y>P7e%oM0qg)U(jZjKEJ+UVo?^*V^k(^}gs4bIJVR zah4(7@Q@cHhf+g9t;$DFrc$VX$qHnBbh@w5ce?4Tpm*J-XzDL=4HAVr(GTd3bRO=4 zdjvt|!Fe#4u;Lk6qgREatEt`%-l}x9FBq>|)X|{mR|kiLLi$U4VhOPj)b^J|BWe|M zmaW4*X74dA!3sUXG-Io>??FTRhb_iM;q3fQU!+PPX{9h-k#=AoSqyGytGWwk%^I9< z5^kCM(DRKF{sHxAbM$m{bnJC(TWl8m)iq*jbY{#gBnwxNlYIi2TFbNp_~|XgP`$W5 zSuc#9Dw8Tkx1{svjmQ@n&ep-{zL|N&_6IXRoqxlLted^b#N+0Jdnh-lqN06VC*5uPi4MQ*E7~>bi7jT7a+#~h{^PU!{LF9e? zsdhl4wI0wJy<>;XwGW$cBg^Iw3Y(93k&eDyVId8}0+S zZ=n7gv5%NS)FtgS%{*idu%FqvY-2DSzVb=PWys=jE&eUJ*=Rvv|l{I+6N*C7FCjp76?%Z-0m)K*9o zo2Nh4XA(=uGE_k**dx>coU>Qi9bl&%^_ zbPk{Kd2Nvv!4q~%DWH~9r>cKwMf6JgPkKdU*eug~pi-}eROE450A7%CT0d+|s=|Nj@g$qlV8w&g>1`?K5Z&%E36c0^11uuRWli3%L0kP?gZhy&yXgv-NCE z(;A~MXs%m{1IQBDNkl*zzl+)+gxte&0!P*gXY3?$DLIzhP70_kc-lfIK#%_!bcpiAUTmblYhRIlJ{nnNLA@vO z8?h1o+07tLS3-(?U7{>FJFSqW)SSqVzGRnvSKq1M2LsHgf6=cKi^%t60Lu9}KnhcmRu-K5ztJD?`dQq4JIK8t z;Pu73^Z;2=^O-#i$qd6O{~qL$eVCVg)dwQeu(+<{|8ZV@EpL%lNrRLgL{YDsU0_hEy+H|6o6w5Yzs!A zqL@Jy)>AOC%Eg^>1U>LJxw*6s)57aQH~Fd-AlgtYorlk)AYBLN+Ah|~Ze}9%OlBdz zb~AL(?ex0(M9kF|>Kn9fNNq|cYf=^Iv2=Ah6KuWtP>GAk_-TS|!X+e5wFDhFPyYt* zcwNOLUlgAr8&d(XVT=&Nlx~t(NbHL@W34m_{;GPQWSt>0^h@AHRMb_ilQuvT)$t&s z&c$cr(B|lO$wL%{yXPYH9na-rW;8bz)TuX^;GJW7FtuWi$b+S+QdIg)nT8wiBauKxh+TMUR*;8C4{0Jbyc4`u6i?v@?N2RNYec*! zG-4yUn5s#?q>(hv=kTlfOQ`G08p?rh=`-9h*bNdK?9adh-$oJC2J%0BrMgG{DrJM- zIT%EWX|dA6OJRW6QOp3@D_(jltwJ6EsTk$Mq9|^Zy5hO$3*UNB5~S_&59JBYou}G% zB9VSd2j~zpm(9SWt{R_h7!ObSXucu-nD{T;GLB_^)MX-1tEDwpoyunU8Fbvu@s911 z#!7{yPg1-xM7@CD&KcdM&(`+o_mKEpR9mT1_&tnNI4B#+;q$Gp<<~b8Pf3~T4nF-x z)`))nq+x<#n4y4iEo#PpQAd_HuH?ILE#Y}@#mvF;b1H`Ixm_O-5m|a9B@yxP?w>ax}YA?3X?z4 z)0ms=1TcahbAxyVy3u#wYMo-I;<;_gyr=S!C-p3?hxUv11e8!&x&f|tW%aq*NmD`C zpQ@}@Wbn<;s>@NyE|#0f+oUu}6#qrv_DO24T*3r!IJl?%v~l`8Y8d+q4>b+{m|M?z z`5s8Y5J5IBWPE2>Z0Kfq!k6Td!1A3;m7^+=i}m8@33}j@>y4?=48o?D)oA?@@toX_ zr>_XPOFydpqh>3kl~T$JeAPqZDzT#YN_Z$-5T1%{k$$mX`=}*hO7dQvr7t5DIA0FZ zf6^2^1Ze;z*?mkLt&?rYOq`SBaO$o{oe{#P@>uP!{!q3laVn$FfXAmjDBElG&DtIH z9eU07T5+|6{2cs+6T%+Bh8(}GLM?HhG)Xyzq`F67UJNBhQjM6ypsTD0wQw#dbu$bR z!#lnJ_Yet9O+oW}#mt~DkQ2bF{;1a^ZlWqYjVbp&%(ob1?sY^BRF15T-N0@1$&d8z zni-jC?QuSDRkthK6;WBM&el5XNAwr?ecO-?-2_$QeYmJV5~f$-&A$bjkAoTkPV^V- z1ve6Hv>HmD)C)Il1etuV(X$GeVvSOvP=M>YCuRp3gp9N6F;RlJr}a{Q#>pfhME1Ef zRGutPl*=nam1^=*aKVnMar$VYI~WmhAX3yME8=b#0;Q2kd+9gyc6tw(^tFf|`d%oO zZeo7FLobcF_hN00{wpe`BSe3kNcX4>^k8NM^Ne1MpSA*dmRL`$Boc_<;QgtI%~*f! zoLXOPt33s?p#xPOq*I#ONr??Pu7VYeQ<^^3CQ`$}-X}%?&;Y6+ub@L=l z+|NlNiIL8OLvvm#gFH!#Iuu)p>gq*x8a~4${k%S1?+2FE6eUqa}5KUW8-x72c4 zemqHgF-tw7^-yQZBP3e-EItu0h%dzJVijqL9F<+TX>!m_HPnWK_c98^51p>aq_HR1 z7u+FiTjC5JUgH<=r|{LBlz|*fR3uL8Hoc_Af&uA~-^t(Q1#&$kDlSw0Q?l^v#NmH0 zAvYJ>38b($_Aa&yx96X+qadGt6xxZiF*O>AjO`?{8{W3o^kVb?rMNzZhoB#%K!;|5 z>v6Mjk?{pm4rgEzbd2i6e9BU_5k950+OK+b+#5l94D*3`%49JqEQ`DV2Ro5z z2Ni@wH-;BB9@!8h^`h_qPSIYftC8yX8Mpg>Q0RK-$@+YxyKdI2>IIP|@~=8dzAxIv z+enU?488s+ffK&R+Ja`Of%_T)&9A;%6*JnK;L#)ydBhK#a(>V(OJavMfqMW_Q93B2 zE$K#d15Cj^)M@Nbw$eN%9n-NhJxdh^jeQgPGn&D~6`8F&aI1{M_q1JYrrM!Z+9TzY zuggE=!pdHy1J3M`pyr(;%A@bSiMhF*UP(7(E-*&C{nOc#Og2uM)!1sRB)pit&eH3F zv|duFq15~T`)Gj1v^A8~2h28Kkr(;8rK)$BrHb-_hcA4?)nqkfSk^ZO0D4 z>AMGMK=at5+~1s=YtQ@vu5x#xEYfoN;;yqGqqeu0Bpd+KZo04@Q<-J4?NAU@kQm$_ z32G@V5BVyS(b?2c*Q>+z^~6Y`3vo`Lp?w55@s=J(^<;{0Ls9!O?0JS}KX7LauZ&HR zx{_sFX;=krYa2MS8gWCg8L}`{P)7xE>g)J>8>qWwUdj_1BClAIZz{L2zq}^9<<9aK zxdiqfd1{(=L}@Pnf^^R*LW)>iCeL_)ywv(tyFJqr`F>W0DA1V2u>FJTyHt)Z;Za%50>IP$Cj$O~fVrgjPm9h~MQXsg813JB)NbMO}o+)M`v( zG?`Oc$%OPsh{g8DC}EM11Xb)8DJ1V#WTFK|QG~LJcrSyQQ{M3QB*+ zB9U^DjL4yAJtR4djogbggtxq^P)5uUXGoK=KYp%b(gG*VQQVCEp-kLkNH&Z??_Uw* z@@Xd4{HLiWzl%wypU`ul18k4HTn^i@NtpOu!oBw|5`KRpeSM8&8LT^w- zZYTXAUK9okmxTI~855lu?8kI;+}*WPV0iA3eNsbo z2z$l5f?FIdWk~-b`(d?u8}+~erMi}?=V6{-iu{?JOvZu#xtFR+ttK~+FL4fW-)zx;ZWwC(_sF|Pfi%uxd+?h!3wZ;NaRS(N5&Xa6 z)Oec3MC=T*m2XiAbS7+G-MR5xA$9}yZ`JYJx`&_fHnBlVQA;TIFdZ<8pM_T9Au&y& zq;l3aU<>ZQ5Iczc=#47BD!`cIVF0mE4i6`}5`a0-NO5tXyLVST*WIS_~+0EQy zjx!V3ZG0KyZR2T>_3HASFte2~vt7>j<4dy-sE(w7dtjdC)lO=XvQyq8l@P0dH2osx z7dC<3Hc$CS-U~{(Uo^@~p^h|yx>R3W5AJvqX)X5QSJk1~0(2(@^#{ZoaxSf~Q~6e4 zB5wu@dWnHBmc}0JH*-DA-)kDOFr%GxT7GE<9euMJicE8}A?qGxM`MATu% z%H~m)AC}pc%9eBxO#*l)8kkd&%@Q&4TlRB`Na^Yh=ieZ14S z#MsvK#Z<%`GxageGgUHuHS`2Kt~0xbc}EwdXHp%=yZUpj5PG5dAlDk@6!|-zdKH;$ zTO>xDCG0_BLBB|khz+?-8<1YqGuj^s4q0GzRmGWGNiD0_CD)*uy~6ZBR>K;@6XQzI zD=Xn2(fr!{v$>#YjB&g{2fg|eCjDD!7uAfMO>ELPqMrX1%<*SPq3uA|={&wfOue3z|D_a(D%w@TU)WGfjpQp~ zuW+CFgbtuBp%XRGYmK9-p)0MY7s6dw67;Qxr~qaWMTmJg4-{>Nremh|5Bg%eT0p6b zI^z#zxB5o=7n-I8nEMsiOOUmwIfyE?BKv_I!yUk<*p;(0`_V}a)ej@{ zIt4wFLt7y46sHRz;SRcu3~7{HKskdAa6BeRqS6AB{qbO4ES0xI^Yj+f`2*TobeDDY zIod1rh_;(_K;LwOyU(s;!t_+^EFOYD{SSW_(`jr(nTm7^Y8!g3M)Wwk9PK1Ot9|7P z*b1BE>B#SyBh8TtN_k=hd5)5;lvO^-0u)8@3W1)=r$*Gu+6g>cz0?ZGd3mZ*L~p7B zcn_6Phqh*pv#a=7hN;GhCciP)&i-r=0*&r@zdlja(ZkX5LYi+X>uv{^pFn>0?EXT})%qvW_jX~(5Gw|7O#*X_N{QB4B z&e9&ShnORll8z&#ym+i;~ zv6`gcCd)EwL7{uW4dH zqy9#l4o$wE?ky0dL@!scn^|QVUZOtqz7d$elb|AXrGGhv^9j?1bvR+WNxj(xR$Dw8 zRP+ydGrV8PxLpZ`o7Hc{2|3#rgLZs}bfD95!swtuP%T&=3`adQ37t)x-w>qZZ*RUo zA=nl4q`$8gR0dU1==iINNn$gpKP*}Wc$&siX`GOal#$AL`Hs{?ycP@rEm#+f3{Ltv zK&UHm<`&_+{nx+euk}A=pHdxhC(7i~@ORt6vu_E}pmy+-H?pDtQUQX#-H$Qjjr5D* zs%`^Do+CKLWDBYnWMLM|95}uj9QG%JgI@IddSAnSb@6t%RopoDPp1Mi;LqNDKJ6=a zw7blE9c&kWrTa*d=1L=^=k#Z7xmS0U%;3#g>Au@5Wt3NP2WGWWpbV9j6mkN{*woRY>rn?tKHSVC*GSl3wH*eB*) z`=Qr7*an|)97SaXbWWG0Twq)arIFGA>4g-hM3jN*UaF|h=74^J#6nYWrjLl%d5`^oj$2=)CIi~{dZ;UwC1so zLDM&@uch1UDSQJDvJ*tOqHo*X%=WQZ^snfJ=%eT}{OFt6tFeVd<$X~pwj%~VhtB5} zH7~cF(s|(K^ndpEaguWQ;0J6jy{8KgQDeVWyOHX&SnEaFP+wz(agqAk#JHyqLidnO zPp{`;FUV+RkjVZWPw@`8oy1f(m07>J+0m?pio7>?*+KhnySwwBli6*6 z9;y>cx#jL1w0Ud93-}Y}f$TSf~LOcEpZ={cHhbCKz|VBjjBy``pg^3G`r4w z;!X9J2i=9R_>I^?ydnN0h2hu#MA7n^tt|#Axg)i8Fps}z2f-mvYi~4Ly-#=YM1D_& zoFI3Qqi|1MrL6SRaqKHxM?W%!cl#P1#=rflbnHi+e0FF0>YvQDeD+S{s=OvgKNDrJ zoz>k+VRt~ye8bH^MLFxWg8%%8&wL`(6{-m*sdtCSvHOX4>}PR<_^C8eiieLoh$H`+ zxLrKMJGG3g-&x`=-o$!z@|lG+K`rXc1M;h1xHp{j&MD_#rzB5%b9nCtPRQ*HcJY#W zHJUEt&tSGt6_xQOaibU!7fZS2swlNoIHao}g=Ll5AWEM6m;9T&lKiN~N-w1lc?$8c zZg=GAavu<#EYcpax7Zxj<3!;l$AQx} zp_JlDJ%B<%AgSu4kW*aBz7LOWCF8sdbTlFVIiF!ND$*xBAG!UDpxGFNat8#W-bbWeeU)y^FS59ikK= z|2|QKs}&jr8~qkuPPZo&eusV2zD=Juli4c0`3c(#|F!m`KhT^W@LCh>v`$?&JExpa z27QE?JiBZtqm_B;B;7LP@Z#_-5`weD&4{ZUzmEL;DhYSvtCO?ZmmSh)jS9wF{T@4t zdMSOR-OQ;qJ$|A!)BG-`(dA@LUYoe`gM~*b$NL*^r@eXkdg<%auRFdu{bt_VG4Cpn zKk_iKRC1PRgV;;6rjrphb2s*!6qbi7xA7xaG-S3NWn@ck_PEAzgYZZ`kIRbtdS~3~ zxT|Qo3xo@Y{ZOh-&%X2u4eDrL?wmtm8?pwgb990uZO$CDUHTFqhs-Ie!=uv znf(RZVi~P9C_~~Xxu?y=Ksu3X4o;Yo65CCpu2ud!=T|3NQ#srT0JD~tz|sf40$i+|E@fbypec;-3b ziBOK(w3V!b&!h>`WRwYa`FkNW-@lSsvXgG(YY?{!f=LH@5s^v5v#OA~_^O~6t{^^a|$9wNp_Lop0Lc$=p=$+CX z(GYhFZ>V0U#9HjvxPk&f6rNLoQU($KS9W^j;%*(HJNi`WC~3-lb~-#pL2^jz$EK;` zpx0q-n;IxNm0ch>?a+nJf%%^ptb}LSLG=wlY^~r~puyNY71C2%dsAndu~WL5^iY@{ ztoA?i>-qP=FNSz8-7esvYtTyNqjNX~i!}^2hZDGHrv3@O62=MrU>shd@)!b-G&0EN zC((gCVEqb{STScNyiyUjj(bfHwmx^lVEa8#r2WKsvBysbt9S&wJWe=)4$B1jt0X4TdXxmqs}J7OK(K`! z(jGA01z^>cKq1#_j*&TTQhbJl2XT8sA>)KL8O`q^xuEQbsf8?lQ|DFe=g1GqAChvi zA0d+TKJm{FH{W-AfAszN59<@tCbdb*nY16pWg5~z6QWn5h1h1YI9A=PYSpq^I;Y)h zzAZGQ51*`@W^%n|G>IFR5J}NKWr>sxQZ7qbI#t`$J<_a6^Eh>%RCQ8LNl}0V?aAQ~ znRqi*NjZlqt&ZUP8T=6ZSjahM?K3@g8RU(niR}a1y@X?CQR0OUkJxP=kgM4*`Dn5c zITT4CQ@;(WfZSf2puhM=I-s0oU*m{S88Z8arznuJX38ch2dC_o@^OkPDITy*dmj15 z?ZPQT&GZgx4xAjXU?!(g?*{qvy)5oj-ud~l?$O2(Ik`vT>i4DIWq(`d&C%Cw$x2`L zs{N~4udcir^jdgR>1~DgT@vdiXN{IKQ?os4w^v+fEEQ57sO$7zq{+{VTN}S2VR4G3 zDOaSLmik=k0;zva^)}Vs)S1)dP18C}i!`@WPbD|GX{ujS6izVX&V~;#36Imask7x7 zOoA=^D(*DvX*7N0kEEuF8$KNT@W}`D{nmH)-(`Q_`F-jSJK3BvEYgm>cZpWVzEhmUCj-M}pGsh>%>EUXbHNH?XuRFprY)M%DsOkE|V zvtZCA{f^!hH;X&h*$Xn0jmrAe>E|3qb&>A8xMy!p}+d zSjIG&n}73N@LO;rxD&*oksc~= z&`_+2^NuZxsJ$}snQS?|+J?DCRee%HMXUP{L^T1QC#%8ch zvaJf zV6%*z#?RmzW8}}+3HO9_w$G#)f{mhoD2e>9@Xj=MC%b>S-?#(7`hQ>t>kfMZXl5gK zntRy2>t=zuD~U?4Gu1$c0776QZte@G9)>3lAJj6!?X`^iA@vhC-zI6&IXr)Nga}-k!R5fvGOQt zB5dKT;QR#7Ro9=020A9@lpnLt5CF0WFWst?toT z$Nq{nie-Xbtq+^In)aj}Q^lW^1j!P|hESobf(LU#+^ zfK?SokG2dfsT93MWgK+fgJG~$t=MI;E%-@DjWg{seAgo(lX#1M^R)CCZ(BUh#HR3K zL&4srOKqhM;=e*IVQ-M+H}bc7zqo6i#Wve7%^b0H(ch!9qr*v}NQkURZk=3~%HA=i znCZ;UF^O5fCOG3F`;@aCrCcR{B50TAKM7KaL-5eu0>kRghU-;mg=U~k$)fvOS?zbV zD%Uyze0&v?cp-LY+)}P9ZG0WFGSsSnK@{n^pUR^0E^aCY6#kQn=WiFICz8Y@dxqyd$|jsk>?t24orgu7D=tNUqXi0h z;vqPOQT_n>=JPmIn%LLiYkct1i`FD-pS9ddXBFby8fu5^KhdSEwpv+LQE*JPG`omh z)ULyh>Defs3phjE``qJsZ~_}qU`-cYruePodJaIBvl~6$WE23!wYKa-JxqUBfsM@y zc+)@h6_;Q=AK*LOEFG6BOYdMNbBn(Vb8*EO!Xng7%}{fcWulkqH1ARGX9RX2a0g4G zWu8XYI)rNZ1>4Wp%bD0fei6sQ8Fpw_F7*xi>~ek0A`=PngC2e15<;3#*gw@iK&vd zCjFNbOUjenHd$d~Ts3nwuJ~$BqBF(a=S>Y>3xB|9rDq;Ls(4Bl)cQIzb1r?Nu`YBr zl-cOOzR>$xU!!~IVQ73Ph4Dfgimv^lI)iubD^<`2YF$*+$@J6X;bCeA6X7DyyM3I= zcGS9v60xIo3w8Hk^LKNq^^=|1nF_swg5PkDRbtc7e8p6{s;+8lY#k4E z!ogNQbcPw~7rh0@S}P;3ewYm1g~}o23`&-5vLw-=po%4xZ$~+UP zoLq+vw@T82q+v;U5+}dk{%+>GO7AOwD4r;gv~?mWZ*u!ca#Vx&DrHZ0zbB>ZfY?Ni z$_dIPr2+dXMo{w`hj)bSaMQRY?1=g+E>GOV@X>JhxG`}l@lMVP)h5?=lJ=OlA*H%b z>4KW6Fe;N#!FpfvJ9sD2CD(CtxbN+8c;_@T!K`I2H&@~zI*%Lvg0+*$ewcHRG=hO% zUVlKah0eaH_@{V?4m&10$_}=rf2nt%wqG^Qpk6E*Y9BhuF8SUlnKJ3K)Pu@(`91wc z3aLAa+lKxKFO}EL{f_!J%GwrNg3@$3Sz6B{S=kVoB5Frsk%5tHk?s*QlAW1uy?Mu! z&2sGVY9D)Irn4X07oA;hOX#sG?>!D+zM{G$n*&5e0{5YH( zz7uZ4hA`cjq@_~3D=vssF;3#qsJ_byy@K>;_*w_`gvIEX=lGYv&Oah*OTD}3mp^WB z{HXD41|L6weylXr?i4A@Py7@9a4;N|idO^`dp;EK1Ee(Uu4+o}^N1~0C-AZimFvkR zc}uQI9i%JxSw0m%qdry;>Ihi{iNv$s?0wpb{%n#n#qMCOF$b96gI+(1U5qu4EsuU0 zH6vd{8^;!z!>yLK>eP4oJFn5+=kuPSsw^Yy5*|}${N<^Xl`LI z>O&%p>``K#& z&ruQo)C}JVmZOTwAUq3B!?2!XF3*o=ISy9iJZD=DS&=KCAe{r2*@!wgl{(s%-tslI zW4@SLyiJWfi!T2@r&3&y#m|Qhu@sE%4R}Y{NwSJsuX(;+v-du&HIN<1W~?;3pp((^ zj0MeoV{M`u#;ly^m%2M?P(vhp?NG7p^3%YJfSIyybTa^7o-U9_beKdN6q(2JLK!^WtZ=^p4K{-w-3S^o!Dr?v&&yoaAEa~~pX!pBR!*SXyU%+sYZ9vBkQBBVz**b%u&`>dxf*fHNF49TfPxgX}Mg7EZH5Pg+uYvWeFvOSK{JX z1w&fSIA}BsdBz@C(?UiPTe4SbKk%-vqyEfg^Y=-4llU6uJC(o6`^4Lg!aj$cK=M^1 z-t~I$CaJ+rHksdoDldZNUWu=Cmp=v$?RTjqdtjz0iZ)yCZY(r5vSas}F(%}M{zN0S z+Hg>3&D8JdWAvH0C6{r%x1!*@fM;p1^b~h}0*L?>e4T49x(#^atJ~MD`R4HGisTk- z;;WRHA@M)nS^Wu3-3!s=)PBQr_|`8* zuHt^~_Z+V?x?vmMBD-4=O?Xzf1nB~+@mQn;>#u{S{(F>#6VQuf2h&IpMv+0&T-+`R zY*w$OHq#2>W9Y%pkA>QU8}21>W)nuUt|i(`pdnCFe6{M8J%;u z#(G=XtW}&ZWzC_nw5UV(qFosar*S*FI+~vSurnf?N$U7LG8kTWEE^f$ME{Lt#aZk* ze|Q4FNqM2DxCej9b-6x$&O@z>t{BBh_C0Ns3+3at$Qddf%1WBDrgulXR#(fQrJ=u@ zrYu8e*+VWQj|A81CFT~=bLx%%zs6&vdk59_FlR3Qy;~@tQ+b{@!vD(G;89!p*Xgl} z@D^+n*#UtE=cL$K>WpWk8QzbTUblq-%-05^IvGHjgx0nY8Uh(rQ|> zyJo)AjXlN7@gLrz>#O0Pr8B9>-Askr3hAp=BeCapq=?) z4rb#XkWg-A1AB`jyJjEn!7TX=IC5@vy_x~V;5q%2{vA5q5nvY*SovbLv^rZc<+5^V z=`LDb2?psm?~Z%hi6e0%7dy@yqX5rs_e3+B&pc16c*9r~zBt5?+C zz@n~U7s?R1rTndwLVS$gtS}tnMB$Kd0+-c-pn4GVS24%-^3&1F$9ZS@d%AGkKqU7Z=1o@&-0P7G%cGVrZBz=|Cwn{(ODU|%93qFZ!bBv<4G8zIjnw@JR0bSvqTE8T^(V$OxWB-Aor?+#~ zu^g3i;4{zingxgGsIQ1IaWI`-E)deM@wCi_Ev-Yk(QT!NDrwEM^=x3jsa0j)ZCW)i zr)qKSsMc1O^l#Mha!u(waAj4r(C(kdEii&-Np=NXv(=ok_5^muWwyRF&wWHPKoJi| z`$f}6$3^OZc9e;|j@^y@z)sGzF?OMwEpSo1L}R?qE$5x`9{7C(T^c98~=2qWG)uk8oIQ1Ija6%!p583YzC1#Q((G z;zE40t%S9_`&Yf=>*dvhx~fzfh#IL+_q?>^HF zV+YS%&QNg@u-X}|^dcl59Z}YjR?}U%DKD4mi(P~d;86?V+P zr&bTz`OCZu=#Q2=eegO6&I|kqA!mV886W91+z03U?}E+X?Qz0I*!F+W+-)XB!Qj0A zm0X)=Vn@l7HpqGDHF9dD^#i>1kEprnjNQgGPW~$-CZwY78;pB~QViTYBnm?6pp?Jg zeQXazo!C3pIo5=2@1-I|k_RWnCnb|Mb}R8i;(?^*Z2#>U`8!fNx-&XIHq|U;$u?6W zTV3{~?VfliJntk| z;sh%CP3-=WIa@~H?;2>_H^z}s&?a0zyd=~P*YHJsw020nt*FWs`D;4P-=)vR+Cqik zXTKpj*MH!GHi1!AlmlpUG3ZQRpdNg|pa2w$?wKFRt2A{S$3(ZCrzScpKM%*LgatSa!dhwM+B(M}_# z;5?i?dC}kJ!EN)%&FkgyPP<3R&A8{)_IuK)_CS%lgWvZzb|O84Ls}#q0ZS32l(6Te z&>Q8)16vCJ{$i<)^aKS$6{&$#MYvATKWB3Prd{`C4@5KRR2Tes; zJxd%T?iX|8_`Hj2IFr;@Ocra%Wl-PuQd_C$7Zi;QhDyBK1C?<~OiqwxDGU7E82rM= zNCEl)gC6fs_l|le{3GdeIZ_NmIxHt1OKmsc1Fcsc(hK!ZINZ*PtJDa8s~~ zE82)`sE||xG!`e!(n6cWD25{SxL9<^o&s6XxyMixd z$}1(c(o)WbDtR5QrI*SOHKqtf+bPCXj*MK4>7O<)OL z9`vpoofCK?vXcnc(8=NiPA{)9`jYZNf38ADAz6IHr{67CCj}!xO{YDhqC7*f{JUPy z=#KZJ66)b)+Gze=XZ?Z}R$rr2oR41ThLl+zKpx9pR70)t2fgryc}v~D=k>-k0!!G z<^vDLX{cnwQ#^rR&x3yB04Q@WAs?LBN#2V|WM&k@`A|;SDbz<3lq4GP?Y&SUWt93! zTcqDmhScV|?}1O!sD}+v_t<#u{}a1`H=N`RJcEvZoRA4`<6~4gaU?}N#W`>k@6iu9 z7q+`?$V~g$9m=V@oooNfeuff$7AV?M^i$24hhO12O3&Zf%u`d(9gh$1iSx=SibrV; zc@Cw#tL`4R80wvO-YEYCKj8_J`L*B%nLrhBOFW@wACeA8UF6odS$cEtKG&YJe_|iM z`+92l1g_N)*^s;QY}Dd2_3gKQ9dOg=d7XF!dV6)jQPU@IN$HN`g#3aWAkI7eJ)Box`V0AYJHWd;`z!cL33~CuE63UJ*#C+?tC5hG4tWkbio#U# zwNe&Nq}g(RlvnxK_uQL)pa&>-1-XOVTmB9;))vs%g;G2CM}-sPw0KPXM4HJ-B7so# zqSBrgwu@g#*`@SSj3?$g2=+BFm&W`a)BGp+hrdN(I)b;oF88Jh^TKE*sh4O|*HL#Y zu)$*Z+iUpENnW_gS^I0yBdCE|>m}L`9b8#K3-B$7QW3moH-b^ZK5;LOmJ!sG2~&*hqetseFAv|Jw@vZvot%k8pxL!=v89 ztLpVZY4r>xW_hmB75^`^<~RIL;2tLn4^em>l=7q9x-E{QV|XR^BZJ^HINeX|IXg+t zOak5PLu&mMk_kqT*ppRmBDa&X%g6CY7Zx{g3N7aMKNw^ShWMM{4RtRCj?c{AYqzU= zibR~p_U|D1v+c@`$ca#aZ9J=R+%9qEyC1x{{NC@p$KD05l<$r8Ep)`yg%2o1&Iq%> z7QW%S=O&4vfU;H2LuJ3u`+t~@qzzqcUX-@aICaMfi^$PgitBYK*L{Rn0yWun6mBW~ zqbM=P;Yw=kFJ*3eg=%CuK26jAp4=N>=)}4IJr(0Uoy1}~gQ?;o@+tN(C7y=y{S18a zy)+cW#-Of6#J9LpZ%GY#Vm$QIf1)2OB#ypZmi3 zo^$+(vw|Kb48E_C7?hXiISDOhOMJ|YV3G%L_9$d*?4ZJ#@FM4UTk6u4wt#I&5Y7f; zd6!=Cr%Y5Al^JG}V55fo2}YtLYN0xuwT`%1+(M1tM}FQap&R_iD`5s*=dZrR_udsW z;JmLQ)WmO;o^w5&*a3uK#>d_URmltKXSBT6sT|!w^V*3iK~7836I3TBwGB_!aJ<}o zf~6#0HsQJzz^nAeFV6d=3ZDoq=phCM`*^oE@)UPv@85RP+iHS!8DaEc|P4joLsQdV?kwQ!hZ zBOzie+WQOW5Ax$RI)-C$5o~*9p59MEUsmAY2%)I_&i}Z>vOQ1YJmC`eAUh|;0;L6Iqp-pr4IVKK#o`HI}OUfZV17Oe14?k{<8|^nnAbPwhD14nWIQ-q~yS zM73GYE=ekKKoWfydk!6QHfl%A8Aw|+#-R; zuy zVibi)6VjzGh-0ZeIpl?MJTuM?h5bl)fWJ}GsJpqkZIvVV4HeQDe&_vL&u=mhx57;v zilgyKN8O94D6)`=QO(N>zI2!j)dub_uIhECQl%jm_8d>p7_Q|FPPl9SN4LdWPSg^3 z&3<*qaJO&LH55eEnh%fCd-k6V!^?Y`oGneswi${Fu@*Cl zO^)kcYR6vTrBI8FSF6Q)bVt3YWGzUz$jwPOp5*8?Z1!zKg6(SXgL1}~##)piHT2i$ zZkwUY&Mi;HW$=ouwS8nox5rCZkzACU_V>8##*wj=*2-wv)+;+V8$H=~^8YUpKUFJS z7gNc+$xlLCMehXp5G}zGJW_G`;QRPe=pq)v+3}Vw_v7T0%3@}T&(sAZLKTF2FRGnV z`>GYyw(MK}R(&9MBFkjBu!_!OBS|qc$Sqi9)devuZ3eNSv8~akk;ah>%+5jbw8+xv z{@5fl9wzxyPMw+#JBygbMhYp#Nz}`hQg!kSX7DD)!SBbZeRvlR;^exmviK5B${Doj z)3jDvZ+y?)a3LHa>7X1+(5!k-*n_lMf2Fuw7oT?-=En>|1Ano**-@PV_E|XUh)2x$rUl6t(&N;l%!@VE;Ok`JWAkS%ckc{JX4(HB$;Q^=7J$lf; z=uf*74JcLPVp)7E>5&2(h#w&SecZ) zFU6*07S|%%;}L59-t=R8InjEcYkcIFVMZFm{G5_ga3C&`dg=wWjV9>{a4h3sT3+f! z!9ACwDd(3nQ_g?QyV8y;a2^zTl`sND-FKX33T~Y{ z>May5uefu?^jUf#BNt5fc%!M_Ui(Vzt(>6#43+wG->!32viRrz?_xfMN6QC?&gUGn zYoJ7Ugex$o`_k=-rsF!w(E_jmrBQP%!hMi|H?%xoDT6!oPdX~nk?1;p1dVDaEunX6 zgE1aKn7&m2tN^iDWiBWcppt zwOBwdbqLIH2w2GzyF91N6(fv;oZSAp6;_v(eN6RYPaQZqAnI2}li@bQ0 zCa1(F(gbQ*Rc7)dT1mDDeHSiHZsxN1{s~#xJMuC`kCe69AOAGfiIo2(q=_FC{xYP5 zdKve%r^-I*necV+%)8}wbyiy?&5W^5(W_+UewF+($xG^<{CVVAqyhNs+UTs?xgwKRb<_C@)bn=taoXeH?1b zKC#4bIrcie3!e|4#bb9_`%JBix-bLmd%@rrue^K9-bbd^P}KVM(e>PC=d=zV{zY_f zv`VaqIg?59SJN{OTifh;PEFVFTzWj&Pv+@Zm8Qy@m8akYrS+D2 zcim*0?ErYmjeM1Yo4ksuUpHFlE=ic3wKnQc@;LDgNgwCY^|bdVc%QpF>^^9XZkV5; zWB-jiFp~GXzV)}Y+O7-tztr7Jis@Rv5*^GRaNmbXR4pT~#4&$Ue1P(>Gb-+w_zu2r z8YgK*Iw;pKO6UJA)4)1T(5=kfnlO~NJUj3Baoq6V;3At(x`BzOt2b%NHJt#(*-PsU zX(F@Px%f7g-`s<@a=O)+Z2WxaKXQ2A`rFZ%XO`xZT=qo%pcv@af6;Tmc@{PPBgc0O zo~jZ0di?~6u8FuO1}ZI;Zpv`wTV*7ghl1i`P(_=%T#LCTJqXoV>PSWJ9U8x#?lpIp z`>mUnPX0G~o_P4?Lgdsuf)m_=8uP5*K8O#F@kv(rU*INt!RP1%rv8Hz&s3FDDZyM` zm^`!ludTqf^@JRnUyrOou!o{4w}+`JHQ@X&(1%U^_|CaAP!)6~ zEwdXn=m&hrPrZ!r0@eJ(e$)?<{!kQEz&x)Q2+|5V+{_Sf{i&6o^L>6K)3PzFdci4&A~(Dm~Uzkk!I)Q32?AH8eqE;D%DdOw6G_zl~CSsQ=RKHaVSw-Wg4=h05k3yw5Q8 zFV*LKJFmQ9lFLY@V?HI9+=FUWlRTL_oV|Ha+-4ym^af}}S^sk{$@zk_eHQG*eQSW( zCw3PVdCu6n*w3-tv0Sm)v3h1DbQfRJm98hRY$E8x2SEfU6hUAnsjI-om+5`=;rbIj zC;aOeGJ}ihBh=$`p!NA3dXgX85?|27pe|P@A6mlkXiFzhZL4@0NhNq>Z?V5|veC_? zfq}e3=X2d1LQfcSzvq)z1{)sWz2!{0>F#&G=FGdxPaj9_oiA>X7LnV0O|6StLmY?XuGPt>&YWNnrS`O)? z&+LUL%zD{Z?5=1_8n~@d!R`Z*Sm=G{O>#5i-QMZW_sWBHjO1Kv4r4T&6rqX2Sn?+C zi21>tpW*XsLO1iDno&!o70`~U^VREQ;9205#bIIg%U?@3=~MU74dTFdAu3XwRt9gO%_ zG>mJ=!z#}^{{W5i=gi1Yxe8CE=H&Trk(cs2EI~nO3mwIL%6*3XlW}L=k&9BXT31l@VD7RV#v?I_8ri`+hqK2^#`GD$xL6G52g74 z`s!KC>LYl@>N@}7m(0tb{T0sST{}Ud)Gs6%rk zAU~K{NU@bY@W3NL;+uoOzE)O|vgwk%^h7DIwou2y5)a1TSW5X3o@g_?^d@<>GyxrH zGO3uW(A!LPYm&W|&n{<8Vb{+roV&$h+2DIGL^ni-pm~kO{vtp3Tk>QAcZPS|uPS^Z z9l$%ASKX|h(el7^UNdwQF0(@g+4QtIoCY;p2fdpdydb*W($!1aWnuAXdrTh3fR>`b`)~_O6 zRt>PdCOolWFy?{sKBYfddXKe*`Z1LDH>i1aj16R_tR=^HiPl?PL=x3MB~^1EAH)gcR4A@t1mz|HIS5u!cGlmAuhVr_FVF1%b;Tx+}}Be zcTf|Lq36EqeP&Q=Yw`Ra!Y{264___3`d#w?G`Bd6Sq4vIdA9FGiT55}a}O!Eg) zg|6FsND{_V;(bew;ZwB5**X13Gl6^pulXIg&N0%WGqe3@lA4ypj~V}0Z&%m9;)LI> zjwNwqC0cG%ZKTWuukQ$^X~1gMz=@Y7_|7ZG-mP`y^7pj=vrd?kP#eYJkmp*!!Z`GL z1$py(Sas}<_{uWT0n7tW9qrcyJN!(HmsB{WJmdyPaI~MG2IfIUl!xrbl&JSVP6Np> zH>ae6s9Qe>!^N`Hydxk}hjB9PqWe4TcV!0LK^9?V|95vB&tXeaKV!~i_dFW+1C9Vc z)6Sje)e1`fzdkx7#=Q<2i7Dw=vZIn8MNavTN*?tn*_e-*E?TLDNg!E7BKADg#!MM> zVd;fT{%f}f35VryC4A);chcCmNW}gP&+BJAT?uxC%2wEZV0Us>IJPqz+&wQF6bx^p z*N2nlK8d~gQD-g^AB(kl-Zm?()ko?R^(XT2a#C|@(q;a|l(QKIx|J%Zla)=NJQ1eL zm2{NR;29nCHPoCHNsi3sF0^-ACCNi7YE`sun_tJiik3#zdLjBVzQi76x1=I`llqw21d?siMY{m$KuAu6^?5fR}VGs((o^A z8JiT6LQ{+-dRQy1l$VQ0&*`Hp2Y0aQH>|UEILtk^&zSMqP|#bt>#tm>`TSOjdWG#-G7~AQsFCFSm0V%ruf)_$gxwN`c zJFZV553z7umiROA6%xWJq?G$pewk`eswF9dgdOo|;w!|Ljqi_dt7IrnKMT%Ro7|#m zJPn6PuKoizPa8L8ud)6`G2DPeq-gSiqGV}y*qkGx;-CjZ-+!wLmqn+6;+}=Chsxn=+NunI`)VmB2+Qa+H#nE9OKc-r6Z4}DqsP$` zoNVLDl7jsdMMQk+< zk%yFwd7Fiwzn!*at6Q2uH zg+GPfQd)JQrl6QSsV&sf;tH-!;%cgJsjz{Y&Y<2*Fox^**??D?RJ1cn3v_i0`ROx3 zKAU+7Zg1-i>a|#OUMxV-+9>)7dVUcUr7^zjhUBs2Ft=J)$s}3=l9Ip%qSC?PAct@q zt#v-OBea$aqo;eX?ol7B!?o&0TlOb*j+-1;CvI_EV%*iZK5322Pj`_$*XnF#uuhuGVh@RF1q# zE)p@LnXF=H4F3j`jw2^?qR>P7O&$YAuuO5u(mbvYr|woGWBR#a8{2Slj5b=6uRYxO z+c*MN{1_}e3%bMmYD(_LLit~?{U#uop9%j4xBSiSPxg7X22_cSiJp)2irh^u$Zygi zDMQlo#CwTfCKribh+Q;uf^q#~{b6VJCI+L$gOUitJ`sjG0Ui4BrcE8#}?W$(q=;SHoC3^67ce}U$RMgjQ}20JYURAz0We@7;9Z>mKf#Ojf^T^iPOA&hPjass}WwkWB!587Zd zx6>Jyjc#~K-iG_f9g6D|cOyJ5lploU1Io8^dP)7JI!DeZ9c2z%BNhZPZ|_V0zW zc;Mu7e{c@k#qILeATt9~eOYs|nUeWpnRx@fvqVDP0dtCd)EVidMi1M`Ip`ko8;N1G zwF{J!N^NvrOZ6_Hcj37BN%1q|+s9{#|2ZxQr;95S_etF9@cd9=W1Mcfg<63&X++5BjGmf1R-;pHWn^dyGu}ZuF)6Jfo`I_^_8N_+N2mGlk zc?4BZbY&%#B0+0PLS0jyr^(tjeY;WH$VJ+zi2|vFc9rVeU(>ZqY6iAUwm<=UUZyUi zgIS5Hqqa~7eZV4^)>SCa^4Qa24{#6kih9g7R`i?b&`1k*4VH?1VHRgk$bS2ZGs{1M1Gye)ndR7C`IeN`Kh!sBDQyJV5Wi|ov^k_-`~`C~49`p- zbOJw$Cxnm5*U#{Zd_jg|9hjR^?%(*Ii`!G}6gUS)!HZP4GgJt)B$mzfyJfu^54pO?LXWF=Zu%^;Znjw!!N^+!WY6*!#C*fZyN25 z!K9JI=&wh}H`(_!o-C57^jwww2(!F|Z?ppnvs2at%i<1iG?$>dx@xX7pPCu0_00J3 z<`mL{s+;+6-W{|uqqunqcKfH>+kgCj1w~IL%w_T{=GykUz?;69$>#D$M8~Lu&hs~r z?P6s4FCa;9JdUmyZkGWl1AY{L0Yy9KU&Tc*icI-Rc20D@ZOB9($S%6a(Ql(oqXl9w zV-w7w;C&%0C6h=y6kmmKzd7!Dzaia%N$+_CBqO`LhD{|q)k|u15U5!rU-*#j( z)OTEm+HwDc2Ze`(-!k<-V&aRZ3iVJ9@eE86wvs5;h;5s1@M}GZosC8#B_bD+gQSB= z+v%|?Mf*p`@-&Q&U5V{5%h|)}w_C!WUcmh@*CQn%I6!h@C&@$smxI%bH zD0e6xUHhs~FMRpWslJVMRm-fFQ9dQVYbsi(w9;x}ZZHowd3IRQ!u|objnm2ALKas& ztFRR_hx4{Ciw$A(TMgdE88`}-m}RZ&RyC%9)%Is7%;SPO@J++T*W@-WP}*yw^|sXc zZTe*Jv&E!-=P(qbpZ=@%ki^_=a%p)Rsb#Ol98!6y9s3`@56W}hS9s~kZ*SqHanm^> zJY7b1j$UPF#a^o{YQGL(9P^nw7Q(yy>~zGz@H_gab)HWG>t@{R@1z=_R-=`b>JM5G zp0G0da(%PjfE`(%lE-)0D9d#HIlD5Bf#}|Yf9;IJ^}1MA5Q6)luRnU4N9Gu_Wk$17 ztQ`rYFJrCQi?t7@@R?XU{PJC_f9=dTpT^p=Rk;zFL*>l=<~Z`lZ`#8+6D~Q9Glm42!9hDzE-&$`y@p|KP5ww* z5=TC6$l0ZJ@qGHvyDwg2C`q5G0~^jHo&}vwZ3XT_B^Cvu6`n<0|{&(?Dxlb z>rqFnM$z4sPO}mG$(GnA?so~ahYQJNjYPlZPdj42#d4WnSoQ5nq|JZahdBnuu(i;Q zKJya(fn+B8PqjE$gPEWyef3QGLpED1qVBy@udu(T6Yhqscxlrp0q5*|Nq`|fBi;~R zpb;Ep)hc5~WPBP$?vs7k02e9f@%!|-0T)&kjRsY4?T)u^OT09kFL<IU3!Yk_j4X^l&YUkplTVW=W64V1{i4+?iy~|#vL$R#p73$tk<}7o9 z)s{`eb)E9~8?(b!pY{s~WyG9hQe30|$w=+lpf%RBkRi)U_!H4ntfYS5q=HU&mf2UVZ>(BY1FGI+>qk733FL$Cz$@Cu z`NLW1ZuOd>N{o>sSqJ_2ucXH+oaDFV>|Du->X+hH;Ve*yf57&^zI+*<>15ZtgU8i^HZ~l*~eUCKH&5AVLMJycH^W* z1DzJ^x)dpT<6-J&qwY#6j>fGymJW9{%F7GN*IGl8GIqlm_th8aZHz{tsiEN@xW|o# z;K?QQa$0q~sf*CyjggB=H-ZHu;&yVrW1?!qwf@#D${T)=t)gQ%({Ay+Ri(o^z;5li zyyppI-ChPs{T>Xl2vzUXpfwvTilOn$B~?e|HW3xb6H>v+bjAhSOMJYPVUvg&7PgUjALafxz^neyTFz|kMVCbT&}Y;k zclLH#35Ti0* zy^JJd3YjUdLO+DovGrmw&bIz2L9%HMyk=g!tg=*DEF?HE&u?7K?MObz9`@Bw!`Trb zv*ALdP{fF2kBp88(KFFbq+_h0?k1TP?FHEvO>3&dzsmv2E z*saklrp2~L7m*&3CuZRxPRmykPO5iSHu4MaxvkJo-69|Mitt?g8@1XuXgqr`XJ*75 zm>%82brQgTG4>gKj1TOB-N^LQQXfke->01Xy_DxDNB+gn_r#xzLManzY{_gi5$%R( zV2+zT&FlEJ&Df$?FIc39u{35mGE!36RUI95+dFramx)Bc!$M0^=`(<1Hs#&lq)xz1 zwS&#a|LR{G8t?x1V7Icq6nyzJ^4Bc+4|bY8$7%5vuKiy)lqV#D?^)J(%W{y=?& zhb0XedzsY>$_5;6<6$-if*qHaz5>NPkMp@6zM;Eb33nU5xkTqas6}HZubqWDTi%*w z9YQ0J%AN&-Sj_38asgA;nSJRJcBef&E zPc2CRSSyF==hmZg?u7ZeesXw^7~n^)ix!Fx38%w8TH*$L89<;MyH&&0}^L zj%sBx6}CF6w5y~LN8BGdRmKF_ai?4m+MrziRr*S4PuFx@y{IOsCAFMP(y5G-bd}ZF zYr33ka9S&@8QN7&n`5{bYm+##SF9r*LJcu3cz|o6Dh{=KFf|KM3hXfF(7(i)?QsuX z^;r9ER8p_T0>9Rj|fe$G9GyNWa<$V|dH?(#wJl_cn^92oCy6;z)TD9<5*b?oDxV zOx8~6-_lQ)<1WZ)2D1dGrqUncovGWz3@^teOV zM6nIuN@X_6D!5uEv2%GLO2ih-P8R%5ao&?lVixJJSXmh2_d!3|gnO9>$G|NT=EH6? zwrI5lP3%qHlFNJejdQ^Mg_QN;?qaVj$zWwkYoFt#CW~S{8PqH3YKr1ZDlDayZTA0N zSH9*cdx;{qt}+2$@(TFYb;bEVKRrSm%lnd=gtnogh5op!U&|kX&!QoEuWYD0(vpJl zhP^tw*vGaTT}prdEr`kQIHNoGDT213c9Z=R^wP6Qe%dUQ#Yxo*m1|qxz`N2!7^^`f z;OgW@|4r&=9rE}`;UgRHe~0P@F^;sUYp91C2imOK_=L5TZlPaWZ$XG_vNd*Q zEJbW-bZ@joY$~`_X?ALl!ZkG89zd4-C3mCe(zEAcewvNbV+0J@O18(3KpZTwlW?+b zEF+13-2nqEadcH4 zc1qy{EwwO0k^UI+5o<%bB-ZpipoqvLgpbVg$PL`GE^utnG!-$ zlF&ah4N4ReDajax5XqDbh00LLkooNK`yJPJ?d!;JI(xtG`#kGe>t6SLuPW&s)9Od2 z;Qt?{UTRPC62!_HMX9)hJ864PeywO!hkC*Zk*sfY+I2P7bFmj{%(upHqUB2hHtg&wN#1pIcXKG#0Mi4 zFyiN#qi~2f%8=k}nuR~;V?MIO`q4qnj&8d)O8)ZXmBH%Pzpi|Gwav9LI5EpIn?*n8 zLDwlU8xJ;1jomi1%Ur7pTxOEt6_GsH!p+T0XiuFoR-gJl{?2DQ@;=JMaLun6WYrMmW$Mi=pQ7^yg&U2V;B>{B~8g=i!qBGe$vd_L(D) zrBE#v`rIlwmfE9NwpZb(uiQJcVfBN6)yE6uJt3H+OzichDch@sJm90s( z9T^=n7MbE5PW#=v|82T>%Rui`&E$`|5`9h086ubKmU&F&+DMP|12sym%%RZna(Kzr znZgif%ZF)g(yygIL5ttrM8XO(s^+SO z5$?tx>1|chx2IjAM!#%Uam~=F;IqLdf&Iy&B2ND6x`-jXzZ%BUW22%!Wj<(*c=l^U zul;oGOFr+vT+1uFim0Q%i8Ytowx;&EkIv?X&bM_nm&NlFmjAXmSA9OVj@_7F$HiLU` z5v$s8loNHK147A-Q&$KtY`$S?>vTN#c>P4!R z(k5}v;!&^>$8{5C51^f_Nk7#tyb#a!r1_-@ zUN9F!3vp0x$Ff;Mb8wlq@l$iz8aUnliPx0J6~>|LZN=Y?e-$)~BZC_DbzJ|~b!M`@ES%x}Z;777 z?5>ts*lhP#b*6{%T+J|Fxe7g4kNDa6$2e#kk}q?;x(q42$^oVlJT8Yb_1Clm@Zwjo zyqDwPW+6#aVCMl`gfr^rQ&6M&d{6Gi$Cw#dPpNq~mi=eW__bydb>d=r>1xxfyYxrj zzr5n|eOJD{QVCY^$JMZ&L3=oHOLbj4b6(y~4oX#^sCrti*PNbhN2D76hatF!OEU`M z9X`S5E0k?*Mzf4-lp%#E#M`ECPCKkS)CTkRU5Me7;3)c%`V@U}=Vf)&ho+=G!g=a%jP^qGRCjRit`=MAoztRq zIgzEuT8gdT!o>5MWBN~QkbVDYq6-aoX`Fqmef}8T1G#xB{Eo-^Y-k`Q>SrM{JjI|B zaKvTdfplaQ_}e8YYCAY@$6nVne!)k594%*8zC-(I={hBMP^|rvD(8g06ASjT{Nq;W z!Wui~YM`<+`t7~30{=gXv$>0WXeR2wWffsPR-yST0Sse_o8iZ zxX3nwzsP?+!)x4^&xJ;~r@G%%J54d`PRXIZ5#?%{kTF>9@SIq%%74Ga@mim{C{}y} zfj%c&tIP4>n?%{fQ}K%NdG^d@`TA2ltiqo7TNI&+&|H2!;3kLLB zYT6b$A?etrT|ArL10T`ee(D4`=5xJf=blOC#sb}Cs!||JO((l7s8?2k26{f7(?kmL zd_MWTi2+4rN>$-1P)|o+%z)XR(Hs1W55%*49-awTm&5nwI`%NGdA+pfA|t{- zgho08R^uM76BoatJV{d04y3z(-%re)TtkCgmCI<(*!R&#WLjUC>0Vx6ZnPfclQQdi zu!AHo!VE0D*P(PvOzLQ1w(cQbChOH$ZA8@O80WKbkGF^Ga@u@`-l;bi*>Cs?u1+hG z{vd4SeG`3twgYGLrZ|fQ6}4LTSm`&W?oEE4Xyl;SZ|>2ZSp65GUsE+4iPgul?@m8d zIsQlNCcZE8;)mk}Y5ae*N@to0m5<^psVjVnMtzgM>|v85dhx8>W|B=$-g9U4D(X6U zZ;iYW&K}+q`j-pam!bRNc6SCU^SXJGI%qBZSUp;<9PUDPtc2}$`_mkczKTsYL+cgJ z&MTaRBVzmIcMm}?-sXaorK2mJnoX^^C-7kK73<(PcyTvBKj_JC55;lb-{h*WPCw*+ z9y8Nv3>VwI6HPZb6}%_ZikoE|{FaPZwM9~Qre44& zU2Wz>7n%Bdsh{LI>5$Tus)1wn`Lov9pBw=4SZP=B_iv!`X_4qib3dDpaW2j=gYZn- z@;4tsy?O#x`8p-}OQtlPF#~u%EbmF*@vM63FG$!Z71L3E&WY3$fs6ESSA*3}`D%v= z(J*vItul(1{C-^BCGD-Pbb%Lr~mV?iuoO%aUwVTQKnvO@xEng&FfIWT&2<9 zNvrxDfA|k5>(9F%C7>!#xW-w@*{0HzaR;K5ttI%}+$3^-N{zmaOYhfI@l{h7?5xf9 z)?hP{|4OV+WKBZU3ITsaO1bsOwW7o|76XNxt4cQPr0w(i|fB~=&G06Yqc%Z zp($mq$A78X)I^U3D%;EF@d2LWbh(dxIV z(448EsXy(R$0^)T1)dktC&*xS;+DnmTLyC+js`c1<6|LCtzbksgTI-3*dAi~Vc?fQ z0gB^X^1aQb7M1lrZ={a!SlwsJ^ICgyIPAPCb#Z-HvYId5ji#aX@U!C_5X*@Z3rr$w z5U3!6RY~QM*G`0)HQ*{TSrpt8YZJQ?t)cr|fUYZ+xXJx{7~kY~x~*{-7r%!7}AG% zvEai_qY!%P`$Cw^rRj#{Fj510x_Po9XM@N)r(0u z>B`5(MxToIhm^cRGk+-dN$maDG>FuyK4DJy3@6MY z?gceCk`D5-l}`2*MZfo)pMgmH%ERheakLjiW|8-5tqQ+jt=(&$-@R11*Ps~pi_kl8 z(1&p?Ib^hAb6e&A6*%~%g=X;U{*~iGIZ&-ON;lKIC`E_NHOf8^wbCTWiNg;H;Za> zljoC7Qd4BFk2sM^2a1SbrJZOUoUL8y2RlPl2EzLKLU*#u@CSx^$$dhB4@CIfV)k4* z>8r_f%z$%#Qj~_MQDB+c4Na5WDsJ9RT|Lh|t(vS&8PQ+NzL0#3GHid~{a_Or z-#*p$M5yX#Cf6^p^BP9Bn~7I9{CenFxMAKvi`3lYWlF9|;@k$iyn)%gCAk{biSx1b zY}Y&SikkoP2Nn5Wcz!vOnTbuZ(dB$Yu5lx}nn;JBHpM;c@AMfIJi#Nf0OyJdx?-y% zonfXIph_vYR!i!TKEzO!v#We@fisj?Ll*R6u^SlIKrlE_DO_TUEH> zQVs||nH2N}h4ciGZ;;Q>$JrhAp7ZHL7jTg7K!<;$e&ert;Ui^IPuuyU(l+rlK1ny# zPu0}S4y%e)8w`AJ)vb2|53=h|=`7WU=JlgVe=fO+KSNIakpp}Wszg7aQ*NzG_eEyh zWWxH<=S)Q(7=IK0;Rh$;d#R!H9j|-mQ!4zYDRf6+JH%vAqvYGAIos`{U}(-CZlWrD zrYUQGrSdu_hCv%>hB@L4<0jXG_szSql*f3@{FEG`$C^z~>EaPgl#F9}I>m`&T$ms!&t! zR2f{LyPC`c@5jL9)a^WODto3=MEe)aw?7syVLw&nQrwZN;VISne`@OD;P z1KCT%>t0KFIgRf~6j2ABiPz$8Pzwf?m5o11Y5bJEzJh}MNsO#2T%dkecia=2E&?77 z^mPx0$``)7UL#ycZ5LtM+y55=OChW|Va)}>jU{~X2$i@@#?M~&V;>CFttw=uZ>?_WBW*hI0T4uvEuqXeOmF(r6bKLGMj&X7) z$J)ukGU|{jq4T^y%bK!qceuSBA2K6y6;Fr3p)Yumjnh&1)Fg_ssRxn`=H+J&yFJqw!dpQ7(^FlX17oq2yLpQfyBv+$;>5f1nW1vYN4Qip2sR5n zZ?eG}b4b@y1T5o(IaS`jOK+i4TCTKpk=5Y`LgCr{{cl~=SE zm*NY!GO-%R{@vt5+`hgIb_~64LdMsjzG7Su%c+>|7Dsfp(1K^~FkP7>$yBtC#`)Q;a6->qA-HFnMweuC{$jCc1h ziT&!y|ENmFskpxnPEto52)!421s>mvI=pRUPWZu4nc$~RslNi}{Q8DYM-w?k83_4f z+zSe-0Jrcp=s{;63_O#{CcBwq-sE^aqt`hCL^0>vxc>!IZY3Z#)8*(-1%9KWDxd>; zCq92utev0vWPC2-48j?Qr0PHo)}tw^6Ze4{p_zNyk558=Tb z8E;G0!d&{($)9PS)&O|LD!xFMO!Me3R@9LbmDJUG$+gwcbqR#d$_-ER!D|agEXQd+ zznrM&b=RU&S?eQJ&(oL(#|(tp1;6Dyl#&Jfs)tjGBllZY$zqNJySPQna*lokeQW4$ zO#lD8I#!kYzP{219jFFk&MN!=m%s&?L(KVefTPr6>h)dRSLHDN1LY_eD%2?5}IzLq}(d*F>xHTqFq% zUd%)0amvT(VtMJ{?|LZjI|Ul*<3(f~)48^sft>eEWP|=b3&O&p$m6QX5O)NNg)dV*oHUPiZzP=$(7CjlbO*aIzkb(MdJvkZj}tl`_!j#w zJy|=^H=Zkg3SJkL>CcK)jQz#S`bg}(cvV?sZ}0pDN3C0QmsUadI#T+)fI09O_pXne z%7YU zeOw@NiCF1yy#=0Y$Heb;`W^at>2`Z8Hj&eHC8>Db45^>H(hR^lF3jCO{o-Vj?7tAX#_fp^;v*3Z7cXTf(uqj`zG zU>}aaGj9(=c`8ymay;BQJi=LbRo%XvxB3^p`+wX?TB>nBlyNo)+{pj=Q*)WVly~(^ zW$HVQgkSA;;`fJJWtU-=O57!fUIwepr6Q}Rvwf0x@&uaQGO)A3ko!@(MPG~PPlx{( z%42O^431F&gj6z{Ap#9V)v?@t_N4B2>Kx+wc~jsWil}z3{ayHdZ@jNhDf7OH|LxS+ zpi4Oti?xC?>|5RV<*Dg`XH|}S#i<{H>2i!Cdtfq-rTXUvj1=!6c_Og?VfU0;ru)3H#B>dTCUE=|F`93Ol%RDzy)Qus9t zoiM!l?(nVF=5V>eVev8}aC>TiZ1lKEpE*^;?GiuRZztk;@QgDP@4-k{Bu02iDWct_Q< z1>!lwjFBl2uRtoVJN>NH@`tW|rrhsVnCi9A=jJB&=C4*UQVgPBB{C0dp-N~YAHzzb z_!<*dFSv`3B#PnTbTF%81UJ|`ra+#Rf?pz{eK7H|2$MGcrca2D(r&`)lF`H zEwR%bob2l$WbGD_?Kb&up=1JYpc5a{4`lp<<8S*!W1!F_bPz_R{!TUK_tiPri>B(k zNE;q4W8Bf|JjY%)WpscU>+9U(>S=$5pHk<`mDM+&`iVsnZ|hkFC~E#^?sOhslVO)x zI)ZC>DbMR3?};wMI=dlORkY6$->Q4ROm5d*_5GOXOml+whUQ~;_oI~RWj@T)Cc*q| z-tD{Tv(qo8o!6KCPE~bp_#UY8bD{ev$bPizGGuZK@yKpS-QiqZrivQFL0}`Ebq9`! zr)is->6R^tCNSuSU@+u01@fCjVKwYLmHxjf8xD&ys0O<7KVv&KlrgSPdkU+1EJa28 zwA<2Nj?^-3yb#9W3xV4qh5c2UrD2=PWOKEW%bXO|J>7f7m0#my;|)dD6)L=q(CUMD z^gVQ@^2dic|8wJORN+xp5~5hZRE`{a2x3}E_=UI zxMNe3g~g)H`ykhSUReg7I^4}0% z%2VY#HCYQxuJ^_3r&BK^$LTN^kkR+I2X;8~Fvi`fX&eT=Pz%(O7k07>&xthoug~8d z?D~5o@8x6}5R-GL@o&-Vc^$#&g~<~!7*x%nu)1wV})o?!LJIZTsx#DJ4foUhDgYieEYu^Y3g ztB%_J_wqaF7tcxkr>D%TCuGI+75OgnlKF&37tgXW#!Q+iZ-ZeQY0&+}!P+vo zqmcd2%)R@Q3TaGuo>S^8{q60lkRI^uS}NjuoX7v^s<$vbV1;aOrSp6Nr{l?9 z)Ken0%XeXtZoMFXxJ1(R=K9(EAD_s6GL zxBcS_<3W{UpG0|kqPkl0D<@j92J8 zou?NmgPr&hFO=ojFTc~bJ)_TX4!gFTdp%3MSRM#_-&o)l*E5zvq&$z{_BzCU^nPBG zp})ixsj{%)BKK4b%{ejzfbkK?NsbW7N?Z7z)MtmYdi(sLutg-RD&Lk6AP2t=|iJt+Q2j zSv6=4dEG@jqO2Zxf0gDcKH>vaE{FK*jMr~@%FjBjlTlY+e1d>XrPP7ko`FiQ z&@F1CZ)^^_{zxHlbtm`lOV;igSw%-PjGFs(E(Z3?{%(RQYL`w>f>Yl#Otu3Ml>#F2 zFh8Z4eHgGij;lRxb{&WHddq}zgwBcUyZOGJg#%U7xjQVctQ-8;{EWNJGT+FBbF@_x zl1H9QL}bBr?ae-r?!2%3DW z;4>ZePAk3FXDWn6Jed2zSU%z7*$n?%&nK>EufsS#N^-mXPru z4)pR~K`fekLk%!BYU^H(u}fD%J$}`dm?KMStA|-T)I^@y$LZGJ%DZNL9g(@0hX?HB z3jB~Y8-pFq;oAAW4#Q%d?Q!z0d${J+x2mSY*ZR6UKdG?q66x-7HHUPe2C4j;VOqEI zJ?ou_8*v2IKskT0LOyX<3P7_<;zm7uoflEg#Ne5pUKjnha)Gtbvhx_(3suWQJcm-r z*Y(Kq>gKm}KGbo#{=+YOj$Jxhr>2~>*BtY(YoI&V;(?e_ZO!dip|kjfXjxNEP}TXl z*PXenckm)s#&RyjJ*>qieD@mbbgJHDD=V|GJ6D{q)Be;JgH}5HR@iGJ`7yJ3cR{M?CECiyR9Xm8>l=v+A*lK0eb+x3SQ`Z@>;Z0^;H z3*rk-^yQoZy66II#K?L?4{&5Kh4EY#OC%o7uReYNg1r(KCvINKfAmagbSwiSQCx+} zu(NHLVU0qY;Mjlp2~$mc+@Wi=5vuYqSH(O!(zhmN#2-+pXY)D}+rV42FAi1!C!&~@ zd%IQC5QpOCRBh30LF$_6i~sNo=&dicRo>7&)EWEXV;zG}v7iUZhrZOat>3#I^qA*lY9%u{x}Gf{kB z5UgM(z&!qX^QpBu=|VoB8_>{v$&zWK)858ExPptd5oYl-K$p2Ax`HKGxLg7wak1vLqn9uE-$P5R?xjo znR=TmybJ5)A3TsD{ID0`2_>*HK6TE$#RZ}skKG;6vwT>V-#cl()SX|Zhty3z(MoOpASR4_o&7P={XJ1=T2Jb)iDCIx^QD5ku70> z2UGR!+==$?S^fNm_{_IB#jl8~rUR*Z@>$m#ulKzs>gFBxI$?$9(wE!{t$9$6Hp2dX zEYMpNcmr4G558(0@jG4?ge&VRt!*<5eFvAtiw z*W*s8H=PT&+GRgOf?o@MA#Sg;E34?H&yoQQR*k&x-n_3)s2DmT9_$y>U(-8&#hth$ z^WB0A^{z9zO6p1ZNNd+U(SPf^0|T8B?c9s;u%Crk;oB2WbIT0aEq(0C9vn7`K+v~x z+?kgsr(XDuSKvKP?Kfnb^<7)gP95On%n_V{-%(f;D55{GS?6L8RPv7GF}U1TctcEm zvk2C>&)sg}w3?IpOGfv&9P|e$YEM0zJ4OGx&WGw$qy6A2Phq~C$Ataae?OL&*TKa5 zKC(VChi^F|aiRwc2rvd8m4AO2L!eyu7v zP192cF86P|FyGao&X9FjQu~uPI-8fn=G(ZNBh0=lPTf$K4!^VR!+7eo>G*)FoJw^= z|H%R`rQSAWFi&C;y+R&5$8DySPt^^(FEfkB{a|KB=6@W*Yi4$(tjWwQ$)%$o_D?i= zA7(&78D|~Y?JBOaGw|&zggy!1o_2HkID!2gRB1$Y8HAT_++3*s;4O&6%rF%^(l_lqdAV$;zH2*>ZU7QuTmj6l_PRiYQ zuhqJ`;p(buCo>oF-)QK4AEa*R80f37bcqYfCwQ%w(x&rM9hPw{<6auvl@y^(&67LJ z6`)y0L+%WJ($f8!HaP89YK}W2f8zxIjPW!*xYDWCCbdoFoR5p~eqNq0(xxt>d;gs) z`y1S=yG3t@R2GljjF0zKqLIq!yh&Fz)he&(@h=Qjg}8h{r?dgbE25jug~*k5$GBb1 zcjbEsajwW5>;n#4!EC{|Ri0bbNpG9snu;}{AE|7XTLy0HjLhPEq`$p7hy%kGu7aOu z9`zYEW}e7=H@YG=25zvNcl1)3<50EPpMfd-AJU;DqpaO&;dK4xnmm{u<;QSNT;`o74HSRrm~vtPa!Tl%MhepgpEJxcdrrk=rw)XmQOE27#x zm?Fj0ohx8|BgC@ea+i&A)E8wf%kjCIivX3ewrk5CJBaxM?cORP#hE}A9G$%sHlJY! zjgP=K#F zJBOhIH+lsrsO#zq*2hv@B1^tkwqIMX_hF38rSg|z7~T0W8v>BHO>pYIuz=OPg%ccy zZ%zM4m-?x+v-ps0U}Z1z4`}I>uLoUe3PpKcI#@Rjv^ZHAgr3#^cXnF>z1xlFK zQ7!P6{Qq;=_chU?kZ!;R>un!j>2A?dTwK4*9H$HZB)^5n%uv3TInPXhHL*g@z0cr; zIg)3S3&hD)fg&)EtHJj|_u;b#P175M<9RxgozF)k?V@P2OYiejlO=oTK;)w!`vA6d zTX-Sm(t>i63NU+7{LbP{E8MY=*i^T>y{4x<^(wSFLbJ z&HrlPW_kQtRpT@A*^kt$JK&E?4w6(zLR*|zL|D4tp@+6yUn#`gO`3A=c@`-+G}`T{x18=nv`^B z__RK1mX2)TXr=P#|p%3dX?E`E2Kb_`bxU&DwP6uJx7^ghbL5^}tT_=b&S z1-B(e#PjO=PS*vR7tI$P%yVM{<>2SnrgC~3&+BIux4jx>t>vRn?#%_@nC{n=#1vR& z9P0i>upLHg5xCdMaC=(OyVFKMZ9n(qe=vpPFonTRPUEe3{;kt5Dq#i8f#jUFE9-}T zfqK-1fE==p2g-;x;0;u!vAG#9<*F{xGsy^c$|{lRlFoN|8UHix(ONiaY538fqRj}E z)p=9e`pJwQr!C726^7L`4%Z9c#V0+V9>)%Bz{hnr8mWTs(o?-VwTR!y;zUaCIbVDx z=klMU@4|&M_zO;>m#s)emZf6aoSBE4_s?AA+sZI1>iQK?o3?@M+$X|55O^21Fol+A zSZHskHs_z?Jma5?ycYR}M!7H-}Vtv-Y#9qLF<4SI<2s-A+@8 z(M#9>bFjG<$eEVPx5t^+F#zizTj)c3{x5ZCK)u@*+olpQQvZ7XI7XoE;j%^(QU#v#xa(7xre{)%S1;x(2GK zYWJw+`{43b)=|y@$N$TD@-xKz2K(YZ5k70uVg;G|mly^`q43kFIc8wll+R+y*xidc z)o*p~@8-Yump_%GnklM#|Ge0cP&H9(XkVgpSBNTo_LA2Ix*f6QP5@ zlzBXJU*^uttC>|j`PH=IdGH|LiUn{X+UVI-fTi6H_p2zwdfb_MOvOGw6w|Bt6VEi8 z&g<(mJDVbZMq-g;ks~zC`#7rCiLCR~Pw>dOXtm!#QI;N<55Fmy+Qi4BJEqqUCb4Yh z9oR{A`J_%|Z_(}~1!WWQZkzsM&+Cz9iA=Twyr6))SliS65>k+#T6=H!@9+WFd_hO} zwCmp~ryeZ^=HzbF&E0;2u3#=U?no7Uwqy-XPi;K+M`>pspj5mebHC{`gRWKKcJ$xX zoB6tZcWO-}bTIBf_8kNIw>)lgcNXKSsYd zEBsveECi|w#Qg)YWw82il#2Eo?71)h@L%JN;s^10`cTRj;C<4Rp5bfRbZ>5RgEQx3 zZsTd!C%O{vwKewBA|3EwxT-G1(tcj|J&AW$N+mJJoUm#TjH0GGeWG?*;x*4cpWwQ? zI_XR5i{&)2E00-#pIPy<^o!}9fn07Uob`ayJ*JB8 z2*J7ys#FiwQ$Y3gdLX-#YY_!)eyX*?>Zo0?=_gJ2{L~ds)T^52{AmGB-V~au+py0L zsjh$A4$`+&R#7hbdLpJvdu#jxB~PwcOWuxiGAD52_=@|)(#(lodpT6R5ZxPX6Fcsy zFN)`a_DxF!^^yBSxL(AE&7(#d8?2~?8-VE;50}6+s;_(fJ$_X_-N!q5f(+3w+pmY+ zLk)Kx^05iFJ__=<7ed_4?tTyE`LicG(W$-|D)q5bey$zxof!Wp&B0&T)Gvw#$7wY` zGAm$N@MfIR>F)Ps$iY%`w5mkz!##M!`{Xet+9=VGJj%^rLdUdj4etSBP=Ci&dO%2k5%` z^1*miZF2+*q6KZ*V*0hGu)IE!Yd*p4wkZzQ^OVcQBhTuW^u(zdfPp>7^q5B>&8=nk zp~N$oE@NYN#(q~rm5ENxENACe;&?THhIc^bKvS=-aDhpA_6v1J2k1TDYX6mW@6e{Vv*x858-e8s{8*9{qWsZ z{ZF)_&7&zUiX}LFHjvvt#zS;cG$zh3aNR9Au*C5i|4OvLtiBVHbUHNvdR5wa{eCcK zs4sokd3gQr6hRlTMt15bbjR}E33uL4{ZdrkGDt7uk`C*~@WXZ{v5pmW zb~@=Q$uS1I|2M!6Cde;-)HPokEUca{9GL4T|A?0w!KtpPLY-!Q^S;=aSWm0}XX?-i z(blru6g;6eB;f@J?tZ>YAJVQ3R^O)Z%|6uq8KTA*?)lfkDZYz}VUGH_BaPe!7;0_# zbnfttI`)lK8FN+rb;AKqf3rOJ2ie!__{XI~+o>X&WB6$=D1-n4~e6x)GGbha~y~rb233s~#y}X{4^Gu*4 zsjpA@r=Gzg(Q#6!HE#8AD`108a1uk{mXwnd5>_qoHT}%uSe#b&#^^4*?jc<69^)i9 zjdyo3vqT0{cZ5WToAJ!g#2*!jOY4p{(nZO%{^tg6kVU0ox*X!{+9|w@YCHG!6Yjic zu_C-AJQJRKXLzrSzLieGQGCe`a*iMMUtWc5mchPU?Al%u{hO$`DM#oT1AH%Y>V;p% zra3C!RfTUffb$Nq_dP@S#eMXei**Wyb6;8#&SuY##&+8SDSy`#gCW%9O;vV3nrB^) zk8TdxeOH)nuhf?i+|e?roK*5d>2;Um?mdK0cY7=v-3qPyLdN$7e%niaUC3j1676Ej zjH>2baSEw5I*LQtWSsM59P0wDcnaN&k2wTeGbqN~C9`S>H+#faHC*?hYKsb#xLwuZPqO(-nOPV>Ib1&p6#T>Hx1-!K_ZEl9Sa>RpGz=Xt=(TS4{~9 z=u{ua8JLV4c1C{jG?sQFU62Nzb#Yq3Qg-}}s+y|Ty&ygl9lJxHAH*O2$hCLT*Gbal z4sZvWCf;z;zsEtaYV6Nw)_GTlBhZa@esS^t16an!Sn>EET=MLYpVIK#k}%_O=065y zDYIqxx%CYz>DNp%n{%};=5Z0}7`0ehXd858H6-P0yJ9Mh^d071Uc~)16CSeuG8Cqk zr=F!|+O9@j02O+}eHdZ|JcHq|pJJkFz?GMSYD7ixsd)1D zQ}8BC$T%aDy@JgZGyCpaT%g4qph6r>UgXU4y8Qk(%BHROt$VH`3#*+!qwy=oSbt4m z@oUso9rQOJg(r2>FKVHVSqS$Tp$d3IKl1?`jPv@y`*fCm4{X=#+wJ$W+=<6zK7WX# zC7^m4DzFJofo|5;5$MI=qTU9bxR9B?FRSB&@VUyOUT0H+cS6mFLrH#t=!9i;mt}j; zI0?Ry@iun4zDYS*&#MX)1#dx?xB-jfIXv9`oSf$+j>KzHajDj0xnmcp*~W{t+6YTX8IuotL|3b2$ zdvuBpn_~U2+-Rsw?`LtQwn&r3-k+!&xkkjxXVUCC_~G5SyIGUC?{g>#JOIM;}c6O+ogXN}`@juP7$STNDg4V-LiN#G1?Z2gbU@>c(Qu_)XYuov`2z z#2%(L-(z0e@We4#^7iD*(AJ@PN?B8rAK{|WQO37R4qFzZDLa)$6R6ciinh+`m(*gh4dG%}H3$gw+{uxICd*M>A;=0ch`QmsU5uflUbzBpBU=0?*9;}{Q@v(<@%5E3$4Ls3cv(H0MrDJ*`*NH76li zW313%;DGZk2qPKnijGqXmUNC3wKlg=3>J~a|1F=%#N};Zy;o6PRMA<#2mx)cy3Ep_ z<@AYubMkbu4(IBU-RvjSFek2tD*t$(Ua+-HcB&PUQ@5qIIq^4IFNxs&YQv81ZIn*u z00w6RIaJn43PUz3!^iK?k6tE^9xSJ76gO#*I9uUu6Q zal07UMJ$`9=4_}xcO%5CB<9R5*e4mf{O84oDpu~Wzy@(ICQq&8Zj{BM8>7-2iznCy zn<*-SoPZC`wWh|3Cqv~o&&UQFc%P5l%bf0MMR$_}FdS)+IP(#Qic{A25@^Y*uKh-c zwK*PsZcHAw$hAMMLt2#zVI-vNb@#ckEGmFI_ki77S$)6NU09;`U)9x?*6%xJHp6}x z=S+Ff3eI|G!h%jIU(QwLqZ5zc}*wrdC6 zpfPxY-GW{HZW4sOuXCq51UJK3Uz|R2ol|U01$Zqm(w!V9Cp3#m z{eBT^ZngXNGvxX|xmDHRjpF$2w4jetj$h`uS4}J#rYGFOH1&ruqFSl{9@9VkMXY^N zgv^b>`?xOgBa{vU%#^OHUo;8Z^BSdaXU-^HcM(Oio`2SS>0|#!l4Lo_Jx(p%-z^UUl9z#Nl6k zU5VBL`>h-9KMo*E~y;>y(_i@fo6PZrQ?xs8G3#gXY zc+!Ji#SH892(@V^9HG*XhbWFwME3fdPV*Kl_pN@HCbub#OLoaAwm=j=0uk#bk7?nw zDCD{Km%-yL)@LpcSXc9I!c}iQK6Wz^}_}A9oU2_t5rHw2t4|<1E?{Q~$ zS?s8zzIVIpK84Xy+LhId;)TiFMvoI5FNnv*8fsbvw~G8VeV(rN_Gl}zE7r;L?#3(j^^PMNJx|Y4Tm$%CGGVo)5uzK>qtLoz$ zWpn4gbuxStAmZgp{eZ2uD)|R3Zf>m4?J&)1I=C;mwpE_% zA({LvxN;UtYZsPgr}-om#P?Wvarfmzwc--)9Y45V#qqn|@f07j7Vq(? zU(nYsh>z4wZ?J4~G=#7>G?Vfja+rakbbwa;XUxd6YUtk9QihfCxL7trZPC?vKE%&H z=&Y^jl$k9C&z5PQ)3v<~TJWz=KTVDDnRUJf>R83~1=SKq{lw#Vx(Qu~@7&AL?(Yw@ zel4L>rKubKw0>Tcx7W84pYv|Dtcy%OJ6{CPxyBnIK=oh%Qy~IZLb<7;3xvN`JtU~& zP6V%Tf?4g<`%wN+Rz6YCoxfns-sY#Sm5(i_VVDjRXhrk)yS=;(N|0M$a1ixTbG!L& zS^5GB+rBEQ3I4zSa^D+W>p`5gkL%dcihtc2 ze-qd1HW|!I`cV^PJ}=3Rcd8RF_?n05H^kRSabdPopcm(-*4F(Ga^&}X;_04IKbc&X zQ*u4ITs`j-Onrr2*xP%5h>x|*=UJfRy%=_%k;-pBH?y9ndsbWR&`+E`(NvZP&8wb4 zaXp?}e6CsY_r4;_EzaPo;>Iw~yoCtV$Q@|qZ_3KWkK@({eaBw!TwVT@0gW%KO1~fq zZt=_urpoC?mk>Q7{w1U#wT~T|bTS`QgGKSB zvmAX&xPv9_sb|z7e>z2`TG`)O>8IS?FLl-@`TBrnb*`?{Y4}83l-ca=e<)9W+@4%4 z22I92neMv#+pnv=wusLsFuKRXNWZ6@+o@_=&wXqwAEO+!SQXVQH_F_W`1id!mglUD zW!UBy+^4-_-w{a9N!QR$+|N1>T8Kzr%c@q0A~QVK_MTfi&$F#_qnh}%6OOhX9(~Al z{pRyDvM#%bLNiQ2`pixqVSOwV=K{XBq^Q=~T5V(1PqZ#ZSo?=)9@3z&-(WYs#a}V2 zW;iD^o0xB&p+#ZANIM{*lp>!D$~_3Eg^I} zLKn^FZb75)C5*O!?$2HDsUBFYJ#;Fb#OSODw+=@(gu8{)!r#m8ZwoaI4#lsp?>wKN z_xqEKeIwRcAijb-{AYSJ3-l+aL8nGyU3`bz_HO(lY;GFfQC5c2MbvAj!fq-{X{x4} z1a&CRA!UQuvOsS(AYX1Ev&zCMp2Ei73AcZXGOjsVayqi4qtA#pB0mfA*VX{da67C(rTxOMlV{u8L1wBQc(f@q<=ImgCVPGw0?8t_2>k z|JTc89yP^u7o_-xa1pMZ5AaW2f{`^HX8DLe^@d;k82%P3=+SUd{h`BrD!0Koo>LK~ zV?r!eU%e{>tMByA%b)H;70k==j`3$ak#?Nv4)L#E72AgKw=0$nzVjz8PCvb*C73cJ zllf?8j)+gi?4@T#!Q1V;rOug;-I-DPLO*ceJ0g4O;Vjs4T_s*gj#}PMEEC~wqSGYhSa~1EYnb+&inO0arJ+X=NtE;x*KHMZelute2MD8m$?c+rMDwyT%H&Wg9 zqCUW$(7mpF3T(6^l&~2Dp|TwJ7K-w<>cr*tXHA_sgK1RVuiBAWx{2ACnGl0| z>Zn$->eqCDZdLWpm-%#(6LoS`%W=`SiU8HAKvMKiU44=e)?B~q&LP#4o$cXo^lcV7 zM_NG!8r$nxEP{LRy*Bx`wX%f2)d8*Hg`ZMc+>1xuLVnm+B~_I7&P3{@pZp)+JOA2U zkN3Uo^b3J5IE^bH+`r>kw85sUW5UtDR`)?&$Vcg9DpRm+!6eTfS`L}X9(+Ya-X~hF zgaFQk3aod6^;CIH_5L?tbbjR>{;{jloIu4r@0Q})+fK9jqRhKcl3Jo#1Tt8|Nmd_| zbO&T`id8(?J)W)W@xK4If)(5hElA3;9}4z{wY}mbxdnSPKGAXDA^bfk|C9LwSID^=;j;KNCeopqjdv zcT@OeF?GN2)CYj~dcaN2Cq~-qzu~OUQ#;Lvm$u;kG&g>M@52M?$xd8@zEDME;euVPjT>ll zn#vKDI~mG2k>;l=L$B(~?6SdZmf(UstuNY++JB*y5#zPBJhB*8-ybvNSv|^($iw01 zLmO3u|ELTWs3(51Cf8Yek>sxw|Ct!q@ALMk&G{yeiCnk2Ppv(J|M~j^^1XeDGL%(U zt(RY{&Le(TL##h!t#oxl4#$a0iO%EX7GohL%LA7@vzi>~Ho}!IQa@JIk(|#Pb37IB zc^Sj3)MhNZX^?^P_@5=szbee%@W*ITF*j?j=vsa7raB_8VEer-w#-k}!1%5#mi!%j zl79O>soTGj(EG!!PF9D>HDOf7HPYh_?l3gHpN)lT@|?pu9vk()$7H)>Ju>t-nwBu&*VF?Dp~!pQNKRu!ihw30$JK z$hK4LspFlBLV_2l9)I>#oh#F2yI_K!*An0FS&XNh+^TNGf2js1eC~Sx{ntb`tE$^| z{Qqlt!fv_Ee3599s<*dOvnW;83U_&huFM3nXRGr*hdeLhTv-IA9IY!E(hGhMr!5Jw zOob2g`)m+is*djhAu1F68dA{Joqj=m`jpo_$>aL{OQ=+;hy**-Ud7ZI?>oKss=?EB z4hO3Hesrh1P%)R5xn()coptKwQ?mqQ%y(HipWt8hk<0%9m8s)iZk9{zg)*kpr@4Yp ziaTpuNf+xY7dG|7&b1ma!m)|J_?xbdwcu+}Pe16RXa^Htnn!<%z8`x?&pSJukIVDQK!^&u z_H}q7^>LcNS24aWmdBtcgH!*Av-d(QM<$l(OP->_zMZ;!D8%Xxj=sI(>9{bpsChDF z_)kOPCIxO5`Bw1xD39~A55KP%PFtD|WEnhz9#-Ep@h^Y}R^I9Iiwyfq`O>}W)7Egx z=BZOWN)D-WH^^bSB{uU{+Gp-W2WMG*enOjhAzY$2@5@DVUOWO*SxfyeTrN`0&L7Id z>nF^Q+dRScs*6oryO&Uow9$P$7%q?NvNrM+zSCY^_$?R-^L3*qy5^jr^}2T-2G%(v z@3u4FQl(VFL}+Jy{|IsIr>eX~rz*RAz5*U%IepQHx~d$<&0CY}5)+_wzfx>5z2c_U;fuQCi!rWKBHnq9VzqUpKXxX)s6UrgZROMx>}a2lhFInc zb_hJ3`W27pH@oX=_kT7&=}S~feW_XQ;V8V3zfm+^8^d@Q{50j=218E%#!g5jCh@;m zEVlG^#{NdRIor;H)mzO|PJQyX zKUJj+p5p$El<`hZ{hS&IdoB$*>h0AE;@nMk(?JJ%u?!?9PwTbz5Ti=Sbe~tf_kmB( z#dbWX-`tBgXa?RU4v!it2~?4I&gz^g>I4^RZ+>TaD@XXD%;5vtBJ9*a7${7x2^q} zJ$#iqxHUC!H5ptLthy(yqSy3*dh7eofP#kNU)txTVvp$d9GAVG(ewF+etZyAw7XTd z8=o`kEG_D@PE=E7$m+|uw#KUURyux*u?{vmMGIoGb##gi;m~394)#S+`Ftt7qgAS# zsXCxLulIb{>c#v|_q8+5$$ovsnBMYc%-UyS6>!a>(W}v>vF))2rtKY$XNWbqtjR(8 z4l`il=L5ra0s6VSmG#qK<&)dRsTou=%(t$m`*U$DxA}Z?N{IjoeS)PrQ`PPMOOVAM z;l$5D#GbNB-^a7r%kSg?U7*KeoADdVM8D+IKQZ$IJh!oaU4rNMFcrle@hkC{-Gvgc zqo?(v@3WE@>p1oZm*&>95`!@pU#ZG;`$f_>rR7M=;&%OxjdBk6YXN@S80Xq~9gqJ+ zEV}kuQtgm>f7Bz zApze&+S;oNYNfX0&Mkz*ZB%8SfMqmv3bj*Z?-q&ndiEbf@gI?Ww}*JF;odt&HTAY% zXT$sQJN1e}k-O=7HI^?-wK5lr{}pxr?-KW}gl^*9(p=mdAm$XLD2PGY@&z}^Y>M&W zxyJu-r+9W3Rr>6qN-n*mACtqN z5A|RYBOnZOo%qw7Ky$>}aQIid|9O3jU7;88%)sAHo%5mUno@b^eY0aSp@gvTocLxM0QP2Fu-vHvV<$b)ESN*+-Tlpp9tp zChYMq5g}bfNQ!y?U1x&s4OGw{D1piUEW~3Up2l~&3{8UVFzI{S1(VesN9dVLr=Bw_ zqpE)Jh4>A!%fInT@8${cFE70!iIPs)k5xDyim1b^zApm(;d41c|C(Zd9@F7L+PmYT z+>1QA9teFSb1fq7S64H~909KZ`TKzfp61F4OxRL$X;$d!sdIG*1IU>Oql21jfRUhOS~JuhmPS!e1}N92PS_TyS`p@Y4kQMfDgD_ zJr$-+mmNfrs@QL*5j=%qiDkWv?lf6#Yj=QfeI88|E29s+ir&HkCZ}>r5{Rb znRXnrzJay2$oik-Y-<|)4DPWUUf3zQM>g{Z>?9g{&=ioU_q`?a%WEC4mAkg>>a45V zOi&$f@?8N_kUq$)7riHTPrRPqP=7Vd52h1t`;=OaCN2o?h2P zg!LKKGe**E45C!J%k18LksBkAdm5iv|2b6?JFoGY=NKYg9P)XemvX7_%Nbvzy~;8~2j%At0_KOkih?upe>t5pX( zu^)z;Y56I3UkS4ePnc!eEc0I~j#*~myq4J`vx0eR2Qv%!93xCc`8M8~u4Z|%0;F)Z zleQ8(=6$X==S+26o7Omeb9yYjMaII6Kg=4uDPv{&e0Qf{`h5PPN5!BSv0*$-G7PU zGOKx9{fnrr-U>D2HgqjqozvLq$cv_A)G+05A05e@w2r2YR!LhLxk%ac5!bXYc?RUM)<+FMO)2oa1-7_u0Y&d2<|v`m}@Q z+{UfHg_zbfxzH#0IsT&>dYwvRv(J#hbLn(!iKzxnvHKt3Yw(z8&`o^pt4~_QPq+(T zyM+j|oX^r-&iC3>nM>62Z-l-Of2v`S&*TKYjKbv>Q@4geuI|9J$RW!g07d#vZrF*# zQdS?hiO9AOn%T`6cdwIw4*f>|SXa2m37=<7e0n^O`lcHv^hMCG|KPS8f~{eLMa{hV z$VvMp$Evlsod+?yo6xdVli@6Kx}D-G@gM%zbh^1sa`vpgNG|A8tK`7MC#sims)yrV z^D)X^#=lsDRg=LzVwnkdpUHL0!Wu3m`XzgDTiFZwuWJhLM-cAfa>|pc$kx}-v_5nU z_nQ0^#G;tPGi#?FLENNoz@_&K3BioX*D9jaO2P!ne<#wY!<#9Z+Pf&e;#ndRVd@_`8qhZ zr?E-TdL1BMagP3S82W$ELW!n`gg_ot$PH{k-OgSoiBJ}cjUzd5(&v zsY>e8Nba-;@#*WO)#R6S2D`hSjH4(`R~4M&Tf=|rAI{a&sSXq0kQ$J@3^o2O`gk-c z-uB2mbL~}=Q}4W%!*rI!)rMwF2BK@koMH59@z~{f&16$u-FcWRS7bOvWfE_5+o>wQ z9cLoK6KOA}eQfWaOeXx?z0aa=BN1oNgy;(tz` z%QB18(c#gXqZ=|u$v69ocje51n}At;ziBy5qx+(lV+GZiMXj8Up2mpOH-S8Ol`|(0Kt`*KN#;PkmVPO1qciArJoEf%mt=jdyz@r&&g#HMj(j2I!_cOb@6LT_$W!{+?$~<{3U*`DC?$N%^p|x=BkodGe(bFmPqVv9$ zooCmX0v1XCI6Yg&Lm5NN-Kv=JHE*>E>HSO#za@QiTBk@1&$Jq%9FJo4ArK-Az-&i1a65DLMiI=a$UQ}V0;iA$L&b2=IUn)aZ*9ZdN z268twG$!1H1K>PQU~*)-y82Y)7SsNorrv(oRN1>C{nb3Tn-OzY_%phuKyXs(82-|D z*x4sIAA807TlhDgH+yS~*U`*uG~8dSHySu;TFLKrVjJHH>phz6jnfs>v1_XjRa@4S zKQuE`6OPk9{4egwX)anl!aKyhylU60ki?ZHRZQ|4OW%2%x7XKB{@j7j<=Q=YKGjQB zP25I3Io_S!z!m=+wa#s^TXF4nn$GcgJU_O77CT{_bzjNe-IMw{@Stk4Metrcwion? zUZUBng9lPeJb#;l>mOX-V-ziIB&iL|=!J8351eVdLL>m&kJt1u8@#c8YSz9UaZ(zEJT3_DWM%*oC z0@N_Dc=m{?mR+A+rbLb>bhn2el{+ZdK)HkL`}WChF~gBzJ@Gt&ZQPLzUmD-vu9RuIJt@6b*eU z=8uXbBG1y!>=xrTiLMW()k!Ou_NQmR3(x;1ndTdMs5>C+ZA?8JXWzA;UVRoCp8>^b z#+UyGTCRQ3U#NO!a-(^fnqxe6_vUCotv5AR*1aDjr5o1zW;-gZMakBW_v$dOn=;?hR<(` z{o?Bp^)znvX1_be1!Eu|jB%>}oUq=dI!Mo8<9wrD(}AloMW?I zN?vDMU!H*HBe$DKb}cg3NpyQ;&Hu4<7hqPE-P^$D%#eaecb6dDC@7$BV*1a@7 zd%sG&DJpH-hF*kvlKAv&UR1oyCK0wat^0Ajx@Kw?i@%N?_|puBpz1aQ7Q3^$)E=Hc z6gn^7nJ2Q0h+C)=c|}a#n4xktjZ9*%5q;xjU-mvTyjhsXZ%Y^Iu{ll_#xZs=Lm^L) zZ;{ozN#APe=12%zhCJgNrjrk5cZQ38e(|{>Zeg&=K&NogvwIceH;CWGsUfrCPlJGJ+lOnOZ^>}{)XwV6-1lIWro|~x9*uolu zTtzS8P~65`wtt&yu>x_6ooP{AKU=!!yYk}&UY<2av@46(g6%o!x?@?vH81+OhaOI5 z``^n!FW)w?q7qIn9d4nguF72croU1{-rauDy~=lAh_%c#e_K^#5NoWB8HiKc z5my(3+96!2FbRkHH+HY6Yd6uiv`T7Br5?q%Pxjs8i&H z$aiHZD?pbEVa$F`lOJa?NpK!g=J=8Em*abfT8q>?-d)jF)~GEq>#wsohj4c(;&#Z} zHH=Yjp&$Me{x-dN8RJ;qfx77$@piwwxGciI;iQNPI%gk?>tDoNiJgYI%P-Q%uL2`r zdS04!I}6s@6R!e1zf_Eo)A^SvO@m3DV29Jco0^7p6}$R<)O|7Wd}sb754{_aKQ6cP z+^>52S{VJGVT&a%QomUEytxx@UxDwNK>72ZpMHMzc|84{cV3Kn**v;{sNk-7OpBq7 zVi>Mnq4MUl-iqw%Z0Y6Bdwv(IwIzPC1U;OyJtn~$3I6rntoUuspDPjX%c$q37xs}a z{!OMjm-7WaP$9Nb-e_3N_tC+*lMyes@we@D5Z`$I;&~>MQgXd0E52FqqR-3sRS^YN ze@jehQ-MFA11Ce(WP>C4o4l_5Sf})xrbCS9@%OoA_xPZtsOj1#6x!#A*HLb@KTSFDB83ju@R+)imvn ziEw64TtstG=Boi}kNiyEFaIbQu+c1PVA2uDofZ4a_X4hkZ|gUpTD7 zD;}OSHe!M(KRPnVkWa;1O``X|Vi|6-0ngpjLZ==)l0O{)UA4rf^o@v7-ML(!@Lsb{ z4zPC3_}5FY#j}?gql>8SUyeC@;vAGDp7Z;d7I?hIdIw9o*E}-F`RUuMEay`7O?_DU zW094duk=<_c6`-U8PtvPCNp55UZS~#*px(S(e8-`o~dPcs3$+SsN!Z!1~s)gW4|%? zZc+3hH6sJqwqO$Jf99Rl6nPy`KeJG-VgM_%THWs^9Qpas9#i$QI6L$={g@lEDm9{t z>f9O;nM%*xPwED`=@olV?a^X6?Gv(L@2emx>y=xkAiudUi}k`UaP_<9A7nOV&zZ&S z%1-*c7R%59zqlB4Swc-@Ue$>G)xxb*1((yEPh;c$uMYcJD7UE;LFH8rOzpmKO?^8# ztwy4#43Q`0ArppXsMoE=t5jDdxJo5XE8KevIf$vMhT59l`?1_qFH$#Omj0#s)2mpc zp!Ot>3e+9A?tI~D&4RLKTbw<7Ouz0Ct1z8^>up~6NYcJczxqt9Ntk5ljBavo?;a8rv-9Id3w@9`CX8?bUp>GOMFTcot4K zyjn6`ehIT8;;X~@S8n!@8pVrVf5mSH#_VV4K7`U7N= zn#z@5jUH}Yf^0@JSbTPDGrh~x^siNB?YroeeyEpggNndmc;#)bTT~5j6=-@Hj{Wzj z;$qq@_ULE%oDF!tt?C7a;q=bx=Nj)WezO~AWM_+;*7w8{r&qhw-w92BifI3RIW+pe z=&UhsU|F-u;opjx8vBY^?4WZ`a`V+I`0UC$57I}rgs>;_Xrrw3NwV0`>c1Yf$xjB^ zpB0hYBRe=dDKa!$Mfzy<(tT7hFDH+O`MjMn#P4Gh8D34Q#R(W~UjPFrS1jyxFfL`?CAe*{a{^qQ+YsSkH z-%|-w3=?qJ^trV(I7Tk~12yM2LLbn-U)j8+@+s5Fek+|e|BEa^{_mJry+L5v& za}lLfU-iQr57gJwU*2+$tiZ|8W<23^sOy)|LNV@g`S%`S_M(UETu_Z%Tz_O?v0Q6a z*Y99aK9aLd9=lYPPGwfD8vn7)2@eS{3zzNj6S%6ZTHwm^aiiqbW|P=HqNtpB<4^2# zQ&0G@HSdV4Xe%FIM%1)TuBe|%#|EVGv>aS|=l%UfP7aF$tE)O4?AlFL1~oB{VY*6PD;!WHVjq2im<+EOS3H7X+C})kShy z=|?PVZ!yzUt5V+F-K#k21WuEC4{Mt!?j;`Ru`{HGo8#8kM;Db|(dtfK#}&V4mp?XZ z?s80S_taMv;#9qf6`+sVdJp!i4vHeDcO%NMVAF80yTTFtaQl2pJeyEgbaM0T6Y!lU z?D}ldeOpepM(CW}bXHXtwe{ZTz!`UEKXR!DJPlDz!iXP>%Rc58s ze_U1byg@ByZhO^HclKCQIG%?RM+Wm(-X+glWP#R^@JH$(?wP{yqxlG(>D*M^%W24W zC-rujolbH@6>}mdPE1$lSy=bR1b*@)6hF{(+^QGHBPlwnN$DNqt3_r6*q>qXzgF%vwkd zRy$GSNxAGw`fS#~F`MNJKT>a3A75I^G?cTd4)4A!FFSq-SNAQsf60?yik)P&r#Zdr z7uYc+KN%uZ!3>sXvb@*%k~3z3^n}zu;kE0j&`c;g>!;d2y&UbEu6MvkQ+bg)dUJyF zQFh3)4wV7@OfAS&y+>PBF>aw(2i0F>gD(@x+h_JFq_1(cs-qX`&2p&V&ZpM3ylnhb z8h+C5pYv5uK6ej)ol$LQPW?t_)xK|b#q%urBmHc1o!kCI)#X|U#VdVJ`dxm zHuJepRc#b8y*iD$^nvc}rn>&!>_H*bX=T*(w^j)-Alwm?%83{waHZp2D?M2%C60Wm za{IXzPVcYlum{!r{DrBvyH&N{R^fEb*X#J!>H1$9lib4mZ5J!kP+jzU?)@trVdGe$ z-{|rq5?V`@d}-Zx162eb!7L`%nS2NSx}_rSw6z(jlDL}6gq`lcnJ$+{)_;aoX~Ocn zVH#R-b&z>6@?Tq@Z|qD8zqK$fDf>JqjBHx7ZzEZ^A?ha&swX-``-al3;6%)tEbd7* zKQc0w-#dxjSw=e#%Hv&P`5J__Sd*Zmr=RssAGg+&?eEoF?tva_noE&c6#2|aD+e$) zS40m(WCaWGE-^AkM`PRJi=9NR`Z+!1bUEb2FA>Bb@yXz*FQVGvEbrm%-&7ZK2w%2` zU&#Z*UR2>d0=xY=t*grFJdtrZEmPiH732W6HJ8Z!p$y$UI=4-icr(%Td_MJ4wWlpr zK{b_6ND1duQxkL`F0U%chY^iE^%qd==Q1S?+s7{-D)GqO98uGnMA*-<^#`4b`z^o zI7y}k=%Gjxdz}9cYTd@h%u{XCQ?+BPPV^zM|HKwlDL7ZRd?WnsO*1Xms5T!UW}7TO zF&3trX#&R_Ui_%2@SY0Maw_M4v`*>uK(@xj_EgK93@!}C6b$$CzmFg9!j5iHZ_)(& zQjg!fu3EN}%tvZ<&{OHkMYZ(})y++mzdj)=a67IbtJO=@{R}cUP95<;^)HVi29xDP zn1Q+QMUv1z^0u2<<58YBx4Y;JLmVJoQL3)~vZA$Nm_Dq|ADG8NY|t6HUYpO}sBUnt zzuiZt)GjDBk-U^wxFI)u2Y-+iI@#TRdyzLil|?Q5Y! za(@waIVl@d*_xlz-&aut)RLtcYgM+YX&IxMzJ&_RXEL>=^)YZ4MW~!Ud#k>vi z{iF)`d2DLBy3*BK!xr>8>t3v3NJK~ zk4+3?t>#%y;0i9NYiR4*dFlRTQwcJeXZ(}A^!k@MamJsCYl7EzxVn{?f@Pk+o_H=! zSMe+Qr@oLC`^eLc$9~RZ<%;Pgm}0(SoXPO{VVv!-*Cx{CRs=-sD?B2|Ye zs=zRR!&DD>`^4&vt9sgrqK7xsTb{BW8&yQjR}Xbaci$VK3ozlJFos_%9z3PyDYFX9 zKQR!y^(qYzzekGcUW2+mXW@?1kiTOd$7GW`oxtYQP$&0|=ibE9o-;9`8P0B}yi}Aa zUayh$cSIE5@;*zU-HYtb3)NXKoDj8Mg>`Nd7XG47+ezyf5p6aVfK$XmA6v=JaAN~; zYC?5qXLY=6)-6yJi}^k&%L|7Fu|rAqST*?9R$d=M3Z2Xe9Hk27Dx05QKVbv8{gp9QE*{%gQJSygv5QNvx8oqLmaZ|Vxc zy!*%caCVv+GMrubjBQ%Znw-V8tcaN8H*!YA$n3ud50uioze_b_dB~xJO0l#mrT*bj zcS4mr*rogUi%(dKah~{Br;WUTId0PaSD>C^Vw6Fyb;q^#vYLHVZv@Kn9PDG0O= z%u*JLNoCi+(8E}X?fBh#H-(WF^E}@}ExGg_T!6LCd0mQq=)CX*dUCd?^IRpCT8`nG-)OD_+{Qz!5niSZ~gki`^H%?GSP51ux+ zoWue+s}ik`WW$4V1E$%9cjV^|xY}^`r5oG)rp~5hv|=rmcCix@ZpCC*n|A<1_X%XW z8`j#d>a!;V_@A1b59$6NkafU?MM4x!c-~(zDV5#9zwT=unXE$|#Y{=i1(KE17v zpd=gEN=!LRWS7uMcW+tuX^?*zJ=aOeXdFZBwb$9 zMIK+;gJaiC^e@KtbH&03zY zn^{fc{Qg&TvRL>;pIK~9Q`arZ=iF828;g-iq7pob@3X+}wOOL~Sen}OakOrwpD`vo zV7oXS!_LMOncdb=n^v6DQk4C^Oz9xKJ&WLl6LM8Ut#~j&;-Q?`3COmG%8B%$$8>&- z&emYsN@@~#PQ36HJJUvuMJv}U@5&K!7|}ZIQtKah+s{7r|8GJ9Rav`XRzIkeEonAJ zdfDt6esUa(Rh34M3&)w~^ph6yDh5d>Qq6mYojJfS{tO@05YulqwfhJg_A6i8ATEb~ zj@R_C$B&C~&4{?ybZ@?9ClZ^e(Le`vG5WEW*8j=!R*c(4r&M#_=hs(|6!NI!>ju2t9(VY&znR1meJFy;V~%o!nei*_e_OAP z7}e(_Y(8f0Cvna+m4RQ7&$&?UO?@P9`<+SlJvih0FR|$?Rjk$UST*6L`EXY&&wq?` zolv3M8i(^RRFys!*PnWf?Dtf?(hO!y9XjUD_gdAIamVTXFZ|iNu`g9Lx6yByPo>X> zm^$?0GI>aA2ZHH3r^R;vu(Yp2$?5ou%_7}9<{E#&!>r?d|I(z^FAYa*`n+bYUvguqIC0-heD=Nt5eS%A>j61CAE~>LaFZC6i#+avO6M~-78?nI| zv=?;?e?y82scDGP8(y8A3+h^?s)Km|b8Oc^`=NTg7p!j(KfZ78x01L#__Fn~ig9KW zrGm0%@Z?!ZU2f8S0cU*$bKXFt^GqktK~rxoM<wwD)W9+u-^~7=~#THxm zlA!9cs+IkUUHerZS6}#X2B|Bj+Td>peIp^A>=H#a@oYA?6j-3PH5=x-5{ zkQ~4BCC!>iv$nw#*ZA|-{7rBs)iYUw96W4d68i&xbx2GS>mwhZ7tCHuth%bAS6$s^ zt$5dBp^Mh4IyPrJ>sCZ=C05iBqSMKoU4D@kzpK-B8U6p;E0E%}IE**hv&O90C!V*o z2yi^j|3A%28+Vfgq+xUW+Q+}#-EA{vr@~Z^%pZD%t-Ymp=v(%$o)v%3vo^xIbu)jf zsWsmS_vE%}!Tf|@=>0mVXD5U*173XHb*_8Q2AK0Z@&LP3#WmE~pAFCUnSGdN;>%=H zgAF zU7y9CfJyxwnr+OZW_Oh$kVc`kzP8=Y?c~*Jx&#-p>+9^vJcv3w8}~c!a*JLk;m1d^Rs%8SKhcw`ax;f{wUO}4 zRK2sCa0+8wHI1otofk#!^M;jed_ezYn9Y55N0W-aRdE9z*jVn>i3z zn3e8pEPL}4`?3!jSj(TCVWIQ-`-QModpLZwp9N=BrKE2|#S*`;fg>&sqr@q6{Lx^B#bTO@eGN)7n>NO zs(?rMhO9Pp{kBkkcQ$tgg!QG5$)q@_h>I5K-->w4UI&)u9sgc{GkQYYU7eQ|1!*55 zm!Fc$|G^rU$#66lIjP!X za)nG{dO#v(u_znJ#x+)M7mn?18MCeM^+nl(jPmAXFmm6x{sH$>g<4oC5>|3E%nWM`|W08H;W%fdXJd4S>O zB~4&sYshgd_IHO|ISZ-!4QhTCk<9g*;m*HhzaPVRSJgqLfdKvySv)p3Dw-|6OfMF( z1;OOa3naCze82+x{Xf1vg$(^FQnpCs{ufNQU!UwP`R);}^}E+fIQ$Je^(BAS)k;r+ zCob{oEv;CI@RZ5{G$=Ru&WYEk?04!zGXbafx4XH>GJMPX<&cHF$#Mlbg7R4Ne;}CE zq^A$>`7E{^|Ju~60xU3I4PP*+ry-qefgf37Uk7{F&uGy%G_5s+wo6`|Z!vIQ?b4cCZqGMcG73qy7I|ut#2N@Fp*?6c$@RBfErk ze>$lQPCIVN_c!&_ue;VP_cVo^En$yF(5_wbHu3y@Jh4?2ezXEP8fJfUxz-YL(H7!w zK|9}N)q~kiJ#a>KY4r2BCVp>#XQ^$SrnAba*y_|!$2r#VKJ3_@JO)T~89i>r6J4fV zM_8QOGFh|vqerSN2YZSW_GWlEXEZ>hv&MHlS;TR=x98FQ^(tjo%P1mWe@jI`Jl^p&$g3(X8N)`b z6AO-kJ!`xF(-9GB*E`4y)r2*E3uou&n5(=^#(1)<pBE~pI`#vCx*ZHr~?0#)>b)1E-B3o7xgZ4VST_kn~ z&iY$X&rIybi|9^aPFE*|#&$E}m{#3o^crjY`Fl(PkgtLUD59&<@TltmpbHS9N z#^kt**G##{_B7-V?{aEC3|Q6a`u(@kt*T_WE<{()>elhJ_2}mU(p(Kn>*N}}dC6dk*RP~5 zJ~R;2lxzrV|FJOta@Qn+LY}Pwe^~@4aT!)$%*M|5REa#p2oZe1bq3r^IZslX*ZM-X zv;_9y8++Laiu#;19$oe9bK{S7cc%-PfqqTh*3OD`CMkf=OWS8Om2v)0# zdCG6^a=}Ws@DC+el0_KaLEf{gcYTY+y#D{Er3LaDCzlX#&wu&ZR;#&!u0CQ%@5jc& z!TgME@5~yoz&C*Gif>I-+H0L>|Q)EM=+!L2}{||wNCKA z!Th8oIGq~S?=8=rg?^Ox3uf7-%b!NY#1g2#l2tAVbrgrp%BguTi7&s(&h2OAE_=rTw7VKXI=NlnMoj@k;FP^YCwk73oP&4!>LBUlqc44^F3w08`-mo{6o;=?_1oW5u9D5V zEz+ADQ9d-^#IK+l=P&GWYS^Zk3ZyzFr`LjUI)xN$qHQjJmwwNu%|Re+hA|hi|SxI0@~4bX9 zdhN(+w1ZD;vLI=o*P&MRw0`v`_I8U3{nmQ(KG0e8mT3TGa3{O?mv{MqVCu*j=gm#f z1MpA`ms@Q7CH%O7oNlttH$Cq*-Xw;0e8C)alCU^mZXq~Wi|HW2%aj6Ukc^|4^r1OmtO4kjHBg5 z(>rH4KkhK-(CDg5e(#Xwga<%;pF+WX?RV1i{&*zFrn);`QX*2lgj3Y`-_#f7=guUMI4yyGM9_7L-% zChn}K3TCiw^^;^+f&w_#BJx1lF|A2N2cP@9qnMd;JWgpgXD)P+3+FscKh&U5FjaSf zYJ=M*C0@e^EWv^PkN*6oMz4W=yzH;Pgz z9my5>6XT7iGO zdpt<&G$i#ef0NEizKPv>Ad?-`=GEt2N5Pk!Jwq^kdlnBBEq9lauiqtev7GPt7wh%J zKBiTn^R0XD&YJhY*Ob9=9iVGJ@$1_?)hA@XH9K2P?@bN5GlGQ9@T6UMlwsuNo{q|5 zuyraJx{+(nV*wm5B<6l7bMPOGpB0X)3R$HN&EkJE@m6V}(lY7~e-Y2T5_bcNix6GE z4%r1YJ~ip*XYOaL)nDyelYA9S1v$e1CQvyJZ8@kfWr~@l#igB%^uw$6(g+H8IXKe|?c{8w~lj7dyR9 z`=4Md@2khyWeVXc-mny(zl5C+=5Kt=`j+C4JF!r0Sj3fhmkV-Z@#Ht&@SJ194EcUI z@)3TtwDqir8;ypaL!|XTSfQb*K^Mdl$5e8Rvyb^Pl~?%Poh6BnR4 z)va%EI>}6ye`ZIXo8LN;IC-{!*{v|pHCasQ! z6lS^dRZ>xhd^8eKbcJ|+5tEE&&pWf|<$YcXaa|VMEDlE>UHIZ(VXkjz)<^DY6}BiR zxz87tirONOCFC`zNlzx^1tM}rBrh2gdF z-g}wYYXK|!o!4lQNN@7=p=W;E6&G69n_gE{q@BXFRHC8dJjGAeZ~{$T&;H$}Em3^- z9pASQL%!>yAxvIFTpa9HJG=Cyot?ze&i0de?qZ2GTnzQiblo7*`9Vy!L|nI*Jzo9) zU;m0jg6U*+y<-KDb_?<}BOLn%SDywKe@;@Hv5b{yN?`4R>2tw5jLxF>BDsb9^A)E$92j@NYZ1 z(@dmXihexu7q{Wpf5^feT*)=x->2WtO@<1lb;gKgUXsZ4b}G5~Fa3FzYIe94dtA@X zf67jL#?uWT1KsSvjc{Hs$mR#SR7t$rj+S<(tKaZ6J>cF{5xptpPuq44q&}|O@yH;;yDU?=8WQ(lCD_a ztEP3%@99#y?`(1ax!g-Ky$+YG+8?CofY?0RGu|dkYf0)VvbDtC4JW@{S-H=BboTiR z8Z$t)ucy7(VSR$?pvvwvv-hs(Ne0@%1zy34S8Y5^8_(Cl*KOTN3`yHycP5jUm3Anw zXWb!@j^t#EcMG0iqX^@GT7+k0^DN7L!sm;2I*CYOEYy0GT{-V_LVkFN*lG#%F+_A# z54Y1!WZ52@_%16HhjhiVC{CXDMeY=oA7IplYPo7ZsYw|z;93alpP}JIimNa ze)=G`0xU3xBy9@Y*ndq1IS}!x+(R|EIHw7k)nI|yrWtP%ulK|$?{jaR>|X;rm0s0f zb!hcCB(<8=Ss^!9Ro_HvmE4K2w*M2m2K^MLoM?M9CX24n`8?+xwm+DGTEUuU6Q!MF zXEL}}G1F^?-Cs@83N?Q-DXjG_6Q!$RLjI8XJ*#H_hOE#gcQVR+h1F0`7t^i7IE*Oq=^Qqw7SB+bZF(01&B61hCTX`tH~S&Qq$1rH<8+*lHQ^Z!C*o-px zqg{5Vqx<-XK71w`C=CA;#;mmF^QS^ov#r=4tV}e%HY;}j50-Bl&o$jTZebxGLLmRq zjLm%8Y1$c_@KTpG&StesS^4JHz9WQLp9M^hwK>5?@3AsFymNasnMGagO&+4D)%c1h z4*Hxnxn3xYsuDmON#q0zu++`5G;=-k966FXtmuV^;-2hV@xUNY+(g~SPZ+Y3B;gO5 zGC?F%86Jpc57*#!28Pkyn{oe%=DrsZbdY3q=wa(Ca+k}I)6 zy=50`e+UjpZ^hyw8o1gL*I0pvf2mKsyX^lrvI763{b$9IokTv_um=A^*3Z?p6_X#@ zN{_#j`@5%xvWc#W2WpzHn6$hntohS)a_vy_oInqgK0X~~>uE(*QT69gdqonp6*_Jq z8#lr1qbBMd7e(!Ix@HBvsB83vAJ#89NVo1aHISd{QNFM4ux8|+(DWwWC9#t(KPS^G z)v>2ib96v;*HZe{P(Q`bPJSAtNAb8B&v|rNyse+2sr1~m@oXGRo&sgXnBehm#YcF=C zq{@TeRdv6ws(qE7>{C&f^hQQIUo)2}Brnaym=&I#{<{9f9rh%z`u5?N)CnS<1N8f{ z=gFl!m08utxP!lZJTs9jtuBuVYH%uwnfANic6#*|(eeD|pw5x;=#Po1YzUZj}1JhuqbMQ_v48=Y%VLdzBnT~blO*ipD8$ENH(C?zA z01hlhqZC#m9b){~nDiI-;WQo|xt)K4ZPtK{f4rdH>JpbO!&;B#5kiyxUn(t$9?PFnw;;0VbjU@jKT$< zU{|idQFp9;UcRiZJE$p^D(T$|n>O$sd{Y#Lx)QOSHTsb~8p1o}rSHFbuaY9Ft)#fI ztK3n+-!vwzNs52zpgOAJ<|<83PXd1@*%gw zd}u12gLlj#$f4_Ev^#h~5)1Q!i*MOH(t=xcGSNLfKym}ll}{3HAP7i4|SQ>P`LAB4H+pbGA#3aPTV zA@RZvB-C9720HBEwu4^UZbaKrD}W&uLN3xbBje=2iBlC)xc6et8v6X%4F&mCG!FN&J{Tt&sgY0_Xlgwtf^t zb#|?Uaz(#k!%IOybG&~%RgJ4zxF%`}AE=t{#D{&LW3h~m#mwye3mp`%@T|>M04`VA zoJL)3H_Yc{I^V_)y-?{F%x}J-Yh-{P#cPm#G3WSo*TZp6cf&oOPr>)6$on~Ue-qUM zm9x(mS%(G~mOJ>KZdU)8olEKLuGK8vCy+*Noc{y8-#5(_OF-Kz)3Yylx6{0O1;0BL zj=c-Vwk6|#uys)^TWwF>Mcg);w+RsaS&_^tUr%QP{tWH23jO3f?#qbxhr}~r9VX(9 zv&0=`-OJLd<80kGCdibEiD%B+4ig?un8 zWca6COHq3{fuvsuW#{R-n>{dymG7p~W2%m(i8{A}zO}S0UQp|`g#=bn50)t0o4%FZ zY{_yZQMWfjoKaYu7*B2cbunu%ot#ZX6eHAQEZ|?~lYz6b$wYH4aV1;B>_<7Q>Rk9e ziUny6-~Gt)tRU+$r`3(9t|>XnEK@DI2q$By_@_ zm((f!hQ6MK*5hlr&{^dD2i1@5b$5)R_lccS@jkD(T_jx;>$I5NNFg>3*t?rBM=ic~ zm2SZ|*tZT=qOY}>!3xgMN7F4lqadd>Sm3UThpx+nE`Sl=$64I-PVM;myuAG$&;FyQ z9^yJ3tw9U>|D8y8p9-AQuA39vIEVxuQrjM>eyuGZ7RX^jd6$-=+TU>AK`gh(oowNI z7m>Ix`GmYs)t{_Web+lhZ@ZDF+wgQBb}S8lcOqt;{BL(Swx)@XP4(}NRCl(YBqk%5 zEk&M-WKoKf!NpjMXS!LMV$Y87@)cQ>9%NvHO#2O1Hj^&83Xp6Co-Q}vmqG3=GV+LQ zaZA29pPjg6y@HwAr!Z`dJ#~cI{@I?l6)T@0_Mur6kJOuGmVL|Qb3uM-oy=lYG3|QN zpI8+2H6HJ-6>q|O^tAJf?D;8`Utbk*2PZgO7Q1cn)D!4UNC($a5n6A|O;yExlZCD^IbH@(cpVwUe@xT7MA%wrGz;RCT7J>k3( z>O4>R|G|)FMU284RyrO|F<@7lvfpw1M_>8XVssp&1C`sf05o`97tE-9a z|4-~2WaS#Ndj~N_Z@K0Ly=gBE#~Q#{Y{m1N?w01uUibqbUU^U zZ&Q_LJ*JCfsQu0_avaC6Z;JdkGQ^Yrtab4G$ALWYHTyP< z1ZE`jzhHB^llu%hIa-nL=lGMSYRfK*-{y%l7xA&D;hPj}O)vu_2VAm5R2^vC3{^VW zJ>^Ui{u+53=9*jdupCfb>-%&t3eq2nOpO2qtg{z34 z@3L-9%^69mf9*D#|AP~hJDYF2oXwBHXQd+ljm5Ob+((dqI~1FZ?f1&Yw$W2i zI?N!3V9xtcRR(t!WQX5TdD2DZ?Fjxby9i|t>B|IN^|YrCA}W%CEf8ILDDrK4|CRgr z6~^d|H>~NTkmn+ft^D!_EdNoqqO_WjNpNn2oa_ibH8OUy{=pB-AW0r`O~3H>p1rp? zcdh>H%xYghf&8w-WMg|*@w-iAJMPDoVL3ljr*#B>S&jw&p62b~Wge+($iw$n)WO`4 z%_~Lr3y{hLk>_RTJBvU{h_{}K4yNKzpUGXcg)(noW2dS$Zlta_4Sb)B-)YD4@5f%< zgmB&vk8DyWQq-Q0lLx;<00UFRA1(ZK2Mrj`{>Etirm^bjtX#VcgP z*PIaxPGei!Q*>LrEQtN$QozDUtM9adxQzz{7X}n%~@z%$pzkMRSND*c$ zaou&9)&BJUBAZj14o<=sp6BPXU^8pzo5~K^#E*PHFShW(A7N2;%OG`uHZqH?PI=}D zbh#s$e^2(WGD}oZRYy%8zd30LGD~G;cZ#wLWg(L<=*M(59sAvX44l?x}h7kUC14LF6cYO+D*IdryG7DVSKKupGw4+fe)pp!ga}k{7 z8-+cs=%-V})d?V+Z{U;1`qisrO@9+pCBw>=5Wm*Ln+~(W>skAhu3g5}bLwD8;HqW# zn|vaiORQj9)<1D*C&@47y2Iq=gT8?}X1{Fqqeq?{*m}PCiZ=D zdqCgnNEyR-Jo`EMf{fy|Pq8_3+5Y{ev7GgJzLSAEm@t;l>2Uwi`VZONdveIro^u50JnCs^wY7|i`VOJ}`X zX`%cCo;8`d)-}}?FXwmCu!-&L%cIzmbhI60{9TwkO(*BlT>dbqTNp2@jVF$%DJK=g z8~t!QgV~a;ZQ_gxSo? z4rcSrg~iW7Z_gml9@P9Ek+pqWmTNtmc?#BvPwzXC>U})waUcJB`YB|*nkzkL7xvNk z;@I$qbmp$??>4MPd%VV{qQuVF@nRy1i*i;Am@TeYtFCk^i_;F;sEud(fL*94g1;>i zJp}6=g%mciTixLM;{09=?tGby!Vq^>L#`lJ=Kc_#`kpn9VP~V{SW2+@18D1{aE0eX zQC=sxqt)K&5uaa!2Fzjix55;UFuG~flwOCvHroH$q@pn|bAk2yPE|++*ZYOcMMJG$ z=nj6NGj^2OJ3YKU=k;sz>}~D+Voc5@HYkHAvk$x%oSC`^D!wJUX~JHQlKr}aN$iAC zI2Vx;uIeqej9_`+4&$F7k98_?t4Oc6ZrY-ei6ReJqkQUze)i<$;Lh2sd(yZwI##yv zrNR0Sg8TY}E6Qi8zn%CICIepe>^hpR>z}Wk?3f4#%2bWk_Y&$|8_5>a$F*IL*r%xFfZQT#Twv)na zN_#%3v8su5s%_4Qh<8BwbJaN1SMiYC3LI94(TueJCm;C(E8GvR`NHS#toBqm_YfYn zqTI<&(wjqGXQ((KDHJ=FXFn%57bSAefJZEb#mj*)y99T9&B6p{YRAF_TgBlYld;4y z=<~>XP~CpaN`Glji@+A~@kc?fWHmWI#KT=x;g^!-%?SfHFePUO%n^-4Du{1uASRi` z;wAQe4dwE`B~4RBmzUg8E&gn*$YP4;o<-)CvpLfsk9VMsmr&`?a^aOd@j>$2jn-A< z%im>9>iQ};6XtzhZ9OCrgD(o^apaU44DwAuy=-NyaUEY*7E8B=8%AO>*ILVY~}6{%-~^vmQ3M7n>PQsD^RuPeZpt`cLqwMcr9S@M z38B$!)@KN$b6sUlAsFKeRVv#_{ga3kB)W|EjAxG@vVr$m!Jvm~7TH?s-_uy`;8d>J za){eW%v$%^6W$84bU~!^x%DonD&T~CSxcR3QF7O@vQyjGys7xy@5DaG$U+p{S(iLc z#cAB6h1J--1vvG~*u-M?Vj?g0oaX0Y_j|DRYe@cCR``Gz>=?|oz%-p;QqEgeB2HvF z$1^mwmlfg9X!+kC$-sOCuDvxtcY6YH&cr((}w@FMtQO+^(US@t{ zkX6nqgR}sfu?E)t(^VfjLF~22M>xj$JY9W~@my~E8xeIjdbWxGsDn35fX_Ka*T#$M z8`$k~@N7QadLi93k)poTu~|$@$VoS9;(P}3kH7E@w_|fbp-p%U=Vq#2{KS6$?s=X^ zq_q=GdAjlV)9EbmqOipo0OeN3EmVZd(z3ft`N#fZ&G*RlWh*!yhx?UX_>?^<1ofq4 z-&1(z(qTI{T9)jfT~EnUf5yh2#Gaf$+Z@`?6e(N)5FTg`mtxo+g+?GL;XQN&Cn1I@3kc>t*h)+4=ZxzTw<99$P$ih_O?K&Bh^ID0@(!(k zsM0iGwZ{<*s_t zN@lZKW!dvjTz4tixW^JkLtlmAtL8MLGCNZO&zT#in}THwX4D*J0Y|b_@2CRH%KzMu z3HgSF$;J=Hc;W+c_@nu`t`Kfx`J!4pLK}Yg7uk-@IK2qn1p~?IdHy$pz3&U_93qt` z{Z}6Y{DWDH`^*v(=-fAUnBeat*sY#WkPE9X<3p9=nnaYg^P47YRRe z+E6eZXNhZ$WA%EGjrXlr9$Il9=AFUb)MH1>@wM6bz?=Bu<329Z_tTy;h%u6~L8Nu|+UFu&t;tw7K7TgNU>Kw+E+u-p9i%^V6V)aX1U#!X6c{+CkM_ zJnZ!e_G~U)S{1Hloa%ii@OcMRm|P(ZPfWjwq%ALe^@N5b_E(8T1&`Ht{uZD4$bDXMx0ht0E_j*)tidMhG7EnF zjdfik$2yaS^srvPx$YrWZiDCj#T{H!J(-Q{6_v**&3;tG@_j+0Cy}Eq^dhL~y^g(! zfDEESmuUHXwsg9+9Bs#I+P{RJ>AGsb{nl&(8w946nH`!moC2SeOSb>Dk{PtNB@uU?SQX z?{P#uPf+3XEA1afBfs$)%r^}4F~nCv^>lE8X?L0CKK|{6h5r`Dn~lR>?p`*q@5$6a z)@I#WdUc=?Kaigla)PT#>s0qN22$%ov%dA}OTs$(y=J)Nc5Fs1-H<{3YOuqV?ayof zf45@8RYZ}PyL}MSQk9jn+~dCR4(;K&eiSV(a_^VJ6-?`_%MbEGqv_o&ub|6fpcvo_ zPc&LIJIQa4XXPfj<2__DmUKMu?@c+|Vh~F&*1j?M%0i}dx{FFI_(yO|1uK?89aCyQ ztLnQvbo@MowVuZ9BPB~+r<+Kr2Y)}w9RxDc&UJ&@uZ4bVC;T5&^j;vbk^Z`_JsRR# zt-X5E_swj{e>xZDJ0%}1G?$KE`8_j8nZo3-1TH@v4$KS@weyQ z;U!v=fM+YkgPAH%doq%id~A9IOtZVjk@{B(^=uif*PSm+(tTVSt37=t^2oT9Fkj9QJK*LJ3V^h0*S9 zuV=gqhXnlvn|;54lmuPweITKd{wgOOi-UpBs~vn28z~PHC4PPo8}eQaVTQm`j@5y6 zgw_SqMUu!WRKUD>q`$l{|)@!g_RX5y85Hr3f zg3E^;?7Glog`Tm44`NL}mzG9WQ;VSm(g<64gDp7+B<#=p;FwHrrd%VI* zU%{H`u1$XmQEV^AHYF9y}WiOJ3`Bim8-{6TD1@n&_>J%ju?G0}Yt zVTXPe86Cvl#kUu!Wk8?%`jO6q2cG#PE7gm=>SLYy;YvTF`KQS6Pvqqrkw7cblP~TX zEcFfC+yRF;OI_55vJ+XY%-aywL)q{w@XcHBOmBXnINy1QtxrmSi^KAD?fg8s*iBfQ z>AnllLrC`X4xL`4)}SYxBg8BcVFkNw({WjS;F1c?0cHsfdv|9C6?IFS!}{!k`k~v!MursuCj(Vn?`ni z_LHS7XBYT5ACD89S)Ctdd5M$CLMz_I&^N@S_3@j*)Z+Xk{VN_UMnsrGOjuduHy#J| z*uH)xHZR0#WeX$sf5JR`3;K~mSLZp`{KLuy)@rbKtk27J5bup6Z5_y4XJ3C$C)e;Q zlik;fuwB2xCSBmUGg*Navi+R>g=D_~$ z@Ge27tr{)f5uPBi0<$;84$i^4?AI6fw;aboh^&++{Dl38QvEd>V|EZ)yA3(sqWkIL z)f(~upVR%LI*NPRw>>=iJ<(}P)dsilLg}&ZC3JaqlKmWv3G3;jyXh-gBUiwznXuq7 zbZ@SwxbB`N^AtV9+}s-XGTv)APOLvhVjvCQ=FWEc{GU93UB5TR8jbR?$oijQTQ~59 z8?Dn4|L(N!8|-;tZ!41J-pK z87xVYmU+r_;)Bn`?7{S_8mdk^%K_H&YAioo6K_{gCu}hHDndQZS~z7C{w7((7SGvD zCa5v574&E)h`Wl5TW97+fM8GIXqLOb2|gdh7A9w%Du`Q3iKbgYnw#lLLO$w>6}l%& zT8&2k#0LG!68!*$9CTknZ(cq&AYf_|vjUIVfq*y8uL5U;xUh_!zKsDdD@U*!C%za{ zazP!=adU@`mo@aqds$+?*qM0W8uI?z!&R3HVD?ln-!ZZ{pKZGzTaVu! zNk;-7G@p&g51sTAam|6U_VJc6q_H|(Y)coi%e_s4xPFA-SFvn`Ok$e{nam?YV?Akl z)ke!{zyVRoCDI=e_m9Z%xQ|ozv>;nB8&2rUlD6elr;x6+?9-ntM}RZ#VP^{Rd#{t` zV8<`OwfQ`KKb+upJn0e4&{_GpQ?e1ClDNY#=uq<3maST2cT@0gK{u{bP(&o>)l-Gw zlZNcT603Rz{>Y6rD_dj)>y$S%oktYwA0RX5628`#mw8W zugBr2BN*6Vy4e(Hqk;b~Dg$xBy?+ZCed_6gs5C{~X`23pm~cD}aHd+D&oP6oFoI`d z6Tt#i{O(AI=1_QgWo>r%S5_w}F5;fJEEE6PjqXoWb@YHO2AkbUaBC{=1~t2l6p*z(-d_j`96886R`X?`9E<#pB!v=c7B* ztgG_CRZ0Co)h)lW{Rh3yW5utkL0Qk|)we<=MCniI-gKC^AiVl^cqjI<$e+0Wm;BMk zcA_kglR>;#z%<7jQbg*}&)Wu|>RVH_S{X4D;VRB&-51IyEl#GwVN$tj%&aH)CI?4I{*~i#+E`*{8S2 z%GaW#U#xg!IIDO;9yl3UYhv9S*n$vS8mj)47j&uU0C18_9yVhvlEedO<-f*V{=Q|@AUl6_i$)4zPbRLn#tZ? zAT5NKjKI3R1ML_-UpeICp^Fq7Qeh}XHwO?9BTT8rD+5KzN(AnOZMzTT2@yzUlr3Q z@~OGGF9QH(bP6oC~JJ2(Z%;t z&%r)%R*g_lSvr}$e~Z3N6xZ%#Nxv1rd?ao;6Z4Baa1E8tjZ}CJR?B}>=hQBzkv)p3 z!Y9VXR>U5>ArdHI?Y5d z<^{ipfJ=)F+S8v7FzPa%IG^3^!3zC^=s0mV*$X5!JWR&2`~_@HQ2pYd3^ zbfL@gatqnyx|qMbu+>Y<>OUktU)(Lvb^=o0O{cRub!~>ptxLmG9MAZCoV+IzJ2!$h zw#24o8QWXkB_uT@zmd>&YTLKbqK18;e34yL@Xt|UxX77W!HHgDb&*Yg>Z{0uKM>gl zmE6~4a@w*tmp$_hh_yEhmrH%cAL?w{=~k<+rlz#I+C1tGW|Fknn2aiVE2@Gy8C#Nl zSPx-7k1NcwZzSIt`SY2i>J4-A%BbwDqLy;JEAKOxKRAh@1Ur;gHF3~0H39N@WF023 zmHAAXSuS2m1vQV7-P^0e>kE~9ke~B_wQZ)_;uAF&DPpd>gX8X@fa;5H)fugpoqOH=#)GwY zx`$wP;jW0>xR6~cJnEPhywoX73srQ^w*u##M)g>IX)6flAq`9r`IrS>$OC2w{Rd}m zqVq*C3Bef+p}4tNk`uDMqf95SrQYYbKIQr9oz^)U=2cY?x1%#Um8v_RkW;R3B70Pc z4*aLyYAVSt;vUX~3aVP46}emAN@l0Ly&3hclOhW08O-mDmIP57&2mf|xt@>c4|l{1 zEfl3EjhHK1{vU*W3TO2tOPkfns`Gf9);cJwl89+`rjMDz6Xc;+%0HJNjSYFib!=i% zwZU_+1qEQ6dl9w6b$0vUrz|E#Z?zXsB9EG+{HOEXrrMnmtZ!uGB{5fT-e)pf9Za2G zL!y(!&6e|j&5ZPmEc{{XJPT_z+%EUvN(;Km16_;FEduEvvWUiHzvJ3_ z<$a1m)dOI-Ev{cseP4SqY%LXDFT)r!uT1ox{0g}B9uZwhG3Z8!CV$)k)@1;{ z_Bp?sJN9qgQzQA=12O5sRbOT0Vhf74SHQOKkl7Wi{Ht_mI!>y%7;YwSvK^M)#>xjZ zPgiv;ZX{>H#NJ9iH)8cthIX?|1x0rydAtJQ$(_ZZx)bbc5TlQj+pb6p7wBJVLJRwt zo|{6Q=>z&79aBWiQ4x|($X@-A4H?Fgy&u;3YwG)MvhUB;HWpXc*aMf*m&7HCTr1Px zgLZa@KZ=LeVRllmI=94ZYw=`2PKnra*W)vI(-W!ZIAy|3WxI>9@Q`1vOM z{f^kW_@qU6gUS5-LUwaqL=Ml?BK#WSnNwKl9`<(($^V{|)mB$ol1>)WQSh(K_-#nE zKflxn);I&r@5WFBlY7eA^LeyBn={u6JBKNsR~cu7e2c+6rP4BF=F=)zEV-B?C1jt6 z1un>r{tabB;0KHGpZQJAokqg`j67&|U(mmEPtRs@=aolB9anMvuXPIM2$l>-e{Y-d zRu#sI(698!t`}F&xQ5mR^`(PVTXnGhJ#~=PC;L@ZU0jMO1OJQ_bq4bdJBlUJSji4- z*w18cqT06CV2kQxt-adrMUi_|S?(wGhuqC~uKtd$!X%NgIvqC2k)IXicf~)yLlRDi zZRUHvySk#sxnj|nN9x!|I1i?gbBwD-e;K_!I*R9Sr}FuG)qu_L87;`(d6|%uH1|$K zQ$G7)C|9_mdK{~>QibC&r=%o}$`zF&>ZCs2Mb30wr^bD%Zq74eoNxKwpri5{E^;5A zc8kwxE24VBqxW!9(K9x8bM$J}YAE?F)LO^Ew+Uu~V@gv3bpDLVo;lQ5d`xcBLrGTSk1imeos7=eLI5 zjQlC`Ze(%S{UoYWRGp|&QPp%!e;n1onK)N@qrD#Z6X}0NKbMF)YVf>g+nZi}= z71R~SsP$RP0u5G!*vFoyRPiz%?zoL1*#Oj`1lfG_OP5t{-79Z6T~}O z-lQ7-ZZRL(ob3tD6P<>s3F_)P>l%pDKax~s{|&i{UOZk&9(Rb`#cBI}pUsQo=UTHp zPh$(ngiVnDIjydFJlkD_)ct|E2zxdd_y7|iJbSTFsOoV*T z$5#J;G~Effj@9=*@N>wNC@L9}SyGft$xu{8Bt?cKg^EH&5}7rS%v7R8QIxSLW%w#% zgpx62%23Eu#&iCk_4xg-=X%e4-sjnCxYxbbUVCpCxJI8vbMbbGKBLFvQYltWzG5$w z5p@5iQwkKGMux~xyRnl(SKlJcuP+5U4HTWkBVOmqI_ zIvvj6V;|qx(R7T;c6%05GQ(>6c!<}(Vp_~di}Cv*iS-~O{qo2^>(;tteSt{y4mCU zz0bg+cf_O1GAuV=)JK(LyPTxCF8>$U{~zK`W&PcIU~ey$SHQZCY`9~hD&f}U}J*|ZGm@2|3-E6wq~fpOiWez^pns-B^KlFdwVw~a==!S#!EEd6la5*gOZ z_oLsf688Ot=#yWL_dl89E$K&jRrJ~2oR*TdS4OqOb9~7Qdb)E*3~ZeK(i2914=q~ zU#x#x#2us4H5Iexdw z=5Fen)7go0MV396wKXx@v{jAyC7nq{)RaEK8_K2c;qzTpOLOTkzFzfozd3_R@~zML zz+OFfDf*5tTr7^4yeij9gFAI(fveQ-I`Oz`jlP3k-aTePFNnI8-Tf(e)6oebcguWk zfx9L28n0DP&7Jzad8gUr-%^fnQWhC=Xf^Gvx6K^M2XLpHsP{EXYwetnr)2m~;ytCk zYREJeT)Y}Hs%eI4u6kEx*Z6_Q}dlUJHMnpoL9!#*L&~K&wU$wnJnu%fpuIa=C8~!#mTe7ttTu^LmTnK z^CUOgJnb^}RKXneFnqHz>tDd?`XxN8v3#qIy_muZCga_Mb@rdcL1Vsly$-=MX)W0A zuhv*}Ru5gNrq)KKbfNp_#q!5ED`icFJ-q%49B`c{7)Bp;^nS151>N<4eW0EZdl8M0 z)t7}l!xPNEgZ?-2zh!)2BKuz?@_Zxa=2XjgR>fnlYR})Qj6?Jfq^I92hRinhf+G2+ zGK|ga{&F^V17=fHZR;=&p2Mo1rLdum4C6b0J#92f&_4AOrv{JfWbR-R zJ;&U56V>Bi#kbw)Ppcxpe;3UuNj;H{PMfd)C}_RMA$LJ1#FT`@*$M zM@C^YQr}_D2O;XRWS%NBud6MyxZXZ2yW}0;SXuYBS&e7Z^3v5K8mVf0X|BAlnaNTr zbnW!br`R9kilm!(56ha3NuSnFUsAMx945`Qe($2)x8e+_WqPPfWA`tbJ=&ljq#--+ zZYH3k&lAMCBACUka3@2CbetzY?dMcM8>_N=y&i}-iK>GLSCj-sv$XH|Z%5L7-27}6 z*0xZ6Wi$()3w73DoNGyC%f$@XM{~0$zo{voF^gEs9L7AeY8_NDm#ZFCQ{9=Mep|>~ z?42;Ckh|Wbno$?>HDr4y%-;QAJ;?_o(MQjBKDpLJSynFnu1Cy6jpn^u%n-Db&DFw$KlSpi{-4a*iH&*X}QdJOeBT2;^#VZ;5m$Jgr4$$Q*Xp~Tj5w=ITvac zw3#pNe(Q64=d}Dl3ccCP{c0Pd<=B6yjlaaEZ%zM2Ej3%(Hg&aeo?sxXX(y{1?5o$E z(=bjXE{Bm!_ng~hg=J;AS^2=b`kc1X!F|~7er)#^wd1>0dAehKV^!8-7rgG`@D(EN z$GCP^`A~J1P~Xhy1NxD6n-N-WO!uZ;ge;$1(b5;!dd1ya8g;FUHD!0NB-u?XYiy#< zxm|Yijjoh8aqWZV5pH68OOv(g_2kqIU3J~BiD=)>$7*8zL};8}RV_Nw=BT&s#Iaw4 z*Nu()URmxJu)ZA&Yp!w|`wdr?>z~AJGGe?9@cZ9s=WkW)Yt3gbORrCF-^s53Qq8%} zcs8iq-$>&(i0&8FtoMoeMkEbG*!%%>X>nTYVWyIYBpOj zja2g|g>kJ4{GgJG@sl{^cDdA0wWC>VEzZLFD5Vt5wdYIsU`|ai=L_&X_T4#dPHwSG z_fz*AMamsv;W6IUPrbF9i1f57(qMC=o8?L~#ODw8v;5BdPN8i7M>ky&hmEw5sZ+4M^vlJoq<5~f4+Qr2s% zQ~y~HCpW;FN7NC%6)#4b`CqO^@VvNHQa(`tn!l{VG6s+P)X#sC$CPvLdHPSIw>1L~ zt%o6<#%pd=C(3UgxV*WUk>)Kvv{J3BQI@3tvZ@w$xvsbK%~-Yhhs=vM#_DR&bYB|2 zQB~w-469BuM?N3Ji7xV`I+w3dTfK@E#@R$i(@LvzMmOaU5h3R1e#2_2vD63D+i!+i zGxcU)FRyGsuMenLb(LdHz}y$;_xc`)oXOJAQFb z(wp%*DNGPw0)xBJMSmIZ1S^Tsaex{AI{MtdB#G=P>&?3iVf8)CJ(Lr7_L-TP!Ny)y z-x}>H-iGttM83{`dLS*k8Rc8`tlX~dIN#G3X9>-9X|-ihllk4gWc^GrNSZ~?o?9Ki z0$l5utnVnKccM)4lbccx;5AM0vXW$x!;HmD5hN-LMMV0u>LmZE*Zja12SUDQJ;yr8 za#7_ti|ckMKZ^w&R7uaQGqSph!rR6a>y={Vc=lvN@`NjXH?n^?jI zmS58>ZB;Wy73Fi=MD1>7LJR5D*oWOJhgczf_|- z(qKjNPi08HB%blFJ6tWlJ(2bcA3umyT&_Ru%JltkCNGU&x_9gsygGQF~bS^BQ}-R^R1HjOuIhtH9!8J<>&%o`;?PsZO%l zT;1UW&x)HDstX5S$2&Wk+lj8{bn6wWkz7r42jlRYRc46)kl7qC6BRpylp)`%&BYgY z711A%u1{nk8|%qJZla~rW^A^y*YLGd>^#tJ6=@GX zI9)B)NW98}x4_k?3O6O=_N@9Hx#B2U(@1vyviNaNGAEf?&*3jvPURcd|Mdz0bl!(|Lu`6S0L*Z#vJ>PH*xQ;QZCm6(ndXK zsA%=InZF&@hJFqCrkJS>-dfUKSMjYl>FiEDM4QdfOj7ghW7er8964al;V4Vmr>pC0 z^{}tm*>W=Yk*@dn%~`rnPs?o7PmuV#aABHxvTxZ*Imq=cezuGrqqi&edw-aYyU62v zsm}GltDjQKYl&-=O#Mg9pUNXzz^4LE@9s*Ig+!OLP;Hx-^#&>TRu^~&>P~>W(ckv7 zNVX5Y#||um<&LrA^gO-il|+aUxYQI?o3U(dw|JhLRo7x&^~{IW@w&%-V^5l%tiOng z(IH%RgV;Zof0rQr-_@S_>wv6k9rQ_=!CK?~n%?KAh<>B@Z-YCZ!ddRnyWGjszKr(_ zV{w1m+pMGD`M(j9)*g#U%DxyZ`1n?u3oZ1oPck_+bZb3(SPRvu*58?hM5 z42N;ujjxM($QW1eq${YYo`F~u8GBssAoIVi7>zFS8X{~jV;yZqc3jc{^AT^F<@(b7 zqvvgy{?K8%0J^i!7p#tn^%yt1_i+`+-d4v{fs~~nYFRxA4RHDv?$i>>zfK}Mjr5dR z)U(OQSfhGU*V#Up`j@V^eGT_xnru^`q+tSTqlV*`SkghbP+N<5}xg z&gs3{?`PYgd)&36S8ctxt?>G8^!kR;$GLY4SmhvfiV5T~Q$_o8@@h;Yu{J5YnDQh4 z3-7DRr}Cs<yIR~R z2itg9zaNm*wUEm+=pNWK_@8v$*)L-*&^4jOrmJ2B~Yc*O^P9+_23pTFUO zIaK*x_T=l#)K!DtQ*p<9s^$H0sO3g}LJdFf~t=U5L@g0)Q-IikPv+S;>?{3!b+Q-cuqg@^i9w z?HrBgf|j{NjOy^DFAtyQ?muHzJG@q7IWuvX^6s4uA#&;^PB9( z-S+dKIHzEjYI}6xErdO9c-q1K@(cI;3@W@2jlM7+u@lDprgP~JxKoJjR#5LOqN|{? zs~VXE>v*4CPom*x$l*Jc)a*L%3gYs|aGx!naS9CX0h`J}(0M$*HaVO(*SC=6kH(>U zvi%+^Q=>4BujO`s>ioM?MZPf~d7QomdH$Wy_83HtQ}wRW(-3EO_rYiPSXYuo&QOz= ze<8CvVbzS56)H{ovCj7qaDC* zSKW!7N6N65p6uYDUFN>VV(YqRKYebaW$yp!gt$|Uq^K-*wc7D$S=9*qD|RuyLVf-d zy{`R4z80+WIyU(^KW@h7s`7;Nv`x5958nQSy3DhDzq$%dalLO3(aADAtC~pIS7cgA z>NWZB0{ESSr{7815AnL;W_o)2-%w|zIx>m{tGBn0?Vm1YjT$C{SQ%>@sIv}N)1 zqY&>WSUy-cMD#XC9r{Vq9zy#cc%J#VUMAU7T^0K1d;69b?9_*GEp`*EdXWs~XHn!V zo?F>dw3oeg#dG`l*ap8UNZvoW^Sf&5wR!e6V*Oh2bSOKzUq1M->jClZ4*c~-Rnv-m zu|F>Pv3rf>1+mY~EZIw(C;c~1*^Afjl~G^K-dl)T?VwAn1Rp`RvtY!xc<;C7>tfG^ zdARK)(Y_05=Z8PJRmfIisNLK*PVUZ20{7{SsBVVnDoige?MC0VrISJW&E8Z&{tzQx z&rkEXTSJWD4spE^obMxhdmXoX0tU7B`B~4>$nUE|j@aWhPH}rp>~H4I6?sN$apnzu zSYv7bNg61EpHzfv5BpsnodJ{idaUK_@Aax2qP?ehg2Z3+B-5~tUonlX$=ah63D-G~ z=Vuf(^YZ`L`=^QLD#oJ9kVZe4{5sb0oLSf=5TOqL=wdc^D4)Nylj}da)i03eQb-=_ zYRai76qmJKEe54Pf+IM_@4Wt?-0BqV=fg(s!bXF$A&_SXgo!ozqeQ)TRTSR#o1f*E zS3;;bU8fT*O~e)Vz`G`J_Iu-suKo;stOdk-MNM`XkAGYBz6X!&WKR5fv!=DNu$UKV zo3QUZ)>i)lL59PT$M}8`QvcI#(HT_ba;p|(P-FT-j&Y3i)7<+uS{f$aeBa|GT1jbN*9E#LS3sY{CU5vG&I?pBo`?PIa8i zWqq;BTzPizfN0a2#Z8oFY>}DdXWKRSOPulgUNTp4i0v)KxW=0A>WME5PI8Mu{4Oe# zWjtv)R(2!5&t$dP%0%8h_*GM!qdJ?9yWB^scR+zS!M+xWwB>u<>3Enqg;=q^3f5%9 zA!_s4V)BI8E#gsr6sOB|bJu}15GP=LMhD06pp4LNHJkhr>bwjSs2+) z-=J1ZwKvo|!s-UFGFw#ZS z^Jy7j;q7E`ADNV56=lTNCp_1O3G)7}I(|J_wlvnSApQ#X*@@|AwZvd=2?OD2Betn~tj7 zmWL^glls|H7}b;NclTjkhe&=HnU@h&&SHv-tTBCoFI6Go*gGm%Wk;A3C$iiw>XpE| z_F+`3NhE4Jo7G&3LB)rl?VB{PK@}rT(Hln6QLWuT(m5gR&0g2aDbgT&tbkuj&LiQ` z6XIPtF)&tLH}ju0$m<$>BZH@j>~#c-xPIkjYxw_n@b3-m zqqe%)3GY9RzTbDp5w1aO>RI;nk-LBA-D2aA_#Z=d5I zHCReh_W7|V_)Debr0POlcOJ^_zE`oBDWi*hlwy_hBcjUv3BxHPvgVd;#R<00(agQF zrmL`=>Yl8QS5*?pmt<52Wjf#RtB+~BE6v0?xlP#qtLi^J@PMD(Gj^+Zh)!eYvBusl zc4Bym6_s_VY3X(QGdOk}m~tziy1Nd+OC}{t%m6#Mgdh^O@lAH6s31 zd_B(V%_<7sK_Vkb{se!oz_L4upMP4z_J~^XK(keEVf63g_3z>MlYJh<_e=ALsgQXf zi>%MrR*To&yiZ;6{d(_O$mmPD%UQm*k_Svy*?FA=I+H;=v(=BAm46xkpNjRBrGsyH zU=I4ai`JK7Hf7vBW`{n~0}`hcjFi=U=o*1*T%&F|%Us@Y+^!XbinHBfzp1Nq9&cgo z^I2S=eHS_?slM^6nWC|3xvydy&exOVWw54> z%JD#~t{OQPQ@e`&b_&3sYwV41UgY})8|kjb_beNUO6CcCy0H=OR~es!&5ShL`ZB!l z?ds#}5jb5|_;M!jqq-_hGn2?2IxDnt$QB)>!FP z*fUi0DoO7LdBzxQ;Bnqiiq=;ebALG7LNu%H9uNAe4gTC%gsb86%c9Ffarp-xf0Vud z&C^ce88>+PyVW0Jzpm_Fv1?2vEaG*@@(FzTn!kT9uURDGg(rUQ*_wOG{3;Cl`SnV< zO03@7=BrrQ_8N{c$=JrIX~y$BEwV)h|AOy7mIsYzCyixcaq8t;xX5JqyT_BH!<)it z3Ki&~hiqabuX^9-4*W0tI>r4`AY48ka=ol0J4SaIi)lg!-Fa#|a%<#c2Uzed3ASdJ zmHf?O{@q7(@6H}tVI#F&4|}FpM8G#`|FAmZo&Gc4dq6aUNIfO%rEuwtzr!4(bGV z{*wo{P3G9Uh1hZH8u2=np!2i*5*C^}1I&mxDq zQw8B64C5thNo(UbO>m8-*v56ZZtM*+U;jyeT8ovKcjDVQ_}>QHA$UhI$hH@&SjY#v zsw*^AQ*H%s2AD(tC+!B(Xa@Nw(0o-|50>$R8fAJ)S-D(2_lfh>`pW2DP*W`hW3Sce z5&6YTj5~I}dk^Pm%LAfT7xMu-=`GF!tOirJtC^4C@3D5ci@M6oYQ`~Z_l6mqzs*v{ z{u%X+`(yrcL4I*Jyc=sYv9H(yIKRe|oWN=i<6Gz8P*&{zoSDld;{6U>cQviYT;V;5 z|NRBEXQ^1c%$_5bw!^aOl0bW27-!Hvj#Jg=XT$YtyzlQOUK@>eypw&_W71573}acjOBOHCyQJs9|Wi;mx|Lu zNAiJ}_~CQ>FxXIBU1VCleSA`Uj~@B(^ys?2MdZx`%W_-cdIp-DR3{AXKb?oY!57E7 z29wDM&+-Mv^$S+N%ImzipNIe63PXb{Tq%}aCU?8sbq%|!;=OCJuvqUnTBM)LE8oSp z-efgjh(W{TfnA_QL)e|i+S=J4;Q`YIz<-;@c*0;AohP;t;#h@+^+`_ zPs7oTB56OBt>UnzT;lt8$S-n;$hng|w+2)wje}Rke_oOk%)-kuh@W+hp)=Wj2v@F5 zIzmcf_EE#X83t722Up|Whh;Z$V#OHfS_KMUUfE2H>b zJ>^T$@M9~gW~uAOZ00(ikWFN+%>tIvQhultRpYs;Hn%4E)Qe_G`>SVssLysh{JBf_ zO7_(K{PfEt<~>0t#d+RB9zUL4O_I^Rnsj=Umcd+>9_z;UiTf+%7@KhYlXA_XGR+oz zVhDR%#Qrm=g|%d5lf3IrjH48sY3gdOBcY3#;`XlAW^jwDXq?BsVou>nwpN?16foDi zkuAT@lWRlx40^x5(DOM^4Z8z=^Aeu-F0@-{);4Nd*Q+W-t$&S~h6_m*vAHNRG>Pns zpnFuZcBq-Gk?U-R_+eMES4UKO;`G;f7+J)_sN+7zB1^E*EtvHn@wJgyA3QHTsi6JB z;_}I`VlSxBbxrm*jh$aqx4%?H9O%7%P(#_|Zfj){u@Br7a{Z2GS7EgS@$831l;{fm z)Kk3R>ze#4w+MU)V_6{1jHJ0f-nl2g4o=;L=3@u{)*}8WSTmB(_2O;gSoi<<_Fl6G zYw?3ct~jA4P8ZJX{o+LCOS|em$)^T-MYmOVaiAMnS5`~7LM7u|viH$3(LXc1jqi{9 zzg&Ez0l#~IE!+;ps^JZ-SaCCXKv~|9LPvoEf6>$;PuUeVHf1BRGtCl=e~oK126Ngz z2KBvD0};NS>mG8d4qIx%=GdR0xRKxByN7Uq``JtZvnnNhf4{$vY~db1D=YVnHN|y# z#T6-=*kfO)+g5e4J+F9*hDzbt(Unt?#dPqSr=j%=-M|8&9Xj4n6nbeowKS zfpn0Qrk(evG$W+K(vqbQ)p?XKb_NS^ZJ^x@dEjo=bSv(#%m{OuKP;c@DEBIE z^MPz*lG%)yr!6F-+6w8u6z|`n>pZM!C!RDN()6OYI3@ZSW4{Bc{s(EkSF@e0^DOpP zouj6)PTs#xedjlFsR?x^&~D7MUCz2*=J$*A`dy3VG*daM=Lu?%Z{SZWRixA6@5j); z9gC|VHWj1eT+n^15f7ugheg_&ctjETWz;Wov#s28kj?jZ;vpZ2x+_@34%UAy-?*P& z#J)gZiX+Qhzqof6vAu?|UnJF$H1IM`@iL!l#-qZ@3yHL%`PBpLZjis*n%wgiysVb@>MVKH;)*@NKyGKn7tfc z|DG_zztpDU`b}i`6l;6Pb7jMTSBizP+hix69}NGlWX3z6&(F}`NIlp6J;yKz7<eXeT;o=e-eYgH=8gNLgi2g|IIs& zr^(obwW={)E#m*f{!@&)tSWvvxL$=v-oXzZ;SX(T;01plvo@QJ_ne;p*qx}MyrCz% z{D?l6xyuT#tumf}Q!?v}*(Bc{#8$hqrp}P=eo{KiCw_q)(c?DHyL|(J#?fJCHq?$> zTP0Q1s$@`;oLjqdJCWxV+MdX65AvtnEH=)!?r6M|jcS$A?ls<@+0HDSD|G!O4ZO&5 zZ($8NG3bb~afN^G=5s4qbM#&PEQ&9~0A`4%?~!yLk^g!2-5L++Ps8uA;n^zaKbft| z=$(os8D&FW@tiSrH@Xkp=?g5QKOCPgRGzuWodDhwfSVwc7EcZwY- zH}Ka5GKpz?D!g+ddCVq_r7(G^C)?qU>AW=jvzqu_)w@S#Sc{E43Tv*T$Lvrvytokd z^pBCnb;#?q3P3SW68l7FB=OT`elEa;T}hVoqo>)B*wT7(Sjb~H(#eTreAjx%>%3nf z{!_}GZ)eqIjN`oD$9cUOVOdn+W2fNHc}sYF?8+J}{~%940A2TBLWN1#O9>0%_V>^BrcsSqlt%Hc?NHS_Iv2Xbml8<)I_>YVJ{tDyXL`%^<5|};Rdv5cSjU=#)?Z!^bVL$)#H*-DH9J2U@ ze{8`Jclmf&{jnmeZ)7aZ`O3o(scnL}t)6#BZh+S%RJcA*WYk7_Ln{@6a3px{_r|RFQ;86{Ny~|Q<%)7FEIyni2U(t(!a{r7mVnP_c{vs zV+Yl1{pJ)o{X$Nmy%T=>muR$01Uc&Kj4bzL@~-il^Qyb-x=u)(qECxq+KBU zL;mleT31CQj9ugJA<@_iE2`Gfbss;g!-}Hc`wAZmsmojq+jqG8x

    P$?I3qaUI!i z^)!2Fc^+0i(JQ>-JAN7#7JZ5bJXbanYbRE>GJiJL$d8jjWb-A} z7Vc%G(H$^C{``RmGF28m+x5A~^`RW&ZOG8l$nOyC3XpX4A^$~}8_8@ToBYCiR z7W@hJ6?gA~gAG<;_y`UyaKB?Tke?i@8(qv3$6e;Yx+O`(+zaovLA~ExYarf7p5|4| zvkmKNz=DsF=C_H(PBMbmAa^?`evj)myej4{Gvhp0$}DdXX&!~TePPfTe>K%v$U7B9<`@C+IDE?PXN0FuQwX z3)QWst0Zd2en2l_?foHoRIIj^<9*oZnD+_z0SRFN<7iym1c1Xbj;k8hsF=X29a?cBdXG=e*Hu$5SztuSM!L(G}UkHD&fwxG1*c^UQos2S`~}z#{N6DG|$uZSWx-J!iF(usV_n6TPT)h^G1}in?lU5H zX7@XSC+#GMxhyZvT51l*N~;O~!-KwHDcwo4nu^FNHPP*u!(I$}z1ql3S<>$+Lz!@j z8}W#!%fvZbQ}E%Kg)UCock|6QbU1}I?@!p#KC3q}n~f-E{5PrxUuo1=8+&fG!VRK& zRH&Zk*Y}d%og!iI`HV8A*wZ`qsXhRkJ`=yYB{_Ug-rEv$sjg}e^YHn-ZuYbdo*>Dp^b)(6$KJ|I;mSmqGQw*p zJAa9uUQ2K+Iv=B6I^8q;&ogW#yO_(I?mxcvWQ%7aKID27F7yTc%h)l8L z|2-ssC;gT8)1r|4a=hvvh_M5oTrRJPh#aRP#NDGhI@`OhhUxp0*s|Yyo+iCqbaxXC z-pi-rjF3lJbW722l8kwwYaR~!AxvF~JMVx7JCgDL$RDTSdms6`X?(Jg_xTfl`C8PS zgUfb-Ewyph=zu84BV#Z4Dzfu>xcnou&>NeJ(a+!qYk6V?2-g~tJ>m0X(Bxg(|HS)$ zpeEdfKJLO!V*l6DEaW)(4C8I>aMU(@t}4&YrUrV{yuf}ng4ok;6(8JSrr@AT-M_5= zI@VtmLbRuk1L=jyt|b(C4Weu_6WLsU-(Wq=m-ax~Z4eV$A7m&S?0|LUxcQ{x};yWFWq*xO*%l__O8 zx%Gsl6=de?&HA-=uaed#UT%G6?ECSn71^tFwC}MKKt;0z@8}KqhD=VU-NGLi(0xRd z=(UT1oPuRG4Rz0*qFa#p|po4VKf$))y77_ATGmee#>@HxD! zjmNB%1w2f%XVfF!H_8`uw?Co#q^UhY?lbbfY9s&ClYBAlIx=c!)UnrYblFwHyrO$A z&XHOI=}zf^$ZRGeGi=R~^qv$FVGfI_Kg*In^p|bf{xQ5`4r_h^a+Ftrx(M06wHE&g zD}wLP@zPK~du=N-Yxuf@C;9;jW+kU)OtX{cW1`CEiSO=&vpHzAq1oox+orv` z?DJ-%`_XnsQmG^gIl6>)M-nJ8dj1$4$h9`qqLA09N`Yqpxr>ZEEqjrYZxp|G$uuxt@7 zI}&a^Xe>qf(%pQhk#}$6C-=)qpN1;0^YQmZ+d(32H?t)JJ=0Kkj2x<~CmZ0qSWmPB zIv##*PFxn_yQ-DoW`opd&| z3D2I-dxNn}aG!z3*Bi3NZiB-U_VTXhiCKt=3C8`%%YPGd_d&Dsuq-#!xs6xXhw5!S zN%W<{rZ`f#q`X>q1nQI=jF z11O9OSW~#eyGS6~EJ>ameizA}SYMPkgH=oIt$BTEB$S6%@i%$AY;@L29 z`)PWw=)KeRTx@r*b?SnXdB9ud14fz=_&`;1lwQw;a4=ODMx4LVicXfWw?ZuUNu!@l z-Ty%jrJN&Odi2Rv)o+H@nN_KKJM@ zdnBm=Ka6b^QK|S-w27$Ni_8kT=Q^=#92cN)2 z9|CC?k<3n=p3&joid{x6>Nh!83Gdg1{O6kYIG&Q!Wth6`bO`vf-5~z7I()lb z8Wvfr{egA(kHLXFssFK)N%D*eSkC7Ev%^@;cM;Rtq*A#8(_HLYhI8!{hhh~*VHWT( z*87G?|2Z$-E$59KqPF<@47T?k8(e`&>{kCei{~9@3xBf2?c(b;)-Y3*{sr;)PO&}u zuEPGuvZ!XVhX21hcs%@n-Q4%{@UFdC;1^)-NRnAa7uiI-d$6lsJaipSRszqAbrf;t z*9tKw)wqg@E!E9R*A;ypgsOi4`T2vEJ@}ck{|;c*IzGUO+O@?Uw=KlqIb=73DSY zD|%g~i)G71v`xHyw^y*K-CkQf*%VmZm2_&rsjT)}SqwMh%=+poteMh}7~fi}7RK}R zS6O^#bN}7U{dcGD;pRVo5#6trS3M{K4dyEwaf>`W_E8ub_3_1Y7<~`d%WEo`bE%}u zr>5?Mhef~pd|gz`&6aur7R6bjajN48Sl1dSERD&Y#zdp%Z@9Sfl(E+3g=NX0Fb^m~ z>lI{O_a_>UlhwX+_rvsktr$}WzZr;Q&4!-4S@?M~%xPwqv&tqSm%2y>%T!1|#jl58 z+pXL&wEs6QznF!+3pu*8;mXh??f)<@dd;Tt{o!o?U8w)A>;1G3*}@v=b1^M1nYHv^ zSMX7k_q$)PgKdzlq{iP6W(jtkBZsUb^x$=$zHf8Ig@ z*+iF8EHKVjt03l<)d5k!yxRd$Xc5Hg%}1-^R>$%Gsl2PDEWMBj^A|*$rk|}lUvGzJ zwde8A`uIG17$ySF;q!;mGSf;u*8i60U84$DKt1a@{x(&XvM(hAk1s>t&CEYNkMX=H z+IJ*{XMO)Lk1rzron!$&Vn_o#cLloNYwVK}AFL1SV^@GvFmIRGdkN{&Mcd2y<{ie~ zmdB4~C$W+s6NXd;dUb%|qj=K~kZzw!!YLhw8L{XqlDK+`Rqi71sF{r5C(&zBhX-85 zkiO&lgOa|FS}ZNj7hG$t;OBHb%o>K*$zrTX_c6V%@-*kut|zHSv83Ti%)fx+M`wLU zqo2i}|G@TQ7vng?;0E@7BQ2B=->(wm!ses9eKJh$FFHkES3z~6(<0Uyj58QsbTU5$ z=^oZ|RT~Q2%L^V7TVlTdJqR0>*VXVQGqjFwucyVC*Hsn1;qQCs{jC0<=(fqK*XLhP zvlj22joA*t2%3>p3DN!ptDk4o14PW|A+H4SPLlOT6^zaFA7>fQ)c+GJNY;!0e~UA@ z* zmsYtx|~Rl;ufzN|7|SoZ}N-1o?geCZ&wYA&gPi) z9Ky;Q$fjZqS3SG`JZPorll)*jdHhcA#p$Fk`R`?OMa8)8;>dE5Gy~lhcGo6&{YyG7 zI>7suy!>H#Trk_B@F#QXQ5pOa==(Ny`=k*Rw07}VIq68g*G^n3D6`usms};r|3LEJ zi#R{h#vz&9)ui)SQaAfiJu?%$Zwc+Du%k>{(j%RUiV|NZug9}e8=qQxXe%9#`7BRf-Kn9 z0+F{BE6i;!YP~FB5c_M0JKcoaU4`5Ih2O4&uj@tH-8w+h(=L;7=clJwQSk=Ei!~*w zI(EYDhRBt+=q}3(ZSI0LopH+1I&5FZH)BVPd&Qp;FklzSe*htB_`iSEn5QPXFA3>) zi|SMPcOSW3O?yifGx}22O;#m~`t<({|DSB$Kh|*Gr3&yC{YS6WEk-erRV^27PU|x& zC%!#F^IhG!r%2xw?mguR9$^2aS!V3W5wni3L&>_Z{y3I3U(|V(UaPS8*kAY0v>j?{ zzvH&2(lYSKlKibP4~;I5ODj1dm+D~D)3KPSlI+3fGs+xFu=~=gh7no+!}5+|`g=vf zIDx2-C#@&{iTHYo#ZBdJPx9lkB%Ucf)+)zZ>Aw1VyJB_E!u zQ~&h|*`LCzD~WT@)8i+&<1uk2`nPXkgK68Z!#{$Nh!c+yoJ6}z6$bFMz4 zzj*z%@U;Tn*XMoBR9Bi|n6Z=m5%Qh^AG)&95@vS(kVk#to_%3WUCglni63HXKk@Bv zbv%ui*YvfLrH|gu2|B#KRLNN8_s7ivm-KAS#N-ip@$c$)rOnuM!?Wg#G)G}=ela%2 z-pKu*z-^n6LVX<(#YLXzZTn4}i>$U2&Btk&M_JGkRlz}+YeQL9oXnSr?c1_ljL)V* zpIaQNoN)S~^4{28>`)Tts*9B`sGnY1E4`KWGmt=0co#gYEY4MmC6w_hj$fRIe9PQ< zf*9KtBfiRRZ;POQFIH7tbX{Sj-DNZPviB0sW+`NU)qHk5D**u?!TI8RnqQMHtb2`q zGN1q3=nKM-*0ev1{r#5`CudjY-EnGp>EfUm%GltiKY@aZzqJ3(M_f=Afc^ z#QiLPsI0CYuP!Lg|HBKni#$1_BjJ@pAZ=yR{?A=jiE-oQb?w!U zYC^qRolA4G-2xh@Dz)SXz2vvE<=EFHEHA8oogRY*ynYrWkBUwim5UAu>b+-0LF`G> zpV!BpEH!8%H-@u{|AoglH16w?{pF&Yx);lCOS{!%v^UUo^facYrNF-;qF#A1zdnBP zB26uq%bhj5S4zC-p#S45V~TA4Y|2&azOo$lKHgTB<<)~g1(Fp-fAhJGaB+Yd#N8N9 zF1h^+?-K86vEzi5T!B;nBa7Rlt1?cY{D!wr z*V7q$)2wBI`>hn}h3RwXC)iugClF)|o;HZ~q-9`2OA zukaL~^Y%Ci_62^|9LtNdev2B-We|9$y4*aKs!4Et1Zl)+-EED&C64z*Qq6lNsj`hC zi3Ohi50+m%sUmm99VU7A*n8>%&(9*aDX70IpIMW1&-1(MHyQ3UIZp3n1;9fhZPbr{ zm8p$Xn|lnt=2b=ACB81j@FvLN2b(h*Bm#b@dixpHv7T?75Os5tKxI$WOZGiqv^tD& z78gfa$k*OuiR;ba9H;whcw%*)(Aw3Q9o~~5css(a(P(O3Mv>@HTSXW}`f=<`XHjB$K#84HNuZe@cea)w-6q zNZ>2Da8OO@Vk`Mvuq&ZUG%ud z3D%uiZas4*v7^yHBKRWgJ=UwfNY9UmdJ*rcv;BK{d@X3$Oy2*NzlpVyN6mE?m!r0W zACu&3+vGFZXu70qu7|XH#{c zN>TW7hHihNmk89QkgBM8O=+3u)F$6W_>29Ca&c3(`kJiS;qWqPfrvp1wU8Ojq`Np z@rK><$4qc44-biT%C+F-IgG5$j22^0e3BQuG?c z{sMV*z5L-lrze%eI0r7cWj>luQ@Qw09+LqEW)^ia!rhX7TL;%@&GMci{g@4(!t$b@ zHg;w@hUrD`PxNv$#krrLkLbASL)!1V#__bbeb);v^dX}c{l2*vaUadyjiKITJUK+4 zL-N!=<#^HA`ZN8;O2Thk^L-s%E#LUKPVM$D_sfE(MMbA3w*EXnj@_U>_Hh_FjOKY$ z<&W>V+bdA9qbvGJI?Lr-s`k|pn=6xGtbod(k{3NJQ^R>a)@(sHOcM0Wj*?0O^(Mf5qYlA41>#r}`2jIS3RkM=y#)f+3B*TTYI672n- z8N5ZwEZ($a9;FkVJVXwaah~XW+Gm8zW$fP?{imKO)>QRiYp=R`C9?>lVQtJ({=ohZ z!T-yRBX)y$iiY2F$2m0r9i6X(vww*J|MIuJ_0ZBL6tW8^Kf>d+_E40 zk5l+cs^e!(R&1X()<2>DZa9A!yZI06%EA_|#fi#^5D%N_i&M47C8&4I=!=Pct!a3i zXNaz|n2kLK`%_`uIWaJz&nosfMT8zmFVEsRRmHr^)sy#mj*YlSApXZ}as>xV+R*L*oM{y8&lPdz8+n`!{Y@g{*?t-wjIn;C6RWIC zP9=HJfA04S`;B$1!+6@W#$H}k=W1imX!N1^sGOg)?^Aa89+jke;!j^s^{M~+g#~7& z?Q$v$(U%dcQo8c#o>*58ck2(0`tZv3{IePTK0!B4-MuCcxrLq!(R3!Vzd(CO;C;*~ zEymt{l5sB;hiB35@+6l@=kb|z1r_jrchOqgq%R@*C&St&vGN)8J(sOVhxQQGKT0Ht z%(;%IyP1EKCE=_jybG_0)9k;3Dnn%qy~UT-(7v{O?LMCy;jwj-PCW4v*u z_XOYCg+-~JD^5u-L>mQ-svIkRRK=k&_F0b~JOH1fSHF^HFA8yT z({u`!bklb`YzTJ zy9D$#;#c^8FpbB_rh~6uP(SR>^IlPJddb&)*vm)sGY=-ug-UBlU{Io&;ZUI${OiL)UiF)nY^MtJE6J9wka6#WdyBn$bREQsp_s25 zhh4tMPNTanPHA81wM3S-j@=w)Ke0+OBiUX;-{vF{*xNJliCE7uQxy2d6)QQXBvv!l zQ*XB+%8UpOVGaO>)g@GTQR4O5$%l9^V+xX-^(QJk31M@H0vN zgMY?3h4pyzPl0@M#G{XW9qU+zVz~qP;gj@Lk(~02Vpot_#J`Q~{zu+D z8w$TG{`Gc`ZlvCu{YC%s>s~`};<+;G-QsPk=Z2HJn}~f zJHz+Uz1&lTY|SEK)kqPxa2apd$=4RL>v4Qxka2gT>8Fjmj!1VK22>ux)e#jRlw-u& z(OzPGWSA?(ir^fvdiWuXt(!58fM=sz(UUUT=XW4LN8@b41{<-)+Y&h=KKw8n4>*CZ zMKwLTUBUvVd5+KF%2Z!{?wSkzR~qR`&$toZ9p@oAWTn@5`rBE4J@5NC+iAsuV(m;^ zFR}hMuINdx$M@^I>Lw#DnAm=rIoBQHeXNO(uJg&HIfA4I!`5*u`V)EfGJ$rw;5R0HUD?-GQ6^eD^A2LD$}{i=Yo(dHy|WN2#yfhbvjtY2(>T#(RzIc=CjSu7~04-y%#-|DQ97HYfkjb1tW+bmIy9 z-R=K&@rGDWwAwR&%?7?rbo7%^1x7CLd6N-D7wcAI-k3=8v~k2-_@!8IBDqgQfr8j+ zcy&h4nA_Lax_8Fp3IFnJvCl)yo(I3%L}NRWd&jOdv106qn35*8Utv^N`2VZ?f2>ie zL?%_?WbBG{AFq4N>|w0J=)mTmPdN9R@a0Wj*AuIV6&eu>9w*ltj5E%0^GbSBXc)KL6nnQ{nJJe;d1T{^&o}d&(p9myzr*BlV1|B8Tx6 z@re$_cAxBr-I`8of*#?VQ$g_X;1mR^H5)Y4^MNfI}vv_R= z?~$LbD|q_**h2#t5~$vpKSbQ<$>*b&cesc@8M7vqne!fNxG z8f-ddh@&@rHLkHt?0OfX2BRD(-xwjLy_0mO#Ju=CR~dqxWW<;H z)BmNxtwyvImb?!aM|q9LjNXQ$FT36pu|9+`6G`y{$P!#;t#NKo{PZv_2dl}+$6^It z%)YlUzNps?#b0B6#zIxwSQq)bd6_-9Ypj3UhR?>@*8x1Gju92`RH^Ef-_YN1_}pH$ z7%N~JL+q%Ulv6P&1H+q%$UT_Ai<*z(@D4+PrJn{^Dy9X%-kB-jwKUmgmY^I6I!KKPkK^bjE&y>n#&-<7|&u6WK zzdu7;BmMRE1R1U(iR($W4sCQJgMnl)kSz^iTNBI+d?d#9mD{|4>vr|=MRr+|Rs3xn zn^<)0J2izRJtJ=3=kBqSSsQs$MO_G`UA6G3L39-n=VNy9Jw&-ebgV6A1xF6a4|11j zsu%MxmdRv2*fqdi-(veuiVoFqhuCu~Rt81y%YTq39cF~@WlSRMowjL;IGu1mXvaj11*#-_7)1Grj*BQaQ<+v*O5A*;Q*Aj-KLSH1->vuFzZj zA<2#+*@;O;)YS+Z8DU{)lHvcDaFoPMiD3?-|hsxH~UGf=veBh zH~O2v`s46FqH8f4ecXG;jzY0MFIFK>NOJN~?0FRS@Cf_Aw4=oZI{6V3n1FM>&s$=r z;yzf|TTo(@?*{lTy6cAc$!oM5d?|K)s+Q=xK5uK2_}KuMGKEF_YnP+D@s%fdOh4>% zjaip0YC(n7Wh<)5HdY62ts30Ly!YekQ(4V@MWtjV_V|wfD$gd*8_#AE9fK9N=G|4< zQ&Cx29`%YsK3}go92VUQdyOu;;m|1dRg37mghb+6K!!ii=N8gB0Bz4&OIQ}ZHc6~5 zdVjuBsR=(jX`br5iv2bg_$iAY26JCx>9@#ScGJaDmU8JV@z_22Iu(FZ(>3DNaZOu{ef}*FPWRW)?CD`Dpu80u44b> z=tYP%z(vi{?8e^TlT*GT>OI8^in8~=#nA7?s4v*w5PsYOM~`)Bm0e|2u&?oC*Lsdv zRd8u`xT_52HPVTi;qPP+YpP?-%$0aWT^y?|D|wWibWM;rR_M*)hyPPah%@77!@v(j zpGWw7NMbd+A8(GchS8=aShvp{>>sM;E6fP3Q!~inc^*`=eTCP5=$?CddpRsF@}bC) z<5cs7RscrV-42z3rL1GOdc|2ayx$?Po@I-z&EdU7J|Bzju|jsA@n(kwWxP|&5e*>Kj;x>|e)*iI zihVw68sYV#Q(?>@&3~*l(m26+7EUk;ZjWbU14NuxyxtP)rirIh{51M2C;IvqOktV7 zo+aKdcFzO6_K@qmZnN0yrwtSsPqwj=y{f6xk~qatcW@#vgC$@sVcj>dC-}pLKo}S zZ^Ec9S^g7ZZv(oo=M_7u<%g*${4Lg4t$}9KjeC~NU?^!ur_Jr88~f>0=7F(l;5K!G zXZ$XD=m(4T^ODGV97oDWiccEp<4`YVC8mgHyHthV6X8ZAnD>!!_7q9`!lTI2UQFz- zg$(8y|5uMq#!9Vxu=@-dEa%Iyck!1r-dO~VdPSU^{e<|^z^jFy4q^{q!S)}>Jobvu z%T{U{S!0^*L9?-YH4Z9<82~We8nio zs@Y6)O<~hZSU^;2=R%ptkH?V1Ku;7MhLPpf_p!K0a7lj$SXJ!36f4ZWqL)~YIgUld z&P#n0T)c;FTCn<#R z$WLyKMBbi8a%sPhE#@3!&Gl|E=V#Wpk_!dc>U?@b|)^ zNoEnZ1e-7OfA!G%B;81aYlB-)O0e|+i;w)a9KV0rxCfEpJkfj)J@4}IxVV~bMmRO~ zfO{{(^+&V(*jcbXUY8eg{mI6^W81M_eFT*4Xnd8)^;VL7G+A8|mAR-usDOqoe(87#r6+@Ta4wSB+idli3|1 zx%u9?KTEF5rgG^w`CD}R%?!ZzX1%`D?XeEKFC@}dBKa1^9xK;U$htJde#v_Vga6k2 z+iyl2oef*f$izMjYsh`GucoqvQJ!dkJ3lU;tuH1t;P2(>`wXPsVoa-yYz{e0;6<;| zMQe9zLKm^dpaoBBNHeYc{B0TABAnzqe;+m%`&HMMA-9zyjxg@nziN&wVFi636knFI zgE-?TPRSSm7axU>)s6mk5ihGM$7ykDFMFHM$9jmYFD7-**vqp4?<$`7da$lrWLU9> z<6S)NPQPo1BTn`dvAg7Uk**j$41gn_xc@Bo4{r63+~ovr74s3BbvS)SBX6^jnES3w z`}sUW0f=*zN@!#;8?nAk>|vE?8ujtzydb^~PWLtM9)`<|#k;>U_T?})xcEG=GT2o) z*;yr{x|LNogZ}Rs^#q!k%-3g-!VVUBz)W=XI({O%h~3g-U%etcZZWpvCYTvjB%bWtTA%R>oDr70J;+W*)5&AJzn0jQ(|*EV8)NLb6?@0L$QvHze^=;1 zJe`)!lT}MF_!d8_=l4TpAhBY8zDT(<;W>rLp#}?!>?&p`hQPe}{B9=64}!mOl0ZbD z_dI7A8n}l1i{e*lq(6~$1=>}2#R{?Lv%Mi<-8Zwq0rJK-Fs=@sZ5ZjF!EFj8qb|t{ zo`-l-UGFB>aQAxCS05)?WIv;enXUp!&8-w%U!QP{nB9r9Pv*gr_b~Vm#Eq|9->~nQ z37UV3d&PX~A=a^$U2HeXbSsGN7hNA_^-)i21Ia!#!ewx02HTs#`W8UhnD+{6d(~ew z6ywX&bo4#^22;l*c}=WdD+k%P>1|j`yPNgde5V5>&O_O()8TyDRjR^|_^XaaJ_W|_ zane+qgh9M(tY1O%?DSeQ>FA6dbeidFYpRdEEFSRPIzDlN1D>$js zPUMK)fgjV~^ML!7OxDO2U}2Z1o{(8Zuh#(jiHt9HxLJ$c4Wq@XvX|p36|;3X zyrGBrF|5x1LE6rW&%X(sNoF*D4ki7{#pMar{;WcGE!@qhvQ{m0+ zqU^0keNBRPv5H_UcC(Q6oz-b{FAg7T7C(or>qOU$Y~T;Leh{*6;rFq2Yo@GYDeoN0 z>nh;WH;FZsaE0?M=zTLwy}V~gJyoc5B;taA}FmJLa{T;ra zGUHwWPLE_qON@8DyY6CpS&i|gWZY$q_q5sfjS0H0fVpq+lpA4QUJNV6DMUkz^+D(w zo$KXU(+M%=5A*Fu@yWEbd~{J8DpaBCTKLseh!^t@(HrrnyzV}>Gldt;H}1uF#_5!+ zRSK%7L?D zS^>Bm>z40?J5y;s*7D>g%gQ+B98yj*`XZj8hW@_i^mF%jO3E;ujsvZaygGN==Jj*9THdb(PpxB5NnmWMl|p@*mGqtA1QKF_;ZM+y(v z#8MaX)auZ8k?7tPtGyrYWJuox`9GqEKCXAHp&8x29_`d>YY$WDXDhbjSZen zDXp9HIT{~i+@tNO_J#Gy^WFOc_;-^P2B-PQKFIWmI#XU%jYIDLvsgdIyVa0YAdM?D1RamVZEH%?;9W5j2n{|V2uRg{U-zn-6Aa|5B#a^Ia**oUHDs^Z2h9|Vt>D8Vs9=S`H2(>U8;|k5!3JMvi6i}FITpHCyILfv2*G-K zzuB~$5#xy-=f=9MyFtG(iSK=^&-)!{R40iBXFcgm8DR@q)?wMyP!f%G%jaY?i)j9B zJ)Te6HMxnd?uW6zZu&g?hy-)^;&%3UoA}sHF1i%=Oou#iCeuoOp9|Lt+d* z>$v=tE&h{sJu7)cemPTKnn_*cB`Cg3%*$omRcSu!zfi|Rq|U*NDiW%to(TA2M8_ary+z}Sr^y35bQgLR_wD5LHm^516E;d?XGG`c{Y z+cB+}lRL%F_OP*yIt+JWx7Wag+B6f~?j3)<5>DpkaTSs|l;_!SU%7i!j(>NDSf{$t z$A95Y>{EZKyLwOZo7F5Mc1LLHzk}U=$>L-ER4v|?!C4$@jq-c;{S}OjGar9S+o8kn zD%vRJ>FQx)Bk-)>)dMbKJ4Hynp{ya!g_y&V_CmYE=1Trexy+bL%V)Es9>aatN`McIlN&oP>d-4O?2TCqF*oe(vuhsDI+^Y~5{{4Q_OeHW`YbHl!>IOg** z-@*QCEyOR8;NF`U-71nlq+WTgp5jv0O;pj>9Q#6C+Pk_4i#tg2ufyAyAx|^Nce5() z4)3yBym?Rj?jh#f4_8v{+`mDNv5=+B7kPvGjIn-o21MAOtmV4_MzrE93q`9_cGj%I zfBMUz*5j9FX}=(^uf+Fi@UjNHpf;u*xKn^FM6^FbCZC8ptwoF~syl~BVYEEHHAJh3 z-Cl;}@5MAfhrXZ4biSmK)mF1DfXK(vVvm#>I8RS`L7c`G>**>aIo~^Y?NY4sTuO16 z+bLl@v2VZ!e1DAi+b>x^T2nq4vsfR}+--8*O{y9(A6ok-A=YzZXN-+Hr;@%d1KV7!jSzVz5EuUojyV%_Z@}I~5zHt43=lsVWietc4*x}1Y zz6{rh4C_Jhek3Npk>};+b*06b(lk(+4x-!pe&1(ghnv(jq8sZib7eK$IWz4qrTYnD zNDG)7JM(6C_kECU4T;Yo?*)3jSNh4xw9EXy9!}O@yxGb6i-@_;8pGQxe*>$}!soBy z<2k(|=Z>>DPO8QynZq(2O47PI(S@}T~n z^Z{Cm6Q$S5O?%7i8)A*Q#kq4VZ9VH+nRGJmhPdha_w%vCN8LHjMEM%S`9tlhq#P;E zqG|`g{O_70Vml%yybNo1B#X$Z+GJ@5CuJkR6%`v3j@>v!)x_pE#FIiItcbMR$O zHz^svG^drW#Ecg5F%50944?V*?F@*U{C_|C?jdOZFCLJZb^*KH7HwA-{wzrB?N59r z(XP5ffu`Kol!n>~Ic5FIiS8G?EpdsgraA>3Za{}@{KiXI`IhLM>Fn2u+f{T{%fH3y z4x{a^u{v!`PkA&^~tcKFi*mg!^vXN)5d_qI=(l`wnu(eInSL!SM46G~drq-|F4$_*fOt zId+*YioLTdR3S9ZH7tU?dKR)5J<)urh#;ETIi2xaL+h+~*+-G?rRcc{$i5nH5~n^r zjuo7}ZrpmD^N^^fmEhJ{cuH4@Gd+dJW$p3`c>D+SUK;MHt?23+q`n`~p5a*FYRICv z>F2{7#-Z^F;OYNIjAk!7ye(EG9a8r|&bwAaI@T8f1iQukk+%|g`*`0UqjrNXx1lJ-#Qy9^4$8e)FA>0p$ z1tQj49yt3MW^ta|h|Sz_ZXs%IX6-Ca2t&}M1MwKAa$+)n+t~6LqD*7aZ|kr@c8f97 zS5(&P%peJzdYyPiRxCyf^rx8-gBW=lGg!tBZ{WPX6|M3nv+$nUyYg5mmWSDAh8hKt z&#T;Ue#~B)rLc~;`3$&V2vXFA^J5bis7H%)e|JE)w z40L#j?~h=Q%u@7LVGTQJgiXBYEbMU!W>A~a2SV#N*@>B~)EbldXoF4Y*8!X;ytT91 zp#`z@ylC1hjBRG+O3pTmdEe=b@G6w9$NGD5FWaB5+>IWLyNo-UPtc3|S@$1UnkV3> z(#UaRxY4}l*PyLEALYAV>_%t!vtQsvk+`3Q2ea{EjYM+REMD~P@O;Q#io|P%ib#)r z@H&Q|4ZK0}zHlg(=p8Jxx#c^taS2#&HpVW+daDI`cSW-Mhn*Egv@ep;4XxIlM^w$U z?6EnZS2;`B`^hZwIouRkqbBOuOjbRKvCXpF!U((A4Kdw!FqU;nsly$gH?@Vit$7*m zyb1f*dD1j+c9yD2fJvm-5K(5$_XYrAP$FR&b)vl^ZAKF@l-dJ8J| zWwnmm6z%pDdgcbVEob15!|a+kTk5%%`0(`@u_zWxEO7C5YVuui-NsL zwRs(`8o}!9Mj#4r2hK9B;j0elJ}V~dQ}7xqx4VQDVj>2M@|6zxCZASi#Cf9Eg6ihm+|=qR#z zmfVCZx3fUZOn(?Z`3dG_G_NBx=?P!-Wb6Tf|9TRsZp=)JqnRH;%B~Q1H)^mmLz0W8KHRwXqJI@d4%5<0rhcy|51K+f5^_V$BFpX;#6N`Z_UKE%E5gWmDIYb zGf?XU>;DT2lLD!;0^mPn=U(0=Gjbpz`h%>>PDqboN1oz)*%`j&Szqe-OgbBvu5%DF~6p_ncA7_@u@Etrfb;|=EU8_&;SKH|H7$H!^@R$PAH z-#+!}`8#i?t%}RZJ3PdU;%qXZ$#3%aO57pFy}-Wx&2xd3o#XqLc$dVyhqF~1iEkTg zPX6Qd@8RPNt3L$~*z58%A1C-rs}%e_|JF<(yDmEad}!1X>{SJLz8tUf@{`8{y>Ief zzu<|A->l^pzjhMRrA=4L&3T`SommR^E#&03ideGfv9oN#Xg^m!Yej>yz7q|ORh zyLfltJ00M*Vc3^3NSrrfTK>U7CimVzl<6Eb=op+vryj3S|l7&;$O{y_}3vr`E zoE?tgJ72x^5a){0oaB0=c{Z}zYhkbRAZ@LA&pG%JUlKDq8zSL9;L#-vk*h~Jzy5s{^w?x{x-f+ErMK3{ry^6K)c5k$*{iE;4cfH9e;R>fFQCN=S#omwKoDq*we1aG8 zDW>ojcK7mrt`v5%ADU$+BPSs`pPzGjG0y3=iHbHMa#x5LP6{H{SBWTn%I^)t9+ZX~ zlaqyE7W)irS2wJ7O|?HdsT1{WmC( z6|LI_%D#nmwXf3okm)AYnHZ7@h|}9u_FGmzk$q_bwTiNDY4Gem#)416iyDcB>4$zZ zUR{N=*^`{vGvPy(#-FJUz3XCq`eOIAcj9;&Ez5*QWKKeJG=A)#J%ab2hITXiaCWdf z^U!v&8n6ev&<5S$(*!GA1ldf6PxuowJctCEec2C9+W;z5=cyKKT~)qrg?BX;&9{oP z?q0b4kC5?In33C|Z+b%cfmpgpoFitS)9iI<&9!K$PoRU6!d-Ss+5lJ2fQ!e$(Np2# zjc9M{w3K_%VeMX(4OuV8Up|9eq-TD)cwHUI&4I*Q72=uQe2%P8F9*Mq4rw;`tSUOR z6+G}l@L8S=S}YyXVV#(j6Ca~bMPcrU4e7^PVh`I5tmiAV$3Ni=ZuMtbILY1)#nBgb z;(ZCP*A6+3od`LJUEK6PZw5cs{zgxP+2ldOiz4UNQQ4vUM<}`h8)1c(e&X9fis!>? zR)w6xN}PrAX6xE3GZE`b2{$H&R`yW%2OVvt!98fxe^_-=M$Q1gn0fmsW2i+65+{C& z=SfC<3W^m9I<6w$*IzHl+|3#3%l>p^$Lp~gHDC$mn4R~zjK#OE#=7JoSk-oTZ8hNj zvdCXie4J|Vc=Ras?6kOgTdUE~)+*Q)!TJQV|C2J0ve?mH=oaI)+mQ1McO~W|nH=u7 ztFkvmzu|vu!SWAeCWTmw*}`AqLr%nxFxS2;QdJZW#~#l1w0ww2NwF{&J)h!8{L9Rz z16FV*v)1aGcbJV6X(u$BSJJVcNsU|#c6Xc($RyFYe4_}aCKtVz6b3!6G<3=Ut^5+ zVb0HgaZ2zA$I*$VzgJG zzhJ@Evm;|bZ_c{iHkPk7ZjqDsiPsNLPz(Q)XQ<(%9^8}Q?UaCR93_cep-Dk76P z_?vqJ=Ei5(H?hgB1oiY{rt@TYYZ4kk`)}Qt-Q4W6vk$9$Eb!V%c~=IQLM>X!`hC( zPxh|81YgG<9~U`&D0}xJ?SJ#L3vl~Y^zL2gOueXUye72C*UGAv{$a){i)51^!SYN?L2Zl)U=ikmdDETNpPP1ICjDDr_eilu_Yl~MdMv0dS?Xd4D#q{>kH(-o{~NBu?oW*36Z>0=)Cvf`!{%J zF`XMh?TXB!A!}{U8NP1Ng!b{Z{=GZDH4kmK0lxT}o&THDRbl98hn#lU*-@;1EfTjI zE$|)dHxKA5BKXE}7O?&i!M`g8#glTb_yLN4%Ieo~j-GKN5E6zf8|=4r7MJ?C|XGDFY_bKuVP@aUJw$dAa| zT||wZfchoSD5ZF}oV+f`e9FUHc2KOrM=f4ehdQnBLE6Eac7G`m##QnXzys&tfuqRW zUaay)bnp_W;qw;b&EjJ&uNSgItN5u_<~YA=Y~d&zdkL#-O|xeTX;F~(u7Q8uA4=<6 zk7h@PvF;AYT}?)|JBHX8p2gDecUO_1KapKePRHOU`%cAEq^BQW8%!O z2|Q!j;gNiv0*{*qI~txC9?rN%5Uqka2+#b6rm<^4dEQrz-;&k!4(lDsXGb26EOcg{ zjVBJ^XYE7e$eie>(Yq-)J6QpK3VkE`h_&lc0*v3-r}y>X{n{IECN^OWRM-j4e}q!{ zJ@>MT#H`{f^ALe7V#~IKzwDts9G`Ou{JxLp3u1O_@dP~M^kJ4Q*?}x*8oSXff}fPQ zMnrD1<6R`>Ml>NYYBOINVA-wM9nJ3B!`zzbqe08s-HC(Lfp?#R+|9${ z88tQEUZkB3XrXt|Mb@(nh8p$Il8-X_8BVmjIazICPZvRHF(CTE_2bb2_AwvM*P>8# z!82`x4lwJtH{TTnVmF#z&2I1dTF`YYV~TgP4>>=K#EUQX9j`wjaygYuMnNgRuW|`JE5Z&qvt#BDId9kurgSLI2Ra?8KuC0rvRkPZcK`I+bngMmJ*t8<|c-Zf|;Mr7gUNU@b zyK|*sE}7sY@d51rRuYTS5-GP+vl4IQv>SX8&mV>0`tNsD5}JdCQ|?}6754)AGfo&c05as4Sd(PKBH3i0QbGk;MWKMX+nIa#h)p{OnK` zWF!MN_8xXxTs3bBK4hs1Lavo4Z29L?k%!6l^r5je&; zW)GxlGIZU_4E8eKyHMF$eX-`&pm~E#8ze}TM zilgBQ6G?dnAEzWEc0|{YK=Y2nCWtM!AGx@Qcafa=i!zgvxIre?R1t2jh41EFNp~nc z3Qy;4=I{}BQ`^}SF}z>L^3}t;DFl~35Msw)A<0Y8b-w>J{bzOyn| zcx|C~dI#XXUy-@feEbFPixXjArm9GLZ?ufqcC)c8^RRBS@Uy1E@f{d9p7lk;@!x+) z{8_ZvPG;~C)c-vAde#e1!`6s$HUW;Gj@LCecwTmmor--B`A&^*|8Tnk8ch%@p&sk* zf~M((ClxWpo(tNqB$8c;U4IUFEQl9W012rMt>lCvoXCBiKnLDWgjf8U{pcBEFP-50 z4m>Tfa;^Bk2NE!u@y)ipgk^u2H5U%=Deji2HPzTzdo|WYw=`rQ8ldGnG9P<*cgGqu zLG!odCohMQ#rAsu+4~+I_!!EHY&8+-Ylp3CfZX{}pRand8}`MXjb&KGK6rZ}x|TKS zqK(}OC##I;8!_bjv&UmOXG|n!sjvMh_Wl#3ei^$l4hhxcssRP;)o}y;^*Qe+p59D& zY&bhV3fU6bU;uJHjIYM{uu}qJ4q9+4<`&-d`jIN3|nRS14WsIWLM7m~l}CO<0RP zhn>k zE7KAu`xy$@A7m6GzXH9>5W#qi$U;)`0>lZ(g;cg+5A<*rL-~u?w;bqoJN7nZ)g!qZ z_s(n~9>#l&XU@Y6cz$}|d$R_H^LTsHiJkXMn;U)=qvaYjSj)clMAueD($zOvd7k2Q z_au5RH`>=o=1?R--2Scn{)G@xe2f*8fYTZv@70)xxIf+5TWyQC)3fmRX21pFlf22J z=IISjmW0#OBYoo3?1%dA!|C2gi)G>MoLDy_cr}QxC-eO`dAvVb!`ONN+WUR*>lGqd z$%EwOgYRpi|2$K?fu6Gu+ctK4C6Ygt@rOX6Hb|Ql^k!KbwYN*u4&KQQzMiM&!2|Y@ z6Ls!=tjZc}?keny7;oMnEQ8yuZJxzf?}WeIgP;F5+BXBdR1}(u_Su1v`e5+}K#7j{ zRxO~4*8O=NE5<7#|9PQ&HvFPo=>H7(OaDO6-=KxvOus-6>GiH>tI?@z3mXXO6}baFE_a2{@rJtILn}E5cW07%gf6M;7LY{Y}oZ@Py3i3;@~tFaeh zEjYXjx<-vN37fN;$Bd^5=-<)ssr7BOg0CyW>kU@(6+5f+%Y|*xHC@nh=4r%?l~-UE;8zXC_SaovF zw0{QK-%iBLYJCxHM=)kz)<29_gPBJyBwlpiQk?F+xvq>w?t*S`2AdiEUp&1$LE~HH zw3PAe2X2R~L*bNRUGY0uJ28}dKog_;WzqZIrWsfBJ}{o}wle+{*4qVIH^RP`L+98B zurMBf8OBxqM#G0I;kz%eclV&}3bE?CaCNVc6|*kfkNbHuA7-Vv?inFVrZYTP72d1L zUz9=a(-TuMrXyC$JJ7saI9-&+-si*G7iPs}@I0y$U1`eCL{PO;$07JGqM4@0JJo&_ zW9?PZrplc+B<W%&Z^9*SP@gKVxj8`@`_+Ix;7E@w0O%2dCGEx^2*^Y9hI>FMKwV&uy{B zmC-kOp;t<5{hvszF^o@;@@+xVHpBPJk+nrg`v-9NHcr~&I~qaR!Eb(prrE{nKj*i< z!awtD`v;omGF654(-uj(4qVlo4^LBK_?U503i)A^K+n+RuoN@)ofYvN4W(Dq60XoCR5FUU)JW zbjry4XM);hHx%Z(S@F`+G9Quj#OQkrc};;f^hWs~?AUeIwinGO+S*Js-2z5j!4BDV za|T*?IW&+Od(i@i;f1qs!+BEix=SkO~&rpdsV!-yig_sKHm{E{SsCdqbZ{qcObr|s5EAC zo1bS?p(R?NJ6b{8Hyz5Xg-5(Yz6&ZA!Q1dW-3X6r7;9XN=f4(tx0mw!;p|~Pls&oz zA%B(l{haJcN+kaxySyLn+Kk?rhkOkSTF*G9k2$Et@i$7KbE>0*hp_+Nw;jhu{DZ#B z1HW~Ko<_Yn$ennw#;zZS)BiC^ z6TMq3+1J^7z1a20|4L@{Ih3(8_jR6Y>~E5Ao^fQ63d|Hv8SX1mFdNY|MJ; z0Gw)WiE)aA$Y~;e$Ggs3A;R|{KaroVGm02vC;2S;neXU{JfhP4hnFB~fcYEAdEZBw zYZg|Mk#|kacarlC5koUMBmNU+bOH$%_wWF`{wez*iqSdzd}DHZ&;WLIzXY9(E{aj* z+5cxwU}Aj4dtGUg3tLwm`KZT7HGH4S$X|8#$z0fHgYRLKC<#%{b3q%*%_Iu1n!UGaSWt6?<$qoN7<` zZ;^Mc-lbq2v^A;OIWx4(g(=0@+TPkoLu*#q0jcvuS061`kCE#@<-F{;5nylTene+| z1trC(@nky{?q3jm+U1OEZp=cyFV5{6=I8zXXJ}YasV=au%D#QS||rD@1m2;5c394 zopTjF7e!vAjy%w^6z?xipFVX>cJ*bx63M<1v?zd0)7oWV)k>zkt)z&(`U`Wo7~+bj znT6R{#t_A6dY@561^k$=#p~L`49#cK!rsgL)5FK2&K82^Vpe-Y(hxnQPRkK|AZ@OQ z;pSb4;%Wwya%+xQawJ?d>(j`OT3356-mKYRpYTd_VX-$wy*ti|#lQ8YR7}Ens`NI% zTrh2%*f}NnT6FS9c=tQFzK`&=Ice$$CDKeRbFR)a?)R)l-5_GH^;P?LrJfL#@Dz{P zTHeoI4<5z+fnsK8+y}=##=BZ8a*fBceG2BJd_R8sk+4Y90vxM9BnG*dyyi-XV|xj1NXhR$ z!pzd~DhbbhP+Tlqwfr@#yw1AKBZ;@zzKhvu=7Yx@?T9feGI~PZO;pRrSjAJ&A}bs#oig&j z{m1k0DiyyY4ra1IBjw^8qn%)nL|~RSS6Jf(zW*m{NrVOP7ROt2v+LZI1YtMiDLX8k4PlrQb|)4bghEm@5CcsGBI_m|ce`EV?C`Z?xx z6p1|uZ<;&c+}u<5(Owb{-{u0}KNIUU&RmGc(~X>vA&mSOKYf6C%axuJZ}41UTs=oK z5Je|GjdtA^WKYapwVo)R-$NU-WxUf!51)z5pk$ldR1jTI2ua9|-hYzOrL)w2l%K~t zFUPvdNPn`9lf0+zWDbCtg1eA7k-MXpAu8$@w|$O7jH|8_1w1)adx&)v!{gC*d3t&Y zty34BTNBMwov%b@%ENw}`>FMmhs6K1SAy1MFXM=b_Z6>1M*0ZtrhfYn=@<3-06YKJ zZB3Jw`4?a;kye|a%e7yxqFK#&HS^WTotYUGgI6WSe#}7j9Oq5z9#*A3v%mC0G^+SW z!+BoE-x(dADIspLk>B#h#O`yq$mSQd`WbA6-R!HeI>&B@HEG2nN`!gWU$NpH(9+xJ#f)sEc4Rm| zj0|xqQC`J_^e+A=JRL`u&UtvhO85%(!)n{G;wIQ^@olYEFn|9kxHmPDq(@}u?%il^ z@vF34^Ppy5{8cln+j9HZjT6IQeE8vvJ{5bmj@|wN`k2dXY$y-@P8D{p9_Jsks)w@H z(X4S2XXDvKL*K-E7L|T#Sh<~NIx`dJQ4CFz0*)Th1Xse zZ@nYu6{GX}~&LQy$c!$Jj zCHo!~V?Fg)Rl{JhJHyXI!x`P%aQEJ40G_=ow_cx0%v!dKgVFlaaFbbr zJ|cFD{y3ZX&4ds;oC@!W7QPN&XAQq0s%-2@pvR~$k((8khaRQSBl-T{BeJ~b;)nS? z@vqGTw+n)I@#4yBE&f7li7mf}Ju&Y{JbPn??*@-%IqNse{nMaj#9I4~*&3hbE#Riq zy!+G0c`+WNboSsd^TJbeM|MP6x2D3Jte6qfjGuX?ajs@^8>^QVzhXJW9Q}m7QLn6G z#r7sx!(6ro9b-s9 zh7rxQPKrG-Km9NM{xrM03tv)C-B{^HcvGFSgYgcAQBE?RneJDEmG@>OCsJTum(j`c z@PJuo?fKj?NL?3J-8V#tdf-X6MHbbuFCnAlp;Bh_s#;FJ?Nin!#^PjTeN^B@;|1PI ziCJworuAq9GZBnXoI&dEX9Y!&zzS$_W3Zygn(J>pnGuQFP&a0s8H=~;l6_e0b+G|j zz6H1UB`W7Fcx`U{s&YQIR?hqI+T4zMAKr%(x;dWa;e7{<9>5~WVHH^CAfgZN5QE%B zcC!^F_8GIsTym;}?@Dly+ljrzC^v8~IEM&g7x>=j+&#$M8TM{78g&wyr4P40%@{BC z^iE5Dwe`7=5u49LCdPBb3#v1}ZbT?Hq7_fVZ}tu^j3o6zqs}8L@dpg)+gRzrfj_LBqMw)Sf$bt$u>B%q#zkTyp!>pC!}M+T;w3 zUYr<3tg3PBui1C|oS9i1^SY;mER+3Ue4ODH=1=M(6SDd=)MqCP*{zqE(^+O>hfgc| z2Eh|m;gWPj#g4*JR-^YIE~vIM$F?YAdM}Zi*H#0YYu5wqYY*j3_}AZJ8Lo!dm|T|! zPu<(NuIzS?pn1olYZox5`9bH7NB{MO4;r%i+*rb7_$l5%i&eOc_k0ZvS0zMXD=}U% zXq}h4-#qMtwOVc27b8_~!6)0{{GZSdRxM;iit=J%sxxw5bes1d6NyXBCsMPSxR705 z7VuSk%rYO&KDA@FUVz(+@R*yB8q4Ec>|bHU-20rDX2JK9*<~|ereg2RKr%KbhQD_s zyZBviF+Lrd=g8$i{r*p-3kmsVI)tCun{(^Sa682uOdn*)sD*nUwR_>P^=JS*;p^X(6DjZ=Bl_LYOZi+ygUu~usoWB$uB zz7l2lb*N*99d9BEuwpwd{f+lz1oTVZQ|%h9yKz9R`MTR9JN5_sY&#mk`YF%m#wTLk zNhBWX3)d%doJqn^$*sw>dIZ4<4(- zXZfrz8fPLDe-lZ62VOgYoZY~yNPtUo!~BURtLb@){@x! zY)Xh-4ME@aVL!BZcJMa8+0)hq)?!t`I!4il8%jL94^hb;Slj{Vg0UfPCBF2RoayXa zBA#nzc-<_UGOV}?@7J8st!yzCZHFs8R-c-1Wm&Ybv7eM^^(5Hm8_?WSvGG-FGGj(t ze@1MBpHUNCSCywqsM4(pJz6uHfpET=hO5}6Q_$U$nOe_Ut)?a~Xw2)OQZqkNUz7JW&vQE3ZwceA=Kgg(uV%0Z=3UwSM`Xdw$bk1> zMhL%vtIVpM$lCgcn;7#-U*_JmEPAjQw?Gx3LXE%=jc-f;RBVno_GbCo^(;NKEeX%H zfVU?R5fz<%51Hm?$aB4M*WGjvzl9F`i>&_d$vyp)IPqe9zk%>TIebpDO@F+t_eZnl z7Tn9!M9+yrSAjbr$FIqrwBcui;EkE^$SP*Ni`na4r-GxiqCHBn)2-pV!RQ`4?ad5X z5ObmVTkOhg_|GV<`4`2|1o1xR7;7-=X99fQl07elw#y&tce0>wGhzj@aXVz~e={u2 zV5syKGPw=u`;(Y-MD{h~rx`pw3OZY-y&B77uaKSO81CUdd?y^>z0?{w!)|CJ(8|q_ z#o|b-{eqHkN<9-KaWylshHwn)w8o+hkGR<}2f-?o73ia#SgT+03R5ES_G5{d>E?O$ zA`wBYV8kg))$jCuLD1DZ>?_%$)$X$$A|3(%n(0~OGc$6ZFnAYV2cLdE@)Il3+YSKMrlfRJ)?S0%d6Ajs#;=Wewf2WH_F`0S2NrBmu&g384CNN00~*eX-PUk=eKder z@@>&IgTnbv-M-fZHnd-E8ku$^SOBv$Jov^?;r^a;DMRQg;~Ch z!)_D{S~v;%&OBppgEpXjX0qy$_>-?8g}u)}m?8wZ3Fg{bY%1ux?P`0YIQP9JYg@UN}n zYR!n1(evWn6})`|UJkAMaa9P;BSXy?U^{}y?&mSYinJCQMlqgP+!85rUT>i7BhBz7_UEcln# z@ve-WzEsV)Y#3H5H;D2+;72Z%m`Ml zE1WIXLw#2I5|5{vdhkL^t7fBWLFTYsqOJ)#q2s(J%<%eLF*1>y@SFt7#f&eH8n5tbwnSJ9v55&@tzbo1N^rbu)d? z?QP(%%5b~g1oQCO{>{(A0TrNuk&RwZXb!uxn;Bfdx6r39gr2Pr-PJNy#B1eN;@7W$ z>lU->`PkSQ?1P;mjAwKU{*9HGCDC_wbM&^(PIy++%nWytqJXqV-?V_&8nG8zo*sC5 z)3AZ>vGc}qE)z*I&!qx!BoPAaSTH;27)KW&VJ)`iUHH$t_TlJ#^XtrWwjW;xbpCIw zUNjUtAx%V^wP3Hyv)Y2JUex%svt z7<*gVKO>L+6!~=*I8k2a^EonK%yhMn@^p6NReWyy8Aq=FgIQ>E&99%#KImt)gx~7m z*VN#{YTcGR-nwgdX2Azrk@_RZ?7#TAxv*n;m_yKVZ$kTx_!L(1iP&s^nvKD`Q0`vC z9@jxb7K7^^(%%#L64I8R2NOuT-Aj5m8@ynsY>W)Ji(?U{0# zlT8}p14Y?Mb1CgwFpr%#&rf~#1cKR4H}9lTlv+hfJ_O*Du1&{mI4 zhtJJ=F~>msmu6wtU9U6Dhz?P_FC zgodlwS!?Bsvx{}`YkLs4Gt)5oIIGy_b@1Q9VCkm^-t#Q$s*R1Cb(4VX;&brNSDb3h zvouQl29!0|%=&FHGtBL@S3vaZwi8|R9BbcJtEURG>)!i!ylrRZAZan5d=nnFb@65y z4umhnA1Z=|OoL~oz7uU`8!{Yk{zpLH9!S33V{0P&<;im@3oV`xF&(SL#og(S1|E%G zvTl1D*6tkVdU39b;zzVXvkqtVZzFMH-Ry+d_mcCaZ~GxLS;EfGfHz-wOMsRB1aj?Cr=ytVI>I}rs8+o zGon0l-yANne$YMzc4WGOy?q>;Qx(bY5!OGC^?v}ze@%A%88U3`9&(i0*#pSIC(LCD zoY|j9UR^X+KKSQeGQJM8|7(!IQ9=8*g751wR^>qbYVckYIMXV&{_x+TaH_GI$qeTw zk>k49P`j0z@3J1B;uC0o0A2GP)E7s5b~sm$gzjyTl)^|{I<&2}-hL&^&?IA^d0XWA z1$>)lkn{9l5+ngZ*GQW3pOJG;PB@|o^BaQ%tYN;#@HHMr>sLYRc1PpSfY)Nbf-hP7 zAwH~}+y*V|X0Qm(F!!bv)PIS+e}Z%u`^_AxvbIo}!`tHj5lQI$I})7N8j-eNq@6{Fabe#oZz2G2k(>u4^sb9Un~ zq9I0ueVEE)?eY^l%fUMHqvKyd6Vyffw&3R@*%^I}51GN&=!~2Aw)T!Tj#7p>cz4ko z85sQ^C`5Cj)v;%|UVY5#9mNh$VYP1s|7HW$ z#fs(QXxU$|bP17OZ`}*C>(67uJz4cZ>x_c8wX746F1yrQC8_cTw zPjjyHv&^gZOk*vLcPM>WeM>wJvl3op&x~ed;qQ~(_Vm6(n(giVE;P29Oe}{nNP@ZU z-qD#=A8YvZugz?Zm0U%TAM={+f)(@WXW(JXf#!BG9?fIrWM5>XIdq6Ib8oNAw)z#F z>zRHL;|;}%JzUErRx!=mAgm8_>!2zec^wrR?RT$ z&)$sSyW`-8#qj?Ye*0k1{r{2SuHG|$xl{1Brr=-c-P@(=z``UOj%d z5c<{|=ilI{ZS23^UT^eXtRpJHs-FqD?N;|f zxIYteb9b<{cBAraHxJ)!I2xuctE%{29TuXKoJW z;Jt}m!<)0N_Uyk^EfEDwSHk(~^lrQiiM0@&(^R4mR zkC~S>HcGpB4?gGNcC&5FQ!{%0G_qr^&x`1M?<<=lfAvE|wLLTFfQ>hYtQ@~llHbdY z%-@TbV{Y9yyt6W9*6J*HO$i%^wT<0#y)UwQbS^(##It~B8PV)b%xe#GH3#Q3r^}1C zZLS$Ng^*+`YU}`Q-cfTtH(@^Y;7M<%t?aA7sZInFvjnrV3!sk4N_`fes%c^GBGA zoe6I-7rl-GynEb+d!0vrM=Z8jTVrRywMf5So_Xz7(})(;9PTi-k^`D~pK=2p5>-o7Dtk(M6TO`G zH?}vO&(@RJlQL$QOY;~@e2jG$fSX=m-Nx`c^6uUUTeWJ>?9RwxE56?d9uR}B08vkS zI>~Q#T0aUueZ*+d%NUHm6VH}LF=JJQb)&{HwKl6c*;pTc0`4>4$R6+M(DqrO<+JRg zk-eBxX*FNn!1Ilf!-l-}1|{a57i87m5S!ifFC1^D^J8%J0l4W?xZEsu^UmysdmQT8 zwfbhbp|iu3)xiaj;-YYT8SG|xQ|7UO$5-Db0H~fakrlH%DLqQa=yTKKMhxi3u0v9dq$PsVgT8P zR{TZRECQnyP39-*ch7<*@3Z53_-zr%teVaoY))x*u^RMjh>bH7Dq1>a-R_6x**_OX z%>u16@|Y!K^-9cfKf!9g=3RHP-&=V;43Bos?#|ocN09j=Ie}MrOI6zc+0#=b-OlQ#LA;^ z+Ht6Uh;<(b@e1>IMIrN6I4P@3&-z3_u+}dJ|4TRD-&g67db3}BlCdW1Z?5u~wy!uQnl?@h*1Kc|}brb>oWSOz&fysO8LaH5Xgzxf^Ca zTPb0dcPf5zKO_CiyPLr(N{saoX04gYpx33}b;sx0!)_f6j}}1Ah&}4fG*1$2V0uQ8 zE0r(T^(6miL&EJxnC|w75!*T;qncNHDeTqHyxVCWecCg;mY!$$S{_u+V`auAC?Eos zwH#*WX5^jCoz)6jA^rjy&zpL)!s30s^8Oq@&5x$h639C#!isM~y_mr)_U0MZY>u}` zV0(E!M*=tVY(px(;A`>0{Qn!I&~=MxYM%8CX5;F${~~;vWost$6Jbwd{#)E{rOzC5 z@lAhaJ#vW%8F9^b{*SBwiJzON95E@9zzt@4o5`E$Hbt|umWWPK3aei+__G!G96en9 zjoQJ_wOT|Bq+I-dHt6*LbGX4A{$KkyAsnYKzntP%5dMZLDe>7nqwgZxx9kaO_Y?~JZYs!e>S`&ivW z&`isbi(S%pD8ar}VGRw?+fA{XEwN+PYP99Ed2iK%#~AZ)%$dKy4B{>5CTzz#?Bvp5 zKlGQU;ms_=R;@*MZ$Z0y6KrPT&&gsYW~3& z{MFCU*lKL=WX0#Mz?gNyxlQXWf_qQA*)E(D`h_#BH$y%6ekZ(Ky;`f)JmnPS?^7`w zE0O+&&LUoUPbYG zncSTPnYN3e7zb}HQG_?jvzf|AM`X{liUJ9#|ibVo7jl-D{?}@-! zTGODs{K5Ml=l!ie(Ne0b#R^paTbrRZ@YUVCR+~G+|FG4u4ni4w09uHvo*N0%UvMug z@Y(;ZE-S~+tf#j|!^)p?aF2QMcCC&2e+Rp!P52aU@yxjoN_`E*jL=y9w3gG_`*4%| z6!Xi}B;P_8W8lU`^h=G()kcOp-sa}lISYCwolKNw2GO9|ydHq(sJCV=v+gQ>b09lowiYwXloEX zt=C4<_0q-q>V|ZgVO2Stri_?mL%&;>Wt8RzR=*R@UIkCjLY72cFz3YliYtccU!exiyl&ko08K6pGbdB|B-jEC-E;)@j;VeGCK}^sZ;J0{YaEkB3 z+-gCS3P@lvW}G(ouVP6bgMam#*E5%?#0SJ$vophB;$>Fgj^TTbzYNN`OWXPFW6(xE zwle2F*7XFOVQ&A6;lo-AZ%cciee5|det0)L>h^fIHQ=8ZJGut1pG4bxGwj_&Cr-=W z$J#TxI=L`4i4b>Zd`B0BVm)g=0_{Zhlj=_geP^`F-T<${73~?Lcc8*JBBp)#sykns zk7RDQ*+0)gFKt@SIvqH2D?qgEX+_cqJ5Hz`Ex#_F6QO^c28o_oDDZ%_uy(_+);kxzOlBx8vW(Jy1< zn>Dz`67?It;%DMc=-K?r$Vs5K)nDdwS0^TB)=^tl+9T-sn0;W+^vcYuAS+GA*w^7# zE4j|{uA+Cw9PQ|J%Hy%_%lfwj!4td!mBsmuRdLstv*TNfd=GSckdFtTpw-{j9a;A- zriOl-kx0Ep&kBE`ZBD`|$B?CO@eVdY(FL4^SHneXLtI9g^Tt(_G2;~R{^g%w&y@N6 ztkP4sI>!w1)^L@%y5{g}QA&k#kyREVg=S}THMJW2j;6Mj&CGeLR-~rqmKde7?o%wC zSVd!Hkd@xvgXkqji<*h|6tU4gHYW2DpN#?<6>ZE{#e=_5oVk?Zw?vn4WTO)z$r*!4 z03Ad}MMIX{Wm3s$FDL1~Q0uIZlH@&)Z*G3;+O zD8o>1!s&sF><`L8UqwvIsW&5q()b^U#9&QDO;)6-!nE=}~`zTgyR z$a@<P5sDrq~0_^NxKMN}+?wFq3kOC!(M-Z_KnTuRJHIeIDVjy?NC0GM_l!Jig7E-(XioxHF@?6Q2A) zID86R;H}6qcySMVZI!!7(fT>AxH`Mp3hp+OPHb4SOWVO!W*B)B@e*r~*_GDtKFKaU zhGvc$$2f+)ChT`{igkX@K3GL(wUWM%9clD^JV|)>93wbZ6a0jpNXjfkRw%~0D>If^ zp5h7i;n9+|4?`#hQvl@UvZVtZ8u%S}=xpg8iYuEbcs#I16aQ) zo~Tt8c8AG|*1g4!8lO01=!BM01=hxacLq^=NqY!u4aeP(_y9TdNT?ugMX zBPFqd-RQqn+n0jxa~zFkP4bV7@GHCHy~s(p;{qO~F-HHX1)?__k-dtrpH_ENfeY0% z`g+kP5ydStGMAk5yA}VgbT53goc%QK!OB$6%Ds{JSJCT(v2dgDE6pX|#Cp{}-!U_5 z06jmHK$0r6yH*d34!mWShnd80hMk^>JsXY;#H@1fphS8|Kp(?HaG7<$%i$qW`g&qn zV#Y;XZr?iaRexsU*?l6Ti(_R3<192WpVkT%Gnu{X*H7PE2ASGet~LM~rXavVgqiCGUt$T+f>-yrBP9lNuh zd7NXVIr}X#jkb_wu$mdz^=>0s4|dUcJY5wXu&nmNqD zc}!tc5#z0v9f=-te7l*7^HUryHTU5YeiP*!tifJ|%pR!+w+O>!3 zYJeV4U6iGJ0!b#KMx=F0j?n~lDu12?t^P(639y2_{6Z=veL-tc6b>fy< z5p7S|W_TI>0?obam+B&=iw!Ui`nO=G?Ku|X!D-2Dbo9-PyBb-xD@p6H&vp@vl^boK zftpVY!CA~C;@eoixEq~pjE&KraTNHB3X9it7E}ST;qy0)k3p?%H;N7-B0c)80p>^w# z>z9wb?hOB>4B4F-c>N5yPWj38Ef0l;up8^yGwUbM!SmuL)xm~}*E@mL&t>%Y$m!Zm z-SU1u??C21Me=v^y%o%10(6QQKn>Wt3|OpR;3%_iR6Sl4GvflW>0n_{u7t5%Bsfw62-1 z>fH~>>|e&J&AFM*&jxeOs(=*6d&!$f@gBVQaY4po9hZ3BckEtS#&67OMOGXJ?=3`L zzJcc6K&3*G^D=U6xVk4+)jH{3@Ib`kupib~)@qL9064QBeAf;QqfoX8_5u{S|qQc$g3GA_60GYegnI1T;7f>_VBi5wPx^Yn?dtNc(=~Oii(Lr18hb& z?}h5uu=!6SLHhMg8UI!2Dt55eWjS27jAscuZY_&e#;jg5Y|YNFFN(Pa-@-rUH@t(r zS%g&ElV?1Sr>uUgyBFhXVWV%W=C|*xw$@Yi-ysjis*)jrs@S8b)Rj~Ax;PJYb9pY0x1~I9+~C4hxPvn{h#E0szQA$sYXNP#ZdhNM%K?Uv-J}wumSCBH_|uI zdh%gyB*v4rde7R$J*+3zjt@b)t?Fouma`+zbNE?S(Y?&*c83vna3=e;8+~z={MKCT zWo<0$0OZVimUp4_j!-|hgE?&C>)5+`96F&Vv#bTbX2j~=!?{w87c=VRHsd(2u=~~! z)nW9?aDaKeEunf>^v+;-atl{$Fb_NlO@!+IL4=N7^DS{<|8) z{qxuy`=Z!=vlldYozdoE`DP&p*6xi&B8KB%8riAF?;BUK1JV(6t-0+}(X_9kW3AJy zMXbJZ(6e=+ej8@c6KW5~?=o_@4{CXyOTark9;hxNkI0>7*ooJyzhhpv+2sSEbsuOF zD|njY2O8tGch2MJtpCGH5INBM8!P7fGol*b=vfbVKxCj-(MPW{%eT>wYv7UnXq}s! zw6a3S68L#WEk$NFW;uz`t?ALLoeka1?H|WX#A~R=E>%SHQZdjV=xgBv_+bcPaRpu}?c#kv|RxgLfJ(dNtfR?5$1{};07Yv6#D zJWH6zbUu{$LD;*t$h=-!0jO|4a&H}MD13OW1?d??D6E!{BXpr7P5`gQoC|a}{q_ z?8cR>Y6LRZfjzhT;>&>xUSxDL-OKWS1GvNJhWA>rN6S7W|8J~ca;$egyh%~JyCPpw zz@Atekh|^7-~e(chPYLAbNJ~{{3B!SPZNo>hWZp-C@Rxz_Si09R&>}aC30d_UbhRB zAI-={k=Ju7IEc3V2kNK7=PpJ}sXq2pdut8ncy`{CwmIgjn2Qjs=M&@e}#jMr^T8o?cEf1-a0Pv+J`U~b7`kRlZ9}+ zIKAG;|H+!Aw&%*4NL?%RiS-PQJ09*D&$yHM7#cLYaXl-}vDDx_f>qkoH6B!1vM@QPT^ zp0CPaHOvU9g)S8{)4X1zs<8)_*4<8{;`UbO_r!F62A|aa;YWB!JKV+I4AY=-A9lAZ z+9q}Yv)i-yU)Ii=$1FyRUAXMN^-GAOTCJa-eHSPFPBy=h`N_$1cUSmx#gcL<&Mj`$Sw@y*Pw6zA@5qPd=M zjbc{|65kiT*VFaR+&f}5-!!-|`u6tTG}E{?`&I;*Pmbol2rr2Z@+t2tI=(vBtafV~ z#AbRPnJ zvsK{1h?g)5X_ec=Dt>$U;E zYhRF5+^U=N=q-u}73I(p?$^Ul3-4ry;+}2n z-8~4qY7N1NAb)!IR%=@?Y8{2BhMACgyJmljo!Ezt-G&A;Gr@`}eQRr{tQs|vI2zkG z7tQ(+KK*C-VRD*Xg^ehfaZ>_4A|lCaj3UxqKh`dnzY3SfK6fwjTX`APd>n77e`DM` zIU{zu^Gt0dLrl3lRU=D+2W{@W{b#(jw*SHXtkeo^ks^I!2QKeQti+G?8`f;t0iqx@ zc?3W1KD_w*Le$qgK~K;kp?}1)2}&EmvSPp*{CPYJnSs6iB08^lOR-~m0_YrXsh=eZ zCxVojIp%ANeQdTt$?)O5k(o%|#)@($D)ggh$Hbv(NUT_~H-E%4HwPdhESbIk|DP|h zVdn9h<>;NxStR>z)^2{RSvU3~%7(lcGtbRPh0$b{pou{*!^)Pyo-uG{^o2s>exzu95l%$keqY?84WF$2WS6D4Fn@9piheFg0m zVGfL0Lguxb)4q|Pnjc|2+b*bfBN7Yjan|Q;P!1?zA3VEq)PWK&GP?e!2+I1GWtoFL z4aD`dZaX=YxCUpL|8SN$9AZbr_*)1U+Ew#iIMBQhvlzTVjCcCp>sz%K>lyB09jRH9 z=&bo!pSCCF-I$vv8f9~4QW765KcmNB8Y8>**EB=Q>@7RMdP8LAu~_!o)z)t@X2FI!|BmT`5x9{p0eHLtQWFYLM%tExOe|C zmtGtSk%6VKS#fsZ$j3W-a@WmRJ&}cW7Mdk!F>rW#FV>5l)hKi zmSkMJaxKoCS<~Lmo9PyLtt7u={y~O7@kID95eZ$Z@;S5?e|y9Kjvl*?n}22g@IJJU zS(9dMtKk!(8{Fkb(VSKZ#7tlFAiWJV7bsHND7H8AX4;9LX^n>c)LyWfoMhj?%AAI&|^6Xe*8 zUag;%i{6Ug$u)fttzxB^Rf)!p%x?8Y+`DJ*-o1M^pVizXD^aiAUbA+>+*31N@}esW zz;)iZCBMzZ^0HMK3E-`WKJFP`PD#yYJFlCqZ$6Z->~3J!5r5lk)QH`m^tTW)QayG@8HEck2tR8 ze<$Fb%GL97GiN=c0^@hW+R5$NXDwq1D3P7Msa#PQAF< zV)Bc2F21f^BjO6Q zS5Kf3t;RA3E#_g^vBsRIi1S?-9@AQRGaWNyUPAV)TBwYMRo_34zAb~U6}ef&+6#<( z6z;l%xMi;w`@4BR+7lmAghM;bi2~y7^v7_h{;N33#*FUZjlGQ4G4sdjC{cih5<44< z_d1N%A`mpiw%0-~{P7Y9^jJAoqnEQCGeTy=Dgn zvF&E!RgPf>gLsDE&x-yukT{KZ!4cMTiaYfLe`{q!#C-PzArGM*gyHWIwW{haB@-?aLZZ2j=a^-YyY&Gj^Dh%!#({EA~UMChZ2lCF;NU^j5w~ z6?LoGNoLquNu*}A64s6}>7Y?c)@O!GTGkq?N^;}NS_u`aJnU%czMFSy?yL6BS_M0g z=s#QgZqAR@xn`Bx$?E@~Y2M~Mvj$FBk0sXEv8Si^(t6SMlvGD1f{Qa_dCa{P2#jgbp_*{w(P@`GqKJC4|IWC3zD75P@yhM;{WAcJPSd$Kgw zI^u>Kv$%sll#sP&VO?eeG(_7BB4+dk(ZD%KyqO4#`8=Np=|p5Oc6bxbwh;T28m%Kn zzS(ylU|;Q|ZC9yRh|RSM_rlGHSvKN{SZl8%k5F_O&wK z`#8KH=29kh(i(6pGCi>vGqRSzM>J(CV#SQ_%*f4%s(Ge)p5HIX?u+ATg{Il%dd%C< zHw)Qyv-ypLT8ld(JY!h1T^Az;!!9_*oHMPCH4RoED|JSU;?A3SW=4emrd?lZuq%36 zg|T>MU5dA2uL)&Q@5ySW@8AHvEN$FZtneG=~d|z=w-eiYs$3jdPP@}M16xq!RtweEGm;?*B4|yF=7!b#IwO|PqAZ37 zDC*q{jAVX-)tqObirrxB{bI$QxbRkvUFNyddqlr0)@a^fbZe;WqGgQ2{m2YwnT_ga zwV{?9a!cKpV-4$8XItuTp z#m|n}?yETih(7cklA^{I`$Lp|PmrSYdv^8As03KK*Xs5O$GUe>l`9ASD+D#HEZfVs z5qd4+;}0N?WoOZTcsj9`#OyCoCB2su2SQt7wylz<-u*aOdvjjiLkEeEuoNvbkB-2}y3dK!I^p1-#Xi-_LFiM^S(+t%CRv7gvn*1iy(W45ih2d-OR!AuoS62R7#TPl;)4WlnDE)Svvm*WlzGEeieHrX?V@^Pf*|-A-;cUAk#D22Yns}~X z!;Gxr`~dE-UxIadCz!4EJa+Yom9m~D>}9R)5f8)~3%mL0YpG|ow)y#~9)3Ju#(r0x zGj6dGt7EO-JI?Bkppjw(%iLqDq3v^}r)Bkp^>3axl|L&yQnL5vTu1&hZYJuC8c#_R z=|-HJoQ!K%GtYEZuY0OAQe_myUQ_!SBS!A*cxCLy>@aDdrQZx+T6^~mziSQapGcjR zqgGSh@%5B%CEUtjNA|V&AfD`>4J*&e%B^%s3ExK)jNj3$R+Xsr)jOW8?Ja3m`KP@0 zT)&qUe}}C9jK2K~9UE)ot`!9OyJzd1@JmFx zIm-L)LC=_5EbffGXv{FRwn+JN)!UeXcEL&{eKo7Ye?nfoDYE0B)ivh98jZ6O{AD66 z*7!8zu|rM7f6&t|2M1W^qn8tR`xj_`oSihbVa22LjqwF*AC2&s^Coh?-Fm#05l7fl zzW$z-vUU-#$e88;w!pqx&0(fnjFW3?jbFtc<>q~Wp5R$wX6|M z-?NSuM;r?AF~p?tOl$OB&;2s{XN8=d_3RsHElWg~iv8+WvGbm6jATX5I|b+IW9YU2 z%dVU0ZRg~4>}Jg9G{d|kdu+z1nV|O8uENL_0>_E6;^`#`e|dvY+`4oXV@z( zt@`!^JQdNz)UERUqTo&2#axtt5Ba>2N6jO~j!09YGH7Q-70n4f#eAuSmWjD2UGVZd zW9{u+Zr-surdl{_T0C=#=nFZkq`|@zfV+$!TgTEMv&tlUdOuZo6nKF+%6L{T4f@osCx3ssk%J zJ=;wTG-@qIL#x{!o>fI6$J>W0 z+FDP&<~!elf=axe)f)C(k8&34wt{dpYo3PQaTivyAI4ShVD^i9WA;Uhf0r`H>?_C{O*Bbl++-gRUsTD^Vnw-r1~*ze_h_*v=O!1wKmrcv*&fCsE4^0800(X3+1#ov2(38 zKKfSn`qINRqP8CT`(gE@*k9{;?3v?zv60MQk(;}qzTIjHvp(^p+cTaSaD#~@m~lUv zsKRTUH`+2EqY0jE%s3Ru;Q}lF0q@EF>3VgJ;Z3ACSE5_mea{|rchFtcf}+fQ2LIVx zS==|zk>;CLVs&<}bq2;1tX;K^vkQ8lMUXvneeFdj;!VaN{b|tjH(7YUCFXw-NY<|bSd#*Ll^#NA?81M5q zd~6;}iNO8d2-_P_j7xod<**5#>oUWV%+{Ow2idcPoTz_;iqhYn=^yjht=_6uZLF(x z*VX�nuxWI~Y$D)6!_7c_5zb@}hG}LfuGzYdOX7v^P>6bY3;~rYJKso)Y~GR81XZQm*8ekUJ9gikvdsP()De-SP(7i3TS zZY&``>o(44o_FlQm-c^WBHEHz{>FB!9gk8NwU2$F{D{aNW;z<_{2jhi;*4WwgqOst zvPY}^dyOm@+c7`FGhW0ztiu1Lg9Z{AM(jPi>sr137dvnmxp%$xkBG<&o~E@lYW;VS zc`LPzCzvG>Yv)A@@~jbKD&E@Ju|{4rzF^m6YZ#jbKi}I6{XK8YJ=aEmFLqMa!;$9d z9q<3`i=~gFucO6z7rK80cbGE~`~Mw-23Aj+b115wb&RFhWwX8Y?aeN13kPWT+ah`T z8g@3V09~>%OHWt!DABiz{(Zc~uy3;G+125^6YJ;4Ao-J!fj5v1b7YLI?1u(du)C>( zy|ZpJ=EYdCZWlg#n;Ors-)BQO(uj)DWMgY~RaWY}DZCEtMb|S&#(PWe4(6kAMS1n4 z6%piTA^FRpLi97e#k2=!TK3&|j;A?mc*S9o>(w?Qc34ZS>|0-8G~0U&F%_PMVrBq} zXlswGo$$Bl1jcjh&|~J~cs^S}Jp-$69Mh9kw7BNyh<{~Pg7*%dsznQkIA7Lqz6hoD zfUIgZ4@3+kBN{I;gMy6yFc$YtB<&EAv>l3CGas#+olSk*i4FYhb0j{>d-SeFq4RDr z-ixNef3p*)-Gao_GXtk0d*SF!g1$93#K?j-_m87^%*-5O-%n@ q3*=qBy|az7iooS-GY>`6^~UlKsAm" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\"\"\"\n", + "Hier wordt met matplotlib een grafiek van de samples getekend.\n", + "allereerst wordt er een figuur aangemaakt, daarna worden de waarden die zijn gegenereerd getekend op deze figuur.\n", + "Hierna worden de limits van de x en y assen gezet.\n", + "Daarna wordt de legenda aangemaakt, hierbij zijn de bolletjes een 0 en de kruisjes een 1.\n", + "Als laatst wordt de titel van de figuur aangemaakt.\n", + "\"\"\"\n", + "\n", + "plt.figure(figsize=(5, 5))\n", + "plt.plot(X[y==0, 0], X[y==0, 1], 'ob', alpha=0.5)\n", + "plt.plot(X[y==1, 0], X[y==1, 1], 'xr', alpha=0.5)\n", + "plt.xlim(-1.5, 1.5)\n", + "plt.ylim(-1.5, 1.5)\n", + "plt.legend(['0', '1'])\n", + "plt.title(\"Blue circles and Red crosses\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "9efb32c3", + "metadata": {}, + "outputs": [], + "source": [ + "# importeer modules van tensorflow\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.optimizers import SGD" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "43c0a1d3", + "metadata": {}, + "outputs": [], + "source": [ + "# Maak een sequentieel model aan\n", + "model = Sequential()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "585aa0e2", + "metadata": {}, + "outputs": [], + "source": [ + "# voeg een laag aan het model toe met 4 output neurons en 2 input neurons. Deze laag gebruikt de hyperbolic tangent activation functie.\n", + "model.add(Dense(4, input_shape=(2,), activation='tanh'))" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "84e68325", + "metadata": {}, + "outputs": [], + "source": [ + "# voeg nog een laag toe met 1 output neuron. Deze laag gebruikt de Sigmoid activation function, sigmoid(x) = 1 / (1 + exp(-x))\n", + "model.add(Dense(1, activation='sigmoid'))" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "fef8e12a", + "metadata": {}, + "outputs": [], + "source": [ + "\"\"\"\n", + "compile configureert het model voor het trainen.\n", + "- als optimizer wordt de gradient descent optimizer gebruikt met een learning rate van 0.5\n", + "- als loss wordt binary cross entropy gebruikt. \n", + "- bij de metrics parameter wordt een lijst van attributen gezet waarop het model wordt geëvalueerd. In dit geval is het alleen de nauwkeurigheid\n", + "\"\"\" \n", + "model.compile(SGD(learning_rate=0.5), 'binary_crossentropy', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "0e1bcf7b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.6605 - accuracy: 0.6200\n", + "Epoch 2/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.5513 - accuracy: 0.8240\n", + "Epoch 3/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.4052 - accuracy: 0.9510\n", + "Epoch 4/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.2894 - accuracy: 0.9940\n", + "Epoch 5/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.2142 - accuracy: 1.0000\n", + "Epoch 6/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.1680 - accuracy: 1.0000\n", + "Epoch 7/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.1372 - accuracy: 1.0000\n", + "Epoch 8/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.1153 - accuracy: 1.0000\n", + "Epoch 9/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.0988 - accuracy: 1.0000\n", + "Epoch 10/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.0865 - accuracy: 1.0000\n", + "Epoch 11/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.0765 - accuracy: 1.0000\n", + "Epoch 12/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.0686 - accuracy: 1.0000\n", + "Epoch 13/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.0622 - accuracy: 1.0000\n", + "Epoch 14/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.0567 - accuracy: 1.0000\n", + "Epoch 15/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.0519 - accuracy: 1.0000\n", + "Epoch 16/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.0482 - accuracy: 1.0000\n", + "Epoch 17/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.0447 - accuracy: 1.0000\n", + "Epoch 18/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.0418 - accuracy: 0.9990\n", + "Epoch 19/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.0392 - accuracy: 0.9990\n", + "Epoch 20/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.0369 - accuracy: 0.9990\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\"\"\"\n", + "fit traint het model voor het aantal gegeven epochs.\n", + "- X staat voor de input samples.\n", + "- y staat voor de target data (tensors)\n", + "- epochs staat voor hoe vaak het model getrained wordt.\n", + "\"\"\"\n", + "model.fit(X, y, epochs=20)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "20f9bb50", + "metadata": {}, + "outputs": [], + "source": [ + "\"\"\"\n", + "met de linspace functies worden nummers gegenereerd over een gelijk interval.\n", + "met de meshgrid functies worden coordinate matrices gemaakt van coordinate vectors.\n", + "met de c_ functie wordt een matrix gemaakt van de genenereerde arrays.\n", + "met de predict functie worden output predictions gegenereerd voor de input samples.\n", + "met de reshape functie wordt de shape aangepast naar die van de meshgrid.\n", + "\"\"\"\n", + "hticks = np.linspace(-1.5, 1.5, 101)\n", + "vticks = np.linspace(-1.5, 1.5, 101)\n", + "aa, bb = np.meshgrid(hticks, vticks)\n", + "ab = np.c_[aa.ravel(), bb.ravel()]\n", + "c = model.predict(ab)\n", + "cc = c.reshape(aa.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "a2e4f082", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-1.5 , -1.5 ],\n", + " [-1.47, -1.5 ],\n", + " [-1.44, -1.5 ],\n", + " ...,\n", + " [ 1.44, 1.5 ],\n", + " [ 1.47, 1.5 ],\n", + " [ 1.5 , 1.5 ]])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ab" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "1e5b54db", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Blue circles and Red crosses')" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUwAAAE/CAYAAAAt2PowAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACSa0lEQVR4nO29d3hd1Zku/i4d6ajbkqxiyXKVsVywjYPAmGbASTCEQJILMQnDwCS/kJlM2u2ZJE/mTi6Tmzu5MzeVSXyHJIQUHDMBEiDYiQmmG9sYXLCEm2xLsrqsYpWjsn9/vPqytrb2Pmefpub1Ps95Ttt17bXf/fVPWZYFAwMDA4PISJnsAzAwMDCYLjCEaWBgYOAThjANDAwMfMIQpoGBgYFPGMI0MDAw8AlDmAYGBgY+YQhzikIp9VOl1IMTvM8jSqkbYljvBqVUXeKPKHFQStUqpd47AfuZ8mNhEDsMYU4SRm/gPqVUj1KqQyn1jFJq/mQek2VZqyzLemEyj2EyMPpwCo1ei3al1B+UUssn+7gMph4MYU4uPmhZVg6AUgBNAL43ycfjCaVU6mQfQ5LxT6PXYh6AegAPT+bBXATjPS1hCHMKwLKsfgCPA1jp9r9S6n6l1MuO3yyl1NLRz+lKqf+jlDqjlGpSSv1QKZXptT+l1KeUUkeVUt1KqXeUUu8Z/f3PaqtS6n8opR5XSv1cKdUF4H6lVIFS6idKqYZRqfhJj+2XKaX+XSnVopQ6pZT6vO2/K5VS+5RSXaPH+i8e28hXSj09uo2O0c/ltv9fUEr9T6XUK6PnsVMpVWj7/16l1GmlVJtS6iteY+GEZVl9AH4N4DKf55M5KqF2KKXeAXBFuO0rpVaNSrDto+f/5dHf3ca7TCn129FljyulPhVpHJVSGaPbaFNKnVdK7VVKlYz+N1sp9bBS6pxSql4p9aBSKjD631Kl1G6lVKdSqlUptc3vmF1MMIQ5BaCUygKwBcDrMW7ifwNYBt7kS0Ep6Wse+7oLwP8A8JcAZgG4HUCbx3bvAIk8D8AvADwKIAvAKgDFAP6vy/ZTAPwOwNujx7EJwBeVUjePLvIdAN+xLGsWgAqQnNyQAuAnABYCWACgD8D3Hct8HMBfjR5LEMB/GT2GlQD+FcC9AMoAzAFQDh9QSmUD+BiA4z7P5+9Hz6MCwM0A7guz7VwAfwTw3OhxLQWwy7aIc7x/BaBudNk7AXxDKbVpdFmvcbwPwGwA80fP+6/BsQOARwAMje53HYD3A/j/Rv/7nwB2AsgHx2rKajuTCsuyzGsSXgBqAfQAOA9O4gYAq23//xTAg6Of7wfwsmN9C5z4CsAFABW2/zYAOOWx3x0AvhDmmN47+vl/AHjR9l8pgBEA+S7r3QCgbvTzegBnHP//HYCfjH5+EcA/ACiMcrwuA9Bh+/4CgK/avn8GwHOjn78G4DHbf9kAQnJuLtv+KYD+0WsxAuAUgDU+z+ckgM22/x6QsXDZz8cAHPD4zzne8wEMA8i1/fa/APw03DgC+ASAV+X4bb+XABgAkOk4nj+Nfv4ZgK0Ayif73pjKLyNhTi4+ZFlWHoB0AJ8FsFspNTfKbRSBUt/+URXsPCjBFHksPx/ACZ/bPutYr92yrI4I6ywEUCbHMno8XwZvWAD4JCgNV4+qi7e5bUQplaWU+tGoWt0FEkSeqJCjaLR97gWQM/q5zH7slmVdgLcULfg/o9diESiRVfo8nzH7AnA6zD4ijb19O2XgeHc7tj1v9LPXOD4KPhQfGzWd/JNSKm30PNIAnLOdx49A6RwA/hv48H1DMVriE2GO86KFMSxPAViWNQzgN0qpHwG4FlTL7LgAkiIAwEGqreANvsqyrHofuzsLqnC+Ds2xXoFSKs+yrPMRtn/KsqxLXDdoWccAfGxU1f0IgMeVUnNGSc2O/wyS1nrLshqVUpcBOADe1JFwDsAK+TJq8pjjYz1YlnVGKfUFAI8opZ6OdD6j+5oP4Mjo9wVhNn8WlOo8d2/73ACOd66NNBeADqlI4/gPAP5BKbUIwLMAakbfB0CJdMjlvBsBfAoAlFLXAvijUupFy7KOhzneiw5GwpwCUMQdoP3oqMsibwNYpZS6TCmVAapvAADLskYA/D8A/1cpVTy6vXk2G5sT/wbgvyilLh/d71Kl1MJIx2hZ1jkAvwfwkKJDJk0pdb3Lom8A6FJK/fdRh0hAKXWpUuqK0WP7C6VU0ehxnx9dZ9hlO7ngg+C8UqoAtBX6xeMAblNKXauUCgL4OqKY65Zl/QEkrAcinQ9oO/y70TEpB/C5MJt+GsBcpdQXFR11uUqp9R7HcBZUrf/XqCNnDShV/gLwHkel1I1KqdWjkngXgEEAw6PXbyeAf1ZKzVJKpSilKpRSG0e3d5fSTrUOkLzdrstFDUOYk4vfKaV6wIn9jwDusyzriHMhy7LeBW/6PwI4BuBlxyL/HXRSvD6qvv4RWqV0bmv76L5+CaAbwJMACnwe773gDVgNoBnAF122Pwzgg6DN8RQoAf8b6IgAgM0Ajoye93cA3G0xSsCJbwPIHF3/ddDM4AujY/i34DmeAwkg2mDyb4FqamqE8/kHUFU+BRLSo2GOqxvA+0a31wheyxvDHMPHQBNBA4AnAPz9KJkD3uM4F3xgdIEP390Afj66zl+CzrF3wDF5HLRNA/Tu7xnd3m9BO/epMMd2UUKNGnwNDAwMDCLASJgGBgYGPpEQwlRK/Vgp1ayUOuzx/w2jAbFvjb5cYwQNDAwMpjIS5SX/KRhU/LMwy7xkWZZrCImBgYHBdEBCJEzLsl4E0J6IbRkYGBhMVUykDXODUuptpdTvlVKrJnC/BgYGBgnBRAWuvwlgoWVZPUqpW8FQFtdAYKXUA2D8GzIzsy9fvNhU2TIwMEgs3nlnf6tlWV7ZcJ5IWFjRaFbB05ZlXepj2VoAVZZltYZbbtWqKmvbtn0JOT4DAwMDwerVar9lWVXRrjchKrlSaq5SSo1+vnJ0v5Fyew0MDAymFBKikiulfgVWrClULM//92CiPyzL+iFYmupvlFJDYLrb3ZaJmDcwMJhmSAhhWpYVrqAALMv6PsbXMjQwMDCYVjDVigwMDKKGZQ3CsurgXgZg6kCpDChVDla4ix+GMA0MDKKGZdWhsDAXeXmLMOqemHKwLAvnz7ehtbUOSi1OyDZNLrmBgUHUsKx+5OXNmbJkCQBKKeTlzUmoFGwI08DAICZMZbIUJPoYDWEaGBhMW+zc+RzWrq3EpZcuxf/5P99M+v4MYRoYGExLDA8P4z/+x7/Fk0/+Hm+++Q62b/8Vjh59J6n7NE4fAwODpOPQIeCpp4CzZ4H584E77gBWr45vm/v2vYGKiqVYvHgJAODOO+/G008/hRUrVibgiN1hJEwDA4Ok4tAh4DvfAc6fB+bN4/t3vsPf40FDQz3mzZv/5+/z5pWjocFPH8DYYQjTwMAgqXjqKSAvj6+UFP35qafi265bsmCyHVGGMA0MDJKKs2eBWbPG/jZrFn+PB/PmlaO+Xm+kvr4OpaVl8W00AgxhGhgYJBXz5wNdXWN/6+ri7/Hg8suvwPHjx1BbewqhUAiPP/4YPvCB2+PbaAQYwjQwMEgq7riDdsvz54GREf35jjvi225qair+5V++j9tvvxnr1q3ARz7yUaxcmdza5MZLbmBgkFSsXg184QtjveT33Re/lxwANm++FZs33xr/hnzCEKaBgUHSsXp1YghysmFUcgMDAwOfMIRpYGBg4BOGMA0MDAx8whCmgYGBgU8YwjQwMDDwCUOYBgYG0xKf/vQnsHBhMaqqInb2ThhMWJGBgQ/U1AC7dgENDUBZGbBpE1BZmfx1Dbxx773346//+rP41Kf+csL2aSRMA4MIqKkBHnmE6Xxz5/L9kUf4ezLXnSlIee0VqNpTY35TtaeQ8torcW332muvR0FBQVzbiBaGMA0MImDXLhaLmDWL1Xbk865dyV13psAqLUPgN9v/TJqq9hQCv9kOK8mFMpIBo5IbGERAQwOlQztycvh7MtedKbAWLcbwR+5C4DfbMXL5FUjZvxfDH7kL1qLEdHKcSBjCNJjxiNeGWFZGVdpeoqynh78nc92ZBGvRYpLlS7sxct3GaUmWgCFMAxcky0mRqO26bQdw37bYEGfNGmtDvO8+//vetInrAJQOe3q4nQ9/OLnrziSo2lNI2b8XI9dtRMr+vbAWLpqWpGlsmAZjkCwnRaK267ad734X+N733LedCBtiZSUJdtYsoLGR734JN551ZwrEZjn8kbswsvHGP6vnTkdQtLjvvo/hhhs24N13a7B0aTl++tOHE3TE3jASpsEY2AkG0O+7dsV3kydqu27b6ejg55Urx287UTbEysrYzz+edWcC1LmGMTZLsWmqcw1xSZmPPPKrRB2ibxjCNBiDZDkpYtmum+rttp2BAaC/H9i7F2ht5fe0NCAzE1izhmpwomyI8ZoVLsaYzJEN14z7zVq0eFqq5IYwDcYgUU4KJzH09gKvvgqEQkBuLrB4MRAMem/Xy/aYkTGeAEdG+H8wCHR2UvXu7eX35mbAsli0Nl4bYrz20ETYUw0mF4YwDcYgGieFnRSDQf4WCmmiKi8nMZw+DRw8CAQCQEEBpcF9+0hin/+8+3F4qfChkO4PI8c3OAhkZfH31FRAKWBoiMdRXs51Zs3S5P3hD8dGUPGaFZJl7jCYOBjCNBgDcVLYpUM7wQhJVlcD9fXA0qUkq337+P/ll/O/nh6guJjSXnMz26oGApQQu7v5ubUV+P73uWxuLrB8uVZRvVT4xsbxx7dkCTBnDvCnP1GaTE/n78PDep3PfCb+sYnXXDHTYjIty0p6W9t44daKNx4YwjQYBy8nhV2l7OqiJHf8OKW6nBwuU1tLiS47Gzh1CigsJEFmZwMXLgBXXEGifOstbmNwkKTa2Umbo6io4UwDzuN76CFKscEg0NfH3wYHSdKJjHmM11wxk2IylcrA+fNtyMubM2VJ07IsnD/fBqUyErZNQ5gGvmFXKXt6SJKhECWkRYu4THc3pcX+fn4G+F1+B0ikKSmUADMyKBEODFASrazkfqIxDVRUAL/7HQmzv5+k2dOj7YSJinm0H9PAAB8gHR3Ahg38HEmtnkkxmUqVo7W1Di0tLZN9KGGhVAaUKk/Y9gxhGviGXaXMzSVp2G2X8vvixVTRc3LokCkuplpcUcHvbW2USoNBvX4wSFLNyQGOHuVvPT3AuXN6/zk5wLZt/Nzaqpfv6SFh9/dT6h0Y4Ht/P6VVgFJovJ5pMVds2wbs2UMJ9qqreOx+nDeRzB3TCUqlQanp5+WOF4YwZzASHcJiVykXLwbefptEWVxM0gK4/WCQDp2SEhLlwoXATTcBJ07wWObM4TrNzSS39HTtPT97lsvMmwcsW8bvBw8yPEhspQMDtIFmZVGV7+ujOn/ZZVT5ARJzYyM/J9IzXVlJM8P1149VrQF/zpuLPSZzuiMhhKmU+jGA2wA0W5Y1rpqnopHjOwBuBdAL4H7Lst5MxL4N3JGMEBa7SllQQIfP8eMkxqIi/h4K8fPnPz/eUSTEfd11wO7dJM1jx7jOyAhJ9vhxblfIqLmZ9s/mZn7PyaEtdGiI+x0YIFmnpGibKaBtg8nwTB89SulWnFWLF3M8pqvzxsA/EiVh/hTA9wH8zOP/WwBcMvpaD+BfR98NkoRkEIVTpVy4EPjEJ8Jvz424d+8GNm6kxNnbq4ln4UJKi/Pnc93WVpLgyAg/5+ZSOh0a0tsXtV5U/ZGRsbbBRx9NrGe6pobrKsXtDAxQ0l66lMfvXPZiC1Kf6UgIYVqW9aJSalGYRe4A8DOLPv7XlVJ5SqlSy7LOhVnHIA4kI4QlFgLwIu4TJ9xDfR56iGQXCpGIAgF6vMWJ1NnJ5dLSSLYtLSTJ/Hyq5Y2NY22DXp7pYDA2u+auXVqyDoVI3m1ttLVmZ2vnjwlSn5mYqOIb8wCctX2vG/3NIEkoK9N2RUE8ISw7dgBf/jLf6+oYxuOneEZDgw45EoQj7k2bSC7V1SS19HQSo6Q6XrhA8hwepn0zFKLzZXiY6vi995KIhZRke11dOiOorg5oaoqtEEhDAyXgtWu5z/p6mgMKCrTzJ1FFPwymHibK6eMWqOUaUaqUegDAAwBQWrogmcc0I+Al9SUyhGXHDuAb36Ckl51NAujupqTlpeLbA9xPnmRQOkAVu72dBOMWiiNq/1e+wiD0oSGS2vAw1d+MDNo+W1pIoJmZlC4XLyaZfvObdBiVldErf+KE9rbn5AArVnD9YNCfucI5vsEgt1dYSKeTqOHp6boQyDe/SUIuLmZQvdhVwz0ojPo+PTBREmYdgPm27+UAXKeOZVlbLcuqsiyrKj+/aEIObroiXMm0RJUVq6kBtm7VZDkyQsIbGSEpuBGA/bhWrybBvPIKQ3Eky6e42Fuqq6ykV/2KK3jcJSUkQfGcb9rE3z/8YeDWW0mWR44AL79MVTktjRLwt7/N92XLuM3cXK4bCvmTet3Gt6mJEmpXFx1RjY3cR28v933sGFV0iRx4+23aXwFvCd/0/Zk+mCgJ87cAPquUegx09nQa+2X8iOTYSUQIy65dlPKELAMB/t7Tw+9XXhn5uKqq6Ojp7SWRLF5Mqaury1tCFQk5GNRxlQMDlFR7ekiiPT3a1tnRwdjOQIBhSKmp2ru+cOHYsfGbceM2vvPnc5+hEHD+PMl53jzud/9+knJRkQ67UooSdjDoLeGbHPPpg0SFFf0KwA0ACpVSdQD+HkAaAFiW9UMAz4IhRcfBsKK/SsR+L3ZMRG5yQwNV3pQUSpYAP1+4wBtbqp2HO67CQtoZAR0n6XasTrV040aq4K+/zvXXrNHEc/fdJOHaWqrrXV1U4WfN0tLvwoU62wgg4T7/PLctefDz53ubK8Lls5eVAddeq1NDg0E+WLq6+BApLKSd8+RJkvaVV3oHqc+0HPOZjER5yT8W4X8LwN8mYl8GGhORm1xWRnW8u5t2x54ekmVaGvDAA1zG6W12O6709PHbth+rV/jRffcBW7ZoIi0qAtat07bJ06dJVIEASUspErt4r0MhkmQgQIlwzhyq6JmZJLveXto13cgs3PiK8yc7m+aA2lqOk73WQ2Ehj+nKK8MX//BzHY2Nc2rAtKiYxnB6gE+fZhHd6mqSWCJsYJs2kWyWLgVmz6ajo7SUHvNFi9xtbxUV4z3T+fkkXPtvXV1j+/F4eZUrK0k4Dz7I5Xfv5rrLllECDQS4/5QUEiZA4mpsJLk3N1PS6+jQyy1cSGl3xYqxXvVw42s/ZnsUwtAQv5eV8Vj27aNTynmOfq+jcz1j45w6MKmR0xj2QPKjRyl9SLm1l19mQYoNGyihJSJYPS2N0pJINw895G5727OHRCYl39as0XUvvfKo/aqlTntfVpbO9ikp0VIlQHuiFPmwLJKZqOJe2/c6d7djfuQRSpaSDx8IkIQbG3nuhYXch4QSeV2DSPvxY+M0EujEwBDmNIXzBikqovNBnCDp6bT7VVfHHzDt5Tyqrqa0Y08RtCwS5vXXAzfcoO2D4bYD+DcvuNlHRd0eGQEWLKBjac8eLpcxWtmrvp7E2tSk1z17ltLnV7/qTTLOY66p0SaI/n7gzBnuNycHuPRSLYm//jrXy8nxF7QebmwiPUxMkPzEwRDmNITzBjl9mhJlfr6uRZmeTvKSdg6J9rjW1JCEnCmCIyMk6mg9vn7jRp3EungxpcqyMuDqq/V6zrCh/Hx9vCMjtDu+/TbJzbJof4xEMvZxT0ujDVQpEnRWFq9DXh6Xy8+PLBFu20aPPkApfMsWfnb+LrGfs2bpdNG2NtpjnUHy0Yy5QfQwhDkNYb9BWlt17GFvL298KbsWCFDyy8nRds1EqWzOFMFgkO/NzcD73z92WT8eX7+lz5zE6qyMJOtt20a1WCk9Fjk5JMiaGuCdd2hTLSzkcUvRj3AkYx/3vXu5vUCATqasLO6nuprS7npHpQSnRPjd71LCzc7mb/v20c5qWbS12n8vKOD3nBzGeaak0DMvsaw9PbTnRjvmBtHDEOY0hF1FO3WK0mRxMQOqMzPphGhtpbSzfDlvzPp6kkmiVDa7l/jUKV2bMj9/vEfcr+feT9yoG7HaKyMJtmwhAZ09S9U5I4PH+3d/x3VPnyYRKaWP99QpXYLO7aFiH3c532CQD6n0dF2FXmpkijTY3c3vku20axdJMSdH71spqvdKkfzl9/5+nsfICIk9NZXnsWaNjmU9dy68BBppTI390z8MYU5D2NVSuXEBXeXn7FlKKqLOSTWdRKhsbimPElt5+jSrDb34Ism6slITSaQmatHcqH4D8rOzdQm49HQttTU0kCxDIU1MQ0Mct8WLvR8q9nGXAsp9fdxOdze3tXw5pcvvfY+klZmpK9Tv2QN87nMkuP5+nTIJ6GrxIhED1Biam/ku5AyMrRGQk6PtpB0d7hKoXzODsX9Ghgkrmoawh6GIvW9gAFi1isHea9dSotqzhzdEbq4mU0EsKptbyqOE0EhnyEWLtDr6+uskE7ebL9mhMrt28ZyvvZbjde21/C6ZPkKkAwN8uDQ3k2SWL/cullFRQVV8xw6GK507x1dWFk0iPT18iPzud7pYyOAgpb6hIX4XabOzU1deAjhOGRl8iZe/o4Prp6Zy3awsfu7vpxQJcJ8rVnCMm5sZEZCby2LKkuEUruCHKRISHYyEOQ1hV0ulX87SpZSaTp9mqMu6dTqLZe9eSk/2eo2iJkcj5bmlPFZXA4cO8TjWrNH7KCrS0pjb9pLtqAjnWb73XpLz0qX0mre3k5gkQ8e5PMBx2r17/DoFBSSxjAwSV3U1/wsE6LFXitfEsvTDbc0aSp+trVyvr4/fAwESrVSKP39eE6102+zu5jabm/VDU2y98+axa2dKivs5RDtOBuNhCHOawq6W2kmvtpY314kTvKkWL+ZNfvgwSVPU0/x84Pbbo1PH3EJ6rr5a3+DR3HjJvlF7e4EnnqA0lp3NkJ/iYt110hlb2tqqVV6B3fZqJ3h5KOzYwXGUfPrWVtqKJfd+eFiXnhse1iFIp04BK1dSfe7upiRZXEypsLERePNNkmcgoAPx29p43bKyeE7nz4+X3mPJ/JpJnSwnAoYwZwCEPGtqgC9+kTepdGJ84w0tkUjvm/R0/rZnT3RSXqSbK5obL5k36o4dNA/09elxePVVntOXv8xl3OIrw4U1uRF8fr7Or29t1cU2xF4qMZ+WxWNRillSAwN8oIlEax+H2lpqBhLX+sYbOoZ0YEDv9z3v4br2c4ilpN9M6mQ5ETA2zCkKCZD+6lf9pznu2sWbSSm+hocpiTQ18QaUQO7ly4HycpJKLMV9namYR4+SMKTsmVt6X6Rt+U0j9IPHHuNDY/58SpBK8bz7+yNn23iVw3MryFxSwu13ddF2qRSJMiuLD6biYl09PhjUNTTtcBZYlh7u3d1cXsKFLIvbz8rSkqbzOsVS0i9RZQAvFhgJcwpCpJ3hYZLdoUMkwwceAG6+WS8jKZGSaSOhPmfOcJmODqp1Q0O8+ezhM5dfzs+S7SJ9w4VY3LJf7KpsdfX4ij+WRXJwtolwQzJbzjY10YaakqIJamSEzqlwCOd9d5PEAgFeEzF/FBfTPglwjAcG+ABbuZLjX1urx7mykmPllLSdPdw7Ohg7KjZRQPdEv/ba6M4hlvM2GAtDmFMMNTWs2C2pdwUFvOl6eljId9EiLieEKi0SOjtJWCdOkMQ6OujJTU/nDZc6eqWl/3dPD2/Agwcp0WRnk1BaWqjuedk05eZ66CHe7M5akbNmha/MY0eybtSSkrGkA3AsSkpi36YfgrcTn1PV7uoaW9quq4uk7iRitx7uEg4lCQmWRc0hEdK4QXQwhDkB8OuJFslSKppLqbJgkDdTe7sO9xgeBg4c0HbJ7Gwu19fHG+7qq3VRiqVLqT4DvNmkpqTUmBQJU1rk9vfrEBPA3aY5lb2rd9/NausAx+XCBb4+9an4thutBGq3BXr959aJ062Huz1BIBhkURUjFU48DGEmGdEEBosntqBAd0MU7+rcubr3dWcnJUvJYBkeJpnm5lKKOXSIpLl8ue4tIymBnZ3MRNmyhS1o58/XXt/nn9f2M4EXCZaVkYTt6nxx8fhWs5MBMVs89hjPv6SEZCm/JwORJNBw/4UjYpk/wSDNKEK2knduMLEwhJlkRBNvKFJbfr5uy5CaSsmvqYn/SbXwlBSS5dAQlxkYoPq2fz+lknvv1Z5zuVEliNsZhhIKUXppbeXLrrp6ea4rKhigLep8dzdJ+qabpkaq3c03J5cg3eBFfPGMRzJtvQbRwxBmkhGN6ioEJnF5bW0Mjk5Lo3TZ3MybrbqakmJ2NiXLgQHGHaanu6fEhVMj7UUg8vJIep2dlHDDpTWeODFWnc/NJYnu2cMAb5NqRyQi9dA4ZaYODGEmGdHEG4odrL2dpJeRwc+zZlFqFO/q8uW0WzY3k1AlqHnWLAY/R2owJqispDTZ0UEpMz+fbWEbG6nW33RT+D40dnUeoAnhhReYAWRKjRFeGsa2bbxOU6ngxVTQDKY6TBxmkuEWb3j2LFVftxjLjAxKeNJpcNMm4JZbSJIrVuhtBgKczJs301EjTbn89MC2IxSig0ja2i5dyu/Ll3u3bgDc4xLlezSxnTMdzjhLgBrBa69NrZYTpg2GPxjCTDKcgcGhkK5IY5+YO3Zo4/6NN1LaO3+eKY07djBAvKLCfZtz5gCXXKLJsrWVksLLLwN33gl8/eveE9+L+CJl3HgFnq9ZE9v2ZiqCQWYZPf88r2Fr69gCw1Ol4IUpwuEPRiWfANhtUA89xJvIqaI99hiXke9Ll/IG6+0lUZaU0Da4aJHenj2XXKSDpibaEXt7qcIPDbGiUFOTe93IWFLjWlpoU739duCllxiQvWRJ5BCaiw01NTSb9PTQRtzfz2vR2wtcd93YZZMphftRtadymNhUgiHMCYbXxGxq0tk3AO2K5eW6ig7gbZcUiXPbNpLl4KBuo9DRQXLr6Ai/bjgvrDNDRiTdigpdXf3ECf2/G5FejLawXbt4DYuLxxZZlnx+OxIhhduJUQqJtLTo5njz53s7nUwRDn8whDnB8JqYJSXjq2YPDTG1r7VVdyB0PvHtN0l9PeMtxWNu335Kyth1/UgdQpRCkOFgX8aNSO2kW1QUeXszAfJwTEnR5pKREY69NIZLlBTu7DckHTszMmgCOn6cUq4chzw87QWhnamuF6tmEA7GhjnB8LL93X0330+fBt56Sy+fnc0qOK2t45/4TkN9WxvJ0rIYzA7QOdTfTwKVdSMZ+CVFEvBHluFQUTH+Jdu3v2YivOzDUvA3kQUv7DbI2lpdib25WbfCkKLD8uC1z4Nly0iWR44Av/0t8NxzTJvdts04fuwwEuYEI5wKvGgR88iHhihxXrhA9c2yKAEsWjT2ie8MWZkzhyR8/rzOOxbizM/XucfhgukLCvg5XqIMB+e2T5yYmRKom324ro4q+qOP8tpLgkEssGsJ1dWsgg+MbVsC6GpJksElD17nPMjOpjmnr4+mBCC8/ftihCHMSYBMPJns4ol0Vs0W1VyaazmlkIYGql979/JmCAR0ZW+RXoaGmAr56U/rdb3sqCdP8nMyydINbgTqxHQkUefDUQpnBIN8MMUT1O8MiD95klleVVW63xCgW3GEQrr3j6jajz46dh6cOkXClHJ4AD/b7d8Xe6ymIcxJQLjsD7uNs7BwfNUbe6vc3l7apkT9CoVIkHl5DDO64Qb3CR3OjjrRZOmGSBKoYDqQqJ8IiViC+p3S4fLllAarq7mt/fv5++WX63kiy4tG45wHUoDFXrNTJFO7Cn8xZ3EZwpwEhFOJvcJ81q0bP1lrarTKLUhPZzO0r33Ne/9u+2huBj760cSeZ6LgRuJuJDrVCTSa0J1IkpxTu5DU1LNnKSVWVdE0c+gQl1+7lgU77KFora0MoM/P5+/BoC6CDJBoW1p01MW2bcntwzQdYJw+kwC37A+5cbwqYJ84MT6wODWV7+npJL30dEoU0nXQC859BAIkS/FsTwf4dSZNJYeS3yQBP1k3wSClyIEBzh1pe7FmDfDgg+zcefo0yS4nh/Zw2Ya9AtJVV3F7e/ZwXxUVfAh3dOjWGFKJ6rXXtKovuNhiNY2EOcGoqeFEPHSIdqzFi6l2228ct2ILTnsToHvK3HCD/k0K00aSUOz7aGmZGqp4vPAriQomWiL1myQQb0fNmhoWm1aKcyQUokq+dKm2l9u3b+/wuWkTJcnnn+f68+ZRYykspPRaUzN23C62WE1DmBMIebIXFzNfvLubIUSXXEIpz3njOGMsBwfHFruQyuL2/uRe6ruXrWkqSWDJgNeDIByRChJNqH5LtflR3UMhahNubS927dItgKUpG0Bvd1oaP3ttv7KS5pxQSMeQ2o9/z57x8+1iitU0hDmBsEsOUkG7rY32wy99yb2LoZDe4CDj4gAdWGzvKWO/AaOVUJIpXfb18T0zM3n7iAWRztkPoQLRk6qfUm1+sm5kGbe2Fw0N9HKfPUv1OhikI/DChbFZY87tB4Paqej2gE5Ppwo/a9bFW5vTEOYEQCTFp5+mdLlkifaAj4zQjuhVfV0mtUzc5mZKCfbJapdEJWtDug0K3GxNiZAuhRC9YJdkpH+5H0w2wfp9iLiFQNkRi5TqR3UPt8y2bdRgQiHOlaEhxn8WFOhYXLf4UAl5Skujw+iddzjPLrtM10a9mDzibjCEmUC42Q0B4Hvfo63xwgWqUK2tuie1lw3ITS2TtrEPPjh2n071u76ehGOXDsJVTo8WTpJ0HqcX/C4HRCbXySZUgR9J1QteZOqlugNjw8o2bhyvXQiZSSvenh5megUCfIh6tcwIBjnmp09TxS8oYA/1zk7g9dfZQ+hiJ0vAEGbC4BWj1t/Pnjw5ObQ5njtH8jx8mN0ZvWxAfoshuKnfS5fSyJ+f7y2hxCJd2okyGvKLBZG2H45QpwqZAuEJNVyAvlN1d5tfu3e7k5jdvhkIMGtn0SKq2LItO1lWVFD7mT1blx9sb+d8LSjQBaEvdrIEDGEmDF52w1df5ZM6PV3nc7e0UAq84QZvG5Bfj6qXJNrbG9nW5Fe6FKJMNklGg3DHMl3JNFyKaDR26XD2TTfi3bqVc1MprcZLi98FC2ILHZqpGUEJIUyl1GYA3wEQAPBvlmV90/H/DQCeAjCa/o/fWJb19UTse6rAy7MpT3VBVhaf3IODrGheUzNWzbJPrIwMXXVmzRp3acIuiUoqZVsb88q9Jmk00uVUJMtIiJVMBRNBqkePssBFfT1DdzZv1hX1gbHkKY4cv0Hv4R62bsQrc7S+nmYje4O9/Hw+9EMhztNwLaLtKaDNzZRsZ1pGUNyB60qpAIAfALgFwEoAH1NKrXRZ9CXLsi4bfc0osgS8g5LLyzkJBwZoVB8Y4Pc1a7wDlO3V12+4gSpRf7/7fqX6kVQ56u4e2wjNq9JMJOmyr4+vuXOjJ8uUFCspr0RAzifcS8493CseHD1Kqa6zU9sJt27l7wJnQP7s2f4r2XslP1RWuidNZGTootA5OfSsX7jAUKXjx6mep6RwXn75y3y3wzmPq6tphgqFZl719kRImFcCOG5Z1kkAUEo9BuAOAO8kYNtTHvJkPXp0bKFWeap/4hMsl9XRQTJLT+f/W7Z4q1nO6uvh1C+5Ob75TU702bN1MLyfRmhuiFaqdCOz3ByXBeNAd4/7fpwYGVFx78uP/TQcaUaSUJ97jtdp9mx+l/fnnhsrZQoqKoCPfxz453+mqaW4OHIMpFeBFzfb+OAgH7KZmTyWzk5qKxcuUCMKBPi/OJG2btWV/2Uf9nkcCumwuWh7TE11JIIw5wE4a/teB2C9y3IblFJvA2gA8F8syzqSgH1PKuz2oMpKTqjjx3kzLV8+tmyb08juFmYEuFdfl9+9JpyzylG4dSJl9fglSyd5JZognfC7/e6e5JNqvA6p+npKlnbk5vJ3L6xYAfzn/wz88pf+Ktl7OSE3bqSzCNDqen+/zj3v7mbM5mWXMUhdHEES/J6TQ4nT/iB2mgtyc7lNKScHzJyMoEQQptvsc87aNwEstCyrRyl1K4AnAVziujGlHgDwAACUli5IwOElD/Yna2urbnvb3T3W1uPWf2fWLC0pvP02iyNImJG9+rog0oSTZluhECdsfr5uuhbO9uSGcIRgJ8pkk2QsiHRMfiTVZBGqSKbFxdQ4pDo6wDkzb1747a5YAfzP/8nPkeI/vbSXEyfGhxRt2MD5c4ntjuzq4jxsb+dcEoRCVN3tD2KnHb23lyp5Zmbk/vbTDYkgzDoA823fy0Ep8s+wLKvL9vlZpdRDSqlCy7JanRuzLGsrgK0AsGpVVWIMV0mCPFlbW0l66ek6v9vLyG2fyEuWcD2ldFtdqb7ulALCTThns62ODpoIZs9my1yRLm6/PbJ06XWzx02UnZ0xrBQGosdGCT/HHklKjZVQZWw/9jHg+98fn2K4ZYv/bYVCwA9+wODy1FTaxO3ViMI5ibxClmQZOZ6776b63dOjywcODNCkZH94i5OpowM4doxaTn4+74c9e5gdNBMcPkBiCHMvgEuUUosB1AO4G8DH7QsopeYCaLIsy1JKXQk6m9oSsO9JhTxZT53SYUMDA3wCi5E7XJ5wYSEly5MnSXhXXqlJcc+eyB5ygbPZ1rlzNOTn5Y0NTXnpJe+KROFsckKWvojSixhV/LbFP8Oy/BNwDMQa7jwjSah+yPTSS4HPfhb43e+YYVNeznbIixbxOkSygR49CnzrW7zWaWm6h4+9Mno0Tc0i5bhv3UohoKCAZBkI6KQM+/pf+xolykCA0umqVbr+50wgSyABhGlZ1pBS6rMAdoBhRT+2LOuIUuqvR///IYA7AfyNUmoIQB+Auy3LmtLSox/Ik7WtjWTZ1ETbTXk5idPN5uicyIWFnFRXXqnDjERlv+EG/bQPB2ezre5uSpoXLuhlcnJo+3JDOLulL7J0klciydEN0WzfD7FGQaqxkKkbiV56KV9O2B1KXsT53HPUaqS0X18fr6+9Mnq07ZNF6hQnprTQ2LQJ+MY3/MVUdndz7qenUxp9+20+7GeCs0eQkHqYlmU9a1nWMsuyKizL+sfR3344SpawLOv7lmWtsixrrWVZV1mW9Woi9jvZkCdrZqbOxZ03j0/Y/ft1q1M7vJqgufXb8RuS4Qxpys3VYSGC5mZ3D6wgJrLs7NSEpJR+ueH118czdm0tf08m7Mfl9gL0ebi9okBuzvgXMD7MKhzsYVxeIUz19bpPjx32h3S40CIveIW5AXyYP/gg5+muXcBXv0rbuISt7dpFjUaGVTSumpqZ4ewRmEyfOFFZSdVDnvLBoLb1HDnCiWV/KkdSf6IJUBY4pYniYt4kFRUk5Z4evjZvHr+ul90yJcUKT5RAdJLe3LnAU08Bd9xB3bO2Vn8P5x52IpJnJFpEOodwpOlDMnWOoV0KDae+yzURidMubc6bB7z7rvZeZ2byMO2dQQHvykheWTiRsonCtagQ26hU1JL+RefPj1XfpzsMYUYBr+IaBw+SmFpbOVGys2mIFzJyZjqEU3+isT0JnCS8cCFw0026MMPs2ayo7pQwveyWnmRpJw+/ZClkmJZG6//PfkZd9PBh4Oab+bs9knrvXhrAFtgiJM6cob3jiiuiI1dBPCTrdZ5edtQIJGofV7tzyYs8584dT5qbN7MA9alTWosYHKSEF4mcIpFeuIe1W7xlbS3wla/oquxr1/K4urt5L2zYMHPsl4AhTN9wm2jf+97YklhK6RL+mZmcRKJWAyy7VVgYPn3MLU7OT0hGuDqL4WIvnTeIp8oYjVTpJDUhxOXL6T3Ys4c9FJYvH79uSQnw7LPArbeSNM+c0d/t2/KLnp7wJBsrmbqNg5NEfZKnSJ1+SXPFCuC//lc+aA8c4DJXXUWbdyRyCidFRnpY2wlVIkNEkiwupuCwZg3jgWPx/E8HGML0CbeJ1t7Oz8uX67CiYJBpiqmpJM+9e5l5Y1nkieuv56R79VVOquLisaTqFicXT5FWr7xxN+nS02bphyztpORFamfO8K5av57v5eVjJUmA32+9lSS5Zg3wzDPABz/oLXFGQiSCTSSZOsfHJ3lq4vRW1YU0BStW0Bljh+Sfh6vBefQopb+eHj7QZW4+/zyD6d2y1eRhbSdUiQwB+N2tXuu6deM1qFjm8VQq5GEI0yfcuvR1dXHSSHjQqVOcMBJaNGcOP7/9NlX2vDx/6WN+qnJHAz/SZcxk6YcogbGS4oIFJEv7dzsWLCBZ7tlDUnzrLd4pInFu3Qrcdtv47fslUSCy6u8lmUZDovYx80GeuTnhpU0hTS/veUVF+ID2mhrOL6V047Q9e5hSW1DAOTc0RD/cm2/yEt19t56Ldlt5V5e214uiYK/X6tTITp9mHvq8eVzeL+lNtda+pmukT7h16Tt/nkQIkPSuuIL3woIFOrRCWpc2N4+9wGJ78ps+JlWNnN7JWOBlu3QlSy/Pd329JhRpjB4OTU1jyVEkyaam8cvaJdHGRubpPfssxfJnnyVZvvUWl5Pln32WBCjYu1f/b9/u3r38LKq/1zbknJwvOW/7+fuBm1feBXbPuhdiLf6xaxelR8vSc/PCBc47sZY0N1NCnTeP83X3bj3X7J53OR3JUAPGzl+7RtbezpRhpXRUSLjCMM5jjjZqJJkwhBkHJPvBHiJ0/jzv77VrdfvbnByd+SBYvJiTNRh0Dy+yw0/bVTeEK+PmJl2OQTjvcDREKbjiCndJEhhLbGfOMGG6vJxpSrfeSnLs7QV27qTkedVV/P0XvwB+8hN3STUSIdpVfyFiN2nXiXgJ1EmcLghHmvGU2WtooBRon5sANZ/CQq1m5+TQRllTw0iPb35zLGl+5jPAP/4jgx285q+9KpJ9u5Ly65f0wrWkngwYldwn3Lr0bdigA4jFvnLVVTq7QZ68XV2aWAEdfjR/Pu/fd9/lNnNy9CSyS6PxtF11quO+pEsvNdxOlImCENuKFTSiPfooMwE2bODAyHG89BLZ4skndQHHM2cogV5zzfj6d05b6MGD4wnRrvqvXx+ZLN1gHwu7Gh9JdVdKO4lcVHRRzxOJsjKqxs3Neg4PD2sVX+agdDSdNYtk2tY2Xg2OFB5nt3fKdqXOAeCf9GKJGkkmDGH6hFcV6xUr+MQVeOXl3ncff7NPsM9/nr898gi/5+S422hiic0MB6d0OaFkKSRoRyAAvPACiS81lSQ6PMwcz+Fh4MUXgc99jge+fTvw4x+zNNTcuVzn8GE+nQ4f1ukzhw/TiFxQoEnz1Kmxdk4/TqhoYB8bP8RplzQ97Jpe9kw/KZROVFQwHTM7my9p0ZyWBrz8Mh/+ra18HhUX61TfOXPcU32dRWXsDp6KivHRHpal7Z1+SS/ajKVkwxCmT/i9cJGevE6J8KGHvKVHea+uZr758uXu9iI3uIUSOaVLTztZIsnSSZBuOuU11wAPP8xCoBUVrEry8MO0Vb70EslOmtNccw2JrroauOsu1iVLSeHyn/yk3v7QEMkVYLzNK68w4foDH+AxnTtHIpYexrfeqp1JZWWaWKN1JglkrPwSpwtpekmZTo+5X5w4waG0S5hFRWzHK62fOzs5dBLlMTDAeRfuAe3Vb0iatOXmcn9Ll/L5Jeq7H9Lz28t9omAI0yeiuXDReLm9pMfqaqZbzpoFrF5Nh9O+fTQLxFMuy7kvV+nSDdGSpZ0o/RjeZs2iUff550lut9zC6OyREarbRUUckMOHub3ubkqOIyP87fbbKT61t4+tMNLdDfzpT7zzhSHmztVxYBUVJE6AxufvfIeVS/7hH8bHgMYCebpKL4pw8JA0w8VoRgOxYdq7ib7xBp83117L762tFPYbG0lw8pDu6tIPaGeYj5il3ErJifblXCca0kt01Eg8MIQZBZJx4bxsNN3d/E9+r6oiiR46xCyecBMurn7jbtJlNGQpROnXO1FXB/z0p0xfGRlhefqDB6nbiTH4ox/lstu3c7vr1ul4rVCI9s7qakqhR44AK1eSdJcvJyN0d1PvXL6cv19zDc+rqor7uuYaRoCXlHB7+fmMrampYeBsPGo64E/aFJumA4m0ZbrNtY4OSn2CwkJKhnv2cH6JmUge0G7S5Guv0XZvh1MinUqkFw8MYSYQsQTYeqn6Tgd0YSGdxo2NY22mXvCjjo+TLr1UcT+IVqIUtLSQLF96id83bCCJDQ6S5AoKtMNHYrCuu46eiIMH6YUTe8Wtt1LC3LmT5PfrXzMc4fbbWeLn179mHbWdOymFSprVzp3UQZ98kv8XFVGc37CB5Gw/t2XL/J+bE3KBwyGMPTNeuM01MRnbkZ5OAnTrOupmQsrP59y3B8zPlArrThjCTBDCBdgCTIuUwgTOYq9u3SF37Uq8dzCmkBQ/0mW0UqUd69ZRyhTU1lKynDOH22tvZ6xWZiYlx7vu4nLHjtGFK8fX00Nivesu/v7887yDc3O5LMDvIqIDlCrXrSNjPPkkifjdd/kSZ1JZGYlV8Jvf8Ng2btS/RZt55KWee0iZiYKbWemBB2jJePllCu3p6XxGfe5z7g97NxNSZSUlUmdB5JlQYd0JQ5gJglfoz7ZtNLKfOUOjOqCLvd5+O43jbrUvY/UO+lHHxzl73GyXflXxeMhS0NJConv7bTp+liyhGt7WxoF95x0OwLJlJK8dOxgJHQzqVKnWVt7tTz9NcVrSWdLT6dWQgNj586mWAywz9a//SrX9zjt5LpK0vWoVSW37dh6bkGZeHvcBMAwqIyM2O6cfm2YS4FZt3cnR4TjbTa0PJ5HONBjCTBC8nDcvvMD7WkivpYVmsqYm3sdXX+3uIf/MZ2L3DvqJvRyX1RNL0d9oyPLAAUp4dmmtro4DIlLmm2/yzguFdGHIPXt0x7DHH9f7nT2b9sr163VU9R//yJMvL6cE+Ktf0bZ5yy1cJieHhHfokA5dev55EvTatXxw7N1LUrUskuY77/BVXs5jPHiQ2ztwgGaD116L3s4ZSTVPolruxK5dPN1Vq/Rv4bqNej3IZ0oLikgwhJkgOBtBnTpFbbKzk5JlSgqJLyWFdqOhIUqdFRVjn9Z2Y3kiDeVRCYB+pMtoJcuiorG2w7o6/V0+/9Vf6f+2b9fS49//Pbfx3e+yPNwll7Agx/LlFOErK0lgZWU89vXrGas5dy73e+EC9/PHPzJr6JOfJEE+/TTwkY9Qqvzf/5tq//LlXP/mm3kcq1bx/Y03qKLL8Y+MaDtnaSnHI1r7ppuUmWS13IloY3ynWpjPRMMQZoJQUaEbRvX303QWDNIg3trK34QsR0b4npJCgcXerS8eO2VM3vFYmpPFooaXl5Nsdu7U9TBF2mxpGUukLS0kr7w8nRpy5AhF5d5eiubDw5REi4ooPZaW0vZxxRW0ZebmUnK87jo6fNraKG3ecAPF+0OHuJ/bbuOdf/o07af33afJUgg9L4/kWFWlj/HwYX4XO2dqanSk6ccBNAGItf7qxUKQTphc8gSgpoa2SClsIK12Fy2itpmVpetkjozwXk9NJd+IShMpn9wvwnWFBDyC1WNRx2OxWZaXkyz37eP7ypUkJVHVhaSKikhkixaR8LZvp2fi2DEGDM6dC/zwhwz96eujBHn2LHXL/ftJjrLuwYMkxmee4ZOpu5vL/9M/8Yl26BBbOA4PM73lpz/lskKWR47Q5inkuG8fj2fePDZikofA0BDP8Te/oeTqzI9/+mld+CNJiNR61w2RWqYYjMVFS5iJrP4jDp+FC7W90rJ4fwG0U0qRAsui8CPNohYtiq7vSrRwa0ERtqFZJHV8715mydhRV6cr2YaDXTLbuZMnLYTzxhuaiMrLtUR68CBPorMTuOceXbE2FCJJioE2K4uEOjJCsb6iAvj97xmadPYsw4t6eihl/vu/U2rcv59VJDo76bQpLqYT55FH9HbfeYfv588zhOHxx0m6oqqLdNzSwoGeM4eB8L/8JYnyzBkWCTl8eHz8TowIl+UTrhamG2Lp/XMx46JUyRNdY8/en7y7WzeB6uuj43fpUvoFjh7VebwXLvD1xS9SA5w26O0d68Cxq65OHDhANXnVKkpq77xDqW/fPhLev/wLbZGXXsqA9bffpuFXKUqfLS0k55dfpqh++jSD0+vr+S45goWFjMBOTdV19rZto53yuedos9y/n6QsarDUNUtL4xNMpL+yMkqoZ8/ymCWMaft2TpTeXhIn4H7e69bx/dVX6YG3LJLzxz8efwC8DdHmkYfDRKnYU6kQcKy4KAlz1y5qYDU1Oqe2uNhf9R832PuTFxTwnh8c5KQeGKDmuHYtC3XU15MHSkqAT30qcWQZrg1FQlFaqh04YosU+6MTRUUkrmeeoTNF0hkvXOBd09nJ+MeiIhKfUnyqnD9P7/Xs2cATT1A6fPdd5oXu3q1z9VJSdMe3UIgifloaj0kpEt6Xv6yrHHV08GIHAjw+pXihAgFKskuWULpeu5aSYn09yV5y2J9/nhLosWNc/s47uR2786qlhWNUUaE7Ynp50cPFZE4BJJLgploh4FhxURKm5GlnZOhiwMeOxV6YVUIt2tspTAC6fUVXFyXKZcso0GRkTKFJ4pbd4wd2W6Q4QtzChgCSz+9+R7KRQPSCAj6xlixhPGVTE7d3//2U5F5/nQNZV8ftSf/iJ54ggXV2cv2BAdoO+/pIhFLCp66Oyy9bxm1LOFJpKe2cr79O1b6/n+ff1sb1WlooQebmkuTsknFdHQPef/97kuzICB8Es2ZpKVSIc2iIY5OezmN/8cX4KyFFQCz2SzcISR49OrZdRbwEF0+JwqmEi9KG2d1N4SQ9XavPKSljq59HA7EDZWQwS6+jg9yQn08BaO7cqVEtOm785jckA7st8pVXGEguUqdk7Yiqft11tD0ODVEEl8o899xDqbO/X4vle/bw6bJoEe/WWbNIjHPmkLguu4z7lVaY8+aRJPPyWKEEoMSWmqq7cT35JP9fuZLxL0ePkryU4oXJzdWBsXV1ZIzlyzXxv/MO9/3+9+vk/rQ0/jc4SCZpaBirnkuVpL/5GwbUWpa2aUaJaPLIo7VfOmEvVC2mpePHeWninbtTrRBwrLgoJUwpkjowoPuSjIzEX+qxsJD3r2T01NaSC8TkJfuebpPkz5gzR5OBSFUASWXVqvFhQ0Ig775Lcjt+nIT2kY/obJ1580hWIyNaeuvoIDk1NPDubWqi56ymhgPa2soL2NvLJ9LwMMlOPre1aVHphhu0wyYQoF3k9GmSb10dnT0vvsgnWn8/z+O3v+WTLxQi0UpU9/bt/D5nDqXWtDRdYemmm7SkvWoVl+vvp5R7zz1U4ZuaIkuZljUuaN1eqShcT594UFPDyuqiALS18TRDIR0OG8/cnWqFgGPFRUmYK1bQqWqvC+gsexUtJGOipET3Zc7KIiFLDcvWVpoDQiF65qed0bu0VKupu3dzAIU4pV1herpW1QGSjJTczs3l/zt2cGD6+kiYGzYw0HxoiMRZUMDB7O4mMaalcZtFRfxt9mwO5pw5HNyeHpLf8DCdLg0NzBoqLCRZZmeTrIJBOpbe9z4ue/PNTMVatIgX68IFHsPVV5P4Zs/WNsydO3k+c+aQ/D77WbLX9u188r7yim6VKBB39oIF7kQ5BeIwAS1ZtrVRKxoYILmlpnIIRPNyElw0Ns6pVgg4VlyUhCkXT8pXycWT2LNYjN3iKU9J0QR57Bgds889R3W9s5N8cfnliTV6h2ulG0+KtyskkPv553VwqaivIn1K4QqxTYh+96Uv8f9vfYtEduedHOw//YliU3c3B2pkhKSclkaV/pVXdHjQvHkkS1HjJSOgqIgS54sv8re0NL5XV/NJODDA/VRUkDDnziVJt7dz35s2USr88Y95bpJbvn07z6eujg8HCSMCKBHfdRe3deSI7jkUCIwlznBIgMPnxIn41HGxL0qXUynA0d7OU3GWeAOid+LMlAyhi5Iww128WL15TpWjtZUTubiYT+mTJ3V6sn1yJ8roPSEeckDbL2+6iUT2/e/rKj+Aljg7OrQHeP16LakBwD//M216Z89ykA8dIqFefz3De3p6eKfOmsXtZmaSAFNTKbUtXEgxPRCglCsOG6V4x1dUcNmeHl7gYJAXdvZsSo9SLq63l1Kz9EUGKAW/731cPzOTF86ucgP6CXXLLZQ229t5fnPm8Ol4//0cp+rq+MrBTRDkYb94MQVwgEPf18c5K/ZLO8E5nTihEE1QX/kKh8pNyJgJGUIXJWEC3hfPrzfPKYU6e5hUV/PzunVaa0xLI48Ipp0989w5qqoSRlRWxvzuxx6jWn377VxOHCCrVuniGna0tPCu+vWvSUb9/RyMmhpKmAMDtGVaFgnyiitIbhcuUPpsaqLU9/rrVHXr6kiW4iDq6OBy3d3UMevrudzQEFXwnBwdFiSFg7/3PdblvOsu7vO558ggJ0+SoA8f1rms9jAq6TP02mucLPffr8fAr5Tpge6eibFfysO+sJBBDadOUT0vLaVSEKnMW2sriVZyCqZryJAfXJRe8nDw481za3srPUwkY0K6TIp6Hm0f8imJtjZNFgcO8ERTUqjKHjpElfcnP6Fa2tLC5ZykceAAnybbt5OEBgZIkoODOoA1EOB2xQP+7rv8/OUv0+ssKY/vfS/XzcggWaak6By/8+f5u6jsEkfW0EDRv6KCzp/Zs+nAKSigOv/znwM/+AGJ9tlnGfQeCnE7Dz/Mc7OHTkmMpvQNsXvM29rC90Z3IoaiG4kIJ5L0yNOn+Xxoa+PD/e67vQmvrEybYKWNrlJa2JjW0SBhYAjTAftEEDiJzau5vPQwefBBClCx9iFPFDIzfTTLiuYmvfRSTRbDwySQjRspoa1cSUkzL4/S2fDw2HUlfbKoiMbd6mo+TUTyk/AiaVOYl0e1uL2dx1hRwTu5oIDEd9llNAmINJmXx4sxNMR1srO5TcviPletooSclsY7+5lnSF7PPMPjP3uWF+z550mQO3cyb331an2xbrtNB73bz0tMFADXl3GaMyd8b3Q3xFDWLd5wospKXsbjx3XLiqVLKQR4pQzbc9C7ujjMAwOc58A01J584qJVyb3gx5vnLInV2sonc3Oz3oZzO8EguUESU6aE0Xv27OirFQnpBQKUvg4e5JPg8ceplr/+OvAXf8GePDU1JFKJ0RwYIFlJA5jDh6kup6TwWHp7ebe2tJB0TpzgoA0O8rdf/ILH+9d/zTv7xRe572XLeFHEcZSaqh1I/f3chtTDbG3lRbhwgemLc+bw4rS361a7p06RWEdGKAkrxde771JnFezbp22WAJ+aXV3aY15aSgYJ1xvdJ2LpEukGL4fmiRO0fNjDfux1Md3WEz+ADM/atf67mk5XGAnTAT/FCOxSqNhvWlsp3OzYQc1RKoXZt/O5zwFf+xol0M98Zprad4T8iooYOpSWRm/x1VdTAty8mZLcsmXAj37EPPCdO0keb7zBp8rKlSS8M2d0NZLOTr6fP08CO3hQS6AdHbxTN2wg2f361/RKj4xom2dJCUkwK0s3RJJOkfv3UwJtbtYtJwIBvqR4aU8PyfPYMZJsTw+JTwqNCMlt306psq6O5715M3/fuZPn9YEP6CpMsm56OoPy16zR24kQUuS0XwLj7ZfRquNupqRHHuHv4UxRXusBnMf/+I+MzJpI7WmyoKwJLFYaLVatqrK2bds32YcxDnZPenU177n2dt6zs2frpvXf+MbEkGK4PHJnaFHE5mfhqhWJJ3xoSDca++UvKTG+8w5J89VX+S72waeeIrF2duq+4d/7Hpfr7eX3lhZdOHTePK4rto6sLF2BvKpKd4Q8cIAkKCWgUlO5vWCQ2zh3jnfthQvcdkcHyWrzZopFg4MUqXbvJtHn5tKMoJSWUiVae80a4BOf4JPv8ceppg8MjLXnil5sz/h55RVu27Ko89olzJ6esSFFch+OquR+HD7RhhM99ND44HH799Onx8YmFxfr2GSv9bza6E71GOPVq9V+y7Kqol3PSJgxwC6FNjfT5FVSwvtXWskMDsZu9E5k6bmYINLP3r1jnRbLlpGIpHrIk0+SgLKzSYaDgyTLF1/knZadTZJ74QUOTlUV7/xDhzQBtrbyv85OrtPczMyC2bMp6XV2kmxSUigpPvssmSIY1PGdGRna2ZOZyc/33AO85z286zs7KT02N1PSCwbZM6i+nrbHuXNJrBKqlJmpa/QND5M9GhtJeNddx+3Z7bnr1o0tSbdzJ5nj2DFu4557OC633jrWpumEh/0yUep4OCmyooKn193Ny9bdze8VFWPXa23ltNi7l+baCZ+bkwxDmDGispJP19tu4/1ln+uhEE1xTs+6HxIMpzYlCmHzk+1ST0nJeKfFiy+SRN58E/jQh2h7WLOG5LdmDb9ffz1te+npJJcbb+TT4x//kRLarFkkyb4+rtPdTWmuoYHOnGCQgxoIcF/795Ogliwh6bW16Uyhjg5KlpmZfO/o4HGdPEkzgAxkdjYJ7dgxSngvv0yS/7u/4/8jI9oYJ98lf7awkKp4ZiZDmqqqaHvZ59B+pFqRFCaZM4dkKWr4ggUkzaamqK9PIsKJwjk0T5zgpcjN5bMjN5ffT5zQ64n5SVKKg0HOzR07kj9npwoS4vRRSm0G8B0AAQD/ZlnWNx3/q9H/bwXQC+B+y7LeTMS+40W8qsSmTVxfmhKGQpxQ8+dro3ekFrz2/be2Jreqy8iIGlt1XRw/blWL5Aa3Oy1WrOC79N9Zu1anDcrvr7xCieqxx7j+Bz/I/3/zG5LekiUUm3p7aYssLaXkWlJCQgsEKF1ef73OGDpyhGpyXx8HWilKjw0NHPCyMpLi/Pm8ywcGdBn8L3yBRPad73C5116jB7yqiiQ3OKjPPy2Nvw0M8LhKS2kzXbiQx7Z+PSutp6QwSgDQ25FMn8OHeY5Ssso5phIkH+E6hUMs2T1OR+TZs/SMl5Vx+OfPH7t8KEQpsrSUwywmY/lv7VqS5mOPcW5O90pEfhC3hKmUCgD4AYBbAKwE8DGl1ErHYrcAuGT09QCAf413v4lAoqS5hQs54U6coHlv6VLe82L09gpD2rZt/P5fe01nHAomNURjwQKSgDgtUlLGBm6LGnrihP49P5+iyN13kzh+/GMayBYtohp84QJJ5/Rp3oGiljc16ZjKW26hXTQrSwernzvH7QUCFIE6OnQJtQsXaGdcupRMUFvLfXzhC8zseeIJkn0gQGZ47TXgf/0v4NvfJmHOm0ci6+wkG2RlcbuSQSTZPatW0WY5dy4l1Oee09XiMzJ0YPtll4VXwZ32ywnoEmk3Jb37Lsly6VL+PjzMIWlq4jyUtiu9vfx/6VJt30xP1x7xnByuMxMqEflBIlTyKwEctyzrpGVZIQCPAbjDscwdAH5mEa8DyFNKlSZg33HBi8j82h6FcIuLeY8UFpIPjhzRT2LA23Z08OD4/efnjyfseEI0fMViukF0tzNneKDr1/O9qoqSnh3l5cCWLZpEV64kOTU3k0gPHqT3WwrrHjlCNbuoiGRYWEjJbv58fp83j/8DlDQzMvj/JZeQZFeupESXnc2nS2Yml9u5UzdQW7aM67S0cN8jI+wY2dtLT/aGDXxiSf7q3/wNj29oiGLTnDk6s2jVKv7e20v76xtvcF9z5/LCP/+8TpWxP0x8quB2ONXxRGf3iClp+XL6vBYu5NwLBvl/UxNPNRQiiZ47x+dNdjaXnTWL6wG0Y/7ud3xuScui1lb+Z8KKvDEPwFnb97rR36JdZsIRb40+O+EqxYlXWsr7JhikM/jrX6cn/dVX9WQCNB85919Zyfs72U2pxtnJ7NESIv1IoPWtt451Wjh7+tghvX3uuosH/sYbJBqlSHbLl1M6PH1aE1JjIwlq/nxKe1lZXCc/n0RYWkoHztq1fO3ZQxIVD3heHtX5EydoW83MpPS3Zg1rlhUX87eFCyki/eY3ZAFp11lVxd9OnaIEK5Jlaiovxq5duubmz3/OFK73v59S5e9/z6ektNUQsjx3jgyyYIFmGJ/wo47HC+fcHx7W2TqhEC+DdDYV22VJCcnx9Gk+e1padCGqri5+f+st/j9Tw4oSQZhuV9cZq+RnGS6o1ANKqX1KqX0dHR5leBIEP1k9XqipoWAhHsMjRzjhJNg9FCLfVFfzPuvpoR+gpUWT4Jo14/efns4onWQ2pRp3Q3qpg01NYwOtRWJqa/PeuMRpilibl0eRRYppPP00T7Knh3fbyAhJtKODOmJGBtXp7Gy9H8kAOnuW62VlcQCDQf53zz0k28xM3uG1tbzDX36Z3vBnniEBh0I8huPH9bF9+MMkvoMHeZw33UTSHBjgMUl61tmztGX+xV/obJ+uLp7L5s18CEiM5oEDdI65ZfQ4L3iMYX3xZvc4535uLk8/P5+CuSRNjYzoCkZNTRTMm5t1l+OSEj4jSkq0VNrcPDPzyIHEEGYdALu5uByAU0bzswwAwLKsrZZlVVmWVZWfH+esiIBYW4yKKi6ewoEB3ieiyuTmUljJztats6uqSKaHDmkS3LLFff9btugUS78B7pGkjpjU8hUrxmelLFhAL7DXBsvL+ST4wQ9INufOkQQlzSknZ6xNr7IS+NjH+H9nJ8Wa/n4O4MAA/29s5N16/Dg/5+fTaRMIcNt//COJvKqKF6Sjgxdo9WqaEnJyaLTLyuKFSkmh5HjkCMlVKV2a54knyCaBgI7vXLKEF2ZoiE/AoiKuqxSJuqmJ4UYADX8vvsgL7JXR4yzpluRwIjc4535xMU9XKd0uaWSEr54ePi+amzk3581jQScpPi99qs6f5xDF2rlgOiARhLkXwCVKqcVKqSCAuwH81rHMbwH8pSKuAtBpWVYYvW5iEGuLUVHFly8nIQJ8Ajc363xamTRSdKOwkFrt8uWaBBPV4jSStOFlA/OllrshUsmytjYeVEEBYxSDQX33S3uHkRESXH8/SWrWLBLV8DCXnz2bg2kPRk9P5/pLl9KBdP/9JMdAgKYCpSghSo/w1lZ6xi9c4Pb37uU20tNpAujpAf7wB97phYVcTymmd0oOejBIPbO0lMvJBX/nHV7cjRt1O+Bly0j6lZUxpT/6ye5JFJxzb+FCNuWzOxxTU3WkVW8vL9X3v89ggV27+Cw8eZLDKM8babdkwoo8YFnWkFLqswB2gGFFP7Ys64hS6q9H//8hgGfBkKLjYFjRX8W730Qhlhp99mLBUg4rK4tRJEuXkieCQU6kFSv0em7q/mTVCPQML/KDvXt5BwE6jUhiEKU6UWkpfwuF6Og5cYLf29t5R61dS2Lt7SXhiY3yRz+iLfDqqxme1NCgM4ne+16tpotU9w//wJQq8Uj86U9Us197jSRWX8/9nzunjXZFRSTe4mJKnnPnUjLu6+PF7Ouj5Dp7NqXhtDQa9a6/nkGHIuWuX69tlmvW0J55xRVkijNnxpNmAtTxeIsF2+E29958k0N74gQJMyeHl6u7WwcydHbylZKiAxQk3n9khHNfnKczTS1PSBymZVnPgqRo/+2Hts8WgL9NxL6mAuzFggsLddfXUEjHXy9frrsiiFozHUvy/znA1A4JaAdINvbe5HV1JNTNm0mg3/oWvcypqTru6tZbKZn9/Oe6f8/rr5OgNmwg+f3pT7qK+h/+QPHnnntIWHv2kLAefRS4916G8Bw7RiPxFVdwmxkZ1COLiylpLljAO7uzk+S3YgVJtbSUbCBtfwMB7rezkyYA8ZgPDVHVzszkdoeGeF51dVTP6+sZg5qaSoIXZ5mTNKeAOh4OK1bo3nL9/RwqSckvLKQFo6yMAkJ9vfa9paTwc14eCXamhhUlhDAvNlRUAFu3aiN5SQnvM6c67QyKn8zqRBJe5GxZ0d2DsbnlYsgCeOfU14/fmDh/HnmEd5S9N/mBAyTLgwe5/ic/SalRpKu8PBLU8DAHTUhWYlg++UnaCRcvJtGlpfHJ9MwzHLw5c0hYSnFAH36YNlWJ5Txzhp0hLYt3/4kTPMbz5/kEKy8nCe7aRbLs6KBEK1k7l11GhpD4SxmTri7+PjJCtpBe6r//PdUKOX9huvJyf03PbNdhotTxcJDg9txcnR9w+jTnjVgjxHYvz7rWVt2eSRxEMzWsyBBmlJCA3qVLeT+0t/P+f+AB/yX5k1WoQOri+oVvtdxNylywgAf9wgvszGjPqwZ0JXLJusnO5n+nT1MaPH2aFc9bW3lX5udzMF97jYNSXKy92XPn8o781rf4PjAAfPGL/P222+hJy8igZDo4SNKUsvd5eZRSm5t1nx+pkFtXR7JMT9du46YmLpOVpRsxiRmgqIi/z5nD0KKHH2aVeQmzamzk56NHx0uXCVLHkwmZlz09uvlmcTGJULzl4g0H+FnSJPv7ddCD9DGfdtqUDxjCDIOaGsY2HzzI79IuV2Iv7ZVc/E7mWHsGRUJRkXcztKjhR8o8c4YEJ6mAUjZNIJXIX3iB27vsMjpPrr2WgyWtI9rbqev19lJKkxz0Z57hU+nkSRK5pFIODNCWeO4cT7qpid7wX/yCx5GdrQMKi4pIsADXTU+n2DY8TPFIanNK+115imVl8a4PhXQnSalidPnl3M6hQyTbI0eY0bRzJ8egvd275mUC1PFE2S+dkHk5PMw5KfkCc+fy9OvreTmysnROweWX6+zWzEw++3JyeAm2bJl59kvAEKYnamoYeH7mjO4zvm8fJ4hEkAjsdQMjSY72YHcpxdjWxvhqr/4piYIvtdyP88ce0N7fT1Fj504STFWVzq3+938nMRUVkSxKS0mI115LwpFiwR/9KLf78MNc5o9/ZFD54cMk1upqEqWkLDY3cwAffpgS5rvvkuD6+nh3z53LYxwZ0Xd+aakOVxoc5HmWl7Pi0k036YB5QJeDa27WrHHuHI9h71566NPTKQF/4QvczqWX8uEQQ4HgqaCO79pFsjx+nKeWn09J8/Rp+tRkmYYG3UE5FOK9sWiR7mTc0cEQ2PXrDWFeVNi1i8JCTo5uNaEUBY6amrFP+p4eqiXf/S4nzMAABaMjR4DPf37sxBEPu2RPyORsb0+MpBm3Wu4GkTJFLXcGtAMckJdeIom1tOgofcnCEQ/55ZdzW+9/P73gH/iAzr9esIBEnJtLtXbuXN7FTU10pqSnU0fs6GDq1Hvfyzs6PZ1kWV5OW2VLC59Wf/gDpduUFB5DYSEHPRCgSt7cTBJ94w3dlfJjH+PFHxjgb5mZJGEhXGl/kZUF3HEHiXTfPpoSpEBJefl4ddyt9uUUQkMDh1mirgBe7vZ2DodXPPBDD/GecBLt1q0k0plGmqa8mwekCI7k2AL8nJHB+9UZbH7+PH0RgI69PHuWKr2gpoZcsXMnk1BGRjjJBgcpbMXbOMqvuuam8o2JyZw9O/xNfcUV46UoIZtPfpLeb6UozS1cCHz60ySt7GwS4MqVDBP6wAd0ebiXXtIhPi0tJKRTp/gEkGDAQIDkVVFBb/qLL3Lg9+7lds6fJ5Hfcw/jY8SxlJ9P4nvrLQ64xHw1NWmi7OtjgHp9PS9gWhpDHfLyeNyXXUYiXL2ax3bppcw/X7OGUvP111NSjlTz0j7GznH3uDZA8u2XZWWc1/b57lam0Akn0SaiHuxUhiFMD5SVcQKIgRvgZ4l8cQabi+oukyY9nd/F/mkv1CEts9vaeI9LsPtEhGK4qXqRcpf/DK+2CvZA9qoq4OabeYevXauJafFiXVxj3z4S66WXsirRSy8xjEhaXpSU6AZJIyMcdImizssjCZ88yUHu7eV6CxdSin3ySXrlzp/nXbt4Mcnw7bc5wPn5vDA9PdxeQQG3v3Ahj6O1lTGh99/PCx4Kcd9nz/JBkZnJKICzZ3kegQCJv3S0loyz4IYPZ49fdTxZ9kuAArnMS2loJk6ecN7uWIl2usIQpgc2beJF7+mhJiZtXvLzY0tdFNvlwoUUViQg+MIFXSorUaEYsUojUWf+OCuyAwyz2bGDRYMHBkg+Tz5Jz7Jl8c66/36SXFERl8/IoAf9hRdIqmvXktQGB3Vic0kJpbi6Oup/+fm6cEdbG6XWvDx64I8e5b43beIgS3ZRcbFWEbKySHZSgPiaa7QzKRTicaWl0Z6bl0dp85e/pP31L/+ShP/ww9x+aenYh4az4IZPZ89korKSkR6WRTU8GBxfptANsRLtdIUhTA9UVrJpWVUV79vBQX522iQFa9aQ/AYG+H7mDLXEQGB8k6nCQt53JSW8fwsKEleVyI8U4lbyzXdBDrvEZK/IvmwZ8E//xFTEv/gLksrtt9PbPTTE9wsX6FFuatI2zltuoRg+MkJ1t6GB0mZmJlVjsTfOmsXlr7uOA9vWxqD1OXMY9P773+sUyL4+DkRGBklw5UoScns7bZ4FBToSOyOD+21s5O/veQ+rqgwNcXuLF3OZQ4d4XidPasnyk5+k6u+EPEjsY1Vby+O0wa86PlG4+WY6eDZvpvVh4cLINvVYiXa6wjh9wqCykl0e/WDLFmqR9fU6w6eggIbvRx7hPdfTo6tRFxbSEdzcPIXa7rohXIiRsyL7kSOUDlevpiRYXc2TrK3lk2R4mNKiFOe48kqG9dx2G6XQ1as5eIEAny6pqRw4SaHMyKCDpqKChPab31D0nz+f9s++PkqH8+bp5jOHDlEN+NWvdMMayTl//nkS9YkTJN45c/hkLC/XdcvS03keH/4wt7NvH8lZKs6fPz+2+CnA89y6lQS7fj3P/6mn6CRywI86nmz7pR3RpOrao0Kk+3AoND2aoMUK0zUygaipYXhQWxvvvcWLx6ZN9veTMO39zpNRBkviMcN5yyU80R5iFHj9FaCsFDmXLtY/HjxIRpde4kKY9kD2V19luuL69SScAwdINCdOUJIrKaEN8cQJqreSpqgUg9cPHiQ5PvEEf1uwgMRYXq5VainEITnc/f2sXitFSE+f5knNmcOYyoYGElVOjm6rAegA95YWts44d45qfG8v1egrrmAZt6IiHmNrKz9XVFBtt2c1uQWqS8jVZZdxTG64geNxxx3cr01y99MZEkhs/ngk+E2qsMcTJ3s+JwOma+QUQGUlhZv3v5/3nTS1l14/iahM5Ad+1XInRuaWIe3J7fROA3x/8smxrOq0xzkrsgN05nR2kmTuugv4+Mdp38jPJ8GIN3zNGpJLZiafMpdcQgJsbKTHuqmJBNzbq73ZK1dSAn31VQ5sMEgpTzzinZ1cVlrnlpZSKkxL4z4/9jGeQ1YWvdtpabxQWVkk5eeeA/72b5nrLlXUi4u5n337xnaLBLicSNmvvqrjUy+9lGT5yis0B0iWwyjcyHKi4WzMF00zM7HJh0IMZN+3j88ne1TITIRRyRMMe2EOgAJKdTUn1q5dWupraNBhF8l6IvuJybQHsluLFmPwQ3cBv9iO9GuuoEp7773uTbt6emi0sheZKC+nY6S9nU+Nw4fHriOE2dJCIlKKd9uFC5TI5s4lCR47RsKTmnlKUTK75x5u51e/4vJ1dTwBaWKWnk4Jdv9+Lr9kic7qOX+e/3/wg1TTDx4kQdbW0m5y1VXAz35GhxTAQsd3303PeTDIc7ntNr5LPc1LL+Wy9r5H69fze3U1JctrruG7LBMGExms7pZxtnUr7Y9+mpk1NPBZc/CgLpw9MMBw1Jqa+Ob0VO5xbggzAbBf4GCQgtH8+ZxA9jSy06epRa5Zw/9Pnwa+/GVOihUrdBW0REwUP6mSmZlaNRcML1iClPdcwdCcjRtpV+jsdLdl2gPY9+4lOVkWJUXprPjTn9KL8NJLvKtWriSZ/PjHvDuvvprqumXpnj/792ubYmMj9zU8TDIeGqJD6dQpfpZc8dRUEmMoxP0UFPB4z57ltq+9ltLef/yP/H/jRh5zdzeXaWsjWR46xNftt1NiXbCANsu77+ZFKSmhd/zDH9aecaeUHQqRiO+4g2S8YAEl9dxcYPHi8G2OHUiW/VIye2pqOATSXrepaaww7BXqVlbGWGJ7oLuUBIinrFuyUocTBUOYUcDtyQfoHNxTpyhADQ7yHhwZ0YWGCwt5f2ZnU2jKzmZ0jKQoHzrEeG+ZKIODEzdR7FKmqj2FwJt70XvlRmRJGqCQphMrVmhbZkkJRZTbbqO0tns3yaOigs6V/n7elZ/4BL3gv/gFnxiWReY+d44S6rPP0vkjFc5bWzkA0jQmN1d/njOHAfCZmXxSDQ3xOAsKuO2TJ0naf/M3HHRp1ztvHkn7Ix+hJCq1MwEG2VoW/wdYwk2cPZKu+eEPc7vA2DRRkbK//32S+qJFXGbhQkrqDQ0cS0SnjifDflldTQE9I0NLh7294/u1eYW6bdpEIVxyHKS99Jo18cVf2lOHganXstcQpk94PfmkK+zhw/xNwgalA6zdlilO2u5ukqsknbS1cd1AgCQbCukWqPFMlKKiyGq5XcpUtaeQ9tR2DNzxUagli4AVi1hx6K67SEKRPOYPPEDyGBlhFs711/MgfvITks1115EdXn2V6rX0cW1poQgueebHjtFuqBTwH/4DpbXmZpIXoMN6lOJxSOk2qWIrpdkCAYYtbdzIwgCdndyG5LYuW0ai3LCB5NrbS/sqwAt9113aXjlnDvdbVcVzFenSmSZaUAD83d9pFhSn6uLFYaXLic4d7+7mPBXpMD2dp9zdrSvZ1dRwaK+6ivbNEydItBJAkJura2bm5lIwCAa9Cd6Pqi2pw3ZMpdqaxunjE14teQ8e1BXBgkFqhsEg79eREW0wb23lRDx+XAtIwaB+MlsWyTcU0mpOU9PETZTGRiClsQGDd9wFaxGloO6ixSSNhgZ/cZl2W96mTVSxy8sZgiPZNg8/zPjFG2+ko+X8earVb77Jdf/wB7LH4sXAZz/LJ05zM9X6q6/m4EsfhcxMxnNlZfH38nJKmTk5ut9PaSnjQ0+c4PGVlXG7NTXAV75CybipCfhP/4lkd+oUL8I112iyrKvjE7GqitKovWumPU1UxkJsogLH2PnOrEoicnJ0yTYJOA8GOeyhkA4ZXb+eqvq3v00tqK6OhFlfz+Hq7+cD+fLLub5XLLEIHJEcSvE0JpwIGAnTJ+xFM44c4T1mWZQus7N5n8rTeniY96o4cKUEZDDIySbvgJYyAU5U+RwM0ndy5ZXxH7tfKXP4qmv+/Nufi3KMSkZ/Rjgp02nLk/4cUs3nd7+jyj53LhPqr7pKS3Xz53NgCws5YB/8INf7f/+PoktrK8N3lizh9t99lyR56BAl16ws3XAtPZ3fh4cp6eblUQxqayPpXnIJz+nsWRLghg28QHV1XC8YpL1T7lKpJp+aShXi6FGuH6mEm4+QvXB9x5MZf7lihS78JDbM+fO1/XLjRl1R68ABktZbb/HS5eaSYPv7+YyTUqPhYon9qtpSwBgYG640VWprGsL0ibIy3sd21Xt4mC/pbCDdV4eHKVRkZvJeF/+EaIEdHbq73qpVJN/WVp16aVn8nJamn9axeg6jqZMZc+k3L4+5tLEYGuLAffCDfD9yhAQEUOpcu5YnlprK99tuo/rb0cG78tgxDu7ChVzm2WcZFL57N0+wuppkKU3KAgGq0J2dOghWmqy1t1PK3bCB3xsb6YBSik+VTZvomNq+na+VK8fGXYojzFlN3SvPPkzcpR8kK/5SiKmyciwxbdrEzh/2ilp9fSTXjg6dzZOZqcuDpqUxTTgc/Kra0pxtqnQqcMIQpk9s2kSP9oULOjUZ4CQYGOBk6+vjRMrPJ2kWFFBjfPRRTqwUmwFkZIRC0sKFFLK6u8kbfX2cmKmpNAkCwNe/ThUpL0/7P6J1CEVjy9TH6FH6LZLHHNBZQDt2UMr7D/+BpFNWRolt1Soy+V13MW0yEKCoftNNPNnNm6meBwK6PW5mJh1Gt91GT/qdd5LUjh7lwYtnfGBA2zRnz+arp0e3/RWvvnS2TEvj/9nZJEhJwWxv5zLSeqOtjU+8BQsSJl1OFsIRk4TGiZ09M1NrP0rpRp25uf7VZWe4HeC97mQ1BvQDY8P0CZlIlkWyS00lWYok+Z730L9QUECyzMzk5Nq1S1cTs6OnR7fc/d73mMO7ejXvTcnplbTK6motqEjUSjSl4KKRUnyVfnODVw/zyy6j80fsgeXllNikw2R7u45HEU/35s18mtx4I+/K2lqq0dXVVNn37+cTSAr7zpnD/3t6uO2sLBKfiNdlZRw0sU92dvKCdXdTdF+xghd06VKdXfTcczoH/cABkr5UznUiDulyMvr2CCor3YvISM9y6eSRnc1hy8vTDf36++mX81v/wNkHPVG1EyYaRsKMAitW6PYuYq+Upk/SPbKsjALXokW6t0lTEzmhvNzbLuP2VH3oIZ1NIQ2pAN73l18evUMo6VKmG6Rqj2T3AByI8nLdcTE3l5ImQPX44EFKmq++SttnSwtJcuVKSpMrVpBot2/ngM+bx1TKpUsprt95p5ZOt2xhDKj0Kl+8mBfnO9/h8oWFlFo/8hGywL593P/mzZSEL72Uds777gtfST3B0mWy0iH9mnYyMnSd19JSmps7Onjcw8M83YUL/ZuGprqq7RcmlzwK1NSwqvrx47qCEcAJVVREgqyu1qWupGybswVvWZm/IPWvfpUcs3+/Jmaxb1ZVkUw/8xn/x9/SEjnzxy3HHABSUqyx3SU7OzVhCuxV2Z2QcB37hg8c4EGtXEkClRa6RUV8Mm3eTBFbqpinpFAsf+EFOn/KyugV+/nPeUe/+SbFIamK/p73cNAaG+mxACjFpqVxPcti9HUgQAnzppsozf7VX/G4GhpI6GvWsDjwmTN8+tlLtzmrqQPcbgTpMpyzB0gOYfrJ/7Yv40y8SE+fXvni4WByyScAlZVMAElLI1mmpOj+XZIvXlvLe01ipAH9n6g/mzbRX+E3xGLxYl1nUMI/YlVnInleo1IR3R62fooMC9at0w4VgAScm0sylBTFEyeo0ldVkRSPH2coUHc3bZLV1XQAvfMOCa+9nf/n51NizMzk6777KBq1tvLCjYzQjrl8OfvyXHEF1e73vEer5f/+7yTD9nbaVZ99ltsOd65TWADxCo3btUvnlX/lK5zDoRAJu6qK8/fQoeTWP5guMIQZJU6cYGz1xz5Gbe997+PkO3VKt4sRb3ldnfZ+243b4SauHWL3CQZ1GvL587zHY5m48dgyR0ZUZFumW5HhSBu24/3v1+0rdu+myv25z9EwvGoVw4lSU/nUuOceSrmNjRzE227TwYFz55J8MzL0/rq6tAp+8iQly+xskvDcuVz2Qx+i1Ctq+d13cztz5wI//CHtsU613O2c45QukwV7TVaBdCOWGEnL4uvttzl3CwsZiSX29ouZLAFjw4wabuERBQW8B8vLOcEaG3UtiOpqmszs9spYQyyuvTYxhQhisWUKXMOMnKq5Wx9zgFLmu++OjV9yquWrVvGEDx7kNjo6uFxBAfD447R7fPrTfCp96lOsq3nypG5QduECB2nuXGYY3XIL1//BD3T3SqV4jOfOUZKUOMvyctpRfvITkvOdd+rSdR/6kH4Syjn6UMVjQbLsl16e6u5u/icPbjH/nDrlrxNANCXhpmpRDb8wEmaUcMtEKCmhT0HSoiWLUMIxnNKgVzZDMDi23JZUfYm2HUY4xCtluiJSKws7nKp5URFtF9u36+pDkk5iWXTeSArjjTcyF72qiup8VRVtiy+/zMErLWVpNskL/6u/0iL/nXdymRMnuNwll/BYd++m+G734t92G6VWeyB+Y6NWx6NQxd2ky8mCl6c6J0c/38T8Y1n6/3DmH78ZPH6Xm+owhBkl3CZdIEDNTgSXvDwud911NKs5Sc5tG2fPMmNioiZUPLZMX2FGXrbMvXsp2QlzlJdzoJqa6FH7l3+h/nfjjRzIrCwa0C69VMdu2jF3LuttKsV0xqoqHbZUXk5iLSri9qVRWTBIAv1v/40k2N6ut9fYyOWqqnQg/tVXj+8G6UMV98JkhRKJxuKsybpihb5chYUUsqVRZyS7pV/zkt/lpjqMSh4lvMIjAHcPpFtKl9s2Skp4H9tTxzo6WMF93ryx6ZMTUfoN0L1/7OaDqMKM3FRz6QMkGBqiFHfddUydLC6mS/bdd3myHR0kylde4fISfmQ/mQMHSHCHD3NwJGwJoLQqKveRI/S+Wxa3d9ddfMlgCIkvW0ZidwvEr61lwKzz3F0eHLFIl8murl5ZyVPYu5dBBXv36t5ygK7JvGgR5yjAefroo+7zzq95aaoX1fALQ5gxwCsTIZo4M+c2vvrVsXV6W1uZETg8zMm7bzS66vLLE1cj0E+BYSDGlEmv2Ex7H6CmJorQ11zDWMnSUtogH3+cqjbAu0qqD0nDd4GdDO1ZRHbPe0uLTsOsr6dKD5A8Zdl168aSJTA2dEhQUDC+mLKLKh4uBXIyA9UBRm790z/p0qWnTlFo/ou/oN3aSwjwqk3pN4MnmkyfqQxDmAlEPCldzgl16hRVl9mzdWsagJ/lXo639JtfKTOmYHaBm5Rpr2pUVESyBFjF6J13GMKzezfV5pER1tOcP5953KJqA5oM3bKI5Ld16/h+4MD4Zevqxi7rFvpkPw8gZlV8sjzjTkfLc8/xmSQZaykpvGTPPTe2vYRXfypg7LzzWyxjqhfV8Atjw5wicNo129r4vnixrnBkr3KUCHVG6mX6ge8wIzcH0Isvju1ffuYMCTEvj/bJzExde/L976cUeOONHITDh2kIlpJuQoDy2d5fB9B2SyfCLdvYGJ4snecjSKAqDiReHXdztJw5Q0sHwAgtgDHFp0+PX6+9neGsAwM6zMg57+x20Zoavnp6dGyn23LJ7mmVTBgJM0nwqs7uFVbhtGvOmUNzXmGhLqcFaK10ItWZqMOM7Jg3j5KcOFAAVltXigMgoodd0pP3SOp2IuCHLL1CiByYao4er5Jqw8M6tVcKwoyMjF+voECHGAG0YgQCJNyHHtLzV+ZwXR2HKSfHXX2fykU1/MIQZhLgVp39u9/V+eRz547v5+OcfHbpYNEinaIm1YoSpc74qcouiMkBBPCkb7iBpJmezv8+/nHtULnvPhpp7Tvwo27HA6fN0gvhQohcVPGpFEbk5mjJyKBKLi3iR0Z4Onl549dbvJiSJaDbrohPzkmIU721RKJgCDMGRArAdZs8En+9ciWz+/bv5yTs7mbkjNvT2C5xSqEcSVlLdOGChAezO73mAGMfDx6kW9aeMSPl0uxB7W5qtd37HQ+iJcsIdktBPI6ecOp4rAHfbo6W0lKtUodCTPPNz2dShOynupq5AMuXM8To1ClKj9nZnIdiywQ0Ic4UL3gkGMKMEn662rlNHqlQvXs3CVPaz/T383txsQ4hst8UE/F0TkSYUUTVfHCQ9kipxl5ePj7N0C0TKNGIlyxd7JbhHD3xIp4uim6OlrIyHr60RklPJ2GuX6/3s3q17jV++eXcT1MTl7GTpZ0QZ4oXPBLiIkylVAGAbQAWAagF8FHLsjpclqsF0A1gGMBQLFVCpgr8qB5uk0cC1P/ccExRNZLeKu+8w4nsVHdk2xORTpY01by2FnjqKXZSTEvT1djtcY4CO2kCiSNOO3vFQ5YORFLF/UqXXohX1c3I0CFpa9YAn/+8Xt8+p5z7qaqipHnoEH1uV12lY4EBOoCqq7U9s6KCwgAwvb3gkRCvhPklALssy/qmUupLo9//u8eyN1qW1Rrn/iYdflQPtye72I0uXCBBSiplby/fh4bo6JEsCIBhHv39sfdojkaViyfMSOCpmjc26h7dUiDj1lvHt3kQCKElStr0K1UCkcnSh91SEI2jx0sd99JWnn8+/HW1S6Y33KAJDHDXXKQthUCKbjQ2MiVXtif7t5d96+rSbeztJQuFLB96aHrnj9sRb1jRHQBGhxGPAPhQnNub8vDT1c4ZQhEKkSSLixnKMTLCl7TVlYls7zWWk0PNNdZ0slhyd/2GGYlqboeQhmuo0VVX6R7dQkQFBe7B4XYIwTU2xqbfynrLliWcLAVuZBnNoUYab+d8a20lWQWD4a/rtm0U7Pft4/KRqvQHg6wz8vzzzP6xV9mSB68UqN+3j/OzqopzRubliRNj6x4AMyN/3I54JcwSy7LOAYBlWeeUUsUey1kAdiqlLAA/sixra5z7nTT4DcC1P8UfeohkCdBwLiEcw8N8lwB1u31IbhK3clxOQ7qbJBmPKpdQ1dytolG41EknnNKmHU7Ry/m/H5IUREmWXtk80ajignCxl875Vl3Nz8uXj9VG7Ne1poZF4vPyuI7EUa5Zo+eOfc4Eg3TySFsjKTw/fz7rv4qkWlnJZZqa+NnLnimYiZ7ziISplPojADed6CtR7Ocay7IaRgn1D0qpasuyXvTY3wMAHgCA0lIXdW2SEUup/YYG/n/woG6b3ddH4qyo0E9xqRwjJLxmDT+HM6R7OQV6esbzhR+vZbyqOQPaHdXZgfGhRtGQJjD+ZNwINBqCtCMGsgyHRMZcOudbKEQ1WMiqtZVk19zM7/KwzM/ndykzCHCuiDfcPmdefZVDsHQpozm6u3lJSkr48HSSXl4et2EnejcHz0z0nEckTMuy3uv1n1KqSSlVOipdlgJo9thGw+h7s1LqCQBXAnAlzFHpcyvAFhWRT2HiEa33WpxAa9eyEll/PydOYSHtPl1dnOCzZrnn8gLe0qzXU/zcuchkGw5+pEw3r7kgYqgRED1p2hErOToRI1l6SZfRkKXfzB6ntiImHGmDq5RuSCYPy5ISFtcYGeExZWWRbN20j1CIkmVHh7aSjIzwfNxIr7KS2avOB7xTy5qJnvN4bZi/BTDqy8V9AJ5yLqCUylZK5cpnAO8HcDjO/U4rVFTQLrR/P5/OmZm6o6sEoW/ZQrvPvfdynUcf5cTeuDF8OplXFW3JtoilS5/cxPGkTQIe9kynp1mIyqscXDKRYLKcCNhTaE+eJFlaFrt6CAk2NfHaFRRoTaC1lWq8xEza54xkj0naLaCJzc1mn57Otu6R0hxnSqdIO+K1YX4TwK+VUp8EcAbAXQCglCoD8G+WZd0KoATAE4qSRSqAX1qW9Vyc+502qKmhB3HpUk7k9nZG1ixdytBEexC6m3q9e3d4r7jXU1yyh2Lt0hetah5VfGYiJc1YEC4gPQ6yTIZ06YRdRW9upmS5ZIlW0XNyGImRksLjkZhLqdMKjJ8zixdrR4600bVLjG5ajp9IjZnSKdKOuAjTsqw2AOOeF6Mq+K2jn08CWBvPfqYz7OrPwoX8TSars+NjLEZycQp0dJCQOzroiX/ggfgD3/2mTYazZ3o6gdxIE9Al4ZJBnHZRaZLJMh7Yr6vbwzIjg8HntbWUGnNzubwU3XA6koJBOnhKSng+TmKLh/RmQv64HSbTJ8mIxvAdi5G8spJq+9atlFgLCjjxd+9mJE8iJms89kxXJ5AXaQJjpU0gccQZTqoEJowsBYmoSuQVsbFmDUnQHrXV1aX36Sb5ff7z/mu3emEm9OyJBEOYSUY0hm+/yzonZmsrbw77el1diQnfENU8nmLDgMMJBEQmTSB+4owkUQpiIEtBtGQZr3RpR6Tq/0B4p4xk61RX8/OWLbHPl3hSOKcTDGEmGdEUTvWzrNvEfO01xobbkcjwjaTYM4HwpAm4E6fAjUDdHEcxECUQmSzjKQicyJqXsVT/r6kBvvENOo0si9LoK6/QJvq5z8VGcDMx5tINhjCTDLsUUF1NO+OFC8BXvkLVyf5U92Mkd5uY+fn+4uLiQbT2TDfSBOCungO6WEc44hS4EajXsl6YBLJMdr8eO8Kp0du2kSwDAZLl8DBTdOvrYye4mRhz6QZDmBOE1lYWYA2FmDOelkbPpPOp7jbR7Sp4dfX4HlyVlez2ECkuLhGIhzQBbdMEwkibgDtxCvySoht8EKUcpxPx2CwTqYpHshVG+l+6EKel8X14mNlAZ84wNTIW26PTnOQszjFT7JmmRUWSISp0dTXv1UCAnuyREZJbe3v43HBnTngwyHjOVlsZk/R0quShEPDCCyTijAz3bX3962yVc+ed/BxNXm808ZlCKm7xia5xmgBJzB6v6dHrO2rItqQ0WwSpMllkWVTE8Xb2no8GO3aw8PRzz7FG5enTY/Oz/dYQSEsjUYZCugAMwPkVS763PeaypYVzsKeHD/eZkEMuMISZZIgKLQU40tIY9tPRwck5MBBebXH2c16+nL9XV48NBl6/nhlEVVWsTuOc+DU1wPe+x4mclqYl3O9+d/JJ0xdxRkuezvXCEKUfFRxIDFnGU4yipobREEoxGiIUYi3V4WH90LXPN6lpWVs7tsHZmjW8/oODmiwlI2j58tj6hdsLzhw65F6cY7r1IHeDUcmTBFGLnn6awcWBAF/DwyTMUIiv9PTwtkanbaiwkLnE+/ZRmgR0A8ZwRvdduyjN5uTo3GKlSNzR2q2i8ZxHUs8BuDuEgLEEZ1fX/cKFIAWR1G9BPGQpkIdMvI6RXbtYiyA/f2yOeFOTVq8bGvj54EH+L8U3Xn+dc7Kyknbzkyd5/aRXVFYWcOWVnF8jI7HZHsWcJHM2xSaOzRR7piHMJMDuyS4upmrS18cJ1N9P0gwE+PuCBeFTxdxCjXp7KUFWVWmb5YsvUsq0wz5JGxp4c9hbe0sXylgmcrSkCXjXBLY7hAAX4gTCkl80iJYogdjJ0unkidcx0tBAsgyFOIc6OvTnJUu4TFkZ6xWkp499MObljSXm7GwGq9fX8//sbJ0JFK/DcCbmkAsMYSYBdkliyRIWSJD88cFBOnpmzSLhecW+2fur1NczlXL+fE6848f5PVIFmbNnua+vfpXbGBnRUi3gT8INh2hjNMNJm8B44gQ8yDMG+CVKIDFSpZtHPByR+An6DgYpTTY2avOO9JRrbuY2Nm0Cfvc7zgfL0q0o7KXddu3iXFq1amwBj5MnuY94HYYzpQe5GwxhJgF2SaKwkFWKpATXbbdF9hjaJdRly3jjHj9OyXLFCt5Q8+dzsp86RSlxYIDk1dOjiy7U1mp7VWMjKxgpxUk8Zw5vuvnz4yuGYCfNEycYCVBfT0f25s08XjsiSZvAeFXdDj8E6lZ+LRJJ2o8pXqIE3MOHvIhk3brIQd81NZxDHR3UVCyLD9/hYT54y8tppywspPbS3Ew1u7CQdslgUB9TuPl55ZXx53vPxBxygSHMJMApSRQWcsJeeeX4/HE3OG1dCxfq8m+f+Qy9q6dPk0TT03kDtbdz2YwM3lSnTrEaUnY27ZtSHHZggHGgg4NsQfDpTycmG6imBvj1r0kE8+fT5Lh1K3PanaQJjJU2gfDEaYdd+gwHPwQpSIT6DYQnS3vV8nPnaBpZvpxE4lZurbaWsbo33aSLqIRC7PpYX89rnpLC6z80xOu6Zw8bcl5xhW4hsWjReKkx3vnpBzMth1xgvORJQLxlrbxKtolKtWkTyVIpTvS2Nn4uLSUp3nwzTX59fSTO/n5KmdnZ3M7y5TQVLF2auEm9axfttbm5wPnz2in9XJi6VJmZ+iXdJCKVSZOwn0ivSLDvz34csSISWYp3XIgkJ0drGmJf3rsX+P3vOZbivRZps7qay8yeTXU7N5efldKtI/LySIJFRdq+fejQ+PJrM7Hs2kTBSJhJQLwqiUgAoZBWuYNBHVJUWUmVt6uLkuPwMNfJytI1DQsKKGlKvJ28B4PxOXu84PSMtrfzZpTiQ5EgZGWXOoHEdtt1knEiKqPbw6u8sngieceDQV1erbubZNndrcODZs2iVJqezu/5+dqOKdk6HR1j02OdTczsmMkqc7JhCDNJiEcl2bSJ8ZFnz1IqTEsjMZ48yWDzUIg3VEkJ1ai9eyl9hELaC15Sook2JYUquGXxRorX2eMGp5qXnc2bNTfXv1MIGEtiTvK0IxyRhpNSE9k+IpxUaYdf73hfH69ZSgolx5ER3YsnJ4djeuYM3/PzqVmkpuoHqb0NLhDeMz1TVeZkwxDmFERlJQlPwkZyc6luHz/O71dfTQI8eJAkdeECb6TUVNqvxL6Zm8ubcHiYN5+08fUTzhQt3BwaQ0NsogVocvFLnEB4cpsoUnSDX6IURAqzkT49r7yiWy5LCNrIiO7Fs2kTHTsHD/Jav+99OsrC3gZ3pnmmpxIMYU5RhEK8EaQIbH297suSkkJHUFcXcOAACXFoiO9799KWtWqVDkM6e5YS5ZkzJNpw4Uyxwq+aZ1dhoyFPJ5JNik74Ub29ECnMRgg1GOR5DQzoVPqWFl47ebgVFnL57m7+J9kzRs2eGBjCTDJiLapqt2vl5DDko7d3bN2J+nrtCJBUt64uSpZS3X3WLL2+hJcA7BmU6CKvftQ8IRsJRbIjHgJNBpzHF2uloUhkJoTa20vJMRDQjrrUVN1+4pFH+FCsq+NDs7OTD1F7CFKk8b8YivwmE4Ywk4hEFlVNSxvfBqKhgTeUkGAwSMlECnNIhSS5wfLydKWayy+f3CKvTvKZCgTqlh8fjiS9yMfr93AVze+7jx7t9naGhs2dy2vb30/zjDiOamr4f3o6H5bNzTr11Q9ZXgxFfpMJQ5hJRDy5w2LXEpW8sFCnWEqjqpERShh2SL56ayvj8lpadCrmG28w9EeC2qWFwVQo8uqHQJ0IR6hHjzKkyRlEH2mbfqVIL/LZuJHtQSIFobsR6i230P7c3Mxrnp5Os8rChdpxJD3DAR3t4De98mIp8ptMGMJMIuLJHRa7lr0vi9xM0qiqvJzEKITY30+1XCngj3/UmSBKUSrp6eH62dl0FAEMbJ6KRREiEVc4Qj1xQgfRZ2dz3P75n4GPfpQkm4givl7k89hjJB8vUgon5VVUcDnpzZSRoTO8enr4e24uJUsJMcrN9Z+nfbEU+U0mDGEmEfEUIXBzFAQCwJe+pKWBigrgW9+iw6evjzdSWhrDUN5+W1dGysjg68IFbictjZLp+fMk1tmzoyvyGskOtmMHiaOpierk3XczmD6R8CK9mhrgRz+ialtQwBayQkxvvjm+lUes8CKfpiZqBs7f7XncbkS7bRsfeNKOuamJNsq1azm2Z8/SnLJoEX+XcoHz5/v3hs/kohgTBZPpk0TEk1Fhry/Y2Dg+WwMgCf3X/0pSkIo0114LvOc9lKxyc/muFMlTMDxMtVyk06ws/7UZRUI6fZq2USlou2MH/9+xA/j2t6kqFhXx/dvf1v8nE3JsbW0ci4EBPjhaWxMvSZWVje2S0doKvPoqpcFXXx1b4NlOSl5ZXAcP6lbMV15JMi4rI4lKVMSaNfxeXq4zfUR937Ur8rWrqGAUxY4dNM+cPm0yfKKFkTCTiHhDPfx4PW++ma+vfnVspk1Jia5QVFpKEhke5k1ZVkYJJhjURTj82rN27eJ2JI89PZ037de/TpvpkSOarAG+9/dTJX7ppeR6ZkV6mzNHq60As6WCwcRKUnYNYGBA526vW0eTwL59lDTT08PncQPujTG7uzmOkrkFUJpMSwMefHCsap+TE9mBU1ND22pxMa9dczPH5f77jf0yGhjCTDIi9ehJFIE4b8RVq7TqNjxMAs3M5O8LF7J3S07O2HJvfqSwhgaSbXo6t9vURMIdGKB6392tJSCAEldXF+1vyfbMipq8eDElS4AE097uX221XxuJPgiFxl8n+8NQxnL5cjrn8vOZ+33oEItnuIUQAeN7iff06OuXm8uxtNcvtUuq0Tpw5EHX3EzJf948bu/pp5kIYUjTHwxhTjCSFdrhvBGDQapgJSX6hq+ooJRhb5bW18fPzz8/Nl/dC2VlJIL8fJLKyAi3EQhQ9U9N5e9ZWXx1dDB7JSODUpika27bBnzta7GfrxM1NZSoDx7kg2FoSEvVZWXhx9et9mhWFqVEwDsEK1yF8WCQNmIn/PQSHxjgug0NlJZfeEHHZT7wAJeJ1oFjf9DZH5CxVNy/mGFsmBMMZ4+eRPU7cbN5fv7zJKV77+UyL71E4pKCDpI2mZKi89WlEK0XNm0iGdXWUnKT8Ca5EUtLx0qePT3cXyBAIsjJIYFKy4REQB5CxcXc99mz2o6Zn68Dv8OtK/ZlpaiyvvOOThqorQ1/nez2TCnI29PD43GzDVdWsiDGgw/yXYj3vvs4Vq+/TtJfvZoPmLNned2WLuUDr6ZmvA0VCO/AKSvj9bLnm0shD+Ml9w8jYU4wkhna4aX+2yVaUQH/9m8p5Ukr1NxcxikGg5EljqIi3WLHsrRTKT+fxLhgge4emJPD3/Lzw7dMcB5zNCYL+0OotlaHV/X20gkW7pzs6/b0aDNFQwM90oC2I3pdJ7t0f/Ikz8+yWEIvmljHykqS+8aNXG/vXtotAY6dpMPu2hV9VXOpqWk/x4EBbt94yf3DEOYEI9GhHZHIJZytSwp52FVJtwZYso+jR/k5EKANrK9P94QJBrUUuWIFb+7PfIbLf/GLmlw7Oynp5Oa698COxWRhfwgND2uS6emJ3NTLvq7EONptl/K7bM/tOtnV7OZmSpZLlmjJ1km04a6Z/XjsQepO0o7WoVhZSXV+61aq4fn5HKdAwHjJo4EhzAlGIvud+CGXcBKtH/KWfQwPkxx7enRsZ1oaQ5jefZdSXTA4/iasrAQ2bKAk29rKG1+CspUaf7xuBN/RAXzzmyRpt4eC/TyE9IDIROdcV5xFoZBuXifnICq713WS49m7lw+EU6f4XTK0ZP+RrpnzXM6f53cprFJcrOsERFui7eabKTWbXPLYYQhzgpHIqjJ+PKXhSDFcj5mvf50OlNZWSiPBIElO1LkLF0gGQ0MMBm9u9ia0LVu4n6NHSaZSIf7yy7Vd0IvgW1uBY8e4Hy/ny6ZN7Lku3vDz53mcGzZoolu3jsH5TqKwj0FBAe2Ex4/TWSbB8aEQP4e7Tjt2UHrr7eVreJjS9CWXcKyKi4HPfU5L6OLNFylUxsB+PHl5HLOUFI5tdzft0zfdFM0sGQtTBzM+GMKcBCRq0vqxh4aTaN3Ie906dh2UQrXDw7RFDg3RNpmZSYmvq4sqdmoqHT32DCS385Uca6W4jZwcBk7Pnj32eJ0Ef+oUCUNqeXrZBKVleXo6yS0UItmuWEHy27pVpxwODmrSBfggEI/4mjXAN74R3fWpqeH2leK+xOyQkUGbamEhSdMuoZ8/T2l27Voek4yB/Zq8/DIfVCMjvAYlJTy+SPnwBsmDIcxpDD8qdSSJ1kneDz3Emz0nh+STmUnyGRykdKOUjsG8cIFq+caNkQnmxAmtSorzZ2BAF8cVOAm+vZ0S2eLFehnnQ8HeNhYgUVZXs61DURGzWjIySEyhkG5TLOmIs2YBN9ygHybRwp7/LQ6tzEySXU8Pj02qDDkldLegehnL3/2OkqXkjQ8MMNzJeLUnD4YwpzH82kOjkWilIZfY/6R/jFK8ybOyKOkVFfF96VJ/Eo84KqS8XDConUB2p4OT4AsKqM7aQ4OcDwW7pN3aSoLs7SUZdnRQlV20SJM9QKJqbqaEKznnTvU4HOyOm+pqnsvZs7pvUl6efqBIr56cHD2efX3hg+q3beN1qKsj+UqUgfMBYzCxMIQ5jZGMKttlZQyNkQygrCwSijRcy8zk73l5JBm7OumEnVTq60l8a9eOb+y2a9f4gsb2UmgSJ+n1ULBL2keOUN1NTeXy0uahsVGXgxsaIrmlpo7NOXeqx15wOm6OHGHcaSCgg+br6rityy/nMYszSsbzwgWS+Zw54yMAamoYiykOr1CIx5+fz8/Gqz15MIQ5zZFoI/6mTQzaPnNG2wWHh0lsJSUkObsJoKvL3QPtJBXpQbRmjSaRujqSSFeXt5ffz0PBLmkLcVkWCaajQ5sPJGSouZlkWVbG4/Kbcy4PAHtWVEoKP6emjq2WHggAy5Zph1dxMZ1XoRAl3XXruIxbuNSuXSRygMfW0UGJtKuLpgPjtJk8GMI0GIPKSnpzpdkWoHsAAf5MADU1DANqa6MEtXixtl82N1MVLSsjidgJ2MuhE+mhYCdVIcCiIl1cubdXtxcWiW39ehKq35xz+wNAYkpFKh0epq2xoYH7DwS43LvvUnLOyOA2JH9bWoh4hfTYzRfS3VPSJeU6GEwO4iJMpdRdAP4HgBUArrQsa5/HcpsBfAdAAMC/WZb1zXj2a5BcVFZ653lHkvaEWNrbdeO1mho6PlauJGk8+CCX/epXqZ7aEWvWk5Dq8eOMVzx7lqp4SgrJbfZsXQt0/nySZ2GhNhEIuXsFyEvxipoaLiukeOoUCbClRUutopIHAtxfMEgi/uxnx7aw8OqrJCYGp/liwwYjXU424pUwDwP4CIAfeS2glAoA+AGA9wGoA7BXKfVby7LeiXPfBpOASNKexIZmZNBumZ7Oz62tLL5RVaWXTUbWUyhE4urr02mbGRkksYoKkuWRI8yrf+sthkSVlPA9XDZRdTVJMCODkvG5cyTJwUF652tqSP7BoDYLFBaObwUCRE42EBPDrFnafNHVZaTLqYC4CNOyrKMAoKQnqDuuBHDcsqyTo8s+BuAOAIYwpxH85nfbPdaSUy12vezsscsmMusJ4PGVl5PIlKKEGQjwPS9Pt+dobtYhRuJFf+CB8A+C7m5Kq1JkRGqK9vRQvW5u5rn29FASLS2lScCZ0ugn2SBRzjzTITLxmAgb5jwAZ23f6wCs91pYKfUAgAcAoLR0QXKPzGAc3G4yAPjud0kuAwP0oh85wmpIzhtQpEYhjfPnSZaZmZSWJD8bSLyXX8h6eJhB9kLYx47pYrynTpHwpBfOTTfxeCOFRuXkMARKHEeBAEl33jzmzD/0kJaW9+7lclLUBNCSs9/iK/E680yHyOQgImEqpf4IYK7LX1+xLOspH/twEz8tr4Uty9oKYCsArFpV5bmcQeLhdZP199MmmJNDAgiF+F1qWjqL7ko1d8uiWjowQHtcMDi+F08iCizb61mePEkyk7CoUEg3fZOivBI8LmTmx266YgUlRmkJkZurOzoCY6XlRYt0BXZnHvquXRPTV8d0iEwOIhKmZVnvjXMfdQDm276XAzC5ClMQXjfZq69SWpTwm/R0kuHBg+7l45Ti5+pqqsJr1mjHRyR12769tDSmBz79NPPVt2wJX75u9WoSVShE9Tkri+p4RQVtiRUVWm22LF0s2Q9hCSFWVo41H9iLjNilZbHVuuWhJ9IM4QXTITI5mAiVfC+AS5RSiwHUA7gbwMcnYL8GUcLrJhsc9F7HjWTLy/n+6U9rAikqYuxhOO+wfXuhkA6rmT2b5OumUjr3X1XFZbu6KAXm5pIYP/Qhqt19fZQQly7VAfl+CcuZc+48Fj9qdDKSDdxgOkQmB/GGFX0YwPcAFAF4Rin1lmVZNyulysDwoVstyxpSSn0WwA4wrOjHlmUdifvIDRIOr5usvJwqrdS9lFzoqqrwkoxbxk4km5psb/9+7WARqdBZ2ci+vKCwkDU+Gxt1+JITTpXfi7DsdUAbGkiy8eScCyaiYlCiHWoGRLxe8icAPOHyewOAW23fnwXwbDz7Mkg+vG6yT3yChSDa2ymdpafTqbJli3+bnF+bmpC2vXiu2BvdVMqyMlY9stsW7TUj3eAkrJqa8aXfAE3wTU2MvWxsZKxmZibtut/8ZvgqTZOJiZJkLzaYTB+DPyPcTRau8KwfScavTU1IOxiks0gpvi9f7k7EFRUk8+xs7QmPpmakl+SbkcHfmpvHetDr60mY0rp4KnueTe3LxMMQpsEYeN1k4X736oJol9qk1JmbJOpUkS+5hCRVW0tSDec0OnGC/9slzKIi4LHH3PugO/fV2uou+e7bp51IKSl8Scvi7GxK2wsWuJsJDGYuDGEaRESkMB83FdcptUlg9/z546u725c9fVoX6Vi5ktuqrmbet5sk19AwNryntZUZPMPD4yu019ay0O/QELc3OMiWwesdUcFiCqip4TFLWJJlkTgHBrj9xYuN5/liQ0rkRQwuZtjLq9lV1nAtct1aCZeXMwXR3gb4vvsoIdqXtWfjFBWx9uPGjXTmuElxznazUqG9oGBsG+Nt23RVdCmTdvy4rjFpR08PCbujg2mWKSlUwwHGeA4P83yc/XoMZj6MhGkQFrEEQHvZKxsbmRVjx6OPjl22u1vbIu3reklxTkdVWxtJzlmh/YUXxlZFl5jSoSHdcsMu+Ur7igMHSN7p6ZRk29u5/sqV0YUkGcwMGMI0CItYAqCjiQF0LivZOJKF47au00SwcSMl1YYGerHdKrQDOn9cyDIYpKq9YQP373R0bdlCb/iyZfSUd3QwEL+ykuQbqTGawcyDIUyDsIglADqaGEDnssXFujr6yMj4dd3so7t3a/umV4X2NWtIjsePczvihEpNdc8gAsY6tNLSgCuvNAUsLnYoS8pqT0GsWlVlbdvmWmLTYIJgJyinyuonv9tPPrhz2YoKLTE617UXuRDId1H3vQqISH/1piaq1mlprFJ0883xj5PB9MLq1Wq/ZVlVkZccCyNhGoRFrAHQkWIAYy095sdE4LVvIy0axAtDmAYRkegA6HhKj8WTI20CuQ3ihQkrMphwuIUdSQB4JGzapL3TIyP6s+mkaDARMIRpMOFoaNDB4QK/AeBiInDGcxrJ0WAiYFRygwlHvKXHjGptMFkwEqbBhMOo1QbTFYYwDSYcRq02mK4wKrnBpMCo1QbTEUbCNDAwMPAJQ5gGBgYGPmEI08DAwMAnDGEaGBgY+IQhTAMDAwOfMIRpYGBg4BOGMA0MDAx8whCmgYGBgU8YwjQwMDDwCUOYBgYGBj5hCNPAwMDAJwxhGhgYGPiEIUwDAwMDnzCEaWBgYOAThjANDAwMfMIQpoGBgYFPGMI0MDAw8AlDmAYGBgY+YQjTwMDAwCcMYRoYGBj4RFyEqZS6Syl1RCk1opSqCrNcrVLqkFLqLaXUvnj2aWBgYDBZiLdr5GEAHwHwIx/L3mhZVmuc+zMwMDCYNMRFmJZlHQUApVRijsbAwMBgCmOibJgWgJ1Kqf1KqQcmaJ8GBgYGCUVECVMp9UcAc13++oplWU/53M81lmU1KKWKAfxBKVVtWdaLHvt7AICQ6sDq1eqwz31MJRQCmK7mh+l67NP1uIHpe+zT9bgBoDKWlSISpmVZ741lw45tNIy+NyulngBwJQBXwrQsayuArQCglNpnWZanM2mqYroeNzB9j326HjcwfY99uh43wGOPZb2kq+RKqWylVK58BvB+0FlkYGBgMK0Qb1jRh5VSdQA2AHhGKbVj9PcypdSzo4uVAHhZKfU2gDcAPGNZ1nPx7NfAwMBgMhCvl/wJAE+4/N4A4NbRzycBrI1xF1tjP7pJxXQ9bmD6Hvt0PW5g+h77dD1uIMZjV5ZlJfpADAwMDGYkTGqkgYGBgU9MGcKczmmWURz7ZqVUjVLquFLqSxN5jB7HU6CU+oNS6tjoe77HclNmzCONoSK+O/r/QaXUeybjOJ3wcdw3KKU6R8f4LaXU1ybjOJ1QSv1YKdWslHt431Qdb8DXsUc/5pZlTYkXgBVgbNQLAKrCLFcLoHCyjzfaYwcQAHACwBIAQQBvA1g5ycf9TwC+NPr5SwD+91Qecz9jCNrOfw9AAbgKwJ5pctw3AHh6so/V5divB/AeAIc9/p9y4x3FsUc95lNGwrQs66hlWTWTfRyxwOexXwnguGVZJy3LCgF4DMAdyT+6sLgDwCOjnx8B8KHJOxRf8DOGdwD4mUW8DiBPKVU60QfqwFS89r5gMcGkPcwiU3G8Afg69qgxZQgzCkzXNMt5AM7avteN/jaZKLEs6xwAjL4Xeyw3VcbczxhOxXH2e0wblFJvK6V+r5RaNTGHFjem4nhHg6jGPN5qRVFhotMsE4kEHLtbhZKkhyiEO+4oNjMpY+4CP2M4KeMcAX6O6U0ACy3L6lFK3QrgSQCXJPvAEoCpON5+EfWYTyhhWhOcZplIJODY6wDMt30vB9AQ5zYjItxxK6WalFKllmWdG1Wjmj22MSlj7gI/Yzgp4xwBEY/Jsqwu2+dnlVIPKaUKralfEnEqjrcvxDLm00oln+ZplnsBXKKUWqyUCgK4G8BvJ/mYfgvgvtHP9wEYJylPsTH3M4a/BfCXo97bqwB0itlhEhHxuJVSc5VinUSl1JXgvdk24UcaPabiePtCTGM+2Z4sm8fqw+DTagBAE4Ado7+XAXh29PMS0MP4NoAjoDo8LY7d0h7Fd0GP6aQfO4A5AHYBODb6XjDVx9xtDAH8NYC/Hv2sAPxg9P9DCBNxMcWO+7Oj4/s2gNcBXD3Zxzx6XL8CcA7A4Ogc/+R0GG+fxx71mJtMHwMDAwOfmFYquYGBgcFkwhCmgYGBgU8YwjQwMDDwCUOYBgYGBj5hCNPAwMDAJwxhGhgYGPiEIUwDAwMDnzCEaWBgYOAT/z/jMcuSLs0uIgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "

    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\"\"\"\n", + "Hier wordt met matplotlib een grafiek van de samples getekend.\n", + "allereerst wordt er een figuur aangemaakt\n", + "Daarna wordt de contour getekend aan de hand van de output van het model.\n", + "Daarna worden de waarden die zijn gegenereerd getekend op deze figuur.\n", + "Hierna worden de limits van de x en y assen gezet.\n", + "Daarna wordt de legenda aangemaakt, hierbij zijn de bolletjes een 0 en de kruisjes een 1.\n", + "Als laatst wordt de titel van de figuur aangemaakt.\n", + "\"\"\"\n", + "plt.figure(figsize=(5, 5))\n", + "plt.contourf(aa, bb, cc, cmap='bwr', alpha=0.2)\n", + "plt.plot(X[y==0, 0], X[y==0, 1], 'ob', alpha=0.5)\n", + "plt.plot(X[y==1, 0], X[y==1, 1], 'xr', alpha=0.5)\n", + "plt.xlim(-1.5, 1.5)\n", + "plt.ylim(-1.5, 1.5)\n", + "plt.legend(['0', '1'])\n", + "plt.title(\"Blue circles and Red crosses\")" + ] + }, + { + "cell_type": "markdown", + "id": "9267f151", + "metadata": {}, + "source": [ + "## 4.2 : ZTDL 2 - Data" + ] + }, + { + "cell_type": "markdown", + "id": "20cea62e", + "metadata": {}, + "source": [ + "a. we hebben allebei het notebook bestudeerd.\n", + "b. we hebben een spreadsheet gevonden over heart attack analysis and predictions.\n", + "c. Hieronder zijn een aantal technieken en plots te zien die wij op de data hebben uitgevoerd. Om het beter te begrijpen hebben wij allebei samen de technieken en plots uitgevoerd." + ] + }, + { + "cell_type": "markdown", + "id": "eaab705e", + "metadata": {}, + "source": [ + "### Standaard info\n", + "We hebben eerst de standaard gegevens van de dataset verkend." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "4deee696", + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "6b792675", + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../data/heart.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "81faf37f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "pandas.core.frame.DataFrame" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "6417b5c6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    agesexcptrtbpscholfbsrestecgthalachhexngoldpeakslpcaathalloutput
    063131452331015002.30011
    137121302500118703.50021
    241011302040017201.42021
    356111202360117800.82021
    457001203540116310.62021
    \n", + "
    " + ], + "text/plain": [ + " age sex cp trtbps chol fbs restecg thalachh exng oldpeak slp \\\n", + "0 63 1 3 145 233 1 0 150 0 2.3 0 \n", + "1 37 1 2 130 250 0 1 187 0 3.5 0 \n", + "2 41 0 1 130 204 0 0 172 0 1.4 2 \n", + "3 56 1 1 120 236 0 1 178 0 0.8 2 \n", + "4 57 0 0 120 354 0 1 163 1 0.6 2 \n", + "\n", + " caa thall output \n", + "0 0 1 1 \n", + "1 0 2 1 \n", + "2 0 2 1 \n", + "3 0 2 1 \n", + "4 0 2 1 " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "202237c5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 303 entries, 0 to 302\n", + "Data columns (total 14 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 age 303 non-null int64 \n", + " 1 sex 303 non-null int64 \n", + " 2 cp 303 non-null int64 \n", + " 3 trtbps 303 non-null int64 \n", + " 4 chol 303 non-null int64 \n", + " 5 fbs 303 non-null int64 \n", + " 6 restecg 303 non-null int64 \n", + " 7 thalachh 303 non-null int64 \n", + " 8 exng 303 non-null int64 \n", + " 9 oldpeak 303 non-null float64\n", + " 10 slp 303 non-null int64 \n", + " 11 caa 303 non-null int64 \n", + " 12 thall 303 non-null int64 \n", + " 13 output 303 non-null int64 \n", + "dtypes: float64(1), int64(13)\n", + "memory usage: 33.3 KB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "9a94370a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    agesexcptrtbpscholfbsrestecgthalachhexngoldpeakslpcaathalloutput
    count303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000
    mean54.3663370.6831680.966997131.623762246.2640260.1485150.528053149.6468650.3267331.0396041.3993400.7293732.3135310.544554
    std9.0821010.4660111.03205217.53814351.8307510.3561980.52586022.9051610.4697941.1610750.6162261.0226060.6122770.498835
    min29.0000000.0000000.00000094.000000126.0000000.0000000.00000071.0000000.0000000.0000000.0000000.0000000.0000000.000000
    25%47.5000000.0000000.000000120.000000211.0000000.0000000.000000133.5000000.0000000.0000001.0000000.0000002.0000000.000000
    50%55.0000001.0000001.000000130.000000240.0000000.0000001.000000153.0000000.0000000.8000001.0000000.0000002.0000001.000000
    75%61.0000001.0000002.000000140.000000274.5000000.0000001.000000166.0000001.0000001.6000002.0000001.0000003.0000001.000000
    max77.0000001.0000003.000000200.000000564.0000001.0000002.000000202.0000001.0000006.2000002.0000004.0000003.0000001.000000
    \n", + "
    " + ], + "text/plain": [ + " age sex cp trtbps chol fbs \\\n", + "count 303.000000 303.000000 303.000000 303.000000 303.000000 303.000000 \n", + "mean 54.366337 0.683168 0.966997 131.623762 246.264026 0.148515 \n", + "std 9.082101 0.466011 1.032052 17.538143 51.830751 0.356198 \n", + "min 29.000000 0.000000 0.000000 94.000000 126.000000 0.000000 \n", + "25% 47.500000 0.000000 0.000000 120.000000 211.000000 0.000000 \n", + "50% 55.000000 1.000000 1.000000 130.000000 240.000000 0.000000 \n", + "75% 61.000000 1.000000 2.000000 140.000000 274.500000 0.000000 \n", + "max 77.000000 1.000000 3.000000 200.000000 564.000000 1.000000 \n", + "\n", + " restecg thalachh exng oldpeak slp caa \\\n", + "count 303.000000 303.000000 303.000000 303.000000 303.000000 303.000000 \n", + "mean 0.528053 149.646865 0.326733 1.039604 1.399340 0.729373 \n", + "std 0.525860 22.905161 0.469794 1.161075 0.616226 1.022606 \n", + "min 0.000000 71.000000 0.000000 0.000000 0.000000 0.000000 \n", + "25% 0.000000 133.500000 0.000000 0.000000 1.000000 0.000000 \n", + "50% 1.000000 153.000000 0.000000 0.800000 1.000000 0.000000 \n", + "75% 1.000000 166.000000 1.000000 1.600000 2.000000 1.000000 \n", + "max 2.000000 202.000000 1.000000 6.200000 2.000000 4.000000 \n", + "\n", + " thall output \n", + "count 303.000000 303.000000 \n", + "mean 2.313531 0.544554 \n", + "std 0.612277 0.498835 \n", + "min 0.000000 0.000000 \n", + "25% 2.000000 0.000000 \n", + "50% 2.000000 1.000000 \n", + "75% 3.000000 1.000000 \n", + "max 3.000000 1.000000 " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "345b68bd", + "metadata": {}, + "source": [ + "### indexing\n", + "We zullen nu verschillende items in de dataset indexeren" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "ce906842", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "age 54.0\n", + "sex 1.0\n", + "cp 0.0\n", + "trtbps 140.0\n", + "chol 239.0\n", + "fbs 0.0\n", + "restecg 1.0\n", + "thalachh 160.0\n", + "exng 0.0\n", + "oldpeak 1.2\n", + "slp 2.0\n", + "caa 0.0\n", + "thall 2.0\n", + "output 1.0\n", + "Name: 10, dtype: float64" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# het 10de element ophalen uit de dataset\n", + "df.iloc[10]" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "5f8d9afe", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    agesexoldpeak
    06312.3
    13713.5
    24101.4
    35610.8
    45700.6
    55710.4
    65601.3
    74410.0
    85210.5
    \n", + "
    " + ], + "text/plain": [ + " age sex oldpeak\n", + "0 63 1 2.3\n", + "1 37 1 3.5\n", + "2 41 0 1.4\n", + "3 56 1 0.8\n", + "4 57 0 0.6\n", + "5 57 1 0.4\n", + "6 56 0 1.3\n", + "7 44 1 0.0\n", + "8 52 1 0.5" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# de age, sex en oldpeak van de eerste 9 elementen ophalen\n", + "df.loc[0:8,['age','sex','oldpeak']]" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "ce4a5f85", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 1\n", + "1 1\n", + "2 0\n", + "3 1\n", + "4 0\n", + "Name: sex, dtype: int64" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# de head opvragen van de elementen met het sex attribuut\n", + "df['sex'].head()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "d129b322", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 0], dtype=int64)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# unieke element van sex ophalen\n", + "df['sex'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "37d36915", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    agesexcptrtbpscholfbsrestecgthalachhexngoldpeakslpcaathalloutput
    7229111302040020200.02021
    5834131181820017400.02021
    12534011182100119200.72021
    23935101262820015610.02030
    6535001381830118201.42021
    .............................................
    6071021102651013000.02121
    15171001121490112501.61021
    12974011202690012110.22121
    14476021401970211601.11021
    23877101253040016210.02320
    \n", + "

    303 rows × 14 columns

    \n", + "
    " + ], + "text/plain": [ + " age sex cp trtbps chol fbs restecg thalachh exng oldpeak slp \\\n", + "72 29 1 1 130 204 0 0 202 0 0.0 2 \n", + "58 34 1 3 118 182 0 0 174 0 0.0 2 \n", + "125 34 0 1 118 210 0 1 192 0 0.7 2 \n", + "239 35 1 0 126 282 0 0 156 1 0.0 2 \n", + "65 35 0 0 138 183 0 1 182 0 1.4 2 \n", + ".. ... ... .. ... ... ... ... ... ... ... ... \n", + "60 71 0 2 110 265 1 0 130 0 0.0 2 \n", + "151 71 0 0 112 149 0 1 125 0 1.6 1 \n", + "129 74 0 1 120 269 0 0 121 1 0.2 2 \n", + "144 76 0 2 140 197 0 2 116 0 1.1 1 \n", + "238 77 1 0 125 304 0 0 162 1 0.0 2 \n", + "\n", + " caa thall output \n", + "72 0 2 1 \n", + "58 0 2 1 \n", + "125 0 2 1 \n", + "239 0 3 0 \n", + "65 0 2 1 \n", + ".. ... ... ... \n", + "60 1 2 1 \n", + "151 0 2 1 \n", + "129 1 2 1 \n", + "144 0 2 1 \n", + "238 3 2 0 \n", + "\n", + "[303 rows x 14 columns]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# sorteer de values van attribuut age op optellende manier\n", + "df.sort_values('age', ascending = True)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "c379d785", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABxgUlEQVR4nO2dd3wcxd3/33MnnXq1LFu25V5wwaYY03szkFASyAMhhCSUhEAaz5NQUp4khBTSG0/iAL8QklASOoTeMcUF995t2bIl2Vbvuv39MTu7s3t70p2KVTzv10uvO93t7s3uznzmO9/vd2aFZVkYDAaDYWgR6u8CGAwGg6H3MeJuMBgMQxAj7gaDwTAEMeJuMBgMQxAj7gaDwTAEMeJuMBgMQxAj7oYhjRDCEkJM7sZ+4+19U3qpHG8KIa7v5r5jhRD1Qohwb5TFcHhgxN1gGGAIIbYLIc5R/1uWtdOyrGzLsjr6s1yGwYURd4Ohh/SWdW8w9CZG3A19hhDidiHEFiFEnRBirRDiMu27sBDil0KIKiHENiHELbobRAiRJ4S4XwhRLoTYLYT4UTy3hH2sO7XfWiqEKNU2OUcIsUkIcVAI8UchhLD3CwkhviOE2CGEqBBC/E0IkZfguW0XQtwmhFgJNAghUoQQJwgh3hNCVAshVgghzoiz7yQhxOtCiP32+f9DCJFvf/cQMBZ41nbFfMvvIhJCjBJCPCOEOCCE2CyEuEE79veFEI/Z51InhFgjhJibyDkZhhiWZZk/89cnf8AVwCikEfFfQANQYn/3JWAtMAYoAF4FLCDF/v4p4M9AFlAMLAK+GOd3vgmsAqYBApgDDLO/s4DngHykaFYC8+3vvgBsBiYC2cATwEP2d+P18gT85nZgOVAKZACjgf3Ahfb5nmv/P9ze/k3gevv9ZPv7NGA48DbwG9+xz9H+95QFeAu4F0gHjrLP6Wz7u+8DzXY5wsBPgA/6uy6Yv0P/1+8FMH+Hz58thpfY71/XxRo4RwkYMAJoATK0768C3ohz3A3quAHfWcAp2v+PAbfb718Dvqx9Nw1os8uQiLh/Qfv/NtUxaJ+9BFxrv3fEPeBYlwLLfMcOFHe7M+kAcrTvfwL81X7/feBV7bsZQFN/33vzd+j/jK/Q0GcIIT4L3IoUJ5DWcZH9fhSwS9tcfz8OSAXKbQ8KSGtY30anFNjSSVH2au8b7XKoMuzQvtuB27kkgr/MVwghPq59lgq84d9JCFEM/A44FchBntvBBH9zFHDAsqw6X7l114v/fNOFECmWZbUn+BuGIYARd0OfIIQYB/wFOBt437KsDiHEcqTbBKAc6ZJR6D7yXUjLvShBQdoFTAJWJ1nMPUhRVowF2oF9vrLFQ19SdRfScr8h3sYaP7H3nW1Z1n4hxKXAH+IcN6jMhUKIHE3gxwK7E/hdw2GECaga+oospEhVAgghPg/M0r5/DPiaEGK0HUy8TX1hWVY58DLwSyFErh34nCSEOD3Ob90H3CWEmCIks4UQwxIo48PAN4QQE4QQ2cCPgUe7aeH+Hfi4EOJ8O8CbLoQ4QwgR1EnkAPVAtRBiNDJmoLMPGQeIwbKsXcB7wE/s35gNXAf8oxtlNgxhjLgb+gTLstYCvwTeR4rVkcBCbZO/IAV8JbAM+A/Sala53J8FIsig60Hg30BJnJ/7FbKzeBmoBe5HBjm74gHgIWRAcxsyEPmVRM7Pjy26lwB3Iju0XUjRDmpjPwCOAWqA55GBXJ2fAN+xs27+J2D/q5Curj3Ak8D/Wpb1SnfKbRi6CMsyD+sw9D9CiAuAP1mWNa7LjQ0GQ5cYy93QLwghMoQQF9r54aOB/0VaoQaDoRcwlruhXxBCZCLztY8AmpDuia9ZllXbrwUzGIYIRtwNBoNhCGLcMgaDwTAEGRB57kVFRdb48eP7uxgGg8EwqFi6dGmVZVnDg74bEOI+fvx4lixZ0t/FMBgMhkGFEGJHvO+MW8ZgMBiGIEbcDQaDYQhixN1gMBiGIAPC524wGAw9oa2tjbKyMpqbm/u7KH1Ceno6Y8aMITU1NeF9jLgbDIZBT1lZGTk5OYwfPx5tmeghgWVZ7N+/n7KyMiZMmJDwfsYtYzAYBj3Nzc0MGzZsyAk7gBCCYcOGJT0qMeJuMBiGBENR2BXdOTcj7oZYqnfBJrOCrMEwmDHibohl8X3wr8/3dykMBkMPMOJuiKWjVf4ZDIZBixF3QyxWVP4ZDIakuPTSSzn22GOZOXMmCxYsAOD+++9n6tSpnHHGGdxwww3ccsstAFRWVvLJT36S4447juOOO46FCxd2duikMamQhlisKFgdXW9nMAxAfvDsGtbu6d3HAswYlcv/fnxml9s98MADFBYW0tTUxHHHHcdFF13EXXfdxUcffUROTg5nnXUWc+bMAeBrX/sa3/jGNzjllFPYuXMn559/PuvWreu1MhtxN8QS7TCWu8HQDX73u9/x5JPygWK7du3ioYce4vTTT6ewsBCAK664go0bNwLw6quvsnbtWmff2tpa6urqyMnJ6ZWyGHE3xKKEPRqFkPHcGQYXiVjYfcGbb77Jq6++yvvvv09mZiZnnHEG06ZNi2uNR6NR3n//fTIyEnmWe/KYlmuIRYm7sd4NhoSpqamhoKCAzMxM1q9fzwcffEBjYyNvvfUWBw8epL29nccff9zZ/rzzzuMPf/iD8//y5ct7tTxG3A2xKH+7EXeDIWHmz59Pe3s7s2fP5rvf/S4nnHACo0eP5s477+T444/nnHPOYcaMGeTl5QHShbNkyRJmz57NjBkz+NOf/tSr5TFuGUMs6rm6JqhqMCRMWloaL7zwQsznc+fO5cYbb6S9vZ3LLruM8847D4CioiIeffTRPiuPsdwNsRi3jMHQa3z/+9/nqKOOYtasWUyYMIFLL730kPyusdwNsUQ7vK8Gg6Hb/OIXv+iX3zWWuyEWY7kbDIMeI+6GWIy4GwyDHiPuhlhMtozBMOgx4m6IxVjuBsOgx4i7IRaVCmkCqgZDj/jc5z7Hv//974S33759O7NmzeqV3zbiboglatwyBsNgx4i7IRbHLWMsd4MhGf72t78xe/Zs5syZwzXXXAPA22+/zUknncTEiRMdK96yLL75zW8ya9YsjjzyyD6ZzGTy3A2xGJ+7YTDzwu2wd1XvHnPkkXDBTzvdZM2aNdx9990sXLiQoqIiDhw4wK233kp5eTnvvvsu69ev5+KLL+byyy/niSeeYPny5axYsYKqqiqOO+44TjvttF4tsrHcDbFYZhKTwZAsr7/+OpdffjlFRUUAzjK/l156KaFQiBkzZrBv3z4A3n33Xa666irC4TAjRozg9NNPZ/Hixb1aHmO5G2JxLHerf8thMHSHLizsvsKyLIQQMZ+npaV5ttFf+5KELHchxHYhxCohxHIhxBL7s0IhxCtCiE32a4G2/R1CiM1CiA1CiPP7qvCGPsK4ZQyGpDn77LN57LHH2L9/PwAHDhyIu+1pp53Go48+SkdHB5WVlbz99tvMmzevV8uTjOV+pmVZVdr/twOvWZb1UyHE7fb/twkhZgBXAjOBUcCrQoiplmWic4OGqAmoGgzJMnPmTL797W9z+umnEw6HOfroo+Nue9lll/H+++8zZ84chBDcc889jBw5ku3bt/daeUQiwwMhxHZgri7uQogNwBmWZZULIUqANy3LmiaEuAPAsqyf2Nu9BHzfsqz34x1/7ty51pIlS3p2Jobe44ELYOd7cNN7MKJ/nmpjMCTDunXrmD59en8Xo08JOkchxFLLsuYGbZ9oQNUCXhZCLBVC3Gh/NsKyrHIA+7XY/nw0sEvbt8z+zF+oG4UQS4QQSyorKxMshuGQ4Dxmz1juBsNgJVG3zMmWZe0RQhQDrwgh1neybWxEQXYO3g8sawGwAKTlnmA5DIcCs7aMwTDoSchytyxrj/1aATwJzAP22e4Y7NcKe/MyoFTbfQywp7cKbDgEmElMhkHIochA6S+6c25dirsQIksIkaPeA+cBq4FngGvtza4FnrbfPwNcKYRIE0JMAKYAi5IumaH/MKmQhkFGeno6+/fvH5ICb1kW+/fvJz09Pan9EnHLjACetPM3U4B/Wpb1ohBiMfCYEOI6YCdwhV2QNUKIx4C1QDtws8mUGWSYtWUMg4wxY8ZQVlbGUI3fpaenM2bMmKT26VLcLcvaCswJ+Hw/cHacfe4G7k6qJIaBg1kV0jDISE1NZcKECf1djAGFWX7AEIuZxGQwDHqMuBticbJljOVuMAxWjLgbYjGWu8Ew6DHibojFTGIyGAY9RtwNsTjZMkMvrcxgOFww4m6IxUxiMhgGPUbcDbEoi9343A2GQYsRd0MsZm0Zg2HQY8TdEIsJqBoMgx4j7oZYTCqkwTDoMeJuiCVqJjEZDIMdI+6GWMyqkAbDoMeIuyEW43M3GAY9RtwNsRifu8Ew6DHibojFiLvBMOgx4m6IxcxQNRgGPUbcDbGYJzEZDIMeI+6GWExA1WAY9BhxN8RifO4Gw6DHiLshFrO2jMEw6DHibvCiT1wy4m4wDFqMuBu86IJuxN1gGLQYcTd40YOoJqBqMAxajLgnS1M1dLT3dyn6DmO5GwxDAiPuyfLHebDk/v4uRd/hEXdjuRsMgxUj7slgWVC/D+r29ndJ+g5d0I3lbjAMWoy4J8PhsM65LuhRI+6GfqZ6V3+XYNBixD0ZDoeZm8bnbuiK+grY8ELf/07ZEvjNLKja1Pe/NQRJWNyFEGEhxDIhxHP2/4VCiFeEEJvs1wJt2zuEEJuFEBuEEOf3RcH7hcNhck/UiLuhCz76Gzzy6b5PLKivkK8NVX37O0OUZCz3rwHrtP9vB16zLGsK8Jr9P0KIGcCVwExgPnCvECLcO8XtZ5TFHj1csmWG8AjF0H3am2U96et2EG2zX4dwe+tDEhJ3IcQY4CLgPu3jS4AH7fcPApdqnz9iWVaLZVnbgM3AvF4pbX+jxM64ZQyHM0ps+1p0O4y494RELfffAN8C9NY+wrKscgD7tdj+fDSgR0HK7M88CCFuFEIsEUIsqaysTLbc/cNhEVA1k5gMXXCoRNeIe4/oUtyFEB8DKizLWprgMUXAZzFPWrYsa4FlWXMty5o7fPjwBA/dz5iAaiyVG+GNH5uHaR9OHKr1/o1bpkckYrmfDFwshNgOPAKcJYT4O7BPCFECYL/a0Q/KgFJt/zHAnl4rcX9yODzEIllx3/A8vPUzaK3vuzIZBhaHSnSN5d4juhR3y7LusCxrjGVZ45GB0tcty/oM8Axwrb3ZtcDT9vtngCuFEGlCiAnAFGBRr5e8P7AOg4BqNMlJTB2HyP9qGDgcKtFVx1e/Z0iKlB7s+1PgMSHEdcBO4AoAy7LWCCEeA9YC7cDNljVEnNTRwyygmsh5OsG1IXxNDF4OVTtwOhFTt7pDUuJuWdabwJv2+/3A2XG2uxu4u4dlG3gcDg+OTnY9d2NdHX4cKreM8bn3CDNDNRkOi1TIJN0yhyotzjBwOFQWtfG59wgj7smgZm8eNgHVZNwypgEeNqh73dcjWEfczaiwOxhxT4bDwnJPMlvmcJi1a/ByqDr0qPG59wQj7slwOAiZ50lMiYi7GTofdpgZqoMCI+7J4CwcNoQtiaQtdxNQPew4VD53U7d6hBH3ZDjcUiGNz90QxKFKf+1o9f6eISmMuCfD4bDkb7d97kO4wzN4OeRuGVO3uoMR92SIJrm2TEfb4KuY3XXLmIyGwwclun3tnjSjwh5hxD0Zkp3EdN/Z8PbP+648fUG3Z6iaBnjYcMjXljGGQ3cw4p4Mya4tc3A77N/cZ8XpE5JeW8ZkNBx2HKqsMZOJ1SOGlrg3VcNfzoaqPhLUZP3L7a3QUtc3Zekruutz7+tHrh1ObHsHdie6wnY/4HTofRx76jhEgdshytAS94PbYfcS2Luyb46fTCqkZcnHkbUMsqVwu+1zN+Lea7z8bXjrnv4uRXwOWUDVzpYxqZDdYmiJe19H1x3LPVF3hQWtg81yT/JJTEbce5/WBmkYDFTMwmGDgqEl7n1dGZIJqHa0yNch75Yx2TK9TlvzwHZzqbL1+doyxnDoCUNL3J1JD30kNMn43NuVuA82t4y95K8ImTz3ZNjyBtSU9c6x2pvcutzfWFbsvT1Uk5jM2jI9YoiJe5KWezQK//kmVG1KbPtksmXUsHqwWe6qIYVSzQzVZHjsWvjwz71zrLbmgTMSWnwf/O5o72cmFXJQMMTEXVnuCfb0DRWwaAFsfi2x7ZNxyyjLvb1pYA+x/ahzDKcm9tBr1fAO96BXW4N7z3uCZdl1ZoBcz4PboXqHb0G5QzRaMz73HjE0xT3RhqG2S3QInExAVW/ogymoqsQ9FDYB1USJRuX59+QavPxd+HCBrJNWdOCIuxqB6gHeQzW3YTDNoXj8Blj3bH+XwsMQE/ckK4PTGSQo7smkQuqNYTD53S3dLWPWc08IFTzvyTXY+CJsfUNa7TBwfO6qHrdp9flQu2UGw8h37VOw473+LoWHISbuSa4i15GkSyGZtWX0xtk6mMRdd8sYyz0h1CitJ26K9hZ5DZWIRtvhyZvghdt7Xr6e0G7X46X/D/54gh1gPdQB1QFetyxLtveB0iHbHObi3k3LPZmAKsQGVZsOei2hgYTjlknUcu+muFsW1Fcmt89ARdWfnqQGdrTa4t7o/r9vtfxLhrKlsPnV7pfDj6rHuz+CynXeej3YUiFbG2DBmbBnee8cTzFAJ1sNMXFPNlummz73ZAKq4BX3hv3ws/Hw7NcS+81DTVTzufflwzoW/QV+MTnxTKWBTHsvuGU6WuU1VOLZ0dY9a/DdX0n/fW+hzq3pgHzV63J3zjeRIL1z/F623Ov2wp6PYO+q3jmeojfufx8wxMS9j90yVjcDqnqDeOkO+Vq2OLHfPNTobpmE3E/dHKJvfFG+HtyR3H4Dkd54qER7q7yGbU3usTpak8/AaW9xj9EbqHhC43752hNxX/kY/CA/8fkAvR1Q7auHfyTrAThEHObirm5Kgg2ou5a77nPf9o58HTY5sd88VOxZDksf9LllEkmF7ObQWV37cGpy+w1EekM0OlqlpepY7q1S8JMVjGhb74qMqseNQZZ7kh36mifla6KLovW3uHe0wffzZLtI5LiqvMsfhr1JutP6gCEm7klG15P1lVlJ5PfG87m3NsR+PxB486fw/K2a6KYkF1Ct3+c23kRQv5OSllw5ByLOsLybqyRaljQwou2u1d3RJj9L1nLvaO+dfHtFp26ZJMU9c5h8bahKbPvedssku/aU6tBe+yGsew7q9gVvp66ROv4Lt8HSv3a7mL3F0BT3hHtm5S9ONKBqW7LJrC0DbiqkpS0kNpCGcB1tsP0ded2qd8rPkk2FXP5P+Nfn5LLLiaAaREMVPPHFgRtgToSeWu66UaI6fatDXqPuWO59Ie6qLvTELZNVJF+Vi6crknWbdnm8ZC13+9xFCB67BpY91MVx29z9BoDxNsTEvY+zZZLJ6Q6axNTe7DaSntz8hiqor+j+/n7KFruuowNb5GsoJclJTHbFViOTrlANdvu7sPIR2D+IA6s9Dajp9Vb3l7fWd8Nyb0vczZgI/nqqi3tnRk5HO1Ru9H4mwvK1rrzr3412AJb2vhMq1iXmQkxWH1rtzCW1zpI/lrHgTGnU+C337sRK+oAhJu5JrkXRXbcMdD0EV40iku02CF34enLzfz4JfjGl+/v72fqm+36/Le7hJFMhFYkG8/zxjr4YyahhdV/T00lMuuh4Ug2jyQu18rknk5USxIGtsOap2PvSUqv9Vifn+5//gT8e5013VXWjZnfXv6+3yc5+Z99auPeExCYQJTuyV+01ZHdK+rWwLJl5U7HWO8KIdnTvvvUBXYq7ECJdCLFICLFCCLFGCPED+/NCIcQrQohN9muBts8dQojNQogNQojz+/IEPCS7tkx3lx+A+FbLzg+hdo87+SOjwK0kutUzAIZtDnXlkFUM4Yhs1CAt94R87r6OUeVpd4W65u2+196ibi/8Yqq349LpzacItSdZ72L2V51DW2zn2Nl1WfpXeP9e72eqDD21HJc8AE/cGFtP9eSAzs539ROx26vZtzW73DKueza4I4omKO7qWImMBpLVB1V2NeLQOxzdMOzQ7p9TrweBuAMtwFmWZc0BjgLmCyFOAG4HXrMsawrwmv0/QogZwJXATGA+cK8Q6ur0MckOuxLNc3/zp7BvTWIPsnj0M/De72WjCEek5a7EXb2m5QY32mX/gA0vxC/H/50Mvz+287J2h9YGSM+F/HFuhQ6ldG25R6Ox2yRruTvZIXEaQ+VG+PFot9NJlLq98v4GPcO2eif8sKD31gJRZe/upB5ddPxi2pkFuPoJWPmob3vN79sT2prkMfxLZyQaUG2pcY/jHNM+N5UKuewh2V4q1sXu77HcOxlZOymatfG3cY6ZrFvGbq9C2Ptr19RZGLDF65YZTOJuSdQdTrX/LOASQOUIPQhcar+/BHjEsqwWy7K2AZuBeb1Z6LgkG4BJxC3T3gJv/gTWPp2Y5d7aAM21cr+UdIhkutasqiyZw4It94W/hcX3xy/LvtV988Dt1gaIZEHhBPezRFaFDLoGyVruqsHEs1D3b5IdTsX6xI7rlMMWlcaDsd99ZAfGtr2d3DHj0dOUPb0e+gPLVjR+9lc0IDNGCWFPR0LOgmG+zjrZgKou7upYLbVwz0TXuj+4PXY/j7hr9ax2j32Menjr51C9K7Zc8ehNt4w+6vdY8er6DwJxBxBChIUQy4EK4BXLsj4ERliWVQ5gvxbbm48Gdmm7l9mf+Y95oxBiiRBiSWVlL01D7+4kps5uhN5D61ZqPKulo1UKXEeLtNxTM93AjAqsZhYG/2ZzTf+4a1ob5Agjf5z7WSIB1aDrnKjl7nfHxLM01bVrSKKOdLS5nUxTgN99/fPyVT/fntDTgKq+v19MIf610We0Op/ZZehpPYrXJhIRd90oaNPiTKrjKp4pLe4dC+X/KkNLR3VSIuT+TvkK+NV0KF8Jz9wCb/wIlv/DLlcC6zcle586dctosSLdrZbs3Jk+JCFxtyyrw7Kso4AxwDwhxKxONhdBhwg45gLLsuZaljV3+PDhCRW2S9SFbWuEp2/uOnCTiOWuD7M8a1oHVBDLcv2mjuWe7Vbwriz3ltrELd/epLVeWu7ZI9zPEgmoBop7dy33eOJuN7DGBHOjK9bDXUWw+nF7P5+4N1RBxRr7N3upI+3NgGpQSmg8t2FQVkayS2rEI961SSRbRk919FvuY+bBl9+Dcae4nweJu2qTqZnue7Xdno/cORXKxZOQ5a7WAEow3tKZ5a4bfXrW3WByy+hYllUNvIn0pe8TQpQA2K8qN68MKNV2GwPs6WlBE0JVgs2vwbK/w3Pf6GL7BFIhdd+wXpmDKohq3G2NcvuUNOmWafW7ZYpkI9SDesra7M2p44mi3DJZw9zPEnkSU4/E3eeOiXcP1DVLdOLLdnsG8Npn5Kvfcq/VOvzeytBxAqrdDNJ6smUC7n97q1yTyN9RRdtjLURnNHooLPc49UNfUkLPEGtrgtR0+f74GyGcJg2d6oAlKFTdSkl3f6fZ9qvv/NDdTtXRvnTLCFsmdVeX7gJ2dKRdG5EOAnEXQgwXQuTb7zOAc4D1wDPAtfZm1wJP2++fAa4UQqQJISYAU4BFvVzuYJxZj3YFaq7uYvsEJjG1a8OvrtwyesNqb5Hinqr53NXQMbPQ3j5g/Zl+sdxtcc8scj8LdxJQrS2X/tKga5Bs59RVKmRbkm4ZNYlKzXyNsdy14wwUy113FwRa7i3w5BflaNTzecCEJVWGnopLIpZ7tF36wJc/7N2merv7fuub8KuZ8KdT5GqoqZny8xmXwG3bYfSxbsaLjqoPqZnuOTXbQdragLVp+iSgWu/dz+Nzb3Ffg9wyg0HcgRLgDSHESmAx0uf+HPBT4FwhxCbgXPt/LMtaAzwGrAVeBG62rL5eG9RGiasSJVUZ4m6fjFumueuAqu4WUuIeydIsdyXuw9xjKlRZ+2OmZmu9dB9lae6xznzuy/8O//5C8ISlZDundp8FH1Q2SFzcVYceSpGvfsu9QXMZ9Fb6ZXuAaLx2F2x8ObH9dSsw6Pq1t8oRh999oa9FE3OsnrplErTcfzsHnvqSa1WDd4LdtrelGO9dJedQKMML5Kg2r7QLt0x6gLjbjoCckuByxcNpn03w2Ge7Dqir+q3apMctowdRA9wyA8DnntLVBpZlrQSODvh8P3B2nH3uBu7ucemSxX9h44l7NAqv3+Wm1yViube3dJ0K6bhlmmy3TLptuTfYSw/Uy+BMeq732HpZD7VbxrI0t4xmuXe2cFhLHWAFlzXZ8rdrFlAQTkA1QbeMstSbDnpfFaqTCKf1reW++D653s7U82K3/8cV0mI943bv/lZAKqT6vrk2diTV0Wa7ZtrleUbbtGyZnrplErDc9292205LnVavtX3r9rrvrQ5IzfAeL3+sLHtzrbs/uNcyNUOe/wu3u7ErJe5FU9389njiXr4CRhwJoZDbYdTsksK+9mm4eTEMnxq8r7MOVMDTsfRYkVOH23vPLdYLDLEZqj6Rbo4zVKvdLde9XvdM8H5Bx2xv9vpUO7XcmzTL3R5WdrS6WSkpGe4xFWpYeajdMuohEZEsd0QBnQdUleAG+YeTLX+XAdUkfe7Kp66O21Tt7YgbKmXHlTW893zuQZNjOtriL8WwZ7mcN6HwLA8dkPXR3iLFyz8K0XPaX7wN/n2d5pY5BJZ7+XLt81opmPef75uJ7asjuuUOUGBnLPnnMahzU23lw/+DjS/J96qOFWmiHCTuFevgz6fBG7ad6bRPrd1teS12P4UaNQZZ7kHWusct0wczrpNkaIl7zFT4OI1LWZdKvBLNlunKclfHURNAwmmQmiU/a21ws1KUP1ivAKojirZ1Xh6d3njMmWqIkWxIz3c/F6H4AVXVuLprueudZJcBVS1bxh+wtCyZFaPngesBU7mRdwTXUCWFPTU9cb+oZcGTX5Lr4AShzkG/Xh0t8R+v2NrgFUD9frfUunXGOX6L/Ly92e1YQbPSW2SGSr22amFP3QLxro1qU2Hfap4tdbBnGez6QFrroRRXmHX8lnvJUfJ1zzLv51HNLaPQzy+SDXlahnWQuKs2teox+eq0Za2OdmY0OG4Z7elYivYAcfdkyzT3fAmIHjK0xL1TC7wdnv269Pv5rcvOGoLulokmIe665Q7yN1vqIS1bE/cAy13tnwi9YXkqAYpky6GrIpQSv5PpTNxbE7Dc9fN2JsvEExP7eNH22AD5nmXS97/tLfm/ZQWnv+pB1YZK6X5Kxi3T1ggrHoYtbwR/73fLRKPyfZDlHo1KgfSIu3burQ2yjug0HcDJJtatdyenvUWKTSJrF9VXeEcN8dD3V0FQfaK53wJvqXUFr7nGdknaQq4bDX5xLxgPGYXuGu/RKOz8INZy95OWCzmj7OPnBYu76oiUT99pn9p919M2o1F46dtQuUH+71xPy7s/EJzn3q61SSvW2DzEDH1xVw2gaoN8yO9Dl8U26mh7/DS2uKmQ2vsHL5ZLBziWVJMUPpXnDlL0lG9bNQyPz70LcQ+yAnpF3JXl7rMWUzNsH25AJ9bameWegLjr+3UV1NYFy29lqQ5RdVBNB4NdRbogNtqWe0ok8esXtPCbjj+g6qyQGWC5O0P9OELc2gBpOd599GCy3lHpdbO9uWtxb2+RC87930nB5+HZVmsj6XnyVWV5gdeiBnmNOnRxT3PrVP5Ydzu/WAsh4w+7P5L/b30dHjjffXasvzNwypTrWu4FE+QEQX8b1l1cej66fm76/In6ffD+H9wlQPz3W7+muvtFr0eee9C/fvchJu4BAqEathqaV++IY1HFEZeuLHfLkrnVu5d6b3JLrRQQZfUoay0Sx3LXXQdBAhU4UugFy0B3y+g4ZQwQiRjLXZu31tYkfa8Lzozvd9Q7gC4DqvVy8TWQSwN7Zj82u7/50UPB09ghwHIfLjvYRBufI+5x3CyO5e5btKvFXrJXv0/+dYbAW29VHdHRxV0PEOtumY5Wb/mCrufC3waXPwj9vjvirsVkVP0IR+Rrc603kUG33LNHuNv5OwWQ4l65Tp67ymZSGTf+UYwiLRfGnggf/y3MuFh+5r8/ujW/d7V3ZK3Q64YaGbb5stsU+n0Kcsvo+0K/p0MOMXEPEBNVSfSbWL4isX31zztavAFGZbm3NdprPTd6G3FTtRR25ZZpbZTWRSTbtdw9ee5dWO5BnU9vWO6qAfgt96Cgr8Lvi9Stq7ZG6Z/e8xHUxZm7pp+f5RPEmN9qhElnwVGfgXd+CX861X0ijvr9XR/K6ej+hcCU71q/tg1VtlsmknjQq0vL3SfuSgRaG+BHxfDwf2nnUx97LL0etAWJu2Zdli2Gqs32bGhtqYH2ZjwTwdtbYNW/4Z1fuZ8pi1SJdWcEWe4ZmuWu6nD2SPnaUud1y4Q1wyY9zz2G350DUDJHtqGK9e6IRgmt/1o4ZcqVM0eP/Zzb6fhdM7o4798Ua7mn53uvrZoj4XTAfnHvIs8dvG5JI+69SJDYKatHH5oHLQMbzy3gCajqk5jshqWGfq31vt+3ZGNQAtOmu2UCrGLdcg9ybQS6nPrALZNmp6MpC6uzoKlqJPqj8tqa3EYSL+AbuH5KJzNUI1nSQjvjDti3yh2yq99XDbTB7siVCCk3gtqutUFe26yiblruccTdPzlG/a+23/xqwLF0EdDO3YrGWqu65f76XfCHY73+XOVz12lvgQ/uhfd+5/7e3pV2+boI2He0e92Oymeuu2XUPc8e7p6Xxy2T7tap9FxX3IPcLIUT5evBbe51Ue3Bb3QoVD0F143lF3e9U29t8GazgcyT190yMZa77357VoUMyHMH3xLHcerXRw/B9oXB3/UiQ0zcAyqtCpjogZOgpxjFExfHLeObxKT8e7ol5reuMws1y73BFapwgFumM8u9tdH1yR/7OTjpK3YZEnTL7F0Vf0KNX9xv/hA++0znlnubz3LXrbG2Ju37OIHhoM/3rYUFZ8TOKFVuinAKHHGR93edxcFsV4XaV03GUqLkPOTZrgOZw3rX5x5X3DWxcax5zRhQLiZ/OfyCFpTR4bci/W6Y1np535sOyuuyZ5ks34gjO7coO9rcTlJROFFeU93iV/c8ku0+kMbjlklzhTytC3F30iG3ufdU1Xf/tVBLAehxCSX0MeKuCW1bo3sPVMeVM9KeH2D/71ju9ig83gQx8Bp9+vXUDbN49euZW+CvFwZ/14sMMXEPuJhOKt0Bd9Zi0GzHrtwy/lRI/5oWrY2xx8go1HzuKlsmJ47lXutmI/jF74kb5IMTAEYdLX2UnZUZZN6wClIt/K18+HUQerYMQO4omHh6cFzA2UeJq7LcdXHXLdI4lkvQyGTfKilAVZvczyzLdlPYDdy5lk3e31firkRQiXtGvl0O+zrr8YWUJFIhdUEOQk+FtKzg+1K10VsGfRKYX5g7c8soPP7flthrrceADmyTriuA8SfLcipBq9ntXatl4W/gD74Vuk/6Cty8yHufHXHPknW6pcYrnmoCH9iWe769X5z0yJwS23K3r48ydvzXQrmB0oMsd9+kxdZ6t1NpbYy9zjklcqSkRN2x3BuC73WQW8b/zNrWLup/IqtX9hJDR9xV+pkfdbEbD8inDaVkBD+gN95QNa7lbr/XLXd/gDOzwBWm1gZXqFTDeOomePm78n1zjStKfvHbv1l7QlKq/IPOxf31H8lOAWQHFG9CV2fZMuAKaGuDXGpVL5/fck/N8pY9Gctd4X9alRV1RcIpky+g61ju9n1VC6A54q7Owd4vkm2nQiYo7l1a7tpxoh3B96V8BXy4ANY9537m5E/76l5nAVVnX321xeZYt8yO9933B7bICT15Y92VP+v3ybTg3xwJD2izaCs3ekccYE9wK/Ra3c49z5CWc0ud93qqdZXAZ7kH+NxBZrwc0MRduWXUMRQqQyZNG0U4GWm++9NSJ383nBbgNgVy7Guh6o1uuQfNbtez6vTrrXcEHrdMQD2ImYfRdwwhcfc1ECWAykXQdEBW0LRsAlYgjt/Q9WVC9crhWO7xfO7ILA9VOVUD1X3u4OYcN1RCvr2YZluzrGhKVJoOupZMOOJmHnTmO2084E79bm2Q+wele6oG4W9ETrqmLSJ/OQv+fKrswJQo+X3uGQW+rJ94U9g7sV5068ufyeOIu7LctY4bXP+p6iSVADhuEjVKybTdMomKu0q5tMvz0UPus2bB5zOPJ+4r4Z1fyHV5nPOzy+Ove0E+d//DzPTHyrU1x17r9iY7y0jIsiorVtWdv5wNvz8mdqKa7pJRLhBVF9TId+KZ7j1PzbQt9zpvfdTneHgCqnFSGwsnSMvdccv4xFUFTVVapW65665PnZZ62bGoB+b424tam0bVG93nrt7rOfrgnbCk8Ih7F6mQ6uEih4DBL+7RqFyVzn9j07Jlg3As9/22D9zXcFQF7sotA97f8FvubY2xHYzullGz6/RUSJCVqKNN9ujDj3CP9bNx8LMJcpjfeMCt9OFU+Qedi3tLrSxba6O7Fkz5crkcsk5rvbS4Q76q4Ii7nT9duV7+rweg/NkymQXeCh0v571sUewsTIU+wvCPKvTZvqps4HZAShCUuEcyvYFTp7yZybllWrTRWbQDnvmKfEScwmO5twdbbI1VAdkc9nn4656qM0qIsaSAnvo/kDtGfqSv2dJaT6DBUjxDLsx1YIsdu8h0654/k0l1/PoDrVUKqtpn7ufhol/C1f9yhd5xy9R5r4Nuuevi3pnlXlfuWtEqKKuu2fSPw4W/gCn2KEMPqMa13Gvld6lZwW5TNYpRbi89W8ZflxRB4t4SR9yDNEWtgKmvwNpHDH5xX/mIXJVO5fA6DcOeROE8bu2AFFu/uCvB2PZW8OzKeMGSQLdMQEA1FJJlUkFc5RJQNFVLYbeiMHya/Tt2maNtsYHacEQT907cMqpRNFS6Fe6hS+Hvn/BandU7vAuGKZxsmWZ3bXTwiooqp+oI9FQ5tW8QW96A8afETmGH2AwHcC2zcKrssP2Wux9l5aVmSJGJ8bln2amQybpl6lwhjTdhyDNLUStPU3VseVV9ixH3DHmeKenuCDQ9F87+Lnxigfxft9zjLXebVwrDJtqWuwrmpwZv62QeaeKeO0qOftQzRAvGw3HXy2OoB1goy7251nseus89Ldd1kcWz3AvGy9eKtfI12i7vnTq3zGEw7wa3w/FY7r5OX9Fqx7gimXIE77/OuaPsc7bbpsdyV+LuaxtBT2/TO+2uYk7q4SJ6+fuIwS/uqjI47gW78qRE5HvllmncLyuIf8irKsYr35MP6/UTb4JCjFvGV3lCKVpaYaZ3UkZYW4yzudqdHl2kxF37Hf9iUeHUxNwyjrhXaXm79nFf/5G9f7uccDThtNj99WyZvavczzsTd7+VE5TyeHC7tCQnneVafzqembqajxykyKRmxgZUPeVOdwNsqZle37pzPDvu0dEiR0aWBa/fLSe6BKGupRV1LUvdENDve5DPPa8U6vcSQzy3jOrAw6nutVUuJiU2+n2IF0/JGyOn6DdUyXNPzXTrjj4hCeQ1jXZ4R2an3Aqfi/MQcZUWnJophUrPcwefWybX7fjjTUpSKZX68hH6vVSPRCycKDu8wknadhmAsEeYG90spJY6+XvqUZf+9pI3RtYt9XzeIJ+7/zrp+e2KlrrYUSUEGw9K3BNdP6oHDH5xV5XcmQFnX+RwmntTox1SRIPcMnogcctrWnpau1xRzhMAa3J9n37LHcvbyDIKXIsnLce1tPyBy6ZqV9yHTZJuIj1Y5l+yVnfLdPZUeEfcK9wKpwLOyjWzZ5msxJPOit1fz3P3TNEOEHe17dFXy6C1/3udTa/I10lnudafp9y65W5fWz0ekJoRG9D1lDvDG4DV3S96fCFFdZCt0mX29j3wp5Nl4NGP7lN1JlDFGX77xT2UKlPuajVL2zluHLdMSpot8GluOZWlp4bzulslruU+xnaZ1GqWu308/2SitkZZ1/S5HDkj5QSjIJQ4RTLdgKp+Hvqieel5MOuTcPkDskxBKPHXYwDhNDjuBrjsz3D0NfKzoinw7XIoPsLdLhSS57ZjIfzxOJnfD252WsQO9PuvczgCI2a6cS9luetumRhx1/LbFW0NbqfVpbjbbplDsPrr4Bd31WiURaUs93DEvanNNbLSZhTGiqv/f7U63cHtMsOhRnuQQGujK6xBj/fSF7bSXRQZBZq4+zoXq8MWFCEtPN0yhQBxj3SdLRPtcAWpvkLLflAWTY0s95bX5e9OPCP2GLrPXc8uUuIGsZZ7Xincug6+blv65Svg8Ru8DWHNkzK2MHxqsLjrHaRqYHp+tQqOqbL5Sc1072mKcstoGT8Qu76P/pt/OQt2LfIeUxdPFTvxNOJWd6Tjd8tkFEjx0ztIFecJWm0Q7HucIoVdua4KJ7jHEyFvZxHvuQX5pVJ0Wupixd0f1G5rip3/oceG/CjhUm6Z1jrv/UhJl09bOv8nkDtalmPWJ+MfT58gpf9+OAXmXOmNCQW5liJZrpG06l/ytbUeIra4B7lNQykwYpYUd8tyLfe2Bvu9cN1AiiC3jLoOYN9T26gLCtirbJlD8NyGwS/uB2z/sfIVetwymfKmKoHMyA9wy/j+V72+ykvWaWtwG0eM5Y5bOcBbWTMLXYsoaDp1+Qrp/1OuJN2d4Z/Uk0i2jN7h1OzyWmPK8qvZLa9dfmmchqWJe0OVm6WgW+6qnEoEUtJlY8wrBQSsf14ut6qGorV7YMd7MPMT8n9/Bgh4hdS5b1oD0x9bGNRAUjO82TUpadrMxEb5m/o1VGulA3zcns25+glfmbTr6Yi7XYaWeilsKq0u2u69L0F1Tt0Dxy3T6vVFp6S7ZVRGgZrbEApJazIht0ypFF6rQ7r3dLeM39pva4xNuQxaKkChhDyS5V5v3RBJSZPX5MQvuyPYzvDHa7r6fT+RLDcwun+rDBC31rtumUDLPVVa7i010iWr6na0XV6LtNzYDk5/7Kbn9zXLXb0PstxVp9rWJDuUza+5K2L2MoNb3Jtr3MqvByzBDqjaN1WJQCRL9uQ6yi8I0se46l+w/J9yISM/bU0Blrsm7h7LXRMkveIGTafeu8oVz9QMr2jpgTPoPFtmx/uw4UWvGPkX0xp5pHytLZMdR7yovZ7n3nhAZjNAHJ+76lDtxiiEnelgC0hzjbw/f79cfnfk5fLzIJ+7XvZAcdeuTzy3jBJTlR2i57lHsu3y2Y22o8VNvyyaKi05/9pDLfWuz9sRd/u+q/kHKl4SaLn76pzqCBy3TIu3Hqak2fc5DWe0pcQd5D3T60U8y125ZUB28JFs182DBUd8DK55Uv7b3pycuKtzTM1wy64bN8kIszqOP8De2cghZv8s19hoqXHvqXLLBGXLhFLd9rDedr8qC7yuHDLyYutoULYMeN0y6pp3tugelvz+hW/Be39I+DSTYXCLuz6b8eA2+aoaTkrETYFy8rEzOnfLnPJ12cCfugle+2Hs73W0Jma5R3K8gp4ZIO5XPw7n3S3fN1e7AaOUDK9o+Z8vGdLF3VfBXvkuPPs1r0Ae2ObdRlXmmt1ukDmIUIoc/rfbPne1/keQuGcP964lAt4JL801sOYpqFgD//UPGVuAOG4ZTaiaDtq+W+1YKo4CwQHV1EyZAnjBz2HqfJ/Pvd4VIt0to65XWo70Me9d6Z0T0FIn/c8Qu2iZGjmqR7VFO7yNOkjcVVxCz5bRU0P1gKqieIb7PnOYN9Aez+fuN2YimuWufkd3J3TXLaPKro84UyKx+3SGELEjyGTE3d+uy2xrOKIs9wC3TDhVduYlR8GZ35FLM0ydL7+r3SPdgTHi3oVbpqPFFfqYh5fbCwwqN2Nboz1qS+I8k2Bwi3vRFLjqUSk8SmTVxATHcm/w5mOrC68sMd1Nkp4HX/4gIHtEG1b6xb2l3nUvNFdLQTz3BzInWOGx3O3fm3KO93eKJrtl1C13v7h73DJ6Jk+zfHxb/V45o1Vx0CfuxTPk+dSUubn/QQghO5qmg/L65ZfKcwsS96M/Cze957U+/eJes1Pek2kXuJ93FVBtOugNTIPPLRPHchcCjr/RnTCmZ8v4c8h1n3t6rhT31nppke9ZLu+vLu5+n7uy3IdNka9Wh88tUxA7WkzPk52L7pbxW+6hVG+j14Xe31n43TKjj3VTC/VtdZ87eJflbWuyH0GY4v0+HqruRbK8ZU9k33j4XTPdFXcRhue+Id+r9Z38lnsoRdaTSCZ88S04/Ztw07tu/awrlxOY/P593XLXXWnZWiKBSmX1+9xV56cMKueJbUl2hAkyuMU9PQ+mzXddBuCKu5pE0aq5ZVIzXXFVU9SdHG176K+WEdXRG4i6Ecot01rnpgA2HZSN8rjrYMxcdx8loOGI16JRub8Awya75elU3PVsGW25gz3L3OwZ9Ti4nJLYpRayh9vZG7ttt0wcyx1kFox6GHFmkbwOQdkykUzXGlfojbulVnYmeWO8Qh3kc28OEHdPmbTOL15AVUd/4lJroxZs1WIKjuWe62aH7PoA7j8XPnpQGgiOuGuzfkH6d7NHuNaY7pY58RYZRNTrzwlflm4pFeQDO9tCy3tWHXg4Arcsga/6HkHnF1P/mipXPAhfs11L+m+n+sVdm2jU1iSvtz4jMyHLPSN4Qlp3rNEYyz1JnzvI6/iJBdLteOQV0hJPzbIXV/NlMQWhzygPtNzVciQt3lhKXqn7PhwJniTXFiTurUbcO0U1rHDEFcxwqpsto1vuStzVBc4tgTHz4PL/5x7viI/BpLPd2YBB4q5b7soV1FQdfKOUQPmHjnpDUpZfSsTnM9/h3SdetoxaGApccdcfIOyUpVBmLxzYJjumeJY7SMtEBUOziuRoRw/OOrNmA85ZF9nmGjntOr/Uu42/4YQjsiNQ6ahN1QHirue5x7HcPeegW+4NmrjbZV72kJzIBfI+F9n3oXyFvL6qc1MduHJdOJb7Fplzrc4l2u4KwNnfgynneuvP2d+Tq1vq4t7a6J3UkpImO+HsYlke5RJTeKzUUKzl7rHyNQGKsdw1l1dbozvpx/k+EZ97VvBKj92y3H33OinL3T7P9DzZed62Az55nzffXifeZC592/T8YLfMqn/L+66P+vUUz3BEHsf/WEh1v1Wcy7hlEkA1jKzhrvA5ee4Nrm9Td8s4sxiz4PpXYNKZ7vFS0uCaJ2QqF/isKl9AtbXeXamuudo7QUnhiLtvOK03JGX56oFIsNMYdbeQPolJE/c9H8kRTOFE6dsGmQngYB8js1AuvqTW9u7Mck9Jc8U9c5hb3nCaG+zTYwA6+jTz5hrXctfxu2VySqQ4OguCVcc2eOVqgzg+d7+4p7ti29rgdjpKfJY8IP8i2bI8qRny+qrJNCqOoiYPKbdMtE0+HGTfGjkL1CPu9ghK1UVV59SsU3Wu6trqfliQ1/aT98up/kHolnIkh5ilB3Sr1DNNP9MrJH7LvaXOWyeDAt4K1WFGMuO4ZbohWP57HTSDOR7O2vH2ddQ7S89ozm4H8c5Nv7ZBlvvWN+Hx62SdTosn7nYWjlpoT6GMEeU1aG82lnuXqAqcVeQKRorde2K5PajullHrSgRVTEXQGtRBlrvyt0Xbg2+Uso5j1qbWfckq4yQtdg0S5T8FX7aM5pZpqJIVbNTR7mfF0933qowZhd4YRadumQz32mUWuQ1m+FTvwlFB6JZbfYV0Z+SN9W7jbziqgajOrTO3TLRDirbwVeGYBdAiWkC1UVvKQBOOjlavqKXnuZNNnIydwtjyPvoZeU+P+Zwm7vYCc6EUNzdb1c+0HPeeD5sinw6kgmy6CKdEZJ2J98Qkvc4GzfjUDYwYt4wm/B6fe6M76Uf5vjtLYVQdZkp6sFsmGWFW9CigqmbDBlwzT6Bf3f94lrtP3NV2qp59+Cf3e/2e+d0yo4+VHb/uYlVGpp4KG20z4t4puuUe9lnuoE1wSnfFPX8sXPWIm3MdeNyAiqKLe0ebtCLVGhUQ7MvLiCPuQaSkx04wUQuKqd8XQoqHbrk3HZTlHXti8H45JfaSCDkwXBP9Ti13TaAzC93KXDxDWzgqjrjrIqtmffotd78wq+uoJpI1HfTGJdRx9fRW/6p9QZa7s3CYloPsz+bwPNkn17WqlbinZnrvs+KUW6H0ONeoUD53vcEqgdWFtmiyHAWodU10S7MrYdTrUdC8Cb0ORjpxyyjfMNiWu73Q1k3vwbVxlh1QzLzMPWZvB1Q7eyRfPHS3jB//DGeI73PXz6X4CLeeB3Vg+rXNLXHfhyMw6hg5uteX7lAjTtXmVGZYsplFCTI0xN1Zd2O4ezP0Iaea3JCa6Vo6qZkyMt7ZAj5ORdGGvbpbRvk6MwrdyHmQRaAskiAr69OPwfXaSo3htNg1WdSCYuA2znBEikg0as+us63c8ae62+pPnc8dJcsphNei78pyB3lN0/NxrsPwI7TlHuIsBKW7ZdT07hi3jLIwbQux9Hh5Xx6+Uvq82xoCxN3+PX8OvDPK8lvuae6aJ61atoxfODyWe66bauiIe7rXOlOoeIsu7u0+cVcioIuBirGoobvnKUddNHZdaPQsDYVeB1XmBgRnyzjr9Wg+99yS4PWGdC78JXxrm7ed6fQkoKpEvjvZMoGWuy7uynJPwC0z7aJgI2baRfLVv1CaIpzqzkvQJyj5A6pK3LszykmAoSHu6oZmFbk3Qy0/ANJyD6XIix60qlxXx7WirpWpW+7KZZGR7x4vcGp0trQUgqysqed7M2uCKrRjgQtXRMKpUkjuPxfuO8cVd70j0Nd5OeEmOPNO+V4PtHblcwd7saaQG1wsnuGeZ7yle/U0MbX8QUxA1T4XdU/Gnwqfe16+V08HinHL2L/36NXe7/WVIHU82TINmlvGd5/SfZa7Qol7Skbwuigq3uLxucez3LX7rwduIdbn3hm65R7U4ejuIyHc3w8KqILr6mqpj7+wl59wiivGgeLeDct95JHeOtwdcU8LaNd6HVVZT/Es94x8+d1Z35Xn6FjuWr2a/Sn5qj94Q7/m4YjsIDOHedcqUgFVFb9R8Zw+cst0EjEZRHgCqnEsd/U+Z6SclVd6QuLHbW+RlmvTAZ/lXm1vlydvZP2+4BslhJ1tkhP7nZ+gRqEqu39I3VAJu5e4n6mc8KJpMoVSX49jwmmuNaZb1X7xDCqL6gyUq6J4enCl1wlyj6iJWgp1jKnz5TC/+AjXmlGumSCfO7iiqIv7ga0Blnu6vFe/mCpHRKlxRMBvuSuCLHcRcrOGHMvdPheV596V5V4wXh6nfLn9m/lambsSd+0c9Q5Tpfz5feVpObKu6ssP6L+jMpD8AdVESUlzr0larnTvdMfVUDIHbtsO//mmt3yJ0JlbRr9eU8+XzxOI53NPSYPvVrrXMMiIKZ0nX/UHbwghOwXdh55RGPzge+Vz72+3jBCiVAjxhhBinRBijRDia/bnhUKIV4QQm+zXAm2fO4QQm4UQG4QQ5/dJyXVUQ83ULfdU96Y2VnnFZtJZnQdSFfpMMj1XHaTlrnre9Hx3KBkvCn/JH+Dkr3f9m0EVWgVU9YYZSpWzPnWU0H3pHbjNN3kpHvEqObjnojqXy/4EY46TIqfKEtfn7luSoHh6bHaMchekpMHU8+T79Dx5Hkr04om7U367HPEsd3U9nYel2I00sxBu3yUXtgKfz10TCCdwqFnuejqoY7lrq4V2tHgbbCgkxceTZpgm3Wb7Vnt/X4SDJ3fpxEvBi2QGW6Qey90XUAV5zVpqZefnz+hKBCG0TjPHe+zuEG/lys7ozC2j6sbcL7j1o7N6r3eO6nrq9TynRLYDtba+v9xq/4x8r7g7AVVbKwaAW6Yd+G/LsqYDJwA3CyFmALcDr1mWNQV4zf4f+7srgZnAfOBeIYJmq/QiRVNkTvqoozRxT3MrXOP++BZmZzji3uyKtzOJKep1y2QWeL/3M/kc7zKl8QgS96AKGU6NfUSa/uQctc/Rn4HimcRw/WtwcRdrWig3jFo3ZdoFcP2rUqy6dMtoK0WCnObtR4mYv0PMH+c++UlNSlPoLolQCoy1R2BdibtCTzNNz3UDYbooBAbl4vjc1ShIdBJQBTly8z/4IbPITbmMZNqpkgk0dH104knBSwsWrbQceT9CYSk8jnhqbhn1BKZE3TIxZbKvu+qkepK7repOMuKuP/XJT94YORnsol+5dS2eW8aP/lCS1Ew494fyGl7/Ksy4WHb6Z9juzuNvtLfVOpogy13VA6UfnXU0PaBLt4xlWeVAuf2+TgixDhgNXAKcYW/2IPAmcJv9+SOWZbUA24QQm4F5wPu9XXiH7GK41Q7aqeVa9ckLTQddCysZnAWAmjXL3b4Re1d6rQUlLj29Uf5GUTjJreR+twwgg5F2oDPIxXLJH4N/Z8xcr68/CDU7Vq2bouOIezy3jC9wqa+Noogn7gXjpOWeUeB2LAoVxJ5+MfzXQ/KpTiA7+HDEO1sZYq9nyVHe/3PsDJh4bhnnOOmxMQPPufjy3P314KpHYuMbGQXurOLUTO8chs7QOzhVfpCjhbYAO0qtr6JQwXhlMaZmuiOb7rhlQLa1Btxr1xPL3RH3JDoIJerxJuWpGIces0oEJ/suIteR9/Mdbcb2Od+HKee7c1bS89zlKUCbTGnHPhy3TN9Y7kn53IUQ44GjgQ+BEbbwY1lWuRBCRe9GAx9ou5XZn/mPdSNwI8DYsWP9X3cf5+ZFvEPt7ljuaXnyYcAn3QKrHvcef92zsPUt+T4Rt0yi6I3i8y9K/55aZVGvkGrpgQmnyUcEQuf+8+6gfk9ldugEDVd1lEWrpsYXjIvdxrGifIKkfPPjTibm2a6Tz4Zxp8B5d9m/Y9/XwklwZ3lsFoR+PW/fGWvZKcvdnwoZcz4Z7r6RHG2NfN+5xLPc9QwlhX6/Iln2Gu4JNHSPuI9w3+uP5dNJz/W6cgItdzslMyjonwjKWi0YL9P/uttJgOvSSsZdUTIHLlsAk8/tfDunziXYTnU3byKM01KRdcv98Rtg40uyIw2F5DV3Aqr9nC0jhMgGHge+bllWnGXo5KYBn1kxH1jWAsuy5lqWNXf48OGJFqNr9ICq/ti3eJNtOj1WCD77lHSpKItAhOHi38v3LbWyMaVmuFZZ0HonyaA37tR0bVKWT9zVlHk9Za23xf2aJ6XlHzhRRqVCxrmumcPktTrnB1Isx50Uu41yZfjFXcUYxp8Su09WEXz+eXebwknSuh8xMzi9TRfZwCF7Kcz/GczS5jvEs9wjWXLN9+teiv1en8TU3pJYg/WvUx8KJ7afZ6JNvvtef76uzklfgfk/8W4Hms89053UFtSxJYLq5OdcBV9dnticjnh0x3IXAub8V9fByWTFWnWW3THa0vOluNfukc81aKlxjZHUzP53ywAIIVKRwv4Py7LUkwz2CSFKbKu9BLC7fsoAffw6BtjTWwXuEmVBRLKlOKrofXcsdx3VEDta4ZjPymDmltekv11frtQ/uzRZ9MatC5OaFq9QQb2+FPeiKe5w1o8S0njiPuuT9nKqs73CqRPPLTNmrryP6kn3nZE9HG5ZFP/7rtwDQsAJX/J+Fs9yBzj2WnftG33NF88kprbEhCnGck9NLHNCv+Z68C8lLViERh/rHTs74h4wV6GnPvfUTO9oojvoD3/pbbrrc++WuOfJ+rD+efczpU+65d5fa8sIIQRwP7DOsqxfaV89A1xrv78WeFr7/EohRJoQYgIwBeik9fUyRZPhyoddYVDWe2+JuwrIKctRWU7KLeOfXZosnmVe9XVA0oN7+JI5ssKEUnpmLSWLahxxlx9Ik8Le6THiNJySOXDn7tiVJruDup7JNM54lrtCCJmP/4WX3c86m6EajxjLPSV5y10nnuXuJ8VvuWtto6dumd6wQrtjuSeK6K7PvRvnpUaKa550P3M6wSzNcu8/n/vJwDXAKiHEcvuzO4GfAo8JIa4DdgJXAFiWtUYI8RiwFplpc7Nl+dM6+pgjLnTfZw2XK7h1xy2j409fUj5kJ5Bju2XiPTghUfwz3RSpGcHWhnqcWUtdYo8z6y26SoVMhM78n711LkogknE3+N03aianjt9l1JXPPQgl7iKE8/SlRATNf+zjb5L1sqEiMYvU75bRJ7v1JKAKvSPI/phAb5KsJe64Zboh7mp29Y6FslOxOrTn+Ga6cbN+zJZ5l2A/OsDZcfa5G7i7B+XqPbJ7y3JX4m6Ltwr6qRvYW24Zj7j7porr/3/6Me1JSCN7HshNlq7cMomgyuxfY6Y3Udcz3iJcQfg7gkTcA55JTK2JuVeUuKdm2ZNgEkyF9Hc0F/xUvr76g85nHCv0DBCQQcB37O+6K+7+h6D0BHWvuuv/74ykfe5xgv6JoNe50uNh53vuowz10ddAyJYZlCirpKfiHtdyz/d+39NBin9JVkXhBK8ITtXmhs39vPfhxIeCrgKqiSB64M9MlmTE3RGXPG8QrDMcy70jCcs9X76qhh5KMBUyHuf8b2LbhX0+bX22drfdMr0o7hPPlMH8kQFzI3pKsj73cJKdgY5e5yafLcVdTYrzpKb2Y0B1UKN87j29gBl+cR8vX3Uh6A3iPVrtsj8TdwCl1ro4lHSVCpnQMQ6BuKu11YPWhYlHRoFcHCo1HVY/nqDl7l84LIH65qzzb1/DRFMhe4rf7aEHUbs7FT7Si+IeCslZ5H1Bty337oh7vvt+8jnw+l3u/7rl3t+pkIMWZR2pqb/dRVnmam3wjAKZh63WmQiF5CjhzG/37Hc84q5PWkoNTvXrLxy3TA9GRIdC3EuPl08/UumriRAKw1X/lE/jgsTOUY1CXroT6vYk53NXwcjSeTC6i4llvYESNr2unfZNGNlFALwz1Dkcis6pJyQ7icnxuXfHLZPvvleT+HLttCXdcjdumW6ihpkqkNFdUjPg9Ntgmhas/fx/vNt8c1PPfgPi+9wHGo5bpgcZOj3xZyb8GyE49b+7t29qElkbegdVNNV9ildnqMavrN6Lf5dU8bqNOh+9fp31HfnXXYqmSOPmUGZsdYekUyF74pbxPYDlliXBj9w0bpluooacapJGT1BL5vYlTupe6qHNfkkWJxWyB5Z7vElMAwUnJS8JnztII2DiGV3vE06RQcPuxC3O+YF3PfFkCKcGZwD1hJmXyr+BjiPWCUpfuAduGb9o63NGDoFbZuiL+7DJ8rUnQ85DSTjAqhqIqIrbE0st2anghxonDzwJnzu4dS4RMvK7dw1P+Xry+yjCkT4TlAFP0pZ7D2aogpxkGNTR+9f66QMGaKvqRUYeKR8bpj9ybiDjDJn7ZqjWazgLh/UkoGqHfAaquDvLFific9es4GTE/fTbvY9oOxSE0wa+b7yvSNbNkpIm11aKN1O7K+I9rtDJkEqJXT+plxigraqXGRGw5O1ApS9n5/UmXT1mLxGcPPcB7pZJxHLXSWYK/9FXJ3fs3mDGxcELuR0OOEH8JJYf+MqSrrdLFiXufTiCOjzEfTARFOwaiGQOk8Hq7uZFw8D3uSdjuQ8mpl0g/w5HnGyZfpY+Z0nsvmvnRtwHGqEwzvNeBzLHfFY+Hq8nlXMo+dwV/oeLGAYWPclb700cy92I++FFSvrAD3ilpHX+8IpEOBR57j0h2ScCfeldN4/ZMDDpSWpjb+LM6DVumcMLtYjUUCc00N0yAasmdsbII/uuLIbeYaAYFMpy70O3zNCfoToY8S8SNlQ5lGvLdIfULHkvElmMyzA4iOTINZrUzPV+K4dxyxyehCOHh7gfihmqPSElAje+6a4Aahj8ZA+HG98KfuzhoaQ3F1qLgxH3gUhKep8O1wYMA2WI3Bn9LQKG3qerh8gcCiJ9vxaPccsMRLKKDg9XwEDPczcY+grjljlMufyBgW3N9hZigM9QNRj6inBqz9fv7wLTqgYi2cVdbzMUGOh57gZDXxLJNG4ZwxBloKdCGgx9SSS7T1Oejclk6D8GeraMwdCXjD+1T9e9MuJu6D8Gep67wdCXfOLPfXp445Yx9B+lx8lnlZo8coOh1zEmk6H/KBgvn1VqMBh6HWO5GwwGwxDEiLvBYDAMQYy4GwwGwxDEiLvBYDAMQYy4GwwGwxCkS3EXQjwghKgQQqzWPisUQrwihNhkvxZo390hhNgshNgghDi/rwpuMBgMhvgkYrn/FZjv++x24DXLsqYAr9n/I4SYAVwJzLT3uVcIs+SfwWAwHGq6FHfLst4GDvg+vgR40H7/IHCp9vkjlmW1WJa1DdgMzOudohoMBoMhUbrrcx9hWVY5gP2qljEcDezStiuzP4tBCHGjEGKJEGJJZWVlN4thMBgMhiB6O6AqAj6zgja0LGuBZVlzLcuaO3z48F4uhsFgMBzedFfc9wkhSgDs1wr78zKgVNtuDLCn+8UzGAwGQ3forrg/A1xrv78WeFr7/EohRJoQYgIwBVjUsyIaDAaDIVm6XDhMCPEwcAZQJIQoA/4X+CnwmBDiOmAncAWAZVlrhBCPAWuBduBmy7I6+qjsBoPBYIhDl+JuWdZVcb46O872dwN396RQBoPBYOgZZoaqwWAwDEGMuBsOeypqm7GswKQuQx9S29zG/e9uIxo1174vMOJuGPRYlsWzK/bQ1hFNet99tc2ccs8b/OWdrX1QMkNnfPvJ1dz13FqW7DjY30UZkhhxT4DVu2toaGnv72IAsLu6iV0HGvu7GAOKZbuq+crDy3h5zb6k93113T5a26Pc9842WtpjY//Ldh6kfoDc+6HG+vJaAKJm1NQnGHG3sSyLBW9viRHOlvYOPvb7d/n8Xxf3U8m8fOPR5Xz90eV9/js1jW3srWnulWMpy/r3r23qkyH4zv3ynm3f35D0vq+u3Ud6aoiKuhZeXL3X893q3TVcdu97/OKlDb1SzoFAQ0s7FXW9c191Xl27j/N+/VanRtCLq/dy8k9fp7a5DYDK+hYAFm6uYsq3/9Op0dLY2s6vX9lIc9vQSL6rqm/pc6PhsBd3y7J4atlu1pXX8eP/rOeqv3zg+X5/fSsAi7bJ5XWa2zocgdLf+6lvaWfn/kY6khCz97ZUsXxXddzvO6IWK8uq2bC3rk99xM+s2MOcH77M+b95u1fE+NmV5Xzl4WX88pWNbK6s74USSvbXt/CpP73PB1v3A7AjSXFvbutg4Zb9fGpuKSEBmyu8ZfvJC+sAeHLZbh5fWpaUKH714WWc8rPXeWzxrq43jlO21vbk3UyKB9/bzu2Pr6S9I+oRxP99Zg0X/vZdmlqTF0nLsjzHikYtGlulQL21sZKN++p5dV3w6MmyLL7096Xsrm5i3R5psVc3SpH/2/s7aOuweHLZ7pj9Wto7eHjRTl5Zu4/fvraJtzfKpUq2VzXwiXsXsr0q9p5blsVji3d5ympZFo8t2UWd3bHo1Le0c9WCD/jQrke9xTceXc7Ty2PPCeAz933I955eHfhdbzGoxb2yroV/friT8pqmhPdpbY/yjUeXs84eEq4sq+Hrjy7nD29sAqDsoPdYVbZ1AdDU2sGp97zBAwu3YVkWZ//yLe57N9ZXa1kWF/z2bU77+Rv81BaIRPj0Xz7k0j8upKK2mc0V9TFitbWynua2KPUt7eyt7X3rS/GO3YBqmtqoamjpYutgGlraeWeTPM6qsmrn8z3V8vru2N/AVx9expo9NXzl4WWOSPiprGvh5n9+xL6A81264yCLth/gCVsUdnZi+VmWRVNrB19/ZJkj4mUHG2ltj3LsuAKKstM8v1HT2MbCzfs5adIwapra+O9/reD+d7cldO7RqMWzK/dQdrCJHzy7hhdWlXc5CvrVyxt4clmZ8/9n7vuQ+b95m/ZuxBFAivgji3cx439f4lN/ft8p1xvrK6iqb+Hxj8q6OIKX9XtrOe/Xb3PqPW9woKGVxdsP8PcPd3DiT16nrrmNDfvqAHhuZTkAK8uqufWx5U75db/6jv2NHpFNDctVS15bX8HN//iImkb3u2dXlHPHE6v4vze3ALDNFvOfvrCej3ZW80hA57lmTy3fenylI6xvbaxkyY6DfOvfK3l40c6Y7R9dvIv3t+7nnwHfdZftVQ08uWw3X3tkOUt3HOSRRTupsOtXR9RiS2U9b2+s6lMjbVCL+96aZu58chUry2oS3mfNnhqeXLaby+5dCMBzK+XqCEu1yre7ugnLsvjjG5v5cKu7IOYzK3ZTWdfCmxsqqW5sY3d1U+Bvb61qYNcBKWKLticWLKrVKvvPX9rA1x9dxq2PrfBss3qP+1t+K1Pn+8+sYf5v3k7odxX1Le3OsFjvOPydnZ+nl+/mlJ+97hFny7L42O/f5Zr7F7G3ppmtlQ3kpsspFeW2yL2wei/PrNjDRb97l2dX7GHZzurA47++fh/P25a/HyXmysJV7hk/jy3exTF3vcKtjy3nqeV7eGbFHk9ZSvIyGJmXzt7aFrZU1tPaHmW33Qldffw4vnDyBMAdxXVFTVMblgXXnDCO5vYoN/3jI3743JqY7cprmqhpbOO5lXv43eubnft9sKGVJTsOsrWqgXttUQOoqGumsi64s62oa+aN9RVstEW2KDviXJuVZTXUNLbx2voK9je0EkkJ8df3tgOyDenukEXbDrDg7S2sLKvm3jc3Y1kWjy8tY/5v3mFTRT2VdS1896nVfOrP7/O393dQ09TGWxsr2bSvDiHgrQ2VNLa2c/EfFvLER7udkdqzK/YQCUu52b6/gS2VruFSZV/XFbuqeX5VOf9a6gq2MhDW75XntbWygY376nhxzV4i4RDPrdzjCOTu6ibm/uhVXlsnV0NZvbuW5buqufaBRdz275UAnvYM0N4R5QG7035jfUVMUL61Pco9L65ng/37igVvb2GtPQLRue+drby3pcoZwRRlR7jhb0u4/YlVfPq+D2lu66CqvoW2Douq+hbPdehtupzENJAZkZcG4FhclmWxfX8j7R1RJg7PJhySFkFNUxt5GamAW0ma26Js2FvnWBr7at1Gs3BTFWdMG87PX9rgNBKA/7dwOyCDbEr0gvyEyk1wzvRi3tlURXtHlJRw5/2oqjwhASvKqtl1oIm2jiiNre1kRuRtWr27lnBI0BG12FxRz6lThvPRzoM0t3Zw0uQi51iq4W6vamB8UVbMbz343nbe21LF18+ZyraqBi48soRfvbyRfy3dxaI7z6G8ppmJw7PYWtlA2cEm8jJSWbr9IJ84ZjR1ze0UZLnX5N9Lyyg72MT7W/Zz9vQRALy5odKxsLbvb2BrVQMnTBzGq+v2UW6L5urd3k6xPI5lu9u+zou2HYg5nx0+MS+vbaalvYO0FPcRApv21fGtx1eSEhK8YPvUV9ojCVfc0xmRm86qshrm/+Zt7rxwOmMLMwEYlZ/ORbNnsHTnQfbVNvPksjLmjiuktDCT/6wqZ0xBBrPH5HvKoXzJ8yYUcvb0Ym5/fBXvbHTrwX9WlfPu5ir++eFOLjt6NGvsTnt4dhqNre28sUGKU2lhBr96ZSPji7K4eM4o5v/mHQ40tLL1xxcSsuv2B1v309DSzu9e38wK26X3yWPGsL+hlY/NLsGy4PlV5dzy8Ee8s6kKgOtPmcC9b27h7ufX8pd3tlGYFeH2+Ufw74/KHPfjrNG5rN5dy/SSXN7ZVElxTho/++RsPv/Xxbyybh+W5RoYjyzaxcHGNmaPyWNlWQ1//2CHdv3rGZmbzmvrKjht6nC2VNazZMdB3t1cRUiA3+sXCYd4dPEurjtlApYF79plVmyranBE9fOnjOfPb21l2a5qlu2sRiBH2q+sk/d59Z4ahudIjdhq18dF2w/QEbUcbdhcWc/u6ibOnTGCV9buY8n2g5wwsZC/f7CD/MwIz67Yw8tr93GwsY0fXDyTz9z3IVcdX8qP/7OeK49roKq+hbGFWXzquDE0tHTwo+fXkZYSYmReOgCNrR00tnZwxrThvLmhklsfW85V88Y65/P8ynI+eexoxhRk0tsManEvykojHBLsrWmmtrmNq//yIats0Ridn8E/rj+emqY2Lv/Te1xzwni++7HpjjsmJST49pOrKK9pJpISorU9SjgkSE8JsWp3jSMiyqoYW5jpdAwNrR28aTfAXQebiEYtp7G1tkdZuLmK4pw0LppdwqvrKthS2cC0kTmdnosq10WzR9nWiPx86Y6DnDpluLPNrFG5bN/f6DSsn/xnHdWNbbxy6+kAnmHecyv3cMtZU5z/d+5vZE9NEwve3sru6iZesrNLtv74QlaUVVPX3M7r6yvYW9PMBbNGsrWygS0V9XzVtppX76nh8aVlvPrfpzMyN536lnanI3tjQ4Uj7h9sc32XWysb2HmgkYuOLGHV7hr22IK6Zk8t6akhmtui9nb1vLi6nPNnjqS8ppnvPb2aey6fwxbNp7qirNor7lrHOiI3jX21Lew60MTk4mzn84WbpTjcdeks7nhiFVmRMCt2VWNZluMqKc5NY2RuOq/UyuuxaneN0xmPys+Qx89JY215Ld94dAVXzRvLDy6eyZf/8REAM0pymT0mj1vPm0pxTjoVtqEwPCeNEyYO4zsfm84t/1zGJX9cyHWnTOA7T62mvUPep0XbDjjWeGV9C5+570M+skcxL339NK5a8AE/f2k9HzuyhAMNrZ5r3RG1+O/HVlBe00TUgq+fM4X15XWOy+WMacUMy47w/KpyR9gvml3CJ48dw71vbuEv70iL9UBDK997ZrVzL8D1h9/z4gYiKSEmF2czd7x84JoeCxhTkMG79jU+ZXIRK8tqHMsZ4NevbnRGXV89ezIdq6O8saGScEhw79XHcNdz69hd3URpYQZXHjeW3IxUvvvUai747TvceeF09je0Ovc2JGBrVT3bqhoQAq6eN44/v7WV37+2iTc2VJIZkZ36+nLZTlWbUuSkpVDX3M668lqEgF+/solJxbI+3XTGJN5YX8HbmyqJWhbffVqOtOxmTVV9C6+v38ei7QdYtF12gK+vr6DCvncPLNxGSkiQnZbCpOJsNu+royAzlYP2dbz6+HGcOHEYP3txPYvt0XwkJcSvX93Ipoo6/vDpY+htBrVbJhQSFOeksbe2mUVbD7Bqdw1fP2cK93xyNntqmnhmxR5+/J91dEQtHli4jWdW7GF9eR1zxxVw2tThLNlxkEhKiI8dWQLIBjxjVC7ryms9gZrMSJhPzR0DwCi7R37WduccaGjlnF+/xVcfXkZ7R5Tzfv0W/1m1lxMmDuPI0XmAa6Xe985W3thQwbaqBseXv+DtLXzhr4v53tNryE1P4aRJw9DdcB9oQZ6yg02MG5bFtBE5vLaugrV7atlUUe+4kQCnsgE8vGiXJ2bwpb8v5coFHzguB/24Ki3tkcU7qW9pZ3JxNgWZqfz2tU3Odg99sIOG1g4u/O07nPzT13lpzT7aOixK8tJ5c4Mcmv/oubVs3FvHxOFZhAQs3FJFR9RiQlEWJXnplNc0UdfcxraqBm46fTJP3Xwyo/LS+X8Lt/Olv3/EirIaXl9fwavrKnhl7V62VjZw8uRhCAEvr9nH9O++6Ixydu5vIMVufSdPKvJca/f6HWB0fgZXzRvLUzefzG0XHMHBxjZ2HWiivKaZouwIaSlhx9IC2LivjvLqJlJCgqJsafmNyE13RmuLtx9wOobstBSG56Tx+Edl/OZVea0q6+V3ympUZVuzp5Y7nlhFY2sHv//00Xz2xHGU1zTR2hHlmLH5WBaOsF81byyZkRQ+c8I4dh1o4uW1bibPb1/bRHuHNCJ2VzcREoLCrAhfOn0SFxw50tlubGEmpZpFeNMZk/jjp49hYlGWU49/eMlMQI5krz1xHN//+AynToAUyHXltYwvyiInPZWRuXK/aSNyGJGbxm/+6yjn+MoIWbW7hpG56YwtzGSr7XYoyo5w9vQRjoV65rRi5s8qcUbU44dlcfOZk7l63lh+dOks1u+t41v/XklIwFdsA+XkyUVU1beysqyaUXkZlBZmUJQd4U07RtRoB4nbnYSHKMt2VnPCxEIAPn/yeEIC/u/NLVz2x/d4dd0+Fry9lUg4xJGj85g9Jo8Pt+5nwdtbKcpO4+EbTuCDO87m3Bkj2F7VwKM+/75qaz/5xJH85BNHUpAV4YZTJ/L0zSez5ofzufPC6c62E4oy+eLpkzhn+ginM//XF0/kT585hutPnUhfMKjFHWSjq6htcXrp60+dyKeOK2VKcTYPL9rJh9sO8J2LZjB1RDb/9+YW1u2t5YiSHD4+Rwr6WdOKmWpb1SPy0pleksv6vXXOMA6gKDuNj80eBcC5M0ZQnJPGxn2uz3trZQPPrNjD9X9bwvb9jXz2xHF8a/40JhRlk5Ea5pW1+6isa+HH/1nH/e9s4zP3fcg3/7WCXQca+ekL6x03waj8DCZqluno/Aye+Gg3tc1tRKMW5TVNjMrP4M6LphO1LK5/cDHVjW00tnbwvafXcOPflrDF9nH+97lT2d/Qwq2PreDPb23hygXvO/7YSDjEx+eMcn7njQ0VNLR2UJCZ6lh4I/PSGV0grdZ5Ewopyo5gWbJMBxvb2FPTzM9eXE9RdoSbzphE2cEmvvv0au57dxvvbq5i+shcSvIynOyGicOzKMnPYOWuGr7/zFoAZpfmcVRpPmMKM2myMxs2V9Q79/KtjZVsq6rniJG5jCnI4IXV5TS1dbBo237aO6KUHWzirCOKCYcEV84by+TibH732ibHb2pZFou2H+CEicMAOKo0n2PHSevzo50H2VvT5Ij6iFxX3Dftkx3miNx0Z/hebAu1KqOKf/z5mmN58AvzOH7CMFbZ8RfVeJW4F2RFuOXMyZwzvZgWe4R44qRhjC3MdNwSp2hutT9++hh+fNksAM6bOZJIOMQvXt4ISD/+yrIaFryzlX8tLaMgM5X/fO1UHr7hBNJTw8zRXESlhRmMse8hwNQRckQjhOC8mSOdTm/cMCm4Fx81ijOmFTvbH6dZ6hOGyXqpRkV3XjSdD+88h7njC/nwzrP55w3HM2NULiBFtiQ/3dn2qnmlLP72ORRlp5GVJp0Fqv3lZsj/C21XXygk+MwJ45heksve2mZOmlTEVfPG8qfPHMs1J4wD4I0NlUwoykIIwcxReQTFJAsyUxFCvv70E7NZcM2xfPnMyVxwZAnPryonJSyYXpKLZclzSg2HOGHiMJbvquatjZV87qRxnDhpGMW56Ywflsn2/Q28tTH2oUKRlBCXHzuGq+aNZdGdZ/PVsyc73422R30hAaW2m0/Vv9z0FOaU5jN/VglHlebHHLc3GPTiPjI3nb21zazfW8fYwkyy7cpz7LhC6XIJh7h87hiuP3Ui6/fWUdfcztGlBZw7YyTHjM3n2pPGOzdhZG46R4zMpb6l3RnOAwzLjjC+KItf/9ccrj91onODdOZNKOTNDZVkpIa5/YIjGFOQSTgk+OLpE3lxzV6ufWARUUtafburm3hnUxW/eHkD4ZDgua+cyv9dfQy/uGIOE4fLBhEJh/jdVUezr7aZbz+5mn11zbR1WIwuyOCoUlnuPZqf+qEPdvDy2n08ZWeOfOLYMXxqbinLdhzkJy+s54OtB2iPWlw1byy/vfIofnnFHN751pmAG1T+7InjneOV5GVQ3yyDpJccNcoRn79dN48l3zmHnLQUKutauGBWCWcdIQXhAztY1dZhMak4mzEFGdQ1txMJh5gyIodReenUtbTz1PLdTCnO5phSeR1163JrZb3j/vrPqr00t0WZODyLiUXZjhCuLa+jvKaZ9qjFWUcU89F3zmXehEJum38EW6sanPNZs6eWAw2tjuUGcMTIXIbnpPHSmr2U1zQzMte994qW9igfbj3AqHz3M138AScTQ9WdmaNz2bC3jtb2KJV1LaSlhMhJc72e/3P+NH5xxRxSQoKjS/PJTU9l3DC3Iz9ZE/dZo3MRQnYqeRmpnHVEseOGu/XcqZwxbTh/XbidtzZUcO6MEUwdkeO4/cYNyyQvI5VIOMSInHTSU8OMyJWdzNQRrmvwzgun89I3TiM1HOKUyUUUZkWYMyafEu2cz5sx0hkZKXeYEuzpJe6xRuSmc9KkInLTU0hPtd1ZeRnOtqdOGe6cz02nT+KuS2c5xpKy3Asy3TgOuOL/8TklhEOC+bNGctz4Qq08mc61kr9RxJGj85z/Z43OY+l3zmXpd85lfFEW580cSXpqmBttK/mGUydyxbFj7HOR+xw/cRhRS44yPmcH0dW5t3VYRC04c5r3wUIzR+WSarvwhBDOeQKOcTQqP8OJAyntUO6+vmTwi3teOvtqmllXXuupcOoinj5tOLnpqVx61Gi+eNpEfnHFHC47ejTZaSk88eWTOXHSMNevmpvOEfYxVu2ucaw2NTS/7OgxlBZmOsdWlXfmqFx+fvlsUsOCc2aMcAKgAF87ewpXzStlrW2Nttj+yvaoxdPL93D5sWMYmZfOBUeWMGt0HkXZEXLSUygtzODYcQX893nTeHbFHu54YhUAo+3Gd/wEV7B0Hlsi/a0luemUFmRS55soce1J47jgyBIiKSFKCzMpyo6wePtBhIBrThznbFeSl84Eu0HPnzmSL54+idvmH8Gk4dkUZadxml3JPza7hDEFmY5VqJhcnO1U7tOmDic7LYX0VFnBP3P8WF659XTyMmXDVsFLgC2V9awvr3UECWBKcQ4Th7tCuK68lk0VsgOYUJTlHOec6cWMH5bJI4vk8Pn5VeWEQ8KJBQCEQ4KLjizh9fUVbKmsp8Sx3NOcewkyY0hvgMX294VZESIpId5YL604ZfnPGpVHa0eUTRV1VNa1MDwnzdPQAfIzI9x16SxuPW+q57xTQoKjxxaQGhbkpKd4rgfAdae6QlOQFeHiOaOoqGuhtrndcYUohBAcMzafccMynThQaUEmIQGThrv3KJIScgyhOy6czjO3nExKOERaitsZTCrOcjqN8bZ1f/XxY7njgiMozvF2duq3VSdYkpfOyZOLGFOQ4em48jJTueaEcU7bUuJemOUV96uOG8sXT5voGWEWZEWYabs6xxVmOdcd5Ajn2a+c4rjAinPSKcyKONdAMac0n5e/cRpfPXsKp02V1051CHPHFTA6P4PbL5juXBvAGbXkpKdw6dHyqaETirKIhEMcXRpr6ClU3ZigjcZnjc4jEg45RkFfMqgDqiAFua6lnbqWdk9FOHHSMCIpIT41Vz4YKpIS4g7NB6ZTaotQSV46R4zMkYGXlnZmj8lj2c5qT8YMuB3HzFG5NLd1cMGskYwblsVjXzwxJuothOCuS2aRlxEhHII/vrGFlJBg6ogcctJT+N7HZsZsr/KuAb58xiSWbD/AGxukmCjBmT0mn/TUEO0dluNjPGnSMD7Yup95EwoJhYRnSA6yck4t9gZ2lUVx6pThzm+CFLNffeoodh5oZFh2GsOy0xwLB+C6UyaQl5HKceNlJ3PmtGI27qtn3oRCFm07wOTh2TxnpxyeN0OK6yeOGcPu6ia+Of8ITxmUW6AwK8JbGytpbotyx4XTyUlPIRwSzB1X4ORRR1JCbNhbx/Kd1YSEbCz6tfvUcaXc8+IGHl28k2dX7OFk2yrV+djsEiejSDXA0QUZ5KZLH/ePnltLQ2uHxxWjRGtycTaWZbF4+0GKstOcDkt1Cmt211JZ3+K4ZPzomRJKxMcUZMjOtiCT4tzYTmHuuAJPZ3vmtGJCQj6/UhdOxd2XHemZKTp7TD4dluWU1U92WopHzMYUZLKvtoUxBZkcVZrP+r11jlthyogcpoyInxwwIiedHfsbKcnP4PSpw3n3trPibguQm64s91TP5wVZkcD2evYRxazYVc0wu02ePKWIS48axfkzZR1TnXVxbvD1B3cEM7k4m0duPMFxZWWlpbDw9tjyqlHLyZOKnA5ycnE2v/6vo5xOL4i0lDBHjMzhaM3tkp4a5mvnTPEE/fuKQS/uI/Pcm3ik1tBH52ew4nvnkREJrtA6xbnp3Hv1MZw0aRiZkRQe/eKJ/OSFdXzmhHF88aGlHtEDmDkqj7yMVKYUZ3PP5bNJDckB0NFjg3vxlHCI2y84gua2Dv701lamjczhyS+fTGpYxDRkgL98dq7zMFohBGcdUeyIu+rxIykhTppURH1LOyt2VdPSHuXbF01nSnEO6pB6R/O5k8Zz7owRMZbMaVOLeHjRLsfH+8dPH8Nr6/aRlhImLSXsSXvUOWZsAcdo53vjaROZOTqP0fnp/O61zUwuzubmMyfT3B7lotlyiD2hKItffeqomGPNnzWSX0TnsHFfHQvelpPCjirN9wj3LFs8P3H0aB5ZvItnV5YzpTjH8eEqPjW3lH8vKeO2x+VI59Zzp8b83rHjCvjORdN5YfVex92UGUlh8XfOcYJrP3txPefNdIOTStwnDMtimD3aGa11nuOHZZGfmcrfPtjO5op6Tp/a9XOBMyJhinPSGGtbhvdcPpvs9NgmKYTgrW+e6WRuFGRFOHHSMFraojEdF8QO+b990fSkZkqPKchg6Y6DjM7P4OYzJ3PWEcVxOwY/SlRH5cVa9kE4bpk49czPTWdMYmRuumPI5aan8psrj3a+L7HPvThO5+pHxWM6Y2RuOufPHMGnj3fjE6V2x9cVz37lFEK+Nn7zmZPjbN27DHpxV8PDSDjEmUcUe75LRNgVF9oZMwAzRuXy0HXHAzKF7nTf0DeSEuKVW08jLyPVk1PdFempYc6fOUIOzVLie8RSfTnxx9sVMCc9hZx018L5zZVHYUXhsnsXsn1/A5OGZ3uOq1vup08bHmjlfe9jM/nGOVMptsXrotkljhgnw7DsNC62G9yDX5gHyCHw3+z3nZGeGubyY8fw0PvbARnIU5aw4uixBbzzrTNp7YjyyOJdbKtqcDKYdIqy03j11tNZW15Le9RittZBKIQQXH/qxJgsBXUvZ43Oc+6/oiAzlWPtLKvMtDC8ucVxkYEMBP7yijnc+NBSOqIWJXmJDbt/cPFMx8qfOz7Y1QbE1Jd7rz42zqPnYwmHhOMGSYRTJhexv76VrLQUstJSkvIPq/ZYkuA+ucotk5mYuKeGQ3zquNK436vRTWkv5o2HQoI/XzPX+f/uy2ZxYgKdAsS25UPJoBf3o8fmc9W8Ur58xuSkKnCiqAi9nyCfYyLce/WxSe8zpTibwqxIjDWihrSlhZkIQYx1lZ+ZSlYkTENrh+N68pMRCSfVCfYl588cKaeOzz8icESjXAPHTyjkw20HmDYyN2YbkI1xVoCo9wQhBI/fdBIgZxOHQyJGQM6ePoJnbjmZbVUNju+3Ky44MvmOFFyLty+4Ym4pV8yNL6CdoYLQifqUlXslnhsrWaaOyOGJL5/EUb6JZb3J1ccHa8JAQwyEhxTMnTvXWrJkSX8XY0Dzl7e3EgoJrjtlQsx3myvqaW7rCBS08379Fhv31bPuh/MHjIj3lN3VTdz5xCp++skjE7aQe5uFm6uYMiK72538UKW2uY2l2w/GjKLj0dLewRvrK5k/a2TXGxtiEEIstSxrbuB3RtyHNl/462JW7Kpm6XfP7e+iGAyGXqYzcR/0bhlD51x/yoQuF/8yGAxDDyPuQ5yTAoKoBoNh6DPoJzEZDAaDIRYj7gaDwTAEMeJuMBgMQxAj7gaDwTAEMeJuMBgMQxAj7gaDwTAEMeJuMBgMQxAj7gaDwTAEGRDLDwghKoEdXW4YnyKgqsutBj7mPAYeQ+VczHkMPHrjXMZZlhW4vvSAEPeeIoRYEm99hcGEOY+Bx1A5F3MeA4++PhfjljEYDIYhiBF3g8FgGIIMFXFf0N8F6CXMeQw8hsq5mPMYePTpuQwJn7vBYDAYvAwVy91gMBgMGkbcDQaDYQgyqMVdCDFfCLFBCLFZCHF7f5cnGYQQ24UQq4QQy4UQS+zPCoUQrwghNtmvBf1dziCEEA8IISqEEKu1z+KWXQhxh32PNgghzu+fUscS5zy+L4TYbd+X5UKIC7XvBup5lAoh3hBCrBNCrBFCfM3+fDDek3jnMqjuixAiXQixSAixwj6PH9ifH7p7YlnWoPwDwsAWYCIQAVYAM/q7XEmUfztQ5PvsHuB2+/3twM/6u5xxyn4acAywuquyAzPse5MGTLDvWbi/z6GT8/g+8D8B2w7k8ygBjrHf5wAb7fIOxnsS71wG1X0BBJBtv08FPgROOJT3ZDBb7vOAzZZlbbUsqxV4BLikn8vUUy4BHrTfPwhc2n9FiY9lWW8DB3wfxyv7JcAjlmW1WJa1DdiMvHf9TpzziMdAPo9yy7I+st/XAeuA0QzOexLvXOIxIM/FktTb/6bafxaH8J4MZnEfDezS/i+j80ow0LCAl4UQS4UQN9qfjbAsqxxkJQeK+610yROv7IPxPt0ihFhpu23UsHlQnIcQYjxwNNJSHNT3xHcuMMjuixAiLIRYDlQAr1iWdUjvyWAWdxHw2WDK6zzZsqxjgAuAm4UQp/V3gfqIwXaf/g+YBBwFlAO/tD8f8OchhMgGHge+bllWbWebBnw20M9l0N0Xy7I6LMs6ChgDzBNCzOpk814/j8Es7mVAqfb/GGBPP5UlaSzL2mO/VgBPIodg+4QQJQD2a0X/lTBp4pV9UN0ny7L22Y0yCvwFd2g8oM9DCJGKFMN/WJb1hP3xoLwnQecyWO8LgGVZ1cCbwHwO4T0ZzOK+GJgihJgghIgAVwLP9HOZEkIIkSWEyFHvgfOA1cjyX2tvdi3wdP+UsFvEK/szwJVCiDQhxARgCrCoH8qXEKrh2VyGvC8wgM9DCCGA+4F1lmX9Svtq0N2TeOcy2O6LEGK4ECLffp8BnAOs51Dek/6OKvcwIn0hMpq+Bfh2f5cniXJPREbGVwBrVNmBYcBrwCb7tbC/yxqn/A8jh8ZtSIvjus7KDnzbvkcbgAv6u/xdnMdDwCpgpd3gSgbBeZyCHMKvBJbbfxcO0nsS71wG1X0BZgPL7PKuBr5nf37I7olZfsBgMBiGIIPZLWMwGAyGOBhxNxgMhiGIEXeDwWAYghhxNxgMhiGIEXeDwWAYghhxNxgMhiGIEXeDwWAYgvx/o0fNtSCOHLUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "dfplot = df[['age','chol']]\n", + "dfplot.plot(title='age chol relation')" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "601da936", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True 207\n", + "False 96\n", + "Name: sex, dtype: int64" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "amountMale = df['sex'] > 0 # assuming male = 1\n", + "piecounts = amountMale.value_counts()\n", + "piecounts" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "a128aabd", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWkAAAEeCAYAAABIXOQ3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABAc0lEQVR4nO3dd3gc1bnH8e+ZbdKqrNwreG0sZIONjZsMBDAtAQTCdEJJgRBCS24SkijtooQSEUrCTSghhNAChBYQiF7jKgzGdAvZWC6427LaStvm3D9mjI2xpJW9q1ntvp/n0WMsvat9ZaSfZs+corTWCCGESE+G0w0IIYTonIS0EEKkMQlpIYRIYxLSQgiRxiSkhRAijUlICyFEGpOQFkKINCYhLYQQaUxCWggh0piEtBBCpDEJaSGESGMS0kIIkcYkpIUQIo1JSAshRBqTkBZCiDQmIS2EEGlMQloIIdKYhLQQQqQxCWkhhEhjEtJCCJHGJKSFECKNSUgLIUQak5AWQog0JiEthBBpTEJaCCHSmIS0EEKkMQlpIYRIYxLSQgiRxiSkhRAijUlICyFEGpOQFkKINCYhLYQQaUxCWggh0pjb6QZE5gtW1OQBo4BB9tvAXf7sD+QAXsAHuABlP1wD7UAz0GL/ufPbRmCl/ba6oaos3itflBC9RGmtne5BZIBgRY0LGAvsv5u34b3URhz4HGjACu1lwBLg3YaqstW91IMQSSUhLfZIsKJmGHAIMBMoBaYCeY421bUt2IFt//l2Q1VZnZMNCZEICWmRkGBFzRjgROAIrGDex9mOkmIt8BrwKvCqXG2LdCQhLXYrWFHjBY7ECuYTsYYtMt0yrMB+CXihoaos5HA/QkhIix2CFTX5wOnAaVrro5VS+U735KA24DngUeA5CWzhFAnpLGff8Ps6cIHW+hSllN/pntJQG1ADPAbUNFSVtTvcj8giEtJZKlhRMwUrmM9VSg12up8+pAm4H7izoarsY6ebEZlPQjqLBCtqPMBZWusfK6WmOt1PBngTuAN4sqGqLOp0MyIzSUhngWBFTX+t9SVo/UNlGEOd7icDbQD+AdzeUFX2udPNiMwiIZ3BghU147Q2fwx8Sykjx+l+skAY+Cfwh4aqslVONyMyg4R0BgpW1Oynzfh1KONMpZTsz9L7oljj1tc3VJV95nQzom+TkM4gwYqa4WYscp1yec5XSsm+LM6LAf8CrmuoKqt3uhnRN0lIZ4BgRc0AHYtcjct9iVKG1+l+xFfEgL8DVzdUlW1yuhnRt0hI92HBihqvGYv8QhmuXyrDlet0P6JbTcAvG6rK7ujRoyoD5wCHAb+lsmlbCvoSaUzGK/uofX/82ElmLLLccHt/LwHdZwQAT6LF5SUe//uX5hcCNwFXAJ9SGfgelQHVzUNFBpGQ7mNG/eyp4fv+z6OvGD7/M4bbO9LpfkTitNYfA7cnUlte4vED17WE9bPACPvdg7CGTV6jMjA6NV2KdCM3l/qIYEWNEW9rrDByCn5r5OTJdLq+KB79acNNp8YSrD4+WKSGl450Hbqbj80CPqAyUAHcRmWTjFlmMLmS7gNGXnbv/mZH64euvH7XKZdbAroPMiOhN1fedOoLidSWl3iGAGVXzvBOdBvK1UlZHvAX4HUqA2OS1adIPxLSaW7ExX/7uSuv6AMjJ3+8072IPaNNM67cvosTqS0v8SjgzCNGuQYWD3Al8v/8SKyr6sv2qkmRtmS4I00NPf+Pg92Fg//jGTBydy93RR+io+1/X/WnsxKdJz3OUEz/7mTPjB48hR+4jcrAUcBFVDY197xLka7kSjoNDf/uX87wDh5T7y4cJAHdx+l4tMnw5f0ikdryEo8buOCCgzwjB/j3aI+VM4B3qAxM3oPHijQlIZ1GAoec5Rrx/b894Bk8+lHDm1vodD9i7+lY9FcNVWWJXtkeVpTDqLL93TP34inHAguoDHx/Lz6HSCMS0mliwPFX7lsw+YT3PP1Hnq+UknmwGcCMdnxq+Px3JlJbXuIpAM6+fLq3OMe91wcv5AB/ozLwAJUBmUPfx0lIp4GBJ191nL/k0HfdgcEHOt2LSCb1/YaqMjPB4rKSAcagacNdydzn+3ysOdVyqEMfJiHtIH9xqRp85tU/9Zcc+owrt7C/0/2I5DHDoedX3Xzam4nUlpd4RgDfuHyGd7LLSPquhTOBhVQGZHZQHyUh7RB/cam3sPSMB3LHTLvRcPt8Tvcjkkeb8ahyey9JpNaecvfNb+znHhQsMsamqKXRwHwqA0en6POLFJKQdkDe+CP6Bb523ms5Iw84TylDxp8zjI523LryxlNWJ1g+0W1w0HkHeUpT2hQUAS9QGfhOip9HJJmEdC/Lm3DUmMAhZ83xDdnvMKd7EcmnY5HNhi/v6kRqy0s8XuCCiw727FOUowamuDWwNnf6J5WBq3rhuUSSSEj3ooKDTzio6JCzX/EOHi03CDOUNuNXNVSVhRIsnzXIr0YeO2avptztiRupDPyql59T7CEJ6V5SOP2UmYWlZzzvGbCP7F6WocxI+3urbjnjvkRqy0s8RcAZV5Z6S3xu5cR+LNdRGfidA88rekhCuhcEZp75jcIZp1V7ioYOd7oXkRpaa43h+l4PHjJ70hBj4EFDjMmp6ikB/0tl4A8OPr9IgIR0CvmLS1XB1JNOKph28oPugoGDnO5HpI6OhB5fddOpbydSW17iCQKzfjDNO8VwfuFSBZWBmx3uQXRBQjpF/MWlysjJPzUw47S73fkDeuOmkHCINuMdhi/vykRqy0s8BnDu7HHuISMKjVEpbi1RP6Ey8FunmxC7JyGdAv7iUqXc3pMCM8+61R0YMsTpfkRq6WjHDQ1VZRsSLD84x834Mw/w9PbNwu78nspAQtupit4lIZ0KhmtW4JCzb/UMGCnHW2U4MxZZa/jyrk+ktrzEkwOcf8lUb7DAp4pS29keuYPKwGynmxBfJiGdZP7i0pmB0jPu8A4eLbM4soEZ/2FDVVkkwepjRxSoYUeMcqV64cqecgEPUxk43OlGxA4S0knkLy49qGDKSXf4hpeUON2LSD0z0r5w1S1nPJFIbXmJZyAw+8pS74Eel0r4xHAH5ADVVAYmON2IsEhIJ4m/uHRc7tgZt+QED57sdC8i9bQ2TWW4ezKGe3rpCNeA8QONvhB+RVhBLZt+pQEJ6STwF5eO8AwefU3+hGOPcH5GlegNOtJ+/8qbZn+YSG15iadYwaHfm+KZ3oe+P0YDj1AZ6OwgXNFLJKT3kr+4tMDI61cRmHH6N5TLnc4vY0WS6His1fDl/SSR2vISjws4/5wJnuFD8o0RKW4t2Y4DEropKlJHQnov+ItL3bg8Pyg69OzTDZ+/wOl+RO/QsUhlQ1VZY4LlM/O9jD1lnDtdbxZ25+dUBs5yuolsJiG9h/zFpQo4MzDjtIvchYOHOd2P6B1mNLzC8Pn/nEhteYknD/jmZdO9Y/we1Zd/id9DZeAgp5vIVhLSe+6w3OKZP5CZHFnnBw1VZfEEa48f008NnjnSNS2lHaVeHvAolYG9PXtR7AEJ6T3gLy4d6yocfGX+AUfNcLoX0XvMcOi1VTef9lIiteUlnqFA2RUzfBPdhnKnuLXeUALIHh8OkJDuIX9xaT5KXR6YecZhyu1xYotJ4QBtmjHl8X4/kVr7SKyzZwVdg8b2N8aluLXe9AMqA2VON5FtJKR7wB6HPr9g8olfcxcM7Gt36sVe0NH2v6384ynLEywf71JM/fYkz/SUNuWMf1AZkB0de5GEdM8c4h069uSc0QdPcboR0Xt0LNpo+PIqEqktL/F4gAu+NckzYoDfyMTNtYYAdzvdRDaRkE6Qv7h0iPLkfK9w2imHKGXIv1sW0fHoLxuqyloTLP9avxxGnVDc60di9aZyKgM9OeBA7AUJmwT4i0s9wMUFU06aYvjy+jndj+g9ZrRjqeHz35VIbXmJpxA4+4oZvuIct8r0mRA3UhkY6nQT2UBCOjEnegYFZ/hGjJvodCOit6mLG6rKdILFJx0wyBg4dbiRDcNhRcCfHe4hK0hId8NfXDoSmF049eSDZZgju5jh0DOrbj5tbiK15SWekcDXL5vunWwolS3fJ2dTGTje6SYyXbZ8M+0Rf3GpAVyQN+Ho0a68frKBfxbRZjys3J5LE6m1p9x984Sx7kH7Boz9Utxauvk/KgNep5vIZBLSXZtp+AOT/PuV9tV9F8Qe0tGOP6+8cfbnCZYf5DE46NyJnmz8PikGrnK6iUwmId0Jf3FpIXB+4bTZE2TRSnbRschGw5f3u0Rqy0s8PuCC703x7BvIUQNS3Fq6+jWVgeFON5GpJKQ7d5p32P4jvINGHeh0I6J3aTP+k4aqsvYEy2cNyVMjjhnTZ3e5SwY/8L9ON5GpJKR3w19cWgzMyp943CSnexG9y4y0v7vqljP+lUhteYmnH3D6laXe8V6X8qW4tXR3EZWBsU43kYkkpHdh3yw8P3fMtH7uggGjnO5H9B6ttVYu90U9eMipBw81BkwYbMg2nuAGrnW6iUwkIf1VBwNB/7jDs/nla1bSkdC/V944+91EastLPKOBIy6Z5p1q9KEzsVLsLCoDBzvdRKaRkN6Jv7jUC5zrL/laf1duQSbuuyA6oeOxdsOX96NEastLPAZw3mnj3UOHFxjyamsHhRy3lXQS0l92CEoN8I+dkcn7Lojd0LHw9Q1VZRsTLJ+W62bcGQd45Pvkq46nMnCo001kEglpm7+4NAc43T/u8AFGTv5Ap/sRvceMhdcYvrwbEqktL/HkAuf9YJp3dL5XBVLcWl/1M6cbyCQS0jscBhTkBqdMdboR0ctMfUVDVVk0werj9ilUQw4f5crEvaKTpZzKQLHTTWQKCWm+uIo+NWfUJJ/LXyiHymYRM9I+b9Utpz+dSG15iWcQUH5lqXeC21CeFLfWlxnAT5xuIlNISFumAnm5Y2dmw+5lwqa1aSq3N6F9ke39Oc48dB/XoHEDXbLAqXvfpjIgw4ZJkPUhbc+LLvcMGGm6A4P3d7of0Xt0pP2fK/9YvjTB8mIFpRcd7OnrJ3/3llzgMqebyARZH9LAeGBw3vhZE5XMd80aOh5rMXx5CW0MVF7icQHnnzvRM3xQniF7VCTuctkhb+9JSEOZkVsQ8wzad7LTjYjeo2OR/22oKtuWYPkhBV72O7kko4/ESoXBwMlON9HXZXVI+4tL9wEOyBt/5D7KcMuNoCxhRsOfGT7/XxKpLS/x5APfvHyGdz+/R+WnuLVM9F2nG+jrsjqkgWOBiHfoWNlIKbtc0lBVFk+w9oSx/Y3BpSNcMha9Z46nMiAzpvZC1oa0v7i0ADjMO2Ss6cotlAM1s4QZDr286ubTXkmktrzEMww44YoZ3oNchnKluLVM5QIucLqJvixrQxo4CHDljpk6welGRO/QphlVbu8lidTaU+7OPma0a9CYfobM+tk7MuSxF7I5pI9BqSbPoFGyzWSW0NH2O1beeMqKBMsPcCmmXDDJOyOlTWWHcVQGDnG6ib4qK0PaX1w6FBidO3pqf8OTU+B0PyL1dCy61fDl/SqR2vISjwf41ncme0b2z1WDU9xatjjT6Qb6qqwMaawVhmbOvhPlhmGW0GbsFw1VZW0Jlh8+IFftc/xYmXKXRKc43UBflXUhba8wPAbD3eguGlbidD8i9cxIx0eGN/cfidSWl3gCwFlXzPDu73Or3BS3lk3GUBmY6HQTfVHWhTQwBijKGTVpoHK5s/1cuoyntUYZxsUNVWU6wYecPGGwMfDgYYacMJJ8cjW9B7IxpKcAcd+wYtlKMQvoSPtTK286dUEiteUlnn2BYy+d5p1iKJWNPxupNtvpBvqirPpG9BeXKqAU2OrpN1ymVWU4bcbDyu25PJFae8rduWXF7sH7BIzRKW4tW02lMjDS6Sb6mqwKaWAo0M/df6RPTl/JfDracfPKG2evTbB8stfFgd+c6JEDiFPrRKcb6GuyLaT3B8jZ9yAZ6shwOhbZYPjyrkmktrzE4wPO//5U76hCn+qf4tay3ZFON9DXZFtIlwIt3oH7SkhnOG3Gf9xQVdaRYPnRQ/PV8FlBl1xFp94RTjfQ12RNSPuLS/1ACcpoduX3H+V0PyJ1zEj726tuOePhRGrLSzz9gdN+WOo9wOtSsvdx6o2kMiBj/j2QNSENjAWUd2jxQOVyyw9jhtJam8rlTuhILNupU4cZAw8cZMj2AL1HrqZ7IJtCejwQ8w4eLXeXM5iOhB5ZeePs9xKpLS/x7Accfsk071Q5lKdXybh0D2RTSB8INLuLhu7jdCMiNXQ8FjJ8eT9KpLa8xGMA5555gHvY0HxDvid61+FON9CXZEVI+4tLc4CRQJs7f4BcSWcoHYtc21BVtjnB8ul+DyWnjvfI/hy9byyVgYDTTfQVWRHSwAhAG/6AT/n8A5xuRiSfGQ2vMnz+GxOpLS/x+IHzLp3mHZ3vVYUpbk3snuzjkaBsCelRgPINHzdSxh4zlb68oaoslmDx10cF1NDD9nXJXtHOkRu1CcqWkD4ACHn6DZez1jKQGWmfs+rm059NpLa8xDMYOPmKGd4D3YZyp7g10TkJ6QRlfEjb+3WUAM1GXpEMdWQYrc24cnsTmnJn789x5tf2dQ0sGeg6IMWtia7JcEeCMj6kgSIgD4i4cgokpDOMjrT/Y+Ufyz9NsHx/QzHjwoM901PalEjEBCoDMvaYgGwI6YGACWD48mRTpQyi49Emw5f380Rqy0s8buCC8w/yjBjoN2TYy3mFgEx9TEA2hPQAwHDl9/crtyfH6WZE8uhY9DcNVWVNCZYfEvAxuqxYjsRKI0GnG+gLsiGkhwNxz4B9ZKgjg5jRjmWGz397IrXlJZ584JzLZ3jH5npUXopbE4mTK+kEZENIjwLa3YWDJaQziTK+31BVZiZYXbb/AGPw9OGuqSntSfTUHoW0UupCpVS9UiqilNqW5J72ilKqUimV6FFtCcmGkB4JhIy8on5ONyKSwwyHXlh106mvJ1JbXuIZDnzj8uneSS5DuVLcmuiZfXv6AKXUcOAuYD5wNHBssptKNxk9T9RfXOoF+gOrDG+uvMzNANqMR5Xb+4NEau0pd+d8fT/X4NH9DNlDPP3syZV0MeAC7tNaz01yP2kpo0Ma6Ic1s0MrT46EdAbQ0Y6/rPrTWSsTLJ/gNjj4/IO8abOZ/4vLYtwwL8zHm0waOzSD/IpD93FROcvHAYOsC/2WsOZ3b4Z5e22cxevitETg9W/7mRXs/sf13iURvvt052cdrPtpPkPzrRfQN88P86eFEaImXDjZw3XH+DB2WpFbuybGsQ+E+PDSfEYVpeRFd4+upJVS9wLftv/6qr16+D6t9XeUUhcDV2CtiWgFngZ+prXeutPjNXAd0Aj8EGvm1xvAd+2SvwLfAJqBv2qtb9jpsYOAa4GjsF6dbwHm2M/xeTd9u4Gf2b2Pth/7MPBrrXW3B1NkekjnARrAcPskpPs4HYtsMXx5v02ktrzE4wUuuPBgz8iiHJU2Uy+3tmumDnNx2XQvg/yKVU0mVfMizLy7jQ/sMNzSrrnn3QhThrk4bj83T36S6Gp3KCt2s+Ai/5fepzWc/HA7Y/qpLwL6tRUxKl4Nc9uJORR4FZc8207JQIPvTLa2Wo+bmktrOvjV13ypCmiAnk6FvAZ4B/g/4HJgMbBJKVUF/NR+/8+w9uq5FpiglDpUax3f6XNcAHwIXAYMAf4M3A8UAM9jDaWcCVQppT7QWj9nP64/0AH8EtiENSHhp8A8pdS4bsL2QeBk4AasYZrx9tcSBE7v7ovOhpAGQHm8/q4KRfrTZuznK6tODSVYfsRAv9rnuDHpNeXumxM9fHOi50vvmzHCxbjb2nj84yg/PdTHqIBi6y+sfZ9e+SzWo5AelGcwKO/LoTpnZYwt7ZrfzfJ98b7n62McN8bN96daofzmyhjPL4t9EdK3L4rSEYOrDk3p+Rg92glPa71cKfWJ/dePtdYLlVJBrGD+ndb699trlVKfAnOxwvGpnT5NGDhFax2z6yYAPwZ+q7W+1n7fG8CpWGH9nP3cdcAX2+AqpVzAPGAVcALwn931rJQ6HDgb+LbW+n773a8opbYCDyqlJmutl3T1dWf6jcM87K9RubxyJd2HmZGOD1bdcuY9idSWl3gCwJlXzvDu73OrtJ8bP8BvDTF47Nuayd4E7L73onhdcM6EHddkkTjk7vS7Is+j6LB/F2xoNfnfNzq47cQcPK6ULgr0UhnY24un47B+xv+llHJvfwNqsYYtdj0F5uXtAW1bav/54vZ32B9fxi5j5kqpS5VS7ymlWoEYVkCDNcTSmeOBCPDELv29ZH+821NqsiGkwXAZuNxp/8Mqdk9rjTKMnhyJdcpBQ4yBk4YaB6esqb0UNzWRuKZ+S5xLnu1gaL7inAme7h/YQ+1RzWMfRzlpfzcD/Dt+3EtHunjlsxiL18VZttXksY+jzBxh/Za46uUwZcUejhrdKy+093Zf6cH2n8uA6C5vhViL2XbWuMvfI128/4vMUEpdCdwOvAKcBswAtr9K6ypbBgNerHHynXvbaH+826nBSfu/oJS6SGv9j53+7gJ+o7X+XbKeYw/0B2KuvH65skVp36Uj7U+s+tOZbyVSW17iGQUc/YNp3ilGGv9PL727jXfWWdO8x/Y3eO1bfgbnJf+a6amlMZrD8O1JX/4FcPaBbp5a6mbqXW0AHBV08cNSL282xHj20yhLL89Pei+d2Nsn2mL/+XW+GrQ7f3xvnQO8qrX+6fZ3KKUSOVB3C9ZYdmen0azt7hMk81flMUqp04GLsH47/BN4M4mff0/0A6LK7c30sfeMpc14h+HzX5FI7fYjscpL3ENGFhrB1Ha2dx44NZfmsOazRs1NC8Ic90CIuRfmEUzyTbr73oswyK84sfjLPwIuQ/HomX7WtphE4zCqyCAa11z+XAfXHpXDkHyDWxeGubU2QmsEThvv5k/fyCHXk/Tfe3s73PEy1gyufbXWLyehn874sYZPdvbd3RXu4gXgF0BAa/3qnjxx0sJLa32uUups4AMgBHxTaz0vWZ9/DxUBUWW4UjKs0758EU0LHyeyYTkohaf/CIpmfZfcUZMAiGxayba5DxJZW4cZbsNdOIT8g46lYNopKKPzdRVmOMSW5/+PyIblxNu2guHG038EBVNPJv/Ao75U2/zWkzQvehptxsk/6FiKjvgWSu34csNr69jw798w/MLbcAcG7/pUaU9Hwzeu/NOZ6xMsn+xzccBZB3rSZspdZ8bb0+1KR8IJxW6Cf26ham6YO0/KTdpzrGsxeeWzOFfO8OI2dh+uwwt2fK/8eWGEHDdcOt3Dy8tj/Pb1MP/9bh4jChTfeDDE9XPCXHN00kcN9+pekX0z8Qbgr0qpEqwLww6s8eTjgLu11gktfOrGC8AvlFK/At7CWkhzRgL9vaGUehh4XCl1i/1YE2tmx4nAL7TWXe7imMzhjmKsu59PYE0xuUAp9a7WOtG78angBeIYrqTfom5Z8jxbX76TgiknETj0HNAmkY0r0NEwALGWLWx4+Je4CgbQ7+iLMfyFdKx8j8bX/0k81ES/WZ3/EtZmDAwXhTPPtII1HqVt6Ry2PHszZqiJwumzAWhf+R6Nb95H/+MuxfDmsuXFv+LpP5L8icfanyfO1pduJ7D98/QxZiyyzvD5r0uktrzEkwNccMk0b7DQp/rU6tKiHMXY/gbLtia6yj0xD74fJa7h25O7H+te02xy7Zwwr1yQh6EULyyLcdx+biYPtX6ZfHeyl/vfj3DN0UltEZKQQVrrX9mzPi633zSwGngVqN/bz2/7PdZF34+xxqDfxJpT/VkCjz0fuBK4EPg11gyTBqyblRu6e3AyhwGeAa7QWr+irLHAnwCLsE7pdooL0Mm+ko41baDx1b/Tb9aFFE4/5Yv3547ZsTVE+/JFmO3NDD3/Rjz9R1gfHzWJWOM62j58rcuQduUWMqj8Z196X+5+04lu/ZzW91/+IqQ7PnuHnOBkCiYfb/199Qe0f/bOFyHd8u5z6FiEwhmnJeXr7nVm/EcNVWXhBKuPGV6ghh05qu8dibWh1WTpZpPzJib3xuH970c5aIjxRdB25X9e6OC8iR6mj9hR2xbZsQVFa0Sjk7ojxRfi3ZfsoLV+BfjKywKt9QPAA908dnePuxe4dzfvn7XL39uBS+23nald6iqByl3eZwK32m89lsyQnqG1brab0sDNSqnqRB9srwb6nf1FJosBaJIc0q3vvwxKUXDwCZ3W6HjUamCX6dlGTh56D7/bXbmFxOM7Zg/peBTDvWPuq/LkoFuteyfxtkaa5jzIoFN/jXL1vSF5M9K+aNUtZzyWSG15iWcAMHvcQCPqNkjpxN69deq/Q0wZ6uKgIQaFPsWnW0z+tDCC24Cf7jQn+fn6KG1R+GCDlWFvNsTZHNLkeeCE4h1h7v59M9+e5OEfp3x5mGTxujgfbjS5+es+uvPishhzVsWpu2LHPbxjx7i4tTbC7YsiDC9Q/OWtCN9J4Ip8D/QopLNRMn96c5VSfwJGaK2PV0odABxC8l5u7ImUXEl3rPkYT/+RtH3yX5rmP0KsaSPuwBAKp59CwZSTAMgb9zWa5j3M1pfvoOioC3HlFtKxcgltH71O4LBvJvQ8WmvQJma4jVDdfNpXLGbACT/84uO+4SVsefF2wuuXYfj8hJbO++IXR+Pr95C733RyRvXNo+SUJ2dwsKKmqKGqbFsC5acDvLYivvzQfcz5M0a4Dk1td3tu5ggXj34c5eYFJpE47BMwmDXKxS8P93/ppuGlNR2sbNrxy7zyTesFxaiAouF/doRlXFtvu7pvSRS3QbdX5+GY5ornO7jxOB9FOTsuCk8o9nD9MSbXzwkTimpmj/PwmyO6D/w9kNwxngyk9vSq7iufSKnnsWZ0/FprPcmesP2u1jqhs8xScSXtLy69HnD5Rh7YL1B6+sXJ+ryf//0HxFu3oFweio74Fu5+wwgtnUvrkufpd8zFFE6zhkCijWvZ9MS1RLdsn/OuCHztXIoSDOnmd56h8ZW/WX8x3PQ/5mIKppR98XFtxtlcfSOhOmufGd++BzH49P8lsr6eTU9ey/CL78SV16eGZ3f1eENV2ZldFZSXeDxY81e3Au1eF8YdZTkXDcozhvdKh2JvTaOy6R2nm0hnCV1JK6UqgauxbgjeCnwNa/7f1VrrfyqlLgBmYc0F1Eqp/ey7rnGl1DnA97EOnszFurL+s9b6vgSedxLWGvfDsQbrFwMVWus5CX59LkBjxpP721qb6Eg7A2f/GH+JddGWO2oSsaaNNC18jIKp5ZjtzWz6z/Uor4+Bs3+JK7eAjpXv0zT/3yiXh8DMbm8Mkzf+CHzDx2G2NxNaVsvWV/4GhkHBZOtqWRkuBs2uINayBcw47sBgdDxmXb0fcQGuvH40v/00LW9XY0Y78O9/iHUT05OSK6JUOCNYUfO9hqqyuzsrqK6LRstLPA8A3wNWROKYtyyIPPG7o3yXeF0qrYc+BCBX0t3q6TDAY0ANMBtro5N7lFLXYw2mL8e6g+kDHlJKzQSagDHA48B59uOeAe5WSnW53aRSagrWZiT9gYuxXtJuwVr3nujm7S5Am9GOaOJfYveM3AIAcoKTv/T+3NEHY7ZtI966lebaJ4g1bWDwWdeQV3IYOfseRNHh51NYehrb5jxIPNT9qU8ufwDfsGJyx0xlwNcvI+/Ao2h8/R50/Mt7ObgLBnwxe6P57adRbi/5B59I+4p32WaPSw+/6HYi6+ppXvBocv4Res+twYqacd3UzAEWYm2sw0ebzK3VdbGalHcmkkHGpLvR05C+UWv9f/ak8Qux/oEvwVqf/i2sq5k41pLJh4ArtdbXa61v11q/BLyGNZXlXr56l/Qrz4W1Nv5orfXj9m5Up2JNeUloJzSsqThKJzmkvQNHdfJs1tCRUgaRTQ14+g3HlfPlBVW+YfuDGSPWuK7nzzt0LDrSTrxt224/HmveTNP8f9P/65ehlEH7infIDR6Md8gYXP4AeROPpX3F4h4/r8P8wCPBippOL/+r66Ia685+C/Yy4/vfi76/dHP8/d5pUeyFRM+ozFo9Dennt/+H1roRa/35QntWx35Yu0Ftv7O1HnArpYqVUg8rpT5nx7r179HFpiRKqVzgSKwrd3OnTUkU1tr5bjclsYUBlxkORbqt7IHc/Q8B+Ergta9YjKtgIK78frjy+hFtXEu8o/XLDa2tA8BV0PPTvMKrP0R5c3Hl7X67g8ZX7yLvwFnWLwKbGd2xg6KOtGPv3NrXTAL+2FVBdV20BWtsuj/2MN4f5oRrmsN6d0uFRfrY2n1JdutpSO9uE5Lt7/utHdbblyS9APwNa9nmJKACa2x5OnAP1rBIZ/pjDVX8lq9umnIF0E/tvKyucx2AYXa0hpN1gxQgd8w0fPsexNYXb6Pl3edoX7GYLS/8hY6Gdyk6/HwACiafgI5F2Pjv39L2yRzaG5aw7b8P0PzWf8jd/xDchYO++Hwr/1jO5ud2TKFsWfI8m2v+TOtHr9Ox6gNCdfPZ9PQNhOrmETjkbJTrq3fs2z97h441H9PviG/t6HPUZDoaltCyuIbQpwtoWfwsOcG03XOoOz8MVtSUdVVQXRetxxpa2wegsYPIXe9EnoibWsY901OUyqYWp5tId8mcgrd9bGn7zlDzsYZARgGH73zUjX1V3JVtWDcUbsPakPsr7Ani3ekAXGhTY8YjuNxJuZGklGLwab+h8c372Db3IcyOVjwDRjLw5KvIO2AWAL4R4xh67g1sm/8wja/ehRkJ4S4cQuCwcyicfuouX4xpvdk8A4OE6hey7fV7iHe04MotxDNgHwadcTX+/aZ/pR8di7L1lTvpd9R3MXYaXsndbxpFR36LpgWPomNhcotnEjj07GT8Ezjln8GKmkkNVWVdjRU9D0zA+r5b/9+V8c+nDIu/dvRod8afhdcHJWvzo4yW0BS8nWZ3eHbei1Up1QDM1Vqfr5R6FvgcOAnr1IITsV5+BoGZWuta+zH9gBVYG46onT7Xl6bg2RtvK+CoBAP5K/zFpZdirXjcPPDkn//Y8OYU7snnEWnlVeDrXZ0UXl7iGYg1K6gVaFPAbWU5F4wsNMb0Uo8iMR9T2eTkiuQ+IZmLPM7CWov+c/vvBfZ/NwO3KaXKlFJnYa1535zA5/sJMBV4USl1jlLqSKXU6Uqp6+zjchLRgv1qQcfCbT34WkT6OgbrJI5OVddFNwN3Yx2PZGjghrnh/3TEHN1HRnyVXEknIGkhrbUOaa2fxLqaBtiqtX4Ma0aGC2us8A9YPzwPJvD5FmONX2/BOrvsJaw52hOB/ybY1hchbUYSmPMm+oprghU13e3RsRjrqnskwMom3frQB9GnUt2Y6JFNTjfQFyRtxWE68heXzsI6oXdl4LBzj/cNHZv2W1iKhH0GTG6oKuv0xpO9M97VWBvLbwGonOU7fsowl3wfpIebqWy6yukm0l2mH5/VhL2iyWxv2eZsKyLJxgB3dFVQXRftwLov4seeTXTD3PDLW0JmovtTi9Ra7nQDfUE2hLQGiIe2yXBH5jkvWFHzra4Kquuiq7GG14YDqj1G/NbayBMxUyd1gZPYI4nsxZz1Mj2kt2Hv9xpv3SIhnZluC1bUjO2m5k2sbQyGAyxZb25+rj72Qso7E92RK+kEZHpIN2OFtIpt27DN4V5EauQDDwcrajrdk7O6LmpibUXQjnWCNHcvji5etjX+ca90KHYnDqx0uom+IKNDOlRfG8Ma8vDGW7eEdDyW1OXhIm1MA7o8Zqu6LtqMNT49AHvGz/VzIs+0RrS8wnLGKiqbZMgpARkd0raN2DeNzI6Wbs8TE33WVcGKmuO6Kqiuiy4Fnsaelrc5pDv+/k7kCTOTpzilr6VON9BXZENIr8Pax5p4W6Pc1c9cCrg/WFHT3Ym7zwDLsBa68HpDfPW8VfE3U92c+ArZ6D9B2RDSDdhX0rGmTRLSmW0ocG+wouYrB45uV10XjQJ3YS2wygW4eUHkv2tbTBkf7V0S0gnKhpBehz1XOrp1tYR05jsB+J+uCqrrohuxVr4OAwxTo2+cF34yHNPtvdCfsEhIJyhbQtoAiGxYvlFrU7atzHxVwYqa7vZkXQS8gX2ay/JG3fzoR9GET7cXe2UTlU2rnW6ir8iGkG7B2g3Nq6PhmBkOyaYumc+LNS0vr7MC+zSXR7A2++oP8NjHsaXvb4i/3TstZjW5iu6BjA/pUH2txlrZlA8Qb2tc62xHopeUYG3M1anqumgIa2l5AVawUzU3/GJju5aNf1JLQroHMj6kbZ8CeQCxrZ/LDaLscWGwoqbLUw6q66INwMPY0/JaI8T+8lb48ZipY109TuwVmU3TA9kS0mu2/0d4zccrnGxE9Lq/BStqgt3UvAIswV42/vZac+NLy2MvpbivbBUG5nZbJb6QLSG9CnsPj+jWNdvMSPs2Z9sRvSgAPBSsqOn0yDZ72fg9WAFSAHDn29FFKxrNut5pMavMp7JJZtH0QFaEdKi+dhvWykNryKN5o1xNZ5dDgMquCqrrotuwDk4ehDWHmj/MDT/dFtFyUGpyveJ0A31NVoS0bTFQBBDdvFpCOvv8MlhRM6urguq66IdYKxJHAqxv1e33Lok+KcvGk0pCuoeyKaQ/wb5C6lj9oYR09jGAB4MVNQO6qXsaa3e2QQAvLo811K6JyxhqcmwDZIpjD2VTSG8PZhVv3tga72iVaVbZZwTwj64KquuiEaxhDy+QA3DT/MgbG1rNNV09TiTkFSqbZDFZD2VNSIfqa1uxZnnkA0S3rJZduLLTKcGKmsu6Kqiui64D/ol9mkvUxLxpfuSJSFyHe6XDzPWY0w30RVkT0ra3se7207Hy/Y8c7kU45+ZgRc2EbmoWYE0VGwlQt8Xc9uQnsWdS3lmG0lq3AzVO99EXZVtIf4w9Lh1ZV7fBDLdtdbgf4Ywc4JFgRU1uZwX2svF/YY2j9gN46IPoRx9tjC/pjQYzjVLqOSqb2pzuoy/KtpBegbWXRw5AdPNquZrOXgcCt3RVUF0XbcM6zaUQ8AD8YW74uW0dWvZ/6blHnW6gr8qqkA7V18aBeVhHKNG+6j054y67/SBYUXNqVwXVddHlWGOpIwGaw0TvWBR5PG7qeG80mAlkqGPvZFVI295h+5DH2rr1ZjgkQx7Z7e5gRc3IbmpeBD7C2n+aBWvi619bEZf5vglSStXIUMeey8aQXgG0YZ/WEtm8UoY8slt/4F/BippOfxaq66JxrEMC4tizg/76VmThym3mst5psc+7x+kG+rKsC2l7yGMuMBCg/dMFi7WsKMt2RwC/7qqgui66FWv+9GDApYEb5oWfCkV1ay/012eZWq/CeiUi9lDWhbRtMeAGa8OleMvm5Q73I5x3dbCi5tCuCqrrou8BL2CPT69p1m0PvBf9j/yO75yh1F2ygGXvZGtILwe2YG+41LHyPVmqKlxYu+UVdVP3BNaiqEEANfWxz95ea85PcW99ktY6RjcrPEX3sjKkQ/W1JvA89pBHqH7hp2ako9nZrkQaGIU1pNGp6rpoGLgT656GD+CGeeFXN7WZcuLPLjQ8TWWTHP68l7IypG2LsG4EudCmjmxYvtjphkRaOCtYUfO9rgqq66KfA/dj7QWiInHMWxZEnojGdaRXOuwjDKW6/IUnEpO1IR2qr20GFmK/bA3VzV0sJ4kL263Bippx3dTMAWqxTxv/aJO5tbou9lzKO+sj4qZeimxLmhRZG9K2N7BfssaaNrTEGtfJ4hYB4Mc6bdzXWYG9bPx+rBWsAYD73ou+V7c5/kHvtJjeXIaqorJJ7qgmQbaH9HJgPfaRSW2fvDlH7tQL22Tghq4KquuiLVjLxvtjzxa6fk742eawbkx5d2ksZup1wENO95EpsjqkQ/W1GngO64eMyPplG2NN62ULU7Hdj4IVNWVdFVTXReuBx4F9ABo7iNz1TuSJuKmzdujMpbiByqao031kiqwOadtbQCuQCxBaOve/zrYj0sw/gxU1w7qpeR5YCgwB+O/K+Of/XRl/PeWdpaGYqbcope5yuo9MkvUhHaqvDWMdmTQYIPz5J+tiTRvrne1KpJFBwP3BihrVWUF1XTQG/B3rRHo/wJ8XRuauaTY/650W04eCG+Q08OTK+pC2zQPasbcwbaubJ1fTYmfHAj/vqqC6LroZK6iHAoYGbpgb/k9HTId6ob+0EI3rTS5D3eZ0H5lGQhoI1de2A9Vsv5pe/cGaWPPmrLsKEl26JlhRM72bmsXAq9jLxlc26daHPog+lerG0sgvqWzKml9KvUVCeoc5QBh7Sl7bR6+9LBsviZ14sKblFXRWYE/L+zewAXvP8qeWxuoXr4vX9k6LzmmP6nqPS/3T6T4ykYS0LVRf24a1MfkQgPDapeujW1YtcbQpkW72w5py16nqumiHXZPH9mXjc8MvbwmZG1LfnnNcBpfLRkqpISH9ZW9gjU3nArQsrnlVx2Oy1Ffs7PxgRc0FXRVU10VXAw9iLxtvjxG/tTbyeMzUGTktrTWi/+u9pvllp/vIVBLSOwnV17ZivVwdAhBv2dzWseYjuYkodnVbsKJmbDc1b2CdAjQcYMl6c/Nz9bEXUt1YbzO1NnPcXOp0H5lMQvqr5gOfY58Q3brk+YVmOJTVK8jEVxRgjU97OiuorouawL1Yr8wKAe5eHF28bGs8o7YeaI3wD/fvmzPqa0o3EtK7CNXXxrBeqhYBSsci8VD9wpec7UqkoWnAdV0VVNdFm4A7sG4i2svGI8+0RnRT6ttLvVBUbyr0qf9xuo9MJyG9e0uxXqoOAQjVzV0aa9oo59mJXV0VrKg5rquC6rroJ1iLpfYB2BzSHXcvjjxhZsDMoW0d+hKZcpd6EtK7Ye/p8Sjgxb4Can6n+lm5iSh2obBWIw7qpu4ZYBn2L/3XVsRXz1sVfzPVzaXSxjbzxeE3t/zH6T6ygYR0J0L1teuxpuQNB4g1rm1qb3hX9scVuxoK3NfNsvEo1okvLuyZQ39aGPnvuhZzZe+0mFwdMd3mdanzne4jW0hId60G6yzEIoDWJc8virVsaXCyIZGWTgB+1FVBdV10I3A3MAwwYib6xvmRJ8Mx3ef2udgS0lcVVTVvdrqPbCEh3YVQfW0H1g9WP+x/q+a3n35ahj3EbtwQrKg5uJuaRcCb2Ke5LNtqNj/6UbQ65Z0l0boW89URt7Tc6XQf2URCuhuh+to64GXs/RhiW9dsa//s7Red7UqkIS/WtLy8zgrsZeMPY7066w/w2Mexpe9viL/TOy3unaYOvXVtiz7D6T6yjYR0Yp4EtrJ92OP9lxZHt62TwwHErkqA/+uqoLouGsJaNl6AFexUzQ2/0NiuN6W+vT0XM7X50ab4BVPvat3mdC/ZRkI6AaH62hDWjZ8irJs/NM1/5CkzHNrqZF8iLV0YrKg5q6uC6rpoA9YV9QiA1gixv74Vfjxm6lgv9LdHlm427zz0H21y0K4DJKQTFKqvrQeexZ7vara3hJvfqX5Um/G0/cESjrkrWFET7KbmFeA97NlDi9aaG19aHkvLRVNrms0Pf/Vq+Eqn+8hWEtI98zRQjzXtisi6Tze0L6utcbYlkYYCwEPBihp3ZwX2svF7sLbHLQC48+3oohWNZl3vtJiYpg7d9PEm8yS7X+EACekeCNXXRoE7gRj2D1brB68siWxaudjRxkQ6OgS4uquC6rroNqxhtIHYw2h/mBt+ui2iW1LeXQLCMR2dsyp2ztcfaOuT87kzhYR0D4Xqa7cAt2Htx+ABaFrwyPPx9ub1jjYm0tGvghU1R3ZVUF0X/RBrPv5IgPWtuv3eJdEnnV42bmqtX/ksdt1JD4Uybue+vkZCeg+E6ms/AR7H/sHS0XCsacGjj5jRcKuznYk0YwAPBitq+ndT9xSwEuvQW15cHmuoXROfm+LeujR/dfyJv70TvcbJHoRFQnrPPQ+8i32HPta4tqn57af+JQtdxC5GAv/oqqC6LhrBGvbwYh+GfNP8yBsbWs01qW/vqz7aGF/8x3mRC2QcOj1ISO+hUH1tHOuHrxFrTJHI2rr1rR+8/G+tTfnmFjubHayouayrguq66Drgn1izPVTUxLxpfuSJSFyHe6VD28pt5up73o2eaB8DJtKAhPReCNXXtgB/wvp3DAC0L1/0WejThX1qqa/oFTcHK2omdFOzAJiHPYxWt8Xc9p9PYs+mvDPbmmZz413vRI6/eUE4o89j7GskpPdSqL52HXAz1ukbfoC2D195r2P1R2842ZdIOznAI8GKmtzOCuxl4w8C27BXt/7rg+iHH22ML0l1cxtazcbb3oqcc92csJyykmYkpJMgVF+7HPgL1n7BXoDmt554M7JxxduONibSzYFYv9A7VV0XbcNaNl6EPXvoD3PDzzV16C2pampLyGz+61uRi/8wN/x6qp5D7DkJ6SQJ1dcuAe7DeqnqAtg254GayMYVfWLzHNFrLg1W1MzuqqC6Lroc69CJkQDNYaK3L4o8Hjd1PNnNNHXottsXRX/03gbzyWR/bpEcEtLJ9TpQDYzC/rfdNueBZ+WKWuziH8GKmpHd1LwIfIS1/zQL1sTXv7Yi/moym7ACOlKxaG38PnuoRaQhCekkso/dehJ4CQiyI6hrIhs+W+RgayK99MeaP93pz191XTSOtZd5HMgD+OtbkQUrt5lJOWtzc8hsumFe+NcL1sRvl4BObxLSSRaqrzWBh7CuhIJsD+q5Dz4X3rD8LQdbE+nlSODXXRVU10W3Ys2fHgIYGrhhXvipUFTv1aKpdS3mlt+9Ef7dhxvNv8pc6PQnIZ0CdlA/DLzATkHdNPdfz4fX1y90sDWRXq4OVtQc2lVBdV30Pazvo30A1jTrtgffjz61p6vGV24zN1z9RvjXK5v0X+yrdZHmJKRTxA7qR7BWJgbZvg/1vIdfbF/x7ova4b0ZRFpwYe2WF+im7glgDfay8Wc/jS1/e605v6dPVr8l/vn/vt7x0/Wt+u/VdVHZYrePkJBOITuo/421gc4owA3QsviZhW0fvS57UQuwvi/u6qqgui4axtp90We/ccO88Kub2sy1iT7J/NWxpb95LXxZYwcPyRBH3yIhnWJ2UD8KPAbsi703Q6hu7tLmt5++14xF2pzsT6SFs4IVNRd1VVBdF/0ceABrrxgViWPesiDyRDSuu9wrJm5q898fRhdUzY1c3h7jGblJ2PcoedXde/zFpYcCF2Odl9gC4Ok/sihwyNnnGTl5Ax1tTjgtBExtqCrr9OzM8hKPAi4DDsYa/uA7kz2TThvvmb27+vaobv/LW5HX566KX1NdF5V7IX2UhHQv8xeXjgN+DESwTo3G8Adyig479wx34aD9HG1OOG0JMLOhqqzTTZXKSzwFwO/tvzYB3Hic77SSga6JO9dtajO3Xj8nUr280bzWXhwj+igZ7uhlofrapVg/ZBHshQpmqKlj68t3PNix+sPX5YZiVpsM3NBVQXVdtAW4A2uutRvg+jnhZ5vDunF7zQcb4p/99KWOO5c3mldJQPd9ciXtEH9xaT/gSmA0sBowAXJGTwnmTzzudMPjy3eyP+Gosoaqsi5P5i4v8ZQDpwMrAI4Y5Rrxw1LvBU98HFv88IfR+4F7ZbvRzCAh7SB/cakPOAc4BlgHtAO4CgbmBQ45+3R3wYDRTvYnHLMJmNhQVdbplqHlJR438DOsm9EbgIJ+OQxr7OAh4DmZwZE5JKQd5i8uVcAM4HtYQyCbAFBKFc44/UjfiPFHKKWUgy2K3hUHrgGubagq63KxSXmJZyBwLda0vFbg9uq66Cepb1H0JgnpNOEvLh0OXI41Tr0Ge/jDN/LAEfmTvnGKKyd/kJP9idQzO1pbwxs+u3jDw798JNHHlJd4JmGdTP7v6rpoY3f1ou+RkE4j/uLSXOCbwCx2Gv5QLo+rYPrsI3zDS76mlCE3ezOM1lqH1y59v2Xxs0t0pP0G+6BjIQAJ6bRjD3/MBL6FtWx4HaABvMNLhhZMPuEUV27hUAdbFEkUDzWta1n87NuRDcvfBv5un/QjxBckpNOUPfvjPKzx6g2AtTLRcBmFU8sP84084AhluNwOtij2go7HIu0r3lnU+v7Ly9DmU0BNqL426nRfIv1ISKcx+6p6KvBdrGO51mJfVbv7DQ8UTD7hWHe/4RPkvmLfEt22rr550VPvxZs3LQHuD9XXrna6J5G+JKT7AH9xaQBrqt6hWKsUm7d/zLfPhBH5Bx71DVdev32c6k8kJh5qWtv20evvdqx6fw3WVrZzQ/W1sl2o6JKEdB9hX1VPBC4ABmINgXyxWCHvgCMPzN1vxrGGN7fImQ5FZ8xw29ZQ/cIFobp5W4CFwCOh+lqZiSESIiHdx/iLS73A4cCZWKdJr8WaW4tye135k46f4Rsx/jDD48tzsE0BmNFwa0fDuwtaP3x1HWZ8PfAg8KF9zJoQCZGQ7qP8xaWFwInAN4Aw1pW1BlCeHHf+xGOn+UYeeJgsL+99ZrSjJfz5J2+3vv/y5zrasRVrq9raUH2t7B8uekxCuo/zF5cOA84CpmDNANnE9rB2e115Bxw1KWffCYcZvrz+DraZFeLtLRs7Vr1f2/bxG5sx4xHgP8Cbofpa2UND7DEJ6Qxgj1ePAWZjjVt3sNOVNUopf8nXxuWMmlTqzu8/yqk+M1WsZfOK9uWLFrUvX9SGtVL0eeClUH1ti8OtiQwgIZ1B7LAOAidjbQwfxQrrL2YQeAaNHuAvnjnVO2jUJOX2+h1pNAPoeLQjumXNR6H6hR9G1tdrrF+MzwFzQvW125ztTmQSCekM5S8uHQF8HesmI1jDIO3bP65cHpe/5LDxvpEHTnHl9x8tc627p7XW8ZbNn4U//2RJ6NP563Usko81JfJpYFGovra9m08hRI9JSGc4f3Fpf6AU6wZjACuoN2Nv4ATgGTiqf+7oKQd6Bo4a7/IXDnOm0/RldrRtiWxcviT06YKPY00bcrE2228AqoEP5IagSCUJ6SzhLy51AeOAo7GGQsAK69DOde7+I4tyRx883jswON7IKxqZjdukaq212da4OrJl9afhVR/URzZ+pgE/1i+4N7HmOq+SqXSiN0hIZyH76no61tV1EdYNxq1s3x/E5iocnJ87eso4z4B9xrgLBozK5DFsHY+FY80bl0c2rqjrWLF4Wbyt0YP1ykMD7wNvAJ+E6mu7PJ1biGSTkM5i/uJSAxgJTMIau95+Ynkj9mnmO/MOGTvIO2z/oKf/8KC7YGCwL4e2Ge1oibduXR3btn51ZOOKVeF1dZuJxwJArl2yApgLvCs3AoWTJKQF8MXMkGHABOAIYLj9oQiwjZ2WoG/nHbLfIM+g4DB34aAhrrx+Q4zcwiHpuHhGxyKheEfrZrNt24Zo4+erw2s/XRVr/LwJyMN6JWEAMeA9YBHwaai+tsm5joXYQUJafIUd2AOwpvNNwLrSDtgf7jS0AVz5A/zewaOHuIuGDnH5i/orn7/Q8PoLlTenULk8eaka4tZmLKqj4RYzHGqMh5o2xVu3bI5t27ApumXV5njr1hDW3twF9htYwbweeBdrOOMzGcoQ6UhCWnRrN6E9EeiHNUPEwJqP3Wa/dbqrm3J7Xe7AkEJXwcBCI7cgT7m8HuX2epXb41Uuj0e5PF7lcnswXG60NtHxuDbNOGY8rrUZxzRNbcZiOtrRYXa0tZkdraF4qKkt3rK51exoCe/0VDlYN/r8dn/a7nUZ8AHWUMbqUH1ta3L/pYRIPglpsUf8xaV5wGBgCFZ4j8U6udqNFYgKKyAjWHuLbH/b2+lqBtbGUh6sA1i99tv2IHZh3QRdjTVN7nOsBT1rZaqc6IskpEXS2Dci+2ON8xZiDZFsD/JBWDcmc9i+XN36M5FvQLXTnybWTc0mrIUkG7GmEm6x/9wse2WITCIhLXqVHeRerCvhnf/0Yl0Fxzt5i2HNUw7L/GSRTSSkhRAijRlONyCEEKJzEtJCCJHGJKSFECKNSUgLIUQak5AWQog0JiEthBBpTEJaCCHSmIS0EEKkMQlpIYRIYxLSQgiRxiSkhRAijUlICyFEGpOQFkKINCYhLYQQaUxCWggh0piEtBBCpDEJaSGESGMS0kIIkcYkpIUQIo1JSAshRBqTkBZCiDQmIS2EEGlMQloIIdKYhLQQQqQxCWkhhEhjEtJCCJHGJKSFECKNSUgLIUQak5AWQog0JiEthBBp7P8B4xCC1grDOhYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "piecounts.plot(kind='pie',\n", + " figsize=(5, 5),\n", + " explode=[0, 0.12],\n", + " labels=['male', 'female'],\n", + " autopct='%1.1f%%',\n", + " shadow=True,\n", + " startangle=60,\n", + " fontsize=16);" + ] + }, + { + "cell_type": "markdown", + "id": "95e144df", + "metadata": {}, + "source": [ + "## 4.3 : ZTDL 3 – Machine Learning" + ] + }, + { + "cell_type": "markdown", + "id": "79972227", + "metadata": {}, + "source": [ + "### Linear regression\n", + "Deze code blokken zijn nodig als setup voor de linear regression met keras\n", + "We hebben gekozen voor een dataset die gebruikt kan worden voor linear regression. De dataset heeft geen bepaalde betekenis." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "09ee5be2", + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "37389405", + "metadata": {}, + "outputs": [], + "source": [ + "# read the csv file into the df variable\n", + "df = pd.read_csv('../data/test.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "a7ea6eb2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    xy
    07779.775152
    12123.177279
    22225.609262
    32017.857388
    43641.849864
    \n", + "
    " + ], + "text/plain": [ + " x y\n", + "0 77 79.775152\n", + "1 21 23.177279\n", + "2 22 25.609262\n", + "3 20 17.857388\n", + "4 36 41.849864" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# check out what is in the first few lines\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "952802ba", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAzA0lEQVR4nO3deZzcdZXv/9eppSudzkoCMatBA2ISScR2wSg/BcfBAYIzBnSGRWdUZu5DL85cJUEdXMAFRLmjd5xxGHSEwatA4EcCLqNDcBgioEE7MQlBoizZIKFJAp10qms5949aUsu3lu5Ud3VXvZ+PR0hX1be+9fmG5Hvqs51j7o6IiAhAqNkNEBGR0UNBQURE8hQUREQkT0FBRETyFBRERCRPQUFERPIUFKRlmNnnzOzWBpznrWb2eCPalD3fd83sC406X8m5G3LNIjkKCiIl3P2/3f1VQ3mvmX3AzB5sdJsaYTiDUzM+R4aHgoKIiOQpKEhDmdkrzewFMzst+3iWmT1vZm+rcPyVZvZ7M3vJzLaa2Z8WvPYBM3vQzL5qZvvN7Ekze1fB6yea2X9l3/szYHqVdm02s/MKHkez7VoacOzbzGxnweOnzOwTZrbJzA6a2W1mNi7gfa8GvgWcbmZ9Znag4OWpZvbDbFsfMbNXFrzvFDP7WfbP7XEzu7DKdVS9ZjO7w8yezbbzATNblH3+MuAiYGW2bfdkn6/2578g+1kHs39Wt9Vqc6XPkTHE3fVLvxr6C/gw8BgwHvgP4KtVjr0AmEXmC8p7gUPAzOxrHwAS2fOFgf8B7AYs+/pDwA1ADDgDeAm4tcLnrARuK3h8PvDbCse+DdhZ8Pgp4JfZdh6Xvba/qfDeDwAPljz3XeAF4A1ABPge8IPsa13ADuAvs6+dBjwPLKpw/qrXDPwVMDH7+j8APSXt+MIg/vy/D3w6+9o44C31tDnoc/Rr7PxST0Eazt3/FXgCeASYSebGUunYO9x9t7un3f227PveUHDI0+7+r+6eAm7Onm+Gmc0DXg9c5e5xd38AqPat9FbgT8xsUvbxJcC/D+KyvpFt5wvZz1k6iPcC3OXuv3T3JJmgkHv/ucBT7v5v7p50918DdwIrSk9QzzW7+3fc/SV3jwOfA5aY2eRKjarx558AXg7Mcvcj7p6bK6m7zTL2KCjIcPlXYDHwf7I3qEBmdqmZ9ZjZgexwy2KKh0Sezf3g7oezP04g8+12v7sfKjj26Uqf4+67gfXAe8xsCvAuMjfnej1b8PPhbBsGo9L7Xw68MXf92T+Di4CXBZyj6jWbWdjMrs0OB71IpocD1YfVqv35rwQM+KWZbTGzvxpCm2WMiTS7AdJ6zGwCmaGLbwOfM7M7s9+wS497OZngcRbwkLunzKyHzI2olj1kxum7Cm6S84BqaX9vBj5E5u/9Q+6+q85LGozBph3eAfyXu/9RHcfWuua/IDMs9g4yAWEysJ+jf55Fbav15+/uz5IZusPM3gL8p5k9UEeblXp5DFNPQYbD14FH3f1DwA/JTL4G6SJzA9kHYGZ/Seabak3u/jSwAfi8mXVkb1rn1Xjb3WTGvz8G3FLP5wzBc8AcM+uo8/h7gZPN7JLs5HfUzF6fnbQuUsc1TwTiQC+Z+ZwvBbTtFQWPq/75m9kFZjYn+3B/9thUHW0u/RwZQxQUpKHM7HzgbOBvsk/9L+A0M7uo9Fh33wp8jczk6XPAa8gM8dTrL4A3kpnE/Sw1bvTu3k9m7PtE4K5BfM5grAO2AM+a2fO1Dnb3l4B3Au8jM4n+LHAdmYniINWu+RYyw0m7gK3AwyXv/TawMDvkc3cdf/6vBx4xsz5gLfAxd3+yjjYXfU6tPwMZXXKrOETagpl9BjjZ3S9udltERiPNKUjbMLPjgA+SWXkkIgE0fCRtwcw+TGaC9MfZpZwiEkDDRyIikqeegoiI5I3pOYXp06f7/Pnzm90MEZEx5dFHH33e3Y8Pem1MB4X58+ezYcOGZjdDRGRMMbOKu/81fCQiInkKCiIikqegICIieQoKIiKSp6AgIiJ5CgoiImNMb1+cjTsO0NtXsVTJkI3pJakiIu1mTc8uVq7eSNhCpDzN9SuWsHzp7IadXz0FEZExorcvzsdv7yGedA4nUsSTzv+6vaehPQYFBRGRMWLL7hdJpoufS6YzzzeKgoKIyJhRKYFp4xKbKiiIiIwRi2ZNJhwqLmEeDhmLZk1u2GcoKIiIjCFW0isofXysFBRERMaInfv76YwWLxrtjEbYub+/YZ+hoCAiMopU24MwZ2oniXTxTHMinWbO1M6Gfb72KYiIjBJrenax6s5NREMhEuk0X3nPqUV7EKZNiPGV95zKypJjpk2INawNwxYUzOw7wLnAXndfnH3uOOA2YD7wFHChu+/PvvZJMkXVU8Dl7v4fw9U2EZHRprcvzqo7N3EkkeYImd7Ayjs3sWzB9KKb/vKls1m2YDo79/czZ2pnQwMCDO/w0XeBs0ueuxK4z91PAu7LPsbMFgLvAxZl3/NPZhYexraJiIyIelNS7NzfTzRUfEuOhkL5+YLhTG1RaNh6Cu7+gJnNL3n6fOBt2Z9vBn4OrMo+/wN3jwNPmtl24A3AQ8PVPhGR4VZrOKhQtfmCwvP0J5KYGeMi4ZrnHIqRnmie4e57ALK/n5B9fjawo+C4ndnnypjZZWa2wcw27Nu3b1gbKyIyVIXDQS/FkxxJpFl556aK3/Rz8wXjoiEmxiKMi4b4yntOBSg6TzINiZTXdc6hGC0TzRbwXODiW3e/EbgRoLu7u7ELdEVE6tTbF686rp8bDsrND8DR4aBK8wBB8wUbdxwoO0+hWuccrJEOCs+Z2Ux332NmM4G92ed3AnMLjpsD7B7htomI1KWeYaFay0cLgwqQ/3n/oQGeeO4lujrCTJsQY87UTo4kUxXbMtaXpK4F3g9cm/19TcHz/9fMbgBmAScBvxzhtomI1FTvKqGg5aNXnbuQnfv7+cnmZ7n63i2ELUQ8mSIUyswRHE6kSKWPDoBcevo8PnbWyUXP5XTFwqTSPqaWpH6fzKTydDPbCXyWTDC43cw+CDwDXADg7lvM7HZgK5AEPuLulUOjiEiTDGZYqHA4aPOug1x9z1ZCBv2J3Hszt7lUykmkkmWfdctDz7DwZZMIiAlc8c6TOW/J7IYvSR3O1Ud/XuGlsyoc/0Xgi8PVHhGRRhjsruLcTXvFt35BIjX4adCf/25v4POvOH5iwwMCKM2FiMig5IaFYhFjfDRMLGL5VUK5fQSFewp6++Lcs3HXkAICwP3bni97LhKCRbMmHdN1VDJaVh+JiIwZmdu7ZdZNurHh6RfycweF+wiOJFO4O9Hw0PfixlNHeyXjIiEc5/oVS4allwAKCiIig5KbaI4XlEC75aFnAArmGYrnCJLpwU2RRkKUVVjrioX5/HmLePspJwxbQAANH4mIDEpQOopG+7t3nEwsUrx9K5X2YQ8IoKAgIjIoQRPNQxWLBN+CXzNnMtevWFK2u3m4AwJo+EhEpG65DWfLT53J7Y/uyj//1gXT+NXT+8vmFEr3HYQMujoimT0L5yxk7nHj+eDNvyqahI6GM+U1p02IDWs21EoUFERE6rCmZxcrV28iZEZ/oniO4FdP7+fWv3oDT/UeZuncKUzt6mDL7oN8+JYNFMwTEw0b37zotfmbPsDXLljCFas3EQ4ZqbRz/YqjPYJpE2IjFgxyFBRERGro7YvziTs2Vl1W+uc3PUw0FCblaT5z7iJikRCRUIg4RwNIRzjM5M6OEa2PMFgKCiIiJUqT3W3ZfbBqQDiS3aGcSGUCwKfv3kxXR5hDA8U9ikq5j5rRI6hEQUFEpEBQsruQBSVyzuwbSDsMpMonngsDQldHmJQfzVM0mDoLI02rj0REsirVQKjkktPn8fnlC6uesysW5vPLF7F+1ZksXzp70HUWRpp6CiIiWZWS3U3qjOYnggt9/5c7aqavGEimi/YXDKXOwkhST0FEWtJQahpXSnY3a/I4LKDuV188VbSzOYh78fsGm1BvpCkoiEjLWdOzi2XXrePimx5h2XXrWNuzq/abyCwBvfB1c4qeW75kFj07DhCLDC1/UWc0ws79/UWfEVR2czT0EkDDRyLSYuotglPpvbc/urPouds37GRtzy6OJIeW5TSoFzDalqEWUlAQkZZyLGP2Qe8FAgNCOJRJnT2QSjOQTJcNLtWqjDaalqEWUlAQkZZyLGP2g8lrFAmR3528fvvzXLF6I2EL5TevLZ49edT1AuqhoCAiLSWoNnK9Y/aF74Wjm9KCFO5OHs3DQYOloCAiLWf50tksnDmJnh0HWDp3CgtmTMy/VrqTOOi9yxZMZ8vuF8uS1RUq7X2M1uGgwVJQEJGWU2nHcL07iadNiHHGyccXJatLpNK4O53RyKB6H2ONla6hHUu6u7t9w4YNzW6GiIwivX1xll23rmjoZ1w0xL0ffQvn/uODZc+vX3Vm2c29sDcBBP48lgOCmT3q7t1Br6mnICItpdLqo54dB+palVSrNzGWg0E9tHlNRFpKpdVHS+dO4UiyOGvpkWSqKGvpA7/by8rVG0dtXqKRoKAgIi2l0o7hqV0dZSknco9zO6D/5tZfEy/Zk5DrTbQLDR+JSMsJWiK6cccBOqMRXoon88d1RiNs2f1ifgd0kNGUl2gkqKcgImPCUBLcFao0rARONFR+KxwfDY+6vEQjQT0FERm1cquANu86yDU/3Fp3UZpKk8VBm9oWzZpcFixikRDfuuR1LJo1qa0CAjRpSaqZ/R3wIcCB3wJ/CYwHbgPmA08BF7r7/mrn0ZJUkdaVu7GHzcrKWlZaSgqVl6Tmjg/avLa2Z1dZsBgtldCGw6hakmpms4HLgYXu3m9mtwPvAxYC97n7tWZ2JXAlsGqk2ycizVeY6TRItQR3tRLiBe08bqU0FceqWXMKEaDTzCJkegi7gfOBm7Ov3wy8uzlNE5Fm6u2Lc/+2vWUrhQoVTv6WzjUMNSHetAkxlsyd0tYBAZrQU3D3XWb2VeAZoB/4qbv/1MxmuPue7DF7zOyEkW6biDRX4ZBR6dJQgPEdYdJ+NB31mp5drMymoUilnc+ct5DFsyZz1TkLy+Yg2v1mX69mDB9NJdMrOBE4ANxhZhcP4v2XAZcBzJs3bziaKCINVCsBXeFx1YaMAC564zze2z0XgO+uf5Iv/PAxkgV1kz/9/2+mqyNMyp2rzs0EiHYfDhqsZqw+egfwpLvvAzCzu4A3A8+Z2cxsL2EmsDfoze5+I3AjZCaaR6jNIjIE9SagA+raIHbrw0/znfVPkUpX/qefm5S+5t6tFSejpbJmzCk8A7zJzMabmQFnAY8Ba4H3Z495P7CmCW0TkUGotneg8Jt/PSkjujrCVXsJAP2JdNWAUKjddiI3SjPmFB4xs9XAr4Ek8Bsy3/wnALeb2QfJBI4LRrptIlK/Wr2AwZbFPDSQIhY24iX1CzrCxkCFmgbVtNtO5EZpyuojd/+su5/i7ovd/RJ3j7t7r7uf5e4nZX9/oRltE5Ha6ukFBK0CGkilOdifoLcvHrhqyEJWdHwsYtxw4VJikeLnS8UiRtggGraifEcaOho87WgWkUGrpxdQWhbzSDJFKp3mI9/7NUeSqbKCNbkdx4W1jq9fsYRzl8wi7Z4/z+FEqmgI6cLuOVz0xpe3VL2DZlJQEJFBq3cvQK4s5oPb9/GlHz1GIk1RQrrczyvv3MSyBdPJ3OoNDHArOk/h5rL9hwYCS21C69c7GG4KCiIyaLleQOG3+qDhmty8Q8iMkkwVRdJp556Nu/jyj7cV7U/IBYvS8y6YMbEsGEhjKCiIyJBU+lafU8++g5yBlHPtjx+vWMvgwe3P17W0td49EVKZgoKIDFruhh9PHr3hl36rD5p3AIiFQ8RT5YHiSLL8uUQ6TVdHOB9ccucK6kEMZk+EVKZ6CiIyaLkbfqHSfQFB8w4dYePysxYQrr6YqKiWwaGBVM3PGuyeCKlMQUFEBq2eiebSspiRUGbI6Z9+/ntqbTv4yopTWb/qTJYvnV3XZ9UTpKQ+CgoiMmiV6iAHpaRev+pMvnnRaYRDIRIpL6uNUGpcNMTc48aXLW2t9llDzYwq5TSnICJDkltuWmlpaM60CTEmd0bpCIeK5iCqCVraWq3eQemeCGVGHToFBREZlHpKZJauApoztZP+RLLsXF2xMAPJdNlGtqCbeVBxnEIqlNMYCgoiUrfcCp9IyOiLZ4aBSlcEBS0fzWxMM3ILWQHCZvzzRZk6yNCYnci1AofUpqAgImWC1vvXUyJzy+4Xy5aPXrF6I5efeVJZdtOUO+BFcwfSfAoKIgJUHha66pyFLJ49mYP9icB9BzlHkinAy46JJ51v3PdEhU+tsTZVRpyCgogUlcHMrQ7K3dg/ffdmJsTCJFJOKl15otjdmTU5eO6gNB02QCREfuhIRg8FBZE2tv25l3hw+/N86UePVa1ZkJs/iIaNWATCoRCHS5aWdkYj7D54pGzuoFQsHAJzrl+xRENGo5CCgkib+szdv+WWh58Z1HvGRcJ8+c8W83xfPBtIjr42kErx250HalZG+9zyhbxz0csUEEYpBQWRNrT9uZcGHRAADg0k+fgdm+gIh3CMSCizlLQ/kSTt8I/3b695jmg4pIAwimlHs0gb6tlxYEjvSzvEk5n8QomUEw6F+PKfvSa/W7m/joyoS+dOGdJny8hQUBBpQ426MXeEQxxJpOgIl99KYgHPXXr6PNVBGOU0fCTShhbMmMilp8/jlocGP4RUKJFOs3TulLK8Q7FIiH+9tJtFsyZVrZImo496CiJt6urzX8Pqv34TH37riVWPM8gnonvrgmlFr13YPYcFMyaWJay7fsWpnHHy8UybEGPBjIms6J6rgDBGqKcg0qYK9yaUioSMvz/n1bxlwXQgMwcxf9p4Lv7OL4uOu33DTj521snKO9RCFBREWkilcpSFzwNs2X2Qlas3lpW/zOmMhnntvKls2fNiPo9RPJXGPLhcZi7nkILB2KegINIiKpWjLHz+SDKFu9MRCVcMCFC5DGbQcapZ0FoUFETGuN6+eNE3/8KspQtnTgq8sScrFLrpioVJpb2oDGbh+8ZFQ6TTTiwSVs2CFqWgIDKG5XoBIbOyb/7RUIieHQeqJrErdd2fncrpr5zGtAkxevviZauKAH50+Vs5NJDS3EGL0uojkVGsty/Oxh0HAgvQF6ayLs1DBEeXi2ayl9bnSCJVswzmghkTWTJ3igJCi1JPQWSUqjRHkLNzfz9eJc/Qhd1zmNrVgXv1XESFSje1aVVR+2lKUDCzKcBNwGIy6RT/CngcuA2YDzwFXOju+5vRPpGRULoiqPDGW9gLKK1slrsxd3WEA1NS59z2qx28YvoEYpFwxTmEQpV2G2tVUXtpVk/h68BP3H2FmXUA44FPAfe5+7VmdiVwJbCqSe0TGVaFvYD+RBIzY1zB5O3Lp3WVzQUULv8EODSQYlw0VLESWjzpfPFHj5GoEjhikRCffNcpvGXBdG0uE6AJcwpmNgk4A/g2gLsPuPsB4Hzg5uxhNwPvHum2iYyEwl7AS/EkyTQkUs5L8SRHEmlW3rmJro5w2SRv6fLPOVM7a6apLgwIndEQYcvURBjfESYWyew8/sCyExUQJK8ZE82vAPYB/2ZmvzGzm8ysC5jh7nsAsr+fEPRmM7vMzDaY2YZ9+/aNXKtFGmTn/n6ioer/9A4NpAIneUuHcZJVegGlUqlMkHH3bA2c+t8r7aMZw0cR4DTgf7r7I2b2dTJDRXVx9xuBGwG6u7v1t1rGnDlTOwOXeuYcSWQ2jlWb5O3ti3PPxt2Duq0P5D7SIZnOzDGUzlOINKOnsBPY6e6PZB+vJhMknjOzmQDZ3/c2oW0iw65wqef4aLjs9Vj4aJ3kIGt6dvHma9fx5R9vO+a25OYpRHJGvKfg7s+a2Q4ze5W7Pw6cBWzN/no/cG329zUj3TaR4RCUjyjXC9iy+0U+fMsG4smjPQcLGXOmdgYuSV22YDqfuGNjxcnjsMFV576a3zxzgDUb99Rsm9JUSCkbzBrmhn2o2VIyS1I7gD8Af0mm13I7MA94BrjA3V+odp7u7m7fsGHD8DZW5BjU2msAsLZnFysLjrnqnIXMPa4zGyyO/vuMRUJcfuYruf6nT1T8vEtPn8fV578GyJTc7NlxgBcODXDDf/6u4kqn0vZI6zOzR929O/C1ZgSFRlFQkNGsty/OsuvWFS0ZHRcNsX7VmWVj+LnexOZdB7n63q0YcCRZPu8QC1vVvQm1zh+0J0LaT7WgoB3NIsMkt8qo2l6DnNzjFd/6RdV9BdUCQq3zFz6nYCCVKPeRyDAJWmVUbQx/y+6DVQNCPTRHIMdKQUFkmAQllLvq3IXs3N9Pb188INldeQW0eo2PhivuZRAZDA0fiQyjwr0Gm3cd5Jp7txYVu+mMRgoml8djVN9SFjSnEIuE+NYlr2PRrEkKCHLMFBREhlnuRv3eGx8qK3bzUjwJwKfv3kxXR6jmZjQzw/Ci4977+jmccfLxDW61tCsNH4nUoXCop1KNg2q1D+pLbVG7EM6RZLoscNy+YWfgZ4oMhXoKIjUEZTSNhkOk0s71K8rrIAet/58ztZP+RHJIn98ZCdEfsDw1p9KKI5GhUE9BpIpKGU0PD6SIJ9N8/I6NbH/upaJjjiTSXLF6E99d/yTbn3spfy6z8onkzkj1yeU3nTiVf7m0m3CVw7TiSBpJQUGkilrDPomU8+D2fWXHxJNpPnfPVt7xvx/gM2t+y879/YyLFOc56oqF+fAZryRW5Y7/8JP7GR8NEQqVH9MV04ojabyaQcHMPmpmU0eiMSKjTa2MpgCH4ikGUpWPueWhZ0gkU2XnSaack2dMhIAeRKF/f/gZYpHif6pdHWE+f94i1q86U2kqpKHq6Sm8DPiVmd1uZmdbUB9YpEVNmxDjwu45VY/55//6Pal0mmjYym7eOU/1Hi7asxANG6l0mk/e9duC9wb/0/rJ5t30xYuzpqbcefspJ6iHIA1XMyi4+98DJ5GplPYB4Akz+5KZvXKY2yYy7KqtGMq9fvuGnWXPFw759MVTJNMQMvj8eQsDz7N07hSWL53N+lVn8s2LXkvIIJkmP08RMvjaBUsIB3znKowHGjKS4VbXnIJnsuY9m/2VBKYCq83sK8PYNpFjUuuGv6ZnF8uuW8fFNz3CsuvWsbZnV9kxQXMKXbEwf/3/vZIJseI5go5wmFfPmsylp88rev7S0+fly11OmxBjcmcHHeHy9849rov//d4lxCIhOgLmGTRkJCOh5pJUM7ucTH2D58mku77C3RNmFgKeAFYObxNFBq/WEtHCVUW5zWRBVciClpLGEymWL5nFjf/9h6Lnc6uArj7/NVz6pvn07DjA0rlTyuofV8uJtGTulGydhYNlqbM1ZCQjoZ6ewnTgz9z9j939DndPALh7Gjh3WFsnMki9fXEe+N0+Vq4uXiK68s5NRT2GoB5ApSpkpdNoZsbUrg6+8p5TiUWM8dEwsYgVDeksmDGRFd1zywICBOdEKnzvtAkxzjj5BK5fsaRmjWaRRqvZU3D3z1R57bHGNkdk6HK9gxBWVMkMyjd41ZvBdOf+/rJvTgbcv21v9jMs84RXXn9RrfJatboG9Rwj0mja0SwtoXA4KEjpDT/3bb204lmup5C7AXd1hMsS0A2knKvu/i39yeLng4afqg1jldY4CFLPMSKNpKAgLSGooA3A+I4wafd8ymog8Nv65l0HueaHW8tu3rsPBhe1Lw0IUN4bqXfeQmQ0UVCQlhA0HBSLGN+6+DR2vNCfT1kd9G0dyjOY5m7eL/bXn6+otDcymMprIqOF0lxISwiavL1+xRIWzZrMNT/cOqRJ5y27X+T5viM1P7vS3oHBVl4TGQ3UU5CWETQxu3HHgarf1nv74hzsT5SlqehPJPnwLRuIVshL1NURJuXOVecsZPHsyYETwUHzFlpBJKOdgoK0lNKJ2Wrf1gsngXOpJsZFwgykUqQ9k9QuXjB61BkNkXb4zHkLWTwrOBCU0goiGWsUFKSlVfq2DpRNAsci8M2LXgvAR773GxKpoxGhK5bZTTyUzWNaQSRjiYKCtLzSb+uQ2WeQTpesIHKY3NkR2LtIpbWbWNqDgoKMGUGbwOqV+7a+pmcXV9yxERwGSoJCPOV0dYTzvYsrVm8iHDJSaddcgLQNBQUZE2rlMgpSGkR6++L83W09lHYQcsZFQxwayKQk9dx/3fKPRNqBgoKMekPZBBYUREJGxYCQM2dqZ/7zMsnoUnV9nkiraNo+BTMLm9lvzOze7OPjzOxnZvZE9ndVexMgeB9BCLj5F08V1UDOKa2rnNub8HTv4cDzxyKhon0Gg0mWJ9Jqmrl57WNAYUK9K4H73P0k4L7sY5HA9NWHE2m+sW57vgZyoUpBZM/B4I1oX7tgSVGNAm06k3bWlKBgZnOAc8jUZ8g5H7g5+/PNwLtHuFkyilWrAnvLQ88U9RiCbuqHE2lufeSZsvdeevo8zl0yq2hYqFZqa5FW1qw5hX8gU5ynMNn8DHffA+Due8zshKA3mtllwGUA8+bNCzpEWszO/f2Mi4SL9g2UWrtxN+9/8/z8KqPc6iHDORKQvK4jlEl53f3y4wLPp01n0q5GvKdgZucCe9390aG8391vdPdud+8+/vjjG9w6GUm1ymXmBA0flbrpv//AsuvW8b2Hn2bjjgO8dCQJOKngTNoMpJ2BlJflQSo0bUKMJXOnKCBIW2lGT2EZsNzM/gQYB0wys1uB58xsZraXMBPY24S2yQgZ7BLTzPBR5aVDh7N1FD5992a6OsL5paW1lOZBUs9A2t2I9xTc/ZPuPsfd5wPvA9a5+8XAWjK1oMn+vmak2yYjo9LqoErf2HPDR4XGd4R5b/ccxkfL/wrXGxCgOA/SsuvWcfFNj7DsunWs7dk1uIsSaRGjKXX2tcAfmdkTwB9lH0sLClodFA4Z92/bGxgYKqWdeOtJx5eV3axXYbprYFBBSqSVNXXzmrv/HPh59ude4KxmtkdGRtAcwaF4is+u3cLfr9lcNpRUmtTuSDJFKp1m1Z2bSNXYjDY+GmIglcYskwE1V3azMN11rfTaIu1EO5qlKYLmCHLDPoW7h3Pj/MsWTGf9qjPZsvsgH75lA/EUJGsME8UiIa4+fzFvPyWzkK3SfIH2JYgcpaAgI67WElN35/5te4kn01x979Z8UrrrV5zKy6d10REOE0/WLpNpRlFm00rf+lUMR+QoBQUZcUHfzAvFk85n1mzhcKK4J/DxOzby48vfGvjerliYgWQad6czGhn0jV37EkQyFBRkxBVuLgMCJ4tLAwJAIuXsPtjPha+bwy0PH92dfGH3bC5643zmTO1k/6EBenYcYOncKSyYMbHsHLXapWAg7U5BQRpmMOv8c6mpQ1XSVwR5sT/J7Y/uLHpu7cY9rDr71Ty4/flBp9cWkWIKCtIQg9mMVpya+uhk8/hoKL8JLUgkBJM6I4ErhbbsPjjo9NoiUm407VOQMWowm9F6++Lcv20vkVBxD6ErFubq8xfzxT9dnE9EFw0bYYPx0TCxiHHDhUtZNGty4EohMKW7FmkA9RTkmOU2o9Va57+mZxcrV28iZNCfqFwD+exFLyuqp1w6JBW0UmjRrElaVirSAAoKckx6++Ic7B/g8EDxEtH+RLLohtzbF+cTd2wkUbLbrCsWJpV2rjpnYf5bfemEb+nwT6WVQlpWKnLsFBSkLkGTyLl5hEjIynYWl9Y/2LL7YFlAALjinScTDYe55odbBzVBHLRSSMtKRY6dgoLUFDSJvGzB9Pw8QpBxkXDJ8FHwKqND8RTfWPc48WRjJoi1rFTk2GiiWaqqNIm8ZfeLZRO7hUqHjxbNmkQk4PB/vH972T4FTRCLNI+CglRVqYg9eNVdyaXDR9MmxLjhwqXEIkZnQXQonXAGTRCLNJOCglRVKVncolmT83WMx3eEy96XGz4qtHzpbH5x5Vlc8+7FTIiVv2d8R1j1kEWaTEFBqqpWxH750tmsX3Um37r4NMIlUwalw0eF53v7KSeQTBdPOscixrcuPo31q87ULmSRJtJEs9RUe1WPZX8dvdF7hYllqJyV9IyTTxiW9otI/RQUpC5Bq3pyq5JwSHnxN/9U2rln4y7OW5L51l8aULR8VGR0MvcapatGse7ubt+wYUOzmzHmFe5BAKruJs4dny92k6z896czGiJRUvVMSepEms/MHnX37qDX1FNoc4V7EPoTyfwN/EgyVVabYPnS2fnjQ2ZVAwIUrizyfEEdJakTGd0UFNpY4R6Eo3mLvKgi2kvxozfzhTMnVd2wBtARNgaqFE4ebO3jwaTjFpFjp6DQxoIS2VUSDYXoCShwD5kspmky+YvmHjc+O6wUfM6BVIqD/QP09sVr3uQHk45bRBpDQaGN1SqLWSiRTrN07pSy42ORECvPfhVvWTA9X+ns+hVHVxYVDkn1J5KkHT7yvd/UXXNB9RFERpb2KbSh3r44G3ccADi6AS1avpkMMr2A3N6EBTMmFu1ZiIaNVDrN1376O879xwdZ27MLIL9/4dYPvZFHPvUOHv7kWXzzotMIh0IkUl6z5gJU3kmt9Bciw0s9hTYTNCSzftWZPPT7Xj76/d+UHf+VFady+iunlS0lza8+ShXPO+S+yZcuYZ3cGaUjHCoaVqo2v1BpJ7XSX4gML/UU2kRvX5wHfreXlas3liW3A5h73HjGRYv/OoyLhph73Piym/a0CTEmd3bQES7uXVT7Jj/Ym3y1ndQiMnzUUxij6lmVkztm866DXPPDrYHLSHM38ko359zzpZ83Z2onR5KpomOPJFM1b/KDKYKjDW4iI09BYQyqZ1VOYQGcvniqwpmOfluvdtOuVE+hdONjrY2QQ7nJqz6CyMga8aBgZnOBW4CXAWngRnf/upkdB9wGzAeeAi509/0j3b7Rrp5VOYXHVJJbRlr4bT3opl3p8268pJvOaCQ/nwDQGY3U3IOgm7zI6NaMnkIS+Li7/9rMJgKPmtnPgA8A97n7tWZ2JXAlsKoJ7RvVgvYWlE7Y1tp/0BG2smWkOaU37UqfF1RPQRPBImPfiE80u/sed/919ueXgMeA2cD5wM3Zw24G3j3SbRsL6pmwDRrvLzo+5Vz7422c838yy0hzS1SDlofWU09BE8EiraOpcwpmNh94LfAIMMPd90AmcJhZYB5lM7sMuAxg3rx5I9TS0aPeCdtq4/sOHMkuDf3b23qIho2OcCZh3VXnLGTx7Mn54aNqn6eJYJHW07QsqWY2Afgv4IvufpeZHXD3KQWv73f3qdXO0c5ZUiutPurti3P/tr187p4tVSeYq5kQC5NMe9EEtnIQibSOUZcl1cyiwJ3A99z9ruzTz5nZzGwvYSawtxltGyuq1TcIm3FoYGgBAcgHk2qb0USkNY34nIJlKrp/G3jM3W8oeGkt8P7sz+8H1ox020aLwjH+SuP9G57s5YafPs6GJ3vz78mtEjqWgFBIaSVE2k8zegrLgEuA35pZT/a5TwHXAreb2QeBZ4ALmtC2pivcE1CppsHFNz3Mg9szweAb67bz1gXT+MQfn1J3xtNCMyd1sL8/Gdi70GoikfYz4kHB3R+EigV8zxrJtow2wfUNinMLdXWE8wEh57+39/KBNx+pO+NpoT0vDrD6r99ENBJm8+6DXHPv1rp3HItI69GO5lGk1v6CaCjET7c+F/jaxp0H86uEjMKqZ0eFgaCBpad6D7Oiey5L5k7h7EUv04SySBtTQrxRpFZ9g8MDSRacMCHwtZmTx7FswXTWrzqTf7nkdWVdMQO+8KeLA9+7dO6U/M/TJsRYMneKAoJIm1JQGEVyewJikRCd0fL/NSmHf/jPJwLf+6UfbWPZdetYv/15Fs2aTCRcHBYiYeOdi17GpacX7+249PR5ZbuaRaR9afholPHsf9Pp4GmX3GRwNATvff08bvvVMyTSxfMON17yOsZFwkW1lsdFwuzc38/V57+GS980n54dB1g6d4oCgogUUVAYRXITzZn01tU3FY6LRlg6dwqrf70zYMjJqqbCWDBjooKBiATS8NEokduJnE7Xt8O8P5Fk/rTxZZlQjyTSzJo8TnmJRGRI1FM4Ro1I/7CmZxdX3NEDDgN1rio1Mw4nUsTCRjx1NJDEwpn9BspLJCJDoaBwDOopdlNLb1+cv/1BT43BonId4RB/2HeobMeHhSw/TKTUFCIyWBo+GqLCjWaF9Y6D0k9XS0390O97Bx0QIDPh/NWfPk7aIRJCw0Qi0hDqKQxR0EazcMi4f9te3n7KCfkbc63exPN9RwLPHwlBMmAoaXw0xOHsPEIucV0sEuKbF53GolmTFBBE5JiopzBEQRvNDsVTfHbtFpZdty5fvKZWb+ItC44PPH8ICBtEw5bvBXzqXafwobe+gq6OcNGxHeEQkzujCggicswUFIYot9FsXDREV+zoTfrQQIojiTRXrN7IPRt3E7biQf/SzKMLZkws21AGmQnnlEM67Xzzotdy1TkLueE/f8e3H3xSietEZNho+KhOhauMIDN8lEsrcf+2vXzqrk1FK4fiSee6n2wry0FUeAPPnfNVMyYRi4RIu5NIFc8wpBxe7E9wzQ+3li0/7YqFSWWL4aiXICKNoKBQh1rprJfOnRK4lLQwIHR1hEn50Rt47pyRkNWskPZ830DZ/EVXR5jPn7eoaP5CRORYafiohtJ5gUTKSWbTSuTmCHYf7GdcQK6inK5YmM8vX8T6VWeyfOnsonPWCgjRsPGWBdPL5i9S7goIItJwCgo17Nzfj1fZZRwNhahcHiIjlS6+gedWLlXTGQ0Ri4T42gVLWDBjonYoi8iI0PBRDV0d4aIdw6US6TSLZk3K1zKIhkL0J5KYWSYpXUCxmlopssMG/3JJd9ESU+1QFpGRoKBQw6GBFOOiobJJ3lg4BHZ0jqD0pg1UvIHnVi6tvHMTITMOl6wmGt8RCVxiqh3KIjLcFBSonr9oztTOshVBAKGQUTqqVHjTDtq9XCgXRLbsPsiHb9mQzYyaoSWmItIsbR8Uau043n9ogFTAnEJ/IvPtfuWdm1i2YHpRMKk3J9K0CTHOOPkErl+xJD/0pNrIItJMbR0UClcB5ZZ7lt7ke3YcqHqO3Ga0wh5CrXOW0nyBiIwWbb36KGgVUOmO48L6xUFKh3rqOWcQ1UYWkdGgrYNC0Cqg0pt8UBqKcMgqLg2t55wiIqNVWw8fFa4Cqjaef/X5r2H5qbN44InnOeOk6Zx4/ISiVUYbdxzID/vUe04RkdHI3IeSzX906O7u9g0bNhzzeWpVT6s0cVxtQrkRFdlERIaDmT3q7t1Br7V1TyGn2vr/ShPHC2dOqjqhrD0FIjIWtfWcQj2CJo7DZqzduJtIqHpabBGRsWbUBQUzO9vMHjez7WZ25Uh8ZrVymYHFdAZSfPvBP5Qls9OEsoiMdaMqKJhZGPgm8C5gIfDnZrZwOD9zTc8ull23jotveiRfMa1QUTGdjsJiOgVprGNhJakTkZYw2uYU3gBsd/c/AJjZD4Dzga3D8WH1bjTLbS67f9tePnfPlqIeguoaiEgrGVU9BWA2sKPg8c7scw3X2xfn/m17654XmDYhxttPOYFkurQymuoaiEjrGG1BIagwQdFd2MwuM7MNZrZh3759Q/qQ3JDRZ9duKZsXGEilOdifCJxfKBxKUl0DEWlFo2qfgpmdDnzO3f84+/iTAO7+5aDjh7JPobcvzrLr1gXWOx5IpstKbQYlstMeBBEZy6rtUxhtPYVfASeZ2Ylm1gG8D1jbyA8IqqQWDcFfvGEeRnmpzUo9BuUpEpFWNKqCgrsngY8C/wE8Btzu7lsa+RlBldQSafj3h5+mpNYNnnbtOxCRtjLaVh/h7j8CfjRc5z80kCISgmRJNczS4SSAeMqLlqGKiLS6UdVTGAldHeGygFDJuGiIQ6XdBxGRFtZ2QSFXc7le2qEsIu1k1A0fDbdKN/lKq480mSwi7aTtgkJQvYOrzlnI4tmT8wFDy01FpF21XVCA2jWRFQxEpF21ZVCA6jUURETaVdtNNIuISGUKCiIikqegICIieQoKIiKSp6AgIiJ5oyp19mCZ2T7g6WM4xXTg+QY1Zyxot+sFXXO70DUPzsvd/figF8Z0UDhWZrahUk7xVtRu1wu65naha24cDR+JiEiegoKIiOS1e1C4sdkNGGHtdr2ga24XuuYGaes5BRERKdbuPQURESmgoCAiInltGRTM7Gwze9zMtpvZlc1uz3Aws7lmdr+ZPWZmW8zsY9nnjzOzn5nZE9nfpza7rY1kZmEz+42Z3Zt93NLXC2BmU8xstZlty/7/Pr2Vr9vM/i77d3qzmX3fzMa12vWa2XfMbK+ZbS54ruI1mtkns/ezx83sj4/ls9suKJhZGPgm8C5gIfDnZrawua0aFkng4+7+auBNwEey13klcJ+7nwTcl33cSj4GPFbwuNWvF+DrwE/c/RRgCZnrb8nrNrPZwOVAt7svBsLA+2i96/0ucHbJc4HXmP13/T5gUfY9/5S9zw1J2wUF4A3Adnf/g7sPAD8Azm9ymxrO3fe4+6+zP79E5kYxm8y13pw97Gbg3U1p4DAwsznAOcBNBU+37PUCmNkk4Azg2wDuPuDuB2jt644AnWYWAcYDu2mx63X3B4AXSp6udI3nAz9w97i7PwlsJ3OfG5J2DAqzgR0Fj3dmn2tZZjYfeC3wCDDD3fdAJnAAJzSxaY32D8BKIF3wXCtfL8ArgH3Av2WHzW4ysy5a9LrdfRfwVeAZYA9w0N1/Soteb4lK19jQe1o7BgULeK5l1+Wa2QTgTuBv3f3FZrdnuJjZucBed3+02W0ZYRHgNOCf3f21wCHG/tBJRdlx9POBE4FZQJeZXdzcVjVdQ+9p7RgUdgJzCx7PIdP9bDlmFiUTEL7n7ndln37OzGZmX58J7G1W+xpsGbDczJ4iMyR4ppndSuteb85OYKe7P5J9vJpMkGjV634H8KS773P3BHAX8GZa93oLVbrGht7T2jEo/Ao4ycxONLMOMhM0a5vcpoYzMyMzzvyYu99Q8NJa4P3Zn98PrBnptg0Hd/+ku89x9/lk/p+uc/eLadHrzXH3Z4EdZvaq7FNnAVtp3et+BniTmY3P/h0/i8x8Wateb6FK17gWeJ+ZxczsROAk4JdD/hR3b7tfwJ8AvwN+D3y62e0Zpmt8C5ku5CagJ/vrT4BpZFYuPJH9/bhmt3UYrv1twL3Zn9vhepcCG7L/r+8GprbydQOfB7YBm4F/B2Ktdr3A98nMmSTI9AQ+WO0agU9n72ePA+86ls9WmgsREclrx+EjERGpQEFBRETyFBRERCRPQUFERPIUFEREJE9BQURE8hQUREQkT0FBpIHM7PVmtimb478rm/d/cbPbJVIvbV4TaTAz+wIwDugkk5foy01ukkjdFBREGiybU+tXwBHgze6eanKTROqm4SORxjsOmABMJNNjEBkz1FMQaTAzW0smffeJwEx3/2iTmyRSt0izGyDSSszsUiDp7v83Wyf3F2Z2pruva3bbROqhnoKIiORpTkFERPIUFEREJE9BQURE8hQUREQkT0FBRETyFBRERCRPQUFERPL+H+N7Dnkm90CaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot the points in the dataset\n", + "df.plot(kind='scatter',\n", + " x='x',\n", + " y='y',\n", + " title='x and y in the dataset')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "8e9d0f89", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAwlElEQVR4nO3de5yUdf3//8drZvbASUBA5BgYaAIKGnkILdMOZCqffkgfNFNLs0+pqSlodeun1tffL0UsU9OPEqWlGYIpmr/6mFpqH0+ogOCJDQ8sIAKiAi57mHn9/riunZ3ZndkD7Oy1M/u832572+s0M69rxes11/t6v19vc3dEREQAYlEHICIi3YeSgoiIpCkpiIhImpKCiIikKSmIiEiakoKIiKQpKUjRM7MrzOwPnfA+R5vZa50RU/h+vzOz/9NZ79fsvTvlnEWaU1IQCbn7E+5+wO681szONLMnOzumzlDI5NTG5/7DzM7u6s+VPaOkICIiaUoK0inMbI6ZLWm27QYz+2We4y8zs3+b2XYze9nMvpqx70wze9LMrjWzbWb2hpl9OWP/WDP7Z/jah4HBrcR1qZk9bWaJcP27ZrbazCpzHHuMmVVnrL9pZpeY2Uoz+8DM/pTndQcCtwBHmtkOM3s/Y/dAM/tLGOszZvbxjNd9wsweNrP3zOw1M/taK+fR6jmb2T1m9k4Y5+NmNjHcfg7wdWBuGNsDbf39c3z2YWa2zMw+NLNNZnZdxr4jzOx/zex9M1thZseE268CjgZuDD/3xnzvL92Mu+tHP3v8AwwDdgIDwvUE8C7wyTzHzwKGE3wx+c/wtcPCfWcC9cC3gTjwXWADYOH+p4DrgArgM8B24A95PicGPA5cAYwHtgGH5Dn2GKA6Y/1N4Nkwzr2BV4D/yvPaM4Enm237HfAecFj497gTuDvc1wdYB3wz3HcosAWYmOf9Wz1n4FtAv3D/L4HlzeL4P+39++f57G+Ey32BI8LlEcBW4Pjwfb4Qrg8J9/8DODvqf5v66diP7hSkU7j7RoKL76xw03Rgi7s/n+f4e9x9g7un3P1PwBqCi2ejt9z9NndPArcTJJ2hZjYa+BTwE3evdffHgQdaiSsFnA58H1gKXOPuL3bg1H4Vxvle+DlTOvBagHvd/Vl3byBICo2vPwF4091/6+4N7v4CsAQ4ufkbtOec3X2hu29391qCBDjZzPrnC6odf/9M9cA4Mxvs7jvc/elw+2nAQ+7+UPg+DwPLCJKEFCklBelMtxNcKAh//z7fgWZ2upktD5sd3gcmkd0k8k7jgrt/FC72Jfh2u83dd2Yc+1ZrQbn7m8BjwBjgpvacSK44gI/CGDrj9R8DDm88//Bv8HVg3xzv0eo5m1nczH4eNgd9SHCHA603q7X19890FrA/8KqZPWdmJ2Scw6xm53AUQQKXIpWIOgApKfcBN5vZJIJvwnNzHWRmHwNuA44DnnL3pJktB6wdn7GRoJ2+T8ZFcjSQt9yvmR0PHAk8AswDvtOus+mYjpYbXgf8092/0I5j2zrnU4EZwOcJEkJ/gmayxr9nVmwd/fu7+xrgFDOLAf8XsNjMBoXn8Ht3/3aeuFWCuQjpTkE6jbvvAhYDdwHPuvvbeQ7tQ3DB2AxgZt8k+Kbans94i6CJ4kozKzezo4AT8x1vZoOB3wBnA2cAJ4ZJorNtAkaaWXk7j38Q2N/MvmFmZeHPp8KH1lnacc79gFqC9vzewP+TI7b9MtY79Pc3s9PMbEjYFPd+uDkJ/IHg7/ml8G6lMnxYPzLP50oRUFKQznY7cBCtNB25+8vAfIIHmJvC4//Vgc84FTic4CHu5cAdrRx7K3B/2O69laApZEH4TbczPQqsBt4xsy1tHezu24EvArMJHqK/A1xN8KA4l9bO+Q6C5qT1wMvA081e+xtgQtjEc99u/P2nA6vNbAdwPTDb3Xe5+zqCO5QfESSYdcAcmq4r1wMnW9CD7FetvL90I429OUQ6RfhQ9FVgX3f/MOp4RKRjdKcgnSZsc/4BQbdLJQSRIqQHzdIpzKwPQVPEWwTNDSJShNR8JCIiaWo+EhGRtKJuPho8eLCPGTMm6jBERIrK888/v8Xdh+TaV9RJYcyYMSxbtizqMEREioqZ5a0CoOYjERFJU1IQEZE0JQUREUlTUhARkTQlBRERSStYUjCzUWb2mJm9YsH0hxeE268ws/VhLfflmRUrzeyHZlYVTk34pULFJiIiuRXyTqEBuNjdDwSOAM41swnhvl+4+5Tw5yGAcN9sYCJBmYRfm1m8gPGJSNRqauDCC2HNmqgjkVDBkoK7bwynGGwsE/wKwZyu+cwgKKRW6+5vAFXknx5QRErB7bfD9dfDAQfABRdEHY3QRc8UzGwMcAjwTLjpPDNbaWYLzWxguG0EQT32RtXkSCJmdo6ZLTOzZZs3by5k2CJSSMkkXHttsOwOY8dGG48AXZAUzKwvwYTkF4bllG8GPk4wgflGgsk+IPdUgC2q9bn7re4+1d2nDhmSc5S2iBSDJUvg3/8OlgcOhLPPjjYeAQqcFMysjCAh3Onu9wK4+yZ3T4ZT+91GUxNRNTAq4+UjCWakEpFS4w5XX920ft550LdvdPFIWiF7HxnBNICvuPt1GduHZRz2VWBVuLwUmG1mFWY2FhgPPFuo+EQkQo8+Ci+8ECxXVgZJQbqFQhbEmwZ8A3jJzJaH234EnGJmUwiaht4EvgPg7qvNbBHBHLMNwLnunixgfCISlcy7hG99C/bZJ7pYJEtRT7IzdepUV5VUkSLzwgvwyU8Gy7FY0B11v/2ijamHMbPn3X1qrn0a0SwiXeuaa5qWv/Y1JYRuRklBRLrO2rVwzz1N63PnRheL5KSkICJdZ/58SKWC5S98AQ45JNp4pAUlBRHpGu++CwsXNq1feml0sUheSgoi0jVuuAF27QqWP/lJOPbYaOORnJQURKTwduyAm25qWp87FyxXEQOJmpKCiBTeggWwbVuw/PGPw8yZ0cYjeSkpiEhh1dfDddc1rV9yCcRVFb+7UlIQkcL64x9hXVgAeZ994Iwzoo1HWqWkICKF4549WO3734devaKLR9qkpCAihfPQQ7B6dbDcty9873vRxiNtUlIQkcLJLHx3zjnBvAnSrSkpiEhhPPUUPPFEsJxIwEUXRRuPtIuSgogURuazhK9/HUaOjC4WaTclBRHpfK++Cvff37SuwndFQ0lBRDrfvHlBzyOAE0+ECROijUfaTUlBRDrX+vXw+983ravwXVFRUhCRzvXLXwajmAE+/WmYNi3ScKRjlBREpPO8/z789383resuoegoKYhI57nlFti+PVieMAFOOCHaeKTDlBREpHPs2hU0HTWaMwdiusQUG/0XE5HOcccdsGlTsDxiBJx6arTxyG5RUhCRPZdMwrXXNq1fdBGUl0cXj+w2JQUR2XP33Qdr1gTLAwYEdY6kKCkpiMiecc8ufPe970G/ftHFI3tESUFE9sw//gHPPRcsV1QEcyZI0VJSEJE9k1n47swzYejQyEKRPaekICK7b8UK+Otfg+VYLJh/WYqakoKI7L7Mu4SZM2HcuOhikU6hpCAiu+fNN+FPf2paV3nskqCkICK757rrgvEJAMceC1OnRhuPdIqCJQUzG2Vmj5nZK2a22swuCLfvbWYPm9ma8PfAjNf80MyqzOw1M/tSoWITkT20ZQssWNC0rsJ3JaOQdwoNwMXufiBwBHCumU0ALgMecffxwCPhOuG+2cBEYDrwazOLFzA+EdldN94INTXB8pQp8IUvRBqOdJ6CJQV33+juL4TL24FXgBHADOD28LDbgf8Il2cAd7t7rbu/AVQBhxUqPhHZTTt3wg03NK3PnQtm0cUjnapLnimY2RjgEOAZYKi7b4QgcQD7hIeNANZlvKw63Nb8vc4xs2Vmtmzz5s0FjVtEcli4EN57L1geOxZmzYo2HulUBU8KZtYXWAJc6O4ftnZojm3eYoP7re4+1d2nDhkypLPCFJH2qK+H+fOb1i++GBKJ6OKRTlfQpGBmZQQJ4U53vzfcvMnMhoX7hwHvhturgVEZLx8JbChkfCLSQYsWwVtvBcuDB8M3vxltPNLpCtn7yIDfAK+4+3UZu5YCZ4TLZwD3Z2yfbWYVZjYWGA88W6j4RKSD3LMHq51/PvTuHV08UhCFvO+bBnwDeMnMlofbfgT8HFhkZmcBbwOzANx9tZktAl4m6Ll0rrsnCxifiHTE3/4GK1cGy717w7nnRhuPFETBkoK7P0nu5wQAx+V5zVXAVYWKSUT2QGZ57G9/GwYNii4WKRiNaBaRtj37bFAiGyAehx/8INJwpHCUFESkbZl3CaecAqNHRxeLFJSSgoi07vXX4c9/blpX4buSpqQgIq279tqg5xHA8cfDQQdFG48UlJKCiOS3cSPcfnvTugrflTwlBRHJ7/rroa4uWD78cDj66GjjkYJTUhCR3D78EG6+uWn90ktV+K4HUFIQkdz++7+DxABwwAEwY0a08UiXUFIQkZZqa+EXv2hanzMHYrpc9AT6rywiLf3hD8FDZoBhw+C006KNR7qMkoKIZEulYN68pvULL4SKisjCka6lpCAi2ZYuhddeC5b32gu+851o45EupaQgIk3cs0tafPe70L9/dPFIl1NSEJEmTzwBTz8dLJeXwwUXRBuPdDklBRFpknmXcPrpwUNm6VGUFEQk8NJL8NBDwbJZ0A1VehwlBREJZPY4+upXYf/9o4tFIqOkICLw9tvwxz82ras8do+lpCAicN110NAQLH/2s0HxO+mRlBREerqtW+G225rWVR67R1NSEOnpfv1r+OijYPngg2H69GjjkUgpKYj0ZB99BL/6VdP63Lkqj93DKSmI9GS//S1s2RIsjx4NX/tatPFI5JQURHqqhgaYP79p/eKLoawsunikW1BSEOmpFi+GN94IlgcNgrPOijYe6RaUFER6ouaF7847D/r0iS4e6TaUFER6oocfhuXLg+VevYKkIIKSgkjPdM01TctnnQWDB0cXi3QrSgoiPc3zz8MjjwTL8XjwgFkkpKQg0tNkPkv4z/+EMWMiC0W6n4IlBTNbaGbvmtmqjG1XmNl6M1se/hyfse+HZlZlZq+Z2ZcKFZdIj1ZVBUuWNK2rPLY0U8g7hd8BucbL/8Ldp4Q/DwGY2QRgNjAxfM2vzSxewNhEeqb58yGVCpa/9CWYMiXScKT7KVhScPfHgffaefgM4G53r3X3N4Aq4LBCxSbSI23aFIxgbqTCd5JDFM8UzjOzlWHz0sBw2whgXcYx1eG2FszsHDNbZmbLNm/eXOhYRUrHr34FtbXB8qc+BcccE2k40j11dVK4Gfg4MAXYCDSOsc9VgctzvYG73+ruU9196pAhQwoSpEjJ2b49qIbaSIXvJI8uTQruvsndk+6eAm6jqYmoGhiVcehIYENXxiZS0m67Dd5/P1gePz6YblMkhy5NCmY2LGP1q0Bjz6SlwGwzqzCzscB44NmujE2kZNXVBTOrNbrkkmB8gkgOiUK9sZn9ETgGGGxm1cDlwDFmNoWgaehN4DsA7r7azBYBLwMNwLnunixUbCI9yl13wfr1wfLQoXD66dHGI91awZKCu5+SY/NvWjn+KuCqQsUj0iOlUtklLS64ACoro4tHuj2NaBYpZQ8+CK+8Eiz36wff/W608Ui3p6QgUsoy7xK+8x0YMCCyUKQ4KCmIlKp//Sv4gWBGtQsvjDQcKQ5KCiKlKrPw3WmnwYic40FFsigpiJSi1avhgQea1lX4TtpJSUGkFF17bdPyjBlw4IHRxSJFRUlBpNRUV8Oddzatq/CddICSgkip+cUvoL4+WD7qKDjyyGjjkaKipCBSSrZtg1tvbVrXXYJ0kJKCSCm5+WbYsSNYnjgRjj++9eNFmlFSECkVNTVw/fVN63PnQkz/i0vH6F+MSKm4/XZ4991geeRImD072nikKCkpiJSCZDK7G+oPfgDl5dHFI0WrzaRgZhNybDumEMGIyG66917497+D5YED4dvfjjYeKVrtuVNYZGaXWqCXmd0A/L+FDkxE2sk9u6TFuedC377RxSNFrT1J4XCCqTL/F3iOYJrMaYUMSkQ64NFH4fnng+XKSjj//GjjkaLWnqRQD9QAvYBK4I1wjmUR6Q4y7xK++U3YZ5/oYpGi156k8BxBUvgUcBRwipktLmhUItI+L74IDz8cLMdiwfzLInugPdNxnuXuy8Lld4AZZvaNAsYkIu2VOYnOrFmw337RxSIloc07hYyEkLnt94UJR0Tabe1aWLSoaX3u3OhikZKhcQoixWr+fEiFj/c+/3k49NBo45GSoKQgUow2b4aFC5vWVfhOOomSgkgxuuEG2LUrWD70UDjuuGjjkZKhpCBSbHbsgBtvbFqfOxfMootHSoqSgkixWbAgmDcBgt5GM2dGG4+UFCUFkWJSXw/XXde0fsklkGhPz3KR9lFSECkmd98N69YFy0OGwJlnRhqOlB4lBZFi4Z49WO3734devaKLR0qSkoJIsXjoIVi1Klju0we+971o45GSpKQgUiwy7xLOOQf23ju6WKRkKSmIFIOnn4bHHw+WEwm46KJo45GSVbCkYGYLzexdM1uVsW1vM3vYzNaEvwdm7PuhmVWZ2Wtm9qVCxSVSlDLLY596KowaFV0ssse27qhlxbr32bqjdreOq9q0ncXL1lG1aXunx1bIvmy/A24E7sjYdhnwiLv/3MwuC9cvDaf8nA1MBIYDfzez/d09WcD4RIrDq6/C/fc3ravwXbezdUct1dtqGDmwF4P6VmRt61MeZ2ddMr3v/uXrmbt4JfGYkUw5804+mJOmjGjxnvcvX8+lS1ZSFotRn0pxzczguP/7vpe44+m308edfuRofjrjoE47l4IlBXd/3MzGNNs8AzgmXL4d+Adwabj9bnevBd4wsyrgMOCpQsUnUjTmzQt6HgGccAJMnBhtPJIl18V7+64GrnhgNZ5yGhwqEjHM4CdfmcAVD6ymPunp1198zwoG9C5n4vC9shLKpUtWsqs+xS6Coodzl6xkeP/KrIQAcMdTb3P6EWMYN7Rfp5xPV496GeruGwHcfaOZNU4RNQJ4OuO46nBbC2Z2DnAOwOjRowsYqkg3sGED/D6jUr0K33UrVZu2c8k9K6hPevrifeHdy2k+NWVtQ7DligdWUd+s/aM+6ZxzxzIw0ncD1dtqKIvF0u8JUBaL8fiaLTnjWL7u/U5LCt3lQXOuwi2eYxvufqu7T3X3qUOGDClwWCIR++Uvg1HMAJ/+NBx1VKThlLr2tvVDcIcw/fonsr71Ay0SQqZYnhpVuxpS7KpPMXfJSrbuqGXkwF7Up7LfqT6V4jPjB+d8/ZRRA9qMt726OilsMrNhAOHvd8Pt1UDmk7ORwIYujk2ke3n/fbjllqZ1PUsoqPuXr2fa1Y9y2oJnmHb1oyxdvj5rf2bC2LqjlrmLV9KQyvndNa+UQ7yV2oVlsRjV22oY1LeCa2YeTGVZjH4VCSrLYlwz82Cmjh3E6Udmt5CcfuToTrtLgK5vPloKnAH8PPx9f8b2u8zsOoIHzeOBZ7s4NpHu5ZZbYHvYu+TAA+HEE6ONp4RVbdrOnMUrqWtoasO/5J4VTBi2F+OG9mvx3ODcY8YRj3W8Mu3xk/blLy9tzNMOEtwNjBwYjFI/acoIpo0b3OIB9k9nHMTpR4xh+br3mTJqQKcmBABz71ima/cbm/2R4KHyYGATcDlwH7AIGA28Dcxy9/fC438MfAtoAC509/+vrc+YOnWqL1vWYrZQkeK3axeMHQvvvBOsL1wI3/xmtDGVoK07arnzmbf51SOv05Cj3ScRM+Z+6QCu+/vr7KpvOqAiYbhDXbL9188EEEvEqMv4oEQM4jGjPB7P6mFUaGb2vLtPzbmvUEmhKygpSMm67bZg1DLA8OHwxhtQXh5tTCUm6Bq6gtqGtq+BZQb1GYf1q0gw9WMDeez1ze3+vLI4VCTi7KhtetLcryLBTV8/hP69yrPuBgqttaSgmrsi3U0yGXRDbXTRRUoInaBq03aerNrM4L6VfGLffly6ZGW7EgJkJwQImnmmjRvUoaTg3tQLKfN9Jg7v32XJoD2UFES6m/vugzVrguX+/ZvuGCSvXIPHMjUf8GVAeWL3Z6v7yVcm0L9XWYde05CCRMypSMQojzeNaehOCQGUFES6F/fskhbf+x7stVd08XRTmUngyaotOUf+NqratL3FgC+Hdt8lNNe7PMakEf35oKYu5/4bTzmEvXqVsXbzDub97TV21jU1F/UqS3DT1w+lf6+yLm0u6gglBZHu5J//hOeeC5YrKoI5EyRLZk+gumSKhmSKpJPuNTRn8QoG9C5LN8ssX/d+p35+Q9IZObAXIwf2oixuWeMUyuLGkR8fxKC+FUwcvhc//+urWa8Nmov26pbJoFF3GbwmIpB9l3DGGbDvvtHF0g1lln/YXttAbUOQEDLVNjj/9YcX0mMNOnNgF8DlJ05kUN8KBvWtYP6syVQkYvQuj1ORiDF/1uT0BT/fWIPunBBAvY9Euo8VK2DKlGDZDF57DcaPjzSk7qKxueiDmjrOvfNFttc2tOt1FYkY/3vZsVz/yOvc8dTbbb+gFYmYceWMiXz98I/ljC1fc1Bb+6Og3kcixSCzx9HMmUWdEHbnQpjvNdnNRUk6Moi4tiHFXc+8nR7w9WTVZt7Y8hF/ePqt9B1GWdy44qSJvLejjhsfW5MeM/CTr0xg1N69+LCmgb16JfL2Emq8a8inrf3djZKCSHfw5ptw991N60Vc0iJfyed8tu6oZcETa1nw5BskwnLS5x87nlMPD8o5NK8WmogFdwCJuLGztu3q+jc+toZTDw9KQQzsU860qx/NanKKGUyfuC+D+lZw6uGju923+q6mpCDSHVx3XTA+AeBzn4NPfSraeHZTrpLPcxavYNq4wTkvsvcvX8/Fi5anRxM3PrSd//Dr3PhYFed9blyLaqGZPXhWrf+An/3l5XQCOu6AffjLqneyPqM8Hk/XE8pVfTRzf7F9qy8EJQWRqG3ZAgsWNK0XcXnsXBfd2gbnrmfe5vzjspvDmorK5X6v2oYUNz5WRUMy+4Ca+oZ0D57JowYwfdK+6W/3AH9/dVNWd9PMekL5qo827hf1PhKJ3k03QU1NsDxlCnzxi5GGsydGDuxFXbJlk86Nj1Xx+Oubs0pSV2+roa2acrl6F1mz8tONyaHxW/68kyfn7fFTrD2CupLuFESitHMn3HBD0/rcuUHPoyK0dUctqzd8wAkHDWfJi9llp2sbUpz9u+ewGMw7eTInTRkRJpDWZh/IrTzRVF46l3zVRdu7v6dTUhCJ0sKFsHVrsDxmDMyaFWk4bQku/B8CntUb5/7l69MzkOVTl3JIwUV/Ws60ceFkMbvRI74+HDzWmlLrEdSVlBREolJfD/PnN61ffDEkov9fsvmFH4KmnlXrP+DypavSzwDK4sb8WZOZNm5wmwkhU9JhwRNrmT5pGL3LE+0ec9Do8hMn6IJeQNH/CxTpqbZtg0mT4K23YPBg+Na3oo6I+5ev5wd/Wp5ux49ZUDyuV3l2yWcIvrHPWbyS+bMObndCaPSbJ99g5qEjqalvOyEEXVDj1CdTXH5iy8Fj0rmUFESiss8+8OCD8NJLsHYt9O4daThVm7ZnJQQgPVCseUJoFI8ZW3bkLgzXmrJEjFff+ZAg5TR9YDxmxC34nUzB5SdNYPrEfdX+34WUFESidtBBwU8XyTVyuHG8QAe/8FPXkOKocYNJxMjbtTTf6y7KGJ/QqHdZPOekM0oGXUdJQaTEtVVmetq4wS3uENrL3RnYp5zrvjaFOYtXYBgNqRSpFOTKEb3LYyRTkEylciaR7jjpTE+jpCBSwpqXmW68GDcOLpu7ZCWzp47arYQAQbmJ6m01Wd08P6ip59w7X2jxAPm7n92P6ZOG5d1fntCYge5ASUGkBG3dUctT/97KnHtWUJf0rBHGmeJm3P7UW7v9OQ2ppu6hjd08t+6obTFquCJhnH30fnn3l8eNh84/inFD++12LNI5NKJZpEhs3VHLinXvZ40KznXMrx5Zw2FX/Z3z/vgidW3cAtTUJXdnqEBa49wCmXKNGp53cuvzDFw7a7ISQjeh+RREikBjM1AiZtQlnctPnNCia+adT7/FlQ+83KFRwjGjQ6WoASrLYqScnDFkKsZ5BnoKzacgUsQyK482+vGfV/Hc2q1MGT2AScP78/dX3+WWf67t0PtWJGLgUNuBJFIeN279xtR2TSmpUcXFSUlBpBvK/BZdva2GRI7Kcfet2Mh9Kzbu0ed4BxuPLj9pIp/Zf8gefaZ0b0oKIl0sV7NJ826jcxevJB4zGpIpzjpqLLvq255MpiPK4sa8kw8G4OIcJSrK4sYph41i0bJq4mYaTdyD6JmCSIE0v/hv3VHLnc+8zU2PVVEebxon4JDVbbSuIdXi+3vc2O1uo5nmfHF/DhrZP2ssQGN10w9rGgBnr15l6f1q9y9NrT1TUFIQ6QTNL553Pv0WVz74Mgkz6lMpjp+0L39d/U7W5C8AZTHDjDZ7CXWGRAye+dHndXEXPWgWKaTmcxKfdPAwFj0fzCfQWBXo/jxt//Ud7fqzGyoTMRzP6hYqko+SgsgeyDUncWNC6GzZpeNa16c8TtKdn5wwgUnD+6v5R9pNSUFkD+Sak7hQYjFoT+/RPhVxrjxxIp/7xD5KBNJhkYxoNrM3zewlM1tuZsvCbXub2cNmtib8PTCK2ERyyTeaeHenlOyo8rhRmYi369hkypUQZLdFWebic+4+JeNhx2XAI+4+HngkXBeJ3P3L1zPt6kc5bcEzTLv6UZYub2oeGtS3gvM+N26PP+OIsbm/A1WWxagsi3H5SRNJttEppHd5XBPRyx7rTs1HM4BjwuXbgX8Al0YVjAjkfmZwyT0rmDBsr3StnlMPH80Nj75O3W4OJehdHuOHx0+gviHJf976dPYkNynnoe8fzbih/ehXkWDukpWkUt6it1JFwrjltENVdlr2WFR3Cg78j5k9b2bnhNuGuvtGgPD3PrleaGbnmNkyM1u2efPmLgpXeqrGZwaZ6pLO8Tc8mb5jeLJqC07LEce55PofLuVBM1RZIk7v8uzvaRWJODvDbHPSlBH869Jjuee/Ps2PvvwJyuNGn/DuYN7Jk/nM/moykj0X1Z3CNHffYGb7AA+b2avtfaG73wrcCsE4hUIFKKWpo0Xa+pTH2ZljYvm6hhSXLF7J8P6VXLpkZbvnKE4Bnz9wCI+v2UpZ3EimPKu5p3lJ6fpUKl2aGprqBU0eNYCZnxypgWXS6SJJCu6+Ifz9rpn9GTgM2GRmw9x9o5kNA96NIjYpHh0dbdt8PME1Mw/mpCkj8u4/afJwlrxQnbdfUV1DitkLnsE7ONbgiTVbeej8o9hZl2wx5eQ1Mw9mbrMY852bCspJIXR5UjCzPkDM3beHy18EfgosBc4Afh7+vr+rY5Pi0dYFvrlczwbmLF7BgN5BSQeAuYtXUtuQMd5gWXWbcTTkuUOYeegIlryQe7xCeTzGzrokk0cNaLEvcwYz3QFIFKK4UxgK/NnMGj//Lnf/q5k9Bywys7OAt4FZEcQmRSDXBX7ukpVMGLYXGz7YxfptH1EbTijf+DC4elsNcctu969tcP7rDy+QcufYA/ahtiMzz7eisizGQSP2ypsUmjcJNac7AIlSlycFd18LTM6xfStwXFfHI8Un14Axd/jiLx5v0dRz+pGj+emMg3h67db0A9tMH4XbHlr1TqfGeNS4IZTFX23xrKFC8xBLN9eduqSKtOs5Qa4BY/m+5d/x1NsM7FXO9Y9WdUp8iZjRkOcZQu/yOCkPHhyPG9qP+bMmMyejBPb5x47n1MNHKyFIt6akIN1Ge58TPFm1hYYOjCK+8bE9TwgzDx3ByAG98iaXXOME9HxAilGUI5pF0jKfE2yvbWBXfYpL7llB1abtWcdVbdrOD/60vENzC7T1j7wiEeP0I0dTWRajT0XLUhIVCeO7n/04N//z3zlfXx63vOMEGruPKiFIsdCdgrRbISdcyfWcoC7pTL/+Cb599FjOPno/nqzawiWLOpYQAOrzHB8zuOjz+6ebdC44bn+qt9Wwav0H/OwvL2fdseysS1IWj1GXzH4uURa39IhjkVKgpCDt0tEuoB01cmCvFgO3ABpSzs3/XMutj6/FDDqpgxAQXNAz2/gzB4ZNn7Rvi1nTctUeuuKkiUoIUlLUfCRtytW0M3fJyhYVQ9v7XrmqjTYO3CqP5y4XkfTOTQgA5fE41dtqcu5r3uzTGF9lWYw+5XHK48ZV/zFJcxZLydGdgrQpV9NOWSxG9baadjUjNTY7NW+W+ckJExg1sDfgTBzen5OmjGB4/0pm3/ZM3h4+zSVixucPHMJfV3d8AHxb4wWa04Nj6QmUFKRNIwf2oqY+u/5PTX1D+oLa2rOGxmanuFl6nEBjcvnxn1eljyuLG6d8ahSLnq8mbtCy2lBu7s5jr22hIm7UJp2KRAwz+NTHBvJE1db0cQZ848jRLFpW3a4SEvloYJmUOiUFaZdgBLo3Ww8u+nPDvvjJlDPv5KZnDZnNTm2pTzp3PP12h+NKOiQbMgexOX85P3jwW7VpO09WbWZw30qO/PigrIfJ+qYvkpuSgrSpelsNlYk49cmm7++ViTirN3zAJfesyBq1e/E9KxjQu5zh/StZvu79FqUlOqIsbu2uPtoos9T0uKH9WjwE1jd9kdYpKUiWXE1Bfcrj1CZblnRev62mxUW7Pul867fP0uBB//9cI43zbc/lR1/+BNf+z2skYsZHOe44ErHsB9AdfU4gItmUFCTtzqff4soHVlMWj5EMyzU4cOmSlVjYHbOyLOiw9rWpI7l86cs536chzBP5LvyeZ1rJ7Aaq4LiZnxyZnjdg1YYP+NmDLxOPBXcQl584IT0b2Z48JxCRJkoKAgQJ4cf3BQ9+GwdozVm8ArCsi3sq5dx19uGctvDZ3Z6wvvlUkgC9yuIY8FF9MmNbguptNemuoZNHDWD6xH1b3MmoR5BI51FS6CFa6yG0dUctVz7Y8lt/DMNi2c8EyuIxHl+zJe+3/d2Vcif7PiF3U1CuZwJ6TiDSeZQUStTWHbWs3vAh4Kx7ryY9PqAumeKEg/flcwcM5RP79mNnXZIPauopjxt1zfqBNniKVH32tp11SRY88Qa1DfmTQnncqEs6lWUxkinH3UnEYuzK0ZxUmYiBwTUzDwZQU5BIxJQUStD9y9dz8aLlLUYAN44PWPLCBpa8sAEgPYI4leOb/5cn7cvSFS3nGchs4slUFoMrTprEpBH9g7mNw+kmAVZv+JCzbn8u68F0Wdy49fSpTBy+l5qCRLoJJYUSkNk0BDB38Yp2l4RobN+PGcSNdLG5uMFfVnZs4pmfzZjE7DxlHz6z/5Cs+QUaxzR8Zv8hWcepKUgkWkoKRSgzCTxZtSVr8Nh5nxtH3GJA7m/z+TSvKtHRSqQAwwf2bnW/ykSIdH9KCt1YrofDmdVK65JJGlKQzLii/+rRNcHclAUSN6gsj7OzNjvpJGIwcfhebb5edwIi3ZuSQjfS/A6geanqaeMGM3fxSmobUlnF6TLVJ50hfcrYvLM+5/6OiMeCgnOJWIz6ZIrLT5yYLim9av0H/PTB1cQtRtJTzDt5si72IiVASaGbaH4HkPLgAt948Z+zeCVfOWhYu0YCd0ZCAPjpSZNazCsATWWlc+0TkeKmpNDFcjUJVW3aziX3LKc+Sd47gNqGFPe+uH6PPz9ukIjHKA9nETv50FHct3x9ul5Qo+9+dj++fkTw0DjfBV9NQSKlR0mhCzWfvewnX5nA1p11XP/313frwW5HxIDysli6GSqzt9KSF6uzjq1IGGcfvV9hAxKRbklJoYtklpFOzydw36o2XtV54nHjwfOOSlcNzfyGf83MgzVoTEQAJYUuk2v2sraUx6Cuk6agLE/EWjQRNVJXURFppDmaC6T5XMT5JqZvTXsTggHl8Rh9KuJUlsX42tSRLY5JprzVktLN5yQWkZ5Jdwq7qT1TUGY2x5w0ZUS6mSZzasq2NC8nDU2Tz5TFjFgM5p08ucU3/cmjBnDlAy9TFg8GtalJSETawzq72mVXmjp1qi9btqzgn9M8AeS76DceO+3qR7OmoKxIxPjfy45lUN+KpknsN3zATx94uV1dTCvLYjQkndOOGM1ph3+MnXXJrNpC+S72rSUuEem5zOx5d5+aa5/uFNqQq8fQz/7yctYD4zmLVzJt3GAG9a3I+eygtiHFgifXcun0A7Muzp8ZP5iHX3m3zRgaE8zdz63j/GPHM25o+y7w6jIqIh3Vo5NC82/Sudab9xi68oHVlCeyH8XUNqS465m3Of+48Ywc2Cvn5DM3/2MtIwf0pm9lgkuXrMQ9/8xk+ZTFYlRvq9GFXkQKpscmhcY7gLgZ9ckU/3HIcJau2JjVJPSxQX1I5Jhkpi7HxfzGx9Zw6uGjGdS3gm9NG8PN/1zb4pjLl64iHmt9fmIDelfE05+RWWpa8w+LSKF1u95HZjbdzF4zsyozu6wQn7F1Ry1zFwd3ADvrktQlnUXL1rOrPsX22gZ21aeYs3glz6zdyo5mhd+S7px11NgW71kej1O9rabVz42ZEW+WZDIlDB6+6DPcdfYRPP3D45g/azKVZTH6VSSoDAee6S5BRAqpW90pmFkcuAn4AlANPGdmS9099wzxu+nOZ95us+mmtiHFNX97rcX2n5wwgekT92Xhv7JnH2v8Fr91Ry0L//Vm3vdNNq9RneHKGZPSg8tA4wdEpOt1tzuFw4Aqd1/r7nXA3cCMzvyArTtquemxNe06tqHZBbxPeZxJw/szqG8F807O/S2+elsN5fGWf9Z4DK6dNZl5Jx9MZVmMyrLgmPK4UZ6IcdVXJ6VrDWXS+AER6Urd6k4BGAGsy1ivBg7PPMDMzgHOARg9enSHPyC4aMepbWho++Bmkt40ACzft/hcg9TK48ZD3z86fRfQ+Lr2dCsVEelK3S0p5Gpwz/q67u63ArdCME6hox/QkZHFiRjEY0FF0Vw1gXJ1+RzUtyJnLaHMZiF1FRWR7qq7JYVqYFTG+khgQ2d+QPOLdk19A+5QWRanLpnC3elVlsia2Kajbfp6FiAixaq7JYXngPFmNhZYD8wGTu3sD2l+0QZyLmdOKtNRuhsQkWLUrZKCuzeY2XnA34A4sNDdVxfis5pftPMti4j0JN0qKQC4+0PAQ1HHISLSE3W3LqkiIhIhJQUREUlTUhARkTQlBRERSSvqSXbMbDPwVoE/ZjCwpcCfESWdX3Er5fMr5XODaM/vY+4+JNeOok4KXcHMluWboagU6PyKWymfXymfG3Tf81PzkYiIpCkpiIhImpJC226NOoAC0/kVt1I+v1I+N+im56dnCiIikqY7BRERSVNSEBGRNCWFVpjZdDN7zcyqzOyyqOPZE2Y2ysweM7NXzGy1mV0Qbt/bzB42szXh74FRx7onzCxuZi+a2YPhesmcn5kNMLPFZvZq+N/xyBI7v4vCf5urzOyPZlZZzOdnZgvN7F0zW5WxLe/5mNkPw2vNa2b2pWiiVlLIy8ziwE3Al4EJwClmNiHaqPZIA3Cxux8IHAGcG57PZcAj7j4eeCRcL2YXAK9krJfS+V0P/NXdPwFMJjjPkjg/MxsBfB+Y6u6TCErnz6a4z+93wPRm23KeT/j/4mxgYviaX4fXoC6npJDfYUCVu6919zrgbmBGxDHtNnff6O4vhMvbCS4oIwjO6fbwsNuB/4gkwE5gZiOBrwALMjaXxPmZ2V7AZ4DfALh7nbu/T4mcXygB9DKzBNCbYNbFoj0/d38ceK/Z5nznMwO4291r3f0NoIrgGtTllBTyGwGsy1ivDrcVPTMbAxwCPAMMdfeNECQOYJ8IQ9tTvwTmApmTcJfK+e0HbAZ+GzaPLTCzPpTI+bn7euBa4G1gI/CBu/8PJXJ+GfKdT7e53igp5Gc5thV9/10z6wssAS509w+jjqezmNkJwLvu/nzUsRRIAjgUuNndDwF2UlxNKa0K29ZnAGOB4UAfMzst2qi6VLe53igp5FcNjMpYH0lwO1u0zKyMICHc6e73hps3mdmwcP8w4N2o4ttD04CTzOxNgqa+Y83sD5TO+VUD1e7+TLi+mCBJlMr5fR54w903u3s9cC/waUrn/BrlO59uc71RUsjvOWC8mY01s3KCh0BLI45pt5mZEbRHv+Lu12XsWgqcES6fAdzf1bF1Bnf/obuPdPcxBP+tHnX30yid83sHWGdmB4SbjgNepkTOj6DZ6Agz6x3+Wz2O4LlXqZxfo3znsxSYbWYVZjYWGA88G0F84O76yfMDHA+8Dvwb+HHU8ezhuRxFcDu6Elge/hwPDCLoBbEm/L131LF2wrkeAzwYLpfM+QFTgGXhf8P7gIEldn5XAq8Cq4DfAxXFfH7AHwmej9QT3Amc1dr5AD8OrzWvAV+OKm6VuRARkTQ1H4mISJqSgoiIpCkpiIhImpKCiIikKSmIiEiakoKIiKQpKYiISJqSgkgnMrOfNc5VEa5fZWbfjzImkY7Q4DWRThRWoL3X3Q81sxjByNXD3H1rtJGJtE8i6gBESom7v2lmW83sEGAo8KISghQTJQWRzrcAOBPYF1gYbSgiHaPmI5FOFlbVfQkoA8a7ezLikETaTXcKIp3M3evM7DHgfSUEKTZKCiKdLHzAfAQwK+pYRDpKXVJFOpGZTSCYdP0Rd18TdTwiHaVnCiIikqY7BRERSVNSEBGRNCUFERFJU1IQEZE0JQUREUn7/wHw2afm+jrrsAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot the points again\n", + "df.plot(kind='scatter',\n", + " x='x',\n", + " y='y',\n", + " title='y and x in the data set')\n", + "\n", + "# Here we're plotting the red line 'by hand' with fixed values\n", + "# We'll try to learn this line with an algorithm below\n", + "plt.plot([55, 78], [75, 250], color='red', linewidth=3)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "bf4cd5b6", + "metadata": {}, + "outputs": [], + "source": [ + "# define a method to calculate a point for a line given the input values\n", + "def line(x, w=0, b=0):\n", + " return x * w + b" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "b4842e99", + "metadata": {}, + "outputs": [], + "source": [ + "# generate evenly spaced numbers \n", + "x = np.linspace(55, 80, 100)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "479278e7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([55. , 55.25252525, 55.50505051, 55.75757576, 56.01010101,\n", + " 56.26262626, 56.51515152, 56.76767677, 57.02020202, 57.27272727,\n", + " 57.52525253, 57.77777778, 58.03030303, 58.28282828, 58.53535354,\n", + " 58.78787879, 59.04040404, 59.29292929, 59.54545455, 59.7979798 ,\n", + " 60.05050505, 60.3030303 , 60.55555556, 60.80808081, 61.06060606,\n", + " 61.31313131, 61.56565657, 61.81818182, 62.07070707, 62.32323232,\n", + " 62.57575758, 62.82828283, 63.08080808, 63.33333333, 63.58585859,\n", + " 63.83838384, 64.09090909, 64.34343434, 64.5959596 , 64.84848485,\n", + " 65.1010101 , 65.35353535, 65.60606061, 65.85858586, 66.11111111,\n", + " 66.36363636, 66.61616162, 66.86868687, 67.12121212, 67.37373737,\n", + " 67.62626263, 67.87878788, 68.13131313, 68.38383838, 68.63636364,\n", + " 68.88888889, 69.14141414, 69.39393939, 69.64646465, 69.8989899 ,\n", + " 70.15151515, 70.4040404 , 70.65656566, 70.90909091, 71.16161616,\n", + " 71.41414141, 71.66666667, 71.91919192, 72.17171717, 72.42424242,\n", + " 72.67676768, 72.92929293, 73.18181818, 73.43434343, 73.68686869,\n", + " 73.93939394, 74.19191919, 74.44444444, 74.6969697 , 74.94949495,\n", + " 75.2020202 , 75.45454545, 75.70707071, 75.95959596, 76.21212121,\n", + " 76.46464646, 76.71717172, 76.96969697, 77.22222222, 77.47474747,\n", + " 77.72727273, 77.97979798, 78.23232323, 78.48484848, 78.73737374,\n", + " 78.98989899, 79.24242424, 79.49494949, 79.74747475, 80. ])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "56cd60cd", + "metadata": {}, + "outputs": [], + "source": [ + "# generate line points\n", + "yhat = line(x, w=0, b=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "bd73d23f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "yhat" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "7af98bd1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAzg0lEQVR4nO3de5zcdX3v8ddnLjvZbMiFBGKuBg0Uk0iirgpGOBU8FQsG2wa0h5seqz3n6MH2WBLQogi1glTbeqRViq1QrRKCh0S8HFqCR4mABN3EJASJ3HKThCUJbLI7O5fP+WMumctvLrvZ3ZmdeT8fjyW7v/nN78Imv898b5+PuTsiIiIAoUZfgIiINA8FBRERyVNQEBGRPAUFERHJU1AQEZE8BQUREclTUJC2ZmZ9ZvaaETrWB8zsoZE4VsCxf9fMdo/GsUUKKShIW3P3Se7+9FDfZ2YLzMzNLDIa13U8RjM41Tjv9Wb2zbE+r4wsBQUREclTUJBRYWZXm9k9Jdv+t5n9XYX9Z5vZPWZ2wMyeMbOrCl673szWmNmdZvaKmW0zs+4Kx3mbmb1oZvOyPy81s0NmdnqF/d3MFma//4aZ3Wpm38+e51Eze22FW/xJ9s9D2S6oswqO+TdmdjB7H+8u2D7FzL5uZvvMbI+Z/ZWZhStcV2f2eg6a2XbgzSWvX2Nmv8le53Yz+4Ps9tcBXwXOyl7Xoez2C8zsl2b2spntMrPrK9wXZjbDzO7L/n97ycx+amah7GuBvyczOx/4JPC+7Hk3Vzq+NDl315e+RvwLmAUcAaZmf44A+4E3BewbAh4HPg10AK8BngbelX39emAA+H0gDHweeKTKuT8HbAA6gS3Ax6rs68DC7PffAF4C3pK93m8B36nwvgXZ90YKtn0ASAAfzl7nfwf2ApZ9/V7ga0AXcDLwc+BPKxz/JuCnwInAPGArsLvg9YuB2dn/d+/L/r+eVXAdD5Uc73eB12f3PwN4AXhvhXN/nkxgiWa/zgaszt/TNxv9d09fx/elloKMCnffR+bT9MXZTecDL7r74wG7vxk4yd1vcPdBz/Tx/xPw/oJ9HnL3H7h7CvhXYGmV018PTCHz0N0L3DqES/+uu//c3ZNkgsKyIbwX4Dl3/6fsdd5BJjjONLOZwLuBP3P3I+6+H/hbiu+x0CXA59z9JXffBXy58EV3v9vd97p72t3vAp4iE8wCufuP3f1X2f23AN8G/lOF3RPZ6361uyfc/afu7tT3e5JxTkFBRtMdwGXZ7y8j8zAP8mpgdra74lC2y+OTwMyCfX5b8P1RYEKlQV53T5D51L8E+GL2gVav0vNMGsJ7i97v7kez304ic49RYF/BPX6NTIshyGxgV8HPzxW+aGZXmFlPwbGWADMqXZSZvdXMHsx2+xwG/luV/W8BdgL3m9nTZnZNdns9vycZ55pu5oS0lHuBfzSzJcCFwKoK++0CnnH3U0fipGY2B/gM8C/AF83sze4eH4ljFxhqeuFdQByYkW2F1LKPTLfRtuzP83MvmNmryXxCPw942N1TZtZDpoun0rX9G/AV4N3uPpAd2wkMCu7+CvAJ4BNmthh40Mweo/bvSSmXW4BaCjJq3H0AWEvmgfRzd3++wq4/B142s9XZAdawmS0xszdX2L8iMzMyrYSvAx8i83C9cVg3UN0BIE2mX72mbHfa/WSC1GQzC5nZa82sUhfOGuBaM5tmZnOB/1nwWheZB/ABADP7IJmWQs4LwFwz6yjYdgLwUjYgvAX4L5Wu1cwuNLOF2f+XLwOp7Fet39MLwILcoLSMT/rlyWi7g8wAZ6WuI7L97+8h03//DPAicDuZcYGhuopMd8Z12W6jDwIfNLOzh3GsirJdQ58DNma7Us6s421XkBmg3Q4cJBMwZ1XY97NkuoyeIRNM8v//3H078EXgYTIP4tcDGwveu4FMC+O3ZvZidtv/AG4ws1fIDBSvqXKdpwL/AfRlz/EP2TGJWr+nu7N/9prZL6ocX5qYDa27VWRozGw+sAN4lbu/3OjrEZHq1FKQUZPtRvhfZKZ1KiCIjAMaaJZRYWZdZLo2niMzHVVExgF1H4mISJ66j0REJG9cdx/NmDHDFyxY0OjLEBEZVx5//PEX3f2koNfGdVBYsGABmzZtavRliIiMK2b2XKXX1H0kIiJ5CgoiIpKnoCAiInkKCiIikqegICIieQoKIiLjTG9fnM27DtHbN9IZ4cf5lFQRkXazrmcPq9ZuJmwhUp7mlpVLWbFszogdXy0FEZFxorcvzifW9BBPOkcTKeJJ53+t6RnRFoOCgojIOLFt78sk08XbkunM9pGioCAiMm5USmA6colNFRRERMaJxbOnEA5Z0bZwyFg8ezhFCoMpKIiIjCNW0ioo/fl4KSiIiIwTuw/20xktnjTaGY2w+2D/iJ1DQUFEpIlUW4Mwd1oniXTxSHMinWbutM4RO7/WKYiINIl1PXtYfc8WoqEQiXSaL/zRGUVrEKZPivGFPzqDVSX7TJ8UG7FrGLWgYGb/DFwI7Hf3JdltJwJ3AQuAZ4FL3P1g9rVrgQ8BKeAqd/+/o3VtIiLNprcvzup7tjCQSDNApjWw6p4tLF84o+ihv2LZHJYvnMHug/3MndY5ogEBRrf76BuUF2y/BnjA3U8FHsj+jJktAt4PLM6+5x/MLDyK1yYiMibqTUmx+2A/0VDxIzkaCuXHC0YztUWhUWspuPtPzGxByeaLgN/Nfn8H8GNgdXb7d9w9DjxjZjuBtwAPj9b1iYiMtlrdQYWqjRcUHqc/kcTMmBAJ1zzmcIz1QPNMd98HkP3z5Oz2OcCugv12Z7eVMbOPmNkmM9t04MCBUb1YEZHhKuwOeiWeZCCRZtU9Wyp+0s+NF0yIhjghFmFCNMQX/ugMgKLjJNOQSHldxxyOZhlotoBtgZNv3f024DaA7u7ukZ2gKyJSp96+eNV+/Vx3UG58AI51B1UaBwgaL9i861DZcQrVOuZQjXVQeMHMZrn7PjObBezPbt8NzCvYby6wd4yvTUSkLvV0C9WaPloYVID89wePDPLUC6/Q1RFm+qQYc6d1MpBMVbyW8T4ldT1wJXBT9s91Bdv/zcy+BMwGTgV+PsbXJiJSU72zhIKmj1534SJ2H+znR1t/yw33bSNsIeLJFKFQZozgaCJFKn2sA+SKs+bz8fNOK9qW0xULk0r7uJqS+m0yg8ozzGw38BkywWCNmX0IeB64GMDdt5nZGmA7kAQ+6u6VQ6OISIMMpVuosDto657D3PC97YQM+hO592Yec6mUk0gly85158PPs+hVkwmICVz9e6fxnqVzRnxK6mjOPvrjCi+dV2H/zwGfG63rEREZCUNdVZx7aK/86s9IpIY+DPrjX+8P3P6ak04Y8YAASnMhIjIkuW6hWMSYGA0Ti1h+llBuHUHhmoLevjjf27xnWAEB4MEdL5Zti4Rg8ezJx3UflTTL7CMRkXEj83i3zLxJNzY991J+7KBwHcFAMoW7Ew0Pfy1uPHWsVTIhEsJxblm5dFRaCaCgICIyJLmB5nhBCbQ7H34eoGCcoXiMIJke2hBpJERZhbWuWJjPvmcx7zj95FELCKDuIxGRIQlKRzHS/vydpxGLFC/fSqV91AMCKCiIiAxJ0EDzcMUiwY/g18+dwi0rl5atbh7tgADqPhIRqVtuwdmKM2ax5vE9+e1nL5zOY88dLBtTKF13EDLo6ohk1ixcsIh5J07kQ3c8VjQIHQ1nymtOnxQb1WyolSgoiIjUYV3PHlat3ULIjP5E8RjBY88d5Jv/9S0823uUZfOmMq2rg217D/PhOzdRME5MNGzceukb8g99gC9evJSr124hHDJSaeeWlcdaBNMnxcYsGOQoKIiI1NDbF+cv7t5cdVrpH9/+CNFQmJSn+fSFi4lFQkRCIeIcCyAd4TBTOjvGtD7CUCkoiIiUKE12t23v4aoBYSC7QjmRygSAT927la6OMEcGi1sUlXIfNaJFUImCgohIgaBkdyELSuScWTeQdhhMlQ88FwaEro4wKT+Wp2godRbGmmYfiYhkVaqBUMnlZ83nsysWVT1mVyzMZ1csZuPqc1mxbM6Q6yyMNbUURESyKiW7m9wZzQ8EF/r2z3fVTF8xmEwXrS8YTp2FsaSWgoi0pOHUNK6U7G72lAlYQN2vvniqaGVzEPfi9w01od5YU1AQkZazrmcPy2/ewGW3P8rymzewvmdP7TeRmQJ6yZvmFm1bsXQ2PbsOEYsML39RZzTC7oP9RecIKrvZDK0EUPeRiLSYeovgVHrvmsd3F21bs2k363v2MJAcXpbToFZAs01DLaSgICIt5Xj67IPeCwQGhHAokzp7MJVmMJku61yqVRmtmaahFlJQEJGWcjx99kPJaxQJkV+dvHHni1y9djNhC+UXry2ZM6XpWgH1UFAQkZYSVBu53j77wvfCsUVpQQpXJzdzd9BQKSiISMtZsWwOi2ZNpmfXIZbNm8rCmSfkXytdSRz03uULZ7Bt78tlyeoKlbY+mrU7aKgUFESk5VRaMVzvSuLpk2Kcc9pJRcnqEqk07k5nNDKk1sd4Y6VzaMeT7u5u37RpU6MvQ0SaSG9fnOU3byjq+pkQDXHfx97OhV95qGz7xtXnlj3cC1sTQOD34zkgmNnj7t4d9JpaCiLSUirNPurZdaiuWUm1WhPjORjUQ4vXRKSlVJp9tGzeVAaSxVlLB5KpoqylP/n1flat3dy0eYnGgoKCiLSUSiuGp3V1lKWcyP2cWwH93775C+IlaxJyrYl2oe4jEWk5QVNEN+86RGc0wivxZH6/zmiEbXtfzq+ADtJMeYnGgloKIjIuDCfBXaFK3UrgREPlj8KJ0XDT5SUaC2opiEjTys0C2rrnMDd+f3vdRWkqDRYHLWpbPHtKWbCIRUJ89fI3sXj25LYKCNCgKalm9ufAnwAO/Ar4IDARuAtYADwLXOLuB6sdR1NSRVpX7sEeNisra1lpKilUnpKa2z9o8dr6nj1lwaJZKqGNhqaakmpmc4CrgEXu3m9ma4D3A4uAB9z9JjO7BrgGWD3W1ycijVeY6TRItQR3tRLiBa08bqU0FcerUWMKEaDTzCJkWgh7gYuAO7Kv3wG8tzGXJiKN1NsX58Ed+8tmChUqHPwtHWsYbkK86ZNiLJ03ta0DAjSgpeDue8zsb4DngX7gfne/38xmuvu+7D77zOzksb42EWmswi6j0qmhABM7wqT9WDrqdT17WJVNQ5FKO59+zyKWzJ7CdRcsKhuDaPeHfb0a0X00jUyr4BTgEHC3mV02hPd/BPgIwPz580fjEkVkBNVKQFe4X7UuI4BL3zqf93XPA+AbG5/hr77/BMmCusmf+j9b6eoIk3LnugszAaLdu4OGqhGzj94JPOPuBwDM7LvA24AXzGxWtpUwC9gf9GZ3vw24DTIDzWN0zSIyDPUmoAPqWiD2zUee4583PksqXfmffm5Q+sb7tlccjJbKGjGm8DxwpplNNDMDzgOeANYDV2b3uRJY14BrE5EhqLZ2oPCTfz0pI7o6wlVbCQD9iXTVgFCo3VYij5RGjCk8amZrgV8ASeCXZD75TwLWmNmHyASOi8f62kSkfrVaAUMti3lkMEUsbMRL6hd0hI3BCjUNqmm3lcgjpSGzj9z9M+5+ursvcffL3T3u7r3ufp67n5r986VGXJuI1FZPKyBoFtBgKs3h/gS9ffHAWUMWsqL9YxHjS5csIxYp3l4qFjHCBtGwFeU7UtfR0GlFs4gMWT2tgNKymAPJFKl0mo9+6xcMJFNlBWtyK44Lax3fsnIpFy6dTdo9f5yjiVRRF9Il3XO59K2vbql6B42koCAiQ1bvWoBcWcyHdh7gr3/wBIk0RQnpct+vumcLyxfOIPOoNzDAreg4hYvLDh4ZDCy1Ca1f72C0KSiIyJDlWgGFn+qDumty4w4hM0oyVRRJp53vbd7D53+4o2h9Qi5YlB534cwTyoKBjAwFBREZlkqf6nPqWXeQM5hybvrhkxVrGTy088W6prbWuyZCKlNQEJEhyz3w48ljD/zST/VB4w4AsXCIeKo8UAwky7cl0mm6OsL54JI7VlALYihrIqQy1VMQkSHLPfALla4LCBp36AgbV523kHD1yURFtQyODKZqnmuoayKkMgUFERmyegaaS8tiRkKZLqd/+PFvqLXs4Asrz2Dj6nNZsWxOXeeqJ0hJfRQURGTIKtVBDkpJvXH1udx66RsJh0IkUl5WG6HUhGiIeSdOLJvaWu1cw82MKuU0piAiw5KbblppamjO9EkxpnRG6QiHisYgqgma2lqt3kHpmghlRh0+BQURGZJ6SmSWzgKaO62T/kSy7FhdsTCDyXTZQragh3lQcZxCKpQzMhQURKRuuRk+kZDRF890A5XOCAqaPppZmGbkJrIChM34x0szdZBhZFYi1wocUpuCgoiUCZrvX0+JzG17Xy6bPnr12s1cde6pZdlNU+6AF40dSOMpKIgIULlb6LoLFrFkzhQO9ycC1x3kDCRTgJftE086X37gqQpnrTE3VcacgoKIFJXBzM0Oyj3YP3XvVibFwiRSTipdeaDY3Zk9JXjsoDQdNkAkRL7rSJqHgoJIG9v5wis8tPNF/voHT1StWZAbP4iGjVgEwqEQR0umlnZGI+w9PFA2dlAqFg6BObesXKouoyakoCDSpj5976+485Hnh/SeCZEwn//DJbzYF88GkmOvDaZS/Gr3oZqV0a5fsYjfW/wqBYQmpaAg0oZ2vvDKkAMCwJHBJJ+4ewsd4RCOEQllppL2J5KkHb7y4M6ax4iGQwoITUwrmkXaUM+uQ8N6X9ohnszkF0qknHAoxOf/8PX51cr9dWREXTZv6rDOLWNDQUGkDY3Ug7kjHGIgkaIjXP4oiQVsu+Ks+aqD0OTUfSTShhbOPIErzprPnQ8PvQupUCKdZtm8qWV5h2KREP90RTeLZ0+uWiVNmo9aCiJt6oaLXs/aPz2TD599StX9DPKJ6M5eOL3otUu657Jw5gllCetuWXkG55x2EtMnxVg48wRWds9TQBgn1FIQaVOFaxNKRULGX17wOt6+cAaQGYNYMH0il/3zz4v2W7NpNx8/7zTlHWohCgoiLaRSOcrC7QDb9h5m1drNZeUvczqjYd4wfxrb9r2cz2MUT6UxDy6Xmcs5pGAw/ikoiLSISuUoC7cPJFO4Ox2RcMWAAJXLYAbtp5oFrUVBQWSc6+2LF33yL8xaumjW5MAHe7JCoZuuWJhU2ovKYBa+b0I0RDrtxCJh1SxoUQoKIuNYrhUQMiv75B8NhejZdahqErtSN//hGZz12ulMnxSjty9eNqsI4AdXnc2RwZTGDlqUZh+JNLHevjibdx0KLEBfmMq6NA8RHJsumsleWp+BRKpmGcyFM09g6bypCggtSi0FkSZVaYwgZ/fBfrxKnqFLuucyrasD9+q5iAqVLmrTrKL205CgYGZTgduBJWTSKf5X4EngLmAB8CxwibsfbMT1iYyF0hlBhQ/ewlZAaWWz3IO5qyMcmJI6567HdvGaGZOIRcIVxxAKVVptrFlF7aVRLYW/B37k7ivNrAOYCHwSeMDdbzKza4BrgNUNuj6RUVXYCuhPJDEzJhQM3r56elfZWEDh9E+AI4MpJkRDFSuhxZPO537wBIkqgSMWCXHtu0/n7QtnaHGZAA0YUzCzycA5wNcB3H3Q3Q8BFwF3ZHe7A3jvWF+byFgobAW8Ek+STEMi5bwSTzKQSLPqni10dYTLBnlLp3/OndZZM011YUDojIYIW6YmwsSOMLFIZuXxB5afooAgeY0YaH4NcAD4FzP7pZndbmZdwEx33weQ/fPkoDeb2UfMbJOZbTpw4MDYXbXICNl9sJ9oqPo/vSODqcBB3tJunGSVVkCpVCoTZNw9WwOn/vdK+2hE91EEeCPwP939UTP7ezJdRXVx99uA2wC6u7v1t1rGnbnTOgOneuYMJDILx6oN8vb2xfne5r1DeqwP5k7pkExnxhhKxylEGtFS2A3sdvdHsz+vJRMkXjCzWQDZP/c34NpERl3hVM+J0XDZ67HwsTrJQdb17OFtN23g8z/ccdzXkhunEMkZ85aCu//WzHaZ2e+4+5PAecD27NeVwE3ZP9eN9bWJjIagfES5VsC2vS/z4Ts3EU8eazlYyJg7rTNwSuryhTP4i7s3Vxw8Dhtcd+Hr+OXzh1i3eV/Na1OaCillQ5nDPGInNVtGZkpqB/A08EEyrZY1wHzgeeBid3+p2nG6u7t906ZNo3uxIseh1loDgPU9e1hVsM91Fyxi3omd2WBx7N9nLBLiqnNfyy33P1XxfFecNZ8bLno9kCm52bPrEC8dGeRL//HrijOdSq9HWp+ZPe7u3YGvNSIojBQFBWlmvX1xlt+8oWjK6IRoiI2rzy3rw8+1JrbuOcwN923HgIFk+bhDLGxV1ybUOn7QmghpP9WCglY0i4yS3CyjamsNcnI/r/zqz6quK6gWEGodv3CbgoFUotxHIqMkaJZRtT78bXsPVw0I9dAYgRwvBQWRURKUUO66Cxex+2A/vX3xgGR35RXQ6jUxGq64lkFkKNR9JDKKCtcabN1zmBvv215U7KYzGikYXJ6IUX1JWdCYQiwS4quXv4nFsycrIMhxU1AQGWW5B/X7bnu4rNjNK/EkAJ+6dytdHaGai9HMDMOL9nvfm+dyzmknjfBVS7tS95FIHQq7eirVOKhW+6C+1Ba1C+EMJNNlgWPNpt2B5xQZDrUURGoIymgaDYdIpZ1bVpbXQQ6a/z93Wif9ieSwzt8ZCdEfMD01p9KMI5HhUEtBpIpKGU2PDqaIJ9N84u7N7HzhlaJ9BhJprl67hW9sfIadL7ySP5ZZ+UByZ6T64PKZp0zja1d0E66ym2YcyUhSUBCpola3TyLlPLTzQNk+8WSa67+3nXf+7U/49LpfsftgPxMixXmOumJhPnzOa4lVeeI/8sxBJkZDhELl+3TFNONIRl7NoGBmHzOzaWNxMSLNplZGU4Aj8RSDqcr73Pnw8ySSqbLjJFPOaTNPgIAWRKF/feR5YpHif6pdHWE++57FbFx9rtJUyIiqp6XwKuAxM1tjZudbUBtYpEVNnxTjku65Vff5x//3G1LpNNGwlT28c57tPVq0ZiEaNlLpNNd+91cF7w3+p/WjrXvpixdnTU25847TT1YLQUZczaDg7n8JnEqmUtoHgKfM7K/N7LWjfG0io67ajKHc62s27S7bXtjl0xdPkUxDyOCz71kUeJxl86ayYtkcNq4+l1svfQMhg2Sa/DhFyOCLFy8lHPCZqzAeqMtIRltdYwqeyZr32+xXEpgGrDWzL4zitYkcl1oP/HU9e1h+8wYuu/1Rlt+8gfU9e8r2CRpT6IqF+dP/9FomxYrHCDrCYV43ewpXnDW/aPsVZ83Pl7ucPinGlM4OOsLl7513Yhd/+76lxCIhOgLGGdRlJGOh5pRUM7uKTH2DF8mku77a3RNmFgKeAlaN7iWKDF2tKaKFs4pyi8mCqpAFTSWNJ1KsWDqb2376dNH23CygGy56PVecuYCeXYdYNm9qWf3jajmRls6bmq2zcLgsdba6jGQs1NNSmAH8obu/y93vdvcEgLungQtH9epEhqi3L85Pfn2AVWuLp4iuumdLUYshqAVQqQpZ6TCamTGtq4Mv/NEZxCLGxGiYWMSKunQWzjyBld3zygICBOdEKnzv9EkxzjntZG5ZubRmjWaRkVazpeDun67y2hMjezkiw5drHYSwokpmUL7Aq94MprsP9pd9cjLgwR37s+ewzAavPP+iWuW1anUN6tlHZKRpRbO0hMLuoCClD/zcp/XSime5lkLuAdzVES5LQDeYcq6791f0J4u3B3U/VevGKq1xEKSefURGkoKCtISggjYAEzvCpN3zKauBwE/rW/cc5sbvby97eO89HFzUvjQgQHlrpN5xC5FmoqAgLSGoOygWMb562RvZ9VJ/PmV10Kd1KM9gmnt4v9xff76i0tbIUCqviTQLpbmQlhA0eHvLyqUsnj2FG7+/fViDztv2vsyLfQM1z11p7cBQK6+JNAO1FKRlBA3Mbt51qOqn9d6+OIf7E2VpKvoTST585yaiFfISdXWESblz3QWLWDJnSuBAcNC4hWYQSbNTUJCWUjowW+3TeuEgcC7VxIRImMFUirRnktrFC3qPOqMh0g6ffs8ilswODgSlNINIxhsFBWlplT6tA2WDwLEI3HrpGwD46Ld+SSJ1LCJ0xTKriYezeEwziGQ8UVCQllf6aR0y6wzS6ZIZRA5TOjsCWxeptFYTS3tQUJBxI2gRWL1yn9bX9ezh6rs3g8NgSVCIp5yujnC+dXH12i2EQ0Yq7RoLkLahoCDjQq1cRkFKg0hvX5w/v6uH0gZCzoRoiCODmZSknvuvW/4nkXagoCBNbziLwIKCSMioGBBy5k7rzJ8vk4wuVdf5RFpFw9YpmFnYzH5pZvdlfz7RzP7dzJ7K/qlqbwIEryMIAXf87NmiGsg5pXWVc2sTnus9Gnj8WCRUtM5gKMnyRFpNIxevfRwoTKh3DfCAu58KPJD9WSQwffXRRJovb9iZr4FcqFIQ2Xc4eCHaFy9eWlSjQIvOpJ01JCiY2VzgAjL1GXIuAu7Ifn8H8N4xvixpYtWqwN758PNFLYagh/rRRJpvPvp82XuvOGs+Fy6dXdQtVCu1tUgra9SYwt+RKc5TmGx+prvvA3D3fWZ2ctAbzewjwEcA5s+fH7SLtJjdB/uZEAkXrRsotX7zXq5824L8LKPc7CHDGQhIXtcRyqS87n71iYHH06IzaVdj3lIwswuB/e7++HDe7+63uXu3u3efdNJJI3x1MpZqlcvMCeo+KnX7T59m+c0b+NYjz7F51yFeGUgCTio4kzaDaWcw5WV5kApNnxRj6bypCgjSVhrRUlgOrDCz3wcmAJPN7JvAC2Y2K9tKmAXsb8C1yRgZ6hTTTPdR5alDR7N1FD5171a6OsL5qaW1lOZBUstA2t2YtxTc/Vp3n+vuC4D3Axvc/TJgPZla0GT/XDfW1yZjo9LsoEqf2HPdR4UmdoR5X/dcJkbL/wrXGxCgOA/S8ps3cNntj7L85g2s79kztJsSaRHNlDr7JuA/m9lTwH/O/iwtKGh2UDhkPLhjf2BgqJR24uxTTyoru1mvwnTXwJCClEgra+jiNXf/MfDj7Pe9wHmNvB4ZG0FjBEfiKT6zfht/uW5rWVdSaVK7gWSKVDrN6nu2kKqxGG1iNMRgKo1ZJgNqruxmYbrrWum1RdqJVjRLQwSNEeS6fQpXD+f6+ZcvnMHG1eeybe9hPnznJuIpSNboJopFQtxw0RLecXpmIlul8QKtSxA5RkFBxlytKabuzoM79hNPprnhvu35pHS3rDyDV0/voiMcJp6sXSbTjKLMppU+9asYjsgxCgoy5oI+mReKJ51Pr9vG0URxS+ATd2/mh1edHfjerliYwWQad6czGhnyg13rEkQyFBRkzBUuLgMCB4tLAwJAIuXsPdzPJW+ay52PHFudfEn3HC596wLmTuvk4JFBenYdYtm8qSyceULZMWpdl4KBtDsFBRkxQ5nnn0tNHaqSviLIy/1J1jy+u2jb+s37WH3+63ho54tDTq8tIsUUFGREDGUxWnFq6mODzROjofwitCCREEzujATOFNq29/CQ02uLSLlmWqcg49RQFqP19sV5cMd+IqHiFkJXLMwNFy3hc3+wJJ+ILho2wgYTo2FiEeNLlyxj8ewpgTOFwJTuWmQEqKUgxy23GK3WPP91PXtYtXYLIYP+ROUayOcvflVRPeXSLqmgmUKLZ0/WtFKREaCgIMelty/O4f5Bjg4WTxHtTySLHsi9fXH+4u7NJEpWm3XFwqTSznUXLMp/qi8d8C3t/qk0U0jTSkWOn4KC1CVoEDk3jhAJWdnK4tL6B9v2Hi4LCABX/95pRMNhbvz+9iENEAfNFNK0UpHjp6AgNQUNIi9fOCM/jhBkQiRc0n0UPMvoSDzFlzc8STw5MgPEmlYqcnw00CxVVRpE3rb35bKB3UKl3UeLZ08mErD7Vx7cWbZOQQPEIo2joCBVVSpiD151VXJp99H0STG+dMkyYhGjsyA6lA44gwaIRRpJQUGqqpQsbvHsKfk6xhM7wmXvy3UfFVqxbA4/u+Y8bnzvEibFyt8zsSOsesgiDaagIFVVK2K/YtkcNq4+l69e9kbCJUMGpd1Hhcd7x+knk0wXDzrHIsZXL3sjG1efq1XIIg2kgWapqfasHst+HXvQe4WBZaiclfSc004elesXkfopKEhdgmb15GYl4ZDy4k/+qbTzvc17eM/SzKf+0oCi6aMizcnca5SuamLd3d2+adOmRl/GuFe4BgGoupo4t3++2E2y8t+fzmiIREnVMyWpE2k8M3vc3buDXlNLoc0VrkHoTyTzD/CBZKqsNsGKZXPy+4fMqgYEKJxZ5PmCOkpSJ9LcFBTaWOEahGN5i7yoItor8WMP80WzJlddsAbQETYGqxROHmrt46Gk4xaR46eg0MaCEtlVEg2F6AkocA+ZLKZpMvmL5p04MdutFHzMwVSKw/2D9PbFaz7kh5KOW0RGhoJCG6tVFrNQIp1m2bypZfvHIiFWnf87vH3hjHyls1tWHptZVNgl1Z9Iknb46Ld+WXfNBdVHEBlbWqfQhnr74mzedQjg2AK0aPliMsi0AnJrExbOPKFozUI0bKTSab54/6+58CsPsb5nD0B+/cI3/+StPPrJd/LItedx66VvJBwKkUh5zZoLUHkltdJfiIwutRTaTFCXzMbV5/Lwb3r52Ld/Wbb/F1aewVmvnV42lTQ/+yhVPO6Q+yRfOoV1SmeUjnCoqFup2vhCpZXUSn8hMrrUUmgTvX1xfvLr/axau7ksuR3AvBMnMiFa/NdhQjTEvBMnlj20p0+KMaWzg45wceui2if5oT7kq62kFpHRo5bCOFXPrJzcPlv3HObG728PnEaae5BXejjntpeeb+60TgaSqaJ9B5Kpmg/5oRTB0QI3kbGnoDAO1TMrp7AATl88VeFIxz6tV3toV6qnULrwsdZCyOE85FUfQWRsjXlQMLN5wJ3Aq4A0cJu7/72ZnQjcBSwAngUucfeDY319za6eWTmF+1SSm0Za+Gk96KFd6Xy3Xd5NZzSSH08A6IxGaq5B0ENepLk1oqWQBD7h7r8wsxOAx83s34EPAA+4+01mdg1wDbC6AdfX1ILWFpQO2NZaf9ARtrJppDmlD+1K5wuqp6CBYJHxb8wHmt19n7v/Ivv9K8ATwBzgIuCO7G53AO8d62sbD+oZsA3q7y/aP+Xc9MMdXPC/M9NIc1NUg6aH1lNPQQPBIq2joWMKZrYAeAPwKDDT3fdBJnCYWWAeZTP7CPARgPnz54/RlTaPegdsq/XvOzCQnRr6Z3f1EA0bHeFMwrrrLljEkjlT8t1H1c6ngWCR1tOwLKlmNgn4f8Dn3P27ZnbI3acWvH7Q3adVO0Y7Z0mtNPuoty/Ogzv2c/33tlUdYK5mUixMMu1FA9jKQSTSOpouS6qZRYF7gG+5+3ezm18ws1nZVsIsYH8jrm28qFbfIGzGkcHhBQQgH0yqLUYTkdY05mMKlqno/nXgCXf/UsFL64Ers99fCawb62trFoV9/JX6+zc908uX7n+STc/05t+TmyV0PAGhkNJKiLSfRrQUlgOXA78ys57stk8CNwFrzOxDwPPAxQ24toYrXBNQqabBZbc/wkM7M8Hgyxt2cvbC6fzFu06vO+NpoVmTOzjYnwxsXWg2kUj7GfOg4O4PQcUCvueN5bU0m+D6BsW5hbo6wvmAkPPTnb184G0DdWc8LbTv5UHW/umZRCNhtu49zI33ba97xbGItB6taG4itdYXREMh7t/+QuBrm3cfzs8SMgqrnh0TBoI6lp7tPcrK7nksnTeV8xe/SgPKIm1MCfGaSK36BkcHkyw8eVLga7OmTGD5whlsXH0uX7v8TWVNMQP+6g+WBL532byp+e+nT4qxdN5UBQSRNqWg0ERyawJikRCd0fJfTcrh7/7jqcD3/vUPdrD85g1s3Pkii2dPIRIuDguRsPF7i1/FFWcVr+244qz5ZauaRaR9qfuoyXj2v+l08LBLbjA4GoL3vXk+dz32PIl08bjDbZe/iQmRcFGt5QmRMLsP9nPDRa/nijMX0LPrEMvmTVVAEJEiCgpNJDfQnElvXX1R4YRohGXzprL2F7sDupysaiqMhTNPUDAQkUDqPmoSuZXI6XR9K8z7E0kWTJ9Ylgl1IJFm9pQJykskIsOilsJxGon0D+t69nD13T3gMFjnrFIz42giRSxsxFPHAkksnFlvoLxEIjIcCgrHoZ5iN7X09sX5s+/01OgsKtcRDvH0gSNlKz4sZPluIqWmEJGhUvfRMBUuNCusdxyUfrpaauqHf9M75IAAmQHnv7n/SdIOkRDqJhKREaGWwjAFLTQLh4wHd+znHaefnH8w12pNvNg3EHj8SAiSAV1JE6MhjmbHEXKJ62KRELde+kYWz56sgCAix0UthWEKWmh2JJ7iM+u3sfzmDfniNbVaE29feFLg8UNA2CAatnwr4JPvPp0/Ofs1dHWEi/btCIeY0hlVQBCR46agMEy5hWYToiG6Ysce0kcGUwwk0ly9djPf27yXsBV3+pdmHl0484SyBWWQGXBOOaTTzq2XvoHrLljEl/7j13z9oWeUuE5ERo26j+pUOMsIMt1HubQSD+7Yzye/u6Vo5lA86dz8ox1lOYgKH+C5Y/7OzMnEIiHS7iRSxSMMKYeX+xPc+P3tZdNPu2JhUtliOGoliMhIUFCoQ6101svmTQ2cSloYELo6wqT82AM8d8xIyGpWSHuxb7Bs/KKrI8xn37O4aPxCROR4qfuohtJxgUTKSWbTSuTGCPYe7mdCQK6inK5YmM+uWMzG1eeyYtmcomPWCgjRsPH2hTPKxi9S7goIIjLiFBRq2H2wH6+yyjgaClG5PERGKl38AM/NXKqmMxoiFgnxxYuXsnDmCVqhLCJjQt1HNXR1hItWDJdKpNMsnj05X8sgGgrRn0hiZpmkdAHFamqlyA4bfO3y7qIpplqhLCJjQUGhhiODKSZEQ2WDvLFwCOzYGEHpQxuo+ADPzVxadc8WQmYcLZlNNLEjEjjFVCuURWS0KShQPX/R3GmdZTOCAEIho7RXqfChHbR6uVAuiGzbe5gP37kpmxk1Q1NMRaRR2j4o1FpxfPDIIKmAMYX+RObT/ap7trB84YyiYFJvTqTpk2Kcc9rJ3LJyab7rSbWRRaSR2jooFM4Cyk33LH3I9+w6VPUYucVohS2EWscspfECEWkWbT37KGgWUOmK48L6xUFKu3rqOWYQ1UYWkWbQ1kEhaBZQ6UM+KA1FOGQVp4bWc0wRkWbV1t1HhbOAqvXn33DR61lxxmx+8tSLnHPqDE45aVLRLKPNuw7lu33qPaaISDMy9+Fk828O3d3dvmnTpuM+Tq3qaZUGjqsNKI9ERTYRkdFgZo+7e3fQa23dUsipNv+/0sDxolmTqw4oa02BiIxHbT2mUI+ggeOwGes37yUSqp4WW0RkvGm6oGBm55vZk2a208yuGYtzViuXGVhMZzDF1x96uiyZnQaURWS8a6qgYGZh4Fbg3cAi4I/NbNFonnNdzx6W37yBy25/NF8xrVBRMZ2OwmI6BWmsY2ElqRORltBsYwpvAXa6+9MAZvYd4CJg+2icrN6FZrnFZQ/u2M/139tW1EJQXQMRaSVN1VIA5gC7Cn7end024nr74jy4Y3/d4wLTJ8V4x+knk0yXVkZTXQMZYWb6Gu6XHLdmCwpBv9Wip7CZfcTMNpnZpgMHDgzrJLkuo8+s31Y2LjCYSnO4PxE4vlDYlaS6BiLSippqnYKZnQVc7+7vyv58LYC7fz5o/+GsU+jti7P85g2B9Y4Hk+myUptBiey0BkFGlT7xDl8TPc+aWbV1Cs3WUngMONXMTjGzDuD9wPqRPEFQJbVoCP7LW+ZjlJfarNRiUJ4iGTXu+hrulxy3pgoK7p4EPgb8X+AJYI27bxvJcwRVUkuk4V8feY6SWjd42rXuQETaSrPNPsLdfwD8YLSOf2QwRSQEyZJqmKXdSQDxlBdNQxURaXVN1VIYC10d4bKAUMmEaIgjpc0HEZEW1nZBIVdzuV5aoSwi7aTpuo9GW6WHfKXZRxpMFpF20nZBIajewXUXLGLJnCn5gKHppiLSrtouKEDtmsgKBiLSrtoyKED1GgoiIu2q7QaaRUSkMgUFERHJU1AQEZE8BQUREclTUBARkbymSp09VGZ2AHjuOA4xA3hxhC5nPGi3+wXdc7vQPQ/Nq939pKAXxnVQOF5mtqlSTvFW1G73C7rndqF7HjnqPhIRkTwFBRERyWv3oHBboy9gjLXb/YLuuV3onkdIW48piIhIsXZvKYiISAEFBRERyWvLoGBm55vZk2a208yuafT1jAYzm2dmD5rZE2a2zcw+nt1+opn9u5k9lf1zWqOvdSSZWdjMfmlm92V/bun7BTCzqWa21sx2ZH/fZ7XyfZvZn2f/Tm81s2+b2YRWu18z+2cz229mWwu2VbxHM7s2+zx70szedTznbrugYGZh4Fbg3cAi4I/NbFFjr2pUJIFPuPvrgDOBj2bv8xrgAXc/FXgg+3Mr+TjwRMHPrX6/AH8P/MjdTweWkrn/lrxvM5sDXAV0u/sSIAy8n9a7328A55dsC7zH7L/r9wOLs+/5h+xzbljaLigAbwF2uvvT7j4IfAe4qMHXNOLcfZ+7/yL7/StkHhRzyNzrHdnd7gDe25ALHAVmNhe4ALi9YHPL3i+AmU0GzgG+DuDug+5+iNa+7wjQaWYRYCKwlxa7X3f/CfBSyeZK93gR8B13j7v7M8BOMs+5YWnHoDAH2FXw8+7stpZlZguANwCPAjPdfR9kAgdwcgMvbaT9HbAKSBdsa+X7BXgNcAD4l2y32e1m1kWL3re77wH+Bnge2Accdvf7adH7LVHpHkf0mdaOQcECtrXsvFwzmwTcA/yZu7/c6OsZLWZ2IbDf3R9v9LWMsQjwRuAf3f0NwBHGf9dJRdl+9IuAU4DZQJeZXdbYq2q4EX2mtWNQ2A3MK/h5LpnmZ8sxsyiZgPAtd/9udvMLZjYr+/osYH+jrm+ELQdWmNmzZLoEzzWzb9K695uzG9jt7o9mf15LJki06n2/E3jG3Q+4ewL4LvA2Wvd+C1W6xxF9prVjUHgMONXMTjGzDjIDNOsbfE0jzsyMTD/zE+7+pYKX1gNXZr+/Elg31tc2Gtz9Wnef6+4LyPxON7j7ZbTo/ea4+2+BXWb2O9lN5wHbad37fh4408wmZv+On0dmvKxV77dQpXtcD7zfzGJmdgpwKvDzYZ/F3dvuC/h94NfAb4BPNfp6Ruke306mCbkF6Ml+/T4wnczMhaeyf57Y6GsdhXv/XeC+7PftcL/LgE3Z3/W9wLRWvm/gs8AOYCvwr0Cs1e4X+DaZMZMEmZbAh6rdI/Cp7PPsSeDdx3NupbkQEZG8duw+EhGRChQUREQkT0FBRETyFBRERCRPQUFERPIUFEREJE9BQURE8hQUREaQmb3ZzLZkc/x3ZfP+L2n0dYnUS4vXREaYmf0VMAHoJJOX6PMNviSRuikoiIywbE6tx4AB4G3unmrwJYnUTd1HIiPvRGAScAKZFoPIuKGWgsgIM7P1ZNJ3nwLMcvePNfiSROoWafQFiLQSM7sCSLr7v2Xr5P7MzM519w2NvjaReqilICIieRpTEBGRPAUFERHJU1AQEZE8BQUREclTUBARkTwFBRERyVNQEBGRvP8PJziVnOJC7zoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# draw the points again, now with the line\n", + "df.plot(kind='scatter',\n", + " x='x',\n", + " y='y',\n", + " title='y en x in the data set')\n", + "plt.plot(x, yhat, color='red', linewidth=3)" + ] + }, + { + "cell_type": "markdown", + "id": "077d7978", + "metadata": {}, + "source": [ + "### Cost function" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "62838ac9", + "metadata": {}, + "outputs": [], + "source": [ + "# calculate the mean squared error given the input parameters.\n", + "def mean_squared_error(y_true, y_pred):\n", + " s = (y_true - y_pred)**2\n", + " return s.mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "4bea9b4a", + "metadata": {}, + "outputs": [], + "source": [ + "# get the x and y values from the dataset\n", + "X = df[['x']].values\n", + "y_true = df['y'].values" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "392f50b2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 79.77515201, 23.17727887, 25.60926156, 17.85738813,\n", + " 41.84986439, 9.80523488, 58.87465933, 97.61793701,\n", + " 18.39512747, 8.74674765, 2.81141583, 17.09537241,\n", + " 95.14907176, 61.38800663, 40.24701716, 14.82248589,\n", + " 66.95806869, 16.63507984, 90.65513736, 77.22982636,\n", + " 92.11906278, 46.91387709, 89.82634442, 21.71380347,\n", + " 97.41206981, 57.01631363, 78.31056542, 19.1315097 ,\n", + " 93.03483388, 26.59112396, 97.55155344, 31.43524822,\n", + " 35.12724777, 78.61042432, 33.07112825, 51.69967172,\n", + " 53.62235225, 69.46306072, 27.42497237, 36.34644189,\n", + " 95.06140858, 68.16724757, 50.96155532, 78.04237454,\n", + " 5.60766487, 36.11334779, 67.2352155 , 65.01324035,\n", + " 38.14753871, 34.31141446, 95.28503937, 87.84749912,\n", + " 54.08170635, 31.93063515, 59.61247085, -1.04011421,\n", + " 47.49374765, 62.60089773, 70.9146434 , 56.14834113,\n", + " 14.05572877, 68.11367147, 75.59701346, 59.225745 ,\n", + " 85.45504157, 17.76197116, 38.68888682, 50.96343637,\n", + " 51.83503872, 17.0761107 , 46.56141773, 10.34754461,\n", + " 77.91032969, 50.17008622, 13.25690647, 31.32274932,\n", + " 73.9308764 , 74.45114379, 52.01932286, 83.68820499,\n", + " 70.3698748 , 23.44479161, 49.83051801, 49.88226593,\n", + " 41.04525583, 33.37834391, 81.29750133, 105.5918375 ,\n", + " 56.82457013, 48.67252645, 67.02150613, 38.43076389,\n", + " 58.61466887, 89.12377509, 60.9105427 , 13.83959878,\n", + " 16.89085185, 84.06676818, 70.34969772, 33.38474138,\n", + " -1.63296825, 88.54475895, 17.44047622, 75.69298554,\n", + " 41.97607107, 12.59244741, 0.27530726, 98.13258005,\n", + " 87.45721555, -2.34473854, 39.3294153 , 16.68715211,\n", + " 96.58888601, 97.70342201, 67.01715955, 25.63476257,\n", + " 13.41310757, 95.15647284, 9.74416426, -3.46788379,\n", + " 62.82816355, 97.27405461, 95.58017185, 7.46850184,\n", + " 45.44599591, 46.69013968, 74.4993599 , 21.63500655,\n", + " 91.59548851, 26.49487961, 67.38654703, 74.25362837,\n", + " 12.07991648, 21.32273728, 29.31770045, 26.48713683,\n", + " 68.94699774, 59.10598995, 64.37521087, 60.20758349,\n", + " 70.34329706, 97.1082562 , 75.7584178 , 10.80462727,\n", + " 12.11219941, 63.28312382, 98.03017721, 63.19354354,\n", + " 34.8534823 , -2.81991397, 59.8313966 , 29.38505024,\n", + " 97.00148372, 85.18657275, 61.74063192, 18.84798163,\n", + " 78.79008525, 95.12400481, 30.48881287, 10.41468095,\n", + " 38.98317436, 46.11021062, 52.45103628, 21.16523945,\n", + " 52.28620611, 44.18863945, 97.13832018, 67.22008001,\n", + " 18.98322306, 24.3884599 , 79.44769523, 40.03504862,\n", + " 53.32005764, 54.55446979, -2.7611826 , 37.80182795,\n", + " 57.48741435, 36.06292994, 49.83538167, 74.68953276,\n", + " 14.86159401, 101.0697879 , 99.43577876, 91.69240746,\n", + " 34.12473248, 6.07939007, 59.07247174, 56.43046022,\n", + " 30.49412933, 48.35172635, 89.73153611, 72.86282528,\n", + " 80.97144285, 91.36566374, 60.07137496, 99.87382707,\n", + " 8.65571417, 69.39858505, 19.38780134, 53.11628433,\n", + " 78.39683006, 25.75612514, 75.07484683, 92.88772282,\n", + " 69.45498498, 13.12109842, 48.09843134, 79.3142548 ,\n", + " 68.48820749, 73.2300846 , 24.68362712, 41.90368917,\n", + " 62.22635684, 45.96396877, 23.52647153, 51.80035866,\n", + " 51.10774273, 95.79747345, 9.24113898, 7.64652976,\n", + " 9.28169975, 103.5266162 , 47.41006725, 42.03835773,\n", + " 96.11982476, 38.05766408, 105.4503788 , 88.80306911,\n", + " 15.49301141, 12.42624606, 40.00709598, 5.6340309 ,\n", + " 87.36938931, 89.73951993, 66.61499643, 72.9138853 ,\n", + " 57.19103506, 11.21710477, 0.67607675, 28.15668543,\n", + " 95.3958003 , 52.05490703, 59.70864577, 36.79224762,\n", + " 37.08457698, 24.18437976, 67.28725332, 82.870594 ,\n", + " 89.899991 , 36.94173178, 19.87562242, 90.71481654,\n", + " 61.09367762, 60.11134958, 64.83296316, 81.40381769,\n", + " 92.40217686, 2.57662538, 63.80768172, 38.67780759,\n", + " 16.82839701, 99.78687252, 44.68913433, 71.00377824,\n", + " 51.57326718, 19.87846479, 79.50341495, 34.58876491,\n", + " 55.7383467 , 68.19721905, 55.81628509, 9.3914168 ,\n", + " 56.01448111, 77.9969477 , 55.37049953, 11.89457829,\n", + " 94.79081712, 25.69041546, 53.52042319, 18.31396758,\n", + " 21.42637785, 30.41303282, 67.68142149, 17.0854783 ,\n", + " 60.91792707, 14.99514319, 16.74923937, 41.46923883,\n", + " 42.84526108, 59.12912974, 91.30863673, 8.67333636,\n", + " 39.31485292, 5.3136862 , 5.40522052, 68.5458879 ,\n", + " 47.33487629, 54.09063686, 63.29717058, 52.45946688])" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_true" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "0806d238", + "metadata": {}, + "outputs": [], + "source": [ + "# convert the points of the y values to line points\n", + "y_pred = line(X)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "aa0ef0f8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0]], dtype=int64)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_pred" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "55ff0a77", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3464.291087139079" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# calculate the mean square error for the points\n", + "mean_squared_error(y_true, y_pred.ravel())" + ] + }, + { + "cell_type": "markdown", + "id": "a60e5104", + "metadata": {}, + "source": [ + "### Linear regression with keras" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "ccde02ca", + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.optimizers import Adam, SGD" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "3c2b554a", + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "4da8d3b5", + "metadata": {}, + "outputs": [], + "source": [ + "# make a model with 1 layer, 1 output node and 1 input node\n", + "model.add(Dense(1, input_shape=(1,)))" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "afbf17ff", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential\"\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "dense (Dense) (None, 1) 2 \n", + "=================================================================\n", + "Total params: 2\n", + "Trainable params: 2\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "35dda627", + "metadata": {}, + "outputs": [], + "source": [ + "# get the model ready for training\n", + "model.compile(Adam(learning_rate=0.8), 'mean_squared_error')" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "fe11b9d0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/40\n", + "10/10 [==============================] - 0s 889us/step - loss: 276.5771\n", + "Epoch 2/40\n", + "10/10 [==============================] - 0s 889us/step - loss: 70.1189\n", + "Epoch 3/40\n", + "10/10 [==============================] - 0s 893us/step - loss: 38.0515\n", + "Epoch 4/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 27.3967\n", + "Epoch 5/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 25.7747\n", + "Epoch 6/40\n", + "10/10 [==============================] - 0s 777us/step - loss: 20.8342\n", + "Epoch 7/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 15.4722\n", + "Epoch 8/40\n", + "10/10 [==============================] - 0s 997us/step - loss: 9.9356\n", + "Epoch 9/40\n", + "10/10 [==============================] - 0s 778us/step - loss: 9.9688\n", + "Epoch 10/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 10.1344\n", + "Epoch 11/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 10.7054\n", + "Epoch 12/40\n", + "10/10 [==============================] - 0s 889us/step - loss: 9.7593\n", + "Epoch 13/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 9.4868\n", + "Epoch 14/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 9.8315\n", + "Epoch 15/40\n", + "10/10 [==============================] - 0s 889us/step - loss: 10.3213\n", + "Epoch 16/40\n", + "10/10 [==============================] - 0s 999us/step - loss: 17.9203\n", + "Epoch 17/40\n", + "10/10 [==============================] - 0s 889us/step - loss: 14.1653\n", + "Epoch 18/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 18.5441\n", + "Epoch 19/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 15.2991\n", + "Epoch 20/40\n", + "10/10 [==============================] - 0s 778us/step - loss: 10.4892\n", + "Epoch 21/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 9.3215\n", + "Epoch 22/40\n", + "10/10 [==============================] - ETA: 0s - loss: 9.491 - 0s 1ms/step - loss: 10.7091\n", + "Epoch 23/40\n", + "10/10 [==============================] - 0s 885us/step - loss: 10.4797\n", + "Epoch 24/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 11.5123\n", + "Epoch 25/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 13.3325\n", + "Epoch 26/40\n", + "10/10 [==============================] - 0s 775us/step - loss: 13.3366\n", + "Epoch 27/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 16.0355\n", + "Epoch 28/40\n", + "10/10 [==============================] - ETA: 0s - loss: 24.20 - 0s 1ms/step - loss: 14.7609\n", + "Epoch 29/40\n", + "10/10 [==============================] - 0s 889us/step - loss: 10.3856\n", + "Epoch 30/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 10.1707\n", + "Epoch 31/40\n", + "10/10 [==============================] - 0s 778us/step - loss: 9.4444\n", + "Epoch 32/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 10.1405\n", + "Epoch 33/40\n", + "10/10 [==============================] - 0s 890us/step - loss: 13.1112\n", + "Epoch 34/40\n", + "10/10 [==============================] - 0s 778us/step - loss: 10.2187\n", + "Epoch 35/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 10.7566\n", + "Epoch 36/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 11.3941\n", + "Epoch 37/40\n", + "10/10 [==============================] - 0s 889us/step - loss: 15.5596\n", + "Epoch 38/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 15.3198\n", + "Epoch 39/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 13.1469\n", + "Epoch 40/40\n", + "10/10 [==============================] - 0s 888us/step - loss: 9.4861\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# start training the model for 40 epochs\n", + "model.fit(X, y_true, epochs=40)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "a22c9fb1", + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "9787ea0d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA/mklEQVR4nO3dd3wUZf7A8c93d5NNSOgoUgUFxMAJKlYUuyLVAoqKvfyseBbA3hugnnrenQVR8LCBniB2saBYQQMCgqIgBBAw0gLJZsvz+2NnJ7ub2WQDSTbZfN+vF7DzzOzMM5sw3326GGNQSimlAFypzoBSSqm6Q4OCUkopmwYFpZRSNg0KSimlbBoUlFJK2TQoKKWUsmlQUDYRuUtE/lsN5zlSRJZVR56s870gIvdV1/nizl0t91wfiMg5IvJBBfuPFpGC2sxTRUTkUxG5xHpdYd4rOc+7InJ+9eYufWlQUNXOGPO5MWafnXmviFwgIl9Ud56qQ00Gp9q4jjFmqjHmxKjrGBHpUt3XqQnxeU/EKcgbY042xkyuudylFw0KSqkaJyKeVOdBJUeDQh0jInuLyF8icoC13VZE/hSRoxMcf5OI/Coi20RkiYicGrXvAhH5QkQeFpFNIrJCRE6O2t9ZRD6z3vsh0KqCfC0SkcFR2xlWvno7HBtTDSEiK0XkRhFZKCJbRORVEclyeN++wFPAYSJSJCKbo3Y3F5G3rbx+IyJ7R72vu4h8aH1uy0TkjAruo8J7FpFpIvKHlc85ItLDSr8MOAcYY+XtLSu9os+/i3WtLdZn9WpleU50nYpY1zjden2EVQIYYG0fLyL51mu7FCYic6y3L7Cuc2bU+W4QkQ0isk5ELqzgup+KyIMi8q11jzNEpIW1r5OVj4tFZBXwsZV+kYj8ZP0+vi8ie0ad7wQRWWqd60lAovbFlCBFpEfU57deRG4Rkf7ALcCZ1j0tiMpnpBrKJSK3icjv1j1OEZGmcXk+X0RWWT+zWyv7/NOOMUb/1LE/wKXAT0Aj4H3g4QqOHQ60JRzgzwS2A22sfRcAfut8buAKYC0g1v6vgEcBL9AP2Ab8N8F1xgCvRm0PBX5McOzRQEHU9krgWyufLax7uzzBey8AvohLewH4CzgY8ABTgVesfTnAauBCa98BwJ9AjwTnr/CegYuAxtb+x4D8uHzcV4XP/2XgVmtfFnBEMnl2uk4lvy/3AP+0Xt8C/AqMi9r3uNNnCxigS9zPLWC9JwMYAOwAmie47qfAGqCndU+vRz5LoJN1/inWvmzgFGA5sK9137cBX1rHtwK2AsOsa19n5eWS+LxbP591wA3W59oYOMTadxdxv8NWPiPnucjKw15ALvAG8GJcnp+18tsL8AH7pvqZUJt/Up4B/ZPgBwMzgR+BhYC3Cu/LB4Zary8Alkfta2T90u8BdLT+0+VE7X8p/j9U1L62hB+gTazt6cCYBMceTfmgMDJqezzwVIL3xjy4rLQXgIlR2wOApdbrM4HP445/GrjT4dxVvedm1ufVNCofFT6s4z7/KcAzQPu4YyrMczLXiXvvccBC6/V7wCXA19b2Z8BpTp8tzkGhGPBEpW0ADk1w3U+Bh6K284BSwl9AOlnn3ytq/7vAxVHbLsJBZ0/gvEierX0CFOAcFM4CfkiQp7vif57EBoXZwJVR+/Yh/MXJE5Xn9lH7vwVGJPuzSIc/Wn1Udz1L+BvYP40xvkQHich5IpIvIput6paexFaJ/BF5YYzZYb3MJfyQ32SM2R517O+JrmOMWQvMBU4XkWbAyYS/sSfrj6jXO6w8VEWi9+8JHBK5f+szOIdw4ItX4T2LiFtEHrKqg7YSDmZQcbVaRZ//GMIPt29FZLGIXLQTeU7GV0A3EWkN9CYcjDqISCvCpas5Fbw3XqExJhC1XdnPanXU698Jf8tvlWD/nsDjUff8F+HPpx3hn419rAk/kaPfG60D4dLQzmhL7O/574QDQuuotF39Xa3XtPGnDhKRXMJVF88Bd4nI68aYvxyO25Nw8DgO+MoYE7TqjyX+WAfrCNfT50Q9JDsS/qaUyGTC30I91vXWJHlLVVHVaXtXA58ZY05I4tjK7vlswtVixxMOCE2BTZR9njF5q+zzN8b8QbjqDhE5AvjIqsuvLM9V+gyMMTtEZD5wLbDIGFMqIl8C1wO/GmP+rMr5qqhD1OuOhL91/xmVHn0vq4H7jTHlvkyISNfoc4mIxJ072mrCpQUnlX12awkHp+g8B4D1QPtK3tsgaEmhbnocmG+MuQR4m3Djq5Mcwv8JNgJYjYI9k7mAMeZ3YB5wt4hkWg+twZW87U3C9d/XEv42WhPWA+1FJDPJ42cR/pZ8roQbvzNE5CAJN1rHSOKeGxOuQy4kXNX2gEPe9orarvDzF5HhIhJ50Gyyjg0mkef460S6qb5QwefwGXC19S+Eq0yit52Uu85OGCkieSLSiHBbxHRjTDDBsU8BN0tZ431TERlu7Xsb6CEip0m4p9IoEpecZgF7iMjfRcQrIo1F5JCoe+okIomebS8D10m4w0Eu4Z/xq3GlowZNg0IdIyJDgf7A5VbS9cABInJO/LHGmCXAI4SrD9YDfyNcxZOss4FDCBfj76SSB70xpphwY2Jnwg10NeFjYDHwh4hU+g3XGLMNOBEYQfhb4B/AOMINxU4quucphKsT1gBLgK/j3vsckGdVf7yZxOd/EPCNiBQRbiO61hizIok8x1zHSutAxT/bzwgHtTkJtp3cBUy2rpOwx1YlXiTcBvIH4UbfUYkONMb8j/B9vmJVzy0iXA2JVZoZDjxEOCh3JcH9Wp/fCYQD+h/AL8Ax1u5p1r+FIvK9w9snWXmeA6wASoBrkrrTBiLSC0WppIjIHUA3Y8zIVOelobBKTQuA/Ywx/lTnJ0JEPiXcqDsx1XlR1UfbFFTSJNwH/WLg3FTnpSExxpQS7sapVI3T6iOVFBG5lHAD37vGmKr0ZlFK1SNafaSUUsqmJQWllFK2et2m0KpVK9OpU6dUZ0MppeqV+fPn/2mM2c1pX70OCp06dWLevHmpzoZSStUrIpJw9gKtPlJKKWXToKCUUsqmQUEppZRNg4JSSimbBgWllFI2DQpKKVXPFBb5WLB6M4VFCZda2Wn1ukuqUko1NDPy1zBm+gLc4iJoQkwY1oshvdtV2/m1pKCUUvVEYZGPG17Lxxcw7PAH8QUM17+WX60lBg0KSilVTyxeu5VAKDYtEAqnVxcNCkopVW8kmsC0+iY21aCglFL1RI+2TXG7Ypdgd7uEHm2bVts1NCgopVQ9InGlgvjtXaVBQSml6omCTcVkZ8R2Gs3O8FCwqbjarqFBQSml6pCKxiC0b5bFfW+MY+W4QVz95SsA+EMh2jfPrrbr6zgFpZSqI2bkr2Hs6wvJcLnwh0KMP32/sjEIH39My+OOY6h17E+depKV4WL86fvRMtdbbXmosaAgIpOAQcAGY0xPK60F8CrQCVgJnGGM2WTtu5nwovBBYJQx5v2ayptSStU1hUU+xr6+kBJ/iBLC/U7HvL6Qvntk0bLLnrB9e/jADh0o/P5HRhUbxjfPrtaAADVbffQC0D8u7SZgtjGmKzDb2kZE8oARQA/rPf8WEXcN5k0ppWpFslNSFGwqJsMV+0i+ds5UWrZpZQeEX978gMIlv0BWVo3lt8ZKCsaYOSLSKS55KHC09Xoy8Ckw1kp/xRjjA1aIyHLgYOCrmsqfUkrVtAqrg+K0b56NPxQuIeyzcSXvT7ra3vfbiAsZ0GU4Gd+HKP7mI0SELI+70nPujNpuU2htjFkHYIxZJyK7W+ntgK+jjiuw0soRkcuAywA6duxYg1lVSqmdl7A6qEsrxyqflrleJgzZl66DjqX7hhV2+l+/r2XAs/kx5wGDPxio9Jw7o670PhKHNMfOt8aYZ4wxfYwxfXbbzXHdaaWUqnGVVQs5VQdluFyJu49OnMjggzvbAWHrK9PBGFZLdrnzJH3OnVDbJYX1ItLGKiW0ATZY6QVAh6jj2gNrazlvSimVlGSqhaKrgyKiu48WFvko2FRMx+1/0nzfrvYx20/oz7v3P03vjs1pYp2nJBBMmJfq7pJa2yWFmcD51uvzgRlR6SNExCsinYGuwLe1nDellKpUdLXQNl+AEn+IMa8vLFdiaJnrZfzp+5GV4aKx10NWhovbB+VRsKmYqV//zuEPfsTGEwbEBIQjr3yeHgdczY2v/8jx/5jDHTN+BCAYKl9xkuN117suqS8TblRuJSIFwJ3AQ8BrInIxsAoYDmCMWSwirwFLgABwlTEmcWhUSqkUiVQLldXvl1XhxD+ch/RuR98urSjYVMyiNVu4560luAQOWfoNy6bfbR9364lXMnX/AeWuNeWrVeTt0QSHmMDoE7sxuFe7au+SWpO9j85KsOu4BMffD9xfU/lRSqnqUFm1ULzIQ3vYU1+SvX0bCx8fYe/7pWUHBlz4BH53RsLrffrzBsf0vXZrXO0BAXREs1JKVUmkWmh01Opn40/fD4AFqzfbwaFgU7H9+q0Faxj94UQu++5/9nkGXvA4i1vvXen1Pln6Z7k0jwt6tG1SHbdT/tw1clallEpj4docCfebNMK83/9ijNXwXOwP2OMISgJBeq5Zxv8mX2+/99+HDmP8URckfS1fsKxUkuVxYTBMGNarRkoJoEFBKaWqJNLQ7ItaAm3KV6sAYsYRiK+Y2RMvp+OW9QD43B4OvOYliryNKr2Gx0W5FdZyvG7uHtyDY7rvXmMBAerOOAWllKoXnMYfxDt//lv8/MipdkA494x72OfGN5MKCADXHd8Nryd2+FYwZGo8IICWFJRSqkqcGpojOmz+g8+fvsTenrlvP0YNHg3iND4XvB5XTIkj4m/tmzJhWC+7SioyFqKmAwJoUFBKqaRFBpwN2a8Nr81fY6f326s5//fQVfRdkW+nHXvdVH7PakZ0f1KXQE6mB38oxO0D8+jQohEXT/4Of7DsmAx3eHnNlrleuztr+xqYDTURDQpKKZWEGflrGDN9IS4Riv1lw6j6L5vLU+MetLfXP/EUngsv4K61W7h0yjyi2onJcAv/Omd/+6EP8MjwXoyevhC3SwiGDBOGlZUIWuZ6ay0YRGhQUEqpShQW+bhx2oKYb/TNd2zhh3+eY28vaNuNkRc8Sul64Y5Ff+D1uPC4XPgoCyCZbjdNszNjHvTRA9xqs0SQiAYFpZSKE6kmijykF6/dEhMQ7n//Sc7Jf8/ePv7if7O8VcfwEmEYbn1zETmZbraXxk7M4DT3UeQaqQ4GERoUlFIqitNkdy6rofjAgiW8PnWMfexjR53Lv/ueRWmwfGNxdEDIyXQTNMZuLK7KOgu1TYxxnKG6XujTp4+ZN29eqrOhlEoThUU++o77mBJ/1ICxDBePDuzGwccdSKsdWwD4K7sJh18xiXOP7c5erXK5+X+LEp4zfnxBomvMHXtsrZUWRGS+MaaP0z4tKSillMVpsrvLv5zGgPuet7fPOPshvu3QE4CXv10dU63kpDQQihlfUJUJ9VJBg4JSKi3F19knI3oMwt6Fq5k98Qp732u9TmRM/1Exxxf5Kp/MOb42pqoT6tU2DQpKqbSzs3X2LXO9nNm7DUNHjeCAtcvs9Jkf/MDdn/8BpVWf0T87wxNTCohMqJeKgWnJ0KCglEorVV0bOdq2ic9z96UX2dtXDr2Jd7ofQdZnaykJ7Fz7q1MpoK51Q42mQUEplVZ2qs5+3Tpo25bG1ubcPfdj5Jn3YSQ8x5FTQHC7hEYZbkqDIUoDoXKLyud43QRDJmEpoC51Q42mQUEplVaqVGdvDIwcCS+9ZCedeOVEfm68R6XX8biwRyfPXf5nzPoKdwzqQc92TetcKSAZGhSUUmkl6Tr72bPh+OPLth99FK67jqvz1zDm9YUAMd1G40WPTq7L1UFVpUFBKZV2hvRuR16bJuSv3kzvDs3o0rqxva9w3Z8036sjrpLicMKee8LSpZCVZb+3b5dWLF67tdxkddHiSx91tTqoqnQ9BaVU2pmRv4ZBT37B3W8tYdCTXzAzPzyj6bJLr6Vl293sgDDnxbdg5Uo7IES0zPXSr9tuPDK8F16Pi0aZbjLcgscFjb0esjJcdarHUHXSkoJSKq049T6a+O8ZDHn2Kvaxjpl04BDuOf4yspa5mFvkK/dwj4xx6NulFV/edGzMesvpUEVUEQ0KSqm0Et37yBMMMOuFa+n+5+/2/v2ufYWtWbmAc6+kysY4pGswiNCgoJRKK5HeRyPy3+Oh95+009dOeZWjlubGtBGUBIIxs5YuXruFMdMX4AuYKo9xSBcaFJRSaaXlX+tZet8Ae3t2t0PZ/so0+nbdDfPARzHHRqagiJQOXCL44sYk1KV5iWqDBgWlVHowBk45BWbOtJOWfLWQ3j270TLXy4LVm8nO8LDNF7D3Z2d4WLx2q90G4aQuzUtUG7T3kVKqXigs8rFg9WYKi3zld779NrhcZQHhqaco3FaCv10H+5BEg9rAkOEq/yhslOFO615GiWhJQSlVZ0V6AS1as4V7315SvvF30yZo0aLsDT16wA8/MGPxBsaO+7jc8U6D2nq0bVouWHg9Lp4690B6tG3SoAICpGiRHRG5DrgEMMCPwIVAI+BVoBOwEjjDGLOpovPoIjtKpa9IPb9bpNyyllkZLn7Y9C7Z//pnWWJ+PvTqVekiNk5Tas+0RjHXxZXQakKdWmRHRNoBo4A8Y0yxiLwGjADygNnGmIdE5CbgJmBsbedPKZV60WMN4u237mdmTrm+LOGWW+D+++3NyibEcxp5nE7TVOyqVFUfeYBsEfETLiGsBW4Gjrb2TwY+RYOCUg1OYZGPT5ZuKLc4TWbAz+yJl9Nhy3oATFYWsn49hS4vBas32w/znV3EJl2mqdhVtR4UjDFrRORhYBVQDHxgjPlARFobY9ZZx6wTkd1rO29KqdSKrjKK7hp64bwZ3Dn7WXv7y/+8zOGXj2BG/hrGTJ+L2yUEQ4Y7BufRs21Tbh+YV64NQh/4yUlF9VFzYCjQGdgMTBORkVV4/2XAZQAdO3asiSwqpapRsstiOlUZxVcVLTpqIFmvvMTuIrwwdwX3vf0TgVBZ8Lj1f4vIyXQTNIbbB4UDREOvDqqqVFQfHQ+sMMZsBBCRN4DDgfUi0sYqJbQBNji92RjzDPAMhBuaaynPSqmdUJVlMQs2FduvXaEgv00YGrP/oKumUNS8FaVPfEEwlPi/fqRR+t5ZS+zGZZW8VIxTWAUcKiKNRESA44CfgJnA+dYx5wMzUpA3pVQVVDR2IPqb/zZfgBJ/iDGvL3QeZwDkZLop8YcYNfflmIDw9MGn0WnsLDbmtqDYH6owIESLNC6rqklFm8I3IjId+B4IAD8Q/uafC7wmIhcTDhzDaztvSqnkVVYKqOqymKW/rWDluEExaV1ufBNXZgYkWNOgIg1tJHJ1SUnvI2PMncCdcck+wqUGpVQd5zQ9dfzEcU69gEqDIbYU++3Sgt3W0GVP8tavt48bfvZDfNehJ16P8Mjw3twwLb/cnETRvB4hEDS4XEKWx62Ny7tARzQrpaosmVJA/LKYJYEgwVCIq6Z+T0kgiDGGYUvn8ND/xtvnWN/3GPodfSNuceE1ISYM68WgXm0JGWOfZ4c/GFOFdEaf9pxzyJ4NZr2DmqZBQSlVZcmOBYgsi/nF8o088M5P+EOwzRegsW87Pz52ZsyxfxWs5+uNfpi+EAQwEnOe6MFlm7aXOi61Cem/3kFN06CglKqySClg9PQFuMVF0DhX10RPSR2ZqeKF1+7k6BXz7WNGDb6R9/52DLesLOLBd5fGVBMlWsugS+vG5YKBqh4aFJRSOyX86JZy3+oj4scdHLx6Ea+9dJO9f31uCw65akp4I2h46N1lCdcy+GL5n0l1bU12TIRKTIOCUqrKIg98X6CsCin+W32k3SEQLGX5w6fEvP/wKyaxtknspAUlgfLzHPlDIXIy3ZU2akPVxkSoxHQ9BaVUlUUe+NHixwW0b57NdR88ExMQHus3kn/N/pn1TSuexSZ6LYPtpcFKr1XVMREqMS0pKKWqrNKG5p9/puU++3BR1P5uY2dg3B4yP/210mEH44ftx2F7t7Snuq6sUbuqYyJUYlpSUEpVWaShOSvDRWOvp2yFspxMyMiAffaxj9382VzmLNuAeDLwB025tRHiZWW46NCiUbmureWuFfWw39mZUVV5WlJQSu2USHdTu2vomy/B/peXHXD22TB1Ks2Apqs3k+l2xbRBVMSpa2tF6x3Ej4nQwWs7T4OCUqpK4pfI3K1kG58/HDvmoPCPQgpKXbQv8tlrHBT7A+XOleN1UxoIYYwhO8NT4cO8svUOdKGc6qFBQSmVtEgPH49LKPIFeePFGzhg7TJ7/9aXp/FJ98MY++Q3Md/Y+3ZphQn3XbWPdYvwn3PC6yBD9YxE1oVydp0GBaVUOU79/aN7+PT7bT5TppVNX7asVUeGXfkM/zrgAMa+OC+m++jo6QsYdWzXcrObBo0BTEzbgUo9DQpKKaB8tVDkm/7tA/Po2a4pW4r95IQCLB03JOZ9B131Ihtzm5MRCAKmXC8gX8DwxOxfEly1/KA3lVoaFJRSMctgRnoHRR7st765iFyvm9tnPs78/Pfs99xz7KVMOqhs3QNjDG2bOrcd+Bz6oHpc2FVHqu7QoKBUA7Z8/Ta+WP4nD7zzE6UJBg9037CC956/JiYt77Z32OGP7UmUneFh7ZaScm0H8bxuF4hhwrBeWmVUB2lQUKqBuuPNH5ny9aqE+8WEWDE+tqro1Muf4uLLBzGmyGcFkrJ9pcEgPxZsrnRltLuG5HFijz00INRRGhSUaoCWr99WYUC45Ns3uO2TSfb2i/sP4PYTr8QlcMO0hWS6XRgEjyvclbTYHyBk4MlPlld67Qy3SwNCHaZBQakGKH/1Zsf03bcV8u2/z49J63bD/yj1ZAAQMuALhOxBaF6PiwdP+xs3TFuALxDCn8Symb07NNulvKuapUFBqQbI6cE8+9nL2fuvAnt75Bn38kXn/Ss8T6bbRYk/6Dha2et24QvGpp13WEddB6GO06CgVAPUpXVjzjusI1O+WsVJy77k6TcfsPd91y6P4SPHV/DuMv5QiN4dmpWbd8jrcfHseX3o0bZJhaukqbpHg4JSDdQ9x3XmnlP2i0nrPeolNmfHdhMVINcbnoLioD2b8/nyQnvfGX3a06V1Y8d5h/p12w0ID0rTYFB/aFBQqiE64wyYNs3eHNv/Gl7tdZK97XEJtw3clyO6tALCbRCdWjZi5KRvY07z2rwCrj2um847lEY0KCiVRhItRxlJ7/TrIpoec6SdviPDS95100FiRxZnZ7jZv2NzFq/baq9m5guGEOO8XGZkziENBvWfBgWl0kSi5Shn5K/h5mk/sOSBwTHHH3XZM/zevK3juRItg+l0nK5ZkF40KChVzxUW+Vi8dgtjpi/AFzAx6xjntWlCwagxLPn8Jfv4/xwyjHFHX+B4rhyvm2DIxCyDGR0QsjJchEIGr8etaxakKQ0KStVjkdKBSwRfILZqZ8+tG+iyRxO6RKXtPXoGQZc74fnGnVbxMpgA74w6ku2lQW07SFMaFJSqwxK1EUT2Rap34n33z5HstmOzvX36OeOZ3z6v0uuV+IPllsGM71WkPYnSmwYFpeqoRG0EEQWbijFx8wydsvgTHpv1iL1d2n8AeftfSZKrYJYb1Ka9ihqelAQFEWkGTAR6Ep5O8SJgGfAq0AlYCZxhjNmUivwpVRuiSwEQu/JYdCkguo2gb5dW9oM5J9NtT0ndpKSIhY+PiDn/ATdOY9QpB+J9fxmB6JnrEkg02lh7FTUsqSopPA68Z4wZJiKZQCPgFmC2MeYhEbkJuAkYm6L8KVWjoksBxf4AIkJWVOPtni1zyjXyRnf/BNheGiQrw8Uz/72Vfit/sI+7ZvBo3so7CoD73/mpwvmIvB4XN5/cnSO6tNJqIQWkICiISBOgH3ABgDGmFCgVkaHA0dZhk4FP0aCg0pBTKQAM/mB4cZoxry9k1tVHlGvkje/+2Wnxdyy9b4C9vbZxKw6/8oXY90QFhOwMF6WBEC6XkOF2EQwZJgyLrZJSKhUlhb2AjcDzItILmA9cC7Q2xqwDMMasE5Hdnd4sIpcBlwF07NixdnKsVDUq2FRcrhQQb3tp0LGRt2WuF/x+yMykadTxh18xibVNHP/L2ILW5HTGGGsNnMpnNFUNTyqCggc4ALjGGPONiDxOuKooKcaYZ4BnAPr06aO/1aread8827GrZ0SJPzxwzLGR9/rr4R//sI+dcOS5/OvwM5O6bmlZoYRAKNzGEN9OoVQqgkIBUGCM+cbank44KKwXkTZWKaENsCEFeVOqxkV39XQh7PDHNgJ73WXrJEe4fv4ZDoydvK77LbMoqbz9uELx7RRKuWr7gsaYP4DVIrKPlXQcsASYCURW9zgfmFHbeVOqJhQW+ViwejOFRT47bUjvdswdeyxPnXsgXk/sf0NxCe2bZzMjfw19H5pNzz1b0jwqIJxy4WN0GuscENwCdw3el6G92iSVN52mQsVLVe+ja4CpVs+j34ALCQeo10TkYmAVMDxFeVOq2lQ01qBlrpd+3XZjwrDYtoPbB+axeO0Wfrj5AZa+9++yc/U8hoLHnyL/g18SXu+cQztyQd+9uKAvXHPsNvJXb+av7aU8+tHPCXs6aSlBRRNj6m+1fJ8+fcy8efNSnQ2lHBUW+eg77uOYEcdZGS7mjj3WcXRywaZiFq3Zwj9f/YqvHzsrZn/366dTkpGF1y322AQnlZ3faUyEanhEZL4xpo/TPh3RrFQNcepllKgO394+5BC+XveznX7JabfzUddD7O2KAkJl549O02CgEtGgoFQNcepllLAO/913aTlgAC2tzZ9268TJFz1Z5WtqG4HaVRoUlKohThPK3T4oj4JNxfYxa9ZtYr9usY3CB131Ihtzm1fpWo0y3IQw2kagdpkGBaVqUPRYg0VrtnDvrCXhKqVAkPvffpwzFnxgH7v81vs5IdCrwiFlTm0KXo+Lp849kB5tm2hAULtMg4JSNSzyoD7zma8o8YfovGE57z4/KuaYTmPeIsflxlQwyhlARBBMTOA486D29Ou2W3VnWzVQGhSUSkIyvXcqWvugYFMxmQJLxw2KST/+4n+zvFV4upbtpZXPb13iMAf2a/MKuPa4blpKUNVCg4JSlXCa0TR+QrnK1j7oMvk/LLz3Fnt7yv4DuePEK5K6frbHRXEFCyLoqGRVnTQoKFWBxDOahocT3zBtAXltmpQ7ZvT0hfy1vZSjckrpvH93cqLO2e2G/1HqyQAg2yMUBxK3IhzauTlXHtOVC5//lkS9UbXHkapOtT7NhVL1SWSsQSL+oOGL5RvLHeMLhDh6UF8679/dTrtk5IN0GjvLDgg5XjeX9tsbr1sSnv/rFZtolOHC5Sp/TI7XTVaGS3scqWpVaUlBRK4GpuoqaKohqmxGU4DtviClwbJj+i+by1NvPmhvf92hJ57PPuWLSd9C1OjmQNDQrXVjEKGiaaxf/HoVXo/LLp1AeNW1uwf34Jjuu2tAUNUqmeqjPYDvROR7YBLwvqnPc2MoVQUtc72c0ac9U75alfCY/3z2K8FQiKbBEhY8PCxmX69RL7MluzEPF+6IGbNQEggSDIW4+Y0fCYZCZLgFl4DPoSrpvUVr8cVNfhc0RgOCqhGVVh8ZY24DugLPEV4t7RcReUBE9q7hvClV45xmMI3f/9q8gnLp0VU+Rb4gj7/xYExAGH3yKDqNncWW7PASl707NLNnRv3XOfvjEgiEYJsvQCAELoFHhvfCLeWriaIDglYZqZqWVEOzMcaIyB/AH0AAaA5MF5EPjTFjajKDSu2sirqIQsUzmEY4zV+U43Vzcd/OTJq7gi4rlvDmizfY+4KNG3P3lC+Y9vVqO+28wzra6x+3zPXSNDuTTLcbXyBgH5PpdtOhRQ7/OLMXo6cvxBhDaVzLslYZqdqQTJvCKMLrG/wJTARGG2P8IuICfgE0KKg6p7IHvlOvIqdVyNo3z6bYH4g5t88fZEjP1lx/UveY9BOufI5Xxp3DPblezjusM/mrN9O7QzM7IESfM9GcSL06NKNvl1YsXruFS6fMi6lO0iojVRuS6X3UCjjNGHOSMWaaMcYPYIwJAYMqfqtStauwyMecnzcyZnr4gb/NF6DEH2LM6wtjqoicehVF+vvHk7gqnevm/Jcu7crmJnr28DPY59a3uebSk+wHdpfWjRnWp0O5gABlcyJlZbho7PWUqw4Kr7OwOxOG9Up4jFI1pdKSgjHmjgr2/VS92VFq50VKBy4EX9xgr/gBXsnOYFqwqdj+5tRy+2bmPzkyZn/ezW+BxwOhxH0vnKqxHNdfjpPMMUpVNx28ptJCdHWQk/gHvuMMpgPLZjCNPIBzMt34gobx7zzGGT9+ZL//rPMn8NUe+0IIsNZTdqp+qmzltcoe9Mkco1R10qCg0oJTgzBAo0w3IWNipqx2+ra+aM0W7n17SbmH9/YPZ7Ny3Kn2+R44+kKeOeR0xzzEl0aSbbdQqi7RoKDSglN1kNcjPDXyAFb/VWxPWe30bR3KZjCNPLzvfPlbBh11Ab22bgXgj9wWHHXZs/gyEj/M40sjVVl5Tam6Qqe5UGnBqfF2wrBe9GjblHvfXlKlRudr5r7MD+NPw2UFhNPOmcChV01JGBASjR2o0sprStURWlJQacOpYXbB6s0VflsvLPKxpdhPaTBE142/8+Gkq+zjph44kAcHXk1R/HBiwm0NQWO4fWAePds1dWwIdmq30B5Eqq7ToKDSSnzDbEXf1iONwFkYXn9uFD3/+NU+5qC/v8xGb+OY4cTZGS5CBu4YnEfPts6BIJ72IFL1jQYFldYSfVsHGPv6QgZ9/wEPv/OYffziJ5+n8IQBlEz9AXxlg9ZyvDs/mlh7EKn6RIOCSnvx39YBvpqzkKX3DbCP+bTzgVw+4i5eHXIEPRxKF8GQjiZWDYMGBVVvVDaXUUUi39Zn/FBA5tkjGLR0rr3viP+bSEGzPSAUbiuIlC5GT1+I2yUEQ0bbAlSDoUFB1QvJTF4XLz6IbH1zFkNPHWzvv/2Ey3nxgLKZWrIyXGy3BqKZyN+m4rUOlEo3GhRUnbczg8Cig4h3xza+/ccImliL1Pzaoh39L3oSvzuj3PvaN8+2rxeejC7xaGWl0lHKximIiFtEfhCRWdZ2CxH5UER+sf5tXtk5VMPgNHmdC5j85UqWr99W7vjoIHLV+88y7+HhuKyAMOj8xzju0qdjAoLX44oZZ1CVyfKUSjepHLx2LRA9od5NwGxjTFdgtrWtlOP01Tv8IZ74eDnH/2MOd8z4MWZfwaZi9lv/KyvHDeLyb14HYOJhw7jtjYUs2qNLufM/MrwXc8cea1dH6aAz1ZClJCiISHtgIOH1GSKGApOt15OBU2o5W6oOi5++OtqUr1aVlRhKS+l5zEG89uw1AATExd/+/ir39buA/35TfknN8w7ryKBebWOqhSqb2lqpdJaqNoXHCC/OEz3ZfGtjzDoAY8w6Ednd6Y0ichlwGUDHjh1rOJuqLijYVEyWx40/GEh4zMwFa7ls8fvkXn8tbivtkhH38MXeB1LisO5xpktAoM+eLRzPp4POVENV6yUFERkEbDDGzN+Z9xtjnjHG9DHG9Nltt92qOXeqNlW2PnKEU/VRzP4t67n+pO7kXn8tAJsHDGXqlyv4fO8DCTrPpE1pKLzcZfw8SNFa5nrp1aGZBgTVoKSipNAXGCIiA4AsoImI/BdYLyJtrFJCG2BDCvKmaklVu5iGq49iv/GLCfH8tLs5ekXZ94tDr3iBba1as33G4qTyET8PkpYMVENX60HBGHMzcDOAiBwN3GiMGSkiEwivBf2Q9e+M2s6bqh1V7WLqVH00+Ldv+Oe0e+3t0Sdfy7T9TghvlJafwC6R+HmQqjIOQql0VJfGKTwEvCYiFwOrgOEpzo+qIU7rDLhdwidLNzhOJRHdG6hZ8Vbynzjb3reo9d4MPe9Rgi43VZHjddsjlQFdDEcpS0qDgjHmU+BT63UhcFwq86Nqh1MbwXZfkDtnLua2GYvKfUuP9AbadunlnDNvlp0+9P/+w4JmHSq8VqMMF6XBECISLm1Yy25GT3dd2fTaSjUkdamkoBoQpzaC7Q5rHRcW+fjro88YcupJ9nFP9DuHRw87q9JreD0u7hnak2O6hzuyJWov0HEJSpXRoKBqXWVdTI0xfLJ0A4GiHRwzuC9diwoBKG3clGXfLebZlxbFTGudiAgx1VGJvvXrYjhKldGgoGqd0zfzaL6AYcVNdzN69nN22oizHmB+516826yJ43tzvG5KAyGMMWRneKr8YNdxCUqFaVBQtS56amoAX6DsId/5rzV88uz/2dvTeh7P6AHXhr/2Bw1rtxRzxoHtmfJ12ejkM/q045xDOtG+eTabtpeSv3ozvTs0o0vr6LGRyeVLg4Fq6DQoqGpTlX7+kampXdb0Fa5QkFdevpmDC5bYx/S5+kX+zImdF3FrcYDX5hfEpM1csI6x/ffli+V/ardSpXaRBgVVLarSzz92amrDkCWf8cRbE+z91wwezVt5R5V7n8cFTbI9jj2FFq/dot1KlaoGGhTULqvKYLTCIh+fLN2AxyW02r6JeU+ea+/buP8hfPjkS3z47jIau1yUBIKEQgavx03QhJgwrBc92jZ17CkEot1KlaoGGhTULnMajOb0QJ6Rv4Yx0xfiwnDfjEc4fdHH9r7+VzzD1PHncXaul5P2axeznnJ8lZRTT6Eebcs3QGu3UqWqToOC2iWFRT62FJeyozS2i2ixPxDzQC4s8nHjtAX0+W0BL79yi50+/oRLmHTIadw+MM9exCa+wTf+m36inkLarVSpXadBQSXFqRE50o7gcQnBuNmp49c/+OmXtcx/eDhNSncAsLZxK4657BluPrUXt7vd3Pv2kio1EDv1FNJupUrtOg0KqlJOjch9u7Sy2xGcZHncZdVHd9/NEXfdZe87deTD/NCuOxCe3uKJj5fhC1RPA7F2K1Vq12hQUBVK1Ij8zLl9yrUjRCv2B9hz3W/Q8UA7bcqBg7jj+Mtjjnvyk+Ux4xRAG4iVSqVUrtGs6oFEi9iDSTgq2R0KMnPSKJodUhYQKCyk2cSn8HqEbE/Z+YodShraQKxU6mhQUBVKNFlcj7ZN7XWMG2WWTVs9fOEH/DphKHnrfwsnvPkmGAMtWjCkdzu+vOk47j2lJ7ne8lNdN8p063rISqWYVh+pClU0WVykYXfx2i3c/Pi7zP33Bfb7Ptm7D/v98DktG2eVO98x3XfnthmLYtK9HuGpkQfQo21TDQhKpZAGBVWpCnv1GMO+11zE3A/etpOOuPw51jXfg2/jeiBFJAo0/brtXtO3opSqhAYFlRSnXj1fPfkih11znr1924lX8t/9B4Q3Qoa3FqxhcK9w19L4gKLdR5Wqm8QYU/lRdVSfPn3MvHnzUp2Nei96DAJQ4WhigL/WbKB5hz0Q63dneYv2nHzRP/G7M2LOm53hwh+36plOUqdU6onIfGNMH6d9WlJo4KLHIBT7A/YDvCQQLLc2wZDe7fjlgivoOvkp+/0DL3icxa33djx3Wc8iYy+oo5PUKVW3ae+jBix6DMI2X4BACPxBwzZfAH/QEAjBNl+AEn+IyU++DiJ2QPjPIcPoNHZWuYCQ6XZuR4iIjEGoSh4XrN5MYZGv6jeolKoyLSk0YE4T2cXLDPh5f9KVdN60DgC/y8MBo6ayzZtjH9Mow00Iw+0D8+jQohGXTplXbkBaRGkwyJbiUgqLfJWWFqoyHbdSqnpoUGjAKlsW87z5b3HPR0/b22te+R/HLfLGTG3h9bgY038fjujSyl7pbMKwsp5F0VVSxf4AIQNXTf0h6TUXdH0EpWqXBoUGKLphOdI11IWwwx8EoP3mP/ji6Uvs49/JO5LAf19iyP7tGb/PGvuBXxIIEgyFeOSDn3novaX2Qz6+ZxHA4rVb7RJEMu0LyU7HrZSqXhoUGhinKpm5Y4/lq18Lueal+Ux+7U76rfzBPv6j9+dxyOE9y3UlXbx2S/ghHwy3O0DsQz6+C2vT7Awy3a6YaqWKHvKJRlLr9BdK1SxtaG4gCot8zPl5A2OmL7Ablkv8Ica8vhCAHt9+zIrxQ+yAcOOAv9P9tnfYbd+9yz20W+Z6aZqdSaY7dqqKihqRq/qQjwxwy8pw0djr0ekvlKolWlKop5zWN0h0zKI1W7j37SW4RKx1kcu0KimiZeMsWlrbC/boymnnPkzQ5SYL7Id2/PXaN8+mJBCMOVdJIFjpQ74qi+DoADelap8GhXoomV450QvgFPmCjue554P/cN4PZdNTfDJ9Nlfk+2gU99BOtJ5C/MDHygZC7sxDXtdHUKp21XpQEJEOwBRgDyAEPGOMeVxEWgCvAp2AlcAZxphNtZ2/ui6ZXjnRxzg5oOAn3pg6uizh3nvhtts4Bph7UmyJoKL1FLIzPHZ7AkB2hqfShmB9yCtVt6WipBAAbjDGfC8ijYH5IvIhcAEw2xjzkIjcBNwEjE1B/uq0ZHrlJBp/4PX7+PzpS9h9ezjWBps1w11QADllYw7iH9qJrue0noI2BCtV/9V6Q7MxZp0x5nvr9TbgJ6AdMBSYbB02GTiltvNWHyTTYOtU3/9/30xn2aOn2wFh5LnjyLvqJWb+srnCUcPJrKegDcFKpY+UtimISCdgf+AboLUxZh2EA4eIOM6jLCKXAZcBdOzYsZZyWnck22Abqd/fq7CAjyeWLYH56t9OYOyAa8MbgRB/fzWfDLeQ6Q5PWHf7wDx6tmtqVx8ls56CNgQrlT5SNkuqiOQCnwH3G2PeEJHNxphmUfs3GWOaV3SOhjxLaqLeR4VFPj5ZuoF7Zixk0vOj6bPmJ3vfgVf/l8KcZpWeO9frJhAyMQ3YyfR2UkrVD3VullQRyQBeB6YaY96wkteLSBurlNAG2JCKvNUXTg22kV5CQxZ9ysI3x9vpVw8Zw6x9+yV97khvpYoGoyml0lMqeh8J8BzwkzHm0ahdM4HzgYesf2fUdt7qikTrG0Q/lOetKGTOL3/Sr2sr+nRuSWGRjwmTP2XpYyPtY77q+DfOHnE/Rnau6UinlVCq4UlFSaEvcC7wo4jkW2m3EA4Gr4nIxcAqYHgK8pZy0WMCEq1pMHLi13yxvBCAJz5ezpF7t+Dx9x7nizdetc9z9KVPs7JF5TOKtmmSyabiAG4RtpfGNk5rbyKlGp5aDwrGmC+ARJPuH1ebealrnMYEQOzcQjmZbjsgABz2+wJeHHervX3vMRfz3MGnJn3NdVtLmf5/h5LhcbNo7RbunbUk6RHHSqn0oyOa65DK1jfIcLn4YMl6ABqVFvPdk+eS4y8BYOvubZkzcw5TZ/1MNtGrnpVxA05jm1cW7mBYnw706tCM/j320AZlpRownRCvDqlsfYMdpQG67J7LdZ9PZck/htsB4ZRzH+HtmV9yWI/2zB17LE+fe2C5opgA953a0/G8vTs0s1+3zPXSq0MzDQhKNVAaFOqQyJgAr8dFdkb5H02XDSu59KguXPvlywA8f+BgOo2dRX7bfXjgnaX0Hfcxc5f/SY+2TfHELYvpcQsn9tiD8w6LHdtx3mEd7cVxlFJKq4/qGGP9HQqVPdQ9wQBvTf47+25caaf1+fvL9O/Xg4zvVuEPxbY7PHPugWR53PZiNgBZHjcFm4q5Z+jfOO/QTuSv3kzvDs00ICilYmhQqEMiDc3h6a3D4eHMBe8z7r1/2sdcctrtfNT1EBp7PfTu0Izp3xc4VDlJhVNhdGndWIOBUsqRBoU6IjISORQKB4M2Wzfy1X8utPd/tPdBXHL6HSDhEkSxP0Cnlo3KzYRa4g/RtmlWldcuUEop0KCwy6pj+ocZ+WsYPS0fDJQGDU+9+QD9f/7K3t/38kmsaRo7FZRIeE1lr1vwBcumKvG6w+MNdF4ipdTO0KCwC5JZ7KYyhUU+/v5KPgY4+td5vDD9LnvfrSdeydT9Bzi+L9Pt4reN28uN+BCX2NVEOjWFUqqqNCjspGQWu4k+NtE39q9+LaRxSRELHx9hp/3csiMDL3wcvzsj4fW3lwZ5+INlhAx4XMSMetZAoJTaWRoUdpLTQDO3S/hk6QaO6b67/WCurDTR6aE7WPjKc/b2gAueYEnrvfC4wGkMW6MMFzusdoTIxHVej4t/nXMAPdo20YCglNolOk5hJzkNNNvuC3LnzMX0HfcxM/PXxJQmtvkClPhDjHl9YXgxm3nzQISeVkB48rAz6DR2Fkta7wWEfzBugQy32IvY3HJydy45ci9yMt0x1810u2ianaEBQSm1y7SksJOiF59xu4Tt1rf2yKRyo6cv4OaT98UtsZX+jUIBcnt0h1UrwwmZmdz/wqc8u+CvmONKI/EmZPjXOfuz+q9i7n17iU5cp5SqUVpSSFL0kpWR1327tGLu2GO5e3APMuM+SV/AMO69pTEP8PPnv8X3DwzBawWErW++xYLl6+nUuS1ej4sMd/l5AoMGthb7ufftJZT4QzHny/G6dRlMpVS10pJCEiqbzrp3h2Zl3+yjRCal67D5Dz5/+pKyHWedxYzR4xn7xo94vv/abhtI5M+i0nLtFzmZbu4e3COm/UIppXaVlhQqEd8u4A8aAta0EpE2grVbislymKtITIgXX7ktNiCsWUPhM88z9o0fKfGHKg0IGW7hiC6tyrVfBI3RgKCUqnYaFCpRsKkYE0q8jnWGy4XT8hAnLfuSFeOHcOTv+QBse3oiGANt29o9lyqSneHC63HxyPBedGndmPGn70dWhstudNYqI6VUTdDqo0rkZLpjRgzH84dC9GjbxG503q1kG58/fKa9f0Hbbqya8QGD++xpp1U2RbZb4Olz+8R0MdURykqp2qAlhUpsLw06Vg153S68HrG/sQ/p3Y78tW/EBISls7+m/bKFMQEBynouZWW4aBTXvRSgUabHsYuprnWglKppGhSI7VkUr33zbPwOJQWXS7CrjebOBRGyJk0Mb99/P4XbSvB13SfhNYf0bsfcscfy1MgD8Hpiq5+0i6lSKlUafPVRZSOON20vJejQplDsD5LlL+HwI3rC9s3hxJYtYdUqZvy8ibHjPq50TqSWuV76ddudCcN66YymSqk6oUEHhWTmL8pfvdnxvVd8PY2xn00uS5gzB448skpzIkVoe4FSqq5o0EHBaf6iDJeLgk3F9oM5ev1igL0LVzN74hX29mv79+e4OW/axydzTic6o6lSqi5o0G0KTr2A4uvzu7RuzHmHdcQVCvLGizfEBITDrnuZrEkTYx7myZxTKaXqqgYdFKJ7AVXU//+eooX8NmEoB6xdBsC2KVNZsGoTs+45lb5dWsU0Uid7TqWUqosadPURVFKfv24dtG1rb37dqTcXnnMf4/7WmyEdmiVspNY2AqVUfdXggwI41OcbAyNHwksv2Un9LnuWVc3bQCDccJzXpkmFDcraRqCUqo80KMSbPRuOP97eXHPHA/TnALb5AnaaW4SZC9biccWOL0imQVkppeqyOtemICL9RWSZiCwXkZtq45qFRT5+/Gk1JienLCB06gTFxWSNvr78YjqlQZ774rdyk9lpg7JSqr6rU0FBRNzAv4CTgTzgLBHJq8lrzshfw6snX8Df8joiO3aEE7/5BlasgKysmIbj6BXPtkfNla3rGiil0kVdqz46GFhujPkNQEReAYYCS2riYpu/nsfQww6yt5/rM5QJ/f+PuXm9aBl1XKTh+JOlG7jrrcUxJQRd10AplU7qVEkBaAesjtousNKqnf/gQ2kWFRD2u/YV7j3uUrtdIF7LXC/HdN+dQNyUF7qugVIqndS1oFB+YQKIeQqLyGUiMk9E5m3cuHGnLvLuJz+S8d03AFx0+h10GjuLrVm5AJQGQ2wp9jtOjqdjEJRS6U6MSbxWQG0TkcOAu4wxJ1nbNwMYYx50Or5Pnz5m3rx5VbpGYZGPvuM+ptGWTfyV3QQkHIdyvG5KA6FyS206TWRXWOTTMQhKqXpLROYbY/o47atrJYXvgK4i0llEMoERwMzqvEBkJbW/GjW1A0KGC84+uCNC+aU2E5UYdF0DpVQ6qlNBwRgTAK4G3gd+Al4zxiyuzms4raTmD8GLX/9OadxyySZkHNsXlFIqXdW13kcYY94B3qmp828vDeJxQSBuNcwSf/nlMX1BE9MNVSml0l2dKinUhpxMd7mAkEhWhovt8cUHpZRKYw0uKCRaczkRHaGslGpI6lz1UU1L9JBP1PtIG5OVUg1JgwsKkbEG0Wsi3z4wj57tmtoBQ7ubKqUaqgYXFKDyNZE1GCilGqoGGRRA10RWSiknDa6hWSmlVGIaFJRSStk0KCillLJpUFBKKWXToKCUUspWp6bOrioR2Qj8vgunaAX8WU3ZqQ8a2v2C3nNDofdcNXsaY3Zz2lGvg8KuEpF5ieYUT0cN7X5B77mh0HuuPlp9pJRSyqZBQSmllK2hB4VnUp2BWtbQ7hf0nhsKvedq0qDbFJRSSsVq6CUFpZRSUTQoKKWUsjXIoCAi/UVkmYgsF5GbUp2fmiAiHUTkExH5SUQWi8i1VnoLEflQRH6x/m2e6rxWJxFxi8gPIjLL2k7r+wUQkWYiMl1Ello/78PS+b5F5Drrd3qRiLwsIlnpdr8iMklENojIoqi0hPcoIjdbz7NlInLSrly7wQUFEXED/wJOBvKAs0QkL7W5qhEB4AZjzL7AocBV1n3eBMw2xnQFZlvb6eRa4Keo7XS/X4DHgfeMMd2BXoTvPy3vW0TaAaOAPsaYnoAbGEH63e8LQP+4NMd7tP5fjwB6WO/5t/Wc2ykNLigABwPLjTG/GWNKgVeAoSnOU7Uzxqwzxnxvvd5G+EHRjvC9TrYOmwyckpIM1gARaQ8MBCZGJaft/QKISBOgH/AcgDGm1BizmfS+bw+QLSIeoBGwljS7X2PMHOCvuORE9zgUeMUY4zPGrACWE37O7ZSGGBTaAaujtgustLQlIp2A/YFvgNbGmHUQDhzA7inMWnV7DBgDhKLS0vl+AfYCNgLPW9VmE0UkhzS9b2PMGuBhYBWwDthijPmANL3fOInusVqfaQ0xKIhDWtr2yxWRXOB14O/GmK2pzk9NEZFBwAZjzPxU56WWeYADgP8YY/YHtlP/q04SsurRhwKdgbZAjoiMTG2uUq5an2kNMSgUAB2ittsTLn6mHRHJIBwQphpj3rCS14tIG2t/G2BDqvJXzfoCQ0RkJeEqwWNF5L+k7/1GFAAFxphvrO3phINEut738cAKY8xGY4wfeAM4nPS932iJ7rFan2kNMSh8B3QVkc4ikkm4gWZmivNU7URECNcz/2SMeTRq10zgfOv1+cCM2s5bTTDG3GyMaW+M6UT4Z/qxMWYkaXq/EcaYP4DVIrKPlXQcsIT0ve9VwKEi0sj6HT+OcHtZut5vtET3OBMYISJeEekMdAW+3emrGGMa3B9gAPAz8Ctwa6rzU0P3eAThIuRCIN/6MwBoSbjnwi/Wvy1SndcauPejgVnW64Zwv72BedbP+k2geTrfN3A3sBRYBLwIeNPtfoGXCbeZ+AmXBC6u6B6BW63n2TLg5F25tk5zoZRSytYQq4+UUkoloEFBKaWUTYOCUkopmwYFpZRSNg0KSimlbBoUlFJK2TQoKKWUsmlQUKoaichBIrLQmuM/x5r3v2eq86VUsnTwmlLVTETuA7KAbMLzEj2Y4iwplTQNCkpVM2tOre+AEuBwY0wwxVlSKmlafaRU9WsB5AKNCZcYlKo3tKSgVDUTkZmEp+/uDLQxxlyd4iwplTRPqjOgVDoRkfOAgDHmJWud3C9F5FhjzMepzptSydCSglJKKZu2KSillLJpUFBKKWXToKCUUsqmQUEppZRNg4JSSimbBgWllFI2DQpKKaVs/w9g9UoDpIYbsgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot(kind='scatter',\n", + " x='x',\n", + " y='y',\n", + " title='x and y in the dataset, with prediction')\n", + "plt.plot(X, y_pred, color='red')" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "ccaf0068", + "metadata": {}, + "outputs": [], + "source": [ + "W, B = model.get_weights()" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "5e966641", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1.030289]], dtype=float32)" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "W" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "d7d8eb87", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.44838893], dtype=float32)" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "B" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "18ef5e31", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/exercises/Untitled.ipynb b/exercises/Untitled.ipynb new file mode 100644 index 0000000..363fcab --- /dev/null +++ b/exercises/Untitled.ipynb @@ -0,0 +1,6 @@ +{ + "cells": [], + "metadata": {}, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/solutions/2 Data exploration Exercises Solution.ipynb b/solutions/2 Data exploration Exercises Solution.ipynb new file mode 100644 index 0000000..3e5fab8 --- /dev/null +++ b/solutions/2 Data exploration Exercises Solution.ipynb @@ -0,0 +1,404 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import pandas as pd" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 1\n", + "- load the dataset: `../data/international-airline-passengers.csv`\n", + "- inspect it using the `.info()` and `.head()` commands\n", + "- use the function `pd.to_datetime()` to change the column type of 'Month' to a datatime type\n", + "- set the index of df to be a datetime index using the column 'Month' and the `df.set_index()` method\n", + "- choose the appropriate plot and display the data\n", + "- choose appropriate scale\n", + "- label the axes" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# - load the dataset: ../data/international-airline-passengers.csv\n", + "df = pd.read_csv('../data/international-airline-passengers.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# - inspect it using the .info() and .head() commands\n", + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# - use the function to_datetime() to change the column type of 'Month' to a datatime type\n", + "# - set the index of df to be a datetime index using the column 'Month' and tthe set_index() method\n", + "\n", + "df['Month'] = pd.to_datetime(df['Month'])\n", + "df = df.set_index('Month')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# - choose the appropriate plot and display the data\n", + "# - choose appropriate scale\n", + "# - label the axes\n", + "\n", + "df.plot();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 2\n", + "- load the dataset: `../data/weight-height.csv`\n", + "- inspect it\n", + "- plot it using a scatter plot with Weight as a function of Height\n", + "- plot the male and female populations with 2 different colors on a new scatter plot\n", + "- remember to label the axes" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# - load the dataset: ../data/weight-height.csv\n", + "# - inspect it\n", + "df = pd.read_csv('../data/weight-height.csv')\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "df['Gender'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# - plot it using a scatter plot with Weight as a function of Height\n", + "_ = df.plot(kind='scatter', x='Height', y='Weight');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# - plot the male and female populations with 2 different colors on a new scatter plot\n", + "# - remember to label the axes\n", + "\n", + "# this can be done in several ways, showing 2 here:\n", + "males = df[df['Gender'] == 'Male']\n", + "females = df.query('Gender == \"Female\"')\n", + "fig, ax = plt.subplots()\n", + "\n", + "males.plot(kind='scatter', x='Height', y='Weight',\n", + " ax=ax, color='blue', alpha=0.3,\n", + " title='Male & Female Populations')\n", + "\n", + "females.plot(kind='scatter', x='Height', y='Weight',\n", + " ax=ax, color='red', alpha=0.3);" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['Gendercolor'] = df['Gender'].map({'Male': 'blue', 'Female': 'red'})\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.plot(kind='scatter', \n", + " x='Height',\n", + " y='Weight',\n", + " c=df['Gendercolor'],\n", + " alpha=0.3,\n", + " title='Male & Female Populations');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig, ax = plt.subplots()\n", + "ax.plot(males['Height'], males['Weight'], 'ob', \n", + " females['Height'], females['Weight'], 'or', alpha=0.3)\n", + "plt.xlabel('Height')\n", + "plt.ylabel('Weight')\n", + "plt.title('Male & Female Populations');" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exercise 3\n", + "- plot the histogram of the heights for males and for females on the same plot\n", + "- use alpha to control transparency in the plot comand\n", + "- plot a vertical line at the mean of each population using `plt.axvline()`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "males['Height'].plot(kind='hist',\n", + " bins=50,\n", + " range=(50, 80),\n", + " alpha=0.3,\n", + " color='blue')\n", + "\n", + "females['Height'].plot(kind='hist',\n", + " bins=50,\n", + " range=(50, 80),\n", + " alpha=0.3,\n", + " color='red')\n", + "\n", + "plt.title('Height distribution')\n", + "plt.legend([\"Males\", \"Females\"])\n", + "plt.xlabel(\"Heigth (in)\")\n", + "\n", + "\n", + "plt.axvline(males['Height'].mean(), color='blue', linewidth=2)\n", + "plt.axvline(females['Height'].mean(), color='red', linewidth=2);" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "males['Height'].plot(kind='hist',\n", + " bins=200,\n", + " range=(50, 80),\n", + " alpha=0.3,\n", + " color='blue',\n", + " cumulative=True,\n", + " density=True)\n", + "\n", + "females['Height'].plot(kind='hist',\n", + " bins=200,\n", + " range=(50, 80),\n", + " alpha=0.3,\n", + " color='red',\n", + " cumulative=True,\n", + " density=True)\n", + "\n", + "plt.title('Height distribution')\n", + "plt.legend([\"Males\", \"Females\"])\n", + "plt.xlabel(\"Heigth (in)\")\n", + "\n", + "plt.axhline(0.8)\n", + "plt.axhline(0.5)\n", + "plt.axhline(0.2);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 4\n", + "- plot the weights of the males and females using a box plot\n", + "- which one is easier to read?\n", + "- (remember to put in titles, axes and legends)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dfpvt = df.pivot(columns = 'Gender', values = 'Weight')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dfpvt.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dfpvt.info()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dfpvt.plot(kind='box')\n", + "plt.title('Weight Box Plot')\n", + "plt.ylabel(\"Weight (lbs)\");" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 5\n", + "- load the dataset: `../data/titanic-train.csv`\n", + "- learn about scattermatrix here: http://pandas.pydata.org/pandas-docs/stable/visualization.html\n", + "- display the data using a scattermatrix" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../data/titanic-train.csv')\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from pandas.plotting import scatter_matrix" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "_ = scatter_matrix(df.drop('PassengerId', axis=1), figsize=(10, 10))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/solutions/3 Machine Learning Exercises Solution.ipynb b/solutions/3 Machine Learning Exercises Solution.ipynb new file mode 100644 index 0000000..604e979 --- /dev/null +++ b/solutions/3 Machine Learning Exercises Solution.ipynb @@ -0,0 +1,669 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Machine Learning Exercises Solution" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import numpy as np" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 1\n", + "\n", + "You've just been hired at a real estate investment firm and they would like you to build a model for pricing houses. You are given a dataset that contains data for house prices and a few features like number of bedrooms, size in square feet and age of the house. Let's see if you can build a model that is able to predict the price. In this exercise we extend what we have learned about linear regression to a dataset with more than one feature. Here are the steps to complete it:\n", + "\n", + "1. Load the dataset ../data/housing-data.csv\n", + "- plot the histograms for each feature\n", + "- create 2 variables called X and y: X shall be a matrix with 3 columns (sqft,bdrms,age) and y shall be a vector with 1 column (price)\n", + "- create a linear regression model in Keras with the appropriate number of inputs and output\n", + "- split the data into train and test with a 20% test size\n", + "- train the model on the training set and check its accuracy on training and test set\n", + "- how's your model doing? Is the loss growing smaller?\n", + "- try to improve your model with these experiments:\n", + " - normalize the input features with one of the rescaling techniques mentioned above\n", + " - use a different value for the learning rate of your model\n", + " - use a different optimizer\n", + "- once you're satisfied with training, check the R2score on the test set" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the dataset ../data/housing-data.csv\n", + "df = pd.read_csv('../data/housing-data.csv')\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.columns" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# plot the histograms for each feature\n", + "plt.figure(figsize=(15, 5))\n", + "for i, feature in enumerate(df.columns):\n", + " plt.subplot(1, 4, i+1)\n", + " df[feature].plot(kind='hist', title=feature)\n", + " plt.xlabel(feature)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# create 2 variables called X and y:\n", + "# X shall be a matrix with 3 columns (sqft,bdrms,age)\n", + "# and y shall be a vector with 1 column (price)\n", + "X = df[['sqft', 'bdrms', 'age']].values\n", + "y = df['price'].values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.optimizers import Adam" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# create a linear regression model in Keras\n", + "# with the appropriate number of inputs and output\n", + "model = Sequential()\n", + "model.add(Dense(1, input_shape=(3,)))\n", + "model.compile(Adam(learning_rate=0.8), 'mean_squared_error')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# split the data into train and test with a 20% test size\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "len(X_train)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "len(X)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# train the model on the training set and check its accuracy on training and test set\n", + "# how's your model doing? Is the loss growing smaller?\n", + "model.fit(X_train, y_train, epochs=10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import r2_score" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# check the R2score on training and test set (probably very bad)\n", + "\n", + "y_train_pred = model.predict(X_train)\n", + "y_test_pred = model.predict(X_test)\n", + "\n", + "print(\"The R2 score on the Train set is:\\t{:0.3f}\".format(r2_score(y_train, y_train_pred)))\n", + "print(\"The R2 score on the Test set is:\\t{:0.3f}\".format(r2_score(y_test, y_test_pred)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# try to improve your model with these experiments:\n", + "# - normalize the input features with one of the rescaling techniques mentioned above\n", + "# - use a different value for the learning rate of your model\n", + "# - use a different optimizer\n", + "df['sqft1000'] = df['sqft']/1000.0\n", + "df['age10'] = df['age']/10.0\n", + "df['price100k'] = df['price']/1e5" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X = df[['sqft1000', 'bdrms', 'age10']].values\n", + "y = df['price100k'].values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Dense(1, input_dim=3))\n", + "model.compile(Adam(learning_rate=0.1), 'mean_squared_error')\n", + "model.fit(X_train, y_train, epochs=20)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# once you're satisfied with training, check the R2score on the test set\n", + "\n", + "y_train_pred = model.predict(X_train)\n", + "y_test_pred = model.predict(X_test)\n", + "\n", + "print(\"The R2 score on the Train set is:\\t{:0.3f}\".format(r2_score(y_train, y_train_pred)))\n", + "print(\"The R2 score on the Test set is:\\t{:0.3f}\".format(r2_score(y_test, y_test_pred)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train, epochs=40, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# once you're satisfied with training, check the R2score on the test set\n", + "\n", + "y_train_pred = model.predict(X_train)\n", + "y_test_pred = model.predict(X_test)\n", + "\n", + "print(\"The R2 score on the Train set is:\\t{:0.3f}\".format(r2_score(y_train, y_train_pred)))\n", + "print(\"The R2 score on the Test set is:\\t{:0.3f}\".format(r2_score(y_test, y_test_pred)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 2\n", + "\n", + "Your boss was extremely happy with your work on the housing price prediction model and decided to entrust you with a more challenging task. They've seen a lot of people leave the company recently and they would like to understand why that's happening. They have collected historical data on employees and they would like you to build a model that is able to predict which employee will leave next. The would like a model that is better than random guessing. They also prefer false negatives than false positives, in this first phase. Fields in the dataset include:\n", + "\n", + "- Employee satisfaction level\n", + "- Last evaluation\n", + "- Number of projects\n", + "- Average monthly hours\n", + "- Time spent at the company\n", + "- Whether they have had a work accident\n", + "- Whether they have had a promotion in the last 5 years\n", + "- Department\n", + "- Salary\n", + "- Whether the employee has left\n", + "\n", + "Your goal is to predict the binary outcome variable `left` using the rest of the data. Since the outcome is binary, this is a classification problem. Here are some things you may want to try out:\n", + "\n", + "1. load the dataset at ../data/HR_comma_sep.csv, inspect it with `.head()`, `.info()` and `.describe()`.\n", + "- Establish a benchmark: what would be your accuracy score if you predicted everyone stay?\n", + "- Check if any feature needs rescaling. You may plot a histogram of the feature to decide which rescaling method is more appropriate.\n", + "- convert the categorical features into binary dummy columns. You will then have to combine them with the numerical features using `pd.concat`.\n", + "- do the usual train/test split with a 20% test size\n", + "- play around with learning rate and optimizer\n", + "- check the confusion matrix, precision and recall\n", + "- check if you still get the same results if you use a 5-Fold cross validation on all the data\n", + "- Is the model good enough for your boss?\n", + "\n", + "As you will see in this exercise, the a logistic regression model is not good enough to help your boss. In the next chapter we will learn how to go beyond linear models.\n", + "\n", + "This dataset comes from https://www.kaggle.com/ludobenistant/hr-analytics/ and is released under [CC BY-SA 4.0 License](https://creativecommons.org/licenses/by-sa/4.0/)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# load the dataset at ../data/HR_comma_sep.csv, inspect it with `.head()`, `.info()` and `.describe()`.\n", + "\n", + "df = pd.read_csv('../data/HR_comma_sep.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Establish a benchmark: what would be your accuracy score if you predicted everyone stay?\n", + "\n", + "df.left.value_counts() / len(df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Predicting 0 all the time would yield an accuracy of 76%" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Check if any feature needs rescaling.\n", + "# You may plot a histogram of the feature to decide which rescaling method is more appropriate.\n", + "df['average_montly_hours'].plot(kind='hist');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['average_montly_hours_100'] = df['average_montly_hours']/100.0" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['average_montly_hours_100'].plot(kind='hist');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['time_spend_company'].plot(kind='hist');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# convert the categorical features into binary dummy columns.\n", + "# You will then have to combine them with\n", + "# the numerical features using `pd.concat`.\n", + "df_dummies = pd.get_dummies(df[['sales', 'salary']])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_dummies.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.columns" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X = pd.concat([df[['satisfaction_level', 'last_evaluation', 'number_project',\n", + " 'time_spend_company', 'Work_accident',\n", + " 'promotion_last_5years', 'average_montly_hours_100']],\n", + " df_dummies], axis=1).values\n", + "y = df['left'].values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# do the usual train/test split with a 20% test size\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# play around with learning rate and optimizer\n", + "\n", + "model = Sequential()\n", + "model.add(Dense(1, input_dim=20, activation='sigmoid'))\n", + "model.compile(Adam(learning_rate=0.5), 'binary_crossentropy', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train, epochs=10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_test_pred = model.predict_classes(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import confusion_matrix, classification_report" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def pretty_confusion_matrix(y_true, y_pred, labels=[\"False\", \"True\"]):\n", + " cm = confusion_matrix(y_true, y_pred)\n", + " pred_labels = ['Predicted '+ l for l in labels]\n", + " df = pd.DataFrame(cm, index=labels, columns=pred_labels)\n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# check the confusion matrix, precision and recall\n", + "\n", + "pretty_confusion_matrix(y_test, y_test_pred, labels=['Stay', 'Leave'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(classification_report(y_test, y_test_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.wrappers.scikit_learn import KerasClassifier" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# check if you still get the same results if you use a 5-Fold cross validation on all the data\n", + "\n", + "def build_logistic_regression_model():\n", + " model = Sequential()\n", + " model.add(Dense(1, input_dim=20, activation='sigmoid'))\n", + " model.compile(Adam(learning_rate=0.5), 'binary_crossentropy', metrics=['accuracy'])\n", + " return model\n", + "\n", + "model = KerasClassifier(build_fn=build_logistic_regression_model,\n", + " epochs=10, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import KFold, cross_val_score" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "cv = KFold(5, shuffle=True)\n", + "scores = cross_val_score(model, X, y, cv=cv)\n", + "\n", + "print(\"The cross validation accuracy is {:0.4f} ± {:0.4f}\".format(scores.mean(), scores.std()))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "scores" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Is the model good enough for your boss?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "No, the model is not good enough for my boss, since it performs no better than the benchmark." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/solutions/4 Deep Learning Intro Exercises Solution.ipynb b/solutions/4 Deep Learning Intro Exercises Solution.ipynb new file mode 100644 index 0000000..712f75a --- /dev/null +++ b/solutions/4 Deep Learning Intro Exercises Solution.ipynb @@ -0,0 +1,413 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Deep Learning Intro" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import numpy as np" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 1" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "The [Pima Indians dataset](https://archive.ics.uci.edu/ml/datasets/diabetes) is a very famous dataset distributed by UCI and originally collected from the National Institute of Diabetes and Digestive and Kidney Diseases. It contains data from clinical exams for women age 21 and above of Pima indian origins. The objective is to predict based on diagnostic measurements whether a patient has diabetes.\n", + "\n", + "It has the following features:\n", + "\n", + "- Pregnancies: Number of times pregnant\n", + "- Glucose: Plasma glucose concentration a 2 hours in an oral glucose tolerance test\n", + "- BloodPressure: Diastolic blood pressure (mm Hg)\n", + "- SkinThickness: Triceps skin fold thickness (mm)\n", + "- Insulin: 2-Hour serum insulin (mu U/ml)\n", + "- BMI: Body mass index (weight in kg/(height in m)^2)\n", + "- DiabetesPedigreeFunction: Diabetes pedigree function\n", + "- Age: Age (years)\n", + "\n", + "The last colum is the outcome, and it is a binary variable.\n", + "\n", + "In this first exercise we will explore it through the following steps:\n", + "\n", + "1. Load the ..data/diabetes.csv dataset, use pandas to explore the range of each feature\n", + "- For each feature draw a histogram. Bonus points if you draw all the histograms in the same figure.\n", + "- Explore correlations of features with the outcome column. You can do this in several ways, for example using the `sns.pairplot` we used above or drawing a heatmap of the correlations.\n", + "- Do features need standardization? If so what stardardization technique will you use? MinMax? Standard?\n", + "- Prepare your final `X` and `y` variables to be used by a ML model. Make sure you define your target variable well. Will you need dummy columns?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../data/diabetes.csv')\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "_ = df.hist(figsize=(12, 10))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sns.pairplot(df, hue='Outcome');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sns.heatmap(df.corr(), annot = True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import StandardScaler" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.utils import to_categorical" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sc = StandardScaler()\n", + "X = sc.fit_transform(df.drop('Outcome', axis=1))\n", + "y = df['Outcome'].values\n", + "y_cat = to_categorical(y)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_cat.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 2" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "Build a fully connected NN model that predicts diabetes. Follow these steps:\n", + "\n", + "1. Split your data in a train/test with a test size of 20% and a `random_state = 22`\n", + "- define a sequential model with at least one inner layer. You will have to make choices for the following things:\n", + " - what is the size of the input?\n", + " - how many nodes will you use in each layer?\n", + " - what is the size of the output?\n", + " - what activation functions will you use in the inner layers?\n", + " - what activation function will you use at output?\n", + " - what loss function will you use?\n", + " - what optimizer will you use?\n", + "- fit your model on the training set, using a validation_split of 0.1\n", + "- test your trained model on the test data from the train/test split\n", + "- check the accuracy score, the confusion matrix and the classification report" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y_cat,\n", + " random_state=22,\n", + " test_size=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.optimizers import Adam" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Dense(32, input_shape=(8,), activation='relu'))\n", + "model.add(Dense(32, activation='relu'))\n", + "model.add(Dense(2, activation='softmax'))\n", + "model.compile(Adam(learning_rate=0.05),\n", + " loss='categorical_crossentropy',\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "32*8 + 32" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train, epochs=20, verbose=2, validation_split=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_test_class = np.argmax(y_test, axis=1)\n", + "y_pred_class = np.argmax(y_pred, axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import accuracy_score\n", + "from sklearn.metrics import classification_report\n", + "from sklearn.metrics import confusion_matrix" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pd.Series(y_test_class).value_counts() / len(y_test_class)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "accuracy_score(y_test_class, y_pred_class)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(classification_report(y_test_class, y_pred_class))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "confusion_matrix(y_test_class, y_pred_class)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 3\n", + "Compare your work with the results presented in [this notebook](https://www.kaggle.com/sheshu/pima-data-visualisation-and-machine-learning). Are your Neural Network results better or worse than the results obtained by traditional Machine Learning techniques?\n", + "\n", + "- Try training a Support Vector Machine or a Random Forest model on the exact same train/test split. Is the performance better or worse?\n", + "- Try restricting your features to only 4 features like in the suggested notebook. How does model performance change?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.ensemble import RandomForestClassifier\n", + "from sklearn.svm import SVC\n", + "from sklearn.naive_bayes import GaussianNB\n", + "\n", + "for mod in [RandomForestClassifier(), SVC(), GaussianNB()]:\n", + " mod.fit(X_train, y_train[:, 1])\n", + " y_pred = mod.predict(X_test)\n", + " print(\"=\"*80)\n", + " print(mod)\n", + " print(\"-\"*80)\n", + " print(\"Accuracy score: {:0.3}\".format(accuracy_score(y_test_class,\n", + " y_pred)))\n", + " print(\"Confusion Matrix:\")\n", + " print(confusion_matrix(y_test_class, y_pred))\n", + " print()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 4\n", + "\n", + "[Tensorflow playground](http://playground.tensorflow.org/) is a web based neural network demo. It is really useful to develop an intuition about what happens when you change architecture, activation function or other parameters. Try playing with it for a few minutes. You don't nee do understand the meaning of every knob and button in the page, just get a sense for what happens if you change something. In the next chapter we'll explore these things in more detail.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/solutions/5 Gradient Descent Exercises Solution.ipynb b/solutions/5 Gradient Descent Exercises Solution.ipynb new file mode 100644 index 0000000..c0930b6 --- /dev/null +++ b/solutions/5 Gradient Descent Exercises Solution.ipynb @@ -0,0 +1,518 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Gradient Descent" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 1\n", + "\n", + "You've just been hired at a wine company and they would like you to help them build a model that predicts the quality of their wine based on several measurements. They give you a dataset with wine\n", + "\n", + "- Load the ../data/wines.csv into Pandas\n", + "- Use the column called \"Class\" as target\n", + "- Check how many classes are there in target, and if necessary use dummy columns for a multi-class classification\n", + "- Use all the other columns as features, check their range and distribution (using seaborn pairplot)\n", + "- Rescale all the features using either MinMaxScaler or StandardScaler\n", + "- Build a deep model with at least 1 hidden layer to classify the data\n", + "- Choose the cost function, what will you use? Mean Squared Error? Binary Cross-Entropy? Categorical Cross-Entropy?\n", + "- Choose an optimizer\n", + "- Choose a value for the learning rate, you may want to try with several values\n", + "- Choose a batch size\n", + "- Train your model on all the data using a `validation_split=0.2`. Can you converge to 100% validation accuracy?\n", + "- What's the minumum number of epochs to converge?\n", + "- Repeat the training several times to verify how stable your results are" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../data/wines.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y = df['Class']" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y.value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_cat = pd.get_dummies(y)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_cat.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X = df.drop('Class', axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sns.pairplot(df, hue='Class')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import StandardScaler" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sc = StandardScaler()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "Xsc = sc.fit_transform(X)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.optimizers import SGD, Adam, Adadelta, RMSprop\n", + "import tensorflow.keras.backend as K" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "model = Sequential()\n", + "model.add(Dense(5, input_shape=(13,),\n", + " kernel_initializer='he_normal',\n", + " activation='relu'))\n", + "model.add(Dense(3, activation='softmax'))\n", + "\n", + "model.compile(RMSprop(learning_rate=0.1),\n", + " 'categorical_crossentropy',\n", + " metrics=['accuracy'])\n", + "\n", + "model.fit(Xsc, y_cat.values,\n", + " batch_size=8,\n", + " epochs=10,\n", + " verbose=1,\n", + " validation_split=0.2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 2\n", + "\n", + "Since this dataset has 13 features we can only visualize pairs of features like we did in the Paired plot. We could however exploit the fact that a neural network is a function to extract 2 high level features to represent our data.\n", + "\n", + "- Build a deep fully connected network with the following structure:\n", + " - Layer 1: 8 nodes\n", + " - Layer 2: 5 nodes\n", + " - Layer 3: 2 nodes\n", + " - Output : 3 nodes\n", + "- Choose activation functions, inizializations, optimizer and learning rate so that it converges to 100% accuracy within 20 epochs (not easy)\n", + "- Remember to train the model on the scaled data\n", + "- Define a Feature Function like we did above between the input of the 1st layer and the output of the 3rd layer\n", + "- Calculate the features and plot them on a 2-dimensional scatter plot\n", + "- Can we distinguish the 3 classes well?\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "model = Sequential()\n", + "model.add(Dense(8, input_shape=(13,),\n", + " kernel_initializer='he_normal', activation='tanh'))\n", + "model.add(Dense(5, kernel_initializer='he_normal', activation='tanh'))\n", + "model.add(Dense(2, kernel_initializer='he_normal', activation='tanh'))\n", + "model.add(Dense(3, activation='softmax'))\n", + "\n", + "model.compile(RMSprop(learning_rate=0.05),\n", + " 'categorical_crossentropy',\n", + " metrics=['accuracy'])\n", + "\n", + "model.fit(Xsc, y_cat.values,\n", + " batch_size=16,\n", + " epochs=20,\n", + " verbose=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "inp = model.layers[0].input\n", + "out = model.layers[2].output" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "features_function = K.function([inp], [out])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "features = features_function([Xsc])[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "features.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.scatter(features[:, 0], features[:, 1], c=y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 3\n", + "\n", + "Keras functional API. So far we've always used the Sequential model API in Keras. However, Keras also offers a Functional API, which is much more powerful. You can find its [documentation here](https://keras.io/getting-started/functional-api-guide/). Let's see how we can leverage it.\n", + "\n", + "- define an input layer called `inputs`\n", + "- define two hidden layers as before, one with 8 nodes, one with 5 nodes\n", + "- define a `second_to_last` layer with 2 nodes\n", + "- define an output layer with 3 nodes\n", + "- create a model that connect input and output\n", + "- train it and make sure that it converges\n", + "- define a function between inputs and second_to_last layer\n", + "- recalculate the features and plot them" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.layers import Input\n", + "from tensorflow.keras.models import Model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "\n", + "inputs = Input(shape=(13,))\n", + "x = Dense(8, kernel_initializer='he_normal', activation='tanh')(inputs)\n", + "x = Dense(5, kernel_initializer='he_normal', activation='tanh')(x)\n", + "second_to_last = Dense(2, kernel_initializer='he_normal',\n", + " activation='tanh')(x)\n", + "outputs = Dense(3, activation='softmax')(second_to_last)\n", + "\n", + "model = Model(inputs=inputs, outputs=outputs)\n", + "\n", + "model.compile(RMSprop(learning_rate=0.05),\n", + " 'categorical_crossentropy',\n", + " metrics=['accuracy'])\n", + "\n", + "model.fit(Xsc, y_cat.values, batch_size=16, epochs=20, verbose=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "features_function = K.function([inputs], [second_to_last])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "features = features_function([Xsc])[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.scatter(features[:, 0], features[:, 1], c=y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 4 \n", + "\n", + "Keras offers the possibility to call a function at each epoch. These are Callbacks, and their [documentation is here](https://keras.io/callbacks/). Callbacks allow us to add some neat functionality. In this exercise we'll explore a few of them.\n", + "\n", + "- Split the data into train and test sets with a test_size = 0.3 and random_state=42\n", + "- Reset and recompile your model\n", + "- train the model on the train data using `validation_data=(X_test, y_test)`\n", + "- Use the `EarlyStopping` callback to stop your training if the `val_loss` doesn't improve\n", + "- Use the `ModelCheckpoint` callback to save the trained model to disk once training is finished\n", + "- Use the `TensorBoard` callback to output your training information to a `/tmp/` subdirectory\n", + "- Watch the next video for an overview of tensorboard" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, TensorBoard" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "checkpointer = ModelCheckpoint(filepath=\"/tmp/udemy/weights.hdf5\",\n", + " verbose=1, save_best_only=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "earlystopper = EarlyStopping(monitor='val_loss', min_delta=0,\n", + " patience=1, verbose=1, mode='auto')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "tensorboard = TensorBoard(log_dir='/tmp/udemy/tensorboard/')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(Xsc, y_cat.values,\n", + " test_size=0.3,\n", + " random_state=42)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "\n", + "inputs = Input(shape=(13,))\n", + "\n", + "x = Dense(8, kernel_initializer='he_normal', activation='tanh')(inputs)\n", + "x = Dense(5, kernel_initializer='he_normal', activation='tanh')(x)\n", + "second_to_last = Dense(2, kernel_initializer='he_normal',\n", + " activation='tanh')(x)\n", + "outputs = Dense(3, activation='softmax')(second_to_last)\n", + "\n", + "model = Model(inputs=inputs, outputs=outputs)\n", + "\n", + "model.compile(RMSprop(learning_rate=0.05), 'categorical_crossentropy',\n", + " metrics=['accuracy'])\n", + "\n", + "model.fit(X_train, y_train, batch_size=32,\n", + " epochs=20, verbose=2,\n", + " validation_data=(X_test, y_test),\n", + " callbacks=[checkpointer, earlystopper, tensorboard])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Run Tensorboard with the command:\n", + "\n", + " tensorboard --logdir /tmp/udemy/tensorboard/\n", + " \n", + "and open your browser at http://localhost:6006" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/solutions/6 Convolutional Neural Networks Exercises Solution.ipynb b/solutions/6 Convolutional Neural Networks Exercises Solution.ipynb new file mode 100644 index 0000000..15f5bba --- /dev/null +++ b/solutions/6 Convolutional Neural Networks Exercises Solution.ipynb @@ -0,0 +1,365 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Convolutional Neural Networks Exercises Solution" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.utils import to_categorical" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D, Flatten\n", + "import tensorflow.keras.backend as K" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "### Exercise 1\n", + "\n", + "You've been hired by a shipping company to overhaul the way they route mail, parcels and packages. They want to build an image recognition system capable of recognizing the digits in the zipcode on a package, so that it can be automatically routed to the correct location.\n", + "You are tasked to build the digit recognition system. Luckily, you can rely on the MNIST dataset for the intial training of your model!\n", + "\n", + "Build a deep convolutional neural network with at least two convolutional and two pooling layers before the fully connected layer.\n", + "\n", + "- Start from the network we have just built\n", + "- Insert a `Conv2D` layer after the first `MaxPool2D`, give it 64 filters.\n", + "- Insert a `MaxPool2D` after that one\n", + "- Insert an `Activation` layer\n", + "- retrain the model\n", + "- does performance improve?\n", + "- how many parameters does this new model have? More or less than the previous model? Why?\n", + "- how long did this second model take to train? Longer or shorter than the previous model? Why?\n", + "- did it perform better or worse than the previous model?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.datasets import mnist" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "(X_train, y_train), (X_test, y_test) = mnist.load_data(('/tmp/mnist.npz'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train = X_train.astype('float32') / 255.0\n", + "X_test = X_test.astype('float32') / 255.0\n", + "\n", + "X_train = X_train.reshape(-1, 28, 28, 1)\n", + "X_test = X_test.reshape(-1, 28, 28, 1)\n", + "\n", + "y_train_cat = to_categorical(y_train, 10)\n", + "y_test_cat = to_categorical(y_test, 10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "\n", + "model = Sequential()\n", + "\n", + "model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))\n", + "model.add(MaxPool2D(pool_size=(2, 2)))\n", + "\n", + "model.add(Conv2D(64, (3, 3), activation='relu'))\n", + "model.add(MaxPool2D(pool_size=(2, 2)))\n", + "\n", + "model.add(Flatten())\n", + "\n", + "model.add(Dense(128, activation='relu'))\n", + "\n", + "model.add(Dense(10, activation='softmax'))\n", + "\n", + "model.compile(loss='categorical_crossentropy',\n", + " optimizer='rmsprop',\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train_cat, batch_size=128,\n", + " epochs=2, verbose=1, validation_split=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.evaluate(X_test, y_test_cat)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 2\n", + "\n", + "Pleased with your performance with the digits recognition task, your boss decides to challenge you with a harder task. Their online branch allows people to upload images to a website that generates and prints a postcard that is shipped to destination. Your boss would like to know what images people are loading on the site in order to provide targeted advertising on the same page, so he asks you to build an image recognition system capable of recognizing a few objects. Luckily for you, there's a dataset ready made with a collection of labeled images. This is the [Cifar 10 Dataset](http://www.cs.toronto.edu/~kriz/cifar.html), a very famous dataset that contains images for 10 different categories:\n", + "\n", + "- airplane \t\t\t\t\t\t\t\t\t\t\n", + "- automobile \t\t\t\t\t\t\t\t\t\t\n", + "- bird \t\t\t\t\t\t\t\t\t\t\n", + "- cat \t\t\t\t\t\t\t\t\t\t\n", + "- deer \t\t\t\t\t\t\t\t\t\t\n", + "- dog \t\t\t\t\t\t\t\t\t\t\n", + "- frog \t\t\t\t\t\t\t\t\t\t\n", + "- horse \t\t\t\t\t\t\t\t\t\t\n", + "- ship \t\t\t\t\t\t\t\t\t\t\n", + "- truck\n", + "\n", + "In this exercise we will reach the limit of what you can achieve on your laptop and get ready for the next session on cloud GPUs.\n", + "\n", + "Here's what you have to do:\n", + "- load the cifar10 dataset using `keras.datasets.cifar10.load_data()`\n", + "- display a few images, see how hard/easy it is for you to recognize an object with such low resolution\n", + "- check the shape of X_train, does it need reshape?\n", + "- check the scale of X_train, does it need rescaling?\n", + "- check the shape of y_train, does it need reshape?\n", + "- build a model with the following architecture, and choose the parameters and activation functions for each of the layers:\n", + " - conv2d\n", + " - conv2d\n", + " - maxpool\n", + " - conv2d\n", + " - conv2d\n", + " - maxpool\n", + " - flatten\n", + " - dense\n", + " - output\n", + "- compile the model and check the number of parameters\n", + "- attempt to train the model with the optimizer of your choice. How fast does training proceed?\n", + "- If training is too slow (as expected) stop the execution and move to the next session!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.datasets import cifar10" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "(X_train, y_train), (X_test, y_test) = cifar10.load_data()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.imshow(X_train[1])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train = X_train.astype('float32') / 255.0\n", + "X_test = X_test.astype('float32') / 255.0" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train_cat = to_categorical(y_train, 10)\n", + "y_test_cat = to_categorical(y_test, 10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train_cat.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Conv2D(32, (3, 3),\n", + " padding='same',\n", + " input_shape=(32, 32, 3),\n", + " activation='relu'))\n", + "model.add(Conv2D(32, (3, 3), activation='relu'))\n", + "model.add(MaxPool2D(pool_size=(2, 2)))\n", + "\n", + "model.add(Conv2D(64, (3, 3), padding='same', activation='relu'))\n", + "model.add(Conv2D(64, (3, 3), activation='relu'))\n", + "model.add(MaxPool2D(pool_size=(2, 2)))\n", + "\n", + "model.add(Flatten())\n", + "model.add(Dense(512, activation='relu'))\n", + "model.add(Dense(10, activation='softmax'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.compile(loss='categorical_crossentropy',\n", + " optimizer='rmsprop',\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train_cat,\n", + " batch_size=32,\n", + " epochs=2,\n", + " validation_data=(X_test, y_test_cat),\n", + " shuffle=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/solutions/8 Recurrent Neural Networks Exercises Solutions.ipynb b/solutions/8 Recurrent Neural Networks Exercises Solutions.ipynb new file mode 100644 index 0000000..76f49e1 --- /dev/null +++ b/solutions/8 Recurrent Neural Networks Exercises Solutions.ipynb @@ -0,0 +1,333 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Recurrent Neural Networks" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Time series forecasting" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from pandas.tseries.offsets import MonthEnd\n", + "\n", + "df = pd.read_csv('../data/cansim-0800020-eng-6674700030567901031.csv',\n", + " skiprows=6, skipfooter=9,\n", + " engine='python')\n", + "\n", + "df['Adjustments'] = pd.to_datetime(df['Adjustments']) + MonthEnd(1)\n", + "df = df.set_index('Adjustments')\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "split_date = pd.Timestamp('01-01-2011')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train = df.loc[:split_date, ['Unadjusted']]\n", + "test = df.loc[split_date:, ['Unadjusted']]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "sc = MinMaxScaler()\n", + "\n", + "train_sc = sc.fit_transform(train)\n", + "test_sc = sc.transform(test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_sc_df = pd.DataFrame(train_sc, columns=['Scaled'], index=train.index)\n", + "test_sc_df = pd.DataFrame(test_sc, columns=['Scaled'], index=test.index)\n", + "\n", + "for s in range(1, 13):\n", + " train_sc_df['shift_{}'.format(s)] = train_sc_df['Scaled'].shift(s)\n", + " test_sc_df['shift_{}'.format(s)] = test_sc_df['Scaled'].shift(s)\n", + "\n", + "X_train = train_sc_df.dropna().drop('Scaled', axis=1)\n", + "y_train = train_sc_df.dropna()[['Scaled']]\n", + "\n", + "X_test = test_sc_df.dropna().drop('Scaled', axis=1)\n", + "y_test = test_sc_df.dropna()[['Scaled']]\n", + "\n", + "X_train = X_train.values\n", + "X_test= X_test.values\n", + "\n", + "y_train = y_train.values\n", + "y_test = y_test.values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 1\n", + "\n", + "In the model above we reshaped the input shape to: `(num_samples, 1, 12)`, i.e. we treated a window of 12 months as a vector of 12 coordinates that we simultaneously passed to all the LSTM nodes. An alternative way to look at the problem is to reshape the input to `(num_samples, 12, 1)`. This means we consider each input window as a sequence of 12 values that we will pass in sequence to the LSTM. In principle this looks like a more accurate description of our situation. But does it yield better predictions? Let's check it.\n", + "\n", + "- Reshape `X_train` and `X_test` so that they represent a set of univariate sequences\n", + "- retrain the same LSTM(6) model, you'll have to adapt the `input_shape`\n", + "- check the performance of this new model, is it better at predicting the test data?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train_t = X_train.reshape(X_train.shape[0], 12, 1)\n", + "X_test_t = X_test.reshape(X_test.shape[0], 12, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train_t.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import LSTM, Dense\n", + "import tensorflow.keras.backend as K\n", + "from tensorflow.keras.callbacks import EarlyStopping" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "model = Sequential()\n", + "\n", + "model.add(LSTM(6, input_shape=(12, 1)))\n", + "\n", + "model.add(Dense(1))\n", + "\n", + "model.compile(loss='mean_squared_error', optimizer='adam')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "early_stop = EarlyStopping(monitor='loss', patience=1, verbose=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train_t, y_train, epochs=600,\n", + " batch_size=32, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test_t)\n", + "plt.plot(y_test)\n", + "plt.plot(y_pred)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exercise 2\n", + "\n", + "RNN models can be applied to images too. In general we can apply them to any data where there's a connnection between nearby units. Let's see how we can easily build a model that works with images.\n", + "\n", + "- Load the MNIST data, by now you should be able to do it blindfolded :)\n", + "- reshape it so that an image looks like a long sequence of pixels\n", + "- create a recurrent model and train it on the training data\n", + "- how does it perform compared to a fully connected? How does it compare to Convolutional Neural Networks?\n", + "\n", + "(feel free to run this exercise on a cloud GPU if it's too slow on your laptop)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.datasets import mnist\n", + "from tensorflow.keras.utils import to_categorical" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "(X_train, y_train), (X_test, y_test) = mnist.load_data()\n", + "X_train = X_train.astype('float32') / 255.0\n", + "X_test = X_test.astype('float32') / 255.0\n", + "y_train_cat = to_categorical(y_train, 10)\n", + "y_test_cat = to_categorical(y_test, 10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train = X_train.reshape(X_train.shape[0], -1, 1)\n", + "X_test = X_test.reshape(X_test.shape[0], -1, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(X_train.shape)\n", + "print(X_test.shape)\n", + "print(y_train_cat.shape)\n", + "print(y_test_cat.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# define the model\n", + "K.clear_session()\n", + "model = Sequential()\n", + "model.add(LSTM(32, input_shape=X_train.shape[1:]))\n", + "model.add(Dense(10, activation='softmax'))\n", + "\n", + "# compile the model\n", + "model.compile(loss='categorical_crossentropy',\n", + " optimizer='rmsprop',\n", + " metrics=['accuracy'])\n", + "\n", + "model.fit(X_train, y_train_cat,\n", + " batch_size=32,\n", + " epochs=100,\n", + " validation_split=0.3,\n", + " shuffle=True,\n", + " verbose=2,\n", + " )\n", + "\n", + "model.evaluate(X_test, y_test_cat)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/solutions/9 Improving performance Exercises Solutions.ipynb b/solutions/9 Improving performance Exercises Solutions.ipynb new file mode 100644 index 0000000..97ba008 --- /dev/null +++ b/solutions/9 Improving performance Exercises Solutions.ipynb @@ -0,0 +1,520 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 9 Improving performance Exercises Solutions" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 1\n", + "\n", + "- Reload the IMDB data keeping only the first 20000 most common words\n", + "- pad the reviews to a shorter length (eg. 70 or 80), this time make sure you keep the first part of the review if it's longer than the maximum length\n", + "- re run the model (remember to set max_features correctly)\n", + "- does it train faster this time?\n", + "- do you get a better performance?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.datasets import imdb\n", + "from tensorflow.keras.preprocessing.sequence import pad_sequences\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Embedding, LSTM, Dense" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "max_features = 20000\n", + "skip_top = 200" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "(X_train, y_train), (X_test, y_test) = imdb.load_data('/tmp/imdb.npz',\n", + " num_words=max_features,\n", + " start_char=1,\n", + " oov_char=2,\n", + " index_from=3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "maxlen = 80" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train_pad = pad_sequences(X_train, maxlen=maxlen, truncating='post')\n", + "X_test_pad = pad_sequences(X_test, maxlen=maxlen, truncating='post')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Embedding(max_features, 128))\n", + "model.add(LSTM(64, dropout=0.2, recurrent_dropout=0.2))\n", + "model.add(Dense(1, activation='sigmoid'))\n", + "\n", + "model.compile(loss='binary_crossentropy',\n", + " optimizer='adam',\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train_pad, y_train,\n", + " batch_size=32,\n", + " epochs=2,\n", + " validation_split=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "score, acc = model.evaluate(X_test_pad, y_test)\n", + "print('Test score:', score)\n", + "print('Test accuracy:', acc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 2\n", + "\n", + "- Reload the digits data as above\n", + "- define a function repeated_training_reg_dropout that adds regularization and dropout to a fully connected network\n", + "- compare the performance with/witouth dropout and regularization like we did for batch normalization\n", + "- do you get a better performance?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.datasets import load_digits\n", + "from tensorflow.keras.utils import to_categorical\n", + "from sklearn.model_selection import train_test_split\n", + "from tensorflow.keras.layers import Dropout\n", + "import tensorflow.keras.backend as K" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "digits = load_digits()\n", + "X, y = digits.data, digits.target\n", + "y_cat = to_categorical(y)\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y_cat, test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def repeated_training_reg_dropout(X_train,\n", + " y_train,\n", + " X_test,\n", + " y_test,\n", + " units=512,\n", + " activation='sigmoid',\n", + " optimizer='sgd',\n", + " do_dropout=False,\n", + " rate=0.3,\n", + " kernel_regularizer='l2',\n", + " epochs=10,\n", + " repeats=3):\n", + " histories = []\n", + " \n", + " for repeat in range(repeats):\n", + " K.clear_session()\n", + "\n", + " model = Sequential()\n", + " \n", + " # first fully connected layer\n", + " model.add(Dense(units,\n", + " input_shape=X_train.shape[1:],\n", + " kernel_initializer='normal',\n", + " kernel_regularizer=kernel_regularizer,\n", + " activation=activation))\n", + " if do_dropout:\n", + " model.add(Dropout(rate))\n", + "\n", + " # second fully connected layer\n", + " model.add(Dense(units,\n", + " kernel_initializer='normal',\n", + " kernel_regularizer=kernel_regularizer,\n", + " activation=activation))\n", + " if do_dropout:\n", + " model.add(Dropout(rate))\n", + "\n", + " # third fully connected layer\n", + " model.add(Dense(units,\n", + " kernel_initializer='normal',\n", + " kernel_regularizer=kernel_regularizer,\n", + " activation=activation))\n", + " if do_dropout:\n", + " model.add(Dropout(rate))\n", + "\n", + " # output layer\n", + " model.add(Dense(10, activation='softmax'))\n", + " \n", + " model.compile(optimizer,\n", + " 'categorical_crossentropy',\n", + " metrics=['accuracy'])\n", + "\n", + " h = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=epochs, verbose=0)\n", + " histories.append([h.history['accuracy'], h.history['val_accuracy']])\n", + " print(repeat, end=' ')\n", + "\n", + " histories = np.array(histories)\n", + " \n", + " # calculate mean and standard deviation across repeats:\n", + " mean_acc = histories.mean(axis=0)\n", + " std_acc = histories.std(axis=0)\n", + " print()\n", + " \n", + " return mean_acc[0], std_acc[0], mean_acc[1], std_acc[1]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mean_acc, std_acc, mean_acc_val, std_acc_val = repeated_training_reg_dropout(X_train,\n", + " y_train,\n", + " X_test,\n", + " y_test,\n", + " do_dropout=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mean_acc_do, std_acc_do, mean_acc_val_do, std_acc_val_do = repeated_training_reg_dropout(X_train,\n", + " y_train,\n", + " X_test,\n", + " y_test,\n", + " do_dropout=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_mean_std(m, s):\n", + " plt.plot(m)\n", + " plt.fill_between(range(len(m)), m-s, m+s, alpha=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plot_mean_std(mean_acc, std_acc)\n", + "plot_mean_std(mean_acc_val, std_acc_val)\n", + "plot_mean_std(mean_acc_do, std_acc_do)\n", + "plot_mean_std(mean_acc_val_do, std_acc_val_do)\n", + "plt.ylim(0, 1.01)\n", + "plt.title(\"Dropout and Regularization Accuracy\")\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Accuracy')\n", + "plt.legend(['Train', 'Test', 'Train with Dropout and Regularization', 'Test with Dropout and Regularization'], loc='best')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 3\n", + "\n", + "This is a very long and complex exercise, that should give you an idea of a real world scenario. Feel free to look at the solution if you feel lost. Also, feel free to run this with a GPU, in which case you don't need to download the data.\n", + "\n", + "If you are running this locally, download and unpack the male/female pictures from [here](https://www.dropbox.com/s/nov493om2jmh2gp/male_female.tgz?dl=0). These images and labels were obtained from [Crowdflower](https://www.crowdflower.com/data-for-everyone/).\n", + "\n", + "Your goal is to build an image classifier that will recognize the gender of a person from pictures.\n", + "\n", + "- Have a look at the directory structure and inspect a couple of pictures\n", + "- Design a model that will take a color image of size 64x64 as input and return a binary output (female=0/male=1)\n", + "- Feel free to introduce any regularization technique in your model (Dropout, Batch Normalization, Weight Regularization)\n", + "- Compile your model with an optimizer of your choice\n", + "- Using `ImageDataGenerator`, define a train generator that will augment your images with some geometric transformations. Feel free to choose the parameters that make sense to you.\n", + "- Define also a test generator, whose only purpose is to rescale the pixels by 1./255\n", + "- use the function `flow_from_directory` to generate batches from the train and test folders. Make sure you set the `target_size` to 64x64.\n", + "- Use the `model.fit_generator` function to fit the model on the batches generated from the ImageDataGenerator. Since you are streaming and augmenting the data in real time you will have to decide how many batches make an epoch and how many epochs you want to run\n", + "- Train your model (you should get to at least 85% accuracy)\n", + "- Once you are satisfied with your training, check a few of the misclassified pictures. Are those sensible errors?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# If you are running this locally\n", + "# uncomment the next 4 lines to download, extract and set the data path:\n", + "# !wget 'https://www.dropbox.com/s/nov493om2jmh2gp/male_female.tgz?dl=1' -O ../data/male_female.tgz\n", + "# data_path = '../data/male_female'\n", + "# !mkdir -p {data_path}\n", + "# !tar -xzvf ../data/male_female.tgz --directory {data_path}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.layers import Conv2D\n", + "from tensorflow.keras.layers import MaxPooling2D\n", + "from tensorflow.keras.layers import Flatten\n", + "from tensorflow.keras.layers import BatchNormalization\n", + "from itertools import islice\n", + "from tensorflow.keras.preprocessing.image import ImageDataGenerator" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "\n", + "model = Sequential()\n", + "model.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))\n", + "model.add(MaxPooling2D(pool_size = (2, 2)))\n", + "model.add(BatchNormalization())\n", + "\n", + "model.add(Conv2D(64, (3, 3), activation = 'relu'))\n", + "model.add(MaxPooling2D(pool_size = (2, 2)))\n", + "model.add(BatchNormalization())\n", + "\n", + "model.add(Conv2D(64, (3, 3), activation = 'relu'))\n", + "model.add(MaxPooling2D(pool_size = (2, 2)))\n", + "model.add(BatchNormalization())\n", + "\n", + "model.add(Flatten())\n", + "\n", + "model.add(Dense(128, activation = 'relu'))\n", + "model.add(Dense(1, activation = 'sigmoid'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.compile(optimizer = 'adam',\n", + " loss = 'binary_crossentropy',\n", + " metrics = ['accuracy'])\n", + "\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_gen = ImageDataGenerator(rescale = 1./255,\n", + " width_shift_range=0.1,\n", + " height_shift_range=0.1,\n", + " rotation_range = 10,\n", + " shear_range = 0.2,\n", + " zoom_range = 0.2,\n", + " horizontal_flip = True)\n", + "\n", + "test_gen = ImageDataGenerator(rescale = 1./255)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train = train_gen.flow_from_directory(data_path + '/train',\n", + " target_size = (64, 64),\n", + " batch_size = 16,\n", + " class_mode = 'binary')\n", + "\n", + "test = test_gen.flow_from_directory(data_path + '/test',\n", + " target_size = (64, 64),\n", + " batch_size = 16,\n", + " class_mode = 'binary')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(train,\n", + " steps_per_epoch = 800,\n", + " epochs = 200,\n", + " validation_data = test,\n", + " validation_steps = 200)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_test = []\n", + "y_test = []\n", + "for ts in islice(test, 50):\n", + " X_test.append(ts[0])\n", + " y_test.append(ts[1])\n", + "\n", + "X_test = np.concatenate(X_test)\n", + "y_test = np.concatenate(y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict_classes(X_test).ravel()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "np.argwhere(y_test != y_pred).ravel()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.imshow(X_test[14])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tests/test_nb.py b/tests/test_nb.py new file mode 100644 index 0000000..700de90 --- /dev/null +++ b/tests/test_nb.py @@ -0,0 +1,77 @@ +# tests that too long to execute on Travis are temporarily commented out +# TODO: find a way to fix this + +import subprocess +import tempfile + + +def _exec_notebook(path): + with tempfile.NamedTemporaryFile(suffix=".ipynb") as fout: + args = ["jupyter", "nbconvert", "--to", "notebook", "--execute", + "--ExecutePreprocessor.timeout=1000", + "--output", fout.name, path] + subprocess.check_call(args) + + +def test_0(): + _exec_notebook('course/0_Check_Environment.ipynb') + + +def test_1(): + _exec_notebook('course/1 First Deep Learning Model.ipynb') + + +def test_2(): + _exec_notebook('course/2 Data.ipynb') + + +def test_3(): + _exec_notebook('course/3 Machine Learning.ipynb') + + +def test_4(): + _exec_notebook('course/4 Deep Learning Intro.ipynb') + + +def test_5(): + _exec_notebook('course/5 Gradient Descent.ipynb') + + +def test_6(): + _exec_notebook('course/6 Convolutional Neural Networks.ipynb') + + +def test_8(): + _exec_notebook('course/8 Recurrent Neural Networks.ipynb') + + +def test_9(): + _exec_notebook('course/9 Improving performance.ipynb') + + +def test_2_sol(): + _exec_notebook('solutions/2 Data exploration Exercises Solution.ipynb') + + +def test_3_sol(): + _exec_notebook('solutions/3 Machine Learning Exercises Solution.ipynb') + + +def test_4_sol(): + _exec_notebook('solutions/4 Deep Learning Intro Exercises Solution.ipynb') + + +def test_5_sol(): + _exec_notebook('solutions/5 Gradient Descent Exercises Solution.ipynb') + + +def test_6_sol(): + _exec_notebook('solutions/6 Convolutional Neural Networks Exercises Solution.ipynb') + + +def test_8_sol(): + _exec_notebook('solutions/8 Recurrent Neural Networks Exercises Solutions.ipynb') + + +def test_9_sol(): + _exec_notebook('solutions/9 Improving performance Exercises Solutions.ipynb')

    &pytatK-wwWMvX%D$wnEO8?)5Tv&8NP;aK zly?XF;kSz3QZok0FKAGLbrS_9FXFx9>x`wSOEn2Xib$s^04N)PE&J<-E+b1-`D$Km zzVk|?LDL+G^Sm5V=;(sf4Xvf6M)SHAQqwZ~Dh?_P!ly;~#7FqViit*a`Ewqi`rCcgNKzJnU=VDd?~9{m zGs?`CPj!wIL}#kYIFSz^p(U5Z8H?()ndLuhU(ZxIT|(Q6btArQB|#-g)Tjnv5Cy#X z+Z^-S4H(Nfh2?1O+j8M@NDx7Re>`11l4p(AaD@tfFT>KmD3KP4krU`GisXvg*94d) z*h@)I?gdt4YEl>COr`-cJ#S%r2ieabBEFilD6IbgyxydsD0r0y{Epne@*m58I1f7& zIptLn-A9pNVM6?xp5yz(5dhQn4|nfQw$zJ*M4 ze3?~QYt70=foMeP@W(Eo@8#C`h~#ukQD$nUs6a|y8Wlg6!xC@H`V3F9x|Up~LxFwb zbR+;wf&dY7HuCAu5f0R8)s!UX~Agc2CFFiIB_hz z4vWfT^^-RKm{TTU!BCbIoh>M)Bz!84Ms`1-!}dzy<8IH(#HBA%={F;Ek1vYaZ}!78 zbpnp9ge>Yw(jr1&e>dCh=Z7)o@~7G>1xRW*LZXGO4hK7z2~2?jLU-F}pAIU%IpM`{ z^;5;Pw%RG()SCs$4%eOUzfYW86j}No$)2Z4OO7|H4Z&agj{P>oSBo-L=TzpQK}#xO zXf`QO7Kj9!`j1$X6h}4Wppq8y6)&3B43@WBYYpiENIT4setUiKc6K+$w0wQRE}*Hj z<`j^pTYw2tVCo6mV-}6E&Yh;wRAugIAw#-=cN$eBY5Ifo!>6;i6IA6qV%TNT0iG?O@H@^P>Z%FsB?lM+s zlxA5&)81$WkBKTi5+cM~Y&iC{MjNUQsoh=SDO9UhKRa~9JAtz%ICF{HeMxOlg`k0` z$@*bOL8APqiKrwRzkc=O2L^B zNP~NjQ+~Zh7IQO3X4_>+LY1W{BuJg6M=wE!ej#`?;#5dekWfJ7BwR`V0D**fPHJmZ z%ZEx7RRdI~=6-!TVe#QAP3N)?jA@MpQk`nd>rq0iE#dRQTnok}6bfZZT(+{1Vp0-M zFiDa3!?zJ+hMz77UyDqFWSv8<_S^4>o?VowtjF;DAx8GnEN9N&*QOraATB#;Srj>d z6$x|~654`hPlXe>^CK1~4CT$em!&NgcYx}VBUJT+ikB?SQs!CisS8q?G8Rq5Tj*yK zUIOArvi51xvXGROC2)z8%T4bSgzh5+aBYk1kIeEnvfSZGN_3Qxs0ChA&kuQG*HY3} zrK%AcwV9J7=|3W8{xDW{z|IJDy;@!xp*)j__7^avbH5+QM}NkcC?F5F|+_%L$UfvK3Lt3HGNh z(0DcKJ|l3pl!jGsbQF;@A80%B!rV8PuAOa%L0DFjvScW#dh!5TK6tRI`;7M~Zn0pg zFapsMQcdIf4=$K$W}cNRkP?=EB*o0wZ-vO~7*36#JC)+|r)jF$)2l*OfKxkJBTc?v zTw2ZXtvR5lH2RXC3YE8oF%SguK4<5OkBJ)%(s&iAZNX8~9X{9J{o|#G;O;ODC6*l_ zNpDMFE-eObN&4V=TgE~mExwvmvyZdC;%z0uRj5EA0L|l;+`9gX#aEtFs!7Dy66l*qr!`iv(G;Za57 zDy4pnK}tv=B`eYa^w{5TJ+UU>dbH%>DRvT}q=cr$ATQwr8;c8`Urai^!c0}IS5ZoI zqEH|~I~WrfX3ThIvVyZv)}**W3qouMm(K)Ege|aaD>jFYhGjliYNIuEjiCBdaj2SS9w0!KUY zy@Yy3A#{Dhv9cfae&{|w;ChA}Q}k*|kf9|J@R1iFT!VkEBRPJ2?p(r{tzk*fJ~E*x zAF@CBd0KH>#OYldjHk!pQIwwybdAr-aa!>%a%xtfTKI>KMf8IMp8o*8SUB8VXr{V= zw9myfY*!U2wX&B0h>45I#6LY|DZ(eh2)VYS{MY4&N~a!GQc4Pxmx+&x70x%_e?x}+ z`z&>|I6+ZDQ>c)gKzdFuYk(oPvbKx02h4LHa9RS($<$OySylZ!R>WV5Sz@%Pf`v@U zPs^e5KWs`kwUDZLi3z>aIz^-P#1AvB?p{y_NJ*2i{+QH(XX={JFqvPcQw38#5wwrj z(+JhpcZmT*#E}w2?s?Ci4z8>BmbdVO5Cy$w>xP=zZ+Ua@?xGBV`G&7tSj^JiI1)l zQc6r5FdI`jw7kY+F_`rV%w{tgj$E@DjK*V^EXHFonB~ZtDi<>vw%BC~ao31K5;rO) z0LNN;75@OF&ma3!XGkq&RZP&Q#NyO6w%7*x)ymV?W7K1ryD;LmI2*J~k2$EPHB4ny z%+)-|AQzB@r9~i~WDI?G$UpldUe7ZuwwHx+{s*q$+>K55Zq*f_$O!|-qEu!&bMn8+ ze^lyyRya2LV=Rzt_a8-M4uOr_@JYG@x74W)U+gv5f3dDo-9BwhzBA9;Knr4>(9Ihv zo@;`oU(RBB;!&5m$2@sTicSFGth*u0m$ujXqwtRs z<&^F48mg=FCjyJEzR+!!$%rSJRgT1q?}zVX{{a5UOSGQFa{64OiFkV<&a%38!woAh zq;84!ldz2-B$59Bw{JXtd7}Q9^{q@}QL5yef^+qyEb<9&a3;6{fL%+(Kk38T_ZLwr zw=$`$aY_j(Lx!TE)Dg-xD@oo&1M7-cwC`b#(>N96xkbLWnz;6L?->|c%* z+$V~%npdDDZDuWZYf8DG>HtVKZy32A4fAT(`BX+!3)`(v=dmaA(U#`&j71r5riW8Yq zrU-7atx8IVDVf`%qa97z7ykfcrp9AT+dM^=rJ*TG>M5M-u?SI^BWTrbm}Tt~{Q&z5 z91Z^?wQR&PSODlpz(p%2uvv zPkA$W7BYS;XihuxWu%)*> z1&z-=#x0DWiTG2rFUF;Mo#x!RaRn+#lepN&kc@l@wK(!Pe>BXg5CHGk zX-h+Z>_JH+^Xa$NH^aPN+n2NDP)k)jN0&KI;L^7ag91*VOdDQQW6vH*1EkA{Kcb)i z039@c`XmkmvG4a^e)#j*%Y=CSw-|bwo~aH&8o(qN+r$!~w4L{~O{nfG{{T+B!y>6o zZv^oLeos``P;Id8w$**0T|geHH@5c2&7R3W)-Seh%^7VOlYhr4Qj&$2(X5!=ML?ZO zu)K_Qk7D2J=}lQp-El7r=af1ELf@x+6eUBd2s`?N$lm66#AEs>W{*>6sU43XgZ}_3 zEmsibZ1_b*7#-q(_)=6=C!`d_bLo6`KmMe=5ymd2i#&7qK47KB znzFVQrA!hQd@2*p*sFUy{{UAW%J}w~w7tX>RK-ChLbb5e{ETV`)_yZoa**{>8jU!_K)?M#*}YN{{AH-}%9UNU#xc^utqr$nNlQ zO@C(`Z&O01d`;6=~th);u{;U6v<07Mw_DLBgY zPf2dK+}EF=IsFRO(0ZYXqA+pu$K0=hy}x$7lJJimx0rDCU%I#9Q;c0Y6bKLvts+Lp z&mB$d3;welOW19F3srTh%rbIPR>O)b(bNJW2K%3`2LAw3kMu0ft81&Xo)HyP?gaZh2N>aW?eZDy2I2QzuAYtomRQ6J6L+le4=69?tj`jGzsq8AwZHt_{^ zeZlmL&iH9g7f{n_B~2!7CvKdv$^OlL+4=WkJVQrQL7CLiyvo6n>a;IO_*DuYtnIc;O7J)i##G>Oxf8pooG9fOfUT_r;Ow!T#Q;Q9b(~s7h|3?HgWj zz9VoS9_O8%=d}LoQB^|YD%TCIO{oT8izpr7M*DOa`knrppX-NHkyO#}hiNXknq_Vy z-P?J>l{rs5m8nFLcc15jz$LUcS-CUnKgH}&g} zls&L}DRHM@d_h@5pXC+VZG9Tm3vmkWsuCn?O5}sRud3T}#QKd3p>UQHUI_306_CsT zBvA*S3+*?whx&i;ceM8nRB`_RWp#O1@f^vGYePp}JwYQ>l%&d6_qgOQ^7%cpR(maW z!NeV%@vjF|RWnr3WgYqg7byf41t`LjbzMTnJz@9Q7yU|j-`KN==vmDksjT7J$PUvy zR8ty;z^VW-8j=KcjD1bwZqGXt{{UA`$J@*)RYI)sgiCcT{vKhKyAo2MG_OG><73aJ zD1vb_OfrfmJ^}d)OHU(3J*3dV_`ikmt=#Q~^L0|T$`Xg&B?S>JB#8-tOh@&_+w7~D zKf&B)${!CVgFmNGGIXU%N`L?zhsCkKKyeWE!uBQN?_)kZ?l^**zRFxys%rL%yQK+8 zi<2Drn|WUim0r;Gc^3%qu1K7@gr_dAReM$CYYR%3qFV{rfu=>t7q-)vs)&iUoDcFB z&T6CEBZ1F>=GRnFW`Fd*9`{eBMwX#_NrIvb3m&2(*B+B#WSk+wTtCDwXN}~vbos-9 zP8y}Kgs;VAE_dW{OmX)Sy_;njZxhj_E0=A3Yj47ZO+@Dn+Bnc+araKA2?aMeH@N?jfZQltl(0F_MEq~{ECN( zsdEZ8=-bRyM$lTpb>9$4(3235NuEIU)M1XP&-#0{45u|O_l?*76+vtelBkKD;_09K zk5d-Uw(qeQ19maMH2hh@++CVhQ_{YM{{V;giFu+_paPN;0WtAy9%9(8ne5{-q z`zmEs59NRQ#lVsN~_)?t^i&8@faR3uvzbV^}{g*N> z*85}0X+7n(X!woZ;cF+ml&A#hv`UI}*w4!f@!$UdV%OP5WZLU!DqN>$_X*P^T-Yah&rnDO+_6JKU|8QV1m~n<$gKT6~5rPRny#{{XO_$=j&o zPAScEtkG2JTj9#$<8;8m34vp7v$iDBwa$2Ji98Ahs=JlHrS)N>)4SRQSp~*`Ks(&IZn^ zC`wY7r7B2R)RLeNgozih7mJ@M!FsNlnqb#NNpLnvHgnly4Q8iXa_ZU|*KjJZJF7pm zUJv3r?$MI!8F|dEm4ZrdEXRI`iU`Ik7v3Xx@MH?)Om_ju!Jj860IpJ zBmw{y9;@2N9Z{BltS(i>PczxG+#u~fX_q*b>nh$2xSG_1b%g2En|@xHlW}%ek>>e2 z>K)3d^DL`0T2zDt1(fQ65y})fSV81t634B0m_AXQW8qcP)3L2=H@61J#jX(c3GFVX zr-P`}`z|*14N8PAbm;^D4dpNo?$h)f@jW$n3$D9Tl9w9P0Xk%mAbA7V6xVK@ljI$p zc6{AtN0qTbSeH_#Lk;OpnHrJ@kR+0J`zA5kmumxuy_hp<`a+dEPe`P;gc69`NwipA z!cC2>iZqdy>f0d%2O9b){Z@GO0m3fT_dg1+?HAfNGUHy{b1Fn;1&qHhe6dK{2}~(F zD4Dqm@*+m|$I@?SPSsiMgR%U*Zz(US+H|n`5PUOqnTYvwwAu`QcIbOz&nbABRbAum z7auEf36&D9M|0v5O@~ZKoAA<%5kptdZ_IG0FQGDa#WV7s#Q@;J{5Osl94Qv1?8hMQ!Sc?VX|!`YLxDGAEpfKzaXg1^2T2b zX-a@f&_dD_aOs5d)c!l!%cxn6?5}wT@fHt^2NFOORAPSK*}1Xxh@E z0kTw6r2Pgsi`pC71GK7|48&#GB~2|AAyY!Ot+IyP6aN6zo3w})kpg$ezRP)9{jI%| z^K6#BrEKw?ElZD6W=%+XooGQ)0!l~;9aGGK{@pqH&rfEWHtl)I0GqnMss;^Q_bV-+ z3l?&Ii>CWV;4aBH{nh^f)_s}e*?VsgS5cQY?yeIC^4tOeP_Rh3u-uA&G5-KbUdDSv z%@v#QCU(|MRjn?ehu5uIg!l^69X=ul*v8(@d==YQ2=)zCnelfGIiFm58(*$*k6R78 zCvIppo)7;3RgackISiPaARFY6eC1u;lJM4b+15o*!Q4XUeOZ?@5X0y_=%{QPD9V&U zxi`FW#CNn>B<09WI9{IYr@~;!QGvPIPv6TGo4(QQOy^l=fT^(ecotMs;tIH#Dop%dTVv@xBU9I5W5qajE98AbIU6Te zwf6A2pW5@Y%*TkhMwYiJ4y!QBT}deft5ShJ5#o`|$5f7(hW25`P4V9iGf*4TnNyuL z4J~6+D@lT#=gf(Yla8F>I_B$|q()(-DlRr1BodgP5#I4_r+X8MBim!LNBxj{ey8HB zp$)mhJYeV*EuiXdo$0iM{-W3@Bn8GE;^-a-SHc;vzp*1e5B#a0X>BpboFzw7O8Tku z9G;mgr*OguD7iq01th`Tn*p{OYKBqmW7#YDU1Cy<`jB^KRpM!BfC6UlWGZ$tHoP@?PrO7p8H8`W{G;4dXg4^LK9Sr zO~gzEZDBm@FxWJ&g}d32cpn|ooe7!d#z%hzMSDr?^%*94QIYWql}}Sbv+nPJ0dx`q zd`cY6{9n!HVLlM;PmMjE(%m*=?-|bt)(eF!tqE;Jfu?35M4k5?ARdbLrtH3(+B>tV zUNhlzCF<5tmkU7(DpA~x3 zLghk8IZV2iI!e(*wXC&err?f2BC=b)N>&;Q6Aig!FV1f>pffR>X3k+gdzyuIZGPpC_lD4C@&th79@wIAthJYG|f+6C6s#Q~ z9Hk_sAPM-7u0CDld?fz>U_GpH7X{a8394GcC1pCsp%7-)Ji7VgN=QW7Ga0f$74#|o zgRYEB_PkJVvGp8<-y9R3BaV1ZlBEtdmsly5?j{K~BpX`$i;I&aS67uUkDbu6NVNgCi=_QSi)1ckWm0@4ohPz{ zExM4?E>vhGWB^$a;RC5m$EMM?JImQCkJH-6V&#RYE+zUWSwSm2kU~Me>Iu{8uuMRo zn(Q{N*Ry92zOzQp{{U8XMM_GDL@c48^=Xp=~{{W}Hh|f_W^KlVSAK_I{ANQw?=z7;Kc;3#HlD#Xz{B`lusa4v`F;E{{ZynoBILN z9&&A9e_48vmt0w;2Em{Q>B0xJt}p)p>1(xNmbSF2mW21UVFyx4Cs0p2oy19H0s$%^3`!YamrnfcJj_+shSraZ#1fPE>+d*Bn2ql34#sw z)f;^=^rzU*gEA(28FPqKDC;XL0@_%6ORj22({e$RH<{7lhV$+Sn?b)K;)9E{>^wjt`F@jX2@gy;uT8sWg#a*$kMVu_TD25-rX6HPqW@@ zQBv7@nw9pPSq}GLOn9Jzd04=>0>olY?;Ntp7?U@ z+q1#N-JWL|MN5q7%xSa|vZS^o#;B12Gi%ISd*eq%7>;6J{;D|2_&-(kDK!wW&BokW z$LhF`*&EwNr?Gw{Zz0X9YbrQSsr06u)SJ*Q;V4q{kW(ZdEvyM6uRWr@o%l=JE3^6v z9Oj;t=a55`l_3%WLHK;+rftr{Y|{hsnArH^*(~;?*J+ zOBi!9;08uT@~%z*?4N@DmMLlSoSKn8#uW{^wfNNHf~>BINs(ZA`I0&hgL5Qse+*S- zIg8CRRZ!ZT1zrG@2>~R|_EyohD!x0a;iU0p27ddjw^qoF2}wTiXG%!*Aq$Vnj8b_kBf zE2%SVTM$P2l_m9-+;KMmKc;I}BM)S;G6ErAluQ zNj4Ba-P9l4!)shfLKclul_bm)ar-~HFlKuH0P!rf=pHn}tR@pOJqbH+wc_(s=UhPk zS(=2Exur4!0RR;hdiBTRzOm_HgqotZbgpZeZ5d7-tkMks0EeoXLDYM-6oLqT(LR z>9Z{D$NQZsldnk!cqRuk^xu~v{+A*-h<|)7X!VsI*9A^+ClS4naUD7qboawSD~|yu zd-)PQG1FWVn3}powxO%eBqA?6ZDC{lzPPG$9>W&8w%=eYQ!5DwDuV?=Nl{kg=Zj;7 zG6$$>*h<^d;u4)x9u*G_!cXa|*KB-MI0b5VsP`Hv5*;2x!iIo2UZBgy=AlkZf=|n6v|FD$u7+P0ByF|k>z|)Dl(Lh98@M1dF2tyc)#`A z6qjvzUSy2TPf(>nD!ZHb45w@KnCk}#{+`taNzr$87}ND5>A3K^0eopq#JMtDOX*US zB4>W4@ys3P5gg6$cdAsUoWPHSkb2zPdBkV1+`l(_gVj}DTunMaN*s0oN=!i7RDK?t zdg0=#zwwnSg=$CxZo728F7?eQjn>}keH&;Nil9^P{ZO|WaW1*uY9E)8K8N>inB<>n z{FIJ0cA+|TRB9@)@cIwk@zUY2`$QCe9O?l|9xvCB+jzx!+lOb4aX?G$HlFz+2_Z#M z_47YC#$Tt?Cu^;3XtfSuEO&Jf_E*ka6pm6U#VbT;w3z3yx56>f95qyrcZD5SOcgAj z7eXfIYx#e;#TVGeXH_{CZq-82r1-!lJ}YzHc01zkWC~|AC3D@BfeY2D{D?QVKTKKb zkb8^km7l1QrRQkMn`BwasOk~|!fzmh)N=m-AJCCCe=u>kiMigwKd)R!@;)kc#(SlmN=cOxlK|^L6u$vS$OEK$^cca8V8?Ap zb6-KqDcYwCfmqpXB`I@K!e%rX)J(_jePR}JrXOp%a3Mt()p?0NeB$`CIOerEoifq~ z;w0~`b$E>0-3|SJn-#WVJ=xTh6pLMbZ?~UYPxQwAj!;>Y?ap|%@(~#}V$NFd(yOCL zfMZSf^`3v@7A8ZUHJdXfI#RH!2$S^N_qHgE&oW+LovBG)mQ+#zS+cASsrCMy4kr8+ z#16L5B&T17{UpchW9Np+LV!?D8^1l}OLIJhifqU!5}xwjG8ARvO0ORfwDiVbs6)NGmX4Lq zBOs|24NxwrB~33;ONj)7Z!7h-`{5qaxHxe~2d)v`y4}c-N|O;EPqg*0W}!?al_cs; zgn^#hd38ntSkX$E;)Z@-o^^ex!nd?w2_$AY;hFs-QIjLph5 zg0{-ck}V?A1cPxA<Qj)DD5NBNOAP+tFj+Lr6-3iqv99 zgZ-U8{XS1UtY&2nv!q#KW;E%T9WhY$C&x*o4>a?dn@PTb9om(@+76S;7JnI4CpF7y z+y%ddDw0V$ca!oM`hQfT4g4wNp{OLD>Z0Qo9H%chwI@e;-U3L1V{_#MpP!a0zSz>7 z?}VLmMyD7|M~hd(5xmdC`xv}9(wx@N2`f^GiND2jCVrlu`C6vVa>ZsGKVM7nYH3T- zE*wx2Hsurh10NBmm81A=YzO@kmMAtDP=0}05VEdtEiK<@wWJM&Z(Nt@^>3i2GTUe z%vw5h=VRnC^3m?oOI&4q%x$ORf~p+HG;1@bP<2V~j149gs(ohTsp>J!KG5BYD>ThL z>7+ik^#VdciMif78Tomb=*;&ga)&o`H>omJI#y6F0(l*_fMWzya8L2 z%7mLkFP zJSm&GK;l*3G_ZxCXS){P$~>?~XFZ@~orD^v^QY?Br*Q-~-5`~fX(S1dH#QqzaTw>G zH};67;?B`)GfcR>OHT6132|3ar*j8?PNNUhILt`{6t?BlM?RdqWZ#9-JYU0X@!m#T zb++A7&{9@Fy!y!laR3fi$0K`4c47YjLC{qcBT8hbTdF{dPdLX-_BGl=JV@0#B}r{c zN(8JEJB!3&e`t=#ndANvs0Z;L)2Jwtp(1QSC$FBv88PY|3&q_mUryE*OVX2oexIWG zF`Q;^y8G%{{t}>_uebI%H-xfs@l%TqY1~K>Rf*SZ-Hk7SGuM!$C|uqFwXRPgG^~5dI zT$O2Ukls~goKqv+RHBop4I($?_P*HjgPTILT}tq#Ajs4cC;mR858P?NujJqt6Q!4e zRDve^ZT9+)kbE7LtrcygHgu>&0d(`Z+}b&G#v!1T2gxvJ>jLXoJcB?}=6Pd)h?5sBVsl983v1*NrEh!JtQ z`U}P-G#oWSpOn@$;844pN|j<}*5CKG3gW6Z=&~0Q5|unsNg_!}0F9@3vGT%ZbC)O~<#8pmane&VIbtxpO0$>fKbHjs)a2J4>TwZB=z`4z8 zb4JF8yi5E*7raL^i)V>g%c*iu<#Sa1;)J$)xH^v@HX`Q!XAK>iaNuE<9C5U^k-Y3r zsT*76iMJE*D!8K}c9o*8`Dp+m0&n-Vwh(bXt5LP>2Za|>q_*L6-x_7~Ejr@z-@`~c zf`~pCA2ag9W<$iOsZYDqEhkCRRJrhgNR#Crw~RUQ$7FflOPC!Ab>yI^YXGQEnCbn- zA+PX8Y=>bq?gb<$%n_srx9`szdU71l213wxzw;1(ME%566|912$<(7T0ZG3hKfU_d zl@t~J^p({ED_Af9Hy=N)9=J*RysD-vP^8~aj4N(wz9pH54W~S0EwGq!Rs=_{@1M^N za~)JTOKgo{+Tf&}k??~&U%?eDfZAP9CQtIj&HV8K;!eS9a@^@;-Ihs{Aj#)__86S@ zO~glnTv8u%yGoXro;ase7h zH}sz`*u=s9#wzIOQ1Y8d@M=i!Ae7o|GdS83052I+$mWAbl^NhpDzD+3!L`%6=Z8)8 zl%yT30UP?`s5=t&fUHnUb#JJvLYHy4iGrD%a<#EQ<$MQFx9VA?p9W~MBz@!T{z!rRNO*>km^#UY2VWRThCp`Of~0} ztY)f^q8o5&1QBZwKQGr1ej3W0Ln$g*)Sym+Af99IiKP`aZBC`33UjVi%?vcv2jVUasYEHY6(`{#8~mbU{G3E9n9OJ#2tDnJhyW|XdinIcTNkOx z>X4$h+j3PTYLt)52IT($e=G->aH1Ae7Tj4xz|scRu%F*NQ5@8~>oj16MjXny77o-Y zDVu92efj*oa68%USxS;rpj4}pvZy9HAK%Ls&S}}>)yGovSF+qM}n52K)Uj1D9W%dpk{H^`R+q&}!eHz9&@< zs*x%SrtpXY-xS{sS%!H{PFoHkC`^??M(3W}$CeLf?59T|X~0k>_-3)!E|sU0fUUhJ z51BU#KG{l2l$}~fOMd=-Sa%#tm$v=OYEzd!1elw1k@d%m;_5WGl9y0b8d77IBkSja zY++F8-BqZtV;uUccm0%Cm0=hxE%({_-iHUY1g4i9mal1RD{`vF+$mOopl($l zgSE)>`g&sI?6zY1QHZ z2FbA7%5lcj-Krd{r@M7Yyue%&=e@dfwjc7JXy<9t+_>k2K}`9JNW@Oi_iE37r$`0~ zT_K+3ja0Uw;R=O79u%lsm&+Az8*pMBabc0kThEAt5~R# zz?(;zJn<>X`$478G@?Op!~t&?@7HfULnfYBj^^cbQOgj`s&|Vrm*@(D6QOA{7L9@2 z`r;Q`pH^j6M5#*Bl^wZ>nDp|;O=lb!)_F*xj_qWF1Pv)v9$I{d>E{(sXdRaZ7PU5l zN{Wa{@PbF5U+z5dW|vR~92TaZRL8cQ6nBODQg)4K1L=z?GB@LrSK1oLMw%BXBF( zqlgW_i&EMQ@ib00wn#~Al|a0YuaLx}hC5wts-Ef9C@2paQ#bN3dLOnc{K|=WEiE z#1_ngJWv6=Y)$sRU9m#(4+>WBR$%oz&6GaMw2)9!tcyrVJ6!qsW9x?yaC;RL3T&Z0 z;y@4}T0lOSukXO^nosH>+y?-CWKMYI|7Gd^-Yc=>nw_exEY@ShwaK~-nU;m$Y7 zo6QG(p(#>dpA1l*~I6>U0#T_t` zNiK*&jm_fLpA5hk7>nebK8ijiW~eQ=){vkCK-3j)p~l=g!6OT!I3Xp{x<6yM3d!sX z*?3pw=?hA<{75iJNg{85Tv{9@?E0LGJwS1ZPLAy%cM1n_zs2X*>x(zAe9J9fO36aC zHk}}akW!@0uNV2oEUf1tW!8Jdp}>@sl28CB2lT&K$I5CwW@u;H<3Oq-43i(Fs>gu4 z7^b5yQ#co-iSEhN1+IRWtUaN71Q{YKDjTL!(xjg3fF!7pdUUt!$692$LshJ$)Fmi! zHzW^;$m!}Wg!@G7`MxOO#UwTqVhx6%AozL>_wwHWJ!#F5OKV;i7^$^`;e5EvxLr9# zTg(ztm{W-|qMr|j0Ga)(5N&h0<@!1AQZtJKr%V~F-~T@4N*l`-L0^dHdF{C7>T^j-9Pf>20pWP zz1aOOcG*f0>VlKwGZ#FF=gXfjJag82?3AjU_2x@|_fT{b;ny)Eo$dEMPBXnX`hkz8 zyyxX;Y9o$@DEa>Y>iO@-)DPvkYKqdWN?1<%wRQZ~>#)3Z7_HrCO#c8NP!k|;A5aDH z-X72%$kjBt8dQpRm7`JuKq?9Hf=pWeBeppQj{7aG;ku_ATWShOQCyMZ0Hn{6AkX|` z>h${9Egg? z$Vt>tVN)`t8Bu`>iN4sEO5T;PnT!qeFr-`n=8~0b)7|P#h_K)H@+TZ$o0o{5vz^R~mt;_B?9H#F3A`jmvFw@R)wjW-kY80T6FlIIX1 zN+l^$)VTy$gRz`jTn(H1u3o}Im8DBp{yTvaC!QHJHUL{%$PYv`1>T*O=B?*E9F!qi zl$Qbna-(Gk7Y5N5+i{L6_O{Af%eza=l9XL8k`9PT6X)~ij-U2<%}qxN)Fnz#Qm^Ab z2?a58>%W#LKW)6EQ*qMj0uq!}GLxa&YxP$Z(}PK-l?5-7C9+M4DiP(l9eID3sxqY;p!jz& zU`I~BFY}F;VSO&qSt-hew57EIT-Ku!Ka`R8J9->Cw7^)EDgr1E`g9X;VCGZQ1E z?ed%=fhm1VC`$$z@!e4b#f}$CYH>0GPWym*a-0!ek-tG%q1bIrg-9e3r?1}+JUznB zR=Foiw3L7ZCza&Ix&5*3+^<~XFyzZkle)DSO1wwnGvZHC(tf^J)x?&~!gPTG&^)B# z{^4H368$n>b+sX#HY-6IK|j!$pCfEmeWmclE>T%j66eIVECL3tT$DLMk@e*x366G` z76X;zTn+&ip*`nzEh^GNWC#F#af@g=0V)bq7`FXRHc}F`DKp`Sh}`{ucIk`@N)V)< zhW0)!Bg+m<$mL>H-0S>_P02r$4gUaqxnOF?!)r(eV#+fxAao;`$F5Ym5}*>5YDl!o zO1e$9``ZY)q#a7|D%;pcIU?M)nZYz=7UY#Hs#=tybel;7ob;Pc56YV_JR2(S5~JcH ze^GlXFf9c&^$-%GjgKyHeI$K;j=3#zGRpQ|P*S_Gszi9Y&s;E3!X}bvm1X96oj+#% zm!y@YInHpI?zH%uY!WBR1d}@xpTESlt*Q4_t_mA~ zVYHZpgUW3?^ZB*3mllE)Q>8)>U<9gk^5qbHCj!_-eN!fwyB-#bs!d~KL2xTfkpRbD zcgKu0mmE^&Qk@{pts-_kCVcR@q9|!8(ya*uC`1x{c?=I&;R#J6154Ww4x?fL1jgt3 z95Jmoh0wT_>m8DUwNLU9^lh)S!-dL7p^-bh0_iZvY01%;X5F$?75oq84 z0Io0|Q3G_0vwl0u+bU@Cd-<%P0bt$FTXrkAAX8*gxTGdBMK7);zPeGldi3ClR+ zPjbuFhLV*#WT|9I5weT{w38d*k1x(eUS^86s1x!XV;N0B z{Asq@bwwuXnNSLo(s_QJaa1sd=F_B{5lWDLmHgj2amt5O<7$ZS4fKyvL65&U!tc6` z32#D^p(;tzZ+(Z$tm4Sy4hL$9r54oQ#?8%#P4NKDGLb@op!~p&Ubxe2fz+evJ)>|< z*`8vIyDL#48i1Rdlhdc)6^><4bE@}Nl{wskRDenAvA>z?i5F-Ytg@4qbvW|E6TR_Z<;^39G9a}4dI=yz zsYiPcDE;om!dyBSPrMY53=#^*rmOzv8*x5-s;89OI-0zQ_-01<9Ygn>jP1&1p9gW} z0jXJyX0_^4wSIKS0Ga8?VdE`zKv~6U9K2g~!*w+nZ7E7hp++L!A@#xU<_V!;QKd_e zb%jTV(sn$rIGNt;Dje!+bju1@c2E=ij$JVg z;rzfkQQpFp1|~ieHWB;WVnIh-A1WzIyR?7?x!j$F_r$X_gOxu_k!n?xDZH01Dp^vL z@d+y;BIIg-N%P+Vr#m$cs0B$Hfg_ajK2UAW{#aqmc#J6!g@qId3mn9bQ_^wo2)?S^ z$vQkqSBhj`Xa@LKOxEO#(zQ4dz?M?$inxS{g%qkiZ_Af2JXkqiTHPWQQmIT0WkO6H z;>U71@8yVp3uVP+qQkcYS%i)ZWB)w z=P9bqRuH1%d%_WA8R-O@`Nx*{ci?(;xlofjjF|!xsLl4Bg`)VcvZ|*uC;QPVh3X~= zC#;UU?TaUY9``J-S=60gD6xYQez>9EliH#_QXFqq<#jBWBINLnN{R@V5%C#KTz5mSH)xiyPr$?8~*?(^THhB z8imdPZcR$zm1aH^4n(McM4el2{{WErVp~U(FD|HMm02lDQjjGe5gkcAaXjEY%*v9Q zhZ3I<5CddMnV+{_e>@$;{2s$5>O*Ru1;Ny97cg%p5D!pm&cIUOm=}TNSly6t>M3$w z@?34ULQi%_Ae#_LnEU?#@xy-{(xvR?sVQHHJv=&ri;G))OZz&>e}eFHiAQ?kv?WL- za#i&5SL@ddna2$}>#shx^lCy%iQGlNo?DAr`1v1DaCV^CU%G!!vu2H@p+qwpcU{XF zsA$95%AHu9Ddovhll^(&=Y-UpwVcMGOIELQ?$Zl`wWuS-Ao&1NB0{YjVdE~Kr)h>+ zge52{Qb&qEDu+K^!5>qG{G&dnYaq^CTdybw|6)SVEVqNC*ihR0;Fn`LN-g_Jpj(&Kjgsnpv)-TiRqo^ggtbZ^$4- z6B@TTTZFiiFyP)6;_8;#AN{tYY^)LaRJB}^3=I%|N1=+(JmNz|+6QN0O<4O<>{W1C_$$$sz_giKSH;{2obdW_ltE#>35=vkhfG#g2`9f1@ zG8psx$Yq_LRJ`3nO*`3w)B?yU0ajI}2$GR;%cdUvq6?fO+8Tz0hEkRivm^*U5_c9P z8}zm!nFeCcYuVDM9o0~$AF8qeIz&ni_CJ<4wBn|MKy~vO3N{~H&EX}9VO!j@w+wCW@+FBgJI$U!oQx#}4Aw`mr%_b*n?wGi? zCtbUxJXMhJ?JAj1zkdUyY2pA9q_Wsi5ww{zF??11lhfC5hZt4T28(U7($M+=J{2UX zK#4mP$uVM0qZ(RA2SrZhxnDo8jqH#(a788>T;1&F*@4Wutf|_ZhP^aPB#8Hk`$@ z7!9dH6B`&Xs|yLWfCChl3-Jl2tgXu{(BfRn>eb!25J!ZW1WlrL#f>4>z%kG2vz<*K z@J0&iuFtzaqH=<(Gp1!LpyG%9{cVJJX+Fv5BEPauZJ&H$#y2 zp;esGvXwTeLyRkD8(b49=AjcZf2Iibc;i|Q0qwG#9pjYj)(`zM93Ubj4G^PvB$4O# zM~8C3o!8~Bliwl6(cTv9rx0T4B;Uk*?`@!zduib+Ue9>vFJZK)wj60S`DIE9l3f-m zMUCL@EK|-gr7RG&)?#N=Yl1lq`CuOhEB7x`vawK$B_SF_-wKF@cU52ENN% z@J(~ftT-c&lrLa>TT4}tzmV0q%})*2CtCoLpx7x8lLl;W^&K%p`$cw8?`OPh;GC!$EYW`0u^-(oCO=dD(7=511@`?kZ3Itlz0CN3{zlB9^< zR7U3<@n6CDhh{ucPN1K1S{zIC>ynV-Oq)&5=JSah=NC;UXm3(*y)PJLl*v-E)uoK$ zj8A!`K2f-*K}3HD4$}K5Pac|zM;#Qo=3aCKz$kbR z6l_d+{{Xuc*Jhor)%F#|F64Q#+)V{R?*i7jNF?tdk;@jxYaD+`lX0e1#5C`sqlS2a z32}$oKlT))fLmN%$5pTJ;<@&n?9n;(E48$%ZN^?2+jS})6%r;$Rl&KmiRZb(<2D3x zaC>+u+J*`;#a2IXrk}@h=Cg#>&^m;suqn{g9_;EHph=qzhTo-Y?HAc1DPL!aGE}%} zYKm0ncG(@=kTrbIDE%*|V$Lf&;Z)@LpWwLKlo)^i0IDTJmzMEsV%6;8vZE%htl{n< zrg7?2wxH9CAwk5%2prJVBcEO47cDm&Av9?3;-;0-0Rjn1R5vps0KO`Y(>peIgSd(1w$8d&7Nygz zE7RVjm;=lEV{Q)Odfd-1?pBnv>m$2xTKAAe;vxjj80NM{i5OC2bdb2Q#ah(V8INbl zO?4tY^C@(xQVCL$NI!pzf9-_@3jxIDjjZ<-NDI>;IuAeJmJ;mOI$9{4r>RP6SXdyo zu$5{DVrGA7!~Rc|iYmt%0bR*5Q7}-Gs=~tCa+~di#_;P7=lM(4Vm7)A)))$qMV&Yk3S2#ThF#lx);fqf<&mxBw$Sn4hToVlS7u{5LU4Xtr6f zg_{5-{dpXC2rc6waD7lI{)Vw^w3ZaTBIyevGy`wfo*r`SsR*T2JE)Ys038tr)^QbL zy|=0wXcVNY#V5sXw#3suQB5r-NUnTbQYN17#}G zrq&lLT$LW8N#_>6Cz-^NO2}JE2bE@Ghl$&0hXQ-#B!nhN@h02z1`nq^O*=`<*HMzT zmcmo-2v7QNCtv5*m%D0@2`3IMiSQT@+6G4^Ltmg+015B~sG zX=)N?=>+o!Y4gQReYAwg<01Qp368n*Pnjvir9-=ur%Vtwxa&5-`4(WR{JrFbcb(m* zRLV>XbTWRJMy8y96LCrj)JYyF{6Rja*VhqF8{&b(+-~I~%lsOb0tp5?zZZx4U-on~ z{``1SYAz#Zx;KbvhDDkMllX3FUcw9+f+yjFxBTNOa}?DU)&SH7;@sz_DZ{U5nNlC4 zWz?B*zX>ufm;?GwBKbq;MIUgzNAiS`@dzXV=6T|Vw;-q-+Pg^huR-rCZAew(Qb$X5 z#H-notG}ttGWDrCdxcas78Iybc@Gtd2Y>eZVY@oZhGUo0xvef~8Yap!Z8jtu!207} z4@0~K#nkmFMy3=Liz+pRTn{_xKW?$0#~z;0qn5+LJSiU-(K(antkzQZnpCwbLBEPN zgFSxO_lmPmdHhv(iPYH*lCR2kz5f7A7sPp*DqC?r9R?jiH#;4OK4;GioJUwQT!AZS zsFpxYwg7*5{{W18c0en*1cIOFc!7VwwWY@rwoFJq7#>}Db&Nk|bxrY438A$nT|x?x z19Gjo+zyuC5MB~G5z z#?nUMr;vbY5nY~CWjX4SB_2MZCh^Ff_x;}z?g!(Fe8)9bS5Q)=W(}!Kg^fh0i>5lC zIE+MlaiTd+Vuu$oO3DS7HUG2+-gys)}a6oE?>FD<=Tc^ zp3}G`8M^_MKF*ZX08%ulPl^fW=ga4cBs^#<6w*+wQcPTv0>jI3_v?xqn8^DTC%KXf zKOtPX=5b5J`A7&>m(rbK1d?PK>*O(9Rpf@JJl4&UH53W>1-(4*wpQb&g_lt&QhX{G zG7t8)95RZo=CMV>pAZ7%k6F2#NvCGZ0bi(jbvelv993OAXedftZ8uOGj&t?>F{|i9 z4>sbKufr)35liyNu0A2k@W(NV(hezAI~TqupZ) z$Dq#Ido5E1J>rxGg~3QE{{R;M02uQjam2Fe(2yfgUiu*;``$4XbqmVq>1)ubF``MB zxq;H-Ye%LZcx#B7ukV(mlt>PigWBgjBKKF1NCdTNTk6cwjfOzxG9U=uMLdEvt%${kaB z(lsXXkar)y)Zw>?GWOR-rM9N~=F~0~1d9`Ciyzs?M$O11abvPMPg!zWcCiadN_)gX z9}p0&&p);$Sv4R9Njg$o+!GK?Z`bXL&miJ5lq4y|Da5%8gStq!E_j$_JVsp18}CfF zaioFb9J%6ocY{iZODlzLaHSev$kZ0z3N=}if21msZB*&Cr z>(>!{r#W(%XbRMoKp=<&+wFe5jx&hV=XBe&>hBVxs0h=gLh(Li5_w2IM2kspJ<&al zbpeHAHjw`+&sdAp6B&dX{3~C_#Cw=dUlIjgpe-gDN z2~DJsl}!BZaXXC)D4OdwoU1cYQ%<1}l44amdEfW)!ykI(HDX@Zp=odw$vTt(j${sf zCkrEopKy1GT9lrIYA3Dd?nW`1K*gMeT$lzFnIMB`-Z02!1Z^v(jIf7=I?K4B71>%) z>a}Y@3YEz_?QgKdUTMV2Wz~hcr&>ucX5f6!?l8i^C{mh2i5jkc5 z)8o1M^8T1*$*9$rRHedPN=nj_J{4k6x-{1^-jZNSWRVJ!;RYk6t&I6(0MS}e>Fii3 zyFbiW%;=DT_-R4Z2;3-}O!DjfaR`2nqb@^*rG6ZkK|U_F=MqVcuNak8W$JxOX&)89 zf)q?gPnXvby8PX`H*`7RDY=8;OkQB^BKIQ0u04*p2wf2abChd7;Cbn z2s1nN7>(x~V%0(xq(saJ8;RcWe>^?$N+3_)5c<9& zc9FuR7m}TVf$)z(^T0LSR_n+iWlK~sF=GOCp+TD(?)Aby{?!^-%afTX$#f@BGaz8b5uV^N05zO+pk*9bD2j^TRb_f1w!g~+Rh725I=v6W^qdM75^u`#I`qX&;Y{ZX;cB+Do`2s6 zkq%&m2v3&w<%Cxz5A5NsDKa!x5@5l`9r3b6{jr4|Fjf+_nzgPo8H~rMR%0=k%yQ+J z%w{tjxn?sNjK?ls>LX*1TUkoNhT{14V8mh1E#S=0HUP0jQ0hpTN(r_F&S?C`ku|O- z0ex!!07!rJoc4I^kFzYJvtHLbAE9l{dR^k4{mQgDVgXwaOG-PHHg_Tu;Y@u)sP+f; zUH0JMYJMW%+P?0GFl{bV)a7*r`c#qdl9-U7Pr{?9o>=^^{{Zw=#0UyfvYOBv_|JBH z9=No9nEk7}VfI7fbY?sW#2MyFtz*1lw-&lui^MIt(4p!vfj6c?9%O;Q6Os>q@|CWG zQ$AYa4}*}t;r7-40NDQkaSlw?Mq}A$X)dY6f~J`7R?!o%(ydaH1_4={M8-I?x6TIk zzxFt-ajeA|#bq@&g$q&?QsQ@+aXL=cg&F0G>)7l60J0t9P9vqFW3>l#fKVMS?BJ{2Lvgp>6hNyKfL zti!|?TO9?)B?%X6B1(;+2AXl>;%@<%TM{{X-D#XpJDh8K`UcvNZG z>AH_;8%g@1`y~GWTg<15Dv-;~=G5whfjS*PB>A5R>n8JjbQcGIsP6*t^B(D&W|=G9 z;z>(coj6igAb52s7?5rXw(4z)&XfHpcq`ed_SH*}y;Ybbq#+CO9a^^Ae?T_H4ehs> zQuaxes;fES>Kv|}2En>;%Y(#7DhW5Wraw`SkeB+Pomb)Fh@Y?cS3ml00Nv0^K=a%A zUE@u|U5NIvLfZ2V65#5^RCt4wRS9jy69Q6{nFO6bf19>V>~Yx!Sdgkd8G45O;qTTQ zfPdPgf&ueUfdUB{vH9TR?`q7+z94zt8TX8yoeMfUx0TnZ+*-twIGuJ&{;i#^_FmI0 zwVzZ~Q?f)Mn_N;(;({L>_j64TjjDIK%xOdqd#bzWal?f~f_)N^DYBg)Jp903%XO z(>ByO^v59ZAO8Sk7si=oTT9Kde7?D*EhS?|cCG&a+Mp)e>BmX-KmNZw6~s+4&UZ~) zl(?&}yI*+NS2Y4vtZyEJ%*3wr-k$)E-AY;N3>PGOy!TqBkJ`uC&?F+eK60Ib8Y}4> za3vz~s!itFl%-n|E))L%Szg$?HK_MKF5uc+#-2)EB9OM}9KqB=o#aUV*fA%WffT446KtU16#w|L>do}HwEkUfx_-8Of!&!Bv8*Rl(V5?h0 zRfj1zC(8*jfOh`?!jpVQ-7I@g#xl7+ll@A2743y?FN!!{JmCD=pz2+ATmwN0!zLgo7s&PB;GmPkzYw zy}tJ^r>e@=r(1x$Ya1#iNz!zX2FID}hS1yD{&`u&)3f!N!p+KS!MiHLsITXo!8~hAQIgc zZrOQ9kO66l^O!dP$PtPkGwc_(-(!b8`y#8%4GU`u(M;-=!o$#?!puWnh)NBouod>V|6{ z7}+4f`~K>$_Ba0kR30YwV$CS%b1LU^ju?0#wzVvH5il+Wqo>Zw8^+lBG>#$coBc}r zGGx4(HRc5ghmuk63={cQ5=w-F=sJiaA1`}L{{T#WDC~XZBPv(%t{vGGC>qNtJd6!V zx0Q%9hYr_x4~sw3VV%DpRyX_bb6s}?TL!iWC=tjDmo9s4)7+qpJbTbXeCB)rXSItfcC1PC`WJi)Mm z7RN684tsF%w_to*OP*vEwM^90x#AKO+R~Fd0s&6@{Gi_-X+4jB)gOU=v_T-jTIoK6k7zUBG$L2Dqn10^kU(@1#>d(7qZNeoa4Vj-E$~#j_oQ~x`Ot%Y#2(1>ef2s$`-f@jQtK6siO|-qAu1c&QIG}5NC4?E z$h>#imlk#yoOaOF zK50W&OYV(UDS;%E=_*kKsY^C91Dwe-jF~kb=$ABV`~B4V=tJ{h8opF7+2@W|#odd) zmO3>nB{~8@jcu(Ur0=jWE>7NNHSF89TCN7-q|?0WT5*@Vg0v*3N=g3q*xLSBGm5)0 zp!R9@fKFeNW)0?CC&iS@RRgV+2E>yI5@*6yY35^aF;@1V^O;8(rl{%e(yc3n?+P}7 zx8M5WIU;QqaybX#V)ggRHk#~ytFJpx;@&aie#+HLU&R@HW<}v~6yE4tQc?uzQp%)= zkDPSFr?S5qX5+K&Cd%^KhUwmWDyn3=P}y-I8ZY508c7Bcc>yM5#Yfop9xse|J?dBL zl-p@wtGgf_Y5@3wJgkwY(-IyU;cVru6cl+H663k9tq@cWgW(Agc#CX6*u{=0)BgZ+ zHjB$o*-s;19FB8E*zL;S{XIKCUT~U>rOK7M;)0o6$(LnbWD~jGB#xNv?1$MVleV4? z{{ZdnLoQ{>3T?_lmrk&e5~U`29=qe^A7Z)nUt+zyW*KAdDYq%=)Y{t`w5XL`LTp9O z*M<5|(7pieH#noELNd(Y(5AATP6bqECZ3(N!3t56rq|{5B*BknsDe!sbPW}34h)U5 zNX^6!PXPT8-LwAyrx#^Cp73U2#MIQ(d0Vt@hjdc{qWaR42njl(V){svjuiHwqRaSK zwrsaO%IY6gK6Zq<>fC5ErQ0Nc1;3kV@g+l@`or2swtVZ0xM?|S++mRCS$YU5=wgtp;IR)Szm5oqNG zV)2CPUaH9-r_HDq8+w)0g9F5#e=*4Oh{w)1bHFb-ZZGJxWRw;NYXgtE>JHGd)1L6Y zYee$}zVU}jb)=`nl$ZdY_YaYnfNeWRDj)*@#1p@Vdw+Y| zg>#?&koaPkG@x;p{pq9Lw%ipqq48KNnN00B+Z2Bfyw- zjFllITo`~v+gC%4okZL8eMTQ}Amg=ivwb!*7O1vBOHLHChkyGWnoONu^_u2cJu5X3 zxTsssNa|9U^XJPF?k)Ch%l(WI!LH>w{{ZpEXlq3x>6xc3vr5~FDNzKHNeWj{@e?)^ z(|i%_HonmlN0b_z@$AhANLy*A6$wZq!>33mS5kiX+uBRnUx>K-vaH4T-({BQ>D5>p za-9skvVk)R5-nlq4hv5sXCo!XtlnvTXQ}G7CIi!GYiv=+Wb@fq3}xM;)YH?|ja0P@ zX+~G0Q7YQUpO@Pfw`iOzlXgRrCA_wuyLCfK7VC*9ld@8g1fH8?m-_|d=d)hVGK$7j z>o0c+f}#mZr}Z4X@oaE^YBYQu#YwKtvo>?g-mNK9Xe3ruGLB&_B=}&!)JH#9V_YL? z4;FX?=9K=As_Hbr!&YpO-{T1y-)3Gc?a2vR-g6|PQPuAcwo>Bnx=<7d_;)e?0FCiq zcF))aH(;4ES3#Lo=0&2TSR92Zv3*MsvOwK3Z_MMOb6;sp{-TyL+=Wzas=~80DNOl> zkaY-yWe{=1e%KsW#Mzf^**!f*aajE=O-pNbogaeEl`7*$!VidU2|aMzf6)B*4-HK|O72m>py+pGsKX^g_dqdGs2C4yS-A zULMt+)>QqH`zvu$l(yMV@T#ELASo+a(xk$={6;3)q|LGU%l3Nq)#F~o`(ajRkmnUt zsj8|jmcxot6r!jC#0|*Ybm@<@AL_-DW}IW}cbY3JP<2$@&`?1nC6xthHZuYy;EV5% zhP1tzzemJPoe;FF7!o7IHiPu^7}E6JI~k$aMS^?hh3}?n2BTLbl5zk8>GWS*dm8@$ zQZ5$ujp6q4zBOi_C(o9EmaEd(EV{Vp2?-s220D+}%eKl4!j`*(YO4L~-6Yd2x}7gH zxFF5si>G@?`Fuq@J(y&9J9R5%=Bd;Y1Dus@u1|}n{7sqcqwP!R<{g-QW0zz8BSIGYWG``4jmk%o-&8wJh)Niz|?P@9- zOl=?;Agh#4gFbxS?N99tj?=pm&$t^oC7Rr>S4iTHj`vEEQ>NQQT0ys-I){h2o|Cqo z$*FTpvMNrF^(#QXirqm!K4%=4?HAZec#Ycn+7{DKT$Cx*q>zB@Bn?~G$2gC)%`-AJ z4DVlJur%>)dDF|l=lp((yY@%z)mgnM;cU^=t1!#Xs%HzJspL%QgSi*Dz43o`gV`=c z+y4LuRZ-@8Y3mzD;8j6Wjk&l22ry3L_2=`Ciui*t?0>ZUw=qLR+eF0WLOw`kJ}hq;thlY97iGWvD{M4G1cM;p{{XtJ z`ybsSZ*IH5=bWerUAnt>-^-2D0br&CTo>#`5kUf`H<pL$H+{Xhw&~Sby;On^sTKABSxrECtzm&A@z&f9W`Iutxsb4PX_T5>upqt zLv2*70+>RVr&P?7q$Gt9Iqf)zc8$UOKTVR9=6REJ&DA)R(HGrINkfV|1;vsCs0Bcu zv!`gipSjvMvFj}U6V;af(4_BkDUSr*A?~`1r6zXP#Hd zF2}f*}H8^1}^34mhT?T&?C3Q+cm!-Fr(E0apqLqoiOyACO} zB{l^zE=>N$DgHCaX?Qz~DHW8{riCsrkn3u5Tqr1)B%it4<&4c#J0{)%{{X&M*G;7k)AiVY-8R*GFu&P0T#ze~rm@8&YgghF zk|3(`C-!k@dp{w*&a=8Vm~jfIaA|T*iA>-07ykB)_Kn(7^Q@|kF4U!6$Vo`o;$8Yq zq6gOvy_9B|pA+$DW|?Vax)a{K;2Lx$J`inrkKE$DOM0;TPdPtTnWfZ8AtBhV{{Rc6 zy|MCi=6OC(UY#Z6uo73LLh2(_$hZU)le8r!ZgA1;_1UFrt9s{(V zqkedn@ym+iPRnxCN}PI+L}Q z+xc1?;wsI+~}b(BK-ow;UgsfOh`?%Klqp=vNz4CyKI^<^A$nY3JEx zYC@!GQlbaN6FjGXBOLqwq<+pd9>;mb4-@dtUsUG~*A$0)l2$2S1Q9AE#Fa(o=Zmzu zn8oPHAfEpKPRegg5{+orI0Hlg4|02z1MCCX_li3_rE@mTXx>dL2o5;4jR+|aqN~A; zcMW^WZv!`{#U5r!H)A*Trz_^_@(*iBBYF73~U>ZzzIsxthw3tNSt zrJ-W#1wllB5(J zA>sEpBe7R0_|}aorFTP(Q#`O%7LzGb6hVkLweB(1UAk~~PVPeXbxoJ0S^XLlq0$oy zPsUO@6Sp*gar5WeBe%MyovL|i{7Pk|D5q^D5Zt6lNb^4xkCyPATO`#uJYWj?_Wo7= zpQ{lnGyJM0-@#=M)?xPI70G zpK?%ba%_Yk{9DX`V{<20BN*jB^sB04v^>Rm&0|V6R7x%(#hpd1C(zmfx0X7?k9$nY zSmNe#dc`#J)lDhR>dEiYN!J1lo9)nfVsA}`wGMTDTrYify(k$OIVR7NepcSjd9lrV z8+yG}jMgTip;GGyQVN91N{PGy1C*GX3Fpsg9^A6t7S6kx+O<zot~-CP9Z;|=VEnsRt{a&?@uu!3Y3+kT^AyrvhC0e{FNuEh3a4liK zSp8sqq;SJ@nS+ik&~*Z3D~-+XF>YA2DV%31%bE*7Z@WNA1$s1}oKG*Ot}A}mc#)cR z6hg+Ol0fe{NCxEcBc?wQ^{KkKZ*}w@n%X|&UsV;#kX=36}&ZnA0}g%*Q{kmKb{mWJ$be1vIF)5cRc=wK3kgz9=Tx00Vga=E z{{R?%;{FY5Fi&`ZJJke&f0WV&{!kZ_dP z*y1E%&w<%DXZ5A3n1rP&Bx@TcR3R}wcsn7W{vg`Mgt^`c5;YQeo|0s8<~;D<#qEOo zcT5GTI!FMSA{En;e|N;IvOJ+#vJld|DTzoTNIxPvpV-7cj|*ly%I#c^hypIxD*H%w zLaduMaq!4dS_~2_i&#zOde2?w5U#^k<2l0U+$-290Ekdlt%&|uCfMzNXb#O9%s6>Q zLY!>{L*elqhu&lQV~}z@jBv+k3Te+1aG+9bHBEu_^~cj|p(jtY4$DJJA)Y%YBcAHp z%Xoy-DKiQh%t=2Lwx5~Amnq4Z;$0!c>r;vzs!>v4N2EtW2V7V6HHlJ`psx^wf`!2reDe%e04o>8{L0B?Bl& zbg=~p1xp4s9nR7BS0gy8^4iB7VKQ|KbJ9h>+($rtXA`XFIZqN$sfQia{I}c>A=Fs? zcf%VzHqfCfDNr#45>L%GHs^j=`U!nV&xa_wC9DkrDMy>FN=mg!Q0RBRh+lihr>+QF z>{c|s@kt~ehE9?FaL?gsGpYi00+6LbK! z0TeME*(nYo?RJ+ftoLelGu|KxfM7={8}r1|DB@9^($dr?R+kW%76SY9fo-FfIVk3i zRB?B9UecEzf&>rEJ5QcEi-CKC!mPHMmfTWc_hbSGJ?Htn`J8na{{WT_{A1A7e1Goj`5#o+iqco`$RZ0qhWos#2iIPljF(3VI zA^EnF>y0FLi6(qX5@-Ja;)Ba!*ALl(4Mtkphs2N+Ac#I9eBwv-^Tcm4%!(>iV>82V9T7tKW5J~0w`r&Hk zJ>76mg+Ln%pEx(eZCimZBqdSGFKc6JObZHEHqBa`~2(%gBp0Au^ z%6!R(DU^o7lBUkD7zv2vZbWY|dSU}xoI6cQ;04VozMy^~$o{`f2igAs78T~|r7aHy~M@2&-IO|E7ea_N{W9Bm1=^N%%x7i9RKjjWA+506~)`$9ovZ8P)LX*>@BuQU$5T7pqO> zH`sLMdEXt?$FHY|_(9gvq^ZR~S^~+?AQJ{ej~CY*ea9JF+&#pvDZ}AH)FujbC@b{d z{$7~+uSJ^$oz>8~;pzBY71*B?J~9dlhfbGcLxo-)N{(=C6Y1xRLDeTPWle=4O|H;K zDYQ;GkFfsGOY8<*Qjc;XO2H{k`+1qS_?zQ|_=zJfO3!+kLST)+fdb=uZ+=_G7pjc1 zQ*Br?G_p=Gn-I!4FNqaS>Xh1ENg$A@RC7vo23c^yqFk!dxH68p=?7L0%y{6X`$Kk;Tp?T|GGVOOtVM zdjha?I_~@48%)D$Q;fB%9 z{vi15okk6cXUN<3S~IF-R3}ia3X^=g7_d;V$qJ<%D}?;t%0G zH1w-W?Rdc|222k=ociJi!W>2`ykX*{r~)ntKrtfoe>`V;q(9sw1%}uMNLCNZxGK1A zn=o}NI#iMpN;}J-lCDPJ2+k~qQ`PL(6OLiQ&2Cw(XNjBsCWot{70ZgA^q4kbXHHi#z2sIa*7`h8c*^Lkz? zqY7lDvCD6{69&2XkQ@_QwfU za1~Ex+4F%-sU@X+P(-E^_S})QdD|Ty?6ukov&wX&ukoqj1b31`LT+G1gzRS@O|NWo zGpQL_zN@1mPNaYAnLV+40dF~=T~#Z3mah@Cl*XG({J&;7*RxIrPG6t2%Z;T=Wok{p zP#^;$K3_|DOA6qN!AcdC20C?sLLM58zE1)U$Shwh%)vaY*V;g9y9yF0C9-V z1baJGxl-GpcWowYH3CNSyvCU2wmyMzFJaW&PTzKhP_}$0;T{7A^-Ler74L3bH%r-f z1wHP~gsK%QDFBEO0DVsUqSl=_eM;j19IFPf$xLa__*`Ab`BFG*G;*CTAh?+%f;>V+ z&zAUuR%WpBQe{e1f@k9X#{U3sJUn)boV{6@ythN0BRNCrX zY$%;lM_c~@UcB(;1g--nNj-`8oow|*l+A6H!ET1?^n$+KkxCTL( zlWvoKn6YxzoV^Itd$mRUKoptz-_IMXjA<53T9eJW0Mz)HQok=6R zU%`H|cH8Ik#%8idIoC)W^6b?Vc4fm(R6gT}O_o(;Z+ja|4_<=}s^HpE;!va|Nh3j+ zREx>+1AVYYam1?>ZI+aqBTzmQ1Sd~H0{a_z?}%-GXjRR*q7H3dl zIHfmFGr#qxeD|@;r!%HhrLevH5vX|?h})l+$~4Dk^!z_j34E?irD}n;*S7sIv)!Xr zG<-`X3%n3*F>UW6VrItp9UMm9XySsLg{}yb@R=JE%Gl6usMoOJ6Pq&!y*Kd}1~phx z8+9pB@REV?Z5HeE#9FI_sw!#}mfY_gDk>zbYMr1Ng#Ga{ugTo0XYlnUJdzA37#@CK zTs39r_ZpMl)TC+!O7Uq<@*@8L+YS6jbjYSYZAI$)FU@O5g&p!tMw^RlJu#&pW|@{y zoq7s%>0S3DS3ln@SS)s#mu1OG?^3sjI)&u&i*5dJ$HiT+4GU9j34#GPn^{}_`tQrLO_nadgATKyC-Wr z%hOb+RHW>VFDEpco!^<>eEOt@e5CM=0V3(xn|P6q!V&SM}I|2?0At zI|$$>vTCN?mfCeoOpyW3Z)= zGROVAFRhMnu3ewy4Uo-0cTw;XH0lxswz!S{SdM1BhOs0v+LDtbc<*?y9PQ<{Ij`BL z+LErR#?s@-N|cX)lM6^byvI&J@_~+#%RQko)l+Gz@VW7spk&|m!st)|ohbtx-@aIFLM`OH{ht3B*>+G-^SXwu?5DO@5Xa*$wwZ>}tC zqqdx?sg}}$l_n=qUxqw{0tZol(+Xxhd6nl&R+aZs3P_Nms8A8U`;XYd?m>bO$EvKj zQTS9AW!MEZdff%Ix2zEwW=Rp&(aX~iPB`{NTdCDfhXL_;z}h!~%5m6PEiDtZiPTwf zCg8}^G7ql)T>Wt(M+{}PEvN9>UZQ4UN|GiZlZOf36%l&5X~17AxSQF#Jj(;h4fu&B z)(R6la>Oe;?B6%a+h2Ublcec_O0J^kVU$TLNkA4?3*~% z1G!3|K|nLNAvkk&{#LX;w#JWjFO?tkerTV{=Ba_G6A}Gz>qWqskwQX{p)#wTQGfDB zr>(x0fBJ}JS&IB9Z^U%?8XV`uFTK9_QNLmgzKxWSe+>~QK+*~GkG>e~c%^6lW+FE( z1mT{+GmO_O_khZ@pu|Zt0&jh->GZ^7w9d^dxIGFEG*YNGBjEBl`cYr(^3MO|K~}Bq4Ld?f9Z@2GgL%GYH;*?jXNRNsno>o0EJL3)z z4VA5=CtmuZb#jj@`EEpMyBr z85v7X6s0I6m4xbx&F{6napQ<^wxX4+B7(cPdyTu7Qq56syn?t{w)^@<6VI|Xc$IcLZPoiI+bbE}z~_-~0fWId-ErT1@sB2q$0Cx0$> zo?Ch1CuwYMXDMFzM&_I@u=XIyKY?dyV53oRf}6&)%zltZnB_S7$JkGCn&fPXf|adc zT=4$goL^{-^Y0^I^^E-a}*IKWQ}Jq@W`sZ8Sxg;|_PYK@m^RCAgtFtH9pSW(Df7o+ z_G8C%{6&>EguCLjO_C2lNwz+Ak2C&lafw=J z0;o!RwFf0oV0fo~dwF7_?CZ2@XKCr)LYy7oNg&BgD|u1ek?9AQJY1O_Ygx5AU144l zEdx)Bmj3{*-%Nf_>Ql+5e%D&w(@G`-Z$DMa9@>4A9PcKob);%k6s&9}&1QIZ8k4c`$A-psosZKWHhrnP zFc3ZUT14Ae5Uwv?$SNGrOJ`==0kjMZ6YV3iV}nE(PKp`WfKSx*+Kk*@R? z5|wF!3~BQ^cE{&X&gh-FX-vy)rMUC5e7il#RFKns@@ytzHod3H;Ny(_seO|XR^3Ho zEGa5UQD1oz193B9%JE=v+zaB=sjyR}K|%p1!yRB>&wcRM##}E+#S{v8w)JX9hii!w z0t9Ur>F13oy=qvb4{0i`4x^{-G`=hGzq9l7IiYE^6*!})gJO~uCw;b$*pX;E9Aa^8D`2PT9^S>*~9AS+vr^KVoD^XWIdjJKnEQwwPe3sAzty1wa=Yb-F!Gu}v2fTk)vaNkG#Cz}n(}HqnWt7qh)W@|s%2vZoku zYAO@qQ0wLmkC$Dr*Pn39ye(ASGTSYwT1Z0B6qKl6=yv^ZP1G^wg5K3gHXWsOhqG;8 zbCGH%@ZLt4CMMrIL>TIRc!c|BWkluqeQHnQG8Im^1M-qnu!+)0>0|Sg`#-!9!uo>3 zQrnWU2B`{xw~?6iz@FE%#;=8H2~a7gs3uaOa-(nkvm}V*H=IKs{_Vrc__$nR)!E?o zT%OVj9q=6+s$@^BTlJgmhm5h#??^gaOb`@Bx=H6hNW)4M$RR~jr%X&J{!u&rUlt#D zdXUwruv_?r$r}@C^pa<;H6?C0FRgFoQ$7pf-*~A{fkNOIL`r5kM?Ht>i@&q3#g2Ls zJGAOh0yJ0vVnmUCUZd9$j>I@C_}*regsDqWOspA!HxPX9zT+LA*}n$S@V^hT{{V+p zg(*Z5q>J*oxAn)%`j@G;9Ct~3!S^^|DsLt1t*#5GZ{AvmmtYs+)S2>87TCnW`r`Y_ z{hu=aCE$gnw!@CRlc1C0)JKtxH`+Sh^NN4A-Z`OXFmNGBQg!H!Who??3Ky_Dn2nA) z1KDei8RE_oY&iCsr!=es0Yu3L2HV?z?s`33kJI%}AgP@$$Bm#-^0?o%e#V`l;vVHp zL&;o7S@^YVKrzUe>4_f!c3?PuoiEg*Ku(nuI0;E3^UU+-zW#XWe%O0Ar5sCDn0IM$ zx23_M0VxVm9w?2)$Il#_+ox>{;iqb-C<;>YfkC#U>E{A%{zvlOsC8Xt01(fp5_=kR z^vaTP$85A*KFjo!ZnE>r3h>ULl=wjrJKV=9JMWHm<1Q>$5Lc{&sg%MKBXoiUlh12< z`pDU@5W84hQ>$^u9xK-*s7WF@&m;Bn!(WBdByIsFZ>O2xsKpvsLk{AriXgxV$y%!a z01e5wv`>}>6$n6bRFvsaPlZEmuYKp&3apJO@Drd zRF&!|E-rNGMS)4bDZk4JHB?=vNk~d{OiIM5AvZWpYt-OK2v(^nT$2g{BbEI6W6h_! zX5+$Hq^7ATpNGO^6Jj0Z{i!@uTS%aHt7(`UFXu4R7#o&ZUIRk2sa$?hFp7qT_EdOD)9|l zpZMFU>2|fOyHXUjD^BF^A$`u6&*X`i&c_B|$$~4$FDh)2QR5h@F2mB?P=@w^R_w{wd!VanpCL;I+Uq_ zxKZ0_>+;7uan%C2hc;8HE$Q%pH3O^pOixd~DABsl!fvU%8AB?wqT%QB%+X30auoom z{4=x@ze9(bo*GRxCWWQVDG~7ecijB3E#X|5yqx!w8pM)RWSO*14yoY>c#AQoEw-%> zD@DGRPpI?#CEC4LPn;-YXlp&(l}=YvEr0-5jXJ&~vSbb8%MF#8TIkf3x}7?dpe#g? zp&mAG!-JwouNg$qJYT7*j>xA-bf!1phk`>~(L9k&a{(ECWZBt`mrP0J(a-+GMpTcrbMdArw_vy;l z`u%Yeqin72@k*5LQx-SHk(+SCxy=KKX)vZoc(@@&LQ{C?ClS2EhLe&}cd7tbC;=K^ z$M^djN2k=W*zQxELEiy0J5lcKt!mWXn{BomJ^6W~x(9jUfw>xwE_}anjh|7>ozRyx zrT_+DsGhgle?f@`L&8NhEvrVRND7(wPf7ayJto5D#w_xZ={u#e+7IDW317mfNhU{_ z{eMA?PGhJfrA~N?ZyyQkhdlC)=MtqMdQy^@I_6C8yk7kIj7O^*c8x1S!cw3BI%i?? z#BtNjlunRx7P+=>+^Q$Ut3U)r{{VkHPdgFH&2!+u)~)t}wDS7Oe6J|oy-kFo(4AcE zF(M=D4#1>?F0r(2wtT&LWwisT!D zEw`TM5nj*QL*3h&bg4iQZx_WLmpD5;uT5rTmQuC2s1N`NBJ5$7=|t8h zo|R#Grb^21aT^|&^}~k?DA#9fsXq!`m7xLv08Dzv+YC9KUvd*pk>iqs1bsSl^z+1{ zf~b;&rQIQVbdjjc9VE<|n^@o^%PAs8*xI^Nfb;rrjR`uNYy==itx`D|kH6*^A>6S% zO?qy3K~(BtFvaGf-UPbwWOf8PLIs}U(iL&EG+r1$P9U2+B0BqrWaJvN+0 z__nESp)k2hfLY&2u;8E9kTrnzQ9RnUO>qOor5|@tQ(pR=xk_plu$2#hr51uY9gVqR6wy=W z`E3&1T1#!xDFp}x1I6Oy9Qkxs_|T2OkhW%K!AjC!3{=*3C7wA}g=?wH>DJg5I)Ezx zfMkO|(_&_)O(icA@%IU#<)l49O-Pan2`MQ}mIs+klhBRg4aDylFN!i6?4=5p=xET> zrL_ntDTK^icubEhbC}PQ!+omKr9=d|+|rGOWi>K!R5TXl3|Rsxi*XmF>T*ukIX=Z<*xt>EGH ze?8+0e5o%u>$Q19OKi@e-nQCMprqKQ$ez67_^NoThYoN2EpMZ`sH1eYf&mI?T7sa7 zuqv1WZan7|!oVyO$SXc~7e*_wAF}C=J7ErXWkFEVQ~XCIs8dx9i3dVd5NE~9a!f`2 zaX|6+4%5F`nO3rxa-IviJW!Hsci3&V;NtAbDqi9a8*xf;#}q<^LLi+|m{C%-Tg4L~ z$;C&*>1T&KRaGu#heb1sa)PWGwL6DMJqb*uL(|OQv^uPoKaiKL^zlMQa8#?XeC2Cu zqcLHAB~hU=5>#7K7LrN1gW`f<*!hqU_LJft`u_kd%J{y4ul*fmBB*l&5I^+w4Z>un zm?C+RGB5`PWVwfAU8`oiEm{}uZWmi^)F4ajttCykB#{aMD)b#~jk^=#cJe1UlZI=X zRaRS>Ax#}{P=%zODl>l)PcKW0V#wS#mkiYr^jXrk*cxnIgY{94#YVZ&_VL!E=N7#3wSKaSAKu0{{ZSf%(!~22Ha;rrK=`2CB&FYjqFIhzf1#+Z(wx{qm8n~A#MDpjw#D%c%)J0 z)YR+#8(0#hjmrg5VIcMU9=MBkk5gIy082NKqNhz)54bAw_sXssFjNVf13ZY>^)Wo) zT&lB&a;okds$Y9brWcvzRU{SaLSs@43+V=YzSw8Xn4;rA%K`RTc`bXpZnR)I$`nLR z#w3HN(7*=*++Vhl;IyGgrno3WEJl?N{+X4wA z*X4=#Z9D}?#}ZU=Mn>9GPf;#9$`mCEI!>zqog^KAHy&pPAOXa7IUnr2hb#v2FhUE1 zI3yg0GU0s1DyZSS!fJBYQdCY~P?&@Q42il-5oE}dY&7t_ZGKoY4iT;@RYe4}-+D>- zLbR&!q-ps>vQ(edqwI-4!s06CB02H=Ia&M&U-Q^QsOhqwgZY>8MF68j0U>1>(>?bA`RVL3R2kwZcDYnCFGu&WTj@s&P+I>Pj3W=~_V-o_6%U zAt-G*El_xrw%Vb!_>%;K)1-W@i#CR~lZm)_H1DY`*J@H*bP?n5fd)(q^%#utmO#9X zl)i-i9=$67>CmNE8ygN$wEVF?o=t~oUTO=Z76yE!^6KRw^!GYar5H&NjYG;!{{Y9H zBz29ynC0ptQ#DM4$B#&~K;HXrIECdo!m^;*N?awd2nAmWw^M(o^u*SiF{aI_btTAB ztQ+qkVNnN}kU5z+GTI@{S#n4m!yJk4vfet&yG`LYvK-B}Y4b)=si#WDr&0mE;J`76 zE_K05%Xp#6TC{0#B!n*dN^KH4+pJs8&Kchixt3-O=J|S^L&*}dB=eGe2|aoG!`Bej z)A1HU&S_5iQ&P$_x`Ja?+Pyi)ubrul!}B-4^1gpi$5z}LaTZHlhsO zK4uQCSW>3BoZ+=ppe45wp{N1^Wcgr@GE00-O|QVy?4$&zRH;B7SMngq-_VfH!PUWe z;%J<4NL5hMjcX=PUGb$JTYeTT4BC+8Wh`XrO4BLSrpieqX^)40pUm%w<$V%VdMuxi;Ziw4`{Tk@UXbd@a4#MmH3N zA`?qcmrzz#m8W9>b>CqZ*jo}+aT@D07DB)s(Ey(=<`Tq??5xH~Gfq@K%Q!C>dfie`Gk2w3_j9`FO zaA2E8r#jJ>C6#!)#K9)u2#cA#PnOta$#WA&#HdRo>2R$nC>w%&_MNXA`rvk|MO`au z3o6p6xs`OkE6JP>lDykIRD~NQBn8Mj6(7C-0A9FsY#GA$c_SwY-RDbHPpOi3uv7NySsgnR-Tg@hF6( zr9@kJPtX2wrK1~Uzl9E|!OWt2t2v5+#9R>DglbcbB}Ky$RBbluFxwm@PbV_^1$q3OCabP2On?&#Bf;%*;YN^L5UQU%I zI@cCb)1^aKJ4p4m1LItj(>|q0Oq8k#P*mG_C#PIK7t`peXJvu3rJUkrxlGwBZ8}DY z14u}bHsoOM<%PIrMqDP)lZ08-p_jd1A-Ixwh34WZLjbv#av+kk+QIkR@!p;1YFof#(uBZ|ef(dNQot zMxZ4rs8_^DQcRzUK6uwB;^(uz9|&4pQj(caB}$VKs!2S*PdhT^`PaXwE_ArbOo7Xn zA?1lZ$J*svx_7t=QfD*u49U!;*FOzmL|oi}W1abJ7mk>MQE4lC+i~?nJkN?dn#8E3Nd!nCFm*_eD-1}uQ!;Og+f7MQbqk3%N`;30U|Y-27B~BC zzQsxT%Cfsv%TdMLAoGo_q`gm0q=E+JCVqAwd{sS@w1z9(r>PoSQ3+InV9b1s+D}|g zI9G~RiiI~*tGODcRH(R)w!}BIs!>f)nwmu`Tc%_$NI}#GExC2Qx5F7^Z9pC_&Q?%y z%bX#_HTi1ZSGhcUmrSUCEGzBwD(i+WCg9Z6X2zkv`)*uHA_JZF%MIP^vG+r?83mzgopXf~-6=^e z*a0AqncMHr8z(Sj(4TkG5}*n~g#CZU72|3Te5gxBNl8*9Z*@o;&-BDy_UBTDoLZIHIH{z*I=NP`CHC9I9SX z;lw-?uL(+s7vG=nmKmt4lKoz=g?OUCM4vy`*A8n*7L&LFpH}Ls@+B}eYG{Q_jb2t3 zvP)~Bq{z)#O%D4HKeP)Cr}4TO1Gb;0MCeSp>3&JT9Okw zyhE4M{&35Z$xO);zfVus5^f=2yOwvYplL}7GAum4=KezrjIh%-LE zUSCvekmFS-3mQ}1k|Yx!@ypW*l0Z}Aj=57jpNUZBTFQb_kdQYsFi8Hmcdp_iOGvKs zQku|}1w@I6Df8QL{c#7#n@cUW2~wTY&Lj!v=kvtMnw>TLJL3mf)Ff^s69DWs{lUV) z2PwkH`YBgs+)YcE<}~R5p>3$4L1xGhEj)=fFe1nKj7_^np+c#Ww#Kgc8gKbQyc_h9 z=y6AII?h?1p~RaI5~&=voy2wZ#pA=Y&rWxbJRZ|eQD!>8Z8q@$I`Xl;=MFipNOFfzKpf2T z&YaYN&vv;v9xV*ggMr5iLD?}PIP=koW0mTl&K^bu!!q%<+c(zs}xi4~h&Jgo(fP`eJXxj5k2i8(Vsl8eqVWS)bp_5iS#|mrQ; zPp^^0rnSX3lAiBQq}oX{0%z0wbQ3&}ziC!6pnI5=<0?9445exB5>x;&tftoabLr=X zsux1&6ri-~**onf40RZ0;u_Z~Uj#ao-%J&PFa5y1@wQ0QiPR)5C^M`L$g~MN5jd7u zX}BuL<|W`#A27`p)yyd0T>9|n@5>$(MU-jpNiMAB^Atj`Ys&U5DrIy@rLr9+z zC$s~~zBIoqPql+k4OI56=LUbp`;T+_R`pAql*XFIh{*t7T z06|)nF%ykQ<}Rg~Bw?bvs8+BT@uKV`pCcdh`$CT~9 z0;!`k>w4GrlNml&;E63X5Z4o>;`7NIsbK*xo)-k4jrcGPF`OGW-}R#$1YD?Ex}o*8Q1&1RY6r=`GKK^%GGiP!(n~Rv1oAbuxDue zPK2qPl}y@Ce&Sovhmh2huk`g(nW9nbBXZpN$shBvLT#MOjgy<+>1-FnM>1{O7|n%O5-H z9;rMs7PJ5da!2uL(;kx==Eh%q)&Tpjn4O#d0Hil+oI##ZxU8ezD9X~K?(MFitrK`k zQfJBu$JSqBA7QQ<;118}+ReK!t^O-cjVpeqD5*=ZW=JYZlL9U3Bn)<6W`5f}pk~=? zbvf^5u5jA4CBofic}Uy34$u;%6aN6X2{saKiw%!$b~4H~-mRsoqbmfI%XJCWs^lrM zZGK}PJE+&YR^T4~JaDpR{-tazF^I?~oQquXL+tIrDs2d>;I>;%fB|-kyZK$Qe@Med zbN-*5mhrA|rBv`{TPixG6z!x9>@=Vszx5-cIFs9hD?-bQ&r-=i1!!9fPj}`>JHBzT1i86OopUB-qO_chNi*w9!J#ki_L%FAG)&u_lsYrGS{Zf6FdnEQP!5lo+ zUakWb%Gt%5mr#&qV@qWzNaYXefbg4=+3Z4u@m`C&SrX}qcQ#Y(8umjuUz7>Fh|v~|ZHOnZMV6ZA;c{{T_` zBlA3kHpw!+6Uivjnl^J`PLv1(F-<}OI?A;`zSA}q#`RU%BG>p;Rjj2d{{ZTx1dIBC z^#c_(cW4|F#;zg9GWu5CQPuAhZ>goK{{YODK|d>Vj4|;RSi|Wm;r=qrC|^#H+f}Je zV@V&)V3kj)JK>Ge%+G6r!+x}0;OoCC?RSYOoMkLOQAJqVgpU513Uf~=S(Oi_D-PQ| zk~k~3iWga}p`~$8e>h8tM8=&Y0|Wuo?d6C&b-kcv3UN&Yc$OBDJVYH+a+5X$->JmADfWfRIEbNXdX?tfUZ7H; zB<~^&nC1ucIMRk$dy;KANwNR>8rUtT;26re_ z6W0t`!nnPKIOPpiL6{~2yS2XMBc|r!+HGr3PdKrfhL6lo-8tXX+LM7t=)QP={w&$M zFD9#p__CG8&~$~<*A&N~T1+0h-xh{L{*ByM?Dvqe``P~h5h3REko7*5cW^d@%!3=i zFm^j*tE;(H%)VrN!bnTMc zYpG?%QdCH>gQv@Vr=p^LR+YM;v^;{Ucdxw1Plz9yTw~fdX&tKeL7h26msM2pD-_2- z59MwpX#m(N(g^-xzc|Fhvmb4)Hcb-)i1-&gWjd0fQo}1&u>^cFJjTbS*2Vo-?L$k& zT2kdzC2p?*7PKKsl4L<5Nsr2J7}5SZ%Q%60U8XIi(I12~soR@_7x56A*mHmkM-GNa z{g-v}p>*0gT1=6UPuWE{7u$P=v)8@eqcCoYp-CwXRjEv>XW;=_NjLPhv17BuSuYsn zjt505kf94%7V92FT0f-Xu;cE<`#0?mE`Q#c&68OKq1K#ARjOo4pcvZUSi}z_>>ZvE zLx+aA^E%1iLGZOw6Hv}E_l0=j#Cr-nm`r?J{zkv8ZwcZ|5YANYg zQCJB=(1fL61G)vKNVRMPvyPD+8OOsC^XQ3R3zkS7Uy zOn&i$!mc;6Q*0%!@OWKsS^k&raK>?8ndRB#JtI2Hj3I-l(-@H{n*{iLK-^+i?BD*S z+)eDo#|>~VX)i9jD-zu`dbOo1Zgk1iRU^ptjqw%sRsR50YFzwN@TX|>?C}0**bE`n zkj*>Gu-u;sCPtEOObIr{sqJsIWiJvBhe;w2BQ~B`_~Y$S z>}SQk&E25XQf727(yLKZFNsfk3f(u}+`5RIbr)lutah#bpPXIp)#_;XjC`{id0Ofa_i}fyZu9d(aSdMQiJ%v5484WmeQW~o%WJfp{>*oo1G&5nC7m` z^OxAls<~jkURj15f_f1Y}w*`XK(}#D4~`XJ0MZNu~s*-cMt&4KrX*I zo>eA^_a!OVj!7g)fzR(evGhaPgRxx8GRRq|r=U57BWTpo3T=di0r0KGYKR(aISoD; z3O_abE-rRy+6GrwP?F|bT=Eh4V3g`w!cvlMLDXV-Zf$&ZS8Jc@Eu4D}*PCPYC1caq2BKxLpB4EYK z>{Z5ZXIV`}B&eyBm3(t4{I(|N&wOfnp5CKe$6hF({w&zznXr)~OL9mD$K6l6NX?BB zz0nNQr1zm{ZGe;{onI6t0Tw@BAu#&x#WHRwcB3|{qy8hBC55p}95T&1icX~fNtH?G z&k`?qc8iL02P)89N?Qp*DwL>|5fVwY#?U+?7sp^cA;PZkuD&L!ZG^UsLDT}`%E-D> zAjSEa9(Z(eJ78-;J*anC`h7bdOXM})&MV=3{{ZZRGjo7DOU!aQ@+m{hQ)LSS!a#r~ zV^l<5B=64__Y39esN!d--33g(+qzYwa7Bc2Gaf6(B0uUeN5fnf+n!yXaGQ0Md2{Fu zJf}$fRiLIw_L@a-DaG_H@Hx6 zy6~LIV|xK%CW#m2OnsR9K&|ZCv>N^xsC~v0RIOBt5Ky-{HX-Z{RB&h5$!al`*(F@?5qM;g|ajHTR<-`=3lM}Fk%W;ZB{ag4yv`=UZ<0s=B zj=4F92jrm+e+;G6p5;I#MQ#mVB}|!t2vl@dH9Z4R#%_(~s_Xrgo}(?&M z9!l&_WX$b3w_}aGr971v7UMxjVX8pi%zgSCS=lcdoT82QX`4^JQ@oXGN=CIP1i+ig zx=7SW2WXN-7wj>_YRr2grg1?j?vR%!yh({23Fdn8p0?;t5nUhSBf3$jNlN6v)RcfG zI`4l!EI+Beh3*zfI92){nYw>a=m$^$3-9o)eg;##Nsu>PUbQyk#DgYE4DVwz>yBym zwWd;ge&LkUwyiLtxCDtoIt{sr5IMoxanqD+R8~?ps#5Y<&IM z>Zn7`8g@}-gJ%^ol-!sqIOBfT`*;~qac;Ka>#Lti5CI83D3TWU^;~!f+nyS^ros7_jLY+#RTT!GdT1>>r5J)6V`E$@;YBE8CWA^kH#o9?5_-6umSUNXJ7QbNbGk;|1 z+s9)$7iYien)Q3MH1B5_qwN-*TVq>D)omnvJ`zl9KoATJeB0rwXO+aQrL(vK1nNOtoKr$1!lK}xH+`8f^{+nOu;I7f?na_Bs z=ILqKX)Ymd5)V*NpZ@?#=1$!46jQPtFx+j#k_SE)+IkL>U1qjd-?gL*JODf?7y4}W zkHkHg@NQK}owHEZN12k-6%PC@sGTJ`iMFB%OvT9BMmnpExC)NDE-Qs4n&cFR1%{Fc zwf3>M`*}c?9^AV<;O@@59j?f;YSmMwjR;OuDqIW(U62sJ2>7Ko0wlly?}(qW=WT!e zEpS8G1$9bX&N83Dbp*oT2};w}K%ZYz9>Z;A%4ie+0L6#>Poaov%k<{R@%$CYKH0v= zHTeY^>t3gE?(N-eKFmtNxK|)%1i&C-6YTMsW<8d*Nt@9-?^!#=Ox7S1_$mZ~FR>6z z7!l0hA3-xNDa*Kmx}$>lg`|q2l?DrmAB-X-D1c@+NHB58KGD63WW~)G?Gl|z8id%TL|>U74k%8|eTnm~$#{2&4qjiX;tD6*sh};sNpY|WmGF?F zL;(UZG3+0<);Jf68KtjUKZDh+J=5zNlG2nQ2@oPc`75q1-rTrvGvZzx{xich3U0cb zccCq6@uy{{Ku`mpDL!}~d)w3b$I8^w>Yt=F+13b7J&AD+TkT8PLb8q|X%zX*APm(o zv!QLNH`b7nV8A<#i0g~D*;gf^;oca{IA`7#wB@S{3340n6DonoDgief$Q;HvD}cK} z<8j4E&nYtZ6J3&(d*a&(WiB_Um1|Li{$0=N0X?bg!`iJM7WS1xRZbG8Gl~T=riqnn zMxmhijpaa_3;3@hGiN*4TJS+>!0?%@)4ij1-)o2K@}Ib2nh$5*+iB_&7T!(8i%SH^ zOKm$aom)u?Q3e}kH*V85D-+8pRsYxxQ5dfWp{{Xb|^2Z@?-xfc?++9Y5 z)dvrLq@51x04T%@ll8~ZfAwbU`mM*Qc#AFXQ%w7dZTfHuLQ0h?v|NOwpP!s#=C2WO zd7X;!xs`dnH`AfOcvN7oc;+hCU-SKj{sOwIU>3z|k+XsdW<6* zu?O<%7dM#ngMGKhR&nQL)IEWAd&6(#>8EXZl@gqX(&P zIMQ3psg&AKvP{Y&#ANb=>GDzI-(-FlR}iyLNQF4A`DsxNS#CicK>kuKKcw4!+v&}H zkb6MjZ1R!x{{RiBaSL&1F$xRQrCi~`wZAObq?`_o!go40^OIji4DIODhJbMc^-g`c zp1E>(vvRXnra5A zX<1^Gp`{GAAOH=324;5k#(bWmvsTc-meD8tFQ)YW0O_|o(~PnbGlAd^>*D_avPZH{ z7jRc-DOFDkxb@M_(Qge^l=vm_w7?T zPM;KwB4iLr1~#_WJKpCNL#+Hn#Ftih1C_t){+z~oXH#h=fwD)B9Ik2Yo3s44i#Qoo zRZ2rAEj{UQtw|(7kN_au72Eq`p7JdAn}Im0k2Y!K)6=DTT`n%fd@3m-1caULXBYQs zRj51%SxmB??d6h6&ZMaCq z#n02rzT9#D01M)@TD>FmVi?(PHD|)@wzA>HR7|?wl_$WU2$H0mY;7J>jx_f9>>DEN zf3&8vSF)CC@*Lnx=%^Ca3&f2uK?({!A_=sn;A$A_{{UsaAgRvy7bjL=8)mYOoiz0g zEEH){Q>0kIJk7^EN4sj_9ILiU?BgcQ(3h!d6j+6gNXjhV>sHMTf_aqy znVyH`g}C;FaVHg4Fpmq#X(cOx%a+hCCzkzhigXc(`N2)E zw0^^~^;P}_R$)e>;&c$C>Kg&7K^}Pc_wAMJ@0@lk+s0^$>S~uMGbh}BnZ%W8aXude z^3yXnnLEjku=zHA#{za+LW=J3lu)!%@L2~>h>{dXNl%C$t}0Jxe#>}!+RK4bRLgJ_ zhbU@NPNXMahoN;MPtGtQu3rzWlJu&!xmL8@ZkiNbzPYiERAM(0GhPdUwdu`M^CUz-N z1yU|NT?qP|U0t8?YU*gx(v*9>010rI1i_!LmN`$dbXBb^_leacToDQ75iz!}pz_7# z!ga4xQL?m$o71@`aj1($w~l7x%LhK3#w~?pYZ-6jKN(kxDsH8y)RgJ~lc4xEwWQAc zu^HnG!K{*zP8B4p;0gsc^y+Vjeq-AE`AbDErMqfKKM`Hxd`Fa=Rh_8z_U2^IbldCS zS=MbTi<|C8Fa|Q_hFL{Yr_na14xnq#KHsgmgx`5J@r6zSj7Aol?Hl61kb=a z)DC>UN9B$0LD7~|Tq#HD(pQ=aSK3ZUn(8$Lg=tz;3F#IG<-e?T#~k*(!0O0&?Ds5w z86{{b9wicYxY&P8cJ~v6IZdI(6=?-F^9jBB5I6FPj8UDjaI$kIS$!-i#~bj1h$#{* zI+HqWzl$G9>J8fu7K73?06c(d*Ei;MPEqPBE_px#1Osob*Y(>Dd?THubXqn1LrU%~ zGC-f}hW^uX&cIhf*w-mCVL@b3sn27`X{P7^l>ycGUAx-K?(=Z@;$J^5swq2anIZ+Nc zq`2peAO$5Ne1fe!u{7Z>A~eq=1F0_|DOo9!FKZvK%bo*U>F?8?ZA&Gbg!fW}y;7|z zP@NY%pphfH0%f}Q1=^J~jt z#VX)LY%V{!`}H_tee}7QsRW%W)iVT`0DSG!5cl}>Qc|Tr9ZoDST-i_$E<$mwHyj|n zuf0N&RVE5R2EqmHxboi<>DjU1(y~Ulu!^tUSXsJRr$UlaPLfnrGMz%-NW^x&p({iM zYS2nf{YUp0DOst^6He+?skf}6Ej#J@o>&($r(0~=#Hy6wIkg{QOw^0d> zx}>MP0Yy5z`9ZKgSNikAHwduh4;54C8Z?j;0n@eS#C87w>%5K(&XiSKErhF3Qi1}{ zQ2-g}WZUb8W^+{Kb*OV+c$BR-vUOfRsrsuIM+{~&=9Rmgcvq%M`dh7lAx>FWI#jO^ z{XSdu!1=>zr_MELR;v(VbX;$6I(@w1kA!n>^SdfiNKw-|W+$1GG3Dono+?30&5;^N znIdFN-<H$G3 z)i(r#s^j#x`*C>iGwTW{ONvgQpAaxb%uE3W-~DzfziAAW4^dPkCRBxm2^&Czr|apB zZ%3bOz_~sL*)4G8RDGT2tkLI8!_FsKib)F6NH8Fo^S8^UFU|dR@Rj%DniD__Slc2ckA@OJ2m1K-)5gl(xspTCtj00&OWEqSR4cCW$UA? zg01}Z!(W!El0OZ=3{S!Rug`m8y`|09!`a%KDoS*$0!Ru81azM>iH$C5UZd0wk_tc; z8dK%v>xf@ysAJwuR4PhSs6~agJKyd7b77DHKqcr-;8^3zv@#AQZoZwGhaA+Cr=TKW z0%M%o)9~TRD(@=P0ZNqR^$AX{yzx`^Z^fz7-7m!Id_WO8Opcqz{{Su!BVrV!)aAxqEGBrI&AZ!$dZYW2!TpsMBRi zyy-qrHub#DIfL3Ep_g$g>X4F@r}03vs{a5Xzf+9gO{YI$?w6uKJVWANdQT_ z2q)0=$5Zwl+J#16mQktKz9b|A@P#CjddMJsv61~n=o<%JpR(t{vEl5(p8H024^5xZ zJoPO)QsZ_60FtDH$35p`{zfW3$oP7rv;HB|q3sDEc*LbfM1l`rPteCun z#OeYF2Es&MA|ssnZy1enUuJ2kDt)Cgl%yo20-qJ*nfQ&!8`)b(pP%&KSC%8tm-kjX zP$iFJvYxmjI!pA)Nn2-F1W5&2yrkT1&z>S)(%dAB`-bWk5D#*bc(=o*0pwy$;7Q+} z7U0!8mZ-MraXsFYttU{6PV;#aGducAmldTs)>jJe7MBK+q!N-mJh%FgarDsT;zkvZ z3yz*pN0swmjj3PDxWVluvf9%2j9Iqv|oNSU+1RsR#N30*GELVId!_Mbft8J7c zQ8zjdBe(R&e|tlA7S9&YIQtB#%7lWViJc`|nA$8oG0d;_TK5X(PB_yFPL-u4MLr}I zZX$hg^nR7E#W+$h4L2btCreTpc^SWiP&y-3F~hm6@O^FaK%n| zvqh;i@*n^%CfxqF>xDZ|qOVG|DNYSbQ2`U;xP@DnJ4X11RAkj@Nl4RVKi>Js78Wj`e8?w-kZ-pxOL02X0y=SiESlL z+;rF&G0xj!3euHVT&9YYoh2n?ok!RA7_xgi4dnS+)agosNCb{kd5&k4^urq)L_aH` zn8fZaYUgG&h^LpDZ^hyu86(h*<6#`J1LFMOD&b1S0+i~4m_Y+#498CwURafJ{{R^7dH%RP95#7XJE<_Y8VG(V?a}9* zTU6>wM}&L>tjPx3`C=zm#@Uv3vY_jlw=kk@_5IEmYw`zNxk}2CVkRg2;z`+$4yvOt zOG`qu=^)G~$6ft@_~T`;06nOirHVH0IY7|y67uz@-WK38N!4I{Sa@%b^7@7YZYxco zNSM50LB`#gl{A$!ktrl3t}Y{Qt}9&2gI;0HBn?ReSQ`uBke0jiCP@^1jVW-e%5#Jg zJB28O#E9lP`eSOI0?D%`{{RVBP~9Y%KTJZ^z?JPXrKL^~n}iTgIqA~^qJuYJq%@@| zHx@Cc^u)l6pz~jC8td8A*}{9K3?B zej?*aY5Y^AQvow$)6V?n*lJd7mRD3OywKuhAea%cGwHS}`t1Iys*y`km1v0qPnbSi zUzOt#Rq;(#Jy{x*ohMI#z%YNdC1htUMBO3ZeLT3YZAg-J;8 z=p48C$=mv1iZ0F+@k*IewF9aFJ{#I_I5{dwH1Ig&Qs}Ik+8I>HWh#5bK_s+cB6b>Q zefh@y1juraX_c~kH7ZGwC?u6CLcW!D5_<}?YBEsD^ z<%phn+I1onUiWo6l_Y|*0Xu%X{V`fnaU(6ED|N=3OlXzbQ!{z=z&u67w5-#phud3| zycJ2_-+o;1A`{^gG;QD-Q>w1qsVJ&ad$gm$AlTdk8+^Wl3A61_?qMyov8p6Ol$q-g zW@DZ?*N%9-34(_ar74>oiTRH#LZ9s|6bmU+(5pZoz#p-OHWPHLZ>54SC3Q~{`&GW> zI+5NV5jNMRW;y+SxPa$9zEx)R3T-X`kzpnZ#jn<6dHt_OyV_$FD=JAYDl81#AMK3G zyGEyN^r!_mkt9vPzfbduI$$cH^w815vNLS(z1V`~7AM#FYwRWUWd@ zk>i;$8~qG@aqUlO%)3k7wv?qRv@Fa4(oPsNe9^4UN(IEg=1hL)pPpSB%1Bahz9DhMSdAlgsBudnGij#uSW?j=PlPdG^AOkmy` zp=OMTDb*1HVtsu_Jb3D?g=?dXvZ-AeLkQxAwUs4GSBThnYzRM7_rQEZ+54T-ieV}N zTLA`q{V*SARW3B+XbVo2Eg*w=F^gX=RKb0rNzPyl*j@#NcH{gi28Vbu?muxQb?0;i_7WzoOae{+08wD8-Z*i zWe5ORk3qe$PxhnPn&=sDrKw6uQ3L+~soZVPbx+8TRza!+&{W5+2ATrr+RUwG#FhLh zfJ|Bh53CQSC0(DC(bgh7A|^tG#;Jq*{@88eY>DRGazltvGX##Kr?02daUMos{!>-0 zfUgNKOx)_|f9D#J=LzlxK|rqY_G;}egCq?%Q1fX}DK~H`LWwpVJxtsE#y*602iopk zQI}Jx52dv@CAcainCm~TJ|FgV$9ap@t%TG#hb1H_8i6L8zNkm9tc{d#`(82N|Uzqb8OT*EZkgRdvM2@yL$5;a=(Jx86!Ev^#w%cbH9 zgrvWq5(u~(g(qFdlIZaHNGDg)K6p-@ z!BFTSNl`HXokYpp9(d=z5A9p{+Szrd6Qx9ebloF(v51c>U45HZuQ_$6Ky&holi?FR zdS4$etMvIpG8MXgM#2=;z8^((5=mZ?q$f~NB<^{FXPot$#wlLhdm(Q(WyajHyhu!e zapp(%{c+LRbt2nG;ww^p2-wZ<>xMov;pS@EQq+>YTCJ#$n7^MqeCD2K>F3;Sae9LMcV*iv)$R_a>S-5{xO zH1jZKZbrc4qxdU~=`-w=Erp<~OcVk)8nbusxpmy&3auq`H+V z658ZMR%j9@3qbXj8Rpw3NB5tRf_#TN}qCVd;dunsch0pE{*doY2~3wG|Tz zOo6=ez4pHI82uYtu4c1H9ytMG$q6sqI9+L+WKZU_J`p-&mcj^``3wic$#>klmlEPs zf#6*Y%M`6EH$}#!mn$3i< z-c^m$i2xzWC!XiZ%7W!fN@sKs0*BZ9`eE0zPSA~0>Y;ghbu5&PiSm)l(r<`o8$4g5 zPzh3$k$L0~KT#Iv<%oV?n$%I(wBu(^vXBgr2-SOfA1rR@V`ic<3dq%NiTEq8I6j_| zzJ#r9w&VaUaCeY;i+=BkC0`CwKbNT^#+m%E6ESippZCRU*v@J1xeA{{o)s7#E1Pcz z_w_L-%y`B8sh1i_LXw$@nA$g-Lp0_G7A+kd#o$`4dtdC1n>G%uUD}jRwVf$c$p#>i z1Iy2Ba!<4uVoA&BUUi1Q4X~m#!Ud8@5J|uLx5sHa#6QKHQXMIu4&0Is$1ZF^dF7QPardB(&m!cb5k zCUzX=&}Yc`W0AWN;~I|4dsn2WTp>QN=kxfew^f+J{5kUen}_O9&tjP`}v%6%zN27D8$eCOeTw0*Jh z8edy{8qJa(c}#1;J4v<7U4ZA#GV_!wTqSL#!y{soFglI)#DllsbAB4C)LijXmHcu_ zgn9ns5v~Kv9>_S|q^W5La4ofxAS00Vy{*sEM60wEd*=_8D7cj?Q+;J7OwH39^B0VL z)Dj1{J-=1+{-FtucDOD+Vx+ZSr2#2ZYk_{SNf)rZN0ul21(z!_sz?`F{3s-(lP72d z-^&o%>P0cdHH~Rjp7}&T+T?t{!TH+#iDbtzucHY}DNbJGYP{<5K7M%6)=N?DUr8K* z#tGt=M*BDLixj=vssSmdAQ2~N-{v=%-xDs``+P?aWon{r)SmGcf)Zz-22S2sZ=$Gc zg!n}SfY)}?P_RltNgS+sbuv8can60Dagz9}is}ecifp(v1FBLcM>*J!udY4^qxj89 zB;Y99auPtmQbuz+-qG_|4tMEHsA^K7J70c4PtVBXuYH-Q-r#y>kYx>bVF~XFl_EC= zceb2!H?x-vxlfsZCuFgDTkVN3<4evX!zG_|5DiWp5|sex8`%zSRuP&iq1F7l~T36rDTGD2~h^$)Wq_hxaWUpUI=p`;yT7vsbLy| zK|2CtQQGlvZ|4}3(_m-X~=>ry%oCX%psH|BbT1sLD_L(!i z$+xBXVLeI%N_6Q_)e9X2+voZWY#x@72trm+k{3FoYnzN?Nz~jbQloBG<>`ZSau9NC zBoyM(gq;dTldHrugXMF7l;g&i2~-e5!c+=WLe)R*D*C|s;bqbx!nJAdJ|Ik!Fi!sf zYj2MODN)rLwSzKlKdC%a9bk@1jjcPM zmN!cUDq57U&t$3;0R7L`%Nmye9ocP3Oz9G_%5834N1i=7$U=FfqfMl_s3WO2>C*Bp9?Q#AN?A%wfRYdm;V^#RubF{p zGUb|-6zW!x41!Z6L=*b&xx>b5TACU}GJ>x0%LpS>8&6Hle1-|%36ar$N^7a8Dp_eN zSBMe0fFodLcK*E%CtMv_O~M>J;#b|F*H$G!0#c$Ng?WQwJSPxpB%+DLxbbZFdR29e z_m8OkIvLY9%v`H{y7P`{RFoi%T2IpA;%4%9H^9jlaN4yr@^sEhuwUZVE1zzjm9gE* zi;mC4W&{sjvD15EDaKr1M@wFSg-Jn9xL1fM0choO(+t&ILb`259pJu}$Vg74i(kwe zA1dL#VbD$3jcJ=c5 z`o#YLhxm{%;#xwIwWb81#H!Zv#7Bp6_2$o~xJr`9)1@XCPGR}LXBC2Cfb zx8aizq2Yt)fRWAMtz8=n{{XmDceI?f-XLu&aFnI8wH;*X3bb63d0&y9Sf=>yot&{w zBoxYt1{bGIwu#)U&chc!YWz&!4ACpXr9u=njhfRJHjU!mzL@4NDB_B~D9v;wZYff! zB>YEhr?1}>dU!4-xC#2#0Llj`y&3D(nV;b+P%B7L5#d+q%hMez*(VLtRB%#VbGvQX znI$qg?e^SX()1M<4vevBsBkGIB_u49;qgpd`E;MQE&j~-oyx3{I!|^INu7W9M@XIL z?TpXr9nwR&ot9IZv6(!luHSO{H!=!$7&?xHB4ofOHorvQcoV!B<&<`Ayu*l;mlCD2 zp{T-+qY)R8dvwQAacT}}k*Tt;5*!XJ$hEb8fKQZjkXYz=Ou0yxSqawBOqFjkB!BhC z_qIo(`h%g2?@~3v?#NvA#T+0108bw2145f8at@2cks5&cVJ;A_Zi=P07QId_K{g5JpE-p$%~CvPxrRPuocCC`XX`_I&zb5|6&z7^szsOs^^gR4xN5jgr7wS!dB z)|F>iF@!FH;Lgn$Im3bN3udX5lqf+7S5XAWJn>e0Lhx&p53Qyf4W)i9DUS&ok^cb5 zTNjUHyg=U)aPCuH7LxLt(zGQ3As3CmX9V`c*`r)TOH#7hPN`F21R@C7`48>OA1@E6 zyG^RwA@55y+Jn1j;I13~7P=~#SW-%+1idt9El`*|lb zX^gR(ps10+HC|LbiZfM2+KWn8fRKQ)6nYW8g}HpOU-psM%JRh|HBa6pN8%c$0bcVw0D!Zut@$`+wX}@S7Nl>XT#Mh4JY1d#-ZXwO}D@PUqt!G!#~&ErY!$~-a!Kkf--K&O(t-s3N)oBQV2!J1bAS1P5O^JOtVLr;hq>PSxQ1ssJI1Q5r40* zEOf^m_6TV*Pk&{!xuv}aLIPz!%&uvVFeXpWle>F)+B7Al6(izFxP*xu#12QF>yM`N zzf>B-g0x#Ga}6r;zlfZw4muoGmkfu{{3SSy1L}| zs%S3r6Kh-xeMT&9#yD@dVO6iCDoiAzK^m>PdI7hY$I(d8)~_1QNLpeN zGy(xY2KVxlK7-|^O;&2_oP2?#Y8nqq$EdXLz8LdN<#qMG?t-roRpj`(fgHMlhmI1; zoy@9SKne}DrcYh(_c)F627_rbI9)Y4Wm!YHj(#2~K3Y?`+J1v*=ZVE0T<%#w*m0uT zqgujIWRN$3&~n570A}0;?-?Q;c_h0|`b3^`Bm*4D3KP@RVb`=wfK#@o0#R~SOb>@> z*joItn(t6&Q)hJ)js?Ri4?|v8Ro*QtP$ozu=^mt$)OFt-A=oZpQIahyQ+?xvLJ5@Y zND)6@PyAz6t{;=)3f1SrS=$3lOmI$N>Kspp!fc`EMNrXjVjNj@Mhn~?-< zs`fa|^~W$nZtk?SdSfH~gN1X@gjVGQIO5W#ml}wjY0__F{r(?3L%Tq!r*A)mC%aWU zUD;F=oj{&eiJi=Pbdnmz(VI&_UyG<|2f{6A={{4xC=(FkT)oPLzpYwHSxaa0tHl$3 zn{&7We0&&~7h?f_vHd9E)6*%xF3XWa!`|@eNmWLou><1Mx1Y-po)uL^BblW!TAZg= zl(Gp@h_Ha0^iqZ5=gSh@)$#7mQkO24lt-qa;xRn0Y(jX0i3bb4POz|~`^sBbMU+z` zm#F^$jB9D+{{TqtzROo1vvA-mTe7^#x-9pO6H*&cc}yv(1Hq-Ttq6^Vr322yj#s5K z%)K?ar50j=;dKg1Kpzr75+|m@HuA-zOz5w#uC1hAmg?VSly`F^5=mSGJ1RE(-dL=A zRsxfPvbWpR%A2lv0HkS@n1C<8FInr2C~tV(-j;TvYl?>g)RVMKLO)48wBjy_k<{x0J>tp5NucCL-C;6^ z52~_hKeAW~7qkj?Grk+)oXwQ?xwcnK)hmvoLY-vXDBtqH1DtflHakscfID&S9q#`C zhvyW%;R-1s4y4AApm|7-`8b{TkL3J5pz%^umedM&N5d^B9V*{oq?q!>ecHDLvz}Ga zzuq_Rxoe<<-h641;s$Oc4TjUy<8MzGW3!M~&g&*FXrn|?Q!MRFH^hzSG|5YJ`GW-y z0SCNEvGDZ?1dllDi1T@B#(d^V;`HY^curxHJQg)R$stNlsRm=q(+|}dy)9K^ITNI` zoW_->ns5-2t4IWnfX`lsUr%BpfI>Q8%R^{Ta&6hT!z<-{c>PgM=KUt7hpyq=lv&9iKiEPuae zFl5)zIu?}$JkpQh`5h%`jn0l-+&eqt9Jh^WYK*p*N>%t|i9*vUyjZ5n5f|s=&)DTl zJT=DohF4wQDu%fG#UsEUzvjz`-f<=CAN>o65`O2I*AfYnCJfh)*qcu+7>}kL!UCLPVLmwttvvK zrBNc%m0VnM9}k`*f^ERD{{X+0Zl_8`NX&u!DH^iscb|C@msHw%fJVj-myv_#it~-K z*K+%1%iYbX68cx;N&$9EC@V~rMDO7}ZZW4Ec6M_v z7FKUe0+mFhxU!HWAelaZ4fo$2r<5{Ht}C?=Z;x|p2tLg-_3>*CQn}tYS5A#fNF)VH zfF(1uD{g}pCk?AF;F*>zA4;~G-i^is;X6|zD?YV zYDfpgGt<}(*J(?PD@i0lQesM=$uJ_|$F2$sE~{92>4qHMKZN{_ zEe^Pr(ydIoQjh?hD(VEq?>Fb=jh}2~=u+Duv^=txP=N^&FSK+Rh~-YsYSPt{=?n_3i9bojbr)#5y?=iDaSs3}q!@i!d&I}OZD`EByW zGn&%9NuNHX08rRYi&%~=gKj5S(4tBF&{9IW`Tn?i;mU_LkjP=cbcyKO?kZ4Cc4^PH>ckt4yX0o8CE}Pp_;a!V6V4 zRGleWQrJ?@cm(bMJN33By`|@kCcQGEojQ^P*l9NXO}E12ZJJg?jM783?DY;k-=)B% z#FU{LQi0Y)SPS}MF~gbItxA%zr0Fpu;UI%(jjz9^G~<^PQre0@Drlsejf9!<`Azo3 zbB41MPF_jfQ(y?w0y$d52*RA-?crUgu>9a7xSEjF6CNLgs0fWf*#7{0H@TUsC$Das zQj@6?BWs&(b^{IzC|-g}yh0$}^RdKNifaRWV%vWTlu`*MLD)=sTh|ZK$G_TBwOAXI zwpU)36;#oXq`9mPzAd)-VLZ~W@f5V`@*>&@HYe+bvhhRfDDM;A6&WONHoxE38`9<~ zaVkrIl`S&_jqPLSXvIPt?oo|K3rA%uqODC*T5-iJrD)cnAv#Qsv9~NSc7v6nD6C3S zl&K<4#K?kv-hD7mS5f}}+WJMPs=x>&=@&eJ6Nif07PA^CSp~^GNnB{A$=Z3yE%EMWbY8$c=;3!yt z6iNAc{eSq8#jlLlghfkhS9r+MQ4&IIFt*WfB`y1aEoy=)l{Mi-G2Q|QJtybL3`c7p zRSiy}G=&o+gMXLrY&zw++jRMhdi%*vtyAhmSYZw~VHIyFXik!^8StBZ_WtJ@jCFfy zXPQ$( zQAuv`%6)5!P^`=XLQ;^RKr?=SOf>OcWTRAR_3KJpkO&6SKHt!F@nNm}uBR%mNLXq{LUP>=putIZAfl=#iX62SQ38UbApYa5lCHWYD(0(M)f+CskfRMM>!*Z zr`HkOk20y@EaW)Slc^+?iL!v+_+44DY3dsxAZbEGo<@JM`r*fovOtOka}cEay+y=C zF4s6_&;=e6_xrM(xR$MohFPmmi4g!8w2))%h>mSqYmk>n(+5caz+Z~rY#oE+*t$k^Ss8>F14VlxozT?K+H1fxo62*Ip30v@I0H zVudhuOVXg^%!yau4nM`2s%fx%Nl*lmU=J)eXSrIL;Y6sVUK@)74&6ttBJ_2ueWak6 z(q=Dzzm`07Z6eC{Ge&}&XEZ3N%JsIrAtPE8lM-#xaL|Q3)gn-!l%*a0!f6# zN%?-5eifnP-KiRoK)GDb+xg-xk~{9qr@}^)2YCMgX+Kkg=`$vuT2kQ})F5iO5Uz3M z<&L5<7kf?=o{58(!qD%cctuv?6$m=dg(f7&BX2RcnTeKied3M6)|FHs6ef4nc?phRz42J^ zo^aExwp5~{Awo(@lxB4Ads}Q-ISo=-VIYO+AS8tg>Al2)c^&-v;#W4^xD|9Ve{X88 zvyAGhiPDu7E0%*LPz*r5{{VhdzYXzQi>>b53GUQVl^q9CblPTii92#Qd+ig31C@$) zl?hX76CeTsor#}9Vk`$ih8ld8bS@#qCLC-i`1~hK&!<7?aOpOdWiCC!ROQ7kxX!AU zh(-2B!609*z>lx21C{o~;6s$PO)U81Um~AP_Wrm!yEoOAcWxm|QlxApP&Vl%e{f<8 zo2i%TLfF!W0J_Qe;x7|!pW6{OFhx8o=9sh%rAoNL#;d7`QWBpSCJyTJxt_YZ;-upW zmF3dWRoh%dldEpG_YP{u3rEf-|pa2KuKs)l=Xa~y>-YRI;7c~%}s^EY?Ttxi| z#ky$24HcQHke(D~gN+}eaZ6UIR-^!804m?6H+Mg3rO6A@s1}r@DmNde{{SC6H#G;L8Y4KKNgMRT&X#tTvCAV6d=J6 ze9gZ|#dXBoD!MnE(3N;(l}7%!wDOwg9+sWgtujD5t~wj<`+>8 z^}{2ZX;ZpTa8(xbWiBdH@`(QcI8D_+Qbw&;+R=+IH|(?C6D{3XaQb zTYX7B5S{t*{`j%7H03SM0CJ#jJX;ar>tKJsTq3DMgvyh-0^{kvCdus1s--ft`huVH zjB~RG0O>#$znnypnT;_JK*bHzFewQhLV~R(Bn4XgZG0k8BlCSW#L}a)3cU&;zl2F5 z;9vJ`{ICsAXEp4ZH0~HZCU*Y+0Aq%?P|hta&At?E4V5a#ZO$-_J`>ZH9jbUvrj1F~ z($lMB)Z3R!j3VY#rrT7f#GX+fzPM*my^8aud8FDC2lsqphO<3R=L9;>jEx~X+ScFu zVKUh(j&nBUf(}EsvOu-ZmON5Oxxs0t)~M42#9tmbz)j*N;~wur(m~?@oG7-sV`i8N zGckhPm$a^|{{T;aZ$1q6G|RIGGw#mYFKQ^DtuOkDj2`?Vw-~Qor&>6sMiJ&;L0{g?-H~N8gb(T^%x=z%1E}3#Ov`)$(@L+BAkZ+SnW%Ww4b4t2O+##eK3pZdk|ZFeB%$4-k^;$V6uU)LJa`*!xBmn@22B+QxU4MOZB2>873hkhCMF5;df4XU3ctZ*oR zbg;6h^p7#qd|6x}{*&FMaWY$7HwjY_lriaKeVt-re|^bsz33XPVFCX z6eEVe)Zex2fb0JNsVg4w0ur^8Fsn!;gZBC2%;2x}ob78XQ)Z|5eqfY=9r{!?f4V}h ze%^SoI1~L2c-pnLUd(8dM^5v4!Kus{VlVl8M`$xJH}b`=lm7srP`SFA)2QPvc>_7xq%k={}Z!I3LIGtG){V0A9{6;q@d}@WnMoq2nyN zw1aMES2J_--f?O0XZrqRP9Z7HcvCoPqrypQp$bB7ZV*Mp5zi9pAM{n=Y`81m_?nf% zJX-0fRSQ4JRHYcT_Sk%|MJM`T_E*EMemb*i#U|vm!%c!<*eOX>y(b;Hj~38>%FCP6 zJtB)*Yv^qi!v6s4AK333G(U@FbR%-I(RYG|u^C({M2-pb1s`iWQ2eh}`doRsS zM(UTKnq<^ccWM_*rs+sKm>Rb;eOPI0*ypi+9bb9;4zj7Xpo0BYmefYYT0&+;w;QX3OdNA%;Bs3bg+KPse$t zLQ?+#0QRwy=By78q|E9Rm6ay_*i*2ht8XquoF1R`E#uAy%sZ|o;mp3N4JHHGbz4CT zNU5!b-su~qJ|%sNXAz=`9v`n&MpWH%&8UY1w4L=EsYr;rPL&b8)o=h0 z0z6jTXB`W|KG-~2lF}-v{H?Ag%OkvYw8fVa_zqmKpe)*#nQ8eJ(Yb@Q!fw$9UVW zvZck0Ay<+Ku~5DxTowMId?}a^)on}pOU@`u75@N$q?35@Mxa0@W;$Zb$@^#Fele#@ z)b$jvC2&KHI1{Z(+TiIbJtNjJ>sui1e`J|8`1ddZJc7A)x3T`w_$5W!?gq`XJtoV` z>e+fx8HRzCvSts4s`JJg?n&uYvf(C8^zRROO4Y4fykH}Y(_oIGBT#z4c4}lq$*nrTBPZoQUHSxNWq2zY}Ka2tZC05L;e@Z zekaVC;Oyzgcsqz{S#8%OQdjC7;08)YrCl-4R9|b_+V*12>wTd3kN6&VnmoP4wiIgI zsP0-?ganYG8cm3|EAMP}M;mYsSH#4(S;ILtY8Fntd2>3G1b7aVrFXu^6>k!IH}C@9 z*3LxcLi{H5RgY8J1SBOy!e%@>`QUXB$o3YnfPCGnq18asx!|9u!dH*~0MdG|v|NzX zW#z2FZMQ8{W!ah@yuniJlLyQaf7*OliuP5LcK-nEFPOEJW=v)rRl&5!{=h5uiex6o zKq@2xm?lIh56dS9lg7P|XN=eIe-h>aw)CmCDpnRntV*Qw+&~u_;^OSb{a!PU8t(FL z)p$CWI-ziB@6^I|DKn)-5R=PtZye4t`Z5Et%JcUz^{S35LRG^cn zrX&z8vE_ZOj_vICE$kcGTR3kv;Eeu{g?N#}KJ8F6YA51GpA3nyl6U8gJ7e}B;*7GD zbyP_Ahcpl!VS1T*Rleg)*mDxEM4oG00S^R^JlFdwWo&N+`eHsubkFP={;L@Wv`$6; z07dcgsMDJzC5IY)15H7=l!8nh#k?S5tN#E{{{Zy9Mp>Juv_8#S6;ujYdoiP64M<9i zl?d7hBu78~Smu7+J&7~k&$!{t-!EVPEwq&O0%FmxcRA zMN|1{38rr}SW}IyG5||}lVS;jf0igS7Pn)D;aKt%uA<$fkViM=bH4?qk1?imBhAp@ zUbQKO>6J3L+DV!Da*s37S#J?#+)ddV*?xN1?`c|66tV(fr8iP}$TPLEZhKw(4`e;O zaN>BwfKyPDRXS8Xkqpi+K@s*qgBPqj>^wT)NGV7=Ir&Y_Z<&<9K4i}T6ykJ`q!k5EQ0_7E`Xp4=q@YmHln_% zIRjZ8K5X4XN?0!}sG%hMLR2};w-=b4H1;8!jveA`$AmMX{{W?}LYmOwQ4N!_qns-7 z{K<}ZmUefLQoUN^$qqS~)FB{0-bw%pvTh{J6?mW~4LYO^ME zxZ5gPn?=;9Du^V4c@=MqKlq(r1y?%dGxW7o&!tk1@>+gGX}khSgp~6zCgNjCe=g!2 zizVWs6W&tyZPY@%O)646Y8IKcs5VYJ!-KeIu>L9bX?u$^jOT`Oy4UH{r(LbAWuP1z z5Q42*ui=aMpa_A8bTdgL!K@ZYH=4-j?zJM(MCc3TkTkdMNbI@K*=Dwx+Pv*F^um>` zXwbuFN>kyoQ!qBT+Q9V3Rd!RsnRaVNbfPGr?> z)KIC!mYgzmOzk_s(mFst&1+(xwuksjI;EjwF;zWMLRQ-b72gSnf=&GQwmyTT@WXwM zLd?+mn>6~NAlvu- z*Q7WCiF3se0Xm4>?b8y&F?pv71NL8A>VBfv!qCHRcLMK}zDZA#c9JWyJlQo04mP7s z;uWXGyub#3rZ^wk=d#v#L$}6qpZ!yv(vniOAtfcPUl@=K5IRg9tTFUm?#ik=IN{o= z%F1^UP^OgYYjp~4+D64z`^EinOm^?skN*Hqd37CnT}>WwP7+&v)Y)kUbe$kxCiAhy znn|M$bsQWE^W-m=)aj{|4 zFb$?AcD650(YqyYBkbyjijz{6CZ+!Xc3TC4mk^?sVtG%(I*bF`-?m2y`wj5pi&KfsGwQ}v z)fQP!p)!6IC=IT57XxuPYVD)8rh69PitZwQlA^ksE^Ms#LVQX|(v-}ZKWPM!82NA7 zH?$pBYyF_taVB7-smg~+nrUSI3TNReoyCDBC(9Z-eH?DNWflhm$zM_Ey6HL}hk(`P z#B)kT?HAh5YChIIpsR_q`qb0VvgW!ocHjW5Fc-#Si~&Z$IVAbD z_7k-1x`Wy?g4xaTDxU7SwvzoLjghD+CsJ-eh`9NBO9x`zzh%9x)75r)$E~wP#2I@< znQ^qG6^VnTXp0l%Nr^sKtv#2!Z9FW-R?^mmWjT@oS^>Q~wvl`3Dk3`DX~7=Y9g)AB zRwIn~cBkF5Y^l!hDZ4E|5_Kz)01p<^@-Z%!VD^T)1aN=C_Qi2n&~Rj@Y9?*U_>xq#| zSla72ZmECzda#43pkM*2(j-iQGv$jN?zcAtazDsU)9!185@z^6_qy&cWPI}_?8CLn z%;oA({#Th(EsE9~U{oNIlc8F7Fm7Y{u@UXZgfdRY{h@N6JmG4F=<;mVx4fvMZ5_&~ ziCh!ikP?7@mNpUjOho;PIPn}MOw+m2m0LoQ{{W|PwJAz@u_Oe6Cvz6OA0dh7wTBlm z+xHIAwUK0Wd2_TNy3@4bNT_isAb_rVx48uP4^ud8)HX?+z%WG<<$Z>;(sg4-$L=P$ z9l-fh9tqCapzX(rGT^0mHI&MzLexfsr9TW4%!!?@Z*z%%XT6}apK)$ukgaKL)U=1e zJ}K3x3w~6}K)>@2m!o(uiUS;f!dbC#N&X>E?yebEfkf#ESdq>J<9t5$vBb=FGunR) zaVC!Do~pn2eM_+cNOXi*Q*`RnxUnW96lkL-b1Lu%`!9mkv9<$`au04&9?|>)&l&Ju zdyv&7w;pXOafK}jJ>HO#l?j*tiMiQ6c=LM`sg*t?ln)Nm zf0eOydr0Qp?*rs)pgN||r4fD81N%tx>56-Rcy^+OqKye>xTj_=vQDBEB6)qWIQEXu z9HHP0t;uo4DcveS@f2J_t;+uZLFqp?KAxuol5gy+*J?VFP#wnsbPxJ;<>j8xvUF9H z2I{pf0>@pqvAC3SfxYhstv#|k5zGCgG8cGyy)3Er7MCg3c4a~eRpIGj_6qG* zw04V?)>Q>lt+k{#5ER;XA~qrjB_QlM%wxHGRpPh3?vFKnii&ir@Rl`$2|yPlOpb@l z`C*=$5p3?;gIupYUE5<|aNy)|^i`K)6hHk4ajsjGRxOvG$=^c?Evm=^VPomMhzF)S zL$tmi%kxecrgE04DngSeg-TN~6MK>BE)SMC5}Pn{G2@DdSvuUPtV6)b1neS6HjY!c z{{VJ67LSUY_X>J9pB|8GV^#hhyKgw%(|T-7 zx$4|b0?3>Cr&+0k@NOV944&uVS)IP-u2A-Mn^ZIsr7+Q1C_=Rf6CzA)w1K$kickGN z{h;W0w>Zrity@gymE->aPUGoG(48qdk`BsHF&w^ly`L;`cMUd&8*xnL6pCrYd|wiD z-1#eQ_8yq|)7ZZU=6o6LLB#nBOg~EQQ=2Wy1s6NL2s(74BuPmHAjZiaK%_KNMpB2ULb2`45gz<+2({Z;7 zR#H?YFSZ#|=!BOvgo3CMFib10$boDIh+7NY-?E$41!{eR4eoPlZNjdK+@s!FQ*LW) zc+nmpMSwi!W7Fj{XB+YLeFtcj)RYu%DbDc$*UYI&1z(r>MU-w1*NaWJ?0uTQ#hr%H zcg==sDBV>u!52|aho^)_!=1K_KJga<(B##1S(9yqxbc@`OssA`Ng#T1iNnE~WH#&JxXP ziC5T~D(=z&Qjv3hS0EdYJa>N`nC5wTbuY?e&n;u+`?8iyO<^Ipu%c!&v+O&cROeDm_Zxa{TTt?ChmRZIqaT3B7w&Dy# z58ThLHq5hHjKvyJI#qKs<+=HN@g&WdnsNr~PcBs_XnZhJPO+;?ddW#LNQER?Px8p0 zImJQ5eVe_QEg=Enr0Pu`o-E=1VbfJ9G4{iy2WM%fW5As*0uv+%^7>l<=JbatTqnXKV-if?_v_aW zZ>UkQ6#AF%VHJ1Yl;X3B5m8D%6IP)p@oLvGyn0(`#ec?`f@&!AxVF-%?-8s@Qf3TC zB4*nI%D~~iuZtH%hu(%&Ikx2Z}{bpa@y5XR3!Lycy4-aA79ks)8j7BzX`_>!S7Uc5Ce>TQ~HIB=>iex+#XFEQ?41zg=H&l7Y~IHp{{RhOz+R+I*bpP zQjE-KOh6z+YVgkee%*SUNBB=XTTl0Hcw31A$vu9&ugW@M_bjhMo^6m)nFtUJB=sks z->*}Tp7faazNt&9C7Iz>ow@Kzsb57~Fg3=q2{J@S=CQfw%zT(TGtX)%xPqMyJT-Wr znDE^7&($8_d_k{9M`z?wjva1jd^Ux8^U8 zx06mpJAM~KA(eyxx(7DS^dnF|5GO#8qGxFqw>y1t9^*XKby?6}*2H0t% z&xKMO0(8LfOv<^P_WSu@J}j&&q)Lg`V-YFUZl6K)>u-?MH?pHg6M@QN%(KNPC>8jc zk>j``-knd=1@Mk--VF{Z%}FUhDkVlBLU-nWLx`?toeE|hTY)-Gp)2su?*9Nof%qqj z*;Q(QSy3cN)et|#oB8<+6EvWU3sO--a_KJ5Svj^&pi)$;D)+dUj+>vimL0f_w&}9( z5>k?sToM&dDt51bG{yl&*)bGp7Y(TiNx3etOMF~>7!l)5snA>kpt~WHgae!4(v;l&; zGqYUG*5own@hidk#-eOu_QjE()F!(sZAn(7#jUzQv7S@s8}h|F*%}v3!t~{1N`ez- z5TQOJb34R+$I8d4&D7>tl?7cWv`3434v~Jl`D5n2V@}ZH@K$^=o~oH}O-dA&K?(0A zAQELoM2(LiJm(R=Xgsx9f&vPhDOw3INIUPmf#n>q)xx}B8LZHysUjc^Vo`M8*7$wm zz;isZg(-Q6Nd%dA~1QJ#pF?%aY+rwK$|Gq$wb&UR#g+zP)V^;D=votwrOf z$E)*5P#}l^^7`ZJ=aH|4O*gz*S5{k`8d^mpsOe3#d|pO8;|+XN=zg8#0)>Rk7$B)T z!TWyW49U!tmQ>hMH4!E)0P+|aS=WA4R8-=dfit|?ah;~mDkjHAa}yp(o;i}|t&=V` zg_Hw*q(HpQvCx?x5{m4um11;(q^JwH2LAw4Vd={p*Tht0=BatL9}>!d5o06ImoHve zx;r>|#qjMhc}Y!^Vswz0pRAMf!hLEsm~1MUmkQ-w6g*Mx`C%IS!qFtGOaQNh{{Z58 zM>B}09r6DFyHqyfpOp8PbG%es!AO!e3gzd9ij2)v%s7toNk{+{%6HseKYoTG9j#^p zizO8SekRVda1>My#DYO4FCW(*E9i0U)dwFmv?kNrNA8@s$BxZFQrmGV)ZU+nCs2V9 zHkh{K44skZ6!g4WY2iQmf^?8KP*s5S{l)PW%{ZY|REkJiw50qpOh_Jhfzfu1te1(J)uk+gqTG}W& zQdBH@Ti1KxLcG&s$scEWIdzF-|9%}|*btiu@^ux!qUu}wE z=9yc{QBV?sRW4YLzK7}3{C}KreNPhc6;*4>)a65pQp$(K37OxP(jyYi4CA+Weyz1O zuI}PMQIkD9;y!;|7PCerk74C~oSvTEh-ELSTsy_od`UpkgPs+Qip-n9KNbGCgZ7ib znR|81s8eax8q5(2(;T8BZ>OwMeTVk`zv0a|YEqp*LNz5ie61Fd>-u6{#@($eFv^pm zYD%7jkM{jJZ};nuhnq(vQkJ(1Iws2BU@EiYtcssD&*~WN+er%$h#NqY5+u(%ZY|PN z!(PqwTw{?J0uoeB(v$F{fjjm7zgo+TGurxm;ZHP@gs7;H03asvd4aLz%M*^m{iKsb zw({zwcZri^3DpM1-cxTZZaK0DL1D_GLn{X6Bppkh`fGAwO$^p1xdliQDD zX~;7tt0~l?5<*G>G=L;+>1$tc(+>2_d$Syz{HpZ2u`4#ap9s#+`%SE?$l0NJ#CJ$S zl!6ZXfI94YZS=zV_G*U!BfCzZU;->84!EtjZnb%9$_GMJm00Ufg;GrVT0J8VRk_2C zQH6!-R4A3n=62s~Q7m@*Of4Og#}DeM%nBP)oYX>>9LJrmClhw4++n8FwQ5Rws2f-f z$(!Pi{{ZPGqlevj#?+M&%=o@{n_yJ-;h*MJ>v451CB0%moge~FTyAOMYnhr;$)=Q> zZ}P9lo=XiXP@}6!fl5ECJ|F?opsqj>X}pN(=ZOCR4tBPT&Y!!g z@hTIocht2?uVZdlQ!>n#R?3{GS#aJ~Bq=gxAd}AixaP1i_et$^yLMeAGmaI==xG$Q z+?_iDMf|$`Ck!lSSvL$VE;3UwVepUn+v(kQ<1e+;R4?kypk+l`{43ayQN8gS&GaOeL8Z(LEuWF-SuiV1s5GHewbu#jAR9H)3A%&Ri4LdnPH{wNlFq&G;Dew zJZnqGc@iFn97>Fn1P>LzzADNd&T5xbzaEDDWFI~7j}majW?$keb4j>~7nqzlIy<0* zX_`fDS6h64!@`|GBo!ohPL0kQb6zgV*5Z`Tl%+l$zAO1+zwFD0Tg~eGr{8nLw4?#j zHs5?%>Gpo5af0e<{3<&2=>}61A~(c(jdXDxq!m`5(?pmAsAhY{`E@W;LBN$Lcw=Qj z`}%)tM<^>OtExNC4xPae3WrQLcB{cD;cWi^yGp{5tf>-g2r>yDKi94U$Q(;$Ds&wn zSdLz}b9PA4BRi(MOVT?mqBw^(r=x9M-k%8A5r0eJrzXv6a|(?ur&OM?c>SMJdYF97 za)h|tl*pewzPOQgPmt29h}kPkY8r&4O9U$SpWIyaFviHz+=O5>3MdMEin!Bv%VFS^ z07!^W*9j@N67f!@B~zzYThCl{*YM1ms*Nc87*3E$l$8N^l#n?I#dF%H4Q2E?lTNmK z!W9H4ZD=C<-|vWl2Tw>mAySNPff%Ho2t^v zPxjYfGs9FldrkM9<8}#7uslOi^tQs-PPN>woes8C%2rZAF)9Oi^q(wo^;fj^Z%~DP zJE2eq$G4;rf2IDo3I70Se97H#w=|KlHuC0g^T&Q1@>KD9Mxp22X?1pQS(XZ=AQoQk z(3yn|H|c%jf9r-C+IlBjQFzG6#l!(0+W3fowKqJ+3A8^*UVDPmOWm0>oSI6M~mqkdUOS#qn6i#{U4n(-z+kdoNdK*sMbw~qgVcJ)7Di5Kh(oFHpo1VmFmE@$H>}IUXo9a2ff2pBNW(WUu5(&47p!Iu z)Gk*#iJjHI{{SpGWwmQ%X*$0VAu1%3xcT$vh7jWE7J>>%{&Gi)8ml={lq853xVga4 z?1!aeD&F8OB1lR?j6&0?GbJ)-`{SqkI^rhj>FL2+I-3asAtC^cq~D*c`D2DScQJ6( zq@mR(ND?{EE6yzr1noAjA$^jEobKjhShuVZeXr%`jGcCvKaN&zvqlV4K|%hNC8kKLOee+`|_syHtkqHl4_}3ISC+Y z0YP0)mMrcNgGxe*a>LnK;$UCxp>km16^b7YL$Ra@GRvwI~DIEGS| z(y2Ys1Dr?xK1Mn7II7+DOslMR8cNmSi7k^i9(e92T4y(4DPA;_s1jr6esk7-_-%KG z*`s$`NJ>;>n*#>ciSov#i`2=%Ir&E)sJI_$X)3lmTy)j(pB4e$n%%oLkz4uH-0$ zfdyaRZ$0s_*}8)zdhJw_@~f`ev$W)lsZ6aYl2i!r#jXJUmfOfpU&FrCb=eMX%YOLc z6x!f-i%?GBn*}Fm`wpfC?f(F@2Wn|l)iMo6!9_DE^tLoQ9nH5dte(jJ*Oc5$8K-`szV)z@vS5%m>H**BkD=Xw_K!(b zm9bEy_iU-Os1gd2ub43hY1<#4k7rIGuHpR7on7;Y(m)M@VOv|u_Vk{HJIArlYMjG{ z5lW{XQ;CATAb_O7vGXAOys`Pu^*8kVZMQ%b8lOjyw|r*Lh4vdS?G};hJzBmYt7)0@ z*!+py{Kd^UrJCm)?pBoQ8e|c4+s@l#i2En@#TnZSrRs<-0Xj@*P4_b=e(fivYZ_QQQbDf2dTkV#OnBtbVe zH?aBJ8h(!?kUTq;KB91Jw9@3fpMl=tr@MNQ-iuX zNt1Esedks2(7b!V2rngctgIzSO0*9SlhAK(++v~a1Ax8Yt!t-JqgB#8B>BX_o5t`y zL-g4FMbkyJi+g=_KyB1mZT}tlcEVCAy5P#QI3J2?I{_x5)QQUL<<>-&L;f2X8%7@Uhy zsGc`P|<4!u9<*i&43}6`|?j zg_c%llqfz85TjIZ^eWtV3GNmO*?+@l1>{W6A69OdPrX-wQ$0??0r6DC+ zi3V&4wZuWTD(usXn^zDuQiVBkL=vKsNwFe+e=KSGEY7Sf{{T>DxRumBj`51J{EfB} zWz9+gN%?c+H~zSj=Na;I3I~Z=bx8yQAxF;~{{X@KW@z6jE~mQ*DgXmB5wSCTI_3SV zHp1!}T}qRr%2I9=XK-)#jrPKQMhPD&a0*=%jc!S=y0J3%)~wMAONA=)T=P3$&lV;^ z8?K=%2TjD=oJjJ6H^noQaa$RbINH++T0|jR8_ZAT2Hk%6lu&V#nL^OAsYn1w6CyzC z{V)x~GssqMCD_l%P(N$#E;hiZv$O2X!2R+-+>%V_9v^9#2Q&R*gEDGF%`N|_{* zlz^Q{DX;+8Y(0Me09SiQ&l8(axKgD!C*i{UgI23 z!zxLK5cRbXP0f!zfd{VG;Jy<>+$F?}rkE>AmOIE17l`C8EPRiwcCTW2k%xi3M%z$J4{3<7{^5Rv%x6L^7pD(YeJcad3e+n<>q{`Lw2o|nrzOw zN%5p0D4>!;$QJbkh_^4MKCAjq)P(UhuH-1ab*?*H1ujkE?(UnkCyELZ7U_}_6RLLS z`8qy3!|{4KhE@d=j_ z6g5eNiJp9*eR1@jsNf={-D1caN>$rm5WPvm&IBpM_a!Nitt6z`Ac^pUJm-Hiif6OV z5v$L5iM=68aZdP&@oBuzkcr>=W2Cr`gOSH=IziNuHY9+M0F6Hm#=?1lwllL{#8tw% z66!!lf>ZgGH`{q8$rn2Ve-=J>(`Jq<-GYiasv}1!mp9F*yD;Gf$^4=9?LkDe1FG@KygZKD^ivS*aZRx_VD#Qys;kkq~gk-cyf)BWh+lOAnm3uE|}*N z&k{dkT%lFjnrdGrQndttRCOezbs{h8WgceQk~?GuUTsL-;1?cOeReyM(>=kAw%|^b zBtVdK3z-|9LvnWW$1?kGWldz&{`Q2088ToQ(jX-579)IgHwbZ=$f!NtN(CsmStdxh z=5{!teXv+}h_d>kh*OP%<8Y&OC=!q#O@P)EDYSr0MlVvRNkA9#^?FY6QoL zK~^_U<%|6NRe^i%{OU+ZQe?-8Ku;+LpE#TsoU*D)g-Fz^fdJi8<~rDV3^pmw@Ff7H zO`r)V1Z+J-e(#UIW3fx=n(F|fQiUnionx#LY+xAQZ{JwiwIN|zLUe*sAcHm>hnfBI zOsOb&O3@miB&^*;hypo&yV~Y39cxNL+e`wJC&ZW|!cMM3r=MICnuL?tEZb#9+I0d< zfw`I3UVQh)s1W^-twg9vZ^~Ty# z6QtaDQVBA2_5D9{gWKVF){=0Mu67$z0NzaUBoSe0xQ<`e7o=fp)2Uq|Ou^^ta(-V- zB$cMA^)x~7kU^1i)9?545@jPwd?iS2ULX`_l$pQpmKfWlU;}`Rr6{1KON8nuM#U#l zANfxI04{hAi3`oM7avepcHY2`3R7seOM}!LI1GX6^Q~t~ZG&OrF+9{Q%j|x8SGD{- zr8b>S_mByl{Qm$?-u>-W#x@Hh_CvQsb1Jf;wRdSdYr5nBBkRuyXCCcIPz17&l#?<% zCwSj}anSVsNaj2m>u6Nv@(D`H9G2Ek3D^t#!pdgJqbDIse^ZA94Qm-TDUvEQem zz6hq_XKI~N6g*-HD*{ps*Z@E=9eJE*%xA}z?;$sKm{IIl+~vuIRI&^^^@KG9sKpXRg2*O&Oa zhh}-9BS1-5u^@P1Q-77YVjrJ6y2YTa#Y%5+xh8sY7yZU0U6N{lF-vf;)Fv)3a(Nzb zX94O_-kh~$>K(kCD|uOJUPFOl#dnSCY=!Qk1?)XfNC07nhxnKbMiPj$2}aj(w6;GV^H(UZl*Q!%SKv^f=_dXbuu_tnJlm)pbDA8j~jE2gsI0|BFP_=0d2Mb5*mowsB?SH8?VdT8oB#;JNxqMq-4B|y(f`NlfZik*%t;fCHyQsPL0HK^&mIQ zz%{#-U+qEJQA!+ngatH|g%A_D`QQE%d#E++^ig>>NNN6 zXjf-wyef)}lBtjqrrkvN2@3SyPtHa@di!H=TJqe^p<}|N_=xc)0JMWJWL_X2D`V;k zlAP}^xKfm)+6l6zHazFfE!P~K?T6T_nawkm8Z{*+QpnUuR>PRwPcF8-u|K7~Q=>3r z{H17RJGPR(aOHVQ-^@#DLxxCE1X{#R{zn$mdBa>Okau1e6qF?*2gI$p@-aTVunuY2 ztC)?-X>7?yLOiz|_X8iaM)5sS!q;<%3HyWig?X0} zCS372sgYm@E`0u5)Kk_Abu>kvs`+1^@KgB@6)Rd& zlG}+vLShni1G(BF-k9m$%Q6>72O5;6NvDtn!IDPt`kW2gw_!rJv=uNJc`ZERPOF5g z!y32wde4!?nv9(}9|tzuKZj3Bh#@504-LpaFZeju^2f6@9kO4B6@ zr4Fym-E%Hzpu^O=l>;*%pA1?@(+u6KaVEYQWx7Nwy=evK2s)&TTy7`Ue_VU~P^G%2 zKMglpfG5jif0p=wcCE!in<#}OAqB+Ktpr*L1Wm^vE>G$)^O|_vWC48^iciDp3F6Hn zcq@sQTg3GK_5T28-N=FgUrsnCUU-XsKqCz$GRC$wK-?$h>fn6S$#Uvrox)>b6} zNu5&wh%qK{Wp)}6)=`zy>--g=YYQbu^N^{N@dFp~-+Wm7XTj9j{{RGL4J8R%jl$p! zO4tn}d9hE|*ATna9w!9xYvFZXxFfj!z^+sFW6Pc4jyJ5Qbq)-_H_L@vWRDKCC;~6e zHD7(LY;aDGCT$Qv<|+O!^rk z=2OaX3hi4oeKeVENR;<(YAX^=$RKk3-W^>AJ6OS}nXhSIFRs=(uWOofclA`)v?Gl0 zpJ~~ZC>pZ*r&M4dr6>+2d70jJ2bY))FJ$Uh4pOc3At(z~7kpL%R0&E@p*9=9=@^mr z{X)+bu8T1y6PYksaY7UWt&tW6#w6}7=y4R`9yOxk4$d=99;ko+0Jhm}N*`sMnu4(h-dk-Wy4F-%(y<#G$dBCO3BzwIC+!`a+1+WUg*Nje!wQ2Z!^$~- zw-&`G0xLT0ONVp%e*HOb6j4-BEzpHF3#B9=8=uU9a~pZ%Wz7^F+P`!V?k+5UpV;@M zzib>MPnb~!_nKJGs1}C^B=>J<0R-tMp*Eeo$sEJ~08-|PLa8gtjdoHEHCZ$G$w3gk zI}Jki106d@p8o(C;g;y@)D=~gz5F@we-Nce)SYt%L;=bSo9#3&Y^kB(j@eUBT-%-d zu7>1K;x<4&D+BQv20zWZDZRy{EZs{qVE?a){et#Dj_$6;qxOL^~W`ja8DmqRnnEV zl{y_FJPN(%d7tIzPC7X3Z5;9ne3K9?XQ2_P%4jtJ;Q zw-LS|yk$<$1ZT=+U_HGk9hjEoXaj|sVw)M*-BR_{KVMqV0jtFd2{z0On%cHwD6qxe~J~tbWPK#N_LIG zp<1M+6B6g&&wNTN@_*tP8iS~smPLvRL0UAQ5axMu#c4|FYU!INON{tX6bbleZiZm; z<%>d! zdEd{k%3J#{;umUa>M7jtyx>ZjB|aikxVMz@{{RNu{{V1u7E783vDpPhC~}INn~0pI zsBLYy+SMo)Q~+f&((&nR8^k$)c`4Kr-bJk-3tV2p+hT25NlC^Fbn@Au0q7!cLj#&*jhQjTmO?eO4~3PGjKMPTV2IXDuqFsbBt`E1jtvDsN>bP~r+eWD0LWBivzoy^Q5WX#2X?4UY zDNc}}N-eEF7v=t#ns7s=jdhJ7ZTD(Agsg<8Oqh?RAU&Wt8I?pS%`*g~C|Y(WS3%HY z&~j6xefVFTAW}z*dx`K=G&xb0cYkz8$D)6f_bW zZMQce1Y557XYC5111nCJ)2WmxK~bm@G}w>bzL=QqE>}hRLi|Di8!s=Wdu^F3#LayS-|K!bl?I5qkjjKnlP8Fvpx`J;rpM z8pn_FjWaO^>-u7?JUJ~X#QQ-~haWW!v8PEwjK~HjSN6nbK1$!?R-FK;B}p4?5kG&n zBpFLctXdmv_@pR;WDgb3pu)ANZfMy#wgPbjv#!Y)H=YmuM#`l zxP=4ZSs_4j3es)qK3AL|{{VW5e*FO|(zQSYTpi-yKU@u;*P%r)H0dP&05^ym0(PFb zac4`pMvxcyi30qf!TV!EHi{To@&jcX!Zq#J(CJZ8QWvD$+UIX8?dOSJSy<7iODjT@ zp)v;|4ekNlZHmK$E7z94SlhZpb6ogi`tNdrpmjOkUPH#2s_%}f3^qhj0UURe0X&f zi{C&XPgv)MP7AFIacE1U!~opfjiT|rx3R@?G(I6pT|0{;Ao8wU>bZ=^g;)hYjFf0L zx{qI7&&c}XHuX}Q$sDITd$fpIHuC)=d^ge7txXW3ty*;uCQ?TK0KZ%hS6sTj9(aY2 z;z^5wqaQ!&aV$+0Nzzz0R0la>Y-SD?wGAp!ktyebm6(c}J;ZlcNxg>L@ZXr`W}$8= z-N7;m#;B!os+5+}Qk15|Y<+RA-UY0eiZ;}BTHCGRr!*-lQippId{8}oF&D^cS4UF> zq$RT|@d*8WF!f5}^8CF)dUU8LK|2G!8q&(Cs+=%BMgjCAaH^2CW-8) z966Z^dbI+z{wDHC(h2q76Yd|&d)JUbl#rJM3k68G+v$pI)hdwwhj-vUq!r zRL>97)IJsz>UAvIB`S+YE|cZc5zN;LEmQ{s`H{V<0O6mE zD9iM;ibzs|P@P0>o8CuUPP3+&;{F1st*1wM-JwA3Xz>*NF%HO7jMap+>eHpOp$Cvu z?iJJ5t_n9eeV39)i#^msirR9C^%SK^(v1Qv3T-%&aE@jF09W>9Q$*nksH1dudzEPd z;NN5AhJG%pZTB8djU?C-eKz~yr-k!XW%Z6VB`vwUDBMTN{{X)%RO=ulwW9B`ST+0| zX(vqU{%wd?>4kW=Ge&7f%aqbBxggHold$Qq>T$mtJQbHyr6M$yOb9w>pF9u4$W3-Z zB&kj};8!pK6VnW1Dy=7QJSO^@^;PBVEkR#~bnm|2et0v5^94N8RVgY=Cu>0#i{ZAd zN~KngiXcee&-BBm1|&C{G^M9jwWTnm%-rrdL~_Tt8AZ1EQ;&8TuMH$9N|Xo&50!_X z+ZFnC zU-#1h?BlXjZ8kyW5yO?LG^u4_MM)R8meJ*j2nwhzrPV17sX9p{*qw&<`Tqbz5h`kg z(u9PrCgcJn&i??e9P=I_T3Tdmq=cPgskhV~v(K&vZKv+8Q-vxTpsH4p;R+~$ZTzI| zhI)|Y7G)|LN)`>d%B+1qwj8qMe-uiWD%6(*nFId-cKG);VU(-8DN#`&B0rQ1`R{>i zsM0;8i&B2gvqt{_i#FTI)Z3sW5DbGh{`+n8#AlD`zlP`TrLaI!)IdHd6C(WVW8`{V zY^Jr$vo&SJC0-X2pk$?6&-fl#eeDINt5VfSDuo1v&xl{lgXi_Yv)b>f_3gIN>{NP& zsMa(B&xta5b(qA1gKG;F@UWtn5n;5G&&v@6smf}Q5vx|HH`VL%#FHhjMM{(SjgN#G zRsLdaf|7z34CP9*diOGNhn&^ix)rH94?XN}X|@l_a|G1VYn!*>DH5%@Y%jmpe0uXJ zt;qYNB`SgOYy^=pw?oejIXyX{t5YgYlr}V>0Z;{i7vE_6?}jK_GOoA3r^@F5&Fp=Xp zl6G)SGs(uR#n1k76h01b`zIF9kJ4pfTe zJkUMb&aNkStU0VIAwbUfWToSml}u@BlnT;gT*je0 zpAndmesg%f6}SCCGjQR_--qj*%b#qQRG)=Yd-b&ZLIwOdvbaNuKa5i7)Z$)9lNwZ& zMaYA;;P1@zj8!>RLvu zRRw2JaayVyZI_#cB&JHvq>~ZLnZVDo-Bm>CQe=Uu2pjVPE!WU>y9RAo5W#tcDKG+U zc{3keW?z^o;ode;tvkt(1mB(Qf2T+;FtN<`p>Cn=ep9A*lP0q+TWSugz@o7NM=vNI zcKevD^XgiPYS#)E8o?+eoAV;xc(e0rH=mfCiJeG4`=M?}(Oe!)Q~4%3Ibf zg$+k;XJBU2A1p`FAbC{DHU4E2smxqqwS^TYQPu=~j77h&z*Q}^SjkU_3xfm@p??&C zgt)o&G}nW~5>%5M$%qE~nZr*H@d$3CyHQDTXL$ipdvwJ*c7igZ)H;vC_cF-M4Nj># z6l^cc(Ej}JElx=LL%mCC(v_5LV{vHu;$Fo!zoi!NxdtKt!`4y4?bNiS5|uVlrZoQg zpSN5!?VzC&0%=rPompk?#HT`5Pl`bSK65)wy>aee#Ena7SyEI0Ci{B+=MyeJ?D^JS zacqrAR1$@WlM_F_e_T|#!wyo^l(>aTPTlPAocEcWX*#~fi zDTOK2Bv|X~5J}bN=YaTYwAM4FC%UL?YVjcigQ#ldd{{YcQtBEyl&J%AGN_s77X9+U z^j&toUGA16PgQsQD7t4-g^dcGAi)rk&wpF}u46;jNC789UvOj!$JY z6{&7nO05?qI!Pz|{cz319?i75vr^MZN}${Us49Nj;XIqSrf6IZRkB;>C3~Al*!kOO z=ZU`$cCVA?E)6gDY4Gy|%nozbKBMGqyQIT3>=vjVFZNxlp>1oYJ|I;HAf9`E`ixfm zL)oTbk+}}CqMgYDY4qie{L5XY&8U#F67pmy5I_sH^vD+eqZyiZLzi(#((6c4c}i|Z z{`?9De6O{ zmB<%Pl41t?-yG@MH)5Hm1Xd_I%Jih4%58Y%{W@Xob*&h6Y?6REDhRTYBp)e^YJ`I3 z=gQlhZBp9XT2i#DSNn$djAIK3SSQvtj61S&cgSefnAcL%v=o=B7KYM5Hzh!A>T%P3 zjDM#09QKscZZnkCcPj}ha3M%-1ngF;h~Hv9bBMA=uLV5kxbW6W!bnsF(-(@aAWD>E^T7WA{VHYoLyJo^xq5VkYeRI1PLKe$ zkR#Sa`E=5n^ z!IepE#nB<%yvjZ)9?;}WH=0!|F>wqr zPejlKYgWJ{sVP^fBXiRo-NIhP{BK{9xTiRCKJMxel^|5+bcjl3-XY#7lN}65-uR^1 z_FKqTRF`vJ3Td|0r9<7)?K^=+1;`|(NgTv#^@#>m?AgNnJ)SoHL74W3!^=o8X><2b zfMkGBgCL{k4j3Tb?ad?#;CW7VrY1)~g5r53@!?Oi&tXo{9IJS-lT)noCpBS7BpA5W z&cjS{v`pe*!5+nVt2s+6&ueLN7n(v+T5~P;r0VFEH0Vh^Bu?Ei9O0bLI?1Wq1CFz& zq>U`*6wJJ$t&FGlAe@Je4S&;Y2I{0B{6b z$l?ve9@rcyQsP|Vo*2!tcT#+H4rS_NKp)Da0sU{~Y*5`atpfi5ll&;;^&M9`N7w?o zZ#4ER>|;EqQXZ}22GXMi&*CjYNxg_{86LYIQHW-B{*~Q|XG}QQ&2w)NBU`L8^vqbw zQexYIIHc%1d+e7#b(H0uqGlOATZn+$xtf)rn}MOm)z@OJzctPt@}4%SuMR7RyIaZM zLVOx(+76_jR+f@Jk@mnkCwM=pOpn&}Ef#23k(B+If1%%H8H?JP&nX>Fz&S*qp?Qr- zRCE@MFPDF#KWBV7PZYG2dDEK7LR@u7POmQsvAw*{Ob?g#h1!i6ZA@11pAsdu%Ze2B zi*3tw0F?>lsGmW}>n82{w0aD^A^r-gs!BvG(`Gd8sHAk2NgYT6BKYmD9FzA|xB81v zTeoN+_Z9xiL6`d$)NnpZaa+8;ER9=Vbo^R%Cf!ue&} z2e5y%Uuy3vn>Vh^>KSP36v3BUVVloADVy>mo$%S%x3EuZU6khC<6J=YM@ZQVbgs2Y zSBLX=ZK&!4m@rk)W9(*C?UTZJ>xBb5qpS)9mX_ibr~d#gQjyBUgXOj!tNTddeCe%k z&}21&RpT^mDo;2kulr6Xl6mB?NLyN8UiA2e*F*^LSIt_ilZx{G8w~LUCk^p!Do6d= zx+OIHCzh~e$(2EpPV>GYXNfo~BwBspo+RNq?|{EURe$hv^)3v;}g~lCp&eI}oAeipPsRhdVan*IZ<0dF3vz2x;=gNVedq zL~A`}ZP$ED7gdDrH}q6%{X^09EFCr$I=-XyT$jLnUBu31jjM-yN6Pb*plTG^i%Kpf zGw_9rf(GhP0D1D4HSJf&JP?%BaR&?3RZ+7&vaN=4nFnflFVzR(H)HkO?KVl_W|2Qjv&GdF-9UuTrg!CG6WVOIK2z zZ!SxzQi@0l*1;sC6TIRS=dx~PljbR34RIcAlGP-se(wEIak!nd7&e1@pSi;S01(0p zZkLYGJ-KPI`m36$JX4nC?Y&P`!Teg=Cd@xba@X|fh*H{w$lTr}3-iTW+AnAo`CD$( zXC0q$CRIY>6qT#F_v$il;?w~!Bp5PH{8qCKbr)%-Aw5j3>En#VOgcQ19+>ogR z5&1zsrXBcq+X1Qvo1o6qUBh*%@MxJ`?fLnQj8u*ta;J(>QZsrsjZE}<$6|`YA^#iOpo6WZ%n{9kByX=(JEoxrj?jtSJ zgao3KHPqqLZxDF{ZLFXGo5lu54ss7_RcYJ+#y+dOJ1zeJQjWzvtDC3Fc*82C$+LHa z_pUaE!ilwkn7<>?{N=n^{+wJV#+iH7d^Yx5o@F_MYCYNtRN@k%E+AZQVYi+>O?Lb2 zuf-I!PUdtJ+MQIWu8q*@K}m@U1acE54Ym`A{{XW$`igeB?BT^JqGL3!Qd?No)k4&? zD``{(T+cD(d`~k$8;*X4kNmA|EYBdc(H}K`V!QJxbF`oIovhWvgEY+Cu+G}JwLo7yEQc}gr-OW#L9$|Yo1rN?tGKk--7tjZ)bg#aTOgyIf6C2 zmly2h5M=~gRLPPJ&Lxqgw|swb!6@Gxag6k;-4sA-5 zG!{v-eBx=-wl_ora0TPKY#TBs2dR9Mf<6=HWISr_TUg6QWi7Z!2s7a%!5|sfV#KWW ze5~z%i~j(Kr@p94idC&%6t!XDC)d(^vCjDy6ujGQuSgmeo>p9W&g5@@?~BudJ8+@l z?4p*cu{Bjxs8l$X0aDbjlA6FcmfvvN;Qo(3PJ~p<8uH5809Z&8d1Z2wY`|7TD|J6PPh9Bn5LsWw@ zOq&h&^2KoJV$)oCE+Z(tcTcU<0jqf%T6pfSzRLS@$aqhM+s~``f`=h-v?a#Y>kFuK zD8-P3cuK@r$c7_w&r=-K5Q|wesOWMN=TVx(@h4OM~V04@2chC#{O(+MlcWMdZT%MyLs#}St z%+V-GCK9*=CJDcb=LF(C?PHZ@yffLuIlT+ORB-NKkl=7mrWLZ_k>L=n_L~zXSZcdU z;Ecbt235h7+2tiQIg*UUX*x(y@Q4W@f3-mR9v{eZ6jG8&9VS%jE~V+Uc@{@Q^ft3F`3q*x~qA#hd|PpH|MC5Au|M> z@YCC0Xp|Hl(Ya1uwY~3&q-{x9Sqg1h%&Oe3k$cIAn__M3iNfjO9>!^C<;L7?YGNEI z)MN8>-0Aya9?*C{CCfWkdx|P4*n2Rir|z1QDM~<{UWAdfSn?p8eP)TI#Nk)E>1FF% z6q?4l#(<-bDeHmw&o8acQr=-tPfwe7Wwt8&u#_zWk&h3>`G4Fo9ql{W{{W5nk1(gI z;VvSh$!nTgR%#!pQB#SV5gke1f6aTJ_U*%YrDbz9tDO%JFfFt1~z>)?0 z?THU%p3>E8q)J^~MRs12onADT7?5w)CLm&YAu(H9_wKax;B^}-+FS*Z+x1pI0p`Bc zouAccUl3$GTFO>+htOadi)zx5&%`Z#t%t`uTjKM@X#W7KIBu7R>K+MCc}Z4>sozxT zkOA;+EI=N3dF-c+vi>s69%l)ZKF@~|UPsuq>oEx8-zSU|S zD{=e>XFJ?sy7thjC@H3M@j35Lxsi{`IFMy?Ttwz4h4>1p~I+Tj1n;0 zPZYkE`!e>x#}m*iFC|H%&Ra^@i@{uqr)%Tnq=%;WF~^Py#q~WQ-MX+-*R(!r?*XNnhLG}E%NCPN>j0(3p>`@!xrIdP zy}-UNuVv3{-XHdi?B(7S<0K_nr8{01-vG5z0QkyoK?B3e<9@X3*>k*8t0t_aO+`>) zNfJ_|sXGH4$tHI@d5lC)U~BewbzDN@{_jfrOG9lbKq+b?@(GfiK{x9iNghi*MgxC0 zWd8s|^nojnR2t^*_FW~D@jg=D8q?)j5TgubpoB8xr%H{ktL{wfXVVtf4DmB);s)~y zM;Y(R!;UoHSP4EE1|WaLTc3We@xmr;q~hhvL?A1m*qdwN1Uy7Idtk2o5pu8$+ma)#97bk%Zvx@sJ03@^&}bV3EE^D zv@(&X7shM;SLMId+9;TPgwY_MgYdTO-;6)~V7-+n>ef;-Jhih$R_RKEo#FurRD*3m z5-bgqBoV6|^V%M6)ejJ1T3R0JOkYVgNBgpVP3Hp1N_dX9&F(T8TvRLJNl=gew)n8Kei5YY3o+qrvDaJf zYN}J;g@NKuwAdY{0Xm8KSWh+ZR(N0ICl^){9Pdg(7D|fBRpH;PPfl2w`#|QeH@&vUboQiA6m}6ynl_zZ`f&Q{UUQcHh}2x;U`o3^nenKt3b|BxF|b@X5OIXz29B!K&Yv10&zR|0T%7aE-Yh3aLLyYGoyuf%6m{XC!_7cC-h zC)sn_d9ECztEPJ|sH-5weJtO!a#0EcA^zxpWfN%Rn6f*^P2-d z5sIh%MEKPiA7^Q04Jjz9S^`8ysaBK;>LlNo7;^srPHfJp?hvh{S#h>hRHl(6B?O&n zH&^8zociOnFX?Hc?VSD6w2+Am&USJ?Wz*ROLtGidm2>!Ma-mQ3NgvH~d_{Av(i5Kd zoyydv6>T9PsBTCAZ6!ZIaNpXG897guyxS>KlcRD8fK7-WGi*>jm-fw1McQpfNcBi@ zyv)l>C%g^20VG~xVKIJQvm|4v0(0SBK*8 z%pW;78w+8FwXnx$94AY|*+5f?LWtwb3=C=i@^T?D|T%Q@242?Wqkht z$h#5DAEcEHYJ{W(ASfR(AoUx@v*YZ61PUpS0##LbnFA zwwNJOb!derVlE^B7BhaPGESVxNu+Ok-gbb0Px7rykB6Fs_(RE13Lu?APb+edOiHr+ zo{^eH)T7}}okS5Uo16N_->x~8Uf3COPNdbPP-YOYZ_9FUWgoSPs8C8&;*zaI9eRhX zM%YXJGZ$%XY~bakbOw59nSVo0CRAWt5@Qwr01!ThML_XdOb|Ee`}^Vt{{Yj&`G<&V z@k|5};U@n8vp8(7?G5^-#*mbk0p8)o5oqc>_QdV<@@O$xr-o@VMI(5Lw7F1RZ&t35 zpcIfq$SU9B9Iw+1_1rSnZA>6)3KA7_`~Lu*wjJuK+{JK)+;G4#q>`Dnx%uFi~svFXzkfSF^3iLbw08zFmE*3k7iVI zPm2m4OT-OQu??S7F(O5+5I!&7(oB~-O;$%CNlH=yfo&!^Mj`w`k$(z#!jma7m6HZ% zpOzHJ_=r;Ft{{+getmJS(bCh5zfjY)_lsQ=nGOb&n;@#unL<~oNx4p=yn`R7>>N)k zYY^60v#B}+Km-j*5jzokeKAbroJ*pyB#k8`NF+|c$I|}*UZy9RmTpfExK_UeSX;wA zI*5(><2|}N9v3=O)CETKvfgI;f>+(26a*49NWU@v05jzx<-9bSKJn!IS6--(%eSqK z{IMHvJ8?P3at{w`_3PDxGkkQ4ftTfOqlSCYCm6GQ@ll-xSY&4 zf5S1Vcky}eBEkpL7U5{ZONK0nx zB#4Nyzf+12vs~@K(o~Tq@(3DIu9x4_7VRy6al=W4r&JRWb1`56u%Dg$u#ZuW*jkb> z{i;^hYKI?FJ?D0X0xip+x90dWj1_9#t>LnJLI<6g4@i zJp@L^Za!bz6x!75xwB;|g$0ig26q;*8{g^XW2C!Z$$j;w%1n(j1Pg!&9QU`_d!^hi>K29guOt^8B^51@~!GX_y|9)?@6Rn7#Wo z?J1?c+G-uLw2i=4(o_KG1o~r=ID0)bluWbvQvi}q+sw~d`{Gx^{irUQu^}!b-@u@J zI;LlSWR*np=W&JVT5?G(S#xQ+mU6o`zb2#4@~uf}w-Tr*B^F2^Y!2sfd{F(o_Bw0w zhl5SZQgxen&hRAl(jwh)F6^td4|=9c3wym(B!R91Q}JGT+k8uNnyPI6iEKQpE0l;) zm=b+$>uh|~TB)?sV};rY9UG~`^;{R2aJ5!Yw4v0voeNZxy0rNoLNJC;pMM3-5ErXR zDN-bY3Wv|n>-EP^_J`Q*K66a_l<3mh(5q`wK)uC?xxYMfuO4tMPEVTmi*0Ca+uUpN0>XE#4F3PVKz`-BJ=n zkSCm`_T`Knccz$i8{5K6k&@qOR$m(NPw+~Dw$FtjK#^mn-gh?UV;m*^pq;KepC!s< zzUrGww+4H(h~KHOwat%Hj-Blvh}Th)MzE(6Q~QyRpDX%K4Q77ZMkuZ9CVZp4#rmZq`s1)5czWsXP zhbLaDlA)o{;=DaW->i6jyt$+;8v$JQ1L%KB*=*<2ly@gwYJ>>;-op~Pu$ z6)5RQzg_pgr^@TgD;&0K6_3n4#e_hW?8~i65@NY0%jHBKcKnt z>yCinY^_aJrrMHWJF4VNP5yp(`M*>Q2jyYvv5<`7ZUsuRMOBojHw7!Wg%CFMGAGpU z2OPtm=T$sA#V-{t#C|zaAdo71 zIA0Fu?=~9oGO)Fh2v(DRe5`(+V;SC+s1KB}!8_CB60oqV6R~dJo<$uq6${jqp*JcD z5(Sm_>UJ2Hai0+}#JPH%)SrwjltNNTgK=xf-_Oe&eBTl|l&TV^2?R~x@4r33+iX}o zC)%UUqqNAnAexn!8_Z8nY0@nxry64;iS`7R0M}2(gKwUO}UuqfHO3f z+ifH9H4tX^#F-WC=2WRGAz}c7v>W{X_>XY|YIdc>6(!=S1giSJrweRkx~(!92*oC< ze$Q(&_S{`N3UPN3f_|sP>Gi->J(Fg6dv14>i%X5zB%_y7CmkW|*TCa343#w2hf@;j z(%Wt7=YEs)SC$3sr->XNc zNmt>yCIAGRZ_e9zww`#6zf8k*9on2qw1NsGT+BzV39Sw^)!~p;s9kndP)bydULyiQ z>&icVxD1+_1)WJ!inRh#EN6aLo4uEy7ZinbmlMnnA%=(R*g`Zorp?u{5(XdBEgT_i zw}l^PiO_|oy-t+@xc>m0Ynay1W(*Rdon94Od_wp8Vb%H!zcO+FNwJPo9+(=lfEle2 z)3A~t8J>0n_s<;PqH7%6$)wLgM#U{dYh~p%1Q-hm(`$UOW^fN4QqwZFDxc7YmLYv2 z$Nnw0D-8btf$B2$^)~jaT;4z)VB#U0Co#((f>q%*=r1SrI2km}m-8#2k zrJ&-9w%1DYYf69;H5k|)ez=345=8@D=Y>*a`t|hr;x4W$%o|#vec_QHSd%!_Twz<^ zMuic77zSYc{{W^L7L>7@T2rKwSDntKAj}CvBfyiS#GC&BTqBfc?&WV1ha3pl5KhzP ze&2iIGg-y%Pl$dZjFGXxYT|l_#)KdQoum^Uc%iydLJi%HRg%8bvlW7bRl1hXg!s$> zHyh!)uQsX7z9*KYN5rdvKfluu0iV<%Nxjl$<8$eUe4~o=ttG{TsDEyAj_8&Q1?X*X z6qPwb>c)~vi;xIOCNKI}eQkYl>$u1Kkte9&nIXJZjt-|h(~9Q$Y=thm?bf$E-r1fgNH1mu>qU1 zl_9XC_*Ec_4uo~YJ+9SWa;8(EDTp>Fp4<6i+UysPlbz<2>{KNQ@r5lgJ{aphcsDim zxye#ZG-Gw)H>=rpt>di}?hQi1cf4{xp#I>~FY){<4;YlUo+2huEX)kDOUlusotcYz}05=Ne& z-fip89mkvdFlAYRC@k!lBtX&+Aa4Z7`r;p)`x;U@?v)nOs}*g%ZZr0jfLu-4AX z%4B|_0mGL+@V^u|=9H)fd?jd*RGa;+>50z{WzFW5X>kbe604*@FeLuA9-mBD6n@Ai zfv*ui5P-XN>Q7Fm`#O$LdKd?47;q9~)I@N?6Q^bF zQL&b=%9Pqupf(8cNSHGu@-fmeAng~jY_o|tS;%P}kPNFwuiCPlWkCKWk5sGw7B5#8LGI%Ay2+W{k+Lb*`8R9NlJa^XK|9?e+cjNKxQ zDg0oi5P@W0;7>v6ilMB6wJZ1=_Q{U1gT&h1FrVM+c{v$*@x8`ux=}gPFnN4l#;D6B*+}CI2`b^?meU>T)>4) znV83ARC_Mbg}euL3Y3xpP%KH95qKZaV|G24a@t|3;FWkuB_Q~T-(&h>hU#mwtN#Eg z5bn7XBH>Eax{`!AppcRlfD`xI66}+MGba?47Twikn~uAXano5RW7$SiTHC$CRiu)F zsK2e_vbT((}Fl0OO_1Z;YF(kcWH4 zK_GKJy*_;p&y4CjTCQ_SP-I*|C&Os#z9d{3+htV)?YC6!q^RnZk`*MtgUfSc$}xwi z^!=veQ~nA;I2raX@?JK?Xh z{@G}AG$cDy;!y%mJ%kDCAfGZk;>^i&8hr7m6omeDPK1orbF_tXWe^N|_07g z{P9w8)_D6>YHdzA;Whw)A5F!!+YXt(h%4!RKV2a9Ib7YGcHL8#X04RJJ}@LKrr%w+ z`ubz2dnN6$(8C}&Q{Nkj+Bpe6d+q16{N~}#FnOHEQdX4RFmJHf{99uF>|eAuY9B*u zb$X>IbAG=qt+w4S^B%A0EG;B8OX@JjZ24XJk#@ABrc~m}w3U!`1fF06d-D6@#Nf_0 zXEX^yoDM0^h|h+8(>_u1ymCJVaWJf>XsO24BTSXdPb=TjV-^<=@k{w*t*N(MN>jY8 zSFq(gtsg$7J}thM#=nYRC#bfxhLXCY_$wLBI1c!fo#2DFUZ1V;3FFSslBH>JzVWvL zw5}skreK0h?;f1-os)LB)?r57I^0TXEHoALJdUe;M}C7ACTON}#sN&Ymf{uwu)kl{ zKc+NeXGm>XBT##aE1Prv6?-IlTtG@(B!L=dPchG|Pfl2r@N-U3zT1tErq!e`LOepm zOwU4X{xMQ&)UlfQs<-xkJals8wFDo9nW&U$?A zXZ~Wa;~pATX-J}ytw>0Kk*imcfNi3xEaW8S0w&8RoB?tf}nL=+;q1)Vz0~cs=7+`1qXp_$XqJKMfA?zcOOfg zPsJ}~@2!s#SFItkqoM*x6MeaSzHvvdXqzk+(PS&MGCZA}1vTQl*-LF`Z9t{HN<#F` zm;nC(TtOdrnx5z{Qj}7m17kB6j=SxL8vZ3_uPq5ul9vb*0QjJd`3p|Rr=BAjrgF=p zP;sf7%pH64ovpSp{S27>jtcE`WU)@Te~AlJ`Tz>iAju&qO|SF6JVkh$kDkgiYJk3a zmL%+$9RC2CR1C*nk%ahTG;!?DyD8L_B$Bz(3@6Uh^Na_^d@}7uVu#9fcYuJNvLFlj ze_poxDD-WS;E~GtSftqUE|r7WuWTx)b-H&SOuw>LXHUg5>k}K#sf(SQ{Vz0<9A2-> zz2|MZ9C4mP#a9hxx{~2bVQNvh@qGIEj9#1@$IgEbPrP`16F0JYf(f6NG5u@OOieOG z7TgmFCKsq`RfZ z8!3qio{@W>r}W1!)bYhn5Alj!Lysx6p8+c-Qlfd2B}URtKI8uY7B!I;xbQoq`fEWp z<@Gm(^Ts%jBumS2Ka7B)1j1(E8+l@w?Z<~jFA%y3PMU_wKoBQPSe~#((QF0mzuM^H zERni(JK;(p15j3g00UH;i=C$yKWVu^&+?TxpN*iUfd|BF0G~MefsdN>sSbl!V|D?; zyVNdL7O`-TY8h9$aXl$;A!P)l5J4)^qsxAnw)h)7{uz_DqM@ltNHgJxf(X?d{{UP; zJ73Ee{CR~ZyeU%DkuwlgFb4ksLx;?@;KvWLq&eN{(L2I68;)503t1qVHqpw++*uF> zbvLs;QQ{iJ7eZX_$ZX8p)=yFo%z5LXc(Z|1mC?A`8qk-m1p?)NlzfOJ?T&5sT&Ofz z8;-f*bHWN%E?{hY@4ucpt2fV4pKvQLt4^h~kf3g$m>&?CJtEcvo41s^^jXfW! z8MND8v~><=O8~3)BSZOi`vGFQ zJ|EmKo;|DZz{&W9_JC4%BrMLUQIAfzg49$gw+e|->PXY5@B00|aejMKOW}7NE)t@ZB+oD3K3=14Ozl;G5@jGK#l5vi z7MhnsvYAmNogTctP(GL*IYJz2%5YGV;Yw1e0Lk2A(87x1J`e`3bNl@~?2QAu z)pN=KBJflF@w0UfI^arMjm(vA)cW9?p39pc?uw?S9`_)nPAb5O0y+!e#aAMbhWuKl zIsW;a0-zc?ohfN)KZ!i>I-hBmRHce2xohqCPAq;m_J6^Q(NZ?*l2Vmju%#2P zkTW9TQa-(HB+e_5M%#@usZJ_ZOa)JeZnvyt6(|re<`RPkP5;$cccP*w$q zu^Y_advE25Bx}vQ@D`&c4I4mGJ|xS(gk(BicKU4E0PfJUZ0`1Eg)X-?8g~ z(ahr}(5{k32*aGJ?DmCq+23-~31zjEh(W*Z2=o|{WEs0$HCW0J=A||RVCpKKq?06x zCzj-4>Ao2hbP9P%XT)R>B4e17JwBdzjn!pKPIB6vLXFj={4wJ6>loXSqDadM#h7wO zb!yP&j#g#uk`kphxd0fkh@MC5isQCCfmAh4Rjm!FFCB9dqGWmbjsF0p=Uf+zkdxGsXB_9jb za*#|AeSch3{?nb8jLwDZ$*&WPp+Q8+AQCUU5P1mXW-Tp#%AKkY;nZ!urqsjXG6<0y zb)H5sa&f&Y8Kowk^YC6myk!8-h6uSE*!rJLeq$tZdUm+h1+4!7$nesCb@NX;;nh%a zCwN;{l_-?y*g+F<(Bq-Kox4u=SLx}>^f3AZv5p~5 zd&AVSt!mMri5J@Q)0BChRt{aD_GZr$vY@8B&h;b_)WJH3NaR1n(4NaZu9qn&611n? z+(xF7pjAAHPxAml5;=(99c#n2tY(Zd0ZWslk+>ts?J>{N*2m*orpcq!5JhEt^uR?X z4i^yd-?7WiX7xx-Gm1h_b^w%}Ad6g^wB2HcvtQPX4j>Z!zF% z9KpmovEg_Use)v{pQp-CK3v)DKiEYzT^&emrgbQ&%7Q>X0BnAKmfs&?=>GuK5;5%$ zD@RMNYw$(=*U4;yFL#GCFqO8Xl!680rMBAX6VUk>v%4eXPjSvt(%uPDib_a74~TS+ z_`zMbc4(}FJF7xjf|aUZ6u}qzZ*HXZ#Y@83>$ztcuoS-!c$Dcj1WzHcAl5GK(g=0UW2kCZ=;7)p@pyTAK? z6q%3+GEdtYnt8fqtIbq{@kivOa_7D0Fl|7>ihICP0!7ojNZQAhv0!kc4KtUt^Qudo z=nEb)Mx(JG=6_hMvZu?{sY(ixryB4qq#qTBTZ!k;e6c-FXx$5q(1rM!2}FWmf9)h% z!|HmNqG-$TI8XImM2(CODoMe-Us1#FWb7r;X% zV{3$q{lxi^zB6@tKkb%vD zN~91Jm1>(0QH&2y)<5wTeb>)Ts&n4f-hPXgIF}$-5O6(38);gdZRJ%{m_HgqOc@7o zk}d}S09rqWX{?Ia@(ZEig;SY)tbi3P_(nEN(f~7RL$-&XIJTR_3`;zBI~O$opT- z7g)-blkp1FD$5R9mZbs`z4;KM$j3ZW{@C4`tB<%byvCRR0NWfm;*$E%vaM|;LKcz* zhtHpxn~ON(rg*Q8tFo6|RamZ~ZndS!Ss_V6p!3uSGJK@m&L1+&iIy^Ir>c;JcPLA4 zA;Trs)nYgPQcusz5WCb2E*HqES##Vi^7c)!e` zIS{1$Bbmdu7}L1>d3|COrKw0!WzA>t5)ZOctM1dYNM@?7dI*`*{2eFfqs}2xXOVeLccOWGaKx0_MAU( z-g?&%F;Paal=sq+tbwgpxsoEn-kwGwxh_dKl@T-DtZpf*Q^tAns7 zr|Huh)2y|erm>Qgrg<0&xwn@uk;5fR$XOu)MYUMZIOYCuzYS(-rUiwSD^V&0eqHyS z@A_fR(u>>_ZPs?RBg|AAs->@{TJ$B0r`)=$2)tJ&|>T#g!G}3UfnJ zu%C%5(4o3hd-K~E&T8V>@RJGvK=BVK!`EnG98pW}H0bV~Nl|eY0TH0S zMq1*&C1@%d5^PSz-A$_C8FL>ba zl{hsHdy_pr{Ew8naGqc(+ju0US_g=O*QlQ<5>ZmLvRan-^#wN;Hj<1WkM1sg#$s%iEnDtC^MRI(JJm;w&QEPj|~&Z`RZ zfSsjag#Q5U5f}33*99>8o2W=X3U-cSW-tzP=DgW%1u0sUq<~L`EF$;0oM=YcDBK3x zwJPCSpW(G>bjfW<19*coKi?j40##GRNK!(z2Lxz@+5tNlAAAo?w%BEqsY&k&5~w6$ z#Z-;EQ%>T0z*J=4X}G_n3=3#F*N+9mYrYhJidhuZde)UVq%BHtO`FqLlzk;5(3B`0ot&tE;c zUifq3I^O3jX-;@j;u1gvKs>?COV0MbNi26NBGMsdV@B3 zsZ?qr-9`2|+k_v6-(-~(sS*G)ct6_}7{=QwR>(=9t?t7(pWk?EFral~Qz|Y1Op*#? zRDF+-9dRFHGgeiZR3z$7l1R8wNP*9^}n zl*vP@O06*@r>uH>@ShDlx<@JkieW`RJ4Bo|)OU?3I!Pl`UN)WQ{9vY*99^wol6S+e z6qeLZbisXTP>m*k_Xz#|<{WrAK`tbb;*^o|GtBzom06pIyJ(~pOadZGNCVSz`t`vS zwTCTAK-85dPni*gxwa`at^+Fh%^hPh;pEdP-6~2Gpcgjh5!crgmTb$JW^n6EO`BOr zS+t4T_Qb}Ej#X5eTWL~8l?gVyf+Y0of%w;k(&aF%Yf77W&kBK=Gvzzmmp@!Bw_8dw z(R+$%p{4iA1iPo=^B)(_<$yD)fkYCZbzaAAcKd$paOIcR_cRL{h;mXy@-Zg@aUCeG zLQ6#{Z~&-~Z~Oh<1lJr|=htPK9&)xHN{|$-LI5h1sCsqt!;Wp37aZ0JP1Aj#M3L%w z{>~$LTf&J6X+{D-fqO>R!A*Xxd|3Hd2=5RIKI>Az>aVBNl>fdz6dQxbfn#^%P?w0-=^ZP(~NBuvVUHrDwlwz^EekgpE_boZADtVP1@jQ|=hgP)EDE zsL&wF(lsaN%v<+3V(njso*JK{9o@!+tz^gtPzjj08w2@O^2B||-%5Squ;#QIgS_?F z@BRM(n-WT1IW^38H2_MLCS_W=NFWathR|akGC~UWN+T+l;#Mjt+gZ}5JV{YLT-Eaa zo|vz5oXOm;Fj9bUX^p=r5IOq&{c+HIUz0ZC6ygw_qvFV`C-veHldn88j9d<(V>Q0e5D!y5%F4Mt}T8H&s)vJC1~%Pydq7b zm=hna-7!j1_I+EIttm=XrZj>Awg%k)0NeYKC*|3#c2M$yiSHx@EYF56XMeQ)#yRv( z6lKiiUzxoNS*g z(c&9k{Qm%ZR~hdN8a2R5l0i^_vLa&p`Fi8D>-cS#^7XdsX;M?PtSAdxl<$gbwEoQ6 za=ph}N}5vqTSl)xE?>FD48~Sz^&@oUNMvevEvcWx{Hl*IZPGDuc3s-fxVnZa)$z)d zwGrY_=VBs%dtx*H0MWXedqG@|h6p42eB&B9z^+pi=}<~iYyscT;{E*aE|^+Qq0vk- zS6Oy@n`PWe!dBCU+=Y$r7QV)DBCYJ+kBDf}+pMK+xjfOTCSYv@X`RmJdABHVb$)BZ zRgJEd)8X-mDl)5b9*5*H(cOynpHZE*%{_VCDngEut)K}aBI4YJ4YQ18eC*nJVtI6A zkf1%S`yEo|6wXvpHlX69+u=$=fr!T}_KCr~N7;66=92evf}lPnNuBIXx8JG9)+~pD zQJ+z=`vodXpeaL?nHo%y%kTBX7qwqzY91t{aZb{+?;YBPxJmClV%WMi#zozyY5i5v z(2xpWIr}a4pw2i#tqs(bDU{j?+so6+*y?`BeWS9TFKw|_;AQY2ozC4S6_;zC#ExZE z4?j%GThg-{L{GyJ=l(HMtAVpl4XN-AB?Tc62-OFmI}!eHi7Ne=S4h}(E!^A{^fHaw zT;nZ6^o}!9%g{ke#Krjq3+?A)<%o}HU61AbQ_B}^pvS!ojbmws6 z$SalmZuUxhBysARR-8&nkOk7daD4v&a&B=zXW0c;57w!ghSY}zpvThK`kR{Nl-boP zny78Hw(x{1MTrnd-)Z}vryTd&zp|rw^Gc|tVU-i9YtmIIya9956$wDf($M;$!zKM! z6SU@q&npl}j)j(q>p9YuELo=$_dG5aI_I2&^ z*faDDB8x7{a-Q!(P`8=5SBl|DI)vE4h#*|W>`H%c?ggu1m9d|&hV+y+JHP}J`A(?h z1WwraoxuE7-f)zKttoOYPliuX5$F2`EF7>bvZ-3tsLIZ>18!3jGjK8R1JI*|V@a0O> zp_;u|;T|9=5ayKh8)=bvh>ed=p46N&)?iW#ic0(<uq>$Hh>T6v1Ih77k_cYub^~a>S4hlvEOEnH>kpWADPGkTRdOP}R0CtkfNaVm?0 zJEW(i5Dxg3FWP%5Q7S|EOYSJyZPW!w+6RgNzQhramARh)DzSxBHj&>b6$1xSPa*`^ z@3tX%#|LIq?)X(u+LW+A32GXQiwNuT#ae$*XZmuI??^8@cYdLLhG*IbB(1H`pW$vO zA{L~-bs3R2JKDg-yso>Pdyr-$y>)dg>eND-aS0?Hw8;5ykCEID!uicR9ohHt+R9gF z77M20B$E&c{ofadXIWNZQAO_RdbzrUr0NExVK4=!#lJp6V)qza-k{GGf&PyyLfHQR z_Fb#RoDab~Zs-oyR3#*ZEw!}6&QJS+Nk1u%JVCQBW6sa>3Xrj#XAQWmU-l5l2u-%+ zN0*0}Oi}N4am5Y0H2J1x%2NcBTD6!nAyT4r+s}L$oS%xaIz=}_on{qIMz;{zF2a-n z8i58dzs5vJ!L*q4(=>7k`3mL9y_@npp~NnWj`*UD)Qu%Q<7q=g$AvJUC!qjyo$UVr zknndIWNPm6p3+K@-Uas+^hngeb(S6r5NL31x8DLqB6 z9(a*($7o%q<#lx7d3tK;+Jvoj6mHY^ux+VRa9{xg)-Z0GGCjBd0Dh>y2=|}vSMB~6 zNFFThvxZwqVcr+cmX1xsYg`*D=}7?FnKA{&Hlp^g?GJ~wwV!r*U0TXUmkl$az@&fy zAnGI?&4H2z*p+rg?ZLwS?N3j|90IC0Qh?Z~pv+xyh?pfvc2x(%&2T{*;^pD~)4L<> z8ojhqI;QKCB`q&8LvE=m??t|pz9814V5Ez!d=%9%%f4~VapZAXkY26z+I&0E!QdRrBx01+HKlpvJ#^M z#9N(1VHzXL2HB!_xPlToS=+w@v7(~6&OyN0`Cq_8Cd`zgB>TDHxH?&W*{{Zxzb1-4SlI3|To#H@j zWtqC^-LXylU`&bTowvm^$G_?S0NQ6~4LEYVr;e$MDO9-DYNrsj0cChnMvprmJR2Pu z#n;!e@wzv-ounVOS4ASbwfu^uF+-5&jA&M|OH!s#KQ*Pwg4UnHy?W zXTTgxz)4r*QaYN3(WZP-g{Yfe1;;qJ#}syd!`{-oH=m_6nU-|cU#TI*)II<}0K!(X zbt_5bC+vvCrtbTP*(oP^_PaDUyuU%c7%!!+zO$4;&P?{6mMc zL@Y=(jkJ)tP_h)_RpQ=AIN**U{{UHf{s_)kqT~M0sA?Nf3Ujz{A;f}Ygo3C++WJYu z!(Zwr?6ccsr!dGfZWpU^Ja4$&oHjlt!Y?PBe@u7b-UdhTgYeG-b1Vw^GQi2L=T8{ z6VHrj_=B?kAxC+^9jZM@;!sK$8IOFC;)qHXL=9dN3al|>@ZAq;83sn(ZcWD=JD*eO z9twpeDIjchB}+h#R};=KowRHH!tyyKY1|JS*`xX?UVr|Wyggp>s<=yt7n9XCsY6}s z$Uu`4W4uoN3V*I5d`H+9YkiWfE*!p_i!#RiMam+O`dS+(jbO)BN!UP63S-)rk9b0> zxX*Ykb&ax8R_oQ!@oI{k=65GijiAf?yQFyWCX^eKG zl;!l4v^A_Eq4HD9UOY%a@#F>2&J>6=|raa$*T>X}2o{&5fc)3DH@zpT1Kx zn#jS$kE;3n{{R!@l@$*Ma@vY^lwk zgNFYAizc`f`?xD$?ecd7bZu`oQ4;Cq8~xlgwL0A_9_ z>=Ej!EY_LTHp`$jP$x_21_`+^WOMsYAlyC0wbXQinV0m0l&lh&(q;{bk$C&_x%!{O zJ-ha8?eE#U*)Do1@|^CWg*UCuI?AMdb|3Dx{IS6v)jr5vLF}=`;ZHKwOvD+1xbuKw$mML!EpVp})nB4drfT{#G)R7hJY{@FjNXeYuXSNBw@#HUj_@f( zV8)_MPlkEnueQqdX4!2yaI(7+w4ec^PwaGof;bKDzcS`uB9mv2FL^pK^lpa zz~1+WF&ymM?ihArHUbYgVIRq{l;X zBG-s9aC<57GnsW;{5xEoN^S}!B`T5yrbs0{Hv^dyE#W6Jt{bLimWPM(x}>0L4OCY+ z@pUH0Pzse2V&wd+W)a)oV6Fx2e=E#I0STxc}9Asg2&u8>)qlKGF6g4GlI$-liAf!)8w^`jV|H94z2U)gt;!L;hR1zC-=RE=j(5+y zOzqc)6yh^H(~lc(FhZLmqLQH|p(MdbONbNn1POyS6Q5-q`!LHivzjvcDqe9#1@soc z3M8oMJ0@U8!1Wfyn%P&7comLwO#cje2w?Ua#)iB1F9#SL&s47Lr z#31i|?}>M7{i9NFw`59n#|i_=N(#W#0*TTAiJOzOTKLq_$Goo>q@|1U|tz@d0(kuDUutK(ja7H;t*?0Y4YCA6Cr0~ZO=0C`h)G(Kw2?mu9$q7RPBbQl2%_I) z+2@i8ReF0{tBlF2IRlES9}DP5Z{ErMmVc=)3MV$8tECykj7lnL+x$t>FrBXU8xfiSBBj(hfb>{l|cLoHWQJx;u?6I0%{Q5r_q*z>)k6?&A63==mu z{{U%k`Yet0CNvX743F}NSXHeUUscaEU;trCukTlF2iy4pUeqrq=v<&OC zJoW0Dy0_kKm5>o61g2&!&IaNvCMOclXujEwXHD*{fA=0)HBqOgXsIEzEPzD8B+Q?#-7v3D(wRq8ia)~oc}#j%bXa)f3#q#*;@Ykv z%o^dmwVb}8?A3kK02ALANm5b)3Nhj!L?2u=_V3uoX#UUjHA~`#>oS@$bs+eXR+Dk( zJm<@;u|s<}_NAWiFCAq$&RYBI)n)Z9)HLWPz~UAa%=u0}%jKWy2f%*X-I`_mE83n_ zmpxfkPL_T4o}asyZDgzkM_5rKl;Eaw;Ft=wk(%h{tRmQ> z`#}EyMrBfQbw3k!b5xAmC-2ixP|#6RDAXlTlgM5~^T$qq`nT~PWj%w{<@vQEzUxs& z6kRQ;DK=0fgBCLY5^ub3h^Cr1YFJ?+k0a;heDABhx}6!AjEc{2xHq&O(Cau`kEr;M zFL7Ck3J9f^S?a#0ZP9tPD?@D1c4iG*S0}4s7fJsQc#dD4) z?PoDgRYy_p3kg#zEv=>A4zCcki5TfmV(v0)jeVbLa+R&Om}!;wMRKn5QHU4h6KS7> z9%5tlJ@C%Shnhb^r+j~j^zcE;Kp}JAXQTL^XzZjFCAL%)xj{)p{$m{z{{Y~QwwZfF z(0lGfMeiT>+elIZ$Qtyhk#95UvBOqh!ZkcI+Z9p)N*hYcV32<)lOlKVMD)V`(iLlC zg(;S<@hVaRrftlKh_nw~t#b{Lx2Oaj$V=MjV`${p>xEI|Twvx|##HXIw;DrkC08T@ zkY{<{>GH?dkMxoDwPUkfi#DX<6~45Fp63i5$Hrt~0ew>PQ>K9#`pl z1NdDLaX#k?uHRp(>i+=s7UL@3B<&9)<8wlnJ>A67$daX{N=}(FCM8DG1dh0mXZdRQ zyM!s}L3t-I0Vsep7F^#Ren!?e*rTIhLOp*zWl5h1^Z?eYC<&gK(Psr{{TiT-qag3r1-FRP0lBQA=gdY!z4^z|bK9$-s zwi^vsw(@C|+S0ccqy?pE3Yky@b32G5p~aP$DNL;@?v#^M*jR{6$N=*4KWuiQ`laW% z}>;P!h-&9eF@9c~+5qJw$y6UfDT{ucZ z&FUq{1xYeY$1}D7&-ih-xXHSw6yjQFB|#vBl^+h!IgloLV@^Nf1Z6a>GSU>&q=YF6 zl!T^w1p)WwJmP&o5)dl@DdW}cjK2!S8-2nZ&KCMC)}v&Lc7N13Xq_=GY0X`{9~iCY@ILgLuE?T7KG~(P0y@#J4PM5 zGsr0WJ5@$zlqEF|M|QYO>_`Ki;%yx^#B*vKbnatKUKWq0hUv9pM*u(_`>WZErk<}a zrJ|;IDY^iiV1G3HSL7fcTszZbV=2qh@;g?ExCsUz_db0^gC{Ms+JB{)>zrsaJHQrE68mxi&p+aT(%% zA9FBOhy@@LJ|79Z{{T{{WNJ!rh`R z7$}?Sq#AQV;+h`Bvli;EXIB-N>qYIlRClVAoRXE zn>*BpEvrI`g@QtM-^f_ldHGF?!oJOo`?^-7CAByO$vrkV+sI<}$U87*g=toV zp)q*@BhQzR#Hyc%>FC-?P)bw;f=PgUrU}Ay(gBiF#Ky3>^?iXiOwx#GE5J;Ije#7$ z&rC4pU7Y^_4N*cgrD-xIOegtw^T$JRg>!j(P<3h3sz^42xd4se{SQNm$B6iXg)b-* z-ds+N#?n7rTPCaqQAv|hMqF>|sa)fS2Y#UG*5nX;8bR~1-}h`nbNr0~Dk(}-ejubx z)6AH$FgJ~dP)05eDRrvEui)<>!l3hu#D8;&&xmr0j`iRQd__qCBUGl=7dJZ&Q5#-z z8sj6>vT8SeU(hP2j5rMEZ7K?av?;kj7uw|RVh=7@=bqYoAFZSdN>bo$D=7*?-I0W(127`8%5QBKDf|^LlNAa zrqoK)L}TTA-^ln9w<6BlTsWrEW@F*<-ah!~j>7X~&{d?k5|n_DHSNp8B>w=n_j#~5 z@7d{!M$}S=Df_ab0-;f`foDZKZx^<-JTw6s$ssHBiJ z8MwIy{{Yhz%-yXfmHK^SByQ4&q|DV$(o&xHz~+!8M4QI*{c&P&Hyga)yRFqIwva-> zp9m%-Uu(>H`3zUNg%ec71*J&RxQ&ueSO;mun}=zZwp(zGDsXI_m2Ow-(s6+JLyAtI z2MS#s+3ymgIANd_-mOt%;v#n5^Re|fl~&L~;pL5i>=<7?GF*eHiyZ8@4s6s1Ri>W`5Jn8USBdff;~N|Kh;BjYKJ`I8uq)}>UTD>}S72#Y0M zPnHAXEaSYV1R2s&2BLSH^ZuK8+YHpi3n(PU)4wH5+ssCAmeijRyu>Gv=43^>Vi(1I zn5lLB`)#R1ayFaD1RKn45pH;2fq1D3sE5J}D^8^dkdRewc($_IHuK6Y3PcAyKpuCs z_vId#`IFSs$&3Y4Tw^4VsjeEyU!-%p2TFH3rYF;_@o8oCYHx-Tl^to(8gzgG`Ci{{0fI^^J#LP(-J6q6Vfuqint|LaD4x^|+ z0&lQ`(CvGT`QpgooaI?=V1ivGyOluG225N7764peWsZmn%|ipDBf7S@zJ(cu0S*;+ zcNZ%01M}Qk3F+o>KyltoGR)z`gsG6CBYP&^bA7!rcI7$I%;;3!xpV-ZAL%^pe?W0t z_Mt!?ds1~M>(WZTDDpV7M<&vp)OT>y*8k=B|OhBGln|OHC|Bnd96taAebZ& z2GM?&^uxt_YC}qdjjyUA#v=UAAbe3u>X6{m;gC<}<%_yu0)2MoTyaPC1=IFy+L!eEa-x0XJ8)ikVQ?v$FyOCRjWR#s8PEavQzr6oFr zv@CTOGq&S?rxDK5yFX`$C@NHxC2lH70yPD6jzfDMzC#c^^NJqf49zLk-KSin&c|28 zJh$tom|Q>#dj zZ`59GY&lZZIZsZ>bHWM;AQR!X!v16Ji<5|W9h%~&limdqkuz)DD5`gp=y6|hcMmR! z6(wp!B&h417Pa7?w?HxUj+jpnCzV7pbq!LF=2_u1j?>Cg+({ddL_`v2pI%=)abLB2 zYyLe@rGMKcAo|$t>yD$(v!&D1&%xb-gRVR&fF|dAeZ4Wwp460!sLi|WC0+Omof{|+ zllQhN^cNOR0V`ujDb%Q}nYD#V)}2Wm#Tpcr2%z}aOoT3(U@h=DO0 zZw7H8;ViW^nX71vZekz|edC?oXvpdrT?OpJ!v64&5b-D^-6VvVjk!+P>kh|z8ablV ztbghg;s{L5x&VBP&pc55h;aA)JpD6>8jui})CeGfY3tY5>yE(ePm5`2UDDchX-|Y0 zk}i33B#qBMJbr)c+J~{^w6B`h&qBgeG~ff2WywyRJ=VrFr9~rq^Mk%QSKAYS5m8L1 z`=pL%SSLz`u98oNO^N$s=oV>6-CZ8ZR-i-zcZ28Yj%)Uy-~_KDuV4n$rq6hZL|BQw z^8k@($ItqHyoo_4{{V?zn>|ZpS7q}TI>`!iP|*iUNK9?v2X9;o&1$mj$GR>lRvL%~ z%9)H=dCz9`pT=D(VMx-sQApLNXqei6af;`RGS$)X1BlWRq_0WRBgN!74=jG41j0ZC z_Fq%7*=0`nXNXRerE4&u_2qw`NVn4lRA%LGce>T6T$85WScBxRmeSsosOf`yUOjr^ zXTuqJ&#E-6mdZgTK%WUeJPyDOg_k6CWm$cjcC}Ja&RpBw+7b##K`AQac0MZ~-Qr1~ zWQot|p>4ROC|*fAt?P*wvA45!TgF^>Mw+^ixP2;h9}c9X-27LRlM^==v60kY>UZq* z!5++<6~p!1Jzm=0%~GGjZS<^^DDFQt{u$Lgx3(hI#_I+!bKwr3O2^q_z#v^7>*l9v zeUMerIO6FJru;-f0D(K&{{UFSKLgO!(N(tFiFBn#0uHTQt-m-k^T$Z=odq`=)1a*h zPN-0mtHo(d0#hF)V66Aq^}l*mLsaQbrIH8`qiYES{>k4H$LhT=?Mcd8wRAdeIZo$e&2jzl)ZL(D4)FF?^(&}Pz@&gJ z1LwRO-yD?T*7lQB!_u`mrApJeJnc8cA?*FuUGXU?xG)Sym!>oLkGyEqpVV4sA6y|n>RLS( zfj|X6qU{LOp(!paNz$XvBYmTMN%D>@E@@IK2wFmSH=VXVSf^;2ZO8R@if^P1hfVPH zmsUSQtw>Uil9EpM{@6>Q1BK^JhX5-=r-|y8fvrVJNc@9o<}H7=8SC?eKIWyRWe1eZ z;h!$gwY3foV94Kio%izF9_CfWhLo)e364Odr_yjcZhg>w=ZV&axXymH?Oph})^>jfWMA z)g!#|Dj-`-N#$=LKAvX+-l+O6b%B&-LqPi3(zD_{U;tuzpZUT$#$Wi7MyMK8PfwmC z93M#bc(kIOqODf|5!3!YxRXEGWnDvXDco^ZSRiT&-}_-Ml8R4L-9=UOtcKSLDH3*` zxPIY0_M?X@n{}rPa72zr>B!<(*J8ELx#3~OB_tG}8T*A}M!PAiLbL{4R-vQ-ZZ-rD z7bA}RK&9)P!rYZR$$hf(EUAPg_mrCfr3XyFpWp1^>WkZ9=iW*8r73m?U*-}qP-eZ0 z)znid#4@C%8i|1s&(zx2#A`9^k2cCwr7fp=07Maa{@51B1G(izCV~k?(&~Jh+UO{R zmo&JQ0U(V;K>1wE+w~w#_-ooRIe-gs?K+N;uo`0j07*YgaZX9Y8IDs}g_hjZn34OB z*A|BY(pS9OZHC-zsst%FPo1NAC$2nporGYl>Afl@@K;t)`$5B&UxiR1dPupk-^$oI zpJ+tXqRDG?i7=?^^po?)HgQvr@ckoc3J$oaQiwXY{d~Ws7$`WFurFLWskuyn)1L4_ z=lyVx!-J4iQhH2eSY3Hb+vO{^2~U_ej+-Ib11KMw7Rdn?WEug6_u5=4|%+A1Dp8o(z zLz}*wg}ON1-AYs2vT9JRE?NShNhi{9+g;lQMN=g#lyVX@l*iZl4Y6I*aP#>+od>*) zB*`}BN9238o+z1vo7PKC*Z|R3S0>MlgW;eN{`%RkWS)&b^am{KV0HAzF zr(RoNhI>8CbCfAcL&-{lt>`E20PD6V-I>zURWS+w0J!49p-?BN+m!iY+RA;#mYYga z%17p00Uk%!mzFWLI)}z^5jt4dKx*XvBJ4h~)g3P@LxiMi1xX2!enfqFVkww*QuP~> z;*hJ#B6O1*3uCo2T#|~kI1boois#(1 z{NFCGl$XB@gCcws?cbg`JBM?+thS^j1!zb*gi2x$NfJj~TKpy2yUe5URkDFz*4u1+ z{F+y=+g2v0Mfh`ZaH)OO`r)jzm!JU=5E$|1bUx1aG|FINl=mp zg$C9N^uM7v>@1gy>GNtx?*dZ*0Y3_)bUVfe;vNpB&YLcz1u6od0S4mc-d{{ROQ?KL z^Yvcoy;1D;xp3P(i>`#i#+MQ#g1cLlmGkt(i-fXToQ}0A(4@G@PnVw~)9sFd%)2E@ zo>a1=f#T7y{eE7bJZR@)zWNljG=wPyJ`gmKy^o!U^v2wiM=Lp1$*kNh+#@?6&Cyp* z%0r7n+l6jG_^d<`Yemlg064ZDtSwVr1usMZ2aEgtzg$&W9|2}uG^y^~N>j=Xm?Lkj z$DH-Ey-yL@&RrbKhx{XDT}_Yt!Tb*~;d8^Cx>Lr8<$MKsN>~Zy;Z; zE2nc8XzG;O(W>NIpQLr4E_-w6zAfQi@|nUD___)}8{A!KZ(xC#!Qi+S&{{TpzEMA#^0MT(KP}5gvWDo3(9{UoJ5+Tf^>apxzc=b^&AJ_a@Wa8>%CC1r&9o@c)Q z07kWy>d*)>EgoGyo8Np<-K%BlZlP7Ig%v486S9&yneu^&y*Co9S3gXmw1kpOf_t@e z^B3C;+)qT^WednA5(SAO4&3h(Jn{7UTaDtBx;Gfj6(;sd?L6@IWXe}iTT^5p0(B^+ z*Brk1?z&vTyzeASqEySkS|i01A6>a)<_Bil_;-z=3P3_Y5C}1Sx8K(t{n-~8r!(OC zcAao3O`!@$Gym&;I~Y=)`gjLl(1~YiJaze`rn?Gx9f{zw#={opvhZzT6H$FBm$^`AI;bG9WhDgwMLBz zM5|JYli-p@z;oZv6#7oHs~88e&DKIgC@as|$Bod=Zlr6|rKKdmSoC^N{z2GD$K{f}- z+{e%7iNB}8lW&AthkN-~7h(OiDefIpF1(`SYXr)*5@V?+%gW=+5x@HbXR6PbhoKJ(Pha>Q{A>nuoE{R z>_$GLSLwSw?J8XW)Icl0L~e|SlZ1z~X9*0^^)0k1UiOV;0yQaKMgWhO%N(Ei^K6HbVD zscM9LQ9SpL^Yhm9-C%+*aa$TG_pmj~g!3LBc8T3idf2H@ul>Y`^Xq_8hZ5>h;u=6Q zL>UG}_UrV=YWAb-c#ay$oO|7zDL{oQSA--Bh>zdb9J|^-XOCnR?jH9X*p|;9fnO1LwJ>cFSZ!&Z;ohrCalM+U# z`pz!C81{K%CdeGkDuYntMZ~ROjU2(bfo(gCLA{+alxA7eZ&U=Slu^Eakj?OR?KW5St;>3qG^x@wGyB-0crjJ08@;AK5@l&V5`L%wIky7 zzW#V&%N#WcaJUkcD3EqL4qYrTQ?)2*NdPVZ9JLi+4e5pN&E+|>m^arQl(H5My<%+I)lrW zCwB(cgc0#&6<3lfsr^b)LYxUGzbPVj-riVSF|Ga!M-8~7keC1?Q68J$Yfny?bj+$+ zp=AmZUGS?wOla88o#gs?+YySTd-J-S1G)IX2GC=fC!qS`TC-(qHQPlul+=of?B1a% z8q|dlFQ~*%igj(}i%YS5kN8etm)$5z77PPmyU9QJ{rvG2;ff~K{{WA|l-x)P)CAi7 zaWHE>ZkClQWB&7jDF#7Eu#p=_&kNK$a|-}eLm92st!&#dY22~KQ=}zBNa#{V&<5i1 z%M`yF65nmSbcfpak_@lqO>Fa z>p=xSc2P=(Dv(xGp7AiUp=7G|lVS4%bBR`U!s^W^+@@1&(xOxlsn`O4et54kti^d& zVA7>ug0M{7gEl+H$Dzg7!q1~Vq)W&NP;t2@PQg$K-rsC|m#7yCCNpfk#vN?9mjQ|k6qp*MZbZluph!2hx5a1M7X>w!b%2=Etub(C#Udwh z>5TsXM)e0nFG|!JH__N>Qhkqca=3c3nvfMXmh`1CcOfPXvDUm3#*Ohu3M45>OU>y7 zf|x%rM1O(O{{TJny!Cl66>C}4l_@$vpNCf>XB|cC`Nz&NM9+Ngvg$OzldF`GFm31h z;;-soOX{>vo2-ldY^zSb(R?P1*CcuH+Ek>CMK+LrQNKKKUlOIvkBJnZeia)VC|xEA z>$jHI-aGrW3Klb(cM!3ur-Ah+%~AIe>5eMx^MjR?X6_J^q!OS?c}zw8r|XJ8q;&vX zE<>f%TQ;04uh~DgM6*tST+)=CD!3%t!aAF8Zzv>V=&xa1ef)1KZKW+;>j+92R)7krr)s%4nYhQM!3Iahh1S@|io_P8-?61cOZJJh=w$P^%g8%^&crbr(J#mZu zY3Sfd)o4@eBe8dDwDOKM6&YKMJh9_`3IME`=k$x=w>07evskvJUDZI+7bX*MAb78~-doxa=M0RD zj#h4!#gYdT`z}NFp6s0GA?n(8f}imzNLT`34++Nz@xKio9^)kxB_S$wDFAKpd2h>T zx0SK=qqL3;PGZx{2Ga7JN$@BFH9!O(pY`Ztgngv@92sVQ`-x_uJ}qlq#*$S%c8l`g z%O9ox07-h*L=Qg!eH0UJ8Ra>9F7Z;=#55|@Ty4Y)nG&f2(;Ls}j?v%_Azdb7;8{vs zcS4W|i4h`wZ;zjykY;P)>d$nfSZ<{z7NZ^!Ji2*uxVXn=aAVH3K|`3i-fE~}A!;5O z21dllCO%ki^(LR+y+x|iwXf;{^<59c+($2^3JUJzYf`=|3vJg8U8p!~R)uJDyKKxt zZzNpu+z&V;#v%MM#EJ#o4*a?2&ZtvY#0o%iHEINb@h51s zPcdk;`D56#_D}U0i#1{AKlCWq1m)p*npB3Aw6vwuB&ZTZ5nwq98+m`Y!Td^^t{u$k z9U!E((nLf^0^sil`;D&`_htQxwU%Z@w_ER%R8;C$5CJKJ7TQeWFWawWp6H5|2K1?v zDMD{HxE(!Br&aHbD0P9)3`Oexp}HVjK%do8x#nz|+U8wKf_0&_#LS&Q1d=A+U=4?+ zIt$s?KW)At%hW8~Ejq#3F(z&zN)z09$2LzNz|A1EdYtStPI-Xdh*3<+9q|Yi1P#h zsa&cxk_GN#t;8MuG4fhn85)h%i(fA!j}nJki18N*o+jY8l**Eqve#1j0fJOX6A>2p zVo13@xNpfQzv>sN*sNhGtu$&akOVD4M~NcplfVA%xR-Wso72}<<`m0Tm3InK(W`Wb zxw(iUI>;D!6l~JhQaDoIjOhUqkf9Jjy{;#IolZWTny0h-b@X4RXgy%V8!6qh^0<48 z9&U$-l~0(ox>|((0BnOK1pr3TZTJ4Ty*-||wdzg~O$n(|jzr=Vw2~BivV02@P)+}e77{94Y*rnC|qpd z0B?T@)e?Rq5^iwuoA!@Wp9MI{ag|DSHb}U%oAc#9N6KsZ(vBgo4k1WF*>y@xcuT0~ z&f9P4v|>rYyeCnbS2^7L2`Nj6M5yUAXcK*mTWn@(HZa?{3*vS9lFv~O=E{S1iNhy} zve&BFbobQGYhg29S1;aW4M`$kS`3R{dkiVXSzE~AdK$WYYNJw0d?cwlb@k+A z515V49VCRjZu3fqH)ysDQkT}S)mrH@DrJB7LSbl`(6JJk5Cnld@iNJ&>Fe?;>SmDh zjdx00K_^rwi5?U6o#N4ow1H0-*zv3dJ#sl_FVh7=Hi z@RY%k>LNGW37x0&1H$Mgqp`!3!cZ zc*r6mcRp7=IbdER$IA3_&({oY zpqguvB-4fhYSEPWaw#bsqix}(rKLz3%7B3r%4~T>^o_(}?<#DymaTeJRpLd|Zkab7 zcOS5DCRs+R#HFIOEySbp8>ulQnA`h_#CEeWdn@8b>6>@EO>yr03s#gJPyqmo?YHxJ zn5sB~jRo_1$@V9%3C|ZnpLa6}S_%k|LdPkBI?tiThct4ZFmVknV5Mp(l2xnk`;0Ln zt<1kU{6#6Z8(Kk-L?rrjHj7$5OTAhg%#z{}q|_iNC?tT9;h!(~^Tw-Tw&i@Rvk+)0 z1uau`@9S~Iw&G$WU0|K9`Mm9o+;LP&af*)`b#8*75_*oket2n4rX9HaMDCg2{Nq}@ z=?XejuL1<`rVspoOncG1gpb4!R-N%_?Fvx*vbfTj{rO<}P+hMIP)by-fE>xU%K#zf z*0q!?Rlr#!omY;qIdeEBfx_dulM%T6&O5R;k#-O~K~kDJ=E~esbd4m1t4gk(Q-#q~ zp7k&_>XRbT(tUY<;xH#0x(b_cyWQNIPsMKtgL@CtrUA;Ud(wwx+S0Ba|~q}a$jt?bs-ms)>1$o2e)XAVt4_&|&W-bk`xJAg4pUB_I;P4p!bdG+>#Oqi59~?UznV`h^f>-NJ&WBa#Sog!^JLZ?<~pE zH2{+%;^#Z```ZzG?xjs;O}vt=TEP%B#q2QnTxhY$Q%8{Sq}*Lzs!YhJD0pmVmH9`O zBV1Uan6{TvbvUg+05t6vG0xxdgE-?eHLj)5l&LNuB~m#Q^z|5yW!2>)x^MuMTmm|t zQgCp?Ksa)|l5g~$7TJDgXx7C~aG zNE4>w!;wB>aMPQ;u7#Bm;!czi5g>ogGbYZ%Oeu$#;!w7mPpF^LF+Wch6Wbzf|>7#B}#L|vHh)VH1S<(>s?Bm@g`J~dHE`SXBs@EHild)I#ie+?gtHsdqP}| z$zC``Yrv9}D`@%Q8UgOrIw2)9wS@Wa=5Vtq?-kx4{43^W#Niscp6;b5Pc)$QP3?m% zT+wLE+K1f8dM(I&KbUmDD|_A@N}^zZ0Og0yAptBU3Q*ES!4s!%>xPOtL_8uqQXoyq z!uNM6y)(iow;Vu6i9tF516WnDGvO{HR};{yEqJ!2w`PjSGMn3D=k+*-<_#Kby&x5Q zTC__iDwn%p75sKMUvorX z$r({qWVfpC z3De=2i9K#?cfz@a6M2G)p<1mfAebJXy|A{D4HQlQ@K9VkTGQ%mAIe~&AxFwL#Ik`R zg}~|xVaOzy@b7F_`KDfS%7r+EC%fbYt^CuzB|II(UF&IO)oOYQ!L`Tk-k4=ru$Q>B z(wbAN-KfDjler={A3mbT0?}qI`@(`x;rM(cfo@-}6R1M!T1afGz)CZmAo%Y8$hRIEiVOvwW(59;Oc$An*Kxpmd z>VM}B>*A!i5`(F=B+lU}kOsV$zTlPLQINNaZ7+Ko49r=M`(onLa z?^Z6MX-=gmDGDY@FnqA(!#N8Tb@wT4D-Zx82QFqz@3te^R&dQr`j!-=%8i0k2dK6m zvg*>y$z3|Ty(-cn5TZF;MmWe?RI@d&A1Xzgc6Z)WD5twpVpXErjkQlaA@#+4YqJ8ggMivov_nN2#7`;R5W$hgvcJM;AW{L#$wI&Ad`ZL->wfRSi2 zlNUZ#+YW4$EH9hY@4cX^mV+QHW+_rotvbStAdMz(`@Sqr6V6_uqf2fJM}}5lO#WG! z^PEn*J?zZqKqV};rqW?>m?bG9``&q+PAWSQY3#mxl_aS;fdC0R#7FhOHaE&`K|Zn3 zH)Dw^x@(H5Dv+eQw6x}cdTxKGJVrCMQdZOyiiVV#I!>_KRU*oP9RC1JNVw~<*XT>D zX<&s)r79sQ(l;kjnKAVrDyN7t%)=*fA=J2gvjm`iF+P2HVaF!z^>m9!L#R%v(m{^P6a1ZY8s|xUc2pK`xxf#)cXr!xw?faonMC{ z+Jq)jZRvQwEKG8q-_uk-6~`RzzzYV&Ce|W+@J&Y=(dVy~klM9EWR#Feh@U%6t$cWO z4+hHZIhmXV$6ca!ChlJIoz#@3APGrOJonq>7R7SY8P5V{%)LxrZ^a`(Cx1=9Om{aE zaODOlSm0{{UUe-hX^r9f|RsPE^};RZ3Qt%m83X`r~8q9iQ~2p zX9|8QrEsF1u$3&5EL4>N6L2Tx8)KJv=dfooITuqnBErkk`jnb?(Is#jd@}Y& zQ7LI@69Q-9oxY#F=260&di@F#(}h|`hr~s_ez>u?&$CgI<^`oEQ%Oj<7axDz`5Z-F z?C~$Sm9pFt0;CP@FX?Z#5i?r$-7ltx)P#-qR#b~3;>PP9R)*C!iCm~AMTy>jbBRt> zn7VvOPN@dwbr5<__}>vO8Q{069ZF0oG7`H=cK%)C=g$@vK*LSCnMS256tS!lO!Gf6 z^u`R&0M#IpFhzo$_-}(MIHfv0)VvenFr7ua$05J=9Y!pE7xpyIc#^rlb<65Bx#0+D zqIcwDV}GyL4qb$H!IySO+qDjG-d~?oD8pj0ZU)BJ@a}ESIdmAc54Xn^W(Z4Ec{WEz z(vni!Oa(XHB>q4|2oW{_d17`rl0hI3n^{_oS4-O)Nq5);9|!vcX2_(R$WqX)vY*3! z{VG+zloG4nHs|FtsxM*g5~pdmE3*_mB37DsMxPbsN+tqK2>$@P%SZsDZ*{=YlDOOs_l##p6D62@gTmk@3A}9L59<6eMjbBVu;Ho$(9I zatds)>uD{Zfpsm>;lDW`PeHhg1J6c1MxEc4hW<)Rq18VRkb&|401LD0{iJw5yl^?4 zNrElBa<>TOLp-bQ zvi!ccI;e1@Hi`zM9|!>JHW%b$=XkRCTiJ&{s;Nu4oB3`-N~DrBI4WO(0su)mPl&{r zk+6VqQ)Oj=v;?u~mMzaeRcGd2*IYSH(o(AB*niz{yE=NSyhz`bh6YEqPFb9#OKUZ8 zwImLg9H4MUXv#jtfZ7pdj@!?c-gSHj_0r$V%XcGU**2Q9J6`E`ALZBj)A6OT9+K>-EL zI}$YkXuQmP;KS87Wt?5aMY6N}Ata?pD|n?q>xm%>)%84%6()`)sXr08leWQj?nHIi(6T zfKuj~i*7`qk}U_MN!xozf&ILATRC~QQ=c(P^PdtObuH+W+Csq*yn@}2ODkOb8`e;CN4~-(aZp2 z{8QN90`Znu?HU8wKfEp!?GuJf5g-NXf+qJ62%W9+dm{FkrlhJ$^8CAwvRz*a*->Xr z%pD0{lO`h9*iI*0Kkezo83U?K2NYL0grt(zZLb1+L~3ACgoP8o>! zjsDa0$A*2n@{GcyGMvN2=i&ENG8H_Mq$&u$Egk^vM~8b$t8SUbvf8HHhDcfll^M9y zA_?>I>2*sapkRtuY5ibI@f@*HILKTY-vsuZ**-$UwcKS!X*cNKd<*0)ymKM?SKPsGehkY8kJD@<}O9qllUH;)am^*gs7%eX^@@|?Zg&Vc*7 zg(VQ~lccKJbxq^1_lg6wPi1Zn<9yM_xPGO)vAV#aqOP3|3y3-tl=ZZMIPw-aw&WG^ zqt;0SB_X5?@G!o7v&EbdTf{B9PWKUTOUqdfxJuU3Mtme_k*CmpY)i7AY97$LJW7s1 z#u;B1Wi1s1G~=x$qUMoluF1T zM#CKK+pqdccDKeV?`UcAHw7varQD!06zzdNJxLOX{W#U^FLxr(7d`i6*QSF-LV5Az7zV&dTb*C{xHxva~C^Ljk#OpQUx zMVE*~PN=hq5I!O-1<1z-Fa0pPYs=bhn>S8q^%xR8?WGjPs89+f2_pXh6bKf@Wye0w zy{PsBovODWUSgF}l&SR76(k`*^GcPbAXuA#o6ZpUcl%gD9uFV7uTP_FUg)2m*Q=~!Il05MonlrpOiav0vk@}vV(s*54?Fs&z zxd$KTZt{^3+0-B1O#HbDmh~?i}`#?AO~{Bu+=g zl|g%?q241_VUeM{ z!-ea74}f*5nJRz^i2Q&_n2|S(Qa;f<7RLv13kX41bC@;Wv=-uzcPhF>s@|viiR^Khw)!f3?t$kN-788-2qh_O z!IBc4ppS<89ppna^c`L!~IPs;Xe%^Bz7ma!r+|hoVKvN_a$eUoxqv?xa|J` zV6H5n&e)=AvXYLwyKP7Uv4lL7n}C#p4BAbm!^{kGhip6`#|co>(gvPw#@&S#fKn4C zJl0zPNai#%t!Yf zF=+O;?F&P~`7(F+n$VR}Hkk`?D(TCS1d9zfAVD-wYJ5MPalTHc(w7`dB~Ch&G*a7X zgW(YxMg48-jhS^2wibraC-_05{+pjuBjj^V*70PipJ5%VRo3t(VMxP{d-Xbd#?qDP zQBf0UBI3|zbNnd~?-aL6qo_DDG->6s65v(*QE$-0r)FG1+D~e2 zC0Six9X(jm)Rx+6r0H)>r~csEOkQpVoyi>a!rs%L^@whf=W08!AqXy!q#5c;L`+<4 zm37BZdop&F{{T-nMsk{ee6FagLfjyNq_ea^I%ZO0(zaEG$pBP~ASS6x!mWdV8=6ciN%lW?J8Z5wPS7A8rW{{SAya_Vz( z*hSK=f68sw?`^M$kG98TXzl+1vuchX4(X`L!m1brWXjSfOoPvOyaT=)=-PlD(C*g0 zLtUjO-0U{N`zjyU6Wb1(igLPs4&o}L`|}K`x^=9Rt*9WOK}6~>RGFQxu*XMme`8q} zWVwG9RAh_r7nScg^F}~B+A17<*vo6dy!M3~CDQl_S5NEqu7Lz;f z0I}#}mZFjLo7rErdj8hCDP`=#Tb1-I7F{IHqEb{WE%21v&Lr}$QZ~As`APl!tu1e+ z?uW0ZI3qtr^GArins|e=uV{LT>MClc+5RB4wBtbO61cIO5LG=OdSmT3WZC^k0Cpdi z)l}6sw-Z8_oGV!hUr=P95IrqpcsS%P8|>da%lloVs&y^q85U(%;0sz75UDBYB24+) zmO2;PH;Gy7zu9K7bq_qrLr854M5nq^l4NhpgvXSQxCb}!8kVz_HnUturih#~U<2Vw zJ9h0BqMNcr@ihe?tT}sK`;DN4_l%7sl+2y2<~Q2h8|_8yHNw1Kk~vYsH0))SnW747 zG$1yudahIiL5~Uf?~b7M810IWwtmA^m%UP)!Rk~khgPvY;&eu%HV4HL2|K|cnEB`a zr91&a*}osw3M4&2T$d7~PExHdw!aWsV!%ltj?2-e(^3-ElHFpkm_s?oCw<$7YFc7MsviJ?IndC@y`JRV`@e=Ln(G6DVD9n0DO0Qz0A#k?fmb&#*#6sG&s0NTo%H;aLB zBap%+^+EWEh3W8TI3*-gvxK>Gq@HvzS!;H$89zW`SGag7e95e|XRN(IzOpB*cDIyKQCfxD%53zpOxM$l_+2xuSyOk!fg3`!r zB~2YCq(KVh$}a{n@o%>7$m)3i0JO}>IdV##$-E>r;SML|5 z@31b=IFf~JI{sAkN}Qyq2pUwI5)~FDK`OlOJq$%Z(~mtlBG;DGD7MSXEUYB%ujNe0 zN~SI8(;sFke_+bLWo|lqHOX6f z+?_Qt>KjZhl_ZENzrvFjgK54h^(M1d2_mnNTpIrXD3Kz~DQQ~uDoQ~XtsW%M-UIjLHL2?{z&r>NUtdUVCb?Hxk8UeM?& zn?{zZsminhr3A!BF($%iZg{VAr(CbjDAI)~Ks1;aw~8SB`3y&;jDpuYnoEdrwA~cb z+4pAwSz{D_?&o^LX+ba&l)y=t=eg%Gi8gmlOT%<%Wvx#=t4hEGB!9Hc=k4c*rm7Uf zJ=kA%oe(W57K{1se@?iE@qKuusQ8q&^}!(O)T4i1TWuJ>Q5-;68Co*yCX|5Z8v3q@ z_Dk(bqyB@=vd2{8)b!;pG<(IXyVR6|oyZp=0E-`%IqTcAkKRhD8>UK9rB8vi87d@@ zL_oKO0O~O=_G07Ock;UGMif;0hrEPL000Rld?Ls<1RG(mkGLJ4*0}z&DbzK%!3|2% zpoOPo9j{}z^I{D=fJkqElc-_b3H^SE@ATpJm8@fpGOi!bt9(jYSz+~w(vm?bRCOA} znERRfWyN#|eV3aM<0~mxA_3cfzW4iy`6KMV*oJ43_L#**duyWWZz_|@bNb!`?HZ$ovs9F` zQ7=%rFcgCaK`?w*Hn{WWi$0GstEefaaY`*yBqbgM+IIlO#vz@eyMkJ%b-%{ZJ~Tv_KMeA=-ecr5>!S`0amoHvS`8cBr*w@O zuIG@eEb)k?_m9jBPxEd1;)Ly6i0d;xIPS9dbv;V7g`oJgM(}1fleg)PiS0WmR|sXR zY0EmX;2V6$NFTmfr>Hn4i!#lVTH`J}q%5hlt-}-4!5&^7hX*6QgpA({8&2Q<08k6K z9QRkx2|Svv3Z+3(Lc63XWoMY1oJRXw?F;yF6PL96iTHxaT9T5O*m^;O<>oLxYsQG+ z?ixzobty_v6aq<1!hR8R6ZXY3miCg~f5r|9hlg~f5P(E(0k@T+*Wb=Fp=k`e!s=Wa#CB&u8NII?c=VcQY*khoxjN~&+mgh=Ua22;N?0(-WJK0wyZz*P> z*A=NNI+|LBnVpT#nG*uX(-Pj+_`zI1LEoS&Q6UK;!X$FGFl3CratCs@HQKI(O|$<1 z3a{;Lrn{wuT}UuIYCTMyM8M_ij$`dAj-h#r#g#3krD1xKN}>k#Hnj5p02lWjad6Kn zl+$Qecu58ZtsJc%TSf54k@j+qCa6-@5>q#TpP|0k_#^5<4BabV8v&v@`mSxs=(Ad9 z^r_brm1#&2t0sKU&V2E5c2PxGuI#v-NpK}U7kMLTzWlmweB#hgVC;mR>9uMwl&Gpz zJq7VB;C{&s9YaZRE$MA32}0*-^C!>hdg91GsyDM~a*tQ(Yy*26f4V!fP8fEgpHj+> zk_4NB>*ARC;?B#c1sWisGiZQ5$K}v{#x}_EBxRK0Q$9jON6!tsYsBfuGVbv!N_JBE+YS`ALD^w`0e*~K!h;JKxb}|M-Sy!IbDOQxpjeDOv z{Ns4~Vhh5(ndWXj+Nx2jNPEzWL`>!&N1YKU0I+X9IY9MJ>UH;f2r?Vnp1j46s6bf(sF=0{AibQFRR+Dmk zUtD9Y`@^YBYVnPS#r<(UkJLAu94`ipM_4MnqU?PuQE_1@N{G2LZh&v|j2oG7OBrmln2?+MG~SMv*bgU^?{2LUH~~ zs`aQKtfZAk_4oUE+Yufy&z)y3EjG2QOahyv8Rao!hu+sXxMe}b7d%%{v`7SR_4^!CS-&5z zGfcIq&kmAFxICuzIQp#)>DU|sPyRjZJAhGMHF?)-l2)}VNhA|;y`=BtF=Kl_XQ<0_ z7DY#gyD2vjCrA=sPYYCV>1^oIkfOMPB1zlJ zdtZMejc;^dSVgGQi6f(mT{6~rN1jk8N|2zmq%6qzv|Pt1<%m~l94kipT&NmbHdedH zGkc$3)8$^#_Lg#FwpQnc#zMkMN#59xc8~2G8q2CXx3ucg0t~7Z=R5xZj3Rwg-ZlWC z(&^-6gKktew0icbxQ9v=p)vxHAe$<}XU`H|7R^~=il12pDFAP#1nz!ZgkS55F0YFf zndeG%#s2`@T9gF%w3skYt}V_4a91}=+o zBWO6CJ&-Njs3kx4)B*w7B{SD)$I->7{>>iC=OmCB1!X}I#%e?AWVjR)Ca0L>l*@gi%%|oeQ=K%5Q5y zQ@>D2AzT@KdNYb8DqAYLLUi)5>(qbvJuzN(%}U~Ol8SVwr%_VuPMFzBJh^$_mm_#* zi^EOnD|9(2QotrsCQqrbw)jtv>IV_ziU4X-PN*hAOmmrm7ZW_aG4c{=-KUptW!hJJ z#{Lxpm1YI3&?PBSR9E37PLl-x09;v_V~SNGR7p~%;v(SlzTUCEE4u83R2kZJ>Kc`( zC;}(N7QOmL^NE!{Xo^-69Z(4*h@Y{&{{YXHHJ=|*fx&3Y&%&N?j}p3-B_R0Ia+nch zj((y&4juFQ1ZIgY{{Z*I>IOg{NVo^r_ZX}4tjN*VC~20=0t{U-5i=OG_(wYaB}QrG zE;kC$5CxTSJkHnOuUu!FZhS1wL}oXF-aZs2zlB$8j8tJ&&Yi`^~TlQXP0o@61&Hn@I=RmpP=6f zKBn+?uw^l`I=!OQ1B5#gRRg`_Y6)JX!0~hBOzrf=tCi8CETHc7Sc#HE2#7J#CVFDE z;$LYDpCk(I+-*9h-sT6V009c0JgcQtcWH>X8Xl9nbR%edP~=SYAhEn$yuBst1lZ zQTl4fzX@6#DgcolcNT;2{STffUfXzWZe@#8uoA&3POxOB%bw))zCMFi_DIfim!%3q zRGk)49PR|0lX&IVk(_f+v_E6ZqRZZfLR(eIu}1M?37)n)oLlMo&5}2A)6(jMq;10C zik1yAP|~6<(J)ZuXVheU$M#8Ld4kn^7s#sOvjGzWZ;B zV}y9v$Uzyg* zNx9QM`>z8WYs0;#KbCPTDocOv?osR;G+<_H;0ZDJKC3F{{ZyvPW?b>KN^xr22!4LJM;99OmS})WQG1JT1pe) zS6z}%yQJy^i0ED-%$G?Ehrt&fM zK7*_-Boe-&Ep%^y2Aua*ZhGL$7(~viCV!zATY`9@#_Ch2N?dG(0uJh!lY8~ReWImG zt?t$FYL&p!7JgF#aUaTSj#lGo3L!}xh>`(ry|H^>=e?~~P^XCNT&n&U*lwJze+f3U6(2MHWa0;q@d9eH;*g&Z zDY@qzZ*Q0U#QR7NJyfR~8oSLT5I!TT1sk#%*r=e>H+DvRu8izcwMt@?_i9Reu#f;g z743QT^v6eVry0^`G$}gLuI!{O15^b>^N9Jz_~2f~-Kb#+CsLKHCg?m@ZR>u-lw6u_wIHXBBjLgra&(9sX#5_o9vc)Gs{6JG0&9?CiZ5M+) z@y@-p@QW3hgViz;R7?ac+nKmg=gSBEJ#ooS;Z>oVWo`?U`2PThKZZV+QiyHdf0Q4P z{l*&dtdZQo?I=p8Xgs{Hi)*wzjf%X1NF^#$Wat(Wm?Rs2Pwj}0X52Ya{&JSk%G~jb zXqmsRKS1kLWP-O@AbTu!O^EFJy|tk(HtJPkd>82h{Kg6#37Au-z{BH7(`57<@8{+* z)O;)04q=+qQx&oUbq7|`l}VlXUlI=0I}oMd4h3?isSJk#NJolPn{Pf*j0rt>HQ|Jd zCX~+94dJc}jT@+`q;tem;kMuI+Y6k|rR1m-6Bd#+YVzNFNSt8inaAOyb?JcuWl#^U zB=7bunNm|F@kphkNKgq)jO;{nKe)z&wT)$O#i}eS(P?pPDS9;|kuoPq`rub{1=B2* z4}<_GpP!yA2AF3qDsAR}^8C9@&rOc_A2Q*}Ou*|x5)`X%dHMeUd^SB>dyFCK3&<)0 zt|v=NP$^cFn;oa`gw@5UeA&574t&n|JBWBaRIaH_wxlLC0B#Sb?r|JWSNNKWAlUTj zf4|!oM(ExwBkgGVoXIsQN=rdyP<;Z zBvM<<=~4hlDGHNm-va42VzKpH_W~@ZUdek!p~zJ)z$B*o6$v2EL-qK*F>g|K>y(rs zC_qY5Hc{0Z+VgAUnzJq$dYMaGL&LZN1*UrX{cw#gXH!g1s1bWc-{*Wz{XBByAF`TV zGhXf2OQ;XD7Fk3RlBQIZ9WV$?3~JYISw&;>qeya9@dap9+VBsV^XraP%`2)D3biOq zk>XL<%MTx^3p%j<+7|#T*yhm&~JxbDrtqrCEN}>;){V<~YLCEtB zCsGukZXq$N{{W8PEr7=&xy998;=dWgd7nS74a>OJsiKl<9X!OHj@@sLc8vHD|?Xn5|m4r&f5COMg(^ND6l+TCp_haFMr5}hY*UU&5#bBWy>f`)A*gj-7J z`kn>LY7=(b3J_*uU8`ZU(4!m5^?@jo}sliw5cgxpdb(|Z|UXd ziaw{Yy6Sc{hZLI&h!c6(e@WjEo-fa9cuD;|-k2Vtvdo>+=an~+DL56c~u(3PA! zMVysA4eM}ghQLgD5BS7xv$B;tQ50c1lK_Gwi8HzR@6hx(gm!J)6OOGZs3%mD;@%HG zOkMq+@ohF}=xxm>QPT$SWB2L$rboDbRHs8MICfNDF5%qoB5fzTSC-_({Ku)DUU+k3 zv@GK!by||7r<@=Ht%SslhB^m_I6{v;rq+;z>oKRh8<2c6%jtph-ovQ#1St1yuF4<+ z0h6%$eesv5^&rP>kS=UuT#%|fv$pi8>8UO!NC9W^r26cCet4E}?`zp|(`tmJN+Cq3 zZO%ou{{SC0o-y`u?$F|xZ&3yT0D?xZSnKuj#bcayQJQ2mUxXe`lcXe#px^1Y{9zF4 zH1Z#5qNx7>#^c&RT?J9c6t%RvP~&P$OaMSgJ$AR3ki=(*sVVbSn9_xElf1|5-;wHK zsmoQH^=Mp+DD|IcTI;SlO0w514<@fs>Ue?gCRNXluG!3Nq zn}js}A`|1feMc-rj{=n~L4Fk|z$bC#YepxPd`jDmM)E-tM$s1Y^FQYe=&MCRQAm=0 zbLTxV-9zGN2$0W9sD4EBt*uo0Odd$ze0b$3#s7u=}J@^)28AH@SdCB^!sAO z;l3J1XtXa_Qe`qH;oP2lzg$fi?ENZdT0vBS)=t(p+TL4v+dEUN>6PD!F2ku%`F&kZ zPT;vfLeeic9e-bzCfpUrYh7Yc;8o9vm1-KkyY1y~JU(%kX6>S%QEx(wKux3XzAKmV z=Q0Y|k*4rLKm39DZT9G<>f0bpc9tm_bgqo5uA4S>Boz3KiBKYK%lG}PP8Z<{RZ{99 zE>DP&A}wyS`dI$}F~>OYzZShoRN9c@l$2N-+sNM+cV?V^Dv*}mGL>lr6E_@${+@Ve zRJESfi>hmx!BUPO;Tlfk@L5Vypa>voHi8U~PMEAX=Ym5CaG@v(x%gsCMWgrP^2Nxk z&6<|=f}Kg_)60GE#hqo0W)#jP#O`K5gZe72?$LWV_lh+Zl2a4oBf^_l3m@rZ$d9H3?2un|r1ptp&nu+(f3y@=w%Qi*b}5prN;;16FC8t1cPdia%Ycs* zppg(Ro&NyDZl5{lz8d1Evez4xHX>~*pNjYAiT+*3V4)zs6qz5JtXu3pm`j?_DP;6s z$C9p&58?&V)ucG;(IH4CPSfjq{O{y3Y4G-E-%_^XUDVuJNhC*>{Ykgq9MO?+>t*1Q zwP{s{h(WhsTwC3m@uOy$30jqM0tD(K=l8}gt}s2xGJbmjTW;qIsG-sdbs`3_JfoM} z4Rtwzs0s={p4S~WGd@SudEi9Wq^P9|PMg|o9dEbJ4iU^0qBW$X!I`?hq5Uz7D+#(= z8XZ8e3Tn>6+o^FY9vQfuq;Dr;B%AWZIoh^X8m@70R29_G)S!vG*#kJ(vXX7=@2pInY$hwLfPC%q1{p~*Do!r&yNz?**Mfd*zoHb`$9&8v2aRe0Zp&p$EBF<&?RIjbQI#aq}>7JL> z1IqaNIG!FU*jbv0iFKdZbk}A*un)p6zO6GF!2?=CprrcxV*KG;;*W?})hW{g#V}KI z1ob{x;Qj)vsiLZF0IE_T9*Nv4-B0h9Iy8s7 z?`)C0ZQ)v-p>Q)fwGOR4>RuqJTEsvRwDafvam&5E_7-W=?+H$nGD^_0Lba*^CL~x5 z{DH?^Wjs)v>WvzdN|u-)&w}$i?LVdi&-fOfiL$rGlqFn{Oh%=>CmbuBAVY$YTCbj-o^+AML} zUeF%Tqc_SNQX5y{Y#_|^o~NDm80V)uAoq6^g4>+{l!G=AK2kYj^c^0#l0*Z!M=smk z)lspKPGsFsLbjByEJgZ*8+o5BUp<#`(x@w_Q1-1TZ7GnnovjA_dUPIGi_!LIHF<4S zI)PH0N|e1S5~V@@=j-G#MD~F1yJk8{RISuBkFSXN$Aopoi2i2fEfZSDCb#s zTxO+IytzM!+LbT}g9CBsbx1shF+Cqo)0Bh4?L?L+8&Imu{AGFSR}z%1Ctj$&uOnbO z&moSi_J8BGxlDq!FT{|OU;rn@sHb84vA4z799_kA>uRBHAwjnrl!AOw25vfea_1Pi zI{@R7#|Gw$MkD2scA%*)Zx-COvE(Isqrfu%|{-mE5d8P?bBp!SE?-;%K3y4!m zoT)m~r9csKd2&16^K5eu0%w8D)x?GANIed#1NDi%*t{}q%~aLY z6xvip;Ozrx-+XfyV!8S&YU$RsC;sX~pOz$&CiBaX7_zwgjz&e3YSgBcp-Tb^OpU#F z8~*^u!|L8z{*!yG-9J@aUNW>g?Ek(?A_?HSopsZ~&0 z3T?HiN`=pe-<0ngi+u5%G3{9UTuI!jq!eqCm6K$PM3Ocn$3IM1d|#hY@xKbG#+-3Y zuInZw5Fl(MOs8?z5}0)wNn0qoUrVRemb5k3kDL|39Cg9!qN;gdPNmo$eKxl<&ws85 z;hG0lTRK(ZA~gYH&-dgpZ+5rACoZmWMW+ U(#`F$COfZaGE0aSh>a99=$e(u!0Y z*D`J=pyl_+=(;~q>gmA>(=$sBK)mFu6M!^uW<-aQN>rq!MPS`T#B`BiXyxaM{{Xjs z(BG_cyVj<(g(QMuK;P-NUSkqIDB=M~!dpp%vIvl{APu(j{V_)NgP*DF?c}RUK`PPq z>U_U;!?ba4e)nZ$=yc{uOP+sp&0CmvjtNbZ0VK`uCNCry`{5c_)TaU`OK9=IxIDj4 z&|nuT)84GBONt0F#v= zAeAS)Qckrj?fP$ma&-gQNNZFTmv}U(O45))B0gNce6XHdn4>IIxUY!?C;)*rJkOjT zmK$@vBN;t9LJp@?Ar|;-CzY@3gZLMPE4bbB-JvchkzpnQAD6|p->_m?CS*f%l_B5h z87M5virlJRwFO4R0|!axyz?W|>4v(T{c3r%w(grG>eM19WAqrmD}9n4qR9*HAt_vH zOs>lCgUkaUk#E-!5!p>XQBb8i3VFi7xd->QBahUfn-Qz@@wxf5HwCR#R2rN{r9Co$ zV^2U&Kei;#I-IL5*7J>pDo6m7r%{eXi(70*vo0f|;pWoAN^Ey%n+q)>;9q<6z9Af8 z+MD@_d)*vbn*~Wqz&0F}x&4ucHa5Q{T^olPu%%o}#3-VuQ=k;;SxFz5$OnFx+x+40 zgtLTZQnei^zSE>6@*~jVoo1%9GYc-43yNHs1nQ1`2mJLhGwkuojJmn7qEw#nEJ|e{ z2_SF&F)p$emgBOITc+GMw+i6?0-CX`C&G}Z3jnC^GpG_zoK7Qrd626sXa$;-xIhO|yrA3f%NTI# zhWz1q>3X6GX)B$@8@klD0+6Le&B3@keMT(q%yVUB)J%mV{@;fC*jYmT2;Z(Hv_8+T zS5&C?4TPk`tpMwvEANF-*^lt2++?!i9BhC{Oc>E}1o@5N_;6b31c6)X5VA%WUn)e~ z&F5K53Q^RS&=WSbx)?k4oL0PX*~_&x{qqd2AQPoi6Uuz~2#-uz96OROl>3VH2q|zV zj|^&+7&nOe;!~6Mbgaglrb=8v1R+vpC!F$++!(<+j+KB{$GDi?LxoXxZIh=dQ;jI6 zL%@{@*;BDI@mz8n4w!H4qlJ^0E{@{GY-rj%h^l104wj3oI-uFajXl$&kY3=vUv{^_ zF4AYNI<$9wH7KlXOoOI5SpAPoNxLHB!;?Es6!w)eu$6#r2GhS?{#^zw{{U!y$yQBU z$Vd(lS8cTEh%hbBt>fj&)fvk8cZrhGDoQo!_<+`#w%%69>RK5a>Kahb0c<0>xwe+ISt$ZsI;0O4%D5Jub~iF&UD`JdD>b8h0;d;Ib*QMXZOj{90r@MgK4KWo zk5%z&7E5dX>x_7DmvY`AZAng@DoC*#PTSjWJa(_Lw;Q=omQdoY79@p9oxjf4zT+If z#e5Wadx)HEAxctJ5(MmbkC*&n{{Z%K4dr=eUrDVt&vz^1%7dZslznoI=QQomMdeOo$iiLFd*AS*w`FG!FCOH zQp~ON@g`1(LiH&?lWodlP@aZAPdTmod+a1}c2=j`XH$s@*0kOe&*mTt@(1Sk!2C>{ zr!{_=#~cNhCJbm7{-=I$4lJ51*__6n0@3)vDcfnCjB~#uxSS4+#tlGoe5X2N7zA*+ z8?bL-{NJ>WD$E_Dqo{eDr%Tl-ZL&MGT!OPc6x#B9_P#AnD5Ryz^6Gj@O$C}V5us}e z@e3#cu)KpH$1GU#<}3W5v$HJ z8prD0Q?I;K;O`ElL=sPk>`9+oeUGWg=_3z!!rsyAV4fhx^WM_jE0}w}X=C9dWh&P; z_)kqS*UwHS%&fPNIHUgna;H!WASp=RE@!7H#2%i3+6vlG6r`acM2%_%WS`hGzZjV5j`2o$Wd3Qu#as14IGanfVf z{#az-+}Sxt6t`6IR)*GApf=UC4uf;+hh8da!C0bGsYz}im?{%8f#HxLFf{ZYRv4G?UkMs4;*Dr?N>tz~ z1cGG5e1vTrkCgpHlJ0JNVM9B?iLNG;#jN4VdK#dztx0h!BjFmS%cKbYn1pfOV3+f^ z-PPT)^*n`wbnXDZtdCU2@rj=kZU*xmPt0=~u_l$Ry9*jw1Kt40QCx$JT;Yx)ZlJGIecFS9U??gVj_q@WTGlO#gAbj2gYIj`{S&9L&E?*UQ(B>0oGs_jk!)Fd`H;hTxC+K^wBBjn>s_AtS3=7k^+E(bADX0wWakV zr3N?faDG?ZY1qlMf&JT&@S>a+wNzF2t))(-!{nl5+SB&Mx!Da`MrBsZ$l2`v$3Z#455cslAS;ml6*)cY)LR6lexnUa}RLVYX1OuG^IyTRQQ&43-512 zF(#`}-9R+HC)6y+cI1W7Tz<_9`6VmJjZdNuq|LUHW;UFB=k}ZkbBHUM9on9yeJXBX z>9{2(`@sTCZ?(=k<2>yhxFVvr!A;aS^O8tKo-=KupGR%$Jb30 zD3kEM<(h|W1y~t1Z}7i&sg_C*pbE~f5RfM7B7RflhfWdVZ*kAuY`B!R)j(Po7tyNx z?QTW}B9s+RHI>w|LX?MrAOp?@oyCbGee8dj#&&g4-`2LJDM{{OB%%Q+2Y9#NrYDXN zTH;bA))3$o%f!@(t<4mWLw)y&Boal*v=wdT<>p`kS);62L(QlXdD;Q}oNdM# za9a$z(&nK^8W2f{O}X!H-uQs#+(e~UxcbNav8CAoC31O^dUV0X>HS866cc*Z!dg|m z#}rPrlVzF4R<)^?#)tc}5Rf8ZMTp*SC+CXKinHOB@g+N>#i*s?Ko%)f$n&ti_QS^q z_L|522C6sGrx49lg{4PQWhsR3@c4ZFIpP7@Jz}*cp|v(?}*%uL@GT z_)eo6-^->2?58wG5O!|s3sRhQgRQ+s#NCe5wZZH1z;#)-aHNEUC22_0P*fl>sXq#g zfg55o!_Sq~DitmzX)$Oqx$7T1NIm6iaVi5)Ci)TZr&0cc10c$49096Lym6Q*iZr;L zEQvo4hkfEO)x%F3x@4|Z;Z=Zu4*vl2>xDS=@Qk%B5|OG31gS*r@RD}8!&XUA-DPP} z3GWj#7Sa!)wZ7O~ga8$h;M(7`e91Ka?oy;_l8|T9_s{giIlA<);*mFk43Xj;X;4*{a zpZ4EwR~~pvIIBisM)R!7hLt5kZKzz#^Vod3P8z8YYMFF}c%Z037Pt}XhKfw_>I}_g z3QACws$^+OgzP{g3=JHF`0QcHj zEJ#03E?fEh<$BPJySjpsrih=4Pa-03{e~i$BWiCuWkeWC!mI^=>3<{i!{&8Zma}yr zc$v8X0(A7=aOs<5FCpB(NkHZZ?y~0yNzx$izg~Z?8gjRbb?xdYl&B_6#K-iEEt+OZ z?$#&6JAw8e=5Q`rq|{WULr_s6LPtCPvx?zuH!4Y<3Bq*Z9Lv0`OR@NBG1pWWlYBJh zjsr$lsXAFD2@6tXLzVHFl}cKwQXC3UQq%#Dhi;pE@H(9DDO7+};W8wfoksqcp{=S@ zHP>Mokk=ZTRHbEI;sgspFiqpoVZVqRA;lB$$o$tE8+|Yz@e`NUq#&ze45v_zyN^DY zGdp}{G*FSNWfBjN{r<$B%5XkXw_|BXXD*8Drj^9$yKqSABl;1DtwmCcvaqWzKqG5) z#EU0bsK|8qRHlg9CjS6GG4#Y=G%8(El2VlEF#=N&&lE)5kdvr30SW1x!8Mdo;qe&K zE=JN%m9W=GQfVp@vCDe{Yzs+Tsz>zx7zz>M9(SMLJP;Ywgt;lxKg=+FJ+_6iSjQnq z1xTx+SSj%CVD0E<0wIS|l@JsQca#4B7y~YQ)NB?X2lHPOg#SgS_r<>4xMws!Zhy z3J6MENj(Ui&LsSH+it#>o7A0Z7POBpgzdCn1l$li6f#*C;TzfSAFqbEk%v@uQ@Qvq zi7B6=hflYj3+;D=+^eirVa@Ac|u?lB&& z%d}O<3QCexMWSvXZ@&KkY)ZH~qujDnP)bszLWoj!9MkFjhS&+6LdPiKX)dCoJY`tA zdc~nbNwShf}DdI-PM3|*&i_-VwF0(^Qz9aGnz*U)clFTk}4p=}Cp`O=b1Tby{HV_6k-&PBg?m)}<>_tUQO1^26l=pwguW zOu|eicInR%ysD(9R--CRNF(9@02q;F&wJGhRpKd6!~lrt^1@uxbc=Q@tx#gUN(odX z?qW4p#9Xwr!qV1ltTc#Z5XaMMLmHG#Di4JJ;aJ}H;ftqD)6CoEewvqAaK-GXU;vPdT0N&eDt31WL6g=G^e? z0tQ%=r%F}ffJD#V99vWZ^gD8R$#|7P4WRgeuq4U!-x35Cs;LsG@Tf_6J6y=GMc4R)wV!8q!Dio_A$@T zY*?936DFRJG_@y6W4j;~0Rw42Th1%K6{tpGSpjO*A`%7uDVuL@TYk8cW|>0Uph;zV zlHv>q(+ZwP(%i8Ft9=|RTN})KhErb}(lcL~IQs=b4jn)N`H8pr{L1X3e@P*7^*U0$N>+eMB%S_#LVW!$jS^Kt`jW7al-TJ8Aeo=1^yzgg zD?QC=b4id?ogjQbbM%}eZd07<0WXm?{68^Gwu!kNo(hD@qHNx6blV~8LR+DMx&ihUh%JbK09a6)e zhNw^)ig%djh|tee?O|zN6*Hs=I${Z#6Ti;~7R!j#jY>*%fiW>|UtB$r(4~i|W#y}& zdl&YLrOGQ%)nXG);(<=H;z=fCN{NBxi{~%xD=W{~QrdWUNFX1Ct4NvaV5pm8=gKOc zrCLh=0Q#JmouKc(TWyKQ1NNO;lhiiKs)|ymx}@9#xBGcVLxL{piwh4?r!O?@e6FnG zH)$VvU(O{kNhj}Mf4A1F;*Jz)XoRa$QV23W8v)k#IBTKpUCP#yhia7ISBQcpK7TWU zo#Uh_3M$g*nILV;`(ZzbF61bG4p>!r#2uTilB>L>T2pdMWT?RU-CX9^!_Q~@OIMQU zW}!*$l3)u31oOPy4>-h{s-YR6Ngdm2Ga_`&;&!(9){`P`q2C6c?IH=hAw2x={SFf* zq}CR;k~TiK1!!F$BlL_tsxpAUx6dGg0K`$%x!X`AMiO*!ACEvZR6=|_vtob&)< zcx~^ut@bh&v!_bG;;!5q&hzz#UU5m+15LH3P_`^i$nvV5Hlih?H3%t`69sA7Pc8a+ zbE&l=i|fum_& zN27(zEv3H@c6puTGzqC>ca0=zb3w8RP0Fw3*YXah47qO{R?t+I-PPg|An641w~*T% zp^{`YZ)HlQsckxc?Tus|ei1h5wcviSSoW*f##CvZbu`IJb&{1JgvXZK;y$I}WY6jQ zayb3fGeg=E&|oXPZ9zZ+y;yK-w3Ruj3oZDHLeOKyc{l0hVdsdCALVrUMrfoVeRW9? zov_N9r6F47N=X9bo2R5sI!KynWV#`F3dXA9X0vobDen?>5(rO-{{UaLh68UZT|Gft zdV92}Xj&%b_w=?R^cBddK}r@9sZFha_JfC9t2lmvT3k|GLcA#!(;r>$_QbA*%r+4< zqNpp=vo6q^sikU>@)G2j@jzDB76vSLz9o6Gg-c!H2~uFm5enru$2#S_Q=#Oo4!DIt zBoeC*V|$geX=b46Rg)y{l9O*s8}uHSDD_4^X;}Kr8NK6$674gFL+bC+ z-sK>IIeh;Be^ZDZEh}_cnnTSeyGqg~K0lYQ>-E1lmmy}pj48G1*Q6B)Fgn4-a_0mt zqPZ$k6(E7Aq*zSMdf{%@2R~|VjuSwVmdSF;Dw5nKEb0X!>A5>?^7`Rwypb&>BAkSy zT0kox$bx5a&k~Li;N_6qmfTEj1SLQ1-=ADc7um3U=~7gQ7nzBkn-dey0Vb45kgIgn zf>me38C$Q_#~0VmK#!xj}jL6&6A>F-pM%x*N4r2hc8jqwb<7~Qqx-_cI#oK3WS?L+v7j?Pz= zH%8hEE+ltlZm3uYuumu(?}%%;M-cH+lA3IvFnunWOU{7GY_InaRcjKENE?Z^EZUs% zg;gXp>XMY%5}*`B56m_uFz3MCy5&3tR^!T`r_Pe$8pTtD3lSh`Awb^7ce$KK#%b99 z0PTWL(5@PS>oOY0W6Gvp_I=_y-G1>Fyu)?(Eu&D(-V08b(_5sX=bC-9txz2p|Q45I}?H zIF7yTaoLu2oT-(shFR|ytbo^Y;*7{lK$92dV(}Np(dpwmFKAiPYnyZ|eFynf-wSZ2 zWkpt%Qqn_nprNL;CMHY^T6zBfdrDm3tm8czki*VBsXBYKER{)^*xo=FKbsd{2lo5H zzr)gU&KAfkd$5&vl4_Kc{{XlpPzA)MCzz3ks&3ya^D3C5{vSe;i7m9k*=$G_BT$%| zL5YiDW;wFz0eJ0XO(SS0>S=S$U$Qq9@q_4J@T|d2IcX^@B`G9dQ7P%mQTkYntNlCc zRG#vwiXCbSP+Ro{^(Hy#2E&;f-`5v!8*w)jiX^%mpzhQXLzYz-bQG&i#21W`ujL?{%*~>FL6&xxm;knTyM)wr4JkA)>Pn8} z>jgg`rC$%++M?o>9;;O#ynV`=RQn)sU3!qb!-=zx3DoDiw9`dg_fk}E{{WU7nD!*> zVve;g)EvsW&kBKdp_HjdsZvvY&F%fGO#6VlS*fLQlySEWvYl!=5QkGRZ9WwMI>AZu z!yDa(cClXEIocHyj!0{}qpi|HuX!lbqj7RBeC#giSGmXcM%_lQhCQJCQCH)>%e{xC z){?xct;IK}qrS{Zm0NI;r9j5oM&7ceA7TB7|Fb`0ZCSVtIv%@`;w@%n^g>v;bp-V=v>!nhwC>=l$4Ytw^fd>PB1?+;6=M>Kf z@akSGQi|5bwM_5gRE_4>->x}-gFn-Ij3~0ioYRPN3d)DHl{D6BgQT6MWm>*M+@qcx z(f*#<#$B4XOPM`XmXIWqod-37MWDI49MlzoYxKd`1$4SSVQ;>1UP9<uUS-xeUn{ z5aJFcbti|i+NyMC&eZdLTHMjzCEB#3vyC085TJTj^CzeLF4a1wdzv!SvFz zC$FXoX!P%HMSk?VOQf7%{{X1{ZGCR1rcEoF`P0g!gEwr$(X-d?0Ew>xrKO z_C>&znbjS3T}hUq#>iWK=CxDE)vLk*AwoYXw?JAzQ(p75@NUxaJyDBL4so@W?+Ft;PZW0QJ1$J{>Ancfr+^?KV=CKTT4KlG!Hb!k|DtY27hA zjiZrv%fX$e(Wq<5>w{tzlsHhdcuWWc5o10sqvVZeVEiSelz371e65E+)!qb%3U-D*f%3RjX(u zh!Y#gzlceT%eOynoY%1mnju!YJi$dNS*LZ?G^LpyD~LS}@Go&Q22u0MvD%G9F^YBB zuls4~9?5)3!9^)5q0AU$DM)^fqgs?A>If+XSLiJY$2R*zc2ApdXB5{vmebayO)uUW zd^V(9l0s7&N}?`j`r_*0KlMG}KGKCN4tviG=Bn_x+vO`|)lKyHiemPKDBjVF3WK!F zleDaz#;aPR&nQ$uE)*rjwx1#=PS*7sS}JQAY+u-=yIm;6tshm+KFFWy!IyKI^kNCQ@oY_BMT5`a1uq&NmLsTleetPT$J%)kg9u?6y@eC#tkTNM)p3{EH?yPRjW0eVgP>u;Xq~ z*MHja7${iPXpiNDi}Qmb*jJBxY^PreF+p6O>o9m~Agv_0ivqO~CILGG{bFchcHq~J zFcCkiXHe@7aU2^8z2Fb@_Tw%E%+mE%ZI;ut)GzV% zsv;y5rCa*O`{MZQQ-+b*mVA|`F{`So))C#)9^`5>X(2`+-7(CiCO^Qc!fIBfCNbKum37V}HILyGEuNH)r{fb;N6VtzZMl zYWj2&A3SO@KAU6?ysIX zr`lt;K%U-R4A*5s#`;h`{#JUH~RtHkKsY=>6WD#OHV19R}1aF08W(! z2#X7dv~wP2I;DkB`)T_bxWkD`sx!QuY48MvGWL_FaXLkeb(@>R^!Fa8bA}y*{_5Ri z;&|Jrios=M_+J}%Nw+dQ-KvUbLfO?a0gwu=U>UdR*B?kdhW)r#+1(WmPnbHI>PbsY zxPV;l60St;0(XyHch^p&EGP(=8iN0E~wP^-Hvl$+%P6!+_HD zDrx=c#04UtY3~q7nIp)gOo_0)@kRC{?B$wvL)sQ)Pfxy^S*V?kXfpdy{wyLQ}q)&t;#o9@oBY8V>BE!!gLij&Eq3tg(rOg^ke)O0MlQO8e zlVCbu?~j<$%O;h_PcB8_V`}s=X`Q?eX$ys_dv&1fbK3pNT=goa{xCh-rFuXBstQ(Q z%pHnmOrI=tW|2ow-eE%T;kZJZ(4!!Tf&t_$7ToQQd-m|`CEhFTHT?PdYJ{yWk{oGi zO@Ra*DG~@12Ww*3_F3ZUZaU$5T)F2Q@HGJk@~S}z>(`#s(*^xV(#cz@il~4JlSvqp zOd1KWO?@qP7qSm->*54CMEkn4N;PRHC;sANawnLG^O5UldqZ|qINu_3J)lc37Z9aX zQ@Vio!q(wJU>lp6gU`@hz`j1ZdqsA9o)peiTEiak zl;&ELv@B{#Qq>1z(4RtWjzjGOvfP`q4CgY>4JvB5Ycp@VbpytlC2k3WU?g7pPVyvU z>ZEBjSU>0Ce6EjBBXN!Rtlv3Y)526Q@gs^;$k9s56t$^KQfHY3Q@xL$&`blht|e*w z=BX6wPjc8&5J$wIsGdX2c@42{_Su|pQLcHXb1}xZfPV zQ<_!h7f4gJ6-)0DK$#^%(aPWPj?@ojy9H}#?pZOwS0A%>ME?K}QB`IOXeCw2No_JY zT6fwa-oMR@7qKk2`0r|ts-?osN?i(ItzjkATo5nR58PrG!I_g>F~U^M)+{pWT7|X^ zlVQxn8^Ry?eYa*xZNjBiWwmJmdcg0JAeCJ1sx5-qu# z;?Vy9PtF5tv7QQgwz<*o6-QG}A<0NOd0u1JsOTrPl-PE&n*n_ar&#XXI$=!iPb3*BS?|7^AIBz zWlbX8sGkwrozGdDAEq(B6m9e?Q*DILh!byHLF@EBSo@eAv~DFN0pA38T=hfPm+@D% z);3in6l?$k@{XRklH~n~P*FSJWeMD!WhzyLjM#j!ZB%7cS!hr#AgwYC!is)dN0qS8 znQST_E}Tg&AvtXz4T(gsKdattz;STLg~omI_jB zt7Fz+eYeJ$w-_=|q@=6GCvq?6d&R!Egy%eEsaiwnN|U-ngW|QVKTWannx9a7vQtf` z!rWOE^imAVi@ndlg{Q)q0F;YQJKN_NZC`0^Qzuid{3FH*jU2?1L|lC_SMk4T$jfPu z;%Zb{6ksTu^PWJ&98>&f+TC4K;SH%ysU~%Wf>21C`T$PG*T>R&bTUvSCTPR%jV_kY zJ)!Bo5m1#VY>;%7U;O&m^utg6OH;(P2`TuTKMDq!->%lb?lDI8ag}BqPU@T`YVjpT zbtsXzfJid{-}>!;aNiA@Dh5l5R-~dtjjwKggVPpkJwQW19IUUxmpIwK*(|C!p;oXq zxg`AeJn>id&dM9hmY}}yHWjU4n7O^CYzaU6hAb{9&P4?TwoNXaZT~wa=Pah zg($d{BToMSe^a*GC(8)*{M-e%dpM%6OQDk~DFH;M#HqN8 zSaZkex?NY{q76R@ZuL0aXca~9R}D8wPpmYVN)ixC{3p~-4$d;sSxX60VPi^!B~i7v zx%Be$o|()2o7iHT@fs;wV8JS%lujZXec7!)4YN>&$tv+egz0fy^oY5?mKQgzhn>CG zk-d((TyxsSM7HVE2wty+Qcr+&J}95ADLyvIUtLSelVuYzDG+Zr=Y57cYqk17#cG=c zB{LFIQdN6yFE)?(#ao;3*nP!_)THdWRBz;Ojcp9u+qk9~8q6vtk1l?Ox(HNB0!fJ+ z=6|*>?#3%U=CvWxl08Qg*^}|hXX6k!V(%PHx#?TD&i~X?o!5LebHDf?(ZV646 zd_FCVo$;a69F;bzK_f7_ud~%6qLq~pjZKi`!P2Wlp1!!7Jx-T0Ij2le@B&$eBlBoDoYYW?aS(#3LAB7cbX(dX$A6@xkhimDXUoh=6<9-T*c7u|j z(K@xDB*I9z5&$xK2q*2nITN*RC37#&p|=!MCI+GcpmOnJs=IvSwx}`{Ho}sWxnm?q z2YhjF8fJgSGY6d1tx8&r@4qdvg9Xbmap8S8r?>lHyOk{99@iCGQ`THA+%9@g%^p7UhZGXBo9s8?A)+QkV$| z7LQY7jR`bBFuAL>8a6oY?z$_EGj?id90?&sQURY3CwM%!#crUL)Tjb9>JqYI0WzP| zeQ}~VoA`?;Nm|pWYSKl#T)xKy<G< z)QSoYB&)*+*&xowH-m=GDaxIpQj`ghZc_uh6C2Ll{V_f4(u@B9LE`vUq=gY}SC5ol zdSSRM=9JbtHgpeC&O3 z@qVQkd$G#UjiKV{NVuOPOQ*j|Y~WBMXunQJ&e!>zLHLJ>*vcJCOIPO55q}U*JD=FZ z`hz=8X_shF)#0&?(oB!*%=7b#Pqq3Qh39(06qeCCXa4}IbKmJcxbI5=$ENjEV$CZ% zhwIqRse8s#7J;nzibl$vu{hwGwa}evO1T1|Db;Jp`+8!f?1rtxW%TKVC?z7z^NYa( zab{HKE#%a2ExJO$Dv_susQvSw)bypVA)yPs_R^fV>$PVoT3sbN{6K@KFQ1T|{IN*( zpU2fyxqHrcuO%#`_~iIvI+GK9A{?u_a6UOTmoKwfVH>&aXBUlFd-@>ZY8Rij8) z8jph7WJ$5KMYrYC6KFJT>I(|3F^z;Z!wQ1TIL5m<&YT7J5+sGn)S^W0Z_o{ZzAbLR zD!=<|l_^THJSepN`PiBA#a~@lO_tU;grPxS40Rh~!t6^jOPRb9p6&*seh_cV(DnSj zc>1kuBcwxHLYA!TXpY;3(o{L38cTQ5CKUoSpX_lG|!f)hRb5ndj5` z;rg>WOBs7(XaLBY{qa)v$;74n5hBgocmr*w5X~Tv6-|Ur}UgkICqE? z;!c-gNCGwAS+?`e+y0o;)@ZDfqLL9su3f9ZJ*zXB(xm}v4mMMBeMgbn;O*C(3*jEo zGD?0bpm~)PsizYJAyTA?@;rbO5sq!)F4I+&R5msDX@r7}WhDJ0pWoKkM+Wwg-hV+3 zFH3<52nA!tBYh+p^S(Y?S)qFmQK|+o!v6qoAF|~iXpX`cm)AIyHm5vlC21Rpnd=wY z+x*2#!<;Eh%d8@ywReed0;P|HYTM;JvEN;x@Y@_&mN_k_yoD%SYKV!M_51V_$^EEy zTUSY+Jhs_ic=MZpQk5hT&toJ-i27sd{{W}`NH_?kUqKAUSn0flVQ}APRJ1hA)zc%p zO7x`ZO_d~VKi3TWQ&sM6t5F(Nr0TqR&FnDGN5?gM4U@M<@lK?Tl#!_l3F>_BfNQf= zaUNISrFzV1n1Fp^e`C`cI;|;rvB#AtYq!(Tujf6}z?8>#WUN_NAggcY+t3VJU6FRA zD4a`cSdI0YTYkQy<+eHh05#56PgW4G2m2-@6CRc}!^Z@1LeW(LUKH-51_&bm09g49 zW$N@H>>z|sgw_{yaPJhcoKPlIl^$p(P$nilFN(9;Gk_`S=xQsNZ1{qfvIK$W`4iwWzvDU3V0O5LUxxmvgrA0cyDe)e%Kr!Vw>2AY&HlnS_-dnaQ3De8~N7#`D zZ*QhKH-al_lipQ6quk16OI3oo5pAGcPK@emDK3+g=kC*j{ z9wRlCo9a-=>MSTu*9tg$GIO27bP+Uw z9r~)1jvT0^%!>|cgshFU$eVnzWcxMndwIrq%ENv=U`R}x5w{_@=g-y<;!Y7q6QLwD zpNIvG2GK#2f2bFx&9-YQl zM`Toi(O*WHZ?w90iGUMHu|%O5f68aGX; z6Tg5`^l@&GzC&eKeUkAqX}FCkeK6XT2qXXyZ{~5{osVUCe`z#KwCWpeDrioK5omxs zhdlt-Kq$Yu9B`gd+57BP_lRv?6>d2R{r=}2E!Zz=^&AUc+KJO-fKniWFBiU(^EmoH zT!*O@#xj|%-CN^4DR;G>vZh%}ls8e9AIC}yiztaC`2lZ)b=w@BnsCK$3RILS1u30S zM)A44TlZ{t9(USuIG%|`XIP<@r1ABp)t#@>3u!95vBl~{l)@F0rFS=?| zV06+yvBMo!P^wj^Ab7Wx`FyeT(CUM-!n6#X+Ehlbvvdk;6zNn!k+k&~j@0B8xeZ5$ zQkzMW%goQ|X|^m!a|h{@9X6S=W_g?=r5S=h6d6^F!3XIR&yV5{MmnQ>BuZ8j4p<$=?ZKThoFDN=d#$4T~s*r4Hh#Iz9F zjKHuOx@~x|#7?KOXWwVNZKYW%g#-^2Vwn9x!e>w_vWqTwstB@DEcX&TdyuxoJg`x7+5Jwo}1zETquXvD81mozuOsdYAN(eSp&L?u{`YSfRe)vsrJ%Dq(afEM%cPCF2*w6C(7AcS#2v)KOmB4 zpVaMy$*M_^fE7c*S?_Z4Lbd+@FYY6zEiM+%lITHkNwJCDA~yMNY&7wAVk_Z=_sj$- zBKt&bh}(Iyxf-q&F*ewIys;a#7x`9fnqcBf70kNU5k_ZDs07LD$lI68Y*PKG@Pk?Y zV&ko)TD27FKDaIZ(HwC)0;OAY)s6D(*%j|WvO5pgsLOF}hA-qM9 zDvKv1m3)o9MsZ5#%C4ZTQo&Mgo5_eid;Rg7uF#1rlDvhWiUoECQ^%}v29$)QHjM^9 zb0-E?aLq1gsVGW{tU!qJw0UEgyD;rOrjbzM)hY1+ddB-=?ch$+#%hG>T1kr;7C+E` zL5x4bz8Bk9Kd3TFcFub#q^xM@N!9@$4x=0TeEO4!4;FSbDck%t=~9gNg}2&2eDQTL zUd>%Kl$8-;BonsZrX##pRN5(tB|}IeV&XivKff$l_{Y%7@;NUQx$86G3aq-JML|w! zGC%}=Z(EFSl2AG-w5+Kzb{l-Zaf<@BxuZ~^ttx_M*B6dm1~$uSX4;WfDe2rHCrVOBF>mva zDYGKbN_DA8?MWrUjwTgF+#HI$G}o57GSZM^IS@lfY<%BioDDsNPg z$R574&&$gb3cSR>N?K7OEu@~GrXzK--DHivDEa;OoMu54DVt20knB~@BOfg`LOO1Qk7~XZ@Q`nI z8unF6wj5I0N`i@}0h$`t!u)%CF<~P8VTH zaFPIzsh)Ud&iE`PO7M4bH0nF12GQql*t^>D90S&-(OIie{u}KX_G%JTqD0=?b-BgI z*}rMZ0g{(BCQ_wIu`+(v$2(^^YO*}lz%>Nla13AVi9Z7I3zQF~!17aYlgc{nzAc|d z*%%xGhD|U$8ePM|ylmcYMA8>Jk`thx%%3>C`rrD>GUr8mMI@zVTPP3-5!Ofc`W$l~ zW!sANMDoL6fIom1oO*&qEhw^OYYBwvP`0F8{cx6P*^8;n+jqHfNl+x; zQA&&sw}>3EzEhb8-Aj$6D3dnkXJK%6{@z%)G7Pb--i0n*D%?RH1jg8(S-v4*6Q(TS z@~d2%vQY&~XrV&MP!{sI9FE?2pK!+qHJ8!+C%kM4Ucv_4y?%!hM>2nRV^UJBNfU9V z-(T53JVbb}iq(k4U=W?#eJfTZpLxUsaR+`L$x z@P%_vvY@s1wgk*>M^91vymK`-YXD|R)@-|>39><(nezF0V#naF(=}BkqT)3jBpqNS zT>c)DJh}OpcB4yUaarzjfykv`@y`u2ndR;w2}_K@B^&Cz$0@bBoKd;&WbK^E=TH9t zR1>6wsVXFp0iJy}zV;ZmT;s;7KL{ubsmr38a}ro&Z^(|?xOj&T=c?d7Z1Ql$&Vk>dl*{W)UrO)Ciy zQR3W4jVT0jy|4OC8@RJ6O=eQ4Okb6Pr_WZ{z8yos%AQ#tzNju+<2=1I6-r?V)4U4; zQ}Q;BSb*j{GQ7dvE)^%oBqQR22T$B$vl?5}bdpk-=Lf`h+~bXVOv_o} zTBbV&oMx)Z4I@&t!ev*FC^!4zmxwc! zxkhEhD^a*6K`{i8KjY5gW7%G0Ra&GU#Jp~AICF88xRoJEQp$l)0!F}%KNjA8TUbj3 zA~_apj<h(&H38GqW9licV4>MNUeVJAyDpmSLpn6M zdR$rm0JuU|FntEzcQYQik#@bt&Sn%ZXg(A)N(}1pT*!m9&Ai4c&d)P{bjq7vy+sZv zC#B<@#C@!9hfXBUm0LpaQk)E_2~yBhY^dD9z5OkZhu3Mq)NUiX#nZZ+FNM#XN5+oi z+2?qN3Kb*q(RhcJ#!0i?YI+Jhs^q9omht}pClqdUCTy_$P3Kg0;{78UrOBm#nbJxGvMzn0@`<8D9p ze5uLVaR4}{fq;h76Sb^opV<7}7pp?|>;ziYjm#LeLQv%^q^0j&ZMNVgVoYfvir$WRLas82`NxX_+ZV>I!lBzgm!zviF4sn2B#E8 z#Knc}eplNc8T~=1kh5fEE`4-yw1(vTa*6hj;|#NexP3qtQmZx^YzdA+Z=?u6E_mQ> z)jM)tV_#6!GLo6phYCS6C!D~Woud;EYwp_XIG;Fi1=Tm*txAL{!9_q?Ew`E9*Bsj7 z>N5qYWkFh&3bcvTqIdMU#)tIprx>6Qlaj8|YF)F6w0HeMR`Y-@WnMWFbxfb$(TOJu z+3Qz`Z2KF~UOj=n!RGQEN(4QBC zNb}nB`}tw^n}aCxoV}M4JC`)1jQ}Jr@)OH{U({j8Ea9=1R7>bR;$rGZ8od7iU!fb@ zA1^zt`+!)II5*uL1mTwC%+pi0N*hk75G|(hbLI2g?S@?UA*Xx9M(Xe#8kPFY{IK}@ z2`u+|d?W!8V42!x*ofz~l@v--Y6|>CYE(_*%lyt83%ZTlX`Oi`j5M42B^bzAq%F9J z@Tf>w1cNz?;f0ryn_>+R0 zRXfBeDKJze00kr&>*p5(d>6vJNJT(x;*}xbl%htdo{BOiZNB9ENpeV0 zyr7UrEA5YqnpejsdPxl;iR`%3+6S|=CWfI10mV2J&=QqQ%=P4bG4sFL7qjPhYlz%+ zrdE`wk|1pgiRwCX++*yAYFq-=drJ6uDv2pJnYU9mHj$1M_ObSQsjH@_scM}~rMpU- znFHc8%V{$^eSc5>j`cv-08cAJO{gaYb8li?U});8!8fNcv91!J3=bFOj(FO8J zp7865gsDk_ARoiF-jGkv9EXr_``K1_S^Q>FrG$-8n*lOUpQrc7N_IP%I;^oRzLhs5 zNSlj+CQbPczF7KCUDFT!topAtnW7XAwoHhMvsN2Yb=@|yd{>Cx@HYK0?bu%uBe-&$ zmcxuGDgrEQ2%cQOd*WT%Ck87wpr}J>O5Z3}lM|-%wC^|hdQBIVSJv>47wgvW?iHnI zB}1P-sf&F%MWk@lY0PBgD|FWQwi3RBa9c2>_3T$P<22KgTR4NtuU^ zLgz@`GaSB>cxVMN%^N*$`JO|lZ zxs%e=g_N_ zg+SFkH}mO==Z3R!QN(pr&lNV>k)<+36CS>2ncQ_4pK*0M-Eq|TldE(|_-$ZkXg|AR zx8j_QR5^FOp|=|faYPXbAfZOU{{U}3L`P}k960lZ_a2b*E~9%z(&_&IXMEA@x|9b? zdQ$pQ+{rqB+9&1D7MC434JAVXO9^$e1Q;aw+hNQBiW}M6h?ksYl3rOXX;2}45QS;D zgTIAb?aYi^oK2V^_9$FJ+bMC4I^=vY8jbExoMY$pt?6oZxn_S?LU-?AT*t?>CAXP* z0RA073%NEo0GX2>lZ%704je{*k+W2lrAuwZsE}@?>FYng7ApQbY|-Zx6y6mnPL%^6 z3@AiL!b(WJv2%Mb)ursEEtIV~Rs<6}kNl$6`k$Wsl9uWBG_Q%(5@HU`_eb`v!l@Yx z%0qIcpaYSNrLHc4J=zpjASXf8H@$_&EO*xu_H^BLO{G$;LsS9J zr1RzbjB{UXy^y-ibCB8Y>;%oPF~93O3Bqx6^V)BxdYhRI-~mHRod24s%|c+XeCZI*ikTKhza|Fh`kg%0p z=M61uX;29SMP!Ugb#goM$4BS6;jD6m5v?j3N@T**K8EwLiS)-i zcDa$Rm*3RRrv1s)B}Z9Tg+V6dkunJBjGstzuVarZ$!5nj^x zK`v8L<_zg^>xHBfsLDaQvGux8BYlqRPtxSMtS);_NZmeU(w$PZToQ;8u>ObYF#VEO zH%nfx0-ICCB1wZgk1hAXoI%5^HN?-qPK1VDCB!G8+@uasA7g<30D-&SB}hkr5P1k6 zFHCAWP4#7c<6X6h)wP5yC;tGcsFavH4=*r(ej^&>C|fzooek-wdfoy6N{q+cea`r6 zR;qfnhZMA^lCUOX)Bbv5bJ=^1)Mjd?eU}wSSSQD+UD}{uec+k>oN8&|0f%>m^FF1o z+f-_bm}fLAsK}`68+THv3RxtbO4C0Uo#Md#aTDU2MtH5YJ4S~QRM?7!%t;Y)o>o4X z>Hf(3AskrK`E_4%rfVtBjQG4jYDYPP8g289@k)C__E@gX+fHLnOD{IHCBdNhpnONx z{{Yqvu&oZUqF#ynEFEX4G40$ARU2Pe=L^x)0+HRRV75pp@dTa3&tL0-@;*4C%`(Mh z)ubV%?NO|#1tfw$eLy}~lV%l}XKUOt^*tifOPer>Q(u+CI|(yxzF$gLHKltZsas1b zWyV*egJY-|+xy4#$JDW#u;rK6#^J)eJ0Guehx0_T>h!e#0EN%X-bm-XZa$uIjN(T- zyy@hmr723t5H=HXFV7La1>%q688TI=N_moyy#)AnxV^ULhpr-dd6syWQlArnGCV{_ zgn~c#kEfm{b2hw`U0_*FRt8I4zu`$}!j`a=NVE~>_4?tHHK;AVls4f|RDcAh!`Ap- zlB3+iDhEn+Tu8X|{r!#`^A&s5NVwR5eLpt%mGzva2OJ_Yn&luR#1$n!5@AM4PUC+& z;#ExeZG}kQ;sF6$jXzn$KPp0>TWcvwiQLYRHlNcH#+z60rK|mhEPBj*tsnUL;%6!& zaPFf#XzzHIQk^ME2ul3-+J0X_i2Iq6scBqEDhfyfWQ|w-k4!vqCCWl@ihHDhqDmsFcBES*1 z@7Jy*L8AUzNLH5;2)y6V5WM*$RX|I9-n~PAx#u_rG(6I+vH_JK;p&7pLi);Vbl;zd z$$`??VXIo(MMCuVdV+!%;TnEdoH}I{0gSi1359GqornOPx3>6==DCE?Je@a4BghS2 zm}?_DlN|Af1r?^vmqnS>IFhZ-NY7Peju>>;e|B5^H`;5 z)2mU4xxuulT{DT$wKSt?JcQ5h<&6nj-@5HQ-grPh!K2KaNlud5;6{v`S zi8A6r_<=G6N1g%7E6Qv1%3(%Pc<}!Kd^~4uEw2i7bP1TT^CJ<}GUF9VT1ve^Gy3C7 z46`dHX(*$!q=nYGaiuzlfJU9JFJf>zHCi20Cztbb5;sbsNV0urQ?asF^DXvis!n}-DGih>rEkV#3l_uCIy zj%K%1(iD{xohl&spz_0YBS}p<9zP7JFpJwyt{gKE0vjMGC&FeTe2yk}AS*h6gyX}M z2&-k}DI>y6^R%BkZTG_bJ)W;BtEi!J?bHP%0c7gcxIJTh1;e?PhE%1M9-?3!u6&|! zK4?`4^m;66ont2>3uUBk8vIrOp5V z6fJ48N_OFuEfgy7ok?Bf!~%Z1V^LD#9eD(huNR1uanpaf#@sj*ig%QMDb!L2h><_k zoG({T{{Y)2)`O)g0YLb+COZ23u&$>m`*0}*Q%m23sA{&z=54X(gdSw;QE+Z1)*^Wi z-%gixtENb!jY+u%ctFEO(J>;Y^}C<*7v@!lDV>VUFU`L#)!DWLckeLlgf1 zXs2QXf^D~#JW4owK5D7AnpoDSHUys*!Y*+F;kV1`aS){H8i3RQ2dL>EOg^yLCC=^F z8}KP$^n<^j_&+tc2MSDaBixGQ+V>&9V6 zcTbm}o*p=6t3_H^TGa{y zZ+H`cX@OEDL{I)dt{f9gTWK#Pejx)uok#D_mGCb1nnd4}<(o8VUuD+B-%g+=03d%g z{P5+PtKWE0F3zPUzztWJ7r&MnTFep{{VEz zBKRh>l7-U%2~i{kDeLlsBlB{{kLE>z22?u1w13VCtWl%PB%^59#KD-h2dt+}LR``{ z2p||cTc#M;@07jR1b0q31yUDOm6CL*q!0?cLVa;Mdxk&s1xYG8kPJty{dUDyl@}OH zkWy0sK;HiVd|4b1#VgFR)iCRc@0&LS!7+i6qlD<(ndskhhqE5=IJ7A$B$43;U><)= zSX@2EO3oSXo(WE+1qGB@K->O5rXyMQUMc}m3QzmD<}vRIvK^=Qa&D0+orS`qdFp*J z49x`Esu>>BLxn8j9JE)md$N$EN{mX9B0TTUo$%8}^75AyhY9Y|POB(fPatOww3Umc z32lFfm>|J}F}~Nn5zX|~Au1YFr4RuE>-mm*;Vs|7bek)1G*Gn_wa`TVB_))gzH z_S$~QsM(@@N$?Kv1Ojgxc(=oU5M_#WYF?D4>LkX|5)Vj>ddu!JPvHegk)}wt{{Vfk zavohmWqut>mDnnG^XCF^t+Yu9gqxdWCJHRg?7ubA>Xg`U$3K_P>9ECvM_k@%Pu;6d zl^vpVo0}e+VmSUn-FJyeN?a(_wTSBg{{WmFOP4B^nLaM zVK`9ECT*tkWh`q-Ly*0rR{sD`>xcdqscxmVO1rf-lo47akxv@ zkS#ps{O9$XD+y;729 z_vA0uaF%t#O;gjhx^!uB49OlLVtMr>dW?>pSm*=!c9IkEnUNRibk$tf};&3e-{u{^++~-`5T~Zyl+l%3|_%-UvW5{##h+i^$@ zRJhucBnjs;*LlQl(z@!YJhDcNkI{7|Z<|xGL{yC`({MoC`5Te8D!wwHYl$k|acWD- zRFDr{T<4Y|^gKrOT{?kyzpNQXxJpt-t{oGatqr7*q@^N9!l{w5o_F-~wkQymj42(c zk%dG!kFr%f+O(xAb7&<00DoWHVV{BX9N)66`87FGoMFWNBmv=F=JCDnf7bZ49^zy? z+JmcbCLn_{HuLnp_Q2lbN0_DwZ3zQV2$|IrGas{uS*mhmexO0_rram(i&0Y3f5j-& z7NP=+YfhxVu?9qg{e3a7X+G5yIgUy0^Z`jyij-FNn4ci6Er{ZJhZU(xQa1`Rk2vZr zKWT%8z5(o-rG*_xQj~w#JSUjm{<~l4X;S2W!f4Y@v?;krvf?A2-FSCwv`!@X8>q|{5J(!*k^$)ez_%$FgYdTrE}D%gae8c36SevHy8i%AOh_^;%<%qT z$tSx~0Z2*YcHKUw>*a-wEO%fm*GMD9t7|WzYL6^vXbqW3Dl19n2h;*=Ho*DLb|?ge zHkCHJCP7*)V?81{a~O%9)QvL(mm(g2?}Xj+SN`<(JjmndWV8JVtY_-*YDd+Erto z5=3iM0Dt#y%4d93JZswfL25{-0Vx`V$BH>`(*FQFS9#}Z#Zlv!$Ag6XQtc&KUlwLb%bIZ-n{cUGinah5B6>+braJSAy_&l>;8&@g zDX6Vx@HM3&NlYII7Z(NrJn@mL*2AWgX2MTAEx7$UIM^Q}hI@Bh0i5wZWnALc;;I}{ zO~k5h6TFk;Ihe)g>>1c@N9{?(Ij0Kd`PD8Gh>dn}z`P!o>$2>PG_R#aZ7nYMZZxE* zLeZuTjfTXH<6$hmsOeZ+8%RBmg+y-CGZatRbC0xtvj=H@%zdG~l;$YSDf_norgoXt zfcVrrLrS3e5jVH{aVG2^w4ONOdb)QrJnuWDVJ;;}_llPlH?(-Ia5sY-@$@sWPitNi z_ORi1xEGEY4OguNx(fB_Dg#M@sFC6jPLX&Ao;d#i+h5q5i@OTrC(}T~nXXG#t#nmw ztto7zmv#nGFPiQ4-P?9oR8sCwM(1{P_lsp|l}NIsTSfGX&pvqHGWNFZ z7l%`;Gs>vlbHgEoxQGLlhyf>Y&PMqA0qtMecl{}oxx@_Q)cMyA)TK_9`=V+CVnLWA zP!Kj6KpTO+IY4K9jCO%uxKpzQ_sz`~p*q-orwWfJTPRjEv znc7y>q&kCCg0lni*u}2|Z;qwn4`+_g^GZ!L=&GPz$V?$tQ1Ghh_-CTM0mW&?e#3NG z(+@8y&S>fu;1S=2vZRh?QdE+8Ok>AA#1KUUkpBQrVBFA0)mYpo+UI5!nJqH&4$$~r zs>L_n8eveiyxCUCQV0TikWbGJbX~S~WmFJ`c$S8tTKokSh)H!va4&H_WAw)qcDMeW zTy>hzzRe9q3Y#W7s!HS~N)vKar6$ArgK>OR^grpL+8+$och$6cflMX}k9d-;Q8E-o zwwrS3B@Ko!GV^Go(nmYDG2x*0rS&T*?Hh(#b(PasH1eAvNFCwDaZI>M@A0TzK#p7EiFkL|e>=)Ok@G62*HF%33R(l}CB{f8AtLe* z$IGY6x$NuNC$wzTDdzJG-ITUxS$S->okDdZ#V6&fmM7E69E82Z;L=RKnW@}#@yZCn z%>aJu=tVycWErb!BBe=r!y`kz;q{0=Ngk&Oz1i+dQrxb!Au=IO1Zps10RWkjb~l03 z9PinuvyT*T)f$(aalT?yogfBW3kU~rRI#X=jmm}7=M%0f>_3et_%Yn)F5;}g)@jLF zgN-(#;!JKJ7}eskuQ!}jCX5g)=iy5yrs|l}ZW!c(tp2O02U)IaLXthma`JBKKg zw+Yp?h#Pa0_c4C^1$#IBy8GABqhTRs_an% zy6K;4KF%HODM-sH-C?I&Z6UJy)RxiVKN6(H=dI(<9OuNI!+cv)m#8zDaG!?A2&`IE zeoFx$`kC^>x3`yXdB9z#;$>$@hRe9rlv!mDd(knP!yf0csTt8iv)T#7b0Gw<+a_pALVkbv0Xo zE6KQymBnd6mA2wH(aUf?e>`8_&7Rr~_O-+bqoq}2bpkBl@hJTw;^fBMu^jta!b^hG zXH?LV9(&jMR^PL?7jZ`zaN<$K887h6$*VYp%&9^)3MYG$@m(XXJB@=9(cC>Br6;Rp=kW@qhqzi*FwE4t|=x)yYOJVHq zCeE_wkn?oTrD4_;2`M%pnb?ASJrf&5xc0IBl3Y8SGUJ>)`%Hpox-Iu)D_122X;2dy zU`YdL$2m9b(b|Wz2WSS8o|d|=D|OVVumY5jMa*d=9mk!8uZ-ZO$F? zN#p33?T^_nhC6qqM-uRjO)X0bnvjZj3RHm-0W;JdT{q=Kald0Uly&T@iK&xD+aXCq zt5{B;RAn|lZzI%VhxT*!<>HTIUeOhkS3gkZT~6wmRW(6T)QiHCDzwOf2Yy)k1H*l) zaIdv*0X{z7Syra40-`xULE^^H!7FhShHI2m6sJ6p+V zGX5{jS)gBeO4`&J1gyxJjZ?aI#@(7`?r_f#<@GK6EV_kC3`vkA$@~8Ra~4-`{?3_> zTg0{N6l*)+Ep5TOEqA< zqny=nzKQk?#uSw~Rb>ulv{Yo7hKK3eKNBth3DTl|1q%_&Ni!!7ov85xd^D9dr&5Ya zax@TSF*YFckbM4F=FY%-Q|~xswN^@1N;{LHKvGB=NSg@0p=q33?ln*C1KHF0DymJu*09VetSto)ny$a(%J9?Yd05xVo3%!P$Cn3@UOEMx^^?!>aymS z_{_GXLJ|O8>E*W|KqSm>j%Mw9wxw}*Zq<}-D>73w=y5AkRS76jBwUE+V*r>F)C2VT zS+_Pxo+u6n!pGJ^3)uuFz!pt+?wdOw;#Fk5r_oe7R^X>eTWU!r7N{ey`18dr?T6TQ ze^1&I++mjrdg@HtsUgHP*l)X1i~$k_(k8%tK^U>}g%#%RHq*a|vZNrwtfEM@$2?HI zqV~(5aL#X-Aypnh>~v!9`mzE>9i0MMNfJw~0Nmhsx|mDTL^ z+KYbAilVB_YLibxR1k{RJM(0zMC;N?f<7S!%N?;w^#>Z{*?oO0>2bAac9C{LQc9S zW|*NA4m&DRAyJ}L$R7+|@`)8&wfz@j(-eI4QapfQ=ad^%G|NR^c8 z=y&BkF~a`dU8QC`5!%AD{J5x8Whhf=F=ru4Dok2ZLWF~{JmzuT6uIJPY5U}bC@PU) z0;4HblK|cUkU7VmK5P4N_LWP-b@{51_#?bmcu#>yRGUF2Ci`jpzsrjKGC%B>4)nf9 zSn}<2T60Igm11xY81Rp`Uu4fVLkX=*X==WaM0d30Cs8rY6VUC?4xYt)F`Iig@m68L znT!7MlGQlt`AhD2gh7kV%<8c}E12P5W=_mIP~omGR~T^3K47X!cL#hB!-c1t)v?nc zf-G+l>M`^~h4}rx(|8h}Fl{}~bC&6-b*1S-lC<1{KPWMOE5;1EIW3pL!SH-7tyY3v zBMhevaL5_uau2uXvi&CudsVZ5@H~b3Zi0uxTJWmj2D#llT6N3 z`;F8%zUfFpfbXR30D%TbGIkjHW$kgn4ffyc{MK=oko9dHIDN9BlBA7(B*-=*={wvJ zyidu#39ogY+`aawD^60iC^lqx(5nIhg!8wSG^7GZdZw%juav(-nC}oh#+qzbaB{6K zAah6$t5XLuOrBUFUx#(=ddrd{{ZnPDHy4BE!8&AZSfjH?*PQa$CoSP zg!?q?_dWK!?dQ2+N_BM#5d^0~N`a6`fB;DwW2m_A*(R^pgO0dzt<2(zp*evjMN07&`*YXc!}h8o_pee&O0byvxjXDGfE0_`t_Bxhcuq)!lE<-Hy})MpIODd z?D5)iGpwyNwM!`s=u>JU;K3lkjZ!z|VTZ44ejglRz*IS-X-Zt6T3~~8_@t;oz0^GJ zn_C$IGdyM~JBs_SjOv{;=$`g3!RHFl_G8Q`GaSvT#Gt8aU_qJE07y3@{{SDZ_WkEQ8)exbDEve@-aQ2ZlvU?1gMj5ABx zCkoW%bxwe#v=WyIyIwG$s3LzX?aLhB#ylRZw=v8zoW_|iG772c*jgnHrB~RVa$}_4 zV-4QIzSGqlcf)5U&8rmVdyuQSLY910NCc!5kLLJE1oHF8Oz}SsW!5f6360?=vU8bbe_=mn>AzPFO8nsUdcI^VbwL+o=ojkR|{qi z%V=BWe(b3yNd;RA{de0H=d*VVihvZq<7* zW~(Z$$+LP-c+2aMrrc@3RiKo{pgAfA^V6n2c=prmi2neyrytaJDpQ$lQ;Tw)(J-Xg zX)PNk&JmbI0?@jeRzuIsW!2bYcU3Rg=4dt0nyVANl#V9ruYyS zL9TR_Ldm}ivAv+U@%)Rk1hT4xJzZH&60!s>L>uZ+B4@%$^Tn6!m&9*zZ?pDR#Zeyj zLRC!a%EYXtApZbcZH`p!qqeNSh&xuJ%U>;;8dNB_vf@Azl#75&-WBQ~+W6{EV#e60 z;4H$HooITCSb3#@qo!oUgVY1o2pCtX+;OlTMoIdtZ3Gd_*<@}(;C(x*Q-oh$Rb1Pp zT2Qa&6(5*n7$>lM$+wHU%`S?AunLMcVf0L(J3cqQ;bj}p(p+&bXCgK3~n;rc| z`(mQ@f#P=!OVsOHobJJG0BZ3hfJxt!+v~OQWbvkaGO8_UUWF)xRfMvYStb zQ6ruA#r5om!sz1eDev7_@ahTiCP14LxFc%=7T*li$+j}$w>0`^7guh7Mbmr>N_cCt z))G?EQ{AL^Ha3fV`Qnr9cQniMe93HPZUnQd;ZlN9NaQbj-xp_T6^hC@eKge01ptJY z5Rxw({$E}3%6+eKdU6cq%7wDy>rcRdbZQDe7TrBQct(#%=K)8RpAV@rJz5S;^{m3VgNJc;$hqLoD}oo*=*5;c=x41atzP#9sfrcRWk5J|Y_&kNRONMWTV zAthHA1Q8>D-#mXCN&VSNoWDedm<6XZnH9PaLDmtb{weWX`f2<0!;Vo@h7tkPr5!50 zz~9Ty73;i266_7OAX-P)2C>G-2>~Q(pBMy{Nb>t_kEHao9DeMmbrXB2a;$LJM~vuE zH#4{+4SYk!LnvWdf^T4}-)|QC-)}EGMOVbmJla;%s!s4ywIm;+g}lD_it(Qjt?D9# zIHe^(i3-&M-@l$THD0VwvLsQ)UGIJUmb`h|OX_uBh^TCooA2uph-+L-!&>vjQq!sBIjd4^0VYVfwEpDv#3ipSJI$r) z54;SN`NVu)Xo6O!9MjQJyo+ynCzSj@EL8k=+S(|Kh!r8tGLrzwHnryreXI7Ynh>NK zgp`0mT2`+RpIz)CXKqu9Z!+S~`i8AdrFykY1u9kfZ>Y~8Po_7057FHJ0PehDJ(0AG ze&tFlyF_z0tI~kuic}3o4v{|)>Okk#aWm|%fKL*=-nx}|WTZ$06L?npomU z4#`exw%k%2R;2=qcv5_=Fhm_Ou>SydI&ZUH2S!rLe-A@~?q2Jk(ms11<}tsn*GH#e zV|hxOP8xSP5!v?uHE!{Wv%8)N|p&qw27ZBrVsDXMGiQYzNa$pLyAv$y_RGJ z5x1;j+U(zqRZUG!mx7e0p$En`oxI2UM4voTn7`W98zU|J%2mWPiKJ;q!`-ICS^zRUfu5(H7|lnz(6dm$D3x7sj#W`i!$h5FOzR+SbdC9c!Nkd& z+036SDf~Go2_*S%GI@#n`QtM`ci~h*NeMtvlCYInM0C8KzId&8S4DT2Q`R3a=S zTYn+-IGAu9TUm`WYXvZ}kUYnimMH!><8@~_+MJaqQBb@_@;|)dVc91XgekC7hF~T~*oo(24|T4TU7DOrMDIK3Dp4o8kL6p*1wAaVXQE zDq_hNoxIN9@ru{7?j=*Xic*gfbQMZe2QzaKKl9fYjRsBpN`t!tN}^`oAV=yXZy5UQ zei$Ex^HM_QN_S$_8QKUGAw_9k-}eCMZ(-9E4-n_7IiiSBoq9+H2uh6d<_Z1V9Tn{r zmz;*3YH=xSHVTE~R;V|fzIf$2+{3@Eb6M`(4l8h^sM$QHe0-B*FO|#b^l^a8R;L5! z$$6xpk@-+{19ZdydYf7!mqRm$cq)^Kvfl89)I2aXg=thl{rL=5IW;%BQ8Ma6RNH4k z6DBVsaWOm2C%u?)kW1x~?|7N;g18_8Y#`su6~UwFxH-XR>YPKjFr{gGH~#>qyj|JS zlOjgb=6}xT4LosPs#KTJmNgL4Z3;a+IkbYp0K5>M4mdit>kU8G$s^*(NRVz|e1wetAhB=HQoA6CR%hXbZs5WQdx%8Mb^5uxlE^4g4p>3@AA_S5(3AZip_rf&6 zq=FTbN5KjW#~cP|^9@cZT2-nbMz}VM-}ih;dnH?RIf`%aqE@gswf_Kqepqzl46Nr= zUFc9!lstWB_6Edr!#@pW2P=8UPM83s3!PSuopGfk-AIc`S2I!6hyrq_+4m5YHs|8D zJ{w56=tTLQv0m}rNX;vdwdw{00|s`%*_C^Vc_~_zU;!#6P-EecZ|jJbf19LLsj}>9 zSra=BQHcFM03U=q2p7ti@Z}k9m?(`pkp#qx$sGCou;G@~nri(dr5)n5xgeb?>E-LT z6X5DmnB?pb8`7)UL({J*5$p9^G|9cm)P)a$K!OZuh`7I=#&M-3-qKcct92A|xP@75 zPkZ6+)ufUwr~LElIGuKR$1AF-NmI^gO_OqxnG+lBKc}WD+|-)NJ!;jdzY&9^pO|2UICvK+4VhFy&^`9?3 z@2K>vR+S3{2?T&I=tv{y^!b?@bkc7MeLnX7LsYpV+9y1Y&|CneEV#Q90VkHz(+_=z zQ74FUs>&suOPy_yA|gEY@qLF=3Hw&?V%f~iNJrtSH;GDzF0y&s2>UH($VU;j%bJoL z@BmB&ZO@(U%b!7y(7hHxsndcvRqIQe7?HQxF!rm!b$JeQr1xJK*CA6!tJBb*gesiZ6MHKdtRi~$p-`&*aK6Rfi|P+_;VDM?t|lVkGd<+eUs zRiy>nicU$w3%C9jYm8`=@-(>ffhpD@Fa%yFo;bg?Y?Neqy+dU%Qs59p%zW+Vj@Zug zaZyC3_9;591cBw&(T+{+*DfPJs#?J><6DwuVDRq^KVZ*BWZ1 zg(L*Xk~x0%^u?vaIf|X8(g%maQR}LAK3J*fwD+oLp(#>%3r)G=b;6az_fukG{{R;_ zx2G>$Z);-*Dw#&%YQk21RA|I4&h8SE3L-_!MD?_E=ZW`a+;DQ*ZtYHf8ib&dO!-DC z>UW7v)Rk(5ixc9Vux}0K>T66c4!EBcugFe5cUb_Dg{4ULlErFq{{R=JxrG4lg&{x? zeRlJ(-aoZdSfzKNV^4;_0~2t0`3yQ{+0yEpSwDzW2?J5K+ez~MaMCJ;W4;{<)O3JK zez-=K9gL==#T^W(=VgqX!muEZgGeIkpA1Ky{{V64j+@~g=OM}h8(LG|BVk}wqQ=~& z4=dxEJ0>QdGt)jFh-v2@e{Vv1UhY>F0Ys+OzY3rz5(yXD{K4sK1LcV|%`b2YIjxSu zVeNLDXB6)eu$@wpej6A(kC&b*LBZ4%l};(w8(H2-wTS(GShx6%>Ux}^D4DVH}RYUh{@J{y7w{1hUeS zo>D;oOj;-P=ZhAnvR8PGVRXp_M$vLd++nLZ>>8^tK-S45D_||_J8x_`+O}@mRZS6| z>6eFi<@%G6 zSa>`QRX~_2*bBk_r2TP|t8`@H6QO4^QfohgVn{r>)FfzN2Rl$kfQdr&#=VQ6xTQz1b~>I$_F z>xc&s_D@%nv=js;V0unECnL?<%vfzJOJq!JY(d`t06b?AaI!N7Q>NA_0`|WCn72=_ zdtFaUk5=$#u4Sj;`iexPDJB!tMX{wy3uL9l{67%`d-~$t&$uO2?-0=!3fh!f8et`*|9xPQcy>W!z!@BKblR)c__ z%wI@tl@#yr&9N<^>@K>YnM)-iC&oEn_a2z>+Lkktl__h56(7#Hv0PJDm!Fj`Ae}!I z{{ZI_42HQbWy)bKg?I{NjYd!J%MAQO*>!IZyZEh?n|z}Vyb(g{btn#{TkRY5!2T(l zEu|tzs9{Dk4$7RXtWx{1prbRVt@`29CG3qsFj~}hl01elE*at4YSxmaU)T5Ni9Ig| z(zeo2meZ(TZhzMi{{ZBP_N4wQuva`)c1E-^rKJi436eMcpXr8F@P$@cTtPunK^7ur z{QCa@&N_|m3{6&%-EIZr%lG?-`;IDhzUMwlTfJC1%YOig%FvFc`9fHg;hp;QbdvsdL(O%Q&2ss3Y> zx0_RhPNiG{J8x`OTz9}oprvtTHnO*aAZ?2iD$hR%y|$Fh`t80T9kFqmU8hn?ldZK0 z@oswJeMX_qri25J(h>zDC;n~J~^I;_=e2D;krxpbd95|FEFB$k!ZQ=^I_{K)FMq_`qP6cEmGlpJ8 zR=*O$m0$^j*KeQG4qQCztkbJZ=}8wiDkq-*0J+DM4x=&&k*eu7J9=VY!+8Q9rAmu_ zB^d``6E{CWex7*J^p_HS%3V`{7s7>SEx#)8>C$9>x(}zya1!bk!ct0xsq>Myo+rFP z!)Zg3q@^Wbz#ttrj**BL6t(WCDNKzZ5`K5TrZhFQ0!%KmO-Z9a3aEmmH>AkWNj`gg zw!t+t=&GgGldE%Xca5jh>+6cTw~QA_n!=T7RmI4@-)u~HSBVXC2}vhPfFN?1B!SE6 z9Qql;Eg**lYoj1;Av1A@6P%)@C?A-qLIwUHFn?cw&|6B(|3VkVT0CK=X@pjA`u>MPOxk=3r8=GK#TE-mrAY=?NC~ z#+4jq^YsBB_+$+e`}$%zo95<~q5)9&j1g_DK9Te|2O-VEot3I|!hnKK{{X0s_w(Br zGHJ*pl)jJpl-oDr3WliEq>(NHk$4=13;_K{(wWU+K%TGDsivmoi zW9Q|({M}t(wu#<9a6rY` z*@qW5?x|&KF=)B|{RS$2B;bdr^EJ5Id?iz>ZhwDXvC|4<+)k{nt+tY-Hsrw)4=LXj zY8uT%N$zPT+PY`n+03Y6E+)bZn@K0xa zPN$nl4kjGa0th$dDKI|xaN@R7bwSmr+@kWXmN)D3$H+TQVwZ3#w#aITq8B@7^sZ1< zsiQ7;HXMjZHa{#p@V6Qav?R%IPLNayNCNkS!TaE@(=wplTW&XGq$mgx;h7ibwku4| zp>0(uyN@|3fFft>Zz%M~(MJ8zi&IOd-UEaYW)6&98{hy?#g>&TB zAzI8OvXDG>Qg&Jr&pHVJgB6*p-liLfzq=5Tp% zGL<9}G}wGw3&@ky{qdcyYxWkaG;@GKDmU#H+WR~`!}TGOl{l8vWh>H20Xs(EPu%0@ zuNZcS_Z9J5&Mn0$*IZKMf;6gRh!z`*{Tfq5hVIkw#0oE9#+m*<&dzq2&s{3d|_P#-XGrkUw|D zkHgs@&a%Zg0UgTH6{Ry0ka_&Rp16k8@Urr(%%y12eM$%$$pJANf=}-8Yj!q-D=#c9 zwCYG20q3`!;tc-)Tx)Bj6})y?GdPFtQ4Hs^7qY%2?*nq$#-joP6{vIjdfRe9e`|x? zq-nivD@s9>5=lP4;NtkoyEku%DN?1i-uH45;~fMIx|{iV-wSb90kMa^JcK87A@)dK!@2-a^c?wBVY^0yfAbt1RF!h$#9Kp8|2CXgl zwDbGoH=b8Dms71NDEwjpGAu>5^FEv5!?UXLyzQ1@S{zA17P_`b^X1p!9Zm~gcR0S5 z6Kqnadv4*Sise@5{{X(JUv>cnKwn^gXBA`Bu4UD_ii$LD4#G)0{{Y51&$O-urp&1; znL1S=PBv3-p;u8I4fftSbC0-nR3*;!3U9iUl17tlF=_Mu(;{{K7hE0$L@%-Q=?mhn zPt{L58|^LZqcCm2r73FwSg7g*M4Rk(<-e{wL$Get8PDl`$!bfESO`~(rLTLFx0XI_ z@V<7cO2*Wpl<fNx0Qw2nS)fK7K-P?!Y@ze<01N-dfe+R+8SYfX~HlVtlXl!1~vx z^%zLyX8NX)q;*Fjb?DMJ%9fkH|m(yi5q1IW`P>&o&mgDdL06tibdqnU(7GF}^ z?KYOu%bExt2|}%PPb+!BIGFZr#Er2)mef;C_N4`{X114)CnF=N*T3VtXC?ruHk&QG2myJDQzL<)CnWROh%X{CSXA8 zze)>%yC6+RX$GCtDNMHPDSjXVQ_?IsM*ICOz8KFRta_r7pekEhR0Kwg!iAy?NuH<5 za90yONy2%1m5hY8rRkB@HuWOrM9Dv2(X_g!G##gvoiC_4gJ88R&nYsjpNCUS(pgfH zghJJ)Q8Rm!H}tkD{?lq6UPn<*(fD<&LiHYuWyshZf6Pl$EJQ5oC*5JI?rna6bY@aH?fD zr(7fnNHTs9CzbK_EY>t>{hgQE==F>-hN#B}b{-JxRW7lmMMFVZD$--aAd|WE#m~ST zCiY=UX%Lc^Dbc6Il43N^hsq3k^2M9MJPgftK+|px^Gpjbb9-9+?S6h(aHHWv!<8y5 z2xj6)0V)J|ujMzrt&fiN4_Oid#~h9oQfir7T7N`7VcA_Scf$-9klJ3*l@oA4m?U3* ze>_kX(ntH@ooJh4V+`y z3pt%TiY+s+1h@i{B*{Fwew{`>UqkE9gHf@@!6@{xnSb^VZ|-Ydstm86(HSwY|hNgrihIRg8Fu zK6qu~P7zIGN>+s_GDy-5zJ#5LGtw=%!2CDbTUQ4Oq zaU|{Pf(rT$v|5-$+eO{f=OD-tnM=roDMnx)hkrP+5`W3W*D0YIJGCV`eh>iVG5X>U zz9-?}}@-PQg)}_sCLIS#TTA;wUSbwe~Y^US}6-b95@FQnaf2 zNm_`V#Gg5lgI&wn%xSI@@R6vG2=n`O=Z~Jy>Za08J1aWW-OVfKKOXxRvUA#}*>7KZ zy;dIyN#-WPJo$QJJ5AWT+z#@YH0o^INx0hMbGd_lr^rvyZ0EDa6;4*4#99)dKqt@S zc}&jS zDLyDO%3#6$&ybiO9D6^r+FuhgjH;M3o;*|(zyKA7Q)UYwjBMRxd9mu7q!oO?fUD+_=`lh{gn}@BiMh@VrK?-0Qb0=EQv6#3 zco*d$eSL8n;ObRnZ#0-vd$p9WT2G8f2WW$1AKKWk+kMs?ZCXAOoq!i)z(-lLqi@ zGlY0fsW0h5kNw1WEvh=F=ZW8J{5aiJDxPfxDv|*r!7?XnP3L{V#d(ucuPSsBb|h#! zC=6n?z@n0Thlo2_Y9f0JY=gi1VBV*Bj)TLd836uf2{=6S$Ci z@3+rkF>UtUZ7nI(p)Nvo$g%6^YsXKf2S$5K!evdV_4-b{t(TxK~U4|qqssFB>*HwtwW&QI|&i8rxqPzxr{+Nzrov^i?cOkD6ZJ}Xc#@z^={P*(0na*mOEUA>JcWQ6>$yZO^ z?|)D*_0dda9buHO>q((}f7?sc|qsP76-E~f9`LokaX!N zP%{Hmm;es3_D@Vzy{G0PqPf!Es22%6d?J2;Ve_yo(R4NKzhYTPAVCsIxjwP#B;#60 zPvL&c@^8d$8v^gyxxNVea)!-WK5wypqDn8wEW*^I{2yMMbQdCHjVG}%#9XJb) zg)Um!b@+->bd?BE>AmNk8~a17Z#8nUw^jcDcoL8VZaK&MzTZrKeGah2soF1=}t7#n{h4_te_c6N{A`3++v{3vR~jT_f@KNFIo}^g(d;92b>?b z%cJ{r)0byO4wVG6P@Q93ld3oKAzxfj{C4AYs_z=ouI=9L&<2>4pHMG2{h!fiFJSp! zruxir4Je~z1uyLDD@JQcQCOwwRXbC;K`@Y10M)!gr=)WbZ$8VYQI&8)#+5eVBp_-Q zNU={@Bb?7D{Me>@1%20%*JkK+~ z$o)6Cp7l2Sh$jm>Nh=1F(9I+Bjv;Zz8Bi$>GVIDcFrZ{b`lk^tJAGBBHBZCujV)yW za|wah_ZTZQacXH=75IA9$Qf17K7`u<=IoU+(wq(WkfdM2E(pAzD{{T@K9Qg}QvCjH z&D0k;bKYdM8icOONjJQ~ou|{O!nt?<0BrI{D4j}^s3|B}Au@Sf?{1TibMjGMr6nm= zr(~ZJN{r3K$6RTU*6CBJT9TC|Wk}i;;@Sia#+}9EmGSig7i_-Dzev;pFd;#+zR#Qu zRH%q8ND>HLxlHVK<#l}U!^6r(ZBC|;72Zm;%92WmF}Fzr&gaT)+}5?4J|kN%0^KfT zg6kg_#7Tr)+>oif4f+gKoJ?Ecjwh&9Bf4nZIsps1dVpp@=k(qI#)h5}Xnn%{0&QbD zVa+^pn_9?GoKe*z!Frh6!~veZlL9us(aW;h9aTNrRi#ZWCII+iPwNNoz40GsH(p)E zRMn|>zh~+fJ5>4SzR9W?B3~@)k(bT%zjJQ;Vg&009pb>8@SzJ)Y zUE5~~irl>|)8}+;1iw!pcYqtJ4eS%t-xZrQ3R-*3Dopsc*w2<6_&+kP;hf>Bwin&H z-Rw`zH#Y~*A8zi{cv@lGds;t$+IuN=NOiR(#XwkGf|Ub#)v?8slT#}*t!=~ItHKi^ zz;EY+QNxrxf5Yp|s2gp(!6s@LLM^q(h=J38mJ!MxRXfN4oluc7PL+Qy{{XN-+W3ZP z3A*JkssX;q<1ovQyS9}N6Jt%h?fbu8ryeIQ_ms z$bInFMVz%p(bQnL)b-)yv zGG;y{PWXW5a@|{nK}u4Ji0GT*z^zKF9$up<+6MDJU%%-X%{X26>NOOSplAKV@6!s9 zfSVk{1lS=jS| zZLs$8O5T7@>K5m{$1l?x)Mcw`o3A+QBhvV;=!--qv4snz$jY@U0+x&x(2 zAZnQa^V|CzPO{95DCuyE5^Xj=U*9}8XFMyR-9abH*B?Kg9A*U4=IS;OpxLHcrqq~9 zw-b4SOkj+i@krngwcu9!d|xhB7<)NF!lT8dR{~}r&NQgu_0%9Jh&LpG7_F^oXa#z8 z!tF5eCRo#%fm13 zKG<-~a_;`0LdS^gBXKxA)cZi$gPB2AsLNCqqycM~=_mU}6|AN#HFWPg-|2_{0O4Nk zSagK=NdSv#zwhUbvpk=^r&5qLK|cuF6`4hXqUsO`DW@S&Tcx!V$cQKV;XWbC$|`KH z7lf)jm3(R3Dv|W4cwqf7U3F5bos^wPgBLfSo;~50~^lr9oa0Zf~m(6B#k?9vCjcSxpU#C{)V%F*M+XiRoRaGHrzlpRHYmlC# z{V+{&wNQPum0#vVO+t(fBx*_eT=`=%x{#H@N_qoB&0+Q@cqNpozsO*2?dDL*`cM$?K?loO^w5Sc!f=rGRvp-+&M ztIkA0!?tX{d&wMFTqPtCF>l}Lh`vvn7pjznB}!Dy`NkU4jHNdmr-ngDQS!H*49k?Y zJL6JQt5g6#&(j08k^oT`sJEKi)^&LH9S=~X}q(voIJNb~Z;653mrMx?1HOc7;Yd?yElLdPo5%vnqHONCgJ z!3Z}N={RGct#dA|@To}DWXC&CDD>rQHDvkYf}JgusU~b>!SmmjEEd~+^7W|d?+4fW zSez$m;HGZw6W9G*>lH16gsD(LP#3=9{J=PoBQhD5SeFs0Mj*%v*u?m+IE=TJBA{!s zTqPzi`u&gf#G8Sr!(~Wccch4wkt*>=UU*Z8Z)8~`B{gQ$f~_!oNl{gmvbK-c0cCWK z(^RPeTAEN6DX~1S^E*Z)+*w22I8fM1lXUE5KT-bxmK!Lk)`wLiONly!A^{`kg58BX zWFrL-jKfn+r9nzmr&x)Td-_f!ygx*Wk<2mR~$pbXi!o@Rq>>P2tL2l>x-v8;e^yu>p)M4Nw7Qq zyuP@J)$rm{;;4#_QMR@vZICFH(^xk;UzQ@txEAgBwOu_XC!r(uA`+v zBIQH~+=Do`8SLRT6oJI9c9Ugkk^7(Pfor=lt71E}cd<4WSJzZvM6Eonc1j2eBanB& zpy5#8n2!iQtaHPzW5h)WP!1Bb!9bY?;C1WEZSQ(08@<;5eI-W4BY4n9HN-7{hl2jyLe=ImXmhB z7m=zi2;BK{j1zS9iP}v=#kf+vIE8eryi~syvI*Hb&r3vMuP)9q>I&Beq_(YFNF1g} z=WI}XP1?R{Y1~@YbvX*OiQ3*)#3wE7GcnBbb)haVNg+f4Y>QBC4TvY3+w>XSFSm>n?3S)bL`C?qadl=RP2_iKGYAgvOR367t=KP+>njg2l>Ge`&J z#VRR0Lz!jOO}xXdFzY0!Ed-@WAf1nuxlhveUk>|j@!tzkrH8Xm;t6iw`h;p!dV(+1 z{uY>H=N{+s|H-5WWgY8h?-_mr0m4oAc%=QB8u)O`+F9M@@_8V71aCZE|+01wY~^ecvV zKPK$2iqn|2TV0w~Q?KyW;*gfx2_aLYK)FbhybbQ0cE?~{wdG#Z{g}VP+*-{uji~^z zw+Jdqw1`lh#qY@dG4N9}_PpbK*o}Frn@!|2+7Tn6fql>0rY*l?{{U|6`?CHvX&HuM z?M*FVOKS^Mz>$9uAP*o%{{UJiBh){qXKZG6n{decD4n62Ktsr{3%mWQ`zK@B`#*5H z?F%`2wJEidJV*p8%7At;w9hPBzv;8u-bLGed)y$+bvv1pbMD0IAi|~sxkkc3l-rcx z%4&`s_Ok5JSq6BodM+Yp>Mo+4R|>h3O}U$5kL)9`jQ7~@+BKI$Pa>baN}6>x)^&JD zSXICP*o)#ABxbKlMUeLY03lDL{@lVj&IiZrzQ21g_UxV+t*Y$5joa@Ts6j}QW!;%*tMs80#jDNcnktMETG6{SGN;6M^By|LN8 z*wytsZP`}}_L-H1d*vBR6{W9@3IO=_*eEJVgCtwSi({}()VP1!Q?P8qfq1Dj^;I71 zrh#z$Nm5_|Gj4<(#Pf_@pw+qt4b?`+-{n?FmF{Gjt_R0u`L<8B_h?<6XKAL%_@g*w zEgc=xl`3&7S1Afn)O`q_Jak85{@#77=brA}b6IX=mkLC?O{H${GE#hBL5{fgk^cZi zE*I=)Kh8LkwYsXh8h2FTVwj~02`c!dK}5#qNIp@vC>-y$o(Ak~pLWX|$?~?-r48$G z4nD6vAnTidDE%?7_>Q2sTVQfel?JK07SjtY-T+s3XFaxYCV565%s6?tI>dKcA;!B<)PLf9ZOdFB%oO0f4 z+m#1m{jBC$9}_Bts;Wh*o#tVrtMU-A0zfbb<rQ3SU4tRo)csDv$VvPV0Gsllk3gQY=Ui6hS-x0DEEUjw#ds07fS(OHKQ& zPzdhk5~PXnpD0m-Gbe4a5B~s9Z)b)(IQCVq&nn^C?LFBGg=p}pBu`LG95{B@#-8cf z24wX*d%DJ3@0eP^R)qxoBuq!nK8GG@93^$LBIp%~>;9W2f=-j&W~`1WS1x-l@Z>4> z_*X7dju~-ieZ^}!wF0PiVh+G;e6cd@i?ckNgYz{nEy-1tx}+*f3cy^&`T`+6cC=%b z_$U2Av!KLgw5+)ED^gT@#Ue)`Z9;7Z`$t@KhqK?b9Up9&YmZYQ;Hp$8ycerdRk=LI z*SrjDIy!LOT&(c@QzN$$TV1>+-)K4tZXnJ(y3Dbh%AU&ZU2RS!$dFFv4gUap;-Ad8 zH-@N|qMj7ULS9vpie;x+w#o|C%W3OtV&&rgKA>xhoTjXMLh3aj0^mx{(i49%w^4|9 z76BP|9O@dF2I&E*A`uXGM z?seHdSK1#JRMaiHSF5Tj6$QG3-mOH*k_cF}1`!I1@_5s+wQ^I^bRm3^1H9KlcWHjLfkT0YsQ6>pV1J82+9D578dU|NGP7pP$ zex=Wm)EFq^x~JE{Km8T(f`hB5ZN||h3#oO$Wjl>(@S6+AGmb~?AKL!_FyIa;sbP*N zrOQ&1qFbt`Q|OuT028?~caRFa@!DOp@d7geS*ya+hr0q4HAavUJVMjYd-~(&{{Z@f z@IM3O+!avr8m|8Ushx2yw&N#NK7}X~sU~9M)->`MICk{}ZU)cYbUSBwE;#xGb$9xz z4j-iq=Jb3&pEDpW+H^Tft_(p62^N7C>$V+uOZ`W?D&m(A`XA1?D>q4mEr)x?br0r1 zfNyYm@)-Hi#5rsAYFb1KOm1v<#=qfXJYB8G{R$KL zNf+S%0EPB9vk&zZs^P~{PGy$yR$hg|ou*P6s^4`XMrP9>BOPPeceF*qfZJ15Fi=MGb$w^iRf6XNd*O!NQ|{c-dI{XaV+&2wHO zpsy8O^DP9B;VMRu6q|z}!98c}V>eLY5ZpgRi9Hp9#^Niw>|WCSiFiYbDc4g)OYSv` zxhO(ZgFN+4t-Sf1MmSN-+pzH7O`JI8cMq#mG|!dFX=M0NsU*Zm)ULi*=$^=^>)*_3 zO;Q~G8A{TM!;(M=Oy2v%W0pAg+h4Q(EbR|E;f%_@m6yHYbf7xwTTY-z1R00~L7yxt z7{;s;Mq5VwFQ3#%=xR5T;z6NZyp_%0>SOG1=3|vP#(X%!Uee%OthA33Q>x3JW-oa# zoOAE8e`*>300QSt{{RlEsHd){fKW+?5;p}h1V-TF=2nOHFe*hQ zSRqJKRFU9Z?;?Cwv9z0FwBzq#jE^Pb^ygVKNp6YfL#hqgC{QE9CJ9LxMACH_VSgio z;wW%|>F}Lj1J*IXQOT*kV z#gBlRhiO_%%$*ukKw4*&rgZW@Ly1>!J%<{+-}s*ml~CrHX-jPur}6ZY@epoF7lF?V zeVBH|OWM^2VZxk2{{W)TJF>%oiB&>H%BNtVq^fP!z|I#NpAZ&F7{4Jh8QrIl$p%5Y z9Da(N>>oO2oyy7(>Xq+}4K16=NRzQJLFc{wW21XI%h!}}ckwz}haGn)UNP*lzp`%7QW9M5RJmbbm{#dfl5YgxXunt)!1*5;@LwEOR?t<{Rb`dM zJ>@doR+S{~5em1+bNZr98zgxxJm$Qwvh>eYicLGAlwgC&s$F%*d~CX25va~6R9mO2 zVJj;u9ucIED3iE}kS~sT%DA*wHCXZ-r>IlwTZ(YDhZLzzp+ph@5%Tl^+8Ha3Wf^s6 z2WJaQEaxm5rim)l!qlIFWY}s1>47^=DO|%LtL)F-^18ICmlERBI>eNx!)YW$4_Mot z9~{qYW*2flaK1&2>CWmnHV1_1!>@$r%&a(@x|!%Y{VsaXEDPFCvu6+Iyk}9Irlc~{ zs0HxiOPUuqDbfidcjs(J@+#$1=2YMUuI*qMGpO5sq`|-I%EIF6wz7h!o_(hqaBDyZ zSpeD(Lj<08!D!#MQ(eOHNgUdHd9@4djY8LZaXQ>#zIs!t+!o8QY8YF-Pr zv~n}xeOAOe!q~S+Yry1_@T@K+EYtACJwfi_1Z=nZ=qp9~3Qc$RvgHIFnHM z3r+~*{Dt$s*@xTHjC&)XO*UPa=Q&$00MgXMnvg){p+t@OM@!osEyMoPTzT3)R?cEG zBxdMoz@p-qK&XWBT7U{NXL;ML@e%f%_7P8J++yZsl+l)QTEzu8(g@Pjs=%K+?b97i z{+%AonO_rjcTk$@WF@yh5Sbqpu9&##&*AmN-leH-ln1bKSJ6V~wXnI|5IphZS7jph zH0>3x&}sOCh4V%pr+Khy7;9FP=vpC3g%xa0-gc9GagVlluzr2O-K1t&hYK?0Wj%As zS!I@%T#~E6nLp(EW4t>>?1qc5E+nPm%(kcTD8d_Zok&uaq!j?9l>=}R0RjOAFNwDm z(dGPA!<6~4c`D2EDs-(*4I(Ds*pDse<|i6{pEKUde-8dv%*goTluHQ~+#K>3$le3( zi?nZGyyba~4o6Q*Sy-4WugeszDly|gSopTMzTI&b;{O0^ekbkAw01MDC(K@`s4n-U zAQsRFP$$8v0XOSDSnW@3KW9pe-zxWqvl{HnC8}{tYzmdR-6q!5r7F|Bq(_EkG0A*Q z*eAZOo|`19%gUJ|P(jq>oxOcS z(YMs5+R~R~*-4GyNq{2X?eoWEWm(%Dq41O0d(LY9BFcaygy~UD;^YDpAfMMCF*pM= zR|rv3(k*T$NrxIf0+q?Mi*gYbGmgFXWbIjbjz+^};#{M;(wN^);E1u_Eq|^)Hb~4* z7mTE9wEM|(Y^i?*R=L8N^VE-bbner?-GZ+O7qz6o@eTT8qqvEtyHo5Esh68qc;z8V zWY3KP1obcgn|1QVF~|8x;~cTP&X2AKA&*L(`qJw0G=+7j9*3KEBNoEyZo z6<{e;%+#qJ;sFwc5un80VOKbof2M~NtAler4ZN=HNg|=Lejuolu1C!JbiU81Oe2l6 z461!95vqfva9hIqCE70p(ed^~;=7;ya#7(aiBR4QlQ`v`(>pYy=xPfIZQ**S5u$EuJCO|am*T8T&UK<(Wn3r zsYp@iegi#6&ktRnaFq|U7h^e(c%-he(4(xFQjs5MQpqD@G1naj+GPo;;isKi7MiMJ zonin~3zbAokFMC{4{UDKJ@YA{$Pg4AswwXzsOv_fs^H&a=O#DC#-0#fcMM(q!uDTN zmRPzCphyDiBra#qc-FUyc+R&lQ?6>v9ZExCXW`@~cT5TEH^~ldb?p0IU$7s%X-tA1aCr5~(V^LV0 zjm7;fz94*4o-Vr}W}Z~yQm~}S@S!JeTc0yKbi+>{XMe|dnZ;`=PPG9x&^~9^c*eD5 zx@uJSsz^ux0J4$@gW@O4t~}MZ`;8tJzoy3K!MuZCC>kn)%S_R>vZbu0w4z8+9M4lT zj^6e#;0m4{%9*UG3QL-H5;X(*d5DiZaOY?5{{YoJq|(#0d&D;22oQWx6U%;E3v3Vqo&-6HUrrowbJlfrX%!^Fvopx|MWi|Gu^ObG7r$dKJ zXK3kh_1JA~@ln-#H-GfT%heR_wBDjW5l2cyM5f+INes$Rf1Q>i5ncJdv5YPt3Hmj zHWC{qN+RAbU*GG7P9)FEPAMgR7$R0hlQY+^>wwk763U8HuJQ_D2TGDTU(cQ)d}p31 z)*KLI>UIgde2(APbr}9Fjsgg^`jl=j85}IkILXfaP8B0?eljDawRQX8jvCLGT~Lst zr9LeH8v`*uocG0RUsk2n>rpDzU{YgHnAJ1aYj26)19%xil$|Nj0d`k;e_L4Nd!!?Z z)_l!&;e|g%cttMgN>d|of2F?oi1BW3?_K0C;<1tNsO{u`z{8`@l7yrZn-W0XGyCa= z9PN@@QPiEyip}S1&4~Hp4LdhH60F^|wZetx)#|9Ia1BZBLVPHIG}_iPXg^OpRlTWp zjEtR{hMjpTQWK~zT0&D1Ym;*VKJm6J?lfppBUx=;8;xp$O{OGB<+wX}oN~8s^)J;t z^Nj}-6{&Ixyd;#Ef=1*IAY^*|Pp0YHJb{kkEzS-Wp&g_4vb_GZp{2Q{WkqIpBlH+_ z?1wL_;tcUFdByIWi=nKh1Mw)R#RV*C)XPL|KYp#&cevAy~ogxeO|^zG%8 z3Mwg`w8}w<=Nn1E93zl1mC;=z;RMW1+xg+6v=`5CrqXo4Qb-Che@4Qe;vC&U#@tqsea*K%hs=$!b#ave z&FYmYbHr4jq9lVeAHJ9eF6`A5;Y&bnP;~`_kLH~qb&G1g`*ixxLDEM9H#`l>jaHy- zEfyF{>^Z!`)>s+D~ot{36nW zPJT7KTKp;;PR>|Pn%GHukwR4aybI+zev(kMu03R+>`fLKtSyM_MY24DDsU>CArb@LEWlH{S z@6*>7KL-0)R6Le~-BM*zM0iP=xtKipVv=LCTBlTm23+qJNx#H;pD5pb#ws610ClR;2J>#cJwUQ6y_?u}k!jXYrCQ}( z6X)h5ZTyT&BXq+H=l=i?5O*YfRYRWkzPz=yFG6&uQsw{#4BX$HqUJhnh({57Nv+W0 zw5Szo5CBOj-{f&*_KEDzQlzQ2+gg%>PLPvh{ZF1Lo-_7&ub@lHEjW;%Wgtlx*g-e` znC7+$!m2GSFCkX_t9wJ#xbpj#7CNVJouJ}};?C5oD;`pd?sRt@j>h z5$-F=DhnY%YD#55!5X4`TkRm@p%vMBGU`;2+LWPiBz1xR02qt$PXPtpO%*9YLSn$k z@c#O5jK@vjEXehd2ioP#(=U0f)?rD~WRbFO9M8%(j86M6rG2LxZ&JI@41|N>0Fl?v z?r~vL_8g4DrU1@BF~7{}aFZn=NdyDGBR3a}So{I(w^ULbYJqx)k)RcGh}#a5P#K&m zpRQw?KuUH-!;IIo`jC7GQe{F)dLC1;w$}RfKW2q4(6+Y|At^{-Iq;9D^@EC+Anb;t zAzF1b@)nWfDx0WG^7Q(7;%!f#tA_H#r7#i@073_--hDAI{!Pth)r+l=%I1I-Pwl;& zB|+py`aecnCq@Sp?kERCU}-ow%&8V zg%FX-2-O`hBRMVB$<%H<tYF;utxHz3T{10a=&*{ zv}yPRN|pV*{{XHL$$0Phc4Ut2MIewjjUW@x4!x{)eAT8y5% zFRne~Zly_4x8){Di208!eFLYB?DncZ@r1Ov94^1?qqGLIx&|3_YD#uQbR38uUtCKw z9I>3pt58WKm4uy&h@BxIezSaYKV;eR^4Hna^0g#sJcyaJ&zAe`^15jFk;G7?)fB1# znVFcG1D*O~=Y38){H1*CkUlvG0XgQp7Q^{siUySGA_+;A50}d4VsXv=t?-N7J)5|s zG^W{4h(Lj`+ImJhLm}fP>y#7TB`PFdK>;JLTt|CR;6}K!DpG)KEhtjPgls&b!8h9( z8hufUT5{0S$wHo}eiF@1KvPb5_MN1g{{WmPn78hWc=xTc;*0_mG=O<|-)?uoZ}6o@ z4dxI^Q>3TiB1oCN{EzJ2vx>6?id7XTc!FS+86hzT*L&mW7~t`2;ZWH9-qNG>`HGhJ z#C2P13tl7EN2Fp0oK~0frxI2pUt5T^xnf0Dr(LVi2-7A(-+1fG_c-?`;IUDfC2k)Q zjFLzqXL$9ut~B&bYYtX}TpB&fSm&Tx@q!18oH=kcTB0L)^=<|hR_Cv;ssc9%vifpAiK?K0qiN5wbNP)I3 zOuIcU4GycjPsIiaN}vFD9!DI>*}i@JGdFB0e+r}!V@VetyGNkQl zg^(8!<}sV<8c_3ep>%yYD=6;LsFB3E1w$`1jZFm-LQpS`D|xSa@Ax-)pq_$7X3tmX-I7$tX}rQh<-4Fn(C&K0MA{sNy=u2~Yjf zRSEzCRkx?64B*Z@b*>lpRVesYcQ;8tm~C;>5&YRHty7vxbrsCbhphRD$J6Vk4>(Y1 zbmljZ?4`J4j0G)ZDaQW*D2;!XVtkMH#hI0HGHddoq^T<*O9e(@J8FT7CZ%psx|dO< zA_b(2Nxu8vee5wO;l3kQw5T0l41`Q3^Zo6N`QY5!3i%-v92EMmiM!;bA!_jWV3`U@ z+72u3)Oc_B-6Gx{+nRxcyzPIs9V@H7+O=AfWpp5qmHBeRrd>>|$%hgWl&9g6RASR> z^am5^nCRVM3mhYGa^?K)fxLQ9+vkpU;VO!(rl2EI z+e&5t@csE)7RL&4o3FIka(WYM{jrU#WP$tG<>B7fSX$Na%T(qARt5p;KKN^>;WnId zK()l!PwZlB_)FuwjnpUlVYT(P5~JY|t&_d}xRKhYaouP_<4Oa>9h)}tWVSTzKdFyg zLu$J{RUK+bDiN@Vv~|Vd-6Fl68nr8M4X5^hPdqT@oIk1Xl!Z>_4bPq#rPUG1OmvnM zD@0f&(HVLPeV>gQWl>f1Cc-Thb*TkKvXRQO09JA{<_#U;XpYFCycdEWvBHlSPQdtN%??aMe}n#5>nItq-F%t-w( zu4UO`-UOw+V{$;Z>4I;l7V^3`3!qgCljOW)VAZ`V~KPzHYMVq3QoI(|;H<;VY zl;UXbWyPl)E;N*=+#Njn?TFrQz^=Ab+euhZHn!imj5)f-$e1$jQ!a6nBR@{1BbPyc zAsAzOg4v^}3PLHluC< zRW;_Qg%!vaiYAf>)1<(dI=X|0tgkz7-he7m9H;(&bLE8d4i;N&_(4=BVf*=DR=9oE zV^V$+40ZFzut*2EsC5moL0LRJma{g}5JHK8I}mM&E?>dPejx*qxUj`{!qraY>H#ZM zCLuumy*#mHaK{xlN|CKfNa{_=KQCM-Q851iO3m8wl;F>1eg6Q$gy|5Y9M#g;j`3G! zf{C)Agr!LnFb7Ea?}=S^YP6YUAV^wvluu8tB3b8al-Z!3^mwK}{BKNWj;oFp5zIjM z57|^bq2xHa&bUcwd*8x*tY_EkdgAZR8l=q}Q7dUh%K+LxFIm=nN(GCmeKww5NrwM2NNupEh=O}Ct?W( z36JlGYF-VcXz55v<_PG1T|cfQc{L3s7L+KqJa#fXSBXAT>4!c?94TF>9EBEpgI#gd zl{TbmH=oNJ+S}>F?o+`nrG%;yjUbO9ZM?SW&l1MP>j1}!B4P-)EG4__0cd{_yoR@w26;-}S52Z)5=6v+2<5)l{SQmhy{j$Cs)ZE% zI<#+iw_hp4ryKUmOr>c<<=s+bq=@Ot{(><8%=qoR^+*}`jT5=@;!c}Q1JF^0|?2_;Sql4eH9`(jwm zd+vxr^o1oT3XnA`pdN)3_S>!_9Am_& z%d?#=C}|h57lY^IaqfNEYm{_q4Ys7I!KP+sVZ7`k?TW)b;{{Y^Q1aAHqw&}a_4T$B z(~?J9k!j&^w-tW&b;c;IVYHdlqLQiDULa2Rw)iuMo2YNOBoaxy+BURLm+o=Oy_@kt zUXXUwk|ku2F9HCLo|Ef~x3gT;%G}kz61+{5W!rv#Q-3p!Pfv}FlQ>c9G|q4}npWOp zOlqhlMA#}PZ-(dPinp}TytyP2r0bEUEC?e0TjKHI+>iLP2~28Af=C{4Hj(RNigVg` zE>8}&{{VJEp$R0-g#MQwe0Qmvz)JMig5o=_c+MT~YgD2%!t8XL#7{1GmvD>aq_$R_ zNl{9G0`{36q6hWGVNaQts}z)!=~INtlNxL;QYX&XvFNHBPEgzBT34tWD`Crh_vM7g zq~6e0uA$%xR<{lcej>~Cr^Miil1zHr9_L&L)hk6vOe=6e0}w6-gQdKxRT=_?H- zE~qL>kBTfurSWiarv{@jdD4_5t651AFh`h(`{EUua3Wi!RQOa)gbN<9eBf^oag6B$ zoNa1HD_+1YGv(R$e4iT5uZch%?|)C08TgroX1$1F;+RJTz=m4QE$$QRyzpVt%}cNzC}>I44(sjl#?rxyoi z8NtnRigFSNiJRQdru+KFDw9u9?h1WGWB{BqM1(HrDhV(-k!_Ffc*It(E^&&@NF_Y^ z#Eakb#M3xnlVPP_5RxyqUSDhmiUh4I1!>fq4n=)&Byw#-8>X^u@W^ryC}*Eu|}k zXo5Q5dk>WPVh>Q#?`G;*`iA?gtMfA`t)h|QSOCB`CfED^=5bSTBAv^#j`OKWB4cyw zix-D;U*a?&I+CRU3f^J`_nZF!Lx!F{;WSsd?*J)ER_1vP%trqJ=g%KM4Ba>&RD3Ma;y8uKi@O{8k^@`Vttpnq&q zd|$(_(B?`=4k<|`DkpVZCgRc0=rPgN#T8E}uT+5{Q!#TRc$Kxs%ZE)p2v|_m$b--c-eYSXT|QB6EU9vrElcvGo@97+n_dpr9+=RI zor+3vwKC)GJ*Tb7OQ>IoCgj|R2G;pulZJT7HSMVd(x9U&1dljB@f^NXhA$+B#g)?>J;Xp%B_RG9iBKs%6C}lm z>4{wfKIQ12vyWmd2R z+w71rf6`@$RaB`y6wRbq$+q9$63R{%YNsq%2>67Q0r|X!@jS7f-BaTHrD#K{d|HeO$qDGG7J zr8_8}k@%!+FTa*5el&OZreYPTw>Jc8jzC-K_VdPnqUrjYz0O)%#|B4D{{VFz&MTd% zX(v%vdZ7ebFCR+->xT{x%>^!C+Sa{EO2O6elXC~G`3N|2dxIAJ2By)eKqeF|0!8EG zc}>U2$_@jnVU1nbR1~NzYM9d`%Uu{81NRbBKE0uNgKe)l%VcAot;sl{gI8>#EV30^r zBF6W%zGo7O9?hyU<^r8zO{-nWB*K6e-}kE@V*PY-FlUgrJxGHWw<`AbdhIz>32lWr zrusq^ePTC{{6YDTo-S<9kJ*1G&~)oeuU4>2iJKVP&wO$34Q4N7bvBmtohuzV{H!|e zabRWqe7w$wN*z*Ep#&SkcKHZ6_>WZd&|ka-^01QEio(15I^zfG>mFgJeigyx2_kgw zv|dboY;C&6+~R%`Q>h6eon;2|rC~NqOoP4sCQQ#c_8VAO&Jyd%R+Ts<0Wqipv5oJ` zXak@a=}yk`P*+sOuJhg!7Lr#g2d4Kwo9*k1t&gGuo7q)+pME?llD~t~k>)9?N)(i( zN%d$}Y8l_c`>^N&G}U+s%Ka+^5_ zLiG0`K~Q$sPUCM`g?S8p7Mo5bmmyoHgiLnv_g_M|V~^-~`zT9+;PZ+BE=8_VZlTCb zbl(t+`-A@g>H5=H&X+sCjiV{%4x%HG=&8pr`#tvkS;N&d%{uRPl-VmY&0C(ac;EYW z2M_T@7aip-xYL@#ljGJWN=b}xb)GZIRTRLXf8Kmv1FmXBgMa7kUaOr14YH>CLlQJPJjql5G<=r<|9v^^qugRX`yRv z#OYF05qpHhbG(DME_http6a@#@RP$XiTgpv)mRx#JK23+w78U_OagiJ60NZ`%4#$+ zk^*-UfCQ`5f+OXKo>iVPnyyl{FHi~ulK~<&lRV>WJyTbywVNqBYC(yQQRRGKYII~2 z*`;Qof!)G(u9ANZLrAe8M2YkCC)Wq?=5nOyDj_n<)f>NtDM;`r>1kaZ`08c~W4RgCNQI+W3o0 zsC-_~QOxGMB&sKmI~8@>_MSolW$Vsudlh+_#~mIK02vGMCTuy}eeKg7 zGnzEsV$+1QohrIiG>BI(-m#-{++H|FsX_69KhfJj~4aDBSbF^A76Z)*j z-6_zWDbwPVkpgzHnEf#V?MF3Fj-j+9DQCMY3xWW>po`6<+zr6T)V6l?Ysg<`{{Wtc zR}f>50auhYoy)pPl?1>k@P!RWm&=|Iugp;4K?O=zgd{poovYD2@%z+{&s@q#%3i-FaSfK7M$`^ti({8!r~7 znZ`$85L5VM9u8Kva zDjnXSozoHr_4DT*n2J{gJ5jA#h)fU+9`DniK4jtRh4bd}x{ZGlyR86tlNTLHy|41? zZ22SI32iUWTPD{Mx)X=^thCc1E-4|fl7b4fsLXgl^PD|rJVIZ~8+`aul8|mEN&dK{ zcz=p@A(<*uZV*Tykb^O#!P+lwanwxLD$W&}vh z?T)eSsIM@iOJu1Ea&(CyI<0u0kd2`AG0Od+B-CcX2`%?(StcXGMWA|tHk^Km{WUX; zEe`Cy{{UI5Y?^8(Axpa|r*fX6hOMh9vYlc{l*y64{(IZg7M62T_E(*${`GyuTXJH- zl>jZZiL`R?j+m`G9MJ81H0}=zz$q#VP}HIMMfU0I>5CtXtG(YTW}W1=+L8ePeoj%= z#(5rIV;XwtH@=T6H+^ZY)|76V%2c>KDk>_ONeLF}ek)w<^Or#B3WROWGSDeh@laFeb?v(>q!j&dKAtdqw{{Ru|bAKqn>6`De zzGGa{hnN#F?E3ap60CarZu-5O@}`y+2SxvQyifcFuLf&8cn_sgfRS z8Bqz_Nl`q6LBmfI=Crl7lc_ElNc^ID z$=WbgU2vt$+@ex}LSaoWT-%WlcJhpU3v{4l1@!Lq3XB4d?p$jyQx1;p#OWZ%=CpuE zP)E<@i!X+FsL;@uMVS9W>V~8eKNOLAws8CL=P`5iiNbI5-yX>dGG6qXBIM*1XR(TOuc(g zg+%S?^7>)FE#W6K5p-!HZ=hUt#HIC;n8^=y9sVNn!BHxXN>A=T&LtctmOELO+$+j? z{JMEzS2z??tSw_wluX(*^cZu?6Z|>7DkWM>L~cCe93>r>lIj2+)aR0LlTK+;BZvl$42>5%c}^!()6<-6L`p18Yy)0cLz`6q{d77HNQE}pZsIQ=Y*zV=OK54pk>ODyBX3XNOiB2a*YmoyD5^y5%WbdefN3}# zS&LJvR*`Av=ZEQ_CzW~B&=yoJ=hE6Wpl`7PJm7!E5*eefpS&QHduYu|xbwzs8k#iv0{+Oy(fs(6>QS8EKV={5NfRHS!cw#X1PLp3xq@;%l zfo<^VO~DAIdsB%@lsfXZ_#&#As$`^S_)VjinYW%J8E~cRwNxoa9pS>4G?bn~+u=Ii z9a{+|6Sn<-afx_Y+7g2pjyRwePZHUfim!-7-0NPSjCPC}-7&!F+;U8F( z!INds`am46I(dCCdkBk=?| zM-{^PzvrGH7%+K=C}OewVZ*;96BNP9K7xxpq=ruuQAS{^RS39!ZlRpQ1d7$p@$FKWrD`uL)Bc0l`GG?i>w=2t)*l01vhq>F9xJ#1cY4 zBoiCr)Xwq(s!s7K@R20PURZ+G10WhW>by*HCL<$_ywQ;yqcGl+~qaN0?7sHL_iToE?4C;*OOy%y(f!Qi5Rg zj3@jwrCrLkL@;ZNSUy|G$(Q=u;h^03NsPyZHyu&W{)>N zxzc0+qnU>bCZU~3LV-v&B7cA53`d8S$#8_IZb|il{qa4?#H~qjB5XIgzwhsjpUP0O zpg_`6KO}P=y)edV2q}!5_f?)>LlvkRe7t}jX83T<7zn3HgQ`S>`D1c^-?@ofTpSHT zSKXyof?_^n4BS{wC+E5^f*&0phFdj zk#7m#&zDiQ7tUxyP9z|uR+7C&2q*slE%|y37U9YUxjnN~U!+rIdXnHuyhhVA*Y`Mw z7LHk)Y8tgAL=t*^eDNcqs3@ntr5_9riU~fSxEPJ`YTRcqacx0Q^8y4+eeKhpJqFDu zyNgp?zNMXBJ~WgviWBww8M>w@WP(4j6W5aH5v{(HwxxCt6Akw)wVW6@BxpXAGIojQ?X z4~l(u#0@!Wsoqi)f-FQ{(TN`k=B2lMD%6(}s3zpz-c!FUZNzy&zgzzR#vzf^>P%#|GLc)2*C7rQrB|CwlepjaI4>`tZTEDk zAw~>DAD;f0OD@WsDDL#BUlA5I^&{txTxsm9#&pS$4?qv=f3^kA1SGk}(`J3cilKQ+ zY$`2qnELti#@QuGSW{?s!^uD^at}YY7S8jcrNJXlGGoLi*5lHDOa{$rUT_4Ir^N@y z=6TPr*UJDbj#RR`{iG`khSu9)1f2?riPfb3;}ZO*G4E8S#nmYVAcX<+Hj(=nuJWv@ z*BF+Rd^-RldK_%#X;qWdB*}>iOy5x-+s<&KT#~Y8Yl*_Jv!>Ac0zpc)P!~U;+`+_c zw$(!Xg1ss#1QIWCY3a9~8EN?KZ>z*rw=KHH92m`1>QuC<6(KRbt?SR847AmS7%~TB z;Z1Vv{hF$9nfQUyCN%Q()v=zQcxun`#Zy1tGBqc}0046{x2>a+ZG1${ZB;!_c!k$#LqabF2&*uOdEdZ0M-z0kv>~FNGCgSmXyl2-XmyNr|%;4YakcQ9I)riUBE-V8M~*a85PCl;a^xxL1ZL z)UU)kq|bnpAQC{|nTh_mn$u+TX;M_AB_%#1Z-}2s9LC3=JK~$ExKFwF|^fBl)*#Lof(SW04aUPp8`e<@L2$l}OR2Qb8t1g#PW1 zOKX*MI$Uu`yxOI1wRd$TT<78Y?H*fVE12a^zflM(S1@K|lRaW*7UvE2V^Nv5haDPw z!5|&{fs+%b3J#qD=yGD@oQSC*wWf$r$8fG zxpTPsW8K81iQTAn){6V#Gxmj8iq)2>ilRONGd8fj_Qa#v`>?k-hOfVM4tIKiKm;9g z`MzA{FyGlvXB8Y{ow8kNN@rfR`QBnr^(n_<_GiIVyc?Dmf9$r>B|v}%n4L;c8}%d$ z&KTJ)niF+X4K#e^MXEbAqU_&?z2)GQDkDOoK+-SuBkSvmn~gZjE^98TTAxd5l>{T= zw0L0K&*ZF2eWd$kLh97hOH!F_0kES9o9>?|o&Nx)Iai1?m$@|h-@j@GbSJ^LQ z?#p-&x4y;lyw;YnrDjdEmh%Q0KZ#E8QA&o8qi+dN9D(RWyK%Srd%T8*X_33%IKqN~ z4eOaBbjIRM{PDxS!JVY%92%u1x{WNQV3aJ_$lR!^B<*r+Bbbi<>{r_9?1MCAnu@m5 zPV5cgE12odObh;QQIC?7N2=4vUQXtp*<<>Ks#qnUY#z$B%Kf2u!?4aErpxn&9`5N! za)t^uCrOb2D!|;v*p2&J`xkKEwr>X1aX$*CjgBCK>+Lj<+7_eD00E>}f}390?mX|a zZV2|I$-f=CT1?q!P(dwtijJ5djqf{8&lHCe`zUc=v%Y=&Qz=raDH8!uwJ9r2ugDY5 z_n0w!d8KfP-B@sZb}K!v>NrTu9~QnFcFWk7b=cPw)n(bWE6lpXib2$#V{z-x(9R)A z5GS5K=XU$-rNX}3Tma(M!#Q^qFomu_8eCT}uB4IZBJgjIl3vrk$lOcp<;ArWS%nj- zrENqZ^r!ID1YdI>Q)|p)?6f-O%-VJwISXq~tPb`+1yg{=7o(_EE9p{q^*_@I6e$K2 zG@mhoD5<-`6r}1;uGhuRs>-_SE9h_fa{Es|nef9IJxxJHc21*koDN`rMzllB>PtG~@ z^~csIbekv;AN41ok7^ z^*-A1-%yA~h56!Qr^qg0g zds+5Y-BAg0rRKZ0P_@LE*!?*XkAVLG>c#9I#2(E3y!+)Nb(I_^oK-2xSJqUZ(zO%a zokZy(@wm436W*WcsqM6N(9}6ys*bO~`)gN)u>!_+KM(%^E$xoK_U`t3$bG1Nne&9U z)jdn?weQrYKvI&lopBd1K#l(ZTq8rMd=r?SaBx>coLj3r4TS46Mu3WXJ zN?Uodpu40bsCn;feu=$|J15JS?8}Giver`Csp%S9w;zcl@3Gq3Zj;E)J_2y(1y%6B zYb?_^!jh_b)Klt{p=#HmHqq$+t6! zy;dLZv^e2?mW|ApP1LSPBj@3D4pf1|os?F;DgiXEyiJOSfcDD=rY@a**{Oww&+T>UMRT>CEBT5}fPzhM_(t)>^OmAyu*`;oozv=_`QpEEftm|xzm-JGBlIPu; zitL)RIeMan#3Y(<=_#4`jiO21?>hsC2XAk>=Vui(%>=0~Afh25JcJQGdkGdd-woZr z_R(LK_Jvha)2ecn;!+Ao2~tLzktfA7fA1JSg|m8I)v_uU9smlZ0I*h8MZqz99lu~{ z%F}_Qrr9<8uZ;C?R+rUgGfV&k);unK>_^x-qqN+EHOy-koUN91Iu_{?<)ub;NF4m* zq?;eu^Mc#ptiL#A3T~+)rA;B!X$f;eN)o6f7*>&TCl<$Txs#bU3bVr532`b*Xbvd~ zxJa_~a=6}Nz;ui=_8-D-WE?!;s7yRkRN+qO{Lo1^0Q3EER*kZ_^<+0@!0;1wUaJfA z#t51K0)ae|xzE~rfGarPv>%2CtGep$uW7GY@M+z_Fn8yi|Mn3F`MU#Zj~zt z?&`{)Qc`&&4-!ZFRpGuQx&1rYuV{`_Q?dB2FIX#b2bxKpuljl7_3Rt7*SL>~wN$zp zqsqp&$`%nS02KH%n?jSY2IHcmL)3Llu9^M0Q2I1suyq^(9!ho1vPQTOEX%FdC^C_( zFdNlv;FHuskJAlZi6zby)Jp*RqTn>Wkt*6b?*ROX!^aMLcYpMD<1bca z^-og1Wo4wL#iYkVQcNC-#BgtO!32V|*y$q#v7_|0&)uefqVE>dAu6G0Ri$!}7^ zC4KV?(hZCqJ`*58NjBv_7A&TFZOHhUpoX8MN|ANw@RUWjpYQ8qA3_@~ZM4Y!e^Vdk zZ}?v-cz@Y9JmIX%-JPOwmQq4wg5KmoF$Vr%eT;oI{{T;J!yVzC14&yhd&7hfvXWpZ z4+s)%H|5W%#J-a@%D9dhD5r5Lg(px-jN6<@@<}Gd-sEEB>~Y#$wZ86{HkMK^14>MD z5qv?eh5G=&%C-+!6Jkb@e{|2=?r3`#>=Qe6rqr6psoWuG2Yn+^+-+ma%V@{v+uFUp zBzH8-Yt>6rNZXYwS{=|*r4=jUu?7sEDaYRb0BW4badii{I2`U=)hV6ih&MhcB7SP} zo(1-x_88)R)@Yo|GOW)lr=b9XA8)&PW|@%ajyPt8oVv2P>ioT@5~hQIl{P^!rBfjzq2FwMAod~l@1gAmmYavT znbfmZmiwUdgz8@6WGF?s5IJL?_#gc=^G?baRQC})w=(%i1*U_ET$|}65okYAz2dXt z-Vax1{7mww>QtX~aZ6x=w5dr7fPAbrH?i}^Zl_Aw9$wx@2Zgt(c8*_cWLX`T($3Vl zNzNLm_xeurFw5$R3N4Y~1jq(GIYv37+E20+@l`E8eUWNsG|R%4NC!)a+<-yc8*}(% zN5g`Bh`-blkB9?2EyiypZX~I;A9a6(QdP31cI6sz(;3eN(XDJ$(4~__QWCVFf#D~Y zp&Qz6ZHb$AvEqp5SxpN0aA-Y;=udkL()vOSod;QY~CbHas86uw=or)o!Z zol~tbvUy%j_VE~#dn)@t({bikPgPY=-8EZlN@^Q$lAl4w!w46g_S2tY-0W^AJT0> zc1N6l2hLsL+`(+7ma(`CbHtFYQb+R${;`G53qYCNkKm*~d!Aa-C}*Dj6@1$X70m=F zYb7F32n8c>G1FWF*#1GrHF<4DX5~}jpb2H50bJiuFs&j4^Ebyh@y=Q}SB`3^_De2) z7`X7-;Qaovj-&Q(<2=2Lo4sHC=GjYakPL)P!4tGVo|y6&%cT@~@s3pulr}Q*tZEL* zaxTxZy2o;AFLzFz2`X?pN=X`EfRa8@^2L3UQ@oBl?<*Inl)4ELQY|(g&EfG|>4Q5~ z_L8K@sXfV+w)2$)wiZsJ70f~BFbwT{5Smrd@XbAYt(MnZx$cZ8wg3<(nS!Ar_Qtlh z7DXRVx&2g{S4}LYSN>7Qi%%ZkoGnSlKF+UGG~#>I(K#RKtGM(jG;m*9P%s3=&GXaWh_A4EN=^H(#T&!}?MKi$+hPNg)r2-4zWVq{*? z9LcdfzHaa*6Ezi7&ZP|sb^Zfku#!AP9~S1_Z#=o;tuOxoz=j;>_E+gKJKRPJ`mx#1 z8gR$89|kt{Dq9tfHj`0C@5b8n%7&RUG556M-s~TP)4&-c%p|ESok(v|wLpS*^#kaC zn8(il0A=1W%(xSYa@@-)b;Nh;LLXooIk5Omgz~hGnEFA(99o>mhMBBNJC!`pQJ)Y^ zkL5Ggci$g3>T)%~vAZN>AeIvo9V8}!R9fSg79<0-R-LJW6*O*1n+Yr zOAoW=cFt+TIfn<;scq>(jVo(1rL{i@Gd>fmmpmQDc{$>~FKtdZqRlAOZ)IuTXL5Ro z$0zoW+s19!C$#QEnzE;nM$74KK8Jj1X?2nvv9qwXkE4VOYw}%= zcuIDM+oomMUmRwf3B=h`mDxM0SGqdvgr`uLO2)<~kscm+qkBW6%U`EhjblBM=}K7CzjFYIQc`EdsDkh znyspe6*QDN<3bi}sfkZ9aDM(%^b$158)T1z&(&Y)u$wWF?go#@?5=k6JkKkx?8m@xiOpy>NeL>LJjTO*U|SzA>kPoY=9b&z z+R|O&c6SExLg|?ZNK=eeAnQTuMD5nnMDnzlIGpx1n2f8765C2pZmUxS02FRye552; z6K%}mt?XNfDYLA!C2K;^^IGIAej0#Hq;n)p`FWg5xLY|HUlq69xdASPf=Nz@GJ10# z@r-$!x;{8qGHqmlwEqCgZT|pLKFbrGaDTs{DRDIv`c`fsXta8ekV)8IeOTr{V@%NH z8KcDkNlR_0E@d($FoXJY$I#DcP6unWKE>*hq&W3Hhd=-;P}rmngh=VuAh*@r2h7dFmei`)8;yPq{UdqRqffAw95_lq~8r@u7+vz zC8f3;SqTj|r~xDx1twE#T#c`ej^WJitAca2(bc2AY2}XYRWg!eb7(R-b@_Z}?RVM{ zd^y@%D{7@FdY+*#GE{<@C|FWp+n(RxW9rwle{3|~)ZK(-`TZ)}8P;0D8LJi!C20Um zlgu4fAD_z>MW^U7t#H8~q3lsU8;h^WAHh=2+zw2BpXDK z2qT|BNcqv*$Fog!PicHZO0+noR5jmaOP`Dw8c&?SJ6T?OvGnJG_=IO!Gt|%NQ+f+; zHb_tcAep$BJCnKd#c$d-U|;oiW||gT{{YlcxD!t35?pWLB$L)i`kq2{qSqEMwZ|j5 zS#iQTqDa9v+rs%R!lPds%W`hb6@j$y_fn>zJ6J=Zp-M1oQO0C5r}JIS5*5hKoc z=h<6=D!Vu0l(OwJ^!0SAQ%(Zekf1C*e>XAbk3CCNAEh!gH-qrDAT2VM%yI?*7581C zMZ^wQW;&OvNbzsE`48Q;j7R%g;+1D7%C3E}38>?L|X?g)f_ zQj;Bjap^1^Ym=)mVyOz#rC@M{4$>XO}X8c!{K`v*u{%Vdm?syS)6f|3!TYzwYZg) zkbAorNF7MiHZWmVvB%S{8sWz&IAWEc%8;Vkb)Y1I6{HQld19sZLiT;iJ1on?b%hR8 zDJfbZxKSWP0!&!IJ4Ew?H`NY$)n0hZZYeFL#oBiHc}Pwvk&k=J>ZmVunwWMoObyxX z#r&d|!f&1rsAa;asHaj%k|svO>Au(6!yGrl+&i6idE35aSbM}#mAc-Qkl>O&Ed<_3 z-+JCT^VanYR&7SfG{Y9LbA~_Yv~P z&}cNKNJ|Y_qP}C)W{Xd%Yrr@a&z=>I=4`halA^srL(b7} zFZk#sdi>QaQ>c|on|!~2z2Yy#nU`}Ar8{c$?silCICC@NEJzyUF&57`!v^H!rdMLUUWRPF-Fxd6}1Pb^J1OE*J} z0GAV`%_S)lCSvpS++%I}cRD|X8=XeVp0E{Iw5Sb7U`4`4J${@it1pztGJLOq@&}Um zP%G2$i33lHVk~zg+xy`6>w*|kQ{hPv0tgd)X2v>eogpMD`?P8{(@vxXHk~@I6b7$A zH`wk+FO?si@B?|Rc|z&ZWE(HUM8^JH;`hbz#T9+xl<9Z8R-v_|5`5zjI)a5)sbLy* z6o?1%pO;&D<9E_#*=2b&gb!#@-p{)fq@$`z)Y^PTVhPnHCwb+LfZ$A}x+jo@d@bn! zjrqYb={~rG@SCY=l!Alegs$@&$xV-z@%F^Jk2&{7bxxHaUI4z{cvq@=gWOI^m9Yt3 zZvOyl!7Qc@@+0-eW-Zy?UEQ~v-sh;cSza|aX&@VTt7bw<%Ue=zgIZDw+%J~WjT zc?*I-k$>Fd+^nj-w)s##ggNRTAEQR(t=cyG~d_v^~dPGm7`>1 zbeSp{wZKzZ`mQravoOq1A$Q=G9P9#v7r>{)IcDH<~Q5V9g&vy zF-+U352L)({E`TRzd^sBE`t(myR&KDDYOA$0Ppwt`C@U9`!lB}aRn`EQe-GZfRW4M=Z=VHC}^eP8esP|Jx(NKizPDIq=Q?)X%ii8~cMo}qoO>Z@KH;brjqO@I^KphRj(i;-hu zEJyzUU9{p&OI*VNDIqPZObCs)k-suFoz5lc;PfoY*0QAu7Uv$ez8JIa69h_pDpX2g zNtJas_35@Dl1IGzl)A~E1$TR z*oB@TONDgmQBlTujDIP_&R!-IvL`T-p3Xr&6A9LWblj2O<^yG130fe#}p2wRI2EAUN8!IHe>J;j~*;_@J}?$Se4Mr%!Z^ zMOy$;LbtdZZhnL1Q*{PL3*~7&(aG;^PP_DK_n7yzSh6>z9E?pv(08?uJueucq9-2)ByNwqZqRISFuX$m9(uXQ;AFh zB4!7~cKyde5$mB27CBSNCh8#7D6b!ID;c(47Aew|ZXn!&0G;j$wWs0p#TVMQ2Gr$E zBSKZC3S|k4b+8*jH;ZGaDrsM(MunwI)g=WXN5Ud@HW4P#c=L#_9q=&E=u}e5d&MO{ z+fJ0;_S~5x&||$l?u>?>7e}fwk-Ijy+=80ODM`{~OkB?2JW9Auku@*2qv1+Y2$37A zdGqIouF$(N{uxr^&9|j3!H)C6q=5nnoBGZ(vaGRgW(i8sEu^F*5%C%M+aFB}fHoF} zq3zjrug=M`#j(N-goP`>J~1Tkd7b)V2ix{)w;odfB_d$}8(3^$-xn_p(Y2Fs8$n9( zX@~%)#3We#@y{Kw=1R@8$8@==*(AZ!q}${yaJ^PuDP`#Ic|DYKgR(bs9NmPZ7Xp@& ztAMTl0G2)&k1KMMiN6zYf>Dw@$!Ta*4FU{{e@tuG&kv(9s!F@R45mN{@B`-(1oG$Q zizAM5CY#FDsakbK;$#8q%#2X&DKYL$lTbu~tCiA)WqHDcD@$ayFFLtuALADv4(1;7 zlvt@+Pym8TM)4OPd{dleMGq8KBrA7S@cbzgVts89_Qd0}9Q=O>?i6n^X^;Q_ZO;Dy ze_Tr}cEwhywgZBaSJ#5#kXGVk+QbC<_1OJ!732J<@itbPfYi9iDK1I05&~n9lgcr# z6y~CrIB=Ctqu|(;i+OK+DV665t<;G^oA`lJ4UZy!f7cPUyB;1FHozHBI()5EsxXZy z)C!0DzP@7{ibcL;Ayc@LPhI5So+MfBTpUSS5+uZ!okG@ur}rNxP6pv5*VZzZQl)Am z&zx_xPn_dhPVS~kDJ0r0RNPj|sMMlVl#vR*^Gr;A@D4|sHkyQ?DhXWNgAw#NwmW?6 z?KD|Sl`RmYg@Tofer|p)vL~pG?TRNMsx0TKLej47!v;w4f1GMI8(~yw&iL#rQoUuy zQ0XJY5)5+diFamCH(6NQWk^cYbe?)-h$GG{e6bTlMa+#UNY&ke{l82pz}ece+}RpQ zPKPxR2nIxFEQb3Y8eVI)|n0e!`$MkU!g!E69Dn@AHA^B4lJf*#6Nq%E}# zCSul5=k&pOY%-+9wHU;jigl_SLC8`pu9P~q!jh$P+BtLb+Sq!j$lHCnC|8KdRC)gX zmL`DCb&5>w(fl%G5N{{Uka zr)OMRjGe~Ao)v7VlRMx0ZSuY%c~)NHoKjMgr9LE!_4UJ|GPN+`NgA8j!2S9D$;NKA z_A-|BS!}YCHQ=qru)#P{Si3#C`>(G}{5;X}i`fcm`jAXgS@|zBzc2)L6!*Zn( zl_e@r>u>LehC4n+V^Rv5l`CNY^568t%PHYBwDOT1V1e-tcznuoR%n!xp{CP2YWkce zM-h-y9jO4}S2bOfJ}I@OAwFd{Bk8^vYdCTIx%pBQbnj!gK3C=S`t)Kb8q6paB{G2m zc^}+$#C@L6&1r(#bf@q3#IbsVnCfySNXPSPrOFnnXB*U;fxH_>{ESU9Z0!K)I`qxV z$1gqcBY(1{QoUgsbcoX*5cL>i&v+r)Cp;gTz@W??zbshYbaDzQQbsP?QC{TEVWv~7 zP!b~uSN3|#>(rL~N2c)~Y;BR!JllyX3NaQ3`r>5KN?7rtR0ZU7+Y58cGSZgW915#5 zjuieIQDi728;~H6EwI&8%8Gsni(DPPc(Ay-iMQ0C2#DkdOh?+tz3D~lI0{{Ww!2hH*()T^Z}os17C#f&&SrJa4+L>^qc{bvzA zET&ZpI);&?7><8DQ0+h>nolhTKwbw?jKl z2jhMtbv_7E6g5Ex+w-^SisHVSt2BGWmjZ1Nk^4LSxns2Ya^tzlojT+vn*Kek&CZoA zULtG>{+JEy?xh|+^o>)v+nnu#GL8bMeUP;!N#ti?)Z#>r%U>n1q$w#dWOC>}cKYL3 zY#0lhu|?=On=o-<2v)f;PX7RZQHiGwwVBnWE-5S3@PHLQcc0$)k#Ij_-NWE5g(*q{ zlpjxBv3GWR*^3QQvXGX*(g*vK7wO`^>+6Pf7|ha^eV0I5qU$os>Q>90%f1*T=C>|oN(p;Xq(+$ZB#nobJ1PFkDIaX4(>9Q9bqMGq_q>lhLb%7-@{#p8 zN)fq@2$SSv10J#`8l^j55bU`7GUL3>py!S4Ns?hP2g=y5_}jD^?8Qn+Tauf>+{{?= z$5?TPvx-6-Ew$nnl>t3w(KhLdcZ|K7swm!YrkJTET1+6D!00c_Xc%*K5#I|#O6@;1 zEpuLLomE%VDF<4VNL7b~-)mrc7b=)>N-0+%akcSwfBLyrRX$3o)SwhVw)e(4*fm8E z30not!i00Q^5u;f^-MGZ(ELO|Qi$+fLzV7^G`OOo2pTu}^Tm;t@YCyII?DAbB|t)ho$De19G(ZPx9@|i7|^Zw}AVWic*y}l!+vur*q0h@SQ`m?O8gFb4#|g zaJln}xJ5;^0*j<7bc+Lj59#zct}{*!sx|tXY0V8F;2^Lh(U*7n%cq`dCE2P#?;&p&5i6qYANW_`$!5+znz^y4704R=s z=J=j%P!IN+OOsR|drEQOO7zfW&8fv{Qc#!&a5Rst$DSykYYO%8J#|GZLsF7-lnzm` z9-bejEiCqiuO+AM!)k3nL6kusQGNMhwx!`$IFpD}YJ24=#r`B8hVXjx`P&meQt1f1 zskCh|689cgGF5OUWk~s2Dco?Rl}JXeW_AW+=YgK$hw_a`aVm|8C_W!R2k(|U<0JM{ zp{~jhqp2>d#E_r_^0~FoOj13#dmFn*s)uP>3De?>&#jY|RAE)kd(V4DJ z*A!*C3vKFB3`!>ahS3#-~VrWkfOU7Lcf=a<4a0LVQ}{XP4=V*RlEssWKMA%qS@CpM@|kApYkS?+)ed zyHeaHQmHUZ^V@Eh{{R@iyE)#X{*wmj90y!Cr&nUxwXOyYz zw_3b9V)1`JxWi^cG_}FNblXt^->yC6Z7ZD{O9?!#v+UoD5b{u!EEOmMN!eubi1W9u zCv_F*ex1aR6aoP%u_u`6`|FN;;XM7u=qcPug(L#Gkv@HQ^u>jhai4!q(~dbR=X=cg zljV<<^&KhQZApcxz<$HaxU@JK_)bL3BWRnE^QbZ4& zN2VZLO!-&6Au392qAe17Zgp;czF2mja9tR@E_vfDx!O$e=fF`)jGjYaV0|Oy=VN#s zw<;>qq#Y?DUr|RzZFvd01?a-poFL@QjI2N@GaNvY)-o%?6K_Os3;xq2fGG* zDTxZ1-g?G9f$t_RGfL>)7!>qh1Lkf~slN2BD^g@hum|POSP?`lcLbQ~nNl_#p&2fi1KGZ$frM0a++T_4&gxj9;A3Rn3NuD@zVNist zxhPW1YzCk?dD_!|E8-EvJaOK#qFjw8#@4>ZIe7^fkMO-gX)wkg`M;HZ=9$}Bk{7An zK*)%a2bB7pSA0p6H1TpmwWufsAcpC|^ts&gSzTn5%Qf##Nmm!~v!tTn_OvE^ib4{c)w~F__+|bj9t; zxA-d~Z!pW-C2G^*Oq7jA1ex>OdxN}UYgO6fZ!+Q|yp~E5p(IZ$l4pNhReUAJ&E?rL zP`7lrrxH*|k)~`sMBd`$h>J!p`W_%_HOiW(QE^(ENKly5U=7Uvn9}tJ5l#tCnavw` zRF4+q3drgk4eIcc(IQ9y6zPt$Y&zw6!k0kHvveZlsz>kl=_2h*CNx;i6oKN^rAaVTH#WHboUs$69X-URX=Dv`izp@bc+O{2tTCl&buI#} zB>Y>LCevudhqMj>VxNb*+Hnd|4MfH6NZWgQ?Y!at04K}6*@j*MbjnEY0s=Yp=mGVg zB1Gf7^|fSGOcj13U^x~5fFcJ`bF`m4WjEBM>js0}eGHH4!R{-Y_{NvrDryTsN(Er+ zOv3h`lwoem)b(CupyFI9r!ahJRl09@^us?B@d7Gyg&?SEamZD)_4BmI7`ZzI?7ghd zGNq_il(yuTA#kljZgvNsuGsqhY{8mv=d6Zl3x+vU{sG}fTBJ#Zr3!GU5Q3p#Jr3um zU9n~G_H?=iDaz$5WT>cW8i%g0r=cA#@k80tk(an!vZld6l5KeZ0PC?8<9C1Qp(z?t zu&sYt-1!gJram3o!Ko%7Q=`$FB&QD0vv%u|-=V~Wk|c$KB&cq6bP?%_w~eadX>^o` zLYr8EC*d{*BGPbhF@ubn7W4D%_;*Oq)U2*m;a{e*?Og^A?aA z?%7cZGAscxx6kd4x%NxQnWxTM1t|$ql2LJF%*crH9Q`pzt4t$^mo48=)3R9pLg>yS z?A2UJ!c}F@5@3Yde6Oean|g($*jPTBt1-#7 z=7*Ke{et$3Ta~!mVbvv+9g422z>^@0+Wg7KR`5?~DXySt4k&ksLPCg`1|$F@ZHLHp zF-v5A&kr%1l+#nyR6L6)G}@G_s@?!38NWZCBrN3h+&fa+FE-Ze#d?0IsewXQo>MAr;B|$@1jUwVn^c%f##Q1%(T}Qf9a`6HA8sV)k8b zfexyUr!em{1?X|IqNNgG8vu}Rd+*9I&h?qDZ`tl_rrlf3XlWqe44yx(}Qg-}M*yi8(UN1ZpAG^MmswIy&+NYpQVh})O+ z$3L$(dYA&?(z!B8Db${4du%ZE!d;{*D13Lm9z{ffDKq9RWA^Khn%4Sm_8pvsk0gXW zU6mPt16H*s%n(A4PuyU0#LJ_1S`^xJfC(f)*xDz|dSV;@0AIHIYEXH#DNiT~#+o^}#vyN2Jhh5N}mJRj-*PKfY zwD6NQoOZQ3&Qg~hP?Mx{Qih>>d3xIw*J*l@PPDA4B`DQ(ksen&{+y!{sy-@ir~@S4 z@_g{e#t$=A$U#C?-VjooSWG}72)R2&zF6GT>z!LjK*+je7W^)4&);!5i;4V1Eh|!i zSvr#{9QA(Z51bWM@9wser0G(wjbQ9X#PZvCxfn~2sT)pe;uAg~dEAdOIl+jX#t!VE zg;v$+Z^h$M2-bcb=W#pkU}L6}*}~b3fPc!j=r}jtX>}<+AQG`83EDP05GU6N<{4wT zT{~*lY+xDG0FN!deMTpoFzY|VlHqbg!@^{U1RGnR+t(2;)U);}no0tIQgs^Aa zyhq2BnJr7Hc-ARN1TVU>&?3=0PtWHDAn&tKUZJc)Dry_51%2W0!Zm=CCN?(z0LVu2 zG5RK%uMDS(9j$%zkV7_*Ix}Pp(zq%3qNQ}&kouE5_|C!r=WmKVerF7s>!D7mYSOJ& zFp&`h=x6oAUQwAk#R^+nZY3^AB!wM2Uw>2Ta29c$1UgETp#yVh_4oq=~Y0%tVPZA1nD{Wx_mAntHa-vJ#Z( z-`4#3NRLc>{{X0H`j_yuw7QL~wy8I0IZAU(r$W}1DV3F>$@qECQYJqAam*c~aQd>$ z+4okd3UODszM~-Dkuzh@raIlq=BqNM-d}h4mof#1NaxG{0FRz1PTlf`MPbm}Xh}Md zNG4$2G1UJ6L5(j#ho*Lwr0-NNj5M64PRc36&MCyHNKy`~#fZNyb{<}KIGS;Dr!b-l zjZSSOl}-2fw)yS!#2>R(*GDcN5ZO zbjH4_3zE}Ese1zt1qs8M!t(Y?6rh({9p<1(*JxJc+CceXhqQe7EY>xxPBxRN5>*{R ziQG&{^Xq4RCdi-3bBcG$e*wiQrL9H=_B^0RSjBP2O;ov`S1?w!24yHCa+?9MGq+#q zir~?LHz{?Rn~uLlSaGF!tE^IY)MQ6n+sb@X>xdT}0CS1v zc|vF^b!?=af6EG=m!2V9ey`#zEiIuspjubtsvzjj+zvT4>%%mcm_)!tRsQ7>i(=V}$6T1Y47SPrsvDr@~j($R%Ign*FbZS!R8)e-dGA<6r z+P`AitJ(8eS*eV0@%GO(3ug#jdee}7y+`!vkBr!3A= z^%K=p>Q%e~%1=$N^XZO~?8WT+K0|BGTc@fj5R&UD)OycMO4&9XkgJ)&gN0Mm_H$cE zr6{trr39M^{{Wmd=Q%}QUi_e~B_cr+`;2u!;hJQ%dT#Af3^ys5`u#a#H^!U^O;t*z zlqpt^8bYVaZHu2Edn~9KsvD_u=3kZ6=AvFgT)*bOJMYiS4ct%J`$|fd7)lj$0NWO& zR#etgRN{0to}x^Tt|QsTV@~?Juu(jxk;WO6wfIkds~A;HKLrM=ASG88=hw>{RAq*h zNtB=e01A10x5b8v1V2!*rWC7*=jY4&eXu5L!%e#AI<%dnOn+hb#^#=ISf^~noT~I7 z>r$20Bj>gfc9d2mfRn0b<8z4?XTzqID!)5_y7(TOEK*|RUrd5dC3Jw4-mzkD%eZ}L zT2_=4n33h>i6&8$0?ootA-I#sb^77UC(F{+91*9V!LpA$5Zh>J(h!{?QMWJL96m@1 zX5gfDqSIDu!VQ*W0dh^hG@seUVaGI!X0^@qq=9X%i{71tRx_tmr9ef6`ugwXh*xQR z9%@vjAQQ^-2=W8(xB1MERk8bAtI}CERcpfSj`W0tfK(=Tn}1wLs_2x%nuz5V!k`$?s5%AlWo&mao%&7W>kIJTV z4i#IfgrQ!#O~=#s7}WM``^ieXxC;1WV&*JFn2 zjL2q!P@O0yK;;|H)M0Max!&TN(|G~KLi2ic&{jAAfw&-g;LaY*)0ij43UXj_-{5tN$=5%ueaT#|^;)Fe-VR{C4({qb~1dn|I8=X*sdr8ZRCt)WH}Ye^qX zu@U0zmq}Ej6bxIMXM9a^T7cy{X-p+snIvDV^8NM0g>MFo)r72H@{#lBfo#QwiYWC| zXsSCh%an?BB&AxeZ~OhmA}XL6b#jzM17p(%b?$!NX-nTdl;F%6CcJ2s1ywEIH+rdRkVXr71fZ_=oOr;O^=Bff!A> ztqY~?8h}uPpbfrw3nF>i9K|jH2%8cjPuC9h>L#zdlqEq&bMYV9`(Wxm8x;&{Nbx2l zgZ=*ie?x+411q-zET*0yYu*r*p*P&cq+yjH)6{4_6luny-!M*Q#va}C~LGcoOB=f@D;uNp5f~TA% zT87e;_=chnqNfwaGDKI>rs>p2DDh3det4%ctn{H^a|Zo)^~I;z?-TpV5|xyVBER7P4&0L zk@vuPw+shb(i6|awZ!6fyRk`{df=+JFyWQe83e9G0(E#cC+E^Fd`Ii@nw+KkrC~%& z{?7Qf5s{{uQnXH+lN`UTu-~0iw>9`?C)2CLz50?E#9P-?~)U7cJ`Cn@eyH7vX)4m(*mc9D75|+tQL|g%+ zf92a!S1~GpEP=yYkjNcwI!qSQz!rYxQ&fRKRd%6xdl+T7O=rHK_6}z5O z8Cg~2?`!S8-{-C&uJCdh8qgF4fCg@Um^&({{u<|Y6jP?hl*eC|A7F*jLlFF-Hu0`j z;zE`Uh}C_DD*WZQnyyj-o^v~&>x-8&rgJ=LUC>g97bIyLa>GJ9DqU?@aZQ!pJv{IG zwkV2f8C1gNv}Tkyg7{LSi0YsfCuuRLoxi3!E3%%*S)^qTJko`=8IDE<-ATpz=TY;wAOl{N86AI4KX>wY1A*HsZ6Emo98-Jd^esqQ9MXJ>r+ZvKoQ&D8J zbEyrtq>(FuBXA_o__sL~e`vj~Q{<>p8YvDcQQn)RTJR4406aHwZ)ueot8O-j6{%#z z69;YXXKyT2oN$Ng9MrYWqGNa$BHy^dH=0Y+=^XRALYy;RJ*eUrBfKh=OzOG3^^5ZR z;Qk2UcX+2YY-w{!tVxlnQ?}s!@eJXto~FLBEu&GBaU6->e6iL3&YhaHmKamWPNWS$ znVW!O=aJu-^T16d3JUj@Lfi^cp2j;RMnjV}=7o4*ncXC95-sz<{?I+Av%xaDhGz=<%0V$?BVV#%o}knsVxM^SsNaLPWL@9&BA;t=5L+0R5d1V zed5P#bk}5@DM^s!ji`?jlkt_L#`oSib>9|7-Tu~;*>wzoyUt3Lc3+m!_G^{Xx%n9> zT9gSTaH2)Fk681K@z-2E?9q~YP4;-!f7xFV(${8eH>#&7SW{I=bS6q-KvY3UgVUjp zoW9XLxl`p7ilnD;w;oVbK`ONR^7-ML*mK+WiG7#*Xk#^NFnzqXslX~51eEW&0FC^J z*m=r5S4Sa=;XdKpu?rcklT;k%52g2CNBcG7t}5))jz8)A@w%+0xef;9#1xRJ@SBk% zQ36wcTy&>rKG^MW?s%>n;*y;!hRdq~Q+vuz$DuuZ;7B_z?F+Ln^)u}9g}mI+WGstY;70EFZ*2kHgRXO*Bdl*#+LOeR2pi%uzR|HU zUkUxVzte9&_HE)fgLHKZp;FZgKvs{DCmg?-WoyeEQ)D@+NC1(yPwVOQ$LZsb`wh!G zTj7^-Z1#elx}Em)p<%G16i>vHHuCiU0CC62pY=*Rg$S?NiCqN zB%g=_BH)4P%O6Ff)%6C~;QqyHdUvUpfgGQ&`>&pD)~b~jR*@jcw8Uexztdm0%B-I? zr_0t}SMc?v#?ulC5`GllXcr!M>n-e#{sPLP#m@(KkJ3dx$=eVqaJ>m`h#B;e8QfT^SBIrSzkTxQX5w%5v^A$sS7S zYXTJeXiNmE!9pi-=r{7i=d`b9*>|@Ovtp@QbxO@CNvK0Y3X(!+Qn`pA2=)2H`x474 z^S;NN$*S8@=xUH3V_7@NCKc*PKE6W@{hnvl{fqI2mlCCA>RdR2d^_o}pNU2XJDyni z%?#2-PP~Iy?ia^v;VmVA3*;_1_G;n&BJ3-+{{Z@8tUBJORDy;0RE2p7k#o!&C`84+ zw)-9XM5i>$9N}#7%_>bgkkZ^(f`XL@(r+W4{!@yhw7+Kzx3yf)C*ur_6#n~8`!BkS zs63rOkS_w#2Jt-O263Nel^i76bL^pIrFu z>loj$P9b)uF;i|GPCitULAIi+3lrj){hUVoc;R&Lrxc~u!-!?=VOka-omK$-=WJ){ z8t2*XYXUZyz-@{mzEi4wv{I=M9uF!Rb-NDdzHxhmcam@+|-Z9ZUhp91kBc$h zbodfbts})TF}=6@V`opO{Hy!|69fj}8N_Okl6~AB{B}~TkG0{EPxU4l54D zctO4(;wtRYxhYaoufiQj(wGU}-xn@;Bic`nhDVmYP62I{qe&WjZs$-S=TO5+~VDif(%l=`*nUYSuK$=jI&p7@$%ToBg?QLbG}nv)_d z0Rn$Xv4Q7~TH;>aGZwpS{vArwFE-*Uec%+2IysbEX z;7$SIjN*^~09j2-QQU<}+;s>{L;_T(7lE`|NBfON-x204RlM6ZPd1k>8v}I2-v0po zXpC3AzHxnj4du#JJMJ_Tl_bZ6DnB$PEg~W}I8L5eoikVgyZw=L=IPKif3oPFBkgO1 zyEA{f3CU<#X?9y~_qq}l79l}0dYnZb{{T`h3gHaU0GBg|p&<88X-kk)MUs(X4aTqL zk1h($T+cg4t%Bpu_p&@oDw}>`Ct-7Khdf@s&A;jG#NDLlbnT{xq)L!(+&AjsIJEDfO9 zKA7RDk+b+oN-!W;hpxeJiAgK}eG9YDn&?Az=$P3-lNH(IeZPBo;sp`-##*a9U& z;zuLoFh8^pZ8Y2urjWa($CeNrBmyN+2$_ykzt0$snCf>)RNlY@k5h&XJDUV1&vWFe zzx_i!s`IYJ^9;i{%M#1%Hd63GI#9Of#4K+TE}uQEJki;g`s2~LRGMBQ%BzyvR#H@j zhd@yPbV`5*Hw6CxUc2q%*`2>>{>mGpVbnWV?LL68y*=t;d_TyXOJkbV#Dy=7`X$`V*pEpah`#bjb z?C-ToKI)4%3HOaDDGn(p0RB}48z@QhI<~|A02%f-!kw<=4^(@OUtLs2u#_Mr*qJ&& z8cBhxV*=(NN6X$Z_BrCt&N6zJDruf&OsY^*sF~amdA})>Y-eI!vG#}AO;asV=QU3< z>XLhkh;b^D0%Ym}_7Wgm$-XqCk~+>u{qT-I>1PmR(!37i{0wu&0kTlPg=dafv zJo`qh%srU>pj3)vxSYPJdVmAKv=td2BXQ{#ymbaq#C3g|Gu|4M)#UFwmh}-UV^9N1 zuOU11wE5sp-@5>!?bje~wUxG-`f#GtfCYyv6}a*VxRmXC8B28oVTt0wP-$XznowLQ zAK^`S13IMb^Mq(=mg8>%d}0!r)c_w^fgfyj?OshwoaKseDJ~`CEwzB4 z0{RFa-Z2Tcvtzq{>Ya025Hdyq1#$0a6wGnAXH+@jQl!>Wp(3ROX;3?mPf;VBTYL?{ z9jvp!*(%(sbQ;g`yN$1o*Kf^?=U!K z@qSlbooDnaaMTdv9qJ4O&5CW#(=jI&#}Z~@tyygdP)Kf2xH@E*9XWqNyqK3&(X!tU zI>jhcbo8UUgm^;2FE{1%#Q~gg#ZFhn-Q#X6Qz|72Fhca3K%RX5TjH%2pz2uZq&faR z6D6MI5XLY#&o$jndvWaft~BAg7TTywbyNMr@nGfX{2>nx7J+ViUa#DFsRV`~OaYOO0 zVL&QwK|WI$<#AX!fTUyl)0B!Mjft`+$cIS?XrmBB0W~oZ>_iH2qdBC-% z*rqt|i70r-GIEN%DMcKzP@;EYrqlv#U_eTMR@boFNcns1r|d4i#(Qtgn05B)=v;kEWlJN(36UOF z-)SCXd3HX#62Vn^scltjbaD z@01;C(W~=8*nd;YeQ!+lraD8VzH{^|TT`WWnnvoFdr|U7`>%~%mhcrmL|LS2sZJ@! zQXn8JYd{k>w_X0d>A~D#Pucfnw6wqwr8F5Myw!3DNCGYOCVAqYW3UQt0OHDO$`O^- zQ>5w+u;G=UnVmYUM2G{+)E(^^p8o*TToq2H+;J`{RFxCxLb(VAZ!vB51wN#}`9n|r zDyemySoV(oe`V7i&U|E-sFg%grF*&5B!v~EfJM67X(JZKMON-nn4w|CB}}ZT3qP0} zlWvkX`A#_p+2@Z(f0WjtY3}P7O3Bk2ZF9Zg{PEUJ=8cMUDMd*sf$^S$#BY7A$oXUE zPcCDYUaCHs4yD)~oM(*j9|JI#rA@s~rd|;VOp*alI06q%`p!6`+gBqzCdEUbB_SwQ z`S$elPy`{H*Rq^ArEctc)p}zBlDQG_=0jE;62(ntXs!UV zSJOi)KMvTzw-N;m{;TU=V%0WD#*NkG?)RB?WPqtb(v+oF)GZ0wCOjq%*Nj?x3&Vpn zRV&b~O)VfmCPkw2&=L2=J;K?W8LwygGK+1cNu+6LCJZDYBzpRpu} zrAbHt#C=5n0FR5v#vE?zfoGH&NLduFYmXO5PiuZ08K-3`afCE#sSuWD(Lf{4bq!gzIXZIpzmX%Lc- zcjyQ=^c!--<0PqGQFz0NhXdRW^2v-9w(l4t4| zS;uRx7jFA8cF&sjk;U~-ILh0jMx`QeDIR9RZhb~9p3->z{vRr+Yg?Vlb*$?qK{Nc( zv~$3I%3K7-SK0VeEQXnF3L58Dw82Oq>b}H!pQdpVn#?nbge;!v!k|H1$kiXDa>e?2 zI`WwuFb!AuSU#%*bmg$H_Pack;n+8|gFUq6*`)*Ryxm?}vW+f~7p5m^-_V_~%k2Tc z^j)#=6ZutY8mMtjA=c2N3NWxpoxp$z6JiGPV!7b%3!&_9j-0P;*HYP*)`s~cz#g&B z`r<>!9jekj-HI2~^xgt?Cg%Ij^UB=uryRl;kT5w5FIN&UVo{@Q^uK_ zo$j9&lq8SOB4Rnr>XSZk%+K-egGgnN75ckt%208Ok5r|?v8dTG9+tQG#f{m=5t^L2 zvZWEF2uLSVbfgYg(WKx2peBvi=(qn65BYu3vE>ycf?Mu_Jsoj%6wj=;T|;Y0ToU-+DP~bSe+nByny5r&UeIrD0x|( zKuV9qQ!q%4f!LlyA4BQ>ngc9^a!kNBj#an8*@EiO-+^8wB~lKVQ8NROA5WepYH%eg zNmivRa*%evp5Oj3>4={J(`ckhz)BlRQdA0MHj8a2e#COAo&bZH4vMaczPwRF7x$;YncVS-kmEjB#I@ArFZ zjx(isxYU&lsY*5Y00bzLx7ePZe2ih?Tbiv%)b5ok;cFz!$OiVoIbQ7Aqi{6GW0U}1UDXg?{9Ib}<rODJh5J~hsO^4IW;?&Hj zQy6rPeKo;(-OJ)_Np5V3vmc)Oop1A z>pzsp+5qZ)etkM&`i8x{zru|uDIk~v#2%dbVz$Uhm4rdP}@abC4t~81ftU) zzJn4?qY(|j+Lk>*5BCcDt~Bf9NF8qvR+@rZ8#H5l{iI+ zKu~a=XV63oTzTUE089092xG_HeFQq#2n}!muZ@|ucbKBE>+e&j^BPL89Qq&L@c#h7 zIgVjnT$%5b;!q%3LZ|ir02u0C*?owerhVsGrS6jnE0hGyxkpj~w=#O-6TyDZl{__> zBs$Wxw*<(K6#OzspOGTlqPUPUO7vcd;2vP7R3BT#j^~B>YtEbHv@DQYv3L!#0XK2I@fz`ML3_7in zVAA6r)-rnD1FK5VhZ2;TBq9LXBG$1VxrQDA?eqTtwrQlTb5mf1g0f-&I~m+Z+m}A4 z?W3~vaa9_nggLAb2pwbT&OJ{-jxz0!u#CfnGdC)z+jGLZ1R@j!?sgmba>KOqSn0|Z z+hB`Q3xT2+M{xZ`4;Rv;wo<1EN^}qkicc~(<N=aOV1j!@P!_>wp zUdlUDtKoX)nW%Y6OaZG_k*IEYlg}Mx+4mRF@y=e`t+>{ti`+m|@=qZ=js|Tmz+TLS zmhDWiJ7di%exI`nJb?*EcH4cj6R2A~0NWk~{eKNmgmN#25IWN}DxhZzYteN*bm?nSciJ003gQ;||JQ%TV%?(v+E00)yh4&H55;wXt__ zw`tVbvt&4?)KY}&P=v_pM=$y4aP?oqG@L}iag_IoB4DeXz8Ufyx}19LJEO|-KTsfs z$}+fTw0;ClLR{}qLP#c0T`l_grf2tE^d`FdmMA84J4oWoMs zLuz@zr34Uks^U5R{;|p(zjj8fxT(}rn@J@Stv8Zq?epb_>GdV1iux@yqCwLY^(%a@ zkH%rc4Y1mhG=PF2s@hB~{YEe>zgs3Y~@WAk|=Z2Xb)C8|vA4$|veUnnRl~OiTkA#t|kVJLUZ85#^DD4)x zw(=Dy0q~hnSH-p?JTj*Sl%%OsrCW&rZ_Au{^TW<-mOq?u;+s>2T0kJE#;Zv<`ZjAL z=}{}k>BHaD2A3!Hp8o*5XKxj1ZAx8%+<0v_nH_Pz0q4%P$Ve#h07zZ`0GrQyeeh>( zc?$BXzr;^=m0beqN<@Kq5~&)x`QjzQkEx}oN|L03BG&%^Ki>%UyjxbGhx>F>{{S5E zAr&c7Q$68`CL$x8+x+8R8RBK7di&23Ojr>!`}+(q@sgKN+hqj83am$7xI-eU?l)3^ zgqS2G3;CQ8g{7Gb*2X$?RrQhZvCX@uG?JGHGY7(x=|8X67Y}EBgx0#6T9oDPI@+L( zAPqN|CSqsP5l>}gQ}Hc5Di@%4dK;5IA`C&CcaLWrBTGTT4e9QOcO?u=b{)b8K-ZIx+IXln6WVy`IY5&)i@vBtf<_FL}`ynWp%C{mV60oZ|I z^CbG?=(O`&Hy-OtL#P1l2L)9;G@((FcY4Q#1}z$o^uv7xPjj3pu(YKlsGIsnpWhBy zMqKSPPBfsM$QlY%KukP(ngdM3HY_KfWfE{7@P~TRts7 zA2B;r4kbQ;ZZqeUY1m$p-S&9Aa8&9!{s**rA)H~Ql`d6^)#l=opob8Z?_=}`#yMxQ}HUGT$Q!i8#a zMLU@=EIC^i)iy{flczh?^l|Pg40Ro~Fs2Xh9BY zh{UHRqHzttDoIH@2$4T?iGkn_`SPCWDpGmI`&#_)vm6wfR9U2_Q4!(&?}FWbhwt(wP~1*Ch^wC_Hk@*wMlTKDEvTdEx3sNF;C_6B8I6dkTj^t(*#K#Upr#X z;3t2HQZkuFroi%%^Yq*G#Iv^>fKp3AO`V}M?dlg*k3SFY5A5N+?9oMC*pDqB>D&Cq zA1Jc&DYTT#2qFYW>|u|HICa`O)KR-wunaN~t^~&CRR^ z-_sCu);mP%l`@qGl5pvk=iT$+9uQP-A1rCe@06C{*-F-B?pHe?1smEo{ofA!H^Xir zX)ZRcDIkjr{{H~3H^}LG_rV?`HxNu-_@CujS{i8}B|pvkoCfCsK~&j=WF{J%l>v{3 zPr^197_NB#0E5=H)`TNbSu%J1H^t#qmjxv|-+OI&{XH<#nDC-%!CsTT-d{{prE9la zmp4=ybh%SC?7>yFin6>yNdS&_5rcAW!&9YNY4s98Hn#mh_2hYDp_kd~UGjV=QAyY) z$Nc{J969BjFy2^FQqV^+Yx;RcK7h?k0jOQ91YN32CG0!8Ez2lMWM59LK5_Hg6O4zk z%6d^MX&|ZygbNNr{!@zq{_TPZN>$y=Z90cN@#QP+5_P6|$O1NteNGX% zlGhe07M9Y0qwxF?PxkaacuB4f_xHRgN>roH=YQ?`d5jb`GE$sL;3lk-gB#+Mr7CB< z(q_ONBauE6%Gi4z&y+QQ{sMeP2?+84&sc$MOn5hi5tbcK1l)j>%!A7R06SvG$tYS4 z0TKWffNj#zhD{(K7Nx_yI_|uAR0U_Ur5mizxi_X@+e!T~7S4TyE;0mV2?O2wF*tf#Ug(-_YPJ)}4j0w8uyhWgj`2K4%%SYUKn`T5Xuwvbg%Euokjf zXCZ*y?m+3Ng9SW=u?pfo8*eYv2v3NlB6)Kb#)X-hG)uY#ZLCf{Im8^ock(ahoN2CRu`meiGX>S z!|!KYNtR@9w&SiPyQ&kWV9b2xIrX+V%Z`1bMJQ4W%DRrk^Oq(tUCerrgt@Rowf2(K!rz! zM97N~)=0#Y`fhhL(OJ5!KBf*u(&*kd?2?-^qjgAb$^@arAoI5I{V_`B-JezPMs41y zg=&zpk^}{8LBFTi z*(6WMu!~Eq1+^#es$S3d;ia|Ry4mr3AOJNgd_o1FMZR55CKWs>LB)EItr}F4On8cq z@{j=iaS7t?%Idgv&hnKiN?X%5zbHOHrft61M~Ayodxi8dP*jxJG2RP6-g)1qE9kOT z+-E3*B#iYVIQc;KrR>+2R8zdPFw1@7WSAh&NR8+EV~G24?49ln;y0I0+lg(ZkdFcJ zffptqAK$OhWO3~m73Jl$L%QIRrtnOgbsxQkE1uLl2%zJHsnpZ9g{cK;fSn~r%l0ss z-6T!`*b8Gx>Otb9qy85N(B{?DxnH`dslUl7{KL>6Blg5nhbyY0&pYde1PtO$3X^a1u_LiBY<3`r~s+DA~2kLrJLI3tXeUn!2jj8#Y>%rpCmX zH|LI??Ds26d??z~W>Aty9xKiN0CvYT_Ft47qc#D}Nm7)Qo`8Rhbq^0_Xr$oAP~Uc$ zK!8CC0Lk8W*kZ{GLkJ~9ti9j?N~`Uvr7l)F-+AFD#6`q>x5QI}GNrkiwxtIWTOb%B z-dbn(H|L2*7qD||!9?lq?v%m0_Urv{?b*i*EoWMSw8)G7MEYN!o+8pmzR|hmk%~)J z(H64x4nzTQeZJF(I;+r(&BTTHl3sN%%)+g)x`QowQ zO#c8zk_;wE+ImOt(+=65ZmL|tL=^;*nUm>kWz7hAszk`|I#H=b#E1b~ z5j&qf@iF1dz#%CKQj`<~5=oh4qZY*pq`}_RuZUW*_n4z&cpbKvb znT!7a0Ipp6GQmv<^%g?4GH1i=DIr!Tc-V8c2QDs?FjzmB#7C9?09p0I+$idO^#ml5 zd&kA%!n{{R0)weSbveF)X^=LzE_-5F+CinB=8K|+W~es$k@FVc#cxRd{R~BTspT5S zi+$#m01N<<69B;%`(e{CaZTnZTqx^B20<@Wit<}CZ|Mx=zKDIi~H18?(&HI(e2 za|2H01O67O%>6olF$GdCNcuqX>yDW0vYwkI%9%9{p#^A%3I&yI&tE|}t#~JZ#$jBA zsh;>Ldy(bq^Yx5cRXJ*MJdG|5DN2wpKM9SE@Ak&yTEi6-ndIsK7*sd5J|JqgxhtnB z?)$)igs6~HB6QBta4v6#yo#$!MIIEARHzn`RS-J(dUfe+F!3Ai)K*nC;YsnSK_s6D z5Dn+Z6Z7)H`4Uvxya87U1q2xu0{VSCxnt&a0CfvN!mL7iKs%K)t6#rx?{=W46$KI| z>L+m)*mT_Ds?OBvDl{}T4;F$2re~91^-mG@ocHRZ6sGc`88!J@Be_K7(=f#e3QgQso(W%_>pU2}Q>Co$cwh zhAmDH$Vto+&Vk)J6|2GF0$`W~Tjzjy>$B%;=`T*>Dnx9K@R{3V$ol*|?-S|V8ujFI zkU%)f=lY%_EYiw`I#*BAFTJ8&T3g8d9Q2jX?A1w>_rX z`ncI70F0~kFqbe=y(*RbQjV#zN|cbG37O}(i}Knx^@!aSGN|g?RHsdd)&;J7`k3{> zG!^B%(V|wBCBp?o5HG*=+wC?#G0MBAoCwwkT<@}GIVfCj8{_94fkY_S;M@dWVVW^d zLZl*Cy z+J~;d2>zJszhr*X=`&6n%fp(Ix_v1qDT^==@AejAsO2f}6# zou=5GdpU8fMnRbZTwidNTH}BA!TH~psmI%T-jAuF_VN{4c7qt)zNlqc%QX~%A=&Vy zB*D0gpDV}goIpEV%Gs&QoKvS(qNO102T%v*+C2x7Vn5iYX$s_h?S$K-$~x zZ!^;pe$Z*$&p1s^wiT%aDlT;ax_8+8x5wi;cRmeYzXsLOhLKfaaW@@yp;g0tZt^?s z?Nsa2@ot?!$mk3ad--B{!MtRg_bhIwQdFcYDR4!A1JAGY>3ZYZzl0Z*@h`ohC%UQy zPzfXvVK)l5d(<#LjHZ+n6Dn1jqn;GjC^f>)`4J#$n30vW3`lgiZ zCAe0PX}m0q=83w16{W?6EP?Tf^sw4Ke?Cd=%YvQCIJT*mP~(0-30e$lwS@Aq>%Kdi zhjP=z{3fQ4;#5<(nNSx>Ol~J(c*H;27uof$B+F@YHdFYGwv-S+f(&@A5x)ERV?)yQ zO^M;IKMOC><^o-(lDMmea#gxh4ful62m6yJ{C@3@mG*MuWMmn|Dr(SBlz^L&A}=@d zkG|N22_#GtwDSJA8!rbh zqwiCtI<*)?>jTL2>2ZLMAHIr}w1$5VcrZ#}^_$zAVbiuZGjsV@OQ~akAN@daQwpN0 zA*kvSBT>H4B+eSLUNm9U*E1LPnue~VwD!uAlv|c zmi=+f84h6PR+M*Zn@UWBr>(H^due|qDMHqfpb&hA*XQZyjh!yB(VeIFQR=tE;#e{8 zN}G0v*-bYPu;EBc$xnzvMxRX}8{ZXw6LuPwXkQ5o_l<=R0X``6o^gCSIqe-v_=jqc zsgg-2mYM5;9_`yNt!R-_%YrWokUoE0Z$~_i0nJeV0OZ^Ojlll^Dyib0%8PVrTWC?! zDY-h7c9|yDJvw5X;%Y}SjKWbUC^8HvLTwbm->N*(p0^?d*GWgEg{gsK9@wi)^$a6?cLvkdiXp!goVo=t4 zmzX*gr$_+=7}$J1w?9mBc46B3nXT|ER)uL0G=T$g8w;FReVq2Dtjj`Hr7H4CGZV}8 z$IDIVk~1dN(lW)jD(F`kJ(CSx>Oe^Vl5P(Df4&;Hv$ths^vX$fkfUVxgTxc410G&p zm$1ZlInF)yo4i8Qp%Mwdhz+Cnu*EalT|@2EJVK=^aX@(P6C(TLw0bb-fKqx*al)GM zCu?cWGop~NQm#laEI<+GJn>_8Bb*_}oOMA`r~sHGNdhOKh>p9)IWe5^%1p&6SV#u` zInsR3I0WM7>~pkQaF*Lr(yb%M-V?pOJ|Jhx4@_ulJwBQ3;W^d?wB>c`II$F&U`Ke` zQj|utta(@tzwYxMaZ2`w#%@;C0V-AGq^ndI8*1f;ANuUoWrtImlA)$`jYE+$JAeT{ zx8rAH&O!Cr70;VRFur} zi|>cb`;C!DM5f^h(zKZi2?o)4G+YlHd|huN>o7xBy26ypIPO;8FT(TX-FWw z@SuVuUi{;nU)Sr6k4N;&n8 za^5ISGW4jc!zrC!6+jKKq78I1E25fhng-RRU7FY;!0zgn7=-!{NoQ%>HC~;s?xC1=?t%n(B4v(^%YtK zr~~Qc>G#ER+GcW!mh~-D+^h*R;WN(oinZDpq@_tqzxK%0a6WeZ$DSDTzAgSN{Xkl; zV`=!lP&xF%^!gJUlQof+1pStAD^!i?1dd|j5x9R)ottN|mFtZyY!L@vG{$Ed+aD`JS zQcH!4nQbf94~lmu8!$Uy!YJfI@Gew}XLPuc9(?gSrfsH5 zk`S4X4Y3EJtI!f#o}Nd~?}>K|(Z8EG+Co&Kq5Bw@RO07uDTT+nDxE8=df%Jv_ru0l z!%o&d-+=TIH#n2_Icc;!p76ry$= zcf_}ZGWRLb?{5;6{zY6~K7V{z);MK1b$gstk0#3Lcxss_(w^|9PNO&JhaA6%*{20X zB02Q(#5XeH1y@%kBEd#^UkFsb_GCkCB}1U=k4#_wWe&peZYn{<{9uZ-DF{{ex#)lA z5NE01s;MeURBy;1Tud?^&Q$7>^Tgawk?Z|2B6}pJ%P6#n?;_ly+_6M1XcXL~mx#>; zUS-@W^-MV6N=BZ0o9%_2;UE*@O8ghtTz|$U^f`KJUQ)=ENx6&tet2x-Y|5W1q|i{F z_(>DYo_zUX%xQbkJ5~Ob2h3e#C}fahK_CQytLl8Q8mrC@Z1PatDqv3Mo)P1$)zmD5 zeM3@Y9j^p+!vzg}V{d9hU*O|ahhuQ4jxv8Tmela|bF_`EEx534AQDXS!(zKLt*=;G z+tQm}E&6`?<0x}n;nV~nbrHDcq>Nl<%AY*w?UNFP&dB59pjD!Alh zISM?FX8P)ctz@_10(Cr{`u?9-^irGI&D0HRagt(5o`Aua+VhK_C*h{(X#%Po_$5l% zi+=o%NyB##aeW?K+LGFfih`l#>Cg1}@`ckA!BfrZG---G!F`@n@WW};5>+G%f)lmm zZHqI9>ZxfHAt~Aw8~*@IQu*&`D{iGly-G@oW&r2M= zaJkRi{pEL8ub6JyXZZIm-&PT+__pKq%8hZME z{@9i!P1d9-M^b0>*iqHYT0M>QsqVlVhi!&*h1xPnP%8I#!72()y({{Vx4 z^ZLY4_mSj$AlnV}96~kSK!lyXWBYZ-%xYn`?rOR@4YS%76s^=lf#)BX_on zpgP5=k}{D@>Pk~7>pS@a*Apy_#I-^LfU7{&1PfaYc`{Q|ObOj0VgMudNXBP5yKS_l z!L-4@SpNS2z40EUt_G5gKPxz&i2#zw(vT-@{!xmrkGRp+6r_h0zb(Wa>6uyj%Wfd{^D1JXHq>E=3O&fs*U3kNW$o6|7ztE~Pp{tCtvI`a{pBt=l<823wc>Zhp+N9) zkd=*Ah_>HMWp@fC=GEcU92)`G(s3ImF_ciwT4{3c5pcTc>tZ4dK_9>0*-W>E8_XA{ z;}N;^#ka?upD8JEXlv|k^Nd2MGG}OW1Mz7V@;Le}E~q`6tq;T!Fqj?T6;sj_fdw|{ zhAht~Q|*94p&)MrpS~=d!QSy&bZP6koHkZvsne*pYYX-L&K%uE8(zn#Ck0n;O0QwN}9My z^Xcj5I9DYpc%%{WT7P_`j8zovBL#ZdDDt9pd1^*rq>&{@R7bQ4mQbw7u=kz%3)-11j)xxi< z_)Fc{B%xC?q}a)@`ttNRZD%cBUb%%OGLk2ho|x#f*)zG$SX^W!T0kab4NweB?mm|{ z#5;=n9jH!S?+EVxN#(xc*2aJ1m>sm0-Fxn)D)zr$Z!5eE2>iPs7Y3>hU0ur_;R2!kWQmz5Of5@{^JOd!E}vr7OlP=&dowl z1jK2%J}KYN?};THSV>4)6WxKd8;RTgF;wK7PIBt75}^q@ABPjF9wBP7jHx9l-T)GR ze>_a)kh5jZN|#e)&1VS!X(=Fo@{#nOQ8qtSGY-xI*+QE-l&cdmHpF`*;$=`T#IG=U zh(3QVzbs2~zCCS0DRFQvCvhK4DZug+a!f!>`F=?5PgERIbfqR_c%=UTFX}esiT4US zO;lS;`dj8_oJ5=S+AW6qYT7*M5RiqbI&_ju&iu@6&~g}ZrQsHtDJ^((jZm1j{K&Px zV*=+_DI-(}qE(H<>dPtEuxz@qq<{g`WOX~?ZYts0Jlii;mQp5n-{osx&e!?YYc)Az zkdE<5kOrR+RsR53`;RO=Z7F{bv-9YTbrA zm?=s?Qk5z9;o1)7NRQu7qa{}c8U-mU8di{E;QgoPj)1SpSQNUOjVT~OBFB*Z^!Z}9 z;@q7Nl>}^n3`l~0olYfnw+Q0Z*$q`5ccPGKja;_cKWDBP>2l}u3Xcj#`jlWFOir^d z&uSLoSwhs5l0p8TvxI4Krt*gFHj%&A_ApI$73~c<obR(?~Blvib8i2=ua#*(zY{gCS^*#@#P=5$2rbtE7)V( zmo0M231}52RFuSe^51)5I{pTCI(I@FQQk*O{{W0ivV4h7#*h=SB%kr+i!XurC8bj~ zr&^Gm$piPe>xG#QWk*~vC|6{ikRq9)w;G5rxf>@}uh$mSnWG#9m4XOPo4}6=wf>k# zFw7~qVw>>N*wi${%wPAuDxT6f$^5}fZ4PQuXT~RQuKxhn9lG*XY|eh7K|+F$_RZTP z`OQT_8*xhS3V?z{UveffPdS!7oY!l2QneWqDv>{YN-DBbQu35Slx8AH-0z1RqlLSl z5Rg*<7@JJ>#VnGA1+5Di5TLZ-%%}KeIs#MTf^0q;g#CcSe-UMY{{X`&g{a7$vXhA| zVY&Neh7_+4h9s1ffI$XK^Zx)ijAa><`Q>|Up*(=FHt}-#VcNTaR_!l(;&mno zB~oY07e_H-Z{dWV=c+G@>*{li#ZJ_%PAS8x_+nZ#oJ{!dD>PZU+LEsB*WY3OaTTd# z>WIdaZn0{X00!2sllB(&#m)N~;z~LNS3KJ##HpuB%pp@?sU}7FK^+aT_fOfM+gF6W zv3odggZSALl@I0=o!f3K0YC3SJuE@=@{i2_01rNB^JZ5+3evAwIQrr2-9f{t_GRGQ z<15aW{{T}ObvjFLf+@-rKtivqD5m6-9}h4w^1iy(Y1|}eBF`hY$ywf|rE8dFx+1>o zqB}+G*N8oUdrEMrhcm7L&Ky!!G-^r^RpE_O;sDsd2NIf|%$d)!b~v}Q`lUTdR1)@v z%A{(W%2j?=-+s7w_H6dD$@^{LHFk5_2&GfcBe`Ms$O(GH2q$7-bLWUp5pcf|`v`W7 zJ1bB0BjXn;Mk8KF)o^BxR=MzaoCSPRr7L4(mHQHL;nCO;p|`9MRe{A zyFPEZtOOvf!5|rkgS1Tfj9eT=!g)t)+%oke>1w);p$cfSZ>C6t1eqcbZcY736s~94 z=MVcva8k3Jf}poh@JU0h#I&fGT4ZS!0!ER&@m=soZ+YjlUmt(dyi_Wwsp=M?Nl@XI z-bmO2cRnsyvA^86GoK1)M)qNY>Mw-{;XctazR|Mw->0Zy zML-aNsHy4QUr0>a*WN}T{@1?BIY+doV%dieR#CF2)YpAR@jwfwbtGxhuQhsf0Ad** zBXt13Evh%j`YmXEMD)W+~8gegKI{H_h+(6$uVl?6cqf8N}!kB|Hbobe~I*R)HVJDeA(eafe}aIBOhq^eM` zEn+#}bJHJJy_r3$n9ducrOcmeTaYDQAZ9n{1^HrqR7MFsgwwLDnlmc|fY|flMSC>u z0=uv-(Z7Lb3wab}LRPWh3XueINC3h4+SuvD_^!T`l%8 zPkUwmusknzD9pjDJ#3m#rNfxqV{{Re~jqiw;vo~*5Sp`cu7IGdAMz)smyMjO< z^drN_pDpFhYh6wsb%``GQFD16yrg?KCY6uwJ&3-;vCQZr=VAOrDVXHZ#(0MyL8Vg_`BK{Ey~(c&Lz6E>xd&rT0z*)=1I685$Iz0 zVFEK;18R9Bl4;u7%CI$&8w3(I6DMAEaVYsx|Tw`x)mYJ*IM&8$@#>aws z5wy<2N7Qu~mS>zWGIdji%5=7bfP7Z~#692?8{NCIpUfZ;s00>eQnxODRITy$JvV)NE{K z_MB$HAY=AYzgrm*2Hrp6O0pi&-J;6>0E1FWovczq^nOqyQTb{o>*X2RR%X^q!tK** zN>t{Q&fVlH@p(xnnI{e1mgK>j`iiHVlqbO1I<07sXQnI8+51aNTw0d><5MYdMJ=sh z=-8zv$_|`tK;uQn04zerZ)+MXpDOe0peBQc=~JmaFlJYYgWH<>bVTYFdLZB#AB ziqoZGA!Z1;CS#?9{W@Yp**0{%%Z7dN*=#(3ltuLqf{EHs zp~Z>XwrJj0lGCu_)umceOJJnwF>xlqZE`J!-pIHvwws8m7UGhoZajV@sa;4{E>b6a zH2X==*5)-m%_1BIL4r+_>(8CBp6504ZYO}YI&zjZjTSr(%W96!GR7B6UrCrIquzv; z(k_iacu0-K?}<_NP|JH;$y#5ynu35r5Va}9qAehWdY*WI`#*4oVBHEoi2fUzk`ASV zr&2-Mb^wFunc8vQ-p_rHma;bLR@;fxfIx^zx6sd##%EYZFe9HUMm;>64n{sWT=&>t zux&0+pEQw^B9)Y_C2K8%rBeW?nUfX+p}b?Qcn^fKp37*NqiT&cHH%787Exd$$`8;C zPw6S>I8P)mRJf!vfUR;tB$IHPZ#>MA%6Z1>`09q6DS2&;Ox&SS;z^qjZz3;lSkP-- zseO@SX_T$JZvmP(YQVP4a z*Wm~xr&3M!K2zzA!d`IRYf$Q*D%eJ)K}p=t%HE$WR=uk5zE{LGK~*iQzHd;~tO75% zj=K@lA4MB_ahTdWFP4UF`i9LXo+{O1{%@LPy`Rv(Nl@c2v=Wsl0$@Y}HrVwSlZNDb zZ*f;*IdwHp6a>FZQQ$-EEiIL4C&Euc6|g2^fN~|_jq!>GGigzpa z49j?PFiKg?6)kv5+a4z@Z?9MDi?6WW%(#n#GZvE8Y+R*e>h4{9tHTjvI}05m2mb&g z8jgs!^4eQH%H-Of4^`AUV);$>t6wDYpK1Oj z;eI50DyvJC*=x%M*2%kbVt0!PFh?`j9gXa$&2D%ZZG<@XQ&5DEgCx=!B5wo@jihWN zd|cdb{*=5i#1%B}W$5=ej)fFdEU369Br4YMjp~-i@cP?Mppb%+1*g;x zKzicF_EE`l?lE*%G~!-GlmODLUJr!WOo)U2?pRrtqHCYcbJ(w*(#B*2pUO%76$kBo zmDglFr&H!g?-1ibD+Lk?R1}hsJX=bw%08H$c1>K~c8s$$qgJ1K8XOw+VNUB_fr5c-2D(?#XT0u||zR-W;9N))$ zQa|b%glQ#7)D{Bc?;p9xTXFYd6|{YqqcmMRiKB6|rC^W5fv_aRi%s#y`IidS@h221 zwo&0zr2+w%)#u2AV19U`(iyW#Z@(#$Y23;75k{}Z5`CejlR4oEHtH3rO7Wzs4w)cx z*mJ_Z$*9g*?GyNOVQx{pzVL$@U;_%jm5=qqS8KcY?dQ;a@x%S0aiiQj+MPp6aHYR^ zQb{fkgsK5QS&`SsW4C+tt0{3himj*swImbHO#YbW{@42prsJIL+NwaN>M7MO6cUnj znUl+5%dF!cK_(r2)p~ggbqyq7F7N*UO`OV)Ip9>)C6V4CDF}{IfJnDUAHCA{)8d0c zo90w5rMGD78xqrsNz|n#AY93b@{8_c5l{5TTKIQ{KZhyTJH!>@}l(p<7N$*$yuU(X+n2~T&0VxC%V4pLLUrmAR)w{7Iuc-A6L?&p9#ft!o z^1f~MgO|U+{i8h74!!OwDq9-YuTpsfsaF#>w)DH ztL!b*#Fw;+)o0n;HEMJJ0J;%q2Jo+o;`RDs6~%lczAw&uma3a=>UIewYf3_r1gJ!b z<@5Cu^c`a92J^zu^*>74Ffp_SoPdt@ZQ|v#lGEj~uJV=A{W(pJnF>%l$b%zmZwG$h z?CXn167Y2mK~PhT=|jXQ_?0p_^gml~Y<&IU1+~CA?K_USAu9=7BI*R2{bS{9b?3A8 zcDkItzL>nE_a!6=3b6zO~#$brXc?B&@7=Y3%%k5A7p@XnR-TH!^zW*{94qsHS>CWk3Rx zA~h4%M*dj&>)HopHT{8hgH--*l&Yt{Dqy3;f|RN!$eaG{kD^_#W-8$xG^n7iZN}Mc zWU%5PAt^UO1lm3xbA5&4589_>`A@VT3cZ!)3kuBX+EAo@rG$~^_3ZxuiaRTRHQ|cJ6y{pn-Ro!ot4gi`7JvvG`fZNX z;rfK-6v}t-;xz(!K#d~zAJ}8%HkhU{H1Kg=722m3NM^hdc~Xwlc+HoxN~V^+@kO;J z2?i`jUEuHivBG_+@e3I)YgwU5C~?S11X@*OgXU+H-xr5%-KZj)DyRYFYDiL`D@ifs zzBs>+J3(H5#4i=Pr6os9p!h)kUmy&}uHzT$90We>@oVMbk@M=YfE2@ls@%?ajUmeg zFH*$7P}Ry$AW0r^J#o<-5x^c%Ubvw9Ey{h?rMJ`+l_(`z?IKD< zz=Ozg=Z?bmZ|*Zn_L2Zq#0d(HXVU#A7;JV4YWvL$OnoulX+}8T{XQwXK+ITEh-GSS z;%D(ZTzd^*SlglqD-bZYOI^icO%adtq3DJn|IvVhVeBg4yYt~v{~ zSKOxT`D#E?5~h?@p!_M2Byy4nzeA2etmBt*ZX$h^sJ59ZKtv4()N;Sy%NOY08xG)k zHojBVoagI6a3Y5aBkeqz`i#MsX&yp!1nVj!0VkZD>~Ra=rz)SXZk=xTkQ7uDk|f69 z{J!{h?PrS~%_}>I(4{Oa1Soit3M7xyb12)8-uA(dh+x6d1BVea^`aCO)WN-(|EZc%ys1geKA{hc9m6DDY6pcPz2mr zK3CZDK12CVEhf^IsM4NI!gevw`$wiUJ!&@y_AHjqa?n9$6P$Qp^#Je$Cs??wcr8gjN<4*H^_vei=t_*WKc|lF8R8mp` z&HU_5@$){Lqq!~FTOCHQS*1uCCediLy0}uu&O(D!a*2Qk2--l-@twLF@9t z&*$l(5>?7fEkqH#+YcE>3cBq$QA{d!B4f(K4f*c`J5Z+4-8rpFOi0tJN3 zdlq)RNK=g~!}*S@?K_x13lLJ95d*K5{{XDv(w8Vx1h2)TaBfU}ZHc8% z3VV}U$Ww`cL<7H&1mZiK(Yn$lw$*(}1X@1+cCDLhLE;x`f5}7jwez=w-G+S zEBXP0a^5hbWNHqjDv_pEJP~4dj6kdM{K~b>Iy9mkl+%QZfLFPK zZayCf0QNu$zY!Z^^vU>PEz+bul(>}*M)#A?pVJ6totskT1eGjg6GqGJkc)NZ@?iKdJnF_=Oax6sV>Q5~)<&Oo#(`^M-CN_HwArP*m%RJ>pd{ zao2xbc6C=~)Y)x8Q9ue&QAjtHPTB zr}ZaFHrkU^MA7i237}&tqHjXdmeZvdAZm@dj1iP^vzaUE3R!i%Is~jLRWohl)Y}xl z7WTbUlC4Waj$DL%1I zw^Gu3=bF^*ktcoc^dR0X^uxi;>GReb0q~@#Yze>K{drp)uatIxs@GCOzlNwtnSJX5mxZ%8#O^H0j?bFk)7pIIc(F%89VOd;Hz?7N798!=az)7-vWn1za za@!R@8ulSh#Y2lgrycOv1gAu(!8&&q*hj7`?jGah)}lk!S+aAyGJXpzUGmMWr3< ziaH<#o9WwYbUdcslV@lBnxVQm*tQk~b!HRlh(nAMG2n6!8KSpx1bnUPPx!PTavCQ;3dBm_Nfg zl2Zx^*I*?&e7}7LEY2LySOlR%$ol^Ph0OeG z!r7+-R=DdaS9X+K!3l1_2=a*Qx0T(yH|@yLDKxcCrJW@^tVvYtP3Nbe<%{EuyE>=h ze67U<1t^da`H%iF%tW4;=APL*9;)HGw<>7cQd>{Oq$(7t{I|9r1mKObQr2`3YMWqF zmGzNv9Ul-j5Vsi~2mnEVNas9={d(df+P7l#yj?)1!wsd)CN2{;o5w%x*A$OueWq1# z#Zp+ST|-QvX$u2TDZj49an)Uz@l`(=WlcDRrAku#NkqUV{D?af^91ytH5yjd@Up)V zHj+ZZG1&Jjg8OIoa;xE-$z=>HO0@(8Hwp%K-bciD7_IZlmofl^t5T;@fPvuv#{Bp5 z+Y<>}+n449f zZguId%$zAdhjj_(2I+uC-z-6RVw2wMRFBH5-<*F-3{E>~%GSna5KgBQg9AYXU*U+{ z#s2{2BYY2*ce#RKrC~=vG6adS-)>*x_|VePW)%%wg(Aa8`Z`s9%4W&b&{?)4= z*;k02%ku`(Ri#5p(gdgx%za4u*9-fE$dE@9OWch;K;d)pTtqBDHLX+p~(|j*U@RE-Yspx*^|`tsZu;jQfA7zylzjg*ABG2SoJkujOt91 zNGEQa;pc()AkxHZMNz_7GXHY>hs5g(8iTPlml8R%t5`(DEhG5Qw zpAo&z*g}vhmbEWwSMv*XKc*dWt_gfpPj;;{d5eDTf8sFlQ^OL%h4zE`51u8|OxsI# z!GNr;!8p09<+4;tTx@{8U2Z4$aq{a<&w?wm_TyrkL_m|U-yBETO)Hc+!csz#6%rN9 z{{YDI$76O$oEGSkhZ3zx5vejS%g|f&$I1HJabacZJ+HQ@2NZUE&TB%VQOKEruVv-~XGzpK0dqU^`da|!xf@Q?sz#MWq{Y6&o<3F` zRE&0bT-O?-l|#_whLWIb_@+6?F^8p4H03%}6X7PsLVEK3{*fi(ZWmz-?+}^iI=4Lk z0I&GNM|L#9OzuhtHFfg;065re!baFBIR^y=NtLBFNegW$ObLVVpX>I+nz9sB(vqhB z5L5zUM?pOg_QQ@cjoF4Q)p9R+%S_Yd^(v*lAAXrE5>^$*3%F*vEUr8$DIc;Kz50{Yp{`Qw}-ei=djaqFY{{X(T^4Q@l^M)0v#e~CY8jKGw zIgjy%HW1|^)D^2pGsCgaR)+@)3xy667eTX-U$l zxSff&`TJwe7S5C(4XghEs(53U>HGO%-n@s9m1!n+w>)IJ+UvB<#2uh2Pe0-G(3J=Y z(qhBmzwhgYdVIZM#H@Z{C+X>YSsZ1NCDpj-8kI0FxQ?6h>4?r>lc{S{QGTAEEL_P6 z7OE2Cg!jUfh1DdeM>!-x^2GlDDN2Pcgo2w-KkbNqLV-wuASFp$?0>Evk;RClY$Zh| zWL-ml>GSF5jSW0|jj7)ux>6+7m29tsPnOphBvm0uxKfVLt>@|cj8{3AXl&EepTzig z0%CrjEGw6B*{NEE#m3!!N6dcb8r={wRL63gR=Z5tiAmIE<8Sf(@WGpLBS>V1)u~f> z1QC73xnLJ+*I0Ce1Cfh*eE$Hx5Mzg3s$8#9pvRf}SmDvk0x=mQ+=0!wo!4AZYiLm1 z5)A(UQ*N8%T)FD%x`cogr1SH=zSxsxJQ++CD@LLQl0=E}i0g-{P8)8Jr$Q5`UeOBs zVU5%WVK6ii!bgMh3Yy0fbgR3GOoQUS+gs_0vwRv;OpvkA9b@%@gm`Qwo!S2YaGB*j zaVV^Ph0&=qxI-HOAn>6tWerd}3iwQoWinM8nEn0kRVHZF7`oDwkXB^) zP2+g}m}ldzDr+cPuu|TWWs(se4W!M9Buq!^imyKHfx3M~zWGXVdPxFB$%rB^Zy|wh zN4Tng4(H*m`dYph#Y|J`mr|6Z#Lu5FH{X4*E8Vu!=uR z3RQZfrVME-<<}2cM{RUj@Jd7Nt6Bx59Y51_WpXP|# z_W9!R;98ojl9{z@gs3G^@l4p55sr4AA^!leX6hr6gn)QmL&PDDBBW6X_<d_0HH zeuEs}+wZez&zoB5(5-F~NYa>CJA>5Q7Ka4(nwQd$t z%t=Ul!bdKf{f_v`na+wpWByaLdgB&sFOwa-dnM+%ORI7maU`p|KpqVxQe)F@K;In6 z#XXj0nGJHg}yS$t<{FxaY938(5T)Z8Q;r%eNU$Pqr)ymx2N?u-9U`5ojsdyd-Zk6K`R=-Kr!Oq zf8DL?j>-0I;5C+6QqHX!Qy0>a)Bq1ng|G@emfYb?!DTHZDX;`5NhAXkU}XA0#lzTo z4-6qFs2YlN+d|>q1pt~lj%Rd^GDpz(CMwI!98}gsH^T$YV z{{R^?SW=a#N>tlHvFaqo-k)3r#yl@g#I&~`5rYxp^y&NQgt|Adhcv4+dgj*G5B@F$ z$va1`;LamYf2j@5$Ke)_-MaZ>pnERuLX(OZZK{Q#TJ)<{ryhNT z6smRWLuOBv$Cuv~4p~!M+4f^}ILm0#g4hKzobvD|q00;p*qIMp)AJ!?vJQy-&)Kbf8Ni*;~#s=Gv<| zl#mkHp9u$$1P{ObO?ZngPHC5@B}rOd8bYQ)^9P;$u@uq1GfOj1ssxtE2&Gq0XKYj{ zC|Z-G@2p%Ij-PGuwr9cg*}W+MH*^Ss3Phe>yw3QKarX#TWLcArwx7eDK@F!?g&uJm z{czWk_M)u1p-nucC%ZuKg~C#IAjaDf&u=TXI77vPsC#5@y_|n2elYB<3PZsO@hF>w zT|W;q^0wE-Q^y^fI+xu~bE!%Zab@|;W2Q2GC!^vzM7ZL@RG|qV#7{fS-rTSbf7$&e zbkIp*Itmm_4-$SE`djxnTcdjuw0isJmB2h-!q0HdXr~a_OLH@$Yxr%L^oIK_y-C)oxbfYl5hPCNCBP=j)Dn?Q?}` zSTGYu16QX@Xi-mwHzMXu{{T!saWzyWg@R>LWLnaj(l`HaIM=2uQr`I0m^@q4A3euUm zi;cM)e5T?grHUj4R~%Tsb!EQsX-cGkNeL%zbJMSu5}~I}cXqHlXo_=vQ>x6%Ut1eqb zEs&I;f&qzDw!YRqac^cEJc8Dulp#se;RBto=48a%o+F%5!-XTf8h#sG_;$Yi2|k#~ zi&#va<+;2$w%>&p$!db==0cPr07OiUh$Qk6^BB^*h!ICvkX=WOPz00V0ymzYq4Ji# zDR^YGig+O?NFdl4Jnc5~^p18FhaGmJGP;U#xB*bEssh?b^@AsU@wugOcjZ#L7dV<$ z&vf2tnrLl)7mkobY1QgETM`-^frcJZN}KM|RFfnNS|I-boK#!~+M_w0Jv*v(J>p=g zC1FV$YzL?~wprred8KNnR^c#ick-A!^E>%p5$iWK*|e}8(@r0vn()3*8n35o@V^Y{ zNC#xh`o<>7;QD&k6ood0bD#HeJMGRkpPa)o4kTr4GPB`H&`8=Oksofjw0L^CjLL4LZTkHsM zO;azSty)cq_@o)I@-`detg?*hs#;{Wqo+yU`)zyvn5X@uc&eW^;d<6olG>UH?#Leu zDr3~oUPq=k^pck}1Z~vGT``;c*WFSXZE{mY+T&80fIzjaYx#5XJi)~6x5aBMt{YNR z0M)E=Gk-J8`C_BV_<&|%Opwt0p$C{v_n$#M2a%bsPoAsz4vzQ4%J+oZ*5jA!%MfcL zr`4h`KE_n1DWhhkx`xh{(wOBP-KUfeN9sS66JPeH!L3)JY8n)fAejU64To5cTaP?A z4l`RhjQ7J-YZq0yNxt7KK4r^S5r-CsQdCqFNCiKbn?dUsc8=IVL)CLm(7CsZ{h!^; z-47;_%_&^K27V*rzTz#`FzJ}~8qWl9ue`Wc-9lD{2Eq6ztS0=2q4kcK%D54b$`tTV zcA^f0`HW7&U`{KaXsTt>rRr8vuIViZww);v6aMR)`5w5}KBQhcPBylq)Qy3yDnIPw z#@_FocO}8yETmavkSF5bp(^w$-9D z-f*jIGU`}Z1(eO$j}amK)s!hoEY>v!2ZRw|WP0`HJn?xWfmzRTCm3qWR2Qd9bs`VO*9N>2EYQ3ZE-K>FYbqNX%4UC;Po5_=~^R^XdG)7+PNC!+2 zB%8^uS|6_5&2opGpij$U(prx^OG)O*~s zj-p8%D}?P)#LiJw09zV11a12DwjQ!xE>$B)C<@W=n7E1Pe4;Oi+c{H;KvRVpVL}94 zbC01o_O^{|nPw&=M60j(9+=JO0(P_lu8-URvaE)?TJNYkq^STDX`jmAkJQ=^pDW?1 z99YxN>O%Bfj}@oyw<#CJYqR0%Lgl`TqcWHPmNoq&mJJk$D9mbpjL*U;aLrf#f}; zEyugHDa0ztx@?tnF&L8ywsR_B_=#~lmFm^c%3?3H^4>7$Aar>=DF&!;2i+QuIYJvj z1qmWkF}KUkaKpu%Ufo+x67T_Sokcc@AFSKc>4q*bqj{zk+@A_cp8bE_gbmp`a48Yt#iMiheR&c^A(4_<><_v(SSC^LGr?0cC#>!(3ee&1HC29G+DeqACN(N1{O!!)ua1hU zXr9m%L}>&a<^;^n-2AazC2`iCyNo8(n6G;@xZa9f8qcz zW2f605_))Ko0t-JQLw6xEPcuv-Jwm9B#~jMCO7)w*MYl8IWy@VEwxW8^7%x16W0at zwosacsSLt(X;q0DZMD3>#Y@C0cP@EFT9TIaXoDJuBX3cSjXs@{$Fzk^Z{9Yph-bI7 zs!$zQgpErE3cS5cMm=-2zmB)vBj0Zf!Es9 zwJAzeD^Rk6W=Y@7Z5yAO=k!R!ctac{StVQ#@p7{^oCt9~CCFHSB6i>R0|->rJyPza z{wA%a6C~|ESZv9fQ@T#6Qlbc1_<0fMHub~uXv$GAs7;8CzkkyUhf2tX0+LE6D9#>f zZqqWdr7KEqNCrS0eMw(|70 zC)`DoIhV)^gtobXeOO`2ct!m4GuCx?X%T6){{Uap?SpJ#rqvDdQw=}7w%n*GDJCTO znSyZllCbJRPLioR81?6eywijgO3)g96R;OPU$Km(scMZ$NlJ>;FR$Vj{oe%F6KR`< zDPs?~+LUErrqLk5pV0Hc<1t(1AdxF34^Q%bd*Q*6O$Ms3}V4=YQ>oOp}XWrK#?g zN_7D+cj*`!w=AfpT9gu`&BTx2?0Vs%zM1NJzVTYL#EWcyf4;g=MeWMXbd2CDS0UmD zl-fd_)S2FSP9-_I(r8lZoKBKCov~8nTvnfU?v%9mkptv^dt+*@&}z#Ir&N@rm^{CC z!{XD6!p)izPqjXA2NR_UTWDBO+;ta~3jl{MVk#b}h9$&vaAHjLhsHsw->98RAZy3qdS#A{Xo$qNQ z3d78EDtwZKL1jJ>5jT%7G55t^#N1?;suY$^`(9@I^TAwoojm0tl2>IL_`w6q*ASFf z(=g_>z1}#ZcJxiBX`Dk0G&gdON2LSa<7;Z#=kpgkvb7$7lYj00Fr8Z?FJ&roN=l^Z zBL+|@HB|WoE)Ca zp>$%c85i8Fh|-rJqJ;$fH3Qn1Qa5|t6Uhv_|b#5Ea|K9-W8q^Fgw_4EDj zhZXjXN0T&^_}*Gfkdh>IAf3Kb%cdiAZjjm+UflAfwYk8iYe-B1JMt0F_sgqFU z`<3@#lWG0`0L~qFLyI!rEv`&6Sxu_OVZ{EE`yRNSxx%?>sR(4YrSB!Ol^cA<_~WP% zdjL}6Jf2l|SHug-X*;kc#1Kc{(-F+WUlBYJ-8zZ10th~X?epb}MO~h=Qud`Jl-|K< zJoxG91Q&2BbP*n<6>5Jj*)wQjm$`;KSHbSdtI~N(U`@)9QBUC6yJ@Gixt%|@%(h2Hk5f(x3u=Mz@Uc`rA(^i&ycn`vdJd}3$=0^ z3{QXk8|1kYWSU0O*ypRkzr;R$WMVnRy`g1%I?IWs(v>8uz=2?XxAnv?i+f70&s@^a zNCaI+o$Y_|itmWB+}Ap&Qnb3Dk#hu(FW=J-iXuAr6?52 z5f&swO~>EL(}z6A80A#hSSS*j-Qi)GP&oQ^I^QBT!wqI|?p)|)ra$eIAcL!~@BT5+ zIadTx@ZMaO6sF#1cvL7UQ+Vt4jj;gZlx2BMLeyDFNFRMZI2}Yt#(*Vx)!midQqwY&pp7yB8il!z zSl)moJUr{}B|af3j&>(cm-xlbkec~a#iamSf~|O}twy!U{Hy-}7;11SX(~z8q{I!* z7UE}n+QlqwuTs9}?}6xRh#F5xk~)v+h07TkRXM<5BKT)7dF;Wz3EU2LF^RVjQGXB0 z5%pLI8z;z9#tP%pRrexcv-vxG)oP|^OKwd~p8*hd-LRm#eEtdeHd2Lv%&NNSl zmzMtkr}V{@l4Qv4lc_1w;Xc1_-SJ!S?H{|jK!*W5)CVuq8sr>7?{v}uHYAAh*nF_v#;>jR z*0haDj$GsSwl@Xr%FK#47tvM68u17Xs09*17Cu;u<@`ojsE+WBCP#__q;EXEa6f3- zs+w`YtLjl8Ntm6m(ZjUv*Jc0zzTs|XVzwh>b}VGJrc zBrG^670|CMrBIc`PUhZYl;Rh}Ilh|clB?`_iT(Ve7Pfnrd)*?GfvH*z#^d)mt2mb+ zc~y#0h)i>zm#!q#R^(cD1IkXHKkn1r>NZMJk}b~Oh9~sC8o0@`oY6u?l7lAE6Z_?C z4VmTc?j zW$>e^XDW~;)(3n;GaR|ZRTaU5cpT4MNU~=aPeR*d_=Ml$8e^UhRsF_MRmm>k4W)R2 zMQTw{_>tkZA&q70MRuSGzbUoxB+TC?oo){aPdqkd&WCH02h059-79vt2`+Xrmucr3 zZ6bW6oxJfR;r=078GsTLn?|e5Z-#2h5~Qevsw3?ie6T)B>Y1xjNj@V6L67l|WX~xk zFh#2mE8^hNCIB(dpWF91m~hV!q4)}4#kf4ZF<8*DL!m^U7nO%Dn38bA{lc`Bk+Bj@ zuZ+1`4g#I*0az88RX%3j!c))Zh+h|Qg*_D$%1cQOE1o5pElQqcBy@r#Z-MxiEnRIo zygIk|Z}Y;m`hyd;lq`|{RXD~>DqK>EeiIiF`~Ltqf2rV9R?$dK>5Fpu`QvoZ`;B^n zlBDXnv5#L&O!#f2R8Rq{#FNNvd~CW?RudgLVFgxnTngG-alIE%JM#0yv$H-5XEmpC zmB5`%7`lFw^XV4Dj(@dTZ(^u|`IN9L8$>WLOp zKO1&dnrGfaVIfHhxAohfJ7TG*;n(ua*d({63>ZAgxryuc$4h6qi#e5D+|;KN0NN98 zOh4Y!L>Ax6?bZa zZb6vZ_?zWi9vgqWfRvLU{{YYL>xsV(aFaQTbd;vR13y^C!?og&J5jY&BO?ujl_fz( zb!{i>i3bW~A?jsmPLPuT*xLSo(-x!sj|{^rQ9?Ah*^o%sj(7Qf_l{F=%b6?P+JQ=v zWPo<-vFnIWs|>XelW?$p%757Z00+02Q}<6F3ztDVr|Np1ohJ_Y*JF&9DyhBfz3ABdVc!h?}<3sO!te_l_a2_6i@tK*6F?Rg{Ym* zmcdfVF=?>5E4FUW#SUzu!%&p?Ol{@|ov{I|%X^d*DY2_?I{yCvOkX@;>T`_I=?7BG z-Y-3W;}NRf%~x2*dfR^t69Z$)`1+kbqN4z+;nY~QQaP2E6R0<~zzYvt5lv3*DgY@d z9}R>E#m|@a9^-j?bxLX*aB7&HH~sx^HD_e1c{12Z)376ZW5?>7YTmXostWowHWH-i zPkBEG*m`06g0r`k_)Zlh`j{S{vxjaY;3|x*2`WJ;i827w=lbENDxn!xX3Lr-BID|2 zeDO?EwZJK5aH3R*W^3;ht$rbUZcj1v7$LmjNkUGu;Uh@|4!p3_!~@+}@6qt@6aH}> zZ;YER_bXk&0AJKculK{8(CVcdS{yjFW93|S{R4>zT>e!pB+7ojJWhC1wOW*fAo#T2 zdTks2{V_@9ncHsIgl{79PwV%@+koqvsakvGCrXsB5jIfLZ*z0{M?J8a8bGv8(6Ph{Ta-j_6J7f^(%Rjv-LH{SQ!e)ro7<}|F=wy$<@B}UpJ0k-_{1k0$3UxKu#+8~i@ z->j48(+(?gyDfS^QMIqWCmG0DGBmN}p*_3`hfal$>K<;<|35)zn!;)Mlrw?AL(Fu?OvrE^Gi zkc#4d#+lD3)U>jM>bbE|K3m1lmMd)UffvE>w1pk-009RVtruuneRFb`P@}gie|~(A zrW*L0BcrXN@yr1Ps4H#)6e|g z1cHmREXOBu6oqM>rZ(s0&#d`cCAn=fXlc{l>C{G&6VBx7jg61Pw)m0ekF=-8;?s7i z7Wh@nxoIjyB|M|TJmNog#%DQGt~CkxqmmDce<=O>V$sj?mTPJhTT5w5r^5rz{{Vfw zh6keHq*OMO2~Ls>@B6%cu;xfeqMY4z9EHyOPr{W91s@WRFaaBL#+)aYtu?Kcm1&(s z8w306i^q(6K4G*eBpD>kB6&=}_51y6T*D+e9Y9z*ySThq`gzVhbBV&HIl7!F*9GJZ zsVVOxS3CS${{CK=ohjDxbSWv75IkOA-xWU!ak80oAoJ>CKX&?kC#`0NwwC8qC-*px zTW2a+A${dXIOe^|(4#6TRgz?FJpQ;a|rUV5O z{I{{5Mt1YX9h`rrM-o4k8n!8%RlzcW2htVk_r599dW2vC;)_iqO@csNquEyuA&Q>y zX_BSF6&De?pWo|=*BDl_mgEX|z>=W`Z5I78G|l~%xR0~yl{Hb8zB{{F3h^6m2@oPo z#@?i2q3v>yF`@;B+HtUyDpFCs$RrcE5N;;(<&9`1YyH65t^1A}!lihnE3eF+bz7*% z(-E55SWyv)#%Y!mtw4w=>xlkkm&D^*DHB@c$Ca=XnKo2BGY1_d*mg_A+!pN~b(IR2 zDcJ#9Q#u?53WcOZ7})RYj(p1!nta8*Lzurycqa z{{Zsm7=zWMA((FN#3PbG*oi7j+4pO|^vy`#H=jq7mYxJw>|gA&23{ye0DxOFPNFJOZk6JGOzA4 z;m#xWAMF7-o?53XxIZ&=5_HO1Nm6A*0wBTM^W~0!;vNg(FKyn#%c*sxIOB6kP}v1+ zE=H7XAeCAzdt#sVefEW=?Q4Xb;Ep*h06U>}bnlx%}PRDZqi4bHNkYEBaWNvhx=HQPQ1b@1ZXkquBaeqDvg7C*`yjSdJ z+Qml;aUz~iySk7T;!05aX&({+B0)^_-^y{_-Gh5YWc{k-?7K}`p7~}%XT*sy2S~gh zD|3O0pSP|D;ZJW)#M*L^=2OH}h}W0Zf{>&X{zb$RCfB@uF~fbDcDKcz%=~jvlx7V- zOIen>TB)XWGCU-tuW{i!k!d|IiyqMG{pViI_eZ zIPNcI&uh%PwCuT%7THKq?YPGDx|%ig{ZP z{jByaO~h1f=Ghm9p(rjxPL!z0m`Rx@!ySB}lZehy*(Y^dS(Vf`+|)8PHtz6u*c*xE z=Y+dI?XCU=;)P^++T8B-_jlDMVJ6eP=Wrs?z9BG{IHGf$1p|L|F6;Nf8dL{SBJyT^VWW?GIjii0jZ>dx!7fs`wN8+q0%RBfSdZ`ICw|sDJZm-X z_=hBMDR;uM5Ku_`(j#-ck2Ag|-H`EpH)-4?teZ6O)r6@lLg6F}CezR7%{?&S(NuUT z4c)jsqdnA$hdra>t{qKlD@&c?34`L~dUG9o{IScdc5Ob=O0RjfD@v4m&1uuLB$=6$ zK2|utxKk#n;4UJ2Ca7)IQn&%9F)$_$`~Ldf9wXr-(Q$i~NJ{?z9STrTBI>lqUy8{V zICNG4jCcMLnSc7)s!AsBhJG$|!#+VYT z-Xw_8#3&6hiHjVZU`P&S+mNtbDr6ox>6CN(7*QNte zZFp;Y0H3AXw8;MeHn~GN>~k^T`Z{{#u;4>}GDfInT7ihz2nTWWHpR`@w-7Hi;o5aA zTAV@zgSv09B;E%z7y9C1+vaIYm3A*tMujz~L1hb6l>uT&1E(@#Z{>;?u--6pB+aTB zSWwk*2T2K5$%D#qm8plNwo-ZJXuDAy#mu8!is}rnJ5EQz)s-hoQkKbDg_L7(cN5FQ z%N(D?+(5oGgYy*_CG;_JrMAx>J|a!ijTHN{P6%^Zwm2w-kf$_zNRVrQNAAUIOY&xte|u?9!Ma zJ<3^ODFmzG)R^CSj~6ZGz)m^OJl=F!D7`}UI&s)m)S>V_S z?+~Pfesso>6VORA2Pxk8=4`RYf9hl%D$}o0$sd|ch`PD%0UumVsA&*wMHNe`bMEVp z3iRP-d;GnS02)zyl288ti+H!LF`mk*c(Sd^ih5Tn64_7^n-v|!w(=$|je9z*?(#sP z15pP~(0_ivV~(2kdCRCMxFyPm!dY?Rr7OK4X;g1}B=~00GGlCGnC+pXl4)=HeygD4 zDeMm`msP=UaGrA8Pba%@m>>d`5Ki_RZTjsa9fjCUTa^8u)3%g1q_+!5NAPJW|DPX^$^jTy3{Bt_T|b6C3{T*Bv#&ou_47H`ygHFQv+dSZoC$ej>fR zH!>#iGH)tHMw(VZTcx#HLWiF?IIp`~ z?OBc&rS~@KJG8b62^{5HA3cEEe=HfsoNZ5%aQ$XwR#b|GA#h1PB7fbhklWAejwS6+ zwsrP{+Dmz5BmNaSkX$Eotdg6N$ok*QA6=x4tdFVSFO8Y5)J!2@=OpL!UAfubcvZrT z);g6Q@jc{=X$Pqr{{Y8KQ+=j;Sa9bH@mrZzX7ZS=*Wg4ID}Hf*xAlvYfU-ojz*KB$ zQ(@|DBYjDq4Zh<1$4q?t_OtAhG2riOil!=(tt(pHr%@^iDJld+-aJw-wylieaB3U1 z&VMvW3g|R%I=03Sw~iM}XWg&TWGtGrw&Sd&8jKQx2@}+8HtWtXce9VSCPBtrZ1zGb zd=-Hx0c9a-N$>>#NfB`qA3=&=wH&4A`!jL0C@IeAB#?jYl9786)N|O3a*qJ;=5fN^ zrm>lYt%Wl3T#~KQ7csum=d_M?$(_OQIl$5F^;;i-jq;W_&>G@kJZPQquzAkSYHmLR>L zdq`4oW_qlphhfC7O*u0$AfA&yzF4IFuD!OO;TjjRjG+lri$<1^7D-jUB5mpDIqiz` z*#u`@tnpWWnU-qalCZ7RnLCn6CP0|lK5)%sErUwwWcf!BA zvV4oTOs&>4HeOql%28=;_!QprAZ`2G8v8nSX0F7a%o%2=J4WHw&?`t&R?fAzltxtbIfUQfuY9jT`8AL9M+tD0Zh670BR^>jH-w!UX_qZI*QKL0%Pfj&lGXZHx6gYsAEcd zz>-!5=T(QV#eeUH9Kp{206(g$LYAbd)mu`eDpTkCk4!}~)++d_z0lDPs9JW@2XXR` znDaPv`Tp79DfDf40FF*^h4eew``U`9v@XGa==#j6lCp_ZYfDccXn6@xFrq=Y1nfa7 zi;;?SdpwRA%)RLpOq{K-Sagr-&s$B_P*>TV$6 znoQ3obxKSo0{j3;sJ?>>SE}7fhko?g_Xf+WsUC;UjkF9g{ z3~WHqypPdvJvgZC>$Mt={ZBbhRH$IYrLrU8A1}9=#FK=x8XnF#(e52;skUE^^q}fS zl_ub-EN1%?zmUglc5m!)L&01O{&ki~8f|&$PudxMSL-+Qd2C zy-?_Ur6eFBNiblD8*(kR!=~|S5s!p%h zmpJK&pJ?5dXB<16e;vsZDm1N2aiE!00s!2J1df~E&j)q^oTjIQsn(qdhD4x=z07`t z7F7ov(PdeMDk_)VHu?%s>xC+88H1=Bz!BEQcd*Iy_gl+;%6(*FCxB7D$J~C$5M~Z{ z)Qh9cO2>SNvX3=xP0DtTM{GQa=}P(GwAg#|#^5gT*2Q}e?uJ$f_lIC0dx zrV!#3M6BNP2iJa9^t{*F%ZAgCcEy=HrEJsHR4GGRKuSq77qo5l7_6AdQCGxFEeUh+ zh)RfAR1&Wcx0SwFvPgqxAPgQC-n&$1^!TQ6&jl@4RZ87`MM9i=x@lxwT1PGS=rPeA z#~Jh4qfOK}5=8*Ib?J!2LE;@nYk#Zt$d`arihs8scjSSI-xV+aY$xd)+%Wf4ErU4{G z3xj`MR{sE;Nc%MH1n|!hGnlfa4|md)w=fc&UlNJ*=RcdyAlye>8K*%={{Xk){{Y71 z+mHk2zosGiZyCG7ykVE??;K*G!Az)7_*8jGAo}0)b;d@PI~#3cxEH%~2^PAi+YhtV zcA42rdCpdqcZ`Tykb*n~HkDixwfSGIxtG~fi*sN4?Vb_OLXzWd>7sqjMRu?TR7_sP zja_Eg>~6p+QNQD)6tSIVjNShHP0HS>M^TflmPhu>9am7A)Qrc9iHR?hj z4J7PDT*Py}-7mQgyci5l7Dpf97K273)Lh2}FWG-)by*2<=NeNkC=11$nG!bG5P9#1 zUeI%o`hO%+7UEFi#3++8NCx-y7K~XOO-M4dp|+b(c9iK5ViP;b`g%vEIrp|cB3*S# zmH?|H8)Ss_8mQJbb!&zAmMeKBc!LsO}+^P$ZyD1w+-O27Dn%jMT>ReUCdsVP8n zR-GtWkTiLj+SrTKw;HYrFH6(4px@rtMsOZ@)h`cGyq!#`O~sU*D^{U}y} z*!zl8nP<97ntPIztb$-jnNcMDx(_(wI$kamG;Ojw*7Sgp;?sRwMlfA&fO!SL!&IrQ}XOicuS+9Ni$^s{u`yqtdvz4*^KPH~byMC+~hE;R_;r5<-N z_s2M~*!EvX#s2uGgVjCabPyDKv8WOJxU;yAjZ>L$@?WJ=R31WHOeh->G3nOd(rX&d zEmPG};#I4dCr~<7)RX%-`w3w)X}4YoSWoo;&1i7s9#s3bO6HTn$z(P(mNXEdw~8WU z@4nkB%N(=BJRpkdyX(}Tq)JWI^PAkCua+(D(R)lqR$jveUy9=iQps4dx%~#;ELN%F zS^-`I&Xo7cxgHQrrX!`c>LZ+d#;!vYLNJ*B0RI3}sdS@)s(jaiS4m!%9~&-o$dTk? z=JC*5e-VdH8>nk0b)})N934%d=?UBm5z_qk`V-pc9c5WXT3cn*slc*SjbSR)HX$bZ zZ{_fuK^T6wi`~&n-yxz7p5{>oXV+kUUSz@}hJbtj0CiL*Mz?DX{HepaDywQ7XfITS z5hRO2J$V!Q-~rj>_7SMlX6X323PEb_rCscq5CJIDE-*2zj$(i{y z4HGFzHjQKby$S1y=kO-mqDdMdAV?%c2>sqUVim^Oc|lQ0R+PzYm<03=sF{!(qK*0dwoyuxb)mDpG5pg<&yzy&r zPZgstrD1YZkO3eO@XgHqagU&H!gr`jT5zn?A|L=aL4v}`xu=lWkqQDvK2r_<^; zVvyt}qQAU59}pmc8{6q0EK9gziAb$ViVm5APv*YRLACbs#1}8lk=`XzK~V%i1e@+W zy?J89;M$PuO_^;aNYavkQWv#^{{UFVc9%*0%!Jp??8ok>Std^7>?Q(q`Uy|pZ|#X* zQNfJ3b-0FnP)cGV{D_PG=MnA@t}U%7QuNFLF>pD{{Wq#Dis^-Ge^PpNC+yhPcIMbU(*YJ(t#*QDYVQ<=hpa; z9wMe>09Us$q)+ek^dk+G{9eOG5TwjnNRkHqFcKI5vgN{Jcps`_uHhi$gbhcTBK)@7 z4H=&Wv#mt8;wVy~AX{y)=b84EOwwSjwP`Y8L0&GK@BaYf50pna?O}wQYFU#c9(xmR zhZ$OpbV9>QV>Ji0+S&dSrlmIxoi@4E;kEw&Upx-pRZUD}gbgtzYZfEd`eHSkcC@Nz zd&DnKcuDY(VK(yL&&+(G{88I0=xJIMttp$yI=u|Y`hKGsuGMd_)VEG=X|-n6SJ6-_ z#_MsY5;f_7KdtxuFwdCwl|se4-C;HWF2v0FVuj)k*dMG)v>(K<1d#?mNdkQc^us+@ z8&x|_rxve@@%*Yg06A`dV8(p%Jd7qr3%I3r=Y6J9JW@(^YLf$3#s2`x+@?BnoJ2F8 zI;W`$DREk0*pVroN2$5RHJ|Z==}Fe;)RS;6CU+1`r|pK^yNz9O#FrPTv8GD(6r02V z4MFn0Ovn7Ip9)oP%?ao&)A!32R%(|SuhNpg4di&H0sh}u#i82PV4S_R zp|$Jp0!blY83c6mzsTaGs?3E>W|1LKNeU|jtde?@%k}zxm+9^fj3~7^!kO?d5x&yf z)^%IMtP>Hx(-yA`aXD=XPkX7cq!0wg-`oz9ZShCs`I~Gw6oqw4R7T12=uRbh2Nsr) z+Czb}%zrhb>9x9f-yUl;t#RDYvo`l#2g4cSUSUZ>?%IWkl1|-rgNq-BGi21QA!<^* z5P}!+3HAMqb0-XO@oni-gG}7(2`U;u{-0c29h`QGin4&Ur^Y0dz#xIorOE5}7|4;O zf|QPM2P*c;nQEevK-6s{7}4c%h8{ZLYAorul%(hi)iSL@XLuyv%WHa0*&h?HN=tL_ zCghW-UdH}jxLUh9l*v|?Cevy7Ou;;?Jx8g=e3CBH$sl*Iu4nC=*@cYMsM56BR-Hho z9rm>U0PV5=02t;THtfGP;B4JaHrt8r+_4GWT+NN`>9%IQK~R>bQk!c;WdrrvRHTtm3`uzJ27%-(#D3uaVX1Ou_; zdQKa%3a7Ff=F}Ic0#pW&0;6*V*w~rEZ*vOvZ7g7WGw{0?vhL6-5v2~VQdF^Z%A~-z zI2`$2acDJE#&JolB`O6PY*VQttO3eDeEFNQt}mHQ%yv&hjKOpy5rY#3cU!e=Gq`w=&9vl$9kg zVs$_Uc9J~)xN^;Nbt0M_NEaY=SDn6iiMzxNu%y`P13`nZ5qt9A7ew$|h2)Mku!Uh| zS?|5+Nhu0d!BPs2ktQw6lyn$t<9vyX=7r``8w+q9W;`KXVC@{EuPjG$&LKrmktj-2 zXkPMTk?U*!0Bk)cH%&_lKst3B1(D(=@%Q@-Dnb-&4vF@|kE-UL*}Fe`B+Oi_Y^5xu zgn|h0Y;Gr%e|!_z-);kiGZyJyc}=+mAWTS+69;<>{{Wm@{i1Ngd__#-Y3{`Mh*&a7 z@XSx4=X`Td9QJ)#!r9W6k=&+1L=)EcpQk@eH%q9ovCCpcGgBUJ*J^NQY)o+;T$GxP zL?tOwP&>^#Zf9^0C^#36_-dPp(xn31iC=juE{^!@U?H5zPhYRPLS(@C|Y*Od^@{hlb>amBQj zl$8=pLR2g*BbB_j=ZIGpb|}jsz*C~aBz|cV17&R%<*TkbMYmb6YrF(0F(o9Pn{Usb zKd6{jX?@)#8_o?XT8W4OJ|cDi5ILQ^x{M|l8>cOZeNK0cq_3Zz(LItax~JUk(v+vc zCNzac!-$QHkx^z+9;_Vb@MbBcvHAt7o}SU~X$UMHma z;;W&3irmvm64F$iUkBzSTdjeMV{!{?XdEx3(&~oMy+2cBZPca%X;t({1a2%%@ZZJU z94a!W6qGAifpyNiM>B~wSCR^PRFss&1pomhKk>^2W)HO832D*cQe(tCHWz?n_1_89 zPJhy!F1R}Ys@JoQ&gz`Z%F^DXwxq!*fRYMW%eC$#Q1&`1cEfFR{KB~n8w$n>I`Hx-P3fiwqdm4 zRK22S!HoIVlr;F&&*3v1j9A-jMe+_4UUQtVw5L*DSW!^tCL?PIGyec0Q{%T?RdcIZ zaGw_|+>U;bKDd1BYluSg9_83x9f`g ziMug04!I4bUzq6=H^0+vn7^`Y#k%TG08)&^6hzqDf8U-PxRZkunA7;IN!lX&@*96_ zW1Vx^B@=~1X0c9GcLnfMl$nxT(i9T}$QHeam+$9!aIjS+3Ray-Q)n0JAYTj=Tp(!3 z3bv96zUD;Q-9Gr4<+O=IP)SO>Bftb1`R#{lwGqo2jz?!XOR>dHQIxEyat|OCGH~}n z#we{qkfr#DlX$f9>-*af%>Bk%LW&eDCwTdO`r;t}02v&T)6Arg{!HPFYwM90~JDoyYIf6G|R2YcQos z(o(BQ1pF!y=_Ak26(<3>mKdv7$H;W67 zl%H@{D=fE|t57FOt}J8LeK1>@J9J3alt}YLZa4n`IE!%3dQ(r{B>YNDf<>k`#FbgX zREdp2P;VYq=eIG}60yaH%9ci!V5Vxk@Axiaf>fwfg)V1tzAV1abJW(QrKw3)pb~bN zx86o6%=j&3P64N-qvhp??#pA*jIRlkO7e$FSX|O!`}pFE!JgeQbwew;sg>BNSU4FdE4oS zO3;ebBuY)9-3H@*?T?b0V#k)MBW(*IS3kjA%b!YumC7dM52p4wc61jhTVI6Oa+`mD z`18ZYW0fW56hTyOARnjG^}|dlE$R4D-z|hs^uwa3i%OB%1X^Xxve8i5N{nd`Ad&^Q zo&Nmr#xelaM|uLvVlTh^Vo=)q^PxdLE5H^u>-&sjw5^8j0oC@~6+*@6lQ;?=RNCmA z(vo5z1Ggys`QjhMRTU|A5?803P4>Rq;?m4=RKDVDcD(Y#E@Q#Sb!3K>q>y7s03YA! zjqMw0RMI>u-j^hPy~MaxsZcd}{{YS6_3P;GA0jPYgfgHqSOb}O}Y(5-6WtrV&b1E_6QM?(E_Wt+^gMb4B5Ec1M**<+R_m<^DEeQxpn^HhckCpc2 zj+$UWZLb@o4Lk3J3FBS^s?T)^aX~~T;FGzu%*DnS^1i^7A1ZMwQj8_T2gVX2N{G1F z+pnzN*=-|E5M?s0fEtLrewZ?{k%n%D)y{kZK;G8p{qghiYn>S&tJyX)it;k34k7k_ zVxEyoQ!S3{8IVca)AtyqxWlkPN1Cb1c9N9IUZWD=J590JTu2*yDhhTWj$#e|!Y|k7 zitmZ&TB=%%1pG-c3LuVKbm{#>7N67~y4QXwNNX~3b=pk2Iwl3T7DJqfQ3$x{@9E8?THRY+PbKlZ66k-%D^T~ z_7>`5{VT;F$Pmgx4H zrPa9)Xw>$ybPM}Ij9QXeKaGQEz+Mx{Q&8QOE^#BQww2Mynn_`0DjwTMWlBZS3 zgaZXLYfj(a6TTPYCyPymEa~v15F&Z)x0X4zRFdFYY@;~Gf@vz(BAqBwfCfd@3Aj`Z zw#8q>d=UOut=3XIvbjaVx4i9Wh{e{G49#hh6{u^GJfhom0AQM)2t{oglAxawVDgDK z6Z`pL?3<=}R7W+_WL&$Lag*6I>PyZm!((p{K0}y@=RX&e7n1hinnzn!zVS&r7ZU`X zjDzd9Ojtd!b}FZtcsAE|w8{8Q`A9GzZ?t{!%DtlSUU9+oT9Stl--;}Bz>ZU5C-*nk z(QBi29Bb;RlhfHK1*@yLQ`!tv_?@UF$w}5yFVw;LV%Xsh*eLTlR_388a?>UfvILXT zG4q#&J5YZpu5FsNycDCNWNrM@&PBOm+TkA8d&Yv0{G}l&1jq>(t5LURIPw-uo|_{i z1g_A{^Qv6tflaBjxDhn3aPMJw8GV~z0*LSAh;RFI+w5I`JEHm&= zZSDX);Yx9|z_F5)z=)qdzH^Inhx2MqE2m0=)82d}!Hr&0MEGxfW;NlDvHL2SBcj8z z_Ed)rYkff<2NB}^S1`pHp=rL*V&k-r7(wBtk20;phf41V|{{Y6r<#QC-)?TD6 zYD-jXq*d@9aizCHRE1dR zfu=-*>3ibX=477NjHIoY{P`u;(ApfN!FEkVot5Musr_O#U0x}vr&C& zewB?XaH>c^)UhepZ}-KU*q>=lW|SOUan}#k@SEi>CB}3DNGURIBJl&~8)7@dy`)uBR_ScG zkdt{EUUAu-y>hW93{{ZI;{^vT!xUEsk*$!@09-SiE~+ad7T=f z#ZeOjdEWx$*$01Gl!WP4prQneM92020EooFoRIfOIutF??HFU4D$0C$HlUUHFLg!Y z5)y4E%M)J3P^vneAn6gz?ed&s{63!HN-0s0A}!05j2*yvYN=~dr2IVWZaJT~?r{vx zwz;ZZR|EypTmzggnvtWrba;lNbj;5C+YdS3WLDaUR;yk)>_4xbBAg@xbQJCYuZH9c zkGxy=IC9Ktl7?i)tCYdnA}{;se6jN~MNhSc*vU9d+(lMu=+uzlQm4j4pBFFd^}<{$ zRy)?j>C%}Xi<|TEzTQ~UvE-LrY#23P zD$wChAx#cqmR2m{Nf1DVNU^;0JijUO#G;ou?p{hY9XkME>b&ne?TU(vIV%Y%Ux_3T z1c>GY&({9{*AhBh@yet4K(b`|_V(mKLqb zO>0Uj)u}>BlWtHiw=6|CFNl=l8wygdrp64 zET=K9qTUrh+P*?h4?Km2^(n%k2maokQM6Bsen4Z6yKjATz@|VzQc_5thIS{Hm#-{$ zk88}Lry)>4{7q7sBn_qw`TRKIzTUWDPrCD+)|F1TLHNunFC51^3*+nk5?x(@ha1)qVAU!bdGWdksRmki$jDvOF4BL0pihxkYY6`5#)Ty+mOWrk>;X}UH6Ah zogfk|ZRErojr#iG^Dg4`w~@HdcziGbf-M63&ct)a&-6r@rIhH%7HxGk4;D3H%Dhh>O+e{r%%L3idn@J8Vf3(u1^2!G?x|b42)hXr#U;2Iicz()j zUDZ;;%DhdfV{eF#cID-Vz97niYg~84m3&ts#2$aMh~;Z-(q>3irD>h@Y8Lb9ezAr~ z?x4C=35mjt=3GGKEpk#wao-YVJ|zVSAHVH0?#(mcwIURmQ+pUuJ})vqcHb1o8CM!C z#pP=8CDQ=>M&d}l_We3yf7mW~nvB83DM2YvN%5UUM^s4heW#RdY-wrWwpwJA8+N)X zj+x}}@>Zar6e3DuPhI2-Vy*2x$EeGX|B!E~FJg$rl6pjDggBIsD;t4q+}_-9u{Xm4A@-bQ4a?=~_2B zNhTF-rhKs~$+E>$w&DmOFr>i|V>^AXwY_3tljV%lcz{uDMJkm_uVc6|GdGMOo3PNT zQh-43JV20cZMV$FNt;2&ex^|(qAh6zWoHX@hXI&pqvDm)J>xJHCr-+$-3rbY;sW+7c3E$$6L(2H+-plgwQ$o!_ z5TuPDPS!hmMYlHJY;mUp)>c&J4Ti#yloY6>5H#L*>GK%vKV|+Ms^bi)mQo&5kSqtn zt)t5E^uql`+u`z^>Ut3ESld7zFUphVv`y7e$wH5I2(U0rdg7_$jFO`ybx)^K9#J}! z2Ij(kr2YEh`QpwHso^%Y)ikEAmdR3ryi)`Ls@#O_VSAXYxUp!fsMk8RTYD%;Ki3%g zA5k$oVFY{?jp`nj=!f?!JW*AuIJ&92B_(8~!b}tQiNq&~IK7OvrO^JQB`Zq8?;N0u z-1+(67O}~gQh;%^sHh(q@c=r-y#D}kiqE!Q2t|D&-luI&JdmIelo>#_qEDa)YXjEU z+Wb&?2C!BHIxtNz=fW$6c=DSzrD!&FYDN4qCk_y&swK)fXL^!}Kk zI8DlqAL0cx;-v{HQ2>#zWfQ-jE{7NXMMQI)nw{jKI*Jk(<*`oiYl1cBp% zs*V@suIIvS$}S&A4e9r3#dkr74nowV1f-ObGemmx;3a z+=ig34R?Vg5+p({4DZl={bNk4waO<`snD8rSd$ucB=r&_=y9_imAbgYnMhq6vHP42 zC|4Hn%b9IRcAXDtN`N!DR`J(V^4|&NTxVO6Q>CT4rrT_SfFU=YyyyDj#$A0jaddV*wQ*I@<0R#~MB~j!@L-ZYSTp9LsG(*#;Mp9u9hu1`PsXohgGUfKxtk zw=Q?XhF6;d|&kI(ongEpj4LtW}z-bSq+7z9|@9(?gyaUWzIVnjiKpm zo;}SeEo_fFju%Mr4-*W+nMsXFQYJv1F&Ffo^2LR~w2sp^1WHt(s}Li7{#TFgCJ({cx-(j&>Q=8B zSAW(&&MrY{P6Dc?Qo4Qg#@KDF#$0H^gq3ZJdeOmbm4-6hVdRqrykIMJ&bgmNO&`a(MOgk zWv>xI5^pin(+m#rds()5-JtkoI#giI{PA^Uc{L+EIND5V?zSgm9Pn;wx}>K|?Xqc7 z`ST$`z_#aBq07_v^Ta1Ka+;NL=t@YQUrF`Fk=oTu87oWf!c)8eH{4GCzfVc$E;!Afv_)}cRjGM|>B??NQZP3R50Bhl{w~N!ARkoz66tMyh z#y37=^*u2Krd>v5r3vpAli`U_#f{k4VfFk)#7#Qld@5XASQxRk*0A#<7ssdCJ;iPf zV`FF(pSUNps*WgqE+=1#6A*crz5f7zrM1KTh<^pA3UC6gyj!Q_PAx9ayEbnk%b5-` z+LV-7Ct(Bk`;&*hFRG!+vQq^Kg!+?n>3+N6PK=j(LivwS^-FR6mn?Rg%{EC^;&j1C zJ59{*e@Oabq0jS$R|y1ZNjCtA#kt!1Xv}M#EfQq!Kd;jj%|{DG9+CoWVm~jIEZQ0X zOVfLX=O~*FJmqAAru?Ku_Wqc$xL1SQ;<`Z=a7LjwAAP=9jO1K4x3eU$nbhL+#9~s? zs(4bNwINDu>9_m2`CyphFcmU8u)-#@f*IlX1t1$*cE6qxe>7D9PK6%~+!(<*#}^#p zpS*M>4o6XVwj%ZUxp{ktB>cYqm|LSH*-H#3^C#L|_4?kYT+omht1f@Bv$daWhWN*Js{@dc#tIMhKe5?eGOOl9?VL*QG%mKb8)HDovNz^@} zo8?A$uRdK?l=z`Q$S0Bh-8S0zWuek)6W#-HFc0~{*`-mhsZx|Q1d>IfU`+3~rXxA; z5PuI&pt4k{6DOznI8&K+kplY=MEUZz_#?3FvX!jA-bE-a*<6x@wdqB~qoW6K%ee`V3>uF?6}$Bug_lhV}}XYcj9Q>Xep}rKv+w{H!ho z>}sbvaknd*J|dCb2n9bazLxaGrNe!gW&A5b)6O)?Rujx6KRvhmM#kXb(wjVKm!?pZ zr@#?npVoOB`Qk~n?;wbRMBb?zZLA4y4(zszhbjL6^zEmFa%(#QSDsja!u&D%mSLJ)}x2`qf^y!JRaH@k%E1S5AQhv}ltKviIrDO6rD=bstv(W=f2TAx_t{gLfhf4}D%Mdf6l%s1Ti>+{6Ji?c&X z!unExR7788dGh_7MmQrUjKjT9jRZ`6If45aedESb?E+Kr7RRY0{&A}r4k2jB+aN0L zuC%=3ijQjlZw-!>0x0sH3`pj|n`W&!!2@m=7eS3Ee~y zwwwCc%zUF08F4{C`5IqgK{E)U@g!_uK>qk`r{b3lVp~59>9E}G*Ak59f}gHbB@0wY z79UUF{It{dc>NQ}SxSIDKz#SM4i1~X5V;eloX>A1SfMISN^zVCfm!@psx|~BmowHZNK@$Zw%(jqofHd>V0iH;L5%%ML&geCgdpDUVnUJ zYNLJIR1I^QXeh5}TpR@pgbxyAfCNDR`tr1SVx6cC&}JuBhV!?cIs-J$5t-93;atVe z^Zjv9@zy}2m?_566{wp7KYx}y(#kJumXt2sJ;@YCVM3Jzc%X7N^TyrssnC)Pr6TjW z=kvl@O4UzGr9+SaM*H*nU_8O{-A3ANat85=+z~aU6PcAgNTLkLi9E2^l2MVFHlm*l ziym?I!^T+0zqC-P@fjLN_w>W&LBdEiX)r9PHi`6&?S{u7V9M^G0NPc|khp>ZV%L## z`!j~7vIVyMlvz`FzWB9hat50hN=>h{95rU_Q_{O6q;&;CPm~Nq?NAsAEtkS)%JR_t zB1)2*0p%C|_$V{oHy|rpVk|)GY$iC0nvGftleMD%04ys>nzCO}TA?a|X#Mm1VmCO0 zWe^1No%macR>qXBRmg2`JWsOl)@s6JYEpy|2kCE2Q*P(Y&{q^R+Ld#1dF=w&mT-?5 zxEo4TQi<@)ZTtSXUZN64@RuZD8)|gpJ`N2LQh_%Bczo?>#CI&OUQb%4)F3N)BhMC9 z1wwOrQqqUSHXxFJzwePaX{+Ebehw0YGsr0U^V@B_qnHT{4nx zp&v>8{IMRTs7tN|1xB4S=hG5?GvL>#3e_7(xAZ%I#w&WNhcd^GxllU;&(8k<(-p^3 zCPocmOq|S?v^GNaP`3Dgqo{JKfd|B*lX6VO>|@Inrd`BgPA5^-&`&R(Cp-t6{{RtJ zc6>=B8*>=vL$q2MEM+^>y!X9#WGXk>2k-p!#P@(uTn(lY6i3$o0InFb9FYL)(ln?^ zFn721!5llDqb#XpsLj#`?tL+zB+mZ;N@q+tmI}W(TPye41OT6iLH__Y{m-r=JWIfV zs@J6&P<94(j7qyJ&sfYTQws4a2o}Az_5Je1n}}$s>N3?U!#Y(yzrX2>ezD#`P(>v^ ziCov2KCG(0LQa)7y)bTlPWU4<&%=~3wGcug{QmgP(z4}JXD=uxR+Y&BY-Y#+b{+OyO z^Q8*1RIh}HpZV*F{{UwBt8cWFq~0bc8_vT52iry!r(UXOI9XKfCrgD|gbrN!VYevZ zw5bXZm3$}X*8%?k8bvz^m3U2z^^fiM!>Dk;bw>(t2<24ldghJD#h=FsCw(T#o z^*Dv8DAbrce&ZEBZP|Bxl}kz53^exD_Gjr+VR&My_Io7S#o|PivfH3 z!NjtUw1q02DNE`~lA=f_a1FhGcROM^Tt)z2KdjQ7_NCpa)X}RoQfWK2X;iIaNguoZ z_ryIFF48AkZY?ow!k|Z-pDp6}LB%S%p-uv?5deeC0jsB6Z@LqRTSv>^Ck+->Re=ZcSy zXcd+PA-zdUY9vGz6!Wxn{V{Aa#`M)miAhYs0%mZ}obb~;Lhhk*qaxe=v7F~T6xd|Q z4lADOxSdH-lC;90T1*f2&p+xf$}n9I7J%A9fJg^N^8Tjyn(4l#rq|9l33Xo*m4^Q|XveJU8Zdj8NxTwv|LJbY(|!p3dHC zt5QHs#r8VCe=JOC_*vRoePCH4H1ih3lPSu{P&x`#@l5p?I-sSxQ(%}E5ISNR^#qDq z%!#rM#Hyz{aMC}Zm{&XPgE)Sn3qV4^(;LLbHtiQI4msa6l(m>Rc zAQRJ`CTKNlrG=%G)o}KD^*%$K)73iKTx}%xh(DTs->xmJpNe>2iEG-a zFJ}~VYC`C1pVFWt6_rOjT!HCf%WPbnACuSR^udHxCC1fl8uV)Ad+dDV4!GeC$-S#9 za%Hlb@!mGyGdJ_~$3pN|wVqj8+Elup=D^8VN&cMX*jx0anJNd)@ce~-aTjJZoKDbd zG|MRK6Bh-vDhEl^F&5{F-;Y1jXMj6aqj9sB8Yh$q1pXuvN!-e!`$!h^IDX;I+*-{< zF4|1l+T--EqEyP;NsaW#2GTa@WC96||!F(h=KOn!klOSf7& zWhcH$fj5mRwfuqVZ6xi9b!gz;+48YTp3vp>?5Ii-=QBkg}Zj{>|e$}WA`{$Z5VEj1LcHl&y!kMlpjqmK^e6`VSzi*7jD$B8K5TZz1qwW($&V=I*YZxVYK_LJRIGf`Q? zHH#s)AzDg7fKsBP;scr7VsY&&*hWe1g}}`5HbL&}aYZ{xb%mv1CaEbJl-l5fsNZqc zcQI%2E>Dnl@4>ERwFqjZ4YuWoP?aL_t0IG5nww%>% zmAKnrq*aA%NS}-6J`ru>p1U}$tKrTqR$lU)r_7mJWkAZpuVnyc;x-)dH1^ZDao^!p zxs$T0oIcCyx^n!pjNfLuk#yprHzXnyxgQZ6#fRT~bAPsfWJ;y0YdUR??UWRu!hAp- z z#?m@}w8@#a*rFFO=J0=2n(nI{1E^QeWy}4OcCk^xZ#S1_OIx(BF6t^zg)=q=Zc;=6 z$lftyX4w~VQ^Xkp+ik@T@xa<;w?vgp2%Yy4%b=K!d)ag2CVMZbO53WWT8aroc%w)l z&87(4#Q6+E`w;escZ0LnGCbXD3jvf-V0$Lk<653*U0z_5Z%Fb75o$(Q%PJ{ze4*7T zrv{~=I*4gITdEbp4qmp3A2K_+~F@|cVaHHRqN*KkVa?B>06QL zrYOG9+E)bjn&W6rmRwvyNHCknDYwP8IuC`Zb!EzV?OoamwZ`RFHu=UmFMd&3Riih1Dvawx%B;< zU)_Z8bvFm_-8&40E}>{ki(8Q-6SmxjDK5bO0Q{h!X|k0m=c~Q>OG9~eLY|R65uJLKGw=aS> zAi$WPi|ZNf53z*sK1`QdrtXyD5>)9$obgx#$azfL{ihbk22d)qj~aOh@HVhWFcTw@ zk4{IQEh0hosH&!@%UelWd(kN5m&8MYXPYz32Dy#s2_N$6P(wZwDz2Dvi38Hl(IB>l=+qzWk@trQnaKUK<$C zp9?}+p=?Fd8}K}p&3V>9{{RW`8;m~k*HDuyP%4t4Bd?#&mMuQZsB3B{(Cf>2+Gasm zN>mh3J|Id(_P;9$+W4k8gO0}&aTP^qMufP(fjc7eza!EnJn=LgtTT{yd{}0sDpf;h zO4Y7PWZz#oi%gyQi($=%<^Y=~lCzyLd|XyA2kfA}+TF9&Q)DZrqDzTt$kGWAcGdgk ziWAu70SCkNF30J9`@^gngxo=FQ|Gfj{|3!3x1gyuXps${F; zYd}ODK~N&oKbQXiuKxgNo`0|QcjF!-&s3@^2m6;6l=r9wKwfniRDq`V8($r5{{Ye5 zc6~_tDAeYrio3GCN=kOIGBqA{I8%jtFwUv-9_FzvxDwzBOER+J@AAw@n!SVurFZ#;8n7jRSgPiZyzZA~-X z$#Nth%ZVUqRk`dr2v5?+NMqbvk`{b=Sf`LjE!XU*+=sFy_VS@p+3xcxDbTawQo0SG zUwyIFUd0~F?)EQOs=D<4BaQ1NVthd=gxN*}$lqz}7EQK-1yaD1E|obg7L9}-pw8y>P_*@6Kz??VQ0&*PrwW(U$1{R$lmju`!I}9nt zs7)J5X|SmQN-+aUqQvy`n2$Vj&uP7(yTSZ;d@XFDZWNE{ijOD;3xwlb7E{v zm_2vLY<5A#XyeWrY!QS&|7L0K}Z~c?iS8*Fv^mM9nn>Gq{8ccUi zND6Oo1@9hX7iY3oV_(1yQ`1)=)Ka|CS~{-^1RX;AK>Fg1cGI=Y}pzF?z{j6X(!`>5HD+T<&Hh!F32jgJl%&<6u#wJfkHYeKp>O7r`I23 zJA2@>#(X+mWfbaFLM3H#kdg_D>O21cPfT&{YuT$DFPYR7u+1uxr6s_bnVW(p(ftQQ z6i2#NhmP1<`ae{HI6n^JY#a{CjdQct!`6Q~$AHW6|<+Hn`i+V=_vd(zackSBFU#p2 z3GAVmH%DDe{HsbrS|-Glog>haV_d6+M=4w(5J)3bOtOY4FvG{5`tZnJNv8@y!#vI;OUbj;#WF_BVJ1ZNte$d;X%U%gmQnG>q z>_i_a+#RDF>zY=th^v(0CC>28#;J%VCV6%1jeA(_Y(0~y4ZEpJ(j5H7aI2r`HuS?M zWBKD*?pavrLPAimAOckiOoIcE7xTRAV#iJWu+iOR>0&ZU>7+bx6(#LqT!t%!3r;0c zuuLu#nC0f5n{b%oj zI43P*J8`;4%1U1eY&Z_dA~hd5Bk$J`>zht%dMNcIEUNX;_0IBPMhrT!sA)YFCd zTzwNJ$7M~f1OhHChiv;XO%tg))ulxuNy=(K zck_3t3W5m+;LYx4*zBs_-D&v0ftbzE=Xc&CPyt$qRBBMM>mHc;M`{M0p_gEb`>Z`q zjm}`1tvAQQBejmwTgoY%1=Tibr7%`hP3LfSw)p3sA@+o;ex>3GQj+K-5^O}?0g^9$ zw;e3s+TUq)JXxAN!)kD|1tkkmRK(g(sPgl~M<(DJoc&5$o$yV9Nc`6FJm5|7^Ln`$ zUuAtap?Ya~23#VW;|l&P%)*rGjyS6lRI@XE%89fet}pJ&_}YUg;e@wP;7iI#l_>lW zdh|14`eLffcut=zEvUAXDgin_GNg5jN9*KZ4k66 zZTZe1d}W!SQ!OdestQaUkDdJRg-;tL#6Vh7QWRrJ*vx~=_sbCeDdJ_+u;WEql4cFI z@+Xzf^NkHwmC_6)`hK7^=Lw3hH#Aj{POUP8$-mqW6O)7A#PyMmZ6 zjMV#I7sUo*AoGtb0`C#6=air{YATSjm{tBF3AZc>Nt7+I3OdrONd)N=KVR*F>2gGu z5~k!R4(uN?cd!_|)V2d-Qb;<2JX1KcxJmaA-n|MYH4~=8^Wc#*+bRbzH*9l-_rds}Nc`C!ZQyN`EMb z)KaTjXVdM|2*rZB4yCEBFwvOeNHPws23yw1RFsM+kLI;d_**sGM6LB{GkDvxa+N{ zE*BO|rV>a}lezK{{jm<>8r3O>lIp(^K&YFh3`XC+e=8CC5bH}qL@0P{Hj#64&ITfU zQNcA8VM}S)dgWZxK1a`=t}lm6SSdf6k9AtqX2_y_TAT{hc2Lw678djXVa|^;L%||- z1r*30DDyYB&inrWHW|3LfO9HJ&|7Uz4+zvF)SdqTXBzO|4b-K?>ncoXARo*>Qhej5 zOlw1-iOjH7PtuS#1mm3L%BX2hLX@3?Kv0Rij+XuN#0!hFFW^YJyR{Llpz5-K2huJ% zbm}o|F_m`|qh9(hHOWnYpD&;Gm@g7={XS&+&{Woxn*eT`4~u<7^|##5N9mxyoGChm zpPT$Dhd1rH?4iQFN>6s8iMc7bHt9U)4CC5$+Lfga1nT&t*qyENxB0~Di2D+x%!Ie$ zOk9hAt)!lO{+NVkKFp3X?xs?ep+ZOI+AJW={V}tr(COP-!lQIVZfT;US^oeT9xbeu z6)U_UM42+9a}aGBaMM?lhZ)wCExjVqZk~Ranm5>!`6~xg1wGkFi5(>K=YZ-m1=6j+ zQl#k+NdaCSR{iWTuGcYx`vC7i5Wi{+j`kH}p63h5p750F(x@7R;O~Ez*8t@mplEe4 zzD7d*b`pPf#KVes9m?=ZlBFw9B*KUaw?9#QLF@Y|uWqCiG_=XO3@gM)F>U_t*2fuP@~mzV;}cYtz*C1&uq4bI@9Ia?dBv;1+*Da@lAjlNqDcUWnf{~n>540d z^5^oVbT~CgR9vVhea|@M{xLe>+`-hkm;!ZJiThqA=Mw64th)<4QKz9nb*BPxyLAnQ z%ct>(APYgY{#cb}Ri$kBR1e`uNF*MnAc6PA0l|Div>}_SY)?`D06QL^d|LSz88=qK zQnwV6l*u0o0gDT&Iyr>{7F%gRw@sLvQ$(IX|<>5I__|mLE1BQ z&M6Nl4MRd?o9rez-{*f^IPrc$GZq#AR+k7&T2uc3yW}xa=Gi@dMVt4@C22qkkfM?= zwCXp%-^&Zqv^ec>S2htNZM=nP=lN|ue@d{X)2l#9kPMNqw?1B&r?~I3byL3LnAN0{ z0E6OA#9Z{mzlVEBRXA;@Tu#>@+^7-d%-sI~Ts!8u(lc5JN?X&^!n`roaX@U5KNwve zsl(WB^i>{Bnm@vsm&8(T78C-39OiBJ7`Xd5?I8}S2}07EdlICN%nz?TQ=Dl-t>wrm zP$mdT8pm0g=65rJcqfaMLh>orwIx!ZnGrVwO}a?=dSb)x2qe;%w41fnwb_$-&Ri3$ zDKP;c5f_p5K68qnv>fGpIhZXy=}T!O_?0Qxe?jXc;q$ZZDHZu>WR)nlbb@>)M2VBX zL;7K>waOElWbZoKKM^`r21!tx^XLhlgUnBmjgR<9)5g>6lm7sSeh%#;-!$u2JtarP z00vJt}T`a>OsR z4h|W+8oQ+_NtwLw7Z7){zs?*ebM+qVhm@40^VE=`^FP1RLz7oAUZ57Fw&yZean?X2 zkEbs@Wz8d__cbk_+xK0rbF1u5x|+M*5QiMpR1={R6eoKdK;CgH;OwTSC;TrGQkV)@ z8bXKuA}x#Nw}bNcsC9&R+Y0f6I*2kk?sk(l#8Wrn#_01Tl!p@HrAG2+kP*v&rUD;a z&rQnd8YX7qKSVBF#g0+5l`QE|(v{i@w!NnC4aZL`W@VhUo>FKd;ui^pUslAJ{!z4Y z>4u&v2&PJ#M~P}Gwbdfgw)}@HPxD3~KlQ@$Y{x{YA-yVy)UECeY^{M7SK45?dnt?{1vMC|Ee#@(=Ksdqt2Q}HEpqykKGK7Xg2TAi?PQZnSNDQis0fC$tK zkN&j(09WyWKHlo`P3V{Jy)2Q=;4?Fb2{X{ozc_%DPzaxgY>R)!~C-^!xeT4nNBk zS(g_ITPg+sF%S>w`?aP;OT)kP`wfKxtw~BjAXrHS9c+g$WvEP(Zf& ze|rv>!H-x81*;=ZsOdh}D)D~~EyCuI7x|-c%fr0w<%Ih&;98gS6x1}GDM5)NPLV#n zJxt=#?LUJTmuAY)g?Dq{QsPR18-o_*>4%QQvNY2v!lsqo#9a!~PQ!bB@v7}ne0CO; z+U@P(S{;*jl$l*RNh&EKOlmMlkZ;$2>xt%h!L9Kc8*{{O0YjMj^!xhZhlKKmX$x*3 zhQgvYPJ?gP>5CGUkhe;ZKa-qV2h;cEj16P6xN@@kbPL*;xO0Tt$kPEvEN^)0gL8^j zLsFC{#T)V@M0#PriTI6qYl>2kp{B-p57`)xy~oYE!jh*vQY99*mAy_f+}AnQm$}!J zKN04>=CS~io9da4e>uNAMRN|)o}qO>d?~*^T)$i^#F_eDO01FRK40;OR(zzq7M(wF zanlz?2vl@IZQ69qJ4ju2v?%?JjC@#&=h@2Y*R3R^D&jwXBZg|`Ttn&upNaq<)L?3- zmRg89Pz9j>0B>K|#SYVVYW6l!t5Plz?GWX)sS0o5qALkS5G&`BR zCQYRF?hC6Q;nuU5Nby_?a#YRC7`7N);B{s1t!)K3m3Wd$2llu4!>?x?Sj~HF>;7Fx z+nC;ef7cSs&WKmA;cXrYTTNtiu*y`-2k5E`Bs>yk=$(&G)IzSO33a4$Yhs>Xd zQ(dP@(y8S(u)O~7IA!Br8*#d&IufL*X5xP0{{Yhwyq7X}Ev;;*s?w4VuSxyJ80Lz! zGgN}x%C#DzZ!kfT-Xw@HY+^R~;Eba#IZkLapAZ+GayQ!6>Cc`TID3i0n;Of7P7ae7 zCT)lJ>k?9xjWHa_nDYB#aU~i_+~b47n{Y1>E{3TrDO$AZ07l#MR{QnD>W7I^B?rYj z$UEBO}!4|pylTGx;BIL+2*%!b0MJ%zQxxEah) z@}Q|cBWMN^56k!R!+muzXE0Du@T-*h&n|O@9D|A)t-^&VTKq(1O5q?~@ zu)r<63v(l^6F(!3O+8hlk!HeO+JGBvTbl#cetfZ^cT&WCK=Qx*;9B~$cM1JT7TfED z*~}7@%7;F)jhMI!?LUPp;k=Pm&nDV-Nh9>z6Pj)gnsll{Z6d>OkojUGz zH05dq)c9^=kRGBp!*xe!%`cpogpG41o7AHRESoc2MGy1l(WKZle+W^NXCOPN21aIo#?$vG(=E$6dJ4T;lzt zfIf=Ob2p`7y=rkL)&%~dFNQqRj%n!(p&K1i7pC@uil;i`*F$PodcVW4fgoCB9r|hQ{nF!myQ^{j)EsR~2~Zk$gYf-#`CwQ3UM+-z z;nnbnKqW$B_tWQ!?Y9)|G$4&hwd^4C{XV`&4B5imrYcGk8f_fXnT|=mGu@|qkGWIr zAm{9@HTI6I%@P);7OQRXPs@F<27OZHQw78}wI~ZpJX>!O{c%@NXN#cmEclb80T$nR z^q)LGQ1+KhlqI(VdQ=XgU}^CP+;j5BH%##BYD;~F({B{hI_s+M0^HCPB%Qomr{q3r z#W}}%5ls5sD%>h=tDTSUmGN`&KNQjCDb$646)6&CFERD!iYK+4+*LZHGNWUlmenA^ z7Z3#R_s7=yJdbGs!8%6*EmygyLz#dfUKMHxl!!17SUbn=aPh*ADv{_v$ts(Z57QLq^M9nEm1l{0g~x43(Ww0CMMOKOl& zeas2|qV}74;&;NlUfT5`#e;tWw~+wGIo~JaWa~mwHEEk{Qa1f9(lIOHjx-@@TWj3N zg%KYuGskbpmOU6TpN=TFA2j(r%V#dj;`^FN5D5l9G0)SW4Z;oZ` z5Y91ZHI}NaR_bsO4Ds>U3QjjOWV5j+awZDBS zzS6q{rtcnpjh2$40?`mf{W=jC+R^%jH)MruMXHWaLxxlbv;HbewFzz2NODpT2##0P zwIa6+vi%YWpFJo`bhwZSA#ykA=lu>5&nS?lHJ~S) zZGWfB_c)C3j(px>ObK6hsQ>^6*A98*f4I|XL0Yw3f$;$`5HK<7D1cT=H)lL1_te;R zDu^*RL}`(6&&v)p8MtRpdNo+;1ry8n^~4^(jFC*{jb$21fCOy^P5xh8Etc^zUB0s7 zlq^9OycoAj-xhE0%2bhu0w2$nHqPoA%;}VsB`R$)od=!cpU>7WiZ`}y14HO`p{73@ zUF6wm0zo$CzAVOb@mH!`ONmqon2`}9euwsO4s$}BYNx$nr7K<6AlpxzdEyI}7xKK{N)){_tJePjeetQMkUy1HqejU__Hw%L zXRPrPNm)Wx6lcIDI*Xqz{Jk&*R|?Y9IH+ko;;rEjZaptQxW!@F=NdfSGkxZt2=M?c zf7%F;et5ESjP*4Q!pKUa!l~RCxa<8sm|W3TR(xhi$N=RuXIwbNB9=6vNl%3B0uPmy zK3#E4c9X-j@6@{5M45z{8cJjJ+n?%Y@#2IzQ%<1Xl$96+9mI}AT>k)L)MAJ28QPi* z!Ae-usHlRgrhKimf#-vVVfw92ERtU0N{P~N(97%f5TuQOF?c_y6MesPeVTAHr$KGnwsA&gb(tm$%Oh~F}m{lue6r}fJPT^e#o)1v!TG8r%(wS9Ag)pR% zzam70^!@e2w*+vHy}n9Q2grHuWB2sCK674*MQ(K59iVLopE<;bf;ioQPo+sxZW9r3 zqq+0@?TlHA!8=s5IsKKBlT(@;xhT-7Z)-;0Utg!!IEm<_)Sn4Rfnf=-x1TPXU_7%n z6^-ghu^NPUuvKfJ>U|R?Ei=<^tYSHuHrZ3e2zFFbqcFKyI&~c;c?0M#^1wB5t13ssb!vL4DJ4Tx zSx3SQ-xGY2oUJ-!DGRz|lytwZ?`q40YQcBADjJfsz#bi6JL1~mkdV_$@W~(eo_7P} z2dVktaytqKdtHNtnI&Sfg}9OVO!z-0-`f*xuZfLbTP5u-AlvZ>CgecA*6WCMaBT^3 zX+IB$9YG`?L-PLs<%BXk72nSHTg~!e@ zS$4gbgw!|yQBszqf*^94+tcrhy(Z&w?x1793!HNP8#Mex%gwc=rq?DeO~sE-S0eVWN*CZOqBDAD?3ilRxe|M1S!;ab~wdhS@}EaY{_}xFC}o z-1Qwg<4e@0CxEJ!P0bXVXy0<3m8AzsR7?|VZ*zV3-wo_%ZZ%TldX?cSPJkwQeWv?C z-q>=lW4o(Xf|Y7E0CTmz_-oE-JDRp#DOysXpg<9+Jjd!iF$SIDfTb(jySisr7`>3^ z$$!F>i4wFM3kgZoAc!}Ei+_dq%ik$kfBoR81er{jj**HhjagGwed8~;bHu4c4P*$AH}kmk z`C>1`;bO9#)asO!krvtq)&z9EHsQ?YT}Vu&ExbXL4Lhifff2a+o|tmZs9~ipRN}Ry zi8cmz^uF6-I9pDoFyN}si+Fie8Jnmgbty9%l@lEejl|DUz8(7;%4%t|dM#*EY1WWN zy&?e`hWvo#%WOZ_WM2OO#0;%EOKuQCcJFoojicooj95G^+2G61dX~x*g{0VyuqHS8 zM31I48$V17PIIm*Bj}_kU{g^gqo^~uv_g8^h#0PT^?^rP;Y!k%r|`fZmc~+<1nvjV z6OPd;)sW>0T9u^TB!or$u}Sf7AEvIW#HDzUHLN722sTM4=ds1`xsu0prE5)n6rz)j z>PB5o@Y1uVyIRanpAnKLeYtY$hb)(fMtfb{rNt>qN{NHG6LCIpabD#0>Uo7Qf~2ZS zhm0um{^WXMP1%(LuIH^16qKuCZa&<%#$?)Nf=ENjC!d939v)Rur*sJXyU)w((*C9~r3_XpNa+BpS1=+c z=eFLWWzxbPOI?M2lhhv!f<_7<3&yPQPiC%V>7n<`(xvN{!A(6oYUB_PjX<8axW)18 zbK6E=khEM*l%?$^CUjqU2K>jY^v4|gO>q*k&Inu0xSsi^^ngXdQ4p($Fg(TM%!og; z&uo<}X6Op2)7}!?6{}HCit-MrfEB*+=Qa~)YzV`a!H^UvUwV1Hj4=F)IP?e2D z0CyvomyzgjMq!?#GGBNVskH(~2h14xa>wP`fb*y?cXCS88pl2{)vKU@uHwf<(1z0m zMnb+g*!_*YI$}Sb)4QMLjwK3D;!W(S^0+bxG4jK=5M|!=P2Qj;QnCz0O#Q`=*B)dU z6OSov1?f|xQV5&DNFvJH$VNWr(DbqD1rEy&ZBI^8N9~1FzrikLxx!t2vZiH8pAh`O zka_jmcKKr3;1ni{F3<=GO7%7tqL@kC3+@f3-*XY()mc{$cSj0<-y@~S*{LxQRHz;jE#6?RW=@H0Ak?S~X;jYz{m*y>iRA*5IY9=(? zSefPso?S6&@E2>$W~xF9i7JH2m0V9CZhm8zk;lG|pk!x~57}x({X;Yn^n*iz@-0@p zMcAfo+51fr?|f%bx`99%Nw|0At}@s3m{nhQX`=HW3aP& zsto%fb)Uj05E98#+da3iI&}o}1fyAF+xyRXg{k zpDwww@IZ0!Fr6vt^1R(ry)SAy?|IwLZ~^7Z5}b#y45y5cm1uFd6lTOqxk=~exAdMs z;jTW+xN9&|Za$>|4wWo~$vgA6PeJF4$FdJ=GeYuOacFJi{v4Ho7XDecTb-l%V+Htl z+-aps?L_R!vOWU0(d>DaFw&H!s$5fzr6?;K$g$q`{n%nnNx?nKNomrMtri4Mg+X?j@DJ|U5mCx06GhuTdYdwso zIYW=3geg$6i6%(=sTbV*xqP{win}TP1)C611N3+E~YU{yhZB8W3fJ}kq%vx6YUml{T3Ww-1DBlYc?X z3&%`S{jK{2*X7Kq&h0K~@PdLOjQp+@sjG4I!-Y3G zfc{g{?}Mo_Ls$6@m40A1KiB1pH;g@zB!(2!uJvyDNaJE<3i=-z~5*1&Ip(+Iy(q!0e<@Loo#$0B2g1N@qbt+1fM2*0M=ZdF3 z?J~QFDpcDpI(`|2+=(%6zuyP&8`WO;9H>h9PNHO=EDV}(!DE!jbkA?O>SL5}`>aN@;Plw_uHN;E|}JPGiK-BvUI05gk2 zC*ayH9;P}QLUjYU`42BI*q!sr)~M**2v_~2$c{cy>-*_E=h~iYTx(Rd6@+Wjgc4w%t-QasEv`Q8Et*yLLC8=2vwn9o9M1m$ zEj=+-@nw4R`ouo8DJ-_Jyy{twQfB0Qy7LuAb|`e@z5CuUpaZjqa~f4vICUSt_UDFN z%Y@r#6fbpnKpgRD=3Gflmhj(*p!f;^5vdo0``lui;(jkR6>2T23J5X=$NTMx!(QTC zR*WxkaUFt7FX1(1nc|&rDEA;M%Td2vX`AKW#a^gFVCVo`?5>|v^uG97le7a+g*4zw zl(Wq5>xVwgG8Z$9=A+(F=}km|Ao4PI{ofSCzz*jvNZVs~g;{6xZ%{b~Oqnsud@`!4 zT#{4ex6>DIX&srZ4=JR!m4^g^i$H;I>O8Si=Nu&M1zwc}D^iSG&({=5vu%VdlIto{ z*!e#4l^L;-0FmT3>xqYHTt;Xz*)}Oe03>oAf4h2Me$4n`Ic7{MN(hv5h!!^;e7ySN z7uz2YnuR#lpAO@nD2{uKWQPeQ$7M6A^U&;oqvHe$cMz#op*A-c{dV~eA&8e2=D);J zQrhOiC!PUq#WkpEI*gJn%lGGurckY{N@fynNEhF2@a>dIT8&`jATquKdoruk7OgU7 z+v45qcd{ols5T3Y>AD8)-t6wIwM{z$U>qx9faX`JZT@IfnTx^Od~HLZp^&t6zMOwF zg<8yUHGX#Lf>h)rn2Grta*w}EMtJr2Y0{Luy)G;&Qh7uVN!~qgi|Z)hteb>8J4R&c zgKF;5`>G;!+CqFWJq+{Zj(p2$YCAyV+KSqq@id9>BGyVon1XlP>y2#-A`LD)1W-5` zNNAu2N^HxxX<5sOTGFDBZe)S!>U_4t`#e1Bt)-?LEw}K`PZeVk_Xpe2lwhvl)Th!R<=^(?L+2_QsnF@Dk&-e*jUUT z->04<#<3Mj?*IidV4vUaaSqS;`RvD1wJTGGck9pRhyDSgaEICkR38gyEiL~8Qhwd2Rk^CerBT7<%phovN2QaDb zA5#+-CzcxRLu#6%7GFu9HsUoUC zX!n6gfPO+F5|h`UpVyuT%eXOhMJ$N#6mPlo<%!)RD#1iZ z>S0EBZ-m@xkxvGWt1E5C?l9fNbgEERr2Iw#qnvCyF4N&|8Txmq9y8+C(k ztYQV)&tzwW(c(&FLs0=9XYX_SI4C9r(^qwXf4HhCISH&>Y25k(Z+ZLS`zYb#PK_j8 zBb|urK0^=rcMS!k6z>38BExu(r2hb1J!RZ9Q0|Na1*mcS{B)+t%W=Y&e;^J-0VdjS}YKp}v(wmtcSa5qkr^<5G5UoeW0$}}q zc=4c~7EF^>?Ffv&fT1imYE9WtekJy1Zm|k=rqikv zPlN&g03C5x@z-Nc@X}U8Y8rR8-)*tmi?5|c3R0CLN^Jx}Nj$bVs(V(*S2uw}6Lxsk*IhwM^)QQviXQm?jYsG769s*@IBl_?Cv1)Pm zX0OxNI-<&oZWHDw6@LgVQoa{&$*`4e+zN5j=T7(l-kqx+Y&6r zwzCRk>PT95u@;;}>9|qaSCUc{r+AD?vYHoLr-cF(m;?Mz%Ng^;0kEj~3O|`;f{|*{ zBbXh0@g1l^E<%cIdTuB8z9t-4MKdZ9eV}i?BJ@mm?y5o53<$K_Z#-EGcQrAtu2K9l z=9f?phWza@d{6Q@etS%d1Lf;V=j9^u)4rNpdt3 zYFWg5f9^Dj?#{!*xE#E(P4Sm&54%=Sl`F)ky5&NCUc2I5#B}BQ1uNoKjiCPR``Z-$ zXO#Duj9{_OQmTxO+w~QJ%&B;WlHv*Lc6$EiBn4J zX(z(9Bn#O`t-oAZ{4tzU=1nB2DJryT=3{&P`q=HaHe~tQl(eBrJ`(^;&G-3q#Qy+; zIIz7L=IAabBx)v6y*#It^~P4KPqF)gmr)rGvJ=l}d?J?_TZ!={Lg4aOPnY(`KX#Eu8L3hNPvO|8`uSt1 zvnLUlWr|9nNl4Qt*U0U^*BtBHCQ9W7V(C&yNauSA+tbsgE%f<;AQe`ULPk{)#yP6! zog|x1{&R;e&p7+JTXL>&M@&a}`TIBzS%jX3=MgNMF;xqpDOBFXZ{_yK*D@gZ?Q3+y z!s+a%i<6n7Mx@^HJ7R6XOqSLRt4S~ffJo)PTysAP@vD^OwdztxwXGPqxC6B`IHp4R z$R;zz_>U+)RjoiP!=?k$X2BqB|#G)VC3P);r3RXEa1)vrQIqA#USnW^T0XHB`#)-ZP`4)-x{#EiVB9xZq+we z!OE&h-*OFwzrG{9McFH^Q)B0hTE~|MpI!TL&l>Yvl zx5qN-ixvd$19bXWTw&seg(;Y#g%qV%Fb3)zhoSxT5~C;-t`#9_(fNhU ze((0{Wo@FT>H=w4{f$;Ojv%FUokf*}z#4^wi|iv4&ekf}&2qPpgQ>?6BhF3v@AAhz z<=kCS!;Z=qq$rEbm;(Fl`r+!6w1wtHDRI)fM34y)G5X`3BbqR#+C-b}LwNHia+@*G z%7{vKlO%flkM1tjkntX4lGRz)BVs`Gn7=c7?KqxR)3cel6yO>`AdX8vbb5nXO*02_6Q2zBlTcf2PQ0PvCMU#t%=Gz;TAT~VV=-;C1q0)R-(?N) z&e^lZjHt3Shy)NXKTqlN!>?!jSy;|sfUxD35}y>ou_JtRrKDY{rqYKCZWmNnxQyzJ zD)?Y-NEeCy`uSd~Ham6tVQl!a zbRQ1j8yVY~##ZWf6fr%~nq2jrc6nOqQq4P%6(EF}^p7KixIZagU77bU>TR_zbxG4> zeg6RC&lls3Q&zB25RrN2Qcl2F6Sci@3F00T4Zq$YDoNH9fjwuhJ-XtEwL}_n)sI!Y zZKX5e%&vzq$Qw{CrN~Gq3jEje{;^|-cWD%dB1+3{Hd|Pc;u{(A{rTcP_Y+m{+b$sm z%{Cxj=`;7XAv}B9RaR=0p?Z>(nbZ%7UVC)?epu-Maj>k@?;Y@y%{YJ;)Rh}gJH{K( zg)x|=*3XJkJ#UEmYSmd zbYn-vtKBp5zzk4_a|Je`Vr&Fl&I#e#a@|ZPeU|_YSa8g8bs^-w$t6JT{M-HU7fi<| z!q1i9I91~NDNRB^({J&Kp9tnunPzU4 zJe2opG0U$zV5gtjrH-%MqB(zQ97Divg*NlSG9pP=OAGn+#f8FN+Euw@sYPKbN_5O! zCjN6DZM=lM=QMdHblO$;YC@qzkBEN#F(1sk2g`Gtw6v#I#9rTTm-rDhGY4`IO#}|f z74oib&b_X(jwW>l+Ln;Ba)rPk`hsufFZRXT!hNG<`O8ULRXxhoB&7=})hQMlMYr-e z;adLyWX#ckr}DalsZrnn5Ty)k-hg`4P4?4m`Y&mTW~H1^rf@-f|J6s{3rF=&XBB#1ojFN@cK{joAmASpxITe0yvfRv#B z03^kZ7~B#E3O7MCWLO~i9Dd8G-0fQ+Xip z_PU3Q`DG0|l_JXx+zzRQ4L*QJmiTL?&+=X|rc2B_PU3Il1uzshAo`fWnQmU?1Dfb- zobK$TEI6z0Ym;x^Glw!jDu?Kv-FBigLBv;Vu1@Xu{SvZ_&2Lw5+xikUg9r&qk_m+Z zCvmwkbGL^a)t>ta_JQpCm>SA@YKpwQl>seka1pkv8;Q5iA5|XX%+iSIt7R`Xk_NCe zN@NjXVQ9IXheIp5#MB%?Os1+5+`OFxIsgewTm>i;>}Jz(^TvtP2R9^r6|nlWulC3= zzJ7K;+usuK12q2f61>fRfyRaXwb-YFh5 zH>pKrPa`*vPo^`yyS>BxlOGgPWrPB(Ud}Q`cxI_B)4W`xc|$@qjVa#ZA~uP(_^o}i zy_l(U`d|8whuZFQDiD=E+h9tP4~fA5>{sO9zfVY zxaDjtOxWGD9(edvw6<1mc&p`f22QaRSz~4)kABY1dgIileM`grZnS}NW$NRA&kc$E6z`itT&SlhAjsIkwC^5P+Z8r*mQ^o@mQ;hKwS=PkkVydEd7fM1 z(%`-)YQ2qGyT)ERf@e^;h#p@-fO|p813W!Ys(;00(>@sy7l_|~JT;(6RFw>!7P*$H zrGMx+aIzIDQV3B3Ig9?Ef1ft?oWK77Dk_+8DP7=!sEEGz+xP2^kReEA<+wDZ0LX9^ z3B8E^nC5=cDtq40)P<;y@Pzr3=0HEEUba`LGzbVqrI5O7CnP6+!Fad+oZ?>NQc|Ye zD?&`2Q*LB!WptmOI_g8{S=t70_VKp;<8)65WfuAeeaN5u?2P~saP zAz&TBC;Aa?v;4wus*L@4k7rr~j%x0qwUekS2-6a&Dl;-U1B_ovlcgx=2#T6z9)hWK+eo}D|&wE&}?ISU9;+1!L)S$E{POmtPwuJeA;|#r= zb{|>Bxr3{$dB$klQdC93S=^5?@ktTO6YeeGN*)i(63roHDObXEcu!r7&zX*01~s)4 z5?mSjp>C0pusTC$uu#{titK`|y1HQUoNfszi5%x^T0VHK_}8`!{{Xb^DelTDJ=M7y z4x}Xi0Ocp=bH4spX9_agS-l!6TJKqLNkgKv&?nGp?jp9r15Ty!T4_De&=*)2U$rBA%76iJy;fdhVX z&N=x=#k@X|NY)k^K0=^-1I*Xij~3Fp7!9JR7T0o~@hX)YgVZEmIsX7OK$9ZT6OIivm)Cl7XIPsiLu+ci|lsBS`6uHal7Odfr3&D(bZC$e1Hqc6*8o2I4E zl|u=DLWF5I=45q+W1+Y&F3YkEm713a;%Ej>FFme*eKAk_Tk)kfVU?*V30jh*p7U~J zZRCg5^ReA@}oY^G<12sbq}vbtAMWv-bfb$W+24s zymG~n#W`+Uk!G(hmDJQ~DmnljA3O5<Lb_nY`sYUGvMSsp%AhPtJi@!by#YZ8u7C!P13 z;g>M%?aDmo-V~&&mrz*zLuFWM=to<9c@Nsvap9&Cgt+H@cv?yPLulM}AHG?_s;;cd z*>bVxwIqcBDhW-!ZV4lQEIxM0Z4A0SmRnM|Yyvc)Tjr!vA?ca@+m2m68K0X6^2?kE&&AIO!`q`UAlen}~TZ&eC zo|Zj44UM*3d!9<5bM7@c_i2?#TAWH-aZ(JYTq@*$EFmiUqYVQG!XGK7!MWD>Hq;!Ee)(qr?i2`-aDFGim)J zA2}qO^#^a1@fS}{*0^T5RPPp48t0xn9b^lO-|hGPCz-oo?7i&kw<;QU-%Sg7fR^1L zgu1EtZT{h>eeI5(O#rQ{Q*z?9E=XTeOn*<2Ip3jwhBgeFF)EVwIYw;#zT14|OJ#o(7!8HenI6W^^>rG7x6E~EqEn{K0jYQ9vh{eOj z8M1Ra{{VArcaAoVV9A|8NVm|B?~Dy&izFr4JS{I$bIXGqE8uumg?4NFcPS1bYFeqv zL0qodxxg_Id&RIX3plnjmcq(Xs}On^<%suZ+24Og+b$HVN_(Xsf~2UAL$q4+>xcS! zZtAqFbfjtU-go$V;9PD!zY7hgY^2h*vWme_wm~Z0Ab?7wOdXF;(0Sm@(xHs6BYCF} zc83Cl`hWr7dFQ#jOyUE>d_khA(llz2xgfy2?`XB}7>IjI_N7%t!)&!mrFYIOBtd|) zB1z^1i`wI8+ZsNZrLqH$9n`vwaA+d3aGEpD2zP-viN@*O?`dDU3PDzot}%L7YBH-i|rTbiz9&RUg91cRb@+yQ_-y;gDC@_NSk%OA)If+ zDdN@FQTK`O+(U~({uGrU5);x6z;rSBrw6XB`+>idw#G0k=j^0B9?cgOrU` zdYq^Nq!AY#ZXm^h=5U`E@uN9DnhHdzHBFz5B0NKJVapL-&9i5z64K=R%?p7mCIMaU zk|x487r#DuvKPR#S-xb>WXc>d@BpF&Mj+< zctNUqkP}wg5|>cnU&IZqVS9Z(l()3U0V=aKdCTm}GK#A30q9gikg1$G_DOQ*E&jNB!UM!nEsbIu(;DJZ?rBPW~!Yb#Sod2B}i0Se2EstT1gCV zExaGuEVMo0?G#60{FThEdp#c1vKF$1KI@d~2mt^ejEIfR%or1kd$9ii^t;KsKg!cn zUJ~A<6%9!WSo0Eo`{LO4TkPMt&X()#cWt+)MzqYtpVq){JjN}q)cD1QC{mJ264DAp z047e`U(ik}{4AQAWz$EF>+8DA(P_GZw>fY>w4Z0RJQZE;xp40j%&4cv29c}jBzc2? z`vBq;aQ1eMN=g+_)`AMnl{Y^ZGC4#U=t!FTLcWaqH>prkl$SLvC;3c>i|uoYD~WiO zd?@`Zh#@IUiH9TrlQLtdm_DQb0G2MlNY+Rg&dcTW+NoW+?>QxX3hbAT(Zo4LKYRy! zPD4&^cRa`>1O9yCHSLV;6(0p9X)K}Cr(!ou-v0nYzVV7vu#VbWVy>R3KCgGLY8@K1 z_iiHBiJ2Z>t{eTWdv1F?L3o@0tAebcYK7!FU!!%8Bf4hJ!52()R7#Idg0@YVu zr+AvV$`!A~q`=qW+|8~z^&4SM5nX2ru~O5nsU;_2vVb0@MWV-Ul4c8%@w-`96Ejld zzk@KePLzblOV2pIEX>m}rOc=eODmMAp{-&Dq?ozoBp#zII~&-KOG!yTg1 zamQyR`g(?3H5Af+6Q4NxPa%p2JX-+uZN}*`@N_W%>hStKFzZri4;g)C+y*iNu6S1Ad5i@y=PdiWT3Ypqe znM01aj_i^*k@0%S{W^?M^>hwrHM-Q5B_=IpbM?2%F$B|YAh__fy*@J|YyB#H*v?+Y zf1IpUwxu^3&}I^e>Om3@hr{dhu{g=Rn^yGTsw=b(p8eJ(%uSbO|g;?J6$Vrc0P%%qvsc6h8>mWxMaUsQ`j6f5Y~<&V zu>98FADihk{XWWFV;dnQrFgn$UL+~aA_##2QRn_}nzH0Bq!-JLrBHN|JR_LDJS42u zMKEW@;s8aXpO*bk>x7eECQ4MKr^HbJ$?3W4jSikTQAZdDAG$j%pkv*_n(oe^2qrJ} z7l$>Jkt61OzrG%_t{SGLc$A}}5_Lw4lRkSNrW$gdBW9%u zQWTXp1`L9d51Bu|tUDahx^h>kT2e;D2prGYeY%*>mT<#GQ67|>45@Zf!%aacLUjqT zAK#`Vly$7px2a2SO}F@GuG8nX_^ihnp@os+@x%i*RkpvJdJn42aYCvJQZ;vx;UmHm z>DLo}A)J7L+F1djr?vU>0l9Bdbd>;ZBG3n+Jikl{mpqE6(x9Od2vH$WCMG&!AxD}% z;@|}ZEmO>mT{ky4a>{dX)B2XUQf_p4Si~EEdQZ=658?qdkMQTYR-Q?huqn`_ok;M& zB&y%db$^@sW8A|j4xwpMN$UYdY!1YpoiP#1IQ@*Zf)?pW7Z(cC{@-6eJSzVHYK)=P zAT5-tWP)rUMZq@toKPkWW=a;4J`;sk2sC^tI+fu_1W!TNrUG6@!#k-ZLcoRE-c$P+ z5$-=j%;;%NmlQTUfR7No@;td8EGtc(rl~rEi8DV6$WSmWMA*hNX4P4w?|C@=0bV zjSeNYyR~m{RUTWD7wgXxH@L;7Qjn8*+pPV$ea;y;hl;7z(v)1}Oek(dTJ!v%W8FKq z5E`g%pwZi!TwcG#yBar~=~fjy@3-XwJ?E+o0CocNQZ}%K-6X{9 ztC80GVzKPE+MUeGkTm1H=Y0e$olrc1j=y1xdnoNPi#=^5)VSrem60M$Pca)~E>BOE zBV4Su&m%ceHhU^BRO#+RiB_NrK}b}^0r~}OXN1R0+?9Aj3=sHs6%ngEvAqUePUr^gsEb2f{i5mf?MDw=)06mYE zApB{=?N%WvAt_Qp*Q6OB@;A3n`51Il$#mm|LuTI2a;iQa$|@<%iCSeLb}|4FzufgW zu(*G{VKEw8kgl3c005oLkG=q);ok13B`82oge4F)TYJs-`(js@X{6Fp+Iav%Y)@O; z1E_6_rJh~1+Hj@SSw@ng1%hP3ncNHCY)AORhgcM^EitP?iU1-P^6B9nH$GD=$!i(0 zn34d3V0sC+<>knAu@#wGUreQXwaQA$_D>`G^5`cPPiyOh*ySLHE=S|)iky!zQj!$X zrhc$(*8mGa^uCtd&pZdiU97%`T4~iOA{8Lm4-gYSZkV{cUhJJYqffe&BT9hjI*Ac( zdjZHu#Uo$YO-%)RiqNeo@PZ`U!!{sw2Hg5%Y8OW&RPI)*V~yi*QwplY=G2M|uXr)0 zbtXaU_rzZ{$dyLwst{b%2_!}S5d(WjB>eeAVb_MKDkxFiI?}Z!L;^Iyh!OPX%z4C? zk1s_^l+uNlB!pYi;EjwQwj*%hXOp>!AARw_2w~uah6t|BFi0;7Ov?^N&z5TZN0ZU$@RQ){{S3h&TzL7>t#x9Dj^^x zN5Bak6m58nZ)n^e(#I;BH(EWe3#Ir=i&I%h-{JF1t@e ztn&%7!Z5B}n~XxhZAQu(!H#xgrU zn9zAgK?cJJ=DC2Xr%?q`i5)-_KWlwF&M;=tfOiD#J_rP_GcF@ldm>y)l@c^+0Y==l zVgbj^xl|PEf0bawkO{Sdq>r!mlJmULR2hOsq7a=%zyK3y{rk6BY z0g)Wyd3wi8QKy;F($IVqeY_?P664qMtna&CwHPV!Ed7)5PwsJUWV!MMmo5qh(GwwxKDiQc$Kw&{1d?xPl=0`rzITaTSe}x;w>OYmjva`+VaN?j+(x7fRJ- zswDK`Ryw)OFL1akV0euJ@M~nt><(qQc|AtN{Au= zQGv)2&(9Dp8_HbaT-i;mB??mEXfR;UPw~$eo7!t=LeVaFgTz1qGaH+KY*XE&C0R~# zq5_iItrN%_4!g%bxVKLu#jvdCWa>9^N*f#z zy{hHLrkO#c{6qM4S^NF*1mZlEc~a6+H6=vAkKX?PZ?-fen((`Aj0DeFNL*gpf2FWD@MD;b0UDI8 ziB8_KEqK8$A=-*fX+@A`I*>zL*Awh{jz~3cN--#CWEBzWe;KTyEWjmo@x=h0VJz zQ|M8GcLT*^*OxgMZOZ#JdoHT)5ZZ}O0d#J$4wB@TPv6M;l6yh5!dlK>82Z#zd|X9x}7_Ex~vSSH(OJ z{Az^46Rjr1PTfCy-xV(xa3bld3XtE4B1{7c^Yh;q-cMF5>Ey4W8yV<+_ydW!MZCt9 zS{rRzL_zSRbBGv^bB8K8W}{wJ4VEd&c8Wq&Ad3Q0W2e-8u_xi|;M6px)U8_?oBE64 z4kY2zlvk@tQ>ju!-Y?JRfiiZD9ZE_82_iN&8b_C>(*YxVD}-R1Y08x~sr?7MAFjgI%O)6GEXZH-z+%fEr*cd1H?kQh&pZh{jkf#jXCZwB_9exj7p%u z`^TmND&0jCb#_z71o5b*sY(=dgrPvd^NxG(i*G5+`|1z{)RU)sOkdM)++UjbQmJCU zTCLrin1jmxgyQz#tjsw}p+!p73n@|B^Y^|3TL>8;6!HH6sj5`9`{fuw2TDc9&M)@E zNNvQn;s&J1i57!zwjF4S68eU(30kFq|fC z10gEH+@wefx0n|<=Z4(ti=A%DD)5`$W1sKW63o_#0+hi}>tzAU`eGNEWUH!Qgjyyd z{bTpGI!6P7tkcoSLY^ymo#wrrvnUP9Axsz-=iT z5Mez;FMrY{h{{YF9sbMTQRi_vG!!VYR z6sRdlTXkO%~TKc~=zYRL(+!$^ZaH#1j{duY6;5Rav8m zTgXum0SZmV{{XGA(G{JI<=MDO(9(4|Vc|Y0w21(nu-}|^8jQY?N^J%_Bq~xO-2Qmb ziSf4-0vTnA-;}B?Sy*wE4N_vp03M!v{+NXEog1u}Xeg%XB_&cMh>06P`(p0TxC!jB z*A!cEK~kaMDg&&*<@LmWHtgir0G{WOAQYRVMBmOw(+-MSefC_(0By>HM-bH0Eh%tG z5}m+1@A_hY!FlV>u-eq&SLQZ4jBn`|-~GLDA+Pp%a;eQpZO3%LBRPki9>CbY6==sb!$Fn>5W4yPhuyvj>!K2zePCUz9S$q0a6MKm=@TMN7LzxyMXxJ zXzt3CohCKM%08zY=fc@@l(h-gg(eko8y}aZEUpsGOKEI{tMI~1kIYmgThHS1+shc* zm_=YLnPZ}NeV0K$P>R-Vr7BW1Tpd8iq{ z(n5431ZjYnkSNquO(6>#^QS47*aH`_7Oth2q%SHm2tmkwDs*N(A#9I#B36vub$Yf zbA+phYvl=6omRJqpH2C6=jDqTjya{yX;PItsl`fyOcV9#h))#JCZ#SZAtALYV1Odv zK>f}N7ZzJeCjS6;^N;08`#$Xs=zU5_ToI&P2>zoMo?XPr&T{tDGjaA_SPI^YR#Y4~I~csY(1o3~1Q$A_ghW%J}2nDO+qftxcdvNggEM$ieg57Jgk`D$v^D zJ|iGReecZv`L1}&4pwhOFzs@3%(!G`%;_YiCKOO(l-v&?zn<7(s_bQe629e4>Xk@r zKm}a3AQNaiVqKBe_fDk>Ps60io6YV3wk2t<6_jwDH!1)UJTn*D7;|dh5yEUT5aQ9o zsVKN9Ic-vrut@^I=m+(~p=Hdu5R#*$$g~*|(kAdZbLlvdXH{&qQk4}IB{C!cLPxEH z{Q2RZJg7}dBl0McL=_%VXP)Hz@n)OVOT`uIp=l(n%X6gFB`GRCC`r`^Rr$|7zTGg> z#@ry!5HO<+{4kRs-1UeNhYY8V6ISZlEAc8+2n0adBY(g2 z#T`RnwF`GMf@xRTuV&{es8B)_+!!`GMD+b54cXfd<+NlgRgJ*o^o%`rVMJccTeh7;q;u)eVcS`^ za?*Q2WrcZgqE3d2dO$sJ^;YPoQbLuhNPs!dsXm`fX9m%C8GCC9I+TMa>9xG@4-wZS zRH-1RPQ*szp!;LywUcrwXSRt*_o-TRlb(xHz(l&2mN&C;imu%#sy zAOZPFGjA{IF>~;KY?``2d)+q%Nhfh8FSLSwc;x=i^QW566vKp#MJWYD_1o0maei<< zc)C@x*-#2!hUQ=pe*XZzk~*l2XKkhGA`~1&D-$!R{{YjeDk)Z?l4K1)gvS1S{YE3{ zuQZvHAd#s;;6x;w?dyW;t5o6EfoC+T<6uA?ci-)Z_HCJkR?e+TkZs{3ZhuTlBkqB& z6b0o-a~$Dqsfwg1YE_8@0J%{kL;7w; zCK*;{PFR$Zl_&y&0fGmgGyCW;E^C&w+fF#$#KQjo_jI2>wgaVEW%j}pG>8(iI^wNE zdV=Y7io$S01J8I$pa?!W-=(*9=GGs6GaQvlNR=rmGsuA- zO|eCGQ=XN%-K}bKP|_Am>Jc4!gNu`eYn0_PtS!hX*c-xkpP9GM2$CJIr3?8iXhqVa zzN)85UwD-GMyuL?q}$V$Ec!ktYMO;gO1vwDHsV%sl`;Y;j2hfeVa>Tc_PB1Cqw;|c^Xx3FJQegOZ9E5ri^5**f zGg!==N_7?Zh>~u9e6hLd+IwY$_#iZGbhl>wRE) ztUjWRNdiJtAvW92-z;)pXIxbFUtZZl!h7PGQqXm31~iMrAKYTk%DYE)f|X5$rApQT zTtM5WPcJ+Uqe@Q!OEe@q*t$PF?J=qb^`*w%ZBPjW+Q7*mL|i5(`r)TM?I1sxHu6@K z>e5DlG_|qXXOwzJL5eRr?H$a+Cm}ClWT{^OI(1W}zqwZ6FvwmM(sPh{rzmEuB=?W_`?!Drr%F z4WcIY1lrSMiy0hJx*Dib6);2)XTxJM1>=_Zr%R!eLhZn;ZCs{X+Ap`tclLv<_sp)T zro1U}wJZWtBH#}Q0uyo9WclNnIAbb(tkt@N>Q}q05;e)#3tx~>`Qqa34~o;AF{NOo zT6E~22}uCQ);aX^i2ncpWN6J4@LC+wl%+=I%G<>g1d*nCo`P}o8h=pg4Xz717M8U3 zDW9|sG)X3TSx|h%iFA=t!>8E<8Dr%QcR{Sd7ZpF^9LU4B9HU1 z(OP;&gB_dy01N47WIe7cH>Rg0NryDbR#He*TnXjng!^parg(=Ys7n6;6Iw!y6XI6e z&p*(e&GA8dKk>_s(B3fSfaq_|-# z!WnjHkyNDWPlrhwPLNVRFyGVHrYww;wamwdR+8aTl7YMsE$I=4z6|1;I@Qyrbtw(q zWl;({bLYMtc*7&3uF00Pr^J+4q?DV)dVKNq9+fnLFkZfYQ!eQUV8WR2@3mu3p|+P& znE+0;lPAn8mzEXJyF{YmM5yD(U_+rSrch0g`3Z8YxG?^OA%ue^;&l<)^rWoOh-YsPryxelfCH8ggdc`qpxm1=EqLo=&Cz^eK{A18! zX`6dd(<Z0oN3r5JiAUi3fg1f9r_k^rp1#Zc?1*{#OcD61a+$gsGxi2H;1EcJuvz z;v3q35z<%XPbo`l!gTHmlO!1uW0Z2R#Sg^Yzp`pnl&eyeHbIlnb2t^w(^Z}&N$>S{ ziMiBH{;K`o5jo}|L|Q|1j&rwNC~s=KKTVrvP5_jvNd_fbk^V>j04y@_{{Um^sBc=C zw#E|?_S?(pGA4M{D{nqlwYI1-xQ~c(y!rmd3U@uH$*9$>NC7t9Z}Pplbhk`hrqpi~ zR*{&-&7+kAs>oU4^d$wTEuzH5qQF~y?di)J&}gd(1tEPpK@l^6_|u7znbzrR^K+X_ zN0#24&&-Y!Yr82^k`IKzPylm}-&}d97l54|yl!#(BPuu@y5=iZ?s*`rpvvhid)Q0@M)28$<5Of_81dnREO)76X2;t)&{M=NxkOSn&gJEdq!N?MsCPpA3%&Lmlf52q=nEw+s+ z_)0~u7U#VG0LCVEqj8|K^)k7}$y6?DNb@<#(o$P(L?@JhcJ#MNxW_^JJaCm(ZAng$ zf$*n6jjjRoz4`p35l$cMYO9SiVB2l#ZN-A6#;ro%q;yJ#7C}l9cfr0NuaA#*nET(NGed?AjPU37j@5^oRDy+;C!>uJJP}A_B_2zfv za7Phwl^#^il=xoJWM1D+T=4;~;ssY%scI@vNhFj(AbEghIrO=hz%m*;oU!NCi3tM% zJZ5}i?L&%R}w8OEFd#F17B6&smN}1 zZxJ!fm^YqB8N^xj3bJK39YPk^P#2gn%YDzE>xQ1xxU2q~pe?1*t4WwQ5%c{q&pc7v z8_Ud#X?0Pqz**jFRhPQ7tld1YU+JKo?QNq*wKkP9bfIAr8%NX26!mNMd4og*t3`~3Z?uUVt!y%;hQ5lWE~8M>aD4v& zz7Y2B6sQfh(KNdM05Z+l;&r9;Io@j1Fg*T$@rZXEWDTypu+wQmiZv1v0!-dT{;~GN z6SAH-tIKqy-EO1cB%g-+#_%y}Wpym^R%qHl1xemKMnKy5&yqv3u~|PM#j&w#KCDDDMd-`nQ7-=l=l96klhV>q9t2Lci^@pluRG z_MaKow29^W`Q>XNbfhqFvh}T%RqLm?xFU#AVFotlF_H5;RJIA!L{U$@^j|!m|z~eNF)LiBy6>QIbDn=N~uj8psis zEpApimg2+{KQEpB*rFXEXryt%V{g4mIECt5pMt8Ckd1X3TWskPBb@F8PTfyTF!p)E z-^6m~svQLjQh;k{kgNTsFkcdJZdlDCP`A?eb>R(-k3q2#Z+)+Z2fJ8O81AWC45bK- zwjF;<`5aLk4{K-+SCFzm)3=g)tLuw9RHMu|S)971#4}3RNGk*qrF9@4fPTB%6`p9i>^N^v$g<=iw2W@l{<`Smk4?P}UBBPV-~E;_>#|6{Ti% zQJrR*0V>q6I(*J2d~nj7$m!`>Z@bcxOj>?hdHl`{?1!-Ws;Y$5R8uKH#0avIcN6K$ zafdna#0hatYk6_N36q6*722x4{qUmNNHcLif3KD<9t+@SDxGP?wx;P*Cg6gvD2}7) z^2FPMI}~Mg44Sm}EXjbo{Niu(j9O22Ur6IINaZTjk@*}0P5kkXKdLmHjr~$xFaVH3 zhi5cw(QxZ%VF^v5#`D+D6?SKn)Vr8!@rL!C1cP(amO2u2D z6oe$DAWC2q`rLKI2Pxu_NTjsmgGT3+4xU()QgQMsT2mCsDpisQN_BlmGCse2Pb@ES zRY}x1ZWQZ`v&vJ#k0DzmOiy3aZd+on;Jz%S%Xqz&JQ3aOsS=P$-Ztro*BJ3#eKl&E zeNH8nAB0RKNacvr^LcZDSb$~O zf@m5+S<)m3=6Bp*l>X-vs{YYCuFrdfIrz#+0FJTde2x(_4&Z)N8j0LRFmkFc(DUP! zRH-5pq}UE#T)h66guR{B=V(h_Jt+o6M1K7L0KO!dmR`Ok%@kLx>rqzU7d%KZ4$jic zO_G6dKqP!VcIW-^q}R2gfKHA$*v-%7LUMeeNvKFrD^&8EPQ!S`mB0)deKV~(WS9mb ze%~xJXBkKE_mbHGCu{Ta_4;jxyr#ch5*lvFaNkIX7&qi8CV6{pzrr()xbmWvuI0Cs ztutUu8`^d@!+&SgE^%#7jHq~wsO+Q4FK<8Thf00|UT64=Dk^aNH@WE;n{bB?x04gy zqff&I4f)#t0Hzl#>}-2lGP3tY6G(67Q%(%*;+~d;4!FW~5dakL=5PMfe+VHBQakQx^OcDP8m99N) zjCkXb@7z{nrjkQNG4U5`OUo-1JN-ITcUJv&lZL8(*J<-5sCSU0fB;`RbmhJ(ZqvA= zR=l`h!bv~d_s($ursE2V3f(AL?mF%{UO#rn(!-%)Zh2a9`apXF#tP_uCaY&Sr&M=q zuop4wiqDETJr7kWX-G;`yN{R8rX0IE&tJ}fL$IX88Qbao@hs1{eJy2*aY@vz#Ph=B z{>j=E5V_F2FqKQ!#&3P}=^aU&C~ zvx!38(6ixK+>b9Yz6`F)nyIBpN_8pAi_DI{rYnXmtsy0|9ty6rLXSDUc~K>%5C7Jt(u0)$xf3HdE(SYY8$3XJW47SA1%L3RXJ#Onzc5FB*pP5UVOA7 z$C*Eik*#RcPJBuF`xoiMbdRq~!ped)6QhEa;YhdcC{bNZyrg@Ahl~MPN z8AunfgZuNs;2Q-clR}fWRa9AdDkVdx<_;uOInknhGOa0A{&xPjixerOkWQ6tH-rA~ z_`&Qrx{5@Vd~tbIiH-2N;{;lpZL4d8IHyTUL!XFllekxw)}QN%=3cXyC&UJ=T2H9+ zKAgX%C_WI)oTjTnY)VWKCf~p5i;IS{)U`~PHNsQ@zbkBS<@LwU>m#g%9Fe(?!g{al zvYS0#w^Pr|dHP4LBD`7cB1pc zR<(GIi37rYIrA3jg=l4zyJD_3$o~LoQ;rzS7&WS7tv`r~MB09ye{wJn7lMaW2Zbsj zGkwROm?ISrW_)*3nDG@lop7l-f>e-fZ@-ZL066GO!-tM{lO*UwrWH3nzrJT1T8%Mf z6gAU-xl#>2{RVK8eJLZ9V&v?egVczxwLVRa#0cEr;q zp;AzX3UwtwMY-acqXO5GRpnV+5!!7<9%7K<^vDr?<6&`&4ED3$QUbR%ddRf@0E|(T zE(YI$8b+0!wQEy4?T5^dio(>8 zRwf{TciR-EL!7u)5>$Lf=EgknG|4kHA;!s3Bd8yLr}f1ZK_&2bT?xT8?WKgcbg3X) zkr9u0*=D+##I_;DTYoqw_dDXe;odD>Eh3;i8+gC+eL_N*m{Y zoxi8=Y5srM>fL0iDAgAr4pYzNh-&*asmtpB0PQG5c~4mR;3Jub1y~xw5^q(znWjQj zsaF6Uu(nv+#lT>da+AIP0DrTBk(W6@0!k7z_)lNmuthsQ?4qJHgqe&gM)w7EVv~&v z3R`;7B}oEzI)A?Z0H<3J-dgh1P^r`L7(4vGyx_hcu0e0b2TTb}4Z7gG=RBpNN}M`M zm1qER`Qiy=aKK0n%>aT&4Y0Oh#{5yd6a-S^wsjWLOk~CZc#@NJCo)%T9c__ z;QTTz`#QJN7sWb_Hs%Kf9GY^&Z7N&G-J7Pem%U*=B_>9Q zAn$38pP=Y*Pw{7FuhT6`Lq$p6-oL-LIy;7Vrk^*bg^=c`1ZorX>pcjZZ^RrANtrOM z4X4B-Vn*L-#4VBW;mgQ%&S~1>xXUxjUCCFWLrj>GHpH8SGotfoLYgVH&F%a8?|e^t zN9>%sl`XXVCsERo@Za~>4ZIE6OUyXhoKM9Bfu;bq_Obr}J#D|DnU4!bNg7#pm7#o7 zC}~EJ4yzxA`{Ch?=sQZKuXP@Ly#D}wF#Vixb2KbApp>af00Iv%Jv#pHh=&kSu7;e< z{%N_6cr8P0VMoadOT#(63+o75s7|E~&(oLh?TLjZLqk~1rS`{%Z8wPPzTTMUKjJRZ z)x68;V>xkE9nUj<>sd42_rQcNEIpODzIM|vhbuqjYn~t+FS&6I{I|A@2wORi8|u;=X;sw zeZ6s`8I1fd8~C;gu}W)|do|SLHF1b$<<~oDZh_>pP?fTz_@h`!J8nt55d+WA#Fr%EEVGNK-BJ?X zs}dq0l!@4h5)R&Y-?T2x^6n(5b6Y7-c2%IGN=l%Koj(y5GG_DE)n0YkeqqAN?=r=_ z*=@~51z@EkS@rpbUmG^=fdj)Yro zqF?hTD<3Lb>AHrW2nhgs3w;2`F6EuIXFLa)X|6-d2t?~?CrN{DazF7@{*h#GN49ob zn^kCeB6$@pKZXYU&ByPlU%vM>1g(1oIA7B$X`XP^2N6@GW)w-NLWZHJTnO1Gmp!9@ zA&T3Jy9H&HDyt`b%6F2GLqPx{+OfA5T4~p zQYA7%#*q;h2g?;k;CU2^IY;Hcv0T+j+C66q#U5zVn{R0@lQ0hQZV4tL*m`%2n9OqJ z77&#-w3Mta2~DgOe@*dX_J!EBK6$fjt+F)}@Q`H0Lah}ZC9YzzW(+7`geeP|O`X~A=3o4s3#T1#q4ZPfBv=eNTheE$H#&et=V(|2`2w;AxJ zV^=8L&pc+v>9p?R!f>azX;!ZWcA1s-pOn1Hv?(|ZkM zhm79MDbV-0*F2{iaRpY0w_Zlp+ZQVwKK}p>W+|@9mZ|X_BKNg|rUyHj#K}3OH*8rW znQn5z6s0Lc#sXzT&ZL55U-dZGX1Ay-w{`1U8Ik_~0LrO-nEj}qt)*`&&0jw7kPzC{ z6CN8#>3AD$agM^^&M&9q9v!G{;Fl6cg&ko!Rk)8dlWs?u#|8Gq?7^6JVO-^X2vd}; zongcu`&I-UMtPoNk@?O2ojsyzXwuGEUi*l6KuVXp-XJ5_9y&u7LBbidZIBl<=Dy`# z9kgZcaCS`c!0@F6g~9P#SJYe`?0MsiIHx^bUmB^`RHZM!1eo}*JiPJW8Jje{u5b$I z9dRmBw1BriDK<0C{+H!A;tt+BD6H)7i^?h+aV)v3MgAn}7q|W=&uc~STB*A5(^7O$ zh~(Vi*)7HSTFz9{?WaOJw5$Wx+j>Vh<+L1Gy@hs!&3_5gQB;yuPpKNg3QPeaK^uv& z2W&+078}mHI!b_V{{T;^xI3Q@I5)rb>xkcD^I0<~9Cs=CJzy$}Ks9e!j*pzXEsD&h`0K+4_A!B63U-PUZ9 zcImaY76S~Lceb{Q3Rgxd`6;J^9z!*4ccnfQ@*tZX7JauEh6~8Ng!(p zu2z1dPF`;41oOaEedF!Cl;~~85|O@{CM26p=i~*BI+KG`q-3nDEnzA`bx0P!Gx=is z{{Y7!@P>Td6M<_A4YpHx)J$J<*VE~ahTtyL6Pjg=wica9LQ-@@DkI^8eaBtK8KY&q zlBm=?bappCbu8ix=@hC`KvRl>Oc0>0zK6_p^@yzpXsjnQ?wolgOt@4^4bqtw=VQ(= z+r}Bv6t@-LsYg@-PT^d=V9%lQj6-vpfsvF~6AE;c0j%`tGtB+5Z>TqHe%@9-pE7wL z_v5%c>|9jo!O^W4`;oKA$ znIG- z$N9xy*>?`JS&}hY)}+)lwE#jwbwrQKdFh?)^u*$lo~`%fi60b|2_^_1UVr&{3`OaB zW7IOciv8BEt)`mBoR0~MHKksEop<%BPjZk63)n{?CztMRgEIWxn%b7>np#xR01zVb ze9takgUQbaEnx=#Cd7EU12+5e`dX~zR6V=>N^LrDEku7J@GV$vzwJj)LPR{m8%FrNEF>kb~ljZ}r;{tc!)y z#V^!2q^U`Tgai`c*!lG^IZrHo1ElFdU)|iSi6xU!ATJ-3a6T6)do_jSd|R5*)%ZeM zR5Weyq^KP{`ESV2mM2_Pu+B{I1f@ThV>b1@&nf!hnHhKeKiZu`VLChQhr{BIT=@V; zOg!-oM{z+?+SA@7>QMe-U=hjyv|2iCY<$yT+c|fYeyU!p8X9;CtIHh+G*tfp+f1Yr z9vhE6%pXa^m$VHcDtjbkEkr9?SERvEDpbrsgCD1s8y{u5Wb1EMuJq}Y%*vn>^ud16 zwQFBw6wH?#B};F+@faHq3DqH2_>7M`82X=1Xa>;4>T^fPS0Av44V?!6&sQ! z_nr3#e=J4#YPlJPc;bqZbtsr57`OzTz}#4N%Iqb1EkI zbBQ#vkeUjEEvn%#OaeT;Ibu-8WZQXWqbhUZAX?KC>-0E*=Uh&gGFo^VYN-e)u>hhp zz!tegTa?c8i3U%Ys-l^(toLsvD_KQCE#I5GAgoC;ZB`N z78f(l06lgSHpOr41zFzJ(W!2wNn3iJ6F=eXul|tWq_#pC zC~Sgc1gHe6E(o+lfdUF{Vlhf8zuq{CxS~UBx?{p)P&0GnbnhRoJe~v4G7;TdgE(tN z3RAu~;Z$(<5GtadyZ36Z#cUE4r&LO2^AbPKB)ykr$jzx-%U0r6rq6v&Hh~vNx#uV6 z9H$Q%R$AX_J(;(l&0943(KjJUu^aE#{{SDBD~z8qsNt;lR;?m7braage#(4ty@8?9CMUE=5-A3UxQA>e3SfO}|wirr4qTSmRf7 zx~inGt2VMHc{6#wl zCDqQLECDb`0wC%f@vZ6Fr*zC<(F<}(Ba*jpJAA5tiWz;Ha{WS+seuK111FyU0Lp&Y zsq+36UuZ7YQ?`_<%5}4&b7&mr<-7=(y~W!uYQ|BL6fI-FS~dP)q(KL)e2-69ZT1}$ z8K)RlP`=|RQ;jMEged5Xf=>3HghxDMYxg$a&UsMjw9(BofuH~?smmR#-~!b-3#Urg z?+pSYT8AXx^tKv!>xiDut2@*ML&8bAq<|v)l{0hD`C{Jo$KhIhn!ny?)7++?NdYSp zr9^@t0rUWG^2IyZqiu0UboO0Pxu__XfUtH6lK|iTe5cpkZEMePvtV;1kh1tV@~JM| zc>P_Ss+}$=#@c+T4x$BI{ zS}{WZ0I7Cf?n_w9O%((r!3#l^6Z5@PV+ciki;8(=ksaAstn@Qj5(^Z!CnU+*K%PG>bnzo!m!P6l@P?+_J8(`ui=cXG$~S+%A4-W$dNEac>~ke%M!Y-(hgv^D^!Gk>HrW( zRQh@PVyEGb6;4}F7o$mRX)<*f8w=X~W0$TUDzl_G_izfeOoXV${{X)%E=LgZ8ngXg zc23|M&+?1UGj->=g0H)R2{QtBj-35trTxq+S)iv(&v;IdddY*+51bdk$2QU3g(XS} zNGjDTN!v`@e>laFkb4|voL(EL2ntJp9|%+h2qSYGzWzrOx@g$%?kx{V^j$>k0gb`? zDu;vk60fv;#VjyZ;+0|vjRUE;nY`lQ;h$mr(>lsfmgwGBd;$X2k#y;Z9v~;@j)(ST z_DmcrnWR;;+7LV|5jTzZH@Ua>80_u`?B^xQa`xrAbcCfL2)9{)BWS++ClY_;$$r*w zzTkgMY4q@iJPSP9_>t{D{+hg7!kHTLN=hn+8D;{)2BMKR=42GbtR!!~IUl{uxCcLS znyeO7-lV7%6U^Sk#ry<_O#Nztj;TnPyq&IOoEMbv z;8IeeWk5toPzk(q`&(m&=W@?*Y&f&3!rqLbkzEkY8Z(2;TS>x4%O-FCF3U=0+ymxS|eblQs5_>ie9)JMhgk3c#3!{haT z3WJ^%Y4I8V0CawCbN>L>ULzF80&#Mwm}Oo1RG3Ov9O6H@`}M_*LBuWBqSK`|3)FVB za^-(m8)F+^rP@gdH1gNgIuMnqDGO0b<{*tE*n_^)Z(pt?d^biC)smo;#FgJk>xiMN zk|hSff4V;1OyTQ?Gu7P*D%E2@4v$U#^NfC(r1ug)+@>_SazklWqqLNR8c$zb1)S7- zqlyHig$oZCg&|)K<8P5YFy3>eJqm%Uz(L$#9w^Mpn@WIEPK9_39n9$lcAEjeo)*$9 zWpLA%nix$ySH>vGDO?UX;nJN+0egwCG3YT|<~^&v#ZW1A#H9d~u6Ewue>om_bmGcd zijuJkN|aQn=emDO;s%ZuS#?TRi7J%HFccNleh4`7!r0ZXWK_CPJAZ@&Qb+#$42Fcx{sY=w4n}P`wrU?CS zzAWw?P^Sq(lAx$Oj>);$pO^H<&3cJ3zXdU|wOG`d`D;&&#ik%E7}bSpGvigMTGXvW zVnG7keSX-C3Z=Nhj+BKZHZTECsGHzA%*n=6-K@{TV9$#2GOk!&k5KbSCV)e7BUg4t^Blal^TIT|Vgih5 zDoL0i9Y?}vedFb0jcF#Kg_!L-xmI%(#-f@O6AFSqEN|CrF!5zV*lhTcQhXxvZa@4l zAvgkqjvLrIlR8igNCsn+N6tC)IP*5*w(6R*sY;>*t|IXw_JrJixMqV;cZvyeM(S11 z8L;DyxJguap+v+<@|;$jSHl$5&A5qePAgKP1Ss_br zU{6j*&#a1HJ@!|BEOko_xX_swCL%n>_s4KGl8TK;SBYByC#RfW?Syk~4{o)kHncBV zf=WRq;FyiYNLq(rFS7oN`?A}xAqu}fAkCdA=q#w3X-PL z5F`mONfHF#rKT`nhzIj!bdQcfno{l%?J4m}!nFk_Km^an>Or@z+xcQ`ly;xp_!h41 zEu93JgpWVh6#Kp32?YgeIzSS+Pcb~U+m|mqBbRoF(@zAIIGgMtB_qxZ9-f#;)3R)U zvU*&u?^U1>OsJ?0jqiQ29;4F8_cw$w?`w!wQ&fnj z3Q;Kvfg~?UP4?fNu-BYt%b+D%S=BN~H{~(uZdh;2_^D6Rr&83FXgaQZB}z8lZ3*-J zFxSOgM71YSohm6zctV{WNsf2=`C}?=@!+eYXd{fLN>0+n8q${vn$u%H0gvTRUs%{; zNs{)TPh1-dbfw4xQ4=v?IH#$cMSIFZmZbbeYtTIRWMoI;fsDWtm z)iJybXG}pk3!SBPTUFk-+Rd9zq$$FaCP2B^3y3gh=k>#8Wx%wxNj>8U=2Q$DTYi`G z<%niS#qVXUY1QFT2{$UR+9&lK@cesAQq+{VNK%HP3Oz09j)kV_savFr9H4Wa&FNVx zQZ)V~DggL={e1Vn!UhAU;bBaKfZQb@i2x>je}AZ#wmU$ls&ybZq^UwsNgfq-+wE*S zvzWB{p-F8>)pKGMF|nP#pE$p>Lh+Q?^=Fp_5vk#|sgR%&ktH&aQVqFz4nw9Ha~c)U zmAcNPcVI+`2~dD+Ia)n=T;kAiw%>V8wnCK}KqM|Fm&?}-dDjiM?qq_L{7KUvAK%V> zaSL8p`zV~|$=OD7x`9_nlq*ow3UnPrgzQAlZWSfqhAd)d2565WgUq`C@6pJW^KLP*kNQDS!x&CTI8O=Z6l~ zcr~UfUZ_iH3IQ@fgrr8%{iFI~84ua`{~rJN<8?f zy5(tN=ioIL&YO)u@j`uQ%dTkY0{b8%83)X-_L$W z%MaO>YMO@2T9UA0_vUtwJVA5y`-Whtljr4=Dtg$4sqcihrlbxKonDke!!nf}9v`H95~#Ccn}c5zUJAxYFo)u6~!iGlORgmoxZLgOI62`ux7Tr_EM4Y;E^MfFSo zV%YbAGn$&3mXoW*qMeSIJuF8n`V4Esd17-kse*nIm1zX()dOMZF=22|1fqdWfu-cO zQc1XhB0%OxDd|2^QMHV~T5Z<`#8~xZ@TI@abaZ5hiOuvu_JLe9$v9)TM>Rb$XAiq zlF|xWS2+Yk0jugqmK5QxEDbx|xS*Ee@zNp>U)K+rrR>}aqGpmql=Cj)6;ZTXab6vx zXudMDiqh#&L#bAwAnG0?8^qXoVjr01iK?}*lCow~(kio8dWkbd~g zjw?San(zMr6*$c^G}k(>#8#B}rf2MM)tFN^nbN5)56yC}cK!Wu(B66$E^eSj{{S`j zpWfKozdJ)Msan!R>WSxyTMpF5xVMA`aE55Im9|Euat1;4`TAnF&jDM?C{YSd*4*;M z=Qqt;t8HpPNHg$(*X8|xTtzCVd)a^#E(jdX^NS&lvO?|G$y)GMda8HC{8MP$3EO|& zv2$=o7$LS&l17w`F>a&x^7&$r{tUJg-Z!ZwJiPax(-OW9%#?(~i&9E_P-5cJeQ)Lc zF=evTw^q+jzRfc6}Q>n7b2)H#@xKQx#3{gqDM|4x0yPz0WA`|(YqCXCyrAPcN=G1M5A$qv zC00%=C{&+`K-_>74fj7^FP`+Wfu<*)($~ftqoSJ>gbbAw$sFzi zK^Gg_;pYRd{9t_PuJ*an;rv0l7C*aT9KvYoQe&C$fp9rqKjzbfQ(T(I(&7BTkv0kY z4=dqK)BCMl+9Jw~<%vxuZrT=nUGAGs(|lSSF`9~XCM|IqWY6Dy{{X~Z16!6CvpGQ0 zCTtJREzW-4c#>sgFxzGZ-5>!zfAf!ZLfR=dM}pcMt4fG44}7C$lNiq9`~boIU99uqQj?d9jbB$Rwcsyanq zO{dXcP5%J4G@9XrP8g*;s6rfCglV;e54X<)GeX+;Plm--6BfidTzH4dNhwL&#A5O3 zY#W#HV>Oyns9I!5k>wGICy@3|iKK9(iObS;0G@|yZRvp@%hfWJ+6|%yo(RixR^AXa zf(GD^(k+Jvsu^06pgtkFzOS|=W}=Q2TTU#f?L{(?s7{?fTx~?rQ=q9+rbH36dD{oq z)Hd6sr%6x;)EU4D&6}lM>T|*YwY7hIUkuhVnCcyrnl>A~CbO4nlHW&SDcEgYTYU9nMlC2=7Z*jg9_Zv%%#CcB{u3Xh1QdE?w zI{=_BweK9y+Z3N|6zXA$g|e8^6b`;ufq!0u7G7z^t1K!5dbBF>r268l?HfE!Vit`$ zRpJXF8xEgbZhB06o-H`fN61`#+DB=5hYIFSD7faBB!nJx9TycXCBt>Gnpl- zryNe0ByLkCBh+GN+P`DtiE1hygtk_=Ki2z3*V@?U?ltU2uOO-}u-Qh9kNditSbq6q z?qP-}Gi!n`!^1csxGT4NGxm?mGbR#}@>^20f>uCQ!WI1@d5l>!JYz+~RBBUBGU8JN zq_0dFo|o9;<{u65CUL{BhV@h>w3~o~0zeb6{{Rpm?LnLR|Y%aRa@=9FDN_(d~#leWb!@0iLXQtpfe|?<`Z6In~HbO_+ z_w>XshI?@}jU=s1s1X2obg4c>n}1AA^8PfY%vOSsoh~4eAYSq;Jmc-k0Lqs}_6#Z8 zF$SM_Pnkbv)U{|&c!e!07L*xJk&rN-5q3RCScM>kH>eVgr0vV)`gJ%jEaG;MH6*1v z$X(NNo`(pfvDr1TJF#Zfvp^zC+P!c6d=@z-U zz`0irhSn5YC|Dsv1^in`-uL=q*WxNR-*qWUTiQ@f^&jbL{{YCuZkr}Rs47wvn}Syt zF%ihgvBgY~xs*yN+#OW6$udV$q>wbL%!GqB)OVY5+Y)TDg>Ez5l9vPJZ(e-7&NKB9nn|~Ccu4UkQmX2AQh=1} zLZtYiJJ?$P0OQg*-?gq8sLLuHQc|@gFk%J189riXr^Ak<# zh;JQm8#&`jC`)Toz5#y;=B{5m^}=*=?0t}|)65&~c2_9m{6kfiS0xhR4TT%{Ns-9#T0)J$lVEm_pzDbb3R5bMjXJkU zOjy}lTls;u4$Cr^H8!;Xl&Ba4g%kb1V-6_G(LjIzQd0y$0L%;g!Hex|L?$e&Q@Ot1 za8LPFVlygqolU_&+@Ga^#3Qy&25&KK$4L^3AbBx#l^t9WSqsO)2S{J1eJ|JBjgC1;RG+Y)<3P_k33zJ;iCNX|RVCrX+xFkPg@V-^k(hy7t{Z5TQOs-j>JC$)&SI zDYk(`rw%2~i<*`ID^T2!2)sw{&!!`(&x!zTK`D`>pbv*>!PPFBmXrzJU|)Ij>%Y&} z5q=<~&hFaRcS%mKE_P;Eh0lIfW12{#b)l=T7DI z`ija^FabS(+lQaxXn2bl<;a;Mmi(sU40-J^aH%LB5eHG50p&CLoH`c}X~}{ikft0n z#pf{zLyJer1BKU3U#SSPm17r~^t9o_vfQLn*95H}%6w8u9X8rA zVR45Fqc*1R5ZEem3ZXXNm!AIsUo0@?SsHS86s09vRAvCu1^)nESafq-drH%6?b(%J z&}O2CF7PUK089&Q7M^yW?QBQ0TC~T&H-64PoLQ0MZQne)fGc5KQ_lT+s z)D)5uQb`~xcbWaj>xt%6gs{?F(ydLxfIpk-=s#lSaSZ|@N=&Cs#EmdLZ*V8m<%U+P zz(;i&Qj!y(o0~^JJR?=^JSRsXkbAPHYRwDzb81SP-$7D^)>4^FnKPu!TcMB8VNl0s zX$YF!(MM&u@4O*NNdN_c7AM7V8}*Kud`}a1v?a9-T0lgs3#4ta7^>*FnFx1ERuZe5 zjjy)xVYVbraRMJpY3~u@Zr~Ab^Yg}}S|CWm9YaeSX9@DFHuv!JC@J1$WjdzOY;16P)c}(|hW2OQyvuSxyWcjO98RKbEQkL!#1gL445=Tp0&wCib)j~kWDbdy63OC1e>2HQBrAJx(9Ph?2r8TC=@e#}$0y)o=ZMHfiw5oviNtuPOx>8b9i<^RO4=$b=>5ggQI`urF zNmqzKxiG2gG5a{s^p>9Ls9Tb63U%3zbMEd=@RTK6N-bbQtXvD*-F3wgoDeS~Ar)`cE^q`B~-W@P^V0M0Lb*ELm6MDsx&B$U8fISHHe^8WyE z>55Z{n-qLTl_4e|IGua0^FEdv-x^+ADSJ^&r zrgLWy6{#ywAkD0G04_HGa^LHT1DT0xp$;dz)451Gen#f}y)n{40p$yucvGySiyWn> zZ9&AP#I7&Q>A1f+#I4RO6*NOh)u|~Q&VWP{_8&}COjf3$I#Nnz>$vdqjr!s8n=o;7 z%1TtFYFc0|Q|B9x*}%!CYr>R7L+q!I`h?cimPkr1P9`V2}qb1HJNhTAQr zUCBsEfhJ(j{!&CAKU`EfmSCz}!~_(U)MQEC{HOZkqCJ-$XNdc^9Ybz7l<5G$0Yh!~ zJJ`j&F)K7>j}NRZ2TVk2@b-1=@ozUq_)egmNFWlBsS^j#;Xd7R$GCenaY!XTzjHZc$l@j`J&X^m6ok2k3)Q)^O4*QRd+?d7?| z^Jt{yTcz4tK>d}K*<+(1tZgW^m8KA*tC6=z-}Vf3M*!BfndCvIJYCvCg2|G!s>IJI zn}6lyju7FV)tW_fX5mqw3xKYMKEHmpzk4tCg<*MnEvfXgr3p*|sB8i7pAnnSE_l-P z#u03geHL%2K_!Q@sn=_Ha7$}-2v)6d6hZLZ7>MdI&75__Z{_bQ?yF2rfCR@o5mfLH$4IQvjczk2Y{H5` zJj4Kh#wji)%owF*%}Z~@HIc10-_QKw@9lQI6)SYvuO!MeS*khQp*I&%@ zy(wC?IBZiYzt``JbgkWzw3^mXXbFQo&Yh!oS`@7l1|&+n`W{n;rS`9w(}+XP3(bK| z=HLQNu|LauA*;`kDQ(9RG~Z6IQ|o!(dBc8Z?B`a(3yERXD3Ym*?>6O)NaZ{doA_3i zdxDMd&mL9Q)Ju+w8JUeHb{D?qf9Z=8Bkc$HWjdwAnZ3l37>3sNVOx;XsHvjfk<9b9 z_uAv1KcrVX&1&dMkaZ_XAd;W~j(h%{FmBU{GE|O+KFZ>#?XfI7r@mD0bpgD^hTHO- zBG(#KXX}#Viq$efI~o4-idQU6PGarQpp_D!NGkl?{DC;KI6Z+((nhG&ruw;H29mJU zw`pS;r9R5&(g0G3S9qk5b!=pL-uCsu8J`okmN(&1)OP@M^Zx)Cj=#ifVU(erO16*; z*v{B*6c1*L3w38qY@lu}<@-2mG~gVmT*G|OMrJ%uQ<{~fqOB@Cltkax2XO5&6yjA- z0_1}RZF!rYTq3GQa@PC;Zb2uPQ+~gw^uyN(@Qr3?P}<9S8&MG>@{WW2-wc(l11qox zwOAYxM$Kvxg3#3hNC#4HJx%xhfr%w&0JiHo<~JjCtf zFd^*lY0Zt^~G$A+N(LMLv4*o zatfhiQg+^AcEs0%xCsu`DN6}?P?dPdf#MQ3H`|sxbH&ig^}1FwGAyS4BgQ2zJKhG| z=R5WL^phhJ3Ix+|?p&yj@gNTo)$4w}K6o!URX-2qp$%y%LQEJpiSmf&Zl04?@kbvT zdeo`Kei&2%F{(|C&Mbz&%JH=!+QERI_`f2d?F_1cr(8{P&5*M)O~t33zJFX$J)wIu z=R6^pDe9IVOFtPU3WA@n+Y`Lwv<9gPTjSW(!29T4mI8vuCYNeP`ZOh9WRXmC&RFSIIxjXd0`5zH5s`WJC8Y}@l zdJF!X@i=j`E!<8Jw7H?k>WWG55H)>qIpCf(89E%OR-yt^WUTMjCMTb!BN>km2kNCa zOwT>Ke){2R>JgV^GD4I7;nRQe59@{NBMxmI>4kuba%t^%w5Kx#yb!erT8G4Z2|T?2 z0Dn4fIn1gmR-jaTM(3pb&LwNfSCTr*0> z#L5cDV`~7Qg5i2)_?}w6M9=sAoJ%san!2Xj3!Ov*1pNn>me_6X(MsA|2X8qi?}-Ni zFqi7P#p{AIL|Syrz=|C(yuZvKDczQ;YxORrOIZJ zskV-pJpTZFcEXv?PwzD;rKD(;ctF#6S55xiaiJS%UkHS(Ccyir&dU2SspE`|+WLod zx2(3%B?<2X2447@20=W{%GIIh?V8JI?D# zK?1;%WSO+><|C#ne7}V&xRZzy?MqH63RzOEznAarIQM-5=Y5p$Z<0dy;iH7#L6=oF z(5p)-m02b%pFi=wERMi?KdR!q{V8-f=Xjt=@f|5V{XUk(mB8JUQLBfa%WB(YAOyJ6 zg})M$GXi$MJ6n5S7B^*l4NJpMeiM3h!a*C0858Gd`R~i-Jww#?G>G|CA6bev76FtV zOV~9VwY~jd_(F7o0JLut_uAXyz@*41GG=r(+i6OX5q+nuo8b;2;xtkN7&1g{l&EnDF#Bz80h5^;N4<&aI#czAtW&Mk&jLd$RJS zS*L0>oIsxJx~)1*3Ud~EXp73gkw_ldtQ;P45 zc%2olC@A=KZ8it5pXqE-r+~QAMip9k+S6feLBwj#^Vbt9N_N`)K6sw+xL#jP-XJzy zzK}@iztrNKrsGyJ_tb>lkJQ_g%vSLcf)hi5BE_E|wnIEyT( z&s%l(w5z+4lNwTfd;R+20_|YQ>k^$uLW~_J?e&aHIGc-V7fLCBR7|;f)xYoQh+S5C^R&0FE#332cKtom&qlte*}SB_s$VLOXWQW;)$5IIa7Wu7L9 z^2$^+r)?(F*A5wOVC6fAKbOur{_TqMGR+s5=iq>)CtmUAeeq;)y&9ikxJr|z z(nYL1{P5X31v^?8%PCBvku17DDv(0TVoB;eys)8z>xMXOrWx-` zX;Dv>{*rw#$(ZKNs-;9ND$~8D{{S(Ge+yJ2+>)L45Ntg@!ye4y7!uzp5mI?YQfMi+ z(td+i)A#yCIK#Cum7uiH(o{&e_=nmI^qXPVir#U`SV1X783|Nvw0~buJW<`FX3C^} zaH&j{5+kPK_umVMHRhCBeJGXLPZ{@XFH|=#Ipa{&Cz!bO9=~hiBb;`s>f0kL$p1c0``Qj7W_GpFE_efGw2r=cz6Mr*^zZ2GY1z`zH^Mk^sII}WMU2BR=LWchU z-}W&ab0pGM8ot7Bd0WH~5~T$dc!Di|Df7N5eD!NJy(438L94;kev$!m24=@TGd!fkKY3GnV=?+}HRUc~h{ zusGL;n$4*cq^4E`i5nRE`r^Hz%3RB<;H60kF%gQivImMP$9sjRCujpTJ`d%dk>!Bu z91#E!q??-`U(@S{rvg<@+P)YU9$!wlW6UZ^B$2DB>&q0%)zP@7{L?g3DnKVrp?TbS zeQ_=9;lJW^?j)O}rp7j(-`5Z<=UbIYDg2-Ve?9R&?46||RA>JH(&c}zOexK#T4chT zX#OmwR$oRGEwXkUa0d(47ggfb8xcGFu`S{(faa8;KwM6b%oKlou@I)pT%fH`BUR*B zj3v2cDO**AB%`PIchKaR-(VvWJiCdMTT1~+P(}Sy^5yr$VdarRl_e%XgS4a{*Zg6> zCeFLO%xfmZY7z84pvT)8Q$x6~T;0Oei&avmXo)3SbnF$i$J^HXVz=V#ty#HoE-5}{ zH@@OdCv4`u{UTt(lz>bf&fiV%hz}Z6s+PQzY?~1q^uTH1EH)GLlV@s;@S`8VxSbw9 z5?5mr5hg9xKG^D>2G3fp;k6P{q?7D*c$qH0q!`@H>?0d?nVYLN zVJp|FCI?(Y@*0OJol3&IQWI-MkI(7X2d9qNNj)%Im3CxYMpv?+B*?zk++Jf6Y>SQ+ zO{Gd%(vn4qx_*E29+;*wULsQ!XjZhU@<~4rk;B{B`jYAvl_&8pzSiaX;w?s#DtAT> z6|KaziQ+m*9wl=CYCg6;e_T_%f5PGLNKMirW(u#jt|gp3#a-D-7PP5R03D;qeegzq zMAd65bSFxQxKN*$)BAJ6wELocjuF7(%oRnNZ{d~J)#4&R{Gfk~O}IlnL)lV7j*^kg z{`p}n=Y$4hR6;x&j+owmt_RKXwD83`5LI;x`SdZ5p%VwPm9h=O!A^D6g)gZ{Umz_r zwh&fywIw?2Qyk_8>|jnEsyTz*+LtB?w>&9dN!_bR8bpEp#wB!l%0>LvT_Lh5(CS6-p@AsVhh@Aocm;VZm9t>D@{kHz%(wED2A!=by`$7erz|mLxyQUywg@^v+Dvob>xZ`Kl%~?)PpLEM8%_sI;cG5J zd#15|j-h&_7?67jJ;6>#2MqWJrN9eQ-W|kW{5*ZIc9& zK^qzW0E{2QnT<<20@LCEP0#5E8ZP%oVKBMC0ty-4&yHVCr6o!Vx}%vhAFd)f{{RS8 zJyAXtc$7hs004Er&-&thpK(f=Zb}uVPN{)>X6jx2%A~0z_o|YeX&r2|wRe9qs# zSY*k#v8=x}?hBh8JBZw4akF(;DOtz36v3VLdsf@s=t_aPG3$p833<$}wLR{=q>_KE zV&%xP$}T0zTUy4Tu^Pl`9(TlJi8u{3OD+bI6UqSJrG^nBj?&T=hL2PvG*gCI#$lRe zBVWr_{eF0G%d>NtwgSqP&yhRgwSCtqTw6q|z%BZdiAQIdp{K1%iB952Gx}o~!`yPT zXQqrRLm_cla)XNaV`2m<^NIfe4sp7JM5##-kO>Ah+HqZ0aYZW`V_>Q@!595;?+<6K zRk;XsLaYSDTc$Li%SDCrbIeWBx2U-CnSwPCrxP+05>@77>HRV8ZQ6ERSy$n#=oZv| zB6<3GVT&u^&*BWNZ9b;Tg!p0==6=9`OhdTmv26OS;%V0Vjk;ke3e(GICjS5_`QqNC z3ZNEqVv`Za2iwhPz_Qc$uWF zZX_hY&>-o*Q)u~e808++{h9c?H{u5>sj~X@CFP|+p#@L{&4lXt8G+>W`%dvk1g$J)3_9sildT>j7LYF; zb|V+3WuDmV=gCVoheoiGq6W2GS^?Voo`)8;FitS0k-CV#Fu$^a*YN)U74~ZCsww;Z zAS9Hh$EcIicm49T>$5Lx%*!jxo2Sf!jl7YeWnxGJbjh2Jas|5L+R3=9BIBxkC`&Im zt4ab@2i9#H-XPChNBG0pw}&{vDs_gOYNV{gtuNwH2{Yl`9jBofK8dU6>B{l5#N$tC z2g3a{(_!hBmW%Uj%l&Gl^vJ6bXl@CeV%M<$k16UkCAYQPP%BBj$x2MypFbJ$#ZkoBReu3y3Z<^6Qd$PfC^A5> zCy+ZG#m+iEE#kUPAg7c%kmil%#M@yKNz=Ul077G2ZNZH3E?%}@ODal%xfcMB%emfp z95LEk{oP;tv1(EWzia1C;^Y_YWl z60oumo`3D>$zMN~FAmSUTVk{&x10%EgHmApSJ-tpn(;3(svV&Ltkvx+|0I8ja^ zq$@CG1G`*CumIJ|e?EW?W;yGQyAOMSv)6MxtgW`&T8Ry$*y@34)ysI;k1#C$#Cv;d zGH6m&IHbPHJC&dku24uelh^v=fiapKA|a#~i&XAiR=x+!EAqAoWm_`u%^O`rL~y0c2wxt&9P7i4yIn$~7b(XznQ%eN8~l%_XV zQbq5#hi$N*YqXDW?{`?GEHd}vI3Yd)40%V+e_TX;n)^gfVMRuTcS%QfR#pa>f#TI9 z$&ux8^fTILv^>`bQ8LEF!k{&rr2)EF&X!AVT`o;Q*q zBHc$UUwi|X9vI=~-BkW0L4yPofFWBOoxvX-$Hg>pa{$68Zut^!a=lAWRmGd9}C=@{72km*H?DfKbEv6i;;`qBfA`2Dvlmdj6F z1eE}O7&Co|wET(Y0L6dAU8GcTYM!NNypc{w1|$K@MYiXGcyonwZX?fW-dJ%|)lQiz zCs3W>&AMJKi(4-CVX11ZI$G}aNLq-GT~`tEoKdXRw=5a?NQcuL#)mr=s(QL3#C$Nz zZz;t&OQ%7RYnxh06E`4q+f3&P<){Xg+GqH3ZWVGm_$k}WWrNOA{ z9Qnt~nCs5A*Kx}4831?=4ow&IGCQjkbVpNQ%*OmoFLZ8uG!)GQyr-6zz2 zUVUY;&LN;u_@{O-Pv2M)xVcrLNp@p% zu9J;_fYzl7OgN}OO4d%PAjyL}g#8CxHRqY?YcqD;vUM3yo_4pN!|884Hhn)(d%I;| zvr<|%uwCGzGYsL1w%lz>(y1WGCQQff*pmA{@WLx|6)?0Fq4lIeg#`XUKDXNyW^+tO z5jK?_UGkcpRFdKj&>Gk?2RSV^eF^Z2)o;W1m zHP?ivwr8;gH)oj>oMS+yeciwwAqfdonUOZ>xArl~JZnr_$|`^XI);!ri}_AE3)@%y zKu;NPtq%z$r;?W*M}Aa7QjZtH6krh}?c`>ge=0fdPTC1kOUMVDgY^^7rYAaHk#6!y zJ&$DlMzy+`PeruRfOxe_zm+=PRZN!9J>;t-$-JNn;!`M|}C+52f?owgFaDPzOB zh$2aoewd_9v;sRQx?qCa$v4W8XL(>3 zvZLN2BI?_J)+2s)#qq@)K#Fb_sch;>T-XsZOkd^85T4V@2WE7yB>^EPy8>fMNl6iJ z*56z;+J`VSD)ki{dzJV@&`tUSWhr{FA6xCnVu;<+lpjB`*!0==u(iVMD(AC~G*&~ziltkf z)2up3C31nnX(aeeQ$8U2|1et(1eL7}Y+@axd9NC4|hOy2(h+~Sw^v+Uo9 zI3KllQBuW9Sf9XJ!j&mft#VA8j~A92_$Bw~64{FqfSc)%o@l=>-#G7Abq3W}@~-sw zM@%?=W6dts_Mq+3mp&=bGu81018pmcm8h|A?b|w zYC5eAq?mmsMi)p=B|Cqp7E0e1<^kj>w;8Tws)Q8Hm8--LorG;Mz41eED{JB0qI9XY z=4`M5zm?`W;`;4RFmH-@LXbSIPEfBznJUntiyPhvw(-hwR#WiEttvx$bv6@n0!K_c zQ8DQTJF?mIy$`guxmG8$Cu#2R=Nr+LD6&=no0vtde<2*U9PxVlLUxL-GstMrRjSHl zkaZK&#knNf0sNz^^Xm2LcjV=YMU|d+;K|M zLAjYScIqr~0ptEXcQmPV7d0hbAOyf5?eyQ%6}EfCb+u3EXsX&$Ypa$M^aQaBK)TxO?{NV)E=)U;6`$+(zq$+bcUDW zg(pnGg+U|Jd|`U8qyr#(UG-n0`d{@Ebh>iNs_?#x@x5kW!t}~{wKjz$NxYRP7&avJ z{{V;>r#Q3P#TjZ=>reh2(vV5Qj^{%YmQ{^jr~8TzGm3KUl`cmsF38FJ=fL;_@%0(p|GUD z7EP79g#P+{Fzv&|nxcTB6#%4oz$Q)2lF4uSnVx9F0bJV7aG4X9dB-vix-6W zkSHZ6RD}|VlPM#V&hVl8CO#Rg+H5NIx^rX&V^XlDn$@d9l>m*VJ{Z65P8hhFwQtes zOMoPW2rAfpZTjQdJ|Yd%wiNnKqLM-+5G@-hbst}%d9G_uSkPB^oj|A(l$&{**uju+ zT|vsvk8=(}r~5$3YIAD6KsZx6B*;*i=Qgp#e<^ zVM0RE2ROZ?{{U}6%LHXP0}6E#l@Pd zo^cy`PBQgU@B6NfiQGbyQ)kHxgs*rOK>p@Be#RX*b1`q;HG+^5J~Ct*%x}{b+0K&C z&;p}C@PZBIBFCro>w_}>DEBbhfIVc1PV>Io6Z?#0$r$bzHdhyI8CGZUPj{^y$I9oK$QB_TIsH7)GvS93bZF}Or%sAN(yoVblAZi-IfB`l;e8*kK$<~uLQ}pRr zBx*CM2j~UOuAFAgr!5v1gmOEADLYlL%g9!xU0S7NPK~zdF@Ib%J4l8fQi$${AbH*l zU#J}My27ecrrNCpnVz_7u60>@$WoznUe0P&-~m5|0t^%3O!ewEo#5@fOmYm#Of4!e6x#B# zne*Op4y#YUmCd@ctTj{wG!mrmcF7=%Z*QI&Gj{+@l{*V{@|nEy+wX?9^HjRhR06Co z;)vQ$lyk=KQY$h|hl*w|{ND)rW1-RQVwOpsQ(L)Lz9mG3Sf|4tB@%7Vo*G=CTL}OF zttv8N0I>o`OX6)skSSLhw5ABO$>rx`<&B!*vUI2L{{Se7F&#I#z{wXW@sI{et#dkx zwzUvdw8#X6h`8nV{_-|mn=E&0Uaub45L4HmI3GM(Z*V$XZAs9TY6Or3b=&FXh8)MU z^1_rg>e09afIy3H=RTtvUYzLJMaVS~?`;GR4`!%UHkBEXX(z-%*!_O^aIVN%%*Tv{ zZze?YALr-m3=QyYbrnLEHKY%WKu}LR8S^*lcCf?497R(?*0)MRlV!*xgEAz1#y-bK z>Y8TI2P@~~^tpf~sA`VR+F0)st5vLe&coDmz-r+)D3Vj+(t;oWEO}f;;QetWXS50= zv`eZ|3W*mXKr3#s1C{ZmPZ818HQl8_TJb*nR%pF&^Sx7&SD@4YZ|e03-wrTaI9J1Z}mq#POP@E4BA!Dheq+0TU$5bpD!c zv4@7ZTAwndAR#+!vJyy$wZ}iuV?a8^sCt2~TuIx8Pg|5B%WCfdNO2a_Exqh*=Z;7F8^Qo|~9^Aw~i{WsWc^&c){?W@>HIf-#- zWF;%wcMv>Dk6c-#)iN*4zKcTWWEA7uvgE!3?e47=42NDLyD33YGpRNmZ4yNJ;{5FQ zwlCsJPN#H<@og$IzAIeI*(R$Yc}r=PX-N??aXw^uTknl>ZUoG@VxhGb*WI*aPSzmr z^FK^%ej*o)5R9MZ zKBVDP`FCl*!ZQeZbi^4p39vKL0U!KvU~tbIHC)4MLy3fwtm~f_=02h#dSa*TXMop1 zR^pgxNm5KCwvu(GM04lQ(D_R*X8coCNm!LZ-CG)JZ)K-6 zc-+#udWxklQun%>(yd<-EP8H#w&MflOcyEF0%j5g)-v`?R;U!alBg1k+x|^>uaj0+)`Gx__X-M5L3^ckE~;C zzqL0qhg(albHF0!Yfsa09-kre_mc%^N`jN9h3kzyE&l*J;t!wKIH3tb)R;O@BJg*- zbGOqUMhtSrREjv-Cs{u}vy zKEoV~mS=Sot#}-BN=i^6T%gZC@rh>&_LEbWtR>w`Yyltc^SSAa>HRbjV4;4U!!19m z=?A;2g=$IoOh)=|G4#TZg?Ac~q>+CNs>XeBS8(5ItW=bRE1?9G_{fdm8Q5*-(8S*< z;`F)_*;b^IV%JdzN&Wfy<28>kJ8DUc)z=A!v<$q~g=-StfT>X)FI!vZif4!lY3dY} z4-%Io5vNYp7u(j?7RN(psAjH{QXET-kfKJp)}E&LqdP?5=NZgjbtp_~R3r-o%pa$e z>~Zv3T|;DLDm2u8D+U6s;=?Q7{DjG0b?b4lC+h z%+ORNMQADp3cOGW^PR47GRSMv5|ypfE+E9Nbop<8OJW^FG*u4dUkMkUmRyBFPS*x) z=6M~zrXxI79Ly=yuZYYh0R>hUjm-0bhwS~;CZMRL3D!oX%0v;SWAA{)8Y-0Hm#0d_ zfJxdWZwHiGH^jVAP7VJ6Q&dkSeQec$PlZx#{M?W4`(k^;b!!RH4kSWCqjCoK>U!cm zRY2Vf4!>iUY2z(^ z+xD(ZR#^5+nYOJqS}rw(37ZY=Yj3tDxepX8CwVJVsahLcf=E`}#@F9_ZEIkTFyNt1 z;*#PuZlGkOdWbuZ=8i|E8N0B$S0E)WM~33$&e4r#>xUyKri?t*t51ddU!-y7z;P{^ zkQTWKzslINID0&Ai8AuqoJ*R45^i7)pE32v5a&7D+&h`2#Hn5*rc_3&2r4uRM|2nZ#?|*(Ud%6OT;-_Zxw{O16d&{zcBzu&(9HF zC(2P;>ylEbB=}%W=1d!5Fi1e6s*Z4Q^Y&GSMUlSZl1e-)6JxmQNBm*s{>>MeFolFG zN^A)`^_)*QYlbP;-IXNDzC`*@Aw4lW%eZNd;WE-xkqMaGk1sg=&LfnNY$o-XI9%bJ z_Im9TY9Jjy?*Icq{Jyx4xA??wILh6m5TVZ2+n@HwQ}HJVQ`A$bAqmwQLAjgld{vxp z+1Y$J8*9XqAja|gKU{krvasb_T*nM594%pG9&^ubzg!uYQVNG44tIb|a_Q$M`r+$7 z;KfnCsAzPs-}>(uVSVr6E~Kn#8i*7Aai&>?RdX4bNY&mYLLh)Z5x(5~@k+atD=u?dRT@UbK^NNo zL#HfCxL1l^O2P}$rz~zS(*FP>kD}Ac$rz@aPg!cXvR)KvE`@GE+RD!w-TuF3vac# ze$FLIs!eqyjXKl-DV@v#AADg=1>q()QQ=X%Ymo{Xg+`ymTBMK@;_3B2dGf?njZ9Rf zB}vqq&rAOP__p}_BM;K4#9PN9M(|_jXrHe>bzW;oX`M=fO1ryw`45o1&iJ2Y3R-P- zi%w~26)vFnX$nx8z54Hin55GQ_<;a`V%N9t^}}9QRBC&$LX~YKK=^;WVeXoYIufYn z6BZL~e@pVhEM`e{>5~c}LOFSTh8B611uRC8pb5}< z&*{$$3v;=x(>iq!HzIyV<@CgJN3k)D1Xxnm7Maut)qm}QtMiqmrD$E$Zf4}qU*6aW zx}OXZPvy7~>4DyRyitG(WA7MTcwE-jP_E{$2UVn-%mWuae|E#S4`$9LsR^Ge`p4e@ zv6i9Y2RX2fyr&0KxeB7aXoaZ(QA4@@;_V}Gp}}Eh$M|y5gh{yD^& z2>$>LoGIONp7Pg(fM=SCi(i-6VkyK~FM2h~N|hoHgde6nqTP^Pi15e)(eA~0SY}hEN zgzC8f0|^|tV%Xv?6HBU=z*YAt1nfWO0aN4!mms8WHW&N(^4lMAr<&Le(t*y}eXdki zd+g^-q$$SHuX_|8mfU#^L357Hm61M6Ay)9}DGGxmYytE7W3LG4~q?{SCz9PNdy$ToobQ>Z2&LP+QHksm)yJMbangsC*{p@J7n zD~wsFS9F!9Z~#6VNb>6&^zy>r#F;}X(QPR=9!BJd^Tj`uaUyC$mEWYTM%s*pSP9$9 z5^7BKXTF>H?TD@u)|T~_P0 zu+N!g)b)x8N?K3z9f$r$%g_8o9;b@xDMX!0Z7BXzsCDOoQQCuyIV*5DkUV2hzxVz6 zV(9ec;~7b7q#S1cf{eOO92dT+Y8GsY1B4Ahq?HBUE8GmSWwWTF4 zT}Dz29X&+z+kLj^Fyi+TGg$J8UZktV;*w$}V8$hrPFm_tY{cNG?rls|(#pluApqaP zFCW%-^TN3Ev@gr7mc}q7s~6ku#jq1?f+P8^+hU^5?a&P4P}tay;R{hSZ%zE^MpDz>WUcyqt6< znN5_Nf|w+$!fhC>dr6{7lIDZ)LxM2Zs`r)@Ql)LM!z20O)>ap$<5yGbhTP+dlBQIxNlI-OHjghM z``;0U-wAmH7N+{%CQUQz8m^r}N!#Roe&-5P@e>uT-0CSBwe#QCd{=yR#NEw8mXoVh z;{F}2^S&dwe;K}AD%Ekd{Qmf7;6WRet&T?zYPPGhR*(n^OsPg7z#@0Urwj49qahvV zi*w{W@l&_O%BW&Wl8{6h=yoI5_qGwC;uqU~Lb=V4EC|z(DSP-_dzVjToJ!qm01|}= z1~)&uj$ft%&+41^c}W5Xi=1uGubwL25aUHBNLf;?30IfyF)JKU-BS=$N~COJPc!@S z#IizI?5Q0d*L!$P)#24ucuDZ;k}c3oewdo@epuuAdS8f6pdv`s)C=;&DT2wa5*)h4 zf&8G2{QU7@@J(Z8k3v+HE6Bu6Gk@h$V_9)WX^}v6{kw~>d zl1gkY6(S~ZjZSQVOr(`*DIZktZTfo8*AX=F2YFWnpNSxyTMsDx@7C6S6c+ed!+Y|d zGk5*+ooLakP$`+U{IMHipWO?AUM(xQ8>J!#G3Gvaf63^S>zbFL&hP?yMYg^6!xt20 zjZwIyBmk)?nHIP|v+3s$Pp1P5M@C#dr6WaN?IY?=p{d1bIzT^6F!6PAm_n{q-US5# z$j0{k+g};{cr{w$h|ucO5w0iC$i^f5MVfc3R{sFX2tO9n`hD=IVIbKG$j7^s#{O`& zYNua;Ga^c_Z$6NIo_H~yE>o2nLe>={R4q_GUYzfS9MGseAgM43A^^8jCdY9Hk@CYG zGmj@T*F4jt1fPUsYf8~uigu%G#?r3rhP4$`sZy7raCDWeM9uY0?fHLuNEytUrEo%u zfCkV!V3WPm^i$_ckzY3Mz`g!suVD&EQ~5~lmIr4>2Q z7=tHc=NN=>wpK=T;e~{#$w=`L>SGW59hi#RRvc2%sl-SV784x)qkCb)i88j7JJgiM zf~k-%(Bg>y0Ji=TH$Lc@0R$5_gBIJ@4!w%;i#azDrNu44+K-A( z_PMlJVUk|kY9he+=&z`~jrOLxY?_^Ge5Gj#5Ry`(JoQfV<=3HxUua$|PH&S`q#z|S zAd@N=gL%EYxelilZ(`l5F`$riU8n%~QPk2gz zDH|{ zX|uU+M;Lo3FQU~wuh3?EE8L-JN@^*T6R0Gp5&;6hZxI_`mN`$3QuS_mP@v+Isnr-t z^=VG6h3^M!2f(uscO{Rq>y5K?s*(aC{)&GPbzgTD$0T4)Cs=Fetx(ublXPO zgc>+{Pd0AUHjav@)Fsr&AwX_G9HV)@-`f*j3(YDrjLkBwR*?tcji;c2H;ZF(-6|aX zL|Hb}B1&V!eOzavGfSx}8Bv z_jiC3tw{*fEKCun=xsf5P5VMnzr$JGU}<5rwo;K6(vb=S%0!Fw$4+)dT|(~#Q!T`# zJdltHDJeU6Mdr~EBtbXiX+LW$x}Q1ERF)JRWzeHAJXRm3uRLpQAL|%WX(VCx+MxJ* zv=^!K5LCTJbxDDyW=Ou%HtGk;?(D~l6<3{R)W{i7)162umE+pRZ z2j%Ix^~KNFZd9h~nQdBiB&I}(o7{9Bet3dN<9YV0bx&wzfTbK>#$}mNcgj=N1gx!U zu$rbJraUOW9Ug zoKPf&n<`MyBT9z*L~=iv#j(UZHQLQz235))S#2Z&0_H?Si6>93@o#o_?RHX>iicJB zVhoa%Z@B5`ZHi+7;_iy+brUoi1dpn-dqnne%PR8s0vKgblcg|}gCaH&*YD+yUhQMq zfr@ulrdw8&k^v{em^K6(gCu?N*A$()(dQKDQq+|x!85Fs%zs4kvI6S%HCK-d1J+3GKD5A zZM^>cv1w+UIOc1aDM~|$3RKu_wV+2ox1JnmyFaC(q}K&XfMQCu82$dqi(;5^s_Sk8 za;~y|9ZPBab!t%4BW*B$bN>Jsc>V(BWa&jKPADh zk^78VU6}S}#XDfFw31>?S|3 z`VP33F~P0nK`BFNZ%U+WV8zFm&flgi#PIuUH>IR2PLdDqFg;xZG<51x%1{)YQg%Kc z>$fjaiMogVNis|w#uQtHkXxuyKqV=#Bcyuyd3j=2O6?|6g*fBQp9w3K$xM%2MEIMG zDY8b^8YxSWXeRUJIDuyTZ47un4RlPQe-}S&cyOd4T6NY2uT6zBfYpBaw zaf)9M9u%n?DL=4IEByP3>$9iS>yA8>{%{wtl6EI(gX#3aoGZb~scp9&TW=Q=CP?vf zjqPFc2d%KD5jRVcFynEhNd$qp5&rM#j~?n2#Ew=sfHpgQXAiY`lQnP3RjE>;VsAe@NO&)^+Rh`XPNuuGswV#c7wljI zOPkUaND2xH^C0p+Lu_36M`W(iWr;2~r%s??!mLH@c{_SW zCY_viMNPugNO6A-fAHLt=HTl$}5x&V#G&F4ZQyNxO;i+ zW$fCu=9mdnX@Tv=6PGi@}g>e?=q^^=~slzO~vG!T6e`EujPFgqB0>K`EZ#Y z$!c?lQne6;Af-daH~RVdZ;P|pgDOI}p}KdJQi_CYNLTZX=hR{gNl1znYf$kj6hN>e z$Va9nouBb*JU_&gkD*FRP~uc{sL!7*{{YS?W1q-ZPb(hBHV~};0Bb(T=~&?kT*-iv z<6wmqe=P04oMW2nsGg^$PjrK*MEE}TIP0#{^AGytvg*2apVi(np`uRFxb&U6pFCFn z&pnng#MSF_Fkw{QxHrd7a}I=d@>M^n4{;Qo>T$B&~71#?of}Jw0(l=9NixUI98u5#=~r zqW}kaT9J}(s!Avz;~sxu1y@d#6?Oe#=yT718Md;^N0;k>at;;Kydu{7os zxl37XLv+Oz0R|BEkUU8VBTt}{j&$rNuv(5d;+9vT#WGZxaWP?S_kn%Qua1|`@|u1K z;N;}b?AWQzuCqeuo&|p{k3j*xQl~*TRq0L#0`?NQa! z_d#xcQ9A9nsWau%4f)>}W?9u&i7QfEDo6x@=MmFk{iI{(wFgtElW{Z$VZu!A)XX*y zYe$7Jui|<Oh zq$R~ELsXQJ08YdAIE_@TS+!t;;ZndL8yjzP=k@i&67zaq9;5+op(@f2@jib}a~O_i z{k&7;%&iOt)1+zE7q?P9Jh#3yBY;NQj3+~-ApZbtD_bd|qo6vUSW1&BB1nu5Pl($QY z>TO}So)p~)d+tMPNtzdPAyyuF+i}dFa59%2Qnn_3o8J-2ywft`S4x~xnrz+y(g*p& z4ojI+v~_n6DL`)`{{Z6;4Q8gT@Pt#jtB{{tV?mLIU?+68-~|1``Bg0$@#}TP4zVA< z?Tbr;gEUl0P)eJVZ})!AA$$Rms=1F7ZKX;a)vHgGVqutNRg{dSrohq@cpJw*-}S^g zhi<@KBTZ2&-XhPNa;^}P6qr;ED*gWeTVM)0g=WqK3oCu1c}Ck|mCUlS?8QaIt|wK= zPcml`P6o+aR&!2C{OLCbnIrpt_CvQqSVhQRf zNRiW=_5R+Na^gND{vhJD2ujVohtH?paMi-UcyJib_o@m_M8WGW7wGE9B(9H8RYDr&p2Y4~7o<&7Sg}qu|wlJzuf>qn|W=^6*mmEp_Zx_;k*gv1-ksPFQ?*0=rYA=DGFBH z)&Bq;KdvIx4dQ~AR~T-3bydB<=B6^?cAADGplyptfD^N;RwczsJF&X0=(TY83WDfBIP#3k#e`EbH zaq6EVwyM7xB=!N6<3U`_5KDScnHLfHug~ZA#D^kvRjz{2(iCP9J`?+ozA4HsAa!-* z1F0&!asqtM?s0AQZJ0NqzVTryNP@mY_ahVQAuJn$&(=fJZt|uMQ#@%(id3MXs$kpo z>TzH3l{t2>AzbXEYYt-lEsK2%r+S)G-RuB5{90r6{>K&19`M@8apb2`rcI1q+`8}N zF%F7BzMX}Wq?{Mm34O`rkm%dBCSj{6>Fv7Jny!4?n%dG-Bq?FSUp zWVM4=!jmKs@mp_Bev^sM4rlD=$VwFsDt{8m1FRYK<&CfIMt8K~Y5pR3AHMLpXN$Wf zex21MG^E7AKE9jc6dtr?k2|7Pru6FZb+pGYeK*>DG0$DN z_GBp^)XNG>F(S$ner7iZ6>0V1=V|3{>3va}fwbVN{{V)w0H#E!3qd6R0DEA1?l>7{ zU|ZE9Z|V2_aNGPgrztA<&{bjxH~IZOxN6KYr)#QGr0P88{{Tt##SUnBP7#1|tsWiE z)0{ObKg%&YeKDD*47E_TEwv|6*hHPZKV~r#;O1&*R+}rsA|`Dgzuk=Lh5qn_tVvdp zaBez(&q0XW8DyACEj^TOrzTZBD}_^S;0t0ooKln}N+aPm`kY&%A#X6F@NIK2Y(Ial zA$)tnhc2fpLQ~9v{G*oR8g72(BZ0u3seT9vCxM1SNX ze=Fj@OY@pU+?h$_ac6dL!)c*XmY`sB9OL#damQ^;)S48f?dENzuIWKKlr7Nt%-aDB zsSk}{8By}RxqkP=e?HHB+NmiA!!dGxxRh`fWQ^4b+sH(#Pd<27-L@1C_KQO1St^*L zgZY6rG0PA~(7HF=AozuZ^S1v0t}mR&hs9MGIwBBHgO{xMaRbiyD7RWqc6N&cA5b>+ z{V|m*gI=i9%m|{GcxO9NKtj(kr+*0Y`Tn?Dh?zxAEs}L<1JV!Qt{QV1Q+*O1$So;Z#g+5W?_!ewV9hIA^mw$;RLjM4$GBLQN zO)Yk!l&q*qZ7?T))8&A3B{U2p#C4LQIi9im++ZX-saMnw>?aaQ2_tYx)O!eUQMc(08{R(*s?!*S zc8pfwZOvL!vJXp6F3vFE=BlZb<1(F6WW>zvw*G!ttvIuW6;VdxQTU19e~9gCTLB#9 zgau3vX%-YmfopYU4U(-YkN_4uu{+Fod{wilDcFO`{P|+E%M#{Kno7=+4aC6n=ZlMm zYuU^)ty8N|ydNpX)0zu+1c{nj^&M{~&>>%z-cvZr1Sy)3Q2?Y(zF0FneJxZ31M=E1 z-$h=OR3si-U-iaouIUqUEm&L`m>ntBcHhp}u(IsYp-86ft4JWk&+p3>7D-xCfKxsr zX#MRc_c)j26-!g(sa6_H&-BFc;p#bb_MfUie(-!-U-x`QIHkXKN}!a=WRd%}Cp0-C z-b#+($ppo*2JKXT3rmPdi`YfYu-VRnxGLs#c!?1gx%0%cBjP2r5|tfx zw5ya0dg23?Rfj5)R8E<=i|@BAOP8U#B(1dqgp}!0ReeBseE#@jhzz2jaN1N4 ziyqYKfa_o*`(iJfR;rw%Pnw4MfyI@caOtT4lqin&?V-l=;Ns*Wq3oU0nq`qy+__5ghI7 z>GZ~nquRhqOwFYlO+`ahK~kk^)Rh<$$~}|s1#u$j>e7PeQVBbQi(7>_=sc7lxT&2c;NB#C z1@XTm7%7xj(lw#gsl>!V_)X8t_vecTHFdnn3OZAyi^=-={{YS@ zE(FYw%}QG;Ohf`nvGT=%m}g7NXi~CNN<>(j4_J|7_r~+14;EA*xK-qx$@y_`5!im$w*L-eUu&7t)uNRi<)sw0xMbH`6{ zF9TBNIlGHWlBXU78Cmeb*h;+mb?a!i7j`^yWFuCUGVGWNQ4<2!Cz0!qyou%Q7u`o3 zvO3&dh0j%-6;Z>X&vC6$ErhKJSyK6#9~JGq%$#OV+eT}{)d4j+oKY!)L=up8+{uah z{{Xa1`-=E=tet>V6s;!V!lkJs4~j|L!Jb%z=6Rk@%gQhJIvXa$f()L>Vd&GpQ5Tm4QX58S7=EQly z8L8W3Z{0@iI0oZ9`9x+Wt0#Q9NV{|(k|4~+-Fc2(F!jTouQuwv-SsAQd<6J`ld(Gw zKkte^i~Crv?B(|<>ltyxxg*AZFZ3tt<%Sx6XiT4pj;{4gI6gF?dWgRx&;XJ|a`nMG zP7YdAA&BHSed%=f6Rw{;%e$t6RFVlPSrD*!gzvPS=MfyMhpABcVdl`4B$Sd+1dmyR zH<+AN{2%QQjHSgPRV}KY;vjQWn23S|n2FjwF>`S5804I6hTUz(&{ciDAV-(4LH8KT z)k60-VzL;>%Z+{2ciJasHM}ylW)v!U#$b|RMCy@k&)AQ#hmOj-Z7n>CT)}EelC36S zf+NayJof&U_wcHET4l8POVqUqlLQ!@x$l3S`r@JOkFZ5jJaZhCN^m>~EuzWjVm@RK zU8d5&($Tf(ozroyepP|Q`DHH|WeR$brN=aGg~hLKr0?@SnB|_+IBPWQzlr|;q@hV5ZRBSbW_gn3J*ebvcd4gwMG_Vv zI+Z(x5@z_4|kPCCk!Ls0VEs0AU$_3Bd8U=RfD=eJx`e%Bq9 zJ40RkN|^~=I>Lxr0U<=(>I9x!;g^c|OEc_Sio5ppX#}Aw7ViX|iJ2P{*3%fbI75r_ z-q$#D-Rg+cq1~*K0+Xn22Q#_1r>~>hZ;+Vx)fma6%IE&U_>tVTZZY0zdA&*qSspHy znYT@j4DHj3Dl7A*(zUvz!bpiRBjTC2E|_xTp2*+qyNim@-{81mD?n0EQx+FH^};+w z!VhtR8>^;DU3n==OKtcsK4i(iK{!m7F1xFtV`L%6gu}udQmnT(rKk%COOdF2B4^gZ zF?wempfjHEnY3H*1p_gf@ z99(}S5+r)xA6=tpcmx`?mnQd%W?Z}PhTP%ojkGY8H>rc*fjX`(EFfHO{{RzryI;$w z5ZV*&%2Q)VScL(3oBsfPzTYit{jD?lyzlT8_+??SB}9ob4UPHze1WWg z!nxMjs3sQN_=-%-$NoIOsGSL8hC0UUQ^_8vw7OG6_EKMJEcJ}}k(iF{w-ghsAOy~c z^5x8V!=JQHbd0wrZk;5kN|GQID3cLkKgvFX z48G4iNYSZAwYH&5=Ar=948S9M?oIUw=WJ#Ag$Fc&UkZH~=8i2oaGz#8L7r!8jGrOOQl@*gSRVvj z&x*s&FMa)EZXxZjFQZG0v{KrVq7;ir5%Bfj%Nsf^9I~_?2k5Gs)gX<#8Ua5(eiWC7 z8KvQDfr=z4zrk-rTT_YVNRn^1`+SBW71^6&xx$1fHcE)UMquKV;dLMb1H)*s-u@A>=j##rzA7~pEiO`1-ar@d&it$gJV$uDp?PFWlCDkd2AF-=+EDeMLnXb${Q5Mwd?{j}?`D zx5ITg-Ax@>DOEgzN(fGvxAS$Mu07AoxoZz;Dg_|Sg$V^hI0AeEhuIh%HyPf)Za z)|^;38n#yIzW3Zs)8ui{nRNm(jE$OhN>otU0bm4@3Hw3y`r=(vOZ6ZQ6}nxK=;_yY zjuc-#%@M*B8k_l<%CcxOyW6LI&PIeQpUsBm3oZ0C5T*E!y!S=}lGq==XhMEUi> zdX$|gHaC-nH>Mt>u9e(0AJtC1pfhF{SeQ^yaRR`J>C|$8^YzC+<`pWX&NV`nX;>m8 zgJV12*AxERv)2z4A!SL@;FAg=I;Va1zfOKeAlyrlI4WssLUgjED1u{1oy1P#Omv=j z#gF|hJ{PRdyY*2VuZ3OX4%bp!OP$*zygCU=Q!0~r=N!3P&lV>a(02{{y9F+2V8H?m zkMF;%dBWY7QZbgQs-@wksmL0L5~w5(OWWtt4h79PiJH8{msI;oZAL6-P$CCDvop)o z$7&-x_q*T)cUijxZThEf$g`p{+EqAIvr1Hw2$)F#SWKBdShpOm{tHN&r7X6Tz+Lpp zOn;xID82~HQA@;+QU!h!jwING+8~e&bMt}DF?44nSL6;fG^R$Abr2x#Zh1-n0Ndw< z?mL50wGsOR+Br^D6^P<2nM|S0Nm7!u0HS7NpHE*eJPXH}Vuxq-bgEN&6o8~cN?;54 zW^Dx8Iq%`TXS2>KG_}gho>PgaZD1u*t8Zy1&+p_W!p*7E#93>JN{`~Sr30pQnD{{7 z%WeL+(C`lmM((1$_LpR9HX}+?CI|pY`_3%h1ml(PCVJIJd8&snvcM+F zJ{!TZNL2C`H?}LT)bb<4xwfRY;ZvnUajO3Subv+`I=LKCl&3FR%5=6$2~tmlTFDoU zhUatF8M3o%wmYrO1xO4;eH6E~P@K0kX1blgs(R3sr9k*rNfXXz!@P9pCUe-Y9=3!z zK=EFcHl?+34q86bq!L_8b0_f^j5ma`CahPbaXhuHp>(mY0Jcs9N=RgGd1L@X7gK{NEh&o%YDz z4e@0&N-g`lheE=~h$?@WkT(5BB$>Am)aKkU@)_5qDDM)PGvN|_U?%&`x0`Zj9`P-H zb;L?qN8u!rgA*#-;WxOy%g-7*I7E??c~ch6HlSbZx_h_Y%Xojc9?un2<0*2YodIl= zP4~0~Ty57J5yxCC=MLtT4FtHB615-|qzzXhXM6Lo=gh`BPq7}~*OjI0r!;X>r9iBK zAv$!K6X$KVymP93rn8D#$J}{=tHy7lZDDcD!TZM6#FJTRjpL3MqXU^JXuv-m)e*#5 zxm&7*=}`(%-tcZk_rKiWcJq~1Wx0N6--f}5pr}i+v4w7Jv~P&79_B7mW@#!a?$mW9 zMR7I~O!dAa8E+dsmQmKyI#t}&EiN`hz;F&%=ZWHP1TVUS)5+7|Wm!4rY3@48ldZ)C zg#}+qtY?3wGqTM6HMxt*bxH10AP{uwR^xBq+~S{45IdW>-6Shf6S0y;{P|+f?DBy* zW?WaPv}y@aI{;(XZ!9ZcAPpf;y_#0!QCC+AI?CTEEv6DCU_?gbdR{$oL3>wmtvwZ5 zsats|(rkpPWhZ5Cxx5|yFt2F6xjDh?Efmj`tti-7>e?;1-)>RX+|S4SeN)8Qv#z-N zswDMR=gvv#Zd!5gqv>QX-tHI9PSdKGKd?@;xw5l&k{wXhJ3-sa*Z0d0*;YoVslu6*sw^yQF94Ca z`EtQorxsH1z`B#(Bq*T*MeWero&2$rCg-1MQM!QU)q$60#j1APTD58bNhE3=BcHAj zs^euodzOlkBqrmO^%07k_PTRy!%25eqW}@B!{`01F(~1T`KpqK7Ur!g*qOBMdVKJo z!@0ia1t`+E<=iPp6Y#xP5ao$|Ybr4*D^XMgsN905=vOI`sFO0?X0bnDZcoJg{+BXX61QoS>#FYu~j{&zb;-uq&o z$~cGJR+XtqQj`oGT0ta|BW_XF*pg-ZPPf`hCCOHk0dXqccJ$hQ90b7a;YxJAN}0UZzx}%9=4FkmtCV zvD@-|DQ#e7m2x%5 zX{$>sK}>j13FmRW{G-&KgBE88@iTSwN+sU%J{y4-9cRyfK7$;)l5r}72-c+PkPt}+ zm&7{%0DM>+6UCjwi9mBjw80V}5dl}|CjC6jNvhFMs!ajpZe0T2YJp4MG~yH9c*LgR zU&|O~&9n5rtwCTVM^u6>(&wZfke#suM;#WHtxly<0T%>9x>ui@5>&{;09FgqwP~FEXayrq>H8`L`K}_4^$yFVK9v;B`N|!zgWaqCa*(^ zPl+lZ$(Zq23I3kGSHy~vsURgNB`0u68;Sn_IKkCC_6d+jeDIzqnMiCP?+LU6s9OBI z_xoXHvgRBzd%uTG;LP*&zzjYBnO3U+ek*x?#`s-~(6%n>P@f2e&oV^(Q_B&ZQ`!|> z5PPMo@;YZ2OREUeKM{!lL`+X1(-p616b(?Cge(ulT9goBQ#%XanV9S4iH3j1Nu^JB zG5JEH;sg3@CwMrhyISoXOg2!5hj4Wuz#cA!F0MnS3s0zhp{~N>_CMV9x9OkLI%y=QJeo+>Lllk8F2L-&+Z~+w z)=;-nlC3GSq^eIl-{C*Mi>iAz?Lvb(rDbhA+LH+|;!gb@e-*n7s2Wy_&YvLR(d}Y91LSKtbL% zdN|cjgut?L?MfnJ~ zE?BB_p34qPT<(%mnN$I~Vj?dbz7soRtSdNaC}<%fR5vjZJp7{-ziE6j(eDadSAa<$ z4f@Z|eZ+|!A=IC31+AvkZ{#j@tEh8_j-m4o78UnbnST>)AxpN4 zfPg0Zdj9}yGiP}T?-b{Y@d}9>>K1_q)9Vu;Yl);$mxaDjIkP3zhn^;gwdbNS7 z$B+hbdsixtFs4u|Z*Kr9(nJr6=68-<@lo+IY4ZBzA+j{roI>;3cUyhZq5lAIl0qiN0iV;w7{`$2saFk=NIoFqKr;6h7i6Rx zL>;{Rjv)CDX@Z|HPNJnJNB~deCTDx{-=-ZnsctsPk^++3g31H*wfK}70&U>)6 zcWToB2(U9An9=n3L%{`7$bF>R?GDDc&XT*`)8C~nxJHd@2g5wiF+8ASqxdn#+{+pK zK;VeCDK|*zYwm6I$Is5oIMvz`+M6d+XZ^qt&M&{7I!m(d*i`dPw6{{q2ZVs4BXRrx z02Yf|qOw53$(l16Cy=^RxlKYPK|M%F2?a6)TKzitAoEgkL~{e z;GAo~d|ESl6sWB#hyiE;T8-exQ+XfT5A`(Ysiq_b)u;tYlk*?B^4@+wQKx%eK?$*H z1}#w>b&}~J)g>xQLaqpera{=BEw-PW!ClCUE~-$pHlhd<@bV+?`?fAF(=x$8rw|wL zfg2h4N%|T6o7HvC2AxoFC@39CBKnNXeUDACp%$I{EF*JxHmbhWctuqy4j>^RAw;SI zi8HtzE-m{IP6DfYhjW0#iXFXjPkuW12?)*>)jVAC$@hLd9vey%sQ6Q@7-ezG_ zIId~}!pL-OW32a2+%?6Gw&@Bg)NSFg1&w$6saTb6|qs7H&)i^(!UfPy#^U8 z>07BPlj0V%U08!R$AyKOkhN*2;p(+U-d_HDzHsMOtIHu5`JVJh#!g=oi z78Iut(vp<&y@dJv{{YT2hw`T=>Kg>gfzk%k&lfng zDU7J(m<$yV$k=|7Ns@O?t9AZ|`dbt39}d(s*i>pT4DwG~$6I=Q@#}dDPOeU(QxIfW z-}lcFE*r^OOU1B+jX)#|%=7cS;@NeLEWZj_8)EREICPeqWl|<2q?sLU5x3}ZF3Pi1 zs+B5Ilr;ak-~V* znoW693QV0`jH-UVf4MlUbIg~zc}OVpAOZ!qj-zj`EOVG8M4d|UavO_!dg39*YDlVZ z2>eCN1le9fHjmunJd^;z1H@b_e&qB6Zn-Q;A5ouJ``{Kc+Kv5*J}q(L(7K z=3-EoCy*eC>4CqEp7AgVI{*Q{*QOh@JjA<9m1^;GJq-P=7+|W;fAuN60zD!IIvA}T zUkb^|^CUP_QZ-LdaPW%sp`?iAAd$<@&SMp}O`n!mr&or=Uu;Nev-G&kYUg9~{{R>{ zBM5eoa;9{yp~UI-*{Di38MP zm?uygqzfOuHl}qitXVS_`Oo(lmC=pYYNpG0wG|md)M!W_5E4KJXP|+5U*(0e%=uLA zXifwiai_Qb)QnKemJZ7E1mkp?7M{{XHVb1nc%Pk02!!b~2QC#>_2u*Hz-+aF}N z>BPL0O&v;JR04%^9S!|Fj{yEa0l(7@)bx!$(vo|*+IBu?)9V(LrC>7v4`? z-eeLAd(BZ2LP|-n5PA-{c&yQ2ODa@E+enkk>5GGe zxUlA7C{v13d@u!o+TU%zxx^>=!(TGHEzRm>EhFE1<^!}(=aRJ8Ykd$|+6qi;-5 z>6s|P%bAV4Za>PIah_0f47o~5d`V8NHUi##F;QncL0iK0@3_dLjHw|6`+~bqBS@zp_&2l! z<^ce&#uZ_zN0B^);>61HM7>BMBT|7pld68dv5G4p;kt~1slrZ_q^Llc`P$#6CV3AS zs+Uq6R3#$9HlN?_*uvIn0C%&5xg)DB3dFBz4>G^asD)W4#0NpNZEfv{UUJfDUXZ0F zAjy#_OmmpG-wrHsVjX5muQCh+8{hASjQ+2@YvW8ph)7WD{{TNsJJaMW!AbgzraI0h ze=1lhc%3|^@we(e-gq-7?Qv=D)*mUfgC7j?{c#r0lBK$_t$MB`CwPkq^1dU;Qqd`u zB*;{dAV>B4V^PsELuu}eH~_CqleEOnxayEP99lG` zONEFRo00qT#d}d&X(Z^IOWr8`r)TF%p7q_ z1esTuAPh$+xU0KuAQfyv#lb$XFr&HJTzDuId{7Pa+oiv8iNqvj17og2PdUn$T-uUG zl`2lt)BYxT`C*YfGUGKs#+4**20u-|x1J^0bwVF%70$$og%CEs%NynmHWOkKU_glU z7RRlWgGk#YU?`gnskILuoKH`l4x?ZpK*&w54>L0uA2EFmcy2ej2GbwA;2MneD5kQs z@(?!K!>;(Pj1NV*$>BUeGKo@D+O`oQ-dH)VKJM0)2Ul8AtLTq{{{TPO#KVQVO*GCS zCCw?+2)PnxX`TMxd~@{$Yp7aVI`oBXMyZanaU!J69;aoqtSM3?LF?C^_=-&?%(X=} zm8D(TpJ=}D>RU^NO{gfCHUf5@M%$bXmS<=9l2)bM4dN%S&VOSSRTgxoyed&rQVL*M zBmV#ubNS)h`1iOcSW&z{K-2wyafP-+`5cq@P|<~VImZprP}oY8m;@LkL|^sgh!+y^ zs%k2fpcb_$3JNeR4=Ybm_QiFcc8IqZp$;p>b9v=6^tr%UcM_?@5Eh>oisTE%(=llM zH^)0qc~nKGuW?gXIE_?@ON1-b__wjcHAfPy>W0Eq;TDiQ;zyl^7_%Jv-WD1M#R32j zNuP&)cvCB3RRJql@So0L3mhDJUgRe?94Q(Y57IW^QkBp_lACqd`I+>>NXi>!di0?! z#CUc{wfDxYKkih@Z7EKlhe!vO{O@89r_&AfIm%n7QP-yNs1epD59pS%!Bfl$%6fk^ zYK4QXNz|cYA~|xOTrg(*R=q_bYSgVn0(AcXEs5)~^%!lMVJNEIO4S|xJefY5&r-ev>ZD_2XryUF2Zx+ejxV>nG4jBxd*~NShl!VGxxML zP}xWTBjY?Jm60&Vz=#QgOOcPRZIc{i7L`WNgxXm(ER>*pVI#TKGG3K zFdopWp3k_ME};cVSA=-bSG0WnFXxGtXP*208A`P!J}uUKG1G6JDq2jv?jNdfEGefO zu}K<0^*eR?`3y_4%BNfam1Qa(aL@x8v z$K}#71Ij2?{%n`@{uub+5qYr1oyR;lYU)WEOezYaOrI-Qd2NPX9mutKf?J=8V3R+- zl5tcnsOe}!sAys%-Hur3atslwSK&|}Kb9pK4-%!7rQlMp94<(a9PiHzdHpgMK;S}? zsVSKv{tygUi+E$!aTulICn+9M0bcS+=jXNuqFl_SA9%o5zEPbe`i&~?(vnl8Bq(@% zueFXR*(P1@)X7t0yyUnX7XY2iON>)@q!}-H%ZCY>O zu?d}9M?wMmdQVpIMoQb+WkXKsS9X;sl0opoZhw6JW0ZSIS96*?4x}U%cUmnZ9$W1f z_2&X#=^C!Bw4&3=VySdTvu|rkXE123NlmY*Nl;A8?oZntB~!;O*5xW}4+_z}tYeg& zq@TA;aJOK2$9deTE~me2rXZ->&+U$<;IrsHl?jhURrG}u`BjWfEo z)Am&#ZWRkgSo)AILbV{MYP!6M^5@KBn_tRYe>_W?L2NpbbP!TGANa>&cD2B6*3vwr zAf-^Hpvsf3`mO5%K3ig$sO-X{FREIQ%A2xP;{`kVo#UP};nzeg1+%4v&1l9|d0x}J zGP&3hV4G_llDJx3V8p^G6a3;b4 z`i;4ChiCn#Co13ys$?~(BS|4qVl`TRWX-M19GmSSOz#?Ti;pc3g)F(b@XSazu<7VF z#)Bkbw!EyZGf!8F!h)-`h6C-W{{ZDT7N1;9yC&^sikCfaTb>sTPblW0%9lDsGOMaJxxHpC0%X7MS^~h~{3jY8sZF|S*xxqFFj#{-H9mZ^~ z_2CXDZ;J9nw@$5H+6=6IVFXOXfDf+6t|0xV@C|coeejhjw1qE7O~D%{=g$XwI8?Dj z-7Pwn5~mQflC!p%GJK^r`AkWRFN$ay%}ruQ4za_4`pCq26G{WH8vP?RYu zS9nScT&802v7N_XNyHMLhFnECFp!y&AQSU5&wpG4^!0!i>{^DpFiN~TIqf|a^i4Di zpM#|Db#o_p^!}K#DOA>Ej`*%Zgn&WY>&y4bd8dJ^zkaG%gK1%?P)<) zq^orT409)bpVOuymq}JZQ0f`opQ5v>DVlKTZM1AvZT9OsN9l*0gN4%alC`H&ek)s- zFW>dVSA;X9_qyIGyu|pqPTw!zIpEK!^6G7B2}-o;fMO(moc{o02xFelYKhM+D=M;v zSt&{y5Rn~i8_fLiAmKOJqirf#(u4pk2jT5vexFaJTg82>u}b37l9kEiZY|4ymKj*> zHmaqGNm57wGpffLEOmei?7t;n8UFwt(a^AAWTi4hTVwG~(oWc`ILowWvs#kXDOZZc zLzoc;e}ASSIqw&}P(K-J+F+AzgVWS~ZGbZV&?s`{DNAuS*eDzAxY&=}W62odmad8* z4Z6ybvBI?(wL(o&z9TTTZaQJr38mrIHLg4tFyF)@N#E(x`^F%7mv2n0tu*?3(Q;cb zQFsxsk-i#SugrLjGMPeLg#dg(Ko2>vmN|>IF3=ySL&!?g zsr7_~*qz0}o@f66!txlJ_WRp)EkAgJRVh%@8e|`z%ww5&$F;OnIHH|OAfL`;-27L+ zDCvc{n{Wc3OB>{PaUZf5JxWDidg79#-AmH20Jgw%pRK&+H=1z`J9D8afw2*5^ZosI zz?r^&yzyU#wWL5AbsneB_c&sz($a}iw%^75&-nXd*!0#d%YBhMxlT^!hNS@n^W=2> z=dJ^%%#}@1GpA0OgUb!Hxrh&FKsPWXT>k$6eJ~bq^-U!}5VZ9IdhNCv;Kq(t$EU_a zsE$?f+2?M|<@rar)u~EKP@oKpNU)iQj*fSV!;ozA2WQak_<#2T3utiJ$K{vz^N7Gcu=M8m8o%{{Vfzwi)=BFKU?qC~Z2E za-q!Mf0h{O%fJ=F$(^i^+7AhZ%JfpPq!gud3xRXb=lbERIuAI~R8XGn&4?bKQ zUZh=BdSIP1r{x~IVdk?gOLW6V!4@;mo&9i@*L01lzswL>MwlGDM4wzXP|>aW^dE>! zb2caC{{R@0X8bh$Q-p$;+rqJPd^vDu4Y+}=*2+q52?G9Jcz*#r5CxRslBHCX4X0Pd z1kAv;{{T>57~jhiuFJbOr{WyenJ2r~DH{Q< zW;yfz_>OtROfGRzg4UAvt6SL9HqJOtCKYcWDU;!C4kA>j^*$gxh4H7fS01Z4dZ3iF z(~coRP^60iZNKps_`Zf@d|jSW@K*&Ts$-?50<;S&Qb&?(OdqlG$1?HvXcalmVC0gN zjX;UoPCj4L;`~OW>S~rVn*B`W)lCT#Owdx4>xyzV2^)Fu<}f>%!YJ3>G-CFJo7;b% z+;4`~vjtS@m8(wY_wvB)5Q?z!-m_+4^_~9!&e;0E+vRJ<-~Rw5X?8=xj&WBM(53B3 zrEPNSr~d${4oA-Yd1IwJQR05h_&bH#qRP+lJjD#BNlRKAN`Tm?-1_pLF^)sa`(qg` zA!e1tr%)+a=KxsG{9-f2{jfV%-YsscQ3R?<8jRj&5WmyRvo=Q(8aM;L)hcLZm)HOU z)zABEJiPG3oc6|))Av+~N>j}2bj^jiPAc5rjH>vKvBadR z=52T%FW=J=4g}zOob|<9Q=S+QewV!R>5XSFU@IfihBMrV%s8IEI12HtWNn7j@D^vp zPu&g;R`ve?7`3=duqwLD#jxwW({dymsVSJ4^%nmCoLn3`z&R%gvYzup>Hq?wbtoD2 ziTmGcVQ!c+09iu)R8i36_zH*Y!`YiM&g*owO!LMVfw{AguGF3t2ozcKrm z#!K~b?yk*3CX{@A>- zjK4FgQ13z#WI&y*^2WSE)3m4{u61gK9&wKcsFLlsXvDG*0U=a;JHZX)>PRY;Cf_OF zpXrHr4(60es#8@gwx-k|k^v|^Z;k8f5aX&$B&Y%a1AkBX<%UKwCtgyV3-GRX`OY3> zX&FkEH=J6E@z!p|8_%h<+DHT)_rnhdagvdpHkh`dARpfNed6vOT3K^bW+am^cOUVH z)ah_^G&(tu(okfEslu zn4OOBKYvU^P5%D?ulB}_jvFW^wZW{QrVY2<&_IBe#F_o?Z>Sh$%y@-oP*T)j zstFtQ+xL7pW_f{K8j#Q%L4t06{&d6#?bCGmbopW?&>2$(*|NN#O7j}7@R6oL zxe#}czw3v@Iqp=cQA$v)q>yIj_zxvv6pBiJmvT0^gKPDSdBl|g)-<70$VUFVM?cf9 z7VmSZ71`Q^&pT9dkuElcX%+y@$1E@>iC3FHD%y^7j5sugUB&Mv&R2pe0Qd4N>f6xp1YQpsXskQwl@Tt-3 zLx$N76+y#&t~IDK>cSj9oE^jy%gmm?NjQ+#aO+%MNRYHQP%NtrK|lfG{?jT_={4~W3Imw`026)jFreWYT*8$q)23li zw1dlWZ?`YL4ozXZR7vW_GB+wGCCFT%OumRolNY`E9zxiT_NPRemO>K;P*im3j)LMo z&lOI=Q)n7a#2pQ}-Kk*3pz|?1e_mq;7OQzx==E%Si|uo5Ujsc) znW&{VnJ_l}F!h&IRAkifpro!NeXZ-~=Zn&hvDT|;JJq7_EqznWo`Vd$LD>Qv5QOQG zHU#hbV@4fl0+zF8jzda@&vSLuzbCwdayg$|N&7I*jWt?i-6cHYJuqhyc0T*ev>Q9KKb|xd& zrW$zHfIHUQeURDQji+y4+{bsHVE%E0c$Lrr=X+iOYER4+X2JpAJf`G#fh2U3bt zs82!C-%J&mW$w{1r7ba}fCLi>xA^CV{G|e=S}kL-=X28<1+DzSHL-v<$vGP5={z@3kHg)c=IjyY}>t0!r}U1^MLc0TBa;&_(zA!2JseC{91?+ zt5as_k!|m{_riQH!%J?iPr{)W{Xc)-73t?9Iz5$BQ3$H7Rc`7~*k0!5a6K+o=e?ms z4aVM>o6zuKbqQ9RM!*ad#{ww24xLHnA|nYhf>Ps#P5ePr8H6@ zNmtuW9Joib#4WS{-mOqz7{sohfmKctLVQGQd1E$dDcC7;KblHqOHD021r1)iVzKQa zjeJ8?;#1-YS>N^j`TXpP?5d%(X@vp>h8uWyg43E;r@UoKNjI4X?Hgb^#GI+){@zNZ zPX|_0Ah_BUr6O!^r|WOWesftL2V^UN%296zwdliy{CII zs3~r+g)7A*1RlJvjSW7y3>9oHic>_YKQ7`e6-ZH1y8VXUc(phKi;&}5RD3W|^b%m2th9Fz8W) z0HY_@_iP1SO4Vf^jZLK_DLVNZb32c|BRQ5}rZR%?@PtX2^Xe@Yz&t(2$*Fv_RFa`7 z5}^Qf-x%{mTW)HO7~C?T{jBhU^6I6&gqTs*Oxz#sh{i>kieRSPB~!>=ZR_QW?>phd zaVA>eI$=o~J{an6Gm5*5`!#u1gqiXW1as1a~P*btiNNG?Q>o-qS?-7+Xzre zO4F=>2=d%tsOO04v$oQu36h~CP5%IV@ae?)XSutfM`$)4XVahT;g*(wIZ`#5v_Cm90sUlPaZzp5YF;L_=KX+6XlnEoCy7^l# zYmPz|TPUbjWx-0NtJI*Cc(*5eVok!CS_?r5Or=&)n+@XM*Qvwz6y>Qoe|rk>ldv4{ z$B@-`HTrdUgabUmSJMRNk|{Dr5-cZn>AlU!g(U=a-8b|8m=e0M8W$TYg+YV8h95H) zMO8ku4I%-!029}IMYB{bwE~c#q`^?zc>aeF?K^=*3%6lMa&9eNPn&5jcYWISGb5MZ z7K>bP)^n01>I${zeuES*8Bo7Pn)j*HQs%~NcKz>zxND1^q)J*PUKvRpEsvmXV++Z& zn~vbEN<8J-3dFd=^c`@OPs7NM-}jqSfqO%B0U>UUqzzlzKYMM8CnC=M=%r;NNuT^h zu`J8;MK`3N=~`0>=uRP#xynnUAW>J-+-hE?CAU-JR2%jEoK^j%=asImT60rwACU6p zd^6=dPV(zgmn9&W1jna8mM8f~1hvF;iPq|TLSlR)&u`pec?3~Kr;xYvj4FdJ;_TU{ zO4@N+HOYc3Z_g5r3GFX7dozNi6>raeayQ=JFDzUf73}pwq&$L-@hSmVM3~$k>&p^; z73>Qtqs?VhI+T+#N%0BkI2TUiZMAHT)4UIAJF>peE3*uf@sxEp;4)05P)r+*!92mk z{{RiCkk zZKR}pC(b}O=l8(TY1}nUaNv-p)yCIET*2i+Gj87x4)Gacq0a23b9nIhhS$H&F=248 zZ1kLCOp0YyHlZ4jn+P!+r}B(*7i&}%S^a%eY^6k#W2mSBGql+Hk-i~WVspL^s7vOd zOsSnp1H6+UA3yh7AGJXweI}0dzJ4tflnCR(>@G2)qv8h?*+Lv~;#3G1UAaX60DM&Z zckIyb5+&i6)wtV^6#@uS!BON!{&=S;{h~9P9LPIRuJNTgsYp?Pk+fLGuP{HREG`Z9 zqGqYK+o?)X8bJUhB4o&!-toTQObp$+WimJ=VKxB@4_oYk#njcQcA51lU=*abSEvK| zh!F$`*c%I8_Y{WLWem!+Gk*!?qlg!5%yzE zlOtfaw%x18@YIA)e(`GK&# z{8JlEXt2Ik@UCga4OaI{6)DnG4UC939b|L1E#A!gUC+2yy(KOrx!ygy#GR#CADS=1X5r+X3BeQ=d$vv&`0lL`uDxPz>$6#a=D{P0ecNdEw6SIIO5 znE^5OJ?&18A){w6t#NJCCrFzK+I>0y0P-_2i(7|#N~fnOOR7tZDPmT$I(grb*j_o0 zGmdQSTeGS>sa^dD(iF980C-Y-iI7Gk`A=HmDHW8_7RhIn@H|$mL-u?MzpQCDZhxw^Zr~@IaYO@c1xWaI_~qjWP>tF zOxsd=?oV0eiC1G@)T~lgcW+cS?K_51@hETcU!R!huLrDq4}P1q*^N zw1YqRn4YnSTFN_IsAJ!-Z#eoC}xgC(0mnw)2XgiMT&7 z?1za{Sjv?4T;U1}2f`<5^8`%WXxQRG#T)^gc4eEm<6YvZ+i_O~NQ8hatATs-!`4;W z6(<;EZc_-`XY1xeMlh@H0keW4L#6G7^qwY zp#do>DwLCXK56^yjcfZqbBENLfHftD;p?pB0iChyQbhaTrX2pw3iS_ z1UQhP^CTEIIG^@s!+B>1rISpArC=#!plR#5KPzvIk4=%zk7Id4-DGeATr8E(d=2aw zSxcNIr!gsjQl+3BL=CqF_qDOn+&`1Cz&TQBDaNHXh>2q^EvDN@kJleX9-e@6&G=aQk5GK$U=%*8l=hb5 zk9p0sty+``Tu70;-g%!ZdJs#0VkmXenwEmXNK;M;CP@&Jd9*=}Sc!I@nLEV%LZ+KK zl_tm_m8*~n+x@)0*juq~(3#;p*>trd@Tv}#f)K>lyl9Lb)ksAZNe@~a58+*mB zwY2G!sbNHqgigbKzqU7N;ZU7qCLCEDk`k}3BwRO_CaM%dl&MnGM#4T{xj5}LG!Vd- zBxI0WX(Hx8%_Tp*6ucIlDLUYbOp`O$?c^b0#VxZ;=XkXRCsouFxV(Br#t!0#P|iy5 z)RUzVa7c-XJjN@2D9y`xL(ce;rqmV;00^6l{XIPnA2y%+dxtAE(p#u-JY`Y7)x22l zX;SJmEw)rrQ#aC}ztgVP9P!Zp&$(&H`ya|#EtXW45)^;{goMBmJI?ERKokU6cY-O8r8kbC;tGh$3t+gVeULRPfQi4_eWK=K!pgr5@62I4?KLvqGwD% zb_-5I*^V|dN?Oy&1y^0T6pGed?@&gKBn5O(lXZUQo|7}4%5r)>H|+g1l?PMW3Xr+D zu>+pQ#Ew_RYuk-kb-G}ORHY%cCRDO~GAB`+Uv8J{X-BiK5|%O+YDf}6nC5OLmreYREzZUJN2cOzuAS2Q zR^$MvCQ^2SeQ#*r9Ov4GVw#>Jp+k#WDf1RP_JBH)bSe}qN!l;8&s-7NpAl8?Cl$C` z?>)++LYa|f_DKZnEJy3*il1Z!EnBJe=eCQkO+ zIfY){{WxgEGJajXmxPAMLkG)yIoPiY$u6$!j)ku?+Hm#3UyA} zf$|eSvk#ni*^)SSh!s%K(29lY*aYg|so$0${>*vPk8y)4eMw3j)UOyMrAbIpKR6@* z0OrR;_K+B@;pDndHMk0a0(8npmn|b1?vTDw^j|}-X#6u>AKg^hR%G5zntu0AfmocGL3-_o<8V;yVn;w_xX!_yvbz)(3PRb8OnXHp^fPMRg zK=J6%t5Fgzx(O ze6jRn+RwCv&~SUorc!_HDJWP;9L#5;fS`1aeD@-L zhigbe*SbEWhRWUQN2t|?F|-DFL)Ow$=PV$(rZohDZ@CdRGd#EDw25xacxH~CkcD?i z?(9iWy!DN`%x&j}cC(6xDPD0X)Z&iU8}B#jd2RC$(@N%JoL0h%gth=zh9>eaum@;A zYr#Vei`|9wI<0eHj4%wRESrWK75(A@L>VNVH<+JJzt<0ZQN-+I8EcFsNmBHL1jrIj z;PmAf@Ykav%9N=80JZ=h7a`6F{ft0!%;{PEa+XX1F(65pfJ$OwaJIqJeY=J6I?Y$& zB*?%}PSA6A>(t>=l&z zZX#l1R^QtTWF4QiO#5YHPNU)_F{MT#ZOVFM=p&d%9RP|QLm9wKnO|h#G{MMmAx6Ml zN0&2+PFui@WYnSM9VkfBS0Pd&IeFXV^2EN8mT4PG94O=vtsqZN@9Ts!3TLybS7{ju z(;8$GwyEkl`NsFeCP&CXN|RXk0su_BE!v)4!yHJ>4P{Td)4H(Q-Tp#UpAi$cTk_|E zy{0{%v#teto~5NKt1ZqO?`WzRB`vs;1;VD{+j-&^=d<=@#Ch7%7ojdpcr?mHLT%4u zi+g}*c+Vm1^Zt>|n|n6M*(o%IY9!Ge?PMGJb)P-ptJ4sA9?WVpcNJ3d%8QUpkRsbjHX_5E;#gyk^T<>U zjnjLHpt_2lx89peXj6USV5GtEe`)9P!5U751*s`inV5mn^9Sqtj6`^Ttkk-YoiiF@ zY)9AA6K0)lG^ugLB|3;C6%wspUMpJj5fRfEZiH18(aTOCgwLB*3S_Kmx`|MOv6$=o zj6^d`^YIg;fHopVsOC?nmL2%Nh#N}^N>-u>PL%=EG-1^2bM`9E>X%;#B1vSlbOkN_3NAIUc4Xq+6CAICqR%eZWD!l_p8}0ULRIr*HRK zn62VY?^2X?B_P2EovjnT_}eApr|5%dO1w!kxsvuxD=TtzA&D+t2q@Z{{Xt$R-@t|>5C4#ZZ`Az!|U^PXh@YQC^j+i z0%zCv<%Dy7B~3%A3v)_TN_-k&Hygxqj7IBop6U5)qzwa3{EwHPp4z(OQaE;vs#9(` zQ*4Jl2UrC>yRt}C_S5O*Z?+~JKg4NhfOP66bU_iz^tU`y{5_m3S!KeaQe=>jB+Tq* z{9;v~YJ+$QoX zoJv-rtKah(zQtS5IE+&Cx#4w5LLET-qyk7^ig(qtTd$rie$H!B>(Smel_Y8sEIk0n z&Fi$T48rCUxm;Nj33i1ol_fHuV62rD4U&9Y*!e-j#XeXWWNP?T;W6Nnc^|FEIrYSQ zA+KsuLz-Zx!y>}KPwDIR#GzS}RE!ns($4%vDNrziB!zVK{qKl&Yg{ST zvNV)}K|Ifq^TXoOzEP2CcgWDDxnF3CXpZr4n1ir@1Oq=bpIl0~U$jO-l91w5mjECF zL76rN<719~ui{l2&`N+RI)dh40t`rj_T(`m;m#*mC~i~YI-(!~IdALxjClV5NaT>b z6Al0iq3QVPx0&#j0;K9nLSyOA?Z{zNagbU8)R>5pj(EWhq1aMG zgvh_fnY?r!y)j01k(`}rDN?lD6fDT{xq^K0DdV0j4N|;TkOEY9ROn2{%o1mnyzPpQ zH_hJSD$OcB86g31NJ->8{PC^m{*Lz$UBdExK!{jSJ~F6#Fs*S3E7ETum0W?n`u_k< zxQ(x~xAQ`fwj3&OSQK410zG5(#nqAac#6Q60F)>KOr#{I>*YS97Dos6SxZ*pT0&E% z6ALJkl1cG$<<>UG-+m}*A`NF{itR~~O5@^}Gw{b?`Hf@kA9Y@(Y_Ncon2VjjzMcAd z;(0;X4O>m9hEksjeg#|<*m>V`<&L=FF2-41I(x=a@*7ML1QhIiBn3H}mNR_QWrX zYHBzw3vEvoEkZz_vA^jU>@GFnZ{aLB8e}QNgXi;@+n1&}x3zB1vkdN`#`~oxJbo~f z&tL&FGs-6$9+&E*o3y8CI((@ZR5h;=JOVw!0_yhTB7lTPu(v zO1#r=O9|W8A7KW$vJlmqtn>(^%YS9uIUltx6;qwtwR+V$lmf`S^OJ6S#w<=4?UI8x z?!w$eI3xfWOdc93NsBQ@a%2bd^JDZ;}Nt{_+3GE}8<%&vNTbh9i zDA3DU3*roDgsYg0^H)m%cj`3cw4u2vx-!tR5GL#feR$) z*l#@KedaNfs?j`(3U>7(Hb)7cw2sSBSQQMQICPL;CIKHwla6)b&dVw(YTfSAtxC8g z>aa1_%co7RJ%Lliw3+j80(~`&u757y;}N{~gJ^T4DMhg2q9okG8;JSe7=1THY^_Z< zs8{D)o0U@3P^uKxm>O0j9&kqc{jmAN+(HFvQl}P_tbm^%K77w#*XL+)r)5p0P5_5i zVj@YIzT}&I{IOTna4WfGX$xsVMP#lmsFewyE%u9GcQCtm3qU$K03hR)X{ z@+knSbn5tpjn&AQwwq1jRmOQURP>sIdR9aP0|dfF{2+6jRz06)^%+~*!jx2`+?ep2 zc!tq34_W1N6D-GwT&iWjqLN?&u!Gmvp~7_%8m6rNnGPx^p4O(7_X>z@TN7lBCNImT z-e(Yu+4QEdNE*B*A}j>{{O1y$DR)8@r^Jwj0xi#x7d8fQ0k3r`u7FjgB1oAgVE+Jn z?~cEtpC8w1Byh>lU=f&~-R`DSIypT7D+M1jz6t0zdq3m(v6GX3(x} zwn0*y@RGGC#@2}<#>Z{Q^EjJlJU$ZFg(FHq0N84fKes-(8Jbw@2wLX5+H#?Jw;Vr9 zL>)m;aVS)e%%yK8B0s>yYLAH>&a0HQ9}|`$6F*Dh9oq(MjL~XZ zN?}F>ozegV^4r7q>SNj3+){@|_w`6TDyxYqbt6QpyjG=>0kIKdeZ3=dh#r5G1=jce z5TSjArZ$7O(-N*EtO}@D3r3+NK@v}fZ8(NkX1ZPO)vZcMf&@UYDg7~jr?)s;eKH$r zOTp_D3u#)?bb;Y99+Nn+@+|pu1q#*>spk?>OphzT{ecyC2rcJOmjacgFjeE<)a@4K z{SGW#uOoZh(mA9+7wJ1sBZq4nM${aWxLUaQ2ewyo$GfK=(_nQ2r%I&s{qOVW4g>8$ zIlVGaLh=Ie8uaxVf?pCKGIa1p z6%ogZCe=5Q*C|dYD1anLm?>05M&kWO4b3=l6}0-$v#1M+Cz$?&>xY`|2wqn5NM*$M z@8E#0pa`^joE4SQcW4M$lBF1uFN$Pi54ou_M)rGwP*iY|sVem(r7BDUQEr>b-)s3| zQN#6#%aYq`Qj`)SeLD#=edCrTRM|RK+KIYMZe$&!pE$!05oB&MnG4b-OCXgVe-ZN| z>~SHt;ICTX@HeL>vjjQt>M}?@XPo(9imbW1%0)zYm2Y1!^N58FOSI1T(4(hPcAqHR zVpWt^_k|+*jr88#dH(*mTcIsCX-{=>q8v$+JcTHvgpY_B*hseixMOcTsGzD`I3XL! zzAZ|+bXFiBn74}OulW1oEuHYAPd-a%Plib)Kd($^Y3Cyac-JtmG7RigwvbiI4Z%`O z*xzqM{V^iQ${fkWgo#pAcbWQr`r^Xi zSB|iKsT{+F+N@=X^sWo;XC=oG?m*rkPoAQ(-sQM<}?q3#Q^FFi;dt#QH~>#Dg@+L+K<0^ysB^ zAHBZ#j#Oo9Xut+Ru`_tS1-po~>-HR#Dam-1r7f^Y@e)brQqLb%9!2~y|BRl02Db2IDhLmzldY*szW(4g%Uy2L?l@CY*}ruN)^?TvFjAT{o##}1{4i-R2F={T#X zGi9`t!RLF6+BEuM-HhnyfKxC>i23b>xr7^BAuTvKQfBi6s-;A!I&4Rm*VpffW=oj1 ziZp_~Do_IbBjWl008CbNHA+|uCh`OxTUs$98OL=;q>~e9jqG{({{T~l$lcAP#~=Ry zAid*WAR%QZP}Bey-rH~g062#^nx?DaAy?e`?ed?V72UlCL< z+#Dc}4=5tgFik#ghI~4_Hns@HNlfP|TGtXTood#tQY@1uKGy#DDvyktWnn5%>%Zj( z_J47RHe;HSg#@bUJ50^@`(cW=i`7c2FQ?36s9;3s%lKFK4{_2`Qk_FmhUfD6d16&T z#OQU9onAuQ+xqp#E#;l4sfEa1tB^=Neps7iJ*RiS67@yycEcou0hKS|-*&HObHqLp zN|mN#eTUHDzN0%$GvI{{FgH7TPWxiJZ?qqHMch!+V?6DFYdGsbB(F@Jhz2eD-=;F( zrzEPQYlaosk#Q?-1f4-#&G!3!u^@9dY|^1cV^;D_kI&Z}?~!(tDO{3LyUgw3pCRdq zDtk*%W=n^eAebIs+xBrI;WtU!T+Fpfc-pevXTpz`Kri#b4B-v3hE#dy%swmXj zOX_VZ7Emxp_UD0h6H6X%N|W<3cIx=Hk;Z&aCr^m&5||V7{fsi_l~i>vD1H{8dEQT7 zJadjq?F#F($w5-Io5|nzVYVb$PizUP2_63c!~#e#qDbGb>|mRx?i6m0Sn%MiOy-iF zv*Jr>)I<>mI{NL;rXzK{5l*FQN_QskAP5_MMh9n&Q&*)*I*d%2(!RI9_xfE=n?hBc+UE@a0jiaruc4@0!+_2kdJ`fNZ3CwN09+H?YSW^a-xRAJFW~0s6sHo_pNP(pH~yB} z&lP_ZrF08YP?2MBBKW`fxr0<4(p00$Hy^m)m8Nfsdye>Nz+KkSC^sZWguwpi7_&GN zm9?j*jHq5u#cF1!Mx){|Hn^C?sf^7v%%p`)jiC5XGI3qzR0fshDYTJ!1|vCb#)g^Yxhi)vXDCX#KJhTKWa=vEJ#gEa zv|CDwJ|c9k`+WB4`vM=cN+nPWr&44QVyNeR}k9({X z{uqJ==g;@&g*FhL=$LXsv!2cdWQ|&s1QTOmXRq&lt>7(!!JBAS% ze-W;gZ)(4UrZ}9%A0Oht;yGCvV`nh}|dFZ_ggkR~D3? z611qLBYRud8M8y&FI@<`MCNs_)rlr1EDRa_kG>mJfk<8_L?HneW47a|7>eQue5Dxsj@h;(h5>l#A zpx&0!Dvn@M)M)MrW>*b3(DB+Y-G}3_Xj_{6ZiJKGY&i?>hHQJ$A zN}E(0f~&gD2`Va5z)0LDQLsDn_4;9hI;S~89758dl%E6`18s-*#o3+Y>DH2zrL?5M z8m$+L&zIj72Wt#DMMkAIls>KqV$>n0DD-Zv`Exd5z2SA z*pOwEZszQ1PNkHHAQ`p1{{VOLnx87-7g)>`l&x_o3ldYPbT^PsKk_E%;To3eSW41U zrDO5{omc15Km1;pPOcq?a8(${_>X2u|klqz*?GzY)-X5v9_jsV2n9w215T`3zO{+&%vQ+dV`SS`3ho2Kb{!@ynH( zR`12BM*?Lk&Yeou+lp;PHaAZrAW!OXXyx27-8bJjrJMNlt`wqrkv6v=aTn~KqMn+C zLBfQokeERr^5xfb;%k`kLrl^r1*o`?B-nNOVaFtr5o)2V0HOR&8=zZ(2TqWo%|07j z=pt{34riRc-9w29Qc|7m`GK(m7Di^mbBCd{rNpQx&XQ!zbB{l!A-qk%uQ=i`nwk|Y`AZ#WM& z;lBW;v<_E83h1{K~iA4C<}-Rt?js8xd$t_rza_c(H9Q#(_QN+M>r0{v5pF8yHBm zUlH*#i$O7|Ev%7vGidbNo+A|*qMj;MzcfjmDgOW)PfQD#=PRlpld1_&BbTT7oC0c= zJW2}EZybc3v14J_DI9UqdC6*KuTq^)DLd%%#k<*Ct>yevN{~WZsFJa?O`$PAl$=r7 zbA>gY0uoca#l3NEa8-KHsu$0BsUa!}5#Tzu`ri|4BevQ(Xa#W8XKLZh>6a1SCAZ3n z*u=>Z^#iN}fq1hz4`vQ6V(3|$8_Gn;o5XcE4~YTIsM+p>I2Up^gB>Q~H=HzabF0hg zz2QnyP@ocLP1FSG0xc)yz9#hOaw%pxpt{0}ah^cii&N=XO20OOM49U+owmab6?!RE z5ekchf;97wTp643s#b>?Sx&76ZUG;?{c!`Y;*R0vB$VipCJEZoajhgKsWi3E6sB3d za}|`@7o^$(Od0AXeCN_}7ez^;sc@shnFpGGU5}mvXFPS~0*>%%5LK-Bd_>Os^7O{a zXw)`tkmrWy>w$@tg-)It_PHa)Tui4LQkJDD#DykF)CiJ!&s;$n&dp7FN=~It=1kvg zO8AQ-Tg<3mPe?FEA@sRBl-0^gg3^?)!meB27evuTYV_l1R@Y_8HA|;;vXy98{mm01 z*F6sR$5eJ{oTDnD4Z^%vAglo=t^F8^03 zrN=d>746}WCO`I>#mmIpPUEUjBnC$fGsWA4;VYc`QQOXEyM#mk58ZJj?Co@Rtz1ky9mYD7L=tK(W>a$9>M{oXxL|Pf`W( z>|Lmht{b>3s_QH1^EROOYEtJ>2V)U7Bb-1H&k_2r52vq3hIF3@C_1Eh*z`E1S?%fS ze8sdE)SV>Qn*`WNI=36n{zn!DLE0PHl_QGOl`NZpcHS&Wzm`5{{{R&yDNUTTZ8`fW zpBv?k(AGGRQV>>1=uC@Wmix!)h|NA>OG*`?Y^z8zBv|~;JngGJd8)4Sz3_z+xFJC# zk-3;Vb?1sxGULjYGj8aw!jmCLQ3YK3nFGrjQ2J}!+9h8UWz4ci=&!0g-Gl{_rq-1r z02a5`*A6*P5U|ROs2hZopaZw3pPo7ThmGs2S=55&r5K)X|18Riv@rAt!O zug*7>Ugkl)@S?bqvAR^LNhxhBGD-MV`;VuY#nHgPIYj6s7%Qi^L$or*BVwIIsUu0z zu}p6R&-ZLdGhWy$e}pLOd1FGLlW}1j_s2f=HO9_X=7~zxsV;&@{{ZibQHdKw4qbk@ zy9W-X>K7XdO4G_ny{ur7Z|{m&;?Cl8d6JRTmx`K?kDGaMgXG7%XzBM;sW#)Y6JPTZEl3$7MBkyl;o_Jf=X0{B+O|N zO}7ziKqF(1Wp$$JF`x#jUYjR$R`^Dn*mFF({cUgL#eajgph6YztY^W z)0=T6S{Nzs4uy+JCIIGSn`~@(`oqOjS{jWdS`(*Pn2(>|=kjW<;i|mtE_W;?M@_^` z50_nEyTop3-IOt~IORj@bAsa1R9w_|l4c@0?}xmxma3@P>@soKw&*(mPj!z8$VO(Kg9I6M8yFjW_ z%59RQsl{nF*na+&>4?r>PnhS*E(JPKJHfTT;}*_!**dFpQlfwcuU>aQDa4n9`#Pth z2~wNxl#&RvZOq0SW~e4c_?R*kY1!{&^;w-mYkgW%uUr&#^9T0_%6dPu{sBb=J8hP= z9XyA_ZK4Igt~KGl3vIVk-36yk`;`SATm1b8oMOx2`bM(GTQD^zazK-B^ZNBTjz*Gl zqn};=kZBXc{1+O34s`${dxJZ2v`^2jCpjixN0lKdA-3EHsM00}_WuCoh<0Vi4CM^~ zd$fRvCUk>tcek!9t}gbAZiG0H^4nI&Pzqd=F&u&G*V7e89u`!RJ?Gk0Zy#(>U9$T^zf(%-Y4PHOD2*lwHYfMKD(*e@l5(}D8*SmLK{9nt z*8qKi=ZZIvyK7Zj?zGE=YSclKsOcv0ZK6FV$j3HG0j8tU`dglNy%E|kZM9X|lcCr3 zB~S`B@oM$!`r6#iW)ui~-;xTvx^yiAdgLq=IHDg^tET-`(y1#$FC)~R(ex9Sd4lPi5 z6V%@lZ6K<&@OIsl{^treL_)&GnKM3-L^&rRm|@zH_!w=l8>fM`w(^_J7Ibu(pXY};6i3u7!H=D_g{`jppDurllKBBcp>C>Of&kotv zWu-7mwMR40{(jh7zcnF|w&9fJPnkVim<2YaD5#JxAanAMmM@ONxOT3Bl`p&q)MRTi z7dss@wf_LNDNf57MRsi6lBCLHfo<#{PUqIxzt0}Cl4Kg1QgpW2LnIlPK1MBmcC=#$ z)m-O}lLsj}-NG=~#!A<>4$$ZmNaZ+RiLeUPvn47!?YP_tiI0{!zdp{9QBb0leqwHB ze|>QA#+ij@6z2WX7Nt2*>9ISNbKjrpaWu$1oSS1LO-^A}5L5$%5iln6=k&$ipP^(C zwU^2mn%Ec&hm}X>oKWQg3PI9U>9y=I+RkrPUt;2dVr|pwiLYrLmxl8NIZltjL4=ZS ztNC;O@yLusKk4UboCyil0t6oq-y59((5#L?@oieanGrojOk`_4QW!ZlRz9O#9%|K9 z!Zh{Sk%Y9VauNUYYaxu-DN`z0LP<5_~(tnO5Z$qPo&D< zR-~uOPbdO8VV5)QR)V=DAfOrPx23zjuDxZl1 zO({$8%<|sbUkRg#C~Dl)bP*OaKe@ufs*bU!3U7I|eLsD1Q(6yYd2t-5-xP5QRM+zx zov-x622q)^y2O<#(Im-{Y)H8BfdY-r?4;=u1oOQ9`Qo-|OHO2v3iTy>`TqcHRnr@2 zFLwjNwCHLQq>pCP^tF(q9QQWW`PEjU~jDO3l&b>tX$` zfK`*bui!l(0dpRF`g!7gLz5}m7So~=Xt42L_B}AOyfn~{3Sn2jDBRoo<1}hAllXwb zptKx6-zi(_(f}a-vxm&Lv-4c)7E{d0jlaeA-u&Yd48DSznCMt0{eCX7=V8}jv{>e| zYFaa8Hr}BGN$~#ww{P!`bdM+6qn}!D*b{9ZW%Pl$S`u`T1dm^)=LS{qoizi9B1pgA4LR==3dS_H0#uSj=?3QZ>HV=ObfnQx_2-b* zR9}cv)dPxAK425fn-hjgejsj=r9h~Qk_4GNfgF!NwiV(AovK+VO0<(FZAY(^%;Amf zk<>XmC;)Vu&NX!HZF`E;iYsL}sl^u?wzO#?Zy?6~c}^d)o-=KylBrLG{YO|Q6+4P{ zg#d&rPl^av#U4lcbB>q=-aT@JkgX{xi$=%m^2IFDwf_K>O*f?nk7Dai595?msVfUh ziO~Q|$ex1#09;I*;yP^Zk3)sEYDY1qc8L9P#hDLm&r(&SxaPFXl1VasIa)rLvN$WZ z0G2{mrAZ{FBob8-1ITm48m~on=3hUk^tqySwODWL!$D|Cx;$2W1` zXYO!~Qk_b4Q>2)HWgdHTHpfKeU8J*`CtFV=`9as>8$q|8lRSt{Bm8f}?C11rTgXHx zB*?sV++XMNwms0zBo5gA7O$u4WM}r|7*)Sx-Kf;$wT-36EzJr#r=S)Zae8GuWksCR zg5#<0U;_m^#=;DJdE=e40N6K7DPN^yu9uj%&*QOgXt|MMkQh=qUI!(p&q@N@6 z{mj<1y{S1?(os6KLO>*|QQvRthiVM{+{;Mr(yQ!eO!5{x;vu6f6y%m@o*S}7ckt$Q zOPru3M5s=IF@LSCZl?HV;@-}X>eTaSjYZuoR|lDZTs`YGD7H`xr!c}^v*7AkgKyqrj@1CB}h$*c9irVKh|-o zcwwsbBxnj!%pECGpn8LDShg#BI8Jd*t(2uMY1Ik29$RgvpIk$8tby(vLe{j|HzpO% zB5iGtEIK)Zv3XZPsxS96(u?N(nNnBLs00M4Z6GQKTM^I8pOz?|*ZVqVlC4FN;f-X7 zzeByT(GGE2VXo;)N=&3dJ{aGhnLo3L{{Rti(m0g~L#-uOiyxWWl;7uuN7P};-O_7b zJ+C&ok0uZ0$XAQPs}VaN(_#0+9~b3IuB_C8l`C>>Ykz!n4t>~y%3SVJor;0dN#4L( z+_2k2*x6|i>s};~6DMQoHpN@PHdceAX!ioD&d*I&TI+hlntl@_dt3GSeZ__wO+zY6 zf?Qfe!R2Y^GHtg^O!#}U7GW#y(v+*17XX|U#9f!X!jxG~ppXu+`9z5IJN-Q|6w!j~ zO5Vqs3Y6l$3PoKLfv|;@Ty4<$h_^p1S3mUQ**<7W5aW%coj;hs=3v|UMQOaaE zhZ|B-p#%~LDU)xo#8W=tc9&5)1&X{NdRP!di5udrJd`M>Mp~fS*k;XYD$QSFb~dgd~hCa(;PabAzF1H z4n{~D{{Z#ara5V6>Q8D_*KTS&m9GxP**2cI7l_j0yOMP21kBvq)2YMuXPEbCu~&4?rw z?y#LwblluX7<|i}TQxyI6?$SEw9*+Gt!@^gZT6A~PQvkTNyLfFnw^wuN(QI~Bp=ws zFM{(o652wKipSUMzsnLV$2(G(f^LupGah)6_6nEZdqR+8S(9|@N=Wea#Qy+?DVeTq zD%2Is#FDFHo*Lq6ifZx#z7y#fvwJ$@7s{Ip8hLoEPt@UVU?R$!RM`evto+Bbv}P2F zN>OvMBwKs+7>rbKo18OP7LN!?kV)Eq;}$0fXCD68BgLvMxd)ye>o{?|;h64{qdSS| z7R27>6qx4r)53~yZfq2ghY*yiK?Z&l^!1Dal-Odr7j&nc)8B=ZkTq^@s3g{%y!^YFCTVCK~+rZv?of02m)2T zrhLBMcjb=K`!jbd&D6HUYf%=6(1m%_M{=x&u7@!1TME;yQ4np< z{xQ~^SM1>8DpKNGL|sG#>5JHt^EVh*D)xP+l%Uh6Qldoa8n+wIOj5}O6zA$1JK<7% zHJH5JA9Cm_(myvOz_;&X@+W-dnrzCQBl7JegCEPoqm{K0sMzx5Jp9bc8aM6;StMujmCs$K@PbxU>tn=`0D=Hg zpmQ;6ndLaEYWwW6sYzN&Z)KZIbTiBEj-%pE&)$BUORTFuJ`ziT4ZAG&a(A?((R{M)Ry$cu52v>7QSE^l`f!L>xD&jk(`R0 z*-1{s!01fa`C)#~sr&lQ@VBW+7a~H1qDhE8L~npN>mqbkxLhGhQLu;rN&1{iyD`X? z%MGn*QgwKQk|soL%+EY_jxhB^f}^#+7F4R9g+Lo9r~pl-@^Mwr@oA;2k*H{2JB1%z zqZii}@Pp3KEnzD72?!!*_Za7XAmPVy+{u3ykfH>CEdH~(-vs!>Tte+IYuQArgNJy5 z8Kzp3saHIX!^;TOlvcQ;8CAL7e%8cafGS+4rU)m*p9mHozwzgXYK+A+^-2(w_@v1a zJpDg@kjVy3CG@HIO?*khP1n;vN_EGGo7>28Kfbt*)9^#BzN-LrLQhfi#fz8Mw^r7h zc)6G$;PxmJx)bql9L@>}i#??m;tMdDxMP7sNC}k>G6k)I>!}7**8Ulb0c(ExVd9*- zN^E>7M!?R({;+zSN4UNBs+3@JlC7rOkT$>WcCp^r+tHj0k8~*=XZN54yglMw*-V+pcI#u9Sk_dn`SX*!-*9p_M zF{o(l3O7s!n2z+h--$R%nx$%5URR1#GyH`%#F01Y`@~#Hmj@rxKeg3a3rH=bgS=V$JN|DQC27!8GJ4TF@p4=sYSH zCT+`XetqgbwIPy$A)z`w8JKLlK36e&KznIZWECrRCn)@*EW=z`ZlEclV zli&p;YXbbS_kNG+5J{(LzI>_U^hzY&ephpLSM6lhShm@!tx0E6Qj!YvgbmNA>5hQm zjNc>e4V5XE8g<13qe;7fPr@xb9-eWJkD{B3@^=y+Zn+vvf@DdVo#2_YgT6W|+1Ix` z{{V$cZ9a$lgQSuzsKA?(GHp9ew!CT08*o@qztdjPX3Fgz)4Ktp;)Y9zM{lz^E9 z&Z^jm8V4YJJ7R+4e_~p!>Z#7+sYO!=BF zl$jnWCu{oLdBvUBpB-l%pRFurD0K{^f}-LTDM_?RRm8+cUQ>%kv$T3*zU|~T+EgY8 zi%(b`cEFW&SyvFWriy9XQd0ngfv1<0T2CvV_KbA8Svfp;RXbWHj)?yN3VBIEmiCpy za|u?oB`#}8P}E0Bzdhsob8l_EhUQ(GX3DIg1yqVX=7eg149riL=zepWK00%=eDTih zOI<&BqJmDX0%QoC$LWh7D&xGrv>d4kaY=nC1bD(!tw!V<@AVho3Eb%J)_bMtQ5jsP zl<}YOR3@IY#+Xu8voMK^?|8S<%;6lQk%lA=(JQlMc#fC!(E#Z|+cYV8eYa`J&?wG^x@$OEj;_vh5%X3xEc?1_@K*=Q*) zDXC3o3N5EkcI_e30Vh(DOxV}}1QT<<*seP=;>R*>ELA&h=~_;t1Wk%y-+NCX8+qfP zs`w_8v<#HgwDMbepa1|T#Rkfmi*0dn8)KI{OUY_`JmaLPWU}HM@xj~0&rOVlPtyZ5 zEtWC|Df(G~e$o%!cCTk0p)tkTduVyYw)0>GYM&YF>HUwMB#-CEBV|h?{lsn(dclo{ zN%`ZIcsGs88Dg%5(iG3eL77b4@8#vW>xQ7g|tHc##VR6QGN8g9mN4#9p5_ zN&85oI=D?IWO357eAOr=DpH9ANFg%-3m-q62%Hbvj}oUW;q?bfP*R;smj=5F+x%lr z2gt<|9;tJ@R+JYIQoSK$gC23#+=NCdzSwy6%<{Fw5>3wJf^V=BAo=6z`rSqs1AwNF zPaA1~SvgFcA5QLX#_TxwQAc`}6103kt71%mX5S-;N3@S+Y2fU_lZZ0JB{X?}Lyn;q z?jE)Lfg*N`k2qV|--J&SxZ+$Y)Snw`S(O!7K_|pui5|GKxcZHGhX+<=HAhon0e3)9 zNld}G5fgNi%--0@Z@xlEu(TwQM9|Qn{et$An!0sRSC-0@Ww7UoI!HQ`1~w*Q*qTyy zA4iq(0&A$&lrpDMu-jxMDFpa}Vjy`5+~b|S{mux_P~#4^QpuIU37dIE%!xi@9S6f* zuY2DOGU`;Tq}YOdKkmN%m_$-^q$~!3N|HnQ+0W5iTr-(BO!`7o3ra%2@%{4O?qX4# z@gr5Px81Mt05_0L$TL679I;05-)P?KTyzwvEsaD>k|SdWXg{x9PAipFpK!xjzF7K{ zmi$Gqp(ew^MXwWW@q9Xf$pgD1Y%hEy1AWwoHRCFTu&pIQD)5-R$^QTY>x$orJ>||T zr>k1Z(zg<|!qsc~#Ox+^`eCZSwl}iWt+x=8xPVn{J|H=K{(}uUHy=HlXEf;6q8u<( zQwjLDkME6rMygJc#RK7IY2h7E>bml}6D3kpma+*_l-z?bQy!6tHeFDfdPIOf5lPdm z+gTg=Uf71@xyl=+Z&6Bbq{8>`rvCs@_C8XMZQ2VgIF?lAok~at`N^2L^t^N!4@}4e zuYFAIbrPC;ZS7O|O*)%G?u02Q(7zScXdOpWhI&lX_@4>X2URL{y(&VS0ZNp`_d29R z53bPmV80 zdg6)8vatUE5~;)DakoSrHwp?Od{bi|af_oZt!k4mrAi$~fW!j@JN4V=&+Ctu*F#g1 zz_l7jKzS-9+gknWglQj2ic?QesR&UTlCS_w&hvZWm$5D)?wfI$gtVe`B>XpnH|T!b z?J}Oxa_FT=8;zz})=08dOUoab(`mfC$h>c z_e16xQ~YVeZ5Gg_Rb=m}&{8}}LdXRk8MIynrxqsy_FywU1*%m+DP1zk+AChTgq1;( zN`~U<7t_!a8|&`}!X^|qkse)R zmrPTqcKHK4DkPBf3tWDmRn6(*rDd#FWYw#4yGYQ2wGyP;Nce~IUsO%@#W%*f*1r2o zWyVa|1WKnDC$xVEyGAMVYE3QZUWYUdCs91-Xo2_WaYW|%!-~$8-j3{4D5*jWrXUam z@+TDQnX#mSg$9|eXcN_3E0`veD`YJ42}F%bK7N96 z^RU~WYwBZ=Ixd^Msvp|Jh3fJQ)j69fbGu569};w^6C{b~e%!B$$AY_NbBFV4I@Vv) zr1*fDQbF+#DIZA3R`#jD-}T=I)>1FKR+)uqkW;wW&*hGm^o|Pc7b&Rh*NNPxbUNKT zj?KhHyyKTFYenv9Y08YoBa>@QU&^>Wp*wc}0I2v!-J43=4kS22;!3#$$hG$dK6vIj z&I>v9Lyi?GTBTrX`bGZ$U+agg(}+f42=5!!ViZ+icI$uB622XvMLtTJgxI(Nf@ean zJnlaD&ecd+Q8j(X^!|(snf$7ud?3{`1xinkK-4{V2mD6ZZ8=>wTH9qwNa+!A9=}cb z^|XtQs+4m8ig$FjfK7l2K4D68)KfSD zzeLZ+oKC#Txj}%Q?I6hsB2+$mZ}h}|iRWpm5`v(uGH!!$*LaH`JQb9(s;6(_ol1g1 zo}a#_4jHyesuZbY7&1VQwa;0Pr_4V=}xVreEDH~ z>o^ptQER;T!IEdD^XZD~G0mzNs?v2R>^rb;aDKOpN_bN%tgp*Zv7y#nRESWNDt5X4 zpQyvOhM#gM^o8E;$>XK-3Yfoo+p{iZwO?D zn}um`W?J1xcC|L24+mYxoJf}@NaH7&ws2Zkpt6|s9FNlW*<-(1&!j&Eb ziGnpxKVAME z1_q_r$phz#!mhTpZl%?@x1^F}&HTP&8&h$`O$rjy8`Q0@$PcCo+7dFZY;R~+j!#g! zVx%mp>jWglfWwo#R^eo%9V+om^E|#@Q@7Iy(d7kNm21VxpO>x#%yN~}t4fNzMIa5} z%txL+e7F-yg`jYntMe7Ol_e`ql@SU63(W2N`y4UXWsX!XN)fAEr=LI9d*Rlu8+}u# z8PrS&Pw)HnwmMLywo11%3AN|`2dMKnp}b)>Hy#3sJCT})6$QYS(o#s7pXN8f>EO2z zG^ImINQpD2?TNNsl(y@>5T6h-V#>6^zW)GhIWHwkO+$f5u;24XGt_>C~71U3O;`< zR(aNLx|*-UU&56t_e_I7zf3u-1$+6$l>MLa54=8997@u%NGj89xm%_i-py8|rNpgD z({kA#4atf5;jt?#LL6CfD$_8MRWo~E3el+*O>R=6LGc-!Gp0CP909c;$}=Yyq=o5H z>`ycwPnr6TqYv3tcAAgOw7`X5;gwHGGCusGF&E1aJ=sVhUKCza5|hh$=6UtBTCvHGWD&(Ml=V=TJH>2;3C|H~5U+aTUzC zi4GK?D5~?QbN>Kwzf45y_|a7j#=S~Uh9hC7Ic>`gXNWucy;|W(k-QK5t<%dInq4-= zQ-X}R-IYA0q()?g4QWbA_<)}5a=-RCd&+VjcQ++LAyOoH>_;o@>C*8o9^w>H4Pjr2 z0XF5=%k7C~OT_H=scb1tsuBkNFNe(IwGm>Q!XB%^;ZHbKhhA-@CCx4*CIp)vhWF*p zE$4^ojJ<9)w2%~)j{wqB2{9*lKQM69z|{$Bw(p%-O2zM-=ODp!rT724`@?};f$ke%bmlXK47-)mwMPr&QT>Ri;?bfZ-2 zNhC~1As;_Hbf$NZwOZOrLUkzLl&Es)K6r`d94y7v-36&Sln{BuK$3bAdF_g!kVMQQ z{BvYJ;H#b^a~NREdmE(9T2dURQi;+) z?)m*WZU)hKj5#BY(J5_Cp-w19qDp~}Qg{8$;l_hMWTho~5jQa6Y=4?}{{TK#$I)qy z0BKOoB&^8D`BfJYdp0wetwk*9M@?qH!JGbRHb3q?1}T2l{gvBw4;C41I(#GmpyEZg zBzSim`TFCuRb0Z*m3OR}7nO+E{+~QBXL(INcDE3=(&}b*o}WqQGx2$2>b*ax(jCf; z-k~60H2AmKdDK6xw$$R=B_hUDH@dC4)ywt7Ro=qaK)pS}l9Z7pBE;{vNb|?j4AZej zvp`lUQ{pF705!~ikEgC8_1?@)R#g`jO08zZAP6?-K7U+&G+v{y)5`C~Zq4Vy;2f*6 z+V-E;lC3ByAReN5h&H(Nj7##&vohheq=2T}Zc=0@gh>~=x!cnHao2VJ&y<;1DeltR z+ZtB@9_(!de2(~m@#kk$xigOxl&e8H%0-AV`e3B>Ay_FrNZv>zKV?f&cF6w#4uvJ< zI1-ViKoDn@{=DN8J__yXpEM-CQ{p4UNz|C%d9msGVz2ENgqKrZpcDy6Bprf|qp%*F z@ZG}v7f{psli_kCYMn=NInMYdwmDgqEZP|Ba}5>I>f&l_&7Z?_SP8h@Lco6F*lnoE zscYR=;VDa1k_ZD=oSvh9JXiT9OPSFrB_&FbNj69jV9Xt-mL+*UX6-hltOIxx9uWte zo_evDsPy_i!lfb1z$!JjDhc?4VPo?F8+q8@%WjHh95Pu#Ksr*Al2c^b-gg$| zKc)!Evyh}EMMp|u!ayJs($f=ft`Drt(^9P{QWUe|CP{?a&`3Qw4qY#r=pGJL44L>8 zs_rk#O*)(|PL%}{1aG*u`@!FPZHlLevvf0YCtzpaOp|TR#r&{asO4yBeGTvTQm6QawA1Px=?$u@z;2{X(5m zlB9zXwxol~Hnt^PM@Us%wRcKN6l5R|hDXCYf9~51*?v$|>x)>2JVpr~AHM!ueGWFX zE@~ZioWwS%muB>7H7)*Sfih#^l4ROG+|OKI95KVK)l)a&Pl!N*ZEd#PW1qNowxcU~ zlI6y*NH7RKeFyK5#nHf=d>Ei?zpY$>1SdjbH2R)?qt6yU?kdoZ8rY^7;)jg8d6egp?D!#Fa(n z!sn-+EIK+xRWJbxRG~gHkP4@rx!@iV%9?+>I;TlWd$}<^H<9%?o>F8jrky0AN(vD$ zQxVS@Geqdg1rJygcB}mBAa12=DpFFVT*%c2$WNG``NT&t%9Bi`LUe?lcZrXow>ZU_ z#hFql-&U0sq{>GkdGFF@{(e}5W{5+9K$EIe4~Jz;2>qNbvN-UHQfoca3we;IR+YG> z;Axo=L_hW)Z`n5Sx0}TEHR~;sv3n9gRw9P z1QWM77X43I2Na{aS4PGZiJlm0qd^I8QjXxjH$HZbzpfRl;bl@FDG1V-@Q@An`hU+` zH)Q;Lgg6kgQmE3nJ`rw{vFV9sN0~RBu?rzV!X&KhIdj9@()@(7;NNS)jjoWkon=~4 z02={p0`tF!LV*fSp9iL?t3QP%}!x!Y|h60W@VA6|zMUL)gF)2zyqt7~!=use)J zRmWvj2_eOJuesb|C8V1PoiauOxSY(BQv*^|RUngr>S&PaHR92Lx2P4zfa%ny3ujlDoRRL+KNJKE4~hjiAJ0}?GD$ClU!IO4FwY5;i>2IFioBZ$+XB`YdIhTvSx zTkZD4b#`E?$C5!KZ;0FX{qVN7yDn^I(}g}}yvW9-YEgkF^!@U~^%`Xt5vKAv^e3j+ zVc|@rPQH=hya78;t|be~%LBuwOmDQ~-iRd&om_;{^X0dok+|Caxb?@1>C{wbS1!I^ zYz>+)rd}al5}Vu|y+#LrG$EMR8b#-x4bayKdy{Vvkl9kiVej5@YtaxXh#14YCACEB9=@pKB5L9yhFs~CLu~bl5O+- z&Nj_+9_=a~FA$yn-@mpZ8O?HCaX@JhNCs!0+ZvjEDs*xu8crqw`3Az`4)*^5j7+#^ zI&_%|)B%8G?~1Q1r&HA?-b1DFKjEj7ND!qi{{RVkVl3u%cn1%B{@!CPRe9}l}4c(@{B<~x$V5CLroki zw=&>_P_#ipzm!eCURk>!X5a$BlanL1VB zv67x$aqgC4{F_$wH#Vt8T+Us~98w$brXa^(J7CPKjNNT%oqB+oAm8>6o*V}Nin@(x z0Z?SylQdOhpKxh?#V938Pl%|FW^Mg3 zUh!5|ysZiZDOzj~&&+ffyEDw%oHV3`C0a-lE(wV1ipPu)inkon=7gKaU%$%|$20D$ z3u-Ar18`6rqd8SQe1Xm_`JnP6af>U4b8xaG>WCzd*4v-+week}C|fmTBz|B-TX^!s z!-kkqVJVefAWfpyKR?~^qq>{IT#RGzIZ_<@q&~;zbR3* z*3pTTLmnL}PL)N5i=Qvo>4-lWwrLB*>F|rnP5%IYr`I0oX17vHqXUH-t*#2GDkKk4 zz4wpljj2{2K~aTrBupK;{eR~X%-1?CJgr7YBRjyp9Qb=NMM+9$Qc`rs!}YY=8=CsAFBVBwjgUE1T3NnQ96ir%ZUi z=k&)%iVN0+wKZye;!coxncMq+oIho?4R;U+hu8GPANZ?mzadKp`L*mv&jvG}qzKfl zSDWm5$4@P>pxlJFu{&qvY9T)%)c*eft{OYQTrDNU>h=5K48uAO1xnPUtC#FxHgj!D z@RX=4%uIiK920clQcpkAe+bh4!fLtCWV9`bY$SG+lF|OkR>Zh&~$)(FSo8I z*)JC~;#wie)MP*j@R9wmzW)Ftj#J8b&Y=nyQkz$iV zKTp`kbl#S0+HFZTk>p`?26vvMx2=9A;M@_gHZiU zLwT9VYRjOd#Ukc9+xzdnF4Z@CDOTrh6s*ds*4$*NM@$r`&i?=*>uvu4z9MnNgM9u+!j}ushDKezOLo%dNcf--pV0oeq()zt6gqfIu|-HKR;sp?fU5!_0dXh8d5=A@ z72*ybaMY>9B2p3+8+z~i^u?9JxjHM@ZEH@Z)Mrr&A!B~NoTm=?=LXUx%Okv1?k;Ck zZv%Wj5x11*e{9t%Dw860Z0b^A{8u1M^AdKPDOr-Z&`b?M0U)SzRQbj%2l5nBxR3^= z3j!c~P>rKogOrpvD10Qqn2j^fu_op14M#J(xm?YFeKbh-xBH? zYYB5Y#T7DRHWbaNIuj}BYjd$OdEuvz^Tg&EHin9S4JC7|NKhST%>MR{=6q0vmjO^p zVhJ!IGsqGk{PDF;VAALk;a067KL=6cF)iZcrP{?1LRBz9P(3gA`{Fj{QLRcS3M%HJW1puko>;SS zo(+?!M^Oo}By#341^07J<0Eq*&i-I@ z#G8Y2fk9l#{6|kO-s2Q)?hwt~s~)$46I+!ex2Pq-qy=6tAFd$0Rl`Fs&Geq^=~|LN z5f|lq{Nom`RbHCBylE%AY+gtuCOUfG*AUJ+r$d>dfG6I`v*DTh zsH6Kar*kjTr71tnDiE2G6U(36V#>?vQ&mQv5>llNB?=?M)9;GUCw#J&Sp_<$TFOzR z>i%00I`Ze`iMI^rLC5r;%r7Ts5-&S{e0=V@67pPC4tH{nsmUCxQ_J!9ij@EXQnemY z{xMkgg~H0Bb#4$FMCkwsLHE8%w<~J0oe}bgN0M%neuWvzU@I;ZFwFJUZT^>mM3+6s!`Kq$*L`0KVIs?6O|6)w5rv>8+nu0EPLTQCkPro!1W z2~+Inv_!v}sD<}!*aYgBgpPa3jrYZ++4pTNriHdt;qQ{#LbeJJO@W(RqzemUmUBGe zRL&(z_@>hk6F=JoaL;JwmC%s1t4gCtP#@P6yGLxMgvV&X7+p2mHx{#BirBl(R%aHz^> zklqqt$DYFqh8~&9WN_^ElB~`JbuSd8DZMHRGDfXlm`95entGLAQ987!SP{I7b;L`B z_^EWKz;2KLjzHkt^NC!oYgDS~+@s;0lk>ve54zVhI_M{ipQykaN0pD^irR1FTQOw>Uh$xa$7ODrwuvg4DF> zQ6NDlSRy2ujryIf=Zt?*ozS0XOPWrZRTuvNLcZqSoen1IHyfT<8#wI9Q{_r!wp&t) z#_{6kB2BT;mDyD_MS4(;M@_-zsNBavKjQ)C93I=WstFR6NFi4uN5U`nvBLEFw-7BX z>bDKlxtoQ!MzbTY)};7bQb^mb`~C6K93#X`)MQleEnkYt5`s;wU?dPC<_O-~VXC`? zshe|5YSJ|o!lfiC<9m-xC6wjLVbuVzq>v}ZU|8)3esg>MPNXwlT%y&qNHUe;saAHU z=~6>=1giRcQUsfAwA-J{4fWZLPFYCegUTg3R7{wkF)_E7GuIN@YG&PO3v{>maFA^g z`~BQYPaCDDnovR1l?#A*?R)2Xlp)NV%Z%7BP+;9Cn%uMP#TU|p%rc_R;1dAnB+oC(+GQ&yYybid(E|~#DdL)He7rD%foK!(gD3WU&z1voG^)*(q?MAMu{`EC zzxedSE^Czro7APLK_f{3kS01wzxCU$J!a5ouUR9ioKQ5>%FJsCOMYaZ&lcX>#O>3r zBso_MrK&WoZY#y4k+4aR?}*{zN=%u^O7y7)JW5K58bow4Zhc2gH)dU|2a}~Pr{Vaz z4@tuvX90V;?l@M1S=}~N29k|PCrp?-8}*ri=`n_k_q1i9151u22{Motbp0mZImJ${ z&|Imh053{sOs@X`ubDU(KI6vPNbxCZfCL{3q}-kDff3O{=r^BomhmSXJ6h6#e@u%K zZf5bnTv8pV=dbHijy-)tp6b{g$)BDcEBi=83Q<~{mcSAq1j*+SKdC;pc8KraYDwbf{V?N~_N46^VJT4&&yhDV^V;~J#zz5e9W%hd zR*rC^Soe0?^wg1y@vRHY;mq|VC)L+Ac5 zIPGe+MYJ>(CPkHV=k&KLV45B}I<)t4f@0&&1kh>Ew6)#w;<|3R=o_ zyLBX76zy%kFC+HqB|gGeHQgtS{ggNUws{TrXeUf^H}&5N@aAy+RbG&d#DUb?>xSIt zFFZF=rj&_oBqany2snG;%957QP&ys|0DSO?+!)pMx-txV=}CWutYzzc#d4VdLao#5 zzAFAZ(Mzl;z)p>U*!^*2=b7`A*)p2%J{=^0P2&A`1FrFkBeXo-`kLh^yUh4z{O`*X zX>|d`V`?LGvsmnhOF_mJCsK&K#msu!2-9RM&1%TgYm%k@{{UPW!3a%nfmbUbDL#H% z{i67?hYQo>*+Xk>Nm9N!OpagM@9B%3ssq{*=4fD0MKY=yRHPMe26r*H&lyFRe;23{ zrFf#(xarbxzHi=U6@CH#0BoP1p8lUaKX6wIE!SIc{4;pvz2_3mBY-7N+T^KUXM89! z`gYcYr4Anv3gxho={&K&8DLsFCsgy_uP>Gy7Wy)JH7ii>AxQ*84;1r0 zzP}@eT)K^UjdZAL@f9lMPmqp(@wLQyXp5iJa!cF`ud;mXdxAfRXTrXvpTk5!KR*|# z`+UU7yI11@Lrj`FO=yFplx?I~fqtJnYm(rzaORuTsLPp>~*W?R7QrF#3FO4t$x z{XKCcs1%e95aL1-ZwLPX!R9{y0Im~rj;ZOIPkB^*lRA!)zsMTPi}KQcnJR;-9bWRmxJOHd5MR0t6q_lm7r1 zXsqo@uQGE+r4+)ZadWmxJ1Jv*R@hQqF-VC;scZ+pfK)e`?O5kTaCP?)w<%tq(#X#+ZG06!v6sD=1x$a@k&UZy1s;UpPmTHxbA|P zg(iWY!*5c6NfXO*esP9gCGC|IiXG|_ogmomBb11qTjGwpiT1Y$WG|40fj}rn7tz(c z-9n(Yq=^8NVLZIH#1p?13WB{?l>yHZzB}z)aSb` z<8%69*M(@(r&G1akvrqhqGz{~q>NR*^&5rNElJ!GeRsrevYSm_t6gKB-#_0hOsnX$ z(5PwhG0W|UZ9!ADS{M0E#QyqVw%92l!t5y)M?hRUihMKlzQg=syN&6;^(k6n`$TxR zz4`6FB>X>4Q9>R60A!o|Kff#k#MCCUQPO-6YzO$gzWDMZNhQ|etJ-GEPr*JNcje6O zi)({l?y{!PH;YL-VhG<3smk=i4w<|GZ!?Mi01nX_S{(rLiT-a};qu4>a)Mwf6ql5z z)SwjrkJr}+We7=oSqZ&~JgOo1A&4$#&s!D4gN3ji0v(6 zR++N34fo%d(*{$zH7mptRT2Q}=l$`Z*rQ`ORDKT#;^e5)Piu z6v67&TuO-%dkEYKk?DV_!0C0D>U5z)!zmZqE&9*X5L(VGTGW=(Rk(=X%hwVv1WKyk zMztRogaBt&{{ZLdhYc}ncM`pHMU5^cOF!vP;*@7fB`Vznj=S6Y;<@9_&R(GotuqNW z5fgF#PA?p-O;XaODDhi(^Xfe&iMOV1D637~?JR(6S_GcAFcfk+kRm33< zB+L;8-cygDhg8`cmA=-;C8fm{)$9@!Na`(r+~W1@^NrJDhLChr??Myctj$baRVy#y_Y>jnuL|Pe#zf zK+nRpIHQ2r%_#Mw#0)_odYF?t$v@i^zaRE)7`8V4Fuhx?ddy!}*G|pcN@e zFcx4Kx1aB9YoG9~CT~uuPMt&HiSoCmGxUC-=-owP=>0^*LtME|mWA3U!ev&DX5L$3 z)$G$QHBKj1uT_GrK3~4LCqC@mwkq_3gZPpne|-61ju2z`4Q{Pm$!-r^` z2~V5kN(`j;odLe$KK}r$^0jk8pPa6tBV4wwV$*)S{{VA~10v%lvnpVPl&isSAEo^N z0I0%d)4yc&GWL;>*6`k7l0uS!U~VKt6MGwU{`fnyo+?d6V`y-z#7ba| zjC>=fE1X{3alka3O+uoSUrv*8VH0cme#R)yCg4|iMygPB)1^m3$=HE1VDsA=dVN5V zn;pvfMoh`#6@sojr-JG8%)O_O+EgGW2nRv)v`;@gGI5V*ilbx}!AT^mOm3*lI( z0d_yyD(P0sZh%p50)P?HAi?F!7It%6Po2_*0+hJ4+z@6+;74G+B~z>f*ziQlyc1@PzZR`<}j7o@C5X=Tyj2RND1K?;_jVf8RVZ_JzO&#{NCs?~8;(YQcEs|v>?k7F7MgnGej?!Nih6ZAl=!7GWNA^JV+ru55Uz~(MMP@0 zl5PP%ep}w!|qeO=Z#(!d=s#qN6+tnOf&Y6meMgw;zNEVLV*^679Dqvc&+-|Gy-g4 ztvFP^OO*cr>tLDGsJ!0C`~7h)dmt{*slX1H1bum7nTkH+GHwzD=FtbpN9l>qQi-BY zu98Oh2_9;~bNK}`;5nC8UXpbDULs%ue|))h!xnv% z45%q`m8B}&iGvmw=gWA+OR_H4&SOTFULi_Q(pLpXOm0Q~n44#HE#~wp2yrS3yv%@i zx#j7JWQEbWW=8Dolle^9e-TlP_)O3tY4ku{xE%a3DIXQC?yRj%z_E&z42G^ zjU8S|R^!Yqe;SDKY0@_YYCC#h43D;FGRKtDtA!<2nG<;0dH(=UBQK5+@nJRb%F(@? zDK8dwD@|OL0Me19l6C}K-rTo8F^Z#&I~74&nvj`Z@zkB0OAf#hDrFsG!NkU+BH~kEKe9i&PdorJ;*FS^G;tnY6`~I5Ed%~3^GM~%| zPxz0P9rE`@c3<3;&XHpx6+809ncH7y535s%L71^b1dhMHUu;skpU86#=n2wOARUx; zw@KgA4i7JHD`)ez`=EG_gArL%uIX0(5#hJ>!`BG#%Xw2M3GnG89}2Gk$&QdcFO4fW zi7G^u4LV684Ub>nOe>UeGYV3HT0tQ?Pa$po#}?@IJv=X4Ba3#P6q|@?P%=1eI+UbA zzL@kU6i*!GY@)48kP|A{T4!s=A@;@1nCI=(WbPu`w3R}HnUCKrbJuE|OqJ$jHZ-T< zf<=Y)=x%vVEN-KyaGR%K2MOCDs9}^HlLtuNb{k*I4BS(kG|gIJQwfqMYvMnY=g&SA zB>0SOY@gg?T=liQfURCGhn^ZEHmPhUeU$Z<@li{uDLS;SdU@i|;YR-eiYX)&UiKiJ zr+iS2*L%BwlAtW1Kk_kcc1^{w%SbwR0YrhNT(tX3H(K% z5GSYgo$(9fjt){DAqdl|;x;3AK5>cX5Ag!3C;`5m_P?e)%<0<9PPH9CoBGNB0E{L# zXDUeKc%@8b+&XEW3Un)b-|LBXQAb9$Qk8_OnFjEGbB9d-0D}vNTG~wBNE-pu5%gr$ zGz=*IC5OYXRA8ST?1HXtqQaDA;8C`c5vioWu>Jo4#w9#E$8SAi&S)c*efTVTqrAxmXac>+jO9k=rxcAuDZDIz|5j(==) z#|8F`)gDH51%4lZsDe|r`iuz|BhGR2+Ndqw)VX6Js?+THv25`LC@N72w2`Y;_qaFP z&fDH`Zf4v-^&K%oFDWWdiVcEd51qHiKk#1=wV17S4Y=A%E0_d$BJw=B`u%b5Y2CiL z!;PhcsXgL+Qcr~2bAD0x=ZHNz6761lDfP|%$Q5V)@T^WI?Lwz4dMY(|LWe$LNit$j z%nnn5vJT!Dqj@T*Yq?U4c(kaFT;yqzIdkbJ9IeKl)2e;-AxhPI0X`s3_d8z>9hCN< z?`XN2XxVj5xaEKV4Ti~$#o|3q;A8G))kCL?sVNjWS+VISC)f!3uF>J%(`oa%Js~Jf zwV((DUT3U-d^Pb_WZSMK}sPOsOX)IVfA9_p8AoWKD#M=HnRE*x)-R;X|d zAw*0NrAfY<8$!Q!#o5?zX0*I7P@04+DN0tIH@_&c*Z_IXIm56%GE=p!(;o3URiLDh zp|}7Ez3&@_gf~G?sale;sH#&5^S_L!oV>c{$qSVdrJ0K$W@eU?pxBGK!hUuMDL4kw~Z*W=DcgtsNDLDMR<#} zdRp2#hE}wcs1YSs5EBQVL(c)}GS5wDyd~>3VW5C{{#P4uFS9m9Sz6sg@)uq|qfR0ZKy1)Ss^)FMrxG0rIk;n=D z+v3!%;2I_5p8Ckt;~|*>5x9*6JS0R^pgSNJth?9OXmlwA*Y@t>zi$ z4A*x~y5a7~IuGSYH#_g=iX?1uvf8eX(!{3sVSSF_PSq&;LCf4qT@Grw*9u6tO}U+b z#WUOAWjF)bV?Ft$6Zqqno!l}3$wYsc=r$eh! zQkW`1D%27;8{J-U$l!k5GUj_m9{o+-sb3KTa6l2t{{YwzOi24%?3FAf%*!e|Q6)vW z2vOzAHn{oo#buRobCh-KrFGSzO~^B=QmwxK0OtbdNDk%3 zy>R!%IZ@0jlAuzgx>8Vs$Pz3SJO26GnW!xVik%LJe9dU?tY2q-Jy#CWcga(2_hej; zh!e3gZ~gHo<9^W}&)n`vN?KAh7%&zOLJ9d#pIcXbozSZ&r_}tRF$BQWRn~g>$03Jo z?}^%{s8S1oPb8`WSEVUPHuC*v&lhNA!JsW{`rq{HVyOuu3c1ggrn7e&m2Og#7g630 z{(mn(F)i%diq_2+yQwZiWSvS89vzMP8Ru+3xZ6Hcyhh@jN>ZTWiI|liIVL)KV_}*v zDz9zU6{x7pq=DtC{G-E+-D`imzIlv2J)urGue1|Hy#eZbFG6Nk~)!DiR>?@)**FjA1)RrE$E{>Fz1)wx5V!@0)NWD1{`q z@F*+(e|(k8dq1YgjVp;m%&9s_mByREFl6n2Qawe3!1+3|ehZ^!xRoiCXbL*ElYRWJ zZoP30nu3HPShr@M%w|dt!KFNIyjBpK(yh@&!Cfd>|wv zP=^vzvFXd7FFbPZZC=yoD?v*SmmO)%I;TzK0crW2t&4xOz9Dhm4|sQq)~O&16sjy{ zZy(nj4cfa;G1_fP-0u@lRJAF&HYp}8acc{C{VeqPDl?dOXshOJ{MZL$JXv81F3=j*k zDMC4tp>Z89Ey{kKgfj-JvZmIBCLKXli14V9;hp~g=hp|KBuGKeaF^;a>}c316(7rK z5l@=9rD+LpD5K6ao_H-Bei_VMWyI?Da+7qykYMf9LG{CSb5t61d6yHBr6X&yX=U=N%_;*AwmzuU&5nvZo^;=Vv}G&o}C1F;k_`%(it~7_R&E?xI;4(uRSBX3Ph&y zt8~rx*qd`0oMdPjz^I`L?>*s#cOa0hq6q8odii3n$dp*kQyuR5On^yD1Lr?&@p1M~ zld7YM^0!h@q<6?efUK0Q3S4#G=HQE@`4f#JNW#|A#vko=6hk4YdYPmtK=+L=LKUbd z;ebH%u-e{sGtzt!#Hiwq5~Qrv{{U>Iij)vkQG1gD_&xl9g99P=5SyM~eJB-vRN?xB}+bU510J1`KK_y8iuJQ;R_W4b%#ynP>hLcKM@d*e4d-T$NM|j15*o_MEJf58| zX-keHR-F+F2G<^6D-M{Bdr5J-nLS%+ZPckM19DQ5n7I(E5pn8q^KeJ+C&KzoDkLwiON~W{$b$+@{Q$(1p0LG%P3trYu1)cLU(_#b51_*?Sr70;_48Z7v|C zMF;^QC&Ma`M$kT|6`}1#8OIO2zl(IEmbsG;x;>jU^!J8bS(GBGD5z z-;uB2$>}H+tzUXQ)4nq-oRDSH{ zd77lBQk1e%0T#I&_T~5T#FvTcUC;9+G{`FP1dss`pnM}17h|21q&kU8_n;!rpO2K$8S-V?99s02rEa=U@w?;pIF~ zTT)l3D3Wi|CmkKwR|@55$&%e$I-F3}1)(Abq3O#O1HG4Jx#d#PRFox>O1yp%Jhv7X z=NMcKmF_R_qn}(i&^RmR9%0!khG5iKAitHOJ;i|N|PLB$K(Aox=yjtFT=WJ3;WU9(uNh8FQs2JT-=kxmdOSJ*S zCPS_yQ%*jpW_U`9nYSG*wj3&%N97mgYg}Qsia6^p;IO3~6P-X_Wg*N`Q$3>QzkezV^q?6m}t>WzQva z%5irj6cU|2lB>_2CR`_(afb&dP&Gxk1WIgR5ox~XmNr|XiM%T2hBFf=@N5p=9Sm)QcXD`j`oJnmuq@;wxNe7jqmMHq4XzcGN3r$&l zDO{+|tIpOju(a>bk%Bl++M<@4xy8JvHMtkMPOYT%w@ARu$A6?KwE9;AxRq>X{?GY+ zVir&|Ci+zaZ=dh)74CoR=92c7)LG{M&({ykdtYVhq0pyNwJOlDJh?~jezuPBSG7eO zN*W$*T6{60+`oI^VRN`}M^cOhVNxx$QpT-IF=hCHS5f|B47sgxQgo#1?*@QDh%-Ku zwf_KOKTXG4z|x|XECZ`)C!}qL+Kw+SCQ=uq4OUUo0laVffsc-En1f|Cttry6(z=C| zt56EwBUdfDN9%;rjc%t+$pc{@PuJApim!;teI6vIP}9AEG5v?v24vZR(w$o2BuLe< zn2)dj0ELJ2=vsABmE>hq&Z#Er1j+teL?6G<{K(DM-K9kZw3r|P%k;PPCmE7cCbEqr zDL;mp0GKIP@7H{5nxqDF!3jvbkzj8Y8_pziso7o@5<;naNX;BW?=})8M#v-L^O@Ta z+AOuq(PV@shqt4`CY1;sB-wzZtkV3n^3awzFw0yV5 zoO0B56^?G!(L!Z;2=0oZUx-rxepN@W+YXsO39aK~9};3ts2_jaVtK;+7AwSr_+ccF zkUU?^LGcf!9ft;*0HqL}DYTF@ta?qw&LeiX1ihe(RjRT_C>~HcRo-dbY(~If##EH| zX$M(QfD;}Wi{a0V927L_J>pcA8(eP#YyAB_(Qo2TI@$=+5R=q$_34I2^7h*IZ|I+y zt5Z(tNnVr~KqQ$Rci!jrY;^4K`WMN_o|sU~Ezy7oa_U|L?yre!64=XV4Pi4zha&BUkcj!npT=~UFMy4upEB!tL_y@)5%3+A1>KT4O7)B0DY z69gs(n2Qk-M=ritjqr0}P55gR7f$DWv{8d7D$yk%6C|g}Uuld-Q`$ROyPzR$+{y8R zRXcck7%AnxIbnUM)aLK&b>$sL!U0rA_U9J9CEN?z3cc}~b-3Ww;6=)TfKOT41-oRl)m6n!SO(XMSOqhbi-IdeUt<Z7x7(#q$NrAa_fifs}A!;9HE8mEF2;tD+Ndv2rG0np|xffAi57KMN#md9*o z5OFuTP^gtBsRV`U5)I;h*le#PQjR(Y+@L&s+YKp2T8fe-Wn`5kNbv$ctl#Gpe`zRd zFl3>p@y zf$8_fQR&|1haz*fA8&PC@ec;2>Xj^|D$q(ul4L;szHYBm;+`%!c~Ze!WN#wV^q4d2yo=i1J%jE>>yw3Hd!AG* zR@!gk8sO>XNZRKExWzAiqSxXWf<)=G9}t_~ez@mOIqkZyEP28obxJ~sCtj43{MIwq zmm~9ntJ<=+D0}f7QbJ0BKv>dK&zI91aB2FS6sG8B<)9zsb_1(rw5XtTBm)z*{V#7p zfelNj8j$9sxJHD>#AA8>lZpd^J*sIlGo{y4<0%VD%1IJ;*zG5uPM5YgPqgYx{P-S9 zlCYH|0d~nSKHT=eP3gGddn9j+T!B31RH}IkZC%ck$hn`F?lBb3I3U*`sVPa*;`I4^ zzjuotEo5emwzQ>6E(j22ck}W$@;*}J-v+e%W)hOAkpoWfAlq;A)Z;DMGQ(vYdY~0I zLBh^78&C>OyfCB8-=6z&{+MukDRC{fLry74L??SEp}n`~d|Z?rmoBa?q)K664+!{4 z2W?kX=b!sTp6_K%P|^?@b5SIMvH3(y9-=ohYzxCXm1J(SxutW}X9oApgQNMj@feAX z_VmL#xIHu#1!a0jh!LcwKj#-08s#6u*1qg`Th#?bMv_x|Tz*lv=f!89R-iTtih`3O z$51Ni$n^5Dz8Ki-VQT2!Ug4D%%xZ--LVLdRNDBV|a34$|U&IM|oxtjobQKwZq0^jn zHY86xC&X0&Wln2Km2gafCrCWJ#v-|;d81`o3DQ#lsMv!Xgh2Ab-54c)hox@VK|T^W zqu%*el&MiAEndqwrmc02p>C-*Arq@mNdhlEW9mHO z2bAP1aKS@rR-~wsXT{KMBhEQqF<@|3UNW>KtWJ;xhL|6JKiI@GJ7yJ9H*|EbjuPW` znrS6Or@Yeu8I+D-`A6>YA#=8NsS%+LG^Wx@QzuFJ-5_F*&Um$)wt)&#)U`@L2ko?P zdwKcV37&S2;!!QUsBTI^Nr4`x`}4#S+rxHvK7#Ld39j5${4?bP>rSE)%R#BH~h-`wFZ(UHhNHG3aMm1m#u zqsE~{f^{gzfo9+vYegn5n`r*+$GBUMl3qTRL777RA`{6v=kp&7NI#m%Q?;P+hkb{D}g@K=tD%U@u z_cs)q13ZLj{{S)1(-BT@*{qn?$ zvnXw?h#A;wlmO3A(oO&a17)x|ut2yp3LnBC9dXE?G zIpPb)oLSxl1gloY!4tasrBwkytZCTE<@CU1fn0wslWpz)035pEk=sp_mg(9G ziRQVp&eal$9#Aib43j>5tv)rWHV_Bb_tOVf@RqZx4$@{mxKl64gGDf%M4u3khxg}- zoZv#yXp9Vmdo{0B6p*!ap15<$^8-qx+=8p!Li=;Zxo%XKP#|gw2K^@rSLJF$dQw$m zi1vbLuQv_?dT)xxl=!sUO|}Eq4w)`&nzxcj)qk(}+ZCJj4>wbw>eI`Xqdu6F@LhV) z@GA<_xfA97apSb2u#)J{C0%?Rz<4D=IzcxgE?^8wpQ3@ODEohpOhNcRh!E2W9uQ}l z#IfA@FSL=UY9@JK5;_+&zA~MJk9Iq!{Ih25XrV1tHGfxpGHc$7y%hgd4_mUg(p&cujPo{Mr5N>q{6SHM_cc< z56o#^L(yQJ?`guBZw)Eu0V(kqxd-jf6~{xBS3m%nGYTgv5oGB*TwGfWb=)}SqNw{~ z;-Ku^d5dXCX-Zd;LV0bs&kjuXCg}-NjHzim+*_xj?P^&y<4wVx`7r^**gQz0tV z1Q0DYk~i|hlP)~b(Wg$U`rG$-#lKnE8*HNJSh3_c{{WmvIER8egeyurw$gVulNN=g*1c8J<}j=$vMQs5s{sAfefh3bW}NJ;Tb zU*+eA&JN-YHBFVSJ{XRjE^)SV!cTYV@F<~j0T(lEul_OT4e*smzN1KU#Hl3ySUz_D z0E{v9u`}CLRlAX9<;IgLi$ZU>-{pD3!g#~EARme(z(4c<02qnU<*!pxokQWCwzly& zWz2I|n0Z2A?k#=y$IrSD@>2EyRHKV{s69ZnYUu!7(C|l`t|O6(@~dFRwYHEmo_7EZGYDIYRtH9pSn_(0O~-A1Iw4!5PlZp*B^Nf zDOXXkToP{)a~PSqpCPv7xu_@-2v8mw< zUugvG7sAOvWcXfEQjnS6{XS>c5q=}h6o8{P2HK;Hd32&j}7dzNjlo|N1zsnA8 zs1~C98~*?@msIDD(-IR35^Q2k{{X%k>-hQlF{C)~3EBv?=lA|>yH#HJ+F>C|NF)G2 znd{W^^}|+ok+$tLDIOkB3P9>D{qVNxTH{U#8>eW=3AVGeHz7$XQj-@k1A9jJ1^y~c zS=6FcZ88Y4u|F?71DbI9)ZfA5J9R0a*!BA2JywNL1$oQqqW0 zz|xRFA~i|d4V%-=VJt{NC0L8hP?aGiN!wM9#PS_EeLV3D|cXZFNb7j)4LVfZucdxnefyj9FaSzxNk6%BwA$(7qEuBCW6B7n^nf>~CoJy)zv@-fx*1H4I`S`=NABB?UARImQJ{ca8jZ?a@DOr?U_bojJH0s0>=Lyudp zVC;m+5W=g{{X!Rcl^sAx{rvFjmt~82O}4bkg_U3+%trqJKTJsTZWT1HDiEgid?bViY2uSz6~7*?Uv8W6}HElDHW{*<;!!N#EpDo{+6ksA{dZ}s~5V4BJ_QLvVf zbikPEe9Zpu*Beyl#*lYpp-NPMK^qwd%6?dn=6paD`iW9?sZ#*Ph{LclDLX_x#_3@vf)*tQ3F)Q8eY#KecDR8 zO|Ev2Tny<`&PsJ8Z)Fc0ewaqv!Aopp8!6g`txsxFRHBlQtDns?H^ZT(@2W!1p>ZiA zQBC8n*k{TV5`?IP>e~E)=f2o_qRo&{l#L-J0$@esWAnfm$jWoiWVKFKhbfB5OrSSdR>C zk20Df%bnVSho4LO;9o>5n$ac-d#}vgt!5OZcX1jF?dnOw+&x02RwNWHDoN6AHr2oD zfKa76rIOl$uX!H`<~*&3OpWk@lC^kaOp-h|!XtHHtMsvknpYnJue{4Nqe>GR4w#<^ z9Hz(54*AncH0QX~74YeeMNkZV4kP>%ospNJl&C35LXxmXxKx1#iHUwAh(~m^ME{^u@9MUCZXRv4%@Sg&N9r zQ$4O#$_$c8=6Be0!|hiUDW#IwN&-Y_nTY8G0y*q2h9}_%QcNe11_0!F;Too#s(nBd z>M{(SU##IyXek0Pa#5p*-4Az&Uy5K69wg1WdEv&FiqE;AmyV!dLX??2%ulD+(-FsV z)uFV5I@T0?Ct>pYdYmOf)0Gb;3KBtyG2)y4r|piw3&%nnFr>7tJDoov9u*FXj$G%i zAL)BIY~|hI0WJxEPNa|q(a4^-&J3bYaFq=q!eRh~oBTeWf9Dg!Po|ktjWh6Vb2r-= zvT6u^)}+eg9s;HKmxNr)>Ku_`VI+b-_X#*>r)5;N2`5rg35XCki2eTn&9R>4%+)2u zr~s8pXJVTUR_BWU0EjZBFwUeBRGY{iaX)>x^2U@7C5xkwyOj0AoJHJGDLTAKGC}xn zZnL=@`TF6%JC?!tfJ#{pPb=Wbr@U8OH4OxT5lB{#W_eDL9vc7mMx zk6Bi)gv^MD0Kh&<=lwCudCwF)_GXm0w>2uuwCeG5>-NQw*#{6U);opj(m*L$zL9J1 z`-OGEYP~J2k9ZkI?Hd5y-B=uTL@OJ0;+;{sK=^_E{c&06bR{n8N)&FS%0`&Hb;Y1x z6>TXXsY*!F03RPQ`;mx$5amI)$TlKWp|IcA%>A&P8;fvK;dmHTe-SjeZ~&mCNJJR6 z-=-oXGhZN3{1t@aGaZp6n8>AYYWp_%v(QwQsQn2ltOmMT(#@TNcoU)KD>eweYccUY)OGzQ9~i3CEt_vwk|=L%;XydZdD zm{4Ynl2xY&DB9fl10TL}*LaPd=0QyF z7Sp^;k3Zbwi@0C5I?TMY4=8tQo9uRxy@kH`vT{D!s;dx%xKq8*3`w1|^n)L5t%=>~ zrGna2b7{+aE5fF@Jb-`hcY1*!fI%m(%MJA}igHpEv!qH2_m4tO{IMCzc+cM2ZEN^W zl5`MKkr6RBwEZyn&2v>{Qm9l7)fVJOr}Q{nZIC76smW*a7rqoJ!D5}xo?NGIKkO%b zw=Z_Sp|G-`nT1b4e@W&4066lUG|sx2T1Zx+09r)uIh~`I-)VizUuKcO3X>2F#@~P0 z#YcOEQU|$>;Yjj69%h}ig&`@_If(=J{Rd1ZpE`(yIOF;?m@Xwdn1Li(4L4dSu5TshF@%B9*? zFyJd%k2zDWs09Fpb?44+w(*Fc74eFdTDo*NttnocjX!a7J8~Fxq|92%az#AyN{K;A z2F7C7Kj-C&%QVe{^{Y@PN=Y-!$Oo?>{{R^E)B;>_2OK4{jNwXYPN~HiyeVb@o?>r^ zZhfAhsvk;~sZwNVAZI!B32#^Vrx#?}E zo%j0TLP2>}MnejM)Mr$nLRs-B%%UWH{$7~!mX*4fQ{B^Q0Krz7=kvZL^u3!=Q97q8 z6{%K_9D{w}&K#*S$~p>^r43yM1T0>_ZS=$NRSwnwFtzOavFA9g_#G70iTSPp&_N{P&4YuCHZ>aN&w}5!A zyEt7sO4O9B$w(^HZ8j5clydn_=>a%W&FU^|Yz0+Sdo#1bwaKS(4V5MV0BcF|{p|y8 zQyvcXeqoiiBObzfp|El z5C{Z#bSe`hfKKPs88f`#9M?QyWxLdz<4p(mXo&6~gaLvFGiU3FYkO&4A|lx~pDrAxXMfu)zF5d;LJ z8)=Y`?hvG5mlTj*lx|5~Is{n+1f)Ct?)&{ezqxbIoOtHUoacOw@L37xvIljL6mGfL zGHf@CTj*!^LV|iU=12y26dU3$_Wksp&K+&%!L}SAKyPk)jW?9LVv=|>*QyU;-~jk2 zF?7kyEbGeV^;yc*K%T%aSTouvvUZRmAb|jQ;+e?sviB)Ry1_AJ)QW#6_S!U=Q$n1T zHA&R~%hIZ$-SA@d$Kq5fxR!fpOvT+}{T2Ou!EO=#>G5~nLPZ7%-7Wb|$O=z*s6hvY zprci^F3@}-~EPycvZ zb?gUs3l*?a-q9^Rs_}G9^A$a*49?zo z>lyn4jc04>%Vo5?Q>!fJmlP^u4UBG})Hzxe*J_B`z4?4=qb4rV3sl`1Plk-L*bJIN zqyKy{{P2mlHr#4|a;`s%Nu8&M)5%y=qwVfhi8rYD1N$3&UT3wTKb-3LP-_k%zJ=lZ z)1Ep9CG1i3azruy!^?~N8<9Et=4(4SI9xgD`fM%u1>aSbVRd*t>q9Wmww6wH1$+}m zs5%gASrAH|#s7$GOKASWlOasnuU?%{PbF5-mZs;xD7wyKc5Da0DCryyU?X8{1(!F@gMu@+{FBEW8T-rzlt(1g#kpj+-R1@Z)qqrQ%dw&)8#Vbv#h)%-9X#Tg0C&v1x zk8N?)@u9z2kS0Lvu$F)c-&=QRls;Uo$f&5S(`3a&doQ>?LkEv3!A5A`2j#s&Xhi zg&g0p6WkMC%FJk~lR)ASMXPM~>wRMDJfmF#%ZxW{%H93lhdXhdW$c6n$%1{a;G?O# zT|_T+=ZUdcv_O#N-p$K33SzupAHe4NHFkpDqyne6*VfCTze4X3;8s}Lo0R(VfyrF> zcgs9lLkVy7zQ;Hi)J*;Xzv8KKa-; z`GMPnn`F3|)%600JWnX92SPT;BpZE2^blF0j##zH{DfvW-H>AKS#PWXwTncxQzr}v zQV*pSw;R^{OQ!Z0826W>a|YN2^@qzZ<5tS+ft>dT0!#>XbG`SFB$0@*fY`~vRikVF zfn?FP+K_1?II&HC$ZCZVw4KZI<*L&-MmH5c3w_xG4mH4DLp(R~Y3Uug*xbF*y4l1uxJa{>uYQ$3>BoA_ zri58e@E)<{BaspjE|O_e#JWe<)?#Jw2uZA)SFq2m%-uqdnc6m!YR3ioR0~JSc{BlL zQR{iVy{OeH@m9T5ocgXOw6)J*N2TPph5tZWBF98FK?uq_CClXi8#RYVL(A<$L1x4m!=bNM#%6&|tu@=PaW^8Z3*D!r z7GoTvcS;`G@ZP1b0X7-RnjG5tWMgK3j9ji({Zly;70<-4=S)!#L)d7!G!k}o-S@x4 z1-9j-Hv}d@sIj`kwlRYa)~Ss5XDJIQCs z34cb#t7)r~7mlIzus=`ztWs3cIimARa+3t=tE}`sRq?Xf2LYZdl~jA(mzRTiy17k; zDulQnD9JHmQEb05x}^D{kVyd{R*5;@7m(#UWCzI)plv=00n>dd1rJ@sGQk9tsdP>00!Dz zlevY4ZIJ$L5)(H~j*)XT43{g`Jx`R>y%rg@FC;fnS5wT9&(5M)^?#nhU|umDHcc>n z5&07kEVf(O8w%X{wCP-mI59dI?@{a;;E9Gc84q_V$MQ}r3ByI0fqI3dD?rH_psVlc zqW^eYaOv#II$76|4q9!AlHY(NM9wg>-Mya!uxy$~wUqS+|&Cy&nJUdP^l zv)9!><~hD$$-REzpPi=qX1bC)q+4I)Lct&5uNnWdJb=(u4Wgt$#zIHR7Tk6+IN1Bd zSvTJRAw(p~u|f(GRx9FZ%NBjjTE0}`LmYKLUFyr2U(X#fIK9BJ@bme^HS_$9^%S@^ zj31)+Yo3KKRTSqRNV~yWFz#ddG%Fu33l{d_N!Rg7zk+w)NTpghWx0^GJHR0NW|rbQ zLnZ>UDjH=ybZX=y744{wsf91w!%h@zy0~YG5N&R(eV(Ou8hlwWJWqVKXpn0kbrsCs z-}3IX5E)`OAoasId};6nDE!qFP>&cG9ObF?%43p7YJ29~f(**2%(z;WD@?T=rm+{t z?9lZc_hW7LPpG+>?f}W4^Nnj<%9{>$-Mr7rFW?-Q_$+-%QL$@h!*ZTs#P#o+IFQlE zDpM^iXWF#WK@p_l(q;vR=dOvSI*#wE>cIGMG?p`m6BL7GEhI|IQsHgC?i{0 zYig7eIkmK9Fbnfcz9G|8XX%&zq~_cEtx5nT<#}*VDwgbpmali9GM;|Z%K|?$e!t0^ z#)x}4@GIvdIa?8qiQbg-)ag)*2x|lk5T0@Vo>_I zg0tL~Zimb6>8_ctGH|pEBY|rpjpI8vgY!Mvq|%k5CCMgy9sd?Y^Ny$88$Op6^=99* z-Z$HBZ|gsO-(~gxW^vkgr)`O{<5ZRDD^c1R06M>|)s3ZAP@yv`Ii}uUa&IQ^3I1jL z)Oq#~w6mgbSiA(VBh+2c+U!$=7mocQ2Wl85ejE+6I|ElmMmu!2PSt8^ubvvYOy~EN zv|wMg5N-902VdKGr~P&gC_gXJAf$iITuA4|pC8|hP!}#MCN6Np-)_^fICijGgqjqq zAMInCFk3Jb#J?QN41OJvH4A1Uo3!_2`!zcAeM|kAlXtdV!FX+q0rmrv5@>TMQ}0%Y zbcTDBx2YR$_1AWHuOupSK{E7T^zGI?Cz;cZxT}m{`}4{2aX(NJ9`ZiU|91$d5_jzdpte4T*3Vf zK{8^@OnmXFHNqG9*`!=J|3J#}Rr6lO(Y0{_ehOy$O*Z0lf7(Cz zmhkfijxrPF8D5d>{_PIXRUmAA_L~_Mp>|Iiv+ZrZ;mleL$LO45GAvSZz4g?O>WaHV zFGAwx-GisTU%?{VGG9P>8T3;b2qaB=%gmbKz=m!XuG`U6Pvy7S=c!}eYZ~z}M3LZ_r6|@ncX^7s2;|qi z>Xy9-?LOdxgtL*cZ8=QgU(^GB6W~2nI{2xNebvSKIdW{8@>|FQ#YD6CX^B9+)*%}j zfAGi1qVTWW>giUa!`L4$r47V=D{`Tjh)nLa0vG=_Q!?$YGCZB^I-is26Tw1@;Ca&eW*I>_$Xf6EHAs6k@ zL2nY@*RM_47)O07x%Ib2#)?L-fEy1%N=tftUeJn*$9jfmycS%x@-KeJy>Jk~h3iNN zwNYkC7;L?t6!RsQjsat;5LS4vk_QP?Ls3)+j&G6c4?Sw%&)XA?zM!36@2a~DX3b~q z2V2q2@|l)df2LUF`73?bsTjg0eQ5Wms$veBvFgO=GqQGb@8L4DQ2Ob;{n95d{+~l) zMi7_*9Nxobz&t0Ekij{b2|oL#84qU3AXU0|y=3wvTQ3~Tym*s^xgC|TkiZmbH9fhI zZ*bK8#k|kgN0zy=S>x=CRtM2H;cuj%^b2G(Z(~?pf?9_LwWUH^C|-};qH8Z|HYBBN zCC!~6C5_EkXabg8Y-Q|N#fn^NV|+ty?lA@|NSG*_IzZsqL%n(x?swSB-8{!YM0|Ws zD>f<-xgApBnfQ|Or@YR!6j-cT>V4$8_j10)gWE+bgF!WpFkV9bF1saV_i0H=-(Cb^J(<d=!jZ43?V*gjM4I%BzU^CHMg}2`Fc&Bk|~Yk^>O+KT0eLyx}YGD35C!X zYV-5N9X$O$0#eg;6<>qXu^0UPR?)x{gnXry@$>@+UZZ!|m>N1m8|Y1mILS>~HQD`; zPr0d7dP^2X2^RRPHi67PH?Wj(`@% z;JXI#vD-IZx!Rw{;!u$wNN~5L`S?bbcj2mKZGaN8JUv}pHHuh&3m3+IH=C>b}T*u+<2Sp1@F z->8maJb$d(;_*+GcCH2bBfhpSUV&V8N2no@g~qLGZ{UK(NF<@)K(ZGCA-+{O4@NS65SlV@=T zaYnVTb_WGEN@Ko%TPI`HRQDZ6K2W7_hC%q*>t3L_Z5s93VM_Qz#R#Z~cztbg?X1(1l@jc}?&6$6oh-V&@xrUc{k=Lb? zCxz$hmOqx=g;?$6(GlwEI8gkpfTS-BH-kd^vN>D`Dl2>_1oku){%#cKla@)*X~RAD z?xYxQ`y!vLd1WvMb$orIP*!gD=V(9GeDIPmYzg9{ti}BJK<9#{zg)F9;LyP>b>JFeX?Z@6s52u)BBH;$-;%cx`7`m;|lmlqs9 zHTt*)+Z9_=)t3VoNf$Q1=cChrbnqQw#L5;NB1LA(vrQRt!{4H(QPPp3r6;InZ`4B2<)F=P02uvb`J=nSnl=Q-o>t z);Kv}#W*6_T<7pxy$h3xuVf((UxL0C^>YHfuuYoHhKSi;7WhqA^^PKQPBT&0D4 z2_8UirLjBSUBmk8l5HEcn6rd`tu8QZJchH*Lk~(2IvRL$KRP1!=Bcb)YRW%{hxob0*Sm|Q(Q|3Gik;?0KAI|ixWkN1DtjZXZY&*Ux z&}s)c8%K9W4P0aGdKOhB-}h(Lmf$2gKDG7}dh$iIj!D~43YvNHv^f2-zi#$Ydw^H- zOfC(Bc;Y_mx&Nx^p)Zm=>YHeQE0^>mU)t6y5@Cm=D>_&Uj=)S)B`e|8DE`$zY^u^} zDnEu)=~u76F{0mQKAdcVdxCkBcp)~I*IpE(+CaZeowTo-PaH$2TN-!Ei0Q73)SNAd zK5SlVKMl3K^q*CluhHWKPjhfSvNu6g&*3`LD13z?(`^U3Jk$5aKPjW%#$r96OqIB0o+jUo4I1>b0?P>|4c0N2 z7G0QTL$^~5xM~7@9kFvGy&0xhI}(_3b_>ZbA2)H?9+|oz2)H5G(T;Mp+w)J}_R`(v zx>F#UnfAX#!`&1F-W3{eZh3k_J=cQ!UiyBQ?T#%+)v9IgTiUP1 zl|;POk_V02<8>u&&DIk)i9&d&=lls+qnxMRw)?vS=Auj`7ko|XlL8JGirHNiG&B^U zKWi-_K(-~MT|fLn)8vu_RR(MpXe@tUx;>}aNqYIbb(BzE{FS2T=zQF%1FtC4p>b3+ zOB%g_>u<*H&%;s|1$~0Y0=8}}PM&S-`j%A*gPE>k=O>9)xyi3GQG2G)Tz#k!3q0>1 zNPMX0?5cZ->kFD#Y)q6pQ!~~qol<-cZ+r5JkUGnDIw&<2~pVrgQt)HmM@?a?kY&rpwDmSj<^mjcP@cxH@DQibH#j3)l}}0@x~- zpah%G&GLAke1)I-A+{a=7I#Nrt}q-Fk&}>D zk%iqH5@g)0pURA7eDny5;_e!=BFB%25>V!23$9ZGLexNznO{SI8RV=Z!m%2Yi-LtWaP3>b z;LhGgDLzZ6SX`Dkv^=DSKhUSb<75K<63}4lR;yVUTli-BFMJ|Odiu)0Z$qDnIbr-h zuBWr`_*pwu;8z5rKszanV;{Y?d2%W>7KBwu_*It^1lg;bBb|C9U(~u0GM!=|4kwjl z!NB_<9QxI3SblnIthh>ZAFL6YWdl>+&ES&j+87^Lj*!)L7pi(}1nYAGj%dyc5v&Rp z<2Q-VZ*@o2h>jUXAyBZ>hhL^gyDlrd(iq@1+^zQo@DTFXsRygG-me2TEZlp2&It&t zI)yQNz)4CkMcH&q7@okcFKu%}!-{TicMeuqW#T9L(qE~TIbu4TC4HsX$B~oHlUBK{ zz3nthhcm)YPiUCTuWihih|Ii}Dpp_bx|MXQXZ@|UeC5i7d@Uv&)zo0AU^ALZFaJR0 zIIy@8K%q?F!Tl8*XE!eZU*hESJlSiXyVZl<7(KW@W`50uWl(ttw5YqaAe7^X54?R@3?zSb|ESr&iuY1L60 zt*sJ8%*|8P`BLT8Dw|Eqsw^3<7B?!;#oM4 z=xDb5kX=vwW%=onyz)I>WO%8|1VoZ^U!Ih}Q#`Hkb_4fMsM}7;br}9O&%j!5P$k@^ zrV=vl*!xVO$i|!rM}N^M0mo@}eNg0+?y0+cyHHo{{tvJ<(-uq@*{g0OuFluO~iG+_z;aSda#Rg<7ebEod-}&WLlZ=&6%_Rdk4^<{mIVK2zXBRmD`{!FmDgLa& zE_lBC?i<%t!tWN#S@h+r!8Gbq#ndW&_qSbgqjsUrFYsVI~Ga+>X+7JnMYaD zRTx^)8qNC@SipN>y9_^(ELaEHD5@%pF|bEnR+%hhVrY3ig#~Ki^=&58ABIuD!mKZM zAYhw-#WSAtls9YD$sn2+cc)Fzf!s-6iA-DdNkI?n(rxvdsoz_bib@lRVJTs=TC5kD z;v?Y_u(EGNI4biCpOPGQQ#Q_rl<7TRf*-aQTZ}7w#yqp?- z>15JyOv_$X&~25^cRa-+m}1WH`lC3qHE-ci7-~0U;f7{$Z*LCx^>}%aw~5csQu6`K zGb2!L<9f0=HK!2$JInN?t)m+)6wXqt10PUYokLOxdlr=Vd46zMG&9uHNxs&rQlddF z1H^o7^_n{Su;>|W-tLoR`I<{B$uUM0ZWdVnkF2>C!wZaYrk8w2;z3b|}eH*!+(ikI&wcy$Xe*T(1)2T-0jtZ%oN4Q1B}i*Pd$ ztWZ0(f*brl!mWW3)dpyZ2(DxFkgdqOs(+xx8$O%gJS3D*w&Xe+pksuAv+h)Jf1Pgs zh>9M@a|8kC&(icfUE-jN=K{r3i?Frm*B4QU`ldeR)9qhRuocO< zA)|7gZFl*%@sA0fu$xQK!w7&&$&)i?LH6NhYK9$>`lyx@d-5KS56 z9jRhS=z>gI)Mo^%ELWd9?YKSZ0j5;=5*cNTl0FXLG*eyOY095YG8(v>+-V-%vn1RM zHsp+hHg$hWbhQ8%LpaYy?mq8je$j@Q%>XsGO3jY~b=T+;`+pAKUqSLt!2+`JHn|`H zt5{0)JcxFp^^>hc(NMP97bm)kMf~<+WO6}iPsNI}ox~%Ls)tMV;v`90H(4MNeaV-) zw{Z>f#EmGv4Ff{ zK0T7LPOX4lr=!9HmxhEt?#&z_>0xX#fP}8+NdkXNb3~4Mb{dqUgW8kjs?ICY&dZDDe^kTI?w1D4c%xBSvOyIV4z_{ z#H1Yfg>j*P06BbDkC2%RQyTxIUx;q|AiuO!bta=BT)|}Ap5z|F(|A{BupgANn?I31 zTNwxS**oglBx~4-RlB!?HerK`!v#QIClAPRd&%a1pc}PC;<7KqZ3z~YpTfjUrKqSn-FI_Vnd%kI%zu^$8jikCe?R|(YXr~zC7 z3LAX# z;^e2mVlO^h^(HB3iWq{#+Sfv ziM8L>l-*S|WGAVZd#ZBq>f{J>+?@0Tlv^yHRh!To;;7~CC>#Ua$Y7UsN7I7DMa9532v?Yim@cJ8yWU6T7Y~Y#9 zWYN>kmBI4YYopwN+?)9yja(B{ecIfV;e;%wC6$pMFi+$MWL7CFuvh4Al520!CHCn2 zaI9a~tjy7da1Ru`P$FFJ3q_(zbH!7C9rI*}O#!Z(Kz*fv4DqZV+4A}KN1qu?_1u=j zQ(&b<=jE(UQZHki`eLFoFsGj!nTbkNTFgAI9-vK9{CW@UkO9HE|3A=Z;h*YxO)csS z^mKLbMZcx(lBzS`!FO0DPtla8f+wK(a9T}UoTHR)r@M(OOvmPH^>Xr0RpRHymyIX+ zKLMVt(2)2yn|@EC3>xx*H!d~jp&L1n5ECR{Dg^Ic2-Tkx$r%q=gl&Y^>Ja}jV;fA( zOT{jxZJsJ*u0hhLWzUa)4L}LFACCgV9M(ED6){w$Dxw^#P`gU+JgixqmhXUS1*2n$ z7pQ7kq;|?6Txa9%ztuax=|23MIZGTC3APNxzk;u7y#()VDgORQ09PNVw z07;01yk?bu7}ZWc>J)39sN9_?Mo`T4A6}dcEgn9GwyXKvIZvNVPh9}tS5@5p2kIsm zA10*9KgxRg>;wI4=cAFXd(Q*?UY`jklj-$5N_EM?Zor>2vWdFNZQqIM>gp617;Jln zb+1tsQEs}@XN6-L_$o2G*o)D95A~}4o6A^1+`x@SX`P%Ua(+14ldf`w$fzWRld4vD zlC%Ao24dysjVKb`Tw{mKmQf9rvA0_VMmxy9>uzjRX}Sh43In+c{4T|7zxAwPAW0w0 zrPa;q&hM*Q8qCU}mD63vp;7Ofd1uz)8E{r`4E)2cX^oD;9oN;xl$Hhc^27!IKD0$TG^|n1#ciBPsUZM1RikR%Yqrw=%2BRkAUCIhB-1GtfIx zU(ZXPDNn=8r3ZoKgs^*&|G2h%r5WE?Tghc8!n@`S;5YmDJ5h=^IlTYbL1=xZptR;p zwH6o*4VH*q_y@9O<`;LM#CL*=<0-~#{TDE(s0l%Nyp7FYT8C=ow{oLW)^y9Uy>jIj z^$GMJ6?6dKfvt{aBT=g#vxo$m->uVsavurvJUi`Q)rzWW_BUXCxsn-qdj1cTR12(o zQ4y@nI-;BVQj`xfjuajhZiv43NKz+>Dq-Q2y`C~91JHxeIpXUn4r8^QP*;s(?D903 z)?6)7)$^xEy)?_~jB>yi-5nKqFXSqd-+q*dM#6KzG^fWQpXW3T;<&ZK%UZ9-?HRzv z!q)WnG6o2mV~}0Jj86$}061?iMwm<4k#f6kr&*qeaO{GQGg+Frm!YW?kOv!s73iYEg>iel29*~S z({)t~1qv)BtqY?zUH78(ab{ZTX-t6R*yK2y(&H%|F`DxbK`G@lZv|av_Xr@cdhB;C z|2eoE^=z}Mg9OlTag-f>EEDKG>?Lnb-@Su>)!-yus&BRNM zney2Uc2iuaK(Ow@)RUKN%Cm$7c?lW7IYMgOp7Ok{B4B}1Hoi$Us^eF#3rC#3WJCV5 zru?0Qo$n;~om;2wZHje3bSk?`*gW63-Idu?=F5V_o~~ZydEgO=5Wg+g`lCQDH$FDL*+nmCZ%rHM+A3PC5I9)CTj_;J^zpy2yVZb&aS^^{XIZGb3># z8T^Ea7T3%BK(tbqKxNgpb5Lpq6V+9zt~oH_hybG@{|el3*DzPepaND|e#t)R5kvlZ z;z?~AQRZt}4)u)f&Ne_MpI3yT`!Z1uFbpuz)N;m6aeV!KGZnJb@b0_K#`ZJ-n0v$` zY7GlIkz@?b7rGtpNfSn!5FfaJ3t+SMFSf$Tx3P6j5 zmpxh^!t-nV%S-qt5pEjCdHb<-?m5yqQB@8Dc_Z7vkaqyva75EJ*CGFY}$xXs8bQW(KA%;V!)mC6WR)335>kR}(Zh-rI?eMoq&bXNu1qWv4 z&jYr~+7eA?FxXY*#l7TOuo}nAd|&fB?^j{n*6gnl)n=w zaj(;y$1?M4AY%j}fAU?Me)h511_c0$9lI2U%=`zMEKxiwbC-jI=h-k;fI6q`$9}$= zIkWKEVNNFzQCqk2e;}H@xy8hx41JC8PY*8%ei1Xu0zF)_QxrF`gGi8(J)&356&1 zh$IfZD(7~ZLmho8obsafijrzAg}JXY3MYGHZqcO~#NlZeHsp-kgjLpaDEtl|HzKFN z>R+cBaE}vm9yBX2TE(-s7=h8b+lg&3?*WMMjzGat;)^yintAb=${UZXr{~ zAQka0?=dGBPiy%SFe=K1tyHZa&NKFcM)lD6)^IMHg%d{vl*R%QnJR(*3D zuSm{bjGm101BLZ-F;1``Wu$dzsHH!~*0X&ASpaPG%T}{*O4P91mv}*ixX{7f^#>l8 zAC9I8oK1Mo0D13C8mvJ4;pLQL>NMvAG3@@)Tt6Kqd;W9RDOT4onW9lx8AphYGDi~I z{5BgM3sgw)t-xyhAzS#npJlUBlr!?c`p`PO!`VJs0Kb`Qx!0AcngaXPfv}WwI5qh%+(m*TF5h@cKa98*>}rpT;sO-KusmR)D_QQH<0Z#9 z^>pon+dgZryz*d8FI{{QfeAf+Y-EFEQQO*oGnV%ySO|am`$58#s6+!25%G5OP5*?v zx-VJz4;nE*Vfxu8_{EaRLv|?}S0gJ0pE{kKJs^+ID0wmBV1bX!4*@imF?v2U%@qiM zb14HK_>Imn5-Xd}O?G`LxEJWk8;qmTa8$$x$kpLh{TWI#%RNKtK=&hpUkX~QUoG=o zX)`(e?{W%XPK6_@%A*i;Y-6UiqEM?CU2+CH-xSo=W!;R<-lJn$P&e=?f(L~W5$Mj` z{i)THT4ylS620O|sP!V9J70Gh(7wct>pA<}1I8H&@%3FlUPA=I5ycxBjZSp%d%n;) zQ78K!gzlyXnZL&^9);-wvporZk)myRc2ao0H<8r z+8Ckz6KQQ@NZmQX%l7{~2btywtp7Tq=4$L+6}_*fGSrYl_7KQm#G!Buq{OSCSqx;} z)>DAd(g%j!JAK1Bf#-{Tq{ObQ(D%^D_@1-5onRY&Dp}=(X>OEW)U`biY?ig0wB7EN z5tG5dl<|)O4G2U!BG{t-tUrv@{*fkz4F{%e9k4pVn8tWH%7F`~oq!4Ka`vLs9a=s< zG~Q^b7LTjje@=kMi>@22X$&}t&yNZP9CYEQ=dHZNvy}{vnXnRqXYssTTtGAs$pMA* z>X(l2GWV|No2%u4o4;Nuj@UmYv3R-iXqd`3vw7F!A83UOq(Fu%AtnJxT99oBwlpLz zv!k)Mq^e@hr$UKHNKXq;+`fEcJt^h&5s`|JNQaRVwd(+@6vNxHRJtTAtvTRZm$9qT zkUSLBz;u%smc6Lx%{0WB#|nf|L)v#E6!QL$=+ylmg{fRx@ghq`&BhpgwIc=A=F!aj zvId+S|FvKBs^$(PADOF&1z42|V zSAk8t{s@ps@;S_A~{X(r|(7ES$L9+mplO>Kat{@ z#D`C1f%#$Wzdkcyb;NBeHbm2yY#QpMLVO~>WS00UH=p7H_Aa-bWgFJ#UorVaS`$YJ ztU^lgTQLOa?1%fNI}n>wgusIQRT@Jt^Bcg=WUw%#s$DYu-_qN zNqCA1g_36&35yY|&D^VWP#Xm@?mfT^Q)13l!k*09SNsD39GYD;JQqp%^8G}xTA7z~ zAP~e>PmkL>h#~eWnP*a9Bk=FwX3P_#p2NoD*lbVvH9YN*K`pWeY-#I`gOZCn9hMlSYZL~kx@p2)`~u&#gfTk*xw z1+!YSP!-{$3Oeq_(J!AZD!k0!hQ;~#zl*BTO6x8-1dM>8j;a4lb9KEnzPpk4#g%uI zsj7?$^f5>Pl)1Ea9r9jG0PXbYt2m)!pl)EQo166M%IZU?$+*3u@VV}N%&s9>M{Z*s zp`cWaR~jcTl$Kt;A`|>yVkC6EY`q3o2k-u< zrDUI}y4?w?S01l|vhMegT);1C<(S-}qLL086|AIIW}jSn=mtbV0}%ld3sECM_Zjo{ zA@D6Zk-{d((pVx`<3$!v4#ku0v7Ll%nQv9d4Y10ZUF&Eb$Mb698aF>iKruLo$>AK* zuzb&+#Sl&m6*?_GQ!#EkW<|wTX|-0M2>?(#^cz*Bp&PH9@!!FKT-d8+p=>eK>B}xh zdGXs3Jr;z69(%v@l+}D4otWSwMA_t$xe~j6ENDrc5vYZ-M2_3jtnilpzE@miTyn=j z$@e^*q+P{7=QEkD{MOC4{A5Q}uUgUwUUci+W==M>eF5Mx@09(TVy=0uAjyk&#%fwU z5Q8eER;{#ktUWmca%y}cbEG0 zarm3Smvr+-GFYVspDI}<`@^vAhvL~ezOCB?_vzwU9a`?M}@MalT77-U-H3b`iS2( z`n<}8&!<*B=L25&Z>kY*o{oWjmq@Rlj|Ml(;A zq1~j;;F;0_XkITjY2D*$?+3(}I0#f3bE()H5E(q|f##q|{2%BR@|pB{0_j&mYyzzm zz^14^vh}~UAwJ!Vzt;|Bj>ji7Jglgn0&vC9Ga!)NhDCWw?JF8`lza+6{g^8v{0(`X z#48eTc4LFu;HDT1e$2b#D)3chwK-#hYv6gI`T2hrV*Oix3lF~m#n)7-|DBPG+54&` z#W{h3SruO=nug4Zy5Tx*Lkmy+yrUpN>hD?LC*MS@QGhY9xsB4@-hYtyD<9qcVH7PO z^U+g@Pw8IXJ^rw%F!$q68J|{%LSV*Grz4N zI-?pXYs=-l3g35cqopXLYK~tGwy0}#OmwKM?f;kBEq@n%_VDpClyUK(gmS!0qRv;4 z1-qJG?j1mkgqBED=K+&tZXUd~mWfHW!A0Sj2Ld7Cd<@rnv`$t9{dTX&EDN9I%~4Kk z!+qD4t@LuPDpx0gnOhRUQ8~Ap|F}KVB*W!D5P_LzGzB_Tyv~=Ga~8W5n@H_^z$+!e z32aoLs^eq?q>B}T{!_}Ni0sLN(#-7`WO;R!qcT`$9;;e+2a6h47kWDZ|9~CKoR=f( zUmFChAwJlnJgs!5Uf|P9k$IVfv4dGf)AP+Z9c`mSzy>pc25bZ=)VGJg<(;jB&JM|& zm5O|Z0b;Pa3~nhjx25%D3BB4q?kVF}tF6zd5aCWL03gFR-BK^+uxEyh5_|Ua+4Z>a z-V;^4Y1oN=uQe;iqsNPs32&`Lg#v6wfC@FyS|WoC>>WRLr`tOb)tWt*!~kyU%!Xf) o<5|g(WnKKp{a&V%Ju9&iw-)vwS9YF1Wb;87%rx|)@89D80BluRUH||9 literal 0 HcmV?d00001 diff --git a/data/heart.csv b/data/heart.csv new file mode 100644 index 0000000..c211c93 --- /dev/null +++ b/data/heart.csv @@ -0,0 +1,304 @@ +age,sex,cp,trtbps,chol,fbs,restecg,thalachh,exng,oldpeak,slp,caa,thall,output +63,1,3,145,233,1,0,150,0,2.3,0,0,1,1 +37,1,2,130,250,0,1,187,0,3.5,0,0,2,1 +41,0,1,130,204,0,0,172,0,1.4,2,0,2,1 +56,1,1,120,236,0,1,178,0,0.8,2,0,2,1 +57,0,0,120,354,0,1,163,1,0.6,2,0,2,1 +57,1,0,140,192,0,1,148,0,0.4,1,0,1,1 +56,0,1,140,294,0,0,153,0,1.3,1,0,2,1 +44,1,1,120,263,0,1,173,0,0,2,0,3,1 +52,1,2,172,199,1,1,162,0,0.5,2,0,3,1 +57,1,2,150,168,0,1,174,0,1.6,2,0,2,1 +54,1,0,140,239,0,1,160,0,1.2,2,0,2,1 +48,0,2,130,275,0,1,139,0,0.2,2,0,2,1 +49,1,1,130,266,0,1,171,0,0.6,2,0,2,1 +64,1,3,110,211,0,0,144,1,1.8,1,0,2,1 +58,0,3,150,283,1,0,162,0,1,2,0,2,1 +50,0,2,120,219,0,1,158,0,1.6,1,0,2,1 +58,0,2,120,340,0,1,172,0,0,2,0,2,1 +66,0,3,150,226,0,1,114,0,2.6,0,0,2,1 +43,1,0,150,247,0,1,171,0,1.5,2,0,2,1 +69,0,3,140,239,0,1,151,0,1.8,2,2,2,1 +59,1,0,135,234,0,1,161,0,0.5,1,0,3,1 +44,1,2,130,233,0,1,179,1,0.4,2,0,2,1 +42,1,0,140,226,0,1,178,0,0,2,0,2,1 +61,1,2,150,243,1,1,137,1,1,1,0,2,1 +40,1,3,140,199,0,1,178,1,1.4,2,0,3,1 +71,0,1,160,302,0,1,162,0,0.4,2,2,2,1 +59,1,2,150,212,1,1,157,0,1.6,2,0,2,1 +51,1,2,110,175,0,1,123,0,0.6,2,0,2,1 +65,0,2,140,417,1,0,157,0,0.8,2,1,2,1 +53,1,2,130,197,1,0,152,0,1.2,0,0,2,1 +41,0,1,105,198,0,1,168,0,0,2,1,2,1 +65,1,0,120,177,0,1,140,0,0.4,2,0,3,1 +44,1,1,130,219,0,0,188,0,0,2,0,2,1 +54,1,2,125,273,0,0,152,0,0.5,0,1,2,1 +51,1,3,125,213,0,0,125,1,1.4,2,1,2,1 +46,0,2,142,177,0,0,160,1,1.4,0,0,2,1 +54,0,2,135,304,1,1,170,0,0,2,0,2,1 +54,1,2,150,232,0,0,165,0,1.6,2,0,3,1 +65,0,2,155,269,0,1,148,0,0.8,2,0,2,1 +65,0,2,160,360,0,0,151,0,0.8,2,0,2,1 +51,0,2,140,308,0,0,142,0,1.5,2,1,2,1 +48,1,1,130,245,0,0,180,0,0.2,1,0,2,1 +45,1,0,104,208,0,0,148,1,3,1,0,2,1 +53,0,0,130,264,0,0,143,0,0.4,1,0,2,1 +39,1,2,140,321,0,0,182,0,0,2,0,2,1 +52,1,1,120,325,0,1,172,0,0.2,2,0,2,1 +44,1,2,140,235,0,0,180,0,0,2,0,2,1 +47,1,2,138,257,0,0,156,0,0,2,0,2,1 +53,0,2,128,216,0,0,115,0,0,2,0,0,1 +53,0,0,138,234,0,0,160,0,0,2,0,2,1 +51,0,2,130,256,0,0,149,0,0.5,2,0,2,1 +66,1,0,120,302,0,0,151,0,0.4,1,0,2,1 +62,1,2,130,231,0,1,146,0,1.8,1,3,3,1 +44,0,2,108,141,0,1,175,0,0.6,1,0,2,1 +63,0,2,135,252,0,0,172,0,0,2,0,2,1 +52,1,1,134,201,0,1,158,0,0.8,2,1,2,1 +48,1,0,122,222,0,0,186,0,0,2,0,2,1 +45,1,0,115,260,0,0,185,0,0,2,0,2,1 +34,1,3,118,182,0,0,174,0,0,2,0,2,1 +57,0,0,128,303,0,0,159,0,0,2,1,2,1 +71,0,2,110,265,1,0,130,0,0,2,1,2,1 +54,1,1,108,309,0,1,156,0,0,2,0,3,1 +52,1,3,118,186,0,0,190,0,0,1,0,1,1 +41,1,1,135,203,0,1,132,0,0,1,0,1,1 +58,1,2,140,211,1,0,165,0,0,2,0,2,1 +35,0,0,138,183,0,1,182,0,1.4,2,0,2,1 +51,1,2,100,222,0,1,143,1,1.2,1,0,2,1 +45,0,1,130,234,0,0,175,0,0.6,1,0,2,1 +44,1,1,120,220,0,1,170,0,0,2,0,2,1 +62,0,0,124,209,0,1,163,0,0,2,0,2,1 +54,1,2,120,258,0,0,147,0,0.4,1,0,3,1 +51,1,2,94,227,0,1,154,1,0,2,1,3,1 +29,1,1,130,204,0,0,202,0,0,2,0,2,1 +51,1,0,140,261,0,0,186,1,0,2,0,2,1 +43,0,2,122,213,0,1,165,0,0.2,1,0,2,1 +55,0,1,135,250,0,0,161,0,1.4,1,0,2,1 +51,1,2,125,245,1,0,166,0,2.4,1,0,2,1 +59,1,1,140,221,0,1,164,1,0,2,0,2,1 +52,1,1,128,205,1,1,184,0,0,2,0,2,1 +58,1,2,105,240,0,0,154,1,0.6,1,0,3,1 +41,1,2,112,250,0,1,179,0,0,2,0,2,1 +45,1,1,128,308,0,0,170,0,0,2,0,2,1 +60,0,2,102,318,0,1,160,0,0,2,1,2,1 +52,1,3,152,298,1,1,178,0,1.2,1,0,3,1 +42,0,0,102,265,0,0,122,0,0.6,1,0,2,1 +67,0,2,115,564,0,0,160,0,1.6,1,0,3,1 +68,1,2,118,277,0,1,151,0,1,2,1,3,1 +46,1,1,101,197,1,1,156,0,0,2,0,3,1 +54,0,2,110,214,0,1,158,0,1.6,1,0,2,1 +58,0,0,100,248,0,0,122,0,1,1,0,2,1 +48,1,2,124,255,1,1,175,0,0,2,2,2,1 +57,1,0,132,207,0,1,168,1,0,2,0,3,1 +52,1,2,138,223,0,1,169,0,0,2,4,2,1 +54,0,1,132,288,1,0,159,1,0,2,1,2,1 +45,0,1,112,160,0,1,138,0,0,1,0,2,1 +53,1,0,142,226,0,0,111,1,0,2,0,3,1 +62,0,0,140,394,0,0,157,0,1.2,1,0,2,1 +52,1,0,108,233,1,1,147,0,0.1,2,3,3,1 +43,1,2,130,315,0,1,162,0,1.9,2,1,2,1 +53,1,2,130,246,1,0,173,0,0,2,3,2,1 +42,1,3,148,244,0,0,178,0,0.8,2,2,2,1 +59,1,3,178,270,0,0,145,0,4.2,0,0,3,1 +63,0,1,140,195,0,1,179,0,0,2,2,2,1 +42,1,2,120,240,1,1,194,0,0.8,0,0,3,1 +50,1,2,129,196,0,1,163,0,0,2,0,2,1 +68,0,2,120,211,0,0,115,0,1.5,1,0,2,1 +69,1,3,160,234,1,0,131,0,0.1,1,1,2,1 +45,0,0,138,236,0,0,152,1,0.2,1,0,2,1 +50,0,1,120,244,0,1,162,0,1.1,2,0,2,1 +50,0,0,110,254,0,0,159,0,0,2,0,2,1 +64,0,0,180,325,0,1,154,1,0,2,0,2,1 +57,1,2,150,126,1,1,173,0,0.2,2,1,3,1 +64,0,2,140,313,0,1,133,0,0.2,2,0,3,1 +43,1,0,110,211,0,1,161,0,0,2,0,3,1 +55,1,1,130,262,0,1,155,0,0,2,0,2,1 +37,0,2,120,215,0,1,170,0,0,2,0,2,1 +41,1,2,130,214,0,0,168,0,2,1,0,2,1 +56,1,3,120,193,0,0,162,0,1.9,1,0,3,1 +46,0,1,105,204,0,1,172,0,0,2,0,2,1 +46,0,0,138,243,0,0,152,1,0,1,0,2,1 +64,0,0,130,303,0,1,122,0,2,1,2,2,1 +59,1,0,138,271,0,0,182,0,0,2,0,2,1 +41,0,2,112,268,0,0,172,1,0,2,0,2,1 +54,0,2,108,267,0,0,167,0,0,2,0,2,1 +39,0,2,94,199,0,1,179,0,0,2,0,2,1 +34,0,1,118,210,0,1,192,0,0.7,2,0,2,1 +47,1,0,112,204,0,1,143,0,0.1,2,0,2,1 +67,0,2,152,277,0,1,172,0,0,2,1,2,1 +52,0,2,136,196,0,0,169,0,0.1,1,0,2,1 +74,0,1,120,269,0,0,121,1,0.2,2,1,2,1 +54,0,2,160,201,0,1,163,0,0,2,1,2,1 +49,0,1,134,271,0,1,162,0,0,1,0,2,1 +42,1,1,120,295,0,1,162,0,0,2,0,2,1 +41,1,1,110,235,0,1,153,0,0,2,0,2,1 +41,0,1,126,306,0,1,163,0,0,2,0,2,1 +49,0,0,130,269,0,1,163,0,0,2,0,2,1 +60,0,2,120,178,1,1,96,0,0,2,0,2,1 +62,1,1,128,208,1,0,140,0,0,2,0,2,1 +57,1,0,110,201,0,1,126,1,1.5,1,0,1,1 +64,1,0,128,263,0,1,105,1,0.2,1,1,3,1 +51,0,2,120,295,0,0,157,0,0.6,2,0,2,1 +43,1,0,115,303,0,1,181,0,1.2,1,0,2,1 +42,0,2,120,209,0,1,173,0,0,1,0,2,1 +67,0,0,106,223,0,1,142,0,0.3,2,2,2,1 +76,0,2,140,197,0,2,116,0,1.1,1,0,2,1 +70,1,1,156,245,0,0,143,0,0,2,0,2,1 +44,0,2,118,242,0,1,149,0,0.3,1,1,2,1 +60,0,3,150,240,0,1,171,0,0.9,2,0,2,1 +44,1,2,120,226,0,1,169,0,0,2,0,2,1 +42,1,2,130,180,0,1,150,0,0,2,0,2,1 +66,1,0,160,228,0,0,138,0,2.3,2,0,1,1 +71,0,0,112,149,0,1,125,0,1.6,1,0,2,1 +64,1,3,170,227,0,0,155,0,0.6,1,0,3,1 +66,0,2,146,278,0,0,152,0,0,1,1,2,1 +39,0,2,138,220,0,1,152,0,0,1,0,2,1 +58,0,0,130,197,0,1,131,0,0.6,1,0,2,1 +47,1,2,130,253,0,1,179,0,0,2,0,2,1 +35,1,1,122,192,0,1,174,0,0,2,0,2,1 +58,1,1,125,220,0,1,144,0,0.4,1,4,3,1 +56,1,1,130,221,0,0,163,0,0,2,0,3,1 +56,1,1,120,240,0,1,169,0,0,0,0,2,1 +55,0,1,132,342,0,1,166,0,1.2,2,0,2,1 +41,1,1,120,157,0,1,182,0,0,2,0,2,1 +38,1,2,138,175,0,1,173,0,0,2,4,2,1 +38,1,2,138,175,0,1,173,0,0,2,4,2,1 +67,1,0,160,286,0,0,108,1,1.5,1,3,2,0 +67,1,0,120,229,0,0,129,1,2.6,1,2,3,0 +62,0,0,140,268,0,0,160,0,3.6,0,2,2,0 +63,1,0,130,254,0,0,147,0,1.4,1,1,3,0 +53,1,0,140,203,1,0,155,1,3.1,0,0,3,0 +56,1,2,130,256,1,0,142,1,0.6,1,1,1,0 +48,1,1,110,229,0,1,168,0,1,0,0,3,0 +58,1,1,120,284,0,0,160,0,1.8,1,0,2,0 +58,1,2,132,224,0,0,173,0,3.2,2,2,3,0 +60,1,0,130,206,0,0,132,1,2.4,1,2,3,0 +40,1,0,110,167,0,0,114,1,2,1,0,3,0 +60,1,0,117,230,1,1,160,1,1.4,2,2,3,0 +64,1,2,140,335,0,1,158,0,0,2,0,2,0 +43,1,0,120,177,0,0,120,1,2.5,1,0,3,0 +57,1,0,150,276,0,0,112,1,0.6,1,1,1,0 +55,1,0,132,353,0,1,132,1,1.2,1,1,3,0 +65,0,0,150,225,0,0,114,0,1,1,3,3,0 +61,0,0,130,330,0,0,169,0,0,2,0,2,0 +58,1,2,112,230,0,0,165,0,2.5,1,1,3,0 +50,1,0,150,243,0,0,128,0,2.6,1,0,3,0 +44,1,0,112,290,0,0,153,0,0,2,1,2,0 +60,1,0,130,253,0,1,144,1,1.4,2,1,3,0 +54,1,0,124,266,0,0,109,1,2.2,1,1,3,0 +50,1,2,140,233,0,1,163,0,0.6,1,1,3,0 +41,1,0,110,172,0,0,158,0,0,2,0,3,0 +51,0,0,130,305,0,1,142,1,1.2,1,0,3,0 +58,1,0,128,216,0,0,131,1,2.2,1,3,3,0 +54,1,0,120,188,0,1,113,0,1.4,1,1,3,0 +60,1,0,145,282,0,0,142,1,2.8,1,2,3,0 +60,1,2,140,185,0,0,155,0,3,1,0,2,0 +59,1,0,170,326,0,0,140,1,3.4,0,0,3,0 +46,1,2,150,231,0,1,147,0,3.6,1,0,2,0 +67,1,0,125,254,1,1,163,0,0.2,1,2,3,0 +62,1,0,120,267,0,1,99,1,1.8,1,2,3,0 +65,1,0,110,248,0,0,158,0,0.6,2,2,1,0 +44,1,0,110,197,0,0,177,0,0,2,1,2,0 +60,1,0,125,258,0,0,141,1,2.8,1,1,3,0 +58,1,0,150,270,0,0,111,1,0.8,2,0,3,0 +68,1,2,180,274,1,0,150,1,1.6,1,0,3,0 +62,0,0,160,164,0,0,145,0,6.2,0,3,3,0 +52,1,0,128,255,0,1,161,1,0,2,1,3,0 +59,1,0,110,239,0,0,142,1,1.2,1,1,3,0 +60,0,0,150,258,0,0,157,0,2.6,1,2,3,0 +49,1,2,120,188,0,1,139,0,2,1,3,3,0 +59,1,0,140,177,0,1,162,1,0,2,1,3,0 +57,1,2,128,229,0,0,150,0,0.4,1,1,3,0 +61,1,0,120,260,0,1,140,1,3.6,1,1,3,0 +39,1,0,118,219,0,1,140,0,1.2,1,0,3,0 +61,0,0,145,307,0,0,146,1,1,1,0,3,0 +56,1,0,125,249,1,0,144,1,1.2,1,1,2,0 +43,0,0,132,341,1,0,136,1,3,1,0,3,0 +62,0,2,130,263,0,1,97,0,1.2,1,1,3,0 +63,1,0,130,330,1,0,132,1,1.8,2,3,3,0 +65,1,0,135,254,0,0,127,0,2.8,1,1,3,0 +48,1,0,130,256,1,0,150,1,0,2,2,3,0 +63,0,0,150,407,0,0,154,0,4,1,3,3,0 +55,1,0,140,217,0,1,111,1,5.6,0,0,3,0 +65,1,3,138,282,1,0,174,0,1.4,1,1,2,0 +56,0,0,200,288,1,0,133,1,4,0,2,3,0 +54,1,0,110,239,0,1,126,1,2.8,1,1,3,0 +70,1,0,145,174,0,1,125,1,2.6,0,0,3,0 +62,1,1,120,281,0,0,103,0,1.4,1,1,3,0 +35,1,0,120,198,0,1,130,1,1.6,1,0,3,0 +59,1,3,170,288,0,0,159,0,0.2,1,0,3,0 +64,1,2,125,309,0,1,131,1,1.8,1,0,3,0 +47,1,2,108,243,0,1,152,0,0,2,0,2,0 +57,1,0,165,289,1,0,124,0,1,1,3,3,0 +55,1,0,160,289,0,0,145,1,0.8,1,1,3,0 +64,1,0,120,246,0,0,96,1,2.2,0,1,2,0 +70,1,0,130,322,0,0,109,0,2.4,1,3,2,0 +51,1,0,140,299,0,1,173,1,1.6,2,0,3,0 +58,1,0,125,300,0,0,171,0,0,2,2,3,0 +60,1,0,140,293,0,0,170,0,1.2,1,2,3,0 +77,1,0,125,304,0,0,162,1,0,2,3,2,0 +35,1,0,126,282,0,0,156,1,0,2,0,3,0 +70,1,2,160,269,0,1,112,1,2.9,1,1,3,0 +59,0,0,174,249,0,1,143,1,0,1,0,2,0 +64,1,0,145,212,0,0,132,0,2,1,2,1,0 +57,1,0,152,274,0,1,88,1,1.2,1,1,3,0 +56,1,0,132,184,0,0,105,1,2.1,1,1,1,0 +48,1,0,124,274,0,0,166,0,0.5,1,0,3,0 +56,0,0,134,409,0,0,150,1,1.9,1,2,3,0 +66,1,1,160,246,0,1,120,1,0,1,3,1,0 +54,1,1,192,283,0,0,195,0,0,2,1,3,0 +69,1,2,140,254,0,0,146,0,2,1,3,3,0 +51,1,0,140,298,0,1,122,1,4.2,1,3,3,0 +43,1,0,132,247,1,0,143,1,0.1,1,4,3,0 +62,0,0,138,294,1,1,106,0,1.9,1,3,2,0 +67,1,0,100,299,0,0,125,1,0.9,1,2,2,0 +59,1,3,160,273,0,0,125,0,0,2,0,2,0 +45,1,0,142,309,0,0,147,1,0,1,3,3,0 +58,1,0,128,259,0,0,130,1,3,1,2,3,0 +50,1,0,144,200,0,0,126,1,0.9,1,0,3,0 +62,0,0,150,244,0,1,154,1,1.4,1,0,2,0 +38,1,3,120,231,0,1,182,1,3.8,1,0,3,0 +66,0,0,178,228,1,1,165,1,1,1,2,3,0 +52,1,0,112,230,0,1,160,0,0,2,1,2,0 +53,1,0,123,282,0,1,95,1,2,1,2,3,0 +63,0,0,108,269,0,1,169,1,1.8,1,2,2,0 +54,1,0,110,206,0,0,108,1,0,1,1,2,0 +66,1,0,112,212,0,0,132,1,0.1,2,1,2,0 +55,0,0,180,327,0,2,117,1,3.4,1,0,2,0 +49,1,2,118,149,0,0,126,0,0.8,2,3,2,0 +54,1,0,122,286,0,0,116,1,3.2,1,2,2,0 +56,1,0,130,283,1,0,103,1,1.6,0,0,3,0 +46,1,0,120,249,0,0,144,0,0.8,2,0,3,0 +61,1,3,134,234,0,1,145,0,2.6,1,2,2,0 +67,1,0,120,237,0,1,71,0,1,1,0,2,0 +58,1,0,100,234,0,1,156,0,0.1,2,1,3,0 +47,1,0,110,275,0,0,118,1,1,1,1,2,0 +52,1,0,125,212,0,1,168,0,1,2,2,3,0 +58,1,0,146,218,0,1,105,0,2,1,1,3,0 +57,1,1,124,261,0,1,141,0,0.3,2,0,3,0 +58,0,1,136,319,1,0,152,0,0,2,2,2,0 +61,1,0,138,166,0,0,125,1,3.6,1,1,2,0 +42,1,0,136,315,0,1,125,1,1.8,1,0,1,0 +52,1,0,128,204,1,1,156,1,1,1,0,0,0 +59,1,2,126,218,1,1,134,0,2.2,1,1,1,0 +40,1,0,152,223,0,1,181,0,0,2,0,3,0 +61,1,0,140,207,0,0,138,1,1.9,2,1,3,0 +46,1,0,140,311,0,1,120,1,1.8,1,2,3,0 +59,1,3,134,204,0,1,162,0,0.8,2,2,2,0 +57,1,1,154,232,0,0,164,0,0,2,1,2,0 +57,1,0,110,335,0,1,143,1,3,1,1,3,0 +55,0,0,128,205,0,2,130,1,2,1,1,3,0 +61,1,0,148,203,0,1,161,0,0,2,1,3,0 +58,1,0,114,318,0,2,140,0,4.4,0,3,1,0 +58,0,0,170,225,1,0,146,1,2.8,1,2,1,0 +67,1,2,152,212,0,0,150,0,0.8,1,0,3,0 +44,1,0,120,169,0,1,144,1,2.8,0,0,1,0 +63,1,0,140,187,0,0,144,1,4,2,2,3,0 +63,0,0,124,197,0,1,136,1,0,1,0,2,0 +59,1,0,164,176,1,0,90,0,1,1,2,1,0 +57,0,0,140,241,0,1,123,1,0.2,1,0,3,0 +45,1,3,110,264,0,1,132,0,1.2,1,0,3,0 +68,1,0,144,193,1,1,141,0,3.4,1,2,3,0 +57,1,0,130,131,0,1,115,1,1.2,1,1,3,0 +57,0,1,130,236,0,0,174,0,0,1,1,2,0 diff --git a/data/housing-data.csv b/data/housing-data.csv new file mode 100644 index 0000000..d53b2ef --- /dev/null +++ b/data/housing-data.csv @@ -0,0 +1,48 @@ +sqft,bdrms,age,price +2104,3,70,399900 +1600,3,28,329900 +2400,3,44,369000 +1416,2,49,232000 +3000,4,75,539900 +1985,4,61,299900 +1534,3,12,314900 +1427,3,57,198999 +1380,3,14,212000 +1494,3,15,242500 +1940,4,7,239999 +2000,3,27,347000 +1890,3,45,329999 +4478,5,49,699900 +1268,3,58,259900 +2300,4,77,449900 +1320,2,62,299900 +1236,3,78,199900 +2609,4,5,499998 +3031,4,21,599000 +1767,3,44,252900 +1888,2,79,255000 +1604,3,13,242900 +1962,4,53,259900 +3890,3,36,573900 +1100,3,60,249900 +1458,3,29,464500 +2526,3,13,469000 +2200,3,28,475000 +2637,3,25,299900 +1839,2,40,349900 +1000,1,5,169900 +2040,4,75,314900 +3137,3,67,579900 +1811,4,24,285900 +1437,3,50,249900 +1239,3,22,229900 +2132,4,28,345000 +4215,4,66,549000 +2162,4,43,287000 +1664,2,40,368500 +2238,3,37,329900 +2567,4,57,314000 +1200,3,76,299000 +852,2,70,179900 +1852,4,64,299900 +1203,3,11,239500 diff --git a/data/international-airline-passengers.csv b/data/international-airline-passengers.csv new file mode 100644 index 0000000..404288c --- /dev/null +++ b/data/international-airline-passengers.csv @@ -0,0 +1,145 @@ +"Month","Thousand Passengers" +"1949-01",112 +"1949-02",118 +"1949-03",132 +"1949-04",129 +"1949-05",121 +"1949-06",135 +"1949-07",148 +"1949-08",148 +"1949-09",136 +"1949-10",119 +"1949-11",104 +"1949-12",118 +"1950-01",115 +"1950-02",126 +"1950-03",141 +"1950-04",135 +"1950-05",125 +"1950-06",149 +"1950-07",170 +"1950-08",170 +"1950-09",158 +"1950-10",133 +"1950-11",114 +"1950-12",140 +"1951-01",145 +"1951-02",150 +"1951-03",178 +"1951-04",163 +"1951-05",172 +"1951-06",178 +"1951-07",199 +"1951-08",199 +"1951-09",184 +"1951-10",162 +"1951-11",146 +"1951-12",166 +"1952-01",171 +"1952-02",180 +"1952-03",193 +"1952-04",181 +"1952-05",183 +"1952-06",218 +"1952-07",230 +"1952-08",242 +"1952-09",209 +"1952-10",191 +"1952-11",172 +"1952-12",194 +"1953-01",196 +"1953-02",196 +"1953-03",236 +"1953-04",235 +"1953-05",229 +"1953-06",243 +"1953-07",264 +"1953-08",272 +"1953-09",237 +"1953-10",211 +"1953-11",180 +"1953-12",201 +"1954-01",204 +"1954-02",188 +"1954-03",235 +"1954-04",227 +"1954-05",234 +"1954-06",264 +"1954-07",302 +"1954-08",293 +"1954-09",259 +"1954-10",229 +"1954-11",203 +"1954-12",229 +"1955-01",242 +"1955-02",233 +"1955-03",267 +"1955-04",269 +"1955-05",270 +"1955-06",315 +"1955-07",364 +"1955-08",347 +"1955-09",312 +"1955-10",274 +"1955-11",237 +"1955-12",278 +"1956-01",284 +"1956-02",277 +"1956-03",317 +"1956-04",313 +"1956-05",318 +"1956-06",374 +"1956-07",413 +"1956-08",405 +"1956-09",355 +"1956-10",306 +"1956-11",271 +"1956-12",306 +"1957-01",315 +"1957-02",301 +"1957-03",356 +"1957-04",348 +"1957-05",355 +"1957-06",422 +"1957-07",465 +"1957-08",467 +"1957-09",404 +"1957-10",347 +"1957-11",305 +"1957-12",336 +"1958-01",340 +"1958-02",318 +"1958-03",362 +"1958-04",348 +"1958-05",363 +"1958-06",435 +"1958-07",491 +"1958-08",505 +"1958-09",404 +"1958-10",359 +"1958-11",310 +"1958-12",337 +"1959-01",360 +"1959-02",342 +"1959-03",406 +"1959-04",396 +"1959-05",420 +"1959-06",472 +"1959-07",548 +"1959-08",559 +"1959-09",463 +"1959-10",407 +"1959-11",362 +"1959-12",405 +"1960-01",417 +"1960-02",391 +"1960-03",419 +"1960-04",461 +"1960-05",472 +"1960-06",535 +"1960-07",622 +"1960-08",606 +"1960-09",508 +"1960-10",461 +"1960-11",390 +"1960-12",432 \ No newline at end of file diff --git a/data/iris.csv b/data/iris.csv new file mode 100644 index 0000000..20bd6ee --- /dev/null +++ b/data/iris.csv @@ -0,0 +1,151 @@ +sepal_length,sepal_width,petal_length,petal_width,species +5.1,3.5,1.4,0.2,setosa +4.9,3.0,1.4,0.2,setosa +4.7,3.2,1.3,0.2,setosa +4.6,3.1,1.5,0.2,setosa +5.0,3.6,1.4,0.2,setosa +5.4,3.9,1.7,0.4,setosa +4.6,3.4,1.4,0.3,setosa +5.0,3.4,1.5,0.2,setosa +4.4,2.9,1.4,0.2,setosa +4.9,3.1,1.5,0.1,setosa +5.4,3.7,1.5,0.2,setosa +4.8,3.4,1.6,0.2,setosa +4.8,3.0,1.4,0.1,setosa +4.3,3.0,1.1,0.1,setosa +5.8,4.0,1.2,0.2,setosa +5.7,4.4,1.5,0.4,setosa +5.4,3.9,1.3,0.4,setosa +5.1,3.5,1.4,0.3,setosa +5.7,3.8,1.7,0.3,setosa +5.1,3.8,1.5,0.3,setosa +5.4,3.4,1.7,0.2,setosa +5.1,3.7,1.5,0.4,setosa +4.6,3.6,1.0,0.2,setosa +5.1,3.3,1.7,0.5,setosa +4.8,3.4,1.9,0.2,setosa +5.0,3.0,1.6,0.2,setosa +5.0,3.4,1.6,0.4,setosa +5.2,3.5,1.5,0.2,setosa +5.2,3.4,1.4,0.2,setosa +4.7,3.2,1.6,0.2,setosa +4.8,3.1,1.6,0.2,setosa +5.4,3.4,1.5,0.4,setosa +5.2,4.1,1.5,0.1,setosa +5.5,4.2,1.4,0.2,setosa +4.9,3.1,1.5,0.2,setosa +5.0,3.2,1.2,0.2,setosa +5.5,3.5,1.3,0.2,setosa +4.9,3.6,1.4,0.1,setosa +4.4,3.0,1.3,0.2,setosa +5.1,3.4,1.5,0.2,setosa +5.0,3.5,1.3,0.3,setosa +4.5,2.3,1.3,0.3,setosa +4.4,3.2,1.3,0.2,setosa +5.0,3.5,1.6,0.6,setosa +5.1,3.8,1.9,0.4,setosa +4.8,3.0,1.4,0.3,setosa +5.1,3.8,1.6,0.2,setosa +4.6,3.2,1.4,0.2,setosa +5.3,3.7,1.5,0.2,setosa +5.0,3.3,1.4,0.2,setosa +7.0,3.2,4.7,1.4,versicolor +6.4,3.2,4.5,1.5,versicolor +6.9,3.1,4.9,1.5,versicolor +5.5,2.3,4.0,1.3,versicolor +6.5,2.8,4.6,1.5,versicolor +5.7,2.8,4.5,1.3,versicolor +6.3,3.3,4.7,1.6,versicolor +4.9,2.4,3.3,1.0,versicolor +6.6,2.9,4.6,1.3,versicolor +5.2,2.7,3.9,1.4,versicolor +5.0,2.0,3.5,1.0,versicolor +5.9,3.0,4.2,1.5,versicolor +6.0,2.2,4.0,1.0,versicolor +6.1,2.9,4.7,1.4,versicolor +5.6,2.9,3.6,1.3,versicolor +6.7,3.1,4.4,1.4,versicolor +5.6,3.0,4.5,1.5,versicolor +5.8,2.7,4.1,1.0,versicolor +6.2,2.2,4.5,1.5,versicolor +5.6,2.5,3.9,1.1,versicolor +5.9,3.2,4.8,1.8,versicolor +6.1,2.8,4.0,1.3,versicolor +6.3,2.5,4.9,1.5,versicolor +6.1,2.8,4.7,1.2,versicolor +6.4,2.9,4.3,1.3,versicolor +6.6,3.0,4.4,1.4,versicolor +6.8,2.8,4.8,1.4,versicolor +6.7,3.0,5.0,1.7,versicolor +6.0,2.9,4.5,1.5,versicolor +5.7,2.6,3.5,1.0,versicolor +5.5,2.4,3.8,1.1,versicolor +5.5,2.4,3.7,1.0,versicolor +5.8,2.7,3.9,1.2,versicolor +6.0,2.7,5.1,1.6,versicolor +5.4,3.0,4.5,1.5,versicolor +6.0,3.4,4.5,1.6,versicolor +6.7,3.1,4.7,1.5,versicolor +6.3,2.3,4.4,1.3,versicolor +5.6,3.0,4.1,1.3,versicolor +5.5,2.5,4.0,1.3,versicolor +5.5,2.6,4.4,1.2,versicolor +6.1,3.0,4.6,1.4,versicolor +5.8,2.6,4.0,1.2,versicolor +5.0,2.3,3.3,1.0,versicolor +5.6,2.7,4.2,1.3,versicolor +5.7,3.0,4.2,1.2,versicolor +5.7,2.9,4.2,1.3,versicolor +6.2,2.9,4.3,1.3,versicolor +5.1,2.5,3.0,1.1,versicolor +5.7,2.8,4.1,1.3,versicolor +6.3,3.3,6.0,2.5,virginica +5.8,2.7,5.1,1.9,virginica +7.1,3.0,5.9,2.1,virginica +6.3,2.9,5.6,1.8,virginica +6.5,3.0,5.8,2.2,virginica +7.6,3.0,6.6,2.1,virginica +4.9,2.5,4.5,1.7,virginica +7.3,2.9,6.3,1.8,virginica +6.7,2.5,5.8,1.8,virginica +7.2,3.6,6.1,2.5,virginica +6.5,3.2,5.1,2.0,virginica +6.4,2.7,5.3,1.9,virginica +6.8,3.0,5.5,2.1,virginica +5.7,2.5,5.0,2.0,virginica +5.8,2.8,5.1,2.4,virginica +6.4,3.2,5.3,2.3,virginica +6.5,3.0,5.5,1.8,virginica +7.7,3.8,6.7,2.2,virginica +7.7,2.6,6.9,2.3,virginica +6.0,2.2,5.0,1.5,virginica +6.9,3.2,5.7,2.3,virginica +5.6,2.8,4.9,2.0,virginica +7.7,2.8,6.7,2.0,virginica +6.3,2.7,4.9,1.8,virginica +6.7,3.3,5.7,2.1,virginica +7.2,3.2,6.0,1.8,virginica +6.2,2.8,4.8,1.8,virginica +6.1,3.0,4.9,1.8,virginica +6.4,2.8,5.6,2.1,virginica +7.2,3.0,5.8,1.6,virginica +7.4,2.8,6.1,1.9,virginica +7.9,3.8,6.4,2.0,virginica +6.4,2.8,5.6,2.2,virginica +6.3,2.8,5.1,1.5,virginica +6.1,2.6,5.6,1.4,virginica +7.7,3.0,6.1,2.3,virginica +6.3,3.4,5.6,2.4,virginica +6.4,3.1,5.5,1.8,virginica +6.0,3.0,4.8,1.8,virginica +6.9,3.1,5.4,2.1,virginica +6.7,3.1,5.6,2.4,virginica +6.9,3.1,5.1,2.3,virginica +5.8,2.7,5.1,1.9,virginica +6.8,3.2,5.9,2.3,virginica +6.7,3.3,5.7,2.5,virginica +6.7,3.0,5.2,2.3,virginica +6.3,2.5,5.0,1.9,virginica +6.5,3.0,5.2,2.0,virginica +6.2,3.4,5.4,2.3,virginica +5.9,3.0,5.1,1.8,virginica diff --git a/data/iss.jpg b/data/iss.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f05ac4f2e6e5709fe1fd2dbcd3fdb864a87df289 GIT binary patch literal 106177 zcmb5VWl$W?7cRWGy9C!II6pLaaCcZ7f@`qFT>}XO7Iu*U!JWlj0tA9A5_}2n79hBW zAeVo=?}z*KK2tT-)jfUAnVzZcne#mTyzsmMAXZmaQwE@*001a22jF=bpa4Ka{U82! zMtcD|Ci?$?jfshYiGz)ci-V1WgNsjukBdi$hl4{vLO@7FOiV(Ii%&{MN=)`rCjOrh zl>hZaL&tvUNQ{Sr_fq@+i057a2{uX-Y9ty83jmb_1&svdc>q8U0K7zn^1pche_&vu zV*yanuu*VcnvIA7s4t#T(b3T`UVx5DhJuQQjzIz-WyTaBW0BLtBDVnxMnNf9o|gdlXecjthDHLA0l2)c9v7atB#vzy|HecV%CLAt!#jKPyUJB_PKeijqQrlp zAjGaI*gJ4rx1xH64Sn9_0$L4KH2q>@`R~)|%3mFts9&J`h65L_P4(^;)t~sieQc+n4dF&g0}dtqb5a9>65s<=zon~mgCyJf>? zfC;ZsV-Zz&ctQ}H{0uM88dKu_Sp%KZaYe?*PLb|I&du^Om55bLuacd-!0n@J6uzNwE``Jth@7-}HimwqV#tn!M~-%8S7CleWpKsGp_;e4>flZ$FxK8!!mvPtKbX zr{S;~FBrGm#r#ng!D$p{oHUEUv`>v^53*ZFTeo^$xxi1v&@Pd1%}ic#$=KR1nMH`H zoliHkI`GF{kiQQY>}n_w=%gGf7>#4}N4c<%QWbAqx$@wUV=n=& zfcD9c*%qJKSQcH+qUN(`42SJ-KQp$tm>WJsS%fd4%*+@y*mCTf&s}0~gVa;DV>8H< zp_ENnOAUDP83;OA=hjW?lQfqk635CLAUP`2F1Yi252mLmbu6w{9av5*O}`~p-^lU8 zW~D)dxiV8M5UqM9omF>!|Xj++XzyZ4cRQxy>-Z8ztmHPXk@rvdB}XgKuF!6S2*jzWyj~&v|KJ| z@n)AS!erE4`H<(o%w28cr-Xe<{sjROQN<=b=aUHAudYQ@^xpk0J`m@-CK+fUR-FqE zWb=3X0^|d2i`{Ii`~Aw`iY$2VmQ|hv96zvCUT5R zQFMgLzM{;6{zJW(!!!}MOBRTT;kRD&ZjooV+AGOSr1b}X?`#aJ8W z$D3`D6Hj_5(3g=UvNg{Yo0nDO@MrWd>v2(4wO6aMoP@` zGW8h{AX~xbUAyw;?c;YXj%R@LQ&ZK!`k&i#!hZz9shJY4J)HFFDw{m@&F|P{K4T!= z>2mvz;GfluP<6Wa^C3P99=QtQ*=0%)_UPAwr;mGkm#AG%$ejGMd1p@R=s=_FhAmU= z`BZ186v9JEyLo73YdlK=Obo+8!2BtuCtS!h=@CPLC!kO$wrQ zOp9pCnEuUc%>9_r!EmssVemGyB94>}?cKkeh)x)tTIOP)wuguci~zZkerz+E*9>&N?;-@8qtqr(A$uX#~^K^Tn`t%hXDWb9}4|-rpz^6aR zSpy|t+Qoovg08B2nW>tsh23mA+Wc7Ud@-BIFE!4>+*RgC<#>jD9u~PA!fkQ(%U`g& z?~RoU@tOjdk4r4diBjWxOb+o2D&fA$D~p{*zb3^N@oC#m7%UV8v9Y41d$O4pNXeLa z=~DU=GU;DuMLBpW1Yd+H`&z+GHFZDjP?wbx5{mJ5q=jc=UyArx)cs`w>NlqJz~=)FH89CcqFcX#VnnSTm$0O<5`n>+1XJ5 zPX)j2DGo3UMp(WjCFbc%gHPA3-ost>DoGI8uHMG)?YXk(?Em>sy!~#8Re6ph^BD!A z_VyWY?{Z;p8tc3yad=mm=z%iK{M8AJkO}kD16`42o9>X7vwDd$Io*By>+A+YGuWCP zrYa^VA#w|Lb&z5oARK*XN*J`yzOLAD8y%R-Ff~V&4aHMlNyloxXVfBtz$jvTUA=mY zsCIQ47_ynQoKg&UkOqS4SXsaa(uiFdy^0=A7j^Yy4D~b6E#k^y`q*Gblr>ePd5E$L zH0<5n9@bNGxqLO(;98!Ye&E2fP+7d*+zP%^*}a)_QBmPl649t65l(E_RlWB{3p-D) ztx;PTG^A6Q}%$t3A=?}$3~FQz?G8|IML^cZaT z&}z4TyN=Xc1$2*-ZiI_da$Aa=+qU8>3k*5d5tb66l9j>Q1?82o0aDPP9o)H*9Bkj2 zWb%?GxL*VJdYMlXK%nM~1cykLk!=Cl3apcUfcU@U9X~T2fs7b`Y&#Blp+s=5Nd(p5 zqN~ex`jmLQPqU3To)cr%oO5H*zyULrZMC#i?|pc=;cqHa>Gs$7hj@blI#Vj(!dQn4 z&KSU;{HET@j_B5iA=Ujsf3bBX>@c0eKq?ie*t7TJgv&IN@isZar{o>H(b$g%M4l!Y zN+L8O8Ti$!T`#!KQ~~w;4*J`n07!_1 z(-y?RF7^j=#%BTG`z4T`jn@J?Fz0)b_z{mq83!Q-+&-w{yEaCDWydPG1sT&5LX|~B zWOHCW1FCIGm&eQEj;M28w!wL_efmD@2ScURm+=^%fmd_{THu}n!@^gB$x3LvLS->jVsZ+7axhr2#P+G!S?Qa{EF{AFEI5u| zaU2yVU@vLJ3Z%rBGG$;h2y=DCF3Ihxt;qHIQ$q{;GI&Hs#g1&?u0g=)7(aXDbn7qo zl;H)esV1(=l915b_t%DHwCQ@#@^-)!I$D3csykwVu2tqF*VDS4$3J9n5BORKf8d=r zaAH3m>kGh|yN&K>H|}p>-a{j8jkyB3&~Wc)1n!Wwz@6+c9m-LKeC&!t^m1#wDEwty z9%5y_^qQ2^+1o{NYYBhEI@pYqk*5Cb+R5#w8Gvzt(6GW8gM_~;lw#N1{s~H132{=W zm3Hy}{jVg$&hxww!ewM7W<*^s*T>~WB;D;(21#!>xF#@UG+N#1HZbSazV=aIvx=wX zv3R8<vCNgs4g3&PkFv!hD4%5Lbln}x`n*r z=8-o?MY?^u$d-8i(l3F83LCFgTID8ZFXpmGhVW}QoLE96tDHIhGv+I9z)htWn$5=l zu^|PfpN{T6{{cpX{(hz8n^auH%W2mvqL`w10iw*4oe|=v9s%Hc0k-v?=%)uUq7Huv zo4$9YUp?RB`W77>COd*y*PKd$tnAo%t{gJwY?%Xy@#oZxu-Ezl4EvAtYHY&*Mt-T} z*5ZyqISikJ8!1=)oeL0Q;648DzRzxJeqwyxpO%mB-+SVF>P|wyNnzA`ELfqjXgwW6 zgCmp7-U0p-pZUQO4d{#(5n5`cnw>Vvf6j1@ms2aIiz(3T-l+CIog*`6bPvgeJX27j zV9L44HdHtQY!*-*O`yrh$>Iq8GDGJPn>B<#N`O1k;$}(a=b^CwJxmci^d!_^yYN7F zpReV2R>3(vt_V4z^+u%ZFQBcT-X2%@WSYQOs#L9o?$n{l1LGrhe~OWZBEF{}_}Hgj z2FL%N7_vV~`}~@qMQ4GL2>qx)wilN;Qy&q<PKJ_nwv2XxiYnPvW>ll536;M%7OMzY!bZ#(k!HDs*TnxxZ z7&b}gl3xq2rF@rC1v#`XtEejf%dDXzRta^?x#NIuV7O6E(%ERoe&vru1+|$MR#fMC zzo}lPirAu^d)fSOz~GwBZs}V{8%Vv26LqXX*K>$H?ksg|zAV!Mhf(aurWFPu=r9mE zQ9d4?@lUSxd!G!CVd1%;HgcO zGUKqOTTZj=r-bY?BgGzvsmp zFYLE$716>2L+W8=yI8DDsZZgZWS4%*#UbMvSRNZIPsR6#4sI9a@ussbCa zU*4IJ?P_{#jH~8am@D_VQaq3pc~aPiRev0V2;+TMNeSE5Z;q_i;C7==NW5X4f-FcJ zz0X*|&7L(tOXkncK?ObPo<*<-*Dm`72~_ZwH#sL=zTfD?``hRX~XXuc@aj|Pp7B)3iNuP>Wwx;ifOLr?Gjji*yab?ab? z`j+nH=(YIi1rM|MuQJ)vwxxIMkU)pN4i2$ySaNXv^ciLSA_x<8$}?YYE8mB!JQjZ) z5FT2Y5&*LnH8|f|?;KwZOE+7U8MSu$2a8n!hs6vns$F$vdm_HHR#_Ee@gYdZC8~o# zj=>C7b;0i|D`ShRob5=5`BU{H9q|Q5+bU1{PD{fy2y}yew zp(MTmCx@{LTDT**{p|B-up_Oq1W5L7u-f-~l9oGXj_AnioDan9gCcxiL-B`{*~MwU zj4ZE%UTI$WD1iTldvA8QZ*5XZglzt2Zuu+Yw^0U7V7eJL9QalMqXQjtG>51MKqG?e z77tH+27K35q=cHW{I;m#+;`b$@+qL?>&WF|F0BgrAQBfrvX$zMZ+Es^FH1dF6WoC` zni{C$(F7(|r7UM+URj5)4pkoV_I$&92xUvqFOw%VxcQp2)^9{gwQFM7#)bJ-$198~ zLRxhGUCo^To^O!iWGWEj8Q{Z}hl3{Nf1mU|%qUU?CrMG(BMh2j41C6_)W57t8+u4BGLEsp&|s1lB_C@O~;;+p4eqtV!q zbk1OBe~L5M^-#e&s1$DIZ)V;d<=?NLiwd9S&Th0_!2$Bd8*}H7ttas>!%$zL`z+5} zIhy_VW4g-vtlx^`r=GY8!l#$c`Q7+-iTXE9=i>7CRDMe1-qHP@if6#_L9n^#jn2`h zl2n_{mfHDe!20`5-e^UXYH zO24>a_@^#X-CO32z$qu@XHVuf*=54ojEKW`gdSb=SIMx(z<=PF+iAXJh~!7z-V?y* zJsMrva7mVaU@*(CGkQA>!wfwYRy)kK%lRA)gzp*2+3Tel~I9wGD{pG`76nOvPe}bL>MAp zr}o1fasa|oQIcR+e2QBd&fIti(91)>uPbq`Av(f?;1NNsTN-pZY;K)gRnQ(?KiGu`-au<*q9Y0C)-i2bX~Cnu`80V3Qe<176!bE(trFQ{{9e zh_)lF2e!S?GzrBZt3v1?1e=y3I1Zqsh03{tEiSu5XE*n>-7qii?A&G9a>DG!_~uVo z!)fJ+7Er`b_@a1VL_kvHvfwwh-b;K>bPF*1Sh%Qu8L54WFwl1(RvRuKs3bwG5_Qr^W?}6_>it6-8Jn zX)sVy3-%PNGO(a!Dw{?#;ch$M9}@V;Nhu7;t`*!k$S54tQiu)*;h^0NX-oe0y;Zb{ zp=F#^3)^l|4v&SHB`jr@f`RI+OM~9t=JOYp5~iE!Mx}>bBx~v^1(ocsT!}IH?;gT@ z>(07L=7=~@G(ZJ_wy?_lL*I=VWhtiw{&;EozBm5?sIl20>mPgK)>LDySkz#99EbR4 z(+S0-HY~QXl8rc03;>I#VBYC&Fu2KL*;8{+9Ik+k>fOGgtO{hbIVhza-z&;qHo!pb z-&TK9_~q=93f(>;xwhvjY)EXYva*7Z952l+{62;$RRtp-%ZxCja20$8G0Y@$a4GnWLf5)sZjRszTlQ? z_h$f{<&Z`Uo(+TJR=9FlW(jF9Mj8xQKwHk)zr@5W8(xdG8~qxjPVAQ`z{U$?#T9!{ zV2H_YO_78M%wR1thI&*-*&om>vPNe^ODf8YAYwEW?4dtHYlg*=!gHKev}b`W$`V1M z)GicsG0%W5=$!g9;L`45`s>e2gR2@gY2V$W*Kk3ZPlt$GFAi$f@7V_TuA! zC=%JhW}iMm7Xb2m3i;zAIB#QkP>xI`9&Iz80TL@LSsy$N1(E6}v_C$)+2zh}0E8(g z`RU8eWSH^@x0S)-g4NAR5(1|L&Izwf7DM2bBUo=8C(F{x59dmoHI(FOj4Ei~6|SHs zbD`j30q-9tGPpeqZ>eGGqaARdq6xHAoa^%W(wUqG%?WTFtV*662oy`=<6Lwb4BDglONXba!5PP7?uLmHNs)ZYv6Q5Dgq zrNgh&v!_X)?iDt8O;yq^%v7M`W5Q+#kt}9aev-70d&A0cw}|NsrDR`G+n|)UaeP*h z3l>))wKD&wpt%uOXZK&DX1Hc%!5kY=6xNXxCU+BaShK+2RAVBKwT-St@tS%6c?b6W zI@C!wW@nEntn?Z?g?KkS3b4HtecV);_<%iy`-On5#-+UJ4Ht_G9HIOGn z(|A3|KE-ho-s{|YOwtyjoh0QobOKbi?v4oy3;QlDTT$L_`HJGQQ(ifgV?uk~s($8+ zZm3b7=|;(cc3Ms62zR^Ha6z|3p(M`%`fGZy%9$`cex+yCHypnIX1WIOL`GcMWSusLJ=J}%9V zb|);hJ>-gzHQkH)`zW}^RWVRp^bUB5 zu+vDlpJdenXDIOvb~PxR=-fhL8xlYD-nV8+*64F=l(gz=&~Rz!Nnl-@AUR~JZjqB8 z0w&6(-_JJBo8hu5*q3E(WQ#JNHD7$7V-yu+c-pz0sT&As0Sf6&YtEtUln&HFQ5z6E zU9G35K|YB-QDu2CoxVkW2~$^Ly+~aHbNFhuF#{7CZk}#2j8KivNe=0o49)bvJv-c= zv$W!U?A-f{hC~AEw39!j8#5^Nd+|%R*y#1^=;)#o|F9J#^-frZL{NsQ-OhzfGg8YG-xmR(o}wO3O!nbOHQ_7Oi%BHQOvA7>%u~1ITf~klw698_r9t{M4sGRoSL( zm%f8Sev<4#2oPI&l@cbjY~DX>42N?RH=~>Ag{q+`H=F{4V&3>fqinaeep8Wt0AXX8 zLL=y0a|+M{#P+GT^DWM6iC63Rk!m_X!V~TFRfd%(=A%i8Yp=;gmsv`CozjzLjUodylzaq88lylR;A9P9abHTT0j5s8c|qXDy$ zugwU6Azq-c@Sf~;Ug1^#?Om>4m@o_@V;Fv+cl)IHHWuAJQd-hxlODp$IJYLW*&dNC_>v%fVVp3Fom0Pu5izL~Dj{m|;RUd`suC7{qX@7CL zRI#{Fr0rC!2=uZ>6JZ^}iwFN(;MGTk6z7bw_dE0M)&uiCHrLD--wU?FB)+-HLrMm0 zv+S!3mHc`giJCX|qszrt*OSy>gCQ-xus#hv{N|QfK9(SS*PSLpIskc&_4bv7!23Hn zud=wJM8h!xprDWvTF_1s3U7l2KVhk|d_Dch$Z@f#B#-D3I>`UuxMh*TW)*HldND*k z5DlHkCq*Edu(-+MTO<)Q?_tZNPToJY35&i|&cAtSBhNg{u(39y26JESHU0pD!oV{i z&QRt~`wKzW(4K~$y&tVMu3&7$xDM9EL~WI*@)GYgp4$=4QueS5+(B7;gI`|3CK4qX z3jkB*50XfpV@}+%IEUBx zWlW82u{RS6IWc$;9~YE|5S^*%G9JSE`8BVd5)zKFtBR93$@RZ)=r}|SU{Bpo1+zaaa*?Ta(-}Yor<5~9CItIPx6hk8!az38p zSJNYK(9}B_&=A(>`mgnJ%T|*%~86iFN83>Ge$Qt{hUYl$Zo{w zskvkNT^HA3XQvgad=iBj-`V1i)D`>Se}`ku$dwb4%J%C=VX)zk!)O8onB8L>jxsVL zeZA&N<(YCfZhlF$@geYt1J~ni!VEyw8fPCZ@jc8pja-|>X1Hc`3#}N#lzP@eE z*6{RRB|`Les1tVNs53O!U8&zJ7Bp zrK&D!@-3hiBo4y6kw{hvC{s30fkjw4jB?P^1i`oB)x_lX#BU~iv5|v}Ckm8(r^{Co zQ?>O+@mlLHds2N!;X6Y@Y=oOn9eu!gpZf{Edv!~k$R}h^YQzCLr1{}?}0P?!S8u378s(<(isbhbB*R)9^j^kwxfZs zS^-(EC6|iQaxT>+<(a>R%>-fHlj^>Yy3cse8j~}HiHG)0$8tBu@aKdI-(=$vaWz|~h2)jah5>Qa>Edjbd31Km2zzbSUF8?)nY43@s|%~L z%|89m&>>{+-$CqR0iMiM4+GBNx3ara2|6VG4r(UKuOMq(VZu8tNMzcV4*Yi4MSFp` zlaLC=Np+anyFe`zsP5+3`fdFq@d3?>KTi?M#)|TS&qoeuQ`yG9(z2Sg49nr z>BV@DFh4|fXTrCN;OO_I=2$QqS9S8!0b%6%?2!14YFc>bCP5!3h##*bawFhTT7|$eGB_L5% zmZg;nG%yc@-Y%2*vu*FPXN=7uB}79@zW9X8@mYJVN!*+sh`zNms+WG7c79?Jei$%X9%A z61%xSXyjB!s%c2lL-9`?hu&t_1;$b{gfa}qw}4^g}P|7U)aHPIra2S(8R~9wz;=hrh4I1 zMQ~V=i4$0pRXiyfqfzLZF4^615)7}*9M>a<3DM=@Odi$73sF-#4{DNfKIp|!JxV&i zL0n3Iu+O}1)*q$~g^8y3mrI==Ez4DT25^Lj<1Um!%yvz3&>~Tx%g2fD{kyFS;$gJi zKXg^nEhxohZle%Kg+eVeoi@_?nkSejXaDf`>$i~y9H@Atfuw$Hiv^$U)AhBp`r<)_ zdMB!<#}mm{xrSMXd)e!1252R3X-_jHT2F0$2TtJyeAa#wsGYDrm@FV6pvYnSg;Vch zjr;YD&4kd1*vHs^6JJT{|z@HaS?ki$@| zj!P7_S*b+dh-ya_dJ$M1EbcL%t>r=ku z6Icm-lE;z{%D#5*WwaQ@da@m0tI@NRJ6JxR508`g3|nEd$WBHjJaJ zShWokJ@@D7G84-E{d>c*SoJ_3n2E#g^5`Qu<6#8v8)GS@mVJ%%A@c!UyjVkbKVOCZ zq!Ra^PyoQf?sR16ZRa+9QQ)@Fw?H?{UC@61-{iX8qO^3%U=bFMospfC?n&f+YRzu@ ztSS!4s7}EW*4;rH$A-$Nd04->+Fgvd@K|T8*vC3ODk$G7Rb?@3 zHs*KBU*i|2yX~Du#WJ9ZlSc3SeN?#zCsE>0iS%AMN6hDH3Kk~l(>LYViJkaaE_&1% zrL~nAXkHc*L~AXwq4eFdJ`i?X%M9XH0k>Aw+|_mmG-tLK6c4Ve1~2mc`L;b2TPL&TnFG)rcf#4&v8jQTKGZH z)*M#beN7R1q6IEaio=TR0Tx88+r&Ntetgd>QgADVL}ZdX78OQemeu^6dDJ#<+bwae zOYq}QgK0YSw>47qs-9@W-r&CF_&n9bF3xMe1Np_ zHVsSZ5I4&~M4bR0RR3}{+kferR=9kK7o>@jmQvHvG~u)s-1%>lis~gl<4!hbtR%8j z*$dlcsWU(4sf-1kMi#w%>_>JvZn3PbOH zVZ7i{q~Win&qytaxXL_oCl?}X zoIhe4_~0@=vQ#SOrl_|H=jB^iV=V?VKWvRT28*mwhIHQM(EG?RNR-L#tI7@$4zZf6 zfWIxc9C8>{{eaXeXMmgy=b13r+tBJ~Qq4Pkz!` z%>RJEU538jyOMrTizZ^;?l`sGfoo&7v{HOT`_O zPOrq)S6t@eYSrf$8d=p9H6*9GEiMLp3_^yuhlTo#V`!G8$$quxiy%sa#!l9?Z=i}8 z9MZ-+Ay)aG0mMtF^Os+CMF&j}3doykBxi}&fZpw$s&<@Hkp}VA;0`ZL9x~;EE@Pk^=7y4B7s!LxONvyp=-+lT7bp(PY zn2|Er>>Sv-G@42cV|sI}YX=_9lha;zOH8iqY6yThR#D(Yby=rN*+&#swl4k>FUAA? zWyRQGZKLlykvxab2fogm{#KabeEx0f4{N;7wTywjg)5C&5bwAdOQNKLIE!U5;Mivb zkQ2O}xUD{^q2ccwOYf^%QfWyPE%9c< zPT}3E*_=(8{w4E@tT?(o;eAW_*>$NbLA<%a7O$OmN3wC+VLbeUpRj@Ac?S+pYCIZ| zh5wLBox4}|m=zC8XBn)l0{t2AnQDdHiEjI;Q!DQ%u*3?5kF@rS{WQmKTbQFrn`w-RsuSKK?=>Yp1n~COhbkhpIq$& z?yF`I45;gSWxXtPE}Sb?uoO`RH4-<|O-OKr{zsv$|Cq8G5dX2ENSTXc=2eRtRj;9w z1(ajbn@9>DpFq-`v*n}7D3xiqj+*`Qf1;U-u4bE(pB6~8XDPU_|J0=J4T%r=j??dD zl)>04zO69f?Q*lpLH&a{b+OhBuX}nLGk!T$8(&~BH}%=-6doT86|7Wox#kSp;tgHY z4q!fXW6_MbbF_4qH6Ci&t(n5+%(<2%M7m$ae;VxpR=|Ja$#S#WRZg-}CPYQaj!Va(Mh%4tldgP2r->+!s zM3ee4iEa%KMST11Q^V?g%Ap@fHksxh%Tmm*j9EuR6HL|XMstG(0=w91OLVfJ!~)N zFaSDK9;~@&yxEF)QAyRl$QBa1+BRdZ-Ot09?xv(^K(7v3(mO6E! z^bC(KH)OCRkIMyER_Yp0D(V|c#jW0_hK;j9DoZVee_1zKcg#C44gM8D#$C{5`o4zf zeRiJAqQ0RV`|ud5SLr++E2e+g%9E5&lK#1Fu}p;I@+a9N^EfQDWfrtjIw!)j%*DHN~>&LQ&Y`zxrz@972}8WiJ%%4kRb(|{u=56 zyg%g7-JXaHEi{0PdGMd`J+%MI6OyenW+baAm|WcDH!<4TIq1XXR)R2||Mczg=;Wh3fxyJS|uhax3-&Hf~11&|}e(Zq+OWioO~JAT}B8hBa< zB%>M{v-W#oiM`!s*N|T}v2iYKofB{$V5H#33*HVd#V$1m$KhEjdaD3EA;+x#JW>lA z9M{)0@$lCswLiV=KgVh*HeVCZOuXtvoGkVwMWT%_e`k6IKt2ox7ZFz(j)NHAV~{ka z6D+45AKf4mVr$t#xh?fM#jOps<*pur<9KT>rwyNeni<@%<- zUjN8&vF=$eR^6__8dO4&SEuFS2cX3qAZVb{6k3W=t~_&-nh5|otzpm5xcgl2n-1KE zhDM_VJ}PC-ul`R#FR#Sgd-hE2OYhO+5=Ed)y0eMBumxFYq-HHyc zE&thN2yXgBV>8BfNB#Rm`kgNedv-Dx1ecnUPar>z>TEAY_#4;?>?bXLko-*^yYzK1S(ur9WstoEpk z8B4QNyyibkPtQh9;m0dNx6aFzmV{1bPq>m3@;=G3ac=tu66sUI^mHX`V4rvoJ}z5e zg<1cX3x82`jMsf{<`ziKikR0*x8ziHwQkd&MlldT#|(P2k(m7EP0VR3qPAmvM&Or) z5=LV##ik0(4`xgadQcRg)uFEsx|-ThK`Ehq1Sw~%o64~&&MF!?7_1HvM*MAf27Hvu z=&252tmpZReV;N60Vmq*h z>3Z1WmheR!ZC*=S)IiHXi)PM%SMjI4K5Ei&-*R+_^|o#jyC#q8&(Hz<%l|^dT1wGd zM}t;`&jyLnl@-K2bb17Z6VOPT(0+Ni-?|*KE$UVR#f;;%SBStv*b>{koiC({RdyQk zMgBRdE%i;l!n&W%`eg?J_ zLa)#}hGEU;qO|L2yil@^X*lqerlInBqoJ_BD>4eT%`L)YGl2nI*}A)N@>+=);_p=E zP5txMby+G(E6Xz+#8BY;6h3(a=aUj7?}&&$pOBKnWE(vbfC}6vwvsucI#*~~k94PO zJ@I8+Kg?ozOi=v;V_5SwosM%+OG^*-%0A5*&QyPsv*!AU?)1V~S_WjFx#OrkO(Lhr zH2aWJzk4ZmoWT3J;+og-CY495ej?FwzVLR1$QGdye(hy60Vbm1B=o%8c#}hB2dxi< zBVsZ>*EBvAhu9}amjNM3WQLPjuQ>&o)`G#=(&JR|59-C!J zeo_K1SXFec8fx2g=d}DQad@!*8P=nw|B=ayTm93elouYAJhw)Hced@Xujgsp~S9E+O4YY(yVb^yKuIQ%D({GoiQaIvJR6FT?R{U+rwWMG4uO-Gu>jP|@35`sBk0-gi>DAx(VZ#(yIsMmx9j3A@%Rx|Ez-Bq( zOj`DaO&(NaO}L0s@3*$iR;yT99an_IWkHFyhdhbU7LDM=p&yVvkHMH-bu4aBAX`k& z7ImK^Tokn5XL6d2TBdvd`n%bOa16iN+UyGaH;dTH^!@H9L^66cf6i+xAYYmQ@pibe z@LAw~Ye0yTVtJGApnV?Ch2nT(#EtheU~d-X^c8#I=h>CxGN#7a=4s4Tn!D13d|jVf zKT91w-2nu?9^!Foy!|OST?DrBeu;zg8L)c0q3W6n2=96Z%qxG?^o6pY*}Z6_zC2u+ zlGLxAYfHADqw$b7u)h{!W_k?Ib_n@1KW6_Xm{u!PzbYeb&}^3HGlabAtbh(C_v`xR zNUJrKQr)B!y8ctj58AqY7&uLsQw^E($f_l{03&-=Ynb}Dx;7H;t$)+zMU(CZXWq^V zB1>WGT4r~ZXOSs?y{Yn6z`a8;?~eWxX&qgHWE=i1*0)W{2G7W%Zwi4zVD9E3e*t8LQfuoDoSMylb|# zG8~MWntTz>1KM$YC*nGMJZtNJPSn>!iR+!wMUS(vbska`JQdw?s}pLqWC>El#V34f&qHf^Mnr01!u)~W;YWjOY90^!>^jNLAL{;_mrVDb zm7~3b0hX75{iHfJIXTY0z6B{KU8tCs24;H1QeF-?iV) zs$Z4HiH$0zyMFM-@FBT(qTySSLx>CgD(Ya?WwEVR-T6o4?lGTGiI;oKB8C$00WKsR z#YWWiluXZP@Pt5%ZN}W`TCrx|&B#ZkN_*bW?U${xbg+Qq!8j=@?=j2v#n_(xoWX4M8o=5H|wSC3^@I z=6cRuT_+xSIvQG60lhIi7MWt2eMau1pvzQsUn+KSp)KY>aEfd%V8ccmaG&4f2REt- z-gH`d#omgI#_+*^qR^63M^BLt^h+){bV0&S^tk;vpyi5_5vP& ze-<$&2d6=i1A2`%?quK>CqMepB($1r`fbVfI^C%<-QEt*P4ZCmW<7z;g&5s$IV$&L z*icVAx%np|n3ox{*BX259inLhv(7B`q%a;n)(Y1sSQ(NRT6EY&Q-l6~p^;YbgasLC zJ<)l7N#S?&c${ooHe5ud%W~&+q9UcB2j0@;HVlwc@+^1ogzx7#chOTAOPdH!q;k`b z(;#x(>A&aGu)9|^n~VYUb{TAFIrZ1}p?N~5MfHAu85Iu$wp?nu;pdwwqhX>RbdT+G z?>(9sWw$KLb<`MmHhM*Z<5ui16%Z~R7;8XM{s(@Ri$Y?L8y@WM>=H@N^?qJFwZU(;xvC;Vg9qRQ8P;l{s+ZQ z$$Jc4IY*AQN2*4EfwWB;67h=ldZt@lhy33Op?#1sO8;5;!a+iDMa6?YbhHU`%+uCe zS|D2TQTb!Zl_6190M~!wvdTJA40kt=z9Jra!yi57rKoTzYF12HSE$I^->m;PMN&?f zTiLFG$D%hRj_xJ-NK_X4qCX_5nreC@iyxlUpnIe*+s78fxaa%P98{%8CS@iugmBtNs7T< zMX_=~gQ?8x8Q}({?m8tt5iElHo$A@!#jocjf_>E5<%Hl-u^fS7CqxZb4=o0>i2)g5 zvJbCY(kQ>h0^@-^uUAa?(eulcV<%_BiIcQkl~08B#2D{?NAhvesBsx!69N1s4p5Ou zz4%>}NOtNWS>%`<)5bZID{Mk_kBIX0OU(OG%e2kN?PPGN`uYbMod4!=zkbnukf}EU z8IQh$m$}Nar?uhl4iWx|coim@kN~Dt(GIoO`)G>kB^`B|ivcB~L}v}bndlxrf3+c_Hoxpp{Tq_ry7XW3Zkd5HI*DN=LtshY0uEi3wN2zC z`VnIG8e_Zo9#$0B2y<%vd2pdGoZsWqL|E9a-0;DDk73CR1FlcxopYFNi%_hlA`mURvhOBiFWD?wSah?I_svS>G|m`7HV{s zVNQhAy-Ag-9F;7u4~90l-lHmZjx{&nr6g&fk|`aIBq})Bg2KBXG$nph+yy+~hU04uC0=g#YgK#DtsNL_g1#ag5$ltkOoIJa(zWz= znhGf464I?TL{ae+stMUB_923>&N4HO4u^H!&-Sgz-D&7*sp+Rk%D@~D*~cTe9=auB>Pnl0kV{`}qKcWO zK`D*Th_UAmz;npp^XZ^eamQ0N9X-Ywg)|VA1~|!+mMp}m$rxtujB&5F4fhM`+i6ls z45CF56(xYd&f+v8RbYoa z4^7x?AL1Hdpte%mA(on!dE}>-c`73DC-FcJ=3uA$ySETMGIZh0k8D&s6fHEPHrF$geAmfN%vFnQy? zjUJKe1dqj=r>hkY0GLqo?f2BriWZulpQxnkOEd)1w6VupBVw-;=l60c>m-XB*eeS$ z3J1$6$vh8DYd1^XAZJOscC}1w%K4!lQVtLB>d>x$(^e^9NK&q+ILOXN^wR}=G2CFT zc+@jUzc9GkcvC?_o=_QiQBvIZKD4Kuxe=$f9H*UnHJ#{9A-9>SY>MitQ zsyN)E%MBXHfw(v<6B)rDuA92Uq^)<$mAl2Z*W6|@EKxa~VhAZpg;m9y{r) z;b%fg({JO!((glT>Im9d;aLj&h8OonK_il6B#^-d7b~9HMaCcmAoD85veJgb+X|7% z%>e%Z$*zC0Ex?f0_^=192p|5&uR6;@Q`HofKf>52wtl+QS*Xf`;gRp=KdzXxKQ9uF z{gr6W4Gk|H{{Y<={{SwxOEs283bYh#a85o|J9_$R?-rU+k-vsW&T*5eO9XM$_>uk} z2q3{fhw1hA(hV1t-cTmd)A%RlEyMx1{^C9dztf#+);^v*8arw9$AF*bs{^cl9Q3U} zP(bt3r41$2?rN%fc$!4X#F*X+`udJCPo|o>qoQn`J6m5zK}OCM(4m-zaHV)4f%VU} zmf;)A&k~ed4^9!EleT*Q0Pa)#^|9&RoH=7bY(DsffAebIew3r5prBm}mAyw;%pT z{{Z^azr{a>uXKs*{{S^bLru8U$x!Gc3E{3vmh2RryyHq=4}KU@Q}sQ%o*TtoT(1pK zsiW}Hrk)ZZ-W$bJj2y1hx19QEg90NJ!RaC|M)cbc{{VAaPe1*r{{ZIKLD3yJcosW% z*Y_>|0Gn34-5+nPrVT9}G(sWaIZAaH9*2SS@9(HX;axkcPAVy4j2y9ip52BAsnh4) zKFmtgbT3X3&4%C4{{V7-{Mz{41=D+Zuuy;SN&f(wRs_Ee)wo7Z`$Hn+XIn$?zIxh& z3?&gp0Lbt4<4ZAYmDuPGn!(M6i2nfLasE2p`V!1wFw;>jGB9;M13K{gLtvcXkf0Oo zk?X6QqP`4TuJ?MF?v-YumWndch*^_-hZs;n&jTm#jXJ^bpQEo9D|KD7r73B}K{81p znnK}JmD|hmPp__Y4QA6ERl0flI$2_X(nOG~4H%5XcNHsu2LvBMpwe^?O;00DEs}__ zJdn%>>5X~@_3+cBX(p-pTM|JU@N*=ijAVd!aofJCIxmO4ae7HE_708sgIQ`5$k9(n zLLLS{+!QP~I^(u8rdAM&VlDpw+0RSh7O>I*kMFnnYvTMm=~I#W5|fYq>fiZv%hQ+s zi>Kr_QtJOD&GYE!y2fd6ilgmM5aA zc>v?eShHXQoM%tGjv`bBR7>#ZrMsI2H+&!8AN;!5d^YJ~4lI<}@5J4|`E)Lm{ko#Q zRnpd6<(fJP0IQ;&rZk#0Y!SC3lY^cQ>8nepWa#_lilXBMqo|gynbJ0fO70xL2vw92 zK{?3u#*utP5EG0`F)j4-Qh5F$NA(Omq4|WelJzFjap=@9pi_W9hDY zW}FsCnBbg{r)c%`?V?ol^mNlKQpqIJ1D^~hAAhc=)Lo_|!{&uzINKML4^F^;T^8^3 zi5|`}#wXQ@(aOlAjPZfN`s-+F-|zxdw*w81{9{w<*5Owm2uz8$km-%1p2xZGu5|W< z0awP%ncL(!1L=?FskaPsD*0`@B0;N?rZ*5fz8ejV*%|);KTS%bkyNRd#3~p72d27K zP`uHXnnXvBEO;Y~@r?a`oM?@j7(>AvRRM!%#6mZ5>PNPPoNa`ao%oCv8j5BnG@Qx1 z0Z@AVdE^Z>#q!iZfEXEh05=4C4}Bt3LsFHoy(BWoY0Ck%LC@6tXF4E_T|GoGRkV<9 zeY^rV^yD5jP1AQdnpNAkj6#*v!n#7x#~QfcWbJHv>P;oQBt8+DnQ_VtALpS_MKn_i zX{DM&7$iGMlHSAl=+zw@ml9);h*AX`ytpUy_tb7MI?0ga^yYn%nN}er6H5;7#2g*0 zGuw{GL}_X5=@-dTvWlr3?w(d;L6AEiPBWiQJpQkwV*9mUbal!KK zStJXM&$OJ5IT-u;{d5ginb1iV(OKlnH7ls0*tH0f$_Q^M;D5?bsn=;LXlhnS19);A zNg-_GC%y)&iyh`D5y7Q-B?v)xjDS5i0C@*RqPbR7QW}aFGZ-gyq-2xo54UekRBbU+ zEUu(5;vcH5rHnijFf~E!OQ9s^xgSBOhMGZ2$YZHw{v|_?%ag{wP}Q2XMt%7ng)z73 z_0)Q(U};&+SZK57jq~R|oT(grG~i>1B@gldvSaQ_Y8ka&!1qS&jhCqD|KnR+4R$mZ}LM+7-*w38N!|6mB_SKfS;?;XvfsJp#7QmaT4? z>Pnh)vRo&X;H#c8(9+b)O!UmNkT)$f@kr3h>*kL!%At&VTB++!khIz_v9C+r9^q-Z zZkF5}#??p!g$xrUY}l0;W7BZMsM^C=PMZ!4)CVIXHuQH;$JKpXZla*L)KJ~$R;8xc zz9LWJZBtDMBo%29rBI}>W@J!D8Zl=0hj{o&)-;qCY7-h!Kt4ulh$d8;mO=ZuHf{%N z$A#xO10RSSBSrA9uHlL*sI06D1&|M#jU-YIa7IA{U>|v!q@0Ezd+j*kBTVYpXK z4ARaj=2JaJ9F}zPOB|tc@@@Y7j@{ViJ~6~ESG0YT;#X3km#OWR@~bq-B{_?q4U#sW zXg$J^9f3W>Y&{4IU2)a){dd+)@eqnNi%Qk@dQ^cs_Hw6!oCbNA~ZQU zJ|v?6pM9!Eey2}g5G{0pqqs!Em7$7x<#?1X_2YKp21@Ww2XZv0@B+7|x^9;HQEFlq_l-a9QBnA%GuQIzTa$lr?=5ji7A|^-z*LWCK<g=H@MU`N+>X!Jg7k2Bk>ml?!TZJ1O#K@?0ohLDmNjN=Lk8rnvU z=8cLWC<73A&WL<4vDyZu({?5<%8Sx%BPE zqU9yRs+Nv5SXu`uTI|XWFrX@o`|ilw>77#D9@i@!WksH@=PkbKwGPl)s=Tz)NB;oa zAF*T3?{YKWCtir^3#ARZ7fXbQo=o=}kK0~o_>p-hK(momyD zZOFib!5`(RG_^F>3UMrMvMTYo9!KS>Y7dJQIA&@x=s*F~=LhOJ`sjq;5oqXz1${cr z8%VM5D&4pRk(ap~oM#xp(=fy^!dr2=Ogt%2WOnD1okgU#QqVIRC_<=JQ-XL!yZtHY5oweiQ;>TErGWt^0ju_BP6>WE64GAkFVcMawB?L zN9jJKt-sh~s=L#et7!=F(;G~XF~Ui=_;Zd&q4v(4Ej5OYZ{BWYjBNxQ<~HOXsMSkH z)Rfi=m@YmT5iVh>jDHkNFyrnp7=2e7uxak}a>OU4sg2AyWeP``4|V?l5val4!H2+- zB%*q2qE$6)k4n`|QjxD^J{d&=9E=9<&UDx-XFx<%a$A zoE`x@gQ?W@k;IV9PD2hs>`$@wI(Ve2x1FS6Id+vrKoy+`;f6H-r$}Nh%hm9ll)z-c5(+8&l>w!L{X&hx9;}_ z81ARnQDT%SQdoJ8d*mHVkyctZRBW>0#s_ir(`N<{=5xGSBI=7BO{ttiQ45Mm8`9*Odo9QLfZA5g{z@LasOG)iOVrI@ViiTg&a*&X{AR~l7J3>i`(1(09^`Tz$@inVL2K8Uruyt z%vI=H3Q)l!5V-sxuOI8{s8y>JQ^=qdMm{HR;Ul-|PNWzo5PLx16Q#La?R61a>FOSO z+d2lGH&qa`>|OyooSlp?px_*w4N$!u@gnDB_}G;cmvy7F+&YGyD$s>Qa#AF|8iqco zv669|di!hAZ)Jw}ExjulMI|O$LVt{Bx9P{{sg$-pl1XBPI)2sU9%fnyI6Q3`E1cwd zX$&qz2U7j!)5i3bQc{x4WQCGYxbtA2{d6zptELM{8oz|DaIC|e`#+~^&ms-~GG zN!`#-D0~ynM?aSwYo|!d`zx#Jt@32USf!)E#!2%p`06)Y!bZW3SIZnNNM@cgt0vPX za!5i(;rXdLxMGeKREnN8Sfc?URpC_t!hz@j7{;slk{QuqK5*Gq3^^kl{#rlN_jnlv zny7|&(5!0w_^{&zN%bIPAEpkKEshL3SG)~)w)`3R_i3%RNng{wR~;enrk;kb8ky-E z(=3Ft^Y6j*)f?0u8Pq=t{#&5yR(r2c)XuACxiQOArtn$`Nj-oEY3@67!PQsPAK9DZ zufT7MwB2v;B7&~@YZZPa8KjkbM1`1cq^pdON)hER$`Au(Pj6!UP3UVs#Je08i{FkC zj;L3`40Q~#HA15VSptw`KwCJ-={{U## zEybXwdV?J}DuNXtZ9)iqXSN4@4d{t_^QL-tu6ow0%XqZgsc8_}DC?3&QQ4>1v@PveUToIos_Qo`aUW+F8npK7c@?;a=JY!zbr(olES>*b~ zD0cG%QC+@HrR8Y+NA0|^@(+J)9XH!_)a=u`BN59f1^(kpA_i$*Dt3_Xa=sxRR$qUv zxmHj-1H_JTBxeK?NI#~p6jnUUv16*>bdB^C25N*A6B3QUa-%LiKAN3VZWPlqQ>0)z z?^j?3(mjW4;PdvC}=4F`o*-qn#aOO208dD#py5#&Amyrbm566>9C`MTg7c zL!Nj!0FO;BPkD+r5yIdcatZt-dhzM}^%5SbPaLB(+rTPz@(=m(pjuB+3AHLZnP9zA zcyZ3q0wiEq_ah(Sqja}gZK|@v8jRpE7$j=7qUsuTmHu)G{LU2y)3t%`#~9IvxKbn~ zUP+_!@Pa@HZ&8uPH4D|)%N1%eG7M?`qe-$vs4*CU-~|Kzx`iduNZ8K{v`7YU8yO#8 zeJ0UeV|m^=o$|+UQp|q1I$lTz1~06VG9eSzaV>7< zlVp*&%Lm+46Yr+)pZ%u~%+bcOIuVf4anJm|zkO46^z{^E!}89m&PkDh10#%oJsRn| zoXaXf^GB|%X}N>5WL z!m(C}uLS4QI!BJatyVgSYVdL!Zb-oUeY7sV^eLUnJ0iAD&Bq^8`RbR|OPQwH)vRV( z6$kc`w2KglU4T~|g8hbuNo}d4mNkfp^PX@rJ-soFB0<)b$_$F}_+_#HY;7Lc{{Sr& zhp#7^A(n}1FjorL&*!D}Yb)u}2iIw{lNc@+2xxH`sgK5&%EZX0ZhgO|pwr)KEo}QF z1&WecPE`8i1GbSXD{AMfn&njTBJSi806hAVbrzC(>Z#pnWfH#ACU@+>10htLWSrxV zVXG^p1$|PZ_<;@S649dSo0Raha~DC*_f`O+`;YaVM>i_dCxsni!%F8HT%EuVQhW2H zif*VsDv?!A%In4gV*?()U-Q=qYilH@Ga8o=$V6ze$^kg%)6+sUxIHl(>-Pc9WBtdd z*X4<&G}4H0s7o&9Y#g}Y3^8joOTicz}QocY+4PfOhu;4N{#=(sv%6of73q6TvxcZ`f-!!lDgQt_Ud7YN%u@8=y&(Ve>Eqldx_9%J$0V%5*EOx?cYP)AcdYQsGu*yz==TTT87OKsgAcBGjnps9(BbHghC00N%jfXd+Ka^((q*Ac0$t8-1D zgF5ORY(Z^&h~a$c*zPe3sNzFVi?z}*fg+CBAKnAE>Fuieu9v`X5e`>89at7?{kEc0 zYNV|N$Y!VA8w>&e0K4ZI$8a;8WO`~BQ`w=!mC+}XOo@;V&Hdr`_5F20NvW`9(gUtU zMDe!qlD)fXC2c!Z#s`hz%NZ>U*bHNDd>#n*9;00DR~vo0u_)^5;Eri|jyW6x`1S|B zr7P3AFNT;bc>|nh*Y(xR?i|Xehz^-7SE*;9y>#`kTq$wm!7Vgy2tS5c$r)(d(Dw&} zf;Gy2hrJP2nLRZ`rzD-GME?NvSbOS6Q&}pmQAKgH&MEIU;$DtZ_+LMY7xzc)k3)m+ zo|Zez7rS(KT4a(FA!z1-i49LW@bNG`h&{9Ep$Bgeak>Y8g?$NA0@KMwRT6`RM6Qsk z<0pXG$8vu&qO^S@Zn1RTMTW~s;=wfHsHC!C-N8~6IK~f=a7f^ebX`PpZDNIpKBG7~ znHr23n*e>d(q#=2`gw@5d^hOssAjy%_g1N^a?;K7jAar7$Y8+Xl#FB38gNT>`bkzu zx`o-JLZDAW9GN&B_7x}7^BRkDN3lyS?iiX%NeKO+8Vr@}1ww(}0|CdXfP1edp`4)- zMJFU>SRM|5j?zKIfky{jB##Yj)!Ry*j;b>R?BqJ&f-!^iK8HhOER4#;fsjWSAdL<)#3FIhS6xNYe-OIz<1O<4 z0Cu)O$29FtPV%BgySFTTxlY6qPI*6J6Z|6Th@)huOLK(qvaXGDqDHz| zVHHzCxSEXitcSTl?I7f-_v6=zR=dp&=7yf@ZmTm=)D6+f1_&d%F!W)J5Oly0aS_3k zl>Yz>I@X?4r&|q8Lmya5$QbeJ4;tk!!;Y?rw$${6z!fJri+&HUZ0peFgdi{k5JAp) z#)_whR?8_+lJ;zH3CHv}(Go;pif5H)>3fYFf;x*WWGs0BshxQJHLOBQO%2A@l+iqQ zArY226o-yjn3R!Ebs#gT9g49B(_W^XC66kyFu=eW(%t!O^l2sLuFnm0P^dL%)avfg zj_xu!WEno>0zI@Op0J7zlg@&P2+xG0KIbHl@YmI~BQr?s%w%oHpIv%Tbk|5!K@9NN zZ51@t5%`fy6*3Vb9ASqV`~LuE-49sCMd_*$fy$s{$Jd4$aM|e_%Nd?z~NXtXbb6h5!@51Y@!F`s>jZUkmyb$s*5H3H}oeM1UXWb;14*^mOPNC%LDI z%KreojQ)jmx$Pgz6VHNzp#~PRp^EzWnZ~6-E#{fo>FXW<0NJ(4 zNQLR|HyHi0k+>hoXk~A}iK?AxDZ0WMXk}Bq>S&G$>=lZ)3-!|6V;bcxQ(u0#TpU3$ znIvpTNWvd>`+ts&L0#0;F)VboVo|kXByL;)I4ATPwPXIx-DO7+jth;FLyWhYR4jXX zryOg9{{R5KB*O_b&{||*M+;suKDa6~`shpZn1yG&MWyRruZbFv1atrf3n%isE&D<(?qTR z02(M#pfknff5pxS_wF>8NkL6nD#;`fZeBx<j`RcKj-$^H$NR+py13353 zaj53gNe~jmn3^Y9qmh6tk^&0jk8m_fL~>Y9NKpnxmHj`>XB_>iQ7jAWiq=t~WDyhn+arCT77Q;)7c$3@;3S@ML-6DVQJ zoq(JikTcu-bu|_Iu`C#=Q=d`o?dWwHq-H@@xmhGn-W75Jx2Wy*)YwYPPa6j%K?vVYI6u^D zl~i*}NNLb<6K}?OKHUDALN;d$k*JHujyj2Uw%G@pzhn7xoldjU2;()fC@)ihnPN)E zjCVfd{+fW^B$U*_Q3J2;7%<>-k)rg{xV0H$+E$-1^W2f!`E#UtN1Wqd0;hgSRgmW` z*dL~}deLva+G~^mBA;n;N%FUB{ee1*RVx7X4#cSpN`c&rai8_;u5(2_Yz9dRhC{fO z;4VMurvu&(#$A*OYT+^~9ix>wIAibnYAt%Hb#x_}91`f*Do0`n_Ry}DzCBk>Qq$A0 zYNbbxS8maOc7yjLk*(ViD2xq?31UZ}<5dXS*p^h}W)p|vEEJV8&|fK~kW;F+%~Qv` zoc{oNG08tw&V95xr{mYccSANXL=i?uemv#BC12;Nv*H{Uo7YfRTȾRn_wNm{YKBdi;Md0Bf089rfxz;mfq z!vNMgi1qN|=PgB&lH)W+o}%mH+!~#~{$ItEzTA%ZE&VjrEi%0|(s`pSrDBW#J#mtM zo|i3FwWNyCB{Z(PU}aVOLueTzpT3%<4xKpis}d%aWXHGzAD)S^66ZY07XGu2^<|ch zbwgDYPN-J_`+18FIUlZ)E_79|ZZxJN`-OLVBGbz($;PYEF0G)$V9s3wBv1jaYOMhXtr&l%1!rP((I zVxu_i>78FrMhwYwwXz}RywX=PJl6D%p;%$!zyx~aW1jkAw^UQKDk4GK1da}U@$00D zVk1rOCf`zUM&GB`MJVc`I9f`*yPFvVXFmMs9RxJEgBWXTK3YYBo}fq@4oe&_C(vpI zOcx5770-wy$t-(<0sjD}`t7L83$02d^$uHwM=g!&NYD83saI*zlAT_i*9CT~FTdCf z;~77Z(gOqm8J{4Q?E=eBB;rbpY(`S~$rvMoe%-V@BPK%*{OH|xjIqYBHpp5rA~z&( zdmQ}_*Fq#Ah){3<1P^hk0nDyOA-Zc^MuDn@M2Ro}?HrtY`~Lvzu5^`CvIyh^G=mJ; z!$XUhw|_DB>-^?nGYL_ddFnP?5~6_JH1# z(lWL77}Y76BoclJH)jdYpwt`fH0FfV)6~j#6SxuCeKpF(LswW*dE@^8cV^~7*eCse zj)>eYa4gS5Tv@!kcaOw` z&mHuB=S6RNKN>cUJ^(A6u|A(tdue$oY8jXm{5{Sw$EK%73?_ZGwQe!YCbg4JqG=t9 zAKjMRPJWpG09~~r)(LeFJBB&hd#|rJ)Ho7E0hzet%jj|MuC)>~l8YHeZ$Y3w!c3%( zQ%O=vQOZRrSxaMTpT+gpNCfrn1!X}7E*2x4^WPtyqf)>W?w32g^UgHGMQx+0jU6XD znB!}A$<%JaWc60o9%M$ASPs}_`V5YE_tEP`^KvCT?n~qkG@idhkEW$ROH-@}l@lm; z$qWeNAJO zYU?47!)Sz_Od%{e?ScI@-U=&qb5qq-p*R93ZQFRq1dqOn(@hn!v0m8mw57tt(i|*) zgsJ=Up8BX*CkxhS1U7Q#iO;J#KHD{sI(qd+D&DOF3T2beO~(#S4#($#`8T$_<<#9X zap?>5&{mmUc5aG5aJ4Z5kih={_QmXdf3Ce%X?ptjO&!AG(KwNrJiCmIpIrAp*C*FY zKNGqphW`L;6txq9RZ>Z!pBzOx0CDsU_)p(Hn!@ov4;tj-{{YZ*KK}p@-$}XQ`tPbX z5B~s}?d|cDGb-L7ON0!fz6J4LX~)bU{{Y@DKZt)9{{R=hnk*N^zEgaqOET5MKX?k~ z#*g0~`8?yd*y$FW)mv(s60ZdG^5mc!OmYU=Sx2WlGW-1wh{%jczgkn}>S>=d#<~5| z_S^^e8=2 zxJveZjJaH>X6p+VS;cRC8r$S>7TaOqpM zrm|-6E_Cw73{p!N<>PGm-9~#4GW|fys~3yKiEZ)MMN)_^b z2O8h1Y3&#LJ)YkgyjyB5%^ExvExu=pFm{!k77euEZU=TaI+^`T$5|4LH!?Iv7|1cQ z5I}5($SQdZr_>Sasfx(lfHHo+{6O#APA~XPlVa*uibqE1|P+u zsT`#3@dn|aDM8MJHh3_x%p{vg$tQ5{pXZ@*ES9T)p^-tMs5zx#d5w;97xK#cjE_O7 zYO{lt@XmS8O6OYE(+cW&D5~j;qk)jG>_G&2f(XbXkaUiFMI|OT0muYoFgllkItbs& z%6pGdp!CyA7RqYLfs+SgFaXL2cE|UC#^65VgMmCsc9z|{0G$_62c+L)qY=*>91Lkn z=p^Witld*X3rS_TIQ_Xv7|(*_;8sSy!lt_81;UamVXN_}u~AbR#-=)& zah${%yD>X?ABQ>Tu^(WGY;FF|M(imGFKcIPh_jMuSe|j*q4x6k8ZRobM44n*yfNZK zH#v>_5X04Z!S@GIF(q(1$q5MM~ zkJnr+cQv+D8nYjVNjvy;uoIt_n~yiuTa2G#8{bDN;EoA=RU4v{hQRJU{^LCUN7q8E zJ4sn(ePD*CrEdeIox@q~ay+(IJ?Ur0=cPaLk(N)OBe>I)GMQv%RoN$N=f^)%7d*G942pu{zTKfx<{NWRMBk?e9k zG>dI-gasK8secg&!|w+hMgSun{+ik}m=s1*0|Hd>$J1QnnmGWNHVNmyApZca4!b1d zA~_q3dMn-ufUnGRGnAx`@0x*3~vDBAR;Y6fzG6?4y(pbz` z-c~M;>%b?zoSB-UmQ+$# zC|Ow_X;bf!*y^O~KAO7TXz4DUGgI>YMQD)K+a(>Dv56pW`6K`X^$K*|&>ekC*PS|- zSSkD(xJ$utqHL^`^$Wuz1B`MGqGj92h&MQ$>npDo_XyV-fzM|lhw~k@&1t+taEEy+ zvc;1kD8_qoKAh?@m?c$tDPwYYUEmYXpw70ZN_tm$DQRPk+yH!?)cR-rcGG4#!JMln ztHV@LI>|gln87#_4_MEzVaL$m>*c!TZoVutH5C;^6RE(Sof*{Rf{Y062q68nyLbhp zjRw-)`QYdvwoOBJsFI#3B&Vz*s4A)4lMW>9?gF>mHlG8igPzf(bgxKMK=6OEHg;JL zEAmjO@9%-3Ri6d^8rJTW`ck5u$@6@jYsNn%50B-eki2u!p?UT*A>+5FAK|F!S5VFs zYYQ@*09(JlhaAENFVy@1_l}$D{Jktay}YBp)Pwfbokv?M%&Rp1Uk}PlclI6hY8t5a_(DQ(zl(UzbR?0|7y-J8 zS#;;Yiu(neS*^WyP++IrBZj8a6p|ofPva6OVUyno`tKqfwZN!7} zElpCr{{XzQ41R-LE`3)$h#9ZFE7Wuf`5Wc5$jkOE9^su^*21-n{vApmnE)s%0anhY z%OQ%{fIPwj-$LXf?m>!Y*rD;VDzv!UPPgQ@UidG?`j(H3(xci0xgN+rT>YkXE zhNcKQhS=UbW<||xN6f$Yy^r$M!$(z#8Rmup?|~e$C}A5P#4>U~J^SEmXX$%2MKqC5 z(-t|rNjyeRkb@F(ebxqCHvE$x9=tB1))bAP&T4 zFh{o}`e+)(ZegksEBlX9QuMD*)?cJ>CYValDLmwWpr8H``D%gqaa&u|e-YB5<)6T# zN$O-A;m$Cm{n_)4dL!az_IDRr2u-`GFO{_PxJfBqNK}Q+0|FESk6ioljRfhhfE2a_ zH{PA=3b@SZu+=SH63WpqB<(vHd!Jl$fH=@CiXYVsq1(iCikw6&u!aSUTaJ4GLh5|- zZL!Nm_>2>`lpn$~#)Q;#PsAmSYar^oMME92#IsOI8g1i{%G?YA@2-`dIq@PnB|zOb zQ{pl-yI!IoNF0waKdz+?rUt_k>F$*x#~mF6l)@>dk{Ojy2YsPg3ygEzfP3+ccc+Ge zf=Y9CUkWDLXA3R~QQrs9odSZ2InHT4w{m3V{Xa8Yt`_4fPd zgkUPIOfaks$T;J0&pFR=k(_tPCqQWGV1iZ)wLiXdf`22UbWR=(;-MW>@Y%>=>8Oar zl}R!k%5xu$6Vfx3A|)t78TL^Yr_Ex;;EJwIulH zu2DT$j>Kdi%TXGUo-z`2K^G-gx$_@Se0S&2X#xaANjWe=y)7#F{{VPMDx{6ynAb>d zPLK*&7mx1-IXaP9M)Ra@;I?Gph&Tg|J@ea8T82IOc`yehfamSs-%bcUV&!^G)}&LU zo0Kn!ji?k5NbGazuG8Hrs%eEPc$*MpfOj(i?tKP@yv+MSKY#@vmbQj@B9U2SE9u`w zj`A{lPKhAgqyvrJ^O2v=M5C>@orPgL;$TX;;aKPCsGm0!>K1ZjkhVu1x$T`slXFT$ zYI09tH2(l<2iWNwp?ajY5etP2&j%h~raOJ~5$8cx)4o}YWNkU)QBTjs5Q*8sE(d%8 z^gph?M4lwW10HTb_0WX_taozQ07COmB}8F%jP}MekEVV8y6&;BhLAJ~;_wM9bDwjs zsFaaM#zyhV+5xo+BI}L%=^=>n@QPBM4^>P6-3I`p%)EVGA`uATS|0=iKOXk(nX%ouEy{EUpRh zOW}a;q89mDj%Ac(wvt$WTI970Oc!9la1Jmy`ki;DN@*Eo^iXWu$ACsfo_TH2gbEV2-CL`njWeZ!JF>LXo>Wb1WK zGb#T7jGZSHv#2QQX{#a?7YLepV=7dV4$&tg8(3s#JeB(C7TtcSskugJ=untxiq9_W ztmoAje-e}jkMYbpaD56*QO9~sk8rc|(z_rwZn zx3JbnceNI3Ny!Zxp5Cn!{YRno7$Z-CEw|ffsi$INs3q06ZfKv>4ED#jWBKSTJp*%& zrbNu?l(zVn!ns^ABpun=cXR;|x;gn@q7Q-BZHu~zax?W+iU%HmZ ze^;TF${8t@hl*>ZAN#dr$|3r(n@P zS0x8f*TGLbF{F%&cd*iYoI7{uiTy(dVTfIoK^~9Eo=!CqaHd&2#n;M zNgjFF*gPIo(LC!e%c*#wluRP&fe-O<3O1w3p{zxg(v6AxA2qfNYm%qH$5b=6RG63M;O;w zgN*JYzE2(X7Ts8ta0VNYsVd6+GLU&z9^m)?04+{w;--nDs+}Q>cX=2pgY_p*nA43- zELD_}MNt+|o_3NLVB|8NLI?yOajw+WGt0Z?*;+`*N`bTu%6M5o9*yhl*&5agx;oMR z=~oQsrws8(9DaLA*Gb})(JJV|8k%Kg+T+VKNAX73>^{DP1E`r!av`Z54C4O)HAz;$ zQ+VpBvBq*LApYU>-ZFOk@;y$8Sgz{^+cjG}lyxh-$^-Do9A>Ll<*60~xY9W>Gc{{ZGn zhj*vEVOpU}Cxtw6h+Bh^_)q%eeKi96ZIYU3t`u&O)Iv{(;xQ4(t;104Y5G04+zQse*;xT8CjvC{aYANRTR|GJuIR~re%^h9OYY{KbP~=kCu=L|VY*mp` zFtg55I$5x2%dh+?GsC#mj3dboby!w4R9^Sfxp}~dJW_?QY zC@Up8lb^&7B>MjVO?<43R3VBgnIM;kf}b;H9d{{RCoaolt22qS}`gbXzz!{K1lL>aNqh6cDt;6*MCGy}`rudjUT zoW`Z_=}@D$8#DZ~t}9DbA=@0(>~K$;a*?4t!v=A$nn$WK@KE3FB#=%rpr1qE@;>^SDJGI59FZw-xgHyWH+uki*LdKWphG1TzAR*HV22&}?cdWu z&LhZ@R0*JXBa%TG<8JS6$N6h>XR;XMd1tJR#A-&~GT)d!`j<~>o@ZjT(6W{#fPXq? zCmT*MdDNI~0tPa*Epnel5(2+mk*6#%#6eDETU|A-f;KxQl$Y@Xv+XO7L5vMcsFK$k ztYIXL%Z39v9P6x<&>;e9iDKF}07i59<6N3JWQe;}jy$J!IQ1F~^9vZAYiVg!W2%W> zM3GK=5W_gmKA1X}M{?al{{XsqB&B7D>^Wvb*|GE^1pU4B#yQra+GCCU(G&Rt>-NT> z#42f8D!N%>nGlfSRDw{B-(RQH4Gef{p7{WdRk%kiF}70zCLrg(+aKYmX6*419X-v( zJF66Fmkpes<*$ohJtM^MU8i+zxD6i;4{izLMH2a67>XRz9j63@B%J*;U#pAakEM)N+T%B{d!3BLAQ}|LC;~S1+Y$^87zuQ2|xI=m=vYazAPRBohZ*-ble(J}u3 z-N~Or=-t1jr&d+SZdEcTgdfWEL>5Eld>se0)TE-eTS7GBuNm3Au0@*kqkEqqXY`$4-wy2sYkz*>V-f~I& z`{(PWzPh#BdfLXsTq359nr4u=UE5D)AY>le_S*F>Z1s!`&mp%INB70&c!=LZKPKXI*5VzBg_%r>Qv`na5~^pyKx zxlz#g6qOlBhl*V8jA61*Vop!_Y6V403`Ge%4CmJ$T^XteCXB|>Lll9e3hN@HxX1yQ zf-pGs^w&7;ae*|*q$1&%H}QRV(}u@c8&*l;Ls+T{{LG4~B~iBngZ^4L>(I~4aP$R-ZfUA%jc1Ae+Xjqal4HPNNEG_Khc)Mdm z=6o<5`gT130EV^{m zUpZU?JlfkC?sN6j=b(3~Rh~A0x(Pza{Na=l$@MwU+h1p(5TJeFlGq8(PyID6;UFk* zOoi{3uC^2QZz9T=Q~Lm(b_QaK!?KK=eP$sARK>R<)C)N zI+HVqqOS1wI}Nh8EKjNLoldsdS8$Lgi23Dr0ms`=8dvelOyH8lg&D$~AL+`9($0|= zbjW510X%3O&fLkXsY?K15z_BCUF9Od-Q`o3`fKG~o;q4_gbGRH(4THJXuV6v;YPhtN6T~-XnTs5HW6=Z_8Ss7u4+-}D34<}veX(ZjY zW=Mj!JIKh>T_iGF_B2Elgkcnul0AJjlh;}dW;>0oWLX<_RX{s|?oWLgwDuA;paGo4 zI+}kEBu^OJa5v-(dye|!O;RCn(KGKHoPRwVT009@e6)0}GIs#0p~gFpQ;+b|EpI^E zrZlzINhn$=kV<3uz{K=;Z@Fle)LlC+Uq3xkF8AtB0p9HYz$`i{ir3 z#=F?Jsg*(Bo^UwF-%|eoWzSCvRZUDFrb47M9#0?xfI;n@Q+G=Uaz5#$U3SzBVEyt8 zx2wEs63oEF2G!nqP(3;1eUIs&b+uI!OCy-fKpm_C<7;ChAoly{^viCz-Wn%H5{wy2 zoUi@Or#ayAewvyrw97DBBJCV*NQsW+Ja)+(4*YZ9jZBQG+E%d|&H;%rDG~uOZLB$B zasfWSu8dM_hMcxpcN~d9IRo1n!Oz$EXzgE3(IcX;@YRT11^Ri8Gmrs4%TVuj*eHA| zDrq;TV8D0!pKdgMYQ6-E$!ftSWx46*sE(2;B}k+ovGF!%0OX%R{#s|Lg2uLgoqngH zYPf^J1r9)#ITVjGuwKM==by_OQ>CSv9sWHrjK$w48B_QF09ekxrM^76)6~S?KcH-o zGoJnP+d$RtAmIgpwn<>%h*D>-wJNh9Annzijnu>7eo&bh;G@|=unH19Pu zZA>LTL4u%nKVPng)OfOxrb2e)@8=l$WNN@0y2>ouIUQrg@5WPamW9jH%A!57uL+Pj z810Pq*OkAs=(=?;_K)jcucew8pmB4lidu?k1T2zNq*1cxhRTNS4lvrcy29&Ka_L%b zinGOXkEpte^FwC0RMJkPbW=0@#6?()GbkG!PI6ct7!fP`KXfglrmz116JTqN&f{*e zQBucDZWBIf3qd_eK%nhSyHIceeOrIuJU!%nOANXg^AartI>Z**@^%iM% zyiDNcNaJ;p22L^+LBTj0E7LXC8_z@8F7-%Nt7u}HTs}!`V6hqQag)ccx~y!BU6XpA zNjVtLuiN}}(ovw&Yc!yh;fJuu$o!1wb$%hN(Q4U2nwATBMO4qv@#YURGxa8x)TjR18xkhU^^eI3rZA$G)4n{0jK2oe5ENx?JX_wL9D- z`6h-Js*-6Q8L8daiQ#y*5b6{S#R$qA`WD+$JS$U06*5e>3TC5ZW($(+r5ir#>W%pw zRQ~|l20ojEq$=xfu+Y|C?Uj+y)1RIXBraxEnGc5Kkg6LX{u6`7x$hMEJ4T+ix`)OG zLVEBze0ux!?KgZg=?&VKT5n9`^#h^!{612Zwe@dbT&U}1w^?ATuKBpdJv~H_(vuDt zzm&SOvGU-I`tW(tnhv+Frx8QeeK&CFs<|J+Q&&$Qr<9)CB`dd|sULHzE8!o)i&s_j z+uyp5hVx{KH7*{OraFWf8-f&-IUz92L*NzzPCpC(0JGKi;#b0Mo%oh-ly;gbMR^UJbJr86^R(rPm%&_T@s(6I>Wa$PYb_`y zY2q&_h!>7X*8mdBl?)GIoRN{}2%7|w!zfpaV~#N3AGj*r$Iy*>H=)0>e_QmO+Lx## z>kCrZsEK;GET&j1Cm71az{b8tILRd70tY8e7fyt++|28K>54kB9@i7g5C?AIykubZ z$oJLlCx+jtMq`B_^fI=qUq+dN@>Rm2*XNqO?%kYq?=rZGj^a4^?oO5-IjM z!Q>D|q{p#b;njy=M<4YXvTMJx<;swxT_e|_skge*MRK*}p^Th}%fjd|3lP3Q0_`4} zgHipT{y5plil?M3m$*(?Jr&VurojIImZ4XZ-)`?i+flxQRae_X_;U?4ntOi3kJ47v zP*uS)*4xJCAPJz(1nN6r`a1sr3w}p~#Q3Ty?v%o!EJ?U{at0VII}kzS5y&9+BN{DJ z&>s3a;hmJVR7~;~DghjgH^sWTk~@q@VyKNlmM}+uRv0JmjQ0HWE;#CcXabjJ4@qE??KP=EC+`pi zcJmRA=hu&~wz@-E43NWaY{$1En)QY&`jx}U$$sr9J4*2#y$3my2 zE?Ff*jx*>%&O-y}LF6Az6E5$*HgP6^%rfL>oc%SlapM3mILZ2hue9Z=(=6-rajxk= z7!oFN;sM(^z+vcl>~->2Sd$HvCmB=er$-GDTyrEWg7GDg`TFQ2Y&<1I$OZ9& zc?Vx4Nn@HS+G1g;rftZ;c0XUC^&ebnH(c@~f+L(%ur>zARB%*~--PR}G!RKKCy9VD z2P!fFBRu67b zWS4PP42tQHtTXG*57$uZt#0dT{j3l+f;){rSluK#IAQsC5{_1QJTwtVC1xy`LNvUFtWDx zei<7aU}KPb9(eleD(RpiNPNs?UK?@Xj&MGjhh@4o6yLF`JVPAsx{^VRtN#ELZTA@~ z{{V<+2*fDHYiYvmN|p-vE4W~T`QwdrGC?jIbPh=59D8>i^$n)lGrdSFjipB?*HEb` zo=S?34NQqKS6E!_SjZSV2pQ+O1fF|iwwBoWhT(>p(UqxTC4f_fz+tVPmVj|hNT^7| z1ZG{oP7Z?@YSOM5A#qPkx%q(779?ZJP=YW)?~rmmwJbM?k{Wu(PbuY_l_2-$Iuav; zG>Qva+zk}zRS{;&NV4U39&mRLQ=EN%`YSE7%BC97%-B$_sz}eaPdPiXc(+a36 zkfS#rh<6$E_XkSUQ>1{>&n&G~Ov@bQ*J*g0J{#le0SD@*Pcz%^Fq10Ni99ke5w~aG zJH0d-;vui9Nh>V!(^bV0jb)8lcScW{8G8|)N2omdoQWO8Ab7;{_xneEr>ByNlCour zcMh)2<|S7=9N>DMHS*UxR!1avOZ1S$-Xi#NBg!4hWp|8>DQ*emgU$}LppvSFB#NF| zV>9u;X7Yn~;?52U_VfcfXR>s~x~_Jb`y{n9g5EmH<$p%^9@_V!!36NtMzD|b(nqy* zA4pc&O{Vo{x2qbnm?b}2sIs*Dqp1S8q@LS`GDG@}G5hh6( zKFywR!0MHg#148$9e1_|SPDtxe8U`QpfMl;$KPG$fc&~jj~)Q?5ywC4jdZ@)E*1*8 zDXL1&krX~OYIb>t9A`c9KI22AD;maNX&885$T5sD?mnaIsX+&kA!Q(t(5w{j)JKV? zAwy&nfsQ->09}2knZ-DgD9PAzB+1A*{{W_j(@8u~_^L`HHo)GQ#&Ml)XQ<^RD*zKWXj?mG2W^9x**3w9aH5D;Tkmtm6Dyrc?*g@d-;O96P)KebxGdluG=W32Z z=Lb0aCy!r!ccEz(qS^A{sU0RDxsjZ^hX;1gPQYLe<6UcHYMQyK3dQ0~Op*kQcxk_! zjCSPq#|MoLPH`j(q-I81T&lA$RXIKQh;~bw&N1>#o zueYqGR5BufnBe4l{YJXm?iCO;k<>s6Z`u%*48EY`>bo}nC7SE<&VAv#mCBxMTH%DG zvV*nI^WVSn#)nBlA%7VT>3rYua8bqpCmeJ2{I$XvQU+-ZNEtJMzkB1p20b~{7U~Ho z;US|i%*25C0rrl|$EH87g;exd?&CRmB;Bhh<$9WVJP8ifj5c? zN3^oSl_1mBK|M7_)Ja}{46LKFmTxHpjB|m`2^z7iR)KAWqv|^)&RU9!a;ByVaUpoZ zk{A%!Y+-UU+rD*4*(vK>c)}E&BjdxB&O79gG7qPwufCJ(UZj?q*KHQ)=;5Y~q!q3N zix-fO3^9$11|)eL@sGuFc0Bi7Z^NXm4EL%T>U5_;L7iuuvsH&YxG(cLDVN!`LM zY_NF=W81qBewouvhU;qTu9W!C@r+j@T<-Ptl(7m*w^(Zm(9^;u5pE%jlDnPQ?#u@q zYBk%X?VU$PEVt%~X)2!{B(fO9cvI&Nppn;TRnFkQ%9#~B=v z)jQRqtwXlZxF3IEIf~Nn5Ve^XadJ*QxygbdwcCvxO%+nDV09r~$^gUH1L`~J62tJu z$7)G!H8t?mmb~042Bu|YS#EU z(=*zB0emaziB;kebiKIAk0>)dVnU$%oyY6Wsw+#Z%^Y(UD(A6o7>;?*2h?-#tFxv0 zhTUi>1ISxsXj&Nv!9sGX6rH?dk8h@^>$F}|BUSyQf%#1h2Di^v7JqT;4AXA1TpCd@ zct|MdS)Y32u|E8MM_+5`tylQgy1^`Fq99S>d}Y_yAmAMymMd3KD%QXfm8JYpHVkeK zc^}8<`g%ulI+k`(s?GC?KG; zO)Jd|?GegItb9gJ<7oPE#&t7Zwqqli3eaoLI!?CMig-;WOha%uUrpapk@;x#j@t@M ziz`PW2Er6#8Ao6}0msu-``vD@im{ki#n_4g-|LV;9^bB=?G%?4Xj!mXNnN z&aM8Ex>L(7T>*{Z42aWHpC^SV7$-Rx2iyX9933;g!ogqj5KD3SO7$_Pj#bxlB9;ok z^Nm)*HKG7TpgI8 zLn17zoDfCq$`Z(6q8cHqdrCRR%^Il(9v?$j&wT zJx|p(@ik2pRBZBwF|sakjPrx+bLo#x+Upf;FH&kKpq-feoWtQ@6qN{TTC9d*-^H7RNeD*&$Q%tAa5sW^CJZtGD#Q*T2u8;Pv0s` zmYeOWq`4kQD-nnT{#@r8w*LUPS5H;^B>vGIC;gy$O~o{wM9@o7A}%&vt?a*x{{YI< zl?OfcH+@*2+27&s!#|HHfB1#f-wnEc>rd64S=3jUV!B&ko=9noz8q0*#zx)-6yqZ! zQ8t__j(I$P+#z=5CmadqIc1g@R(T?n5d0NGk%653zPc$7Q+(VGYMug&p&ez)?*xH^ zp7}nS_1(|=5r1bH8JgYFH-4FsvV2aR>MF`LU;h9!&hh?RbiV%p*f*tx${LCam#)1#eg4FD+JN%(uf(djr*^8x;E=r&?ER2wz^|q3!X@13FbM*04fO2I*IAA2O>zeC5M9*tv937_Y`TJ4Zd@- zcJ3GZulXMT07Irqif@;cqJYYIUB1VVby8LJZ3U$%ZQW`sI&$D)2~$aap_+}>UPCEq zBSbyDGCrpn(|wPtsOPmoMMGCla*8FyPfb}I#Z&vE1d=_yM{QNw+1-g?jByQCRo<=h zG>Ej)MCSoyjg*h3q;$kpZou7zfk`6TF05V|wBYi|hWMElIJ-P4y08K!ns_^R8 z)iV(xMtFDg;vhVay5wi+gYT}3StD(XkanJ17$=WyYg7`sKYCU-RuaP~IcS`AVf_g8 z85(S2Eann1?opo)$_c?;O{G}X6b8=X3vxNo>t$NiLc(H+C_Wsio&y2>4nZG7u8VG& z>Rwd6SJNDMV~yiz!S}s3$G)L>Om*GF`X4ko3Z2-0a6{{Xp2n^$+RWx?%{olL5zTDx>EpbNiMQyB-fynzF6q2%?a}-qyO1?QN zHn8U%w7c_ly)Rz3`buY>lV^uK~+f&&fQQXf^}J7lmY{( zgYkGb+e_EZt~}8oMP8L#r_xJV?3r!Q41H>u>nGW~;4^8@;M}7M@HQqhTyb zpW<%B4H)Wwg~`;n2`g<^I(jCkPZm^oOAX(|L0;MKkFJy}{snbJXEe3cH95`(=R$tD zWykZ?fGZ=~KuxN6mlG^BsReSPmENjf13aGN>Hc~TQCU}Omo)Mc(QbI7KZabN!cTsG z$LXPcCjCWk>A&_*s;$x`MKtk>d9ocOgl8jgJQXR@hj8W-hTyeIlF>}0Nf3C!I3Z8#f)DuXrEDKRZ+c3(S>T^BNT<|&!32E>IvZuG zo{p|Mc?ybKlL;ed8$@*-nF+^d#z*|X`;9Z0L8$P&B#|ElamORmNF2mQCm331jyM>r z4kHFd<+18<-$Ur3jce*8Ats8WYR3Tp2uK)WgbefCgPwb1wu>+^gku-{HY!N>J-OE? zV#Rv|P`O}K?g!KV09^@>Ik(9K5xqRot9ueV@OxufZl-7{2MQb{Oy0kS^^;Lg06bl(~HxfylWC4sQPzKx+_0W1}SzQ{gb`ZyfCve;c zpjAGcdw*RLf_hp;`IV;vRB++L`BeIB8TykS0BFvR*J4I0>p;P|=wjJJ_ z`s4ZPBG*ezP$h+dla(0+<4u6k+--2s&2^`z+}#y}*te@zd&TIr}Hkp&?P zo>l~roPUVXD}%w2+ff73cz~PdW?=PgA8)e4 zR?7-a1aQ;Ip%VwX#}QNQ5;0O+j@o@dmacQ*Ii-TziDl%*%=_6 zgWm(bKAMapXwK&&gN`{GlND@`FNTFwF%B5U3uJp9{qi)A!XXMp1wDO2EENe)v}Q_% zZP+--aG(MYY=M*O@2;0R$*L+}#i>a=M^=%71k2;i!26zkd+H=LwDCbrGAyyw4beo5>V0fh0~{TaT#MWO&*w z&Hy1WIR2X94O^OdX^Z~=7C=7zzg=$4ux(`8du=03a|v-KQO_c|Zx_RLY>bc>2flxn zj?(ybvPC@7O-|0a8%S<>7#~jBP^pnNF4SOt{A1HyOw&?KX_`pbMnOItnO}YwX^Ll& z1Y5M=h}(05Ia@aQDpz`hEJ!S^?Z<5P8V5C=YFU~ZhYI-IS(|b9^vOEu6>GE9Q%6Ya zHdLLgT}BAtdwuiktsd(H`8wO>S~$SnQSa$e4mb5gu1$ zAY=KQpG`H>{5ncIBi*hST4a()gToHv<16kfv6r#Q1F<*HDSPX=+Qzl$7eF zrIMgPoRPpTf0)iP4vALveOgBqj@w59Ej*>9W?1F%oD=wqE=v3J&*!RlTVpoL&rY*P zPp8wWdA5$dAj>@W4xPDE%>@)yOjO8;D(^=^NZpT5!h7?tK>R%G8k^IyM{SxIqg73k z9m)y(NJkk{jyMEkR9{ZRbGzPBDyEWgR$WY_9jbB22e8$*(l;;mZ!=FshTVKclBB$HjMqmVhXFiLU+*JrO(KyIc} zeQnYWW{gJEb;z^RiKAqb#lx#|I9|m|aC;T!QLMJ!o2|D;3|C#`sf)!}L^DL>jvZTY zVa75DIPdSTL{!=ASLltZs!5@ytsm~HDgbI}&zT-AtL1N@@5nvQlrH}O3wmd$g|dQ* z?L*UjO3o=~dWI!yjs|z5V{Dy@p2TE#8nsu70--I)`1Sesl`ZhhF?xVM5BTjo^ektMwzvg$76djBdf*;?F`s>J*Qi@lC_$Xn zx?@e7SP}d8lI>ThC}R}jjwdL1j3yX+oc;82r>iXWH2wu$xERm@=T#(s-2i0s{WPB> zHI|!-)O@?k8FK7T@q&2dewx~pH1hmq+w>^l@Jbg9G#CM3&ODno> z+<^}Y{)g%{Z4?X_SHXd3$&J>0jWrmg9fv zj+N+}V2|c!p{JCzt%Qg;XQ%La1mG# z!wr@S3CQH}oDs*RZco$QBk={OLL&-0eVOXxkOYF)8kesK!-FG;qKhBhd2{QoGwBWX zRj#3{T$BvM<=5~%XJzzyn(fitwj2k-pWnwa;rMs)K9;uaeCU3Lj?+s=6%#F{cC^CP zcd6rW#pa$!q#!;E1!A$Hao@Plh`$zk$F6C`qSw)KS?cVNS1_f5(qe+uOrXm=i%t$6 zLP!zB4rO*;LT)s&Upl$Tu5bOGi-$7AZNT0Nzu0Sb3n5j_&n}J5*R1Q_~oDFyQ zg68l406I&{ z`xN!>O7+*myEjQJHTMpltd6JT;k`_fSFG{M#-y=Qa>3ZK2ynZ&#t6|riXQ;Fe(P6T zeE4%UCCx20CJUVu5_pnR$P^N+qmXuxduNbwj&zOiz&WLlt7_$e?(@d7(nU)mtaMb) z#nB>VINnYgM;+gc`E`GMEBJxabnjD2^t2ZGtA$Hc)m29l#q$*m04-3Xvz&f0$8tw< zb$mC(pGt72{w8mTXp>kASTaxRJcD@XONF(a=_!ul#k>NFR4S-HqvJczA4r*EOP)q5@Wc)^&W>H9d>$u6{}NO4te(P{{VB4zrw7dz}0k| zC_0AcPg4vO)N`auiB-fqi>^G&f!qw8Se7f-P2HLrN}7j)Mg+p-lz1B$zyxOm@-xBb zwv?r}S#AcEL)5gXAw^#Y!`R-Sm2X3$^fWc}b(?$&WL8kbx&q(#u>OY{p{dzu$l%Q# zHu}%2kt~7JFx69~Qr%*cf!F{Tf%N-mB6O4{;>ha3WPc7uBy1nu1a|c9Gw0Ww+sfdR?8KNgEWdG4a7+_w!2-T zntOF!o`Rr14x$*@l<~^9q5l9K9qDGW%}@I_8fZUp#@DGVS$hCf_BsIXoGH1gT5Q%O%Lk{Lv85#aVJ!G;ffjX-xU zP@a;)kZ|Bhw+@`CS)!KRa;ruN9#oX?m=M4bykm0X*T3IT=A@#MP14nT)8U=u2)q%< z2Pf0%jy*K%L-N&h=$|!J9YjDdS(7ZI`@Ca6*GnB&LbTA;-5_rs1kAEVsgDei__L1P z^wio*ZDSh50AvZ_f9=`vBGG(?v*1lfM11`7K|y@B-qyTAZTA@@bxg&u?^7DGpD@UC z+XGCW*ec)EJwIe_oV#^hlId)=Qq3JaHrQ2`ou_!G%g@6z<=t6Gz$$t6w7TEnf5P6i zybhbZoDg`!(T6HP^>xU9zqgpES)P1J4I`d`4RtLS?MrK0s^}i^Lr}#30KQTz^zX;Cp_CEN=ygtYFZM8dQP2RWRM^2ik z;_jqMUcQ8h=7u}4az$sYV<Y1pqXl1;FkI2P4}DKvM`w8HTQRU>r{}RsR5B--4G3N_6$xuX;qN1PfnL zNjyq%+rq07j{g8%aP zb?m#nAdZ%%;c0|aM>-!6#(`Ne-G{zLbAhflJN*qkJaI@QM0~7H?g$vhM<3(ws#euq z!*<@1)pyxf0lLp6)&Brs--$HQcr-m@)0K*#_teCX z{>sa5yi`3iKKe;A^wI^~$`QG6Lb9taNhEne*S=^vw%bxxCzs4g8@(~_k4;IQx(Zo$ z(<;94xsSQ}YP(Q65hPtp1KNH&T5g?RbLqJj+gH=}-nXY_N$g!mTTg7Oca4g)4HZnV zm6N$rGw2SQY*l@3XjY@F`VQ~YwTjCWf~J|g2Vy*?DS3`XBevE)+Wl0oTMtrFNo&8^ z=&R}2Vc@HUCXKW1t_V7*I?MYbe`S8GjYaF=mrg!Ognc>v*M}JR$18OGd)cNLwb#kMn1lZS*tG=mzeID} z*}nSp9S`;bj)KciN7DZQ6VYCo0*GoYhi?Atd_<5Fl1a%@Pp+1)-`OAIO_iQF?X+D* zO~DOAUZ9VH5S-rA98eJ}g<_gU&mRaUC&WtuoXsb@Wve zId+zY<52+w`t4WS{{YLVy-h>bJs)xK`j*LCZo>qWR?)l+GsbiHTz|}@gQWhH_^nxW z>Kd+{sOjgWs<*~vm3(l;5t!^da6tqVIo;fzFf|KcV|1BRoidhLcS3SV(`e|pVekOGHOh+5_BiGTuQdu5! zr!qu>IGR>2RFVe7Y;noJ9re;LjGqjs7M^Opv$oQT*rJ*rpP%Jeq=+2{??U0WuscZ% zGsqfT_J@o^)fN<%np!Ur+i)B^kU>+CgV=lL-x}|0ovR_5I_7b4w=nUHZ{?CR_+>%$ z{x4&la-iyaHR1ev8?_x$I2)Rpp(OyH!bwIr&-2$B$WP2gb)%JIs--1>C(9zA#~c3u z%ERJUpDIX) zD07BG?m_kc06lLqQ`{pEf*L*Bn8Pzf!M=>75se>N9@!+3DGITLA#UF!r zSXhrM5s+J*EzQ%CiG=i>OMj)>2kyl2R3RT#l^CDYXqB-pQO+8!^py~RJTw#@1fhxk zBCJ)1L$KV79^@MMiXP14q4YFxgNOB(Du_^u7WBy z3iOM?%J0VD2dN*Y8i#jgjz$#m6lGEfcG|}tpaYZ7<=aEQClX&TV)cm&O;JxND9Ga& z<$o7`4t0~oAU-spE`5flRm^GSWvPwBOW$!hAEu)I(=WP_kzOO*x}HAX$5Ll9u?jem za0$qfdF}PonCY7VqI1c^bH{P*>8>wK(H-&mm$q^I_12atrIl6{XD)WCuX1#W$4DwL zc@Wi2n&oVUN^89%Q$;JHQ&h11%aC%wNrT24I0Sp^glYRWX`MwqQ^H;u7k`(`2o9J& zd|>C(pRRQ_s-C(IpK42;RI#*GNP?D9HzQ*q!0(Nu;~;)6GBq5=f;Iz~NMQpQz-(mW z)1R+AWM~6sSSkle5xhv{+|A;6ZJ*v@vxDpCe_U#HF^;|&K4L;vt!-+fD|qMACWJybTGCQNGMvyoP zt;lZq@7#7A>6he1H9V9wbW1gDT)(?8f=&eQjo?6i`WUjwt10&zn zO!{ip_oH1v8f#{}arcSC#~ zxnCfcsJf!zOK7&!g5{;C@E&Y0lp^gRS0g)^u6qvpV(RaQzYeV(Gc=2K`AV5K6q2e? zT0??1sZ|GI$bJB0j2!xRq3Y@6r=FSFVX3c~W2QCqpE)alc<|vMuW$fo&tZY5hWLAC zz0ko+)HaDCt7&-YY;Qge)*kdmqSBo%2uGC zb16=gp6ORlPj9zFwH9EhGa(V2j(POs{-;)*C&NCfskXF~bJ9TzMzR@9$ix8NU=;b7 zj1Bh4ALOMp;ASJe33}$K|8lC)9QJ^hyi8b+U#!DAdDM6UjYH zjh;s!sZq~<{+fMGsjgo$O^@>jO{H2tr>Oq`sSBch4t2TfB&e~}HO|*MG_`Wcu^ck~ zILeX$Y>|&}d*@EIKM#ev?`Q>FTr8-+?%T_=`l ziug=p$Vst)2^hvg?fUzkH05*_+seJJzZft99A$>#jFINZBfl8>>n81Xr_A-9-G}cp zLcJXUJpxp{OAk!h5?AUwi|QLkO{k`Z^bKTd{{RW4sfI=bV-cP?&IcTE_R@9Ilcnr5lGapo z)f|yr3sT1|JMNeUJBZxFj40y(70r3IwXA=$@yvmAlbes%l`W zCV7}d@rcN56w4g3JO2Pr{?4iw zN@=NlFkPx0$z>mjatI^tbTi^lL-a+%r0utxMAS_CU!$g|o$z#7Pon z!I7AGoDw|0KzKSGUqkyo^IrrNsT^rMkwP~y1w(K%?c1FSN{N)Tl5Tcm%Yt+F&*iPP zK>nf9VKuCtlP2{8#`TRYDu<0#LpUI*$8Yub)N3s?5?v|i>#CrqGI-35D;znB31=!X z>QX1c?eDGUf<3!aVJdc#q?N~^&-m$I;)UOX)Q#H_KYaZPgUC^VQPa=bE7& zoeDDVhC_*%pfQ3-$=p1qEoPy#+GcbaAVbk<*Hx=ku;3FIelJ=2cGuB%-lw@iSt?vF zD`Aez^=}=vuAI*bJk^jeB4+Z39o5eM3(ycUTB3JQ)OB!xsGRO`v z-dDefl%0R@O7S;9*(%i`@oFTRI=f1#p@K@I^6q4lCaY|5OBra(Wtn6-8$t84;#B_t z5?y7xzR3iC?`(YMp&tyfv`0@t93DRJ!@glIv*-@A>3@a&MPleNTk#*HYAiIrDQvl4 z6kU2wx-wRxqK+0#)d{&HF=2)ymE+h+bE@B>N5v}3Ur%(0S=p}?wN>>ZI3DQCl{FCf zg`QXO03lHh-Q)$zfIkksz3|VeI!a3wvi|_^+LGf_Q+A?>V-rmvGd2f^n@C-N$Oy?8 z7zA<2psu%H_Uo@=>zbQ={QUIN(%0JRVTwwqj8gb(0V?}th%U{A4%XU1LL;@0GP*&IXghh9x`@}lcp|_o`#R7g+(c6jwsGo!z$p6 z4Z8>!>;^CfyGIzWG5*kvc8SuZqi-@HPrw`8splT})o_50A#WhhzYY3_ta@gS@6r87 z)U_26%#9VTtJCJCq?E?M)W*kd@w}@VedR{eg1Nx9dQ#1CzVsERr@H?C07umo0yKtu zy$va*3s|`u#CgnZ%H;?E<+uRjUV7`w`=yew-=3{!x1zVqP_#JQ!v$J70m`<1{NotY z2f^=&HFvrixw>kq=Csh}3999b!rvi2XwH1D>+0$;$mcqetJ;SPm=@RPCU8Dbf$2Hz zb^Z*dTWw`5yPitm6i5_dWbnd(RQDX8VteVX^=qVFn_Bv+iW-WzOn90Ru?N%v&JIZ< z^wEkd<)-yT6_2ec4P_*JK~geir{f*REWb{Epy?y44S!DF;;^M86?AgJ?SgkIu=8hnNv8OqJn%P2ktJIJ5Lu*OLM`s2`kdOVM4uLza3 z6~HmU;|F)QC;arMJIh5SJzXR+TPlolM(YHeO_9SD>>KQH^c?F;#r~=}qMB-h;|NU2 z7QyCFM(;N7$K2x{gl9Up36dDay zI>XeLEGW6p3e3YR5^(GF(!^EbKYcX74*&OJWC=vxTOeWs0`(XLoQdb=ly%= ze`OwBVE9-$wdk zF#&G|G4&1RpXJ#q4%4?G!vmkDh4jBt7*?VgD=Lv#uHOnxpf-Jd#xgPW(w$wzRpK3| zYL4XR@1`m%1eQpWs_Aa05X%u@DksApG7iN#&IrbM?WsizU3*)pk$J6UnO=f2wOrL~ zB(zmh)4@pU5~e`WJBL4n_uQa^=KQ{zJ5l>~NNMA`7}^?SdX%V&MRhUcZY#h!$<9AN zOz2cq_NeM9m7y{b;4;Wx!y7h`NGCYQmyC0cbWXOWYpp#Md^X4>M4h7j^-u2nrvy4K z6l5HXWbk|HljkFjC8ftFFx35EI(3$s8uzS$A<8mF5Fu|y2RS_Z>1sQrEj0^7YCLDD z0$5%)Do}z$Aye!1{WTA(uST*nM&+4uU(d81qlFv2NaTG+G`DI-sF7LR1%&4(u>SyA z)RgI$X5%Ba^S@|};^ieB#wDed+c+c@BLw<)IUnbyYJR3@OZc?_WZ>hFKAh+jEEs11 zgN}6;<?!q>1R5Q2)0KhM|uDtMX0$EJ4j02O8Z631Uh)H0I zrlJ`nP^u!6U}Ni(-yCNjO$FW?#zZ=`**G%Uqv|Sju0^MkbbrGlvjfh1@!OA0ShN*U zS5mBscX5Wu_1B*vmgJiziC~-}D#v#OJl12?OC`tgrVTK@nJF10ljhKiy^Ax7oT zbN1GDr%&aKiEgWR@fq$G$ZP2&x6cd{K`6t=G6@lfu~x_<>90QZ@Ae`10oM0QzNM?_ zcA&pG%(XTO`Ry`3PD`@D!5POGC3_5N_`6cotzuTwI~CePt_cGJ>F=%<>gqbFiFA=& zj?!57{#vE95zjK(yDutnJazF8{{UxYzJ8LegQR{ub#)vw(oX@m-$gyzo<)%v83UNo zRm!mdf=KVLC3P?MQtJ4+p8o(#RR=@$bytkS=S3}D#@O=8(Wp$u9gr|hg)pEgUI@X@ z>_yhk6~>LJM%4shXSdT|nig)T>F%2T(Ek7$?|n^O4J<2nmI)*$mX4B5g;&*&JPlIR zsv?5C5@wc;+b+m%Kp%_~XS!bg4|JpSy?6FYsp8m2D+t63w>@BbO^HxdZs! zn*irP7{9n4+E2OsW}v=XUe{n-t%~n;gu_og^4%pBG-Eh8QeE#~ z+Q+VAy-jB}?uED1ZME9tV~W`njIm?gax(AOeih(q^`MalCJbKirFOQ-PH@e3I!Y!CGj-|&N|*Vp0otK7W%1OEUruD0B6)+>B; zcUPg3aH49X8=npqZ^EklZrU&l5I18u91TvU>bri?43HFAvzZjB1MSB>`{zylP0$?~ za=6<~mfcHFL2h?xDB6uBr>NXP-~zh{AQ0GN$r#3gUb+I%C3@>Up-}HHEff=Y2{9+k zQ2rEuU`Er}ZsF|sfrD@`m6L?OcmC772QWzYO*o}Cn`&nHlw)|JM z+j;`!Sx-+{X@U1eD=hQM^2m;pBIC@ZN^K)J9=RH4{?6a_mDAE)Ix8Cuj619`f(aXmk+bQ}+8NmU5hsimb(P+@IH6=wPb(p8`r^&JGzH z%EOOb_Vm+|-<-@UqMD#NVxEE<1}AAIFQ2vrtu!uaJ`ki$j=OYH7?OKKT6*4t!i-P}BdJlBic`59FC#zKk8NIE5lJ0Iz2UgtDChCBg;2pH zQ^?38wy5eXdWPdPbhX!Sr9|^RbhTG1`K#(9g&t-s79c{5pWz3bYpPr4olJ#yIc$=^ z<+bRFpN1U|aI1C_e7TP-VWxH3{Eh=3!}@EC-vw-@l1Q!B8swD=FnL@uu>KMPfJYi% z#3~;MrPq<=1dS$3*vCnOXAZN^ncu=F0h z53ai;vrxI9A$(20gpBR~03)Iq10CZw3F*XQ>3V434>eLPG;zO#k}3vr&It08pF(q| z)VADiP{&70Y?#p^Dn&cW6CCrnXMyR!CrP%z>*2an2a+ZdY|ruS1A*ICXG_B}(z`6o z?D>-n;Evv&!&%z5Dl$6FJsM|&(l1A4sfxX7d?YeNULde;F<@W@B=el-Cyv^4qOsnd zlAzbtR>};@DIE%egoPxbCw9_z76pf3G-jAv8i>LQE9V=OBh?OYN&6?52Uk6l-m zOU&0h8mYgexI=(*L_8RCuq^q{cm@q zmEgEV69wFRyl}(6bY=M__Wv-zW0}I;HN{Tb-rqI(nkEt!lh)5}_E9BYs9# zcPhI`!N(wj+g^a`3beXWuSc!^ir@QQG>k=3Lx^_}!bHLnPjP@j$;TS3y7IvVS5{j( zNiB_8e6`XAtg2Tm)e0Pi5`x4=0FA<{0UDcj?O7;n9 zL$y5D2^FLO;mG6>p54ZsZ50(qq$+8ry31QdOpeP>7zC;xBQ_Xk%fBRoMil2uJ$qsO ziA@`3BT%xmbqt$u95EYnl1Tg{9>>@nbm?xOwgVNHsA#5w3Z#-59X67aZ6G)YC$nI$ z0P9-pUr@0*AMr7$&Yt64oE(0!GVmm&CXd97$|ZH2hYm|A!C`^r2e;Qy>4z%2_O5Z3 zI0OGUCZVPfXke4Jfwf=saEJJt})V5PKb~!#3Pmf z;f7E2_U?74t_5I&#Km-DX;Ls@1g3%pSnH}v$FWBEV#{N=2irZebETh-wb9%9PRCzo zw_I+8?(kOpjT#q}#|#rmmM9Bw>VSQ~9OF;d9-4_`SGLtGB;Wvlco|O|SwR1OxA^-AEdWN(RPwntE;8dxI6uIiH;$ z0IU`FZ|xb-wz}I~^p8!{bZ;dq#LCeu4kaj5jOT28uf8^XOsnbpWKzX$ zq^OdN)=N;p35Vl^ZpqK7z&*#lsY4_DXnUM04hmsQJAJSlPsS5Agz8w;x_ zW3-jrj7ACU4!sNTQqg#m`$}~sM~P2m=-RiQt{TZ&5d}<-v-90uBPoM@%$man3$_sYJSid%(k zJrzaDJAFF>)pIGz$Fn|S&G>-F8OI=Ms=oXuskL?IO!ZG+bw#$W-Ey>2!BCUN&sS}^ zOFBtYwVqEcKIs_#BeW*L?q$_@ecE*0kYdy8YrXdKEKa-l^(Cg~O-E|!dxg%nqTeG> zJaMPWtndE-4oO@VZM-pbC<^UR2`&zr?7d}GQ58Z*GgVO}ajaKGR8*{dd8I{0U=#bJ zIrJb9a3bmOf`_8-7e9zyJJhr`zNoa*y!5oDg?>)sABL&~rS~exPqiRPo8SCT!iz!z010Tl zMLfkkbc$V8vh`)V_E4RoX%$fpbD1(Tk9=}-+apH0a^=(AJJVDa8=Vu`;G&(^XHu-aUD2Ie z)kmbOo@i?tkH?Zbr7@<7qiF;JC3ij>NX*y?xRMJI!s>%2Ngd>XEy_;JoRZsW`=FM%Hy z`ZwbBrRe%+redP3q%74`H!Arit7xN>3m|-iaM6?mr{QC_9gB269<*s|4&J6eko=}b zug%mkQNoYbGmEW5v(;<@3YC%x~DtdmgJde<#2a8 z4=_7@SYw|0ziT!DQI2Iwm2yKEy=S~NJ)^>^MrvY8lKB8+;|ou~9N_rt)#cQq9!k&3yeX=;5+V&(q;r=k|G z+A&%pfuMi)flDAILH;I8pD%7lZ9=zJUCeE7ql&Sq&RGl?B0!@j2iy-s&pK#|$1Spw zBQLDF@S(6`G}w2cl*>}CR3+tYA5M7`Hps;V4D8OY^YQMHNn?dk2M4yx<> zg~snJ)$(kwUL+v_`h}^pu|>R0!q6=Oa1x9@30kc09^k7FY(ojX{VAnV`q!E;Uz{n^!on*U1n=*Rp3o6 z9gM>!8N9;{MM!B2I!Z7VJLDdDJfFV4N|e^iV@`k*{7TFCN7qwsRHV~>&`phj$iW4F zKV2sE1^%LRXrXlrAoDM#duo*`ZNiR{?W`-y7$)_3jz$Shkb!VdZO1?L(61aiZd195 zz#Qa$T8UiJjFul=ai_T$TyBY3Z~#&>$n15!T_IPAhh^KFnK9dZY{@1aIAv}L`wd0$ zT;*8hPY3C)GgL}tl2L<`yPo>WYQmD1WmgP2Q@}p@m?j2f1@d{5X{2?^33&VH?TxC| zp=C;TnN@H`+>B{?9Xvqlp;y~RE%!<3;&?NdY@)tQd@1*;`L3Fo5$NtUqRl<2w zJ7uS>MXQ#r2KhYm@hhF|N1G&W0BVZpuGLFZ{!V4m3T%&6`5Ye!65 zW3mRRFVZfAB1ioUE#;{bD>+UdC!-Be`{oA8mxe#epDOFt5BcgrtG zSKVxpbj-~~3&~Rz`k~^2SVEFf3W6EV2nyUB{V--{6@urWkSZGpLDca-J3cG*b$7&{ z?ICjNdn$*H8vg(agLOZMt4~b35=Ig7!0j)blja{ydYAh@()C48M%dwc`y8oVcAjLX z`8kqF(9QUUMovPIGCzk@2g5tx!oG~Cp8o)N_AFhTPi;C_Jr0B63D5mfZmx+-~HEcQPcmu~W;LIBP<{8D%0oq2Y$&#mg}Q~k~f z{0>a?-7Q~J)7Zd$l{oovC`wvebVhj~D$+&@swVTe<2!Tj>Omv6pgg6iTD}>Ye-Vnx zlB%pxN9-5AdvZw6vC#`X1h$&C{{ZP4ftVS*du;9;BOXh}100c#F@gse@2+WWih`D3 z3galIa_u6_=(~3etWLlbEzc}eV~)pO!I7S`$%!O#Ac|^wdavAk+zlKtnOArlQL=M@ zNhgdFzkW6Ks624>VNk^mVerK_oHGJQK+Va(><_TxTUODTRT`10*(sDPravQt*bHL~ zI|0r)&bO$icS&jfUFecmB3z=090BQ*fIIRC{{Rghelij}Vk@Kmpqf-LcDVg`QSnp38$Lr3E?UWEK!1XpywDqx%>TfaCFU0 zoS_lb8WX=fycflRF&Z-`tw+i~Dr)m5(1ALBH3<2L6?tQgsbmv?2{h^i` zNaXPujA5BF#{;oGhn+!jCx9iLGVSGzwt7;6)RzejWh{}rfJq#9Amsalp5LadYI+JM zgzR_Bi-78R1Jr7#vR~wQ#P64p!6ouI9+~G>Z%I^|`*N3n<+F!iPdLs1&-%`=HGzk# zGo;a#KAc3ys<_bIrlYK>r&ItW=!>AI1zB5Bo@K4DRD>ng%?sKNP z+blIRxGIk9P8c&N!S9eekTovb(N?zs(g|2&3^oEY@1FXqbtsr))?50!I4U|yKHF=o zf`REMtj#Rd4eiWecO#zMfv%Jv4{BqodFvrEG_G8qVn4@Ti=y~h6pF7H@Z$I$YsiBFdn;oG|10 z{q$DbOBEE`p^eS}8P6C#x?*Z=uE)d2<*3y(^$VFi94m4F82);Y+rO-j%PG=ilNl-9 zcmQosGsm`%Tdj84-YH}(#$cc>Gqjc^Mm?|wan3Xf+f47{Q@kON0@*y2Ja*CReN;0% zaQwJP(Cx`kI2quc<5g`OVP%?+IcUPGZK{vtX`zVxte^2AaE`p=k?MW)T87t0R_?Jo ztCrZT(h$yvJP>i~>&I;*%V|R+*F#wGRO4v_$>hcf-ROI9>(0B_x`OjbGSL})Se05t zDmI;-p!3J3Mt@!BIKp?P_x|63aw>i=5w^0qwk-Re$(;RLGjp{}Z9=-9~ z-$pF;m%3UhuJzP((^pVoWTvMkIRk*fNezHOY-PQUPKwy>mdk_3Pt;Vqm~BL=jn4H4 zmCkwKf;m5)ndj*1RaJ7;#dINRAzFD<L*rK75-siucH zbSTWHAZ(L&eshjF&%T!{`n#blm9h)Q8H%t^bpJCx7ReRVdU#I8exT>kx} zI-d@v!Rt7cJM?|Vt;E46l^1hJu(E;(z$1_`$?SV;FLYFW17x_}Zj|-#?6z$(^c-V7v#U~Wt>`&!GEYk{&c`eTBzdGqk`cfxdlT+^@r`-={{Uz&#ri8R z_HU^cYIUf%-fPmy45>;|I4S0iee-wD=7}8?mLoD}ji72z;x}Y(Q;zZ@;q<5_TbcQ_ z@Jrz|zZrVY-C}#|+gj&eB27?fg+N3|%&gl90goMt!Pn|H_DTNFof+_LZuXYE(@ys| zL&okSK~9)hKv@o1NiBhs*lWeV`#<_b-8$Ne@Rb36N(;3~Qm2rV>Y(TD z*zK==(fmZG_;f856?Rx^>bjQeNoc00p7BXVAZY>R7IF3Hd!B#DH zs_{=v4*4kIteDIe7CG=^+(}5&J49rhDZn@bQZ3y>Q_?p70QN%D(R5b$sa9vEqoIO2 zc$K+lC?fzVCASiL@^uWwZ|XaI7h6U0Dp_L$p_4mXpT&T4pUcxnu5=f>&rPKz1khJW zv2i*8B@7M;BoFSKe~y{k1PeL*u?+@6+r&nx+kLjldu`KK(y8&{tJ=jBcYUXlIqox$ zZ7NtufQm(>ClT)hoVSJ1H-KM*trBJJWY+s}*wEYl!g@ zR*D*hZP7{>@PuRe9C5eQcGdOLKNBgdV_FOOj(S>=%#sbm2aL9RgMr39bM)0}AIkJv zIhHj~=HSvWqvMi)ANT-#B^TEHJ52T)JkwB%M70x2esl&q-)by@`Ogk=0XfEW2Da5# z)8l0|@+zl_T)aqG2{^`1JA?UpYtmh9@REnA?SgKWy2xNqW=nI;zLrOAys0NBPSL?7 zcbqi8LmOi(Gc;_&fsz9S;~mbosMTQr&VC>JFzui_mI76jl?hxX zd8lM*Lv3WhA;x^b{+Z+3>#L)oZ&ryFBATR9PcjCJ#Lhq?xb-9N`TOa5-A`end8Lxa znn|NRD>S8qLkE+dLvx&rpVLqt4xF=(+BEk%)uozE&`iiCj#lloIKfkqj4(QrQDW*w z+!5^tnvS2;NHX=d-qCN3VZBkbl=4$Xrc8zlCfx9Ux_Kk?&~C4)t+q(FD+L|uq9~Va zt4|yFYbYle1Rv$cC$^BNZl>Z0R792YT->4t z{{VPU6o7M$qXhf==hwco293ky55j1DWp?$3ZXXdkvZBgf_i0f~#K7^)2!22yjCx@A z<5izp_5HZpD(%z)Wbq;j0YwD}^$xf@v+t-kezCjM($19<_^#N=Ba%Hi@9B+I{Z7(M z;<6zmav|OqISrmM&!)HZJ`}sRILF;FHQp#uHlfU4xnG{TtjAhR(gVB1Vnm;RuC%AR zR3nYf84fmvVoCjV&ZZb=bePFB0RArxhi_4jZ>GCPW}2ay(b1F-ArFRc`s=Jvsxdg% zF6>NZx85rzh$7S!AcD$U{Iw`tT!OU$hB*X|FG@WNSx$rOsX1I5VNeL4RCUrjvH+$o5bon|wa+Q}y4wK2{I z*ErQDYp#_40K7@!#`pk+KA!&oZCEy2ye~+h(Hz&_#IT8d^{3DIa;W!zVTz{ouPG(Mu4qdVg# z0QT>q)b*~LN|Ug62jA(eY2ax&fpfT=6WdN0gUl91VFgmuN+c>lV&ATe#l9V$HyQft zDk-QZe;;NF@Id1^`i*s`rjA3m%oKLylc9G85+PnQ2+>r>9GiD%*y9<~b*AnBMGSB| zWcEKzD^uFo#o~zDE7*^18n;s%f--fTs0hMn&{<5fx_YiTD!etiD3r~j>lZKv~6xDMW-aLU~aCYTU{5;$8lS-%3cSx#eDh$%4R1=sgDV;J^b}+~%lj;wy2-l%Hj$fIl z-)y-Uq^DTv9E9gM2YEQi zCj_2J&X$JpR&q~1(6u#rfPb0is)wkltD2|6E?LX42v66LKcDBXtx&R=VTzf&COgq{ zyTicu_Q$TQTH76WO!Zy5IW4A1>NW)N%I$r)$A>V&l_Na&=Lem9zD;21ii>@Hu9>K+ zVv*&NoF5b)-eYJyjCSL(+DEQ+)~>l*XjRTf9RB^MF#0A0mTX}25+%6W*4VJMEY%e| zgSAfWgFA2|Am=KhJ+atnAL5)3)PE1Uj?N+ZhMLzbQAUvo2`T|ys(pCi`W|&^_05~7 z<9M#LfLbNGMGZ_;!XMlaS&~*?RKoyv{Yb|e^H=tU=|6}aL(w(g>~~qoM6~lqElmh3 z3e>{6Rz#f#h<7muYaOlh)ZSvgovc+SgU5fvx5_{(bkwD6z;Ze5`1h3$_KfNNj-&Yb zLDGFOXQZ{wT~BC&tto>nbv5#$Eb@_@ZgI)S1f2To^eg*1SJK#emiuv^aSnsX8mr6mDS4=~)U3FnM!%-3bUCW=AFJbquZ zJt4!Vhr0qZ$K}uIC@N|TO(d%gL@$vW5GIj`cgK`~z4;>m=ih;%DNu|=RMSrlLvUMi z1!gPeQ@{>*&miMJeJ|c8u1eDdsuNV;Zt~$WMOZ465P0KSP{ zNYq45aAZ~-u?4UJ&%QP6B!kH_$%xu`6MmwtwOebvN325ND!m{FbAmx51Iy?=j|Y*j zlr{AAu93kMvI*8nA_CbtG6gt3aCiAgF^@ctp`CNtdw6{V}E^X{C6#D$&g;4AU%9kRoG@V6x0VE7O@<)Pr#yg#SrgH;{4i^pB z4_!CCkRk~XnUR1(I}$z5^x*N01iRSkDP=7jPVpW?px}M++aIQza4?Nqd7a*|D`*2E zZmEs1HlHybzjOU{3Sj_Mlg9-ZXJ{RcdHWqihr~&9DJLFWgWJRJ*vHBny7c=MqZV= z$w3OaiGn8AXL0-_a9i6y;j72t)z+L-#_+6Fl`@YM0@(@&r?yWTsVuhYZ`%(F(xTG= zjEn$OsN;4{JwH8JT^AHIF-aubq>&tjgi1pZ+m1VP{I!LzaOyyv9)`VyW;a}+xJ^~# zv~j_?cn(Kzzow?s^&A#NM5~rLBy|swl1R=yd+B!P)D~#2P+O|%Bs0kv@fXYtig{D* z$Ee4reMPl2c}qb-FY19vD3f`pIwJKhhI@m zIV2sjXDZ5YbdhSTmZ~&r2uO=68Gyz{o9Hd{{{TQWCf#BZ`Y|Vl*>g)6UQq# z07Zk5&jbOx1Nr;ujkY^;98`+DK~Hgo<#?T26$Q!Y_R zU4sNFoRUs5a!-9MTM@r#DZ}`Uh0YI{liYgeR{e&|BC^v|Q>sTWE#qZ!&7Rpl{{YKU z>MUA75;_sAFhQfNri=<&L@-FXF8CO1dJ;VjjV!k(Fw{pd#&>vo!C+1RGUYsG130-iAx+6H#>O*y^B| zikRd5>>1i*QZQ6{WE^V0r~R2%be5{Rj%glvFyU8Ys|Cq!!_;R!yGEQb9aV{{XbM@7ZGP>|kBNnM-g>M4*tT8RwCa zk(}rq`>WL5Dq4Fz3{M?9#|e%w?t>(j4#&zedk;^2C)RZObpG&$+maa<4Ah%RTsAqyzG42n$a|IdWKA7Xv zBTHi4X|SzNN?)$V=WV)-%|%sG+Z%BVvP8g@LNGbV&#}_~08B-DOQjW-o~o_s>L%GE z$2W+}0`1()JMcL^xaUHz@=4TD8@&{Gj+Q|(8o7vx({aL|;vSqHIMh|?nOk9QKX`=t zfWvm)V}De96S31%Ra|;`(ymI1WcgU6byE=x21pnVa0mz2BaI2J_$h9mq^f#X38yp=dDi5ZJ9 zB;*Y7lZ{%IO4_QK+2^FHNg77VD`GvQ9Hs#~hH>lP?W+2XMy8C_VaStHMHc@6Q3ee1 zPxe0eG13%Y+Gnl49rUd=$EE0cde2uhbWJDB)KiJ2r5iWQr+N}!4ava9;&OHCKC$>O z(^lxBsJ`_z#i6kid`aXH!69f-0!EIDl^}&;=tJc|$j)>J;+4jx3nlX36$abQU5>hf zhEfX>w@|N4twhoswQr1re6fxXt>R_sdTH+z_*rV0B;4UEC^O8y|rEVaXz;zf<^i6Vp;x*1OfEMLk5#42;CF+^vup zl16y@Xf>{sQ`6Sd1e^D$5-`}1aq0-~o;S;EfJD1T1P;Iw zf6E&AYPwo0t_movbo8pN+BqL+QQx-%C)d|n=vXNPaWd=*%noEXr1=YYmX-&lP~7lT z7RNXTpRTv*+oj5uc!UN=5=>C{1bXBEdE>rx)pM++sJGP7R8rBUHCGELQcChL{r>NQlB>oPvdpypD8i2_u)_o8JRIjzDJdyuz0=#P zVrPyZBaEOcCQE0`az|s_ajsoq9duTTx^$(K&1`c~O7q}}Q-F54{3ih90y$DS<5d*x zv2oH`BPw$%8^2I=3)dmV1vc5RMaf5vj8YXaz52|AH|M1 zl{I2jiZl#Ja-@tOb^2-qmpLkl zjkh}EJBP9QohvK5%IypyIxt6;C|#=Fy9B>8}bjE7Ee#AjBQPN+DPTUOQ{VM%tx ze|0c+2mTvyef9Q|q9k3^=1CPs3aJ_T{+`+kbHuN?!HJk1xc*%FYo!%#%&e>!jt)ng z+c_QeCc}sxU8-1%SmbiBlS~yt`B`L2P4>`suoj z+7%4YI8VYujIZA#BTcPZZm7@>OxmYRw-Jb+T}@3z zZ%FObt0J-6AyQcG_2=o^8ka|Gy2VQyh_(iDr2rs<>_)BIC&PQhbuwC`v&Sr0G8XX{ zX&KP?epv#KzNF?V2pMipzAF7ny&+yrTjRt&q+>F+N7!79tn{~ z?W!}8{(ntx9kC>ic7`@%2piOQ#(U%2R~@gV>Ee+jN(n^N`H6>u*R!CoLqvuN!^Z5`j|xY(esl-LKrp|DW_j{kTgdAgDa#MSIXWFRvR&>lL67kQFh;!t zFT;APa>8Vr2(PS^-WY0Pp zIpKY+*q^vRo`}-h%}SB9s}9*c^Ipwk2O*T%A zu7+O-#(4T<>b3gSQH=8})1xHk5?!~at+CryDCvx+7-DvY3`ak4?b}18>A5H*@iK6E z?a0-kY3ZPp&_yB~!MXXB^2?14hYD|7}g2al_#FFU+T(0;#a*al@!y6>f&(; z84{}G5&jx%xIl`gXr@<>0G)(x9>zYrz_Hu-EK>8Nn(_&^syfR zV1gs|ADAcCI$rpneY!$ud?)_^iqh|OrZ9NfA(iox2>|fe1asVLQ$tIoi?Hz0j<(b_ zko}^)!mdljWd*nP>QqM5q2n^uG*Ah1h6Rr(M&IJc)Z+(LPe=T2>raZkW7Laadu^}b z&qy)1{?YjrsJL9_EOsPP$(2mun>$!4Z9j>ID-Vcw&x{t^#omXjEK7N|brcUrYOSdWG1LH(0;j`?S~Y0`=fVt1lZ=oF z4AgeZE!U=KuJ&0xS}KT|WtYQbEOK{}7z3Px+;f5HjVXLG=o;^epByTv>*lr9bbmq8 z$34Q0TuCiO`eTZEX_p>UOm1xC5fcyNILp)crnaQ=>wZ52G;Z+i6|d&loR7SJnN4&j zK=n6E{7SrhLbyQ%y6bSGuBx=bblSDE%TfE#d=Obzat7KRgEmxS%rosj?73Td>Ys(y zuBX329c5k0ooeNVnq`65JdPF8GJ9M3h3)kIZV%rvo7IK#Z? zkmQ2n8Qe+qIO9FFW^^S_`x(=A`Zcbi5!2Db9CVS=fXJa23XOtLfLqjo+t-Qw8liQT z+P`ZU`JDd%h#oO-msNGQLUZyT_dLHt6*V6EcxhR<*Z@C-2IqsN zUcI?gUz+1r;Ljvf#4)Riq#8(-m?2>qUEhn0=euW2bQM(O8qXgTvQFYTW}ZJDmIYuD zi;&6?65JIhfOJmf4GYvmR=1huj;9R2{U&0Dos<>@npDmS*g#(R&m3#fv$eB{z%u!X zjLO2@Y?7v{=4=9IWI)dJGld~{5>`p4zzv1U?dLk3J?>Z%q{V)?G}Tf@#Q6R+taFeY zFyxFOI2ah?Crp2_D(hy7u0H~`Ogn#sP8a+<-{hPQG=e9p=wRO#5mj zieNTWNZd1H7-e-QfH8*A8%E#^h)}^x2o{Ft9FMk2h9W{gc~C@*4st@{%Nfr<-tWdZ z(KUNwM)OS}s4ut)HsP{J^~WRMNm0|x0h%RaA<2I)3Ul`Sv~r27W=Nr^ZO|84Mi?mL z9$b3;wCp>^L)gaI=;_52bHee-9@CJx$^p+lxIOdfjRLyYM*%evy0R$SBcf#OC-||+ zIQ9GLZH8u{R$6lAC3W$OE`H)V^u<}PJBgJ;6*L981^m6Bxkn+ z+d?=z$rx@K5n|O&s#lNUYAKRN#Y-2le&SI(W-g z@t9+ZIM{^q<74M18Og!=WAfBVtji_ET1fH;4JQ2H9Q*qIT0PuzA@a)+wmWn*5J_@~ zM6Drd6r_0^Nx|~tw>k9p*Q0K>Dl4TeJ;Jt(JkY_H><^T157RyVx~h76r$9~JwwvQLScl%zTB@JyK||1H*u+_o}Q+bMW}~!Y%1e-hqrN1K8?mX)oA@gQAd1| zrLGj|QZWoz@kQ~k%J}% zK?MQt&voaIQJ~qh4ZQKvADAD5#B;XwRW+uSLpB6pF5SGb1K9DV3x8R|cV%eRLZ=5f z82q(S+UK^*K~-GL&AxN7SmY*t{r><>LW1{OZm3ze_%!km4*-+))J>&ZGmfx^p{mAu zOU_=aNGAaqP>wP?AFizaoa$Aow#OXO1}rdq!1{5oEyvdOwq!D3%eZb<9E0@6tgevj zdQlP?4o*zA>#Y>?Le(KvRlc|b^U`&HOWh!< z6)J`^;k1b)xnyzJ43EBZqx79c9d$fLt|w%9c5Nd7Wl0AfqqpacNn5>L-Ze-lXNH*} z$_SX`9>XQQd-vduHJp!SQu87-ShVzvHfWl%YM+{^jIPL$JiWliNy#HUvG1lzD~XM^ zJtT-mS#ofvx&HtT+7BhdRG9qDWjivt++#Teo=ynX&2@~^tkJr~xMTte82|w5XnbGsX3^P)l7pJ+&xEfK?j|5xO_piR7X7|(M=*o zUM=X`6yR`wEFLr^Z}uVq+qFUgy*O_-sUD~6>!~QyvhqY5E?$7d3fbx@w+o4aWk5Dm zNx5W1&PeBz_S9GEF-rvP)3H-lQ_9P@_+6$v;ZuXpr>7bx*A+J!som(S;PCeB2w9AT za!K~!5vZLPJc(6LOo>HLSRE1>CWW`jB{d!vkpK z6S$lYUir?3b^Hwt_M#e!Y7d`|Rf>3EiJCW*9oxfl4(0wKf;%2`GL8!BdX$nDB*ejK z+D+UjB&w;;3OvJ(GownD#TNJd;se^q#=g<}rEYyS(-%8pm{O-6EIu@c50j3-@r>Z( z)9I_$)pxbuRx?jD3rweDsUvc_fOl>0$vX0-!{+O*@J(^4j%g9zZbM<1pd&x?5TJea zZTuvlNG|nscj+q7r93lHPGe>a%^qA3GBdrH^NvB*Pl;(%Cz@NCr=ZjqZ!8WYhhI@! znp#8iRgqLUc8+EwFv&Pjqsj*zm}8%|ss5g~+^-jE;Hy_xOD$0}=xY)f%dhZ}By30j z01zB-HDmlipn}aBTxzbXKIr79k|c$kIo*`WZz$mXeuGuL1xwS`txQyd#o&a=UB~J( zpVvd->HQK^!qz|aKq5KS^v%Z46pwkeRMGA#&dfYxBOGC}qXAE0&(lXJC?frs9;%&a zM4?P-^95oDuECNs!RH#*hpnqpmL;3VD85h}?(mPUKAMSsxv8UqJA15y;M8FV2m(>13mfr<4p9lG>t4(RPxOi0_SpBAX6yWff)=` zl_cW_0Fl_^(DSL47TRWLWSvrFRPd5>8o!s(OJg|avC{R{;w|YVJp@Y>h4$@G$2<)2 zo;cJhi(m=|GHvZyB=npG{+ic$inhyao;!18pT-6jjhiC`#k+SLz-YANMO11{x|pTepa1&-{Dft-D`O*~0l80K6LH-^!KVAvTT<0Kp&{OC7S*dFN( zB*oogpxo-p`-&5c=Wh%=qqzMwZkqPk2{H?8+=N9tPf*xnw$e>e4MeR(%`?Of3phZk zfa5q}_>|ye3}aR=QFV3F_0Y4`R>?}VH6dbX<0Q)@On{d{6vr6=ZNVdePBOX!C6bY$ zf=Fr>FWL*>)}(t9HVQ!-9D}v}vH<$}>tFVg-(s;{dO>TdqJ-3Mf#9pkNQlHHSJaFV z!NJF_bz;hr>jT!ltchN`8l)>@afw}9`qqZa4Q-+*X=h1k*@ZJPC!4Nq*7UJH8VY8)K3oKw4{-O zhX>!jx-~n|mRRH67(LMCe%aKUgK#85vsm0`c`4|M3q#O~ZOEU=aj=Xvu zBGFyyDC!nDM(Ev$3Y` zVrCv-+&11vxf-wSwR=!L;r?1=qPs2vz6aM>nwm>z6Ms!`7?!$qjqpLVOK6HFH#41s`RatJ5BM?LjI!*=<31w;>mJM)jrL}b?-K3JHSCS@DV~`Ah+#WqU>anTn+Dn~6%kxr)aFM(+F5tj$0b$AZ93I18 zUbfpy1kJWMCY7Ev3fn;eNh1K~zA>L%>M@}JVTUq9tI5bbOZJ1PDr+fLc1X(@!#3RK zX&e*mF|A;}Q;L6>`N0#yo;0efxC|4Kp4rDgQLjHx^_Ni6(Zehi-WP|t6&zrYNz8d1 zo(~z%eGZqdZ{^u!o=D@y*6^eZSat=61fEZ(gm_z$d5(4H1oWeIMKx%W3F%<2gPde9 zIQn|$l0L^#9?@;N%N1QPG|{Uz=z{I!agsgw#;A^#>Hyb3D8Ff-mFHWRf)SLkU_%kl z0307*O<5M+tBwkRRD*i7A=pVKTL5{_-2VWEp|?o%oGg~R*3pwJiXNM_!V)nYYU&t` zzlnk5XX-WDIOr&5T*eff<8bFnHV&jo6(aiKj!)$u)HN?DzP zvB@VnIrRE!sG`ShvSVT>%(jEX3hml=9x!#Wl|l0zqwDLcrr*|8CTe#_Y(fBV#~|~f z&3|dCd~~X9fr$!1;Cp96)H0kHm6fCG{Jfy6VTXM|nhR_*c=9SEe|%sbbg4;st1sr1 za(LWuHTJT$M;TX>EHX#p?c0w308K<|Ig$g3BdWT8rEgRXTUG;@G7E(cRZoA*?XNWT z$L#p7New08YSM_Z!wlI}Rqi-dK9cZPp`IR-awW);1<0$)t093z?On|I~ zf;xT@bK5+Q4n6R6^=0ecnTwz(dP48h)sjhWiKyb5o>Wxu31Yk-FklHBdw0-|x`mHX z)xw3OiiL$btC77x$yFyFYz{H)j&!uDc?t&uJ;2vbZkCS`rF`Z1&S5n-czw;}nPErJ zmWzK+QPT9wM?I#JC0M*UM3|3oVi@-albq_e_zPf@;cvrBzffK)BdMR}xBLXWl?P`9%O^FJbCW zp*n`1cxxY*XryiE%nv^JC%>TlhP8f*qMBU$pVR*UOwamI#cVx~rYT)qJ zD!TeoxsCShBV%$)8BYKVV}YU)%X3O@s(eNPvy2|i%P>54z|-Zqqn50_+IKNV4AL2<4APR`id0~BM{+swJVCfW*Esv@jqdSlsivl-fh2TUd`}vBhLDgyhr>V=dUMGmjV<*fG_uQ9 z)eA7FkdflJQaBj$ZX^NQ86&rBYPeGFta!#{vcj}w9On^sl-5(mBnUP}%Awe9;G6(` z4}CDpZl|T%(4l3O1Dq0eF!diyf0lI;sNO6tXKY zBP4;)BuHxN{iI6lAQuHrYfR;3kO>R739kP){I;~u@o z8PMbyK}ejYvD3{{x>XGuNgzP#LjvSs`((GF$s7#eY8u$!r7~huiew~3;9=Kj_dcBZ z43VSs>mKE4{N%({{7_0OZt@ZAa&mF4iDrlt?}9LSc{hsNvQ_-jmSv-itZ@VUM89*9oG8W*9Oyo< zp|%)DOyzfh6xXOas-~J~roOafgA8Jr7k0tt&fEp#)1KNFZT+EFQ1w&QZ`!$bckk{8 zx%z32m#68%7N&w}o4Rz9{q=JzdAE& zC^&+Yxgefr3suURnv@#&gFuWOj>5o^{5&61f%)nTb=6mTp%o*tER4h|u-Y&(IXqwi zjaat7hZNPK-%;ZkW}X=;q_@351S$qnILT7o#|P_<`ia%>+ImfBM0V(9-X!r64%B2M zIxu20!xNv-ajL0$Gwoio-ITaZ&Co^Lb+Qqeh-oB!ul~>x`2%pDY7AZJUuE;m>Y3 z&mV0I>1vBzG%WPApsNClB%EY><2rD*h@J;2ARH2>IM*GhZMGewiPO?O9;sXkTIH#B zsicp^6G@G#6+kQ4euMSU+l^&CwwO`ISDn5f>^t`RYQTC%@nqbp**==C`p2efC9IX9 zk2bi-lBp&#| z!Ok@jy)HKB)+%;KMNBhBr(-A`uz&Q^Y_|(!Q~bOlmF4d2wJRzi`W5xp3E&k##IF%k zmO>m6$EFWI%TiZkgO-t6h{Fpj3%%7Pj#_n&b(v0aoVp(TW1nvN@9^rKuANIr)qsiK zWeAeG1(1>D<%k2E56owdb=#}@F7E}*+$FVFK}3O>s^AMM1pwh&AB6CKmtn3H)DuagP%=kGb7YhPf_xe61H1IH)Ackt2J#UWer`PhMM7A z(n`xaqs>p;MY{teZ3J#i3=!X*A+Jx0lJqq;go2?Hahge3W-MpQ0Q4jr9WhI6o2hP8 z_Sma!wemv@RaDiBJH|sf5t#fTk&J=uwByrI?^j9crcaxf!>x#j+=UUg0K*b9j&O7C zN7q@pU{GvR{{T}j5qAfKP z_ZnqIWGMSuEUrNd=th5*pw!wdJ6Oqd^_s@uCr+xq(%q=4CO`vvDCn$VNME9fU=^$ok$IF^>7k4&g+-DMqe6q*TX_OVqAz8P$K1>l}B z^!Cusrg>zgl&nNDxGUx(9Pn^7>3aQ{07^RRWd%&J@e`PpB*;9Kd}lvTT?Dw%$1OY3 z)l&SUI&Mq?d-lQ3u2Eu!+yt+BlDN!8ql%_6ACFNf$CLv52LzGFKAM{qc&>(8T8Bca zOhLa1W%mv5+w#;(iBgtB6OLmzJGcaoUVggfk{O4Fk%f?Y0q^;Lj<)s(T+DM}M#LR? zw#@d~C~4+FxE-&whE6#l$Khe<+E4N65Un*-&h^B2OxPuvvxPbJ=RbWlT@vHsfdcQF zvZmAcdmr%nX=!>JsHvq}j8n?$p@g!5=8KLFeFk-NP8PB1GM=EdpJYvC`B>>BrmUm_ zFyUFt^|8*2Ji?1T*eq z-#E?`13kucXT>U@;FJC&AHv?@ zoC!yCuTBYSp{%AdJf!3oLO~wiL;iZX?f(D|DyOFva?qqEMCWvP;QHX`r%O~*bnWt< zj^jrJ=p7ZFKR7{;`G!spagACvlgD^xl12qaGRw$etj%YMTFd|(d(AB`ht*o2dF0-; z_+dS+t?Fr&))0Sq06UL-5Iboe?QXbIz-Ng|#@=7V7^yzLZF@#!5Gk&()u zV}dnD^<9!1jG|?m5vwo^7x3dF2U^}A;tgmD{ia8V_Z+1djxrS`3m`n_BaHt5Jx4SyK&-aDu>BnhlHAHodl1&!zEIWZ1BM1Do^xYmcaWz1YxID;m z0r&gqbLXBs7AM=jp-pj zeZPo(be+^Ot-f`pxct-=a2I8%@Qjhk3HKa!BaCu0>7%gU1I`Oqw!>q#5urh zI^g~+bNsc!tE_1%t7W$|kUU@}!#@hahH;)o2*~f-KHA1o>Uk4W3P%&qeRF^6s};&h zYMSXy4RVKp(q)xqgf>GX5I|sia2Q}@4I}>mw3XENC%DBhXONd*@hJzK-DgKo7%aP$9d`yN9sT=u z*Jt70RkY**p7W9MGj%s(Cmp2v>x}i)2DWBCJj$hvWGHSik_YLpscw0pNzwlRbV*qx zD0W6iZby9o09`ifLj-{+C3aj(Z7u%*G9{jdwyL_G3K|IO zCua_jNjHSD?K_H>!P+o8;OYF!77xvbw^(H zHq~)aTLlUnXCYPHvF*z)ttX!wyxy6>I_Z9mP;2n|$?9@{IfL|)@cQ;&Y!Ayn=6R0M zEG{FXju9hsGYI&|QhT3naCjZN`e}-IEwS#Xo+u=zECMM|!;dilyFGM_< zk6xa~9+8+HqO#n`X($n8G9ra$jX_?-_9r}y0qv;OvRrG+!m||{LXe1j$&bU6!5IAY zKIhU^mWpbM<*6PD<<)}Wi32CJr$3AG)1#}6%5w$l zdd}Avg&8T{CRxk70?N+E0J4rYsppP9`Xdid%2DGK0vVX9#LpNJyOrKKA486L$@K58 z6w$#fhN7~bq9G(=e-#&SJn}(B-N*+Vj1GNt>1~q6)}u{TcZ!-(;k1FK{ry2F(O0kq zz4P?bS#Hso^->+NA=)fgsH#*ormbd)icAy|IL1gLJBK*W{+cy*v)opdswGe=Eo8f_ zh&M787$6bm@1A|M-)ZT~+;@mztf{(F&`yz+mXcF6?u+Jc4l%~epItQdC4JWYPaJ(S zL@n0pR>Wqkhn}fN8>If|&JGFIYio~~2N?I7gFrm8d6aTb1aKCsjyhRU$L`sib90lE z-v=b)MJug|USh4MomJIIF1e7hgOP*$ToHla15Wk5G-iegE2tu=Gb)MENm$hV#~|ke zjt;oh+3ejr0#8VMIn{BsG8Y5+jz2T04zWoAddSyCz-78ct3@5YzF4M~;S$W8ltIDo z-;v141J_L!dP_w=%u`g=)od#0=9yJw86DKWZ$XTE>IDbMO;uA|iQ#Q;6L!$SaydBq z>kZn9dV^G{y^a<9B3rg_cJ|NIY8zbH#Ga%T^Bj75l`OQ8(Apq@X=9W3kpV z_K?Cd%zg8_k(~OR>Pq!jO;*v%NgiUJ1Z|m%ZsCj^5IG&PGpUvJ9V+uol$Sv(%K0xa z*baSt^};&-kfJIs6)M5oA}yQOlsNC-56`jHfUHy&1esrYh9PhSO>U#RP~7P*w%dI2 zm?adRDnfiEkfwGM$j;N9zPQr=0A2L|08qiy5*xK$G?bxyC;~s3RH$xHs2+XOHHPN84`G@(c3-{J_sT<@{ky*ISfW|!PS3POLDxuMP*Zz5UP% zp`?Xr(JG|?2FW?@G|f%a(b!C4*&qnqF+7u|*3@rOtJV&U#Y`ExPew~YVTO^K3db@g zc9n14{#p{9M=dIt;+*7X*GYDszof09NH>7^!)uJy@y#l{Ewrh~$>SQxuSQ1}O-Iy& z%1a){)Xh~>;WHD*Inlnaw^K)Hinue$u!eZZAf!a{NguZ2t;IYoyu}D zIn$l(DlT0;9c3X;owqL1s^ld^K>i5_uXD)fS-Oxbv~8F4RgbR$J(Tq%BNT z?}aJ@zB#}d%KDCQe%dB_j@^5jLrx8@8I+`?o$^WuIa2-mk&FzE+C=IqcrBCFRokh> zH8`6gRaltSiQD+SJC5Gki5<77E|#aNr=Bzn4#B*K_8gAimwjp-Jx-ysi9}s$v0P>p znAs`(SS@r78XQR$1{uezeYhjHrn%BMs;qhzpA{e}SlcKw+#T5VKDviyq`cV`Yhn2` ztVVAY;(#<`AnrsAI3H7`%ZskB$M zE4h&PbE`z;O|^DEVh9+UByv?$Q~)FSj9~!hJ9}sA?lh3n&sR=psu#mZNekvI21Y%5_x&|3HIu`3 zk=tk(+Z}p7rnYXcro8;@brjVVYeu*`cdG#LhaSG56Y9L_pW-!|C9RgWI!2Bun3xdY zMkL7I7uy690X>P;FG2Fq(mclM)RRXz+fN#h8I*A9=k9pZgxzNyWi)GWdWMoT3nWa% znTr5RGdGt%VV*sE=q;ti!Ploqby}@S2k(~O!t0z+#c+nH{6wgr6!S&D%*A-hfsh+% z?SqURZj`gyCz+$TEH>(zlMNki+=2>{6pridohS6~T*A=HK}@!)WShfPmO@%>!-7@Y z0ZAUXBc9qBRb4}C>bR(y*>I8;@ZO~*opxbQ46M9x2*<8{!PaYO*{yGk&`W~Ura$$C zFH==!#FoiD#4?;T8j8EF$Ah4|-T8UDVys^OoYuhj_mJ5AcrIxqXgJ}R_Qwmiic zegmFx!$vP%S=Cl*>y1^m^&E*Tt|D4#S!84!sbv_!`hE3SRbFoWMOgLJ^l?$u9w%tm zYdHt;9P^%e_wTEkJu8Jd;Cq9QoTsYQAz|O(M0raMhC38h7R$rQQA;`rqh|`T1|;S| zoc<69Vd^zL&DAw4P;GVU%S>I)=!k8Jk~jCk`)GenU1v%Pt7XakR6uY72;Qd{kQ1x-{?NiRDPVVfAwap|5teRK{wqx0=0LO5jNKUipKj4G6srI4I4 zG2mc!`<&{+vWRI^M^?gUnRe_W1bcn8URkOZnb*Pa;|xTPgMg%r?Z>&(TpdFNJkhGg zB}Vd=C-6U}LG&XyKSQj0>n${^a3rpypq8dEDd%7vj_fEcx9HxS=r_nzq-7^rWQC5> zS+G&QgRsxjOqDmPWQjy_D#*OBZ?CtehSt|tO$UidNjs+`ND%BN+qc_8R^h~J2t36a zo|%qnmP(z4Nf{>tgU31N>8OzO#iG$9DO+6`kH3ewr<9xm0sS+kC$-%wUFxT3Ad`%m zh?t)F$G@h4U#X~~s}e;$UBaS8+~})_&OI{R>r$&2`gct05p$eIic58s;Z~@ml1QR< z9xO*KwYeR?E>5KgI!4h=C0x}q7^F~)u_!VCeMlf{??YSnLF1HkEV*r*fDfkcTw_c% zR=Z`wj%iYvr*s=jnEc9d>T}y1>Z{sAV3Ub5)(YeZm2|RM8qp+Hc9p(lhgOleC)I)N z+tc~!tER1~Yw7ArBxRKu3NR#sLE!rRzfB}glTc2y@l;DB0glbyUVek?rYi+)RP^Cx zaG_2--MRMEu8dQzL>AQu#2@Lxq5T_t}eLeIV zhO$KqiP>a@`*Vf^k&QD}G_%;-!>g3aKqO%KhkS9{Rjha56C_n$v2O8COHoZFGs>X9 zBR#?G$kj2_79~Px-gShT34OqjbDu%<)t_|vifBG<;~5|f?dM2!_xN3twL;T=jz zIDp3ze(8{&7lX+4Z0Hly+%41ZO32g$pAA&t=lW{ItEZ^>a|GesM!rH181_0{n%PlQ z?H_``%u6fkuQ{F?jAIm|h;;2%jIN%Q`86^7S z9-5szRTWE^OCj=c=U^6VKIFlxtn5l`~Njzu`Wn)rR2vo3AIsJV#+PZ?RX?${j z;r=f-;U0(WpcPY9)yzDvl9*Blax_(-_k(4GaSFv#l78TP!X2Ov2f01| z`d>A2+HxgV%koa|Px|V81@execKFIeHzT$)>yJ%HR~(L#A!c}PvQ(9`(=#~BC;*i| z-9EVQp?3?4)zXlm*%^)>9gnB@Xq`jBEQAJOAvi3jCsE?0qo*V+fs-J(93QzJ-(5Ey zVS0}l;%{v-R8uLIHD(+VPBJl~&{wTBO2H(dlOuCyh0mscT}Ps!lCGm=v7?MK@7p61 zI2@0zeGh-8iBWXiQeDh-Zws+c6=_2P@*I8y$0Yl6gO9GO*r4Md~(`3PgKYdWO#+9E@ZhKDuP9s_Dyx!l~)+u^C3m6uf>Ly6)OnCm@gtw?9#n zj!`}uHLj+%qR}lofFYB^jj7tDnZlBQ#0QyyJ&w`&=(X;qlc&0hJAt+4iR6u>+l5z0 zP}`M3J8`(-Paa)!x7IxJ7dggzPL7KYkPBlSCDGE=RPxc*HKZ#=Z<%F<v__Hsh%plB!Z50%rz1$;Bs@YV{Z@6HxcWqg1@M~L#t-GRzNGE`Hjk{DO|=d5ToP!pbX=pOk*;8>dTNYU(4TxlKWM-yEtH!o@6+x1J_n!mYVOtAm5) z7#Y=jO?2tR_=^p@sjf2H=v2>it`T9Lo{lyE$h;f^?Hp=GOBTq^4x0L(q6JMnU0u=3 zB~>L{i#kOZ5={m`I~*??!B)Y*2k+jcJvVy0d`jyYTg?q*Q#VQ3KW9l(3!#>d8oHq? zC~o+b*El2tw0dew^#etuFG0!a&roDlQgynJmy7|=9SDd1JbYF7Ekn|GN|U)I zH&aqVS+NvQ#A8tyP(Kp_2qRUm#E*s7OK0|Z>nnUy$#AXxnO$11w3Z`(ic=opRE=IA z1^TY*)V&` zcVz2N?B3l`XR7_pRS=<=P=a#7r|ZM^|+>500YpWXNl))eJWG5^2=6Gq3p6_aUA-6 zH2r1xfgPfnAyZc`hM+{nP~~~uxZ{)GpI$VfUrQ7f3b7#C7^oY0WSnaER^VScaYv_)DFbt5%$y$pA*S(D{;jzj&jTbZpl0m z`F7MOqM$&N*yiG-jLXcv`8g{iqoZc__YLQw*c+u%zgEA z+v+GTbYsPISz{~YC!7vJ`|F$55G>tUo0I}m4LDTvCr!<6@GOxS*?Qe$4t#ejO%b@Xw!QI4V>dW$L0Fz z8k$SRB=dZX@>ImZOUj3GsvIB1+thP`$^5l>^*2d;?XD)cxQ{3^GROm=Cn~w@F@c}H zt2jC)_iPeNM|OqbSqeZL0!(GM9Ag86oHx^5CYtnh8UYwD_lnT7Hmx3BAEdy?b`(VbH;_zi(OokLp5be<+cJkcoUI3!?# ze!O$_(TimiG0_Kijh)5(He>1X?(jzMsd%4`gYViO<|&$nhH6QH;~PsTIoe6VKhstn z=_xKXLS&I6a&jDnJGjQuaiG;dFG=TnWD>kX!*xZ*RE|F}tGad@M&Zn*s05!$;wI8w zO;OlmW|R&UcmREM)~>Q@WmSdp?S^hUbMLP6Q_$1Z$n@0nDVOjZ^1Svs={+=5)dS`v z5vX0;RA(p9XP$L$3n}Hh$(F0ipjMVX`(?`B58axQ0!Sq;~t!!Po}Akl&`0wppx@ss1d~O6=RtBw|5{O z`Ol}etm{9-TXcviFA4>GBp?UzBYJb|t~*~-mo5bAw2r$1<`KAjJeuo!n>P4biD6`v zNgw=W!we=cGD#es-Nukw!D+P1Q$cZ>RGCzM?IJ9s;NbfO$kpZ3okaIIRT@p@M|S52 z^VK!+&if}%5-EbUZEXJlERn7OVS>c{myg#~G|yw$D$iMB(29le(kWM0)5Nk-Ejko+ z1ODm9agGM6&Z(yqk_miHJWa|7&hLDEbt0#$Dq^aVogONM*}0#83QwmTXf4t{X>Hhsj(N5^*Lkq6; zl}0xY&v&+cyJ;fdbWvIu(Xtslu1f-qjNoHdA57gMt*iMaf_dYoRxzkT&VY~s+&RXq zYBN~K5)C#iI477`d^hRqnKd@*n4pHO_cT&Yrb>3)dxOpgp&a1zqtX04>l=NhmWsaN zOEnrs$u#zl1Tcl8-DgJxr+sCHUK<;0M0v~amJSJ-BV5@nx=y31gRb!Vs-N<&JRAL?eC?d z*EBbEmX^KVbt$z|cp@@;aNJ-K+uuha!_DqH@vZSl7!#lKNhc88ol{<7@Rn7QQ7{{rWT@-_ zAItRDTRhd%U7$+Z;306*x&~6?jysGlduTsP$t7CLQ&ka=GoA{NPTT@``+qGQhL$I} zr9vnPyD9<^f!O~5BmA`mh^v(XSgOW2Vr79_d8A5pxTHc?Cu*umk_ZE`j!zz*y2R`0 z>0*_pq+uFma1L0nI6QXHYB(UL4Fx=dmsUgHX*tUMGw<)Nm663N$0V?`IcyWo)6aa4 z+2m_EXikJn?Wj1&FzvtMZYum)qL{_AZq<(r2^@fXjGtV0_R*`4#TtsbOjG4jPsa-e zTpV)SvzGkv_R<9N!&6rxLRL47WD&tb^gXb3A_&nV5*ZNf9m59a{{UR*j*_mpk^O4U zfX2nYSKLxcli{MoHpZ&t`e;;jcNr$}BBzQnpTxu{Iq#F6Mx#(l$akX-IVHcQyU$T1 z%zt!U`{7e1c{s!Y zJYWOOGyo=Xk&sV(eLt3}YDA%?jyPtbf~Kz|v^gN2c7-f56z8zxI1xRRf*tM+?-<{W9UAbBWp#D zAs%*z9@*6K@b2>kOrl4pNTYM%l5%#BQa@9!{{XNmB6%aI+Y?iet%u5-jDn}s5ux)_ zXjL$FHtohqw$aFH1T={$MZxp)gMpvRRvoP)SVR>Jr*Pvw`b)LdH8TWUV*myxlctJT zXqcQvseOr_=RCgs~c2Ngk6I!iaY&5)dg{|K(S9fL&*-!?Aud$#xgKI z{q^bi&B=8A#5NFZ~m0uAOD7Sp*|+WKZH5;Cud>pGB# zea>Xu#Cm!i1e&_Gj#1+V5tD$&(CYf?kAqJ`FV5PlOVG-92;FfcXSq}8Mmrr+-xMsB z-8(!e@exlVvt_u*9kY#fnoVt5k`)hG%=$Bf$R3uxsRu=R^xT)xGqpt2Th_y8zlET zMWr_NCR^E%Bp zlG_hxIr>^z?ejq#t14s2*v>fNPOJGLs)5~B6jdBBz&Jj-xUBV%fh9FuSR7!l^XFCX zSXu?S%R?fp61gaI$QeEUoxAEbrebE9urUu~(^5%Oh>zNH%xJ zn~z**UsPJIH5WRH>%BxGqE=B&3=Di0+!tdrwm*cNXY(4Z?EO(y(~`SVMNVRs1WMa; zxi@~sdG!qIsxPdgzQbwmNa#lG2!R?T64i7%M1$wn@8JrWDghss`9xTyC1H;S5@zxNg$S@Ozr*b zr_b09NI#c;z-lXgjOngjs>FQ1;yqtUbrl@4gZusVfjZ;io%g4H724=7H)}nn!_xF= zOC43}v{R*Ij*sG0yAvX`Xg39oyhnB_6q0kQKdpM2*>LE~ze!o?sv5^)uBErqJd?{5 zmDLiaXPLk_8{FkU{3sA)fHd*(`r_8Vh4slzPYcacQw2O|z+tk*%7N}edUADDe`m@1 zPvWJ<+wi-qdV=+8>S`LNx?8QuPSerc+B9jr1#qtLw}%f3-c}@l!?w8(6Y!6yY8Ote zyP@fhzl`iWE5$y)LDVws>-kSl*{@ZdJqfl_BobTIV~TryO8C^%DkxF82?uZki4?1k zMjGvLw_19Q41FC^X|685Yc*{^@gLviXE<5Dk-ph|yiWQ7QBjDRptg4dA;;^bddkM0 zS8~9Hg^)Uc`9FmHeYAzuQq56NQW>2gL>qE4 z9QyqSI?Ktk1R2n_D$Yh>cdw`_KV+AY!7Pm#!*T2X09|&pT;?}Mn7E3o9&Z?DaP=qa z?sUJ?>rkw;;LE*;V8gfv+ta?7XZadRuMMH7J|dALr((y@k6+hG@zN@@klm%j(|2d1 zvr|n@JZNQ?Ycv%;GDpq`@c#gZBR|(yr599CTdY*SB#?OOnIRKllQ`rN+rGSIY`E1( zDk*6yRcWK$Qo=A|45$WI2N?&xGtLgI%QwWzO3QM>Y7y8E3lg#}z%j@pBxAR19(9YU z(s_q7b5E%NVtPu+b1xU|UlC$SjvZt?lb=)mdMi!Ta?z}^#?d3OByb7FeSHAeo@qMu z>0%O6Rih&ihApM}9J6GQ2Os)q)epxSdU5ixSgIzdc*$qu8wa@^`|5+}tS5n)ZFNbG zP9^UBKwh3YD&Lin9RB8S4|zvCpD^q-!j1)+s%EZ=nrsC*jAUci{PpLr`&FJwxqKRV zb~83aWRMp<%8+*b{+e*H^|Vh(B{{2&nqk3SNH%4#V| zNeogSFgzcj?l3-_YUrVQnMB^*1Y?Gb-BL&`(!{kye(g8y@jY@g#sK#3sN&akrKc@j zENLn7XVj0c(_Q*@YC~I1SslO?hMqW9Hc%Oda=`jpdqiq$YE?=kk~|e7^7`qH zp3??5&zB>dFRq9!rj8+rfI@w;OMjk?TdlN{1xXyMmKa}BG}c|jI_WFcD${ih-rZDb zU{~AsVJ zE6Ao`s85#!3r)* zZ4j{#(9#|-F!H;1A7C|c$ymJ`(N%XTnmTyxm(|2LfO5Jx7(M6_d$_>8QmW1w86OYK$y_i3DH_k>BxT{+c0d@W<}_ zL>?g^7XJVpDqZhV$sM{GYXou_)wZJKZr}wY&;`brqM)pfmMJJ662k~8r69l06K zcBIXbSdFVvP)N_y%hb}imKON{V4cF)^gZCz|B;#z532!9AxJQhD*;Qch$)NijH zL@hnSi#?39FWpgbz1IpVT8U(-Lhlq!ADAgQ+DSdfr=~O8MXWtV)pWEUv+C*RaLO4W zk}?JkK_0jn_tHHFS6XQ0imIc;k8vAG!xZDbd;JeQY5JS1tuH|BMTsOakgCo$ZuIZm zWQ>huUrxmc6N$4$q0Zvc74qG0s7i?HXf0O%027uG%BN|-0TyyfJUA=a3pY}g2aA2cKZA2%Db#Zu2}>&`gzR7j7?WgvXP$P76(HhzFBT2s-ER; zjw*_n{5Yy20ykemKvRM~gHvge%DqHpL#cZ0J3+yf-A#++(xbqFS>84*@;c>4eZcyC zwaUdbw<_4^%#rv}HzXW>nrgSLJv+&5sBfEyl8-3L85Ew(G4#h8fpF;hs|?FkZ-h#y ze-wEiQILBP+ata+t!1zuOLgrro}xWz)4X*{byvw#)zB)+B4Cm(;4_hoV0vd?YA;Di z12oiZj)RplWcTa{?T$Y^Bez=BMMPq&k)%7f95yzQ+w67r{a9{^DYjNLt1`xR?Ak%& zIsE;#TvFSx{UwIEHsw0UYA&J=Cxt9ww{y#6w&C>bee_C}=S?&cikUo-{{Z&K!1lq% zW80smk?a(+)6z%cOdJ!QPSU5}Kj*27RVL}yS)-IlPDva$zdz%rYF9i&wwz?fdYEG} zEmE_HDx?cJtGU2S~j+(dSI(c4)dMGIKce$W=o|dxESN13%Nj&SdWL5 z$7VPngZ1^skSzT~xj?=eAoT-i9CrGCS}#%5@w9am@{r;{x%B{g@%H0c*3iYUMA5F` z7CdygrK+wH)5%)$RjCprE=K0S19GkxZbnH1JOj?2x>kzsJl`eN7aEC~jENm0fx-?+ zW*m0F$J6p2dXK6uEp}-lxl|{K62}y3qi)@!j^qCTO*V9QRb8#MA{uJH5=mUh941(w zWyfLPRPWKb1m;<*RHFiVKwoUVII$q85*Z>58+f6C8;HXKP6)^!QK;QU(_Yq|rjj~X z$A$aVSwMDBI3v@H_VmuGYPO1cX1ML}4;kY?zwHI!F~uFh+2e5F z6OM6$JNtWTl4%L$ddn?v9c8%$I<7in!@JYH z!YQLMNW=h6PET?9>8W6nomE-_hz3bhkVm2VYCBM82dpGwMq`Bq<`gD5PIq?KX{w=c z+m17n$Dq}HCsI?<#?j2cN{x`pImWf8>N7hAicc;xx15fB^&i#StS>NhmK9VK^)x1u zNW;byjAYf^Rt-kv!;Ml(9b94dK+2+ugqt8a-i z&{opO4GS~4W4MyTX&%0V9QM_X12uOHNHt0xqnY8(p%s*K5Mz-QShBg}KVPpJJx8)+@@c)e~OXARY6-{R<$cUDvsflnN@L=KD+<{&*iJBx}FZE zv&Vg~Lli;}Jdoso%1$zboD2r#alq}b2&DBeR7F`FaiZjuJ4qa4)b`b<(tjAgWZP-z zWucCDS+7U*D#s?$1G=8wwJyu?UgLkMVO26bHAg-P0AWA?VEq8mD%(Y_vKFfn zye_|o1UBRM9-4xZ`f=sjB=;(6Pnl7IsVAbAtOtO&Z^WdYKH6URxpB5yt@NQOCB%*u zWr%}=-)R}i&O3TzNBjypS@RUZ{YfWPhsBGWS9-&4sg6jarYa&TH!Eaka3kMWwBT8C zkYc!gG*OSMN)>B z#E>y&WRNl1*!9MEKVMx2q^PWhuZCycoT(%Nb-cAH83uDUY8hJ$yh|ds@oqGqFIO~f zL1kUaGD#isM;!X=l}AiUitxi%41rZAF*KW8s0w=#-v@!mZ3wbbR96a$TH2W@>Z4B@ zk|RuBI+*|-O~de#J05j9Zky`K>g1=ZLh`^zFFFy*i2{bs7=>VQ`Fd)(!Zrh9T~gLA z;-txO)LIFeCf5}1*;k?*~+kbkG?qE?uok}9Yfgfc(` z`@?T66_?w#GoBA4KW$aiCzzy@F6rOPVSpv=9CRyED%Rf@g*8uy4ScaM03SOn$VO4J z2;&^*Ac6+Bt?1iz{(qDmM=@Cul0Ocq6=9K3_()aq`&EDdXZVM2QC%_BeKT~Xh6~hF z#Zgxp3cH;>v= z%4hpRbjMwF4@leQ=sQh4#-`n0^K!#1h^!bP*|ivr{O%lk>JP$hviO@_)qN*v>%WE+ zJv%Q#biH&o&Y@~%Hwm6bDj;gSm1tMyr10V7#ud3aI<#bzO1lUx3N~}J7RdwGzC6F{ zI)PhKl<{re6fhXiAY^yr>7}UfIyIVssIZ*z$76^(e;vC;raE*39P{6q9_3bP&&tGQ zj-WA&f_4B89G_wi2sroB-lLC;WVvNEfT<~v4{sJzixA<>#(7gr75kTMIjuz79qLLG1weuk;axyrr#At`6ifP z;m8f#`u_lq zp+(W@CAMpo1aBxsW@4l8jAP8BJe=b?n@;rIG_)&EO%w*9N}86Dw{8O`36gP^P#9o+ zJLn$OBLl27snq4VNz|0-Zk9n+aE=NzSCDwS+i^I^O{0QwjGb5=A8PnvRk5lo>e``X zA^uJUbPjEv_>_YS4A+$pB1xm%^Kl1x-aDuIK=9kNw8^f<#2>+hwQ z=Xz>dS*^2C)7941cqr0Tpow#q4DvGvkDnKmHL6*bGK z;+58RTBzctEcE9&-i|P`t2TcL^glzUODbC~HY&T!^CUGCvw+m0asm}B&XPL-MnMG* zNXR)k#+@rFxpSDTwOz4T#9*qcsJE%9d7*|0!@!0R6-yjvAKt(pZhPuiPT#3wsA@Q> z=1DNcUQkO&`+E#~p4l8|5T&Q4w?QkYr%i=pc8n`F@til;2l5Qo$6kRw0)e zkQVcU>4BUP&!(pe2*j$)!MK(LeL-1KLo(DM-@!8#P%wGGZu^EieRZT)w6xFTJz-}* zyja#v`v%_o`x1X5IT}wlMW>PoZ#(=HY$(_d1QU~wu0Kw#nMzskO+(&t1&G8a><1J56q0|DIakwz&Bzl9+pi}id`bwE@RW}HtM;ok zzrK=IS_;_aj+%@^`(;8yg+34?Za~?R3XJ-W4{Z|`_^6ap87G!CRPZE?OCdhY8`w{aqp)a4Z2xsDJxavm%?l~WXm>x z$G2}yLueJQb0?vVgaRikmrT@j^};Ew*6p;9i5!+Y6^K4%Ug`inw8=$Y#-4a;E2MCQ zg<=U1uuKMHjyVI5Z4sWjp5uXA504H?I{Ah{;G7OY1J_>-99Hy@Q%di&DaPWS8j+3$ zeAvbgvmWB$2kSL!sZiy5Nxvs;uB?rumKmHvBrH3Y8RbXUzKeXd9bGa*97_At43UGA z^wMz_`fA6xNm(Ql6=nqPX#D}>9gYe8G|AJjikVWj-&SNtD%oL$BlY9$sy6NeIhU*2 zPBGR8zI4&1nOsPuApZbBYCWFbBCL*SCUhaN53tUxJC&h)RVspECUV)xA7iBo9f4Pxz)TSC^^9Vcs<0bUppm(9x##~Oo0bB5bG{`jw{I_UMwIgh#C za&mipHO}K^f<#$qXO|L;Wff07{^0)rmWhZ9w8pJVKH(g%71Yff~q8ezHR$}p;rF}M&+~)utT^&mwS=fWkYe|HVOB*Y~ z48*F9#kb%poO929*wu0I3hP@(MN0+Q<7&FRg99UR7JnDFameqS==?DnmOD;ELGePC zpe!&}R#My_d6&mx+d(CdeWdOG0OiK4TTjF%OARe0%65)w6x|pq8wyD)>6{(M2c1+^ zvDAFYr-2{70$}80(;8su`uH9MvtF#JR9nqV{txe>Vn?n)BaX))XN+s3dX<1APExHy zqY<95-MYs4bQzGq$s>{B&Km#^DPjQk2kXY5R8LDOEfh4qHa8IsM(;PM0f0XI1Froy zLoCiN7ixJ|a5U=}=NqsxIVTwWxYIrJ;pHWD95UJ9DI91W<7tE7k@&XbJ^S;hTGXkw z^p`85%aea!)+a@CTWO3}LsTMST|>f01J}97KEKOMReeK2RXkL*bp{!kN!(w=Ry=Wo z+v+~r0bgUhblXS!UDj$D7s8E_WG9{q@JSpo13z7Gqv;v0R{!N~T;q14%` zsc7D&QjZQn+@}S9*MHAll1Su|IHX7zEwbsaT9iIErg1&#>8ZO0fr^)fW1 zTAGN`oPpqo)CB~b4u3v$M5#R>1!3MQTrJYPk`og=VMgXFfE$kb)!IrVjKj-B+=VzL zaoay_HC@t}Ow!8J_%c8?f!lEOB>MaNX+Gyrtdcbotdc0~e~4gb81>Y(o!m&Q0b_qp z*1+_w8^#>UcqIOs-uV?uOOoVa0Lbh(#~9-pLAPH_EUNiML7lt3LH__>maG~o`a6Xu zF2uT>+ptG$4u6FGewr7oqi%$k3m0r!rLUHjphYTzjK=_;$LaOax(AZ7H{2d>Fb^8# zKTps*8i^66NJ{UG9hHIgIsX77>8|$MTSEwz-&G-%0WTX2hbOS(^wBdZ97vHFTL+{q zPXxjw@MX^&hCKbXCK+<<1LR{E)LL7meE$IM<^>WiRglG>>EH6#Bv~M;X&OZg0Sr6i zRoO|-WyNqYh;gZEE)_BSsSon%HymIep!d=Ft^(N5Px8bhVV4ESWng5%+- zVKxURW^fPZ@2M4+YG8_z%sj-L9&z^?sK`md=`JgQ>Jg56#bR5V#g}{%a{Eu0asD7Z zGoUJDsbIUw!OF_5fWwXm?l1_@iSLZaVW)2<;n;FhKK}rHI$G;$DC*!Sr50jF^y4S72lVf(y;hlQJGvQvPjOL> z(5>#KpiEp7-;xg>mbS3pXQ!Q8a4HDgt=X~YeKciyVB8{EW}VSwI2i*x{{V)E({x<4 zlNn@~$rmIr@`gW8riE;%rqdkO;kOBHSo+G}UqMY2lA1}N&+j7~k>4D8YkTGT$rVe@ zTMC%ll6)|7NdBk%bct!FYEj}vGKmlJ`fF>A4Seypiz2$ZkO^<%@5XhV%`M2r9~_oMQvAIO9~6!l5CnlAf>xidEbLFX870oqDgV;H;~* zy)Dj-q!{wZgE;4aPkmA~oi}8un8Q_2fmks@R~R7v5`V{CZi7{d@ZF~`uhMR_E8bR9 z+o7wbbfO91D|5*QKTPqcQAJdhL&adIm?0IpBey?K^V77HG}P1n$E=DpR%4kX81nib zuOHVyZ`P@;QweFKjzNWX-cAbr2=(>W!dw{QVcDlDH+xA|>Zs}}>F8Rh#No(E03&I~ z0Aug{b!N$E>zX@dJxvA8o!AgCqiIla$o17BLw1gyxtg+{EgO;m$SQO0Iri0+U-3@x zI&zK+9mVOMlYCNvgX2a)Anw2<=RJTU>#F*+u$A(_{AGhJjpms;g}yW_0BjP>#6w7c&xC!s!Nq9r%~a$ z)J{a1?X>5DKA>n!-x4~i%@m?rED%E^DuP9iBW^f3&N+c5F zEzS$OEmKI&qrd=UhW`M%duK~`8c80gOxPRp7lH?T9C7dM#<#8N%Z1^53YgHMw&e<# z*nLPonLO*1PSb8@mCF;uF+QiAYgVp<)i5u5tt27Hj9nd4l-K)wb5;0kwJ^x7P|X}r z$UVr@n=DqE?y-sOb{l$p)f`D8p>-0?3g>Vx#BMoZ zg#hmIjCn!TTlRE980I6^dkV2s^QlZgrMhM^PngcIhK}8kU9Bc(1c`I0e=5 z%8jj@u=tq2OKU1v~uqTo5=kA)C zPY*Y#1BUqia;%Qoc<`n!k}5?S$slGa*e*ErAz4q*6RwF8#^F>Dr0`1P%l6f~(;XFI zG1S(x+N+~a-PD?pC0U|n$ncq40G|zj^aT6rva6(yZyI}LEliL@;ym*ZL0E%;GCv3d zA$TV_~UjV{O0^3j>}8J#=D`XaX8p3~4*extd9T zcj59*3XH2CD&zt=I{Rs`B$RN~)kfUM%b_6Of7 z^i{LH9eu`@AC`(~%u$#OpvEwEqLSo@^2nq%aliPv!i``>sA&9874mz6IL3W(pVL*B zOuCl-r%}@%=39MBX;=DugV#UeIQ2JD(B5ozT6n5!sxB1qx=$lW9lY2vs3V*!1MWaL z&tatsyQOqD0dk&V_3JQ}MwI?C2LO&Y0z2ovbrt3zOhR^0pp_|-rM{lo$A5isYFmWy z8l<<$;L3I^iid7N!2tdH>q?3emD}6?W=;Bsyyw6CL)}Aj>5GL#SIc!EhNLVeu85&n zW^O~2JQM%~7##9Q?W8M>WkbZZY2eKaVWHSmlNcPG!;I&5et#`Xt*K=q-?<`bqzKI; zZ3sIYvEfI*+d}QJhMHz&s4F!r(MPugJfs1GjGdz(l&eU4;=ub6Xy zNXW?N(~U9MdMfkO5Z6@OB7?xTsG6!rsa>(eT(06raHJfcZhLC`I##)3#Lup`wXma^ zU0hZv3>Ah|rAYBKsTj#V!#;;TnqKN^n5rqviC(Bgdz8GG-TweDZ}HQ`>VlqXM`dpf z+-))_0e1n%)16kA7*oQTSSAy2;Bo_YA8hAbwQHVdcXfnuB3OE^<7KIerkbKM@e)cu zo+$7u8tVyr8Vx?AEYB{zj6 zZQ-oD3gc@&K?nZ;5c+6*baIH+XsT1jI3_G^%Aa4hj9G2fQ_5wg5{bikqlvt%r}#Zoc&`o|-=nX<$egJS^Ol zJdzVVm4W17gMp}36tYp(7pbNpOqgMjfPIcVbV7*Hp$@2LQRc?sv439rJPdS@?r_=8 z3}ln4rMTHBpqjBR6|n-Z9F*8)kBljkK4eh10~}}Vh!h|_Kn!4`SrMj+S>$bp8N#kJ z$vGP1B~%f|{_#|_@ya|zf{qk&;GA;9fzN#swlype!z46z+5Tb>i5+5i%@NLbl~6H( z_58HTp+^D}Sk8GeEVt!&eo_>USvGAlK_=!r`*F?y)S5n=YMZ;7_(@7p8_1v!-UE|@ zMnE_m=Yi{?w+oc7bAn2*m6>DYq?F)7z4oYO8<)Q$Kj*2|>YCVO3}Ku$?aX5wk==O5 zZ?Aqk>QD$ANHQ4n9W7QX3@_rk2&Z-=MHt%(6Wk!r9fvDG z@r>t4iCY~zMJ&c*Sx(S@3Y>c%U%!1=T`5@vzb?~27B+kk%Y|Z3u6fVfK;(g$HF##k zA^yuLk9{3;$A;YSN;if$?ho*vwusuR=eMGu%xZ)wc@AH=?YGIG&<(gtqatxG8pNlQh#`Njc1z;oF0=&D+$Q!4oD`f2~|&B z9O#6xR5)Yr-|BQS=~Z6IEm2pNC>S9CZz>q_4n4n?jdZmYj_D&-)836U_tsgfrz1T1_o!yIIclgQu=QG0ea0+TOQUggO+m4$Cp%(U^^ z(v(jUDR~2eh5&nQE#Hi4Z52fI8)K(3!MG_4;(x@)VYm74bidX2I!cSAw@N62w1~bW zNytVW{J+anx-+TlJwaN@S2u@K7SxId{n;!(x_;i8u;^C3;7HQIY}ibH={xOYmtkbQ zRWAq~0}`D2c~7p3b!0?SN#YIR$xu+|A6+6sQ#WhUfVtn>Newxra ze>HI8Q5un1%9(o0Q$>7Pt<;rj4M;nwp};aG2c!NhfzR=3g!rS-qFJeHX=>_>l(7{t zNLkS$E`pP;OxFIfq^g8S!DE)4l0^i65ZrPI(O*F%f4!dj$?-a`Poi8WE>E6@vZPu z%4A6mL#Z2G;{XCUKBpb@(Q}R(t8-mwgf0Z*h!^mm$8l~PJ%hFV@rqmZsW1~k{YS*W~5ibf0-mPK;ALk~CM zBP0R{2iW~|r$H3{34v+pg91d2f(Reyri*o8rlRoCk&q3|xa2VQj)YnUo(V2wKXXC zr)f`zRplO4^yKmZBb@0f-$hYJT_rhLyg65LZWzpY^&W&AgZ9&_O-EHjv1cmrxMe)$ zTi-u%sE+iNH9j>&h_c4K73Fy+as2&$`c>nR6`8;!&UBR#L$Ts;CLk~_GmP>-EDnD9 z-j=GKx>+$==`>`Wfbr|xj`+}Ont=^Mjrmp>-RZYI^}Q^#QAi~~Mn>YKVNs1h9{^ z?bB8CvLz)$_}~Jvhuja{dlCHg07q}P)PNdq54q1~ILXI8`O>dU&piPNA{Axhf$8i9 znmkyl6ZcH)Tc0xa<4_vP9A}ATZ59mUm`({Oq}=5RjFu|hf&9<<<4d*T;?+gzqy5^S z!ZI=su1|h7I%#U6Mci_u7*H|!jY*2Cs%@((xCi)#PajjH0bXGi55!&h%BZ7tm1IJv z0bA66uU#C92`ed~R{#+KGUVD2LGGkIZT%p7S>VO>DmH{(@ELR z<=S-xq@d7t9o5;FO+20Q&fEj(LVo=Q}XU&IFGAa*~Vm%dxWg3Sat4UpI<~gu6lpy}N~kb5 zV3qo3+v%VXS}LYb77!!@mI}ilYDFEsS74}(ljR`$>Y1*g%(fZfT6?RKBsjwQXk~bs zdV*t-&8;X<28fdX}y3lWuzC1eMsn27<2l?ak)F$fcQ@8;NXM?K`o4&-xj3z(k8LU)>=VpYy?&%?*)&$(pQx3ilGd<- z#j_W1PkjD*)ciH+)vA`VnW@N_Hh9Af_wA)$i<(9Ng8m#W`$l;8rv4YdQr%`W^lWFP zY&%Ni44?T&p~v&qzZ1S3Q(NGU)Js#dz+D7rSbxp;`+95E7OsZ2^u@$gTUArWKfWx* zx8U$k^w&>_ofRGOjwvIhiw8a{1skvdJ^eZL9O-``;P=NP8Slobr|9Z~Gy@aiZlzhGjzM@nf+W<1*W1%~23@F{SYUD`*-d)C)mKyX zE%w6&1x%8~6;1w)p;+b&!zNI;4Z#GAk6tvd)Y5eiP2X#pIA@`WYh{L>t_hjpkYtmw z&kl?Z;m2Y$AEfH4Wv8gOK@#{%%Q*=mBV=dssUyXYwsFe$9B8*vUZ=i)x?S#6wBnP= z6g08Cid(+sI3Qy<;Pw~;)Z?WdP1|rW{yTBc{7vW73-tSeA-~Vx#D@=2T;XcExSpLV z>M4fDhBP0#ZOY0(;SLYbfPJy4wGBLWIyfeUrlg7fa)wD;YE-86SyUr72}v@f1s#DjCdh8%;~j&-L{=Lf9Ez48eiCnZ@XrkP`v@KDULM!Uo8{6)OkU7?8w2Rw~L zn!m$=)#a2^5@mSe056DF9lK*V;Nyz#BxX+d4oFh=(ruQPM2;q zo*YVG2t-(ELwS}@HUhHtz##YUo;7;4E^uaLtPp219ekAUAalMVP!O!!)%eCk3=jz& zh~xUgXyke&u7-M{G*aQf1bBW>$si-1>Om(RhCOlGmac_7Noo;co5P)j=SKPxG=RSiu`*E&x z0uCo+%o%eKE_91US0yCS`AOqx#z&@x_-P(6T!#EU;~H+ey)9IbNl_RP$rc@f+`+xZ zc_;elCCZoNRjFigi8(o3XP-gosR5Nr%(dMsmZ4IRE>vyW6fWVM@^xqQJuUwLsYOL( zHie!=2W*Jr#7=vG*|GK2M-51)l+A(4kbI*gV;;V`Xz1>suCv@=xY@2vM(R8g`SRfR z&V3K4#-P+A6!dkLw3aBa2k9+3&X%;(C&~4V45UhnItZA@mOY3ooy3gf`;9C&PE%W6 zYKvVldUbVZfsNSh&nz>X<0H5_y83F8=kYJ0>te3H#4D&>9VzFKW>g#rty zs@C^K{>nW(cPVFTO1~{Uuub5_BttupmFISU%#BjgYPYehpHS^Ib=okBECY{tGLnPm zBx#--on;~w4q}m%NPO5u@{Tgc8?ZS#4_OnzW)!nQ4HQ(8v&fH75_w5H^Nx7n4B&bV z6Q1v8hK5RNAzd6Y%jJj7JC_5#_5+ObjQZ*oT}*RZ!zDCS)4$`~@-*aN`LfthGrKA| z9-7o&jK#AZ1P@btwzy*z5!e7&-YH3S_6%6yj(Hf*+eK`*1v^|8MOi$qtXP)y$l#2C zPL`^uE30cBW~eNzxC~gor<8rk?VWP6-F`-Qr>K?H!>Cfcat;Xn3Dn>WO1U}aSu#6U zK}#oqjXPo0YXi6D+eT=hLM0ft}W04B^PdN1l9^mS+vDL$AijQkXigrTn9K_`Qefe%d z_4;Y)x{lRV60LM_R4kmXN1X`t!Q)xCE0*;1n)-H7zOJ)dkeb{+aw?-D%8b;q)9zGI zPvKxj8`rmDbuO-YF=GAIwU(in6{tl5P#cVA)MWPh3}|fE4xN^i)2-fUyiwupkyZQ* zbDjtfo_H8NyXXyFWVGu^OB+X16l$eqd5Wyfljz)xa0onS*H7h_z>nq%@?@*5i~B*~ zmUXA9nkdXaFp~v^+m}K~AZ39g-#(m;R<-a}!*G)0OIH_*9GPWT!3?95w07s$*G;p@ zP%jdZOYHlTP-A2Y{ppvxh?o}oOeFQ(C97hzsTWF13zBlAL!^j)OR{d#YH@?G>~_U1DyJTarF9gsMJ?A z-Q%@WvP7YXQ=AWBokqNMRk~U61g$d>g8ASKax~lpUz96#h3DUEY`-`*GVuE0MLn<}p;>sAH}HX9-SQY|@+n277=z=Z^mR?)Mm_ zq?QOkXbga}?(+|>2fuAqcM0mIscBu@@#r`M{#qd}u@0ZCH{I6T@tzicdWApUYDzB&b?tNyAAWF*ymr z9*0we+9fk-b0j5O_zgu-JZ>UyE8`BW@1c~}z04&QJN7ohjE5xT@=i1+zP30jmYyKt z@>N*iZTla7bWAlgH1Jeh;0}_EZW(XUkFKQ)i2-7INmZ5Gl1UYE+k*|S+#cYMT}q_C z&q5;c7)FcE-PkTa&qEEu){&@zlp=r?kY$M+0CW0liAq;vQ4>ni1GqSgA#?W}9Q$eZ z0~>hdXzmFX)gkRXmy#dznwr@59$%PW<9 zX8?NYKQFYHU7lky+^sR;WL)PMWgr~>dYu&Xb77Kc5wnG3fCB zPXZTNlqnbr0n-|I>j`xq2<=x=6+*nx61dLXjEx4K=~DufrgeRQn8wqOsL!XnQ;OZ1WE>UrdkZA~*d+u|a#agp48Mx*}# zwh+M^c+?RQ&RJJ-f&G1d(AM>^3e2@D07e*jdC$`tRlP?v#o&z?DeeHlE%Y77rioEZ z2C&zVPuP$RQpW0Fj^P_1B-eR^=@eD^BF6hl7VWCstLD zsUfRWr>J)bPbN0okIz;06z7?5O?co-vYPvEyA+15Vv#98xPEYZgXlTYS#0*Ws_Be% z1~iqxAe`VIP<^#g+a#%}mPu)gn4%!JJF+v!Im zrn>Ykx~^+B`J|2DgzrV#9Ou`J_s6ECUQMR1e-%SOA0f$H9oX-;)6=%O_HXJCd7DZ- z0~31dsiKudCyBkYo$7ECJaPHxls!RJGYXFdUKpb>NZcPW?Sg%H)}{!B8rM_?<9{&Js0&2;fBZ8eCL`*vc1fF=*V_wv*u(Z3GhZ~mz?e!XCUSo#DKNZfQ z`Mn`USUewzqM$A|Eqww~UucoT1t@M;^&C3Z!Il&nR810_=@NZE@-8a-T0Zhr@ zHt8XjOfWo;D-JWy=daT!gjKetr=BAIT(X~12RiUa$G9HfcdM(SvC_>2T~kITkr)HC zk=T)pkbe5!`agLVn!6c|<8+3j%k3;aDH4*FIOJI-k-TS^s|UtCv$rGI zbEq-(HRGymcCLwa_WUBWAJ^lUo z_Rg4=C}R2URGgdwH{tc+N*Wcl@+kdRC)FN?MpI_d;Z5rW=CB zN&IBstAalX90EBx)Tih^rl;weKC+J2H1=xOXd|nG4v8pY3~mQ1z=Of>!R@G)lT$r( zaUl%z50zcu6~hgnd59S8-0_V=<}I0IImcNrsp}zKah{XxaVR4Mase40`Y8;?HI&Z^ zPGpUc2^o&oBLT(_;vSjf-&#~#C8MW;r6h`YrC9)YNpL(eH*UxqP6#;mIwR7?kM^`i z?P;m6NaRB$8l&P!dGP@&=SB)aR$jz&sO+$9FV1k={ zDJ5xuc#;u?UI56!z|SKClcRk}QFpq>YwL>3*EK+oQ12 z++nN&DutaSPYf!OShQ`!5=xaMXTt~WQNRiwp^`Yq!?^bU0LgVXZYgoVJ^mx4pVqTU zc}h;Ty8g#lFEBg9ZMVxDH56nkBD8^5mGKn6n=IRiJ5G|R$geTcxu-^B;l$-uA-MJ~ z{juA>zH`R7)>T6-FjhrsqbVjuh$@7@z|Z0*IpFXHG0t_wOFVEw-XZX#XOR@RATTSq zh0lM(-@ZPYnu>g++w%SX^DF9a^Ivz*z5{SVm(YoPY=l3jypqY6VoHma*MHl_HmRBtx~=Iphp*bLo!! zXr=1zYV3CCW|PD4q^Q{(P=ORk&%LAFo$Zaw!N|rj>#6WT81E|#Fd+7TZWTpRO1apX zBx9TdpD@mSyZV2ImfoVFqiD@UvBN1U{F1Cd-GT>xaDSerTE4gwCPLf}*LO z3bd-XF-f5T<8)1iCLHb<_BrR*_$h1aMa=Ro}8k3Rh_dmcZoTA5ENsc0=%_9tg~O$dWH9Yt z2gckZXvWo3{2=LTsjSjdY+9(oq$k3d5?BL)h9GEV3{JVMib@ zVfWAuxwzZv(wdU2(n}}?Hj~5Tt};3I9FEx|8WgdM0op5RLWK8}tg*;b9ve!CT=Jc!lN7mJ-u#iUy5h(hNMl4HXI)RKFBJ7Z7XLvWs3YMR@VPeB1g6Ah$? zehE?hLxMQt*Hs0j<%Pao7DKQ$vGoJgXPoP2n&7lN zQA{Z*}GoNhhO9FBW^b;+Iyr;?hYNvUe%k~2Y+?pisRv^WWn&>B)czx$L!U*X5%~hf&dc}^Sicy&&@rq{+oMlKV+0Wb)jAuGGZm8c~B}6ioX(JGy z6}N8N<^+HaKm#W}<4d=DI1#N?1o6rySB|DJ7+(*}a1`gvF^))6^dm$%T5kjAY3bzf zriHT6vi5|5xr;V%G4v$qU^ZApyOe}6s8>f_c7l$onv6j?X-r|l?U!~6l5^Qe+D1F; zE)?|iGcw1zNF=C`B$C7R5U*GLQ%Pq_<%tqW(qbA#ORk6)&T&40Y3e$ASZX(Nh49Ribry~rf- z&bdUXAN%bEO4Yn=mPt}DfHwy_k2%gedgoU5dVNxlm_vGDYn;Ye;7V($nt%f;JtW+! zpD6%iD&4Zbn9#?#(oQ@%X3LaZO6tV1>`2dH#y~#WiFK#&F3o8XQcy_Ye0gJX(Wxv> z=-3=7!Nz?@*l29?si&x?WFUqnIobaJc!V4R-r)OvbSsX6C&=W<(_KmGC^3&B5%#uSPWmAK{Baf*EQEe4cPXv)wC}zPqPyqyMYT7ud;z^J~OC0lz;QAj; zNg>HRh)DG!yLeS4_yKUX1 z&9J^aK$zUv>_5!w@632=iuJ6L?!%S`Espp)ERrB?8O-Plz_3!L-IGGh5>_?Bk8_Q8j^N`MA%`ai*YB-O)GD_0LF?PLo7D>o-T|z$R@3?8 zjD3S2*F)-KtZ|mBcpLag1NrFN){2njW8~znLCMd4f5SoADv72lR52U?eLpQ2&v+aT zkW*Z4mi8+hK$oA!8`tfwqp5Em84Mtt5&TPo{Ipsd1eJ0JG@!6OfbXM}pAF=!Q&A;8 z)3fk_k&*uZO*1-waqC9J7bKVf6ymapGNfUy4P<>ZgeS6QL#x(DP}qBJ+q8*c;~jW^_s<` z4ZO`=4uP#Fe-kNsxXuQm+Ag!rQVY#1DDr^qo-_Xd zuCQ%OZY7@s;3q*_RY(fF&p{Q2-yIdgi5iAs3KJ^-0K;$q-I4w7#N*uP4^dy)9#dDlU!($nT4NFri zmMWV-7(wamasE0RT~Rxvo(91>w z8Jo-d#=u~7ma=&f*~dd5QQjo+!4eWPo=>iIVRZHA)JlP}Kp&Q>c;{#;$?(7{#@)Zy zPyHV_R}u&}cE+DsT7}4qPUM+$+6owhdx3%V)nD=7qIzbpr0y4rx_f5WRh~gSVE!)T zdgnax&wW4GCz_@(B8|3=82aZ?df%mE>Rz9$v(zX?bu1asGVaG29=ge?%~l2np_f?& zid6TXm%VFgqokRhmQ_I`D#a3lasa_>liL{Qwt!PYQ8tdpP9G8MH#Q#ZxXP9c~*?SCQ21=xdVBf**jZa4KRFHod z#<(J2a=Z^*YjVK11Gm1PIqL@-M-lgU6HN_^&NpGoq6rD#!{R2q9as zCnRUv5}>5`diHOag7Z-weJpTDu{9V5X<8W!ppvXMM<|Q{cwons^siva$B=QyY-jJH zRMY&fPR-kaP&1Bk!TovswNA|{1}$Htp1AM#%hc;%Xj?#FI%l`tANpUX?)LU>qqMD_ z`9%#aQr1)a$xjj=12U;YweSIK5HY$VgWE7Ix6Z5RE7d*bkpA+fnPrYzntvK9%12xf z-YWUfu2B0G;P4KXC~oz%b*prWWqPG&KfR1d8+wq$h6EhsjAPqHD(kHkT{TRVHC2;d zVybB#R+-upPV0{k!y^kKxGY&t)(&%$H3^}&A2SRO9X|fOzkMa4dK$-+O0x6U?&;s~ zj9nMh6>-S@FxDz-#SLS^m+a8<&L0h}J#Ix&9fs(VjFwc;C$b=21j z;?T4*Oz~9FVmTPBk*AS?c9WgHR*#Lr$kHvY<7}X(g5<(FipVDjXgnz*St8g-o5oiB zTd|eE><>93R!>A-{uti6F7ML)M;p^zq^D}iTBn>S`J@fuq+ll`?`*3QuiOCG)ooa6 zTg^amk&r)M{Oj?S^e&gFrO4bt#(#gWPlT;tiYV0@Ogk)~N#YaWV;n2v31wv?MVF z9Cue6azVl5d+HTEeDqa6H%lwSJZu>XIYJxPx6|wEtp-Q2eGQ40wpUAkQFHjq3$8j( zq55{$9nRg<@YG)^t3@?UsbYDln`)_TvNLbmIX-NIz!)c0b>{I|DT!vPd09YIEKl%& zp!4g1qdve7O%>`Y8oOjvRn=6rfi840*Ce$HpT5Z<-F7==H-Z6dH@b}^)zmzU+qevO ze=S(h(n95%cf{l6D)@!tccpgx2kSn)T#&5Tm@WnYVV-m8>_$&Ne|>PIBXO2^yihst z*p|JU8SD{~|DL8Zy_CN^E7Xa=DzLBjmQYewD46LDZ6i9HcbCRU@QNTGKqn%i-)K+VU zLsRtJz%ZB3=NXCNYQ zq~)6cW1rVXH5eE$Uq*LiPq$m(XwqmB3R!22B9;VXfuAM^;vU0}bT{N_?n<>X*CjAb zz;7F~leplM*#7{Aw6WD%=6Y(Wr+K18ZJ`S$Bsj?6XSPS?bUyC%6nAMY^e9a`=4hCA zL5yr>Be!na=L%rpPPkc-lg!%nWj`c05~83&k_2-ARe0oG zr9eN=k6)nG(Ln`0RV7Wk<^idW5b-$d2wyHU>8hKn>8F~q1(P71>g+Ohrx`u*p86^u zEstnAn#fF!@jjY1WR!B>y<}Ew63pC#_XF4R_1DQMqLo91*$^dnmhbDI&z(q;bP-0o z6rtQvbAkZ`Wc~Y(q5Sm$r+tkSd3@tNiq?YTlMk%dn9cX>cD#&)ZC7XsBKZiZX01n!% zt#@-sRpl(;4>lWz1JI9d+HmPnZw%y)AzrY9#RGl_g!_im6gSWgd(H zBfdQ~GT72tiK!G5Nfkmga!%=#bK8TJ402R94o5$I3%gt?>E|(9guVi9L@aVPl1|<` zjPf(iIMQ4s_G2I0hTvd?e1N*?DyL0uz_rRr*(%N~2KaJ}(?#z(2ry>%K#dMgDm zba?_SaZ1_AZUHC0J#->l?D0k-o;c(Yxk#2++bVI+7+{~zLe}u@G>VP29f4uEp5DBA z{dFaEm28O}m#ZiQb1aHQGA&`EtAQj^o=|rZ7d#I99DDW}lWtmcr>HeFvDHZ;w%vW{ zKh*8p|HvRkvhNLzvWM(@U0s&3jcsftG$i|;eXQAH1|gLwWZ&12UB*(R!Gy###89#g z!!Yj8_xt+&?myywG7sj#`8tpFJU{1g9Pc;JEwld2!2H$l{*g7K7QDa(U0Rk`qIE0F zEB1JRewhy1fTdp&$Zw}Cf9nxKKdZm_MnnOetw`(IaDI{59n1Htl2bqa<%_bnuyZPQ z3W9Nq<1B|vc$~#gl2>qcX=Y8%?;7Mey9Cya#Rhrp?wuuLh5N`_r(9VX7eTS1Z({D* zsP3aFYDm8Wgzkq%I?p$^QI}^}bwYA)-77CS!~Q9Zf_v3(<&@u^uYS!4Ue)*cj3wxr zu-^D;dcmYtCh_L$T0VL&_xEBENSuwV5$^j#X{q9P{-|<)As5UyqVRrsB$00 zK?RZO6i2pr>I$tzxd`xL>Z9&!ns?--_2ZIvB>9;5)UR}t1$yQJ@`7v`YFh4{`y#Ot z!NHhw?vkQNb=0QBLw2e3wi)`@MzG>|MJ{Et)!Tf;_R5JQ(W=x~5KAMNGd-HD;FIgw z^{y=IPN<9;HF`hYh|SI@d(HBP-MDukD7`|RZ{>79+_RvV?d5zmzla(bxj-r^_qnkk zQn|F2m^%SZ3BZtF%YT`Fm~8_SzUSZ1cK|6&PQ96T)x-V{D?)by!TMzPJUG$M1XI8I zruu8vy9Z5^)XYHS1Y9Tfl(De#&rRHb2g}_ck@?qspi@nv)_Q@kw5fkOmk!HVVzU0q z;hOmV3GJnPpW%G>TB$)%c|~UFzI$NPlMp81Zd50)s!2;=>Q%b)gN$HWM0j26M^h+B zK%u3J(PC9(nRBwffttY@F^?!`RX1rkbx9!iBut zKry8xO^j8N>%|ck1tlP z@PIPgU25W_VnF&?x91m<8Bka!-yCPD-;QsDxQTj0>{(*Q0mZJejOSR6Qdfu#vsSj6 zl7 zeT+yIA~hAExdDaP9;N18(cF8D?)O&;&p=V6?19~{xEJHG);!Aqd(x0|0IS*E{C*j0 zF4>jbRH!&Oprl)2+Pd0;TeJDIpt@uA62wf?gWGr1!b&8+#^~n981_Cs;!;n@1;LYj zZo2i2S!Tt!hCNL5t zrjMLe652tmU0i4n|#8ENV-_t#0ezK1jAD-@LtI ze38&@F$$hK1NDYUfCNLA^Mo6*3vk|fdr3*R4wz`=%eOPo^B1{M)LVbalXX>3oyO)W ze;Rx1s*CM3YwlrZtPh;-t%;lR(26^)Em~!84LOpgv2=|c{gb_7?wfUy7G`TdUSD68 zOPv1-Adw9GvJeZZU`UVPlw%TUm{J?n(M4Q!LNM@~1^8lpn|7mX?v$&9QW zZK~DfDIlrx;3lt>zD{B1{Wbyn5>CtP8Z54X>EFt~PvO>i^M_}kG?gSKbfg#S@n>b> zwI?*qdl6Zk14n*c_JlbxswK>W-bctsQj{*MF*bZyTiHf1T2DTD2eYVxAEa+7{Ej|< zy!qn{#Mh}<7Ew6pNDV-Ur_;f0%~!dd)DRCXzHJGefpnA!^J9EI%?Qg6&y2sgWC>&dP49ruDn1wQwO-WcS#Vy=rz9^JX@OZXv8I(ZR1V<4aJ!0+YJE7pg z929+B5T?$coKz;>fo4+U3{evgLaO&)IiA~~V;}gG#&oejQjCbl@8KVA3uvaUH9yvALvBtE&|KQPBUwBE~ttVD^v%sYW~^7`PBVun|zUzjlYXfpaV3M`Z=E6^G-!D3WJF zi4@!Ou@`zIWzA!c2g*+t zS{7Q@18047gv;!DryKP^^M~>+{jn~D_kiena!SE@)SQ5?3YSMgh3eP$^pw0W&AB}2 zYRlB>8eX0Qvpixj`jlfiGYHodGvR=N-Lkcpk^_XB6P9|^rfic|LgOBrFCP?aNl0SQbiz3SHJml^8243YRj9i(tkbtIC&MkCKcb(f=k{bEdkL!Aihx z{ByUD-NFTMl`5&2=&nyW&(2poe9JXr1JDvoSo7+Emg&=D17U}K2eVW12pN?MH7P@} zl?eBvB2zzZpm32hNEi7K}(jdhPSj= zI>R3~s4@9Lp$UN7-|y6B80C#JFaG`97iMnQ#{?pxW1jasuN+g%b^GQvJPanNuVlp= z4hR2}_fl^`G&ta=lB@JewcPtHy5Za8X%$e!c(A6N;o74Zej61xg!cI3zO_yARN7dO z*^f)3P}}*@4`}P%a%jS^rUz=)B%qodV`f$hPYOAJ)d$bMI(4uLdl>xgJ=e}vRk(cy}~cz^KQ z@k$+MnJD#;qL0&hEvFZy*XAeyp{i_D-uL;k6_2$uXITr#G)R98kS#|%CHM_(mhiqJ zlp~JplGyjjNY}=}n5_O9C-nsjzR#?KF;{KqxE4b5G7KTQ=Oe=dF zfv1-VwR%Pvu980&_TsvpQ3BOIO0S0U)U_GrSK4l8`VzZ`V0~mytnIw_M;S3ypSoA6 ztQAT6sw4^5h`+ugZ17U4M`A3fjq{5TQn4Q|ml(ry*ojFL_C>&$o69yA#??&~NG z=k84WP7Hrok>T7ie$DcUbq0r1p7ZX<%%P@BJZyhlb~>qW+-ob^r2P|Ki(nt6gRUsX z^xO8+*>+xaNdlFnbw^L5rPFRb$olD~knxFdH)8&Z29e4%VWGp7Of8RN>aR~Py!veW zX?@epFp}pP=nO<($+V3Bc-jlF2SxlH3dkzVtJl2S9&<4+BQmg@`XK62v3;#F*Eoc# zOtoB%?wJnO{QCS&N&KkvR@=-yLY{Ea&Q%y;RB7lAJNo)f=etGpJsKzfY))ppcKdSb z$XzTgtm(K)8ZIwYfN800emaS(Pz-Jm#?I5MJkUDbx7|vOj3b|h z=OwZi9*CVGVd5Uqr|>ZgQf&+AquAMlVZMmw3UHTWjrg;fKR{r4;B+4?e_h6Ll$M z!jMDS0GEqSjNCFD*mmH)?Y#~z>g>GF-JV;PB~l~Sb_N5v_Gc*Ijy-;L$R7o$!1{X zdadkqJ-Y7{&rfqWP5sZV{5p@vSw$5if6t zK$ec+BZm}0e426p_CgJmn8+jWiLHH$d?_Zrh$Hj)Q^Fa@e&o*}BWbKZSBt%fZ2|up z)q}LpP&>Zkyyko~tizIs3_eLoAizJKFWY`cv7brLpXb-`tqm;s^7BR{t63=}Xy=+0 zw-a;356iKUAKd6#ea3(@P}d}6(y3OB3JB-{DZLSMgeh=YuG0N*QcfgKF5`!!%EBdk zctgg`gnShDSMLwsi{ag(CQbV2l~O`>jF{xh2YR|4vAM#kj)di)*kK4xYGl#`%3G{Dk(U@;Syzj6j5qgpr=_c42aUh}j?U7-|7b3z8uRmlbP zve`8traG30Q@8&v6b)d@tL`xXc2qk9_2W*hcIR~yi`dt3zaYT)=2&RB!Eetd;x7Ag z45|3>QnK!4@DtA-2w6kALfj|2fw)=3)?1DfI8_;L7BIm6hB7cssBH%`iI)Eoju|xT zdd-NsLbhHtrXUZ5?VttdogJVUBxQRdOnD~aTy#mJj_bL&v`dXF+Kg>$SDoIehBAvZ z>ot^d`VCQ&T^?Cl1nl-w7l0n&ep|C$Lb0EHaK0!z0@c986mPKAgZ-@pqw$>>gNmc% zH%>Bbq2-&pCs%sy6%K*$1a9LBy;S5Hlm;%^)RjC^WE#MvK7cUy2$H=$VFYjPa4Jx* znf)3iPstIGiBjG?NAK3`Qlri{%(g{79?f{DbO!pA7t^K_&>LH(09b5g?ey7+A%_Cs zg{ay+f41KjCYDbB-tp|=h=NyCgaCi*G|UyS(duXEuxFrG_{}=ye8BK`NY{$~U<#c2 zqyZm0f)6j056GplE6VB)pj#d+js-7zKxozGm8eT6_QPxgg>5zyj1j)=jfXlsz3$up zFBh!$zNk3^dH*M2$=T9?*vPbwVM1MN5$PSg)X0*+udQpJck)3y_zct}mm2klf}Dlo z&p;nHCeJ`j_4ooWg?A^P-2q*&AM4uF_JGimKM|!A@WUwXGn6YuzfaxIKnc?%6mJyV z5MfJbwiN}#7=133L_dIC2`VAm)~AOW!&+e5uWEi?9{J0!t$F{g zF)(e7@#wq9=Dp&zPXq$FezQVw_%L(QPAtl#sYl4%$Dof|zVf{ry5rm0u*A|i)%2#? z7}xq{i+l!J^qeH!Rs9%wEfEKsvL&T|3442;w9%gBy4e0`5t0)(**MXw_um{0iNVAD zFv=w!HBrkmga^;ws~1YFZ>l=rO?^)*ziJzp?G%rdI=J5g?LQb_)tzL5=R^xnH|fc= zs5p$-4gZoIlV62xxfS4Zq4X?*D)|*lk?uXb!f{(MdEL;Ahi^5?wO!*t zg&|Mh9mf}Em!SdH#-Q@l9!XZM6n(B^iDxNP^d|v{=0kHTc(jznEw)8_?<_6>9#S#*_vbZ{IpPt&{Hh|N?w5NL89umKnZZx0vR`+7v|_Fn(BW^L zupX%VOBeX?WcAw%u_nLf{~~NN-CUUm^gX(!xyp{(oDce5RMu+%xMcmKR`)x8`3c*T z9EELJb=Bi29mU;v-J}=}{IhL*HE^|{vj>83b2^6-uyf5;oX~5t1_1y8fhgLJIJE&J z!P6czpEmC05B8bIgdf4jxz^><6s&-`^zfN#L3UC4@~TwXmWs835kVN(U1(RaZghL| zCtdA=)AnFhw!{O4COx-W(M6=Fp&x69Yy$Q|L-Hb9R#wl0faZe0X#EaElo};b%#Z{m)q=+JIc!(@t>4-0 zZpbIc&S86_QKi5sB)b0uYlNN947=KH3uLmV#@lOvAnu5F@WCH#My&{?AHwl(hG{Mx zuAf|e}x#{ z6Uu?8Vd5o0Ou+N0{0#^zO(spyduEYohV!C#h=l{Eu-z7hu5x$2aSxaegCE(H%nt6JfjW+0IHwCVsO&dA$L+th zHrcGZpJlHlmBL!BV|OTxpdp?UwNd`zC*p%_sYd{=f3r?KS!@5)7d}nuS9r@buN=F;lbzU~ z3^aLYa8`TH7sDJJUT8dS2wOlCL>O)gs#BvwjxoTpa{Fb&XP{p?F=S?)44a};wsG3p zuTotW+O?@PKhC%H+o>^O>9PnDtMrV8%Q=&LBjjTtKZt&mp8NMj`Wa9_?15*m#K9=0 zVHxFcDgk(I{mH;uEpkm314dA9xG&0(Z3i*QuYLU696Kl9bOr)ia(#wvvj#d(5XN_| zulj6jrJ0y^TwXO)N9ZKj*Wfi(Mfp2z-)&s)oVE^Lth4uPkd>V^D9L!)!>zA}4%BzM zRky+21bQqCe5myZoTyiHFGQrFVo4o0+8m(XZTRjgdJ8@Mk&)@`5v$+;?uV9X|6~p! z!JEo2Ep7$t&JmXxsulv99cYYEIwkEt-ln}=g)x~-8L)aQybmM3;1Ow(>P#~4i|u0{ znTp#UB)sX;i-BA^MjjOKG`gm>AL!|#^Zt}Z6^}OiCx9{Mh4a;ho9*9mr9%2+5*i$2 zPPLf^eACf*Tx$}+{jD*pM0q>Hcaex2hAyzYO4ahA9D?(Xj1rg0%a(BLjBz{lBh_Hg)P z7v{ZrbMKuygL`%Feqt;J7}0rnw`p@0E13WQpwd^@TL7?aBnm(SOrUSCAw$LK?|b#{ zKA_i-?nCM6&wVE@oz}c%Uh@`tjTp z17w36ft4Xn@M3U$=tqbh`4xH@$pBNa5Amh3-SNJ0XQU8)pKKz;33G51{9^1@Y=8O| z&MXdvO<-SR4rJVA1sL<0er9)O6ZTH#ZB`%hIFtm(z^=wI@lyO^qA1k7wwJZWw$|R& z@y+$K?wsM4uD@PySf=l4lp7bD+<{)9mp*ME*W>WCbc+)ESvBNL@?YW?+#kFXL+6H7 zf91Dijb-blb&{dd>0-HLnY2{AQNB}BBRek+Vy>X)< z0~TLD?;~fSb9db=&_r5@?~j{{S%*!abhze%L*h4rHv)}hlI(%FwRELynqstkwA`S! zYwl{kie}NJ>;r5icN~wx>m%5J8y%ejtp$nk(Q!XGJl4!T)iKxI*2U<1!xME3ipPDa67m=Li9nN zi1(y(lsoB2dB)YXt{7BWRgt9|S?#GFsPpREr6X|4Ho>vR-mdPu8H`NCEJ4k}|3+`d zRHlkBFNG(>!^NPaTJ%>uSomIgRkJZ`r1o%nV=vZR&|2k7g~P-f_-1}1;bRej_X8+F z{v^*qJCa`$zW^rUcHnIf%%2UdO<~hC^LF!d(<0*t{n466HNA9YI-ljR^OI|x@3?oT z+vu$GZiT#wUYJXSIhf7ZLR3R6nxWy26TKFS1Wg2;dHLeI^6iQ(%9o0kinj`pvZo9Z zKIhW8dw3goQ9&0TO!ecR07`&~xq$X!x1z>I-}~5JoBy@HU*LXloVmRGZB=pg-Wt08 zMa}M-ht(JL{Y^t_Ul|+J?$S3lj|+W)CGb43Z_E^%7Y@R0IrqhP_@B8AxT`pu*r#Ps zCNVQBbGnwV{ioTeZJLpgU}adv1;tfGnd-IFLtFtsm^S!I;v&LratO214O-dGQ?BRk zYpw?##4a@)&@ptMbpqX1omscg>~zewAGK+$-L1LiT-$~Cbkwfoa##epz+>?v*fpF4 z=NJ1bvzmT@(VIaLu22qAwo$lby%b%PHx;d=453uy5x0?kkY1Aq`M>d_uqA|Zlk@nSKm--*kUA^@@p^F5{z%Eqq^z3aMjN0gVpHjVv``S zI@HE5^@u%x+@IYGfg*;E=A^bFT_7GKWm3jTZf3U82(&#l)hbp-t{Roe&svswEweZa z$jZoUEQ`?}(GD<&b6#_vamTVx!Mi+%{09TE(2Yp{NRH=eji78*d9p%QMX&x@b-env zPOkr6Gf#J{npAbb@Z2*bu7!TbW<*+qu>le!XG-{uIVesS=1WEg<{n-bWp8b7%^`KA zszU}=#ge|4JC$uzXH*=OEu)^0PF#o{g!zJ7LF7|9lWG82ph4YdS3hsSx5MY~5Kc{6!$=~@L@@j^OZF<<3ZvQuc4dCQc`E4krigo=k8KmmL3<)5ru@`q$gyzgW6_g!@M|EN$W5GrPNXix{~9kCS#`Z^ zV@(A{q3K&y)3UT{oM7)9jvyc}tq9F3e#YQe6UiJ~&mXYp3y9$pQ%9VelE-?&Sjyxv{KJmq-Bc-5?|0ofeI>!d5%1;9F}!msghij-WOwpe*|*{FIe-*7YHEk3vebi8im9rdDr`*z7jv=>*h-r zep8o-O3;Vto8^U0-a$?zq*_ND_83Pnr`9fxY2Ax^Rq;gcu zKAdZbPxjw#u6vaCh`(!OZ+xQZdr^J~zw}UPo5~mZH#J9VGHbxI&8mdR$5plL2WA|wRV$h6wr(Ol`sVV6zxRsL)|3DGVWw%Wdt)| zMJQvnge*dG*5q}_os@Sww|?Gb)f~|b@lHuAc{}+_c}zy)D}d{v_i;725%$5ipwoUu zb+d}S)dkge^j~UD*3!+ls6%G;D5EALvxH)pwacH`Ht0^tqRouR~XKCAVl%8z3U!GaHx~f~1 zv?^9Ju~uuk96Sy6jrNF9!hPbaWA&2%iHnslq<}O}G*R$?cOz5VbY0%CoK{ndLE#foY2E{rDl>BJ$Vw#59@B$N|bX>l6$7Phs_*3-7oKCx0#C@X7J zI;p&`eyI`B!_@}eG2=Vqb{p3NI?lRDk$O-j}{}^Zm<1d<(VwcO|ECKRJS{^e1%=ar+a8|R_;7gf*xtuL%Bt*BI1=qpE;F8#af*QTPA<|mfL zCXBIepVvML+HEw!EgJvP|{5q-*SCm0EL5V;0>PjO9+Dt*8HC#8BGs)-XEy zIef(TC-~9bt>kT~(=gpIrgn_sXKg#3xJ0jW>lfE(YsZ>@o7>cWa~unigH40yqUPAb z$SXiW{YSb=YDYRx?LaMI6{w7oU&4M8k*G!*5iL~wPcu=mSy`p{s(dTkEAuPLSKEW zW_>j~jk5ENWi|5*ILBm1Rb*O94wt}vVp_N{>I=S7G*nh!I6!!kcR-vkE)-46y4>JW z_SNjxIpl1q23D$6)Qpt!MaDFBJsF>0fV+>hLjMn)joX54i|!BgvYs}USnW1e-D6u_ zo!LUs?b9{T(Q688Y}NJZ_})@`wSBU+f$gKUu@wx@M^8Ybfjg;oNkQ^hl8yVsy&G7Xi?>JhN&ZZ+P<}`OsD?1DtQOMt;tsNxl2fu7;uFMX=n~93Y#nY1o=>DU4X)`H*=o{%r*@szX&U?Jd)zleuzw+P%OX3aD8=Zek&s43bZcuHk3Aq*pWp;;g zi9ulOlg1hSeCoin*j4ynlouTo$&W6Mz64~fYYYlaLaQc?L02GNrXj;6_sBlUdkUoF zL)6c5U&a)rF9R=M#ri}dQ)TpbbS-NW^917{%}ZH}9|t#suOVWjGd6?Dqc4H3n3`H< z+j8nYM}DI|gJX5fzat9A{GC_z)MBw$Scd7%`ua8JYIMeS#^1FgTpJMtJqf)!RTeqn zU+4XZ?XJzOcQvz0`HZP2jb)9@I@N^Td`+`Qnf)`g8JpDhtP?6n#y+)IVv=^0ZRD0> zuR$WHJlPM|g}97#AWE&e@%O)f-3(nFt6U@P4@!~0!+&2ZY-O5idTi7h8|WOCw>C*# zrLThr=jI02z{`msRfa>MCZuL2Wz<2^X7#RQf&3!&YF0DBjhq3wyu9_9C-@m6SYQ?J z*4$PU3qCQcX=RM1jGeTRBs#!=*g!TWjJ=M!9enBiRX4_^12;!q(D1w<~qVSw?p4M^n?Pj>W^u|5&!U&%0`!?7H)=L*A+0w%|NqT5=g| zPg-fC=)-Un>QW}aTt^$kan{?C`Bbn%*h{=nTq$H~e&ij@AoAqQbL=CW5QoFR#{JEY z(?{SY;NIg6xO%aJU?!;mEkfkb)nvoyOe@?iefM08eYYZ5PzNkm=hw`h7s zgHmr*ZC5l<`IH5!FY?}sJBo&aSB&AD|Iue53s4f;czi#oBGv$L*s~3T1BU`u?-0u% zJ=W5*3@kUBAJzKIJX