diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..bc579b6 --- /dev/null +++ b/.gitignore @@ -0,0 +1,93 @@ +.DS_Store +.floydexpt +.floydignore + +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +env/ +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +*.egg-info/ +.installed.cfg +*.egg + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*,cover +.hypothesis/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +target/ + +# IPython Notebook +.ipynb_checkpoints + +# pyenv +.python-version + +# celery beat schedule file +celerybeat-schedule + +# dotenv +.env + +# virtualenv +venv/ +ENV/ + +# Spyder project settings +.spyderproject + +# Rope project settings +.ropeproject diff --git a/.travis.yml b/.travis.yml new file mode 100644 index 0000000..6f5b1ae --- /dev/null +++ b/.travis.yml @@ -0,0 +1,22 @@ +dist: xenial +language: python +python: + - "3.7" +install: + - sudo apt-get update + # We do this conditionally because it saves us some downloading if the + # version is the same. + - wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh; + - bash miniconda.sh -b -p $HOME/miniconda + - export PATH="$HOME/miniconda/bin:$PATH" + - hash -r + - conda config --set always_yes yes --set changeps1 no + - conda update -q conda + # Useful for debugging any issues with conda + - conda info -a + + - conda env create -q -n test-environment python=$TRAVIS_PYTHON_VERSION -f environment.yml + - source activate test-environment + +script: + - travis_wait 30 py.test -v diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000..065c1cf --- /dev/null +++ b/LICENSE @@ -0,0 +1,37 @@ +COPYRIGHT + +All contributions by Francesco Mosconi: +Copyright (c) 2017, Francesco Mosconi. +All rights reserved. + +All contributions by Catalit LLC: +Copyright (c) 2017, Catalit LLC. +All rights reserved. + +All other contributions: +Copyright (c) 2015, the respective contributors. +All rights reserved. + +Each contributor holds copyright over their respective contributions. +The project versioning (Git) records all such contribution source information. +MIT License + +Copyright (c) 2017 + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/Untitled.ipynb b/Untitled.ipynb new file mode 100644 index 0000000..363fcab --- /dev/null +++ b/Untitled.ipynb @@ -0,0 +1,6 @@ +{ + "cells": [], + "metadata": {}, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/course/0_Check_Environment.ipynb b/course/0_Check_Environment.ipynb new file mode 100644 index 0000000..2e0e104 --- /dev/null +++ b/course/0_Check_Environment.ipynb @@ -0,0 +1,206 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Check Environment\n", + "This notebook checks that you have correctly created the environment and that all packages needed are installed." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Environment\n", + "\n", + "The next command should return a line like (Mac/Linux):\n", + "\n", + " //anaconda/envs/ztdl/bin/python\n", + "\n", + "or like (Windows 10):\n", + "\n", + " C:\\\\\\\\Anaconda3\\\\envs\\\\ztdl\\\\python.exe\n", + "\n", + "In particular you should make sure that you are using the python executable from within the course environment.\n", + "\n", + "If that's not the case do this:\n", + "\n", + "1. close this notebook\n", + "2. go to the terminal and stop jupyer notebook\n", + "3. make sure that you have activated the environment, you should see a prompt like:\n", + "\n", + " (ztdl) $\n", + "4. (optional) if you don't see that prompt activate the environment:\n", + " - mac/linux:\n", + " \n", + " conda activate ztdl\n", + "\n", + " - windows:\n", + "\n", + " activate ztdl\n", + "5. restart jupyter notebook" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import sys\n", + "sys.executable" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Python 3.7\n", + "\n", + "The next line should say that you're using Python 3.7.x from Anaconda. At the time of publication it looks like this (Mac/Linux):\n", + "\n", + " Python 3.7.3 (default, Mar 27 2019, 22:11:17)\n", + " [GCC 7.3.0] :: Anaconda, Inc. on linux\n", + " Type \"help\", \"copyright\", \"credits\" or \"license\" for more information.\n", + "\n", + "or like this (Windows 10):\n", + "\n", + " Python 3.7.3 (default, Apr 24 2019, 15:29:51) [MSC v.1915 64 bit (AMD64)] :: Anaconda, Inc. on win32\n", + " Type \"help\", \"copyright\", \"credits\" or \"license\" for more information.\n", + "\n", + "but date and exact version of GCC may change in the future.\n", + "\n", + "If you see a different version of python, go back to the previous step and make sure you created and activated the environment correctly." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.version" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Jupyter\n", + "\n", + "Check that Jupyter is running from within the environment. The next line should look like (Mac/Linux):\n", + "\n", + " //anaconda/envs/ztdl/lib/python3.6/site-packages/jupyter.py'\n", + "\n", + "or like this (Windows 10):\n", + "\n", + " C:\\\\Users\\\\\\\\Anaconda3\\\\envs\\\\ztdl\\\\lib\\\\site-packages\\\\jupyter.py" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import jupyter\n", + "jupyter.__file__" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Other packages\n", + "\n", + "Here we will check that all the packages are installed and have the correct versions. If everything is ok you should see:\n", + " \n", + " Using TensorFlow backend.\n", + " \n", + " Houston we are go!\n", + "\n", + "If there's any issue here please make sure you have checked the previous steps and if it's all good please send us a question in the Q&A forum." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pip\n", + "import numpy\n", + "import jupyter\n", + "import matplotlib\n", + "import sklearn\n", + "import scipy\n", + "import pandas\n", + "import PIL\n", + "import seaborn\n", + "import tensorflow\n", + "\n", + "\n", + "def check_version(pkg, version):\n", + " actual = pkg.__version__.split('.')\n", + " if len(actual) == 3:\n", + " actual_major = '.'.join(actual[:2])\n", + " elif len(actual) == 2:\n", + " actual_major = '.'.join(actual)\n", + " else:\n", + " raise NotImplementedError(pkg.__name__ +\n", + " \"actual version :\"+\n", + " pkg.__version__)\n", + " try:\n", + " assert(actual_major == version)\n", + " except Exception as ex:\n", + " print(\"{} {}\\t=> {}\".format(pkg.__name__,\n", + " version,\n", + " pkg.__version__))\n", + " raise ex\n", + "\n", + "check_version(pip, '21.0')\n", + "check_version(numpy, '1.19')\n", + "check_version(matplotlib, '3.3')\n", + "check_version(sklearn, '0.24')\n", + "check_version(scipy, '1.6')\n", + "check_version(pandas, '1.2')\n", + "check_version(PIL, '8.2')\n", + "check_version(seaborn, '0.11')\n", + "check_version(tensorflow, '2.5')\n", + "\n", + "print(\"Houston we are go!\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/course/1 First Deep Learning Model-Copy1.ipynb b/course/1 First Deep Learning Model-Copy1.ipynb new file mode 100644 index 0000000..48f8976 --- /dev/null +++ b/course/1 First Deep Learning Model-Copy1.ipynb @@ -0,0 +1,190 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# First Deep Learning Model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np # import the numpy library and assign the name np to it\n", + "%matplotlib inline # magic function that sets the backend of matplotlib to the inline backend\n", + "import matplotlib.pyplot as plt # import the matplotlib.pyplot and assign the name plt to it" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.datasets import make_circles" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X, y = make_circles(n_samples=1000,\n", + " noise=0.1,\n", + " factor=0.2,\n", + " random_state=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(5, 5))\n", + "plt.plot(X[y==0, 0], X[y==0, 1], 'ob', alpha=0.5)\n", + "plt.plot(X[y==1, 0], X[y==1, 1], 'xr', alpha=0.5)\n", + "plt.xlim(-1.5, 1.5)\n", + "plt.ylim(-1.5, 1.5)\n", + "plt.legend(['0', '1'])\n", + "plt.title(\"Blue circles and Red crosses\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.optimizers import SGD" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.add(Dense(4, input_shape=(2,), activation='tanh'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.add(Dense(1, activation='sigmoid'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.compile(SGD(learning_rate=0.5), 'binary_crossentropy', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X, y, epochs=20)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "hticks = np.linspace(-1.5, 1.5, 101)\n", + "vticks = np.linspace(-1.5, 1.5, 101)\n", + "aa, bb = np.meshgrid(hticks, vticks)\n", + "ab = np.c_[aa.ravel(), bb.ravel()]\n", + "c = model.predict(ab)\n", + "cc = c.reshape(aa.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(5, 5))\n", + "plt.contourf(aa, bb, cc, cmap='bwr', alpha=0.2)\n", + "plt.plot(X[y==0, 0], X[y==0, 1], 'ob', alpha=0.5)\n", + "plt.plot(X[y==1, 0], X[y==1, 1], 'xr', alpha=0.5)\n", + "plt.xlim(-1.5, 1.5)\n", + "plt.ylim(-1.5, 1.5)\n", + "plt.legend(['0', '1'])\n", + "plt.title(\"Blue circles and Red crosses\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/course/1 First Deep Learning Model.ipynb b/course/1 First Deep Learning Model.ipynb new file mode 100644 index 0000000..d4563b8 --- /dev/null +++ b/course/1 First Deep Learning Model.ipynb @@ -0,0 +1,190 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# First Deep Learning Model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.datasets import make_circles" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X, y = make_circles(n_samples=1000,\n", + " noise=0.1,\n", + " factor=0.2,\n", + " random_state=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(5, 5))\n", + "plt.plot(X[y==0, 0], X[y==0, 1], 'ob', alpha=0.5)\n", + "plt.plot(X[y==1, 0], X[y==1, 1], 'xr', alpha=0.5)\n", + "plt.xlim(-1.5, 1.5)\n", + "plt.ylim(-1.5, 1.5)\n", + "plt.legend(['0', '1'])\n", + "plt.title(\"Blue circles and Red crosses\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.optimizers import SGD" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.add(Dense(4, input_shape=(2,), activation='tanh'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.add(Dense(1, activation='sigmoid'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.compile(SGD(learning_rate=0.5), 'binary_crossentropy', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X, y, epochs=20)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "hticks = np.linspace(-1.5, 1.5, 101)\n", + "vticks = np.linspace(-1.5, 1.5, 101)\n", + "aa, bb = np.meshgrid(hticks, vticks)\n", + "ab = np.c_[aa.ravel(), bb.ravel()]\n", + "c = model.predict(ab)\n", + "cc = c.reshape(aa.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(5, 5))\n", + "plt.contourf(aa, bb, cc, cmap='bwr', alpha=0.2)\n", + "plt.plot(X[y==0, 0], X[y==0, 1], 'ob', alpha=0.5)\n", + "plt.plot(X[y==1, 0], X[y==1, 1], 'xr', alpha=0.5)\n", + "plt.xlim(-1.5, 1.5)\n", + "plt.ylim(-1.5, 1.5)\n", + "plt.legend(['0', '1'])\n", + "plt.title(\"Blue circles and Red crosses\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/course/2 Data.ipynb b/course/2 Data.ipynb new file mode 100644 index 0000000..a8eec83 --- /dev/null +++ b/course/2 Data.ipynb @@ -0,0 +1,1892 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Data Exploration with Pandas" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../data/titanic-train.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "pandas.core.frame.DataFrame" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass \\\n", + "0 1 0 3 \n", + "1 2 1 1 \n", + "2 3 1 3 \n", + "3 4 1 1 \n", + "4 5 0 3 \n", + "\n", + " Name Sex Age SibSp \\\n", + "0 Braund, Mr. Owen Harris male 22.0 1 \n", + "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n", + "2 Heikkinen, Miss. Laina female 26.0 0 \n", + "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n", + "4 Allen, Mr. William Henry male 35.0 0 \n", + "\n", + " Parch Ticket Fare Cabin Embarked \n", + "0 0 A/5 21171 7.2500 NaN S \n", + "1 0 PC 17599 71.2833 C85 C \n", + "2 0 STON/O2. 3101282 7.9250 NaN S \n", + "3 0 113803 53.1000 C123 S \n", + "4 0 373450 8.0500 NaN S " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 891 entries, 0 to 890\n", + "Data columns (total 12 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 PassengerId 891 non-null int64 \n", + " 1 Survived 891 non-null int64 \n", + " 2 Pclass 891 non-null int64 \n", + " 3 Name 891 non-null object \n", + " 4 Sex 891 non-null object \n", + " 5 Age 714 non-null float64\n", + " 6 SibSp 891 non-null int64 \n", + " 7 Parch 891 non-null int64 \n", + " 8 Ticket 891 non-null object \n", + " 9 Fare 891 non-null float64\n", + " 10 Cabin 204 non-null object \n", + " 11 Embarked 889 non-null object \n", + "dtypes: float64(2), int64(5), object(5)\n", + "memory usage: 83.7+ KB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassAgeSibSpParchFare
count891.000000891.000000891.000000714.000000891.000000891.000000891.000000
mean446.0000000.3838382.30864229.6991180.5230080.38159432.204208
std257.3538420.4865920.83607114.5264971.1027430.80605749.693429
min1.0000000.0000001.0000000.4200000.0000000.0000000.000000
25%223.5000000.0000002.00000020.1250000.0000000.0000007.910400
50%446.0000000.0000003.00000028.0000000.0000000.00000014.454200
75%668.5000001.0000003.00000038.0000001.0000000.00000031.000000
max891.0000001.0000003.00000080.0000008.0000006.000000512.329200
\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass Age SibSp \\\n", + "count 891.000000 891.000000 891.000000 714.000000 891.000000 \n", + "mean 446.000000 0.383838 2.308642 29.699118 0.523008 \n", + "std 257.353842 0.486592 0.836071 14.526497 1.102743 \n", + "min 1.000000 0.000000 1.000000 0.420000 0.000000 \n", + "25% 223.500000 0.000000 2.000000 20.125000 0.000000 \n", + "50% 446.000000 0.000000 3.000000 28.000000 0.000000 \n", + "75% 668.500000 1.000000 3.000000 38.000000 1.000000 \n", + "max 891.000000 1.000000 3.000000 80.000000 8.000000 \n", + "\n", + " Parch Fare \n", + "count 891.000000 891.000000 \n", + "mean 0.381594 32.204208 \n", + "std 0.806057 49.693429 \n", + "min 0.000000 0.000000 \n", + "25% 0.000000 7.910400 \n", + "50% 0.000000 14.454200 \n", + "75% 0.000000 31.000000 \n", + "max 6.000000 512.329200 " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Indexing" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.iloc[3]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.loc[0:4,'Ticket']" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['Ticket'].head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df[['Embarked', 'Ticket']].head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Selections" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df[df['Age'] > 70]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['Age'] > 70" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.query(\"Age > 70\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df[(df['Age'] == 11) & (df['SibSp'] == 5)]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df[(df.Age == 11) | (df.SibSp == 5)]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.query('(Age == 11) | (SibSp == 5)')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Unique Values" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['S', 'C', 'Q', nan], dtype=object)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['Embarked'].unique()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sorting" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.sort_values('Age', ascending = False).head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Aggregations" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['Survived'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['Pclass'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.groupby(['Pclass', 'Survived'])['PassengerId'].count()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['Age'].min()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['Age'].max()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['Age'].mean()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['Age'].median()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mean_age_by_survived = df.groupby('Survived')['Age'].mean()\n", + "mean_age_by_survived" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "std_age_by_survived = df.groupby('Survived')['Age'].std()\n", + "std_age_by_survived" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Merge" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'mean_age_by_survived' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mdf1\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmean_age_by_survived\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mround\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreset_index\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[0mdf2\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mstd_age_by_survived\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mround\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreset_index\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mNameError\u001b[0m: name 'mean_age_by_survived' is not defined" + ] + } + ], + "source": [ + "df1 = mean_age_by_survived.round(0).reset_index()\n", + "df2 = std_age_by_survived.round(0).reset_index()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'df1' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mdf1\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mNameError\u001b[0m: name 'df1' is not defined" + ] + } + ], + "source": [ + "df1" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'df2' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mdf2\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mNameError\u001b[0m: name 'df2' is not defined" + ] + } + ], + "source": [ + "df2" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'df1' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mdf3\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmerge\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdf1\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdf2\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mon\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'Survived'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mNameError\u001b[0m: name 'df1' is not defined" + ] + } + ], + "source": [ + "df3 = pd.merge(df1, df2, on='Survived')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df3" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df3.columns = ['Survived', 'Average Age', 'Age Standard Deviation']" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Pivot Tables" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Survived01
Pclass
180136
29787
3372119
\n", + "
" + ], + "text/plain": [ + "Survived 0 1\n", + "Pclass \n", + "1 80 136\n", + "2 97 87\n", + "3 372 119" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.pivot_table(index='Pclass',\n", + " columns='Survived',\n", + " values='PassengerId',\n", + " aggfunc='count')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Correlations" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['IsFemale'] = df['Sex'] == 'female'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "correlated_with_survived = df.corr()['Survived'].sort_values()\n", + "correlated_with_survived" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "correlated_with_survived.iloc[:-1].plot(kind='bar',\n", + " title='Titanic Passengers: correlation with survival');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Visual Data Exploration with Matplotlib" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "data1 = np.random.normal(0, 0.1, 1000)\n", + "data2 = np.random.normal(1, 0.4, 1000) + np.linspace(0, 1, 1000)\n", + "data3 = 2 + np.random.random(1000) * np.linspace(1, 5, 1000)\n", + "data4 = np.random.normal(3, 0.2, 1000) + 0.3 * np.sin(np.linspace(0, 20, 1000))" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "data = np.vstack([data1, data2, data3, data4]).transpose()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
data1data2data3data4
00.1565651.0557472.2091772.990694
1-0.0615881.0617702.2822823.065291
2-0.0748360.4277422.9327983.394612
30.0148281.0611862.9949222.871135
4-0.0811350.9377942.0621733.322928
\n", + "
" + ], + "text/plain": [ + " data1 data2 data3 data4\n", + "0 0.156565 1.055747 2.209177 2.990694\n", + "1 -0.061588 1.061770 2.282282 3.065291\n", + "2 -0.074836 0.427742 2.932798 3.394612\n", + "3 0.014828 1.061186 2.994922 2.871135\n", + "4 -0.081135 0.937794 2.062173 3.322928" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.DataFrame(data, columns=['data1', 'data2', 'data3', 'data4'])\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Line Plot" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAEICAYAAAB25L6yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACQK0lEQVR4nO2dZ5gUxRaGv+qZzWwgLDnnnKPkJFEUAQkGjGDECMjFeI2IoKJeFRQVQUAJipIEJIPknF1YYFlgl4XNcabr/ugwHWe6J7DD0q+PD7Pd1d3V6etTp06dIpRSWFhYWFgEL0xxV8DCwsLCwj2WUFtYWFgEOZZQW1hYWAQ5llBbWFhYBDmWUFtYWFgEOZZQW1hYWAQ5llBbBD2EkK6EkFPFcNyHCSHbbvZxLSyUWEJtETQQQhIJIX2UyymlWymlDYqjTkYhhGwihDxe3PWwKJlYQm1hYWER5FhCbRH0EEJ6EEKSJH8nEkJeIYQcJoRkEEIWE0LCJesHE0IOEkLSCSE7CCHN3eybEkImEELOEkKuEUKmE0I03wtCyB2EkD38MfcQQu7gl78HoCuALwgh2YSQL/x39hYWllBb3LrcB6A/gFoAmgN4GAAIIa0BzAUwHkBZAN8AWEEICXOzr6EA2gJoDeBuAI8qCxBCygBYCWAWv9+ZAFYSQspSSqcC2ArgWUppKUrps/44QQsLAUuoLW5VZlFKkyml1wH8AaAlv/wJAN9QSndRSp2U0h8BFADo6GZf0yil1ymlFwB8CmC0RplBAM5QSn+ilDoopQsBnARwl5/Ox8JCF0uoLW5Vrkh+5wIoxf+uAeBl3u2RTghJB1ANQGU3+7oo+X1ep2xlfh0UZauYqbSFhTdYQm1R0rgI4D1KaZzk/0jeAtajmuR3dQDJGmWSwX0EoCh7if9tpaG0CBiWUFsEGyGEkHDJ/3aT288B8CQhpAPhiCKEDCKERLvZZiIhpDQhpBqA5wEs1iizCkB9QsgYQoidEDISQGMAf/LrrwKobbKuFhaGsITaIthYBSBP8v9bZjamlO4F56f+AsANAP+C72h0w+8A9gE4CK7D8DuN/aYBGAzgZQBpACYBGEwpvcYX+QzAcELIDULILDN1trDwBLEmDrC4nSGEUAD1KKX/FnddLCz0sCxqCwsLiyDHEmoLCwuLIMdyfVhYWFgEOZZFbWFhYRHkmA19MkS5cuVozZo1A7FrCwsLixLJvn37rlFK47XWBUSoa9asib179wZi1xYWFhYlEkKIcuSriOX6sLCwsAhyLKG2sLCwCHIsobawsLAIcjz6qAkhDSDPfVAbwBuU0k/NHKioqAhJSUnIz883V8MSQHh4OKpWrYqQkJDiroqFhcUtiEehppSeAp/rlxBiA5ctbLnZAyUlJSE6Oho1a9YEIcTs5rcslFKkpaUhKSkJtWrVKu7qWFhY3IKYdX30BpBAKdXtndQjPz8fZcuWva1EGgAIIShbtuxt2ZKwsLDwD2aFehQAzby+hJBxhJC9hJC9qampmhvfbiItcLuet4WFhX8wLNSEkFAAQwD8qrWeUjqbUtqWUto2Pl4zZtvCwsKiRHI15yo2XdwUsP2bsagHANhPKb0aqMrcTN566y18/PHHuut/++03HD9+3ON+tmzZgtatW8Nut2PJkiX+rKKFhcUtwkOrH8Jzfz8XsP2bEerR0HF7lESMCnX16tXxww8/YMyYMTehVhYWFsFIcg43e1ugktwZEmpCSCSAvgCWBaQWN4n33nsPDRo0QJ8+fXDq1CkAwJw5c9CuXTu0aNECw4YNQ25uLnbs2IEVK1Zg4sSJaNmyJRISEjTLAdxw+ebNm4NhrJB0C4vbhe2XtiOnKEe1nAZo6kxDuT4opbkAyvrroG//cQzHkzP9tTsAQOPKMXjzria66/ft24dFixbhwIEDcDgcaN26Ndq0aYN7770XTzzxBADgtddew3fffYfnnnsOQ4YMweDBgzF8+HAAQFxcnGY5CwuLkkMRWwQ7sbsNALicfRlPrn8SPav1xKxe8lnXWMqCIf432m4bM3Dr1q0YOnQoIiMjERMTgyFDhgAAjh49iq5du6JZs2ZYsGABjh07prm90XIWFha3JsnZyWj9U2ss/9f9MJFcB9eaTsxMVK0rVova37izfAOJ1lfy4Ycfxm+//YYWLVrghx9+wKZNmzS3NVrOwsLi1iQhPQEA8FfiX7i33r0eyxOo9aRYfdQlgW7dumH58uXIy8tDVlYW/vjjDwBAVlYWKlWqhKKiIixYsEAsHx0djaysLPFvvXIWFhYlAyd1AgDsjB15jjw4WafpfbCU9Xe1ANxGQt26dWuMHDkSLVu2xLBhw9C1a1cAwDvvvIMOHTqgb9++aNiwoVh+1KhRmD59Olq1aoWEhATdcnv27EHVqlXx66+/Yvz48WjSpHhaCxYWFsb57sh32HNlj2yZIMwMYdB+QXu8t+s9w/sT/NKBEupicX0UF1OnTsXUqVNVy5966inVss6dO8vC85566inNcu3atUNSUpJ/K2phYRFQPt3/KQDgyNgj4jIHdQBw+ZmXn1mONzq9YWh/ghskUD7q28aitrCwsHCHg3XI/rYxNs1yWn5oQagt14eFhYUFj5N1IqMgw7/75H3UglFsZ9w7HDQ7Ey2L2sLCwoLjw90fosuiLsgtyvVpPyxlMe/YPOQW5Yo+akFsbUTbotZCiCizoj4sLCxuS3KLclHEFsmWrU1cCwDIc+R53N7JOvHNoW80RxKuO78O0/dOx+cHPhePIQi1J4taiuX6sLCwuK3p8HMHvLjxRdkyM6mD1ySuwRcHv8DnBz5XrRPcJ/nOfNH1IVjFdmJCqElghfq2ivqwsLC4NdmctNnrbbMLswEARc4ilatEsKJDmVC160OvM5FfL/1YWFEfAcJfaU5nzpyJxo0bo3nz5ujduzfOnzc9+Y2FhYUfmbV/Fr48+KX4dyFbCAAItYWiw88d0OHnDuK6AmeBuE6I+vDk+tAS40Bb1LetUHvCqFC3atUKe/fuxeHDhzF8+HBMmjTpJtTOwuLW5lreNZy6fiog+55zZA6+PvS1+LcgxiE29eTShU6XiAtx1IIOm+lMFLA6E/1AINKc9uzZE5GRkQCAjh07WoNfLCwMMGDpAAz/Y/hNOVaR0+XeUCIKtYbrw5vOxBKVlAmrXwWuHPFczgwVmwEDPtRdfTPSnH733XcYMGCAf8/LwqIEku+8eZM9C66PMFuYep3Eohay4gnouj60BrxYnYn+QZrmFIAszelrr72G9PR0ZGdno1+/fprbeyo3f/587N27F5s3e9/pYWFxO3Ax86Lf9mXEgpWKsWqdxH+dVcglYROE2JPrQ9qZyKAk5vpwY/kGkkClOV2/fj3ee+89bN68GWFh6q+2hcXtDqUUu67sQnxEPO75/R5T2/mKINRaFrJUxIXwPEFszbg+hEGKlo/aRwKV5vTAgQMYP348VqxYgfLly9+8E7KwuIVYdmYZnvjrCbz7z7umtvOHhSqE4Gm5PoR1IUyIaJ0LnYqCUBc6C9Hsx2b49si3uscQB7ygGKM+CCFxhJAlhJCThJAThJBOAalNAAlUmtOJEyciOzsbI0aMQMuWLUWXioWFhYuLWZy7Y+/Vvaa284fwSUPwlAgWsHT6LKFTUXB9ZBdxcdjzjs3TPUaw+Kg/A7CGUjqcEBIKIDIgtQkwgUhzun79ev9W0sIiyFl9bjUmbZmE9cPXo0JUBUPbmBlJKEApRYGjQHt/GgmR9BBcGu7mMpS6LISPQ4GzAOcyziE2LJYr48YfXuwDXgghMQC6AfgOACilhZTS9IDUxsLCIuhZfoabU/Df9H8Nb2NGWAU+2f8JOi0013gXQvEEFpxYgAuZF3TroPUBEUT7UOohDPltiLhPpQhL9ycKdTH6qGsDSAXwPSHkACHkW0JIlLIQIWQcIWQvIWRvamqq3ytqYWFx8ylyFiE9P122TLBMfzr+kxgpEQiWnFrisYxSGGfsmyH+LnAW4MPdH+JYGjcRtcePBb8rpftC+Xewjky0A2gN4CtKaSsAOQBeVRailM6mlLallLaNj4/3czUtLCyKg2f/fhZdF3eVLRNEaXvydlPTVRnhpU0vYebemQA8uBp0XCnCBLWA2rrWQhB66bE8uS/cWc3FKdRJAJIopbv4v5eAE24LC4sSzo7kHapl0vjizIJM8ffFzIvo/UtvXMm54vXx1p1fh++PfQ9AXzBZyuJa3jWP+1LO2GLUf6wUYmWuaa39CK2MYvNRU0qvALhICGnAL+oNwHMSDAsLi6Bm7tG5uvk2vj3yLY6nab/mei6EX0//ipS8FKw6t0q9jZediVokZbnSNLgTRjF3h4GylFKsPLtSs5zyfDVdH0GSj/o5AAsIIYcBtATwfkBqY2FhcVOglOKTfZ9g1J+jNNd/tv8zjPxzpOY6qejKRItfrCVW3nQm6gmrzE0hEfPL2Zdl5Yy4PoRzuVFwAyl5Kap9ah1XWB90U3FRSg/y/ufmlNJ7KKU3AlKbm4i/0px+/fXXaNasGVq2bIkuXboY2sbCorgRrE2l1WkEvTA3xo2ceGNRG+HX078CAA6mHMSdS+/EP5f/EdcpZ4Vx51uWirpSbFV/u5nc1hqZeJMxKtRjxozBkSNHcPDgQUyaNAkvvfTSTaidhYUxxqwcgw4LOqiWS4Xp3X/elfl8PYmNVKhlIWpeRD78d+d/MX3PdM11evV4/u/nxd/fHP4GAHA246yqnFKojaKK8hDqwf8jhCXKJg4IgqiPEkMg0pzGxMSI+8/JyQmY5WBh4Q1Hrh1RZYUD5Jb04lOLMW33NPFvT2IjFWqptan001JK8fT6p7ElaYtbv/a84/oj/rRIyEiQ/a0n6GaE2p3LQjk68o0db6jKBMvIRL8ybfc0nLx+0q/7bFimISa3n6y7PpBpTr/88kvMnDkThYWF+Pvvv/16XhYWgUDpv5UaGJ6GbeuJrjLygaUstl7aiu3J2zG++XjTdTTq73WwDs06Kc/RbWeiZJ1SbOccnuMqR9UfJulvayouH5GmOY2JiZGlOe3atSuaNWuGBQsW4NixY5rbuyv3zDPPICEhAdOmTcO775pLOmNhURworc3V51bjUOohAJ5dH3qtRndhbF51Jhr09wqpSpWY8VFL9VUptkvPLBWPM32vtpsm0FEfxWJRu7N8A0mg0pwKjBo1SjMfiIVFMJGcnYx+S9V51zde2IgW8S1MuT6kAix0JorRERoRIWYwap0WOgs1y3rr+tAT9AJnAX46/pPmOuVHyt/cNhZ1oNKcnjlzRvy9cuVK1KtX7yacjYWFmhUJK7Dv6j6P5bYkbdFcLlimHoUa2j5qVXie0AfnpXiZEWotVBa1QdeHL+4Ly/XhI4FKc/rFF1+gSZMmaNmyJWbOnIkff/zxpp+bRcllzbk1eGq9sVba1G1T8fCah8W/9eKIhWxySgTB8yQ20pbptkvbxKgN0aL2k+vDqObpuj6UPmo3HwzpOiHNqRlKpOujuAhEmtPPPvvMv5W0sJAwcctE09v0W9IPv9z1C57d8Kzmej3BEoTajOsDAOYdn4eJ7Sa6mv9arg8vMLp9kbNI80Og90GSotUJ6E29hWtihedZWFgYIjknGf9c/gcHUw9qrtcTIsOuD70BLwqx0ouQ0MPTcfVyiOhZ1GZEU2ZRGxB4gYyCDHx18CvVqEV/Ywm1hUWQkVOUg+l7poszk3hDniNPd52egImuD09RHzqiqxydZ9ayVroclNs9tvYxze30fNTKMENvw/PcMW33NPzv0P/EGWwCNRXXbeX6sLAIFgqcBbARm+YEqrMPz8a84/NQKaqS1/t3J9S6A0R4n64nsfHKojYwEEyVRElRz7T8NM3tCpwF+GD3B6rlyu3f3PGm7rGlZc1YxcrBRJZFbWFRgmg7v61HC1Fq2ZkVgHxHvu46PSEWLHgti1J6fE9C7S67nDs8WdR6FDmLND9MZixj6TUx4/rw5ZhmsITawiLA5Bbl4kjqEdXy/Sn7NcsLAqU3VNsIXrk+WH3Xh5EIDmE70aKGOYtaKpCaddDrBPXBR60V/3w9/7rH7aTbSrHC8ywsblFe2PgCxqwa41Y8pQgCI0snygvJlZwryCzM1NxOijuLWg/R9eHBotYTXUFove1Ykyb61zpH3U5QHR+1EdFUflzMojxHy/XhZ/yV5lRgyZIlIIRg7969/qieRZCTXZhtON5295XdAIy/xIJoSC3qAmcBHlv7GPou6Yu7f7sbLGXdCr9yXZGzCN8e+RZFziJdUSpwFuBS9iW3Arfk9BIcTDnott4CZq1L6fZmRhX6I+rDa6H2kBLVX9y2Qu0JM0KdlZWFWbNmoUMHdTpJi5JHniMPnRZ2wsd79T/0UpSWpicEQZeOAExITxAF/1reNXxx4Au0X9Ae2YXZmvtYdGqR7O95x+fhs/2fYeHJhbo+2FM3TqH/0v7YmbxTXSe+7m/vfBsnrp/Q3F7Yr1ZssiEftaReymm03JFTmKO5PFDWrUDQTRxQUghEmlMAeP311zFp0iSEh4cX16lZ3ERyijhh0Jpyyh2UUuxI3qGa1VuJ0LGlle9Y4PeE3wEA2UXaQq1EmC28kC30KGBaaTyNCJBuHmcDUEpl4mymQ+/dXdqJ0IxYycJ19MaiJiDq6xKgb0OxhOddef99FJzwb5rTsEYNUfE//9FdH6g0pwcOHMDFixcxePBgt64Ui5KD0jXRbVE3PNvqWdzX4D632+U78zF+3Xg0K9fM1P69LSNFED4bsXln9RnYxJ2P2lNnopM6ZeKs5VYyayGbiWk+nHrY1L71KFaLmhCSSAg5Qgg5SAi5JZ2wgUhzyrIsXnzxRcyYMeNmnopFMSMVSSfrxI2CG3jnn3c8bidYjAnprsT3F7Mu4oejP+juX0DpsxWETDojuJFj24jNK+vRjEUt1E26jXI+Q636ScVZy6I2K4JmhP1o2lFT+9Y9ZoCE2oxF3ZNS6nmOdgO4s3wDib/TnGZlZeHo0aPo0aMHAODKlSsYMmQIVqxYgbZt2wbwTCyKE6mQCgJqJ55fJS2BfGztY7iccxlD6w1FbFisrJzUB6qM4hCEzLRFzdgC4rullKotaoloKX3mWvWTDnjxJjGSkkDFNLvDivrwkUCkOY2NjcW1a9eQmJiIxMREdOzY0RLp2wBRqMGIEQdaIwz1tpMaDFdzrwIAzmeeR0ZBBgBJZ6JEhJUhaFqxyu4QhM9O7AGxqCkoWJaV182EaBmxqM1yU4Ra5aIuXqGmAP4ihOwjhIwLSE0CTKDSnFrcfkiFVIg9DmFCPG+n8RILYnL/qvsx6s9R3DJoh+dJEa1Xg2Iotai9yUfh6ThSH7PZjwjACbVUWLVmRzdrrQZKNAUIUXcmFrfrozOlNJkQUh7AOkLISUqpLPs4L+DjAKB69ep+rqZ/CESaUyl6bhOL4iO3KBd/X/wbg2sP9nofM/bOQOvyrdGzek8AcreD6PowYFF7Epqk7CQA2pa3UqjNiqHUR+2NlmQXZWPo70N111NKxTp5Y8k6WIdH10cgfdR+I0CHNGRRU0qT+X9TACwH0F6jzGxKaVtKadv4+Hj/1tLCwkve3/U+pmydIg7S+CPhDzT7sZnb0X0/HvsRW5O2in//cOwHTNg4QfxbavEKFrURodaKT1Yy//h8XM/jhjBL46iVrg+zrgGZRe2FkB5IOSB+SPT2L3YmmrT2hW1uSdeHgmJzfRBCoggh0cJvAHcC8E8XqYWFHzl94zQcrAMvbHwBe69wwUmCDzjXkYtj147hP9u4juykLH3R+Xjvx3h6w9O66wVfrNSiNuL60Iv3lTJtzzTsurJL3L+AnkVtVIwEi9rJOr0SwZTcFLfrKaWqsDyzrg9vB7zo1inAro8j1454zPjnL4xY1BUAbCOEHAKwG8BKSukabw5WLE2RIOB2Pe+byaHUQxi2Yhhm7Z+FDRc24KVNL6nKjFo5Svzty0sss6glro+T10+i2Y/NcOo6N5jq2LVjPkUvSF0fup2JJn3ULGW9Ovdree4DvqQWtXB9zHYmehrw4suQ9ECx/dJ2+TEDlI/ao1BTSs9SSlvw/zehlL7nzYHCw8ORlpZ224kWpRRpaWnWqMUAc/Qa18g7lHoIABAXHue2/EOrHtJcfubGGc3lgDoNqFKo159fDwD4+8Lf2HFpB0atHIV5x+ep9mN0/kCpRZ3v1E6yZFS8hGNKBdUMeomPBJ7d8CxOpHFDy1eeXYkrOVfMWdTUIRuCrvmBMykdJSk876aNTKxatSqSkpKQmpp6sw4ZNISHh6Nq1arFXY0SjdA0F8QtLizObflCthAbLmxAozKNULlUZXH5g6sf1N1m5dmVuLfevbLOREHA7Iwd5zLOcQWJq2NQ+IB4gzsftbe8v+t9DK2n3ymohyfRU6ZsTUhPQJ24Oob3Lw3PsxGbfwa8BNj1cTO5aUIdEhKCWrVq3azDWdxmCJ2DglBHhkR63OaFjS+AIQwOPXRIXOZu+qs3d7yJ+Ih4cWCK1KI+c+MMTt84rdrGF6tO6vrQ249ZC85Jndh0cZPXdTIKQxhznYkS3zlDGL/4qG+rzkQLi1sJ4QVXuhc+3fepZnnly+zJLTFj7wzZgBdBqPVeUH+JhV4HoDfC4I3f3Ox5MITx2vVhY7QtarOUJNeHJdQWQUWBs8BtRIYn9FKK6qXm9Gb/Riw/wRr2RSyk5+CrUEutc29EMOBCLXF9CDlUlFBQzVaLHsXRH2ZZ1Ba3BVO3TcWAZQO8noHbG2tx3jGuw++7I995TFhPQWWCoiVghP8P8DEKQPLO652XN2Lk1TYmBejD3R+aj/qgrkE5eiMTh60YZnifgYrAcIdlUVvcFgjhTt52nimtRSMRFj8e+xEO1oFP93/qsSxLWZlF7enF1FpvNOrDrxY1fLOozQrQ6RunTYm7dMCLjdj8MjKxOFwfgcISaougQrREvXzJpJ17FzIvGNqGghoWAalQE0I8Wm2+WHVGhFooYipJvxfNc2HgkBk8DZKRIh3wotdSMYvl+rCw0IGlrG899saMTRXCSym87Cm5KRi0fJDp7T3BUlYUkSs5V7DmnPbYL3E6Kh/EQipWulEfMDY5q6+dc5uTNpve5rVtrxkuK4368DZntpKS1JlYLDO8WJRcxv01Druu7MKRsUe82l4Ir/PaonYanxRVitbxMgsz0W9JP1U5oVl+KfsSLmVfUm2XUZCBLw9+CUBbILOKslTLtJBaZ3ofP63cz1pIz8/obOi+IkxZZoQiWuTy/TPmOiL1KBYftWVRW9wKCHkqvEUY5CF94Ldf2o5vj3xraHszs1cLUHBzGSo5eu2oak5CqetDjzPprtGNPllY0s5EPR+1wbwa/gh3M4veaEotWFbi+4fl+lBiCbWFzyRlJYn5LXxFK6ztyfVP4rP9n6nKrjy7El0WdUFGQYY4Ms4boQaA5zc+r66Lhh/GiFBLO8J8eXGl2wqJoHTLeDhMcbgBlLPSuIMFKwqrp/kVjVIsQm25PiyClQHLBgCA1+4OgIsSKBte1pWTwkCY3bIzy5BRkIG1iWvF4dveCrUWWoJBQU35g31JyiR96bXC1aRlPDXz/TG1lVnMfKSkvn/hb18pDtdHoLCE2iIoGLZiGGLDYhHKhAIwlsZTmNg1Nc+VP8abjkw9K0jLojaS1EhaB79Z1B46Ez1ZcnpCHyw4Wad4LgTqmVO8oSRZ1JbrwyJoyCjIkGV5K3IW4ddTv8rKSF8EQbyyC11+ZGVnoi++2Rc3vqhaZiRNqFSovR24AyjC8zwMePHooy4Gi9oMLJW7PvxhUc8/Md/nfZjF8lFb3DTOZpzFn2f/9Fju9I3Tbl0NLGWx7dI2c1YGb8RSSvHYX4/Jku0/8dcTaD6vuRgSJzRtpdEFSstx95Xdxo+tQCs6g1JqaP5AgeNpx92UdI8h14dRi9oPSY4CiZM6xftpdEBQMGIJtcVN4+7f7saUrVPclrmYdRHDVgzDzL0zdcssPrUYT61/CmsS5bHGSVlJusIhhOc5qRMHUg7I1v1z+R8AEPcnWInKyIxAYsSi9pf1+s3hb2TH1cJoeF6wC3UgLOriwHJ9WPiVnKIcvL3zbbexrkIssBY38m8AgDgXoRbCyEDpCLWU3BQMWDYAM/bOEI8hjegQwvPcvajK5n5uUa5uWX9DYc6i9oXzmec97lO8FjepToHCSRU+6lt0gpHinoXcogSxNWmrOCdg+cjyeKqF9uzqXx/6Gs+0fEZznZHmqfDQCp1+AJBZwOWNFiZ6/frQ1/L9EpeP2tN+BTH3taPMVE4K1lxnor/wZKV7Ogd/RsMEAqlFDdy6Sf8ti9rCb0zaMsn1RwDfB2mWOQGGcbk2tDCS68PosOlAYCTkKxDWq6ekTME44MUMyvA8y6KWY1ioCSE2QsgBQojnXiaLoEbLGr6YeRFrE9f69TjS3A0CdsI14nzK48y/C2KZm/hOKwVFi0BEWHiM+vDk+gjyqA+Z68NAsqtgJRgs6ucB+Cf7ukXASMxIxD2/3SP6kDXR8FrM2DcDr2x+RZyg1B3p+emaYWfSMLmDKQdFQRPEd2vSVjE3hp6FZyTXBwVFSm6KatZrgeblmns8B28xFJ4XgJhljxb1LR71IetMtHzUKgz5qAkhVQEMAvAegJcCUhMLv/D9se+RkJGAvy/8jUK2EJeyLqFGbA2MqD8ClFIkZibKXBECydnJAKCZZEhJ18VdEW5Tz6oudak8uvZRDK49GIDLohb84oC+hSeNo9Zjc9Jm9P61t+6+IuwRnk5BhllRKA43g89RHzdpwEu4LdxUjg8B6YAX4Nb1UQcKo52JnwKYBCBarwAhZByAcQBQvXp1nytm4R3LziwDwFmZ7+96X1w+ov4ILDuzDG/tfEtWfsnpJTifdV6cqupa3jVDxxFeRukLdTbjrKyMNL+wEj3h8GYKK2XZ0uGlDW8LmB9q7EnYA+E7V16vO2vcib/O/+XKR20wZLBmTE0kZib6vX4CWvfaCFKXkpHImmCl2FwfhJDBAFIopfvclaOUzqaUtqWUto2Pj/dbBS28Q+uBOZZ2TLUsJS8FK8+uFP8WLGtvkFrj0pwYNsamKqvr+oD7zkYtlMLYsExDw9sC+gmP9CgOETlz44zs7zBbGFcXgx2rDurAwFoDMaH1hMBUkEfrXhuBhdyldMvGURdjZ2JnAEMIIYkAFgHoRQi5+WMzb3NO3ziNzMJMw+V/T/jdq+McTD2oWnbfH/eh2Y/NNOOV9eKwKaUyi1r5AdB1fXhhUStF3c6Yizo1bVEHQbM81CbPieIJJ+uEjdjED2GgkHYcm8HJOmUdo8Fwjb2h2ISaUjqFUlqVUloTwCgAf1NKHwhIbSx0GbZiGB5d86jh8odTD6uWGYl9zijIUC0T3CK/nPpFZU3qNaOlnUM2YkO/pfIE/LrheX5wfZgVC7PWWzBYe0qL2siAF4YwbmfQaRHfwud6eSvUyk7a9efX+1yX4sBKc3obM2v/LADAqRu+5Xw2kudXOans0WtHxd+5jlzDLgkKl0WtddwHVuUiPXypuo4GOhOVKIXTrJ/UrPAGg7UnWNSCMHhK/lTEFsHGuLeoH2j0AA6lHvKpXr4ItXDvA+lDDzTFHkcNAJTSTZTSwQGpiYUuc47MuWnHyiiUW9SjV44Wf3916CtTAiq6NzSe3b77nLg8VT2nnjdTcfnq+gj2wSBahDAhsr+FnOB6OFnOonb3EfNHwn5hQJNZpHHUFmqskYlBQkZBhqkZMQTyHHn4/MDnKktYCyOuj6xC9/P5mRk4Ifh+zQihN7OQ++r6MNtcDQbXR4iNE2qj4kZBYSM2t2LsbcSGFJ9cH7dopIeUYBjwcktCnU6caNgI1xcsAACw+fk40bAR0pcuk5VzpKXd9Lo5WSd6LO6BPxL+QJdFXXD/qvtN7+P7o99j9uHZWHxqcQBqqMZdPK7NSTF0B4sQhzwSwYywCUKy98pew9uohJqxmUqVadai9vgy3gS9ESxqM8JgI+6viz0tE4N2s4APYuN1ZyJ1lgyhDgbXRzDD5ueDzVPPrkzzOSs15WMuW5vz+nUAQOrnn4tl8o4cwZnOXZCxYoXf67UzeSea/dgMV3OuqtblOfKQlp+G93a9B4CL7AC4jhR3WemkCPHMRhLU+6Np686i7nWIYvRmFnfv5B7WCmfS8MsHDoSeuWh4/4IP9ftj3xuvk0JobcTmF+tQD08v481owgtD8T0dq9W/LD772oGwQiq6PkZscaLPAfXHs/RH8zB2A4uqxkLpNfEpjjrIh43XSaYYsdVDcizLolZTkJCAwsREAMCZbt1xqlVrVZlLkybL/qYsfyGdrgued4Sb6y93/36v67IzeSe2JG0BAGQWZmLp6aWglGLBCc6S14phls66LOXFTS/iwdUPah7HwTo0IzOMWJD+SMjupE7UuErx9ecOROfKH8pQ3tiOyueWN93GheSF7z9teP/efEy0XB8BFepiGPCiRPDDv/vPu7phm+1OsZjyK4tKN4Cq1yC6PkZspxi3Rl1HUsBl2Iv0flKaEm1Rf/CjEyO2UbctDsui1uDsoMFI6M91orCZ2g9r9oYNsr9pAT+iTjLIgfKWOBMRicLERFH8zTBu3Tg8s4FLCfruP+/irZ1v4ci1I6Klq9XBpcyFYYThK4ajy6Iu4kdBPAcDD4g/LGoH68Dd/7Aokw20PCs/poN/muxOzvpotJefy9CDcLX6l8XEJU4wLIXNC43Tcn0EkqCwqPnn6d/0f/HNoW9k6zqcZBGTQ9E80VWPwhCuo0/vAxZWSBF64hwAoHQ2xdj1TtGFZQavB7wYyKESLLh7Ri2h9gLqkPhThdmaeVcIJELN5gpCHYGE/gNE8dfjl1O/6IYxZRZmih1y6QXpYiefcrDItbxrbodY65GQkQDAfcJ+PfxhUTtYB5x8dceuZ0FY14Pp5N9ROwvUTHEtL7d4Iypc13+Ap/zKot0ZillfOzH51YOm66SK+iCBjTqduU9/VpubhVQQpecflUfx8nIWk5Y44VBopjsf9ZhNrvfhoQ0sBu2h6HbEC6H2w4CXYCeEl5Xxq5wYsEeh2gE6hRIn1GyuSxC1fNZFl7hhzlKLOnc3N68eE2ksmc87/7yDB1ZxY35+Ov4Tnlz/pLjOwTrEpEC5jlxRhLcnbxcnXk3MSETPX3qi5y89ueN60UxXhmfNPz7f44PuTbIcAcJSVLnGxUaz/LsekwdMXuK6joKA9z5E0eGkqy5MoQNTfnEiLpui9wG5uANALhcSjPIZXIekWZQWdRFbVKzW2c1IKSr9GEnPP4Q/dIV0yITa7oTb8LwYiR0RJww25e9zv30sal02dj19ifoIhmgaI5Thk0T2PkTxyHp5nS2LWoFUlNKX/yb+TprwvPhbKtrgm/2XhPW8UBdevIjcPXu4IqGhrv1LhLzw/HlkbdyoqoPj+nVM3z0N2y9tdx2TsqJQ5xXlISokCgDw27+/4eO9HwMArudfl+1HauVsvOA6zvnM87ohe0tOL5E92Gn5adh2aZtmWYAbuLLk9BLd9Z4YtYXFJ3OcKEq8AFby1LRO0H4wW56TL48qACb8zmL8GhYNFAn6ctWJ+EyhTCRlZqh9ILgZcdlSV5r0OQjlJ3KhxOWKAjihdmdRS++pIPYOBojLpnjsLxYTlxo7J2/jqFeeW4lzmee82tYsLeNb+rT9p7OdaJCk/dxbQq2ASkQ48w9XtEbONm7W6/Tlv6HoojzaIO27ua4/+M5E5w1X3mY2zyWKadcuwJmdA2d6OhL69UfSU1yKzhuLFqHNGRaxORRn7uiM+7bIv6gsZRFpjwQgt6gB14zUgngLSMtM2OhKmjN4+WC8vPllzfNPyUvBuvPrZMuUHwApvo44a8ULsjMnS7SclYS4yaQZmws0vcDto2ym62FueJEiX944QO+DLHodZFFbw4ojlHq0um8HoVa2qATCeKFmCeCwuUTZxqot6u6HJe4/Df122IAqaVT8bQRfLOpdl3d5ta1Z3PXVhBRRPLTeiYh898/Y/RsVqXULKCYucSL0WmCevaASajYvD+m//WbIV5V3zBVF4cyUD9IoungRl6dMwcVx42XLU6ZPF39TlgVlWeQddQ2Rdma4oimGL7kbF8aOxemOnWT7uPLW25i8hEUZ/pBt/pXXlaUsIkI4i/qvxL9kCdv1wo/cPThbk7bqrpMm6gcCOxu3EAnAUlbzpQZclpgnykpu13/nO1FVEcI+fjWLJ1ez+PAH1w7LZVBE51I8tZLFwo8UB1KId5sKbURfYb1LFP/70uHxxSsO3prvQJejBpr7lGLaXIcoDp1OsAi/nC6uFizqEVucmPEdV4YSgEhOueo1fsCL5N16ZiWLN352ou4lCqoj1MLHV2s9wHVCDtzNivv1VqiDhR5HKAbvobh3B3dN49MpWiawqginhkny7dqdpmh3hqLOwp0BqVdQCfXVDz7E5VeniK4ILSilyN62HQUnuERBTGSkGBstcP4BLrRN6vqgGv7q6z/Ow9X/viP+zea4MsE9uroI+cfkIXVUEtLH8O9X5TS5ZeKkTvFh3Z+yH1svSYRWOYUUj3SWbiXumlJKyy1QlmSDixTl+W+Ys6BA1kwusAPNz3Ln486iliK1qD0RncuJ8P/+58TsWU704Du4GImfu/chioUfOcX9tirfSlw3YiuLcplA/Uvax+xUqZPm8ptB44vAhD88C7XdCdS6Ctz9D/exevE3FuWfcuUaJ0UO1LtEMWK7JPE+AUIkH69xa1h0uW8mQj6QR4g0PU/x/jyn5seXZeT39O6dLBZ85JCFp43ZxOLhDSzani4ZQi2817WuAjWuUnwyx4n//MKi0UX3z2wW370VkuV9P5DbegVkr15SdPkyACBnK+drpSyLlBkzUMi7MDL++AOJw4bj4uOP4+oHHwIAmOhoFCXLU2g6UvSFT4Dm5yNl2jT5dtdcvs52Z9Q3JnOlK2+znb+hoU7OMhFgKSvGTquOKeQO9lNgv3J6JXfDv73pUQ8rpCCU4p35rg+CMz9P9lKHOYDXFvNCbbAjMEadLVWXyb86xZfEJtl9mSygEe9K6Xyc+7dymqQAX0fho6IXUmU2L4i/IAbvx4MbnJgk6bCN4Fs2pKAIpXgr747Pt+G9efKPdrlMYOhO9TFsa7VbaL0Oq8syrLyVdP8mFiFOYOgOippXuPKx/L0UytkYGzofY/HzNIdX4X2BplvVbmhXsZ1+Af65aZ5IMX2uUxwboOeTFhDeidtCqOHkrkranDkoSk5G3sGDSJvzLS69/AoAIHniJOQfPy7bRGrl+ooy5lpJ8n+mir8ZxYsfWuQaNp3nUFvvwjrAf6OXVNEOfFSJkbJaSCMJ7A6Kn2Y4sfhD+fXNz83U9FETSlHF4Cj8zieMn3/VNOCNheq6v7jcibcXOPHLBw6xzSFt6gsLhbradA4Z6JhrPaTPz2c9P9Pt4LprN5V1zIZLbvFDf7NokERR+cjlgNTR7tRuJY3ewuKj7/mJi/nzEK4zQxjcv4mFnQViNVKVhxcUr3h/2ftLcRq5+HSKSmny+tTXEeS7druvd2W+UR+aqf3u+0pQCTV1up7ef3v1xvkHH+L+cCPGzms+jHc1iyQue+QWeZ3mf+xEhesUj//1uO7miZmJSM9Px76rbifLMcy0PdNk8dR7rrhxGYEiMp+iXIb+Aye1Lj/8Xvuaz9n7pcz1IVDvEnCHCQE2SphOrql6Em2y8W4Qojh82Uwqdq4pP6wCep1y/qL2ZYoP53JDuKXYJZe3V/VeCLOFYvQmJ2pe4dwbyvIC0lGDPY5QvPOTe0MlN8zrqqPlWSq2Fivd0C4jXFfhmbATu2hdKu9Hr4Ms5s10osINbsUrS51omcAiIl8tmDeDL79y4rPZrutX9xJF1+Pm69HuFCuG6YVkB8aiDq581EpB5v8mYWHIP+VbLmYpke3aufWDG6GxRvqKytcpDpS5Ilv2zB9O7K1HsKshg5yiHHRd3NWn4yo5kHJA/F3w778oFwpci5U7HKNzKUpvPITp85yIzwTum6J920OYEOQ78xFWSFFd5/tXPh0I1xDPtxYEJtJBzxKWIliZodLxTaD46ktXnfRcH1pxxQxhvIrpLRNeRhV5M3a9E7WvArWvACckU4lKPxz5x4/j5ed3AACG7uTqnFQWmPiY2tqPMGmR/luJyEYomqH7Uc/bCdd19CYWFW8AFVJdbkdGsnlkPkXvg1zhcpkU12KA9qcp2p+muFAOqH5N/7n0N3qd98qRtkaZuMx1M+0FgZlEOKiEmurMXUfCQnHu7nt82neh3fUi28qU8WlfenQ8RXGgLvc7JofrSe9+lKL7UYr7pjAYv8qJ49UJtjYNTENm5rfcS6584F9e5kS9i6vdbtvsHIsWVwqwo6Z2BIDAgxu175HdP253rxA+HFEF0LVE9SxqrUT63g68qBZdTSXUglhVvUZR8QbFxhbc8aTXK3urOv69ahpQU53HCxGes9nKSI/yXMYXhDj6qmnAg3+zwN+HcSWOWye95j984vpo5ocQ8V1kCXSNgptNWJHvVv2BZ3uhkR/qoiTIXB/aXyMm1If2G8+LT9jg5AXIXr68z/vToudhiths7mZ/O8uJ7z6TW5m9D1E8Z6CXHwCanGdR1o2bwgzlNIJBnljtRL99XF0an2fx+iIWQzbl4sMfnKibHLhm6PVS/t+n4N54eiWLn2ZoD0XWCx10Fxo5dAeL4VtNpGjVGEwiNP+fWMviqVWufbWVdFaz2dphlR/8qK50FYMuglVtuboYjX/2hrHrtS+qIMJ61zwqn4plpFa3L+lVfaVGTA2305QZ5VrTyr7vRIOgEmo4tV+K7M2bfd61w+ZqRofWqqlZhlSp6PNxGAr88oH6gxObY+4hfPNnbiSgP1D6CkdudqLvQW7EWZVrFG/9LL/uT6wNnHlsD4CHRHl+bGamKqyx8QWKiny+EcJSDN7FIqxQexLVe+reAwAYvZnFfds8XwtCuUESZVPVaeeUlrwQ7SEV7bQ5xmfwGbHN2HNUwLvec8KB3zoSFAag7Txoj3ZdhKieijeoZufha4tZzY5GxsQrEplPDUfOeGLWVw48/e0VTZeeWRz2wHwZPQo1ISScELKbEHKIEHKMEPJ2QGoCgHrIkVD2iScMuS1ih92L0Bo1ZMtkeQ/KlZOte/0BGyY/YgN63gHAt+aiXorIObPMK1R4kbwp3+wci3d/dMhiiLXou1+uDkpDYdgO1/Z69d3YzA/mhQYxGp3i45/17eEuozBIC8+dU3VOdT9KxQE07U9TPPQ3i1FbJLOKUIoHNzgx+2Ab9D1r7gGocAMYvIdi2HdnVOuUL1iofmCOT7z5ZLTs70I7d/8YFvi5pw3nKgTmuFoIbp1XlrH473zt5z4uW6PVo9GgbpHA4tXFTsRIDJ3oXIofPnHi3u2ehVorskPZ8qmYDtRKyEG//b4LvzMkMO+NEYu6AEAvSmkLAC0B9CeEdAxEZdhs9WeWiXY9gFfC8pCx7FPx71L9+qnKAwALiipz5IH9DhvwzigGv3RhQGxyYThVjeBcRQL2iVGY+qANf7VSX5aldxi7AdEGonNaJLBiz7cWUkvhpxmuB/2ZP1nUT9YOe5KitIiVFqcUh84TUBigYIhd9dXX8UY0waq2BDOGMnh7DIPXHrRhf22C0Pr1ZOWM3oPEUaPxyTdqRRQ+SoLlNGgPRde5XGesjeVCsOJW70L8ez/Ktiud5f4FFkLTQgrVoqS0qIfu9E9rhVavjDcecD3HF8vLn+m/WxCcqgKsbM9VThBub/ijvffb1kyBKgkX4HJXSdFqbY3YxqL1WYq1zb4Wl1VL5fbX4pzrWhJK0Xc/ixCFn1kZ2eELLz+uYVCEcfmBFvRgsK8uAWWKSagph2CzhPD/B8SZVJSUpFqW3rqO+Hvh8Z/x6NpHxb+vIROHa3IXJrk08HsH7vfyhN/wYdL3sv04bMCRWgyWdGUAnQxihcSJM1UJEiqp1/3Z3piXSM+CkDL1Fxaff+3Eo2udaJGgfnHtOh3H0qbhV18ohh8rmoH1S9fH/I8ceGmZ061Q6zU3CwwIdY6HrgOpP/q+KXaMfcmGT+/Rvo4/9LVhV0MGx2owOF2V4MORNsSNHCkrs7i7DX839/5FKOLfM+ke6u3iMkS5yzE841snCKV45C+nyjqLy6aodZUfkOPgrLc3FjjFJr/y+t67g6LNGd/FmrzwGLIlyayyi7LxTX/Xtb1RCnj9IbsYAXRZoyH6+V0Mvhjs2sZZq6qmKP/U2yVQuY1qqNZ7QtniAeSREgJ2J1AthXLTgfGIqQsko4bL8n0u12Jcde14kuKJtSxGuHFVxWZT5O7ZgztGfKzpnvTExXj1tQkd2BePPW/D750YTBthw0/HfzK9XyMYUh9CiI0QchBACoB1lFJV9hRCyDhCyF5CyN7U1FTTFaEOhyxHtMDSkMOuyvIPfWQnzqDPi7SLD+DqtgzWtuFOZ0MLBkvPLEVK18bitoLrI4QJQWhN7mH7sTeDB192PYRFLPeZP1CXwTFJKBUA5ET4/0vZfz/F1F9YVLzOpf8UCNV4hj6e4xDTT8bkcvkyHl0nCQtSfB/urXcvQp1cJIo7tI4FcFEy12LUy5970nW9lB+Ad0bJHydleFleGIHTZvw62mPjxN/bBnP37Nt+3ner5PHJEUtptHpsbr6vpfKBKteAAfsoXlouL/jpN068wouO3cHi/k0sml6gaHFOGOqu3p80NazXhIaqBh5tkLYEFZ2ki7oxcHZpK1u2tSmDS2Vd5Rxd2mi2JgHgGt+wLapSTnO9O0ZuMXa+difw3jwnxm5gEZ/OuaLE6BBJOgih1ZolyUocxYcvdzlO0fMQfzyJ8VIpjWLO507X2Aw/QYscyIoMjBUtxdBTTyl1UkpbAqgKoD0hpKlGmdmU0raU0rbx8fGmK0LsdiQtfEe1PKGS6yIIwhDelDv8mrTtYnA9Q7n44SqHdyGhMrfwuc6u2GvKP7jhtnCE1qqF/73TBivbERSEuvYvCDUAJEseYMFy/GAEI4Ye+ZO3Fjgxfo0r8YtWb7k0hCmejwZJj+LiaivcUI8KlAqElkUjYNcZ9l1oJ5zfnmdPPYIPhzNIk7hC377fhmUSd0SW4mM2f7Rvc1DaYl1fil19qwLwLYohPxRoc4ZFXY2sfJ7CC4WQRaXlHSnpgLI7qPiMEsrlIzGaqMosJCZaN4uhFtmRBE2//QkRi2bj/ldsYgjnBUkAFCFAVqT29s+Pt6Hcjr9Aw8z7xLSijrQIcbp8+M//7sRdu105ZqQW9UMbuJuQH8q5POpdomjGx4qXy+Q7ailFN0kcuL/cHyqKAtTpoMBUXzClNJ0QsglAfwBHPRQ3TZ5kFpSZ9zCYdf9inN4/GnvrErT9l4oWta0lJ9RHahJxOLKwTpq/mWqEXoXZwzB4+WBcyL2gsjq0hmAv7Mbgr9ZcuQN1GbQ7Q1HxoH89P4KQ1rxKcaQWUXWqKH18woOfGQlMXeREfXmqEwBAaLaxie/0EikVhABZkQS/dibIjCRY25ZXBYmVcq4iwbmKNty7g9tJnsIVEmGPgA/T78EWGyv+FhNQKe5ZfgjX6Xq6MjSvgxSG6luznqYAE9ZLWxHKjGp2B0U7vj/xpd9YnK5sPFGVkrxQdcz0/nal0XoPN0SQVKsszqhjBludmig6JDFO7AQ/d2cwZjMLarPpjmQsCiEIjYpB+tDuiFv5j6lj6hkDSmZ94xJT5b1kc3OBcO5dEL5PQ3dSNEhyag4+e3eeE2crBt7SDe3aCcjZ4rmgjxiJ+ognhMTxvyMA9AFwMhCVcUa4Evcfq0GQX68KANdXXxyu2qkVHnzZhn+rEJlFDUA30b5AmC0MF7IuaK57f5crI5nghc+MlLs9MnUsDiMI/nQ9WvMpU5XuiJeXy1VEKhB64hSabizzkWDxKeObBcv11242l0gDolCma1yHlFj535VKaTj7AXzXl8H/BjH49G4GP3fXfwRtMZxFfbAWQZVSVTTLPPSKHeOftcn8qHpIff8Zivp7ChsUOr+kd/C1Re43qp+s71ryxCuP2UQf9DujGKRHARsGVsIn9zA41asOmPBw3Y5gd2jFeq9uS7CmNYFjxADx/hZGhiKvSU2ZC9BGbHBUKosfe5s7cJQfRlUXJSeDUJeFLaAl0gB37c20viq9/75qGSVE1g8AuPo5AKDBwQMIG9DX+EF8wMgVrwRgIyHkMIA94HzUfwaiMo4wGx6fYMOjz9uQFUnEGVHWtWJwoRzXkw0AOUU5ostCFGpey/QSIglcyr6kuy45x6V6RPWDY31LRiVIhXZgf233Ilxk8/zgCD5opRXW/rTcIhHSWeo9pIDxnAPCR+Ct+21IbFMF53mvlbvolSljbZgo6QF/bySDrwYysh7vat9+q7v92rYMNjVnsKMxg9/uYFA6rLRmudCaNTHrLgYzhzL4T4f/iMsnjJdfyBvRXISDOzJa10Gc5NslizqgVOWjVoY4hjrk+URicihqaYwcVFJKchsmPupZOfbUI/i3EnAtFljQk3s9T1YjGDfBjtzoEOxsxGDvmJYgIJo5VzyhlS2wIJRgbj8bSBTn9J30iA1/vTsQydOfwdv322XbEkJ0n+P5PbUrVM0PIw/TFy/GpCVcJ7xR+u8z3vKNaNVS/P3MUzZE33knrn/zGp55Sn6yz0r+ZmieXyaMNoKRqI/DlNJWlNLmlNKmlNL/BqoyTtaJzCiCbN45L0wMmxZD8MoTdtyI5pavOrdK3EZ4WAWLeu/VvX6pi/BCKm/1tViCZ5+240gN1w16YKIdyztrDEWW/A5xusK4lEIv0PkEN3DC2+aylJBME7lEwX1Idj3TBW/db8OeegTbG+k/gAmVCTKiXOsP1WbEodHCuZXq0hkA8MQEm6wDUot7692LzpU7a67b1pRBfhhBZIjLBBYiUmQWpYcXhtrk9+dLSbSDjVX7qJUhjuV4S054LrocM+/+0uqclfL5XQymD7fhPw/bQQnBhpYM7ptiRxEfWie1hgkhXlnU8RHy/qMdo3e49snvP7EiQdumd6qsbxtjA6VUZlW+LgkRXNGRwc5Jd2oeNz/O2Hyk7lBO0uEJM2kNhNYbAKTGEVSd9RkctSqjSPJdKxteFjeiCVa3IShVOR9I9V/+IU8E1chEZX7lRmW1R81/fcgVUyl08ggv0Ie7P5SVXdyVwSEdl0OpEM/jmfXyXrwzxoaXH7Ph+XHcg5oWrS5TpNMDsLmpvqgM3kMR6sUEr0oqT1toqrzDDoTaQpETQTB9uA1Xy3hnKUx+xIZZU5uIf2dEEVwt7X5fNsaGEQ1GGD6GMMpO2ZnWYL9+VkKqiJ0/UMdVJ7sTeD+jj9tjClnkKqYD/fdyyfLNkB3OzQ35TwOC3ztqXw9pDphKUWq3kdR6IyDe+agZGypEuka/RIe6HtyKUdzI3PHNx6Nn9Z6qbe3EDid1ih/KPfVcoaxCyzalqba761qNOPOVDQD2SpVQ7umnxb8z+e8HEx2N+nv3YuxLrotKKZW1Hl7v9DoA4Ps7bajW7Tq4uxAkFvXNRDljyYYL7vNDA2rXh5KlXRi8N5q72tKHv1/NfqgeU117I7gfJCJwsTzB5bIEdoaLV330efmbk6UwIgRLOTuCYGVbN/O2+WBRr2/p+cFJKgvslgw8OVmF89mGMqFutjJGTgRBemlzkQEExNTMIPl8Nde1kp8rExmJ0Dp1ZMvOVgTmP1YTRJGZUfoRDXEAEb+sNXx8aVikFsrIoO/uZPDMc6GghGDmvTYs6MFg+r0Mnn3ShpM6LpvGZRurlglCTUEBov5Q1S9dH0vvIDjgwQ23fsR6zeWVS1XGxvs24umWnJApRYgQAgfrwOkq3PKrcZw7b0sTgndGc5VR5lm5UYorm1JWfX/1PlhKdjY0J4Zag6oE4p99FuFNXYbEy4/b8MpjNjChobCVikJemGtb7jpzfyeV1Xg/CBM8ro+bidKiPpx6WKeki8QK3IWShhkZ2X+4LVwzc5qAcPndZZJzleUKZSviKVPi5OWEDqv8UPcj/+I8jDx0x7Hq8jpcjVOXyQ0DEsu7yr0zxgYQ4nZKMDOYnYmZIQxCbcY/Ek4bwYMv2/CTRqdW9e/nInb4MCCEu8Af32vD8frhiDwrTz8rjQjydwid0necGQHk2yXXhBDsacAgpTQn3JU63MBXs7rL66eRx0Lm+gBRCXW5iHJY3N2GD0Z6H8NYLqKcmPpVS4QcrAOpcQQvPW7Dwh4MQAi+GGLDsRq8UIOi/p7dYnmWD+djKqrHsBsxhgBgeSdzMsUywOMTtK8BCQ9DdK9eKD/1P/hqIIOMUgQXyhPOjZEv76kUnuOJj9rw4aPR6FxF4Z67SSINBLlQG2F3AwYvPmHD7gaeT0VqsYfYQgxNbW/kWdITpssK94EQppQfCuyuzx37gxHqOjy90lyzWiA/RD2iUCsZT67Eavi1C0GRncBO7OhTw33z3yhm04QSQhBmM5chsSCUaIZfhpQvj8rvviv+nR3OxceTQvWz9X0f7tq/stR/Sl1u1gzVQxNepP+MpJciiKuVB1bRmtQqrxRqpVDcjNnPhWMkxRPRd67EFh2N62P64KuBDEL5WYP6Nr9XXC/k0jEq1DcUbsV9ddwLZMuzFJlR2mWYcC6Mo+yDD+Jc19quFV+2B34YJCsrfCzPVyAYXaOrRu5yy/VhikvlPF+sDhU7yFwfDBi3ze0NfOfY0RoGboTkgXv/PtclVSZ3KuQTthTZuA65+6bYcaAu12FktnmnBbHZZB09gLafPC8MIHylKf+g/XrXr6gaXdXnOngDgVqofXXDVH7/PTirVEB+KBcfz2gItdDiqefHmayiunZRLTtcy/O9NfLsy3zUGh8pb/Nom8GTMSWI2/X778TGFq5IoPAyrhGNKzpw7whDgSXjGmDNQw11O5yZe/rjP3fK+52kHcFaKN8BKSTMFW+nev+vHHH9dhSASq5nTNq/QFqCYmfy+zC9+3T8etevbuvmLUEl1N5Y1EYZXGew7GXYn7Lf7dfwdFVOSNNizQnowToMnphgw9NPq5+WDF64teJK89zokqecGgIMw8ChEGZtixrix0Vw7dgZu+ZsJ94gtQY3j9ysWeapFk+hTiznT9Zyfawbsc6nOsTedRdy538EEAIndYIpdMXjCTHjadG+fRx/6cKg1u+/iX+n//AuwsNLYcYwGzZKcpKkxXg+jp5FPa2rawJmlUWtwOkh+6RZNI/h4YMiTuDMixzLR9swpVxmsZD24VJZgnNNyuBU+wqanfEA0ODDTzCw7mDZMk95aNy5spgw13OmNV/mN32/waI7vwfeLQ964g9x+bATm4DPW8sLE0Z2jfrX7I+GZRq6r5yXBJdQU/NC3bSsajS7JgRE9pA5WIcpYepYST9hoLKZmhFFcC2WYHMzBgUSoVzSmcH5eGB/XfULsI9fdryaev9GB9lQQuBQ5NIo0Gie5oZxzTnA5du3EZvfmnFS/2qZcO20tHfXvRttKrQBwN0bYcJRd9uZnTFcKM9SVtbMfvI5bnmaRrhc5enTUeXzWTj93lgA2j7+P9sRXInjBoqE1a8vLm9VphkYwuBiPMFXgzgROG0wj7xTaaQI6RLsrusitd6kywX8blFrPA6GjCmWBXuBG70ohEUSiUDuq8dg6oM2rG9JwIABU5gHh51g9lf98d5Iz++ktJW4uz7Bn+24igqjKoWp2bSMlLCGLiGNsKtDBu+ofAeaZHOjP+ml/QCAvjm5KJ4pkF0El1B7eAiqR6ujNCa2m2h4/0qLQ0+oH2j0AGJC5W9xuQj9ZDRKoY4LiwMAXClD8OBEO555ioslvlyWYOLjdlkSl17VemHjfRtxpHEkHnnBhrcecD1d//LzGPzZngHCwvDtXeqXUwYhsmZfSixEC3vacAZbGwsPNMHuBgxeGGfDnvquTqBAWNR6sJQVhYcQYqgzsWZMTVP1ECwmPStQGZUDANF39kVM375o1biX7n731Gcw4Sk7ciIICCGir9uuyJU+9kUb3rrf2Cvu1BFZPStaeB4zI4AVfNZIvwq1oxC49q+6nh6sdkopsO97OA/8CADIqsS9R4JveGdDghpFRXimUlnOx04A5vx2AEDfGn1xqrrrepWfPJmvSwFK15ckrJF8sD4eZsPfvJtSGG0qfJSfedqGit24JDiZEcCYiTbYJGmTP+7+sfZJFHK9+TQ0kt+f63muEimZXIRl5cbN0aXa+/MDQSXUnh6CgbUH+rR/6YPMUlZXmBjC4I7Kd8iWmeloU1qmqXHascSrhq7CzB4zUS6iHArZQnWGPv7PsxUJSm37Azdi3N8uysiFWjksPJ3/u1ltrnUgTTxlZ+ymLeqhdYdqLjciGAWOAvH6M4Rx25lo5zukZvedbap+gkVNKcXJ10fiYC2CKWMlF4gQZNYoK9uGCePqwcRwL/T58uprokyDu7otwf0TbaoJKfLCCRx2gspRns1qI52JggFAqeuj+vgLdszv5f6D5BXr3gD529UpWye2DsCycCS5nxSaggKpJ8Hyz9Keh9uhyqefIKxOHURs/g2f3c1wA8Ekz4iNF0KGMLJIlrKPPMz9cBSgQiv9zE4hkmiqmAfvx7dP1gTAtWyjKhZgRyOCd0bb4FC0LitGVUS4LRw1Sin6ZniDUbgD0q1+Pb4H6/J4sadOeV/BkkcDNp1YcAm1hwdNq/PPTChYzdia4m93Qm0jNtW6suFlVeU6VOrA1YG/OeUjOD+C0djKMHuYaPVJxS0pnjv253fZsK4VwdmKnFjZqIdOlFLhsgD9EKc8AGHZHQz+akUw9MUvVdtWLqUWk8G1B6uWSWlXsR0AYGAt+QdUz0UxWDIxRIgtRPwwMNAX6o33bcSmkZsAAPGR5rIyCgLvpE5ktqyF90fZxMyK4jms0U6oY4uNw9SHbPj8Lga/dnZtM2qyTewUfq3Da9xCoh8BMavdf/BT26ke6+pUpPgVnmvps9SjWg+3+2AL3aRJNMtVec617tW6A0eXwpmgHYOtRHjuaGQ4Yvr3BwDYIiLBMlw3NuGfdwaMy61AAIdWKAhl3UbCCf7tv1swKPfqRJytJXEXMcCn99hEV5+SXffvwoq+38kX8snZavA569rlu1KLRVOKisKUgVoGSYD62YJKqKWuDy2fsFkfpRRCCKZ2cL0wlUpV0hVUG2NTfRRCbPIejJk9ZqJnNW70ltZLZQS9D8U7D4Xjlcc4V8mc/jZQhoAhDK7HucrHDnVZs6Mm21D+1ck4MHmQzH+3qbmrPKHcYJRv+9vEZqiA4KtT1t+ThS0Myuhfs79secv4lq4/HK6HPJT/oN1Z407UiKkhfpxCbCG6ro9yEeUQG6Yz5t4DIQx3z1jKasYlAwBTpJ3UhBCCM1W4NLi/dnM9C6wkn8nIhtzEBk3KNpH52IfXHy7+7vLLkyj/w10e66q0qMV6KIaNu8N5TT0VmC+ojpaTCoenofqcDEM4G1mdiVCGiCJHCBEtakqp9rgFDy20zCiCUZNtWNuaC5eTGj26taUUSD4AhjBglC15Pt1xYxKOdXXG4r4sxQdQyCfEOtX3RCMDpz8IWqFuVEY9fNzM6DUlBEQcIgtw/im9/TGEweiGo2XLwhi5xacV3ifcNKO+Xj0hzItguCB8CTbGhqvlQ/DMUzaMfNWGyh+8j/JLf8aE8TawDEHZhx9GUYXSMteHMJGCJ/Tq66nPoE5cHRx66JBquPHLbV92/bHuDdV2gltJeKFsxAY7Y8f45uMN1VeX6+eAdysAvGAJH3Yndeq3vM7vRFic+uVS3psKi+ejxnzt2TsWDV6EPQ+4XAJvdnpTsh9jOJSuDy+a0MOUgiJBiLDxFgICOPLRPdd90jOu3i7BtREbcOEfIPmAeE0pADt/fk7WIYqQ7vNmIJqFZbi4ckLlrVPdN2DnF8DsHsD5nYBTkU9WqAelqBgaq76HgvFBna5WoXC/2NtBqCVRH1riIRXGMQ3HANDuYGpdvrVqmZIy4WV0Bepcxjk0i28mW6a0+Aghqu2Fm2bU16t1/NENR6NV+Vaq5UJURmqca6BHRP0GuCIZVMOA8Sqxvt4IzSrRVcQZuXW3VZxD96rd5REJbqw8wdUl7OPZVs/iz6F/Ys2wNQZqrcHRJYAjHzjE5TmRRn24o0ava4iqFYVqs13zbEpzYABAVNOmiGwrnyFF6HRyh1Gh1itHCMFrHV7DzwN/FpcJH52KdlcnRBmnE2N0hLp3Ti7m3Kkz07liNJ5enQjhhLpdfgGORLVDrNO9eDohMVrm9gNm9wDzCxdJQwkQz9+Sa3mpomjr3icz7oS8NDgLsjTPQcb5ndy/OalqK9gpOZ5GCB+EVMqSD4j4FtwOFnWepBmaUah+gAT3Q7uK7TClwxQcGXsEZSPUvmOt+Egt9AQqKUs9d2OoLVQmwAxRW9Tuht5qHl9DqKe0n6Jp/TGEUZUXmvbSMkqhXtCTwcmq3CQLegjJZlTZ0ogN73RWz7rjDnXdqcYvDqlFLVAjpoZu7mktlNeAOxB3JEMWNQBbKEX1+2ugVLdu4rLIkEhsH71d/Fvwd8t4X+HXv5EInJbnDBGuaN8aXN7i97u8L0vZ6tq//jM7suFINItvpro/C2uMwHupXFSDIC19c3JloY0rLybj05RriA8rrf1h+U57gmgVyYcA4f0kjK4ACq6PxoWcldq2guvjxiQfAMBllazEa/KVnKviWyjto7KVKe3aqUKoyzid+Goggy8Haby/K54Hm+3KP6tZz6J84NRK7ndopNoKFv+mgJa7tYgXaolFLR7ndhBqaUJ/6cv7TZ9vsHTIUrFDT/bAKkcLKde7QSp8QiIaQD4ll4DSotYSTum6Se0miX/3rdEXX/T6Ql1PDUHXE3kt/7xyGUMY0UfNRHKhRZfKEUx7NFY25ZiSAbUGaC4343Of2JYLk1Q12bVyVvD7VVrU3tC0XFN81ecrvNflPdU6UagNDQRRn2tMaIzoe9b9+BflAbnXud9ftAd+vk9zrx91+wi779+Nu+rcpXKrAWqhln1YTq0BtkxXbVPOHonOvCtC8B3PTLkmG2RU3cGL3DtlXR+W62ddO0k94fpdILfIZVckYb3EknToCzV/v9vmF2BzjdHoXaO3ugyAWNaJntV64pOOb8LGn6rwPLz4hA3VVyyXbCC/f78nXUabFuXQqUq6at/kzFo4PT220jA6p0Pt+lir/pDKEK4DpS535+3i+nCyTlzIdAm1dKaWO6rcgfql64vNUbGJdPmQbLRQdEg06sTWMRwJIlzk6d2n46kWT4nLtXxloUyobL8ERFMohXUPNn5QXF4pqhLXa648vuRxl0aVaMWLa30YVJ1/hIBlCE6O6YCaixeJy7ePclmGzcrJXTruMJIGVmBUw1EYUHOAhrWofy9Ei9pgC0iPLlW6YEidIarlYnie2+fB/bOy+K7FePuOt1XL11/gJ6CY2w/4qBb326meeEy4Q3bGrjnAQqyr4t7K6rxwJPD3u6gXVxcA0KlyJ37nBOG8QCilU4hA0mSW2rUGAPigCpDimrxJusehWTkui/rYckOmUBkib+0I2whRH7N6zUKn0o1gg+Cv5gT5UjmCEGHIee510RVRd8gV1LvnCuJYFmOdEbg/U+3qIZDngdfkd5dRBkee3NUhhVId/7ggyrehRU0IkY2Tz3eqx1kL/ug7a/LJya+fk63fMmoLlgxZort/JYLwKa1AIV/vTwNcnUfKqI9we7jYOSnkEJHGBUtRRkUIsBJf2tIhS7HkLq7uT7Z4UhUOaCee45yF454d2Axh9eqJy6VC+H3/7/V3wO++alERJrWbhDGNxrg9npRQWyg+6v6ROl8I1Xd9CC+mL53E8nsnlQK5u8KbzjkAqB1bG/fWu1e1vILgo718yKv9Ptb0MdnfNp1XkRS6JoBoGFEB20Ztw5AKncRlQiSNMlpiwaAF+PxKqnqHnq7DDwOBdPnUQb1ycjnLXCdR/itpNxDFhxfKPjAKg4cRhpeDuNwHBZkqixrgn+WUk9xHcB/3zIZEsrCH8zJ8YadmXQiA52/o+91VFOWrLWqBK4dd1rMWkvreNkLNEAa141zZrLSm1KpUqhJ2jN6BUQ1GcQsUnQ92xg47Y3fFt2rQpKwrF60gbMpOjI+6fwQAaFm+JVbfuxpvdXpLFecbFxaHdhXbYW6/uRjXfBwA1+S4SqFWdkw+3ORhAED4TFdkS9mIsmhQpgEALl5YiB2W1vW5Vs/pnhfgEjx3nWdGstTZKfBg4we1/b9m0agLKcwB8tLFF9MXoR7VcJT2ioMLYT/jivntX6s/Iu0GxuLnZwBzB2i61Mzwnw7/0Z1iDABeaPMCFg9ejNlXuXmqlBY1HLx4bP0YEK5PWgJij/8JfFwX+HcDAAI7gCfSMzA/WZ7GtWJkBfTI04jQ0LAQh0g7IXPTgE/laRlE6U3aDS3GZmZhcho/7JpSl4AphDqU31EVhwMo4AewJG5XWdQAb1hdO839cWoVzDAkW+6Ln5biZi4wR54shBQ3El2/824Aa17V35Z1iu+aePeKy/VBCKlGCNlICDlBCDlGCHk+IDVR0LlyZ7zU5iWV5REdGi2xjrWtg9pxtfFJj09kywRr9OdBP+PggwcBuCz00uHyF0raGVM1uiqG1R8GQG71CLG97Sq2Q5cqXWBn7GLuCumEBA1KN1DV78U2L2JP4kWEGTTyJrebDBtjw9B6Q7Fo8CKsGqr94AodN6q8uUGCIMdk9WRgmiuOmjm0ENjxufZGTgcgaXlIOdL6TQyqPUhzHX57EvZfXO6nKqWqYNf9u1CvdD0xPYCdscstzMJc4MPqwIUdwKYPlXs0xeiGo7FllPZgGoHGZRujUx4nEjaJUK8b9peYuY1kXALi+fwUVw65mu1nN3HrAUy4kYHGhcoOMR2/vIZ75t1r13H43AXVcvdvGceai/I5SCmoJLzNCayZIq6LZVl8ejUVX1xN5YT6+4HA2iniW6WKJReuiQErVQgb1GpzDsxxMy1dUb7rowEAn7XweCwRyoLlHS3CVICBsqiNjCBxAHiZUrqfEBINYB8hZB2l9HggKhRhj0CeIw+jG4723JnFv2R/hDfF9R7ynB96bgKGMOLdHNd8HJqVa6YaLq5HKXs4MhzcTZcOwqgYVRH7H9iPtPw0bE/ejgmtJgAAdt+/W9b8rhlTE4mZiWAII/oWjfBA4wfE39IWgZIm5Zrg0EOHRIu+VEgpZBdx1tIf9/yhmcgHALB6MhBTGdGtOFdHk8JCYPmTwNCvVUU/6fEJXtz0ouG6S3nhejrszUdj4DluZKRoUZ9eCxz8DbhDo8Xw+9PA4cXc7xePiddQE8XzomWFLBuyDABw5sYZbkh20gHXttd9s6LdQqlOonnuOQjh79nHV1NR8ehviOKt/xDKAtEVgJRj8lDH3OtAnP4MRcoOOBGNZr7mm8I6Ub2IE9wO+Rq+d/7xFVwvQohdCBPiEmrWAfzzP9l2vaVx2HyOD8H14XAW4dH4Dpibugt4KxaowFv2GW5mceaZkZKKazabZ9/5FfmISzjyAG9HdFInouxRaJWfj8fTebEvLtcHpfQypXQ//zsLwAkAxuOnTLJl5Bbsvn+3sYgD/uGoaYtA6wry2GmtsD0ldsaOrlW7Gq7bpBrcCLPysKtcCIQQlIsoh80jN4sj9iLsETLf9qLBi7B+uLEhuAAXWrU8yVyyZKnbZfndyzG331wA3PB56YAfGbu+Bta9gfjIeCy8dAVvXbsuxiJL2Xo+CX1q9EF0CB9jfP0ssJf3eR9dBnxUx9VkF6AUfXJy0SsnF3Esi9daPA0hfqZGTA0AQFl3MbmCSAPA3P6YP3A+FoY3xrbzF/X9rZLld9e5G1/3UX9w6pWupx6SLh2leOQX/Tp5YuMHnEUr7UPRiwUWhC6fe9GdhABrXsWbrSbg+evpaF/Iul5+abM8N01/xB6l+uuU90cPtgh1i4qw4cIl3J+pbtG8lnYd5R0OxPHDqfvn5GIsUw4vtnkREIbDZ11RbaeFXXR9FOHFw+twRLDuFcPYtRBGNYZRoIrD9Rw1l35cOj3r+v21orWZe123xeaRnGuwLRqDeZdT0C1PiIgpPotahBBSE0ArALs01o0DMA4Aqld386X3gK7Vp4lW2hSOluVb4us+X6NcRDm8uvVVdKmiTuiuZPW9q5FTpD+IYUh8GwxZPx2oZzD2VEFUSBSiQqI8F+QRQ6vc8GjTR3Vz4FaMqqgrzuuHr8e0PdO4fB7nXMPRmxaqX+S5Xabj+O+PI45/AVfduwo5jhxgTn8g4wLQYhSw6hVOPPIzgFJSAaT4ROojlDTJJ7SagA6VOqDlHB33hZKMJMSGxSLWHg2w3Ag4T7zb5V2PZQBwonpihXr5/zoBKceBqVeAkAjMHzgfZULjgE+ay8tJPxqbPwQqt+KiNQScRYBNy+fPbTfp+GaE1e+I3rmcSMUeW4HHMzKByFCXyF+U+IiLcvStN91oBYgW9ZzLV3E8zE3GQv6Y5XU+on1y89BHYh2HAHglYT/gdLrqe8RYEv2xGZm4ZLdjTK3BQOlfgMsHDW0HAOsvXkKGxkxNc66k4JowoTFjw4/JVxGvdS43EoEwD9PD67HzCyBd4TLaOgOo6VlrzGJYqAkhpQAsBfACpVSVyopSOhvAbABo27ZtYFJIqQ8qVE5zteCrXX73cs31SjzOcOLheF6h2yQ2xottvHNDVIiqgJk9ZsoXXlV4s1gnwNjQLr452kmsqrjwOMQhjhMLAMhLd4U4KTvFVHHVLksvxBaCLpU6wTiUaxILJB8A0v4FenqIe/W0TwBIOwPs0BhFmcJfk+2zgB6T0SK+BXB2s7qc0oKVijTg0dIq52TxTi7j+vZsfM+1X8FdkXfdtYHT4cZKZz26PjrmF6CjhktDJDfNbX11Wfe66cREsSzFtNQ04IfBauHzQDkni3JOdeshklKXoWMLResCjXMtXQs4+Sf3vzdo1TXhb+/25QFDUR+EkBBwIr2AUrosIDXxBuHl8FMeZeOYEFZKgayr7tffbPJucLG00qmHAOArhWgKAqEUIZYFvu3repnz0+V+SRn6Qg0AWP8mvOaf/wGbp0msR5MfvJUvqwao6CL17WYmq9dvm6leJttecl1YFtg1m+u8lKIp5lTbcnYWuhFqp77rQy8UTYlJwRQpyjOfQa5sPd+O6Qm96KUoc9kYixMjUR8EwHcATlBKPTyNNxt910dAj2fGAt47F5hRH7h6TGeXgZ/nTsW5LZx/2VNkg55QO/LkoVp5N9wItQLlvo795rG6HinIBD5uAJxabW67Pd8aLyt1yWmJ3d8eXCxsEXB8BdciOPATsHoi8KeiNaQVs0tZN0KtYzVT1uUnVqKTLdBvsA5zz3TTYUD7cYGrDwDYdBwHUfqTgQQbRkzRzgAeBNCLEHKQ/9+3DP7+whtXRGay5swVxo4nPIDEuCXMh1GJMaGqfQZ45mhHofrlFOJyPb1QcwcA33SXn+sJjWZiXrrLGlRNKaW4TqqUkk79skJHpSdmNgayr+jG+Woi7ZgzQohkVKFRq1RKyglXJsH089y/yg+L1uAZCu7aKuPfnYXAjlnax0r4W//eFrkJVfMHrNOcRe1D6mKfjxHpOeAgWDAS9bGNUkoopc0ppS35/81FoAcMLyzqmY2AL9qYP5Q0J8CplcDbcca2E9wyuj30AbCoi/KAT5pxgyJm9wDek3Qo5mcCi+/nfnvKgZFyjOvYkdbxr9c0xFdiRZl1fUj/VlqUf77gvn4CKvHR+YiyLHD5MPf7cwPPgPQDFyKxqFO8iEz96R7gBh8FsnUG96+7UW8ilHvuQhWd0Kkn9cPKFo3RNwDy0g0c0wdYJ3Bpn/HyMVUC36rUm+ZNKtQxJgLZhpqbacgfBM3IRK8QLWovTsNsvOO3vbmpdjzx2zPAOxLfl2Dt61ngfp45GgBw4zwXjbHmVU5spUizu7EOYyFU0heJsWn4rKX+V8X5qDoTlecrWS8VRn/77lNPARveBr7pCpzbaszqm1bL9Vtq0e6d6586GalDQSbnuw01nneF27fiOgsxycn7ze3HLPnpXOpQozS/z79CHaExGlTPopaWDYsB2jxs7BjNhnsu42ducaEWOhM9lPv1EeDHu+TDglcZnxQXgH7I0Irn5JEIB+crmsaeBu0YfEgN5D4WEcLAlB+jonxg2eOuvxM2ADPUIydVSEWTMO6t4pTjQMJG6Ur9soBcUKSWcYEqsMg7zm3l/v2yPbD9U76OJ3SLy5CmMRDq7XATKWEWM24vpUXtcd+K6xxXnRMmPRecv9DJwaFJqQpA+Ub+FWot61kaFllJMvIwTPLxs4e6v7chkvQDPiYR84ZbW6gFEUg+6L7YsWVcB5ok057oO/YFpwPYP899GS3XhzTa4sNqwE756C0Vu2ZzKSov/GOsXoIFobTYBN+oaRRCrdxv0l7X71/Hcs18cVMTro8iiStAGRFhBukxd3+jXn9Ae6YWtwjnHGjXgR5mO74SNsj/toUAEWWAbBPWbqAR7lOghVpqUTdxjRmQxU/bQt3f26nmBp75m+AX6pMrgX91RvMJN1o5ginrKnBkCXDSjSvdH50YbgbHiAhCvewJYHZP7neGPD8CtsnzkqhYzVv/53cYq5dejgRvw5+kLxJhgB8UA1R2feVuY/mf0miE1NPy2GCpRZ3tJqTRDMmH1PHhVw6b3w/r5PI1n9OIob4ZlDU5ldYfipQ8tjDOos5J8V+dfEV4rvwp1FrvtSzpl6SFK3Un2cK0XTYRrrw/GL0IePQvn6voDcEr1DnXOLfCojHA/GGu5ZcPuzpj9DqNZtQHlj4GLFInaBcRmkPHVxge6qpCavXphUNJI1L0/IPhsUBOmucmedZlzoqXWp5ZV/T9wNmK8/ImWgFQC3XqSf2ynpBaeutel68TfNRnNwOzu3t/DGl9My6o48O9ISuZ65hd9oTv+/IGd3k9jGALBSLi3FvU984BGhgcJWqG6Eru1wfaotaLClO6PoS46gkHuJGlADB6ITCFn/GpwQCgegf/1dUEwSvU697UdivM7g5s+K86n4EglEY7oVKOc8OGf3mQ8197w1zJUPL/Kjoxdgtz1Gk8JEr/a3gMMKcH8D/JzOunNb7cu2dzZd6rAFzcA1zaz/mYD8x3lTm/U7+zy9sXQibUJmPWlfdDGHEHqDuBi3I5X/wi43mwtY8ZgCiCbZ9woxeLixgPo2Y9YQ/lLOpCN3ktmt8HtDXQYe6J8Fj53+M26RT00vURXVl/Xf073W8rfX6lfn9bGHDP/4CR84EyrnTLYEKAMPn8mcVB8Aq13gMlDQPb94NruZC+0Uw0xx9clju3LoGkfXILVoo7n++qV7h/lWJ0fod6QtGwGFcddvBTdv08Qnu/gljcOOeKyz2/nftQ7fsB+L4/sP0z7W3Fj4dJpOFWytGMerBO7njuOkGlU0IBnEX9TXfvs5mJxzYYx+uPfNs3i1gf86DZQrUjIpRo5M0wTe2ekuOGAdE6ycCoSeNK4MVjwMgF8mRL934LvHoBaKbz3ghIPyLSDkJbCBBZBmjEG21R5V3LtWiinkwikASvUHsaQZV6Ui4akvncDOMpvC87FfiuDze7tRG03B/KfX8/QC3Udkno119TjR1r2RNAIh/RQFng0M9qv6QSb/2rK9xPWKDJoUXcx+qa9qwgANQulJTj/rFajT4D0kEswU7F5p7LaCH4YW2hQHic5/J6kzgIObGNIBW38fwzN/Qb4E7FvJbediYyDNBoMNDxKc4l9PwhoPkIToQ9heq2ehCozAcVSEebKl1LQ78GBs0AKupMXTdY0q/Uwo2L1U/cOkKduF3+t7KHVkjfaCbNoHSkoRZZl7kyRuNCCzSmANLa9TUNMfIlX8nhxcDvz3i/vYCpzIUeMJCiUkWGevZ3rzAq1P46395v+Gc/7giPUQudEQQDxqhFrff+6G3b+iH1MmlLRXiuW4wCOjwJVO8EdHmJW2ZWqMdtAp7Z4/o7tirwwhGgdE318bRoPpILrXvod+DpXXLrWnkPI8sA7R7Xd/VJjSvp8QNE8Aq1ssm8+UPOLyt88ZWj0UTXhxmL2kNSp1w+PWeBwaa4MBu1DI0bnXlJvUzqB9Pcz01A6Vu82eQpzrucgRhvLYy6v9o97rmMHl1fdv2+46ZMeiQXBy3K1VcvEz5athD3Qi28A3rPupaYvpUBdNMYjyDNrSF9t2x24NE1QL2+wk71961F5VZAvMY5StFqEShdK+ExQPmGnBjX6gZ0edHztVUdR6oZgc81FJxCfWmfOkLi3BbODSEEmyv9mL5Y1Hp+uRw+O9zWj43tL++GelmaRl6R/HTFcVLlvdVLfRAQXzAwn6JhzGZQA7hwPSneDCyIq258UEpLHzotBUFofI9+0h9/cNdnwLN8H4GevxTgIha0RFOAsbnPkyxYhVLRrC+ZlFnv46cZt6xhUcvW2+XH6vgU0HCwa33nF/Tr6Qm3LVMNQR37B9DnLS+OI302A58BMziFek4v/XVCiJnS4vamM1Hq+rjwj2pWc9M5eZWW8NFl2iO1lG6bS/vk7hVvwwXdMau15zIZfkwzuduLfAipivBEpXXU97/yDiCtpDqM3eVCqdPb/fFCIoC+75ivJ+ASBH8mFdLyIVfrAJSry/2Oq6G9Xb8PgIdXaouU0GpgQjhXgcDDq+Q5Kx7mxxw0GgL0ep3z+973k6tzTe/Dq9Uha/Mg1ELfgPBBjSwDjFrgWt/3bWDEj9rH84RbofajoEqNCMFir9oOeC4wQ/SDU6iNoOzgmj+cs7rNWNRJvL+LMFyo3ayW8ggQwfVhFKWwX9TJ5uZpDjh/9Lwr8TQf4E3P6W0A6XWo1Q3o/DzQ9SXXsgkH5eX7T+OEU8ii5yk7mj0c6DzBuxk+hBdVS6jL689r6ZbOGi4UaV9NnZ7q9QDQ6WkgvoH6Hg79xiWkthC5vzUiDoirxv2u0haI4WOdbXag2yuchW0PBYb/AEy5pB/HrWXlMzquDwGhg9Pdu+ptR68/J/UwfBxeqOv0Mj8wySBB+HZ6SVYysOgB75IcSS/6p81cX8gck0Kt9LEqXRxGMRoC50+kTd7hBtOLBhqpb1EQU6l7JlwhsNXay0UisgxUlK3HWY2ASwzM5hWJre56ZgTBlgqSsl5GafcY5/eVIm1BANpiLiC18lqM5jrwBEtY+UFhQlzX0l3OEZudGxhyz/+A+zTGNWgJtSeL2khcslKoH1njeRu947lWGtuHWW7C5B8lR6gB7uXxZhZg5c0VrGrTFrVCqM0KfbBwswL8q7YDHnQ3TZpUqPk6uUsyz9jl7pIIDaHuPpkbgffCEe984O0eBwZ+5DqOINhtH3OV0fLbGukY1eoIK68Ii+v7X6D9eJ3tGfVvPaG2hbh860aMm/BYoPHd6uXe+KiNZAK0S4S60RCghsHRpcWQMAkRcdy/AQwCKHlCrWxOnTeQzUv5MDnyud7vE3+YO76y01FL6Ns8Ym6fxYHZHnBv8eSLl1oqgkiEuAmpY+zyF1UrisUWwu1D2pTXGiTR5hFXGJlAqwe42NoGA1zPjCCuA6a5ymmF/WlZo6r6GxQZvVQAMqHmPyDC+6Al1EYnkHAHYwMmKfp2PFnURp4v4SNSsRkw0kQSLU2LOsAWr9B3kBW4xE0lTKgZ4Mch8mXf99cuq9xOCuvQnlpJ2Qz1RL5Gk7r5SPUyd+glPfeFp1WTyCuOeZOEOuMi3DZHpULdYIDn/TF2uSBpCZDW9VT6X9/KAO76FKig8DVLLV6ly0MqskohqtnV2GwieoNNlOi1GrVCxgRrWemiYEJcdfY1J7rSxSS9xlrCacSPzJiw9t3xxk0Ida13J/cR7/vfgB2iZAl1bpqXfmHFg8M6gEyNwRdm3Spaw6eNDDqQEogJOEuV58RDD187FqWpJD3h9qU1YAlVk+RHIYxcMHNSuA4eKVpCXeMO7X3X78ddp5b8jDhSX66WQAsoLer088ZC+Hy2qCXbKzMoKi3qsFISi9oLMRynM8q17WNAe0niKr1zemCp+wgJwX3iTZinbD82BDzO2R4K3P1lwDoSAWOT284lhKQQQrwYamYSp8O3PMTeonxQWYf2C232odHqpDLr/zVrUTQf5bkMY+NeFD18TWrU1MQMGNU7cRnb+mtMtGukHvfNA+r24X6HhMsFqdFd6o4eu8Z9rdtHnp9CICwaePhPV7J56WAqURQlIiCE+ikt6qrt1UKphSCuesOWBQShbvc48JQk9a1TEj/uyUcdGuWyhJUfM3c8upYL3avcUnv94JnyZEd6H/26fdwLW+maQNm62s+FO4T7HVGaywnCLTS3jyDEiOn0AwAD/gMfyUsH3ikLvO8hJWIgUAow63R90WXNGZM3XGsiUdMzdZgQ6qjyQP8PPJcjjHs/obdCPeJH4KWT7v3ISuxhwOifuUEP3tQjugJw/xJOPGKruoSh+6tAFY15EfVC8Ya7mV5LsJClz4kg+FLrVlgvtahfOArc/YVBoeZF/8lt7ssJVnLtHnL3jDQWX/RRS0YmAvKUo1HluPqZGZpevaO5IdPehsuFhAPP7QPqeoiF190+Sh437ktdggCPQk0p3QIg8I4eoee0OFAOO/9hMHB4EVCmDtDyAe1tlElyjOaNMJtfwqxFbcSnrbRylL73cvXMHVOgYjMuHtfuIQZWLyZXmjei2yTjYU+EuMRDEE69OFy90LnIMsBds7T9jMK+pEIt+PGlQi18VKUfwbhq3PbKgSFGRt9Js8NJEUYYlq0rXy5tjQr3VHR98MefcAD4j6TTK65aYEdW3vT4fDfPzE0IowsUfruKhJBxhJC9hJC9qaleTvdTP/CGuybKlKpCE5Kx6w8+UTb9jA6aMNs5aNa6NSTUHnyhZqd9EhCsNU8fI2G4f3wj+fIhn7t+95oK8aVzF5Kn2jd/78SWi+LldHef2ozVjlMWrNEYSR5kQYylM4kLH1Wt81f6avu+zX2YhElnlbyVAfTTsXQ7PgW8eJybb1BKW0lEkfDhUkZ9hEQAoSY7xX3BjFDX68cNbPIFIdKnyT2+7SfI8JtQU0pnU0rbUkrbxscHoAMskOiJIWPTFzWltWPE99zpWfOjDk0LtU4+CLc98ZImoZAC0ihV27t+CwLgyfUhiNvDK92XEyzvOybIl8dW099GsCAFK7jj0/L13oxCrNsXGPgx0PtN1zJRqCUWdcsxXIJ/rYxy0mb3qJ+5f4d8Djy13XxuC0K081OHRgEPLON+C4mPRB91McQXA8YjWQDg/l+43Bu+EB7LhQtKW0ZCZ7EvuV2KmZIV9eFvGJv8AZemQoxXDGAwItTdJ5uvgzvXR4cn1csI4UbOKZHmkXD30up1MjYdpr388XVc6snHJPNaerKoBd+hp2HCw77j/N5xCmF++h9g4lntbZSuj/r9OOu0dg++bl6EO4aV4iIZpB8g0fUh6cCLqw68dAworZOTQ6ChYrqrvm+rRyR6S93e3L5EV5DCRx0o4mpweUmUFEdqgsgy8me8dE3+GfBherdixhJqdxCFRS1NbanEyLBhb0b8uesZlw6ykKLsNGkwUC4O7l4evVSn7raJrw9Ua+f625MAP7CUS/jjqQkeWUa7CRtWCojSiUsWhDNE0Wk7aqEkCsAPCGGWkV66iW4WbcZy/2qlQPUnLxwGHtOYPi4Yc8jcghgJz1sIYCeABoSQJELIY562uSmYbaJL6fqKsXLKARTuMJLb2Gyvc6/XPQyx1jsOf1uHfQe88i83QacsZMpNPfReLDMvnCeLOroi0HiI+zLe4tDpTAyNVEcB+ELVtlzs7MDpxre55yt5ON3NoMUozposVf7mHlegJAv18LnAY+tuyqE8qhClNPDzzHjDI6uA9/i52GKrm0vRaTQzl9L1occze7xPwCTFHgE4JNnS6vcz17EnzJwsvBzl6gOl+P4Ct+JMtH/LCxmvR3FOcSW6PgLcYUYINxrNDLewj9RrSrJQ67kDA8CtexWlYlBVEi/bbaLcYtaasVgQNE8wdmNWcGiU70NdAS50Sjq820yu44dWAMO/436LeSj8OAuFtxZ1/2nAo39xPmxfZ9I2QjN+sI3ZEaAWgeEWjl0OJm5doZYy+FPX79BS8odDOZDiuf3Gg+iNilNolOeBKZMlM5aP+ZXrnQ+V+KzDYrgYZGm2NGWP+VRJEqMn/pavq3GHyweuJdS+pn+UXlNP/k7Z9X8SqN6B82E/vcO/fmItBnzEDRgpV9dzWYvAYwm1XwguofY2ID0izjW9e2gUZMKjbIabGY/vyaLtyE8oG1rKNUtzqYr6dRSofyf3sXj+kCt2WHPKIoVQS+ujHHUny/Og8XL4+sJIt9eL/fVEeKx//cRaEOJ5CLaFxS1GcAm1FqMWqpdpCYUwE0ZYtGImCx+awFr+6ad2As8f5n7f+S4w9So3siuqHNdpI0RXaOXuVRJVFihdS/9YSvF2ZxUzGtazNAbbZ1+h5JrGN9QvZmEBaIeIWnhNcAm1ILA1+CGyVdoADQfKy9hCgfFb1NsKnXChpSATlbjqXHPYG7Qs6gqNXXGyDKMxuINvFRj1WWv6k4Xj27TLuhvwIduXtIWiYVFLM+g9t999hIl0FFw3g1EzFrcvj68Hxv5Z3LUoMQSXUAvc8Sw3oEFr5Jo0j64UYQRWaJTcoo4sK5/h2AxmRlUJCO4b6UzY7o6vNZWT3vEJAV69ADyjMxejqyBfFw8WtTCBKCGcS0gvi9qIH4AOEl9/cY1ys7h1iK4A1HKTStfCFAHMxuIjegMaPPlaw6LleaBjqwGF2d7VwRu/boMBwL7vgTYPA/+u4yYYdZf204xFDegPSJHt06BQGzm/cZv1U1q6I666Z8tfi0ZDvBvmbWFRggleodZFIi7PH1aLWWiUK6Z58CfckGHqZUytNyF39fsBr6dxfmsjw4KVUzrJ1nlpuWr6qN11MLoRbG9EGuDmJPQGM9MuBTMPr7p5c09alHhuQaGWoJVTIbQUl9sacHUkejsHoLezS5hJGymIpVGLWkmZ2sB1Rd4LUag1lvlCg4GBmRqsJFKzc3HXwKIEEVxCLSQOcieses31FmOAQz9zQ2WFrGtCYhozLoxa3bnpr44ukQt1mAGXgzcoZ7OWrTMgrk9sVM92fs9XwOZpQCVpzmx3IxM9HwYANxRdelypH97CwiJgBJdQD/yIi4HVmhZJREdVhsziYpJtdi7LXf1+xkcgSqnVjctFcXSJaxDLhAMBFGo3c+8Zsagj4tSTLpRvCIz4XnEc/ropZ9YGvHOxVPEh14qFhYUpgivqIzyWi/hQWpfKnMJa2EJcLgd7mPEE5JPOAa+c4fINA5w1Lk69xAt1mdr6nZu+4q4z0VsfteZxNDoYw+M44VZE1+QW+jihqIWFhV8JLotaD6ll6e8RqcIEn20f46IU6vcDTvDJy/2Rv8MTZqM+fD2O1HFNCNDnTVXRsXN3I7JwMn68O8hTeFqUKIqcLF5bfhTP9KyL6mVv4iw0twDBZVHrIRt44qVS3zHB/SSeDAM06M+Jl7edj74QaIuav25OAx+fPYk3sJltAbbdE348vnuOJWcgNevW9HnXfHUlPlpzsrirccuz59x1LN57EZOXHpYt/27bOby4+KBX+8wvcuKeL7dj/4Ubfqhh8XFrCHXDu3zfx53vcG4VDc6n5cDhlLgEhKmiJClGnSzFoYvpvtdDieAH1xLlAFjUa49e8VDQRY7EBbLm6BXUfHUljl7KQHpuoZutvGPQrG2485PNftsfpRRrjl6W31eNMkZYuPsCDui86E6W28f/NiWYr2QxQCn16NqilOJwUvrNqRCAPw4lY9/56yjk75WNkRtj7/x5HMsPXPJq36evZuHgxXS8+XuAk4EFmFtDqKu2Ad64AdQfAIycr1nk4vVcJF7LQXJ6Hmq+uhLfbTsnrjufloP3V50Ay0pezDYPA3e+h4vXc9F9+iZ8uv6Ma10BP9mtZLbsWRvO4O4vt+NIkrkpk1iWuv2a5xXyc/y5G5DiwbIudLDYfNrDhML8vpJv5LgvJyGnwGV9z97CCdHgz7eh20cbVWVTswrw+0HPL1ORG+G8kVuENu+sw8LdJnKL67Du+FU8OX8/vtmiM2UXgJGz/0GD11ZrrruamY/8Iu78pyw7gqH/0074r3c+BQ4n/vvHcWTkcfd39ZHL6PrR31h5+LJmeSmCUOYXOfHCogM4dSXLbXmHk8XkJYdx5qq83L7z11XX8rtt59D4jbW4li1vvVzNzEdeIXe+fxy+jCFfbMcHq06g0etrsO/8dVlZlqU4fTULq464PxdKKaavPenxnXlu4QEM+2qn+NGz21xC7e55AYDk9Dw88/N+8eOz/vhVLNh13u02/sbJUlzOyEOTN9Zg8pLDnjfwgqAS6mlrTmL98avIL3Li/VUnkJXPPeSUUuy7mA46eqE4LHX98au4kuGaAbrrRxvR4+NN+GFHIgDuK5xf5EShg8WEhQcwe8tZnE7hHuQzV7NQMGAmcMezuHgjFwCw+5zrYbxYZSC+Y+9CQpPnAAB5hU58toET8ssZksT+OrAsxXsrj+NsajZavbMO9/5vB/5NyRYtOEopFu+5gNxCB+bt4D4oee48EhMOcPmmwQliJn9dBN5deRxj5+7GmqOXcccHG5CQmo0bOYXo+tHfOHE5EwCw5UwaAIBRzsrthuwC13EKJS9MZr7aInvsxz14ftFB3MjRtrb/OJSM//5xHPWmrlYJj9SyTcspxJRlR0SRBIDjyZkyt8iPOxI9tm4S07gPkrv7tfvcdRQ4WKw4lCwuO5acgY/WnESH9zfgiXl73R4D0BeSZfsvYe72c/h0/WkkpGbjqQX7cfE6Jyr3fb0Tr/LN+98PXkKaQjR/3JGIIV9sxw87EvHbwWQM/8r9rDDnruVg8d6L6PvJFvz0z3n8wZ/PsK92Ysoy+cCjP/kPxdFLLvH8fMMZdHh/Ax78jsuFnsG3mL7ZchZ5RU7M3ZaIi9dz8fHaU2BZihWHknHnJ1vw9IL9uK5zvwEgv4jFlxsTMPxrY7PaHL3EPat2hqDQweLQxXT8sD1RXH/xeq5qm5nrTmPl4ctYfuASMvKK8Pi8vZi6/KiqHDXx3OtxJSMfCanZyC9ywslSfLnxX2TkFWHGX6fQ6YO/kVPoxOK9F30+jhZBJdTzdiRiR0Ia5v9zHrO3nMWcrZyIdZm2EcO+2om/jl8FwFkQj8/bi/u+2anaR2yEaxLPhq+vwb1fbUeBg+W3o8jILULfT7aID/CZq9zw8t2J10XBWHXiBt4pHI2fD6UDAGZLrLJl+y9h19k0XM3MR4FDra6bT6fitd+PYs7Wcxj7/W7Rotpw4ipqTVmF48mZ2JmQhslLj6DxG2ux8hBnhWYXODFrwxkUOlwvfkZuEZbtT+IG9tTuDkop2r23Hn1muFwE2/+9hnk7OQtiwa4LSM7Ixw/bE7HlTCouXs8Tm+QbT3Ox1gQUG0+mICu/CCxL8erSw2j0+hp0/ehv0aIReHXpEVGICorcWzaJ1zhhdPLXMOlGLq5muj6kzy08gLnbufspFVlKKYqc6pfouYUHxA/1wFlb0evjTWL5N1ccw91fbkdGXhGemr9P/GD/czYNDieLa9kFeH8V5zO2G5j1fcLCAzjPC/vYubvFa7b1zDX8KnnxtFwlDkndH/9xD7bwLRvhPl7NzEfvGXKXzu7E61i05yKOJ2fi+UUHMXDWVvxzNg01X12J5PQ8rObdU8eSOeHKKuA+jE6W4uvNCcjML8LhpHTxOmYXuD6cr/92FM8tPKD7ASkdyb0f59M40Tubmo0Z604DAPaev4F2761HssQAAoDIUBueXXgAX2z8F19u/Bdnr7laZZl5Rfh8wxnx2fnrGOciq/nqStFqL3Cw4kfAHZ+s5+phZxjM3pKAu7/cjr+Ou1x1D8115bj5Ze9FzNuZiIgQrrU5dflR3P3FNnG98AGRvk9Scgoc4jVKyy7A+J/2IiO3SLOsQMcPNqD3jM0YOfsfbDmTiulrT6HF23/h131JHs/NVwxFfRBC+gP4DIANwLeU0g8DUZlS4XbkFDiQyt/g/CInluxLwqV0zirKyC3CjoRrqFu+FADgwvVcvP3HMXwv+eoqm3/CVxrgLJWoMO6Ul+2/hD6NKsiaSbWmrEKDCtGIDHO5Gn7ZcxE/73aVWXPsCtYc4x6eQc0q4cv75fHEYyUP08XrLmvug9Un+fpk4GdJc9QG7mG5lFGAmetOIzrcjkceXI69axdg+H+5yUJbVovDmZRsjP9pHwAgJasARU4WLKW4/1vXC7D1DCfGBQ4nWF5UdiZw4kX5zkQCikd+2INBzSrh7bubYNGei2Jdf9qZiIc710KIjaDISbH3/A1MXX4EHw1vIX7sBA5cuIEWVePQedrfYAgRreyTl7NASJZYr+P/7QdGEW45aelh3NeuGvKLnGj4+hpM6KVO8r/u+FX8uCMRz/aqB4ATq8NJ6ZgkaVp+vTkBq49eQemoUAxrXRWjZv+DDrXK4I27GotlGEJwJCkDzapycfAOJwu7jVGJbvfpm/DwHTVxLVtuIU6UHC/pRh6+23YOz/Ssi3KlQrF0/yWEh7g+BOtPpGD9iRQkfjhIvP7Ch1qLgbO2AgCuZhbgvZUnAEC0DLlr6Xp2cwsdOHopEx+uPokDF25g7THOaFn/UjdNq1bq0vly47+IjQjBAx1rQPgWv7niGOqWLyV7fgCuxfaVwt8uFaIZ607L7td//zyOv0+moIilePiOmpiz1WXUXJBYwMKzufbYFbSvWQbP/LwffRtXkBlWAk5K8fFfnGjvSXS5DaUffuE5aFEtTlyWmOY6Xut31uG1QY3QsKJ23pgmb65Ft/rxmPdoe7R7bz1YCrSufgHdG8TjzNVsXErPw+DmlZBfxKLPzM14+I6a4raHLqbLgqduRic48dShQgixATgNoC+AJAB7AIymlB7X26Zt27Z0717PzUYlvWZsQqOKMYiJCPGLn9ITESE25BXp+xyaVomRCb0AIa4keYkfDsLHa0+hbc3SyMgrwvOLDro95j0tK+O3g66mdhTysC3seTxX9By2sc3wUKcauJqZL76IALDmha6YveUslu2X+4AFQVXSu2F5bDiZIv49tlMN/LHzCOaHfoBxRS8iiZZHzbKReP/eZhgzR/6iDm1VRdVxM6RFZew8m6Z6IMNDGOR7sLT1+PmJDigVZseQL7a7LbfxlR7oyVvT7WqWlr24ejzXqy4+//tf2bJ37mmKgiInPlx9Eg90rIGkG7lYfyJFZw/aPNG1FuZsPYdGlWLwv/tbi/XSYkyH6vh51wW0rVEae8+bizjQuq8/PNIOW05fw9zt51AlLkI0XgDgo+HNZR8wPb4Y0wrP/nxA/HtEm6o+W4MNK0bjpI4PfcaIFnj510Pi30feuhPN3voL1ctEykTcDOc+GIjcQie6T9+o+qhq0bdxBaw7flW2bN9rfdDm3fUAgFHtqonGihnmPNRW1zWW+OEg0/sDAELIPkppW811BoS6E4C3KKX9+L+nAACl9AO9bbwV6rs+34Yjl8x11hU3Zh+68tFhSPHiC6wlPrc6/727Cd7w0BtvY4irk4khcLCefY31K5TC6ateZkx0g/IDGEh8ETM9KseGq9wagcSdiBcnZaJC3frWfSUQQm3ER10FgPSTk8QvUx5kHCFkLyFkb2qqhwgEHbLy3fuIAsXWSe6GrMtpWFGeEc3sy+SNSAOupmNJwpNIA5D5zY2INICAiDSAmybSADCWb2qH2f3XjXQzRRpAUIo0gICK9Lv3eDlNnQeMPAVaI0xUbwyldDaltC2ltG18fLxXlXHnzwsk1coYHwU19+F2HsuM61Yb97XVnxuwZwPz1+egjzHc79zTFIObV/JpH7caVeIiPBcCMHVgI8+F/MCSJzsZLludfya9Feq2NXyfhf3gG31N7/P+DjdvCi6hY9QX3pT0Z/iD8JDATKph5ClIAiDNAF8VQLJOWZ8Y2Mw3IRnfrbZqWb8mFTB1YCMse/oOt9s2quQ+WX3zqrHYOqkn4qPVoxYrxsin42pdvTQ+Gt5C/LtPowqy9T0blnd7LIFX7vQw27cJokJtqOHlsNz2tcrIXsClT7m/lnqUjQrFpld6yJaFSGJmH+1cy9T+7AzB5ony/b3ctz7GdauNL8a0wiCDH6a6FUqhQQWupVSulHYaV6ED21uqlo5AjEbHGQDMfVje2v3q/taICuVeeIbRH4nboqp+ojCtTjqzxEXKr0VEqHsRalI5Bm8PaYImldXvUoRBAZvcvyFiwrkO//mPdcBPj7WXrV/7giuHj7KT2hsaV4rB0FYqB4HId2Pbur3OGxXPs7Rz2Z8Y2eseAPUIIbUIIaEARgFYEYjKvHtPU3w31vXQbp3UEx1qlcGKZ7Vz+yofiG715ZbqT4+1xzcPtsUT3WqjdXWXNVC/guulE27CL+M74oN7m6lEFeCE6pfxnVCtTCRCbOpL9p9BcouspaQnGgA+HtEcX4xxZfJz93j98WwX8fdDkp5mgRXPdkYPhUW+/qVu+NWDtRYZasNzfASFGeY/1gG/jO+E1wdzlsd/BjZEbISxFDFPdJULb8c6ZVGzXBQ+Gs6lX40KteGtIU3E9S9LPkzzH+uAfa/1cbv/t4Y0QY2yUWhfq4y47Lne9fCfgY0wuHll1K8gd1ON6VAd47u7PuY9GsRjYr8G6F4vXowUYan8+RjfvTZWTeiKT0e2BMAJ4PqX1Am/lMI4oo2rRZXw/kBsnthTZh2veaEr9r3WB4kfDkKvhhWw+z+9xY9BRKgNYfwLr/esrH2hm3hPBD64t5nYahJG97WrWVrVupN+HD8d2RKPd1F/IH8Zr36eWI3+rDJRLjEf3qYq7DYGKyfIp+Ba+0I3HHxTbp0Lz+tdLSrLWj5P9aiDnVN6Y/d/eqNLvXLoUleeb6aBxPX49t1NUDYqFH8+1wWe0DKwAKBhxRh8cK981nqpBtQtXwpTBzVGiI0gVKN1Ex8dhoT3B+KZnnUAAGH2wFjUHt84SqmDEPIsgLXgwvPmUkoDMh6TEILekotUrUwkFms8MAI/PNIeBy+mi72v4SE2fPtQW+y7cAO9G5ZH25plNLf73/1tQAgQamMQxzefosNDMLp9ddzbugpeW34UGXlFOJOSjad71EGfRhXcNmkGNK2I78a2RaXYCOw+l4aKsS4Lu0xUKOIiQzG4eWUs3H0B2/9NQ0SoXRY5AnDNzJSsApm4RIXKb8+0Yc3QvGocfniEszJqvsplvatbntuGIUCV0hH4aFgLjJ7zj2xbhhDZOTzUqQbm7TyPPo0qICyEkY2YWzSuIzrWlmcLDA+x4dwHA0EIkYVJ/fViNySn54GlFI/+wN2HyFAbcgudGN6mmhgLDwBFfIjffW2roUOtMqheJhL7+IiIijHhYugkAHSpx72gR9/uh/n/nMeHq9W5NOwKa1P6kQc4IR7cvBI2n05FVr4D/ZtURPtaZZBT4MD8fy6gdGQonunJhZoJYpFX6MRfL3bHmDn/YEdCGrrWjUfjyjFI4gdGNa8aK6un0DH12qBGYigfQ4DpI1qge4N41CoXJYqm9PpXKx0p20/5mHBRyEPtjPjCE4nV+M+U3uj4wQYA3MdEGjL5Ut/6GN2+ung9BXd+rXJR6FY/Hr/sdUV3fDGmNfYmXsfS/ZdwT6sqGNKiMl66sz4av7HWVb8yardRzwblceJyFuY/1gF5RQ4M+2onSkeGiD7fhzUMixplI0Vxvbd1FexJvI7ne9dHu5plcO6DgeI5Cs8yAESF2cVrIz3/356RG2z9mlTE4OaVVcec/WAbjPtpH2LC7WLY6GuDGqkislZN6IrYyBBZqOZrgxohNasA609wESE1ykahRtkonHlvIBq/sQaCd/vbh9piT+J1RIXaQAjBS30boFW10ipj0V8YMo0opasArApIDUxy9O1+aPom90DFR4ehb2OXsIeHMOjTuAL6NFZbxVLiS4UhVse/FWa3YfqIFprr9AixMeIHprHEyv9nSm9Zc/Hbh9ph3s5E3NOyMppWicGBC+niwJu4yFCxqblqQlfERNhlOQ8e6FgdI9u59/8dfqsf7AwnyAse74AwO4OvN5/F+hOu8KTdU3ujoIjFSn74b/tapTGuWx2sPMy9KK8NaqQSaQHhpSnFv0Qx4XbUrxCN+hWicSyZi9aJDrejZ4PyWHEoGREhNoxsW00crSUdhFGjbBQAoE2N0pjcvyFGtuO8a5Viw2XWaakwOx7tXEsUaml4o51v3YTy/yqb5uVKheGLMa2x9Uwq3v7jONrXKoPwEBtaVI3DfFyQWauV4riPa+9GnFtKuPbCAJ6qpSPx2aiW6FG/PIQxNFGhNvRsUB5L9yfJOm1OvzsAAFQiIghxVKhNJtJKwuw2sSxDuBZTcno+KsaG4+cnOmBv4g0QxYf3Wf6D89qgRqheJhIPdqyBZ37ejwm966FKXATsDxA8OX8/Rrevhn5NKqJfk4qYOoizyBmGIFJhFJTmn8UX+tQT0yvUiS+F/a9zlvHWM1zAQJmoUCSk5qBSbLhMVAV+e9olrjPvaylbp1Vei8n9G6J9rdKqlqq0dbv0qTsQGWqDk6VoWiUWO17thYgQG1q9sw4AcHfLKth17jp+3sWF/W6e2EN8BoV61ImPwuNdayMlMx+X0vMwVdFSjosIQW6hEyue7YzmVeNkOmNjiEfd8YWgTHP6/SPtEKfjYysVZscPj7ST5Q9oUCEap65moSZ/4T1RKty3036wYw389I/nfAJSyxrghGR8d66J1LBiDBpWjEGd+FKq0VONNXx8rw5Qd3h9NKy57FxKSV7+znyTMYTPeSIIT/lork4P31ET+UVOPNSppmyfj3dV+/mVRIbaMKFXXQyQ9ClUjeP839OHN0e3+vEY1qYqqpeNxLThzfFC33ro9MHfuLe1uoOVEIKnetQR/945pbeqTKidwdZJPZFf5ES9CtFwsBR/Hr4sNuE/HNYMX21KQDudFlTXevFY/1J38W/hOkmb7WF2m6wPQrDWpflh7m7p8mW+c09T9GwQj1l8agGWpZjYrwFql4sSPyBa5wGonwsBwbALtTGSJjRB3fLRYqvpjjrlcEcddfpZwZcdFxmKCb05F9fPT3QU1/dvWgln3x9oaLKjKQMaih+BF/rUF4Va6nJrV7MMejaIx9RBjbH//A10qiP/uAsCXzpK2+dvBunzoUcbRUdnZb6FVK98KdHif39oM2w4cRVXMwtUboy/Xuwm3pfyMeH4Yox6YoyF4zpi3/kbaF41zpvT8A1Kqd//b9OmDfU3NSb/SWtM/lNz3ZWMPHrycqZP+zCL08nShJQsmlNQ5Jf96eFrna9m5NHXlh+hhQ6n23Lzdpyju86meX2cm8nqI5dpjcl/0rOp2V5t73Sy9LutZ93eu6QbufTFRQdofpHD7b6mrT5Ba0z+k/5+8JKhYy/bf5FeTs/TXNf/0y20xuQ/6ZGkdJqcnktrTP6Ttnt3ndv9+fOZbv3fv2idKStVy5Nu5NLs/MA+53+fvErn7ThnqOzJy5l0zzljz6rDyVKHkxX//mz9aVpj8p8BPx9vALCX6mhqUFrUZqkQE44KMdpWipRlT9+BY34aUMMwBLXjfYsEMMITXWuhbCnv82OXjwnHOwZiOx9UWNbBTP+mFUV/uTcwDMGjGh1oUqrERWAm34Hojuf71EPluAgMNhixNLSVftgmlfhKbfy56XWCBYIdU3rJ+k0EjIY5+kLPBsYioQB5h6InlClTn+tVF092r6PZMRjM3DJC3bVeOZ8HfbSuXloW/XErIPgRLeR4K9L+JsxuwwMda/hlX5G8j93GEJSPCce79zTVjEKS8udzXcRMgb4SqIiFYIIQglB7cDw7ZvA4hNwbvB1CbmFxO3MpPQ+L91zEi33qBc2HyOLm4W4I+S1jUVtYlHSqxEXgpb7+G+RkUXK4tRw1FhYWFrchllBbWFhYBDmWUFtYWFgEOZZQW1hYWAQ5llBbWFhYBDmWUFtYWFgEOZZQW1hYWAQ5llBbWFhYBDkBGZlICEkF4Dm9nDblAJS8CQLdY53z7YF1ziUfX863BqVUM6F1QITaFwghe/WGUZZUrHO+PbDOueQTqPO1XB8WFhYWQY4l1BYWFhZBTjAK9ezirkAxYJ3z7YF1ziWfgJxv0PmoLSwsLCzkBKNFbWFhYWEhwRJqCwsLiyAnaISaENKfEHKKEPIvIeTV4q6PvyCEVCOEbCSEnCCEHCOEPM8vL0MIWUcIOcP/W1qyzRT+OpwihPQrvtr7BiHERgg5QAj5k/+7RJ8zISSOELKEEHKSv9+dboNzfpF/ro8SQhYSQsJL2jkTQuYSQlIIIUcly0yfIyGkDSHkCL9uFjEzjY/erLc3838ANgAJAGoDCAVwCEDj4q6Xn86tEoDW/O9oAKcBNAbwEYBX+eWvApjG/27Mn38YgFr8dbEV93l4ee4vAfgZwJ/83yX6nAH8COBx/ncogLiSfM4AqgA4ByCC//sXAA+XtHMG0A1AawBHJctMnyOA3QA6ASAAVgMYYLQOwWJRtwfwL6X0LKW0EMAiAHcXc538AqX0MqV0P/87C8AJcA/43eBebPD/3sP/vhvAIkppAaX0HIB/wV2fWwpCSFUAgwB8K1lcYs+ZEBID7oX+DgAopYWU0nSU4HPmsQOIIITYAUQCSEYJO2dK6RYA1xWLTZ0jIaQSgBhK6U7KqfY8yTYeCRahrgLgouTvJH5ZiYIQUhNAKwC7AFSglF4GODEHUJ4vVlKuxacAJgFgJctK8jnXBpAK4Hve3fMtISQKJficKaWXAHwM4AKAywAyKKV/oQSfswSz51iF/61cbohgEWotX02JihskhJQCsBTAC5TSTHdFNZbdUteCEDIYQAqldJ/RTTSW3VLnDM6ybA3gK0ppKwA54JrEetzy58z7Ze8G18SvDCCKEPKAu000lt1S52wAvXP06dyDRaiTAFST/F0VXBOqREAICQEn0gsopcv4xVf55hD4f1P45SXhWnQGMIQQkgjOjdWLEDIfJfuckwAkUUp38X8vASfcJfmc+wA4RylNpZQWAVgG4A6U7HMWMHuOSfxv5XJDBItQ7wFQjxBSixASCmAUgBXFXCe/wPfsfgfgBKV0pmTVCgBj+d9jAfwuWT6KEBJGCKkFoB64TohbBkrpFEppVUppTXD38m9K6QMo2ed8BcBFQkgDflFvAMdRgs8ZnMujIyEkkn/Oe4PrgynJ5yxg6hx590gWIaQjf60ekmzjmeLuUZX0og4EFxGRAGBqcdfHj+fVBVwT5zCAg/z/AwGUBbABwBn+3zKSbaby1+EUTPQMB+P/AHrAFfVRos8ZQEsAe/l7/RuA0rfBOb8N4CSAowB+AhftUKLOGcBCcD74InCW8WPenCOAtvx1SgDwBfiR4Ub+t4aQW1hYWAQ5weL6sLCwsLDQwRJqCwsLiyDHEmoLCwuLIMcSagsLC4sgxxJqCwsLiyDHEmoLCwuLIMcSagsLC4sg5/8T2t/B02SAVgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot(title='Line plot');" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAEICAYAAAB25L6yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACQK0lEQVR4nO2dZ5gUxRaGv+qZzWwgLDnnnKPkJFEUAQkGjGDECMjFeI2IoKJeFRQVQUAJipIEJIPknF1YYFlgl4XNcabr/ugwHWe6J7DD0q+PD7Pd1d3V6etTp06dIpRSWFhYWFgEL0xxV8DCwsLCwj2WUFtYWFgEOZZQW1hYWAQ5llBbWFhYBDmWUFtYWFgEOZZQW1hYWAQ5llBbBD2EkK6EkFPFcNyHCSHbbvZxLSyUWEJtETQQQhIJIX2UyymlWymlDYqjTkYhhGwihDxe3PWwKJlYQm1hYWER5FhCbRH0EEJ6EEKSJH8nEkJeIYQcJoRkEEIWE0LCJesHE0IOEkLSCSE7CCHN3eybEkImEELOEkKuEUKmE0I03wtCyB2EkD38MfcQQu7gl78HoCuALwgh2YSQL/x39hYWllBb3LrcB6A/gFoAmgN4GAAIIa0BzAUwHkBZAN8AWEEICXOzr6EA2gJoDeBuAI8qCxBCygBYCWAWv9+ZAFYSQspSSqcC2ArgWUppKUrps/44QQsLAUuoLW5VZlFKkyml1wH8AaAlv/wJAN9QSndRSp2U0h8BFADo6GZf0yil1ymlFwB8CmC0RplBAM5QSn+ilDoopQsBnARwl5/Ox8JCF0uoLW5Vrkh+5wIoxf+uAeBl3u2RTghJB1ANQGU3+7oo+X1ep2xlfh0UZauYqbSFhTdYQm1R0rgI4D1KaZzk/0jeAtajmuR3dQDJGmWSwX0EoCh7if9tpaG0CBiWUFsEGyGEkHDJ/3aT288B8CQhpAPhiCKEDCKERLvZZiIhpDQhpBqA5wEs1iizCkB9QsgYQoidEDISQGMAf/LrrwKobbKuFhaGsITaIthYBSBP8v9bZjamlO4F56f+AsANAP+C72h0w+8A9gE4CK7D8DuN/aYBGAzgZQBpACYBGEwpvcYX+QzAcELIDULILDN1trDwBLEmDrC4nSGEUAD1KKX/FnddLCz0sCxqCwsLiyDHEmoLCwuLIMdyfVhYWFgEOZZFbWFhYRHkmA19MkS5cuVozZo1A7FrCwsLixLJvn37rlFK47XWBUSoa9asib179wZi1xYWFhYlEkKIcuSriOX6sLCwsAhyLKG2sLCwCHIsobawsLAIcjz6qAkhDSDPfVAbwBuU0k/NHKioqAhJSUnIz883V8MSQHh4OKpWrYqQkJDiroqFhcUtiEehppSeAp/rlxBiA5ctbLnZAyUlJSE6Oho1a9YEIcTs5rcslFKkpaUhKSkJtWrVKu7qWFhY3IKYdX30BpBAKdXtndQjPz8fZcuWva1EGgAIIShbtuxt2ZKwsLDwD2aFehQAzby+hJBxhJC9hJC9qampmhvfbiItcLuet4WFhX8wLNSEkFAAQwD8qrWeUjqbUtqWUto2Pl4zZtvCwsKiRHI15yo2XdwUsP2bsagHANhPKb0aqMrcTN566y18/PHHuut/++03HD9+3ON+tmzZgtatW8Nut2PJkiX+rKKFhcUtwkOrH8Jzfz8XsP2bEerR0HF7lESMCnX16tXxww8/YMyYMTehVhYWFsFIcg43e1ugktwZEmpCSCSAvgCWBaQWN4n33nsPDRo0QJ8+fXDq1CkAwJw5c9CuXTu0aNECw4YNQ25uLnbs2IEVK1Zg4sSJaNmyJRISEjTLAdxw+ebNm4NhrJB0C4vbhe2XtiOnKEe1nAZo6kxDuT4opbkAyvrroG//cQzHkzP9tTsAQOPKMXjzria66/ft24dFixbhwIEDcDgcaN26Ndq0aYN7770XTzzxBADgtddew3fffYfnnnsOQ4YMweDBgzF8+HAAQFxcnGY5CwuLkkMRWwQ7sbsNALicfRlPrn8SPav1xKxe8lnXWMqCIf432m4bM3Dr1q0YOnQoIiMjERMTgyFDhgAAjh49iq5du6JZs2ZYsGABjh07prm90XIWFha3JsnZyWj9U2ss/9f9MJFcB9eaTsxMVK0rVova37izfAOJ1lfy4Ycfxm+//YYWLVrghx9+wKZNmzS3NVrOwsLi1iQhPQEA8FfiX7i33r0eyxOo9aRYfdQlgW7dumH58uXIy8tDVlYW/vjjDwBAVlYWKlWqhKKiIixYsEAsHx0djaysLPFvvXIWFhYlAyd1AgDsjB15jjw4WafpfbCU9Xe1ANxGQt26dWuMHDkSLVu2xLBhw9C1a1cAwDvvvIMOHTqgb9++aNiwoVh+1KhRmD59Olq1aoWEhATdcnv27EHVqlXx66+/Yvz48WjSpHhaCxYWFsb57sh32HNlj2yZIMwMYdB+QXu8t+s9w/sT/NKBEupicX0UF1OnTsXUqVNVy5966inVss6dO8vC85566inNcu3atUNSUpJ/K2phYRFQPt3/KQDgyNgj4jIHdQBw+ZmXn1mONzq9YWh/ghskUD7q28aitrCwsHCHg3XI/rYxNs1yWn5oQagt14eFhYUFj5N1IqMgw7/75H3UglFsZ9w7HDQ7Ey2L2sLCwoLjw90fosuiLsgtyvVpPyxlMe/YPOQW5Yo+akFsbUTbotZCiCizoj4sLCxuS3KLclHEFsmWrU1cCwDIc+R53N7JOvHNoW80RxKuO78O0/dOx+cHPhePIQi1J4taiuX6sLCwuK3p8HMHvLjxRdkyM6mD1ySuwRcHv8DnBz5XrRPcJ/nOfNH1IVjFdmJCqElghfq2ivqwsLC4NdmctNnrbbMLswEARc4ilatEsKJDmVC160OvM5FfL/1YWFEfAcJfaU5nzpyJxo0bo3nz5ujduzfOnzc9+Y2FhYUfmbV/Fr48+KX4dyFbCAAItYWiw88d0OHnDuK6AmeBuE6I+vDk+tAS40Bb1LetUHvCqFC3atUKe/fuxeHDhzF8+HBMmjTpJtTOwuLW5lreNZy6fiog+55zZA6+PvS1+LcgxiE29eTShU6XiAtx1IIOm+lMFLA6E/1AINKc9uzZE5GRkQCAjh07WoNfLCwMMGDpAAz/Y/hNOVaR0+XeUCIKtYbrw5vOxBKVlAmrXwWuHPFczgwVmwEDPtRdfTPSnH733XcYMGCAf8/LwqIEku+8eZM9C66PMFuYep3Eohay4gnouj60BrxYnYn+QZrmFIAszelrr72G9PR0ZGdno1+/fprbeyo3f/587N27F5s3e9/pYWFxO3Ax86Lf9mXEgpWKsWqdxH+dVcglYROE2JPrQ9qZyKAk5vpwY/kGkkClOV2/fj3ee+89bN68GWFh6q+2hcXtDqUUu67sQnxEPO75/R5T2/mKINRaFrJUxIXwPEFszbg+hEGKlo/aRwKV5vTAgQMYP348VqxYgfLly9+8E7KwuIVYdmYZnvjrCbz7z7umtvOHhSqE4Gm5PoR1IUyIaJ0LnYqCUBc6C9Hsx2b49si3uscQB7ygGKM+CCFxhJAlhJCThJAThJBOAalNAAlUmtOJEyciOzsbI0aMQMuWLUWXioWFhYuLWZy7Y+/Vvaa284fwSUPwlAgWsHT6LKFTUXB9ZBdxcdjzjs3TPUaw+Kg/A7CGUjqcEBIKIDIgtQkwgUhzun79ev9W0sIiyFl9bjUmbZmE9cPXo0JUBUPbmBlJKEApRYGjQHt/GgmR9BBcGu7mMpS6LISPQ4GzAOcyziE2LJYr48YfXuwDXgghMQC6AfgOACilhZTS9IDUxsLCIuhZfoabU/Df9H8Nb2NGWAU+2f8JOi0013gXQvEEFpxYgAuZF3TroPUBEUT7UOohDPltiLhPpQhL9ycKdTH6qGsDSAXwPSHkACHkW0JIlLIQIWQcIWQvIWRvamqq3ytqYWFx8ylyFiE9P122TLBMfzr+kxgpEQiWnFrisYxSGGfsmyH+LnAW4MPdH+JYGjcRtcePBb8rpftC+Xewjky0A2gN4CtKaSsAOQBeVRailM6mlLallLaNj4/3czUtLCyKg2f/fhZdF3eVLRNEaXvydlPTVRnhpU0vYebemQA8uBp0XCnCBLWA2rrWQhB66bE8uS/cWc3FKdRJAJIopbv4v5eAE24LC4sSzo7kHapl0vjizIJM8ffFzIvo/UtvXMm54vXx1p1fh++PfQ9AXzBZyuJa3jWP+1LO2GLUf6wUYmWuaa39CK2MYvNRU0qvALhICGnAL+oNwHMSDAsLi6Bm7tG5uvk2vj3yLY6nab/mei6EX0//ipS8FKw6t0q9jZediVokZbnSNLgTRjF3h4GylFKsPLtSs5zyfDVdH0GSj/o5AAsIIYcBtATwfkBqY2FhcVOglOKTfZ9g1J+jNNd/tv8zjPxzpOY6qejKRItfrCVW3nQm6gmrzE0hEfPL2Zdl5Yy4PoRzuVFwAyl5Kap9ah1XWB90U3FRSg/y/ufmlNJ7KKU3AlKbm4i/0px+/fXXaNasGVq2bIkuXboY2sbCorgRrE2l1WkEvTA3xo2ceGNRG+HX078CAA6mHMSdS+/EP5f/EdcpZ4Vx51uWirpSbFV/u5nc1hqZeJMxKtRjxozBkSNHcPDgQUyaNAkvvfTSTaidhYUxxqwcgw4LOqiWS4Xp3X/elfl8PYmNVKhlIWpeRD78d+d/MX3PdM11evV4/u/nxd/fHP4GAHA246yqnFKojaKK8hDqwf8jhCXKJg4IgqiPEkMg0pzGxMSI+8/JyQmY5WBh4Q1Hrh1RZYUD5Jb04lOLMW33NPFvT2IjFWqptan001JK8fT6p7ElaYtbv/a84/oj/rRIyEiQ/a0n6GaE2p3LQjk68o0db6jKBMvIRL8ybfc0nLx+0q/7bFimISa3n6y7PpBpTr/88kvMnDkThYWF+Pvvv/16XhYWgUDpv5UaGJ6GbeuJrjLygaUstl7aiu3J2zG++XjTdTTq73WwDs06Kc/RbWeiZJ1SbOccnuMqR9UfJulvayouH5GmOY2JiZGlOe3atSuaNWuGBQsW4NixY5rbuyv3zDPPICEhAdOmTcO775pLOmNhURworc3V51bjUOohAJ5dH3qtRndhbF51Jhr09wqpSpWY8VFL9VUptkvPLBWPM32vtpsm0FEfxWJRu7N8A0mg0pwKjBo1SjMfiIVFMJGcnYx+S9V51zde2IgW8S1MuT6kAix0JorRERoRIWYwap0WOgs1y3rr+tAT9AJnAX46/pPmOuVHyt/cNhZ1oNKcnjlzRvy9cuVK1KtX7yacjYWFmhUJK7Dv6j6P5bYkbdFcLlimHoUa2j5qVXie0AfnpXiZEWotVBa1QdeHL+4Ly/XhI4FKc/rFF1+gSZMmaNmyJWbOnIkff/zxpp+bRcllzbk1eGq9sVba1G1T8fCah8W/9eKIhWxySgTB8yQ20pbptkvbxKgN0aL2k+vDqObpuj6UPmo3HwzpOiHNqRlKpOujuAhEmtPPPvvMv5W0sJAwcctE09v0W9IPv9z1C57d8Kzmej3BEoTajOsDAOYdn4eJ7Sa6mv9arg8vMLp9kbNI80Og90GSotUJ6E29hWtihedZWFgYIjknGf9c/gcHUw9qrtcTIsOuD70BLwqx0ouQ0MPTcfVyiOhZ1GZEU2ZRGxB4gYyCDHx18CvVqEV/Ywm1hUWQkVOUg+l7poszk3hDniNPd52egImuD09RHzqiqxydZ9ayVroclNs9tvYxze30fNTKMENvw/PcMW33NPzv0P/EGWwCNRXXbeX6sLAIFgqcBbARm+YEqrMPz8a84/NQKaqS1/t3J9S6A0R4n64nsfHKojYwEEyVRElRz7T8NM3tCpwF+GD3B6rlyu3f3PGm7rGlZc1YxcrBRJZFbWFRgmg7v61HC1Fq2ZkVgHxHvu46PSEWLHgti1J6fE9C7S67nDs8WdR6FDmLND9MZixj6TUx4/rw5ZhmsITawiLA5Bbl4kjqEdXy/Sn7NcsLAqU3VNsIXrk+WH3Xh5EIDmE70aKGOYtaKpCaddDrBPXBR60V/3w9/7rH7aTbSrHC8ywsblFe2PgCxqwa41Y8pQgCI0snygvJlZwryCzM1NxOijuLWg/R9eHBotYTXUFove1Ykyb61zpH3U5QHR+1EdFUflzMojxHy/XhZ/yV5lRgyZIlIIRg7969/qieRZCTXZhtON5295XdAIy/xIJoSC3qAmcBHlv7GPou6Yu7f7sbLGXdCr9yXZGzCN8e+RZFziJdUSpwFuBS9iW3Arfk9BIcTDnott4CZq1L6fZmRhX6I+rDa6H2kBLVX9y2Qu0JM0KdlZWFWbNmoUMHdTpJi5JHniMPnRZ2wsd79T/0UpSWpicEQZeOAExITxAF/1reNXxx4Au0X9Ae2YXZmvtYdGqR7O95x+fhs/2fYeHJhbo+2FM3TqH/0v7YmbxTXSe+7m/vfBsnrp/Q3F7Yr1ZssiEftaReymm03JFTmKO5PFDWrUDQTRxQUghEmlMAeP311zFp0iSEh4cX16lZ3ERyijhh0Jpyyh2UUuxI3qGa1VuJ0LGlle9Y4PeE3wEA2UXaQq1EmC28kC30KGBaaTyNCJBuHmcDUEpl4mymQ+/dXdqJ0IxYycJ19MaiJiDq6xKgb0OxhOddef99FJzwb5rTsEYNUfE//9FdH6g0pwcOHMDFixcxePBgt64Ui5KD0jXRbVE3PNvqWdzX4D632+U78zF+3Xg0K9fM1P69LSNFED4bsXln9RnYxJ2P2lNnopM6ZeKs5VYyayGbiWk+nHrY1L71KFaLmhCSSAg5Qgg5SAi5JZ2wgUhzyrIsXnzxRcyYMeNmnopFMSMVSSfrxI2CG3jnn3c8bidYjAnprsT3F7Mu4oejP+juX0DpsxWETDojuJFj24jNK+vRjEUt1E26jXI+Q636ScVZy6I2K4JmhP1o2lFT+9Y9ZoCE2oxF3ZNS6nmOdgO4s3wDib/TnGZlZeHo0aPo0aMHAODKlSsYMmQIVqxYgbZt2wbwTCyKE6mQCgJqJ55fJS2BfGztY7iccxlD6w1FbFisrJzUB6qM4hCEzLRFzdgC4rullKotaoloKX3mWvWTDnjxJjGSkkDFNLvDivrwkUCkOY2NjcW1a9eQmJiIxMREdOzY0RLp2wBRqMGIEQdaIwz1tpMaDFdzrwIAzmeeR0ZBBgBJZ6JEhJUhaFqxyu4QhM9O7AGxqCkoWJaV182EaBmxqM1yU4Ra5aIuXqGmAP4ihOwjhIwLSE0CTKDSnFrcfkiFVIg9DmFCPG+n8RILYnL/qvsx6s9R3DJoh+dJEa1Xg2Iotai9yUfh6ThSH7PZjwjACbVUWLVmRzdrrQZKNAUIUXcmFrfrozOlNJkQUh7AOkLISUqpLPs4L+DjAKB69ep+rqZ/CESaUyl6bhOL4iO3KBd/X/wbg2sP9nofM/bOQOvyrdGzek8AcreD6PowYFF7Epqk7CQA2pa3UqjNiqHUR+2NlmQXZWPo70N111NKxTp5Y8k6WIdH10cgfdR+I0CHNGRRU0qT+X9TACwH0F6jzGxKaVtKadv4+Hj/1tLCwkve3/U+pmydIg7S+CPhDzT7sZnb0X0/HvsRW5O2in//cOwHTNg4QfxbavEKFrURodaKT1Yy//h8XM/jhjBL46iVrg+zrgGZRe2FkB5IOSB+SPT2L3YmmrT2hW1uSdeHgmJzfRBCoggh0cJvAHcC8E8XqYWFHzl94zQcrAMvbHwBe69wwUmCDzjXkYtj147hP9u4juykLH3R+Xjvx3h6w9O66wVfrNSiNuL60Iv3lTJtzzTsurJL3L+AnkVtVIwEi9rJOr0SwZTcFLfrKaWqsDyzrg9vB7zo1inAro8j1454zPjnL4xY1BUAbCOEHAKwG8BKSukabw5WLE2RIOB2Pe+byaHUQxi2Yhhm7Z+FDRc24KVNL6nKjFo5Svzty0sss6glro+T10+i2Y/NcOo6N5jq2LVjPkUvSF0fup2JJn3ULGW9Ovdree4DvqQWtXB9zHYmehrw4suQ9ECx/dJ2+TEDlI/ao1BTSs9SSlvw/zehlL7nzYHCw8ORlpZ224kWpRRpaWnWqMUAc/Qa18g7lHoIABAXHue2/EOrHtJcfubGGc3lgDoNqFKo159fDwD4+8Lf2HFpB0atHIV5x+ep9mN0/kCpRZ3v1E6yZFS8hGNKBdUMeomPBJ7d8CxOpHFDy1eeXYkrOVfMWdTUIRuCrvmBMykdJSk876aNTKxatSqSkpKQmpp6sw4ZNISHh6Nq1arFXY0SjdA0F8QtLizObflCthAbLmxAozKNULlUZXH5g6sf1N1m5dmVuLfevbLOREHA7Iwd5zLOcQWJq2NQ+IB4gzsftbe8v+t9DK2n3ymohyfRU6ZsTUhPQJ24Oob3Lw3PsxGbfwa8BNj1cTO5aUIdEhKCWrVq3azDWdxmCJ2DglBHhkR63OaFjS+AIQwOPXRIXOZu+qs3d7yJ+Ih4cWCK1KI+c+MMTt84rdrGF6tO6vrQ249ZC85Jndh0cZPXdTIKQxhznYkS3zlDGL/4qG+rzkQLi1sJ4QVXuhc+3fepZnnly+zJLTFj7wzZgBdBqPVeUH+JhV4HoDfC4I3f3Ox5MITx2vVhY7QtarOUJNeHJdQWQUWBs8BtRIYn9FKK6qXm9Gb/Riw/wRr2RSyk5+CrUEutc29EMOBCLXF9CDlUlFBQzVaLHsXRH2ZZ1Ba3BVO3TcWAZQO8noHbG2tx3jGuw++7I995TFhPQWWCoiVghP8P8DEKQPLO652XN2Lk1TYmBejD3R+aj/qgrkE5eiMTh60YZnifgYrAcIdlUVvcFgjhTt52nimtRSMRFj8e+xEO1oFP93/qsSxLWZlF7enF1FpvNOrDrxY1fLOozQrQ6RunTYm7dMCLjdj8MjKxOFwfgcISaougQrREvXzJpJ17FzIvGNqGghoWAalQE0I8Wm2+WHVGhFooYipJvxfNc2HgkBk8DZKRIh3wotdSMYvl+rCw0IGlrG899saMTRXCSym87Cm5KRi0fJDp7T3BUlYUkSs5V7DmnPbYL3E6Kh/EQipWulEfMDY5q6+dc5uTNpve5rVtrxkuK4368DZntpKS1JlYLDO8WJRcxv01Druu7MKRsUe82l4Ir/PaonYanxRVitbxMgsz0W9JP1U5oVl+KfsSLmVfUm2XUZCBLw9+CUBbILOKslTLtJBaZ3ofP63cz1pIz8/obOi+IkxZZoQiWuTy/TPmOiL1KBYftWVRW9wKCHkqvEUY5CF94Ldf2o5vj3xraHszs1cLUHBzGSo5eu2oak5CqetDjzPprtGNPllY0s5EPR+1wbwa/gh3M4veaEotWFbi+4fl+lBiCbWFzyRlJYn5LXxFK6ztyfVP4rP9n6nKrjy7El0WdUFGQYY4Ms4boQaA5zc+r66Lhh/GiFBLO8J8eXGl2wqJoHTLeDhMcbgBlLPSuIMFKwqrp/kVjVIsQm25PiyClQHLBgCA1+4OgIsSKBte1pWTwkCY3bIzy5BRkIG1iWvF4dveCrUWWoJBQU35g31JyiR96bXC1aRlPDXz/TG1lVnMfKSkvn/hb18pDtdHoLCE2iIoGLZiGGLDYhHKhAIwlsZTmNg1Nc+VP8abjkw9K0jLojaS1EhaB79Z1B46Ez1ZcnpCHyw4Wad4LgTqmVO8oSRZ1JbrwyJoyCjIkGV5K3IW4ddTv8rKSF8EQbyyC11+ZGVnoi++2Rc3vqhaZiRNqFSovR24AyjC8zwMePHooy4Gi9oMLJW7PvxhUc8/Md/nfZjF8lFb3DTOZpzFn2f/9Fju9I3Tbl0NLGWx7dI2c1YGb8RSSvHYX4/Jku0/8dcTaD6vuRgSJzRtpdEFSstx95Xdxo+tQCs6g1JqaP5AgeNpx92UdI8h14dRi9oPSY4CiZM6xftpdEBQMGIJtcVN4+7f7saUrVPclrmYdRHDVgzDzL0zdcssPrUYT61/CmsS5bHGSVlJusIhhOc5qRMHUg7I1v1z+R8AEPcnWInKyIxAYsSi9pf1+s3hb2TH1cJoeF6wC3UgLOriwHJ9WPiVnKIcvL3zbbexrkIssBY38m8AgDgXoRbCyEDpCLWU3BQMWDYAM/bOEI8hjegQwvPcvajK5n5uUa5uWX9DYc6i9oXzmec97lO8FjepToHCSRU+6lt0gpHinoXcogSxNWmrOCdg+cjyeKqF9uzqXx/6Gs+0fEZznZHmqfDQCp1+AJBZwOWNFiZ6/frQ1/L9EpeP2tN+BTH3taPMVE4K1lxnor/wZKV7Ogd/RsMEAqlFDdy6Sf8ti9rCb0zaMsn1RwDfB2mWOQGGcbk2tDCS68PosOlAYCTkKxDWq6ekTME44MUMyvA8y6KWY1ioCSE2QsgBQojnXiaLoEbLGr6YeRFrE9f69TjS3A0CdsI14nzK48y/C2KZm/hOKwVFi0BEWHiM+vDk+gjyqA+Z68NAsqtgJRgs6ucB+Cf7ukXASMxIxD2/3SP6kDXR8FrM2DcDr2x+RZyg1B3p+emaYWfSMLmDKQdFQRPEd2vSVjE3hp6FZyTXBwVFSm6KatZrgeblmns8B28xFJ4XgJhljxb1LR71IetMtHzUKgz5qAkhVQEMAvAegJcCUhMLv/D9se+RkJGAvy/8jUK2EJeyLqFGbA2MqD8ClFIkZibKXBECydnJAKCZZEhJ18VdEW5Tz6oudak8uvZRDK49GIDLohb84oC+hSeNo9Zjc9Jm9P61t+6+IuwRnk5BhllRKA43g89RHzdpwEu4LdxUjg8B6YAX4Nb1UQcKo52JnwKYBCBarwAhZByAcQBQvXp1nytm4R3LziwDwFmZ7+96X1w+ov4ILDuzDG/tfEtWfsnpJTifdV6cqupa3jVDxxFeRukLdTbjrKyMNL+wEj3h8GYKK2XZ0uGlDW8LmB9q7EnYA+E7V16vO2vcib/O/+XKR20wZLBmTE0kZib6vX4CWvfaCFKXkpHImmCl2FwfhJDBAFIopfvclaOUzqaUtqWUto2Pj/dbBS28Q+uBOZZ2TLUsJS8FK8+uFP8WLGtvkFrj0pwYNsamKqvr+oD7zkYtlMLYsExDw9sC+gmP9CgOETlz44zs7zBbGFcXgx2rDurAwFoDMaH1hMBUkEfrXhuBhdyldMvGURdjZ2JnAEMIIYkAFgHoRQi5+WMzb3NO3ziNzMJMw+V/T/jdq+McTD2oWnbfH/eh2Y/NNOOV9eKwKaUyi1r5AdB1fXhhUStF3c6Yizo1bVEHQbM81CbPieIJJ+uEjdjED2GgkHYcm8HJOmUdo8Fwjb2h2ISaUjqFUlqVUloTwCgAf1NKHwhIbSx0GbZiGB5d86jh8odTD6uWGYl9zijIUC0T3CK/nPpFZU3qNaOlnUM2YkO/pfIE/LrheX5wfZgVC7PWWzBYe0qL2siAF4YwbmfQaRHfwud6eSvUyk7a9efX+1yX4sBKc3obM2v/LADAqRu+5Xw2kudXOans0WtHxd+5jlzDLgkKl0WtddwHVuUiPXypuo4GOhOVKIXTrJ/UrPAGg7UnWNSCMHhK/lTEFsHGuLeoH2j0AA6lHvKpXr4ItXDvA+lDDzTFHkcNAJTSTZTSwQGpiYUuc47MuWnHyiiUW9SjV44Wf3916CtTAiq6NzSe3b77nLg8VT2nnjdTcfnq+gj2wSBahDAhsr+FnOB6OFnOonb3EfNHwn5hQJNZpHHUFmqskYlBQkZBhqkZMQTyHHn4/MDnKktYCyOuj6xC9/P5mRk4Ifh+zQihN7OQ++r6MNtcDQbXR4iNE2qj4kZBYSM2t2LsbcSGFJ9cH7dopIeUYBjwcktCnU6caNgI1xcsAACw+fk40bAR0pcuk5VzpKXd9Lo5WSd6LO6BPxL+QJdFXXD/qvtN7+P7o99j9uHZWHxqcQBqqMZdPK7NSTF0B4sQhzwSwYywCUKy98pew9uohJqxmUqVadai9vgy3gS9ESxqM8JgI+6viz0tE4N2s4APYuN1ZyJ1lgyhDgbXRzDD5ueDzVPPrkzzOSs15WMuW5vz+nUAQOrnn4tl8o4cwZnOXZCxYoXf67UzeSea/dgMV3OuqtblOfKQlp+G93a9B4CL7AC4jhR3WemkCPHMRhLU+6Np686i7nWIYvRmFnfv5B7WCmfS8MsHDoSeuWh4/4IP9ftj3xuvk0JobcTmF+tQD08v481owgtD8T0dq9W/LD772oGwQiq6PkZscaLPAfXHs/RH8zB2A4uqxkLpNfEpjjrIh43XSaYYsdVDcizLolZTkJCAwsREAMCZbt1xqlVrVZlLkybL/qYsfyGdrgued4Sb6y93/36v67IzeSe2JG0BAGQWZmLp6aWglGLBCc6S14phls66LOXFTS/iwdUPah7HwTo0IzOMWJD+SMjupE7UuErx9ecOROfKH8pQ3tiOyueWN93GheSF7z9teP/efEy0XB8BFepiGPCiRPDDv/vPu7phm+1OsZjyK4tKN4Cq1yC6PkZspxi3Rl1HUsBl2Iv0flKaEm1Rf/CjEyO2UbctDsui1uDsoMFI6M91orCZ2g9r9oYNsr9pAT+iTjLIgfKWOBMRicLERFH8zTBu3Tg8s4FLCfruP+/irZ1v4ci1I6Klq9XBpcyFYYThK4ajy6Iu4kdBPAcDD4g/LGoH68Dd/7Aokw20PCs/poN/muxOzvpotJefy9CDcLX6l8XEJU4wLIXNC43Tcn0EkqCwqPnn6d/0f/HNoW9k6zqcZBGTQ9E80VWPwhCuo0/vAxZWSBF64hwAoHQ2xdj1TtGFZQavB7wYyKESLLh7Ri2h9gLqkPhThdmaeVcIJELN5gpCHYGE/gNE8dfjl1O/6IYxZRZmih1y6QXpYiefcrDItbxrbodY65GQkQDAfcJ+PfxhUTtYB5x8dceuZ0FY14Pp5N9ROwvUTHEtL7d4Iypc13+Ap/zKot0ZillfOzH51YOm66SK+iCBjTqduU9/VpubhVQQpecflUfx8nIWk5Y44VBopjsf9ZhNrvfhoQ0sBu2h6HbEC6H2w4CXYCeEl5Xxq5wYsEeh2gE6hRIn1GyuSxC1fNZFl7hhzlKLOnc3N68eE2ksmc87/7yDB1ZxY35+Ov4Tnlz/pLjOwTrEpEC5jlxRhLcnbxcnXk3MSETPX3qi5y89ueN60UxXhmfNPz7f44PuTbIcAcJSVLnGxUaz/LsekwdMXuK6joKA9z5E0eGkqy5MoQNTfnEiLpui9wG5uANALhcSjPIZXIekWZQWdRFbVKzW2c1IKSr9GEnPP4Q/dIV0yITa7oTb8LwYiR0RJww25e9zv30sal02dj19ifoIhmgaI5Thk0T2PkTxyHp5nS2LWoFUlNKX/yb+TprwvPhbKtrgm/2XhPW8UBdevIjcPXu4IqGhrv1LhLzw/HlkbdyoqoPj+nVM3z0N2y9tdx2TsqJQ5xXlISokCgDw27+/4eO9HwMArudfl+1HauVsvOA6zvnM87ohe0tOL5E92Gn5adh2aZtmWYAbuLLk9BLd9Z4YtYXFJ3OcKEq8AFby1LRO0H4wW56TL48qACb8zmL8GhYNFAn6ctWJ+EyhTCRlZqh9ILgZcdlSV5r0OQjlJ3KhxOWKAjihdmdRS++pIPYOBojLpnjsLxYTlxo7J2/jqFeeW4lzmee82tYsLeNb+rT9p7OdaJCk/dxbQq2ASkQ48w9XtEbONm7W6/Tlv6HoojzaIO27ua4/+M5E5w1X3mY2zyWKadcuwJmdA2d6OhL69UfSU1yKzhuLFqHNGRaxORRn7uiM+7bIv6gsZRFpjwQgt6gB14zUgngLSMtM2OhKmjN4+WC8vPllzfNPyUvBuvPrZMuUHwApvo44a8ULsjMnS7SclYS4yaQZmws0vcDto2ym62FueJEiX944QO+DLHodZFFbw4ojlHq0um8HoVa2qATCeKFmCeCwuUTZxqot6u6HJe4/Df122IAqaVT8bQRfLOpdl3d5ta1Z3PXVhBRRPLTeiYh898/Y/RsVqXULKCYucSL0WmCevaASajYvD+m//WbIV5V3zBVF4cyUD9IoungRl6dMwcVx42XLU6ZPF39TlgVlWeQddQ2Rdma4oimGL7kbF8aOxemOnWT7uPLW25i8hEUZ/pBt/pXXlaUsIkI4i/qvxL9kCdv1wo/cPThbk7bqrpMm6gcCOxu3EAnAUlbzpQZclpgnykpu13/nO1FVEcI+fjWLJ1ez+PAH1w7LZVBE51I8tZLFwo8UB1KId5sKbURfYb1LFP/70uHxxSsO3prvQJejBpr7lGLaXIcoDp1OsAi/nC6uFizqEVucmPEdV4YSgEhOueo1fsCL5N16ZiWLN352ou4lCqoj1MLHV2s9wHVCDtzNivv1VqiDhR5HKAbvobh3B3dN49MpWiawqginhkny7dqdpmh3hqLOwp0BqVdQCfXVDz7E5VeniK4ILSilyN62HQUnuERBTGSkGBstcP4BLrRN6vqgGv7q6z/Ow9X/viP+zea4MsE9uroI+cfkIXVUEtLH8O9X5TS5ZeKkTvFh3Z+yH1svSYRWOYUUj3SWbiXumlJKyy1QlmSDixTl+W+Ys6BA1kwusAPNz3Ln486iliK1qD0RncuJ8P/+58TsWU704Du4GImfu/chioUfOcX9tirfSlw3YiuLcplA/Uvax+xUqZPm8ptB44vAhD88C7XdCdS6Ctz9D/exevE3FuWfcuUaJ0UO1LtEMWK7JPE+AUIkH69xa1h0uW8mQj6QR4g0PU/x/jyn5seXZeT39O6dLBZ85JCFp43ZxOLhDSzani4ZQi2817WuAjWuUnwyx4n//MKi0UX3z2wW370VkuV9P5DbegVkr15SdPkyACBnK+drpSyLlBkzUMi7MDL++AOJw4bj4uOP4+oHHwIAmOhoFCXLU2g6UvSFT4Dm5yNl2jT5dtdcvs52Z9Q3JnOlK2+znb+hoU7OMhFgKSvGTquOKeQO9lNgv3J6JXfDv73pUQ8rpCCU4p35rg+CMz9P9lKHOYDXFvNCbbAjMEadLVWXyb86xZfEJtl9mSygEe9K6Xyc+7dymqQAX0fho6IXUmU2L4i/IAbvx4MbnJgk6bCN4Fs2pKAIpXgr747Pt+G9efKPdrlMYOhO9TFsa7VbaL0Oq8syrLyVdP8mFiFOYOgOippXuPKx/L0UytkYGzofY/HzNIdX4X2BplvVbmhXsZ1+Af65aZ5IMX2uUxwboOeTFhDeidtCqOHkrkranDkoSk5G3sGDSJvzLS69/AoAIHniJOQfPy7bRGrl+ooy5lpJ8n+mir8ZxYsfWuQaNp3nUFvvwjrAf6OXVNEOfFSJkbJaSCMJ7A6Kn2Y4sfhD+fXNz83U9FETSlHF4Cj8zieMn3/VNOCNheq6v7jcibcXOPHLBw6xzSFt6gsLhbradA4Z6JhrPaTPz2c9P9Pt4LprN5V1zIZLbvFDf7NokERR+cjlgNTR7tRuJY3ewuKj7/mJi/nzEK4zQxjcv4mFnQViNVKVhxcUr3h/2ftLcRq5+HSKSmny+tTXEeS7druvd2W+UR+aqf3u+0pQCTV1up7ef3v1xvkHH+L+cCPGzms+jHc1iyQue+QWeZ3mf+xEhesUj//1uO7miZmJSM9Px76rbifLMcy0PdNk8dR7rrhxGYEiMp+iXIb+Aye1Lj/8Xvuaz9n7pcz1IVDvEnCHCQE2SphOrql6Em2y8W4Qojh82Uwqdq4pP6wCep1y/qL2ZYoP53JDuKXYJZe3V/VeCLOFYvQmJ2pe4dwbyvIC0lGDPY5QvPOTe0MlN8zrqqPlWSq2Fivd0C4jXFfhmbATu2hdKu9Hr4Ms5s10osINbsUrS51omcAiIl8tmDeDL79y4rPZrutX9xJF1+Pm69HuFCuG6YVkB8aiDq581EpB5v8mYWHIP+VbLmYpke3aufWDG6GxRvqKytcpDpS5Ilv2zB9O7K1HsKshg5yiHHRd3NWn4yo5kHJA/F3w778oFwpci5U7HKNzKUpvPITp85yIzwTum6J920OYEOQ78xFWSFFd5/tXPh0I1xDPtxYEJtJBzxKWIliZodLxTaD46ktXnfRcH1pxxQxhvIrpLRNeRhV5M3a9E7WvArWvACckU4lKPxz5x4/j5ed3AACG7uTqnFQWmPiY2tqPMGmR/luJyEYomqH7Uc/bCdd19CYWFW8AFVJdbkdGsnlkPkXvg1zhcpkU12KA9qcp2p+muFAOqH5N/7n0N3qd98qRtkaZuMx1M+0FgZlEOKiEmurMXUfCQnHu7nt82neh3fUi28qU8WlfenQ8RXGgLvc7JofrSe9+lKL7UYr7pjAYv8qJ49UJtjYNTENm5rfcS6584F9e5kS9i6vdbtvsHIsWVwqwo6Z2BIDAgxu175HdP253rxA+HFEF0LVE9SxqrUT63g68qBZdTSXUglhVvUZR8QbFxhbc8aTXK3urOv69ahpQU53HCxGes9nKSI/yXMYXhDj6qmnAg3+zwN+HcSWOWye95j984vpo5ocQ8V1kCXSNgptNWJHvVv2BZ3uhkR/qoiTIXB/aXyMm1If2G8+LT9jg5AXIXr68z/vToudhiths7mZ/O8uJ7z6TW5m9D1E8Z6CXHwCanGdR1o2bwgzlNIJBnljtRL99XF0an2fx+iIWQzbl4sMfnKibHLhm6PVS/t+n4N54eiWLn2ZoD0XWCx10Fxo5dAeL4VtNpGjVGEwiNP+fWMviqVWufbWVdFaz2dphlR/8qK50FYMuglVtuboYjX/2hrHrtS+qIMJ61zwqn4plpFa3L+lVfaVGTA2305QZ5VrTyr7vRIOgEmo4tV+K7M2bfd61w+ZqRofWqqlZhlSp6PNxGAr88oH6gxObY+4hfPNnbiSgP1D6CkdudqLvQW7EWZVrFG/9LL/uT6wNnHlsD4CHRHl+bGamKqyx8QWKiny+EcJSDN7FIqxQexLVe+reAwAYvZnFfds8XwtCuUESZVPVaeeUlrwQ7SEV7bQ5xmfwGbHN2HNUwLvec8KB3zoSFAag7Txoj3ZdhKieijeoZufha4tZzY5GxsQrEplPDUfOeGLWVw48/e0VTZeeWRz2wHwZPQo1ISScELKbEHKIEHKMEPJ2QGoCgHrIkVD2iScMuS1ih92L0Bo1ZMtkeQ/KlZOte/0BGyY/YgN63gHAt+aiXorIObPMK1R4kbwp3+wci3d/dMhiiLXou1+uDkpDYdgO1/Z69d3YzA/mhQYxGp3i45/17eEuozBIC8+dU3VOdT9KxQE07U9TPPQ3i1FbJLOKUIoHNzgx+2Ab9D1r7gGocAMYvIdi2HdnVOuUL1iofmCOT7z5ZLTs70I7d/8YFvi5pw3nKgTmuFoIbp1XlrH473zt5z4uW6PVo9GgbpHA4tXFTsRIDJ3oXIofPnHi3u2ehVorskPZ8qmYDtRKyEG//b4LvzMkMO+NEYu6AEAvSmkLAC0B9CeEdAxEZdhs9WeWiXY9gFfC8pCx7FPx71L9+qnKAwALiipz5IH9DhvwzigGv3RhQGxyYThVjeBcRQL2iVGY+qANf7VSX5aldxi7AdEGonNaJLBiz7cWUkvhpxmuB/2ZP1nUT9YOe5KitIiVFqcUh84TUBigYIhd9dXX8UY0waq2BDOGMnh7DIPXHrRhf22C0Pr1ZOWM3oPEUaPxyTdqRRQ+SoLlNGgPRde5XGesjeVCsOJW70L8ez/Ktiud5f4FFkLTQgrVoqS0qIfu9E9rhVavjDcecD3HF8vLn+m/WxCcqgKsbM9VThBub/ijvffb1kyBKgkX4HJXSdFqbY3YxqL1WYq1zb4Wl1VL5fbX4pzrWhJK0Xc/ixCFn1kZ2eELLz+uYVCEcfmBFvRgsK8uAWWKSagph2CzhPD/B8SZVJSUpFqW3rqO+Hvh8Z/x6NpHxb+vIROHa3IXJrk08HsH7vfyhN/wYdL3sv04bMCRWgyWdGUAnQxihcSJM1UJEiqp1/3Z3piXSM+CkDL1Fxaff+3Eo2udaJGgfnHtOh3H0qbhV18ohh8rmoH1S9fH/I8ceGmZ061Q6zU3CwwIdY6HrgOpP/q+KXaMfcmGT+/Rvo4/9LVhV0MGx2owOF2V4MORNsSNHCkrs7i7DX839/5FKOLfM+ke6u3iMkS5yzE841snCKV45C+nyjqLy6aodZUfkOPgrLc3FjjFJr/y+t67g6LNGd/FmrzwGLIlyayyi7LxTX/Xtb1RCnj9IbsYAXRZoyH6+V0Mvhjs2sZZq6qmKP/U2yVQuY1qqNZ7QtniAeSREgJ2J1AthXLTgfGIqQsko4bL8n0u12Jcde14kuKJtSxGuHFVxWZT5O7ZgztGfKzpnvTExXj1tQkd2BePPW/D750YTBthw0/HfzK9XyMYUh9CiI0QchBACoB1lFJV9hRCyDhCyF5CyN7U1FTTFaEOhyxHtMDSkMOuyvIPfWQnzqDPi7SLD+DqtgzWtuFOZ0MLBkvPLEVK18bitoLrI4QJQWhN7mH7sTeDB192PYRFLPeZP1CXwTFJKBUA5ET4/0vZfz/F1F9YVLzOpf8UCNV4hj6e4xDTT8bkcvkyHl0nCQtSfB/urXcvQp1cJIo7tI4FcFEy12LUy5970nW9lB+Ad0bJHydleFleGIHTZvw62mPjxN/bBnP37Nt+3ner5PHJEUtptHpsbr6vpfKBKteAAfsoXlouL/jpN068wouO3cHi/k0sml6gaHFOGOqu3p80NazXhIaqBh5tkLYEFZ2ki7oxcHZpK1u2tSmDS2Vd5Rxd2mi2JgHgGt+wLapSTnO9O0ZuMXa+difw3jwnxm5gEZ/OuaLE6BBJOgih1ZolyUocxYcvdzlO0fMQfzyJ8VIpjWLO507X2Aw/QYscyIoMjBUtxdBTTyl1UkpbAqgKoD0hpKlGmdmU0raU0rbx8fGmK0LsdiQtfEe1PKGS6yIIwhDelDv8mrTtYnA9Q7n44SqHdyGhMrfwuc6u2GvKP7jhtnCE1qqF/73TBivbERSEuvYvCDUAJEseYMFy/GAEI4Ye+ZO3Fjgxfo0r8YtWb7k0hCmejwZJj+LiaivcUI8KlAqElkUjYNcZ9l1oJ5zfnmdPPYIPhzNIk7hC377fhmUSd0SW4mM2f7Rvc1DaYl1fil19qwLwLYohPxRoc4ZFXY2sfJ7CC4WQRaXlHSnpgLI7qPiMEsrlIzGaqMosJCZaN4uhFtmRBE2//QkRi2bj/ldsYgjnBUkAFCFAVqT29s+Pt6Hcjr9Aw8z7xLSijrQIcbp8+M//7sRdu105ZqQW9UMbuJuQH8q5POpdomjGx4qXy+Q7ailFN0kcuL/cHyqKAtTpoMBUXzClNJ0QsglAfwBHPRQ3TZ5kFpSZ9zCYdf9inN4/GnvrErT9l4oWta0lJ9RHahJxOLKwTpq/mWqEXoXZwzB4+WBcyL2gsjq0hmAv7Mbgr9ZcuQN1GbQ7Q1HxoH89P4KQ1rxKcaQWUXWqKH18woOfGQlMXeREfXmqEwBAaLaxie/0EikVhABZkQS/dibIjCRY25ZXBYmVcq4iwbmKNty7g9tJnsIVEmGPgA/T78EWGyv+FhNQKe5ZfgjX6Xq6MjSvgxSG6luznqYAE9ZLWxHKjGp2B0U7vj/xpd9YnK5sPFGVkrxQdcz0/nal0XoPN0SQVKsszqhjBludmig6JDFO7AQ/d2cwZjMLarPpjmQsCiEIjYpB+tDuiFv5j6lj6hkDSmZ94xJT5b1kc3OBcO5dEL5PQ3dSNEhyag4+e3eeE2crBt7SDe3aCcjZ4rmgjxiJ+ognhMTxvyMA9AFwMhCVcUa4Evcfq0GQX68KANdXXxyu2qkVHnzZhn+rEJlFDUA30b5AmC0MF7IuaK57f5crI5nghc+MlLs9MnUsDiMI/nQ9WvMpU5XuiJeXy1VEKhB64hSabizzkWDxKeObBcv11242l0gDolCma1yHlFj535VKaTj7AXzXl8H/BjH49G4GP3fXfwRtMZxFfbAWQZVSVTTLPPSKHeOftcn8qHpIff8Zivp7ChsUOr+kd/C1Re43qp+s71ryxCuP2UQf9DujGKRHARsGVsIn9zA41asOmPBw3Y5gd2jFeq9uS7CmNYFjxADx/hZGhiKvSU2ZC9BGbHBUKosfe5s7cJQfRlUXJSeDUJeFLaAl0gB37c20viq9/75qGSVE1g8AuPo5AKDBwQMIG9DX+EF8wMgVrwRgIyHkMIA94HzUfwaiMo4wGx6fYMOjz9uQFUnEGVHWtWJwoRzXkw0AOUU5ostCFGpey/QSIglcyr6kuy45x6V6RPWDY31LRiVIhXZgf233Ilxk8/zgCD5opRXW/rTcIhHSWeo9pIDxnAPCR+Ct+21IbFMF53mvlbvolSljbZgo6QF/bySDrwYysh7vat9+q7v92rYMNjVnsKMxg9/uYFA6rLRmudCaNTHrLgYzhzL4T4f/iMsnjJdfyBvRXISDOzJa10Gc5NslizqgVOWjVoY4hjrk+URicihqaYwcVFJKchsmPupZOfbUI/i3EnAtFljQk3s9T1YjGDfBjtzoEOxsxGDvmJYgIJo5VzyhlS2wIJRgbj8bSBTn9J30iA1/vTsQydOfwdv322XbEkJ0n+P5PbUrVM0PIw/TFy/GpCVcJ7xR+u8z3vKNaNVS/P3MUzZE33knrn/zGp55Sn6yz0r+ZmieXyaMNoKRqI/DlNJWlNLmlNKmlNL/BqoyTtaJzCiCbN45L0wMmxZD8MoTdtyI5pavOrdK3EZ4WAWLeu/VvX6pi/BCKm/1tViCZ5+240gN1w16YKIdyztrDEWW/A5xusK4lEIv0PkEN3DC2+aylJBME7lEwX1Idj3TBW/db8OeegTbG+k/gAmVCTKiXOsP1WbEodHCuZXq0hkA8MQEm6wDUot7692LzpU7a67b1pRBfhhBZIjLBBYiUmQWpYcXhtrk9+dLSbSDjVX7qJUhjuV4S054LrocM+/+0uqclfL5XQymD7fhPw/bQQnBhpYM7ptiRxEfWie1hgkhXlnU8RHy/qMdo3e49snvP7EiQdumd6qsbxtjA6VUZlW+LgkRXNGRwc5Jd2oeNz/O2Hyk7lBO0uEJM2kNhNYbAKTGEVSd9RkctSqjSPJdKxteFjeiCVa3IShVOR9I9V/+IU8E1chEZX7lRmW1R81/fcgVUyl08ggv0Ie7P5SVXdyVwSEdl0OpEM/jmfXyXrwzxoaXH7Ph+XHcg5oWrS5TpNMDsLmpvqgM3kMR6sUEr0oqT1toqrzDDoTaQpETQTB9uA1Xy3hnKUx+xIZZU5uIf2dEEVwt7X5fNsaGEQ1GGD6GMMpO2ZnWYL9+VkKqiJ0/UMdVJ7sTeD+jj9tjClnkKqYD/fdyyfLNkB3OzQ35TwOC3ztqXw9pDphKUWq3kdR6IyDe+agZGypEuka/RIe6HtyKUdzI3PHNx6Nn9Z6qbe3EDid1ih/KPfVcoaxCyzalqba761qNOPOVDQD2SpVQ7umnxb8z+e8HEx2N+nv3YuxLrotKKZW1Hl7v9DoA4Ps7bajW7Tq4uxAkFvXNRDljyYYL7vNDA2rXh5KlXRi8N5q72tKHv1/NfqgeU117I7gfJCJwsTzB5bIEdoaLV330efmbk6UwIgRLOTuCYGVbN/O2+WBRr2/p+cFJKgvslgw8OVmF89mGMqFutjJGTgRBemlzkQEExNTMIPl8Nde1kp8rExmJ0Dp1ZMvOVgTmP1YTRJGZUfoRDXEAEb+sNXx8aVikFsrIoO/uZPDMc6GghGDmvTYs6MFg+r0Mnn3ShpM6LpvGZRurlglCTUEBov5Q1S9dH0vvIDjgwQ23fsR6zeWVS1XGxvs24umWnJApRYgQAgfrwOkq3PKrcZw7b0sTgndGc5VR5lm5UYorm1JWfX/1PlhKdjY0J4Zag6oE4p99FuFNXYbEy4/b8MpjNjChobCVikJemGtb7jpzfyeV1Xg/CBM8ro+bidKiPpx6WKeki8QK3IWShhkZ2X+4LVwzc5qAcPndZZJzleUKZSviKVPi5OWEDqv8UPcj/+I8jDx0x7Hq8jpcjVOXyQ0DEsu7yr0zxgYQ4nZKMDOYnYmZIQxCbcY/Ek4bwYMv2/CTRqdW9e/nInb4MCCEu8Af32vD8frhiDwrTz8rjQjydwid0necGQHk2yXXhBDsacAgpTQn3JU63MBXs7rL66eRx0Lm+gBRCXW5iHJY3N2GD0Z6H8NYLqKcmPpVS4QcrAOpcQQvPW7Dwh4MQAi+GGLDsRq8UIOi/p7dYnmWD+djKqrHsBsxhgBgeSdzMsUywOMTtK8BCQ9DdK9eKD/1P/hqIIOMUgQXyhPOjZEv76kUnuOJj9rw4aPR6FxF4Z67SSINBLlQG2F3AwYvPmHD7gaeT0VqsYfYQgxNbW/kWdITpssK94EQppQfCuyuzx37gxHqOjy90lyzWiA/RD2iUCsZT67Eavi1C0GRncBO7OhTw33z3yhm04QSQhBmM5chsSCUaIZfhpQvj8rvviv+nR3OxceTQvWz9X0f7tq/stR/Sl1u1gzVQxNepP+MpJciiKuVB1bRmtQqrxRqpVDcjNnPhWMkxRPRd67EFh2N62P64KuBDEL5WYP6Nr9XXC/k0jEq1DcUbsV9ddwLZMuzFJlR2mWYcC6Mo+yDD+Jc19quFV+2B34YJCsrfCzPVyAYXaOrRu5yy/VhikvlPF+sDhU7yFwfDBi3ze0NfOfY0RoGboTkgXv/PtclVSZ3KuQTthTZuA65+6bYcaAu12FktnmnBbHZZB09gLafPC8MIHylKf+g/XrXr6gaXdXnOngDgVqofXXDVH7/PTirVEB+KBcfz2gItdDiqefHmayiunZRLTtcy/O9NfLsy3zUGh8pb/Nom8GTMSWI2/X778TGFq5IoPAyrhGNKzpw7whDgSXjGmDNQw11O5yZe/rjP3fK+52kHcFaKN8BKSTMFW+nev+vHHH9dhSASq5nTNq/QFqCYmfy+zC9+3T8etevbuvmLUEl1N5Y1EYZXGew7GXYn7Lf7dfwdFVOSNNizQnowToMnphgw9NPq5+WDF64teJK89zokqecGgIMw8ChEGZtixrix0Vw7dgZu+ZsJ94gtQY3j9ysWeapFk+hTiznT9Zyfawbsc6nOsTedRdy538EEAIndYIpdMXjCTHjadG+fRx/6cKg1u+/iX+n//AuwsNLYcYwGzZKcpKkxXg+jp5FPa2rawJmlUWtwOkh+6RZNI/h4YMiTuDMixzLR9swpVxmsZD24VJZgnNNyuBU+wqanfEA0ODDTzCw7mDZMk95aNy5spgw13OmNV/mN32/waI7vwfeLQ964g9x+bATm4DPW8sLE0Z2jfrX7I+GZRq6r5yXBJdQU/NC3bSsajS7JgRE9pA5WIcpYepYST9hoLKZmhFFcC2WYHMzBgUSoVzSmcH5eGB/XfULsI9fdryaev9GB9lQQuBQ5NIo0Gie5oZxzTnA5du3EZvfmnFS/2qZcO20tHfXvRttKrQBwN0bYcJRd9uZnTFcKM9SVtbMfvI5bnmaRrhc5enTUeXzWTj93lgA2j7+P9sRXInjBoqE1a8vLm9VphkYwuBiPMFXgzgROG0wj7xTaaQI6RLsrusitd6kywX8blFrPA6GjCmWBXuBG70ohEUSiUDuq8dg6oM2rG9JwIABU5gHh51g9lf98d5Iz++ktJW4uz7Bn+24igqjKoWp2bSMlLCGLiGNsKtDBu+ofAeaZHOjP+ml/QCAvjm5KJ4pkF0El1B7eAiqR6ujNCa2m2h4/0qLQ0+oH2j0AGJC5W9xuQj9ZDRKoY4LiwMAXClD8OBEO555ioslvlyWYOLjdlkSl17VemHjfRtxpHEkHnnBhrcecD1d//LzGPzZngHCwvDtXeqXUwYhsmZfSixEC3vacAZbGwsPNMHuBgxeGGfDnvquTqBAWNR6sJQVhYcQYqgzsWZMTVP1ECwmPStQGZUDANF39kVM375o1biX7n731Gcw4Sk7ciIICCGir9uuyJU+9kUb3rrf2Cvu1BFZPStaeB4zI4AVfNZIvwq1oxC49q+6nh6sdkopsO97OA/8CADIqsS9R4JveGdDghpFRXimUlnOx04A5vx2AEDfGn1xqrrrepWfPJmvSwFK15ckrJF8sD4eZsPfvJtSGG0qfJSfedqGit24JDiZEcCYiTbYJGmTP+7+sfZJFHK9+TQ0kt+f63muEimZXIRl5cbN0aXa+/MDQSXUnh6CgbUH+rR/6YPMUlZXmBjC4I7Kd8iWmeloU1qmqXHascSrhq7CzB4zUS6iHArZQnWGPv7PsxUJSm37Azdi3N8uysiFWjksPJ3/u1ltrnUgTTxlZ+ymLeqhdYdqLjciGAWOAvH6M4Rx25lo5zukZvedbap+gkVNKcXJ10fiYC2CKWMlF4gQZNYoK9uGCePqwcRwL/T58uprokyDu7otwf0TbaoJKfLCCRx2gspRns1qI52JggFAqeuj+vgLdszv5f6D5BXr3gD529UpWye2DsCycCS5nxSaggKpJ8Hyz9Keh9uhyqefIKxOHURs/g2f3c1wA8Ekz4iNF0KGMLJIlrKPPMz9cBSgQiv9zE4hkmiqmAfvx7dP1gTAtWyjKhZgRyOCd0bb4FC0LitGVUS4LRw1Sin6ZniDUbgD0q1+Pb4H6/J4sadOeV/BkkcDNp1YcAm1hwdNq/PPTChYzdia4m93Qm0jNtW6suFlVeU6VOrA1YG/OeUjOD+C0djKMHuYaPVJxS0pnjv253fZsK4VwdmKnFjZqIdOlFLhsgD9EKc8AGHZHQz+akUw9MUvVdtWLqUWk8G1B6uWSWlXsR0AYGAt+QdUz0UxWDIxRIgtRPwwMNAX6o33bcSmkZsAAPGR5rIyCgLvpE5ktqyF90fZxMyK4jms0U6oY4uNw9SHbPj8Lga/dnZtM2qyTewUfq3Da9xCoh8BMavdf/BT26ke6+pUpPgVnmvps9SjWg+3+2AL3aRJNMtVec617tW6A0eXwpmgHYOtRHjuaGQ4Yvr3BwDYIiLBMlw3NuGfdwaMy61AAIdWKAhl3UbCCf7tv1swKPfqRJytJXEXMcCn99hEV5+SXffvwoq+38kX8snZavA569rlu1KLRVOKisKUgVoGSYD62YJKqKWuDy2fsFkfpRRCCKZ2cL0wlUpV0hVUG2NTfRRCbPIejJk9ZqJnNW70ltZLZQS9D8U7D4Xjlcc4V8mc/jZQhoAhDK7HucrHDnVZs6Mm21D+1ck4MHmQzH+3qbmrPKHcYJRv+9vEZqiA4KtT1t+ThS0Myuhfs79secv4lq4/HK6HPJT/oN1Z407UiKkhfpxCbCG6ro9yEeUQG6Yz5t4DIQx3z1jKasYlAwBTpJ3UhBCCM1W4NLi/dnM9C6wkn8nIhtzEBk3KNpH52IfXHy7+7vLLkyj/w10e66q0qMV6KIaNu8N5TT0VmC+ojpaTCoenofqcDEM4G1mdiVCGiCJHCBEtakqp9rgFDy20zCiCUZNtWNuaC5eTGj26taUUSD4AhjBglC15Pt1xYxKOdXXG4r4sxQdQyCfEOtX3RCMDpz8IWqFuVEY9fNzM6DUlBEQcIgtw/im9/TGEweiGo2XLwhi5xacV3ifcNKO+Xj0hzItguCB8CTbGhqvlQ/DMUzaMfNWGyh+8j/JLf8aE8TawDEHZhx9GUYXSMteHMJGCJ/Tq66nPoE5cHRx66JBquPHLbV92/bHuDdV2gltJeKFsxAY7Y8f45uMN1VeX6+eAdysAvGAJH3Yndeq3vM7vRFic+uVS3psKi+ejxnzt2TsWDV6EPQ+4XAJvdnpTsh9jOJSuDy+a0MOUgiJBiLDxFgICOPLRPdd90jOu3i7BtREbcOEfIPmAeE0pADt/fk7WIYqQ7vNmIJqFZbi4ckLlrVPdN2DnF8DsHsD5nYBTkU9WqAelqBgaq76HgvFBna5WoXC/2NtBqCVRH1riIRXGMQ3HANDuYGpdvrVqmZIy4WV0Bepcxjk0i28mW6a0+Aghqu2Fm2bU16t1/NENR6NV+Vaq5UJURmqca6BHRP0GuCIZVMOA8Sqxvt4IzSrRVcQZuXW3VZxD96rd5REJbqw8wdUl7OPZVs/iz6F/Ys2wNQZqrcHRJYAjHzjE5TmRRn24o0ava4iqFYVqs13zbEpzYABAVNOmiGwrnyFF6HRyh1Gh1itHCMFrHV7DzwN/FpcJH52KdlcnRBmnE2N0hLp3Ti7m3Kkz07liNJ5enQjhhLpdfgGORLVDrNO9eDohMVrm9gNm9wDzCxdJQwkQz9+Sa3mpomjr3icz7oS8NDgLsjTPQcb5ndy/OalqK9gpOZ5GCB+EVMqSD4j4FtwOFnWepBmaUah+gAT3Q7uK7TClwxQcGXsEZSPUvmOt+Egt9AQqKUs9d2OoLVQmwAxRW9Tuht5qHl9DqKe0n6Jp/TGEUZUXmvbSMkqhXtCTwcmq3CQLegjJZlTZ0ogN73RWz7rjDnXdqcYvDqlFLVAjpoZu7mktlNeAOxB3JEMWNQBbKEX1+2ugVLdu4rLIkEhsH71d/Fvwd8t4X+HXv5EInJbnDBGuaN8aXN7i97u8L0vZ6tq//jM7suFINItvpro/C2uMwHupXFSDIC19c3JloY0rLybj05RriA8rrf1h+U57gmgVyYcA4f0kjK4ACq6PxoWcldq2guvjxiQfAMBllazEa/KVnKviWyjto7KVKe3aqUKoyzid+Goggy8Haby/K54Hm+3KP6tZz6J84NRK7ndopNoKFv+mgJa7tYgXaolFLR7ndhBqaUJ/6cv7TZ9vsHTIUrFDT/bAKkcLKde7QSp8QiIaQD4ll4DSotYSTum6Se0miX/3rdEXX/T6Ql1PDUHXE3kt/7xyGUMY0UfNRHKhRZfKEUx7NFY25ZiSAbUGaC4343Of2JYLk1Q12bVyVvD7VVrU3tC0XFN81ecrvNflPdU6UagNDQRRn2tMaIzoe9b9+BflAbnXud9ftAd+vk9zrx91+wi779+Nu+rcpXKrAWqhln1YTq0BtkxXbVPOHonOvCtC8B3PTLkmG2RU3cGL3DtlXR+W62ddO0k94fpdILfIZVckYb3EknToCzV/v9vmF2BzjdHoXaO3ugyAWNaJntV64pOOb8LGn6rwPLz4hA3VVyyXbCC/f78nXUabFuXQqUq6at/kzFo4PT220jA6p0Pt+lir/pDKEK4DpS535+3i+nCyTlzIdAm1dKaWO6rcgfql64vNUbGJdPmQbLRQdEg06sTWMRwJIlzk6d2n46kWT4nLtXxloUyobL8ERFMohXUPNn5QXF4pqhLXa648vuRxl0aVaMWLa30YVJ1/hIBlCE6O6YCaixeJy7ePclmGzcrJXTruMJIGVmBUw1EYUHOAhrWofy9Ei9pgC0iPLlW6YEidIarlYnie2+fB/bOy+K7FePuOt1XL11/gJ6CY2w/4qBb326meeEy4Q3bGrjnAQqyr4t7K6rxwJPD3u6gXVxcA0KlyJ37nBOG8QCilU4hA0mSW2rUGAPigCpDimrxJusehWTkui/rYckOmUBkib+0I2whRH7N6zUKn0o1gg+Cv5gT5UjmCEGHIee510RVRd8gV1LvnCuJYFmOdEbg/U+3qIZDngdfkd5dRBkee3NUhhVId/7ggyrehRU0IkY2Tz3eqx1kL/ug7a/LJya+fk63fMmoLlgxZort/JYLwKa1AIV/vTwNcnUfKqI9we7jYOSnkEJHGBUtRRkUIsBJf2tIhS7HkLq7uT7Z4UhUOaCee45yF454d2Axh9eqJy6VC+H3/7/V3wO++alERJrWbhDGNxrg9npRQWyg+6v6ROl8I1Xd9CC+mL53E8nsnlQK5u8KbzjkAqB1bG/fWu1e1vILgo718yKv9Ptb0MdnfNp1XkRS6JoBoGFEB20Ztw5AKncRlQiSNMlpiwaAF+PxKqnqHnq7DDwOBdPnUQb1ycjnLXCdR/itpNxDFhxfKPjAKg4cRhpeDuNwHBZkqixrgn+WUk9xHcB/3zIZEsrCH8zJ8YadmXQiA52/o+91VFOWrLWqBK4dd1rMWkvreNkLNEAa141zZrLSm1KpUqhJ2jN6BUQ1GcQsUnQ92xg47Y3fFt2rQpKwrF60gbMpOjI+6fwQAaFm+JVbfuxpvdXpLFecbFxaHdhXbYW6/uRjXfBwA1+S4SqFWdkw+3ORhAED4TFdkS9mIsmhQpgEALl5YiB2W1vW5Vs/pnhfgEjx3nWdGstTZKfBg4we1/b9m0agLKcwB8tLFF9MXoR7VcJT2ioMLYT/jivntX6s/Iu0GxuLnZwBzB2i61Mzwnw7/0Z1iDABeaPMCFg9ejNlXuXmqlBY1HLx4bP0YEK5PWgJij/8JfFwX+HcDAAI7gCfSMzA/WZ7GtWJkBfTI04jQ0LAQh0g7IXPTgE/laRlE6U3aDS3GZmZhcho/7JpSl4AphDqU31EVhwMo4AewJG5XWdQAb1hdO839cWoVzDAkW+6Ln5biZi4wR54shBQ3El2/824Aa17V35Z1iu+aePeKy/VBCKlGCNlICDlBCDlGCHk+IDVR0LlyZ7zU5iWV5REdGi2xjrWtg9pxtfFJj09kywRr9OdBP+PggwcBuCz00uHyF0raGVM1uiqG1R8GQG71CLG97Sq2Q5cqXWBn7GLuCumEBA1KN1DV78U2L2JP4kWEGTTyJrebDBtjw9B6Q7Fo8CKsGqr94AodN6q8uUGCIMdk9WRgmiuOmjm0ENjxufZGTgcgaXlIOdL6TQyqPUhzHX57EvZfXO6nKqWqYNf9u1CvdD0xPYCdscstzMJc4MPqwIUdwKYPlXs0xeiGo7FllPZgGoHGZRujUx4nEjaJUK8b9peYuY1kXALi+fwUVw65mu1nN3HrAUy4kYHGhcoOMR2/vIZ75t1r13H43AXVcvdvGceai/I5SCmoJLzNCayZIq6LZVl8ejUVX1xN5YT6+4HA2iniW6WKJReuiQErVQgb1GpzDsxxMy1dUb7rowEAn7XweCwRyoLlHS3CVICBsqiNjCBxAHiZUrqfEBINYB8hZB2l9HggKhRhj0CeIw+jG4723JnFv2R/hDfF9R7ynB96bgKGMOLdHNd8HJqVa6YaLq5HKXs4MhzcTZcOwqgYVRH7H9iPtPw0bE/ejgmtJgAAdt+/W9b8rhlTE4mZiWAII/oWjfBA4wfE39IWgZIm5Zrg0EOHRIu+VEgpZBdx1tIf9/yhmcgHALB6MhBTGdGtOFdHk8JCYPmTwNCvVUU/6fEJXtz0ouG6S3nhejrszUdj4DluZKRoUZ9eCxz8DbhDo8Xw+9PA4cXc7xePiddQE8XzomWFLBuyDABw5sYZbkh20gHXttd9s6LdQqlOonnuOQjh79nHV1NR8ehviOKt/xDKAtEVgJRj8lDH3OtAnP4MRcoOOBGNZr7mm8I6Ub2IE9wO+Rq+d/7xFVwvQohdCBPiEmrWAfzzP9l2vaVx2HyOD8H14XAW4dH4Dpibugt4KxaowFv2GW5mceaZkZKKazabZ9/5FfmISzjyAG9HdFInouxRaJWfj8fTebEvLtcHpfQypXQ//zsLwAkAxuOnTLJl5Bbsvn+3sYgD/uGoaYtA6wry2GmtsD0ldsaOrlW7Gq7bpBrcCLPysKtcCIQQlIsoh80jN4sj9iLsETLf9qLBi7B+uLEhuAAXWrU8yVyyZKnbZfndyzG331wA3PB56YAfGbu+Bta9gfjIeCy8dAVvXbsuxiJL2Xo+CX1q9EF0CB9jfP0ssJf3eR9dBnxUx9VkF6AUfXJy0SsnF3Esi9daPA0hfqZGTA0AQFl3MbmCSAPA3P6YP3A+FoY3xrbzF/X9rZLld9e5G1/3UX9w6pWupx6SLh2leOQX/Tp5YuMHnEUr7UPRiwUWhC6fe9GdhABrXsWbrSbg+evpaF/Iul5+abM8N01/xB6l+uuU90cPtgh1i4qw4cIl3J+pbtG8lnYd5R0OxPHDqfvn5GIsUw4vtnkREIbDZ11RbaeFXXR9FOHFw+twRLDuFcPYtRBGNYZRoIrD9Rw1l35cOj3r+v21orWZe123xeaRnGuwLRqDeZdT0C1PiIgpPotahBBSE0ArALs01o0DMA4Aqld386X3gK7Vp4lW2hSOluVb4us+X6NcRDm8uvVVdKmiTuiuZPW9q5FTpD+IYUh8GwxZPx2oZzD2VEFUSBSiQqI8F+QRQ6vc8GjTR3Vz4FaMqqgrzuuHr8e0PdO4fB7nXMPRmxaqX+S5Xabj+O+PI45/AVfduwo5jhxgTn8g4wLQYhSw6hVOPPIzgFJSAaT4ROojlDTJJ7SagA6VOqDlHB33hZKMJMSGxSLWHg2w3Ag4T7zb5V2PZQBwonpihXr5/zoBKceBqVeAkAjMHzgfZULjgE+ay8tJPxqbPwQqt+KiNQScRYBNy+fPbTfp+GaE1e+I3rmcSMUeW4HHMzKByFCXyF+U+IiLcvStN91oBYgW9ZzLV3E8zE3GQv6Y5XU+on1y89BHYh2HAHglYT/gdLrqe8RYEv2xGZm4ZLdjTK3BQOlfgMsHDW0HAOsvXkKGxkxNc66k4JowoTFjw4/JVxGvdS43EoEwD9PD67HzCyBd4TLaOgOo6VlrzGJYqAkhpQAsBfACpVSVyopSOhvAbABo27ZtYFJIqQ8qVE5zteCrXX73cs31SjzOcOLheF6h2yQ2xottvHNDVIiqgJk9ZsoXXlV4s1gnwNjQLr452kmsqrjwOMQhjhMLAMhLd4U4KTvFVHHVLksvxBaCLpU6wTiUaxILJB8A0v4FenqIe/W0TwBIOwPs0BhFmcJfk+2zgB6T0SK+BXB2s7qc0oKVijTg0dIq52TxTi7j+vZsfM+1X8FdkXfdtYHT4cZKZz26PjrmF6CjhktDJDfNbX11Wfe66cREsSzFtNQ04IfBauHzQDkni3JOdeshklKXoWMLResCjXMtXQs4+Sf3vzdo1TXhb+/25QFDUR+EkBBwIr2AUrosIDXxBuHl8FMeZeOYEFZKgayr7tffbPJucLG00qmHAOArhWgKAqEUIZYFvu3repnz0+V+SRn6Qg0AWP8mvOaf/wGbp0msR5MfvJUvqwao6CL17WYmq9dvm6leJttecl1YFtg1m+u8lKIp5lTbcnYWuhFqp77rQy8UTYlJwRQpyjOfQa5sPd+O6Qm96KUoc9kYixMjUR8EwHcATlBKPTyNNxt910dAj2fGAt47F5hRH7h6TGeXgZ/nTsW5LZx/2VNkg55QO/LkoVp5N9wItQLlvo795rG6HinIBD5uAJxabW67Pd8aLyt1yWmJ3d8eXCxsEXB8BdciOPATsHoi8KeiNaQVs0tZN0KtYzVT1uUnVqKTLdBvsA5zz3TTYUD7cYGrDwDYdBwHUfqTgQQbRkzRzgAeBNCLEHKQ/9+3DP7+whtXRGay5swVxo4nPIDEuCXMh1GJMaGqfQZ45mhHofrlFOJyPb1QcwcA33SXn+sJjWZiXrrLGlRNKaW4TqqUkk79skJHpSdmNgayr+jG+Woi7ZgzQohkVKFRq1RKyglXJsH089y/yg+L1uAZCu7aKuPfnYXAjlnax0r4W//eFrkJVfMHrNOcRe1D6mKfjxHpOeAgWDAS9bGNUkoopc0ppS35/81FoAcMLyzqmY2AL9qYP5Q0J8CplcDbcca2E9wyuj30AbCoi/KAT5pxgyJm9wDek3Qo5mcCi+/nfnvKgZFyjOvYkdbxr9c0xFdiRZl1fUj/VlqUf77gvn4CKvHR+YiyLHD5MPf7cwPPgPQDFyKxqFO8iEz96R7gBh8FsnUG96+7UW8ilHvuQhWd0Kkn9cPKFo3RNwDy0g0c0wdYJ3Bpn/HyMVUC36rUm+ZNKtQxJgLZhpqbacgfBM3IRK8QLWovTsNsvOO3vbmpdjzx2zPAOxLfl2Dt61ngfp45GgBw4zwXjbHmVU5spUizu7EOYyFU0heJsWn4rKX+V8X5qDoTlecrWS8VRn/77lNPARveBr7pCpzbaszqm1bL9Vtq0e6d6586GalDQSbnuw01nneF27fiOgsxycn7ze3HLPnpXOpQozS/z79CHaExGlTPopaWDYsB2jxs7BjNhnsu42ducaEWOhM9lPv1EeDHu+TDglcZnxQXgH7I0Irn5JEIB+crmsaeBu0YfEgN5D4WEcLAlB+jonxg2eOuvxM2ADPUIydVSEWTMO6t4pTjQMJG6Ur9soBcUKSWcYEqsMg7zm3l/v2yPbD9U76OJ3SLy5CmMRDq7XATKWEWM24vpUXtcd+K6xxXnRMmPRecv9DJwaFJqQpA+Ub+FWot61kaFllJMvIwTPLxs4e6v7chkvQDPiYR84ZbW6gFEUg+6L7YsWVcB5ok057oO/YFpwPYP899GS3XhzTa4sNqwE756C0Vu2ZzKSov/GOsXoIFobTYBN+oaRRCrdxv0l7X71/Hcs18cVMTro8iiStAGRFhBukxd3+jXn9Ae6YWtwjnHGjXgR5mO74SNsj/toUAEWWAbBPWbqAR7lOghVpqUTdxjRmQxU/bQt3f26nmBp75m+AX6pMrgX91RvMJN1o5ginrKnBkCXDSjSvdH50YbgbHiAhCvewJYHZP7neGPD8CtsnzkqhYzVv/53cYq5dejgRvw5+kLxJhgB8UA1R2feVuY/mf0miE1NPy2GCpRZ3tJqTRDMmH1PHhVw6b3w/r5PI1n9OIob4ZlDU5ldYfipQ8tjDOos5J8V+dfEV4rvwp1FrvtSzpl6SFK3Un2cK0XTYRrrw/GL0IePQvn6voDcEr1DnXOLfCojHA/GGu5ZcPuzpj9DqNZtQHlj4GLFInaBcRmkPHVxge6qpCavXphUNJI1L0/IPhsUBOmucmedZlzoqXWp5ZV/T9wNmK8/ImWgFQC3XqSf2ynpBaeutel68TfNRnNwOzu3t/DGl9My6o48O9ISuZ65hd9oTv+/IGd3k9jGALBSLi3FvU984BGhgcJWqG6Eru1wfaotaLClO6PoS46gkHuJGlADB6ITCFn/GpwQCgegf/1dUEwSvU697UdivM7g5s+K86n4EglEY7oVKOc8OGf3mQ8197w1zJUPL/Kjoxdgtz1Gk8JEr/a3gMMKcH8D/JzOunNb7cu2dzZd6rAFzcA1zaz/mYD8x3lTm/U7+zy9sXQibUJmPWlfdDGHEHqDuBi3I5X/wi43mwtY8ZgCiCbZ9woxeLixgPo2Y9YQ/lLOpCN3ktmt8HtDXQYe6J8Fj53+M26RT00vURXVl/Xf073W8rfX6lfn9bGHDP/4CR84EyrnTLYEKAMPn8mcVB8Aq13gMlDQPb94NruZC+0Uw0xx9clju3LoGkfXILVoo7n++qV7h/lWJ0fod6QtGwGFcddvBTdv08Qnu/gljcOOeKyz2/nftQ7fsB+L4/sP0z7W3Fj4dJpOFWytGMerBO7njuOkGlU0IBnEX9TXfvs5mJxzYYx+uPfNs3i1gf86DZQrUjIpRo5M0wTe2ekuOGAdE6ycCoSeNK4MVjwMgF8mRL934LvHoBaKbz3ghIPyLSDkJbCBBZBmjEG21R5V3LtWiinkwikASvUHsaQZV6Ui4akvncDOMpvC87FfiuDze7tRG03B/KfX8/QC3Udkno119TjR1r2RNAIh/RQFng0M9qv6QSb/2rK9xPWKDJoUXcx+qa9qwgANQulJTj/rFajT4D0kEswU7F5p7LaCH4YW2hQHic5/J6kzgIObGNIBW38fwzN/Qb4E7FvJbediYyDNBoMNDxKc4l9PwhoPkIToQ9heq2ehCozAcVSEebKl1LQ78GBs0AKupMXTdY0q/Uwo2L1U/cOkKduF3+t7KHVkjfaCbNoHSkoRZZl7kyRuNCCzSmANLa9TUNMfIlX8nhxcDvz3i/vYCpzIUeMJCiUkWGevZ3rzAq1P46395v+Gc/7giPUQudEQQDxqhFrff+6G3b+iH1MmlLRXiuW4wCOjwJVO8EdHmJW2ZWqMdtAp7Z4/o7tirwwhGgdE318bRoPpILrXvod+DpXXLrWnkPI8sA7R7Xd/VJjSvp8QNE8Aq1ssm8+UPOLyt88ZWj0UTXhxmL2kNSp1w+PWeBwaa4MBu1DI0bnXlJvUzqB9Pcz01A6Vu82eQpzrucgRhvLYy6v9o97rmMHl1fdv2+46ZMeiQXBy3K1VcvEz5athD3Qi28A3rPupaYvpUBdNMYjyDNrSF9t2x24NE1QL2+wk71961F5VZAvMY5StFqEShdK+ExQPmGnBjX6gZ0edHztVUdR6oZgc81FJxCfWmfOkLi3BbODSEEmyv9mL5Y1Hp+uRw+O9zWj43tL++GelmaRl6R/HTFcVLlvdVLfRAQXzAwn6JhzGZQA7hwPSneDCyIq258UEpLHzotBUFofI9+0h9/cNdnwLN8H4GevxTgIha0RFOAsbnPkyxYhVLRrC+ZlFnv46cZt6xhUcvW2+XH6vgU0HCwa33nF/Tr6Qm3LVMNQR37B9DnLS+OI302A58BMziFek4v/XVCiJnS4vamM1Hq+rjwj2pWc9M5eZWW8NFl2iO1lG6bS/vk7hVvwwXdMau15zIZfkwzuduLfAipivBEpXXU97/yDiCtpDqM3eVCqdPb/fFCIoC+75ivJ+ASBH8mFdLyIVfrAJSry/2Oq6G9Xb8PgIdXaouU0GpgQjhXgcDDq+Q5Kx7mxxw0GgL0ep3z+973k6tzTe/Dq9Uha/Mg1ELfgPBBjSwDjFrgWt/3bWDEj9rH84RbofajoEqNCMFir9oOeC4wQ/SDU6iNoOzgmj+cs7rNWNRJvL+LMFyo3ayW8ggQwfVhFKWwX9TJ5uZpDjh/9Lwr8TQf4E3P6W0A6XWo1Q3o/DzQ9SXXsgkH5eX7T+OEU8ii5yk7mj0c6DzBuxk+hBdVS6jL689r6ZbOGi4UaV9NnZ7q9QDQ6WkgvoH6Hg79xiWkthC5vzUiDoirxv2u0haI4WOdbXag2yuchW0PBYb/AEy5pB/HrWXlMzquDwGhg9Pdu+ptR68/J/UwfBxeqOv0Mj8wySBB+HZ6SVYysOgB75IcSS/6p81cX8gck0Kt9LEqXRxGMRoC50+kTd7hBtOLBhqpb1EQU6l7JlwhsNXay0UisgxUlK3HWY2ASwzM5hWJre56ZgTBlgqSsl5GafcY5/eVIm1BANpiLiC18lqM5jrwBEtY+UFhQlzX0l3OEZudGxhyz/+A+zTGNWgJtSeL2khcslKoH1njeRu947lWGtuHWW7C5B8lR6gB7uXxZhZg5c0VrGrTFrVCqM0KfbBwswL8q7YDHnQ3TZpUqPk6uUsyz9jl7pIIDaHuPpkbgffCEe984O0eBwZ+5DqOINhtH3OV0fLbGukY1eoIK68Ii+v7X6D9eJ3tGfVvPaG2hbh860aMm/BYoPHd6uXe+KiNZAK0S4S60RCghsHRpcWQMAkRcdy/AQwCKHlCrWxOnTeQzUv5MDnyud7vE3+YO76y01FL6Ns8Ym6fxYHZHnBv8eSLl1oqgkiEuAmpY+zyF1UrisUWwu1D2pTXGiTR5hFXGJlAqwe42NoGA1zPjCCuA6a5ymmF/WlZo6r6GxQZvVQAMqHmPyDC+6Al1EYnkHAHYwMmKfp2PFnURp4v4SNSsRkw0kQSLU2LOsAWr9B3kBW4xE0lTKgZ4Mch8mXf99cuq9xOCuvQnlpJ2Qz1RL5Gk7r5SPUyd+glPfeFp1WTyCuOeZOEOuMi3DZHpULdYIDn/TF2uSBpCZDW9VT6X9/KAO76FKig8DVLLV6ly0MqskohqtnV2GwieoNNlOi1GrVCxgRrWemiYEJcdfY1J7rSxSS9xlrCacSPzJiw9t3xxk0Ida13J/cR7/vfgB2iZAl1bpqXfmHFg8M6gEyNwRdm3Spaw6eNDDqQEogJOEuV58RDD187FqWpJD3h9qU1YAlVk+RHIYxcMHNSuA4eKVpCXeMO7X3X78ddp5b8jDhSX66WQAsoLer088ZC+Hy2qCXbKzMoKi3qsFISi9oLMRynM8q17WNAe0niKr1zemCp+wgJwX3iTZinbD82BDzO2R4K3P1lwDoSAWOT284lhKQQQrwYamYSp8O3PMTeonxQWYf2C232odHqpDLr/zVrUTQf5bkMY+NeFD18TWrU1MQMGNU7cRnb+mtMtGukHvfNA+r24X6HhMsFqdFd6o4eu8Z9rdtHnp9CICwaePhPV7J56WAqURQlIiCE+ikt6qrt1UKphSCuesOWBQShbvc48JQk9a1TEj/uyUcdGuWyhJUfM3c8upYL3avcUnv94JnyZEd6H/26fdwLW+maQNm62s+FO4T7HVGaywnCLTS3jyDEiOn0AwAD/gMfyUsH3ikLvO8hJWIgUAow63R90WXNGZM3XGsiUdMzdZgQ6qjyQP8PPJcjjHs/obdCPeJH4KWT7v3ISuxhwOifuUEP3tQjugJw/xJOPGKruoSh+6tAFY15EfVC8Ya7mV5LsJClz4kg+FLrVlgvtahfOArc/YVBoeZF/8lt7ssJVnLtHnL3jDQWX/RRS0YmAvKUo1HluPqZGZpevaO5IdPehsuFhAPP7QPqeoiF190+Sh437ktdggCPQk0p3QIg8I4eoee0OFAOO/9hMHB4EVCmDtDyAe1tlElyjOaNMJtfwqxFbcSnrbRylL73cvXMHVOgYjMuHtfuIQZWLyZXmjei2yTjYU+EuMRDEE69OFy90LnIMsBds7T9jMK+pEIt+PGlQi18VKUfwbhq3PbKgSFGRt9Js8NJEUYYlq0rXy5tjQr3VHR98MefcAD4j6TTK65aYEdW3vT4fDfPzE0IowsUfruKhJBxhJC9hJC9qaleTvdTP/CGuybKlKpCE5Kx6w8+UTb9jA6aMNs5aNa6NSTUHnyhZqd9EhCsNU8fI2G4f3wj+fIhn7t+95oK8aVzF5Kn2jd/78SWi+LldHef2ozVjlMWrNEYSR5kQYylM4kLH1Wt81f6avu+zX2YhElnlbyVAfTTsXQ7PgW8eJybb1BKW0lEkfDhUkZ9hEQAoSY7xX3BjFDX68cNbPIFIdKnyT2+7SfI8JtQU0pnU0rbUkrbxscHoAMskOiJIWPTFzWltWPE99zpWfOjDk0LtU4+CLc98ZImoZAC0ihV27t+CwLgyfUhiNvDK92XEyzvOybIl8dW099GsCAFK7jj0/L13oxCrNsXGPgx0PtN1zJRqCUWdcsxXIJ/rYxy0mb3qJ+5f4d8Djy13XxuC0K081OHRgEPLON+C4mPRB91McQXA8YjWQDg/l+43Bu+EB7LhQtKW0ZCZ7EvuV2KmZIV9eFvGJv8AZemQoxXDGAwItTdJ5uvgzvXR4cn1csI4UbOKZHmkXD30up1MjYdpr388XVc6snHJPNaerKoBd+hp2HCw77j/N5xCmF++h9g4lntbZSuj/r9OOu0dg++bl6EO4aV4iIZpB8g0fUh6cCLqw68dAworZOTQ6ChYrqrvm+rRyR6S93e3L5EV5DCRx0o4mpweUmUFEdqgsgy8me8dE3+GfBherdixhJqdxCFRS1NbanEyLBhb0b8uesZlw6ykKLsNGkwUC4O7l4evVSn7raJrw9Ua+f625MAP7CUS/jjqQkeWUa7CRtWCojSiUsWhDNE0Wk7aqEkCsAPCGGWkV66iW4WbcZy/2qlQPUnLxwGHtOYPi4Yc8jcghgJz1sIYCeABoSQJELIY562uSmYbaJL6fqKsXLKARTuMJLb2Gyvc6/XPQyx1jsOf1uHfQe88i83QacsZMpNPfReLDMvnCeLOroi0HiI+zLe4tDpTAyNVEcB+ELVtlzs7MDpxre55yt5ON3NoMUozposVf7mHlegJAv18LnAY+tuyqE8qhClNPDzzHjDI6uA9/i52GKrm0vRaTQzl9L1occze7xPwCTFHgE4JNnS6vcz17EnzJwsvBzl6gOl+P4Ct+JMtH/LCxmvR3FOcSW6PgLcYUYINxrNDLewj9RrSrJQ67kDA8CtexWlYlBVEi/bbaLcYtaasVgQNE8wdmNWcGiU70NdAS50Sjq820yu44dWAMO/436LeSj8OAuFtxZ1/2nAo39xPmxfZ9I2QjN+sI3ZEaAWgeEWjl0OJm5doZYy+FPX79BS8odDOZDiuf3Gg+iNilNolOeBKZMlM5aP+ZXrnQ+V+KzDYrgYZGm2NGWP+VRJEqMn/pavq3GHyweuJdS+pn+UXlNP/k7Z9X8SqN6B82E/vcO/fmItBnzEDRgpV9dzWYvAYwm1XwguofY2ID0izjW9e2gUZMKjbIabGY/vyaLtyE8oG1rKNUtzqYr6dRSofyf3sXj+kCt2WHPKIoVQS+ujHHUny/Og8XL4+sJIt9eL/fVEeKx//cRaEOJ5CLaFxS1GcAm1FqMWqpdpCYUwE0ZYtGImCx+awFr+6ad2As8f5n7f+S4w9So3siuqHNdpI0RXaOXuVRJVFihdS/9YSvF2ZxUzGtazNAbbZ1+h5JrGN9QvZmEBaIeIWnhNcAm1ILA1+CGyVdoADQfKy9hCgfFb1NsKnXChpSATlbjqXHPYG7Qs6gqNXXGyDKMxuINvFRj1WWv6k4Xj27TLuhvwIduXtIWiYVFLM+g9t999hIl0FFw3g1EzFrcvj68Hxv5Z3LUoMQSXUAvc8Sw3oEFr5Jo0j64UYQRWaJTcoo4sK5/h2AxmRlUJCO4b6UzY7o6vNZWT3vEJAV69ADyjMxejqyBfFw8WtTCBKCGcS0gvi9qIH4AOEl9/cY1ys7h1iK4A1HKTStfCFAHMxuIjegMaPPlaw6LleaBjqwGF2d7VwRu/boMBwL7vgTYPA/+u4yYYdZf204xFDegPSJHt06BQGzm/cZv1U1q6I666Z8tfi0ZDvBvmbWFRggleodZFIi7PH1aLWWiUK6Z58CfckGHqZUytNyF39fsBr6dxfmsjw4KVUzrJ1nlpuWr6qN11MLoRbG9EGuDmJPQGM9MuBTMPr7p5c09alHhuQaGWoJVTIbQUl9sacHUkejsHoLezS5hJGymIpVGLWkmZ2sB1Rd4LUag1lvlCg4GBmRqsJFKzc3HXwKIEEVxCLSQOcieses31FmOAQz9zQ2WFrGtCYhozLoxa3bnpr44ukQt1mAGXgzcoZ7OWrTMgrk9sVM92fs9XwOZpQCVpzmx3IxM9HwYANxRdelypH97CwiJgBJdQD/yIi4HVmhZJREdVhsziYpJtdi7LXf1+xkcgSqnVjctFcXSJaxDLhAMBFGo3c+8Zsagj4tSTLpRvCIz4XnEc/ropZ9YGvHOxVPEh14qFhYUpgivqIzyWi/hQWpfKnMJa2EJcLgd7mPEE5JPOAa+c4fINA5w1Lk69xAt1mdr6nZu+4q4z0VsfteZxNDoYw+M44VZE1+QW+jihqIWFhV8JLotaD6ll6e8RqcIEn20f46IU6vcDTvDJy/2Rv8MTZqM+fD2O1HFNCNDnTVXRsXN3I7JwMn68O8hTeFqUKIqcLF5bfhTP9KyL6mVv4iw0twDBZVHrIRt44qVS3zHB/SSeDAM06M+Jl7edj74QaIuav25OAx+fPYk3sJltAbbdE348vnuOJWcgNevW9HnXfHUlPlpzsrirccuz59x1LN57EZOXHpYt/27bOby4+KBX+8wvcuKeL7dj/4Ubfqhh8XFrCHXDu3zfx53vcG4VDc6n5cDhlLgEhKmiJClGnSzFoYvpvtdDieAH1xLlAFjUa49e8VDQRY7EBbLm6BXUfHUljl7KQHpuoZutvGPQrG2485PNftsfpRRrjl6W31eNMkZYuPsCDui86E6W28f/NiWYr2QxQCn16NqilOJwUvrNqRCAPw4lY9/56yjk75WNkRtj7/x5HMsPXPJq36evZuHgxXS8+XuAk4EFmFtDqKu2Ad64AdQfAIycr1nk4vVcJF7LQXJ6Hmq+uhLfbTsnrjufloP3V50Ay0pezDYPA3e+h4vXc9F9+iZ8uv6Ma10BP9mtZLbsWRvO4O4vt+NIkrkpk1iWuv2a5xXyc/y5G5DiwbIudLDYfNrDhML8vpJv5LgvJyGnwGV9z97CCdHgz7eh20cbVWVTswrw+0HPL1ORG+G8kVuENu+sw8LdJnKL67Du+FU8OX8/vtmiM2UXgJGz/0GD11ZrrruamY/8Iu78pyw7gqH/0074r3c+BQ4n/vvHcWTkcfd39ZHL6PrR31h5+LJmeSmCUOYXOfHCogM4dSXLbXmHk8XkJYdx5qq83L7z11XX8rtt59D4jbW4li1vvVzNzEdeIXe+fxy+jCFfbMcHq06g0etrsO/8dVlZlqU4fTULq464PxdKKaavPenxnXlu4QEM+2qn+NGz21xC7e55AYDk9Dw88/N+8eOz/vhVLNh13u02/sbJUlzOyEOTN9Zg8pLDnjfwgqAS6mlrTmL98avIL3Li/VUnkJXPPeSUUuy7mA46eqE4LHX98au4kuGaAbrrRxvR4+NN+GFHIgDuK5xf5EShg8WEhQcwe8tZnE7hHuQzV7NQMGAmcMezuHgjFwCw+5zrYbxYZSC+Y+9CQpPnAAB5hU58toET8ssZksT+OrAsxXsrj+NsajZavbMO9/5vB/5NyRYtOEopFu+5gNxCB+bt4D4oee48EhMOcPmmwQliJn9dBN5deRxj5+7GmqOXcccHG5CQmo0bOYXo+tHfOHE5EwCw5UwaAIBRzsrthuwC13EKJS9MZr7aInvsxz14ftFB3MjRtrb/OJSM//5xHPWmrlYJj9SyTcspxJRlR0SRBIDjyZkyt8iPOxI9tm4S07gPkrv7tfvcdRQ4WKw4lCwuO5acgY/WnESH9zfgiXl73R4D0BeSZfsvYe72c/h0/WkkpGbjqQX7cfE6Jyr3fb0Tr/LN+98PXkKaQjR/3JGIIV9sxw87EvHbwWQM/8r9rDDnruVg8d6L6PvJFvz0z3n8wZ/PsK92Ysoy+cCjP/kPxdFLLvH8fMMZdHh/Ax78jsuFnsG3mL7ZchZ5RU7M3ZaIi9dz8fHaU2BZihWHknHnJ1vw9IL9uK5zvwEgv4jFlxsTMPxrY7PaHL3EPat2hqDQweLQxXT8sD1RXH/xeq5qm5nrTmPl4ctYfuASMvKK8Pi8vZi6/KiqHDXx3OtxJSMfCanZyC9ywslSfLnxX2TkFWHGX6fQ6YO/kVPoxOK9F30+jhZBJdTzdiRiR0Ia5v9zHrO3nMWcrZyIdZm2EcO+2om/jl8FwFkQj8/bi/u+2anaR2yEaxLPhq+vwb1fbUeBg+W3o8jILULfT7aID/CZq9zw8t2J10XBWHXiBt4pHI2fD6UDAGZLrLJl+y9h19k0XM3MR4FDra6bT6fitd+PYs7Wcxj7/W7Rotpw4ipqTVmF48mZ2JmQhslLj6DxG2ux8hBnhWYXODFrwxkUOlwvfkZuEZbtT+IG9tTuDkop2r23Hn1muFwE2/+9hnk7OQtiwa4LSM7Ixw/bE7HlTCouXs8Tm+QbT3Ox1gQUG0+mICu/CCxL8erSw2j0+hp0/ehv0aIReHXpEVGICorcWzaJ1zhhdPLXMOlGLq5muj6kzy08gLnbufspFVlKKYqc6pfouYUHxA/1wFlb0evjTWL5N1ccw91fbkdGXhGemr9P/GD/czYNDieLa9kFeH8V5zO2G5j1fcLCAzjPC/vYubvFa7b1zDX8KnnxtFwlDkndH/9xD7bwLRvhPl7NzEfvGXKXzu7E61i05yKOJ2fi+UUHMXDWVvxzNg01X12J5PQ8rObdU8eSOeHKKuA+jE6W4uvNCcjML8LhpHTxOmYXuD6cr/92FM8tPKD7ASkdyb0f59M40Tubmo0Z604DAPaev4F2761HssQAAoDIUBueXXgAX2z8F19u/Bdnr7laZZl5Rfh8wxnx2fnrGOciq/nqStFqL3Cw4kfAHZ+s5+phZxjM3pKAu7/cjr+Ou1x1D8115bj5Ze9FzNuZiIgQrrU5dflR3P3FNnG98AGRvk9Scgoc4jVKyy7A+J/2IiO3SLOsQMcPNqD3jM0YOfsfbDmTiulrT6HF23/h131JHs/NVwxFfRBC+gP4DIANwLeU0g8DUZlS4XbkFDiQyt/g/CInluxLwqV0zirKyC3CjoRrqFu+FADgwvVcvP3HMXwv+eoqm3/CVxrgLJWoMO6Ul+2/hD6NKsiaSbWmrEKDCtGIDHO5Gn7ZcxE/73aVWXPsCtYc4x6eQc0q4cv75fHEYyUP08XrLmvug9Un+fpk4GdJc9QG7mG5lFGAmetOIzrcjkceXI69axdg+H+5yUJbVovDmZRsjP9pHwAgJasARU4WLKW4/1vXC7D1DCfGBQ4nWF5UdiZw4kX5zkQCikd+2INBzSrh7bubYNGei2Jdf9qZiIc710KIjaDISbH3/A1MXX4EHw1vIX7sBA5cuIEWVePQedrfYAgRreyTl7NASJZYr+P/7QdGEW45aelh3NeuGvKLnGj4+hpM6KVO8r/u+FX8uCMRz/aqB4ATq8NJ6ZgkaVp+vTkBq49eQemoUAxrXRWjZv+DDrXK4I27GotlGEJwJCkDzapycfAOJwu7jVGJbvfpm/DwHTVxLVtuIU6UHC/pRh6+23YOz/Ssi3KlQrF0/yWEh7g+BOtPpGD9iRQkfjhIvP7Ch1qLgbO2AgCuZhbgvZUnAEC0DLlr6Xp2cwsdOHopEx+uPokDF25g7THOaFn/UjdNq1bq0vly47+IjQjBAx1rQPgWv7niGOqWLyV7fgCuxfaVwt8uFaIZ607L7td//zyOv0+moIilePiOmpiz1WXUXJBYwMKzufbYFbSvWQbP/LwffRtXkBlWAk5K8fFfnGjvSXS5DaUffuE5aFEtTlyWmOY6Xut31uG1QY3QsKJ23pgmb65Ft/rxmPdoe7R7bz1YCrSufgHdG8TjzNVsXErPw+DmlZBfxKLPzM14+I6a4raHLqbLgqduRic48dShQgixATgNoC+AJAB7AIymlB7X26Zt27Z0717PzUYlvWZsQqOKMYiJCPGLn9ITESE25BXp+xyaVomRCb0AIa4keYkfDsLHa0+hbc3SyMgrwvOLDro95j0tK+O3g66mdhTysC3seTxX9By2sc3wUKcauJqZL76IALDmha6YveUslu2X+4AFQVXSu2F5bDiZIv49tlMN/LHzCOaHfoBxRS8iiZZHzbKReP/eZhgzR/6iDm1VRdVxM6RFZew8m6Z6IMNDGOR7sLT1+PmJDigVZseQL7a7LbfxlR7oyVvT7WqWlr24ejzXqy4+//tf2bJ37mmKgiInPlx9Eg90rIGkG7lYfyJFZw/aPNG1FuZsPYdGlWLwv/tbi/XSYkyH6vh51wW0rVEae8+bizjQuq8/PNIOW05fw9zt51AlLkI0XgDgo+HNZR8wPb4Y0wrP/nxA/HtEm6o+W4MNK0bjpI4PfcaIFnj510Pi30feuhPN3voL1ctEykTcDOc+GIjcQie6T9+o+qhq0bdxBaw7flW2bN9rfdDm3fUAgFHtqonGihnmPNRW1zWW+OEg0/sDAELIPkppW811BoS6E4C3KKX9+L+nAACl9AO9bbwV6rs+34Yjl8x11hU3Zh+68tFhSPHiC6wlPrc6/727Cd7w0BtvY4irk4khcLCefY31K5TC6ateZkx0g/IDGEh8ETM9KseGq9wagcSdiBcnZaJC3frWfSUQQm3ER10FgPSTk8QvUx5kHCFkLyFkb2qqhwgEHbLy3fuIAsXWSe6GrMtpWFGeEc3sy+SNSAOupmNJwpNIA5D5zY2INICAiDSAmybSADCWb2qH2f3XjXQzRRpAUIo0gICK9Lv3eDlNnQeMPAVaI0xUbwyldDaltC2ltG18fLxXlXHnzwsk1coYHwU19+F2HsuM61Yb97XVnxuwZwPz1+egjzHc79zTFIObV/JpH7caVeIiPBcCMHVgI8+F/MCSJzsZLludfya9Feq2NXyfhf3gG31N7/P+DjdvCi6hY9QX3pT0Z/iD8JDATKph5ClIAiDNAF8VQLJOWZ8Y2Mw3IRnfrbZqWb8mFTB1YCMse/oOt9s2quQ+WX3zqrHYOqkn4qPVoxYrxsin42pdvTQ+Gt5C/LtPowqy9T0blnd7LIFX7vQw27cJokJtqOHlsNz2tcrIXsClT7m/lnqUjQrFpld6yJaFSGJmH+1cy9T+7AzB5ony/b3ctz7GdauNL8a0wiCDH6a6FUqhQQWupVSulHYaV6ED21uqlo5AjEbHGQDMfVje2v3q/taICuVeeIbRH4nboqp+ojCtTjqzxEXKr0VEqHsRalI5Bm8PaYImldXvUoRBAZvcvyFiwrkO//mPdcBPj7WXrV/7giuHj7KT2hsaV4rB0FYqB4HId2Pbur3OGxXPs7Rz2Z8Y2eseAPUIIbUIIaEARgFYEYjKvHtPU3w31vXQbp3UEx1qlcGKZ7Vz+yofiG715ZbqT4+1xzcPtsUT3WqjdXWXNVC/guulE27CL+M74oN7m6lEFeCE6pfxnVCtTCRCbOpL9p9BcouspaQnGgA+HtEcX4xxZfJz93j98WwX8fdDkp5mgRXPdkYPhUW+/qVu+NWDtRYZasNzfASFGeY/1gG/jO+E1wdzlsd/BjZEbISxFDFPdJULb8c6ZVGzXBQ+Gs6lX40KteGtIU3E9S9LPkzzH+uAfa/1cbv/t4Y0QY2yUWhfq4y47Lne9fCfgY0wuHll1K8gd1ON6VAd47u7PuY9GsRjYr8G6F4vXowUYan8+RjfvTZWTeiKT0e2BMAJ4PqX1Am/lMI4oo2rRZXw/kBsnthTZh2veaEr9r3WB4kfDkKvhhWw+z+9xY9BRKgNYfwLr/esrH2hm3hPBD64t5nYahJG97WrWVrVupN+HD8d2RKPd1F/IH8Zr36eWI3+rDJRLjEf3qYq7DYGKyfIp+Ba+0I3HHxTbp0Lz+tdLSrLWj5P9aiDnVN6Y/d/eqNLvXLoUleeb6aBxPX49t1NUDYqFH8+1wWe0DKwAKBhxRh8cK981nqpBtQtXwpTBzVGiI0gVKN1Ex8dhoT3B+KZnnUAAGH2wFjUHt84SqmDEPIsgLXgwvPmUkoDMh6TEILekotUrUwkFms8MAI/PNIeBy+mi72v4SE2fPtQW+y7cAO9G5ZH25plNLf73/1tQAgQamMQxzefosNDMLp9ddzbugpeW34UGXlFOJOSjad71EGfRhXcNmkGNK2I78a2RaXYCOw+l4aKsS4Lu0xUKOIiQzG4eWUs3H0B2/9NQ0SoXRY5AnDNzJSsApm4RIXKb8+0Yc3QvGocfniEszJqvsplvatbntuGIUCV0hH4aFgLjJ7zj2xbhhDZOTzUqQbm7TyPPo0qICyEkY2YWzSuIzrWlmcLDA+x4dwHA0EIkYVJ/fViNySn54GlFI/+wN2HyFAbcgudGN6mmhgLDwBFfIjffW2roUOtMqheJhL7+IiIijHhYugkAHSpx72gR9/uh/n/nMeHq9W5NOwKa1P6kQc4IR7cvBI2n05FVr4D/ZtURPtaZZBT4MD8fy6gdGQonunJhZoJYpFX6MRfL3bHmDn/YEdCGrrWjUfjyjFI4gdGNa8aK6un0DH12qBGYigfQ4DpI1qge4N41CoXJYqm9PpXKx0p20/5mHBRyEPtjPjCE4nV+M+U3uj4wQYA3MdEGjL5Ut/6GN2+ung9BXd+rXJR6FY/Hr/sdUV3fDGmNfYmXsfS/ZdwT6sqGNKiMl66sz4av7HWVb8yardRzwblceJyFuY/1gF5RQ4M+2onSkeGiD7fhzUMixplI0Vxvbd1FexJvI7ne9dHu5plcO6DgeI5Cs8yAESF2cVrIz3/356RG2z9mlTE4OaVVcec/WAbjPtpH2LC7WLY6GuDGqkislZN6IrYyBBZqOZrgxohNasA609wESE1ykahRtkonHlvIBq/sQaCd/vbh9piT+J1RIXaQAjBS30boFW10ipj0V8YMo0opasArApIDUxy9O1+aPom90DFR4ehb2OXsIeHMOjTuAL6NFZbxVLiS4UhVse/FWa3YfqIFprr9AixMeIHprHEyv9nSm9Zc/Hbh9ph3s5E3NOyMppWicGBC+niwJu4yFCxqblqQlfERNhlOQ8e6FgdI9u59/8dfqsf7AwnyAse74AwO4OvN5/F+hOu8KTdU3ujoIjFSn74b/tapTGuWx2sPMy9KK8NaqQSaQHhpSnFv0Qx4XbUrxCN+hWicSyZi9aJDrejZ4PyWHEoGREhNoxsW00crSUdhFGjbBQAoE2N0pjcvyFGtuO8a5Viw2XWaakwOx7tXEsUaml4o51v3YTy/yqb5uVKheGLMa2x9Uwq3v7jONrXKoPwEBtaVI3DfFyQWauV4riPa+9GnFtKuPbCAJ6qpSPx2aiW6FG/PIQxNFGhNvRsUB5L9yfJOm1OvzsAAFQiIghxVKhNJtJKwuw2sSxDuBZTcno+KsaG4+cnOmBv4g0QxYf3Wf6D89qgRqheJhIPdqyBZ37ejwm966FKXATsDxA8OX8/Rrevhn5NKqJfk4qYOoizyBmGIFJhFJTmn8UX+tQT0yvUiS+F/a9zlvHWM1zAQJmoUCSk5qBSbLhMVAV+e9olrjPvaylbp1Vei8n9G6J9rdKqlqq0dbv0qTsQGWqDk6VoWiUWO17thYgQG1q9sw4AcHfLKth17jp+3sWF/W6e2EN8BoV61ImPwuNdayMlMx+X0vMwVdFSjosIQW6hEyue7YzmVeNkOmNjiEfd8YWgTHP6/SPtEKfjYysVZscPj7ST5Q9oUCEap65moSZ/4T1RKty3036wYw389I/nfAJSyxrghGR8d66J1LBiDBpWjEGd+FKq0VONNXx8rw5Qd3h9NKy57FxKSV7+znyTMYTPeSIIT/lork4P31ET+UVOPNSppmyfj3dV+/mVRIbaMKFXXQyQ9ClUjeP839OHN0e3+vEY1qYqqpeNxLThzfFC33ro9MHfuLe1uoOVEIKnetQR/945pbeqTKidwdZJPZFf5ES9CtFwsBR/Hr4sNuE/HNYMX21KQDudFlTXevFY/1J38W/hOkmb7WF2m6wPQrDWpflh7m7p8mW+c09T9GwQj1l8agGWpZjYrwFql4sSPyBa5wGonwsBwbALtTGSJjRB3fLRYqvpjjrlcEcddfpZwZcdFxmKCb05F9fPT3QU1/dvWgln3x9oaLKjKQMaih+BF/rUF4Va6nJrV7MMejaIx9RBjbH//A10qiP/uAsCXzpK2+dvBunzoUcbRUdnZb6FVK98KdHif39oM2w4cRVXMwtUboy/Xuwm3pfyMeH4Yox6YoyF4zpi3/kbaF41zpvT8A1Kqd//b9OmDfU3NSb/SWtM/lNz3ZWMPHrycqZP+zCL08nShJQsmlNQ5Jf96eFrna9m5NHXlh+hhQ6n23Lzdpyju86meX2cm8nqI5dpjcl/0rOp2V5t73Sy9LutZ93eu6QbufTFRQdofpHD7b6mrT5Ba0z+k/5+8JKhYy/bf5FeTs/TXNf/0y20xuQ/6ZGkdJqcnktrTP6Ttnt3ndv9+fOZbv3fv2idKStVy5Nu5NLs/MA+53+fvErn7ThnqOzJy5l0zzljz6rDyVKHkxX//mz9aVpj8p8BPx9vALCX6mhqUFrUZqkQE44KMdpWipRlT9+BY34aUMMwBLXjfYsEMMITXWuhbCnv82OXjwnHOwZiOx9UWNbBTP+mFUV/uTcwDMGjGh1oUqrERWAm34Hojuf71EPluAgMNhixNLSVftgmlfhKbfy56XWCBYIdU3rJ+k0EjIY5+kLPBsYioQB5h6InlClTn+tVF092r6PZMRjM3DJC3bVeOZ8HfbSuXloW/XErIPgRLeR4K9L+JsxuwwMda/hlX5G8j93GEJSPCce79zTVjEKS8udzXcRMgb4SqIiFYIIQglB7cDw7ZvA4hNwbvB1CbmFxO3MpPQ+L91zEi33qBc2HyOLm4W4I+S1jUVtYlHSqxEXgpb7+G+RkUXK4tRw1FhYWFrchllBbWFhYBDmWUFtYWFgEOZZQW1hYWAQ5llBbWFhYBDmWUFtYWFgEOZZQW1hYWAQ5llBbWFhYBDkBGZlICEkF4Dm9nDblAJS8CQLdY53z7YF1ziUfX863BqVUM6F1QITaFwghe/WGUZZUrHO+PbDOueQTqPO1XB8WFhYWQY4l1BYWFhZBTjAK9ezirkAxYJ3z7YF1ziWfgJxv0PmoLSwsLCzkBKNFbWFhYWEhwRJqCwsLiyAnaISaENKfEHKKEPIvIeTV4q6PvyCEVCOEbCSEnCCEHCOEPM8vL0MIWUcIOcP/W1qyzRT+OpwihPQrvtr7BiHERgg5QAj5k/+7RJ8zISSOELKEEHKSv9+dboNzfpF/ro8SQhYSQsJL2jkTQuYSQlIIIUcly0yfIyGkDSHkCL9uFjEzjY/erLc3838ANgAJAGoDCAVwCEDj4q6Xn86tEoDW/O9oAKcBNAbwEYBX+eWvApjG/27Mn38YgFr8dbEV93l4ee4vAfgZwJ/83yX6nAH8COBx/ncogLiSfM4AqgA4ByCC//sXAA+XtHMG0A1AawBHJctMnyOA3QA6ASAAVgMYYLQOwWJRtwfwL6X0LKW0EMAiAHcXc538AqX0MqV0P/87C8AJcA/43eBebPD/3sP/vhvAIkppAaX0HIB/wV2fWwpCSFUAgwB8K1lcYs+ZEBID7oX+DgAopYWU0nSU4HPmsQOIIITYAUQCSEYJO2dK6RYA1xWLTZ0jIaQSgBhK6U7KqfY8yTYeCRahrgLgouTvJH5ZiYIQUhNAKwC7AFSglF4GODEHUJ4vVlKuxacAJgFgJctK8jnXBpAK4Hve3fMtISQKJficKaWXAHwM4AKAywAyKKV/oQSfswSz51iF/61cbohgEWotX02JihskhJQCsBTAC5TSTHdFNZbdUteCEDIYQAqldJ/RTTSW3VLnDM6ybA3gK0ppKwA54JrEetzy58z7Ze8G18SvDCCKEPKAu000lt1S52wAvXP06dyDRaiTAFST/F0VXBOqREAICQEn0gsopcv4xVf55hD4f1P45SXhWnQGMIQQkgjOjdWLEDIfJfuckwAkUUp38X8vASfcJfmc+wA4RylNpZQWAVgG4A6U7HMWMHuOSfxv5XJDBItQ7wFQjxBSixASCmAUgBXFXCe/wPfsfgfgBKV0pmTVCgBj+d9jAfwuWT6KEBJGCKkFoB64TohbBkrpFEppVUppTXD38m9K6QMo2ed8BcBFQkgDflFvAMdRgs8ZnMujIyEkkn/Oe4PrgynJ5yxg6hx590gWIaQjf60ekmzjmeLuUZX0og4EFxGRAGBqcdfHj+fVBVwT5zCAg/z/AwGUBbABwBn+3zKSbaby1+EUTPQMB+P/AHrAFfVRos8ZQEsAe/l7/RuA0rfBOb8N4CSAowB+AhftUKLOGcBCcD74InCW8WPenCOAtvx1SgDwBfiR4Ub+t4aQW1hYWAQ5weL6sLCwsLDQwRJqCwsLiyDHEmoLCwuLIMcSagsLC4sgxxJqCwsLiyDHEmoLCwuLIMcSagsLC4sg5/8T2t/B02SAVgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(df)\n", + "plt.title('Line plot')\n", + "plt.legend(['data1', 'data2', 'data3', 'data4']);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Scatter Plot" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAC9T0lEQVR4nOy9eZwU1bn//z5VPT0wAgOy7ygMmyA9OuCK4q6J4H6NZnON3/xu7r1ZbogxMSYxGq9ZbpKbXG8ERE2iiYpsGjdEEUGEBgZB9n1fhWGZYXq66vz+OH2qT1VX9/QwMziJ/fjyxcx0ddWpU6c+5zmf5/M8R0gpKVjBClawgrVcsz7tBhSsYAUrWMFyWwGoC1awghWshVsBqAtWsIIVrIVbAagLVrCCFayFWwGoC1awghWshVukOU7aqVMn2a9fv+Y4dcEKVrCC/VPa4sWL90spO4d91ixA3a9fP+LxeHOcumAFK1jB/ilNCLEl22cF6qNgBStYwVq4FYC6YAUrWMFauBWAumAFK1jBWrjVy1ELIQYBfzP+dDrwIynlbxpyobq6OrZv387x48cb1sJ/AmvVqhW9evWiqKjo025KwQpWsH9AqxeopZRrgBiAEMIGdgBTG3qh7du307ZtW/r164cQoqFf/4c1KSUHDhxg+/btnHbaaZ92cwpWsIL9A1pDqY/LgA1SyqzRyWx2/PhxOnbs+JkCaQAhBB07dvxMriQKVrCCNY01FKi/ADwf9oEQ4mtCiLgQIr5v377QL3/WQFrbZ/W+C1awz4pV7q1k4vKJVO6tbJbz562jFkJEgXHA98M+l1I+CTwJUFFRUaidWrCCFewzYZV7K7n3zXtJOAmidpQJV04g1iXWpNdoiEd9DbBESrmnSVvwKdmPf/xjfvnLX2b9fNq0aaxcubLe87z33nucddZZRCIRXnrppaZsYsEKVrB/AIvviZNwEri41Ll1xPc0fbJfQ4D6NrLQHv+Mli9Q9+nTh6effprbb7/9JLSqYAUrWEswk+qo6FpB1I5iC5siq4iKrhVNfr28qA8hRAlwBXBfk7cghy3ecpAFGw9w7ukdObtvh0af75FHHuHZZ5+ld+/edO7cmbPPPpsJEybw5JNPkkgkGDBgAH/605+orKxkxowZzJkzh5/97GdMmTKF2bNnZxxXUlKCrmliWQVJesEK9lmwMKpjwpUTiO+JU9G1oslpD8jTo5ZSVkspO0opq5q8BVls8ZaDfHHiAn715hq+OHEBi7ccbNz5Fi/mr3/9K0uXLuXll19m0aJFANx4440sWrSIZcuWMWTIECZNmsT555/PuHHj+MUvfkFlZSX9+/cPPa5gBSvYP5flExQMozpiXWLcM/yeZgFpaKaiTE1hCzYeIJF0cSXUJV0WbDzQKK967ty53HDDDZSUlAAwbtw4AFasWMEPf/hDDh06xNGjR7nqqqtCv5/vcQUrWMH+MS3foKCmOurcumajOoLWYoH63NM7Eo1Y1CVdiiIW557esdHnDJPJ3XHHHUybNo0RI0bw9NNP8+6774Z+N9/jClawgv1jWjZPOWixLrFmpzqC1mKJ1bP7duAv95zLt68cxF/uObfRHPVFF13E1KlTqamp4ciRI8ycOROAI0eO0L17d+rq6vjLX/7iHd+2bVuOHDni/Z7tuIIVrGD/eBZGcZhBQVvY7Dy6MysF0txUR9CElE0vea6oqJDBetSrVq1iyJAhTX6thpgOJvbt25devXoxdOhQTjnlFB5//HH69u3L8OHDOXLkCE8//TTz5s3j3nvvpbi4mJdeeok333wz9LhFixZxww03cPDgQVq1akW3bt34+OOPM67dEu6/YAUrWG6Ko3JvJTM3zGTa+mkk3WSz6aLDTAixWEoZyqN8poD607TP+v0XrGAtxSYun8j/LPkfXFxsYfON8m9wz/B78v68uSwXULdY6qNgBStYwZrD6tM9nwxddEOtxQYTC1awghUsm1XurTzhYF4wGAjKi9bn+jSChfVZAagLVrCC/UPZidTWCAK7/j/bufT/LcUK1EfBClawFm1BhUZDa2toMP6fJf/DvW/e61NynIw6HU1hBY+6YAUrWIu1MI+3oQknufTRn0byyolYAagLVrCCtVgLA9l7ht+Tk0MO0hwmGJv66JbKR4fZZxaof/zjH9OmTRv+8z//M/TzadOmMXDgQIYOHZrzPL/+9a+ZOHEikUiEzp0789RTT9G3b9/maHLBCvZPY/kGA7N5vNk45Gyc84QrJ3j66ClrpzBzw8wWy0eHWYGjzmL5ljktLy8nHo/z0UcfcfPNNzN+/PiT0LqCFewf13JxxkHTIPuN8m/kFTTMxjnHusTo3qY7STfZ4vnoMGvZQL1tIcz9lfq3CeyRRx5h0KBBXH755axZswaACRMmMHLkSEaMGMFNN91EdXU18+fPZ8aMGXz3u98lFouxYcOG0OMALrnkEq/Q07nnnsv27dubpK0FK9g/qzU0gNeQdO1cGuiWqI/O11ou9bFtITwzDpwE2FH46gzoPeqET2eWOU0mk5x11lmcffbZ3Hjjjdx7770A/PCHP2TSpEn827/9G+PGjePaa6/l5ptvBqB9+/ahx5k2adIkrrnmmhNuY8EK9lmw0mgplrBA0uSAmYtzro+Pbow2u7mt5QL15rkKpKWj/t08t1FA3dxlTv/85z8Tj8eZM2fOCbexYAX7ZzUNgqXRUh5f9DiOdLCFzfiR45scFHNxzg3ltluKtVyg7jdaedLao+43utGnbK4yp7NmzeKRRx5hzpw5FBcXN7qdBSvYP5OZIGgJC1e6yNR/VYmTthdJ1rbF98TZeXSnR8cknARPLHuCr4/4uq9Y06fpbbdcoO49StEdm+cqkG6ENw2qzOkdd9zB/fffTzKZZObMmdx3330Z5Ut79uwJ1F/mVB+3dOlS7rvvPl5//XW6dOnSqDYWrGD/jGZy0q5UhY5sTh5PnA1kzQkkYkWIWBEv2Lhg5wKW7FnChCsnAHzq3na+eya2ByYCwwAJ3CWl/KAZ26Ws96hGA7S2s846i1tvvZVYLEbfvn0ZPVp56A8//DDnnHOOr3wpwBe+8AXuvfdefve73/HSSy9lPe673/0uR48e5ZZbbgHUZrczZsxokjYXrGAt0RrqXVZ0rSBiRUi4CQCklIzpPYY7h93Z7ICXi9IwJxBHOtxUdhPbj25nwc4FPs+6Z5ueeW0o0JyWV5lTIcQzwFwp5UQhRBQokVIeynZ8ocxppn3W779g/xx2olzuTz/4KS+ufdH7PSIiTL56cs7vngjdEPzOTz/4KS+tfQmJzChZqu9Fa7SD3rOLi4VFxFL+rCMd77jmAOpcZU7r9aiFEO2Ai4A7AKSUCSDRlA0sWMEK9o9hphcaxuVms3H9xzF13VSSMgmAK92cnumJFl4yvzN+5Himr5+ORDmjtrB9VEs2FciEKyfwxLInPM9ae9vd23T/1DjqfHTUpwP7gMlCiKVCiIlCiFOCBwkhviaEiAsh4vv27WvyhhasYAU7+RYsiKS1yBaWx+XWl7QCChQfOOcBIiKChUXUjoby0/p6MzbMaHCxpKA+e9bWWSRdNTEIBNcPuD4DZMM02rEuMb4+4us+zfXY/mNP6tZbQcuHo44AZwH/JqX8UAjxW+B+4EHzICnlk8CToKiPpm5owQpWsJNrudKxTY/TBNJcVMUtg26hrENZTh1zMLin6YYgqIfRIsF088v7XM6SPUu838f2H5v3vbe0GiD5APV2YLuU8sPU7y+hgLpgBSvYP7Dl4oAr91byxLInqHVqkUgSTsKjKrTHaYJgabQ0L6oil8Y5LLgXRjfkqiEdBNdcE0N9/dGSaoDUC9RSyt1CiG1CiEFSyjXAZUD9RTAKVrCCtVirb4PXe9+8l+POce94F5fSaKn3exAUc5USzdeCHvHY/mNDz5HrWkFwDQPbsAnqnyXh5d+Av6QUHxuBO5uvSQUrWMGa23KBnf7MNAsrIzklCIKNreucL92gAT3hJBAIbwLJRyWSDZCbYqJpTssLqKWUlcA/TgWTPKypypz+3//9H3/4wx+wbZs2bdrw5JNP1vudghXsZFk28MpVo9kEQi1Ryxb803ainO6J0g3n9zifOdvn4EqXxxc9DsDjix7PAODg+bMBckM2EPg0shRbbmbip2zTpk3j2muvrRd0b7/9dv7f//t/AMyYMYNvf/vbvP766yejiQUrWE7LtZyvr0azBt3SaClViaq8QClfmiGf9tV3T5o7BzyFR5hKJN/dYfKdaD4tiqRFA3VTz1yPPPIIzz77LL1796Zz586cffbZTJgwgSeffJJEIsGAAQP405/+RGVlJTNmzGDOnDn87Gc/Y8qUKcyePTvjuJKSEtq1a+ed/9ixY6H1RApWsE/D6lvOaw8zWKO5qQJp9YHaidAN+jsapAUiVOGRjTfPtTtMroJNTcnFn4i1WKBu6pmrOcuc/uEPf+DXv/41iUSC2bNnN+7GC1awJrJ8lvPZ+N6msPpA7UT2KwxSNtcNuI5x/cd5Co+ZG2Z6IN7Q3WGCVrm30ltxJN0kUTvKbYNva7YSrbmsxQJ1U89czVnm9F//9V/513/9V5577jl+9rOf8cwzz5xwOwtWsKayXMt500scP3I8j374qMf3lnUoaxIvMQwozXKnVYkqxo8cnze1Ut89AV6ijKZxTlQLHUaxJJwEf1r5p2Yt0ZrNWixQN8fuwM1V5lTbF77wBb7+9a83up0FK9iJWBhVmI03NlerY/uPxZVuky/ng6AK+MBPBykbulrO5hFnozpO5F5mbJjhA2mB+FRLtLbYrbj0Q853r7T67KKLLmLq1KnU1NRw5MgRZs6cCWSWL9VWX5lTbevWrfN+fvXVVykrK2tUOwtWMNOCKdy5jst3H8IgoAnECW9RVV/7zBTtIL/c1HsXBrfaKo2W5tV3QavcW+mrERIREW4eeDMPnPPAp7aVV4v1qCF/Likfa64yp7///e+ZNWsWRUVFdOjQoUB7FKzJrCFxGhN8a51aZm6Y6f09lzRPJ5aM7T/2hKR1DYkjhcn+8gG8fEUFQbVKmFwvH9MBVlCe9I1lN/LgeapiRkMyHZvS8ipz2lArlDnNtM/6/Res4TZx+UT+Z8n/4OJmlOgMWuXeSu5+426v5nNERLCE5QXBgkDVFIqqhrQveN18ZX8mV2wLmwfOeYBbBt3SqLbVd+9h5U9zyfWaCrgbVea0YAUr2Mk1E8zyjdPEusS4bsB1Xu1lRzo40kEis0rzGgssJxJHauh143viHleclEke/fDRvIKd2dqWzyqgJWqqC0BdsIK1IAurqZyvKmJc/3HM3DDTk64BWavPNYU1d4W5yr2V7Dq6C0tYONIBstexDstwDLZNF5rKR02Wz4RyMjXVBaAuWME+Bcu2ZA6+/FWJqnrpBG1hKotcWYFNAbDNVWEuuCGuLWyklBmp7GFaZ7OaXrDokqk4aewEFvTadfCyOSatAlAXrGDNbEFQzLVkbqwsNax6XFh7Grtkb+56F+aEhYSbB96cUfI0Wzp5mGdrKk4sLM7tcW7WnWnqS3s3P2uK4GU+VgDqghWsGS0MFOsr05mLTmgKgAy7vv57vnWbc5VIbQoAL42WKpBGyfgGnzo4I4iYLZ08VwamngBzgXR95V/D6mBPXD6xWWmQAlAXrGDNaGGgWJ/XnI1OeHHNi14GYS6vLVu9Zf23YBr28n3LeaLyiawKkeC5s/G8Temp7zy6E4HwPOCw5JJc6eRBy5dPz6f8a9h97zq6K+eONI21zyxQN1WZU20vvfQSt9xyC4sWLaKi4p+qImzBQixfzzEMlE8kCFe5t5JHP3zU2xy21qkN3VhWy/T09SZdNQnIrCJnVs57Z9s7nld63DnOQ/Mf4ifn/yRrRmM2nrexwbXgVlxFVhFJN4klrNAaJLofdX2PbCBtHn+iapFsnwXbfGPZjfW240SsxWYmfto2bdo0Vq7MbyObI0eO8Lvf/Y5zzjmnmVtVsJZgDckCDGbYgtL4Ag1Kb47viXvKBwCJDN1YduaGmSRcRQckXFXzIhuAdm/TnaSb9EBa28aqjdz5xp0Z9xXG84bx6yeauRfciuvCnhd6aduPL3o8az/P2DCDKWun5LXJbtCCmZW5MqLDPgu2uUebHs3C2bdoj7p66VKqFy6iZNRISsrLG32+5ihzCvDggw8yfvx4fvnLXza6jQVr+RYEPg2G2bxj7ck1hhqo6FpBsV3s7bwikaGeaxB0JTKrl2j+Xdew0JZ0k/VWuwt6842V6wXP37F1R68Gic62zBYkPBEvPugNm9RJtnMEP2uOmkRh1mKBunrpUrbeeRcykUBEo/SZ/FSjwLq5ypwuXbqUbdu2ce211xaA+jNiQW40TBpmmsm7nmgQL0xhEAYO4/qPY/r66d5nGnjCANT8++Haw0z+eLJ3nogVCeXO6wPiMJA7ERWFvvb09dO9FcK09dMy9lFsDFCaIJ9wE7y09iXf5gn5WHNrybXlBdRCiM3AEcABktnSHJvSqhcuQiYS4LrIujrlWTcCqJujzKnrunzrW9/i6aefPuF2Fewfz8yXc+fRnUxZOyWrRxf02syAU747d5vX1Z9nqzkR6xJj0lWT8qqiF/x777a9mbp+Kp1bd+bOYXeecCKIaSeqotAWzLYMy7DMFyiDk4IGec25Z8virM+aS0tuWkM86kuklPubrSUBKxk1EhGNIuvqEEVFlIwa2ehzNnWZ0yNHjrBixQrGjBkDwO7duxk3bhwzZswoBBT/yc2kM3Q2YJhHF+Qwbyq7ydMD+zw6JxEaHKzv+g39LJfdMuiWvOpoNMROREVhmpltmc1jzud+s9UMMYOqzZnF2VhrsdRHSXk5fSY/1WQc9UUXXcQdd9zB/fffTzKZZObMmdx3330Z5Ut79uwJ1F/mtGfPnpSWlrJ/f3ruGjNmDL/85S8LIP0Zsvo8urBKdeYxZjW5BTsXsGTPkkYnS3wam69ms4aqKILWVLryXDVDYl1iJ1Q98GRavkAtgTeFEBL4o5TyyWZsk2cl5eVNEkSE5itzWrCWbU0BWvWdoz7vNtcefROunMATy55gwc4F9QbE8rmXEw1Y5nvu+qrO5eLBs91/fdfN1r8NudeKrhXYwvbkjcGaISeDvmiM5VXmVAjRQ0q5UwjRBXgL+Dcp5XuBY74GfA2gT58+Z2/ZssV3js96mc/P+v1/Ghb2IkP9wTsTcCBTg9yUgG/WqtBbPIUlbuQLSidaerS+c9d3zKexO3dD7zXfhKGgnawVSqPLnEopd6b+3SuEmAqMAt4LHPMk8CSoetSNanHBCnYCFqx1HFRZTF4xmfe2v5fzRQ3bpqopUoOzTRpmoPHiXhfz/o73mbJ2Sob6IF8ZWq7yntnAJlfGnf5Ofdc/mZXk6rvXbHbLoFsaXPj/ZKTL52P1ArUQ4hTAklIeSf18JfDTZm1VwQrWQAvLmjNVFrawmbN9jpc0knASOYv3BLepyhcMgt54LqDbeXSn115HOhx3jpN0k6Fgly8ohdEJ9Xm79WXc5bP79snSE9d3r/l8pyGgmmsSO5kriHw86q7A1JRiIgI8J6V8/UQuJqUMVV78s1tz7KJTML8FC/QEVRY7j+7kpbUv+b4TlpZcGi31AdLY/mMZfOpgZm2dxeV9Lq9X/mV6yKASRyJWhAt7XpghzXti/RNee21hc3mfy1myZ0lWsBvXf1zOVGlzkjApgPq83TDAM4sM5bv79rj+49hfs5+OrTtm7aOmtubmlrNNQCd7BVEvUEspNwIjGnuhVq1aceDAATp27PiZAmspJQcOHKBVq1afdlP+qU0DrCtVxTVdSU2rLDQXbGpmH1v4GKs+WeUBX+XeSh5f9LgPkACvfOWSPUty7i5i7lxd59YBeKnc72x7hyKryKsFMWPDDO8YgeD6AddnXZoHvbdx/cdlXDuf0qkJJ4FAZK2bkc3LFoicu2+HrWYamjjSUi2b136yVxAnTZ7Xq1cvtm/fzr59+07WJVuMtWrVil69en3azfinNQ2wOqIPZHh+YQqLYDaa6ZVrQMpX6xzcudoWNpawqHPrvPPpWhCA71g9oeh2BoN0+exKUl/p1PEjx3uBtMcXPV7vdlYmQOXKhAT/BAWcVJ76ZFiY134itEtj7KQBdVFREaeddtrJulzBPkOmQcq0oOenaQFNL5ietears3lJubTOZnp4cOfqsf3HhiZTxPf4d7m+fsD1OeVn+exKUp+HV5Wo8upm5AuiJkBlC8IFJyigSXZPaYkWtt3XyZqIWmzCS8E+m3YikXRzae/iZgBF2D6E7+94n9nbZgPKAyyNlmb1krJpnYGs6eGacsmWTBFMggnrA61a0SB9RqczGHzq4NA+aGjiTUNBNBsoBSedS3pfwvDOw5vNy/y0knk+DfmhaQWgLliLsRN9GYLL9OBmsEFaoCpRxfDOw3l327u4uAgEqz9ZnRUEYl1ifH3E1zMCfbnSw4PfzzfRI1ttEFvYrPlkDR/v/zgr/3uiiTeNseAEcOewOwG8iawpwezTBMtPQ35oWgGoC9ZirDEvQy6QyuZNRqyIV5nt5XUv56yClw3ocqWHn0h7s4F/fcWfGnJNXYO5KQA72C/QNAlCYZPmpwmWn4b80LQCUBesxVhTvgy5ymfqlztYmc2RTs4Kag3xjE/UstUGCRZ/OtEdr0/EKw1qw4M7qpj9Ysr6stWQPtE2fppgme1ZnywqpgDUBWsx1lTAl0/5TPBXZrOFDdCgCmrNUUckWx+EqTBOxGttqFcapGJc6XrqmunrpzPpqkkZsj5zpRJWQ7q+PsjWxpOttAhamCLnZFExBaAuWJNaY8GrKSLp+YJR2LI9X48pn9oX9VV8ayjg6r5pzI7XwYSesAkpV+q4qe7IljxTXw3p4LWCu6wMOXVIVs+5OZQWJzpmTyYVUwDqgjWZNZeH0dAXqSFLZJO3rS/RJN/aG/kWy9cJOuaWXlrOl2vHmBOlAHRRolwZhmEKGXM3G9OjznbtYA3pXDSNT6ee0rUX28WMHzk+IyjcHHYihbvMifZkUTEFoC5Yoy3XVlONfcnqAz3Nlw45dYjvxW7IEjnbNXKBcS6wzPU98zMknneLhJfXv4zjOp7Xmosrb+wu5q50MzIMw9pelajKWHWYHDWQAcINoWl0PwZ3WalKVNVb9a8pLHi/MzfMZMaGGXlXCbxt8G2sObim3vICjbUCUBesUZZrq6mGeBjZvOZcRXHufuNuEm460cXCyslJZ7Ns16ivEp3p9UEasHKBePCz2wbf5tXRkG6aVtAp8LmKLzV0mW7uYi6EyJk4Y6abhwVRdT9km0TzpWk0qDfHLiv5rMSCz0MnQGVbKZlZoroGiivdessLNNYKQF2wRlm+WuJcVl+diogV8ZbeJpesa2VoO1FPPhuwhnmu9ZUr1X/Lt1h+fE/ctwO4BuiwmtSNsYquFRRZRd7EJgivtxPrkjvdvCGlT3P1bfCasS7177LSEAosXxouLE4RtvVXWJZokLoqcNQFa7GWTU7WEDuRoEwQeCAzdTnfF7sh0quwtgIZf7tn+D1Zrxn0UE0OuKkB2rymGeSTyKz9nC3dPBd/nc9WWqXR0pyJMLlWCQ2Nf/i47ywlbbNdN2ws6PNpkD63x7lc3ufynDVQmtIKQF2wDMsX4MIogHyVD6Zl87peXPMiT3/8tAfGuvi/TlGedNWkUI4a4OEPHq43KGda8GXNthtItrZmA6x8tvEaP3K8V0a1qTeXNa+fz0axkL3aXn38dX3PvjGB5oZO5qXRUhUHIF0iIF8LmzCCz10X5mroRgQnagWgLpjP8vVcGrM1Uz7a4RfXvMhPF/j3p5BIZm+bzbvb3vXO+eB5D2a0K8hdh73Y9cnnzMCb6ZFl876zeeT5bHEVVkY1H3lfPhNpvpRM0M7oeAZL9i7BkY5Hf4RNUmGgFnbdxkrZGqp0qUpUIRCeBxwWOG2IZXvuDY0VnKgVgPozavkE73JlltX34uUKAgaXz9oTNqP8s7bOytr2XFtGTV4x2QfSYUG5+gA0GHizhFWvljfsb8H61GHglI1KydZHAHe/cbcHWMGEk/rOnYuS0X0TnOj0RHXP8HvyAvqw6zY2q7ChSpeKrhUU28VNSkucLFAOswJQfwYt1yaf+WaW1ffiZfs8yB1ma8flfS5n/s75oe03ueig6kRXctN2Rqcz+N7I7+U1iZhtL7aLPa3zA+c80OAXNKw+dS6VRbZiT8E+Or/H+R6IJtxEzhTtEwHHsCCtOVHlA1bZPO/GZhU2BCib4notyQpA/RmzXMt6yD+zrL4XIdvn5kusdw4JA8xbBt3CtiPbeObjZ3BxsbG5uPfFXNjzQh8fHpR/mZlztrAzQDrYhjAAa4qXPL4nv5rT2a6VrY/21fg33thfsz9rG+q7j7BVVTBIawu7wRNVfTRBY4tCNSRIDM1Tye9km2iO/fwqKipkPB5v8vMWrPE2cflEfrfkdx6gRUSEyVdPZt3BdV5Aq6xDGfe+ea8HZE1dwyCYQp3rOvW9lNqj1qBm7vJy5xl38u2Kb+dsQ3N5W2a7TqQPs/WRls7p+4xa0Zz0R9j5qhJVORNRzESifBUowfPX97xONKjYkO9/2jWkG2pCiMVSytBlT94etRDCBuLADinltU3VuII1rdUHQGHL+nUH13mBu/k75/Ojc390Qplvpha1PiWA5qPri5rXt9w1vTezFKiFRbvidjm/15wvbWO9crN9wT4yNz2or5YGNFwDnE/fBJ938PzZgLGxQcWGfD9IIZnbqH1aGxCcqDWE+vgPYBWQffQX7FO1sEDd6k9W+9J9w+R09711n+88s7bO4pZBt+T0VLIlgZi7b5sva66KdifC/wZVI/oa+cjPmtvCJqSwdudrZh9V7q3k/R3ve59l475NMzXAgC99vb4MyGz3Zz7Lsf3HZpy/MQkwuawh39fH1jq1uLh8sPMDluxZwviR40+4+qBpJxPs8wJqIUQv4PPAI0D4WrJgn7oFFRuPLHgEB6VemLpuKpawfAAKigrpUNzBd57L+1ye9Rr5SK+ADKVDYz2pXNc3PcF8kytOxPJ5MbO1r6mW4fVx39l4Zx0g1haxItw/6v4TKnwUfJYCkbEVmi1sdh7dSeXeSt+5m2Klke/3Y12URv1nC37m2x9z1tZZjR6LJ5tWydej/g0wHmib7QAhxNeArwH06dOn0Q0rWMPNFPlLpAfSAEmZREjhAaguPmPuHi0QnNXlLMo6lGW9RnxP3PuODkQGEySEJZBS+jye+jyhfL2T+gBf/5ytIlp9HGo2y/fFzLbcbsxEZfZNWCZofW0MBog1wAeTa040QWls/7Fe+ndptJTVn6xm2vppTFk7JXTbsMbSTg35flWiyr/xrrC8DY4bs/JqKscjX6sXqIUQ1wJ7pZSLhRBjsh0npXwSeBJUMLGpGlgwZfm8RKbIH5SMTQN3RESwhOUVvdFAaw5iiWTx3sXc/cbdvgDVi2te9AKNpdFS3xL3cO1h4nviXnEhVyqFxnVlmanQ4/qPCw1QNcQ7yWfpG3yJgpNSLg41m+X7YpqTlrlreX3p1g2pe53No8zVxmBWYnBD3VySzaDlUnWAWqUl3eRJA7FcFhaTuWXQLQ3OKAw+n8ZSOA21fDzqC4BxQojPAa2AdkKIP0spv9SsLSuYZ/kCWVBaZQmLMb3G0LF1Rx9HrQfVzA0z0yU3DTP1uWaG4Pyd87m096XeBCAQHjibwSlHOvRo08PHq5rt123R1hDvJJ+lb/AlCk5KJwIg+b6Yun3BXcvrS7duSN3rbEkrudqYq9/qk2xmu8/GTKb6uvlKBxvD7zc2ozDb8zmZOu16gVpK+X3g+wApj/o/CyB9ci2fDDcIL7wzvPNwX0DL/J7J505dP5Xl+5d7n8X3xPmP2f/Bxwc+9l1jX82+UI1vruBUGNgM3CGpXriIklEjqehZ/4sdFkDMZsGXCPyTUrB4Uz7WUG40bNfybO3ONVE1xHOrr425rp8rExMaFjjLp69yTU5B776xwb/GUC3B0qbm82kshdMQKyS8tHDLN8NNW76FdyBTAmamDm+s2sjGqo0Z36noWsH4keOzanxN/jfbThgj97Vj67fvQiYSiGiUgZOfqjcxo6GBm+BLZE5KWkfckGBjPnruoPY4X2A3wTgYhAubdMKSRbIpTfKx+jIxm6L/g5Ztcgrz7psq+NdQDz1M1vhpqYkaBNRSyneBd5ulJQULtfiedEpvPlH+E12SxbrEmHTVJB5f9LjPs9am6xc/v/p5Lu1zab066Fw1PXpOXci+RAJcF1lXR/XCRcTu+5qPKjHP2RSBGxM4Ggo8+RSgMic5c9PXfNqpn5kunh8Mwun/m0tRUt+YaY7AWbaVQph339jgX9hYzMdDNwPnAsG5Pc716bAbmhTUGPtMeNTVS5d6y+yS8vKM3z9Nqy+jywzeSSSDTx3s+25TaZO1rflkTcbfbGEjpcwrOUL37ZqOuzNKYmpwrx4lEdEosq4OUVREyaiRGfdU69R66ctNHbjJ5c01NEinPzfrY5wImOkJKVcQLls7mmoiG7hDUj11IdWjpO+9aI7AWbbJoamCf6YF+ydfDz347unttnJNzM1l//RAXb10KVvvTC+zu37/fvb8/DHv9z6Tn2pW8K4vYBKW0WV6n1WJKl/wbvUnq73vN7WnY2p0AU4vPZ2zu57NkFOH8NjCxzJ2WQma2dfDiyJceRmUVEvW9rOouDr9nbU9BWt+eANDt7r0v+Q6X3+bXkxSJnn0w0eZfPXkvAv752NhwBNM2jEL+GcDKnOSNYO4Jwpm9QFits9zfS9sXGf7m/me6PcCmq/AUZhD0RTBv6AF+ydfD9189yws3OWr2P/uk6zpuLvRE3ND7R8aqM0BB4QCbdW06cjaWpASWVfHkTffQgaW3UDWQZqvhaVQ17expwZaU40QrJY2fuT4rNXsmtrTCZ7vJ+f/BFCBOFemlSFixVr2r1uY0dfVCxd5fSvqktz5hgDpwgcO/a6S0CVNE9S5dRR1LmJSz+uJBdpgC9u3CWuY0qEhdbODz6Wia0UGGJjFnfRu2Cb9UN+WXPePut+XBXoiL20+wcCwdsT3hG/ecPBvf2P3wz9TzyM1riF8rJvPTr8X5rM9mYGzhlwrn8k6jOfPJhU1zXwfhuy0GP78FPbVJRleFGHIFyxW9lAUTUuR57VIMz0AIhEEIJPJDC/50NSpkCo8JWybtldeQfXixb5lt2+QJhLs//0f6PSNf80brE3wsYXtZQDWt6daUHMbVoOhKlHlU3IEdzlpSk8zbECbHj/A6dvqsH/xMPuSbsakVjJqpEdpIATCcVTf1yW9F3/mhpkZZTpNBUisvJwHznnAN1nlo5XWgcEwMK11arGwEJbAddM64XuG3+NVctMBz+Bu2Nki/Ob1a51aVn+yOmMTgxOx+kAqH669eulSqqZN59BLLyEdBwG4iVrPKQkDZLt9KViW+twSfLTibTrObs+IS/+l0feUzU5knIbVGMmHm8/G8welosHv6PfhnP3bEXUvev32/9zLeH9glwJHXZ+Z4EpdnYKRlNesB1/1wkWQTC3lhaD0hhvocOutFA8cmOF9i2jUO9+xDz6gevHirJ51cICZ4JOUSbwcEql2exZShFIG5kAIVjXzecldFQ+mvergLifBehJBjrch2zuZQKC9TDNzcdg2gZV01ICtraVq2vQ0UJeX02fyU1QvXMSuPeuxn5upvue67I7P5W8lK4i33eK7nv3xejb/zx1QVwe2TYcbb+Lz119H2dWTG6SVLo2Whqa2a+B1cNBy8WCB/uPOcSwsrjntGk4pOiXnbtgm3WGudKasm8LgUwfn1dcN2aEl13HmZKGzIP8/+zKKv/1zZG0tUkrlwAAOkh1l7SnrUJYRH6heupQ9P38MHAcpBI6TpMusj0i+8xHLfocH1k1Z2+JEAqDZaow0hPrLV+qqTb8P1cmlbH5mKm4iQdKSPGnP4/6a++m57hAlrdRqsTntHxaofd6bbasB6Ti+4JR5jCgqovT669Tfy8t9AFy7di3FZWW41dUkNm3KuvyD8Ajyqk9W+Y6xhe39qykDV7rM2DADoN6ocVjgxPSqgayeZBjHe6Lb2JtgOGgH3HR0EIPPHoWY9ywkEiAlh156iVZDh9Dh1lu9vl13cB2rp/+dMwAbBRRibpzR86BXV5g9wmJ2ufLeauNLcBNJbAnSTXLwhb9RNX06Ayc/Raw8u8ws6P2HedgVXSu8bEzTzAL9x53jXn++uulVfnTuj5h01aS8lCwX9rzQV8Uun75uCGVT33HBFdmCnQvosWABtySSCKnHCbgWTL7KZmjnw4wYnp5Md5S157nIYs55azuR1POUUmKD0vg4sO39tyjrUMaGd6bzX4kZrOzu5NxWLF8gP5H4SvA7usZIvtRfQ6WuvvspL2f5gzfx8VsvsKIP2G4S+5vhK8vmsH9coDa8N7t9KcdXrqJ62TLcgwc58vbbHhjrY7IpPg7+7W/sfujH6RPbNggBtp3mvo3vxCOLfV7MIx8+4gOCqBX1it3ospsaNF9c+yIzN8xk/MjxPLbwsYyoMaQB11yWV3RNb0yqry1QXnrQkxw/cnwox5tL1aAtm9RvzXszGP7XKYi6FYjoWk4ZPZqjb7+tvuQ47H74ZxQPHMjanoJtf36K0ye+xTBXvewu6l8LEC6U7YKyXWryml1usaK35AYbRFIdJyS4iUToJBk0fQ9hWm19Dxf3utgDU4DhnYYzfuR477tmmj3krhwYBIpOrTsREZHQvs5m+QJUPsfp52NmQa7oLbgpYmE7AizB4tMkh06R7Ooa5SspUCopL2dtT6HGzbYEbydsHiyKIOqSCFfXilEA37PHYLZ+9Q7sRIL7bfjJ7TYbe4fvQdkQDzlsRVTfZgLB75g1RvKdHPLZzCHb/Qy6aBzT1k9j+OYEnQ9LrKSb06lrSvuHBWptdTt3sv8Pf1C0Rco+mTiJuj17aDWgjJJRI+l039cAI7jiOGDbdHvwhxx58y3/CV0XKSXSSbLu4DrKlvqDL6O+8SVuXAwreqtF5eAtST7uI1jXSzCs0zDfjiJ6Bg/uPzdr66yMqLGuR5FL66m1ti+vfxnHVZPDqk9WZcjgwjjefLTA2aR+vQ4sZF9d0huUkU6dIBJRMQFAuo7ncT3wTA1C4i2597WDU4+CnQJu/ffz18DOLoIztgneqIDPLXA879vBZdeiudTt3Enp9WlVSK7yqsGyrtruHHYn7+9435eUY953eZdyFu9d7P0+qMOgrIARBhSDTx1cL5+e6xzZjs/3uFgXfxbk5j5FOL/5Lt3WHcJuX0rFz34GdQ6Xr6jzAroAa96bwTVza1jRB1b1Fix/8CbOe20rx+bPBynVBHvtZXTadoSDiQQCKHLgouUuW/pkeqINlTwGab98dM25FCGmU9MQoIfMcVW9dCm7Zv4vfe3jrOmVpspuT57Ng887UOeCsBBCgGX5KKTmkv22KKBuyI36QDdkl5ojr7zKESEgEqH9DTfQaugQdbzmrJNJdv/0YVoHrqN5PRyX9T//CRG3M5ZWjSQSFP3maW5xXW6yVPEj4bgkbfjpbTZDBw71gfTMDTPp1baXL8NPC/gX7lroeWJmPYpcWs97ht9DfE8c13XR22SFLf9iXTK3sQ9uWZWvRhfCKaR9vdti/WoiQoIjJO91/oSy9xNYKZDW1ukwSJH+m35SQ8/7PA/99TXllaRMg7jlgng/ziHiVE2dSp9nnvY8wL5bjrNju4W45QfEOx/2tXn1J6u9yU4rNgbukDy9bywr+1gMumicj3aatn4aSTdJREQY3HEwI7uO5PnVz2fl98OAIqyvc5l5jpH72tEzRLccdi1rxtvMf+t+2lxxBQPOvtT3npgrn6FbXfqfUUbJfeXseujHiLrUeK9LcmDiJEr+8Huqly5l+E9eZFidwy1A5UAY/M3BtL1yEMfmzVPjFOhx1miOr/TTegJ8nqh+Z0eWtc8peQwDYN1/P/3gp3nzxmHB1ny9+XzUOw+1/QL9HnyavkmHH1qSZ6+wKT0uGdmrHVVzpiMSdSm8Sa2iIxG6fv9+oPHKsVzWYoA6l44zaAf/9jd2/+SnKpCYzaRU/ycSHHrhBUVnBI93HGoWL0baNkdO68wpp7THWpbWKQ/Z5gJ71C+p2RPXRbguthQeqIskXLzcxbnqFCAzUw3wqIoHznmAsg5lWMICqXiyLw75IsfqjhGxIl4QK5vWM9/lX3BAm3ymQFAaLfV1RX0e3CkXXEBy717a33wTJeXlrNowk8EWRBxFaZRuP8S806Ik36+hyNH3nKYzTPCO9u9P9dFqrKSDcHVCQdr090ApFKqmTWdb6Sc8MuUoPT5JHTzvYUb+5kGidpR+W2sZtk3SQewj4aaBe817M2j1s6lEEglGRKP0mTyWSsKfzWV9LgOol98PA4qGStdiXVRyydZv38W+HONdn/ejib8i8suJtAdYNpHNkckIV/okd12nTad4yhRwHLY+rSa3oB195x12PfRjkvv3K5oj1c9nr3WwvvkIR0ePVvEElPLDOVRF6fXXcfDlKbh1SRxLORrle0sA/ztbHI0y8dffZ1Hnw1mdg5kbZoYqlPLhjcM8c/23nUd31nudbOcIBmQXvfY0/eqSCAlRF+5+w0UgEfMe4ZDrZjqFUuIcqqpX3thYazlAbd6ooSYIaqUPTJzE0dmzQ73orKZBO8tnruvwas+9rOl3kB99bCOTjgcU+l+rtJRTRl/IkddeRyJxLQuki+UosB6zXPLIm89Q2edS5dUZQABwXo/zvPRTXQZSXV56FegiVoQby270govZPLVsGlAdWMzmTej99lzp8viix30glG1ZWb10KVu+eocKHgJ71qxha2eBWLoS20lxzxLO/tNizvz9Q6wesJqhb6wjMm8J0nUzPGkB1G7ciNy0gRRGq3MEjjF/PvTCC/Q3np8AZF2Sdn95k0nnfQHrr08rJcr8Ocy7zWZVD1UYauhWN+PlmXHm7oxnY05M2fj9xlrG8toY724iwZyZ/0v3nv+aca1ls1+g7v+eJmL2S1LNhLK2lgMTJ3Fs7lwf9ScTCfb+6tccPfYJQhgTpety6G9/U3EYoy/1d46k4g6mSmREeTn9nn2WJc/8mtI341y61MFdNpHl8zbRqXUnX//2XHeIEZd+jeqlS9k/9Umfly0QTFk3BSmlL6lr59Gd9fLGYR4z4EtQ8nagl/Dy+pd9Mswwz1n/3XRQBIKPe7vcJMDSY9OVqkcS/jGjOlb4M2sjEU+9ZGbbNoW1GKAuGTVS3ahWE0yZQnL/fjUIk0n1meumqYsmMgk4FqzoI+i9p46DvdvT5phL0d5DWKQBwz10iCMzX/GOn3S55PTdgssqJRaKgx28xWHmhplMXz/dd42oFfVAGrLvxB0sDxr01HzJIlaRpwHNNpCDoFuVqMqp6za1pg9/8DAd1u9jzMsbsY1B6tbVMe3FR1jey+UhoeY/xVO7WP/3POe17UjbK69le4dS7BlvhwKwkJKIxPPeTNPHmJ95dJTxzISEY/PnU/TBB+mJOOnwQPQGPizvRUXXCvrvkGx9drpPiiaOv+K7XjC4mI+GO5dl8/yCz2dgik5yEwkSlsskewFb3qz0LduXzX4B/u0hSpwsF5PS57R43jBQHY9jGf2l+xZQdGHgM4xjJGqVtLXyfUZc+i+UlJeTeCqRjjO4wIy3ORSNIiIRn9oqzMue0XoNU9ZN8YLutU6t18caZPVKMlgnG7Jr5vXfHOlwca+LeW/7ezjSQaY8gPrS7AfukPRauIiJZd9lUefDlEZL2fTOT7HdQH+Fdr1ECpAjh2X2XY7vnai1HKAuL6f9DTcomkJKSCbTygJQM1Ujd0wPLq+1LT0dKta6XP+hBD7xHe8DDNID9Zw1kgWDBBfbavkvgWMlFjs/WelLw+5a0pX7zrzPF1gpjZZ6XvGQU4f4dNO5ot+mp55wEzw0/yHO7nq2+t1Ivpi8YjLzd87P8B5G7mvHjQtUIHRj7/CtkvRkcOHi41z/hosl/QDg2LCsl3rhdp0KvQ6k22d/tJqjwNF583jtvAhX2fhoEENeDuBNhOZnWk42c6Tgc4slRcnwga8B3wPxVFCn/yXXMXy4WnIuW/ECB0YPpHPrzvS/7W5KyssZu1cwbf20rMHFxtSVCCu+P3CHDA1Mxcrvoc/kp5gz83+ZZC9gTS8YvLWWXf/3BwaO/f8oKS9n5/tv0cfJ5PdFioJTf/S/E8ExHvrGCJHxveAYt4D+E99m24ZvANBl/YHM4x2H0ptvpqhHD48v3//HJzO87O7nd8eRDmXbJWdslazqY7Gul0v/7Q7DtzkM6HsWneqK6XHhFYzIUzO/+pPVPoDv2LojrnR9mv9clKFZwbE4GmXkr7/PRx/O5NoPkun7y2IeJrgS5sbZvOArFPfp661qpOM0OfUhZCPBL8wqKipkPB5v8Peqly5ly5e/kuk1p+Ry2QKH3sAzB3DAsoG0xO9xmLOiC+zoCD0PWViO6zuHiwItywU79UEyJV9a20t4O60M2g7Dt1ucffVX+MmRv4buMgL5pZw//MHDvLD2hYx7iwg13562rY4ztkpW97VZ21Pg4mILm++X3MhFy12qpk7FTSZxIoKf3RZhdQ+ZcZ2Jyyfy2ozf8OO/OJ4HpftpQ3fBrBGC03dLxiyXHvUR1n8fnSY4HoFR69LesBtynD63/l2DdE0rweHWUL7BZdQ6o997dkPu2u3zeqSANudf4MsmXTb7BeS/P0TEUc/l/e9dwYVX3ZVTiZAt3bw+XbR+dmZ5TguLr1kXc/Ev3sFKOiQsySO3F7G5T7Ev3RvUEn704hrufCPV50LQ+uyzOTwmhvzvid5khxC0vfTSUOov6DUHVzGuQYFkOya4+gma7x2yrIws4AMTJ5HYtInE1q0gJaKoiD6Tn+LVkvU8/9JP+NHzjnJqIhbPXhHhi28miCTVGEII3CIb5zcPhmZDmv2s3xGzJovuR50dbNZqCZ6jomsFvaYuZN9vf6smFEvwt9EWZ611KNtVv2ecbTL0jo9E6PunZxsM1EKIxVLK0CVci/GoQXnVrYYM4fjyQJlNKTNB2rLSS1799xwgbQ7OILBg/K7/1d/pcQBc4XrH6ivYgHD857BT8qX1vYq44GAnBi3YzZjlLrYL7vtPceFlgjY1MiXny9yxwwy+1Dq13i4r2sb2H8u09dMyOFZHOlx19DS++PzaFDC5PHp7lLW9bK9GwaFUtFoAVlIwaHOSlT2E1wZrxtvUTHuFYR3bU1OnVg0+MC2yeXuE5M5Zruflhnls+vctXS2GbPGv2WW3zli79/k96BSAQOqFdeG6hdJbWi4eIJh2Dpy+FzqeWUG7j7fRxmibC8iiSEbK/87336K3k5pEHdj7/tvcKz7wyQ5NCxZlgsyd1INmfieYWCMQ7Jv3LujAlIRvLevBJ2dcwU8CQPNQ2y9w2ptPeX2OlNTE4xRVVpK89AKYNQ+kAriD5adRNLcokzMlEzR8zybMvzH60Bvzmr8OCZwJoKhvX1qdORz3k4O0vfIKAHY99GMOvfSSj1Jpc9lldLxHrWKqli/mugUu0dS4cR3JV/cNwnJXoDeOE6lSA9NefAQ5bGDWgK35jgSpwvoKR5nPXVdw1NTTodaS0/Zk7arQfss6seUSOZygtSigBmh/803sDgI1ZAya9rfcQt327Rz74AM1K5I5E0pLIF3pA2mTA4VwwCm54AJ279lAm/W7sVErHHWghbAtXCeJDHib+lxjlku294A7Zu2FRBrgraTLXW8qUEra8LPbImzpm5YxBdOSB2x3cT54kWU1g1jbU3h7Fk66apLSUq972Sfv+9yhPkSctR4wfV1exIbyEZyzfzvUvQgy9UKkAiA1p8CNHzis7WdRtnoBkZfnqZ2L1+/mEvyest2+PXXDBzD648XeyxakhfQkVhOF+AC4epHynkB5vKIoSukZZ3Jkt0FngSfn0+ezUo9a/ztqnaTOhj9fFeXOvy+FlNxMAo6Azd0FfW+/g9q1a9nz6M+JdOlCx3vupseFV5B84X1IedQr+oic0i9f9D81EZZtlwzfVsOaVjOI3Zz7O1rBo7clu6jXRazYPpvrbSCp7rPD8m20e/Bp+t4KLpIztiZZtvUF5Hab010/Dw9AMklk1nwvDuAmHaYufpYbrx5NZIa/H3N5fy6ZAduM79o2HW6+2cverZo2nUNTpmSsbuu2bKFuyxYQQr174HeW9HWPH/cmzlEfVhFZZ/DoQtDj2pvYvWyNN+E4Qj2n5b1crCyqDah/u7F8qSqdDDdn5v8y0f6AoVulNxZd4FDvUjpsq/L3q7FiD429eDcv/3lVH9o63HoriW3b+GTipJzHOdXHaHvlFRxbsMDrMIcA7ykE8TIo3yB9y3iAlb1g6Hb1c3CQJw8coO363WCcS6GIwBlzDuKted73ghNERMJXN/XGqtvofV8KgbAs7FSBHMsV3O2cy9GRV/r0vDotefsHb/Pg8w4Rx8Gd9xOe/4JKqJm/cz4/OvdHPHjegww+dTBT10+lc+vO3DnsTgbukGx+4T3cujpExGbvoM5UdK3AjbXDsVwiUgVBrfPOpn1xKXe+NQccF+bVIZPp+yHVh+bv7qFD2HPjDEn9rvu7tnM7Wu077Lv/kgRcsBIvDVlRJhZ9fvgD2uyTHH33XXAc3yQX5p2YAz/iwFf3DUIkV3jPSD0OQf/dAvHfk9lteHNH58yh7E/Psu53P2Hl2y/zYfVKxqxwuPRjh5G92gGZmv2KrhXeJAkKpL2l+vwXWHbq4IwlebC62tecC1jZR3BgQCcVe+g7n0dur+Xm912Gb1JZbFZSMuZjmws/cogkQVowf4hafgsnBEaNeh1SQFUrh301++iuqcCACctCIj0HRYO07jNzrFvt2uEePuz9XtSjh69uS6uhQ9j/xyep27kzfX6jXbliRsVDBnt93HbWh9RgPFfHJbFtm+++4gMEM861WNcLNhiqDTOJqaE759Rna3sK4lf0IfLuIvrvVM/dFVBnw3+POcao9RGu/SDpu+fWFRXULF7sfy74x68VqLHeFNbiOGr98uz91a+pqe8cqcGqvau3Rwg6VMPItdID6tnlNu+eAaOXO1z6kQJsGbH48W025WuTqQCisqDHEcZVmVxf2LJfFEXUUl57IpZF67POonrpUu/FsqJRan/zA+7a8V8+GsPC4oxOZzBw5gpunlOHLdV9/e0ii2nnW5Rtl3zuUG9GXnMn9+z8RWjVtA1/ncScbXN49wzY0rcVY/uP5aPZLzJkq8uxEsFdbwvsujSNlO1+snGUYauI4Gd6Ka3POavc4rSRlzFg0mzVB5aFFKiJIuSawYHv2oIjA3tQumqH7zlYCK+mRdBaDR9O1we+D8DmL33Z63sRidDtwR+G1iT//Z/+HefVWSnPXnDZMhVMdQRMGRPlup88A2RW6Fvz3gyGPzwF6pIkLDe1WmrlcdGjPqwi8suJ6baPrkDMjftWLbptba+5mur35+EcPOjrd8eCV0dZXB1PUwihZtskb/0c/HWmR6UEKT59HEJ441REo/R55mlffeotX73DC5CFPWefBQKU7W+9larp09X3LSsz7mRQl/r+HvqizfpeqQp+qTjOwO2SC5cnkcD8M4sYdslNjOs/zldxMZfnmi2JTtNWF8ZruOsNx4szSWDGORbPXWpxw3yXW+e43kQHitI51LUE62+vqnT7wPA73PdUznzs9yfkTTeKoxZCtALeA4pTx78kpXyowa2ox4JlS8N4ngw+SL98qKVltypYNDjCyE0yxQ1KLl0O4ppLqOpaBcsXIZEIYfHVYV/lKSZTsd6h14HsIE3w7wFQCw7gkhExapYsSX/BdaleuhTpOFgoEKs750zWvP0yfUtqWdcrPexdXD7e/zFOXwtZZCPrXISlgmraw4u6W3DfeJi+t8KaXmRw2eK1OYypS3LhR/DwbTUc6HGALX1bsb53HTd8ILGSSe/lkEDSSq0EnPQ9ZHspzYkr+LKa33GF8pJsVy1nN3ezuGziLDzhtOuSLIkSqU5kAH/QJCBd6QNpCcwbKrhgjYWdDNeuHV++nC1f+jLRvn1VuVVtySSHXpqSodlfd3AdF//X29hJ1RLHkkjbwkm6nicbTPPXE6SZYh+RMGSry/re6V1tlr/1Y1zUKsNNtd82U/B1/0lJqwFl2CWnKL2z7s++PWHEYEbV7CPqfJQ72OW67Nu3hZlX2tz1pqoYGDyudUUFxf37c+jFF1MPT1WWBNj/xycpGTWSAxMnQaL+5+NZAKir43Hc2lqlzEHijBiMnUom0/eqvyNQ79XwbbClT5Hqf+kwcLvkB8/VecHUS5Yn+Kl8gVVzpvHg845K2smx+UeuJLr4njh9txznrjcVSJt9NPZDl9a1kk3dhM+RATgy+20cG566wubSjyz67/TnCpyy7RNmb53NtZ9CCnktcKmU8qgQogh4XwjxmpRyQVM2JFgTGpGdrM/Gsw3fJBmytY7a7p0p3q6CViQd5GvvcLyti3CV5tlJJun7SiU/ned60cGgF6ivsb8NdDrqB6IgP2u2ryYeV96CMXClo6KODspziMxfwhmOy48tmH2m4L3hFocHdmNf9T5cXNb0tNl8x6UMeOodhOvytdkWK0Z1JuruVveQdLl4hWDIVhWYnGapzQS6TpuOlQpekQpsHtz2Dg9d81V2n17KyF7tsD74ObKuDlfA7GGSd4cLbGFxV/Ichu0p9iU9CDKXx9k8bf2ZALiggrkXd6DDO5XsrzlA311OGqRTFqlO5HyWplcdTEsHuGClhB6dYUeaosqYRByHxEb/Br0SONq+mIjmG6Xk4MtTeG/dS1yaTL90thQ4550F8+IIF77ylsOCDku5Zoeqj6ELEw3cIanbuRMRiShFjXDpfBiG7FS72lQvXcq+TavonBoOArDmLabkvPOpnuennLQWuXbtWqRlId1UuahtO7C37aKbEB4WBvvI6zsp6fbuSvoPFwiZrl5oHluzdKk62JD41W7YwNav3qFyFoTwnCBznGdcS5cGNs+VstoNG9SfgaSQPBLbSM/udhoYbZu211zNkddeV5RQUYShl9/EjacOxqpcyco+Fl3kPiLOLB8FNnSrpPPhWqhNFY+qq2PDO9NZuWEmwx+e4gPvYLZg1bTpXhG3c5ZU0neeo8oVBMaOBVxRKXFF+m69MS5VO9rUSDZ1hf4705/rCWfLnFfhuu/QlFYvUEvFjRxN/VqU+r/J+RK7fSnSeNgmt6Y70gXeHwqjV/pB1XuhUbpduX2faru6AUYvS/LUFRZJG3BSYDlvsUrDVX9iU3fB6fst3KTjgQMokAb/g9TXUo1LDSNzCZ4KbkrbUteQUn0sYH876H4wFWR04cpKySXLHY5c0Z0/dPvEy6rrx6lq8LsuliM4v3goR8RepHDBtrhkuQupOiOP3K7SpYunTkXI9Is5ZrnEdutg/tNc+syzlFxaTvXkMqqmTWd/zX4+OHU+G3soCd8GWtPrmEskEoFkUml1hfCBdJhJIdjXTtK5Kt1PdCzl/R3v872FNURS/e1Y6n718zQnvh0docsh0pmOxmfm88f43ZIgUiCt7WAJlNaQ4SGZ50pa8HqykmudtF5WJpO4riBp6L6toiI69OjPQbkYgYQkXPDXVQgJN9rw6O023Uqr2PpQehXY9pJLOPLeHC5f5nD5Sofup61h688fo1ttrdcAAeBKqufPz+jLVsOGqaDozx9TpQpIVx0UZMpDsS2cWz/Py7veoN/2OipSUkjhSi7uPQZWzEEmXQ94vXfFcTJoxVw0o7my9DlMdXWZBxtesjfZu9B9T5JZ5RZC2Nz9pkS4LkffmkW3B3+Ic6iKklEj6Ue6XsaZkQhtRo/miG0rRwclhz1WIrj5fSNhxxI8mphB2VsJzkioSUDW1rLhr5NYObILw4siiKQDQihlSmpyjgA9A/dl9q/OuCX1mYtaJYJaJa7ua7PeinD5ijpkKsDtpj6b0/kAFwTyExpreQUThRA2sBgYAPxBSvlhyDFfA74G0KdPnwY3xDlU5QGgBA9wzIGxqhfs7GwhcX38ng4imiU1TQ/ZdqG0RvDT22yGbYUuRwSXLnXSg8m26PPgQ5yWqru7b9Mqur29AhFQk2Sbndpk0bau6u5y6jFBt4NpFUP3g/7vChQ4dHxjMQ9Gi1j+4E0MumicL6sO2+bIe3NwHQdpQeVpkrPXyxQXDl+Z5XDaooUqKUifVyrgswFZ53i71gBUTZ9OJJHgwaII7/znxWxc8i4Xv/EWlgvSsmh7map74Us4CjE9EbY/qgDQdtXktK96H+dtqSWi5XGuih+A4Kyi0+i0dIvy3AA3YvHHz1m4SIZvg4qBl3LeKcNwjhzmk8lPI0yAMcZD2Aqr3XGYOUowdqFMg7UQUFTEjjM6s1Lu5FgxjDOSGmTqmDnDLeYMVzVberbtiXPVaIYcOoVIiiayAOmmJmhHZaHGtz7DabV1alJ3HOTx4+ColZusS3rbvgmtuDHvIYRbr4nHlbfrpMemHuf6aN+4/9ZdLDynlClLXmfAdosRmxyKXIFdVET/L9wNX7ib6oWL+GjF23R56yPPu87X9LH7SgWdq9KqFKt9e9yqKh99ASnKq0937O17PHAVqDFwz5suO7vYlB63EDLp0U7HV66i9PrrqF64iLqdO32r6iOz30YURWkzZgyRTp3Ye/FQzn37ZSLuMu/Z7h4zlDpnJR2rXBW3kKpv5Stvs6DWprYvnHW4A/aeAxl9HlwlA+zuAN2qLK/8gUQBdJ0Nky+3aH9c0OWCS7kqdiYj97WjQ81KAKbbH7Fjxxo+7iPY2FM0+R6KeQG1lNIBYkKI9sBUIcQwKeWKwDFPAk+CCiY2tCE7ytojI3gaXXNA6n8H7QJr+CAsVnl/e2+oINK/L317D8det4Wu736Mm3RwUi6v7SowsM4ezoVnjaRdcTu6bazCXfE0Vp2DsG26P/hDtgwbyHN74lR86XrO3XEdW+feld5r0WhnBjdbVESbi0ZzdM6cjIDJkO2Q3sU4cwXgAx0pEYk6Llru0v3mGHTBW77V7dzJJy/8DRtwpOKyZaqIgyWh/04Xdm7wL9+EAl3puAgpOTZvHsc+/JA2F1/scYfU1TFk4R4umlXnAZt0XY7OmUObiy/O+qyCNIPtwMbucKitTcUmQbe3l9NRSPUMUjz13OE2m/pEqRowivMWDeX4tFdJWC47uwhsy2Z9T9jWt4gbrryLTl1i7P/jkz4pFOAF247MfCWjTXpCrlgvWdtLMGSHQLqKX64e0J3VYjsbuwruedP1ee0A+wd0ZEufavptreWT9jbz++5j9bEp3LgYbklxlA4gVWYGSUuyog/03ucocAKsiM2h84bAgnkpLtqlStRSFImoFHa9HVzWXk1ZamLSx5o/E/i5h9PW2yl7XS/liPwbl3DO5+7yqTc6zm5P8p2P0jW/9Ylsm2jfvj56KNKzJ8ndu9NbeAGbu0LHmgh2qv6yB9KWpcrdOg7ScRS7tW0nUoqMcW5LuCt5Dj1uuQIx7xHfxhOep2tZKUltmkaQdXXI48cpvf469vQULHplFcNk2knosjfBQ28nlZMhjLHgwN2vO6mV7/6cXW4Cdpd2PWh71hClTpISYVk4ZX35y2nbmBNTq90JV97lFdU6lOK/z/v197ln5y+adKd20xokz5NSHhJCvAtcDayo5/AG2aLOh9l3tsV1H6YLl+uBYnrGg/ZHQKhovyNgVxeL0luvYEtxOyq+cDun3SX58O9P8YR4D1e6DNsmWNXXYnXxSqKr1zN+5Hh+cuSP9L0Vhm8v4vpbfsCWYQN921d9eeiX6fnDGzjtpYWcUrlB8dqoRph8qdOvJx/fcxFDF84lkkzre7UFJxz9t2xLST1wtZZVB0bWL56tHBcUhVC+QarlsLCQMs2resSREFjFxbQ++2yPBwUgmeTI7LdBD3RXEt26Nw3Suj16wgmTgEUi7DuvjKr1q+i3Ry1rLWDALmCPBKkmhggQH2jR55xLOfW80YxovYZN66fx0ewXGfd80stIG7TdYcwKWPmjf/HKkEKq9otte22RwI7Pl9NN1mQMWrPtvQ4AB9RUommGU1Zu4TJgTAp0gxOlfXo/7qIDF/1tNlZdkjo7yU9vs1nR2+KmoogqxRqxkP9+B3v3bOZ/mQO43DnLRbgKwHdcPYJWc96hQ6q7bBd4P460LAVoIVI6gOjpvXH27sU5WuvdZ/CewkwAzpHDvL/jY+9vG3rZbDhrBJekUui1jbj0X1j2O9gzdQrd3l2p1DaWRbcHf8jWzgL7336C5ahx5OzbR9vPXcPhVF0bgRpv7rfuoN0Hq7y8BVeAHNSPNqecSnU8rt5PSAUvpa+deooavLyKkpKtVA8a5CW1mZ632gosQEVIybH58zn24Ydsu+sSWh9zvMCsBOxlq9PHS5Q80U3nL9Q7MQb61N6yk6Nbd4EQRLp3J7lnD/aaTdy5MULF+Tcy+NTB9Jy6kCrT+0+lyk+4oel3ateWj+qjM1CXAunWwOXAfzVpK1Ca1DX7VLeaVINjQcRN0yGvRlbx+SIbty6pBPK9Yd3Hk30p2Zf84H/oYJRAXL12ileMZer6qdQ6tazpBWt7SazWa+i+57C3JVNSJpmcOt+gM+GBFXhpyK9X2IxbKD0Omi072DjzbwyOu74XDEI859QAwjjO9Ey1Scdh8a8fpONH26AuiWsJLCSkAGFdd6X/FqSy94zvprk0iTP6bORbBkjr86e+oOmh6Obdvu9rO/rOO7T9/Oe8YI9Z11s++igdE+rZ7Ook6Llfg6J6gfW5Yhtcto4RDF93iIEdJUk3yZCtrqJEUvduAzIpGbrV5UOj+l9JeTltLr7YR7+s2rKYNZbFpYF+Dmu/uZz1luwBkJYAluAP3T6m7P1aRJ2S40WS8C/vu0y/OIrzm/vptu4QJaNGsranYPyb93LckVw/XxJJqvY7LvScuTgjGUL3idmm4PVrN271whwgMmi2XGC9Jf4usztv8X63LCurJzfi0n+BS/9FSTjfmc7KPhYrhls8vuhxvjRccnllmq8//PfXfH0akRZdnLaUfONfORpfhJtIKE3+6o1Uy42+Pg72u/ezlBxfvtyXdRw2KZlp7tpJ07V/+k+YxbHThP+zwL/2qaeqMq4hbQla1r5NyQaTO9JKI5F0GLpoL+K1F9mbKhGrJI62FwRuaLnbhlg+HnV34JkUT20BL0gpM9eejbRYlxjWjXfCLyd6nbuoTHDwFLi8Uu3j5gg4GpX84a6udFq1mxWpnVWA0Fq0FV0rmFf5FDd8IFnRG9b3gpUHVhp0hOTl9S/z5SFfzmiPUl9YPHp7lMFbHFb3tbnlph/S4bmPOfS3vylvWcK4D/0vpwkc5kBoc8klJPfupWb58owlbXAwVW/cQIdEKihmaGEdFwbtSJ87eF0LPHoksfzjjIdrtkf/3KY283yqA1yOvPY63R78Idt3rPIK7/eauhBRl/S455oiP8slu3ZGpNLEbQf6T5rNPvk2w4siDL3NZnVfSdJ2sRx1UVcAEYtHEzNYucS/H1+kU6dA+yXvnCG5+COLSFJ5he7wgSypWUf5urQWVvdXkDoLe7G3j63g4+6V1DqCG3UWIXDmZsmZOx36XaWK8APEU+nLAK2PS2+1pAJ+mYAc7HsIpGsDLkItsY1vBFeS6o8iwzP/cLCp8IUhpw6pFyjW9hTc3XkmdcfqsD5UO97PGW5x8QqV3COERDpuWi0iBFY06knelj94E7tf+huDt7n0PpA5nnT7c70LBI4z+8R3vCW8euWgwP7MjYHxFjivc8BfPCrM6mtXhgmBjNjM2TaHMQktqZSIZJL2115K6RfvbdZtuCA/1cdHQPO2ImVn3vMdDrbtxZE33+LQeUP4TfTPnLatjjErHCMVGNZ12AvnW6Hn0OUUbWwG7YTv/0UFta634eHbFH9pWtJNsmjPInQRJW0CgSUszr3yy7QrbseNuo7w9QM4mKprEPTg9L+ugBX9BCM2pc93ZM677Pj8WfRcHj5QzIHd/WCmt60BwSsranwvjM8v6t0bufuQd51o374ktm4JDdKC30NJ/9Fl+45V3NXlVRLHEkTfnMnEsu9SHI3iJGpJWpK3R1j03esSccGyI9j7D6YnDstS3KzrInQJ0it6Ic5th1O5kme3T6X1MYfVfS1Wd08ikT5deOn113Fo6lRkXR11lmTOcIt1vQQ/+2KEHx66kE6tOlF6/XUkewr2Pfxzur31ke+FN/vObtcO98gRfAElIejW9XRssRxwmTNMMGSbVLp6CdQl2f/7P9D2yis4vnIV59Ts55N9LoM3J+m/O32N4LMKA+kgEAWfoTDOIFHFqVyhKBQrEqHDjTdRev111K5dy5E336LtlVfQLWbBgp9656zoWsHfXvqp2uXlkutCwWPmhplekpXeIUjz28O2So60Fnx1luOpow5cOpxz77rfO9fgUwczaIWq92JaGNgdLYbqVtClKpzKCfWozT4LSDqD1wlzPEzFSbZ26c+PFMMptamJNltBt0iE9jfdxHvDLd5d8yIXV5Li0NVZioqONDtIQwtNIe9w6618sreSjnNeY12vPfz0Npsztkq29G/Duq7VWb9rFsVxcBi42U0rD1IazCBQAxRbxRTbxV5xnav6XcUbm9/AlS7Pr37eq3A3cflEKnpWsO3uSzltwlu+2gC13doT3X1IeSISztwaGCRJh5qFcR+/lm0QWa7/d9+xIr2zTJjHKElFvhf566XUbt2CZaWlTkHwEIBzxQW0d1ulAynRKCv7WCSOpev4Lup8mNsnP+Xtkbiqh8vebhYPRMdxahUcevFF1VYhaHPJJRybNw83kcC1BW5sKBVdB7KIODvPs3hzrfIo1RTpX+WM7T+WWHk5fZ95muqFi/hryQrWu+8CEle6iNfmcCjpejuWc9f9bJlzh69Ykdlv7tGjfo80pQbpVAWPR66g8/Mz05Xc9Pddl6Pz5nE0xfPbwLWBZ2VCiVPaFrvqiO/6+jjTMkE6DdBSwM7ynvzxjD2eEmbo5bdw680/AlRwUO/4rjcJm7V1FoM6DGLRrD9z6Z9rEA5sfmYq/Z5+OgNE/GQZnNXlLJbtW8aGXi6beqvCUls6wxlbJWv6Rnjgnu9TYnjpPdcdYq9rEZQLqg6yQbpePeg2tQoIs1mGE2L8Hgbs5qcSmRo5BL7lP7evbcbYB2hrts2yvNra2DZtRo8m0kk5AusOrkO8/TJ2G5vJV0rufNPBdiWWDSVjrsl+g01oLQ6oIXMrq3W91Kx/5xm3suzjZzB3jQa8OrcfG1QIwMd9hKedTtqwso8gIiJe8Xxty/cv54tDvsiag2u4vM/lVCWqeG3Taz46xbfx7OfH88z2OXzl9YTi1IoiRL50M8nfTIRUhp8VUrchYUuSERAGIATBVr+sYUEvbJuOd97BgcmTcZ10EDGMj8sY5JKsO67o3z9e/wH2b37M5++52wtkHu8piL450xfNLukSw+kpGLrBpkvNfjqWdcTpP47SHVKlDacK9Xe8524+uekib6OBTTv+C3aoVYxZMF4gvAJTAI7rePImvZv8hXsreebND6hz6xi2TaodXYydWzrd9zXapHZHD+UnA95S67PP5vhHH3HoxRfpZVlIJ72mCqOmwpb4BI6xDJAOdL26L6E85YjjP4d57lkjLJ695iAQxZGOUsJcNC70vKDqZ98y6BYmLp9I2aaE55i4WbaDGtd/HNPXT/ee5zfP/ibgL7O7oVeCTb0tHjjngQwqpWTUSERqgw89IavGq7tsfcYwalYs91ZuQXlh27HXcuTVv/ueR3DiIvBvOFhnJqnlslPvvIODf/4L0suWDFzXdWh//gCKBgyj5Iob0+VypzyOfGgyQx0YmCqX647uRff4ckrGXEPJVbfXc+WmsRYJ1MGtrHTx/bIOZXy07yP/rtHb4Yep4jl6k1kN1tbwwTwi1jJki8OqPja9zruEB4fdCcDjix5n+X7ldSbdpLcd1pI9Sxg/cjxDd9kM3Kyqy+3vtd+3+WZVoopR9/2Qhzv9jMFbHNadVsT3xl2GOL03uyY8SY/KHZimB9HAnVA5wKZ88Bhard1B7erVoaCqk22CfCauS7R3b+r+5yFW//KnnLHR8Wljc3F+AlTw0bZxU+nswZfjg0Hw3oePUnb1ZGKpndtjpMpHrplKxfHjxGoTXp0Es7a2t5lsSlKoOc1Fyxfz8rmpNqV2Xtcb895UdhPd23SnNFrKYwsf8555mLzJtymskWFpboUU5LSrO5ZQcrAmdf/CBw7JffuURl1TM5aaOk0ZnUlphHnHQVAxLdK1K3V79ngrrg3dBc9ebuMiGbNCctlHIBz/xOlaMGe48PpG91U+VtG1grdPi5KcVwNO9sJAsS4xJl01KXSPTaDeTRMyNvjQ3Hmq/nT7m2/i+Jo1HpD7VmzAQatGJVWlaoC0Puss6vbtI7llSyg1BOF9L7yDMifX4LEIgd22nSd3rZo+nVpDkqj63qW0eD4liQ+g01j1wbaF7JzxJL2dIm9V3n9TDSN+NB5uyuiarHXOm8JaJFCLwBx6ca+LKetQ5tX+tbHpVNKJXm160Wd+3EdvDN8mcM44nS2Ht7D24FqsnhbrellIKdm8cz4X9ryQqkQVNwy4gXUH12Vsh1Xn1uEuX+VtCy/n1/ET911kTzUM9Oab8T1x1vSEVT0FtlB7642kHd2W7fB5w8X9+yudqpREXKhY52BtnUf0gguoXb3auOdc/ZEyKdn9459wpKI/CwbCoK2ArvGbyvzzPHUBq3sJXCkZogOQRTZrLxtI3erVHGotuXAV3g4u088RzC63sEL2CYzVJojN+SM4CfjwGeIX30fCSXgg4tvaq/wenxdXGi31NvLVdZ4d6WALG4n07Zo+c8NM9K43Yfs/+uoJTy7LKLZTev11VE2d6qU1lxyoVhruEREuHnwNkedmeucq6tVLlevUltLxhm1rZQJAkIsOg1EJHHGqaWUc3/qGa9ly6jvUuXVs61vExfd+ly5zVqr2ptK2n73KZmNvpdUdfOpgr0C+ngRzvfyxLjG+d9dTrBmgdiLvd8l1qjpcyG5BudQJ+SgXSq+/zrdy6vr9+73swpLyco6vXJUGcrMfLdhXvY/uWv4ppZfgYx4XlpWcBmvhfSBk+inpdJzgBAt4k7lendntS9n10I+9cy4eKDhzwGFK2h2nMtKa+NI/UFEcJbZ5Lk7XBEm7yFuV9zijLLRP8t0J/UStRQL14FMH+34/pegUHl/0uCehA9hbvZf91fs53Eel9OqOHHnNHUS6VLOxSs2YjuYiUNtVmVsl6epmesmnd4eoSdUIsCTIZJJBWyxW9VRD58KeF3oPIFgXd+fUP9Db9b/AxUOHULt5c3owSpCJBIfaABELK+lmeB5BesJnUnLqovXcacPkK2xvIwKAW953Gb5JKWSQMGSH4J3vX8662ip6zYjT7YDDwDdWeTWxn7kmyld63cCW/m15serPWNn2Cdw8V4G0dMBJUHH8uLejuYuLhRXqBVfureTxRY+ngFlw/6lnU9Z3DDOPbGDa+mlMWTvFB0K5NiENmn7pgn/r88zT7P/9Hzg6fx6WVMG4fe0kH94wkLEld/PJU5NBSqo//JCMLakC9Ij+JNEmSvRoIhwEAr97z33/Ee9zhKC8eAATrrzd87hGdInBpXhZeSWjRvLFnoJBqc/D9vgL2+zA9OBiXWJe3ezmBA5dy7n6rZcpKdlGySkL4PzboLcxYerKea7rJQs9e3WUL11wNnL2MtVnUvpKuwY9Z9N52dIF+u01/iCEUqiYqhDjHHPPsDij91kknAQdx5xN7d//wP5fVtF23M0ex7/jlSlsKu/G8CvPZcS0b1MZac29XTuROLiU6GtfZbzdnceHtKNPqWTYFsnI9ke5dtWvYdsY6D3K1yf5PK/GWIsE6qpEFRYWbirU9OzHzyrANUwicXC8iLXei61jyVpqD/kjGCL1nyUsn+esq5sBnkf38rqXmVG6iVhqL8SkhQeEAB1bdwTCd+0WF16B/Ov7XmaVAxz++99xU+U8vYCJ6/J04j023SY4Y6tF6+OS6z7M3MDV/Dm47Is4cOmOUhadeoje+yTtamDBIMGwzdJThgjXZdwCl8r+pfRf6+cERarG8+lfvo7h5eX02ntZ6Kas8T1xKjp0J2ZHFVjbUWKDb2LCiNs8XlNvKxUcmHrwqvrILlXrXie2dAbxi+8j6SZDB3VjB3xJeTmdUnpfJ5EgacPaflFu6FqB3XZhqkMV3WEm1JhmAoYLRI8mMv4efCbBZbqPm5USu31pqLdqTjgx/CuIbAXyIQ3EfbccZ8d2C3HLD3z1spsbOEo61VFS+39QnVCJf0v/Ane8Ar1HKSD/r+9S/e5r2H2Hs726mpV9LL506mCs1/7KKxWCaxb5g+bawvrUsaDI9a9fWpWdRvv2y9n9YYn3Pf1MXGB7J3i7y0cM3pKk918+omiler+OLVZ5eh1uvZUtlwxiz544vbsMha/OIL70DyQOLsVFUiddZh1ZT6J1K9b2stjQU9L7oITDCeW4BIA614YGTWEtEqiDu3SbgSbAA1xtOtgIIHZ+EMrrWcLiy0O/zPOrn8+6O0R8TxxH+sE/GKA8UHPA2xA2+OLJYQN57cbeXPPyNuU5C3yaVEgBuICSaod1vZTc7Pr5borrzfTWdB2ToAmg//JPOI108koyAp+UdaLL2nTK7NF33+W0nf2873geoQRr8cdsvfMu+kx+ilh5ec4dzydd/2tiB3dBv9FqkO6tDGmV37zn6NRSJF0qamrAcTyPPOw55Brw+XKAJeXl9Hv6aTa8M501fSy+d5GqX3zgo488TlVEo7S54nIOG+nowckwF2eaLaC4ureg/y7p267MFaqWTUOsvgL58T1x+myp8eIz8v2fUP1smQf6FV0riFo2da6kSGRPhMlq2xYqQOo3msriaGY7Ns8FxyjK5BgAFn+akg+/Q0krl+pVs+ne8y56OUPY8+2f49Ye5xqRpulcYGM3ONAWzl5PRpastCx2jz2bnq8s9mk82t/+FZwtK+DDl4D0s3FRNGDJcXjguURAyaOe2pE332LLJYN82cgPnPMAFed+i+jrd1DnJimSksuPVbOkVTF1QlAkoeL4cdUXR9dTESi6FKtNMKHrpcRbtaJi0A2fDY461iXG+JHjmbV1Fh2KO/Dqpld9n4/pNQaA2dtme387vfR0NldtzlCEgPK+JZJ2xe1yDv6KrhUUWUUk3IQP/E2bvW027+94n/tH3e/zJL0AW1ktC76oij/VnGJzxxtJVW+DNP+WtP1e+sd9BMkIXrKFDxBCdozWJvBn+OHAqUNGwIZ30zI0KSnt0Y8jqzb4PA5QHrebSDBn5v/Svee/+vojuOP5jCPriY1WErGwYGJwo17dLzoQWRp/mnjr1mC7GR65yUcHAQqULLK+jX+DVlJezvDycoaTLoLvSfdsm67fv58df/1T1i2q9O97OkC3g+GgLS2B7N0De0s6eDyw/FK2fOM0Nv51Mhd/pDarlUU2O8ra4w911m8mHRTcmb40WsrQrdKLzzhJlw0zJzC8/H/Vd2sTTNi1l3jUoiLhEqvN3GMxq21bCM+MAydBZesS7u3ehYSbSkaKfUtN2K07gl2kABrAjqpJfNtC+Pt3wE1Svb+Ire+0RbpTwJ6mgrYyRf9ZKjFLRgTPXCFY08vi0qUO97wpvdKjoMb/oO01HHMcr+fbnNGFDuefRvXAgYjnXvFiEls6SXrvU+UVxsWlCqqiQT8N/22vvII398S98ZuUSR798FEmXz2ZCWeNJ/72A1RUH1N9ZhUxq89wLt9SCcC9XTuS2DOX6BsfMuGqp9TzSPVXzEmolWe/zzfwSddvLRKoX1zzosclW8LvT9rC5s5hdxLrEuPFNS96ewmawUbNm5rBqyKriMO1h3li2RNc3ufyrJtfTrpqEpNXTGbO9jlIKYlYEQaeOpCP93/seeoJ1891a2DRy/wNvWw6jzqXr4/4Oj3OWcOunz6sCgTZFu+cKZgzTLCpl42N0gRv6GXxs9sFQ7dIak6x+UrRaNruqKJ6yRKPN3VQCSQlZ53lBWCC9IgloWPnfkR/9CC7f/qwejEiETreczeipLWvfoOTKjBUZ7lMshew5c1KH/gFA7oHatIZX+a9ggom6qBXWGF9gHs3zyTh1hERNtdtf51x/cdR0bUilEcN46uDtNXMHPvqBa164SJfZUFcF+dQFQfbQMfUn7zXOCWB3DfvHcTazXQ75A8nehOugElXWuzu9gk//IutSmlGIvS/7W6cnoKlXap59eP1JOJLWNFbsmXHY0zYm7lpa32WjWuuSlSxMiA/XcNChm9bqLzazXOJ1VQTq3aoLC5m4oJHqSj+cX7XN2IS8ahFwq1TG144CeJv/4DYoSqwbCi7UrWxOEq8Ux8VgFvztjdmq/cWo1IbZDpYi/rqhi+U06/1ANy+JWw5/Cy2lLw/wqJsaDkXbyil6LW5qjBUURFth5ZSXYnaXsySdOy+Ep7+PCV3vEqfyU9RNW06VVOn0ndfHaQ8cqRA2gLXS0xT65vWFRV0uPVWKvZWYgvbW6270iG+4L+5p/xfid34Aix7jsq6Kh4/uozEsS0sObWUsUePkRACVwjq3GSaTgrEcMKokcZaiwPqyr2VPPrho14HSik97bMl/NpOrSHVNuHKCczcMJP9Nfvp2Lqjt418fE+cw7WHmfzxZADm75zP+zve586UVC8YkPntpb/NmARMXbfexNTk/4JL9q+P+Lpq560xigcOpHrhInaUtedg6zUMR/IDo23ac4zviTNyXzuKvv1zalKV+3RBqBWnCcTdt3KlM4iaxYt93rEZgDww+Wk23H0p/S2hCgal/t5qQBmHjWJWc2IRupw2lBdKVrKmF9gBHnNs/7G+DXTf3/G+R/noe9UeCSiw3l+zP71BrJNQ56tNKO7PTeICCenw0tqXmLlhJmP7j/XxqEHwDW4eawkLgcAWtm+fyXq961EjoSi9c7dWAbQra48Tf8hLPccSdPvRg3S49Vbstu3Yt+a3vtWMhmxpW0y6QjCrXGDh8JPbbAZvgXWnFXFjyXoef1N5/lYU3HMlrhDYToL4mqkNBupsXHNF1wqe6B3hp7epHII1vQXDSvdT+dwNxG6fqrxby6YyYnNvt84kjq0n+sZdnheYk0bqN1p5yE6CioRL1CqiTroUAaXJOia2O0VJNVe/SmVJG+VxH15MdNN0JvT7F2KRYkjWUtI1iYgWIR0l3ev6/27Defd/Kelcw1A5C275d+g9igkrehHf+AYVp19FbJjSJVd/wditpVMdxXtfo3oXlHSppaRTnXoplj1HybW/URsEJJPpbdmEQESjdPt/t3H8lT9waENr9RyLiujynW8DasXxQMeRPHpgoXK4XJeKlW/AR2/AV2fAtb9RJQOWLFGTlFCuS1RK6oAi26DljP7yVhZNbC0OqDVPrE3zR0GaQUu59IaX2kyPTn8W6xLjvrfu811HUxiA98IHVSAJJ8GSPUuYcOUEb/dvLR/TKhHNo2bjFCv3VhKPLKZ0TAff0t1sm2k7p/6BvqkaxpDmnqdf3Ir7Tx3M7n9/mGBhdoyfXdfh2FuzcJMyJVl0vAFPtAi3rg4ZsRh9z4PIYQPZ8ua92Fk4+xvKbuDFtS96fWQC6YQrJ/DEsif4IBUTsFJMoKaeXFxKj30C08dREYFo107U6o1XkV78QU9uGnz1zw+c80DG5Kefz86jO5mSKrSVcBI8seyJ9MRocKvaqylJZThWTZsOKFVCSXk5Iyhn2c82c2jCBDochNK2LsXt1dgrGTUSWRRJ1ZM2JkPbJvmtO3m/1V+xU/ewpqfryTRnbZ3ln1xQ6oYiKRXHmQUgs/1db7qr+0U/o1iXGJOufpqZs+9nf4e1bGhdwhrRhpltJBNWTyF2xX9B2ZXEd73neYGJFNADuRUhvUcpsNo8l1i/0UxIcdSlxz7hcedZEgKish3jDxxkVpvWaY/bTRJfOoHY1Y9BzQFK+o2mz11FSh3SpZaSTrtgyGGQjl8GN+x2D6C1BVU9Jf85lZLX74cd6RwKju6Dub+ipF93RFHEq93e/sabKD1/ICVbJ0LFIUr7HaN6bzElF12hzpmiKm5xEpS1LiF+WgUVGxYQO14DwvY8Yv/4sxjb6xLGglo9mDy00V/muGtKa1FAXbm3kuX7lnvLXP3Cml7zi2te5JEFj3gqkOnrpzPpqknEusSYsWGGLzHF9BAv73M583f6d9WoMxIwTOlecJkd3xPnnuH3+ICgLPYt4rI6I2kg+PKFLd2D+xyax/a1j/NDyyWKSml1rh7NmlFd+N5F4+g5dSH7AmmwXsBRqFBL0pZ8MEgweJtEuALLtqnbuZN1B9fx2G02ZZsc1p0W5XvDBvpiAWF00JBTh3g/u7i8bOwOPeHKCXx9xNdZsmeJB6QdW3dE5/dZWFTt/RicBLGkw4Q9+5k58AKmHdvsUVFj+49lbP+xXpXDl9a+lMkZZpn8pq+fTsJVgDh/53ziu+NMKv8OsWnfTns2X53hA+uwmgxlR/azZasNLhytsjn2nUfo02UIa3sK/us2m7JNNmW74Ox1jrfjRw+nrdcuU9pZZBVxeZ/L030iLMbvP0CVkJRKwcxex3j5jTtxXHX/etw2RkrXvec5yP1rSQoUGANPVH3M11c8B1veYXnbVmrqlMqz1zEBz0t3asM9/d6jvL6Locb2xOUTSVhqk4cE8GinU0nV1sLSk1FNDdQcgNHfUZPP0alUMJnYlmrYqtyKylat0jK4N+/N7357j6LyvHuIv72RiupqBu60qJ46l5Iusyjp4tLn4iKqd1uUdHMoGbIOFv6vx5+XdKpTXni/DupcBlURq6km1rofJBcokDY84mzOV2hLjf5qDmsxQB1MGzdBWnsbh2sP80wghbzO8BKmr5/uLcVtYVMaLfWCMBrsp66fyqpPViGlxBY2oLxFDRCAb5nt8zS3LaTy+Ru9AM09t70MWQZY5d5Knlj2hPdCuNL1vE6JZNp6tc9hUJa2phc8cnsRdyXP4eKx/58KiqXOWT1KIoqLlZcnBFKA67pYRUV0f+ABtu9Y5a+/cfB8xN/n8MkLf4MpUHubzdTzlec3c8NMZm6Y6VEIS/YsoaxDme+FqUpUecArEDiu45sE7xl+jw+wVn+ymiKryAPiitOvUktJJ0EsCbGR32NsiIJAg9XUdVMNztD1T5D1WMJNMHnVn/ltA7nC6r3FqeiqAhHpuFQvXET8fIuV3R1WdBcM3iEo3yywU0v4klEjVRLQoSrodyZl+mUWJcT2bvVP4rUJKldP4d7db3F85xxfe2dsmJFB8YTJFfX4dGQ6td4E90i7dkSkS1KqN2PB0c3EFz8GXU6lLh2VU5NnamUatWzqHEepceb9EVqfBhV3hHdSyjmp6NCdqF2sVkNCxVe0w3BGoo7xn1QRS6KUIl77jhPtXMqE3bVeQDPeqq0H+LVOLTOXTSTW6jTPGw3bObxybyX3Vv43te3bMvhoG370jovluGCVUHflYRadZlPRXWXOsjqkuKewodsI9XO/0WBFUnW5IzDidvV/iEecTwLQybAWA9TxPXHPwwX1oq7+ZDUPf/CwtyQOk90VCZuK3euIH9pG0tVbLAku7HlhhkpAc9rmMnPdwXU8suARH/hHrEiGqgNQL1znUhJCEJWpJWYIEARVEWFmvnTgl6Vt7G2zaEBvuvcUvtnbSzTQVAb4BnQH4Ht7r2fNezMYGnVB7sdNqpKktqMK7WglS7BPw7S2FV0rKE69mHpS80DYWIID3v1aWFzc+2Iv4EvpAN8LEDO+Y1qsS4wHznnAF6TNJinT4BW0OdU7qGxdQqymOm+usOSKG+FP0yC1750oUiU9K7oKL6lnfS+LzQ9/iXN3t1V1qYtWEX/5B1TU1BCb8wtiX51BrP2ZnlIiZkeJfXWGN4nHD31EYufrGdfWAdtcksSgzE47HzuP7vTA3cHmprZlbN/7EQtaFatgVyqqJvUehhKiuFQc3EusfYIJsgvxgx97ZQH4+3eg69DMiS3gnEz43OPEZXVG2v+aViVw9vUw+CboPcorCav53XirVh5QVxyvJYIgpbBn2o53Gbv7JWJzfkH1yF+z9Xu/yNg5XMsRh26VdKyS4EiEFDguTK1uz9QOFlHZjgm794YrXKQLr9+v7hHUZI5M/YvfIw6hzz5tazFArbcU0mYJKydAA1zaKcadH79DbNME1rVri3tqO4C0OiOLl2LOkvE98QxJ3/UDrvcBuv5OvFUrj++rBWZyLHQZFFRFmKYDkSbfqG1c/3Hsr9nP+zve58W1LzJl7Ut8tfQMvn32t7Iu4YPL+YE7JK1+ptKoHUv4tsPSkkBXuqlNB1T7fCuH1CCt7NCduKz2eGEz4BnkUeOG1MnB4b3t73mB2oYsCW8ZdEu9tSYAKkQJUSFISH8NNwnEz7ubGO3yfslKysvp++yzGfx1DBg/crw3cfzkyF+ZcIOSH977+uMkSk8h2q6ECbv3E3v359ChX9bIvwZiPR51QFQivQBtNtmoKbMrlYLHF/6chOv4iloVWUWMHXgTrP+QJcVR6gAh7NRuKS4RKbnu6FHGHT1GbPN/gfVrYq5DzBz3rgPv/hzGfN/XbxnOyZJnuWfoF+DQVlZ1O48XU6uEOukws00bz3HxTT5CUFGbdsJiiSTXFXfnpdodSBR1Fy8uIlZ7jOp3X/PtnKILS43c146KlGZcb5asx/XyPlZqclITAqD0zHoS0qMjeRyWPae4bT3Ru0n1NxOkUxOuR5+BOgahvPKaAycdxFsMUAeX2UM7DvVJ4oIWERHujPZQ3pN0qBJmgE2wr2afbyBroAkGbUzttD6vRPLimhd5fNHjPkF8aZdhiI3TALVn4bTdHzB4zYsZnnfwxdSmpYZ6Gbvu4LpQGZq5/J98aDlbXvkid47+CXQZWi+IVafS33EV1TJ7hM2+dpmJO6aC4roB16ngZm0CnhlHZQTFIVoWUbvY4xArsyS5VHStCEidMuuF5Gv1LjW3LYS/j2dc6yL220VU9RhG5eGNSCmVFz7ohpx0VFj/ZeOvqxJVGbEKgIR0U8AA8VZRYhvfVUtoK6JoFDuqJjpD+xykiKatn8ZLa19i6rqpHsWXcd/bFsK7PydWfZRYtWRiaakXuAsWtYonqqj43ONM2LWMmRxj2m5VadBGcP+Bg9xy9Fj6vN7KVYAQVEaLiLcqpmLHfGJPfx7KvwQjblOeseGc1AHxAx8Te+U/QFi0ObUDtDsFUGPaK08b1MPvXkds04T09aXLuM2VzOzaiTrLSgVaa8GKUDLmGsRrK9IFt/q1gbm/omf8EHtdkapvrjZLPlAqWNPXZnPvImzpUGRZlEqLe7t1SU0spUzYvQ9w08C95M9pL1pbKihJv9F+qV2yVnnhuz4y+izVb3bUy8Q8GdZigDq4zO7cujOWsDwu+YayGzhQc4B3tr3jKQfirVp5qc0VCZdiq4iE6+Di8vH+j4lYEW4su9FTWGQL2mhFh/Zmp6ydgiVUbV7NXT+y4BFsy8YxgDfpqqCXIx1vya+LPo0fOZ6p66d6FfoEgiEdh7Biv0phdaTDowsepqyujris9ikFvIKbqWXr7NbFvLf4MSyryKeKMIOs2naUtceOWFhJsKJRLr73+zzFPI59shqrejdIfAoXH2jN/RU4CeKnnEJCoFJp81AKNIS2ABq1tNQeXm0qeGpVrSNiRbmu7Dq/AihwDZOOytV/5ncVJ5tJSUTtYuqcBEVCUlGbUMtq14GzvwKlvans0J17K/87VB8OKoFHrxR14LSsgyr246mZ2g5QgdHkcXTouOJ4DVE6UIdLEYKx/cf6n4tlM6HbFXRv1dHjtSUWVZEi//1ZRarNdpTKi/6dezf9lYR0lce8ey+x+FOw9M9wx6tUdBhEVFhKnpdSrgBURiP8qU1r32nN8rRgTLrtF8KHz6gEmuIo8VZRKmpqmLBnP/Few6jYtUI5CXYRJUMHpOm9fm0oWaSCwyWftMYq6oRblwRb0L/vUU7p5nBjwoG+3yB+aA0Vp19F/OAaEhtfTlEuFjMHXciMI+tS99eOCbv3Eaut8/fH2jdgzWtpbbjmr3H9KhPPJDi1sOx5NX5PAlXSYoBaz8A62UQDMijvT2ui5++cn35xBt0A/T5P5eopxFu1YnyXYczaOosFOxco7k469GjTIyNgF6bbffC8B5m4fCLvbns3EzBRqgfXV0NX+MDcwWH2ttletmRE+Lu2yCrihgE3sOrAKr/n+fYPqLjsER8gXNbnMpWNaehCk0hIef3my52hHNn5i9TGvRGuv+X7jLj0X/gt/5JT0uhZSg9aUVtHVKqBrgHKVNSEqVbyoS0q91aqcqkfTErzyHppmedAj7dqpUA6NYlp79J8zmHL1/ihj3yZaI8seIRVn6zK7Iv404qvlS4xu5gJ1/86Q90zwQweTvt2Wi0w4vYAPxteZyNsBaIDu3plNx2LSRGIJdMrylhtggk7d6a9w62VTCxOGgoOh/jHzyvtc/cu1MkUpXX5z2HFK3BkN5R/RfG0qf6OH/qIxCZprBBSXLKTgHm/ga3vMa51BAmKOtEBwdatcdKbPQLh5Wk9ELv6MSoPruLeXW+ScOuIlrZlwu793LM+jqdhcpPqXe5WRsUNo1TyTMq7LelQTZ8vdKfaHklJyTaG7Z8KOiv/nV9CcZT4pvcoPefrRO1W3rsku48gcWRd+v5atyaWSPq9ajep2uA4sPpVBdj52NE9fg7/g/8mdtvLn448TwjRG3gW6IZa2D0ppfxtk7ckZe9tf8+no4Z04M1UGfhSt/fMVh7Flr8zfuR4n2QsWx2JsKSJYFDntsG3eXWqI5ZKuknKJBYWY3qP4cKeF/qSc0wz/yYQXD/geso6lHFRr4uYs+0dZMqDqaipIXZwV8Z9nd31bP5n8X9zsO6I7zzexBFCL5jKkfW9BVbrNSwKSb/Wk55nZl2H639NfNULjKeIqm5D1WSIX1ETplqB7LSFniRUfyfSKoBEQnF/lX8NldR5bdO8YpsuHD4lokAaVGJDUJkDvuVrZQTiS/9A6aBrfeDokE688VYHRvqzOqiW2MFdxEZ/x3c/vvsMBEuh/gI9YSsQrabRlsDlifbt+PpBSaw2XTUyVptI866rplNx1UMZ9VRiCYcJ3a5QgKcnmIBO2WtrcZQoIsNjBqg8us3HT487ekx5m2fcSOnR9dh8gpOSYurVpK88bWDCjF98XyZtZNxbZXGxAvKdfycqIkxoGyNmeLcltR9QYi2CzqNUISj9vWhEpXYLQXTtc4w/5wfpuMrelcx0XeoE6fsbdhN8/LJaBQlL/a/BGqn+noVy9dnaN1Wb8xAYNNby8aiTwHeklEuEEG2BxUKIt6SUK5u6McFkFyCjhGYQDIJeclWiyscH6rRm7Tnpz8ykCTO7cFz/cT6v89I+l3rnevTDRwHlXevMxgfOecCn6zZNKyV0fWFPTiUsrjtSzbijRz05U/C+yjqUccxJVwGMWBG+POTL3sSh6QWTd802EYXpwiG1zD66h3FLpxGrqVZ1Hbp1Vh6PlEz44ANi/T7PT7e/7gMRUCoRn6wKQr3iMAVMnRBe3Y94zWYqIhBLhkjqti2Epz/v6WEri6P8qVtXsNKe3Hk9zksnu2hLrQw8rv3gUqKLVvLloar/9CooQ2+/eW6g1KnIUI5k8NzBYOm2hcQ2z2VC7FvED64JBLTSFlyBrNv4JhYSx8iEXNC6mCUl3ZkQ6Uds7TsZ56DbmekxrVcqCcercJgLMMz7mHDaF4gvfsLfVitCvOcwEnvmpoF1wAXETrueytk/5PHOpThCYFs2D5zzA18JB4/uCSuP68kCDRqlOEq8VSt2tu9Jwj2aStGuI755FrEgn+wmYeuHir5xk1S2as0T7dumeXQpqdq7gorjx4lvX0zFvk1M2L2XmW1K1OiTLqyYAuf/G3zwe/W7EDD487DuLXV+y1bP3kmQUomDHVEAHvDE48e2+Tn8Vq3CddaNtHw2t90F7Er9fEQIsQroCTQ5UGueWgfVvjxUbSybUwEQ4r3oY01dtpkYY2Y36u+VRkt9A017nfr4icsn+iYRU0usS6Tur9nvrQiKrCKfxM+cUBxseoz4Yk51gilBEwhuHHAj3674tjdx6Ikr+HKETURBXXhptNTfN53bM2l3rarrIJPpQRe1YPUUpu+elRHU9cmq3n0MEGqQB7zioAJGICiyiygtu5p7P4mTqN5ItGsnJuzZ701angUqtMVbtcIxVtsREckEafAyxXxlK9062hW3Y/LVkz3v3hdo3rYQqral4gKp8wgL9qz0Iv6V/Ub6uWddoEg/Q8ODjFk2Md0nHz6TuVLQY6s2QeW83/L4oUVqM1sp6VuXZHO0SPGsQLxD98DLn+qED/8Igz9PrPco1Qf9Pp8XhVS5t5J737hLTchWEROueop7NsyFLTohTMBZX6ai9yiie+crTlzYVAz5Fzi4S42TFP0kpaQqUZV6zrWqr3X5gOOHFRDq++0whAlAfMXzVByvUfdeHPWCfxGOEZHgkM7kDPduJZz1JeXN7n6LWrcuBaeCIiSlCydx76lpL3d8UYQZbU4hIQQz25yieHhvUnbBSULPs+CC/1D917oj7K5Uq7iagypOUP4VdelXv50GaytCxY5VRLu0V2nlwqZi04fQ+unsmvQTtAZx1EKIfqgdyT8M+exrwNcA+vTpc0KNySVTauh3grrsMIme+b366vcG1SHZvPxcNRR8E0oOdYK+nnm8DhwFg1LBNusEkeBEZAYPM/pGQLxVayqOJ4hiUydVmceKhIqWmxPGaaWnsalqU4qXT8mqvOWyzCpNq3MS2MB1PUYzbsQ9qr/3f6hebMsmPvQqYuX/6geYfqN9Fdoqjh+nWLYjkYoPPDDwNsVj1iYygan3KLWsf/PejEk81iXmZUTqpBSeGecL3AEKZI0XM75hKon27VJgdJz4rPuJVR0BuzidQux5kIbn5dSGJ9+kgD1+ShGJDqUepVNRW8vOooh6+S3LR0ekLbOvw7x7D3gMSVl8zVQ1boRQoLr4j8S2x9Pfs6PQLUZs2reZYEsV/KtNKD7+6scUB65rXgibiqUvQccBRD2KwaFiayUs+pPRXAdeG0/s3K8TO3LMo5dMVYkjJTcdPUr3pJP27oWdCu6Z3m0xjLid+OZXSXggDefWHOfrBw9mKFVmnVKS6fVGWpGuI+nC+lmqf1p3TNFfgQli9wql8rjr9TQVd2A9sX2rmbA7YcgBN8PGD9R3mhCs8wZqIUQbYArwTSnl4eDnUsongScBKioq8iB4wu1EMoHCvpMLWLN9rz5e0az3kS0gl639DZ2E8jk+Fxda3/eLhEUiBUBFVkS9iLW1KhI/fCwVkXbELr8JiqNEt/zdu8aXhnxJpUxrTjQVrfd51IZXHOsSUzTA26kEkW0vweCvgAHgRUKoLMYQsOWOV70XI3ZoCxN2r0m/FFse99QL2TzWrPrklDfLwqeV/CoI0pDyrtMeYUV1NdH2pWk+t6ZGfZ48rmRcbbsrLzy4XJeuAgDTUtI7nFoqjjtEZTsFfFIy9ugxxh49Rrx1ayrOuC2TOhECBVhRdV4tLQuC9DPjlMRMl+6ybPjcrxQFoYFWSir2bUoBU8o69IOlzyqOPummeWRhQ80BYre9zITVU4jvX07F5kXEajfBxg+YUFysZH61dcSOzCPDnFpFN7iuOhek2uK/d3W/QgH0536lgp8aHAHadIE9K6mYP4Folw6petGSrx886PWVec7Lj1WzpKRN2gGprYPWHfAVuN0yHyZdlfpTyI4GTq1qw7W/Ub8blJwvbqBt1fQmBWohs9Q69h0kRBHwCvCGlPLX9R1fUVEh4/F4fYc1u+WldAgc3xBvPi9rZunOCbU5Fame2boIKWzG9RxN7KPpCmCEDZf+AIwAWvAalSueU8BbXU2sLpl+mbLd59xfwexHMs4fep5cacxPXRX+Egnbk8bl3c8B/jvznBac/++wIF0zAruYymGfJ755VlbuOdwsuOyHaZ1u647w2neNawsqW7Um3v8cKkp6EVv8fGoCKk6rYiZ/Lq3ltYrgrC+r5IvX7w8PxJp97muKAr/K2T9M16q+9GfqPB6o+zoCJYGy0u1JbQ7AK9/EN7mJVHVvOwpDxsLyFwKnSlVPlymg7hGDHUuoLC4KJKgI6H9JOvkmOOkYAUDNbwefh+/viSSV53+NePIwFcumqhWgZStVVbB/cpldrLzqZc9D/Kncx1772wYDtRBisZQyVNeaj+pDAJOAVfmAdEuyUO82B3A2eV5/WJZTE4P1CbXZqFWMsKFfaXiZxlRfxfqNJjb8HvX73F8Rq9qu6lxIB7CU99B1qA/cfZalDGTs4C5iBw/hgUMwjdl8VpvnkrGBgtYDCwGLnwWkH0xy2bLnM0FapDa3TXmeVNyhgkw6K23EbSoFfsUr2QE+zCLFsHc1zP6ZOn+G1y2JJRLEWp8GZ94GZ34lc4ye9WWIT8YDutJesHtZeiWgaRBITwZ2NBN8pet5xTGTjx1wGRzZBTuW4APf/pfAkOv82XhaHRNcgQy7GboMTj8v02PtNAhO6QRbF6RAPzUOdi0jVlvnn/TsqD9DUlNK+j6km5qwRbg3C8Rqk8RqUwt/u1gFV5c9B8fVrvS4Seh7vgpMhoG1FYHzvqGurfvETSrJ4prMcgA+G/z5T4WjvgD4MrBcCFGZ+tsDUsq/N2lLToY1FXDm6yWfhILi9bYxwE8C6m/m8jmsKE2wr65+LO29WZo3lIALG9+FLR9k789sZSD7jVbF5F3jBdR9FHb9SCsFTEIob1eD6OJn0y9bNj442CdL/+z/zC6Gax7P7KuwFPhrfqGogcQx2LeGnFIuYWd6l2HA4CYVEFc+r/oqOOmNuE19pvujdUd497H0ta2I+luwz2oOwPHDMP9/VP9aEf/9masKqyiVXVmX7pNASjkQoo5J2aqZMOpe9XPVNtUGV+2wzv51sH+Nv08++H1KIqcDuKl76TbMf1490QcnHWGlADus/436kuVK386y5/2HtD5VrcT2rVXjV59b2OlVYm2V4qe1GmTN6zm8cKHG6AXfzPL5iVs+qo/3SZc9/sc2X3rocX+Of31mvuTZlpvmcf1Gn5SC4lnbGlwqak9zz8p0sMSy1ctsgpK24CSzanr6dxc1wA9uUSAt3RObiHqPUi9EKsEEu9gv9XNq0xzwqulp4DGBJuhpCyu8n41ElvQLnrKeZ/v7wfzO0mcV93zBf6QnEHPCsqNpZYr3lgg/gOyojwbUnqfMnGjM8WROdpvnKrWC/n757ZkedqrcKNsWwoIn1LldR40BSN+HNjdpeILCSyP3tQFSIKyDvEbfax638q9q7AkBfc5VXrTPq3dgxUvpZyBRfalVGDuXqvGr3y1zot+xRCWl6OsO/pzKLPQV6RJpakM7IgDF7fzdvvb19DGDP5c+r3Rh/Zvp/hFC0TRtu8PqEP9UWGqCM1Lvm9paTGZis5oeaMfNGKiEpc952WT1fl97KjrApMFp2XP+QRz02LMVFG9O7jpsqajbuuRPRkEaJ01bBNsQnGSGXKe8Dv27Hvz6b5YNVdsVuAXBNNdKpuKOcH67dUcDTCVsmA2b3lPAHlSGpHYUwbL8n5uTq5nIoukNzadqkDafyZ6V8Mp/pK+z9g248+/+CUxPWJob131vTuaWrV7wTzYanWts+zD4c0oCpqVxZuBRTy56Uv3cr9LAu2Nx+vkiobhU8emmh+2b9FKTiXTglW+lvhfwio3sSs98kz7pyciKKEmbjyoRajwka7xmsfWDTMpK2P6JUt/bqumZEz/4CyK16Zz21O2o8l4v+KY6Zulz6b8HJ/VtC5UHb5qX2JRIndeYfNa8ln4eEnWfdlHIBGXB6WPCVx5NaP/4QF0f4GVEvw1zk/l5gebLKVEDTdhqgJmDI3ZbJtUx+jtZZVnei5xrJtaZeaaHU58Fl4qaE0QElqxSvRib389sQxhdEQaoVz+mvM5dHylgCXrwvUfVTwGF0Qs1B0jvU50yN5niRvG/hGGTYXByNVUNwoKBV6uf23TJPN6OpstheteuS1/DnMDCJvpUyjS7K9X42LpAAdup/RVPuz2ugNOyoGOZoiXSjVPfe+WbfkrHvPfX7095zsb97P7If48mfRCkmDIChmRfVWye6393ND65Seh+pprQtPcMsG+1//t6UnRTsYRB18CAK9LBSz25ak9+4xw8j7h1x8yArw4k9ogpbbM5XrPUlPbuI4yu0ddCQK8K/4Spg6PeaicJPcvVxLvurfQzHHJds1OaLR+ocwFxLk9Nf69qu9+79EzkT0ek9p/ztLHCUsEdgMXPpAEImZ3qCAbGTL2tyU0GvRlzoC79S34Vu0zwMjnqPStTL2y64JPnvYS1IQig+vdUUNHzHIPStiAVko0CyvVsTU85WI7z799JL1nN5bFul+5j/V09uXqenTSKywt13wMu89MGkWJ/e6widb/LnlPHtumSSQ0EabHYbQrQpAPSgk82wIH1qu/1ymz+/wQ4T6HAPUgr6Huf/1tFMZherBWBohJ/3CBIH2iKKSyBxC5WIA2ZUr8MkDfaacY2qrangp0B097y7kp8zkZw0t+2UClhzIlp+d8yg7Z6NbtjiRrPejVYn8PmjSc9VlPZhmVXKtBd/Ezmd2Rq1ZOenVS/2ivh3K+nMxt1nevPpEetPUnTYw0W8MnmqZl8pC4/qQdwkE+CcB2qab1HqeODUfd+o/0Bnmw7RYQFxuyoMWikApVgPeBAZl6DeGDzHBoYX79fvXCWDWfcmK534HkMIcvNoBcfRgNl6I8tPyDriUOfM6xPwiZZMxjmpfta4dRTECTPuY+Mybnvecpj8i3FpXoOa15L34ewYPvidFv7nge9Rvmz0uxi1TfeZFqX8sCMyc+cuE3KTIr0tYPWuQz2rw//DGlQKEJdr+tQBVhr/p6iI8oViGluX8dhtMe64H/TQT1QyofLf6J+zrbK+9yvMqV4g672T+jxpzPbLGylnNArCzfpdwYyYiLGWJeukSnpOym+d0aPV71qtix1zVbtMoPCYc7L5rnq2UuH8FCceU8i/Wx3f+R3dJpZKNAygdqjKwxPTb+UZgEfDXimpxYsrOMm4eyvKh7RfEAQPhFk6+ywqLu5xNUP2QRI/XtwQqk5oIBknlnbKqCeABW0MaPwViSTB9bXMj2TbN6dXlm4pEDaTS8ldeJI645+zW7Qi/fRQJZ6MfTysfxLuQurL/2LehmX/lkdm22SffXb6fZc87j67ud+pc5r3hfA4qfTwSgTwHd/hM8bkk7qxc+m0DA81O5nwo6leJ5X50GpicLwfHWbq7al26J14mY1vRG3p5M1grUk9M8yJf2yi2DgNXDg9+q6wlKe++GdgbYaHvnu5cYQSkLbbsa9yJRsUaQ11yZlglD31nuUV+I2vcp7Sj0vrYS54D/SyhG7KFPZUHPA398IVfxIKzvM9zgM1Fp3DE8W0tbzbEV1rH8zFfQDcNUkvuz5NC/uukpCF6TfIJxig3BFifa4zedkJnV1O1PFTLAyV8/NYC0TqL1gmPHQNcdqvty7KyH2BXye39xf+ZdpwsoRIAlMBNnSfINR9+OH/R67foCVz/tlbBr8Tc5YCKWpXfEShM3WyeNqoK2fnfZuBl+rDln3VtqrNyPbWj98zn3ZPU9kus6ux9lK5d3piHabLrD+LXxF0p2Ap++T9hWHKzHC+m7Zc2lAcxKKywxm2L3yTb9n5tQq0Ab/iir2BcXz+kDKSXm0Ket2puLefUvnLCBd2huO7fNP+F4dYje1I0hI4K3f6MBki+Jge57lnzi1c6HVA7rUaHDXEL1ycJPq7wI4vCt1YiMAmVOWJiA4QcUnpycy33dSQN4tZoxR852ohVe/mZ4Iz/83JVcL8zw1PWiqL0xlh2lhWZqv358ay4G4BKTHWe9Rqp9W/z3dxnm/C+kDMj3dbNSI9rTf/Xk6kImlVibdR/gdD/A7QZp3H3BZeBua0FomUIdxwlc/pga39mqDgTxNY+RSAWjLNhEEZ8UwyqJqW4qXTg0mb7kmM2VsZkDx6sfSHGEwY0vfo97Hbc3reEtoF/Xig3+AagG+tmSNAnhtOrFCc5jdYsBfjAsa59Gg5AVPAqY9fT0RmNK+oLA/m0cfHMxbF6QAwFLnDeO6Ie1hmSuq0Ay6wHcWPJHWOweTOII2+jt+znTz3DQYCiulCIgYoC+g7ApFOax7M30eqygt49MWDETvWAy7lqnleXB1+M6jxjMNPF8IqCVC7kdK1R5zFeady02vfsx+lSnO/87XFGC9fr+/WL6midyk8qitiPp56Z8Vv2ty9abUUlj+4KZ3Pic9+eqx41MpmQG8lJVdngbbqm0BzzvLODDpt7D3OOhcdOjrVeTDspV2emdl5krbXH3o+MfqV2H9282S0KatZQJ1Bics0zIy7dVqCgA3zVUFNZfZJHE6a6s+1YVPd12bJRgj1FJQTxhBGZsG/5oD4YEcACzoNCCVPEEKZFOekWWnzxEa1MlmAc9r9zLDi85yjlS2l897039P1sL836W/6zqp5a5h5gvhnU+m5U9WURpAvPPIkIkz5F7MFVXYy9n3vFTSQsr0iqv7mf6EhVNP9yeptO+j+iaYWWkXB6SIwljNSPVyrn3dACMBZ31J/WjGPMI8VTep+lL3g57g63u2uj+955Q6X+sOUHMID9zP/qr6u0m3mACVIVd0/Q5FttR6c3XmOOmA7JI/qeD6iNsU4JsTdbKWjPoZenLQATgz2BxU6ACsm6XedVPXTMgKQdjq3oP0m0nr6PdYB6OHjE15/lK9x7rvTJFAcKWd8Uxl+HFNaC0TqCHNCWvvacM7aR3t6O+kQRrUv+ZyKoyLymdWDVpwAIUtNwdfAwOuVC/akOuy64KPH878LuBxYQc2+v/sZWsZ3Pd53/CDZS5r31tNZsg0QJuTEyK1GjBfeuNfnUL74R+NF8j08GTmEtac2Hy3GFFgd3SfobYwzrNjqUHjhC2V28PtLygPVghF15iBv/P/Xf3sCz6JdFq5FUm/wK99F99zOLQ1zcdqLj7bZL/kT4anGvR4pcpwe/razJjHV2eo1Y65ItL1LjSf3e1MJU3zmpaaMAWqX6wIXoH74POrOWg0w1WrJz0GB1yRGZep2q6erabJdOxj20LV3mt+4deQa9PFt4KTqluXVg1p9YjpVGXUNiE9Oei+1RRmtxHw2viUsiVlTl1a7SJdwFb6dUgpZOoyZX6mhb3HmmY0V7dOMlwkEFxpm8Fxc1XfjDx1ywRqrfgI1h/QWtKuQ9XgM5enQe8uaMGsxN2V6UpY2cx8INo7McHNLlIgrWf6LR+kvYSggkEHF7Wdejqc/x+q3VXbA/IgN+1daa33npXpFysfq9qu/tVLwKAiRfeJWXv3yC4lP5KuAodW7fwvm+mFgaIVIA0EYd4jqKUrKA801FIUT8UdcHRvJpgPuCIFdK+pY4WtAlXV+9Xk2HUoTL4mcE5j5eAk4ODm1KUyd+NRxwQyAsMm+/r6fotRMS6Y+bp+dubxWuapJxBvgrMMQNG8tPCnuEOAVyX93d2Vfp3yed9IJTv9GV9hJ60lX/uGAlo9Wa1/K7Otg69VtA5knkt1Tqa3aqbCdx1q1MmQ/sC4SZFdPSJzoseFTzap75njuT7ttLag4sMLRkv8Wa3k1uYHzxm8PtSvIDtBa3lAHdQOp8oheuY6RuJBcfZZL3hOH7clM7MSw4INesLwBqWlMslMLyVMIgghgyJgQ8YpYNq20OCWA9wcqDbvWGJIiPI0o7g559wXLrfTvJ+5pNRevBBpsNfZcAOvSoMlKC5zx2I8yWPZlWpyrTnor52w5nV1zjDO0jNXgXSbzqnnWqu+c/olsHJawBtz0svVzfOg/IuBc4f044Z3jICatkDgSq8QwsZCMFU97Bo+M8bYsueNycsM9LnKg6s54Jem4fpXDXpVZI651h0VrxrM8tNer76eVkEE2+vWKfrG5HudWhUc1Vl5pq1/O82/a4AKOjCC9OotSAX0HgVfeM4vu138DBmZvqumh4wT3XYrMwswm5IjaOZxerVx/LA/rnP+v5/4eZu5AFvLA+oMPWXwoRlLblPxAbnr8pqBIO2dBzW4ZgCy69CUMqTGuLarBnEwYGRKBM3COOYg9AXphPJWM0ptpgDPdfAAxK0LoQvAv9dbDnNdf1LFkj8pwNVBoGCwy/teqkjQkmeh9zmpeg3SAHPD9EsW1k5Q5179d+oFN00NWDZU3JVu38Z3Qs6pveXazMJIoTIvGQAAK6051p5azYHwF27PyvSmpy5pL/XDP6aVPGb9EE2R6TG29C/p9pkUhulgBBUT5jjQXmQwU88L/hqUVfntykPPfEghHS4z++nILjJSviFT528CmZnqbnq9Yc6TlquaiUA6yKljPKZax0rtoO4mFUXYFKnaZts7nOanLU/U6su+baS1PKDuNxpzV48ME8bSTr9Mxe3StEBQO+njTa00F2qqRky5muuqqPTZX03XNzBNc2v63Fq2pz3W3cuy64w1vyeEms2DkxJSBaR2fZRdqSBsJZNq1U69uK9+K8eSXKQCkMbLaAK/1smaChv/zar+MZf0iJQX1wDvXl0Y+l6QUnto+WCQkzboHmT6GeYaD5DyHrV3LLL0R2CSECKdram1xd4zMSiyWQ/5ue9TT1fBuw6n+ZfHe1aqF77bmX4AP7ovM+AYtlw/6yvpYKWwYOCVUFejzqeTN0yJI+BJyYIFiDbPDblfY9UDfk23qeMu/4o/LdxTb7jZqySagep8al8EM1WD8SJTuljczkixD1EkNdYq7mh8SVK9Yrciagg2A1/d8oC69yjfrh4ZvLBlBDR0FNcMsOkKXvpFMDXMZtaS5oU1oJomHbUVfJj3CGoZ+O5/+aPpplYW8AT35iBc/apaakmp/r3gm34QsiLqnnd9RFbPc9DVcMVP0r8f3ORfvulr6+zLbiPg7/8Z4BNJ91XNgZTC5qmsj8RnOiU4H9lb0DoPhMt/nFbtLH4mx9eNIKqW2UVaKZBc+4afa9XgYgZKNQiVf0m97KtmpHlOUOPlwz+mS5DqZzL8X/Clmgez43Rm4I7Fqji8poXMOIWpZ1/3ZtrbNrnVIIiZCVWWrZQObtIPjMEynQglRQ0LjEda5c7UC1bEy1bTBfxceNBb3LYwVTI21Wd2Uf1eb30csEknTL4m7RToeiv5eqrNvGmHdw0zo/PsrzZLBb2WB9TaSnurQT3gCvWS7qxMLym7jUh5ga6hxtAmMqtoDbg0VUc29XLqxAkzstuz3P9S1hwKXwIiA0GjWhWR1pyg/oqw1Qur5VCb52YG0zbPTU9K+9Yqb9Ms4Rhm62alo/OgQLvDaelynAOu8NdVgPTkEUY9tO6YjnL7SlN+kOmZCiOy7lFD2TTNAobfkuKX69QLbIJU/Gm8hBfwX0sYbTdBUGdYescK5XnWHPCDle5b7en6ZJW6D1I8arAE6fIXc/e/aXq7peCy15denDT6P8d5TfAynQgTGEfclsruTKiJWEviwoAu32CY+Xu2z8Z8P1xyCikaw1gx6NrP9Vk+HHCwkFK2ErZhdhI27fDa6D37FD41w3VaHlAHZ6igHMh1VBqpHhzae9QSnd6jUoEsqcDz1W/hZe+BPwnFHMygpFX6JQjW0M1qbqCEZcqkk/L0U8cIK/M9jRSnH6rpOeQyJ6GAK5g1dW9KVRB/WvHQ0lXgG7stdxBvd6UCm+CL7fGOgTq/2kIzugIBsI+nwud+GV721Ks7Yqm6I6ZM6nwjBhAEwaDMcO2bqaCYDZ//dWag1HcPQiUPaV21HVVBXd+KpAErhCHXqX+DmafdzkyV+9STd2r86UB4LnWCbneYPKz3KKXKyMdLzAaEJ+JlBoEf0vEgk8bQ76vpSGSzfNqRT/JaNmtmztjXRo86DBEpNJG1PKD2dbBDqBe45jUjcOMo3q+0d3onCxMsgpH64MA3O1S/BMFKYMJWqcHBJXf3M9NytjDzifxTfKJ5P9sXpwdsWLJDKBcs02oLSFMsOuhlcta6ypoJIrrPtJkDy+wL7TW/+3OlmNCBJzNRofcov7cV1Fq7dYq/vPa//bdgZqJJAcWnqOJABzcr6sGkdsLKimoedseSNN+u6yzrIkV6B5bgJNW2u6JKgpNHffp0vU9hcTvlMXc7Mx187D0qnXkapFTSJ/BnytUHUsHSCNrCpJ/ZKI3guRvjZZorIXOjB11z3VRyhFWCPNF2ZOuH+iy4i1FzaZx7j/In5+VbOrmB1vKAOpg+roMrOviUkY1kpYvY5/JKNdjq+sOQOajNwWheo8tQpfS44D/8MjfIvUGqvwGZHr9+qJ7nUOP/inSh23AFPDKM5iHNG+pNAXwUQqpvikvTQGQXwallaaWEU5dZtU+bBuJN76UB2HUyo/9mDZR5v/X3XZiHar5Elu3X5C54Qm2xZXrGYcv43qPgr18MnNjNDP75O0sB+7q3/IWmWrUzmpnyuruPSGm6jV0/SnulOekg0NQcMOiOEEqlXTe45Zk0FRMW+IbMc+txFrSwNkBuANw8N500onXj+u/5eNjBFYo+x+jv+JUc9Xmw+Xi7+fZDtnaaK7awOttNacGCbc0wKdQL1EKIp4Brgb1SymH1Hd8oM7c+OrQVXxS5Q79UUkjgxT/vG+ohBIsxBTWyw25Se7o5ifDiSSbHGawEtme5okXueCWdJKNBvuzKTFmaLg6kA3qmKmV7XF3PlGdpj8wsownq+ntXqSW95rqDGV7ZNgXQfPKelYHU76RKtz64Jc0v62h+WFCq96jMWsbB6L8+9plxZiekl8LBan/mS1R2pVENjZSW9zeqWlpwAg1am86Zf9OJLaadero/kBgEh9YdSY8Vqa57xU/UM17/duYLGAY0Qc8/SKkc3Wfw5SmgC9sOLqg6CdsubttCNVl6oJtIg26u75q75khXTawN8bBzccbB+88FVvkc2xjqIrhiqy8ZrrGWT0ygkZaPR/008Hvg2Sa/umnxpzPTVvWyfsz31e9L/xyQkVnKGwLDKz2eDoht0TyzpbLYzAdvFk8Ky/8PmjlYzF1jRECuZsrnzFoD2ttyHf/2TfqhZhtM0k3vfQfhVdf0QNcBQR3p312Z2iUkxMsecXuqAM8SvFoeYQX5wU+DaD5ae/Fah75qeppq0Rrl3Ssyd33xlVtNcbdB+d3qVxW9VV91vhG3+7cWs4oUdWICpFWkOG9zgguCQ3Bi/uD3aa/ezGjTYBgGNGEv64H1BjXjhtTzkKp/ikvTdE99nGfofpjRdODUPHfwu75dcyxF4TQEDHNxxg0Bq2zHNtV+oyeL9jAtn+BoI6xeoJZSvieE6NdsLdC2anrm33qUqyWoZ4GkEctKJ78EecLt8RQApIKMXoAnEPDJyP+vCa9uZz5ws/6tRIGz1ggj08oS/eC8l89V/4YFGzLqEWgQK/YPNDPgFBzoJgURrAMMaS9bf3/38vTnwQyxoARr81x/wSmtQw/WfdCA3H2EUuoE923UCS0aiNbNCq9yl2vyMO/9ztcysy6DKpiaA+oawV1GzL43E07MOhS9R4XTFdnoGEgD+gX/4ffIg8kcegDN+40CdZ1IlYvzNL1FU7MMqVKhhiMT/K4GWrM92dQcYVYfGDcErILHhlE5J+KlZqM9ToZUrxmtyThqIcTXgK8B9OnTp+EnGHKd2sDUMytdalCrF4LJIa7j3wbH5AldR2mO176RDvCY+tYP/xiyg4ihDtHWtoc6T7cR6ZobS//sP0YXeNE/Own18tXVpGtReJOMMdkEB08wsp4rKKR3FbGLlMTPHPiTr8nMWLQi/qI1QVnVoKsVaGrVi25DtmJWXvXCQLDWBA6zqJZZo8GsROcm0/K6oKfopZ1L//I++EIHa7boJIZ8g1YmvaPB2Lz/bLxsPsG64DPNlrSx+pV0qcxcnGfQ09Sxgrm/ykzQMp+jvs989sHMZU2pJjEtjOoI6+N8z2PSHidLqteM1mRALaV8EngSoKKiogEap5RV3OFP3hCoAJPPE7Myl47J4+ngllfNTahB2qarP8Bj6luTNfD+r5Rnve4tvCLgQe30xd9La4ZN79t/9ypJRWcmCZHmXTfMVooGfQ/ay4HwwROM8IdZsAj/6/enPYdQBYlQEjhTpRB84QdcqfpB34+24AukaZhtC1V6efB5mBt9hm19pD1UXXcjjDrQhaKW/DntIWrQaQh36eN7a7MHTSF71cOGaHnrA5u5v8qd8p9NOhocE2Gf9RsdeD9SmmZ93Wx8f1Ms2ZsCCBtDddR3npMl1WtGa1mqj9qq9M/BMpAjblflGzNSpqUCww3v4KvxIF1/YoxlKxDZ9F4ahw5tTQUt9amsdI0FIVSRloo7/PVszbRwSF/PdaAiJRNc/aq/+LpWeUDDACerlxLwynYsSW9kanL1pkxx+Qt+KV/whfc87IDeN9sLpL1Q3/MIBG6CNI2+p2wReRM05v7Kf14zkaKhQatg0DSXZx1GSWXjZYPPpz6wCe6Oc8596vu7PvJPWtnakqudYauCbrFPIenjBIGwqQJy2c7TFJNA0E4indKygDoIQMFtjXqPCk+ZBggWmHHr/HsZIpTH1H2EH0RNy5ZuG3wBTcrEa4urgkL6eN81NGCGAI7mzMO2JwqTX22eqyYgr8Jc6vxBb2zeb/xqCsjkn4MvfDZAzvYCaRolG2WgveNsezfmisiH6afra0/Q9LG5UqDrs1yBrzAQzLVpRXCC0v3XVC98cFVwMpM+mgIImyogF7ZqaGpVxkmmU/KR5z0PjAE6CSG2Aw9JKSc1S2vMFFk7mlmlDlIqDx25ric19+i+FK+d0gtvnquSHYJArUupminm+TzoV75FWi0g0jy3HVV1PDbPTaW+G8t3E3DM7ble/baqA6yDX1Xb/S/ZvN+k+Xa7WBVTMnd3tmx/8feeZwe27sKvEAharsGc6wUKowx8qhjSnnHSSMCp76U+0faEaeNzpUDnY2HXywaC2dqWSzLWVAAVdq7m8CTDrtnM8rRGW1P2MZx0OiUf1UcDlOaNtN6j6k+RzYhcj82+ByGStD42pRuFNIhGWqldmCG9D2K2Tg8+6GAxmuBmsq3aKYnXjqXp72jA0mBStT3FKaZWA6tfUf/rtHjNeVt2qlZJCvCTx5VKZsz303WBg1lh/UbXX5gnrP/zGWzZEoW0bZ6bpht8c6irJs98dtdpSHvMdmULsjY1kDTUi2wqr7MhdjIBtKmBsKXbSX6eLYz6oP4HHhx88P+3d+7RUd3Xvf/sMyOJlwChAAKEABlQQMY4gEHYwcG148auHWK7LrGdJl65jp029+bmJqtZtrPquqTLt7lts5K0bhOHOkkbDH7gxI8m6zq2iSEJ4iEZ28K8hAAh85aFEC9pZs6vf5yHzjlzzjykERoN57uWlmbOnMfev8f3t8/vt/f+GTklrMT+Ylq4kRJjMdHOE+yxeK2pBCtLX7YpCg9ugoQjh4TXa2J4uZGTxBulZ23Qai1M+r0NeP2tbQ8Lx32c861jpiZHhaVakOoPMnnlS1rYcmAgNwL1LrI6Az5yTSTZkuBgWZ2XG4FeKlzi+sw/onbCOc/plxlt6mLPopNpwWnR3r3brChBr8VrJXS3OrZWlBxinkqmi2dwRbOVz+r1mlAJn9Si5gKSM0VrkG+Md7shK0mPPZWg3NZ/qgW/XDegTF75nAtbQVnrBuRV0ev6FuAKlytkW74haRYWLmF95idRW9tTWalJrXwfWhSsXMOWNWev7Du8HJQy5m93rOt1u5u6xAiCsa61Nwc1ocd6tyAKSirjtCatXcIt2Y696/aa8LLwFcs9/sVOrwwzks+bEc9pDXqDWYJc27INDkjnt+3n2eD0pAl6+3DOXVvudgO9Eah3jSOb/BAhcoshHmCSb8g/ok7ansqE0h3E6uPl4N0R2E6PalrZh/6AvR281YHf/rn7OfYccIDPrdOaVJp7Zw1v1J5SvRa1RJL9i73ypkscY/32s0+nd23LtJy96WS9u2c7FwWdW5T5Be8EyeyUKZONSPuDTNY4Qgw8CiDAJN+Qf0R9cJMnAtGEn0XtfcV3EoGdgN/5ym16gFiN5v7/6s134bKAA3xug9z0nFFezjwc7z3bm4DfGUHpJ28mDTmV50C2cE1hOKZwnNMSzlB5XTemMhZ8HnurrFQpHf0sqkwGk/5aYuH0wuCjAAJM8g35R9TTl7mT9HiTHIH7dd0v6mr7T92+1nbSJJWcf9kKXbYsy3HVRgpQPw+QTKYYrIVCLWJMgViRjlbocaZuZoFlk6OVZue9vBb19GUOrxYHrGmodDL01aIqJEvscn71HwwPlwJH/hH11MW921MFJQx3vpb7dWpvgqfSiXDmKL5WoJN8rTSi3ihC77ODOl6SlerxYe5vg83lSrOf94x3kdaVdF9632jSudf11aIqFEuskAacvmAo+FUPMeQfUUNmlqa3UzuTIHkTPM37MyOQJWiEt5636Z/cLneZ7v9mwc9KtbL3ZbONUCr4+XP7Rc1lsjDovZfzs1eXWTcbXi0NP+ud9rHCwv3c8/piURWKJVYoA05/EE5B5RT5RdSZEgy4O7U3CdJ1XzOCTbqOGZGIi+43vgeN8EEudxVXp5bLi3RWaq6RzS4f2Vp5Xl0ObjK3QEukzl3td22muheKJVYoA06IvEH+EHUQkQQdd3ZqbxKkP/wArP0RJ841jgWN8M494KzUmpbLXV9SJKayUnMNP8sN/K25ICsv1SDk1cWVL1v3n8cPujZTFIIlVigDToi8Qf4QdRCRpHqNtDr18HI3USszdDzda6c317CVsQ+GRorEIMvN75jfuQGDUMOhDg68vYGlkfeZcvXNyQOjN9FSaDEmoxAGnBB5g/wh6iDSyeQ10spCtuslI7+033y0n+V4cFNymLNoxm7T1kYBw8vz9zU2yHIL2n3Ee9yZvtUchBr0WfzD6v/gJ9rfUUQcfcc/o93/SvKcdrYJ50OEyAANhzqob2mnrrqchdPKBlucvEH+EHUQ6VgudLtecgeNeGHt6gHJ89FB0xdWgidXVKPprRG08W2+kZKf5RZkzXmP+wyC9c3tLFQ7KSJOVHR0K+tgrqY2AjCUO+hQlj2f0HCog/tW19MT1ymOaqx5oI6F08r6Xb6FUD/5Q9Tg3/mtPL6JHjj4Ozj2jr/LXqr7BM3lHtwEn/p7Tu7bQtneF4iQQJxRjY5dTRqqvkh9czt1eseQreykBuszONbpHfzDm7XE+AWoOFq0CKYvs68tG1FMx/menDb6oA6ai/vmooOmus9AyT6YuNTEZj3vyOkL9MR1dAWxuE59ixHQ1Z/yLZT6yS+i9oOLZBPGXns+uTicRNJ0pBMB7lxQycJpZeweNp8rJEoUDCIeXm5b2LpWxP/qeZRY4lGui+7m1lvv5qMVo82cETpoUXYPm9/nyk7X6DPqFGm8TjK5R2CD9QxqC6eV8VcPfJ7/enuqPUfdoM/ivtX1dMd0I+eVkFQO/enc9S3tdgftjul847kdPHj9Fdy7pCqr+2Skr+ecVARstadVr+4MvI9Tdotc/MoEYH1jm6tdppLdeV0m5eqnS6bHUun72G21vgNzpvWdSfu36imqCdGIRiKhUxTVqKsud5Vvj6d8/e7v/Z6qfnKNgRzg8oqo/RrojaPmM1srgoSOoBAzzPmDHa/xy+Zx9rlOIrHwfEMbj99ey6pXY9QmHrGJuPRoPZPi3WjokICFaidP6ivYEZtNydnpfJQP0a2IQqX47Z6TdMdGo8i8shsOdbC+sY1ntx0moSuKIsK6B5e6Osz6xjZeaGgjnkgxAHimbXb/8c954+x0V8N0EpKzY1llWFddzouNbXb5pNNh4bQyFk67E7jTuMeGZnrivWXrbfSZkmIQUdVVl1Mc1Wz5Draf59FfvAfAvUuq0nZGP6TroJbMF2M6msCDy6p5+NY5SfWiiZDQFQroiSXfp666nKgmxBKKiCZ2uTvLRBOjzHSzAJ/dfpiVi6Zy54JKVx15yzKqCTqQSBjtZ62j/XjL1mr/msCNcyayvGZC0gADvf0kogmrVlzJvUuqeGZLK4+91ISuFJoIulLoCi7GdL71i/cQgagm3G3KvOdYF3/9UhMJXVEc1Vj7JX/DJZN2Ud/S3tsuE4qrKkdz5ZQx1E4eQ31LO10XYna56Qq6LsQC7//YbbVJOlttKxbvJf++IqgdWsZh2r7cD+QNUXsbKCLEEzrf14T58ggr2Mjdkbco1hRKK+IbW0vZGt9DcVTjrgWVLiKx0BPXeWrjfnriOg1qNjtisznVNpGWxlJ+okWNxTItyubEHAC7o32wYx0TE3Gioogn4pzdswHFCgBEE46cvkDDIf8pEGdH74n3LlTGEoqvrnub5bPHUzt5DKte3cnFWO/vF2M6q17ZyWO317JQ2wcHN7F72Hw63n+TukQ3onRUoodfvfI8/xL7tN0YnATcE9PtDucsQ6vD2xuCOXQAw9I71dXN+NISm0Sf2dLKr5uOcsuVk+zG3hPTjX0MBFej9yNF67h1zj1PbaYnYUjwfEObq3MvnFbGmgfq+MZzOzjYft4uk2e3tVJTUZqyMwYNTGUjitHMfN9+HbS+pd0uf13BDze2APDTzQddA77u2OxYB8pGFCfVuZVXPKEUq17Zycprqug432OXie5pmPGEYs2WVp7fftgm4ogGK68x3iBsCzLRe2FPQrG+sc2W3TkF5dQloeC194/zxu4TKJNwnXVi6RbXFY+91MTWA+28tOOIr75gZskxZVmzpZV1W1uNtmSe1hN3tFuTvKwB2alLd0xnfWNbUp8pG1Hs3NmTd9s62XX0DM9LG7G4bhStA6t/d4BP1lYA8L3X97ru/+SGfXY5WDp/5YaZrHmgrt9vtc7BMKIJD3x8Bk///oCrjiwMhOUuyrvrdg6waNEitX379qyueXJDM//02h50FbzB1gLZy+cqDvNe0Tx+dngCujI25ZpXOYamI529uYUCENWEBVVj2Xawg4/JXuq0XdTrc2hUs+1zPnP1ZMo+3ME3j3+TIuLEiHJfz6OucwCiEbGtIqeV7GfZe2FZWE69LFkiEeHZkv8LiR66VZS/jf05f1P0n5RIgphEubf7ERr02UQEVi6u4rnth4mbjcXah8CZigrHZ+s5W5lLoz7LJvC4o7EVRzW+eO10m7gAvnx9NZ+srfCdWtpzrIunf9dCy6lzdhkvr5nAb/eeJBY3GvUffXQCr71/3FUG9y6p4ok75rkGBMC2pAGKIsKfLZrK2q2tdl1PGF3CsTPdtl4RTVwDU8y0YDVNiCeUbWE+9IkrXB3nmS2tfOsX77nqqTgivh3PK/eUscNt4l/1yk7eaetMOu/L11cnkX4mCNhKAoDF08vYcfi0LaOl/7VXlLNx3ynfezmt4drJY2xLONcojhj1/uaeE3Z7ikaMnmx9L45qPH67MbBaA807h08ntY1U0AQ+u7iKF7YfTltXN89NrncLTmv48Vd22hb347fX0nSk0zZcaicb3LLzg05XPQfVkwAlRX2zqEWkQSm1yPe3TIhaRD4FfB+IAKuVUn+f6vy+ELVFctYo6meJJMlFcKPuLxYEELkXw4o07l86nZ1Hz9AdS7D1YEfWz1lT/IQ9KKxPLOOe6AYi6MSVxnfjd1Ovz+HayC7+kDBkEYwGO2nMMNpOX0y6p99A533OfT2P8raa7Vt+o0oinO3uzfMhwEPXV1M6vIiuCzFW/+4AulIIhgXnREQTdHOqIBUimnCdh2BunjuR0+d77DIU4KrKMew8esY1mPQFUU247apJtJ/roXxkMa++e5R4igamCUz2Kd+IuXFNRDPKN8g4qBhdwldvnE3TkU7XYNofjB0e5fSFePoTPSiKGNM3fvU1kLDq7922TmNtA2PgsGTIpv9abbrIHBAyJfeIJnx7xZXUVJTyw7f2c+LMRZZWl9uDKFnIkJGcAg+Z02jZX9sPohaRCLAX+CTQBmwD7lFKvR90TV+IGgyy/uFb+3lj1/G0JA1GpcUuZcsbAPxl5CW+Hn2eqBjEvC5xA3dFNiVZ8/0dlLzP+W78bv41sSKrewzkwGjB2ra4EGBZkE///gDNJ84OtjiXHJYxcbTzYkb9ORWcbS+TNx+vHJDe8OurPF5ENeHZh/zXE1LeMwVRZzJHvRhoVkq1mDdbB6wAAom6P3gzQ5IGhjxJA9Trc4gRBWUQ84uJZbyYWJZkzfdXU+9z6vXsR/xLUdqFQtJgzM96p1eGAnI1IOsKPvB54+sLnPJkQ9KWHLlGqlvqSuV8jjoTop4CHHZ8bwOWeE8SkQeBBwGqqvrmVvWjt/Zf0lezfECjms19PY9ybXQXf4j3EnNjIni6pT/PyWQ6J0TuMBSb81CUGWBORSkAu451DZoMgvEm1R/vEj9kQtTicyypLpVSTwFPgTH1ka0gz2xpzWpRIdcoiWp0xwfHnmtUs2mM5Z44vTo1qtk5HwBCwOhhUc5czH7ueChjRJHG+Vh+vf8MJkFbEIHHbqvNuR+1lsE5bcBUx/dK4EhOpQB+3XQ017fMGJpAzGdVqCSqURzxG6eGBpwkPW3ciIHek/uSId90KR2WuZfrlLHDMjovohmWWUR651gHAxWjS7hvSRXr/+Janrhjni3LYJD0qOLIJX9mttAVbNhzIuf3zYSotwGzRGSGiBQDnwVezrUglnvWYEBE8FtT7Y7rSfNh2XSaKWOHUTG6xJdUKkpL0siU2TPGj/Lx6/XB4Y7zGd8z3yFieKHkyxh6tDOzediIBifP9gT+LhgubfctqeK5h65l7Zfq+PrNNdRMLM1apqiWeRtKhc9cPYXJY4cDsPNI54DM96aDhtHvzvUk0p6bD3hz9wk7RiFXSGsKKKXiIvI/gf+P4Z73tFJqZ06lwPBPbW0/x482tth+wJDdfFnQIsji6aafc+tpX9cxpRv+tunmx+dXjmHi6GEZTdFExOiUMZ9AHIDjZ7tT30AZq8ezJowKfKXTBD5WVcZv9550Bdf43k713TKLaFAxepi9MBTVYEFVWdauiAAzx4+k5dS5wA6fyULWofbz/HTzQb79mXk0Hemk+XgXDa2nUaY/9fKaCRw/c9HXv9nveUURsSPjINnPXRNSurYpZbiBpfJPnjlhFEtmjGPt1lb7uWUjihheEqV20miW10wIzKHy3df2pNUjWTFBQ2W95mPV9fDiKDd9dILtxhYxYxD8MG3cCNpOX0ApZQchPblhX58WEudUlLL3xFlXXb6x+4SrbHPtfTRl7LCUskY0sSN8/Mpz5viR7D91jt5g5sFZTEQp9SvgVzl7agAevnUOVeUjXdF1y2sm2I7nj7+yMyUheQM9LB9KK2eEKzw43htlZzUuy9Hd6bSP85zba9lzrCstUUfNII/Xdx23/UedgRqArwUP7qAVpRSV40a4iFoTuGnORAB+u/ckr+86TlQTbp47MUluJyz/09+8fzypkfs1/JnjR1I9fpQrWtEVJPByU8oysGT1cldrxwUeXFbNjze1+DZ656H5lWMoiWpJA4LCiERrOtLJXQsquW91PbpuhHA//ukr7bBzZzSkFxExIiJnTSy1A3ec7e7qqWPpjussrS6ndHgRR05f4Jktrb4EoWnClz4+I0kna2Asjmp8566rACMq0wqu+PEXrknbmetb2n0HNQEWTS9jm6dsrLpMZMjQUTPK7kx33B7wjnZepDiq0dUdd0Uybj/UQTRiBBJZwTRKwaEPz9vBN4/dVktNRSknu3rbekQTbr9qEr/c0TtjaoXtW8/98FwP1eNH8dAnrrD1tqIuf+Pob5a8m1vamTh6GMtrJvDrpqNs8gn4yQQRDW6/arIrwMv9u8EhTUc6eXbbYd+O+8WPVwPY7WewFhMvKTrO99i5BhK6Yv7UsXzlhpkA1FSU8r3X9/L75lN2pNrYkUV8eK43/v+a6WXMnFgamPxmytjhSdFRfglnrDDY2sljXOdYobheLJv1EW65cpIrnHnjvpN2p/zqjbPtCKhIRNDMKDqr2jXgOvMeq17tjZRyGsGCEZX1xB3zeHJDM6+broxWOT30iSuob2ln3/EuXn7niLuDi0HUG/eddEXLaUD1+JE0nzxnn1oUEb7zp/OTys7IAVLGkxua7WARAW6aO5ETfhas+VaQcLzFJBI6pcOLeO7L17pIP2aGUWtab1Kex26vBWDljzYnBaco4IUGo46s9AFKKTrO99iyrn1wKT98az9v7j5hE7lFSi80tLH9UAfvftDJnQsqXe0unlA0tp5GV4o9x7vsPBnrGw2SBbdlNeMjI+nqjrsiQe9ZUsVdCyqTckM4zC4yQV11OSVFRvi+fXMM8n/4ljnsOdbFs9tabdKy2k7EjNRMJJIDyCLmwFI6vMgl28ofbbYtV6tMnW+auoKbaiYwf+pYjpy+wNqtvQOXs/zrW9pd7WPlNVN54o55LJ5RbsvqjBi0gt1aTp1j476TrHmgzu7zgK2/ZtbfTzcfpCeus+d4Fw994gpqKkrZ0tJuD8pRn/5lyWK3e9PgsfqM18BTukJz5EN5ckMzuqMNWhHRK6+psg3BmorSyyMpExCYRMWy5m65chLbDn5o/75o2jiXhTtzYilP3DEv6b7ZpDu0CClQPo/DfXFU42s3zU66xptjwFmRgG3dW8Rk3cM6z2u5Fpl5TYLKySn3ny+d7hrUEgmdjvM9rHmgLum5S6rL2X/ynP1GcveiqSkbmvfZXzatIKcF631TcT7PK6u3XLyNfdWKK21rxTkFkUgYHTEo6c7CaWX8+POLknI5PLmhmXjCnZvEqZM4EhP55Yyw6sXSteXkWVrbz7kyv91lGgneTHtxc9BK6Olfjy25g/KZWNfeXFsR2MYyzd5X39Luml7QRLhrQSWnurpd/esjpSV85YaZtjETlP/FWSdWm713SZVvRsRUCbSsPDBOC9t77ldumMnaB5e69LP0dba762eNt98oBZg/daz9nJKiXnn9MgY6B0wngTuRijf6i7zJ9eGEX5aqVBni7nlqM7E0GcacuUQiAl+/ucY1amcrn18io1zoGiSzZaU5B6FMU0haDTAoLSkQeF42cqfKWZ2r5O9WGk6nrJBZKtB05ZLqGX7ZAJ0DoZV7xcoDkm19eMsI0udhzmWuZfteHiKyppD8+leu6jtdufT1XK8cENzOM03MNJB5uvud6yNb9JeovUhHstlkv8qGjAYbuZA5V3mD8wm5kDUXecL7Uj+p8kE7SfeuBZV2MqogwyKXxkc62Qa6bWRL7H2VJ5/b+ZAn6lyRbD5XUhCGosyXE3JVP17SXbm4ihcb29Ja9UPN+AgRjCFP1BASVojChh/pQvopnbBfFA4KgqhDhCh0hKR7eaO/2fNChAhxCTCQXgMhhjYyCSEPESJEiBCDiJCoQ4QIESLPERJ1iBAhQuQ5QqIOESJEiDxHSNQhQoQIkecIiTpEiBAh8hwD4kctIieBQ328/CNA33IWDl2EOl8eCHUufPRH32lKqfF+PwwIUfcHIrI9yOm7UBHqfHkg1LnwMVD6hlMfIUKECJHnCIk6RIgQIfIc+UjUTw22AIOAUOfLA6HOhY8B0Tfv5qhDhAgRIoQb+WhRhwgRIkQIB0KiDhEiRIg8R94QtYh8SkT2iEiziDw82PLkCiIyVUQ2iMguEdkpIv/bPD5ORH4jIvvM/2WOax4xy2GPiPzx4EnfP4hIRETeFpFXze8FrbOIjBWRF0Rkt1nfSy8Dnf+P2a6bRGStiAwrNJ1F5GkROSEiTY5jWesoIgtF5D3ztx+IiGQshFJq0P+ACLAfqAaKgXeAuYMtV450mwQsMD+XAnuBucD/Ax42jz8MfMf8PNfUvwSYYZZLZLD16KPuXweeAV41vxe0zsDPgAfMz8XA2ELWGZgCHACGm9+fA+4vNJ2B64EFQJPjWNY6AluBpRh7Vf8auCVTGfLFol4MNCulWpRSPcA6YMUgy5QTKKWOKqUazc9dwC6MBr4Co2Nj/v+M+XkFsE4p1a2UOgA0Y5TPkIKIVAJ/Aqx2HC5YnUVkNEaH/ncApVSPUuo0BayziSgwXESiwAjgCAWms1JqI/Ch53BWOorIJGC0UmqzMlj7PxzXpEW+EPUU4LDje5t5rKAgItOBjwFbgIlKqaNgkDkwwTytUMrie8A3Ad1xrJB1rgZOAj8xp3tWi8hIClhnpdQHwD8CrcBRoFMp9RoFrLMD2eo4xfzsPZ4R8oWo/eZqCspvUERGAeuBrymlzqQ61efYkCoLEbkNOKGUasj0Ep9jQ0pnDMtyAfBvSqmPAecwXomDMOR1NudlV2C84k8GRorI51Jd4nNsSOmcAYJ07Jfu+ULUbcBUx/dKjFeogoCIFGGQ9Bql1Ivm4ePm6xDm/xPm8UIoi+uAT4vIQYxprD8SkZ9T2Dq3AW1KqS3m9xcwiLuQdb4JOKCUOqmUigEvAtdS2DpbyFbHNvOz93hGyBei3gbMEpEZIlIMfBZ4eZBlygnMld1/B3Yppb7r+Oll4Avm5y8ALzmOf1ZESkRkBjALYxFiyEAp9YhSqlIpNR2jLt9USn2Owtb5GHBYRGrMQzcC71PAOmNMedSJyAiznd+IsQZTyDpbyEpHc3qkS0TqzLL6vOOa9BjsFVXHKuqtGB4R+4FvDbY8OdTr4xivOO8CO8y/W4Fy4A1gn/l/nOOab5nlsIcsVobz8Q9YTq/XR0HrDFwNbDfr+pdA2WWg898Cu4Em4D8xvB0KSmdgLcYcfAzDMv4ffdERWGSW037gXzAjwzP5C0PIQ4QIESLPkS9THyFChAgRIgAhUYcIESJEniMk6hAhQoTIc4REHSJEiBB5jpCoQ4QIESLPERJ1iBAhQuQ5QqIOESJEiDzHfwPIgaxcy/lDgwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot(style='.');" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEKCAYAAAAMzhLIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA1UElEQVR4nO3deZhU5ZX48e+5txaaZrVxowEVQQ0Q6GgniKijGDMuSMyITsYYJyaGmEEzM9GAMxk0hl8yQY0zJhodNE40YzJjJBFEjBsYBCMRFAigwY4b0Lh1BGmWWt/fH7VQy62q2911q6qrz+d5Wrqqbt166yn7nnqXc14xxqCUUkoVYlW7AUoppWqbBgqllFJFaaBQSilVlAYKpZRSRWmgUEopVZQGCqWUUkV5FihEpJ+I/EFENojIZhG5yeEYEZEfiUibiGwUkRO9ao9SSqnu8Xl47hAwzRjTKSJ+YJWIPG6MeSHjmHOBscmfycBdyX+VUkrVCM96FCahM3nTn/zJze77LPBA8tgXgCEicqRXbVJKKdV1XvYoEBEbWAeMAe40xqzJOaQZ2JZxe3vyvp0555kFzAJobGw86YQTTvCszUopVY/WrVv3gTHm0O4819NAYYyJAS0iMgT4jYhMMMZsyjhEnJ7mcJ6FwEKA1tZWs3btWi+aq5RSdUtE3urucyuy6skYswt4Fjgn56HtwMiM2yOA9kq0SSmllDterno6NNmTQEQagE8Dr+YctgS4PLn66WRgtzFmJ0oppWqGl0NPRwL3J+cpLOAhY8xSEbkKwBhzN7AMOA9oA/YBV3jYHqWUUt3gWaAwxmwEPuFw/90ZvxtgtldtUEop1XOama2UUqooDRRKKaWK0kChlFKqKA0USlVJR2eIDdt20dEZqnZTlCrK04Q7pfqqjs4Q2z/cz4ihDTQNCOY9vnj9DuYu2ojfsojE49x80URmtDRXoaVKlaaBQqkyKxUEOjpDzF20kQOROAeIAzBn0UamjhnmGFSUqjYdelKqjDKDwJ5QlAOROHMWbcwaXtr+4X78Vvafnt+y2P7h/ko3VylXNFAoVUZugsCIoQ1E4vGsYyLxOCOGNlSkjUp1lQYKpcrITRBoGhDk5osm0s9vMTDoo5/f4uaLJuqwk6pZOkehVBmlgsCcnDmK3CAwo6WZqWOGFZ3wVqpWaKBQqszcBoGmAUENEKpX0KEnpWqc5luoatMehVJlVs4cCc23ULVAexRKlZGb5bHVOJdSPaGBQqkyKmeOhOZbqFqhgUKpMipnjoTmW6haoYFCqTIqZ46E5luoWiGJTeZ6j9bWVrN27dpqN0P1YqUK9pXj/JvbdwPC+OGDevwaXrdX9Q0iss4Y09qd5+qqJ9WneL2KyO35u3Lx13wLVW0aKFSfUa6qrYUu8m7Pr0teVW+jgUL1GalVRKmLOBxcReQ2UBS7yLs5v5YYV72RTmarPqOnq4hK5TW4Ob8ueVW9kQYK1Wd0ZxVRZvkMp4u8GHh0QzsdnSGaBgT55qePw28L/QO24/l1yavqjXToSfUpXanamjvMNG/6uLyL/P5onO88uoXvLXuFk485hOfaOgCIxGJc0trsOPcw+4wx3LGijYBduLqsUrVEl8cq5aCjM8TUBcs5EDkYGPr5LWZMPJKH1u1wfZ6n//l0xhw+EMgOPOFYjKvPHMulk0dpkFAV0ZPlsTr0pPq0QpVZnYaZbEt4ZH17l86/ftuu9Otkzm+EooY7n23rUduVqhQdelJ9VrEVTI5zCTGD3070BtxqGTkEKM+KK6WqxbMehYiMFJEVIvKKiGwWkX90OOYMEdktIuuTPzd41R6lMrmpzDr7jDEEfQcnvm+8YBzRnOCR4reF08Y0Zd13+ZRR6WGnck5i6/4UqtK87FFEgWuNMS+JyEBgnYg8ZYzZknPcc8aY6R62Q6k8xb7hr2r7IN3TAMOs00dz6eRRrGr7gHjGlJ4tMOv00Uw5tonxwwfTNCBI27t7WL9tFy0jhzDm8IFZyXlutkgtlbGtyXqqGjwLFMaYncDO5O97ROQVoBnIDRRKVVyhb/iNAZs5D28kFD2YEHfHitc4d8IRzF20kUjsYKTw2RZXnjY664I+5vCBjpPXqYv66rnTCmZ1P7jmbe7MWQ2VGQQ0WU9VS0Ums0XkaOATwBqHh6eIyAYReVxExleiPapvS31rn3f+uLycimWb3iEUzQ4goajhvtVv5J1HBMdEuY7OECu3vs+ch/OHtgAmjRySV9LjlB88w21PbSUUPXj8tx7eyMqt76eHmDRZT1WL55PZIjIAWAT8kzHmo5yHXwKOMsZ0ish5wCPAWIdzzAJmAYwaNcrbBqu65pQbMWH44PRcwbcefsbxeQ+v20E4lh1ADkQSPRCn81tIXsBxmrxO9RJC0fxl6qFonKt+vo44hpsvmsjUMcM0WU9Vhac9ChHxkwgSDxpjfp37uDHmI2NMZ/L3ZYBfRIY5HLfQGNNqjGk99NBDvWyyqmNOE9jzl25JDwNtbv8IW5z/JHy24M95KGgLe8MHV0Blnn9fJH9llNNF3amXkGlfJJbVG9H9KVQ1eNajEBEBfgq8Yoy5rcAxRwDvGmOMiHyKRODq8KpNqm8rNYGdmptwEosbLEvInM0WSxzrOGWeHyDoSwQCp4u601yJk1Q7u5JZrlS5eDn0NBX4IvBHEVmfvO9fgVEAxpi7gZnA10UkCuwHPm96W6q46jWKTWAnhn/yL9j9kt2IedPH8ZfOMHeseI2AbTuuWip00RfA4Py/dar+VKrHcCASx29BJOc0mb0R3Z9CVZqW8FB9QmoCe1P7buYv3ZK1EumopkYuu3cNe0LR9PENfotbZk5k5CGNbNqxm/mPbUmW3ohz/sePYNoJhzPl2Ka8C/aS9TuYs2gjtiXsDWUPP/XzWyy9+lT2hmPpi36qZ/Dh3jDn/eg5wrHsv8fGgE3MGF0Gq3pMd7hTqoi8CezzxzGheXB66KajM5Rf7C8SZ/eBKFOGNvC3C3+ftST11y+38+uX2/Hbwg8vnpR1AU8NDa149T1uXLI5aw4D4LwfPUfQZ7M/EkVE6OdL9E4SyX024djBYNUYtLnpgvGcecJh2oNQVaW1nlRdc5zAfmxL1vh+04Ag884fl/fc+Uu3sLn9o4KTzZGY4bpfbUgvX01lTAOcecJhxHJ66wciccIxw55QlGg88fxUm+5Y8VreqqpY3GiQUDVBexSqrrmtsTSheTADgjadGcNFtiX8cfsuDkSjFBKOGX6x5m1GNfXPqgz75VOP4YpTjua+1W8SsC1CsThiDKGY81BvwLaZdfpo7ny2rWjmtlLVoIFC1TW3NZZGDG0gGs++iO8Nxbjlya0lX+NHy19DMIRjpAPSXc++DiTKfFx95hjOnXAE5/3ouYLniMTjXDp5FJdOHqUrmlTN0aEnVdfc7mqXeVxj0HY8l20J4nB/JJYIEk5iJlECZOFzr+dNVPttSbdp3vnj0hnWuZnbSlWbrnpSfUKpYnuZx6149T3mPbKJ/TnLZfsHbG6+aCLffGhD3nxCMUFbHIecHv7ayfh9dtaqKi30p7yiGxcpVULTgKDrb+qHDQoSM/mBIBY3TDm2iVsvnkjA5/5PJ3dIK+XNjn2MGNrA/Me2FC13rlS1aaBQKmnx+h1MXbCc2Q++jCF7mMlvC7fMTAxZTR0zjNsunojfeYQqi8+Cueec4PjY0U39XRX60/0nVLXpZLbq01JDUqns7Mx8iaDP4ocXT2JQgy+930RmTgYIthicFjIFbSEOfGfGeL4w+Si279rHA79/O/24BVx23x+Yd/64gtniG7bt0mEpVRM0UKg+K/OiH4rGkJyZ6oBtMfKQ/kxKbmfqtB9EwBYsA5Gc4aXUnMT8pVuYfPQhXHTiSPrZFgtXvQlAnERexU2Pbua6zxzPbU9vTQeDS04awfQ7VmHLwaKDuv+EqiYNFKpPcrro50oto031OnbvjzgW/Ss2rW3ihvN+vAq/JXlZ2pDIw7j5yT8x5zPHM3l0E40Bm+l3rOJAbrGnJN1nW1WDBgrVJxWq9JrpilOO5reb3smq8xTLGSbKXfKaK9GzMISLHBONGb7/+Kt873MTmDB8cNF26f4Tqho0UKg+yU157589/yb7k9/sUxduvy0EfYltUHOL/mUK2oIBLEsK9g5y3fToFpZdc6pjuxqDNrG40WxtVRW66kn1SYXqO2Xa73CB7+ez+eHFLXxl6jH09zul3yXEga+edgwxh3yLYIGltZZA++4DeQmC37twAr+48mRWz52mE9mqKjThTvVZG7bt4pK7ny9Yf8mJ3xYsAVuEfS57CimWJPamsETyJr9Tgr5EeXPdnEiVmybcKZXDTe5BY8B2HST6BywCthCPG0JRkxUkfIU7FlniJlHSo1CQgMQ+2alNjLSUh6oVGihU3Uklzl127xqmLljOkvU7HI9r333A1fk+edQQIrE4tiWOORNRA6ePbSLos/DbLqNGEbkJd0pVmwYKVVec9p8oXBLDXW/ixbd2EYk5z1mkrHytg3g8TrxIb8EtXdmkao0GCtWr5Q4xuSmJkTJ++OC8HoAtgt8W+gdc1OfIEYnj2OM4eG5c9TjmnT9Oh5xUTdHlsarXyt3i9OaLEpPAxfafyKwiu6rtAzIXc6S2Ni22lWlPGAP/dNZYfrz8NQ5EC0eU7zy6GQS+MPmosr22Uj2hq55Ur9TRGWLqguVZOQr9/Bar505jddsHzMkJIDNamrMCSyp5LrOSeNAnPH/9Wel9tE/5wXJC0a6tbCpFcDvgBd+7cAJfOFmDhSqPnqx60h6F6pWKbXE6o6U5b3mpm5IdAdtOl8doGhDk6jPH8MOnSu9w1xVd+Vp206ObOWfCEToMpapOA4XqlUptcZq62Ke4KdmRO0Q1aeQQbCk+7+Alv+2+rpPbjZmU6g4NFKpXSm1dmjvEVOgi6RRYUslzAdvOen5qiMpXYDmsW0cOCrDzo2JVnoqLGeNq9ZPTXI1mcKty0jkK1at15Zv0kvU78gKL0xBV7txHT3S3RxL0CTdMH8+E5sFF31uxuRrtWahMOkeh+qzcIaZinOYuUudIcTNE1RVdDRI+S/jHs8ZySGPA1YZFxeZqUoFPh6RUT2mgUH1KbmDJvZC6qSrrpWjcEPRZ6X20S21YVGyuRoekVLlowp3qsx584S2m/PszXHrPC+lSH6m5j0IVXnPl7orXFQ1+i6BDAt7NT7yKz8pJBLTEMWkw1d7MarM3XzQRoAsZ6koV51mPQkRGAg8AR5CourzQGHN7zjEC3A6cB+wDvmSMecmrNimV8uALb/HtRzYBEI4lkupS39pntDRjCVz7q40l8yh6MsUXL1AgMGBbeRsi7Q3F2LRjd3pb1kxOQ2obtu0qOiSlVFd42aOIAtcaYz4GnAzMFpHcDQDOBcYmf2YBd3nYHqWAxHDTTUu35N0vwOb23Tz4wlv880Pry55sl8lvC9d+5jhsK79HEY3Hue7s4/Lun//YloI9gqYBwaxqs6WWDyvVFZ4FCmPMzlTvwBizB3gFyB0g/SzwgEl4ARgiIkd61SalIDEBHHAY8tkfifPln73Itx/ZRKR8lTscBWzh1if+5BgoYiZRbrwxp95UV6rKFhqS0t6E6o6KTGaLyNHAJ4A1OQ81A9sybm9P3rcz5/mzSPQ4GDVqlGftVH3DiKENRAtUefWwE5Flbzj5Qg7LomJxuGNFG/Ee9ggKrfJSqqs8n8wWkQHAIuCfjDEf5T7s8JS8vxxjzEJjTKsxpvXQQw/1opmqj5l9xhiCPosGf9erxJabU68ibgyZqRxC96rK5g5JKdUdnvYoRMRPIkg8aIz5tcMh24GRGbdHAO1etkn1LZnLXwEeXPM2d65oI2BbgOFLpxzNfavfIFSkmqvXLAyWLUQyeheRnJ6GIVH7aWA/ny5xVRXn5aonAX4KvGKMua3AYUuAq0Xkf4HJwG5jzM4CxyrVJZl5BPsjUeDg0FJqovq/n3+TGy4Yz/ylW7Cgy/tgl0PAb3PV6cdy+zNbiw59hWOmYD6FUl7yskcxFfgi8EcRWZ+871+BUQDGmLuBZSSWxraRWB57hYftUX2Im2qxkJggnjB8MKvnTmPFq+8xd9HGihcBPBCOMWxAANuyiJZI9jMGXeKqKs6zQGGMWYXzHETmMQaY7VUbVN/lthRH5gRxP79dlUqxMQP/8ptNro4NReOseb3DMZ9CKa9oCQ9Vl9yW4vjm2cfx203v8J0lm5CepFl7wG8L0ZjJW91x65N/4qKTRmivQlWMlvBQdSuxskkYGPQV/B/9T+/sSeRNxMnLhq6W/gEbvy3E4/lBAg7uU6FUpWigUHVn8fodTF2wnIUrXweECyYdyT2Xn1Tw2FpiC8w+41gEU3AYzO0+FUqViwYKVVcyJ7H3hKKEonF+8Ydt/MMvXuK0MU1Zx5738cPx27X1JxAzcMeKPxN2yAxv8FuaYa2qQucoVF0pNIkdihpefOtDHv7aybzZsY+WkUMY2hjglFeeqVJLC9vvUD8k6BP+64snMX74YA0SquJq6+uUUj1UbBLbb1n4fTYzW0cy5vCBNA0IcsP08WVvQzmnxPv5LAJ2Yre70487TIOEqgoNFKquFNtPIhyLs3t/JKsC64TmwQwIlreMRzmnxKPxOIHkRkZLamw+RfUdGihU3ZnR0szz10/j2rOPS6968ttCLB5n9oMvpTcpguIFAmtBNA6doViXNh7q6AyxYdsu3aRIlY0GClWXmgYEueassTx//Vnc+YVPYEniopva7e26X22g7d09Xd7Rrppscd7lLlNqxddl967JCohK9UTt/3Uo1QNNA4IMbggQsLOHl8Ixw7k/eo4H17zl2AMJ+iRvO9JKCvoscmPX3nCMTe27Cz4nd8WXbn+qykVXPam6V2iCOxIzfPs3m9gbijL5mCYunTyKSyePSlebXd32AXMWbcQSYZ/TelWPTP/4EfzTp49jzRt/SW/XmjJ/6RbOGX+E46S204ov3f5UlYP2KFTdSw0vOe1qB/D9Za9y6T0vMHXBcla3fZDev2FGSzOr507jkpNGVLS9S//4DufcvpK/7A3nTbTblrDi1fccewm6/anyigYK1SfMaGlm2TdOw18gWOwNO08Y/3bTO/zs929Vqplp0Tj859Nb8/al2BuKceOSzY7zD7r9qfKKDj2pPmPM4QP51meO5/uPv1rwmMyhmrZ39/Bvi91VdfVCzMCsqUfz38+/iW0Je0OJ4a+9yWEwp70pdPtT5QXtUag+ZfLoJgJF/q9PDdUsXr+Dc29fianAytlif4RTjm1i9dxp3HTBeBoD2cNQqaCWS7c/VeWmgULVDTf5AyOGNmA51HdqDNgEfcLsM8bw4d4wcxdtpFKb3YklFBgRY/jgRK/gzBMOI5YTtXT+QVWKBgpVF9zmDziN43/vcxP42l8dCwgLV77OeT9ehalgEl4sXrhS7OOb3inYbp1/UJUiphJ96zJqbW01a9eurXYzVA3p6AwxdcFyDmR0AYI+4Z7LWwsW0evoDKXH8YG859eKoM/i+eunpd9DZrs1SKiuEJF1xpjW7jxXexSq10vlD2QKRQ1X/c9LBXsXmeP4Ts/v57fwl7cEVLfYImxu/yh9u9D8g5btUF4qGihEZKSI/K+IPCci/yoi/ozHHvG8dUq5UCihbp/DklenC6rT8+Nxw5y/PsHbhruwLxLjyvtf5MfPvFYwCGjZDuW1Uj2K+4BngWuAI4HfiUhq95ejPGyXUq6khmLmnT+Ofn6L/g7dAEuEze27C15QM8f/g8lZZcsSbnniTxV9L4WEY4YfPrWVU36wPC9gaNkOVQml8igONcbcnfz9GhG5DFgpIjMobzVlpbps8fodzF20Eb9lEYnHmTd9HCOH9uerD6wlFD3YQ9gXjvHln72IMYnchFSJi8w8hBktzYw7chDn/XgVYGpyviIUjfPDp7Zyx4rXuGXmJGa0NGvZDlURpXoUfhHpl7phjPkf4B+BJ0j0MJSqCqdv0vOXbmH88EHcMjO/Gmw0Tt7Kotw8hL3hGEGHpbPVKw3oLBQ16V6Dlu1QlVAqUNwLTM68wxjzNHAxUL2UVdXnOU1Apy78M1qauefyVhpKlA7PvaCOGNpAOJbfk6jFrnNmr0GXzSqvFR16Msb8R4H7XwbO9qRFSrlQ6pv0+OGD8hLUMgV9+RfUpgFBvjz1aO763eveNNql8yccwdOvvocIhCJxRCA3rSPzvWrZDuU1V7WeksNPXwHGA5lDUV/2qF1KFZX6Jj0nY47i5osmArBh2y5GDG3gwpbhPLQufwWQT0jmWAxKHwvw4Jq3+emqNyv5NhzbNqqpP5FoPD3r4BTv5p0/Djj4XpsGBDVAKM+4LQr4c+BV4K+B7wJfAF7xqlFKuZH7TXpV2wdMXbAcv2URjsWJOSyZBYgaeHXnR8z6+Vr8lsX+SDRxfw3MX8cMrno0q//8PvMf25IVJGe0NFeghaovcpWZLSIvG2M+ISIbjTETk/kUTxhjphV5zn3AdOA9Y8wEh8fPABYDbyTv+rUx5rul2qKZ2cqJU3Z2IUGfhTGGcKG6Gb1QP7/F6rnTtFehCqpEZnYk+e8uEZkADAaOLvGcnwHnlDjmOWNMS/KnZJBQqhCnye1C4sYU3JeitypUSVapcnA79LRQRIYC/wYsAQYA84o9wRizUkSO7lnzlHLHaXLbbwuWAAZCsURwiMQMAuwN18A4UxnpkljlJbc9imeMMR8aY1YaY0YbYw4DnizD608RkQ0i8riIjC90kIjMEpG1IrL2/fffL8PLqnqTmtwO+iz6B2yCPosfXjyJ568/i4euOoWHv3ZyOh8ic8ipMWgXLPFdyy5pbdYlsapi3PYoFgEn5tz3MHBSD177JeAoY0yniJwHPAKMdTrQGLMQWAiJOYoevKaqYyb1XyPpW6nVQBu27SLoswnHounjGwM2n53UzK/WvU0sVo0WH9QyYjCbd36Ut/VpLp8t3DRjPF+YfBRzz/mYLolVFVE0UIjICSSWxA4Wkb/JeGgQGctku8MY81HG78tE5CciMswY80FPzqv6plSmdihqgPytQp2GpqJxw6KXthGpcpAAeOWdPfzyysn83b0vFGxPwLZY9o1TGXP4QABdEqsqptTQ0/EkVi4NAS7I+DkR+GpPXlhEjhARSf7+qWRbOnpyTtV3FcvUBueNf64+cwwBuwZqiZOo43TX717PS6zLFDdxtuz8qPABSnmkVGb2YmCxiEwxxvy+KycWkV8CZwDDRGQ7cCPgT573bmAm8HURiQL7gc+b3raLkqqa3A183NQ8ys27ALjz2bZut8ECyjkl/syr7xV9PBrP7iUpVSlu5yheFpHZdCEz2xjzd8VOaIy5A7jD5esrlZZbNTaVbOaUqZ17QU3dTgWLGROPdMzedqMa66Ys0MqwquI0M1v1KplVY3PLhbupeZQZZPaFowX3qq5V+yJxNrXvZtLIIdVuiupD3C6PHWOMmQfsNcbcD5wPfNy7ZinlzM1chNNWoZBfmry3BYmU+Uu36MZEqqK8zMxWqux6sv9CV7K3a5lmYatKc/tXk5uZvQVY4FmrlCpi9hljCPqky8lmhfbW7m3CMc3CVpVVKo/imxk3r0j+e2fy30ZPWqRUAZnzCyDMOn00l04e5XpiN7VE9tpfbSiZ2FbLorE4q9s+yKoWm7sKTKlyKtWjGJj8aQW+DjQDw4GvAeO8bZpSB+XOL4Si8S4vbe3oDHFUUyPfnVGwWkyvEDNw3a820PbuHiARQKcuWM5l965h6oLlLFnfvVVcShVSKo/iJgAReRI40RizJ3n7O8CvPG+dUkmp+YUDGYtSM7cDLSWzNxKOxbAcdo3r7xdCEUMNJGqXFI4ZzvvxKm6cPo75j21xXAWmPQtVLm7nKEYB4YzbYXQyW1VQTyax83sjxjEDel8ySBSqEVhrtQPD0Tg3PboZn5XdMp3sVuXmNlD8HPiDiHxHRG4E1gD3e9cspbI5leBwO4nd1dVOA4I+Lmw5Mu/+WgsUkCgSGIp2L4Aq5ZarhDtjzPdE5HHgtORdVxhjXvauWUrlc5NQ56Srq50ORGM8umFn3v3VXC/ls2DOOSdw65NbCWcEhn3hOIFknfR+/kQw1JLjqtzcZmZjjHmJRGlwpaqmOxVTU72ROYs2Eo8X3wI1kNzcqNJrogIWFNtLybYsLjpxBEcM6secRRuxLWFvKDGbkno/8bhh2TdOS1eXVapcen/2kVIuzGhpZunVp4I4DyD5beHas4/jtktaKh4koHiQALAtYXP7bma0NLN67jRuumA8jYHsyrdBn83ecG+Yile9jQYK1WfsDccI2s7/y1sCl04exeb23RVulTv7wjG++sBalqzfQdOAIGeecBixnGLLOjehvKKBQvUZxeYqArbN5vbd/HTVGxVulXuhqGHOoo10dIZ6NLmvVFe5nqNQqrdrGhBkxqThPLR2e95jiQAingw7/fTyk1j71ofcu+qNHmeEZ+aOdHdyX6mu0kCh+owHX3jLMUgEfYlv48MH9/OktMc7H4X47+ffLHpuW8CypOTrp4aXMkt2aMlx5TUNFKpP6OgMccOSTY6P/fDiiUyf1MzKrcV3mOuuGxZvop+/8Jar/f02d3/xJMYPH8Qv1rzNHStew2dbRGKGC1uGs2RDezqjfPYZY/jtpneY/9iWvI2blPKKBgrVJ2xu302swMqiQQ2B5G/epNTFDHlJcdmPxxk/fBBNA4Jcc9ZYDmkMcNOjm/HbFks2tDNv+jg6OsPcuaKN/1r5ZzqTy2K1ZIeqFA0Uqk/4aH/U8X4Bxg8fBMDwwf0cjymHlhGDWPu284qqsz52WPoi39EZ4rtLtxCOGcKxRED47qObgUQGdsjhbXSl5pVS3aGBQvUJgxqc/1e/6q9GA7By63s89OLbnr1+oSAB8NSWd1n7Rgd+n83jm3bm9T5ssYp2dnRZrPKaBgrVJ4wfPhi/nT1Z7LMSq5wmf/8Zok5VAiskEoOZ//UCAVscs8aj8TjikCjYGLCJGaPLYpXnNFCoupdaIfS5TwznobUH92qIxQ13/+71os+d/vEj+O3mdygyxVA2hUqLXDNtLEc19WdOskx6JB5n3vRxTBg+WJfFqorQQKHqWmofCp8l6UnglFJ9CAt4csu7FQkShQR9kt7FT3MmVLVooFB1K3Mfiu4QcR4KKgehdKAK2MItMyelg0J3CiIqVQ5awkPVra7uQ5Ert5aSE7/dvSW1bsLPdZ85XvMjVE3QQKHqVqHaTo0BG78t+KyDezh05w/BFvjWZ47v8vNSr5l5+/OfHJF33G1Pb6WjM9SNlilVXjr0pOpW5j4UTpPAAA+ueZs7lr8G5E8m+6zE8FOhshp+2yLgs+jvF/ZF3A9RRXPOdyASZ2j/AI2B7DLhmVua6tyEqiYxLrrX3TqxyH3AdOA9Y8wEh8cFuB04D9gHfCm5OVJRra2tZu3ateVurqpjmXWRMi+0HZ0hpi5YXnAO49MfO4yzTjiMf/mNc+kPSJQnL8fK2qDPAgyh6MGT9fNbzDt/nJbrUGUhIuuMMa3dea6XQ08/A84p8vi5wNjkzyzgLg/bovqwpgFBJo0ckvdtvNQcxtOvvMe8xZuLnrtc6RcB2+LqM8dmlQ1PBYkDkTh7QlEOROLpMuNKVZJnQ0/GmJUicnSRQz4LPGASXZoXRGSIiBxpjMnfrFgpD4wY2kC4UAGopEol4oVjcS6dPIpLJ49K935SgexAxm7dWq5DVUM1J7ObgW0Zt7cn78sjIrNEZK2IrH3//fcr0jhV/5oGBPny1KPLek4L8LlcCJWZbB2Kxrn9ma1ZvR+nyXgt16GqoZqBwunPyfHrmzFmoTGm1RjTeuihh3rcLNVXLF6/g/tWv1nWc8aBqMtOSO704AO/f5u2d/fQ0Rliw7ZdALqLnaoJ1Vz1tB0YmXF7BNBepbaoPiaVjJdbgM8n7i/0Xrhv9Zv8+uXtWZPXq+dO01VPqqqq2aNYAlwuCScDu3V+QlWK00R2/4DNFaceXZ0GJf3fi2/nTV4DjpPxSlWKZ4FCRH4J/B44XkS2i8hXROQqEbkqecgy4HWgDbgH+Aev2qJULqfx/7gx/PW4I6rUooTclI3MXAqlqsXLVU9/V+JxA8z26vWVgsI5FE7JeDdfNJHWY5q4fMooHvi9d3tTZApYEC6y8Coci+nktao6zcxWdStVObZQstqMlmbHiqwnHXUIv1zzNnGT/w2/nCxAcjL2fFZikjv1unEDq9s+0CQ7VVVa60nVpczKscWS1XKT8To6Q1z70HoicW+DBMD8Cydwy8xJWauabpoxAZ998M8yEjN86+ENrNz6nibaqarRHoWqS07JarYljslqmcNTm9s/qsj+E7bAwH6+vF7N9g/3E7CtrNVYoajhqv95iXhyNzvtXahK00Ch6pLTZPXeUIxNO3anL8gjhjawqu2DrOGpK045uiLtixmYs2gjU8cMy9tnwqni7b5kscDM5yhVKRooVF1qGhBk3vRxfDunoN+NSzbx3aVbCNgW4VicWDxONE6653Hf6jfwWVKW0h2fPGoIa9/aVXDviULlOGafMYY7VrRhi7AvEnP1HKW8pHMUqm5NGD6YxoCddV80niiXsScUJRSN5w0zGZNYJptiW0Kwm5sTnT3+CAK+wn9iueU4Fq/fwdQFy1m48nXA8PenHJWsKlv4OUpVggYKVbdGDG1wtUtdpnDMZFWEtTDEXe1Hl+/WJ7bis/KDTP+AnVeOI3fyPRQ1/Pfzb3LDBeO0hIeqOh16UnUrM1fCFiEcjUHORkR+W7AEfJaVtWlQSiSeKAEO2V0PW0qvigrH4kRzThn0CXdfdiLjhw/OuuAXqhQ7YfhgLeGhqk4DhaprM1qa2XMgyk1LtxD02xyIxPDbQj+fnc6tmDpmGI9uaOc7j25xPIdTKXK3S2czn2lbcO3ZxzO4IcCHe8NZF/9ilWJzJ7uVqjQNFKqudXSGmP/YFsLROOFo4j6/Df/+Nx9nyrFN6Qvw6EMbPW9LLA7ff/zVdG8ktXd2asmrU6a4BghVCzRQqLrmNKQTiRm++dB6br14UjonYfzwwfjtwvtjl1PqJVJbsKaWvBbKFFeq2nQyW9U1pyEdSExa52Zqf2PaWII+K2+lUUr31j6V5rcsNrfvTu9BoZViVa3RQKHqWmpC22mZaionIXdZ6mljh+UdG/QJT/3z6dzxdy24WS3b32/z9b8aTdDFdnf7IzGuvH8tl927hqkLlrNk/Q43b02pitFAoerejJZmll1zKoGcK3wkHqcxYOctS336lffyznHD9PGMOXwg0yc18x9/21KydxE1hotOHMFj15zGpZ8aSdBnpeckcp8bjRvCMVO0JpVS1aRzFKpPGHP4QG69eFLeZPHecCxvDiNXY9BmQvPg9O2pY4Zx/5c/xY4P9/GXvWH+8+mtRHKeLsZwzu0rEUmssALD7DPGMmX0IVx67xrCReZCNPta1RoNFKrPcJos7ugMOc5hZIrFTTobOrN0eTgW56ITm7FEyN3uPZQOBIZILLHc6s5n2zhm2CR8tkU4lp+zkaLZ16rW6NCT6jOcNjFKzWFkZj9fPmWUYzZ0fvZ0nF/8YVtGUCjtn//v5XSBPydBn2Zfq9qjPQrVJxTbxMipp/GPZx2X1/NY8ep72NL9tU8HcsencgRs4Z7LWzn9uEMdHy+0W59SXtNAoepeZk8gNReRW647N/s583YqyPgscSzz4VbAlqJzE4kYZOjoDOUFglK79SnlJR16UnUvlXSXKTVhXEpmkOkMdT9IAJicAoU+KzHUNDDow2cltj2d/eDLeUtk3e7Wp5RXNFCoulesjlIppYJJf7/7P6ErTxudNfdx2yUtPH/9NO78wonYlkWkwBLZngQ6pcpBh55U3cusItvVOkqNAbvo3MKcc07A77P47qNbsAT2FzjWbwtXnjaai04cwfptu2gZOYQxhw8EYHCDP2/7U0uEze27Of24w3oU6JQqBw0Uqk/obh2lveFY0bmF0Yc28uG+CGCIOhwTsC1E4JaZE/O2XU3NMzgFgn3hGF99YC23zJykBQNV1WmgUH1G7oS1m1VEm3bsLhgk/LYwfHADs36+jlA0/5igz+Key1sZP3wQAFMXLM+aUL/uVxsY0t/P+OGDufmiiXzr4Y1ZvYpQ1GjBQFUTNFCoPsnNKqJUifJCjDEsenl7MuEuX8C2GNzgB2DFq+/l7XYXjhmuvH8dlpUoNX7P5a1c9fN1WftkZ2Zp674Uqlp0Mlv1OW5XETlNImeKxuGuZ18vmEAXicfZtGM3Uxcs58Ylmx1XTYVj8fTrDx/cL2/bVZ2LULVAA4Xqc9yuIipUoryUfv5EAcB5549j/mNbOBCJl8y/8Ce3Ys3NEte5CFULPB16EpFzgNsBG7jXGPODnMfPABYDbyTv+rUx5rtetkkpt6uImgYEmXf+OL79yCZX5+3vt7l55kRGHtKfEUMbHDdNKiT1+pNGDtG5CFVzPAsUImIDdwJnA9uBF0VkiTEmd9D3OWPMdK/aoVSuriyXndA8mAFBO2/YKOiTvAnsOCZre1XAVY8kkFPfSeciVK3xskfxKaDNGPM6gIj8L/BZoPDsoFIV4nYV0YihDUTj+Sua4gYuaR3Bkg3tBYNNZkCyRQjH4sTjhsxFVAFbWHbNqemcCqVqkZeBohnYlnF7OzDZ4bgpIrIBaAeuM8Zs9rBNSqW5+eaeutjnLl2NxAxLNrSz9OpT2RuOFQw2M1qa2bn7ALc++ScCtkWYOGIMDX5fOrhokFC1zstA4bRmMPer2UvAUcaYThE5D3gEGJt3IpFZwCyAUaNGlbmZShU3o6WZIf0DfOVnf8jaoMjEDXvDMSaNHALk52V0dIa497nXuet3rwMQSe5BEbAt/v1vJjDl2GE6xKR6BS8DxXZgZMbtESR6DWnGmI8yfl8mIj8RkWHGmA9yjlsILARobW11X/xfqW7Kvej391t5u9iFYobGgA3k52Vc0jqC/3txe1YvJCUci/PNhzZw68WTilaA1bLiqlZ4GSheBMaKyDHADuDzwKWZB4jIEcC7xhgjIp8isVy3w8M2KVVS3kX/pBH88sVtecf18yeWtDqVMX/g928XfY1w7GDWNZAXELSsuKolngUKY0xURK4GniCxPPY+Y8xmEbkq+fjdwEzg6yISBfYDnze5tZiVqiDHi/4LhS/6XV0Gm8lvWTy45m1+8mxbVkCYOmZYyf0zlKokT/MojDHLgGU5992d8fsdwB1etkGprnB70Q/YkrXKqTuJeaFojB8v30okRlZAWPjFk/LakFnKQ6lK08xspTK4zca+7ZKW9FBQ7r7bQZ+Vt5LDFvjXc09IH5PaqCiSk7CdyBgXLSuuaooGCqUyuLno+yyYcmxT1n0zWppZPXca/3PlZO65vJUBwezOev+Aj8mjm1g99+BGRU75GfsjUcYPH6SlPFRN0eqxSuXITcZb3fYB33p4A7ZYxEycW2ZOcrxop/IyOjpDBXsEqefZBSrOSvJ+LSuuaokGCqUcZCbjdfWinaoRddOjm/HbFjFj0j2Cxet3MCcneS9TP5+tZcVVzdFAoZQLXbloL16/g/mPbSHgswjHDDdeMI4ZLc3pFVWFggToXISqTTpHoVQZZS6v7QzFCEfjzF+6JZ08l1fe3BYCtuhchKpp2qNQqow2t+/O2/EutbR1xNAGDkTz96VY9o3TitaLUqraNFAoVSaJ+YcNeeXHM4eTcvNJjTEMbQww5nANEKp26dCTUmVwcP4hOxAEM/aa2P7hfhr82d/NGvy+vJ31lKo12qNQqgycMrr7+23u/uJJnH7coUDpnfW0CKCqVRoolCoDpyAQxzB++KD07WI762kRQFXLNFAoVYKbb/q5QSAcizP7jDF5xznlZDgVItQigKqW6ByFUkUsXr+DqQuWc9m9a5i6YDlL1u8oeGyqjMdXTx8NGBaufN3xOU0DgkwaOSQdBByXzSZXSilVCzRQKJXU0Rliw7ZddHSG0rdT3/T3hKIciMSZs2hj+vFCfvJsG6Gocf0cp2GrcCzG7v3hkq+lVCXo0JNSOG8UdFRTY5fLfTtNapd6Tu6w1f5IlLiB2Q++rPMVqiZoj0L1eYV6Do0Bu8vlvkutbCokNWyVqiwbibnvkSjlNQ0Uqs8rNEewNxzrcrnv3DLlXSnL0TQgyOAGPwFb5ytUbdGhJ9XnFesFTBo5pMvlvntSIry7PRKlvKQ9CtXnleoF5K5ScnvOrj7HTVuUqgbJrT1T61pbW83atWur3QxVh3qaGV3OzGrN0lblJiLrjDGt3XmuDj0pldSTjYLKnVmtmxapWqJDT0r1UHfzLZTqLTRQKNVDbjKrc5P5cpV6XKlq0qEnpXqo1EqlUsNSWhBQ1TrtUSjVQ8VWKpUaltJhK9UbaI9CqTIolDtRqqRHd0p+KFVpGiiUKhOnlUqlhqU0wU71Bjr0pJSH3CTzaYKdqnWeJtyJyDnA7YAN3GuM+UHO45J8/DxgH/AlY8xLxc6pCXeqNyqVQKcJdsprNZlwJyI2cCdwNrAdeFFElhhjtmQcdi4wNvkzGbgr+a9SdaVUAp0m2Kla5uXQ06eANmPM68aYMPC/wGdzjvks8IBJeAEYIiJHetgmpZRSXeTlZHYzsC3j9nbyewtOxzQDOzMPEpFZwKzkzZCIbCpvU2vKMOCDajfCQ/r+eq96fm9Q/+/v+O4+0ctAIQ735U6IuDkGY8xCYCGAiKzt7jhbb6Dvr3er5/dXz+8N+sb76+5zvRx62g6MzLg9AmjvxjFKKaWqyMtA8SIwVkSOEZEA8HlgSc4xS4DLJeFkYLcxZmfuiZRSSlWPZ0NPxpioiFwNPEFieex9xpjNInJV8vG7gWUklsa2kVgee4WLUy/0qMm1Qt9f71bP76+e3xvo+yuo121cpJRSqrI0M1sppVRRGiiUUkoVVfOBQkQuFpHNIhIXkYJL10TkTRH5o4is78kysErrwvs7R0T+JCJtInJ9JdvYEyJyiIg8JSKvJf8dWuC4XvP5lfoskoszfpR8fKOInFiNdnaXi/d3hojsTn5W60Xkhmq0sztE5D4Rea9QLlYdfHal3l/3PjtjTE3/AB8jkSjyLNBa5Lg3gWHVbq8X74/EYoA/A6OBALABGFfttrt8fzcD1yd/vx5Y0Js/PzefBYkFGo+TyBM6GVhT7XaX+f2dASytdlu7+f5OB04ENhV4vNd+di7fX7c+u5rvURhjXjHG/Kna7fCKy/fnphxKrfoscH/y9/uBC6vXlLKo99I0vfn/tZKMMSuBvxQ5pDd/dm7eX7fUfKDoAgM8KSLrkiU/6kmhUie9weEmmRuT/PewAsf1ls/PzWfRmz8vt22fIiIbRORxERlfmaZVRG/+7Nzq8mdXExsXicjTwBEOD33bGLPY5WmmGmPaReQw4CkReTUZXauuDO/PVamTain2/rpwmpr9/HKUrTRNjXLT9peAo4wxnSJyHvAIiQrQ9aA3f3ZudOuzq4lAYYz5dBnO0Z789z0R+Q2JLnRNXGjK8P5qutRJsfcnIu+KyJHGmJ3JLvx7Bc5Rs59fjnovTVOy7caYjzJ+XyYiPxGRYcaYeiio15s/u5K6+9nVxdCTiDSKyMDU78BngHqqMOumHEqtWgL8ffL3vwfyelC97POr99I0Jd+fiBwhIpL8/VMkriMdFW+pN3rzZ1dStz+7as/Su5jF/xyJKB8C3gWeSN4/HFiW/H00idUZG4DNJIZ0qt72cr2/5O3zgK0kVqT0pvfXBDwDvJb895De/vk5fRbAVcBVyd+FxKZdfwb+SJHVerX44+L9XZ38nDYALwCnVLvNXXhvvySxjUEk+Xf3lTr77Eq9v259dlrCQymlVFF1MfSklFLKOxoolFJKFaWBQimlVFEaKJRSShWlgUIppVRRGiiUckFEviMi1xV5/EIRGefiPKeLyEsiEhWRmeVtpVLe0EChVHlcCJQMFMDbwJeAX3jZGKXKSQOFUgWIyLeT+zI8TaIUPCLyVRF5MVlUbZGI9BeRU4AZwC3JGv/HOh0HYIx50xizEYhX750p1TUaKJRyICInkShf8Qngb4BPJh/6tTHmk8aYScArwFeMMc+TKP3wLWNMizHmz07HVf5dKFUeNVEUUKkadBrwG2PMPgARSdU7miAi/w8YAgwAnijwfLfHKVXztEehVGFO9W1+BlxtjPk4cBPQr8Bz3R6nVM3TQKGUs5XA50SkIVnZ9oLk/QOBnSLiB76Qcfye5GOUOE6pXkeLAipVgIh8G7gceItEJc4twF5gTvK+PwIDjTFfEpGpwD0kqgDPJFEq3em4TwK/AYYCB4B3jDH1tEOcqkMaKJRSShWlQ09KKaWK0kChlFKqKA0USimlitJAoZRSqigNFEoppYrSQKGUUqooDRRKKaWK+v8xoQMLNPK0UwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "_ = df.plot(kind='scatter', x='data1', y='data2',\n", + " xlim=(-1.5, 1.5), ylim=(0, 3))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Histograms" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEICAYAAACwDehOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAbH0lEQVR4nO3de5hU9Z3n8fdHYEQEr1wWQS5x0IjxjvfV8TYj7iBeIhPMZXTWEXdD8nhZJZI1QSdho5ssE3k0k6A4kIghhCg2yWQScQcvG41AQAGRBSNKD4wgCQuoqOh3/6jTZwqo7q5q6tSp7v68nqefqvOrc059m4enPn1+55xvKSIwMzMD2C/vAszMrH44FMzMLOVQMDOzlEPBzMxSDgUzM0s5FMzMLOVQsE5P0kpJ5+ddh1k9cChYhydpnaSL9xi7TtJzABFxXEQsbGUfQySFpK4ZlmqWO4eCWR1w2Fi9cChYp1d8JCHpdEmLJW2T9JakKclqzySPWyXtkHSWpP0k3SnpDUmbJP1Q0sFF+/3r5LUtkr62x/vcJWmupEckbQOuS977eUlbJW2UdL+kPynaX0j6oqQ1krZL+oako5JttkmaU7y+WVs4FMx2dx9wX0QcBBwFzEnGz0seD4mInhHxPHBd8nMB8AmgJ3A/gKThwPeAzwH9gYOBAXu81+XAXOAQYBbwEXAL0Bs4C7gI+OIe24wETgXOBCYA05L3OBL4FHBN2391M4eCdR7zkr/At0raSuEDu5QPgT+V1DsidkTECy3s83PAlIj4fUTsACYCY5OpoKuB+RHxXER8AHwd2LPR2PMRMS8iPo6I9yJiSUS8EBG7ImId8APgz/bY5t6I2BYRK4EVwK+T9/9/wC+Bk8v+FzErwaFgncUVEXFI0w97/wXe5HrgaOBVSYskjWphn0cAbxQtvwF0Bfolr61veiEi3gW27LH9+uIFSUdL+rmkf0umlP4HhaOGYm8VPX+vxHLPFuo1a5VDwaxIRKyJiGuAvsC9wFxJB7L3X/kAG4DBRcuDgF0UPqg3AgObXpB0AHD4nm+3x/I/AK8Cw5Lpq68CavtvY1Y5h4JZEUmfl9QnIj4GtibDHwGbgY8pnDto8mPgFklDJfWk8Jf9TyJiF4VzBZdJOjs5+Xs3rX/A9wK2ATskfRL4r9X6vczK5VAw291IYKWkHRROOo+NiJ3J9M9k4P8k5yXOBB4GfkThyqTXgZ3AlwGSOf8vA7MpHDVsBzYB77fw3rcBn03WfRD4SfV/PbOWyV+yY5a95EhiK4WpoddzLsesWT5SMMuIpMsk9UjOSXwHWA6sy7cqs5Y5FMyyczmFk9EbgGEUpqJ8aG51zdNHZmaW8pGCmZml2nUTrt69e8eQIUPyLsPMrF1ZsmTJ2xHRp9Rr7ToUhgwZwuLFi/Muw8ysXZH0RnOvefrIzMxSDgUzM0s5FMzMLNWuzymYmbXkww8/pLGxkZ07d+ZdSi66d+/OwIED6datW9nbOBTMrMNqbGykV69eDBkyBKlzNZyNCLZs2UJjYyNDhw4teztPH5lZh7Vz504OP/zwThcIAJI4/PDDKz5KciiYWYfWGQOhSVt+d4eCmZmlfE7BzDqNiY8tr+r+vnXV8RVvc9ddd9GzZ09uu+22kq/PmzePo48+muHDh7e4n2eeeYabb76Zl19+mdmzZ3P11VdXXEspDoUKNPcfqi3/MczMSpk3bx6jRo1qNRQGDRrEjBkz+M53vlPV9/f0kZlZxiZPnswxxxzDxRdfzOrVqwF48MEHOe200zjxxBP59Kc/zbvvvstvfvMbGhoauP322znppJN47bXXSq4HhTY/J5xwAvvtV92PcYeCmVmGlixZwuzZs1m6dCmPPfYYixYtAuCqq65i0aJFvPTSSxx77LFMnz6ds88+m9GjR/Ptb3+bZcuWcdRRR5VcL0uePjIzy9Czzz7LlVdeSY8ePQAYPXo0ACtWrODOO+9k69at7Nixg0suuaTk9uWuVy0OBTOzjJW6NPS6665j3rx5nHjiicyYMYOFCxeW3Lbc9aol0+kjSeskLZe0TNLiZOwwSU9KWpM8Hlq0/kRJayWtlpRtHJqZ1cB5553H448/znvvvcf27duZP38+ANu3b6d///58+OGHzJo1K12/V69ebN++PV1ubr2s1OJI4YKIeLto+Q7gqYi4R9IdyfJXJA0HxgLHAUcACyQdHREf1aBGM+sE8rhS8JRTTuEzn/kMJ510EoMHD+bcc88F4Bvf+AZnnHEGgwcP5vjjj0+DYOzYsdxwww1MnTqVuXPnNrveokWLuPLKK/njH//I/PnzmTRpEitXrtznejP9jmZJ64ARxaEgaTVwfkRslNQfWBgRx0iaCBAR30rW+xVwV0Q839z+R4wYEbX8kh1fkmrWvqxatYpjjz027zJyVerfQNKSiBhRav2srz4K4NeSlkgal4z1i4iNAMlj32R8ALC+aNvGZGw3ksZJWixp8ebNmzMs3cys88l6+uiciNggqS/wpKRXW1i3VJOOvQ5jImIaMA0KRwrVKdPMzCDjI4WI2JA8bgIeB04H3kqmjUgeNyWrNwJHFm0+ENiQZX1mZra7zEJB0oGSejU9B/4CWAE0ANcmq10LPJE8bwDGStpf0lBgGPBiVvWZmdnespw+6gc8nlyf2xV4NCL+WdIiYI6k64E3gTEAEbFS0hzgFWAXMN5XHpmZ1VZmoRARvwdOLDG+BbiomW0mA5OzqsnMzFrmO5rNrPOYf1N193fZfRVvUq3W2VOmTOGhhx6ia9eu9OnTh4cffpjBgwdXXM+e3BDPzKyOzJs3j1deeaXV9U4++WQWL17Myy+/zNVXX82ECROq8v4OBTOzjGXROvuCCy5Im+ydeeaZNDY2VqVWh4KZWYZq0Tp7+vTpXHrppVWp1+cUzMwylHXr7EceeYTFixfz9NNPV6Veh4KZWcayap29YMECJk+ezNNPP83+++9flVo9fWRmlqGsWmcvXbqUG2+8kYaGBvr27Uu1+EjBzDqPNlxCuq+yap19++23s2PHDsaMGQPAoEGDaGho2Od6M22dnTW3zjazlrh1dv21zjYzs3bEoWBmZimHgpmZpRwKZmaWciiYmVnKoWBmZinfp2Bmncbdz99d1f1NOmtSxdtUq3X297//fR544AG6dOlCz549mTZtWqvblMNHCmZmdaTc1tmf/exnWb58OcuWLWPChAnceuutVXl/h4KZWcayaJ190EEHpft/5513SvZXaguHgplZhrJsnf3AAw9w1FFHMWHCBKZOnVqVeh0KZmYZKm6dfdBBB+3WOvvcc8/l+OOPZ9asWaxcubLk9i2tN378eF577TXuvfdevvnNb1alXoeCmVnGmmudff/997N8+XImTZrEzp07S25bznpjx45l3rx5VanVoWBmlqGsWmevWbMmff6LX/yCYcOGVaVeX5JqZp1GWy4h3VdZtc6+//77WbBgAd26dePQQw9l5syZVanXrbMr4NbZZu2LW2e7dbaZme0Dh4KZmaUcCmZmlnIomJlZyqFgZmYph4KZmaV8n4KZdRobv17d+xT6/13lrbir1Tq7ydy5cxkzZgyLFi1ixIiSV5lWJPMjBUldJC2V9PNk+TBJT0pakzweWrTuRElrJa2WdEnWtZmZ1ZtyW2dD4W7nqVOncsYZZ1Tt/WsxfXQTsKpo+Q7gqYgYBjyVLCNpODAWOA4YCXxPUpca1GdmlqksWmcDfO1rX2PChAl07969arVmGgqSBgJ/CTxUNHw50HQ/9kzgiqLx2RHxfkS8DqwFTs+yPjOzrGXVOnvp0qWsX7+eUaNGVbXerM8pfBeYAPQqGusXERsBImKjpL7J+ADghaL1GpOx3UgaB4wDGDRoUAYlm5lVT3HrbGC31tl33nknW7duZceOHVxySekZ81Lrffzxx9xyyy3MmDGj6vVmdqQgaRSwKSKWlLtJibG9GjNFxLSIGBERI/r06bNPNZqZ1UK1W2dv376dFStWcP755zNkyBBeeOEFRo8eTTV6wWU5fXQOMFrSOmA2cKGkR4C3JPUHSB43Jes3AkcWbT8Q2JBhfWZmmcuidfbBBx/M22+/zbp161i3bh1nnnkmDQ0NVbn6KLPpo4iYCEwEkHQ+cFtEfF7St4FrgXuSxyeSTRqARyVNAY4AhgEvZlWfmXU+bbmEdF9l1To7KzVpnV0UCqMkHQ7MAQYBbwJjIuIPyXr/HfjPwC7g5oj4ZUv7detsM2uJW2dX3jq7JjevRcRCYGHyfAtwUTPrTQYm16ImMzPbm9tcmJlZyqFgZh1ae/52yX3Vlt/doWBmHVb37t3ZsmVLpwyGiGDLli0V3+3shnhm1mENHDiQxsZGNm/enHcpuejevTsDBw6saBuHgpl1WN26dWPo0KF5l9GuePrIzMxSDgUzM0s5FMzMLOVQMDOzlEPBzMxSDgUzM0s5FMzMLOVQMDOzlEPBzMxSDgUzM0s5FMzMLOVQMDOzlEPBzMxSDgUzM0s5FMzMLOVQMDOzVFmhIOlTWRdiZmb5K/dI4fuSXpT0RUmHZFmQmZnlp6xQiIj/CHwOOBJYLOlRSX+eaWVmZlZzZZ9TiIg1wJ3AV4A/A6ZKelXSVVkVZ2ZmtVXuOYUTJP09sAq4ELgsIo5Nnv99hvWZmVkNdS1zvfuBB4GvRsR7TYMRsUHSnZlUZmZmNVduKPwn4L2I+AhA0n5A94h4NyJ+lFl1ZmZWU+WeU1gAHFC03CMZMzOzDqTcUOgeETuaFpLnPbIpyczM8lJuKLwj6ZSmBUmnAu+1sL6ZmbVD5YbCzcBPJT0r6VngJ8CXWtpAUvfkhreXJK2UdHcyfpikJyWtSR4PLdpmoqS1klZLuqSNv5OZmbVRWSeaI2KRpE8CxwACXo2ID1vZ7H3gwojYIakb8JykXwJXAU9FxD2S7gDuAL4iaTgwFjgOOAJYIOnoppPbZmaWvUoa4p0GnACcDFwj6a9bWjkKms5DdEt+ArgcmJmMzwSuSJ5fDsyOiPcj4nVgLXB6BfWZmdk+KutIQdKPgKOAZUDTX+4B/LCV7boAS4A/BR6IiN9K6hcRGwEiYqOkvsnqA4AXijZvTMb23Oc4YBzAoEGDyinfzMzKVO59CiOA4RERlew8mfo5KWmi93gr3VZVahcl9jkNmAYwYsSIiuoxM7OWlTt9tAL4D219k4jYCiwERgJvSeoPkDxuSlZrpNBwr8lAYENb39PMzCpXbij0Bl6R9CtJDU0/LW0gqU9Tm21JBwAXA68CDcC1yWrXAk8kzxuAsZL2lzQUGAa8WNFvY2Zm+6Tc6aO72rDv/sDM5LzCfsCciPi5pOeBOZKuB94ExgBExEpJc4BXgF3AeF95ZGZWW+Vekvq0pMHAsIhYIKkH0KWVbV6mcKXSnuNbgIua2WYyMLmcmszMrPrKbZ19AzAX+EEyNACYl1FNZmaWk3LPKYwHzgG2QfqFO31b3MLMzNqdckPh/Yj4oGlBUldKXC5qZmbtW7mh8LSkrwIHJN/N/FNgfnZlmZlZHsoNhTuAzcBy4Ebgnyh8X7OZmXUg5V599DGFr+N8MNtyzMwsT+X2Pnqd0i0nPlH1iszMLDeV9D5q0p3CDWeHVb8cMzPLU1nnFCJiS9HPv0bEd4ELsy3NzMxqrdzpo1OKFvejcOTQK5OKzMwsN+VOH/2voue7gHXAX1W9mjox8bHleZdgZpaLcq8+uiDrQszMLH/lTh/d2tLrETGlOuWYmVmeKrn66DQK33kAcBnwDLA+i6LMzCwf5YZCb+CUiNgOIOku4KcR8bdZFWZmZrVXbpuLQcAHRcsfAEOqXo2ZmeWq3COFHwEvSnqcwp3NVwI/zKwqMzPLRblXH02W9Evg3GTobyJiaXZlmZlZHsqdPgLoAWyLiPuARklDM6rJzMxyUu7XcU4CvgJMTIa6AY9kVZSZmeWj3COFK4HRwDsAEbEBt7kwM+twyg2FDyIiSNpnSzowu5LMzCwv5YbCHEk/AA6RdAOwAH/hjplZh9Pq1UeSBPwE+CSwDTgG+HpEPJlxbWZmVmOthkJEhKR5EXEq4CAwM+vAyp0+ekHSaZlWYmZmuSv3juYLgP8iaR2FK5BE4SDihKwKMzOz2msxFCQNiog3gUtrVI+ZmeWotSOFeRS6o74h6WcR8eka1GRmZjlp7ZyCip5/IstCzMwsf62FQjTzvFWSjpT0L5JWSVop6aZk/DBJT0pakzweWrTNRElrJa2WdEkl72dmZvuutVA4UdI2SduBE5Ln2yRtl7StlW13Af8tIo4FzgTGSxoO3AE8FRHDgKeSZZLXxgLHASOB70nq0vZfzczMKtXiOYWIaPOHckRsBDYmz7dLWgUMAC4Hzk9WmwkspNBs73JgdkS8D7wuaS1wOvB8W2swM7PKVNI6u80kDQFOBn4L9EsCoyk4+iarDWD373xuTMb23Nc4SYslLd68eXOmdZuZdTaZh4KknsDPgJsjoqUpJ5UY2+s8RkRMi4gRETGiT58+1SrTzMzIOBQkdaMQCLMi4rFk+C1J/ZPX+wObkvFG4MiizQcCG7Ksz8zMdpdZKCSN9KYDqyJiStFLDcC1yfNrgSeKxsdK2j/5VrdhwItZ1WdmZnsrt81FW5wDfAFYLmlZMvZV4B4KrbivB94ExgBExEpJc4BXKFy5ND4iPsqwPjMz20NmoRARz1H6PAHARc1sMxmYnFVNZmbWsiyPFMzanY1fn9Tsa/3/7u4aVmKWj5pckmpmZu2DQ8HMzFKePqqCiY8tLzn+rauOr3EllqXmppY8rWQdiY8UzMws5VAwM7OUQ8HMzFIOBTMzSzkUzMws5VAwM7OUQ8HMzFIOBTMzS/nmNeuUWupxVK19+aY2a498pGBmZimHgpmZpRwKZmaWciiYmVnKoWBmZimHgpmZpRwKZmaWciiYmVnKoWBmZimHgpmZpdzmwlo2/6bS45fdV9s6zKwmfKRgZmYph4KZmaUcCmZmlvI5BSto7tyBmXUqPlIwM7OUjxSsbXxVklmH5FAwy4i/kc3ao8ymjyQ9LGmTpBVFY4dJelLSmuTx0KLXJkpaK2m1pEuyqsvMzJqX5TmFGcDIPcbuAJ6KiGHAU8kykoYDY4Hjkm2+J6lLhrWZmVkJmYVCRDwD/GGP4cuBmcnzmcAVReOzI+L9iHgdWAucnlVtZmZWWq2vPuoXERsBkse+yfgAYH3Reo3J2F4kjZO0WNLizZs3Z1qsmVlnUy+XpKrEWJRaMSKmRcSIiBjRp0+fjMsyM+tcah0Kb0nqD5A8bkrGG4Eji9YbCGyocW1mZp1erS9JbQCuBe5JHp8oGn9U0hTgCGAY8GKNa7Ms+b4Gs3Yhs1CQ9GPgfKC3pEZgEoUwmCPpeuBNYAxARKyUNAd4BdgFjI+Ij7KqrdNyKwsza0VmoRAR1zTz0kXNrD8ZmJxVPWZm1jrf0WzVVWdHI83dVWxmpdXL1UdmZlYHHApmZpby9FFHVGdTOGbWfvhIwczMUg4FMzNLefrIOqUlby0pOX5qv1NrXIlZffGRgpmZpXykYFYmH11YZ+BQsHxl3BOpuQ/yaq1v1tE4FKwu3f186e8xnnRW/d2h7CMI60gcCtauNBcWzfHHslllfKLZzMxSPlKwXN39zqulX+h9dm0LyUBz00qjalyHWSUcCtYhnDpjUd4lmHUIDoX2zD2O2qX2dBLdOh+HgtWnN35Tenxw+59Wavao5qza1mFWik80m5lZyqFgZmYph4KZmaV8TsGsk/AJbiuHQ8GsTlR6t3Zz/CFv+6JTh8LEx5bnXUJ5fOmpmdVIpw6FuuMPfzPLmUPB2pfm7l+gW03L6Eiqea7B5y3aP4eCmZXU0jmOrD/kHS75cSiYdTDVOmFtnZNDwTqGHW+VHu/Zr7Z17IPm2l8sue60GldSff7Lv/1wKOTBJ5TNrE45FKxdOXX+H/IuwchviqrSI45K6/SRi0MhU83dB/EtXyhTOx1gWqkjq1a45LWfjhgidRcKkkYC9wFdgIci4p6cS2qzKxr/Z+kXhh5W20LMzMpUV6EgqQvwAPDnQCOwSFJDRLySb2Uta/bD3+qXjyAsY+315HpdhQJwOrA2In4PIGk2cDlQF6HgD//a8bmDf9eRr0pq79oybVXvPa4UEZnsuC0kXQ2MjIi/TZa/AJwREV8qWmccMC5ZPAZYXfNCoTfwdg7vWynXWV3toc72UCO4zmqrtM7BEdGn1Av1dqSgEmO7pVZETAOm1aac0iQtjogRedZQDtdZXe2hzvZQI7jOaqtmnfX2JTuNwJFFywOBDTnVYmbW6dRbKCwChkkaKulPgLFAQ841mZl1GnU1fRQRuyR9CfgVhUtSH46IlTmXVUqu01cVcJ3V1R7qbA81guustqrVWVcnms3MLF/1Nn1kZmY5ciiYmVnKoVAhSSMlrZa0VtIdeddTiqSHJW2StCLvWpoj6UhJ/yJplaSVkuqydayk7pJelPRSUmddf1mBpC6Slkr6ed61NEfSOknLJS2TtDjvepoj6RBJcyW9mvw/PSvvmvYk6Zjk37HpZ5ukm/dpnz6nUL6kDcf/pagNB3BNvbXhkHQesAP4YUR8Ku96SpHUH+gfEb+T1AtYAlxRh/+WAg6MiB2SugHPATdFxAs5l1aSpFuBEcBBETEq73pKkbQOGBERdX1TmKSZwLMR8VByNWSPiNiac1nNSj6f/pXCDb9vtHU/PlKoTNqGIyI+AJracNSViHgGqOs+ERGxMSJ+lzzfDqwCBuRb1d6iYEey2C35qcu/pCQNBP4SeCjvWto7SQcB5wHTASLig3oOhMRFwGv7EgjgUKjUAGB90XIjdfhB1t5IGgKcDPw251JKSqZklgGbgCcjoi7rBL4LTAA+zrmO1gTwa0lLkrY19egTwGbgH5PpuIckHZh3Ua0YC/x4X3fiUKhMq204rDKSegI/A26OiG1511NKRHwUESdRuMP+dEl1NyUnaRSwKSKW5F1LGc6JiFOAS4HxyXRnvekKnAL8Q0ScDLwD1OU5RIBkems08NN93ZdDoTJuw1FFyRz9z4BZEfFY3vW0Jpk+WAiMzLeSks4BRifz9bOBCyU9km9JpUXEhuRxE/A4hWnZetMINBYdFc6lEBL16lLgdxHRTE/48jkUKuM2HFWSnMCdDqyKiCl519McSX0kHZI8PwC4GHg116JKiIiJETEwIoZQ+H/5vyPi8zmXtRdJByYXFpBMx/wFUHdXyUXEvwHrJR2TDF1EnbTwb8Y1VGHqCOqszUW9ay9tOCT9GDgf6C2pEZgUEdPzrWov5wBfAJYn8/UAX42If8qvpJL6AzOTKzv2A+ZERN1e7tkO9AMeL/xNQFfg0Yj453xLataXgVnJH4C/B/4m53pKktSDwhWRN1Zlf74k1czMmnj6yMzMUg4FMzNLORTMzCzlUDAzs5RDwczMUg4FMzNLORTMzCz1/wEx6xap+/NcNwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot(kind='hist',\n", + " bins=50,\n", + " title='Histogram',\n", + " alpha=0.6);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Cumulative distribution" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEICAYAAABS0fM3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAex0lEQVR4nO3debwWdd3/8dc7JAnXAnIDBElNc/eImS2auWBumaZpdWcl8Uv66V13uaRFmUv2y7TUCAUNFXH3h4Waloq5IItoIkrkgkdckFQWFUE+9x8zBy+O1znnOudcc23zfj4e5+E1M9+Z+cylzuf6LvMdRQRmZpZfH6h2AGZmVl1OBGZmOedEYGaWc04EZmY550RgZpZzTgRmZjnnRGB1SdIoSVd1Y//ZkvYqX0RtnudZSV9IP58m6bIyHnuppC3Sz1dI+mUZjz1a0hnlOp7VNicC6xRJx0iant6EXpR0m6RPVzuu9hS7SUbEJyLinkrGERFnR8R3Oion6R5JHZaLiHUj4unuxiXpm5L+0erYIyLizO4e2+qDE4GVTNIPgAuAs4GNgIHAJcChVQwrdyStVe0YrLE4EVhJJG0A/AI4ISJuiohlEbEiIm6NiB+lZdb45S1pL0nNBcvPSvqRpMckLZM0VtJGaa1iiaS7JH242L4F+3+hjfiul/SSpDckTZH0iXT9cOBY4MdpLebWwmNJ2lTSW5I+UnCsnSW9KqlnuvwtSXMkvSbpDkmbt/M9fV3Sc5IWSfpJq22rm7Mk9ZJ0VVrudUnT0u/iLOAzwEVpvBel5UPSCZL+BfyrYN3HCk7RV9Kd6Xd5b0uckgalZdcqiOUeSd+RtA0wGtgjPd/rbfy7PF7SPEn/kTRJ0qYF20LSCEn/Sr+jiyUp3faxNJY30u/02ra+O6seJwIr1R5AL+Dmbh7ny8C+wFbAwcBtwGlAX5L/Hv9vF497G7Al8FFgJnA1QESMST+flzalHFy4U0QsAB5M42pxDHBDRKyQdFga3+FAP+A+4JpiAUjaFvgD8HVgU6AP0L+NeP8L2AAYkJYbAbwVET9JzzEyjXdkwT6HAbsD27ZxzGOBM0m+y1kt30F7ImJOeu4H0/NtWOS6Pg+cA3wF2AR4DpjYqthBwG7Ajmm5/dP1ZwJ/BT5M8l38vqOYrPKcCKxUfYBXI2JlN4/z+4h4OSJeILnhTY2IRyJiOUmS2bkrB42IcRGxJD3OKGDHtBZTignAVwHSX7JHp+sAvgucExFz0ms/G9ipjVrBEcCfI2JKGscZwKo2zrmC5Dv9WES8GxEzImJxB3GeExH/iYi32tj+l4Jz/4TkV/6ADo5ZimOBcRExMz32qemxBxWUOTciXo+I+cDdwE7p+hXA5sCmEfF2RKzRF2G1wYnASrWIpOmhu+3TLxd8fqvI8rqdPaCkHpLOlfRvSYuBZ9NNfUs8xA0kN7ZNgc8CQZKkILmJXZg237wO/AcQsFmR42wKPN+yEBHLSL63Yq4E7gAmSlog6byWpqh2PF/q9ohYmsa6advFS7YpSS2g8NiLWPM7eKng85u89+/xxyTf18NKRmp9qwzxWJk5EVipHgTeJmmeaMsyoHfB8sbdON8ax5LUg6RppphjSDqsv0DS3DKoZbf0n+1OsRsRr5M0X3wlPdY18d60vM8D342IDQv+PhQRDxQ51IskTT0tMfcm+dVf7JwrIuLnEbEt8CmSppVvdBBvR1MFF557XeAjwAKS7xLa/nfT0XEXkCTElmOvQ3JdL3SwHxHxUkQcHxGbktSuLmnVr2E1wInAShIRbwA/BS6WdJik3pJ6Shom6by02CzgQEkfkbQxcFI3TjkX6CXpi+kv5dOBtdsoux6wnORXam+S5ptCLwNbdHC+CSQ34i/zXrMQJB2ppxZ0Pm8g6cg2jnEDcJCkT0v6IEnnetH/xyTtLWn7NMEtJmlCebcT8RZzYMG5zyRpdns+IhaS3LS/ltaevgUMKdjvZaB/ul8xE4DjJO0kaW2S73dqRDzbUUCSjpTU0k/yGknSebedXawKnAisZBFxPvADkpvyQpJfyyOBW9IiVwKPkjTN/BXo8giRNPF8D7iM5Ca2DGhuo/h4kqaLF4AngIdabR8LbJs279xCcZNIOptfjohHC+K4GfgVSRPOYuBxYFgbMc8GTiC5cb5IcuNrK+aNSRLHYmAOcC/Q8oDchcAR6Qic37WxfzETgJ+RNAntStK23+J44EckyfITQGGN5u/AbOAlSa8Wua6/kfR33Jhe1xCSfpRS7AZMlbSU5Ds+MSKe6cQ1WQXIL6YxM8s31wjMzHLOicDMLOecCMzMcs6JwMws5+pu8qq+ffvGoEGDqh2GmVldmTFjxqsRUfRZnLpLBIMGDWL69OnVDsPMrK5Ieq6tbW4aMjPLOScCM7OccyIwM8u5uusjKGbFihU0Nzfz9ttvVzuUqujVqxf9+/enZ8+OJq80M3u/hkgEzc3NrLfeegwaNIj0xUi5EREsWrSI5uZmBg8eXO1wzKwONUTT0Ntvv02fPn1ylwQAJNGnT5/c1obMrPsySwSSxkl6RdLjbWyXpN+l70F9TNIu3Txfd3ava3m+djPrvixrBFcAB7SzfRjJtL9bAsNJ3vVqZmYVllkfQURMafVO09YOBcanb4J6SNKGkjaJiBe7e+4JU+d39xBrOGb3gZ3eZ9SoUay77rr8z//8T9Htt9xyC1tttRXbbtvWe8gTU6ZM4aSTTuKxxx5j4sSJHHHEEZ2OxcysPdXsLN6MNd/B2pyue18ikDScpNbAwIGdvylX0qKlywF4852VaPnK1cutXXv9jew37EA2Gjik6PYW6/XZiAsuGcPFv/stS95e0ebxli1fWfYE2GiGzL++2iG0q+e0J6sdglXY3FUvdVyowNH/79ZM4qhmIijWsF30LTkRMQYYA9DU1FSzb9I566yzuPyKP7FZ//706duXHXfahfGXj2X8FeNY8c47DN5iCJdcOo7HH3uU22/7Cw/cfx/nn3cul191Dffde8/7yvXu3ZuBmw8C4ANqiH79iqj1G741vs7e4KutmomgmYKXbQP9SV6SXXcWLV3OrEdmcvWEa7j7/qm8u3Iln//MJ9lxp1046JDD+MZx3wbg7F/8jKvHX8HxI77HAcO+yH7DDuSQww4HYIMNNixazhqbawH1od5u7J1VzUQwCRgpaSKwO/BGOfoHquWhB+7nwIMPoXfv3gDsP+wgAObMmc05vxjFG2+8wbJlS9l7n32L7l9qOSuunmoBvvnXh0a/+RfKLBFIugbYC+grqZnkpdo9ASJiNDAZOBCYB7wJHJdVLJVSbBjn90ccz/hrrme77XfgmqvGc/99U4ruW2o5e0893fytPuTp5l8os4bniPhqRGwSET0jon9EjI2I0WkSIBInRMSQiNg+Iup6buk99vw0k2+dxFtvvcWSJUu44/a/ALB0yVI22nhjVqxYwQ3XTVxdft311mPpkiWrl9sqZ2bZmrvqpdV/edUQU0y01pXhnt214047c9iXj2CvTw1lwMCB7LHHngCccsbP2H/vz9B/wEC2/cR2q2/+X/rykfz397/HpaMvYdyVE9osN3PGdP7rmKN44/XXuOO2yfzqrDO5f9ojFb++WlGvtQA3B9WWPN/0i1EyjL9+NDU1ResX08yZM4dtttmmShHR5pDOSnpm3lzmLt+g2mFkzonAuqoRbv7dGT4qaUZENBXb1pA1AjMzaIybfyU4EVjNq9dagFWHb/6d50RgZnXPN//ucSKwmuRagHXEN//ycSLoolroIDbLG9/8s+FEYJYRjxQqD9/8s9eYiWD65eU9XlPnH3r+1dlnss466zLyxP8uun3yrZMYsuWWbP3x9oe9XvL7C7nqT5ez1lpr0advX353yR8ZMHDzTsdjZtYWT2lZJZP/PImnnpzTYbntd9yRu6Y8wJSHpnPwYYcz6oyfVCA6s+ry076V1Zg1gio5/9fncu2Eq8s6DfVnPrvX6uM37TaUGyZOqN4FZswdxPnmm371uEZQJrMemcnNN1zP3fdP5U9XX8usmTMAOOiQw7jr3vu598FpbLX11lw9/gqGfnIPDhj2RUb98hzueeBhBm8xpGi51q4efwX77Ld/ha/MzBqdawRlkvU01NdNnMCsmTOZdPudWV6GmeWQE0EZZTUN9b13/43f/vpXTLr9TtZee+3M4jerNDcH1QY3DZVJVtNQP/boLH544kiuuvZG+vX7aOUuqEKGzL9+9Z/lgzuCa09j1gi6MNyzu7KahnrU6aeybOkyvv2NYwDYrP8Arr7uxopfn1l3+KZf2zwNdRfV2pPF9ToNdaPVBPwQ2Xt88y+/rKahdtOQmVnOORGYmeVcY/YRmFlVuDmoPrlGYGaWc64RWMU1WgdxnrkG0BhcIzAzy7mGrBFcP7e8vziP3OrITu9TrmmoLx97KePGjKZHjx6ss846nP/7Szrcx8ysM1wjqJJSp6E+4sijuG/qDO554GFGnvRDzjj1xxWIzqxtfjK48TgRlNH5vz6X3XfensMPHsa8f80FYPzlY/nC5/bkc3vsxjePPZo333yThx96kNtv+wujTj+VvT41lGee/nfRcgDrrb/+6uO/+eayovMZmWXNN//G5kRQJllOQz12zGiadtiGn59xGmefd36VrtDMGlVD9hFUQ5bTUH97+Ai+PXwEN1w3kfPPO4eLx4zN+nLKziOF6o9//eeHawRl1NY01Of+5gLumzqDH53yE5a//XbRfUspd/gRX2HyX7o+14iZWTFOBGWS1TTU/543b/Xnv95+G1sM+VgFrsbyyn0B+dSQTUNdGe7ZXVlNQz12zB+49+6/07NnTzbYcEMu/uNlFb82a59nHLV652mou8jTUHdOI/cR1Hsi8K//+lGX01BLOkDSU5LmSTqlyPYNJN0q6VFJsyVV/o0yZmY5l1nTkKQewMXAvkAzME3SpIh4oqDYCcATEXGwpH7AU5Kujoh3soqrO2qtFmBmVg5Z9hEMBeZFxNMAkiYChwKFiSCA9ZQMt1kX+A+wMsOYzAw3B9masmwa2gx4vmC5OV1X6CJgG2AB8E/gxIhY1fpAkoZLmi5p+sKFC7OK18wsl7JMBMXmQmjdM70/MAvYFNgJuEjS+q3KEBFjIqIpIpr69etX7jjNcsFDQ60tWSaCZmBAwXJ/kl/+hY4DborEPOAZ4OMZxmRmZq1k2UcwDdhS0mDgBeBo4JhWZeYD+wD3SdoI2Bp4ursnfu3a67p7iDV8+KivdHqfck1D3WLSLTfxra8fw5333s/Ou+za6XiqoZGHjJo1ksxqBBGxEhgJ3AHMAa6LiNmSRkgakRY7E/iUpH8CfwNOjohXs4qplpQ6DTXAkiVLGPOHi9m1aWjGUVmjcXOQlSLT5wgiYnJEbBURQyLirHTd6IgYnX5eEBH7RcT2EbFdRFyVZTxZy2IaaoBzf/lzvn/SD1m719rVujQza2Cea6hMspqG+rFHZ/FCczP7DzuwildnZo2sIecaqoYspqFetWoVp5/yIy4afWmFrsLM8siJoIzamoZ6/DXXs932O3DNVeO5/74pRfctVm7pkiU8+cQTHHrgfgC88vLLfO2oI7jq2hvqpsPYKs/9AdZZbhoqkyymoV5/gw2Y+9wLPDJ7Lo/Mnsuuuw11ErCi3Cls3dGQNYKuDPfsrqymobbaVO8zjpoV8jTUnVDLk87V4jTUjfwcQa0lAtcE8iGraagbskZg1dPIN/9a45u/lYv7CMzMcq5hEkG9NXGVU0S8bzY/M7NSNUQi6NWrF4sWLcplMogIlrzxOstX9ah2KGZWpxqij6B///40NzeT9bsKli2vvXfmBLB8VQ9eWNG72qFYBbhfwLLQEImgZ8+eDB48OPPzTJg6P/NzmJlVWkM0DZmZWdc1RI3AqstDRrPl5iDLmmsEZmY550RgZpZzbhoyq0FuDrJKco3AzCznnAjMzHLOicDMLOfcR2BWI9wvYNXiRGBWglp7/4BZOTkRmFWRawFWC9xHYGaWc64RWJd4WgmzxuEagZlZzrlGYFZh7hewWuMagZlZzpWUCCRtl3UgZmZWHaXWCEZLeljS9yRtmGVAZmZWWSUlgoj4NHAsMACYLmmCpH0zjczMzCqi5D6CiPgXcDpwMvA54HeSnpR0eFbBmZlZ9krtI9hB0m+BOcDngYMjYpv082/b2e8ASU9JmifplDbK7CVplqTZku7twjWY1by5q15a/WdWa0odPnoRcClwWkS81bIyIhZIOr3YDpJ6ABcD+wLNwDRJkyLiiYIyGwKXAAdExHxJH+3aZZiZWVeVmggOBN6KiHcBJH0A6BURb0bElW3sMxSYFxFPp/tMBA4FnigocwxwU0TMB4iIV7pwDVYhfprYrDGV2kdwF/ChguXe6br2bAY8X7DcnK4rtBXwYUn3SJoh6RslxmNmZmVSao2gV0QsbVmIiKWSenewj4qsiyLn3xXYhyTRPCjpoYiYu8aBpOHAcICBAweWGLJZdbk/wOpFqTWCZZJ2aVmQtCvwVjvlIakBDChY7g8sKFLm9ohYFhGvAlOAHVsfKCLGRERTRDT169evxJDNzKwUpdYITgKul9RyI98EOKqDfaYBW0oaDLwAHE3SJ1Do/wMXSVoL+CCwO+2MQjIzs/IrKRFExDRJHwe2JmnyeTIiVnSwz0pJI4E7gB7AuIiYLWlEun10RMyRdDvwGLAKuCwiHu/G9ZiZWSd1ZvbR3YBB6T47SyIixre3Q0RMBia3Wje61fKvgV93Ig6zmuV+AatHJSUCSVcCQ4BZwLvp6gDaTQRm9czvKba8KLVG0ARsGxGtR/2YmVmdK3XU0OPAxlkGYmZm1VFqjaAv8ISkh4HlLSsj4pBMojIzs4opNRGMyjKIWjZh6vxqh2BmlqlSh4/eK2lzYMuIuCt9qrhHtqGZmVkllDpq6HiSKR4+QjJ6aDNgNMnUENbAPNFcxzxk1OpdqZ3FJwB7Aoth9UtqPGW0mVkDKDURLI+Id1oW0ikhPJTUzKwBlJoI7pV0GvCh9F3F1wO3ZheWmZlVSqmJ4BRgIfBP4Lsk00YUfTOZmZnVl1JHDa0ieVXlpdmGY2ZmlVbqqKFnKNInEBFblD0iMzOrqM7MNdSiF3AkyVBSMzOrc6U2DS1qteoCSf8Aflr+kMxqn58dsEZSatPQLgWLHyCpIayXSURmZlZRpTYN/abg80rgWeArZY/GzMwqrtSmob2zDsSsFvhlNJZHpTYN/aC97RFxfnnCMTOzSuvMqKHdgEnp8sHAFOD5LIIyqzXuHLZG1pkX0+wSEUsAJI0Cro+I72QVmFWHZxs1y59Sp5gYCLxTsPwOMKjs0ZiZWcWVWiO4EnhY0s0kTxh/CRifWVRmZlYxpY4aOkvSbcBn0lXHRcQj2YVlZmaVUmrTEEBvYHFEXAg0SxqcUUxmZlZBJSUCST8DTgZOTVf1BK7KKigzM6ucUvsIvgTsDMwEiIgFkjzFhDU0Dxm1vCi1aeidiAjSqaglrZNdSGZmVkmlJoLrJP0R2FDS8cBd+CU1ZmYNocOmIUkCrgU+DiwGtgZ+GhF3ZhybmZlVQIeJICJC0i0RsSvgm7+ZWYMptWnoIUm7ZRqJmZlVRamjhvYGRkh6FlgGiKSysENWgVnleH6h93ikkOVRu4lA0sCImA8M68rBJR0AXAj0AC6LiHPbKLcb8BBwVETc0JVzmZlZ13RUI7iFZNbR5yTdGBFfLvXAknoAFwP7As3ANEmTIuKJIuV+BdzRqcjNysQvo7G866iPQAWft+jksYcC8yLi6Yh4B5gIHFqk3PeBG4FXOnl8MzMrg44SQbTxuRSbseaLa5rTdatJ2ozkqeXR7R1I0nBJ0yVNX7hwYSfDMDOz9nSUCHaUtFjSEmCH9PNiSUskLe5gXxVZ1zqZXACcHBHvtnegiBgTEU0R0dSvX78OTmtmZp3Rbh9BRPToxrGbgQEFy/2BBa3KNAETk2fW6AscKGllRNzSjfOadYpHClnelTp8tCumAVum01W/ABwNHFNYICJWT2Ut6Qrgz04CZmaVlVkiiIiVkkaSjAbqAYyLiNmSRqTb2+0XMDOzysiyRkBETAYmt1pXNAFExDezjMXMzIrrzBvKzMysATkRmJnlnBOBmVnOZdpHYFar7l351OrPA6sYh1ktcI3AzCznXCPIKU89bWYtXCMwM8s5JwIzs5xzIjAzyzknAjOznHNnseVG4ZBRM3uPawRmZjnnRGBmlnNOBGZmOec+AsulgTNerHYIZjXDiSBH/DSxmRXjpiEzs5xzjaCICVPnVzsEKxMPGTXrmGsEZmY550RgZpZzTgRmZjnnRGBmlnNOBGZmOedRQ9ZwPFLIrHOcCBqcHyIzs464acjMLOecCMzMcs6JwMws55wIzMxyzonAzCznPGrIGoKHjJp1nWsEZmY5l2mNQNIBwIVAD+CyiDi31fZjgZPTxaXA/4mIR7OMyfLLbyUzKy6zRCCpB3AxsC/QDEyTNCkinigo9gzwuYh4TdIwYAywe1Yx5YUfIjOzzsiyaWgoMC8ino6Id4CJwKGFBSLigYh4LV18COifYTxmZlZElolgM+D5guXmdF1bvg3cVmyDpOGSpkuavnDhwjKGaGZmWSYCFVkXRQtKe5MkgpOLbY+IMRHRFBFN/fr1K2OIZmaWZWdxMzCgYLk/sKB1IUk7AJcBwyJiUYbxWIPxkFGz8siyRjAN2FLSYEkfBI4GJhUWkDQQuAn4ekTMzTAWMzNrQ2Y1gohYKWkkcAfJ8NFxETFb0oh0+2jgp0Af4BJJACsjoimrmMzM7P0yfY4gIiYDk1utG13w+TvAd7KMwczM2ucni83Mcs5zDTWIvDxE5g5is/JzjcDMLOecCMzMcs6JwMws59xHYDWvO/0CnnHUrGOuEZiZ5ZwTgZlZzrlpqI7lZciomWXLNQIzs5xzIjAzyzknAjOznHMiMDPLOXcWW03ynEJmleNEUGc8UsjMys2JIDVh6vxqh2Bl4qeJzTrHfQRmZjnnRGBmlnNuGqoDeekXcAexWXW4RmBmlnNOBGZmOedEYGaWc+4jqFF56Rcws+pzIrCG4GcHzLrOTUNmZjnnGkENyWNzkIeMmlWfawRmZjnnRGBmlnNuGqqyPDYHmVltyW0i8GyjZmaJ3CaCanItoDw8ZNSsPJwIKsQ3//d4pJBZbXFnsZlZzmVaI5B0AHAh0AO4LCLObbVd6fYDgTeBb0bEzCxjqiTXAsrPzUFm5ZdZIpDUA7gY2BdoBqZJmhQRTxQUGwZsmf7tDvwh/Wfd8s3fzOpNljWCocC8iHgaQNJE4FCgMBEcCoyPiAAekrShpE0iIpOffd0dKeSbfOX4l79Z5WSZCDYDni9Ybub9v/aLldkMWOMuIGk4MDxdXCqpGr2NfYFXq3DeznKc5VMPMYLjLLeajfOrv1HhYmfj3LytDVkmAhVZF10oQ0SMAcaUI6iukjQ9IpqqGUMpHGf51EOM4DjLLY9xZjlqqBkYULDcH1jQhTJmZpahLBPBNGBLSYMlfRA4GpjUqswk4BtKfBJ4I6v+ATMzKy6zpqGIWClpJHAHyfDRcRExW9KIdPtoYDLJ0NF5JMNHj8sqnjKoatNUJzjO8qmHGMFxllvu4lQyYMfMzPLKTxabmeWcE4GZWc45EXRA0gGSnpI0T9Ip1Y6nLZLGSXpF0uPVjqUtkgZIulvSHEmzJZ1Y7ZiKkdRL0sOSHk3j/Hm1Y2qPpB6SHpH052rH0hZJz0r6p6RZkqZXO562pA+13iDpyfS/0z2qHVMhSVun32HL32JJJ3X7uO4jaFs6TcZcCqbJAL7aapqMmiDps8BSkie1t6t2PMVI2gTYJCJmSloPmAEcVmvfZzoH1joRsVRST+AfwIkR8VCVQytK0g+AJmD9iDio2vEUI+lZoCkiavJBrRaS/gTcFxGXpaMde0fE61UOq6j0/vQCsHtEPNedY7lG0L7V02RExDtAyzQZNScipgD/qXYc7YmIF1smFYyIJcAckifJa0oklqaLPdO/mvzFJKk/8EXgsmrHUu8krQ98FhgLEBHv1GoSSO0D/Lu7SQCcCDrS1hQY1k2SBgE7A1OrHEpRaXPLLOAV4M6IqMk4gQuAHwOrqhxHRwL4q6QZ6ZQxtWgLYCFwedrUdpmkdaodVDuOBq4px4GcCNpX0hQY1jmS1gVuBE6KiMXVjqeYiHg3InYiedp9qKSaa26TdBDwSkTMqHYsJdgzInYhmXH4hLQps9asBewC/CEidgaWATXZL5g2Wx0ClGUmTCeC9nkKjDJL29xvBK6OiJuqHU9H0qaBe4ADqhtJUXsCh6Tt7xOBz0u6qrohFRcRC9J/vgLcTNLsWmuageaC2t8NJImhFg0DZkbEy+U4mBNB+0qZJsNKlHbCjgXmRMT51Y6nLZL6Sdow/fwh4AvAk1UNqoiIODUi+kfEIJL/Nv8eEV+rcljvI2mddHAAaVPLfkDNjW6LiJeA5yVtna7ahzWnza8lX6VMzULgdxa3q61pMqocVlGSrgH2AvpKagZ+FhFjqxvV++wJfB34Z9r+DnBaREyuXkhFbQL8KR2V8QHguoio2aGZdWAj4ObkdwBrARMi4vbqhtSm7wNXpz/8nqYGp72R1JtkJON3y3ZMDx81M8s3Nw2ZmeWcE4GZWc45EZiZ5ZwTgZlZzjkRmJnlnBOBmVnOORGYmeXc/wKxgiElG3RwZgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot(kind='hist',\n", + " bins=100,\n", + " title='Cumulative distributions',\n", + " density=True,\n", + " cumulative=True,\n", + " alpha=0.4);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Box Plot" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAEICAYAAAB25L6yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAU3ElEQVR4nO3df5Bd5X3f8fdX2kVCKyHvItEJRmIbYjyYpZh6myY1TcZJSk0VEzpmppZCHEcMqkqtkCGxIoI7lAmeUfiRNCPsJlJEsCfWugSHTmrSBDeIuGJiGoHBRsiZEoPiFYklapC0G62Q0Ld/7JVmEfvjLtyz59m979fMnd1773PP/d5H0kfnPuc554nMRJJUrnl1FyBJmpxBLUmFM6glqXAGtSQVzqCWpMIZ1JJUOINaaoiIjIgfqrsO6UwGtYoUES9FxNGIGIqIVyPikYhYUXddABHxiYjYVXcdah8GtUr2kcxcDPwA8D1gS831SLUwqFW8zBwBHgLeBxARSyPiCxFxMCL2RcSnI2JeRPRExGBEfKTRbnFEvBARH2/cfyAificivhoRRyLiLyLiwvHec5L3uAT4HeBHG3v7r81IJ6itGdQqXkQsAv4d8PXGQ1uApcAPAj8OfBz4hcz8PrAW2BYR5wG/BTyTmV8Ys7mfBX4dWAY8A3xxgred6D32AuuBv8zMxZn5rhZ9TGlCHXUXIE3iv0fECWAxcAD41xExn9HQviIzjwBHIuJe4OeA7Zn5aET8IfDnwLnAZWds85HM/BpARNwGHIqIFZn53VMNpnqPKj+wNB73qFWyaxt7rAuATwJ/AVwAnAXsG9NuH/DuMfe3An3A72fm/ztjm6cDOTOHgO8D55/RZlkT7yHNGINaxcvMNzLzj4A3gB8BjgNjx5ZXAvvh9N7w7wJfAP7DONPtTs8ciYjFQA/w8hltXpnsPQAvOakZZVCreDHqZ4Bu4DngQeAzEbGkcTDwFuAPGs1/rfFzLXAP8IVGeJ/ybyLiyog4i9Gx6ifHDnvA6H8MU7zH94ALGtuQKmdQq2T/IyKGgMPAZ4Cfz8w9wAZgGPgOsAvYAdwfER9gNFA/3gjb32B073fTmG3uAG5ndMjjA4weXBzPuO/ReO4xYA/w9xHxSms+qjSxcOEAtYuIeAAYzMxP112LNB3uUUtS4QxqSSqcQx+SVDj3qCWpcJWcmbhs2bLs7e2tYtOSNCc99dRTr2Tm8vGeqySoe3t72b17dxWblqQ5KSL2TfScQx+SVDiDWpIKZ1BLUuGmDOqIeG9EPDPmdjgifmkGapMk0cTBxMz8a+D9cPrKZPuBh6stS5J0ynSHPn4S+JvMnPDopKS3b2BggL6+PubPn09fXx8DAwN1l6QCTHd63seAcf/mRMQ6YB3AypUr32FZUvsZGBjgtttuY/v27Vx55ZXs2rWLG264AYDVq1fXXJ3q1PQp5I1r774MXJqZ35usbX9/fzqPWpqevr4+tmzZwoc+9KHTj+3cuZMNGzbw3HPP1ViZZkJEPJWZ/eM9N52hj6uBp6cKaUlvz969exkcHHzT0Mfg4CB79+6tuzTVbDpDH6uZYNhD0jt3/vnns3HjRnbs2HF66GPNmjWcf/6ZSzqq3TQV1BGxCPhXwL+vthypvY2MjLB27Vr27dvHhRdeyMjICIsXL667LNWsqaGPzPyHzDw3Mw9VXZDUrvbv309Hx+i+U0QA0NHRwf79+yd7mdqAZyZKhTjrrLO49dZbefHFF3njjTd48cUXufXWWznrLNfQbXeVLBzgrA9p+ubNm8fixYsZGRnh+PHjdHZ2snDhQoaGhjh58mTd5alirZr1IalC3d3dDA0Nce655zJv3jzOPfdchoaG6O7urrs01cyglgpx+PBhuru72bFjByMjI+zYsYPu7m4OHz5cd2mqmUEtFeLEiRPcc889bNiwgYULF7JhwwbuueceTpw4UXdpqplBLRViwYIFbN++nRdeeIGTJ0/ywgsvsH37dhYsWFB3aaqZQS0V4uKLL+aJJ56gs7MTgM7OTp544gkuvvjimitT3QxqqRB79+6lo6ODoaEhAIaGhujo6PAUchnUUilOnDhBT08Pjz32GK+//jqPPfYYPT09jlGrmlXIJb09y5Yt4+qrr+bYsWMsWLCAiy66iAMHDtRdlmrmHrVUkOeff/5NY9TPP/98zRWpBAa1VJijR4++6adkUEsFOeecc1ixYgXz5s1jxYoVnHPOOXWXpAIY1FJBVq1aRVdXFwBdXV2sWrWq5opUAoNaKkRPTw8PPvgga9eu5ciRI6xdu5YHH3yQnp6euktTzQxqqRD33XcfixYtYtOmTXR1dbFp0yYWLVrEfffdV3dpqpmXOZVm0KkFAVqlin+/qoeXOZUKkZlN3S781a801U7toamgjoh3RcRDEfHtiNgbET9adWGSpFHNnpn428CfZuZ1EXEWsKjCmiRJY0wZ1BFxDvBjwCcAMvN14PVqy5IkndLM0McPAgeB34+Ib0TE70VE15mNImJdROyOiN0HDx5seaGS1K6aCeoO4J8C/zUzrwCGgU1nNsrMrZnZn5n9y5cvb3GZktS+mgnqQWAwM59s3H+I0eCWJM2AKYM6M/8e+G5EvLfx0E8CXtJLkmZIs7M+NgBfbMz4+A7wC9WVJEkaq6mgzsxngHHPmJEkVcszEyWpcAa1JBXOoJakwhnUklQ4g1qSCmdQS1LhDGpJKpxBLUmFM6glqXAGtSQVzqCWpMIZ1JJUOINakgpnUEtS4QxqSSqcQS1JhTOoJalwBrUkFa6ppbgi4iXgCPAGcCIzXZZLkmZIs4vbAnwoM1+prBJJ0rgc+pCkwjUb1Ak8GhFPRcS6KguSJL1Zs0MfH8zMlyPiPOCrEfHtzPza2AaNAF8HsHLlyhaXKUntq6k96sx8ufHzAPAw8MPjtNmamf2Z2b98+fLWVilJbWzKoI6IrohYcup34CrguaoLkySNambo4x8BD0fEqfY7MvNPK61KknTalEGdmd8BLp+BWiRJ43B6niQVzqCWpMIZ1JJUOINakgpnUEtS4QxqSSqcQS1JhTOoJalwBrUkFc6glqTCGdSSVDiDWpIKZ1BLUuEMakkqnEEtSYUzqCWpcAa1JBXOoJakwhnUklS4poM6IuZHxDci4itVFiRJerNmViE/5WZgL3BORbVIs9rldzzKoaPHW7a93k2PtGQ7S8/u5Nnbr2rJtlSPpoI6Ii4AVgGfAW6ptCJpljp09DgvbV5Vdxlv0arAV32aHfr4L8BG4OREDSJiXUTsjojdBw8ebEVtkiSaCOqI+GngQGY+NVm7zNyamf2Z2b98+fKWFShJ7a6ZPeoPAtdExEvAl4CfiIg/qLQqSdJpUwZ1Zt6amRdkZi/wMeCxzLy+8sokSYDzqCWpeNOZnkdmPg48XkklkjRNEdHS7WVmS7fXKu5RS5q1MrOp24W/+pWm2pXKoJakwhnUklQ4g1qSCmdQS1LhDGpJKpxBLUmFM6glqXAGtSQVzqCWpMIZ1JJUOINakgpnUEtS4QxqSSqcQS1JhZvW9aglaaZcfsejHDp6vGXba8Vq7EvP7uTZ269qQTXTY1BLLbLkkk1c9vlNdZfxFksuAVhVdxnTdujocV7aXFbdrQj7t8OgllrkyN7NxQUL1Bcuap0px6gjYmFE/J+IeDYi9kTEHTNRmCRpVDN71MeAn8jMoYjoBHZFxP/MzK9XXJskiSaCOkcXEhtq3O1s3MpdXEyS5pimxqgjYj7wFPBDwGcz88lx2qwD1gGsXLmylTVKakMlHpyt68BsU0GdmW8A74+IdwEPR0RfZj53RputwFaA/v5+97glvSMlHpyt68DstE54yczXgMeBD1dRjCTprZqZ9bG8sSdNRJwN/BTw7YrrkiQ1NDP08QPA5xvj1POABzPzK9WWpZJEREu3N3p8WlKzmpn18U3gihmoRYVqJlh7Nz1S3HiiZr/STtZZenZnLe/rmYmSitTK//hn+46EV8+TpMIZ1JJUOINakgpnUEtS4TyYKLVQabMUoL6ZCmodg1pqEWcpqCoOfUhS4QxqSSqcQS1JhTOoJalwBrUkFc6glqTCGdSSVDiDWpIK5wkvkmat6SxqEb8xdZtSF7UwqCXNWqUGa6s59CFJhWtmcdsVEbEzIvZGxJ6IuHkmCpMkjWpm6OME8MuZ+XRELAGeioivZubzFdcmSaKJPerM/LvMfLrx+xFgL/DuqguTJI2a1sHEiOhldEXyJ8d5bh2wDmDlypWtqE2ac9plloJaq+mDiRGxGPgy8EuZefjM5zNza2b2Z2b/8uXLW1mjNGdkZktvag9NBXVEdDIa0l/MzD+qtiRJ0ljNzPoIYDuwNzN/s/qSJEljNTNG/UHg54BvRcQzjcd+LTP/pLKqNCMuv+NRDh093rLttWq9wKVnd/Ls7Ve1ZFvSXDBlUGfmLqD5IyCaNQ4dPV7kunwlLhAr1ckzEyWpcAa1JBXOoJakwhnUklQ4g1qSCmdQS1LhDGpJKpwrvLSxJZds4rLPb6q7jLdYcglAefO7pboY1G3syN7NnvAizQIOfUhS4QxqSSqcQS1JhTOoJalwBrUkFc6glqTCGdSSVDiDWpIK5wkvba7Ek0uWnt1ZdwlSUaYM6oi4H/hp4EBm9lVfkmZKK89K7N30SJFnOUpzQTNDHw8AH664DknSBKYM6sz8GvD9GahFkjSOlh1MjIh1EbE7InYfPHiwVZuVpLbXsqDOzK2Z2Z+Z/cuXL2/VZiWp7Tk9T5IKZ1BLUuGmDOqIGAD+EnhvRAxGxA3VlyVJOmXKedSZuXomCpEkjc+hD0kqnEEtSYUzqCWpcAa1JBXOoJakwhnUklQ4g1qSCmdQS1LhDGpJKlzbBfXAwAB9fX3Mnz+fvr4+BgYG6i5JkibVVkE9MDDAzTffzPDwMADDw8PcfPPNhrWkorVVUG/cuJHh4WH279/PyZMn2b9/P8PDw2zcuLHu0iRpQm0V1IODgxw7dozNmzczPDzM5s2bOXbsGIODg3WXJkkTaqugBrjhhhu45ZZbWLRoEbfccgs33OBVWyWVbcrLnM5GETHhc1u3bmXr1q3Tek1mtqQuSXo75uQedWaOe+vo6KCrq4ve3l4g6O3tpauri46OjglfY0hP7tQsmn13XeMsGqkiczKoJ7J+/XqOHj3K0aNHAU7/vn79+porK1tETHhbs2YNe/bsgTzJnj17WLNmzaTtJ/vmIml8bRXUW7Zs4aabbuK1114Dktdee42bbrqJLVu21F1a0Sb6ptHT08P8+fO59957GR4e5t5772X+/Pn09PT4DUVqoWjmH05EfBj4bWA+8HuZuXmy9v39/bl79+7WVFiR3k2P8NLmVXWXMatFBHfddRef+tSnTj929913s3HjRgNZmqaIeCoz+8d7rpnFbecDnwWuBt4HrI6I97W2RM1WfX19k96X9M41M+vjh4EXMvM7ABHxJeBngOerLGwil9/xKIeOHm/Jtno3PdKS7Sw9u5Nnb7+qJduaTTo6Orj++ut56KGHuPLKK9m1axfXX389HR1zcjKRVJtm/kW9G/jumPuDwD8/s1FErAPWAaxcubIlxY3nZO8vs6Syrb89JwH4Vs1VzLz169fzuc99jtWrV3PgwAHOO++80+P+klqnmaAe7zD9WwYgM3MrsBVGx6jfYV0TOrJ3c3Fjy63aM59tTh2E3bZtG5kenJWq0kxQDwIrxty/AHi5mnKaU1owLj27s+4SarNlyxaDWapYM0H9V8B7IuIfA/uBjwFrKq1qEq3am3bWh6TZYsqgzswTEfFJ4M8YnZ53f2buqbwySRLQ5AkvmfknmXlxZl6UmZ+puqgqecqzpNmmreZRDQwMsHbtWkZGRgDYs2cPa9euBWD16tV1liZJE2qrU8hvvPFGRkZG6O7uBqC7u5uRkRFuvPHGmiuTpInNyT3qqS788+qrr77p5/DwsJc5lVSsOblHPdnFgO688843PXbnnXdO+hpDWlLd5mRQT2bz5s3s3LmT48ePs3PnTjZvnvT6UpJUuzk59DGRrq4uhoaG+OhHP8qrr75Kd3c3Q0NDdHV11V2aJE2orfaot23bxsKFC980Rr1w4UK2bdtWc2WSNLG2CurVq1dz//33c+mllzJv3jwuvfRS7r//fqfmSSpaUwsHTNdsWDhAkkryjhYOkCTVy6CWpMIZ1JJUOINakgpnUEtS4SqZ9RERB4F9Ld9way0DXqm7iDnE/mwt+7O1ZkN/XpiZy8d7opKgng0iYvdEU2E0ffZna9mfrTXb+9OhD0kqnEEtSYVr56DeWncBc4z92Vr2Z2vN6v5s2zFqSZot2nmPWpJmBYNakgo354I6Iv5zRPzKJM9fGxHva2I7PxYRT0fEiYi4rrVVzh4t7M9bIuL5iPhmRPx5RFzY2kpnhxb25/qI+FZEPBMRu5p5zVzUqv4c0/66iMiIKGoq35wL6iZcCzTzB/e3wCeAHVUWMwdcS3P9+Q2gPzP/CfAQcFeVRc1i19Jcf+7IzMsy8/2M9uVvVlnULHYtzfUnEbEE+EXgySoLejvmRFBHxG0R8dcR8b+A9zYeuzEi/ioino2IL0fEooj4F8A1wN2NPZGLxmsHkJkvZeY3gZP1fbJ6VNSfOzPzHxpv8XXgglo+XA0q6s/DY96iC2ibWQFV9GfDrzP6n97IzH+qKUy2+vZsuAEfAL4FLALOAV4AfgU4d0ybO4ENjd8fAK4b89y47cY89qb2c/1WdX82Hr8P+HTdn3W29yfwH4G/Ab4LvKfuzzqb+xO4Avhy4/fHGf32V/vnPXWbC4vb/kvg4WzsrUXEHzce74uIO4F3AYuBP5vg9c22axeV9mdEXA/0Az/e8srLVFl/ZuZngc9GxBrg08DPV/EBCtPy/oyIecBvMTrUWaQ5MfTB+F/7HgA+mZmXAXcACyd4bbPt2kkl/RkRPwXcBlyTmcdaWXDhqv77+SVGx2LbRav7cwnQBzweES8BPwL8cUkHFOdCUH8N+LcRcXbjYMBHGo8vAf4uIjqBnx3T/kjjOaZo164q6c+IuAL4XUZD+kCVH6AwVfXne8a0WQX83yqKL1DL+zMzD2XmsszszcxeRo+hXJOZxSz8OuuHPjLz6Yj4b8AzjF5a9X83nvpPjB693cfomNapP6wvAdsi4heB6yZqFxH/DHgY6AY+EhF3ZOalM/GZ6lRVfwJ3M/pV8w8jAuBvM/Oaqj9P3Srsz082vqEcB16lPYY9quzPonkKuSQVbi4MfUjSnGZQS1LhDGpJKpxBLUmFM6glqXAGtSQVzqCWpML9fyCg2aIm0KK1AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot(kind='box',\n", + " title='Boxplot');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Subplots" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABsuUlEQVR4nO2dd3xUVfbAv2eSkAQIhN6LBZFeVRRRWQsqiLrqquha1rZ214KgqOiKZf2tCqKrYgEVUARFFF1RFBFdFRClI4iU0FtCepvz++O9SWYmM8lMMi2T+/185pP37rvv3fNe7pw579xzzxVVxWAwGAyRxxFtAQwGg6GuYhSwwWAwRAmjgA0GgyFKGAVsMBgMUcIoYIPBYIgSRgEbDAZDlDAKOAqIyBAR2RCFdq8RkSWRbtdgCBYRURE5OtpyhBujgMOIiGwRkTO8y1X1W1XtGg2ZAkVEFonI9dGWw+AfETlZRL4XkSwROSgi34nIcTW8ZoUfaRGZKiKP10za8FDbjYrEaAtgMBiCR0QaAZ8ANwOzgHrAEKAwmnL5QkQSVbUk2nLEIsYCjgIicpqIZLjtbxGRe0VkpW3NvCciKW7HR4jILyKSaVs8vSu5torIHSKyWUT2i8gzIuLz/ywiJ4nIUrvNpSJykl0+AevLPFlEckRkcuju3hAijgFQ1ZmqWqqq+aq6QFVXuiqIyA0isk5EskVkrYj0t8vHiMjvbuUX2uXdgJeBE+3/e6aI3AhcAYy2yz6267YVkTkisk9E/hCRO9zaHS8is0XkHRE5DFzjLbxtVb8sIl/YcnwjIp183aiINBaRt+y2torIOBFx+JI3JE82kqiq+YTpA2wBzvBRfhqQ4VXvJ6At0BRYB/zdPtYf2AucACQAV9v1k/20qcDX9nU6Ar8B19vHrgGW2NtNgUPAX7HehC6395vZxxe5zjOf2PsAjYADwDTgHKCJ1/FLgB3AcYAARwOd3I61xTLALgVygTbefcTtWlOBx932HcBy4GEsy/tIYDMwzD4+HigGLrDrpvqQfyqQDZwCJAMT3du1+/HR9vZbwEdAGtDZ7tPX+ZO3Nn2MBRw7TFLVnap6EPgY6GuX3wC8oqo/qmXpTMN6zRxUybWeVtWDqroNeB5LuXozHNioqm+raomqzgTWA+eF6H4MYURVDwMnYymqKcA+EZknIq3sKtcD/1LVpWqxSVW32ue+b/c1p6q+B2wEjg+i+eOAFqr6mKoWqepmW4bL3Or8T1Xn2m3k+7nOfFVdrKqFwINYlmwH9woikoD1IzFWVbNVdQvwbyzDodZjFHDssNttOw9oaG93Au6xXwcz7desDlgWjD+2u21v9VO3rX0Mr7rtghHaED1UdZ2qXqOq7YGeWP/T5+3DHYDffZ0nIle5ubQy7XObB9F0J6CtV598AGjlVme7zzM9KaujqjnAQSr21eZYVrZ7X42bfmoUcOyzHZigqulun/q2xeoPdyuiI7DTR52dWF8kvOrusLdNmrxahKqux3qt72kXbQeO8q5n+1mnALdhuZvSgdVYbgrw/X/3LtsO/OHVJ9NU9dxKzvFFWT8VkYZYbjHvvrofy53h3lfjpp8aBRx+kkQkxe0TbOTJFODvInKCWDQQkeEiklbJOfeJSBP7de5O4D0fdT4FjhGRUSKSKCKXAt2xRtYB9mD59gwxiIgcKyL3iEh7e78DlqvpB7vKa8C9IjLA7jdH28q3AZbS2mefdy3lShus/3t7EannVebeF34CDovI/SKSKiIJItJTgg+BO1esULp6wD+BH1XVw3JW1VKsKI8JIpJm38PdwDuVyFtrMAo4/HwK5Lt9xgdzsqouw/IDT8YaJNuEj1FlLz7CGiT5BZgPvO7jugeAEcA9WIM5o4ERqrrfrjIRuFhEDonIpGBkNkSEbKyB2R9FJBdL8a7G+n+iqu8DE4AZdt25QFNVXYvlQ/0flvLqBXzndt2vgDXAbhFx9YXXge62u2GurRTPwxqn+APLSn0NaBzkPcwAHsFyPQzAirbwxe1YA4WbgSX2eW9UIm+tQeyRREOcICIKdFHVTdGWxWDwh4hMxYoEGhdtWaKJsYANBoMhShgFbDAYDFHCuCAMBoMhShgL2GAwGKJErU7G07x5c+3cuXO0xTBEmeXLl+9X1RbRat/0Q0N1+2CtVsCdO3dm2bJl0RbDEGVExHtGX0Qx/dBQ3T5oXBAGg8EQJYwCNhgMhiqYv3k+Z80+i97TenPW7LOYv3l+SK5bq10QBoPBEG7mb57P+O/HU1BaAMCu3F2M/348AMOPHF6ja8edAi4uLiYjI4OCgoJoixIVUlJSaN++PUlJSdEWJaRsO7wNpzrp3LhztEUJiLrcD+OpD87fPJ8HljyAU50e5QWlBUz8eaJRwN5kZGSQlpZG586dEZGqT4gjVJUDBw6QkZHBEUccEW1xQsrwD62OvurqVVGWJDDqaj+Mhz44f/N8Jv48kV25uyqttzt3d6XHAyHufMAFBQU0a9asTnV6FyJCs2bN4srqysjO4NPNn0ZbjKCpq/2wtvdBl7uhKuUL0LpB6xq3F3cWMFDnOr07tf3ef8/8nWlrpvHIiY+Q4Ehg1PxRHCo8FG2xqkVt/19Ul9p434FavS5SElK4s/+dNW437ixgQ+3m7kV38+GmD/kj6w+AWqt8DbWHYKxeAIc4GH/S+Br7f8Eo4Igwfvx4/u///s/v8blz57J27doqr7N48WL69+9PYmIis2fPDqWIUeeb7d/w3vr3UHuBgwvnXRhlieIL0wctfIWTTfx5YlmEQ1WkJKTwxMlPhET5Qpy6IGobc+fOZcSIEXTv3r3Seh07dmTq1KmVfpFqK7d9dRsARzSunQM3NWXuih088/kGdmbm0zY9lfuGdeWCfpFb9ize++D8zfN58scnySrKKitzhZMFqnzbNGjDnf3vDJnyBWMBh40JEybQtWtXzjjjDDZs2ADAlClTOO644+jTpw8XXXQReXl5fP/998ybN4/77ruPvn378vvvv/usB9aU1969e+Nw1N5/2897fmZxxmK/x7MKs/wei1fmrtjB2A9WsSMzHwV2ZOYz9oNVzF2xo8pzK8P0QQuXi8Fd+boIRvkuuHhBSJUvxLkF/OjHa1i783BIr9m9bSMeOa9HpXWWL1/Ou+++y4oVKygpKaF///4MGDCAP//5z9xwww0AjBs3jtdff53bb7+dkSNHMmLECC6++GIA0tPTfdarzfyR9Qepialc/d+rgfJwssNFh5m6empZvYMFB6MhXlR55vMN5BeXepTlF5fyzOcbqm0Fmz5YTjAuBl+EasDNF3GtgKPFt99+y4UXXkj9+vUBGDlyJACrV69m3LhxZGZmkpOTw7Bhw3yeH2i92sTIuSN9lj+77FnmbJwTYWlii52Z+UGVB0Jd74Mu3+7u3N1l4wrVJVQDbr6IawVclaUaTnyF4lxzzTXMnTuXPn36MHXqVBYtWuTz3EDrxTJOdSKI35Ck3OJcBs0YRKIjrrtgQLRNT2WHD2XbNj21Rtetq33Qe+pwTWhcr3HYlC8YH3BYOOWUU/jwww/Jz88nOzubjz/+GIDs7GzatGlDcXEx06dPL6uflpZGdnZ22b6/erWJPm/14aHvHvJ7PCM7A4ASZ0mkRIpZ7hvWldSkBI+y1KQE7hvWtdrXrMt98LH/PRYS5QuQVZRFr2m9QpqAxx2jgMNA//79ufTSS+nbty8XXXQRQ4YMAeCf//wnJ5xwAmeeeSbHHntsWf3LLruMZ555hn79+vH777/7rbd06VLat2/P+++/z0033USPHtGz8CujsLQQgI9+/8hvnZq+FsYTF/Rrx5N/7kW79FQEaJeeypN/7lWjKIi60ge9w8pu+PwG8kry/NYXhDYN2pCenB5UO66IiVAr4ZhbE05E0oHXgJ6AAn9T1f/5qjtw4ED1ToS9bt06unXrFm4xY5poPoPdubs5c/aZZfuuwbZe03p51Hv/vPe55ONLKr3Ws6c9y92L7vYo85ULQkSWq+rA6srs43rpBNgHwfRDX0Ti/oN1NTjEgarSukFrTml/Ch9s/IBiZ3FQbbqiIbypbh+MRQfcROC/qnqxiNQD6kdbIINvCksL2Zmz0yN29+Yvbw7Z9b2VbwQxfTDG8ZelrDJcdXfl7mLOb3Mo0eDdX6FIwONOTLkgRKQRcArwOoCqFqlqZlSFMvjlwSUPMnLuSPKKy1/5NmVuqlBv6+GKq7UE88WJJKYPxj4uy7cmfag6yhdCk4DHnVizgI8E9gFvikgfYDlwp6rmRlcsgzs7c3by/c7v+WHXDwB8vf1rvyPF27O3c8FHF1Qof2vtW+EUsSaYPhiDuIeVQfTGEEIdDxxrCjgR6A/crqo/ishEYAxQNpwuIjcCN4I1LdIQef766V/Zm7+X+onWm/mYb8ewcNtCbu5T0f1w7gfn+rzGmv1rwipjDaiyD4Lph5Eg2Axl4SYcIWkx5YIAMoAMVf3R3p+N9WUoQ1VfVdWBqjqwRYuorURep9idu5te03rx2R+fMX3ddPbm7wU840y/2PoFDy55MOBrxvCU4yr7IJh+GG6CzVAWCUQk5FEQMWUBq+puEdkuIl1VdQNwOlB1iiZDWFh7YC2qWjY9ePKKyTjE/292MK+FsZpm0vTB2KCm04fDQWZhZllse6gs4VizgAFuB6aLyEqgL/BEdMWpOaFKBfjss8/SvXt3evfuzemnn87WrRUHt0LJpZ9cymXzLytTrNuyt1WqODcdqjgAV0sxfdAPkeqDoY42CBXFzmKe+umpkF0v5hSwqv5iv9r1VtULVDU2TaUQEmjn79evH8uWLWPlypVcfPHFjB49OgLSeVKZ66C6I8uxRlT64MpZ8FxPGJ9u/V05K+xNuhPNPug9meLxHx4PelWNJIncAqCZhZkhu1bMKeB4IRypAIcOHVqWXGXQoEFkZGSERfbsomyyi8qnpT76/aNhacdgs3IWfHwHZG0H1Pr78R01VsK1oQ+6+3oVZVfuLt7b8F5QIWYJkkCxBjehoqaEyhccUz7gkPPZGNgd4lV0W/eCcyp/BYlEKsDXX3+dc845JyS39Nqq1+japCtD2lvTVU+aeZLHcdegmyFMLHwMir2S8RTnW+W9/1KtS9aWPvjUT0/VyNfrEAelWlp1xRAz/vvxQM19wfGtgKNEuFMBvvPOOyxbtoxvvvkmJPJO/HkiUHuWfI87svxYkf7KAyCW+2CowstSElKiNlBXUFrAxJ8nGgVcKVVYquEkXKkAv/zySyZMmMA333xDcnJyjeW886vqB5bHWh6RWkvj9rb7wUd5DYi1PuhrWaCa0LdFX9YfWh9Sn2wwhCJEzviAw0C4UgGuWLGCm266iXnz5tGyZctqy3fpJ5cyZeUUAL7a/lW1r2MIEac/DEleuX+TUq3yahILfdB9cO3kmSfz0HcPhUz5Avyw+4eoKV+g0pDMQIlvCzhKuKcC7NSpU4VUgJ06daJXr15lHf6yyy7jhhtuYNKkScyePdtvvfvuu4+cnBwuucTKItaxY0fmzZsXsFyvrXqNvXl7WXtgLWsPrOWG3jd4HM8syCQ9JT3g65mUkiHC5edd+Jjldmjc3lK+1fT/QvT7YH5JPuOXl2cqC6XiDZTG9RqHtd1Q5DOJuXSUwWDSAPpm3bp1HHvssczeOJvzjjyPlMQUoGJKyFVXr6pQ9n+n/h/3fnNvxGQNlkikowwW0w8rsmj5Im5fXTvXkAsUhzj49apfger3QeOCiFO+2v4Vj/3vMR7/4fGgVp2IZeVrqD2UOiMfmRBpQmEBGwUcp+QWW8m7Pvr9I8Z9N85nnUMFcT/HxRAlEhwJVVeq5bRp0KbG1zA+4DjF3bU0f/N8nhpSMSLkqs+uiqRIhjgjszCT3Tm7y+JwHeJARCh1lsa9BRyqpeqNAq7DbDm8JdoiGGoZ3krXHac6qQvjsunJ6Yw5fkxIEvIYBVxLySrMYnfublrWb0lKYgqpiakUlRaVLRM0defUsrpCcPPqDQZfZBZmsjN7Z52PfikoCd3kD+MDrmXkFueyZv8aMrIzKHGWsDNnJ5szNwOw8dBGth3eBnguDaQo+/P3R0VeQ/ywN3dvrVO+6cnpCELjeo2DXgnZH65ZcKHAWMARYPz48TRs2JB77/UdYTB37lyOOeYYunfvXul1Xn75ZZ6d9CwOh4P6Deoz/tnxHNX1qIBkGDpraNByG+KHUPTBYmcx7019j3ffeLdafTDSOMTBt5d961EWyErKSY4kGiQ1qHSSR6jSZRoLOAYINBXgqFGj+HDxh8xZNIe/3f43/vXQv8qOuZKmG2on3ikZQ73yQlX46oOZhZn8dvA31uxfw28HfwNg+EXD/fbBWMM7TMyVg6KgtKBsFlubBm24tOultGnQBkFo06AN/xz8T4Z19p0jw0WoFuc0FnCYmDBhAm+99RYdOnSgRYsWDBgwgClTpvDqq69SVFTE0Ucfzdtvv80vv/zCvHnz+Oabb3j88ceZM2cOX331VYV69evXp1GjRmB7EvLz8j3m+u/KiZ2lWwzB4W2V7crdFZJsWzXpg598/glTpkyhuLiYjp078uRLT5JaP5WGaQ3Lru/dB2ON1ARrerevHBROdZZFMvh6xpW5GBIlMWSLc8a1An76p6dZf3B9SK95bNNjuf/4+yutE4pUgH+99q/8nvk7bz/7tkcqwJmvz2Tay9MoLirmjQ/eCOm9GaKDr+V3apptK9A+OPmVyVxw9QWcctYp/OnsP3HV5VeRnpzOoLMGccZfzgBg0hOT+GD6B1xxwxVA7emD+aX5HP/O8eSX5vs8XtkzrszFEMofHeOCCAPuqQAbNWrkkQpwyJAh9OrVi+nTp7Nmje+VgVevXs1pp5zGhadcyMwZMz3qXX7d5fx36X+5++G7eeXZVyJyP4bw4u/LXhM/YyB98O133mb5r8spdlrJzEudpezM2UlmYSbr1qzjqhFXceEpFzJ/znw2bSgf1K1NfdCf8nXh/Yznb57PyTNPrnSwsdhZbAbhAqEqSzWcBJoKsLi0uOwL4F7v9Zmv0+roVnw15yuW/295hWudc+E5/PO+f4ZNfkPkaN2gtc/UhjX1M1bVB5+c/CQ/LvnR47iqsjd3L+PuGMfEaRM5tuexzJ05l6XfLa1wrXjog43qNeKs2WexO3c3jeo1IrsoGydVTzE2g3AxTDCpADdnbYZ6VEgF2LJVS4qLi3n/vfcpKClAVVm3YV1ZncVfLKbjkR0je2OGsHBn/ztJSUjxKKvpTKuq+uC+nH3Mm12exaxBwwbk5ljT14udxeTl5NGiVQuKi4v5ZM4nZfW2/l6+CGc89MGsoqyy5ZCyirICUr5gKe5QENcWcLQINBXgvkP7KHGWcPaFZ/PkfU96pAI8d+i5tGrXimO6HUNuTi55JXlM+PcEflj8A4mJiTRKb8QTk2v9Yr0GygfaJv48kd25u2ndoLXfwaFA8dUH80vyuW3MbfQ/rj9t2rcp61sAZ194NuPvHs/0KdN59o1nuW3MbYw6e1SFejNen2H6IKHzA5t0lFFkzf5y326P5j3KtvOK8/gj6w+Pukc0PqJCmT92/7Gbu9beFRIZYw2TjjI4Mgsz2Zu7t4KbK9zEcx8Ea3bpyqtXlu+bdJSxjVOdHMw/WJYkp7jU8wtxuPBw2TFfQeKBKl+DwUVmYSY7c3ZGXPnWBUwccC0hvzifxIRE9uft52DBQUSEJilN+O3Qbx71tmdvp2X9lhSVFlGigefvNRj8sTt3t1m3rxokSVKly9yHKhMaxKACFpEEYBmwQ1VHRFuempBTlMPWw1sREZITrMULd+bspElKE5/19+fvD0mSZ0PNqa39sLJsZYbAKNZi0pPTGdZ5GIszFntEqDjEwflHnx+STGgQmy6IO4F1VdaqBezJ2wNYoT2hzKBkiAi1rh9mFmayI3tHzCnf2piNL7Mwk482fcQp7U/xiFBxqpOPNn0UsqniMaWARaQ9MBx4LdqyVJc1+9ewZv8asgqz/AZze/t/XRjrNzaoTf3QPV/Djuwd0RbHJ7Utg5qLgtIC3tvwnt9ZiqEg1lwQzwOjgTR/FUTkRuBGsFZkjSXcVwHIyM7wW29HTmx+UQxlPE8t6IeuQbZQ+nkbFihNsyGxFEoS4GAa5KTUPgs23MTdRAwRGQHsVdWK077cUNVXVXWgqg5s0aJFhKTzT35Jftmil/5e/V7814u8+eKbZfuu9dpcLPx0Ib9v+D3gNhfMW0DPFj1Z/cvqakhsqIza1A+DGWTz7oPeLPx0IbtWbqJFlqV8wfrbIstSyt7U9T4Yj1EQg4GRInIukAI0EpF3VPXKKMvlF6c62Zy5mXoJ9ejSpEu1r/PVp19x6lmnclTXo6hnB0AU+fnP5ObkMn3KdHoP6F3t9gyVEvZ+WJKZScmePWhxuSsqZ/G3HJo5k9L9+0ls04aW/7iLxuedV+HcUA+yuSzepXMW0vzUU5GzPHP7ikLTbMhxm6gXzT44eE0poxYpzQ7DgUYw4zThux6RXwC0U1qnkFwnZhSwqo4FxgKIyGnAvbGsfAEO5B8AoKi0CFX18OG+8uwrfDzrY1q3a02TZk3o3qc7s9+ezftvve+R4m/96vV8/fnXLPvfMl559hXmPPMci378kf98NLtCKkCAF558gWtvv5apL06Nxi3HPeHqh76Uroucxd9y4OWX0aIiq+7Onex66GFyi/M4fGqfaivbyvpgaWExx7TryBtPPMGyDRuYv2gR3y5fzlOvvsrM56w++MZsqw8e2bEj416PfB+89vMSzloBDi8D3OUQaXEYbvpUgdKwKWF/Cv+nPT+F5Poxo4DDwe4nnqBwnWc6SgW0qAhxOFCnE6mXBFr51ELX/18A7dKZ3FsupUNaB48vxqHCQ2U5edf8uob/zv0v73/1PqWlpVzyp0vo3qc7Zww/g4v/aqWcdKX4+9s1V3D6WUM59axTOeP8szhyt9I4LY3TbrvEo94VN1zBupXr2L1jN6eddVpkFLDr9dZ+NqmFyqD1yte9pazMUDVFO3dSetB/wvxDM2aUKV8XWlBA5sTJ6CkvV6vNyvrgNZdcRIsseHTiJKZ98AE3X3EFw087jXNOPZULzzoLgMZpafzNTo86ftIkPn99DhfcfmXE+uADM0ros5Uq4ydSSmDUIuW7Hlb+3/SUdJ+JjarD4DWl3PSpkmK/lbY4DLfPU47JKOHNYaFRnTGpgFV1EbAoZNdDodRpKZTEBLS4uHxctrQEdSoJDRpUOK9UnYgIBSX5qCoNkhqQV5wHWBMn3DlceLhs++f//czp555eZjEMPdtaDmjjuo288OQLZB/OJj8nj5OGnkS7A0qDAqVFlvUXYO3GjYy9dzLZh7PJy7XqOZ1Onn7oaSa8MCFUj6VKZj1l/cDkJsPajkJOCgxdpexsmsCGDuFv/4wVTm78r5PLRydQmhB5hR+KfliSmVmp8gUoPXDA94G9fsoDoLI+eN9jL3D48GFy8vM546STfJ6/duNGHp08mSy3ek0ySyPSBwevKQ1I+bpoftg657se+eTn5pOakFplGspAGLWoXPm6cABn/wyb2odm4DMmFXCoaP3AAwDkry4fKEhIT6c0M7NC3XodOpDQuDFgRTMUlhZWmP7bqXkPj/wN7ngPrPnqPa4Uf326HstXr3/IVz97pvhLsY2gGx96iHcnTqTZ4GOZ9b6VCjA3J5dN6zdx7QXXArB/735uv/J2XnjnBXr27en3GVQLVS78vryDNSiE4zaW79/0WSl33xj+rnPpYsulc+Ru2Nxao6KEa0rJnj1V1klo1ozS/RUXTU1s1oy2e5UDjaoZieDjlIduH8fs5ybSu2tX3p47l2+XVkwzCVYffG+iZz3Hvsj0wVGLNKjIYQFumV/uiqip8nW5HZof9n1cgBsWhiZ+IWaiICKFFhb6LC/ablm0+SX5rD+43mfuhUDjLAecOICFny6kIL+A3JxcFn2+CLAGL1q0akFCbhHvzZ9Pku3BaNigAdm5uTS2jGtycnNp07w5rXYVlaUCTGuUxpINS1jw8wIW/LyA3gN6h0f5Ag3z4fLF/mOS2x+AYcudJJRGJr5zwlul3DK/9sRIZ338McV79pC/erVPn683TUaNQurV8yiTevVoMmoUCU5okek7EqEy/PXBvOxcWjdvTnFxMe/NL59M4OqDLnJyK9ZrnJbGzm++ZdOnn7Pp0885vldvZk96gZGte9BxnwYs4+A1pbz4YgnvPlnCiy+WMHhNKdd+bu2/92SJX8VXGUmlcMc8LbtedXG5HVocrtwCT8ktJstO8VkT4toC9oUz3/+vY8n+/TizDtGwnpLohMwGnv+CylZJdad7n+6cff7ZXDz0Ytp0aEP/Qf0BuG3MbVx51ig6t25Djy5dyLE7/CXnnMOt48fz0owZzHj2WR667TZOveIKOrZpw1G9jymrF0tct8BJUomDT04IvVV65C4lozmo26WHrFE+HRj7Af1ZH3/MzrEPwMTnAz6n4SlWutJDM2ZQeuAACc2a0WTUqLJyAZpleUYiVIW/PviwW98KtA+613NHKB8gc4WsgVZqrfvzqwqBuxz8Ifb17pinXPtFCW+eGXyEhC+3gz/2Pve8z0iVYIi7dJRr16yhS7NmJLZsaQ20qVLgZ+mfqtjcOvTKpWWm0jDIWcmZDSE9B3Y1tcKC8pKF+oVW+FBG84oyVpUK8LSVToasVv45yuqcbQ4oE18t5dfOwksjHFz5tZMha6ruF6s6Cf/3ZweXfutk+lAHxYk1f14N85Q3JpaSVZ+yNwJ3uq2vODs4ltJRrh90IpqZSfGLk+nSqlVI28mqDwcaVf8Ztz6o1C+qul5NKEmAbS3EZx8cvKaU2z5WEiKkclzNZKcSkDIevKaUO+YF5/5w9cfq9sG4s4Cd2dmUqKJFxTgapVGc4X9GWlW0PqTsbhLCBficBK18wVK+AG3ssZxDDZVGeZDgtD6lQTqSvF/nJ75qvbL12aK8Mjnw17deW5Vpz1n1SxKcJJXA1DMcqKP6zyzRFs2X8q0NqI/xhVDROM9yRVTmE3afyeYhFzW3MAPBu10XLss3UsoXyu+3Ub5lFVcWveCSL9KjDHHnA9ZS6xtcejirRsoXoL5vd3G16bw3NL2vXolbaFwQl+z7u5MG+eUndMlQ0vJCI9PIH5VzlivH7IThPzkZsNHJEbs1YD9xcpHyjw9L6fVH5fWdBXU7qVGCE1pmWtZsx33Kkbu1zP/asEA9ZrK5EynFUirQcZ/lQ3X3xwbzah8OBCt6wZ9/uLry1dQPHHcWMOpEVUO2ZEhiKTTNVgrqQU6q4KzksglOaFCgHK4vtMhS0vJhVxPITxaSQtj5HM5yS9FbAauqz+QnqQXKA7OcbGhXXjbh7dBnzeq0R7l6YbmFfbAh/P32qrvZoPXKifanMkqzsnCkBOEMjRbO0PZDb9xdCYmlllKOBRIUtETB6aTFYbj5Y8sfm1bzqLAaI1iW8B3zrC/jfreJFc2qMfAHNfcDx50CTjh4kMz69UlPSgpJ5++4z1IIDQug+WEt8ws7nJYlWuA2eN0yU0ktgvx6lHW4NoeAEGeDSnX78rkrYFXFcbCIrAPbK5zjUthdw5wH6PoFnu6NpjmBnVcS4FiJo379ICWKMCKgimzfTmazZiHrh7UFVSWzuBixo4rqKdSLAeXrwv0/4Rqwu/3jkmq/IZTsqtmkj7hTwPUXLuRAnz7s79ABHKH3sOyzO1OTHCh2wv40KwSmKBEKcyxFl5UNBRHyYZbus9R7ZgNILnLS6LftdHv5FbjVOn7tglK6b1OeuDTy8+Xd6fO7ky2thIGbrB+xP+wfsuQipSQBnAH+qxLS/CYoiw0SE6G4mISXX+HA328KWz+MWZxOZPt2El5+JdqSBIQQnBvPm+IWjWvUftwpYMnMIvFfzwR1zs4m0PZQYHVnn+dgSU8Hs560XmPa2OXPne9g+FInx+yE5kG1XjOS7L+pXuUN8hPITRXOWW71rqbZRI2GecqDs5ys7Cz03mLJM/00Bz92FSa9UsrqTkJmxYmIPskvySc10ftuY4Osjz9Gi4utL/Xhw0H3Q0PtQoGZpzioSUqiuPtpzt8b2CvBGrcUrvfcELh1eMfHTu6bXdF3+o+PnGUz2ULB9NMc3HB79a3WN58vpd+mcnfAk9OC9/d+eGJoXp3fmGi17VK+AFcscjLpFau851bl5LWVmyGHGsAV9yaQWZAZEpnCwd7nnq+Faz8YasL8LjWzbOJOAWf26ez3WEYzWH609RXZ1FZ48wwH190ZfJ4B92m57nSsOJu02pQkQE4NDb0Lv6/Z7LGcFOGe6xLY0hK+6Rld1bKhvVCcJCQ6Yvelrab+QEPtIj+x5nmB404BZ5/Yw++xNR2FDe0sReIU+Ow4B9n1PRVLuBXNtNMdAbXxW1upce6DY2s64CawvaUw+rpE3jjTs6v81hYiOTn4Tbv9WFbAiW3aVF3JEBcoMG1Eco1XR47d3lxN8np0YtrpDpZ0F0YsdbKuvdAsG2743OnhcFc/um3WEAenrg7foobzj3eQUqis7qTkpML9s8vV2EcnCLNOcYBCcZIl4MSRDja3lrLJEuFgb2P494UJ7GwGb/+7vB13Oz8/RfjL2ES67FDSc5WVnYU75jn9vg2EmkNp1vOIZQXc8h93seO+0dV2Q0RqsoSh5uSkwrAbJ9R4deTY7c3VxKlO5h9vWUvTh1o+1DN/tpScKPx8tHD5YvjxGN/G/7504ZmLHPz5OydHhWbZJwCmDHOwvoP19SpIFr7pbW3fe53QY6vy2XG+5fmuh2f5rJMd/GVJ6GzPv4z13wV8rcqxsV35rP2ajB5XxjN/dnDR906O3A0vnOfwmBIeywq48XnnsWP06GpFHSqQnwSpxUYJ+yNWfqAUeGdYMsNCcK24c0H4Wj0gs6H190AjYWsry5L7o43/f+XSYxyMvTaRzaFZ9gmAr/oI21tUbHNbS/GrfN2Z8BcH7w1xMPvkmnXBMdck8OBV1g/Tvkb+670/WFjY12qrSXKTsvI/dfhT2fa7pzrY2sIaCV7YJzRfjRvuSGBpVwdv/8nB7nT4sauwo3ntUMAATS67rNpR3/VjSPmq2ycabfsrj4XMNflJ8HW30pCsjBzbvbka+FrafWkXK2nMsi7Bde9VnYUjd4fmX15Tf+6vRzn41V6ua+c1Z9J26hfVuk5+PdjVTCq1fAHeP6U8AsNd6TVNbVq2va2lcN/11rHEEuX0X6vvJilJEEaNLm9zTScHd9xc8YcpUWK7y7Z55BFmbni3wlI6lf33nUTeElKgyAH1nJ6yKVCQBK+eY80Qi2QCHQWKHZCovt+uXEsCXbtASbNnpEf6B0uBKedYrYZiZeTY7s3VwLVCsQci/NS18n/VXTcmVAgjm3mqg+5bS+niNrh96ZgE3nsqfP7YQDgw8iTeyV7I6DnBuyJ2NQu+y7rP5PKXPa8kUXjlHAc3fVYu09IuErCPuLheuQo6Lr+ApakVpxvfM+CeWjGr7M1hibzp9n764osltPAx1VWxpsP6y38brlduBX7tBE+MSqxykUtr2zOFZDhQYGszaJ0FDh/tFCSWy/Zdd6tPDV7r5LZ5SrimGHk/fyfweX/Knk/rpEpeIQMk7lwQvizgQNjZTNjs5ZZwOoQHr0lkoz24/crZDlSE94YE99heGBHaxyyJCSzz48P2x/PnOwKO6/V2vTgksLbcfcYfnGT50nenBybfp/cMKtt+Y/den3WaZ4V5HnUImL95foWyGacJBV6mTkEiTBop3HprIvtr/j0OCsVSvmApk1tvTeSysYncemuiz5SN3/VI4JVzhX2NLCUUyugXxYpI+m9/aFCMTyVfKvDKufYPgyr1VUGs/ckjhcMpoXdPuH6kXPe8rxG8MFLKsqmlOJ3ceSizxu3EnQUcquW63XnwGs/HNOdkKwduIHw2QPi2V3h+5976k4MT1zlZeYRw0fcVu9/jlzrY1VRQgf2Nhe+7V33Nm29NqJD42+H+O5251e+5S7oL6bkOdjS1BjsRYXcToXWm0mZwIbu+S/aov7SLsKSH0OwwJB3Rlv77j6HLtuUedSbt2ccHDRuwqEF9+H4yDH6w6puIIr78gi4r0p+lOeM0qWBhFiTC+nYEtTZaoByohsL/rkcC39kRntXJm+sLxfoRcj2HYT/7NrFFy61ORHCf5e8u13tPhs5Ed0r5j1QFVBm//yDDc2ue5CLuFHB1LeBgee4CB20PWK+Qt/pZLueLfsJbp9dM+U47expbD2/l4e8fLivTnb8C8MkJDj45wUFqgXLR99YPz6X3J/De09b2yiODb9tXwu+URDeNXOp/iR11CB/7WSHDkeT5A/Hq2Q6+7Fu+uvKFBYeZllUKB6w54U/v3U/7khJ6FxbxWQMrAU/sOx/wuyKvu6Lwdcyfgg50deBAUaxr14TveiRw7RclNKqB/lEsq9fd4j7QCJ+umgo/GH7cUPv9nF8d2Rb083+8TUkpw3PzoHHNV6aNOwUcDgvYF//rVq7c1nUQkoutjjL1ufL2t7Wo+WSKLk26sPWwl9W5/E1oXj4Y5p6RTR3CjbcnlCVxnzPsLY5q2Zu+b/ettgzpyeUJR9zVaHppKZkJgXngvL8zX/bz/HGQTQth17ay/XNza19Gdl/uh0Dxp6BdftobPlVS3Qy86vaq7BSCXqbHF2+eKdz8sVIvyPd+xf8KFf7eBHz+YNhuCO/zqyOTt3y/dsJv4vYy10NSKpz+sM86wRB3CriwNMRZ1ANgr49VM5YfJSzuEdjXpGX9luzN8/R7ntjmRF4961Wf9Tt4LfSoDuGPqzM5+4R/0D1vOWtZWxZ6l/jB9STs3QRHdPRxpaqZvWMXT4pbCkg3C/iS7BympHtmg7oiK5vpjcszln3XXej7h5LctPwt4d8X+rDMiwPMWxnDhCIsyRfeynnwmtJqK783zwqNLe2y2l0RCVVd1TXg6D3I5+ualQ0KluHDCvaWqaxqAPdT9sNwhlix994KXpV0p5MxBw4xPK8ABlwLvf8SwJUrJ+4U8IH8AxXKOmsCWyQylvG8E4S0PPjPiKqtjCu6XcH0ddN55MRHuHXhrR7H/A18nSINObFgW8UDieBISuTpIU9z59d3sjlrMwBH7N3kUW1V4rH0Kllf4fTeBYWsTCn30Z6cl8+S+qm0LimFvINgRyVoxk+QZmn3roWeYSOLtmbQzOn0UMDf9HbwbU/h162ZtOhTQk77Yn48tuJaaZV9STSAOrFAKMKSAqG6iiZg69cV6VJFxInrh+Haz0s4+2f/7RcnwEvDA1sgszJXTSB4n+8vAsWdUoHJ55XL16a4hDsPZTKxSTq7ExNoXVLKKXl5LK5fn7EtmjGxpJQ7f5vD8JWDaqyEYyoKQkQ6iMjXIrJORNaISNATra/odoXH/jlHnMP/7azZ0kTefHLehzxxwjifx975U0JAyhcgrV4aq65exSntT6lwTHyF0wFnO3yPoAjAwkfpvGouH13wkWe5TYuSElBlQLNeFc5/c9cevtu6ndPsV///27ufaTv30Njp6d8+sqjcAm5VGtiPmtNeI655txw6p/l5Q6nEmoukAq5JH6xpYpZg+K5HAtf/I5FLx1qfSSOF0koeUEFiENavSFli+bJPJbw5LJH/9rcUmWJFDeQnlUcPBKp8w4GvCBR3FE/lC7ArMYHhuXksyNjJyi3bufNQJh+lNWRXUiIqwq6kRMY3acj8bx+rsXwxpYCBEuAeVe0GDAJuFZEAxu7LaZbSrGz7iZOf4F+n/IuuttIY2mFo2bF2DdtxUZeLPM5ddfWqsu3HTvL9cBds20Gn5Cac0uaksrLLul4WjIgB4di8yNr44mEcH5VbxyPEdwLorkW2NfrlIz6Pf7Utg3kZu0CdTD35aV7xCvWqBzRyKs/v3c/Pf2yjgSr9Cz2V5e0HM7nqsP/0e66v6TN79zN7R+gyg3UssX6MmgWo8GtItftgTROz1ITveiQw+byKykaBw6luYVzB4FLEAfDmsEQuH2P9GFw2NpGr7608tC1SuELoXKFq7jipOBDoYn6DcrfbxCbpFHgl1S9wOJiYXPP+GFMKWFV3qerP9nY2sA5oV/lZnqSnpDPm+DF8ftHnnHdU+VpN323dzr9P+3fZ/lHpR/HIiY/w0xU/AdCruadVOKzzMD6/6HOmnT2NVVev4o1hb/B4Zh5tSktBhEZJDbky6zCz9mbz4KDy0KhVV69i7PFjeeCEB3h3xLtl5fceOMQbu/Z4tHH0l0/C+MawfSmD86wh5ef27APcFOp3EzknJ5cmpaU8v2cfYrsmzs7JpVejI1l19SqWtzmfI4vdLObvJgGQ6ma9tih10lAV1AlaSrKzvDsOdRvwSqA8ybuLpvZ1BhUU4ABe3bWHiXv20clu87TcPNqUlJRZy2fn5pX96AG86COut09BIS1LymXuVOI/uuLmQ1m8tHsvxxcUQkl411WvSR+saWKWmuIdr7uvkRXmdf1dNVSCtWDyS2W43hYmjRS/cb0eiDCxSXrZ7u5E389ud2ICrJxVI9li1gcsIp2BfsCPXuU3AjcCdOzoe2DJ2w0BlnWHI4n5F85nxvoZ3Nj7RkSE1MRUZp83m7YN2wKw8g/LvypJ9amfVL+s/LjWx0FesUsIRBzcfzAT6ln+ztnnzS6LVhjVbVRZu/f3upnun48vsyan7txDsirJCSl0ybetyd/+y8u24gV4e+duehYWlb361QMWb7MnIexeCcAz+w7ABZa1Wy/Xy+/9xUN82Ol40rcvq/hw1AnOUvoXFjJu/0GG5+RairkSxu8/wEn5+fSyfb4nFpRbxqv+8OGPtnlvxy4OJiRwcr7nSsYfZeykVUkpTiDX4WBLUqKlXP2QBAxxXSNnD6TXPPwnEPz1QfuYz37YuF5jsoqyIiKfL2rqQw0JPiIUgqnjUGtZ2UalTkQg0+EIyY9AMM/GXem2LillV1JFVdm6pBQWPlYjP3BMKmARaQjMAe5SVQ8Xuqq+CrwKMHDgwKADTjo26siY48d4lHVt2rW8bV8n/fgK5GdayssPXZt29bgOAGs/4sp5Yz2KBpS91ruvrOnZal/X4FapD2vvsI/ZYL/OqFB09NaffAv6xzfwQn8EuDQ7sMiDRk7l4uzcgOq6072oGKho2bpb62mlpbQOxrXgiMzrbGV9EPz3w7EnjGXcknGUqKcPf1DrQfy056fQxamrNRFCI2Wd+ogKqLAPpNtvQb7CE12KtXVJKfkO8R3CqMoT+w5YcbY2Z7Vv61MBBiVvVeVetC4p75N3HspkfPOmHm6IsnC0Gk7GiDkFLCJJWB1/uqp+ELaG1n0ChdnQ93Lfx3MPQAPbn/zZaOtvkr1wmbqGGqCCZ6mkEFbPsVbo3Ph5YLL4m+p7YJPv8jIUCkIQeV6biEA2tJr0QZcbYuLPE9mdu5vWDVpzZ/87GZ6Ty/xN/2NcfaXEe5FOP8oMLINAgca2NZjlcNC6pNT68ickM7FxfXYlOFyC+7xGpYrTJtHpJAnIdx1zq5PidNK3oICfUlPLEgcdn5/P1qR6ZVECdx7KLFOa8xvU96mwrNlj/uugyqWHsz2UL/hWgK77a+xmJTuwvpVt7KiFj9IaVjhnUH4+v6SkVPDpuuM9zdglj3tURNn91nAyRkwpYLEyrbwOrFPVZ8PWUPZueM92U7gr4D1ry7ennAbn/h985B4e5srmXonh/eWj8MOLoZFzzdzKjy96CjYuCE1btQUJrwUcij44/MjhDF+7ENYsA90Kqy2X1HCABvV5smkTsmylme50Miwnl8X16/tUZpWTx/DD1szB+Q3q+1QQjzdN5/1GaRUU567EBA+F5a1AfSqbQO+/MoUVRJ3q1HWnX2GRz3Nc9+f+DPw9C3cZfLZXw8kY4i+7VTQQkZOBb4FVlJuYD6jqp77qDxw4UJct8+Hn9Ga8HTkwPstzH2DsDki2Zy18+SgsCeA7d9HrcORQeOZIa/+WH6BlN2t75uWwwae4wXP8jfCT78kYdZb7t0BqE48iEVmuqgNDcflg+yD46Ief3A3LXg+FOIZYZuB1MMLSF9XtgzFlAavqEkIV7rnoadi8CC52+yL88B/4r6f/l/yD5Qo4wKxfzLkO7vu9fH/WVXDb0uCuEQhrP6q6Tl0jzBZwSPrg8jdDI4whthlR85f0mApDCxmHtsKiJ2Db9/Bst/Jyb+UL8Hwv2GYPcgejPF85tXx7/2+WVT3ldFj/SfVk9kXOnqrrxDMX/Ae6jfQsi9AgXI2IUEIoQ+0nPhVwXpDrw+/61fILL/5X4Occ9jG7bkcA7hBD1ZzxqPW3TR/ofr7nsTBbwAZDJIkpF0TICNavLQKrwxdwUadITIGSAv/H/zoXCjIhdz98em95ebOjy6M+TroDup0HzY6ClHTP82N8TbiaBuYbahErZ8VXLoiQse2H4M9x+p+JZQiClMZw/Vf+jx81FHpcWDEUasi9MOJ5GDULHA5L+UJFt1CsuyAW1jw/gKGWEIL/dXwq4AVBrprw6b3WRAtD1Qz1nYTIg7IYyyDHsgZeC8d4LfbtrYBjfVpsVmgTPxlimKztNb5EfCrg6hBI+Fk8c16AuWxPvc8K5/OniFXL3QQJ9XzXcdULhFhXuN54hcgZ4pgQRDwZBRwP3FINl4s3A64Jrn6/K/0fcw2UeUcD3PlrcG1AaMP6IkFJ5BcEMIQBSbDifF1zB3wRgmiXGB/RMAREy25V1wk1fjufQoPm1uZRf/Kcjt2ks//r+bN03RXwXz8MRsLIs3IWFAefM8MQawg8cjAiLdUy8yIADv4RbQmiiyuEK9yktbZmA17+XsVjDVvCXavhrH+Wl1U3fMylmOulWQo9ljEDcPGBtxsptamfen7KgyD+FPCkvtGWILxc+o7v8sF3WX+PqLi6Ro1pNwD+9rnn7D9HAlw1F7qe7VnX5dtN71DuC27SueYWRW1wRZgBuPigKMcznLDHhRXrJNSDc56ucVO1oFcHSdfoJsUOGf5e11v6WZzhjPFw93po1x+QygfA3Ll1Kdy9ztq+5lO4/eeKVvQNX0HHQeWuhUpxG1xr1M6yXH1Z5Z0GW39d95NUv2IdCHh9spigcftoS2AIBaVF5W8zK2f5SPcq0O+vZlFOn9S2UejBd8J3XhEI6Z2gYWs4tMXav/a/cHAzpLXybwmKQKM21vY9GyApBZ6yE4VfNgPeLU8ST72GcN0C6/otjikv7zy4XKaEevC5Zy5jv6S1heydFcuTUuABP1Zhq+7WAEdRHvz8Fhw7wne92qSAT38YPrgh2lLUDRLqWUqwsqRHkgDqI9d0alOo16DyMDLX28zCx6DYO+evhiwLYfxZwPX8WFKxypk+/IbXfVGucK79DDqdCP2ugKPPKJ+IkNrEUrT3bKh4flora0JESmPoPASOPM3z+GljoVUPONbP24IInHgLXDINTrmv6nu4YwXcZa+nF+wsxHr1YdDf3WKHvY/bOZiDjdKIBiGwiAwBkNoUzn/RSobjLx9v4w5w4cuQlOpZnpRquQ5Of7jiMY/z7bcZf26lELmb4s8Crg2+wqpIq7hsexkOe8W2+s2tgbDKGGMvF1TsNjX4of2BT+ftcYH1qYqklPJk9aEmKQXG7YME75XqYpTUplaGvbpKUgPrFb46M0uTGkBicuXPr3EH+Mfq8v3TH4aP76hopRbZ0SjnTbKs2KwMS6me/rDnD+Vn91dsLym1PM9v4/a+LeUQuZviTwGHk6T6UBx4YuqgGToOWh5beZ201nDibb4HBvzh/qMUdkUWhvzSiQH6s2OBHhfGby5gcVQe+5pQD8573tr2pdj8kdrUskrdFeMnd8OyN/DoT+6K0YXrHO/28g9aivm8SZ4K2/vc3n+x/Lz+lLQvBe9LjmpiFLA/OpwA273WYnxwl2cy91BzagCv+yIwbEJw141E/gSXCyE5LfxtxTLxvEJJYrI10cSfEj7/xXLF5a3YXGMz+QfLfbONO1S0SF2MeNYa+K3MenXR+y9WPW+FX5wf2KKZLkXs7xgEJkc1MArYF67ZL4ufga8e9zzmSARnScVzqiKaq1tEwi2T2gSGPQFdzw1/W7FMPIeiFedbbgJfk00GXldRKblbmO5WpJaWW5GVKbLKFKM34fTVBiNHkMSBw9QPXYZVXacqWvcp3x71vvXX16//cdeXh335U3aD76y8rbS2nvs9L7L+VjZ7LFBcA3rpHSuvV1NOvBWaHhHeNmKdeA9FK86zlK1rYo1rym5lq0P4iiRwWaehwt9zj/H/R/xawO5W6lXz4K2R/uv645iz4M6V1q91w5ZWma9RflVIawOZW/37ySqzQsfuqOgmOO566H+V9doXCq6cA616huZaBv90OStyPuDGHez2vHylocBfCFfj9payDWY5njBHEgB+fbVLj7qdu576ip2Z+bRNT+W+YV25oF+70LVbQ+LPAnblRWg3oLys2VEwNMAUld6KskmncuUL+O3o18y3ltAZNcuaolvxwuWbNy2GYU9aIWZgrUnnHRIjEjrlC1YIW1VRE4aaEykf8MDrrMGlEc8ScuWblMrvHS8hn+QK5cEOPs1dsYPd+JnAE0rrtPdfrAG3xh0AgcYdWNrrUa5a2okdmfkosCMzn7ve+4V+jy1g7oodZfINfuorjhgzn8FPfVVWHinizwLuf7W1lE3bfm5LDAmcOhqG3GOtxPDvY/yf/8Cu6rWb3gH62pMdjj4dnmgPRdnWDLUvx5OTkEZDQB1JSJs+lox1gL3ZBSQnJNC4fi0JI6spIfYBFyY1JpmSMr+rInwgw7h3yem0Xf0Vz3ffyHH+rNUgUSA/tQ1ruv2DUT904ByaMjpxFm3lALtoxs5eoznO9oXOXbGDZz7fwM7MfBqnJiECmXnFtE1PZeixLfh6/T52ZOYjwHmOS3gq6TXqS1FZW3lajwf2j6Th3FUM7NS07Fre5yeIUKpa9jc9NYmiklLyiq23zPpJDpKTEuy2mzP02Jl8vX4fO/fkw15QH8/lUF4xd733C3e994tH+Y7MfMZ+YMWze1vJ7vcbSks6ppalD5Yql6V3RSz8Yy00dntYbw6HrUvK989/CT66xT6nkvRz7tf0EORvMOI5jyJ9sgNSeBju3wqp6Tz80Wryf5rGyOEXcFT3/rRN9x8Erqp8umo3w3q0IjGhZi8p17z5E5cf35FhPaJj/XYeM5+05ESevKgXh/NLGHWCpx/68zW72Xu4gL+e2LnabYRyWfrq4N4P854+lvr51fwR90IV/lF8C3OdJ/s8PtKxpIJiqy5Fmsi9xTcyz09bNWWkY0mZMt+pzfhXyV/C1lZNSRDBqUpjL2XvTlKC8MzFfcqUcHX7YPy5IHyRmExeUQlfrN3Dvxds4Lcz3mTLX60cupnJbfku6UQANCGZK177gU17sz1Ozyks4XBB1YHlOzLzKSi2fnGLSqx/2pqdWWXXeL/0NF5Y6eCkp77ijpkrAFix7RDeP4KfrtrNrTN+ZvDTvpf2ycwr4rRnvmbtzsMAzFq2ne9/txYi3Xu4gM5j5jNr2XacTmXRhn3c9PZyNu3NYVVGFuPmriIzr/wLeyi3iDnLM8gttHzmTqcyd8UOSkqdfLdpP3lFJUyYv5Yt+3PJLSzh6w17OeGJL/nmt32oKj9vO0RxqXWvWfnFfL1hb9m1z3z2GwCyC0u4bcYKHvjQsi5+3HyAX7Zn8s1vlmwPfbSmyme7MiOTN5bEdqa7uSt28HDuReRp6OKWvZXvSMcSltS7g83Jo5iY9JJP5VuqcFAb4lRLiVdmY6ldN5zKF2Ce82ROLprEkYXTObloUswqX4BSVRTIzC/2qXwBikuVRz+uut9WRcy5IETkbGAikAC8pqpPBXP+uz9t49GP13Ja1xZ06f855zTextsLdvHD5tVs3me9xr1g67U3TprM/d8Lh95ZxdrkBJ7Wv/HdpgPcP2cVc24+CadTuX/OSt5fbr1Wjhvejeu92tMmRzAn6XxOysxn8FPlCvPXZCfJAtsO5rLx8A6yCywF99MWK1Zx3q87OatHK26bsYLnLu3DyUe34LgJXwLw2Pk9ANhzuJCXFm2iXoKDjEP5HN2yISP7tmXOzzvYciCPSQs38vJfBzB69koAjmjegD/2W/f49GfrudDtFekMWxkCvPPDNgZ0asKVgzryj/esJOmfrtrFxMv7sWDNbu6e9WvZ69mATk1YvvUQU771VH5Xv/FT2fZZ3Vtxx+ldGPGC9Vbx37uGcGzrRmzcm1Ph/7M/p5BLX/WfQP63Pdkc08qKJV6zM4vRs1dyKLeInVnWbL6/ntiJpBq+FVRFdfvgM59vYEfRSRQ5nDyb9DKJEtrl6QO1eAVhfPFVFeqqeqbUyNN6jCm+PqaVYSxzKK/m60jGlAtCRBKA34AzgQxgKXC5qq71Vd+XC2Lilxt57svfaizLNSd1pnXjFJ76bL1H+ZaUUR77nQu8MyVZ/JJ8A+mSS9+CV8gkPJMTUpIcfHL7yZzx7GKfxx8491ie+HS9z2Ph5rjOTVi65VCF8rTkRLILK8ZRjzqhIzN+3Fa2f2zrNNbvzq5Q79dHzqJxqqc/OZQuiGD7IJT3wyPGzC8bDhvpWMLzSS/h8JFDyKn4LPfmgLMhA4rKY8eX1LuD9o79VZ6X4bQGvXzVLVEHDjTm3QC1hecv7csF/drFjQvieGCTqm5W1SLgXeD8YC7QKDU0Rv3U77dUUL4ADxb/jd3ahN4Fr9KnwP/EitHFN/K7sw3ZhC85UEGx06/yBaKmfAGfyhfwqXwBD+UL+FS+APlFNR9sqoJq90F3v/4858m8XXoGTi/7Jk/r8XbpGRxwNqzUNVCoCTxacpXn9aVq5Zun9fhXyV/81nWgtcINUFt45nMfybCCINYUcDvAPfNFhl0WMC6/aLiYXnoGgwpf5DANyaKh33oLnMdxetG/KSXGl1GvZSQnhr3LVrsP3jesq8f+IyV/467iW8hwNsepQoazOWOKr+eRkr8xoOhV7nQ7dsDZ0PbbWvXuK76pgoLcqZXnYy5RR5lLwV/dndoskFsxBMjOTO9UlcERaz5gXy9mHnaCiNwI3AjQsWPFmV2NUutIuFMdpUmDsCfmqbIPgu9+eEG/dhVCm+Y5T2ZekW9Ls7JjvvhXyV/8+oC9/bm+6rqsY0PoqCyaKRBizQLOANwTfLYHPDJ9q+qrqjpQVQe2aNGiwgVGn921Qpk3153sf7psr3ZhTLYTQ4zs07bqSiHi0oF+crbGJlX2Qai6H4aDec6TGVN8vW01WxavKmWWtbvF7FlXfNYx1Bzvt55giTUFvBToIiJHiEg94DJgXjAXSE6s/JV/xvUncOMpR5btr31sGGsfG8aVgzoy/rzuPPuX8gkSd595DHNuPonz+7bltqFHe1znykHl1veb1xxXtn3SUeWveA2TPV8w/n1JH7Y8NZwNj3uto+bGB7ecxMUDymcIuV/bxaUDO/DaVZ7+/gGdql4J5Ot7TyvbnnR5vyrru1PVD9vZbnHGf+7Xjv/eNYSjWlg5gq8fcgQdm5b7wl3laV7Pp2Va+cyrtOREerZrBMAVJ3Rk7WPDWPrgGUHJXE1q3AfDSXk41wyOLnyHIwpn+PXn1qbQr9pKTSdjxJQLQlVLROQ24HOsEKA3VDXoYLt5tw0mp7CEUVOsdJLjhndjyreb+cvADpx0dPMyv03rRinUr2c9gscv6AVQFtMKcM3gzjRKSSpTbvcO68oyO4xsYOemvPODNXA09NiWPHFhL/p3SufY1o2Y9+tO7pi5gteuHsih3CJun7mCEqdyka1YkxMTeHRkD046qhnPf7mRPh0a0y69Pm9+9wc92jbi/y7pw78u6s2uwwW0S09lxg0nlN3LHX86muuGHEnj1CRWPzqMKYs3M3HhRl756wC2Hsjlov/8jxG92zDpsn7c9d4vzPvVMt5WPHQmTRrUo3nDZI97dLFy/Fk0Skmi85j5AGx5ajiqSnZhCcUlTpo1TOaDn3ewaW8OL185gL+/s5y3rzuelRlZZBzK58Hh3UicI1x9UmeO62ytFnt6t1b8vm8zTRvUY/HooWw9kMupzyzi7jO7Mry3tXzSze8sZ+uBPNbuOsydZ3ShU9MGHHdEE5ITE9h7uIDvfz9Q1sld/6twEqo+aIh/Bh9V81WRYyoMLViqmgnnrkzcKXUqd767guuHHEnfDunVbv+pz9az9UAu/7lyQIVjrimLAAXFpRSWOCuETwXDpr3ZFJY46dHW00WiqhSWOElJsiz/HZn5NG9Yj+TEBEqdyj8/Wcv1Q46gfRPLAi2xlW9igqPs+QBsePxskhMT/D4zsKYV/7Itk7MCnFVX6lT25xTSqlGKh7zitb5bqVP5ZOVOzuvdFkcg8VlexNJMuMFPfcWOGg7MGGKfVmn1+PHBM8v2q9sH41oBL9m4n4N5RRH1d9YmLnzpO5ISHDxyXvcyxb5lfy4pSQm0bpxSxdmxQywp4LkrdjD2g1XkF4c9XM4QJQYf1ZTpN5zoURYvccAh5eQuzY3yrYQPbxnMrJtO9LCqOzdvUKuUb6xxQb92PPnnXiRUsoqzAAleln5qUgLPX9qXLU8N58pBHT1CMRrUKz/2/KV9aWe/WflroV16KlcO6ui3XpP6SX6Pu8Rql57qVx736zx/aV8PmQKhQb3gQjNdzzKQdyNv+V2yCZ7PxX0/3c+bqftzErdreivfmhDXFrChbhBLFrALX5ZwalICT/65Fxf0axeS7FrhytBVk7a867kym3mfN3fFDu57/1eKvWeqeBHqZ1bT+/OHcUEY6iyxqIAhsgqyNjJ3xQ7Gz1tDZr6VU6FJ/SSG927jU2HHOtXtgzEVBWEwxBMX9GtXK5RHtDDPJ859wAaDwRDL1GoXhIjsA7b6ONQcqDpzSXxg7hU6qWpkpqP5wE8/rEv/F6hb9+vrXqvVB2u1AvaHiCyLpk8wkph7jU1qk6yhoC7dbyjv1bggDAaDIUoYBWwwGAxRIl4VsP9M6fGHudfYpDbJGgrq0v2G7F7j0gdsMBgMtYF4tYANBoMh5jEK2GAwGKJE3ClgETlbRDaIyCYRGRNteUKBiGwRkVUi8ouILLPLmorIFyKy0f7bxK3+WPv+N4jIsOhJXjUi8oaI7BWR1W5lQd+biAywn9EmEZkk3jkvI4jpg6YPBtwHVTVuPlgJtH8HjgTqAb8C3aMtVwjuawvQ3KvsX8AYe3sM8LS93d2+72TgCPt5JET7Hiq5t1OA/sDqmtwb8BNwIlbSrM+Ac0wfNH0w1vtgvFnANV7WvhZxPjDN3p4GXOBW/q6qFqrqH8AmrOcSk6jqYuCgV3FQ9yYibYBGqvo/tb4Jb7mdE2lMHzR9MOA+GG8KuMbL2scoCiwQkeX2arwArVR1F4D9t6VdHg/PINh7a2dve5dHg3h4/r4wfdAipH0w3rKhBbSkeC1ksKruFJGWwBcisr6SuvH6DMD/vcXSPceSLKHE9EGLkPbBeLOAA1pSvLahqjvtv3uBD7Fe5/bYrz3Yf/fa1ePhGQR7bxn2tnd5NIiH518B0wfD0wfjTQHH9JLi1UFEGohImmsbOAtYjXVfV9vVrgY+srfnAZeJSLKIHAF0wRocqE0EdW/2K2K2iAyyR56vcjsn0pg+aPpg4H0w2iOQYRjRPBf4DWt08sFoyxOC+zkSa9T1V2CN656AZsBCYKP9t6nbOQ/a97+BKEUDBHF/M4FdQDGWFXFdde4NGIilFH4HJmPP8jR90PTBWO6DZiqywWAwRIl4c0EYDAZDrcEoYIPBYIgSRgEbDAZDlDAK2GAwGKKEUcAGg8EQJYwCNhgMhihhFLDBYDBECaOADQaDIUoYBWwwGAxRwihgg8FgiBJGARsMBkOUMArYYDAYooRRwBFCRNaIyGnRlsNgiDQioiJydLTliEWMAg4R9qqxZ3iVXSMiSwBUtYeqLqriGp3tzhpvK5UYYgS7n+aLSI6IHBKR+SLSoeozw4/796WuYBRwHcIodoPNearaEGgD7AFeiLI8dRajgCOEu4UsIseLyDIROSwie0TkWbvaYvtvpm2hnCgiDhEZJyJbRWSviLwlIo3drnuVfeyAiDzk1c54EZktIu+IyGHgGrvt/4lIpojsEpHJ9soNruupiNwiIhtFJFtE/ikiR9nnHBaRWe71DbUXVS0AZmMttY6INLb71z67T42z+19TEckQkfPseg1FZJOIXGXvTxWRl0XkC7vPfCMinXy1WUkb3YCXgRPtvp8ZkYcQZYwCjg4TgYmq2gg4Cphll59i/01X1Yaq+j/gGvszFGtlgoZY2fYRke7AS8AVWNZMYyquxHo+1pcsHZgOlAL/AJoDJwKnA7d4nXM2MAAYBIwGXrXb6AD0BC6v/q0bYgURqQ9cCvxgF72A1YeOBE7FWlbnWlU9CPwNmCLWopzPAb+o6ltul7sC+CdWv/oFq6/5wl8b64C/A/+z+356iG4zton2ciDx8gG2ADlAptsnD1jidvwMe3sx8CjQ3OsanbFWUk10K1sI3OK23xVr6ZRE4GFgptux+kCRWzvjgcVVyH0X8KHbvmKtgOvaXw7c77b/b+D5aD9v8wlJPy3BWjiyF5AAFALd3ereBCxy238BWGWf08ytfCrwrtt+Q6wf+g5uferoqtrAMjSWRPsZRfJjLODQcoGqprs+VLQsXVwHHAOsF5GlIjKikmu2Bba67W/FUr6t7GPbXQdUNQ844HX+dvcdETlGRD4Rkd22W+IJLKvFnT1u2/k+9htWIq8h9rnA7p/JwG3AN1ir+NajYl9zf6N6FesN6E1V9dvPVDUHOIjVP91pHkAbdQqjgKOAqm5U1cuBlsDTwGx7tVlfC/TtBNz9aR2xLJc9WAsJli2FLSKpWIsJejTntf8fYD3QRS0XyAOAVP9uDLUVVS1V1Q+wrNVBWG9W3n1tB4CIJACvAG8BN/sIKyuLpBCRhkBTKi7Lvr+yNvDd/+Mao4CjgIhcKSItVNWJ9SoI1pdgH+DE8o+5mAn8w17mvCGWxfqeqpZg+XbPE5GT7IGxR6lamaYBh4EcETkWuDlU92WoXYjF+UATrNV8ZwETRCTNHkS7G3jHrv6A/fdvwP8Bb9lK2cW5InKy3Q//Cfyoqh5vX6paWkUbe4D2dWmQ1yjg6HA2sEZEcrAG5C5T1QLbhTAB+M6OUhgEvAG8jeU3/gMoAG4HUNU19va7WNZwNrAXy8/mj3uBUXbdKcB7ob89Q4zzsd33DmP1t6vd+lIusBlYAswA3hCRAViK8ipbiT6NZa2OcbvmDOARLNfDAKxBOV/4bMM+9hXWsve7RWR/aG41tjHL0scRtoWcieVe+CPK4hjqCCIyFchQ1XHRlqW2YSzgWo6InCci9W0f8v9hjVJvia5UBoMhEIwCrv2cjzXYsRPoguXOMK81BkMtwLggDAaDIUoYC9hgMBiiRK1OztK8eXPt3LlztMUwRJnly5fvV9UW0Wrf9ENDdftgrVbAnTt3ZtmyZdEWwxBlRGRr1bXCh+mHhur2QeOCMBgMhihhFLDBYIgaM2fOpGfPniQkJNCzZ09mzpwZbZEiSq12QRgMhtrLzJkzefDBB3n99dc5+eSTWbJkCddddx0Al19eNzKeGgVciyguLiYjI4OCgoJoixIVUlJSaN++PUlJSdEWxRACJkyYwKhRo7j99ttZt24d3bp1Y9SoUUyYMMEo4Hij85j5AGx5aniUJak+GRkZpKWl0blzZ0TqVgIzVeXAgQNkZGRwxBFHRFscQwhYu3Yte/bsoWHDhqgqubm5vPLKKxw44J3pMn4xPuBaREFBAc2aNatzyhdARGjWrFmdtf7jkYSEBPLz8wHK+nR+fj4JCQmVnRZXhFUB2+uTrRKRX0RkmV3W1F47aqP9t4lb/bH2WlMbRGRYOGWrrdRF5euiLt97PFJSUkJeXh75+fk4nU7y8/PJy8ujpKQk2qJFjEhYwENVta+qDrT3xwALVbUL1nI7Y6BsfbPLgB5Y6Rpf8so3ajAY4oz69euTmpqKw+EgNTWV+vXrR1ukiBINH/D5wGn29jRgEXC/Xf6uqhYCf4jIJuB44H9RkLFW4PJrh4rq+MfHjx9Pw4YNuffee30enzt3Lscccwzdu3ev9DqLFy/mrrvuYuXKlbz77rtcfPHFQctiqH2UlJSwY8cOnE4nO3bswOGoW17RcN+tAgtEZLmI3GiXtVLVXQD235Z2eTs81y/LwMdaUSJyo1hLui/bt29fGEU3hIK5c+eydu3aKut17NiRqVOnMmrUqAhIZYgVCgsLKS4uBqwon8LCytYSiD/CrYAHq2p/4BzgVhE5pZK6vhx8FVK1qeqrqjpQVQe2aBG16f91mgkTJtC1a1fOOOMMNmzYAMCUKVM47rjj6NOnDxdddBF5eXl8//33zJs3j/vuu4++ffvy+++/+6wH1nTe3r171zkLyFC3CWtvV9Wd9t+9wIdYLoU9ItIGwP67166egdvCfliLTXov6meIMsuXL+fdd99lxYoVfPDBByxduhSAP//5zyxdupRff/2Vbt268frrr3PSSScxcuRInnnmGX755ReOOuoon/UMdRvXj25d/PEN2x2LSAMRSXNtA2dhLfw3D7jarnY18JG9PQ+4TESSReQIrOTiP4VLPkP1+Pbbb7nwwgupX78+jRo1YuTIkQCsXr2aIUOG0KtXL6ZPn86aNWt8nh9oPUPdICkpiY4dO+JwOOjYsWOdm2QTzp+cVsASEfkVS5HOV9X/Ak8BZ4rIRuBMe9+1wOQsYC3wX+BWewFAQ4zhKxzsmmuuYfLkyaxatYpHHnnEb7xuoPUMdYOSkhJuv/12srOzuf322+tUCBqEUQGr6mZV7WN/eqjqBLv8gKqerqpd7L8H3c6ZoKpHqWpXVf0sXLIZqs8pp5zChx9+SH5+PtnZ2Xz88ccAZGdn06ZNG4qLi5k+fXpZ/bS0NLKzs8v2/dUz1E1UldGjR9OgQQNGjx5NXVuhp85MRY5HojGtun///lx66aX07duXTp06MWTIEAD++c9/csIJJ9CpUyd69epVpnQvu+wybrjhBiZNmsTs2bP91lu6dCkXXnghhw4d4uOPP+aRRx4x7ok4p2nTphw6dMijTERo0qSJnzPij1q9JtzAgQM10ETY8ZALwpWwpC7j6xmIyHK3iT41RkTSgdeAnliROH9TVb/x6MH0Q4NFVbMaa5teqm4frHvDjgZD1UwE/quqxwJ9gHVRlifuUFVUlRkzZtCjRw8QBz169GDGjBm1TvnWBOOCMBjcEJFGwCnANQCqWgQURVOmeObyyy/n8ssvp/OY+ayuxW+n1cVYwAaDJ0cC+4A3RWSFiLxmh1F6YGZkGkKBUcAGgyeJQH/gP6raD8jFThjljpmRaQgFRgEbDJ5kABmq+qO9PxtLIRsMIccoYIPBDVXdDWwXka520elYk4MMhpBjBuFqM+Mbh/h6WcGfEqJ0lM8++yyvvfYaiYmJtGjRgjfeeINOnToFLU+IuB2YLiL1gM3AtdESxBDfGAvYEFYCTUfZr18/li1bxsqVK7n44osZPXp0BKTzjar+Yvt3e6vqBap6qOqzDIbgMQrYEDThSEc5dOjQstUQBg0aREZGRtTuz2CIFEYBG4IiEukoX3/9dc4555xI35rBEHGMD9gQFO7pKAGPdJTjxo0jMzOTnJwchg3zvaZqVfXeeecdli1bxjfffBPeGzEYYgCjgA1B4y8d5dy5c+nTpw9Tp05l0aJFPs+trN6XX37JhAkT+Oabb0hOTg6T9AZD7GBcEIagCFc6yhUrVnDTTTcxb948WrZsicFQFwi7BWwvLb8M2KGqI0SkKfAe0BnYAvzFNcosImOB64BS4A5V/Tzc8tVqqhE2VlPClY7yvvvuIycnh0suuQSwFumcN29exO/PYIgkkXBB3ImVTaqRvT8GWKiqT4nIGHv/fhHpDlwG9ADaAl+KyDFmVYzY48EHH+TBBx+sUH7zzTdXKBs8eLBHGNrNN9/ss96XX34ZWiENhlpAWF0QItIeGI6VW9XF+cA0e3sacIFb+buqWqiqfwCbsBbxNBgMhrgk3D7g54HRgNOtrJWq7gKw/7ocfu2A7W71MuwyD0wWKoPBEC+Ec1XkEcBeVV0e6Ck+yipkZjZZqAwGQ7wQTh/wYGCkiJwLpACNROQdYI+ItFHVXSLSBthr188AOrid3x7YGUb5DAaDIaqEc1XksaraXlU7Yw2ufaWqVwLzgKvtalcDH9nb84DLRCRZRI4AumAtZ28wGAxxSTQmYjwFzBKR64BtwCUAqrpGRGZhpf4rAW41ERAGgyGeiYgCVtVFwCJ7+wBWjlVf9SYAEyIhUzzQa1qvkF5v1dWrgj4nVOkoX375ZV588UUSEhJo2LAhr776apXnGAy1HTMTzhBWAk1HOWrUKFatWsUvv/zC6NGjufvuuyMgncEQXQJSwCLSM9yCGGoP4UhH2ahRo7Lr5+bm+sw3YTDEG4FawC+LyE8icouIpIdTIENsE850lC+++CJHHXUUo0ePZtKkSdG6RYMhYgSkgFX1ZOAKrDCxZSIyQ0TODKtkhpjEPR1lo0aNPNJRDhkyhF69ejF9+nTWrFnj8/zK6t166638/vvvPP300zz++OMRuR+DIZoE7ANW1Y3AOOB+4FRgkoisF5E/h0s4Q2ziLx3l5MmTWbVqFY888ggFBQU+zw2k3mWXXcbcuXNDLbbBEHME6gPuLSLPYSXV+RNwnqp2s7efC6N8hhgjXOkoN27cWLY9f/58unTpEoG7MRiiS6BhaJOBKcADqprvKlTVnSIyLiySGaqkOmFjNSVc6SgnT57Ml19+SVJSEk2aNGHatGl+ZTAY4gVRrZBuoWIlkYZAvmtihIg4gBRVzQuzfJUycOBAXbZsWUB1O4+ZD8CWp4aHU6Swsm7dOrp16xZtMaKKr2cgIstVdWCURAqqHxp803nM/Fr93axuHwzUB/wlkOq2X98uMxgMBkM1CVQBp6hqjmvH3q4fHpEMBoOhbhCoAs4Vkf6uHREZAORXUt9gqNWISIKIrBCRT6ItiyF+CXQQ7i7gfRFxpYdsA1waFokMhtjAeyktgyHkBKSAVXWpiBwLdMVKnL5eVYvDKpnBECXcltKaAJikFCGgz6MLyMqvXGW4Bsq9aZyaxK+PnBUOsaJOMNnQjsNayTgR6CciqOpbYZHKYIguz2MtpZXmr4KI3AjcCNYKzobKycovrnaUgz/FHA8EpIBF5G3gKOAXrCXjwVouyCjgKLLu2NCGpHVbvy7oc0KVjtLF7NmzueSSS1i6dCkDB0Y+ssx9KS0ROc1fPVV9FXgVrDC0yEhniDcCtYAHAt01kKBhGxFJARYDyXY7s1X1ERFpCryHZU1vAf6iqofsc8YC12Ep+TtU9fNA2zPEJnPnzmXEiBEBKeDs7GwmTZrECSecEAHJ/OJzKS17NReDIaQEGgWxGmgd5LULgT+pah+gL3C2iAwCxgALVbULsNDeR0S6Yy1d1AM4G3hJRBKCbNMQAcKRjhLgoYceYvTo0aSkpETr1ipbSssQZ4hIpZ9IEKgCbg6sFZHPRWSe61PZCWrhih1Osj8KnA+45plOAy6wt88H3lXVQlX9A9gEHB/4rRgiQbjSUa5YsYLt27czYsSIaN6eoQ6hqmWfTvd/4rEfxMt+jQjUBTG+Ohe3LdjlwNHAi6r6o4i0UtVdAPbKyC3t6u2AH9xOz7DLvK9pBj+iiHs6SsAjHeW4cePIzMwkJyeHYcOG+TzfVz2n08k//vEPpk6dGqnbCAj3pbQMhnAQaD7gb7D8tUn29lLg5wDOK1XVvlhLzB9fxcoavmz+Cj9Dqvqqqg5U1YEtWrQIRHxDiAl1Osrs7GxWr17NaaedRufOnfnhhx8YOXIkJr+CId4JNB3lDcBs4BW7qB0wN9BGVDUTy5I4G9gjIm3s67YB9trVMrASvrtoD+zEEFOEIx1l48aN2b9/P1u2bGHLli0MGjSIefPmRSUKwmCIJIG6IG7F8sf+CFZydjfXgU9EpAVQrKqZIpIKnAE8DcwDrsZanv5q4CP7lHnADBF5FmgLdAF+Cu526hbVCRurKeFKR2kw1EUCVcCFqlrkevUUkUR8uAe8aANMs/3ADmCWqn4iIv8DZonIdcA24BIAVV0jIrOAtUAJcKsr/aUhtnjwwQd58MEHK5TffPPNFcoGDx7ssSryzTff7LOeO4sWLaqxjAZDbSBQBfyNiDwApNprwd0CfFzZCaq6Eujno/wAcLqfcyZgTf80GAyGuCfQMLQxwD5gFXAT8CnW+nAGg8FgqCaBJuNxYi1JNCW84hiqQlUjFiQea0QqNtNgiBSB5oL4A98hYUeGXCKDX1JSUjhw4ADNmjWrc0pYVTlw4EBUZ8kZqk9atzH0mjammueClZyuZlSVka2ypD/hysgWTC4IFylYA2dNQy6NoVLat29PRkYG+/bti7YoUSElJYX27dtHWwxDNche91TUs6HFYka2QF0QB7yKnheRJcDDoRcptMRTKrukpCSOOOKIaIthMBhCRKAuiP5uuw4si9hvrlSDwWCINWLBDeJNoC6If7ttl2CnkQy5NAaDwRAmYsEN4k2gLoihYWndYDAY6jCBuiAqXRdLVZ8NjTgGgyESVBVFE68hf9W1ZBunJoVYEotgoiCOw8rXAHAe1moX28MhlMFgCC/uCrbzmPnVfjWvTVR2j9F6BoEq4OZAf1XNBhCR8cD7qnp9uAQzGAyGeCfQqcgdgSK3/SKsNd0MBoPBUE0CtYDfBn4SkQ+xZsRdiFkR2WAwBEGs+V9jgUCjICaIyGfAELvoWlVdET6xDAZDPFGVf7Wu+KG9CdQFAVAfOKyqE4EMETFTsgwGg6EGBLok0SPA/cBYuygJeKeKczqIyNcisk5E1ojInXZ5UxH5QkQ22n+buJ0zVkQ2icgGEfG9qqPBYDDECYFawBcCI4FcAFXdSdVTkUuAe1S1GzAIuFVEumPlFl6oql2AhfY+9rHLgB5Ya8e9ZK+mYTAYDHFJoAq4SK3AQQUQkQZVnaCqu1T1Z3s7G1iHtZjn+cA0u9o04AJ7+3zgXVUtVNU/gE1Y69AZDAZDXBKoAp4lIq8A6fYKyV8SRHJ2EemMtTzRj0ArVd0FlpIGXIt7tsNzYkeGXeZ9rRtFZJmILKuraRkN4cOf68wQf4hI2Wfr0yM89iOVb7vKKAixJHkPOBY4DHQFHlbVLwJpQEQaAnOAu1T1cCU35uuAryTwrwKvAgwcODA+50saoonLdfaziKQBy0XkC1VdW9WJhtpFLEy3rlIBq6qKyFxVHQAEpHRdiEgSlvKdrqof2MV7RKSNqu4SkTbAXrs8A+jgdnp7YGcw7RkMNcV+K3O9oWWLiMt1ZhSwIeQE6oL4QUSOC+bCtuX8OrDOK1nPPOBqe/tq4CO38stEJNkOcesC/BRMm/HKumO7lX0MkcPLdeZ9zLjCaoD36763C6CuEOhMuKHA30VkC1YkhGAZx70rOWcw8FdglYj8Ypc9ADyF5VO+DtiGtbwRqrpGRGZhWRolwK2qWhrc7RgMocHbdeZ93LjCakYsvP7HApUqYBHpqKrbgHOCvbCqLsG3XxfgdD/nTAAmBNtWMLhPh6yNM29cVnC39euiLEn84sd1ZjCEnKos4LlYWdC2isgcVb0oAjIZDFGjEtdZrSYWVwQ2VK2A3S1YswS9oS7g03Wmqp9GT6SaE4srAhuqVsDqZ9tgiEuqcJ0ZDCGlKgXcR0QOY3XIVHsbygfhGoVVOoPBYIhjKlXAqmpyMRgMBkOYCDQMzRAFKov7NdEQhmBI6zaGXtPGVPNcgNoXMVQbMArYYKgDZK97ygzCxSDBJGQ3GAwGQwgxCthgMBiihFHABoPBECWMAjYYDIYoYQbhQsX4xvbfrOjKYTD4wSwLH3sYBWww1AEqi4Coq0vCxwLGBWEwGAxRwljANcHldjAYDIZqEDYLWETeEJG9IrLaraypiHwhIhvtv03cjo0VkU0iskFEhoVLrrAzvnFEFbNZLcNgqL2E0wUxFTjbq2wMsFBVuwAL7X1EpDtwGdDDPuclETF5KAwGQ1wTNgWsqouBg17F5wPT7O1pwAVu5e+qaqGq/gFsAo4Pl2wGg8EQC0R6EK6Vveqsa/XZlnZ5O2C7W70Mu6wCZjFEg8EQL8RKFISvBNg+E8Cr6quqOlBVB7Zo0SLMYoWICPuFDQZD7SDSCniPiLQBsP/utcszgA5u9doDOyMsm8FgMESUSCvgecDV9vbVwEdu5ZeJSLKIHAF0AX6KsGyBYyxag8EQAsIWBywiM4HTgOYikgE8AjwFzBKR64BtwCUAqrpGRGYBa4ES4FZVLQ2XbBGhmgrahJPVHYYNG8YXX3yBqiIinHnmmXz++efRFssQQcKmgFX1cj+HTvdTfwIwIVzy1Bhj8RpCyLBhw1iwYAFNmjQhKyuLxo0bs2DBAoYNG2aUcB0iVgbhDIY6xYIFC0hLS2POnDkUFBQwZ84c0tLSWLBgQbRFM0QQo4ANhigxffp0hg4dSlJSEkOHDmX69OkRbX/mzJn07NmTrf8aSc+ePZk5c2ZE2zeYXBAGQ8QRsaIuR44cGTUZZs6cyU033URBQQGok99++42bbroJgMsv9+c9NIQaYwFHEhM9USsQkbPtnCSbRKR6SwlXgqrSoEEDAG6++Wba3/EuN998M0BZebgZNWoU2dnZFBcXA1BcXEx2djajRo0q+4EwhB9jAUeBXtN6+T02K4JyGCpi5yB5ETgTKz59qYjMU9W1oWxnypQpXHfddfznP/8B/sN/gNTUVKZMmRLKZirlX//6F/fdd1/Z/jPPPMPo0aNR9TkHyhAGjAKOIL2O6BhtEQxVczywSVU3A4jIu1i5SqqtgPs8uoCs/GKv0kY0OOM2Sv73HsUHMkhq1p4GJ17K2F8bMfbX8pUrGqcm8esjZ1W36Urp2bNnpfuG8GMUcFVEyGUw68mSiLRjqBJfeUlO8K4kIjcCNwJ07Fj5D6uz8z2k+ShP6watL2oEdLdLPrM/bucCsCogwYMhMTGRK6+8ktmzZ3PyySezZMkSrrzyShITjUqIJOZpxxGuSRzd1q+LsiS1moDykqjqq8CrAAMHDqz0nT173VPVFiZc67H9/e9/56WXXuLyyy9n7969tGzZkszMTG655ZawtGfwjVHABoMnIc9L4m+9tWjOhHvhhRcAyxetqmXK11VuiAwmCqKO0mtar7KPwYOlQBcROUJE6mEtFDAv1I24ZsK5Ig5EpGwmXKR44YUXKCgoQFUpKCgwyjcKxKUFXN3ltz2oxeFilSnVVVeH3p8YT6hqiYjcBnwOJABvqOqaULfjUr7PPPMMz2d04q72W7n33nvNTLg6RlwqYIOhJqjqp8Cn4bq+y+pVVe655x4A7glXY4aYxrgg3HFNlKjF1m91qMwVUd1jBv+44myvv/56VLXsc/3110dZMkOkMRZwHaMyhel+zLgqwouI8Nprr5GUlMSTTz7J2LFjee2118wstDqGUcAQdxavK6b4L2ND9+81yjm03HrrrUyePJn//Oc/9my48nJD3SHmFLCInA1MxBoAeU1Vqx9EWQuI1QkYgVrK3vsu5ezrfKO4y3EPAyssLCQ5OZkbbrjBRCLUMWJKAUdqHn4ZcWb5xgLBKG6o20r5hRdeMAq3jhNTCpgwzMN3sSVlVE0vETJi1eqNJi7l7K6QvRV2XVbWhvhEYinzkYhcDJytqtfb+38FTlDV29zqlM3BB7oCG4JoojmwP0TihoNYlw9iU8ZOqtoiWo2LyD5gaw0uEe1nGu32Y0GGmrZfrT4YaxZwlfPw3efgB31xkWWqOrA650aCWJcPaoeMkaamyj/azzTa7ceCDNFqP9bigEM+D99gMBhilVhTwBGZh28wGAyxQEy5ICIwD79arosIEuvyQe2QsbYR7Wca7fYh+jJEpf2YGoQzGAyGukSsuSAMBoOhzmAUsMFgMESJuFTAVS0rLhaT7OMrRaR/BGXrICJfi8g6EVkjInf6qHOaiGSJyC/25+FIyecmwxYRWWW3v8zH8ag9w9qCiIwXkXsrOX6BiHT3d9yt3iki8rOIlNix8pFu/24RWWv/nxeKSKcoyPB3t/64JJBzQtm+W/2LRURFJCQha3GngN2mM5+Dtdrh5T4e8DlAF/tzI/AfIkcJcI+qdgMGAbf66QDfqmpf+/NYBOVzZ6jdvq/OFs1nGC9cQPmKnJWxDbgGmBGl9lcAA1W1NzAb+FcUZJihqr1Uta/d/rMRbh8RSQPuAH4MUdvxp4Bxm86sqkWAazqzO+cDb6nFD0C6iLSJhHCquktVf7a3s4F1WCvx1jai9gxjGRF50H77+hJrpiYicoOILBWRX0VkjojUF5GTgJHAM7ZVd5SvegCqukVVV+JaJDny7X+tqnl2Ez9gxedHWobDbk00wMdCqeFs3+afWMq/oKr/Q8C4J4SOhw9wMVYWNdf+X4HJXnU+AU5221+I9QsfaVk7Y1k3jbzKTwMOAL9irVPeIwqy/QH8DCwHbvRxPCaeYSx9gAFYa8jXBxoBm4B7gWZudR4Hbre3pwIXux3zWc+tzKN+pNu3yycD46IhA3Ar8DuwHegSyfaBfsAce3tRqPp6TMUBh4hAlhUPaOnxcCIiDYE5wF3q+esOluLrpKo5InIuMBfrVT+SDFbVnSLSEvhCRNar6mK341F/hjHIEOBDta1FEXFNIuopIo8D6UBDrDh3XwRaLyrti8iVwEDg1GjIoKovAi+KyChgHHB1JNoXEQfwHJYbKKTEowsikOnMUZ3yLCJJWMp3uqp+4H1cVQ+rao69/SmQJCLNIyWf3e5O++9e4EMs1447Ztq4b3z9CE0FblPVXsCjQIqfcwOtF/H2ReQM4EFgpKoWRkMGN97F8t1Gqv00oCewSES2YI3dzAvFQFw8KuBApjPPA64Si0FAlqruioRwIiLA68A6VfU5kCAire16iMjxWP+nA5GQz26zgT3ggIg0AM4CVntVi9ozjGEWAxeKSKr9/M6zy9OAXfYP7xVu9bPtY1RRL6rti0g/4BUs5bs3SjK4vwEOBzZGqn1VzVLV5qraWVU7Y/nBR6pqheigYIk7F4T6mc4sIn+3j7+MteLtuVj+oTzg2giKOBjLL71KRH6xyx4AOrrJdzFws4iUAPnAZWo7nyJEK+BD+zcgEWsE+r8x9AxjElX9WUTeA37BSk/5rX3oIayR861Y/knXF/5dYIqI3IH1P/dZT0SOw3oLaQKcJyKPqmqPSLUPPIP1Ov6+3Se2qerISD4D4DbbCi8GDuHb/RDO9sOCmYpsMBgMUSIeXRAGg8FQKzAK2GAwGKKEUcAGg8EQJYwCNhgMhihhFLDBYDBECaOADQaDIUoYBWwwGAxR4v8BsZ/IQTgib98AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(2, 2, figsize=(5, 5))\n", + "\n", + "df.plot(ax=ax[0][0],\n", + " title='Line plot')\n", + "\n", + "df.plot(ax=ax[0][1],\n", + " style='o',\n", + " title='Scatter plot')\n", + "\n", + "df.plot(ax=ax[1][0],\n", + " kind='hist',\n", + " bins=50,\n", + " title='Histogram')\n", + "\n", + "df.plot(ax=ax[1][1],\n", + " kind='box',\n", + " title='Boxplot')\n", + "\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Pie charts" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "False 837\n", + "True 163\n", + "Name: data1, dtype: int64" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gt01 = df['data1'] > 0.1\n", + "piecounts = gt01.value_counts()\n", + "piecounts" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAEeCAYAAAAwzyjTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA2LklEQVR4nO3dd3xc1Zn/8c+500dl5F5wETbCBoOxwSAg9A4iBAKEhFDDbgiQ0MIvUXYJmWRTvLvZBBJIgDTANNMxiBI6hthyxbgKuci9W1YbTb3n98cd2bKRrZGt0Z07et6v17xkRlMeCemre8499zlKa40QQjiBYXcBQgiRKQksIYRjSGAJIRxDAksI4RgSWEIIx5DAEkI4hgSWEMIxJLCEEI4hgSWEcAwJLCGEY0hgCSEcQwJLCOEYElhCCMeQwBJCOIYElhDCMSSwhBCOIYElRJ5RSl2qlJqvlIoqpVYrpe5VSrkyeN5RSqlHlFJzlVJxpVTOdfeUwBIijyilzgdeBGYDFwIPAPcCv87g6ccBFwFrgDnZqvFgKGmRLHJOOOQDNJAi3JCyu5xsU0r1xfpd3N4NrzUfaNRan97uvvuwQmuE1nrTfp5raK3N9L9/Cfyn1lodbE3dyW13AUJ0YA0wEIBwSANNwE6gvt3HemAHsBpYtesWboj0eLUHbzzwT6XUG8AU4HWtdayrL6KUGg5MAL6716emAD/HOuL6x76e3xZWuUwCS+SES8Z4ioBDAf3yVQGXy9j1h10BxenbiE5fKBzaghVey4EFwDxgHuGG+iyU3V1mAjcB1wBTgUal1HPAFK31p114nXHpj4va36m1XqWUigBHdkexdpLAErnibOCbQEs0SUGB94BfZ2D6Vg58e9e94VAdMB8rwKqBTwg3tB54ud1Hax3FOgqaopQaBHwLK7xuVkqtBJ7ECq/lnbxU3/THjsK5vt3nHUsCS+QKA2vot95QZGPeqjR9uyz933HCoRnAe+nbLMINySy8b5dorTcD9wP3K6XGYAXXtcB9Sqm/a61v2s/T2w5LO5qYzqm5qAMlgSV6Ky9wevr2C6CJcOhj4DXgJcINW+0sLi2UvhUAKaClk8fvSH/s6EiqpN3nHUsCSwhLEVCRvj2UDq/nscJrc08VoZQ6DGso+22gDPgM+G/g6f2d4UtbnP44DpjR7jVLgSCwpJvL7XESWEJ8mQs4M317MB1eU4FnCDc0dPebKaUKgRuwhn/lwHrgKax5q0X7eeoetNZrlFILsMLur+0+dQ2QAN7srprtIgtHhdg/AzgD+DOwgXDob4RDx3fze0wCfgPUAOdirZf6cVfCqp3/AE5Pr1g/Qyl1F9YarAfaH6Eppe5TSiWVUiPb3RdUSl2hlLoCGJu+74r0bdJBfH3dRo6whMhcEPgO8B3CoXnAI8DThBuaD/J15wGDtNYHvYZMa/1GOnB+hnXUthlrlfuv9nqogXUk2X4yfiDWMLi9tv9+PP16tpKV7iInXDLG83WshY3rp14RuCfgUQV215ShJqzh128JN2ywu5h8J0NCIQ5OEXAXsJJw6GHCoUPtLiifSWAJ0T18wM3AF4RDTxAOHWF3QflIAkuI7uXGWui5iHDoWcKhUXYXlE8ksITIDgO4ClhKOHQ/4VA/uwvKB3KWUByw0soqA+iPdXZpwD5u/bGGS+70zQWcWze5IhdWkvcEL3AHcB3h0M+Bh3LhEiCnksASnSqtrHJjrbo+EmsVddvHw7F+IbvK033VOUYfrGsEbyYcup1ww7s21+NIElhiD6WVVS6szpOnA8djhdPh9M6QyYYjgHcIhx4H7srxtjc5RwKrl0sH1ESsy1DOAE7B6j0lsut64HzCoe8TbnjR7mKcQgKrFyqtrDoMuAQrpE7F6ggget5g4AXCoZeA2wg3dHZxc68ngdVLlFZWHQFckb6Nt7kcsaevA2cSDt1GuOEZu4vJZRJYeay0smo4cLXW+ttKqaPtrkfsVx/gacKhs4Dbc6Ubaq6RwMozpZVVPuAqrfV3gNOUxe6yROb+DSgnHPoG4YZldheTaySw8kRpZdUg4BatzVuVMgZISDna0cAcwqFbCTc8YXcxuUQCy+FKK6smam3eBeqbSimPUnLxQp4oAB4nHDoT+B7hhi5v+5WPJLAcKL0U4VJtpu5WhutkCam8dgMwhnDoUsINW+wuxm4SWA5SWlmlgG9oM/UbZbgOVYbL7pJEzzgJqCYcqiDc4Pi+7AdD/jQ7xMgfTTtHJ+MLgWeV4ZKeS71PKfAvwqHz7C7EThJYOW7kj147dsQPX/pEGa53lNs7rvNniDwWAqoIh75ndyF2kSFhjiqtrBptJmL/p9zeSwyPT075iTZu4M+EQ0MJN9xndzE9TQIrx5RWVgXNePR/lcd7s+HxySSV2JefEg4FCDf8P7sL6UkSWDlk+PenXKx8BX81vP5BdtciHOEewiE/1sr4XrGbjARWDhh++9MlaP2Eq7DvV+2uRTjO9wE/4dDNhBtMu4vJNpl0t9mwWx+7Tnn8q10FJRJW4kD9G9Yi07yfQpAjLJsMv/2ZwaCfdRcPON3uWkReuAaIYYVX3pIjLBsccvNfrjO8gRWuYEjCSnSnmwiHfm13EdkkR1g9qN9Fd/j9w496yl0y5OtycbLIkp8QDm0h3HC/3YVkgxxh9ZBB3/jF+ODo47/w9BkqYSWy7XeEQ9+2u4hskMDqAYOv/s2/+YYfVe0q6DPc7lpEr6CAfxAOXWB3Id1NAiuLgmXlniHX/e4J37CjHjU8Pr/d9YhexQM8TziUV5dzSWBlSclp1w3sc+ZNs3xDx1yrDEPGgMIOhcArhEMldhfSXSSwsqDk1GuOKTzqrLmevodMsLsW0esdBjxDOJQXv+t58UXkkpLTrq0omnDB++7iAcPsrkWItAuAX9pdRHeQwOomwbJy1eesm24sOvbiZ1wFffraXY8Qe/kJ4dAVdhdxsCSwukGwrNzwH3rsPUUTLnzI5S8ssrseIfbhMcKhsXYXcTAksA5SsKzcEyw76TdF48/7leENBOyuR4j9KACeIhzy2F3IgZKV7gchWFbuDx5x2h8Kxp76HWW48v7C01yxrtHkvz+JMWejyYJNKVqTsOqOQkpLvvz3d+a6JOEPY8xclyJhwqg+Bv95qo9vHrXv39mmmOamaa3M25hiY7PGY8CY/gY/OMHLNeO9ezz2//4V4/cz4yRM+M4ED78624fRbmFw9bok50yJsOiWQkZ2UJ8NjgV+DvyH3YUcCAmsAxQsKy8KjD7+/oKxp14vYdWzlu8weW5JkuOGuDh1pIt/rkh1+LiqLxJcNrWVq4/28PTlXrwuxZKtKaLJ/beOiqc0bgN+coqP0hKDWEozdXGSa1+OsrVFc9dJPgDeX5Wk8r0YD13kp8iruPn1Vsb0N7hhghVqKVNzS1WU/zjFlyth1ebHhENvEG74xO5CukoC6wAEy8pLfMOO/F3h0edeI2HV804b6WLzPdZU4V/nxTsMrKaY5sZXo9x6vJf7L9i9ZvecUZ3/yPcLGjx9eXCP+y4q8/DFdpO/f5bYFVhv1iY5d5Sb7x5nBdRHq5O8uTy5K7D+NDtBNAn3nLznUVkOMIAphEPjCTc02V1MV+RU7DtBsKy8wDvosF8XHXfJ1crlduxcgJMZGVyL+fySBFsjmh+e1H1h0S+g8LT7jYmnINDuJ6DAo4gmrX9vbja578MoD13kx+PKyXXDpcAf7C6iqySwuiBYVu739Bt+X/EJl11vuL0+u+sR+/bJmhR9A4qFW1Ic/edm3L9oZPjvm/j5hzFSZmbdhLXWJE3N9ojJo3PjvL0iyZ0n7g7A8mEu3l2ZZN7GFMt3mDy/JMGJh1gH3Pe8E6OizMOZh+b0IOYGwiFHNY7M6e9mLgmWlXvcocH3FJ945S2GNxDs/BnCThuaTCIJzdUvtvLT03wcN9QKl//6OMbOqOb3F3R+aedDsxP84M0oAB4DHrjAz3XH7A6sq8a5eWWZm+MebQHgzFIXt5d7+aguyetfJFh2W2F2vrju9SDh0PuEG1rsLiQTElgZCJaVu1yF/W4LnfyNu2WdlTOYGqJJ+NVZPu5OzzmdUepme0Tz0Ow44TN8hPz7H6pdNc7NicMK2BbRTKuxwsul4OZJVmi5DMVzVwbZ0GSSSMHIEoNESnPbG1F+eaafQYUGD8yM8UB1nOY4fP0IN78/30/Ak1NDxBHAL4Af2l1IJmRI2IlgWbnC5bk6dOKVla5gSR+76xGZ6Re0QuHcvSbZzxvtJmHC4q0dn1lsb0CBwaShLi44zM2fKgJcO97DPe9ESaT2HFIOLTJ2nQW8f2YcvxtuOd7DOyuS/PSDGC9dFWTxrQXMWp/i19Nj3fQVdptmYK3dRWRKAms/gmXlCri0eNIlP3GHBsrWWw4yboA1l7T3/Hxb1BxI/4xJQ100x2FzS8dzYOsaTX45PcafKwIYSvHW8iTnjnYzYbCLAQUGN07w8taKZNffOEtW7DAX17fqI53UnVQCa/9ODpSddJd/2Lgj7C5EdM2lY60jq7eW7xkQby9P4nfDUQO7vhrlo9VJCr0wsKDjtLvzrSjfPtrD8Yfsfu2W+O5wa45rdA7sHtgQ1Tv+UB178663o9Ovf6W10e56ukLmsPYhWFZe6uk/8oeF48480e5axJe9sCQBwNwN1tDuzdokAwoUA4KK00vdHDXQxQ0TPNz3QQxTw7FDrEn3v85P8NPTvBR6d4eO+xeNXH+Mh799zbqy6pE5cWauT3HOoW6GFSu2t2qeW5zghSVJJp/tw9vBMoW3lyeZviZFzfd3T7SfM8rFA9Vx/jQ7ztAixR9nxblhgn0rYZKmTn68OjX7z7PjK2IpPgWem1aTaLCtoAMggdWBYFl5seEvvCdUfvmZstYqN135fOse/33rG9bZvNNHuvjwBuvH+pGL/RySDorNzZrSEoPfnefjjhP3XJGS0tatzdGDDF6tSXLPO1F2tGr6BxVH9Dd4/VsBKg7/8o9DLKn5/ptR/vdcHyXtJvIvLPPw67NNfj09RiShuXSsh3tPs2c1TN1Oc8UDM2PzV9TrlcBjwLJpNYkcON7rGqVz4Rg1hwTLyt2g7uhz5k23e/oOHWF3PXnqkLrJFRva33HJGM/XgQuB9VOvCNwT8KgCe0rLL81x3fjMwsSM175IrgNeAt6dVpOI213XgZIjrC/7WtGxFddIWAknS5narF6fmvvH6nhtS4JZwDPTahJb7K7rYElgtRMsKz/WN2zcd/2lE4+xuxYhDtT6RnP1H2fF5y3Zaq7GGv597sThX0cksNKCZeVDlTf4g6KJF56oZONA4UCtCd3y4tLEzOcWJ9cArwNvTqtJtHb2PCeRwAKCZeVe4NbQCZeVG95gsd31CNEVptZ6/kbzs/tnxmoaYswHnpxWk9jQ6RMdSALL8lX/oceWeweNlvVWwlG2tJgb/jQ7PnveRnMNMAWYO60mYdpdV7b0+sAKlpUfpnzBrxcefU653bUIkalYUkdf/yJZPeXzRJ2peQt4bVpNwhEXMB+MXh1YwbLyAPDd4kmXHm14/HJRs8h5WmsWbzUX3j8zvmRLi14MPDGtJrHa7rp6Sq8OLOBi37Ajj/IOGn203YUI0ZkdreaWR+cmZv1rbWot8DQwY1pNovOruPNIrw2sYFn5objcFxcdc+EJclJQ5LJ4SsffXZms/uu8xKqkyQfAS9NqEhlfA1haWXU58Gnd5IpN2auyZ/TKwAqWlXuA7xQefc4ow1/Qz+56hNiXL7anlt0/M75wXaOuAR6fVpNYnulzSyurRgMPYu38/ARwfZbK7DG9MrCAcwx/4ajAyInH2V2IEB1piOodj30Wr35vVWotMBX4eFpNIqPeNKWVVf5Ua+NvDF/hbcow2i5+vLa0surhuskVM7JWdA/odYEVLCsvAS4rmlgxSrk9svGpyClJUyc/qkvNfnhOfEUsxSfA89NqEjsyff7wO579mnJ7H3EFivfu36aAB0srq46vm1zh2GUPvS6wgIvdoUHF3sFlx9tdiBDtrao3lz9QHVuwsl6voIsdFUb88MXhOpV83BUoOnM/DzsWuC792o7UqwIrWFY+FDiraOJF45RhyH6CIic0x3XD0wsT1a9/kVwLvAi8l2lHhdLKKncq0vAzw1fwI8Pjz2RPs3tLK6uerJtckTutT7ug1wRWut3x5d5Bh4XcfYcdZXc9QqRMbc5cl5r7x1nx2ojVUeHpaTWJrZk+f/gdz56jXJ6/u4Kh4V1429HAtcA/ulpvLug1gQWUAZMKjzlvoixjEHZb12iufnBWfG67jgoLMx3+jbzn5YFmMvY3V6Do4gN8+3tLK6umOPEoq1cEVrCs3AC+5S+dGHIX9T/U7npE7xVJ6OaXliaq0x0VpgFvTatJRDN5bmlllZFqbfx/hjf4M5e/6GBOGI3Cmsv6+0G8hi16RWABE4BRwcNPGm93IaJ3MrXW8zaa8/9QHavZGWU+8FRXOiqMuOu5k1DG465AcVk3lfSfpZVVTzjtKCvvA8tqecy3vIMPU3J0Jeywudlc/6fZ8dnzN5lr6WJHhRE/fKmPTsb/bPgLv9HNfdoceZSV94EFHA30D449VY6uRI+KJXXra18kq6csSNRpeAt4PdOOCqWVVSrV2nir4Qn8xggUZevCfMcdZeV1YKXPDF7iKuqf9PQ5RM4Mih6htWbRFvPz+2fGl26N6IXAlGk1iTWZPn/Enc9NQKknXIHibF+UPwq4Cngqy+/TbfI6sLD+h5QWjjtrtKy7Ej1he8Tc/OjcxKwZ61LrsIJgZqYdFUorqwpTrY33G/7CG5UyemqT45uRwMoZ5yuPP+UdNHqS3YWI/BZP6fg/VySr/zYvsSqleR94uSsdFYbf8cz1hsf/e1eguE8Wy+zIqaWVVUfWTa5Y0sPve0DyNrCCZeUDgUkF484cLNcMimyq2ZZaev/M+ML1Tbs6KqzI9Lkj7n7hcExziitQfEIWS+zMd4E7bXz/jOVtYAFnAqZ/2JHS+lhkRUNUb//HZ/Hq91el1gHPAtO71FEh0jjZ8BfepgzD7t/D60orqyrrJldktB7MTnZ/o7IiWFZeCJzjG3602/AV9LW7HpFfkqZOfliXmvXwnPjKuNVR4blpNYn6TJ8//I5nLlNu38OuYPHALJbZFX2Ab2D1zMppeRlYQDngCow85ki7CxH5ZVW9ufz+mbHPVu3UK7Gux6vpQkeFEaSSj7sCxWdktcgDczMSWD0vvZThXAxXvbvfMAks0S3SHRVmvv5Fch1d76jgSbU2hg1fwT0qs44Kdji5tLLqqLrJFYvsLmR/8i6wgGHAwMCoSV7D7S2wuxjhbClTp2asS819cHdHhWe62FHhXOXy/M0VKO5KRwW7/Bs5Pvmej4F1HNZku+yEIw7Kukaz7o/V8XlLt5l1wON0qaPCK4PMRPRvrkBRRVaL7F6XIYHVc9JdGc5QHn+Du2TIWLvrEc4USejmF5ckZj6/ZFdHhbe71FEh0vhjwxe8zxUo8me30m43orSyamLd5Ir5dheyL3kVWFgr24uDh5UXKZc7V+cKRI4ytdZzN5jzH6iOfdEYYx7w5LSaxMZMnz/8zqlfUYbrcVeweHQWy8y2SwEJrB5yApD0Dh0jw0HRJZubzfUPzY7P/szqqPA4MC/zs38v9dHJ+MOGv/DKbu6oYIevAT+zu4h9yZvASu81eIry+He6iwc4+S+c6EGxpG6dVpOsfvLzA+yoEGm8zfAGfmMEigqzXGpPOaa0sqq0bnJFnd2FdCRvAgs4HPD7Rx5TrAxXPn1dIgu01izcYn7+wIF2VLjruYmgnnAFi/OxC8glwB/sLqIj+fSLPQlIeAeNPsLuQkRu2x4xNz8yNzFrptVR4UmsjgoZNdQrrawqSndUuKEHOyr0tK8hgZU96bODxwE7PCWDD7O7HpGb4ikde3t5ctbf5ydWpTTvAa84pKNCTzuttLKqT93kiowvN+opeRFYwBCg0B0anDD8hf3tLkbknmXpjgobrI4Kj02rSazM9Lkj7n5hDNqc4goU95bNd93AWVgr+nNKvgTWYQC+YUeW2lyHyDE7o3r7P+bHqz+oO8COCq2N/2P4Cm/JgY4KPe1UJLCyZhLQ7Ok37Bi7CxG5Ya+OCh8DL3Sto8Kzlyu390+uQM50VOhpp9hdQEccH1jp5QxjgM3u4gEj7a5H2G9lvVn7wMzY56t26uVYm5R2paPCSKujQtHpWS0y900orawqrJtc0Wx3Ie05PrCAQwCXq3hAwPAV9LO7GGGfppje+fTCRHVVbXIt8ALwQZc6KkQaf274C+5RHr8nu5U6ggs4EXjX7kLay4fAGgUo76DRQ+wuRNgjZerUv9am5j44K768NckMYGqXOircOfV85XL/1RUsHpbFMp3oeCSwut0EoNkdGuSE9h2im61tMOv+UB2fV7PdrMMa/i3qQkeFwWYy+neXv+jCbNboYDl3VtTRgZVu1ncYUO8u7DfI7npEz4kkdPPzixMzX1yaXAu8Stc6KrhSrY0/NrzBn7r8juuo0JMksLpZMeADEkYw1FvP5vQqptZ6zgZz/h+qYzXpjgpPdaWjwog7p56C4XrMFXB0R4WeMqy0smpw3eSKTXYX0sbpgTUI0Bguw/AVyILRPLep2Vz30Kz4nAWbzbVYw7/5Xeio0Fcn448Y/sIrnN9QoUeNBSSwuslAwPAOOLSf7Oycv6JWR4WZT32eWK3hTayOCpFMnltaWaVSrY3fN7yBX+dRR4WeNBr40O4i2jg9sEYBcU+/YTJ/lYe01ny+2fz8ger40m1WR4UnptUk1mb6/BF3PXcsqCmuQLFsRnLgcmronA+B1eIuHig/kHlmW8Tc9MicxOzq9am1wFN0vaPCHwx/4fVKGTL+OzgSWN0hWFbuwlo0utEoKBlgdz2i+7yyLDnjucWJDemOCi9Pq0k0Zfrc4Xc8c6Ph8f/OFSguyV6FvYoEVjfpBxiAaXgDxXYXI7qFHyh9ZlHiX8DjXeuo8OJYdGqKK1A8KXvl9UoSWN1k1zIGJfsP5oMUEMNqqPdJFzoqBNp1VJATL92vpLSyqm/d5IoddhcCzg6sYkABKLdPzv44XxXWtX9daah3pXL7HnIFimVKILtGA84OLKXUQq21nbvThACMQLFf/rI6X/qIKqOwGvHDl0pJJZ5wBYpPzXJZwjIKmG13EdBJYCmlvr6vTwGDu7+cLukHxF1F/eXoqpcorazypjsq/FB5fNJRoef0tbuANp0dYU3FOqXc0Wpiu6/B6gvEXcFQkc11iB4w/I5nL1Ruz19cweJD7K6lF8qZ37HOAutz4Lda60V7f0IpdU52SspYOrCK5Qgrj1kdFWL/cAWKLrC7ll4sZ87CdxZYd7LveYXLureULusDtBi+QgmsPFRaWeVKRRorDV/wXpe/0O6j+d7OGYGltZ6+n8/N6f5yMpPe1qsI2Km8gYBddYjsGHHn1FMxXI+5gsWj7K5FAE4JrDZKKT9wEzCOdnNXWuvvZKmuzgSx5tW0nCHMH+mOCo8a/sLLpaNCTnFWYAFTgGXA+cAvgG8DS7NVVAYK2HUiQH6yna60skqlIo23G77AL6WjQk7KmUn3TLfaPkxr/VOgRWv9OFAB2LkGa3fd8qfY0Ubc9dxxZiyyyBUsvl+5PBJWuclxR1iJ9MedSqmjsBp6lWalosy0C1oJLCcqrawqTrU2/tHwF14rHRVyXs5c+pZpYD2qlOoD3AtMAwqBn2atqs7t/gFXKtOjRJEjzFjkeuVy/9gVKA7ZXYvISEbXdfaETAPrPa11PfAx1jJ9lFKHZq2qzrUPLPnr7DCGL/hru2sQXRKzu4A2mR6dvNjBfS90ZyFdtCuklASWENmW0W5EPaGzawnHYi1lCO11XWEx9l6a0y6kJLCEyLKcOcLqbEg4BrgYKAG+2u7+JuDfs1RTJtodGeqMdk0RQhwwZxxhaa1fBV5VSp2ktZ7RQzVlYtdRlU4mcib9hchTOfM7lumk+3yl1G3kzkr3XXQiljPfTCHyVM78jmU66T4Fq//V+cBHwDCsYaFd4m3/MJOxnDlcFSJP5czvmFNXukdJDwt1PJoz30wh8lRGm9b2hEwDa++V7iHsXem+6xDVjLW02liHEL3BZrsLaOPUle5R0mGbijQ021iHEL3BRrsLaNPZOqy72/3njemPD6U/2nl9URLrqM+VaqlvsbEOIXqDnAmszoaERenbJOAWrJ2WhwI3A7ZtDx+prdZAA+BJNW+PaFmKJUQ25UxgdbYO6+cASql/AsdqrZvS/x0Gns96dfvXAPTBTEV1Mt6sPLI3oRBZss7uAtpkOuk+gnZLCdL/Lu32arqmHvACmLGW7TbXIkS+aq6bXLHN7iLadKXj6Cyl1MtYnT4vAx7PWlWZ2Qb4AMzWxm0U9h1pcz1C5KPVdhfQXkaBpbX+lVLqTaBtp90btdbzs1dWRtYBHoBUc/02BpTaW40Q+anO7gLay3ireq31PGBeFmvpqm2ACZBs3JIzh6xC5JnldhfQnpO7dW4jvdo9uWO9BJYQ2WH3SGoPTg6snVhHWEaifn2DNlM508ZViDySS6Mq5wZWpLY6hbUZRgCttRmLyJlCIbpXK7DE7iLac2xgpa3B2lQVM9okw0IhutfCuskVKbuLaM/pgbUKCAAkG7fmzGpcIfJETg0HwfmBtYX0DtCJLavW2FyLEPlGAqubbWn7R3T9kvUy8S5Et5LA6mabsS4T8pBKmqmWnTlzzZMQDpcAFtldxN4cHViR2moTWIzVUJBkw+acuoxACAebWze5Imd6ubdxdGClfU76TGFia50ElhDd4y27C+hIPgRWHemJ9+i6xeu0Nk17yxEiL7xpdwEdyYfA2oDVgdSl460JM9K4we6ChHAyrfU2YI7ddXTE8YEVqa1OAjXIPJYQ3UIp9U7d5IqcHKk4PrDSFmBtjEFs/dIam2sRwulycjgI+RNYq2ibx1rz+VozEW20uR4hHElbGyS8bXcd+5IvgbWWtvVYQGLH+qX2liOEMyml5tdNrtjS+SPtkReBFamtTgAzgf4AsbWLcuoKcyEcJGeHg5AngZU2m3QH1ejqBWvMRLTJ5nqEcKKn7S5gf/IpsGppNyxMyrBQiC7RWs+um1yR06OTvAms9LBwFulhYXTdkpz+xguRa5RSdu+E1am8Cay0WaSPsKKrP1tjJmLNNtcjhCNorePAM3bX0Zl8C6xarKvM3WitE9vX5tzV5kLkqNfqJlfssLuIzuRVYEVqq+NANelhYaR25lx7KxLCGZRSj9ldQybyKrDSqknvCJ3YsnJbsml7nb3lCJHbtNZbyNHuDHvLx8CqARpJ93qPrV2UkxdxCpErlFJP1k2ucES33rwLrPTF0G+SHha2fPHpUpl8F6Jj6UtxHrW7jkzlXWClVWPtCm2QSprxTbWz7S5IiNykX6+bXOGYhgF5GViR2up6rH4+AwFalnw4RzaoEOLLlDL+1+4auiIvAyvtHcAPkGreEUlsX/u5zfUIkVO0mZpbN7liut11dEU+B9ZyYDVQAtCy7JMZ6fG6EAJQhuvXdtfQVXkbWJHaag28RjqwEltWbkvuWLfQ1qKEyBE6lawBXra7jq7K28BKW4C1xCEI0Pz5Ox/IJhVCAIYrXDe5wnEjDrfdBWRTpLY6ESwrfwH4DlCX2LFuZ2Jr3VzvwFHH211bZ6LrltDw6TPEt6xEJ+N4+gyl6NgKCsefB0Bs03J2fvwEia11pFqbMPwFeAeNpuTkb+I75Ij9vnbzwnfZ/sb9+/z8sNum4CrsA0DjrJdonP0q2kxROP4cSk67DqV2/52Lbahh89R7Gfqdh3CHBh78Fy6yTqeSq5TL/ZzddRyIvA6stJnA14AioKlpwdsf9z37uxOU4fLYXNc+xbesYsvUe/EOHUO/C36AcvuI1HzK9jf/gE4lKZp4EWa0GU+fIRQedTauwr6kIg00zX6FTU//hMHf/m98Q8fs8/UDo49n8DW/3etezZYX/wt3yaBdYdW6egH1Hz1O33NvwfAG2P72g3j6DqPw6HOsZ5gpdvzzT4ROvFLCykkM109ydZOJzuR9YEVqq+PBsvLngFuAplTj1ub4puWzfEPHfMXu2valZenHaNNk4OX3YXgDAAQOnUh8yyqaF71H0cSLCJROIFA6YY/nBQ49lrV/vJqWxR/sN7BcwRCuYGiP+6JrF2G2NlJ4ytW771s5F3/pBIomXJB+zEJaV87dFVhN899AJ+MUn/D17viyRQ8wE7F5a/7v61PtruNA5fscVps5wEbSW4E1LXj7U51K5Nw23LukkiiXC+X27nG34S+A/ZzoVF4/yuUBw9Xlt2xZ9D643ASPOG3XfTqVwHD7dr++x49Oxq0SW+ppmP4kfc+9BeXK+797eUFrrZXL81276zgYvSKwIrXVKeBZoA+AGdnZGttQ8y97q9q3gqPPBmDHu4+SbNqOGW2m6bO3iK5eQPGkr+3xWK1NdCpJsnELO955GIDCY87v0vuZiRgtyz4hOPoEXIHiXff7ho6hte4zYpuWk6jfQGTZp7uO3Oo/+DuB0cfjHzn+YL5U0YN0vPXF1f/zVUd3MOlNfxoXYm0H1g/Y0fTZWzO8gw87zvD4izt5Xo/zDihl0Ld+w9aXfkXz/CrrTsNN3/Nuo+DI0/d47LZXJhP5wspeI1jCwCvDePuP6NL7tdbORMcjFBx19h73B8eeSuSLmWx6/E4AfCPGU3TcJUTXLKR1+SyG/vvDB/YFih6nzVTU8AV/YHcdB0v1prWUwbLyI4BKrOAiOOYrYwqPOvub9lb1ZYkd69n87L14+g2j6LivotxeWpdX0zT/DfpddCeF487c/didmzBbG0k1bqNp/uvENq1g0FW/xDekLOP32/zcfcQ3r2DYbU+gOhhOJpu2g5nCHRqITiXZ+NjtFE28iKJjL6Zxzqs0zZmGmYgSPPwk+pz17xgeXwfvIuxkxiL/teb3V95ndx0Hq1cMCdtZBiwCBgFEaj6tSdRvzLnNKnZ+/ATK5WLgFT8jeNgJBEon0PecmwmOPYX69/6C1rtP8HhKBuMbcjjBMScz8Mqf4wqG2Dl9SsbvlWzeQbTuMwqOPKPDsAJwF/XbdRawcc6rKLeXwokX0bpqPjunP8mAy/6ToTf9ifjGWhpnOPJseV7Tyfgmwxf8ld11dIdeFVjp1e9PAV7Svd8b57z6Rq5NwMe3rsYz8NAvTWb7hhyO2dqI2dLQ4fOUy4N3QCnJ+o0Zv1fL4g9AmxTuNRzsSLJxGw3/mkrf825FKYPWVXMJlE7EO2gUrmCIgqPPoXXVvIzfW/QMbZp31k2uyKmf8QPVqwILIFJbvQHrkoShAKnGLc2tq+a/a29Ve3IVlJDYvBKdSuxxf2zDFyi3FyNQ2OHzzESU2KbluEsGZ/xeLYvexzOgFO+gUZ0+tv69RykYdwa+IYfv8Z5tdLwV6D1TDE5gRlveX/O7yx27jGFvvS6w0v4JbCJ91rB5wVtzUs071thb0m5Fx15MsmEzW174BZHambSumseOd/5MZOlHFE64EOXysP2tB6n/6DFaaj4lumYhzYveY/MzPyHVsoPQyVft8Xqr/+cStr3xwJfeJ7ZpOYltqzM6umpdOZfouiX0Oe26XfcFRk4gWvcZTfOqiHwxg6Z5r+MvnXjw3wDRLcxkvBnIuTnag9GbzhLukl5M+nfgP4EGwGya/8Zroa9c/T1lHMAipm5WMPYUDE+YhuoX0qvbE7hLBtP33FsoTC/i9A09nOYF/6T5s7cxE1HcRf3wDhlDvwvvwDugdM8X1KZ120vLovfAcFEw7oz91qOTCXa8+zB9zrwRw7/76C4wehIlp19Hw4zn0MkYgbITvxSWwj6phi23r//LzVvtrqM79aqzhHsLlpVfA5wJrAUoLr/iDP+wvdYNCOFAyaZtb6976PoL7K6ju/XWIWGbV4AWoBCgcfbLH6da6tfZWpEQB8mMt9breGteDQXb9OrAitRWNwP/AAYACjNlNsx84XmdjLfaXJoQB0RrrZONW29c/5fv7bS7lmzo1YGV9hkwAzgEILlzY2Pz4g9e6s1DZeFcqcYtUzf89ZZX7a4jW3p9YKXXZk0BdmBdtkPr8url8Y01n9hamBBdlGptXKuTiRvtriOben1gAURqq1uAB7E6k/oAGma+8H6yecdqWwsTIkNmPBqJb15xwfq/3Bzt/NHOJYGVFqmtXgM8jjU0VGhTN8x47gUzGW+xuTQh9kubKTO65vNbNz977xK7a8k2Caw9TQc+BoaBtQq+ZeG7L8puOyKXRdcu+nPzgreesLuOniCB1U67aw23kN7qvnXlnFXRus/+aWthQuxDfPPKD5vmvHpn+mc370lg7SVSW90KPIS1CWsAoGneazNjm1fMsrUwIfaSbNi8qmn+G5dEaqt7za7mElgdiNRWrwP+CgwhfflSw6dPv5XYubnG1sKESEu1Nu2M1M68sOmzN5vsrqUnSWDtQ6S2eibwPDACUGitd05/4sVUy871NpcmejkzHo22rpz97R3vPtrr/oBKYO1fFfABMBJAx1sTO6dPeSoVbc6rC0qFc5jJeLxlyYd3bXvt/96wuxY7SGDtR6S22gSexOoHPxwg1VLf2vDJ01PMeGvHXfSEyBKdSiRbFr7z29YVsx6xuxa7SGB1IlJbnQAeBtaQbvqXbNjU1DDz+SlmIiZrtESP0KlkqnnxBw+3rpwb7i1nBDsigZWB9Er4+7Eu3xkIkNhat71hxtR/mPFoo521ifynzVSqedH7/2itnXlP+g9or9Wr+2F1VbCsfABW0z83sA3A3eeQUMlXvnW94Qv2sbU4kZe0mUo1L3znydbls26N1FZH7K7HbhJYXRQsKx8K/AhrE4utAK7igYUlp15znctfOMDW4kRe0alksnnRu8+0Lp91W6S2ulctX9gXCawDECwrH4gVWgXAZgBXQZ9AyWnXXesKhobYWpzIC2Yi2to0r+qp2LrFd0tY7SaBdYCCZeV9gXuwWtJsBDD8Rb6S06+/2l3Yt2tbLwvRTqq1qaGx+oXHE9vX3ithtScJrIMQLCsPAXdjdXhYB6C8AU+f02+4yl08YLStxQlHSjZt29Lwr2cfTTXv+B8Jqy+TwDpIwbLyQuB2YDTpzSwwXEbopKvO8w0+rNzO2oSzxLetWdMwY+pvdbz10UhtdV5sfNrdJLC6QbCsPADcChwNrCa9m2jBUWePD5ad+FVluHrldmoic9F1i5c2znr552jzhUhtdcruenKVBFY3CZaV+4DrgVOwjrQSAL5DjhhSdOxXv2l4/cV21idykzZNM1I7c07Lond/AnzQmxeFZkICqxsFy8oN4FzgW1jrtJoBXEX9CkInf+tKd2HfkXbWJ3KLGYs0NM6d9lF84xc/i9RWf2Z3PU4ggZUFwbLyI4EfYA0NtwBguIySk795vnfQ6BPsrE3khsT2tSsbZj7/vhltnhyprV5hdz1OIYGVJcGy8kFYoTUE6wzi7nmtw8ovUi63z876hD20mUpFamfMbln0fhXwSKS2Wjp/dIEEVhalJ+NvAE7ECq0EgLvP0FDx8Zd+zV3U/1AbyxM9zIw21zfMfvmTxJZVTwCv9vbrAg+EBFaWpee1LgC+AexM3wAonHDh8YFDJ56rDLfHnupET4lvWVXbUP3Chzre+sdIbfVCu+txKgmsHhIsKy8D/h1rc4v1QArA029En6JJl1wqq+PzkxlvbWhe+O7saN38d4G/Rmqrt9tdk5NJYPWg9BDxMuB8rFY1VhNApVTRxIvL/SPHny1rtvKD1qYZW79sXtO812p0IvY8UNWbNovIFgksGwTLysdiHW2VYB1tmQCeAYf2K5p40cXuon6l9lUnDlaqpX5949zX5iS21tUCf4vUVi+zu6Z8IYFlk2BZeRC4EjgLa83WruvGgmNPPSJYduJ5hjdQYlN54gDoZCIaWVFd3bLo/ZXAq8BbcolN95LAslmwrHwc1tFWMbABSAIoj89dNLHiZN/QsV9RLrfXzhrF/mmtdWLbmsWNc6ctMVvq5wNPRGqrN9hdVz6SwMoBwbLyAqwziRdhLX3YTHrdlquof0HRhAtO9wwoPU4pQ1pa55jEzk01zQveXpTYtnoL1oYlM9Obl4gskMDKIcGy8iFYyx+OxVr+UN/2OU//kX0Lx597trtkyJFKKZsqFG2STdtXtSx6b15sw7Jm4CPgxUhttfT3zzIJrC5QSvUB/he4FGsb+xnAXVrrTtfVKKXuBs4EJgGDgZ9rrcN7Py5YVq6AI7GuRxxGu2sSATwDR/UvGHvqyZ5+w8crw3Ad7NckuibZtG1ly9KP58XWLooAy4DnI7XVy+2uq7eQwMqQsg5rPgYOBf4f1tHPT4BxwASt9bpOnr8UaATmAd9jH4HVJlhW7gKOB67COpu4Fdi1CYGreEBh4bizyr2DRk1SLo//wL8y0RmttU41bl3esmz6vNi6xTGsLd+mAoulu0LPyqvASofKaK11t//FU0p9DXgFOEtr/UH6vhCwCnhSa317J883tNamUsqNNU+138Bqk25bcwpwCRDCCspdm7gqX4G3cNxZx/oOOeIkaWHTvXQyHolvWTW/Zdn0mmT9BjfWSZHngQXSs8oeeRFYSqky4BrgWmCN1vqMLLzH34ALtNaH7HX/48AZWuuMWsd0NbDaBMvKPcBErOHoUKxh4rZdDzBcRsERp4/zDTtykqugzwiZ5zpwqZb6ddG1i2dHlk3fpFOJILuD6nMJKns5NrCUUv2whkvXsvvi4meBx7TWi9s9zgVk8tub0vv5ZiilZgINWuvz97r/R8B/A0Va6+YOn7zn4w8osNqkr008AvgqMBaIYrWw2XVmyt13WElw9PFHeweOOsbwF/Tr6nv0RtpMJhLb130e+WLGZ/FNtQAuYBHwT2CJBFVucNRlIEopH1CBFVIVWHM6LwL/AXykte7odPJ7wOkZvPyZwIf7+XxfoK6D+3ekP/ah3eR4tqRPmS8OlpUvAUZiLYdo67G1HWhJ7li3s3HHuunAdN+wcUP9pROO8fYbfpRye4PZrs9JdCoZTzZsro1vWr40smL2Fh2PBLH+mLwLfBKprd5sc4liL44JLKXUeKxAKQDeAK4GXtNad7aS+GagKIO3qOmsBNJrozq4v8elJ3vrgIeDZeUvAscBZ2OFWBJrkj4eW7d4Q2zd4g0YrrcDo08Y7T9k7FGu4oGjDI+v0I667aaT8dbEzk018Y01S1tXzl2jk/G+gBfrKPVNrPkpWZ2eoxwTWFjdDSJYE89tNz/Q2Q/XcjIcEnby+R1YR1l7a9uivr6Dz/WIdBO4t4Jl5W8DpVhHXKdjLb2IAtswU6nW2hm1rbUzagG8Qw4f5Bs6drSn77DRrsI+I/L5omsz1rIjuXPT8uj6ZUujdfM3oc1+WD/7JcB0rLO/a+SMX+5z1ByWUsrAGrpdC1yOtV3861grjN/QWsc7eM6HZDgk1Fp/uJ/3/jtwntZ62F73P5Z+blYn3bsqPUk/BusM4yTASL/vDvYKeeXxuf0jxo/wDho92l0yeLThLxqoHDprr7VpmpHGjcnGrWsS29euiW1YujbVtF1j/bExgBbgU2A+sFKa6DmLowKrPaVUEKtVy7XAOVhrnF4A/qa1rm73uDFkOCTUWu9z40ql1KXAy1hnBD9K31eMtazhaa31DzKsu0cCq730pT+HA+Oxho5tw8EWrBX1exxdGv5Cr3fQYYM9/YYNdRcPHGoUlAw2fMF+uXhpkBmPNpqtjZuTDZvWxLeuXhtbv3S9TkTBOgIvSD+sHvgEWACslgl053JsYLWnlBqMNad1HVCvtT4zC+9hYP3QD2fPhaPjgWO01mvbPTYJPK61vqndfZOwhmsG1qLD54Hn0p9+Q2u9a1FoNqVX0g8GDsMKryOxzoiB1TGimfQF2O0pl8flGVDaz9N32EBXcf+BLn9hSHkDRYbHX6Q8viLl8mStR71OxiNmLFJvxlrqU62N9anmHduSOzdui29dvU3HWuJYQ99ioK2GONYq9IVYc5PrZbiXH/IisNpTSg3WWm/K0mv3BX6LtRbKj3Vpzt1a6wV7PU5jBdYN7e57DGvfwo4cqrWu6/6KOxcsK/diTdSPwVouMRprqN0mgnUkFt3f6yhvwOMuHljkKuxb5AqGigx/YaEy3G4Mw0AZhjIMF8owUIZLWfe5QCmdSsR0MhbViVjUjEejOtEaNWORqBlriZrR5miqZWdExyNtwzaFFU7B9Me2++qxliAswdoTcpNcgJyf8i6wxMFJr/Pqh7Xbz3BgFNaRYV+stV4a6ygRrCOZWLuPB9NR08CaCG+7ebH+KBjp91Xp22asUFqJtaBzDdAgR1C9gwSWyEiwrNwPDMCaDyzCmiMaiNWjvj/W2dIguxewZvqDpbBCKYl1JNeCNSxtwFoMvAXrCGonsF3aDPduElii26SHl0GsOTEXVhC1fWz/b4U1xGy7tUoQiUxIYAkhHCPnTlMLIcS+SGAJIRxDAksI4RgSWEIIx5DAEkI4hgSWEMIxJLCEEI4hgSWEcAwJLCGEY0hgCSEcQwJLCOEYElhCCMeQwBJCOIYElhDCMSSwhBCOIYElhHAMCSwhhGNIYAkhHEMCSwjhGBJYQgjHkMASQjiGBJYQwjEksIQQjiGBJYRwDAksIYRjSGAJIRxDAksI4RgSWEIIx5DAEkI4hgSWEMIx/j+HTW7s4gi7sAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "piecounts.plot(kind='pie',\n", + " figsize=(5, 5),\n", + " explode=[0, 0.15],\n", + " labels=['<= 0.1', '> 0.1'],\n", + " autopct='%1.1f%%',\n", + " shadow=True,\n", + " startangle=90,\n", + " fontsize=16);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Hexbin plot" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "data = np.vstack([np.random.normal((0, 0), 2, size=(1000, 2)),\n", + " np.random.normal((9, 9), 3, size=(2000, 2))])\n", + "df = pd.DataFrame(data, columns=['x', 'y'])" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
xy
0-1.471902-4.371674
10.161619-1.511347
22.3697030.065523
3-0.9692800.401674
40.307002-2.472527
\n", + "
" + ], + "text/plain": [ + " x y\n", + "0 -1.471902 -4.371674\n", + "1 0.161619 -1.511347\n", + "2 2.369703 0.065523\n", + "3 -0.969280 0.401674\n", + "4 0.307002 -2.472527" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD6CAYAAAC8sMwIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABG70lEQVR4nO2dd5wURdrHfzVhA2nJOSxIULKAIAoIIkhQQU89BUURRcxnBnxF1DOcioHDO8UICmI8FVFRkaCISM45L2kXFlgW2N0J9f7RPalz9/SEXp7v5wM7U11d9XSYp59+6qmnGOccBEEQhHNxpVoAgiAIIj5IkRMEQTgcUuQEQRAOhxQ5QRCEwyFFThAE4XBIkRMEQTgcw4qcMdaIMTafMbaJMbaBMfaAWF6dMfYzY2yb+Lda4sQlCIIgpDCjceSMsXoA6nHOVzLGKgNYAWAogFsBFHLOX2SMjQVQjXP+uFZbNWvW5Lm5ufHITRAEcdaxYsWKI5zzWtJyj9EGOOcHARwUP59kjG0C0ADAEAC9xWrTACwAoKnIc3NzsXz5cqNdEwRBEAAYY3uUyi35yBljuQDOB7AUQB1RyYeUfW2LMhIEQRAWMK3IGWOVAHwJ4B+c8yIT+41mjC1njC0vKCgw2y1BEAShgilFzhjzQlDiMzjnX4nFh0X/eciPnq+0L+d8Kue8C+e8S61aMhcPQRAEYRHDPnLGGAPwHoBNnPNXozZ9C+AWAC+Kf7+xIojP50NeXh5KSkqs7J4UsrKy0LBhQ3i93lSLQhAEEcawIgdwMYCbAaxjjK0Wy8ZDUOCfMcZGAdgL4DorguTl5aFy5crIzc2F8MxILzjnOHr0KPLy8tC0adNUi0MQBBHGTNTK7wDUNGzfeAUpKSlJWyUOAIwx1KhRA+TfJwgi3UirmZ3pqsRDpLt8BEGcnaSVIicIgrCdE/uBrXNTLUVCIUVOEET55p1LgZnXp1qKhEKKXGTZsmVo3749SkpKcOrUKbRp0wbr169PtVgEQcRL8aFUS5BwzEStlGsuuOACXHXVVfi///s/nDlzBjfddBPatm2barEIgkgV/jKg9CRQsUaqJdElLRX507M3YOMBw5NGDdG6fhU8dWUbzToTJkzABRdcgKysLEyePNnW/gmCcBhf3gZsmg1MPJFqSXQh10oUhYWFKC4uxsmTJ9N6YhKRfpRsmosfn78Wa/YdT7UohF1smp1qCQyTlha5nuWcKEaPHo1nn30Wu3btwuOPP44pU6akRA7CeWR9ej0GALjhh02YNbp7qsUhzjLIIheZPn06PB4Phg0bhrFjx2LZsmX49ddfUy0WEQc/rj+IyfO2pVqM8sNXdwKrPk61FIQCaWmRp4IRI0ZgxIgRAAC3242lS5emWCIiXsZ8vBIAcH/fFknr89CJcuySWztL+Hf+TamWhJBAFjlBGKE4HyjcqVtt99HTSRCGIGIhi5wgjPCKaNU7IIKBOPsgi5wgznZWzwROHk61FPbAOeArx+4tFUiRE8TZTHEB8PVdwEx59mlfIIh3Fu2ELxCMKc8/mcaK8s//AM/VsffBZHCB+lRCipwgzmaCPuGvguL7cPFuPPf9Jkz7Y3dMedfn5smUe9qw7nPhb1GefJsBhfzH9iP4etV+0/ulGvKRE8RZjXpq5pOlfgBAsfg3Gn+Aw+tOmFDWiVPpDntXiFYben4DO6RJGmSREwShiQMMUmNYPpD0PwGkyAmCgJKysrqMii8QxB87jsQnTjrhgCcZKXKRJ598Em+88Ub4+xNPPEGJs4j04HQhEEyQTzoBq169MncLhr2zFKv2HrO9beMoHVd8Cnnv0dOYtyk9o3tIkYuMGjUK06ZNAwAEg0HMmjULw4cPT7FUhNMp8QVwpLjUegNFB4GXmoIvetk+oZQwaXVyDaW4Pb8YAHC0uCwukdIH4VgvnbQAo6YtT7EsyqTnYOcPY4FD6+xts247YOCLqptzc3NRo0YNrFq1CocPH8b555+PGjXSPw+xYzl5GHjzAuDWOcK1KaeMmrYMi7cfxe4XB1tr4OQBAMDuP75A096P2yiZcczasZsPnUyIHEocP12GVXuPo8+5tcUSDWmtukjE/fzB9HWxkEUexe23344PP/wQH3zwAW677bZUi1O+2TYXKDkBLH0rNf0XFwC7Fye8m8Xbj9rSzskSny3tmMGq12X/8TOa2wtPlcFvU/ji6OkrMPLDZTh+WmL9n2ULpaenRa5hOSeSq6++GhMmTIDP58PMmTNTIkN5Ir+oBH1eWYBpt3VFg2rZqJeTLa+UKiPnvcuAY7sdMOU+0Qop1H5yLsSZsgA6PfszhndrjOeujuNNbPVMoPGF2HlEcOP4AqL8mlY3Ra2cFWRkZKBPnz64/vrr4XanY5Css5i/JR+nygK49q0l6P6CNCVwii2mY7tT2386c3QHsHSqZhWrXorTZUJM+vfrDprf+a0ewBsdhc9f3wVM7R2RJ5HK1gFRK+lpkaeIYDCIP//8E59//nmqRTlrKC4tQ9mpMlSvmKG4vf9rC8HAMPfBXgmT4ZvV+5HtdaN/m7oJ68NRvH85cKoA7otE15ONiozF4/KQjpuVnAA8JtpzgEK2ClnkIhs3bkTz5s3Rt29ftGiRvPzV5Yrje4FX2wh/9RB/0D+uP4Se/1JfwGPr4WJsOZzYwbMHZq3G6I9WJLSPtCWkWKOV3JnjwiaNt6bCU/FFpBw77cOGA/a7tUrDvnc73/g41uYdt7E9+yFFLtK6dWvs3LkTkyZNSrUozqPsNPDpzcDCfwk5LlbNUKym9mM4VRaIr/8NXwPznomvDdtIjNXHUuCn5RrKcMzH1h587EwhLnctAwAMnvy7pTa02Ha4WGOrxXN45hj2pHmeeVLkRPxs+lb4F14GTPkHc9WUBEWJfH4L8Jt9D+AZS/fg8S/W2taeUYpKfBj65mLsLIhSRimJvtBXeIeLrMXGV/rfCLyd8RpqIPmDzPsKT+PEGQvRP1/fZam/1fuOI3fsHGzPT3w4Zlopcp7mPqx0ly9lWDovgoJqzvLQiW0VBtiObLdXLos88b/1+HT5Pkv7xmM5z9t0GKv3HccbSV1nVOtBIWxTPiJrx+k+vhsA4EEcb2Ea95vW+b/s1QUY8Poi5Y3f3AtMH6K8rbhAbDuI5z3vAAfXGBLz29XCHIAFWwoM1Y+HtFHkWVlZOHr0aNoqS845jh49iqysrFSLkvYUnipF7tg5WJMXa3Wdx/YA234WvoiWZkfXTnyVORH4dydgSuckS5qeKKlWpbJfNh7GX7sK9Rvc+yfw26s6lRRyrei8DCzefgRlfuPx4PsKTyfPQaQi/MHQmqplp4B3+mLLmiVCdsdVHwE7F6g0JkhdG8cxzDMfwRnX2y9vnKRN1ErDhg2Rl5eHgoLEP72skpWVhYYNG6ZajDQk9ue5W4ztnb3mQEz5D5njgBlwQOy2dZTURy0cBwI+wO21ta/bpwvTxXVnjb5/ufC350MxxWO/XIuflm3AyijbpNQfQAb0hwqPFJdh+LtLMapHUzx5RWvFOlJd2vOl+ViR7YNsvvTU3sCB1cDE4zq9iigZe9KislPabez5A9i/HAe/eBzPNnkZH2vXjuF0WQCVor4fLirB6bIAmtasaKIVezGsyBlj7wO4AkA+57ytWDYRwB0AQtp3POf8eyuCeL1eNG3a1MquhCM5O2beZaEUy7LuBr5bAgyZolk3pJ9anloOrN4EdByWUNmqrnwTbVy5MWX3f7IKbwaChqP6Qv78Dxbvwq+b8/HRqG7hbUr6NhAMAkwykHpglVnRw0gfFuGvM64HxissLqHAmn3HtW9HHS9Bt+fnATDwQE0gZlwrHwIYoFD+Gue8o/jPkhInyhlp6h5LBlIfbRbEML3N3xlu4+59j0QNsMX3wAto5AcZ652FjzLEWdTiNZu74bDsGLQuZygu/OnZG/HbtiPAxBxM8EyPS2Z9DNxfZfIBxpjjSsI9msxxasOKnHO+CIABhxxxtpPQULlje4QZfqfsyXf90Z97rO+8cwFwZBt+2nBItUroXISnkCcDzoGFLwEnD2P0dOvZ+qxex9s8Pwr7J1GRKUq6Y77ufr3dawwcJY/7WL5fdxBFCcyXY8dg572MsbWMsfcZY9VsaI9wGjLrRueuP7wR+PNNa33N/Lsww2/9l9b2l/Dk1+ut7zx9CDClCz5bHnmFV1N+JxWWS5PCOdDdtUFxmymlun8FMP854H+jMW9zvvH9LKB2pR/1zEpcpwrWdKgo5jx9NDSmTsw2M5qZ87gM+NlrD+LuGSvRfuJP1hvRIV5F/l8A5wDoCOAgANVgXsbYaMbYcsbY8nQe0CTsIDaSoRaOY4b3ufD3wFs9racpLtikvq1EYxB1xYfA8w1UF2h4wvMxMO9ZazJZYOqiHXj0c3kY2ycZzynUNsaMpXuQO3YOSsvEGG+fdhbCWOx9Y7jH862hem2fmhv+PPZz677ySK4Vg8dhQjMXlfjwoWQB6hd+2KS7yEToUbFm33HDfVklLkXOOT/MOQ9wzoMA3gHQVaPuVM55F855l1q1asXTLeEQQjfyKM8PuNgdsTTdXN86jeY69wLgB+Vc3DE+4Bcbqzfy/aNAWTEQUJ5afofne+C3V4wJdCIPmHSe4iajdt7z32/G5ytiB+NyTmg8pCQohelOFuPP1VLezt+cj1K/Svx2VHvSY9BKSMWYuRS7Ias41GL0ws61V6sPBscer7JFXlTiMxAVb578ohKs2BO72tHbC3dqLjLBOUcy05fHpcgZY/Wivl4NII73VKK8wCRKxur9HBR/CS97p6rmLZ/yq/4kouOnyxCM/hkXbLEoEYR0BAv/FV7wQQ8zyuOyRdcqNKDcwsy/5PlswrlRVE74yA+X4bk5xh8WRlInrNx7HO2MuAx2LsCmzFtRGepT3Vu61KNMPl+uHYHCAXyz+kBCxmdMtRkMAEUH8c85m/D+4l22y6KGYUXOGPsEwBIArRhjeYyxUQBeYoytY4ytBdAHwIMJkpNIa6Q3ulSRW7OFFm7VcMH98BgwMQe1turnje/32iL4oieuvBl5ccxCKaqjKLItGMBTnmmog0Jg03dAqST6obRIiAlPAlqT41bsNrIepvy87zaRM+Td33bo1jGSPGvl3mNYO2M8slkZspi1c/dLtBtD4e1hXd4JvLVgh6bSjVfJ/9P7gX6l7/4BvHouvvrd2OxPuzATtXIj57we59zLOW/IOX+Pc34z57wd57w95/wqzrmFJMNEecfqz6fEp28R9j78oW6dgpPqeUH+lzEBK7PGhL8Hdi7CSM9cfJk5Efh0uDB1W8qaT1Tbc6tMPbfyMFuyI7K6UBvXHuBgJP+L1XSw4YeD5CHhD3JM+kl4U3Exo1eM45+e99CO7dSs9ex3G3FGdi2V5be6uPGYj1dg//EzCZ2d0M+tkChs50KMcUeNB6wUQi+rMp0JSTaTNlP0ifKDLA7ZxM/rxBkfXvh+E3yBYIKCGGNbPc8Vm1Nl4RZBkTRkYnijgQUoopMibc4aqWhJq1qDhzcC239R3FTiDyBG4b3dM9KewikNZ6S1cOaKS/34t4qbSu3FIAencJNnHj7OeF63faP3wIYDRYrlXYvnxbSmhksy0B5rvYuf134Wk2StFXZryqRpyU+/CmO98gidZGerJEVOJADrivzluZvx9qKdmL9wHrotuAmZsHkldp1ohZMlkoHYg6t1m5SuUfnzxohVKe3t/d93YVt0fvX/dgc+/ptiu2V+jjLp2pYbBevPpaTIxb/uItGfrGW1S86DmuJhCOKqreOFKe0iHdl2ZKE0auBS//pybtJWXvWxEEYp0vnUQkO7SY/j2O/vyCt9dQew78/w1y/ZY6ZEM6KiSZETzkOqHDkw2ftvrMbfTTcVSsLUcf0LqHF0Oc53WciIeHANMDFHSNIVEUn2KVEURT0MpOrrme82YvC/jeXhHvPxClz9H0nq389uBgC4NJR09bkK7iARM/HQvV2rMcC1DOcWzgM+uSFc/nXmBPzLG1GQaoq83e93q8uhp/y/uQd451LgzDHgyLbYAXQTB/HHT5HVvtZn3Y7OzPxAt1QpVy4rwObMW+w3MuKAFDlhO/vz9uAq9xK4JKFm5mDi/xb23jQbANDPJfdpHjqhE1utoCC/XrXfvAwSOFjY5WI0Y+DurGGqOkvZtRJbqJxbSjneWkmtTs14Df/NeEOx/7Zsl+61qb3/F9W2laiKk/K6U3sDU7rElv31tmobejJd7Ta/mIWS/FnMh3rsqMIWY3LYDSlywgZib9oSiaIy41oJhdBZjXQJtSL8L/8x9Z20wHRr//h0deTLQf0FJ1jM56h3AVt/2/LzI3XxrNsvnyCVHTwFTMwBts6VbbMqgeZhPVcf/c98b0it9XArzGoNjVFEP6R+nhD+GB2HXh1FaOrSHiyN774y3lb0lgoosa1PNUiRE7YjV6DGfzztT4iDWgajMhRrifsyMfoiE5Gwt7gtpZnXGa9bnI9PMv4JAPDCj+DhjWF5LnEZC09ryuR5XE6W+AydnhKFyT8NynYLHxa9FFNehZ1GY2Y8YoSBoykTgtQ0laPvFEadVJ4DoMZrP281XPeawI/hz2945ROKpLIZU+Qc+Pmp8Dcr90xon16uNdiYdRu6MuPx+1YgRU4klGyUmPoZDN83EQAQEJNMmf4R+c5Aqt6jX6eHu+fBLEwaCSFBdQbf/OfR0iW4ZaqwM/C8fRHqoBBPej7CtIx/oQ3TnzDyZsZkWVm7iT9h5lJhQlAlnAY/bnw1o3X7xagQhdSxizIfRAaU47ylx1iJleDLzKcltdSvlVSBeuBHVSgvgZa90Pj6q9Gx3T3d9sxHrI6TwOLXw9/jUeQXugQF3sUVxyQ0A5AiJ+JHkokw+sbflHWbpZfZvcdLZG0ZIn9TxCIXi9xRinicVz0GHACqnZYrVz35paliM0uPAMf3ASvkE0iqsNNoJlqyOXHFGnN44MfsjCfAXm+rWS8avfP5pOcjQ71nIxKbb8VdMTljClZn3am4bYxntrwwxamRGzL55DQ910oljVmsdpM2KwQRDmZerGVmhxcy9LN1mVXke/+MsjbNW/W9tr8sKzP7MLnip0sAjVnroUGyaEWwPb8YzU30McY9WzF+OZquri24xR0riN6xaE2TV2unJivSbVu6patooWbB2CLOhae1I0SU3CpG5DACA/B75gOm9mnr2oUfvWOxN5icvFKkyAnbsWPE3qiVV49JUuTPHRcjhwd+VFN5hTeK3sPkDrfxRSMAKA7IXfbqQuw2sRzsde7YuOrcsXMM1UvkzEcrbT/vfS/me9USeQ4ZIwxx/6GyJf4jZiozXad5X1Tdp63oNmvsEiz5xiyx6YTJtULYjlyRW/ExKrQ1Mcd0G294p+Bh7xem+48mW8dqfMKrn+9FieiH1XXuBZbaMEMlnFZ2W0TRzbXZUFtmH9ZqD+ZcyWDuzcuuMdUuADRnxt4itOSwQuwDWduFdYNnAfq4VgFfjLKt/2hIkRMJx4qF3g3rxH3j63ew+684WhBYm3VH3G0oET3b8Vr3IlP7Gj2n0bWe8MxAX7d8kNMKStdFTSYv/OjmSlzUxi+ZxmdmWlHk4XQNGox0/xjzXamXDzJeBtbHZ1SoQYqcsJ14bZ6GLD/szujjskfxpAuDXEttaUeqNHdnDcPnGRM196nMrA++yVIFmCSD2ZdMLJFUxUn0dq02vd9V7iU4VRjJGSjL+ZJgyEdOJAD9WYNaVIqaQHGrx/ryWMmeXWeEB73KS9SZUWij3bPlYwMALnDJ46/tUpOlvgCyNBpjCOJ2d/qtvW72Dngv4xV0dm0z3c/5ru3wvdEmfMKT/XgiRU4knFQp1PSy9eREnxUz52i8TgilGnZeB2lbg11LdUM7lUg3i9yKEg/hjXrryGLGonHsglwrhO1If+SpU+TpZ5FHE63EWpoYsDPXRwQ7Vab03GZbVFwtmfHJTHaQrAfH3yzkdIkHUuREwvGqLLaghl0KOL1sPTnRR1mNFSekj0SdA2m7Vq9ZFWZmgWhCDVLkhO1If+SjPcoxzur722VJp7dFngj00glYJUcyUJqofuzmSvefMd/TzZVjF6TICdtJd5dGupAIpVJJkmmvrWu37X0AShZ5Yimf6tc+SJETtjPQvSyu/RvZNAtujMfcjMtkc47rgO1tqq0ZCtj7gPVKwgkT/fCW5rOxSlqYGAnIG0OKnEg73s54PdUiJIWXvArLkMVJBvyq25xs1dqkx8m1QhBE+mMmp7idOMWddocnDWLdySInCEKLLzKN5/K2k0TbuW6HDK4agxQ5QRAWSaTV3MfCtHYz2JUjJi0gi5wgCKskUpH3c8sXuiZUOGV/SltS5ARBEMnkoLH1Ws1AipwgzhKsZPUjnAEpcoI4S1BLJUsklwPH7F/LkxQ5QRBEEtlbSIqcIAjC4VDUCkEQBCHBsCJnjL3PGMtnjK2PKqvOGPuZMbZN/FstMWISBEEQapixyD8EMEBSNhbAPM55CwDzxO8EQRBEEjGsyDnniwBIFwocAmCa+HkagKH2iEU4BZ6AWWoEUZ5JxMSseH3kdTjnBwFA/Fs7fpEIgiAIMyRtsJMxNpoxtpwxtrygoCBZ3RIJhgxygkg98Sryw4yxegAg/lVNIsA5n8o578I571KrVq04uyXSBtLkBJFy4lXk3wK4Rfx8C4Bv4myPcBjcIXmoCSJdSETKXzPhh58AWAKgFWMsjzE2CsCLAPoxxrYB6Cd+J84ieLA85YkmCGfiMVqRc36jyqa+NslCOBKyyAnCHOkXtUKc5VD4IUGkHlLkRJyQIicIc9jvJSdFTsQFt2t5c4I4ayDXCpF2kCIniFRDipyIC84paoUgUg0pciJOyCIniFRDipyIC/KRE4RJEhDpRYqciBNS5ASRakiRE/FBceQEYRKyyIk0gyYEEUTqIUVOEASRRBijCUFEmkEWOUGkHlLkRJyQIicIc5CPnEgzKPyQIFIPKXIiTkiRE0SqIUVOxAX5yJPHYV7V0n5FvIK9ghBpBylyIk5IkSeLRCwRRiQfRjM7ibSDkmY5AHrYlndIkRNxQa6V5MEsKuR1wWY2S0LEB1nkRNpBijx5WDvXr/qvtVkOIh4S4SIjRU7EBYUfpj9B+pmXe+gKE3FCijxZ0GAnoQYpciI+yCInTLIw0B5neEaqxUgZnHzkhBbzt+Rjzb7jqRbD8axJ08FBq4Od6QYHw6pg81SLkToScBlJkZcjRn6wDEPeXJzUPjnKX/jhFP/QVIugiFVFno4PgLPJTfR7oE3C+yBFTsRHOQs//NDfHzwN1Uwxz0q1CLbCWPm6b7RIxv1EipyIC6Nx5LklMxMsiT2UwWvYfp3p74Nbyx5LqDwhXvTfmIaPF2twpN9bwhv+q5PWV5BmdhLpRiKmG6cao+F64/13YEGwI/J4zQRLVL6okOGBK8UuudWScZAAd8fV3t1l96tuk1nkpMiJdCMRI/CpJl2PKB4r9iCvbqMk8dGtaXW4UnyW7yh7OOb7bl5Hs/5n/ks0t2/kTQz3nYgjJ0VOxAUPGresdgTrJVASexB+ZMadGFne5P2E4lHkafVwYizlitwHj6n6/wlcZbkv8pGrcXxfqiUgwhj/QV5X9lQC5bAPIz+8IBfq1K6cvEHIv4LnWd5XekTNy1I7ZsEsulZ+DFxgU/9c87v59tSR3k+J8EbaosgZY7sZY+sYY6sZY8vtaFOVjd8Cr7cFtv0cWz7vGeC3VxPadSpYvP0IVuw5lmoxVDHjWilElQRKYh9BA4qcA6iU6cHg9vWSNnB3n+9eG1tTPsZ/Jyn00opF/r5/AE4h09Q+RZl1TfdjlOj5BqZ8/mnuI+/DOe/IOe9iY5tyDqwU/h5cE1v+2yRg3tMJ7ToVDH93Kf723z9SLUYEzoGDa2O/lyM4mCGLnIOhf+s6SY0kKdFRYkNLn4m7j98C7QzXfdj7f5b7yfKYP3PP+EfAbAS6q2Zz9Cx9TbeelesY/QAv4FUxw99XsZ70F0IzOwFETrn2yeCcI6gxffyz5ftoFqQV1n8JvN0T2PC18D3d9PjEE3HtfpxXMnRI8fg9/7p+FTB2r6V9fw50Ut22mhufLclSGsvI4LZ443Rv39pU/UqZXuTzaobr7wnWViz3cW2fehAMT/hHKW6TR60YFscwdilyDuAnxtgKxthom9qMi3d/24Vm47/HidM+xe2PfbFWNgsyd+wcPPXNensECPiBNzoAm2bH1cx97q/Qhu2WlfsDQRSVKB9bQinYLPw9slX4mwSLvJBX0q0zvGwcikf8FHdfHwQGGFLSPwat+2qDWTlAVo6pfUIy+aEcJneKm3M5mL1sXwV6yMruubSFuUZiJbC0V1b/J7E0eK7xHVSeWDUqxuZ6YeBoVfIhri+boFh/P+QhptEWeej6zAl0ldXjYOhdOinqu/3Ypcgv5px3AjAQwD2MsV7SCoyx0Yyx5Yyx5QUFBTZ1q86sZYLFk3+yxNR+05bssUeA00eBY7tR+vUDcTXzsPcLzMkcLysf+9U6tJ/4U0IXdjhSXIonv16PMr+6/y9hU/Svm4bBpc+hbcm7WBJUtsKKL389/HlxsB14fXVr1Qj+Zn1RigxdRd6tZAoe8t0dfjk06yN3KSkXj/agaagPJckuL30RvUpfBwAc4YkZh5ju7y8ra1ZT/wGrRoMci0mzPJn4IhBRLwXNrsbnfpm6idB6qOL1lF6CPbwOSpGBgMqDEmCyc7s82EpW6wGVcYzdPCpiK1195JzzA+LffAD/AyB7LHHOp3LOu3DOu9SqVct6Z6ErwCFYu8XKDwUm1kv1m39RiT8h7X6xIg9A/PdEcakff2w/Els4MQf4/lE8+91GfPTnHszdcEi9gUQ9SNoMxQbeFMVQXzg4WDk2nJHF6y9wewHou00Oozp88IBZdK8oimnwPCo9NHbw+jgKwcLvVvqm4f2MsCzYUruCyTeL8G4drC92EX0smZ1uwFfBnuqV212HNvUrK7QR4SXf9VjJW8raBoAXfDeqnoPn/MPDnyNvTJ5wRFMI6eB5cbb9A7BxK3LGWEXGWOXQZwD9Adjkn1DsUfiz9Ufg05uAGX+L3Xx0B1CcH/GkK92/p46iJuLzpeqTuEdItO8/3l7u/2QVhr27FAUnS2M3/DUVAbGfmD5CJ5Rz4PfX4Dp9VLcPs6/9UhYGO6hsYRrfrCA+/Lm5lsz267IgaEhR6CnkcYPbmm9coZ8QN5eNw0Ulk9V3eHBD+GMRV3/oyuj1qObmAm7sAVElW8eyZwzvjJDHX0Q/TBcGO0ZtiT2/PwS74rqyiYpN++GB350t28slyyMjdDY3IMiRX62ztswWsMMirwPgd8bYGgB/AZjDOf/Rhna12S9GOR6XDBr9uxPwSssow13hxn+5GZZn3WWpW8458o6dNl4/+ocxMQf4YayZzlTajLDryCljbW2dK/R/dAcA4FSpH2vzjmPjgSIAgC+g4T5RkmPfUuCXiaj80z90u/53nHksPgv0Vt4gMW0VXRYWyEdVW9pRR0FOg7IrGvNi6biB5+L2nvIUvKWIVXaLdbLxrQ/mhj+XIBMHJP7hhYH2kS/eiPI2bFQwBri0VY+STx6wskYsQ6WMWHdJAa8Sc69s4LlRtaV7a/dn5qF8p+8h5JbMRIOq2cZ3MkjcipxzvpNz3kH814Zz/pwdgqkiveGZ0iHw8Gvvk1+vx24tZecrAfyl6tslfLVyP3r8az6W7tSxRNVuuKX/1dxt8OTfcMW/f9NpOtL2Za8u1JYjxNrPhL/7VwAA7pm5EldNWRweMPUo3JEhVwULlgEfXQMcWB3ZGCgDALhKi3S7NhKXHc20llL3gPr+w8vGYbq/nyivqW7kiA3s4vWA8282Wj38Yx9R9jgAoIxp+7utWOQR1BWL1y3/LawKNo9RVABwm0/bGs7nVY2L43IDg14BEHuV/rzmT8NN7K5g/C1CfvRMW9kyBngyY1IUXFQ6BSeh7N8344K6q/c5hhRo7Sqx90Omx/5gQQeGH0phQoSICst2H8M9M4XY8wVb8pE7dk5shefqAJNaAf4yZEFfoa/cK0zO2ZpfbEg6s/bDhgNFWL9fVI4GLHI9Dp0oQd9JC3C6LHSOhJ/bajH08nRZAADgUlLk4t+cE1uBHfOA2eqJgbQwu2bknsrGBy0XB9thgn+kWZFUiDoHdfRzSEvP2EFeAwDAdZ4o8fjyf1SIiggx/MLGsrJPxbeZbwMXhctCFvorrWZhmr8fTvKIhSi9t5rXFhReIOoa6im7PcHa8GUbTyTmd8ldb24T5+ilv7XX2MoA5kL30inhEh884C7lcELpRCWt8ZLHB5yL0BnTqtehUWz4YzpHraSO00eAZ2vIirccPikr+/hPldjdM8eAqZdgc5ZEIRxaDxRsUdzlP/O346foQcCjO4DvHwXCuUfUL9fsNQciXz4fKbg8JBwtNv6W8ON69cHIT5ftw46CU9h7VHwrUfmBaE4x5hq1pA+b0Qvxa6BjbJUETZuRthuvRW5FwUbvEjoTehkh47HIvwzKIzRC5yHTo57B70X/jbKyRs3b4Cn/SByKsla5xML95SEhWdQ63lTeqOQ49nIhBvvjwGXqB6CwY/SbRJAJx9CzpXpARBGvGNUUQ8NqGq4Ktftd5RocRRXAHXFFpVu6XTUcqMjN/woMudXyN8rL3roYeFPZAjp4ogSjP1qB+ZsFK79s1gjgr6nA4dhxXg4GbP4eWPBiuOy+T1ZFKmz4Svi75QfhwSFyywd/QfowCAY5Tpf5Zccz5uMVqoflhR+d2FY0ObFUtQ5kPQlEbnYuLYj6LNmzfkfc5nssJv+4WdeKVfSiSIJMiEqZ7B+KgaUvYFuwgaSB6P2Nyzyq7FF86u+NwwYzDNYJvWpXjJ18EhoMU8Lqw7BYtLaDcOEgr44TUQOS13dpZKIl/f5XB8/B5aUv4t3AIFMyNqoWkcnlEhR5yzrySBNA+C3HxvAryNX+Bu3tUFfkZfACTxbgAJNHltil1NM210oyWbNpU8L7CLlPjPDpMiGBV0mZ4Gv+ZVM+Hpi1KrbSrBuBBS/EFJ047QsPNAIAPrlBeHCIhN0rUbzy0xa0njAXxcXytw01Bm18BF9lTkS2X2zPktkaesswYJEr7m3uNjM8hZmZs8gDYqz2u/7B2MSbxLgLjBK4/mNZfxt4Lh73j456YGnLH1bk96+MKb/T95Cs7jFWVejLghIZ5xuFOcFu4e8XlU5Gx9Kp4e/hMRBZAimTRJ34LbwxuMnzGvOGIro81I6Xi8tSLAmozPCs3wm45m3dPo2Gjuo+QLm+ayUZ02gdp8g7FBibKfl5xkS8530Zg11/xtwSdVCou+++QuNRKWHECzrp5634ZvUBXQX396lLMGiy9qAmTkdk9QWCqLnsFTzj+QDVX2+M3q7V6vuVFAEn9mPepsPILfxdslH5plISVxrCearMj8PhCVahsCB5tEtOtjfme6Is8oqZsf3o9RJSGKEfndLAmR5avlvTVnOmstUZzRLvhbKyK0v/GZMSWO1O+yTQFxwuvHJdB7GeS1HJKs1QVCIAN7YH68fsCSAcuVKM7KgtZhRb1BG0HqK+n6G2jG1PbooCUuSWucC1FX3dq/BmRmwM7NIs/Qxy8QxGcTD0ca0CivaHv0u5xT0Xmw8ZsKpfieTOaPHED7gt8DlGeISsjz1c6/Cc5z2syxyF3VnDcKgwqr23ewGvtcad0xQiB8JxmRx/cy0KD/CGreAojc6i6gLAtvxT+Gy5MBEpPFVfYWbnN/dcHPN9cdBcbHNICfz68CX46UH1WXue+rGDXHrXzT3sU5S0uAJVqlQV+4kPBoZRPZqh77mCiyTsIwcHHtmOS0rty8YZfR+t481wQ9mThvetlCkf2FMa3A6hZg27JxSg+cQN8g3trsfcunfidX9kToelxFA3fw3UMjH93hDy4+zZoiZevV5tboKNdBsjihArAyXNipNSf8DajofWydPmikgvCgPHBxkvA+/1U23uae80ze6yUYJz2H7NOo1ZPoZ75qEyOwMA6PdSVOj+sV0AgMc8nyrsKdxUF2IdJmW8hfGemaEDEf9KbzKOmn++IH6KuiGLD6vUB3JrVoz5vpPXl9VBA/0kmc1qVZLlxACEtTIx8QSQHRsNoKSaPugQlXc792JkDZ8hhMwpYeQBHlWHMaB6xQy8d6vgs405P5Vq4RjXt7itUhBHrPuI7k3w9d0Xq24PK/IrJROBXG7l+G+3B4vq3KybndE0ddsB17wTWxYerok8NmOQhSfLr+lHo7qhcxPt8YzPMoYCAI5ETUx6yHc30EA6mUd+/z/vu1GQq1HIrUUWuS2E4q5/2xY7FV1NWcpO+1s9gBnXqqYDqITTyCw9orjNCtMzXsS8zNhY36tdsW6Y/u7YAU4lK6q1QrKt0I2dDeEBUIcJ4wFKc0UZADeCaOdfF94i7cflMzghSYOVweb4Jio8Tt9iMf667KshWniVtJfykrWrqtRtdK3YhJl+l4y7FM8MaYvW9Q3kZKnSQLG4cQ0TMzijiEQzqcgrPedjfgfaXx9TFPPWE9onxpjQV+RG+NY7ELklM/HmyJ7hyJ2FwQ7AHb/GVqyWCyB2HGhq4Epg4nGoOb1osNMiRWd8mL5kt6xcqix18Zegkr8Qo92zIVwkjsalW/FT5mPILBX82X1dKzWbMMIFrq2yskvcazT3YeBowfJiynq4FV6Do/YAhLjZTJRFbq6ou+zSozORyyKhjfYqqkg/3we6qSYbUqK6gpUOKLtWRl7cFLh3BXC3gQkqtjtO5b/Y8T7lVKcAw9XnKyvOeMkQc38P7Vgf9XLkoXpmB1Jzq6sr8uoVM/DlXRcpbpsV6KPdcILy9mR6XOjRXDuufes/ByqWN65eIRxLr8gt3wF/n6G9dBwNdtrDgRMlmPCNllKLRf28c1y35xmM936CNmw3rnQtwRN5d6E+iwxK9pYoXLO3ZkOWryyTzn5jPLPxc+ZjaMd26tQMDfQJf/u5V2BL1q3I3DZbiGffHBlMviL/bXycERttY1SZN6quHtu7LmoKuNCmOfpeYHzxA6/bBdRsDlTQDw2MO+lWqB3xiLyIdeUtD7bEzIDy4gMA8NrfOwK3/wo8sBbo8RCQ21Mhbwfw6OXyrHta9G5ZGw/3a4mnr1Ieq1Ad7NT4HajxYL+W6NykmuGokPjRt8AZY/j49m6y8mgyrM62rFwHOO8K5W1cxf2TAM4KRW4nmUEhoiUDfjRjB2Xb47Up3ve+rFiut5TU+a7tAID6TMfFw2IVeYjsNaLf/vNbY8orIpIG2IxFvuARZeurW8kUWc7nHwKxPzIlJbAdQszzg2V3wXWJyTcpCaN7yfORAIBLMd2DhOyq4Y9SnRE5P8JdUCLOoNzjPce4cA07A9WaAJc9Bdz6XVTbWmhfF5eL4b6+LZBTwatZT+gnekKQhYgQData9+5hLBx+CKY8jhFqXv0tIjXuLUV4lPsnujgBXZEiV0DNmvh502HkFwvx4i4EFcPqZAutmryxMqG8WIReKxe6QvH1OjVLi4FPb0YjxM4GVQ+5VPKe6+NWiYo4jOo4gyzgsqeBnEY4r+R9HEBNzLwjosyVfOQ3uf6FdiXv4n/BnjEz76xwy0W5BmqJ8l9wR7jk4bIxQJOI20C68LL0Wp9CNjqVvIVPqltL0KYgTUKIbjvmzKu9oYTSB3srKm/X7VDjaC4YBXS9E+j1SKSseT8sYpFJQP/6Wzu85r9WmNxU1/jbmRmkd+DPD/bCm8P0U0c83K+lLGqLLHIbqYYi5cE/BYIqVsXT324IK28XuOmJLlKGu38xXNfoquO6yvbrMcCmb/EIj42cKTqj/wBR8t1bpmlP4MH1glIHcNE52j7MMpaBk2JucqWfxfhB1sPWvmkoWvj1OypsjZzRH4Kxs3zvvVR5abXoKfqFqAKuYl1axW6Xq9E48jCDXgGGvgU01nZXSAkn72oXlYtc+hbkzQYGvRQbY3/TF3jUO1aUj+PvFzTGkmAbdCh9F8iqgsTYuLG0qFMZg9vX0613e89m6NCoqvBFzG8Pb8TNeH/fFmisMcZgFe2F6MoRczLHx/iytXhj3jZcem5tyO2NiPJ2gSve9F1dsblZGjD1LInPed9X6EH5h2R01XGrA5Jqk3bckgeIZh73c9T9v/Gil750dK8o98WNnwopF9r+TbX+Fe3rAWIofI8+g4CKQ4DabYBvf1CXQfJdmm0wNFN0c87FiE65FZmIZJ3ofRO9up7u4GdmJaCjPHeLHnm8FkqeKESWV3ywjfwByGkIfH23AZkSYNVmVkFpiYXJfxpkR6fMPe9K4JLHge73AEuEiXkP9dNZqMMiZ4UiH+Gea1iJA8D2/GLc+dEKfKywLaQoXUzZtWIUvThxKQPdywzVq8qMZWU0SgUWm7zrRs98xXrLO/wTXa64Q3GbWfR+tLoWaasBwj8N/n5BI0xafx3ezpyMGo1aARn6bgK9h2QQLlxUMhmXt28L/dyJxjASUfLlXRfFpEb1dxqJ2cuMvT31b10Hnqjx8dh72n7lGfMQaqIc3WJ4fyXMvK48ugPt/u97lX6EjhRba9YHKDMQdutyA33kyzQmAkcp8vmb86ETwKTIMzoTcJRYtrtQdnaudS8K+6I/yXgOn/kvsSCNgOnQR4O87J2qX0mBEl8AqssVGuBMVm3Aq52HW4/FrcZhwfo9ij5yuyJKQvRsUQsNH3oErppPKVew2N8B1FRMy6pKkx7AHmkaBXN0bhI7Mco/cBIe/MPY2i5TR3QBXs8GjgvfuUXbN9ERdp2bVMOcdQeR7dW7SU0I4skQkmSJvHBNOzSTTGZTvO9GfG28jyThKB/5m/O3J60vpdVm/uH5KuZ7L/da2/tNVdLMeGPE7VC0mxv9He8EVEK5VPpSWhDDKE1rGhis4yb9x4ptaOw/XFzwQ+X8GVk4OH7ks5MT1JEO6v1Nur4DvruvB6opzSGoa890+xu7Nka3ZvKU2E7AUYo8mZzx6U/nT0QyqKauw7a3mQwOnDCeP91Olozri3kPW38zMoPmpA8DaD4IVH0G8nI994Lph1tUezPviE7SlQDXikVTJcvrRtsGOcobK9aIzLisaHxBi/KEoxR5MqzV5iwP97u/0q+I1E3JTgTVmfHUuEqU+I1F1WihNKBZIUNQnle0r4cbu8pXwKlVORPn1NKYeWcjRqOUEmHImrnXPG4Xlo63NvCcU8HmfCnJon4nYPCrwJAp+nUNYFbXfHlXdzw2wNxELTtxlI/c/MKr5vkl8zEAwLzg+bp1tSJSnEZb1+649k/UlcnOcGP1hH6onOUFAzDxKpU81AnD/JFJVe75jXMgCdtX2ElngDc6B45YdX6je9Fnn7LiqlPF6nhFfPEhWmfr2SFtwg9m22FMiEFPEZ2bVNdNxJVIHKXIk8mt7rmpFsFZ2GCGqvnZq1aI+EUz1TIX2k0cx9Pn3NiVf/qdVxv4S60f0cqvqL60WTRDO0YySS6tfzP6jLJjrXOJj5yZ95FL1b/Srjd3z9VpJPlvuE9e0VoY6Hc4jlLkyRwIrFeOrO1kUF7cTJkeF/xBHkmRW7E2cO9y3PmqUjCqnJ3PD5Ll+tY8M95sYOh/gdyemu1yMFzbuSFeua6D/YP+0W+6Fpe702pSl8ufB+Y8bCi1sd2M6tFUsTySCsAZOEuRJ1GTO+UCpg/xn7FkuM70WPNUf+GDxwX4y4RZiG4v5gaV124NcWevZvhzV6Hmgg2qD7uOw1T3UciZlWDkMr53Sxf4AvGPgahSrz1wu3K+f8IYjlLkyaSuiQlEROrCJu0mKzpO2cTsxXGDzkuANLGEVGxCww8Zg3QSUt/z9HO5h0I5Q2lyk+ElMR152uRioFAvO6gzcZQiT6ayOMclz2xIaJE4H3k68Nmd3bF4u5BZcvHYS3G4qERnD+C+S5vjg8W7Ec+dy1U+28rgScLi3wCMLa4h59aLcnFuvcq6OXPs4rv7eqBmJZMRNiOVZ3Eq0b91Hbz7+y5UNZAxMh1wliJPg1dvQhmu9KPPqIzSKo0Bcb2Lxwa0wks/bpHXcwBdm1ZH16ZCVEKDqtloUFU933qIh/u3wsP9WwG7FgEAOE/TB1WrgUDNlsCRrZZ95C4Xi1Hi0vOzLdgALeKVMwrVmHKbGDfoPIzpfU7MQHs8vH1zZ+w6Ev9qWmo4SpET6YzCj358HgpPnAFe+BWXnVcHd/duLlPka57qb/4V2Wk07Ao074cJG9TXcdXD6tR54x1EcpCbXTFIieh1W4eVjceWYCOs0KifbrhdzLzFr8Hlbera1pYSjlLkZJCnL2rWZr2cbEy/rSs6SfKBhMjJdsara1x4s4CbvsC2sXMsN2GHctWEi4OZzJprRYs/gsorEyWUW+cAe5ckv98U4SxFXm6G1MofWlemV0tjMdJEKkncsmT39mmOQwbGFGwlt4fw7yzBWYqc9Hj6ksYDlenC/X1b4JeN1nLpJDxO/7KJwFd3AjkNbLf+HzG5xihhHkcpciJ9KS8TghLJQ/1aml5YIOEulRCthwj/EG2T0zV1CrYkzWKMDWCMbWGMbWeMjbWjTSX6lPyaqKaJuLHvR09vXmkCvWU5hrgVOWPMDeBNAAMBtAZwI2MsIZmN6hWtSUSzhA2Q7k0MWuc1UWNGY323Y26gi5BRkHAEdljkXQFs55zv5JyXAZgFYIgN7crIYmWJaJawBfusNzIEI6TiVGznDXGn7yHAY08MNZF47FDkDQDsi/qeJ5bZjhf+RDRL2ACXroZO2IqS7Z3gyHLCQdjx61O6m2T3HWNsNGNsOWNseUFBgQ3dEumEnS/55COP0O1cYTGNMn4WxNsTlrFDkecBaBT1vSGAA9JKnPOpnPMunPMutWpRXHF5gztrsSnHUHXwM1jX8j7MDnaXbaN5FUQIO359ywC0YIw1ZYxlALgBwLc2tCujOooS0SxhA3a6VshHHkVmJWxsMRoBJGlBDcKRxB1Hzjn3M8buBTAXgBvA+5zzDXFLpkA1VpyIZgkbCJJxmHCkDzjykRMhbJkQxDn/HoDxHJFEucPowsRGIB+5MtLzQq4VIoSjHJtkf6QvdqwfQ9fXGI6xxNvfoF+HsAVHKXIijbHBjCb7UpuQa8UxlvjQ/wBPHEq1FGcFjsq14i73iaudi52LftBgpzESZZm/f2sXFJ7yxd+Qyw249BfgIOLHUYq8cpYHSHI2TMIYzBbnigD5yGPp2EjI5X6ZZO1MPcu877m1MW9zvun+Lj1Xf41OIr1wlCKnX3j6cl7dynG3QYa4Mq3qVsaO5weF30iNWuLvjOiCIP1mzgqcpciJtKX/efFP8iKVo060W9Goj9zlYnDR4/GswGGDnfRTT1fszJtNPnKCMIejFLmdi6ESNmPjKzx5A7RxTPghkTQcpcg9jpLWOB/7+6ZahPipYjzhZfPalRTLST0RhDUc5iMvn6ba54FLcJNnXqrFiI9Kxnzkix7tg2oVKZNfPDgmjpxIGo6yccurxRYweBmO8CoJliTxNK5RAZWzlBU5qSeCsIajFHl5/aUbTQFbggwsDZ6bYGmIdId85IQUZylyyaSTnwOdUySHvRh9PnHO4OPlN50pqSeCsIazFDmPVeRjfP9IjRw2Y0aBcVJ3Zz01KwlradaunJViSYh0wVGKnNVuHflSs1VSku1/4L884X2YISfb2EDhNH8/bAtaXzrVlD+eld+3hHTk2s4NMWXY+bj1otxUi0KkCY5S5Kh9XuTzla/b3vwZLl81/Gn/LXi900+292UFDqB9w6qG6jIAA8tesNyXqfziY36z3A9hHsYYrmhfn5LIEWGcpcijXSsu+0PY/um/yfY2jWHMS76L14uZ9nhv2X3hz38FW8nq++HBKM8LWNHoFtMSeeE3UZsUCkGkEocp8miFZ38Iy4zAZYrlPrd2Ks53/INkZV9UlCfVL+XKYftGprePLHsU9/nuiyn7Ltgdb/mvAACsDzaN2TY1MBgAsMHVCrtq9tFtX8qa4Dmm9yEIIjU4S5FHKzwD87j3BGvb0mvQnYHckpl4wncbAGBlsHnM9jf9Q2T77O/4kKysVel0xfZ9BuZlzQ+ejyJURMj6nSGZDSodBM3jUcduYc7724ErVLetlTw0CIJILc5S5NGuFR7Eb4/1weDsj9Cp5C1M9g/Ff/1XxlS/tuwpvOC70XYxNgWbxHxXHHTVWVV+cOnz4c+7eD1M8N1ibIBRdK38HOwUU6ymqitnWZu8y8HwkT/yhnJX2QN43X8NAIXjtSnLVdUKgrusRkX5WAVBEOo4TJHHulYaVa+AYFY1FKIKPJc9iQ/8A2KqF6Aafg2eb1v3ai4Qn4Ii19NtG3hu+DMHw/TA5TjOY3OQ7O35MnDR/ZgduDBGisj/EdTCEscNOhdZHmuK9mn/iPDnH4Ld8HugLQDAL71tsqpaal/K0I4N8PK17TGmN7l1CMIMDlPkQdnn0BJjl7SshXxUC2/2j/lT2J4IMSTf6+RUlNfhAJor+9zV2stA7PJavONwoP+zuM93f6SQhRS5sSOrkOHB5W3qGqorxS9x+XhZQCiP9vXfvRSoUs9S+1JcLobrujSC1+2s25IgUo3DfjHRPnJBkVfMFJSKNBTLU1cIVQyVBmu0tE2Kzk2qxXxfMLY/cOdv+DxwSbjM7QJww0x83mOO0D9Xt4pD1nRIUYaQTvi4vUdTqEWIqFnkDIDXbY/rIxulAICqOVGrAdWmlAEEkWqcpci5fLDzzWGd8Ej/lmhVR2epsTj8uFIL8bx6VQBPJJKFMQbUa486NWuGy27s2hjwZOKMt7pu+0FRCder3yimPDsj1mXzf1dEJkRFLHJx3xzlWX6MMdsSfJdB8GG3bNXWlvYIgrAH5ypyUZHVzcnCvZe2EBSW9s6Wu83ySk8TA279Tlbv4hYRRZ7ldct6bVy9gopkouw3fgoMfFlbGKbsI7+yQ33t/UyyNdgQHRrmxJT9HmyLWfXHwT3gOQAo13lfCMJJOEyRR/nIK9RIeHcPlY0Jf2YsKt2s2wtUk4fguaMeJrLnCmP49eFLoIxYuUo9oMPfdaRSe2BFykt5ZLJUbs0KMPsQG1d3KgpRBf/oJ3VHMSyrOhDwZuPWssfQp2ySqXYJgkgMzltYwlsRGPE1ULedqT2ZxjPrDf81iqv0fBXsFf489x+9sGxHS6AoC+j9OBBQmPmo6MKIKFiPoUE8Yy4g2WBn1JPjEBd8+LtfFCYFoVC+/xv+q/GA53/yDX2ewP4dTQEUKEqSnSEcw4JgR0NyEgSReJxnkbu9QKOupnfV8ry85b8CBWLEy6zWbyrWaVmnMoZf1AIY8DyQlQNlK1fL8jXoo9dzEUmiVnZxMSKldhvhb/VzcEPZkxKx5HIVqsWst+iv2f3YgedpbicIIvk4TJFzzYk2vz2mMRVdY8AvOuJjX04XY7IEA5qbQ8n/h5wvZCC0b2V4oaGRFwuunU8DveG7+Tug/fXAxBPA/StxEBK3k+iSWho8F2N9twMAnh4pn40aokFVYSBXaSWfSpkOe4kjiLMAZ/0qeVBTIzZSGUwMU7MVcGQLilhlVOEnI81aSfrEFRS5+LDI4zXDqrRqtjBLUWkw9nveHYPYEkmpvN6TV7RG3rHT4mZhe/dm1bGmT39sOXwS3qb6kTGAcJyzAn3w4n0jgbrqkSdPXdkavVrUlIVZRvPKdR3QtoHzl54jiPKAsxR5l9uAVvIEVVoUcjEssdVAoGALcGQLsr0uoExjp47DgdyewCyNOkoWeTVh6v6zvpvxeqhM48EzDvfj8ZJRGp0IjOqhkNuEB5FTwYuuhpR49NsI01TigBBxM7Cd9iSfazs3NNAvQRDJIC5FzhibCOAOAAVi0XjO+ffxCqVK3ba6SgijfgFOHgx/PYoc4JHtQIXqwKzhAABpNKHMIh/6H+HvLGEyj+IaiW4xH0jVxpGyC+/G+N99mFvSUl1/378KJ08UAm8fRr1qlbD5kMqgZf1O8n2jt1ugSY2KqHCUQgYJorxhh0X+Guf8FRvasYdGF8jLKtUyvHuDqhH3zDWdGuCrlfuVK1auAwz7DGjULVLmcuPBu+5B773HwnHkMldJ9WaoXL0Z3rrpEDo0ykH3F36N3Z5RERj+BdBAZz1SM5N8xLr1crKx8YEBOpUJgnAazhrstI1Y5RqyyN0uhhu7RmZX1qqcqd1My8uB7KoxRbUqZ6K/gdwmA9rWRXW1LH8t+glvEIqEZLcxi8ztUQ8T+0ZlCYJIEnYo8nsZY2sZY+8zxtRHx9KBUMRLv2eAzrfKNvduWcvADFHLnSuUWOjLknw6Sr9hZ9Nx+QRBpA+6ipwx9gtjbL3CvyEA/gvgHAAdARwEoDrVjzE2mjG2nDG2vKCgQK1aYhk8Ceh0C9BxGHDlG8B101BSsy3eHdkdANCsVmwWwwxxAo8nrrUR1ZVohseFZ4e0sdisedeK5kOgvTijtIrCgs21KHacINIZXR8559xQLlbG2DsA5AlIIu1MBTAVALp06ZKI7LL6VKkHXDU58r3NUGS1GYpLAEy/rSsubBYbf31X73NQ6g/i5u6xC0mYwiWe4k4jFDff3D0XvVvVxoHjZww2GI9rRUORd78X6Hon4JG4e548KjwAxv9ooT+CIJJBvFEr9TjnoRCRqwGsj1+k1NCrpXxAtEKGB+MHxWmNutzA+IOARzk7ISDEv+vGwIew07VyzzLg9NFIu1IlDgBuZ0WoEsTZSLy/0pcYYx0haIrdAO6MV6BySYZBJW0GDdfK3zo1xIXNogZLq4gx37k9YivWMp6jfcEjvVHi157NShBEaohLkXPOb7ZLkERQPycLuTXlq/c4mlAedJd6PPik6zvEFtRqCdy/Gqhq3UVU7s4jQZQjyvV78x/j5BkNHc+A54FKtYFzr9SvG011hdmhBEGUC8q1Ii+XZFcD+j2daikIgkgjztIJQQRBEOUHUuQEQRAOhxQ5QRCEwyFFThAE4XBIkRMEQTgcUuQEQRAOhxQ5QRCEwyFFThAE4XAYN5MO1a5OGSsAsMfi7jUBHLFRnFRCx5J+lJfjAOhY0pV4jqUJ51yW4S8lijweGGPLOeddUi2HHdCxpB/l5TgAOpZ0JRHHQq4VgiAIh0OKnCAIwuE4UZFPTbUANkLHkn6Ul+MA6FjSFduPxXE+coIgCCIWJ1rkBEEQRBSOUuSMsQGMsS2Mse2MsbGplkcPxthuxtg6xthqxthysaw6Y+xnxtg28W+1qPrjxGPbwhi7PHWSA4yx9xlj+Yyx9VFlpmVnjHUWz8F2xthkxiwtOpqIY5nIGNsvXpvVjLFB6X4sjLFGjLH5jLFNjLENjLEHxHLHXReNY3HidclijP3FGFsjHsvTYnnyrgvn3BH/ALgB7ADQDEAGgDUAWqdaLh2ZdwOoKSl7CcBY8fNYAP8SP7cWjykTQFPxWN0plL0XgE4A1scjO4C/AHQHwAD8AGBgmhzLRACPKNRN22MBUA9AJ/FzZQBbRXkdd100jsWJ14UBqCR+9gJYCuDCZF4XJ1nkXQFs55zv5JyXAZgFYEiKZbLCEADTxM/TAAyNKp/FOS/lnO8CsB3CMacEzvkiAIWSYlOyM8bqAajCOV/Chbt0etQ+SUPlWNRI22PhnB/knK8UP58EsAlAAzjwumgcixrpfCycc14sfvWK/ziSeF2cpMgbANgX9T0P2hc+HeAAfmKMrWCMjRbL6nDODwLCzQygtljuhOMzK3sD8bO0PF24lzG2VnS9hF57HXEsjLFcAOdDsP4cfV0kxwI48LowxtyMsdUA8gH8zDlP6nVxkiJX8hWle8jNxZzzTgAGAriHMdZLo64Tjy+EmuzpfEz/BXAOgI4ADgKYJJan/bEwxioB+BLAPzjnRVpVFcrS/VgceV045wHOeUcADSFY1201qtt+LE5S5HkAGkV9bwjgQIpkMQTn/ID4Nx/A/yC4Sg6Lr1AQ/+aL1Z1wfGZlzxM/S8tTDuf8sPjjCwJ4BxE3VlofC2PMC0HxzeCcfyUWO/K6KB2LU69LCM75cQALAAxAEq+LkxT5MgAtGGNNGWMZAG4A8G2KZVKFMVaRMVY59BlAfwDrIch8i1jtFgDfiJ+/BXADYyyTMdYUQAsIAx/phCnZxdfJk4yxC8XR9xFR+6SU0A9M5GoI1wZI42MR+30PwCbO+atRmxx3XdSOxaHXpRZjrKr4ORvAZQA2I5nXJZmju/H+AzAIwuj2DgBPpFoeHVmbQRiZXgNgQ0heADUAzAOwTfxbPWqfJ8Rj24IURHdI5P8EwqutD4KlMMqK7AC6QPgx7gAwBeIktDQ4lo8ArAOwVvxh1Uv3YwHQA8Kr9loAq8V/g5x4XTSOxYnXpT2AVaLM6wFMEMuTdl1oZidBEITDcZJrhSAIglCAFDlBEITDIUVOEAThcEiREwRBOBxS5ARBEA6HFDlBEITDIUVOEAThcEiREwRBOJz/By7oXpUcKHYaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot();" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAD4CAYAAAD2FnFTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAypUlEQVR4nO3deXhcV5Xv/e+q0jxZs6x5sGVb8uw4jhNndAJxZqDhkgRIh+GGEOiGhpd0GugGmnvT9EvTTeBygRBoSMNLCCFAAhk685zYimdblgdZtmTNsmQN1li13j+qDLJStmWrTp2StD7PU4+kM/5OImtVnb3P3qKqGGOMMRN53A5gjDEmOlmBMMYYE5IVCGOMMSFZgTDGGBOSFQhjjDEhxbgdIJyys7O1rKzM7RjGGDNtvP32252qmhNq3YwqEGVlZdTU1Lgdwxhjpg0ROXSqdXaLyRhjTEhWIIwxxoRkBcIYY0xIM6oNwhhj3DI6OkpTUxNDQ0NuRwkpISGBoqIiYmNjJ72PFQhjjAmDpqYmUlNTKSsrQ0TcjnMSVaWrq4umpibKy8snvZ/dYjLGmDAYGhoiKysr6ooDgIiQlZV11p9urEAYY0yYRGNxOOFcstktJmOizWA31D0FvU2QUQ6LroPYRLdTmVnICoQx0UIVNt6P/9mv4Rk9/pflKXnw/p9C2cXuZTOzkt1iMiYaqDL02Ofhybt5aaiSG4b/FwuHfsbdyfcy6E2B/3ovHHrD7ZRmlrECYUwUGHzh30jY8lMe8F3Plovv56uf/BBff995vO6v4uKOe+hPzIeHPwLHj7od1USpTZs2sWzZMoaGhhgYGGDx4sXs3LlzSse0W0zGuExbthH38r38yX8hVbd9h3WVgXHTVpdlcs3SfD7x803c3Hgnj8d9BXnu63DDfS4nNmfy9cd3sbu5N6zHrC5I46s3LD7l+vPPP58bb7yRr3zlKwwODvLhD3+YJUuWTOmc9gnCGDf5fRz79Z10aRpdl3/zz8XhhDmJsfzk9vPpS6/iYc8GdPN/wdF6l8KaaPdP//RPPPPMM9TU1HD33XdP+XiOfoIQkQ3AfYAXeEBVvzlhvQTXXwscB25X1c3BdX8HfAJQYAfwUVWNzkcUjTlHvp2/J71nN99M/gJ3X7485DZpCbF8/9ZVfOL71/G++GeIffU/4MbvRTipORune6fvpKNHj9Lf38/o6ChDQ0MkJydP6XiOfYIQES/wfeAaoBq4RUSqJ2x2DVAZfN0B/CC4byHwt8BqVV1CoMDc7FRWY1zh99P/zL3s8xey6tqP4/Gcup/6ksI5bFi7gkfG1uHf/jAM9kQup5k27rjjDr7xjW/woQ99iL//+7+f8vGcvMW0BtivqvWqOgI8BNw0YZubgAc14E0gXUTyg+tigEQRiQGSgGYHsxoTefufZU7ffh5NuZl3LS444+Z/d9UC/uB9N56xIdjxmwgENNPJgw8+SExMDLfeeiv33HMPmzZt4vnnn5/SMZ0sEIVA47ifm4LLzriNqh4B/g04DLQAx1T1v0OdRETuEJEaEanp6OgIW3hjnHbs9Z/QqWkUrrtlUk+5zkmKZfXa9ez2lzL09q8ikNBMJ7fddhuPPvooAF6vl7feeov169dP6ZhOFohQv/E6mW1EJIPAp4tyoABIFpEPhzqJqt6vqqtVdXVOTshZ84yJPv3tpDQ8wx/0Em5YWTbp3f56XTlP6VoS2t6GY0ecy2cMzhaIJqB43M9FvPM20am2uQo4qKodqjoKPApc5GBWYyLKv/03ePHRWvEB5iRNfvjlnNR4RhZcB8DorsedimcM4GyB2ARUiki5iMQRaGR+bMI2jwG3ScBaAreSWgjcWlorIknBnk5XArUOZjUmovq3/Z5afzErVq09630vvWgde/2F9Gz+rQPJjPkLxwqEqo4BnwGeJvDH/WFV3SUid4rIncHNngDqgf3Aj4G7gvu+BTwCbCbQxdUD3O9UVmMiaqCTlLYantM1XLbw7G+Lri3P4o3YtWR21sBQeB/GMmY8R5+DUNUnCBSB8ct+OO57BT59in2/CnzVyXzGuEHrnsSDn46iq0iJP/t/gh6PELfgSry1v2Wg7kWSl9/oQEpj7ElqYyJucOcfadJs5i298JyPUX3BVRzXeFq3PhXGZMaczAqEMZHkGyPm8Gu84lvKhfOyz/kwS0ty2eqpJqnplTCGM+ZkViCMiaSWbcSN9bEjbgXzc1PO+TAej9Az9yLyRw8zfLTxzDsYcw6sQBgTQVr/YuBr+aVTnp4ya/EVADRsfXGKqcxM8I//+I/cd99fRvr98pe/zHe/+90pHdOG+zYmggb3Ps8hfzFLF8yf8rGqVq5j8Jk4+ve9Cus/EoZ0JmyevAdad4T3mHOXwjXfPOXqj3/847zvfe/js5/9LH6/n4ceeoiNGzdO6ZRWIIyJFN8occ01vOm/jMvnZU35cGnJSeyMW0Bqx+YwhDPTXVlZGVlZWWzZsoW2tjZWrlxJVtbUfs+sQBgTKW07ifEPURdbze1ZSWE5ZH/OKs478kv6+npJTU0LyzFNGJzmnb6TPvGJT/Czn/2M1tZWPvaxj035eNYGYUykNG4CYKxw9ZTbH05IW3AxseJj31brzWTgve99L0899RSbNm3i6quvnvLx7BOEMREyeuhNujSDkrIFYTtmyfLL4UUY2P86XHJd2I5rpqe4uDiuuOIK0tPT8Xq9Uz6eFQhjIsR3eCOb/ZWsKMkI2zFTMvJo8hSQ1P522I5ppi+/38+bb77Jb34TnvlC7BaTMZHQ305CfyOb/ZUsL0oP66G70qopGNyL3z9xNH0zm+zevZv58+dz5ZVXUllZGZZj2icIYyKhMdDdsC1t6VkN7z0ZUrCC/J5nqT98iIqysrAe20wf1dXV1NfXh/WY9gnCmEho3Y4PDwnFK8N+6KzKNQA07n4j7Mc2Zycw/mh0OpdsViCMiYDh5h00+PNYWJwb9mMXLAoUiMEGa4dwU0JCAl1dXVFZJFSVrq4uEhISzmo/u8VkTAT4W3dRp8VU5Yf/WQVJzKAtpoCU7l1hP7aZvKKiIpqamujo6HA7SkgJCQkUFRWd1T5WIIxx2sgACX2HqfOv5ra5qY6c4mhaFaVd2xkZ8xMXYzcG3BAbG0t5ebnbMcLKfpOMcVrHHgSlJaGCrJR4R06h+csplg4OHraRXU34WIEwxmltuwNfc6sdO0V6xWoAWvfVOHYOM/tYgTDGYb623QxqHFnFCx07R978VQAMNoV5BFEzq1kbhDEOG2zaQb0Wsqgg3bFzeNPm0itpxHbWOnYOM/vYJwhjHBbTuZs6vzM9mP5MhM6keWQPHojKbpZmerICYYyTBjpJGO5iv5RSkZ3s6KlGsquYr4dpOjrg6HnM7GEFwhgntQWeTehPX0CM19l/bglFy0iWYRrr7TaTCQ8rEMY4qT3Qg8mT51wPphOyKwLDeBxr2Ob4uczsYI3UxjhotGUXvZpKXn6J4+dKKVoS+Kbdnqg24WGfIIxx0EjzTvb6i5mf58wT1CeJT6EtpoDUY3udP5eZFaxAGOMUv5/4o3vYo8XMz02JyCmPpswnf7je5oYwYWEFwhin9BwixjfIfoopzXK2B9MJvuwqSmnlSGd3RM5nZjYrEMY4JdhAfSxtAbEO92A6IbFoKTHip/WANVSbqbMCYYxT/tyDqSpip8yddx4AfYe3R+ycZuayXkzGOMTXuosjmkvx3PBPEnQqqQWVjOFFO6yh2kydfYIwxiFjLbuo8xdFrIEaAG8srTGFJPfuj9w5zYxlBcIYJ4wNE9tzgDotZn5OBLq4jtObUkHe8CEbk8lMmRUIY5zQuReP+qjzFzMvNzI9mE4Yy1xACa20d/dG9Lxm5rECYYwTgpMEdadUkhQX2aa+uPwqvKK01O+M6HnNzGMFwhgntO9mlBhi8xZE/NSZZcsA6GuyITfM1FiBMMYB2rabA1pAeW56xM+dXVKNXwV/e13Ez21mFisQxjjA17qTPZHuwRTkiU+i1TuXxJ59ET+3mVkcLRAiskFE6kRkv4jcE2K9iMh3g+u3i8iqcevSReQREdkjIrUicqGTWY0Jm8EeYvqbqfOXuFIgALoSy8geanDl3GbmcKxAiIgX+D5wDVAN3CIiEwfFvwaoDL7uAH4wbt19wFOqughYDtgsKGZ6aA/8qu7RYublRLYH0wmDc+ZT6DvCyMiIK+c3M4OTnyDWAPtVtV5VR4CHgJsmbHMT8KAGvAmki0i+iKQBlwI/AVDVEVXtcTCrMeETnI+hJb6crJR4VyJ4chcSL2O0HrL3VebcOVkgCoHGcT83BZdNZpsKoAP4TxHZIiIPiIg7b8VM9Brugze+z/Cz99JwYA9jPr/biQLaaxmQZJKyS12LkFocmDyou8G6uppz52SBkBDLJj7aeaptYoBVwA9UdSUwALyjDQNARO4QkRoRqeno6JhKXjOdDPbATzfA018i/tV/Jf3B9XzyW//JtsYet5NB2272UUxFbmSfoB4vryLQ1XW4ZbdrGcz052SBaAKKx/1cBDRPcpsmoElV3wouf4RAwXgHVb1fVVer6uqcnJywBDfTwNNfwt9ey+0jd/PF/J8Tl5jM14a/xcd+8iqHugbcy6WKtu1i12ghFS61PwCkZ2TRShYxR60nkzl3ThaITUCliJSLSBxwM/DYhG0eA24L9mZaCxxT1RZVbQUaRWRhcLsrAXsrZAI66tCt/x8/1+voKbycez9xI0kf+BHF2sKHeZLPPrTVvRnVepuR4WPBBmp3ejCd0BpXypyBelczmOnNsQKhqmPAZ4CnCfRAelhVd4nInSJyZ3CzJ4B6YD/wY+CucYf4G+CXIrIdWAHc61RWM828+h1GPfH8n+Fr+db7lwUm45m3Hua/i7ti/0htYzu/23LEnWzBOSDq/O71YDqhL6WC/NFG8EdJ24yZdhwdJEZVnyBQBMYv++G47xX49Cn23QqsdjKfmYaGjqE7f8sjY5dxyfJFVOaNu8+/7rPE77+ez2Rt5nvPp/OelYV4PaGauRzUFujBtE9KKMl0t0D4sheSdPQR+jsaSMmrcDWLmZ7sSWozvez+A+Ib5tejF/PRdeUnryu7GPKW8JHY52noOs4zu1sjn6+9lu6YbOZk5BAX4+4/r8T8wGNHHfU2/ag5N1YgzPSy87c0eQsZzl3BsqI5J68TgeU3k96zk4vSj/LAKwcjn699F/spocLl9geArPKlAAwcseY7c26sQJjpY7gPbXiNPw6v4n+cX4JIiNtHS/4KED4/dwc1h7rZ394fuXy+MbRjL9tHCqjIdv+xnaLCIjo1De2wQfvMubECYaaP+hcR/ygv+FZw3bL80NukFUDZxaw49ixeDzzydlPk8h09gPiG2TVWxDyXxmAaLyHWS5O3iORjB9yOYqYpKxBm+tj33/RLMqOF55OXlnDq7apvIqb7AB8sH+bRzU34ItXlNdhAXaclUfEJAqArqYKc4Qaw6UfNObACYaYHVXx7n+GlscWsry44/bYLrgbgw5m1tPcNU9NwNAIBgfZa/OJlvxZERRsEwEj6fFK1H+1vczuKmYasQJjp4Wg93v4WXvcv4arqvNNvm14CudUs7H2d+BgPT+6MUG+m9t10xRURl5BEdkpcZM55BjF5iwDoPmRjMpmzZwXCTA+H3wBgf+JSFuZNYoyjBVfjbXyTDfMTeWpna2SerG7bxQFPoAdTyAZ0F6SVBAbt6zlsBcKcPSsQZlrQQ6/TQwpzK5ZP7o9v5dXgH+ND2ftp7R1ii9OD+I0MQHcDO0YKmRcl7Q8ARSXz6NNERltt2G9z9qxAmGlh9ODrbPIt5ML5kxyQseh8iJ/DitEtxHqFp3a2OBuwfQ+g1AzmR0UPphPy5yRygELium3QPnP2rECY6NfXRtyxg2z0L+TCeVmT28cbA2UXE3f4VdbNz+bpXW2okz15gpME7dHiqOnBBODxCO3xpWQcb3A7ipmGrECY6Bdsf2hIXk5JZtLk9yu/FLobuLF0lMNHj3Ogw8FhwNt2MeZN5LDmRk0PphMGUueR7usKzKFhzFmwAmGinjZtYphY5sxbfXaNvxWXAXB53B4AXqxrdyJeQNsu2pPmg3gozTqLIhYBmhMYNX+0bY/LScx0YwXCRL3hQzXs8peysuwsJ4TKWQTJuWS2vcGCvBSe3+NQgVCF1h3Ue8ooykgkIdbrzHnOUVJBYNA+6+pqzpYVCBPd/D5i2rez3V/ByuKMs9tXJHCb6eDLXLEwh40Hj9I3NBr+jL3NMNTD9tEiKrKj6/YSQF7JAoY1luNHdrkdxUwzViBMdOvaT8zYceo881mQdw5/fCsug/42rpvby5hfeXVfZ/gzBofYeK1vruuzyIVSnpvGAS3A07XX7ShmmrECYaLbkc0AjOQtJ8Z7Dr+u5ZcCsHh4K6kJMbzgRDtEW+DWzfbRwnMrYg5LT4rjsLeIlF4btM+cHSsQJqqNNW1mQOPJq1h6bgfIKIP0EryHXuHSBTm8UNcR/qeq23YymFRIH0lURmGBAOhJqiB9tBVGjrsdxUwjViBMVBs6tImdWs7K0uxzP0j5pdDwKusXZNPRN8yu5t7wBQRo20Vr4nwA5udOYhgQF4xkVOJBocsemDOTZwXCRC/fKAldu9nur2BFcfq5H6fsUhjq4cqMdkQIb2+m0SHo3Mc+KWVuWgJzEmPDd+wwisuvAuB4szVUm8mzAmGiV8ceYvzDNCUuIic1/tyPU34JAOltb7K8KD287RCddaA+Ng8VRO3tJYCM4kWMqYe+w1YgzORZgTDRq2UbADp32dSOk1YAmfOg4RWuWJjLtqYeuvqHwxAQaA00UL90LI/KKL29BFCRl8EhzcPXbtOPmsmbVIEQkd+KyHUiYgXFRMxo8w4GNY7skqqpH6z8Ejj0OusXZKIKL9Z1TP2YAK3b8cckUjeaE5U9mE4oyUpinxYR32NtEGbyJvsH/wfArcA+EfmmiCxyMJMxAAw1baNOi6kqPMsH5EIpuwSGe1ksDeSkxvN8uG4zNW+lN70KP56ovsUUH+OlPb6E9MFGGBtxO46ZJiZVIFT1WVX9ELAKaACeEZHXReSjIhKdrXJmelMlrnM3u/0lVBekTf14ZYF2CM+hV7h8QQ4v7+1gzOef2jH9PmjdzuH4wFhH0dqD6YTBOfPx4oOj9W5HMdPEpG8ZiUgWcDvwCWALcB+BgvGMI8nM7NbXQvzoMRpiyimYkzD146XmQfZCaHiF9Yty6Rsa4+1D3VM7ZudeGD3ODi2P6h5Mf5YT+OCvHTZon5mcybZBPAq8AiQBN6jqjar6a1X9GyB6P1eb6SvY+DuSVR2+6TvLL4FDb3BxxRxiPDL120zNWwF4ub+IBXOj+9MDQFphoED0H9ntchIzXUz2E8QDqlqtqv+iqi0AIhIPoKqrHUtnZi1/6w4AEouXh++gZZfA6ACpR3dyflkmL+6ZYkN18xY0NpkXOuewOBy3wRxWPDeXRn8OQ81WIMzkTLZA/K8Qy94IZxBjxhs4vJVGfw7zigvCd9BgOwQHX2L9olzq2vo40jN47sdr2crxzCpG/DItCkRFTjL7tQCvPU1tJum0BUJE5orIeUCiiKwUkVXB1+UEbjcZ44y2XezREqrzw/iHNzkL8pbAwVe4YlEuMIWnqn1j0LqDI4mB2zaLC+aEK6Vj5qYl0CBFpPbXBxrYjTmDM32CuBr4N6AI+Hfg28HX54EvORvNzFqjgyT3HaSOUubnhrmJq+wSaHyLeRkxFGcm8uK5FohxDdQp8TGUns1UqC7xeIT+tHnE6gj0HHY7jpkGTlsgVPXnqnoFcLuqXjHudaOqPhqhjGa2aa/Fg5+etIXExYT52czyS2BsCDnyNusX5vLagU6GRs/h3fSRGiDQQF2Vn4rHE6aGdKdlB7rk0mlzQ5gzO9Mtpg8Hvy0Tkc9PfEUgn5mNgvMreOcuCf+xSy8CJDDsxqJchkb9vFHfdfbHaXwLTczguY608N4Gc1hK0WIABm12OTMJZ3p7lhz8mgKkhngZE3bHG7czoPHkloVhiI2JEjMgfxkcfIW1FVkkxnp5vvYcbjMdfovjeefRP6LTov3hhLKiQto0nf4mm5/anFnM6Vaq6o+CX78emTjGwMiRbdRrMdUF6c6coOwS2Hg/CYxw2YIcntrVytduXIx3sreJBrqgax/1OdcBsHwqQ5FHWGVeCnX+YhZ3WFdXc2aTfVDu/xWRNBGJFZHnRKRz3O0nY8JHlcSjtdT6S527dVN+KfhGoHEj1y7Lp6NvmJqGo5Pfv2kjAG+Mzic1PobKcDekO6gwPZEDnlLS+g5YTyZzRpNtAXy3qvYC1wNNwALgi46lMrNX7xHix/poSZjHnCSHhq4ouRA8MVD/AlcuyiU+xsOTO1snv//hN8ETyx8757KiJH36NFADIkJvWmWgJ9PRg27HMVFusgXixL/Ua4FfqepZvN0y5iwEh9gYy1ns3DkS0gJFYu/TJMfHcPnCHJ7c2TL5uaob38I3dxk720dYVRKGkWYjTHOqA9+0W0O1Ob3JFojHRWQPsBp4TkRygCHnYpnZarR5OwDJJWEcYiOUhddA+27oPsS1S/Np6x3m7cOTGLxvuB+aamhOX41f4bzS6Vcg0oqX4FNhsGmH21FMlJvscN/3ABcCq1V1FBgAbjrTfiKyQUTqRGS/iNwTYr2IyHeD67eLyKoJ670iskVE/ji5yzHT3cDhrRzy51JZnO/siRZsCHzd+zRXVuURF+PhT9tbzrzfodfBP8obugSvR1hZku5oTCdUFGTToHM53rTd7Sgmyp3NU0hVwAdF5Dbg/cC7T7exiHiB7wPXANXALSJSPWGza4DK4OsOAhMTjfdZoPYsMpppztPuwBAboWTNg6xK2PskKfExXFWVy2PbmhkZO8McEfUvgjeeh9sLWVWSTmpClA/xHcKCvFT2ahExnTbstzm9yfZi+i8CQ25cDJwffJ1pFNc1wH5VrVfVEeAh3vmp4ybgQQ14E0gXkfzgOYuA64AHJnsxZpobOU7KwGHqPWUUZSQ6f76FG6DhVRju4wOrizk6MMJztW2n36f+RUYLL+Dt5iEuqcxxPqMD8uckcNBTSurxRhidwmCFZsab7CeI1cA6Vb1LVf8m+PrbM+xTCDSO+7kpuGyy23wHuBs47Vs6EblDRGpEpKajI0zzDBt3dOzBg5/jGYsi0zNowTWB7q77nuHSyhzmpiXw65rGU29/rAnad7EvdTWqcElltvMZHSAi9M1ZgAc/2ORB5jQmWyB2AnPP8tih/oVP7CYSchsRuR5oV9W3z3QSVb1fVVer6uqcnOn5js4E+NsCvWpiC5ZG5oQlayG1ALY/jNcjvP+8Il7e20FT9/HQ2+/5EwC/P76C9KRYlhWlRyanA7xzA73EtM16MplTm2yByAZ2i8jTIvLYidcZ9mkCisf9XAQ0T3KbdcCNItJA4NbUehH5xSSzmmmq79A2BjWO/LJFkTmhxwtL3w/7n4GBLm65oAQR4T9fawi9fe3j+LMX8ssD8WxYPHfyT15HobyyKoY0loFGa6g2pzbZAvE14D3AvfxlyO9vn2GfTUCliJSLSBxwMzCxqDwG3BbszbQWOKaqLar6D6papKplwf2eV1V7cnuGG23eSZ0Wsagggl1Hl30Q/GOw61EK0xO5YVk+D208zLHB0ZO3G+iCQ69Rn30FAyM+blgexomMXFBVkME+LWS42T5BmFObbDfXl4AGIDb4/SZg8xn2GQM+AzxNoCfSw6q6S0TuFJE7g5s9AdQD+4EfA3edy0WYmSGpew97tYTKvAgOXTF3SWASoa2/BFXuuHQeAyM+fvTSgZO32/lbUD8/7lpKwZwELijPjFxGByzKT6NOS4g/am0Q5tQm24vpfwKPAD8KLioEfn+m/VT1CVVdoKrzVPV/B5f9UFV/GPxeVfXTwfVLVbUmxDFeVNXrJ3k9ZrrqbydprJuu5EoSYr2RPffqj0LzFjj8BtUFabxvZSEPvHqQw13BtghV2Pxzjmct4deNGdy+rowYb5jnqYiwlPgYOhIrSBnphOM2MIIJbbK/5Z8m0C7QC6Cq+4Bcp0KZWSg4B4Q/d+KjMhGw/FZIzITXvgvA3RsWEeMR/p9HtjHq88PhN6BtJz8fvoys5DhuXlMS+YwOGMsODqduDdXmFCZbIIaDzzIAICIxvLNHkjHn7HhjYNiHtJJlkT95XBKsuQP2PgmNm5g7J4F737uUjQeP8qlfbKb/v++lz5vBfZ2r+cr1VaRNw4fjQkkpDvy3Hmq2uSFMaJMtEC+JyJeARBF5F/Ab4HHnYpnZpu/wVto1nfLSMncCXPQZSJkLf/o8jA3znpWFfO2GamL3/pGUI6/wnaFr+fgV1bxnxcRHeaav0rIKujWFvoYtbkcxUWqyBeIeoAPYAXySQOPyV5wKZWYfT0cte/zFVOW7NFFhfCpc921o3Q6/vwvGhrm9oo//k/ozuudU81ef+gZfvHoRItO3a+tE1QXp7PaXIm32CcKEdtoZ5U5QVb+I/B74vara48omvHxjpPcfoDF2A5emxLuXo+p6uPKf4Ll/hr1PwcgA3tS5ZNz2CzKystzL5ZC8tHieialgTd/T4BsD76T+HJhZ5LS/ERJ4u/RVAt1VJbjIB3xPVf85AvnMbHC0nlgdYTArQg/Inc4lX4DC1bD7D5CcA2v+JyRPzyE1zkRE6E+vIrb7cejaD7lR8N/fRJUzvWX4HIHeS+er6kEAEakAfiAif6eq/+FwPjMLjLTsIA6ILVjidpSAissCr1kgpnA5dMPYka3EWIEwE5ypDeI24JYTxQFAVeuBDwfXGTNlPQe3MqYecssdniTIvEPB/KUMayzd9ad97tXMUmcqELGq2jlxYbAdYmb09TOuG23eyUHNZ1GxDbYYactKcqjTIsaat7kdxUShMxWIkXNcZ8ykJXXvYZ+UUJqZ5HaUWacoI5H9ngpSe2oDT4wbM86ZCsRyEekN8eoDIjQms5nRhvvIGGmmJ6UyMnNAmJOICP0ZVaT4jkHvxMGWzWx32kZqVY3woDhmttG23Qjgc2OIDQNAXLCheqhpKwlzZs6DgGbqpveIY2ba627YCkBayQpXc8xmeZXn4Vehc/87xso0s5w9GWNc1XdoG7GaSEnFQrejzFqLKwpp0DykyRqqzcnsE4RxlbdjN3VazKL8OW5HmbVyUxM4GFNBSk+t21FMlLECYdyjSkb/PlriK0iMs+YuN/WlLyJntBmGjrkdxUQRKxDGPb3NJPv7Gcq0J3jd5i1YAUD/IbvNZP7CCoRxTd/hwB+j+EIX5oAwJ8ldcD4ArXs3uZzERBMrEMY1nQcC8xDkzl/pchJTVTmfTk1jpNHmhjB/YQXCuGasZQdNms2isiK3o8x6aYlxHIhdQGq3zQ1h/sIKhHFNUncdh7ylpCfFuR3FAP2ZSykYbcA/POB2FBMlrEAYd4wOkTdyiJ40a6COFvGl5+FFadqz0e0oJkpYgTCuGGzeSQw+NM+G9IoWxYsvBKCj7k2Xk5hoYQXCuKJ9X2BYhzkV57mcxJxQUjqPdjLgiDVUmwArEMYVg4e30qeJVCxY7HYUEyQiHElcRFbfLrejmChhBcK4IqFzJ/uklIJ0mwMimozkLafEd4Tu7qNuRzFRwAqEiTy/n7zB/XQkL0DE5oCIJnPmrcEjysEdr7kdxUQBKxAm4sY6D5Cog4zmLHE7ipmgZMlFABw7YD2ZjBUI44K2YAN1cukql5OYiZIy8mn35BDfvt3tKCYKWIEwEdffsJlR9VK80IbYiEadaYspPL6HUZ/f7SjGZVYgTMR523ZwgELK8jLdjmJC8BSupFRa2XOw0e0oxmVWIEzEZfbX0ZJYSYzXfv2iUd6iwANzh6yhetazf6Emony9bWT6jzKcZc8/RKuM+WsAGDlkDdWznRUIE1GtdYE/OkklK9wNYk4tMYP2+FKyerbh86vbaYyLrECYiDpa/zYAhVVrXE5iTmcwbxVLdS97WmwK0tnMCoSJKGnZRpPmUFZkc0BEszmV68iUfmp3bXU7inGRFQgTUbm9O2lMXITXY09QR7P0BesA6Nv/hstJjJusQJiIGe1tJ9ffzvFsm4M66uUsYtCTTErHZlStHWK2crRAiMgGEakTkf0ick+I9SIi3w2u3y4iq4LLi0XkBRGpFZFdIvJZJ3OayDiyK9BtMqHM2h+insfDscylLPbVsb+93+00xiWOFQgR8QLfB64BqoFbRKR6wmbXAJXB1x3AD4LLx4AvqGoVsBb4dIh9zTTTV78Rv8qfJ6Yx0S2hfC0L5TA1++yBudnKyU8Qa4D9qlqvqiPAQ8BNE7a5CXhQA94E0kUkX1VbVHUzgKr2AbVAoYNZTQTEtm6hXgopnpvrdhQzCXMq1+EVpX3P625HMS5xskAUAuPfejTxzj/yZ9xGRMqAlcBboU4iIneISI2I1HR0dEw1s3GKKnn9tTQnVdkQ39OEFJ8PQMyRGvz2PMSs5GSBCPVXYOJv2Wm3EZEU4LfA51S1N9RJVPV+VV2tqqtzcnLOOaxx1lDnYTK0h+Hc5W5HMZOVmEFvSgWLxvZQ2xryn5+Z4ZwsEE1A8bifi4DmyW4jIrEEisMvVfVRB3OaCDi88xUA5sy7wOUk5mzElq3lPM9eXt3b7nYU4wInC8QmoFJEykUkDrgZeGzCNo8BtwV7M60FjqlqiwTuQfwEqFXVf3cwo4mQ/vpNjKiX+cusgXo6Say8jHQZ4HDtJrejGBc4ViBUdQz4DPA0gUbmh1V1l4jcKSJ3Bjd7AqgH9gM/Bu4KLl8HfARYLyJbg69rncpqnJfcsYV6bzmZc1LdjmLORmnggbmk5jcYGvW5HMZEWoyTB1fVJwgUgfHLfjjuewU+HWK/VwndPmGmIR0bpnSolo2ZN7LI7TDm7KQXM5hcxHm9tWw+1M1F87PdTmQiyJ6kNo5r2bORBEaQEru9NB3FVFzCGk8tr+yzdojZxgqEcVxn7UsAzF16mctJzLmIrbiETOmnqW6z21FMhFmBMI7zNr1Fo+ZRUT7f7SjmXJRdDEBmx0a6+oddDmMiyQqEcZYqhb3baEheaiO4TlcZpYykFLLGU8uLdfYw6mxiBcI4qr9lD+l6jKF8G6BvOoutuIQLvXt4obbV7SgmgqxAGEc1bn0BgOzqS11OYqZC5l1BJr207dvEyJjf7TgmQqxAGEeNHXiFbk2laulqt6OYqZi3HoDzxzaz8eBRl8OYSLECYZyjSn73W+xJXEFCXKzbacxUpOTin7ucy2N28NyeNrfTmAixAmEc099cS7a/i/7Ci92OYsLAM/9KVsle3tx90GaZmyWsQBjHHNn8JACZS9/lchITFvOvIgYfJcdqqGvrczuNiQArEMY59S/RqDksrrYhvmeE4jX441K4zLuNP21vcTuNiQArEMYZvjEKe2rYm7SKhDhHh/wykeKNxTPvCjbEbedP247YbaZZwAqEcUTPvtdI0QFGSi93O4oJp0U3kOnrJO3oDnY12yRCM50VCOOItprfM6peStbc4HYUE04L3o16YrgmZhN/tNtMM54VCOOIOYefY7OnmqqyIrejmHBKzEDKL+Wm+Ld5fOsRm6t6hrMCYcLO11nP3JFDNOdejsfGX5p5qm5g7lgzyb37eKO+y+00xkFWIEzYNW8KTCGeuux6l5MYRyy8DkV4T/zbPLSp0e00xkFWIEzYSe3j1PmLWb1yldtRjBNS85Cyi/lg/Os8vbOF7oERtxMZh1iBMOF1rImi3q1sTruC9KQ4t9MYpyy/hazhJpb69/C7LUfcTmMcYgXChFXXWw8BELPs/S4nMY6qvglik7ljzlv84s1D1lg9Q1mBMGE1tuO3bPNXsG6Nzf8wo8WnQPWNrB97lSOd3Ty3x+arnomsQJjw6dxHXt9utqRdQUF6ottpjNNW3ErsWD+3pm7lxy/Xu53GOMAKhAmbnld/zKh6iVlxi9tRTCSUXgyZ8/hU4nNsbDjKlsPdbicyYWYFwoTH2DBxO3/Ns3oe716z1O00JhI8Hrjgk+T27uDixAb+49l9bicyYWYFwoSFb/fjJI31UJv/XnLTEtyOYyJlxa0Qn8bXcl/m5b0dvH6g0+1EJoysQJiw6Hv5BzT6c6i++D1uRzGRFJ8Kq25jXvszrE7r4V+fqrNRXmcQKxBm6ho3kt5Zw0Pe61lfNdftNCbSLvpbxBvHt3KfZltjD3/Y2ux2IhMmViDMlPU//216NJmktbcTF2O/UrNOah6c/3HKjjzOtfn9fOOPu+k5bk9XzwT2r9lMTfsekg4+za/03dy8rsrtNMYt6z6HxCbxr2kP0zM4yr1P1LqdyISBFQgzJUNPf40BTaBzycfJSol3O45xS0oOXHY3qYee5ZtLmnm4pomnd7W6ncpMkRUIc+4aN5Fw4Eke8N/A7Ved53Ya47YLPgXZC3l/+3e5oCCWL/5mG41Hj7udykyBFQhzbvx+Bv94N52axtB5n6Q4M8ntRMZtMXFww33IsUZ+kvsbVOFTv3ybgeExt5OZc2QFwpwT/6afkNi2mW9zG5981zK345hoUXohXPpFUvY8zMNrD1Lb0sddv9zMqM/vdjJzDqxAmLPX08jYM1/jZd9Sll17B5nJNqy3GefSu6H8Uqo2fYUHLu7jpb0dfO7XWxkZsyIx3ViBMGdnbIShX93GyKiPRwu/wM1rStxOZKKNNwY++AvIXsAVW/6OH1zQzZ+2t/DJ/6phcMTndjpzFqxAmMlTZfiJfyChbTPf8N7F3TdvQMTmnDYhJMyBjzwKmRVcs+OzPLJqBy/ubee9//c1GjoH3E5nJskKhJm0oef/lfjND/CA7zref9tnbEhvc3qpc+GjT8C89aze/S9sLvk+c47VcsP3XrVJhqYJKxDmzPx++v/0FRJe+Rd+57uEov/xLc4vy3Q7lZkOEtLg1ofhun8n49gufq1382DCt3j1sZ/yoR++SE3DUbcTmtOQmTSw1urVq7WmpsbtGDOK9jbT8au7yG15gYf1SrI+8D2uXFLodiwzHQ32wJs/QDf/HOlrYZhY3vIt4kjmBcxfdQUrL7icmIQUt1POOiLytqquDrnOyQIhIhuA+wAv8ICqfnPCegmuvxY4Dtyuqpsns28oViDCx9fXwaGnvkPe7v/E6x/hp0kf5d23/xPz81LdjmamO78PDr7E6J6n6d/1NBnHDwIwhoeOxPlo0WpyFl1EbMFyyFkIMfaEvpNcKRAi4gX2Au8CmoBNwC2qunvcNtcCf0OgQFwA3KeqF0xm31CsQJw99fs4fqyL3q4WepvrGDy8leTm1yk/vo0Y/Lwk59Nx0T/ynvWXEOO1O5Im/EZ729nx1nM073yFjO7tLJX9pMkgAD689KZUMJxVhTe3koTsMuKzSolNL0QS5gRuYVkBmZLTFYgYB8+7BtivqvXBEA8BNwHj/8jfBDyogSr1poiki0g+UDaJfcPnR5fC6BC9QyN0Hx9F+EvRlAkF9KR1f/5egz+PpydtI3ry8pPW8c4iPXGdjNsz1LpTnvek871zm0QdJln8JAP5wbUHKOLZzFtJWPVB1l14MbFWGIyDYtNyWfWuW1j1rlsYHPHxxoF29u7awlDTdpK6a5l/rIGqvlfJOfRYyP2HiWWQBHx48YsHP158BL76RVCc6Gk39WOe61vz3NQEkuK8Jy9MzISPPTnlTBM5WSAKgcZxPzcR+JRwpm0KJ7kvACJyB3AHQEnJOfbJz14IvhGO9w7TSeCdi57UfVNCfx23yZ9/CUPspxP2E+Gdv7Sn2O/kbcefd0JZEEHeUSoCSwLrQuf0eRMhORtvSg5x2WUULDiPipwc5ln3VeOCxDgv66vyWV+VD1yL36909A/T1D3I213djB5txNPbhHegDYZ7iRvrJ25sgFjfcUT9oD486kPUhwcfHg3fw3mh3sg54/TnSc9IISkp9uSFCXMcSeJkgQj1F2bilZ9qm8nsG1ioej9wPwRuMZ1NwD/7qx8DMDf4MsZEB49HyEtLIC8tAUozgAq3I80qThaIJqB43M9FwMSppk61Tdwk9jXGGOMgJ28ubwIqRaRcROKAm4GJNxEfA26TgLXAMVVtmeS+xhhjHOTYJwhVHRORzwBPE+iq+lNV3SUidwbX/xB4gkAPpv0Eurl+9HT7OpXVGGPMO9mDcsYYM4udrpur9V80xhgTkhUIY4wxIVmBMMYYE5IVCGOMMSHNqEZqEekADgV/zAY6XYzjhtl4zTA7r3s2XjPMzut2+ppLVTUn1IoZVSDGE5GaU7XMz1Sz8Zphdl73bLxmmJ3X7eY12y0mY4wxIVmBMMYYE9JMLhD3ux3ABbPxmmF2XvdsvGaYndft2jXP2DYIY4wxUzOTP0EYY4yZAisQxhhjQppRBUJEviUie0Rku4j8TkTSx637BxHZLyJ1InK1izHDTkQ+ICK7RMQvIqsnrJvJ170heF37ReQet/M4RUR+KiLtIrJz3LJMEXlGRPYFv2a4mTHcRKRYRF4Qkdrg7/Zng8tn7HWLSIKIbBSRbcFr/npwuWvXPKMKBPAMsERVlwF7gX8AEJFqAnNKLAY2AP9XRLynPMr0sxN4H/Dy+IUz+bqD1/F94BqgGrgleL0z0c8I/P8b7x7gOVWtBJ4L/jyTjAFfUNUqYC3w6eD/35l83cPAelVdDqwANgTnyXHtmmdUgVDV/1bVseCPbxKYiQ7gJuAhVR1W1YME5p9Y40ZGJ6hqrarWhVg1k697DbBfVetVdQR4iMD1zjiq+jJwdMLim4CfB7//OfCeSGZymqq2qOrm4Pd9QC2Buepn7HVrQH/wx9jgS3HxmmdUgZjgY8CTwe8LgcZx65qCy2a6mXzdM/naJiMvOPsiwa+5LudxjIiUASuBt5jh1y0iXhHZCrQDz6iqq9fs5JzUjhCRZ4G5IVZ9WVX/ENzmywQ+ov7yxG4htp9W/Xsnc92hdguxbFpd92nM5GszQSKSAvwW+Jyq9oqE+t8+c6iqD1gRbD/9nYgscTPPtCsQqnrV6daLyF8D1wNX6l8e8mgCisdtVgQ0O5PQGWe67lOY9td9GjP52iajTUTyVbVFRPIJvOOcUUQklkBx+KWqPhpcPOOvG0BVe0TkRQJtT65d84y6xSQiG4C/B25U1ePjVj0G3Cwi8SJSDlQCG93IGGEz+bo3AZUiUi4icQQa4x9zOVMkPQb8dfD7vwZO9SlyWpLAR4WfALWq+u/jVs3Y6xaRnBM9L0UkEbgK2IOL1zyjnqQWkf1APNAVXPSmqt4ZXPdlAu0SYwQ+rj4Z+ijTj4i8F/gekAP0AFtV9ergupl83dcC3wG8wE9V9X+7m8gZIvIr4HICwz63AV8Ffg88DJQAh4EPqOrEhuxpS0QuBl4BdgD+4OIvEWiHmJHXLSLLCDRCewm8eX9YVf9ZRLJw6ZpnVIEwxhgTPjPqFpMxxpjwsQJhjDEmJCsQxhhjQrICYYwxJiQrEMYYY0KyAmGMMSYkKxDGGGNC+v8BzKvxigPJ5YEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot(kind='kde');" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAADvCAYAAAA5DoVFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADnZElEQVR4nOz9eXgdx3XnjX+quu+Gi30HCBLcQIqkuEnUZsmybMmSLTvenXESJ3aS3ySTvFkm886bOMvEnmQm20wySSbLO07sxNm877tlWbJ2iRRFiftOggCx73e/3XXeP6oBXIAXwAUJQBR/+D4PSKC6+vQ5XdXV1ae+dY4SEVaxilWsYhWvDehXW4FVrGIVq1hF6VgdtFexilWs4jWE1UF7FatYxSpeQ1gdtFexilWs4jWE1UF7FatYxSpeQ1gdtFexilWs4jWEZR+0lVJrlVKPKaWOK6WOKqV+NSivVUo9opQ6Hfxfs9y6rGIVq1jFax1quXnaSqkWoEVEDiqlKoAXgXcBHwaGReSPlFIfAWpE5Dfmk1VfXy/r169fVn1XsYpV3Bh48cUXB0Wk4VpkvEUpGSzlWvBdEXnLtVyrVLjLfQER6QF6gt8nlFLHgTXAO4H7gmqfAh4H5h20169fz4EDB5ZN11WsYhU3DpRSF69VxiBQyoijoP5ar1Uqln3QLoRSaj2wF3geaAoGdESkRynVuJK6rGIVq1hFSXBK8CL7Zvn1CLBig7ZSqhz4IvAfRWRcKVXqeT8H/BzAunXrlk/BVaxiFauYDaUg7CxcL71yg/aKsEeUUiHsgP2vIvKloLgv8HdP+r37i50rIh8XkX0isq+h4ZrcU6tYxSpWsTgowFUL/6wgVoI9ooBPAMdF5M8KDn0N+FDw+4eAry63LqtYxSpWsSgorHtkoZ8VxEq4R+4GfhI4rJQ6FJT9FvBHwOeUUj8LdALvXwFdVrGKVaxicXBWdia9EFaCPfIU9n1VDPcv9/VXsYpVrOKqodSKz6QXwoqyR1YSfYch2Q9r7oCz34UNb4TBk6A01G6GC4/Dpoeg+zkob4FIJfQchE0PwrnvQ9Mu8NIwehHW3WNlrHs9jF4APwsNO+D8o7DxQeg9CNEaiDdC13NW7sXHoW6L1WXoFLTfZ2W03QnJPsiMQvNeOPcIbLgf+o9AKAZV66DzKSuj8ymobgc3au3ZeD+cfQRab7XnJ/pm2jd0yl6vtmOWfc0QqZpl307wMrPsuwfGOm35FfZVQ7xpkfbdAue+Z+0bOGrtmLRv40PCyxeEplpFVVbNsK/lFsiOQaIX1txp5a6/D4ZPv3bsK9p+D8DZ7y1sX90WOP9YYN/zUN5k9bv8Ymn25dPQePMy2dcOnU8uo31vhvM/sO3j5+zzVmhffKU5ZpPukesIN+Sg/eyfwQ9+B9BgsrZT5TPghAAB402XuRHw84CxZV4GnOB/rUGFZslwAQUmX1A/bGVKoYyI7XRgj/sFMrRjXx6zZYiZ1m1BGcV0W077fBD/6u3Ts3R7/s0+6Vah+pxix6MObkhdaZ8LJrc4+ybLvKzVQRfalw5krIB9UzLytryYDO3OLHNC9nqTcudqv8ljSttz/FLsu8b+qcNWh5Ltm6t/XoN9xoefftJOWlYMpbJHVhDLviNyKbFv3z4pZXPNV38GDv3DCii0iqtG7yafwbVC8xlNfZdibg/aKlZh4cbg3f8M299bWn2l1Isisu9arrkv4sqBtsqFr3Vu5JqvVSpuyJn2vb8Dfa/Yz2Um30kq+F0VlFFwjFnlc5XN9Y5bCrnXi4xiWIyMEnRrPqtpOheUzb7ucuq2QvYtidzrRcZK2FeC3N0/BR1vLXL+ckIB7qp7ZNnh5+xnFnBlhyjsfPM9xKWiUEap8uaqX6IuSoHMJ2O57CsVJdmnUKW8AOd6oFfCPiWIAkwwhkgwklxj+81pXykTjIUw1726GhkraV8JeuYS1kWyolDqumOPXF+vkCXCU39kF04QruwwFCkTruwwc5XNxrXIKKZbMfmzjospcu4NZB/XiX3DjcK53YbDb/KnX5JF9PAcwcxl5HVs32ut/Y5/yS5Irjj+/5CnveJovQ2OfHp6kWQVq7ga1PQpqvoVJjR3nSMPeAysE+ovKm7+gYOS62tWdqNAaUBZ5tCKQl9/C5E35Ez79v8L9vyMXQVfEAs9Y8v1DC6F3FJkrNp39ZcXhWMUoRyo2YKCP/vbBXGgulctfsB+TbTfNcx6lti+H/0iNO++enWuGtfZTPuGHLSf+H14+R8L/F/FOsZ8iyXFoIr8Pp/cYmWFx6RIWSkyFtJtdtmrZV8p9RcqK+UerYR9k4VF2m/tMYXyYbRZMFoWJ/d6sa9IfVGCUUKiTpDZvopXyb7PvsvyzFcUCuvTXuhnBXFDukdGL4KXY36f3GLLSvX1lSrjavVYLrlLbd9S6LbY+kFZJi5c2O2jfdh40MHNq2Vrv45nXTa+IGi/YDa+zPYtqNsS2JcNwUSjMLDB0PGsQyh/Fbottv48ZeKDCsNEzzzXWRao1c01K4E3/h4MnYZLT2EX7WBJKEcLlpdatlg9SpGxat8UjtzvM9Eo1F1S6NkRM5fBPsdX89d/DbZfNAvRS4r6Sw5TUZSXwr7F6FZYV8EdvwodD7OymJxpX0e4vl4hS4RkP4x3BgP2fC6JhT4pi9Wfvapd2LlK/SydS4+5Onmp7pUb2T5VpEyL/YzXwhR/UIGTB23AOEX0fi3Z96q2nwKlgq+H4Oca7FOFuhW7bwvJEOh/BfKpIrovJxTXnU/7hpxpP/e/bMwCoLTPx4U+LUv93FwOuVcj40a0z1xZ1r3Z0LdJaD2paT437ZrY9T2H3s3GzoCLnFdUj2LXl8lLC/kIhDPMXGxcZvtupPaT+ewrUbfzj9m4KztWMh7odbiN/YYctNvvgyOfmY6tsIobEy1nNE1nQc8aVBxfsebk0jxo6XLhxXd5eCHY9kNN4znNFUySVSw/lI1v0rjjVbj2debTvr60WSLs+RDs+pANyLMgFnr+luv5XAq5pci4ge3TRuEa+/+cla9Rj1S14IfAuFDdWzBgr7bf0sgo0T6lbNyRhu3XqtQiMenTvo7YIzfkoP2D34HD/wJmsWnbSr33s/1vxfx7pcot9dhKPUSF9V4T9qmiv5Z0Sgn2VfUparotrW9orUFm+wqW2r6rvZfF6l2P7XeV1xLg8++Hi0+UeJ2lwmQ87VWf9vIiPTQd7nFBFPOrzXV8dtl8vrnFylgq3ZZCxqp9U3Dzil3fK/KYLJd9s8tutPa7WvuM3SyXGZ1Hn+XCdcYeuSEH7Tf9AYxdsgHZpZQAM4Ur90tZdynkLMX1FitjJa951dcSpr+dFynjerGv2LFSy5ZCt6WQsRS6lSJDwb3/5VWg/K1uY18ZDJ20WTDEpzSakxQpm4vSJPPUK1XG5DWXWrelklGqbq+KfYJxAyeFI1bAa9W+YjLmKlsO3V6N9rta+wROfh3Sw0V0WW5cZ+6RG3LQPvB/INUf/FEqHWp22QrSoZZct6WQcR3ZJwipckM+IozVCZd2GJ7+gIen4IoR5TVo36um22vMvt6X4MIPi5yznFBcdwuRN6R7ZMvb4OhnbZqiVbz28dLbfMYbhbpOG0mvfFTRdkQHVL/CqdsqbmREKqFl70pfVa1S/lYCN70bbv4AqNUof69B+wqmWIGM8UbBuFA+YhMnOL7C8UEZxfQe62vQQwnFp33XKHcpZMyZKWIJ9VguuUsoQ2l46M9tUu4VxXU4074hB+1HfxOOfA6Kpr9cjoFOzVG22GvOJ6NUzOd/LFXuq2GfEvJhYXC9wQvPHES3PqUJJyFdZQfvK06+BvvyYWGkRUhXzRq4r4P2y4eF4TVCpqIwq0AJchfbfleh25LKKEGuCHz1p+Hco1dxzWuB4rrzad+Q7pF8OliELEb5mz2QL+SvK8WftxIyiuF60W0JZBiBXAzScahwwS2I0thy2qHl9ByfTdeoWz5qowI6eUXsKmWUXAcYbzCcvtMQScLWpx1C2Tl88gW6hdKK6ArotqjjVyvjavuW2AzvK+7yVApC1xd75IYctB/4I0j0wsmvUhrlb7EIVrNvCBnLJXeRMjSK+BjEx/T0yUqg5MQCkxcroX6BbmXjirIJXXCgRFxhX7HrX1l27D6fVDU0n1E43vyXmNJNrlW3q0AxGYuVuZT9U8Ob/wdsfssSyVsMVn3ay4+u5+D8o5RO+Su1bD6K0tXIuFbdlkLGXLothYyr0k0hWvCd4EOphMQCguC7wfiui/inF7JP1MyXwyLvvTiCUWD0tHBxBUMQaRCrk3GF6LhCGchGsQYudI9klv9gudtvEtdb/zTwwl/DxOUix5cTilWf9krglX+G7Fjwx9XSloqVLbWM61m3pZBxlXL7NxiOv97nyJs8TAkyRloM528xPPOjXhBN7kqXgyBM1BrS5dOCDMJ4rSEblSvqL0bfy5sNh97q0XmzjwRPVHeHYf97PfrXmeBa0L3VkKgR1h9UbDyg0aKuv/ZbLrlLIGP0PFx6tsjxZYVa9WmvBHb8Ozj+ZcgnmP8TrdixUsuWQsZk2VLIWGrdlkLGVdrXeE5TfwGUWWBWEdSv6dFU9cPG/dqeYAqnePbXg2/zSTQItZcUNz9qfZTP/TuPfAxaj2o279fTYVcXqW/rGU3LKQ3K6gzQekrTekJPqaGBNSc1a45ZHbU/j9wSrrlg2VLIuM76Z0UrrLl9DlnLhcmZ9nWEG3KmveGN0PE2LOVvPp/atbz9r1VGYedcChlLqdtSyLgG+5RYSp/1NqhZFeTK+igcX6EFSwMsMtNO1lgXSnRCQTDBzZSD70J8bJY+AtM0QAl863Pbp4Jr64JZvvYVmsIyhfaCen6g4w3afkVlXKNuSsM9vwlV6+aRt1zQeuGflVRnRa+2Qvj+R+DkV5gZeH0SS/HSLNUXtxRyrxcZK67bzME3ExcG1wljzZOJZhd3gR2POTg56Osw9G0yZCqhItg1e3GPIdEw/ULIxIWezYaxJmGsUejdVCS6X7Frz+aMz/ZHz9axmMgbpv1YUvvEwLd/Gc5+9+rOv2pMxh5Z6GcFcUO6R9QkAWGhNz0l1ClFxlJhOa5zg9injHUpqNlsoBLtM5PTk2Cmq3xYc1xT+6imf5PhlQd9nCzsesTByQUzfd+KnsoBGSAfFU69zme0Sdj2mENtr746+wLd+jb4nL3dUNOr2Pq0g/bUFXVECef2+fR0COtfVqw56qBKma0vJ5aiby1ChgQz7hXHErlHlFK/Bvz/sBYdBn4aKAM+C6wHLgA/KiIj88lZ9luglPqkUqpfKXWkoOxjSqlupdSh4GdJY3c98Mew/b1XTnyApengi/1EXUnM1mMhvZbiE3zZjRciaUVtt6JyYDJv4XyXvtKFcvwNPn4Yms5oGi4oYglF62lNNKlI1gjZMjsxjiYUkbSi8bymYlBTOWjrF16zf4NhYIOQLYfqPlVwoau7D8ffYGf+kYRCzaYBBiITNXDpZiEXh+oeh0Vnfl+ufn+tMkrsn0rDj3wcNr55CXRYDJRaEveIUmoN8CvAPhG5GXCADwAfAR4VkQ7g0eDvebES761/BIqxK/+XiOwJfr61lBc88227EDmD8lcMcy16FEKKlC2EUj5PF5K7UjLmKiuhvijBd8TOYmdvt14S+wTftfKNI1dWKiLDuJP0u4JBVEH5kOVFpysL/dN2plrRr9AemFAwI1fM9KWLmrZZC9HxYAYeyDNFKH+Lab/yYYX2rd99miI4s34kbWf+jgfjdbPcNcvRB65mhryM/VMM/OC3C3K/riSWjvLnAjGllIudYV8G3gl8Kjj+KeBdpQhZVojIE0qp9ct9nUIc/xJ4k1mbl3uhZ7nkvgZkDLYZhtYJE3XCvq+5Vz5v16jbcJNwaY9hpFm48wsO0aQmUSXk4kL1ZWUpc7PQtdXQucOnYlCo7dK0nXJRotj7LYfRFiGaUFck52077lDbrcnHBCc/WWz92QhUDUyf07fJMLBWqLkEbcc1ZWOKnq2G3k2G2m5F+2HHMkgWce9v/ZrDsfs8JuqF83t8Nr7k2AVMsXpM1AsmBPu+qOnaCdU9pXxtlH6fF5SxXHIXKSM1CJcPQM2GBbVbOiiWhNInIt1Kqf8JdAJp4Hsi8j2lVJOI9AR1epRSjQvJejV92r+klPop4ADwfy/kx1kM9vwMnPoGZEa4etpS4bGrlbFccldCtxLqN3RpansCX7NmerPIEtg30mx45S0+4sLtn3MJZ6Gnw+fkPQbtwV2fddH5K2WsPal55p0Jzvx4njUnXH7qt6twDChR1PSqOa9ZNq5gXE2VHX+9z8AmIT4Mt3zdnSKTNJ3VNJy1HxZa2cotZzTNsyh/i2k/JYrtT7p24VwVJCpWcO5WQ9dOg2Bn8o5Y90hZUqa/Bm7E/llERv1NsO4eVhalb2OvV0odKPj74yLy8WkxqgY7q94AjAKfV0p98GpUerXYI38LbAL2AD3An85VUSn1c0qpA0qpAwMDAyUJb9kD7fcyk/K32JnB7E43u6wUGYuVu1gZc5UthW4l1bcuByWAUTOPXZN9QjYuEOzgjqRAe4pMOYgDorEz4iIylKcYazJ4LsQS2m52CWastr7MYZ8dlSfrZSrBd8DJqxm2KKNwJvnjRiFIUcrfYttvhgxRBXpYl4lxAW11iiW54j7PsK/YNWeXFVIai+m2FP1zKfu4gt0fgviC89BlgFYL/8CgiOwr+Pn4LCkPAOdFZEBE8sCXgNcBfUqpFoDg/34WwKsyaItIn4j4ImKAvwPmpMyLyMcnb0RDQ0NJ8h/9LTj9LZYm7kipnW0p5F4vWJRuiqKOyGuwL1ktiIJQCsoHYaLOCms7pmk9roiPKJLVc1/gXX9WweYXQzh5yMQNE7XChT0++eisAaoAmXIYbRYu7LH+4q1Pauo6FU4O8qHZtRX5MIzXG87vNXhusbfd1UCRLYOxRsOFvQajhU0vaCoK5irxIUjUTHNZfS1X2rcAEjVC581m3nt43fVxgR/8ll2vWlFMukeufUdkJ3CnUqpMKaWA+4HjwNeADwV1PgR8dSFBr4p7RCnVMunHAd4NHJmv/mIRLgftgikW6W/2J9lCn22lftbNxtXImE+3pZBxLXIBUcLpuyztrP2wpv2lYBdhUL9vo8/pOw3lI7DzURcnp+aXG/ztO8LJ1/sMtAub9muazmgqBxQ7H1VU9E/7b0NZxdZnXESE87caDu7Is+a0YtPzTrCpxqKp0+WDH60iHxZO3OczsM6j+bSy7pQ57HNzEJ2AvnsNnbsN7Yc1ux5x8B04ea/P4Fphy7PBzkcsJTA2rqgcsrPjZI1w/A0+6biw99sO5cP6qu6zm4fYmKIiKiiBaFKx59sungupOqHmkgpYUdZeLRCbgIphjc5DptzqMVErVPXDWBPER8EPQS4Mt3zLITqhqBhWhDJqTj2uu/6pwBgIxVlhTM2krwki8rxS6gvAQcADXgI+DpQDn1NK/Sx2YH//QrKWfdBWSn0auA/r8+kCPgrcp5Tag22OC8DPL+U17/9Du2jx8j8VGXtKefsvVGexMkqdccyutxQyrqbOHMdTlXD5Jvu5XttVsKAX1D99lyFXBrGLGl0sgt0c9k00CP0bbKzsukuaUE4RyhGMS7N8GQJe2G6IEQ1VPXrGgF0od6RVGGqz7pCOZ51pvnUR+9ycIhuzM27jQE1g31izYbDd7qas7ZqklgQ7Hj2o77Q6dm/1GW8QwkkoGy1ynaL3VK6wz8mDg6K+M7iWsi8UNwfRVHA/CmQpUbj5Aj02GEZb7JfKULB7cKzJ/h8btZRG7StqLgMyW8/Z+hRRt7DeUvfxecqUgvf8i93tvKKYnGkvAUTko9jxrxBZ7Ky7ZCy7e0REfkxEWkQkJCJtIvIJEflJEdkpIrtE5B0Fs+4lwZHPwOF/K9E9shQD9NVgpT4/l9C+SApCadAejDRduTOxptsOZMkqKZ6AYg7ExhVO3sodbSqgsxWwPIwWfB3Q6kQIB+yg4VYzk95XgPiomqbJNRSvMwlBcLOCztuF1ZFg52XZmOVOO551W1zhAw4GuaregDboQD4yv72iBF9LsAwgV9iXDwm5qKUSzryR87mh7LGKQauv8rC2BL8r377svMlp2qzwAMYRPLeAKlnsSwurt42oOP/9nKnbNWDydgt84+dh6NQSyFwsSvNprxhuyB2RZ7+3mh+yVCSqhUStoaZbE5kdkH8W3LzidZ9xGW8QKmZvcgF2PO6SeFkIZShKx5sLkZTi7n9zmaiXGe6QiVohVW2o6dIMthsG1tvBpGpQkQvbc7t2GAbW5KnrVqw9GiZRJ1T2a8oSivio4u5/cUnUWRZI3wYhnBaqe6/UfbRJGF1jFzBbTyhqu2BorR0xdn9T07vV2jzXTLTpgkPNpzW5OCDQu9GnfEhTPmbrp8qF8UZDxYDiwq0+oy2g8rDhJU3dpcC+dmGi2gMMBx7K8Au/VE3EX9y8qqZHc/e/KdKVQvkgJBqgbEThh2xSBeNY3SoGNPEJq5unoWeLoWu7YdejDvHR4tcca7D36HKHcMcXXTQwtMYgDtRdVOhr9unPA4F8Cnpfhroty3eZK7CaBGFlcPv/Bee+D4nLlE45ml1vvmOFIjRXxjgpUcbUudeiR6n2FdFttMlw6K0+SsO+L2gieZlmgcxhnxJF1YCaU4/yUXVV9mkTyA3qDK0xHH6z1e2Oz2haz2maz9rDfli4sMfWO7sjQ+/6HLGkYs/jGtdX7PyuoiwFGBtIqmpA8dx782QrofGMoqrfmaLmTepY06eIpTQXdvv0bhcubxOcYMJplP0kbTkNsfT0PZptXzij0CI89WMeyoGOJyA+oUlVwv53e6DtEotmelv9yfsMd3y20D4HceHuL8aQqY02BW1SQh8I5RShQXtO5RBgwPVAITzzAavHth8o4klrnGug7ZSm7bi2+/QCYbPtqx5QVI44tB8C5cDxu336Nwuxcai75NrTrrZ/ltDv19z52naPLBVuyEG7ej00bIdkb8GAM7tzLFRWzF9X+PxMfrYV4+XO56cr6JAl6baAjJJsmcO+yc94X0Moy/SibUH9q7Jv8tcp+2R6U6EEwhaQ4UVtNV8Hqcd8gpmcYHws9U9sHkUbw9o2jNEQyszSMbDVd6zveoZjoMC+SdUmAwX6BecbhV24M0XOnbrPgtFWH6MhnLWJiP3wpAtkWtbkvTCF9illjcpZkVMxSIree5nSefbawoz6Bfb5Djbfg4bwjHukpmO6FLgUr7RPTa9V+JCP2Zm79gKDCusX65+zB+7F9HsF698Akaoix5cVK+/+WAg35KD9g/8CFx4rMgOG+QeLUjBX3cXIvU5k1HUqNj+n6d8gJKuF8HyBj67hvo012uS58RFF/SU1Y8e7iASD6MwHo+GcIhvVDK2zulUNWN3S5UKqGqLjdnC+/59inN6rSVcI7S8pJhoVmThUDNqZ5aTcPd9xOXerj85LMHOWGS6SZKWQqrG+8myFLYsPQfkQxEcUw22QqhSiSYWSmbNfCWQly4V0DUQS1v+fixhEHCr6YetTDj1bDHWdiolGwc0IkZRitMVSHKv7LSk9VS6kq2FwrbD5BY3jQ7GUaxO1didqLgbtL+vAlsk3bZFBRiCWUOz4gUPXdkM2JsXrzYdZ7b31KYfzt/j4rqVFRvy5685ZVmpdgWf+BJr3wE3vLFXhJYBixUOvLoQbctAubwInBJ5w5S69Scz3mbnYetciY7FujYXkLkJvLYq2Ew5tx5k5Zi6xfRWDilBO4eawA3ZwbLjN59gbDMqHfV93iCSnHw5tFOuOOqw7MlO3SFoRSgshDyYaoXJY87a/LZ9BPezf6PPUT/qEUnDrN11CGcVYi2G0VUhtyTH6l5fJrM+y873rqXyunIl9KY5/opNMrY//N+thMEz9RcX2xxzcPKAU61+BF9+a5uN/nqLpvMMHP1ZJOK157INJnn5vmrbTITYdLiMfZODNVoAXEc7d7k3Z13J61uOmsMSvwL5kjfDKgz7pctj6nLaJEorc0/6NPsfuNTg+7Py+9bd23exzdp+hqg92PuLiFEYKLEDjRU3jhVmD0FX2z0hKcdNT7nTZbFxj/ywsU46l8JbVFTVrebGaBGH5cd9/hd0/VfCCXIqZY7HPulKOFZZdix6l6rYUMpbYPm0UZaMQTgV+h6Be5y4hV2ZpaFOc4WKCCxgU2leIoxivtZ/5Nd36CvfA+b2GfBTiY9PJc8/dYvBDkL1jgvTWDLhCxXOW9Nvz4SFya/OolIuM2EFo/csaNz9T38d+PEU2LjRedINj8MSPpvHC4PjO1IANVrdkLYuyr3+DIV1hudqtxyZnz1dWv7DXYEI2Bslk1MNJ++LDejorTjG8hvvnv/viq7SNfTUJwvLj4N/DoX8Es0C2a2DhT/zFuE4Wg6WQW4qM68A+o4JEvY7MOFB/3vpIM+X2+NSpQfRAz7Xn5CNMUcwEQRmhbMLWHWg3M+QaLdR0223gY/WGTMzS2ap7A7mXYvieAl+R2pHBaKHy8QrIKFTYI+QYtA9DrVdSGrc9E0F70L01Tzag5K0/GkKLMNacQ9xpSqAy4OSY2z59pX1VvXZ7vmgbPdB3hGxEgh2X07o0nNPT1MrJsgv2XibqZNFej6K4zvqnCHz+A9C/pNvwSoACQnrhnxXEDekeufQU+LlXW4tVAGRjwisPeiSrYeMLirUnnCmfdttxh8ZzNj5IKNg96YWEo2/yGG0EE4bYOKSqof0lRWWvJpISRltB52DNYcVEnXD4Pp/6y9B0yqFvs40KONyYZ+Rmj0NvEG79QRn5iCIy6tEzqqj+nXXseyxM/GyUns0+vYk4ZX/fRE3eI/qow7Hbc4QmwihmUr3e9rfl1F7WXNrm8e2fS7Dvu2WsPR0lf/c4tR1ptMkhz9eQjhrCYz5bngvTcsFFNAyu8Tm/M8f6wyEGtsBYgw0X23hBceZ2Dyft0XDO5XX/GsKLKWITipfelOHIvVl2Pxrh5qcipKqE4TU+9RccWk9olIHuzR7dHXm2Ph9h/UEHNysMt1iqZHWvYrTJriXUzo4MuILIRYX+jYbIuKK+6yr1EBAfBo5D481Lr+O8WPVpLz/u+s82a/PwmaBgIX+dKlKvWNlkJLtCLFbGQn7DUnVbjG+8VBnz2XeVuj3/fg8/DOsOadpOFzB5g3rhwq3uCg691SfZYFkjAOlq+3/nXqHtsF2cqxiDtUcsPe3kXT49NwmZWmg5CWtOa/o2Ger7Q9QOhkAgXQN3fsYlmnKtijIZ3AlazmnSH+yn598PMeZpnrzTBV+x5oSLOGJ3WxbYddfXY9z+TStDAf/2X8bIj8dwXqyi6lQEPwQvPpAABc0XHNadcRlc6/P3fzaKOLDryTjVIy61XYod33fQAp/5zQTpauH2r0fZ8lKYUMCf3vN4hN2PRxAHshXC/vfYxJm7vyVUjCnO35znXz82jriwdX+EWAoub4ZTd/uWXRM06cbnNbV9gR2vQv984T0eXgzWHNXUX1ZXspRK1GPzW2HTg6wslMJcZ+yR6+sVskSIVkNZg3VHXeGvK1ZWiIV8frPbr5i/dyG5ao56c+lWrGy2DJlVfjV6FLMPQZQgWqZ9yxK4Kwp3xV0h1x4zAc3MzRPEmZ70P0tRGb478/NeCmRP+mqnONbGUs6mxAAYZSPiYbdra6NArOtAmYJ6BfUlalAK/OCgcSCUt9wTVKDn1HlBEmHfyvNDggGcrEJ59hxRltbn5hSiLC1RBXIdY8ucfKC3D344CLuam24Q6wYKXjA+QXIEK9vxrP5exN5qX9v7i4AJ2bfJ5D00qiDz+6vUP00QmVHPnhAsRg8FVe3gLrDbdKkhgNF6wZ+VxA050378Y9D1LIsflK+mbCnlLrK+YAc4fcUoZ2GUBANakZlCidcaWiMMthmqexRNnZaWNrDOMLDe0HpcUz2gisrIxGC8yWZ5iSUUbkYQM/0cDrQLg+sMTac1tb3TMnZ/1+XQwx6panBTUN0Hjec0w2uFSBJSG7OkdqYZeniCjl9eQ8ezDtEJQz4meCEYazY4eai8DJX9EE4rzr7O8NLbPaovGbo3ecTHFLd/K2bpdED7f2/G7XfJrsvT9s04339fjsP3e4Q8O11NVQpbnnXsfQ7sS8eE8Wa485vlDDbnWP+yQzylGNyg2PV0nMvrsxx/vUcsaZkcO54uIxvJs/lpjdaKUFqRiQoTjXD7t8rpb8tSMaSmqIcD7ULDRc1IiyGaUISzls9d3aPwQvb9uelAiHf8eQUn7soyXmOoGNa0HFdgNGNNQn2nZqDdoPPMuPeL7QOl9k+jZMY9msStX3e5uNsnnLgGPQRe/H+h/R7Y9p4i9ZcR19tM+4YctOs67BvZyzL3QDufO+Fa6i/kplgiGely4ZW3eCSrYNf3HeovKiYfB0E4er9P/3phzQnFlmecGZS4xdhX260oH7GZzCevX9+pKB/RARukuH2RDDRcVMRHHcpGJ72YCqOEo2/2GVgnNJ5XVA3OlDEQMCgA/BgMtkPracX2H9oASuJqYhfClB+JoTMaB9h40JmSUX8RykccIglFvjHPsc9dILw9Q+v/00bb/mpqexwOP+TzxIc8bvmWQ1WvZrwCOvtryY8J5x5OMbjGoyzhcPpOn0kP7OXtHjc9qWk5qUlXwctv8UlXwNZnQ7zpaMTOpDXwQ8hUOsTGomTK7aalTMxwuSPLQKvPhsNhbv9aiEw5vPKwbb/N+13u+6ewvQUaysagc4/h6Gafuk7FpgN24bGmRxMdY+peKoGdT0TY+USE87f6/PDDHlX99sXXdty2d9O5Oeh98/StkusH8ELCy2/1GWsUOp7TtB0JmC9BvfioYvsPi9AdF/H8qWAzVWVb8ePLBVGK/Oo29uXHPR+BsU44+HfzMEhKdZdMHl/qmfTVyg3+H20R0pWAthHpCucvXhgbp0NDXRFK3AwsoIdCEUkJhRHhFIpYghlls+UrVPDATl7EIlcGg0HkvTUn9DSfODj30g4TbN8OTlMz7VOeHUZjpyO2bFb7KRSxCavbxG1p0puzoGHNlypwPEWmUuH4NmxqZTDD7+sQ8jFIlRsub/JAQV2fy+SrRgJd6jrtYDTc6pMtt2VrCqh5k5//ZYHNsYS9b0MdhtEG64/ueCGMQjHaErycFKw5Mi1DGbsAO1FjZbWe1ISCmDCxsSIja/DnpR0G40L5oJ7e3bhC/TMRbPSxL/QiVMViuIrn7wNfhTVzRt5fJiiQ62wh8vrSZonw3F/AS58M4mkvhPlcHgsdL9Y3S/2SWqzcWajqU4TT9iEfbZ35dLl5O0NWBgbXzEoCezV6FLpXipXNK3dmvXAaqvsD3doKdAt8x/Vd9pjOgRtste7bYiP5eWH7Y5SQKZ/MMjPTAKOFiWqD7wjlB6OEe0KoPIzelwCEmssaN2PVG1xvZVV3KxAhlFGEs/ZlM9SUBxGUx9R9Hl5rMEqoGFJTi2l9myZtsPpb3ayrIBexlL6Gi5raHhvv5Oi9WavbUOBjNzaErKjAvpDg5oW6bqtH7yaDF7IUQZsxXsjGrozG13LKbkWfqDfTTbNC/TM+qigbt7YMrS2M0liCjNkvinn0+Oy7oOeleWQuAwTrHlnoZyVxQ860+15eoSh/pc5klkLuLJSNK+76tEsuZncJFkKJYvd3XLIxsQNOyU/qTCQrhZ4On8p+TUOnmpo9z1RVbNzqNYbms5qK4ZnzgFSl0LPFJzaiMI6QLYft33dAMUM3I3YATJXDnm/abC09HcLpu4VDb/YY+mCOUEaz8/EI1QOKgfWGmx9xUQp6tvh4YUuh++GPpelbm+cdf1lG2+kwt966hXyThzhw8SO9hC+G2fPtKoba4NSdPuZu8F0o7xbycZ+qSI69Ok8o51DVY+NOrz3sYEKKSFoxuNYwtMZMxdU69kbDaLNQ3a0pG4PxRmFwvaHxjKZ/kx3Zq/oUP/NrlXTuMqRqFd3bDZmoENowQV0kQ9kPaxlYF6Z/vc/5nXnKxg3bno4y3AxD64TzewyRDAy3Ck1nFf3rhfZDmqpBGGoTRloMLScc1r8EyhP61wvJWp/W4w6xZPE1h6Ltd05TMVTCPG6WjFBWcdsXXXJldpdkSVjkszMZkmLkHLTsLe0SS4LrkD1yQw7ar/8t+0bue5nin2GzMd9bv9gn41wyivnoFiN3MfWxg3MkPff1pwbzq7DPaGH/e+xg1/Gs2KA5ReiAY03CKw/5GBdaTymm9qkHcva/28OEmJoRh7Kw4ZDdJVmohxZFy1kb6U45drHz7F3WxfPSfQn8sHDnl6Pc9JyD42N5ygqO3+PT12GDNAlQMxLiTf8Uo2rIuk6UKMJ9Ifa/fIJ8c56mf6yl+Qs1lB+B87fYxMGbn9W0nXDJtubhr4aQkJA/WsH4GkFrzfqX7cIhQH2XIh9T9CiZuh0924RoQmi6qKkcVawJdBtqFwY3CF6Z0P6KQ8cBbW+LA0MPjzPw7y8zEBY2/o9GGkcUZ27Nc+jNKbQBiYbRotj6hKb5rOVkrz1sb1fzGXuPhtsMR95sMA60HYdQHrq3wOm7fETB+sJZ6Rz9c3x2++nAFbbI/qlEEUmV1reuQIn98+Yfh81vmUPGMsHOtK8vh8QNOWiLcOUAs1SY3fkK/56vY5Yii0Wef02YptapSaftQpjSNzh3dl9WIBqUCZ7wgs/0knbpTdYpkDvJCJx0JShT4EpX09eclq+meNjiCgTnXKlocDmx11AGtCrh5k9dzwqQwrafXTWQPUl7LNR7yhaCn4JBykwmyClw/Uy3kUxWm7a7yAAnQUp3S9Vkujnma4hARzV53SA06zR19tWdcUopO5yXAdfbTPv6eoUsEZ78A+h7hZkD4HzPY7EFl8WUXa2Muf6/Fj2KoUj9oVbD2b2G46/zpw8V1NFGcduXXFqPKsITwSw7ON6zyfDK/T4jDXbr9fZH7TT3pbd5JCsFU8Dnvu1LLk7G/lneD01nFF74St2MNvS9f4Sjn77AxNY0tRdhx6MOrccUP/0bVdz6SIT6Tofe9jzPvy3NP/+3cc7v8snGBPGZChnaeizwSb9hgvO/0cfpP+1CgF1v2UTj39UTOxLFR8iH4PbAvsiEYnxPioGHx9ETmtyLlUgeynsVFT3WT+051qbjd+R46d40J/ak6G/Jcfh1SeouKGKjirFaQ+cOw6G3eqRjwpYnNCrlc/y2DP/6X8c4+PY0//rRcfraPaq/U876X1oLT1Zz4MezdG8xVA6FaD4Xwtdw8L4EGDh1l6FvrfXRT937B33O7zEMNwtuytrsu4AoWk8q6s9A39ocf/+nY3Rt8zl6r0/venNlFxG7GLvjEY3OwcG3eSSqbPuly+DyJmtLLgRTX0/X+pwUQ4kyjn5u5RP7ilLkHWfBn5WEksXkhXqVsW/fPjlw4MCC9Z7/3/DIfwY/2HCwoljsbHu5ZCwAUYLRYEJ2wa9kv7eyftB8FNws5CPCwR/xLZNFAQYqB+CWb7poX3HkTR79G208kJ3fn46aV2wEEQdOvTnL5bWa+KDi1q9bjvPpv+ii/9+NMj4Q4dCpGrKR6WvteizCO/53uU2nFYVwCi7t9Dl7hyGSFW75nkOkz+H0XT7d24RkpcfRO1NkI8LP/kYVa06FGFzrc/QBn1yZ4fCD40w4GjcXxMROKe54pALRinDGbsuPjit2f9chmlAkqw3lw5rRFsPhNxvyEeHI3UnGanzWHwuz9nQUv9JH//JFQlV5st+pRz9eR8Wg4tZvuCgP8mU2jduFnXk+/bvjeC78xO9VsvGlED1bDadeZ3AzcPuXXcJpOHubT+cuIZqAvd90iU5Mt994vdiBNipse1LTcsrBd+0GG8ef594rOHGvT+9moXwAbvmWi/KtbuHk5By7wKW1ws+V0uBE4GeeLt2nrZR6UUT2Xct1d29vlm/9208uWK9t7/+85muVihvSPXLHL8PAMXjp70sIGrVQB1xsBy217nxyl0LGAnWU2IzizqQro1SIHSDCaXteok6m6G8AaKgY0lM7D/s3WDdC/SU1FRkPKXZNy34YqnYQoHx4Ou72wPtGkbDQb1yyk5H0xF5r+7PhKblOysrt2SqIUlT0aMJDDgpFb4d9KQy1+GTidrdh6ynb/Qc2Cb6ryIYhoTSiLG1SFEQzDl7YuluyZVbPum6bzkz5isoh68sYbBf8sH2JjdX6iIaKcRe0wq3PEYpbKqHzin27TdqnRRFJWr07t3vkozYq4MaXQmijGF5r/fWRlF0PUKJsGjRlQ95GphZzrYzRFoMfsTsvW09Y23Wu4H4X6y+B73+ozV6rYkijTeCnThZpqymXkCzobrna/lns+L/78govQhK4ta4zn/b1pc0S4ck/hJf/cQHK33yLH4WYx2e56LLCY0shdz6UbJ+a+9i8ZQrfEcJJwQv5IBAfs26KiTqD71raW02vrd23UciUG/KuMLjWZ5ImN1vuusManbfc38mt260fr0PlFGvyHpWjCp2Hhi7LRz6zNxfQ3wBlo/vVddrZ5FiTkKyxW/DrczaYd22fQyxp3Tld2z1EC9VJH+36lI1r1pxxwdidh6EMpMp9jFvgWzbWvqmsbEohSqjutRtgIknFuhMhQBi+KQ1hg/SEka4oIpDdN47vCAPrfJvEWFkdjRbWHwlRNq7Ih4S+jR5GCWVDltqYiVuOO8C6Izb86liTTRAhWBm+Y+mIOtjmPt5cpJMV/Gq0jSCYrrAy1h22NiTqzdS9tw7tK/uAIKTLBX8yAuHV9vFFPH+feSd0PV+kzrJiYbrfKuVvCTBydoHdkMxxbCnqz1dWYv2RZsPlLYb6i5rGC8WpdnPKW6xuJdT3QsKlHYZcXGg/6BANmBQ9Gz26tnrkxOfN/xgm5Gl8xw4AF3f5XNoplCVg2+Oa8Vrh9K0eogxnbsnzjr8ox/XVFdequ6iZqDWEUgqCr6T1/7WFtX/ShE4r3hTMgtNVwrm9PnWXFOf2+pgItB90GG8QJmqssFxcePEPBwk/MMBESHHh0UZiXWHe94eVrDmpyZbD0x8dhe0Jtn+qgrrvVtK+o4wX3pZmzyNRmjpdxpoMnbvBD2JeVPVC9WWm0nL1bPD41i8kcT1NbAJCaeGWb0VI3TZBfEOWC1V5vAsxbv3ddURTPmcfyHLx4XE7+JdHuP3bZZzfa0hX2wXLu79cYfNs4vD1X0vT256n/ViIlkuWbw4QH4SetjSpKkhVRIhkNBM1PpfXZ4lNaO7+fIx1xzRuvsicLLjPuZhw+E0e443QeE6x/YcO615xWHPUvgynQnvN0S8G24ShdYbGc0EYgkX28cX2T/FBhWHi8tx1lgVqlT2yIrjvYzB4wsYfmZFyrNjbfa7yUssKj12L3OArNBcVDr3VRmlrvGB9eUUj75Vqx2L1KHL+udt8Lm+zqbg6np0ubzvj0nrODQIbBS4Ko+jZIlzaa2fKt/6ri2OgGbB7kWHn45HCCfuM673yoEe6FhrOzUzN56T1VHVthINvt/doZK0NxhQfhc3PQcMlzcW9PkqB2pLEfXs/JiQcfLGRXJ1w+zOa9mMOyheeeYePdMXp+EIFDSccxmp8/u1j4/ghuOObMWr6NUorLrrTn2yjrRCbsElv8eGT/2N0ypUyqe7L9+cgEWUwGUG50CKG3d8L4ebDPPHeDErDtmfDPPTJckI5OPF6EwS5gmyVIlsFQ+t8KiZCVBxxQUGiEUJBuOHPf2SCy1s9qgdctNhM66/cnSQfFW77ZpT2Yw5OvkgfKLjPx+7zmWixHPKbnnamfOLOZALLOfrnZHlDl6K+27ET8WL1YXH9c6G6Cm77Reh4mBWFAKbY18ariBty0E4PQ6KPmZnA5+oY85XJrLJg8atofaH0a82Wy3S5FqaoYr4zq95Cui2ZfUGyXGNfGir43J6imGmZTuM2JTfwbyqbpEAmqzngTA7qhe5RRxARcAUxyl5DM5ViazIJrrgCHojL1Gc/QSAsYIpS7Ac9WbRM1VPB9m9lQGtBC/hRA471aWsDohWCsjPn4OHUBnIR+8k/SctDCSL2fnhhhdGgEJy8wo9M0ye1Z9tNCxixQ6FldljdQhkV6CEoBNFBxEDFzM2davqaqIK+oIVQNjhHgkiAEEQ0tC6SybbCiM2uHqSAn4qy6AjaCDgGUUFm+hL753RfmZnrs6S+NV/9Evr40Bnw0isb6U+UwnNXY48sO579UxgpjKVd+H8hih2br2yhRMGzzy1VbkGZm1Hc8QWXng5jY2gYNW/9xdgnCPnw9ILWFfUC+yaqhNE1wuWthlu+4bJpv4PRPv0dwgvv8bjj8y4axVCzYbjNkKgR9nzXRQH97YbhZkN0DBovKOsbzV15rd4PDNP//hHKvlaPOlzOUKvQ0KnxQlB7Hmq7FCMNHkfuy3Hs7hwf/GglFSMOYy0eQ5sN2lN4Qe/1HMNEjY3b3HRWk4tCbSfUPFtO5HvtHP+FCfa8Uo7c38PaXx2Ctkq8P97MnZ8L0b3VUD6o6NySp3NnHu3BLU+4VAxq+tcaRtrsFvKhhjyd27JUD7oc3yscuw12/7CM275Xzsv3JkhUCWtOOmw5GGbT/hDf/YUsVUMO+bBBNOx/l8faI5qb9pdR0T5E6O1jHNk0QtXHm0GcqQFbe/bF5UWgty1H39o8a86EcTMhXniPx95vuHzg9ys49EAWNwtrzjicep1h7+PluKk8LadcUuWG0Va4vNXQckozvEZouKBoPW3fhJd+ehjv/SPUfbmB2pNxe+2r7bNX0ccXXT/4/dz34OwjsOP9RWQtI/zrbKZ9Q1L+Dn4CvvWLq9lrCpGPCPvf5ZGLw6bnNW1H5w7sI8FM2w8xlYxXsLM349o0WpMTIqNBnCA+NGqKSogK4j7PcQ0TMpiIoHOKbAheeJ+PP8nfNnYB8PDdSbJlwo/+YQU3PRtm/J4Ex/6106Yi+8v1yFCE3rVZzuzJ4ORg32MVhHLTGeWVb2e8vmvVUNqgNyYJ/UwXktfseWAT8WMxW10JuUqfA0+dgQYP+W4d+SfqCKcU+77q4uThK/9xgiNvmDZeGfjQ71Sx9piL0YIShTLCi+/0SdTCmmOKzc87wReDHYx9DY5AcnuaV75zDnEh/8k25GwZNd2anY/YcHYH3uOTqBaazii2PeniucL+9/l4Idj0gmbtkekM7CZoKycXbGgM2soP2TYIPk4wWjjwbp9UrbDuGGx8zkVP5sG83qEgXA4/+yw07ijxlCWg/O3Y2Sqf++rPL1jv5k0fWzHK3/XlYV8i7P0Z2P1h0KV8RyzUX5erPy+F3FJkBHXSFZZ9YByovVwwYBfZBaiwyQOmZ+RqqszNEZxryxyjcD2m5KkgSYCNVV3smxhA0HmNm9LonCZbEXzOT0LDeJ2PF7Uuio79YbRRjN2VwsSNTVwwYkf44RYP40Akq2dmIFd2oDRhmboHYjTSmrM+SkcoOxadugdKFH6DD/UeEhbyF+OIVsRHrM1uXnFhV35KlsK+rNYdsVzyUM5SGr2IIlltKzR0ansvjMLNWxdGKA/aU6S2Za1f3BWkMwYoqnpVkCNSkaqwdMDm8w5uXpEvsxtoxIHaywUpuxRTbaWn2sqWuVl7TcfYv3NxRaYCMIrGUy46H7xdr8gMwYr3z4WOKwXv/XTpA/bSQSFq4Z+VxA05aD/2u/DKP4EpTGtUCuarp+b4faFjhWXzHSu1rNT6sxAfsVxpZWBwncF3hWyZkKgNouUVtUHN+hsKKWC+I+SiYpPJzpJhtJ3ZjTVPHrOJcD3XlhlXSNycwavyqRiEuiAqYeWA3bTTcsGl6bzd4PHSW7P4rhB/vJJQr0somqf9jvMoI9y0P0LVgMYoITYhU+OODvmEKzNUtE6gfKjqtzNt6YlgchpPw9GfGcN3hESNjRoY6g4ReaYCYyB15yheyDDWZBhtNRhX2BfE96jqU9T3aLQSXvm5UXzXUu6ycSGcElrOKNDCpbemSDd6pCoMlzs8fEdsUuBKn9ipCDqpEA90RxKjhc5dHsNtBmWEimE7kx9utbTAyfZDCxfekSRX6dv2q7N0wbEmGyEwXWnL8iGha0d+yr5cTIiOC43nJiMsCvmIkKgy9Gz2MFoYb5Lp6IGL7YulPjvzYQEZn3svdD5VoqylglqN8rciSPaD7zHtg57PA1TMn1bs+Hz1rkXGfPWvRcasOo6vuPn7LoKgUEzUGibqhFwM4kOqZPv61xu6thlaT9hZaLJWSFUKGwYdEtXCuVt9YuM2znSmAgbbDfFBB9ez2WzS1cJQm0Has4y+aZza71RS+VIZO783rZtgB3f9Xp9kpaF7q5Bo8HByLrt+sZkNehT1U+eYGGmn4oLLmmMVeBHoeNYlVWEYXic0xzPEN4+hf/UknClHPrqF8UtljEZznMkqJjIhXvhgmu/eJ1QPOniukI8KdyWgXYY5UhYmGzO4eYeX3+qh1qXR29M8+OVaKs6GIG64fF8Kbkkxtq6CvhbDSw9kQQy3dRrCH+siO+ByeaiV9ECEnk0euZDw9HvT9N2XpCKWZ+Oztagf1gKaRLXHeGuOwX8/QoMyVP9tE6//xximzuPsH/eRr/Oo/Idm+tsyJNckGTnh4o2EOHOH3dRTPgQbDzikK4VM3KBzwsnbc0THHRJ19qVVe1mx/XGXbY8LYw2GT/7xKL0bfG75ToR7JuIMtBvWTThEUyX2z6vp93PVWUCG+KAikBqaR9YyQABvhbepL4QbctB+03+D0fNw/ge2sacwm0ZUWL4Y136pTI2lkDGf3NnHSrBv0g9aMaKoGFHBgr2as35hWbpcOPpGS7XbcFBTMaqoGJ2W8cpDeTIVsOaEIppWlCUUNVNZwIWyJJQlFLVdDoo4VfvLZk3W1NT/J+7O8tQHUuTDEH/BhnJde1xT/WI1g04VT25Yg9Qphmvt5L9sGMJZiKYcavoFRRVUpdENHqwdxv9ABZX9YSbuTBKJ+7iOTyrtInU+iVrbSapjGW55wxFcRxj6x5sYnXCs4UYhF+L4F8qYCENiG9afc66cXb9djTbw4n0ZztyaxY34tP1KP1rD5l9vpeb7leDDjqciKFF885eSjKfDRM+UwcGyqUarHHWo3pvC3TKBk9Ts/HQZ2lec/G+9DL5rDH8gTM9+oLOMbf+7gspBGyZWXPuFs/s7ro34qBSiNMooNh4KoVDUd8kV9/krvzZB3yaf9YdDvOWT5YSyiureYqscMqXjNffPuVBKPWWTm6w05Q+lrjvK3w3pHhk5B/1HgrfzpIWTHaPwy2/yWGGHKaw/V9lCA+V8n4+F9YuVzb5mIYrUL2rf5DNWxD5xZGqhynotVMn2Ob51fzoGcrHJa6opGaG0QhvIlE3GNZGpa9pfFCg7iCtNkOm8YCFs8lpaiKYURll3hOcKjg/50KTvA5RvXQV24dNuUUeCa0kQWW8kbBdLjYL6HBIRQgMuKm9pd44jOARUPgMmrxFRkNNE4jmcKbaQENIeCiHkeohj7HUcIR+xiXljYzZ8qvJUQGFUZOt8jGMXBAXAEeIjilAOPIfpCHoEL6ykzQQvCkzEumTcfhc8hYO1yzGQCyhvoYyaKvMigGPJRgJTuzjFCeiRs+5z+YiNr5KPGEuRVIEOBcRrcYO+4gQdq7DPXk3/nFVvRv+cfe7s50/g3PchO1bkussIAXytF/xZSSw7e0Qp9Ung7UC/iNwclNUCnwXWAxeAHxWRkYVklcoe+fKHrE97FVfi0naf7m2GDQc11T2aSGZxs4hsmdC/0VB3UU9t4JiU4TvCoz+b5sKOPBX9iru+Hqf7JsNtX3MJz3GdbLDYGMpANi5EEorz+zxGWmC0wSc+ZNjxZISBjVDZp3A8YWAjXO4wdG/O0rsux5b9EbYeCLNxv8Pxez0S9dCQy+MrxfDrElR/+ByJbIx73tmIPlHBmR/NcuEjA2SrPM5/pY2aC2HcvM2s3uD77IsOEPp8I6caYwyvFahMcf+Wp/mJxh/wu2U/QWdzFUklDL1Sw+Uy4eFPVJKugHN7cqSqDG2XHSrWJ8h0lRE+5TJR63FmX4Zf/JMY/uUo3/3PCVLlmtrOEKrCh5EQkYRN2Gu2plBNWZynq2g64TLS4lPekqJhyFD+7SqG1kL9BU0sYe/neJ2ht8PQfkjTc5NhpBWyEevfn6iDO74UIpS/8t4bLRx6k80Usvv7EZxZc+yJGkPPVmGg3XDbV+duv5WEG4N3fap0yt9SsEe27W6TT373Vxas97qW31gx9shKDNr3AgngnwoG7T8BhkXkj5RSHwFqROQ3FpJV6qB9+NPw1Z9eoew1rzEYRzh1p0/PTUJ8GPZ91Z1OSLAInL3V59IuQ3QcbvuKixNsSTc6oPxRMCmbimk98zoXdvlcuNVMTbQUcHJ3ir71eZrOO/z0b1QTysFLb/XtgmZw+mQOSaOF7g1ZLuzIogNih2h4aMcFbl/XT38iyt89ezNGK77k/wMP5U9zqG8rv3Xgl8iH4eCbEmRiwq7vRnn735bjucLz7/cxIdiwX7PuiGaoxefjfzmGE81xc8cwtXV5fG1pfL6B/N+0o7qjDLTkOXVrGjcLv/iLNVSM6KkNSGZtBufQE7hhw+lELb1+HNGBB19gx7s3ULm/jKE1hiMPmBmz2DVHFR3POUH+yZn3L1ktHHinZ+Nei70vw40eR+9MgsDP/2o1jZecovf+3C0+nbsN0Qm47cvT7Qcw1mh46WF7H275qkPVoCoqY0WhIFYHP/s01G0p8ZQlGLRv2t0mn/jery5Y757mX79xKH8i8gQwPKv4ncCngt8/BbxrKa+54/2w88dAlbJ+sFA/XK5+Oq/cEl+kpeg2q472FWMtlocdG1dXbd9Im916HU2qGTGFtFG4nsL1wfEUjhe4QYDZK1Mja60McS3/23dhuNXDD0FDp8vkxnXLNglcO47MuNZEnY2o50dsTBI/BBsbx3DChuFsFBzwRXGPf56IznMu1YpxFOJrkjG7caL9WAjHs3Q9P2RdK9X91u0z0mJdIWkVIlqFHbADOA7o7ihKrB5GQySlqRix9EMtdgE41JYiFPZRMZ+RUAiJCIRAuQJhofKlGI6nSNZd2V61l3XwUi10/Nr/k9XWLeS7NsSuaEhU2zUHFDRedOy9L9LGk/c+mihsPys3USd2JyVQNaCC9ruKjrIUz05AR1QK3va3pQ/YSwalEK0X/FlJvFo+7SYR6QEI/m9cSuGP/iYc+Syzc75azNeRivnT5qs3n8xi/uwF4IeFbFQYXDdNk7tm3WYd80JCXZfl8GbLBT9UgowiMjftd4iN2fjSM5IaBDAO5MPCQLuQi1hK2kR9YF+7kA/bJLuzaeKbDsdw8nD6thxn9+RsvW7wXMNEtW8ZHWmov2jdMVVDLrEEVA4oOl60zuPvnmhnIhuiuSZJY00aEH5Vv5MBJ866jotE10ygBTYeiRBJKLpvypOqNHiOTzqex3OFFx/OMtbg03DJpfmii6MNw6NhJK2RnjC6O4yLT+N7LqAcQ+uFEPEJG+zqmXenycQNF3flyLclqLzoseH4MIiwuWzEJoXoDaPOlOGMasbum8ALi42SWLDr1snBaIuN0Z0pE4bWWlrf8FpDPizUXoaGToWThbpOu5uysTtE9YCD9hUH35qzoWKbhExFQRYLYON+h7Ix6+7KR6zcobWWClp/UVHTrXAzNunwYvrFNT07BX08HxaSVcJoQBkVgS//pCUXrCQE8LRe8KcUKKWqlVJfUEqdUEodV0rdpZSqVUo9opQ6Hfxfs5Cc6549opT6OeDnANatW1fSOblkEEd7oW3ns/9eLJWp1Dol0vq8EGTilldbe2lWbIer1C0dF87caRPf3vS4gx+BcFJx+5cdohNQ9Cmbwz7Bbm3v2mFoO6a58/PujO3wY42GM3cY4mOw/qBDPgKJGiGShL71Po/9ZIpkpeHez8bZOhHCycLOR2zwpmP3GvJxCKc1rqfIxoXn35Xj0m5Fbbdm13cdzu3yeeEdKcrGHN7x5+W0HFccegCG6zSVQ4qGCw6nb8lz+WwtP/xeI2VRjwfOG2LfruKRD9/F+nt20yge9x93qXrUJfs+j0SFxij4t98do3urxy3t/dzW3seR/lqe+7U4ZaMO932slebeCOd/QugfqISkg5TlidZmiO8aYMgxxCYcdj5TRiYmPP3eFI9+OEVZ1OPN6y7QoQbpOx3mH5/cxeaGUc6cqkd3xXjo78tpP+Qw0io8/WMefrWH+9AgujWD98VmIsej1vf8sMdE/cwmiY0ZyocVW5902BHEWElWGSbqNbu/W0n5kOLkPT5P/pQNlRhNQGQCtj3uUJbQhJOK2JhdtRSBTDkcvyvP0bsz1HdpbtofI5pgZuCp5ej3c/TxfExIV9lJQVWP1VNryKdZcSwhe+QvgO+IyPuUUmGgDPgt4NECV/FHgHldxa/WoN2nlGoRkR6lVAvQP1dFEfk48HGwPu1ShN//hzDRA6e+Povyt1Qo/FJdQhmRJESSmsp+uZKGd5U4e4fP4Hrrv45kQacU8RE9v/Q57EtXwOm7bazl+MiVAYOO3O+TLbfHImn76V0+ZHdfPvfOFL3teeKjir3fCeH4yvp9BcYawQ82J57YlyIbFRq7QrR0RlAodj5idwWevCPLWIOQLvdpuOTgGMVok2G0xTDSAhdv9kHB1oMxImMONRcV7Y/Zrdo9HR6pTIiWL1ew5otxxIcXHk4hGgbW2fOq41nevv0CriP0UMG4l6HqdJwNz4TRGc3YERfKrZ5eKkwiFSbRVcHkiy+csZSQbNzemC3t4yRr4jw+UcVLUoef0PQlyiAEOy84tB2z0fUOv9nDD4Nzxyj69lEkp6EvQqoGUtUUfa+mq+yGKXcqyYcQH9PEx+21DTBRN10/U24Lo0G29JOv9xhthprLinBWEU0p9r81xViDASdE35iAKCoGF9sPJzvFtfXfsjFF2RjTbBZln+sVT+yrFEZdu0NCKVUJ3At8GEBEckBOKfVO4L6g2qeAx1lg0H613CNfAz4U/P4h4KtLKfzyi3Dxh8GAPZ9bYbFls12z1yrjCt1U8O8cvuZitixgX2zMRoTz3UBtFcif+plDtyK2uHmm4nmkKiWIrGfpYMYVIgm74JiLWjpbIeWvuseyTYxr46BMUvNETcfHcAzEEopwFnzHUtEUkI2DuEJVn4PjWTpbNi6YMp/aPo2LsfQ8gZAydnNJyJAts3p4UaFiUKMRxpp8RAtKCfFRRcjH/q0FL+tgjMJkHaLKA0+Rr/WtLTFDNAUqZKyigQywvmt8e29CWbsV3fEhlXXwjcJ1wGC3k2NsOIDxepubMx81hNNWBxkNga/siBux1zABpdEEccq1CBh7z7yItdm4NjO8HxY8x8Y3UUoIZ4L4L4Fufti6rUzIpkxTAl54mspX3acJ5WyEQ8HaYKmdRd7gV/Q32weMIkigICX1zznLJgfryZi3Ai99EpJ9Rc5ZZpiAqz3fTwnYCAwA/6CUekkp9fdKqThX4SpeCfbIp7FvknqgD/go8BXgc8A6oBN4v4jMXqy8AiVT/n4KXvnnq9f5RsNok8GLQF1nQcyKWRCE/naPaEITS2qyZWJTYs2qnw/bz/VkJbScFOovOkSScPw+j0StYsPLjvWHZhVD7YYLOw13fslSxo6/Lse5WzziEy57v+lSNqbouz3D8AbDCGE6ntfUXYJj9+YpG9VU9zscvd9YX/BziuoezbG3pXjmQwkyIy7/4fgEVe/uYv/5FrpebKWyz6Hp4XNsvrubS/9rF8Ona8lGDXnXY/+Daeo3JGmoy7LpkRiNf9pMzWXNtx6/SPmaDJkXqsi+XEXzgGJ9+yCXumvQcetf8y5HaGidYPCDg4xfKsepzqPSmsw3m4mNaqovw9qjDtpoEvVCwynh4381QbLKo6I+h6OFkf4Imw/HqOlzOHpXmkSNob7ToeNAmIMPpNn7TAXhjCZSkSFclWeiJ07P7Ql6qg064RLKKyYqfN77v6poO6IYXmsH5Mpe6Nxj1w7yoTyXtuRpOq95y9+X42nh2Bs81px0SFZD/xZDpgzqOxVDa+yW9oZOTU0Qy8Ro4Ykfz5CugPoul7YTmsYzGidwgWXKBD8ilI1c2S8MQtcOw6Udhp2PaSoHln4X4atB+evYu07+8oe/vmC9h6t++SIwWFD08cBLMKnLPuA54G4ReV4p9RfAOPDLIlJdUG9EROb1a9+QUf5OfBW+9OOQTzG/K6PYsVLLlkLGdaTbP/zBKD1bPCoHXba/UIbjK+74vGs/p2fVN67w7Z9NcvCtmSB6nJ19/+jvV7L5UMjGxMbO7idjNWubkYx8THjufZZOph4awH39MOHuEHvv7cDNKo7c5zPUbmeOaPtz8A0J0nGfhvo0OzrG8EWR/58bcDIa8Sz7ITShuOPzIVzXoPKWSTFeqTj4Iz5+WHjldUkm6qYThoaycMetA0SjPvn91ZhvNuImFXd+NmTjf3tWRqpKOPAuH6KGw7elGGvO2806WCaOUdZFUd8VYsuhGMrYzTHiCue2ZejqyBFJK279QQWuD8dvTTPUkic+5rDr6bidUAbxtBvParY/5mAihoP7T5Fr8DnfU8a5rgpCGc2+R8uJZBVG1FQ0v8l7JIAouxay8xEXbYS/+j+jJGoNe74T4S2fKCcXtZRGPwybn9W0HddBW03PZkXLVKh0G4bE2trT4XPyHoOThzs/7xLKze4XluGDz3Rc9AK519o/Eahqhw8/DtXr55A3+7SlGLRvaZf/9cRHFqz3IxW/OO+1lFLNwHMisj74+/VY//Vm4L4CV/HjIrJ1vmvdkDsiNz8EW9+JpfzN904qZaFkIf91iYuMyyJ3CXXr2+CTi0I0rUHbgTiSLF5fe4reDkvN88Igjl1EbT5vWQtgBzzHszskbZmdnYmaptXp9jQSESIDrh0gjGKiwbpdxLUyBEhW2IXUWIUHIbEyEy6Ss1sAxVeEU0FigJQDnkZlHbJxu31b+4pUhY9NO2B1yUchXO4jIaArCp4ilLYRC528QmPpermyINxpXpOoMPhGT90S37FjWj4MZUlnKnStdf0oUlX27RVJ66kBMFFtd0nGEnZdQXsKLZZWFx8JbHAg3+ChXCGZDAGKcMZGTzRa2Z2PwT2aHLABlCjKhzWOsb7Y4WZDLgotF0N2x6erpjjuVQNqql0K+4UyatL7MzVgg6UBGsd6Spw8Be696Q6iA5rjlNylfHYcYff/MVS1r+wkU7CurYV+FpQj0gtcUkpNDsj3A8e4ClfxDTlof/834PiXKY3yV8w/vBDmk3EtWAo5V6nbu/+snLouTfmQUHNZEUnCeEOBX3KWnLd8PM6aky6tpx12PBmmckBzcWee8TqfCzvznN+Vs7TFwhMVhFOwcb8mkoDav2oiciTGeJNP1205MnGhume6vnGETMxQNeRSMaSIfaeS+JPlkHSgKVNgoCJRC5d2GTJxoXeTDYbl5iEsHpWVE3xAnac651EzoKkadBCjOHa2En/URTdlyccMQ20+z70zQyYu9G00ZMqF6l5oOWlnlVsOxqjRedZXT9BRNU4kpWi64KJ9uLwpy8SaHNTlUPvGCKeFO75RRm2vJlHtc3lDFirzbFU5Qq7PcEuekcY8kQS0nFCWPhkXJATuhMPGj7QS6Qpx28ua1vN2pM1FDeEkNJ2xAaIq+6DhnCKSgOaTirJRyJXZwdXxFe/4izixCcWxe/JMNAqxcWH9QXvvx4KkwrORLRNGW8RGFywYQduOOtRdslTRVOUUnYhcDCZqhd5NcmV7F8Mi+6dxhExcOLPP8Idf9TlwbOU9A0vk0wb4ZeBflVKvAHuAPwD+CHizUuo08Obg73lx3VP+rgZTmThKad/FUpRea5h6voTztxp6Ogw1vZCssbErdjzmEMootr4QYesLEXIx4fRdPpl4wSNb5B6sORXi3/+n6ivKx4PNLjKrH2fKhVN3+yQrxAYmEogfibL54Y1k4sKRBwxnbvIYrfM4tzNNJK3Y/HIsWJASlFFE8dkeG0QqJhg61UTtN1x6t/hcuMVuFjq3z3Bun6GyT7HlWTtjP7srQ+LmcX588wC/UjFMz8U6vnp8AwA9A3GGOstp6gqxRmwCh/N7fdJ1eRSKcMoQG4ObH3NZ9zJUv+0EH7zrH+kxFfyiej9KoOlSmPUnYyTXZwj/VBfhyjwtH69j46dDKB+2P+6SaPAo/5snuXfXKZ5QG6nIryU1FiL/cguITay77cngUQzuW+sn62j9ZB0Daz0O/VoCZYQNLzrc9JTLeKNw6nXWVbH1adt+p/blOPCmJK1nHTqeLcfJK1ouhrn9ey7pCp9/++g4RoQ7vxnHxospPl6Ksl84sw/GJhS7v+de2RcUdvp9tdO/Ep4vCdYjudJTtwJYGvYIgIgcAoq5UO5fjJwbctB+4I8hNQhHP8eVlL+laPXZMpaqJy2HbgESddC5y+6C6y0HFDScL+Th2llSb4ehf4N1mFYNzKaTLDyjqBxyqBzSiJ5kqVhcutlncK0dKdLV9v/KQU0kqUiXQz6g/J3emyZdbigbDxHO2Wh1Y3U+xoXKO7uJdfTBuEv0C1Xg2Rn27BfE1qcdKoYUx+/K0LneJ58rJ9qqCIXzXBpTDNZMJ7jMxYSyCYdwRhHOaOIT0yNWrgzKh4MEA57iFx76JJX+CF8f6eBlp45cXKgcscl1yzZP4FTlCfW5bPhosw1opYSKYU3b5kF2bzmGg8clVU0kYnC7Ivi9YbIVlrVxZfvZ9nj8gym6tng0nXfoeMFFoTh5j0eiDurPqyA7EHzl/54gVSl0HAjh5hVGCcffYBNIXtqSpbfdI5rUDK+zG3gq+wvfrJMzZCGaVESTUBg4arYLZQrBl1M4pakYlivrF8Mi+7j2FbEEdOzX/MzvKW7bvlSftaXBeu1W9poL4YZ0j5z7Ppz8GjMpf8WwWBrSUsoo7NvLLEMQnJwdiB0fMHb3XLbMlplQEJXPEcpG7eKh9iFbZsuMChLtzqZxFbuWFvxJP2vw+S2OEBudWVf7MFFj44lEkgrlWzZE+YgmlIFc2EyVxcc04QwMjcaQvLafpHV5vIhQNmzt0x5T9ZPVBqOF8mHHpvfSwkAihslp6kMZtA8OlrLnipCo8O34FbJxP5SWqfuWqjL4ytrVd2Et2XyY9YwgWGpiLmq5hn5vGGMgV2bIVxm8iF3QMy6kRuIYIJd3afCTkFdITc4utiohWW0pffaKdoei74AXERrPOjg+pCsNviOIFioG7GCdK5Op+CYNFxzCGRhptiu+EjNEMoKEDLFxHSwYG4y2fWCi1kZI9IP29Qv6wGTfmiybivI3u72DxVDfCSiHoUnKn0wfXKpnx1cc/nnNWOcKD6DKhjpY6GdFVboR2SOvVcpfokrwY0JFr2KB7S+LwlCLz8haoXuLsO1JTW23JlkraE8RSkL/ZsOF3YbbvuEQG9dk4jYTS22X4vJNhp4thqbTirYTzsyEwAGyUSFVLVT0KwY2GgaDresbDmmqLmv6thp6NxtyMQjlYKIKq8dlbVkI2O31I61Cdbdw4vUeZaOKtcdDjDcKNV1wfrdHXbeD055m5L4E58eqyW6c4ORGoXV/zEb5O6zoeTBD66NRnn5rjrO35Blvz7MxmqNuxyhtnymn+ls1jMc0r/zyGNU7xhj81DrKe8NEWtI4HUlk3xjmjzeBr8m6HiNNHsNNHj/++5WUD8H4Pz9D/x7F8Mk23H9oYs8jLt/4i1EuNQiugQoMl3MOD3+ymrEGKFuTwN2UJPHwEHWPOvQeXEf+3f30xaHvRC0bj0apHHTZ9ahD+aBmpNHj/N4cT74nzVv/uYpELYw2+nghS6+85zM27kD3W5I4GU3N81HSVVA+AJdu9qgacJBdE/T95Agj9yQZ+9/tXNjo4fiaxp4QVQMubUc0bUc06WphcK3Qv8m6rIZbhH1fdygf0SQr5QrK5iQ8R5hoEGJjimStYWitDb3QdkzTud2w6weaysEbg/K38dYN8vvPfHTBeh+M/vSNE+VvKVHqoH3uUZuaKDvGzC+2RdCLipYttYyCsq6bfM7caXBzcOdnXVy/iAPvKnWTgI6lA2oZMyK2zUHVmjzqCDJJ25s8r+BaiRrhwLs8lIJd33SoHrDB+Y88YNACd3zWJZJhSoZMXkPbmfHshcqX3+wxukao6lXs+o5jX14z7BO8csP+QyfxKg1nuuN0dpcTF8Pttw0Q8uDQhSqGBmPEEg67nozjOsKLdyfJVvrUXApx08EyCAn4CqUF8YOAzSGBgEK45XGHpnOaRK1w8O0eGsWhexIka3wqRx22P1eGm1M4HzmHqvDIvViJ/41ma8ZknGxjXSSZSp8Db0iigQ/sO8Gm2gkujJXzzwe2ojzNnsfKqZhwaDyl2PakQy4mPPd+Hz8qVgYQTsKdn3NxDZz4P5cYecsEpidM7u/b0Z5i79ccKocUgw+Pc+rvLiGusG/XTTjjDpe2GM7dNslxsIyeLU9qWs5oJmpsImJc2P112346cLmYEOBhY58HbeWFhGd+zENc2Pi8pQ2aoE3FtfWLUv6W4Nlp2Akf/DZUrqEkLNWg/XvPfmzBej8Z+fCNE+Xv1cCa22DD/cyk/C2GXjRX2TS3KvhTrkHGzLJ01XQgfz0zts/ccmfJmKu+Ioi2Zx10zKbMFKVqTR71g2OFA33BtbJllkTnO3Y3ozKWJjdZFk7NlOF4wSLYFN2sYNVYIFUt+K4QTjMV/H7yPouSqQUpU+mjXCGTce0IWW7AEfwyIZV38UIQTtsBWPKaTEzIa0U4ZymNeNaHYwfswLa8thRCo4iPW/qfCQlaFEZDusKQD0E4abfm+45CavJIRNCDEbRv7+HkfZ5MPpANdn96GurKM7ghn0TWRSt7j6JpG/8kGuwrcPI2iS9melUglGGKFpnenMUvM/gZF3GsKyWasKt12XU5sJFjCfe7uCmbOHlqF6xYV1fZuA236kVskgQRW6YnkyMr0EGyiMK2mozG6Dt2cVIFuzOVTNef8eJfoH+KlqBjyrz10LDv56GipcjxZcSkT3uJ2CNLghty0P7+b8KpbxRZhFwi5CMwUSdc3G39jFe1gjjrlHWvODSdVUSTinR5ifIWddnZg3Wx43PJnfvcmsuKdYc08WEYrzekqkwweNnjh9/s47uFb6qZ18pUCCMtwqWbDf1rPcarcjhZ60vNR+1M/uJuQ996jyNvyHJ+dx4noen4hbXQHWZjr6a+18HpjJB+rA7TG2Zrr42lMdLk0b0+iyBs319GxbCD7wqZqCFR6dPZkcUP/NeRpKXQrX1FoeqznP7Pg1y+K81Qk0dfWwYas+yIZWipSlJ3Sx/Vd/SQrPQ4/1w94ZMRWnoNZRPCRLVH5+Ys0TFoPQHl5KmuzrK+JkXZuObZL27j8uVKHCCeExovONRcNLiVOXo/MMrIGxM4Hmx/3CE+DC3Hof6izfaei1r/d+z/bcWcKbPNFLa7No/c75OPCE2frqHxn2qIH4uS2JUmWWUDdsUmAvsOK+LD9r4KUN2jaX9pZvsNrBf6N0xS/qbbKltmWUDRcfv36Tt9ErXF2ra0QWxwjceLD2bo2egt3JUNfP/X4fS3SxK9pFgKnvZS4oZkj4RiwSxbc2Wkv9mfX3O4K4rOiANo3z7ksXGmdvxBCXLn0SOSsklX55RxlXIn/zZKOPM6n95NwoaXNGsPByyJUmVgtyp//2dSHHxzhru/HOOez8UQx34lZMtsbItQRlExDLu+51A2rBhtFpSxOwuPv8EnXS5UDcBIM6w9rmg74hBN2Blt2bDGCxuee1OC2h5NqqacRA20nFI0XNDko5pwRiMipM5WkPvzOCEN27Cz8HM7XfpCYdo7o+y9GCJTbjh2R5JLW3N0HIqy94k40eosW3/hIGUbxvn0wS0811HJpsNh3vnn5ZQNw5k7DDLhEsqFife4hHOafd8Ks+6Mw9lhj5pyh2hFFj8ihDOa6P5KUp11uEMKv0IIpzXxpCYfg8zNGfilLsK1Pg/+Zgt1n6nhxbeX8XdVNhDWtgNR6jvDrD/qUPWsIbMZnJT9Amg+q2k+q69ov65twmiD5vSFGtwc7PQ0LhBJ2X7pjDps/vU1INB5s8/Z93mIBjdnH4XWE5qO5/V0m2ohXT2z/bRvOH6P4eTrDDsec6jt1qSqhCMPeCSqbX7QtmOaiQYhlJ01YAX65iPCydf7DLcI237o0NBZ8BUX9K34qKaux6FsXBeVMeN3BcaAG2VFISwd5W+pcEMO2g/8kaX8vfIvRSaN873S5/uUK4CTt0GBms4XIbQWu06pM+LZ9Up1vZRwPFEHl7fYz9uarnn0niEjeFqCv4fX+Lzw9jReGJs0VhSjzYaBDZYTXdutCWWVfZCVgCgaLwAourb7jDUKKBiIW3nVPZpQRhHK2B2CiOLMLXnSlYI3qpmoE5Qotjzt4PiK+JhdhMuH4fyt/ozvxESloac9FyQwcAnlNaMxn3zIshmqB1xA0XR7Dw0dwxil6BypgDBsfyJMfFiTrBK6dwhkHTZ8vpKqgIpXd9kuwA6Ox8l7kB+NopQQEkV9TwgTUow2WzsjWUWkJ4QfhvEP96NaPSqfLaPxczXorOL5t6bwwtDY6VI1GMKLQk23wvFdQgcmF+9mzx4UyVrbfig4u9PSIuu7XZzAnbHlGSf43fo6jIIzd5qpZvbCEEoxlaZssk1HW4T+DbZfTLZfptwGozLafkkBdG3zSdRYd1f7yzYxQ203XMG3DOQOBouTxrFZ4Iu51mJJzYZXQnPKKIRS8K5/hI2LYjQvDVZ6Jr0Qrq9XyBLh2BfhyGdKdI9c5SBocQ2NeRUelauSEdSZjI3seMFuuHl8iIKlgvlO4HMMKpWPaGIT9oV1/uY8viP2ayOg2o3XF/ompz+XjRYqBuwh5Vm6oShhcI0JXCcyVX/9yyFCWchEjfWXhnwSbR6UeRA2SFgwjsHJCsoIyrdfO5G0msqUM1bjgQjloxrHA0cJiQYPcQ1jXRV4ovF8RW1ZBkcZum7OYiIG7QsYS4UbaQnugQ786GU+1SMGFYQTFLEvA18HlDdlf3wd3LeQwb8YA4FMew4/ahAtrH8lhJuDdNyf2rE71mj9+H4QPmDy3nthwXPssVBGgpRfUDXo4niQjVpaJAKjTTaRgRf4nEGIj8yM8ueFJ49NoyyIAul4kztghfIhZRemsW1qtFDVZ+sZx7oHZ7bxlSgfmfZ3T9TO40KcR0bQGe1/Br79KzB0ev7qSw1RkFd6wZ+VxA3JHllN7FscRgtjjcEDOOth8R1huE0IpUDnhdG10LndcMeX3SlaHoCvhWfflwWtuekph/ouB98Rxhss42OSqjhRI6SrDBW9itOvN4w2Cc2nFc3nNZEJ+MJvpri8IcfDfxtn+zNhCjfi9K33bCyRtgwD/+ky6x68wPiX1hHdO8rEqXLOfqOdx9+X4fVfKmPz8y5j96Xp3+aT7I7RvTHPmgsue8wYNRcczIEqXvnPw5iHRnj5aD1jyqGtz7AplePJTSHeuO8Sm2tH6PrmWk6/3MqR27Lc9FKMijFNR9UYABcScdbe2s2at13iqX/ZRaazgmzE0LsxT6LSZ93pCCMNHrXdmpp+h6N3Zbk94+HeNopekwNAJRRbfrGNypdjnPmVfsbKHPQPGigbUww3C/EJRabCcrCr+6BrqxBK5nn5vgyu79LS6RKKCs7aDNIVpeysS/1FTVWf4vBb7MB+uT3FwFqftUdDvOFzcap6oWunTCUCzkctC2Ws2VA+qCkLZt2JakP3NpscOJq2A9BYnaFzj2GsQbjtKy6RjCIbE7JxqJwnxrZRth9pDxxP6NskrH9RE85f+8D2alD+1u3bJL/xwh8sWO+XnA+sGHvkhnSP7PsPcPa7Qezd+fzURfy5SjNFTyulftGySV964bFiZaXIvRoZc8jVRlHbr+wMb1b9A+/yyFRB4xnF1qccKo5h/d5TsZHtg+oYxd1fjIBPEHxIcHxFTf8062BgneHom3yUsrGdNbDmsGbjixpxhKd+zKf1Upg3/FuM5nPTjPTJe9900WV4jeGl3WHU0+vofKIdJ2Ro/sxGtjzrUB0Rnnh/hid+LEX3R8Zpb0jheZoXDzegfMUb3/8Ka2om0E9VY956B3f9RhN/E4kw3O6z7bEQ7/yLCnAFfeQE+bIwR76xHfPDWuIhUDrL6X1p3rPnNFsaR+kZj/H8C9vZr2rxnqrD3SD4a1M2zLOG275dQdhT3PWVGBtfdPAiQkUigokK0pqFlpwN6hQXTn+ii5uretkpOcwP6pGvNyOieO69HolGofmEYsuzNi96+yGQsMtwi2H/j2QY3J3mzlv7cYwi9y+tpMdCdNVApxKUhpfekCBbYai9HKJuJMqJNxqMsqG/3axQ/bKl+j3zYx5Kw02PKcpSMFEDL77DR2loPg3RrIBRVA0pbv6hYyl8QTtH0ja5xXz9/uW3+Iw3ydTWcw2sParAlyn64tU+fy23wPo3sOKQVffI8qOuA5r3zEH5U3OUTRaZWceYv37Rr75iMmaXFdOjEKXInS1DFSmbpe9c9uVilsbl5gJymD/9/2w30OSxGTTAArn5mC32J7OmK4ikbX3j2MFeUMSSCjc/eZrlg0vgk81FBTT4nqXh+TmHUEJDXqHyNqqg70Ak4iNhwVNq6poV0Tw67EPCUuJUVpOqEHyjKB+zEffcrMIvtxlrmLCZAybzBfkayqN5dMgnJxqtIC8aEYVn7IuHIIRpKK9QviKStK4ZnQ+++D2FKvem743Yxdaw40PEoEZd0ILOK/IRa3c4E0RFDE7TOUWqxvqlVdj+LyGxdqkg2UCw+zQfEXwF4YyaCpcLAe0yF7SHawdTX2MplWIpfwQ2hzMqmBTYe6+8WX0goObNoLoWdg1jwwL4LlPJhX0Nbqagf1zt86dg88MQq2XFYZRe8GclcUMO2j/4bbvBpqhP+2oW9661/rXIKGXhtPDvq7Rv93dsFDdlZGpCtCBFcA5/ZNNpRftBTfVlxebnNDXdNu50ukKYqLW5Civ7IBszJKrtQti5fT6jTYazt/kMrLf+2VASqnpg0/Oa2i6rW7pcSNUqbv1enKpBh8z36vEPVBE7F6XjVBgEPndoMxdO1tNT43D+dTlGmg23fztOOKs4+GCG59+eZqRZiPzpOir8HO1vP0tr6xBtJzUP/005yocvH97ImRONRM6WseWEy9qjLg/8QxmtGY/WhhTtrQlqKrNkfqwHIj4Xd/sMrjOEsoqbH3WsD/krzUQfraLu6xW0/UEjo2MhvnZsA50n67ncpLlwb5axu5JU3t0PMZ+u7T6d92Ttjs/f62VkrU/HgSiVgw6plMuxs1WIgPtjl1H1uRkNe/OzcWr7XJs9JwPVl2Hzcxqdh3O3GM7c6nFpW57uDRkq+iETNyBQ3WPbqKpHkaqyyZe7thq6t1xJ+UuXw1CbcOYOGyaAwsF7Uo9HXRrOK5pPQvtLiqoeRbKmQM7VPn8CT/13OP2tEuouIYRVyt+KIFYPTgg8Q/HkvlAyva/kerPrl1p2LdcsQY/RZsOx+3yMhn1fd4hOFKdXVQ5pdn9HT5ddhS09W31O32EoH4Ldj7hsOKS4cIvPWJOQKxO6d9jsJ2f3ZOhry3HnV6O88V/jhNMQTWrKBxX9m+DwAz7hNOx81KGyV9G5y9iM4uXQu9UnHYdYzmX3UzZho3/YDrRvesLhR88rXnlzjpPrmzDacPInM4zUJdl6MMZt36ugfM0I7//jL9AeH+X3nnuQZ/avZfflPG//eA2q1+HMX/TyxteNMn6wmjN/tRtXG5o/0Evr5iRl2SY6Hqkh3ZTj5OsTjOdd8t1RyGn8DRlO/XoPp8s9ur/ZxLF10HYuzKbvNJMwcGlrmrNH62nsDnH8pfXEJuDm4w4VfYpN/+ksFf/jZTJP1yM/tZfwiMu5vcKFt/iM1/qkKg06r7j71xvZ8cxaXvz5ER55KE1oIsfup+O4OU2ixmOsziOacNn9HZfKfsW522yAMDakufyxy0iZx+0/v56Or7tBE9tZedsJh7bjcOiBDN/6D0lq+hw+8N8rruhSkTSE0sFGLQMjawzH7zWIwL5vOEQSmviYYuf33Rn9YqF3f0l93LGUv2jNPLKWBQrvOpvb3pCD9pv+GyQH4OV/sA1dFIt94xdzlyy13NllpV5zHrmXdhoyFVAxAOHUPE9PUXdQkSduHn3P7rNpzeKjeuoT/9xeG4QpGTxsuajQ055DNGw+GMYNFjnDWUDUVCTA2i6bVFahOH+rHXxS1XOrHx+BhvM2sH+uXOP4MNxkGKvzEAdq+l0co7hl/QU2VQ1hgCejdSCKdZ+pRXdHSW3O0v+eMbSG+PNVSF6jtqRQHUkkJIyMlIPRDEUU45kQRkPlCzaxr751HFmTI53VHNsoiChq+l2Mqxir87iwIw8K2o9HcHxFbZeiskejPUX1w12osKHsiSqkyyUfhrHxGGjo2pwlFxWazzrc9GwEnVfs36bIaUVlQk9R/s5vz+KHLPumctBmz7m427pU9J2j6No80TNhNn+vbMaib2H7PfpTKXIxYe0xl6p+fUU97dnkENW9AIqLu+yLtKpXEZqMTXItX7Lz1FMC7/88tL++RFlLBIEVDwi1EK6vV8gS4dA/wCufAuMtXHfBDrUUrpDlkluCjLqLKojodyXday4ZgqV55cMEgfIXvkleyNL6jBZGmwy5iGWkVA7ZWZnKT1MDwxlLGzy7OzcdiD9wtTQE+iarLa3OCwllI1aur2X6s3wWMuXWRkGoP2+jBpaP2ZeHVmITFLiGrsuN5MXBE8WG2CjagwvbPYwWQv0Obl8I44NsTdhkukMh+7XmKfSGFBihcsjBzdoNK5ky32aFOVeG5BQhhDIE7cNIvaUexkc1kZS1a7Te7vmeaDL4QYRA+U4jktaoW8aQgAIZyggYob7Lxc1BosaQj1j7Ow6E0B5kyoylUPqW9+3kobsjj+eCaEv5A/BPxSGnyNf4eFVz82C3PB/GzUF/+0I7FG1b1V209zlVKeQCv/ysbrEwSnz+ROBLPwEDx0qQucS43twjC1L+lFK/BPyriIysjEpzo1TK31c+BC+vUv6mkIvaTQ7RZGmda6LKMNomdG813Pp1m1R2PmQihsNvzPD8OzPEEyHSZT6NFzS3faeM3i1i2SiDis6tHmfuyPLKG7K8/ovldDzvUtNvVysT1cJos6Gm26bL0j70bPA4+NYcF27OsuPJCINtHvFRh46XI3RtNfS321yLVaPB20hgy1OK6lEY+6VuRuoUZwarGHxolHW1acLPV0FTloHmLIk+h57RGt70T3E2HHI5vztPzxYfLQ6nHx4llXTZMSTUVedQrRnMNxrJD0bQGY/Gsw4tTo6euzNs/FQNB98AXgyI+lDmIyKk900QO15GzXNl1F6GysuKp37So2JY01KWwL85RaLeo/W/tlE+oDj3/hEqj8TIbc5w6q1pLqWjfPD/qaFyQHFphyFbIXQ869KzxdC13aB8mxi4/ZAmU62Ij8CJe/IkqyCU1dT0Ki7sMVYvoHLMp3bUsO7RmA1GVgTZmOHp96So6XXZ/WikpEiTPRttBMn+dmHzC4qabof4xPIMYq8G5W/Nvg75xQN/tmC931HvuK4of83AfqXUQeCTwHflOid33/mf4OJTMHqO0ihxk31sdtms+lN0pEIsUsaiy5ZAbrhwq3EJ9lWMKcoTiraj2jJwJk8opptANKvY90gMEw+RrBcazmq2/dDBEVh3OGDx+LDhuEtLp4OrIiSbhWwFMCgkq+HAOz1wYO/XFPFBxWCbcP5OqEqE+IVfLiOUZ2p9wgsLX/qPY5gQbHw5StVYkKxRwZnXC3t+dT/rNo3ijVVw+MWtyEAZLf/WRCir6F2b58yuNILizkcqSDfBN38lxeWNOcQFX4FOh7jpQIzq/hAGmQrc9HJAq2usSbOtYwwHeGGsEp0OaDIZxyYZ/u0zRLWQH2hhbK0w3mqTElRMOOz9lkPlSA1D7VX03+dz9nWGZx6cwIRhzU8N0tE+QVMO3rF1OzqnOHWHT+9WGz9EAW2nNAMbDGNrNBM50EpRPmrbd9szoeklHEc4vw8bMEtgvMoh5zisn6dvffKPxxhe57PtqTC7fmhpnQv1rZbzmvJxoW+Tz5l7hD1fE0hyJb2vMKTEVfbxjQ/Apjez4njNUf5E5HeADuATwIeB00qpP1BKbVpm3a4aZfU2fKMKosRNIWAuzesznscnN8UfVVcem1OGKqGs2ELMUsotUca0fSqg9Sk7ihUO2EVl2PrGAWUsjU8LKI+ZMphMJmsfBCeYwftB4H2jbIgABPzQ5LWsK8XJWzeLDh58Y3P64gZRA+3HuaXhOVEfCQkeCqXt5632FOIpm9DAKIxYWSJ2p6BxrQsGZdkzjmd39Ck/iPwnyu5adECFxS6MBeFdTUGuRVFWhjhARge6CmjrPHA9u7MQJWimEyX4GnRILEXRKFRAJfTD2HC2k5cwCj+k7Dg4m89s7KYpLQo8G5lwMvWemtUXJvVE2R2gCORj1j43P0d7F+0DNlmyEqbu2xUDMUzvL7jaPq6g/iY7215pXG/ukZJ82sHMujf48YAa4AtKqT9ZRt2uGo9/FDqfnjUrloKf2Si1rFBOqTJml891/mL0WCq5QbkprHCV9hmE3d9xiY5D7wbh4s3mShVFCGUsvbD+QjCoGKgYUGx/zJblYgKiaDin6HhGU3/eRj08tyvPD34ixUtvzBDKKj70m1VsfS7Epuc07oTQ35bn1J40BuGV/7OH7ou1RMp9tq0Zp7bXIROznaH5QojmcyGUEl5+fRJfC+uPRlk7Ai01abZtHEOJcPLWNOR9Wo7BxhcUww15whlNVb+D83QV6skKat0UN//fL+KU5e3wK0DSxfvEWmq+VUHHfkU1WfQto+h39ALCKw96hO7vZs9DB3nzbfup71R84PcraD0TQv+gBvfzDVT9oJzsmhxGCR3POrS9rKjotXxug3Dzow4txxWxEcvHLtZ+WhS3ft2h4Zxi03OKdS8pqi8rclEYbDOcusvn0k2Grq2G07f7GCX8xO9WsevRCBV9Gh+Z8TKabL8rkgELVAwy3X5R236l9K2pY6X0cYEX/urVofx56AV/VhKl+LR/BZvafRD4e+ArIpJXSmngtIis2Iy7VJ/2E/8dnvxv4GW58lNrEvOVLeR+KEXGQnKvVsYSys3GhMNv8RmvFXY8rmk8O4sxUIKMfER45SEbDOqmJzXNpzX5MODYLdNK2Qd4rNFw5H4fL2yph/HheSK7zSo7d5vP+T0++ahd4HMzmvJxSFTBmhOKTS84ZGPC3/3lCKP1wsZjEdrOhclVeBx7Y4JxY/2s6bhQ5Xrs3jqCrvRo/aV1bPx8JdmyIP2YCAd/Nk0iHSZTbogmNLExxb5vuLhpGFrrUdPjkuzIcuzzFzAtObo6Y5zoqmbjy2He90eVhJOQqRbKhu2dNCEhV244+KEsmWSINcc1W/Yr/IYsx96bZjBRya5HNbUXNZd2eHzutyZIlxkaLjv0t/nc8t0Ib/vbckTB4Qd9htcImw5o1h3S5GJw+CGf8Tphxw81jWdKaz8RIV0lhNOKfFh48d0+uQjc9JSm5YQmXQGHH/JIVcHu7zrUdinGG4XD9/vkw3BbCe2XiQuHH/KYqIGdj2oaLkwHKROEE/f59GwS1py0AcGUqHn7gHJAu/Dhx6HtTkrCUvi0W/ZtkZ858JcL1vsD9dbryqddD7xHRC4WFoqIUUq9fXnUujbc+9sw0Q0H/y5gkMw3cyz2uXYts/H5ymZ/+i3FzH+h+nN9jgJjzTatGBpqLxU+8MGboKjcwm9fG2Rool5AQV2njf4WyRB8j0/L6N9kyJZDJAGx0SKfk8XohYEenTcbFGo65ZUDiRr7a123xs0r+tf5JKqsHjW9IfA1Y2WKpOeAA8lKq0hlSwa3ykP5sOmzlSgUsaSA2Ch/6UQE5QRRB1GUjSvcnJ25NnTaSIGpO5KY+jyC4nh3NShFx/MhYsECXHx48sbbxACZCOTGw+DYuOkqqxiIRRlJuKCh5pJGi+L8zjzJKvtF0LfO7tbsOBhGG8VEnTDaHNzni7atxpqMjWetobbzSoreXJRNhaJsHBDFWKPghZhqP4VipM0nXWXdMjXd1qfRu9EnW25fxMXbb+afIy12rWKybxX6OvwQ9GwK9O7W0ynsFujjH/hq6QP2UuK16NP+3dkDdsGx40uv0rXjhb+Clz4BZtmj/BVBqe07n9ylkFFCnYpBRShtfcWjrfbT13ODh3jWiaIs3SwX0OrA1o+NTic86O0wwSd18IlcgNqLCp23M7DBtf6UDKOEfEhIVk1HHjRayIWFdJn1UzedUzO38Ps2frTyYWiNPa/2sqau27GbPpryIELloENsfPrFoXxI9EXQE9YhntyTnjQOsJEQ48MKQciH7bVTVZZ5g2ugOQuOofL5MtwRFzxoDHkgcOr2PNlYYEMBr1e0EE0JTtjOHno67G7Cyn5wMtYffmmHhwkZNpyDmDHoPFSMWIrgmb2WFhkbh7IgfvvQWoMoIT5q/7YbXaZnAJMJeydqzZWUzamx0/5SPqTsIqeB4TXW5qpejZux92us2Z5f12lfXl7IJkJYCFUDNuSu8gv6VshucXc8obZHzWi/OVFw6LPvgd5DC156yXG9+bRvyCh/X/kwvPyp5dfnRoBgI7dFk4qBdsNgmyGSVGw4NHPmNlpvGG8WLuw1tB5T1F3SiBZGW2C8wVA5oOjfIFQNKqouQ/MZ5wrK2KXNeS7uyXPmlhw/8V+qCPmK89tzdN6c5+i9eR76ZDmNFzQ9G/Kc3ZPj5J05dj0eZfcPIqRrFCNNhmQ1VA9A41mH3s0+Nd2Kro4cubiw+cUIL77DJz6m2PEDh6o+6NlsePRnMozWe9z+rRhtx1zGGvP07slyx6cqqBp28FzhlfsyJKsNW/ZH+cGH0/SvzbPzySjtrzhIzKfrY53ctu0ED/7KRSYOr+WfOh7g0LvyrHsuTijhcbkjT6JS2HwozL5vxYgHgf1H70gw8bokI3ckKf/jdYw2Cx3POVSMKMZqfI7dm+OFt2Xo2DBI+7phtnyinswn11Mx6DJW51MxrKciMo41+HRtM6w5rvHDMNIsXN4q1HXB+pdd4mO23kCLx8WdeV54Z4Y3/ls5td0aLyTkyxRrjusZURsL+4DnCofenKZsWLPrhxH8iCJSsCHLdwQ/bNO4gY1l0tNhNz61HtNXUAlF2eQK0aSif71hcK0hPqxYd9T2rUx8khVT2qDnxuDd/wTb31dS9SVxjzTv2yI/uf+vF6z3P/WD15V75DWHe34TLr8IA0eDgrn8vpMohYkxWTafX3mxMmb7pOeSf7W6lSBDiSKatL83XFLUXXKmFvkL5VYPKaI5OHs7dN4i1PRB3WVNzQBg7PDcv8mjd6udaTafY9r9E8hYe9ZlzQWXu78QCyajwobjIeqGXExFmIu3Cg2dsOVQmHwZHPiRLE/+WJrbvxGjrs/mTRzcaEjXweWbfBTw5I8mGViXJ5bUZOpDRDOaXd9zqB5UjDQbzt0J7acirDsVIVsDz3wgy5mdaZTAG//KZnB59ENJDrw9QyinyNaGaLocpvFyGKJw9AGfQ/ckkXwtf/0nn2RL9WU+/YE38Z19d5FzXT7wmRCRXJjHfjzFqfenGV6b4e4vlE3d5ur9caoOltH25432NgT+WRRUjTjc+fUYT/5omgO5Gtw/bWHbp+JUBINq1ZAz1QbpSuHgjxhEQ+spRV2PAm24tFvo2wobD8Jk4omGHoe6AU1ijUvPdqHnJoMGwilh3eGCj+tZfeCv/2aUkTU+O34YZvcTUSJpNV1PwPEVTnr69OOv9xncIJSPQtvRueUCNHYq6juDvhXIi6bUjPoL9fHt74fNb2HFcb0lQbghB23t2tgjwOLdG4uFzPH7fJhvgF1xyNS/ilmR+4Ijk8l08a84DWXUFS8hUdYfij/bpzqd6bvQfh0kMhDNVI5XJTJFU1OFg78Kvuwnr+PY8ybVUAX2THtogmTCWPqdBFQ4K8Z+svsuuGaqEKUErQJan7Z+TW0sQ8SEANdyH5QwlZyg8OUt2OugZ94jZVcCp3WbeqlZmh+eovCgTNk8JWD6vgR2Td3K4EVoQwDa/5SoqXtx5dAT6GiC8V5PnzO7jQrbd8bfpfZlUdO0xenLLwpOGFY685eg8HEWrriCuCEH7Sf/O/S+NKvwahfyllPG7AXCEmUYJWCY6X64St3yIesj7dts2Pq0SzRpqVji2JlV/zrDQLtQ16VoOq+55RsOl7calIAfCHECPfZ+0+Wlt3r0bhBCSZ/N+52pcWROW7Db1Hd916Fvk8HXMNQihLMuO39YBr4NmJSoUyQrDWVDUN2vqOvUHLnfZ9MrMcrGNF7YJgIYbPD47G+n+JG/KKP1jMuORzX9G4XGs4ozdxmaz4VRHozV+zz1gRx1F4VEtU95PEt1ax5+doyWF13qbu2n+3w94ke5eW2Svqcb+JXoX/Mb7X9Nw/YQ76y4zJkvbiFRbRguh/rLYTYcFlKVhufel6ds0HD2lhwbXgnTcNllvAEb/Q8YaPcZa4KJah+FT2xMsf6VEHWXnBk01d5NhqG1QsM5TWOnYu+3HHo6zKRbn6ou2PqE5uTrDQd/xOPWr7tEE/ZcbRS3f8nl0g6fyn6FFxay5dYn7XiWhTPcbBhrttEXtz/h8FO/Vcmz785QOaCQIv3UiIDDFNf+picduoYMfhAmV5uZ9RfsgyX0z0Ic/lc7097+3nlkLQPMQtl1Vhg35KDduBOcCPgzo1fOxHyujlKxFDJKlRvgwh6fC3sNsVHY9/XpHIFXq1vIs7kuq/s1kZTNMv/yWyy169ZvOjR0aqp7wfHtbKxqQFPVr+m+yeeVBw3hFNz2VZdQ1vo/7/iSa9NtzTc5CfTo2exz6h6Dk4M7vuxS+6TtjqKEqj6H9sMx3Aycusen+yZDZb/ilm85uDnh8IPWl9p8RvPGT5Tja+HA+3zcfIibnwjRfCFENi6cudOQroCGTs2dn3fp2uqx//eyZKPCg8dibHgpTE19hnP/aQQ3Dze/bwMV+8voeX09Y9sdG/jpQBXVEy6tL5bz5OE/REV8toWFbcMhvvyfErxyX5a6XpdtB2yG9BcfSjLS4LPz8TC7Hovg5JnaTt71q/1c/Ei/XVfNa4j7vP1X1tL+bxXBTFQhSvj/2nvvOLuO4873233OTZPzYDLSIBEAARAkQVKiKFGBohIVLa/Xab22d732ep/XH6/De37e5+dd2W+9ttfeXVuOsmVblCmKSpRIkRLFnEAkgsjAIMwMJue56Zyu90efG+bizswdYBAIT30+9zN3+vStU9Xdp0539a+rDr3fZ7hDaOxR1Ad5GmsGNDUXNee3+hx40Cc6Dbu/5rLqC5pkuU02nU/lE4pNL+Qecd8RDjzoM94khOM2272bhF2P2zpVow4f+Mvyol02uspw+H0+vgN3POZQNm5RO6sPXOYsdInPjnLspdo1l3e7yyX7glwx2llSSvUAU9iJg7dcjvy7/g8YOQ77/mKBoFGFfuX8sjlCzlM+X/3lcJEswKNvkzVWlaNq7im3+XjM0a/QXRFUEUV02l4bbTM2iYGBykF7KjKcktySPeDVv9FgQlA2qXD8ubxcjzzXSJF7BjwGNlr4V8WwwknNz6O/27ot6i/YpMHpsI3rjLJG200r4vU2d6FCsXq/TXI70m5nl2iovaBQoji3JU0qZvMtrt0bQqGYvX8KHRIiPWEq9sVQvqK/OozJJGiYtn6A1qPaujDSGT+O4uB9ScSB6hEXJYpU1DDeYOF6O5+KZkMIOLO2/sUfG0UiFkSmQj6ioPMrVXPSv3khGM7TL/tiDvqvf6MdA+VjNmlCfv8VHQNBHyQrgjyQGlKBba4cUcSmimwGFozP4dUmm64sOlmiEStljJf6/Al89jGbvebakj0NeyPRjRDl790ismM5d15f+D0b6W9ByN9Cmx/5JAtcK7Ws2LXL5Ntx2Aa2n64L/JGL3UvIQsDiVdbXChZq54UsaiAfplZ/QROetTZ6IBMIv0gbtR/ROCmYrZZc9MACb41RFjKXuWchj5a3rLGOVwpehKIkSqjrAwxMNlnYoZuy0QAR6NtgbCTACaFqyJYNd9p65eM5OGLvLRb+tn5viMoRjSg4sSeNIDQ+XI0ec5hpTXNxVwJBaH1LoXzbbsmobYfeWy6FNO5+ImqhcfU2UqCbhrIZjTJwfHfKJv91hHilbfPoN2qQlMKZ0IT7LWxw/L7pbPuIFrQnVI7ZopE2CxH0HSER9F/bWxYuN9EkzFbN7b/CMSBKSMZstMTolFBz0bZRdMpmyJlqFBtREVlwfDb12HHhhSFeXcS6LtWuXcbz96WPQe9rS7zPFZJw40H+bkr3yPCxRVwjzHPtRvR7F5R1HHJofcsahcLkvPPxmKwVppuF8WZhyzMWujDRbJhoEtJRYf2rTrZ+2Tg0noAL2+HcLYaG0xrXU5fwXXXcofGURhDGOoShDp+2o5rqIfsmSURgskUYXOuz6TmXUN5MOsOj+YxD41mNUcJ4mzDY5dNyQlN7USNKOLfF0LPLEEnAni87c2aEnQc0Q+0+I13C/g96VA8qYsM+pzclWVUW5Y0PG6bqoeEs1F3Q9G4xTNYbqvsUP/2L1Yy2CxOr7Aun8qVK1K+spff2FAd/PMV9kRD1vRrxDb1dKS50p6gfcEmForQcjRCbyqnyof9Zwc4no4yvEk7t8pmu84hNaN79xQoaehTf+HfTjHYILWfCzFT5nFsTof5vW+k8EGbXP8VwIpDUmmN3+5SNKGovKqYbhOiEYtvjmkhCMVUnTDUJY6uEW55xaDviEp3wmWg27H+/R12vov6CYrxFiEzZ8LczdfYgz2yNMNxuqO1XNPVodjzu4oUEN60YXWVPsvZuMGwcdhYcd5VDio4Dipk6YboGzm31qD+raTwXxKgJ6iXLhHPbfNyEouOQxp1vjC7x2REfVBgmz0Pb7fPXW24SsanmbiS63kZbgCeVUgL8mYh8fjmYvus3Yfgt6H2V3MZOsVkEedeKlRXWna9Mllg/U1ZsN74EORxTfFaVpQIe1WOK6nFF65Gc0asdUNQM2octD2RB32ZD3zZbtvtrbuBnDWZyBXwdYw3F4Xf7GBdWH8hAGxSxBMR6FE1n3NwksIh+WhQz9fDm/R7GDZLAKmFojXDmDusG2PVlN5vnECyeeO9H/KzffKoZBtZ57H33NMYBV4WoHnOpu6DY8qyD48GZ3YaZRojNKsqPaioOgxy2ah2/yydZ49B8KkoTMNgtDK43KOVQPelyLpxiYLXHZ37HJTbD3D4XaD3hEK/xqZhxKJ/VNF0IM9kCr3xkhtEWj7JJTcfJKLUjDqdDSXq2GMpGDK5onCnFiz+axo9A50FF+QlFxYSi+VRu8lw1pqgaV7QezfVffb+GEJwrM1zcJFzcKFkoXWYMbHgJyqYV9RccizoJLrlBoK66AU3dIFkkzZxxVDA+z+40nNtuDxpd3GDdP/XnyQVlC+od+IDHbD00nAGdPyYXe/4KywvLFOz6aeh+kGtON5p75Hob7XtEpE8p1QR8Vyl1VESeza+glPoZ4GcAOjs7S2Kamob4WJ4Ldz6fWf61ggdx3nql+KwX4hFEkcsEWcs+TYFxlCCMqcqGslSX8ihVtuy1POOsbHIBC0WDLBYs+K32bV1NgRtbyzz1g1tJkExWzZV77nDPg5jN0UVybLV9QWRgdLbMykvevTKR/Qz2mmNy13zHnqo02uoiOienCaLtZdtXYaMRikVcGBW8nwLBM1EHtVhfs3ECIxdYOuWBuKCCMKYqT29lgkiBeX2vDShlT51aOJ9Fchis3BnYoyo0FNn+y/WpDmTLwP6UyRvOgd74eXsfl4zx3O8zZUpRNPywCsJBqCyUMJc8OL+e9hUqA2lcyvNXQtlUn11Bu1GuIV1798didMOciFRK/RYwLSL/bb46b7ckCJ5rn6b8k2KDq31G2gUnBd2vOihs0B6dtptEY+3CcIfh1idcwomcEVgOEoSz2w0jnYbV+zTVF22oVD9M9pScIAyuNoy3CKv3OYy2GwZXWxRDyyk9x5h4QUjVmXphqMvQcsyhPNikMspuMuafvpusN0y0CANrDTu/4eKIYnSVYbxNOL/F0HZUseqkQ8WYPUrev85w8i4LL9z1TYfopMIJ7h+vFB79lWmG2zw2Px9hw94woWnhi789QTIGO58tp2LMoWpI03zK5pmsHLFxO6qGYbwF+jcYdj7uoj0YXCckyoWaXsXBD/h4Majvgfo+RcL1eeYnkrSfDNPQI/St9ZiuMazfF2b//Qnue7iC2WobTrauX1F3zsa8rulXvP7BBEPrDM1nQ6g7J3B2TdD/Wh3O2ShbfxDhlh+4pGPwxoc94hWw+g1F10Fn7sakY9+iThrSYQilcuNifJU9adjYoxltF2IT1j0y1QhthzXagJPKwUMFwQvbrDsLja3C/hNlEzDPVgt15xVDawwN5zQ1A3MttxcSejcZQgloPqUwrrrkBGYpVOzZuR5JEOpv2ywfeumvF633d5G7rtmJyOtmtJVS5YAWkang+3eB/0dEvjPfb0o12ns/D9/+hcCvfZ3o7DafM7sNkWm4/TE3uyS1MTwAZR+ug++3RlwZQNuZHNgZTedBxdrXnGUx3OmwsPchj9kqsrPhTHxq49gkug1nbQChAw9YaNfurzuUj9o42Toby9rKcm6bz+ki+oGFDe570MMPWWNbPagAa4hFgx/GxrYg2OjR9sCKmyw0JLatDjzgMd4CdecV27/rYBR84XcnOL/JY9v3w3z0jytx01Y23xVSESGUtLNcce2G25v3e4x02uzjt37H+m+9CISSeSuegIzOxMiAVEzY+1GfZDl0v6RpPaYxyh7ScXzF6x9LM1Nrgy1te9q6YjK8LmzyOXG3IRkz7H/XNMlyw/u/GOOOR8rt4ZfAECtUblxAgMaxPPrX+xx7p8VmO749BLTuNU3HoSIBoua0nLD/QZ/xVULzKcXmZx2MY5NNzFbD6v2a1W8U5zFVJ+z/kIcXgl3fcqgeUHPapxSaqRHe+LCHFw4iBfaWziMDa41O2bHleHYZFiqDn3oJmreVJsNyGe0HXvybRev9Q3TPP4tj7M3AV5V13LnAPyxksJdCu34a+t8IgkYtliey2HJsKdfnoaG11h8bm5p7EkxJAJEL1qTDHXYWVYhrlkwEtIUGenBseUEK5I9XQaKc3HOj7T1slkKo7rcP1fgqgx8GjA0mpFBoP/8+Vu7BPP0KoYcTTQYTBO+vGso9rAprSHVC8sqsa8NJ5W8M5GTXRjHRHPAatrC9VLnh/EYP0bDl5cicF4bjKWJ5hpO0lX28xfKoHFZZ90M4I8ecY4X2njqQZ6ZW8KK2WtMZC79zwEaVF8Vste2h+l6Vh5kP+natdXfFKw3pqCAoNj4TyyZ/wOS1Q2ZcMLcdhteIzagOeMHfOeNinvEpCsZarU+ltt+2W7JcbPQ+x8In5xtbk80mm3yharCYsS3SV4U8GmycEnFs4t956xeRf3BdAGkcz0moFHz64dIN9nLSckb5U0o5wOtAr4h8WClVBzwMrAZ6gM8sltrxum2LishpEbk1+NwiIr+zXLx/8J9twKhsJvZibV5qWbFrap6/ed+7DmhCCbuMz2ZhmcPf/tN1UKN8iE3YKHMqbYPKK2OxyPnHlzNkHCEZszGRL4FqzaNL+Rh2tmOgYtTOakOztlwZGO2w5rvxrM6W2QhvlplxbATAqUZ7z64DGuULI20+F9d7c+Sov6ApH7WwtLHWzGshX7a8Wa1jI+pN12WggXaJPVXjM9xug/PX99q6Q2sM8SohOg23PRFBe3BqRypI9puv86Udsnq/hUpONZjcC1LZKHsz1RZFc8muLNZoVQ/adhvptPC7ZHkQ/U8Ldf3Wnz3RbPBDFpo3GbRRxyFFeBaqBx3aj7koH47fnrIwwlgeHLLIuMj8aT+sicxYF0flCFk5LomMV6CyEuh8U+Wi7GkhOhlAJY2FRWZ5FIzjuvPavrB9GG3L9V8GvjjVND+MM0N1fYrKETVnbBW7VzEdVu+3UQZnCuCkD3/SJje5liSiSBu96GcJ9ItAfnTUXwWeFpFu4Ong/wXphvFpl0Kluke+8dPwxl8zN1bGNaZEuXB6l53ml48rRlutga7rv7SDjRK0qOwDrERly4rRRKNhssHOwDrnWSaPthrObTU09ihaj9t7Dq4Vejf6NJzTTDYa3BSse9XF8efCByXYGMwvm6kSZuqEsVZD94sOqXLhxU+luLjGp+6C8IG/KL9EjoV0yNB0rY0JPdUgrH/FuoJ6u9P0bvCIVxq2PhdjaLWhrlcxUy3EphTNpzVjrULPrT7Np63LQqE4/I4kb7wvwbp9IQa6PEIpxeZXYkw1WENQHeC48+UcazYMrjOMrRIqJhTrX3aKJkDO6DLRaBhbZThzm4BjoXDbn9D4juGpn0xwfpvHrifLuOPREPnZ7hQKX9vDPgfe7xGvsS/OykFYu9ehenj+B7+UcTFdJ5zZ6VM+Cl0HHRw/t7dQWD+/TBD6NxgG1ghdhzR1fbpoPYDZCjsGRtsN3S852ROcC1EpY2BenZnbV24MPvkPsOmh0ngsh3ukdtcWec/zi2+QPVp++6L3Ukq1A18Afgf4pWCmfQy4T0T6lVItwDMisnEhPtcbPXJV6N3/L4ydgZ7vF+yEz+fqKFaev9IttTyv7K37fCZaAq9CgDTY9EJQqQA+lxnUKq88O9CLyFY9pKgeVsEiNe+BCOp6IeuXFge7eahs0oAj77LQvPE2g1LQcFZh0xfO5ZEJRJRP5VNQPqlo7LGG9ch9PirksPk1h+1PuEXluORhLaJLxbhNTNt8OqdL20mX1lN2aCqjqOu1VzIIk3z9Wo8rlILBTo+v/scpvDCc3pVGAXUXXWK+QYli83OBTplZfiBH7YBmoNsQrwMTtse7i8mb0aV6SDFTr1CO9UHv/JaD48NTP5Fg//sTRKcVt389lN34y0fJOEZx6H1pErX2fy8KY51Q9v1MpeLGrZRxsf+DHukyiM7qOe64YvXzy8ZbhOP3WHfEphfnjs/C/iubsRBCG61vYffMJfdfiIrwUIUQUwV3/zJ0f2hxdstNywj5+0PgV4DKvLJmEem395H+AEm3IN1YqPFlosnzMHKMXKJaWNgwU1AvQ1LkWmZVWFi/YICFEhZmloGaaWOziOdPvzIRy7KRy8QmdpUMxqxA4Mw1cclBvbJl9sSd0YLCQsscYzcgRRFskOWC+uhgU2uOLjrgkcPU5cmmCMw5KLuRqH2CZL55cjhCJtrQpfoVa2cFonLppoIyC5dT2ZcIKqgT1M1sjHoRq18mq41rcxLgeGQT1tq2J9f2eXIoDaF4Jtlurh0EwTiCcQMXVdYFowglrIvBMUEbOhCZyYskqJg7jvLHRVJlx4XK8AjNXz/TcMbNHxeX1nOTlqcXCuaoefrN3/YWbmhXVXasFBuf5I8BlRsD88q72HNVeE2KlBXWEzj/EiQni1y/iiTYgFGLfYAGpdTreZ+fmaOCzfI1KCJ7r1Smm3Km/cofw+QFGyAnHREis+pS3CsUx4+WUOY59th1eFZIxRRuAtz8Ay8Ct3zPYXCt/UH5CIx2CqGEIhkB7QuhlMquAjJ/R9oMI50w0m644xHXRs8L7pl2DMfu8ZlsFja+5FA1qPFcGO4ynN9mqBy2GUXqzzmsPqDZ87DD2VsNFcPW+MUm4favOFzYamg5ophpUDgeubCiwMW1NqJfdBLWve6gEBJRa6DFtQY6EleX6Oc5wuB6C9vb/pRD+YSeo1fmbzokmBA2sH4J7exr62vO779E1JAqF+562KV/vaFqQKOMombA4d/9m1oO35Nkw2therZ5hFKwbp/LWKs9+k5BH0mgX+d+RfWQQ7LMYtgvbDT0bjTUDtj6E43C1u85RGcgFYWaPsXObzpMNAsiwpltQiwe5u6vaipGrN93ptpQPqYR19q6SMLqfOu3Hc5vs4G2YuMwtFZQvpCJSeCF7B5IeNbm8AwlFBNNhvF2YahTuONR19q1gnbb/ZjLxW5jN4bz+jTb9mGZ0392vAkj7QYnCZ2HFOF48fGJmXuvon+XUlZ4rVhZER7nX4Az3ysd8rdcVCJOe3gR98g9wEeVUg8CUaBKKfVFYEAp1ZLnHhlc7EY3pdFe+154+SnhtfdZhMGObznUDMJi/rdSaLTVcPD9fnZ2IgpWnVBsfH4uNE+LYtWp3P+V4/DWfR6Da4SqQcWOx+dicQdW+xx5t3067viKG0xu7PRoss7nz/54nESFsH5/jEQ1VA0adn3Tpe245ukfneLcVo/1r4fY9XgVYOFe8SpADNVDNpP3vg/7eBEbaKjtyKXogeZTmsbTtpWUCK8/5DNTS3bm5ibhzq+4hBOqQD+h9bhi1QkdzOQvXeoPrvZ5690G7Vke+RlRitFUvYWMiYYdjzvUDMCJ29I8/BuTaA9+7udr6To0F3JTO+DwjkfLOHGHx2yzQ9m43U+oGrl0QSkIrz/kMVOb33+2XusJTcsJ6+CYrRD6Nvu88kN+9jBOpv+qhzR7P+wx2Sw09Cje9cUoxhH+9E/GmWwwtJ0M03U0RmQG7njUwiJP3unTv1HmtFDTGYgkhJF24dD7bMDbzNhqfUvR/apD9SB07Q9+VCTwl+sp2o8Uj7iXgQ06abjzETe7KqnrVdT0Oax7za5GjtzrM7hWqBxS7PyWc1m+6KtGyvq0rzV6RAB/GdpBRH4N+DUApdR9wC+LyL9USv1/2MTpnwv+fm0xXjel0d72L2BNn/D6KbsXWTky33qVRX1yhdenGiQ7e8rsc9YMFIFP5cPxgu+jbZKNzpbzddoHcKLVXotMByiSvIEy2mJIxexOevWoA0pRNmF5KF9xYZOHcaD1RAjtgRdWzNbYyVvtQJDaKQjKZFwb4vNSn6RY2Fnw3WjFVMPcZgulCPDQlzaS9kHP8TvMbbfxVVa/UMJ+FqPpOguXM46F6YHiwsY0XhiiKUVVZuOuCOxxtENycMR5ul0UWf2qB+f2n40XbXVJVlqfh3EgEwu/fDzXfxPN1qVQM6BwfMVMjWGsyUZArBpzkcB1knFLZWTLykFOv8kmY++TN7ZqB3SuX8ylxnrR8QuMt+XGVn7/ZfkWG595J1Avm0qQrdTnTyn4yJ9Dw6YrlGmpJArfv6pe5M8BX1ZK/RRwDlh0HXFT+rSf/nXo/11FzQUbRW6sbX540xxa6FpATWc0lcPkNnXSFu4leb5G37WZsxMVQrxC7DIaYf0rmtAszNZYI5yMGU7cZiFgrUc1lSPWOGSjqAVytJ1w2fRSGO3BWLNnI+NVCemIPTm2+8kYkRnFUJdHokpIhw1pN432YLzF4EWEUEJslnTg1B2+9a9joWCeK4y2SwCdsw+u70LNoNWvatDGap6tsqFhJeNQL2y3BRqu7bhD5XCgX41cWr3gp/XnFbV9Qf+1W7m2/yBKxzEXJXBxrYfvChNNQqoscFQHPNa/5uAmLU55NL/v8+6lRbFmr41UONkkc/rP1lF4IZvDMJS07VB7AUJxmK02WcO7/lWNm4TphsCVM63o3hchFAcRn+iUDaKUDo5er3tVE56BsgmoGmCOfs2nNNWDCicBdRfstfEWkwf7zHshLkQF19vfdKgYtX2aTcqrLv1BZnzGq032kNdCfBfqv1JlK3ptHk/mo/8Cep4p8T7LRJmZ9mKfJfEUeUZEPhx8HxGR+0WkO/g7utjvb0rI3zf/bXCwpuis8MrICwnH3uExsA7qzym2Pu3MOcEGMFVnGG0XyicswiNeIXQczs1uvZBw5J0ep2/zEM/ng/+7DKXg9G7DbDXU9sJwl9ByTNN2VNtNmK0+J/cIqi1B1Z4hKk+G6PytFlJKM9wpdLypQQsH3+dxfrOPM+PzwT8rx/XswZp4pTDRKNSf14y2G5pPK2JTCs+B2VphuNPQcdghlIRkDBKVwkiH0LVf40WEw+/xGV9l1awYgbbDitbjTtG9Ai8k9OzwGW+F7hdzkf/mI0G4cIuhf4M9Xt/UkwliMj8NrjYcfo9POA5bv3fpqb3ZGsN0LaSiQtuRhQ8pJcuEU7fbU4+bfqCJzWhmq4VD77OnBzsPaNa+vshBJyAZvKRHW4XV+3RJkLgVKp1CZfDJL8HGj5RWfzkgf1U7bpHbv/fwovW+V7/tn8WJyKtG9/8XmOqFE4+DLPMSr2+TYWit3cDb/t2M0cpAOez3ylFNxZhkN4wks+MeLLkH1htGVkPluMt9fxlFG8WJPZ71dSqyxnHtXvuriSbh9O12Jun+cC/xxjSVPTVEpjXRpKZyWFAozuw0TDYragdc3vm30axPMjYpxCYVtb1WjsqRXKIy11dUDSt7UjCQMRKHSFxTNWj5nrjNZyKQCWC6Hson9LxJGAbWCRe22Y0v65oirxHzjZgtm2wSTt2RCexfkCA2z4WUIS8kHL7fRzSsf9UJTu3NpbJxRdlEhsml9ySvP87c5jPQLUSnyCazPfpOn5kaqO1TrN5fxGBfsqwXItMQmdZUX5QFDHxho92gRr0U18a14JHH693/z0qUP7hJ3SMDB+H8i4HBLsUdUqws39bklUVmlM3PGMDIxLFR+4y2bhFRgBMkpc3A5AT8sK3nRcQunZWNJZGOWh6RIA6+DqLFOT7Ey+3CPpTJfuKDjIVw4op0nYf4CokZeyQ9YojMYKPNaQsjE0fyFMhBtTIQusxTZVz7ZImTe8LyyyJTAd+AtLGHh+aM5TltRNZbkYrZ5LiZNso8xeLYCH3Gse4HrNgkKjI+XwHJQN3ydbHvRydt2yNRVvAyyMqhbCPnQQlFC74OYp3k8Y1OWv38UCBjUOb44IeCuDALjIv8MQCSbee5ZGGZgt1X8IMkujkoYWH9Rcrmafsl8ViIrxQpux48Mt8FDv0jzA4V+c1VJGFxuN+1ziF5U8609/0lxEeCf5YRcoRA82lN+Zhiql7QKZs5pX+jITpt3Q39aw13f9mdk3R3utLwyseTvHF/nAe+UAE4RCeg4bzCSQj93WKT5/ZA01lN7XnFyOpciqyyCbjjEYcLtxja37+aC5+dIDLokmhJMvbgFOd+cYjOH1tD9Ykw3S9qLmw1vPQZj7v/0cXNk8PX9uh7bDwXLS8ZgYH1hrPbDVuecygfUaSiwniHcGabYcd3HdreckAMAxsM0zVC7QWhbNSxsUwQYtNqThs1nNfc8jSc3u3z8ic91hzQjLQZ6s4rut50UAK9GwwXNhvWvKFp7tHc+bDDgQd8Dr7X57bHNVVDDrPlwshqQ892w+1fc4jO2jmG4ynu/keXwTVCTb8iWQbiGmITOivHbLl9ccZmcrJdXGcYWm0z9tT3as5uMdz1FZfVB1wEn4ENhpc+7XHPl1w2P+vQfDp4SWSgiwijrT6huKJqNJc0oG+9YWCdoWJU0XosCANQeAoRCyU8f4uhuUeTjFlo4NbvB0ihgrFosMfcI9OKUJEkFJm/nmv3TsrGVXG0xzKN+xuBx9BbcPa5awv5E4G0f22N8mJ0U/q0j3wVHv0R8OKLVCy2fCu1LCDjSBYKJorsAQsVRMSbrRZee8jDiwpbn3So79VMNBoOPmDQBnY/6lijF/DIRtLLu2eiXHjlUx5oeGv3LKMtaVqOu/z4b1SjIsJffG6cwdU+G5+P8Mn/VllUjlRMePnTHuJA9wualuOZJb9Fpex/wGOy2frptz3l4DvCK5/ySZdDy2HFhlccZqsMf/Jn43hhoeutKG2nI5SN20hsWtScNpJgQxMDONh4zHn65bdbBllhXBBj5c6U+QGPXFneA6Tg7FYbTTEUt3A211ccvcfjYrdQPgq3fSMnm+jclqQE8cQzbSQEB4UK2i3/Xl/69UlO7UrRccTlR36zOpuMQrTQv97n6DuFUAru/LJLOKUKxoxk9SMTU5zMGaoCA6+Flz/jkY5B2yHNuteLB4iarhX2fswDBdu/7VC7UGCmfFriGL8iHsvIt7INfvJZqF1bIqtl8GlX3LpVtj/xyKL1XmrZfM182jele6T7Qdj8SVCX7IDnltjZf4tVyadgwEjRKYCFh2mxBsXxg0SrJrc8jldKkHBAUTOgcVOKeJW97Ls2MW4+j9yaGzJO40RlENLUhYkGj3TEYpLRoGc1g+0Gz1E0nnftKbs8Oaw9EJJlZFEhVcP5RsBGp5ups4YsFsTD1sYmgjUaqkatAYqXQzpiUSsVk46Fs82qvFN0uTZSys6IHWMTCRTqp32LitbZ44MKHdTPlgWy5coK2l9gqlmyLpbMIdLJZmsgozP5stn20MbWc7y8vgpcR3P6b47BFhDo3eiRjkJdn5s7LRjwna4LRPYDWF1e/2XHSqY9MjoVMdhgXx6JcttX1SMF3vE8lrPVdmz5LlSM5dxdi1Kp434xHoV1rtRgF+MRlCkN7/0c1KxZIr9loBvNPXJTGu2nfw3eegTyFxHTNYYzt6boz0Sky9Ai7e27wlStz8F3J0lFTfHfqIyP2F5MRW0igWSZUNNvD2+EZ+3BHBCaejSNZxWRGYtfzjLNAxWnojaxQKLCUDUErces4ew+UEbNoGamzpCs9kk1p7mr36NyEiaaPfxIjt9MteHEHSl6N3rEyzwmam0i2+N3+6Ri1sKJthHnavsUoTgky+2GoDaKjc/bCITnbjXM1gl1/Yq7vxIjHFdM1ttUJuMtNuBQMiYMrDPMVluI43hLBmqnirTRXP3mPqnFHZ2pqDDWmosymKHV+2y8buNAssyWdb/oUD5q9wu8PAdgKmrlmmgqlC3/trmyVEyYqpNsRLyP/HEF9b2aqQbfHvnOo44jDnV9Cu1ZY5rRb6rBMF1r06fNPVJTZFYcFLlpxfqXLTRwqsHMm8C5rlfRdNqOiyP3+jZxQLEmLDYBX6qdKXESv2Qei/HMzGEEvvEzcPqpK5RhiSSAb9Sin2tJN6VP22RmOnnPlRcWkmWC48ncGYBk/ghndxj6Nhq6DgRQO+xMNR2xG15G2wf55J0+kw3C5meC6GzBsygI57YaTt1pqBiDbU8pnFnFxuddNj6fkyUch1uedkFg+KMT7P31AcpeLif93SYSERt/uHezzSa+9WkH7Su6X3LoOAQ9n0jQ+eAIsWqHs38wxsiDU7R8p5L7/nUHzmwOKte3wefA+z3SYY9bngkhwOlb4iQqoPN4hHhlhPIx2PSci9Ewssrj0L1xVp1x8EMx4pWw+fsOe77sMrjeZ/8DPqE47Pl6jLseK2O81WRn5bNV1sUy1CUcfo9HKAkbXiiA7RXMzHzXbuQaZ4EBL3Pr+6FLJq9UjChu+/rcYVzbr7nzK5daOt+1KcO0XyBMkVnjVJ3w5ns9EuWw7nVNPYoNr4XZ8FqdrVBQPzah2PFtNytzvMKmFPPCoD0JjHzBjwpnlXlVOg87dB4ufsIxQ25asfE5h669MNJhN6RTUeHknuLjc8F7L0aXw2MB/ZbMQ+w7f9H4+MtN12EmvRjdlEb7/s/B9CAc+QpZyF/NoD12jEAxONZ0PfTstLPM6sGcwXFTirqLDnd8K4pCcW67z8A6u1yuGp774Mer4cwd9uHZ+IKTNWqXUm42fPQvzoEL00er8VvtqJ6usy+W9a84lI8Hy3exYUlnfqGP5NoUyc1kc/tt/NedOPFcNCQvBMfeaYgkNbc9HqXxtObiWt8G9A/bk3rJCpugIJywropXPjxDvFKIzTqMdAnKU1QFSRBmqyFZbjPARGesOyd2IrfpVzNgHfqZ+NuNpzSNPTmf+RyXT0Cx6Xwe87RT3ss1Nq2ITedfWDpleWSRM3lUYDyO3+0Rr4K6C4q2txbHaBfyiE0rYidz+lUPFbFYxdwHSzSm2leUTUHZW3bMnttm7Pjk0vF5xbRUHsugX5aVhg/8Iax/4PJ+f7kkcGnOzOtMN6V75OyzcDKD0c5bjSopOG6e9zUct5tPjgczNXmn0DK/RSHawt8ydiZZzhwoWihpDZvrwXR1BhKn5twrCzsDUEL0bBiSCtOYtAlovYwxFqbqhXQYUmH7Gz8sxI5GUAmFSgE+ODOaRGcKCRkLrXNBi9gog8aGZDUOlE9Yn3EkATPlPkqEeK0J0n8Jdb0O2ofZCoNR9repmJW7fMQu+9ORTPJZ+9ISFSTRxULjYuO2DZPlAiYH9ctvowwZNwf5yzmdCzqy0JtQuL4u7klZpEzN9SMXqW9coWzMBl5KRwsgf/PKVuSekifvnCiGS+BRcpm9UDYRZAfyA3fR5fJdDtmWUT8x8OL/ZyN4XlMS8Hy96Oda0k05037zH21G9kRMSFQKlYM5iNscCmzFdI2dYd/9Dw5j7VB7PhdVLhkV4lWWx+B6w2CXxUNHZuHlT1h4WCiABIUSinv+wWWkQ+xBlvx7BpuZJ+70GWsVKgdh0/Mut+3ZwHd/f5BTTYo1fprt34tSe0HxnX8b57F/P83qgyHCccVb98d54MkII881sf1EmupDMab3NzF03yzhnhADnxlj+OMTVLxRRtfvNfGOr8KpX+5jqKqa6GQlrSc1v/RjtZzalWbNPpe+H5lg/JPT7PtXaZp+ZTXd+8tIlc8yVeszuCrB7d8pw4nbp67zTYd4ldC3RXj5Ux73/IONnz3c7jPSKYy1CG1HNdPVsP5lTW2fJl5pIxD2bLewunABbKq329C3xbD6DU3zGT2nP4r10ULXpmsM4mIjGpYKe1vgWu8Gw/gqofOAouGcztsEXbpsJZctBw+g4Zzmzn+yq7XwbJG610u2ZeAxeQEuvALVnUXqXCUSlidg1HLSTQn5O/kE/MUvGF55h4/CwurKJwtmWAAKTu/0OXerITKLDYdqVG6QNBje+IjlsfMbDpVjCpNxiWtQvl22qYJj7EWXhQre+KDH5Cqhpk+x7bsOjgHEJqOVwGeXSQzrhwU8EBfiq1MceOYEOPAZ9rE2Pcb5nhb+9gsfBU+z+6sOZTPBLQUc1+fuvX+Jqkpz9g9u59wf34FKB7O+QDYJYkVrTyEO7H3QY6pJMig83JRiz8MukYTKwuq0B3d9ycU1VmdRFl2SSaCrPCyiJXBJmRDgFW8jcQXxACdTX83bbtkZW5Frp3f4nNtRvP9K5VFYZlyxwZJ0Edny6y+R7+Xod8153MCy1W+CH30SqjsoiZYD8hfbtk3WfPXri9Y70r125Rj7lVDnPdD6KdDDNv9qdKaIwQYQmK2zkDGbFZuc5SMIrhO4AGJTCuUrHAKr7dn0YCo7g7QjU5B5Z3vxanuv6FTgpAmOvduEsPmWAJyUdceoFEht2kJ7Q0KDN0Mo4jE5Wwau4APRaYXyFJldOh0zuHVxtCvET9TZawTXg3sq30IDUaB8RbzSypNZ6BmHbBaXeG0Qi3nGnhK0kEZ7eMXJnJRM57eHbSOdDr5no+bl1svKUygC41jE551tikVmasX779J6c/5m+UrRcaEz/ZHRLT+S4CU8FrnnQmUl88izeqLmXsy6Ya6XbFeZR6ZMw57/AFVtRa5fRRKC4Io3EN2UPu2nfhVG/4ei5U1F2ZjNqTgfrX3Nof68wkkrm2y1Sriw2ZAotxmr299UlI3bDOOWFOmwPdhwbpvBD/y1U3WGvvVpXvlI3GZ+KTL6tnzfIZSAoXX2FOVMjXA2y8PyztDoKp99700wfcc4bc4Ytw/3Ez0V5tW/vpez55qYak0w3jmLILx5v89Qh8db9yQ58o4kvQ0Of/PMOxgYrmHywRHGtiWZ3D1D30+OMFttTyKOr7IR8C6us1H7tn7PsYkCAhINh9/j4ztC1z4LUQwlFYlyYbZS6N1orKHHojJGWj1e+UickTaf4S7DcDb5rGK20t4nE+0wR2qOzpdQCQ/L2tdz/WdhjItTOiJM1whnt+b671JSJCpgrEXo21AkkW7xnyyNSjQGyXI7hs9vycghJCqY03+Xw3fJsl0l/UoiA0/+kl1FX1OSxeF+K5C/ZSAnYgMhdb/i0l1orwuWX34I0jG72XfyLp+hLqjtVzSdsYYrVWY34HIbZvagSChps4Of3WGoGrEQsak6Q/NJe4B9fJVw7B4Px4Pt33UJzyrMzmmcX+vDGw1zvKoVSTr0dyXpW5Nk03CaD+86jW6Pc/r/uo0TlTHL01PU6DCN3+0kvn8tJy7CCyfXk4r4bH5Vs/pQiNEWm6HcD8M3fn6adAS6Who5X7GH6e4Kjv7nKfwqj0/edorIH80Q+/x6wr+9htkK4fGfm2a42eP2b5ehlEtkxiJfKocUYy0GZSwSYttTLiLC6dt9zt4q1AwoGs5BKiJ8++dm2Hd/EhQ8nZylvs/lE7+fS4Pnpqyr5ND7fJQHtz7hUDGmiy+Fi/RV/3qf07cbai4qNj/nBDNhS2WTilufWGAYF7mHNrb/IsHmMwWT18zvHM/uU5hi7Av5zrepVoJ+i/HVgRzRvBO+2rNp0kq67zz6LUm2q6jfgnXy3CvGgBNa4H5XgQSudjztJdNNabTf+19hdhgO/X2RMVVQ0LPTZ7IxcIdU27LulxzCCcXgGmFwrV1+1/ZlYICCk7L+28kmWzTaBqCo63fY8YSLEsXJOz1m6qDuvMrOYE/9fi9mlYecLkfSdiCcuDUBGpr3XMBZM0pyPEJPRQzX09QOKnxCjFDO6HAtEoWh1aBQdB0Ksf4Na8BWnbb3H2nxSYfBdQzruqbQCnrKFJNJRUs4xeqKCUKOUP83jTCu6dmSpG+NTSyQrtK4aWg6oqk/b1OUrTqV0xmEeDWc32ZdH+te1URmFSduS/PmO5PZhzodgfa3XBrO5yB/4aRiulZIRW0arbKJzHI+5y5ZiI69wyYViE0o6zdfoD8vpUvv4aQUDuTpV/xnoYQilICKcRaXs9Sl/mJU+BuxAcNCSSibyskRTtgPY0VkK8LjimVbrlnzZcqmFHzsr2DN/cskR6kk9mVxI9GN9QpZJjr2dTj8ZUoKy1p10cLZlGc3y5TAeLPBd+3uu9E2+el0ncyJEqcQysbJ5eMTe3BDgvMQ1f02m0u8ysLe/JBQ/kYMSSukKZl1oZRPapSBC5Pl+EahHR83mrFMeRt32DgnvrbJCnJpwHJGadVpFzcNxlckkg4kFDXRNI4H0zMhvLSDn3SQPWP4rlBzUQdGAWbL7ax6pjaQ1xF8x8qdiWAXigtu0s5AJxqsq6Ou37G+/qD9nDSMtnqI2NOkvmPbsGrQbuqJzhyqybTlfO6JXHHlsOU/WyMlL9FFBW2lMm1UjEpmNq9sV0Ql8hBscCmjCZI15P3waiEbSpFtsTrL2EYSuEfGTi8DzyXe3hi16Oda0k2JHvnqj8HBvyud72yVTaZaPgaH7veZqhOclMdgu8foKp+P/q9KqvsVx+4zjDcLjacV61+10ereerfHVJ0NtNR0VhObUEw2G8pGFSd+dIqRTkEfK6N6UDPWIgzdPcFwpaAHQ3QfKMNJw2BLgpE2j64Jn829ipN+BeONPmVTmlRUQEP9WYeZKo8jexKsfzNG5USIsmFY94am8qJiusluFPauT7PvAwku3DHLT5yaoebvGnh2c5gLWw0dZ13quscZO1FD2YCNHSKe0HgGOt90eP1ThkSlzc5SNm5nx6v3a4Y7Dc2n7SlRG+9bqBqC85vsy6Wxx2HvR9IorVl13P6fjih6txkmGoS7v2zzEibKhWS5zZHZu9kmz12930b5W8iACvZofGxSZeNdL0aDXT4jHUKiTLj1yblRF68HJcqEqQabiDiSXJosIy0+4+3CwBrhri+7lHTQ5yYkNwYPfaH0KH/LgR4Jb9kujf/w+KL1+nZ2XDP0yE1ptM+9AA9/PIi9u0TIUQaKJiE7idEeaAWvPOQRr4GGM4rNP8jB9cQRe2JK2VjZL/6QbyFu/6IXd/M03mAE70+7bPAmAGVnf8raYu7+YgjXw8JctI398Qd/OYaEwVM2qFB9r+Zn/30tSsH+93uMt0kQ1AgcY0EOjkDzMcWGlxxMhU/o3FMQMzx5rINXz6wiFNfs+n4lTkYOoGrAJnB1BF75uEeixsZ5DsTknr+z8D4KIvSh4Cv/cZJjd6Vo6nH4yV+pQaugngsjrYY377fY6bv/3iWc5FLInyN2JVQM8jePT7OU/suWacEPZFYKm4l9qTwWkyN7L+ZmLC/gO1stvPoJD6Vg27cd6gZULjN8Kfop66JTHjYImo9V6krbqFT9lpvvZfJo2wOffQwqmimJlsNoh7bcKg1fXNxoX7ytfSXK35VQ42ZovSMY4JmODwb/nKXynDJbrjwLe3PSdgNNG8BXNpi/todqFFiDjYW4ZSLYea6yJwwdoNbDRAVSGpzM/r6A2GBMShQi1mfqpGyCVce3RtN3wXOC51JnotUJTkqRjpE12BAYWW3dEJGETbjgiqDKfHTYMOmF8N3cb/KfkUg8Z9BSsZzBzlQMpSxsLxehz856EZhsNKQjNsONaAJYoTUsmZOigk3ia2GAc2eHKhPlrxjkL1/IYmWF11SRMqMsPFHIGchSfbulyJFvVIr5PPN+mw6CePlOkBnHFKm3oGz2NKuCAD6plt5GxcpK1W85+RarX6z/Cnko2PwJKKsvwucqk5jFP9eSbkqj/fRvwKkn5vq0p+ot1G24U7JH1CfrDT3bTHYjMkeq4APbn3RIhX3eeH+CNz6QYKzFcHr3XLhe2ZRi87MOU1Uepw/WMj3rotbMoj8whOqIo98/DJU2Op6bsIldp+qEqXobHH+0TagY13ziv1VSNezQfjxMp5ei4p1DJH7nOBNNhrKxPDEjHqojjvPAEBUzBqOFeKUwVu5w4nd3MBGPsqVrnGbtEY1r0qG5eg53CD3bLWRs+5NONkt6eNYm852uzekWr4TRduH0bT693WlqLmrqz2uiUxAvN0w0Gk7v9jl3i8fF1SnGatNZ/eanS435ZdG8t1gm/ku656VUNWij9lUOKqZrLuMJzzPe14yu5QK8RP/5D34LTnz7agtTcFuBtK8X/VxLuinRI9EaCw3yDNlZTdmEnYU61mYCUD6umGwV9n/QR6dg9zcdolMFHRDMOKoHNe/5ywgTjS7i2M0xcYIZaFDHKGG8xVA+7TA6GuK1N+uJiGHHiQjuxQiEDMQdIjUJbv3JQ1S1T3L+mS7O3CaYtyqQh1sgpaga0ex4rgKlQJ8O4UQqOdE0y9jHPFbtvsi9P3SU+HCM/f9zF+mLEdS7h/F+7wQTr1Uw+JUW4lFF9+4xKiJJ1HQZk2jS1b71oeRRKmp4/OdmGK/16Dzmcn6DR9MFl898roqqi4of/MgsL348zrYfRHjgzyuoHFQoo6kYVqw5HKFqOkr5mCKSVjhTChPSxCagfEzRccT6thfyv463Gt6610cZ2PUth8hM8bZfsKzYUvxKeJTAN1kuvPVuG0lv23cd6nrneWiD3ykU7Ucd2o9coWzXSL95ywppuWVb0N1lURyRqkVkugp0o6FHbkqjff/vWH/2gS/kGtzxFBWjkD9bcXzFWIuNfFc5AeHZhWcy4YRNNJBZr9VdyPCzIy1eBRe7BW0Uo80evtFEBsLok2XgK+S0jeDTuGOIqu5xlCuceYd1GJsLUYxSEIGxVns/Afyki590SU1FAMX6j58gUp1i5HADfsIFT6M2zGJCwmQygolp3LI0ne87i9bCgXMNzBiHiqQilJhrXMYbfcaaPHwHTm+3GVC6DoaoGlT4Ljzz2Tho6DwcIpSwbVPbZ3X2yuzWXnRa4SZt5L/MteiMJh/VMh/17LAbn9X9Kst/UZL8L2qea6XyWOB3xZb4AQ112oNCRtvEvyXd53JlK/XaQvWWqF/JdA31U8CnvgSr31XifZaLBOQao0MWo5vSPXLg7+DgF+fG3jW6OMSs9pyF/CVjgS+6kIoMJAFMxOBVGvxQjq+btBhuHEPdqINGSJT5eSysP3P6dBWS0PgpTUXag7SCjrg1dI6BiB9A4qzLA8eAK6CEoUMNGE9R2T6FCtl66Z4Y4ilUm+UhMw6JsxXolLCpdpiweKQignEsfFGnrC+5Ykxbg+vZFYj2oX99Gt+xMafbTrhoH07uTOGFMu1mB3B9j02QMFsjeG7g6843oiVA0eoybV8uQVLcUtreQvm8ENbNtdhG+lVY5lcNW7y49mCqfu54WhKV6Ba4Yh6XQ8vBdxn1E4HHfgKGClcrV5mEGw/yd11n2kqpB4A/AhzgL0Tkc8vB98z3wE/OLRtYZxjsFKqHFF2HdHY/sv2oQ+NZjXEhlCqt8Wc2JJi4f5qTvzjMxF+3QSrEujdClE0p3Dg0tk5SeesY7nAVciaKbkii2uPIuRjNiRQNL0eY2ng/Y/fOMOmW469JYkZdxnZOYW6ZoXHTBIMHargoLh0XHRrL07B2BvO/VnPii1uofr2Mqs1jfPDBv+Hcw8KXj99H+ZFVVJ6J0DaoqOtXzNx9D7G/fZRfjj/Bvd9+L9/vvYOJTR6tbpyWJyoYCbu46RCbflDB0z+ZoKUnzGBnmlBK88yPJKi/IHz6dyp49Ndm6Nnu8fSPz7L92QhVA5qJJqH+rGK8GcY64dD9Hru+VfpQSpQJo22G2l7NXac1RtuA/qXQVK0w1m6z5ex+zOaEvNZUNaR5x98rZqu4ZPW2QleJxD7Tg29aoME1ve8N5h65bpA/pZQDHAfeB1wAXgN+WETemu83pUL++t+AL30CJs+S8144ko3QZ8EieRCwzDMnzC0r9LVlywQ/ZvjdvxvDjwnv/uty9nwthhaLniAED//qJCfvTFFZlmbnthGczC19RcNXq+j+hQ6UwHM/7OHH4Oz6BOc3JQlFfO66bRBHQfrhVZhDVVnUgAJ2PuZSPa7oVt/iM/6nEWVY8xevc7F+FS2nIqw9HEUBz39oEkcbHvjTcnY/FWa23fDG8yfAEVJ/1YE+UcZ4vc/Be2ZsnkFlXd6Z8en4cOd3qnD9TOxv604yFshCJj9txYhi5zcsbPASWF2RtkxHhRd+2CYp3vgDTctpbRtmCW0vAexNZaF26tJ6lwM7WyqPUsqWPLZKlPd66VdMjhL0U5ocyuIy9Vv3AHzy7yFWR0m0HJA/vXGHRP70yUXrJd7T/M8iyt8dwEkRsYewlfoS8DFgXqNdKlW0QN0amDpvB4pgA9lrmLtsL+aTK7ZJkn9NBRdSGi9kk35GZgNYXBBWlbSdTfooVNim3ZYgsYy4gjOrUUpQaRvXQsSePMy3XSgg4VioXh5cz00DHkRkGkERlhQzsTIkMKoK8BybCDitNaEZB993MaEESmxyX1Ia37UbkZnwqog13JnW8R2yWcozZRkXhgnaRVSwsasIoGiBlCp4QWUMat7Dl3lfis5b2Syl7UUFmG9ybxjFEvuvSP35eFBQlm9QSuVxtWS7GvrNx3chHiXIljnLsCTZ8nkoaNkF4Yoisl9FEgGvxFXgtaLr6dNuA/LzUFwIyq6YnvlN6HkWkiFhuN1w9J0+qTDFByvzlOcPuOCLKEHEfpSBH/+1akJx+N6PzXJiVyr7Pji1I0V0SlNZlqIs7OElNOZYGemvNlP5nSqcIYd4hTDcLsQm7G86jkdpOx6m8myEmS+1MjIS4fSuGSZqLdzFIIw2pnn0l6fp2e7x5C0P8b/f9V94+X338pHoPurHNU5KmC33mWj0bJZ0hO/8zAyntyWJHY+y4Wc7wAf3R3qZ7p4lETU4Sai96NK9P0pDn0vb8RBdfYqG2gTpH+9jfFWKM5sTjDTmYDc1vbD+RU3FEIytEo7v8bNtNN5ko+ed32wuaVYJMupsf8Kh/pzCC+KIX9IBcmnRvP1UQv9dNu+l3G+ecpHCyIbLKNvV0G++3y8HjyvRT+CVP4QTi59zWXZa8WnnqJiml3SfUupngJ8B6OwsLWVFVTu4YZC0zVgdSWhCqYJKiy0lsUl8D73fZ6JBqNk+QuJTw6R6Ixx6q47xauHub5Wz58kqotNCx9EQRglvvddncDWsORLh439SjqnzOPjEKVLds3T+Yw1r/qQTbexMMzoOFxIwA8QrfIY60iQjQnJaM3Wsjo1NYzz4m8+h4prX/use1FCEaFJx6k4hVpWi5ud38mTHehKPbWbLDypRqxI4/+4slTVpKmZdyss9+i6W8aX/W3AS07zjW5Wkf2MjqjlJ2WiYCFA3FCI6rendkGS02cOtA60UyYkI7/m7KjY8Us65bR4n9xiMEo7dPsvwKo/Nr0ZouhDFTULLqdy7v2pIEZtUiDu3TScbDW/e75OKwO3fcLj1CZeRTp/nf8RD+7D76y6RmcXdK0vpv3l5XC2+BddGOn3eute8PfW7UeTIuFccMD6Ul3gactlIbjzI3/WcaV8A8nNQtAN9hZVE5PMisltEdjc2NpbE+N7fhFt/Ahyl0KKozKahKuIayX91FPj3x1fZPI1omPnUCCYmXIg5jDYaG6pVWRzy2r0uZZOaRKVipENQKDa/ECIy6RBfn8KvNCgNHV+qClJXWcy4NorRFnuvwY4UiXJBXJiqsS6Vu9f0UxZLkxguIz0bQqEom3TQRlG3eZSKlhm0guGn2kAUeus0ui6No6Gy3EMrGJkI44Ug5GuSZdZvIRcj6JQmlNLEpm00vrPrkxjX5oVMRgWdVmx6uBLHU8SrFY6nSZQLI80eoiGScDGuNdKVQ7ncm9rY+CDRaWxZ0KQX1wdxTVIQG7d1z28T0jGbFCJzsGfJs0S1SL1i10p1EyyVb0HZ+a1vY/0KXRml8riK+v3QV6HjrgXqXCVSRi36uZZ0PY32a0C3UmqNUioMfBZYPK9PCfT6/4b9f5UP+VugUcW6P4wW0tGMK8SOnophFRzDBveVKkgpaqKezfgiMFNtnatDHTYKW3TGRv5D4OJay7P8rQihIRc8GHr/FL4rpMNCMmqvVw8BWqgZ1zYrTnBv7cGJ4w2YpCbcNIMp98jC6gxMnaxGJlyMQO2OIXAM5nzUpijzgBkHJUJr/SyuMiSjNnKhUfb+gqA8m1ZMOYa2KUErg9b247vCqV1pfCfId2kgNq2pHtY4aZis8UCEyXpDvLKYC0DlfRWqLwaJcsNB4l+g8ZTKwgYT5RThUUJnL1anFB6XQyXwbTxtIY2JSsEvtqZ9m+u3LDyWoN+XPwUDB69EoMsgsXtFi32uJV3XgFFKqQeBP8RC/v5KRH5nofqlokce+wl7sKZUGms0TLRaGNrOx+dGURNls4TEphTn704wUaHxULhJSFTZgyHT9XYTsaFPoRLC0/8qQfWIy/q9LnV9CjcBhz+TJD3tcHLbLBMNhsbzIba8GiNZqVDbx1FbphmfjDB8rpyLnWk2Pxtm5wsu+ud6OLcnwYHXO9nygyoUioazUH0BnGqP3v84BDsnaYpNkwwpzJ93Ev5BDf2NLg0f76Fhwwh7e+vpO9LEphfKMCbN4XckqR5RrN4fZm2fYvQX+mm4v5cnRlfhRoWKMo/B0RhjPRXsfqQKv1xR2TJB7Yyh/vkyzj40RdcjVVxUYc7cmmKi0eeH/msVXq3PwGfHCA85NDxagw52LgfW+gx2ClXD0NyjiU7n5gqDnT7jbcJMFex4YuETlG9HSoftpnC41MNDy0jxSmFgrU/FiKb+gnrbt60bg4//LWz5VGn1lwU9sm6nRH7ve4vWS3yq7p8FegQReRxY9q2Fe/4T9L4Kw0czN2JBf1ntsKJmVNF1QNsASpn6gBJFbNp+73g5Qht583YDOHDiDp/eW4Th9T4vv38K0XDLSw5D64WRNQHaYizMgfdMkaww1PeGWHM8RjKT3OVQNebNKqqUIuYaetekefP+FFt+6TBbGsdouFiB/0JlVvyRLhjtAMGFJ1fxzvcdJVyZwvzBWuS3m/CN4vyP+Fx8ootnBxoZ6kpTU+Zzx2MujnE5cUeKE3s8htcIM6+Uo19u56uV1fjlPqua4rQ2JqmKTZP+81a8coXz4CCJu8a5KEL/r2JRKE9VsPGZEN37Qzb6nIJD3zxNYl2KxkeqafhaTXYzqblH03jG1snG6wrauem8prEXC+EraPs5/baYH5WC68vNo7B+4W/n4Rsqhjy4BvqJFl75lIc4sO5lob5PZftjQf3yIxbeKG0f1Nv4MVj3Aa45KX/xOteSbspj7G50HmjQfJAj8mBkwW5/1oDk+WWziW/zB5cvgX87CFIfXNYmMG55DqiMxyAbfY7AJSBgMYHYDTzrekZrA451YygByciibMZwEftSUdom2VUpjfgZy2ivG6UQo6wvXQHGRhG0sDsbP0UymdWNxjGgfBvBEGOVEdf69bPNochF9cuGPrWJh9E28qHKf0hNLmFw0bbPJpJYoO0X7L9FaD6juxQe+ZThUSiHKlK2VNnyy0qVs4h+IkEfq1yExpLlKdSvgPei8iwiW9Fri+mnIFYL+hpbLHtI+cZaodyURvvZ34a+1woKiwwKX0tgXHOdMrBGGFpt6DqoqRwp6KwiPI7sSXHkjhTRpMOagyHWvVDFoXcl2fSSQ7xeMdFkDVvDOfjh5yt55sfiGKWIRw3TNT5D7Wk27IsRSiumKz2m6n1CSagZ17x14BYaG/upGzdsew56W6D5lGbfh5L0rfHwlbD6WIzXPncnXR88w1RziPoPDbEpOsyPf+IE//D197PuQIzYlCYdEd74UJrIuMFN2gzTIw0ex7fO0n2wjFufq2CmLEnb8SjNq8q5+MFZqPYY1YqRvgrq9wtNswq/pwx34zSH3+NRTYqJWp/RNp+P/EkFWz++ht6fHyZyLmRfKEEbea7YuOQLZIAxCENrhME1hrVvaMrHF2/7Yv23UP2SDd/14LHMfLUobv+qy/ltPm5SIabIzs5S+V5P/QT2/41NN7blkwvwugq0pJfeNaCb0mg3brHJff0URQeEKOHN9/kMdQitRxUbX3Tsg6+g6YyiekgvGjxKEA7f7zOwVlHRlSL66YuMJeC2+9bT/d8rs/eJVwh7P+4ztAYOvzPJ2c0pyicd2nrCxPpDVE04uGnFeH2at+6cxYQN/3L3MdY3THD2qS4O/NNGPAXH//0Mw60+28OzNN46SUvKYe+b9fR2p9mxaop0l4so6HutmkN+Ne/8zVbu2Rejb5PB9aL4rvD8J2eYrPVpPRPinm9VkYgZDtw7zQurJ4nOKlIRYbbK5c7/u561/7OeZJUQmVbMVkUIJatxk4p0OUSm60iWC25SYTQkKu2ojvaFWfdrrXPa6eu/OMX+9yTZ+EqYT/9uJTpzgqegX3TQ9lXDmsj0Im2/QP/NaxwWWp4vVlbKtSvhuxw8ilyrGFdsftZdtN6SZbwO+inHrh5qupZwj2UgJdgxe6V8lOoA/hZYhV3Dfl5E/kgpVQc8DKwGeoDPiMjYQrxuyoBRd/8y7Pwp0MUCQGFzFA532CV/wwWdm6mJhalFp1UWmjff3o1oGFxj4X3RLdPoqCEyGCJ0MZcuWokiXm3dEWg4vT1p05pNODhBIoTojIXcjbR6eGGoiKZZ2zCJ0jByqBFRiql6n9FVPqKhYus0hIWp2RAGBRpqV0+jXDDnyzCeg0446H01KFGMdtgp72yFYbraBwUtPREcXzFbZeyRcGVPcBoXWk+EbPAoLN5aG0XFhCYS1zhGEZ0ikFvhphXhpA0lmw/vs8rbP/vea6GEXW+6ucFfdGZlN8piUyqYkc/f9l4or/965/bfJVTMX8oSy4pdW+g5LpVvKTxUkbJiPP4Z6PfZr0HrNdnqKxBheSB/HvAfRWQzsAf4d0qpLcCvAk+LSDfwdPD/gnRTGu2Xfh/2/aUF4xcjNwUN5xUYGGk32aQIuQGU1wnzvfkNNJ+x/lj9UhV6UpNYlWaqO00+bLByRBGbtDPzukEbNS8R8200wMBvK0qoGnHQIsykXPqnyxED9duGUCJUjjjUDjgoA9NvVkBKUVmWRgVy9w+W2aPtzXFCaRt1cCZIRFw37qO0oXxC09DrgMBok5WxcswhMqvBQHTWwtP61qfxwzYiYKIrhXGE6Spjc1UioKy/O1mWSdxrvwtS0GwWXrjx1TDag7O3eBinsJ3zG7T0tnfTuf4bLtp/eVTMOBS51YJlxa4tZPxK5VsKj8UM6XLqV4xvMbpO+n3pY9C3OHhsWUmJIpRe/LMYiUi/iLwRfJ8CjmBPgH8M+EJQ7QvAQ4vxuindI4OHL43yl09KFNuedElHbHbxLBRqgUEWrxQubPaJTirajmo0iq59DngeNc9WMvJcN8MbDN/7sCF07zRr90WIJm0wpK3fVhy7yye6Bt7zg0rajmgaT2vG2oXRdsEYw1TUsL5P0eQq9p5r5ztvVFNxoow1A4qqIbj1nMPFh6bp+ut6BtxGEpt8Gnd6lE+5TB112fpHHVRfcBFR+CFIbkrw2jM9pFo9al6NUvVaOdv/uJF99xnKJjXtbyp8BzoPVFI2DkNrwU0LDWcUyZY0M7fN0vOvxul9qYGhOsPdX4lwywsRJpoMB+/3wYHOg3Z3crZK2Py8M6f9ElEYbzF0HY3R/UaU5uPa5jacr52XsLS+nP67ar7XK7nXcvJYDv1Kpeugn/igwjB+9hrPtiWTEm/5SCm1GtgJvAI0i0g/WMOulGpa7Pc3pdG+9/+CwUPQt5e5MxHJ+wuEMlmx5/OvkSt/48Me6XJoO6xQ2m6cvfaQhVQNrBd79NtRHLxnGtGQqnGoHQ5R0w+rDznsetohWecQrxGS1YqyWU3FUWw2E+1SOe1yLh4hHTXsbdRIA2w5BZMtwvSuJIP/9hyEBPdPGthwNEr1oMFR1mXyjr8tJ5S2/jeFQsI+B548hYQC18gdCWY6DWd7GwilNdu+61A9HLgzggly/y0esw2KylFN2RGX2LkQh6sqqHaF277q0HZMk6wQ9n3IRxy49dsOdf1BI+VvcgVfYnGIndEcu9cQr1HU96q8qHzzt/OiZXnlc/pvKTxKdTMspaxgbF0232LyXQnfy5Xjaul3BbLt+Ano/mCR319FUlCq+6NBKZW/Dvi8iHz+En5KVQBfAf6DiEwqtXR/+U1ptL0EpGaDfwoHWrHBmP9dBUGMNLkodcoaRFHghYLM2EYC2J6F+vk6N84UmcB8koPXKctPAZ5roYAKLD4Z0OlgwyNjSCUQx5CFbynBwu/ySQcfx8b9VUHm7qyHJoAXZlz0GXkzdVRwXWUgikGEwIwMygRH7n2yvmOVJ082NGE+SaYVgo2coP7cdqb4Aww2oXGxl20p+OGiDPPqlWIQF6NC2fLLS5Gt6LhjYf1K5Xe19Vsq32KyXWb/Jcbnd3leNRIL0S2Bhhc7XKOUCmEN9t+LyKNB8YBSqiWYZbcAg4vd6KY02i/8LgwXBnhdaDmWd613vWFgvbDudU31kPXfei7s/prLkz8d59lPpunrcHnnI2Xc+YjLd/7NLL3r0tRddFnVG2bnMxWEJj02vRzi7K0eh+72OLLT513/ZBElw6vSHNvqcWK7Ztf3yxjqMNzyA5fO/ZrhljRn703j+LDtuxFueS7EdLswGgrj/a9OutxpSCuO7UpxakeaC3clWe/57PuXk/CnzZxrs5a++azLoRcbee8Jj4bvVdB/W5KRrT5oQ3+rx+HfmmHbM2GSUWGq1udDf1bJ7q+5vPYxj76NQmjGZ+0+hzsfcTm73ScyCb4ITkJx+2Mufd0+boJclvM88hyxmHdls5Df+YjLhS0+FaOq5CzkUqzeQr9dbKldSr3LcS8U+20psr2d9Vsq38ttoyL1jz5mM7KXeiJyOUixPJA/ZafUfwkcEZH/nnfp68CPA58L/n5tUV7X8xj7UqnUY+yv/S944v8IIH9LJKMEPwJOEpIVwhsf8UlFYevTDvXnFaNthgMf9NFpxe6vO5SPKXo3+Rx7h8FNwW3fdKkYVtnZ9my18Mqn01jHhd10NBpQQSxqrDGbqE/z1p5ZPAd2vFBO5YhDeOc46hODOGMOt97fTfSiPeZttDDZIOx9yENpOHbPFAN1uYDF2ocf+40qut4MMbDW5+i9FhmS0a/9sGL9qy6jLT5/8d/H8UKw/fkyqkZDVA0rbv22g5sSDjxgGGsNjLC28VDueNQlOlN8SXdij0fvFmG60ufwXTOkosKP/3oVnW+FsrKt0ApdDikNThT+9UvQvL3E3yzDMfZIxy5p/aXnFq3X80sVC95LKfUO4DngELlX9K9j/dpfBjqBc8CnRWR0oXvdlDPt3f8WBg7Bvr+YmyeyKBUs0bQodMKu3aYagiBSDtT0W/jbTC3Z04UVI9YQTzXZ30VnbCZyFTDVokhWCI6vrTsC62Kwy63M+hDQMNzukY5AZFZRPu6AVsjtUxAVys6EiYzrHF+jiFeLzSQjMFSdxwuboLjzcAgliqF1ZA12Rr/2IxYbPtThY1x7vWzaAW31dNMgWjHaLqCs/gDRaQgnmJcG1lnXzHizl8372H7kCgx2KcvnxepcjnugFFoOviv6LUm/z3yldIO9XKSk9FR4C5GIPM/8D8L9S+F1U0L+nv1tOPA3eXFwizXVgptB9kv1xSCDu8C5Wy20rOG8omzClk02C6KEuj6N9iAVtbNzQZipEXxXqBqy4UsxUDFC9si2CjKwVI5Yv3LnkRBVwxpfCaGUgIHIt+rQ4w7T3Skm1ngYJQyu9khHhPIx61cXJdQOumgPqocUVeOKVIXh9Een7LULdoasU1AxltPFCwstJ12qhxyUD+mQbxPVNljstjLQfiSI7jcJbhLilTDSmYnoJ5e0W9dBjU5Dc49LXZ+D9qBnR5pLnsqF+mOhayX33yI8Lvde+SQLXFvRr/T6S9Dv4Yfg/EsL1LlKpP3FP9eSbsqZ9uR58FLkFiGX488DInHFrd90GWs1jHQJqaidSd/xTy6iYapBePZfeigFW55WNFzQaKMZaTMMdxpaTmiqhhW7vuFitJ0hj7X4jDfaY93tx7SdhWvBdxzWvxpitlborhwj8mNnmf1OM9/6qzbGVgkT7xFmPxrn/MYkIFSOubT0hJmpsmFXO444rH0jRL2vGHxnnJmPTTB8sIx4JWx9UlPXr9BGM9jpc2anz1/+txlcT3H/FyroftkhWano2elRNqoQ3x6u2fCCy/qXrNxTNYaZBmG4zVB/xiFVBj07PBBYu9chlFJ0HHJoe1OjxOW9RPBdcL0iT2KpPtIr8cdebb43ihz/TPTLQP5mBoqLebUoE/f+RqKb0mjf959h5ASce65gU2u+pVix8qCfQp6i6ZxD47kgkJGy3mkR4Y0PW/jbxhc0jb06O4uu79XU9QVBkwLKdHztRU3tRfJyKNprp3f7XNgmuNVJYr/7GtoVvtFazYnBGOXjLiFPUTsa4lQsQbzKEEkLkZQmOqg5ervh3DYg5OIfDePsD7Htb+vRRtFwRrIBnQCazjl87T9MMbDGo/u1EBtedXE9xSsPpkmVQUdcofPaIyN35YSickLRfNLq/9Z9HuOtQm2/mrO7rvOOk7uFrqn52nmeti+p7uXwKJX3UvgulUepv1+qHDeqfpfDN7++gj3/AbofLPL7q0w3WpS/m9I9Mn0RxnuYk0xUBTA2+0/B33zKXrNJCiTArFl/srLWVgQTkiDCneBlIHYZK60FxFa1/MRG5UPwQ7nIf+JiXQ2OPSSCAfE1YhTGV0TCvo2uF/BTWnA90AiezkETHc/C8jzXxvXGDWB7rmQC/uGFyeoSnbZ+az+UQ3o4KXCMPeUogDhWXhMSfG2hixm/vDiCY/dWLd+Mzpn2m6+d51sKF+uPQh5L7b9iPDKyFZNDuDK++eWF9Uvhe7PrdznjIr++QP8+SM0UucfVJFk8AcK1ToJwU860X/4jmDgb/JNZXgUzTc+1SIpwQi24pBtqN4y2C4mYsO1pFw1MV/mEEoqRVsOJO1LsvS/Bh/+0kuqBXPwBQTizwzDcZVj3qkN9r2Y25rP3wSQH353gnm+Uo42D70D9eUXvJsNt33TpOuDgO4b+zSFe/M13IJ/uYXC6jJoLLnVDrjWKu8fZedsY/a804FwIkYz4jK3yERFWHwpTOeriNCQIdcZ57d+Ms/3964mMaU7fneDMbSlOrfP52V+s5bO/XcXBdyfs4ZRgFnH7Yy49O3wqhhWTdYbhNTDYZTCS5uTOFK1nQnQdjTDeLLQe0cQrBJ2AmQph/wMeu77lZt5Pl7TlFS2nM99LhcRdyTL9avBd0c9SiXDPhXic/QGcfgpu+XSR310lshuR1+5+pdBNCfnb/zfwzZ+9FPI30m449D4fZSx0LTY1/xtSlFgYcgB1e+Q/TXFsT4qqYYetL5djHNj1TYeaizrAcSq8kPDaJzzildC1T7NmnyZZJrz+cZ9kmY3F4RhF9YBmx+M2lohoC/3LHKbxwsKrn/KzKbyUqOwkFtfOlPF09iEwGrZ916H+nM7GtjYhw2s/5JEIKZzbxtEPDaKnNDvu7SY24AaHgubq/uZ7PIa7goRfiixixKhskjNCSbjj0RDhWebEaZagjd7umVFW6AYmBZEq+KmXoHFziT9ZBshf2arbZNOPv7hovX2/F/3nkbnmatGtPwbnXggQJHl+1YkmO8t2ExAJstFkj/cVkBKFI2B9EIpTu9J4YSibcbIuido+PcdQJcsgWQ4oaDxnIYKzNdYloo1CB3Urh1Q22QB+bt2qAD9kUSi5zY882bzMGjNXXxtoOKuDJZq95juauBscubxlBiJC7EiI6HgQwjR/GhP8O9ouc6CBGdKS4xuZhchsJlRl3npb8tfec/leEZXCY7E6yyHH1eK7ol/J+ikFD32hdIO9XKQo+UTkNaOb0qf99G/Aob/Pg/wF1HxaUzlsjctMg41QN9kopGKBI7DoRNEWvvdvyohOKZRvKJtQaN9C/vKqEJuEVSdstLzRDsELCZEpm4Fce1DTb/8OdxmmGgLoXN5uZToqGAzpcF4S3zzSHtRcVITi9l6Vw/b4+2i7TcQ7XSvM1Npz75UBPN88W4/uD5FuTJNuSpMOCeduSZOMBWlpAlr7ms5uuDi+9XHX9hHM6K0c8Sq42G0ojOg3T8MteqmoX3QxKpVfKTxK9fFe7j1X9Lt8fgUkwCM/BGefLfE+y0WyAvm7JpQYBT/NJcGJysdtNo8MTdYbRlcJtUA4nvNxz9QIp273cVPQ/ZKFs+3+dozd344Vv2HwOy2Kmj7NdK3BV8Lej3nMVEPHQc361zT963xefWCaUFLT8WYZlQNzI+PNVPmMthj0rGHXkxEmVgmxKYXyheN3GyIz0H5Q03RW4ztwbptBdQgz1XDkXR5eJMer4ayi+wXNwPoyxg6sIzKhkCGHgdUeB9+VpmK30HTWoftFq1/7EYfqQcVUo6BTiubT9pDQZINhvEUIpeyhnfFmk4s7gnUjXdhiGFgnrH5D03BBz2mTBWdRxXyf812fr+xKeCzVF7wQj2K0ot/iZaXyMDY+fmJ8AXmuAimWJwnCctJNabTf819g4gKcegIk/y1YsBSrGtFUjsolL/i37vOYaoDGs2pJS6PZSuHou3yMA5NN9n61vYq1+6wb5eH/c5LJRsNt34nQdvTSzOM1gw41gw5rDoRQKGoGrGwTTeBFIVUO5ePWKA6tEc7uMhgHJprnznydFGz9roMWxYVthngNKF8Ip6D9RIi+rTDdYN02+fpVjigqR+dOz6qGNVUjGQsNdefnyj3WKpy6w2Bcmykl6za5VsvrpdS73PpXwuNa3ut63HOhesWulVpWhNe7fus6QP6EXA7TG4RuSvfI8FHofz0w2MUgR+TKVCYEX6aigvCMNdZeiDmu28WWma4HmMAQBssq37XQQBRUjGpCKZitELsKuISvlUMFRi8jWyhAujgGUmUCGsJxe4/MvRwfG7HPANr6xnGse0Z72ITBgS7RaYXjKbxwoX5BW+T7+BV5ZTnZMtdCCfuP40MylvfyWEK7XVK2VB5SpKzY0n2h+jeKbMvBo1T9FuNxpbIV41Gsfin6CRx9FGZHishyFUkJhFJq0c+1pJtypr33z2AmE+Cw1CUiFikRrxJu+Z5mtCNAdWQQEgiJCsFJ2RRbxXiE44q7v+QyuMZQd14xUxeY4YDHT/6nat54IGkRJ36Ob7xSCCUKOj+Pb9mEYs+XXYY7DWVjCoyirldx+1cV46sM9T2KsQ4oH4fhNsPZ24SXPuNxzz+6rH/VoWLUkC6zMcDjVcKWIvrl3zMdFtJRITapsuFYk1HBhLCIm7w2rRxR3PmIy0i7ITZZYPCX0Pbz1r+ePG5k2a4FjxtMtosHrE/7WkL+MpOvG4luSqO94SNw+J/AXyC4USGlosIrn/YwLnS/oGk5PhcZcuABn4kWoaZXsf27DkUzgGPx3+1HLF6ubHrutSPv8pltdAjlJbd9/SGP2VpoPKnY/Pz8fKMzOb4ZKh8PgksBLSdgqMtwbqeA2FCyWuD8Vp/Tt9ttzVO7LWJw/Yua1mNz9cvQSJvh0Pt9lMAdX3GJTUHvRp8Td9ss7nc+4l4ys4hNXSrbCq3QclOkClp2Xtt7Wp/2tb3nYnRTukc2PQRbfwhUKXYksD/JcpuA13etHzdr0II/k032VGD5+OUvhSZWWVhd2WTOxTBVb+9ZOZY3gy02BVFFpiBZUSTgZaPsOR7EpkEZxUSLjeInLohj71U9lK/f3HvN1AniWPx3dCrQfVXAN70E+NNyrBhL4bFYnau1cl3R79rIlhmmGj7wh1C7bhl4LoXEbkQu9rmWdFMa7ad+Fd58GIqeG5qnfctHoe2oNZwn9vi5RLYBbXxeE5mGRGURPHOeS3yh+2x83iE6CYkK+wIAG7fEcwxv3Zuif4NHolwYXJOB1QnpiDBbLQx1CqmIMLTakA5b2YwjpKLCwFoLX2w5oajrUzgeTNVZ2Vfvc4hN5mRwEzDWahP1TtUJo22ZqH2QigjRaTuzEAdO3GUwSug8pKkeVIiGRMXC7TgvldhGJfG50jrF5LhS2a6mfkvle630uxwqRY4iZSLwtZ+EM08vgwxLoMxMewXyd5XJT2KPrZey+x3U0aLofsml7bAw2maycTYy15tPOzSfnmfqXqK/rvGspvHs3Pdk21GH2ITQu9EQrxRSZUKinCyszg9Bssxw7B5DqhyqBhRVg4IncHKPoW+j3fyLTdpj8dufdNB5kfUqhxU7v+mSLLeY9PbD9ohPvFJIVArH7zE4aag7p7i40cYq6X5JUzVooxWKhvJRxW1fLxgqi7Vt4fVSfZpL/c1idZaDRzEqxqPQ2KzoVxrfherkLTCVvrzEJldEKz7ta0P3/1cbNOroY8yF/MGiA61sUlE2ucgCRC3OZ2GSHCoDoa7fpfaifSEoUVQOZQJU2ZlvolzhRe0vtzzjEJlVXOz2udgt2QcpXmUT3RaLSBadgeiMpnow9+TFpmC63iZ5SJbbDDsoiylvOa5RRlE+WtzvXRJl26jY075UHstMy8G3GI+l8lzRr3TS8IHfh/UPLBO/EkmJwr3G6JDF6KZ0j1x4CU59l0shf4U0b5liznrwciFVRcpEC34QOsQP2fgm4uSi8flBpD4/JBhsZL1IHAsl9GC2yrpNogGKw/Fy1+LlUvSecxTIK4tMWx6uR5ZXslyy+s2B95WoX66NbITAjH6XPL2l8M2390uVY0HZlonHlcp2I+q3nLItp34GXv4fMNVX5PrVJFlxj1wTOvhFSGX8uJcLOSooE4SpegvNUwFeumJYBbE5Sud7cZ1hqMuQill3ydlthj2PuIR9xcA6n6G1wlij0HVQ07/B0HRa0XRWc/c/Ooy222w6iKLmomLPlxUTzUL9WRhrh7JxNRd9soh+VcOau76kGG8R6s4L57dZd0oyBqkyc1n6Zf7OVMLwasOZHYZt39eUj2qisyXyWIBvyfWvBY8bWbbL5XG1+C4Dj4kem7nmWkf5W3GPXAPa+lk4+lVITZNbohVbqi2h7I0P+0w3BJH/lD2wsufLLpHE0viuOqVpOmX9yuJAxyGN0tC70ePEPTa+9V0Puzg+pMqFs7cJQ+t9dn/VZdVpNYdvdEYRPWPLGs8WaYgS9IvEFc1nFHs/7F2q3z+5dpZ/Ge1WPgWxo5reLYZDHzCsOiJsfCkP0ngl/bHU+leLxzKNrRX9SiuraoP2O+fhdRXpRjPa18U9opT6LaVUr1Jqf/BZ1sOpXe+C9R/CQv6W6U1vcz5aQ4u2botwMYO2CF9lbIQ/LeCkbdhV5Stmay3MzkmDm7LXZuqsq8RNBp7lpTwQy6Hf7NL1y8mm0GlFosLqVT5Z4B0vicc89ZbCY76yK+WRL9t89Yu5C+bjsdyyLQePK312llE/peHuX4GqjgX4XQWyM+0VyF+G/kBEdgSfx5eT8dO/CsceY26qsQxdZvve8n2H8lGoPweNPYrYlM0ReXl88/zlwd+ONx0azypCCRvDBGD9Ky61/QrBwvEuoWIDfIn6GceeyKweUESnof48NJ6x+k1etn452vo9h7JxC3M0Sx1ty6BfybQcfBcz0oX0dtdvMVpG/cTAd37RxhO6piR2ErXY51rSTekeUS45u5g/cObb5Fjo4Qqu11/Q1Gci2C32m8sgcSy8z7h2VgFQMabY+S0Xo4STe3wG1/qsfd2eZsxuKi4mRwl1tGfjcmdm+pufdXDSy2M9fDdIVVZspJXY9gvS5fBYpnZblJYq2xWMz0XluJzfLUbXsv8UiOSejWtFN6JP+3rOtH9eKXVQKfVXSqna5WT83s/Blk8yJ7EuYDt/OYztUpfgJTC7sMVntNWePIxNqDk8J5uFvk1Cqgxq+wKDPR+vwhNFixlso4jEFWOtln9kWqMLE/KWwGc+OnKvIVlhN0kvGfyXw7PwN5czmy2l7FrIVuz3V0O/y+Fb6r2ulEeJ+ikFH/lzWPu+ZZBhiXSjoUeumtFWSj2llHqzyOdjwP8G1gE7gH7g9xfg8zNKqdeVUq8PDQ2VdO8T34YjjzIX8leUOaUNmqVOOkuAMomInYVqMFqoGAZlwItAOopN5hsIF52yiBXHg8n63AnGfNmyUEINuZFegmwBj8phe5IyXlXCk1kqX6B8zMo9VStzEwSV0qaLtX2p/XIV+u+yDNg8bb8kOa6k3kL1l6rffCuYQh7L5JYRA9/7NRg/swz8lnLrG9CnfdXcIyLy3lLqKaX+HPjmAnw+D3webI7IUngefRS8eIbBQkKWwm0J9RaqX1A2UwUjncZC/h51aTnhgvEZ2GB49SGPu7/k4gQjPjqjeMffu4yvEmr6gvCoBXz71/sMrBWqhhRr9jk2f2PBPVMRYapRqBhSRAoiFe543GFilRCZVvMGrVqKfhm641GXsVahfKwEOGKp91pOHqXWvx4rtBtZv8tdwVwOBTxmR6BvL9SuXQaeS6AbzT1yXXzaSqkWEekP/v048OZy8t/5U3DicYiPYNcSmdjVhQMoc22OcORmCLJAWWH9JfKomISyY5rONzU4AELLKU3zWY3yAuRL3lTF8RT1vWpevi2nHFadDNTKXMvTL1EhvPwpD6Vhy9MOjeeAPPidEkXNgFo2/fL51vVfAd/r2X9Xi++NwuN6y7bE/mvcAp3v4NqSrBjtDP2eUmoHtlt6gJ9dTuarboWOe+DEt8gdYy/2xi+GLpGCv8XK1Dz1lsRDodNBQd7yyvqT55bl87AZ2jMFOWOofIWaIyBz9EuHbbHvQHR6EdmK6bJk/ZaJrylSVnhtqbKVKsdCfJdLv+vJYyG+10K/pfSfgm0/AuVNRX5zFUnJtUeHLEbXxWiLyI9eTf5P/zqc/DaXxh1ZLio2AC+bRykORpvAYKYeRtoNq05qojPFmM7v1qgYhfUva/o2GWZqhcqRq+yHW442upFpRb9rSwLf/z+hvhs2fPja3fZGRI/clJC/cCU4Ieti8JOgXWvAdZBey6TtNeOBGwEx9pOp70RsfaWxqbsyPAzokDWNfqqAh9jv2rFJhZ0wWZx4JjqZEwLjW16oHN95eUQAm1wd5cAbH/HQMXA1dB6xpyrz9XPCAY+i+im6Tju0H3GsfhloobKyZdsoZHfqr7V+KDApW2Z80IVtv6h+8/RfgX5O2Mq8qH6RvJe+DmS7gfVzQrZ+yfrl9V9R/ci1WyEPpYN7zadfcJ9i+hWVLaNfZhzNo58IhMqX0VCUQkJxNNV1pJvSaN//X6Dtdpjqh9XvgqNfs9HBBg8BCpq22pn4poeg5xmobINYHfS+YrPeHP8GtO62x+DHe2DN/XDsaxZuNHLcbnK23Gb95hs/AudfgFgDVLbYdEibHoKT34HGW+xAGz4C6z9gow52vQsmL0BiDDruhmPfsMlK+1+3A7J2nY0ZvOkhG/Sqdi2EYtC/T/GvPuPyzBHD1n+vCL+pcvo9Bus/GOgHNG2z99/0Mej5AVS0QFk9XHjZynv8W9CyC9IzMHba6nXsa7D2vTByArxZaNlt3UsbPgoXXoBYvT1G3POs5Xvi27YdRWD4LXv/o49B170w1Qvx0Tz9PgT9r+X0O/2U1e/0U/n6wYYPwbGvQ/tddj9iqt/yO/Z1236Dwc5H41Z7yGLjR217Z/V7yZZl9ZsN9HuvlW3d+2D0pNW79XZbb8NH4MKLtv/z9Tv5HWjYYl9gg29C9wetHJ3vDPQbsS64Y1+H7g9b/dwyqOuGM0/Bxo/B6e9CzVoIl0P/G4F+34D2PTn9suMzT7+mbXZ8bnwIzhb230fh+DdtBpd0PKffsa/ZcTp2qrh+0VqobrfjYdNDcPIJaNg8V7+jX4Oud1q54sMl6PcU1KzJ0+/D9tlpuzPQrw9W35f3/L0JyKX6VbZAWYONK1JMv3XvC/rvA/a5vtZ0o2VjV1I0U8CNSbt375bXX3/9eouxQiu0Qm8DUkrtFZHdV8KjObxbPtu8uM35Hxeu/F6l0k05016hFVqhFVouWvFpr9AKrdAKvU1ImRX0yAqt0Aqt0NuKbrSZ9k2ZuWaFVmiFVmg5KAP5W47YI0qpB5RSx5RSJ5VSv3q5Mq3MtFdohVZoheajZYL8KaUc4H8C7wMuAK8ppb4uIm8tldeK0V6hFVqhFZqHFMvmHrkDOCkipwGUUl8CPgasGO0VWqEVWqFlo+U7xt4GnM/7/wJwWcnT3lZGe+/evcNKqbPLwKoBGF4GPjcC3Sy63Cx6wM2jy9tdj64rZdDP3id+C9VQQtWoUiof0P35IEJphoqd0LmsQzJvK6MtIo3LwUcp9fq1AsJfbbpZdLlZ9ICbR5ebRY8rIRF5YJlYXQDyM1y2A32Xw2gFPbJCK7RCK3T16TWgWym1RikVBj4LfP1yGL2tZtortEIrtEJvRxIRTyn188AT2Aj6fyUihy+H1z9Xo/35xau8behm0eVm0QNuHl1uFj1uCBKRx4HHr5TP2ypg1Aqt0Aqt0D93WvFpr9AKrdAKvY1oxWiv0Aqt0Aq9jWjFaK/QCq3QCr2NaMVor9AKrdAKvY1oxWiv0Aqt0Aq9jWjFaK/QCq3QCr2NaMVor9AKrdAKvY3o/wcUWlZPrC9DsgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot(kind='hexbin', x='x', y='y', bins=100, cmap='rainbow');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Unstructured data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Images" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "from PIL import Image" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAGzCAIAAAAwqTHqAAEAAElEQVR4nGT9Wc+tWZIehkXEmt5pT990xsysrKyq7qpiddMNk5Atog1TJtCwLMC88l8wfO+fwCv/A0mXMgjfGRBlNy2DbVGkYHZ1s92Duroq58wzfdOe32kNEb5Y797nFLWBTHznG/bwvmtFPPHEE8/C/8v/7c/H3oMoBSZGj5RYwRAD2SKK3e0CJ4phfHI5T2E/9LuLyi0Wi2HwxlmtNZCOiaPA7tD33jManyQKMJoQUuTkvRcRAEBERDx/gYjMnP8JACklEUHExCIiKAAAIoIE+WtEFBEgRCAiEhEGYebAScH0bMzAzIKIiIJARABMiAYRWJQwESGqlJKx1nuvlXLOJT9WTs/K4rDbGk3GGKUUKRNjZMDEwziGoqisMhzCsjQG++ul+ejJ7GJuLy/ms9ns/v6w3g2jx6++ffvOcwqjU6opTamhUrBalIu6XMxKJHh3d+cD66JmISDrY6pVq5Ul0iEEREkcLi8vm/lSq/qv//rLthUf1ON6mzgsLxcsfuYWPoZhbMexbZbN06fXgHw8HlNKWllJKcbYVCUR+aGz1hJGRFQKjSZjtNWEKAiAKEQEAPl6EemUUgihcNMViDGGEBjEOeecCyEYYxQSICOiAiQCY4xAZGYAFMaUBACY2XuvrFFKEZEPKYQoqMqyjoH/z//H/9Pt3VvhcPfulVYgEo7t/uLiAhDzHR8GP5/VTVXXRRniqG0xjuPhcOgHDwAMyMxElN/V4XBwzuw227Y7fPLJJ+M4tl23Xm9N4ZbL5Xq9RUSjnbUWEZfL5du3b8dxdM4hoi1cWZbMvF6vUwrWGOdMSkkjpRRms8Xy8oKZ27YfxvF47IbgV6tV3/eXl5ePj4/5bXjvmdk5BwAxxryMvfcXFxda6+PxGBOLiFIqpRRjVEoBEADkP9FapygiorUOIXjvo9/K6VIIQn6wYP4To3X+jkLKuwZJ5/uIiGMIKaWmaW5urkMIl6sLHwYCiTFeXSy11sPQsZTMrAmVUiLinDu0nSD1g1dKATBIaoqicKY0tFot4rCt6lprM4b0sN6kKJvdrqxnggRCoPJLq5TCMAyICKhD8NYYIoDESqnAabFYlHX1zTfffPLRx/e3r0HSxbyZ1VVV2GHwnKD3o4iISGLIV5K08t6HEPJ6Q4GUH8Ja6xjYe//lN18jklJKGzeO4+Bj3/fOOQYBgLqu27YFoCdPnnjvtbLW6bIsn1xfoaS72zfdcb/dbi8uLm6ePn/1+s23r96Qohg53ywAsFaXZem9BxFEcdpoo1BAYprNZmVZzuomcjq2+6a0NxfL436722yNsx/94EffvHqTUM/mi/V6nVJaPz7sd+2Lp6sfv7z+zRdfvvz4hxfXT1+9vfv+zZvLi+vXr18rjRrJar1cze/vb6+urn7xi190Xffnf/k3+8PR+wiKkDQzCEDTzPPdH8cx+AEANCERhRj+D//7/+znP//56+9fPTw8OGuXi1Xbd//qX/2ru4dHUPDkyZN//I//cRhGAnTOAUtIcVqHKTnnxnEk0gCQN28O0fmCpJSMMTElrTUAhBDyjxAxxkhEOarn+5hXKSKCIiIigZQkR3gASilprfMNN8bEGBEFEYuiEI7jOCqlqqoSkb7v89tzzuZUkl89v72UUkw+3yxjzPScCIhIRAhKRGKMMUbm/L4kpCkNiSQSyB8kxJEAvfdte6yqChEVARFprT3Hr7/+ui6rx8fHpmnyBg8hrNfrY9fGwGVTF1VJREDqeDz+zo8++YPf//u3t7cpxPvbu/v7x5SSIHTt8OKjl7/zO7+zWCydsWM/3N3dffv111oED8e2PQyVq2azGYOEMAoIMwtIYU3bjuzHw259uaquL563m8eHhwelzMXFRRIOPoHIw8NjWTVElGLyQ/AipCREDjm6yPnSQ743RFMShdMj3+nzvRMEYMnfYREUICJBQAARSSnl7CsiAhJBiEEEz08CAALAzHlHI6JCMsYURYESNpu9teSsjpxC8kg4Bp84dH3XFM44nSRGnwCgKArrZg8P6zgOEbyzegheFCeGIUQfTd+PAIQkRqNS9tnNsn08JgN14Qqto+9A6aKcFU01v1jO55Up6i++/kpr3fW+KOz8YpVa7b3XWiHg8bjTho/H3ePj3Wxxcf/49Wr5tKyKZtH4NByOby9vVvPKa61jrN683d3e/sa5/unzl5ttB0KL1TyvZkWcUgCIMQ6zahVjTCkSilIkohARUACmfEmKtNZa27ymh36fr6FSirRmZmbuup6IEKMgkQIiYpG8J5EYMd9Ple8jM8cYfYrOTZnPWquMq+t6uzm8eftKRMrCImJdV8PQaWXfvHnz7PlzRAUgzrmyqI0xXdcd2/2337+uqsraIqYUYyRtyrIsy5KI6rqu63qzeby+vi4ORY4FiKi1fvHixXq9HoZBKWW0e3v79vryerlcfv/99/ktpZSGYaiqarfbAbDWWilVluU4jr4fTplyWqj5k5ZlGUJIKeUPmAPBtNhExnE8B6D8C8YYa23oOgAQ4YwRU0pEFGMEYBG01uatIYBIog0hlt77HNGU1ojoQ+CU6qbJT56DiyKVX5olr3NBRAJErZVSzIwCbdt2/bEui/x5AQCAMm7QWuUPmECGYYgsxhYxRiK4vFhBjIfDbvH0iVF6eXVlrAXAmbbex7Yb8gdRSjEAJBZCEc5hDgCQgCg/OQtA3/fKmufPn3/59Vda69vb2+P+qJXUzlxdrFKKIkJqigzMnNIUYVNKiKiUYkaRBAL5dhhjt9uts+VsNhuGwRhrrVVKrVarQ9ciYgjBxwAA3vuUUl021tr83jLmEBFFEEIYxzG/kNbae5+hvVIoIjk6eR+bRmmth743Rmmt97t9U1cco9Z6tVp1xxatvry8jGO3Xq+NwiRsAI7Ho9Z6v299iCGkEEYRMRqcc0AYYyqrahzHzWYzDMPusL+6uV4/3hurB99fXf2QCB4fH6um7sehqqq+72OMxrmc8wBot103s0XeWQgcQkiccvR78eIFMz8+PuYPqzSJyO3DowBwgqqqjDH9sSVAa60ikngC4swxZjAdEdU5j+b7cg6t1tqMkPJVyoshhJABZf6r/Mv5ac9RPcf//MhbQGtCzC8ddd6BRN3gcyrNe+0MtcdxKIoiY1xrLRGFEEIISHLe+IhojEFEBhHGXFGcs2/efZEpv21IMaSUP5oAA2BROK2V1pqZcwIuy3LYbfKGOieynIPLukoMD/169+7Wla5pGgbsuu7FixcA4IdRk9rtdpvN5pNPPnHOvX13Z629u7u7vb2NPv7NX/113/c3V1d6czjYokFw0ce2HxKEwKO2uj124yhaVSj40bPrqlKVk77dEemnT68fHx9fv35tjNHWFK66mM92bYdMztgk6Nt+CF0SRVqlyMIiAoD5ZuT8KnmDnUPYh7dqQk/Tj3KSBUQ8PYPk8ve8PgAghyD44HH+qYgkAEARY40xtZb+iBy6dhxJOe2s1loEEdBUhalKbY1AIgFrbdM0fhyq0gLqcQjGqBiDVuAF24HrMjmfFMXCuZ6GxH5e4oureVmW7eE4jmNTz8PYv3p3D/jUFOPyqvrks6vtsb+7u/feW23i0A8DNNVSRBjDi+cLUiGmfr5ovPcvnl/1w0BafvLjz4rabg8Pu/3jTz69apo5kh76T//277747rvXh+19U1kEIyLA6eZ6RcTb9b3RVqmiO4hxVmERo0+J2YBCZBYiCHkXpcQMKYkxxjlXllVeykopoGkRhxC01kQEzCCkyAAyJpzKMxEQEhBEyr+WczkZzcxhGJhFMThX3t3dhRCUwru7TUqp6zrnjNYahLpuqKrGFEVhdD8O9w+3BHh1sfzkk0+GYei6IQNwRLXdbl+9foWA8/ncWlvX5byZtW3LzG3b9sMgIsvl8uHhYTabhRDy/1NKSqm+7yeEqxQQbrdb5lgUBQCkKfqAsqauayGMMeYEmZNuYez2sK+qKhfQSqn8tDm95V2aA1NegbmiRRIASBwINYAQ4WIxjzHudnullHOGCEMIzDGHD60cEfkYcsXMIkqpHHGISCs1FRksOQJykvydnLM1Kas1AUZmay1IyZw4xpwygSconPOx1ppFENFaIwBN04ikw+GgAZAFAPb7/fXl02EcAZA0KKWGYcivhagEcvlLiJRhQa56cjk1DN2sqodh6Pe7zz///HG9LUrbt13hXOFUvkRaa++j1pponPYvcmZfEqccKGOMLIwAOSmO41gUhSKdkURKqSiKsmoAoCEsXNV13eBHZh6GQQTze3716hUAffbZpxcXF0VRbB5vcwS31jKztfZ4PDIDpJTSRFcQEYAcDodcmWlNGaJ5751zRVHkBcmEVVXthnYcvJuVh8Ph6ZPnL1++/Nt/9f/ZHntSmkgjStf2BJAxnI9Q1/X3b28fNmsk1XXd1dVVCGN7PIxDYJBmPvv621fr9do5R0Sr1Wp4d+v7XogQlbAYa70fjHHGKELHzBxZQIw2maRRSulTCRv8WFqThFGr6+trpVRRFCiAAgJyzpQ5ReVlhkjnfHNG1edwev7+hwn1HMw//FGmLoSZgRBPLCZMFWqGCCdcZQgxZ+KyLBHRe2+MyQk1s3H56/zLOevDqRQ+P/JujUny6iqKIoQ4jmPeqiKikRAQQRgx/zKSGNIi4pwryzLDDa0po40weqN0JrrOWRwAyqLmBNdaxRhHH9pjt297rdFpdTzui6LQpH76O7/z0YsX3716891335V19fj4eHd3Z62tywoAFouF1lqPnhPFlICRiBQiKGQWkZjGYbSVWcyWi8ay70jBrNBSL8vKaa2rqvJ+2Gx2Q9+u11tTFL4fovRdlBiBAWMSiek/qHQnFhqImZEQADhNcElEmAVInWL6lIBz6mWY0vDp/ucbqQAEGJMw/Qcv8SHdLZJS8t4Pg3r+1M2aF52P37+5FTJBZBiD1poRCmsjwK47SgzOGgA5HmVRuermWpD2uwMAjJiOQ8+PA0lTOvPkej5blKUxYeyrqjLm6gXXDw8PPLYabDd4H5kZXt2vR8DH3dFZfdwdU0rXl1fe+/6wnS+feu+dtswpJbGuuLm+tIVFpE8+wr/6m18/PBwwlYvaIj77za++GjbjRx99FGNcri7+oz/4ey+e/PDLL76JAXofFJg4RpBD4ti3fVk6plwHqEyqKKu1Nkorgky/UF6U8fQYY6idVkopbQUIBRWRcqZwMAwDgDAACiCi1k5bUgp96ACAUCMqZkZUWoMxRkSEUEQIkEEgsdZqt9t13fFitdSanHPtYa/1vKqa5fKiqmeoVYwRSWLbpyiowBYF6aKqmuWSQ4zjOMbIRVVeXl62bRtCEJHHx8c3r15/9NFHfTf6MfZ9f339JBfQVdWUZVlWzrWuaRoAcM7laFKWpS3c7e1tUVhmNlpTxs7MIhI4OcSUktZ29D7D8Bz95/N53vOnrgef48j5n9ZaazOwEx5D/hGSADISFaVNSQnUx0N3OOzz72fqYhh655w2RMp47/txEBYyuiiqHGs0qWnx04QvEWJuy4QQznEtL/6ysM7qrusG7wEoU0oAACgxRBExxqBgURTGFQKUUgLAYRiaouj7/uHh4Yc/+CQnJ2OdQnTO5awDAjFGJI2IlhSiCiwKUAhDTIgIwgrUfD5/eHhAlq+//lZr3dS1bYwzqiy0YokxKqNOtTswynnPnptT0yNRRuQsITMcQ++NMYtm9u5+DQBEoLWtqioyFEURQhAEANJao0CmMS8ullVVDV0vs6pwblCaYyoql3FP3w8AcO6h5P9ba733ufbNDRdE7Nq0Wq1SSuv1+vLyMsbgvRdGJAKhvuPl5YVzxcO6TQCIvq6N1goAFELTNH2/VgZQq9dvX41jXCyrQ9c+bh+fP3369k06Hoe2PTx//nyxqN/cvvvxj388dEfn3GI+CzF1XScomQg81fQFEVlrmXD0Y9M0VVXd3d055x7u76+vrxFxsVj8p//p/9Zai4oQsd3vmcUorZQyxgwn8h9OvBciAshEj51y8zlDQ0p5jeVLdEZyH8be89dEBEAi71uN+bWIQKkpWWpNWilFkFJMSYqiyLhqYlk4kysBAMZxzNkXAIZhiDE652BKBJh/IYRAqK21PgYipbWamKcoAESIxmRWb2KStFL5zk7gAzFNbDbl8NJ1R6XU8XicamWRlBIpwykxgnNF1283mw0jiACzPLm+efPmDQJLmtDM0B3rum777rSjsSpKH8bFcj70vbZFvXnYxMB1VUFi5mCsNlYxw2p5XZc1p3Q8bA0mpxBJmotF8v7Y9iIyn8+Bpeu6g1H77daUtSvq2A7tMDAZADgRX+8feb+dIRV8QD7nr4km9oNFCBB/GzoJAzOfy19EBKTcMU4i9MEKQEQABsATnMstk/DtV99fXT8tm8XFcnUYfRgYEJE0C0dQafTsA0hIKaXE2Hc8KFdUkYEBSam6rjuIBPK4bce+awpXmptyYZxGhZHHobAaQudQ6qYSESDlQ+yj/N2X3y1m9eXFvNDW2OpwaHfrx5vr68PxPoQUbLldr+fzKviicJhS2m6O+10/tvz21aPTX283T9ebu25HeLAbo1NK27vHbq/btm0Pg7Pl2PVWGULt+3jo2uNxuLio6rpsFrLdbrvuWBelcTYxSEooEkWQptYvMyOokESi9313ZqSVUlprMjp/B1ESJJbofYgxKUVaa0Ag0kYbEUxJYgz5ynvvQVGuFElrTmAVbLfbrm+r0hLwer22WiFiWcyMsyKgSKXkw+CNMR999JF1uipc24593+ftoZSJceSYkvBisQghDMPwySefvnvzum3bvG/z/7///vtz7BiGYRiG5XKZK568hZRSKQXnjDUmhqCVMuY9keW9z0y11noYBuectUXXdVrrrjsOQyWSUoKUAgAjUubjAQBRADjG0HXHE5UaMrgUSSIphNB1x5RSVTXe+3EcfQiJA0sk1FrrdGLwtLWVUpkV7Lp+sVgQoYhwYswwJ+N3FAAmJEIsnNM5PPV9/hRE5LRJxgBL4JS3Qr4p+eaG0efKM1dLxtiqKBEhpVSW7vnz51rH3Lup62Z/7Iqi8D4khsRRa5IT6575XqWUMQVwItLa0jiGL7/88ubmZr3dPX36dDabxeiH7uhUobW21vZdl7nPvOVzTGSJMUZt3+Ohc9BIUQQl+JQxEACsVrOyLIe+rxujlPJpNMYQUT8ORDgMg1HaGPPsyVPnXArRVbooirvbt1mpUNe1UZoEcjQiQFR0Wh4phKA1AYC1dr1+wAX6fvj4o49vbq7v392O4/jw8GCKAlkIUQTGmKxFRPVv/of/LyKAgFLqxccfPd7da40aQWt9HMeyLLwf1ptRWRACALi/v0fhZj7b77dt2+Zq7O3btz/60Y8Wi9nd3cNqtVLGff7F18zRWtsPg1KGUwre5zzKCrPyoCjt6HvrtDGqLsrkgx/HqiyHcSxdNQxDSskZiwCA0h7258z64XXOSPpcnn7IVuoTvAMROK1VACA1YSk8VVyIqIj4t4lJAAJIIhMHwxyJCk4pc8t5y+Tkmm8QMxNhBvQZ/BFR27ZZcJBSklM7OcYYfEJEUyillIQwDAMzx8D5/Z+lEimldGKqiKbkQoDCnAAyPsj0UkrpeDw654Yh47OUUmJBAmDm3/zmSxYwhobASiER/O7v/lSYg/eldc65h7v7zeP66uJyDL5pqpB4uB/X680WNzHBfD6/WK00J1DGWaOU1n3fCiRUjhisLZxzLAk4kPBi0RD4oT9+8eW3Zen67ng4HEREEmck8qRqbp6/dPX8829ebdvvU0qonVYGOH0Ijt4zGIRZK5FvkJy+zssg45rzH57TqpzEWadfS0woH7DPOTOfAikJM7IgISmlAQGgduXYdsZWi7ppu40S0Nr60ZdlCVFihMKU1tQSEyAoUv3QsmACqeqZtaaqiuWibgr3+PbN2G3fvH0sFRq8LEpXlyoG/u71KwwReeSkAYCTdIN3ZTVfXLAkH6Q97JWk2tnV6lIr+3C4b5qGZdwe1s3MIJl+OCoNF5ezlFJZ1vf3935o3775brt7NE63e/9n/+7fry7mH338pD8erKGb69XheAQZh6HV2prCFIVtWzkejwDgSq2NtUXpEw8+FkURUxr61hijtSJAYURQZxpTYaadR1TKGKMik48A4JwjBQgEQpEFYkQUpaLSjJiYAVnGMWTcqlTu3jHjRFbEmADg8f5+OZ8VhT36YbWYX15erlarYfCk1aHtIYDSVkS85zF4luj90FSLXKYTEZEHgMxHdV3HzIh4+/YdAKxWq9yFhUHevH0lqJ49e3bmqQRS3/d93+e+r9KYONze3WnSijLwx7PuLNejWtsMTbJoyxiVm0/D0A/DkAvW86rOnzqdHiGEHEZFhCHkH+ULQqQRsSzLlEJVFXVdd113PB5zU7lpGmGFoKYCQmtFJsYYk+/7vigKay2QznQFnkqW3FFGlKqqiAhEjsdjWTqnTVEUXde9r30BADM3gRkW5LqZRTiEqqqIQGIY++P19fXv/PgniSMza2VQgJkPh4PROkYmpSTEhOm0MXPIxowMJJFIYuau68YxIKr9Yf/ZZ58ppfb7jk4FU12WvutBKWZWChlIRPSJW9akJmQACKfQiYjRB61s1dT57hhjttutMebx8R6A9vu9Mo6IxnFUxrZt+8nzl4/bTU5piGiUAhYOURIzM4FMyiMEBkDAE5B6z5+FkJ4+exaj77rO98E6NwzjbLnIuWccRw7R2Slhm6Ic+vGLr18DgACQttdXT7758qsYpKotger7vizLrusAoKrKvKj6vt/tdvOmXixnh8NhHPuXL5//6le/CiE8vXny/bff0+WlJmjqIrF0ozdKA4EIZ2Y1c7aI+Pz5cwAIo88sdEoBEcvSJRAdMYxeEpeuiDEKc12UXYzKuUzhnAFrvgJKwYc084lJ/DBD41kJlf8JH5AWZw4jdw8A4BSkp0Irb7rc+vUppCRE5JxFxHEcM/0AIDEKvC/3VU7PXdflUjilJJDOT+hcWZZljGm73RERks41PJ5UKogYQzh3OhEl/y+FKMCkXP4dEYHE1phhGNq2dc7F6K0t8ifN+3qMkQhSAh8YAHLTuqwqa01prVJq6PqqKJ49uY7Mgw+b3W5RuB//+Mcxxq7rFNJqtaqLUvf9SEQsMARvitJanVLYHdr5fLbZbBBgMWuspc4PdWEunzwbN/z9q++aqqyd+/7V28W8/tnPflbX9eN6G4G2h6499iJCaFgwJdFqujFnAPJB+zb/SMF7cRbmQnbaA4ggwEmQBBGnxi8CwlQQJ5HIrLKm6LRWFKIgEgoRMQCkBIBZKS0iMcDY9oF3zfISIs+KCrVpIytmjSQJSSsEE2XkhAJKoUmiEMX7IUYfQ2+Vjgf86PkLjFcl8v44vHt3N29UnJmyMLOmSulQaDVyOu53ZOu6rscQ+3Hk6BUhJjEIy9V1WdjN4/rm6RMAKmyRUhKO2uqyNIWVcdw7Gx/WG63HFx+9mC9mZG4A2Enx7v4dIs4XTtu4Wq2e29Xbt/eAqaxmzBCZy8bc2Ivdbne/e0t71zSNNc6LD4kjgzaGlAFUzCIIeOrfAIDWJl8lFkGWGFM80XFd12fljibQWhMpRCHS49gCQAwTtCTIShbNHAEgcWIWpbRSSmvYbrdte7i5uYp+uL68qKpKBGPkwjgRPBxa47Qx1oKM4yBCWZSee4qImHndTDTVZZXznNZaKX04HOq6zh1KZ50pyryTjXEAEEIwVgGy0iiQQMB7n9+eiBRFkalpmfRTbIzKSW4Yxwkyp5RL2Hw1iqLY7Xby250w/kB7lTM0M3MKme5hTrns01rP5/O2bfPTAsAZ4O92O1etzvS1iCgtpnDIVdd1foxE5EwOUhyzTIk+JP0kt28kBgVFWZZN0/hxPItU83NmqllEfIoxxmmcASilFGPSWlNZLmZVWZaQkujcJLb7/X4YBmFQShlr8zuPMYIIISqiiTDwXpNiZq20c/bTTz+9vLx82KybphmGgUOczRuttUbMQTblelfryFFEFFJIQWuNiCCCgoiEOPFkSqnCVSEEYMnU65u3d828QqzLqtrtDsMwgI9aa+dc08yaqgaAWVUbYwInSOymfMMxeRRBROdc27ZZpMIytcP4JCMKIf74x5/Vdd11wzCEprTDMATvm6bJJRpo61NM3Rj9qEll8lMjCCEgFUXx+PiY18lyuVQK+75/+uzC+0gICimGSEpbray1m80mjP0wxL7vl8ul9+nVt9+sFksRsFoN43h1daWU/vzLb0AlSISKUorMFGNkjkD40UcfDcOQOyZ+GJ1zwhxiHIaBjI4cSQEAcEp5yWmt8ZSZzqk0pxM1sS9T1TSRE8zn38kpjU8CwHN9BR+0kyV3FU8lU07iee0RkVJEiCIp40il6IRiIxEZowEgU1Zd1+Vkn0mvvNLOyCC/H2fLsiwRqe+Px+OxrmdWYZYxTtMxIiLgvUfE3OIFPknMJGUxARGRMAoIgFJqv9+HEPLHzFEoMYhIjOlwOMQEAIAAiDCOAQB+/rOfGVIAoBUpo4vZ7HA4hBCePHlyeX1dFMVHn3x8f3//q1/9ipDGri+t07lNO4QRAJwzMcaua2OM+/2htM5aMwafGI2tRJeHQdqQEphqtkCRIW5ld/z1b74YhiGKbLbHLqQ+kaASJBYkYzj2+MEDJkWoOkefswbvDLIYkYAQT/Uxi/CJf35fGVPK7XIUQiKi/NT5ORQhTxJ5YGZgEQCWBAk6Py5WF/VssZgtJAAo3Q+DkMyr0lrddcjMIIBoEFSIzCGaKK7Q7P2iqQurDdLuYf0octFUUJi6mF3dXFws7PH4sN7vq+L62bNn8vaBRv7ko5egi1dv7wKIQRBr9/tDXRQJZN/5x80+pVQSXFxcVGVTuCb4TmHcbA6z+klZamEau7sQxovV8uJqhSjH4bCc0bNPPjsej30/Ho7tN9+sSbuujUYXMUBgASStDEPsg0cFhtw4hKjRGCMMu8PRWu2MS5CCTyJJa63zvgRE0ielJQBITDFvvFwkSZSUggdQKilEACYipRkRtQKtjVJaRBiyaGJkhEwBAWCMMAzw9s07UlA3pR+K/fFQVU3fd2VZJoahHxNL40rm2Pb9OLRXdk5anQtNEVEEOVmmlNq2RcTVahFjvL+/r6qqrutxHEWkqqpmscy1XS6Ly7LMDbzZbJYJbefcT378I0ScFYUQHo/dbrez1jpX5kAfQkhTMp6aKUTE45jzrDEuhPEUiRQAjuMAE6MlKaUQpn5wYSpEzEK2HJLatjXGpSTex8xCC6MxBoiYOQfQPAmWiwwFmFK4uLjY7/f73XHWNHU9qVSYGSCdN06MkQS01pk0Tin5ccyTHjlOERFzQkSjjVIKpuCVqfssJcOUklGqLMt+6BZNHXwfY6yq5vZuTaRj7IkoxmhtEYVDCB92wVNKWhd5ZsEY0/e99/7x8VEjOedijLlWa9v25vKy6zqQJKeOADDHGJXCGKNWNpdZWaZ6Dvr4gXzseDwS0XxW/cf/y//4T//8z1KMw9AppVKKbTe2XbvebAHgJz/8UYZlWd0DLO3+wDGF0edWljEmE4yIgEBZeJiDUn4/f/RHf/THf/zHw+CdU+Pof/2bL6vCaK1vbm6U0oyotekOQ388NFVhXcEMZe0SKmMrBvj1r3+9nDeh7xaLhfeeA9dl5YMohOh9iAlDGsakMDSFU+JWiznH9ObVa2fU2Pv6eS0CzrnNbk9Eq6fPZ03ZdUPgZIhQIElMUwWpL69vDofDoT2iwJdffnlzeaWV8uNojAkhGGtCim3bKqJc9yMisAAKsCAhx5RnPjUpQkoCIAkAJTEppZByJj3rDPikOjznb/lt0RZzFvm9z+IfYH0ixBg9MzGztSZvk1z+5uo2hJBHHs4vmgXhWTWZp5WySChn3xDCfn8IITTNPIuZ0xCAptovhNF7HyaZhWHhyJlSTmcYQWeZBCIi7na7DP1zys+C6pzCyrJ8+fx5SHG73QLAGENKslqtNpsNIUJia20KYRzHy8vL3eHw+ZdfuKq8f3x49+7duzdvEbE9HH7+859PSMdq6vveD+DKsmnmSqFRSiSN4wggm67bHXoiGobh4FXwAwtCGgunRel3d48xRgZx5UzXBvuQhpQYcp2hYeqlT3MdWjlTtG2fM6580EWYsPk5B8sk7xQQ4UmKlZVZIpIEz/VHFFZJUCBnBZGMyxhymZZHvrRuXF1VFR7geOi6wYcQskiBo3646337MLRQllUQ8SlWrm77UFZlvah86JFHgLTbbpLVy6Z+drWyqCCGoYvR0Tj6xG51dbPf6Xdv7l1ZLVarwqe79cFZ9eLp9cN213b9bDaz1j48PMTIb+4fC+u8j/u2PRzC9aVA4rKwIExo7+6PVxer66vVYvZUm8+/+/b266/fjr5vFs2zpzXA1ntflvXLF5/ttu3f/t3nbRc5Yd0sfWQfPR5D5Kj1HEkkQUop+iSMbIg4+ZhGFRAFWACZYrJKn3WMnH5rWoCQEgNSxq2QEosIxaxcRWBWHJRSA/gQRU2zgAIgxhZIEnxyVofI1lJZwKtXr7Q1r1+/hsSZtAEgP8aQolLKlYX3XiTNZrOqtMwBEWOMOT4SkdZamBfzmTHq/l5yQyurJS8vL9frdQghJB9CKOpqNpvnSD2OYbfbee+rqsqDSUphUdgMrh8eHlar1acff/TunXvcbkIISilriqKsM+mal2fmDLXWRpvj8bhcLk+wXeVMY63NES3X6Hm1j+NobWGMBo5KmRg5pRBCsrYj1OMQhnHUSiurkghpXVibRKWUhmEoy1IpxSEKotYmRj+fz733fddlaXdZ1jmH5WCqtXba5N3kvddaI7C1OreuM7WedSU5eiYQZI6cipy8hZVW49BbRSEEBGiaxjlLmHJLtW3bHCsQEZFiTD6Goii6dliu5rk6qaoqEflhzOzifj9mnBRj5BAlpaJwKXqDKJJQlNG6Dz5HXqWUUyolsdZygjxAYq1TSmW6In+KHOtzTd/3fdM0i8WiLMuqKm/UzTgGROzHsN/vvY8Ckk79xeVymetdpAkxWKtEpCjserNjgDzNLmmqdc5B6V/+y3/5+edfIsA4JgAggNGHLMrzKabAaM1ms5HIfT8uFrMxBGF88fGLZrZSxrRtO3THi/kn87rq+1YEFKhxbP/nf/B7aMz+2GVJV1MVCqlvj5/84KPD4fAv/sV/+5OffPLZD39knL6+vhiG4TydVZblcrn8/s3b/PYUEjOHEJ1zn3/++b+/f+PDcNwfJLFzrmtbYxTzqQMCWDijlMkj2igo6qxefd/sO91lPJFPAgB5FCLPDWfgki9jhsgZJ53z67k+RjxxOUplZVOMUREoMnKK8FkDlbNsxgpn0XLbtuM4lmWZ40AmY7LEMpdwVV3MmoVSquu6rKQzxmWgFgMrpZxxSDJkfRaRtTadPCdijDn75tVVF+UwdHji2GOM33//fWGnBnBW5CFzjBEAjTFYKQCYzWYisl6vnz59Whdut3mntVZIwzBYbX7w8cf3j49/+Zd/CYSuKl+//j5Gfv78+WazKZ0jIo3AhKIVQem01pTbOaSPx2Pft2VZjtGDUl0EQfCsRRlbals1zi7S2NXzWYoBgK+ubg5dd+g9WrA1vnvc9IM3RUk8gdx8R5Pwic37bfrutxV0ACCoCOWcpPkDrVbOvudnQMxsNSBKltcjijYmJg8sVhtjTfSBmUtXXF98cjwe7+7u3r7+9rC9fX5zvZg1H11X261fr9eMo1Z2t2/BdKas+yGGHmdN4azqj4+O4HLZXM0XpbbA7IcRJEXmYzv6OCzmldL2m+++f/bi5ac//EGIEBJ+8+1rV5bPri++/vZ7Pw4xhhhjN/gxRGejUkZJAuRvv3vrTFEV5mJVN2V1/3AbY1SmSJFevnzJov7u87/rx7D+9pUfPtWaYoxl1TcNNvPm008/e3d7/+r1LXeHmNAURdePRVkrxDEmq2MmUCMlEgUCKaRxHI3RWXREIsKJSKY9c5orBYBcXZ12FBhSSEJEgCBAIgjAQDoJpJAUZHU0WWOy+LBwpXCvlE4cra02m9h1AzPvDnsCXM7meVeTMs65x822sXmUHkVCjBGZxyFA7M/dqUxHAwAhLhcLX5Yxpd1u13XdJGjy3jj98uXLqyc32+0+pdT3/eHQLhaLnCbHcTRG5Zie+7uj70OsNptN27Z932ttmfnYtQySMa+I7Pf7m5ub/X7PzAoUANzf32ut81BTLrsn14g8IglTI01AsmwEAIDxrJUVxmN/jDEhEAACkSHKqihJmN9e13VNWeW00battTqHxaIsx3FcbzbOuaZpOKosDj8PTnRdpw1pNSHUzIqfpdHn8eUz9hUAZhCYcLA2KiZumqq0JkVfVVUIKaTIzAKTbiOlpLVJICklYcyvm0l70dpam4fX+r5PIe52u0wyp5TGcSQOVNjKFYiSyWSZRECYRJinGQg8dakzk4+IIgwgRVFkNSwzBz9cXq1CCIWxs9lM64Go9z4W1qrVKoSUqY75fD7NbSNneSAz932riQAg11UIQAQCU/rJlyIzol9++eXUDWMggsrZqqpiCLe3t7PZLIraP2zHwIvGhZRQGefKTz79QT/GL776arPZWas5+nVdPn9yUzpjlNFav3n15ic/Wy3mC0UGAMMwfnt/a7VpD/t/829/CQCVA6ssiszny+Vy6b3v+/7JkyebzSbF+PSTTx4fN904WOtORAhcXl4uFovN3auuHS4vrp89vclETlk6ZmaJgB/wsSSIhAomz6NThXomM9Rp+BWnBmoe9Zy463NRK6dp4PNv4kk6NxXB8l7AlTOfojOWkjMczOEckfIqyrLP/GZCCMfjMafPjML3+31RFJlN0UpxSsMwDMOYAX1u+oJQUVhEDHHM68caE6O3zo1+YE677U4p1TTN4XDIjgUPmwdDajabpZPbxjiOl8tVLr4z2SOTqQ5nLDtdOmaQNGsqRZRSury83G+2Wusf/vCHIYR/98tfVlUFhEqpF8+fbzYbEfn45cvD4YACWhIjcIpJJOa2TRiD70erSZWVq4rUMdmi7eP22DfzC4hxHPt91zdsIMqhH9rDrju29+ttM18KUtf7PjAhWKMQ4vkGnKBryiw8AOfmfPptjw75YFBMPujYf/jT/6k6AKfmMiDBidoHTSqk4MOAYggkRd/1xyc/+tFFWD17frW+u13fvRva9dOVlRg+eTp/dlEsr64Z7a+/efXmYcuxTSzaNsfjEUu6mM+uFvW8NJSSURJSuL5aKqUOx+3jZlNWuVUZnr14sdls/v3/71fOlcoUIOm434cQuuMeSAvScRgAjS0apUw/+nDchyhGFdpSZCnrqm7UGNyh3W33pQjOZst+jD/6yQtA/OrrL15/vSNMl1cLreGLL764eXLx8qMLoPji5c3rN7dv3j0QYFVblihAWoMmEynPm0OMjJjRTGJBpVGTQsEoEU/KWE6/JYk8g2IiYkpEoBFEo6CoXDGHhIgKdZarQ2QRHxlTSpvddj5fdMdOBEVGYXr79rap53kGejZbGGdxHJijT2ALp7UewoiSlAattUadN3xGxEVRFIUdhmEc+4luJVACSmO2YijLsqyr/X57e3t76Nr1etsNXelKY6ZtZozJWP408eyGoavLKqdSIsjlbPApt50Wi2VeYPvDcbFY5N6zkOTocE63pz+fJA7TEj31SnjqM02iUAEIMXZd773PF1yAEEiRJiROEIZxNqvn9bLv++PxeHvbz5qmqqpcyeUaLrOmIYT9fj9vyty7ynhCa73bb/wwfvzyo/wG8qU7N/Awl3cKjEj+CIgYJSlQH9K8Wcc09G1KhTLWex84ZR+P05ac6h4QyjOaGWokFtIqJdBacUxKT+rcTDzE4BEEQKy1KQ6JU54hRsTfBuSAiJmHjDGITMMRlJdvnp1LfhjG+XzedgelUUS0VrOm2R9a5lBYS5QtR+xsZvIwSY6eYx8EUoyxKCwpKIri2O4BgAXywMyH9xERUhKlJjlLVVXzuqnr+s2bN1rR4XAITOPQa4LFYsExLBaLx8361eu3u7YnbbXWdV23u3A4HPt5HcaMXaz3Yb3etp1v+15rba0pTKkILi4uDrvdfj88f/7i/v7+pz/96dOnT9/evnv69LlSKgkaY2azWdu2i8UibBInns1mRLTZbT/++OMnT568/uY3WS18fX2dF8w5hOJU5Mgp203/BMjwC3FyPnnv3XYWW314XyYOMltbnZTS2dUkZ81zxACAGHjq6AMzAwrgNAGcPuQ+81IkIuFIKFqhIsh/w7npkMXezM5aZ21KaRyG2WzmnOv7fuj7GBLgOR0obbSIJA7MnIcemXkcgVO8v7/f7XZ3d3cxxj/8wz8sy9I5J5KISDt77Lv8Zqqqunt8ePbRk6GbpjCcc6HtM9+Q+yYZf3CIyLyczSCl5WpV1/V2u/34xYsQwpdffnU8Hm1RjMHnbZuriLHrmXk+n2uBlFJk8caowilDQgqLuiiKommqADHe+nfrR1Mtla37kYHD4KOIHHYbq9VmGzWhdUUSvL+/R6XJFBxT9D5FJiZUREQiKXEkZWCaNcqEpzAC8ilm5S04NX9BRCIwngDyuRTjk0Qas6ciCAkQSdZp5fIXBAjFWQ2SwhAYpvZ+33b/+r//7z799BOj6eNPXvzuZx/9+Z/+2+iPP/70k+N+6y5q48yu7z9+vrKOXr97NFoZgzFEp5wCCH0XwIQQ4tDOZrPdYQsgIY6ls4eD14Rl6XwM8+VCEW63WyDjnGPxfd8v54t29AxYFvXucNzuu7Kqm2b+yU9/vH7YjN14e/9uXhXzpe3HlJJvmvIv/uovmmZ5ffW0H7wtytVqcXl91R/a9ebuOHhlqzEGuTvWM3U4PArgxaqxVr+9X9ezou37mGIcgzaVUkrQMqfsvIEkSmkGJMYE52SRiEWxxMgf7iulFE0Ih4A5iSQQJWgSsGZEFE6aFBkURBCIAoGjCgLI1tphGJQy3vNyMX/97qEbBjICSiuj+3E8K2t8CsZqUsgjo0QFSilltfJ+yONAOYlmFoiZlUJrC+Ypu6SUAJmIbOGGwfZ971J6+vRpLkNDCH3fIiIR5G2TEX3G2qu6Mkq3vssfdhgGYSzrOsaolIoxiUjhinEcY4xKo4/Jx1Q1szFE51wSQYEkoJSmyWSGANW5SjiHv7xdBSAx5xouv2K2s4BT56yqCqWUc66uqsK57XaaS8nKrNwkzmgj1/Sb7a4oCoRMD1CWUsei0Fpnp4EQRsSGOUZOkQMmfX4zmdH9MLDmWElEx+PRKRSO/Tgsl0tOQEQhcowx61DG6K21hFpA8qTWKXxjCAGYc2WZn3m1WqQUlFIgWoEg5OFB0aTC5DtLiKKEGN4PLp6F5RmpgAgplRuEJxU3LOeLtm0BJlVdUZRFSACEiCmOWQ6Wu/jnpH5OS6ZwmWU9diPny4C5Y0j5d079ZoqRAeD3fu/3/sE/+Af/+X/+X14s5rkd4IxNSLSYVaWbV8Xb169E5N27d/t9u7y8YKBDe9xsNsDJabi8vOzbQ1HWIQRU6vb2drZc2bIko21ZVs75sS+s+elPf7rb7ZRSVVX94u/9/v/9//kvdrvuxQvV9uNSJISQeDLqGsdQFpOgGgC++OKL2WzGAqZwQNj3Y2GyLRoAECGd3V4RKFc/wgiTewrmNHyu6vJqPPMQ57h9VgLnBfxboPPMqZyqYRH5wKESCBA1AEyGG+ea8gz3lVLCUyWAiCIpC00AoCiKYRiapsn7fRzHqqoyUTyOYwzZtkUlOT0hJB88ADhn8rgwEWpd3d3e/upXv7q5uXn27Nnd3d3d3d3V1cVsVuOpA53JbWa21i4Wi7quBcgOfVZfxzRd/Ky9FxFjNMfEKVxeLBWBKordfl8UxWq1evXqdRJ+8uTJ67dvy7qazWZ53iH3ayTFlJIuiiKlqFAVpZs31fp+DQwXy0utKfYHW7hnN5f7rj+OI0CxP/aFjpNKUFFd1+PQI0pd10VR7Pd7V1ZVM9/tD4jIQDHGPGfLp4EQotzbfd/BBWT4oKE73dQcyxgZ8uTv1EJmBDkJ8/KwEhIinCaPABAYEQFZa80cFYgurNNGEqOAMcrZ8t27d01d7h7vf+ezH/zBH/zBb/72r7979f2iroxRHP1h81jOFp88v+EYjCtevd1q4Xk1a5yWMGitlxcrq6muqwzHj4edcDSkVovl06dPNjsTQjrsu647ArnE1PV+8FEZ62MCJAC01lbNfLW8qqqq92/J4dzNfB+Ms4/rHcDgDLx9c/fRyx+Vxfzf/8XfzmcXQPHxQebLi3qx/ujTT5VCBBnH8eH27vtvvru8uF6v96U1hTVaDr4fx35QRivis4iJKDvcCgglQQ2UThpFFMgOOyycThXwxE6DkAgiKJj2lpqmxVgBEpFRJIAhMoHkLKiQQGf3aZtSElJFVfzZX/z1r//ucxFsj31VF0VRoXCmXpNIHP0wjIiiDSmwLDHGwMGnEIeyd8YWRZXxo9aUJ2iZOUaf0mRzsd/vD4eD7ozWerFYaGsRRSn18PCQt/rNzU0upq21SmF2zst7OA80D70ngXEctXF1Xa/Xa+99Nwwh+uVyuVzOD8ddVVahH7quO48hAsB+v8++tWfK94zrETH7QmQbWz4N+59FzgxCJNm0Nt+mwhkiTNETmvm8aapyt9vtdrtO6WzCBYhTaaJVUVeh7zL7fbFaOld2XWeMaZome31P8iXCrDdBROSkTlZlzAxIHwZNYzQRFEXRHg+z0i2aYsheOiREmnmECS5MSTGdfLXOVRGgYo4EEGM8tvtcsiuicRyNVUSkiJVSBMgIqID9mSRgkKybfe8fICc6lIgyPZ0Sl2WZcZUIFEVx93AfQnDO9WPIwxCTSGcIzJxAFEIUtichT4zhgyYLMHNMQApYAJA4Td2urOnLahJr9dXV1TCO/8V/8V8aM0mBmqZhkWEYjvutCDx/shIEVxbjODaLGhGHfsiLwRpCZiQ5Hg+mcIMP+z4J9A+HPpvLAcBiXhVWz5t63sxmi8Xbt2//0T/6w8+/+vJ/+Hd/cXO96seQ69rNdrdYLETk4eGhKKw2FCMCgDN2s3n85S9/+elHT7U2s9kMEM/Oo0opAWCEzMRMKZGROQn+FlJMHIWBPrDCeF8aTZMpAsBZ+jSFahHmlFsk54F4pVS2XiAyGYLCaRYlpcDMmUA+haacyylPxGSemd5r0Scl18XFBTNvt9umaTLgy1q8vhtOrygcEypC4HEMIpKzrwj7MGRMk11CP/744+12SwR/9md/2jTN/f39xcXFD3/4w2fPnuUezWw2u7+/z8ZhTdMYY5gh44Nu6Pu+n81mkCeVY/JhSMEvZo1RtD0OwHJ9dXP38DiO483NzeFwyJzZq1ev8u3ouo4EQkiIqIdhKMvCKBQJi1nd7XdpiDx0oySR5INirVez6vH12osYVcTYlWWJkpaLy1lVhqFYP9ztDvs831aXxX73+PCwbpp5XbnHx30Une93bnEZazPwSSm9r2VJUN4bZolMTnuQWwj8XtQuCP8Tqmpi+0SYMouCgkjZUCLHuwz5FRKKXF5c7Xa74+54c3X5xZffzipnbK1MFZmEVYpREne7w+LSXc8rQaWeX/ixtxiJhUEy+Fpvj/VQVVVxdXXx5Oll3x3X7243j/eLuvrBy+f9ELpVDBEOrX93t0Vlq/mi7QdjXRKM3hulL5YrgPTm1fe69ovFCpIOvu36sFkfnt4sXFHf3W6+++7h+bPZZ5/9/S8+//Zx/ThfJfuuf/EsuckXT1WuSEMYunHNu3GI329eBxZj3X7XJk4KUCsV42SdnZc1I6SUUkyiBHha/RoJcCKlAAmJcmZmQWBgEcQTqkVABQpIEJKAJEECZNHIgkiCgpL9N2KM665rmma/3a6WV3d3d99///rh4WFZJccghNHHlFJMnplTFKXQ+0FrLUTAgiw+ekk8n8+zcMMYJbmdwcwxGGM4318iADbGZICfxcyV0X3fA1Df9zc3N9mU9ebmxlrLHDOURsRxHIdxaJrGGXvYt5l6JaK6rr/77jtXlrm0imVZFEXXd6dy3FxeXt7f35/VuRkcTDmV37v54zRlkRCn6f68F/JI0jlnC6Q8AKOU8n4sioJyWwhEK5MdN9fr9fF49N43mXbzYxpHY0xRVFOsJK1O/kS5HCQiHwZUoNRUTChFhNkCSZ2GADGlhKROfVbJUtCu6xBYRGaLBRLxGGJKIQTMbiCEChUzp9MnEgABiCkxeCKyWolIWZaz2cw5U5a1QOIIWezhnNGaUkCRDyxj+cyO5gF/PlOgSEIoCfJQYcqr67DbI0JZlt2xPddwMUYUykbxZ47hTK3nGH0+4yHfuH4cpvQDAABnqVoeo7fWAuAPfvCDP/qjP1qtVv/X/+q/+uabb8joHI7u7+8ZSAAMQVmWmtB7f+jCYum6rgss+XQBTBGzGXhKqijLuhEAZ1XrU5hYWNjuOwS4f9j/zo90EgZS8+Xij//4j60jWzgfonVFiImIiqLIRX8IoWmacQhZkv3t99/lrBZCKIoyk66JuThN8SVOHzTXMQqDiJoEHYCILACJQYCIUEQh6g9mFAFRISYE+m1zw/MyhpOrEp3K3nPylsRIAjB5y39Y8uY3wwwiKff7c7qKMWYGxVpbFEVdz7L/hta667q6rkMIh8MBZDKCBaAYg4go1IgY4yT+D8Fnv2gi8H5gjhcXy4eHu/V6neGRiHz66aer1erTTz99+fLlMAyHw2E+n//Jn/yJMebJ08vb23tmns+XNzc3Q++V0fNmlldRPgxD2EeBwmpNMI5jXdeR036/V0TH4zF3Ge7u7no/3t7eLRZzq2zmRA0pPfTeOSuKOcbVxazd1308Jt+HMN48uSKjvnj9/UMbLBUA2ifglIxCZyprLceUCw6RdHN1jSQhhBjGypqq0IVVPKvGNhvKaK0p2x2c1Oofzu4CIGeDzvcN/OwegMJ5Fon5lLARAORE9/NJPIIAAFMOpmxLr7WzGlmiDwIABEMId3ftarVCht2+E44cGVO4uDCz5ZUrzP72rUYTUipIP724Gry/ujYa9e3bd7vNti7L+XxeFHZ92KSuDeDbV4d7pwuiWV2Frt3c3w3j7eXVzdXFvO2eqMejF33s4+gTajeOozJ6sVhst9vbd684MDNHj8e9xJFJyCmq69l8flFV6h/+L/7h/bvb799+M59dohmblVEuBB77ljYP43xWzxsX0nBzczN0bdf2n/7gWT+mrvchSdcfClO4qgw+9kDMnI2Oc680R7HEkwWgZEFqPnJGIH+PCDkPuBHh6bQAkGxrQwlEMQKJEKYkShFPWRxBJCUWQWHOCmQE1XXdf/a/+08e7rft/vj86rIoShBq2x6F8wE1dV2vt5vDvgUAUqCyqbqALfWzZ882m017OGqti6KIfgzB51aTBmHGcRQRyWVfFkxmByjvfVkWRVHUdZ3Vj1rr1WqVOxx5k+92O0pjjNchxKyVVUrlTuoYwilZcsbdADAMgyg9n8/n8/k57hRFwachuonbNOYckrJJdQ4rU5xHFgAii4hA2fYviYjWRmttNAnHlCBPMLMkpWk2mxljNptN2w8sUhQFqMkOsB8Ga4y1hXFWKbW8vBi6IxGhIq31sTucJSRwkrVnSvbM/zMzKZ3/mVIip/txrC2VZdn3fbVcZUeh3GNm5pRYQAAkponszWx2vghnuzFEefLkyWxWZ7IhS9Xy9cmG/nAaPhQRTmdHvPOFxLNa9X0cPx2ToJQ6Ho/GqNls1nVdUZVZR62UItRJ3ne+J4SBiFqpk78VnzwUq6rquk4AFCEJMMtpTlSf31sI8bvvvvvn//yfA8D68ZEZ2jS6GPeHIwAkYEJIDDHGvMYUQdu2aKYDsjgFiOl6VTtthmFYXV/rwiHCGJNxyufTeUiMUn5Iy1V9/eRmvz/+7s9++uXXX93dP4IgJ4kQz4TtOI5lWSulvA8PD2tCCiG8e/cu7wIyllJiBGbhlCbF+zSBxiKIpAQnjgFJEcm52J3UgiDnkok+sLWa8FmWama34pNYOnOq5+ybH6c/AQBQOgcbyBg6W3DT+/ljERECVEjaOfyA9867PksdMz88m82qqopxmv9BeE+D54VhtE4SzzU0czJ2EmD3fWuM+fnPf/769ev1ev3ixYt/9I/+0Wq1+uEPf2iMeXv77ng8bnZbpdS7u9vvX7/7gz/4PSQ6Ho9N0+Qxtt/8+ovs55xtuuuqcE1jFHL0hXXW6DyXMXZ96Qpr7Wa3K4rieDx++umn89Xy3/7bf4ugmqpyxj59+tQYo58+faoNKvJaueV88ZvD327X68aVy8UMJf7gk49nVxf/3S//ImkDbNr9WFgdQigLKzHZqjRaFYW9v3375u2r1WplrZ3P57PZNKFRXl302m+327ziY4wxyX8Qrc67iyWPRv+H3tG58PoPvzndX8ylgwjnFJxNOAjh+uam647OucoVh91+v9slQK1t8in51DTztm3ruo5+RKJjG33gYjUDeqwrtd/vD9udq0qnjFLYVEVbOyVzY1zbtpG5auqyLr3v2v5IUMaUYBzB+yfLZVnC48Pd7d2jq1ZlWTY17LqNtg6R2n7gkLAma61RigCNMfuodrtWk7Nkve9XphjjWCtX1eof/sc//fqrt3/6y7/4wY8+Q1DH7rDfH9f3trDKaRpUGsduOS+tg1kzny2U7lJRuqqef/zJ88ft7vFhdzjstFullOBk7q/zKQnWTptnQriYQBBAAfo0Mah0vsRKUdYa5NZKDpSIRqZB1an4EFaCgkIsMInSFSI2TT2OXmt4/fo1KNUPPstGQgjAidQ0MxNjDHF0hVFK5Q4iWVytFjmShnHI7cC8yfNoIOPkipWlDXnS1Hufk24I4erqarfbHQ6HPD38+vXr/X5/fX1ZFEXf94Kw329XTZUTjzEmJUHAw7HLTlhEuYyGpmkO+93F6qLv+0yHPTw85O2dyedz6ZwvnTpNSYpIFJ+XaIyQkuTgnkUoimw2Psx5xVpjrVVTN1cTIQkCC4AESEqpy8vLou92++PxeCzqKpc4zpU5qGVqy1q92+0uLi6IiDSGE4zIoDYKO5pUOXmiDCc3oPcmzFlLWFWrxWLx7s0hX2GldJYxhxDGmBBV9mjUkwtgyk2BHFhDCNGPdV3OZrPcaz//JqKQpJPSJ53qp8nqBADSyWOHTnOleQTuw3prHMdsDJKtSB4fH+dp4b0nbZXSZVErYwEgoYQQUL/Xmp0zBwB4Lykl55z3XilQRqNgSEI8TS7lhkVKqSxd34/D8IgI1mjvY1UVYRgBQFE+PhUQwRgjKZ47sjwx2eCcG2NnrY0xiCSjXVEUT55cvHq3rq0ViOMYSmeAGRF+8YtfZHndxx9//Md//MeolU46N/vzqsgmqdkWbQghUxo++Jz+i8KO41iX9VTnMGfsJadBEsQpy+avc4Y9A52TNOf9PFJeEud/MjNOmhA8d4IztXmeEKPTzMK0L1BppUjBaRFCzmR5qu2Ug9EY44xtmjmS7/s+Q+HlclkURX6ejAIXiwUAeO8zP8HMit5LKOBUfKeYTSunciKlFKPv+7brulxG397evnn38Id/+IefffZZCGGz22632zywdzgcmqb58ssvraUXL17c3r4WkYuLixBS3/f39/ddNyil3t7ez5tqtZwv542vijAOxmoiss7VdW2VHoZhv9+LSFVVz1+++OEPf7g7Hq6vnmitq6JQSHlwUX+6iq/f3aJ2mzZ8Ub/57Hf+4G/8X96tH8uLy2fPPv721ePD7ni5ePr1mzsvfjlvLLuYfL/bqbJct7vCOmPU5epiGIZxCMOYQgjGlb4dlDZaayVsEISQyESGFFISZlKiTUwyQWZjJAZNGoQHfRQRSYAEGrVEAGZBne2zBRUrFCCZvGawRpPXVmBGZhHlADUCDuPTuom+++TiwhfSNXL79nWhTVP96HH9AI0nGWeLZl6vvvvm2zF27+7epLSvGlEa7Kz+5tt7OThr57qucb3zAxtbaKf77sBdf3W5urhYre9kF33sAFw56lI5dawvnq6UsX3X+cN2f9x1x01rvQDhcRh0IgG9O/TbY8vIqKAuZiLHH/74ZuhDUy2+/vKrh91AaqERYv9ue7+pm/L5zfXtqzfzxROtlr6PqeS3+3VPcYkzp2rooC6WzPH2zWMMowgSSx8SgXaWoh/IeW2QOy8iiEZiQq1QKOuWiTQRyanvBUohBiI6eXoKIgCHkJJSqBUqQlJAwoqIKCEQAykgiUEROevOUy65hiCicRwLa5Hhq7/7KwdD4xbErFCKwm5367IpkjBplRGlQiKA3veaXJJxtnwmku7u3imljLPJs2Sh8qkoJ6WXFyvSar/fWwIEJkh+7AyKBoEUKQ+vt91svhRlI+B639KxJyJjlLYVaKvLwndDFBZNzpg5N227N5Z2+7V1ZvTDarVgjsyMyhzao84evkJVWRGqPHSUoXdmy2PsMVOeGrSm7JKDShuTjcIIMvJRhAIcE7DUVTYcSJa0IqWQCClB/LBbSaDqylmjj8dj37YyjlVVgY5GqT6EYfAKlTXlYn6ptQohPD4+Hg97oxVLUkpZW3jvg4oAiAyIQhCRx6qeDUNvtQ5hZIJxJGPVs4+e7YcjOENaFVW5Xq/Xu0cfvXIaUwSSJJFQC0lKMsaEiMrYMSaB6INfLBY5gxIoEbZKE4qkhAgpBE0QY/RRmCEfBsAIqJXWGiPnWjZm806J2Yww2+WlGBNy4arWj/sxffLxC0bbBQibfe5lOucUaedKrS0wzprFMHoAFEGIobYWoidh37XIQKjrZvl3X3wJAilKSEkrizIQgSktkinrqixLFKjs8Z/84//Vf/Nf/zfJxwKA4pB1wwxiABDAKQh9f3l57YfADNZqzgOdHFHAarBGjcOAiZeleXz96mreHPeHfhhcUQQfUGD06en10hm1Xx9+8tkP3nz/zWH7aFEPKKQwRJ8PFvQpKmvCMHbj4JzN1q2RE1CmXpyJkSI75bRxMcaiqkIIhJxSciySOIxjUThQEMbeqCIlSSkQQbauI1JEBiA7hyNngw6ZbNeIULwnowkhsQgzIgFLCCGfIpzXNgAkRiJyhZtSOE0Yy9oieyMqRSF4pfIxDMlaW5TKhwODMIjSymiHiD6kcfTDMESfEJFPzuqKbEpJg6AmTfkVozJKWxXTiCjASWtrjPHed+2QUhqGdNj2h7YLIWjj/jf/yf96ubrsuqHrjnnAoajKw+FgTXFz/fSP/+V/+/Enn8Ykh0ObD76s6zqlZEszWzZVVaGGX/zi57/4xS/+zb/+76+uLtpvx+M4Vhzrch58+vO/+vO2bTMLFWNcLBZfffPq+++/n80Wz26eEGIeOK7LSo+MzeLif/zV5zfPPnp7/6Bc9ZOf/eL/9f/4r9/aB+tcBjtlXc9mMyeqaBYYQj+001wdaNKq78fHx8eiKFxZOWv7MRy2mxRZWzOOISGJSFEUKUn0PcN0RkVMgsCEpAgUSBKAPCZBBYhIYhbhLAMCRNRAwikxB0mS6QWJwsxBKTgh5Ay+knBIvD3sU3RpaL/n+OzJ5YsXL5xRb9++ffKs7uO94FjURd8P1pQ3T15uHx+O+804DKtl9dGLp0LRuH1Ket9u/eGAKFVh7awAQuec1bTf78MwUj4wchji6ANS0LB+vN8YdXFx1cxnV9c0jPzdq3eff/X96D0IGa2GMPQ9g6BzlU9x99Ba498Ob188/+Tdm7eG1OViPvTHPYX6ZtW2PREVtiwMd22PCoxxYWgFtPdxs9kAB6fgYlFfLOqiqnebcDgcBp+60QtZZYuL66t2BOds0zQikvWrnBInmKShBCgswHkyWyQB8pkdmgpgNESUPb0REYHytslgVxCICGHSH8kHZn7nVigzhwD7/T7Xf865XChkT6u8vnNzaxxH5+xp3qDUWhulF4vFMAx51EdOQqec4DPpVNd1Rt+Hw0FpPZ/P+36InO7v72OMMXJTNxmbN00TY2y7VivtPa5Wq+6w4QSZeTaumEpzgP7YLl48V0rt99v7+/u7u7szYM+0GAsPw1DXTa5O8P2UrYQQsmEMR46Rc9IVERDJEuwYY65fs6XiaU7j/eEzIpJSyL3Mc1Xt48RUL5fLsvBt2x4OB+WMM5ZOI63WWhSuKtu2LQDv9/vlcpmfMxdPIR+pFmImDKy1i2ZW13A4HNJp7rYoy7IsrVbjMOTp58fHTX6S3MtgFqUUaJAkZ9FZZrmUonw1zrhhKn2EKa+eaWlNrZD8Yc84I4SJIv6wLs9fJOE8nM2YTwUAa+23335rNMYoqHKL3YOEYfBEunDVcnWpTzMURATI+axlZp7N3HnaKjFIjCIQkncaAGAcPRIXhSpcdbFaVFZd3Tz9J//kH68f7//0l3/95Mm1Zzy03eri6nJe7bdb4JRCLMtyv9/n9wyJU0rO2RijJmTmrssmD/GLL36jbWmMioDOWG89MzeVs9a+evXq+dMni8Xir//6r6uyyaPtGcoAUTv0WdN3PB7zzsrn7sEp+iml+va4urgYx3E2m+2Oh+9evwKA0fe+H7TWP/zBp8baiTgkCiGQVafieAqiuUfz/qJ9wD0wMwvr05FfcDrFLglnZ5KUjzQSUcrkxoRzTqmpPa+UKooCJOW7kPXA2f42kyvGGGP0tMdDHMfR+6lfQPD+uPHz6kogkE/OViq/+rnVkkX4+cCCrJQehiEyV1X14sWLfMaw9/7rb74pioIQlVExRk5QFMXr16+Px+Pv//7vZ8VWURRaW2bITFueCez7frFYHY/Hjz76aL/f7/c9EXVtn1L6m7/5mz/5k38dBYzORyTBy5dP/2e///efP39elqUCJMSMUDWSZlUehrGN+Ga9ty62/js/9D/82e8pievjEQXI2fJ0FltZJwZR2hpjlDEpRWsKpVQS1sZ0gydtm9kcte770RTOFs2hPeYQk9KolLJKhSS+65SzBAyJkRODoDACacI0ahDJWuekTocPIqIAKWU1oQAwU0qEogC70/ow+SxFQEIBycFdXFGVVWOL6uFxc+wG0vb13W9+9+c/ef32rhsjo/nm1bvC2DREq4vdIWkN373ZK4VPnn/a9f3x1asQQREWRQGAXdfN6/LJ9eVuu5aYUKBwxmgCgBzvSq0H7/bHA6Cy1qGxP/jseaL49TevpQ9DHI3SAOTAOlcXddN3I6jdMPg4jBqpqOvgh7ooPnp2U1cu+M7qYtaQ93TsgivLi1WzPW7zY7VaVGUZx363b7XW89rN5gttbO8DBtDOGVsKxt4PIYy5DT/NrgEIpBBO9D7RudN23mkymbMjJGEUpTTpbP4MRJgzbg6PRoExmkRzSpTtsnI4lmiUCmHaLeOY7u/vc8Y9iSayq2qk0ylGxph92zlntdYcfFVVWutsKDPKEH2oqqofBzzJbdLJyjSTWszADNkYK4RY17Ufo4i0fQuA8/l8KrLVRJTtD9t3t+8UQHY5IKLu2GprFouFcy5JAABjTO74Pj4+Wmurqrp7uB/GrnvbOeuIqG2PZVnlpm+MkWgyrCYigcybCcA0syEfmOLCpBiCs0uGiBBhZv4z/XA6SRtOuWq6O7mlncFH5wdJrJTpuk7VzTliEhGI5ExPRKipbXullCsrIkoh5js1+YQkLsvSOiciWmFdWUKdh8URcRzD7rDnBEMIIiJIilRkMCIpxXPI4yQgOAXZD/q7WbYFk8sFnD9s7hfE0xHF53T7YeM2X65zdo8xAoEW2Ww2McHtu/u72wdEJBJXWO99CCwMAgnAQ3bEA0gpAnB+3Rgjohhj6rrcH7ssuQIArRQo7YcQIygFKQISH3x72B2//YY1wC//9M9I4OWLqz/8w//o5cef/L//5F+3bV83HqCq63pWV1/85vNsHagRUkr5IOeqqg67LWmVM/3kJCNJGzUrbHu/5mTCmADgyeXl5vHx9as09sPDw4NzJYP040BaM0BIabZY5iOnHh4e2rbLKSee+gi5vztBQEVktKvKL/7sl//+L//yvLGdwuvr63kzC9Eji9Y6hFigJqKTuP093DmHAvztRiGeRPiE07BQjiLDMJ7XntbaWicnZUDuLuY9njFcRhV1XSulEPg8RJ6zTEZjKeav89pQxtrsmOu9zzMF07SSeu98qbXOY2Y5MvgYxn5qXWVZYtM0y4tVURTH4yG7NOcu0lRJCOXxob/6q79azOZ1WX33zbc315d57RVFMfQ+jkkqjIGXi4uvv/q2b7tMev38579bukqh3mwe7u/vowACoEBIAACFdbltLCJd36vTAHFRFPp2P7663YidD2JChM3tY4phYLYoYRwIOAmuLqWuZwmHPPCnQSNiiCGG4JxzRVUK1nXdD2M39MfjdgxJGc2eY/TaWTmB0MIarTWMw+g9JqLpKEdBBhZmZmSxbEARowgAkwROSZIkYY5Ga0JCZInCiREESCl6P8J/OhZcQGAYQ1PYMcVX796VlXv+8uPCqtu37757/atvX30Tk90d+qo2y9WqH7r51fy431VV/W591Hvf9/3V1fD85bP56ln37t6P3ke2RgFQZFbKVGXDITqrY4zt4aiUAkkAfDzs3rwryzIao8uyjMnfPHnyg49fXF9fHtput+vvHre7Xc9Ah+OaxxZIkYq1tu9efZ9CJBSNGAv9jmJZWILYlWVkGHufEvfH9nhsy6qqinK3Hx8e1svlfNYULGm9OxyP7eVqubq8uTBuvd68u384dPuqqrI0CYCmU8cFYTpDPiAi4UQckQIRIAERzczImI/Sju9nQ3O2zl12RCAQAUCl0CpNCKAUTTOvCXNZzUwKOAkR9X1/d3dX17X3fr/fPnny5HDY5a5hDkycwI9xKrMTAEBZlorMGNsTCNX5bB9TaCI6du0H4eD9Sa6TqmgygudhGPLh7cd+WCwWj4+Pxqhje0RARSpxUogZp2f1jbX2cDj8+te/ropKIxwOu2wwGUJYLpc5WX7yySe//rvPRz9eXlxmVXw+ZImZjZkEnMYYpdEYk0XXkCfRmTMSyn54wIJEWmujdVZpwrkIfm+6Oi3uvPDOyCPDDmstt+C9D2EchqF0BZ4kS9774Ifcw9akAk+W9+eyu+uO2Wi37/t2GIdhEEARFo5hXr2tinlTOle2fbfb78Yh+BSzdM8YTUQcY0oywSnSnEROVmVKqTh6RDTGZJ0tEgpzPsg2Q4fBjycxFJ/12DlM51b/VHIlyAWWiOSXU6QR8f7+HgHyiVir1coVpq7rMYwxRhBkhmHwWlkRERBOSQEao4gohpGInDNlWe6PXVFYmKhXstallAqFZVHtji2SJmXGYajr+awstpv7WVXNZovvvn3zq7/7YogxBn716s3juzcc4cefvWTm+Xz+3XevooBTyg9+cbGwdtK7GWOiD9baFMfFYuaKqmhmD4+bMPYK4enT608/+ai9uri+vPjqq6/+9m+/+t2ffXbs2qqp2bMIMAszH4/HYfAhpJMsSkEKJ6pJMqXFCF999VVZVx/Zj7uhV5TH34UFUKvlcmmzp3FKWmWZEnx4+tzERpz8kxHxfFxdjtZKU0opRRaazK0QkfR7pw6aOsQxj5MRTVAso9JxHDmF3DZGhBCCMBeFBZjMR8fgY4zCEw7LRF2MHGP07E9yRZ0lBXniPO8FOJlt5fy93++JKHIKMSiliqrMxasri8fHx+7Y5ly2Wq1kGsAziJilXm/evHn50fPH9X1R2sVitd1uU4yKzDAMKXEKaRx927bdsX37+o2IkAKrDTNsNru+PVws53//5z/2Meb5QyLKKuuu65KfKPR8XJW1Vn93u9kcfdUsQJsxSZdCU89fPawvmlqBGFJKq0Pfu6KJMcYUnCt9HLM0wyidWEYf2q43RUHaBO4ioCsrIGqHkZnFj5qUsQpFCAmQjaZlU7ddR4oQFRIyJ8on5ySmsCdliDARIJLAdMxvdjYZhbWIMho1MIhnwfOBkzj9l0djBh8QxSAKy+dffv3tt98+ub6aL5pPP/3p4+bwuNkKmH6IQ9ovZkVSvloWu/1eRA1d2O/8cXh83A8vXz6/uLh4eLg7HA6FXThlDvv2FbwttJaYUjTGmKurG+fMm7evDoddCGEcZD4nUuNyqZSG+8etsfrm5mq+mF1de6WSwnh1edP2Yb3expASlsMwzAodNS/ns2dPbtaP94umMIpCkO7YAimt1LKqQ+JD2222QxYZZQYyhOAslc7Wdb1vB59guVzOF6vA+O7uYbvdK1cyc1OX1pUhhLYbRKSwNiIJ5U2MiKdLfZKm5xr4vC1zNyjTqEQKAVChQkJE4DFxxHwvCYgoW3kgUc5DYwzGmDzM+vLFizDssglOrn3LsmRmYYwxZC5XKRXH0ZzORchxOeu3z7qPEEKWu+fzK88nrqSUMjWtrT0eumPfKaWurq/2+/3pGBwpyzLv7WHo+qFPpwIiw+22bZ8/f5lS+u67787M2DAMIQYienx8DCE8PDyMvgeAvu+zzWGMKaWECGeROSmwqizLchg6rTWfyP88B5Jf8XxuklZKa60U5optuv6/nYAB3hMV+f8hxeRTprIZUgg+j2VZa4vCjWM/Dp21NlfkbdtlxM1A3nujcHM4XCxX64fH+4d1SgKKSGljjHDq28Pt23co0Tl3fX3ddR0j9v2Qj61MKYUkIpg1SiAoOHXBrbWAIjFlclsRxekgOYxZJ2y0q0phDMkLglLKKnsOmiGEECKfRFhTPJWpwQkARJMWrG1bpaBwRa6kZUgiYow2xljjlDIhJGGl8sFHOJ18BwDZPzz7eFj3ftg0hKC0lcRDYEGfopS1q6rKGlO6oqoKo548vbnyfrRFgda4yLPFpY8p9puxb3MOyDAx5yIWmM1m49gjYoyitY4AWuth6IaxJ21WxWVVuofNsJqXHz17ulosXz5/URT222+//d2ffYZaKePa0TMqH0Pk9LB+HMdAJwXlOPrsDgYwZdCpiNRKmcnhf3vYJ5AQAQA0gisKZc04jgoJAMYYlFLZA/V8wQEAFIEIQm6avAeC555UHkQ60xgAgImIJuqYTsdcwgfzSPmhtRaYDpE0xrTtMcZYV5XWtu+7vGYIdT7bXkQQadL3hPd59xwTRDIhZ1NKMbLIdErbOIZxHIfB03SKkc1cGiIqpQ/7tu9Gpe186eq6bppGUvYG57wID4fDOI4vnj998+bNs2fPcuOJUIlA3w9N01RV1fc9x2SLYr8/iEgUKDQhYtd1IvLkyZMXL14AgI8x1wCz2SxT7s5O5y3mzSIi+tBGsjVrd+iGJBISDsfuyfXz4I/HtnNaPblaIipti7KMSLrt+wm6cnLO+ZjYh7YfNt9972w5hmics1U99OMw+rIshyECCEVRKKRIZScIq70nQUgxIhEJGmc0VVprF3ohDDGOMUaBIKAEEoA1ZRROuVIGUUREChHJj4iTmAjPvmssirQgJRDjCkgxSHp7//D67bvL1XK+uLy4rB8etzGm4Me2215dL6yixeXFfjMEANPU4zhK1//dF19+9vKmruvsYO2Bk8BmuzdIkuLHH38MiI/rrStMVc/KqonRp+R8hDiOLC0RD2PgNL5+9ebpsydKqeurVWFNVZU/Xr1cr9dffPHV19+8raryB5++AIw315fzWbVdmqYuDZnj8bh+3CaAmBKopA2SNrwZox+1Usvl0ocwjF2MSim1a4fs/HnseudcipLBbH/c54U1ecZKyi4n0yHAU0DPA0cEkhNE3m/v3W1SjHmXngusvDcRkWNipERpkm8gClICVkhRmIhYorX28zdvRj8CYkphNlvG6LPaOU+tEJH3PkauZ1U+ozxnYhAhEEkRSWXGMm+kvIJFhBOLYHbrynbQSqkkQsze+3w+yWKx2B722+0217jDMByPR6WU1vTyxcuf/vhHk4mH1sao3WEvkLbb7Wq1yqTW1dVVVVWzZkZEbduWdZWVpVVVpZj6vnfOaQ1EJkN4RFQa9XQO2tT5A6B8/Y0tlFLnWZcMLPCk3j+XEUj56k5XO3va6NPcs5yaYSmlnMY0TccY5IBIRFVVOatXq6W1NoQoIqUrog8JKYy9LktNqqqq7XavFTZNI6RCnHTmIREBW6OaZnbouhhjWZYxiTEaUgpJUoqIyAIfMMzT/AlwOk+nZDpEhJRSwfuUElrjnOMQRcTaIsYIcZr3nSyN0kQt5lonpSSIlA3zTs/Ztns5GXSEENq2JQWHw6GqSkDKcjMEUxQVAGRxQ56akJTGcUQRQMhq+Xz2OwFEhny8lc3HqoH07TGl5Idx0K0fysNh/+7dO00QGaqqEoQxpOXywhlTumVZllvELCZarRZdGAkhK8CJCCVZpduUmroB5DBG1YD3ftE0u+3w7MnTsR/evHr9+7//+7/54tfb7fYXn/z9x82GQZJgiGG73caYiNhoky9UNiHJYJSZUQABCusIMAH87Gc/u7y8TJC3PACAUsAJcjOCmYvCidYpRq018mTmfOrmZj9HSDxp1OEkMJ5iBdB05OUHZnnK6AkcnNza/TSWBmcViEynH06mTM45pbQxpihLEMmtJCKN4BWRIkp8yu6o8jN/yJEIgNKojFY4Rf7Me52ikyitichpnZF3jDEfytF1XcZJ2c2DmVFj7lujSD6v5eb6Mr/tTBqHEAiVQsruK/mUz7zXcuAC4R/84Ad9Pw6Dz+c5TSw9TTNU1lpEST4EgbM6lUW89zpbN/RDSII+RlGqKMq79aapLNlCiPbdKCIr7ZS2u90hEpAirRV4SIK7Q5vjjtbauMJzf+z6YzvYwpG2IYl2jkQESRCstc6o7FhQlmVKqechVzBWm7Ksy7K8qRpBGIdw7Hs/Rh/TEJMAMjIrTIwjc8hSEEHSyqqcSuBstAa5TQzcjwE4Ok1NVVTWaMKub+/vH42tQiLnyrbrvGfjim++ejufz1cru7y8XD/sMIbaGR96H4cvvzysFnNX2Dxj6BrXHQ6bwxFY5seeAKJQGlkkkcKiqMih914Zexj73XY9q8qmqcZhaI9BG3rx9Fny6W53V2hnEBZ1URf67/38x5999jzEVFYKOF0un41dj0JG14RJaduNw3HoB98hhOViEUMafBiGXpBmzUIRjD40jRm7DnPLBFRKiQScMypl7z05Ho/GGKUQGVP0gjmDUvZQIMpHGREAKcKz9oeZQTjGRGQREEAh55OuJrsyRQKSmDEJJCQiUhoVKAFSMI1yZrEMAGS2ebFYMMdz3WlNQUTD4K21iCrGmM8PBpazayAiKAQ6jdhmCpeZUxKGqYTNGXp1ucxbdAgeAH0M+fzBbEfcdV3XdYkTM4fADw8PD6tlVnghKu996Yq3r98oo3/yk7/36tUrSOyq8lzpoqK+71+8ePH111+nlJpmniNLURQ5PeQundLIzHmaInPOANPgKZ76YYV1H6AZyWqklJIyamL8zqysYDam4cndfhKUIqLWasynHCIohdqaGKNCmNQowoj5aMiYK+NxDEDIzH4YU0pD2/m+y6ZCpBShEpvdWMAosVo18+V+vy+cDTHz/CkyiGD2z5CzET+C0SZbNwMnAHbOEWIIAeA07CTTtJUx5jiOClFr3fd9149nm7B+8HBqA+e1xyDC08kWWf6lMG23WyJVFAZOtt6uMCLinB19OOcMEYnCMUbgCGCznmRCSIrGcaxmzX6/DwG0BomQPYcTSxpHAAAUFNaaUJJIsubU4FTQj0NMzAC3d28nl0uWDKfathVI1lo1jPk0WUR0TgOA90NdP/H92hVonZEUVsulc9XFcpXP01ytVmPvRfDu4SFy2nc9IiaW0XtA0MYhYuj6ECarqXyhKB+vi5SzRSYtUkpj18cYiUAEUgIFUFWVUtMxi5DZ4/dGv0RE8YNEC789jPQhxsLTiLZSyhijbT4WaZqvywwQAghzTInUe5c3EeEQY4xZSpZL0hBCCCHFiIh934cQspJApkEMohMffjweh3F0zuWx+Ji89z6kmGke7/3ZDKcoy3g6mRsA8gIDRZG5aZrZbJbpNOZJlAcAiUMIwQ1D27bZOr4uyqasdsc2xuiciim0bZsVWLnZnIfIszh/uVzmYacsID1XgwDgjMnGBqf5+GzDRyJI2milVAgejVEoxqgxphhjBAhJCJRzhZAKw7jdH5QyPoYgnMGIjyFz+lnelgQOh4OPrIyOWcoorNCFmLRCAkBU2hpXZhQWeeiBUEebt5YgxRhDSMeh11ojSeVcbQuYZvPVMAwhxpFjSCppDMmPMfixM3YBADJ5KEL2ckVFMTABKNI++LYfw+ivLpbzxRIKu9lsYsyHNehZOQ8c5s3Toe9fHW/9VVgsZotlsT882lKhlHHLwzCE6G8uL0grUhQZEyhEQV3ElITUyDGmFPrBegaV/edIEgeBu/XOMz65vlnO5oTS9fJ4v/NjH734frh5cvX7v7ioans87AESoY5hLKyezUpgVATjoIvSVXNXD259kP3ea9SDsNKuqooxSP68Sqn1ets4VxTVZvPYtW32LPTDmFAZYypX5Ck3RExTYBNFChEFpsSQRaqJAwBOJ4pMeuYoIt4PognAICEAIItS+rfGsSVFQG1IkZrGSGiaQVRK3d7eIuAwDE+vGmvt8ThkHiV3THNRmB0tUkqumlQ8KQF9MG6IiH4cs9tGms7XgjzhmKWtefPHGOvZwtpWBO8fHvfHjhkyek3MSdgVBQGWpdtut1c31//0n/7Tf/bP/hnHrDuDxWJhrRVIIY5IIpK22/bq6mp32Oe38dVXX4lI0zRdd3S2zBh5UiAj9kPb9/5MweVm1RnQpJQQEgrke3FimlNKKCLI7/2ZJ4pvcmLlaeI2nXpxJy3M5OF42tgooDQhorX28eGOOc1ms+wv4b3PNrzGGElsNcXky7KsZvP9/gioyJpM9gY/aqVsYauqef32XVmWx+PRxyiocjFJNDXa1cmmP5OK4zgSCBEVzuXAmseFz0R6XiwpJTKGTg7+OZEg5dqAz0k99xcmDuZkoFGVs7bvhtHPmnroh7Pgy1prjAUka60xZfAJtTmTn2o6eCD3I0HBNPrSti0LWKViSllRrG1mYgUYwjjk9911bVUW+Z1rY2LkJ8vlse8uLi5qI8fjsanqw27PMXZdp4zOn2uz2RqjUdgUTkS8j2VZvnk45A+uTWFdqbTZbDZ932doWFRlWVdv3rzZtV04nc2qtc1tlxgSCCiFSpl0monPpij58gGAJsUxqdxoPB6AM2ylFNlorQAJMOblqjJJM7FeJ0uu6UKl02j7KfsSkcqzRmeEdNa1ee+1tplmy9nunG/SpI1X1lqlsT30IlLXNQAcDodMO4cQvR+nDB0ZABiESGdp2MRCx4iI2Zw5j2hngioJ52ZcBh/GmH4Y2q5rmiaTZOM4RuG6KZVSx+Mx+PD69euuG+7u7mxpl8vl4XBQSpGCOHqj1DAMlxdLSIyIRWlvH+61JudM27br9frq6jLGcDweiCi3j2KMxijm6P1ARMJxKsEng4Spu/zu7V0GCiklRJWnk40x2iAbrYY4FkW5a1tkzjMGY4jAqS6rMXFIjEkGPwafOh4rRYWxOShUVdW2bTYuUEZT348hKU2IYFBJCta6vu3AqCRhk8LYO0Cu69pYgRDIcAgJSMcYFZmY0hDBEkFiSYJJUEAjchoapUHR4TjE6OfzxpTN4bA/HOJj8EQ6ciJllDFJ3tsgcGJCsK4QSCHF/fE4m82aoqkqGsZxGIbtYTufXZRFtdlsHRlTFjH63fb++uaicCYlapom0Xg4HMqyjMIk+vtvXxdF0Qdmhv/xN9/WdQ2cYvTzRWNtcRj86DulVNOUIfrIpp4vrKtCxNv7bQqjMyYlHD37wNo5H0Vp6fu+7XYAqW5s8ENV2Kqom2qmFF5ermKSzW7tqmKBTdsdDLNYcqiq+SqxrHf7GNhYDVFpo4hgtVymFFJKx+MREQWRJbGkq9VF70dEsjSddn4KiCqXKURglYqnljozR07MCSlbWsaUIoAoq3OvhSj7l6HOiCkxEWWFzsS8aR1CyKxXjHG1WjVNQ4TTDJsiEUyClTH5iDSjNGL2OEzOVSGOZTUnxixYAADnrC2Kd+/eZZiJiAx8bhaeDy0Ygs/M8LHrEbAfegBar9fL1QpOXobM3A9tBn+Y8wpOn/ri4mIYBo5pHMfFYjFfLvu+f/32DSIqhc6Zvm+zetY5pzVl+7Z8HYxV290ESTOjb5QehiEJ58EbZkYjhS3yRf6wsPj/k/UnvZZlyXogZmar2e1pbud9tNm+pqBXVSJE1UCDKqAmQoGomnJKgD9A0h+QNOHfIMCJBAkFlERBAwJkNRKqXpHvkfkyIzIyMyLcI9z9Xr/NaXa7OjMN1j43nNBFIpHued39nt0sM/vsawwpZRXL8gKnx/7/BA8K0GNByl+yOENBSqkwdkEskrTtpu+P4zhutxtjTN8PRhcZic3R2s778/PzfAQowr4/kjJVu+q7sa5rY0zkCELZgN57L5jXhbmBE4AlziEfAlabfBATEcRo7ZLAqDUpQO9nYxbmc900KUlRFCGEYeIkmFhY0GgTnGPmHDKR4ejlFjOnxHPw2XnRe//w8KAUJYZMnTPGVHqBEzKIIiJkdM4Ej9Hrx95omhhEYpydTylt1mfvrt8rghASCxBBYliv1z/72Zd1WTrn/u7v/t08BgBIDOM8v3z5/OHhIaXkvTv0hxCC9/V5uy7L8rDbZ7Zjzli01k4hpATWoqLFT4oIlEIhzCS4DP8oXSyEdmuur6+J6O7ubgpMmljAlhYZ88Y3R73REpjoM9uJY9JqocSuVk0Ibl20hhQoGro+xYXHwYlZYLtaKSRCNNZqpPxXTRyUMczsncsXUJ1Sn+kkJiSikJgQknAK/168IINknlTequTnM3/ejAbZosgPQ4o+eAaAsixznc5vYrbVzOterTVzoJOpar77CEorjaRXq1U2tJrnmSUmEGV0pr/keqyU2u/34zTlJChmThyqumCE29vb169fv3nzZu6m2bkE0lY1avP555/m0ZmIop9DCC+ePcsfvGmrDCFM09A0FaJog7bQ+/0+m8LObnz69GlRmnmciqIAYEQJwokTIIAihbooinmerSmzL1sIgRlUTptRKsaohb2xZej7aRpIG6NtkBMQgWqcXWFsSDIfO6M0g2QAPR924ziu1+vofZ70NUK5WcfIwzS6EDI3YOhdXZQKiRCGoT/s9nVddv0Iiqy1gCpxYk7EmqfpeOyOekHnCmNLa0tr8hRfWH24v7vYbiAGTdKaoq3qn12c/+2D3z3srSIhcG5ioKR0VowEN3P0PsXsweNjGoahbS8F0tXludK831tmGPquNEkEjAZjFTMfdnuNZtVessfz8yalNA7jNd+u1+vZBTJFu76YJnc8HhPMROScjzS1bcMCbi6bppmdIjGr7ZmkeL8/HrpeKyHhzXrVNsXF1fb5s2fOTcmHm5v73XGnNZ6dN8y8P9yVtmjr6eKMC1NqbWOMzECgrLKFLktQja44ixpjLLQypJybSltwiNM4Nk1VFU02mlFKaWWXKYBAIyVOAAzAeTRZznfI0dlICvUjzUe0yVvGzBJUimXZ7eXqkBhFkiAFn8CCViQs2Zm2KK0PgRDzQ5ZDWOu6Xq1WhQ5kSBjxMQCROddpY0wILg/VKfi63qYUUq7l2bNaax9TNsdBxNm7XLyWOhGC0robB63sOI5JwDkniGebLZF+2O2cc2dnZx9ur/OPpLU+22z/1X/7r/7Vf/uvnlw9yavuzWaTjbbz1PWf/+f/+eWTJ//Nf/PfZPelPIamtIS04CJrwTwZsMTcfJRlyRwXQ4kYZWHKpIVvvlBAl49/8us5xTArQCIQIZE8ASwn3YkqDCemNBCKiE9RIz2eeiklpY2IXFxcdMe9MTqfjGVZeh/7vjeFbprGTXNVVSGEaZqa2iqlxmnad/35+TmnOMeAKPVF7WMQRlnskwhg8YelE0WWcvbGSa+C2SKLKA89RVFITCmxD7NCKsul2Jw2ZBRjBFSP4EFGL1zwmT6KSyA8uxhya2WM6YaOiBYxOi7X0+gi94JEhEg5mItOY3XG921VzsNQFMXD3VFrrciQViGkxMAAWkFgKEu73+//5m/+pipMVVWEkhiUAkRomkJrbYri/v4IAGkctdb94fjd4f78/BwB8lQXQijrBkmLQIaREEEhnex4tfexrtrdbnf1rFVIPkZB3B27siz/9t/+Zn88DDPbgtAYEp+ScHDAqBAz8pQrHCKKsFEFqJ+y/PK/nsEhibGty//of/Ef+BQRsbJF2zYXZ+cZkdJIKcTAbJTK+a2yyA5/Ijbn/egC3hISQQ7SnseQ+RkhRQFRP3GPTySA0+8sKA7HLJcQ+amVjIuafNnafgx3a20fp14QUsrYsshtwTzP2YWKiFwK+WeOMc7znK3x7u/vlVKXFxfe+7opEXEcxx9//PFPf/rTt99+O0cGAAVglf75F19UVfX6xx/mef79H/6QqacIoAAuz8/zv56BIh/mdlUbYz7c3V5cnGX7thBdVZdPnjxxzqUUTKFz9olzrigKo/PmDkxZMEASXC4jAJHOITHZRYoRtNUo0RdWrcsqIfWzg8TalsyMRPPkFeqiqBJRURTAMvhRYiqKgmNar9d1WRKnbJ/LMTRVKUYR2NqqyTtmRlUgQvDOatKkVEGkTT+O2prZBaC8wVWREwEqa4LzzM6f5NWltc5NhVaVMWEa5xjWdRljsjpu2k1w/nK7OeweRAASEmBRVbMPOa+mrsttuyUUP41uHMdxnGfobo6o4iefXFycl3XJla0NxlVd3d49WNVMfYeKSrM97sbhAE8vXnoznl9e1fPYDX0SIVu6IKR5ChFNcRimGPx2uy6qxsXInAhWCls/TylxjC4lL8xEWJTldtOeb9fzPN8fj7MPixAFrfcooJjLfecOx1hcrstqm6JKiGVhlbaHQ393u0vCCqxWYgxGoHGe53Fk0NZaTgoRSSOnEJynAjPLIKUUsk+e0o/a8xhjjMKcEJFymhQIouR9oza5MCMoBaBSWtz7RARZZU9/RIUkREhAIhI48sxgjKaFGJkmRsRsYJnPnWHocrlKWqZpcqcswsyckphWq5X3vmlqozCxN1Y5N1VVqY3JjXDgREQxhewgkUGq/I4djkdc0sSCEFpLgkBISqn1utrvjwKgtf7+9fe//MUvt2fr6+trpTAHnihSWY2TgRzmmFLKvuXBzf/sn/0zW5a73c4Ui3vtY2uPKErpBfqmiIAhLArjENyp5vmYosBPOo/HC/JYidWJeoUsAJA4PW5AH6HmkOJjCFgG6B6/iMhoE0I0hSWiCMuGCE9mgZkdupAwi0IZnVLqh+Nm1RSFVYjTPIxjvzk7nyfvvV+tVszclMUnn3zy29/9xlaltUucsIjE9AicLNUXT7suhYgImnIEHiulFKiZl9RkBmzbJpfVDLNnd+iqKuPJEx8Rs/fIqWWRlDgKhxAUGVuWwni/2y0Q8clw7RFFeAQVUox5b5VOdMLIKYRwOBxijOM8Pbm88jFUVdWPAykw2dxjjjFGQvBeLs5qo+n+QySAykI/QYz+4fAQA2uLCsm5xByjj8hQmF4Sn2/PpmmSBFrrafZaK0WYsRBjTAh+0V9NYix3vZwzaGWAxc/BpzR33e3+CABaAaEKMTIDhpiddolAKeIEKTEi6DyVBp+S5F6oKqt8j4zWIGKsaprmP/1P/9NcS8ZxZE5Wm+B9oc0J7PU+YcwpmbKotPnkv5EWx37IebL52sYYgXD5T1p8VB6L7mNPlv9RXHxql8c7nUxX5JSDyT9ZamQHAZRTrUJQpJWxebNh8EQwfuQ25n5dKRVGnyfgcRzrus6iXpvCset+/PHHb7/99nA4zPPsIxsEY1TwqW3rly9edH1/dXXlgi+KpSkklJSkbpu8C8ktSN7cJYnzPGaYLXLop1g1pIwuCWKMx+Nxs9ngSZtARNkdD33wsyuKwhSFd7MFyqk2UTiH8BKR5piqpr54chFZbu/uC0VlUXTjZE2JiHPy8zxvVuvSNhzDOI8gDApKWziYCqMIpC4rkEQCjAsbW1WF937sDsJclu04DkZrCVFSUqZYGFvGOB9jZI25UWJNyipt6hIAEqQI4FMICUbvSjQjCImMx+Nxno1IELh48nJ1rm53+6Yo5xhYIJKk4IAlQ5TTNHEK5+vVixcvCk1Ddzjs9ramvrt/9/51d1Avn14+e/l807R398e4XrGgrlchBNfPGsnP7ocfXtereH5+bsoCaPaMQGqa/BTSarVK3UhE27Pz87N1SsGNY9u2MUjiQITAqet6pLRe1zH5KfqtMso24rif+HA4ppQItUIHVBV1o+w6hckUMbGdZilXepimyTmtNQiRUAiSIvrkQowM2kcObk5L6AuFeaqrKkpKwrk5JSLnY+SEiN7PSmFG59JHOdtakyaFqAGXU+8xn5M4PcoB8/vzca+KsMRAxkziR/QxojHGWObonCOj0yyPBNf7+3skCd6v2jKlcLI7hpQkhGCMLcvqsHtArJ8+fdL1O5AUgm9XlclWowh+nvK5gIhJFt397Fw/DNkvOrcWRszV0yfv37/fbDbj7Luus9bGxQdbv337ViBtt9sY/du3bxGROWUHY+99CvH8fCsiWTfVNE039ON+dt5pa/JS87PPPnt4eBiGIe9yfipFSuUmXWvt/QyweI1lI2iEJbRrmXoVZBVmFm4hIrII5dUR0uk2LXXoFMG5jBS4hHUuGJ1wTrh6dONSpxjdbC2UL5R33rlQVRUDiEg+s7x3/bG73z3sdvvj8Xh+8dTF+eLiIlveT9O0u3+oVtuftB8MWUaStzyP1TeXXjztWRExpagAY4rez5m9mFJarVaymCVJ8JNzrm3bEFOuxM652bulWjMvzFWIRASn4SlDHcoYBaS1JsBHMuqSfEYEkON7l7QW733TNFqTMebp06f3D7dKGdIKYqiatu/7uq6UNsdh3GzX1pZ39x8A4B/+w3/4X/2X/8U3X3+12+3+zb/5N//X/9v/Y5pknAdBKEubuyhjjCZMblyv10PXn2/Xx2OvNWas++rZMxfDw8M9IlVVxX4uisJNM2kApKfPL6q2jQm7fnj/4YOLiQgW8jzRHHwIggSg0CjK4xTwYk+kiDLdaZ49nJItqroAZKUxLyxn7/7Fv/gXzrlsZDaO49/7e//LVy9eCjMRee8VQSbNPa7hT09ybgXFT14pJSetRIapMrNJTs5ludDmkfSUG/6TObwsUZURT4Il+SjvTimTK27OXcMTsStEzvFH+dHN/W5+KhBR62WfZQutAMPsUuJsE900TVEU8zy+ffv2zZs33377LSJqrdZte77d5oJqrb26vLy6fBI5teuGbvWP797OzjOAgiWJ2hjjY5i8A4BxHDOfK6se9vtjSDGl9Nmnz/7BP/gH33zzjTFm6I7ffPPNAsgRAilUKncO8zihIkQ1zz4lCbig95jksWvU7Xo1OWe8R6WJaO4HpVNtyySQEqtMc0ex1hynjqPXRVmX1TQPEtOH65uL821p7KZpUkoaoVA0u1GLGEO4rpqmSao8Hk1KCUGFFCNLSALEzkchJKHITAxaKUSZ3UgFECoiUChAKCSmNKi1AHqUVdP44Jx34c4fu+7lixf1dtNURXfXk7aF1qOPLGhMZrUbAt7vH6bucLZZP7k8/+TVi+P+lkN7eLgOc9cfh6l362arzowBu+u6JAIMurBVVR0PY0rpOLvjj2+ttUJYlpmghlbr7jhIShcXF4R8eLhvm/Js23o3bVYrpYJzE0MwVqy1RWnHMQ69+3r/3e/4T8knowtNZkldk2m73ZJnPUetS1NuXIj746AJq0IByOGwDzFpXRaFBdQEE6FCREumKAoXIgkTAhiTUsorMQDIcg4y1saQX7OMCuZxirLLFaBCrXQG7hRyAoDAElN67GH5pI1Z1pCCsCSA8sIrEi5QKY0gkCITJa1NXeu8tMvDTdd12YWjqeph2BHlXV0m96aUUt4UFkXh/HRxcZHYHfZ37WodoxfkEFKeHpgZEENagndiisMwxBhRqznE49Cbsoic9vt9349EOrd6LJJ5j+M4DuMAwOM45gWtiBhc9MqIWFVFHsqVUtlk9Orq6m73MLuFMoaKMrhyuiaQE8Yfe3MREUl5i5ndtZYTBxYEWZ0yZ3IEYRbsAADJCYLWjBg5QV4XocphVqdQIPxo+BUB4MDCzI8clmXgizHGJTUol2GtdU6V994bVQiATwESx+Sz3+F6ey6QiKjrDgpws9m8f/djTt5dWgFBItKksp0m8E8eSYuGbWnfEgPG6NFIFnwjIiQwKkePp/1+LyKv3/yIiOvNGftlwZ9P2NzlLHVaJKVUVdXjRtC5kP0TFFCu+USa6N/j7qaUYkxKmZxDmtWxMUYk+uzzz8ZxzMhzu95477sxahUTT1Hg6bPtJ598UtXmzfdv//k//+elVn/7N//zX/3VX/3jf/yP//Xf/O3Xv/8xL1TH0YOAIuAQjz6ZU1Jn27Y//vgOETkmRDw7Ozv0HcqSReG9X9fVNE2KLKE1ZX3z4e7YTYdhmAOXpUXEbKHlJ8cZfkIipJMaEE7dWwZRCECqyiCqnCySX20i8jEwiPf+d7//fS7cWgEz9H3PcPIU88EYpaxavE1OKZZ4YlellBJHIBD+icCsFvc6DCGlJESaKLtnsNaEuBiG4NIecja9zdg7nhREuUg/1mP5yCiUT2kKeeoFgHn2eVbO3RUsQnBg5ry1BQCjbdu2RHQ47P7mb/71b37zm9kHq9WrVy9zBMujCLgsS6VxVbZlUz/sdvmX87xYKSYAAigMrddrRZCNqzIzrigKa8tmtX7yTPb74+3t7i//8s8zhx8Rb27vfnz/8PnnX+b05XfXN/M4Zf+NqR9+/uXPysvaz/NjU5KfFmEAAELUow9FWU3Od919UVabdtUNk2NHpFNibRQBSgrBs8RQlDoJkwKr9OwCoczDSBUTa6M1gfi5n8fRGL1er9fNRVVVjOasKW8/3OuiZIFd11dN7VI8DmPghU+vUIhFISmtgndk4HTSo/hYGZW8L6wtqhKjq0p7drUF74e++/HNHzbypVFUWuOZCbCw2vMCEtZVobUCVDHG3f5+6vdKqZevLs8uL8+36ziOc7fv9kNlqvWqykPD/eEgCapVUZbGBzk7O/v62xSCH7OE1HkiyluWEIKfZg1cV4ajG7uBuKoqC7wnKoLvvI9l3Wqlpt4BKudj8EKglSpIm36cUkqGlK0pCN8fjt00awLkaFTaruwU9fb8bFVX2sDh2E9jT7ourCVkZezsQvTLFuRxm4KQT9goQKhNIkyRCZkUZMRjabsAFVJKSQCTCpg0CQNmSYKQ0gu7RjJDMjKcksUY8ywnsriPIaJWZg4+BLTaoEGKrDXYss43N/MS53n+8OFDURTr9brrbqtqAcNFwFqbkoBApmCsN61AisEZo1MK8+TaZptSyOUknrJgRSTTmrz3c8juvkse3Nn52f39fdM0Psa8df72u9eZfGitnee5rMppmgDkBBHLZrPJOFW1WTvnCm0KbW7ubgHAOdcdOmts3h+bwmZyU47Yg5MxZJ4q6KMY88f/fTLYJQBAhY943TIQ8IkezMLMAklIACDFrHdHRMyWivRTHvbjVwIAoYWHvJBgc1CjXtQdC0s58TxMIlg2dgo+gRyPx7apC6OUUk+fXBpjtFUphRQ5Onv+5Inz04cPH0IIzWaJo8lr13x6njK4AQBQWITyqcuQRMh7H1MQEa1Ja504pCAXZ2eZPjMMQ1VVd3d32XQsWxiiwsnN4zjm19AYk2DZ8IGcej/BcRxDSNYC6MU1IpfYxwaRmb0PzkdbEjKHEAurmZljTCkhUjcO8+S1ngThD9/8KS+TQROkdH19HWNkjs+eXb5/f/NP/+k/XbfN4XB49/a9UkYpiAK2rLz3hbEpxLZt9TxG51JKAinGuN/vM/xujAEUZHkEYE/MAE4Mc4i3x5vd0QcBQSiryhgzTVNEiSGKgDUEQCllG7CUI7ZzBPiyfQdk5swE7Puj93xxcYYoANxu1rqwbh+IsGlrRJznOYV4dnlhqzLMLj+DCjCmFGLM/rK5q/7pwUopMdMi6Dph0QgAkPfN+TNmUxReTHVOS4RT9GH+epx68USuPtWgxchdPgpiQkRTWp/i3PX59zPSYJUuigWCCsGJiC3swhsI8be//c1XX33Vdd0wDEngk5cvnj17WlVVXdeEyJynJjA6Mwbw8HBf103X99M09X1PGiTllgGqugZFQ9/liX+aJqWMUiak+NvffpUd7F2EYz/+3e++ZiBOIIx1adabM2ttjPz/+R/+R5bMwYLE8NlnnyulE4smBZLx9jzDLObbOrHMzgNAWdVnZxfHY5+Ooy1s4GSNQYTFSy+iVoQoSRaZPwqvV6u575HTNPpAaBQW1lRGAYiGZMjs72+8x2a9MkoUyBjC0PWlABjbNE035lAHIpaQZkloqoKpRCLihIgrqwnw6dXFeNwXBldVcX/zrtXyxdXm/Gzd1Pa42//3X18D4dlm1c+hm2ZRxpBCrVjr5XGRpIEhwRyDxPhVN5XWrKvyoq5rVRmtUhh0g5eXhS4Ytey68f72br1dt3XVdzsydl038zyHbA0iwMyT9wpwu1lj8sdDd76uNquNsDeQjsddVVWrujHb2tjqeBhv7x5EwAVf13XdVojiw9xPD+t1+/TZxesffpyi58BlWaJAU5mLs7psaqVwnDvgSZA32wZRzT6K6ASgCF1M4zyxELOk6PODbrQ2tgwhRAFMPE2OGRojxhhQgIik9SOwmb0SlVLqo6w35pgtJIVxiRNgAGD+yJUXiTLYuGwxDaaUUkwJEysVkSklOqXgGWPatr27+XB9fX15fm61eQRImfmReJzhQoH0/Pkz731KoaqLeR5zcAoiZpJBdC7PSYKAgDHEYZ689+M4KmW0NQySXSMAKDNpD4dDRrdyu8qSx196TOElpMhsjMlim6urK4TMO3Xr9XqcpxyFqbWumvrm5uYv/uzXP/zwNpfPGKMIZnXBOI7/2X/2n/3Lf/kv5SQ2rarK+1kRgSxyHYafWn75OPT6VIBZorLZ8AsQkZYwkp9YVyAfz50kIielilan6It8bDkXmHk59H0YhoFIN02TwzOyJ8MwDPM41XW92Wz6aTKkEkri4Px0d5eKomjbegoJAIQhQyGPP/+CNyJmuCQJIP10fJ9OakVEiYGIMoF5t9sZY/q+z0NM13Vam5RSDDHLtRdoV+vJuwzpC6O1VikTOe0Oe6JlSCJZlugLbhFmAJDF0TCVRMaY7FBmjNGmRFTX19fe+9lFkcHo4vsf3rCA84khAaJE/+7du7quf/HzL2+v319f369/3rz94e0fvvkjk0kJGGAeHQAkBbassgVemA91WQ09ZeKY1joyE1FwfsEeaBGiENHQHZ0LkXGafFOXSRsWjEmOw4jAKIyERiEASEz5vcz5oUSEtGSBLPBAjAZMjDEERoS6rvMdCTEKwMNuF6LEboh5dEZQRk/T5L03pAqrWeBxHk0pnfBXCOEn73H1kUOW/LQTWUjdaVGiazwp4h6n28ef87HEMvPjW587Ujrx+D4uwIRamSIzm7LEJne6KaUsNGJmpcha68P8ww8/PDw83Ly/zvLczz///ObmBhF//vOfFUWRL5tzU26Is16cmVP01lpj1DiOYZ6rqhqd1zoP5ZDFS7N3WmvI/h6AqHRKcn9/ZIGyMtbQDz/8OE1zNqktjT0/vyCiw7GfZi8EnMAQRAYEEJHlbzvt9k5Q/0lWPgdfFMXZepNpbNbapmkSAztfVXWMgQAIsK7rVVv52e1HVxdl/syGlFmt/DgoBJREqKuqgGS67qAJzrdr4Pjm4Z0iMKQApCmLzaq5O3YREI2N2eI1BEDSWivh5IOYOiWRyApQa1UZ/WJ7foxxOO4syufnZwghHe+G1KVCWWs/+eSTr7/+OoqQrYqiYNKzC4CnqQ1QAWXSAAIgYsS1m8LEcD/2nQzB6Wlgpa+unj4p6tWxH1epCj52hw6kruqiWTfMPHdHrU1dlihS2AJs8tMsMVRFsWmKy7PmYrs2mrWmmxsSwRfPPzm/fDY7fke397vxsO/OLi5Wq+bsfF3VilTa7ZumKS+vzp+/fHk8dvf3uxh47PsEEjkdDruqWOkZvUt+nuuqBSCliDmiBgSltV6tVqTsNLlpdLnUjeMo3scY5xBdSkj6yZMnqyI7EnOMEWixUiKijDcS0WPijkjilFz8KMQGMKcbsfwE8XESwGXznN+fuq5JgGNIKQFgSipLTrP3U1VVXdfd390ZpTim1aqYpiFbVmmt8lFSlFWMsSxMURTAvixLllCWNsWQFzwhxM12KwDTNClFIcWiKB7uP+x2u7quRTBy+klqwmxtuZC8QqJT+hAAlLGc3Zh/J+8aCfIiivHE/LTG2kKH6KqyGR/uWQAlPn324mG3SzHWdZ1Btmy8kO0YMyD2j/7RP/rrv/4f9/uHPN97P5dlucjYyQBASDEfIo+nD5z2povZojwyirMWlh4Jw3IaJU6d0IK75vcaAZjZOYcg3vvS6kfSSkbCN5sNAKUkzJxjqfBELO/7HinvFGdbVsw8DENdVkfnvJcgGgAQFkHzTxjacpQAAEhiVowfLaqJlHNOJFmrETFfKO9913WvXr3605/+lIvBMAzteh1CmOcps10yw26e58hJBI7HozV+u90WRSUiXd+h+slcKTNm8+N9f32fd8DexyRYt6v8GYui0FqH6B4eHt70RwQRhNmn29tblwABiCALqbXWMcVxnP/uN79D4ULD9fUH7wIpOLtY05VVRT2Ms3NhHAaj9W63Q8TtSo/jGELY7/fD4IzByCCksrQ3paRQ5f5vt9vdvD/MADg5Rthsqn52LibvAmqtteYYFQIAeB81QlWUImLNAjyklEQyLsUxxtlFY0xb1bhSIpJjTvJbqbU+Ho8JFuKfUpASNE1jCptSCj5krSoBaq05LHPqCYiOcII6+Kc909JwyxJRmrVhKRe2R7Dn47q7HDIiuR/N71p+ZpTKkraFur9UY9SZtuJD0CdTTzzZ24UQNMIJanJv377907d/2O12VVWdb89evHiRd0bPnz+fpilDQdnzJ7cIcLIHIAFUuqyK2Yff/u4327OLruvy3c8fs6qqzMBCRTmjJTeF4zDXVbHdbl2MmWv99u11rqEZTP6zP/uz1QoB8NPPP52GMR+Jm/X6yZMnIQRhVqddXr4Cj++RPlO+KcymgNm7qT9agedn5ub6tiiVuF1t7ebyLMN3hbEfrm+ebDebQrVgSmNicMAeGxz6samKoqAUOhGprYS5j6483zQgr+Z5jpH9PFpTvVhvigj9NHsX5hgyLg0EKUlRViJS4uydo4RGmel4gLr98ea2H44G3bC//vLl+V/+/HOt1O3dvhvT2+/fOyOFqq2mCOijF0nKoqJMBE8ggRBLIksIwpLS7Dtb6kmCE2mqNgS6O8D14MvX73/xxRefffrL3f0NpXnAOc2HEFRro7VlubHMMk4TamOAAfH86RPv57c/vPnk1Qss1rfHiZmbqmwvnkfv747HwXmQJGH8y1+cb9evytI6N6035Rw8ofn82c+Kqvnmm2/ePdBqtWqbbdd1q9UKIYZA73bHyavz7arvDpdnW7H1bndXFKaua3Dw0O201obo6mw9V/NtmiMDYkxGTGGb9vLt9Xsd83k4r9vLzEfz3iMG1IolBZ9O8WGBMSe55SdClM7hcZgYToo2ACFUBMACKYEIs4IknDhFhSxgNSmlBFUigRCUD8IQgjg/dZuLV9+/HgFWSjPT+6r6RVYlKaVEcJ5nRPHsFIkP3s9Ha1RdlXGWeY6rotkPk9baFuUwjLN3WaaMxj4ch5uHB1tW3scQwjAN66perVYH57z34+xF8OLiYpqcj/F47IqiIiIitd1c7A87AG104cP88uyi0WYKUaEOKRoyZVknUeMwf/Lp5z++eysIL1686LrO+7lp681mk8dxrXVWHRDRNLm6rsvS3t/fw0JpkaIoY4xKGWbJbiciApAAlix6ABBccHVEFJIYGWMWRGRnbs6DLkuOqci2QJm3shx2hCVLtMb03Xhz/e75s6fnm3VuRIwtQ+SmbYd5ShwB+NDfGyqIaN9NsQLnEqKJoFBQowb0bg7KFpFp141kK+99inlFJ9m9KKUEKICKmRWCKESUtBgXAgCIdYHDplknFEQM7EWkrYoxuMNu165Xh+546I5JGBW9ff/uy5X1Kc5hVhoFkvOTVjYfo3m0dX5S5rKo7HdvXtvSalNpY5xPTdNoa32Mt4fDOI6HYUZEVKSUAiFtjDKEXkjj7f2Hw+FQVdVmswkheAGt9cCLJ+vJ/hxiikBEQjm4IKJ+GLxShj27+x4AoJu0tmfbNaH0/TgMk9LaO7VarYbB33z9x2TUk+dPm6Z5+/btMAzzNBJiVbW7bkp69f3tEAD+3n/8Fz/72c9u7m5/+3df+XFkhsqQSKCk5xiDgNZUllaQWYkxxmZuHosIiORhggCgLDQArNdrY8xutyOBFFNRWa2UMKcYFEBhyXuGBGeroi4LN095WxxC0tZwEkqsUGdX+KW3yw8vKVogs8UxShDTUqQlSWCIAhKdC4HKsiQSrY1zLrf4SRICJk4hhiQ6pTTPzhhTlhUzM2mrrYg4NyuFbbvOGxNhFsTGWKVUSmHY73ObXpSmtpo53t5e393dPjw8jMNQ1+Wvfv5lZQsodEopSZhcvp8SQ0CA7EA5zyl3DBmKr+v6Zt99/7e/+fHHH4no6snzV8+eY76qANba8/NzlZKEREoZU7iQiDQnmKYJWNarZp5n2KxSSlZjJufrwu72fRDuQ9BN85/81V9l5GMB3saurmufnEAOkQORGHOqMYjzUa/W513XJT5oY8/OL/pxPvZDs1orY6bJbc/PP/vss5ubm/fv3xvTl2Ud3NyDVFXJEpljzrJ6+vQpEVVV0XUdAKyLYp79/thZa22pYsJpnhhVP3dl1a7PV2YupujPjRnmaZqmPE/3x1tjzHatP3l17sfpeOifnl8kge7wwVi1blZoZejcd6/ff/nZlwLlj2/fdKOf1K2wEBrF0BjFpCY3xyiFMUga2KbgvQho09arsiw3RNkNGDjRkqnHzLjfd3/6/rvLs63RtNps1+t1P3R3d3e7w23brtebTUrctGsXk/d+HGdj1OFwuLy8DCH86U9/CG7iGNbrdbOuttutn/2936/bldE2JaP0uh8mAHt7O83zzAyRD4Wt3r7ZBV3e9p3SCCwKJXrHmi4vLiSG+9u7dVsjgJu8JuPn0FRU1golODdtzs+NwuZsk4L78d1127bb9QpICcfS2BCmFOKmXeXmTmutVJznOTrOcGXGT5RSWiMorR8t1yHHnOUxa4FMBSRbDCJmmSUSLTLWUy2hhZ+LhIIilECcc0CKmb/++isA+OKLL8bph6z2OeUShrpt+mOXz+6MSV6cb5k5R+P106TU0gh772fvgLQxJrP8AUAhFZWepqE2Nj/0CrA0FoD6ccxxnpxEEOq63O12T548+T//H/9P7ar5xS9+8V//1//3f/JP/kmet3IpzUpf730cx5y8NDsPCCJyPB4zWvz+/ftFdHfKD4ATRfw3v/nNPM/52hYn2VJG6uAjnUz+5gUa1ZqIcmHLt4NPoq9Tv/y49lusGR8p0PnE1Abnbm62hTCzLAzSvu+HYcjt/zx7rW3X5cAAm52GMgMWT0EXdJIvA4BPnKHUzENWtCQWHI/HlJKxmoii80Q0x5CfAXgUMQPEcS6KglmMsSGEaZqvzi+QQSKnxMMw7na7rutjTFYbjnx3+5B3w9ba0lpCLZSRRr0ExiXoum65HbM3UTQ1dV2nEHfDEEIQSUopRAFAPzsAQNIAkOeMoe9B5MXz5wDgvP/pfp00NnmeW36Z4QdCJFIKU1pAgvy4juM4zZMymbWnQowp+v1hcbEOEc7PVn/xF//BarVSynz99dchsFKQLROCz/sO/O3XX+2OB+/iPM+JIfN9siW1Uj8Nu5GTUgkACmWWVxgxIYiwD352KRcMWkiyiCcmYGkspOTGyRK0VR2MG4agEHNqUFGYjIJEH4hIkU7enZ6mx8SLE3p4+uXy/7MI8DD0eTbVWtMpx/rxWZLEKeWR8jT4QuZ5pBgjh3jyo3CZ+ai1dm7yXuXVAyLG6IfB5YvWruqyLPeHw/XNu5v31yklY3Tbtp+8erXdrjOtknHhRccYJXE+iTIxPv9mVVVKYSZ7hxD6vr+/v599/PmXn2+326dPn+pTZEgGq7NI8vnz5zHGYRiULdbrdaZ95LOiLMvtdnvsO+/i+mzrnD92PRFlNtwgyTmnfCAiq7QATbOfJm+MwZMZqqSFQx5j1NuzyxAlxqisuXs43j/sP//8c0Z8/fr1y5cvvfdfffV1CMH7ME3zixcvijAqAIXCOUxDU2FMXjVpay+uKqXU8dDPbrDWcgIXutm5sqmULiYXDofj2fl5QZTG9PzZk8StC2G328UYK1ut1+tfXRVXF2fv375bax3Cw9MXn729uZvmcfdhty7M+eX2uHffw42oot5crS+rw3xIKaFWWllUehzmXXCM1B17pQzpwmAlCDHiocNj7y/P4PmTC3p2dX97dzgc4gxVaUXDkyfPDodd13VWkTZ0cXZ+8eT5+dWzdx/ub2/v7+7uYkxFWcfIk3da69vb27Yq16smxVBXti7Pjabb29tudMN8a3WRQvhwd9yu2u1mc787AkciHPtBKaW1UUptNmpVb68PNwQYxuSDWzUtShJHzbrthsFoKrUNoweTqqJksutqs1khXW4+3NwRMogHIWuoKXVh1ItXn9w97A5dXxaGiNbrLSlFRMMwueAXtiESghLGlK0EH43lEClHyqFiBpLEzEIokYWRc+lFOqlNAISyikAAIgNKEmECRhQAJUBFWQmlw+GQUrq5uQFImW3LXpWl7fu+qipmmYZRgImM1Wqah34an9ln3eHIRimti7KcI8fEKaUkrJUlowEg+TD2XWnN3d3dq+cvcHt22D+sVw2waIXCpLWO0SJL01QxxhQ5OK9J3dxc/+//D/+758+f//JnX37//fcpBm2IFJDKIhASjkCUg12BpSqLKLyY2iNkcA8WX+K8TMqVTLVt+9d//dd5F+C9B6AQnFLq0U4P4BFnkMygEZGsekwfCcPiKd8+a8YkO1kwI6isKCMigJ/EHjFGQFytVt5N+V/oum63v7++fv/JJ58sRKfgc4eRz+jczeSfQZHJTOnHki8xjG5ijsYUKSWXfEwh77kVwnDslFI5Py67KSCiNqR4qQTRQ5hdaWz0frvZbNpV5gpkczGllNXm8vzi7u4uH+K3t7f5yjjnBlkQVO89Ih2HXkSAyDk3ujk3LiKyP+yPxyMg13W9Wa/zaZtl7iI4TVPWuXvnQGS9Xv/www9lWSqlCFGTKYxdrVb9OOS+56d+BkGYM/TADEQ2ceKQsj9r27bbYg0AddNkD8XlcgFMs0sJBOB+1/0//1//b2ZoGltUJSqfIodM980UKZZhkD/84UdFcPX0EpWextk5xwxkVFb3xhhz4ODCujstVnOFTCnlMgMASlPiyJHVaR+ktSaAeZyGrk8M3aHP37puV4WxBAEVz95bVMJCAGl2j6yCvGxSSmn1iLLAYxbX43Nb1w18JOqlj5za4LQ9IUACIiCFKlvxaSRjizyV4kmqVBibux+lCEH8PKWU8i7fFjqldH1zc3t30/e9iDRNvd1uN6t1NirID0xKKcuk9MKTxgUeP0meMpkZiWISRAwxXV5eDsOg1Pvz8/Osj+eT8EFk0a9m2HmaJmttAmjb9v7+3ntf2MrbBZfebDbHQ980TYwpJnjz5sd912ekPaWktZaYMj7/2FTlVibGCKf0NmbW0+iAdLter1araZ4F1Hq9+eHdW6ML72IIaZ7n3J9KTMfd/qKS9WqrANDq3DKv1+tpGLTW0+gy28Jau95ujDHDMDqXQLRSuqoaoDiO7rDfT1Nfl7bAoCzqlDZPL2fnV6vNOHubHr58fvnrV5e73cNXv//9s3N9dfbp7jD2x8FNswGttcQo76/fD56fvnz1+WfPQghDNx6PvRL78nJ7sVrd3+9LIc/oo0RJCYkBUQEhHh/u2LvNZnNxtqlLu3/YOeeQbYjR+cgpYFl6l/zdLoDanq1fvvxEBB/ud/W6QdKICidVVZUhVVVFVdqy0OfbtdWKgM83m3uX3rz5EQlJFd10LKvG1tU8HneHvdFgNNRNjZiswuDvY/SfPbvIbVcK4enTp9v1OqX04eamtubi8szPrqnq8/Pt7v7hsHvo94fPvzj71a9/DhJ///U3+vnzcej2+31VmhDmb//wVUxYNasXn3xmymoYx7u7Owd46I55vtGFLcggogve6jJ7suAjeWY5ehaJUTyRGPkjlT3kGOCM9TByDn9gDgKYIkIiIkWCJMM0AojRBQB9//23tqjK0n737c3zpz9LKeVsA6WUtib0fr1eX1+/2z88aFJffvZ5dr2YfBCRoirHYQ4xCBFpyvKevu+dc1M/tFU9Dh2w1GW1v7t78uRJGc3kJxEwACH6uq5TdAwkwOvNar/fD8fDH4+HP/z+d4UxZ03rZ1cYa7VRSCnEeZ6bprHWKsAc++hTzO1zntEPcMgH0KPiK5MnQgj/0//0P+dzIZeQzPPiU6rM6ZhbSFV93wNAnq4+kjCJMUVcKLucge48zy3V4nQOLhQuZmPUZtW2bfv+uNdKK4WAvN1uD4edUmq323nvx2ms6xqEQgwJUkySBMfJ7Q5dWZbZX1dOLJuiKCgQCSgQa804zqWxWunjbh+jj6ct+Hq95hQyqwVhoV4jIrEJIbhp7vt+u94Q0jzNVVX52eW1dOZtFEVxe3t7PB4DLFZTIiARBIA0IFLcPcQYAZXROgr3fZ8YbFEIR0jAwiCQR898xjVNs9hYBh7n6ZGNHJ3frtZPLi5vb+/d6LJ3fdd1RVEQYIAQH9HzfHdOninMUWBZBXgfD4d9WRZVVZWF2WxWj04D3jnvcwIVEMF2u83dzHp7NgxDZjDk7W1OOT7b1EQ0TVNTt2fb8/v7+5u7+9V6lVJyzuWghaapiqLw0Q3DtDFGEACWtLxswVYYzqvN/tillJqmfTQ/iSFYY375i1989umniJKdT54+fSqJUcBqE1VA1LlrSSkpXOjNETKyBYiybEGY5SMf79ykOBfUQo2kR4SMT9LwnFCnlEJUWVUEzACsFJZFobVKKQIiAhdWiyRmIaKY/DzPiNi2LSnu+/7m5ubD3a2IbLfbzz77VGu9bGcl5hyRPG0zM51iOrU2Vpv8JgakEFPuhru+V0qRVoCoSMeYttvtzc3Nhw8ffv7zn0/TZJSy1maqRB5RmqbhkwsYEu12O2benp8BgPe+H4fjd8OXX36ZnUDy4fDHP/4xsGhN2T8jl3Y8kcuyAI+INC0/7cK/AdDv3r0Tkc2nq+HYBU6K8Mcf3oDI08szay1AsW5KP80iqcc++tnUtlCY0Q+t9ey9935ybrVaFVr3xy6lQ1VVVpt5mudx7A7D2dkFJjUPvjse26Iaj/vzzaqwdP/dH+qmqsq6bM3ufpfGpG2ROH7zm282G7tqyr/8+Re/+eqbKQKLKcs2RL8qzrAyPsWqIi/u3/7mf1p/q1++fPnq5SdNYb/99s3123eXF0+vLs8uhA7DuO+HOcQIECElCZGhtGYeB46hbVtjTI6IZ+bbh13WnBGjUrqbXP/ju2Z3eHZxVtc1KV1VDYukJGVZZp7eYT/AetUfpg/vfjjbrGIMZ9t1CFVRbKIIAqy3V6D13f7Q1rY9ayRMbWuAZ4D4xc9/XlibUvr1z38mAuMIXddLlKqqCqPFDxzjpikn4M16pQCGvjvbbD/99BWo/TTO5+fby/PNcb97/vz5y+dPH+73UaCu2rv7/ebsnLS9f3hQykzjOM4uu0OgWowaUJFFywu/mUUEGQnx5LLGzBwZUuKUJKZ83GfODiglRIQCSLmnR6E8EGc3LVhga4mRmSwyKO/93f2H4Mcff3i92x3Zv/nVn/+ZMWY+TIgYfGzadhxHpdQwudc/vPnVr36xaVcx+TRJURTdOB+OhwyK5vlmHHvvfXQ+hHB+thm6XlIsbVGtV01hgYVYkkgIEN2ck7EKZdq2nvrh1fNnlxdnY9drrf/0x2+64DRAXVqtsiF2SsEzV5k/LCLjOKJWMaXFdSRyjjIsiiKbeeXQw/y+7XY7OAmTTu6Ai50kAMopiYyZEVWOJc4dej68MgrnXUwn+09ByA1HjnnJBftRbpQhu26YEQ0pYF5oqyGEHD6fW+ezs7PLiyfZB6qsq6EbcwewWq36vq/rWkQCp5QSh/g4qScOzmdOtVIKszUYyJL6bI0ymhJq59w8j5kCg6hFIGug7+/vHxOr2radpgkAiqLIy12t9eXlZSbXWHvaMoqAAmZJiUXYB2eMjsEzggnqYXfIj3GpTV2U2cg2hHA87rXWxhQLuV2IiJqm0WQkMYgUZalQG1NkQn7XdSDMMY4pFUWRj9ppmrLDl0KVICpDKXJKDAgCYBQYozMpV0QeHu4f7o9VZS4uLjbrq6bezPP84fZ6tzvkKTzGmLMsTz0rxBjzpE0EIXF0fr3eoFbf/OlbIlqv1/M8O+eVoqIwudgYYwA4aO+Cz94XKaU8DmtNRFYQUkrzOAHger3JeGYe42KMn736pKoKrXUGt2PyQ3cwuiiKojKWmYWhMEbZcvJ9LsC5zsPSCEYAzqB0HsEfgWhaAloWmW/+s49cKszmehljC5wd0I1etPLZcZaIYvTWlrmeRe+KomjOtn3f37x/tzvsDt1RRJ4+fbJerxExgw0xxtmNGZfKrR4SGmX4BA/k75GTxCOTsKqqyrnQANB1XdnUTy8ulVK5N1JKES3ZYjnmSCBpbS8uLvIkGUJIgJnxmlKavev6EYQ+//xTADBlQaRm94jhQ4wc4yIs1pp0hscT98cDQGZVf0xUJETUn33y/Pr6ev/wgVDnLpu0MkoPu/vq8pIlzl1XGmsL09i1MJ+vjHcTp4CKssN7dzgopYauK4pCawWSDvsHSGys0pjO12urSBnTdcOm0AjhyZPVl6+eVQXc32iBdHd/CLv5xcX2w264v3/QpSms8rPaub5pyudPn9m69UGOu/752eZs1aQUylUj330fOP3lr18iq++/e/3tH7/94vOfPXv+fH8cjv10/bAvmqaoq/Mn2yi8H46Hbi8pKaP8FOu6tsYeDgfngrXWFlVKgqjI0jzP/f6QoUVFyiV4++M7rTUqci6UVZPfc+99CK6wuq7Ltt5+uHnbdcfjYff7r37TwTMiXRRFaYvNZoVIwzBXlXn27NNCy/PnZ8Phfp66589fxODncfjTN9+WZemcjzFqbT98eGOVrkq9348P93PbtutNVRZFUX6ptS5Lq8wmv1TPX72UKNuLDQA0qyp37pF5GEdbQlWWu/2+0OZhGoXwsfoyCJxSg/I4lV1MH9+xBMyn/LvEzCw5E+4EQxFiQsQArCghIuikCRQqEkCgLEUWJNQYA4eQfAxnZ5urq4u+f3jy5OLhwzAcu5effvLw8JBXndmNnZl/+ctfTtPw3es3bd08e/ZEaXvshl3f5ymHAWc3H/suOJ9pXNaoFKImDDGVVr949vzD7TUmWVVVbi6C8xpBoyIF/XG/2WwuL84KbbgwfnZPr564cULiuq5CCIqwtJUpCqOom8fHCxJCiCkRqRw8ZbXK4dOncZa0/umcUsoQLZrmR5Qyv/+5bD8elDkE0Jy+cg1GxLptxnHs+z4jXY/748zippNPAvPikFxVhUIsy/Ly8nKah81mVRgzTcM0TU+fPgWAYZjG+913338nQH/+538uuITS52jxqqoOh8Nut2uaJgf25RqsScUYcmMkIlVVKaJ61eRnpm3r7CjOHDlEBagAjUJmnoZpmqa6rPIHyT2Hcy5Thb33GdCLMYYUm1WbYKHaprQ8ls45UmY5dgXi7KOREAIgRE4+iUYATnkGEMEYOYQxRj7ZjZFIvhHae18Z/fbt27dv32prttvtI/+cOT1KWk9U36XC1HXd972cftMYvd1ut9ttDuEZx3EYhnkO795dM4PS+uzs7PLqqS2qw2EXk2hTjJMD5GEanfMIlNfjSuUdP+SVvPcxM/j6vo+RiSAP8blQTdMEwGVZ+nHQWgsiAygiIGQGQAzeE2UnWVSn+OSM3PhplBxfJpL926dhrKqKU0gRDSkgRQUgCgHkVcjjp08ny3EGQaGsHEFFj2HV1hQppeinGFKMXmsFANrQqXEERoWEwMgJMjidZ8Hs2IWIxiit69y/lmVZlcX9/f379+/zw1a1zSeffJIZjvmwJaOJyPkpj5IAEP0SgKus9vMph5hUfsByO9g0TT8Ov//DN8MwCCGhZua/+Iu/uLy8zOrzZ8+exhiUUgLLg+e914Z0Y/qH/vXr16vVqiiKql2JyKeffpq/oa7rnD368PDQT2MIMYdYJJZCK58SnYh9lTUiEkKyGokoxoS5oVvIbpIfeM3TeLZqjDGbzeaHH37o9g9nZ2dhnuq69v1+vW7Pnlxk1/OLs0zXmr2fx3HML0BZ1HmZ1B33/TSSAqsVz0NT1WfbVif/2Wef9X0fE5eAZ+u1G/dnrVmp4xdPr/7DL/8MEV//ePN337w5uuOmMZ9/+rN5gNEP2lNd1t//cP3y1XNjKq14wKOSUJd0f38QmZoCXlyt2+1Z2z7brs/+7re/++71m6snvNpetLaOx8Fx3D/sZHffrppVWzbt1TSN0zRoLhOgssXVZjONbnRzAiBjZheIyFYNmZhSSkBE5GKM8xw5lWUNqJT+KfDcWiuSdrvdtn3x/MnTvts/udwej2fHcH5/f5+ScPRD1wVrQUJ3nEmgbYp1C25S/RH/8PX1NPaa1Nnav3u767tRKfXq1achzt1hfvHixWbTtG17dXVljXbO2VKHEO53B58mZl63q6urq6RTd3R541hWjff+/fV11Wymw+Hu4T6GlJ88dZIKaK1J/aThO9XUj01ZAWThswhQ1rrwgk6LgLAwLjmdJ09gnRSxpkIJiyRERAIGMGhnP9dlc3/3cH39frNt++P+uDvU9do59/79+1yTur43VgEAEE5uNqZIIrvD/t31exFp68alxXUSXBiGbsrWV8JGKefc86ur3b3XSKu2fv/ux+QDIyksEcRq3dalVoiSgFEb/XB3+/nLl2fbzftxqArDXm2fXNZ1xcy3t7dIqq6roihI6xhj5i0XRZHcXNqqG3oESimVdoGIM7hXFCpnkS5Jwynl5VmutRnYfyQoffzfuUPPW6Ks8MkD6+E4yElrm8dcs2SGLnkviAjqJz7XvPDFBh9mq421FiQh4pdffum9/+GHH6wtt+fnP/vyFyFFRca7oe/GPPblzKiUkia1290jImVCjYDWWiTN85yZMiG4aZqqqrq6utJIEpOxljkSsDZkrMrk+ZTS7rBv2/bs7GwYhmz2CQDK6Cz/BYCnz58pp5Nw0zSIOHn3yErLnYoPKeeiH4feAqWc6XsSq3sfg0+klsboFDivkMiYhWGkTcGCnBhJ7Q57BskzZcYDpmnyKQIAxxBiAACBxVMzCRtb1u3aOed9IMz7BVUUhaRkq2rdtqumQZEffngvDEZBZLi9vb+/361WTduuM81nu90O/eRd5ARa46NLqIgM45zpfjHJOM45hLht2qatHlurk5WK897nrAhhjpyAlAJijpHZh5hdblISFgyRWVCRyQrafEyllEihQloCdGNMPpiyzqB9FtzrQscY06IIIkgJCJWy0TlEBEKAxZAnq0anwyHvWUmj0oiKGCSGkFhYmKMQgVZZrkSkiIVj9Bn2yKMzkWaOm82m7/vb29u3b388HA7n5+dPnz0LIZjChhByz52NPpYXTZsUE4gopRQZowulFCcWEYX0GMvxqEvODfTr168Pw5QROkR48eplxtKqqnjy5IqZMx8qA/j5b2Dm9zfX371515T6/Pz8xScWEX/88cdpmvJ2Na8VMpNUKXVxcaG0nqYpJcH4E6WgKKrsTp+3FQLIJ/ON7G+We1kt7C+3W0QkTGebZt2WKSVgg4jrdUuIwuHi/MI5F8MQ5q5arZ8+rff7fVVVzCwcC2s5zmermoDHoec41woMzzAeG8VG9r/87Ok4ztNGf7h5f7Upt42xOI/H95ebFzHGz1+dkcbf/vEdjmk83nj15PXbd6+enr2wWy/qfj/s929Tim1ZKHab1QtL5wxyc/vhw/1BUTX2t59+8pnSxVfffNsN/RjBVJUpq2noEVVMqT/20zBaTdbqs3KtjPU+zJH9MDsfUwJBiS5Ya0c3G2NI28kNsx9zp3NeVo0xZVUhqq7rQOm+PxpSMfpVW5XG3tzcnG3azWbTNsWr588cFV991d/fH1xIwMZN6L0nmd1gjpbCNFoCN8237x+M0l98/vk4vz503a9//ecvXryo6ta5cH19nXkXpi73w3GaJjfNPsz5XJ5nfvnqecTiuzc3RBRjaOs6hLARun2478bJMx77sSxL0HoYBsAiv//5fqusPNUntkJKzPHfKxJLCPwy+6aTN37eYeQpDWARVSNS5AgifGIWKM15mp6dR221Kva7Wxa/aoswm5cvX757e/f69XeImP0+ETH1bIzJNFelVHAeETM+GeN1SDFXemAREAC2SqOwAtysW2vtetNSahTS4WH38uXzECSl5F2wRtuyUMYWhSnLMnCqS6sNeT+vmmoep027KqtCF7rve+enzA/SWjNAcH4axpt37/tjV9bVxdWT7rtemEmpjKaWZZlHBzlJHvNrVhSFc1OeGjOhBpHUR5lIj4BephmHEIZhyD6X+RtsUee6SycZJXzE4cp3gYVzaESM0Y9+s1nn78yGwMfDMaWQl6zjOL549WlKUlWl8zGPoZkgTR8lq/sYFIL3HnOqUoreoyFllUYBDhERrdIKUGKKyGVllVIhLu7WGXKPMXrvgXBztn37/l3Xdd4vuUY+ZQcHOD8/C5ym4JFwfX4mIldlmcf9EIK1lpTJfLGirlwMTVuM49h1HarTqs9a770wxpS01k1T5VmKGZwLAISARCqECADWlqBUBqXrur65vV2tVumRbnYyggDIZsDwWAK9C8vNAokxOudLa6dpEpGyLJ89e9b3/eHQMYPSarVaaa29n7uuy4ut29tbZlAKy7KgU7BBfuO2261zLhMSEXG9WldVBbjgIkopQ2r5kUihsZ3zDBhTGme21htjQ4h5VQxAjBDYu5DKyMwQEg/z1DSNi6GqKq10Ycw8z1VZogARMbCyCk9OKsYYLxKS5IKKyIkBBUSDIACiLLaRixF03p7EFEIIKqEChZoSCIuAIgGRJEuvwJhSQMTIwdrCGJMYBFhrnZh3+92bf/dvP1zfGGOePXv66aef6hOhmmPSJ1eZx7mZT+5yWmsU8DHvU3VIoSpKAIgx5gXiI1yvtV6v17ltxXyDiURkt3tAhLwsMMZEWVQJiJgBidwZ//pXX+YCV5bl7e3tmx/fA8DDwz4J1KVp23az2aybdvJunqeqLAtrQwh1VSRYmoYnz16klPb7fYzx4eFBTsMvAhLl0xgESFdNPXu3Xq8BYLvdZrgg/0xD11VVhcDXtx8IuCgKVPSwO2itq6YOIQDL+XY9jn1bWjdPm1Udh/jpZ8+Hw/7m/buqNSn2seO7uRvG+Yuf/WLTft4d9rvDblVrIth343q9/nBzv9lsv/yc/i//9T8/HMexefX04nxzuX17e1NqHVironbdERSVdTmOozAL6M3qST8XblIz99c3/+7s/PLv//2/f3N3/9U338ToizKctXVdXb179y4lqU1plNl9eEBEu+J8msyeAUgUEmlJ7jhOWuuqblmi9D2RzlGAswvj5FRRAjAjEYAI5mYwMw7ye9UdjilavT1bn8n/5j/5s9dv3u13fVWvjocxcBqGgcT3fQ8ytFVtFLWrUhIDparY/uKXT6p2M8ypGw+kVdls98dDP4fj+w9a664/EMjV1VXTNB9ub0xd3+7mFHpALoxBxH3/oJHe3TxEYdKGCaumDikikjZGF2VKSSmytoCT46sCCMEjYmG1wKKoyeioIIXwk206QrYDz2VGnxT6+VUkJCVADKSQMOf+pkQoRIJKA1PdbN6/e9d1h227rev6+sfvQghZVnvou+xOtd5uQggPDw+ZzpDXq4gIIoSklVVKJQ6B87uUmSMkILlO5w91f39/cXGRUgouhhQ3m7N+HkOItipzULHNknwWP7sQglKkjV63q/1wuL+/n+e5sJW11nkPpLLb8/X1dV3XLsR8ClCmmZyC45VSxhT5pMjfkA0Fs6/AY21mlnhK+/HeZ8pVPoJzVX4syUVRVFWVFlEJ5JaciEROvErJxWDKf5ARiMgWlohS9FngsdvtjruHqqoWGEYgq+am2YtI07S5wLCwVjorykQkRr+9uiptYZRClJydJXGZgPNY0A/HaZr2h4fNZpOZ3planEf/3JScnZ3dPey//f7NsAiEJAmI0kYtC8J+mP7nv/23GSxdr9dt28YQRGRxIHIhW6b4FOd5NrYsiiL7HiRZrkZiAFSAWJZFvphFWRPRPPuMQAgLEOb0xhBjWShdaDJ06A/jODZNc3Zxfnt7mx8wOaUAZcADCNmn4TiAZBlSUgRV1RhSwhBTnHlWqFar1bMnz6ZhMsaIrnKf0TSV1jofuERQ12XeX+bFZ77FdV07F6ZpQoCmqtu2JQUinOsuAOQLlhdAGQLR1oyzK8uyKFhb0/eTVooF6rqKSVJK59sLpdTkHJI2RSUyTW5u21ZEoo8iYoqCARDElsUjayGf89F5MDZENsZw4nEejTFFUTrnfUrzPAhjjFFbc2oopSq0BHFTr0Qhe2115Mylkrqup2kWESIIKZJWmeapTuGex2N3d3eXhXxNW33y2aer1Srfh8wDWDrylACBALN2I1MdjTEACAxIZIwlWMIrSauTls8X1jjnBCDvEIdh+PWvf9113eQdoS6qcrVaZcuUsiwVEgpkUkJeTLDEsmzHcTw/Pz8ejzkEwhZ6moeLs/XFxQUAZEIDIuY9xR+++VOWkRNCWdrz83MPiwvs1dXVarXqus45d3Nz8/r1az6h0znnLJ+weo4JAG53+9VqdTz24zhmAN25KSk9hZQ41EWptd31U3AelTLGKKNTFATe7/fsJ3CqtFoD/+LzVxymz19e1TpenZ+dn32pxPsg13cPh4dDvT5//uoXX3/9u2/f3p+frffzYbNOl+dXLnJVtP/V//a/+O1Xv//vvn937G5fv0lfvHw19cMPP/wYgn96dfHkyRPk+d3NtcRU1pt+DIJl16W7421VVXe3N+PQDVP/q0+f5k3G27fvuoM2PlDEw2FfFu26asuyuvPHGKMPKVtMeO+Ntbn/yuSRqi7Oz8/zBgJRHCQRPHaD1hoAjaGqroP3ZVM6527noVAAHOah3z/Icbf/LG7X6+2Xz5+94euqXj07Px+df//+LQB8+urKh3k4diHJs+2ZtXace1OUd7vhdufquiZjQwjHbjgcDsvxanVK4eLsrN5crTetY/X2h0NKgZkJYZidpKAQysqKgFIGCEPi0c3eBa01EOrEhpQilXxgZqUw2/UhIhq7FN0MQOX0kjwWgxBppTA7LCQQAWJmQTTGKFVASiGEEDxaEBSGpEGRKkgxqIQEUUAC96Mb+klplOTHrifSq1WRR6Xcz+ae9xGQ9N4rMooy+zr7/iRltKEChGLyInnBp7x3iKofJyUCHAWBjHbO+8CT90UTQgjNaiUsZWFRQJFCWfrrqioJkE+agUx3/KkHZwaAHDK63m6vP9zmV5FjMoUtizIXwryJyKjpIzyQu5aFzUeklMqmr3wSDT/Crfk788v/2MZN00S4hAkiIiPCKTQiv/ZZaZHn4/xPZB5DvqRG1VrrpmmUUtbaDPnu9/u2XYeYMtqcxzVmJgXOeyIyWheF2W63CokUIItROsaISldVxRLn4G1pn26eHw6Hw+EwB/+n77/Tp2jkXE2ttaAocLp7uM/jnYiAIiQkpfMpnKfhmBKzzC70w0BEGBkAyqJoVu2CqYLk9OWUwjimj3RZoEnNPiIpY4wxhVJGBFJadh9lWWbekJuXJGalVF0VWdOplJqd+3B3U9f1ghISwkfrzzygaLP0UiE4haRIVbaoqkYrzP+EiHz48OHu7o4T2LqcWay1RWFE5HA45NLLzIlDjMkYbZSKgTNkMo6jn0NdVrl3YYkYUSmFnFQ2GmNkkSXZ4PSE5C6zblYiQjgjYlWVzGCtraqqLEs3zff3u8z8Gqbx6dOnOQOqKAqlMMaYQlRKZcKsIUNEC1kSYBgHpVQSiSkppa0tGOHQd24Oue2LnCInZnjcWOdoKUF4eLgTgDx0wsJysM757KZChMwJkO7398Oxs9YOw8DMn3766Wa7epz0MnkwI+SzdyQgIkprpVQBNqtmtdbRB04MAJI4Y+MEYJQCQuGUOCkC7+dsqRGDi8k3bfVl/fkwjUVRMsIwDH52s1ZjPxx2e/Ozn2esRWs9zQMiVrZ6+/btNE2Xl5f5wc582/w85Iz5vu9DCJk39/333ysFn7x8vl6viSgHrwWB/X7UmNx4rAtllaDBq/P19Vtg5ixXw4+eOD1HiTEej0d1dxCEtm1ZmV0/iogmPbjZOeeTalszJWQylbaCAKKMQa0wTH1hjVXw9OKM0lwpCYktyeevniUfDvcf1nUZozRV/e622/VctOm7930Sw3X5+r57fmV20x68b8vi2ZPLX37++fjf/n+//t1XH96+fnV+vmnqytj9fr9sW1e2rKyf3eF4nCPd3O4PfSDDHNN2XQ/7D5++en483H/+2Utr7ReX+t37W1tstWmZ7Jsfrr1PwR2VIslpYohR2DnJ6EpKKTsIDl1PgMaYyhYxeQRs6np0Lk5LbEtuvBkhJlGItizbdtXUpXAsjd7fHMadu7h66jq/u3lb1W2zXn3y7NXt7W2aw6ppP3vx6t27d++uP6zqZhzn23vbtm1dVw8Hf+h2LkSttbHr6JwbHZIjAlRh+uNba/Q8z25CQJmGHknON2utDCPbohrHPnH0waFWWmtbLt70KQVmZP4pJ0Cf7PutopQSBy+ERBYRjdaFqRAn731iTokF0gKi/jQlZ1YhKWWEhDHm5AZBUQBIIDGlGAS0ROVcenh4QESl0HtvlZ1j2O12KaWiLDIRSUQULtYQudQppXzwhMTCwLKkD4nkUiUsPkYA0MZMbjZIHGNVGCQ9hbGqalbLVpuIJjcDgEJKzFYbAFAIBIvNXg6GSlGyu2cSFoHEOQxqUbnkHynP5bmIPjKQ4cRlw1PGbaZKZTf7RwBZPtIg8Unv+wgy88miL9d+HxZy5gkdXcLJm1V7ypmBzNvMf3CePTMjMBFoQ0RUbjaImMVUzA+HwwFRTbNfrzeIviwLY4zzk7Wl0hoApmnKkEZZllphmN12vcljeAghcPI+ZiMC73PuBT88POS5P0/tIjJO08Nu570PLFEY1NI4pCxQEZGUANEWhT7ZAudPbQzFyLNzY87FAxDKm1dIDMaox0YnA/UA+uO+5/H65C1ApmGH4JWqcleUxy/nXGacDcOwXq93u51z/uNIicevGILRuq7r48GxsGJExKoonXNGwXDsbj/cO+eqqmqr2o2TbVtEdNN8OB4AQGk9T3NRaEIijd7FojAX51vnwsP9gwicrVf50M//nFJZgCAiLMsaQtSCl4KAaG2nyc2zL0tKJ/dHpdTV1dXd3cPu/kFrvd1u69IS8Ddf/05JuLu7+/rrPzx//uTly5cvXz5fNe1qs/beJ8cZOAGEnHWhVBHGSQSc87kBfYzwyn7dec+Su0MCUUrlVsMWmkVyl8NJpnnMreTgAwBsV2siGvvBe9/105sfvp/n+Ze//OWLl88yYtT3/WrVRh8kJQSQxIBiNBEqYIkxcgpZBxVDyNt9a8zj65ZRehEh0kVdZMMNTTCOLhv4uBA5MpYFKjX0x6wYRBYXnEi12+2y/K8fjswc4sK1rOs6O9nlFdLpBqm+76uyIaJxHGOMm81mduMffv/HlODqalsYvbu/izGmEKqq4BR5GEzkm++/OVyXucUHgLNC5cDR7FLy2Kxr51PfD0RGcgSbT7MfM1XSWosCSpVzEgoSEiplpxANqeMwVoYYxU8DGiXsb9P88tmlVlg0lZsnW1dFU3bRxzSP0xyx0AajyLHvA6o5onLAqv7xvt8Pw9bS/v562F9fnW9+9cmrMsap63/7r//680+/+PSzz44SN+3Zz798uaqVnwaB9PbtrYoxyagtrZu2bYrz7epsU4rrLp+t/+O/+PT+9tZV5ounn41OqvX5w2G+uvz8d19/2/VD5wvhxJFZxNpys6qAtPd+msI4dPk1nvqhz2+vxnq70Vqvy5IZsr+rm/vEYd005+tms24Nyjx7RbJuV5tV0+A89NOH63eFrQKCAonjCNZgimdnF2VZPn/y4tnV85vr29vb++DnwIKURt+nKAyaSPsEfuLZsfeSI0KPQ7x76BBRa4UxS4IgK3qrqlZ6OaaLotBGKaWA1CJis0SRQwgsqHJeCUdQWFoTYyQUBiYUIi0pLtxd7/PaLgNcQCon+RARECIqOXkaK6W00j5FBkTByJI1xAlcYgdoiSsWut/tmZMtdFEUDDSFmEn/ZVlG4YzR5YntcQY9qRqUpJPz02P6EiwqUEPKJ04+eBSIqWmaIIBKq8LUVrsQTVGGlJzznEQpBQmyTUGMCQCiDymlJKBNQVoZsKgoxsTZNpbFGINEzFCWZVVV2+2267pxHEHLabTFx+Es/8C5TYaFUTl/NLotIDOc5Acf7wXVyRiWFz4uMS/lO+PSdV1rQymlHFmTwyIfaxiRij74MBeFMcaEeUpKCbCInJ2dIaq7h/1+v48sRHRxdRWTT5yGYVBKaWNEZJz6GGP0oSgKa5QCXK1WhjSIxBiLqizL8vvvvx+Gm7ptACg7SGmjY+L52D/sjo9JwEqpuExWPzko5U+Xkdi83nusdkopdrO1GokyGA+KMkwaIyNADImyPwblEBnQ1mQuj58dERmrtFKgVJ4p58kTgCYCSSn6uiqUwrdvf2jb1hg1jX3bVIqosDaH6f70hctggsLAyWpllRZJVWElsaQgKdw+HDLw3jRNFoadn59TYd68eZNYCODyYmuMOR6PIXoWIaLzzdoYM/TDPM91YYqiaqo6cUjR51KKCMyMLMKMIpBT4JbTWUSEhDUCx8CBhHm7WSHiMEyH/X7uu5RYoWzbhtYrZn737t3f+4//apqmmOCHHz/88OMHgL9pan11cf7q1atnz16s1psM9SWGY9d9+PDhxatXec4zSwLgnPEMDjFrc1NKiOBj9PPIzGVZ5KeOjD7bbmNKIpIiW6PGfri4uIh+VgRv377+m3/9b/7qr/7Kmmq7XstqpYm6w4EUEFFdlcHPHJNWKuNeMeRMQ4QEyOK99zKLyOSdiAjHnfcKME9K+oRpE1FIOS3Y57eyris5xYFw9KiVn6f87AkjEM5uPBx36037sLvLtyCj3OmUwVrXdf7+pUf3SRg3mw0RZVwhcXj93fdFYc42a+fc/uFOa60RlKGh79aGL2oFtRJxMs0cU9adbEqbDd4fG+t8pOno3Wa1DimGELKmwlp7OPaKzDjMSqm6NsPo80LHWlspFZj7h0OhAKLf1Obscrutq7rAZ5fn3fEhcHz25Grx+NdGlaFAI54327JkfZjl6eXq6+9+COC11pXFkkkX5bqtnm8bS2n/x2ty868/e/Uf/vLnKaXb+7v/6C9/XbXV6++++bNffXG2qpXGypop0stPX+4Hb6l6/f23d+9ff/rkz0hbjd733fPLjdZ06Ac7hw/3P6IqCPiTT9pjr9MND+McowOQuqirZmXLYp5cP5bZQwdBRYmQTRKsDYnf37yrqqoqm2n2tqgKa6dpIFKTD3g8llprJavKAtDkQtNMX/ziGZFSZA6HQRjevn1/e707v7pE9hLh9sN7Qr1arUJI+/1+8t6nZK3VpgiRu3FiwbZdaVuV9QoRh7F3s8RIAOB8UCkkjk8uL863a+emvj/Wpe3mkVDAGkVUGKuMzg+riKSs+wbI5GY5PZ5VWRpj1KkeeO/nyDHGKURCzMsYQKWM5QSjc9PsEZGzr1NKiSFywsigGGQhSDEAJGEUAYpJxEdhddgfc3UpbeEDEk3GFHXdEsE8LdIUY4wk1qRyoEI+u/NhrTTQ6X3LX/lNiyEeuiOwKBAQ2QJ451Brz8zMPoY8XscYjVKayGr9yA7N4LwwRE4UhUgVhUakkFIWijAzi1TWhhCmebq+viaip0+fvn37NtfLzDzPxJAM4z9qfE/j6cIds1Y/1t3Hdw9RisLEGB9tOh4xba1UZojkdiTnO+Xh7/HvX4ZmAEQMMY7jyMxWm2ma7m6u27ZdrdsTNUxttquqqb2PnGAcx7YqUCDnIiilUC3RciIyz3MKerNdFUXhZ5cHoLKu2rYd5+nm5mae50yUyxc2825AISDGxCIQeInywFNKLp54XvARxfdjuP78/DzEOM9zCF4pRcoyc0psTL7pQoSSMnkQisJGRmDJIzsoBUykBBGBEykiTJDiul6FEMDqy+36uLvrD8ftaj0P483727qyw7HT2Uvioy+RxX+DAIKbuxRiSkZBVRd+Hnc7TCn98ue/EJFMiC2sySvqN+/eCEthaLVq/9d//3/1/v37/e7BKK2UyiBE13XTOFur16uVMYZEtDZKEZ1ioREF1EIROj0eyNlfm8WPkxJAIq1UFCkykj9O8zARgiaorR77g7VWIVmCsiz3+/26rUQkRBecjGN8PX5488MHrf5N29bn5+fBp5ubGxcZAP5sGM7PzzOzN9+sbCOTaQpw4iLEEHDxyAzPnj0zumhWLQkYpBSjVirOrm2b9z+8+fDhGiR9eH89TPL+3fcxqTxVP9zfEIAx5nA4lGWZs4RzT5bpAhkQymSx/KigolxxH4V8HFOeEzLuoZRyKWqtUwxa65cvn6eoMqKZ7VYAQCnNQN776+sPznkGePbsya9+9as8ojy+lXmlki9C1vhkgDrGeHV1VZZl13W5Ff7qq2/GKV5etMYY4CgMxujoZqN1vV7xsFMksqRkYiJR2nrvQeLJRTAv+08rhmeXlyLyww8/nF1eMqduGGt79vTiXERub29TSuxdcm72TilFArvgVm29Xm/P11WYhlWp1u1q1RZKYmYGWqvvd/vVasXMm4urfnqHZVkWeFa2+8M09oeNVU/WFkgngraxZ6vi6qLVoS8L3LT1kzPlujuMY5Jhu92+ev7zXde/f/PH++u338n8+acvbm/e1e26aNcrq55eXB0PU3q2enLxeQoTIt2+3xGgNurs/Pzm7s5Udd2sBhesUVVZIMKn1Oz3+3GeXEiKQ/9wMzh/6IbN2XlhS2CZvTO6wBPANc6ztjYJjm7W1riQDodbRZSMFtalqVGrcThGPwPAZr26P9yC5qpsjrvjarV59uRZWdI8Xzx//vxwPL57d3374cEY64Pc3t4XZX11djbMU/AxRIkJEEURpRSFKfN05nm2OtvcICJqTIUljnMMtrZ6dv3x0JXWWmMRGAEUkkElSktMLgZgzrUHkI3Cx9MTJXGUlAQWkUF08xhjVOWGiKw2oIgFBSClFEJQCn3i4DM7VC3BtMz0OKEKCgNjErXwg+aQZh8fHvaIMo7D48CXq0iMSU5uNRmYUkpVRRkii4gidVqj/jRFIWI2aEREVDQ6r0AQQAHOIc7TZK2tVuv9fp9SdH1Yr9eTc/YUwpi73XymZKGZyvNKSmVZCmIICYBm7xDx2bNnQqrrusIW+aRYrVZXV1cfPnzIyhyRxWMhxghCbg4CP/nz5a3nY919nIPhBJlm+C6dEmyyNKUoiqZq8/dkKkeutcKc57NMPOGPYla1MdYWAFIUBYLq+352U4YEy7LUtlBRYeQsrs01PqUQ/Oz9jIvOBPItEMVAOE/++vrazy5fsWZus/vmkydPunHAvcr7Zl6wCAEAbbTSSxginYIrmfMzAieQYIEK5CRuzpeo6zqlly9E9Cl670XgRPQFBRghA/UQnOdF6iZ6yQfxKRABDuOQaWgpJUUcJFiDVaklVn616vd7UHR5vmmaZrfbCbOhZQSR/z8gWgBiTAiADJCSc7NC/OKLL4rC3tzcjONQVXWOpui7Q5gDAmxXq7IsD7v7h7sPBJxCauuyMGrsBzdO66bS2oTZJR84xtxlZl2DUgrxFA699C7LAZ0zoREARQySFmCObugjJ01QFQZy5mOKu7vbxYqR+X/47/57731VVSkmDmIMWGuVUuM4aa36ftwdRgAwBG1VxBi/+eaPZWEmFwRAI7AAIeS2CgCKwjAzkqTExmjJwtZXL0VSaWw/jEVRsEvZGc/Prj92Dx9utYKry7OL6LvdHYNVShGqGGIC0AqEAyfKWMdSR5dkcUVE0zQRIRJGRCIs6gpO/H9EIbW0s9mynogUa611CGitffr0yhgzj2MIgXTGNR2iSiy6tE1VELAo/fLly2EYYowZdVNK5ZM2v5KZKVnX9eFwUEq5lJQ1LobcuM/z2PX+ycV63Tb9cW+1QUQSNppS8Axi2yYGZmZjynmeQ0ilIrJ15oqfXmfM0zAA6Dj15+fn6uUzH9IwzY3VSpKWCIraqsyHRdk2+U8qQrIlp2yGApzSMMxHS8hFbdUQ5n7oG6iO191lTJGhmoOt2uB9ZXRtKt0oGd19N/35q+cB1BjTmzffl7FVF5vhOITScIKXz84qE0qN1kBMQ/Ty4uosurZSr7r7+927G5XgoqqHeTrujxerVq3U9Y/H63fHypZ931tbFc2TN2/fOYnDZNti9e0ff4wMTFDX9TA6EmoslaZyPjAp48kYTYDAaZ5GbeyTyysi2u8XFhwDrjbbruvc7OtaI2K9Wq+bOnnH0U+TUyDeR4Wq67px6AucpvHYtuLnMA3H/W4yStd1OQzD7YdrN/dVaZWhi8v1elON47S5PD8cun6cZ+/Fc20soEopJU7DOOYjGMVkYUlZFNuWqqIUSQSxbeq6pHmeqsIQYFVWWZw9jvM0zcaYVVmDQlJw4liKMUqdzMdJmTxkCGKmbHRdp6uamZGWaFUXoo8cY0RSMcYQYuZn5bKhlGIJuTgKJwQlgNnHAwCVLUKINzc3AOC9RwARzA5QzJz1ssiCLIw/2VPEOGX7pXwepVPiN5/Cy0QkRK7KwnufYlSAQDiH6Hx03rer1TCO+aB3LqSU0BgRiT5gUcJpEetPm2znAjMQ6ZQkxmn2ru97IsqJwsaYi4sLBtjtdre3t3kYPSka4XE2VWRERBudxzsiynjaI/T6WHfxpP7a7/eImHdRZUYjFj2Pe2wRRLLfUHpc+kZe8swfqwXH1Pc9gJSFefbsmdUwjH02i9jtdqRNjEzKOOeNRe8dV+ZjbDx3JNlMAIkkpSEM8zjCYjoK6f2yKt2sNxcXF9vN+cPDQwhT9j/LReOR5g3/PsFkmYbz77HkCYATszAABAiKFHMyJotWmREyO01rEAGlNIe4fFqW7HyYyVBK6VzRkRMKI5EmAA5KmcRx7I8hBBS4u35/OOxz45VCIKLjbicxlVWVjOGPG4SPfup8ByWFzJNSBEjyu6/+rqqqnE+cNXIAYIxdtQURuXncPRy6434YHAC0bTkN43HfVVWxatppmnzkTIJD4Bhc7tuIALJuNcbH/gwwISoEJI0AWiOklBhBEWhC4KQB2tKklLShyhQA4CCicHSsNQgLyAKoF9aSzmHYPr9PxqiqXByYRYRZVpWNMVpcfEISR3XyM88b3xCcJAYB4pSSbNdNqY0AFdrMpIKL1lKMsa7r6P08jE1VcnRDd1iv6qosEiOApORKa5gZ2K8qy5yQWRv6yISAU2TUuixtvv55kIUUIRPFUQCAFCHiErpAKJJOnbloTW4agAvmaIw6Hg8xcozRhcQMinRVFWVpPeNqtcoyWhHJU35+VbOJbJ4QmLmqqpRS3w/OudVqtVqt8vPx5GJ9dra5ODtft7U1moS1wqE/hhC2q3UXMQyDIppBbqdeq6IbOadB5BPjlId82gFD9Pu7D03TPtzdVk17cX7lgtfajm5uy8IF3/dT2TRa2+yR9nAc+uOBJMZ5UOwVu7kydUG9n9arWlvbDdPFxUU/zkBqcr5ITZidXunhOCmQxhS7eX/17OowRxT8y1/+eugPWtTVxTM3D6mmGOaXzy+u370ujHlyuXl/c7fdtuvauA5+/fNfPFxfX23PKEl3t4MY3n377atffvLFp0//7b/77dXPflU1m9dv3sY3t9qsRm+mUN58f3vsfNM02/NN3/eGyrYupa4m59+PdyHOtqxWm7O2XQ3O74+9MOc0DERV1/U8+aj4cDjEGKuyyYv658+e7e/v8ugQY3ROCPH87HKzrpn5yfqXKaXucHz+/EtrVHADISc//+n33xWlOj8/b9crrfVqcza7cHt769h1/W72sW5WTWtdkBCS82mcJyKoqgJZyrIsimK7WWmtCzkS0cXZxiiaxr5tm8vzzd3tzeR9CtnboZh9RIAqG9AXFN0JbAFOMaLWeeehCIi0SEClrbWI5Jwbx8llMFCb3JP5GBEVkmJAlX3TZYngJlr4TMKAgkh5VUxCKrgl8fDh4QFOKZheFuFN+ij8J9erPDflRZQ6EWqICFBU9iWIMaWUjQtIKYFFX8unTkII3ejfXr/vx7EtylXbRk5aL6lE6mTTiIjalkpJEp7c/DikZhKmiAzDUBTFzc2NrcrMekWiPEZst9vj8Sgi0+Ry1Xnc6SqltKHHhW6MnC1M8sGaJ9p0ihNIKVVV9VgC82meR1uj9GO15lMykpxiG3K9/Gi0JK1yeGqeJ1XbtosrAVHXdSExYn75F/pY1uoQEoMQESfWxjyysgFAkTqZZ4JWCkGapsl8tBxCMAxDVdcxxsc92WM511pzTD/VknzfP9Ic59HfKI2nuFnS8rgRJ7PA+NlzSikFiREVARKRRsqL70fvtsQhY9TGmEzeSRAlpbHvjTEs8vBwT0TZ1SGlpKyVxEapaRrzk5Z/Tll2c4iIMTpmNoqCUFEUwc3MPE0jEaQQRcRYndORc10nWrRwbVuE4Ioihx97ZqmqQkSyHRgi5rssvARvnAItogCrvP4Ugo++MnOA2QMKAUgKNm8lOKaUNCEkjizeJa2hLotpcimCLbNB2HKJgEGTKlqbUhKEeFplpJQyTJPJp5utzZ9OqSo/WoVRuTsMwQAAZLzXOWNM1x1Wqw2noIluPtw+ef6MiMauJwWXFxfv5z4SlUW5f+jKkpzjTMJr1qthGNw0rlYr5wLHRISAoLXKB4X3HoSRiFC0IUA1zYNzzAzew4sXDTMboxUuCWNaqZQSLYIxMkp9+PChLEsirOu6aZphGJhpHrrRzcOweH4XqyqrA/KjmM+Q/P72fZ9P2qw4yMGj+VAiosCJQ7TWfvHFF4hydXWl6Woah8qauiq+/uq3JLBatceJopeiKMLkAlZnl0+Ox+Mwz6DqiMyYWweSJWpFdAdGIz3cPzSrVUrh5sOP2ePDWptSROKmLUViPwxVVe0P95sqPXuxrsqiMOruw40xxeriLCHOIXgHQSptiii2aer7Dx8Kq/2dT8EFTXRuZz/brd3w5pvXv/dJj1OavHz6+Rfv9tKuWpbyzfs5+UN5KO4+DKuy+MvtJwwD+/TsYlOAX62Kun0KimxR2TCyd7Ob7+/2F+dXCPY3v/vTz3/1l11Us5Pk/e27b03VllW9x3i47uujzD5uNptfmRhCYqZ1u373/rY7Htfn2kcuCvv04rIfpuMwOM9IogwlVOhHq9R5WyurvecY+h/ffpsYSFs0dg6elN0UdOz2EIdS404ra22xrsTKh91d3x/Pt5vtdptmX59fNk1zOBxE0nE47naHvu+r0taq3mxKUQqURvFjN6JIgak0bHRq66otqSy4tFNVFOumZua6VpG5tpXz4fr6AxmryypEcT5hmPL528+j1hpiQFSSmBny+kFhyuKEXJOIiAPf3++HfhLBOabjMCYGY0vQdnAQgrRtqbTGhQQhgVlACygCcmwMstVC4oDnxJqhYGmjhNbK8eHb+w9/aAjGozvbNEO8H3eziGy3W58cM6Yk6/U6pZCSQIIkqdA2RSmVXVpjWl6Aw+HAQm3TDsMATG7KFqwKSfkocwABgwWxcF2tnPcNmbv7h7qsfBLSxAACy2o5S2kBZRpdnGBdbTTpZtXmouWnpMBsmsoYAwL5BN/ouhI73x5VEiK0ShV1zczGFNM0DdNUF7UkAAYkRYoyVA4IIDPHBACaVHbLSxK3m9Vms/nw4QMACrP3CfFk0Q6cOwBJSSvVjy4vs60t6cTpRVqcCohoU0KzrrfbbVmWr7/9fe4RObIivV5t+r5PKRWVJaJ5nsV3RydEVBhUudIrTYRCywqAFn6ZZFqAtSbGKMkRSFOZoduJyMXZKqXEKvN4f4rBYQQAQa1gYWp9PAknpZRSlPHVk42aKAUNgbCMwZNWmBi1ioAkYEjxwuQSQBBIQRIQKCBEShw4ZSm2WVZ3AtbaFGMMwRASJ06pLYr+dM5CSj6loqmVUuIcEQ3DkD0rhBdbN+ecQSzLkiVprYOb82rfKC0IWmvNShBCEtCUCFOC6KM2RS7kRdkua1RL9gR7hOSqtu26zhhzdnaW/JQrWa4iJVokUspM0zRMs1IKlSmKsh+GjNWvyvXtwz0AaAIAODs764+HpmqQRJParJp5ntu6AYBVcNbaUK6//vprCIIIgYEBrCVMkYhQlK2qwHA8HhH/f3T9SZMtWZImhqnqmWy4k7u/KV5MGRGZWZGVNXRloUEQaELQBLHodf8FbtgiFO74I7gCF1xxghALYkMhhUKKoEmKdBNNYXWz0NVVlZmVU1TM8UYfrt/BzM6gqlwcu/e9zCr4IsLd33W7ds2OHVX99NPvM1CYkKz3T66eOB94mggxl9S37TiO05i88aOS79b1rqH3EtM77z9arRa17MwlQ8D9uGtDw0ZijMbYRx//8Pbu/uX162TpekgNIio65/bcHllsWL7YTc41aLDk7JxLMfXWMfMUkQAVDAC0rTOmGUV2067O7UTYCMgY5Zw2SRQRUyDnnADAezKA6XqrqtbcVafkBw8eP2wva9754sWL4/G4XF2kLN4GQptTqfQpBELEXGS9uRzH0Xf9mEsQGIssuoaZLQFzMRaJ6MuvvhKRh4+e3g+jiH327Oadx09GWJh+fc+tjHcelThLmkDLzc1ra62SIoI1VIrkKTLIrI+di40xZqI2BGttv+xn9VfEwzDtjwNZXxP2qtTY9/1m3S669u7m9brvPv74h1LyNEzBGWW93d6mKXZdk2O5M0iAjW2DM4aWApAEb+/2Snh59egDaH/xmy+uHr/z4uXNb774AhEvLy/eefrw+YuXm6V3TlOSF/c3BL95/53HsWiK0/riIaLKlLZ395uN+eCDDz7/8qvlanMc0+ub2x98+nv/7V/87Dd/+9nVw6fHSVzw4egQtOSU4+hJUxziGG/S9E0xpUjJImCZPBvZHaMilBh9aMusFiYqhcR6S4UtgCZmkzSVDEgqmApLicH5kku0aJerZbvwJCXFL7/6er1ec8lffPUVgWxWy93x8Pz5c5FyPB7ppPGEiLWour8fnXMKVESL6JQKlyqR01tLffB9F7rGN47sPJqSM+v9/pBSsi547/vVGgBSLOhnOnQVcebZpFMISUSlaJV0JsIArpaVteTxZkal4pSNmrZtC2tkReY6v2icr4esVRkzi0r1KCTrVKVormO1SqJGhaAyEv/yz3519+oVrZuHm64Gj83lxTAMDIWZnbOqUkqqPjl1RLUUblqngsMwtG2/O24RtWmatg1VVz1nKyIhdLV1TUS16gJUVCAkRKQQzhGl7onOudC1MU7Hk+2JgkzThGyWy36M0+vXLxERrVmu+pRS5pRKdM4RYkyTiBSu2pNusVhUNMmRKVKI6HKzYWZRFBFWxqJVAFhVCUVOkhpEZCwSNavV6k/+5E9+/vOf39zcHA6Htuvq/XLOZdHaI2TmKc0y9KWUENpaRTVNM8VchfF2u927j59sNhtVPRyOL1++cs4dj8P9/c5Yg4g5F1WwdobunXOCBIgsuYqrKBIZO0OfACxaxZmNgcSihWFmAJicc9/3NW7Vy34OsHzqoqrqKcTOX29F4nzeOs8vBoDlsleHF93Fq+vXCpmr2dYczucjnAtqRCSh+ZpqmbFiVQNoDEHUvu8fLpeVlQoA+/1+GYKcdDdVdYqRiKprsnPuxcvrt3WgrYVSwNpCBCVn7/277z6tI2cVBhPQGHMaBq6CkCJGAADW6/WZiFeRBtEyZ0uIc3e/7x8/fqycjDGvX7+O0+Scc94PwzSOY5VIREQWqUIc45icI7NaI2K/aOU0rlZbEFzKbjh6768uL5nZkinGrNdr9j0R5cIIYCzUsVpmYWZDRUSMccYYSy7lVJ3PDrv9Tu5rk1WZ4zhW/sHxSKpqvKtWFiJyOB4fPlwy8/X1q09/7/eurh7st/cVU6naqyJ5Pxxvbq53d9tY2Bi0xkypPH2yrJBPvSAhhFmKAKHKmNQsiojGWABgyqlpGq7Troje+ywMAGgIAErVgEuJmYE0p1SKEA3WGmutRWLBFy9fWzIvXryoDd3xOJyJZnUl27cmESr1rF5bIkKiJ0+e3N3dcSld35yVEuqKrZNs9RE418cVwRaRKU4xxr5bLhaLxOU4jMfjMZacsyKCrZY2p0MRkS2ifXAuhONwEMDgGxE5TjG0fd6PTsEY27Tdcrk0xqwWnWT+5a++lDQ132tvrreeoG18HFMIQQsVxpjgeBi7rlsvl/tIQ0qonPOYFDIjohEMYvXph588f7XNaO6PExJth+++e/3KGNLcGmrJdfkYX7zavnjx6qP33nvv6eOXtzsEWS6XvuHdMBrfxpRfX3/zwfd/1DTtMOY//slPrq/3r2535Nr9/b3zRkC5TMHSZrU6HI5QqJR4c2xDaMRTjFnJFCOHcXLOZSlD2tWLslx01lphSKnYrp2GcZomQIw5saJxXsgM43SEgRAWTdiP6e76etO5773/XjLN/W6bcw7Odm27nyZWaftu2B9ijAjQ922MeDgcKgUgxmidyzlnliLMol0b6liON2SdUc5pYhTLVJ3Ds6mMCxMEKWZVQUUga3E2zDnRYAAUMSe1FkQgZymlgGq1ylkvl8ycc9Rc/UDUekPGbO8OiOicFVIki8ZlrpypyqmWKrfLAqyiSN5W7qICCgCAsogB0P1h+7/9X/3nt88+W6zWRPnu7u51GpmZec/MVECEY+RSkjFNaNyZeDlNyVrrfRAtMY6IWP1rc856LhPJpBR1Hv8nQJ3iWD91LBlPdmBaMiISYE7TkydPLi4u9vv7an5FRNOUc86dc0XyMBxKKVUCIoRQnXcBoEyJiHLJRITGphSdQU65QrK1q6esSbl2KlkkyzwxBTN3bKpvdwZm6+l99tlnAHB5dbW9v5+m6TRArFNJ1lpOufrn1MhXRWVZuI4+c9F53CXnly9f3d/vHj16BADL5bKSg4y1tYcHJ++aYRimKSMWcl7fIl3rSUzj3BdERGa1lmqAIQUWdYq58NOnFyGEYfg6l4zANUb+ThcVscDf96V6soWqP55+LwhNCJvLi1c3tykxAyio/PbfGqjcYEAAViassqcALISiCoRgBEvR5drY4OM4TaqPHj4cU77Z74hofziyVAaQpiwplf1+8N4gAAE0wQ5xPu3NumdmETi1AwHRtG0Qke++ex5zSimlItbPeimbzbqi2ZVSV7djEakQyEwRMKbiCiKy6KsGhTHWs+ju5m6aJjq5CRHR8TCQNTEmRPBtgwasN4vlsnrUZ+GiKggxFSCYUiyAoiolX19fXz64cq1HEIMgChaJUUEBEZbLlohyYgAxxpDBgCGmKIVzjjVpMEjV3qiqMM7TOLmMpeRsrfV91718+XKz2dze3t7vdk0IzvkafU+rvQ4IVOiCRXTgYg28/70PRaS2GKZpOhwOIYT16sI5p0TMvFgsRGS73T7cXNZmjXHWN6E6kzrn2r6rXJCcc+bCwmQNWcOgwfnAknNWZQW0ITjnHr3zTt80VZ3t88/+9utvXyJA19pnz56N47hY9OR9vSOipc4XEc4CYRZpu7372c9+lrJ8+oMPr66uKoBRH97Ly8u+7+tTU/sv9YSHYXDOFU5cNJXMke/vd4chQhXCNDAr6mud4wcCMARWVceYiGi1uawA1LDf+3ZxnGJkGHN0zq2s65qAoGPMPHEIS3CNMMWcBAVZrCVSatuOBafE4yTgMGA3HId0vPcORcp+epXTYIx59nowrlHTqG2SRvRdaNuUo+/baRrQ9re7oQ0bpcm0bRr2v/ryO7Dt5WYBIN+8uCGCpmkiw5/86T/8xa9++ed/8ZcfffTJlHiKHAuGpjtM8f7+nox58OhxZk7TOB3vSeDhxZqIBtfHGBGMNZhSvr+5OewOF5drAHTWNE2Yu/2AQuJbCy4QkXPOBX88Hq+398OUlMiGJlgXx+HV7Z3kfhU8hr6gTYLHqagCawZCLtl7v7m4vLq6kpystYu+H4bD7fWNiCiX5Wpjra0Kw0TkQBrviKgJ3hCKlJhiBhV2lrC2PJ1TY0zTNCp4PO6FgexMLYaTB7VBzDkXjoBO1Igis9RZMiJShWlMKU8z5UeRuU7jhLbth3EEtK23RU1mSSWrVIYwaPUsRFQkUFFVZUFgJDTGGCIWUqKq3/TLv/oL2L4EHUqLHrmkkYgUhZkP45GIqrnptN8CQNd1sURnTNuGlJKqLBb99fV1fWiNMaHxZMw4HRVURJCw5GyMqcaIIlyFgXLOJSYRKSUVKb6SMNumznDXYYOqWcPM1jgypqpHVYF+Y0zmsj/s+36xWCwqD2thTD34y5cvNxer29tbBDEEoLOlXUrpxatX1ZpGQRUNzUMmVY3yjRlD7Zky3z95552mbSuqlDOLwDhOXdcRzMYyzrnFYnHioAlZsuicq1LJnplTTu8+ffcPfvTJt99+u95c3t7eXl49tNbudjsk61wwBnPOi8WiNkGn6a4UIay9WwCAOhle440xWEN+lfs4eRO9KW0BoEp2N313nCZR+HtkLGAOjfj3/Av8Tlit8XhKcbFcG+sXi8Vwe1+fvfrSc7WsONfB9ZIqoZ5o4PUsBCAXJYAk4pjHkoDFNaFfLZ/dXDvniJClpqfGqFbsZxjT1eU657zbDwTQtb5pGgSd6QJTjJzr9dludwBwe7tDA9b7tjVo5vopcTHeTdNojMml5Dj7rjvnFDAVqRovFdUQkevr6+p6dHd3d9YVPx6HmMGY8vDxQwFywe/0WO9OFs7CSjjlRETCIABAODEHZ9HQGCcCNMZkVuNCmqK1tut8jFFUkQXM7ItXQ4XOFl62ab0ql9ngGfu2rbNztWR8/fr1/f1+Jk8oKdXAHKqzwvvvf9i2PZfULvoKp8+WAwrOuavLS2PMs+evLIEoCMDN3U1lVxz2sw75cRhSzk+fPv3g44+Ox+NutxPQxWaNaBh0yolT7LrOt03OGYj2wzHnXAk6zFIb/9ba2o4h7yyawqmopswKdDgeSyk2hKbvmq5dr/oQwjRNmEfvXTVQYRVLSEh1iJyZiyQEs1gsPv/885QFAO7u7h48eHC2chKGrl10bW+trQJBqrrdbm9vb1/fbuvKbYLdgI4pjmMkhMrHZGZAQJp1VxwpIhhj7O4wtMGJyP44EOhitR6GUTFNMVfLRmPM7jBst9u+bRZ9F4dyeXGZh91ut+u96RYtqhCYaZr2w/Di1e39YRSibsr7gimVReP61YWUaUojUyss+/3UL8IQB0U7KSXyu/vjYdibuy0ox+3xh7/3fTBhefH09ua1tx348MuvXnyCHxLy1cXj5y++pSFlsHfHr9vlhe1Wz663daQFyLHQ69vbi8sHirBarV7dvDocDqr64MEj53C7vXuV9rv7Qx3idM6HEOzlhTHYBF9KlpJUJVjnnMlFmDmrIbKhbbxrMmvbi2MBMqnI+uIS1us8jetVtwx+ONz/4rMvvfehX65XSxQm1OGwvbndbbfbq82aS14vlsfjEQHafmGM8daJcaqqOIsiTSlaMtYZBLWI6IygQ0RrZ9QCycXEKY10jDMLCYEKCUO1HhMkIgsAKcWcc/UqA5YYS0oZRAGITEZDKaVpioUTgmmaJrSds36zCSyQMhfWzDkyc9EqFwAASpUbS4gIZECklALAZIAQ67iMqoLqxXr5v/jP/5f//P/6X/3rf/Ffr1t8/eIbKUVB1psLVSmHElqvqsHZ4/Fo7AyyTWOywTKwtXRxsZ6mYXc8iIpzbdOFtm3LTaoP/HK5ZM71/UUFAZbLvsoDHVUhZe/7OA3kLLM4a4Bwv99vNhtrdb/f1+nDvm2R9Nnzb1n14uLCerc/7ra7nTF4HA5C0nWdkCAhOhzSUKDc391Nw1DFZlVVOBuCJgQERRVFJDIAWrljRKQwc0ZqEWyMSTmzyIsXL9brtXOByE7TsdqRMrPCrMRexfoFFI1ljRaopg7GGGfDOI2EFGPcbnfGOO8bZp2mSBRnzG0cVfX+ft80XSnStj3inSqoIJ6k0KzxaN/obanMbJSYoiFbqmUQoIIWAQHYH8fM2oRO9fZ3gque4eWaavyd6Pt3Q3KNx4fjdHmlu91uudm8vL0nrP3hWi68CdV8OjIgIRlQVpVq0qwAqoAIojDl5CSEpo0x7odhu98zq0h2LniPKaWcmYjOiYVz4dNPf//P//zPVTXGXCHe00iuGMBxSsIQY1xfbLQyDowRkRSTMcZ4n3I5Drf1fq03q7Ztq9h4xe3rrY+ZiwABFIFhiqwQnB+GKWdZLvvN5mJ3GFShyj02TXe7vTsnHznn2vRJJXvvgYvUS0cwpXLVtEA2xRQM9eslqwzDuOz6ruv2w3G2kVZQhPEYvTd1DoYIQPTMO1utF8G6SsxERG9dCOHD9z/4Fr/d7u6nKVrrgw2plGE4GIvffPNNXf9V79q3TUm5prZw0mGO89TDfGu+/vbbyjo+jMcapJ1zL15f32zvHj5+5Jyr0AIzlywV9GLmwmxOTov1qT/fOGEtnACSsTNZxFkiImaJ06DAcgMG4LO//fLnP/95KWWx6MlZnrSo+rapb2EsAlkpXF0O6/ivEtcmPQE4A7/3wx+VUkqWX/3qVzFLNVZ6+uRh0zSHw+Hy8nK5XErhy8vL69tt1zkk23VdCE1NUhWgFBEFa+DkckuIYE6jAfbJkye3t7e19ds0zbMXr4z1y83mweYyprLb7Zatbxs/DYcqYw2sL18d121YLlrM0Tm76Jqc8/rikm9v4WY7cF72F8urK9t0Q9nfj8UM5X577yz1bQADInB3TLfbI7nGd50knngMi81xv3O+ub4/2G+e//jHP84FXu1jcGa17DmnX371omvDy+2xCR6E8ZBECpf9u+9/kkXvbrccSypK1rX9+uZ+Z61dbNJytWnavqZyiLhabVJUyTHGxKVkTo1bh2BjGoF9G1zXhPG43x/uCVAV29Acj3trrR5gm3eHOAJZ50NBlFRub29BBDilYZA0chzXq8VmSWTcbn9w1izapu2X1loucYjJESrSEBMptG3LwoDmWAEoJDKkzMaUeiNijFmYDKAiIuQiCqwKYyzOOXR2ihFAyBouzFwbSMaQEYZhSiLCklWVQERJimRWqSJrQKxgrG8I0VCMxlq7Xl8YssfjcUiQSo5FYipTUTKOAbgUOI0AKRCDCIAqiAKqsmgRrRROURAiJIyZP/7wQ2Y+3t1c9I+IiLxT1fv9zlpbuKRI1lHMJZXsyVeY4fr17W63q4hWFeKZ/fKszTnXPaLOb+Q885BnQjUSAJRSXPA0juBdGxrrqA1NnmIIgVBjTgDQNF2dsodTGdh0XYzxOA6uuKuHD4yzQ5ymadrtB+f9/nCog5XH47Fpmv1xspZkHvM1zDyOY9/3fdvNGlWgAhUsR2utaHWTU1VBmoeUROT6+rbvl6tVW5Xf66c4S2Rba/f7/WEY64+VHxRCePjw4fF4HIahCQ0zX99cN8EBwGGYutDUMktVd7tD0zQiZR5TBmhDE5yPKVnvrLWUU6XFvrG1IjSVZ2RtEUYikBlFB6gpDlbQu+s6Q4aFfyfK6t8z0vNbEfrvDcZFYMq5jON6s0EAQWD53b/9raqaQKv4/Xl+F+ffo0JhzZnBucTy+vr6eDyuLy8OhwM5W93dY4yccl1F1vDNzc3HH398cXHx8tXrrm289yJFRcYxrlYLi3Q4HEvDiDVm2KKiKbNIyrJc+BDC69e3T548/NGPfvTf/Iv/5uZmF/yxaZqmaVKOQG/8niscvd/vCcw4RLcKCkRW0FD1+1ouAxEZ47qu++qbr32YKUKpZDRYeyJzG5KgCKsCGjDGKILxLmbmoinzOI5d13nvO2YAcK66qzI11a2v5hlaOBUmADCowboqOelsnV8nlrxard57/+lqt7h+fbs/HlJSIgsiw1gqoe8r/QZF0xTf/+Bdb2zOxftgrQFDNQU3BCwABsjS8ZiOx+R9XVEwTXmMmQimxN98/RwAnDP1qS+iIYTQdimlKWXmiZlBlYwBJOPw3PhnZi6FudSVkAGQmHM5rwjXeBSeYiTEu7v72oMQAUQcUxQtBlxF2uuGsNvtnjx5IiIpT5vN5u5uVztZJ+sUsQQVfAKAL7744nA4FE4PHjxAgqsHF493F3XSVUQO41BKITxlh2+lpyJiEckaSwZJbc7ZWypg0Djjgg8giPvDME7JN229KIfDIY5HlLJadM6bNrjL9frhxQIlS8n7aUBjdDwOuXQXF1fWh37hu1YQC4qSuzmMKSPmvDuO3jsiA2SF3O44lt3w6J2nasOrV68otGDtg6er3TD9xU9/2fd9s37w+vXL7uLxq7sXV5frccjj61uLGsfjZtW/8/hRcP72bpcTF9ExCZBfLS56auB4vN3e/ubzr6t4wsWDPqVEZFpr1xZWHqcpNm0fYz4cDqH1j64e5xwJpGk8ahucR8T9/W4cx25xIaCgLCKcS9YyTjEVBrKqalBJpXFutb6Q3IfGtW2zWq3iNKgqg4bQEFEctbA468csBKKqx7irI2FJkYicNaqKKmSgFAFC4RKZUbiirHLSEN7eHxaLRdctMEsWtmBizszCKgBCxJnmXmPVbjXGAQAQkp31h40FZ21KxRhom0XXLQxZtOZwHF9d3x0jTTGjtVOSqRTrCRALz5aZWqnKgqzVSVMRUASQFJXqfqqIRgBUX7x6+f3vf//b3/+DB+s2x6GO2UzTIFqMdamUxericNipYoxxe7+vau88O6XTzfau8oFnFd9xUNXaSwO045QQTX1CjMHqH3B7e+tCM0wjiMYYDaCqooJX3R8HQhWRh1cPFotVKVsbLFlvjDOmxHxchKawCoNxwQOScXI4iAADxiJlGIVBFa0xoJBiNkYqEcNaqx167yGlrEqIysrCRGS8N9ZZa+rgrpyGfWrAe/bs2TAMm81msVgdDgcka51XEUSDaKoZV9M0FcBk5ouLix/+8IdfffXV1199e/aMapqOmY2xgpCzGGNQwHtf4U0ROB6PdTq873sAQOOc88YkZhWpG4LQbIxRJ7ztaXSotri0hlsAjDFb64soWVfSf0e4xd+On3/fq/S3vx+GAdCkVKoK9Ok45nw0fOsPzvyGeh3PZbJK9ZmRVOdHAcj5q6sOrck5V2Xj9XrddV3xBVjqPNVxGF++fFnbe8vlst7Qruu43BhylUJmjJmmabfbg6HGemMMoJmmKXR9PZP5HrV+GBIYSlzSbmeM4SKqKgp4OFZFncPhuFwuvfcw4xzYd8s4RRFwzlnfnEjdGoKNU2HmImyt5ZOBd/1GREuBvg8qoALBVz1kBmM4l65pU8nW2lZDUck5V9YSqzrnYsz1ijEzGYipGuJiTtlU1y8iZt5ut33fP3nypO/7F89f3d1vT90nZObheKxjr6FtAGBM0ZGp8nlTiuM4TtPYNJ6ZyRpm7jpX3YR2u93hMBCBcQYAuLC1JCI5c84DABhnK7MJTxPz9RbLaVKOT1yKN00IACQSLVBmroCzxnuPwkUVUCtBzHt/eXmJiJvNRqSgMbW/Qxatpd1uHIZD3WGk8KPHDyr/NKUcQnM8DpeXm3qv+76vy+mcMZeUjTFd16WUhjid6Z+h8XUW2RgDIDmlnBIpEKEl44O11to2OCnucDhsNk1tcU85I9ki2uUSnE2RoaSuCXESVb1cdyEEa2G336YUg3VDnFIud7tvEsOT995/fHFxHKbXN69qBYBhcbvdXm6WBvS434Jt7u7vWdFYB4Rtu3j+4sUQY9u2Oaft7rBuLmzfvXj9mnb3TdMdx6Svb1JSGEpj3cu7ESQ/vrq83h+T3iHAMccmdNvdPjMCWnh23a+WxvpmdfHy9evtdPtiu2/b1rmwXC4NyFWXnzxcT1OakgAX6FvrXJ7GmEbvfQi+bZvGB+/Dzc3NeJwimPvDPqUMSNZaTkUJGx+YGYm8M8ASvO/7HqF1zgXLKmWaxtVyySnfHXaWsO1aTlnJ3h+GOkE4TamOcAhaZY4M03A0qCH4AWMs2SLlHJEghGBwls5wDmLWtD2MkXPOxlkyjgWM9VWyCkoRa50jb6x1hoiGaaqkG1JwzhkwmmECaIwfYjQmWWtFUiklxcJlVlslY9CQJsylWOvRmiJV6VlUsPoUqQKDShFCsUBKhGAEVBFBodpe/uEf/vGrr379cNN99ptf3tzcAhEZDMFvVpv72ztrXYoFgKzxObMx8ujJO4fd/n53b0ScC5tN2G633jeA5ngYDTkEUxuc0zQZYw3ZrBnAGOcB6HgcOyQR6boORL33wJLKtN3vgnUK+OrltbU2OF+bu8x8t91573NiUZxy9iwCeDyOx3E0xtzd75um8S6klJzz+2G8DC0zVyu9V69eVd7veBxASQURjUVUYs5cC7eaNiFZAMiaT1Fk1uhIqahihe8M0TSOAFDnSiv9ynt/1sN68eJFFadDMLvdTkGtscwcY+z7/tmzZ4j48OHDIR5LKcG6SsQ9HkdVHGOqC6+cvA1qscsnCdwa2M5MsboRI2L1opEkCsoqrDKOo8jfqVL/u77w74/BbwIqwOE4LhaL/XFEMAoMQEhUR4NA62yTvDmIkiKqAiiBnoIzYj1VEShFOJcQgiHXdf1xOq5WK2aepqmCKIgohG3bllKGYTwcDsfjsWubvu/H42CcrTyAelNeX18fxwgAisYa3zYtq5RSEpe+hgGEr7/95vMvv0GFs7OeQj0/qHezNguJKHg/DnH2Pxbpug6tuX91751zoa3J5cvXr0qBnEo1HUrHRESci7JwLsIMouf3qqurchpCCIf7HRE1TRP3ic6Qlao9aaa2fX8e4q9fAKDK1pi6NEvJRAgswnx/vxVRY4zzhnBmp1cOkbOOiw7DgIhpipdXG2rbojIO4+3tTXU9qsXbGCfv/WazAYDj8WgQmyaklB5ePXDOvXp1PYxThamJDDODaBynNEXvvbKAzPRjPYl06uwLXmtKVJqFSGGmKRhrDIBoySmX4C2Rdc4tl/3jhw+Px6OQSSnFyG3bVn3N6hNzpiXWdu80jH3fn316mqZ5+PDR8XhEhO12W9uazFyZcSJSH67b21tAU0+4lCJFK5Oj73suqb4LiuScYyxTKobAikhloKWUWDFOA6JBktViwcyHw+HBZtUtmt32rqRp/egKVW6vX/eLdjwcBSEnvj8erW+2h2FzcfXtizsR8cFy5rYNKY6vriOCTC+mvnVd006pGBeC80B4vz86UrQm7auCryBS4lJUM2DJeZ/33jcv7w/OubwbvTPUrdNwvNnHzXITBYfhaIOfmMA0fddPhV+8urk+jIvlGgyJCfvjQSeO1/eE1jnvvX8YDl27aJqOBQCtsX6IkZnHMb66uf7m2Xeb5arv++FwPBwOi8UqsuQiaC0gNs5ba4cxFkmgcLW5uLu7c5YsAktGhZzzculKTleXG0dGtJBpRQookfVZJSuVorvjIFhdaISck8KI4J0xxpbI3iElRSjehxhHgWKMGcfBGONVQ9sZY9q29dVHmoyxM0EAWAsnlgKIIbjq4hnzfpomZ7z3/jiNy66fcnFah/aqCKrkzJV72XWLTMk2iOTycQBDNb21xouAKnLRzFkVjbWIhABgqqgykICAAlogn5m7YEFlGIbd8fDgcllZNf/wv/+Pvv78s3fffffHf/Cj//K/+C/2u3G9vhzHMZf4YPNQRO63B4PmweVjIlqtVs+fP18t1+v1+qtvviaiBw8e/vo3v27atmkaZmnbNsfUNoumCYfDwRnfdQsVMOQMucW6O+4PuWRLbowjkTbORknW+FyEyN7f7x8+fDhlGaa4WK2LgjFuillEyXrvVRFSShUHVqRUODTdkydPd7vdar3+4z/6oz/7sz8bhmGxWBlyx+F17S8qIQoa40QgTdk01DRd13XV3/D6+rYGOREBoBjj/f39YrG4u7vnLAhGQRFQQZl1s16paincNn01D5AqQ2KxpkPOm5TLOMUUs6rebe8ePnyYM7948fzdJ+9Ya6sRXqVuWR8wpuDakhmUSpFSpiY0fddWThAoTWNSjapQ29nCPNspgtKsjqKIb1wofivU1qh5qkrJmNl9DeYQWSkLAFAbe+cAvFgsXGhFhIUreVh/J8Ar1TnpWnbgyTLyzCZDQK2XhijHlFJyxuQY70tpFm2Kseu6SpapdbCqLtrZlHAG1Y0Zx1ERjDHH47EUnlLcrNar1apqExpjgHCYxjpOU0rZ7XaPHj1aLhb7/aGioN47YypnkIwxMWcAaP3cQ1mtVjHGcRxDaEXRu6bv+2EYj7FcbBZ1PEZVq7myMSbGAgBamBwBixb1wR5PrWVS8Maq4jTE4NsKrX/w9IOHDy5/+etfVZx21orxON8ya/M0E57rfptSsQg3NzeXFxf1NaqqhedeT0xTThXQ7bruOAwVI+m6LscUY5xSqVnP8TAu+tXLly/v7u4AIITZkgQRF13ftq2K3t/fI2LmYtFkUS08JfbGJkOlzCAjAggzAhBgitGQqSJocyIGMJtVwG9VwFVh3Vmq9osWqZSiws2iyzk+ffLo8vLSWjuOR1U+Hqfm4rJmnBUoMsZN09T3/Q9+8AOiN2BD5X4CVNPPSETV3/csIs3Mi36lJyf1vu9FpKhWWjgzx8yU8zSM+/tdrXdbH0LwzjlQrsi2ffXq1WKx+OCDD8Zx/M1vfqOK6/VqTClOQ0xl0bellLth13q7WT5CxJub281mU7IsN4+Gafrsy9/4bvnw6pGHw8vt6L2P43HZd4vW51jG43gYYL1cDePxcNit+44IDvs9GfPhR98LqQzDcDiOzKWqf4zjCM4oC3qbR1YE5qKKhXmIySAFQ63vI5ebQ1yEsL58ohCLABRKSEIGjB9L0ZRFVUCjEJHNRhGMoEPTvri/9qM4GwuD902V2xYRBWgXG4NaWEop3aJn1sPhYEKT08QTZFUgo2hExBljneU4Xa57VADlkrKqNk0jOU0pcT6LmTAAorGGaDgMhyEhmcxFBVmMDW0qWZWsIes7H+oIEScBRODM1gQ0Dgz0iw0RMecmdCLCRaaUZPYLg5M+A/nQWoPGmFxknPZxmqwnVWUtuVDTNFl40ffMOabMiqigKCxK1iGa4ZgKFlZEwlOVQ6DKKkioolI9NoBUValybww5QwBCUFUtS07OuXEcHz+5evb57tuvvt6+fn7YD+Cb3f4YQnNxcTmNybgm54rVWJVcMqScAMj64J0fx/HFi1cViU2FnQvWWhHo+1VVBPSucTZwUVDNWZgh5UJoipScc51NjNNEROgMM8eUjDFNs0iFQWZxvd1+DzYUYZotC7nEDIacC03bD8NQcq37FQCXi+XDhw+tsQD01VffXF4+2Fw8PA7f5QIUyPumjsBW+kljbeISp7xa9M45Qw4hg0LfdqxSijCrtbbrOmu8Ide1XYyRT1HkTVQ7df6cdfM0FGIpqf4+53x/f1+5e48ePl6v16eeVpOFpzFV3qYKusbV+i+eRngNmbZt63hh3fprcK2l0vnd8SS1cZ6hmmG602v0DQgsAACi8/4+D2eDnmYoz9phdZOtyDYZWwS40oVgFsitu9u5Fq+nVqfYK/UAf+et698CKIP3vvG+0lynYXx38UHwbb3I0zRZ46sS73GMzGqt1+rtQ5XFT86ZlJL34XgcQ2jbfgE0AmJmOYECBsha41V1mqblcqmqlTHXtq2zdpqmWhtBVX0pWUTAUFGxwds8d3N9EwBNyRMADMPYtl1K+dWr18NxrBmGa2xt06sIEFUraKpar4gKgGgMEhhgZgPYLhaLxcI4W+m+55JOkuScRGqXCgwgzcpuKFK0QB1qrwmWiIBIbVcjovOuaVpjTAihqYO85GrVu9/vj8cjFw4BjbPDMBz2Q1VzrJh3fZftdnu2WkJEbz0zO2uncVTBXLIWOS33ubkPAFo9oIQJAEDticR+zsjgbSaBAgIs2qbKwIFoSmkcj85gmjilxJxLSZxLmiIq3d/fW0vDMDTeI+LhcLjcXFReJ+LseumbcP369ttvv+37xaNHjyo4UYVfAOA4JgJwjohIBbmoUFHVEEKJuXK46hnWh0RENKZxTAeoIq9gbR1pBmtcuLm7Px6Pl5eXn3766Xa7ffn65urBI0Ecx3HY741y4533ru/7L/72s81i+cWX3yFZ1xxubu8iOxD/1bO7XGSxWhtjZCgsJiWIPGoBQZhStNb2/VXr3cVmxSUdjsfb6xtWGcaooiGEpgneB2ApKopgnIWYFJCFEYwUkSKNtwWMkOVcAM39lOLNTnGyxoMxecxTLEkgZsaiiiiijFaRipq5s2UDh00kmhiGKVJKLmqaIpfJG9M2dtEFi5gVOtc8etxbY169fq2qLGBUi4IwgIIjs+zarmuePH788uWL169fG2OJyHt72N+HEBofSi5yUljcHYYQAqDxbauCSTCrkDU+dEPasWjOopBsKahCIETonQHhZd+iKgmu+p4MDIPmkkREBWJOb++MFSoBALbGOfTOEFnrAksy1hKYEIIPLedCzuacuQgiOuescSWnUsRZZ63NwoaMKAAQooI1tXX6dt/ltwg1iMzFWlv1iawliybG6XLZP/vum//d/+Z/nQ+329eRiJbd+te//vXlsvvLv/zLw+EArFcPHgCqiCwWq8Nu75wJoUFAJGtd2N7vloulsR6UFv2qlHL9+lYVQ2iZz12iydlqz+4qsspJQmiqtbu1NvhZ8K/1Yb1eO2OttTmObd9V7lHb9SklRSCiEmOK0Sj4JgDAcrlaLlcxxkpRXC5X1rrDYViuNj60v/r1Z6raNk3NtKr7SK4qa0SXl5fGmDHFIR/r1j+OI5FdLFY1Pnnvq+HjdrutrrqbzQYRc54D5OFwmKbJGLNYLLz3q9WqxrxSyqvXL6ou7Hq9VpntmCAAALx8+bKUslwuLy6upmmog0yI6J3fb4j6jAABAABJREFU3u0AIBZ++PBhnbCyJ2Pjc1Lftm3btsaYGTlHVJFhGOh4FJEmdFVgqAldheBqf7SybWub2dh5mJJOQgfMnKZY57XqfjdNU50W3aw3TdOIyDiOAOSdXywWQHPOYU62rPUMc47WWqsmhFB0VkSqDey6PqdpOs/bWHLeBm9DNV7Uk85DvREVhDDGuPoZT/+qqvVM+r7f7Xa73a5pmmpBWF8AREDknOv7uQE8jqPKLGxEiPW+AEDwbUWqatOUmY+HeVQ9leK8qYZXRN3VFfiT+GBM6cGDB6VIjNFbg4hd1znngm+7Nrdt2/gWDRljNqptaCqokKd5if7iF79g5BlpN2QwAEDAXAerrLV1rPb2fptzRoSu6+IQmXl3f8g5+2DnZ5xFVRlAC1d9id1uN8VojKtKZ865hw8fXl1dSWVgOKcA6/V6sexqcWmtFeHj8WjfuAyRta422uvSAqWzwACdXImqwsY4jjUbqB/QGFMTnb+bC1pXXT6h3qPD4VBKQeWuaZxz6fRVSnFz1yXUfY9zrJdlGsowTCGE+/t99R0pwt41+/08hVUZarUI7vveObtarZqmqdD0OI45paZpmuAuNld2GmvbqJ75OI6LftW0vpRiTwYMcDKlY8l2irlpe2dpuzuklLz36/WaS7IuaCmr1QqUVTXl8vL1zd39rmTz7vsfiEjbL8kvx8yLzdX+MDx/8TJmON7cLhe9CtzfH7xBS5BzztPYhqYL4XA4WIPBW0O4Wi8VgNxxtz/mnOIAnAoAxWneDRGRkOq6Z9bQNl3bQWEgQmP65TLHGHNmKV3n29BP6ZhZQ9szkjFmSklAlZCsdzJ7jIhIpEBkAbFUvUC0iYSRnbPHnCmV1tnDkErZLbr+YrV++ORxdxxT5jHnVFgYrLWLvp3Go+ac44Bc1oslAOyH4f7+vsnHjTVAmLm0FQgSKGmcYnYhIJjIJWVWhSKSdofKgQTVMSWNgojBmeBsSYVUXZKUkjXoyLDklBKBOWf9lVXrnMNKPswZRRGrSj163zrf7PbXzgUiWixWlTJwPIwlTcaYKr7TNE3OzMzeYQhBFVgxJj6XF4ioisxavfNq3ELEuW0oxRrKOasxTdPc3e8Xq/XVxeUi4DC5nKZl13KScQBS2Ww2ARUAdrksFosKphmydYdqmsbOymtqrSdyxnpVVMWm6cZx3G5vfRPmTLOUGvCcaRFM8EFEQOdcvn4hOiQjhUExFRYRJinTlHMBhuMwhRBM5uq/JMjTlMYYjTGss0mfMWaa0jhF73yMuZRdY800HL112/2egZ82rQIO4wSgolqYKzdqFv4tDEAiMAzTMEwA5FwgAkQzDFPdqqZplCLdok8pA8z7SO1Z1kGgyvGpz7+q5pQIkHNRL87YImqtSzmO03A4HHb7HQAYY7bbbe1zG4PMfChle9gBgALpaRA25xxPooyFCwnpSWuJmatWUd910zSN01gPW13CzMnoqdJHq2TuHM6huDCrZk7TtN1uKzK02WxmtheRMleWlzOmDeHu/n5/2BuqwlC+bounTVwEFBFTms7vaythTFVOfdAzoF2bdrVAr33umM/tLWyapjoq1jymxra5QFGVWjLCnJjWGjrGaJxbhlZEzCyKPGs5VYJYijMbX7UWDoHQEpHv6ZwwEZEiHIZj/QjK0kjjVz4Lo2jfL1V5GMfKqw/BxxiPxyNnVtUA0Nim5pc1utfSCRERsKo7TSnWHOjufssAF+v1ZrMR1VJyZVY7F2qcm5XjcuHZ1JKDbxHNlGJ1yEaaveJnkZlTRDwO0zRNzs1iNU3TXFxACMHbBubxYjbGBN/lnJmz834ax/v7nXMu55Lz3Em9vLysy4bLyZR+dlaYA7Dxrhbf5i0ZGWvt5eWlnr7eZioY+8ZebDoOaZwq4C+aKyZRr6oxaL23PrCic04LCxKgENFms6l5wPX19d3dnfVu9qE6ZT+qKsKIQITMxRhzcXGBJ5/NcRyVa5DicRzjOHBKpcwWisBiUFf9wp7MzuvRTt+IXazXx+OxTGW56FLhnI+h7ZnZe18VBpxvpvForf3xH/zh1YOHt3fDzW64u7sL7bYUsS7w/X3dy6qkCzNvh7Hz5r3339/e3WG+C01HAvv9vkzjfrf1zqxWS0Uw1vZNo6olgwLFMYbQygy7IAGKKoiSQUXpu8YiFBAylEoZhqMls95sUvYiUphT4SIMgDlnVmFgVbXknFHylsjGceI0xlKMUSKjSIhGgcg4Y0ws0SgmQWLpvLOhUzDbwxFBCis5F8gClmzUEtaOTh6Pt9evSymLfrE/DETU9b0vGLPe3e+ZuV9i3cgKawWsSpYxZSRLZIRlHEfWUncKIEIkQCyAKKhcgresUlgI8Xg8xmlwzqCSzlO5hEQVl7Oqxs6BGUVL4ZSOAMDM1plSpGu7nHkYJlSIMVqCpvFyEoio2w2SlpJd47QI88ScRVCZFUhEUs7VeZCIAOm8bTlnlbM1RqTEOCuE/Ov/7//nL/7Nv2phfLBZXX/zGafBIBBqmcZtnKoQATPv93tCrDtd1/UAWJ/tuo3W4qxGslqotH1XRezq1maM6fveOVelN+tvGt+qKgGJgCowKyDUJl8qnHMZx/Hh1YNpmoz33XLJCMbPu3DTtS74uv/Cybmh7/v68ATnvfeIKgCRy7vvvxdjDE3b9N14OFRp5VrWiEidLDTGtNQ651Cwb3pm7ru+ejV6F2ra0TW9937R9cYYYwyr1PS5tpS8913Xl5K7tp2myRpTJ6CqJqWIAEIuqQ4gee+Xi2XNyWZbdRHnXN1DvWtEZLFc2pMDa61O6rZeI3E9h3NNiYg5R5ESvFPVEFwlcwIAWVM4G0EFNhZVYYZHRQ+HQ03s9vt9jrFpmmkYRuecc5m5dgdqbtFrP45jmiYCUGFgwymDkSo2qSeVLlWN4zRNoxQ2Dc1ID+g5HNYNdBiGwsUA9q431spsOvnGbrnWMcM4IMy3+LynnzfE4EwpZbc7TClV1yZHs50lADHncnIuUuBSihYtsTAoAgY/+4vUOygiRZiZnQvMmlI5n4lTX3u0kgueFEZLKYg1hxARGOOIgAzq26YFUNWcMxDWz1vLXEWoTIWxZEtU0xAXvCJIbZnpjI3VxaAym3+UnAVn+WtTBb+MBQCV2bOqgiKISGhr0laHm733tf1MCmmcEkD1O3HOpTSdc99SSi5FAcapSpCCKATV+Z9y5jKbm1Wx0nO6z5lTnkTLNAx1AXRd54ONafydAFzjmWM6a5CdM4YszMxTKqvVCshmVhGdDgMitj6kqs1uLTNwTnX/mYmQzubEtR3umsCgxpCc/DPqc1TPdpqmOteLdYJUoRRWhaZphmGou1bTtBUCqdDLeY3BrHqGiGhf394/uLyYxuM4pb5rUprtOw6Hw3K5LKq3t7fr9RqN+Xd/9dfGGGg3L19dL1YrUBiPd0tvpumgIimNOXHf97v97aLrjbMFgEELJ8pqfZBciMhZCsHFGBerPuecEo7jWLJY21SsLLimeq55G1JKVtGqGkSJMUHVQFJRzjmS90jatu3hMJQidYAxc7aEfd8hauIEAMqJWIJBJbVYVq1VVUEFBpHMJQuztabrOkL21qhIEhzGfOAJES0Ucq7rl9ZZIacp5VLGcbxY9u1qNR72wLNh3Iw+jdlaS8aypJSZmYdhquEkM4NSnSpRRWvBEowp6uwTicaQInLMI0+E4owFNG3r+saiFmeh77p5m2ZmgVJKYUWslr2pLkRVrU91DRtELsZoTT4cRimsUiq4MAxD24a2a5AASZxDRMglOm1h1nXTynhEQlEtpRia1fLqvMfclJOECsaSRAaArgmE/MXnv/nir/9yufQbz/v7O4OFmbOIC71Rvrl+XZ89a20tyuUkC8BS7GGWgAg+7Ha76jg2t0VpfgZ09k9HAEYkVanEJYSq5z7zJM9QuaHqPSJd05WY3nu3u93e7Yf9ftgzkEEjoPKWAGI9Wv3m1BPV+/stACgIYR2gpCLZk0Wd0bDKM1dgEbnf3c08F4HTrJQRkcNhLoNkbuydBJXOPEzraspfSqr1U0l5miYyaK09HA/Ouh//+PfrbrharW5u7m5vbyvKeooTUErZbrfG2prQ1Ce/X8xWAYfDoYbbuunUXnKFuImoaiCcW7BdG2oJrif61Yz6FlaedY+XyyWe3I0c4oPLy3pYe3mZl8uZAmYtiC66vm+7uunXwFPnkksphLYuiRmffKsXrqRN4ytmrsy+8aro6n7NDAACGkTNSbShC02l4CKiaKlkbz5F2TPTtSIcOguaGiAUEaNivAsluxDqu/f9kk5uWgIz4RFRZ2C5HPDkiNW2rZstkggAvG/IGjjZPNR2QG0Ltm1rrAUAIXInMeGaQjGranbOOVbvPXLxvjHGKZKIGDJAJKzGO5o1ZosiEKFxllMiZ5UwC5MSUV2WphQppc7nU8yJmVlUAJwjg86QEwYyKABabRsQFVAVRFU0n/MPERmnaGYknvhkFXrqNahIOePDKaXCcxO0DpwDmilmZlFl1DdI8tthWMrsRzdO2RpgnoNWedvy8q0KGFgQkcioQmKecp5iOT34Yuy4XvvCYq01tiqGckrJWsPMNXGvi7OiHdOYqg+1AGBh1XSxWteof0bLa4btnEekSievIgSzgPa0H44JAEShFF4sFpXDlXM25CrAIAhFRWud/U/+5//ntm1RGSW33quU2qEJTWeMUSJV3e12XQiLxeLu9vomwaLr0jRaksY5VO66rpTSLVZ3d3eHw7Ft248++mi3u9fCzPx6OhLAg/UFiljAxppFH3a7e5GiCMb6ac6GfE6iqptVz1wvux6HQbWahUFKqXGeDBCgQW2axpIhguMxxhidbwQwpVREiaBfLdo2THEopcRhFJHlclkSO+cK5lJEGHLRIloEKr4tJQOKRQBRQwgsKtJ3C80HJLKuLQqFBQBUOBhyKIu+QWFEND4o0BBjYQ1U1ut1F5qcc9sFZt7f39fH3xjjgi9ZjHHMDMYyMyMw11k9Pae3JUVnzWbVrft22YXGoQVpggnWxZJDCJXvUkX5AY2IWmvHFEspdfwhnNC84zimMdX9yBqjyk1wqqWk6fJqvVz2iDgMwzhGBBIR8iEV3u6HyJCVIiuSzUVijNbgGSmaeTDGoIx936dpUoXlcr29P4am4RSXHv7VP/+//L//7/+nq6XnOLR9R87HLFxi3ZuqJvPbeHLdvMrJHWyWjjuV3cysCOcnvP6m7lz2LfNg5ao2oqqK5g08VQcxUWGapncePa42QYjINL/v+WhFmIjq+E0tNQjmSSFmbhbtOI4EWK+nMWY8HFeLpWgppXhjz0nunDWrPRfT9awKpzOwNrceTwRUAMgsNQ7lnFGFha2xIlL9eZ48efLkyZM0DtM0VTbvF19/c3d3V49MRJXGhYBaD1Iy/J2vUzpSc5TfHRKqyQdVZyYA4Vx/VH1jXU9I53wFAStzpn7qD56+8+GHH37++ecvXr7wzivLgwcPfvzjH4/j+O/+3b+rn/o4Hj/94aeffvrpz3/+82cvnldIQxhYuar1qarAXIshIpk3O285rRNEVKxWxG+ElJ2xZ1ynsnmnODsP1kWVmQHgbAZQg/cZ8FRVo0LOqqownGKzU9X6MgA5VV+zubonV+/XGeguc1sajHtDqVVVrCUPzCttFo6r/HDAylRq236u4XhWlVLOZ9m1dOqezmsV5pZQXTze2FIKIzQh1JNXZlBqmgYB6iOgylXTQ6QwqIgQem/sKegyiBpjquFjvaf1Qc+ZSylAhJrro+pcUK1yb7aUkk9+BiAzQjBNw36/911fA7Cq1gTFGGNOcm8I8iaUnoeMh6GSmOoBa+e25kznl52/TylVqAwAxnE8Ho/CIKD1FhPRxcXFYRzGcayVbm/ter2epkmZ6yiaVvKsyN39tiL5gsBzXKfHDx7UDIlODgoVf7J2Lrix4paI4zhut9spD6pqqOaH0LZdBfzqb1S1wJsJAlW1U8ws0AVTyWMVaui6joyD2uHPuWka3zSHw6HtFleb/njY+T5AyQIcLARPhNh4+OC9J7/6zd8C8IsXz4nIGLzd3or3y+UyhDAejl3bck6q+uDBg5ub174JrGLVqjAR9X07TSmlXNex9d6SFRARQcDgDJKiai6FQTink0IQiwgxI5L3fuG9gCqLciYVR6iORKAPPmFyxk5pr8zIJAIKhrlIYShYtX4q+tOGxjgXYxxj8iAqIFQKA5z061POuUThtGgb59x+v7cuKEDXdYtgnHOC1PRd48PhuBtjtGQWi0VtvMXxoKpElkCnacwKgqAKdd/AkyNHVaWYkZ/jQMhmtYx8FIVTFWJrhR2agIjG2KrXSmhVVUqJMaaUgCyRHcd4cXGBINa21mhKXEHLKtlfdxY+qcUWrluJQUARBuXa0qhp7xm0m8FK64fDobpp7XY770PbNOTNh0+u/m3XAWrjfSpjyVFFWaDWWKXMlpwi5wVta/e05pjjOE7T5JxTmB94PcFU9ZU1ztWHqpTCXEc862CWqYEc1RgyoEyExpjVagUAm81mirHruvpQRUnn3ZOIKmZorcXZRoaXy2VV+RCRNoSR03q9rlFZVVXkycMHMca2aVJKwVZq2CzRBQBF/byzG1OjeM3lRcQHWz94/SXWNIJm/UJmdsYy57rDVq9lEZndgRDr9OdqtVitFvUtvG8qMoaIx6qrp3NdWA9C1ujJr7eiZPWCu1nId24Ay4lzV0qpGqj1T+TEfJaTLMzcPQXlWSBCVot+t73r2+ajDz6oJldXVxc3N6+Px+PTp08qB8raJRHcXb8GLldXV7PAbz7HNjwDBhUO1RNJh5nhZKMJhCcVr8rG0lJKKUWYK0QhKkXFnvQW5gRFVVSqyNocpxHOn05VDUFVxhaGmnmIzm8jIn9H0BrcCSzRt9IXreNkJyT/HIBVBEhPVhJAc1txnhgmJJk1PkkBazplEWquo7/zRoiqigiIoAJnGVCtGtoKNW8DBYNGdO6RGzRFc82fCEEJha2BOd2ZbSKhilcC4Tx/TTTLTJK1NQDX9xKBugXktzQjjTFkoIJwTeN3w3gOmd65YRjoDKMBAAi9VQfXe1n/IYQwjOMMk5zYrPDb5a+qmjoXkOcFSUTWOxSpCQ2D+qYbb+5evny9XC4Ph8PCm48//ni3vSfCi4uLly9fHo/HiiGhmW2eY8mLRSMiLBJjrFO/Z4i7ynoA4BnqqMx/Y0zXdZuwnBcwVWlPqswD4WnOcmiWgq17js2SDZrDVESk8QER0LaZQtd2qio8FVTnnVrHAQ7jSJIsOS3ZmcahAELXLrbj9e727sc/+v395c1hGA+3r3/y7/374xhvX98+9cGV3E/7HhPu795952Getg/WFx++d2GCv767vyd+8PH3PvvimynvgcrEaIwjaw95PEgCNGBdSklEvcHGWrIWFIBQVXIuUbRt2pgmR6YNYdHSou9jjNvttt6ly+VlLnK/PdjQFBExm2HYj1M0xqBBNd45zIoxc9s2U+RSuF02u/0hl9Q0dBByzrVkiFC4KIElJyKTFEAfTEPWLDuypI01BqIhV2LsFgtgjWO+eX1tjbehAd9MWQ7jMExJRJ33iFhYtObUQACCCt55YwwXQuU0ySCsHLyxkvXV3dh1DVmfIqhiJfoT+hhL3/ddE3xxuY5758ycRcQaEBitM8tl04RsjDGQORfkFELIUyaljABAxnVpHJ1zOeZxSiVnRga0ktOQMqDzbZNEgdVZg8YS56rDwQmc7QCtKLWNU+A8HhDk+m732bO7+ynk2FvXD/vdZrmY0vgQd6t+waxjTP6EExrvnDMgbAxW37G+bzOL916K8c5VSNwYRKnaQoaQwLuSMoGx1vaLTW09WgOIWHJ2oSJFNh0HA165GGumKdm29d4fj6P3XiQzjABtLcJCaEig5DcRCARzLAW5PmjDNEmJdQxrmqa+X44x3cbUtu3hOJZSjjo/ZkSmhlVjqgecSfWw1tQ2mHMujbHE1LZtKUlVCdE5l+onRQTVVCoTGLRkY23OBRFv72IlvIAxx7i3tqkbmSMjIm0wRMpcNsu25osppdC6cRzXq2UphfwM8BaH83YzU6h8yeK9P6MRNYEwAVW1zq7UjKQWAefdp35jjJHCKSUyYCw2rffeXz24qOlUztl5A2AWy857ryrMvD3cNYvQktlsFvVQNYpXqhecCDj16p3xAwA4Z12IKDzv3aznyeA51s7pgnLF2BFMfU0IIaUEhs6Wh3oaPEbEem3rJDEici6VxVbDP56mmVlnAANKBgA9je1VsTNEdM6N07EGJHO6SgDAZ9ep01ufbxMR1XzjHN3rOnzj9jj/zRv57plMd1IwzVMEg+eOb03XSineN6WUOtYvp7myIiIi3hnRgmgQsco0Vv24eovnOhUBkUBUZZ7YqzlQSgVJwEj1XLBUdVEEBAhBVaexNj7rNYFxmlSAoY5mzgZZCL+VPejp++E4nu4O6Gk86fx1RmNq7nIGuuGUoBiCIgAAjx9c3d+93qwWv/d7P/zpT3+6XPpcBrS8Wq/B8NP3H9/f72OZal8mTr817QRVhPwkJ0Pwu1/nk3pLJ+aNjDm99dHgTeY0/wYRiAD/4//Z/7FCbQaxaRpUKCU5M9u5ZOZaZ5A1sysck0U0BJaAgEnLg8sLztFb17attfbXn/0tkF0ul2TcNE2bNjx98uhi2b/47uv1ou2D5Tju9tuPPvro9c3dk/c//Ld/9bPl1QPXLb998eo4TDPrAk1WjrmIIgPGGGvz3xA4IIfgnbUIwuy6PsbIJRFR34auCbUyAwBRLUUElIsWrV13fnV3N02TtXaxWgPMssnGWWNcjGOtbJqmSXlqfZjTcBBnrDUkUvDM1yjMKTfBrfu2segtelKQwmqIyFg75RJ8g4YAzRBTLpKFY4w5Fz2hKzWxqm5WqkrWVBXMwnmzWoMUh7LoukXfonKOk4iQNcpzrdA0jTOm9sZyjl3TGlvry2IMzhUDVCJP56ytTkG1IHDGIiKrxBi7rgtdezgcUkqimEpmRSQXWfZjmkoBNECmdukKJ1W1VHcV8Sd8Bk5URmDhkhrnhuN+v7vVnLSUtrEpxr/6q3/37K//1dz3Bap5VQgh56SqSJpSqqTE/eHgm5BzNoDezyVv27bBmTMWNExT1y0AYEoRwbjgmTmnaRzHq6ur4/FYSloul9662nSskNQ4jl23qF0f55xCKqU0TTcMgzWult21R1C3oVJS27bjONb82qDc399XzCrGeHX1cBzH+vErZnUCMwHmQJXrvjazFJ2tp1EP7o2tvB5rbV3DQgin0RpVdWaeDKmKfbXclBN0yaAIQaSQwoyiGziHiopdEREQVa80RGNQz4JQVcenilTUPw8hlCw1P5jfQiKenCTOIaGef/2viFQIriYcdSzkPIl0briKSPWHsNZW/cu5XnF+bjGeKu/z/aWTh6OeRp4qw6XudPUJqs+OIYcntZBzaVtjXjV3qCgiM7MI4swyq/zYczVfp2IYuHaaqVoWsDjngOc7Ugl0cylmiJmdpXOgIiIEU2OFslSSLQBwSv6k8lhOCNLvXE8RqRr955v7Wy877fTnGAwnpQg8Ea0dGWZWgrNMijGmqlLUYFwRsjOcLjWEwxvCnaqQwulk5qb+OdDMmBDpOZkowoZszW9OEUnxDFWBqKoInitXeKuJW99r/qM33p1a/j5F8XPm9/Zv6qEsErzlSH3m1dWtkotcXl5+/vnnf/AHf/Tll1/e3W1/8PHTx48fV113IlosFgBUZ5qnYRzHMSc+P8tEVDTXfa++ISKC0tu3BuC35VcN6lsf4fyat1JDcz5LRLRvSO3VhItLyVxNJ+a/QYDCJJpZgSwVZi2GjEHyzkuS2+vrHKeLi4vdbrder2tPa38Yiupyuayx8/nz5wiwWCyG3d1q2a/X6/v9sV8sf/Y3vzDWf/vdc9vub+73aFxwLrOKigqIQOEZCipZgjPeBQIRLgBQFW6zgjFmsdwYJG/JGDMeDydACckaFRQEa11hYZZusTTOi0jtupdSvPfBeCLNwlAyEOU4Sk5grbGGUHMuOceCWBkKVctECcVS14Sm9Q7AO7LAcYzGeTJGFUUECEPTFQUZp2EYioqIIpF3rs7bZC6pzCTpOkqbCqsq55TbbFAz6JQSIhIqiKACASkCi5SSS6msmakOddR9nBCstd7beuObZvbBHqcpThMzW+ON9aJaxxhijK4J4bRWak7tfOPbdszFufEw5SmmosXWpaIowghKCiAsWclaBEdEqGCI1CihS1yarr3cfNQ1nlAdkbP0Jz/5yf/t/7D/f/7X/7xt27u7mw8++EBV2zZMkw5xur29TSm9fP0ihNA03gdK8WjJ7fd3q9Wqadrvvvk65/zhhx+uVqv9fl9S3HH+9rvvFKDqVAAYAP6Tf/AnP/nJT372s5++eP58d78FqEYSgGjef//9Fy9efPa3v7q8uKqVmXVY+6kpFRFZr9eg+OLFsxoya386paQgdRMHwg8//LBWP6WU4/FoDHof5u1j7g6YM1rFsxWSYeai4mE2PJhhz5xUte974UzoAMCQMoD3lnMd7J7b5GfUFBGdsYpQC2UVYEDnHTP7YLumrXMgzNw1QUBzZlRtvKfackZwzogUa+16vT6VOG/KOyJCUnPq91sNbxegbwOAb22185f3vkoj+TCTtoioqgn6U6D13gPoGQC31Sj1TMYhwrPi1alYrFesSjpXYSkiQkA+sfOsJWYGESlKRBUSr8s+1Bm5U94MALlM3vuqPnH6UMYYA1VyBYXzjLpLYQCoQzvnHR9QwNA5PtFJ8XH+BmZqkogQam0H5GmqZXfFLf5uFJkTstMvzxnP+YIr4Sluz+oo54yn3oxKyiSiXAeNahQXTaeD14yqtobphLqzqtE374Jv9MXkzBKf48jpPhs3dzTqDFgl/9edBwAqL3OOrCgAoGh/Z9nM4e3tAPZ2YKbfCth/78J7++pxKudjKr2J5TXFjDEWlo8//tgY9N4/ffrOu+++2zRNPWwcpwEMACjLxXrDiyWX346sAEpCRKB06tGcSDD85jPSG2WuE7Lx243q82o531ydibdqEQ0aYy0SYBGYUlJmb3xlsmQVFS0VkZs9X0EVWme7NizbtsSwvbtx1jpr26bZ7Q6E9hiTDaHtOte0Hz167+bmRjhfLBdtt0DhYRyay/bBco3Oi+8++/qbzeWjz776plksp5SreQACIYIox5IUqPIkPXrjrENQJmsMOW8MHo6DtRaUhjgeWZwzOJPdOefsmw4AcpFSxuM0ISL6tgrupDTlnJ2xzpCUrABdcFqSluINZQDN2YUApGQABKsbNBAJQmEJIVjvmuA5F5Xc+947Pw0H65yqNk3rmuB82O0PY8rHYUpcKkBjyFo/i2SVieu+X8FAVkXVyj86DmPwzhkcppRztkSGwForpagqqk7TtM95DnsGl8tl5a9674xyzvVOw/lBVUVjvXUoAmOMdb9IRdA4BFMHCisrIauCsgForKGuJUAoUYAQGY0jb5ltSkm0OIsiagiDN1WEr5oQOO+JMA7jlHJKyaCWkrxzT5++c7fdhq69urx45+nDRw8eHId9zvnhoyeff/6lsbBZrF+9ejXFAbQ8efxouWhVcb83T5++8/Txk82q3+/3jx8/ds6N0/7l198JEKH2ff/w8aPvvn2eUvrH/8k/vrzccIkffvDeg6uL3/zmV7/57Dfr1bpuSe88vnp0dfn1F59fXz9vQ7tcri/WS10tnA3f3H4zDAOnbK3NcWLmNngFUZBvvvt2tVw5Z1S1a/wPfviJMSZO+f333//666/v7u7u7+9TKiml/X7PzN6Hmt5Za50jY0y76G9ubpi5eh3VcY6+CdXjaL1a3N7ePnr06Pvf//7hsKsiSmjtql8YY47HIyqsF0s6UabBUB3hVdDqHWQdjcNhGIaxmeeRiKjv+9vbWyJaLhasUskyIDyOo7dOVaVkV+Wgmfu2n6aJAI21lt7Mmtcu37kEMUiAUEMgn8IkvFXJ1Uf1zJOq4CqcqEYswikhoqMZY7NIZ3tEEQEWBRBmwTczXfXezdJyKRlDxticMxT21iqpMUYqqfhNz9XW0y4xhuBrAaqEldhfUYpSisoc6lAUCBAtOAMwK0xX8QRjTOH5I7yJbYhF3zStRQQQmWcv4TqqMA1jxQMa540hZ6xzruCbrVlPRb85Udj+bgA+5yI1ds47O1WXkTft+fM0rRSpW3ctiCscXUMRvFUp6uk0igCKnvKemR+gsyDJKQrqHAsRK5tKAUBmQeY3bYhTtNbqdVjfiOmtAI/z5MTskvJbSmd6fuu3o+/bsfntwPZW7jIvngrg6wmqHsfxLDVzeXFxf3//8UcfWmvH424axjk1hBOEQzQLsJOrybGc1dHt3LJRMaeLQKhvASHzqb7pJrydK5zvppy4gae3nsc4rQKwCCFCxVgAlQwjiYIqFJkDtWgVg4WOwBnXd403RnLSkj2Z1WZ9c3Oz2lwaYwRz6FpRWD94gGRFyziObRO+/e678XhYLdrVcvGL33x+cXFV47QP/bPXN03Xj1NWhCkmAEBjq6u5CpYTrS6VPI7KzgRr0FpRzbFU5vBhHHLOUhJF6tuGAKxvgKxxNk75OI1VUdBYP0zR1MWn6q1pggvWqRTvbdc0yzDP/Il4a633Jo0TKOeSgbM31LWdDZ65cok1T7HksXXWOde3DkpfkAAgBMcxAUBFWfU0bqsAOXNVgcazqh9DzBzzULGj4IxzDoRVuBAEZ70NRFSYU5opDNZaRYMGvHXWzQZ2xoTgaq+6opoUQoATiZ9ZybgQPEuZW+CILFqR+cJMRMG6kkXqIGMcAY1DXHbeQBtTMcagNQgmMzoUVUNEVeHEeetsSFymaRJmIcqZwZABk0u0rmlDm3MeUtkfRuvc9d21Rfnee484aXCWZVyu2kMMKec/+gd/BKLffP0lQUHWEPrN03e8dzGOT955dHG5rqXmhx++v1ot/vqv/3rKZX+4/0f/6D/8wx///n6/v7hYTtPwb/7Nnz179sx5s9lsLtcr1Zk+M00DIn76ox8CQM55vV5/8tHHX3755dXVVd81L168yEUWi8XNzWtVnaZh03jnHYGkcTCmV9Uppb/94gtVnabp2ctnFxdX5Gzo2iwDMCmhKiqiImblkmXMqWu7B/0jZr69vc05pjwBQC4xjQMrD8e9Stnutpzi9z/6HpIuuqY+orUsaxvvnKv6SjnnStJOiQyqEq5XV3XEMI5TzlFyubu7i2nsum6/WHz33fOPPvrw4cOP9/u9qlIT1pvlL3/5y88//zrG+PDhQ2vt/f39e++99/77747jWKu0U/MVAACJ4aSzVkM7nMUl6qomcw7PFY08jzxW/NlaW0Np13Wl5PPAFTNP09SG9k1/VMUYU4eYc85aWCqppy7ROqbFAoTMRYSJajyQnFl1Tk/Pe5yzhpnRUt93ipAT14oWEVSlFCYFBEVVQjJmxtizlHnTVLAERKDAphKzWYyxijrTL1StMUmEEBXAGlMFFs5jOSVl6xoUNdYCzFPXcAotKAqAhkwlkdGJ3vh2JNYT+wwALCDjGxYSzSc8d+jVaEWkq+dVnYjDE4NJTtYIpyxkxgOqQu8pSPwW8HAOmQBVjfn0vQqdBhErNC1vE+nnFqqeQ1DGN1U+6W9F078TgCvPrvzOv84Hfkse9RyVVfXv9mHr0ax1tQ42xozjWDW9Y4yNnVtRtXFQQdAZ4xFMWt6O9IgoUzmDHKB0vh2z0s48Kv0mdXg7yp4TC3prsP7tT00Kb2iZNON0BFBXflUcRQWsgg8MoMwrb4K3jgyoDsOR41RSBtHVYk1ETdNFhqQ6pvTs+UsG9ZerVzfXj66ulAwa65v+N198DQBDLKnozWEbuiXZJudYRFnRoVSClQvWhdYL5mGIqZqTlFGUmYslEGVrmQsgRc4xTV3TYgjTNGQWYMkszrkiMKaYcqlCjKrKrGmKqMUZstY4hGDBGd82gUCWi5aI7u7ubBO6rhuGQYANiLdkQtf3/XK5ZMDDcUREFgHULjRtsKKFmRaLxe3uCED39/evbm6dD8aYtulU1Qv4thXVw2GoarF1V7LWVstOYRBjaw9P6lOtWvOGmuCZuiaqDLM1jbMA4GauI7OCIwJDVcnEWksEKaWkrIq5lJyZjCuqwpBZq82ZiErOiNo23ntfSppShDf8l3n2zii3lkITjDFTzqja9l2d1mDmFAsII4i3JMbGMstopJSA0Ded9Z5TLpCLErrGtf3j9cNf/PVfTOPRGmAVYV2tuouHnz5/8SrneHd7+/jh1eXF0iIx+NC4lNJuvyWiUpIl45w7TLvvfe+Dx48f/tmf/dl2u/vm2y/+2T/7Z7/4xS+++/q7/94//NOL9fJf/+t/vd/v33n0kJm32y0zf+973/un//Sffvvts6pcUyUJgeWH/+n/8O7uziJU5abbm9fvPHn0/Pnz7e7WB9u27XLRH49HkOCde3VzfXm18d7/h//Rf3DYDznn+/s7RHTOqPoq714fzkW3cM6R4Zvbmy+++NsQQi65a7sKJrMwKy8XPSpsNpv1or+7u9vv90gaQpULAyIqUpqmaUPDzKyiqgYJYVYFsda2/bKSllZ91zRN0/rd9n632z179qxt2217F0Lo25DjCAB1Uv/TTz+9vLz86U9/+uLVK2ugMLx4+ewHP/hB3/f01nxUXXgV0aljMMYY7/15hkROiKW+NYJcjYfPHfQ6QlMp/cbMWo/jONboS4Dezs3RmkmHEBaLRQjhy6+/ijHe3Nzs9/u+7zebDYMOw7DpF5VWWsnqMjNyFQBQtY5dqcIp6WTCebANAKoQ4+F+drAJIRBgKYVOiUVKyXh/3kmNMajAXOr5j+NQQ+y5iy+WxZqaTFQMtv631sHBeUBRlZSSqebQIgZOJrE1Gp429PN+TVTtwWeU+0RKUjiRgOrrhWWmgKuyvqnOlWspSbVuEtFSZYB0jhYoqKrnerqGcCLSt6LjuTxFPb/7DAUbmkfyRERP0OvvlIMAp3oQwJzQa5o9FN7ENgCo21n9o7fD09+ths9ffyfU0SkQnuPwvPaadtYeWbRd13X7/d45RzhDApV3VsnblQFwXvPnDAARWWItM96cjBK+dRoAcAYaAUDLm4QDfrvHf0Y1VN/0s20Wnkf6TgbbWGfcuC4jAiKy6M8z75xLgRQxWFO7O845EXjy5Mnru+12dxhzLkTWhWNM1rtxHD/6+PsvXzwj1fvjsN5cZobj8Tgx+tAep/zt629DvyTrJLEicrW7A8UidJLvYlBQsUACmrgwa2WdAACQ1iwGgawzilQEnHOiqmhyyVy1y5HQUJwmLqDK1mATXGMpGGid9Q4tFs4FhX0IDUHbmL71VovpvLW2aUMIwZAtwtv7fU5TraedNcFZ5yjHtE+xDbMm8DAMy65lwLbrnW9824wxGbIM2jZepRRmKdkS7vfHmvUbC0Q2hAAgKSVCcGTIgKsafcbYqhabU0oJyaKCiGQVLqmUsuhwjJwyODLeO2tN9WPnkhANkvXBC2LJkgrHXIwxxhEaRyAigGCcc9MxxlSICGvFoyAiooWZ26Z3hLUDjCxATEoABKCWhFlLimSNdaRqs/AwDIBoK9M7ZVVVcvshFiDyrfPdg4ePv/nu2x9+8tH9fuu8Lwlub2/v7u42m81isVAtr1+8fPLoEVgZhqFulwYBja2QoHduGkdV/clPfvIv/sW//Juf/fKzX/06WEdEz58/v729/fjj71Vh5FevXl1dXV1eXIjI9u4up2m/3zsb6vNWYnry5EkI4dGjRyJytVm/evXq/rB/8OByu93GODpnLi830zQcj/u+762FEMJ333232Wzef//9F893zrmuW+z3e2NSzbJTzLXsc84N433w4cmTJ5vN5mc/+xlzFi3OOERyxlxdXaECc3bGWGufv/juD37/90spNzc33vsHV1cVn6gUKhIM3gFAylm1WsQ7zslXohZwTpM1eHV1+ejRw08++XiaphD8/f39r3/5q1LKk6fv9Iv2F7/4m88//9w5/+DBA3N3dzwO1sDddv/1N19++OGHzptxTNXpuXLH6tiSgUqERWCRtzDA+jXvGzoP21SG2txORmzb1nufczrv7PXiLJfLy8tLKfOuVysS51z1Yf3+x5/UTOX6+vo4xvv7+6qe9s7Dqx/+8Acich5aC76t05Iz3dq56sZRa77Xr559+eWXY5xK0YuLzWazQdJPPv54OsZaHsEcppiZhXOqO6noOcAz88XFhYrEaaKKHyobYzKXwilmMMYMw1BKubu7rwJky+Vy0fUpT9vt9mK1zjk7M0/t1Syqrj1ENKf4MQePcww28491lkxEQOccBWZSnj2HbSnsvTfWFmaBSgHxtfPtrRMRBbA0k8DnKCcCc5UmqkD0W1WaspwlSt6E/AqinhjmOA9Pz/G7AiRvFa9aPwwjn2Pq2/+dV468dUoKZyIevFXj/k4APl+o039rZXxCuU/MrlrXci71Gu7u74jIIMVpcM5Vm6/6AqnaAmjkZO8Ip+6Aqs4D8MBarWtAqzTQvJgr2P4W9W/WeHiTZMgsVmjPTX1AMOfPaGs7xxhbmFNKADONk4XP1G8CR6dGMnPRQlEiio0xorJBYmYfWoDtmOJhTH6xiDEDmlRkGOP+eLi8enh1dfH61auvnz23TX/RLceU9mM8xmKbDoy9ubtv+0VKJedijBHgyEK2TDGm+QxNlV0xSOiMECZVyUUJWdQ3oRTWAk3TIKgLnoiENcVMRC742lhFRBhjcMEiEDCUbK0LBiwI5GKVSxy9kfWi7fuua9vLRQ80m2Ag4jSlcUyg2oVmPxzJzIl217SWkOM0juMqNCLFGPPB++/e7w5jyne3103bI0KKI6tYNK33Q5xKTirsLDVNqA9MKUWlGEMOUYEJyRK1wQXnjDFISidTtvp0lVIMEhEZ6zMrFjYGbWsBIHMxCG3bQrFTLoUFEBmgcElFWBVUWTV4Zw3iacUAgJvFQTOoeG+99QRWVY0hVOaCoJpziuNARMbatgnWEIIUzkULkiUDqOicq9S+ohJjqstxOg5fP782Krf3h3c//Oi4fbU/DKvV5nZ7FxN3Xdd13XK5bJvmxbdfXV5cLBaL717eXFxcpJTG49A0DRGeOqnmcDh89913gPif/Wf/o3/+//h//fRnf/1P/sk/efXq+v7+/nA4LBaL77559uGHHz568Pidd97p+75SfLt2cTzMTaCmaSbh69cvLy8vc5oePrr64ovd03ef7H6xWy6XzLzb7YLzXdcsFt3ddg8gUmDY70jlz/7szx4/ftz1zcXFRR1cqVlCCIHLLAKcUrIeIUnTBRd8v1wQIDPnkpvQqMj19fVq0adx6vv+8mqzv9+RAY9GOHOZNzVHxpExgIaMa8KckjIH76xzMWdAUBZnXa2mhDmnVEPgn/7kJyml3W737PlzS2SJYowffPDBl19+aQz95Cd/YozZ7/fM8uWXX9arVAMbACAJgNZ25BmFYy6/VazIvCOTMSdy6Kz5ULcRmTWZDeicTOM8wQvGGGuMDXNXlZkTFyIyhKBye3uz3+/H43G1Wg7DMCWO+UAAf/lXf/P+u+9tNpu6dVpj28YfDqm6eRJitXGVE8I0rXpjzNXFZUqp65o6xPn9jz+pPUJvXdd1ksvu/r4q4adTe6/SM4VZVd95552+bz///PNab9QwX10oDrn0fT9N093d3W63u73bAsDNzc1y0dX05T/4h/9+G4Kq7nY70Hk4uI4sw1v4wbzpa3k7GJ+RhnN4Q0QVPIcHANTTv1aUYr/d1ihS/QyWy+UwDMMwVGXT88EBqpQtVRu3M8+uvsXbPd3a8zrHJMLatFLRSjGjquxx7n0iIgGqzj3UOsaNiERcy8e6fowxb1tVvglIZM4/vh2AfycMnzO/Wfr+zbHqzDQDonBp24CIzDMdWGHm0teajWhWnZtb+zJP9uMbtQM1gKYSr+p4UWVaqdBc5ddf0NkhkZRqgVvPjkEVKpGKzwg8EVXtIGa2ddAwl1JvgyBVzTYGVeE6/8fMRWYJOhamQOv1GoU36zWBXr96dTiOd7v7IabCYr1jFSAUFgaYsBymWAT23z5/cLn5+uuvm6axxm/3R+eb0C+nmA/D1C9Xh2EyxpAxKSVjfbtoFaGw2JqkIRmDkpUMLRdrzvF+d1ivFgrgvM8pAZK1DgCs84VFC+/3+3p96yU+Ho+ISKA5TmRM8LReLkmys9iHoDkhSM40HQ+I6Akx+KbpGHQch/ttYuaY0nGKU0wFDKIBpVqtDiNcLBfd0qU0WUsiZLBM04SkwGW9WgLScRxQkBCYc9cGLqlfLVNKClR3Ci0ltF5EjAIQeB8kF5Dibeec45JUYCocC3tfqbkzqyLnrMzemb7v22AApI5dKtA0TZ5MKcUar0gKQKo5z24B3vtxTIu+rUPoOWdjHBRRLeQciqRUsibnnLe2FCECrKMj1sJJLzCNUwjBOYskqiiALCK5QHVIRFAEBCOqhOSDb/rN82+/usd02JtFQEaXBFzoJpmatl2tVsvFwhn7/e9//2K5kFKevdr+9Kc///TTT0Og/X5fpd1ExNkuxeOjh09SnqwxP/7R7/3bP/+3//BP/+Gi6/f7fZri9//oj7/75ttPP/10HMc6Jl9hz4uLi/1+742NMdbxkmEY3nvvvbu7uweXV9vbu7v77Y//4Ed/9Vd/9fjJQ5ac8rTfwdN33hmGYZoma2DucbJ++beff+9733vx6vmTx0+JgJmXy77urVWDIoQQ48DMfd9//vlnx+OxDQ0ArJYr770zZru9LSUgYi7RsZmmaX+/e/r0aS3KOWWLYAw6V+28kBS0ytRUHjWAJaNISlpDr3euaXyMUbIol/GwB0N93//hH/zBl19+aY35/ve/P03Tu+++e319XQvrzz777MMPP/zDP/yDv/mbn/+jf/Q/qIBt7bnWjLtSiuCEOSPiWX0T3pqpqJtL1TQ2b8lJpjjhqQNa82BmPjOTz6ElhNCZrqjUfebu9va7Z89KKajw7/3kT42z1ce+xOnZs2fvvvtuzrlKkchJDpqIa2irUd8YE2Nc9Yvf//SHX3z1zdXVFetsmlRVGlJKwzBUmhURkEoaB3FBmGuOWzXwx3EMwbXtuymlvu+ZGVgEihaOw8gI3tm+uxyOx7ZpDvsqlcPb7b5Ojn755Rf/3k/+lIi8q1pUs/37GaIERGtt4XSG9BF/axgJTyMxylLnu6y1RLZt27p6cymr1WzT+dlnn/3iF7+o3c1aOdSRgUePHs1ZTkp935eT/2BVxqidgnNdW90MK6hgT5ZZc+Mf5ovThG5/PGzvbr/8+jsCMN4YY9aLZdu2KSXnbJ0nBOXqiDBNU865bdvDftYmq3RxY2wdOq/Lhui3ou85J+B5MOwN2F5/430oJ7k3MuCcG4ZD27bKUs3E6lIspdSFByLD4VCv53g89ss1n76apqnIAxFVx9AQgkiqf1sHEY0xluh4PLoQaoYUnK+XcbVa5ZwBDRH5tpk/keKZIj5nrMwAYL0hwJzVikjV1kdEQYJTaU8nIVZEJFQlqiu1MQSGkEhUpxhXy+XFw0d3d3cvr2/GmICsMUbIoAI5cMZay/1yfTweU0p6f5iyJo79KoD1kZVLROPIQmaupSqPbF0gZ6VyML1zoFOMNT91TSCFzMVaT85u7/dN0zgHLEAEhZmZLYsBrZugqT4HAKUkqSJ2nL0xm2XbBt83zoJtvSfJi80yTdFZ6rsGlDKXV69elFJMaOpOIYqlyBhjyszASDYyt973Xe8sjikiuMVidTjsASDGHHO2PqzXazB2t987YwsyChqDJU7eUByO9fRImGNBTjNNk8iSpmlwxjpjCZFLyjkjqiUSgTMdJudch1mXq7W1xhAwC4A6SwimSMmpjPEQurZpmsxCCk1jiWi/31tnCMRYOh6PwVoVGycREQgLEGIRFVFRawyiKXXSkdkB1ceVTqOW+8P93E6z1gVvfJhiZhUBApbCLAigVMdmROB//D/5n+7url89/2bavf6L/9+/er0d3u0eJy4vX9y07UDWWDIpJc2JWFnyxx9/fHt7+xd/8Rd//Md/vFpfpJRAsrX27n7X971yWa1W3337/JNPPnn16tUvf/nL3//RH7148UoEmPXhw8dVR3e32xmjfd9fX99++OFHkuXFixdN0wHAom/v7u5KKU+fPr29vf3kk09+8atfTtP0/vvvf/vtt5vNZr/f1ynki81mGIaHjx+ulusqevfzn//0vffea32YhuHhw4fjGL/99ts63lPDAEupO5qKwGmot0Kp1zfXq37RdR0AHKdxaVrvfdt3r169evLkSXXuc6ftoJriIc46yZVHQ2/l6YhgiEBVpAALKbjqrg3gZxmvcnl5eTgcYsne+9/85jchhNVq9c2XX733ztPL9Waapm++fvbf/pt/8yd/8ie73Y7IOGtZgVHOJci8A56IL+eNEt/qh71d0NT/q2qdSK5xl4hqyVgJ52jxHNpFBE/x5sc//vFisfAh/PrXv3758uUnn3zyvQ8+/OlPf7p+cCUi2+32yZMnFfCvC5KZUdQ6b0ABsAsNADgySO7Jkye3t9tX19fr9UUppWmaP//zP//H/8l/CgCH3T7G2Pf9xcXFTX4dY6xzXwBaUdLazD7ptAQUddYKkgIDinXUGX9zc/P69esvv/zSGPvkyaMHDx4YY66vr+9v70rJX33x5U/+wZ9YR8vl8ubmhsjW5v0p/BhERRAQrXA0KKjM+lAqSohVBAtnlat51lxVQnDjGIdhaNvWGhOnqeT88UcfWWN2+3014SilPH78+Pnz5/VHAHjy+PHV1VUtTurtIKLaJqh89XPEPat11mZHndq6vFpNU9rtdqFtukW/3+8FgAwwc0wc441zNsby/e9/7+OPPz4ej30THj58WJ+Xw3C01j64gu12Wz977eU7N8fgOqKG+KbEP6+rEEJFxetpvFU0z05EIYRc4vb2ru/b/f2uaf1HH39YSiGFtm1vbm5qWuN9U7OTmiwu+vZwOByPAxh68eJF3/d9349jrCla3/eLRbPb7Q6HQ829mNnOwt2KiKhUKxlmvru7Symh8xV7aJrGONt1HSJub+4QMaVEgM45SzSOY3De1rQUQWohj6dO+xnjBkRCJT3RshGKFmZ+fXvLXEghFkbEY0zWeSZQQFZlERbNqjEm1JhyqaDN3bMXNdXN+4MIsGop0nQ2M1et0SJs50rf1HdHxBPjDlJKamdu/Xq1aNp+0nGMuc4DBHKqmEtSVbWWiNbrtbW2pJymOhBirKHFeiklWTI5xaGkvgl+4S164+zVckmAVYk0YMOsKSX04XA4HA6HomKtd8ELKacCxgjrmBIAQLBtsIBGgJhVAIxzvmm56HEaEQ0iOUfA6N2sgVyTuKZp6u7JLE2oXcmScySinKJtSUWmaTDGiIhz1QPuDTJDaEGLMBRhSUIIROCMMisjGktd1yVQQsvMxlCakubcdW3b+P1+j6ghNJwSgqSUpHAVR2RmyUU4AwCRZ1EFqRKhtrD3XgFRtWrJrlYrYcg5V9KLYTHkVovlOKVJM3AGBiVFrVzZHJr+yQer3/vRjxsjP/j0R//Vf/m/V9ORKZv11f1ue3f92oK+8847bE06zfP86Z/+6b/4l//yF7/85e/93u9VJkVNRUuo4+CNtfbF81f/6D/6j6+vr7/88ssXL1788pe//OCDD7744quuWzx79my/3xtjFouFqiIaLfnzzz+vqB3orFMYQtjtdhWpa5rQNGG3u6/P/G63++677548ecLMJeXHjx5d39w0TbPbHf/qr/7qH/yDf/D69etPPvnBe+89/dnPfhZTfPrO0/P+NcWpvu+5LVol8d59+u729hZRS5rz9/r658+/++STj/q+L0UMYjnZPNerV5/NorM41EyDAEWsm7KiaEV9VLUywmrIKTGt+q5x/me/+ZuHDx/e3t72/f+frD8PujS97sOwc57t3e69395f7zM93bNggAEwWAiABEGCCimxJEp2vMixK5YopZSUYlcllsqKrZJk2XEsy4pLSZUX0TG1MImqYsmyVNFGiqJEckRix2AGs/bM9L59293e5dnOyR/n3jtNpwuFajS+5d77vu9zzvmd39JcunRpMplcu3at7/v9/f1PvHhjEyyIYpWgkPlj/5/Vqbdm9f/PavBmankKQlxtTAR72Hhu13VdGNut3/jTCCSt/SLEFmZ/f/+VV14Rd/p33nnn1q1bL3/ixcPDw8VisbW1tbOz471HYrHWSZwE5wBQ0p4qpQpXaOuuX78+nc9lnN2a7HRD/81vfvNHfuRHjNJt2+acu3Yhu+cuxJiiJKLKh7ypRmVZhn5wzlmnYwRksNpkqxpV6YNzo6oGgO9973tO61deeeXFGze01qenp6cnRyenR9evPWetXS7nyZPRGpROgEmt+jP5LfKxp3U+Ljylqlp9RHll8iVoc2Fs1rFyK44brOMlLly4IGU1xtj1/Te/+c3lsvsDf+DnFOLp6anAgU3TaMAnT55YoxCxLKxzheDtaq0lw/WyQ2utDQIqWb2nFJmzUqpurEjmtF7vEQiyT6vLl1OkLBsQ+WkaFWdSqMuiANlBrG9Uuc/Lsswp4dp6Re72VdnTWoo05QzrTS0AaLMKM62rou9p9/LFGzduANKFc4eSPSxpZm+9+UPhQu/t7XVdt1wuQa1SomXn8uTx8enp6cnJydnZmYzO1tq+byeT58RK+VOf+pS8i3GzMs5LYWXskxK1bTs/m7Zte/vRI+/9sgsMUJV6PB7v7GxNtreqohyPx5yJmSej2nu/8pOHtYIY4Gk6OQAAZCLMxJqBkUkppQjQGa31sm05p6qqZl2HiOhcyJlQZabMlIkBlUGVNVpb+0zKFEUzav2pc04XtehwtLU5h8yMiEVhq6pIKXHOMUagpHUJiCH4vHayzTkDOFlMDz4yEaOKOdFAAICVdgZyZoUf55Uigw/DMAx1WRldAnFKgzPWWu1sURVWI3T9wJmM1U+OTmDtnSu22M45ZDaF260PAYAAfMx5iIGHKDRWijFGyg5V6ZxTPpaj8WKxoMTKAWqTQ2TOyujFvE0pNQ32fS/eQ2VZaq39MMijopSK0UvkiDR0dVXJKbZiaWnNzEYBIoaUvPeSqYmIOXHmpBQa0WkSE4UKnCmMc6XMr6OqQsS+90gEzJWYDsboClNXdUopYjTatdFv8p1WbThCzoygmIgyZ1oNBwoAFFZFk1LKwIgqxNjOF6htUZWoQK/sZDOSYpU5MxNqo4d2mM4WFunisy997X/x+37jn/7jl65fsdZeuXTxt3/rN15//fuL2fTSlat1XS/73pkMiF/72tfefPPNR48e7e3tyQQveCYqbk178eLlDz+8KU/FCy+8MBqN5vP5ycnZpUuXJHweEeUzl8t68crV0Wgkx3oMQ0ppGIJQvYbgx+PxdHrmvb906dLNmzfruulQ+RAB4Lnnnnv//fc/+OCDvb298WikEO/dvXflypWjoyMieOaZZ15+6YVbd+4cHR0ppeq6lMJARLdv3+66rnAVAIxGo4ODAxlBiGDoeudcyEk82M+GRdu2KwcP4zYFTK0VX8JfXc2jiDEFoszM1hhEprxyrvDeW2O4KJTWgruuITs3Ho9ffvnl09NT55wc1vKPX/7yl+/cuSMvQzTliKiURlQfc2gRGZ8+Kf7nXgpSdNUqTxCkgWbmruu2trbEj0JAOQGrN3i1UopwRSKVLenOzs4Pf/jD6XR6/cYNa+3p6emP/diPFc588MEHr7/5zmc+9dKP/uiPLpdLih/LjnPOYroM6/iBoqi7rtvZ2dnfP/fhhx9q42Kia9euffjhh/wN/vKXvxxCaNu2qgsgDn2QUU/2eIIGS7WTkahbiC2wE6mr1poYDs/tn56eItDVK8+ORqMQwmw2K4riww8//OjDm6+88krXdYhsrd7b2zs9OuUVWweRNCJqpeXMkf3OmuK04g6vuVqIoAlpha4rZYyRNYfgyaHvbFkYo4zROztbfd8+ePCgLMvdna3PfuaVl19++fr16ycnJ3fuWK21VXraLjNiVRWCptR1rbX13stTL74Oab2BFlbXCgnHbIxZLBYP799DbTLFS+d3QZnd3V25B+bz+ePHj4lo3FTI2YBaLpej0QQAimK1dNjd3ZXsIGlJ09qsO68jn2HNJ+d1DJHIqz4OSVznR8WUEHHUNMYo7/2NGzcO9vZGo7pt2ydPHu/v7XXtcj6fh+iJM635U0QkhX3ZtQCqaRrr9DNXLhVFQSBJVk40+s65x48fv/vuO5cuXZJWFYC3t7eZuVu2Mpoz8+H+Qbvf3r9/3wM8ePBgMlKuLJbLJQCVZbk1nly5cmV3d9cJJhyiRqW1Pjs7M5unR/xJmT+GmwgTIigEZDYaxRw1AQIqUIYREmJmlt6kWyyMMegMh5xyRATritIY4kCAQ4hxsWRtAmEavNIGFDMqAoyZwjAIMRKQZGEg4z2teJWAa28BRJQ4467rQgiFc0VREVFKIcuUpxSgZmZUqus6o1XpitJZq3VRuLqudc5aa+/7EKLWGjL13VJrHYe+KIpRU7myNIguk7HaOSeq32Hws+Vi2fY+csqUMnY+EpHWaK2JDH3nrTbOuZBR2SqSPz6ZxpycLbXWKcSyGeWcQ0qRmJUW+txisSiLQk6KlJLsWdXKp9CY9cSQMivIMQvrxCmlKOXoQ4hZno2yLClnokREmZkgccxx8Nb2TVlsmLTGmK1JDYgnJydN01hj5vN5WdYCS0gfYBSC0toozgYAtLNGWYAUYyZgrVBJ9A1LejmGnJRWTmsAzERK5UQxDAhKA5IGIASiDBmYgJk7IudK4wrKdLyIn/riV999/4Nbd+9cv3zuwe33T0+OKq2Gbvnd73776rPPXX32GqS4bOdlWb7w4o233nrrbD6z1s6Xi7ZtZ7MZcSrL8lMvf/Ls7Ozy5ctE9MO337py5cqnPv2K74f9/XNd1z1+/LgoitPT0wsXLogcsGmqqrowDMPp6emkueB9770fj8chDru7u+fOnXvrrbfefvstY8yNG8/fvXv3pZdeeu+9944ePXba5BBlCheEajpbvv697+/u7t67d2dra0tA1HFTGeeGIWitndGTyeT47DQnVqWSPkDOKWNMWbpNsCghZOCqqubLRVlXztgVQmiNEjsLjcaY1bMBkFbKn4+nBBaT5Zydc1qpTRbh2XQqvyKEUBZ1TlxVlbwSWV+Nx2NJv9jwj1JK1joi2hg38VPaD9HG4FMN+wYtZGSDeqWW24ggEXNKwzCI/1/OWWs0RsWYMwiJBVEhrsUbWuu2bcVEbzQaOWt3d3e1UuPRaD6fHh4efnU8FhwbEUejUdd1Uim9j3ptU2WMkV2mtZYyXL9+/ebNDynGo6Pjum6uX7/xL/7Fv0gpfelLX9Ja5xAF/nPWyvqTnpJaSa8mUqW8dsPWWscYgSn6kEKsy+r46PFiPt3a2grIs+npfHb26U9/+lOfevnb3/72d77znZ/8yZ9ExXVdSzgdPrXLXDFvU2bFIj2RNB6tNRCpFcUJeL3LWU3GzAiAGwpuJlRKAxpt9vb25vO5tbbv++eff/7w8BDW/qBInCgxc991xpiqrgFgczPIGSt1UcUoOaSZYghYFEVZlkxhPC6NxseouqG/evnKZHvrzp0777/7zpd+5MtXrlwxVnnvnzx5MplMmJn6pI0urSMiXsPI0nDIilApGIahqcuqqojI+7i5zTbQiGwPRd0nAL78X5sVtVKq65bj8fj6tWshDABwenqCAJcuXuz7vp0vnDY7k626rlNeLbalo5qMximlrlvy+lN1WiUigJUkvajKnZ2d2TK8/vrrh4eHSinxzV3nqJJzbhgG62xVVYvFIvkwaUZ98CEEojyfz7uukxH/ow9vXrhw4YXrN05Oz7z3vu8fPnxoFEtPTQwIxLwilYFi0sbUReGshhQRSDF432cuQwrK2BRzt2zLsnQaF8seFTID5LzO7YKcIqXMhr33AEpk7IiIWpPcB5mElLE6pVly6LAsXSIIISTKstMmzgq0XLyYMyIalPj6VaapdEmIqEASAxMhWG3Go0Zr5Jy1RquNM1rmg5ydMcbYIkIcMmNOvU8Hkx025dF0GcNQ17W1Nk8XyilmjomCvCCCQBwzm7IUkCByVpmwKAH14ANrY21RuXJIlCJppVBZIJrNl2VZDj4qbYchWKsTAxq7WK5SaySwlEGhMshytmIIsRt6rZXANVprBTmGEGJSSjmrMpH3EbHLOStkrRAQiBNQdkYJX7EodEppvpg6bba2xkVRbDV14lyVRQxOKWjbRVnWWmvvY1EqoVmylqdbiYeFFAOttTWGOSPoVdw4agCM0YcQALEoCgMcfGImAIWKNSEjI4DSyAxkrE9RpqkcKVH8PT/3L/+D/+FvnE7P9na2amtDjJcuXKiWi3sP7n9w9+4nrj1z6dKltm211s8+99yjR4+GoTdGOWf2zu3Nzs6kndJav/baazdu3Lh//+6VK5e01vWoOZ2e5EgPHjwYjUayADs8PEwp3L59+/Lly0RpZ2fr5MlJWZbOlUKyODk52dvbG4/HZVkNw/DgwYPHjx8LeHXroztdO1y8eHE2m81Oz1JKdV3vbI+n04WZz8uyfOON1wXAF7qfVEEJ6IQMCqDvezGVlNqQmYnAGMMIQx+kBxLcWFy08npEcM5BTpt6kIlwbUFgrQMIee2DwfjxFkmOucVikVMa7e7KKTabzYwxR0dHeh0TJEW6LEvBFRAxxrRxrN0wYDeFdoM2g8L/GWjGzAi4OgEU4jrhwBijlZKst7IsAShDVgBa6wwJgHLOIgbhlfUEKwXOmStXLt29e3dnZwuRnTM5x8lkMh6PAUBWRdKaoBwr2iImvY5GlpPBey8Zf3t7B5//whe++e1vO+fuPXxwcP7wxZc/8a3vvW6M+eIXPpeU6tuFKwsAZW2Rc6a4kuLgWnewacdzYq2MnLzIrICcUQDw5lvvnJ2dPf/88ydnpx999NGP//iPv/rqZ27fvv3w4UPK8dXPfaYoCi4gxZhWmn4V15+nrJlQsdZGMSsAkn9cp3NK25U5y3XPOY9GI2mbirJcdQMAgISKrca6LufzOTPfvXubKF27dg2ANHKMoSiKybghyWsxRjDtTTCaICXSKsn9JjGs1trRaOQUDYMvjN3dnsSjWG2V1567frC3v7O1PT07cVbv7+9/+9vfJqIvffFHog9D7OUqNE0jVt6uqgAgpTAeN/JbUkqj0aiqqvl8PgxhpQdZ/8GnAGd5GRJQLbVD8Inp9JSZL148X5alc6Zt29OTk729vZSCVTga1THGqioQWYNKOWVKqMAVNictG9x5mt+5c0u8zE7OzgQza5rm/MVLAGA03L794Hvf+96NGzd2drdms9loNNro3Y+OTqYn7/d9f/PmzdHWNhGN66Y5tx9SUkqdTs8ePHgw9C0AfHTzg262uHDhggI+evyYczbMvEq5WjWxGQAUAyEarYxGrQBQWa2BcmAwxiXKtrCJMqsMWsVExIiAMYWcWSlllBbwhFIk0DGTtZoBu77X2kp0cY6JONWF0MRTVTrhjyyXUSnFClNmYVNLoy3NrOxpBIGBNalP4NmUEnlvZHcCRExFMzLGRN/H6KuiTECLWR99kkuutSZG51wmlXNWpnzw6DgmSZUocu+563POKQ9lWRauIlBD8D5k1ka7sqpHROSHLnRBMxJjjNEPXUQdQjDaJSZUOhEOoZc+l7xHpZihH4bBY9sNSqlh2RZFKgqLiMY4oRoKxdEV1RA8rRTcCrRGY2RlqBUqZQBUTGlNRQFnbeksGUBApXVZFlVV5RByZmOM00Yp8N6nGIqiSD5GPzRllZgEDkJxIVyP2oiaUecMwBxjRK2tMYLJABDlmDPEGFsfAEKWbFQn03mKyRvtCBJlzpSBUIuLFiKWRaVN1/uuGxhdn8NksvVv/Jv/9t/66/91Pap/4se/+v3Xv/3d19/YP7/33I3rD54c3br14aNHD55//vlF145Go8PDwzt37qzwwK4TSHM6nd69d6+p68F3oPCDDz6QNstat7+/pTW+8857BwcHw9AtFrOmaYahQ2SJa5RD1jl3dDTd2dmKIZ+cnOzs7Fy6dOn09HQ6ncpwoNDs7e0dHR1duHjovf/kJz/54MGDhw8fOufqqhLcEjMOfmDm3d3t5bLrhx4AjF6RtwUYn81mT46elMWKJJljROT5YgkAV5+5vLW1dfrkgV4nu2UmTtx13Wg0Go0mgr/xakxcMWM/PrsRtTagV2wmeVikr9/Z2dFKzedzGZTlJN3ge3qdKjiZTIqikMwlWG9k17ffZq37O4qxQMz81B/YCPTXciP5eon/kh9YFFb+UlUVDaung9e8E6k3EuC6t7f34MEDmTO2t7dlRS1cIV7nUXrvrXGrTeE642QzBCuFMUZUajabPffc9Q8++mjZDQbg5vsffv7zn3/y5Mlvfes7TdO8+tlPD8OQokdAay1R2Qcv5768cQEqJFY1xmirqqqavvfk+zD4xWy+tbO9t7OVUtrb29vd3Z1Op9evXxM+zr/+r/0rzNz3fdM0WX+cNMXMRmve9C6K4akwBg3AG1tppTard6QMoFJe67+ZmYjXciah7E4mkwPvj4+Pm6Y5Ozs7d+6cQLhPALTWCrDzXtIzFUNhrLxTISdLuMjT7ky0NvVIKU3G1dD3nGkyGi8Wi6KoNIIz9vOvfu7Rk8cPHjxwznXLtmmaFKJGJZqfvLYBb9vWdz0hVNWq3ZT/FjiwbVvnyg0bXPqepyfdDf9UBhIZXWKM8tnu7+6mlJSCGFYm/01ZDcOwvb1dVRUCLJfLlHkYBqSVWXSI3hpnjHny5EkIoa7rK1eeeeWVV7S14mZz5/a9lINzxvfpt7/1+ptvvvmFL37uEy+8GGOst2rJ8K2qqq+rlNKlS5euPHttsVj88IdvKA0vvvjieGvr0aNHy3a+WCxK687Ozm7evHn+3AGl3LbtuYMDw8wKIANLiPd6IAYAoJgGHDyQojyuq7qsFMLJEJnZe/AxiNXU4NvJZEJESq0oQpQp5yyhPcMwjEaj3ofed1pbRFgul3VRGmcpg1K667qcY1OXipXPcbFoEdGWhXWlVlo0q8aYwpXL5VK2R3ISmfXBIX1QCIFzcsYUhVXIdeE4UwgBmOuyquuacwzEEuYaQhh8PDs7ayZbZVn6lHPOwQdmsEahNplA5ApVpf0QfUjMSAzaWutqtb7wTOiKAjguFougVeFM1CAZTjHlnLNNmRmNMdbZtm1HTRVyGk8mOUgCEmVgn6IUJ6tWUWJFYeVNKeOMK8VSIPjYd35kdDVqELHt+hgTwirlaTxuEEABK6Ws1kahmDNLCLbEyhaFs0b3fQ9ARqmzs+l4a6KMbZomZbG2ASZK0afMShmtgDXQWvywIUcg5lV0KBODkgds08zKUBV8yjmHFHNmUKi0M2AUqoUfGFQfsilLZHBU+DD0y/bSpUsPP3pru9Ff+NyrH92994P3PjxaLG+89EmszPvvfbBcLj/7+c/lnPuhE4eyYRi6rvvEiy8eHz8Zgr965cq9+3djjHUDd+7cKorq6OgoZ/785z//wksvPnnyJKUwmUz6vt/e3k4pnJycXLx0/vT09NHD0+7sVJy033///fPnz4stszgqHB4e9n0PrIqi2N3dXSwWT548eemll6bTaYzx4sWLi8UitL2gTFeuXLGFm8/nwrNrmmq5XO7t7XkfnXNC7rh48WJRFCIKmM/nfuiF07C/t3v50tWuXxIwI4QQhiFIUXn08OF4PH7uuVHOmZhlZMmZQoqwtkJ7ilKLm/lPdslyxkk9G4awv78vZ5MAzqJd0Vo/fvx4e3t7a2tLjJMkoELW6puDGP///Pak1D2t0OS1maK00ZviTESSx9V1HaLMQMkUpbYGckYmXt1+q1wmaZGl7ZYfm1KqqoqZZ7PZzs7OaDSaTqfDMEiwptBE3NrHSrbCzrnge+ecMS74oaqqz33uc//gH/3y1tbWYrG4c+fOc889V7ninXfe6drFl770pen0lOIqHVl0Xxsa1DAM8ihJHVJKyRMao9/sC5977rm+750z165du3jxvKDi1555dr6YCgYzm00bN96UDfnhTCRvdkOsw3XWsgyj8mcD+CsERC1VRzsrC3tev2VmXiwWe3t7MlO2bTsajW7dunXjxg2JJG/bVri4O5OtlFJM3jmHxJugaLlecgsppUKMmFbmi2272B9VTVmllIBRVNQP7t37zve+NxpNrl27dv/uPY3q2rVrzzzzzGg0SinMz5Za67IsY4xN0+zu7soDIhc0xlgUhaSNLZdLpdQwdNIUulV+FACAczalZIzSWux70VrtnLXWzGaLxWIxDIMsoeUTEMvC2exMoJ3lchlDCCGUZRnTx15XoJVcSkFTfv/v//1f+cpXzp8/D6AIQHQ0t+88+Oijj77/+ncfP368mE1n8+E3fuNbR48ev/DCCy+99NKobojo2rVrL7zwwgfvvX/37t1rV5958PiREEpu377dNE1mjilSTKTNpQsXrVZVUbYp7+7sHBwcmLTymGZAUggEjESJAQETqBTIamPRdANQjoWtIB1PxuP5fK4BOcWtrS2L0M87ZXSKVBRFYkqZEZEUaq0d2K71hGBsRcDt4LPWy5zkIx4AjLao1LT1ReGGCDyeEOMQ48g4VEYI60opSt6VDWokZCFnRUTnjEadYzJGjavSGW0UAGUEziFoZGK02lhbKGUIFGpcDClnChn6lJNzLeeYc0IixW7cFMY6awgVEIMpDClSNjNrtKiwqpxzLoQhxR45x+XCaL29PenbpGyxd+7cfLaMjKZuFsslMDbNOKUUfGeZCjA5x5ztZDL2XR+TN8bEFLmsumHI0ZdGVwoRkkqhMJUJASHuOtNgQ0qljJCVtYppGIYBgLRC1hSjt1rvTqqm1t57q5TRYK3RqIZhsKYgDv0w5JwROYQwDISIOUHZVIXzoQ+jUUnAKYWcOcaorVVsrZZ81lXEqdTRyBAATc7ylA5D8N2QgHPmqmoiOd+CUpAzxzi4QgESQzRW5cQ5qhyoquot8MY4LnXMkZisov2t5ps//PDJyfHe4fknDz8aVdXlK8/t7F3+9nd/cPO7bxW1iQTg8wc3b1+9elUrq5RPKS0Wi4vnzx8fH0uy2Ggy3u32bt+6e+NFe+7cOa3M2Zn66KMPco6f/eynCfg73/3O17/+9flirq158ODB4Xz2zLVnlbYxJR9SPJsdPXmytTWeLpbLfji80B5euNL7fDpdvvvBLUT+9Kc/jVYdXLloh35vPHlw964ryhhjCN4o9oPf2ikvH4z80NmKR7tb87FWykyn2isdQz8/O8uRLh1sfeGTVy5dODx6/KSqy1u3bmljex/v3r3//AvPae5yv3wyXVTj7ciq7fzQ9Q/u3R9Nxo+PpuXkyIews7MDyJwzcsaYNaAqVNd7ay1l1oVJkIeQUTtmcHXTdp1Rxli7WC4BqSqLi/W5pmnOZtNbt24dHz2+dOkSgmKmD96/eXI6/YmvffXg4ODo5Ng5F4I3Rnufnjb3yWtXHGGQrWqDQsqZAVCplKKc40QExBtODQCIZD+lNJ2tsO5l24szhlLaaBNCkCj4tm3lOJbebmONycxIWJiinbda68IUiAi0osxIwZZKJuNvjFG5YkgpY9DGLBbzw4ODz37q5Td++GZVVTffe/tnf/Zny7L49V//9Vm3ZGtv3Ljh0zL3JANXirEsaxFxySyhFChN/bAYjQutdT02Q9C9H1xZOOekP3DGzKdTY4xChZmGritMQZEKU0AGnxMY7buUKDvn8nrZnHNGNEohE2YiRNZaG60TRWTFGUjEZhtBtsUQs83KOacJvPfMWNd1yCmm2A2pasYXDy++/c4PR3WdmH3fj+qaQKG2faS6GbVhoZz1fjAFFcRorAPouq4wq0Ezh6ir0hrD5PRKRh+GLmxv7xwdHctr1qh2tvcmk926GQG6R0eze0ev//wf+kMHh/unXaurEhctZ86Q+74tS7e7u5tS6PueIuWcq6piUn5IzlbaxK7rSldQJgTRo6G0QTlzjLmuC3nvQuli5tlssZyfMtH5c/tGgXPG+348HrfBC6dVtstNXS7nCwTIMWhEpFg4ExMFH4y2Zd1EPv3q137qp3/6dw/en0w7UWQxc1VWn33lxVdevvG1H/viD9948+233757+9a9e/fu374zLJeHe3vb1+rCqtlylhapjYsLzxxOJubChRcvXdg9nc0fPHyUGZdde3wyizHqopy13fZkFIGyop39naKxxmnDkFOKRFkppQ0aY9PaadQqazQqgkzUBx9j3N7b77qOlaaUlNaLZZdSqkeNQtNxF7K4oX0cpm1soZRi4JTSJjR78wWrDjpn4X2EfkhJDA5hOp2iWu13mRkBcs5MDCB+quuETs6e+hwVlk4VWitNTCAcfYpAzOp3SMesNcYYRUa47JkppZU7PIMCrTkTagaJ7FDKGZVSohhSouQDlWVKIeWAyFVVde1CvB1SSidPjoioy+ycMxqV0jnEoe8BhUZYylLq6OjY+2E8HmvUve+S5kzkSCulKAMhjOpRU1eLxSLENhJnAuVcJtUOngFqu9qLGGOMs9ZaY5Qry5iSc04x+OBTUqUrnHPKmMF3a9wYcvAirpdpVfZGPkoSOIozbUophGQLV1UVA4JWwAq1EgvrYRis09Jrh37w3itn5VymHCVdJIQh58TAZekmk0lOTAQpkVZWa727c36xWIg7twKuS9fU7id+6nfNjh/MTx+asjk+PRuNRt7Hz7766dt37t+5/9G5g5W2suu6xWKBa3dDWSheunQBAHZ2dvb396uiPJud3r51ZzKZHB8fX7p0qe/71157TQ7xBw8e7OzsPHnyZD6fa41PnjwZj8d1XT9+/FiopOPxGBElm+HVV1996623fu3Xfk1Kwg9+8INXPvsZIhptbR+dnjSjsbbGLxch58P9/X5oZROplBqNRlrrMtcppaIsp7Nea13XdfTdMAx7e3sxRgYaj8fXrl3ru6GoaqXM3bt3XVVZU8xm87PR2e72zr2PbrdtN6oba+3tu3e60G1tb9+/f//ihfOTZuS7FlIO/WDKSlnjbNE0zcaAUIbstluWZUkpHh0dIeJ40gCxLYrlcqkAx83ozr27u7u7W1tbb7zxhtb65U+8+Gu//puXzp+7dOXycrk8PDyUqVqe07quhUVFRMJIovUf/VRi0mYFqwDRGPWUnGYzTaq1xwA/leIgNySLpaVSe3t7MiaKt6usnIZhcNptdqIbaHQzl2+mbfn5Ml/KxyLSGma+cePGvXv3Fu1Sa/2tb33r5ZdfvnjxIhF99NFHi8Xiky++oLVuF8u6ro/bdj2MgnywooATAlFZls6W1g4y1h8dHW1vb2uthQVdlqW4ZQl5QrI02rYFZaRObwIZNyIIfspDGJ6y2oa1Z4Uwg9arh48tseRfUkreezRaCNJWNefPn5/OTh89ejQajU5OTg4ODjaAh4yewmKDNbs4rmN95QGXIRsRtbaILAuFlHPX91rZkEMIwRbu5oe3njx58rWfePnuvQcEdG5//8nx0a//5j9/8aUXvvKVL00fHQmyLVvCtWxJCOqFUgqUyjkLSx8AUo7EVLqC1pGIT38gcoYLmYCZBXggIh+jK0ullHizyJd575fLpYQPSjcm57z0cnKA+5j6vt8ajV999dUQgsDv8mnUVRVjPDtrtdZbW1tf/epXX3nllZvvvfe973337t27tz+69Wu/9mtN8/sODvbk142bUd/30/nsN1/7rSGG3b2D+XyeCLZ3905Pp9vb248fP1YKBt9t37m7s71VWNt3XiFHg1AYUxhtECywZjLAdhUZBohIQJGij0MnCXOJ6macMoPSDIoYU6Q++EgZYCVrE/hF2F/ylKYc8lOWh4iY1usi3gSq6JXtNSLKalNuPmYGhbQ2WIc1C1FrXZeuKgqlIAy+X7a+7xDYOVc3pTNWa3TOOGe0RgVkVrmwoJit0WUlVozgjC60Vgg5hjB0fd+HMIjQHigbpYvSFoVlzn3fZopl6azR1qj93b0Lh+frupw0o7quyrI82NvRyNH3fbuYL6YpB8FYJpPJaDQpiqqsmqoeZ8KuDzFxSgkVg0K0xlPqQ0iAPVFkSICkNGsdYm6HPubAzCGlLOatWis0DCqk7H1cdkM/hGU3ELE2FpVWxqZEAlCvT4GmqqqiKIqqTCmVddWMJ2VZCpiGiKCUtsYWrixLY61cR0mMFpNFOVYEsNJayypRGLYpRb9et5+/cG5nZ2c8Hldlg4jaGlQGlAox37n/aN4OKaWco0aOYTg5OYmBv/xjP3U0Xe6ff6bc2rn3+HEGnk6n5/f2r1y5cnh4KDeS2PrfvXuXiPb3969duzYej09Pp9Pp/NGjR/P5/Ojk2Fl7+dKlO7dvW+0U4PZk6xu/9c2+7S5duHhydFy6Ynp6dv7c4ec+++rjh4+qohRc8b333hO08+7du4j4/vvvHx8fP//889euPyfnUWK4c+fOzs7Osu36wS+7dry1c/HC5cnWzu179733VT2yZSnhgH3fC0Q7mWxt7+ysWC1F4QqzNW4op93trW650AiusMx5uVyKUllrXTrb9/2j+w8AoF0uvPenp6cxJoklOD45unv37v279x48eCDrMaHhzObT45Oj6XTadZ0IW1c23syra1daIhqPx0pBWboQhvF4/Pz1G01VO+c+/elPH5zbu3PnjtN4/9GT6elZjunhw4dSUIVpIb+Of6cIBPFjzHlVXAGRQcEKCV9XDpBzAADM2iVbr8OMNsVSGzRKy7bv4OBga2urLMsLFy7A2v1YTuRN8d5U7qeBcTlt4Kmf/PEmG2CxWEwmk5deeokzVVV1eno6m81evPH8pBmNqnp+Nn3j9R+0i+UaMq1CGEIY6rp2znHK0Xsx65W8ByLa3d09OTkRsqtQ28bjsfB6YO00KQlRorrpe+99zFlc6T7m+j79ceH6D/PHEMLm7cgf4ejyWlmHa6aYfMIxRu99VVVXr16NMbZtK3dFXotrhTdeFIWs1QWqlSU3rM0vYZ1IAQAxZoXGmmLZD2VTJ6aYCZQuqmqxWEzny6qpHx09IYCz2fwf/IN/8N4Ht95+993MKLZx8ja998ILW1F2iKRNXC6X0+lU3ohea9I28LuUgE3DV9elUmKslIrCaq2Nc8xcVVVRVyJyE4WndIrCkdbWOOfkOtZ1XZZlVZZN00hHsn+wK/pghSgHgvzqnDMBOOfatl8uu+3t3VdfffXrX/+pH/uxr37xi19czhff/ua3mHFU1XVRLqazncnWfLa8+dGt4+PTyWRr2Q237tw9OZ1OtnaKsk6ZQ0g3P3z467/+66PxRFn3G//itwzmbDVWRak0pBT64FPOjIAKCJgpJxJ+BKNChXh6NqvrGm3B2hJoVMhKtetPWSyn5Z3LbSFHUmKCdQLlZsdARGLxgYhoLDAoDbyJOTMFI2xq9oqGgKiVMUZrhUopa50fuqoondVI7Iwuq0KjUkAK2BhlTFEVhdZIq18DLNY2yeecGTUQY2a7cqtUCoA5K0C3+RcEInK2gEqJgjuGbBRqozjnrb3x9s7k0f1HAEA5+6E3QP1yjoh1WSmtV5mmmebLRQgBWNmyUq4Qvp/WJiVvrQatrCuD70lpsCaDanZ2QwjZe2YkTj6GIQSibns0dsagtsDKxxhjBGDKAMiG0bliazxCxOV8rhGMMUYLCYWdc9ZZZhFax7bvmmZcFIaIMnDMK3q5c2XTWAYYBj/EAACZQMi9ShltjEZktcr5stY2apuZQ0gpZGTMMR0v5qdnoDW6whhrYyZm7IYYQ06JCHhvb8sqjmEJVRX7ri6r044uXL72h/7ov/NLv/RXwDow9mw2zUM46R+1FKU4WWslHkce0bos33zzTSL61Kc+9cEHH2wi8IDylStXPvXJT1+4cOF/+p/+3uXLl9u2dc7dv3+fmd95550YY0rh6Ohx0zS3bt1SupCV7WIxOzo6Oj4+LstyOp3eunVrf3//a1/72nw+f/T4kTFqsVjMZrOLh+fu3L6XATNDTHk2m6HC6bw/ODhYHaZKA2YUM1itqqpZtrcNEqe8d/kcZ+KcbGGROBOXzrb9MKrLT37yk5FoNl28+OLz3bI9Pnniu9ANwZhFJqrLMuY0n021UkdHR4vT6f7ezvnz5w/3D7oQF10LAHfv3r11+yOl1HK5NFZvb29ba73vUwg7u1vSKtVlFZcLWb9prcfjJoR0enwiTntd3+/tbb/w/EsnJyfCPjs7OS2qcjQarbhO1m7sCUMI8pdVe70m61JKT68wZXjdAKeyMEbRHCmFyAJqpcxMajPumHWC3mqPGwJRWqkAlAYgmWWFhqOUYpblNIsb2HoOBgDWGlNKWiNR0toypXY5f/ba1bv3bh8fH49H9e1bH7708ifKyjFkBn12dvLd7377R37kR0ajydnZmZAbkLi0rk95zZEUVprKmYiCMebixYvb29tityQt6aYJkL9L5bPWOgey4RauJTMjKAH5c+YVDLkec7VG4I8PQMSP53tnjdYovfUG5Fdr3rJcqeVyubu7K55uJycnIiUAgK7rMrFdp1RJsRflt1CLiUh4+LTOYkopWedyzgs/DD6ashhSNM7ZwrHG0bjufbx//74xVg4NreHk7DSkqNc2Izmsdt5KKZlKpXtITAgr/MM5B0zyYqQflYRyqRjS8AneZtapvZnZGiOtg+jsh2EYjRrrHDO2bZtSymmV/QprbbdTKK2I1ppSlA09ImttxJhBgcqJCldqA13fW2XKqlwuO63xhedf2tnZGdXN/v7+b//2b//yP/rHP/n1r0lunVIKlH3+hRdnsxmjfvTk6Oh0AXjv9/2B379YLG7e/KBtOwCYbO/u75/74Q/fuH3roTHMirKGXNqSrVLAIeWMKmYGpLzywMqIaMRpyZgEar5olbaUIcQeETftSVr5eW6s27O1zqfIxChSNl49h8LrIUQfklagUa0+5pSkg0PQvAq1sPKA4e9UhgEAZKpKB0Cc2FhdlqXVZgUpU5YDgjmHQE816WqzT1JIQAkocWbUzqKyVitVoGK9MgUjLUFdlLXGqqqMMcPQAXJTlcYqIuoWSwCixG3bGmNSGEpnJpNJWdRiT9EPQ9/7RJlRAwD7AAA+5EBklNJWGWNiSp0ffDdQzp3PHWSjvEweSqnex7bvrbXaiqO9ypkTJ+ZMBHJdRvWIchxCcj4A8XS+BErW2lFlZcZlwnboKaaccwhJPr8Y4xCDQoOItnDWWm1W1qY+Ra21H2Lvh6efVem+5e4fhiEBEkGOKYSoAZFJA1uji6JwlVPaFqjmy444pYy6KBVgSmQsGYWUhhxTUElr8+RkeXDh6td/5vdujfXf+O/+6ze++53rly4bY2DwIUZrbRiG0+NjIvr0pz89nU7feOON5557rhmPv/3d7xpjJpPJisnCdP/+/aOjk9PT6bPPPvuVr3zlt37rtz75yU9evXr1V3/1Vx88eCAjy4ULFwRT/ej2e1evXl0sZ1Kky7I8PT1dLBZ//+///a7r9g72x+Nx27YhJUS8e+f++b0DWxaldaDU8enpouu3Rs1y2RZFkXJmhRvYFo0motPZXJ4FH6GuS21U6cywnCmljNY5AzI1TVM01cPHx64sXN30bRdjHHw4f7Anx6UyGjW2Qx8TlAZH2/Xh4eF0Op3P5/sHB5cuXZjNFi+99NLjx49v3749Ho8fPnyolCpLV1XVaHfPh/7OnTtdtwyD19a1bbu3tzefTt9+993r168/99xz0+n88cNHRDAej5+9dnVnZ+f09PTJkyfeez7LBwcH4/G4LOqcsrCBiEgBshjuIMI6oFAbQ6vy+jGPegNZAQATxXVLrTUaY9IwAECMKa8NnjbTniClUno5MxBlIm315gRI6/Rf+cx5HcvDa5dpOXCt0ogYY4yZmsnYe8+ZPvXyJ3/jN35DeECPHjx85plnPvzww9IVZjK5d+/e22+//eqrrxZWsyv6ZWsnK3ab9B9KqWEIAi0A8OHhYdu2QluTbZT3fmdnR8bQDdd3bRy7iuFavWxAWHO/N7M7rl0/QcJ0Nhi7DC/EAGCScc45a8XllDOJXSWtFVOAEEJooLp+/XrO+ejo6PT0dH9n7+TkhJmt0bBKrc9EjKB8WKnA9TqhDxGJMmVWqK1xzNC2nUIwhbNFaUIMKb71zrsAUI1GMUYCXNkyIySCruslXkU+tM08HWOUVEfZ2lAmAJIKYowhYnGhEXUcAMS4WpwVRUGUQhhiDELqXi77TcMhXQIhtG27vb0tNX7eLr33hXPGqJTSMAyAkg7ilILBe+ucKE6ReANX1FWDZkXAToTGFjFG8kGhjin5lCfj7c9/8QtSDl5//fXXXnvtlVde0VojgHE2hGRcSQTHpwsFUNf13bt379+/fzadM4AG+OQnX0lEd+7cIwCjDeYYBmCNLFcUEQkw58CgACRdXDNQBk45IRbMLKTKRJkYDWoRL8pNrxiYCZjLomBjWGuilPNm8OUMLCfUWnaWALTSKnM0SgPBas/kk0Q9ryVuqFbxkZxzzikiImTa3h1774kI0aSUBt8D5aootHUKJWIlA4DVKwTbS2jLU1z2HNMay1rHRBGnVcpIDv3q7vE+KK3LsrZWpxzl2xfL2dB2SiljncgPQuhizFrrbuiTTxm4bbuUCBSCUjlzypEZMrCYzzVVIV3bfL4YhqEwZtH1iCiOCjF6AYVcWYybkdaaIyFqZmAmRK0UxJxz11VVlTN3XdfOFwDAlJxzwMq4ohlPEHE5n4khKCrOKRtjhhhCCDHkqqld4TQRIkbKfevn8wUA1HWdKEs3unEsymvbmhSi9z4pI3T3HGKMEZiLwo7qiS0cKDUEz2BiTIhaWXRFKUhvvVVPKos5nN8///jxMbBBZdvO/8RP/dR/9X//iz/4/vfquiSElJKzZU48m8+ausk5X716VWv94UcfPn/jedT6W9/+ltx1jx4/KVyhlDLAYivx7rvvZuYLFy595Ss/9vrrr3/uc58zxtR1fXRy5Ix5/PhxCGF3d7eqqnv37iFiXdfT07MVQ34YmPng4KAoiq2tra2tLcmE//DDDz+89dH58xcXbbtcLofgnXWzZVs71TQNE2nAkCKu15N9388XravqNHRG0bhpNILRmPXKOVIBlc5Rir4fJpNJTLS1PemW89udPzzcq4pyPp+Px83p2UwpdfnCxens9Nozzx4eHp7bPzh69DiGcHZ29s7774UQdnZ29vYOrl+//sYbbzx4fHT79kcXL16s67oq7GKx6Pv2/Pnz165dYwQ54IYhCDP25Oxsd3d7Z2dHqdndu3eNMS+88MKFCxdGo9GjR4/abnH79m2t9UsvvWT0x5b9slIVWHWDl9I6RYfWsigpKwJ+inpwcxaLawg/JSx+urdmZjlwY4xW67yWIG9kh3LdN27GsFYtb8qVMIk2L0n24m7wpXPt0O/u7t64ceMHP/iBtfb4ydH5c4cHe/sPHjyIvtUIQ7dczueTycR7rzS03WJney+l1A+t6LhWO0vCzCRLR2FIyIsRAZh8RE+jyjLAyrQXQoBMyjl5uMzar1+twxjWn+HT+PPH+bjyLWZldJ8E0Y0xOlfFGEPfqbIsimK5XBZF8eyzz8YYj4+Pd3f2EVFEK6j0crmkNddaKyMvGBAB5Nop1GYNbRqZfpRW80XrbPnw4Xtv/PCHo9Ho4PDCZBKm89lqCkdFTMbCMKTlcllVK+NGmfvlksntx8x1XScmGb4zCRjH4lIn/ufe9wKmFoWN0QsWbawKcZCdhXy0q2F6PbxJb8HMKZHYuVjjrE0RYop9URTGWgCIKVlt6rr2/cCQKSZl3Ua8t7otUZdV7bHz3jtjCVU/hMIZUOYTn3wZtfLev/X2m6+99tru9s7Vy1e6OFRVVaJ+8OCBBmCE23fv3757nwCE3EQAL730UpTVEoHJOaJCBsknWRmsrLzBlH7qwUBiIM4pJ4EM5NYvXZEpcsooHq7MCiFTppwpK2ZGrY0xFqSFpRX69NRqfTNXASvrSgQyShdFkVKiLKBKklW0mJJvQGzIlHV88uSJIFFE5GMQU0ltCxTUK+fMhAwRFDMkgsQrv1NGDaysMaWriJKWPCnIiQiQFCqlNCodgtcIqBWlHIaQkgBc4pKT+rYTalVp8/7+PioNoBjzEHzf9wg6MwXvtTEhJubAKF5dSqzIjDFMUbZTAgkUdQ1aM0BhXdu2g49FUY1GtVHaFWa5XBZmJZAXrxzRagJQ13Wlc00z7hbzlFJdNU1TjUYjoygn8t53gwcAUKQJmDFFyuRX5nNGMyg5JUPO3vthGJTWxJzzylhYLpa85lVOsHVVVbU+tW2rlNra2nLWypUqisKVRUgpZup6H2JetL7t+pxPLx7u1lVRFlZrHDXb589dGPocAiHyiy+88Lf+h7/6d/7mL9WTSYF8ejo1aE7aubNuZ2uPiH7u9/3utlt84xvfePaZZ5VS77//vjU2Z85ECDgEj4i1s8enJymTRq0QfuM3f/PqM8888+yz//TXfu0nv/67/s7/9LeLohz84OfzZdcen54QwaVLlx49evTVr371h2+8+f7777/44otSgI9OjkVnvOw6RKyqajwe+7599OhBM97qum45X4QY6sIZDQrWyg0NKUQiTMMwPTkZBkKgFGNhYDSqUxji0JfOAsByudSulPPCWuts8Z3vfn/ZtT/+4z9+59btlNLkYHL58uWHDx8qo3POz117Zrnckwjh6XRqrd3Z2XHOiZLbGCP73a2t8eHhgRzK9+7d2Z5Mrl+/duPGDedcjkm0mF3XndvfQ626bojeG+c+85lXbt+++857733wwUfHx8cvv/zy9tbulStXTmcnjx49evLkyQcffXjj+gsxp7zJR1LIxJkJQexfKCcyyvyOtdE6pm25XFpjqqpai3lSSrRBdOXu4vUfMSpRa5XzppTKf296Qb3W6W4q1uZHwVNGylLRhYq4XC7H47FB5bv++eeuP3n4aDo7zTnevPne9evXu27ZLhY3bjxXVdWHH978whe+IEoeay1xquoixpgiqVJb7VJKXTeUdSG0JvFBk3WvLESE+QhrCpUUj5yS0a60TjFIQXp6jf30i18/cUY+kw34B2s6+qYXWW24VZZP3mkTwpBSAiRZr9R1/eyzz85ms8VSYpVlOcjSZEsHoNYaQlljC/yurZUXo5TKDM6VKQXvg9bq7OzsZ3/2Zy9evPgrv/yrTdMgAzEVxvoUi8KGEI2CB/fuX9rZladJXqdciBCCUqtwEWkHtdZVXaeUgveybDJGIdph6MbjMQAppYZhyBQBjVxH+V7gJIid3A/WFIJOLxbLTJRznq+PaKk18l0pZ0RttM45ooLFYiY3FVAmxOC9dFHOuTbGmx99uL29ffHwvA/90PXMtBx8YbRC/YlPflIpTJRv3/pwZ29XW9U0Tdd1e7sHx8fHiJDXV1VKqUY4d7C/t73z0a0PkMEAmMB5VNaFNcwcZQZKFGLKxEyZxVYVEJVGBCAojJW2N0WPyijAYRicpHhSBuC6LFzRyB3TdZ0nMsag0SlRzEkxA6i89s/DtexMmiDx1RJ3bGMMAhOwmNMyMxAjkEHQSsYHNkrnlAzqEKO4vTdNU1pHiF0fyqpwRcWo23YhfWtVlBkgx8jMPoYhU2Gcc5aJQxapKyMiaoXKABABi+GG0qYelTlxCCF4r40iBqWtcSud5dD1J9PpyXRq5JlHGHx0DmWcGk8mVaGVMgAi6UlGG+Y4LPuiQCfhQpnks+7aIeesgKy149FoNBopYOJUmEo1ozwkBE6UQghI2VrblFVZOWdsCB6YnXO7u7uT8XgYhr73hcVlWEnrlFLBRwYqy9I6x8yIKVMefGRQEq4QUwbEumlyzilRVVVCSFkprZmdsXJDyyWrVOG9d9o456xRSiljVFkWiVgpU7iq60NRFKiL3b19pZSJ7ai0OcY+5fFodHo2my2Ws7Pp4cHO3/+7f+e//C/+L6CwLHQ/X+YIOQ2Fq3zws2X71a/+6Je+9KU//af/9M///M/fvXf7V37lV/b39x8fH1lTUCKWIgDQ+VC4gnMQNJiA/vr/65f+5v/7b86Wix/98a82k+av/42/LkYQPmYa+hyzUurixYs//OEPf/Knvv7u++8+//zzjx8/Pp2eOleIWUciUkrNZjOllMa8XPYv7+1dfubq2fTERRNCyABFURjERImJZD8qdPEYlwpZa42QJ5OJUkoa0eh7rfV41Jw+eKLXzAmhhobBf+1rX/vBD958+PjRJ1/5lHFW0ODlfKG1TiEKW9sWWl5eWZY7Ozu8ZuIcHBx87nOfe/31199//93z589/8fOft1bnnM/OznKKVVnnnAWvUkoRU9M0fd+PRqMLFy4cHJ575513njw5/vXf/MbLn3jh0qVL4/H48PDw5s2bb/3wnWvPXldrewTBb1b++OuZlYgYf8eURmuObt/3fo0PV1UlhVKto90BPmZ7SOWWLWbO2TnDAE1dS7CEWZvvr3pBRMEeN0u+zW/np0yU5C0LbikIbQihqotXPv3Jd9991xjjvaeUnrlyJSW/tbXFDGdnZ/fu3bt27dpyOR+GcHZ2duHCBanHG2qPyOEkJ0eK7kZ/vPmXlX1H30sRAmZEdM4Yo/q+l7N0o3t5uguRNyJFWmYGfKpNgTVp2RjetDuJEidRba3wCWEvilhZLlZd1/fuPajrOvgoVUcunMydMcaUYlkWSmHXDXp1bhilVAweEWUCyZkuXbwydP1777x78eJFRPXPfv03DWJKsVAm+ogAGuCf/dN/+m/8S/+y4P8bWGI0GhGRXUccMgIiWmu3t7fbtt2ajLa3JzlHubvm83lZOiEEjMa1WAY555qmUQqZuSgqGfTN2pMSFfoUy7IUPHwYBhpP5LYgorIs67oWMUVZOh9SYawfwnw629rZTpEQsSidQoHK6U/8n/6D+/fvZ8qf/9yr/9b/6t/8xCc+sZxPlTUZ0EffVMVzN54nBK0xhNC2/fbe+XaxPH/+/Bc/9/mvfOUrzHh2drZYLsuiuHLlysHB3smTI8rRavX89WsP7z82aF0fQ9nUTeEWs3k/DKB0zFkpR8JnZAYGoTsCIWBWyAp50jQAkGJsysJqpRGbZuycE6s5WV7WhZv6FWB1Mj0rbdn3vbGWvPcr/2frM3EmSStLOVg0ViEaK+APkhriINUaOI/qpnI2p6ittUallMpR7b1vmknyoW3b4XSqDvaSdA0h94OPMSIrQEzEPlNC0MYqpYZ20NoMISUmDQJVobWWkYKPQwxyf1DwTdPEbjDGEWM/eGbOnVcDFEWhEfvBa1SodD9Is1k6a33XpZS1JmaoqspoJZ7dRCSKEQk3rQo1qsshJE55XNeZmEPKa12QRjUaN85oIEKG4HuDipBFnYmUq6rSBlFx6Yq2XaaUJuOxHdVOm67vKWfv/el0CQBAXBSWmYFoNKqJIcTk/UBErqq896IYkSzEolgdLnKAilZB2thhGDpqq6pC1MvlchgGW40KY4koUyQPiFyW5ePHR0VV9j4qbbXWBhgMD35wzmnymozvvbU2J1wup973Vy5e8N3ZX/rP/iMe2t3tinyMMacEdTVGpro03dB+6Utf+Ue/8k8Y+KWXXvrv/+p/D8DT6VShiik66zKT+DAQUaKVbTWi2h5vnZ2d/cf/5//kD//hP/wX/uJ//if+xP8REAcftUZUEFMujH37nbe//pNfn81mb7311s/93O9/7Tdf++IXv/iPfuUfxxiJKbdZW+uDHzWjtm2dZkRAZMjktIGcmME6WKe9ZmTSyN734/FWztlOvdEY+5YYVlRzAK21RxCfGQBAUIwQY9zf3y/r5mw2j5l29nZPT0/feeedF198/vbtj3w/7O1sE9GlC4dSdzOQdtootfJHzDmvbes/+uij1177F5NJI4j6wcEFUUtb04TeK6XG47F8MQGnlBFx8L6u69Pp2Sc+8Ylr14bvff8HP3z7vYcPH167do2IHj86Shm+853vfPazn62qynsvJB3Zn4UQpZBY63jl48MidJFqEWMuikLcTu7dv3/u4GAyGa3otYliioBkrEEG6V2eLszMqLVue4+oGXkD7cqHsCGsyh270fPktcOXNCjyFxlrZBc4Ho/ni+n+/n7XdZKCFUK4ePHi7Vsf9F2XUtrb3bl///6FCxe2trZyPlVKz+fzqqpCsG3XScKHdU4RyjSmtZZfJEkzmxFcHiJmFrs0raz0EHK7xhiZc4xJshA26Dqv47M2M7EgBZvCLMPwer++8nC2K/f4qNaJzmVZLuezsiyrqvS+IiINejxuYswMpFFJaZSXba1tu6UkOUp/44oihOCckR8lIXpD563VO9vb0+n08dGjqmxCiDvj0YVzhzKopxRc7bz3584dyKLXWstiTGStIGTyS592erHW1nXdd0tmFhw4hCCIGouZ5agSnCPGOB6PxFJbdsyizhA3WUG5i7rquk4bM5vNJM4ohGSMU4oEsYurBYqt67pt27OzE4lYwJxCJqPtaDR6880379y7R0wA8O3vfv9b3/3e//5/97/92Z/9WT90OQQwyudkS3f9xvOvv/76b7722o0bN772tV2jgFJs6vLg8Nx4tAUAxpiqqlIOQIw5WK33d3di3+/tNAYQE8GybZlZl84ydH4ggsxJCtWKbh+ZJUpCsVVKI1OOlDIiVqUry3IyGrtC2i7ftm03tPJs+ICoNABYEcbYBEBA7KQKdj0zA1LwvbUWGcuimM/nltla27attqapyxi9VioT9X2LuSitrUpntQkYKLOzJYJOBKitUpxIKVQasI8p5ywZW7KhJEqRwRjT1DUAaMAUomVrlC7LsqoLAIgxKMYQhpQiKCzrRrkihhxCzJkkfCMnrusqM+dMgEIzUYV1sn1cLmdFYceTiTRc4/GoWyzn09PCOhEBjZ3RlRm52lrLpJF7zCmHaK1Fa8RGv2lqa02hlVOaETjnHGKU9jZzXRVV6VatcqbZbJZz0lqLC7GQO2L0fd8r65wzmTNGbkbVZDJxRk+nU6UgEgFAZYzWWhsXQogxa2czMINY8q6MF+TI6Nsux2QL52NYLju577dGYxF6pByMUQIeJsowxGXbZeKY07IbnHPaGlJUFwooKsCuG5ZtF3zUGkNY/pd/6T/t508O9kaQh2Xb5gxl1aB1mJPWmofuh2++9bM/+7P//J/92ng8fu7Z5z68dTOmqLSxWvsQlNZ2lXhKzjnnanFmECXbe++992f/7J/VWv+pP/Wnfv7nf/6f//Nf++CDj2QORkCjzTe+8Y0/82f+zC/8wi/80T/6R3/lV35lsr317/47/+5f+St/RY4JH7yzbtkujbVAkRnquu771lqdMwDAqK4AwFk9PW2ttdbambj0ac3MXdeXBjWDUJGtcSF5awrUaug9EZV1pVzRDsv3P/iQGZqmrqrqypUrn3n1s8KrunDhws7W9tZ4fHx8LLBhSokRYwjKOVgxZlf6DXnaL126+NGdB0o9WiwWKR0IzOi9R2CNSoJ3rLWZicgPIcjCTynVdV1Vj77whS/cu3fv1q3bb7/9thwAh+f2vPfvv//+c889V1XVMPicyfuwdjVWAooyrQhERMToNQooYrTWi8Wiqqr9/f0nR0en05Pd3d3xeLwe3DGGDACZgHNq+66wTrgdUts2qFiMkYFBKwWGmX2K8kYKY5lyJlLr4CYBoljhbLkoisJVZfBBcGDeGEPmfHBwMJ1OZX1w//79qqoQUda6zPT48eMrV67M5/OiKIhWk+J8Pu/7XuwgNuKoDX4rRXeF0q9TJt06QmAYeqXBGKPzypdevlKY3gB2Azhv9tm0TgridSU2xqQQ5RuVUrJkFxJTSkmEUkrSOFyxMt7yARG990avzg1rbYpZwm8EemFY6a1p7fEpJXPVD5HRymImismWLhmTUiqsU4gH+3svvfBiPRojonQhZemWy4VSKqewWSU8/dY+JqblZEyqqkIbFGhUeqaUwjB08r3OucF33q+CIvq+HwYvdPecs2yy27atqkoptVwuM5n1y2Yi6rquaRoQ8j8yESk0hXVKqZRIK5hMJvPpdLlcjrcmKa7eOxFdunSpqqoQQkixKIthGP6r//avdH74uZ/7vZRSTpkoI+KTk+O/83d/+cLhpGxGJyfHy+ViezJJYVjMpqO6aduWmZfWWqtL585Oji8cnndW7+5s/cxP/67V/rXzw+C9MUZZA6yMs3pta0cZmFmjcsZabYAzU8oppOg1culMYZ1GlSkuFgthkNI6kVQWOX7oT05OTk9P2/ksx6QAndUKWStAoLoqmqoGAMVEMSTvrTUKsbRmNKrlbo4hAEBVuMoVRHnwXdd1IQ7OqJCiMpqAQ4ohRR/Dsmv7IfiYJSqYQcVEiclV5WhrW0whiNGaglGD0qgNKOyGXhIXRBgnd0ldVspoQA1Kp0whZgZlTVHUFSuUdUJZ1MJs7Pt+sVjEdc6J1rpwTmulgKxRdVlsjautpnYKKHkN1JRuXJfO6sqaSTMqjQbOoWtLo3a3x06BZqIUKQYDbLVxWlujq6JUgKIt5rWPQdt30hl3fY9KZaJ5u5wt25Ap5IzGFWXN2mRGRp1RZYZF2ylt62asjfMhyYVj5pxY1FZy5Om1r0Lfdjln1Eq2XGVZXrx48fLly0JGkwdAtl/T+TIkisRFWe3s7Dx79ZlLFw63J6PdyejGs1efu371ueeeZcbgs9bFhQsXzh3s/nf/7f/tg/dfH9cF5nB2Ns0x19Xo/MWr+weHRVlrZUfN5J/+s3/eLrvPf+GL/81/89/8kT/yR3a29hQqykmosE/TeYZh6PvWGCXLpLIsxWdD1h337t0TKHL1LVorpbq++/N//s9ba//YH/tjP/3TP/3aa6/dvHlzZ2cnpqiMEf5XVVaISARaQVkVDx8+nM1m1kBhwBgzGo2stdranHNmrusatQoh7O5s5Zi7PpelK+qq7X1i0tYlYkZV1M0QUtcNwEopMxqNPvXJV77y5R/78o9+1ZX1d7///TfeummL8vnnnxdip9VmPp0ZpTdLQQQtw8pm/Sn/fPHiRfnfy+VSgrDk/xWuC6zTztd+QyqEJLh0TCSumZOd7XMXDpU12tnx9tblZ67eePHFS1evmqKYt61PcbqYPz4+OpmeRcqmcKCV0Po2RJvgU0hx0S7PZlPUqqoquV1F9XFyciJTqVqzT6WAMWHXDm03ECNqFVLcMK1koymOCpubU7Y8+an42A14w8wSaRNjHobAChPTEIMp3KJrhz4IHn7hwgXhkWyWkQygjanr+qOPPpQdqtww4iMhw9ZmtSlo/GYeFQ2V3JZSX/M63lS+TIwPAUkbFCWFVAsAIEryzEvrIEnn6injEfr4wj11/RABaDUg4Urh6Qoj8JV8+wa9F0xbBlPZyCJiCAHVSmwtkP7GxWHzL7R2XFlt7hlyiKV1Tqvz58+nlKIfwuDbxfLh/Xv37tzt2nboe/U7DUZWW2rneB08LMiBKHeNMVVVeN+LeCytvUWJyGjJ5lqpn733AGiMlZtBsAQRHcUYFRqtNWhFRJm47wZmdlVpjKEMwOuXBCtde9M0W1uTk5Oj6AMRUQzGmGW72N3b+cmvf40hI4AfBq2RAf7qX/3rb731TtM0oDBmzpm1sj/19a/8L/+Vf/XLX/5yGPzO1jYzpRSBiFLY392ejGpnVAr+9Ph4MZ8Wzuzv7iHy4eGBKbQJOWWCFP1yScMwhJiULggVp5R5VX3RMDAwkQQ4K2Ws0tZaq42QKLrFEvT6RmGWvChti3mfmFkhaqXkseRUsIRnoapcURVOKWVX3pxq5UXCQSmdiXIM1pqqKijlsixLZ8nHoW+HvrUIzVbVrGNb5MLIByqXIcdkjNEGwzAQkTbOGLO7vZNzlvmbiGxRFM4RJUpix7jhVWJhbWFtlhe2asMjESiVrFHOucJqZCJOVtvCGnEc0RrLorLWaq2QOETPOY3risHtbG3VVdV1S40M4OQYdbYJgweg3Z0tZp7P50DZsB5Nxgw5x8SUiLRWCtdJYZuVGzMzgoSHD8GXCmPOIRKxComVKYwx08UclJlMJlVlAWCx7AAgxGyLigDa3nM3yHmVUhpCGo1Gwv9g9ZQvD/FoNAKFKaWzs7PlcllVjVJqOp9XtowpMWSlVB/8MFvMlwtri7Ko67oRT9QcI+VwtjgFGvZfvhYiLdvh8aMTjWbvUy/+f//u3/re917b36mzb2fTGYC6cHh5tL3TbO/5FJ3S3vvFAhTgX/2rf/3P/bk/85f+4n/+/e9//0/+yT/5p//MfwAATLlwBTMnYq21MTITCHKVBXjPOSq1mkV++Zd/GQCKwgqqRom1teOi6Pv+7OzMBy9a4V/91V89d+7cqBkt2nZF8xEOqgal8OHDhycnp/v7+9vb26cnx4XVTdM8ns0mk+2u69q+Q6Vni3a6WE6n7XhcQoo7OzvAKjMp1DGnomm8jyEm1MYYk5hWI3tKb7799v0HD0IkpUAbePj4cVOVTVUr4tFodHp6usE2V6PJ79wdyvF68eLFf+1f/ZeapmoXCxnjrLVhWKlcCCCLM4aSU68ZQjw9Pl62PTMvuna5XL1rs3bqv3PnblVVW1tbZ2dn8iDHGIHVctHNZ0sJqCEiiVmkmMRMu25KMfHo+/7Klcuz2Wzoh4ODAzRwfHx8Nps29cRai1ojc2bKmTgTAMhAg4iZGTQbYxhAjHylwIg0zjqVh2HwMdNS5iqtNYMwalk2I845Yg4xGjmW8mrtOsSApoKUDg8Ph2E4Pj621saU3Ao2j3VdHx8ff/jhB8888+xsNrNWD0Pwoa9GzRBDO/S2LPIqNXkVYk+/00ZjM/kJBo6IVVVMp9OUQlnWUvxS9gXaqi5k6pKA3rXslROT4rXfCKziMVJKSgHRyuBvw0LlFG1ZSemq6gaIQxgQi9FolHNWjKA1AlqlgzDDy3XAIq5eas4RAZgzonbOLftOxsTNbh4YhL4eQkBk54qyLCfNiFMGIgAqq2JU11qrsqmJkv44KUTrdQCXnNUb9oDcYNJUyfS5wcD1WtQqgzUwAqBgXbIYHj4GG1BSOuR/WlM45/rQElHvB8rsbBE4aFzpy6URAWLUqBTs7e0dHR0/evTg0pWrfoja6GGI3vt/6w/+62+/+cadO/e01hlWgvNf+qVfeuE/+fNMAAAEvLO3/4f/yP/m+Mmjb/zWb1+7cqWoSlgRvpRoU7VWw9APw9C3ndjC7+3tGGOMUqbQilEZJE0QuwGEVa90iolRaaUQFTIgABIZxKJ0WmvnSqs0EaUQmRmNCYkoJHlBWY4q8ZZLuS5KZY1IlVKMlKOx1mgja3Bx+6jWOrDFfBpDaEaTatTMlws02lor4BUyAbErjNU1xeSstka5qjw7O0sp6fXVUkqJc3oGAKTSVk4b5lwWhXNOQwyBcvQhslASWHEKyVodYwRkY4xRUJalENPanPqhZ0ZKIm+QZwCQmDOByophJcQQfAiyRqoK44ztuqUmsoV1VufMWkHlrDMjBTgMnTifDbEPITRNdf7wXNd1nBNxbpompaiVYoRMiYnzyrFET+czRESPjEBEIacoHH7gclQoh1OR21tbN5OU0mTXppSGEBlBATJkJFKAGlRIMQyr2BARW4e1ZXlVFACQUkBEo7Q2GhFjToi4u7s7Hm+RLKVSij4SEUFmxK7ru25wZQWsumFg0DEE7/1kXL9y40Y/LO/fvfP+7bs5gXF1XfsL5w5f++f/9G/9P/8fAEsfXL+cK7AHexf29i+iyAkQiqpmVFtKKQW3PvrgF3/xF//e3/t7P/qjX/7iF7/4H/4H/+Ff+2t/7cmTJ3IM1aUjIu97YZ92nddKO+eEbSAHZemKGKMrTAihqWtEJCRj9NB2o9Ho7OwMAN57/73CFTHG+/fvC3WWiIqiCilqbYlCUVVPjk+YufOhe/zo9Oj45RdvVPUoMVttRts7yhUnp2ens9kwhOeeebYs3JNH92REXsRcF6UCypRI6WXbZ2JTOgacLxfHx7NHRzNjtE8EAM7pnPP9+/c/9dKLfd9jpq1xMzvjlEJRWN8utS1yzJxWJCY55mRxIOmqs9msEN/QEMSsuBWcg8TLAhEoM0sAA4L23s+WixhTjNGHINW6HwbBVBfL5WK5JAKxR5Ay3A29WS42BVjWipIVL7NFpoiIyYeDg31EjDG+++67gCSv8/j4eDQayYgZY3qaP9z7QQHKOnCj8JEqFVcWNGBWdjlKwmXlUJaZbzXtMQ3B13VdOSsJ6tbaRbscjUaKWbIcING58+fPZrNEhJyXy7Zp6uVyyczb29s3b97c29sTQFsZ03vvylpShrquq0uzgVjlWMe1lAie0iLL/9t13fb2REp1CAMiK7X64rIs27b1MSr6mLktHxEhGuFE48fzrjGr6IXNAjWHGLMM/dp7L1Ms0QoiEukUKA0AVVVpV4QQiqJYtp2cmkRUVUUIH4+q4rspFV+W08yMRjPDEMIQQ9nUzrnt7W3QovFV6ik6t0EImdCuGpGyKCRGReKDhNq5afFjjJlXhVne48YPRHY6RCTDNzOXRd1TnyIVbmWYJZ6UAJCZjLOru71cDQDee+nnYoxF4ZQyzFkpBlBEK/fNvu2apj45mx4M3jobUioK23XLyWTrP/z3//3/+D/+T+4/PmKAwpoQ0/vvvv/w3sNzB3uVrYeu86k3qM6dO//ii5+4f/eWvLWUknOFc242m125ckVgDxkU7z984JzZ2dmZz+dmq2qKFdcuBSajLSo9pAwg3lXinkE556oo6rIincW1nyDlnFfpeFoXRdX2HRExonFOaRtjTBk2dAD5yo3RlzEGMpWF+BAxAgFnhXp3e6f3AyKEfrDalKXJDHVdK71qDDVa1loxSXUHjBQDMRkwfliR0VOkqDFTxmxCCAAknjTWakzE2gxxYCZkNqgE9kmJc4pG6dKZ0tlJXVmrw+A74hgjZwDGVVOGSiMDEhE5pYrSKeAUgjZYVVXsl0VhnGKreXvUdApyzs4aXdoc4mI5AwBk6LqltGBGGaDUt23fLhXi/u7WMAwh9n3XyXpGa2NtIS05IlqwqFVKiRKDNkCcKBEqpVTMjNZxJNCGiRLAkJKxOlFc9MOiba3WZekUskHVzWfOWGsLBkUEOSdjTFHovu8QV6HQzFlrzbhixEiD6Zxz5SpNDxTKBx5DiDnHmIuq3NrZi5GsKZIPRmutOAydNXj+ysU0LO7M++WiK8B94sVP3Hz7jf/rf/afAvgL5/cePbpXuGJv9+J4fJjIUiTNbAqot3ZGozyfTzmnG9df+Na3vvNn/qM/9wu/8At//I//8Z/+md91/fr1o6MjZy1qvVJlMI/KYnt7++jJyuCJtTHaJIaYY/ZslEp9NApD22utswIiUtZ43wNAUzcAIA+wXKBmPA4hSdvetq1WMJ13RaH3986dnZ0hoqvqIeXpfLF/cCinFavw+PR0ueiMsw/u37NWpzDQzlYiPjub5vGorsuY2Bhb1eb7b7yDtvzkp15ZLpeJAVH5lEejuqyqs+lJjtD2PcEKWq9Lh4i+74umlnlX4YpBDQDCVpV/l9JijDNGn52dtW09mUy6ZavWOl1mZAQm6nq/XC5n86W2Zjwez9s2pUTM3vsYCRGIAQAu7B1IRlNd15KUsGHEDEPoe6HIptIVxqi8FouHEJQG+TCPz04lJf74+Hg0rlNKIQRtyyGGsu/EyVyIuJulKQD03ssZba0hkq0ziOiz7XtxNQcARuy9b/teHBvk3xkRGL0PIcSyLEXNNQSPDO2yt04jogjTJ5PJ9evP37z5XopJKTUMq2gHKQY3P/rwypWr5KWkQdcty7J2zi2Xc2cm0qKtHoR1WyA8Lyl7UgvlE+u61jmLCDEmwWCUgpwjYmWMiTmLxFG4BRtwm1dS4I+tKwUtl4c0pYTE61VCkMG67/uqKMuylMVQXdfe+5QzcyqLWjsty4IQfFEUqFQIw2hUA4Ak0sZAAifEFHIiYxxxyomdtYirsjcej63VTVPFGFmxKSxlPp1Ol+2iqio0CACwtrwWyt5KVrAGjRFRr0SVGaQXUYpBhTgopeT5lY90A48TUVU1MWbvPdGKtbeaqlHJdizmZMhUVeVsmcIAAMuuHfuxdDayOyiKApFCCDIEh+iLsq6b6u7d2xcuXXZlKeTE2enJM5cv/Rd/4S/897/4i7/2G6/FmEprfYxNVefEy36pAIxxOfgU8v7O7g9/+Mb5ulEGCJARxUB/vlzWo/HZ2RlqJYLPth+2trYW7QNTGzOabA9Dv+wW1jjWakgpU1RaxZRotZZfgVtKAYHKOXjvJb5KKaXREJDKCVgpYzKTD5kwxxi1MRzjuqHDpqzkZo0xOm0ypJyS0ZqQc87IAMTLYa6VJeSQfDPe0tbMZjMGhowEzAp9TilGp1AZG6NXiorSmsRGK+eMUkZrXVWqKArFwJyJKIaUUnBaYV0VWmllmVImSpQRGQisM0oprZgzMWdnKmSKQ4ohaK0KZxSa4HMIQaPTyDmnuIwK0qCwdNYZhQzOOauVK0vZW0CO2hgEohwNgtXG577vYwhBAUqrbi0MEVxZWq2Wy2Xft8YKXzrXdTkaNVprZlTGxLg60QBVTtT7mFJCbWLOMWcCHFV1HwIiauuIOSYI8y7G2A8LRKyrEhGVYkSdKYU0KIY2dmM1kpZIyJDDMCDq6D2lZK21VmtUvHYulE3SMAyoMwBIbHAcvKDUWuutnW1tCwIM0VtXJoaUc4qRQnv7ow9yONRID0/ONOnpotsdbf/t/8//ADlcONx7+PCjstT7B+cmk/OF3WbWqKIrGFVIibwfyrKOQ6+Ay7L823/rf7x4eO7ixYu//I/+8V/+y395sZh9//Uf7O/tS7f77JUrV69ePX/+/GKxQFhJSJfLTrbU3vuzszOttVIwHo/n87lHOjs7m0wmoR+IAgC0XWu08cFbYwFgNptlYqNNZtJaK81ameeuX3euPJvNiXnUNEcnp9/9/g8UrADY3f39shqjKWNMKczDEBF5sVicnZ0dnD+0Ssl0FRP1IfQ+VKYoiqptewSwpvjUyy9qa95+962Uoaw0xfzw4cPrzzzj227o+qoovfemLATE07gyRyPKACvLPTmkhqEjIqvLuq773nddJxSkzExCLMkppdR2w6Jd1nV9cnb6+Pj4+PhYrMcAVFGYPgRtlDGGFQ4xpJxKBNAq5lzXdVnU3vvZbOZjLMuyapocY2bQ1ihmZPDeU0jDMLRtv7OzLbQJV5Wn02mMcTQajRrrh+X0bC6QMkOOg5dBRzg1MhLJGBTXh4kUj43yRFaDMhbLqCQzlqy1UkrSMexMtgB41ah5X5QrQrIkq29tbY3HW7OzIGtambwXXVuNmgcPHmxvb6+GThIee9TWYFhN3vJihGYlzcdGPiQEq2EY5Au6rhP2hlIoI9GaqbeUdyEYACJvdq6rNVCmzcgLACnlYhWmnonAKi2TNK9tQSnFgMG5Wu58UbWGrk8pGZ1Af+zlYK31wyBtk9aYQlZKESdma4wahgC8EpXlxEopbZARXFFog66wMacUMjN3XZdSCjFMJpOydPLoyUpRRmq1pnOudjpifYWwuZTGGL32IQkhSAcje2j5FiumVESbhbr0W8zsnAtJvMbspocuiiJHL7ytEELTNBuUQkYIXptdl2XpQ2jK6v7Zo8ePHx4cXgAAa4txVT68e293b+9P/ok/8Xt/7+/9F7/92/fvPfyJn/r6pBnlnBnQKI1Mrqh939b1qKjK6Xw2Hm9pqxhVCINM5AAASjNnpVRZNT6E2WymtTW+bbe3t6GwKRdVXevStT5sMZ/M5n2IAKqqKo0q+J5THHyHrpAbpU8JMxnjyqoyxjhbhjQLMRGwKVxhLaAGAGVXOc85Z0kRX7P+fE4phFDXpVGaUq7qwjlr3SSEoI3LHS2Xy7KuiCjFmBGRCcgCZcypGo+dMwLiG6UD9YphZ7JVVVWkjKgNqpVnLJGzOvkVI9HQKidcOq+UEiqQdlujG/oWiMXROqaoAVaKscqlNOSUyCajjFZKMZSuKpwunXHOATHF1C2Wk8rOTk/kBz6ZTlMOo9FI9O8bCoNc9ZhT3/cp6xijrivxeWHI46ZmA7JOBnG5zEiUMq9IJYnJWmsLh6gLgJgphFBWdYzZxyi9YdM0IaRIfO7C+eSD1jqnaIyxRUEJFWAKQwgRGhBrcqGx5Jx1YZFYG5TyC7zqXtu2FWtuViv4WsSgzrkYvRBTR6MRKPPk+CQGynnZVLVicqbY2zpXOTx+8mR6+sSTMRlRGaPdM1cv3/tAHz152DTm8uXL4+0LMZSsnEHDANayVrzssrWFGHvlxNeuP3fn1ke/+It/bWd7cnp6+u/9e/+H0WSMAMcnx1XdfOYzn7m0t01EZyenoogngrIsm6ouimJvZ1cOLyJSGoqiiDH2sBLwlNbFmFNKUkSdc8MwPD46cs6dnJwdn57gyoyQAeOTJ8cnJyeykYo+5JTi4PtuUApShrsPjxJB1bidnZ0Qwu725NKFi107/yf/5J9EP2RKW6Pm4OBgvL29WHYvvfzyaLw9W8xzzkWBr3z21atXr969f6dddqgAAHOG5XIpR8bQd+PxuJ13bs1LyimDVjmvjJc3C0jB7laT0DpvtalqyQ3MOXddN18uYoxDSEPwd27fe/DoYWIuy7JuGkQ9F2HbZCwDynw+h3W6qrWWMrTLXjTrcraGELquK6yVQ9AYVdf1+ihnUdAy82KxEFRMBCTCq9oYEQuErjS084WIO+u6RsTFYiFos+jRxeJx842bLaxIXSU1a6VQsmaDXs5ms8oVRbHiFhXWMWSxu7La5JzPnz/v+8XZ2Zl8YtaumKQppYcPH+7u7qWUjHbNeDSEVericrncOD9LnZDSu3mmhGHU972A53IoCes45yyLfyn54hvPa6GRoCkhkFQmXIfdrsBoZl47fYrD2KqkoZLaI+2yXB3Zwdd1rURFmTPzCufPRGVZdm0rP9A5l9a5XtL3eB8RlVR0ZlkYozHWWptyAIC2bYkIQAXvZVJTSknB296e9L2XbYj4NGyu1OYvGXitYbOiuZFzUgh6gp1MJhPpS7QW9H7VfgGAuHptOHfSKAAAKSXRCy1qWUr6GEY4Al456YooQO6ZGGPmLIDN7u7u8elJzHz9+vW+7zHgpKnb5bJt+8uXLv2h//W/TYzyODAzMBKRAl4sFqUzWuvd3f3vf//7n/3snrzIoqiGYWBcsZTOzpbEuaoqY+yjx4+rqjKJ3bwNWputyX5VVSF5RjaFc4lyxYSQgRNDaWoi8imeBWJmisykNLMj1AQOQKcwMRgAMnPOHTGWBpVSxlZGae895eSstYpyzoo5U2RKTqGRXTJxJkWsKWNVTkLw42YSY2z7Yei9q+p+CDkDWleVFlJAUxKYYehrZg0wMk4hlFZVViljicB7n2LmFIchjEaT0fZkMW9z0kWJAFAkk1Kq6pqIKGeTuES2RjX1mCkl7zEmrYEVj41FRE2pHpV7TRFj9ClmyONmRESRKAfKCoqiBAuU0gKUt9DnPLR9iFgVo2iasqk9UegDM6OuYoyxj8wJUTVlqaxLiKYwCbwt3LxPxipK0A4z2cXm2PLa588WuSxtJPAhMzCjQYVo3XI2t85ZBMBclwY51KUeN6PGKNZFjJELR0RhGKqqijFnNGi5C6k/elIXxWTcAHJdFUABCIwxRiFnZGYCiMyzLiYEpa0pnEbLpiJIixBH4EnpzFQWzXw5nJ6eAuDW1lbo+9Clsii2tsbXX3zx8eOH77/32LmtiW5yHsa71nM/G+Y3PvXpvZEJ/bQuDFDUI+z7Y0YF2vmeCLAplB9aa+2ymxulKecLBwcnZ6cPHj7JrB4dneDRkQa4fPHgK1/6EQVUFnZ/f//WrVvBz3YmzTD4YZhZa2MMzMgEBAyg2KMPSWtNgY22Bix7KIwunGv2a0RkzqOiurC/j4rvVffO744ODw+ttYvlbBiGvvO7pZu37dCHtu8tqBg5MwBZhYAagUIc6NH9I2Lq46zePvfw8axpmoezJRE8mrfvPWyZQAH8nt99oesGa9TQzl/9xIs3nr988+bN737r246hMkaBbjk9fnTcXU+6HAVWiwSLmF1kJuQMpIByQoXGacorRwZJHBmGUNelQiOIXwjJuZQZlVKszbe//70hxBdeeOH23TvLRTdbLMbjkQxViBgpN4XF0gEqZpXVivmCwIXRWqErlPdeK22dGojEOUEZ4Lwav3LmhR9kxwkAXeijt7P5YCz+wT/4B//hP/rHAMAZun6xKjZMOUfFCgBo4O293fl83nXtkKJd85u01kqxUmp7ezslOptOYS0E4sTsQSp97wcZd5bL5aQZrRhMzJFyjFH1SmqelPB5N8j6sGy7sizRbmf002UCJBWiNk3n54T2bN7V452uG4wmn3i0tdV1rUKTSPlp2zQNDtmloI3rOTBxP0RErBVSJADIyiZC71NhHQV0btQOISWNpg4phS5prX2KRVFqU8UYKQODjQkLw8AhRwkngBhTDBmstdZ2fasYtNaRMrIQTiEPURtMOcjHFVI2rsgZl8tBKVeXTY4Uhri1VWutp0PYakYIuD2epJQMKgBVuGqIQduCFZZl2XWdUiplbw2OtkecaAWIxlQXBRI6tK42zEwFSUsUhmVZlpPdbcpwsLeDayMOyiw70bZtxYFrPp+vKAuuIB/73kuH55wz4GKfrSoWy/Y0T2Ug6bqTvu9dYaqq2trZms1mOShp+BJiDAHVyu8opTRftrYorbUxU44JUaM2QAmYY4pN07jSdl3n4yC9dVUWy+UyxnhuZ2sxb2+++cZz165BNVp0HSIaq7uhnS9nqIzcPAox5aSN8SGZsgwpKeDauG62wETbzdgvu3pnh4zOMUlH4ozxPgnjYdxMlsul6WIfWDEzLUgakMyklCqbuvcDAYM2MaUhppQzMwcwlHMKEXOqjFt1E5FIE2pjNRqFSuvE1Puh64cKHGnxXl/pwDbUc2YWjcTu7m5ZwirnyGrxlLDKEVEOcTU948cRY7j22i3qSvFK8iRbBOOsMSaExMwxpzXCk1c/QSvZZxNCUVeldd77yOyc01ZbY61RAASrQJWMAFW1Mr0TgZYKAUOIMSYCra2xnEOUbsitUvlSjNEoDaiMs5mx7/ucc1EUWqmcsyh8hBGjtbbGrsGQlY2OMcZakxiEQCHNdekKOWhcqVMi6r1SkQkzpRyln7VEBIiFdcJplPEUht5HSaYCY40YnggA3nVZ5BCKwWojnzClqLWmyENedaBD74/Ppn3wZdMoh3lAW2AKWUj/tjJlWVbOEXDOtL2zK7wnRAWA9x882Nvb6/3w+OjY+ziEiK7p/VAYHgb+3b/n9/z9v/M3ex93t3aQPLJB5NFocnRyWpYOUC+XXVk5hhh9eOaZq9uTrdd/8L2d3a2yLvb3d6fTqXV6dnb66mc+de3qpeX87ML5c6PRKCUSb/2ubQtX2rHte69BJaGxADIDrlalrPTHfyda/Q0RhWJKlIjT3t6eMXo6nV67dq2qCyIy2uWc0ZihD3VdT6fz6Xw2DIMwPoYQRJsYYwxxSInee++9nLnvW6WACJhBKShLNW6auq45Uwxpf+/c8dnp2be+dfPmRymDReh9MioBwOOjk/l8vru7KwVSJqrJZMKcQ1rpr5RS4gWWUgreS2RyCAHVSj47m82apirLqm3b+/fvA8B0Ov3GN74hN+e5/X2h08vL1lqbqkop9YPHp5Jk9MpM/+NRW55lWHNZgVaWruIJv/pGZDnKm8ot+lAUxdd+4sf/9t/+e/t720yr7ARjjLZmRRmBLAOE9J0bRhIixhgAoO97ohVTSVjWei0EF0qmELv6vj85OVFrGQ8A8Cr7B1NKAgWLAcWmkE/qbWaez+dKg1KYc7ZOK6XatpXTuc++67ph8CJ6NlUh7B6rTVmtTKHFvdIYwynHKElHK5VU9MGszbx4LdkQhoecbRvDL1yFP+YNpUsDIipAJoaYMhNkAGAwWjOqzICohMwlOyNay5CMtV3XFWU5Go2MtT70qBUBi6pwg+XK8MprOR+ubQBo7f4tr7MsC167ZEgKNeDK3UIpJdEvAldsbkgBM6qykXOyWzuZbBB7CR7ecE36vpdPCWDlF8bMIiMEgNFoJG4wSimm1U/AnLK46q4jH4THXlXNbDbjdTZXXuuvZBMsEIK8u7y2C5S72nt/6/btvUtXZcgehkH8snPOZVF3XSd1dCOly8xN05RVBesETGNM5wetUQR+1tq8XpHI7WqtNV1sDa/ueySoqqooHDG0wfucI2WOOaQcUiICAo6ACGSMcYWb1E1VFJSpHzqnjXUatQUEWnlHY0p0enrqnKvLSmuVU8o5W7XazAmjJ2cWe5qu6xYLT4mJqK5rSjHnaK3VznV9r1DQpNT3WXM2CFy4oiwMkIAtIcXlsvMx6bV5bErJVaUtdc65954AlAJGQK00Gm0NK2SFoBUgEnCkjIDOaGYFlEFmBUoxpTSEVRlWaqOQY+YUc8oc5eGKOTMaV+SUV30CYCQKKcfMriwTEaBqmrFUQWFIdiEz52EYCufquowxiERdKaW1ZcSc4wqdM05iy4R96oxV2g4hhESKabGcJ6KiqHRZUiZmppR939VaJx+KokjMnClFatvOew/gRaFhtUkEbd8jolGqT8n71io9qhsL2C263g+JuZlMjC3m7bLrp0VRKFgxTpftom5G2trFYt4Pg7IuEs9Op9eeeVYDPnj08Oj09Oj09OHDB2i0c245O9MKYg5n0/aZS+d/6md+9z/5+/9jF2BvPJ6eHRXWzGazuqmM1t777a3GWqVUTaXNOZ6/dDCdXTk7O7tw8TCldPWZi3239Ac7uzvj5fzs6pULVqPASgDq8uXLt2/flm6PCFJKJkMChNV/gFdeRR+bDfHa9GBzLjhnNFptcDyeLJcPXn/99U9/5lMxxq6dK6W0c0rptm1Ho1EzHuV1ShoihpTkLJMAltlsJidLSiH0Q6YEAIvZdHd3VymjFFPKzzzzTIyxz/zCC8+Px+PQD8vlkojFqunNN98cjRp5kdqgE/exnGNORVHUdW2MEd2BQjRaCwg5DEkplYjEklEZVxTFN7/5zQ8++EBrDZSb0TjnLDwAH5KcPquVv9I+9HkdnK4QQ4xMpBAFS3TrdF61NpQFAKctcVqTw7QwuJQGZlajkbWWefEP/+E//Jmf+Znnnr08W8ydNogIep1AkAkRBZ5VSjnZC2qttVarbQjmnJlRKdyk2slhl3POORmjESHnLP0QPmVLiYjIwEQJeHt7WywM5XzfFLl+0UsRTTkAMCKKP49k2QJATmytzXkVcsyhS9HLpZeaJ33AYrGwSnfFKr5i00zIe5HxQ3oakQjnnKuqFp9kAGiaxhiDgKEb1ntu1lozATFSZsgZZeqIyVoKKW+2e3LpNyeM0U6Od2kLtLYA/UYHTGuvD+FmC6FpU4DT2iN61U8wpyQQ9eowFMkQKt5g4JsqTkRarXyLce3/L4eGVEf5HKSO4voWSk8FKgzDwLxSP08mE6IkG3Txb5HWQcwjWaF5KoUPEWWJ4Iw14/F8PmdlYsgxZLMWOAlSLfvj9UrYC41Rngi5Fg/u3Unnzm3t7FirY8xKK611iENR2mEYtFJyryITIoTgpfQsFgsR/liliqLs+3YF7xMRMaKSac1aa7Z3J/KppYSJMhiVEfrgu24ghMQwBB8zWePAQPTRWJ0SZ86JoQ+eUkZgIvES1shAmQgYFDpXKuP6vqeUQoo6K8qrVClrrUa1WCxc4Zi5XcxAGQBAliRL3/dtjLFq6mZUZcau7wGgcAYAcogKRcvIzGwKCwBWO2V0CCGkJBHKMUZaJxCvJF+oY07A4u2iQ4qBAhGhwkiZyeQcEuVgxGSUlVJGoRD65QZVRoNCRmBgZfQwhBATM2vrVgvCTJk5EDIzUEZEzhmIrVMxMTArparCWrJCuVIMZVnrdVITIuZMsuRI0Wutq6oCV2KICFpqsg8hhMSJdSHRqASUAGFrPCIi1CrnlFYEBJdSQoC6rouiiMQxxv8fV3/aLEl6pQdi55x38SWWu+VeS2btG1CoKqDYaLCb6IXkDGch54PGZPogk0n8GfoXMtNiY2My6YtMNpRxOBwNl2ZzyEE3utHYgaoCUGtW5V6ZN+8SER7u73aOPhz3yGyFwdCJ7JtxPTxeP8tznvM8o/uCc13XWWsMOSSTOeUhM2dm7hkMkXi3CYwwEBH5pq4asnaIYdsHHYkRWUuGiBpXZ8DV2fmq2zRtG2IOoWOGrx+fXL18+YWXXnPOfP3112Ics2xjBOOQIDMXzl0IB4cX333/u4/ufXn/4f1LR/vDtpvP59vtpnBBKZL6vkDTNMLSbdefffbJa6+98stf/tJaatv5er0+PDw44bRenX3zjdeaynLJu8FhXdfPPfecLinN26brh6zRhoFHc0sWIZExU+4kKZiZCNRcS1PRdtvXdf3cc8//9re//fDDD994/S1q7JDiMAxtMweAzWZl/bhcqIBNzpkBmLmpKu+qK1eujCy2EFVQkAyGfpCSHj9+XPvq7OxsdXb64osvtoKXLl3yZiR2Mo9aK9tNl1IUkdPT01xiSPHTTz/dbDaZiwIV1nhrbVPXOpJUAkvTVFrdOmcA4Pbt2z/96U9v3zu+emn/+PhxXVfDtpstlvpJSymG3GS4PW6vark5dWNjXNbPOLFwn5jGI6JkXUIEXc1jZEBGpJxz5b0gNG11evz4Bz/4gXOupGzbaip/IO+ceRwKQ+UdABAZO/kbIiKAZFTSLzgaZ8ZaLQ1DAJHZbC4iIYQSY+1c7fzTlz1BHbxdb3Rdipm1g1cPkuCSMcZUplslZPDenp9vqsqKiIqBi4h3NfPGWhdj9E2tt845ZwCV2FxVlbbwfU9arOhF7oKS9tw4mUrphfUT9x4AhjT2VZZEEzBOO2a6J62QQ84ZWLxnZS20vn58+lhb+cwcQkA0qYjOws8365DLbDYDQyfnZ03TCMhOkUqB4rENHblf+izQDoHIk2uT9nNE4/Ibgmgm2yF2msVNNa4P6SHUVKo9jHaQs9lMMVH9V1rH7MTndxyxXRc+DMN8PiciXUxlZmNRGYL6JmWi3+t1ap2hX7oKjs5qTJnV7Z7MSCnQq7LWGuMUxEIwunlVhnjnzp3T09Nnn3123jZ9CClGRJNCJCKRonPxYQht2+7t7X115+5suWd8VVWVIp1938eYzaRJrr2vQUNknPMWScLQ68cTQZHCTDnnbRgADQOmVAoLkBBZgLGOEy4ksOn6NWdvrPcuM4XCNNEoREBrMUSz3W65JCAgspr5rbWVtywNM2ek1Wbdtq1BbGtvrWf2Occ+Yl25FFPmUlc+FyYiErDOe0talyWkGAf9kowxZK0FYOaQovdVKmWIQRj1izQkMcYEqdaVc2Z1ZbDWGhAgjKlAzrZYY5EEiBgQyToClFKADKIRQWYpkxUBi4iot/P4VJyenEkuZMAgWSQWRuFKaLXt29pT4ZOzlZTEueTMAEAxqgRPKaWJI7VVq0ICMsZ5X3PFRCREsXCKJYYccnLCxhiWXDlXNXq+hRGGPpYUIxcCzDkDQtO2ObMgpMzbbY/WGLS+akRkM0QQjeAOyA39diNoULIkb6WkiABNUzezNqS03mwBTTtbaF7Xez7bW2yGcHxymjJXzaIL267bksC6eyCC8/l86GMXsvWVcw4Is1BOsQt9Y/DL2/c+/92He637o3/wj370F//h5qe/u3iwt+62ljDFwTkHkgxWq7Pzg70Fipw+Pjk/PHrzzTePj48vXbmcQrSOjvaWt299wcxEtu+2s7oZhsEbm3Oa1dWFg8Pj42NqGmcsQIbEGUEYAEZxc12tl2nHAwAQRRctrLUhBIBiyKVY6sa//vrrP/7x3/zud7974403MJO1WDipMkDJRcZNcNJyTaOq4mlt22o/PWE/zKUQ4byZDziIlOVy2ff9b37zu+uvvIIsZ+uNFuCljNsgTdPM5zNr7YULF5i5ndW62vfw4cOzs7Ozs7MYgjVmjP6lqF6HcbTrhOra55zv3Du+cDBDxLZtvPeLxYKI+jCu/KaUck66EKy7jE3TILMGjmYaspScZbLrUdxAJkVKZyzjE1UyJBEBERmFFFhqX9UX6tPHj0ophBZYdAfUGOOsdWQKiKZhRFSPsrF/UtxiGmaN+X7X2pLUjReRcfxp0ViEAgi0+8np+0UiY61Ro3k1YtNuZDZruWDKQU3AmEvImQvUiIeHhzv2LAhst1vnnAjk9Zonx0NNFavVuQbZMi0Ba286Nm1NxcwmjTNa3XzVrmuIwbuxHNElbGstguw+7xRaxQBq8taaT63V1KJAODKz976qGmYYhk7pXXVdlyKbzUbbvs1mM5/Pq6qSPDo9TGXoVIcSaUM5AgcTWmtg3LEOISCKMo1TDnlagKZpCVuvzfmRu55zZvdE4VLV2fSQ71KgFo4a27XDNsbqY6gzYP2MZdLzGusei6mUnEVxfTSkv46IdotkANT3Qb33tM4AAM2Duwz9dKcehphS8t7Xta9rf//+/Tu3vrr+wovPPvusbxoGSClpRUFEnGLb1svl/IsvPvvhD3/40ksvHR4d1U3TD3GIgYiMNYSk3bz2n1xGn2x7Ybk8E9GdqlBS6AeG0A/BkQupCKI3LoFIEqbsyBRmBCDj0KBkRVszsCEAZCbmanQaL0PIpWyNBR1wehqnRLoHFobRhgVJ6sot5q22udvtZrFYONcQgfXWORxSRiOFJaUSUyJAAoKCKGLJFMiVrbQxdVVVNc0wjNjdWAdNNltEBFAEJebkaQT9wzBoTJQErIIvwsCGEUlDNBEDZOYiUkQmlAP7oBqnCJNNop7RLMCIUkRKtgaRBaTYGGvrJWQLYhB93XLKiAMi5qTzHsOch5CsIyJjrbPW5JxDjFVVERkWiSHKEFKIpbAAMgMSEpH1tql9SFCyGGMaXzmDYUiQkyeyzhljhpQFKIskLlYsAFpXMUIOIcZCmYXYOZfJANK2H1KR5dwCuRR6xkjOhZwSc93UOsIhgdli7l0VMm/64KvWt5REhpzJ+O12y7nc+/rRYjvM53NX193Qe6DCLIQ5BoOYAX/8019849UXr1+7Ynz7/b//nx3sH33x6UfzxbJfn1trHWGIEahanZ7N6sYQWes//vjTV155ZbE4eHDv0YULF2JI88X+q6984+YXn73+6kvz+b6u0GipHkI4ONhTyiJZZ5DEqGxUyYUBEAEEnmj7Aeysakc6paoBaKW/Ot8sl8u/8/vf/Xf/7t93Q//uu+8Nw9D3/axdpJQQx1g/xa4xnO0KeWMM8xhMjfHGQwhhu+2JsB/icr549pnnPzj54NbNL19++eXFYqEVFU2CwHEITVNrFZ9SEihVVQmC7lwxs7VeV01Uk09Gs6OxOTs7O9M4e+nwKKV09ZlndHK5oxPnnIGMzlMVLR/6cSFHw2XOOYbIuejzUkpRKfgx/RGRMSigXuuICCIAbFCxaBQWS0Zbq81ms7/cW23WxphSmMgQkE4NBQGZBaaptoLG+o1ofQPonNcMDQCFEwKrh6m3oyZzETDGECAL2KlNl+m/YSKRENF8Ptd2P02eBM18ntZhs9lUlRehbhuXM7dcLtu21oGFFNbSZ4ykMiaerusITdu2QwxPMhmiztR3ldmwSbsbiJOwnaIjmjgJJ1NyZq1xcRqOOh2sTiWIor66nqQt6XYYDJVSVBJuVHVmZj5nQ0473dOzM7UD8lV95cqVsrNamsDCcXqgmd6YXTWpQzcyY0nnvRcp08RnfO1A4F1H63FkoeO0u6z/L4XlnHPq+7sDXXYTWb2H6saH49RDlAbRD51mbudcUm/FJ+InGVikcMm5qWrd4Pe+3m63iQsjEFnEca1f74nWQPqUpRRE0FqbaDznnLO1tq3rvuu+uvnF1/fv7e3tXbx86eLFy1pniMhy3nKBTz755J/9s3925+7dl15+2Xuv5HAu4P1IztdDMWp/pqR50DbOQTuP1oeUsafCUAAaWwMZg1mAwJiYSs6ZBQkJDOiRilHUphGMTSx2fFgwFs6SSxHduV60FRmLIJkZIIsIeGhtDRNzRL8/ImqbRrFNRFHWfoO4f3TYFlltuiJEFEspKQ4lQV15zzTEkHMEIWEUEee4qp2Z1ukQDIKpKqdowHjOyGgRjMYQGUQqAjGMvBJDRgQVPqRChSQEnf+TsVZllvXGCYKu6IgIWqtCmzFlrOsSY9j2McbKeYNSYhLocU6pZIdwuFwsFvMUQ79BQ2BmprJOxYpzjoYsC7rKKyCmiZ+s16NJRIXFOm+t8kogF9HxeVVVaHQmKAToLFnrq6oyVc0gxBhyEgByPgl4YwWAnDVABinGGIZks6RQsKbZYk6AMbO3dHB0UaSsu20qEQCYKAMgGRHZhhxi6UNIJbeL+YheusY2Fmh0Q+v6YOsmCcWCORRBKDw0VW0JZ7N2vnf41d2HVdWcnJw6yM3s8Jvv/J3je1+dn54t2wYkWXJk7OWLV1LI9awhS7Wrv/riq9ff/EZTzx4fnx0eHjw+Pjnc37v23Iu3bj967vlnpIxzrJRSXddhGC5dujQMQ9JhAREKAhhhyFIAAAkQQYr2ckUbYkTUNSSNSikVV7vampCTsfj97//hf/yPf9G2H7/55ptm0l4opSAyMBCIlAJklYKU85NcHkJg3adKuRuGowsHQ7cVkb29/RAGFHj77bd/8rOffv3119euPSPyBOwlorqudGg0Sk8IjBrIQwQARgghKX3UTUZvADAMkQwQka8rRZ78/t5XX311dnKyvHFD27hhGJRmUkpRd6Mxv5YxpOr4cLvdnp+f6z3ULVudEyk/RWvcnLPKFjLnmGKZzG41niNaAxhCP5s16/XGIDljpYxQCut6DItK3YoIChAiEooIqBQOIrMQIusYHwBYkFDrX+Zira2cBTcqNtTeoTHMLALaM+8KrMp7BgEYNwONRe8rZu5HJRAwxhCBMbi3WFSVG/2JeRy1Nm3lbOWcAxytw3QgbSzOXUNEhpwa7SnyLJMZX8hpB7rqX+r5MWSKALBkjmMprzQCGLtPHB1aR+AaJlcGYwzySDsahqGuximmXrBeVQw550GLAwUIU8pfP3p47dln8jA2fwpkxJJ1hVLPg7VW81yZ7JuqqkopIuJyuYxxWK1WpRTn7a5sVSB6xKjRKEcJEZumyYlH8Y2JIKYjZH1pitJ5c9u22hbvIOucc9NUzrmdBacWAX0IOMll62FTnSitO2UatGu7eX5+brGx1qKM5PyUkkod7AwYAGi81UrPrqr1eh363jnbNI1z/sGDBz//+c8//fTTd9999/oLLw7DEGO8f//+gwcPBMrVZ59Z7O8NKeoWn6srLhAl6h1GRGcrFaPW3GFtwbmvi6v7EAzaXIQBk0AfIlWWkXIpQEzOiEjOKaUnZiPW1dZRznnTb7XmIjClbEXEGCcinLkb+vl8XrmKS5as+rHFkakrp0bW3vvz89P1+lwdZhbLff38s3mzWq025ytb1VVVDTHPZjNr/flZVqVZNKbr+qoaFeAUu+974733ri5Zuq5TgoxyTPSI5FL8BMfzNLooMSE4Q8aQEWF1HR/7GB5PRkxZS1FFV4wxVBGg4VI4Z0STUhlyWaecQtSOAYx1ZEIu3EdjXFN7Bj5ZrUXEW0POWjIgAsZ6ZzzAZrNBYwTF+ioVQVOAbAZTQkwpFZG6rktkMgjokIgMGATgBIh9GMkaWbJzrqoqRENEZ5t1SDnn3G37mDmzhFRm82y9g0AhJ2MMOE8saLCYVFuVIwH1sVGdnZBi1TaImEoZYg9CKDikAUX6kIrwef+YmRd7e5tuS0Sc87DtCdBVzRDzMATjfMyJkLyvz1bredu0Db7yxjdOHn791Z1Hs8otanMwn127/Oxrr7zyL//54z52FgDJ5SHWdZVD/Orml9evX2dmzuWrL26+/Nprp6enMaa6Xfyf/5v/5j/903/w5huvff7FZy89f0EtS50zaqwdQ//8s8998tmniASERGAFCgEwPHmhyswCwBjbdUEzpWS8A5BhiN77GHsqMJvN33//23/z45+llF5//fWYeu9GPSaeZLpVVQYmQkp8wr2MTVWHGNq2PT9b184jqSokqIL6W2994+c//3lV1RcuXNDRbNM0iKCiFspP0bElIs7ahQUc3zmNzSsRyZRmnHO+rrrtWhPzZrNJItevX797//6jR4+uXr16fHyMiOv1erFY6MIJCsScAECZ3sptmc9m+3t7ly9dcs45Z3a7uTyxnwDAIim5BgCGYVitVtvttoBMvRSq+wIKbFZr71xVVcMwEI1yxDzZ0sG07ADKpgYCEJksb3eRawecarc0wdGTrCaiNmqGgZkZRs1kmgS8NHkTkUFSoTEUCP2wHUIpZX9/v5RCBBcOD0Uk52ittWQUzKh9VTm/y6AxDLs4E/M4Glf1PRBDRDpEZ+YYI/c9EXljyY0HRu2b9vb2dqlCJlBaRAqIHgOYprDMrMtdnLKWeGVaoS6ldJOngl4GWWOtRTApJQZV2lEBEFiv12+88YZ1tpRCOk6G0cZRJ5cTajhuZ+hV6TeuBe7Orgonmbzdpq8xpqoqBLPerr33UT3dS8q6ti7iqtECeTab8SiZlQqXZsIGdh+KR4pSns0Oxzs2wUsxRv2BMklM6+GZKG+wy9+GLCF1m+2sosXCG++8Vw0yIEPMvNls4uicWImI88ayjTF227XzBgByTKadIcL+cnHx6Bsnx8f//J//T88+e/Hy5csAULfNwcFBXddVM1MDJQXAj46OsrBlQvtkVR0RrfXK1bA5ROeqfujjELvN1jeNAK7XqyJgXUUEnLMxBIDDMFhrPBq97wrPe2+RKOVsjAOAIoyGCA3nwszGmpjjdjtwzbXzrrYWPLDEGEPo95ZLEUmTubfKihYG/UuQonw5RmAxnHkYAiBWVYXO13VtEETEGgSgUoTIKIVhGGJVoTFub+9ALX1SGpVWttstEPV9yJktUs7ZWTKAY8VkrMY1KOCs11MlxsbCCEAkXNg5F8JgrUVrEE1MqZSC1sUwhCEZY/q+K6UAUTObVXWz3XTOVymXdT8g4ryuur43SPO27rtNXVVQSjWROBBpiKFpmiLQ9cPZal3X7RxtSBGB0Jjj0/PGOIkmg1p3FQAmHPdDYmYonJkBoLLqvy22bVcnp+frdR8TGWd9RYb7UmSbja+GISgwpfMYP5vluKm8r32FLIoWGmfJ2a7fNu2cjOuGXDmy3m3OViVlBsnqCya8efTIOdfWddW0hiwKIBlt2TMX47xzjqAY60PkdRf29i8u5vubs1MHbCQTxE2Et99++0//0fAv/rv/13zWphSwRGauandwsBeGbdNU83m72Zx9/NsPX339zUePH+/v7//9P/1P/tW//7ch5pdfefHLW5+98MILKDwMoaoqBEbElMPzzz5386svgbiqmizJOYMq0+MswCTliCPJnMg657quq9oGntIzstaT4b7vr1279uYb69/89hMieuutt0IIKWXnXB5GW+I8WZ2rkKeyXnPOBLjZbL23iv0WEIcWEa2FnPMwDLPZ7NVXX/3d7373h3/4h9pXiYjKCtJTikI8WZp75zVw+6bWyVyMsUyhk0FijG0zDyHE0M9nyzT0m+0wny8fPXo4m82Ojo6Oj48VrlDpkrH1JNWBx3ENaKevxFzKOCBHljQENlmVDsGR3iglwe3v78M0vs3CzPzCCy98/PHHKaW9vb3VaqX1RImiUdVO/KOUEosgiTKoR4hb8QBjECiHaFQhU9iRIUAyRt9EoFRTFBZ1AywTVAvAzKVkRDRIuZSd0qEuBPZ9f3Z2Zuumqqqu6w72Fgpa1LUHFgBJJQEAgZSS1BvQOacOLrPZTIfcBILCRBbNyBsSkZSyCBljmqqetfW0VIM6wnDOLZaLUcWMMwiDCAJU3iJi5gLe6jc7DAMCLGatetprQLc00vinBrQwgyqcpJQyFxFxDohI+aTe+81mU0rpuu39+/dfeP55PZ8nJyfzebsjMe26XpqMJrWNQcFSshZPIqJru4dH+08Ps5VyVUqBiceHiHqf1+v1jvKi69fKsVep5KZpTk9P9/b2dDqZUjLG6aO0G3boteFEZNt98JEOhuOsXYdHPJlHae1VSunDsL+/b40rIDpPMWRLKaenp3o/iSilQkRcgIgsGWGJaUg5bPuNS1XO+caNG//0n/4fZrP/929+97G19vDwMIQgJQ/brp3vIaKqXmvPfXh4CIVLKcqeM8a0bXvS92PZygyrbhNSFDR10zBRKkzWAWEByCXHnAUBUTKHkErAeoRQlGpYChqw1mrhycwiSFREBJTqgqJ7qFC4rjySqisBCm26zhrTNI33dc6j2tVuhIAgKACoayGikTGmVHlPzoQY26YyzhKMZyXGaIwDosIlbQcZtUOx5JL7oOQ6Fqyruu/77XYAYAOIUJGxzlXWUklZ+55SSth2WkYFIPV5doRVVcVUWJhAYiosqZSSWCDGmIrCO0BPliZZMLOIFGQJhVfbHgAkxfGUl8IQG++GlGKMMAyIyFxCKnVdRxZjqz7G4fSUgciOXfvB/sUhbDebzhly3iIqOgd17R0ZshbR5Jz7nPucY4xrkXU/BOZYOKdAuQBZ5y0Y6rotAPSb7ujoKIR+2KxzzpfmxjQVAItw3wcR4ZRSyX2IfToToJRycA6Euk1njDHWsmBizjqmquqqaaxqu/tKo0yMEQy5yqeSOUZmIGtCyufrjgSGLBmgIptyasT9/DefvnjjjX/8X/9v/8V//88WswMPmzD0deWMIzR8/8EdIrp69epqvb755cevvfHm/Xtfv/TKC3/Cf/zn/+HfN8v24nLv9t17N55/riJTUnTGhtA75wT42WefvXfvXgh93bQpFnQYIxZmVfoTEZ3n1XVdVU0cp+/j3qgZjVcZwYDA6enpq6++enZ29sXNW865l19+GRFV6DgX3p5vGteQAxHJODbaiOiMtbVuso0WMYhYtPVGgwaJJOd89erV9Xr9wQcfvPfee6vVCnFclng61mhYKaU4JEQMOWk+aNuWOa/Oztu2RRgHezBNPUMIwKABwrnqk08+eeONNy5fvvzw4cMd41TfOaXS9+u9vb1hWtGhSSNQ88esbsSMnDIdPGsRmeJ4vHla6NIEnFKaz+fvvvvu559/vre398YbbyhwLXnkVSDikKKbNuk1Ro+DmBC1yymlaFuj0SDnXMoopr9bcEcau2H9e+trmV5PTQrBAkhhb533XhC2262SbqrKGWOcadSHw+BI/mJmtVAbs7sUApACOQ7ekrUORQBRScUyuraUAk8Oj949zqw2aDlnZ2y9t7+b8o7YO06buCwsXNeOmZnQGZo19diVcqlU54tU1m9UipaRq4XWVm1bA5CIDDFMnSI652azmSoynp6ertcrmKBs/RK1odQ/6Ntq6ePIkACy9MNQVX6qyoraCGqw1ZrSTCbcRBRD0E+qHe1Ot3kHU+8eMZ6UwzW5wuQipZ20jth3qVSTghLIuah0tkqPRe9HlML7+mmwZDcLGAYMCqAiMoNzrqr82dmZ91bBZ30xcylShEmYmQlQ4YfZbBZiv1mtc53+5E/+ZLlc/uVf/uWVa888//zz6/Vav0olYShSlXOGwr6yuhOlPxBCGIatVrE2ltiHnoEYJCOGHAsgeUfOxJRQULJkVcGtTEkMeYSgx7GBZElqFj0+RURozDiDAUDVno4A1pKXSVKcMSvw5kX6fgcEVlWVZVQ9tQaJCNUR05i29cP5+Xq9ri5cmM/nOSdjfSk9WjOkWLIYY4FUBR6MczHGkrIxJrMUAQIcYhCE1E08dWOd98aQcW7u5+fn5wIoRQDEOO+RNNBUswWSJQIEqJom5+hhlC0FADBUYs6l6E5bKtmWAkQyKqsREQEiILBwiDm4AoVzTM45b0lKsWxzzjiOHlkEtv3AiNbV5OrNZtOHaL1lMKUUsv58GIYhMufa+xBSyZEIG1+VIVkrzig6xIgCALlwFEwskWXIJRUmAesMIQ39sO42TdOEkjNIzMwMVTNbb04ADSGqI/qI8DD0MbBgKiyCXsCgVb1KpWaSiMSgUtqZRRe4tYYdR1ZmJBPllKy1zvqcc069IRLBBIKCs3YPKtcnvnt8fuWF1//RP/nf/Nmf/ZvMZ0CYQcBQ5nx4uPzxT37EMtx44aVbd24bC889f70b+ne+87at7KbfvPbCK/du3/nq9p2XX3wpMMecnK0QBRHbxh8cHDw8flxSrOp62w11XUdd4gYo0yHUuO+cI2efYKEiNJEzc86z2eL8/Pzdd999/PjPP/3086qqXnvttZQSp2yNcXVDRAIlhGSbRt+BAHcPODMbQBCV5YJdjgQALrJZb1977bW/+qu/+uKLL1599dXz8zMR0R/cJdQJeuSeaDexK6XUtbfeaYQVGXfbpvGYYRZgVlWsy5cv//a3Jx999NEbb7yxv79/cnLSdZ0xjkiMMd671Xq97Xur2pDTKFdEmFFE+hjaqnaTfU1KSQ1uuRgYk8/IxlJ0ZERTjLly5cq9e/e8tcvlEkXy5IY7jsS8V/0QhWRLKTlEnBLbGBZLyTmrIGVK45ag6j7uOh7N4tqH5VK4jHIfjGP+1h5OgbFu061WK+/9vJ3FnKzzbd0QUUlRRKSwAs7anaN2+U8plhhjAIQ5E1lQ0gYRTMqUzBxjynnUHHZktbygkXFSpDAgGiJDoMzxp2bVgMCEYiztnDY09Wl/vOtYdkNugTGda4YjsgqYD8NABkAMThQn7/29e/defuFFHSJYa4dhqxR6/VzaNWnE3iG9MLoWFp226jVof7xLkF3XaYbLOQOBjnXhKY+TXakHk46KXoBOQHYzPsXeZRIBLNOevUpCjRtc06lQCV69Hh1d67/VQ+grN/RBwSQFbAiNWAGQYRi2223b1lyKAO5ydhEmIUFIJevKaxmpZxJir0fru9/97t7e3i9/+cubN2/u7+/v7e0tlofL2dwiVdaVmGI/rNZnbWlpYlOyZBVn1RNlM2citN5th5AKx1yYrBjKscSchDABxxQrqqx3ZA3lWmU5K+8BOMaYSwGWurIMkhMzszJLWVj9tljUXGdUg1NiMAoKirLDRaSqKt1DReuYGUXIeEJkQZwK5Lqu9/b2vPe5FEVNfV3lmOpmxszr9ZoD+Kpi4PX5qqqqxKUyRgcmpqpyVqIjABCSMb7ylS85d9uBmXfKQdvtlsQoyJNzfrTpQ8yAyucMCCAknFNKKbFS7TmmJILa+xLKiN0VDmm7iwgGyQIMKROINyYXZVVQH1IpxXsrAATIIkNMYryrDBEVtGKY0RTmxIWylH673W455aatx7jA0qfCSUe/birAAQByzusCm34YUiwsxnnna0EjCGgskQ0hNc2s68Z2H3MiltP1xhAdLC05X3IpQmBovtgrAn2I/TAUBmMRycZULJL3zlkLbuevElFYJmqDPmm612grN6RCk/YFgxCA8R5KAYOmqbtUJMUgEmFTH1z53p/+Fz/74f9Hcgglel83TjZnjy9evHBy/PViVl+5eLA+f3TyuFnuH9y/f/ebb78RQtisNvtHF46PH56dr2dtLSllLg/v37969WoIYX9/P6V0vt4YZ9WxPCbNvGgQtX5UwJXZkI7HdmQNg0QQUpwt5n3fE9pSyh/90R/92z/797/5zW/atr166fLZ2ZmeJYUW68YXFA0r05ciIoAs/JQw0y6nMogBqKoqxfL+++//xV/8xXw+v3jxwnq99nbsDKawi1PStZpiNV1th945pz4Tuv8zocdmYu6YIQRrLZJ95bVXf/SjH/VhePfdd31ddV1HCGRNTsyS67ohIjPuU7EA4BMpOqP1/i4Wa8At+Yks3a6vzcLIuCNCItrZbHbnzp2XX37ZOZdSrwIgTrWF8ygStN1ux5YxZYDRklZPlOZjxY1hIvp6b/UPO7R5zL45P9UuF03bGvSjelF0ncqW5ZwfPz5pGh9BnKEQcpkEh51zRhmjWsgYTCmpo+jBwQFOnGprR8tzhfS0HeSJQqWvnGPhDAhkDBEyj2PsqQwbw8XuSMSYRzLK9DbGGOcsPXVypspMCzgEAUvGOBIRGQ+1U+VnABAE9ZPY39/fbDar1ery5cs7OScdSAFA27ba++4QIK3w9P5rxlW1uJxzYamqahp+P9E9JCKZAAnvvYZ6vS0AoKPMPMk466Q5p7SbNCtLSxOVLgeP270pKhkipUS+SoU14+o/rKwTxm6zZmbf1LtiiGxCwlRkO8QLRIpQbruu26zgqdcuYuv3gjBWcgrh7IoMQ3a1Wj1+/Pjq1asA8Omnn267bj6f11VVea9IAyKmPHp5GVTPyvFb242T7GJed/02lYRQvLVDTsyZQcWDWBB1X9laqx/elCrlLONuhnDKlqhqm7Ztc84d9iEk/WJ21QQAgFDOuedCiCRCiFXlgKmACKG1zlZ+GDjGVKMTQUJjjCEVRhBkLoCEOD7GMUYy2Pe9MQjMlA0iMpmQQg6AiAWhC5GZZerFM5FIsdaWlEMc0hDm7ayqKqOQCMDZerVcLgFB5a9VNna73W5DQcJSwHoqRdTOT0RCGnfXnHOsQ2swxpiaJAsX4RBDGCLQqM9ijHGGGIHAVHUtFjKwMx6FDaFxXvG1Ajr+opBKzENhAWtD4SxcGEvM1nFmKQCxD3ZICEAELplhGJzPM8aqcgBQOI2yG7bOLIa8a411FRoXUowxb7dbW3nJpa7r4+OHzrm2qfrtpnaeEY2zEaiyLqSeiAQxZS7MMSWVWg0pcy4pJSwcUqkqN/E+GBGtsSRQzbxBCiEoOJ8BQhieLmkFWIjQYOJSCnz9+OTwYG+xf1RKvnuyllKaZvHiW9/56Fc/t2RL6b++c3d98uBw0bp5e+HwiEFq5+58efP5F2lvtrh/5+7BwYGv2hj6i5euHJ8+tu6CqyqD8Owzz+cSiQikXLhwIXHpt8Nib7nZbHHaJWXmnLKmRI0ORsaZjXrMKIIHBZXJ4qwFYGPM+9959yc//cXNzz472t+v60qFxhRCLKUU7SDxCbfIAAJNofOpnCoIBGAZlBTjrPvWN9/+xS9+8e1vv7e3t6fDPBYGAWMsIqiF5+5mEhESASqyJMYYQXTgSinMooiIPvneV33fe+8RzHvvvfeDH/wAEb/zne8Y49Su1ZDT/eNdNyD6exCUT8zMADQMg/eedksyzvV9r+NYbZr1F6oeoSYSABiGYW9vb9huf/3rX3/nO9+ZzZq+D08JM2WRYq2XafPVGw9PSVlpJ7RDuWGSPRGp5CkhM0QEIGNGDpEqD+8AZJ72dnLODx8+3Ibh8PCQiB49enRy/FCrB51xaimQYxzbl1GgdJyIK0mFJmoYTaoR1hKRFgQZRJxR+lhJMcWYtXQopajPLhGVMjEG/vYLABj/FkZiJjG+3SfdZWv9AUuQcy4IVVUZchMSEIDQWg8AJWUFcnzlbSA1SlKRLN1W39UxEzVap4qUp03fMjHmtFRiZo024454KTtxD2ttlnGKrBL0u8mOViqaiXdLUzFGktEdRcu7EEbWtPd+u92oZIqmRl2QK2kcvpjJkwqFum4jE0z75LnTQYBBrR0FYbVacYoppbZtFUAAfiJOqcJiuaTMSflii8VCRSW9dZuuR8Qvv/zywoULe3t7i8Xi1q3b169f18NjiEzluDjvTNu0NKqJGZ2j6x3WK7RXLx18/SDfe/SQTOVr3wdAQDBWDOXMDGJtbSpj3cTKIyqlhGFbiicBAHDG1r5CAW8dNljZNPrQ5cwgjGj1CcwpslgEZ40jo6hJyUJkEUxhIOMq6wWIULWYUQE6Zs5FyLCyVPoY6rqeuTrEWIY0a9rH52e6cmNZNv3WuapdLtfrdUzcrzciIoQ2jWz1tvYFIDJvQk9n55BTSbGp6xB65WUQEYts+360rizoveeUUpGUBiJAGHUJaCS+jgRFGPcEcpGCpUDiEpNvHBlDaBEYrZOcGIURchGQ4iopmb33ZD0qZSdnIAVsJaYMxhKaUCKDIJokpe+Hqqrquiml5JiYwaElJHR1ARmKcBnV0gsgGzsMMcYMhChQODGkmAsiNk2jjVpKAVi8dYvFYn12vhJq6tqSX/XZRYlDrKqqSOm6LnExxiyXS2tt2AaD5L3vS4lZzbQzIFtCZgYyVeVhNKtJKKycYECoai8iAgyIwqUUQZSYkzW4PNxfddtNn7y1MWbn3Pq8Pzh4/rVvtR9/+HMHFmhe1/tXr17B3Her7uKVy1C67OXBnbsvvfyaMJ+frmazRUxl7n3TzE4en127ejn0HYoYO/lQWdxfLEGw77YiRfd0mQsiGiQcMfxEZGHE2cYN0Sl22KKmrYQ5ZRF59tlnT04e3/zi1hdffPHGG2+IyGbTLeeLEQyoKs4FaJzgIkuZtu9ERv6aiJA1un5JAIq8IcrR0dHrr7/+4x//+Pd///fb+QwmtrAeP40v/TAoJjR2otUTQx5hnBLhyDITRgZANE3TrNeb+XxWN3tvv/32T3/6y/l8+dprr7Vte3pyXlVkjAWAEJL1Rs82TGs8LJJyrqtKN/SqqhJCzsV7772XXQoEACBGwKn9s9Z13bppmlLKhQsXfvvb33700Uff/va7xpjtdgT5cST6wqRkMq4hPZUV9NM9CakaXpXS9VQag93/AQAuRXatzQRLKiNpf39/nvPe3t7e3t7rr7yaU9DkuvMK1HleHwYtLhExpbRarXQqeX6+xlH/ed11nWKkKrC1SwDAYp0hIgSxdpRPUrW1XW2hIwNENE9JQwCorO+UXK2dPuNYtu0+6a6cs2qhxcIpCxYdsGhyQmGZdLiMMQTorTs/P9dPCgAKAf7/oc3W2tGLbvqtMPGi9Q+llDQE3frTf6g0q5SSd084zFrN7H6XvvmudqyqSm+75hSdx+uvVvoOPmUz5clO5R2AEBExg3PVMKy9r9MQ1Irj6UZTf4WIIEDXrVMsIuXs7GxvPlsul0SUUyAinhand5BSjLFkSTk755Qjpidz1ra/+c1vNpvNxYsXu/Wmrmv1/vKGKmu8oQKj4gciphSmTzxJqTiDCDkn21o6XLSbdeXqNoPpAKxxaP12CKYICpIjSzaH3HUdIiYvLFnhVkTy1lXOoJRuvfHeo3HWWhBmKJCBmdEaQwZU+4AZDCESIsaY69qrCHPJyQhP9pbq8ZTSpIumm3DDMACR0AiGrLpNZV1d1xnFeMcC620XYjLGAeH5agPGJIh932slE5mstSUmbV+IsLCsuk2JwSFYay9cuphjSlyAS5l00o13KSaIMeVSSrE0GoXqV6uxW/XeqqoCQmOc5IxcDFJb21QyEUhhMZJyYR6QizW06XrC0lSuFI5Dj4Yg4Q6oRDIplyLMSMIcCoeUGQCRQ8pgoE8xF3HOuWZOAimlzRDrui45DSnHkgGYDFrnbGMcZ1HrDmONMYLGpISGtNfZrNbW0t7e3tXLF+fzueRy8/EZMeQ+IRdkQZAkqZRkrK8Iq9otl8ucc9j2pKvUU+0vIqVkBiEunI1DNChV5dq66sMwDEPtXbuY5z6xyvECpMREVFUu58gi3XYLSGX01bApCYB5cFo87j//4rfuff7hhas3TDiwJhPQwwd3DDoyZtHMQyxf3bz16iuv33tw//79R3Xt790bEHi9Om+b6sLhfrdeqxqihhjn3Hwxe/TweHqMtUWLwzAgWe38psKZY/zbhT+NQb/v+8pbY0zXbV566aXbX9769NMvLly4cPHixe1mq2rys9lsmKrdXfu1i7m7P8O0v4SIRFYLIw0vzz333J07t3/zm9+8/c63RqkKedL1ImKZRExzzoDM4qemamxTkFBjNIIR4ZhS0zRDP4zTvhxu3LhxfHz8wQe/sda+/PLL8/m874cYU9PMnobLmBkQiMzYeo6AKhMl51yQlIXJWUlZf1hlSXR5V4k5zOxcpW6G3ppvfvObP/7xjw8O9p555pkd65VQ5SNyzno3AEllqtyEukdjDKKO/dIuUem+VtO0GtZ39yfFvMMYjM6wJ45kmiwdmfn4+Hi73V65ciUMW5rYsHrly+USEVV3gkevlJH1WUoRY5k59P3p6WN1jaTJ+tAZaywNw7BerzW7AIAYs16vu6HX9xFmkVGIQ7TbRUBUaAQBQArvWn+aXCXGM6PnR/8znaicknXWTrrNBIyEigmIiOq1aSus/gfr9frRo0eHh4da4QA8kUsygNORGzcw9YaoXr3Gf3lq0VbzlmY7xbH1oOqfQwje13byA9biafcN6pC4aRpOWYtdvSf6LewQZpWidN6oDXPOmSY1DGVCcMq79xcRyYWcdc6hAUTs+15h/OPTk9pbHZ04S6WMmfLp4qCwxBi7PmhVoQpcMcZLly6VUmLM69VKqWc6k7127ZqKVI/XQyS5oLPWkopLAoAlUnkALaRijHa7Ot9fLpkvu2Z+er5ZbXpBEoSSMgmRIYuWBIc+DOutc24Vk7Nm1rSIyCkjsBZTipQIlJwlC0thQJ2cg1i0SFIs0Li6BwAp57mdq0+R3ghjzPl61VQtCJRSkqp8AJIhEiECHr9Fb60dQq/qyLHkEEIuolAboEHmWDInVb225KwAs3DtnQXXeoeIwEXtgknYIKkrSJxm+EpgA4DMxfu5NqalZIPUh8F7jyC6567fjauMsy7nHONwcX+JaMga6xqyq1x40w8yaspkqye4JG+orlpXeQ7JmlGtDYHGkwSiTUBkicPAzIKYWXLOLIXAsAERjJClCLIAQBhi4YwoiMrmFV97a633jUAkIrIOEYeY1+t1SJGI5u2sbVtjkHM+OTnZrNZNXc+Xh6WUvts0vmLIKMwxAQpDrl1NaEMIo9+qsYQ4MDVtXdc1c85DZGERYikhhMZZMcLCzhvr2sIctn3lamOwiGXOAOwr27YtI5eiLCe25IYh9H3wVRNjXLh54nDl2gtXDvc/+vF/HAbOaXu4rK5dee7+/bsHBwdE3tmq77Y3b3716quv9umzbbeurDFE+/v7n37+mcGXFot5TkEJIN57FgSAvf3l6nytDUEp5fHjx199dTuXcunSpcPDw9lshsgARrE1DRBkjbZSKl6ICMzc9/3BwcEf/MHf/Y8/+OFHH330+7//+4eHB6vVeizjLDGoE7YlIu0Hd33bGJRxZCkDQEijrD+i0c2N99577+c//3nXdSoQT0RlEj+CaTYmOhwlKRPXtK7rGLL2MXl0JRp/o9YZDKqYgUMM77///vHx8a9+9Wvn3As3XiIyOhZlZlc92Z0d21pAXRh13guz3h+chPvdzk5HgFnvtLJgqjxtuykee/Xq1aOjo5/+9Cd1XV279owmUeOqSQNh4ntnFXQ0yscXGdV0RbA8tT0cQvC+0uSXJljSWhumHstMQoOKXyOiXskupHRd98UXX7z56itZeLd3KxPtvO97FUTTnYgRdp6WbpcXL16+fDnGQX+v9nDOGs03OpLQlLDabh89evTgwYNpiE4qoKGwto4bNdNrLGJGXfhkkVwK7BShJ4b5rivdVUsEWFIOKeIkKJHziNjlnBEQgAFIOb3rYbNarVQSSz81TKu0xthduNaX3saui9pDA4wLuGrPpWQrvWyYaMyagLXwrapG9S406e5mxrsHwRij26F6bndqGLvsPno/II5THhh3VlWdpmmanPLumvVTVN5ZS3oOQwiEtqqak5OT5bw9OtwzxgxDrx9xdz/1uBQeuX6AwMyqzKNAtBRerVYxxpSz1jExpsViocdeJncvACABPQNqy11VFSKM20OI3nv8P/6f/mcsqbboLHRd12dMrnm8GU7WfSFCxNl8ngTufn183g/WNRA28/nCOne23mQuObFxlhm8986QtZZQJGYpCRGsMdY5JSiOukLIbd0AgPKKHaluhsFp1S9ATqm0Vet9zQViKTElNOTaKpa86TpmdczwORZnq0GiMil0CC2T9MFutr97WvS+qPwpCuScm7oWEe+tMUYVREMIKFw7X3lPAttNt8GJ6MgCIo5M5bwjQwYsGYMkMAry9X13fnLaHl5wzqGIJGnb9uzsrOs6cjZxEYS2rQmQYzpcLo729uMQ7sXTma9nVS2hQCpENpWcBAILVD4DDzGLPpJZJJfkFBct3tcp567rqHJoSBAzl1KKQXLGWABvrSWzcNZ738cQU04ptbPFkKIGEZ42hQilpOy9t0hcckhRcSTjHSLKNHxi5r29vWEYjo+Pd4Bh4+xuIqWzH2CxRLV3rXcIXFubwmBBpKS6rmrnFdvQtYfMxTk3hPj49LydzzLgEBOQYcHEAgAZu3lz2NrFUVOX87u//av/bzr+1KWzKxcPQ4qnfV8c7R0d5iz9ebx4dPm5a0c3b36ujz0iFE7W2itXLh0e7KWUKmu3Xdc0TYlBmM/Pzzd9LMKI5ubtW7/49cdIQBYF6aWXXrly5YpF5agTFHbGAoBxlpm32816281mzXy5UEG+5d7i7u07v/jlhy88d+1b33y767oYAjNX9Uw5pdY5ZkY0k1gB6PBMRBDBIOn+jLO1drQw6dnqA/zFF19cuXJFxSaVoKR73jLRd4w8Gb7qgScDiCiFmcsEvo5KU0/iqX0iDvVv/s2/zln+9E//6OLFi9rD+cqSWBSYzWbawlZN3YchpWgr75yrnV+dnc/r6mB/P/fBEEUMTd2enJzQyMwyypZQLYhSijEOp506Yfgf/sd/+eILz37nO9+ZzWar01WZ7OV3ZK6RyO2dc4aIylCstdo1ikguESd5HO0peYIErLXCmHjQ5nLq7UZhWjva/jyRktZW9fBw7+rVqzxRuBXx9r6GwjFGa11d1yUrqdBWVZVSeDrCyMSyJqI8iVTsmioAyCUqUNz3/enp6eVLl2az5vz8XEcbKaUQ02azYYZUyunpab9ejefHWhWcWq/XOpLkSR5LRQtUZFVo1JBx1mfWWSbFkkEo5tGAqJSyHQIiNk3z+N6j+Xz+d//u36XJhqSMK52mqqrZbLbZbDebza4TLSDaL3pjjUXnHArEGJmzHQ0lLSKqWr4qHIuIjr0RxRijMkdt28aYY06IaMjpQzGk1CL2fZ+4LBaLUpKy0xXTBuRhGPb39/f397uu23RdjJF4HL3rJtWjR49y4hFVHkc5ulhYjQRb0qVwbtu2qt3h/p6xVEoxMN5PfWzVPfPk5MT4WSnpzp07b77+2np1Nps1+8u9IWy/+uqr3/32k7ZtV5vOkBPE55577uDgIMZ48eJF/bwPHjyw1iq9d71eV1V1dHSkIl9nZ2d6V+1qGy4d7u0vmtBtIm9d3TC5zfb0bHU+W+4ZY/q+L4CVM3WpQoy1gv46ZIKdnyUOw5AQjDHWoEVyzs7qpqq8tXZvb09EVBmnHzpBmDVtSqmunK7zl8xkBIgMgDEuxtwNfR8SkUUcuZR93w8pamBNKQNQCFGdtvTk52mLXxGwp4iFf+u13W7UAc06Ein6zhpY7USr0fdBllSyqUYHEqWcMpIUFmcoIVvb1L7ylQEEYEfz2vmHq00pBZi9dTLZg6eUqHJoja08snDOQ4rn63VJyXkXY5a0lZg9mdqPY6Gcc5JcAEqWnJlzUaPGUEZVMwFi5gLCOXMWsr5IQeWqsjBgjompbHLEoReRIURB4M1Grd+0rhxYcs7OkqVx1V03RgAgcUlDwYm9o22i3v88ee0xc4InIuajRSsXsna9XqfKeUJsaoMICDnzNgQD6JzTNKZOPoAUS17sLbdDLMI5l+3QVXXr6moYoiODKSJtHz58eP1o79u///3f/U3eHN+88/Xja89c3K/cV3fvDkO8cvkZaPHR8b3Kptdff/2TTz4BgJRiyeIcPnr0yFtHBmrniWi9Xh/t763X69lsdr7pY8yn548O94/+0X/6Jz/4y79abQZD5YsvvrDWXrt8jQBTjt5YXUaXDABwenr6yeefMedvvfvOxYtH8/l8u91euHDhxvVnvvrq7rUrV2fzxnvV4wzWeiIqORtrnbPMhVl4GtCiHnFl80JByLvuh6blHES8dOnS/fv3r1+/rqW0fhdEmHUEIE/A7d1wDsEoE1k9sJ8uzGFie6qtHjO3bfsHf/AH//N//Isf/OAH//Af/sPFYrG3t9d1XSmjf60WTIoEGjMuPnWx85VdrVYWcN7OQAQEu647PDw8OTnp+342W3AurvI58ZSoJtkTIrL0zW+89tFHH+/v73/rW9+az+enp6fWgq6x7VKX6Oy8SCmlrWsAibGkSVJfKxU3KfrSNF8XEYARzSLc9VIjRJlGTcSx0FFkom3bW7duX758uW1bla0AIADS/RlXV0bzNxARbTab27dvz2aN/lLF8ARBM4HKIfG0tFOeMmZIKW37Tdu2i8Xi/v37zz//vDFOU2Pl61RUd8LAuEyRSimWjDGGDGphNAzD+fn52dnZo0ePzs/P++2KmTUBg8FRVbF0qhZORPP5vI9h3s40k3Vdt91snHPOkDZ5Ocflcql5vWkrMqBQc9cBIuhJVtnOlMdZuzYhIpJiSmmcAbvKG4M5s2IMRNRW9TAMkosQeV9ZS6UvYRrzG2Myl8nIBsw0N/XGSi6AVNdtKaPGqn6PepFE5J0rOVeuKaUYcsKw7QY9ZjLNxXYHI2f2vo4xj5NmwhCCsdh13Ww2c97FftBQp7dIQb6+7xtTD8OwmM30CdJWfujj8aOTlNLp+VkIKcUyxHjlyhUgC5TVO0AQGUAQlTNmnEulDDFa71W/WhAzs33w+DTElPN+2/h6vpcZuQCQ9b7Wjrtta+sqYIGchAsYw1wKS+1sAWSLMSeAkZpYSsmIjlDYOFLDyGitJUI9oABQMg8xECCSNcYIiTFGF1hjjIlLYTBIoqrsqGEa+tCDoTK6RebtpjPGhdhT7Z1zqnuy423ql7RDFZ7+s/e+sk6/5t3XIwg5BMHRc5AFSs4IIIQlZUTUzSJvrCVsKlc5b4wpOZaYEkuCMaB459q29d5LKbWviLBxbTX0cduVUqrKG2PQIrAUlj4MwAKWDKAxhry1ZMAanvyEc4gFEdDkHJXwUkopFpRkBZT1yoW5MGSOiisYRBYmwQIAJReLAuCcN84aY0IqllBxSAAAMtOECCWXvgxAhowlEi4pT7NwAFDi7mYz0gtxZ6nGIwwogsxJRIAl54wihggILQVL6J1BsoDCCCEnC1JVta0h5ywgztfGu4IkSCbGVFh9EwjyQTO3xBaHxdKdnJ8ctgfv//E/+eG//xf9iu4en1y9dDSv200Xcx+ypMWyPn180tTV888/99VXXwG4KZOZW7duvfTSSyLiq5qI7ty5s1wunfcXLlz64osvwpBuvHj5+o0XX33ljd9+8vFf/+jHZ+erLz79zBu7mM0RxTrIcSCiqmoePXokhN77rk8/+/kvXnzhxtWrV+fzVphff/11TvnTzz5+77331CtrNj26MJGGFLMdUWjNINq6EOlzRJNYxG74SkQHBwer1erLL7989dVXh2HQtctSyrg8Ncox0C6zjtnIqAlEgWmVuZTy9EMB06MRQrh48eLf+c67P/7pL/6X/+V/+Yf/8B+OeAYgEQ2hH/3mSh7Tv3I4nUtxGIbhz3701y++8MLf+c77AKDDUWstMwzD4JwbhsHZahrZcJkGwyLyyiuvfPHFFx999NHBwcHzzzyvC1TWWlF5bngCtOoFqx7frkgVKDvuVZ4U5XY9vdLQEMzToUCP7sTGR8SJcGRJOVk/+9nPv/3tb89nrcKMo5xyjMYYAWBmY5wSjrbbSvdNedJHLKVoQ3ft2jWaTJB2gDYRbfttztkYG0Js23Z1fn7z5s1XXnllvV6v1+u2mTHoQg6gMdZalJJzZmOJyHlLRLPZrG3bZ555ZofNppj7vu+6LoTQ1tXh4eHdu/cePHhwcHQ0DMPHH39859ZtoHFXqqoaRCwpr87O792568nE0P3yFz+bz+dHR0fGoKYf55ySe41xXFJOsW1bZ8GY2nvPklNKHEcyh85BSimcC7DEFDVmWqKzszO9ZmQZui0YAoCmalOIWhwQGAGRwoCEAjvChE5SZnWTpWLmUpKG65JLyWLIIaSSJUIupaAdxaWFjKsbIRMLM0sW8NYxUuLiXU3OsroZo00ppmQ2ha21ygwlMiH01toyVTkAoFpw3jsR0T6bczk5OVGf+3W3Hfq42W6t8fPlPkxiGLuve3duq6pSsZdd9TnStjO6beIHj88XjWvbFqwbwhATV81s3W1yik1TlRzDsJXMrfcGwFWViBjrhpQZhJk1OjOO1jJqFZViMdtOwRNjTNM0s+USrem6ziCxZGbOhUCKMqGBEAjVisDbqhRJMccUc85UrIDEbT9bLlJKBsnWruv6yrp+GPT9+77fTXpUmPTp53b3GCMKGWhtVVWVkp62Wy7CmQuzKaVkImBhlSlxzhhHRNrjclb5Gy4Yw5ANoKmcobHzYxGQ4rwxFpFGQRllq6WSnasEQFeKkRlYEK13Pg29rerKNyCSQwz9NmZGxKp2uWfvLRnLkrX7L8RknVKudS8FEQUIjHApQIhCzIyCgmSRCCiWRETIBQB0n5wnhTzFlMgZ7z2wIAInBiIZxU+sI5NH9JJ15yRNxj4AYIiMMY684oTMQCMtqEjKs6axzjlnhAAQs4CxTv2/QghDzmIMI4XCJXFKiSdbFUGsKi8iUspiNvMlLedNjh0CHl65XDKd9/27f/yPP/zZvzu+9eHJ+ebyhcu1Oe9X58sLB7ailOjOnTuvvfba888998XNm0QUhriYV2zc/ftfX7l0oW3rtm3XVR1LRmsa31y9+swQvvzkk88ODi8yyDfeevvK1Wd+8pOffPjRbz744IO6cgDywvPXL1w8FOCU0t0H999///133333o48++sWvf3nz5lcPHz785je/eXiwt12vv/GNb/z2Nx8+uHf32rVr3o6yzDp+zk9Zoj59OGFcuBz/bjcbe3r4agxdvXrl008/vXXrq2vXrq3Xq/39feZiABEmhurUY8m0kAPI6JwuVOgXN4SMu1+GrPlVu8Pz8/NXX331/Pz840+/+NGPfvQnf/In1louiSVzHt3gaWeEFyMUNs66uplf8fcvHHx9/97+cnb/9Kyu25RS08xijOv1ej6fW3JPXxUBkHKCSjGG/vAPv/8//Zs//+lPf76/XM5ms6atuq5TOjcIAciIERRWm0hVQt6lgd31Pw0Y0KSvhFJND77eHkDEie+p4n0jMKAV+WKxePDgwaeffvrC9Rt1XbMtfd/PZjMdwcATuUd2zu3tLXSyJjIaAOh3WoSPj4+Xy2XbtgjAOVvvx0sqIFls7TReXTi6+PHHHz98+FCtvbquI2uGYdAc36e0v5xrhZZKLkPeMYd3QvpEBA0q6GqMcUjDMOy9uf/OO+/ol/4H3/ve48ePT09PV6sVGrNYLM7Ozm7evMnMV69evXz58ieffNL3PWB5dPxAB8M6NPz64YPNZqM5wxqnQGY7X8znc2+dtXY2a5TXSyDL+UxEyCARenHWWjREFL09CCFwKSoL5q1FRAR01m36bSnFuQoRy+SQo0zpsZ/x3jlX+p4EiBxYcs4zh2GIVVWpaw4RGONEkFn9fUa57BCCaEQCKpkBIAxRRu7gKLyVE2dJmw1578lZb90wDMxAaEHI2aryDRI5Y5QHrgZinMvXX3+dUioCQx8ZpJSyf7hcLPaUkGuMs9YrjKFmtcxAZJlBk6+IbnbZUsSuh5KKrNdhO68v2wos5iLtfHHv4SPv6/msqZ0dhsGA1M4yQNNW3tUhp8Kcc1SpWxFIKQIAjc+zQS6ZS0mYu8E4K1Kq7bbabErOOav4qhMgBhGGFFPE7LypvCdHhBYK9EMXYihFEufKGl3QHrpNVTW1d0MfDpaLUoQL7xbUJtxpJLjvQtrTyRhFSilNW9e+qus6bHsRyVx0MD66DwFIYbIGiSolIgCqrQ0Kg4BksQh15ZumsUgpBcEx93cplCjW2lSirsz6xtvkfVUBYR+GnDOheDSgA8Us2XDOnHPuOq2OjT7wtS/W1+htzjnmHHPiMpoGkHLSxrV6AQQgJCJCwlGdf6TzFRFmDn1AxCLRew+ExlqXXSmFJRMaFAAC77z3fh2GlLN2CYaIo9bvmHOxdoTa6rqWab7lnJ26qyeTRWZzvl7nHJuqNgRO17WJnMHaaZTEvN0SWkEApFBYxacAQEoCtdypzGLe1uvHJvTCZb5/AIZu3390er46mNeXXnxvu96ms1txiPuLugvD6vSk2Vt4IufMzZufv/zyq1evXLl79+6smXVdt1gs1DzglZde2Pb93v4+oTAzFnNwcEBEH3z4m/X5arl/sF1vDvYO//P//L/c39//m7/5a+ayXM77YZ3SzDmTc7hy5ZJz7qWXXrp05fJb3/zGn//5nz/4+sGPfvQ333zrraODvdAP77zzzge/+uXJ8cNnn3325LxHRGNqABv6rQFD5ok/JmlxJ7r9IE/nZpi4u9q56RLUc8899+tf/3p/f98Ys9ls2raN0161yOgmYSZpQ20B9PRqUici7588Jiqvpf9TH59hGF5//fXz8/M7977+q7/6q+9///tnp49iVHIfGmtSSiEk5xx42G63ta+qykqSxWz23fe//Vd/9ZfPv/SaI6N9tnPu4OBIWSo8Lc0DgBKskIUESpHDwwt/59vf+vHPfvXhhx++//77zhnnTEkRUeUqnLJtmaWU3FSVljKK9PJowZSJtP4btyUnlhDwJNupMNbToAJOilGIxkyaHlDg8uWrH330m/39/avtVSyUU9G1aR1aT01tTCnFOHDKu69sF3AMPNG1VYMpawyXwsxN02xL6fvgfT0MoW3ra9euffrJZ4ZsXdddv9W5advqzgL2fb/rvVAAYBwx6PcLAIbsrqo2xnRD0PF2tx4p2caY5Xx+8ehIs7Xerm998xubzUapM9/4r/6Jc0YPGCKy5K7rFOterzr9y/V6PQyx6zqlgp6fn3Zd5wwpxUyRCbfD/2jyO+qDRV9V1eHFC8vl0jkDUkQAiQSkcgad13kBM5RSSo6u9iKy2wHTUkMp7hYJWbyxsR90sdta2w9D0zQ5xpFBhjSE6JwTQAaezVqyY8kSUrTOevZ6tUQQY0SSzWarmd7NxjEcmVFdTpT4l6L33hAYY4Zh2603Z2dn1trjh4/CkNr53JDb3z9EsoCZ8In60K7CpsmOCUZB8lImiRgbcjEERAbJrvs+pLyJ3GfRzfSShxCGYRictW09Z0AgYRl14HJhIcOSS9HfRIxIAKwMdRADSFbDAaZUcu5V6sUVBoBBxLM1xpAFZi5ZghRfVQA05KGPgQGts8DgnCPCrlvPFvMwDclLYe8rO8Scovd+0TaMpA+DsvLwb2+p60s3yBBESkZhlmIQsrCS+Z+YsyOICKPEITjnkAg4W8K6atvKG2MW8zknleRKBsk6q2UXguQSCYWAqsqlIhZBI4XyY6y1lowhAsBQmIX6ISaBUkrMkZkdgi855yzMWDJmsoYqZzMXLhHAcC7WG7IEQAwSwxOAy1hrBYEFWDIDSgZn1G/POoeTH+eEEI5CNpo6K+ustcZVqUjhrHFaXZDNU9I2zrlW8c+YmDnHJMyWDAClMuYVdGgtCWIqmZmcq4BYmW5FslHbV7KJIcVkjK2aBpFiDM4YtDaGHgEtVhKjh2iQ3nj9G4Hppx99GFGWly/0XT9fPvPa23/0wQ//x4ent69dqCyVtvbbVe8WtXN2GKLqOCLQycmJNW51vm5nzWazuf/11/vLuQigtUVyZbBbdfv7+9evX//888/fee/bq9Xmv/tv/+//2X/5X3z/D//e3nK+3XZXr17+7JPfnZ2d3HjheogGO/zss0+effbZmNPVK8/81/+r//VPfvKTX/z8px9+9JEjaKrKO7zxwvMPHtxvmvrw4rPr9Xqz2dR1XddVKapAUpAAkAGBGXCSmTRPWaLiyIt+omebUtrbX9x44fm7926/+OKLRJByADBPinrIyGOOmepRLqWAMYpRKd16yr7l6S584sVERPzud7/7r//1v/7si68uX/7dyy9d32w22+1AKTW1Q8TQq2i5LOeLGMJnH39mCS9dvnD88MHZ6eO98/VstqCYCdUlgay1oy/6JOAqEidU1pCx52erN954K4Tw0Ye/u3Hj+QsXjtq26TYbzS5UkSEDYNS+6knksrYwTpTaUop2/5Cz5EmFSqaJ+M5lEidNYADUa4NRW1uXsz0A11XrnPvtbz9u2/liMavbJqU0hOiMtW4c6CoT23tf2Uohd0cmASj2piSy0A/KujdPrdwYctZ4kLHGDSEdHF148PDrTz//7I033pjP54rA61DATT6yu7pBeBx+6w7kdrtVgVOZXrV1uiepmfvw8MA5p5x2DYnj8QDeX8wP95aPT09u3/pyPp8fHu4PfbdarURGmlXtq8XVedM0iFjKFb11vmqttTGGvu9jjNvtZtt1yrkJIZyenT169Giz2YZSjDGVs8JwcnL84ME97aSVqA8As8WiaWZKVrLWzufLUcyS26qq6srFGBGYS1IXZJWW0zs/DMNsCMhIQtYYZ22M0RqjwU24OGMtGWaunM85cyloIKVUOU+jWkgCMKUUazAWVjWS2vvdxrx6aeSci3BK6fKlC8aYGOOw7R88eBBjDCENwyBMMeQssLc8YBZmqfzodzQiB9baSWd7d9h2QyIRsV3XEXvf+r7vQuhne/sHs9lwfI5gSskIZrFYzNvZNqWYZLPuXGUZhICJyJHpY2JmAgPjCjyoq6VIIS2byRSALIxo1LCTOQ8pumIQsdhS13XtPIkI51Ry6LY65U0CxhAZw1lYxHsPMDNI3hpmwyLz+VzbVkWf9AZV1pVS+pR3gzSeXMPGAqSkyjcGBIUlRYcwpBiH3hpjjRUEIpRJg00TtsImwIUQvbfee0NEwpmzFHbG2mo8IiEEMSTCKifU931IpQ9DiEkAdAqrtbklgwClFCDbhy3nJAgAAsglBhFpfUWAOSZidgiV80NOmKRyNnImQEvGGMcgSSfFMCHAIiDMAAYAgbJay1lrvTciIQRWbi2hVRnhiS4ecirqzkXETCkVgLRrZYiopISIKcah21prdTouwMIMxiCylCwMSh6xRht3QUloCKRIXVeO2qrVnTE0rqThfL3WERHpbwEmEY/IOcft1rdsCH7v/W8/fNzdu/+gCPd931ZVu9zLTEcXnn/17e/97if/5sHp8TNXDh3DELZSClg7n883m82tW7deuPHi6elpVTUikmJ2rrp164598cbRhYPT0xPnHOGw3JuHVK5euYSIt7/68vU333rvvff+5b/8Fwb+yZtvvnn79q1hu53NZqenj09PT53fW+7NN+vt48ePl3sHp6enzlX/4B/8JzeuX/93/+7frs9Oq6qazypkeeONNz797OO9o8t1489OVwphPT0P1sOJAup7q2G6lNGaWqtmbdo034TY12Z+9epVZj4+Pr527UrOSUnPT95tyq8jFj01TLMdiAUAAQAASURBVESEqFvmIFxY/tY2FAA450KIxozbKX/yJ3/yZ3/25z/72c+ODueLxUJ5OiwVTkuZGuW3283Z2dnlo4PFYmGheGseP36s0KsGys1265yr63oYBp4qi6npYZFSMjVNs1qt3nnnncePvv7Vr371x3/8R5W3wZLCQoiJKqthWhi5jDswOurCUSZ65GEZY4iszmtpVIJ8EgR4WrYewaEyLeDKmBWstcOwnc1mb77xjX/7b/9t0zTvvvvujt5lvTPGSGRmBhRjyHkLGXdvjiy7+6nhO4TQVbW1draY61/G0OsdyCk755OEYRhu3Hjxl7/85a1bd1588UUiq1u2WsvmzLo5qo+htTVNi3O7Dpgmw6Kc2aC4yvd9T9Y0Va1qjkdHR6vVynljd2vck96L2vr2fX98nPf39xeLxTBsnWtU2EQ1NbUFzzn1fdj2Qdtxg1RXrm2O/NWruse1W4o1Rr1MbVVVuhMfQjg7Ozs+fqQ29a7yOqHruu7x45PHjx+HEISxlHLxysWjoyMVttQ9MecqNcawBp2zzlV6/bNZw5zPN+tSEhE4N7ppEREScGFjaQi9WkRQoZxzTM4RljJaTWjZaq2NMVubNUdOgNB4o1JOzpJzLsbYrVfr9fr09DTGeH6+IrRZdD/NLPaWKaWcWP2YZVrD0cdQj5YxJuesCuTWeqJEBPbShf1HD+7GjvcXLeciSMsLLRFkYWDmnKSAiJBxriIXk9Lum6bxNebC23DCzIQkT8nKAyGyGZV1i3qUWkCTSkRD1jhjbJHikACfaJI5Mta5037T1C2DZC6Zx2q3FltXnojmbbsdBhE01pFzDgG3m6qq1LVtGAbVWB+6TdM0sltJfOqluxMlZY4pD6Ft28Z5Auj63lhi7YGZYbJZ1W/UIBXtFQpzKTkFkifqCkq9JmUb6h46F2O9As5KuhlCkJiKYcRskPRIIUG7P8trGELIkskgomXIAGAIvO65s9jagzMxpxDCzNeQOhIwApagCBGOow0GUA9MYTaASIYQuWDO2fpKP7tOnpwzKUSv9qgAhVnV+hlG5XEGySmVkgxSXdfOuaryoUcEKDFty6b2FRG1dSMlh5ClMKBBESIkEGbOrHQVw0IhpxxiYQDELiU0lDP3IeVcVDW877be2OVinsKQU6yrKg9iQS4eHrx2+aU79x7eefDo8WojyFcuX0wMTd1yH1dDf/jMi6+Xv/fxr/7ywfH50cG8qens7Gxvb88v66aZHR8fg+BLL73y2WefeV+LlMJ5b+/gzp073vuDg8OcE6UkkksKzleXL188PT3/1S9+/sd/9PdKjv/9v/wf/un//n93+cKlDz749dHRxdu3b//spx+89533q6qezWa3b99+Y7Hnvf+//N/+r3/6x3/6/b/3BzkMjx8/unjh4NHDe/fv3r5w8eClF1787Ue/+ea33l4sZ2dnZyKChoxBXWgZR5WT8r5yWFxldwwGrWhxWrPREVSM8caNGx9++Ot79/j69eubLu6S91P/SqYC9ElvNBaUdnSYwKdIIvK3mQHb7bZt2/fee+cXv/jlBx988L3vfW8+n283vf5M27bd1PTMZrO33nrr/PEj721tK2vovN/cvHnz5Zdf1gDatu3J+ZlG51KKpOS81/AaQkgpISEACcMwDO+8886f/dl/uHvv9jfefEtE+r4PIeUcEQ1YxKdsIZi5cKLJkT7nuAupxjzRUNR6V5/QXXSmydwpxjSB1eqyLMZQVTXb7XDx4sVnn332Zz/9xd7y4PU3XlWSx7QBjDvhwxhjWzXGViaicn2NUdepfiTscO66NRE1TWUQykiAZ8XwUkqIJqdSN/7atWs3b968dOmSJrxSijpqEBFP1A0eBaok78wuGYTGob5zlfeoPpsNUdu2IlJKFpHtduu8YeZQiiXlxus8ok6p1L6x5ELot5uubVtnPIIs5vOSpalq8ZpLQL3FrKsUK95F1BD6rlvrPdlsNiEk1YRKKVnjtRf03j/73NUXX7punzJvVuwaAE5OTu7euX98fDwMA1kchuHOrZvb7TZnHoahruv53jIMUSs57+sQgvoCrFar+XyuOL/KvJNOwrJ447x3KijrjRURY8iClMKlFO8ccyYi1QJiztvNxiAuFgutZkpK6uluHdX1bBiGOPRd152dnek6EyLWjd92wVk/W+4t5wsRqaoKOZNAKSy5kIABhMIlJuccssQwkIBtW0fGkQFk++7bb8VXb2zPTvrNeYwRLK3XK+dcvw0hBG8BiU7PTn3V7B1dYtnIpDsjaKwz8/n89PRcTFEjxiePOgIgPCGYIzJz5RvrxmodxPQxUE5tVSsbXox4Q6pKQdYBQAhhuVzO3Cz229PT06ZywzCEvkfjcmEjkDIjombfUsrBwYEKhC6Xy+126xzAtF2zq39ziFi3TVURoDPWWKyrWcoVAJytVs2sjYVFhNBIYWYmb4kohmitrasqx9CVYtQ2QYRgXDLTyIiI1piUMyCcnZ0NMRTBmLI31hqTC+cQnXPNYqYlVYwxZehTFjOyzySX2tWGebFYzKum77qTszPDXAhmdZVSosxzX3f9lrnkwoyUYzKVSwKkkG8ePUNCyRZHZ2xmVursvG1DCCjQNA2KpBRpCsSqn1esg2nCRETejXMjS4QAFqlq65KyznS3m847tMYUZhD21mSWkhIao3x9hd0ALFoTcvJcgwFvXSnx/OQEgVSPCYDJwursfH85by2Goa+9u3h0cO3yla4vX917uDjcW1w5ROMfn65zFijZNSaTiyEvr71+dLp69NWHZ6vV3gx9XZ+crcj6vb2Dkvn4+LhpZs8///yXX36ZUuo224PDfWb4ze9+++1vfxuQchmQjXNGUOrKqCXqzc8/+/t//+8/++yzm9V6f7l37dq1n/zkJ+t19+KLLzS+8nWVcwlD+uLzT7/59jt//P0//g//4X8uOX7/D/7u3bu3Hz28v79/+PX9u59+8vkbr796cHDw8W9/99obr69WK2ORCJFIWxwRkcJCpCxlAiyloBlv/q4542lpNU/GqCLyyiuv/PVf/3VVVUcXrpRSQsgKIMc4eDcasTGzOu4oSiRCIuJ00r9e08TDpKlOVamBpqlTSimlGzduhBA+/PC3zz13+8UXXy6Jc2YDJJN1ShiSMdg0DS8WN2/e/MZbb1DOly9f/uqrr+7evXv9+nV1eF20s20Y1AsWEYe+n81mmjsRsaDVlNP3/eHh4XvvvfmrX/3qmavX9veXIlKKxJByjtZaEkJA570WKLsDpt0Xj1tVRfvLMo1+tZKuqspau1N4mFB63EGOZhRnZudUoij/4R9+/7/9f/w/f/6rX164fOngYA+xynHAaSF+OtiQJhvHnHMfgpkWbXeELGUvioid5Jz02naqyADQbfpnnnnm66+//uSTT15//XXNTGdnJwcHB6obqhVGmaz3YowqX6wDYFWlsNYzc0gym82AsN8OiGidAZFUslFjRCIY15VGm0WFsrWH0fuDqjMulHNIKXlfd916vV4r5E4GADFnKKXM53MA3mwGrRWstfP5vK5ZweqxvzQIkoY+hAGrqjIW48hDHu8kgjk62L94dKhnvuDYR52fnyuaslzsI+Lnn39+5849hXMPL164d/f+arWylo4f3j89PdUUAIBHR0c79F6rKx1Lw6RcPcRsJ29gAGjb1tuRGa7ss8Vi7ky1nnZZYxwODg44F+WjnZwen50cl1SapgkhVZUHov3FkojQGBHxlTUWt30PyICsl6FrbLrBPwpJDUOMAzPbbn22P59dfP6ZHPZjKp988VUf+yhx28fZbBaH7Xa73T84GmL+4uaXxlUGSuZiuRhXWe+aphmGGHPSjQp9luUpvT0EEhk7cQYJMRsauXyo8BoIZd0GyHmbtzEys3EeEFlk03U9dd7Z2WxWOcPM8/k8pBJKiWHIRXIK2RJRU0rp+17nHE3TaJ27M6Dhid0umc/Pz2vvj/YO5m2trDYLePHwwDk3xJgzt+0MgWKMyFIESxY0hEgpZxYmBgEgpqZpkCWkWIRLKQxY+UobuMjSNJJZ4jAYY1JKla/ralyfUOcsfQ633IsI0GgGgiq/ALBer3MfKueODg7AutNuPfSxxISSF4vFrKpSLoklC1fWpcLOeZ4IOAioXsxZmCalAVYtFBEC8VVtx42Unf/KGKbVkQtG3VIAFT0SAWOYMxgLTAaFAAlE/Zusxco6IWRmiRkJyaAlKJOeqohIUQaqYS7GOG/FWxdjLDl57w2SFWznsxKGEEPb1BcO9+dt8+De/eOH3WK/Pe82S7cI21UZBmJs25o5YUWPVhESPPvqd0qKp/d/5eJwdHSx6/qTkzMAapsZIt669aW1dOXKpbt37y4Wi4cPHx4c7VMwv/nN71577ZW6qmKM88Xi5GwVY97fOxKRrutvfv7ZSy/c0MTwzNVn7l29uzo7f+v1b2y2HacsZVTG+fCDD/7wD7633XQ//OEPLxzsv/DC9bt3boHkK1euffDBr3716w+/+a3vbLfbTz755Fvf+tZXX31VVVWKwdlKWwEzGkMxorFknHOA4141TvrAu25VJWgQcbVaHR4evvXWW5999lnTLuu61uCuT0cMeRflEUcR591LVR0Uw9QYxJN6sxm19XUfYyCiV1555eTx/Z/85OdHRxcXs2XsY0rZSgHgnLPz1hgqJTXz2bZbf/rJ56+89NKm729cf+7Lr746Pn64t7eXs0HEeVOvus3h4f75+Vr7VwBo6nq73Q4peW+RrLX+7OzsrbfeOj17/MMf/vAf/+N/jDh473MqY8ppfIxB97WYWSVFjTE6wNOTpokZoISQp0z8hIy56/i1uFf5pBgTM++aWhFpmmaz2czn8+/9/u/95V//zU9/+tP333//4sUjgDrlYEbGnA62mFXAy5i6baum0bKplKLiVmqJsxsDO+dkMrbTLFVACggYCqlce/b5Tz/9WJO0JvjNZrO3dyAiiCMiypNvrnJK1GNHeWTWFiKKMo4wtOM3ZWx4JRdvdDwpBCgiauZG4HIuISTvfc4x5zxZ2YOaUBHlqmqGITKzMU4n6F3XnZ+fA0Db1oh4enoKAFVVqc6JHqemni2XbeFgRc2swHmje/A559lsrpV9KSWXWGIZS5nKnZ+d1HV95dKVK5cuaokQUv797/1e13VNPWPmtm1Xq5VeIpeiYt2llP39/bZtHz16pHvSJ4/Pbt++/fWDB9qCI2KMEZ0bhoEAdLat8ORisXDOLZfL/eWyqqrFYnFycnJ2dgYA1tHZyam1dHp6euvLL3RGHkKwlgBguZjdvffguWevpxziNrbNvG2XSpAa0SYoMaZcjLG4m5P2fV9Gvweyod+el3gWtyXHpm2bpkFxD+99DbbabDvggsa5qmHKqZwmScg9ADhbUWZBMM5bSyEJS1bDwd28dSxziGLmUrI33jt1cs4soicVURUnkgEspaQcuYirG2RGIrTGOVfyqA/OPFZPkSULCmAs+eLFiyklAOaSEL2ZxNO1vt7Ba7vxT93O4hD6vk/tXKRFARQga1IptXcxxhwDNq0GxqauS8lDit77IiWl7IwFEkHcbDvjLAqEEGxRe2fmCFzAOCOSjfOCfRHwtU8xt22bM2vXKzIp5jBHU1SNxJCTnCtDBszcOQMYQiAABoJcUMhbd7Dcq4msd8K4yhvkgohN7SHlUFLJAERoSFgAwBDtkitwYWYUQQEV3diRdFhBd5GiwZ5FQIwxdqR/g47ECcUa64w1KDqdJwJkMFCEM6Dx5NA5R2ZIMZVcEkrJOJViu54shGHWtN66g719rdyX81ZEvDUlpfPV+cH+3v7+foxxCxjjEET6s/ODw3m3DafHx4um3ZydylBVsxmbCm2VAezMv/L2t//i/qdWDJ6uDw8P++2wOl/XVQMAKndw48aNK1cvP3r06PLly9u+966Oabh378Gr1y/mnENKfd+nVHiR26YiA2enq69ufrE82K98zbm89NLLiJRS1lSHiAbJ1v709PHPf/7z//y/+EfXnrmiDNUXXnjhd7/98Lcff9w0swsXLpRSrly58uDBgy+//PLg4ODk5KSqqvXmvKlnKJoSsJRCgMV6RCSLO6B118DtXiltF4tFzvns7Gyx2Hvlldc+++yzd955J4SgE82u68y086P3nBB2+LOI7GTIlL6kyUzfPE9KhDpWjjEtl813v/vdH/zgL3/3m9++++63nTPb7TbGMFss66YaVAXdOQJ74eLl40df3//60cVLz8QYLxwd3bt7t2matm232+3e3l5lXQhhPm9PT09LUWNk65yzkolIGLVT3G77v/Od3/vn//xf/vrXv37nnXdWq00pZehDCL2I6EquiFhHMWYAcM7EyPoRtKTQSkLF/WOMZNwUkhgRiIB5dEssk5iJpo3pno9eF0OKb7/99ocffvjLD3/XzmfvuG/u7e0BOksmxrHPripXMugtpWkJSt92NpvpOdHsrtrgOHktjAAyPVmaSikdHBx47+9//fWN558HAGsrrSrS5M6rL2stAMaYjDEZYHK6FP1FQBByMsYAoYrUkjEIEEIsxlgRYGQSJASGUooxFQINg5o/Sq/rEhPzI6UCkJXWu+16BEJAY3g2mykC0bRtVVVn5ycx5MLAnMMwhCExc5xlIkJSPCUpCGxMq8XTen1urdXFWYsszCRCAsaYa9euPXr06P6DexcuXNB2Nuc8bLsYNR7Iplsprc97bwT3lwuFN7Si2l8u3NHhtSuXU0rf/MbrOXNd103TqLLV8emZSo48fPgQAC5cuCCFHz582Pf9ZrPp1mulOjLzer0WERQoKZ+cHJ+dnQFn5+xms2ma+vz8vG3b7XbjK9vU7uGDO9b4nGMOq1LKdrtVaovRm+m8JYMG68oZY5ylMGxBZD6b2ZiLlIRc2roiskcXLtw/3aw2W99gjHExn1mD979+UBjqtkHruJdSih4dJeVXVRVziSnpeAMAEHfSSFxEn4onNk8aCGicWrGoBp+qhXibQvLOR1HGk6+aJvTsnCNmY8xyuew2vbMIiNuYNkOYVVaxglJKSh3gKIMywc6y+58aXKq2cc6lEFPJfQgErNCfaoVYG/RhwIy6NkDel5QFISVOKUEFBChQjHFDzCRQGKCUqmqMxZyzsS6zMFIuHEXEGEBCYzOP2mylFDRkyAgA54zeihRgSEMwIgC2rnxbNzEERsggQwwM2LStfpeeRoVCJS13IajgICr2660VP5oeG4sABMA5oYhBdMYiCiokYh3rCiSM/FgVZ9FH3aAYNc0QIWOsQW+sIbBIwCImG0AiAhG1urLWucpba0sFVXYx5PW2KzmBECIgGtGtj1x2j/e8rStnpOTFrJVSco5N2+T9pa7Mdl2vMxi2dr3Z8gnsL+fzZuYwXbm47DZbLoBk58u9lFIfN1cvXX725W89vHUzhluPHp9cfebZhw++fvz48eHhIRLkkr669eUrr7yicyPF/52tHh+ffd3ShQuXEHFvbw8RkcBYqMHNZ01IsVudRzc4b0tOKICIJFhSbtvZEAOHfHBwkHP88Y9/9NJLL+nCHiIeHF6Yz5fXr18/2Fucrzvv/dHR0QcfffjHf/zH+/v7MC346t4QjntjKFJYuetPvXY/oFNDQy6G3DZzbc0P9o8QzIe//uA73/nOw4ePqCbvvTDuKJcAIIwCjE9NYZ4snEwLLbstWJqWcxQ6Oz8/31s2v/d7v/eXP/iLBw8evPX6GznnGPOmWzdtSwa2Qx8CWKLlfHbp8rUvv/hiNt+r63qxmIWwuHP7K5VVUlHrk5MTO7fqu6AR03tbyHbdRhVs4rCNMc4P9t977+2PPvrouWvPHB1dTEMA72POw7Cta09EMUY/MUsRrWrQ7u6qajvryk0IQQm9T7cEE/5MOY/g88ienXAgxdiHFEspf/CHf/iv/tW/+dnPfrZcLl977ZXK+ZTSdtt7Z733MRZ6Ktbtip6nS3/tUBUtt9aSdUhiFP0GYB5NDhREvX79+scff3ztyhVmLgWtHZEMa60+jqUUP4Hw4ylCMGR0jUdRxrEQYRGRuq5EJOdc161zxiKVUkDIGEvOIhpCA1wAaaSqIuYigDDEkDKXUpxzVc5DiH0YqDPz+SwMKedsHAHidrsVkZJFfwsiVnXrK0GBum6qqlazZ0UBU9aKRyf3VgQQgQTKuJhTAPLp6uTChQvAgoR6t1frcyIiNAoqNE2DAgaplIIC7awehiHEPsa43pzrwY6pbLthjDPzdj6fN01zcLB37doVIM3obO3bk0jWuDdcVVXlfCnl4cOHfd/FGPf395fL/ePjYyLo1ucffPABgOwtl8prSzmvVuvNdjg7W3XbYblcHj9+SMg6/t+1uSmWuq6VOJVSqutG6cOIeHBwYG/du19bM69tCK5qSuDh3sPjqmkvXL46DMOmW8UhhBBi5na2RKKc85AiZbLW+qoeZx4C0nUpj43mDvXVR7quveKrU31Ku0OP8MSu3Fiytpo1syGE2IVmPiq7ppTMfG5p5IX3MfQp+fl80w8wkUWVfeec21vOYGJFiQhyEaRdWAGAISVvXW2MNS5zgVwUqN47PEg5e+/n8zlMrFRmTjGlEIUQUH2KHZBABkHp+m3TNL5phRkMiVDXd0X6ISRb+cA55IzOZkCw5ny1MmjrukXEmAOLoDUGHCCUVAxKHtgZIwLWV6gMPcLIJZSUGTy0whxTyUUx9pnzBhlMzmSwMZVE3cdAI1yEDaIRBhFDgICAaJC8JQDgXDiXUAriqFE++hciAaEBZCiiu0wgI79aAAUcGWdHfxqQIiIGEIWttU3TINkYIwLOqqqpaoGy2ao+CQqKNcok56rRgX1iS1JyiH2OlXe2gFiHB3vLIaYhhpiTclkLsXMG0aXAl65cMLx1TmaLZdcDVnOIyRqOCMer1Vvv/9HZ2iy7zWq1Oj053z88OD89GUKfc57P2/V6fevWl6ofdHx8XNfNdrutqub+veP57GCxWEA1do0GMOSwWLa4lk3cxFTu3b51ujoXgBQDItZ1o9YICXO/WScuIvLpp/nGjRv7i2Uu7ipeOz87s9b2oaiDddu28/n8Rz/60fe+9z2tw/ThJxyN1VBQY4H1T+xCeVyh0b7HdF2nEBYiqtta13X7+/s5508++eSFF17s+q0yX3ToJX+bgSjTODlNFrYyzR12RM1dSlZEkZnX665pmnfeee/zzz9ftLPnn3/+0aNH6+0aDRweHp6fn5+fn7Z104dY+/rCxStffnnzlVdecc5euXL5s88+++yTT7/17juKEisAsH90qP2QUruNoaZptt1aYWRm2Hb9W29+Y7Va/fznv/z+97+vQaC1FQF03Voa5YqP16x9jyKQOuhNKe2cl+q67rZbM0ml7pB2Tf9V5dRSCZE0cOv7aKB0zm2322eeeeZ73/vuX/zVj37xi19471+4/rx1JBPHLaUEWIwxCKiUbEQEERBIIRtjuLAupfi6CiFkLpZH1rRMmXuHOpRSrl595s6dO6vNZn+5DCEYU+2uGVH9S2DCDp9UFcY4gNGn0junf58lI6J3zjsXVBShQJKSlT81bX4XVux38tJwTuXTjY6cAHW0l3PSgma2mKGhFLKgRTTb0GVhJCwgpQgiekPKVd1suz4My0XtfV1VSjwkASRj63pUOAcAiyPRQY/iwu8pHq5N6mw2q30VY0IDVnE3IvWFVJK59pRacukUWb+aUeyMUS97p1vCMCYLZvVot+rqYa1d9UOMw3w+rypXVftNW7Vtm6Jcvny5qtxmNSfC27duhdDv7S2cM2+99YavmpOTk1iKNX7dbWezWbdeqbaxXsNqtbl7967yb5bLZdf1q9VqvTpXztDJ42N7th6uP3Pl8tVLq/PHpmoe3n145+7X2MzDw4cphaHbNM4p49hWPhe2VTXzHhFTzuv1+nyzzjkDqaMyT2dCEHeCnDARMsdNRx0tikjhRIDWWgEpJXPSVTyy0xNCCHrXELGuqpKSkgOH83MiKwDt3jLGYTab6de52WzUpkrlVHZPHTw1/ulCTKV4veDMse+to7quY4wsYgy2bbsdehYgQ8KlH2LJ0SRbVc54ImuMMQWjtTZ321xEIMaYfeGqqsTg5rzvY/AgSUoGscbGUixRYgHSjhMKQxYhi4IghQm4tt6yLKqKUGrrDEhV11l4sx1iTolFNmuFBp3kyjeCqsOO7ayJKYfUE6AlLALEYsgYJAOqIMQq0WFpXHrRKKHzRcEn2Xda0WAzIqCjtAZyYcaYopHaorPWWYulABQ2xrTOKFergGQUBHSGWJWBAXLiWHLKDFxgstoFAKPKaSRQSoq9d7PFvD47O9OFHAFEMmDthcuXz4ezwHExq4ih74YLR4u+Xws6UxnrTZFAxjxYDZtNv9x79pnXv332o58t9w4eHz9ExIOjw7PTE0SJcWjb+uTk2Bjz4osvxhj7IdR1m3Pm7O7c/fr557y1FMJQOSvAzhljjNubZ10KqgzggplD0tpmLMBFpG78va++HIbh8y/Crz/45QvPX3/99dfbuqnqJsdEaHJJVdWIlBs3bvzlD3/8wQcfvPnmm0/aI8ooTjtvdZvdLb1MDcl4hjX1llKsdSml8/OVFtrn5+eHh4fW2tu3b9248cK622y3W2WE7loxfSoLSBaurZ2g13G1VH8mjyKv49KadhtE5LzfbrfPPffc8fHxRx99NJs3s3mTOIUUUwqzxZyZnbEly1DyhUvXhmF16/aXL7/8corlmWeeuX379u3bt46OLmimnM1m3WqtuLSSipPIfDHnkrquu3r54snJCZHtuu7NN9767UcfffbZZ6+99ppimM7ZMgx93+/t7aUcAKCu6xiHSZ7a7MZMMO3jVlWjBGxELJxKKaLpEdB5g6C2hpRz7ntWbo5Ox51zsWQi6vv+1Vdf/frrrz/5/OYXX3xx7crl+fxIcskp55y3221VN7tqRlGH3f6JXlKenCEmmHpkvBfIOiwgQiCzHfrKeWa+fv36arWi/X1mtcI0WhiZSUpFvyD9LePfEBIalV0taSRI6x/GtketlMbVfkDE/x9ZfxZs2ZqkB0Lu/g9r2NOZz4k54o6Z9+a9WVlVWXOlSlKVoMVgMpq25gGZwRMGBrxhGLzw1rLGrIEXDDCat24aULfRjYzuRiWpBpVqUKqGzLzzvXFjHs6JM+xhjf/kPPhaO6LU5yHsxIkTe6+91v//7v75598XA0smoDVorUTphSECgnc+pSTOevJ23kVBoUMIbdsJMN4Hr7UWgSdtNGAkSlprpUxKSaUBk6+bLs9lyJZGlr3K8rwsCsmTACC6GKNPCWIcCN5Zljnn+97leaG1KYpy+CCgUmAiym0mAdj5jIjarlNKybzcy9PTtm2tzbcYkmgV53nuY/CuVUqVRZ4SK6UUGe+9930Y+bxEpDSur5YKOTqfQDOzc10M4dbNm65v79+/31YbiOHJk0e3bt0pi6y7WvXO7+8tnHOHR/sioplnJRGtVqvj48PpdDqdzo0xIgnAg2wqp5R03QfPlFAzWRcRkGa7e7qYnV4staaTkxOtaLm8BDHpjJGYtdbGGJNSjLF1PSIWZdm2w5TCCPUMog3MURqfsgplbwxdDYhGDb6bgksYY/qu19ZMp9O6awW0EbrKZrMxSiGizWwxmV6t153rm0t3YJWAlmocsU08ZLKyo3wYnKWHxDAlCBDZI4NBDMFlaG1KTdsqowMnpYU6H4biwOSIGIVjyVB3vTEKUmiaRmutM5vZIivYe7/a1Ov1ejKdYZ5FZI7MiH30KbDnaLR23semllpcWcOoInuOPtdmkudzW+SKFCelFCCG6JiwT4G15hDrrgdmTQZsVBxSkMEyTSE2Td10nbaZJoWRgSHXRiuFIseBQERCeeeYGEDgL1QKACOLFhkmFqdIrQf9XNHSQgWIzAkCxORDT8gECVgnHwhBWzMps5TSYAtFigkRkUNQCFabLCPtY123MSVITArFJU0ZDQDWGkg2BBe85hS894DoY0pA2tgyy8lm2ueYg+vXu7Np01SvmCeL3bqtlA7BrTIDmcl966LXj19ezq/dgJ39y8vzw6OTV2fPld7d2dm5unoFYCCFaZlfXp5ba2/euHX//gMg5WJQZKtNf36xPDzYLYoJQfS+B0whRqXV7mJSt733Mc+t975tW6Rcxh5Wm/VisWj77uc++jiflG3bNk3z/MnTP/uzPzs6OCYiUrrvPSlxZAs788XP/+B7P/nJJ4eH+9evX1+tVtIASxwwibXykDiOaT6Mpc9gojedTiUuTqdTCdLSN5WYlFI6OzvbPzxQ5DebjRTBY530Wl1LUCgeCyA5niRIDH5lo2q0/DA4Lory9PT0vffee/r44RdffPHzv/iLeZ674K9Wy8ViMZ3P2qrTWrdNF2O6fv36w4cPz87Odnd3s9zcvn37/v37eZ5PJtO6rstJ2batBpBg7703RbHZbLque/78+fLy/ODgYL1eF0WR59l3v/vdx48f1XVtrXWuS4nz3Ha9yI+85o7J3pfevLRvt4FHtKiUUoBpOxAs90FrHcNg4YWIfe8EeDeGnHPz+bwPHhBjjHme//CXf+np06effPZ1Webf/+jj3cWMAJUmrXXXD94Acg2CMUi2JHdSBmq3vV7p1zInlkfPhhGGbg+Cc26xWDRNI0+273tUymSZqDrE6AWB3z5KCfxDjB8MB4f2AclEbBoSZYUELFCYGtNrJERGyIo8Nk2CmOJQP/W+g5ozWwj8kCCKbQXBIKpqjJV+gYhjD1xXwMQy8ZXES5iZYwoATrw4iTBGlvHi5dVaMie5achkTW40J3aC0k3yArVaryoiunHjhnMOYXBUlHpXGkmJBzFwubdE+uDgSH5Nj26GslT6vt9sNm2zsjZ3ztV1nWW5GG8AFK7rijwvimy4pWWhFBmjgTLnHEFiIqXUnTt3JnlGROcXZ8F1y4vz3YP946ODJ0+fb5bLrutwZxcA2q5PPgBAcL3V2mrdt/Vm5brWCQs6qCCXrfOivP/o8emLZ8dH+0VRoDbaZBfLlRwBoHRKoSiKrCh9TCHxwcFBCCGmlCmltdZNLYPJb1SZWzkpcbAyb6AoKNJRwiwATJFERo6Ah3VTsGZmY4xNsXX9ZrOxmjKtXddhlimlVqsVZXnTNDt7e+umkR7POHUn8owiTZy2p0kcpYUAIAEnAE7ggsdRvqARHemg666dTOeTyURnsWma5EG4KuiEz8IArHVhlE06KaOrqlrHqigKxAEbbF1PWlVNEwAjsvfemAyYkcUynZRSTEhKoVJACoO31ubGzsoCQqQUXd9BUolAGZ2AfQwhRGY0ZAARALz33nfW2hC5db7tusl0mgCN+GBHyKzVSNH5JAh/YqY40KFhkD3K8zwm5jScyISolCGtaPTCiykSAytEQEysSCFDdN6lmHTkGMRAqetEXidPMXZdw4w6syGyjwkRy7wwOnkfe+dEU8Jog4oip7atizwjoq5pOQ2zj3kx0UhN57oQlDJpqaaT0oVQFirGFpDqxre+Pjw+qNuz4NcWtbKmzKarqk4RmhA++uijf/bP/gkz7+zsXF1dFdeOiMhYVdhstVrNZrPT01Oj8/fff/+rr+9bm4euLYrJq7OLFMLJtQOr0VrbdrW1GiBlmWm6DiAVea5EHMerpuuyLJtOp3VdKaPPz18t0q6swI8//nh5tX727NliPi8GI8IoZ0Fd1ycnJ8+fP//Zz362WCyUUkKcYWYxvyNDhITjyMC2ibPN4mWEXyBWyTVns0UIveym4+Pjzz77/HJ59dZbbzmHW5rlgD8TyUiABHgY5Vp55GEJ4irG7JvNRjzUYoyQkqC71Wp948aNb7/99osvP3vnnXeIwGo79HFjLPPSYb+pq2lZ3Lp14+uv7w/uxQqOj4+fPHny7rvvKaU2m83JycnTF8/F6q7ruuR7rdViMZtO3282jdI4nS/6vnetm06nN27cfPLkybvvvs082VQrpbVJpqoqQeCbpjFmYNoLKC2HwHbvhxBIADA1DmWMqIB0rBQNVqpZlo/kVVKKJGq2XZfnOSMcHx//3f/mf+M//k/+088//3Jnvph98B2ttZA7R7BoQKQFeJtOp/JG0oCQMcVtIrVNAlJKwOJMkYqi6LquyPIQ3NHRUQrh5ORks9lUTbOdqvLeSTMVxmEkHGbEmYggyxRCcE6PHTdZP0qsP2UZyFE8XjAiJoTptIxRbDGRIdpMh8bVdW2MYSCpFGWRSEkDALPFYrZY9K5r2lYsK6y1UVSBGSTKYsQYmRR6HwQBJiJRakyp7JwPTuj6HEIQ31wASDzMLxVFhjBIAD179myxWABAURSCosleyLIscui6LsuKPC9jjMZgnucyNIXj4PuIPSAAKNoXtN/7CACZtjFGgqQ1aT3YaYgWTVVViIhKhxCMQkTs+342m0XX181md3d3uVxuqhUT3rhx49r145cvX5ZluV6vTk5OlNJKDU3rlFJVVZIi2ywpNeAAzNy2Lf78v/2/M1lRNfW16zfffu/9pm2/efCg7Tqh6QKA1kppGYJHjun9RXFy8+Ynn3/RMs6Pji83zdnlctO0jMZa67ouy7IYvev62XzinFPavqkJEuXQCXF7UxSS0kiAMmdN6vXUBA1+LYMojHBqNpsNML7zzjsXFxfW2np9lee5j+yCj8BIxAht25EeHNOcC4XNBuSTiN9wogjeI6LWhAxaa0NKa230sNqSDzHGi7aVUy+zdj6f9n3fNW1eZMbaspwgYkgRQfkU67p2zgXUWyomcPTeK0CZ+4aYtNZaHNDcAKfXfVOW5WwyFQfiAXtU1PV97bq264ZxAqWMMcaYAg0ASO/We++CT6PK7vYYUmSEQaa1DhARURhYxugUY3QeAKw2IbjXaYqgzYjGqiTGgoyMkBKnCERkNHFMyKm0ipANwrQslcbYtgIxeRelgAshda6XFFUygKbrqqqSqrdAE2IsiiKEYDIrIx/iGJE4WKXLMk8pBT9I2lIfrLV7e3shBCLUmV0ul4i4u7untI4x1nVb13WMUWtrjJnyxTdf/uT5t391UJJqq7huDnfmfbc5Ot7x0S+rrnM6RP3u+++D8g8ffd2qHgNgwBzt3nz37rVb0YfonTGqC43JlEtdXVfraiUjHC8rE0Ig1ApQAifH5H2/v7ubUmSkopj4kNbrKgZARMpaeYLycfq2+8M/+rOb1w9/8Rd/0fdO6EjGZNIWzfM8xChVXZa9NuFJKUk4TKM4JQCIg14MQ1xRSgXvP//887fuvV3muXPOZFnXdcZkpAeHTSISaApHSsQ2MZWTPY3iedsONBCkEAWv4hiI6K9+8hff+973jo6Orq6uCMUj2TIzMDVNY7mYzW3vlw8efvG9j76TIiHk395/VuTTmzdvM4fdvVnX19WmzrKibXuJ7ogyHp2H4CRFcM453y1m00ePH26Wqx/84Puu7/u+nc72eu/btifSpFQIaT6fN01LWuOgOpAQkrTDGFJKWm7+diITRss5+exEpJSRaO29F3jYWlsUE2Z2bsDkJ5PJp59+8gd/8Ic7O7O/+bf+xuHh/mRSxhiTC51zIt4uAw4JWDD8siy3NTcNOthMpETcWCSDZHhX0ME49sWZ+enT59evX5/NZhidiHzJMLEQqmX7aHotKi6yVlscXtqrkuQNn5TBOSf2zzgSXLIsA0RBVqqqetPMR2stDpsxxouLV5KQrdfrLDdlWaYIos/Th3hxcSELVSPJN1ab3rUSIJu23eYiNtMC7+8udiRsC9osnXi5RYRRwBj5sMwsSMnu7u50Ok0jqW0rS5lGEWwpzeWurlYrGU2eTqdCOpNH4L2PiYQrACgSHIljYh4KQiIqs9w5JyLQMUZtC4GIUkrOuf3dRQjhyZMnhJBSWi4vOfiTk5Oj44PT09O2bTM7U0odnhynyCHF9XqtbS75XFFM5LMMwhXOa61JGVNOJ7/0S7+0u7v7/PnTEEKW2TzPU4jWWkTw3mtSBNg1bdu2Z69erdfrcjotiuLVq1dnZ2disEwKhC8uo12T2bTre3xjyIGZIwzTR2JKBQPgMfKlY5TsQ8AcREStbJHrzMq/Xr9+PaV0dHSUZZmIGSGiNbm2+XQ6lSoBALYDkdPpVMLAtkTeAl9y3mVZNp/P5de6rpMDiHmg/nfeta6XlbdNo4qiyMsCgTabar1eb1E7GUHe0h299zG4bVYu8+BlWQodTjIg0QkSlgGn5Noh1nZdd3Z2FkJIPmyNwSURAebBbdsY2VfymtKOQkQxbFcERCA9Pk2EzNEH5qSVKmxmjKFRf2BLw+GYZGap7/vtR0ghxhgTB7GuYkjiA5NSCiklYAAwNu9dWG/qBEzaMJILXmlDSjOgj6lz3nufYDBfCuJVHkIC9t43TcM09LQ4xL7vu7YFZquNURoZ5M+6rpqmDiFgYtlIm8262qy7tk3RKySFFFxfrVebjo9vvlUuDruo2EwhK+reG1u8urjcPTjI8nI6nWpNX3/zZZFnx4dHlErXo7aTAPpiuXl0dgq5SYVxhpdd/fD5UzJ2b//oYO/I99FAVuamsJYgihITEQGxMnrT1hEBCDrX+NBmuSonRhtMEWShShEznU6/8969p89f3b9/f7FYyLOTTSHVEo8uVXKfR1SJt0eqVCHMnBgTvJ4jkkh27969R48ekdaolNj4ILKUUNtWpeym7Z/pDfquGhW1tn+V9vM2Wltr79y588033yQf9vf3kRgRox+Yrtba3tXeeyJ9eHjy+Wdfi3DgzZvX1+vVq1cvtaGqqvKsEFRZKZTKWy6jbWsaVUrKSS7zpu+8/W7TND/+8Y9tllmb13WtiZhZ9DestVdXV9YahQM7aXv9zAyMWZbBGw6JIj4s4CeOzW8/GhltG1UCXw/gHEDXdU3TfPDBB++++9b5cvPgwQMiSom993HsBcgLChWIRxtKOVKG3ZSS94N9k5xLogiGY9Na7uF6vVZKXbt2/Mknn4grkQTdqqrEVV5odzJbrLWWGZvpdCrugYvFYmdnZ3d3d3d3V6Qlp9OpnBKz2UxUQieTyXw+XywWIlIhHzalJNxtuQ9VVTnnnjx5QgSS+td1jYgpQvBJINzlphKurzQZ06iF4oKXk1z49hK6ZCFJHSl612p0DdnSFLaYjfyTsJkmk8lsNpN69HXnwhip70XJRz6CfCNFc13X6/V6s669i3KFoogpscaJM3AI2+RVTni5GGttURSSCcnbyS/Ig0DE/f19eQQ7Ozsis3p5eSnvu31lpUkeMWCSuyEFj6wHOWZjjDoini+vpstFnueXr66en50mGYQgmE0n3uu+7YzSMfmyKA4PD6fNKsvzg6xIWqeXZ8u6S0h5nrfOE2qTZUopIhCWV1mWIUQiYsIYo2LcFr4JeTskKpN5Q5Ws+M00XKp41INBUBajtbYsy+VyKc0hMrrrOm2N977ILIeASIJXDIy4xGGIFwO6NyQBI58Qto0xQqUUDlMKrBQjkh9hK+fcarWSDZZGNxUpLLrWVZuNTzHP80xJNcDMkZkhppAYmLUmq7RSKgIoxRJE87KomqoLrTGmzHJI3HWtD/41ixVIdFUBABmB0VrjgmcvJwzLzpGCPsuyLMs4vh6okGM3JcnGou/6CIgAubFyKIfomFli9XBeADMBc0JUADJzBQoJOBGDON8lTkLjSqw0qXJaeO8jQ1U3nXetc1pbVho5hZAYYkgJAIf9pRERXfCgCBP3nScaxsCU1tGH4LxmRqViiNG5crEYUtcQYggx+SIzCjn5wIBKo5wOKaW26eu67qAgTMe3P3jyxV9haoNLqDFByGz2/OX58bWbV8vGM/fr9RdffPbh9973UD558oSSDRyY+Hyz8ireun2DKRqe7C4mPVMKWBS7hzv5i2cv7R7pDDlxHzwY0tqwTz4kH70CrRiDd5BwbEp51EoG5ocHkeDevXunp6c/+/SrnZ2dw/0DZpTDd4AxUpKjKsYkOaVk+q8PKaUIAQhjjJxAnAriIBbt9vcOllerJ0+e3Lx50znXdV0xKZ3rtSZE9DFwHF6H31DLkTi0bQy/ydIaGECotCGOIYRw/fp13/VffvnlBx980LYtJyyKwvfO5pnNtG/hcnlxfLK/t3vkXXz08OmdO3eU4ju3j588e5HYHRwcKdUvFruXl+chBCIrp6pSigHkAJUDa7FYuK6tqurnf/iLP/mLv/zmm29+8IMfvHhx6pybTIquc0RaGyPlII7D0wDIqAZrOuTtP23xfKX+Gv2YRxlOHCii4j4bh2G/LBe0f7VaKUU/+tGP6rq+f//+3bu3b9y4QWOrngdrRRVCSCFGIvleUL22bb33EpDkHN9WmQC0reGaqrJ5Pp/PxSV+Z2f+5Zdf/vzHHzZNI2m3tAbW67WUUM57EaSLoxVjHJ0btsDGawRR/M00bgvu4Zo1euel4tRaS+oCADs7O33fC61VSmStdeJgjZUXjzGGELdVjcx8q1H6FHg0p/FewvB8Pt/dW0ikNEpLUZSG6x9Ane2fYj4t8XL7w81ms7e3J07MW/hdLsaMBs/OuaIo8jxfryrXh4aa8T4PBtKAThZYlhsAkFJTa0opAUoW2MYYs2zIkHovMLCWG9vWG2PMYrFo6krS5el0zhwFnZ1Op64Xi9tmMpkgUZ7nLoa8SCkK2pS2y09qMw2ZwYBPT18cHBxUbQVMWmvRwUnBZ0rrogBI3of5fH73xq0FHZ+dX8z2Dxzgi9Of3rpz99677/+z3/uD5aYqC6O1JsSyLF++fGmtds4xqcRpu9u3xAGZqRcveoQ0AK1Ge9dKOikQRxy15WS0uSzLs4vzPCv2Dg9C7/q+14qarsUOs7LY3duLMV1cXV5eXmZFsV3fEp9EEUYGBJVSkiQLNJ0AhYze9J0KirZaIqNi2Ra02VYbUsuGEDrXuz7IoiGiECMOFvcEUVwKUHA/MlryzRAhhSgRHYXjCqhJSSGbUsryQqgDAKBJkVYcE5FGVEDYtx0P7hQgO0fWawrRw4AqE2D0IcbIwERkFBEMzgkQUxhBSEnGRbu167pNXffeAUBE4RzIR2YNAAwKAUmR2Pgl8DExRk7RFAXE1HWu63tmbn3QTF2IkoohIqMiZGBi5sARGFChMcPsaRqIuNGoXAFreY+YEDhTqswzyTHbtvXBrZcDPmmMcSl0bUoJtNbG2swomhQbRxzMyc33l2dnm+ffzmY7GFoXm+RTotB0/ctXL1NK164fn56++Pbbb2/f+LBbVevNssit932M/XrjTi/VwcG+ymyW5X3rfFAhcj473DlUy/aJUmaSGWTofGAi0ApTTJBc8ABJEQAk37VaKQZWairtRgZQqESd8ed/4Yd/8i/++M/+9Me/9Vu/tZjPLy8vRbfBWivcPzUKL8BIgWZmHwMnNoTGDK24GCMzkNbJeSLVdb0z/u7du5988smrV6/29vbavlOjP09IUfJfeE3Oeg1BSXBKb4wRDuVyTM65Isudc0ph13VIfO/evfv377948WJvb086L9sDZboo10v38sX5/v7+/t71R4+/PX3x4saNa06Hw/35xcXFfL4jG3D/8ODp0ycW1Xw+XS7XsoyluLHW+tBLXPfe5/nsOx9+8OlPf/bZZ198+OGHZ2dn0XthOa5WjTEmJZCYxOPkFZKW6tz3A9tFTm0a/TTfQID4TSTAWrHVUd4PpkkCYOzv719cnC8Wi1/4hV/4L/7L//zrr7+eTCYnJye+d1L6C+YsGp+CMElJJBW2BOMsy6Sqk1ChBsvYgWxcFEUYB8AQ8c6dOz/5yU/u37//9ttvb/PpLaA9JuivOS5yysnioZHZKsCiVAMAEBO7UQlywHIzHaJLHBBkyUVm8F6gSizLfLlc7u7uIvFsOu37XisbIyuFEZhiRMTM5mLZXBRFpo211lptjRmqYe+l/y0KnSEENTq3yqlFRMyD2oZSyhqNI113W+kK9Ng0jTFmZ2en6zohqcUYl6sVywS9JBAJnI/aZDt7Rs5GUewS5KP3Tisiot61gEkeTd82crvKsswLK2w+53yWoTEmV1YKaB7tESVZ3N87eHn6om2dKgqNGphk2rAsbdN0VVUZY4y14tZKBUklGQatG0RkFNMaUDrFBICJcb3ZTKfTEBMSc/RNtRa4nGNCJo5wcXGlJjSd72zq5tunT84vrtBOWh/XdTWZTIAxxkjGlLPpjt8LwYno1zYvk9Rym2grpYzSSg1GYwO2GRMDhpiatisAi6KA9Noesk5NZnOxuQAANKSUntv5qtr0nfvqq69NZieTiba2qipr8zLLpaPDKWlrZVXFGIGB3vDRlJseQgrBbVPpbVIpqFGR5+K7IugBEbVtGzlJypJlmU+x73sZpNkecCgEx5EA6WLAxISaCb3rfRtyYwwpABD6Rp4XgpZQJvOgIF7TwIMi/6qqrdXbYZUiy8WygkC43wFHlw+ICREVKWBIMWqlc2OHtsfrmWwrx8Rw0CMKZkhCikaKEIlZmEGaABGIKCZIwC5EH5OLHHjtfEwIIaaYkouJDHjvKJKkuggDfUMrE7lv+04p1clMrc2IaD6ddl1jrcVIWqEh5V0PCbZlhFIqy42EYQAgZE5Baa2NkvuvtSLSyRjMba5mJrQ3jm//5NsvDw8Kt9mUWXZ1eX5y/fjZs2er1dXp2YvDo928sOtV9QIfvH331jff1E27yY3ugwcXLp490ynu7O03VY1giJCUXdXNzslJ++Rp3zU6n0zLsrvadF2XFxMyFnxyiRFYawMYIXgAVop8iEQKkUIIoJRQN621v/6bv/FHf/jP/+iP/ui3f/u39/f3X758PpvNnOuIXk+YSIKYUlJGszTyBmZWlCJHax1j8t4rPUAg3nsw5q133v7yyy+zIl8sFkJZ6r2TcE6v5xReV0hvoq8j4vPaMgjGDpHMW7ZtqwDv3Lnz1Vdf7e/vLxaLs7MzYzJIQZOOkLKiWK4v8HK1mM2vHV5//PTr2Ty32mjD1qonDx/cffudrtch+cPDw/XFOvkgfrTeAyL2rs3zPLHy3mdFHr27vLzc3d19+933vvjy8zt3bl2/fn25XIYQ67adzyaAKqVh7mh75ZLSbT+glEcwtrrDqHslMM/2I8sNl4CqlKGBreMR0XvnvZehr1//9V/7yU9+sre3N5/PjVbGaoYURlcxSS+6tpvMpjHGtm2ZRWxLHOGSYI8pJUnZmVG+V0pp5nVVlWUp8enOnTt/9a9+PJlMrl27dnFxsS12JQEd0NpxuGd7ZG0f5RbhkAMhAXMI2xuiBlbs9kBOW+QjpbBeLwXd1VpfXL66detWGmbToe97UKSUEq97ef08y2WSW0eNiIAYQxCa9DD84rvesUTf7cELoz3G9ilsTzbBQiQMy6i3Mebs7Ew0zqT2QETvIxHJtPpkUghKLzdWTo+6bplZKWOtTUm68PDmCc+jHWff90isR90I70NKSduCRuY5M1ubx+ibpimKQkR12rbuYyiKou88cz2fZczRB59SQBCFxEgA0qJmiJxwRCk4cdARyTNYxJt37yzXq2q9Wszngp1KKppSComFkfvy9BXuZvuHh9oaZbKsLC6WV6u2EfGKatPIDV2v12VZnp1V4kK6XZcM4KXSBZDZfLZsmQGSLHTvPdFfQ4al8SCVqxCX9vf3Jfo656bTqVKmaZrVcr1/eGC8ka5J3bZ7eweGBkW6Is9jCFJSpxQkEdN6yH/lS49GVCCyUEAxwZtGSoKoiP+3bNQQAmmllRK0xKcYY8zybNtUG4S4lNKapLSVRzuwAEjqGI7AmBIqbYzVmgExIgAqVEZBTMAQeAjFGIlZSmHvh6REk+Ioww+kR7F+iAmVyvMc/DCOJaA3jrz82HWCxQtgIn3flJLKctmug2tKIqCkFAIwAXFioAhMwBwDJ1EyIQ2KUgjOxwQMpF1IIvscMEJiQjY2M1rnWdajJ8dGk1ZoTW6MWa/XV1cXk6JM0UNMRhsismIWxIAcU3CImGmTTY3MAMizEPoSjYRhOUkMaXCuyMz197/TvvwqVC/KeQah39mZn718NVtMq3p9cLD//Pmzg/1jRen5+Wk5nx7fPHn68EGK0TCyZ8XYvFrtl4u9vKybNoIH7bX1TffqcP/w2dMXXd3lpSmLou3D8GSSVhqZQ0pAoElZAEyRI8QtxDrCOaZp2slk8lu/9Vv/+B//k9/93d/9r/2dv7O3t3d1dTWbzRgGlwKlUKTlmDmJIxlqZV7DNvJAidQ2bGga5jQWi8W1a9eePHmMeHtnZ2dTD/0zIoL0Whl0W+nCSIp+nTWODWMzqgUVZYGICRjQCsI2n8/FdHlvb2+5XAq9kylpq/Z29/vGL5frg73ZzRu3Hz14+P533taKFzuTp0/Onj59fO3Gdea4f3QAmC6vzuezHQew2Wwmk0moG3lfATbX3i8Wu+v1+vDwkIj+7E//9Bd/+MO9vb3Ly+XV1VVZTo+Ojq6WaxnNiiOCuv1o3vc86rEhYgQO21xE2iGI+Lr5jSkk2eDW5gMTBYmIvHdFUQDAcrm8cePGo0ePnj9/eXR0dLC/J2PNSpMPzmYm+Ch9PgL0KcXIEizfCG+v55VjjILSmdH61yi12Wy01vP5/Pj4+Pbt2z/96U+999euXZMwsO1zy+uIB5p8WBoJAWNexW/mBAAQX9tkDUHIR0ejmURKQX68RQ2996Sg23QhBDlatULnPGkNjDiqp8lpLBUnB0/D9HAXY/R+GAwT+ggTSQdUStLtPZFzOMsyEepVSgn+LIRnGLvCKaXVanXr1q3Hjx/XdZ1lGaCS/aW1FqhfVC/63m810barXdoBKQ0nxhZeejPiJHwdgJQS1D0XuBEGmlGSuyHrwfu+7ntlBx6ZpCwRhE3ttktMpwSIgShBghSYkYUXebVah8RN66qmNVkGpIy1IYRyNp3MZzYvGZWPHBK0Pqzqum77znkfk0CvSmtElCa83M2+78/Pz5erVdO2MQzkEUDkcb5wSOS3+gAxppSQSA6IyCkBoyJth/RHVmff9wl4Op8JO0D4BUPWiWDzrCzL3f09wSUW04VGkrJS/owxNlXdNe0WUhZgoe/bvu+lwgYABAVMKYJQybbEja2hUNN0MbK1OZLWJjP6tYCOHIgpxhQjp0Tjrn69+od37KWSk3a9REFtM2MzJIopRWEzyVZQJjKKbLowoISIv50FlLe21hqjJRWAmCAGgKQQFELwvVY4KcvpZCKbvG3buq77vm/6rvPOhdB733sfmZUxIkpJgIholDIKNSmtUBEAJoZR4l8REIrblewcpbUYO2gjI8EgpSpwVJwUJwwBQ7h2eHC0t2uVxsSQAnKcFJlwF7fujd570mo6nZazUlnTBy/PSFgMsmemk4lWyruuaaqqqjabTdvWIbgstW5zyV317ec/a1aX9fp8VprdxdQSzsrJy+en+zu7u7uL3d3dopj4NtFi+pP7X/WAx7fvOVaJTZEv2FNo09OHT7j388JMVIrd5SwPllbzyXyx2DXKcODC5mWWU2QI0ZJSoDARRM1JQ8o42RD19rzj0TyHCa21dV0ngL/5N/9GCOH3fu/38jw/PDyULG2bMNEb80JjRfPaczCNMIac70Tkgk/A1tqqqm7fvmWtffTksY9hWwltj2/86xA0/VdwaR6/tgk08FAOKjJM6Jy7ffs2M19dXE7LSZkXwfm+bbTN8rw0mS1n06btfeTDw+OimHz99dc7u/OdxfTuvZubavnixbOimLx8eSqHXUzeKBQuXgihrRtpLspASOTkQry4Wu7s7S8WsyePH3ddt7u7u7uYV9UwTio+yrJng4/BxxSZhxGjTHQYhE0pULAxAwFqBBXCOIYEMcaucyIVIvtLBsnkoC/L0vXhhz/8oVLqq6++OT078yFsJfkAgCExs5SDHIdXBgBxIJXMRl5tBAIREdu2FRwbADJjgnOi2PDxxx8fHx9/+eWXchYN00Fj/BiQc8Q0+vtunxoAb8tKGg2v5Nznsc0fQojRS1W9Lanlf0nZiogSxgTIJRoQkTF1GBaPhAA51vq+r+t6vVmu1+u2bSU7lPx+u1yzzEhzSuKFQMpiTyl/CjtMegdypBORhO3tbDeOrXe5ac65q6ur589fnp9fvnx5dnFxsdlshBomvyNvQSOzQVIQ6dNtARJjTFEUJs+2ly14ZExeIsI4qKZSSsHHLMt2d/cl3oPSPkWpv6dF6b1v2zb6oA0pjZK+KACIqeu6rmsEScW3/v7/SSjBR/t7COzaDokXs/m2gdF2zjnnfWhd773fz3Dv8KiPYbmpQBtbTi6XS0YlPVSprxMHQR4Sgm87IsLx0W73NiKWRSGfRAFL8xgRq2Yjy1Sq3slkopBkjwktvmkao9VmsxH5qtl8kVK6uLiIMU7nM8mAMlvI+nbOmdGGzHV9URR1vZFIGTmNDCbz+kgaXUe2GSJw1MbAOGsoWeq2kS6BnIhmsxkoqqoq9EE2lbIDJRvGWTRBThhhG4+ttRp4Wk4E55fV1vuw3mz64BOpNOawWkRzGAqN0q4T4880mKlRkeey1Tl4pRQByqZSPGjGJmBCzcx9GDifkZOwKBFZ8iciQtCcEnPKjDLGpOA5Bf2G3RtphaCAUPpkNnHTtbPZzOSZ6M9Jkui9B+bcGoxJIWTKQArGmJRclmWgNCL6kLz3qIYhgcxYRcDBB++tNbvzBQBADEoPNEWNwzlrBunvYQQLAHoX5PoL5W8dnRRI/59/+B90q0dHuxjbK6P1s2evrJmwRp/6g8PdpmmvHd+t1/0F9QTomvbde2/Fzr14+syQSiEiR23w4GDn2rV972qGnsAjpMT7WuvVul4u1zGRC7F3gQmB0HsfYszzkkh7F6X5ELDe5j1ydgOAzXToHREhAxH+xZ//OSL/9m//9mazqZq6LEvgoRARnov3XhvxqBGi4rCPIgyI2XQ63Ww2co6MLc+otf6zP/uznZ2d73//+6enp1prJJ4Wc1nGb4bbbeXEb8hvyZdw3XNru66zmUbEFLzzXaaNvNeD+99ev3792rVrT58+zbIMckNkIVLfumlRBt95t9lZlN8++HJnd7qz2GOk5aq9utocHV/fWewZStZa8ajAgetkYoxC011XG+99lmWXl5eSv9483n348PFkOn3vvfe8j6tN1batMVliRESmwSUXBoqlianbllnbAEOkt5UivFHxp5QMyZ4iHvF/HDFeOX+NGYjoRZk9evSo65oPPvhuWZbCMpHwUJZlVVVFXiJiCMkFT0R5VqaUgm8lpAENHgzSvU6jIjczS00sj2mxmFlr//RP/zT68Mu//Mty/sgJuQ35ZhT6VUpJC3sbm7drRk4h59xADmWWdZXAjxCAkpCjyKSUhMrUdrUMTTHzZFIgousxpUSDlme2rZW1USLKjSk65wBT9EFQXx4762MHNDnnRL6w74cCV5CAsixj6Ijo1q1by+XSjz7rwgqSYeKUUlmWR0dHq9WKmZUphB8ud0NYyoJOa61ns5kkUsws66osMonfA3kzRFGSGBBNBbPZTO6DZF1b6IIT5nkOKYkDsQgYW218cBcXF5eX53mer1arxXR2cHBgjFrXFQDMZjNr8xjjarPOskyR6fu+bTuJO0opfO9/+H/Lsuzq/MIYNSnzo6Ojy1evcBTlulwtJ5NpTOn8/JxJAUDmqv2Do8b1Een6nTur9ebV+aVPUSkj90sryxB75xKCMSY5L9zOLR2RR6W9SVkKwUHM7RFAKeW8DyHE5CUZGVTjw2A0JsFbq4GrSUSAJH0p7700F2WjFvkkhmCMmc1mdV2LAxciGkuI2LW9Umq1WjGKnGxJRM57Ii1ZsGDvWusY3Gw2S8wDwMK8xYu2YRvHMSdQZGhYZ5I9BU7y+7KBI6dtwSHVDCc3KYqiKKIPxmQhhJhS551n8DFETkopQo0MKB7awROBMloyJGZOKfKons/Bg1CXma21k6KI3sXIyughU06wqSullLJGOJl5njMPcwiGFEdkToiYW53bjDlyCpKKSQ7ECIpMArY2Z+a9SRFjfHV+vrOzU86mV1dXqMgYFZzXhNYodoFSzG3GUbY3Ou+zLAdFpIwLSVvjY5A812hSSom+tLhEF0YrJBnZ0gpjjBwGOzwY3UyJtJxWVVVRrH/h+z+PvftH//F/EJvnf+/f+I3/+3/4fz3aPyAsNpVH4sdPH9y9dyv4ZHU5newu+0tmDs4DwHvvfefsxctVVW/pstPCLmb59eM95N73Vei786vu6OgEQVVV3TSd64OPwTkHpIGwc16pDEnHhJFVjFHrGhHTaEkUAxORtTYFJ0jGtCyVUn/yx390586djz766PT0VNgcAEQD+XlM3YCICGmQVpUIIWmcrECZFRFPXxypi3/8x3/83e9+99btG1dXV1prQ1lKSZY3jDJYb0Kgr8ecRGpKETOD0E2JJQDHGAFTYTNrrZhefPzxxzHGi4sLVc4BoMjyvuus0laberMqJ8a76umzR0cn+wcHB51LF+fV5VX17jsfEHeyQ6XY3dS1c45IA8DOzo7NM+ecuOsMiCh3s9nsm2++uXnz5snJ9bZtN3UDQHXb5FmJqAInRRoAIsv8Onddd3h4+PDhw/l8joiilbjdPlsa4FAN+yDQWhiHTfmNQayxuzRI/WitX52/yLLs+9//fte13jkeKVFt25bFZLFYrFarznmZndVaKxrUWOWR9d7JsSbNoO2qptGqT8QfrLU/+9nPlFIffOe7QksWJEMqPCEoyU9sNnwuoYBsk48wugSO0W7QtvShlXi0DUI8qkgWRcEQ49gFj9Hv7u7WVViv14vFwnvPMvUrbruaQggaQWsNmKzeKiMJuDJAKTFGmYuDAVVWEjKJqOucUkor3sIV4msnx3vXdTKzJ3fp5ORkrCKUxAhpW9DYJhdKjXTWRXNDDVTcoXzHoTIJ286gPPTEYQsvjbAByyEs68SOpZ3WlOe5Qqqb6urqqm1rAOjqZn9/d3d3V8ADk2cyi+xciDH2TmbNBy0KRKU5xADOKG2Uqqv2af/c+e74+LhuWwYApJ2D/dPT03w2aZpOKTUpdkCbX/3hDz/54stnz55FgMlkcnZxnmWKGJg5ok8RUkpRMJCUYoyA28GModKXD9m2rUaS/Ahk2FGRBq1YEREnjCOpT+Kf1HYRBldtrXXXDyMcRKSQxF6wzAtEtkVWFMVqtZoUpbh2EFFMiYgYEsPQ8OdxyFJmh2Q/xJFwiJJLvsEakF8MnIgB+PU4h/xCUsqPCpqSVHYivqgUA7GAVAkAII1uxX0M0PsQgvaDtGdEUMYSKtEHThwgoiTwIjwUnJdBbaUJAWJKzjmNQzUjGlVWayIIzIwpBCc2OyExKGLCXlzcvA8xEo4GpQRGWa2tQvlQERHFt0rQmzzPQ4qckBiYIxHt7yzWdUXIwfccs9xqa40mhbntqyZDLOcTg1gWhVEEAIvZrO97IP3g4SMX/bScbNqOtOq6LgIH1lZ6MwqBMQJUTae17mPqXbCZzm1mrUHECH2mzXQ6Nca4GKqqqqqKCVu2nz95cTSbLU5u/fhffPKPfu9P9PQIih3nkQo0Rt15Z0IKZlPb12FT+x2reu8jcdt1p0+/vXX3XvXNN31M5XTWdu6y7fqUTF5Oi0zTglXO+mVW2K7rkBKgL0tTVV1use1qVCo3tu0aRlOUcx8YQKUQtDWG1FAB6GS07bpOIyVOSqmqqqy1H3300V/91V/t7e0dHu6/evWKmZkDEQBjTEO1isAx+a7p+r7P81zm1yGxoAhyfEgzQviidV0vFosf/vCH//Jf/su8sJOi5DfsCDebzTZIi0EbjiM6W4wKEX0Iog3OzMGnxAERCVHrDJVh5sXujnPuwYMHH3zwQdd1qzZMZ6XzXVla50LT1SYr2t5lprx2/ebTZ99OZyWhLcs8eHzy6PG9t66vq2o2m61WK+EfCU8NYKAaKTJEg25PjFGBatv2zp07L16cCqFaay2TLYkDMgOSZGMwdsS3OCoza223Ff+23H8TgddabysquSdyEMvGFyRGYBg5o8vZVCn17Nmzu3fvBu/qupb0vczyhFBVVRqVMeSM6vu2bVsJMN57Fg6dUjJUySO5xA6M0WHrhRA+/vjjTz/99PTV2Xfee//8/FzGCOVhycBnVVVaa0TLg9RwJB49YUeVFXo9oaREi1hpxfxazhNBbbs8RKS19WGYrwWgGGNZFl3XxhhiDEVRSLwXEQWIKSB77zmFfhAGRgKDCraHv7Cs5cpTSkoN7XCllDFKEku5eN4qUXsveWFKSYD9tm1PT09v3LjRtm3TdF3bpnF+d8D5jVHCetGaiFJgADBKG6UREjML+ZeIQnDbBEvyrcSBBr+mgRs7hOGEAhOq10y3cYBQaaEgNE1T13VKaTKZTCYT7z2H6LteZ9YYxcwIQwGmtZakR6fe933HAACDXE6RT3b3Dmy9ubi48CkK+BOchxSRsG5828d11VRVtVpvXPBFPtFIyQ8ZVkpp0DtDYEBFg4IE4l8jZOGIRSdOIQQYLRNIrg5Hc83AMTop6YTCTloljgJ9bB+SoDcS9mQeoGkajkkh9W1jFHnfI6LWmbFW7iMiaqOCj8PYg49a68RsjBZavJQCSbyyxu3KjAkpMCCqwciPAzMHHsYogQc4d8vE0zyQlqUrI68TgYEBEROjcyHGFhmSUjFGIKSxRcFyGqbEHBVopfQky1NKLgaGpAUlHuE1Q8gsHSgOIUQBlBBQUYyRgRKwk00r7AOjU4ghBDGLlsyUQlKjd2SMYJSM0EURxRwSHW22WWRMAVLUWhEhhFAYM59NNalqs4oQY+8T8GRnsZgWyMAQLWLnnMrp9q2bp+fnZ5dXymSgFWlLAKjIJSF3cU8xOq+VUimkrks+GK0nk7LMcpmEWjNfrjcyzyZ3EkkvHb54+HK3WM6Pbhy9/dFXT7/64J33rt+6/fDbR21oLzaVQmra9WwyjV2YTBa8uSonuY+xKIrl8tK80B9/+N5f/uyzpr5SlAmz4/zVpT4+PNzddaq9NsHAvnVtSK7tG6uNj10IQRtV1ZUxWVmUfeQYGkLj+26xU2zWtdZa53mMUStFkAyJnzLEGMvZrG3bLCu+853v/PjHP/67//XfPtzfPzs7U8YMCxtAaZUSS7Vh5/OLi4uzs7NXr14ppYosPzk5AYCmaWxuRflI1r9Mxezv7//cx9//7Geff/TRR5PJpOlbOawF+azruixLPzo3yHOHsXfIzNLL0FoPwG4EIZH6EPq+ms/nWVbs7h88fvxYxJu6s030QWlq+2ZSlk1KMSUkE5mzYn50dP3Bt48++OCDFJNa2JcvLk9PT4+OjqSqu7q6kjJFDmtJmrXWbTsgiikBAmitEFVZls+fP79165axOqVEJNLOrJAToSERt3KESTDJLRz6Zr2L4xePXdU8y66uroQiJHrvMI79yNEZQgDA6XTetu35+dnJjRPn3NnZmdb6zq3bbshrg81zrXWvvChyMA6ggtBC5WyRsBdDlHNcYE/5yAJlbytF+YWPP/74yy+//PLrr9556+1t41MgWWkYb+c2h/yAWUwJ/egOxyMhi8aBb2PNttoTuGVbxAvPSBocEoNTAqKoacBvZbIIEcHY18BA9GSMMcYaZa3tO4+AHJP3Q325bUfKGZ7SwCZj5hid0XabssDIWt8WtbIj1Gj6LqnVcFCntNlsZFRa6FGSxBCR5BDOyXnut0kJSrowRveBe4FGQCb5yLIgt+V7jBF5sDlQAy8shBAYMC8Km2VttQGA58+fX7t2TeRF5frzPG8HdZektEHpxzPrFHtrbV4WKQ3MI+lMOBe894ro/OxUKWWUvvvWXe/9+en57sH+8xcvO+fzPM+p4CRxaEgkU0qREJESQmIWU2iJOgSgBxdCEKtxQwpRhL6H2Jw4GVJJwXaHGGWEYClVKQ56xoCJo/OIJEI8MQStdW4z1/UcUwpRaovd3V3nXJ7nQsVSHmQCT/LNdb8Jg4RbQMQYIiEm5pTC4I8W4c0APAbd10Zvb5bFzByjZ4gAKr0x3S+3dJtHv/mFiAmAQyAijVpbMxTfKQgLG0FE1ImINJIPzhgzsfmQmMcEKKrrEUhvb+O2KAeMmclSQq0pMUKIIEkSDndYckNmoUSxMRqRARJAItJAmKQBAir4mGVGpEmRoU8hzwwQoVJFUeTWIqIm1EAQfOy7aZ7H4IJvXWeufMshzOfz89WmKKeb1bKPg49hAgqRgQa0U0jFIswVB2KcIlKcKAA3LjhfcUpKibAJIwVmJqOrtququtO7ampWfTudT7/3y3/j7Pr1t+/cOthZzE/eSyldnl+8fPnc9U0Kbr1ceW2u2pnt0GgDsS0XR09evCJbvHfv7a+++opSyFB1MdTL8yW7uWFjVSDYbOqmbZHpq2++3Ww2H3zwwWS+iDEusvzy8nLTNllWApPWdndW1Ov1Yj5rmmaz2QhWJq0s551kjU3Taq2893t7e9evX//d3/3dH/3oR8fHh2dn58istOl8l2WZi0M1phFPjo7ffvvtlNLFxcU3X33Vde3BwYEI9cnaZmbx1GPmzWp9+/ZtAPj888+/973vTacT2RcAnFLMsuGbLTq1PeN4gGe3IO2wXDlBgqS1dilJPppl2f7+/sPHj1DRzu6Nq+UFEiulur63uSUw1aaOkbXVO3uHVVU9ffry2tENAjjan7+4OpfhTu+9ALbz+TwN5j8+SetqPI611pwCKr1cb/aPDl++fHmxvDo+PrbWrlcbDQmI5DjSRgGjbz0p0EqlwFbZlBLEJCN3RJgSI4JShCBbngFAQmAchSq3KT6OTDopqQela9JKmaJQVVY8fPiwLMv9vd22bWOIMv2lM9v0DTOTNgKQGmO35XVRFPIuzjlZ/GGUQxkDUmRmkbSUyvjGjRtibnFydHx1dTWfz2OMMmgu3YTeeYlGaSRtcBhuXXqDIE2jEsB604pOFhEhKBwVrSW6S7NZWy3X1jTNfLogBZzEvaMRaMEYI+rc3jmAlGWZQgrRIaI1Q4d7OL1peGs36p4CDCiFHuUyYOTWSGiUGVxZhOKgJUHqxYsXh4eHom8gakVibCW4xZYXjW+QZJVS0Q/ZD4wm2VIByxtty3ExAFRKCfww1IqJiUjJGL6oA70haIpIAHzjxo3nz59fXa1CCHfv3p1Op1VVzedzEkmoEEJIgNK7TDFGbTQChxh8TCm32icUZxKFYp2VLGF0rpzb3Wlx9mJVTKer9aaqqp39vabr15sNEVlrFZEiw8w+hhRZ4lRKiUaXLgG+5PaFUWKeExORGWVZQgjlZMJv0B8EhZGe+SiDmEjsfQTYETo8MMcQUoTMcgyuS5Np6XzvfM/MPrjZbEYK8zz3XZ9pg3pgMCGBsVrQCWWGhw0AmbXCN155H2McOds05A6jj5v8ECBuA6qPQSllM02CACCmN0jL252sGCKIXwUopThE4EGtl4UinoboSCR+ZaiAgWP0ySitNIGCcXJgkJ8ZyAJxCPwydyKzWIoSI/jIClD8B43WCCgoTZ7b6LzrAyQGjDBOwgGAC2k4DTGhQpNZTSpF771XyLNJIZrhklZbrYzSyLFvWouKw2D7aDQpgKQUYDJGh+gODw+vNtXLV+dFUfQxua5nRCUc6zTw5SEBgmr6YBJmxthyookgxcSMlNq2o4nN8tIUWVU1btPUdduHFBTJHu8CK2vK3RueZucVVFXaPdjfvb0fil1DShuoq2W92Uww75qNBVcvz9btld2f3n928Y6an1x7++njh31bl7lGhs36ar02J4eHF8uq771z6S/+6ifrTf1v/pv/1sn1ay9fvqyq9bfffP3lV99oxO99+OH3v/dhXdd/9If/fLF/aHtNkBbzad/7FIK0smQvCMrKnKTj9YMf/OCv/rz/2U9/8uu/9hv7+7vL5bpuNnlWDjRaa5Co750MQy8Wi5Oj49s3bjx79qxp22EKwgcAkAnOPM+7pmXmq6urk5MTYH744MG9t95SoyLgiKQNRGt6g7D9GmItJ3H0k0kw5G3idVnkk7ptyrJMjPuHx8D06OGTG9HcuHHtxcunqrByMMWQlNEpRRcAPdy4+daj+99c0Pnx8TFGvQv7p69Oi0m5HSZJKWXGMPO0zH1kACiKQqYGrLWim53nZdf2106uP3v+dD6fz+fzvu+DjwAQCZKL3oNSShtFgAAk2jjCGNiGoje/trl1CEE2fhwth0dUj+WpybC19FwPDw/rtpmWk93dfQJ49uzZ/u5ebixrfvLk0WQyu3HjRuKolfHBOdchqo5hMpmkFITrK8xeY4wLXuLxiM8NoUhG0bIsK4piuVzOZrObN28+ffo0M/bw8LCqqm2fWAhHhvW2At4GGCGmjBVC3BYDPILVzrkYWCklkRiAmF+jIMG/plx0TR2Cc04agoaIrDFZlq1XK601IhulFVLi4JyDmBgH1v14Kg78shHiHqDgNFr5ii/L678yS/ZARELykq4NMwtr/caNG8KZAoDJRD7463Fw+aTbg9Rau6orolzgdDVOZvJWkXcwhSPn0JhojKnqSl5EEhRJTL3MfYz+VynRNpECjvfu3RO9gadPn968eXN/f3+9XtOo1x0jK0qsUDaZhuQ8Jx/6mMDYXPRAFWV1vcm05hQM88nR/quXL149IQ5+06sYY0JabSoAEOw7eJ8AENI2hdl+KUCNJOLPQw4ihTyiFlgmxF6IeYmN0gDEHGCEo9VAQguzyVTAVWKQecdxgf41601mFm5e37TTohQRpcXRQil1dXXVtq1VejvJI8efHkU+KRIyxIFXjN73YZQH4jcq3TdLXtwqqP314lbWh9gYSA8PUTG/vj8pAQIysQKwSkdAHnRSEgEaoyOz8D1Q8lIGgkQpaq0A0uBewgnodRInb52ARckLEYFoWmRkNKJ3XpYXJAZCVEqLOnRurFXaYdRImLjzjbU5KQWAffDeRVQ6U5pIHAMjUwKOkAIgBudOq4pjEJvhGBmja73zbZeiz43Z3d3NtEoc8jzzoV+tVpktdGbrtprOJ4dKvTw9r+rGlhMvyGdCZiI1sG+VUilx54ML0ShtFCrEzJjMZM7HTd22vZcRJnE5NDbPEQE4L3RZGAvoMbu8bGyRV21YnV7aLKdiv2r7CRnaKW2+WcUSy67r1uXisDp/cbA7zxW4qt6fzQpXtNXKpT7066667J5dPn61NMik7Nf3HykzDcz/6B//0S//yq/efeveZf3w8wfPr9bt1Oo8z2/fuvbTv/jzl0+evP3uux9+9NE//ae/d3l5eXztxtXVCpBMZqV3AABlWdZ1JVMDz549+6Vf+qW/+Iu/+OLLz9979/3FbHq5XAEAxFDO5pvNQAk2Re5cf3l5Ya31Rs3nU63JBa+1FaSuiVHm5heLxdXVFQC0TXPz5s2+7x89enT37t04Tp7EGLf5Mb7RJJLDxVor7Dwe5+MljFlrpKCPCVwfpLLf2T/wiV8+fzqflrPZYl2tZrNZZGZK+cTWVet8LG2RYrx5463Hj7+eFHY+nWRczGaL09NXd+7cSjEKn6jIMikQNRITCjmx67oYAqIBVDbT9aay1s7n8wcPHrz//vs7Ozvr9bptOiClDaU4OLikMLSrhFS13bPbCBRjRCQhVwEAIoi2pfz37Wm2hUnHYmi4J4R6va7KMp/P51dXFy9fvjw62I8xvv322+K04WIgJYUfTafT9XLTdV0ILo6im61YsSklcu7G6CyzcugbY0TCReotkUvb2dkhosdPn/R9L2hBURTSQrbWVvVGjoJt+GRmn2JmLY7i3tuGdIwxxJJQe+9dbHnURYiDFht2nQNIIoiREpAiwnQ430NE5wcmGnOUYbAQlELyKPpLwyCJtuJTjCkl4q0+V4oh4EjtVKM8vlIqcpSavixLNU4Dy0iSBGxZbHVdS3FZ5BMACM5LbJYgp5QSaYo0elYKgkKA8/lcWGOy8t/U/ZBsQL9hYhgHDecw3k9Io7L3JPB0VhJR0zQj98Iwc+9cjPHevXtPn5pXZy+LPDdaF3k+9I8BUStjjJIsEBT+6v/4/zKbzYFovWnrtnMhWZvdvHmzWq2vLi9cUy8m+W/95m+srs4Vp6Zp/vzJZdu2Yron5i1d2w7jWahBMiZAIBQI2o7NWgAANZDNUkqYBjI9xxSig8TiULZpWmZGHNSS9SCbEgZlBiJDSo8eZEN2k3ibgAhcI3qK8kTrut7d3Q2cZO4q9E4eoTGmahsc/UTxjWEDRCRUMcbIyfs4dMVEswZHMGpUNwYhK6UhdWJ4TTtMKaEkidbGOBTwY4weskKtSSkVQ9BI8tY+eWNMSMP7EgEBEoAG0lrnNKDW20jPCFvYStJe0Z8SmH2qCQB8im3nxFTBhciECMQw2HYSMKQUvQMAUinPcyTtYvLexwRiCU5EBBh9T8DWKIUst6wD1qSs1hrA9469K7Q1hNeOD4s8K6zZbFZVvdZaZbmx1nbO+ZhWm+rw6MQl3LQtKHt2fhl5mJICAGsMAChga+0yQZBMKLEC1gRFlpd5BgC+H54y6WGBxRj7Li3mBXEzzc20mPo2dW3ooierKt9FMPlkd7mqEnttojHJ8bxp1+y7zKpcI6WkkHams65pLal5mYGvfbNcXT178fT+V19++m98cGc63+kCVH2c758EIDS2d+7999769uvP/tN/+B9hX50czKCrdqZlvV792t/5b89m85dnZ3/5lz8xNt87PPrnf/RHLiQimM/nR0dHwfmdncXx8XGR277vfX1148aN+w8fWWtv37qzXlfL9arIJ8xs8kKKFXjD4N0ahYhSS11cXVprrclFtHyb3YsEJjNPp9OvvvmKmaVtrJQSNypJSbeFwpuloRlctkTz4TVnWGstCGEIXtzRZejg8uz08mr14Ucf+xh636PG+WLatq1rHbEmUIphVpiLV4+q6uytuzeWcTel9Or0NM/trRs3B6FE5hBCnufAhIjKmhgHWXjno7U6pZQ4BNfv7e19c//rvb29d999t23balN770kbMShLKUEcdscIa78Gk7eZ9FYLi1n8RjUibuueYbuOAgb8WluKvfe2zOu6npR5dD5E17fNnVs3i6LQehhJQm1SSiEmSZ4UDrNA4t1ycHAgH9kY03Stcy7PM1HKHBHagSvqnJMoK2PNDx8+/OyTT3/0ox/J+HgIQSaaAHmEWAFHZi8AQBwKle1jlepNtP+GYkkpxGEYaVsXMke5ISIHzbGfz+fCmyGlRMZZ4qgccDFGEQod3ksZ+QXnHMOQ7Q0ZwKhgr7WVEjalFPyQ8AkwLjCvYKKSD0np2batMebq6gqYFouFPC8aaeFiHEBEctziiEIbY4SPve1owCg1IaFXSkRJPeXXfOil2WyMEe+vlJL3EROnlJzvZKFK0lZVlSVomkZrWiwWF+dnL168uHbt2rvvvltVVdP2fe9BkVYGSMnILv7of/7v7+zsuRBXm6rrfUrQ9n5ntgjeBdfvTCeLSZlrunPzZGc2ffny5R/dP+2DX6/X4n9AYtRM5HsnyjIMkAATYQRmADt21IfwBkxEMkQoTwgSAyYClKnfuutlBTBHNUpYMHPfNtPpVMx8bDbItQNAkeVbe6+tCFld1+V0stls5C20JjFa6PtewRBrF4tFXdcuBpn6kAFwNfpb0cj79WHo+kgAlusHJrH3xiEKxkH3USmRGH2jHh2kr4RrEAaGi1yV1lpnmYkh9H1fZrncqKapmJC0NP+TuEMQoFE600bB2J2SuSYhbb1xOijRxmIZd8lLlCCKVddHBiBqe6eUYiSFINsGkjBdIcVIOlmbJeC29wBEygSGGJJVOi8y17UYg1ZoNeXWBucgz5Kciz5ACBnp3dl0MZ0YhZk1hTX7+7s7u/MHD7598PD+3t5eIiSikJCM7QKj0p1PIcFqswEehiUUDZy+3JolIAAIAACJgaMm0KQUgoj6ykO31gLRer3WnlNqkt/cPDnMzKReumyyU3UtW4xWrZtYtSlEjBhtFrMCYsXMsesbY4xzvc0Lm09SpBiS1VmuFYT6cKe8tj+Jvnry8P7fPUk/+/yLnf1rP/vqwUc/+BUzndWtjxitgv/s//3/uHj+sCCX2rUKTWobq+Hv/ff/Rw8ePfz88y/OL5ePnrxUBpF03/sIsJhP8zxfL1ed84f7uz/3/e9Pp6VOnVLq8PD4Z599ev3ajRhj17m2c4ho8kJgHmutGKFrrQ1C63ql1GQyAcKmaYJPAm7LZJfWGhmlwMqMMUX22WefTSaT4+NjIbBImSuTrDA2CzebjUgZSFTO82J3d3exuyP6vYETIrq2E8TS973Q0S8vL3MFp2eXzHDn7Xd8dH3oQnSz2QTBtBvnmrCYTCE2uXUvXnxN2B+//RtN06zX681qtbu7OD48IiJk3momAxMZnWUFIvZ933YuxpjnNkRHwMyc5farz7/43vc/XiwWIYTLiysXotaaUEdgTIPmuRxBAjzg2NzFYZJebBhkz7JMqQpCtpVj5JGlpQfpIQ8AWZatm2o2mwFH3/WJw3p5hZzeeect+V9t22blpO97m2VirCuM3Ol0enb28smTJz/3cz8XY5RHYK3tXCdettI17PueSMkvSBj4/PPPb9y4IWXc48ePv/7yq9/5nd8RWLFpmjzPlSYaVczejKwwaPkMHLRtN1A6kWOqQQAgwVWY9jAMvA2crMlkAqlv23a1Wk+n08lkkhhfz62FoYjkGEWTR8bz5FDtui7EQdBRAjYSyXCRtbnoVKSUgKPEXaWUUOKZebPZyBj9lt8Agxu0Wa+q/f39lJI0BYTINp/P5WmGEFJ63WEpy7JpKkHdpfwNIUhumlKaTqdCvtvegaqqSA0y6dZaRUYNM9ZARL7rAaAoMyHWdV3nnMPoAaCq1jHGIrdXV1diBD6dTrveex+ZkFAlwBiYmfHX/6f/Ub1ZKkqTSa6taX2s+qBslimb+jZT5NtqWs6K2c5s7+DV+fJn337z1ltvnZ2drdfrbYptjIliFu0cESjAlILR2nuPxsowq3OO1OBan5XFNsVmRuJhrjGlBApgYBwkrbXSVqZ1EgdDqiyy0hhCQBYr1tCrwTfDajObTULv2rbNrBGuf0phWpYwjnI3TaNRz+fz3rWS6TRNk0SjKvgYI5MCxBiT+OP23utEjMDCWx5ROIIBPx9KcPlX2orQDjwCNehAoyHFENu2zYyVRHVaTvq+n0wmyWTLqysAEDckRGRMTdNE4CHGM5BCq7QmhQBaE8TEbzA1AIAUSHMLRoVCOamVUspkg+QW0darBMfRaiLS450nUFrrhpJgLQCQpB/DmBBkzpsIDCnilGucFLkiUL0j1MYWddeXWc7BHS5KG7sSwzTDzGhlbD7bfXFZv7haB8aiwJOTE6XU1eWq73tlLCf0KTZt14cYUhQNTu99712W5QCwqWtrc0DlY0LEFLwiyK2O3msCpVAqOdTGOeerFhVFTrOdxXQ2q6u11RTbTqc0n844RlTmxcV50loXZVZOFNvz8/NNU5NGJIrA4pHnnMuMVkiTLA++t6iODg6Z+eLBXx7fPDblfNnqrg0QVnnmGcrS7P/Df//fe/jn/887B2Bs/mu/8tv/rd/8dX/+Nd79211Ms72drJw8P798tW6fvLr6i7/8S6hOP/n9/3wf4Pa16xd1fNVX3/vhd/ZPpnylQTFptbtz0NSVwk0K7e78Tt3PX14tsayjriiV1JlFadhfaT29WK60MUCYZyZGr7WNAZDy3kertEIf+kprsJlx3js2Ra6/+vLzwtqD4yNbTJouKp0jQ4ZsIbDrAFIxmwegi9X6wdn52dlZXdfVpj442PvVX/plTcoqHQU34gSDUMwAk2z6piiKBw8eGK0/+OA7y+WyaZqD3T3AlGXZxcVFcF6cBAHg+fPnxQSvXbu+WbeujxcXq7t33iKiyWya2HVdMxYrFANOpzNrcicWJsTGaO97Uklr1Xfd+fnZRx99lOd50zRXVytE1MoAAFIeY5RMOcbBkmaLl2il9GiFKSey1kMV9SYqtq3b/rUmGiImhJTSfDKNya9WK+bYNM3u7s7x8fFyudzimSGEoiiFLYVvODLRIDvspXGGiOv1+vLy8t69exIeZC9LYIsxPnv2jIhOTk5SiFluv/7661evXv3yL/+y6C5dXl5OJtne3p7oX7ZtL9S8bbUj7eS2rVNKi8WsrmtDBoCkAS+4ndVmjLusNFptEDmmQSI7xNj3fZZljx49QsQbN25Ixua9NyaTHE5Sk8FAKXp56226s8X2eZx7jqPevoRMQZJTSjKsJdJaKaXcWKVIwo1kfsJIPz09PTg+qqvWWssI3g9OOQPM7kMITg66GGM/Sg5ICiIcq77vp9Pp7u4uMkgcdaPqpxlXiIAoMkD/JmcCRy+mruuyLIswmDN2da2IIKbT0xdt3bz11lvaZuJcjkpra5QyVVXpy6ur4N2kUELlAYDcZpPZPPpgszm7Vqc8xvjy5fPahRevLq1WL549DSkWhfDpxTO5N0pwIVZIQMSRY0qAKJ+t6dpt0qFGVr18Lyy4MNKUZuVkwCtk6SvkhIkD+5hUSkGz1khiwgYMLFTv2aRUStXrTQhBEUoLwSrdu8F9VpA0m2mDmbGKwTJz27ZN02RFkec5OPTeuyhjGCgVRghBkx0gKom+I2i1BZO3u/RfozjjG62mlFLiaJSWpy6rRxZuXVUxRkOKmVOMgKMIlyIpmJkZEyCBVsoYZRRua3R56pBYkZkUpawGAAAGSCz2R9J7GBJPEIB8eAu5YkKNhAmH1yROKcYQhZ1PRusEGGNMIRIDRQROACl57KHXitB55qBC0tr6FAtjrLUne3slcV8ttVYh8cvzi8ZBXk6u1jW37tnzl7K18nLS1J1PMc+LLEMysWn7puuBoskyjdiN5pqMDpgSoCCrKfq+75FZwPa+77vO2SIfuKApaq1Xq1XvXAxu4/oMaZJZTbC3d7DaVMf7+1XfN965Fpt6U7UNc1Qqg8FkceASExECppS8i4Hdpq44ppPbbzOFVefboNuoELIQse3CyY7uk2LKgwrPn3e/prJ8utjN7z5R86Vr1pu00CplczMtby9uHN39Tr85d3369ic/+aYuWJm9WzdWdd8/WR6l+WRvGjlV7TIxMVgVaWKy6vLps6//4u4Hdx58/STPT26e3Lu8PJ9NPbE9OtrrXA8AAlHW9cZmE++bLCtCcH3XZJZsZmIMCYG06V28c/veg/tf5VU9Rau1FdpbHwIqzrKi991V3cx3D9/78N7HP1ACbzrnfvzjH//xH/7+b/3otySlBuFkaSVTVT4E3/VM2Ht/++7dBw8e/PTTzz/4zndjgvPlajKZtH1VTGbe+hBCYlJK7e0fn726P51uFov981dX1toXL168//77bVsXRWa1ccFba5umsyZfr1fTacqzMi8GxNIY43yXki/L8vj4+Kuvvvrwww+NyaSEksJFBKpR9KBlg7wxdCRfRIQa8bUzgSYZngRUSqKCaDiLGQmOlhbADMiAib332pBk/PLWbdteu3bt/PxcrhMR+7YzIzicRjloHEmaUupprff29iTACBrUNI2UvzJXJr0DGNWvrl27prX+/PPPP/744yzLrq6uPv3001/91V/XWq/X6zwvxclYAtK25hEy2mZTi/C++CsMqDJR9EFQbudciM4l1poAQarYLM8lV7h9+7YIMo85vZJBGGlXI6JwyvouyBDUVqxKSoWxrzyU42LItp3C2v7ati+rtRYWcYyBmQX1DCEgEgBcXFzMpovNZmMyq7Ud0fvh4UqgUSL3EbycEhLs46iOGWPkmOqmET/m7amexqakGqTXX/tG8Bv2nVtAJYbBvq8sSwTItFEKnzx5cnFxcXL9Bg1mSgOnXWutSZtMqSwbWcGcog/V8koh5WVhrQmcrl2/cbVpHjx96VwPEJq2zvPSaOo7pwikWkzAUh0mYABOSgGgj+H27bu3bt364qsvV6tVWZabqgohyPDZWD4yM/s0oLiDdiNSxLjNjOQeGU3SMc0yaxQyxxRU5XqFwMzJB22U0WoMJOB8B2OzJ8WIiIvFom/6QVVc6216a60VRH3TtK5pUho8jYzJUkwSdhER8DV3Q4YW8PUX8BtELEREHn6CiSNyTEFmagGAY2pcI5lvn5I0lGNwAMAjGYRDTJCIyGqlSSkCq8hqo2Eg6iml+siBERAzbRQNsLZkyh58knSTAVERjexWQmSpg1Hey2NUY+7FzNPMxBg9c0qBGCExRA4hAClNpABBXiOCTwGMMmSUVghKGzMpy5snR83y8tHjp2/dunZ883bbVC9enoHOmqpat00xmcWECWi1qb1fG2OyLE8MV5sqs0WIzEiotAu+bzrpOCInY0wCSMAi7qiV6kMwWhulOPosK2/cuFVV1en5q+CTipyXRVbk2HWKCAC1NlObpdD5tnm8vOq6rgtx5+jIZsWqrmNEIhA+p9wEOaiMUlZbpUgpRd67LmzqJoQwyyeAKkTeNG5V+XySlaZwXZ9QL6sGQNchTRbq5u1bp5fn7dnD1d2PdbEfidoKtJ6w4TbAykPLi9/5H/wvNq8uL15evDp9+er5p+fP/tV+2Tx8+XT1sx7KqZlP5vP5TpbfPThZPX988eLb67v4/p2bn3764PmTh4tyZ56HVy+ecjZdr6qUgBO8//773rmiKIDQ5LZ3PWqw2rq+7Ta9rI3EyiiMHL/3vY9++tOf5sUsRp5MC46JgQMnhVqXCx/D6aZ92Tx5b6cwxkTvs8z+rV//9ZtHR4++/ebOW/cIFQNETimyh6RJk1Um0zGwcy5BunXn3ieffPKzz7/48MMPw8WryFwUkxijD0ykXYxWk8ry44PDl8+el3a6u1hAhHXdfPLpTw8O9qzdn84mzPzy5UtC5V03KSfBuSaloiiIUKSIlFLe996Fvb2DvvcvX54dHx8LJMgQAQY2DSK+pvX+daLoNh/dfr8tT9/czvzG17CLx+/F0dmYSVEUznXW2hDC2dkZEd28efPi/FwaioPkkxpMXwa6xqgiKae8AL/SA5YAI9FumwO9Tr4TI8FisbDWfvPNNw8ePHjnnXdu3759eLgvJ/lkMtF6aC5s34KZq6qyVsstIqJmcyl6Js659Xo9mUwQQIaMedSBGkjL6nWra7VaSRe56zqZBedRQkT09YS7t9lsFvOpVL0SaOXWbRlP29YAjcpugvEOpJPx5LfWSpOVQwR4fVXM7H2YTqedd9bYxWLR9p0AottaHBmIQGuN4z2Xkndb46pR5izGQRBwazlMRGTMtoCRZyHZAI/07DQye3CkN41RVqcYOu/Kcnrt2o379+8rY/f39wMnQvJxgLV158KssFlmvW+jd6RNbqy1+aycVMurybTMiuzs9OX5qq7bNjAYQ/PFfgjB9V5mkZMXJ2qntSaNMcY4DK4gJL2zM++6JgWfZaZta2bO8zxwkiFu773IrgJAQmBOTVsppVIEYiBOmBg4Cew7bBIW7tUodhrCkDHFqJCQSCFrhXmedx1KJSRxfbYzk2RKmHVbTEZ0zha7O3leBgbng3i3JSBrjQ/dtpzdbjzg1wysN3ep+M7/V/ctYNJaa6UBQHDp3nVZlslvG1IpJZ+S1QYYUkyAoBUq1Mbo3GaEjIkVkkGKrpWEUyYZM62IKDMDv98QKkKIDISM5FNMDPgmYQ1AZvOzLOM45EABWLoAWuu+bocLJhr8HzgpJE5gh0E9MkqchQOzCkixj1qjSanv+9Vqtb66VCl++tW3L+bT99577/pbOw8fPb1c16DsuqqVTin1wEhEXe/WTafIFJNy3TS9D5ETo0pAiVEZkxghOm1NjIyMslTkAFIK27bNjAKAy8tLn2KRT3wMRV4I4oKIikzCcLC7KDOt4hScs0oh83Rq3nn3rW8fPQbXk5mqNKDx0oKChEjIMbFmhQMjI4TQOdf3vXdqOi+BuNIcQqh6ZJMbbV88e9A8fQBEq7WjAKdP7k+6pfKbq1W9P91PJmt7V6KZTCbBxdPq1bIHp7RZ3FyUt3bvdL/A3/t7P/pf3d3z66vl4yftzz5/8uO/+hcPvvyTq9OXp5/9DBx88NHta7ffObvyq0atmmWZu6nlyOpFvT47f7W68rduHF07vv77//T37z98cu/dO2j00bWTcjKJMSprlaHgY4jQdf3efOJdE7W6efPm44cPvvu9718tr7KsKKxJ0Vdda7IMbYEKXeRXL0+n0+lkNvVt11b1W/fuGK3Xmw1MQQw5UASMMSYABJTwJLvs/fff/+yzz7788st33rp7eXmJiHmeF5Oy67oE0DmX5/mi2K2q+v63X3/0vR8sdmZFUTx+/Pj/+1/8k7/9N37l3XffiRD39na6zgUfxeWNgzdGq1GMVynlPfXedW1/88atZ8+fiqmUnJUwrvwtlQRGh1AY5xfSIA30elomjEKkAMNkoICWW0xr+zpj8TeUzkorRGWM6fvUde3XX321mM/FAzilNJvNUko+DK8TR6EJQcVEc3FUpx9GdGCg/AxiEXJXJc/u2y76IGXiu++++/XXX798+fLGjRs4qujgKBQvryORMqW0Xq+38V4Q6fV6jQNPJQklWxxgtSE5cglYKcEcwWZFURRZVvR9v7Ozt9lsus5lWSH1XAhB/HqliT6bzbLMCkVXgFmJrEIkfi2hM4LkMow39M7G81lCWtM0ACBiizLAI0/BWmvyTHvLzEc7R4zQdYOqiUDcKUTRmwwxQkriTZLG2RkAEKOXxWxe1/Vms0kjhVYCpHNuK2MiyZwU0IJFv3mFwxwzYjnJMXHTNAQYYoCYFovF7u7u+fn59evXlTVVVUEcYr/eW+y4vl5eXiXfaMJyOsmsyQnAdaVWvm1OTk4SqVX3uIBJdbU2VhXWXGzWLiZrLQrMPrqtvQ5RAIK1StNCdO9IK5tpITehtWMpGd9c0wTAMaUYAdV2ujzFAKgUSnc5pRQSqmHAACEFPylLZt6sVsra6WwuEJAwBmV5Ceq7Xq9D62Xkbst201rzIFY3GBgwQoriAfgap3pz721T5uEjIGyrZJZsiAHp9dgSIsigDjLY3CqlsEURilOYlEbwomAlFC02WiujAWT4LGECCJ4BA6eMcLQYRjJaT8phk4hyHjCmSCkOcpcImclk+iymgIhqvM4UBlocDOpoaIyyVk/sVGiBoMh737S9TDaTtq/vQ8IEnAApgYsBAKxSm6amFEPXQOjLIrNZ+fT86un5n02n83IyUVnmQ8ry3HUNoorAvfMxMGlFSFXTJkAg9I5j7BNjVuTW2s4Fed4xJkAFwCGEzOg8zzHF+XwOKfV9T6QTgLZmtlhI0tG1fYQkeJr3vk/BMBdGFXmxu7uYTOddXWOKfV2laS48zyKzzNz3IFs0+uDFCzHoGGMCTJwiYmEwVyl5t1cU3aJ8VbdVVd3amTK30K5me+X+wrSvLt6+sTia5t3aLcFXy4uUz4BU7YPvXNJZZqxRvdY0m82aVV9drqr1ReffymeHcHTrw3eu6YNXi+tvv/M/+ftvHc/uHtz5g//f73714NOO9P/sf/2//aVf+Z3V5p8/ePTpx2+/1dYpWFIq210YjOrpg2fVukkAX3/9KAJ89sX9977zzt17bzWND45n+VQBLubTvq+MMq7r5+Xk+tHxs8ePDo+udX3nIRKCVgqZg++ZdJEXHLJV07eB8zy3eX55tTq5dm3nYL9pGhf6EAISaqUJIbAPIYYuzefzruusxujDR999//PPPy+Munbt2mazUTgo2hdZtl6vM2Ma1967d++brx8+evTo4ODQWruzO799fX8yKbuuMcYUWUZM61C1bV2W08TY9y2MGCwnNDpD4uVynRLs7x28fPlSaz2ZTGRWNQSRsQRE8hy3CdxrzDBGTK/j8ht17dA82p7X20R8G3e3ZaJMvFDSKSVrcxHEbZvmk08+EZrV5eXlUNeO9nyQBOABlZHVJvpAgJoGi3QE1KS0VQlYwFuJ0BLk6roWgXSZhbXWXr9+/enTp0qpPB+kKM0oZC1F23w+Fxdba+1nn32ys7Pz8ccfX1xcMONsNkPEpmlodBoWZZ44+p1oGhpefd9HTjIHxcxN00go3dnZkSirtXbOSaSXoBBGP2+paCWNkGc36gOOsvmjHIdEtS3HRcKehGciis6LU6+cRX1foVbr9TrLsrbpj46OABLA2N9MLNFXXl8hTrTaVt6SqWRZNp8PIQNG416hTLdtSwADx5sZx+l5+SCSc0iuJl63A2CubFEUV1dXHFOe5871fd9fv3697/vlcnlwfFTXdUoRQBGhXi3Pj/Z33vvg7YPdadtUV1dXCGp//9AYYzU9efRweXl+6+13Pvroo7/84v75qhKkou+9LfIQQkzeWutDksvFcdRMsoPZbNasrqq2Pbl2jECPnjy21uZFtlnXMDyRYS4bXsO5sK3xCVl8/UhrAjbGGK2QBSQc58a6VikVXMfM1mqrFcdAwL7vUvB93y4WM1E9dS4A4Gw2afvOWkMEWlOWGWZ0ISijvfe96733SJjnmXg6pj6KINU2SRjD6janZhCxKh6hZ6k6AQBAAQIlgtGAEyHLMkxslZbESltjtSZtU0rEEEIw2hRF0YUeEcWdXnFKpIAjpVgW5RYi286xDST7bRYPw/gBMWijYgokFyciCoBEEGMgAEXKaKO1Fh1KY1R0vU+emQ3lWVkomyUArfXVah3SIMkWhqMHQoxG6cworbVrN0YpgASKNiIDVMwQcd32VYhEZPKsd21eFm3TM4M1eVAxhBQ5GW3rriVlAMDY3AXfNI2Pr/kv8EbTPYRQ5HliX1VdmWfW5m3bmixTSr969ao0WYxRZzaFQcothKDzKUa3qasPP/zlW7ePnzw9u1gvRb/phQMY8XkYqXNyZsmNFTgEEUFp4dApyjWmjKIlQMTgnGXvuhXa4Ns6FTyfwHffuWkCm2tHITu+aHzvfVYY3/XNumGbOwCAVK8vfL3K9GRnd/aqsn/w519Pdn7hj7/6V//i9x+7yh4cpg9+/Xc2Rv+Tn1x8/2/+W3/jv/ff+Xf/wf/m//Dv/oP61bn26fJy9TN+VC/TJjW+dYVSGfcvnz6/vFwSAAIoAJfgi8++WV5t3nrrvYPdIx25b7t+s8oUZlZPcru6utrfnc8ZGWlWFin44HqCkJRipZS2BL5NrJQ2Nlv1bbe6KrI8URNC0EYMtTGlkEJkTEZhprW37LtWI6YUjaYY44cffOf+/fuZ1QcHB8vlMkVf5FlKyRoVgyPAq6vV9evXnz17EWM8ONj96usvPvzww6urq9Xq6u7du33wi8WCCa/80vsecOiV4qCSb7TGvm9Jmavl+uT4sCiK09PTrRDgG007VsAJ/5o7JBEhEMNrb6jtCMMWjpYIIbOL/1oRLLsABvgEmBmZjFaUZcy8u7u7Wq2eP39+8+ZNQWuZOXGExEiABAzJB6f04AC91avf1seTyeRqtZR6a9sWLYpCa901bZGX0s1t23ZnZ6dpmtPT048++jCEsNlsAEhr3Iax1Wo1mUwkRr777vt9365EOiOh3EnpE3/zzTdE9HMff3+9Xg/Fjujg4hA+v/rm6xcvXrz77rtC75Je7MuXL2/duuWca5pGGnxbH53oQwzMjFrZlFJdtWn0fUrRSyKV2ULR6x5QSikmn8YRXhp5alKz+hSZxf4RAcAWhQTIGONqs5FQ1zW1FPcSa7cgszEmL4vtaJMEdUTMbdZ1nYirK6W2gezy8vK1YzwzDZqsLPnQtr6C0RY2z/O8LKuqMsbkeXl+dirLiWMIIUwmk8ePHwtVpXdOmHf6vXt35mV27WDnaHfm+3yqse/9tLCIGHp379atz7766smjR3s3bqeUwCgA7nwwWZ5nxaauEBWRzrIhQdhuDATglILvhc+ymM6YcDKZNE2jjC4nee/DFmPhUX+EmTlFa3KjbQjBBS8ENqN0CFGqNxGnSwk4JiLa2ZlnWdZ3XQxczhcAIPPvIo4jSZ/kbkA0mUw4jn7RI1MgMuoYIw9NlxACoDJaHCNQqcAIb+y3gczBzOJQJAQtHv9VAfI4K4yIW5GsLMuGc0dpn/xkMmnbljkqY/Rrr71IPQIAKdSRlFJakdFk0VDGahylVjSk8MApBi/fJI5KD7gNKYwpMCSlKfnALiCDwNQwDnFqwnHsRKRJCYA5hcgBFaSEfQocOSaIwBh9wiFPYgSOqJRCrWKMBpJzUUHMrVUQmnpVZvlkPouRs7yYTGZ1Xfd9m9nMZrqrm4uq3d3dnc1mXdetq9pabTLrnWBErg9+scittVerJUdfZBnHSKjQqOAT0EArUwTs3bQsZONZa2Piuq6NzpzvI7MGE2PwPuVWZ+UkKwv2qqqqT778wgP/7JNP6t6ZLI9Ikk4kjoPyMBGJUphSCYAZQ/CJgQkIWWl11bfTqElZBB1jr5VVCNz3f/Enf8iuctg/e+5+8O4UES9WK1vsrBHrZNZ9oNCqKK66UKXUeMisjsznl69CUsXk8GenV5/+h/+0Cld5freY7Vbq/P/4//rdX/z4V/7L/+Rf3Dn88b/3D/7+L/3GL/3bf/fv23TwzrU7K/+iigTzXVOzYZUhfvzhdw4Ojn7zN3+z6/2zl8+evXjy/PT5+XJ9/vL07MVpTtk7t29/5513aVpMC5tTevHs4eeff/qLv/TLi8X+xaqqq8ZqNS1yTZxSYEJQEMCHIieiy83VdDIhoyPBuq05ROxQISmltbEsLUYW0dDBxWS7qQHg3r17X3zxhcksaQWE2pqqqrIiBwCTUtN0k93Z4WH8/Msv98/Ps6JApY6unRhjEpIitV5XOzs7Xdt7713orbWkIIaUEhgjvVvIskIpdXG5nC8W6+ebl6enxyeHWusYcQtXIqJGEGIdjlQsBcL7f3MWFrf7fYszC2b7Ju61LX9TYmNUSkn8zVJKzHISFmmWHjx4AADXr1+XmR/nhv/75umXUrKZ6V1HOEhWSbCXUZxtwJDBGKliJ5OJ1NNEJD+5du1a27aff/75d7/73el0fnFxsbu7K8WfhBnnnDCTBf8T4lVKoFOSGeuiKES492q1REiKlACtItObGWuM+e53v3t+fi5Da/J8syzbbDanp6c7OzsXFxfW2j/5kz+RWanJZNK33ZZ7K+XWgDKKNc4osgbjeNIIsg1OPNv7AKM4MzMzvVYuE+FMiZpZljVNI0A3IgrTapswScSVyTr1pvSHD4IibJMt7738X6WUkbJ7lIOWMTw9TuHrYZY6CJtaVotAvPP5vKoq17VZltmyfHX6Ms/zCCzdeoEKQgh6ZsCkrlldVNzmRu8UtgHmvvEhpZRm072D/b0nZ6++uv/Ni7NXNptqDrLX2i6kSIPcNiIAiCaZc47TYGK6uloaRVVVee/nuzvTSSnIeO+dUYoHE2lPpIUoKEGRiJQmxIGoNu4TVJo0KR/D8MyS+LuFVp4TcdNWMt0s1N+iKKbTqdxDUdsHAB+C8Nm892IbSdpqreu6GZzmlQphCDa+60mJAFcCYOCEAIikAAbFa0QEUIAJB+dUIrXdvcTAwqhGQOEOhNj3vff9tJxAiogYkAESMWijFZK4I7iuV0Yjp+BicokV5cZqrRRSlukthvZm70TFoRcuz1WwI2ut9gyayFKR5YIIKSJjVIzRd73zXfLexdevRpq0tdpoF3zvvI+S7MskZRjQdERUhoxKABhDWWSZQo0MiWyeEWFXNyrPBVhWSmVZ1vdtZspbN6/1LtZ1W282ypjcmrbvQh0S8PHxUdt2ry7Oo++LyWwxnfgY2qbKNSUFRpmUkiJNRF1bh15YmcPsNRElH2LgQEFh0srIHiCiGDlEfvz85bzMl03z9OzsiwePtM177xKgyXJR6SXEEAIm2Or0hhBQGVSEiWIMMTKHGJEQyaybEmEyyydTCkHpZHdN361eHR3sffz9X/nyiz956517dd96Mqt1+yQ4ms5hYhIAOO9aV/V+6ZnzLBH21ZpRqWz6sotAu5PJtVxdhWrad4Aed8tZMPPJ9Tvn7uqPPn32W3/7v/u//z/Hf+d/+e8YDTv5PFiTKD9cXJtY5TfLZ0+/Wl69aLpw7ebNk5Pju7c/ns9/rfXpYrV59vzs07/66eOHX0NzRtOd/d3ZvdvXd+fF3/qt35zuHATIdLHwAdbLq9DVMfQxOEQ2mTVEX3z909lsdv369RhagpRCVEoxEQD6gVFFRBqAgClFTOyV0kiklJHjnoiKvPzgo+9/8skn3/nOd3zg5aqyRR5E8d/FYjJdbRqblycn18/Ozo5Ojiezadu2SKrr66IoyrJcrTfzncXl5WWuh7kJTihBhUhNJtO2bYzJum7V9/3BwcHTp0+KMpvP54pkZSdRjgEQ07Ukva0YorisbknCWWYH0fjx0MeRJbvtGr55rMuc7hBKk4hZJrGYFTBzf3//6dOn0+m0LMuua3BUWdLjHCqP0lQ4DrTAKCbati0O/sQDRWM7ByVUmAEvDQkY26a7c/vuV19/+ezZi8PDw9lsJijxbDYDAAmZgrUKvQhRxcgAUHct8TA4NJ2WzEUIDscSRb6IqOPex5Dn+fXr1+VWOOf29vZktKZpGhEzFwi6bdt33nmnaSohVEtgi6OvlNxhsQPZhsahp4CgtSYkZABGhrRNjLbPZRtZEZGY5XVCCEVRaEMiACk3WW7vtj0q/zfPc2nMxxitNomUGQy4Bl40jI1h7330fju0Iu8u0DqOkl5d1/V9L73z2Wy2XC4BoG9bQbYrYEHvF7t7SHD9+vWf/OQn9+7dQ0SlMXHQFkNpNLk21B4nhVE0LQyQDTFVVbNZXt26cW3du2+/uF8Uk54Ts2ZATkJfRmbciuek6Akwdl2e567rkpT5WTafz09PTxExy7JJWcSUMmMTsKS0eZ7L4vA+ZtqoxMkHL6p4vNW6ijIX1PYuRq/yHIexII7Ob4mCACB+q0L8kzFT0UyRaWvvve/byWSyXc0RBpOZLMu8j4hQAF11S+XFhSPMd3aki2yNEXTFKp1SUmN2P0AlRDQKng0rBhCEEj5yPZxzKYQQ3GI2F06B1toY7bvexS4F730UwEApxTEBMjKXRbGYTxWn1HubGTEB5JEECISROXifZYVo68j6kDzXe9+169lkOhBAun5amGk5kRiz9L2kUMaYTbWqqk1ZllXlsixr+16ZjJFEIzXLMuRkFHjvUClrbIgucSRUmkN9VZnFBImAU9c1Wussn0QfyslMRgYzY3xbub7LNGZmwnlarlehqQCASCutluvVqesmk9mNa9f6vrcKPaaiLJxWfVcTkyZMipgTMOfGAkdISZSrtbEhDSwEF4OiBJiQMA3mVOhj6kO8qpsmJMwKr3RCmh4cb6qGlYYUvPfWmMlkYpUOIcpSUWSACBARVYw+pIhK9d7ZzJy9unzr5Oj0xTOHlhLd2Jt/8vv/1K3OfvOHP3fr9tHBzN8+Krz3y009W9yKnK4uL6OdzOdzQvTMEXVUwDp7sVkVKkMFMaAqppFTFSISIahpNs8gQn9xtFckXCVr/pPf/cnv/sGPae3f/bW/+dMf/25OAdu+LExMyXVxZ5EZNDFxuZg6v3n06FJDnE3LEDGbLm4czXd/9Xu+WXXLi/Mmsts8f/hVlmW33nrr7Xfe27l2Z9Phquo3q3V9ddGuLy9fPWvrNQa9aerTJw+++1s/spiuNleotFZW6yIyImkG1NY6l/rgrcljTEQISIp0771SSpksxJhbu9pUk8nkzr137z96evfuXaWUZpUYtNKJlfNMRD6kg6PDg6PDpuva3mubdy4YYzoXUPksyxhVMZm19UZaKaSUTMrz4HBqnesnk0lVbRaL2cHB4bf3H3744YdSCxKR0pBSJDIxJaKhsTdGF8WjZdB2AHJbhkpCLyfvUGAw53le17UeZaWZWebf5DTQ2sbou84JiwcAvv766/fff78oJuv1WuQ2heDCowHDEOT6ViuzDRgxRkxo9eia6oNWatBFANZGi3QFKepcb/OMmd99991vvvlGjjghQ9V1LXXbli60HZNNIytYULec7JbwFUIgfA0ejGGPAVgpzczrdaX10ESXcuvFixd7e3ta61/91V+9vLwUu9yUhvnprMjTOAHc9z1w2tSVyGcCs4+hc70a1TPkzDHGRBe1oTczIR5HyOR35GrlrJMHtFqtzi/Obly/JUILIYQ8z9u2laeWOpa8pGvalJKakFKqrmsR5WZmKRclEddaE4B03yU/2ELZQpmWwlfg8bIsJSUCAGQWJvlid0/hECNCCO+8c3J6enr//v333n/fB9U0je42V0ezk91ppiBq5DzP685vqs10sROsCSmGEDKrZ/PJsmffOZ1NQnBSQUrSZJQOLmpDHGLo3aQsm6ZWgL/6a7+iSX321deXl5c7e7vee9HuiL0TINdmmhRsV4AiIIIiK5hZlB2VNhFHX15EjoNoS2TWiDJ5JnUzAASfZBtIda+1NllORHVdb+q6ruv5fI6KJrMFM/vIbd9Zm3V13bbtarWaTqdAQ+8nz/O+HxTalstljFFp7bueGKzNUkrATDgI3yujE7PzHgiVHmYMYLB7AgIEBEIIIShApTAJypJSlhkiTMg9h9inQAQRaPRvQGGOyAyxD5BiSiEFAg0JOKU0tFbGFk7nNrIUtNYIoEUsCUADI8cUHDIQMqXEMSBqxbw7m2prBHsoc23MqIqOZMopkIoJPHuldXD9Yjbt2toiAoIhar1DVHmZ7Skzyffffuve9ZOjb7/99sGD+9PpfLmucmMyq7VCImDfEUJyfYcpnxqlURFsmiovJhyczcob10/W1Wa9uvB9t7+/3/YdxlDayd58utmovvdAkClFWvvekVHBBaXIGPFrG3p1MQEzA3FI3pocUTnnptNp03UmK9abZQQymQVUlOVgioC+apwiL4I73nvf9TjaxsXkg0uMEJEYAZViBE6pqjf7mWo2q26z3LTdvVs3v/z/c/VnwZal2XkYttY/7vFMd8w5a66unqq70UADDTQAAhwAUgZJU1SYCsm0ZFGWyJAY1oNs0wrRcigcepFDYSvsgMKMEOQgLJkihKBIECIBEAAbQGPooQpdc1aOd8g7nWlP/7j88J9zq+h8yMiqyjr3nH32/tda3/qG3/6H3/6n/8NhLb/5G7/K0Q6D+9f/Fz8ynXxOsuLs+eXV2R/e+uyXT11/fmU0Y8wF60CoYvCGA3XDUOmSA3rb55mI3phARa6kx5yXQ3PWNcv7926+8+HTowV7Yt1EF/tv/tj+ev78o2/t5mRWly7ThI75WGjBlEZUWVkWPGdu4NFKoU23bpuV4MShPzioZzRhHHZn07Ks3/3o8T/5jd8I2d691968ee+VQu9Ob7wYhuZWtyJnruZnwzDsz/S3vvWtn/6Tf7pbrX0gZwck9JG0yhGQId28see877qhM0NivQ2d1VozpKZtyqIWyOqiDD7cvnFo++78+enBwUHXrLMso+Czol6uFmVZem8hsGRhGAIxJqTk1oWyyq0POue9GRhn24B3REDOk2ekTwXSe691melivW5Ho+r+/RcePXr0+quv7+3tXF5eem+NcUWBCKB1lqQQW2JBElLCNc55vThMZ2s6wdPBkipxcstqmgY3BtpbWBtYiI6IlNJElOz662o0mP7jjz/+zGc+U9dl0zRayzQhXFOlQvjUQbc9QwAgOVtd66li/BccLT49juM2+uLVV189Ozur6/p6XLPb5KVUpRKmyj/J6E0/a0PfoY2JnmJbZP4arU3XJNliIKIQKvlxJpJU6i1u3bo1n8+zTKUGhbFP+MzX3Ob0Btq2XS6Xu7u7eZ4n9W06ydO7ury8TND6atVnuboeYSExn6VM7yRVPkTc29sbhmFou9s3bp6cnMg7ON6dGePSJU0L6eVymdhVmyGH6BqvTsSja6GXcy5lt6fxPf0uttFMSXC1SUHe6rxT9zYkhfr2k3rvudajqko74Kurqy9+8Yv//J//8+Pj4xs3D4hI3L99azqpSwkxWMYgvb/pbul8FEpGS6bvJOOTqup9m2lp2y7X2lk3KgoXQ6ky501V5N57keUhuqG1RZZZ058cHb/88ssJ+F0vV1JKDtgNQ1piBoqb3IwYgYIQgislGE+x7elbT7dL6pvqus50ppRKPubOOS2lEMIH4pzlea4zSFcTIq7bdTKFRkQfoxAqK0Ao7ZwbrGGMRRO892mVwjlvmgYAUle7Wq8ynedaqSxPewW2JcGn50RwDpHSxwEAQIZIHDhyJqUMzhMRo08ESZsumwAgZqowZBhEoiBEHkIAQIhbgjuTUsoUXOGc2yh2g2cxCCAEgkiKq2s8KsaYDLdDgMQ2BACdZ9seNuBGM82j90iUGObeGo6AFAXjSGBNn1ijiWQ4Loa2HyJgiCCEEkKMR5XtmlILFqeIcHFx0RnDkGVaTuo6pz7LNLnh448+XC6XO9Pdbuino7HxjlPgbJO6Na0roFAUhc5H6/U6nQ5Zlp1fXPTNWgu+O5uO6+ry8rJr1zFGgdCtV4VWVZkXeR5C6HqTEItRkTnJnR2U5FmmB2u8tTFS3KDxGEIQknEmYoxE4GPkUtajSTv0kcBaG7kk65BLlQlvFkCJo2eDdZszPQREHigCYGKze+8DxRhjoVn0YW37L7/5hb5dvv17//zt3/yHN2tZFvoc8GA2Ubj86hc/v7e3s79bkD8Kv/PNG599IWSzi6gJBaAl26PrJTBEJzFIcEwgMCpljOBWlgTvHbgeaO35w5Pmxp3X3/n4UpV1KOzaeZ1XX/vZvxrOf+i7v/nf3bgxE9k0F3F5ecw5LXq3XPS5FTK6m6MsVwURaJ0xYEBRSx5844P3xh4PxoVnopweXSzldPSjr35+NbBVO1RZPq4nsz3OGYXTozdu3fj5v/2PH5123/7eB+PxmKVkLS4IgjFmZ3fadd3i8ng8HmtuZQbICXVpjOn7TuV5KUU0bdevi6Lw1rQL88YrLzx58iR26/F4HNzgvbeqrMqacex7R0STyWi5XPpIArQPHgCSw1HKedVaM9YCAFCyNYa0oeKce+8SHpseOu9jUVR53jx6/PCVV14ZjUbL5bKuS2utEKrrGqUyAPAhHTWf6Afj1jI6DXbpNdu2Taanfd+Px+PEqEqDl9869dMna2NOEI21VTXq2jVjQkry3ltnjo+P79+/m+d5CCHGzRGUTv9rwwP2KVvZdOBcv34IIUBgyDnn154E1/8pNQ2EXHBR13WqbanQpvontrZcG2ZWBMa5Dy5umN5An4qZYYzBdr8Dn9LtJCQ2xiil3KbaFN7b1PqfnJwkp2jvN9nGlHT8Mbito3KqVZzLw8Ob3/nOrxwdnfzYj/1YXY9pI+javJ9U8zjn9XjkrSvLLL2NhAwDQNu2qcbP5/PZbOa9T/kCUsrd3d3T09PDw8MQguAy5UxfNytxy6m+XvQKIZKTZWq2JOefvlAAm3wO3Lpep6KbCEP0KXoQEaVuIHqfOqSkv4oxFkW2WC1HkzES/Ok/82e+//3vexczXQit8xjB+qiEjERt1wUQRa3XQ4+RuBQ0WM5Qc47RFULxsV6tVpLzvlmUda3yPM9njx8/FkIERlVe9ClBiPD58+e7u7sAcP/+/aZp0mivuBBaBR8zmeGnvMKRAH0kBoN1nHPcONFsdnLX9yXnHECFYEJwQQgkMi5IYNxv7qEYQQheluXQ26SQAQCVSQmb4JHkZuKj1Xk2WENhK30DCMFJKW8eHFrjnl+cK2s555IzzvnCDgknN8bkVUEhkg8ppdhHH4EEQwLy3jLkqW9ERkl6xDbJuxswRyq+0RRG8taZwVtrI0UB2+n5kzhSiEQJXUfBMiHSoBa3+rMAhMCJgIiqqopA3TCErmeMJeNZzvmoqtN1TlUZgUIIwW0uO2MsAnEmZSZTS+jAKMacJ4aMA/EQ0LkccK8sNQeEyPpm7ixq3VvjlstbhzVX4p23vjc4f3B4c7ozFomHLBmFmIhd/dAIVgxtF6zrTVysV3VdTyYTIprNZoiYiJ11UVZ5EWM8OzvLtS6KglNsm2Y8Hg8UteBCsCgZQ1IM6/EIAAQCREICznnwnjFID6cxJpOizIu+H4qqJCJgAvqBMUxJRG5wIQLnnCuVhh4AYEImSgwR+ugJQAoFnAWKjDGOHBEHcG2gQtfvPnj6t//Dn/tPvvM7dn7+8td+6Ks/+uPf/t53jj/6o/5iVYxmyyHORmXwVM0fDs/eo8PP9yhaH1WIUioJEL2VYLXkpm88irKs/dAh2por6w0o1sYIxejh0TwrDrnIvIs9RFlUF44HL+7uv/rh08vDurl3e+f8avHqS2988Stf9rp2vLxcLNzq8uNv/15vGsnV1dp4plDwnAnfc2KxyIreWWshxMGD+Et/6a8c3n91/vGJltPBeTd4K2SRyUsnlBH/1t/8Tz788INf/uVfDr2azy+HvgnOKIlFpp88eTKZjspCSww6k7t7O8PQLeadZlCOy9/+7d8+PDzc29vTUmoWmQDEOKznd2/srVarYNo8yzyAJbLWSSXqunbObNHdHgGkEAisNwMADL0VQoTgyqLuus55t60NGzsLa22WZX3fRgSp87Y3KtDewa2L508ePHjw2c9+djA9hCAY83bQMiOIiFzwTZJLjJEgIrBkRZkelq4b0rmcAgTrugwhdF2TSmbft4io8oI+Fb+9Ba5FmhMIGOMQA+o8y4r87PxiNKoODg6urq74JpjVxq3zw//fUJtKBWxH20/KPFKMkcuNAzNuVcXX/3vXdVpldR2Xy2Xyx05eWuwTQjgGH1NFYXwzBKdT5VrssfmX24MXACgiEAvRb8g0zqWim2XZMMTEFzs+Pn7w4MGbb75pTJ9UOtZ+YjyJn/IgS23N17/+dWPM+fl5VVXphxZFngjJMcbf/u3fNsZ84xvfEEpSxERWT9wOKWWC2bXW/+Af/IP79+9/7nOfK3SWat7+/v5yuVyv17PZLHmbJJ/IyWSSyuH1NjpuTU6uZ9wyz3FDsOfX43h6w2nwTV9N2mBe+6hcf/XGGyGEN9b7mDxV0tK9bduiKM7PzxM/6zOf+cyTJ0/quhaXy2ZSF1Ez4zwxDBENxWa58i4iBa2EkGwyqmWeT3Z3dVEvFqvf+q3fGo0mO5Nx2zan580Xv/jFr37lzQ8++IAxZoOzwZNHYgjIn59dPH76dDKZVFXljItERZF75+uqSKceUpR8I2EOzlMMRBBCIL+pvkWZE1Hy5/TeQ6T04CmVMca9jxEwAjZdTyFyztEFRKuU4kqqwGKMyVDJOSczrfLMGGODZ4xV1ajv28V6TUSjqiai6AMQFcWYqJ2MaoY8Gc9KKZGAbaV4DDCEKLbJKhIgAAUkmzy+GUfAa1esdDvHGGNwHKW1NlPCWssAE5DltyeIQEERY4yASATAANJzxyBFMG3uY9hsfzexl2KT2xgjubAJox6NRgDAmfQuAkKIm+AKARAjWGud8Ym3yaUAgN4MPgYXAxHVmVJZtm76QOCcs86QHUa5MC0YZ8gNwvtCcp1LclaCX5yfMqHqPB+N9HK5Xq07lWeSMSW56zugwDlXDCudC2Tj8fSiaZNV+mq1Wq3XOzs7aQhgjK1WK2dtURT7e3sYKQS/vLqazsbjqjy7uCq0yrIsVzLGWIxHeZ41TWOtRSSpOAL6iMAYRYoRKHhGVnGJkch6TxE5k5xxJYGQSxW9UUgCBWidnh8Elg6jxPIDRIrReIOB20Q15xwRLS8sxvPWnX189Pf+8YO9vQMt5O37n4Hp/S/+ifvL5WWzeErZuMVymo2Xq9bOz+dHT/StLzImkenoHEXASFpgJBBAHihGMsZ4bzMlGQMPnIP2odcSm+bs/Xe7aAcQtSpmDpBJHHz79PTZYrEagf/+H79/fvosz8uji98b3Xnlqz/5524fVhPp/9v/+u8qt/wb/86/y6sZZDOudLO4MMvLq/WyWS+i7Y3pz67W3/jJH3/55Vcfnl8CMKmyfljFELgj1Bz0qI+SRnde/6F7B698eVQW52fHF+enfbMw7fLRww9Pjx49enrq3SBYFJxNR/XtOzcFz/f29hDxxo2b3vvZbCeE0DQN52wymSyXS2et4LzI82EYpBAAQhVZ2zZt33OOZ6fLuq4zJWzfySw3ZlBSBu/zLLOD6RHG1VTKTUgc28hCnPdWCOa9ZVLgxp8hI6K+Nzs7OxcXF8+ePbl/5+7l5Xy1WhVFCUDeeq6AMYEA17tkZBvdsNg6yoUQ1uv1JslUqd3d3dlslkDddAqnNCFEjIiRIGWPKiayrLi6uhqPx0QkREz4apZlz58/T2hTmrGstQDsujomOPD66ACA62Dg62E0Da/4L6ajpuVR4qakdqSqKu/9arWaTCbXJC/Yuj9eT8+JJRdCSCYEwBnfJAkCRaTt66dM1IQ9JOwtwZAJNkuSJ+fcbDY7Pj5++vTpjRsH26F5w2FOwC9ep+HhJh0nfbRrB4zlcl5VVUKz33jjjcVikT4LEnjvkxnINcmUMVZV1c/8zM8Mw4CRpJRFUSyXi9PTk7oexRjn8zkiLhYrQnz27JmU8ubNmwlIT/vKNKUkToxzTglxjYSnpUYqq6mZSAPu9RtOW3y2VdKmqckOloj8NnEZt07gCWPr+957m4IlppNJjFF45BZFyngFjh7ABogQsywbmjUZJwUTHHIpnYpE4e7B7Ed/6EvDYIHhQsFkVJihqapsMB1DUdRVCMEFr3UWEZdtmxgHbdumfiExAq7JujFGLVWmNCJ6sN57t+WIp6vcdxiiT8kKnPOIFChyxiNRDCnvTwQC028sxGCzxYnW2s3OJCUkUiwY55wb6xhgXmTt0EMEzvl0OmWA12Eay/nVMNjxdJISsE/Pz4TkZVV4Z4N3s9mMfEDJJRdJ46UyHYDariOIgrNrL8lPF2BGoJRKVpQbLj6g8yZEp7KciAQKAHA2BCAOwDgP0cM28TDGGAIMlGhlYiP3FogbU7rofTAmzeuCgAGxvu95JYUQjPN0q6XQwBijMzaEEAh8iBGCj6E3BrbhnXrEIsWma4lxRJSCAQVEyLTc3Z9kAtu2Pbu4RJEBQ6mymsvz+QJF3jSd8XFnb8Y5RwrRO4TIGQkkoRRgDIEG6533WZ4vFov1ep1+aOqjQwhlWTopY4yZlGm7Np1MBANnhuBMkVfeWTMMIYRxWQoGWnIirgI3fW9tJGRKSqDMGUscGYC3ri6rpmmEkpkWeSbTkxaDLxWXjAOwzqEQyseYxB7AkBB8CJOdWQK7fCTxqdhwD2g9Ggs7t1/8h//Tb/zxL/+dm7PJ+Xy9ft5lo+rjk8XN2Y3J7q2Hl/O9yLTWzcAj5rnMbdszDhBc8CBFFlAxJoxZZVlFwNf9wHURJLd2yeQ0eAYRIQyjIq4unh7M7s/b0C0by6PAYTRmy/mTQrJSjj88fvzFL3xh/8bd5ys3ufn6x2fWhHNan3x8cvnajfGf/Jf+fL5z+60HJ6dn85fuvV5Knld5JtiklAz8xcUF5qMPj66sCePReHCRokUI3pt+iEoz4OHccrfux5ODs3bd83L/xc9Wubb9+kd+6mcXF89jsH2z+M4f/aG35uz5yVsfnXWrZSK//NRP/dSdO3fatv2d3/mdz3/2DaXUYrFAPWKCrZcru17Xdd10Q13SxdnZBx++99prL82muzuzMREOvcnq0gcM6KP3Ij1XEIeuE6iS6UHft8kVATCGEBhng7U8BTAgZ4w565GhtcPh4f7F84ur8mpnZ+acYwyd85E8Rg7gCT6hUhJRSmBLEomyLN944w3GNjqOy8vL09PTZ8+ehRB2d3fv3bvXdR0KnhpozlNQdypSaLzjSnuKEKLgytgeEYuiatZXT548efnll9MRF2NkLLkAqeupF7e/ACAED59a8W6HSAouXsOq1yNmjFEpiYjDMJjBjsfj8/NzImIMQnDes83olkiN2x0wbiZf2P45QcQ8YkTYOB4n0W1MOpxIKXErQd+JdpNGXqXU3t7ee++9h0iJIYQoE7Hrep1MWzrYdlPmsyxLPiFSyhBcahcSWnlwcJDq/TAMwfks34iFEpyulBqGYTqdOudypdu2BaCqqoL33llk/PLycnd39+DgQGq9WCy++c3f/dmf/TNpgk/U5Wv0PnGVc60Ttpy24J8GGNjW4zr9ngBR2iZnp28zhFBVufeprwIA6Lrh2rsjuVElf1C/Db0QnYnIjM+EkhKAVl3fDBYYl93g22Za5VVWCyExRBbD2cVxqIr7tw64kIv16rVXXxxMeH5+MZuOyzxbrNYv3XhF59l333p72ax1ni3a9Q+++eUY43vvvZe20NYYKWXTNFmWaalSF8MgMmQOgvPGhk38cmpA2rYF3CAA6cKlj70BroFxRs45G3wIgSzmSqd9u9vy+znnwFmu8sRWT5xyqVQSsEMgIrraLglSg2Otv7q4TA+VFvJgd2+xXl0b9DPJBOO2HzASQIw+OArWWoiRKQnxuidFTPc0EAIqpTiyRGGUXIToEn5CjHnvE6PK+xiTaS1jnAtAYgw4QyG5VlIAxOTVSJt2GBEpAnkfrBNaCaGca4j8wrnka1PX9eAGABCMBaLBOowUCXyIABAiSSUYY8wl4VWIFp4cHxGwbnCcS6VULgUgLNcLMMvZ6IXZzr6SjHH0xGZcRcLDkX5F6rff//j08TMH4vTsfDqdsugyycdVVeVKCJECAJrWNE2bFUXfm+VyjYIXRWY2IVRYZvl6vU68j9VqLYSYjMZt21J0zsJkVOd5uWrWjIAg9l0TvAKGbNugOGdEVjKOjBTPBHlixJSURZ4H7xlDZ4aMKaQoERw5gZITJA+sGCMlBA8IE7Gfs/V6HULwMVyL0wAg+lDW2bC8nOjS+bA7riT4l27d/It/4S/9wrceTPOxI9RSOWsRmeL86uRph1M1ujEajW6q6AGhx7axvecDcCk5kYqBhEj+axgC5RAEpyFYEoQcVDEqS3Hnxs2v7u8+PvrIh75ddvuZvGpO16u5HRUvv/riq6+/en41v/vaV+6/+vn3zgaU0sAV5NXtV150HIa+6yNddkGVcr7uw8LtT4qzy9UrL9y8dW/84NGzItNZ2xvb5yK7uVP3fctFnI7zLsPFctlShohxMGU59sZddqbxtD87OF+v9u99LpMiOHvn9R/e352FEFaLZTCXv/Irv1JV1QcffPD9x9+5ffPm4YufvTTsh978gd/6hf+mKLOXX3757mdf9d4vl8u4WLphfXZ62q1XSnDbd1GyPCvrssjL0XrdKiH7vldSDaaTkjtv1+tGSqW1SsheiA634UJJyEBEUorgIxFlWeFME70/ONz76MEHL8aXDw/3j45OiqIYBsOQheTEBxC2JRhgcyInAnNCR+u6ttZOp9PXX3/de//06dPT09PLy8uDg4N2aGMMMX6SNHw999R13bZt2qUGwkyKNDK2bXt1dZX8pOQmHnGTSvvpGpyGs7SjvR6nrte3ET6JAI+fSua5rhmpYMxms67r6ro0xqRgPrH1wN9sNGmDsxFtJblInyrqkRjb1OMt1rqBH/iGG8G3Cq4kGp5Op4vF4vj4+IUXXhBCxIjXFe4ap03VLsl2caMlY9PpNO10k/NzMj8RQrRtm7w8vffeCSE/6Tm891LoNGJawDzPrTXB+6qquq5jCAcHB5eXl7u7yjTNl770pZ2dvSzTiY+Whtc0uSYaUK51QlvTJR2GIZmDhhCuS1L6ytJ7DluLrutt8TXLbENYQxAqK8sSEdMeOsuyi4sLKXlVbQwHRdc7YAgYXcCI0BrXW4cYHXOmaxn4ZPdDKLxz/XoVhlXww/nl1WLVOKIvfeUH5vOr07PnXKAQ4uNHDz/3xS+89NJL73/4gZTaWP/o0aPr0Nb9/f0Y42q5rKqSQhRSMsZSsCDnXDDOAFMHlyCLNK+kWbDrumuWWp7nCCytbbzzAHFLB7AJpm/bNvmrWWtdDOR9erVrPIExtre7c3Fx4c3GAu3a4dMYM5tN2rZfrVZ93093Zrdu3Zq/u0w919XVVaEzBqiFTDt8a631Gy4cEyJFl2PiMG/sOSIDDCEAEuOYbtlIPq23e+eJKIaY7tHr2dkGTxAFAtcy0T1yKePGV29L0wBEgZuHiiHnIsaYeggistY3TacrBZEY5xCjd44xJjfeUozIJiEZAeOMeYo+ki4LRJ5VfN101jvBYHd3Iqxo5s8fPHhwfnI09G1eVB6YLkaD90XMy9F0d3f39KrpIg4+rFft4d600nxcZYqDtzb6YIwJngI4xrDpOxeDiGiMA2DjcQ0AvTWMseB9lmVKZwkjybKs0FnXdVyIruvadSOlLPLKWgsQOeeDsSEGyUWWIVPCe783m3LG+qa3vdVaD20nkLVN46Kzpg/BKaWi8yQ0KpXJLCq1Xq+NMZhyx2KgSKkLFkpqniUbNY4bbMOsV7O68K3TuTRNY9uFbeUP/sCX/3CVf/D0yfzicufW9GBvdumeR9uvL59juR9Y1q4bARBMq4BJnYU+OpZxobWStp0zgmk1WvSN9SGPIdpWMGm4j4JdrUnB1DuE7vQf/sJ/Nqnkqy+8/AdPT54fPz68cfOyHz5za4/xuHe495Uf+tqTzmb1lAQ7frQGaw5u3SzH1el6qGazvVC23aB5Xk5mUUTj/EcfP71xMJtOpw7a/V3dOVy2Q1HqIsMQHCMLcYDQq2KcmAc2BlmU9XRm+8Givv/aF5wZQiQTDS/wg+PFuB4FPt09qP69//A/7vv2+Pj4rbfeIh9effXVjx8++PXf/fYP/vifcs68+eabP/IjP7KYzzfDxMl7bbv+pV/++7/7e//8T/+Zn2KMGdtT5KvV2jtgTJRFMQyDZIgUiiwbHPZ97/1GaGtsIg9HIaRggsjGrQEyY6LruiKTaZba29t78uTJaDSaTCZpAIgxeutjJAKIFNMIKCUyhoxhCNE7F63XXkbKuEDrhn4IMcYXX7o/nY3ff/99IVk1GVtrfQwsBiS4roVVVSWDiMRsreu6bdfImFICkZ4+fVqWJW09lTiXqRTBNo7lmvKSjp1rRDrVHkAE2gT+JLz0k0M/xDSfDcMglUjwUtqqer/1fv9U1dyWdtruf7cZBhvkeRM7vWXJhFQs+cauxKa3yreZfQCwXq/v3r378OGDq6uru3fvtq255pGl5fo1Ip2Y5LDloqcIu6ZZwfaHph4LEVOgU6DonPNh0x+EELquY2h1tvGQsNYOQ78zmyW9qPeeC7mzs+OcK6qq67q9vT2isHm6P5UHzBgry7Iuy2EY+r7nW81xitVK2Fhi+Ca7nrg1YBAbe/xPWOLpvTEGxBhHrKrNWvru3btJeZzaDq0l04iI4mxYxi4WShe62J3t9F1o1kM5Ga274eh8GO3kD6z1MXAlj09OLi4uXr51sProBJn80pd/4q133nv7zF4YeXJ0XOYi16wu8NF738uyfKSQyNdKHoyLGKHNRIh0cnISCT1wE8VgjQyb5Sg1bZ5pN/SIKFx0MUil8iKLjByECMQZ40oOznofhJKdd8YFqVWMUQeg4EEQ46ilWC7nSkgpkfMQAyjJMqG7rvPGLsxVPZkChkiOC3VxcdYsV6PRqC4rCtF7j0RD12mtI1HbrrWWSRSRQJKk+uKce4oUgTi/9gQPMXDGpJDWWEkiPXKKqxgDIjgXpFTRe2QQCYARF5jrLPgw2N4HBABC7KMnBgDAEQRhzpkkzDjPhcgFzxgBOR+GkVAQwXmfFYV13hNGChEJEFfd2kOQeTYMAwpejsqua+zgyizPpOzbNpOKQtyb7TDO276br9ar9bq3m7wUAvDOV0UluehWiymjqsg4Y9B1nXO3X/uCUurZ4yfRZ9UQX7lzkwV3cXpxsm7vEpW+f/1m9vFVf7q2k+nI9ZeZqtDC2brTWs/GOQarZiIgu7w8z53lAkGCx4Asnl2ccSnLuhaCARMohXUOfAjWjsrKRy6zPIQA3pRaYHKIJOg6K4siMD14zzTkkhApz/MshuhdJlnfDc8v1yh4iMC15Kwkwb21uizDYAbExvtRyZZd52IMQgAAI+AogEVKzBwCCpsuyvkIACBkwNnCzXPVFcKZZmX5tMHxf/8Lf+c/+F//tb/9f/5Fdvl9gV/88DvfCa7wdHi2GJXlaczCsYOnTcw83q2zKstWxgjXiWCrQvhMrSC4aAKyjIs1vxEpcGAjXQCAZV2EDkT/rd/55tWDjwCXX33zzvcfPTLLD//Kv/Kv/ONf+839aT14/eYP/bmTdQ6c7bDVXlU9ePYxBLZ/cNsDIgXlgraRQACjOFx1iLa3KwBzZg4PKqZ8HlYcjea+d826985zIXfKbDLoqixl13WlFMF0Gkn4iLGTzlITpmXerleSgxBKz1ikdtmvztt69eycYyzGuz/4Iz82tB1w9trnJ3df+fz+wWEMIXp/cr5k3pWZGNdlMX1zd2/2//iFv/v8qvujb793Y38vU/z1V17+ypfftNY+e3r8+PHTvNRNT0plbdeBzLrBCmsZgOQkiZRWQ99eXZzrrCiKkpAZa4TUzjmtVWdJF1XTmclsn0L8/tvf+drXfkjKsFgsmMwCud5bJTMhpXcRERnPAvkQgYAxKbz3y2ZAqSaTSWQGPIvOzZfL3d1dzvnDhw8kMF3kUuqkO+RKeu+7rqnrOtW4hABTcJlS1loCzbjM8nB+fnnr1g2IHokhxgFs8EGpLDKW/O6sD4QMEQTn1trgXZ7nUsrofFoJxeg9xaQaIfCRIlKUjAEQQFCCQyTFhSc/ONs0XcoA9S4QUKpYG2JUTJIkRCQIBFsKUvAUt9TRa4eKaxYVwSbpNeUkKpUZs+acE1nn3M7O3vn55d7eAUXLEIJ3MYD1LtUpa23bDaPRKG0JhRCRIXFgigM667yUMm6QJ+Z93J3tADAKQD4IkETk1pZzXvKCRIw+CC7arkmDnBlsnudmsG3fcSGF4E3fRQxFUVg7mMGneSbtHFMDkUYpHyNyrvNcKSW1Pj4+fvj48Rc//9mdnWkq59d5FSGEYRi8t4hZCM6YIamYYoypZUnb6NQbKaX6pukRb9681fd9Ve2vVquu60aj0Wq1EovV0lt3ZuzOzp5Qqum7i9X86cX5slmrPJs/XuVVmbqA2WwG9Xh+epLlBUY/P35ck3v0/e/FGPcnk8H09WhnNKqeP3++mncIygzm9dff2C3Fu+++DwBSctsPKNWNGwfHJ8+zLONCGNNnWZY460IrLaQgYYNP0eifhlYSNVxJncDStKdBTO53iai2kcMzZDGGYRgQNh0K55wiOOeapnHkcp0FTyFQACTCwZqyLKuqGoZhPp/7vk94S8I9Li8vE4uEiKa7O8neUgjBBUtofowxkegSKwE/lW33CdQTbJZlCUqArenaVnGoYPtJgSFjjCNIZHWWsRg0E1rJ9CnSmC64ICKdZcC5DyQYXy+b3jid54Kxuq6Xy7kx5nB/P8+1ljwKbNft4mIerdvf2eXIur6PQKu2cT5mWcakSBsvgUxwvm4Nh0GiiOQjcAF4fn52586d02dPb9+6sT+tfI83dse1YpcnFzujgqmJHfoX7t0+a7oLO196hojj8bhplsNgs2I09GZBi1GdI2dFNVo1z1RRTndmHz95ipSomGwD3QD44L33hc4icxSjzDQwci6GEIhxoYWU0gdiPqhcDoPjUmRZNpgukdKbpsnqOjE76rKqStY50/VGMp6XZd/3djAp6aUoCs65G2zaxwCAZBwjJTCDcy6QRSKAkBg62/mAmLnKNIsmVFl26VaAfnzj1vvHF0/Pzl99/RUu4OHDj/7ef/sLP/KjP8sD9sNSq1zqDIBxjpKXg7M2dMDE4Y3d9cUVB5cXuu9b66ziUgTiwmitnbGmuwybRFJ7MT87Pj8Z747vVOVLL98ZFSHPqdbmh7/84oKKfHx3PNmJ5c4Q42p15b07f34KEG/eOJBSmn7VtsRk3rcrT269HnKdkQ95nl8tF0Kyvd2JtQMw0iLXAUNY94vO9P1oXN++ebAeVkqpFNkhpciUiowyJdtuQAqRgDOeZVkhVD/YQOCJAUQpJQIoLtRoZK11nKTKgvcxBikZi5u9Zt/3IOOTx8/+0//0//Jbv/lr//Qf/6O+7x8/Onn40YfvvPPO66++duvObS7F06Pj6XRHSDkaTYIUEKNz1pqWAAGIIZ2eHs/n85deekkqZqyvqnIwTglOEJWS3jklxND29+698Nbi6oMP3nvhhReKojA2eO8ZMQDmrYsxai29t2m8C7SRCYTo1us1Y0wIhgQJml6sVkR0794Lph/iNniAb5WBUm4otbTRUtprUdMmigYx2Q/s785ijEqJvu9TcaIIMRIyTKeQUmLz/0qRZilGsOUQ8ev1JEv+8MQAwXuf0ObrNbOUMi0giQhhczRd+0mlGz51msjZFtn2W8Yxu56/+TYqKpGhcMvqSmSla651qkaMsUePHr36ykvJcFAIrvNsuVwvFouqqjKljTFSbixQSlbyTDnnyrJumoYIOUskG1ZVhVJZusKeCDkDIgqpQGMy9WOc1+MRxA0szxgbhiHhhakKLhaLDXSKgYjatk3gZbIGS4yTT4c1JcbSfD5fr9da66IorjHn5KVVFEUKV6iqKll+puWCVipu7UUTjSlFMkeipml3dnZSbkSKeSYikTwoIseA8Hx+ebVYdsNgfQDFe2+JKDoPg5NE2kTFtJzMPve5N6IPkovnvr+/+9K6Gz74+HGWl01n5ivT9lYwLhibTQ9Pjk7V4aiqKrOYSymtGzIlTNcDhbzQRNR3QQgGIIa+U6rgSoMnDjwSOet93KisQgjJeUorEUyIMQouvfdMCmttsjVWIBPXKSG6nPNUgPnG+Hsb7sGijyE4KxgPMQ7OdleD4iIC9n2/XDdCiPF4vHdwuFqthmFgMSbKe1VVVVUdHx9H56XS3ljywfS9lFIyrrgwPhQ6Y8hxk88QYwwATCATkhFRJEpQTwLNUpsZadNUJkNpzkEl6hTngjOBm/YixigEVyrjiDGSLgrnPZOCs01uSdOsi6KM3pd5LhgzxmRKI0EmNC8AfLAEKLhxzqwWLvim61IfI4TyxnICgcgBUSktuOu7sqwLrTLBzdDbrkVvLp49fvHurayaKPDjjB+8dOfRxw9ZPh1V9c5sMrt56/vPfsf2QwOUo76xv8eIMZG1XW9DrMcT633bdzZSkamdvYOTizmL3gME43ReXlxcCSFypfNcZHneE0VrfQzOekQUUku1hecpMMY8YYwRAiEEM7jobVFk2XX4VZ5nZQXI/WK+sk2MEQCX63WC6BPa4a3t29YT4Ke0FlykcksxbDRgACylNQRAijThfnCInDMI3dUJMRzy2TKb/eZ3v//lr31VZPAzf/7P3tqfZaLMJMybS8HLGHDorXUsy7K1M+i9rqrJpCoxlCLqXPllcKteUsBALDaZIiUiLzQX2kbyVgkRVVGfXi5v1JNl586ulirTq8X8hTu36Maba6OXvS0Kfvf+3WB3VXSr5SUDmo0nZhiIEg/TOmdmB7vgukwXXbtGRGB83fZVVYwm06urC8GlVCKMIUTWGz80c6WKvl15HyMChMiU1jrzyIRiEolLmTE0xjSdBbBtN4RITAoCFEyF4JCBlBIsMAbB+ba1VZlP6gqDRfKjQkMMjGyRZWWe//t/83/7H/zv/3cQXVwtP/zg3aNnz775zW/+o1/9n4KPH3388OJynmXFaDSa7E53dnamk1FZ5gyCLjKKfrVeGNsxDjH6ENxgWjPYvKycsxGjty4vR874xXz9lS9/9aMH7zb9UmvtQ+SMUWSMGMWA5DhyhhhDIAApBGOstx4iRR+Grq3rOm24Nmgwos4ywbj30TkHW/rShgLmUsYlIKJSGd9uTBE4YwCRYqDnz88LnWW5CiFKqWM0FJEIKBIKLhgl7XmqnUWWC8mVUplUaQIjwiRTklIDonMuouecpS3w9s0gY4wY5nl+dXV1//799apJspxEWd1snSlQTI6/m1/BE+dwjTwHv9ndMsaSexJuuVphm7ic2otriHs0Gl1cXCwWi3TdnPU+hmQs6pwDjM45IfIEBWdZxlKKZe9CxCzL6mqcxhshs34wnHOlcy5d9CGEyDlDzgCj9+F67eqi41uzkUTaXa1WQvDVaoWCA0BVVWlSSu8w8bBSM5TiLlJrMgyDlHI6nX7ta19bLa66rkvVFLfC6FTXd3d3f+d3fkcI8dM//VMbZ9MQ4tbENHUhacKu67rr+1/8xf/PV77ylddeey3po5L8VVR1LYRarprzxVUkNN4BcmKAQJwxwZgdDBmXCWmWjTNGjMR3/+itw73Zy3dvf+6Vl5RSHkVVlH/80aPDw1tHz89LFEryfrXen013pxMXVjfv3P3e977XdgMXyBgulstxVUIM1hjnjPc6hECAPgSwFj167wMEYJh4MUQx+hAZk0JdK67SVw6RhBCCbWZfIpKbZBudLmWg6I1J9JoYYwAKQMO6UUKIQgJgJEBg67Zbrpu6KDOdG2OGYbj/0otZWRwfH/dNu1wuAWBnZycxBVKjlACc6617wiVGo5G3bstiF4wgRMc4F0I4Y7fBf4w2zwYxxmKIDCi5JxIQYxIRBUKMMUX1hRBiJADJRBRCBIBA0VhrQwwhMGBKqQgsmbr1fT+dTvu+v7i4mFsbYyRkVVUJxi3AMAxDuujOEoL3HgmKLBKFaT0qdMYIZKGFEM9Wy3mz9kVZ39x/8d79q/Ojth3KSRH7RmRib3cH3VBOxrPp+KOTk0vfLc6fvfrFrwRnOUMt1Xg8RoSqrC7mjbHemOHo5PnOztQlZ+sQF+smqyrXtRLZfNHoIhChtT5XeQhh1XbNcsEQ/cb3HIQQkm/IUEpo4OpysdR5Zq3v2panvKwUrRGiUioimK4nhhBJCRGI+r7bmU7rumaMJWroBlTYyklDcIwxJSUlL3GKFFOuRiRKQ0AEYDzayPKAmQc7mC6r6l6PZ/svfOuDp9/53q+3BIcvvnRrb8IczS+NA1dXO8h1jDESd8gZzwUHlqnTk8d3ZqMRJxf6QsJIMYxSIXgLFeNC6bysicv5qm0D74z77Bd/+K1v/X4DccUPvvf4j86fmx9/8dUVy/om9h5KLYdm/fyt771we//N115aLS8J/O5sJ5NZdGtrvJTlaDouy1yAGvqegBkfOKBx/vTsav9gNt3dIyLrXKHJV0ChHfrG2IEiIkXw5GMIgZwNzrpoQXIiAgPgjAXGOOdSqlyIpmuIi+C94lxIJrnAEhmKiHB5OR/apmGUCVbq9NiC0lVn+8ls9vzissrkeFTaEF/76tde+2r8E3/hL0LXQVY8e//Dt7//7gcffPjWH7/98cP3f/8Pfi96V2RaST4el4Kzn/iJn3j99dcfPnz46PETrXPGUNYlF2K1WmiFSsq+aTlTQ++PT85v3r714UfvHhwcxCgRBEfJgAFjEMGYlaASAAIQQyJgDKISjHAzM6V4pTTLpvtEMS6l5pwba0MIwEXy50vgKuPAGBOMCyGJNuc+xei9k1JeXl08e/bs1VdfNbZnKIBciAEY3wLXgkVPtInZ9tYhYpbrPM85YJ7neVXi1oDJOgcAo9HIG3tdNTdTOMO0be26brFYjOpxQl+vLUQAgGDj5pHmBtqaM3POWfoLfGMA4oOFLW8cth7abBvvKKX0ntKeuKqqdBAlShRn0vsghLomNCmtaesAenF59vTpUyFE2/lEld3d3VVKJYJ02shKJTKpuJICFUJMw2WeqSzTjLFgXdg6Aae1tPc++pBOxjR0Hj99Nt3ZTzvdtI5NiqBkaZm0YZzz5N+ZXJgSVy4tlZNYI9UgrfX5+flXv/rV5XJ5dHS0v7+fJNGwtZ5OFWojT2Ksquqf+7mfW6/XVVUJIbTWSRAkVF5Ya4lh8ERIWusQwQWPiC54M/jDnb3Qm9dffuWLr3/2l3/pl65stBLDxaobHt7Y25mOa+tjnmsG8ez46dD2SqmD3f36xu6wurLCibq6urrK8lxIiZyFQEWu1u1aCOFi0EqmL14I4Zz3PmimjHeEIFBAykUnYIzz9PGugZ0QlBDee5XpxH3YQvCbUKYU/hVCcG6j8kzlPAAjwgjMGk/AjNn4fHLObfDjaqyL/PT0dLl+K7Vmu7Np8sk6OXrW9/3u7i5SjN5pKYZh4JxT8HVVpaQRO/TRewRQSjEGUSAjyZEF5zlPVlSp3yQAYIAAjGFEziEiV9IFL1OGJUTgoJQSAMZ4jJFznpw4PTDvY+9aIvKBAvXpvk/EfSGE6XuIfn93tl6uuJLGBowUnUdEJrgAFRA8A+cclzIl/yQ8oy5KyQXGZa5Zdmv39PQsRnvy9GmVqyKT927se9MqRlWZQ/RNN9y/92KWj99/+tuCAsP47OljhKgEi873bXf73p2iqK5WRmZ51yyePHsagfKiMoFc15mjIyaVsZEJjMCcj4zLvu8DEDLRW9d7r4QcmjaRZQRCptNzG6133WAiEBIZ5/q+z5TKMhVjmM/nN8dTYNj3vQ8klNRS5do1XQ8AiQy4XC6ttckGpOs65DwhRUSEHCKGJKcWQgAjhpwxFrf5OYgQLOlqvOx7YrztHSBnSi+NnY5G73z/saym9c6tNg4Zg8iG1fL5rRd+FGTOGAcAYwMIiYKth6FiNCpUwULTtRCCFFwGzmMQqqyySkgmCIMLWaQIvLN4OXd/+a/++6WIcX/2+k/t3+t7tbO7XLcIw2i8J8rdwPmwssenJ8KuT549HefVeDzlTFFEAGI81kp713MpmraVQiiVB++FYFKrxbKtvE4doZZqXHMI0HMDAGQxhNCT25iuESLyELzWGUPedw0AaCmIiKMwg0MC7+1qZesiB5TOWCZ4jBaB50oSsBh9jCxEckHUZWGMIWCDdSHC1WoNEL2zct3E6N1gbPBFEW6/+trtNz73M8ZZY6Lv/5v/93/9z379N4IbLi/Ojo+faSW+9723Li+vyrKcTnes9ZSe8RjzvLT9FcVQ5FPOlLPDb/7Wb7z0yq17L9w01gJhsOgCAnhknovIOYs2Sik5QJL7M0AmuHNOMJZUK2mEMn2fSk5kPMZIwMLGPCeRbzDB0QQhhGC26Qupnl1rVASXV1eL1WpVlmXC57yPiJxYGiI3ApidnZ3JaJwYpsMwdG2PiKumxYvL5C9x+/bt8XgcKHof2KfUPmn2TR6b3vvxeHx5ccWQJ9OJRIPaYrabcZkDXcPauCV1X69gruVD13zmT5OuY4xZpkLgbdumv1MUxWo5d87lWZl6lxBc2zqewn35JtG1rmudyfU6odMTROz6/uT0Ih3gjEM3DEIIwaAo8slkMhpXuc7KMt89PLBdD8QYYxZISnkdQJl2lHmeW2NHo3EIXil1dHS0d3AzYcVppzsMQ9I7JHOCVDiVUpPJZMNFx82wlxD7sPWnvP4Sp9OplCK9SJZlCClG71Mg/ybMI77wwgubI9oY59zOzs7Z2Zm4uroCAIYibdRD8MgZRmIIWV6s7HJnb5dHeP/BR4Tx9iv3jx4ce2SLVbsw8eHp1ajQzWpx8+ahFDFS99KdnccPH8Ig65GUGfTrM0R4dnSU7MHW6zVjUOa6H1oKvsyzvKqJaLUOQgjjrLVBF4kMQJEoAkYAwfm2ixRJdsYYA2eFkNcNVApEQ0QXSW25D0TEuUSMnPMYiFjawEJyJ3HO1XUdvDfGCMEYY0mhdHV1JaV87bXXiOijjz4aFVkIoS7LF154wRjz+PHjZNK0Wq0EY3VVdV2HRJJzktJam96nkiLhJ6n56vt+41/7qRuabbz+UQjBiSutOzNwhBB8JEbMEWUxyfDTRsFFZIQMHIFzwXvvgnfOlWWJDHUmGUTvnY0++qCU0lKF6FIQRd/3TG7A6kCRcy6UZIlukSyxECiGSLRXMh+GalzJuHu1XJVZfuNw/8H7388gZ8Gu5/P11cXOZNo03fOL3wVgQP7Ojf0iV7wuZq2fmyYplZ89ezaaTCNCoBgIAfliuY5MMKVd8EM7ILfWeuRcap1wDef8YFyWxxgDShUodmYYnKcQuUBtjWScc04MAwHj0tqNTN4YkymZ5VnXtMMwECYehEpxW+lSK6XW61Xbdulh01onbp1zLnoPMUrBOWfWWyLSSsZkJrohsm8tgxG1rlfG50IDhn4IPJop9nsFCUndamH6oSjKYFEr1Xz8dKIC5bMhoAueoXYhSM4j427oIPZPn6x3qiwAbwcfopIIwXmn1crYmmuhYsa485BpOZnsLFfN8eXV/v5uez4sO11WewsvYz6+p4ertXHtVT6qfAhKxIvLS0DcP7yR6WrduiFZEcWQFVkgKxgeHuz2vQFAiML7KJRuV+sQAudYlWVRZFISWR+t6fu+zMZDT5ZipOitCzoomQH3fT9InocIWinGhHMu2RNXVWXtYIYhnSqBuXQ0S8XrUamlCM5S8BBM13WSo/WRIyyXSyV4JnWWl6S1dUYpJTQuLi+73k0CdYOJEYyzdZ79+Z/7S8Hje+9+/0tv/sBqOQegi4uL8/NzpWoh+OXVZSAUUtd1rVVZ5eAd8w5jhMHRj/7ET3388Pu/83t/+PWvf907lEwpyKLz1nmMJJCFbdRrOarJueVyyQTHbS61UoojMs7Tnj4VufSkMy6llBGAKHAuEBOFGJOsB5GSjqbUGREXIuv7ti6L1co/e/bslVde4Zzned73JiJQTPb4DhF98NdqmcQeSlhX4gwnb4ekoNV5xjlPueYEwNVGZoOIWuu0ex6Px0+fPr1//346A1OpQLaBmhFRsk/cKDeF9hOjzRDiJymK6ZWv/5yEQ4l3lgjMqcKVZXl6cvbaa69prV3wabJPuupoDCXOMIeyLG/dutW2bSSUQmYZBqB051jnJAEi9qZv5/P5eh0eOiK6ffvm66+/XnI+WCOiYChUrrquSwEwSdKSDoc0sCqhMpUdP3t28+ZNjkiI3vs0XqcLlfTrSqmNaaNSAMBxg6hfB0Knbyrh2MnKGxGTW3hRFG3T+K1pZcr7Ssg0AKxWq9FolHjdScs0Go2EzgoK0ZMVyBiTIYRJNRqMma+WAplS6uj0REreuO57H75XFEXjI1hb5vXKWcH0atWXIjudz/dm9Rc/+/rhwe47I3F4eGh623IPdfF02TPGyiqvR2U/tCGEpllJhrLIq6oSUrtIcjBSSiH1yq+ICDnD1GcRMSaQ89R7W2sl4xwQONegfAwMKcYNBZwicMmICDizwW8twiVjjDNhwEEMRMQAGUGwTmidZxljsFh4JOj7vq7rMstXbE6B1suFEIIBmb7XUvZ9//z587LMx+PaW7dazL33VVWN68pbs16uUgYw51wKDvBJvHHcGqwn7dN1Z7rl8ZMQTEmePgsGz1AEIo4bxn/6Q3rIE+kMNfoYmOCm75xzxDAAaami27x+mRfG9hR9VRfGmKu1ISIUUmUqbszlUWuVJj8KnnGe6xwYGmsNkXZXXGaL1Vrp+sbN20dHR3Xb/vRP/3S3OKs1uzw7Pj1+1rQrKTUhrtv2pXt365wF0+zvzBZOfXS68JaqvFhcncKKj3YOiAvGIBhpjJnP51m969brCM67MBgTE3HRhdFolMXY9kOMV7R1DyMiTuR9YD4mKkeR6fF0NiqKpu2NC5zzoiggRq11UeRFlvu2TUQYHkM79Na7LC8LUfSdGXpDRFLrbhiW63WqyhKxyLJ0rBhneQiMc6GV896FsGl/thoQIkJU0K3zMiMTppMdtzwed0/2Onl8ceXPn92bjvbybD706OHy6OkYDIz2nCgCkZKITKTIykzn0lNnWsUcaBGYcgHIWk3oVHZhes/BEuScDaZFxrJqNNsfr4fm2eWF0nlv3RqwGk2GYbBnF7v7N6ui6q0JBMDVk6dPIYTR7l49O3SBAIUQLDKvuOOcO+e10qZ1nbFSZF3Xpma0aUyksM7bybguiqKqqrIsh2GYty56Jy3ECM70g0BWFNF5sTXORQDvrTEDWo6Iw0DeewIYnCdmOUckFCpjQvR937eBI5SFUrqg4CPCaDQyfS84SSkuLs/6Znnr5qHUWd+11WiEiDFSO/Rd248m08GaJ0/Pqrr4xk/8yfWqe+f7b2utBGMHh3de/8wX1uv17//ht7/ylR/48Z/8iSfPjn/t136NMSTbZFlZVBPr6GAyPn3+7A/+6IMsg+dnc8F0kYsi56iE8BzQIos+QFK6lMgjeWM9D4SIm+wjH4auzfN8VOS97TnnwPRmBEQCjBiRiCKL8RPNKzBAnp794ELgHAkZes4YY3mer9fro6Ojw8NDpZTxITiHDBlL0iCoijKEQEJsqaYQIzgXiDD9zrmMEYxxnEuOgnBD/GRb26x0FoUQKEKWyaqqHj169NprryWHKedtWs+l2zsCT8PL9bITP6Vvvh6L0zl2Pedck8L81vI2bLMlJuPZ48ePT09P792752NomkZrnehj6UyTWqUqvrOzc+vWrScnq1XbbPbQMTLGAkVkgjGWl4lWZntj+749fn4us+Iz9+4l7moiqAqtNhZPPqQ5Nc/ztm3THDIajZpmZcxU69w5N3Sd3GLoKUYpLY+ToDldwzQBs08sUDZRDakqW2vlNlOyruuu60KMkUAIESJtAme9T8Su9ECl3TMilmVpjBFt21ZVlbEsU7lpuvlyzesxWL8znvTDwBGN6X0ULFPGuWDbTCpEEcnmVUnRSyW0wlLS7u7MB3N59fze/TuD9aj1xem5LspEM8vz/OTkJIHvWikhZWonB2MDEGcopVQqS5vU5AIetimYjDEIECkMbuBZfg16mH4g3Dq0MUwM5FR3k14oEhBDxoRSGZk07HlECN7G4IDE5flZURTO2BB9JpUd+ugdEmRKXp6fJTXXwcHBw4cPhRCLxZW35d7e3vHx8Ze+9KX33nuv67rT09PUK41Gk67r+r5PGxclZZ5lIYS267Y/91+4Wa/3NGVRCyGiiRRicJ4jcAS9ib5KYbwEMRpjIQbGGAjhfZRaD9Z7H/I8T4XEGxtjHI/Hzti2beuySqElPNeCce89Ixj6wRkDjEUfNlcMAQEk4+veWS44574bumF9cPOO5ZkxHlXxzgcP1surV+8dHExne6+88NqLt46eHjMubt154cnTo+mkygW88NlXrhqbZyoTfNX1Xd/s7Owcn5wPAfcPb07Hdb9eXl5e9tY2fXe1WAFAUZURgKFwIUqJiQXqve3IJI2/MSbLFGeMEEJEwXik0Btrz88BeVmPvffGWK3VZDIBiMaYMi8sQmSIyIlhyhaVUjozlHUR12SDd956F67HiCzPp9NpOgeNMRxZ8g5TUhJB6tmRIbJN2mvTdnuTcrU4txnbP7j54J3fWXz83ZPv/rPHZ3MC/9JLB9//vd8ilNPZ3sMHj+7eun023Qt5FqzjFBiEvu3Rm7rUIURPatmTNRaKwiML5HZ3dnsEisFFPLtcKvQigWnU6pIjE8iiDVEIVmfCd4tS8NnujcWqzYCrTPddLANvrAeuZwe3eDYyXbd/eGew5vHjR96sXrh/Z27Nxeml1FmhZIhBC5k89/sQg/UxUAi0Xq8ndVUUBSKx6DE6Rj5RHSF4geBwE8IKAN5bxpjW2jknpRBScSGVUtaZfrBKqRBDWaqu6yi4osgE4tBbx6LkXGt9cnQUgrt187Cu6yKT3Wo+n89v3bqZQlkmkwkijwhA2PdtCCEAcw5fevn1v/xXJv+v/+rnqyJ744037t2788Ybb3zzm9+8+8Lrf/Wv/7vgI3n/Z37m5y4uL9vF07//S7/8i7/4373w0mtlVZ2cHv3Fv/Q///Cj937lV39XcZBCKJXVdX1wcLCzM1VKleOd8WgSYyTGkNN0Z18qsVgsSqUieUyZbM5enJ2dnB4d7O2jcmneijFGH5AzxhCipxA455wz78nYgSOTUioh+7ZJZ1qWZcPQKSWck0+ePBmPx1prRArBCaE2lIdNPLnXWnPO27YNYaOjxW0GYkJxmqZJnbrzQW6z1WPYTAIxkBQqMaL39/ePjo6ePn36+uuvr9drLj4Jv9n+2gy16aS9LsC4taNJrcBWuADeQwgQgksVJZWr9AfvPYV4eHj49OnTqqqmO7OkKU/rwrRdypQmor7t6vHo9u3b8+axtYNSGTLW9z0wFMCIaHBWCOGD9wGLalTWY+fcoyfHt2ezyWTCuASAwRrOZIzRWquEFFvzfKVUIlLVdb1um/l8PplQ264559YOUuoYQm9tlmWImEDsVFyFEFzy9DrpQyUcIlXt9XqdnoLrMK6qqqx1tDW5TFv2dBmvzTBSjEeCu4UQAgXvui4TcohDDCFZZd6+fVsX+bJZn1+dN6YPtGHtOocVgxhBZ7mSAQCzuvJDN53UjMvz+aLKs87YEHFw9ODZ8+nOQaE2+uVEkMtzzUQx9DbhokKI4GKM8fL8oqhKBIAQCYHxxLTbDIKZVDFQcK6LlL48rmSe533fp6KeFsNkSWuNAEnYCgDOudFo1KzbdD9Za/MiizGWRY6Ik9lOt26id4Kjt8YZ4QwURXZ5/vyll146Pj6O3j99+jSdL5PJ6OLsfNPRIB3s7z569EQKgQAhhNVqlR6AENx4XBtjhoE450pKLgRjLK1bEos9vbeERXg7ZKoiwZxzk1FljPEhaKlS05kgL8kFEdnB5Hk+bxJ/dfMMpO/SGLNer6ej8XK5XC9Xo9FIqmw6KQfTxbgxLqAQYwhIjAMqLoqqNFtKp4sBYkyL/2iBWAZdIByaZZNLRipfdO3l1dXhWE1mlbVWoC20HGm6f3P28bOjcaE+/LAZ799YzhfBOozkrRvv7/ZTO2+Gk5MTweDWwd64HtFqdWGdc05K2bZdXdeD9TIBTd4RkVASICJjeZ4VZdm1rQvkQsy1EhyDdTpTnMv5aglMIOcq05nWxrmhaxAiEogs9953Q29ak+W5lNLFUI9GbdsSI8lkQuRSdywk55wrIdbLZdOsyio3xjRtPxqN8qpcrRtwSLjxgkZkPgZQar68yiT3xMa3XtD7t8+XD3OzKqhVdVVJjtYa1z03VB+8EIxZocqEKousyMuz00sRXMnGi4urMs8QmcirzvTBxRBCwUVrbMaRS3X7cH91pUy3jt61ba8hrvvVcj3IvNJKYPBgvQwmtKavuI9h1axju96bTRfrS13O/vp/9H+qlfzee4+klF3X3DzcffWVl44eP2guz6UqykwSECFJxiAyH2LX9RtikQ9msH3vYoxMCiHYuM6l4gDxatVwBIpu3SwYIPl+MhkBknMbxg0i1HUdgHnvIzImdCBmI0zHVT/0golUQsD7uiyEFOu2uVosRlmGBM+ePZvWVaY1r2tr+uenp9NRrcry7Ozs8vLy829+yXnLkM9mk0AmxnixWAip/s2/9m+PRyNEms/nJ+dXL7zy+v2XX3vw3vtATGg1Go1f3d+n/tZibf9v/8//yj344Pa9u511h7df+M//r//ls6cP/6O/9X/49nf+4DOvvfLoyZO33/l+iDg4SyCKotjb29vf39/dne1MpjrLD28UWslgjTW96dtc68X88tHHDydVeePgVtd1XddtAnOIxW3ukPceKTIALZUdemIp8y5l6PoQIMkXs1w1bXz/g3e/8Oab1/ZBIWxb9ghpIAsh1PVYys2gtjXdxCTDRcSua/Jc53kOhCFEzgXDT1r/ZBjZ932e55/97Gc//PDDZ8+e7e/vGztcM3jruo7JFyhCluUhOM55pnUCcnHDc+4RMcHpjKWuawPDsm2GI+c8GSdcp/sVRfH222+/+eUvJQp0Wh1uSVt+U/AGU1XV3bu3m2blvfGOIgWInDE2OCuE3L4acy5uSLgA73/04HOfe2MiJeOSMeaMtcHjMOhapUGcc84BGUHE2DftvXv3Pv74YynlrVu3ElidfECTNYfbSEMZ3/pbpTaItnmR6R/TMZ7ctr336UNdS17TH661o8lwaSNU43w0GqVog1QIRAiBfCiyssgLPVVlXgBAN/RnJxer1crHqBRHRMUlY8w7V8hkot2ibZXKXOu8tzbjRgiZZW9/8NRYr/JiMGGIYt070zZcYJZlVVVJKZGxFKMotLomlUGISvAwWMW5h8gBnTXAEDmz1uZKp/tPCCU4Sw0Oxg3bGz5lxgaAaQKmJErznmLsuyH1YkKIsiyRojVWKRWClQxv3765nC+yLDt9fmz6Ns9ziF5yQdHXVXF6eqqyIr1ha4e+7UIIguN6vX7llVfOz8+JQAgRnUuuaX3fI/A0uiPGxLdKd2u6TdNWOL2fECjLUmgo11INw+C9z4SIjBkzpAVG+kZVpgXjHFOvihswtig2vABPXIDW2niHiLv7e0IIa+xp0wDAUvC+63xvWCRBKJFlMsuzXCK3waSuKC1NfRq4ufI2NlcdIufIyqxmCMjs5WJxci7uHM5evPfa7mT04IMPWfR3bu7p0fjRB388zuoiy6sioxCKXJu+e/r0sQmgVIEcumZ9cmz2dnaPT1Z5ubszHfsIiQ9VVZXKckQ0zqY3k7CBhJrs7Oz0gysgoxCcMcgZY4JzPplMCJj3Ia3rMqWUUtb0V4v5ZLoDyJTOI5GnGL2LhMzapmlSXjoiMib9p8zRknLae58TTKfTLC+Te3lq2kIMAMCZTGBEBziuJm2/jAGNKu/9yJ89/8NfefT2b+fgK2eL0VhllVBxFfQV3wt7Byvg/WALIftufTgbZ7w4PT2rVQYgZFYOxPI6W3YrDoRIy/VqtwBr7aDCizcOP/po4WMoi6wfBpA5Y8JY7wNxFjmiZlxKPl8umZZZpnrnT55fcrAlE4c370yK/PHp+agaS4EfPfz45Xs3Xrx/V2Dkxejy8mrd9n0/IJOSszwvtNbrdSuECDwQCWOhaXtki4P93UwzgDgeFcCZsd75QOQ550C0mF9VZb4zHQvBPIGxoWlXIHMptPM+HTF9319eLYpcswhCsrqsTN8ZY0bjylsnhJqOSsbY/Ori0aOHL7/0QtqSdG2jBffeHx4e9n3frpZEdLW4HEdfz/YuLi4GawBoOpmgQO+9id75jeu7dVZIiRRXfXN6eTaWxZd/4Ed+9Md/8re/+c/uZYqb7Dd+65v/2r/6b3z+81/tjb1z59b/8T/+WyHSk6fP791/48MPHr39wfcfPnz44MGH77z/0fIPlgixzLK6yG/funG4vzcqs7rItc44lz/8wz/MIAJypXNkAhBDDBwRiHkXuUDTD6B1CM5bW9cVhdis1mnfyRkbjMmybLVa1XW9u7N/fnX57rvvv/HGG4mvm7aMbdsCbThTxhgAprUejSbJFCj5wYUQErcmFeOsyHErq0sH43UJSTUvJSq+9tprDx48qOs6y/VWtcGttRwwHZ5phF2v185aIURd1+ktpT4j2Xill0rCVgBI+GUqvakm5Xlu+iHRnr33T548SR8whJBEw+nfJ9Q6eQPvTEd3bh0+PT6WiIDaudCbAUI0truOZkLgnG000PP5/Pj4dPLaxBgzm067pk3FL1BMdQ4R2SY8gymlKMSDvf2rq6tbt26l0Mb05jc5ArTh8Ka3pJSi8EmK4vVKMW0Dr9le1xSBDXK+CcuJ14WJb53kN4wlolSYRfr8hc6yIj+/vJxOp5Hh+fm5jy7VvDLXWioWw954OpuOo/PLbrm3O1tdzp+fHM2q/PD+vQjiyenpyfHZaHd/1ZEn3geHkeqsGpquGMv0AcqyRMaMMcY7F4OMIjGHGQoleK6ztm0RiAMEigyICDkyLbnSgojipyygOecuhM3AFPG6vgKkfFBCxL4fEBkhpKjn1G2FEFxvUgQTR7m4mjertfd+OhtjpCzLYvTrVXv7zq0X77/Q973ph1U37Ozs3L17d355eUanFKK17uLiwnuvlFqtmiSlTTdTP9g8E3ab1EGfWp+kxjB1D3HrF22MyaRyxoo801JwIq4UEfVmSM+D975nzFpb5kUK5c4ynbrjRN5Ot2+asM3glFJlPQ4hOIJ1P0gp16Z3xpL3GnnyKvHWGcAQZIqYAkbA0KWdDcNIwJXmXDoXOEYh2KiY7tXq5lhTf/mtb7/1ZHdy5+b+6XxxsfiOUurWK68fHBygNX3f37hx48bhcr5afe5zr6/m588vr3Se9YPJFK9KXWTihTu337/qpWCVygOVbd/rPA9Ei9UqWbBmWaZ1FmMM3jtrRZ4XRVHmxdA1TYxcIGPMeCe4CgmQZyyE0JtBKyGkNMOwWK8S7OZ8SCSISH4wHTLSnDsLiKg4M8bkqiSGmdhwQRFxtVoBZ3leAsDVcsF4MlLwwBC2mSd9cCyIQJxJaUAW0/uzH/pz+XgcT96Zn3ysqpEHJhhEVKv8xtX4Mx6kC0aGqKSYjcc75XhYLQNX68H3llwwPEApkGOEYZBCk7sqtfJm0XVqf7dYLpdVVRzcvLuy4eOjs6OLlcgU59i0q/XQSxZLOYoYbfCc8wAwLvf61VlnQpFBFBmqrCxzhpkLfrFYTMtalXw2mSqlnvWnZmizvJKcrPWCbRx609PqPTVNU49KXWZFniEiMLQeItEwDCnIyJshU2VeSMaYish53bY946rtO0TuAhlnuq5nbew7qRjkknEWNeecY1XUgvHz8/MYI087FG+995zL6XSaaZVUIlzK119/vR36SZY3TdO2bZ6NZ3uTlJ7CNO/bLpK/dedmNR4//vjjy8vLoqp0pvu+zxRUo9z3Mlf5z/zZn/31b/7Gummqenr09Pmv/pNfv3Pr1unx85u3ptYO1ofRdPrqa2/cf+nzf+4v/8vWDd7Y9Xp9enzy0YMPPnz/vaOnT97+zrff+f57DANSVIy+8eM/+hd+7ueMMd/8o7dWq1XapzLGOI9pJQRE/WCFEJxLG4cQ4tnp6dHRUVnl0+l0b2+PISaHyBACMUytxtHR0Y0bN6qqWi6X6cRIzohEZK0HYJxzqRQyprSOMTIkIkpBCM7bpl3rPEsnezr9kv4StmFKaZIjotlstlgsTk5Obt668emwQtq6KiYhSdcN52enachLgK0xJvGbyrJMWaJZliVdUzqUUuFPFYhznuclUUg+Cg8ePJhMJi+8cG+5XCIyRMpzbS2GsEllQMS+aw4P9lbrxWK+ctEQEQXPGSIKRCQC730MIbGGYyTOxfHxcV3XL9y9k06wqhxxJETkjMtt/LD0m6182zVVWT969OjZk6c3b98iImNMnueIlDSvsLU8SkIsZzYknvS5NnyjrVdoAp9p63BMRExKn9B7hmn1nhCRLSeJ822I4QbCjM5HGbuuCeQ717e2a0ybZRnjLNNyVo8LJWkYaiknMs8LOdvfy4Q4mMxmdSUQD/f2ZV7aCO7s6vj0nKt8ZzK5Or+ItisKvb83kYVKtFsfyPZ9b00IJHUWAzjnrPHjcVkVBQBIhK7r1s0KAEBIqVXwjgE2q3VqasqyghD7vo/4CdU7ffjUa8A2SjqtgVN4g/Uu5zxufUkoRiFU2/ZFkSXmG+d8sVjM9nbJh6ZZJZHW+fl5OgIKriMgEa3b1lqb62ww1lp7fHycGInO+5iIbrQxhU+gSrr68ImJK+NchkAhRCJKbRcRCcacswxIS1XmBSI55zxngkEfwgZCQdRCZ1pLKcEbLIpA5JxLuNAG9hGK0CFn3bbvQyZD3NwWnHOOnBH6EII1xllmhfOeGDAmQnJ33/DMvUDGiBSQBOyXV73r1xKPwX39q18od3ZOnp+YeJGPD6aT0enp6bvvf7BX6Tv7e8fPjiZ3PwMAZZ5fnJ06208mI1XWUvJcjsaFdsOwNx1dkT46Po7chUBVkRGyjSuvt0KoNNZ760zw3tghEjCpBBdCFEUhJMNIwQwhBB88cpFaMWcsZ5DnmnO+bIcY05LJp9uGAVCIiToiOCKiVkIAljqTUnbd0DQdIkkpPcX1qjXWJ3k+5zxQJCKEFN3qAdko5y44FJwJ5pE97/2N6f1Xv1E1b4vTx+/luQ7eedd5WZhycoyzcWwiQdsN5Xg0DMPSxVwJEyNg9MFppaJduObK2XZ3ekMy6Un4QNYFc3o+G5eTydgMzcmzB/Xu3ot39nVZnC6aZhgcgFR68CbniBx9dExIIGDIy7KWWQTBBRcoM4uMR2o7i5LbjJllyxiURX33rlosFheXcyIaVaPoPHCEyBnHCAxR9kNrjOkgSKUAWZlnFRcI3FrrvLk4O0fwEoCCB5DGDhEYESXfKEIeIwkluZRIhAjO2XFRBGOBwdCb89OT3d1dIhoGO7u52/d9364vzq/qUhuk6Xjc9e3zi0ut5Xg8LXf2FqendTXy3jMOaZ+nlGjbdZ7nwxCvFovL+bysay7lMAxnF+d5nhPRer3mvuKS/eSf/FM3/8v/4uLqMi8mjLE//P0/+Df/tX91Nb/68pdeKat8fvRc5tNF07ZdsJeDlDJTuqhGn3vz8Ie//qMcwZpeMPjw/fdPjp4eHz3+3ne+zRF+/u/8wt/4G3/j3/nrf/P8/Pz8/Hy5XB4fH5+eHnddNxifKbmzf+AGs1jMq6qIARar1WK1unXz8Atf+MJ8Pj97fuFjsNZLKZkUw2Bns91hGBaL1Ww201oH6zjnvFDpoNhKDY0PgTEmhMgLHZxHJCkrTDZ7FPphs1dKR2IIAcWmeFyDqGkheP/+/fc/eO/8/PmdO3dSYc6yzPZD2s4k3u/t27fv37uzteUfkkOFc67ruuPj49///d93zn31q1+9ceNGsp9LG0MpN9bWiJwzbm1QSh0cHJxfXnz3u98timx3dzdN2Am75nyTP+G998Hv7OzcONi3g1mtW++8dxaICaFCDJAy2hhLsTgMeXDD0Mejo6PbN25SRovFggFyyb33RZUn27IQgi7y5HilpSCI91+49+DBg52dneRJEjcJ63C9+Rb/AuttU1xSBb2G9Nn2F+JmL46IDEWq9ZyzCOQpctqItdIorJRKEqn0siLlQIUQDg8PV6vVarXKygJC1JnUUuWZmlUVK0rXdsv5FRTVeeMZ0O3Dw6Ietcv188t5VsXReJo1lne2KMpMikxgPimnpR4VWYNAIbVpZnA2RGBcAoKPJtWhuiyrIjfDoMY1eLNz7y4xPDk9Q85ciMg3GHrfdvVhnZbk1posyxKN6Hrjsql5FIFhjMTEhpKXUhYSs1wIEUPY2EaGKISoipyIVssmxliPyqKo2rZ99OhRURT7u3ta67Xtz8/P+77nCJzzCFTk1Wgyvrq4XCxW09lsrFTb9s7HtF1HLiASE4IQAwUighiIQCAkKPs6hSPhHoyRUooDcoRiS1RO7ad1AyDPZBYBmqaxxjDGmqHFrfyOti2nj8EYM1jHpRqW60CRM0mA1liOnCWZFlEEYoSAyBgLBJFxQAiAYZsuTIQYHMQAjClgBdcsWiCPxE3w3/z97+zPxpOqeO/b32/m8x/8ga+M6z2/PrPeqTxTrXv69CkEf+/uXdstP3j3rdc/9/nl/BIADmb7lRSe02o5Ny1Fa7lSQjAm+arru6FfNuvUVnvv+7YL0SsumOBI0A8DR1JKMkSMG7F/AuGvbYkIgQCIMCIA4ynWBpEjkuAcUaAkjJRIEIiYCYlcUvDIN6v0EIKPAMS892SAGEouCSCGT/z2AJiUksVeMXQ+KERQWQj07ORkNHYY0Hs/G5WCbEDonXMgHZMYgXNugzM+rpvW+DUGL3QG0Y1Hte3WZn70g5+9c//mZ779++/oQl3xicx0Qnfm636cYb8acq2ujk7zyQEZ63vjB0fAUCrORe+sFipQlEQMRNf0k1KQ75XgZTFGkG3XlRn3TPQOO8O6bh1jLEtXVcXewT6XwhrPMJaF8pG00JxzEwznqBVjjF1dXQHyoir3dvdllrdty1DORmWp5fzyygw9ImZlYQYHnOV5fnKxiD5YbwfrZrs7SGCHoayz6e5MRttFb3srOB/6njNWKH1+flEURZ6VjIGPcf/GzWDNk8cPR6NqVI+5YMvFaifLJ4c36q57/vz5xeVl0oeEwINzw2CbpsnzfBiGGIExdnBwAAwTfpsK1bprX3zh5T/7Z/+ln//5nz/cu7O7O3vy6KN/+D/+MsNY5FmutFIqy8vRaORp0FwaYwdrnfPL5eoEQAuptJxNxvdffvXeCy8Qxf/Vv/W/eX58dHx8fPPGQbVz4/6rERkwghDCxcXFhx+89/7777/z9lvnF/Mi0+PZnuRs6NuXXvlMWYxPTo5C+M5LL78ipSqkDBFijM5GIrZcNFVVrVfNcrHK85yCF0IURZnAZylTf7OhcBpjQnSIhASRAueolIJAZVkntDkEG7eRf2ybd5vG3FREB9PfuXPn+PjZfD6vqhF9SrJBW69cIpJi84wwxoqi6Ps2y3RRZLdv3/7MZz7z/vvvv/3220k4m/S1aQ6+vLwEYJzDYA3n3PpQFPlLL7z49h9/74/+8A+/8Y1vjMdja+0mVVcpZwMKMMZIJfu225lOOfAQQm+dGSxyZq1PfUMa27z3FAKLMRBxzucXVx988MFP/sQ3siwbul7KrOu6a/pxjFGpLEUXp4iXyWRS1/WHH3746quvhhCSMzPnjIjSAAPbOCncYslpeP30lUlnNSIibqKD0t/BTxHFKaLHKMImdS2NfHHrqxVjFFmWQaTJZKIY5wSHs90YY12Xfd9rJSm4dddWSuejisXQk7XRZ1Itmubi4soMA6775aPjgKwdTFFXPvRXl0vBaf9gN5eyW608iojAQDKGgiuCaLxL1zGEUCqVmibbd0Wej+ry5s3byMTFxYX1NkQyJhRFAXGjBACAiCCEcMF/ekme6lmEjadHuueEEMH5dB3EdWwF486HvCj9xo1ZbNluzNkwDEOmBCJa41frdjKZnDW9LnJr7XQ6bkNwzs72plVVrdfrqh4vFgvOpY/Bu5hXpZTS9O1135T+sC2WwKUIFCMQhHi92Lfkq6LQUjBAAODIlBAA0PYdESECcoaEfd9ZY5ItFBBFignySmo2Y8yqaY0xXCoAAOTOOuTchAgQgIhtlTQBABkjBJQ8pAhCH4EYAmeE0VGuMopBIVcMMwYUAhNCMcZEMaoKH+Px6bkP+PWv/9hnP/Pa6dHRw8eX5cGs7/v9/f1nH50kJmFe6Dde/0xZFoNrejNEaz04hXxolu0yCopD06AULHgt5KrrhRAhBqLNG1JclHmhpUSkCGCM8dYmtqbWUkodpPSBAkEEQsY4shhjPwwIyUYQEBkAMWAhBA6UZZnQQiDkea64ICKG2DRN15tsMhVKpY0aYywRp5UUxjpnnXOekFGM6XCXXIiAMQA4J6X0xhTe/+jXf+AAV//gd/8HofI6z3w/yGpsTGZdyMugkDMBnqAbfFlmKKltl7vj0l01FVbt6uzNF/f/1l/786ELP/3Fr/z3v/TrJ8dX+XQm8yrjmaqrUmIt9OnJ06woL07PLlofSGQ8d8GTjUrKyNEDhRCkAC002Z6RMN1qJYK1TmfTGANYjwKdo+cnz0a7lVKCYBismU3rJKtr277IVdO01nqmdcY5YCyr0nvLR5PVajW/nFvjJpOJEEIiIpBEPpuOrbVlNZpMZ8umf355dX52GbxHxsbjesKllKptGyFYClJDxW7u75mutWbwQx+suX/n9lvzxfnFPM9UpoWP9Nbb75SFvnnjVoy+qKqPP/54MplcnF2MRiOVZTfv3rdHZ0+fPlVCpkDWdDIuF02WZetV1/d9DMhRjSfV1XwOAMYNSom+H/7Un/zZX/y7/9+u6wqlXbD/9//iP5Oc7t266Yx3xk33ch+dkAyAM60BIEZKi8MAaFy8WKwk413faimull2eFXu37pEQz07O0lgTY5Rc1NOdH/3xn/76N37y9Pjol/7+33v/ne93yxUSIIXDw4N1P7z7zkd3bt/PVJ5lheAqUFRKdYPlnLfduusGxvgwDLa3QghkQ9t2AEC4gS6lyhJ1pqxy7/0GcfEWACTHFIGeakOqByndKITgY0hui4k6k7a8ZVlOp9Orq6uyLJMyJ0WlJZV8Gmw28xNRCD5NyQkV994zhl/60pd2dna+9a1vffazn3355Zevi5wQAnFDmU6VJuk833jjjffff//3fu/3vva1r5VleV2uQnRCqBhj8MH4MB5P66oSQmR5yRhzIX6q2uFg+vV63TTNMAxda/q+Xy/nT58+fffddwGitTYEzTkfrIGYVCfot/FH1vl0OL/88stvvfXWcrm8efvWlkQmiEgmWtIWdhZ8S1T6JPnU4TZFKqGtnLPr4fgao05jdPp0QjJGcH3mp/+UvgiBBGVZ1nlx/OwoOFeM5Gp+lXM+qYp0spu+d3m+O5soobu+zwX6YE8umsH4yBUgbyI4b3vTR07W9BiD0mLRaKMzEMIbTwwBeSKRdsa0XZ/wCiSwjK9WK68Vi2E19Hs7uxAisrg3my6adlqU8+WiMwYIpZSr1Sp9Tq219S6EgJylupXargiUmOKp0dNaWwJjzGBNnmUAMAyD1JkxhlhgDKXMElpPDMvRaDoan54er1frXGuh9NnF+Xw+t0xwhuWozvM8OG+HuG4bY3tjzMH+jcViYZzNsgwohBCc80lzDYHIhxQz4INN3UBSmFlrg/Nq69ntg+26hhVlJqQdDGMsjdp5nouorAuMMSVUoi5roUlQaqPSAjixXZIqX2WaccGYGKw3zmIkH0nEyBnDrSg5AkUKkUhEJGSRQQjEiBJXm4gsEPkoFRZFtTeueQzkXNuuJcOd6Yyia6ML4Nfzq4/fe1cLuHf/fi3IObc4ex5jdC4IIS6OL0Z1FmPMcpXlKgRHgRVVduvgYB47rmTvfG8dCNE6N5guAiNgqSfDxPoOobcGAFDp6IOPwad0ZI5KZXmed73RXASKMUYEctGzELhARMZh034pISi44DxHhhQVFwKwLArbD0KIKHVr2zQZpHWDEMJ6l3b/KtPJGjZZhCaIJcZIQUkM1WQGsrharZfHj9nt0UVzfLVoRTETqjLdIuKoYWMQWR6MiNF74kr1xrTW13UJiAQeIczPT/Zr+Vf+Z39i9fTh7/2zf3b7zhf/vX/7Z995sPgff/XX1sNa4LgQNY947/7tuhDvffQAsrosc9M5G32eCYTAKLYRCUgIHmMc7CCdkyMxHo0JzKiqrpbr+XJx587eEBmYUE4Oe7eUSousYOiatremLbJ8Oh33TQ+Fvuy7Zj3UdQUYi6y2juzgy7KS0qbDJc+yplmfnZ4WmSqKghgPzjdNh8g4k9Za5511Xmtd1+NuGJwxSghnOkeIXHOgQmsGYb1qT4+OzM5OXtZts+r7Xkm2uzPd3zssSr3u2ufPT6q8OD+/JGBVVX344YNbd+8sl8tIJQR5tWzWK1MUhRAiOsp0RZ4YY1qJphmEEEoSA1UUxXx+vlo1wOhLX/ryK6+8+u4f//HL9+8B+Vwzb/uDvf1MKiCWgt9daCSCEoKQJ38GIRQgDoO1LmitUWims+DtojVFkRvruSp9sAwYIQYfV1erXBsl+M7e4b/+v/w3Hn388YfvvxucPT05Ojk5CQQHBwf/6Ff/qfwnv1aUZV2P9w72p5PZ7sE+Y3Dzxh1jBgCo6zpYR0SLxSLLkTEWgVlrjXFS+QTY9IMCgPWa5leXe3s7MXrTi/G4XncGN06WaQsWr0fbtBBNBTIBTuv1uiiKpmmWy+Xurg4hCGTOOSFkKg8hhOAdYwyRtoMNXNN9E9R87949pdSTJ08Wi0XKvk0FOMuKazAcEUNwCWd1zr3zzjvf+953X3/99aIoQwiJLRUYMcY48K3X2ND6SBG11m3XpiVxjJuBalzn+7sTzrmxrGkaO3Rt2xwdHU2n0+R9lObX4DZcyw2IRQwAVqvV3t5e3/e3bt06Pj6ezKZlWSakOqFceM1+VYpBTObSCUxNU6zWOnmRblfdLM14Qoi4DeBJNTj9dGQEYWOFlvbr1xOz6PteMHa0bgTiqBpF427u7gcf9iaz07PnDLAY1UQ07xohhLWDCpZx5QI4gsv5UhW1LGrbrbmSgHE6rZ0Z1uumGYwjxrjk3kRgPAIw3vbDqml9iigQDCIRUd/3AqFQfH6x2N/bjdEP62EymSyath6VTPD26LgsC2vcNX84cYk559dzcOLp+Rjatr1OrHTODdbgp4bRtGZIS0cAFgH7ocvzvO/6RC0BQqGkcU4IUZY1Y6wsq4uLi0Q0aJqGI4UQ9m/dODk5efr0KefcRw8AO/t7FxeXQogYN3tfG7yUUiAGT4gbI5E0oGOiEsSolBIomqaBSLIe+eBSkkyEWGS5pWBdY4yBCMG5aKNnngRxzhNl2nontdZacykCgWK8aVvg0HWdj8QAiEBvQQK/WWVQ5EiI1gelRWp4ow8AwACRMSek4CQl9yGuVo0gX+d5rrSUfBiGSVXcevmlQiKzvWnmzsDuC3devnW4OD85/vgIQs4Q+6btuk7wuHO4f/zw6Ww2s0M3eO61vrw671qY6tnubDJfNzzPm+fPtdZFNRqsSchSukERIhci19kAwACNGZBStqPruk5oxTlHQGd9CIFzhojbcEiMkYLHTPE8z4NjnfMxRi0k0wIjaSEH3waCxOpfXl0lbmee5wnJZ4yNRiMfA+cBGSPGXfCCMcZYjIAsR3Ic1KqxnKn7N2+980e/N8niaj1UmGfZyDvfRt1SwXTJghEAIRJDwQUNJuBYjCZ1CG46q+dXy7/yL//lW7vy7X/6qxePP5Sh+FbLpTz/2R+8t3P31bc+fPLw+EwofX7+2FiXV1kXHHGpMoGIDGPfrZE8yJEPVuVaogSLnLG+WaMe6lFm3RBCcM5dXF5JAg1Zz1hWgovUGxdDVygGRMYOVxemrkd79Z619uzsIjgZEZTknKlYcc65GZwxBiKGELRUk1F1cXEBkQhBMTG/vAqMxcjqeiS17AcTAENwiaUvGBTj8f6kvHtjr9JCClwvls/iM53nmVI3b06urrLL8+edt85H452Z9wD08suvPnnyKAD11rhVWKxX7OQEgAVinAvGuJSZG/x4d0JEeZ4nModCury85EpSRGMMQ5FYvldXV7OdvZ/6yZ9++7vfHdqGK2ZiZAzyXHsbEDkFGEyXZYpTdC7E6Lbdc0jcHOTS+rjxyggAjK97k+e5d4FQEkrrBg7IhGBCBorzxUor8fobb7zxxhu5ls4M3hlrbXN++u1vf/vhx4//8Nt/dHR0/J3vfDcCRcBc5+NxfXh4WBRFVZWzySTL1I0bNwgcEIsI1tphsHG73F2v1+PxeLVaPHv2bDIZzeeXVxdnL7744nT3TqLpho1tPjC2STFq2zbNr0IIH1x0MRXL3d3dhw8f5nmZoOkYYwhRSrFZUm4lVak5jtEnkvB2wccXi8WtW7fSaHEd8NA0XbKMxi2pWEoOkebz+Z07d9q2ffbs2e3bt6fTWVonaa37zjDGooucc9sNUmnOI2cMAATjCDHPlBBZuqUBIsTgvJNqnGVZVWR1XQ3d2LqhyHR6zTT3C9oUvjR9psKRiD7JSuy9d979/Be/sMWZJd8aUiYGiTP9NS0rxRGmD55myC2YLJKqIsZIuCn2aVBOV48gCGSJ5Og/ZcEdYxTRxcCxyEvJhbNDjKEZOiUkIv/ym1959/33rPEuBK4kYyoQHA1ARAjAInLG3HIRGANrS6XIQW+D9RQgawZHXHFEz4sQgutt4kC5RDpnkYGMMUQbc6Ut8bZxnud//PFxNinu3bu3Wrmrfrj8+HFV1kAYfEz3kBBCCxlCCM6HELSUWrMQQt+tp+XdYRjmBEC0f7BHEc7PzyFGqZQudNoJaa05RgTHOcbogzEYHCfFICCh6wZEZMClVi7FsHPMgs0pDPMrLlBxij5EZ7um/cxrr7///vsALM9+ZlDUAAEAAElEQVRzrfXi8kJz5rxhQIn0LBhQcB6iVBwJ7GCyTAnGrDXBe845Z8w7g1paRksX3ND3fV/kmUIgIvSbPss5v24bznlZah8R/SCURM5aZwm59xCEcBGN802zjPH/x9V/R+uapmd94H0/8U1f2N+OJ9YJlVNX56jcklAAhABjQIYBPBYgwohgjweMGQYvGJbXjGcxYw8wWCCEBAgwCoAsZBqk7lbHqq4cuqpO3vnLb3riPX88ex/1zP7rrKpzdvj29z7PHa7rd0Xva865kCwEwzl3xDnjwDBg9ACBGDKGTACR9xSCgRAFi0pwRg4pSs+DtyEyUShnasFjDrEqcaMQV3YHleIZj9b0F65uGZMvprOMmiEPO48+Nlu2uQ2n37zVxiWFfr0OEU4wxL7pHLFWy6blc6qm2WDWRtn1oTdZbaSPQyA3P+URSi0zxaphtVwuq6LIC9U06+iEkMIyApQWyFgrGcPOKy6AQjSOU4RIirNC6eAcjwYAJqOJ1jL6VgjY2MhKLSm4Ikv233UvOh9ovV6pnO8Adx6zQnb9OhIMB7lzjnMSgRwl+pjcGgyX684ZPxlPRG/ZSHrVlJ0PnVp2orzywlgtijh9bs8KultDoLCtPRoD9cZo5Kzqazi4t83a7/rw0x96amv/3mo5X7x3564q9Xc/Wh7cu/fSa+8y02cn33jw3r8v6+xovf5T/8P//cKnH+3DY2+9d+/tbz6IstAkZk1/1LRcypU1xgXFUIgMQtGbyAJ5vlSK2eiXUi98rlZZ1oFgyse8q2O1UeYKM21s49uWABL1JcMoskHhbH90eJIXq53dic74fD6ngM1qXRRFyYNSfOWafCgIg/OtdUEV1WBb+EDG+tW6V0KOBuV6vdYiKLvmwRVFPswZQLx2ma2WMyWY6mes6SHkMtO7A7Fxczd633XzrMKLm5vHI5yezuvZKTmbl4NqOFg2fufS9VXnlqv20u7O7nibeSp0xrfGk83y9DS5YLnOWVbkQgjtJBHNF1PUxCWtmrn3npjng2ELfN10m3vZD/zgD//0P/yfV80qKwbzbk0FUxuDjkXPmMhKhso5ILJppRchacLJUSQKEG0kMsGkdgqTdANJS2lMF9pacgSIjDEKFpmQOms705m2aesIUFY551gU1eSZT3zPkx9jDP+EQNv1X/vaV77x0kt3bt2+8/6du7dvvfnegbdGaW76dlhlWuutnb3BcLy1tVUOqqwYCwSMJudIpqmEP77/3uK9Nw6Z/+BHPnrbh3deevXZb5tIKZlgBJRK2iQTCSFIxjzZvFDGdBhDnmVERN6yGDeHxfL0YGf3QghEwACobbvJZDKdThmA1tpZl+e5sw5BOg/IkHMMgN57znG5nGst06GqlbK9ybXiCM45G72MZ7wpQs50Ma+7K9euAxcvv/ZGWQ1Go1FvuhhDJJfpIgoRMQotfPQhUNs33PEYfdfXBw/uh+i2J5tlOciU1kWV6awNDYZWoJSSk4C+MaiVkJqIlBR9swwMtRIpVI0xplKx7mIwnit2ee/S22+/fXjvwbVr12bLRVVp611wzp5nH4mUhIickLtAUufIz/ILGAfOGTEMRCrPgfMAYE2b6glMrT+RkrLvfeRgjANIA2pEPNOci3SrGWMaWxeZ2tzZhuhns1nTte/fvjVfLjvTr9tGpGQMwZfGJayaZBwiYCTNFBfCeR+BiMjTuVsZiLxf1s15LXbesCMBMOdcMrZaa4koz7Iyy0MIBwcHigvOJSOgc/9yKsFSU5tJ1TTN9va26buHddnOhb07d+445yaTzdlstlwut7d2GGNZlpVluVwuGWMp8gLZ2SCezjkyKVs7YTeI8GGhlOhl1uLu7u7R0REgF0LovDDGHB0dbW5uPvLIIwcHR877LMvSkuDhquDhhuBhpSPlw5ATxpUS51mhZw0fYhqYdNSnYZFk3JzN6jFZkhhjCDzjkBBXEAmRgMN6vV4ltipQqgYAz6KikEVvHQghtGKARKSlACZSn+esYQTDQem61rRNkWkp2Nr0Wgpk1HStCHZ3b+vC5b1xJsE003UdCm0kb1crFHxrc2O4vT1bHh+fnjw62Z5sjt3pam9vp/e0vbMrs3y+WDXctG27WNc+4IWLl33web8fgWIAZCj18OB0DcR0nremvbA5HhS5d1ZX1Xg4WC5mRYxNWRwdH29sbIQQBGBZVtPpNMsyJaUxkXOZKW1d3/YGZFR5XlBQSqXcMaTIESFYBCpzrZTIlBZK6qoy1mfVwDlvLRpjOuucd8BTqS5d8EnwORyOe+M6Y4hCUZQ6V7niQceuWaGl4OLW9iYXwdSH1hjJshAZctFY7wJJwTIGws1Y6P74j//Bb3u+ijVI30u33P3A07//kd9/enBk6+6br79q2+bixsB0q0Ex+OV/+W/bGH/wa1+/8ZlPZ0o//fSjW9t7r73+XlkNBza4B4cLY0spIdLGxqZ3cbVuB6Xo2pYzETxwrvvOxQiG+RbrXMpMoNTSGEMekDKt80gRmSgHWYxutVozBoMqD8EFT6enp9ubWxzZYrFo6pU13eZ4QylR+MxTcCFQjAyBIWRSBEbGGIQoGDCKWvBM5hvlUClFFC/sbk82RkKw5WJ+uH/3+PDAuiCEQwtRRCmELsuqqg6Wc6ji3vbWxmDj9r17pjdLa6ezE+SglECg0WggpSSEo/v7r9y7N7pyZXt7W3KOyFwI6/Xy9PRY63xnZ+f09IRzXhVlmu/VdV3kBUnRcb65MTZdf3Hv0nd/+/f88i/8czcobef2di9PhluDarixQUIwFwIiQzgj1gH51EGm0yw1dnT+ARTTwaWZSholZPDwlEtdmuAyxhgBs0yPRqMQ3Hpd12tnrQkhDEdVlWcf//jHP/GxT3ZdJzhfTGcvfu3rX//6V/fv363Xi7peLZaze/f3rb/Xtm0gLMpsPKi2J6OdcbWzMZjP4/aFi7/9d/3o7du366a/cOURFPnhg/3d3d3hcExExEhpBQB1XQuGQYjamFFVCuDIGEdx997dvc0N4GFnc/vw8NAZm5cV49IYo/P8dDYDRAcxeKu0NBR0mTMP6Tp3zhARO5NY+6TS4iicDd57RM6BAwOmkl8oBk+IgQMKLjjjly5ctL155Ruvfvozn8yF7n1XKO26Hrh6+Hqnf5guwo2NjeV8dnBwcHp02vd9cD6hSCJB8ihvbGxeuHBha2srncOISODTyPdhq2qtjSFkWTabT53129vbzrnxeDydTjc2NobD4WKxcOHMIJTYAFmWpfP5Yaee7KODwSCJQx66kpIQmnwggAhnQ+w0subnOcpnr9KZVAuJSKg8o0jWewCKACb44Exrza17d2OM4/FYoi4ZKqVW9Zp54ufT3RACR55o+8gQkcUY4rnGJxL2xsQYTWsfiuuQET83U58FEQDGEK0zmVZcK+ZxNBi2dVMU1cZoDAzrdaOF1FkWY1wul2nrU5S5D05q1VuztbVhjNnd3eVMLlbLlFyUaCPpek6xSDxp+QCTmuah6S0BCB8OVZRSLIEbGUjJraWu6xjg1tbWbDbLC2W9S++/O3fuIKKxPr2/U4mQxAt05js6f3RjIIgAZ6J2/FY6K5E13gfHAGNyrzrHO4QQdSWJSDCeIlmC8w4tAOhcc2Rccut7RKDo23qNBGWeuxCQgKJHRI5EQBBilWfImffeGQcI0QfGSHMI1gyUQCA07d54oJWYTqc88CzLnDfRUZVpQNF6P103iIVCAVwuTBhKOdy7tFwvzHR26dKlC6WwIbz1ztvex42NUTUeN72bzpcQvFZiY1D5AIPBaDpfxuCGeTXEeWdDH8RJY5ANx5tb0/lqtmo3R4PTg6NLTz+ZV8XxfoNt2x1PhWCnFkCJpu85MojIMYyK4XK+AgN5WRRFFoCcMVFpKqqe4gCRK/kwCYNzFFIjRB9D7G3fW0+xKAeEPC9K7C1XHJVoF8sIGH1E67MsSwLUdBn7QE3XEwJyFkJwaLwNCvOiyBtvYvRSEEEMnkajTdPHPkrHtfVBa1ShL7v7v+d3/tBe1v7tv/n3YjN78vqVb775OgL7yb/wX62O7t15a748Obi2u3t6cPfKzub/8s//ydFs/Z/+kT98Opuvv/jFJz74QVUOL+xVk8kH7u8vlq1Xmu1P1yerVgErmcxHZVEsogtTC4pLQmmNR6Y3J0PGATEqRqMq1wKp7wXjUikfgnPer9vJuHLW1U0Xo48xDqpCSX5ydJDrbGM0HFZl13VHB4cLoqqqvLeEEGNgiIILIYAhN9YrRkIpROi7Wko5HFTkesmZc6FtW8FxUBZSyrIYXLmiRlU5HJRZnkVjnTNaKeB84O3J8YnW9aAabY3HvbGdNULJyWQitLz93rtKcsGwqMqrH//IoMxjma/XC85lWZbe9H1nrXfDqjw6eEBEW5Nda+18PtdaKyWIgu1bzaHrelSZ1Oon/+yfe+VrX2vXM86yft3/7M/8k7IaDja3nn/+o5EiBeJnEFw6z/xFzohStNE5BBcRCeBMEOt9mvEiQYwBEYmQKAguI0JnTWq8EgQ3AuWCMxCMKYGQcAIArK7b0WAopfrQxz7xbd/13afHh9a1nLMsyzKVTeez1998+91333333XfeeevNBwf3337zTU4hRvi9v/N7172f7F4KpzMb6dGnn1k2bV23q8V6c3NTyyz5iQdZBRCbpsm07BojONvY2Hjxq19ZLBbL6UmW5XuXLl64dKVuu9t37uzuXvCRgHGpVYyRA8UYrXeMsX5tSqljjFyIvCpT++SDJcYhMudclAERAWWMobWOc17p7OwCToqKc8tomVcX9y7cuXXrnTffeeH55yjEPvRSSg+EwBBJcZkiU4mIcyG4uHHj0aeffrrMc+/9etWcHp+enp5a77z30+l8f//wpZde2tzcfOKJJ65evZpkaJKfKW+czRLxytk6XZl5nme5DiEMh0MA2N/fv1k9lmUZDz7J3Drj0rIv4X4fOpHS2d40DRdnlcK5GQnT/v68aPAA0LZt3/uHs2jOkfME+j5LKhThPJ04UzoyWKyWAFFmerqYP/3005evXPnyl7/cNM2NR28ywY+OjmRVSSbIp5eTQohtMGfSdjpjP4UYXd9FhBCCQgEczgS9ySwECARSSWcsceQcY4zpFgSAS3uXptNpVzdEFBE4wywvk8A91yo4O6vXk8mkbesYY1mW67aRQp+ezGKMWuvpdL61tdX3/Ww655xvbW01bU0+JF1AEi4hcqIEmuZC0JlblLHgfLIApVqm73tjzGQ8LKpyd3tHKbV/cJ9zzgC99wmrjchjjH3fMyasdyrTqc8OwcUY4axPxWTEZsmze66FA4gs7WkjAmOIWJZD27cxRmtdIsioolyv69QQ53nunBuPqjwv276LYUYMQwQpRC6l9x44phf5zCMHMYTguoZLaaxFxgd54Zzzzo7K3EHgZKO1Ssi90a733mvhXaxdrxTPlEYKXW8O52HV1PtKPv/kY1u7l6YH9w/u7j/1+I1iY3Mxn9v9w92ByMtiUI1Pp/PD01NAGQGvXr6IXGZ5VXf9u+/dWa7Wk+GgqAZa5VWeVaPtDvSLb92WSu5cuNq//sbWcNSv5ltldvft13Y3x9f29iaTybXLl+7dfbDf9q43hoUiKxhj3lgkNhwOAZhzoXe+KEtdxLqrex8AoMDgXWhMK4Qos7xnWGSKIxRaSF3E6BlhIGa8Ry6JC+8JGNd5YUPbmz4YltZsmc76vq+bJsmqI5HxRgRF2HkHIz2QxHt0q2bBtW7mU855VQ6Nw7UhmyFypcnb2d1PPrGxLRd/+6//9XZx/JmPvHBpkg2fu7m/f/hz/+B/XK+arZ1dJJgfH+1sbPzqr/zK7Vt3/8u/9H/dvrg3rWuG4f7dW48+8ywA5IrdvDaezYIgKqSm/gH0zKyX1WAopJhO14NCIjCdlYtl0zu7Wq2YwCznDgN2vpRSAiuynEkVjJW5bNrazwLE4Al9axhvk6hkPJpkWSYYZ0Dbl/YyBuu204opqQkjkQgREDFQQCAUqMfDtEizts8zBeS5FDHGPM+9ddPp1BmLFMbjiTVdcL31LsMcBQYXTLCSSSX5zvbEuXByfOhcQCbm82WMcb2aX7169eqVS8Gapl5BrkutHn/sJpYZCrWYTt+/dcs5V+ZlWHUY/HBQrJb16fHxZDKZTDZCiClyVXJubD8siru37+xMNp967PHf8YM/9FN/7+9sbBT79/aVeGVzd+/a47iYz6vRpO86nnGGBMAiEIMYgZ01CogPZa5nPTAREVlvOecCgcKZ5wcAQqTONEmOs7t7QQh2OjuN0UfyGfoYvZQ6sYmWdcOZLCruCJ11UrCRzgMT5Xg7Rr9u1p7E1u6lb9+78gM//Ds55+vlomtX9ez061/5wqvf+PrdW+9/6e/+/e/+rs9GhLYz37x3uLexGWNs23Y1X1VVtbGxIaVcLBbee4hYr/utzU3nTLNsF/O1Mf5wOb86GhzPF6qsDIWXX3/j1i/98sULly5evHjz5s3RoEJEjgwZCEDrYk1tCn0ynXWBzl8Wroo8GBNC9D4AZ/w8PEqFACEGiokypbVigscY120zmWxZa7/53nuTra0rVy+1znCuYt8zBhQZYkw5VElzGoIL3hljus4oLrIsv3rt+qUrVxlj4/G4rmtrbV3Xafx59+7dvb09CjHxNNLGVyruvY+kovMPbeJSSnC0tbV1+/bt995776mnntJaN13btm1Z5ZzzrjXhPO8o/cYRMdneiM7sv6mkSH9wgA+7Ya11nufp/E/MBvYtbMvUlIuHvh1P0feWIwrBiCgri1t37xydnljvLl25HGNcrVaIWKqMiPrgfTyz2MpMSymX6xUhAEMEpECRCAhSCi+k/0zn8W5IABCDjxSQOJ2XFek7M32vlQIi5z35sLmzrZRarlfWmfQAcI6LxUwqzjgSBG9jVWpEtN4RoVIqz/PT+SzRzHWmOFanp6daa61lEg8DQFqGnz9LlAqI1PSkMqfve6XUzs4Ogzifz/fvPxgMBomltXfhQtooX758+c7d+6mwSmoFIuIcAZCjDCF48g/FX/hbESLpvxAjJMBwblVKYwwEThQQcT5fVFXFuSAfhNKy0GVZOudihBijt44x5mIAYONBZbwDQs3VWVXuLCBKzqQQo0FuvePICFj0AX3UiCzYSaYGecXI16s1N914PLp5+eJXvvr18WDQtr1PDkKuQgzLpu87+8UXX3706pVckAdx/+Dk4u5mXg0B4rKpHfB1exwBx+Phatk655rVnHHdruvt3YvPP/3EK6+9sa4733fRmtD3y/Ux5kOJcv/27ceywYADC/0zT9/c2xwF0+4/uH94cM94kxfD3csXi3du6SwLIcTeEOcxQADSOq+qomnbtuu4EILxQmkK1HVdLETkZ/mdxLDrTd/3HKlVsipz5xww7I3zEWRRKKnXyS8oFXFGwACgbXt2/qA473vnfYwpmEFqZR0FH0y03hLEUBV5VWbHywVCVFo4os7ENkQ9yn19+tjF0e/6zuf/6c/+47A62NTMt7PoasnC66989bFHn9SCHz+4pWW2t7X1q//rv3355Vf/6l/5b2au64/2ZZGF2tXL2Z133rxy/QaTRXQ0LvnoxrYk9G23ORw8OD616xNZ5YVQk0E5W9Rtfcy5kBR625vGFq4gim3dlVqVWkopUWDvzGAw6Ofz5arOM1nmuYAg82q+bi/vbUdvjo+P43jMWRTkt7cmedNluQKAAGeohJCiQUhaH4goutb1XZ5lm6PBer1O73TJmZQ6BhdjtH0HQDG45XI5n8+rwSIvlJYiArlglRK50pxzLaRSuqiGp6ez6WyWlwWjyAi5lLwqRmVlbA+RZrPjnZ2d8e7WFdsdH51s7UwmG6MYI+Ni9+YjRNj0nWtcpvWgGlCIy67e3d55/933/tyf+YnJcHRhe3O9ON3dHkF0j1y+tDGufuJP/PjJci0Zb9u2KEpn25RslhLYgGIgiCFwof7/p9CQfHEppQ5SGDxjjDEeiIpy0HWmbdt1XSNi07QbG+PxeDjIdN/3CR2fRp1910eAC3tXGBOnp6cHJzNHbHey3bTr6XLFBDET1vUSp4ssy6oyv3D5Ebx48YMf+TBG99abrx/uHwglrXeDasSksot5GvvVdX1ycjKbzYzzUmc6Z7/zh3/73Xt3vvybX+p7k2+VV68/evv27VU3nc+WV648sl43k8nWb/vs9/7iL/7S9PS0a5puXT/33HNFnjmAMtPOmiLPWzR93xJRUVTDqgJixjvvQ990QggmFQP7UHGNRDyEiCCQIYuBIIQQgXpnE1NhsDEa15PX3nojGxV5mbdtC+cfMUYGPB3X1vZEDM9hD57IdwbAIPAEfmGMlWWptb5582bXdXfv3m3bmkKMUcboiUJRFGkigsQT9LDruhjjWaRj327vbL136/bGxsa1a9dSU1rq0oYzz1I6T+I5SzJNkpO2K028Hw5IogvIwfuQ+rckuUrvE3YWvcwCEOecoeAIIiGlHurFgbHkxkzK7MV6FaxL8cXpTqpXK8YYEmkphFJEZK1t+44xFlOCIwCefzec89D3jDHEs0KS4dlFmybjiOidBwDkDBhSpDM453nXmKi80+k0z3OtRJKPO2/ato3RN+uVFHnTNDt7u21v+r7TWh8cHHiKVVUF6w4f7HPOre1Hgyq94uE8ISQtihK5FCB2XZcpfVbAhhCiYxzyQpu2y/NcCBF9KPJquZpzKS5evPjuu+8uV3WMUUoJwJADJ0xt9MOJRNryxhgpxhQImi5XxQVHlmy4gTgiJwre+64zkaLgSmcyqbKFEC6G9FtMNuiubVarVVokNE1DDBMbVnHBGLOuRwqZEEqpvNAA4Jqmb3smZCDq2240HO5MxtHU9elRUWx9x2c+tVrOY4Cm62fT2eagsoNB6Hsk8t7rojRdD8Q5l5nWd+/tZ5y2RlXN+uViPRrkSvLpqtXV2Hu/s7kVkR0fn2a6KDJtjVuslsH70XgiMa7mx8a44XD4yIULkXgXaXM0OTqc2dVylOnTo8M7t8xyVu7tbF2+du345GTVrEkwIfWEi/H2diA8nJ4s1nVkHIXoXBNbzzmHELt2lUs5VEow3gFEsNY7xgQh85GMD9FZhhBC6EzfdZ1SGQgplHadbftQm9b0rijIEyAXwHgIFgCs8TqT508XARchhNb0g6oCDmVUZcUXzSorZCFUJiREXw1zF1xnUGaDvuuzuP5jv+dHDt/+wtvf+HopuDVd3/cf+47veOfll7d3dr7ytS9VVcWRX7t242vfeP/zX/rNv/E3/sbP/fzP//x/+NonPvzkn//zfzE467qOXKgXy+FESa6AAfTw7BNbe5uTL3ztRXVpsuy6+SqUTE+Gw81xtX90EDmfLo3vPZc5IQ8O+kDe9C3W1pjRIEcPRFS3nXMGGQkhLAVcrsbD8v7B4fbGqCiq/f3961culmVpu15nknPOGGoGXKD3jJD3UlKExWKVav/oehMdjMud7Y2mawXjXddxBt571xsf7Gq1Gg0GWudCMGCIXOqyRCLnjO2t693W9vZka6trGtM1eS7Ho0EEitFzLre2Js265ozlWWWNgcY267lgcVgW+ZWLLtJyMR8Nx0Ip07eA3HZ9QiXXdcM5Dy6Yrl/OZ0h+sTgU0GA0N29cuPbIpR/4ge//0le+2rQLBsxaW4yHxlrGAAkRiBAZYHi4SCKi8z8zxhioBEZNQSkpuMzHECgCxRjABMeYQORt23OOeZ5XVcU5b9s2YXYIYNXUSmXGWeSqd3Y4KJCLiHDh0pVyKBfrFTAeInhAobMQgifoens6W1KwnAGnsLFz6ZGbjwPDajgKIXLOgCIAgLWACJwDY2DMfD43xmipnnrhhY996lNf+MIXXn35lQ9+7BPDze1f/Id/T7fxg9/2/T6G46OTalB94Imnf/lf/5t2Vc+nsxjj8y88X5blwrScc2u7QqIxrmvbdlFLqaXQSmmtc8YYs8R5LHQerOvqRkoJBE5EImRSMOQheJRMCKUFCyEYa6WU169ff/fdd19//fUXXniBc04seO/TTcI8k1oJIawFRA4QQ4jWOiBGhKmvBReTbjlhRvq+JYq7u9td0yaCYbo1z9eLLPgzI1Nq1YhoMBjUdZ3am1u335dK7OzuAtB6veKcRx+ZEEgUnAshJFtxcM70ffSpweYIiefLACCkXSJHH7iSIs804zyVRAAcETwFETEV+JxzASH6eObkiRESSUoK5cJZCjFxwTmXXATnu667euVK39l1UweKzvRMSJVpHkUy4LoQAJj34eF2Wgv5cKibpsoPCwHGGEYiRABwztR1AIBhOSAi7x0AAGfL5TLNEJwzm5sb4+Gwa9aXL1w8Oty31mou1q1NBqFUPaVhQgSK7qzBRaStySZjLAUmR2JAQEQ+eERMLNY06PfWnWVWCEyq+nv37glkSQFEMYYQHn300cViMZ1Oi6I4PDxMv8W+t3BOLAvOps0/O8/jBApJyXGmzCII8Fu0bq40IibRgA9BSoVIwEReDjiSUBIRPcXgXVK6/9bOX/AUcdX3rVZiY2ODiOp6HZwjohh9v26apskEV0JmRRmJCSFyIaI1sTePXNgbKIxduzo+KgejcVW++857GKGbzfc2NjbGm2++845dt8j4uBwxiG3Tl0plSkjGt8YbhRIiggJm9eDgeKEEC36qMzkeDJfLdYyRMbG5MVg1za33TxnBhe0Na32e51qVV65cma/r9+7c2xkPZyeHvfMu0tF8dbxeLzqbZ3pjVGZFPp0eX764t1WV89OTrb0L46ps29phXDerajiIwTIUCJArUUoOvldCjkbFce2dC4yR8xEJGGPIBUOIwKz1wFRApqQKBNPlsu9sNsitd6HriSACQUjMA05AzkdEnud575wHdM6um1rpEkwQECXxrl92jTNLeXT3gVJCl6Lv1n1fbk1k17Xf/vGnr27E//mf/y/RRxuBUD44mP7Vv/zXXvjgs9/7Qz9oov/aV75648aNg9PDX/33v/YTP/lnL1y/9pXXXt3cZq1tbt1595Mf/9Ri2VTXcg6iWzZ5Kfbv7BeyHO9sbG2x7/vuj3zltTfM/vza3uPLetavVroUG4PMMxB6mDfeRWkseQHBeYSIwK0LxlEleYy+LHPvJYVoveeIs0W9Wi7JmWDd9rhyPjw4PGrbdjwaCCQi0vqs/0vEUAYekEkOXCkp5WQ8XC6XXVOPBtVgdyuEQLMIEBlEEChkxjlv+15KobgERoCCgEeMIis110YY4BxiVEoQoWvbBw/uJR/2ZHOzbXvnnMqzummq0WhP7K7X62ZdE4IxZlCNJpOxMc51njGBTCRfYllWyFnb9M5RCLRaraTC649c82bV1/WVRyY698BM0696U4+2rqDgq1U9nmwHvwYABAaRAqMzTTCx1PM+7Cs458joYbuWeovoo7UOGIVA1nitNXLuIxADRazruqZpWLBSSkD0ieMGdjgcCZU9ePCgnZi6aULw41HlfRIVR5lpojPikJRSCk4ITCiGlOdV1zUmQK6yrnd5LgEgOMuVgkxBCNYaxpjI9YbeAcYghL7tLjz66O+5fuPjn7m9s7PzMz/zM2VU89uH73ztlRc+/KGPfOf3PHLz0dHm5O5/df8//Pqvv/jqy1/48hdef/OtJ556gqcBUgjNot4Yj7dGm6fT+Xy+RGiLorLS5Dqz1lprJ+Mh50xAnFRFCKGRacUJMYbeOoxeQ4wxMgAuUDAdQrh66eL9+/eP7j24eulyiy6p2wRX3scYI5cikTTONgDAGWcxgvcxhLbMZTJWpYatrtdKSIoxpTQ65xjHSKE3nVQCGWite6JUBsUYrbWj0Sid9pcuXZotFwcHB9vb21VVJezEt06Mk8Y2nhM0Y4whMIDw8C/EGDlRcDHSmevpbP94ni7M2NmG6+GnEkQ0KMosy1wMTbMmf0b4zpTuuk5xwZXq245ipBgHVcUjSIRCSULuY3AUyYeu77iQEAmAGAOBLDkfOee5OAufT309xAjBAwBnLHpHAEIwAEhATimlMS7dMalIsd4hkPdeSr6cz0ut6tV6enx09dLlx29cv3//ft2dBorHx8eMCWvt8fGxc24ymWxsbOzv70sphWDj8bht22pQOOdC4GePEBPIIE32U45HGhQQhDRVTuZC8qFpmqZphtUgxnjv7oPhqAohdK3J8zzFcCLyvj9jqEI8A8ekC5gzIDxTcadV7rfuDBhjwJAAAkXOuAseOXPOrZs62c6QS4rRJZkYY0pwjCHG2DQNMj4ajVIQ4fb2NvmADCgEa230DhF1JvNC50INxxNAEQi2lPKmj329uTEeZ5z5bv/uHefM/mLdGNd13WA4Fp1hEQQy9JDnhZRyOBgHb8vx2PdtJqIWcjIcoO81Z4VSFqRSKgantLDGZFmhdW699z7mRabyrCy7JEk9+4kin88PNiZbu5Mc2WjRmGwwOZgu5nW7qJv9ebs54h46HowCnE9n5XC3daauV1sbEy5E5+3NcnAym6aA6+AMi14xKXPlrVmvGp2X3ncE4KwloqqqBFMMiYIHZErJumtNIB+IgA1Goz70yIT1nnPuAwXfF1kuJHfGJJx4WZVxtXLGpsVBCGA6QxTb0OU55lwPpArruiyyPhgfbXTg+0XFi9/3w9/9S//677x/6954shEIuZYr25VC71y5uWjt9//w73jy2We//JtfzKvyd/+B33fjqcfnbfNH/+RP/Owv/KPX3riHDLSUL37lq3XT/8Dv+4PgwXX2tW+8/Iv/6hf+wk/+hWsfeDzP4VMff3rr3vDO235cTmZLqE2jgNm+355sZdofzWvPCDhY40RiCARvDemc5VpubYys9/P5vKqq7c1N0zWmqTPJjWneevf9jUHpfetsCIBEQWs5HA0yKRiHrmuV8t7HXBdpE7Ze9zs7O4hQ1/V6vSbulsul6R0jlvJn+t4omVHE9Xo1nc4Yw9FkZFxgjJVVzm0AFN55IQTXuls3xrvBYACMF2U5m83yPC/yfL5c9W3TdO3GZFBUJRE1TeOc4wLLspTSn5xOnQvG+mo0Zow3bT8YDJre9MaNx3K9XhtvykG2dPMAJqD95nvvv/n2mzIbbO5dvnj9KUAuVTafL0dDDgBA33KzQuoZWIjxoQaHiIL3IQQlZNoQA0DaUyBSJHQhkLWcc8l5jH7dNm1XM4aDPIuEjzzyCAoWCfb3j1WW13VLRH3bDavKebOcTevVbFDle9sTxpW11kePDCUnztI8XHDONrdGbaMHgwwA6rr3XnIBTKsIFGPkgnOuQwgRCTiuVkvJhdByvlqMR6OLNx7hXPyxn/gT/7vv/uxf++/++ssvv/zFl15c1WuhskeuX3v2uec+8tEP/ek//if/xH/x48t62XXdSy+/lIIicCs/mU69j8PBeEvns9miNt1IZ1GyPKvMYjavlwROCd649VtvvSU2h3lW7O7ujsfjrNCp84o2sZcjIbOmK3R248ojD+4/2NvaSiGzAEwIkXRbgnEtVYyeIw8hBJ+iFVViMEcfyrzw3rd1o7VmgMnDkj6/8/YhAxLPsflKKRcpSYnzPE+ZN2kGfGnvwsHx0b17965cvbq5uTmdTrUuUjeF5yie1Kw+POQfMq2S5ldATDyTcKa+9jGyEB1gREbIKK1l0xsmhCCC91VZMsbaZYtEUkqCwJAZYwQyRIw+SCG6thuNRpcuXWoXq8aYQVVVw0EE9uBgv27qoij7vs+06noTnK+qYdJVIefeGq41Cg4QEUlKTom4ey4pTLsQ4AwZuhiAgPxZ2JM3PSFACFLKlECZmFNVXrTN+v236yzLrly5cnJysqrXZZmPRqPpdHrlyhXO+Wq1KopCCKaETD2u9z5Zm847YySKx8fHeIbexhjJOcc4pAs7hDCZTKbHJ4g4HA6ttYUQWus8Kxfz1bqfp7ESY2Jnb/fBgwfee4qolUpP6XA4ZIytV4twzkCnb6Gtpsc46Qu01kwI5z1jrLPmDGFqnXXOh8AQAcCnd0mM6NzZZj3E9E0SUaoDfHB5nheZZiyPMRKEGKONtFitlc5CoLZuqkxBJIHgnVuenpAblmU5Ho/jqp4Ivay7q9du1HU9nc13dnaathdCIJLtu83h5t6l3X5xMipUW9eVZpuTrfnJ4dxmVcXJeWc8kuu6yBgWRUEYQghcysGgKspsNMiCt5zz/YMT59ze7uDJxy/vruovf/0Vs7ZP3by+6sJ0Ub/z3q26bhBgVJbGmL4Jd26/fvny5Tyv7ty/T0RFORhmxdydCC4neRWU7vpWKSUkM76z4DXnaVyvda51TnQWbGJNB0CdNdZ621mVFVKppuuYBCYEhehsICJA3nQt75nkCIABCJGNRqPudJqet65ukGDRdcOS8YwNBVd95+plKZUNcbVadp2op/f/wH/2R83i6Bf+yT+6vH0zIqzqeliUfeif+9DHGhf6rm26+PjTzyxWy3t3H2RZ/sY733zk2s3nP/Th0aXR4b2Dj370o2+88cbRweFTzzz/1c997qOf/DRCfOkbX9uajAg8IEQXSPPrVy5fncAXvvBSdLVEFgIrxWB5tPJSlUIVms+X61EpTWcpeq204ipXIDBwDOAti345n/d1PR4Ps7JwXQvAdvcuQ7BFJiVC3RolWVEpIRVw1tuWCJ0LUkoCSPQSa10IIStKYrhuG679cFj5wpvWUOTWOu+9dy0AMBSjYWmDn54ulqumqsrFstGMlFIYw3BQDkZD4ExKab1DjKens+3tbe/jvfv71nSIpLLcWlsURWomlFJ933Opy7JExo9PplwoKXTgNFusjA8AoHTGuHzrnfearn/97XdyRXvbu+PJ9tVHboxHk/fev/vEk88ScOSibjuVVV3XZDrHc/1tJPLxTKXBzkedZ5tgSFQHBgDOOeusj5ExQcAgjbyASymNsSFaxTmRz7IyECqhgDMhARGMd/ffPyBCIeT25gZjTMlqa1ICQAwuz7dWa3dychKQp0UY57yqqtPTU2vN9HQ5GJR9H4iizqTg4J1jiiEgMh4BABkTSIAAUA4Hpu3avpNanaeERcYYf+La//kf/F0ABCK7XN69dfvlF196/ZVX/8f/9989PjikGDdGw0euXNm/f++Nt9/+0LPPPfU9n/wv/9JfGe5d+PVf+ZVf+IVf2tjZdc6tlsvj+clwWGVKjsblajFvXYddfO/uu7v95TvL5eTTn25DSkDnUqs0WxWMA8SyqkIIxrvx9uTu/oMbN25onSXrysMhoveeKPhgh8Ohd9EYg8iJUHCWGFUPBT3pakySXq21VKJt28FgAADppE38r/Rp019+eImmK2Mymdy6dUtrvbu7mzbZCeCf0EkPY33TwXvmdyKq6zqZhtB7lasYowYAzlK4DoXIRTLXMIJzVRCiEFJkWdY0zXq9TtHEVVUZ4zKdCSH6tjO94YwpxrMsY4Bd0y4WCyIaVlWZF7PVUgo2KKt1UyulJJciZ6a33hohlJbKe4+SueAxBgbIkVGkSP8/em4ARgwQIN1KJHmMMVjnfSiyPMuyGIJpO6WU5sL0PSNgiBvD0dZk0zkXzkbWXko+n8+LohgOh3fv3k1MFiHOQg/7vkdGgvMYz0nZcHYXni32vUU6O1OqQZFl2Xq97vs+y4qyzFPT2RGkwIC9vb0QwoMHD7Is896/++67jDHOJEBIvyEiOstmYIIDJLM1SwGF8YxVlr66TxkyFCNQCEm0xSIQ48wT2RARSSCLMfbGuhArpQBCyv8SWhVF0Zp+3TZZptP7zMYYgjfGJPhq3faILq7WgvEYvNNqo8r3HzwoJF7c2drc3tzZ2YnI+gdH3Xz1wQ8/9ebd/el8vqpbKaVSWQKcEYTT02PXLYeaWelLnYUYACJwduf+yWQ8yhQvM5ZJ7kyvlNo/OLTBV8NBlmVVVdb1Kpd8MCzbZr21O/HB3b7/XqFzKeW3f/Tpf/Mrv7Zfn2xuX3h8Z/uRyTPfvP3gYDoTXBflhvVhY0/M6nbV294HyWSMcPvWfWO8VNwYp7VUWb5omqLIVFEyLbvOWGvzLGNcpMfDOFuKAgCs9c45wjN/YdLNBXLeWBdCSlzhHKNnBCGkCO4OGG99DGlCE0IIrstEmRdDnlNkXVmw7bJo50eXro23ti89uHsbSVdl+PhHnvjv/2//bQ5i98rOnXsPHhw8iBIff/yJclg555RSVaaOjk72HxxW1XC96iKZyaQBprY29p649uS9O/e+8Buf/7bPfMfO7qYL9ouf/9wHPvDBn/hT//t333nv+rNPhLbhZckBCCAv4fs++8EvfeXNb7zyro8SVFXJYeOs874clTUtqkHltfTW7Uw2tra2ijgjokwJTrFeg+k74908+O3NDSklMSZ1VubDKs8EwzzXGI21/Wy+zLQsciVzmaBg1nhre8Y4IXrr3XoNDMtqEEJnTM+5UHkGAYqiYEzESBRxNlus2ybGiEyZ3pt+JbUqtFDCC04puyydQkn+BsBmy5XWGoVE5xgDQlis6ggsyzKf8kViDGRDhKIoi6JreoOcIUGel4DcWqty5Xz4gR/+7RcvX7h/730IvWJ0OF1u7eyuu5iV2yez9ub2UGW5CNZ6A+AJegAWQkAmGDIK3jnHuKTzsDUAOKturTVNg5xLKYWQPlrjbAxAwKXUqSHzscu0VpxVgzFD6lo7Xy6Ns1VVtaavykFTtNZ68uH09FhJORkP+o4JDuTdrJ5PtncyvTc7nXrvNoYjznldr6OzicxsjElHEEP0wQvBANL48Ay3lFgLBCSABSEgkmBcJCsMAAD0LDKGEjkCqK3Jo5ubj374w7/bBWAcfPRHh2+8/vo//7l/upyvPvvt3/Xmm29+7e//9L/717/69FPPvv/++2+99dZnP/t93/Zt3/Z9P/aH+q75+te/+vabr0mqMs43h9svv/j1frnsYv6pj3zkynDzeDrTShlnVst1NRyYpkPOCAE4KKVYpjgna23XdWVZInBjHGOUdEwCWSAK3kfnvbUMmDc2yzKVKdP0bdsmCe1yuWQMkqw42XaFEA91yGkOp5TKsqx1dcqCTAd7mmCnWMaN4aiu6zfeeKMsy9FwOJsvsiwjClLyxWJdFFU6vYuiSF8iUbWT5O2NN97QjGmtGUdElJkeDqvRaFRVFRM86aKdDct63XWdlGowGAjnXN/3SdRTFaUzNvrQNe3FCxcgRCAaFGVZlhxZ+jJZlnHOTdf3fe9CiM5DjFrwQTUAhgjcaGetS+AOY0wklzREXCnOefQBI4IQzoWz3hdixLN3NufchIAAwBnF6IIX3vP0IwFtbE6ElEVRMaTNze3dvZ27t+8kLHNVVTs7O4vV8uDg6O7du+nZmEwmk8n49PhksVhIKSP5pu+ULtMMKU2ZzrvSmL63ruvShQ0Y01zadpZzXpZ5URRpDjmfz0MIWuuyLNu2ZezsoE+oL61YGi9be5ZGEgljBCnP3vEBiMWzxxgRpZBpX84Ys8FTClUE5FzG4HrvkChN8YVWmdLj0dAY44LP8xwYWu9c8EVRGGP73lRVqbSenqwAgEvVWyPzwnuPzgKS5iyXzLb1ZDLOhAChLYlv3tmfLVd3791nSluAe6u667pAQQiNigEjYqQy0a0XHDpOigEHsmuyjz5+Q9miNbMwW+aKu0qPq7zr3U41DG2XVyVxcbpYuuAUB8p1VajRqBIWHjx4gJHm0+nW1tb2ZPDDn/3Ur/2vv5r17PkrNy5ff+KtW3u/8O9+Y90t1sYYjxd2BpzYwcERcJYXVc4FSUExRC6Wbc+tzTKVF4PBsIox+HYdXGttr/UoEllrGCsYk2VZKskRMf1+PYUQAniHyDhjEQIk1T7EGNHHgBCZEMFa732gyKUo80KFaKwrZKQQs0HVu/Vqcfqjn/2htz/3712/HA8vnk4b78WqXv/uz3y4d6uvfPlLF7cmdTNnPDz/whPvvX/rjde7Z599dGdnp1mthtXm2/fuDsqhEOrocHY6W+3uXBqUo0B465v3XnnpxaeefvbJpx5v+05Kzhl/6aXffOTa9Rc+8zGIobcdAuSjEiIgWmTqUx9/6tKlS1/4wkt3909Jlp64t642Yasae2/yjG9d3LSmbZb7eQ7exS56KfXGoByVRTqhELEqyr7vrLdoyHtvTSel3BxmxvQMIjJiDBGiECxXuTHGGAeMh0ApOGR3d/fa9Sur9elqterq1lrrbMhVLqU2xma6SKMIZwMhxggueB/JdL3O5LDIAmAamSitt7e37z84yrJM5+X29jZgvHPnVtc2a8WrPJ9O50qJyWQyGOSr1cp7r/MsBM84GGN64wIxpTLGMc1CVit349Ennnjqma5ZM4p9W68Wi0FROmsXy1XbW6GHXe+1VjxGcDZGsM44FziPyEWMkeCsYkuPcIwR8AzNLxNrkAjPpZfIuWAiaSSdsUKy0WgzuE4w3vWN87S5ubler+u2E0Ks12spNSLvfRtDMM6uIGJ0w0rnmeJMrZZ1WeZFJtvWMfIcsW+bEFyRZUS0Wq3ObChKBNsHb70LnHMhJQAAnn3DSABAWkjJOCPASA8PQMEFB3zYaHJAZAwY+L4VRSku7T1/+eLz3/+9QASIsF4f37r36quv/p2/83e3yo3PfPiTX//8l1776ov/7Kf+0Yc+/MIrL399Nps+/eSjjz92c7lstsvxj//YH33tpW+SgYPbByrTXLJc5lUx6K0RShKgDyGG4MlLrXOdF1kxXyzbtkPgRGit1UJrLUN0SqmiyJqmVkqH4F1wRVFMj48yLVOvlbrermv4eTJx2kkXonDWUwStdZ4V1pn0fx9aXcqypHMIRPpV7uzsrFard95550Mf+tB4OGrbtnc+y7JhNej7XghFAIQMInHBkYAj29vZvbh3wTnXN7X3fj6fPzjan81mxnRZlg0Gg729PZ1no9FIq5xzrrhkgK43AhC5EFopY0wKt9ra3Myy7PToWGs9HgyLokgBnEndQN5H4K61iXmNEIFCobNMS+scImVKnA0NYuSMefdbBnYiAoacKyGEUpSW5AGIQjjbSyNGCr+1rw5x3dSZ0nmWXb10UUu1WswW65U3fZbnXEmPFJ0/3L9vvBNCXL161Tl3fHyaapnT09O2bY3p4Nx3VOSV9eGs7z6vAYkoxjNwdiJ81nXNGIsBvItpBFGWO5ubm7du3TK9SbQpxlhVVQcHB8ihqirnXPBUlmUk672HMyQOnW2+EYnw4VYpAkWKZwlFMhIEwQTjCiwYcgAQKLrgGTAiihQpeBdAchEAp/MlY0xlRVENQgjGdG3fI2JaQtdti10HjAOcpe/NlqtMS4WkOWqGk1Hhuvbq5Sur1coETzKv6652UQ3HWuv37t3rVM4ZR8Zt8L5dU7C5Gg4HuWZ+VGYYXTUsikz1XQSp7x2eLtfrvd2t4XgYbG9C3N65UA2q9+/vj6RWUnjgnfGjrbEU0NR1psWGqoaPXItMTGcLG7zp4/Ubj3/Xd/a33nsnQ7M8+OYz16/Gz374n/3Sr/VBlMXQLsPGaGQGZe+9cf2iXjuiwKj1TjNigbkujqtyuVwzwEIXVMHZEMJ75xxAKxh2XVcWmUAQCMvoA0UhBRMqJXAjJyIeKeFyErkGvffJU+e9R87KahgI/HwOGEI01npPPCvHP/3TP1OtT5bTo0H1IYqsbrxx8Onv+q6f/Rc/P1suP/7hF77xxleklN/13b/9hRee/fznP/8rv/yvHr158+a163WhZ6fT4XDctn2m8lFFzXK1rlYB8D/++ucevXHjIx//2KpeIoKUmqJXIj64f+vgYP8jH/t0uTn2fTw9mm1MJiAxBgMkHrk8vPqffMdLrxx88cuvTJftQA+Ii0oUUUmOrlkcj0cZ4yRAq1z6GDhQlWkbvOTce98bIwCs7bu27qUcFDki8yFYF6RUWaYzxbw36VYWKKTUWVYKlbVtb11ouvbg8Hjd9TvbpbNEIKQSmWZKZZJxIaSzoSgyodVysV6uVyEErTKtdd/3zkfrQ29N1/Eyz5um6fseIq3X6976siy3tiePPfaYaRvAWOV5erKSJCfLVNu29Wo9HI+qquqtNyYY65VSgJwxs72zM5/Pp7OFcw6RU4jNqtdikBW7Fy9Ptpp11zeefNM0RVWF6JRQiMgCRaDgPYZI8Fs8u1SpeO+5OEMraM6dc8a5YG0gTLj/GKMNxlsbKWouiIJzdtbV6/VS65F3lY+QS7m9vf3gwYExbdv2jGAwqMA7peTW1lZZSQAACoDcWgMYEeJ8Ph2NNpRShCwrSiFlCEFKiQwBgEJkHH3nQJDgEhAAGBAl6yeEkDhM4L01hhGkiwqQIiJjDDgXQp/dxNHxqmzatqhyY4x1blANCIgmw538ue95+rnv+U9+PyBCjLBev/fOW1/8/G/83M/942owCjF+6Ssvvvzyq+t199GPPDsYTZ795CcuXbo0m81OZtO6ro3p03WQA0dEwZjWeSYFBYIASoku44vFwtsgpQyBGNVFkWkliMKdu7cfe+wx72xRFMHHtlkryYN1nXVKqUjRez8cjtORm+eaviUOIa0JiMi70HdGSonAurYDwqIo+q5Nai8pZQqoePzxx99+++0HDx5cung5GYqstcPhsGka5xrGxMM3Q9d1iQlRlmWe54NBGULY3Nl+4pknlVLW9qvVqu/7pmkWi8Xdu3et8ZcvX37ssceTTAwv/MjfVEphJADou2ZQVmWVD4ry8PAwy7LU2ifSU1rPRGs456PRKKnOErHPGJPluQ3RWhsJCaHtrbWWCe6iQ8RUZKX5ahq4F0WSRIUAlCBhIcYk7k0d89moJ0RElEJsbW1Nj4/auilzzQB9sJsbk8cee+z2vftpxdv03Wi4YYxBzoxx7Ay/ErTWGxuj6MPp6akQwoWzyTM/T8ICSGEdoSrKpmlSaBcAJNcvAzDGjMfjGzeu3b9///jwaDgcVlWV5/nR0RERJrk4RXTOZVlGEJxzKeBdCfnQiZTKY3YOTElCZSJCIb33XEnOubH+ofPMBS+lZMnWTRBCAIwcGaMoz71SWZYlEUEIgUJCaUHXdWl1cdZYy0Jx6FeznFHJ8cLmRCvRtr11PjJpI9Vd1ztbVRVR9N63QifMMsYAwQ9yvbs1LpRQDDeGpesaJZizffT+gx947uWXX371vdl4UD1yeW9Y5pliKebz7oP789W6LMuiyKIzT928PBnkrl019WI7qzxgANkDNr0rhyPBaFRmb7z20qjUOpNZXl577IlX3nnv4HQ52Nh8cK8/PDk+XdYnywUrqmw8PlmuZJYT4xRBCUHej/PS9/3OZHNvZ+todrRqau8CIes7m14lwbHQKr0lnHOeInIByIkheeciWRd8pIgsBPIUGQOMxDhILmKMPgatciZV3/eIy4yPGJSegVb22iCs3vrqz/4//+bv/09/qMjYm6+/k1fb/4//6e//6Z/8c7GZf/jx61/4yq/82I/92M7OzmgwqKrqrTfenM/nl/Yuda3x3gtdLBer27fvBooU8dFHH90/Pt3ff/DH/vM/kmWKM2qatTOdpzjZ3CbgJoAN7NHHntq9eBWYWJ0sonDjzU2ACBGMjTpTgeArX9//0ldeHYy3XaTO1OONUudRcC8VlHIyHA7DWaApJPUAAPR9n9A83vSImOd6MBgIIdD3XGCmVK65FKiVSCOxg4MjAIxwFhEPjHfGOOckp7IslRaSCyEEAxRCVEWRGH7IZQi0f3BwdHRCCDEQChmsESJWmRiWcmdri6JXKgsRp6dLH8gYwzgMBmXbrRaLxbXLV0fjocoygAhIZ9dAjF3XcZF1xriAy1XtPbW9bds2yoyhAM6Mcd5FRBFdDM4L4ts7m0iRC/DRGN/JjBORUhljzLvonIsAFNF7HyMwKTgg52dZuYxDrjORGDgxGOes9z4CAfORrA99b9Mll2lx6eLO5sZwvZot59PD4xoAJpPJxtamlLK35s7te95HBjgeDoOzgsXxqMo0L3NVDQqZZ8F5LgQQHe8fxBh7E3wkXQyYPIMrac6UZIJFziB6bUyPiDrPUovBJAPEsxYWIPQmtRnpTDaMHh5K/CEjEdFay6VgDDxFZCzG2HWdp1gansa5AFGWJUCEEIAj9AYyBaafHR29885bt9597/6Du7/4i7/4//qHP/P8s8+BEBAiAHSr1TffeGsxm92/c3t2cjo/OQYfh1WRKY0UkYC2c63z9XJ1ejqDEBljguFwVN15/733b733zDNPvfTSSzs7OxcuXLp69WrwkTGhUyAN5yGE4cY4oWoTXSrGmLZ16TKuqsqY7kzKDgjnCKYYgjEGgICdVVp5np/Mpqenp5cvXblw4cJ5VhKkOTbn8kyQBJDCg8+LQo6IQrAz1w/EFK6TQlrT+nI2W8RAeVkgIiIXWZGngDwOWBRF2mCTD2VZJoUtY0xmWgphnWvaVkk+KUudZW3bFnmeYrystScnJ4ozC+C95VIpJXx0IYRIUQgRAbyPyRqUBrapHmGMoeAMueASMKQbVzAeY0xXb3oRu75/7733qqoqRgPbG8aJCbl/ejqrV4O8eObZZ+/cubdareaLaYqvstZsb+8KIWazWSInS8kJwceQZTqdPuc4ud9aiT+MnYLzfMMQgvEeiQ4PD9O7WQjRtm2K/zPGZFlBPn0SLIpiWa9znTK/uPcRICilWAhnsmdEAuDnFEwAlgAFCETWO/TexzP9JbK9nQve+7quvQ+KM845YxIJuCAfAkZy3osQbPK4OccY67p+MBhInXnvGUOlk8XZIWCea7ea5uMBI5NLVW5vLuv2dNXVxvURRV7VvYnRD8oi45oBIEESy/MYci4GWvf12tVQlJm3zjtQqrj74HRZu3JQlMMSBfbW9MZlZTFdLFd1z1V+dLrc3hYs+OXalEppmQlUbW89AVMoVFlVucqK8XjYtfVw62Jw7WR7xzlz/87tjzz1WN02SmVv6/rCZm6JTtdNE2BlnBTUuci1mp7OnZcY4spYhGhteXh4SCIoLqxxEYgLBOCA0bm46FolhdY6LzJgvO07aw0XKpOC+eC9J4icCWKEjkLwVVV52/sYBOPs7DF2UspAHIOH0KhqULduxeVsaftgNydF164Ahcx2/+1/fHXyyNObsn/3zRefePL50WiTEbO9WVv/2LUbcA1OT2eW+3I4Ojo+td7tXthJZve7994/OZn+9t/xO2K09x4cXLp4EREZcNt0B83+aHOT52VRZG+9/Ua7rq8/+fRwMmi65uTwWCs2nGzoDMlbLtQnPnLx2iO7v/6Frx2fzHKllqeHFy5ucsbQ0K3926PRSAmZnkTTdkKI4XC4UVVN0zAtsMy89yH4GHxEGA8GQAGAvPcMGaJMNoHNzY267pbrpm1bH0goyRgriiJGYiIHQuvIO++dAYjeWmtNjFEoPRptFGV26dIFQpjNFk3rmRR5xrViSgln+9Vq5Xqn82o+X1aDkeC87RsiF7yVnC+XyxB9WZaZFFJxYAAxpq12hKilzHOBiNPZIriegnPAMy19UkICUXRCSilzBrhcrcpC1V2vNAiGFFyW6QDMumCtizEKrkAgEETyFAJXinMRo0/XT9o1njF+IdV2gYBFwLR7cs4DxOjR9i3FIlMi292pmzMl5mq1UkrNFyvvIyIjgOlyqaUcDcrW+ghUDirkOkQAxtPgm0vRrdveOWRy3XTx7P5AJbHKVJXLpBQxxiGSS70vYparLFOACATBexN8QBAofIzOOSuR09lEUHOiGCASY4wBkgvEGGfM9rbve85lKXWXUQiBcwIA5XrvbQhhNKx4mZu+41xMrt/4+CPXPvG9CIh/6Cd+strZnFubC66VCt7nW1vPf+YzyS8D1i8fPHjr9TduffOd05Mj0zuOeHTrzsbGxnAw3t7e7uqmaRrvg2T8wYMH6/XytVdfHg2r4aCM3tX1KgRiyPteNE2XoBEnJyff9p3fcXJykgQxMcbJZJJMK0Q0PZ2nsbxSQiCz1nLOizxPuA8iEEykeX3XdVsbE+fc0dFRURRVVSV+/kOLaepOzxxT50Lrczl0DMEAQIJBNU1T13UCFWdZkee5kjrG2PeWcxTrro0hDIqSAe5sby7ni+Dtuu0S+IkxFoC01s57QhBK+uD64FjbzE+ng2HZtnUScI1Go6bt4QyXYwm5lNLFHlFESr525Eryc3N00zSMMYYcBX+4ECUicp5xniKO6QzZCIyxajBIfSEqIYWM0SvOhFJ933vnpORFUWRZtqrbvu+H41HXdamy29nZSZUEImbZGWrjW2XJqXhJtUyel+krAkDfW+8DYzioqqTJCiEwOGud67oeDAZJmyylBGJFUdjgkcK3uMRCjDEQcC4ZO9OdhRjxW+BfEElwHgljCBwRCCJgMh93Xdd1XXQ+ACGSYDxSnEy2VqtVXdeErDV9AGIERVkul0shRNf3RFgUpXNuXbdlWdpITdNEMJOqfOG5p6/u7szn82I4ef29283xPIgsAmMqo+DH44HgjLzw1jAigeC8Z47lnG+UpWO4Xi2j89baoijzrOw7J1V5cVwoySMRVxyimC8WJ6ez1toL2xcaE4UqRtVEZ2VvA+fAUB609WOPPrFer5ngfdsvD2cQtvM89z5SFLfuHD791BNvv/nmal4/9cTj28ONw0HTtsGtm5HCoc4u6c0bly/eOzgWebkajZyPfW+W84UQyoF3xo6LgZSaSdE2XSDOeYw+CARZFIIzpVSuMy4TPKHnHBUXiNwHCtFFiOlt+BApE7xHDpzLECyFiAKEKrgLjDnOAoL2UT84XHIuRhtKMonIRbb12nuzp1749uW9r54spp/49PdznmuVs+hijJnWR4cnfd9rnQ9HG41xmJSWEHjD193i+Q888ejjV155/bXheBIhADAl84s7oweHR9PpstrgGlmmeFsv3vzS55/60EfKwZAx5kx/cn8/yzQirpp6srO3Pcl/9Hd+/KsvvnVwcNL3olnUeV46GzJdrFeNUkpJ6frOe88ZSIZ910hxhvspC50mQIAYQ+AcBWMIBETBmaCE5CEVz4OiVCrrett0bdO2jDHOK+96IViupRRIwLwzi8U8PYzz1XI2n3IhU6gzIuV53tar5XJpJQ7L7SzLorfTtgvOGGMorvKyyLVCRig4F2f7zL6p62DLPBuORkShaRpkjAh6G5EJIbM8U33Hl8s+SGXReooEpAtlrW3qpZZZkWWBPJNKEnKOjEciZIAuxhjJe+8CBXIppB3PY1SIIRIKIeI55C5tE0MkyYWPECIAAecSwLFE++GwWCymp0eDUk8mGzs7W9bag8PjLMv01uZyuczLSnD55JPXj45Ws9Np21vBABHr3vVmoQqJMUghcq02d3aG47hYrg4OT0WmOJd5VSrBF7MTZzrvslzL6aJOc1cXTYgOGLMUTDgPg/HBExAyjxSRIkfNRIzRWRsRFeRccIzEHoLrI7Z1CwCFzDtrmt50kRBBCFFVFSJpmZEIfWerohBMW2vXy7kW2vamKMrdrcsL08XAm9pBJhAZxrN3kvdW5dno5vWP33zk4/QDYM1yPl+tFge33/niF7/4/vvvj4bDQVEG59u2Xq1Wzzz79HK+98abr3Vdh4if+MSjTd0VRaF00fd9nmul1L179z73ud+4dvPGP/7H/3i58v/dX/8/3b1z/969e9vb23t7eymYR0h2Bh62LgTy3nZd9xDgT0TOpjo7dF03Go26tn///fcvXbqUXLLr9dp7z7lMt+/DEXf6XaepcJZlAFmMHpAeXjRpBh5jCwBSmBDIez8YDERShBvvyIfDw8PoQ/A2kypZlRExxBBi7K3x3gNnmZSn0+n21hYKvlwug/NEVBTFxsZGbw9FECrjTdu76FO54AN57xEgycw4pCQNl4oFiuDPt8vAkIgk4z4EjFFKGZMZ4HwaLJSUUhKFLMu0Eoh4cnIiQzg4OLh48WLiUOq8PDo6Wi6XKdmRiKSU6TI+m7njmXacnfuRHt7x3oYk60i1TIxRa00U2rbN8xxAGNMxxoAgTbbrutZ5oZRKL+50OtVFnqg6D0foyWSW6yzLslQtxhjpnBSGiOSjEDIgxYic8fNQW7pz506Ch0jGOecUYtptdKaPQISglWaMTSbj9GJuCrFcrp3zSdb+0HtNgLu72zqaG7sT2zfHRw8OD48XzduW6QjMh5iMN3mmI5APIRqKLowG5dZ4EPqWR5sJTs5365qsl0LJrBBCz2YLxgRFvljMRsOqa+olUFnmw+E4K4su0rppdVZEQM4kMd53rfW97WtXju4vlsF0AiET2KxOWOiffPLJJx+9OZsubt++/ZWvvOysPbh798Hdo2//zKfG4+zW7Xn0ztkAzmxVg2VrR1IgYjkan8zmjkgqMRyN0hHprZNabQxHDHkSzazX61xJioFzHoJr26CyHBlIyYkwhMCF1FKZEH0IhCxpJtfrdRolxRhTGjkQE0LYELz3w1w3faf1cHPr0r39qY/x+PDBa6+8NBw+s7nzyPbeYyerKRC7c+/2fNF+6pM3unrZrxYXd7ffev21f/4v/+X27t6f/sk/R1ycLhbUtafTkyxXLljrzdtvvVoO86vXb9w/OCSijXIcPbgYR+XGtFkdHBzIItve3p7W9Sgv3/7NL2w9+8HN7e1cZ8tEv7Mt5wixc67P8uHHP/LkK6+x23dOKLDLF240dd/L5t69e8mkwShKLrJMI8J4OKiqou/7g4OD6DOZ6Ri9c25YlJCSXckFHymQYFwwjshN11sXI7KkNXUhhBBihL43UjCIsSUnOGilCHyRF1pLoQUi997XzTqEoJVgYqgE63sIfd01jcnE1tbWZLzJuLpxQ1hHIQSCwFhEBtb2iivnnDGdBAEAXddIKatBuVyshFSI5J0bDkdFURHh4eEhSvDeM8n6vu9tm2UZV9TbtZAx16rr1kWexehjJCFYCME6AsaYEBziw/0RnCebEREQcc7ZGeOdJ7mldZ6AOOfOO2Od9cQ5R0AAyPP84t6Wd/14WADQcm6WXccZXLhwYb5almU52dy+cmWjNXDhwlCpbDY98ta2nSGkPFMi9FqpLMuA8eAj52x7e9xZmC7X5IhxmU9GRBgj1E3X931vGQAY7wgAGWktrfPWuQRDZowFBsEFSIxrIZnzDIAixBgAXbA+zfkiAue8N4Yricg7YwgYASsAENB1tjMLrWVWlsGTEBJbr7ggCwIzsECeUe3r1SrqyBmLMRKPQktvg8o4CeRCOyAXPGMgOINcZ/lOfnH3yvVLH/v275rev//qy6+eHB5NT0/qerVaraoyu3DhwptvvX5ycrS3t6OUEmORNgXJfQoAN27cWK/XdV0vVv6F5x9dzFdf//rXB4PBF77whbfef8ABhqW4+sjly5cvI+KwrJ555hml1Hq9Go/Hqelq6lpnWdJzRQrtuh6Px0dHR33fDwaDJObt+z7LzsICpJRFUaTbhHPe9z2XIgJFH7y3XLAzmBWlsQEnwpQTLKVI/0TwQNFboIAMTbTIEbjowEspDXmKRESma4AYMAEEPXGRDWbrHiJhlIwrjmy66Kuql3xQjPnJyclkOCnL8vBonyFbYETOIVLTtqmsRs6cCXmehxCC9xADMCAkxhgCRESIGIhCtIiIHBGYjyFSJOe8dYjMdT4UhbWWgw6MPzieO5CHh/tKqTNlhFSMsaRLOj08UEpJhM3R8PT0VBYZCyE4b40VjGP0ZKxUComEwKsXd99pVz0FLhgCeDIaeGDgnCHkkfEIwBlDZCGQEIpcEMAokuAYiGzfXtjZ1AKbrnXWJdyX5CxG3zTr1PIy4IgMMDIAJAQO3vsAxBABSAmGgUII0XkSvCzLMwUZRCBkUvaNAYacSQ8UvTs8PtJSkTE8BE1UIUBjtscDKUXksus6hC3pufHxtVv3lGYQkUU+Lrec8blglUAX+tbbQuQUxbppM9FvDvOtibi0lZva2MZVoiOzBr8ui9xDz0Ru0I8vXjqezWWlN/MLd+/cih5yLYu8BM23R4PtraytjcDCO+5bP/NGSFQ6izlHVMZz23PX9cOiMnbQtC7w442tDV4MhtceffDggRNRX85fPTx+8Gsv1hvl/sGidyiUGo5gHI6Yt7mo1vOWZ8OVwZP1Sipo2uV2ual51vi6Xq0nY76RZ/P53Bk7UWo0GgohFotF27vO2uV0dvXaI12MddsqoThi433bdtVw7JzxwXKBxMkFEjLrnVdC2WY1zGWGcU7MyLKhbOy6D23RB7cWv/zgcy3GyUZ57eZNoS+Wg6JfG6WGk8vPH4Ti5/7Fv7h89fIHn31qs6rIhF/8+V/ra3lgzT/9J78y2hlNVydllbWmX82a5jgqvuHk4pWX3uhq19RdO2/XG5NLly6h8BHDAORbb3xDCHHhwx8RQtSLk2pv7/Y3v1rPtx55/JnRZr6cWsZKG8L0tOY688HllXzi6ccv37jxv33u14/qd4VQblXvjrLZYrkCv7W11axXnIVRgegbbNY7ZeVL1ju3XliZDWQ+6c0pIqJWSVgglDKRrU5XVTHwxCOwGKKPzjsvgCEQYK9yZrzxRIkBpITOslFiT9q1k1wgSsUxuFDmmWJU5BllmxEq29WzZQ2MI3CiXkulsjx5UZAgU6IqKm96LaXQrG1bY4NUivPM9J7zcj5bhBCBMdP1iObyzuTgjpwGraW0XYsxDgpNIRDRaDCKgVFUnMveRSJiPJLgSgoeydmAwBmB1vlisRCCAUTOSQnoukZr7ZyRUpreEZhQZkxJjkDWMu8UEiEFChCQ6YIYc6AiywOE3kDX1AdHp4xLXQ5v3z/wIQ6HQ8758VEtBZuvV4/e3NsaXnznnXc443VdZ9l27FrnI1ZDisyHEMFnTGxNhtPZCcXY1/3cdXmeN03jI3rkrTdEJKJywUupbcSKSYgBKUbrIcbUC3HBKJJz1oNLd8NwOEhSAMYYsYjInXc+UugdYgTkBMi48ORDcASMAfPGtXaZKZ1zIXIJAIYFQgroPHhra845wwwohhhss1KWK6W41YjIBeOAkisCAgIihBh9CK0vs0xtPrbxbTee4xx8795+643XX3m1q9e/8R8/99ad1aDcPZ7G3/zyG5vjjcuXL1sPmWRXdi9xcE2zDk/cHG/vRoDnP/zxWw/2v/ji6y88ef2pJ57Y3b34ud/86rTxD964g2/czhj8xI//ruc/ePXo4LCqhtYRoTDOUibWfTMajSVlDFQ7542bTiaTtl5f2NzSozF4FzhXMmtNDwQMhHUkiqz1EIFbDyM0zGLGpYjMNc5zh0owKQICOVQkBHEwgWkqC2ViK1IbRsQA4FyODgAs2WGICOmsAk4fIYQAgJEgEkYKAAGRAT44PJCS7+zs1G3rQui6DoH7ELz1qaB8SCfRWm8MRyEERkCczgIRzr80PUwrBjhnv0G6U51zIUbJmQ++bdtgnVKKMQjBHx0djEaj3d3d48Mjz13XdWc2obquqqqu66IoAGAwGJwsFkSkhZRSQiTnY/JcO+dWq9V6vRZCcOcYY84YlWkIsLm56ZybLReRkHPuz4WjnHPGzsImY4wx5Tk6GyiVj2eb+VRB8/NsyADpJQVC5AAUEVlK1UAioogM4IxAGyk6H/FsYJ6QnH1bA2c6z9LkwHlXqmzrwgXm/fxkyoEG41IpZb1x1keinZ2h933bWMTYLrvJcNTUa+O8knwyLppmach+5KMv3Ds4uX17HwJXY16VJSO2XndaZFLGdRskZwF0b0koIaXmQrLoJAVBYTmfKZTr1oTGrlleyULlBddhVI3u3bq/Xnej4YQC55ib4IVg3vWlUqMyv3dyePe9tyGG8WTz/v69u4f7KKVU2XiyORgMlstlVuSr1aptrTWeUHKppdCz6SITHDLPuOJCrNq2c9EBBY51bw1E4t5aO18utZRCiFxnSZ0RQvAxxhgHo2HSmHTGpGGUEAIJEshMCB6E1Equ2yaRYbz3pEhK6a2TuqxYEzy/ubf34r/78k/9X/6np7bk7/29v00P/Xi70sXGyVRsbg2hylbW6/H2Bz7xfe/+2k//5f/jf/30zet/5A/84eV08bf+1t/6Mz/5f3j/7ttv3n2DJP8Df/APnh6vNBfHx0eZxr6ZVsNqMplIoZ985vr29vbBweF77733+OOPxxg3d7azLGvb9qd+6qc++9nPPvLII8aYr37pi3fu3PvYxz7xu/7wHx1tbjXHszLLFqsVI4PKtlM3nIzyXHzy+Q/++uc/v7Wzh1zlVUmEPsTp8QkXLCBtbGwoDBh89G53a8ui8IenxvcyqqocGmNSE8i5AGLBUwwwnU5T4U8AzoWU/4iIMiUr8DP+XeINGWPatpWJhMx4AiDECKtlrYVlnDLN8zzPFBDFruuaupNSZVmR+ZDkPzF62TDkTAmulFJCKpV55lFwZIJzQsQsyzpjU0tKRExwlenFg4XSoiyzrKgAolRKqrxrXZbpGDHNRYBxH4Jr+74HBAXndCBrk9dDMsYGg1JIplQiM6zTAjiJcVjKGBVCEHnr0nIpImvX68SxefDggelqcv1oUIUIBOH69RuL5fre/Qdd1y2Xy83JRqYl5/z0tFFKbW/v7O/vb2xOVqtVKaPSGpElLS7jUkkBif5hAxDroLfeExFjuFgsI0rvPXIvpe66LqlqhoPcu+iCoeil4ABnpBDknEHCLEMElFxISQ/PYSJM1oAQQiSKEdJrklo3IKJIAMEgokFEzHKZgBUAknN5JvQDdKZPpyUFGQN465IuiXMG5xAxxESNBQ+h7VoAyHWWXtRnnnnmmWefAwYf+9hHfuRHfuSf/ezPfv7X/+Od+/ea1RoAsuF4XGRXL2w/cnm3yHRWlLu7F3Y3R48/+ti/+aVfFgDBmV/8t/9+b3fj+z77nb/2v/2HGzef/j2/64c++12f2BxnRwf3NnauTk8WzrZCaoGiNzUitk0toduoJkcH75cTpcYqU8XJarq1vTtdzD2QYC5qxLxQKgshaBkzhTHapl9HriKR8aCZKKsqcmxd1zaNUgqAqUyvlyuO5DvTeIYcBE8idcQIQHSeJ4+Qrl4EgITJAGDEiAg5AgAkJ3ekhMVARGv7pnEpCL3tu5PpqVIiVc0AhAAI4L2PzkOIKQEixojndh0gAATCtOJJYJZ0TTFKe+XoKUaGyBEIiAEBY1IIgKCEBIB6tUaCuq6NMQlc5X0yyBpEvHLlSp7n+/v73tg0NO7bDolSAHASRCSaSTIs7e3ttW3bti0gWywWCWDGBDe9izHKLOvDGXLy7BhCwBiBaLWsHy6VgWGktDYC5AwJz3TX5z9mfIh3BwxpwBWJgDjwSEAxnr0YCAjAI/AIeVW1bRt9cM7mee45GmPW62ZzNPQhcs43t3e01k3fzBbzvmmni2Mtuenr7Y0NrmR9dHRhc2syyNA16I4LZZ/52POewjcPbz+6e6HpKejYLptsrGSVtW3b11YrVSiJgiMjwaVre4/GxWU9n8cYlx5m0+Ww2tAiN0u7ZDW03Y3rFxHszmYlWbBmxaRiUTjnyo0hhN6u5/mguHZl58JWiYIX5ajpw4uvvkk8k1k8nDZFVW1ujSZ7e6u+3Sp2ghOzVc0JkJgUWaaVVEVvIjHWW+MDoRABuCE03qMzQkhEThEjYaCIwNqm5ZwrpZCzwWBACNP5PAQaDgfgegCSUsoQW+uSgsbFQMCMtdWwEjzz1gzzrJBZJthA8Yu7V6WlmzsD9+GnR3rx6OM7dw6+2XXI1SBikNpmYzI1Hi+b0aVnPvPRJ9q1ff3FW3/xL/3V//on/tTOBz/4e3/fj/7xv/iXLcDWVtlbamrf+I4FWiyPR0M9Hk2eeua5siy7rluv6xs3biwWi8ODY6XUaLghVPbi5z///PPPX79+/e7du4yx/Xff//THPv61L37pnZde/9N/5s+WV68BsC/8s3/xL37xX/3l/+avXL1xsz4M1ebkkQsbP/p9P/D1l17cPzkVy6XU+Wg0ijEeHR1uDXfefeebuYBHr12puxqI7V24TAAHp4ui4IgkhMRIzkbnjORCKZGK6XTCMsayjEvJEyooREqq/vQcKaViTEEjXVUUUsrgfAgBiFK/pSrmfegAAJ2QoISQUlLEpFVH4JxxwUNIIWIREDljAhhHHsEza72168Sj4FIx50MInbGMMWo6IqyGlTGdcS6CiNELQQCsbrrFukdijDGlRZYppTmi9NE710spo4+IPC35EvLIOdf1VpwH5FnjOefW+rLSAeCMUsx4iM4FChF8jNbHQAHqNga5NR7PT/d7a4fDjd7Zg8Pj3b0LG01/b/+B1nKxWnIEKZixHWOsbVul8+W6EUIwzrquPzw8dM4B8jzPA2DXGucjE8I4V2l98fLl2WxxdHQkpSyyylrbmR4Ig4+cc2NcJ1iZ6xAohpho9GR8JELkSifQnqOIeZ7HSPBwO3aW4sZ8sN5HFwNF9D5wDpyQ49lfC4H63vS9KWyulRKCtW2ttc7zsm3bBGouCn12MlcDIo7ok0kyebXp3KfKkXHFtBTp1IshWNM75ziy1Wo1mmz+4O94+kMf+ch8OnXGHBwcvPXWW2/duv3eN9+6e3r06uuv2c5wxh65fkPL7Ktf/MrFnd0/+Ud/TAj2wz+slm378U99+6e+/dNPffA7Hr1x+f1337x151AJyQCFHvqVn58uJ5ubWcY7WljTjcfjd9995ctf+rXv/r7v3b93d7y5tbG9s2ibbDR2MTRdK5QyXWu7WgEoMhADC0Hbfs2rQVYqrjCQ9c4HAsar4cA5F3xYNPMYAirFGI+IkaFILzMhcAAiHjECQIrsTfdfemkYnTXBzvuzYCMCBkQMkSEDyLIcejyZnlprfQx5WVhru3rNi8p7b0IgH9J9nNoRPHfjJIcssWRbO7v0IRJ+Sz8O6TnXGWMMIkUfJDBHIVibvmFENMZcuHDhwu7urVu3vLVIZI0BpVI7devWrYsXL85ms43RuO97ClEpJRgLIbR9d2YYFSJJ2oqiyJRezhdIwDgLFPM8B87qtokUtM4SOhgiJX8RMsbZWS5VemhTJO+3/AAQIwBDzgWDs8VzChCVXJzdykBIDDClNQBGSodUklwCAETvrQ/WM0TJ0MTAEXykJLUHH5RSRVEAE3XbN13XdoYIu2ZtkAolNiqNnd/aGX3nJ17w9XxrlF++PJnOjo+m0+2L15onrzvK33jzzqqj8XgcAp0cz5WQnlQ7b0yud7Y2MTqAEIwdDQtnnCUDCMPtnaceuXb/3lGzap3BWTu/9NxNQW6yUexs5M3W0JigZO4jLBaL0Nc7m6O+aci1W9sbVbV1MpvPlqvIy/HW7p0Hs1LKtutWdrnsurzgHmB5cBRCzBigd+1iIRi01nPSSiohcDQY9N5yLn2gZVMjYaWx0rmUEoFs13nrM3ZWAEmtFM8CRR9ACCUUcikYcE9eZ5JZJ7Wy1jLGrQuIjEvddkYJmRe6q5eB/MaFrcl44+Te3fmDw4899+hf/PG/82v/+h985euf29zNGWTWNEWerxf7lI3ybGt6sr5w+eYHNn/bn/rTf/YHv/v73n793Q9+9IVf/em/v1ivHr22I8vy/sHxq994ebKx4fuuUrxp1x949vHLTz+dmCqMMcaatjPbO3t5Ua3X67Ztr169+iM/+nuuP3JlMBhceeTqYrF49vHHBzr7zk9/6usvfuO9N9+63tvq5o2Xv/blw9vv/8t/+nN/9if//KqZYfBFOSoH+tlHb57OV08/+5xxISCu12sKwfTtej6VaHMFk/FoMBp62xaaDXI2Pb5PkGVZprXmSEQBzg9n51xe6OQU8N7rTCqttdbOwqqp0wIokRBSBSnOP5ZmmTrUMi+yLAsQOCOi6COCTzB5dkbqcK7vLSL3PoYAEAggCiHJeLQBYmQp0JvOuL5cSGDobHShVzoP0UXCosrzMkvluFJFRLZYLOazVVKHSMZ5h1WRD0eVlCJ4SBIbJgVDkU4VshaRhsPKeUpJb3meOxsYYwCMKLJEtgAgYExkQgvnoml7JgQgukBS6p2dXQHBO0PI28asm+ly1fTOJgsJAxIMi3zQd3YymTgbOusAmJKF9yvvfd9bpfVwOMjKwrtovQ8h1m3POS9AEKGUOstLIkoZUDHQet0EoEJnDKlte/IhBscREJIzmAUixpChREZ9NL7r4pnEDTjnACwNIH2g5NNL9RYhBu/JOY4sy3Smc8aBQpxMxt6ZFCA2mzvGBOcshJDngyzL8lzHAG1XE2IIMXAeIsSzvdtvXcBEFEwrhABIWasgtY4AXdchZwDy3sHhaDy5ePPxZj595kMf/u4f+EEoSnA99d0bL37l1tvffPUbL7/4jdeGUf7mb341uI58zwXpXF9/7LH946PhZPPdd9//wHPPPP/ss+VgDzBSxEr1fRech7btY/QhkEAeyL/6+kujcQZEr738yvd87w+ADQ/u3VdFNRiNgw0ykzroIpNVJjnGYFoAJ/Oi5dwHZ9sOIgquCCGw2FoQDDKtum6tpGj7RmiV5QMP8SwBFwHprM1Ndy5S/Nbrg50PJYgwECERICDgb2U0tm2bnsaEAvfeCi3Gm3u9CYlSbckmX2B6W6dlLQIB53DW56XukKXNM55/EBGEyCFthBkxEsiQEUNKTeWZWIlz03W27xO6M6kTNzY2tNbL5bJpmvfff384HGopvbUhhOi9OXdqa63btq2Kqu9brfX1a9estW3TlGWZ5bmPgYi6trXWSimRke2dSgQcgAiEMRJCTEY6wR5+8wAQgGLEGMFHJxLFG4Fi0lqliAye/hpEhgjIMMaIQOmTA0SGhHiWJYUEzrs8z4FIC6mFNG0nhWARhBBFXsbg5vNFCN7HEH3QWrPIhqXksZ8d3FKu+8gzjyu/qITvZwdLbHa2J8H03Xz23JM3X3zlva2Ngkgba/t+VVVVqbMUcpXnWVuvh6XMJQcTNPNI3aRS29ub1d61qhxJ191u51WhAOy4tLsbMlKrlSbJM86Wq8XW7tbli1ce7N/zfZtl6FxsmzVXnHFJTApdjrYEHde18YErztnhfCFWsRoUe8MxcixG5dH0dLVaeUum9yoiGw5dH7Y2yvnqFJF58r1zigugzIboopUMgSERB8ZUphGxt4YJ0feWc15WA2tt35lSYvDB+eCCC5TSuTAGCjG5PtGZToPIGDx+7Wq3nNaLvGutUuL5j77w8jtv3D5d/+zP/8Z/9gc+fvnSzqJxOivfef+b/LDbvvI0obp8+fLxi8Wqz//2/+cffeaTn/xD/8V/7iwUOZ/s7N2/e9JYc3x0cHh499Grl5s2dq2NUdV1ffXq1eFgHCim8s65UJYDRK6UuJBn4/H4dDZvTX9hZ1dKOSmLt956691vvv/bftsPbO1N3nrvrScE/rX/4b//tV/6xaeefmYwLhy5rJTT5cmW2p1c3nyufvrWrfddJKEyF3ymRAzq6aeeSIzGosyrsliu1t71vq+VIBRljLFpOgaRc64UCM61VlprIVOsGRRVnuc5YyyEUA4HTd8BQJZlCUhnrWUM0yGQ53lZlsF5732KW/euAck5QyGEUkLwFAbIlM6JMERgjAgYIMTovY8hNEkPxThoqVKFKpWCc5lnCGSsT9iNLCvQklIyALW9DwiZ1sALG5fWupwldLQkIawLMQARci6JSAqNiEpp5zwXHNn/l6k/C7Ysze77sLXWN+3pzHfMuTKzsqau6q5GY2g00AQaQGMiaA4OkYAtP1iWFQ7KdgTlkMJPdnh4kIJhS1QYHkTJlkVJJEECBkBMJIi5MTV6ququMbNyvPO9Z9pnT9+0/LBvJnieMjLj3rzn3L33+tZa///vz3VdA0Yi6tv6rq2aphNCaAWIGEL0gZkEkIokPLBn5EgCmSSFCMcnZ77zSlCSpC/d3nr89Mnx2Ski5nkOEK21LOHgYK21bNtWJcb7YJJsMBrd3N1jhsVidX6xODm70GVFRC6w0Nl2MWbGxXIZIqRpSiTrui6KQZoVMcbTi3nXdY11zDJGIAZBIAh9gIBMxEiSAX0kQvCRrLUutPDc/NlLvoEphGB9b3b0zKxMzsCRPRCxUFJrIQSH0PlQb9rOeqV7jQv5EJVOfKT5YpU2SQCUOnM2hBC01v267bK6PGciIbJMNABAYIngGXywUsrheNTXoH7NAQQd0NNnh+PxuCyrWZEP0/yzX/ryZ3/oy3/Lh5MHj3/3d3/f2+6D73yTffXo4UflZvXg4w9OvtoJCTnAb/0C3Li6u7eze/36zZu3Xrp247YMIZOksoyZg08k2tXi+PTsWddWv/yLv/R3/kc/tz2Znl8sBzJdzzcmGGaoyk2SJE0X1hcba5ssVYNhro0yaAkEUBRAHKPzETWRBGstRs8comcpKE1TIXVbNRIuPal9QUUA8dwHC8+V2Qi9ExAAGfoK2pdDhMtlLcQgJVnbeu+V0bu722Vd9d9FSyVJ9MVDkHgxs33u+L4s7fFFfZeCnrfdlxU4MgskIm+7SJQaw4p6O1CWZYPBYLFYVD4gQ1s3w+FwWAzG43HgmCTJYrEgoitXrpycnPTssb5DNcbEGH2MvXB8uV6nadp0bYhMzi0WCyHEdDTuER/FcNAjDHsAlrVWG8U+CFJ/udnliEJIKfG5tSn2Axzm3trLzD29WyD2C+PLN4fAEWNvjOsPhEAAgYhi9ACI/V8TCyBEHBRD51zTtGmaJsZYpSUSQ5yNRxi5WnfB2iTVXRfAu8jh2ta1ujwXUL/1+p0f+f637+5vlyenh598Mtm+9sknn4QAIM14Ott4mQ0Ht7d2Tz46DIgRuK43oauHWXLlxm6R6VSJrWEhwJ3E9SCh0fYeIWRZcra5YBU+/7k7aI9Xy4tPvXFne5sW5/dPT863ZlfKTbO1tWebqqsVQaVVVwz2rLXzZbtpnM5QJEML/uzorIsyG47KxjqOUplsOMnThCHozo5HgyvXZuX5k3k5JzSZSCh48l2AthgMdR8vScRCkKK67XwMSik2fZqv95Xr7/BelOd9JBSkk6ppOeLAKESumirG2HZOaR2CB4QkSTZNW6QZBEDfaPBf+vznfvvXf2WcXNm0R6Nxjmn63tOzi8qAkNuTK6Mkc2iDH1CadjFbly6d5Bz96PYX/pP/8lf/7r/7t/8P/9l/yt36n//3/+23v/Hh4vGBMfra3u756dHVKztJqk+PjtNilA1ns62dvBgyghS6qipjhHUuSdO8KNqmUUqbNL6y88r9+/e//f57+/v7XXT5bPw9+19IxoM6unxr9MnRo2Gz+tGf/R8CAjQdazq8ONJJXvkmT6WzzfHBsyvXb0ym46brhBA7W2Pv6+lwX6F3Xd00TZ5nPoYYur2tycODFjBKKXWSSIKq2qxWC5NoKWWWJcaoEIJfr4hIai2lFGSXyyUAFEXRpyb0y6au68TzGz/J83CZkAo+BvbsfZSSdJIIKRCFl9A0XQygiHsvQ28f8D4yCUUCGYIPTWyds0IIbWSapnDJcs+ruq2qquu64BnYn18sm853LZfNXMlUJ8ZkgwAbktJk6bDIBVGwzsaghCYBkdF7zwxEoi+3UgobnFKCpMQQOF7iOKSUzBEAfeC6s4GJFHYemtYFFpHZxxBjrFtbV2WqyCiFolmuyn47duXKFa3lcrXY294iZNs2y/m867qqqibjban1/GKZi3Y6nUhlXODNppKd9ww+sNJme2cmhFiU1aa1IWLTNCHEatN01gNQL6fy3oOSSmmpVD/DcJG5c0iy77j67Wzb+RDYB9cHBiBecr6gR5Ew+8A+cAih6ioiQgJk37S+3NRS9EPsljkqSUWaZVkCKJaLBQBsutpaW5uOCJGBBEgk52MEB4QARqrnE8DLOR8DAhAgSdU7qoGIBCDECFL1C2yYbE0cYoxxf7aDwQujACLbFqXZffne9wvdVes3P/PG+uIoduXZycFoOjmbL7757relrx8/fnry7PTb33z3L/70HQBwEcbTdDCZDseT7e3tq1f3JbnDpx996Qc/f/fujeOjcP3WrfOLhQ02Ik73Z4tlWYzGddW0LqLHCGADdhaqtVMqItWr8/nybJ7ovMgGJkvz8dA7n6QKg0skBue0zmzd2NKSTuS/8e4Zn8ND+4NGBAYg5Bexl8iE7AMgAonLxTFjiKGncg0GA8RLE3qiNAhaLct+wy+RFAlBIoQghdSpjDEiMePl/Qnh0pwTOFy2j/iX2UECUSnh+ZL+RUTIwBxi9NevXcmzJM+Stm2Xy4X3FhFjHF67evW9997rxeLj8bjrutVqxcx7O7vn84s+qYmZXfBAWAwHvdIyz/Po3YMHD4bD4WQ46rpuuVpevXq1J6dHH0hTf/6I/QUFz38kJH6hxnoeNfjis/3LAUsIPQYaEfsjT4iXh5wYI74Iinj+TiEyCgaMokdiEfRnUaOEImGrBiMrQ0VasPcCaVBkwXW+qar1UhONBkXCNsv1G6995lP3rhjy3373G9e3d3SSPTk4Hk13100QmT49XKwdHC/WpxcHizYkSneuTfNkWCSxLTHQ1dmMfT3KYGdr+/a18XiYjyfD4+Pj+/c/FszlYj1M9n70hz93evzk5Xu3bty+uTw7W8w33oqHj46yJJ1Op5tqXq6W2ztjBtV09arcRDRtLFtX3n/y7HS5sQHayChElg9ilBy4aWyMUZCrlqcXqh4XorhzfXvr+nxeHZ0c78xGdaiDZEVcWRuZIkBnvQngPRlDvY7BxdBrVntVTt3ZyyiQ9bqpO5MmnWMfERCVUplQQsrONhA5Sw0C2LYqtNwaFV/7g39Z/cjnZLc6++A94VZXbr4khDg436xrEX0qfXr09PTCY5Vu5Xv3MtxzgZYNLw8vVNQxDP+/v/bHX/riXxfd6U/85E/95i//4v/lP/mPAdgI3H/p7pe+9KV333335Gz1xS98/6c++9bZcv6d77yfZdn+/j4JYZIshLBalcYYkyS9m+7g8NmqXKdpaju/ff3KZHf7448fvPPxB3t7e7s7+6zEfLM8+p1/eeOlW9devjfLdsLJeWBY1UtdJIPcvHz3pcPjk6xIE5OiFOtyJRBKLI0mTVJIipEJMNVmfna+qS7JR85ZLSkEH2MvBRVlWda1UIkRgkLgaH2MwLHun/uXXo4Ye1pFluUQ4mq1AoAsy3pUr1LKBwaIzNx2gYTtBMYYXesAIEaOxLJPjyEkobRSUgqpCGMIAUhAHyvbo2eZ2ejUmCRJEiXkxcVivVosPSxXG+eQMXWtW9s2zbMsy8bjqZQgpGidZR84gETJwiNFAGhC5Ig+sHWBOqdCMIm01m82de9DJZLKpMokAiwiRkYRwPnY2dj52PrLDKV+S+VCUCh8iACuOTtzzq3Lcnd/bzodHx0fYgxNvSnyZFjkO1uzs7Pzk+Ozu3evPn16UVXVcmE54npTVVUdIhCStS4yNFW9uf/w2vXrg+H44uLC+6i1tqFFQd77urPeeyk0IlrrlZBKxBDcpS2VkL1nDEgUAiKG3ijKzCGiAGJm6z0/b08RRWQRmUPkiMSA0DdMwXbWkUCBxBwTo7QxjqFqHJG0jtu2FunIpKr/nTIEKQVqU3c2iZK5Y+YEte7Laj+I7hd3jBACCEmkAIEZejpDWXdGGwAQAsajcVluJPeDWIDAaDIgODo+X7luUzflavnnf/xHn3/7U3t7e1mWaZ3s7exv3byT6OTBB/fPjo7PDg7mF8fRd+9//J2Tk5P52eGDD7ipwEi4ft185tXrmt3ezZe64B1y5etsONrARoywUTUMoekaZ71SxqPzIcouGDAqtPP54vTwRDDZzgeA4WTsoj85ffrFL3yPhJBokySdUnlkLQVKuIyaBkTRa4ICRwZGAGZkji86UQAGRoVERFKSQMIX20sO09GICdvWZlm2qSqAXnbE5lIX149nMcQY2SOikIRIiBiY4TmYgpl7VytJwZFD8L3rDoSo2kYiCSAfIyJroxE5xnhxera9vb09ne1fu/ree++99957RPTkyaPValHXtRQKNX788cd912utXa5XzCy17ttQKYSLYdPUQgglxKbZZCYZjcc9HFsIMRwVF/OzprW97vHyjnKuhxQG77EfiCG46J0NWiUv5s+Xaqzni474HObed/8xxsCRQ898YEYI8flq/Pn4AYn7Twl6QxhT/02MMdG7rnVaSHABTWRnXfSSMHZ16NqBwmvXruzt7bn5+c1bLxUpLE/PuFAh4B/+4VcPHj+7fftuMtru7GZ5fna2se89eLZso9ZFMAIRtrem13dnGryvYZzrzepklOlqVfuCtMSDp2cX55qIxsMiYDe/WC7PT3bu3b114+be1p7b1EVWFOlQ6uH21pWP7z8JNngHRmXLRTfbGW3t7tQdnF5sDg7PT+flfFWOZtOkyE/PzwKwrRauXmfpwDqWQt998xZJV0ySK9f3P3l4RDT0AQeje1E4tnFZt4JjsAFEQkp23s2K/BJ4EoKUlGa5sNIkKoSQmOzk5CRGllL7wD6yinB8fhFJASnPWBSDtusI0HlbV5s0TSVLsE2om2f3v90tT8qjh9//5hfeef/wyqTYLMsYcVN3RqaHj0+SxD7rIGzvj28NTTZybWzqUgnjRS5SebQK/8U/+tVbM/yh77l39eaV/+A/+rvDdFAMtvd3b//yr/3Ws6dnt2+/euvlOx8+fL9ct0mSvPbaa1k+6G+cHtq6Wq2Gw6Ex6vDwsGmtUur8/Hw0GkmTbJr29r17bVWfnJx9dP/j69evZlk2Gm199NEHRyfH3/0DP7izv7tabTZVowRdf+na9TvXzo7m737wQdPUSZY656qqzIze25lx9KlWSZKsy6brgrUxBFZKhuBjdEUxm012mdnalojanmuvdAihaRsheDBIvXdJkvTZwP3jO8syY4yRCp7HfhMKQtFZF3tGjRDOuaZ1kVutVJIkSZGul6sYo0NWgQH76beWUkohgMEGB4HpEpuIBNifDFj64J1M86mQbdM09Wa9abJ0UAVfVWWiBybNkUSaJiRASui6+ny9xMijwdhkCRC1Xau1jpGJhPWhj1qJ7FFg09REhdYJIhqdtm3bNC1xCygCCx/AOq5d29rYBRZCeO8lXXqFQwyd64o0sVUtjb5z585ieXF2ckwcL+bn9WaRGb27u6skFVlWF9nF2TrP8+PjY+dguS7Xm4qESk0WIjauRZJC6NbZ+Wrdtq1zwfvoA2ttel4EOS+lDNErKYnApDrE0HUuslfSEJL13oaIKPLEhNBP7LEfMwjx4mkc4uXynhHRM7sYPYg+iAkAJPbpvkAQiWNgKAaj4O16uRxNJtdv3ijLel52VVVVVamk1FrGgBEgMgZADiz7/gP6NLy+9D533Ah5OaMmQARJ0Llom7arm16UgAKT1HR1lRoNHoHAene2XLcxymJ4Z3/vo29vTs7P//yrf/GZN15bL8sky4vh6MgPhCO99+qdvVd+6MfH3/nmnz78+J17b7z8wYfvCTL3Xn7t6ZMnH773XpLwH3zl68jdF/76v6eUOt80USVMpAkvLi5Wm7JHkeTakAib0CKrELDxrU4z24EPOByNphPdWu8hnp+fHB4eG2N+7Zf++Xq53Jrt/OiXf+bK9btN5+Ul94GQnucE9I9+F4PWST+jgHg5lRaSNKgkSYBZKUUMSgkE6E29DCBTctYZrfOiaNt2kA+dc63tuq5jjgCy3wz553nAQikjpfe+rutLBLQUkTl6//zeIkBkjEQUmDmG4LxA8l0UgAhwcHDQdV2WZWVZ7uzsfPDBB/2qqaoqpVSaJnV7aZDoL5p+7AYA+aBYbUoXwyXlQxJw7CdmCDgYDGKM1bqczaYHR4cxxjRJXAwAQimFkY0xwOy9b9tWSCmUjN71E+l/Ux3dD9Bi/Mve3XvfT6F79wtjDNEjihdlG3tbmBQQgxAaIVprAVAqiuwRhNEmuMgch3mBwMM05+gVRhTo22o6zLuaCeL2MLtzZUvMVFGYp08eZYlyjVIgTi+q7Su3tq9cBy0uThYyKzabdVVVk/HVCEqlbDRR9POzYwwuAZ+LmKt0s9lsTwdVVZ2sF0oLH9RgMNjd3UYVX7376jvvvLeaN4Lo8cPz4CoGr5SYbu1qM9AK0yyvqmZ+vmIOIC6uXb01m0xNMt5Un1zd2SuKgY9+kCo1HQDE+WoZrLtzZVYUo6dPDpp2s7VdNM3qww/Omc3jp0/PL5p8UOTjfL0+9yFS9Bqwi76pO9LKe99HKfjOAsB0ayI4+MBKmfVmE5il1D2uPMlSpXXdEhC6ECNgVVUhuOBdqpUxGmOg6Hyz3tvd//63X18fPXzw7a/+nR/9kXe+tfjMq6984+GJItFUJUFs67ZZNWsnhzOlwGtRF+MsWh+97USSp0me4cRcm+XdrVu37lwdwmderZabq/u3/8F//l9+5513r169+tZnPnUxnx8dP3313hv37t2zLgyE6PF1TOg5pkWOUpxezKWUr7766tOnTx8+emJMGi0Llq62yLS3tR1CePjhx3fv3qUYo3Wx6z759vvbu3ujrd3RcBra7uL4YOfaje2r0+8pPv3+xw/OLxY900eSKJuOAJWWR2eL5cVKSg2CByPVw1+11oAxAE9n065rhBCrVam1bruuaVtgFUEElnW90loPh8Oe9N6LsHoTwQsHS483SdO067oAFPtgSyQXCBgYfIwWhGybCokhSYCjs8GFQEQSsN93CoXe2YisTdI0Te/WDdYJQJAKTLK/OyN+fbxanl8sT49P83wWgF2wzlPXopTkbGiaiplHw3GRD5VQhDKKKJTq6hZCkH0suiJjlPNBSh0iIEZrfdNaAGyahqJlEiS0Y2qc7xwwUoyuZwW3daXQ9E82Z8MqVFt5du3atflqORoNFxdzpDCbjEeDAsETcrCdt05rffDsCYMkhtn2znA4fHZ4RMJEEs8OjgFF1XaCIgqq6s5bF4Hapi0QpZRCo+eotbTO9dtWYxQidt5Z73q/RtN2jXUMxMTexX78+eIF3sPzmDhEFD4K4bTWiCoSeAfORWZARBcDIsv+0RWDDPHJ08MsTYw2jOJivmnbtqptn/YpBDatL/LUBUbnnXNZaiiXUorna9BeiiWAuU8O7YM7kyTtnNdacohKyBAdRx8DYUSKATD2JxzvQgBUSpWNbbq2JH708MlXv/a1Zn5yde9/9eabb5Zl3XahFSMJLKJTGP+bX/jFv/jKv3z48TvDQiml3vz054rta3cm16+/+r3rcnF88sSH7ne+9omW4pU7t2fj0cnBk9NnB8vzk52tqSmSZ48e9lrIAo0LQUjhnJv7LhlMysfPDj/6cHu6naXFdHcbz06lMv/sn/9S7OqdnVme53fv3omURgiSCaEXUwEGjn2V6jXJznXMKKDPjuwJZJSREkhCijxLhBAQohA4HA6Wy6WLrJWKMUoUq+UyxgjYIaKzNjjfd3V9+9g5d1mJ21YIkSTJaDRqmubFqbnvGIFQkEBEhhCBESBiJIYAkQNHRABIEQ8Pn21tbaVpWparwWDQu4n67LPBYKC1joD96rfP6B0MBqtyvVgsAgSllHNdz1iXQpCQ3jrX2dlsZoxZhMV8PldCoiYGCNYpBf1RIISQXDpHZYjR1U2apZ7jpYeXqB8nXO6DY+TnqG7TJ4VB7At235f3t+jzYQMQQd9kAF5Wbn4uNyOUMcYYvSKRKF2k6XQyirZp6mqzvEiV0BjTTN28du2N117erMvD4ydPrc1MUococnP9+kt373xKIHzjW392/8H7VVPOtrcEytfvXBdqUjdcwsp3VZIk28OJIGw3q6YNGxnPjo66zr1899bu/g3bbupq3VI9zIuL82V2bTabXHny+MjodGuG4+kAYiMEbKpSOx4OCxJ6Z2fLend0dKQz8aj9JMuHqTav3b2xXNejVuzs7JydnTRkjNavXN1N0/TK/rWjo6ONtg/vfzu4XZkwCUZMY1eSt9ERW9geJsVg9PZbn37ngyd//q0Prl+5sbW3d/L4cd00SJePj57CCgDWl8wYGHu9OjM6Z/sEgtSkipTtOvBWS6WQnW0phps3roEfHjXLJw8+OD96Ws5vgN18872vHp88nZ+fPL7/HtiynB8qicdHp81mdfcz37e/v2Vyt7OD88Xx1pXBsrSnTcurTVs3Sdp0VXf//rd3R7lrW3D827/zB8+Only5sS2EePT4Yynl25/+3LVr13wI1lXM0yRJPMdgQ5EPVuultdY5Z4yp63axWLz66qvbOzvee3AcOm+thciDPL17687hk6fG6L29PaXM+bNnm2V5rXbTydazZwdn5+eIcTSZFKPx577rra99/VunZxez2cx733ZBCbmunFKDbCjyPF+vN4NMNU1TlZsY46NHn+zt7fVR00VRJGnuQ2hbX1ZdUQyAcVO1/addFEXPDDLGuLYbDof90hSeU+1Wm5KZkySp61YryUxCao4wX2/yPBcSrW0BSUqyzvWKZWbo6iZXhqQlIimAgEgQoWTyzKiE6OXZiLUSAo3e3pnGVM1GQwny/icHN29fPTy9OD8+Dm6QDXKTqDxLiLIsyQCgapoQ2GQIqHzg6H0QAqWKwJumzaImAgYkgT5EQkQQCKK1EQUCs2dgECiQ4yUc2LbNsMgxeG8dI/RQYkkBCWzbBOarV/YuLs7atp2MitFwbKRar1ZnpxfLdclI2ztXBoPRZrMJDMPRpKwbqbTJ8tV8IaRmBmbo0QjIIIQgkojY2A4AAoN1LYJAYh9D1TaZSXr7pXfBsw8RuuBDcFrqF7O6F4O3F3+DiBRBRGIBxmhFqos2hhhC4MjEhICBESL3AUHErIHYhvfe/7jrOo4eRTIej69du/HRRx8URQEo2s56j5IAkY1Rie5NbQiA3PMgEDvr67oBgBh7ZZywnYMQJbBAIRAER0IShCEVJHsHDUAEJUSiNIZIkdfzi0ybnWs3dWJa5xwgSnVtb3txdr61Pf2jf/nr3/ran1WbpTLi7muvDSdb4+3r9083Mt8ZjHeXYX7vh3+IObwGcr1e723NTg6ePTp+/OabPyyA97amO9PJu+98fbGYn1w0WksXQuQ2y/M1C2HyV9/+3L/+jV9790/+NAIkxmSDbHsyHI/TZg2PDy8++/Ze7RrrvAcp+637JRiyn3ISSRLe+8SY/qzKzNDHyDMQoBJSG4mRjVGkgQC9dQAwyFLPUNc1CcrzXEq5Xm2sdzFGIJRCXGIzpRRK9RDz/nTsnOsjktI0tU0rhOhrFoS+J4UQw6XXlsHHSAAgRO+Gqje1Meb4+Hg2m3mOfZ5H13XFYNCjtEMIaZ4RyV7QGwXb0IXohEQtTD+r7MPAIXLXdQgxzUxdlZsYmQMxaSE775TRL5KttBJpor0PwTomFES9xcLW9YteViIy90kNjMT9/RGCByItVZ+brZQiAikQuHdEY3/RSylDCEr29LsgJTFzgKhJWttKEplJJBJ7713HznKMwXV5avZ3tgaZNAJvXdvPjX734w+LPF2vams3eZ6/evNG5/zXvvJHjx98kiZ09crO5777x2azSd3ZzcYfHFzc//ixjrHYmw6HYxdiU3daZcy8abGYXklGM5ADlWRaJ96Gg2cHJ4cnajg5P39/a7Jz9cbt+fmp9Q4xU2kCGBAxRNf5NnatNPrq9eloos+PzpjRMpqcNblR6lUMs0xs3bhSrcse1tp1zUi6jWhf2i/k9cn+lS3CxkWnZD4uRk+enq/Laqqzvf0tlSgb6u979drhw48xbrBe3bx19f79+855qSQRda1DRKGVazohlBAKEYEJhSBmDqFIR0yCUGRIzjnkSARC6barq6r61L2Xf+Czrx2+/42hX/7kl7/0R7/5z4/PT//0q1/5ySfvFaq+MZW/vzjUEoDEz/7cz/1//tE/6nyzd/3mL/zff/fLP/XTD54enszXn/+Bn/vu73oNedlsDt567RVXl1VZj4ezeb343T/8yt7VK8+ePTo9Pwuef/AHf7jQxdnZ2fb29vb2dj9N6a+Euq61MnVdO+eyLCvrSilz9erVrnPeh6IYffDk/U8e3B9k+dX9vd297bs3X/r6N75WV9Ubn/rU1mxS1fbs6PDxwyccMRuYw4PHm2p9/QbKJP/c5z5tbfzgw/ttaxOTr6t6tW6yVAiVRzARutVicffu3aIovvn1byDier1O0/zi4kIqE7n2PtZtFyO2nQuB++WuMUYp1UMc42Usgevt+EKIzrsQLsdOTdOQ0EJJZqw2LQAEFDYC2EhC2rbuHBujlFIB0Ha2aVqI2PogCJRARNAKQwjAATgmiVYkAEAQKduClEJLg7C1v7M13d7e3q5bVmpnMhkEBhQKCG0fa++CIgQSSlLdVREko2AInXXQcxlD7ESQkjhE8hGAuN8qIQFKJBUYfYyxj1fpG0cEpeQwS+uqHA2Kvb29yWh0dnYu7KquNzs7Oy66/qGxuz3rmmZhF0QwHAzu3Lmz3lSn5xeDQT6bDRdzd3BwMBpv2cjlxbrzQUnjQogMHNlhhAgkXjQtl95FRJJSAkkpNEPwPq79Jk9SZt40bdu5gMQgPPhgw18uyy51UD2Z/7IdgMDgguPOMQohABVDDJH7hxsRxQDMoJHSJOmaZrWuE6Oic1onznU6zZjEYl0meSGl3lS1FARA1jrmWKtWKUGUKdn/vyEwEPUr4EhEwccgg5E9eJmlEJeyG469OpWM6tXBApAia5K5VuRcoWRXVuC9yVIAYCkhETLNb4zT73rp9X/48z//53/wG+3yoF6d3Ll57Xu/93uzye7jkxqH26Mr97wYTKd3Pz4739q+dmsosom/mM/V9u1m9Pjr5/btz366Go4eBJu/9QOpbY+fPjo7Orh955pkrso1us52m9nuUE5Gm0egBNRdt/HudL5489XrZyfz0IFHnmxNagvnF6XsVWiI2IshoI+QBxRIHCIAKkk9wBkRjdHDtIAYETiEADEgCiS01vb5Kl1bZ1m2qRrvLDN3rVNGA1262Z1zPfgqAgeOHBkRIYama0MISkitE60k9Ib7HpEVYqTLsxjAi00ovTg06DTVWkujO++01oPBYD6fF0U+HA4Xi0VfXAkwyxLsgzyFsG3HIQKADy5NU6Mkx+DaDhGHWRZjLFdrgZSmKYTo2eVFEXq8p3M9jkoJuV6vIcThcBACt85KpbqmJSJkBAaIgakHjPV0YRFCCHj58ZKm0OO/mZUQApUnDOHyBOq9984bY6SUMXqIRIIiB4xMRIM8R2YOUQCkiU6kWs4XTbXOck3Am826SCdFMVitFtVqwTEyFsqENJOT6eDh40/uf/SgXCxno/HLt259+lOvpCkuT05Wq+XJyalJitdfmmA+AsbGxScHpxdn8y4wCmOMSVNzeLq+mK/QtyK2L13f29rec7Z9dlGPh5NIyru2GGVXr0yFcEispQkRrA2bzWY8HjJZiU4l1fd99rM2+PP5eZqlIHKllPeha50AtThak+sQMULkYToepeNRMl9stiejIp947xBpUoy3huNN3QmMTb3MZZYLyifFS1P13sNPComDrSly5OAjAaLq5Wy26QCo3zdFDgR/GUnJHNu2FVJLoyMH3zYATMhG6YuLi1/65e/8/r/4pQzqn/7+t/7pL/zCz/7cz7Eyvz/N/9bf+TIwh5r/1T/9f7+zXORv3HnlU/fuPz3/1JvL04eb0wcPZqn8L37tn9194+XvuZ3+1OfvPH38Eck7Tb1qN+vFxcr7uL2995nPvv306VMXYmKy7SszZIfo9vZ2jEkBwNpWSt0PTpz1McaqqjiCFKpx9XQ67YVOPmLTzCez6XV384+/8kcXF2efpte3d7beeOuN09PTj+9/eO3GS0gyxqC1lFL70OZFtl5d3P+4uXHzTjYYa5JvvHrva9/8dtU2CMJGPnn6NE1zrZO+lD548GB7e/veq6+QFPWmss5pkzZNQySPT8+8j0hyUzXFYLSpmtlQ5HkuhOi6rsewD7K8bdvhcNi2LTOTIO9903S9MQkpdN5JYWyISpqiyKuqYnAALIROUklETdv1WTQ6GbjofYgiog+MEEMgAC8RlBQcqQ2eOAohUAB2AACC49nxsZDm7U+//rVvfLuq6t2tcdP51nkXUIDwMbrgLfSeQMmAVdMIUoIoQPT92yMRIhBfZrgJoRAh9qQnUii0C8G6GBB9ZGaWhEIKTQjs8zThEM9Pz+bnF0IIA7bH2FWbJssHUmqT5ltbWxdnZ6NBroRcrJZ9JMz9+/cX691b1/aXq3JZrqeznePzeUCZZBm3tmsbYKIXuy0h+udl11og7KtvP3kmBhKQ6FQlfbhvcJEjgIscIkUfASA+F9pGvKzCz9dh/bAu2uisY0Q0OnEh9m8zxkgMgQiZbW2lTkCoEMBkwyJLgrer1Wq5Wi1XKwBIk6SuW0QeZGlZVlpLIULbdbIiAs5So5RAFL0GyxjjE9d1nfWOIUbni6IgZCIC6n+seJmuCJEhKkSQQoaIAlMhgAi6plstyfv0eRtpfSzyAjbzX/+df/FHv/0rm/PjxemzO7euff4HvpClxcnpYjS+unf71YrTs3kjU7177bZUJhm4TOvB7s7ZapVevfa1d77dPj568zM7MYq0GIB1dNNkxeydJ48+9dqrt1797KTaJCp8/P5Xv/6d91BB4wAAfIgK4Onh6bTIKa2fPn36q//il2c710w6lATIkSMyAkki0WM3iPrZLAIX+dAkyluHiHmea1Sb9ZKZlRKBY1u12ihjDBD2zhtAtMFa60kIksL67vlGAXwfQiAIEfudUL8M7l8RMHBMtemROiSxn7VyACkEAcYY+/m0JOo7VwCou3rTbG7evJnng7Zte5YkSdEX4B6EvV6vA8d+L5WmxjkHoARgXdeha4eTyY1r14+PjwHANi0TTa5d6bpus9kIiVmSBe+j8zpNpFZ9G60yVaRZ13V5rzgLnoXoD8vI0GsZemM1AvSoEh9cHw0GkaXAtumIKDrIBiMAbNvWguul/3XLbes4+N4JKhCFIAJiYiGEloQMnXMoMNVGImzKyjlXlm5ne7KqNt62EMLWqMDglTbrBkENjs4Oj86P80xevbE3uHeXOweR73/08eL8aDxOptMh+2prPHn9tTcOTjZ1254vykzFwgjoeNPUZVkOBgMaDY+Pz5r1xe2bV0Q6ICO3prtlvFiuFkmWIvir+9NFeY7QjgZFVVWEClimJimKQijvmK0Py8U8QsgSU5aL1nYu8pWdK8F15xdn5XrVSu2Cz4r88cFx1VZSKWvDo2fHqUKBQUrpAgLqYZ6NiyLRu9X6dFUulM9+6Ps+fXw63x0NfLRKArJiJCmVSbPIuFiVgPIy8wMQCDtnCZAEcOB+oYWRBXCfSxdcsNbu7l0xSn/uB7744Ot//Av/7Bd/k9ppSi9d29/aHfz9/91/OByk3/yL72zOnwr2jNGB/Y/+3t/a39lfl3DwbPlP/vEvfvbtt0zG5ck3jx6MV+fzSw0/QJrqr3/jz7rWTqZ7P/pjP/4L/6RUW6LIEyK4emO3sSwESoFCSubQ1Y1KDCCfnZ0xc88GFyQJwDk/Gg031oMUHNxLL9/VWtmumi8XJ+dHt2/f2t3fqdpmPj/Li5GQmpFjJODg21YT2bp69OCjvf3r090rQshXX3n5a19/R6q8XG8a66yvlPJStlnmQghPnjw5P5uHwFk+6JXYxqSL1Wo8Ho8nsxihrDZPHj+bTqdVU/dnx/4GD9YFExBxPp8TUTYolDIxgpQhxOi6rhhlIfB8fmGS3AfunK/qWmkhBI7GhZCqaZq6sQBCSx1B+egBWEu8tN4jikCkZUBgUkpoQSy07G1O3lst02GeRSTfrK9fmVnbkogdhOCtdegDAIjI4GPwMQK4RPdkjNCH22ijILILFoiiDxgDM0sJRDJ6DiE4ZoyddWx97B8CBCwQi1QF51xTc3AxgNBK6yQx6WiS5cPBfLEKHI1J1mV1fHR668a1xKj3Pvg4TxPrfQgnUquIcHp+Mkh1URR2tbbOaZ2sq67pNhGpxzUEYIUEAFpKIUhJ8kp6F4Gp16xdLuClEFLFCM6DjxRidBGs7+voi6T2nr1EL0Sgl51OPxmOEGJgZh/75zBEhhghMtMlxxDLqhYIRklGtJ5Xi9L76Fxg5p2dnaZpABiBbIhKG8TIjN5H51wI+gXxqX9pTTQYhBBibxl1vq5r5tCDY4W8hE+QuLTt9FnHQghCQUAycle25eI8kTgepO2mdF1L0giE3/q1X/mNX/9VW62Wi7Od3a0vfPGvjCdbj4/n06u3f+pv/ezjs82fffOD7enuYDJZV3ZTbjYZdHWQJjs+Pfr8F77viz/6IxerzaqqmWnThui81oPtu9ucDX/pj37/rU+9+dbNuzLFh0+OfYjAgASSQItEMtvWD3am5bw6fFY+ffL7rYfJ1Ei8HFwAIhBewjkRkb2bjsZpmvZSN0wFM2Pwm67xHLXWWskYe8gE+xiaqmmtjQCt9UKINNNCyfV6473rDTkRmSFEwH5I1HnHCAHYeUdEqTa9BZ4ACXogDkZAFwAAiAEjEwNir8OIfT9JRH1S4+PHj2/evHnt2o3leoWCAOD84hQR0zSt63pvb6+qqqaqo3fGDDOTVFVlu85IhZHL+XKV5rdvXD98+szHMBgM0iKfu7lAijEG23XeCaLoPAgKzjvnOt3NxhNCXK/XvYCQOWgjQwhSaHhOtuYXyxUI2sg+d7m/K7SQ/cfSVXWWZanRyBGYI0OqdJGkTdfGGHviCURGAEICDk1dGaVTJbMkUZKiDxCiSsxgkANSVgxfunE106ppKoU029r7xoen88Uxx/rlu9dfvnOjq9aubl3TDJPk6PAZh/bWrZ07d+7s7m2vy+rh4yfr1cZk2XigB8Obt25x1cZI2kaeL1ZZlg0GRstrn3r99ckwOzs9LAMII3WahBi1EhfLVZEJRFis1kYmUgIwKJkcHRynuTYpsBc+NiGw0aJzflU2xXB4tlitl6s0zW/cvY1Ay6oCIT/+5PGi3IwmYwR1cHGoMN64urOzM+7AbdatazdHtLh3Y3//yg084fc+ej+mWy+/8qrJtt2wKDLTtVbqDKQmqRjkdKrLTe3A9Zd2f3qLyBLF1nRSN41nRoiEyAyEZLJsOJosy814UPz0X/uby8++0R1/8kv/9c8vF8eIIFTy3/7jX3r0uHz5WkKc/M2/8VOo6dnJ0b1XX0OPZ2fnShePvvPRYHz3M5+69/jxh5vqrZPT4zwbRqDWVUITgv+//fw/EJT8B/+b/+2rr7/xW7/x6/tXth8/Xn/y+MFP/ORfTRLdB6IRyTRNWuefPn0aA+/s7PQCYyFEiDHPcyLRuZoAvfdAPBgV64WFqA4OHx0dPnnl1VezLHv3vfdff+PT4+msc9G5ziiybWOMyfJ809SPP/morqprt14uEvO93/vdv/pr/9JFYuZ8UPQLyKauQwjb29tSyh7pnOf5cnkuVDMYDKRWDx8+nC8Xb7zxppB4eHp4bTvf1FWWZXmel2UZYzw7OxuPx/1g1rngfRNjHI3HALBarZLCJCZdrdedbdoueBeTvIguJFKXVbveVD2AqQ9jkoIieGKIqJGZXexcdJ59EhUhMOWpIhLOR+CewE4CMIbgfFcjzybjZ4fw+NlDEFnnRVV7GwmkCQiMAESIWFUVkQTBbecMUJaaAC56DCEyIwlCQgBixsDB+eAYOIAL3KeGit4cwqEq28yIPDPBEaIoBqNsMDw5PgVUZd2Um6pt20ePn0amYjAWKjk8Ouys39+fjSbDD97/qHNBKHn9xq31fI6IgHR4eOhBoJAYonMOSCBgjAEICUgpoSRJKclK71sbOh0QzGVoTwPQsy68j53zAUQAiCAYIMQ+AZ3ic/ZhfC5GCSFCCL3nk4gJLumh/VO4zwu4VC4zaK0754ijcyGEdWp019ksy8az8XQ67SP/vPfO2xj9MM8IBeJlLJwQQimCvvcmCDFIEkqjVoIlpanpGKy1IQQiCMAKlQBQQoAggp7fFREEEKIAKYWUeZJwXVeCWAKv52dF8lYL4oNvvft7//oPvOsODp7ubI9+/Cd+cjCcPDurZrt3r99+swt6MJntXdl9fHgakc8v1uPx1Il8XVbl2QWwWJ9edN2xSfItk3rkuq5JJ61tKrbDrb3Pf+knv/KVPxQb8bnPvDye7AIoQJsa6uo4Go8ToquzsS1PXr1777NvvV539umzo6PTuRxkeQjBc+z13329EIiINCoGiVGbzSZ0ba98bpsGpS6KQmsNEH1n8zwnos45k6abtlFKj0ap1KbtnLUWiLIsY2bP0Vvrgg+emRAt9u3IC+NsR9TnQktg7H8AwIAEQr5wKL3YT8eIMXLvvk8VWe/2ruzvX72yXC/61bK1tus6rRJrbdu2eZ4zc8/qajZVT5IKzm9NpjeuX18v5ouL+SfrdZZlWqqq3GRJKpESpWez2enp6e7W9nAyfvj4Ud00WuuiKDKTHBwc8HNpVWIMiMsUwn5afomSYfbe9oxJ7If1iEWa1XXdK8sECte1bLSSkoVywUfvlVaj4Yg21LZtgEtfPCL2wiKjJAevjc7ThJClJK11AI4RItBgmLPQ600VrR2myfH5RRetB755845JzLe/82B+dFQYNUz19p1bd15+aTbLBbpPnj4ENACaSE1n1FrfdFU+nHj2F5vzpBjOhtPcTM8uLobDDBHf+/jDftdeluVAx+FwfHpxMSoGMXge587Vs0mh0kSQ6hoPSMBKYqGFYZNlCZokBTRkBm04Fjqtq1YXo9ZZgeyDM8NhZWHpySXTDRQeRF1zV68v2sXkvGXwgRE9aqDlavOGvTqZTa/eoT9/50EXC6VzjpaDd95Kk3RNbSMAqqwY9U8ZAPYuCtnHu2JkJgJg9l3HQiFyDC4CKKWYRNPa4Ugdnp4rUBaFygdG4P2nh09WVT650cB3Hh61r788WzfLn/yRn/4b/4Of/M///n+MNv78/+MX/p1/79+/99q98+MHx+9/+P7R+QcPj/7tf/t/Urratc57z8R/5Ys/GoP47//xP/31X/uVv/1v/ezLr96WUnZdJoT4zne+M51Ob9++Pdve4YjW2tW6RMTRaJgkl64EREy0JqL1ep2lmeu6zgcPPoYgCbrgfNMJyf/6t37TBv/57/+BV16+G2IwQkplvOsSY2KM1WZttDZSz89Oz84vXnnjM6YofuInvvzf/Hf/LMuHTdNY7/JsUAy20jRtmiZG6PPXmqYZDsfW+9lstlyvlRYAcHp6vHd178GDB/3hph/V9hMd731VVffu3Ts6Olqv170n2zqXZdlwOFyU53meb+/MLs7XxkihwBjT2q5uOuxhzUQxYtO0guRolDlgjKxQCAbHwblou9a5UKQmxsY5ZxQKyUYLY7QQphAZE242a6kER/fy3VtSJ/c/OWoa2zTRghQsHIPniAKAgKxPEimF4hiYwfngnBdEkQERtEqERO9iZEagEAKT8TEyIIhLqBESxeCmw+Lq7taoyNM0nc+Xi+Wmqipr7dHJZvfKvtDKN23dWZOkioQPPBzPYElC6iRLB+NRkuZSqwCc5/l8tTRJ4b13HNNBnpCKm9oFDwzP13F0qZtxVkqtNQTu8XkAgN4H31mlZQghXGbocEQC7olAyL3iFeg53R56jU3sowAYODCE2BMLBXtEIQQChHjpwMXI3DQdImulvHfWRwCbJhmSDCEkiTw+XrXOaiGNMQiw2lTjYQ4oeiWGdzEEkJd5QF72MQN8GRDpnOt8Z/uFBaJCiowoomcwaKQkBLhs4Ol5pJBCiLhp1yRASazWq261Ojhb/P7vf2W9Wh0dPBkWyZe+9KViPF6ULh9duf7yZzrM3394OtzfHexe3VHJweFJELixLcyNtbqHJFnrh4OJc87WDSJmyljvc5011hLSJJ/91I//9T/8J/+Cbf3qy68TSfDWNrEwClwYT2eh7jbz9Z3v+a4f+J7vOzo6+swbb5WbWvYDZ4NCCPXidymEyBITQiiXK+99arRWkohSk4BJvPfOWoDYuQ4l0fNg6slkYn3Y1NXy5HQ0mkSEJEmyRHvv667tvznIyCgQUWrlnOuPTn1Q4iX9wwfqNY4ABNAX6X6oC8z9th0AhBBZWswmk8k4u3fv3h//8R8753pjQ28A6K+lPM9Ho9Hp6WkfgNrXy01ZGqXHg2FdlSeHBwSYJknTNHVV9Tvjoih6Bf9sNkvTtA8Yds4lWroQuq4b5sX21lYfQum9H6ZpNigODw+ZOTqPiKRkL6KJkS7fV4yDwWA4HG5PZ/cffOR9iD6oPClkIokgRilJqbRuG4gcORglvUXky1U3ERCJEALGEAMbo7VS87Pz/teXZ9lwPJSSRqMBA4KURggQdHh8Vkx2t3enaaKODp415VqQUTL5rs++vbeVS9GFULZtd7FcMSTD4d6gmBXFBjab8/mZDwGF1grYNc8e32+9FzIBVst1SVICIZFgJMf1anVh9HAy3i1X666Ng2LKMcYAWgnnmsV8oU1mu03RgpT6vH7mA1ZNFHrgWTz84BEImk5HzjeV64TSO1s7B0/Py44H0+0u4Kq2Qo8l5k7A2l1ykbrOG0Qh6NnpetWu1m1dR1q18ZMPH+7sJ4RolO7BZ0IlLviqqryPiKiURERtpBCEyNa1ZyenyiQ9d8wYo1XeH9oE041bL202G4F896U733zyAUrzv/x7/+7P/4O//+h0IzbGimkI848fHXzw4OCv/a2fAaD/+b/zvzh8+OzDD4+ODp8oJQqJIgiTbw9nu3XXRnads6PBaHtrf3t8xYj8zTfeunn76nsffENpWQyHqZeffuuzAhbr9brrus26lFoV+VCRGA6Hw8FouVwKIYqi6F09TdPEGNF7iJwliUAMtotSHc4X49GgrjeC8HOfevuHf/CLwKCVbjrnu7YPK1VKkeDgPAlMjIqoP/jgg+n2lau3rrzy6sunZ/M0y7KskFImAoExTdO2bYlkVdV5niuldJIcHx9PZtOL+RwgzlfzAJymaS91bpqmT7xRSs1ms9VqtVwuX2gt27btrO13wNlQtbaZTEYX87USCgLXbdPz6VAK5x0ASaGNTmKEpulYRYhs+sQhxhgju15OEbQipXOVJFqCVMgcq6q2viWiuqtzCIvVMpK6detG54hOSyC7sRCAnHM2OqGJUCZa9ynRKEho1XeQ2kiNAoCkVkrIGNoQYgD2HH0MIURAgXTJMSXgGON0PLm6v3d8dFSty5PzCx/YOrbWSQPOOaGk0ol1IYauRazrWktRt93ZxSLJsytXrz89eObrqLWmzl76JI0ONtZ13biAICI8DzB4ThV01lnvHEtmJiFjjM6Fvg1wMZAn70NECpG7EEgYFtIHRurXvRSYAehFUpv1IcaoSABgBIYIvZyC8BIOAX1P8VxIK6WK3oUQIEZmLssy0VvOuaZuDw+OB8N8PB6/9NLO+UnVtjVCYduKlEQhOGLbtrUSeZ4KAQyMPYIFZT7IgIkjCCE2m9p5j4gkBSMEjhCD4Ch6CycIYAaEyBBCVBI42M61iEwEF2en3/jqVw9OlxdHx8cnz0aj4q/9zE9t7cxOL1bZcH//1uutN1aZ+UXdXtyvQ1fbdra9y1EcHZ12tRVaxGiMUTKNHXMkKRPBzNWm0dowc6pTDuCaYIx5+63v+sbXf6+aIwEwg0SAyN/9mc+5qlmdHEwHk6u7e3/xp38WQmicH02mMjSN1rqXASeJidETAWMQGBpXq0SlOpVSopJt11lnRVsDQFnVSZJcu3H96ZMDJjw7nxuTpnlWVRWQlLpYlU1/YFnWdW/nYhDCJLZpCIGBIQQtVRe8Ehi9k0IIRABOp1td17XWCsA+SYOIgIQxCQhyzgUU/YVwtlidzpdvXNtOr1zZ39559Ozp7t4VmaS2agNIJUVVVVLqvpoOh0OGUNV17Wg4Htq2i+y39/fOT092d7Z8Z2fFREhcLtYo+P6DD2fbWz64x08e7e9MEo1ts84Utk2baCWl3JTL8XhikqRqG1R6XdWrqgVUktBFh8AaAIJnbzMpBJJtO5MoQwD1BvJ8NhhWmzoqTE2qyQ4Gl+cG4ggUhRCiq8fGSK87ZzvvCKUgGfvQHtYutM759XpF6IPr3nrrrc1ysVmf7e3tD5WwwVedr6wtI2A+RF7X61ivKFEakkFiVJ6l94/OSu/aerm9NSEYPDl+NiwUwKZtLbMQQEUxdp1rq40O2Fk7HY6C0mXXNa1Pk6xZ16v5YjocffbNt1FVRZ5oQ0bjbKIJwyDLnXNEsml9FApTGTU67rz3WZJGtyUIRhl/45tfnZerOiZezs79DGiAVNrq8HaXaTFOYYC2Ya6cD5UXTCl2Qjk2ZJ1vG9uhVKWZ5WoySgapPcvc6uZEL88fnF7srOrWRhymk5iasrZZMVjXNYdIyABRSembjohMYrgLqWi0RBux8xw9a6O0RoeklcyJq65FI9qu3mw2KjFlVZ0eH01SwdxtlOxicdRhyiU19Yd/+hsnJ4cRk099+sZ33vtw03BMzNMyXB3vbo7Xv/0vfv/Hf/zHAPTx04v77z/+rV//reOz02vXbvguaJF5b+fHhwCA/tbk7q2ihEIm3q2PDx7rNCdVoKLzzXGeJ93Kx4BFUTjfuihBFGhXIfpUq7ZeQ+xcbDZdJYS4qJvJlZuf+f6/ElRKRH/yZ388HY9feeWVxpUesYMUMJEknG0H2iPUuRLPHnx178qPTqbZ8XyepmmeJhS53MxddFrL1rVCSZmo1nup06astSJXl4UGLBIp0uV5OZ5stXbtV44U+VWTZsbkwxBcbd2jZwdSygCoTeocmyRvA6yrTli1CWuZ2VExW1Tlqqub6AVokgKZjTSSUSmdKYMhcIzMyxixm2/YDCNLwtSBjByDh1zLlY2x5d3p1rIsbWOjSxreSCmkTKqKAHTb2pOLR0QyUXE2krp2ZdMJiTZoDhJBOW37kZMQZL1FBm0kAFjvYhQVtlmWSZN2VVV3lgmdt4hIEDECMmMEUMqY4fnanr77EABCiE1L3nsmZFLBCnvhQnQYWWttQ4zBZklaVW1dW5H6srKCbFt3xqhCJ6iorNqmdX02H0RUHAGiABaCpJQavRIsmKOMNoYQ0PsoCZuuI6V9QBvIgikdMKbAECBGjBADxICE6PFS33rZvvegjBiBUVDo/4UUEPgQnHWJIEQkIIGCkGIU/WjSts4YzQQhcG19lha19xA5lWKQm0RyKpxw3esv5U0d16sLZBwNEkHSudDaaLvWGCMEISiASHip8hEiooAkJW2yXvbVS3+eezMtgYgIy9gllAiIhKwogg3r9+/zSSlFdrJp63pj6cGjJ4+eXhzdSbIvf/mvTneuPSuhzK/htdffh8Gi7KQOzjkOLjOSnPSlTbQaKLJUI5IWEmMkQRFFENz4DjkqjSJaEQEEWwKnfBW7/JWXv3Q7+f/9w/8ju9oodJ5Jm3yiNti4tXztrbd2Xtu2Ze1ami93VPG6NMb0oolee9Z10XuPgqqqGg2HZV3ZtgsqbC4uPEci2hqMFovF7du3rbUfvv/BZLpFSl69kixXq6rcSK22trbmy3WSJERUlmXdNb0Vofc7Oe/E8/QFIAYgYJKaBBIRQYhdXUkpUQpr7QuHbgghRi+lVEIhoo9MiHmaENHZ2dlgNH7ppZfWdXN2dqHTpI9hqBqrjW6apm3bLMvatk0zo5RihGa96Tseb7vpeCKRdJICB4g9rxwmo7FAUoJef/WNyH61rrtNFRmV0UKowMyRy7K0LkgklLJvcBlYCBJC9x5yHwMhEylB2As6Ei2dC2W58tYNhgVHsNZy9LZpBAkhVQ/n01q3bdujXIssN8F7joIUSaG1Xl2ca62VUnmSjPa2fNv0UvH+XTvnNmXZOosomqYJ3geI0+msrtr52RyZijyVUrZt++zgoKvX5Xo5GRWvvPLKxdn5dz54fzqaMM92t7aLXG9CtW7nWTHw1mV5Tmk2kPLZ8Unnu3SgB4O9V166E32bKNNZHwJzpNSYIjdaa6jq5WLTBwoNh+O6ayFSiPHo8ESJ5O7tO4M0+aHZlx4+PXz3gyei2F7UdWubk+PHGG294Vs3X5NGLzflpltaUK3liF6QIY1B9mFaoapqI9TxMfL6YpJLk2QN4KAYnVorpbSNq+t6Mtkyxs0XK0QROTCgEKJpKiVI9PPbLPNtWSSmSPLFugRmRO66TgkUhPOz0/29fQxdtN3hwZNBag6fPUWE69evf/jwUectYA6RBcLW1tZ33v/GZrM+OSsX666qmtq61fnF2nYmydq2fW0y+sY775ZleXx6pLXe39+/98qrzjnmSEQxprdub129elUIEZ03xggEKZIQYtM0+7M9MrKqudrUChOA6L2vXctC11UpeJOnSV1VHINzbr3eJEmyXC5PT87/zs/9bFEUZVlmWTabzQZ5fnx8LJQpBuMQhI+glBgUw3q9HE+GZ6vV9u6VuumOT492d2fMXLUrjEHqdLNs15tyZ2dLJ6mzPD9bbso6NUpKLIpcKdra2a4rb/2yrqvWtcaotrGYmXJdBdcJgYNh3jVtjHE2nTZNZ7JMCMkIbY3rzUoZXa9t7T1pI6WGxgcOySCNPjCz0RpCiL6LzuepuXb1zmJVxiAiq/P5KmBIjHHOex+YCUD5zh4dHQUXbdNFH1potJZpmkbNwDFERqTISESta5XSY1OsNl3sPKBwMfRP+YjxEobMDERKCCLy3nbOGk60NFrruq67zkUpiTn0FYEIABlFAFhXVYyxx9PacJkIDog+BluWfQlpW6u1zJKUiBixH++3bdt1jfdeKRFjXC+XUidJknShiYz9bMA5Z0wiBUkFSpCURERIJKV0ZVBKCKkQvbPBhWh9cJERRYihx/89L2DIzD2fv99CMgL1XJQY+UWnC5eBs/1X+RDweTgMCEJk5kB8ydmFyDEEFIhSGGOEEG6zSNIkzU2/BBwNzKAY5GkiqB8WQwoEq2q93oTIeT6QKvR+ZaJeGiZ6wTMJAQACQAFAH53eW5ZrIFIjoSJHiigQIHhg+gf/6T9YnC6He2OwNMlmsYNBMrm+k/3EX/mB8e61Ze1BDd58++2aRh8/O0vTgZDKdfV0PJpORseHB3Vdx5gwiktnCkTJiH1gLqEAElKQC9F7IaT33jGbNCFk39STYVEUhRRAJJj9zs4Ox9jrju/cuTMuBouGPMJgMJruXpE9KC6EsFwu67pOU6OU6roOCK21TdMQoRHEzBJpOBjGGKfTqSRsY5xMJkSkSMhE3xyP0zQ9Pj2z1iZaVk23Xq/zPC9k7kPosTiIKEjhJWI7RCIhRADGSI5jajRpiuxt1xDRoMiUJPYhxpgYHWMM3hH2mSeXKMe2rSyH+588GE+3iIiU9C6iAAKRJAkiWtdoqRJjNlVVVVUv3u6aNk3TPDHB+eAdONre3k6UPjs7MVLFGEPs8tT4GD784L2X7r0WkAKjD0CXGgwGYGstopBK9SGGnvuoUnSRtSCUAkEQw2V+qlQQe713iN5Gb6PtTyCBOTpr+0QmgYm1NvogSQklmZkRwTEyIwZ2wQU/Ho6QWJEIIbStBe/Pzs+bcj2bTjvvCsTBYFAwN7Zrmmo0LLJc5XmBEZs0beq66zo5zLVMg2+yovjgg++MB4NXX3m5c340GqEUH7z/8Gw835rNlJAoZLnZHJ5epHU9LzdBqGxQJEkyHQ2LxCgN9598UhQzwlAM0tRh3XJrXZGlWurRdNrU3aqsvfettfmg2NnbllJ+/WvvPj14tjMdHR4eBtZ377z+4PBCCGYKQMIkE8bk6OT8fLVoo1s3lU4zDiJCALJNiEF4EqyUGkpdrlan0ZW+TgQD0fbNl1rr1otaJ8l4OKqtLxdLG6PtGmOMFBi97UHmEYARGTECJInZbDbYWBdinucSYtlUZPRoe5Ykul7Pg60dtLGrR0Vy8+re9Vs3js5OrAMUwJLAeWBQSiVpXjfduj5bVW0AeTG/2HjnlfzMFz57dHS0vbd7cHQUgEezraIo9q9fHwwG5+fnHONoMsrz/O7du8aYTz75RA6tUEgK73/4MSmd5cVqtVxs1o8ePbqxf+3a7rCzbbXaFINR5bpNVWY6CpHbznVt02NhkiSr6+MvfvGLvS+gzym6e/duXdff+sbXbr/0Gg2E6/14ro5B6Dw/XZTD2d6V26/8zp/8RduyB9c0DXDIsmx/MgsRjh6cNK01Jt3d2cuKAUQ2SpLgJNHMvq7rEHg6G7aN95UDwKZrk1QTYpJnxFFJ2vSGWYTB9mSzqZumFKR2p8P9/avWu4OTk26x9sDeheA4smuhSZMk0zpLTVdtCAHJSqGyJC/SkTJJ3Tqt9cnJSddak6gkSVzXrto2ZElwXqC0TUeAaISzDNBZe4kBYRBta5vWxQAogYiyPFEGGNAFthAjewKEEF2IHCIRUV+TGJnRWh9jUzVNa30EApSeIwAIQATsgxSp9y/FyBEj8OVAmwERYwjR+/F4PBgMondSytSorq3rutaSlFIBuN+gxxitc5PJpLW+3LS2aSMpFNhv0wQCActLuQkCQAy9sZH7gszMnQsuxF7BGV4wBsQlzCB6F2O0zoKgPl6uD7KLADH2WbPMzMDE1NsHelQiwGWcGxDw5QQagIB9dAEickBG56zTSgiMwNbamCpd5Eoba33wnEjsOtvvOhEpTdOm6ULwdb3JiyRGCMFprSGis7Z/wL44NAAAR7zMDwIAwPlHD4/Lxb1794Q2oAQAwWb17Xfe0Qqr1cKkajqdJcoMB7Oda1cmN29vPJcWtm7cCWRO53OSQimhFG04tk21iK5pGhRyXbUhBF1kxIAMHJljBEJkRORgvSBBWkHgwJGEBMSqqq9m48f3P/qdX/sNARCDFygEx7rc2NaWy0WzXj97VINbh2Bq72cqkWmebdalECJJtLV2tWp72ZQQYrlcJkniYvDWD4uBj0FrLQFDCA8fPiyGI631crkcDMfn58eD8eRZXUsplTJ1XSfGFHs7i8UClQJm23XeOUQkokuXDqJ3ve6UQWuMQFIJIYTnRMkQAgZfJKYoCudcVVVaqq7rpCREdM4RQJ6mo8ws5yvv4tOnBzpNjE7LsjTGmNS4tgMOyJDlCSLubM/OLs7zPC+0qkk0VeWCzwbDGIMCicELKfe3d0IIJycnStAgTaaTkff+z7/+za7rFAlAwYCAgjmGGAgJIAKHGBjjJb8NOHrnRc/KFr1aHnuTHTNHHyQJScIIIPbMjMCasMjSzrmuaZMkNVo7H/M8ccF776P30XtBpAljjBCDt8E5lxgtCYPrJqPhZFCMhsNEycQoa+18cW6MGeTZuEiJsK7ro6NjCLC3s1sniZYCABaLRdeWW7NRXhR37r0spL62vVtXzeNHj65fv9o0VdVstJSTyWRVVZOdqUiy43lZVhWTYVaPVkfs3NXdrenObrmy5WZVNXWRJ8NCE8q2LWUvBWW0nRNaKYObTbX6eD2ZTKZbO4fHj+bzQ2fjesXpmKRU87PjytYmza7svrReVWfrdVSqbtt8tgOuS5IUyUipBcTgKsDAhE1r+7HKaDLbHhdn8wWT2trbOyufZWkxmk7nq83x+cIDGiUkARF2njm6YpCXZdnakOapcxa9IwFKaCGwa2oHPB4Pt7emSZKMpTw8PBwN0t3h8F835UuvXF8vzrvA54tGG6g9gG2A4daNqybJzs6XhyenT47Ozi6qalUH4PHWNBuP1005LxfZMt++ssPMTdMFjsJoxzHNs6IodnZ2zs7ONps6BL5y5dr54nh0dff8/OD09Njo7OatO9P92f/+//R/TszgzVfeXiwW1Xo1m+22nQ0cIndEpq43vScVEfNssFgsdrb3bt++W+SD9XqNQFLKTV2lif7c935PW1a/8ev/7Ee+/GPj4bTpLANbYK+yr77z4Pj33j1ftzt7NxpXDsajEPj49NxtxGgyTExeNbVQSVk3rgmEmM1G41EmJUoF1tUMsm3a9abxgTwAOb+pGoSoFRFHQaAECaSz06PRcEhEs2HGEdfr1ZMjfzFf1o0VOmWQUojZeMYRV+uFDU1CBJ40McYOwCKIw2cHeZ6bJAuBJ4OE46huOmaG6LVUROh9jIG1EXmRaa1ZUFVVTd0xWyHEcJQlSRJYpgUMp+mirNdlJUwqFFZNC0BSGY4Uo3+uO4nYUx8w9nHmTedC3VrvGElqZVkwRIA+y7hv2jyBYMR4GbeHASUyxoCBY6Y4APSNKUTGwJ0L1gVljHdOSL1cLgUwCuox1N6Bc6EfH+pES6ld4NQo5xxwkAhSSkR2LnTOee8BEwZyHqyP3nsGwdyXj8iMjNCPjDnEEDgEz4CKSErZV0oXQu/Tuyy/EXu0CD9n6zJc9p6MfaBvfCGZxsiCLkm61jvR1ZF1qrW17aZuJaGkyDEkEjHVHEEQARMgKC0nk1Fru7pqIXLXtG3bZhkLIax1rPuNgOgj4xCRL+0wCAiwOvoP/+7/7P6zJzt7+8H5rf3ZeGs0zrQ0DXgrJZxfPIJYj4rJeLa3vb932OpA8trrr0+v3Xrv/jMPOgTP0QPT3vY0xjifz0mqre3dVbkJfWYjM3kEugxr6g09JISzjhgUKWVSF2PrXZ7nObqvffweAGRp5q0LwR0+Ozg/OijS4ny5/M67WXshZJwzjhrB2f7n5Xq95BD7sp5lWQihR13P5/PEmNFoVFVV5x2R8G237JaT0bAHo+/tbDedJaL5fN627ZSQkLu2res6y4o+7HMwGJwtliEEYshMAqL3IyEp1Y8sXkwSXAxV28QYd0c5EVXWurZTSkCWCo4SONEidFEwpkkCSnjvITjXeZNks9lsvlrOV0sUPBwOich1TWJMkY2Xq7lru66utBxH7wZ59plXX0GGw6Nnjx58At6lSmapyY3pCZEySWBr6+Li4vjg4PbdO+PxuKrvI5IUiiEAQB/i1UPhY/TUE1gE9oRIAJ4Miv7wq6VK01QKij54b10IiCiJIHqj1SAvQnBt21IMSlBwuFivbdOaLGOgEILtfIyRISIDxABREELvoUHgGCNJlRiTpikQJjrNs8Tb9vjsuN6sZ9OJdzL4rqzriAQhZEk2Hg+7thZIzllEvnnzZvDt3t7eYDCYn50PBgPv/cv37mmq9/ZezhK9WMwvlou6WydZ4UncuHXneL5+dnB89crA6HFr12UZyvUqL4ZMsnUY6xYFqQTYu65tpZQE/RFXCCKlCVyXpTkJePnllwFa2/GjT1abTVfMJrvbk/c/Ptvdv+WiaD2ko8nGbtibyvIsSxFl23pENMYokSBFxzFJc/AubkrrQ2Ta2tk9nq8QhRCiruuqcR5AkgghxBAigNBCCkRkRA7sMaJnQ0qOBxNmrDsLSCbRs+FwWGR1uWqqKs/z2WhgKBSJ2ZSrZ8/w8UfLT54cEEIIgAykKXZ2azbpum6+LA/PFvefHB0crryF1+7d0irjiB9+9N7169dNIhGh7trRdHz9+nVm3t/bXy+Xm80GYpiMhohs2xoRh1n6ra/92UvXb/zEj//YP/yH/91gOv3FX/3Fb33jm//Z//X/ORvP/uyPf/fRo4/eMMlONrg4PRvOzPpiPp1OgblpmujcdDrNs8F0knzzm98ySfbZz71dt82mKmezCQB4b4WMP/IjXyhXp+9++y9ef/PTQo1UMVmsy61r95IZqaPz+bJarsrOyiRL03wLUD57djSabE8ElOVquVxf2bkyv7hommY6zILrBPKVvR1G8eD+k8XF6eTKHe+tINV1LjGCI/oQPbtBniHH7a1ps6kGo4GA0LkObAWDLIBvu0YjCYnIKIEYcXs0qTclWucpDDIVQ5CkjBGao20rSWC9b0tnrU+UbjoryTRNwz5IEsUg88ECRBGYOY0BgUVnO+ds57EoOETWuiCpIjfWRyl8RPDBhhjbuhVEABEjA4CSkplt8IpEYPTON23HzCgFM3fOB5nACx9tgH7O1+u3fXjOkWUGgYQYGR0TMKyrtmktIRKBQiSI0Ttnm9lkBEDSKCNFuVmXpR/lmU6y4VBDWfm+hSV2riNkJUSfT+F9tLYPS2aQwoXovbMuWs8k0AXvIyhlGBmfJ7Zx6BPbJArCPgyGGUgIAYEvXSfAhM/5wYgoekU6XC6MI19GwCHiZV28DAZFeA4UAgApwRgjpVhvqq6p7SgvEm2tHQ8LqRTgpftYJ0qoS+GY970+L2itEQUAKa2CjyG8wOyLfqQvBH7wR/9KxHp3VpQXx1mWvfvN+5/9wmf/5t/8t1ZnHzfL+Zd/4sfWVfdbv/7b12/f2Ll+pxXos6s7e/udSkunHCWdi0pq39lhkUfvXNcCwPb29tUbN9tPHp1fzJPCSKbex8IcuPe3YYyRhRBGqraxggQIaqpmMDRprD745teM0S5YjlCYfHtcjPLM+0gct2fjT796dbN4vGqT1uYry7Jt293tHefc+fn5cDiUUlpre8mu1tpbZ4wZDod9NBAR9TkHeZ53XXdxdqZMsrOzo7W+uLgoy1IlBlEsFhdd1/WfFAqSiDpNlFJ1XYcYiJmYrHUo+yHE5ZksxiiRbNsxs20bRLStOzs5id73lEdrW6P01mQwyMdCiIuLs/l8Uwwn3vs0TU1dWx+KLGuapmtaRXh2sh4U2d7e3sHB0/VyeW1vL8Tw7NHD3d3de7dfGmhtjAGOXdNORmPb1k3TDIvZztaNLJFHR0eZFoL97u5uXdeXcduyz10JUghEFoCEqKToU5L6tK8YfG9QFkgE6F2wros+KClD8AKRAwMhB6cQTJ5h8LbtEqXGo8FqvenWayF1Vbe9f6P/H5VSUpD3FgEighDYNJWkYrS3JyQt15tBnpbrtcAAAFmSbtar5fnJztbs1bsvoUqWy+V6vbZ1LRGVxOjaIk+LPC1X9Wq1Gg0HPeD34PBZURT7OzlDqLtmOB2iptn+3qaJDx6fXqyXISgSWVlZZjHd2ufQcvTrutEm15q8bRbrCoUcpCkpVEp564TUMUJZVUSgtV6vNyiSi/OTopDDwezmreHv/dE7Hz9+9OWf+TGVmKeHF127WlUN2Hq+WaajEemktbWSwlrrrccYSXhjtBAYgpsNR+Od7ZEWm8VisrP14NE7+Xi6d/Xa02eHiDAaTXhTuboyJu0PT4jsvVuvndY6zfOyrMbTCUFIkoSUZuau6+bzOQfX1JuqLPev7BZpws6dn59uNpuzi7iZnwImKK31HgiQnQDY29lSylS1XZSNZbG2ME5kMRy9+ZlP7+7vf/2bf5KniZbi6rXd0WiSJMlwMP7www8lxsl4EG3r2mo0Grl2k+R5U20W6/moSP7g9//1/+u9/2p+3n14/8NVNf/B7/+BVOf/1T/8r71bbG+PiODw6CArlLdNv83ZlKX3XglJJAaDodbJPsmDo8NPPnl09eo+CfH48eOrV/elQCGSxKimtqPhtBhs1UG++8Gj06UfbyUv3Xr18HQtsZpORsvN0obWgcOGGILJdHR+OByfn5+fn587axfnre/Wd29fTZOMBGiVumv75yenVVX1k17nHbNwAjk6I8h2bjIevHTrRjlfbqp1uVyenpxcv34dtqYmTdr2waZcJtmIUEffAIA0ZpRneWa6ZgVMaZoUmUZiWy4RUYp8OByVdfPo8TPbxeFomumiq/xyXQEGEhCjIxEW6zMIQ6lVmqYp6c6V88VmuWmF1ELqddO4EICodRYFKSOD9a52kYiIEPn5IAdiZAcRI4fI3scALJBiBOdCiAGev/radulCZAwMwIwIkVngZbS384GIOEIE0BKDD5GjFKSVlCqXRivC4G02HDCzSbQIHJgBUQjRto3zniEIJCKQJiHS/TLO+xgDcMSmc84Ha23ngw+sJPkIzNifBnoVeuTgL+2/EELonEMkrXWSJBG4bVvb+T6C9y9fL3au2ItlX8yEe14lMPV+3BBj7M8v3nOMnrvQSZklhpAJsKqtty7RMkYIPk8Tpc2l/RWRk0SX800IQQjBniFECNGFrj9VX6LTLk8CJIQQJH/rX/12YFivNopUqhJj0rv3Xh3Pxi+/8crH334nGRbH6xJ0mkx25GjbkUy2b150gV04XB+6iJGktXYwyK21m/WqBx2uVis8PKybFqVyLjCSBGaG3qrc+64QQEiBJBltjLEX++RZ9uEf/va3/vyPE4NZVlTluuma1MzuvXwnSbLjg2ev3L3z5uu31hdZxeM9fIW2X5Jaqn51tLe3NxwOe79zj8febDbOuSRJekpzv2St63owGDjn1uv1bDaz1gohJpOJMSZJtZLGczw9Pc+zTEiJiD1/TglSgjpkLSWi6JyT/Qw3BiEIEHSSZlmWJMnq9HAwGCg1Cq7rfzCSyhidaJ0lhgSMBsNgO6VkqtRsNGqR66oUUg4Hg8VyuVmvvPdpoiXC9pW9QZZOpqO9renJ2XEIIdOya+uLk2PX1H3khBTKiy64Lka/t7OttQYOV6/seddWm9V4PG7KdQxBCCGkUEr0BhsInvuYLAHUi9+hv23JhSiVICIpZH99x8BKKfbB+6gEAwIH19ZBkTCJytIscFUURQrYOF/VXfAOQQRg9gFJGqMTo6UkJRAgohQA0JMytdblarVeLpEDMg9zs7OzowWkirQUAkFJal3Lrh2kCbDTxNG3CJylumuq3d3dxKjRaDgoBsfHx/v7+8PhMJFYVaFpNzqVZbWZTHciCdR6U69b2+V53rYNst3ZKWLgYVFUNYQQfLRSpwJjiOQBALBurURqbae1Jrr0pZTlSidQ1y0D5NlA60RSxBAOnxwM8+Hy4uNiJIHipm7SPNvU9SgpyrIejzIpJTL6GLztAkcgIOCT06NakNjeKkbDohgaqbzrdme7h8fnJs+FVlVTWx9JuT4iiYj6kFMhhJay7wM8+8v2hRkjL8rVplonSgfmyEgkgcTRyenFun793t13vvMdEEVwjgQoDV3LhmA6nS7mK8f40YPHF1W4ffvWm6+9Ph3mV65cyYaj7ekMAG7funX37svW+qqq2qa6vr+3ml9cvbJ3apvHDw6+8P2f33T+nb/407apIuFn337j89/7Pe9968GdOy999Wt/8fb3vK1AfvTe+1/6oS9++92/uHFr19ouywbBd2U5357uLZfLrmkn46FEuri4AKBiOKya7vOf/0K52XzyyaPpdGy77itf+cpbn/7U9b3XbVuNx9dGsxsA+dHJ4k+//oHKt5+cfXx6UX/q1Zfr9fD84nRTn+Z5mqQoPWbFMDWqrNsQXFFkGNHItNksy+VG0PXEqLreCJQSQRGVTZNliTFGiqTtr2bbJaPBwfFJkiSbstWJySEnhtPTUwBom0pJmaeJbVxCbIxITML+0vwj2Htn25aNKVAqjOHG1SueYwhhNB7s7u4SivsPnjZVG0M1Gs6ydFjVq01VjsbJzu720fHTzSp6axmFVFrppHVoPUgS5aYt65pJkJQuWCZ8nlucee8RQCmlCBFRCqG17rqOhNIkfaTWdi4AM4NUPj4f413m6CECcmDqEWsACPR8fdyTprDnGgiOzKwEKqWVohj8IEsSk6VGde0mPr/Bm/W6rGpltNbaxWC9A2YhkIAjB+s68sL7GIECQ9f5MnCvUmQgRvARYgQSomd5vpg49nJiRPSXSMFAUkhUyAJBIIYXbf3l5vX5V/Xt8r9RmZ9vYgEEMCERghJCKyGRAGKaZL2tLk8TlSYuABGmwtSN7d1TJPu1GADEfnLQIyKaplJKIGJfeoVWvcgUILxo20BCVEakA0Gbrvb51nhnSgK0oOSV1z7V1U3rebFo/vbP/k8Zh0uvJ9u7h5A0Xd12TpkMhejaxpi07Zwxxkd2wREKBr4sW31OGkXuKd8I/b6hDwCsq7YL1pg0Mnvvh3lhlLw4vF8YVImeL5dGSQyotfz444/Lsky0QHj5+PBZWy7OO9fM7lCIcjgcNk3T/25OT0+JKE2Si/Pz0XjcNM14PK6qqqw2Ozs7iFity16q138EVVUZY1aLeU/0LbKcERKUdjzc3t5ercqqqmajoXOOiFRitBLj8VgoWW0aAFhvyvPzcwYmqROtBEL0bjab9Qv/bDT23ofosiS9evXqk0cPR6NR74B0MYyGQ0Lw3p+t2jwZzVdrBEiMYmapsOtaa+GsqexodHzwFDDu7O1mqdls1hqQjVmvV3mer1YrY4xRar3ZJFo2bRXZayFGo9HeztZ8Pl8vzwX7LDVCiKZpbBekEkagUqqvgpfmZgAAlEREVDVNDL5tA1GntLmUEZKofSsIicjZLlUqyzLftavVipmTJAFBi/mibVuhVOwjmmMgJU2aSknWu7Z1yCFJkp7wkxfpcDgMIZRl2RvnB4OBpDga5IpACTZC1NUqsGDH7WYznU4jezNMUpMwB9c1Ki2867a3t1JtrGu1kVoq5uBDbj2l2bTuyuWytXHlQazLajydHJ/Mq7qUkoTETXUxHqVKx5GZLucXnQ+DwRA4bjZlCE5Jit6NBkVVN0mip9Pps2dPmAMiRue2pjMfy5PTo9EIBgO1WvHh44M33/7Mj/3wD/3yb/6mR81SS5mP00Fd10WaCyHKpmzrlgQCYsKBCBQytO3u/m5d1xdnp8ro7/ve7/6jP/2Ti/WytnYTQnt24SMMRsM+L9J23WCQI7IxpqqaRTfHCG1V55kCgOhsf7I0Zqssy0ii7eyqapjZ1atlbf/m3/4fX9udvv7256om/sWf/vb73/pjJdVwu1idLl66eXt7e284mnU+WoAf/JEv+bqxrq1bu399dOP67Y8/fuAsh4AANJ1uLZfLIs2KolitVp9+843f+93f/nv/639/OhnduX0rM8l0d+vJo8cI9F2f++zF2eZn/upP5cVQJ8Wv/8qvvP76659++3XrmzRNmrayXaWEqKrKez+dToO3ZV1ZayeTmRBqujVzNhhjtra2Li7OtnemMcY/+ZM/2f8br0aSztkiGXz86PjhyfraS69VTgzHW9uTsW2r7e2hFi7L5aKsfWBnGyUzQdEosm0lSDZ1O8qL8WBA5M5PT+pEZalRhpYX8yxJMJ24ztabajqdDsZKAD5+/PCwOxdI58syhGc3b1y9cuPme+9+WyWJY3ZNjSAUcq7J202amRtXZhyxqqqLi4v1atk3JQBou5AVWWNbgFjXddXURTHc3dthFg8fHrnOrnyZZdmdl185Oz8k6SZb2ypRqyWdnV1cnM8jkpCJddFGFiwCo8qG1rm6aQMwCnDeExHHUNdNjD7PMtSGCJRSJkk66733oT8FRm6t722BACKGEPvV4POBMzM71wc5aBTch6vHy2C0HqejUVCIgQIHirYLRovO+rOzM0kgBC6Xy6LI/MqnIKgHA/vYNA0RJEkiJCkSfUFCCKQSqSU0trHOMTIDoCAhg7ccog+xb5dDCDbEGC0iAmBvprD96te5ruu8i0AIAELpGGMMASIT9Wl4l7NoeHFa7WcDz//UB0IoSVpSqnSSJJIgxri3tzOfz+uqZB9sRPIQo0du8sx0NsRYOd/leZIYhUhC4ng8bpoGkevaJ0kComf7hjxP+0/Vexejj1H15wMzLFrXKaOxg1vXb5y++2eDLJUIV3Z2D0bDYTH46Z/+GaKxNDv3T8oLz7PdbbXeuIt523VAQqukaVsScHh0kmWZEtjnvscYu7YBAJQSgRCRISBEBiZAZlgsFpPxLDDYznddpxLjnf3df/WvHn/l98aFWVZlnudtXb129+4bb9xzVfnJJ59cvbp94/ru0cEHksNFA8XV7Prde1IbpY1qmubFcaYsyx6y06ug27ZN82KxWGmtk7wYD4q6rq21IYaefVEUxWazAea664bDYQSejSc9vmpra2s6zDebTd8KmzRJjQKAbDKebM1ijO+8887J2akU6Luo5cB1Vhm9s7Mzn89t8CGGZtM4G0J4AiQ2dSMJR4OhR3t6dpYmCSKNisLHoARIrbWiPM+dc1VZjgbFztZ2nprz8/PBIK+7tg9HEyEGYEG0rjaT4SjP8/Ozk9FgiAI6a6UUkdj5Znd7C9mfnJwMU8UcBEJSJD0JKMYoBIQQjNYhhDTR/YRECKGUqjdlmhgOIUZPaAaDQV03XddKJITYNE2iVUSQWo1GA/bT0/mp0AqDL6sKCJuuS5LEx0h0SXMlRRiJRa/eBfZBGm2tJQFlWXZdNxoUeZ73d/5qtRrmKRB79kaJGGPXVoLieJBmWbLZbJjZO5dniRSYJEbAZWBiv26QklCQdcEFd3o+L5umZUzzsRDK2jgejzfloU7SyXhI6DbrZaLGQI2QqLiPz9Lj8bjarPMskYkhKUiAc13b1nmWemdv3LhxfDCHyNev3iDJUiQYRSLzxdqtL5ZX71z/7Kfv/fm3vgNM3jqILGMsilHXtEZL7wQwFpPRcr3UmpSWSaKbzaYYj6bTrXfffXf3ym50zbc/+GA8Hq/Wm0hESm7ath+TJWnaNM2t6zeI6LA7DIGlJojYNa3rrA9WCt11HQiZ//+5+vMg29bsLgxc6xv3eMac7/TmoV69qlINqtIsEGYSIQwCI9EibBzY0Ha0TZtou03b3dGNHcYYtwNsAgMGHM1gYyTRQCNAdCOEVEilkqiS6lXVG++7Y85n3uM3rNV/7LxPZZ8/buTNkzdvnpN7f2ut3/oN42nTNDrNV7um7/tPfuyV2WxG3UuzcS4lvv7cy5dPP3zna1+uKn+wV3Squrpevv3Oe3XXqySvlotf+KUvff4zn8mLzMcgtd07fO7J2brzsmo4z8tyMvWkXdcyitOzKyD+yld/7enTq9l0XNf1KM+FgA/vP/rSL/3Lo6MTo9MXX3xpvn/rE29+8q/+pf8huNYm6lOf/mTTbowRVe2V1ARib2/v+vJKouAYhVB7e3t122utkyzdbDYUYTKZrJabl1565Ytf/Ll1vXzy6PHx8R3fNKuqT/LJ0fFLF4uq6TsEevTwQT8uyrLUJGfF3BGQWJSF3dufdK5/9OgRRUqspuiPbh9fnT85ffLk9ddeHuVF37RG6ejDpl8qpXZVn6bp4EWzd3ByevZkbzquOtd0y7b3vfM6LTaVs7mf7c+01rOyePjwoZbq4GD/YJomSUY4c/3x177+9bppQgi7qmu7sGtCEjbT6QRArdfr8/PLLD0vx7N7d4+fnl6F2HY9XV2hSVOpzG7Xl5ODvYMRgXh8dmaToup61BalbjxFBgIGoaVVMASguD7GmCRZkqXRh8H1PU/SGLnrnDFmV7c+BqE0Si0kEFMgHoa2AQce8OebbZoajLEihyilFFIIgQDYuaCEjExIrAACkQyESgzeupElAvqulwLqugWgyWgqKPZ93/X9gOIQEUQeQnSCj9YaQBV8z0ICSiH1MAFTIBQyxAg3phx+GO4JILPGOdd2vZDKJCaEwIQgkOBGUCUlCCFCCM+ciYU2Epi7ruMIKFg8azVwWAULIZiUlFYpClFYKRHrXQ1A51fXIQQGwQJCpJ4xMbKPoD2F0I7LhEDUdSsFaC2VNAAiYbNcLpm5aassy/LRiG+AfRyNirZt27YlQmZM0/zlN1/657/yC8vd8tZ0/+1vfNU11esvPI++f/etr62uLrXWX/3q27/jh/6AUCpQ3FUtyysXolRCRQgMnXcsRGRQSR4iRGaO1LsmxlhkxjkH0njf2zQh543RQDGEIEAkJo2RCdiTV1YJoKbeba4vjKTtagFKhdjneT6dTgEgyzLA+OYnXpvNJonbB+IQJnsvvsypVdvtdnBOz/O8bVvfe2ttnueRKIRQVVVejqSU0mghpff+ydlpCCE6DwBSiaqqJpNJURTL5dJqHUJYLpdpVuR5HqOvqihCNxSnZ2pgDwDG2PVqYdNkPh0boxaLBVNcXV9lRU7aLBarEKIQYrut+r6Xzg8zepoYidD3vUQxGRVC6l1VCWGkEFli276TQuSpTWeTMJ0oIZGjtfa55+4yc3dxLqUs8nS1WGGMIsQQgjLaU7RJZrIkuL4PXgclBDRNQ8Fnqb1393Y6Dev1uqpbIrLCSCn73jOQFBC6mpmdICk0MrmurbYbAbHd9WmSZMWk7/tqux5MULMklVIjKy1FDKFtembWUk1ne7vd7vHpZWSQSudFGgm0sjFGFuxjiMSZtUmaxxi7ti6zHBFd23V1QwSDxtFaG/p+W20FeYljU+YSxSDj0yj2p5NRkQMScFBSSmFijForJPbR36QRI4FAH0PXXQeKrWuNtRbT1baKwjRd//jJpUCdpWmWpFoaJUSaZrtVI1OFzMg0MEliiFmWpWkqEfLcJla2dWWsypICEdu2LjLT921dNYzdaDR6/fUX10t/cfbhg3ff7/3m+GB8787BuoKrxe7o5FgZZCCjBLE62rtbte7p1ZWwCYuIUiBh61znwq1bt1zoQ+8OZpPrOqmaWmjV9kEA2TSpqipLUhYizYqmacajkVYqeme1IqIQXWlzqy0RuOCYQUiFwmilYuiqemeSXNrm4vJ6vH+0qaqnTy7eefcDZhQC7n/4WAP+xf/hr3z+jVc/9dmPf8d3fMfjn/rpy+urYlRaxCQfP3j89ODgxdHec6TSxxe7o6P8fPVUa7U33//mW7/6N//6//Q7f/C36mz05me/7bs+/7nz00c2L09u37n3wkgn0/sPPrheXr/7wfv/xR/9v5x//e3v/a7vjBCtMt/zPd//4PG773/w1nw+Dx49U9c6a63v3bZq7ty65Zyz1vbeDa7RPBiM23Q8nn7h27/jweNHRJCVkzTf0xcOZfHeu/efXi4QQrvK9guthE1UzA6mq20fWJliJthH3yVW55ntWo+ESsrl9WI6nWoRrs4vtJBZWqYmnZTjJ2dXe7fuXPRXp6enxahUyqxWqzwvIypj06Zab+p2XfWJlVlZnl1cr5eX3/Ed33F8clhY+ejRI/T1xenOORcBb92+e3gwPb8gkxVZPl6uN0JoKfNd5YvS3L511yby9PTJanMeAyqjRJQ+tJdXFQqpjUKFAGdZOTo8ODq8dffR6Zn3KEkFYJMU0QUCiDSMpBgjRtZ0UyBBa10UM4HcdZ3bbpMkEXpgWYreRx9DBACUA/PqhhkEAr4l/xufRQt8xDalGymtklohc9/1LDDPbGI0sAegJEmSxDAFDqitTpMUACKFoRcHROl9GPLgAon0Jii2dZ6YWj/kfykiiowEYgg4IhzktIKBGQSgZAoRUCd2CI6sXOcDMYIYwqCekZ+FEFJo4hCZgIAIlVJpmtKglYbIzPgMoJaIUirvYnQ+S2yWZamxfdttNlUQgpmBGCgIQNI3y3LBVBZp27vg+9mkaNoeW8qyRKJRiZ7uzQfvh7ptrbUoWEqVZhaF0EZKKUMIQmCM/jf//h995ZOf/mt/5f918f6Tp+9/6H1UwnzzrXf+2v/4N+/eOv59/7s/tKgCyMSRLMZ7hwU8WfcUAkZAQgSUIEmKIczYRScYjNIcYwghsXoyn612Ifh+yCUSSiILZqbIiNj2XZIVSkXkCNFPi+z3/NBv/1++/NdTK7tAje/3D2YvvfSCiU6SExLGZdp2laeIUUlTzo6PryWqwSjKe79arZAhy7K+d0+ePnXOFUVRNW3nvE7s0OI575WUgzSIQ9zf39/uNkOvVBTFbDbLitIYEyJ3Xdf3fZ6Xw1OLxWJQG3fb7fHxsffex+C6bjKZSinbum7bFoAkgnPdYFk3OITcGNeFmBqx3uy0Elpro3TVdNL1ADcg8LgcAYAL/urqSggwWmdJOuipVqvN6cVp75211nNEKZIstdZ2Xdc5v1it92dz62O1q8h3Vqs0URR8QLLWZIk1qR7ntmm6ruuWy2WMZDNdFMViseqB8qw0xrgQERUzOyeV5K7rsjRLMq0Fb7dbraWwSd87jkjBY5JopQLTcr1FYmkkMwslBcrOewgiRLZWkGAJyByJoQ8eEYmDD9T3/bAsN8YwsxK5EtA1DUUPFKVAJPbeE5OWApBOTo62221Vb8uy2N+fhxDatm1bH2NsqL/ZUlNUSiklXKDgGxY4mpRS6wRGtph0fdQ6vPryK3XdtE2fajXKUiCHMRphuq4SQjRN0+12aZoaLZVMLi4ujEKEyeH+nssTjlQ3uzwtrLVd19iyuLq+3O6upMLD/e3F0zPq29RmEv33ftf3ZKPxr7712NUXGvysLGsXAeR4PF4uV21PUkoXqI9Ogdzfnx0U+fnjp998573Dw31r4PLqKYKN3vfR2TQDVG3TG51EptB6tKbhriwKLRXLgDEolEfzfakwONd1Xeed632IQEJWuwYpTovR9fVyPBq3nh+eXtZNN4vQt46JGQElIIvU2k9++tOvfezlf/oLXzLGNG37Z//sn/sDP/L7ynI+mx0tGj558eMxUozhYuvLcvLh08fZ9GhR0b/ygz98vrz4mS9++Td9//eYfDw7untyciKNSYv5cy+/EaXMivOnT87+/R/7g7/7X/1dH3/9Y4/PHv/b/94fhTx/7s1vO7m7/yu//JV2Fzh2VVUZKUBgURR7e7Nd3UIIBGiT5MmTJ/P5HJDyNOv79uDgaH7rlUePT+89//FyPv2Zf/He2fL6er0TCl959d6br91946U7V+ePZpPprnKA/a3bt05PT9+7//7TU7d/cKC1Mtr6LkZPNwhkBMdkTeq9Z8ZXX3ndlVMhhKfo+tD33qZFZKia3oV4uL8HwgQW55dXSqBQCWEdu67bVX1VpErtTfLJZMwQgydGVDImBtNENU0dA5OPbWwVoLU6BulckIrTLLGJEkKdXy6kNEQIFLa73nkSylibPrlaXm+bQKxtttxuutBl5WS3q6Qy8cbPAYZBjkAgyBhDmhZaYt02yDDo+VvXi+AjAQhJIIKPnkEpFEpz6IdyKwQQ34y/w231bDkFw2du/irR+yiRlVJKAhGF4DSCtrqu6+C7UZknSeJD37ZtkiRaSx85xgDMSimNGJg4xBiImT2x63sX2EUIhI44MBBRZALGMEDEjACM8mZ36wNh3ydJIpRyMcQhc40IQCBS5EHkEzkGCUgRiAMopVggorY2sJfMMaJn/+vELMS27Y2SUmKMvFisBAMiK6XrtlVCIiIQKAGBQBH4yFrBrqoTg1qCUkJLKIvshuDM8IxBrRBRaQ2D2EmIOBihpyZGiYje9xDNc69/6j/9f34OnKjf//D0/OnBnf3D7d0/9G8XSuA3P7g6XTV5Sb3bhXR++PIrQa/btt02/a51PhAxopSoJHkCqZhiZBRCAHsASK3pHBIbAOIhA4NIgjBGu0BayrbvpESrdGEzRaHZrJumSazWGlrfvPn6a6+99tr10yebyyeJVWkiEWNeTOo6kkxskgkkNXD2jDEU4maz6bpOaTOEmbR9Nx6PB8BzvdkURZGm6YBm7O8fai2j81qZLMsWi4UQ4uLiAi+uLhfXNsmGvYWU0mjFzAdHR03TxK4zSXJxdcXMh4eHl5dXTdOWZXn37t0PP/xQCKGl1Eprrde7bd/3QwG+EYGhCCEYnTKK3rvtdislziZTjdw0lafoQz94z3oflZC9C5v1xZPHpz6GzWajrRJaaa1v3boVUaAweZH0fetC3NbNarUSHJApMXqUWZPYLDVaou97k+hxZotEO5dmRg5hDJPZfLPZ9J2fzGdCiMvLq6qqdrvdbueLLDHzsUDV9F1WJopd3XQxhEQLrW2MiohiDEII7wMi9l0QQgDKEOJwwRkjEVkyE4WhvQghbl016CK8j4hSa0tEwXkJyJF8jErQZDRKrEqNBGYUAqWInvre53keyYcQhFADn86F2PUOQGitCUUEjjGyFJFYaSOkFjLbVY2jYGzuQgMgdrvN3dsnVpvou76pJcYYnFWyyIvVao0hCKmZQlv3WWrnk6nzbVVVqVWJ1UKi710LtWCyVhGK6XSeFclqvUCUaaIR27ZtIdjNYrFbrQXx0Xy2q5bZPK3aqtltx+pwb5zLJpyv1mY0IaSmbS8urwtjdJr1IRTjye2Tva6rFI1/7WtfRyVc33kWqFTfh7IslcXQdX0MFxcX7JwUQkoxn08npY3eRYQyTbIsu1itt9sNoSqKQgqpBCqJ15eXeZ73jk5uPzfL5WazAmSpQGjjm6C0TZNcoLq6uqqqyqZFIFiud1UXD20+m93bbDYhhnIy77oOk+yFN/Z/4u//v//JP/6pv/qX/vzf+fG/+fD8+h/89M8kWf7Si885losqdNy//+Ds5dc+uXd4Yj+Rxgp/4if+zpuffOn5517sttX2cvnFX/pnKPtbRycuNs4HaxKg2Lb9uCxcDFKhc65p+77vZ7NZkiSb9VoAShRpUliTffvnvjubjjnCb/vBH/rbP/n3hBCjMvkt3/eFi6fvf/j+N+rt4umjD0Doq+t1msr5fL9p69a1o/E4LUqKWFe9IBjlubWQGNxVa0+RIkaGpu+GjpmZpVZWmYFv3PdeKrWrm11VF4kG9uTcbDI+Pj42/Zai75oaIRR5RrEvy7Isy96HtnN1HY8O5stNs1rvlEr6vnOgtJZ13eXZuN5VUoCx8uBgfzzKIoldFS4vtyEQxRADdqFvBK8+fBIBtclMXm5WW7drIgpjiG8snm4SBQAlCMlEbd/1gBJZoojEaZLked71fdc5EFIbGxG7uiXgRGkhFA9DMIiP8vRQisgEgAO35iPSEiICcaSAQlhrjBYaAZGkQiIyWmqpQghSSWtShti27chgJI7Bh/gsNpMoxtg0HUgRCXofOx99xD6y85EGJJkgAg25CoPESIDyLjLEQJF6AkStVAgBpPhoTKfBXQMAUYQQtFYEPEQEB2JyvSHCwfSK+dl8j8wcGZRSIMAFQgzOETLkRYraxK4XGgWKm5wlIVkJQKjq1mg2OsvLUmtBoetaR0RpUnRd51yfpqlNM0QIMRCRVgIAQggDXjs0NE3TdBGbvksTmSqVv/Tiyy+/COzH8qXbn/gMAJw9eJg37smT1dPzazsp1u8/FApdpBijlGhBOkIfQ4wMUhhjOMQYeiFRCu29W6/XTQuRAioUChkZmIkJcRDeR5RYlvk3f+2ry9NH97/5jaP5pPPuN37/9/3e3/t7/95P/YPf+6M/+pnPfIaaNjfwx/7oHx6Pshg68iFEMzs8UkpR36ntetW27Ue22kmSDEokZfReueciLRYLmyRlWXY+GCOV1Ayw2WyUUlpgVVWXVxda67t37zrngLEsS6Vtnucu0na7revOe2+tHX6xSmtjrDGmrpshMfTRk8cDrXpwg9JSWWuWK+dD33UNMw5e5M65shznedp1XXReaam17VyvBGRZFhl9WLdtj0r3wdd97b1v236o4jrNpFat60HLxXIrhBiNYpkXvSNj06aqXdvevnUCoR/WrmliUmslU4Su2W0BwFo7no5ODuZJkmy323p1NRtNLvtr6iuTJLPSTgvTjtOqyiZlkSSJ9/76eskCcy3awnVd17S90OADEkmTZGU5Wq5WTdPEiM47Zh4m/oHnPjDdBm0W480pwYKJKNDNw3V9jBGV6PuIMeg8Hdo0IlRKKiUBufddXbejUQEoI3HTtcwstZXauNAzCIFKCBF8D0hIIKQGssTq/HzrCJxnT22aptakB/OZ66vM2Nu35n2nkKlr6rZtCeKd40NrsrOzi6pqjFLkQ0sxTQ0yVNvdloMAROJt0z/dPZ0VRVqOkqKMJENQ9z941DXdb/j+zyZlev/Jo3e+8f6ThxeXZ7t7956fZNyuLyXht7324nw0eevtD4zMpuPJVd0wEjO3vb9abqy0Vdt87ZvvMPg7z7/QX7bjRK/qJpGJREkoWQATdd6TcyjB9yFLrOt6LQSQVyIJMUDohVJFqgkmWc7SpqvVCoK/Wl48fzSPrmHv33nn/T//X/5Xv+v7Px+9A6YYIZJTyoxn8yTLs6xgIg43OXivf+xTX/iu39j0JMtpSzwvS+dc33QiRCPyX/vGe5//ju8dzw9/9Mf+zQ/ee3918fS7vuc3uK767Ke/Lar0a19/Z//uvd/zY39wt7q+enTx9V9+K4RQ5OODk5NtVR+8/EL4kvjmN+9/9Vff/+ynPy9UoiVu1ouu74siu7y8fPr0SV03/8pv/s1N0yltt9vtfLZ/eXF29+5dq0y1vYjk7s7fjARHx/AH/40f+vt/76c1xr/+l/77/98//gf/xZ/8E/fff4woD09u5dn4+uIyxCT4uFnvFpvt4cFRlo8BUGmzqarUC20sCHm5XJblVCbm/HqxqmpCIVChEBTJuTCaTNfr9WazW69WwbX2cO+l5+9mRgXXIOJuU7Vt7frUWpsYGckLAN+3bdsrZQTFxlWZVZ0VAMFkUkRWGphwEAoJgRxcu61GRW5tfvd2/vxdfveDJ2+//WC3bU1SoMrbet17D31rkkynOaGoqq6L/XCIC0QphRZSGymFNLqwWgsBHImj931X1XXX91rr3jsQyiothFBKgZA8hBMAEDMMKblwU9Y/4g8PIygBM5NgjBC1VkpADI6kSfLEKgnkY9+YLDFKCaAYIwpGRKGk8522aZqOQuS267vOhRCZuQ9eCk0gIrOP7BkiAQHfKHoHzhTDMwIYBkHkgwQcvARCIGYfY5SoBp4oMxOIZ9znKITAQafyTNRLFJxwVlr+qPoCIOLw6gBgMAqSUgo5ZBBgjDEyIoMamgIGH6MKKBWAFMfHR8ghTfNUSyDTNlWSpFXdeu+JI7Vt53ogRsFpap2D1CZaayFlDGGgSklAHxwoXNTLFHQhDQCQZOVJM1ZtIybju8/tTW47O34MOv/g6dlyG4kGVF6hkEKAJA4UIAptNCkRAxARIvQh+L6fTI8717Z9EwFQoJRSkKAh6ldrANput5PJ6B//5L/o19fv/cvrExX/5S//ikWcH8z/1H/+J77y1a+Nsuze0d7Lz8+LxBiBXZCt41kxK4oiR6+89+PxeDQaEQEiohREtF4FKeVqyEGbTOquVcqErtcAgYCjb0Mo8lSn6fHx8YBCX19fxxgTmwohqqqKMSqbJElyuai0NruqOz455Ejn5+dlli9XG6313t5eKQRdXQVPs9lstdm0fe+pRi5HRZHnxbbaeRezstjtakQsy1xr3XcNKpnneWJs0zSX18uyLLMiz4p8vdtWdTsYKde7ejqdSmtdH0AIm+YI6AiuFkullI/UdX3XtGmaCCKTZs8//wIEZ5Bmoyy3SjIryXmatJHbtu37frvbaKmAR8G74DurOBHk6w361khlrR6ZbJJIpVQIXkoeZ6bp2jS3B/ORc/7xk/MuROf73kWl1JDDVTU1gk6SlCFqbWOMqU0YSEsZEJUZxKkuEgllpFSDWbELhEzGWKtYCvCud10zG+ccKWIEkIhICAql0tbYtOu9iy5JlZSyD06CCwQsJAjTB5YS+sjGmohCahXaIFDYpKQ+dN4HD6u2Kko7HaWjXE9K49p1kRlrbEjl8tpf1513ztuAQKlNhBBd0ysNyKEoEkQKvY/Ol2XJEYBYKCkEVE093Tsu88PF9dULnzm6fWv2la995eho9ta759tla6S5Pn1SlGgwvPjSC08/vD8zL40Mvn9xgTKXUgklQtt7iI+enicmJaIuuMdnl3Wd7jb9PE93m81kulcFXqwrba1znZbKJMa3jTJSKdGFbro/K7K0q3ZGSV1kyARKKW1V61lquzfLNPQj65uNCF5G/22feKOu27/z438FwupjH381Lc3b79+vr2rXh3fefi/P9HvvvScRdptGSZWXE0ADCC66+XwambaLXYzxhRde+Cf/5J+8d/+Dj7/xap6VVsIf/+N//Bd+9mfOzy6+/mtf+dQbb5KdvPrxT18vr/7nn/i7v+UHftPLn/40OvzaV75677lXvvN3/iAoAITPfuf3Ht97+cEH97tAh/PZYnHlel+WJXM8O7v80pe+NB6P/+E//IcHB0fjyezy4oIi/KYf+AGItNvtEmy3q3Z9NZkc3gkMZQ6zkfhf/trf+PIv/qIE/Ft/48d/7A/869umVUYPh/jjR2dCiywfuRiI5XbXdI2XUtbVVkE4OpzqJK2rinBX5NMARCiSJCHGpvM+UGA3KidN3QXr66r1fff44YP9SfbSc3c0KqXU5O6tLMu21WZupkScmrRudk1D4/G493E2nWS90ybZn462dRNjdN4ryUolHL0SmgIYnbV1aOtV5EWaFePpwXN3DjnSB/cfr1bLDUw6L4ht23r0LUiFWnpmpMgIGCIzSwSrjZBmGN+VUkPEskTIihyIvfdVVUUGEBSIBw8sFhhjZGIiiJEH/4pAgxXUkPTHghkAAVACIgoGAKZBSiqkEMDee4hOEBmlYoyOyCihlBiUI8YYxGEnLZUWKCSi7DrXB8+ePBOjiASMAkCAICksEyMiAQ07zkGGHIGRgYhACCkUUHDBCxLINHgdD/A4oxw8Jj7Kih0KbeSbKWCYQZ8BBxIF8Y0pB0ciJQVq4xkwRI5hYJKCkBTZ441IKxAFikiQGaOtIUdEtN7WoyyxNgUQu6Ye4hbIt0SktCiKPMuKEAIjcIQYwsAwR4pEwH2LSpR5Enu3bTYRKFCcliOdFRD949PT7dnFwfxkvVvO95NxoSssOIQYHA7WkoAC2AhBDBQDImqtOXofPTKgFALIKN17QUC991YCCjHYffrAQUSFcPvW8Z/6k/9Zdfr0J/+nv/H+r/x01zT/9Kf/YZJYPSr2ZrP5eHr25MHHX9oX7OvtxsiRTWwxmgJxvV2qvb09733XdSEEZhyywIy22+22nEzbrgshGJMorbGuY4zBucPDw2q7dt4rpRqmtumS1NZ1PQjM0yJXPjrnlpstMydFWVWVsclqvR3ocMvNNk1Tm+VXV4vtdj3QAVwYLg/FoYveFVk6m8+SJOlcL1ANCMmQE6e1zrIsetf2Xd/3k/F4V1d9jDZN82LU970yFoRkVAHQuxiItZa9566PhFBIHSMtl+udrocEyiJJurZ5/PjxJEutAhF6nyjJMU1MolWAIQ1QUIidb6yWEmlS5HW1zhNNRFqilIDREwV2nQ+SmbXWe9Oi65RQWikTIiORZ6z78OTp+dX1Zd32vfNa6zybInLTNG3dJImxiUGGGH2WWCGUCz764EI0jEIoKUWeWyllcJ6I5BCTZHRmxkrIxGqthTFaoBCIyhiQoq67JEmkNl3fA5KxVkjpnCOWRuku9CKCJ7Zad971kRLuDWKSp5u6bZoGhVqslj4kiSYM1cWTJvTV8f5elqSChbU2dB0zLC4XfRfKYnpwcGCtlYoBo8AYQp+muc6xyMoYY56XXbO+fffONz/48O2331OijH17kVzUzaOjk/L8yt2989I7731lsbx69dU7qe4+++nPJEkW1tf16uLWwV4L5t1Fq7V2FPOyVNHZtCiL8WKxqrv2/GpZ1/LO4R3JtNnsFDM4pwT0XWvTLFLI0yw1YpTnmZHsO20EQszTxBolOe52m9B1AbV3UVnp26pu/MiK/XG+WCxa8FaKf//f/SM/Hi5/8if+8uMnD7KxfeGFF8IR62bYRMjf/lt+29c+uL/rY7Vzzz/3cpZPwUgvOlTInqyRQlpEeOH5u2+89urnP/uZXbXZXp/PR9kLz9375ltfLbN8uViY9DmQrLIyn8Qf/8l/9MYL9w5y++YnPx4DQADQABI+uP/o/GK5f3QvxjbLxPU1S220Au9blOL4+PDVV19db3fvvPNNa9N/9I9+uqm7H/v9P7a6Xpy8cuvi+kNW1hhzevrk+OQ2Ivx3f+ZPPXnv/edv3eq7+MV//nN163/Xv/av3drfOzyaP378YN2I5fI6UJDW2Cwyce+C971AVGnKUior2pXrd9tAcltVXR+zvLy+Xu7qejyat03f1OdZlsVgJRfF3mS7ul5fX50qskqOyvzunTkR7a42u8owRSxLKWyaKFuMu6ur6D0EDwrz1Eync4FqWS3qqk2NSXQeHC8ur8BagapptzY1XdV2zaM0G925vVfm9un5xeNvNkplm2q3bbokV65r+1glWco4pLlzjNHHAL4bhtU8s03XciQtUStBfZAoBmgqEAeCyBw4ChTE4F1UqIggEnAkGrzqbvQ5wBQFsBBCwI3xOAAoIYgCoxr2Tb7viEkrTEySJRYFkw9CiMRmQyEERc71PrJUBlANKzZ2gQgCeUYRI1NklhAZhRJiGEYBkAnhxidjwMY/Ymsz82AaIqXESDxg8CwEIAsxCIvisLdGRLxR5ojBnT4CAjDe6H8JgZgQ0CQWiSMFH4LVRmodQxjyGiKxYMKbbAv2FCVhXddnZ2eZ1nmaNE3jmia1Jsaq6hwzGWNQCGm0loKI285lien6niN53w8H7KBjLtMppLrt+56i85TmWUS4vtrEAlkaKfPQNGen1xhFQipuu02PiKClFhKAWQYPFCMEpQxTEFKiUvyM2Q5AZ2dnaZESRGkUs0BEiuC9y4sxcQwh+th3TR9tfngwGxdp17k7871uy4f7052Pm+02PUrn09nJ0VGR2NgN3nCoVeL7NrdKDTH1z9Q1emiIeu/m8zlI1fU9SGG06fo+TVMfg9Z6s9m0dTUajUIIHHyapr3rptNpnud11XR937ZtmqYDH6Fum0BRI3QuIHNejpDBGIUA5WQ8uKXGGJumOTg48N5PpnkIwfV+u14SiBBC37VJkpC4MUM5PNibTCaX52cD296FyIxSSu89AddtN5/Ph4uHGZWGtne9D0iOhBRC+NANJk3OOZBqt9sVaTZYgOb6QAJut73vwEqkaJ3AjachK1ANqnwBQAxIRulRkbuujT5oVFJKoZQg3fpgtO77LgqhpZQCuq5Wxs5nE2ESVEmaFfDBgwCShg5LiAEnR9Dz2cS5XmstUZkk2e12bd2EEKRUUmhEFELduKKDhBt3GtZK5dY09U6rXEvVdZ0SMs9TRHS9V0pvq52UwqRSSQ0AnobMcFY2wS7wEHAtVFWvu667NZOo9HK93VVN25PWdm9vtjcZJZqEYYtGiXFh05PDk91mt1isjg4OfYwUl6Nce88XFxej0ejo+IBiJySkdmQTLQFd1zsXBkTu9OwJIl4vNpvVwoi4XNTf/rl7o/H+6UX75V/45WrnZpPZKy+9sDeRdbXuqh0H17Vd3zNFY63dni+SIt+bH9TLq+C8j0QMkaFq2jQtxnmWZdnb73yQz/eFzeK2TlHs2tYmZrhvAahpegbabrc4KvzOJVYmSgAFJRQhSESrpR2Xu+XlKBsbLYrU1nVbbZanT5+cnj4Bjrttv2vbi7M1eDFPy7ffzu+/9/V8Prl79+7B7eeaOvz8z39xtfvi4Z2Xv/sHPr2+vNJar9ZX3vuHD/BgPvsjf/jfmo/L64tzSe6dbz548N57ErGutv/g7/+9H/rDn7epXF+fNi5MpvsM4hd/6UvV1fK9d5786jvv/44f+R3l/jTJ8pdeOe7qejyeS79QyoQQLjfbvUl+79696XiEUsz3D2bTOTO++fFPnhwf/62/9bc+ePe9H/mRH/nk5z672+6anfMkmOFv/LW/8eF77x6MyrbaotBHR4fb3fqv/o9/4Y/9h//B5VWVl+JEHzdd68kro6tdva27GBCJlRIU+0jt0cGcEba7XQgCpUiztK7rGGOelVVTN3U3GDAlSRIg3r59xAcz8I2RokyT+XTknGPmyNQ0TZkXAiUBLRYrADGeTLabDUMsssS5zkqLVh4WI+cKcuha2K5rKU1wsNmsGcLlxTUqGk+nkYmbHaO4dTy715588OBDQC11XK3WJkvTouj6PssyMYyl3numGINzjiG6vrbWIEP0BFbniUWGYavtnPcUAXVEDJFBCiFkDDeGGxEYGIZF8E1tuyl9Q0keHLVIW62UkkNcg8AiMVYKhKilAoBBPAYATVsxc5ZlzPWgwJFSAsoBpxzOTO8DSBVjjDAsYolZCcEAYgijZQKEXydjDwvpwTF3qKxSSmSCZ9IpFgPyjQhyWPWCEAgQI4UQUMgYoxZ6+KZxSGdnYEAAquvaGGOkYskgUAjhiKzWQ3IRISqQOEydxMxCaeVjbCiGEKxJV1eXnVaz2cSmwnsPgDEQInnk0ATEbVsr77016sam0vthWk1aDZ60tmme75wqy/FquwOyvpVXq+W2c3UXVhfLw2IWG/rU69/2tV95R91EIBNTQCKphBGKBYbIAKAEkNBGSo6xaZrpeCITta23A5VdSCmFihGccx5ISBEJtNa/+pV/+ejrv/r1X/vVW3futYtzxRB8X+bl2NFuszVCJMb4vkdEF0JZHnz8jU+sk6wxW4Uk6m0TbIwxOlcfHR0CgIuBiAD8rMwBRV3XszIbmNIRVYjx7vPPcYjX19dt2xpjog91F/uAiChMumsWrQ+z2WwQnmql0PdKCI6R+iq1CfUuy7I8s832JmLD2Fxr633ctSSlVolpOsfMqbHFODVW921nMDXGSCH6ugZiZNBaB2CV2N57QLJKGyD0/axIfFsDshCSPUTyEgFj7OpuVCSJ0VGKqqqEElYbBprMptYmi6rVSmTWtkJNsvGqbULvGhe9j8G5zMoyy9zGaYm51Ym1nYsorY/O91wUiVLKCehZRlIekENIle7rNjEaXG8ohnYjjL03Nfa5vaeX17XExrnKuTQxAnmUZVb7VCFKbD1Ghl3vqt4nSZolJvStDP14VFhEIUSPXhDlZZkmxhilpexDX3vniYRAJSMplaAUJg39erw3jjGCkELKuncxxr53Sqm+b7Uiji4Bz81molEmRSqJu+7ONH/t9t4guUvywppUGTsgP11TI4JDTspkT06SSam1Nkq54KVU2+1WSQJoRuNit9kQhGZbZYmG6I73x9Nx+fbDvq7r+ejwOttuLx/v3zoqyumTp/HR4/cF6rsHxWsvzl3wD97/Wvbma/lo/rG0eW7y2i++9ejDVX/tGy95fw+bZtnvGF0zVfjKkbn76Tff+uo3F9dNPMf74lc+97nPv/HSbL26PJnt43Jhk3wRKkN5aa2jOC7y1W5dxVjkRpdZaWbM7Mk74RgpAidGcd9bqQozefp0E5ydjPaOj4qm3k6Vu17dB4GABiKC5HRkF7vNP/rqLysBMYJgePVjL/zH/+f/hEGFiG3vsF1gt2sqhq4ZjyZt1ZLDtg3MQQHmSbF1ycHdNzD6n/+lryux++C/+Y/+3X/n3zuZHp51l555F/DTP/CDy8vT/+6//a+6b6x/6w9/5yyZvH5ctl1I5nOh7ErkL0yONsvdxemV6/zpqpFqLhUtq6XKZ2kif88f/P3IgCxe+cQbj67O67f+5Ydvvds8vVo9ePpdn//On/rLf3nz6NFz3/1da9+PRqPU2uXFwzuHxz/+F/7SH/7f/5Enj84gE121dSRMniw3rQOZZCOW4CXt+g5aFxJGNYFRRolhCm5L26oC1qGLztH+/lG13Vxfnn7i4y9LqbTpdCoU5KN8NBmPmVCL5WQ825+Nqk2Vpmn0oWta17nl9XK3qfM8d11Hqd5VTdc3o5EC4ZMkAYOpCKnQde13m90yLkBYm2YsbNXbbps2fbi4XEbAkB0UZdLFXqOymNZ9325ikmQhkOTBBFdKnZGkHqIjnGUZoBAKE22M0n2MIQSFOlJkoZQARIlEIQSKBIjuW6woB99zZiZmo2SIDgJJpaSQw0pYaqm4z3SSGR2D0wiH0zzPEtc0RkkhwSpJFAmhyPLVaqVGSnMWgSEyQBASlRI60SJGIHYRWhcBNQkZIoBAZuxDuCGK8LNVNJNGdvEGSJY3rlZwMw2jlEIyUYQAN/GJ5KKXUpIQxAEQSUlm6AILoZTQIUbiiAxaSCVRADKxFAojCooWJXgiJCsVRhIYbwIbYgREKaRAEQkAQJFU1pwvdjE4EiYKtehIMzNLR0EKoAiCWWtUiH3XGKk4ejFspSOhELFzO/K6l9BTF13X90YjMvRBbl18/7SN0l6v+tYlNfmCq7vz2Rfu5R88XHUhdQLRaAaQUca+EWKTZcYHm5oiotusLiWqlDPgq5P58/1uEWKSFAetG0AAH/3i+HAamBbL0HZqfvjSl/7ZlzYNfddv/9xP/52/v77avbl3sG523nI5Gfnr7f7oOeEEclyxFxNM7ubzXYvbhRoyaAFASjEalU3TDI3YQEe6Xi7ath1Nxok2zLy3t7dab51zV+dn8/l8MhkN7hC3Tm47566vr8eTifd+f39eFIUQIpJHkM65rm/EIFQn0XRtlqSIuFgsur4fKG0uhvV6ba0ViETkGV3wACCC6IPXvYwUnHORqcwLKaW11jknhKjqekgpGZf5sIcGgIGwHUIIdOOA6n1QWt+7d291faatYecGb2ohRNu2SokkS4GjaxsJIBAvr6+aemetzYtR3zYCyJhUIANAltpRUVD0RKQQrJJCCKTYN71r296xlFIK0fY++N4qSUQx+Bg9IvLgGifEaDTKUbW9w03rXGeUVErNJhMi2tUtEne+EQxaa4ksBdo814IUihDCeDxOrR2Y+kTUdd2u75VAKZ8ZAuCzyBNgqczQL/ONkzkPYFSWZdF5Bt7tduMyn06n6+WiKAoj/Gw2S80NwuOca3ZVzKJyDgCMMRw9SNFUlZXQdnVz1adFrrU+PT09u7goy/Lo8MS72NbNSy+9tFpcXZw/yaxl5rZty7KcTGbWuMvrhffu2z7zqTRLTp8+ZC3KPD/YPyyLJhD2IVbttu97qcAlIJW5ffu207u4q6ltbJ6LuF0vtqU24/0ZoDw6OTRKfONr77737kO10qur9WuvvL7ZVqvV5vnn71xeL46PZ3XvIrm26YrxaOhhISqJSZnbxWoFAtLUbqtN0zRJkgBhojOtMIS+bjaTcXLr1snTU79cr66vLwFoOKpQyraqhcBXX3oxTxOOtFqtVxe7T3382+eHx03rBcqm3UhjHz1++o23P4h9V45mZxdneV5OiqzvGt+34zI7mE9OH92vtpsf/ZHfF7P0//af/N//wI/9G0dHt7VVibW73e7k5ORP/+k/XaRqGBnL8Yhl7YPbLBYXbdN1ToIWEqTCvf3ZdDYKobu8pqvLp6Nyenl5XabpuBgbrV5/9dX2Yvndn/5M84mgEltMpn/iez7zZ/6bP/MT//OPv/TSS832Ws2mv/aNb3YhfuH2rfcfPJyMxufbs9HIzA6Opvu3f/YXvrxebZ1rA/N4PBYMINR21QjJy+tFUWZJkjCA1aap+zQphrDkNNGZnVW7zf5ewdEn1hZZGp3rqp3WOmqxWK2tNiCFtVYXdphstNar1fry+iJ4uri+MiYRUvYuZKVxzkmFFCKSsGnZdozSMOBkuidNUveBlY6IrWsfPn7UljUxErAyRjDLEHyITd/tmtpIMxj6K6WEEPjMjTIiioDkqRNd9IGJtLhx/xdCuBCYGaUQjB/pfT/iPX0kNxoGPfzoA8QBc44hbrdbr5XREqXc7XYUvUZ0LjLENgYAyEfl4P9V17W04ua/gCh4CKz4Vo9mYI40JLYQC6H+10/xr+NkUoCQiL8ulProa4YzUwjBN7bTaJQOFIECDXtrgIFuJhE775hZAEsULJBBEBATsWDJOLC4AAAFCBQIoBAR1Y1dCSDfpDuwFMK7AMRRo5Y4rC/7zpEECYgIg9szAjFz+BZN10fQwvBC2q4d25KYSaBQcldvIxppsFtXSSrPrq440kvP3Xn4+GG93T28vyuKIi2SdusZOISopXW9m43Trtu5GDoPoHtrZVqk5Cm6oPT8g0eXRDCbZSYTDx4+zrJMqYBRCtC7TaXUqO26o/H4u77/O588+PrdO8d/6k/9yT//X//ZenMdgPrYb/l8v8iLEbpuB+iNSpUugKXO88PnbqnDwwOlVNs0g61VCK4YlczsnDs9fdJ1HQGulytmLsuyekaHGAABAABJREFUbVtj1XhU1HV9fvY0y7JRnhHR4vJib2/v8HDfOVdXW21N39ZaawG83e2YWQglkPM8d87Vuw0z+xiMMdPpFBFb14dATdPsdjttFTNLKYFYa601E5GPITHWJFIJjEy+a0FgkqWpTVRiiUgJ4ZwbmoY8z6uqIYCiKFwIddUSkbV24HLX1brp+t1uxzFqY0ySEEAIdH5+LgCNEiLHfrNJEzMeTYUQkyJPlGQKglkhTcdlmVrXt4nVgkngTbMSY4zBayWh79umAgDvPTIk2vhIwcfEWgYIDDEEKeVoNIqoaLsrMtEKyK1JtCmynIjappcCqPUCIVHSGJPaJNVCCRguPS0lIdpEJ8Yyc3AdIhtjlRaICPHGK/XZ9aoJkACZCIT8CIwaTLtGo5HESZaY6J2UcjwqoquHe84aY7QSiNvdDgGNEsw8KrJJmUrm1eJS6XQ+G28aF3qX53lRFIfEXdd9/etfv3PnzuHB3qNHj6yW49HUWmO0TBPTdc6FONs/kKaMpJzvZ+n0tddfb+rt++++23Wdd8SoGTBJDcdwdrYcOfnya586NuErb3/APVDTyETs5fNlv8nS1Pv46Mnj1eLhb/juL3z2M89zuAo8/rWvfLMc5bfv3KHg55Pyzt2TSPzehw+u17ssN21dVXU3H+9LYVfXdZJuQNCuqkSPBCAFAXslxcX5o5Oj48Oj6XazNunJ49PH291Wa9k2NdyY0RN4kIgU6L2330+kijH8pt/4Wz//he9aXe8eP1zsHZxMZ3OtUAl+5YXn8zRbrXfKZGdPHoqoXbet16syT6zCerPan04+/+2f+a7v+NzB82/4Frar7b07ZrfbKUGLbZUoylPDMVxdXUkl5nt7qIU1Atq4Ot2VWR4jOeeMtlrLpml6tzs8PEQIm+VVniaudTEJ7bZ6WjW68UFBn2of473R0YsvPP9n/9x/v6dGq6vrn/vSlzoXTp574Xf+6O//0R/9UUWwuDgXfZsWZWRxeFjePp7U9UZaaDu3XV+NirFE0bdOKSXIaihG6fTp1UOtTZZlRJRmyXp1PSqyIs9PDqe77VVmhWQWIcymIw5xt1lDauaz2WJxpaVK0yhlGM3GTVV57+8+d3exWD58/HS32Y3GKkbf9aRqq4TI81wi+74zWoO0e0e3rq6XTd9fX1zuWldO5zYbZaWVGlbrLSoplQGlrUlQms6HEIKSZoBkY2TCIFgIFgxUk1MohIAgpEQckuKEEN57SVKKIQ8egBhuFDv40Z8fWTbe3P6IQ6zfUN6GrsJYKQUoBOCohEDEEIL3flTkIYYYQpIkRVEAQJoO6uqhrKJzgcALpZ0fnIpvptvIAEhMAMSR/UeV9aPO4NcL9o2e4tc7BkQ0QhERIAkpBu4YI95oH5kCExEQM9ON9IgjIQOJmwE6ShTAQ/wRIPBHbwjgsEJ20SsUN+tnZGQAFIgCeMiFpxBQsBBKRMAQA5JghRrxZv8MCIA85B8KVEoiIoU4rKWttZ5BFylAWFxfbbfbtuttWk7nJ+tdU1VXgkKRWgH1pz/x4na3XiyuNs2u95IQhBQgGYGUApB0cHSw3Kx9HyB6gYK1jIGEwtpr37XP3z567s7BZrs6x10mWQodGOvK+Wg7EkTaBdpuNxRqAfF3/ciP9Mvmr/7FP995HE2zptnNZtLYHptWaQsO8mwKg/LNOUVE1W7HHJPESolSWmRYLq6FksG56Xh8cvu2lPL9+x+sFsuiKJqurdbryWTSAhslGUhp6St3fnE2XEwMsNts0jTFPPN9V45HFxcXk9HYWquNbJrGJFk5nmohQwjr3XYymRTFqK5rmyTOORc8xRgJiCJ59jG4rg/BTcfjJEmYBTlHIRhjvPcxxvF4PHg5bbetUsJam+clgDi7uJhMJmmet03PbYNSNE1z//79EF2MUWutbTIuR973nXPMTCEE1ytgNxmVWWaNYQTvfd81XdtApDKz8+l4Mi4yo2MwFHqJGilKKRIjOIJkDYm+WKyuLheDUKEsSxes1dKmGcVIFLvekZRKaaVMFyLH4PveCmWVjj7sNlvvfVs3IUYtRYxorU3T1BqlJWspjdZCoRAiOFJCGqOIyOocMWNmJYc7jbWQKGRkEkJEJvAxEOMgNfsWz7w0Tcs865AkijxPZ9PxdrvdmxbbzdZaXRYFIiSJ1Voxw2w2WywWbbMbj4pxlrPLJAJHNypyIvAhHO7vJ8YsVmtEfPjgvnddnqTW6DxPxbRkiuPxdL1cLJvw+MmlNilBbLoaBHfOjafTw+PjO7duMfPl9eL07KKpqyTRe+Ppu4/ezqbH49lRKuNiszRBQVDCqoQF+bB23bS047H+8P43P/epV//VH/qO84vynXfeefeD98dl8eK9u9tqNy2ziOLFe3dfeMG8/f79p+dLIY0ETJVhFADVwd48y7ULfhgFsizJ04wO5kbLLMt266Iok/GkDI/8yckJeQcxSCn394+C61fLxV6Z701m+/NZatMf+32/BzG5/+4709nhxenTx48fF4U7OTnxxIkWB9PShfhtb7z87rvvZ3L6ue/+9quL08XV5dH+/niUffGfq//yT/5nf/T/9J//pu/7vhhj0zd9s9KiL8vy4vJsUpZMNJ2OA/HV9aZqq2KUb5taglTS5qmZjaYAcHVxfr1YGCuurs4/8ebr56dmvbjMra1Wm+lkFLq238shFxpwD9PmrQfwUgbT/f/rn/lvf+1nfrZR+nS9+NF/81//7Hd+4Wq18n1/eXVZXVx/5tu//Wq1Xl1dTcejLFMoeLlYHxwcKBXbqrLKEplRUQYXLs8vQSnnoxCIDPP5WAoCDsF16+VyfzYNXaUAE6t922gpJPhqh88/t79c7VabpVDCHu6L1KRo+1W/qTbj2eQwRJtUUtk0zTfr3abyfd/rZS0AXNcWWSIExBhn+ycEXEeMuuuCvzo/3ewqNAq99iFUfcMIoBQoDSikMkPY9pAcqpQSSkqJilkgsEQWggApMscAAMwopXI+IJK1FhFDIOKgtQa+SWEZagxzHEbeoc3FZ7m6H1VBY0zfNUKq6WScau37jjmkec4IQgjWRlkjpRyWdwDQdu6ZC5YnBo0KAAQqF91HciAYTGqBOcCg60VE4Buh8/AVMcZBl/xRIb6ZgCEyEA++WUAAPEzTSilBhBQJwFMkJh5EwYgMDAQebrB3FiBwkO5IBgFD5gQCCAECkSQBMiMSSSmBgREigwBmIVEgMbtINwADDi2MCMwisEQGCYPHPgKAFMP4yzEgshCgtZzsTZzrlRZ9DKARg1itF7umZzTBNzH6g8mo2V7vT5LPfeq1rr/3d//ZV6qmI5EzRwrRxyZV2XK9Gs9OWBkwqouMLiqlQFAkEXyrNfZt7ZraCvGJj7+53lSXVwtHsq17TMquJ6M0IzXV9mhvzgGffPDQx1jVrbVglbzcXifPz4X0ShMhuz7kxZgihD7EhhQggWAldZIkzjmlRAhuAHjv3Lk1nU7btr+4uOiaNk0SJXBvNvPe7+/v+94hg0ShhJyOJwNRMDJVVTWfTlFK7/3rr7721nv30zQtRuVmtV4+We4fzLMs2+12Usosy4wx2+02EoQQEHGz2cCzCVii0FqnUiprtDUuBFdVQJQlyTDpeu+995uh2CPOZrPdblfX7Wq1KUYjY8x6u02SBBUOUGrXuUHfTARGCAaITDEyR6+EUFKW0ykEb60ty3KzXq/Xy3t37kqAUZZ2XcPRC2QOsfGdBNZKGilAMFEk7xDRaCmEODk88F3vKQZP3vvlcpllWZnnWmv2yBiGS997H1wQyMiQGCNRKKN816/XawCQUiXWaCGVUlprQJKIRkst0AdfjEZRq4ETbrU01gohQnCD4bsQSAiD5WeijWcK5JkRECQjg4gEwDxkXiVJ4vtWAAtka22eJkmSNE1DRFVV9X03hCHaNKmqnRDIFPqmrkJvlEytFKivNs45V4wmu93Oez8dj6Lzo7yoNtsyz4wxUsoQqN7t9ub77753vxWZ972yzcHBweXicrFeHMz3UKjxdNL0jVVyNsk3W01sJfJ6uUSbf/j06as2/fQnXn79pfDo6fIb7z5NsuLoztHD89NyXO4252+++urrz++126uOWiNfOtofC3EPEcn1HHy7bXSSQqRqtzmczpuq3e7a0G+3/a4oS5XFanNNIIok3e56Y0wqJfetQPZdIA3TaV7ttjYtRqPJz/3cL9CgkYhxlKXpdDwy8od/5w/97t/5g7vNpmvbzXa53tRvfttnvu+3/VYAgAhdvxVCtG2/Xm+NTctyREQfe+nu+fm5CM2tgxm6+vBgMp+OX33lxRdfuPfSi3cfP364Xi+VFp/85Mvr9TpN07JIl1cLKfXp6TICp3nSh35du6dnp1my1yuXJomUommrPE8BxteLSyHU9fXS6jTRWd/UrqvBucSoxhgb3Qv5dM/pdtnAwwVQBnvl7OXnvveHfygi7B/fev+d+xJF09WByciir+N2Wfu4CCHORxOZmNu3jobMOEGIKK8uV227iZGAxc4JBCDqx2XedO1oVFycnaJVFUajxKzMKHLwkCSWYr+/v//gtLq4WiKozbbyvp9MR1BHba2xythUK9v3PaBcrTZXi13fufNtnSdplicCeL3erqvGKCmUanmptO4JZFL63rW+6QIH1igVEBNTF3zoXEQxyCNdiEAUQmBmEKgII2DgENkRGaUUCykRIgrkIXn+GZgshZLmRgL77PEto7BE5AGsfubCEQaYt+97732367PUspDbTRUzW6aJZNW2zbjMtc6c77yPm81m4NYw80AmZWRi8MQYaPDbCvEGLpYohohA5hCB8VnkETMPX/m/AaU/Kr0fbYhvohKZhBBSSb7xzozIIAZat1RBENNQsAdEmoFhcKWUgGL498AAjMNsDjcl2dqUiIhCHIZYgRSZ8CNlEyIRMDGzYRQCtEJgkiSCIMkoWCLeEKIBiJmVEqbI6ZnqWkoUVmml7t67jcRt2y5W2/OL1d17dwDV07OLDz/8QEpprJhOc611BMMIiJIZAFkCKKljtE9Pr4MUKDPXQ2ypSJUACMEn1j13+xY4d365Wq52ST5Z7HaBpDDaI/ShFcY0TctkX37h1cdv/eq4vL3b+fcfPY4iKCMVgpRy72BfW0t9F0JgIdKyeHJdoaPD8VyZJEmSpK5rF/x4OimK7Pz0bL1eJ0lSVVVVVUoZa21RFIM7uWYCisvrK+97pUSaFt772Wxyfn7OzHmeJ4kZgoY4xl/9yq9AOjo8PKzrWhl9fOsEAM7Ozu7du1cUxWq1SvMsBnbODVfn3t7eqmtDCIwiUOAAiCgBlRLGJr7vhut+wFeNMVmWVNsaLGupAsUBJL+hDiXJtqqapiEA51ygKBVmKgvIAsD7yOyC99PxSFk9n06tluQdki3y9PDwcDwqLs8vFotFp+jgYM8oHVzX931mFFMgYIEESgsUTMH7MESHUgRr9OH+XmRoOkcEvXdKGaGMMlrKyAgEwgXvux6FGBf59XXjXRcdTkZl17Vd2yqtjRB5lhaIQkoiCt4nWlmrKUSjhAACZKsHnJmIwqAXIOabILJn7ndRs0JJw034LeFiSmnXdsZqRFRCWqOqqqp325OTk7brrUmJQ982SmlEaPtOapWmKVNwiEqisUqCjKELMUop09QaJY4O9vb399frtZbqpRdfqKqq67p79+4UaSYVPn4c33333cvLy+LgheW6QuT9g4NyNNpst03dJcYsri7H43RvNppOJ6NRRkTGKCX0qunne3ujccquGifpNLvFfe+khQzgaLJt61GW7zbN8mJz66DIdProYrnbXXJotc6uz0+lTk6vH51fL6ezvWI8WS6usW/mI+tCmyRJWcDhpAQQgQBBR9Vbrftd1VTrLNV7+3PF/vGHT1aberZ3fHL7+Xfefj9GFiAVgpZCcpyN8+fvHvftOvptavDg+f3VLkVeg7vsnDc2SfIRRDKJHc/Gj9+/v2w2eVZqjJnG4HbOB2vYdTVQ+WN/4PdfXV2tVk9PTiadW6Ki8cgcHr3Q9w6j7up+u2naxoFUdeNnB/urzbJuKHR1ta2Zwp07t0PsrlZXfd/v7+8xc995QV4I6TqvQULw49n4BTHeS8uLt977x//fL773zfc/8z3f+7v+6P8BKDl57d4Pv37vZ37+l87Ozo8n80yZsGt216uD+dHVxVWeFmmaPb3/YZLavu9nB/vlKF8sFhKUUia1ydXVou9i23f1NjLHLDFV1/eh74zunBMCrLW72nWNO96f+oCNiwd7eyF2eweHdd1uNlsAsd3Vjx8/Pjo6SEOIRFVVKRmc95eXi94TgFosV16oZd/uGv38vTvH+Z2mqnd1BTFW/Y6EaFpf9y6AYCHrXqyq0IvYD2kDQgmBBExEXe+EEPhsU4NSAgBRIOYYAoGwjGikUFIrLYCVkG3bChDE1LVOKVLWAIBzPQhEQhkH5wrEAb8VN+V5KMkwmPzHyMxZklBkx04lFgDbtkWOWgmhjDbKh36IutFaK2WISEkFiMBAKIh823WBoXN+WOPeTLTiJhAhhBCeFWAiQiaGmy5heKX8v94fDw8pBAANP7iUAgA8YghhiDzn4V1jvoGi4X+zgeYYiQEHGxMhxEDj4sHhk5mAI1OkIYwxAkglAAlQsPeRQlQCpABiDAQILD1pJUCCYDEkPA5vHWnUUmpjEqNASqBAMRIRxKClaKutABwMNW/fvpckUyI0Ovm+7/2ed957+KVf+iWpEiGy09Oz7S7YpKi7qIxGQiGF63utjPPOBSCBUpoYunrXpkJIlJHDrq7bXbPdtCySdei6HmyeKKPYt8F7qwwxbzsHpC82LiuON22sXFeHRjl0IebZuCj3AyQouxC8SozO06eLZbeh7ZrVersrsrz3sW7bbVUZpZRSeVksFgsh1P7+fprnq9UqSbKyHFdVtVptZrPZs2BkNZ3Ou667uLgIgYSST07PRqPR7dt3vY+IuFxvTZIsl0sA0Fqv12spZZaXq/X27PyyruskSQBgVJRlWW6329VqxYl99rsVTBhjJEQI0MRGS5XniUQhAJxzRsnIYhjcAWC5XE7nsyEJwIUQQpBSxhiJWUoZmUII1qq2c0qJNLHMHHzf971M7GRU9G3nQpiPR+T9cnE1GY2ns/FmubI29b0bOBR93187ZxSMi9z7KOFm6uUQCWlIurbSFFl6vVxpKbtISqmud5GpoJw5BhcIKXiKwRmbZlk2KrOBzJUmhmJ/dHQwTL1JkkSmIRjLOaG1tNp476VCRI4UEmsHK7HhWmeKUkliEWNEKQY2JiOgUBTjzeIHxeAdL4T0wZVF2jVVXe8SO7FatW1bbXcshe/74YbMi8Ias9vtpFSXl5fMnGfJIJ0KrjVKTWYzsXWPnzwZUH0iGpfFuMyVMVJyU60XVxddnr/yyiuI/NavrT7zmc+8f+4mYyIMP/8L/+L4+Hg6nb/7/gef+sQnx9PZ3TtHTb3qumY+HXHgpoujYmLH4/OrC9csZrkpdDpK89df3H94fq3L9PBgb9uM333ng0RkF6cr2ds7t2YUtscHkw8f7vput9lUUiUM8hOvv1rVNbN/7mh/kinUOJ1PtNbr3Tq0uywdjbOCSJgIk8mka2vcH7f19mgylkZvF6uY0e3jk2qzc3VvtXG+YwCrdN9urYTxKGt3Gy2j67oafXR9jOqf/dP/jzApMRu5Z4z57Be+AFKullf7s3lXr4Fof1rGGB1Hh1hX24d9W45GMca8MEmq3/zE6+eXF8vl8lZe5nkOQd27d+fs9CpGcAE+fPAgyYrpdL8sp5enVyH0y+VyVKSHR/P9+eTRo0dnZ2cf+9gbibHf/NrX/sXPfelTb7w6n4zKLEH213/3Z3/yF3/xG48f3Xn91d/9x/6tW6+86lPQuR5Qw+/77m+/WlbnHz7KWb4wP9pcLZ5sL4zFF16+5xm+/NVfHuG0dd3V5bmWt13rOXqiBlh5H2Mkq+1kmq6W1yzQOVcWI4puNBm7rr9ebm8dHKGSF9c7FzKjYbnd7u1P96eHMUtXq4VJskyY3bbe3+fBw26xWHWtUzqZH86Xi83lxVJInExyKWWMNJtNnHPXq2Xbe2Ozug8M2Ee5aajxXurURQVq1HehD9EF7xmkUqgNMwx3jVH6poANoDGikspoJYVgxBCjkBIEDYpeApZKIWEMwVOEEADA+yCUAICIOBRgAfgsP5GGAiwRESUzD8QiZk6ThCF2rlcSbZELYIq+rpu+l77vfaDBcNE5RwT9YG43BAegDMQUQQjJ7G/ihgEQUUklBCGyD/zRgIuI8IzwfDOO4/92JqboYRDXCAE3SDVIgSwAWTAwIwrBRMgMwIA4zNAIAIIBkCTKwTPkZgihMJxIA9uq7xwAMBAAQBTMQSglhIhERFFLMQDjRByABGDggKgBCBG9jJIEkSCiEIJRVmkBUgIQIIrhZ2YGAM1IRK7p19vt5dfeu//w1CRlUkw3VZzvHbz5yc875y4X1XLjmAFBIkdkkCAgRvbeuS4dZRC49d5YGxHZk02EYljG7PS6iT6AtHkx2tWtTqUgB10ng09AU4jaZg648ji+++Lewa0HT88eXpxXrtNCttWmHI+meyet5xQtCwnCBsAucsvq0flWaWPPry/7tjs5OTHGrBbXe6OR9NrUrRBisVqNIhfFiBEWi0XbdNLIs4tzIUSSJG3fvfv+e9PptHP9gACXZbl3cLCr6+vlMk3TF1544en1auDTNk2TpulivUqSBL2zSk8mk+Gd7bpuiHBBxI3riWgI2xJCIEiIITKgxCHha7fbBWvKPFPK+t65MFQUkWXZMLj33iulTJIwc922zGxMwszW2lu3bq3W68Vi4UWPDFma+K7rIXZtLYDJu66uN+tlV2SJkok25e2TUWqVUq5rd9Um1G48KtMsZyF88ESEQmupCIUERkSBQjG6vn3y6GExmQllitG4a3tE7Ps+Rt+39dCcdt4F31PoiswMdDMhWCKfHO8Pew4AaNsWFRiTOCeYeXDD4RCSJPFKeYoh+CHjjJlDCKnWrBQAKKUGYTQz+wgxshYCh86YIMYYIw7tel3XWusQwna7HY/HaZpWvT+7upKIWZIw4ajIGAQx5kUZY9RGr7drjlFyYFZ1247Hk6abfnj/YZZl4/F4ubwqyxKRjg/3tcTr6+sQ3MOHH47H41t3bu2224vzK6UhcDeEbj16/NQFXiw3L9y9s15vBIbR/my73c7n8yOVvf/eo/O6OtzLEGOITiRGyv74IG/cqg4bJagw0kK8//a7dw4ProIXJKIBrfWdk1sxcp4uhVDLxSozfjYaMUDvnQgAEqdW7u3NrjCqcfr0ybmOcTbdt2T3R0Wnse92d5+7O5uPl6vVyf5kVNCDd96ezW89ePf93ncSBQCh4DzPjaTEaiEEx5gkSQxRSsURTk5ueWZWSsJICOHqncmyIk3qeicQx+NxjBEDj8YzZWTTdEKr1vksy4y1kaCtnbbF9eJCnF6Ox1OFylpzeDA7O7tIrZ7NCmR/99bJ6dnZ3nTW940P7eXl+fXi7MUXn59MRk+fPr26urpzdPLZz3xOEW0X548fP33wwTtf+ZUvz987/cR3ff7f+Y/+j89/4bNbgU+6dV/lI+TpbM9o9AAHs+Jw/LGrxxfLpxd5kd7bO1ws1yjd8cHx8y/cPTu/6po2Bh4XMwqwWKyCJ6WMsWnwnVLGBEyMksBZmSIHBC6LjGzS7JosHwHHTd2uHp6Wo+Rgf3K+2Ciw8+ksy5PNphtPp33fVrs2zzNr8rLgg4OiLMc2y7ebarvd9S6s6t14PF4sVlIBecjznFi2LoKyq00TWJJIhZEBZO3biKlQ3iodu7Zpm9YHy2CMHdjOQ8kcPJAHwoSUEkBGghhdEAJRshICEZC1TSSgYBZyCNGiobIB43DjD2tKYsZfd5K6YRcPlhpKKSlRCBUoUogCIETe1Y0ANoL7rhkoGkWWEFEkor4f5uDeOQCUQgWG6HwgGuZFGrJEcVjrskKJEsi5j2ZTABDI8Iw/PNTbwVD6o08YY4bpYmigo/OIKI323jM98/EC1BIlKADwcLPhHoQAQkoppVFqqL43G2Dm4cwHYhYSEQVKvpmM0UEwSgBFOSx8UbhAAkgpYbSOgGqIoAmspAwCBIMCgXCTf/yM0S1AQAxRhgCsVJpD59CgnafVNrz28mvLXX9xvdns4unFUii9Xm+bNqxW6zJPq6bSSkkMxiqNsizG6/Vy06xsUpIIELZGwGhkxoleX19xctSFXhudJDpwiNhmSvtmh0yJNMCxb51jNKk6uH3yxuc+u94sTCHXu3VSjNp6V+16IZoyz2OMjsCzZkicB0z00e1j0bNa77Y+ktImEq8269c+9sbR0dH5+flqs12v10VRaGvSLFdKOR+cD03dHB8f13W9a+o0TYWU6+0OpVpvd4NZ1enp2XQ6LYoyhPDkydN12w/1QAgBUiRJstlsJpNJYFIouq4jCsJaYxVDFBK0kD5ScF5rzUAAqJSSKPquK2wqACWg7x1ZG5wfiAnD5T7cP3VdgxBEDEJIKYd44L7vBprgo0ePpMQ0MRSiVEILFEZB8GdPn4yK3CjtXVfk6XwyReQiT4UQUulA3kfSJkmMtYnxDOyjFAKIGKULXiK4SMyemfvQcwx37twRSkcWIcQ0S9q66WPD0SOTlNJYlSZ6YEhIF7RRWiMAmOmIolPSMDFzlCJKBAidEkOJ7Y1JlDZEAQWbZ7wPRCSAIWxKopDWDsfK8KzrekSMQuTW9n1PId4w+Jm894m1bV01HLVNvPdXi2svTTma7Tbr1Wa7XC4nk8mt46O6aZqmSTObZdl0duDbKs3LIrdNvQvYHB4eZll2dnbmfKeE3G5Ws9ks+G5vPtmsF21bWyPramO03G7Xk9FoNht1odk0+Xg8JVa+o8uLJUc6Ppp0fTfEfG43dZ5NZrPZddNBxO22OrhzEJgUx729Utrby2oLyj45W5/M84eb7eLq6uTjryw3G1Rgrd3fn0fyx0dzo0Tf933fLtZXRICE++ObbEdL8d7RYWL5cDa+OF+5erNbVZmEJFVVvTFTQ22VG3GyP62a+NavvqWlrrdXAASCGYCQQ9dO9qbWpEIgRBYsnPcMOC4PBGZWWVRaKhVj7Hp/cfFhkiRJkiwWi+vrayJigEgQGHSaMvN2V4PQV4uq806gEkq1Ldb16upyezCfZ6nO8mQys8aY2d6dB49Oz08/9L0vy+lLL99rm93Z+cPLq7Nf/vKXRpOxtTr6sF5vkeE7v/O7P3zvG/+P//Q/3q2uP/Hmx37gD/2B5156kYR89+mHUqfl3v7F0yfxiKb7M98Rg0itjAx37h2uiuyDDz7g7cZm6Xa3O7x9PJ3MtS7fff9+cDFJ8ul0bzSaOOfOzs66bjO0aCNlqUOlIbWyzG0ILroWIozLYrW8rut6PB7l5RhE3DadTdTV9cVqfZ0Y670/P7/03ldJqvXm+PjYO0bhum5hs8Z7bxLd+7bIU4qx75qzs5ZRMQgCDBGbzoHUbRPaANumcQQ2H0UiFxqllM3SiCIw5UUhta62uzRNKcSbHTCAeBacMFQOKbUUEIEF0TD0CQo8dMZSSEQhxGAE9BH9ChillMOoN9yVzBiCI7yZiYdoSGYGkES+956IssRahV2IVstBz4NSF5lu2xaFYBBt5xAxAvSdCwPlWQwR8QEYQEglNSB6/+ug9MAs+1am1bc+kAlQfjQlM3/0lSwRBsrTsFftg0eUgBgCcSQhhRQ6Vcr5LsYYOIQQUQhB0XWeoxZCDDVVAKKQw/bwxpNEAEXmgdslBCJKZQQyASORxMGlS0YiheyJzc0wfdNGAHEIQQohFWqBjIADK0tKQAVNC8aAtcIRSvn66x8LIN+7//SDB4/3jycvvvSqj/zgwQPvA0fKR3J/b3+52lwvN4I1Q8z3zHMff/6Xf+UrFKuDyQilqjfbeTm5tTd688WDn/rqWdXulJF9xAgILAKDtokB6JrWppnrXG5NLuLTD7721X/xz7/9h397ddUsry8o8N5oHzs/H2ejTJepSCm9vO7LYi+z44vtzpoyT1KFKPvep6ldbtbb1bra1dPZJITgnEvT1CbpdlctlitjzO3bd/veZ+XIpBlINT84vL6+Xi6X5WiklBpPJrvdjkFYa7O8RMSLi4td1QipgDhCHChXw1ULAIP/JVK01g683MlonOf59WrddZ1z4WaRICWyICatddd1TCpJEmCq67qpKiGEo2hMAgBN1zZNw4hpmgkhBvOa+BFLgpiZENnHiIhWaYng204robUKrnedSEuVpYk1pixza4wQwjnX990gyxFKE6ALBCAIQYQAHKGCIjGoRJJoIpJMMbKxqpSqcb7e7hhliilylMgmsUZJIUArJRQOALtJxLCheZbgzSF0vu/SNLWJlFLWbR8pGmMVSsagpSEEunFwxUFZJACklF7AEFwNAIHi0Np/1OOnVidJogT2fR98nyapMSZNrdVKKeX6NsaITJEgTfPNZiOVkcYE4oePnnrvR+Oybhzw9uRorybctf2urqSA7cX13t7e/mx+69atut4pIXfVpqrXbSdv3779wot3v/jFL56d29l0T2t9cnLkkM7Onj7/yvOjSXG9XN++dff8/LrrQtP1fRcvLxd5niLz7VvPda0HoMPZ3q1bc4n1dnfpuy43CaCeH0zTTLFUd45Ofsl/vVmnB/snSmMkfXl1cfv2bQphPpu03W672Y1G5XQ6OTwcr1ar06fnHNR2USFKV1Vaa5RdWYxnpa3qbnZ3fzweAUUjRuPM2Ewcndz68METJeBwnsVYba4eAAIRJ1Yhogtea41SMDExhC7kedm7INnk2VTqxPnYcz/b2xuNxxcXF0Zr37TKJt57CcAEVdcRozSWGEjo1a4RQmudgzDL5Wq77aWUzHKxWDSpuGX3T04mMUaKotsfL5bb9WJdlJBnyliZ2WRvOkvyxBjjfRSoNptVvds+un9/fzb6D/7Yf1htro2SD+zy/PLhXjbezyeTctTXTZaXdbt7/ORBkuSShN0/kAIo8mivfGPvU5fvfXj/w0ePTx8EyM7PVttdk9gym2YX51dK0GQ6vnfnYL6XbbbrXV1573an1Twz2uBydXE8uTvbO0jT9JvffK9aXcbIUmgrBYkQQui6kCQja1XbtpvNpu+68XgSQ9N2Ps9GDz58enRy/PjRWd21z79wz4fQ9Y0x5vKqRqFiRKkso2TktguNi56h6vrKRRLKAe/aNiiTZOnYjLdV3bVuWBVdXV1Jqay1ruu11lbrQUyBQlCIjXOSIc8zY8wwyillhACKcfAKBmIAkFIrpZXSQhMAoRCC4aMBmoGkkMNYKYRQ4gZ5HmCqzrHofaQAFCVi2zsf2EoJAIlRSklG9JHjzcnlCQQiEHCIMdKQREQELJQOITJBiENLjcPzROIj3vXNQpoZUA62AR8Nx99am4nIORej1PKGNT0ww4fsYSlvEvOGVsMYrZUYhtG2rWGw8AgBOEopWUqFYrCsBwbigdsMA12XJQIQEEQAIZkBB1AbAGjw9gNBHMQNSH7zk0DEiGC0GkDvZxA6AyAgUt+J1Pq6Dc5Lqa8ur22Sravm/ffee/Wle1Xnry8fHx8fP3dr/8GDB4XFdbPOptlW+DzB/f1ZbiXERmN379bs8mrB3Xq6N7dBiNgsr3Yf+8Jnf8/B3pe//JXTp5eRkvH0oPLY9g60qetNkhVddPsHE03xx//qn//Vn/2pPYN/4fKtSL5ZX++PZ+31OjfJyd78yf233SgVUTadPdx/aZIkO1d31VVfo9pV1Xw+39ub3b9//+jWSZ6kg6Co67rtdnt0eJzn+Wg0Wq1WX/vG19M01VpXVZXnedM0vXOT6XQopV3XlWUZQkjTdL1eX15eDjzn1vnBPMxq0xENamMiEkIQBUQcdpnB9UTBdU1irO+dAB4kX8hEFJ7R6m7YBFIoEjj81kMIUkZ8Rr4fOi8Cds4N1w0PpIhnrD8FAhmAI5JAZKAYY2SKRZalNsnSdCAftl1HzMDcdR0AJEmSSYuIjBgZQwhKCquk0DofjSWwkjjUMOaOfDA20SYx2ipjhRBdozgGoyXH0Ls2hmBNZlM7gKKIUhoNLNq+I/JFavRozCESBYFYpDKSJJAEIKQQyCgA+JnP67PwEyG0iJGIPN0QrSUKKQUP92P0AwhmjGGiGFySJMzs+hCiF871fZ8mJi9G1bryMejERue9d4iktY4+7OouScymbpsHj6eTUbtrlOT5fD43ad3URtejcWGMslZneRKj75rWuzZNzP58pgQihN12p22iIOzvjZvtpuraEKltmrIsXeevL87Xq6sX7p50LVX1FuGsrhoiaBu+vOS9eVGOjnrVVJu12raopDYwnabWqC989g2BcL1Yv/Lqx9a7lZKRQidlYRO9WtVCiOVi0XdpWZbz6Ww6nhlt+973va92Tdv2JkmtEavV2rs4m46mkzxG793aJiJPzQfvv9N2rmr9Zz79xp/9c39RYEcMDGCMsWnS1phmmTLaN7XCiJJ3u7WQ5uTW4cMn98vJwd7BQdN0s/k8eN90Hd0c37LtPDFLqfsQUSjq2855k6Rpmjb1NrFJkhZV3aUZDH4vm81us2ldv717+5iZtU4kwm61AYLTs4dduzo42GOm8Xh8eLivlCIUT5+c2SyxylxfVNuqKaez1XZzdnqBB2KUj5W0IslO1wubZhl4V3UxxqO9/RiR6kQkqVASAA3AvReev/fC8+++d/qlL321c/HuvRebfogrCIvlZdfvnN9ogzZLkiwXqrg9sRT9drvZK44mZWIUTXL72vO3z86vlst1Ve+qTUyLPE1NjL7e7WqdT2fzkmh5tQiR83LqnFtv2idPzs+vV4gotViuttO9GXhXNd1m0zvfSClZOGIJSjc9gTBKK0VSg3eMhG0X+9huArjE5EopzTyAzMzsvdNKCqUEMDJIRFRSShmBRcTMJtZaJeQwR3rvhzPIaA0gCYlCjNENCDYAKCWYOQLgR7vVwfcDn51IIIY79VkNpsEbmlFEZkkUAAAiSkkgBLPzAyQOMUYRAbUYAnsjARER3OijUElAIA7AiBKH3COmG7/Jj4674eOPDENuqu+3DMHP5mAOIcSIUkotJCIppSTdbPcGZrUQChERaDiCWKI1BhGNMcNbJAZ0+5kQ6dm5BIgsBIrBDoxv3q3hRB+QAkQhb2ADHlwyB4vim9GJaDDgVDf+zDfI9fA9MLFd3yejkWZ4+O4HiKhT7ZftnbuHv/bW19OsMDIsL7rn7j2PfnJ9fU0tXjx52Ic4LvejJ5lYAJ6NRpO8nBT5dG9+eXXFLdbbWuf2/vsf3H3u8Dd/+6s/93Pbx5dVc41BT0yS79pKJ6VT9MVf/IXLRx/uJ+K9L/+zeVzfM+mTxw9m02KvMM3qlFwcl0WzXv3yz/68xi7PJlfr8Mrl7tYrr81G021wLIySAp4+fbzbbeaTaTkq0jR9+ZWXLs7Ob9269Yu/+IurzXr/YK+uaq31K6/cEkKcPj6NAEM8iFaDObgfptvBRWvY6ZZl6ZwriyILoek7IjLGdK6XgPbGF6mGSNoYANqslokxZZ61dWPzUiBLAVp/BK2Q0brvewYGjhIwsUYoaaVkiJqh984Fj4ggBDN3rkePv94DIioh+NnlGAPZJAEKAjDNsuB6Cbi/d7i/N+NIw2bHRfLeBwattXNuQKWUUoN9NwnwvRPsIU21El3vBAWBg5Q4IKL3fWCySVHmWQRuqxrJ56nNEiMExJAws9ZaasXMRaoGNWKEUFihdZEkVksVouubNjAZUAwYQLpIKKSIwAx0k3I2uLYCAFDwMfohqgwQhRAgBmyNUYkAMoRAwQvIAWjwDgshMntkQikRJaAkvuGaZVlG2ilRNHWdpqlSarOtFsvLyWSkJDIjk9ubTi4ul33XJIkRqjaJFYh5Xo7KstpuppOxcy66/s03Pna1XGij0mxaFqNvfuOXI7DJ8tdffe2f//wvVrU/PDx+7rm7WnJT7Qiwd/ETb36qqqrVZtO23XrdVbUEOJpOirKcB49dcBcXq7K0fdNprUeT2cc//sI7777Xh+VopCcfe8F7v1osXdeOyklRFEpKorBarXahU0rZlA/2jwZ9VNd1MbZKm6dPz2LgbbXb7JZJalDh/YcP1uvlG2+8cXQ0y7v2n/7sF//23/5rAGhM4n0/2JnFGHWi8zzZuF2MfjoZ1buK2AnVf+47v63e1ZcXp0l52Hbugw8+YJTaJFLK1nmVpMzYdq51UWtFLF2M7AgVC8U+9irqLLcMsdr2VbXz7e74eJInORFfnF0amxf5VOuEYkTerdcLFCFLUiVTjmRTkxWla7uzywul5MHR/sXZuTKTlz/2prKZv3wS296XYqWaydHear0O1XaUZBnw9uyiLMsP3nt7sre/f/cOOS+N5ihQwiuvnLz40smXf+WDJ09Ps6zo+6bvmiyxqZVd21Y7N6ZRWRYUwKKPGPNE5EnORNx1vtqOMpvcPnr+7q2m65uuXa42dbXNsqzI8rYPcteUZZkWk6uLa0i1MakDNz88LIqiqnc2TZXN15tKSu1iv6nJOS80CikIQuTYOO65A6UZhTAaQzCJHkHuKTrfAskkS5UxneuFVgPrU0qJxL53PgRElEoN5ClUGojrXcXM2kgjlScPQAOiNsBUQskBUhpyFuIzk6YgAGN8Np9JEB+ZTJEggYiD9XQMQSkrlCAKQgqUgpEikdTaM1AgxCCMFkpypEiE8Ua1QwQEyIiBOBKDjzFyZGCO4gbzlkII+VFZ+/XIXmZmFOpb6Vcf1eBIoLUSiMH3w6QExkgpB2nQswl5qKYBAKy0LJCZUURUEhGVQCEkCx7CUDnenD8D71piZGaBrNWvR0Egg5AgQCiBzyq0vKnEN1u1m3bh2UsbZg0xVF++cdZGQAYhbJoCAHmfFulbb33jFa1G40z33d07B5PJLISQJ4j/f67+LMjyNLsPw8751v9295uZlVlrV1cv09Mzg1kwmIUAaUFkGCQFy+JiUQxZsmWHFA5RYjj44NCD/EA5QrZoBxWSgrLNF9ESKTEYEB20SYoSRIKECQIDYDBLT29V1bXlfvf7X7/lHD/8s3oo5UtHdWVVZd68/+8757fGylUrEetbk5PpwZtPTy9Xu7BcrLuqnI30brUd5MNpPp4Wg65uQicXFy/vntzbVvXjDz/+wrvv3j+eWZ3Iwa0fPD4rq1ZJzQRt6x+99e7DO3eWjz/wXTuVwH4/HN2Grs4TzdpFFFfXp5zbb7/3tSyhXd3MjkfXixf/3r/7577y7X/mj/9r/7sGjHpw7+5isei6brVcIETftcvrq5OTk08++ej27eMHD+4JIfb7vVKqa+qzs7PxaDIajcqy9G3TBV9V1cnJiZDAEPMi7V0oFL1S6u6dEwB4/uJV0zQmTYLvgu+EkK5p+2rb0WjUtXVbN8OikFJ0TYuIVssiSyrEGGN8XbTQ7xxNU0VipZTQEmOUKGyiExTcdN77eBOxhv3ACK8jn3rqpSc5gBiZtZQgJQXvOweAaZYOhyNg4XzfWt//EXQ+Nq0zCD32QkSBoiZCLQGAX78V6rpOtUSJRVFE13VdNxgMuhCdazWz975ry+EgNwqMAJtoibo3ykVgAJQcZZIACk+RGI0xWqkQ3DjPqEhioH3duIhC29r5xvleUSn6GReQkSUCM4YQkEH39doIzNi3ZvaMjkTgGFyM1iittVWamfsmakS0UiujQcimc4nVXoBCSLPxfDb77LPPyrJMbHbnzp3Ly8u2bUVidmU1yJPWBwFokjxSfHV66X3MU1Pvy+Nb89l8HoKLrquqqiiKGL21aV81/d3vfPm///v/6OjoYLdekQ9RdMvltRCQDwZSokD0Pl5dr0bDIs2skFQM5y9fvqzqrmk6a9aTUTHMhovLc2MS1/njkwkzpxYfPLiljQEh630zm04ExhCd1hZRO0dCGGsnVbOuGgd1cPFaKNRaCyEUYIxd4ymEsKubiCKN0eaDN+ZHFxcXnYdms7v/xsO//tf/OmI0NnWtQxB5kt+9fTdReOfOncF4cH353LcVsgOOs/nhyxdP/p1/5//w8NG73/l9P/+dP/i19Xp9eXl5dHQsjWUQbVdLY13nu8hSJSwUMUgtOu/dvh7nSBAR6fBo7FzRVMVmpcllhwcTQcE7TJMhMa5X+6burE2PT2bW2sl4PBlNjTHAInrabbZd1wwGedu2KOV4PlUmFUl28uDR1a58eXl+VEwwyqsXF1araTFxu8rVQWu9cV02HgPS8yeP77/5JkUvjABAAMUMP/tzb75fv/k7v/PDGIMHjyxXy00IwSZJsECJrqqq83Vd11LK9WI9HA57bi+EvUmS1nX7uhlPZid3Tlrnu84vVxsCsdxULopBlg8nsz5oloi6y8s2xHw4WW83+7qtu7rPlmpjQWhjYCM1IdZt0xHsG0cigNIRwXuvlMpzUTV13XSEwbVN76ORiAyslMqyzDsHwbc+ChASWQqIHIl4mA9DCJ8Pqd77fhXW6iYDUkopUPX2CqL409UNIDBBvOGAP4/j4L6alyjGfgHwkUBrqZUCISMzEyspiJE49noOEBKBCUAp0YXITDFy6PVWzIHBh9CnW/RANUT/eRgIRcLXd+drKvqmAAH+qQ/uCxmFZIIej+QbfJc/pwg/LyWMTBRvypTC6wtSKaX6CsXoOfTZhX3CDyuUUqIQfaIYMRAyIffIPBAjCJIoJfZZHX0ZIgGIXtImhJD/lNmpP8E4xIhAJG5qcxGxb36SzAAxOqXN4cnJP3Pr1tPHj+u6fvOtR/funQCAECrGGJw/Ppp9vFnsry4F+OODOXFblWi02e3XL9yryWBCRJPpSEvFLB6++d7jZ89v3zkkH569WhXjGV1vfuYL9wLGj56dmjw5v9qMxtNsnqdaf+nBw/LsyUf/4P9tFFmRH04Hv/SLX3/3vTcbx//R/+0/Xjx9+caDB5OBXdZ7Oz2sgrpc1cbo9dW6S6YqMfrN+/edc9fX11W5y9KDwWTEFK6vLmaz2Wg0ul6sjJJHR4eIWO0LJUUMfjwapon1MVRVpYy5vr5uqqqqqjRN7Wg0GhTMvLi6jDEqKa0xSkgXQj9C1k0DBEYqpVQVghJyNBpGH6r9VilV1xUiGqOqqvMxGmOEEF3XKS2Ekkyx8w4EaCVIArWtECpNU5Mkbdt6H1CKHk5hQuIbmEiiEAiIIiJbk3gXlJbM2Lkwm46n40nTtqvVqv+xdiE45/qcMyIaKP48dSs6J4RIEyMROHqNLCCwkVZmjCyYuhBQQD4cyNb1EdNGG2uGwywJro2hbaumF06BQCmV0hpDm1qVZqlnCIGkVlqqGNBIoZRVygwHRdX5uove+4gywP/gQzDQDYdCQkh+PfASEzIJYInQnw5CCIHcB9IShaZxvVOLgnfOSSmHQ6u1dm2pEBFICthv1sM8k4Ag1OLqejgca91U1b7IU4q4We/6oK7RZMaAdeONVAH8erNrqjIvskSroiiYaDweCyGcCwBw9/b029/8ymevrlzJJycnOs235d75Nk2tc25T7QdZ/sknj49uzfLC7MoVC6mscTFMR+Pg66dPH7/x4PZ4Pm3q7vjo1tXVCtDfOp7HGKELITiJcrfZTUbTs7OLV5fng9EYGJWxF1cLAmydc8H7z15lRR6ZtdYHg5EQYjAeXF9fbLftcldTjA/uP6za5uXZ+t69XFnzG7/1/d/+/g+lzbquyU0WX593SqmDg4PJZJYPhs+vLos0k2iih+Xi6rMnLz768LM7x/d/4Y8mTdMMBqOqqjoXhDadi81+AywIEKVoyjIG1tZ4H9u20qwAgDwAgZA4ngyGhdUI281qNJmnxta2bprOpnhLQAjh5N6xFDr62LZ16AL0qUgClVJt05pEC6G0MQByV7XWZu/8/j9w8Wu/9up6NYvj2DWzWwe0a4SPWWG2+/344GC/Xe/qirW+uDi/dXwC0AFgiF5JWzc+zew3vv6F3/v+D12iUpt13QgAuzZeXS/rKkqpmaokyfJ86Gl7frUWQkwDzuZTYRUHt692l4vrYjjJ8pHUtqy7PkG27nZLUUqJPnJZ7ULnjDGzg6PVarWru4P54bbxEZR3PuqeIWqc80KploCkBkmA6CNFAk8MKIgguAjM0QciQikYoVcjxxiB2UiV2sQozczGGGOMC75pmraueu42OM/MKNhoDQDW2tCbG4WWUkgp+1+iEnhj8sE+jarHe5sQbqIttBZ4Y6TplwrvvTFGFpJBdL4TwFqasqy1FDK1BNh5LxEpeDSGmYkgEMXIDBQBI5GPxIwgBIBgJgIm6gfxm2sSoI8D+OkGzK//+/lyfHMHI7oQEanXhwohmGMvNr65xaUg6okXAa8jNplZKiGUYgFI2A8cgIQKJYjeINR/msA+RrpfYwlfc2K9JxnhxuWEspdVwefC0t6F3M82/STUo98cBSsFBiQACtHe1EYNIPh6t2fCh28+evXsGYWY5sO2a6WSrvNdG1Cbt77wfrePP/nsE+08wBCV7JwzkkGKzWYzGuQXF+ekxL5u8sFEJMWLq+WdyWBbR8BYu/D87FWIrcRwcjDRiC/Pl6SymsV0YH/5T//r77395m/+/b/11fe/efHsR3/tr/6NF2fL2clwebn70t3DPM9QxWw8hCKf29lkancuObtYNllUbbknY46OjpSAs7MOYjh/9XK5XJ6cnNw5vnV+fi4EzKbjy4szk9ijWweu8aenpz0HlmXZbDa5vr6ejodJklgtQwhWSwFYVdVkNETE7a7K87RtXdu2LLANoTfhJUlyfXWhtdZGPX/+PLH6aH7gO7cuSyllP+XcWNM4+Bh8JCklALfORaAcLTF30StUJk20ssaYzyVXvbJPgBIChBAIn7v0AFg61wKAFJgk2Wg4yYphudvs9lU/M1prd7sdIg6HwzRNJ1pZpYyUiKislVIq1TdpNwAGAPI0M1r2+DMwhRCAOAQnhGAKLCAx0rW1AAaIUqBWWkpJ2Ceo0iiziMy+U1plWaKTFCl2TQQK5CILyIwRQhL7SnRGwQ3yzKJfoxF7exHAjZNPEFF4HQfdYwA9hKQkCmGMMRDJMfc/BWstvBZ/9ZHRPfEsheia+nq3O5gdTMbDqm57cmE4HDrXVlU1HQ0Pj26Xu63z1DQuSQomB1Lt1huO/vhwtt/suMgTq4nIO0dEUuh8PATcvfXW3UB4sWgi6N/5we/de/iGUsJ7d3Jy68MPNnpkD06Ol8vT4ejw+OTgyct1VqRN1VRKfelLb52d4dnly9vHd4BxX7tiNKdYLdfbtq6l8EU62ld113XR4XAwDp6Eksamm/3+6Phwtdtvqmqx2lVNm5aRQRiTxEbEGPNdV3dOp4Nepf/idBEjN2Von14aq7qu2m4qQEKddK4GIC0F+UCBh8NxDOA6GA3nWTIJLubpwTuPfvbf//NvLVa7Nx48dGV5cXo2mR8sFov1ep0WA5vk6MmYpOncdrtvO8+M2gciWi5WzZLH4+HRraKP7vZt07W1a2qtVFVVECnLMpDgY5ioRCg5GuXRU0Ncl5UWjCDrprSZDeRDdEZZRpwdHlZl++zy1WCAOwx33n//6sWzy1evbs9Hm83O++7w5OjV8spY66LrgpOAVpnd5YJblw6L8XSuJDjnktQigFL43e9+/Qff/yESCkQp7GSYdK4pq1YrCkokNtk1XqXDApPRaNS2zZMXZ0LQYJgd3713ebVYrnevLleASquUGRG9NSrP01TrNvosz6d378YY1+ttAJTabKu2GMwYxHa727oAAKS1j9FKy1o7HyNiBGRQKAEiAAgFQgqTJ4nrqPfYRCYXgxTAzG1VijS12hhtoLftaam0kBKV0D3q6r0P0VHkXkoS42vJNIvX45cRQgF7fn3p9mM+M3vvmYhfs84g1ef3Wb9YS4lEEGMElMTRR/JdlyXGEnSti1IYJaIPzD3IzEQQmSIDMxIjMxKAAMEIIG6uqH557bWc+DoDE17v34j8OqLqpyEhzD2a1gu/5WsnFTKQ7JF2YHxdJgGCGVgqxcwxxOCj7l+oGHqjU0/9kkAk8jegI6XipsSiV3EBQMQQI4h+5UVEZIE3wvLeZNx/shQsbwDqG9dGjOA9xwgxRgJljJEAqZbVrtzt6+H8CCPHEBfn56PR5OXpmV4s07ywSaa10Zm9XlWbzeYbX3jr1r3pP/jtH+72nsGU7f5nvnj/7tEk1u768oKhW652i3V1uQ2NJxc70S2++uWvTA8P6cXpr//WT0bz44D56cUyy1Jg37eilyGm+dQevf3gy7/4R/75P/gX//xvn12spcFV6UWaHJ4c//DH3/d+qw9vxewg0rX0+Ze+/vPTg+OzQKosy8PDwx//+IdNXR8eHo6Gw/lseuvoMITw7LOnZVXfu3ePkLMsubpavHz+YjaeFVm2K0tmllLmSlGISqnhcNjzK01Vt64DgOB8XdebfTWeTb3viEhIRTH2b0EAGA6Hru26ujFKI/F6vRbQNxf5wNS/T3wIQgitJaIKIQCCscZo5SlqAJNYjj3yQf2V0w9oSZL0T4tUqMSN+l8i9rmmShlEJgZm3u3KrusohP7eDSFYa7W2LgQXyILot8P+JrPWSoUxxs51VkmttVIyz3MIHTEDcpZl3X7nuq7nvLuugwg2KSJEiEEJ1FIYJbU1qHT/Xk+VQyW1SYTUEYCDR2SjRFV2zNw1bRcJVKJtlqUpVU2QLIToOWD+qVSBUaDWWkpJBOFm2I5EpKQMHCOQED1opEBEYlUURVVVIYQ+I76f0LuuG6amx9yIaDQYhuCrqnI+KqU40n6/z7Ki3MUkz0IIRGCT1AfSSlRVk6dplhbeN+v1ejYZNU2z323G4/F+v9daa4XLy8vZDDEZvfXWm45eneTzNtBitSCKo9Ho+vp6MpkEoiRJHr391vnZZ+998e3rMtb79pvf+uYHP/i9J08+ff/9h0217Lpms66qJp7cmo+GeaZSLexuXQdBbROXy/VuWyV5OptNbGqevXg+nM5AAkE8vnN7dnxvvakeP3mx3ZeDAsO+jRCbZy+zIu1Cd+vk2Grz6vySPD24d98Yc35+enL76P6bbz//7DEzSMTIMMjy/iUqigGAQFCDYpqlI4dRi/w/+g//8n/xn//1zvE//sf/BAUvFouTu3fmhwfdq3PXeW1oOp0uVltEKaQeDLK6rst9VRTFYDDYnS0kdEXRNk0jVUQkKYC8oxitNn4wiBBRwHQ2iJwSR5uofVsJZIjEyMG75WI9ng+brnbsbZK40L06PRVCD8djinB9varKfZ4X3/h9333y0Y/K3eZWMpblblWXR8N029bEgBSg8822hrq7XOyPG8gGhdTKGGQGKQCIv/DOm/v9fnm9Wq/2WsthkXZdI2WU+aALEAOliZ3M513XMZp91dTt/nwR3//Kl49u306H0+fPzs4uFoeHWdt6jj6Zz0ySNl1VVSEvrK6r09NT50LX+jQboMTORa1Mkg2ZdkQktax3raSIUpKLOkm5C9oYQOFCSREAUaESqKL0/U2GUvSMbL9e9YOy1tpI5ZwD56RW1hjXeOccIxirpLrpHOut+X1vG4Lsr9gbUAnF57ealLJ3HfSgbgjUI9hByM/dSsbaXv8YfBcCWqspctu2Sty0/LrgEqWsTgDAuRCZACAy9vWHve0KbvBnAoY+IRLFTd8wQHi9hXxevvA5Jfw/DrHqoTPBsl9UCIhC7CHwnt6mfyrXup8tHFH/t2G/4yIwR+b/gdCVBUoEKQWiRLoBPvsXQAgRowghAAUAQpSy/+d61YqQ/edIKZUEidBD8p8PDTHGm9AUKYQIAACulsCvXr4AH4fjWehCCLTf75nw8vJ6Vz1vupAkWQx8+/a9bDg9e/n44O7JH/iFb/3kefn9D14Sqovrs1EOsfaNq3SebfYboQxL1bV1MRq8MVJVtZzNbpt07DmsS1W20sa43l2Z3IAMTRe0yUpH54vOju5dXF95BmMGm2q/q5u3H93/xrd/dorbpl5fumjy8bvvfBcq/cUvfZ1uHV9cXKhtC+XpkliBHVYkN5fL3W5XZMnx8bGrapPn27IaDAbzyeHh7NZ6vS73NRHl+UAptd3ujUkYRV23m82ul0NrKfb7/dHBYSRvE62ClVqhFGlmYy8CRLndbK3VPQkXOLrglVIILKXoWXyKDEh9ODdz7McriYSIGhkpIoCQKFENiqxpGkGRgMm1CtGkCRE5L7uukyZRWnfOee85slJKM4nXBnwfYVNueM9pmgJx7xRc77ZILKVk73JrGkLXBdHF6XgYI3EAa8wgTSQKZu983O72EnxqRAxtqpPBMGfmrvVNWQtirVX0HTIMR0PA4H0HMkilpLyBxwm0AHEzbCICeA9MjB6h9dF5DpF8XUWutDJ5ZrCu+2mCeuyJUUillCH8nGrqkEkCCREJKJBBZQUJAFQo9uu1QpjNJ4ury+kg7ZrWIOSpBRBt207Hw+BrFzsEHSL5GCiC1hoEIrum3R4czNu6PpgPrVbBhTTN2m4jhCASWZZ4jiSE8wqCTEhLRue8aKENsuq8FD5N022JGXXex4e387pe/4Gv3i7r+fVic3h0fHp+dX29NMacPf3x/bt3bITLx6eHenLWnv/4t37j9p2T9Xr52ccvB3Z29/adl/Ti9PQldmU7n7WuyYqUE/Fk+dnYJEluAZP1xqONMrhni53eRoF5Vbpbx8MvfvENjvVb94Z/9+/86vr0VT29PRiNz6tWOjRpevZkTYBSGKbQXTcY1rNBXjftn/pjf+I/+L/8eaToQDAwpEmHuI8hJGYv2BxNBEUxGO5OL4/nwy/93Ff/tFLVrju5d7t0uCv9Rz95Pp3OB8Xh+dWyquuIzbasAKVNjWQ/ng2HI2uNuDxfFAdZF7pVuRuNBsyGGZBR26Hruk1Z76MfkbPATR2KNEEgSUBRrdbr1vv9ciel9MhKpyfTeV2XgsXDB/efn56XtVuuVoPBKGldqnKtbbMXd29/+cXLJ58+ffngodmumyKn0SgLbQM6MG3TQjVhGzuzPN3upG3b9uTO8ezBHaEwQCayfGzy2eTWZ598tFxcKIahTZ2XOyd32zJQVKqdHcDp6el+uwWKAvidd945P9vduTfKs7Ssn+WDYeNdI7AoxiWIrvTapB789cqp3ZLIMGhSKoLItYwxbtuV1lpL1YWu65wAuduVBEIYjYKllSF4AiG1jOyYwGa26zqhJBEoo4nIKgtChBBsnu/3+zS1zKJ1wShhjGHApnVKoRaq38Po9WXjvVdCIrJgAAwKASUK6OVFSume3gEK/gZzAgwEQlrnW6UUo0AUwTlrtPRbgDoSZGlqUxVjYCkCQGSqnWeUqbUkVekZQIYYIltmBiRE9XrajsxETIKUECLQzQztnAPuqSgk5l6mSRxvEiGFQO6TOHu4C7BPyUdzs85Sr4QSHEOkKIAVSxI3YmmGvvQI+lsfUQCwCwERpNQ3RzSAQlBSKBTIICIIgYqjZtDsEiVlT3Ab0TChNpGQSRIiMCGylKgUoO+ElIhSoNBapFoYrSSwFEICOueAEZVuyrCnztoksYlSQqWDqvOw2wGorJjIKNKR2fmLplx/9OoZy4al+L3zx0mWfu3OZPGiRbwcFZP5wF7t8XJL24/bQSZn0zfaJGmATQbDPJtql0j/7t3jZ5+9cuvm/fuHy9MXrY8uBohFx1oJLQgGkrUrR4m9lcvZ7btZu1lfL8DE25nGq+7hbHj/jQeiOT+i+QHeXg6+Ut7+6nBqnoZlung+YaV817XRD4dDKXFxeUUcDw5mWuu2reezGTNnSfrhhx/mSXp0dJRliRQ6xrjZ7zabzWqz7hdfIurbfPM8Hw2Kd99998Wz59fX15PhKM/zy8vL3lXsY6zrVko5Ho8/9+giiF44FSMLwYjCKOURe+uueD2+3UCpAJ8b2Po/vtlsRqNRr2jNsqzrurqu+weVDffx3IiYJkk/jSrGz4WL/VTIzM45iSKEYJMMOIbglVJJljZNA+TzLFFaE5Eytv8apNCua7TkEGPTNNNRluc2s3JU5KGsvffIrPrOI6mIYghutVolqTFGSGP6fjEhlNYafBRSSn0zIAcCJOr7V4REDdynzkUfuq5rvYsxSqmlUlooZu5l2yCFa1sA6B+wfm4lAiIIsdNaW6OYo7FaSVACKPjxZOg7d3h4eFObmKX9UDIYDIRQ69U2hDgoJsODkfe+LqtmV83n89lsvhWrfpPums57r40FIKVUnmY2Mcjgk851TVVVWirvg26aPu4nTVMUSkrRHw4hhLIsIwGj6n3nR0dHiPLy8vLo6KivlazKSiby4GCwWDnvmwdv3tNSfvzxxzbN8+HoNurVYjkFRRHLXTOZjcfDg4NBslzsGOz1YmX2utu2oenKTQUiXS13jx//6LPHP/jyl9+9d+/eG/fvU3iWTUeT6cRocXZ1xV6Mh6MQSSnjOzh/+ezh/Tvz6aytlt/5znf+wv/5L/ynf+k/efzsIyO1Zs6lTALdHU4yT8OI283+6OCkpMt6vbx3dGC/9tXHn372n/4nf/GX/tX/pTVpCOGz588IBIME1KBUVdfFcLTf77USk3ExGc0W15dpmkppBdyc+yFG772Usmq7XlsUIm02u0RhU0NZluNB4SGGPj5Q6ixDKWVd1+v1cjYbKTU8PT1VFxfr9Xqx2tkkNyYZnsy94/2u3u43FLyy5sGbD323L+t6t6+ZlHNOSxyPinLvvffCCEEdKxxk+eXlRRXae4/eQcDI4B1IDVLKyWRyerbQ2jYubtY7Imqd35Wr9XbXtq0QmKYZMj158tl0Ot3vq75HJMlymyRapMzsPXnfQd0roQgAejgtguiCgJpuImWVzXPtA8U2RO5tO9C2XYgcGSKzMhYRBcogiD+XQb3OYQYAeN0B0Me4aq2NVUzctm0vj/hcq0SfQ6+v1y9EkFIKiQI+7xbjPoSg1z0hCGIOgXwgBDJKM2tkYL7JuAAgJTD6UAyK4XDAKLuua12nlNBa9/8cETShBer9liCwN5nfmIl766aUUiN+3uMLADF6ZjbGEDsAEHhTdyABwo0/UzCzIATRM7McOTILih0z933HvU2kFzj11g98vTTfXLGISMwCAUjcKJRvFlSBKJhEr/W+CfcAFJwayxSGg8F0nHnXxBiVMrivO88MggRLgVKgFIAAFL0WgghiYCP6dASJiEyklFYIiLrnwgEpxlhVZWKHSZKMRqPl9eLy/GK93rsAwmTSDJ68uEiH05NbR/lksin3+aC4urr67Ox6OnFayOtPnu86aEmXravKLRQqoer4zQff/spbvgtdvRvcyj/75IOrRZwfz5a7xeGtuwcnB5+dLZMiV8NhItRqt48xQvSpEhhjJcTJ9ODlj34IQINBwe0mU/DWO28z4Wg0MRQvz2seyqZpbBN9twsCTTJVWWKTZBBCUELeuX2SJObg4OD84nS9Xoc0a5pmVAzu37m73+83q/V2uz04PAlMUsrxdJLm2WqzJqK33nqLiFarVWqT7XZ7cXae5/k3v/6N3W53ttlNJpM8z9frdb3ZjEajHrszJul/2FJKjqGn/fuKC0RUQvjIfffGDYEPAL3miAGZUXCPmkqGruuSJLHWyiB7p3xwHrTowefovBCCUQgGI5XqDcTi8/eWQOQ+2KW/mF3rob/bYqzbRgHlWaa17p/htuukAKt001SYmNSo1CazyVSLyORCCEiMxEQUb0QaPTGEUikEKYQUqEFIBug8RY76c0dc37bJRETxdY0JCimVtIIZheu8pwgoUfTZrTJEJvJEQNH158Xn+Rv9CUIUrE1idMBCa4lM0XdKKyn0MB8SUZFlq81GKcUxRu898X63zrIsK3IEFSNXVVPXtfddkqaIuFgsuqYeDofOOSLSWit9wza13nVdJyQapauqGY1G0fmucwDQtV4bWTVtWTdEaZ6m1to0K3RZbxcrk+RCiOVyadMiBCcl5nmulTy+dXR29qrp2kExnB3crzrXuk4PRqiSVxfXJ0fHq20tVLrdNUUxBKSu9k3ZLNsyEh7MD58+++zFs8d3H9y1CtKkaJqYJ3h8eBsFffbk6a3Do9//89+9f+fes9MrH+oE3DTTxbB49/33P3v+4vT0nANnVtS71cpwokFK86/8r/9X//af/Tf/ya///f/wL/7F5fVVJtRBXiyfv1o8fpxowRx/++Kq67o7h7fQil////2Dd9798i/+wT/URf7il94/PLy1Xq9Xm91mW55fLygErbUxynvhvG9aN8jTrvVSJeNsZBPdlFXPOzoXlBXORwDRtM4JsEpm2SBNTfRt7XxuRJKkVemSRB3fmrVt23XdbDre7/eRfFnt8sEQGRaLxXSq5gd6s7/uOtc0ngikltPpwe3jefDN4eLW+avz1fIiMQlRjAGVBq2177oautuHqfMtxVjvymePH997+AWFSiUAgZQWNhnBxXJ+eOQvNs1q7Vyo6oYQAGVeDJVSRZ66ttFSMCIIde/BnacvTl3nOx9MokIIBP30GZmQBRKwiwFYeB+YWamb9J6k5sEkZxQsVYwUiBkFoIwcGJEYvPeMN9jpjRWidxy8voBf18zezPSIGJ0PIfRiz+iDp746vm/OhhtsFECi6GuOlO55ZNZSKiWsNkQUySPfZGkJjHxj8vYIlGapBACOGuR4MBwoj4iD8aSf3ROjiYNnQAYmBtn3JYjIngkQFVNUSiFyjIGZVV/pTRGVvgn6oB7Sk8heCkCUhHCz5lJkEP24QD3lxtAbhgH73ZalxF6gFclRBACQEpWQAPS5HIpvbBfAeJOi0OPJ/TDDGJFuVK4KQQBLARJACBQCObgksVmitJKCZRSgFOaZ5dJFgECEwBKEQBYUEMEH1kqiFAgyeHLARgsjRQiB4ebMJxQ9L9mH9xGN54eHo8Hw6urq4aO3OkcvX129uLhOU83gsiRTggTF7XJhtFR60kRcbivA5Hp1Nbl192Q6FbEZG8pEq5rFh7/z42dPPxsVydMPfzxO7Vd+4dvRV1/4ws9U+yW57Zv3Dv/JD37y3/yN/3J++843v/sLQnAxKrRAX5YmscVk8GK3ds4VmUzHkzyLo+Fkvdv/4J/8FtfV6N7PDm8r750A+85bb3X77b5mVeRJmqaHh4fL5XK7XWsp6mrvO3c4n81ms+XVdZIkUkqOVNf10dGRTi06J6U8uzgXQmij0zS9vr7e7XbMvPRhPp+enZ3dvn378ePH+/2+FaqPYWuapudl+7d+37bR05YobtZQ55yU6qeCKRAgXvt3YxQ3kd7QO8eARQxslWrrhiPlg6KfYfvUFWQWQjCAlYoRORITpWmKzJGptzq8XoUF94EeWvW9SXmaxRg3u3IwGIwGBQB0XSes7ndo33YVkJSSQpSplUrEGLu6FOQh+EAcPXEkiJF88H1EjgKivipUh8jWWiH6RNkYEXrdSIT4+YuDKKmvCue+xVNqrYERKVL/nKMIFL2PvV9ZCGGMicTsPdONe04oxax9VyMTGpMZA+S1YCZPQQbXSimvri7atjXGEJFQxnvnQ9iXtTE2sTZGatu2P/uUUk3XtnVjrenHEa2VEEIpaa11XRdj7LpWoVADpbStqgaRpTIE4ImQVHJjve2MSQyhVCJN8xgXMcY0TUPkNLNt206nUwCySZrn6cHBwenZ87raosLxeHJ6fuViObt154e/98GuDAez+WaxyPOB1iZN9H6/zW0yn2fex+Xq8v69Y6VUMRzlSbLe7QaJsApHo4GUcrfbfPrRx3dO7j64f+fRmw9evHr52fOXd25NdJpNEv7J6lyFKlGGgEeZTo1o663L5JMnT6r99vjW0Z/5t/7sv/9/+veqqtYm+blvffvevdurqzMtZdXUdds8ePjW6eXij/yJP/7Nb3338mrx0UeflGU5n58+fPjw+PiY4Hy9LyPD0XxeNx0iEgWtbSBIsmy9XHojlB7pxCoUnqIMPhIwYyCqm244HLKEq8V6b1VqZWIsCnYugMDxeNy//w+P5tE7YgKKt27dUlqORqO3Hr7pSfrOFePxvemhd/TJh58sl0up5bNXZ66rN8tF9HTv/sNBMTp99erZy3OB9MbDu1dXq+Ojw/1+LwWMp+PAvFmu8vyiKMZ1Wc0m45M37gOIjz59fnF15Qi0tuPJvGq7qm5RqGIwJKLOheFoisjldgdC2iQXKENoTJoJQC2VD+SC94HaEBlRauuY+pkQETWLnuCsQ7uq9z0Xu2+6sq6E1NamBCISBR/j6w0XBEqtlNHo4+vdkSLczPj9sqi1RmbnWq21MUYJKS14FwX2TgFCRCmUkMDMWirm2NOTAvreTyGllAowMBMIpN7DKlFKiVXdBteGEITVKACRjFTWSIuU5JmR2JR11zYoVAieCVxkivBTzhWQCBxHIwQFL4TofbSvcTsFCP0F7L3vi536Lby33xIQkojALABB8esrOdzgAghMr8FFop9ezv2yKwiilLLvcJCv7+D+a9NK8k3KNNwYOkCBAIYogSUKJVEiSAQpUUsxzYeT6Yh865tyPBwoLdum4wBsyRMGT8wMGAWQEiAkOIcxUgwcRNBC9t+QtUZJ5hBDdJE4Bo+otJJC6iwblbvtxcXFvTsn8/nc++h98+4X3rr/6NH5YuNJtgSL9T4xYrFcdi6gTN5569HQZK9OL8azQ2stMMW2nk7ybr3+q/+P/9ff/9X/bnl9NR+P/u1/43/77Z/92tl65a7Pvn9+/sUvf/2tafajj37y9/7q//Ozs+vRz/7cIf2MTbNPP/qdttzn1vjVFg/y7XZ963geunWM3keSxl5dLp88O/3s44+P3hS//I3/BVs7yNPF1eXxfHp8cqiMQCvF6cvnzFxkiWvrTkukuF4so/O9+D6GIIRI09Q5hyFkWdZ0bjQaJUmy3m7W6/XBwcH9+/cXiwVHklL+4i/+4uLqKgRXFMXZZsfMi8WirmupVNd1RNQHFyt1o86Xr+NS+Sbjm1n8VI/OTJEI6UZUID8XtQMwc1+pFELomtamSQihqqo8z5W88e2hBqEkADjngCjS/5jVv0HCUQqBN84cYCnl51+qd51rvZWDllstBBF1TWuUYCX7FuTNZgOxTRQ2ddl3fcfIAJjapJ++Q/D9A66tJaK6cVIyEVmrPHu4USreJEf2JWlSaeLgiZEIBL6G3xEYCBj6LxuiEMIAoNJN03Bv7Q3U3+JCCEC2ErTWrm3rfYcItw7nRmkhoaqqbV33vY3lflsMRpPRYL/fG5GU+4oYXYg+RCIw1tZ1rOuWwfeNLtvttjfn1XWNIs3SlIjato7OdzFGChRimlolpDSy/yZ8IO46pRREP5GahWTG4XA4Ho93Zd20rfMxHw6JQ6TYtiFLk+vra6mwSIvT80utB8NJapLB2dVyu6tsMb5arnZlLZl2u01q8NGb90fD3HdhtyvTNFUaNovrIh9WexwVgyxNvffHR1NEsd1XzqS+C4vFYrfb3D6cfuHh3cNJ/uLlaYQAzWagg8rEeDLS2s4m0yxL1hsVQ3dxcXF1cfbZZ5+9evXKsQKbNyHc+9JXwIjpfAqCBwAAsDq/um677/7hX7q6XK7abrXaDAZ5XddPnz+zJk2y9N79O+cXV2W570vxhsMhInadz9OiTZt+8VUofPARWCnVdh6lTJKEAGyaSsS6rt2+BszzQRZ8k+V5Va9Xm12WZXVZDkeZym2W2O1uI4XaldVqsd/sm6oJ2mxrdqNROSjGB7fuSzNg6iJ109khMXSNazw1q00+GgeIV9fnT5+/mI4PQNgeZdnvNsZmUuiLV690cr1ZroZf/ZrwkliztJt9qdMsywsiaDsvpJbGCJME54hwva2t0dfr3eXi+52n4zt3nz17FgOj6Ky1wupEpCzVvmw3ZUlAMXAMHCMhYhTUD50IUNe1dlEI0ThfNh4gJoQ9N0Sv97w+mru/I/sKBGYmhBCC932LChVFAQC9W8EY4zvXhDrLkx4PxT42oHf9SmBmqRUF5teV25+fTgIZkVEyQi/ZBYmyZ2SL1HgvEYIgTBMrgJpqmydCkG7LTiGlWm+2OxeDsalAUEoZo4SAGKlXeAFAH2aOEpO06FOPIoVe6kwUIVIfWyQw9uzvjUeuz7gAwdj/PSIgMWN/7FDk/gUB4BA9MAtEIQW8TtHqj0QiIoooldJCY18pQYlWvfoSgQRAP6wIARwB+wAlKSSCEqAUGi2R/TCzUpim2rqmrPcBEfMkYyLLIioOFJkCwI3mWWY6OO+7BkkamWhtE220ElIiAQEqAIjQ0U1DFFRlExkuL6+vrq4mo0Ga5FLKstrVXVCCyqr69Olzmw8Gw8m3vvGNEOmjpy+ZOclST9GkmojOTl9MbbAi+Y3f+LX/6j/7yyfHR3dvzf6tP/Nv/uyX33/88Yfr5bW16a5svnd9uViX/+Wv/NcDD//Bn/3XTFH8tb/8f/3Wt741iOGHv/YPB1lqhNiZ8sEbd4H3n37yg7MXZ+PRPM+Kzeo6LyaD6QnJ1Cbpvq0vL6o3jpKr84vlaqsEw3q9ds5Np+OmaZIsPTg4aJpG69iTiKenp+PxOPpQFAX2fizEEPzBwUHn3VzPT09Pnz59Oh6P5/O51ebi7HSzWt86PMyyrK2brutGo1Hvo02SxEfuRbbM3MvQXwvQb0hZjtxLrnoSgYnp872QoTcUfb4T9856H4NSKlDsV3OtdVVVWYZ9cGbTNDFEKaUADM7T61mPAEAIAggxCgClVIzcq/F7OrlnofbbnTZKIRJR2znSSrBOrA4hFFmaJYlgX5dVkSqtddfWPZGjpQQpEKVA2X8ftu/v1aKqmhijj9S2nai9lJ9b9wBvMHkQgi3IwMDUc+E9nsxAxIAcCCD2u75AZgTBJIFRIKKOeHOR9+eIDJ1V2ma2KLI0MePBsK5L5xxGrwQP88wY02mZZ8l+t2nadt8GF2moE9c6IrBKF8VQCIEQqnovEa21TbW3OkmKTAiRGqUFaoFRKsx0pKClAg1N01hj0jRV1szMDBH7UM+6bnyIWrGDOBwMbt++7V+8Wm+utUl2u10/h4Wu22xWWglmRi+NTC8v1k9fLUw+LAaT6+tqt98GHz756KNvf+sbRlCeyKcvP7tzcvTg3l1ksdmupNZJnvbnyHq9fvvtR+cXpy60i+Uuz8bvvvPF5Xq13qyEQg7tbn05n4wVHpZ1u1gtjyfZZltNh+be3ftJki1Wy0Gq1+uycfWrVy8nw6N63+XFpAs8ODjmJGcOnqlrmiLPtru9M0k6PQBpJvPjT5+evvPOO0mS1HUphIjAxqjZwaFNkp98/IlAWVdVYm3ogLT0gIlOpMTQtSREL+xXSgkfCbDruhB5udoMiiwbDLu66lxsnK/r/Wq9Hw6Hs9mcKG53ayFEjC6SdK7V2t65c6coGn2+uLhctc6nw1lVxdXy+u7tO/vKL64ujOWrxWJYZDYb3Ln3YLfbPXnyZLtdDYYFCtbJaLurOOM8Qd8BsCRBLL13dZbKstqUZdiWcbWpstF0W1X5cPTi5en1YjWaHWQq2TeuLEullBK4WW08QfT8gx/+5L333n3z0du/8zvfB7Ezxghjk2ygdBYUOyDvO0AZAVlwjIFbp1BIiUIIZfOqrgOxUkqnuffeESADSiVAhOhCCIh98iIJIVBJKTUDK6leW/KE975pGmttn7mshIwxtm0borNJ9rniRAjRF3pK5Ne76Y2752bABYAYBIKQiMTAxNS3I6kis85JMpQkCQUvkSkEZEr0wBpDsZEotGQEFsAxOCmlsXqQZ1rrruucc4gshFBAJrUAwN5HJGt0jNB1ndbady0iWmuTxHgfO98BopRCIQohguin9L4NnAQxAQtGicj6xq9IREmqY4whRmZiRkDAfmHvKwUBAKl/8ZWUJNEoCRwDEfanNJNAIUAACoksJSiBSoCSYIw2WqZSrJZXRorEKsQbo/R+u7U2ARSkIUYIgfuuBmRSOtOIzoUYfddxW7MR0DNoEm963kAK1wXvPQEXw1G9340nM+A4HI9j9DZJ6rpsOx9Rnp5+ppVIrXr88Ufj6eFgNDo6mJ3cOn727Jn3XbPd3n/wxpsPvr2/fHJ9efH3/u7fuXf/zm6z+aU/8oe//d1f+MmPfni52ETnNmVFxC9OX+2r5g/94nefPnv+k+//2ieffnownX7t4WxY5F9/MHn+5PGd28enL17+7X/8wYvnH88myb/wL/zx23ce3Hv4aD+dfPLBD/cN3bnzRgDMsuyL7957+cn3BLnOk+o18aNisN6tvfeD0fAnP/mJlDJJElTy4vrKWiulTtNcSjnM8n1VKaPX281yuWydjzHudjtjzHK5fPr06Xw6C65j5s1qpbWUKNZ10197vfuIQgcgkiQpyzJGL5HpxodKFCIyaKn6O6wPPIsxAlO/9fZYaP8RYxQAJIQ2umnbBBPNumkapdRgMNhut865/iHpwW18ncXKUgBi77PpnyH6aWWY11L12VshhMTYoija/XY4mEtk8sFojQjB+5ZjYhQClGUJoSXfDrJxYqwejYmiMQZRdJ33LgohtNZCybatA0VJcruvYoza2KbpmDGCl1IaqXqsRwihBEkpQfzUnsvcGxB7AACI+uH0Rl3Sr/QUI6JEZgiBCYSUWgol5eF83ocPJFrmadI2pXed0TJPR2mWEYGPQSsTmFarVYx6UkycC23j2tYBQDQxriNRSKx0zmkpkaOUMkmMEKAEAFPXNkqKIs96wEIK0V+3g0FeFAX5EGPsO5uTJAE1cC4IaImIY7QmHQxGhxGvrpeXZ+dJnvXHogtudDjf77fDfCxVcvn0M2myp58+WWz249lRf1b+0V/+5cP5uCq3q8XF2fXqfLm82uzee/iF2cGxD9XB0cFisY5OxNj+5CcfPXzrbozeB7i63j5+eoFKHx3PdZoxx7Is8zzjGK3ie8cHt+bT8/OLwWg2zu2+2rf79XQ2K/KkrHZf++pXptnR33n16gff+5279+/Mpm9jBBQSCJIkQ5DR02qxSm1GXaz39cvHnxXDycnJrTzPr68vN5uNzVIiQm1Obs2rxjMF33VFlkkUvuuC64h9f6oOBgMhZN00ArB1ro8N6SEZidhyKY1BxK6LbduiUnBxMR6PvPfX15dHhzPnWmPUer0CRkLz4MGD8eRwu68+enWVJcVif/lb3/s+AtlEpKm9vDqdHx7utuW6bEDYbe0dy2x0wCI+f345HSuAgCyNFE3rs3yktRFaZEW+3W5v3X77xfc/eXm5VmXYlBXCtqrbLsblertvo0nTQNA0nZFSCO25zQejrq1//NEnBwcHt+/fd6Fumi4ANjG2640nVEkKiG3nPw+PiN4TskLkGKQwtQuB2IBgFISKIt+U6AntYwixVwUrIYRC0fq2z4nrVUVM2Ot6nHPeey0lQPQx3ESTdvWN+Oh1J8FrQBuISADA67qCn6LBzICoUAiJkXykCCwR2Qh0FJUQg9S0dWzqnQDOs1wIaKuagIE5uM5qKQTEGLMkkUIYCVmiteCaAzNrLWWMSaKIqK5rYFWkGrXi0CJ7CQEYBAsjbaIMe9V1ndaZEAKAIRICsEAhUKB0InhPIXoQwmgrpYiRvafEqBjBeXCRIkVmgQp74yXctLwIRJQCJEhUokcriQjhZmtCBmSQN9u/UIKVRK3QaDRGSQxIUShMrQYWAllKnSRABIzIIAKwAKAgiIlDBHLW6iwdRN8yhUih6xqKQutCSdOf/EZLJu99DMG7ziuTpmnunMuLoRCiqcs8z68Wz0aTg5OjQ2mz69V+PBoczuefPH7iUK6Xq0ePHj198SrGeHFxkWj4uW9+5S//hb+1WF5r7u7dv//H/8U/9fjZy1dXi0AYtdmVtfeerXn3rbfv3r37je986+zs7OTO4Ze//GUEOj1/ul0uH7x558MPfvz400+1sX/6X/qTX/3SFz768IN9Vf83f/e//Zf/1L94586bP/70NBseDIZTr+3BXD88/s4Pf/f70+lcOeem0+livUrTPFB5cXElpSyGAwAo97WSZjwe13V9fnl5fHw7EBhjNpvNfr/fbDYgsGm6ftG01mqtv/mNn91vNx999NEb9+8/fPiwLvfPrq7xptphX9e1EEIJiL5Lre5Z2J7T7U3rxhj1U7UzhhB6zXt/9PRtDOKGBr7xsXXBE0LrXY8XBReVUvPDg/V6W9ZVDyn/02iz0uqGyQ/BGNPzyUqJ4LzsMy0iDQaDsiyjjOPxuKFQFIWrq65rjo9uI8XNerldVbUSSKFrTJEoq5AZnAtpkgB6pRRFEAJQMHOsWxdCYIQkSVDKzru6anQSgyetLaMCVCSUEIhCSCW0VErL8JqsijH0L0g/TyiBgSJR4Nc3MMS+Mo0RA0fGGAUKo2SemcRmedKXtdB+uwu+Lfd7KSVqRGQEYApA7IMLPh4dHZ2fn1+XtRCqamogZAKi1nE7mQ6YqShygexcyxSHoyLRpqoaLR1iHA6HSqm2qr33wTvvvdbad83GtV3X5WkmhFAS08QIGHrvjDFS6v1+70yIMRZF4QMppcqmqaoyT1Kj0zTL6rr00VVtffv2rYvF5vLiPBuMMyuPb92bTqfW6roNV6vdsxdXnpNBNujk6OnpRb41B7NCZ0kxnu1WFUq7WJx3HzV3H9xtfNhWTRvAt135/FU+SGieHhwc7MpytV4BxzS129X6cDpJsrTaLaxJTg5nSZ4NR6PPnj8bZOnd8eG3fuZLH/7gd773vd987407wASRrFAABMHPB4O5zT740Qc7mVxeXq8vXjHjlcDxeMgUBkVGwMvFRTYYblabyHxydFhVjUSg4IosVYNCyNgTkEWR13XdNrVEoYC1MYEIBWituraWUs5mU6u1jSNp9Gg4Wa0XiJimaVfv67qeTgbz+TRN8/2u/ujjn7CwTRuPb90VGC+vXnkX5rPR7Tsnjx9/tNysb9+7Pz88IV589OmLELGLRmXZ3sk0z5eb51kx+erb7374o9/aLK7ffuuLV1dX44PJeDaq6zJENTviT5+8CqRfvlwko0GqlSOqO+dqp1qv6qZzrm0aI8WgyI0S3W5f5KkL4fGz5/fu3RMqDwgqSRlluVt2EWxuWx9dwNciKokClJTM0TvXsCNlJGJg9i72lC/5CABpqqUygFIbc5OmHr3Wloi89877fu1LkqRXlmy3W2vtIM9jDL3LHxFBy89v30gE3nNfViZRSKGUEghwg8rxTe0pghJKCJAE/nUrAoLIjFZKaYFt6BSAUTLVyvu4Wl0PxqPRaNQP3CE6IZPDw8OqqgR4I6I2iAERRZKY0HTRdZFCooUxSnK0xhbz6Xq9lkZ1XdeWu1TL0XSusNjvmSUD9G33JIiU0dZqY5JAVFVVXQeCqEVUEgMRQyQXEIRVUkvlmH0gYgZiqaQARASFAMwQCSUKEErIiIFQIIreQNSfxogoECSguJFfCSmllgg+aKv6OIEstRIFUVBSo1YEIsYIDMCCjeRAERShN0anRiNIBL5pMvRuvV4XaUZELlKapkIopQyTbJpOKaVM6iM8+ezV228/Ujpt27pt3MGR+sqX328cSH3x4uWVNclbj77wkxfPXp5fNJ1L0tw3oY+A/P/8rR//g7//q3li2ft/7p/7owCw2m4iAQvpPTuCEOH4+GS7L6++/3vDIs/z/Ktf/fp6vd6sl1VVzSYH//g3f/fTxx875375T/6rv/TP/v7/+m/8teur5b7p1pvyV37lV9569z33q785PrrjiK6vLn7jN5YPj0e3b99ljooQLhfXQoi6bfI8R6n3+70QihEC8WAwDMRpXuxfvEy2m8FgUJWbi4sLFGo6ndZtw8y3b99+7733uq579erVwcFsPp2EEFJrd7vdqxfPyxA3m40yBgCAyNqkrKu+EImZB3mxXq+zLNVa92w/hVgURc8yGqWzJPXe9+qnvjq+92N8jhGBkMam3nvP4DrPzGkqfdXoRDNHFzoFChBCDICgjQ7kjVTK2rqOzJEjpjbpbUhCCKnQKo0clYDJaBBcKwGq/VbEmCbm1atXxwfz8WCYWm21KvLMSkgSbSR47zkxVVUlKRJRXbVN02pti3y4XK+cc+PpJDIH727fvn1xdR0iR4qRKQRGARyICLLMSik8UWyd0rIXoYQQpERjjJTYM8UxeAWobc8DyX5c75wjgiiiTBJlTJrmPTW+3WwGg8FgkPtWF3k+yrPRaLTdbsuyrKq9UsY5hyh9iOX5RVmWgMV2uw2BAECCVEpn1hhjgm9i54TALLWZTRSCFFDkVgN2XVdu1kVRTMaDGON+v+8Eb7eb4XBorM0HQ+ccxQgxNmWpNDRNo7W22sQb4WhUKplOp5eXlz0eIxFvHR92TW1sulkvAWVejMrn6/EoHU2Ht44PYuD18rKu29YFYnF6uQPUq7o9XV29d2fURL/erYeLTEs7Gc50mk8PjwH99XrnCITKOmpI6t123cSQxO58sbl/9+Ty4jxPkxN7cOf+vfFguFyuJYJVqKTsmr2eje7fOV4ulyTqP/Q//fnv/vzXfvz9H3z04Qebjz/YbdYvX72wVg9GxdVidefe3UJbDWE6yg4PRqYoxuOhsYqCKUZD51xZV8F31X7rAmmptLZdU+VZYrTUQkrNzjmOIXp562DeNE1Vt76rMq1ns8lqu6l32/1+m1j16sWz+/fuIMBwMM6yrO2y9XoNGPNE13UN7F3bSilPTk5OzxbL1X4+PbLW3r9/8PRp9d47b796eb5ZXTy4d1LVu+nBPEnz6UydXlZt66/WXZKJV1dXd+7cLr0fz+bvvP/FL7xz9+/97f/v6elpmhW3kuMYI0qppPnw4ydlE5ebZrGuT8bzqmtZqtnh0dVqW3Uu0zbNi6ppy7YTEkWeIVMEBMQkTdebTZADIrlfb8q2FToVSpebJhIIbZhZoUiSxDU1E3ofKIqW4ucPfmCmeGPr11q7EHvpcl3X/f+x1rqu6a0UrvOfpxwrpZIkGRndNW3rnFGqR2h6cy30TYLInnzg2FcsUGR8rTqUN+5YQhQUQpRSIkkhpDJa6BjjTZGfNj500QlrNLs2s2aY2e12n2VZmqZpaofDwntX1zVx0BJODibOOeagNNrCAICUUHs0WittY4xd1xX5oH9G9MGkqqqY9QWvTsl4+2R+eto1beiFO2iRGZUxiJimpm7bdDKorey6rnNOCB4VaVl6ISSjRCk6TxKkVegCoVQ3AACgRGmUAIociRlQKa21EJKImJGRFaKUgikoFEKCVCgFKASg4H00gpm5z0nsoU28QQ4iCFBaCKlQsGBEoylGgiBFVFJneSYRKATftaiUYNjv99ambec263I+P9is9+v1+sXZ5WQymU0P0jwHdL/1vR/cv3cym03eee+L5+fnl1c/lKZIi9m9Bw8vrlbjyXw0nkmpyrrJsmI8TM4uLny1+L1f/zv79XKWmfHw+Lvf+aZ3TVNtmZyAqNrOrdbj8Xhi7dV2O9A6VvVivdlcXDvnyqoej8fr693ZxdJ5+fY7X3n//ffWq+WwGLSTbr1/pZVYrVZCJdOju7fffIckGqOGxeD8/JJpkqS2lyjrpm2NTgJBW+8j076shBA2SZU2u90uxlgMhuPJNEmSz55+8ujRo/nhwYc/+bhr2tlsprX8zd/8zR61/uCDD169esWRiizbbDYANJjNxuNh0zTz+eF6u1VKTfTYe+9cp5RqmtoYnVrrnDNZVlWVEaral1mSxhiZWKJAY5qmmYzGZVkCcV8X2NtgmDkqweKn6LQQIjJFH2yilTXYR79G6reKrut6CWUIQSlltWmaJvjOGp3ZZL1epyZ1XSOlHA5yQTG0zajIkiRpyv2gyJESISBNbfCNQCzLMmohMbF50rZtqyUAAbJShpmbpulcaLsuBNLWZEXRNE3TtXXbouzJJYoEOrEmSRB7XxV0LlD0UiIiRorIYJQUQgBxpAAAWlFmVJIkxhjgiIjGmD4+LMa4XKzzPJ/O5xfnV1cXi6Ojo8o551qtRtba3W6TGhtj7H1ExhhUWkgZI2+2u7IsQwj7yMyolPIuMHJvT9xvN1KwUWI2HY+Hg+B8D0goIQTFLNGIKJCaao+IRgkBOr91eFP/7EPw3Y2OHbmNMcbYNI0ARI49awBAi+vrruta751ziDBqmvn8QEshtbherVnA8fHRo7ffLQbj1Wqz2e4xht1m61lomw1H810TOtJ1hz/+5PHDN+8At2XrtdS7MlKIkbok0avzJcqEMEFtL84uUMPt2fHV9Yu2qbLh5J33v7ZdXiqTSpVst3ulVPT7MnoAEZk/+MEPbt+9k1q1rK5BR4706L033v/S221ZFnnyX/0Xf6Wu6z/zZ//MV7/8XjGeVF34+PFPRrP5W++9lQ/vrtfr5dX1druxy6XNbZYPYoj3793RJtntyu1mm6WpAKzLfZ7nWWZSa+F1dvcXHj368U8+DGliNS6uL733ZbnTUgynMy0FUPTeK4FSYS/lBYwxBu95H1xdlkopAvXFL37h9Gy5WO3KapfOzM9/52efPH7W1Fvnguuyzrfe+7pqh+MjBL0rK+eFFWk2yPZ1VDaxeX5+vbh//3B+eOvli/P7Dx7GGHOTtZ0TWl+cX19cL/LZ3bkdlQ1pCCAwMipjBiZlFEQ0HBZKopaSokcQQitWEhG1MV1rqq5pgwSZRRJl5QhYahtdjDEG5OjJKAEMWiWBHTM7ChQC9qBPL9QV4nV4LQgGkBLwhvSVSoVAAL1zTxBx533VtN6HLMuSLFNKAnEIEAgohBhJShkovtZ5igiMzDaxSinx2pTRbwuISCwUyBg5eqe0SI193fbWMDNKlVsjElVBTKRE4KLIekwueldkaWKkkWytjq4zgrURRMQUlGAtZF2XGtV4MuwxsHVoFVCqpVIC0WZGtG0bQmDGRAlBIbc6dE5BzDLbf78uBmaA2KUKnO8UBGV1bjUzR+q0JKWNlFJIrUToXPREClj1qWGirxMm3zlgtkpqJT/3dwkhRA/AAwNHJAJkgShRGdmfKyhREDkpjU20kYopAAolQSnFIPqQhz6ejAMwRObI7BhlJI4BtDZCAbCMESAAEXSdL/LhoBCr5Wa92s7nt8bzozwbnF1cCEdf+/oXVquw3S5RGKvVZDobjaefPH3xm9/73vHdt5NUn51fQ4qH02lb7v/m3/ybxXA8GAx2y/P1xYv5KNldnP3PfulPzqbjDz9+oqUYDbLdds2uPpwM3nzzwfX19WSY9nGwRWrapku1jlrPZ7N/8Gv/KIQwnsz+N//6v/F7H/zg4e1bh7PpxflVX5S+227LsvrWz/9PPCgU6s7d2/NBOn5wUu5Xu/1adV0nhOo1byH2QnMTQtjudzFGa23XdU3TCInE0RjTK1ejD3funhwdHdVtk2UZEXRdx8wffPDBo0ePiiw/PT29f/8+AOTjYnG92m22SgmjRF9ysFqtJAIyRU+9zUkiWK1qphi9tTZN7Wq1EkJ4D0qp46PD9Xrdw0Te+867/tZpmqa3EkXgfl7u39wELKQ0xoQQmqbxfKOHZOa6rvM8T4ztXFOVu+FweDQ/2G5WdV0Ns1S8zooDAGu0NfLWwRwAIHQKgYBcW4/yZDqduq71Xejf5UmSIIk0K6SAzfZS6zidzm2aNnXXdC4r0s/hdBbonBOoOnK9tweFBEYUCCxCjMF3CCSEDSFECgJYayPVT0NcTZ/IgwzsJaAQLDmQ8xCjkTJPte+q/RpHw3w0zPvY97Ksz+h8OBgQkXNutVrFGPM8v7y81olV2m4228ViIaVGpSAKrRUi+s4RsGBSSoKS3jWD4fhgNgWKVVsqFELJrmms6PUjVgjRc+3GGKv7BpKuruueKbCJQlTGmKpupQDnXJZYpVRd11rZ1nfGmKruyrLsc10ur5eJzUbjQTacjVkrk8CqWm/2xIoIyv2+aVubyIPJQeu5ZbFuNiAFR5we3GraIISwJDvvq3oVnL99+3gwKSofCNRiUTKqJC+KYS5t+tWf+/nQtR99+OPtrjw+HOc5rDbb6XhkhES53W93k9k0Vcp3jUBOszQZH3dNW9dNtduP8qLI8+nDR5gXIcQ33n1PpRlkRZ6KxXo/P7mfy0Rr/cYbb3SuKcv9wcFBYAohjKez4WgGQlqbTsZTrWTXtAJoNBgqzb0QOjV2t9vN7s3unBx/8vhJtdslaXL/9r2y3CHQfDou95thnqyqOrNJURR1XYcQinQIGBIrd9tVUeQxsJTy9PR0udqHKG2il8v11eXms8fP7t97c7VacYxpkiwWV/lgNBwMlBabzSotRkqpXblDhVpIodNIgrsAIKy1VVulw4wZ6rp97733f+t3H4cQvIvEsnXB5lInaecCEYGAtm2JKE1MuWsGeaalkBr7BTSx2Xq72bs2EEcBvgut6yKgkJK60AfTCCGbdg/GApNSCpBufLxC9W13ANBDrr2ks7f1IwMwBEFAUQiFeFOe0XQOXsf9t871pI5RSimpjZZSBgAhsD8oiAiFgMjOuQgoBBgiaY0QUmJPgcUYo5USleqlJHzjvqVeQCcFxIgCKbE6N2OrpJLYEux2u0GeZZkJvhnm2SAdNnXlfBtEFAxZYvreH2OEb6OQajTMb5zK5PJEWwlaY4zRKvAQUJCU0ghOtbg1nwTfEQWrDUAE5tg1WmsJsnMdUCxSnSZZvyLXdQ25RV20zsVIJBC1UAQeI0N8/eqSEEK8zsOKwUtUyIz9y9hfwBwBQCqQgiUKibF3C0sWCARAUqLWWiIwyv6rRSmoL2PoA+xBsUSOIgASdYgEHDl4VlJJya+DuJVSzEhESskYY54PRqORMvKTx88223I8sd//wYuLy8vEmouLiyy3zrXSZkfHtz/4+MWzl6/SweG+cUlsf/D4kx//7vd+8uMf/bE/9se++92vXl/M/9oH/1CSG+Tpz/3cz8YYWx+U0bEjrXWrxWx+uPdtOhl2wStOrJTb7U4Zua/K4Xj86//413/00Y+UMf/7P/fnQGPjmuGwOHvavP/eu49fnkpmCK6u2snBA5UWn372NE90JvnhvTsoog+hJ0RbqVW1bVrvsixru8Z7v9tufAxSyqIoDo8OBoPB1dXFYnF1OB6X2x0LnM/ngPLi4uKTTz4ZjUbOBeccAV9eXuo7d956663FYnF5eUnn4eDo8I2H98uy1FINipwRptPpfr9v2zYx1hhllEyGwzzPtVR1udPaUAiJMUVRMHPbttH7PM/rug4UtZaImoBi9EoJ/5pIlq8bF/qLLXjfv0v6jRkioUAp5XQ8kQqJCBm0kNPhYDYds++q7VZaOZuM59NpVe1jjEdHhyEEir6qKoquKhstMUuskDgejpZLp0SaWpMkRimVaG2tlQK0SaWUgKpuquvr9Wg0ms4Py7JsnSdiJmydE6iCJ2ZEJfvVMBILBuYYvJcCZN9U2OejSlBKaS2V6sdKAgApUQuJgnVvWqJgjKmqqsiTqqKr67NBMRoOx+vldTIcMvNqtbHWIkqQSkq92exiZJAiTfLIpI05ODhyMVycX3mZI4MxJkkSwRBCAPaJVeNBQSF4V+dpYrWsywqBrNK9pdtam2YWBXvvAUlI2bStlDLNrNa6T0fpui44nyRmu6mD6zqtsizrD8Q0TSNBYHLOZflAG+ldu1ivqrZ5dblJkuT87PTs/Go4HDctp2kaIjVNo6wBDEqL+TTXiZE2dQEOEqqbCtkbnTexAoSsyIvhwAcOJPKsODhInefNrlytVlVVxbplpo+fPE81DodfawNIpsVq25Z71zZ93VOe50mSEIW6rrsYqqqZzWYCk+vFSprB6vz6ydl1lmXf+/DJ/fv3t09e5flote7OXq2TJB0ecFlX09lBmqa9HvhofrTZl0LWnfN1XVtrXddW+7LIEhe6wLzdbinEIs3quo6RGtdJiXmShhBGw+Le3eP18urwYLYx4LpuMh0tF+vNZl13XVEUWZYZjbP5KE1stdtKKauyns/nneOzi8V2t89mU9d1t08eGJMyi1u3jm7fOXr+6rmxpq7Wbb2l0AAbgYKgSpTxtW9bV9dhs66qupEStQSjVeicEtp73zVNkqiy2nScxigpBWZ2bRe9J0AkskqlWucjNZtPjuYHSqnNZlM1nTXsvSeULKJUzN4Td1IrYxQR2UT3vZwxEqAnJh8DCkaRMITeSYOI/UDfl1gDQCTCPkHvJmYnCAbvAyIyCgAQQkkpGUXvmY4hNrFTUUUGpZiAkFFgf6Oz1Ro0yIBSyrapg/e+axOjE6OzJEmSRGsNLgBCnyPLTDHGG/WyRGM0BRdcFzCkqTEagaOVOBtl1lopGICjrymwlSIZ5ojguya1Ssuk7eo8TfJEr/Yd+1YwK5CDIlVKxNBJqRBAIGWpUSiISLCTYIyRozxpmkaQV0oR+dRAmiqllBqliKhM0gP4MUqOrRCico58QwRaoJICpfRBMqOPMUYOIfRJzz3rB32/eJ8shABI2GeVABglAEhgVAASQYFQAqWURmltpBB9kgkIoYTESKQl3kAVSirBwJIJYwghRsFw44CJIQITEUSKMW42W+dCkhVSqtVqZa29vr42qTw+OVI6We9rpdPNrm7a6+l4MA5pWW0bT5t9GwADifPrxXh69A//9l/5jX/4q5PUfPP9R19683bYXW0vnmeS2rJ5++23D45vL7a1slkbm4iBWNj5ccwyoXXTtl0ETpWLlE5m9b5kZcGYX/1Hv3Z+tfvFf/b3/eF//pd/7dd+bTAYHM7nP2w7YpyNR+MiffuNe88uqh9fXorjjS5SY5QE+PjJ86Oj+a3juTo4mDVNEwIpLaALdV12ne8dI6k1RAQU27pyXVWVu4P57NZ8niTZkydP6rpuXXd1uWCEvrX+6OjgF37h93344Yer1erRo0fOubIsN9vF5fnZgwcPrTarat1PxH2IEvT+XhK+c1JKToPS4vDwsGmapunbTBsAMEYRhSIfCCH2+30fHB2ZvPdCCC3kjXBRCGaOPnAkY0yIzntvpLLWKhR1Xffcj8nT+Xy+3+62rRNatlW9WSxGxWCt5MFsdOvwIERXJFYp1ey3RVFkacLkG+qAOLPGJiY4v9msnHPIUSIN8qTrOgH66uqKIY4mk6qqVptyMJwEwqpsLs6v80EGjJHB+9DUXZIpRGQBFBkVRApEJPgGJ0cAIjJWKyGFBMGgBabWvJaRRyVRKYHEkXxg1hKlljH6JDHyphOJXQj7/VYIWFwvsyxDIZfLNTOPhoU02jm33m0pQlmdCyHTrGjb7a6sR6MRdzd9jhJQ9qGuzEoARY9CCODUGi4KDdjvKNoqIrJporSWffR8CN77yWTSd2MQUdu2AJQkJk3Tzocdcpplxuhej1pVlc1yANBap1nRx99rk9RtW5bVfk8vX17vyjYbHOgkC6wimMZTRGzrqvaNsSmgCJ44pmmSC9BIvNvVVidd67quPrl1eHR09Nlnz7ebstx3UillbJqZqtpvqvZwfrRYLJROs2HSuVjWbpTbSCFE1jYZjEbr9baX+k8mIwbgmhIw7aZlRtfBy7PV/QdDlsUv/ME/Mpneeflq1TXd48dXWg0vXq2KfLgN0Wjdti1SbJqWCMrWl1WjzVZoU1WVUqpIEwB2Mezrajwedp0TQpRNneVZ691ms3n70VuRoWka19SVIASqdmvXNVrJPB8KIeqqDSH0J1cIVO3r8Wjy7MnTLMuGY9M0zXg2eX56UdV1J9KD2WFdt08evxyPh3maf/zhRy9PX3zh/S9G3z64dyvLso+fPGEWX3rvTWa/ujanZ+f3b015UtRlg4gouG+tkYDf+61/4ruqazsPzFIi2BhjV3fee9uTuEqlqVVCaCkMgAQ+ms9mk+nzl69CjKnNEkFV5QAoz7XWTMxpqqy1UsoIWJadTZSUUsmkaRrnA4m+d0hEYO8deNd6J6XkcENCIfQF70IGgQ61lF3XSSlRSmvTvq6UuhsVlTK6VyG44ANFY0wMMQoK8ab2U8o++E7kiQVmoIhM3vsqxrZFIcR4MAQiJYW2hqPrQuccC4l5mklkY3TAqCVLQVKw1bru2hhdbL2LnjhkSZrn2SCzXdcpiW3lmrrUxaA3RYxGI6G7tm2TxAiIwyJD5K7rskTlaVaWZQiSmbfbLQBwloCAk6PpbrcLMQ6HQ0TZ020xRkJQSgHEsi57BIJzw8wEQqFVykTgrvOdc8yRQARyWghjJGMvd2WBveKMkREFAzAyo2QjhdFSMPXRClIIrYXWMtFGSqk1ptYkRiEDsugJNUKSWjDHHs9QHpkZCElLuiHymXs1GDESIyJDzPPUue16syzy4WQ6NMau1+suiFmSpXmy2FbVvgoRB8PprZPDk1uz1Xoxnc8vVpsX1x/WjlEPrlbb+eGth288+vRH33v28Y9/+Nu/8cYbb6SJzlPLrXn46O0kGy6rtQPJIIUyLoSAxbQ48DGwEokpYvD7zbZI8125vn/n3n//3/3q2dWOAP6P/+6fXy93bRtu3z7ZbFZKYJHl1NXWyHq3nc2OHo0n2cFhG7s7d47Xl9dffPTuk88ety8vFAVHwa3X2/6uLcudtSlzNErlRfrlL3/ZWvu7v/vbRPTg3t3OtZcXF/1N8MEHHxhj3n7nC4e3jqqq2m63McbVajWbzTar9W//9m/nec4Ib7/5KEmSfDjo72OtdZIkbeeFEIO86FMkiYNzTqEIMex2myzJZZYXRbHf7/f7ve+cUsr7rsgShrhab51zvclVCGGF6qgTr+sngYmIQKlBlpdl2Tf79nquiEIpBcRNVSfa2MN517YYI4U4m4wujB7lWZaYunSr7XYyHg7zzHVtGaMQYr/dJUY4wVJwn401LLKu67RWw+FQK9AI63qPxFXdjSfzxWK13pz3sq667VCKxnXGGECJKKmXfjMTga+b3iulBRotlZAoegMAKqWUAKLAQDHGflVOTOpDn+EFfYVnBEZiZh4OhzFG2bRCiKqp27YDpCQvfIzD4TCEkFibpEnXtNakVVUJpSiE3X5f1W3nY5IkxiQWyPsYOteFkKVWJ0ZgFEL4rp4MJ0lqY3BK0GiYEUFT1b2pTCnVtq5pXW86dM7JurbG8OvIISnRew8AWZYURTEocgkIxBJxU+9BqjQt0rRT2jZN14VoGJ1rlVIghdAqK3IXKbTe+7Y5u5SKi8F4lmohGYCqqkGiGNoUTJqk3sn5dCZRhhAouOXy2lq9XKyQsO7qpqlGk/H924fzyXS/q41NpdQ+sHNhud6Ohvm+bHKrLxfLPLFlWSeJQSldDBHQdW2SZN7F0/OL8XSOhIvl4vDg+Jvf/PZ4MDm+fc8k68Fg9OzJZzGgc8FmRRuasm6QIc9zdjFQwAjEKrJsaidVkqQ2Almj8+FACqjbLhuOog/I0TkvpdTKhhCyIm/bWkoZva/3u92qm4wH5N3p2cssLWyiU5fGSPv93miZJma1Wp2cnPz4xz8+ipTlo/mtuZToogveffL4UwRdvE5xR8QsTV48fXrv/gNri/lkeJ4lSorpIHl5dj2fzFcXZ+dnCxvdfl8piTF0HH1Vu92uHg2mX/3q9PB6//Sieny615kud3tESUSD0bBPCC+yNPpOSYwxnj7/bLdaHh4dB9fty1ZKicBKYgQAwMRopZRNE2utc4H7CDapAzEK6CL4CACeIUqppBQA4Jyr6zrGqJTqW9wFopSolOpz80SfooySCUIIyAJBSmUicQiBAYwxQmoAiOQjk1ZKCCFZEZGLwfSKoUAhBiWlUdIaq6VQQgAQM2/3GyBOjM4zY3oboUJjlDbI7IVShTYaSSEaBeNR/mB46+zszDkXQvQeh7kpiqTraq1kkWU9qd8D5mVZeu+V0V1bpskYmJWURETRUdDAJBCs0VLKGLwQYjIe9AEd3jX7fYscJEKguNuu67oeDAZoLSJKjIkx42E2yG3TNJ6BYhBIAiCKiAqNECxk//gEjgIVCtHHMSCR1qonlSSyECwlp1ZarQD7AnIpBGrZp8ULJRAVaCm0lMDMIRIFpYw1mnvNS58dBsjcM8oyYNbXBBARIAkGUEJK2ctWsizLh6N8NLo+v7y+vlYa62q/2X9S1tEFnQ6mSZaF4Neb3Xg6DMA/+OBHxeggG47qbeuQZWIefflbD9585+yrX/3Bb/7aB9//3X/467/+pfe+8MV3H/hmf3xyT9ss0KpHuYP3RWpcwEKpjlnbtKoqCTgdTtqykqxmk4P7d994/613fv4XfuHdd7/4wYcfnhzfHYy0v77y3hurlMeD+fjDVy/2KJo8u3N0oIwkXx8cHBGLtBitN1eqaxsiQo5aimKQpWk6HA5d8IvF4mtf+fJkMrm+vn7v3XeIqOuasoRX16skSWySvf3mI2n0fr/33tdt8+rVKyJ68uRJb6INzs/n81u3brVdA8gvP3iZZdmdOydd53e7XZFnTd0JKZQWDJFD7FsThBBSCEAK0e32myRJmIu2bZMkkVoxs7X2YD4t62pf1v0vESXd9EhzX9QQY+RIEoWWCoj79bof+owxu+06TdNskG03G4X4pZ/5GUHx9OWLzCaH8wPXtTG4cZGnxuapTa1m5tQmTZkZJfu0Gi1RKeXcTWRM0zRecqIkAColy9op49bbanl1rbUVQmgtI2Ndl8PhUChJRE3TMQOBYKayLK21VkmprbUWgQT3syowxF5iwszOtb1TuWuDdx0iJ1anVoPR6NkDpcaWZSl6XBclI5gktV3XBrvdrSOglNpYG0Ks2xYRQYjdbjcoRgcHRVnWu3JnjGld1zRBAvblJIhI0RP5qGE4LARwV1c6T43SrutCCFliGo4SuHFd13Uh9hk9slcVdM4550TTWGPyPO9NIMZIraRzjnxQEtM0Tdu2z7aMMRKxNFqhYWbyAlEOhqrpEIxqtm692wzH0zydtnW5q9u+UMsoUdhcgmzbDkCE0A7ybDKcVVXV1pujOydK49Xl5fNnz4aj2XQ6hvHAZlYrVAjDvLBJNp3MfVNqxVXVCCGHw0IKeOPhI+/a/WabpDkR59kgxiiE0nnS0l5aJbVAwV3d/PB3f+fBnXvnL0//73/pL0ltN7v92194f3ZwKJTZ19vhJGEUUiuljTYhy4dSapPGtnPr/TJJEuh8U+3zoiczhHNuOBx6cErifrOVktM0PT0/MyZBZKlQIo6HOZKRwB7i4eF8tys3q52xOaLY78s8S621AJRae+fOnV1ZCWkXi8X777//k48/Od+2k8Ox1UmRFomSrisjuUdvvrFer5u63l9urhZbiDDKhhrUyBbr3S7Lik8/eiKawxgYKI7HQ9c2rmNjzBv3755dL44Ox4vSS3CJViobZ1lW17UUUoAoEpsoudnVjXdJYhKl26paLZZVWTW1QymCsBoNgOtrJxQqSSJ6cF0IISIoAuGD7wIzW0aJEJ1zRK3Uttc5w+v6XqQbq+EN6SglMggW2khC6LrO+cguKKP7363rOkZuW6eUUEp5F4MnSEzfDyNex0JprRFIKdmXfxIRi/6iVRKFTUfedTG4EEJkj5GCQmapVcpMCEJI1EoZCUqAEmgV379ztNvt2rY9OJzPZrNexeK9t9bGQFVVCaG6rluuV8wiRk8UXNtorbs2SikRyHVNhay1zvN8mBdH81mMURsDzCBRAie6vwJV3bVporXK5/Npjyv0SURSCtCCybeLTVXvVa9tRra9LlcZAl5ttruyiuyFNEooQCGlND1Kx6S0MBKMFsYqo6SWgikwswSUUiohe5BfGFIapADBSBIBCIEQBEIkYASSQhKjYAREIBQmISKiAABIkZkBqd/j++aMui5DcGmq7949VspcXZ+FINelO78sg6c0z4UQUsbT8wsUUZnExVC3DSjjO7JWXTkxGR7ffz997733/9uDX7EKm2qjrDZZPp7PhZLMbJUSSHXpitz8lf/sPz88Pvmf/4k/visr1KEL0Zqk3jT37p48efLJ02dPv/6Nb/xL/8q/fHp5dblev/OFd1dXz9ZnZ9W+3G93jW+ePv4YgbLEtGkqlDy7PB8gJTJ9+vwqIkVi1ZcFWaPLqhZCDMejJDGWdZKchBAWy+u2a4ySjz/9dLPZMMR33n4/y7K2ccv1ar/frze7GOODh2985zvf2W63bdtuNhsp5YN794+Pj6+uri7Pnm+3W4Fyv98zs7JJmqa73Q4AOkfW2tA5AEjTtO97r6t9Xdej0cg5F0KQCtM07bFlApZaSSmFksPRyHu/3W6BEIgRgYl78xkQE1H/ZdxkPvsgjdFSaamklJvNSgKnaaoQd5tttd8CwKO3HiolKSqFAjUnVq+Xqx5D669wmxiJkOf5brfru3qMMVqK7XYrBY3yzBiTGoNREoHWtgtxV2601reOj2KMxiREVJdNWdaAMklSRgjhhjTqj5IkSRAIYpBKSIHyRtgpAYhCZA4IEGMkht6y3HSd9y4Y1Z8gvWKZiLSWRVG4EJm5iTCbHhBR01ZlWRMFa61zjpm11k3XbvclAeR5PplMTGLb5xc9lkAxInIIMbV6MplI9n10aHTeplZrCTEAgNI2EnjvKFKfU0NEQisXKe2FLSHsyzK+LmxumpqIyAcA0kmWZdlitVoul1k+AoAYGQSmSS4VhhA22y1bABVd5QJEFhwoaiF3dRO7UjAVmSkSkxnbto13MbMJIEXyz5+/ODw8AGJr1Dd/7usX59dpmiohkYGRskQFH/bb9XZTt3xx6/AgSZIYmq7rzs7OEI7uHh+6GIOnW7dPkKKQIKVQSuR57jXfmt9JhsUPfueHEOH41oFzYTZRElkYe3Lv/sVqdbFavrg+02khlVquL4fDoRSiqprUWK3F1WLVdq71AYXwgTpfDYp8PC6ccyFCDLzd7lNrQmCbpU1ZbbdbKXXTNNbqGKKUoi75YD5GDsCxXwvqqo0xIoo0TYuioAjW2v12/e57Xzw9PQVpOs+7/YYopIV58eKz1GbT0eRgPjucTbSO19eXTdN4V7355heNXi23++jj1flSSGGMcWVpTYIggShLbfBd29W+E9/69i8IZex2fWs6azhd7PHV1TbNzHw+76OmhkV26/BgkKdGwiDPLi4umqbpOte2VySkNUmIUQgTggueJWiJ2DXeOyoKJUC5zhMKIrQ2DxG1FtC2kcvexy+1Ncb0MeZ9rxH50Lat9z4C9DIoIYRgIYQgpj4Sp5fz9L9LCD1LEkMEKVigkDcqX6GUgJvonpvADZR9T0y/nuLrlvi2bZUUWZZZjQo4OOdd7b1fLKoiS4vUWKsnRT4epMDBKh29S5Lk1uHBfr8l7zj4PE2JKNGmC95aI4RgFEmWSmWstQLjIC98cP2oURQZ4hSAJGKvFQXBQkkMHKNDRMHSJtrYCREZY1QlhkVmra2apg/j67WrIfg8zxOjq5iMh4P+ZewP8BiEV93R4bHWejweC6Ujy6Z1PgYEIUMkCig40SqxylihpdASpACIMpJHBimVMcYorZQB3QlAKVAJgSwF98kdBFIqIJAIwEIKIARAQBZai0h9aAqSJAp9MHYvQU3TNDb1xeXZaDQaj6Zaq/v371W1p6v9riISWdP9/9n6s19b1yy9ExpjvO3XzW51e+3udBEZkRmRmZGZLqftwlUuCSRAQjIFJYRApULCdYPEHXfcIPEX8BegEgIKgShV2UjuMKUyttNOpzOcTTTnnH12v/dqZvu1bzu4+NaOdJVYF0db6yztc+a35nzHO8Z4nucXx7EHTJcXzZOnV6eua10wZbHbDovVoylAj+V0atdCSln85Pf/+j/+R3//d3/7t9vdx5ynoqiIZGG0Gwfk0BgBbqqLeL6Syd1XhRxcAkoIE5C7ePT0P/87/8+/+w/+q7/0+//W5dPHd/uDXTVewHq9bt9IKeXFxcXx5dc3+5vth5vySq0e/dZut/PeO0htN2QshVWco5yGiTljZiuwMIr8dHW5vry8jCl9vLu3uopCvru57UJOpsoJ3nzcDtPb4OOxa+tF8/lX3wvOPXny5PLibGvVy29ffPbocrlcPnn6/A//8I+urq4uLp+2bXu2XnfdaZqmOI0upUebjbV2u92mlEhi27aF1aYwh8POktRSiQyQsvO+rqvj2Gqtm6Zp+27quxBCURRKmbpqFKNjbtvsRs/MyMBSaqMBYHQxi6yVZp/nPhs5BdcrI/3khBDEYEjsP7xpFP3gy+dPHm2sQufFixcfhykKnw0lqY3ilMKgFRmplbVaGxL6dDp1w36xqFfN4rC/d35arWupNUspZNwd7iPRFIUuN4rE/XYoSluW9m7fxRiVMqf+UNfRVHp0LQprilIoKQUrSpQTYMKcBQoiBSBjSCFkTgmRELGgIBEzzwntgokYSSUUlAxJwYlgMkpFiJKjKhByTMklSFJzYgSglKMQpI0BVCGEkIIQMiboB+d8GvpQ1QWn6Ce3XlacobYKg1dKZB9A0TRN49grpThHIYRC6b33w2CMESCISUnlxkkpNXRTXZc5jiQxxQjMSlKKaVanA0AmkQVKKWPsUxzYD6UyWpvMXoFpbOm6wbFaWLUq5etX75If6lxQTJ+tl9OghmEIAKqpUVGhtD/tgkz7UXCIhPqX377m1De9/Pj2TWHsX/vd37y/3W/O1+9u3xulX755c7sbjyfX1OZ4ujs7W05tOm33pbykqRu2uS6NLrAxjKQzQteP233fTKEUiVUrUVydLz9+3DlOerXySdpr6xN9fTPU9fmzzx737emwu7elWV8/dy58+HC72pwlMLuuB5AJWErQWlaFLqxGRJGh60etFBrlQpTaSCQXoq2XPgIRKYGr1eJ0OCLxaXD7794vV83FxWW7vynLCmUWmRHBh/54dJwnqyUyt9s7S/Duw6vlYp26U4nT2p6ZZVUUxeXlUgjWafidH3x/+uzZL3/5y6+//ebDqz8bQz7tDsKWg7Ontl801ePLqzwNuiwd6GkIss05pO99+aUg2N+9//7TRx/udp9vCvj+tXIv9pjb3TsL+fG6zn6A3fsnj3/zxTeHd9v7AcTI0ixWAMAuKIQwBY8TILGQY0yYiYFyyBzYKBVSG2NkQswEQgKQKSAlI4SYpmleyQzDkHNWJDgn7xykuKhKqxVkhpwR0sy0ZmZBZAqFws5BsAyAyJFBasXMU0xEkoQiCDnFjCBICCBBIDhzTgigCCWRRiGJkDMyAYIh0kJIAJGSIlJCGFvIgmZx5XbXDr3xI99vT0bLs/X6i6vCWiuEUkrdbu/vdtuiKLTWy2Xj+p5BEgDkRMyKeonOmCXXxTSxMSqlpBCMkSklpdQ0jWVZcgzDNM6Zu03ThCCV1tMUZiWHtVpo68fRSOOGICWTlVaVLo9EEpG/eIQQJQgdvROPl6duuL+/Hyefh/sCRfb9ZnkZo+9iZ8pCSjGNp5xZKQXglWJjNHMsbRFjZAGImmAeG7CxLEQkoeFhOS/gEyTxIYFQiE/sRwACgMwEBJkxk0QAZE4xMMfEzEJRP47Rx9lFaYwhAYC5G0TO8mKzTN69fv1KZtgU9tiNtx8HFqpaXYxpzGCB/DidiqK6iIcJxz76UYi4eVT91l8LT56Xl9PNn/6LobgSVbNohEY4bSesyttjjxWpem2r58dxbFOrSzu2Y102POxvX/zMAPx3/r2/gSr34920Pcr6/IuL839983JxgWqhfvL7/+6//Cf/HzoOuVglfX08mb6/92YkaVxIj8pVo42s6jrnvGhq5PT+/fumKsfBffvNd88+e16Vzc++/oWLvD0cM1LTNDe398OpVUYXtjw/Px/d1Pc9AfzBH/xBXRVuHMauf/rkyeTC3f2OmXeHE3Pa7XZt2wY3bjabH/3oR69fv3bOzTovY4yypqoqRJr3wTLDPC4WSjo3IWJVVdM0nU6nxWq5Wq7nfbPWdna+kpTL5bKn7rg/zZLa2VrKn/AdYoZKzso6wNVy1Z36w+GwKCtp1Hq9Jj/6MKUQ6vUmH/zFxUWIeXfq69JWzRLDNEw+hEDiAUUsiGKMZWEPh4MSqJRKnLt24DIvl0s/9cgYY07BCW0ROcQQIylVrdaLw/6UgetqASLnBEIYQUYKxZy99xOwklgYY4yag7J/9SqAcPY1AoMUxIw+Jh/jgxmDYIRJEmgprFEpJYaHxDhrMEQRY8yZJXPMM5AiD6cTkkwpE0NKETFrJWJImYOfHiQPMXprpJaqrmuBaRx88ImUyBmmySNype282a2qahafz72IMrpvu7mBSCmF6Gbb2NzRpxBmD2UIwU1+fXZ2OHVt20tliqLKDFM/mqJpGr3bHT5+uBdCLFfrs4vz5XoTQ+66QSn12Refv3nzComRZFlWOccFIRGdPbl68e2b9+8+loXRxjgX7rf77e1dqavl4uy7169sZYuqXK3Wp46dB2NU254Wlbm+vlYQjVHX19cSkxJQNjUST84JbcrCMLPVqimLt2/fMcx8tPTq1at6eb68eJRz/vqbr72LT549X9TV2LeF1VVdhOB3u22zqKrCCoGmLg+Hg7VaaVsV2rnRe2+tnt/MjlkiIKJzLpNIMSRCrXVVmNlVeXF51nXtYnEx9u3pdErLVVlWiEgohVbMCBCV0koZN01lYb755tvVavXF51/d3d0XRVEUxf6YfvzjH8/RxymFjx93Prhls/j1X/9BvWgA5Xdv3i83F56FrZffvXydgI/9ANNQVE+//OrX/tk/+39rax4/fnz9+Hk7+LabEtzVy814CkVdueBVVefgLx89+vLpk/54WK1WL757+f7dx7Nnn3X90Pej81kpJRiE1NLoFFOMIcQcUiYp53TDGGP007yfZoC5uZ9T3+fMSJJyxp3N8+d5iju7Gee3llSSAACyYkTEPGuRmCElRNRSpPlAyCnGB0ALUUZOUkkAUCRmH5H4BMT9lQ8QaS4hsxuKU0oJ5zw9YGQEQBAzsE8IAUpIohijj5N3SABLU1dVno+pU9sVhWWgrh9jTgQYQ0ZEqzVzAiTnA6IHRCG1sWUIwcfACEVRTM4Nkxsm9+Dj0ZakdiEJ4vmxSSkIcs6cg8s5Z87GKETRtm1dlyCo607NYgFMIDQgSFMAc9M0cyydcx4F9V3tvW/b7mEjRsIoLYRYr9dzOqaWSkqZc5aKAEiSEAIBQCqapUL4aZI/u6phxi3CJyIO/De+/k36MiKSlJIBAUBqSURsH4iE8xwipaSNHgbHgOvNQsjnbvIxobZ2GON4Oo1DeH+3PRz62pbKWmttG2U/DKoofHLGFD/4jR/JDDCKs6vHiUnakoWVpjl/VHfHYde/VaJery6ltEShtAWS7EO7qhb3N+9ub/bny9Xv/uSvTl1AFk3T3H68Cbt3b968ffr51cuXr0O6OeyPzWIFRemc07UWYiE5pyjmWJWLRSlRSKtpvTk7P9ukyLd3Hyd/8xu/8UMgOfnTOLhMxAhlWR4PbUrp+9/7kpGMMS7E77777md/9udVVTZVMQyD1erq88+7rhNSn07d/W4npTZGLZfL0+n05efPrbXzknhw0xyXppRCKaRUs1ko52y1llLOoRBlXXZdR0RVVc1DLUEziyPPQRzGmDGl4HxZlpzyPNlGxGmatDUhhfmCbKSQs2FX6b4fhRAhz7J4tNooRcgwuSH6UhCvl/XkU4xZFaU21vWJCF0Q2uqUkvfOWmseyHp+tztsVo0QKiUMEbpuiJyHduhar7XebDaAfDxuy0ofun176hLTOPhq0ZS67PqBCLRKAKCUkZASQPIhhEQDWWsRkRHmxCyBEDkiYiZWQmTkkDnGJDKklJA5JSJCKIyQmJgAAIlSBmsteY+QU2RGkIBCCJWYU445Q051UzrnptGnFBlyVYiZBD+rXBZ1aY2KyZMgpZSUMidGElIKIQSzyJgYSJFwzgHEh1uUlHVdxxhnmU8eHjSlc0nWWs8x7zmmaZqaZpkZlbbex+OpLcvax+ycE0qHFJFUiKltR21tXdc5Q8gJCHftXheWOd1t97ORiVkdj13ntkKQUqKuy2nsfGAU9tSNTjFIo7QFICksgkgpLVfN1G6vH12tFlVTls0XnxUKgTClLKUo66rrTsMw6Bil0dYIQr67vc05Syk/f/bcmurq0Wcv39189+2Li0dPrs7PXr/9+Cc//eOrizOtxKKqkrXR+1VdmqIkzN71WSglUAk0UjRNRZSBU1VVUz/ME0WhFDOHyaFRxhgpUIJSSng3TmNfF8XUD0Y9iB5CCE1tpdSAipTu2iENY8pwakfkXFX62Wdfvn37+vHTZ199/3sfP9wKIVYb++bNmxm7goiXVxdPnz5tj4fT6UREgPDZZ8+mAKDt7tjd3d2Jsvr8s6/2tx+/fvn26ePN6uKpsHZ18eTn377RJD9/9nS7vX399deXT756+fIbrbWpmo8f3k8+7tt2UTegTR+CKat+mHKCoiiMrXPOYz+kMMx3xJgTEGHGGCPRHJeRU07zxDgE70MSDEgiRT669uEmh3MY0zwl/osonhijBwapEBGZi6KYD+uQkvc+pMg5JQYiAgKYXTSMIEhrpZQyxMxMhILgU1GnlBMiA3yidCMTzVug/3ptxtmSA0rMr4UeeAbEWmujpbU2gbjdHsZx9N6PY79YLNZr2SyqmEAIHLvJh2lRV8aYjJTCw+XZuSB0BMAMcnTJxbFt25TSnKxpjEmZYsK2basqq6QeqEoh5BwBlBAYY045WCukJOfcFKacM0MSgEoZ731RFEJpIgBEIYmIAJAWtN9FzMlaKwUZKaRpcs51XRNBzllpURTFNE2SxIxrJCLA2QYtfvVc5oIKnzK0/xtf8y+R5pSTTw8TEAFQiDndEoDzw18ODxKZ+ccSBGOFEKJkKQSfTp33Uema0/HY9SASeqdSqBAVYa2kWNW7wzalzBknnzTpfpzO6vX51fP74zhEWZ897vdqGkaqys9/+NvLxqyXj1MgjgzIyFkg1mX9h794kSI9evR00Vz0XXj/5n3sp8+ffP7q9XcXV9eXF4/e3p2Ohx1K8fzZ53/86rC4dOym2eemtWbUiEjSSJJ6cuPX37746U9/qqT4y7//V72fvvvuO22LmNKT58+XZ+cx8WkY/+W/+iMiobU+Ho+73e7UdY8fP/7888+7rv3el59LgbcfP7hhlFJeXl4mxqJZOOeWy4YALy8v2+7Ytm3ft1KI6+vrELwfJ6WUIuFDWCwW1trT6YSMQggScyS4mNOUAKAsy/v7rdI651yWdT+N8/ZruVp2XVeaqirKebvpnCNjUo7zL1UpRUg5pzkqpK7rqqq8MsQ5xzS5cbEojZEEPPSnRV3GGP3UXpwvtKnabtCGrC1l8FKq46kf3SCESCl6z4vFglMAIOem4zA8efJECmt14YbUc0CGoe+EwJS9c6gKVdWlDyCUBVTjEKtm1fctEfkUs0siZylQEChFyBinB5gE5sSQE2dJJBBi5JA9APkIMSNlBsjEQUgbUsoJGCgmBshq3lSlKIAVISqEuTBjzgiiLtt+JINCUfQAHPrjYQaf5eiNUprSarWyRgOn5IMXgpARKWPWpAQJQppGJwzNpkwfM2MGJu/i/NGLMc4qdGMMESkhCTBkNsbMcOhZlkXDZG2JJEPs+9HZkkiqw6mdfLi936ZUj963/UFK6WMSQoxhFEL46BaLhXexH6ftsXO32/bYMfNy7XKCyfWT18M0ji6dd85Uq9IWz7748s2bN7vD/v2/+CNd1OvN6n57uDhfbRZVXVkfpu64XTelkJchBR9jSJwSSylj8hjYGJNzOj8/Dz5WTX1qxxjjMI1XF2fVcjO4tN/tCqN+/a/85S8+f66IEDLn+Pr9q6dPnkyT7/uRJQoBhCInnxOPQ0fISptFXc03mPmWCQDee0EoC8s5MoQUmQiXda2NLKvL4/6Qc9ZSHXb74E1hq8RAnCcXGUhaS4DRT4mFsfXl1ZPdvhWn4bPPvvjw4UNZVZuzddupw+HgnBuLwlpdlqUyenRTyth3PQvFQRDRctXo5eX72+0Xjz+rS/Xqxc+unn/v0fX5/tS7IVgBf/bL76zB/aF7v/1TEvb3fu/3fvb+brFYfry7v729ffzkUVVVsig+/9733txsp6HdHXuSnTJWAEZEhUxSJB+YOTEwAhAywqxIkgSDmyTLEHPKzDmHEEJKM9p2Nh8KIRQJpF8d7vwrfi0RIRGnGPMcK4aFUZp1znk2MYacEVgKUFLNOhhjDKYAn8akco6nFYggaaaiPEykiCEhEM5rIRSzLwtnwTXirAIDgBT9zDMwUihJGfj97X1KSQhhi8pnaEffTbfyjrRSRWGaqgCAlElqo2JGEN04zYOiCMCM8wHYDt0825tcSNn5kJGUlDIj7vd7rWVVFQwpBz+fnzlDCAkRQxCzcd97bwsNADETJB5dGF3YbDYppQecOKJzjhnKwgAviEgoaYyxSrRt691YFEVZGCLSUpA1iJizYEjEnDMjPoingAQw//+puv/16jv/4aE8I8KvrjaIQAjIkB84eMAopAREQBQAijKAmH85alUXRg29dyFrZf2r94N3y6pU0vqMru9vjqdBLaXURBgTpwgTZiHscfBIZtuOH/fus8fPqtXV1A/tsWfbXW/qaeQUcW2WhyEkZquVkUpKXZXLq6tnj6+fOxxWiyVoebWp/9U//a4uxbt3H/+tv/rv+ETf/PwXwxBv709Pfr/ZZxdiDCkwqMzpcDxS9jKlFBJrrdV6s1ktu364vfnY9kONFFN+9fat/+XX2hTHfiASZanev38fYyzrRktZ15VS6v725u3rN4tl/fHjx1Wz0FrvjgeSoioq58PcBm232+NpPyMLrbWzsBkRrdLMPE1u7HoAiM7bqkw5rtfrGOP9/X1RlsaY0+kkF7IoCqV113XzxElJI4Xeb3da664/cUxNVR1j3HbdYrXMCQWJOdY15wyZQ4oiiWmaKluQgEJbS6QIvZ9O3q+KM2RJmBAiQVSkJCQ3tiREFplTYCGIgCCnFFJKTdMAwLvXb5SQhTaTO02TSyk3tdGyqAo+7ce7u7urR2ebzYohkBIMtDxb3d8dxyky0OnYGWO1Jmb0LghCAGIQHOeZMD68HTkBJ01gtUQlIkOaYuLM+IAZFwgKaZyCAFZCComfrqIyMmQ/zS4sTZgzhBBizpxzDI4gaqOHySOkx9dX3vtdGKvKWFsvm8VqtWrqsm3bm/cfhBCEPDjnvZdCoxXDNM4CK0yslBIAcwYZKTm4SSKVlS2KYm5xmJlTdtmNY1ZGzkYLKfU0TZzxfrd1wZeFXp+fwe7YDf2pG7wPKTEDNcuVHM0w9jGlU9u65ABgvdlorXVZje4whnhqd0oaEhpBRJ9QgFZiu717/PhpWZbKNAmG1+/fo1IAcOrGd+9vjW03F+fLVf3sapNTTCn4aTi2rZ8GW+jVoiqtObatGyelxdR2OefVYkFERpkud7NOVSlFjouyRAWRp+Vy8fHm9hc///PvXnz9+PJCCjwe9+cXy9cvv80JMkBhq+VqEWMEyCGE/nQ0pU3B38bAzAgkhGiapRAiRi8IgbnruhQmJeSjy/MY437fLupGShljRBTjOGovkYILSWl0MXkXfZwIQEsxhdAsz27v7wVizu6f//M/vLy8lGW8evSobNv37993XdcP7d39zWa1BICqWQhlb29vd22/Or/uRg8A+7bTKMYMC1n0Psshuvf3fTtYYWorP755eXm+vHx8+Qf/8k83l5+/f//uzZu7i4uzrXMh84f7vWr7fpyUrUCaulqYcuVD9MwhhMwslBZEzOPofWaUUkr5YGRARBCIiNbazOhScs57H21l5/ox7z6MMUIhAOQHsCBKpaQUAh9kiQohxhhz+lX7RYKUUIKAp4QIUmomzDkTgiAUKOeoxQcJJDIiITIhAefMMWdKCcVDkQLOyMQ5Q+KUcealMvMnWrBSyIzIkTP76L0zxpjSSCmZU0avbMmQgg8uuHHyShnmFOMBhZBEzWKT4iEnLioplbnfH3DwJOWpG7W2Cmj0KWWkkEn6spQ5UYwx5wiQhURFs4HCx5hPp261WmmtBzdVi8ZWdhgGrTWznqZpXqm8/3AzK16llHNcPyKWZSEEzcobIYSgXBQm5zgHDxAiIM92ybnRZeB/s6zir/7w6ZsPJxsifPpX9NDv/htfcw3+1fcYYa6+Meec6Vd1GpE5P5yUJIiwIimFTUxd7x49gUM7JRAf7w7H7RFJ5ZwhhhlEgSiMsc4Foawb+mWz3t60/+Uf/Ouf/Ob3rJT3d3d9NxVF9XlRQczOtdKCKsgQJTfF5E6n3WdfPP/v/ff/u6bQ79+9evHLP//Jb3z58sWf3O93TfXoxbff3ez+Tt2sfuPXf+tnv3zzgx/9JiJOQ0dSSCpSZNJESvjAUhldliUiSoLrq8u3b9+euvaLL76o6/rDx5t883G32zeLVfTBlmVRVevSaFNcXFy8ePnq5YsXwzAoJQ77u0eXVz/43vcR8ZtvXmwuNDP96Z/9+eNnT4/H493dHQBcnJ8ZYzjz8XhcLZcAIKWKMc3zwxAeUoHoEwl1XvYE7+NMzJ5l+jkjimEYSOoYQ4xxHHtjlFUaFBijc25CSomzlDIBp3nhmZIAAgAgFIDeT8OpVYsFQYam4JyNUd6Nel25cVQCK6vHaWJmwWmcAkkRY2Z82FzO0+/Tqb28vNxsNraomBOiyBm6blBSOB8Axeb8vG1PVVUBxa5v08Sbs4vt/XYcg1RFe+q1VSEEH2ROfo67YhSj927q+3Gw1hKRFKQFKUnEHBITMZByaQohASIA5RwFAUopIofMIQTvZidxnD8GBEyA8wIb+YGnxszi4X3OmLykvF7WMcaq0LbSs41k7A5Du7fWOj9qqRBySilFHrObm9eyVDlDdF4ISQQ+Rg5BkgjBo1T73XG1XjBjCCFFtqWZExZjDsMwlGWt1EMOJTuPIKYQal0IpU/dMaUccxJCLZdLVtZYrYwax5ExC1AoICNIY10MMbPSZhx8IXXOcH9//1s//v73v//FqzcvD6f2/cf7r84ufv7Na+SIykSG6+vrf/XTnzEIa4u6rs/PNxjH4/FY16XWNjNOMd9u23HyZ5vlKScp+PHqIoQgCeauaLfbxcyTD23bh5AXi0UC2Y+tc14pVRSFNWZRF6tFE4MrzIUUsR9bQerp0+cZKEx9BnbOTdPYj90qrxaLRV2XZVl7F7z3k8/Jx7lUKK0Xi5qTlQJtZQ/bnXPj/eSWy2VKnHM625y33S6kfGwHWzQRsOt75xwRaaL370Pbtu/fvR37oaqK/X7/+u3bwElJc/HoKnIGQfVysaybxWIxTdO8l7JVyafu13/91999vHv15m0qC2nNq9dvtneadEG67Mbp59+8/uLp85ywblY/+b3fffrsulqd/7N//ueH/nhxfr1YLWKG129fRSELY1ofFXup0fk8+BhiVkWJWiNzVkogmLJgIafJ+xTjxEoIa838BJxzWtn5nTxHOM2uDa01ETnnovMBUM03EgZWYp4b8afjPvIMvkP4FEkBgmYbkhSCELWWSJRSIkKJIFHMsdIAGWHelDAAIMGs1OWZnDrz4BH54TuMCCEnQOLEiBh8UCSEQEKIMYNgKYUU1LvgMxAFRAwhC0kkBGC+vLpK0StdxBgy5HFwDCmklHMeppGBCqF9yKNzUpkQKWMOOToPKWdCFt04eT8NY2lAG6uU1loisfM+56ylZsTRhc2F8m3HPCzXdTeM+8OpaS6Op56ICqt3uxutTYyhbduh74XAqqoESSUJmIyWMcYZFgc5MycUnypkziE4ftjKPzQG8zMXKP9i7PyrYozIn9YHAhDo36i++Bc/iTA7Sxkyz4j4+W8GIsiZYxRCxOQRhZQSCCFD1w2jS0KawAhS9aENmcmW1UaiVP5wKoU+tCdGAgZETBmmGLWtOjdUZ48+7g5/77/6I05eotTaEh0vf7zZXJ2h3o7+VqASQkitMvFi1Ux+QMlCMueJeWxK8Yf/5T+/enQBKK4fPfv5Nz8vmtNyffV/+3/87f/2/+h/YUsjfUQgEgWDZ04559Y72Z1aIQQi5xiNkk3TFNZMwziO48ePH1arldJ2uVlX9eKnf/KnOcY0kJRyt9vd3t/Vdf1rv/a9H3z/125vPvzsZ392PB7nwCAi2u4OMyS4UOLq6kprfXv3sXv//tGjR1rIfhhySjlnjmkutLOgkZkJoSgK51xVVZeXl4fDwXmPiNmHSCmEIKUqimJ0oW3b4/G4bArMbEolSfV9D5DPzs4+3t7MSeKAaIxJMQrA6INzrtY6p1RYUxglc0zRA0FZNHVhCFkSEEFhlBAiZbRaBgAg5BxizIjIhH3fD5Mzmvu+f+DX5vjo0aOqKnbb7bFrd9vjOIazzWXdrLSp2mEfMi8WC2MKpZyU2Wql1k3MqShMjC4kDwCpSMTgYmDmkNAPjoisUVRYIxRJYAAfc0IfE8fEiRNnBE6CgGMyjSWUOUFKSeDMBf4k0YKMjAhCEAAiRGAG01RlWeacFVHfD971KSUpkEPI3lPOiBhTKowpjMmZYab5Mg3DkDjPb0QXPKBkFImxPfXzNQIyM7ORSggxbwRCCM4JxJnKnFKIwfm5/SUirbWSZns4uCmQVEKpSunUZQQiopv7m6IoAFhIRFLGqMFNd7f79x/uUkhSyiePnpytz7fbvWu7qir+/E/+9XZ78/lXzxZicXb55MXLD7vjcHG5Wa+Karn8eHe/WJ2lhLNRbXJdwUlKeTiciCiDZMb7Y1/U9c19KzCt6hKFrqsVchjHKad4aget7Pnl5m7XTi68e/3NYn2p62b75sPN/X69Xl9fX7tplFJ+9eXny6YW0MeYP364JUVdO2x3+zTHFgJ8/tmzJ0+fam1Pp1PbtpMPROQ9dF0rJQlMAFkrkYCTD0S0Pj+7vr7uuoEztt04DeOiWT9+/Jik8q/edtPIQM7HcfLGmBi9H7pXb0LfnsrCKmXOzy+llH1wzNz3/XxdGMexPX0st4fHjx8n5rPNhqlte397e5szE4jd/l4wKCTKmUTs3rcAIFUxTvG3f/0r1+0O+9Of/+xPppAh+9rqu5hu77eTd/t+TMYiI9my7cdKGAZS0kxhGrt+zDFyXm7Wa6OFkgbIp8zOOe8SoVISMBOT9x6YQgwMD7KosXcPtn6lOaY5OY6ZZ/nPg0SLCBEzsws+uIfQda21UCJDyDmnyMxxXvHO/5TigSrGnIhQCEIU/IkH/FBCCAkIxFxxciIQQAycMjNmRMiZMmZEYmYimZGJMXNKOSEgC2ZAY+uU0uQcETFKUpqIROLFag057bZ3wY1W6xhjU1ZS6N53fT8eT11ZjzGBj2kKYwaUjIg5xQSAKUXmUY6Qc+YYm2aZMkwuSUWZkVDHDIvFph/G7fZ0PPUphYwIKLa7E2PjAisNCWWzWJFQRgjv/TRNs2WRHnhlNGNVlHi4y+eUyQcUAEIA5Ic5M3PKKXxiOCIKM7NkPuGTH+bMiJgZ+VO9zXmWQcNfqLPyp145z200PDQPDw10yjnGmDJoUm5yLgdrSyE1STseD/vT8dC7KeZdO44RhpgDoyKZbeEPBytFJMqBU4hFUcWQYk6ZgViSbYTEurB93zuQMcZvbw6yeWQvHulk2t5E50xNMvP/9D/8n/8P/v1/v148CXF6/+HdF589+7Of/lEY29XVF3fv7oyW0Ycnjx/9/Be/3LXu6snzREAA4+QlCW0IZGbEDEI2TbVYLO5vb/f73Wa1LKz5+PHj27evF4tVPw6XV1fJKKvk97/35Z//2Z+cDvtgNSIqpdbL1Y9+9KNhGF6/+m7qOyPV6Xjous4551POjEVdNU0Tp+HDhw9EtFovls1iu93OwJCcAiJWVWWVnpVWVpsc0xzH4b2fz4hZzvP6zRtEzDPSgKflcskolstl27an9qiUCt4LIbyLQslN05yfn++Ph8g5eD+Ho2shY/KQAHOeus4o2benZWndOF7Uq/V6uaikn/qiKb33PoZmedYPLkYPWE3j1PajMna5XEtdh7jlwXVdNwzD9aOrrPTxdNRSWKtXm6UwunfpZvvOp3utbQSe/JQzDmMoyhxCKI31fsw5bzaNEDh4G2PMMeQELoTRTYgiMwsxr77CvLjNWQhMAjBwnt+mKXJKEQAScuLYEwvg7JmTNlYyc0qklCKO82NUSjBjcs67cXJBKXV1dS2lrKtifzgppZxzwzA0q9XpcJzROplhv99LKReL5TzxIylmK3bf9yE4gCzELNgWLoZKFjlBTME51zy6SpH7oRdISilAZAZri6E7NE0jpez7cdE0bdfdfrz1Ia3OztwUiCg4F1JKIZa1Aabzc5kzOx8z0OTCNE2TD+MU+r4visL1493d3bMnj3OctMLr6yeuWxxO2zdvXpuqOrtcMVA/eNuNMbuYw6Je7o8nQmOU0lobI9BD10+kZF3Vd+/vcs6LZX236xdNnX3ountE1DI3hVGUlVKr9ZkQqhsmJBkzNIulz4wx66LWhRPakNKbshj7drvf5Zyvz9T11aP1ev3+3cfNZvP48eOf/eLnZVlWi+bs4vx0PI7TzTi6NOtngcaR27YtqyInhwRVqXOOCHx7tyVEKaU1JWRerTZ34e71m3dXV8355VXOqW2PQtqMAGJGA4Ctyqury9bq1Wq5Wa/nIdO03RZFEXMqyqaqquNpH33w3k8hKKVevXmbmJQy93fbw2m4uLjI4+DHIUawDQlCIcQ4jk29aNvuxYuXTy4X09B99fkXf/rzX6xXi69fvHt9aqVSE0fSZt92oigz0OBTzH3OPBNjpdYiYoiBhRjdlFKafAwhzeIaP05D11dGg9bEMKuOBUBCTJlXq0Xf924Y56optJYkUkopRy2NeGiSeJYIhRDKsgohMECGWXhFKcUYEs2fDiEyc45ZCESAFOa2lYgkEfzFtBQRgOeNLxHgpylrgowgMGdAiJhEhsQAEpCJU8ohJ4lGCkEKMPmUQxgdJ611ZpFj0lovluuc0l3f//IXX18/utrvjzH6urRj30/rNRE9evTYmML5N6NzjCJG7ocxI6XUlWVZVUVVVsFPkHMIHgACklTFMHQhuPVmWTcNM+93x2HopdQfPu6KomhW634MSqlucEO41VpngLbbXpyd7feHxaK2tigKu72/BwDvPRFoKaP3hKiU4hi998yJUxYSdVmCEMoYyDllyNGHkJh5ho3CFOYAAABIKTMkAKCHKj6Hb0BOaU7emE+2T5vgB9c1QJ7bZTHL42MEgBDSjH5JoxOkSIqcJ6WBSCltUx4Tw6Eb923XhxxRRBBx8oDih9eb3vn3d3trqjGzm0ZGEkIIkj6GQtkhTLJQfSJtDJP687dvb9pfnq/qJ9eN1ZdlKbUcDh9e/W//d//7L55/9h/8T/6jLKxSyo3dt1+//Mu/9ZN/8fOXrg05pZxSXdj/5O/+57r43JSL4mwdlb27n4Kf1XWD9yColn4axLI5P98cD9vt/d1iUSuBf+2v/JX5t0JEo/O7/X53e3N9efHv/Tt/HQCGYYqc7+7uXnz79W6304Kauv7eV19uVouX3702ZZFJntqekfbHE8xZFiHMMksiYnpIJVw0JQAIIVar1TiOp36YiQLe+1lJW5blPKBer1Y3t7dVVWutd9vDEY5FUa1Wq81mc9jf+ODWqytmHoZtSulwOFTNEhHbvuNPscYpek7ZGDMNJ4lki+XV2YaDW6/OLjaruiyVyKqumZPWerneHE5927bMGLNwAUYXt7v7mMViudSmPLsovJ+M0m3fWasBslL22B2VUtPQRmBdVilLWzbHbjydTlUph+Fw2LfIVFVgtGyP26lLUtEU9fxk6rJKnJkxM0fOifN80RucJwGcxYzghXnhFDkBZoZPeVIWgWKMRigiij4BZKsLSUILQhCIghmnaWLmYRgACJUKwTk3aq3Pz9a73W6zXkqB1pgOUQjBzN7P5NRijncGwuSd1jpzXKwX3vsEiUBPzgmis7OLYegUCSnLFH3fD7KuzzYXPkxzv2uMOp5OHH1RFH70OWfnHABVVQPD0HXd6dhJbawt2XtrC2ut975ZWgAaQ7zfHY0ti8gugbGT9x+srZuz8v724/3tTVMXTW2fPLmC6fxPf97e3dwWy8Xtdri7nxLTFHj34W65bBgxgyytlVIgifXZ5np1+fb9h3fv3m3O64hqcENqPclgCvz44e7HP/ze2/c3q8YObbesi2Uj98dWSjWM7tXbd0W5KJpFt2/fvXxrqqZZrCbn3rx9X1em1PrU9iklDOCmsF6fXV1d7fcHhvRbP/5NILzd3n78+N7aEgDKpk4RdrsDIrokbVVLLQtTAQeGuYlhF5MWcn+/S+FOa21NiUKtzqoQuxj92fn6w92dH/vV5myz2XSnoyShlei67uzyQgD0wyClzMxFWbdtj4iLdX232+ecS1MVZX06dkVR1fVC2+qf/+EfJxQZZN0s1wtWi2V/6iG6J8+eLVbN1y++RVCnyQPA0HZPvrr64Y9/2CzXf/qzFz/6YbP9en+33XrkROgTdJNbLtebC+vHKbjgQ0qcEzMIJKm2u8PjpoghxxhTykVRAIAsS0EwjqMUeHG+6fpxil4YgylLIshcaOPYeeeKorDahOAE8iyN/ovVIxIIIJBAUhk5C0FmeJoQknNOzJJh7oHzA9CFiYSLIXtXZqu1DiEKAqVUznOPlplAocwCM2eVhZCCMycAgUQkU05AgAkTJhAChUSAnIEhZeR5pzkvZedRakj88eOttbYs693u/t37D4JwjqpdbTbBhxcvX/vJXT66ykApxnpZL4zF/WkcHUOYhdA37z+sV4uz9WZKKTiXEr79cL/ZrLpjl7grhnRxsU4sgMzokk/k2smUy36aeIwoq8OxJxqVEjEEBCEFRAarbc4sldrtDmVpx3Gs67Kua++9DHly3adHnQqyEOPc4DofmTmE5GNm5uw9UtRGGmMU0ky5llJyzoIgpYzMABBCmAFxSikiijn8ak88h/ICABGklCzRfHYZY3IO8x3ImnIOnOcYQxwS0+3tLZKcrfOSYFFXd8c2pABCTlPPC/rxD3+g7ftv3nwgURAiE8QYCBkJXM5S6nb0pIvAgCSjPd8Hdfv68MvXH0qLTy6uzopyc/HF3a7/+3///yzU4n/1v/7fZM+vXrz+4vNf46i0ll0aQ+9+5zd//OLbb4+n7nvffz5lDqdTDNn7abV+tNt/IIEAnJhl13XjOGolL87ON5vV6XDYbFac4u3H7alrj8cjkLx8dPXilz8HxtcvXrx6926xWJRlPauxHj9+9Js//vHLb799+c3Xh9VqFiXuTseu68tm9fzpk/dv38xyFWAAJq0lAICg0lgfEueolOKY9vt9cH69WaHAw+EwW4HnD0yMcb1ehxC2u/1isbi8Ou/6cRi6EuoM0DTN3d3d4XCw1i4WCyn05F3bHWNOKSXiLIClIIEaKGulr5dWKaWlUsgoiHNyfkypQCUzgLUFIu6PbYjcdtPg3IQmRjq1zoUgDt3N3f6HP/qNvu+PbRtCMEYXVdksqt3d7d3NbbOob7tjXa2vnjw+3Pd3u/0wdITZe4+Um7KyWt1++Hh9fXX96ELIlHM67KKbPEOWJEgKpZTSBkgOw5ABc+bIHBN6AZEzIVSFSpAyMiEpqZOMlBMzaq21FinFafLWKkHkffQ+6lWdeRZ9BmY8HI7L5Xom8k7TtFqt5hBv5vTq1Xer1SonJhTICCCEUBkw+cQcGUFJIqIM4LyPOSOiMcYHtrY8nU45BSmlssYNIxBqrVGK4/EYY3TO5RTm1X5hq+CTT5FIdv3onHM+eh9ihusnT4nocDjN17L5tpvGY0ycQYzj4KNLLCOIoXfnZ1fr9XK5aM5XzaIutMxDd9ysisPd6Yc//EFz+/6X370xpf3ie18dT2POQcjl1y++k0jKmMV6NXbdMAzbe3RtZIaMenfqRhdZWFOtUBWv391UdvH6zQeN0WoJkR9fLhDRR7/d77UtAcX9dtecy7PzS1PFD3c7Y0thyhz8MProPEBZlvXQd87fHE6tNSUiEcqYE2RIKc3Wu+VyfWz7siz6wbdt6+dqdAqXFxurxTB5SSCU7PoheBcmX5ZlTOxjQkIiOfZ9ezrUq7Pf+vGPBh+H0Sml1ssnfXfilN3o50aBiKYQJudCgM3mPANYa2PglGLMGQAziJjZSpUytG3XTaFq1oslPbu6gAQH4GkYsh8LvbrYrF9+95YQ/DjshvG9iYLSh7vdz3/+y8Xq8uzsTBY2S3r17r2PnoRJGdartVjT3cebftgHBh+gDz4KoU1xOna6sEVR5AwAoEhobavCAKdZDKUkpRxc5zOIetE45whRCsyEAkEJFKgF0uyV+JWS1sc4l+EQcwhBiDivCREIhZASkYEEZoCc8uznISJmIMQY4wBTApZIQuq5QkNOGRAyR0wScQ7SipwVSmZMmRGBkAAxI3BmICAEQsoAAhEwJ8gC6BPK/mGOPUx+dmNaW/pxCJyMVt04nV1eVdZst9vt8eQS183KpeMwOnfspLFVVdWI80q7vrjo+/5+t7XanLqOhHaJl+vzanF+v70N22M3xRjjfndsmgWQOZ1OpxdvfAzW6mmaQiY/TRJBEPrMMaa0O5FgjqGwOqZ8OJzKshTCMCOi6MZpJogURgkhJ++A0Fjrneu6ITEDUEwcY4qJlVIujDGBUezclFLSJhljLKL33nuPGR86Y3YxzsKdNMs26UHmhkIiM02Tdy7ElCHFeZKdEgshMqSiskKI+/3BuWBsWVh9vz12x649dm6cBrcz2p6t1i7E5vIa/f7t629Xzbop7JAhBA7JN3XtnMNfyfQAMgMjM2QolqMH0pqpHrL75au2odMPnlb/0f/yP/4/0f/hdNr94md//stf/OJs0YzDVJ+fXV0Nb1/efP7k6bJu/vbf+TuM4vLxY1PV+7Y9DKOWy67rrC3HaYcoMoK8vn70p3/yJ1VVnX35lbV20vrmw8fb29vf//3fX61WH5S6u7s7HfcpxKIqtRIIcHF+3vf9oqm+//3vG6kO221OYb1a5BxRYN+dxqEnhtuPH16/fl2V2ofJ6GL272qppmkSEmfCVAoREWfbO2uJiHPshDaWZyiQ1jPF6Pnz52eb82N7uru7cyGhoHHstda2rp49ezYNU9u21trg0ziO67NNO/SF1UbLcRw5ZUlkSr2oaqtiaVUIYeo8QmQHJw7DwhpZcHRzSNP+0GbSg4+DY4ecGdtusmWBShPgz3/x9eXl5XZ/sFpdlsXt3XbRVD7lbuiHaaTG7g57H2DqM5HWRdm3h34YCVOh7epy9dVXX1lNr159fXm1kgIOY+66LuWolKrrGgi9C0PfM0Bm9j5OOU7TZISQhEoL5gQAjCQICEkKJaQmgrvt4WLTGPFwYZRy1oHKafK/8q1ba6VSRVmO4/jk6dP52c5x9lVVLRaLu7u7RQPex5gZIYWciAgFSaWEQBDEzMBpvrfO510/pBBC13WlLQDA++icWy6XUish5M3xNkwTIi6XS1sUzrnBeUQUpEjJGMeyWpQLirdbwZBSIqnLuhbOzy4O770kDCEI9WATd9GHROPoYswAx/1uayXnMEiRMU/v3r6q9JIIHl8/vT/23ch9e9zvu+fPn3Y9u2k23RTTNEmjJREA3W13UhuSapgiCG211sZqW958+Hi+2exv3z273jy+fpp9q6w57Xcux6qqbFnf3u0TcIq8P7btGKp6ERnYhSxyoZQ1oiqtFJqBvMuT77QOVdkIIYKPIae6XkzeZcZhmIZh7AcHQM4FVIUmvd0eDweqS6skyKoEBGtLgVSVdWmtd5EItbZKSYi273vnYybBKIFjTuBzXC0aAEh1QSRCCMGnfpoABArshvH29rYoa621VOQnV1VVzjnFfDp1Stsvv/zyNLhjO3Zdt1gJgfLybHnjhg9vXsU0HtveaHp8eX3c3j97dm1LvNvuXAiX14/v98NhOo4hZBIpclU2WmvnfNu2SsjIGaWAkIjIGEMMKURhpRZSKMPM0XkSQksSBE3VzDsRNw4SYbU5izkP09RUpXMuBZ9CcClJgMIYaxSRcSHMWdCfpDqopGSAmFPMKQPPq0XM+cGhhJQYOMX86QsRCdiHNNsMlJBMCKAyz4ylHCFzRABCYmRKiSVh4gwElCkLJoaUEYABWQIkBMQHLRcxRsCZSsDMc+TI/DnKCIU2bdfVVfn86bO7u5sX371ar9dFUUipdqcemI6nTmmTMwjNSsmyLPu+b9u2LBfnRRFCKAszuknoxc2H913/s6oq5pjbDzc7KeX+NPgoQMhh8KObiEj75JxDoTgxKxFT3h/a4F1T27Plwqe4KRfj0J2GabkyKbPzSSkNyTufQkhCKCtF1/cApG0ZMzAKZkgpO59cTDlBzImApWCENLnow+SCSJGVUkLp0I/eeyLCjDlnrVFKOePy5hWyEHMityB6CPkhlFOcXJhmfYlSanAdjlgUpVQAINzUUaYcBtcdSqLLx5f18sz5tFit12cXIcWP7775xbff6dJNQx9QEynOMWWX2c/J4YgiAzI+3JECKxQChRxCKsyCsx/ccLvb/8/+g//hf/i3/sev/+Rn//Sf/kn046vX7y/r6uPtzc3u5nvf+/LXv/ze3/9//WeCyNpidX7RLBceYj+6TLjv2sWyAqDIOWGWz549H4aha9vdYf/NN7/8jR/+8Nd/9OOf/EQ657que/70mTHms88+Y8LlYv3tt9/+3u9dzMNhq/T29m7ou+50bKpi0VR1UVR1PfoAAJkkKdn1Y07BKF3aYk7bny/jnGH0TiJl4BACaiyKImfNALYqfYoA4JwHwL7v587JWvv69evj4WStbVYmhjwzELtxcP0UQgjeSyk36/Oqqtq+M1JFzjEzJSYEI0hkCM5LkRRqbSRkpkyCsyDMkYNP0zhmxn6c+jGM3sWsYmZW4v7url6th2Fsu9HHGKIvm4UyhTZq0azGvi2Kar1cMfPQdsvHZ+1p8A5jDkrmOQFgvV5XpV4tl/ViIYRYnZ0NY3t781YbofWF1jp4FkLM2THMrHMaJg8PH9HkXJwI6qJQtvAxSa2FkClDcGFOpyuUsGXlfAoQPqWpKyA1epcixRjLskQQPnBRVCEkZhxH1/fjfr+f/QbTNF1cXAghPn48CSFkhgRxViIKoUAQgIwupJSEQCHUrJjt+zGzHIYBgIuiCNHNKlNmFqRubm4Oh8NyuYwx3t7eLZdLa633OTNLCaXUTEraQgilS59z7seJQtJaS62IFBFVNSKOXe/a4Xh7e5dYuSQySgYRU7q9vf3qy88UBa2p0Hg8tK9fvoAkV5uz+8Nxf3+o1lcxhZim7e6uLG1KOUVw7IZhWNTVceoHZ4RQp5uPZVHPKh8AGoZJCqqqSghxPO2XlWwWVW0WVmKchjyN9/d3Tx4Xq9Xiw92W6VQuz+q6fvfhTuoCCGc2VfDpGNu+7y9XoixqZg4xd8OolIozsAuFdxEIh8kPw+R8VNKi0CkGY0xVF3YmzkpQQmgpY3BN0whE732KnqThFF0Mi7rOgEjSpxxiLuwDHHfo2jkqCJHcFEYfDsdWSiVJbDbny1V0zo3juLZrKiQiPnr8ZBiGGVnWT6Mx5lHV9MN02G+fXD62ynz2/Nnt7fu+P15fXT159qUb3O72ZhzH60ePzy43t9u2j1s9qTS5cRrudsdMorA2uEBEx+PRGIOIptAhj5yTkloKGVIuy0IpAwCZOYRgtck5Rx9G7qu6LIzOIQ6Ts1qiUDknq5VRsikKv1ggJyFEjmkOhhSITATA+VOSQ84ZCWYZEXOa+5uU84N/b2Z3flL2zN5iRkiIzOBC9D74GJItlBaQgRABMHLGhPQwHc0JMwEzQwZOs/0VMjKklJgpM2YCSQiADIDEnNMDMXGWdjNDSuxRUM4g+8HfH9qLR0/awW2PbdzuP3/2vGps3/eqqGKMmeF06s7OzN39PedsrY0xri8ubm5uplPvErhDi8qANKfB8YyKCbuLiytTLk/DNLiTIOVjVkqkkDIQMWcgjiAQfYIQYtc7xP58sxDKZB4ZyAcexhER1+u183mcfE5JKl2UJbPwMYeQMgttisR8OA39GBiRM/qcjQCZGBNGhpA4p8Q8khRVUaYMKc0SncwZiFIIMYT0SUGdAMScezWrjoBJaUVEzs1jajFNvixMjNFHv16uiWi3PShlFk31ox/8IAbeH0+J6Zi6+1ffTrv7xWLx6Pq8d+Htx2OMMQCuLtcLxEN3IAQBApCYQQAyIWPOwCl7RTqmPCUvtTSFlZjef/z2v/jbL3/ji5VVxaPL5cvv4ji2sCj+6R/+wfLx+Q9/8zdubt4L4Ohizlg2NSpJRKW1+2Fi5mmakDFnJo3yfr8LIY6T++KLL7z3H27u7u7ujDEppbOzs7YfUuLTqfvmxYvZndKsNvf390LMduypKsovP/9cCq6LAhHbtr3f78cQR5emGBFFAp5jxGcD+AM3OyWrrJYUZ4ZI3wshtBAA4EO6vHhERKfDTmvtJ1cUhTHmzZs3ALA5Wy8XK0Z4++F9P7Tn5+f79jRbit00DcOQ0/0senTOGWOMNZhidB4yo2CFuFoUhS2qokgpRR8wxaYppZTeh5jw5nY3hRBZtcOEshxD9mFApYZh8DlRziRFUy6dDzHx4dTR+w8CoSxLN/munZbLMzdORuuz1ZmAAzOM49gsimZRPHnyGAEi54/b+/cfP1SlLRdnKYXb2/s5GH3VLLSW4zj6aeTM0U8ZKKacmAEFksgkM8l27EoQUkvOGGOKPnqEnHPOovVDZYQtCp+BfYoYhmFqtASAlBkJ5l1sVZXGmPcfbogoJj9Mo5Sy0OZuu5u9W0JQAiYpiGRIiRFTZOenT+EGQkrJEKQCZkwZpZT4yV1QFIVSIqVUluXHjzFliCEjCm3LZrmOMSor9/v95IdFhMnHY3/HiDFkFGTLahimtjsVRTHHxFZV1XcTg/AhSGWsbVLvp5DkfMlQdd+3lRWt9wOERVMqQd2p3e+3jx9/Ju3ydncStjKajsf9svlstTzPcRJCVJWxhWZIwedyZbQxKEhKpUxChqapghvWy+ry4uzmdcHJt8fDxbNra9DoC3M6MqSqtijFV59/Xp9dji7/8uV7pRQSJc6cMyPkzC64MUXKtF4LrWwIafKJKAghlFEx5qqZZ9rp1E7WVIe2K4uaFDPnRV1XhSFkPzo/DGdn67Isl00VnA/Ol2VRGjsbryFPOUWErIVETEhCIAmtAoL33o1eKIVSKZBKR0YBnAFxuVyGFI/Ho48BGXwIp9Nxs9kYY/phWiwa5xNDXm+W/Wlo2/bxV9eLuhKCX7397t37N2W9Wq/PpdbfvHyFEt7e3qtyMbIyywtq3wGRLbSQFhjZR7IGMvd9b60pqkIYPU5xCjHlpABjzERpnsdCZoIshSSCGHyOqizL5aLpp9G7EdAjQ4oeEauiWDbVHGbnJ5dSavsOmQViZOacgZAz+BCkZCEIQM7vT6UFfhr/IjIiIyMIMV9WmHm+zSBi5lmtlYgEkYUHADblHGNmZJg76ZCSEiiIMkAGDjnP8R0xMwFnyClxImAiSUCMmGEOlIj5YcaecnI+ntp+sVjkFG62+wjYT1EIJYx++f5uuVymBOuLR5jZe7/f73f7Y1GYPAMRM4SYY2IhZATsnVdKoTTO+7IsSqWPx9Pdfh9DHkfHQMvlMjIiCMystZ2miYAYmAmRZNmsrKLC2m7wCF3fDxnE/tg9eIewLQordenGHlAoXWjjUs5tNwolg08upnEKU8xEMjMycw4p5UmHHFPMEVlADkmOEyIxg1SaiHJMzMwoJh85AzAy8CxvB0ifHEyIiM6F2afKzEVROBcSu+V6c9ofTm2rhFZKWaVRi74bu66vbQEkNVF/PLx7+fV0dnHVfB5jnKZpsVhhgI8fbk2hpZWQEhJDAs48gywzhMxRScUhMXNRipyn0UGlyeepPe3vb067mx2Ks7/y+3/pP/2//CffDofPHz+NQvzxH/3LAvnD+/du9GV1fvHoago+51yXRe/HstIxxpyBiBiS/PbFy7ub2/Pz86KsFsvV/d2tUfrXfvgbEokE1HU9ef+P//E/Hobh8ePHT548+f/+s3/+N/7G33Dj9NOf/vS3fvf3xr4lYOS0qBulRQxOEYFWMTEpywzzJmAuwDSDb5V6oIYpQ0TzCr0oHuzeu92+qqq+H45tX5blDNg57g99319dXXVDf3d/uzk7O19vovNCiOVyeX9/LwDrup5ltMvlck4UkgKFEBIpI0hBpbF1VUmYaqvONkvMOI5j351ijPvjQQkSEvfHDqQa3DAFzCFMLtqFrIzZHg9VVQmpAeB4aosyIJE2hQtcaDW61B33/eB++IOnb26+vvlwEzcYU2zqZWanbTVM/aHbna/P7+62++2hbXstxdn56uxszdwDQIxxnPoY5DQNMSaSOscUIWcGIjlLoiafU9uzHwaXlDJSKkKZUqbMHFPyIbgpR6G1BsyScH22MkXdtQcimnycG9C7dx+UUgA4Tc5aUxb1drtFcjNu83A4PHr0yMcwjo6IhFJANFvgh3aYMZQ55xgfZlCF1X3fG60BOMZIgkIIRKJZVcx8OBxyzkVVEtF+f2zbXkrpMx/76dR1x35Ekt57khoAiGRgiim7lHny8xE5uoCcpa5rMM+rtdDV7e64O7WZIcYYUoDRE5pSi/VixSn+4Nd+wxr6Z3/wR23brxZrl3AMviq01nqapspW+8OgJBalcWGqm6V3SSh8+uzx6dghihgp5/zo6vzdm1cpOoI4Dqda1+1pr/RjgTBO3XJRFoUp6mYDIrN4e3P37vaQEjGoGH0MiZmFFiwImDGzC/lw7KzJn4IVJyFEybYoS0FSaHXq9t7HIIAzSqkXS5VSSt7llPw0AecU4tD3lG00GlKClFIOrZus1U3TFNXSOTeMo48+xqhURlBKyug8Zs45C6YYswspsWDG5aLc7/cZeL1ebzabORWEM0Up2rY1hS1KAz4LJYWyzsf1el2XzW63u7v5eGi3T548sXX9+t2NNuX55RUSv7u7L6tKeHHsoXdkSrNEuLq+ThHHyWfEybksZWEKbU1K6dR3w+iksMYWRDJOw+xbAwA9U2QBiaGqKkmUYzRKbFZLFPLYdn3bQy5CCGEcpJRaKmutEkIqBVDHnCYfgnMRMgpiIGbmHKWac5ryvKadw6tSioIQYDa4ABISYGZgwMwQcyKGjIQAbuYkEiGRBEIUCDknTkT8yR48bytn/mBCni05OYNgZmBgiJwBSAKkFKSUc2zArBNm5pQToOiGKcZY1/Xt7jCEKEKy1rb9NMajUWL00U0DMjeLSgs5p5F04+ni4uJmu3MxrZtFOJ4GH0XKtq5YyBDZGHN+cXVoT8oKYZL3vpv8NA26sIhgrTVKCSEJskBglEgYY+7HMTjHzARSSHDOzVkRh2MrldHW9v0w+TyFKJVxzoWYM/H+1I5TCIlTppBySowoBOSYo4sp56gEShKQ2ccM/QSYaVarw0O49l9ki84rWGYiIQTOipC5WCDi3CVLqVNKQzuUxSJGSCnJQkipt/t2v98/e/Y8Y7/d7xPDYrF68vypNPrm7tacOiBZNevb/VhU6yw0YxzcoIWAnDEjPuR8ICIlBpFyypApG6F8znPMbWX05WZzvqDt65sPd2++/fbN3/pb//H93ft/+Hf/3h//9E/+nb/+b3/7+rv9/f1xN6WLs8VqOflRa8shCgTmJITgJJSiNjpJJDfnF9//wfcPpy4lfvzk6TSMh+PpeNiHEM7Pz2OMm8359RN7dX2dc/5Lv/e779683Ww2/62//m8jw5u+XVT13e2Hb7/55fPnz58+flIW9fu723a4kySFUcPow+SEyIw4V99ZKDFP+UkLpRRzWjRNzimEcPnocQhht9s1VT2fWdPojFZzhZAk0NrddhtTYs5+nERdFEWRfLBFtVzoFEJwDoVYLBaTG8au95MrrGnKinN2Qx+E02ebyhhmkALHru1P7UCptEZrrW2RQLquY1RC2uxyBt7vto8eXzvnhslrra+fPrHW3n74WBS2tIWWIidixs36MmWCDH5ydzcfpSqsknVjV6sLbSjndDwehVZjiD7w2flFN0z3u9eEzDlisqmwRkmJNIYxhCAkSVKZRAbKwG4K3gUfkpUUfBhGj1IRSo4MnIygUksjMZMCqY0W49h/vN0R0ULBnNBZ14wohBCTjzHD4KbIWWi9WK9CCMPk68WqqCtrK+77bhwyQ3TOx0AkUgYXvFA6ZvaTnw0eUjJkHscx51xVJTM752empBDizZs3m81mvV4j4m53yDlv9ztEDCB3xzbGOAXWGmOGQsl26BF97xwRSSldShxTCKHt+mW1yAD9mEiJ03T00ZlCjy4gQlPU3WELVCilQoKmqKpyud6In/zkt/6z/+IfFPVZtV6/ev3dYrm0ZlEa2/cjMhFRUdi+76zJVdUM031Vlc6PzBxjiiEM3QE4KqGtkd/76vM4HD++f/3HPJyvF0bJ86vLcWhPp5OP8OLVu9PgOYvJJRenolzUdU3AnCPEIKW0RUGKOKWYWSIBQYaYYuJh6ocBpVgsVv0wMXPfDYVthBBjf9RaE7I1mo3UUqXoo5uO+wOmWFelknOU4CgojwPGEMqirms10zmD89GHojA5JsgMiZlxmKZuTAwCSG63WymlVA/0aImgtZnGYbGo57MvpKwK2fVjN3STC5tl2ffjZrmyVh/a7f54XAjx5ZdfGtu8ePHS1s3xGKaE06EHtdl3vWxISplCTJkQwA3jsT0xwEKvmFPkmB94vQKZp34orELEeT9lrEV+EFIhJy2VlCLnbJQkoXsppcAYQpwDFYFjSp5zQDF7rtgDUVJKATMjMQA/RDrPJtTMDDk9zDPp33CmCkCaY5yRAgqYQ38RCObcu+xCAKXYM4gsBQISM6eYQUImxMwxAQgihAyMCRjT3OYmAAaAWU6ZcyJk5pgjYpr1RXnu8lCM4ziPxF3Kfpqk1CGlqRulNsd+1FJA7owSwMnfe0RsFhUTLhaLxXL94eZj23bCmPApq9KFaIsqRj/4MK8/AEBIWRUlM9e8BIBTe2j7vg2JiAThetkslrVSauiP/jQUVseQtdYhpZAwg9RK94fOvftQFOZ46lBQcSq0kSEzEbph6vpx8omBMlPOEDILIpIYc84eAJmIJGBMmUKKMUJ6sFnDw8ZXcEaEB/LgXIEBAFEQyRAcAM3bCmb8lYw0Ot7eHh5CnDBMU7vbHo7H42nwX331VTttt/udrJsMfPn8yRe//mt3bf/htj0e25TVoqzDOMR5hgcgSCAKRiIiKUUmiBmUx4ScGNw4ZeBCNUPXaaZS2UVRWFH843/0j17f7P/m3/ybv/OT3/6Hf+8fXl4+2mxWx4/y+tFltaDlj/6yrezRDTLJNDpERogpSyEUEwtEeWxbAHj//qNzThLWdd2P21/8k1+cn59/9eWXNzc3q9VKKHlzc/PmzRvv/XK5PBwOKUfvpvub20VTFaV58uRJYTWnoLU8O19HhHachtFxTLNYYDY1KaWstX3fz+qDEIJCUVg7TcPxeESEsixH5+YdwHq9VkoopbpTO8ffP5jSpKiqKqaEiGdnZ0c/zT6BlNIYxxTC7KwXQlilzUJ5MxEgMHMMgFQURms9h3gIFF3fIvNquYw+JM6b88tD2yNNJFRR1aPn3WHXNM04jh9ub+7v7y8vHr179y6ldHl5uX+310pZKSBzYfT11aMXL15+9vnl46tnh2OXEg/TWBdFTFOl69u77ei8mzjEnBg+3m6rqmDUOY/AD4iPMLnJDd57FJITCwlS65hhnPzk3aybzYAxxClEmCKiYGYrlZ050roIMd7f74TgYeyLori6uiKMZd3MN8eu68qy9t4bY8qiLitrjPHeXV9fz5RQIvPm7SsXQgipKKrM6JyTSjOjEIqZg08psRBSSuSUx3HyweecF4smxvgr6/bt7a0PXpE4HA59Pw7DUBSF91FrPfrQ9qMxpihKQbJrTyjiMDoAWK/X0zQdT91ysWDmYRqNMcMUGaAfJmlhd9xnKat6MQWvpZaE5+fnYZp2ux1xHuvKSO1DcXe3Ozu7SKCC8+vl0lZVWVZ+8kqZZ08f392/nXP15k+yMco5N5+TRWmGLu7226awFxfrFNzTx4+6vbg8q0qFhdFay9PpgCimsVdFff3ocnp7u9uelKoX603KNBtqCdkI0EJprUlRCImkApLE2RqROcbonXMgSOvp+fPn795+zIcjAKTEnOIY4jgOF2dnRmkC1NqMIfjQDz0UVlWlVarKeQmQ+773LseQSYq6rs/Pz6dp6rouxVhY3fXJe89Cp8hEZKqaQVoAAIgpOecksMsREUmK0+nEzFprkooIVquVMu7m7u7YtVbZ/X6/WS9Xq9X2uL+9vT313k15GCZr7bFthQ8e7BCT0IvRnZCp77vl4qwum3H4WGiDSnZd5/ZTyGnG3AoUwFhYrZSc1eB93yOi9762piyLFP1MiMqcpZQoSCAURcGcELkwWik1A104x/SQsQogqSxLFsKF6LxnYMLEOeacOT9w3RFxJvYgkgAAhDl5Yw64BQYpJQuGzClhjhFzRhQxxgwzEVhL8ZDMBRGkopw5ARLmiCSQOTMzS6k/OV05MwfIOTMhSokP/w9KY84hzRYnKIpi8g6Au2EgwBTi/P3oEqBIDN55AC0Jhml49uSJkLjf75W279+/7/qhHcZwtxVCmLLAzCGEui5DcLNVabXajC74EJMPPgSllNSKpKjLgjIR5xC9c+725l4QU05WS844TQ9b5HlfjoghhCE6XdiHlH7Owaeu6+bVofeBGUNMMSUQElAAiRQTQ2J6CMnOADnnEFkKkTkrFA/4JICcIOckBSHinDuZE6fkQwi/ggLgQ0I1G2MEycKWRhZ93+dE0zS56TRNU9ksNheXX3/z4tuXr6Q20trAeXs4tG17fnmxWF+QUF0/1OvrmLJzDjVaa/04ZQZMwCkBcQTOFFOKJunMLJQkCEJopZRz4XK5qYowdu1nT7/4S7/zV35H2tOx/7/+p//3H/3mT7run1RV8dlnz+7hg0vj+fl5TEkpm1y01pabpvT88WaPDKNzspTyfLNqmooQKyNTilVpvvr886vzc4AsBBVFUVTl9t17Y4uvfvADZv76T/7YULpe11989b2fK/nh492Hn319vay+fLScjne3t69ktXGOiEoQIsacp2HRVEQ0TZNBwW5aFjalNKZYKNl3vSjB6qLtO2NMZuLYff702Tg2ANn7KKVcrpecc9/3w9BZa9fNsmmalNKbN2/60/Hq7PLl3d4wXl+cf/fm9RRiXdcJ08371+frjSYCAE7hdDyebVYCaYDiFPV06rwLyJMQypSqWGzKsry9373fnowugNQ4jkhyaO+DFPf7vdK2WaxMuWiWi+123x0O227Q2hzcuKk3StKQ4nf7uxAC3OimkQmki6530ZIZB3y3O45OdAMM4+RdZoBSQk4xRGcJJWrPohvjNGXvggsxY0wk6qraHvfaltIYlZh8QqDWc4zMiSFFq1FIwZyA9BBTHn1l1TSOmOOqrr96/sxq1fYf22G/qKt6ocaurctcVbWWstRN8EkjrDZrN41DdLrQOWep9czs1FbsdgclzaIpQ0j39/eEpaCMKAprpLTH45FELiWsVrUy+dQeEidJ9tCPx9PgU9ZaH/Z7U1hTrN4cDs65tr1BrGIU06HdrOT3f+2rhNq5UQjVtm3dgDC1EiaqwtjS2uXucFyZcQo5KhkiIVYi0emureoiAnuGD4e9UUIkWWaPKeXuZML0dC121ViU1eLs+usXuVysT30f2Smrun7a7W+EkJv1ZXsaCBxKrmtjZHM87ptNXa9tcFNhdQ7+eJxyck25WJ0/loJccsMUjBpI0uLsMoJst7eepTR1Wa1ISICsJFijcwpSoQ+TJDBsCyNKawg5Yo4xQ4LSNkBmGMP9zgMd68V5YtW3R8gehUDEuqjGYcICS2vnw1rbkrTY7g5FaazVVVUAkDR2vz1Za/3kTilIBCnlojSR4dT2MXHRLBKLsjb+NOzvt0Vd3Z6GpmmMKSceDauU0+0xWG0AK1vYcRpFFpMbCMaco0ix93nyjii0LFKCm/uYAFdMJIw3/O3dcPB1oUqllJJENJ1CEkSgpSfOBHa16baHqlpg4n57P7rJgPIplyVmCEorQzI6z5iRU86sDa3WxaLSxATeYcqEGZFKI754sp4mf9OeBk9DiOMAplmNPjOyVGANmewFQgbvpyRIWKOcj0A65RR9xJQKowqlYox5HFEqkLoPIaRYlqVRIqTsUtSkxmFQWuuizDl7IXLwjCBIUM6YmGIU+DC9xhyBBSBlhMzEgCkjYCYkSBkAECDO4SMkIiIBBkpIigBj5PnahygQICUWSDD7vmdy36xOooiIIWQgmmIiAGXqbefqsopQuDFZpZWsKiNTSCnkQG6WB8NxYIbEOnHaHXprtZRSKDi2h3ECrbW1NvpQYDbGWKFIgFJKIMUY9qdT72JZltJxjLkoCgem3Q8RjCd1cwxW1QnMNKbCir5PKNQU0ujlFB9af/BeClQYAyBzVpmVJoKICTXhjHIBIYmIcxSCiDNz1hKTQGaeaarzHkoSSQk5hsIY7+PhcMiJ53pclvUOopIUAZmwaapy0fzLn/7ZxePnuHz8R9++EqYchmG18KumGAfMH9vxYETUUlA3ba0ORuXSVG4IkDHklC35nBiTJJGd1ygyFyROjK1CZDCYQqXu1tWdraukrsby6up3TDz88p/9g//j6eMh+PJSagrjlKb70b28HcWOn6RiN4y11CmwyTyFLvHJoq6lGQeQfd9vt9v1amGMGdpWCrGom5nXu92+fP78eVEUTdMw8/39/W63yxmeP/u8KMr379/PrButzOl02un0vWePpTI3x2HvJyVJIvkw+exnU+/shU8pWGvrup7vVnOgq1KqaZqu6+afvLu7e7C41fW8vVuvVjln5rRarRjh22+/TSnN1vv9fmeMqZsGEcuiqGshje77flHVhbXEPPXD2XpFzdJNg5DCx3x3d3c8HiGnqizW6yUQfrzfEu3Lsh5d2B07Zgwx7k9HoYw1crfbjZNPKbmQvPfHtlNSNnUthKiqYlaCMNDt7W3TNB8+fry7v5/TKqy1u/1xezjc3m21LSf/YJMgYDcCqiwVMWdAiJwzIBEJqSnm1dl6iqFtB+99BhnjiAlTSlYXMUViFlJlBOY5zg1ijEVRNHU1nE7W6LPFalUXSHRsT1KrzeaMOSHR1ePr6KZxGJQySpm3b97Pss9pmoSiZb3cHrYXFxeHw6HrhsKUVeGF1EIIZmyaZkaLKSUAcRhHH4I2RgAAqZwEkrZGOBcOpz7EPE0+A3rvtS6aanE6tG9evY0xFlWWJKw2SBx9aKqyPR60VMvlkpmTm5BEdH4cnZBy2dTt4UNMKLUigcaoaZqGoevHtmiaKWdmPB7a86YsTKG1OL9Yl4W4vd9enJ2fXz2/vP78+Wdf/vLbVy5MKIvEmTNenJ3nzMFPSmJKqT2eVouGrI7elKVNMRhVXj+6fPPyOze0j6/OjTG3t7dKYlOXdVEqwS5E7303DTnnpqqNxXZwx0OLILSRMWdJCCk1dblerwnYT04QKy20RO99H6ZxcEJpraDr2w/v+routdZaQYrjsq69n3zMKcYuRGTerFZNVe73cLZeIkJMfhiGcXTGGKXUxcWV915qVRjbdkfX9VJKQNRap5CSz1P0MaEP0XufWsw5930/exy0ni+oAAAImYiqpg6T01pbbbbb7TBMCUWhtS0rBMqYnz17dr8//MEf/MHl1fX6/Pwh/tranLPzXkqpQBbGZsVCkCCgQnYqd6e7cfKlsRw5+qmsK4hBCZEm7wTPaTlITIhVWWqlJKnGlmAcppRjEIhlUUsprXVDjkA+ZD/64IY+w6yfyilQDJNAEErOiVdzqKFzjgjqqiLgw35rpKiqKmdwIcUYlZBCiOC8nxwA55wZHlxM0U1MSAQoxCxhEXOpFMjMiQEJBD0g5Zk5chaMs90oYZ6765nowIgJWDBkhBx/FW/J8Cvw0AOZAAFyRpSffoKI5v/cLFxNKYX84Fqe3ZXzC5RSltbO8trZTPErg9Oco4BEbTcIIYqiWC6X88x/7rABYZ40aKm0Rq21MRoRUwje+3nMOzs8cU7AECJn7gcnEQaC0uqHl/8Jq/xJM8UhxJSSVOYBYpPBe08AVkulVIxRyhlVJ3OKCCgkSSkBWdJDmCgAIHNKacYk39zcLBarzXL1819+fXFxcXFxtd1ud8PQdkct6O729vz8/MnT51dPP3/x5uP18y91vWq7IaPcHltEsVxsnjx5fLjtyEC92mzH4dSOOYN3zBmZwZZ17ydBAgii9xIlM3hKAFkKiaCADUaULJd2ZUFRtrUu0+jevX319R/9k8tms1l/rm1VVVW6eTBwzju4+TfonAuIPvmHbTdkKbWs61opdXZ2NgzDdru7vbkpiiL6sFqtnjx5cn9/f+raoqxmQO84jr/2xVfRD3/65z9vlot+St3kLtarAtSzZ9fPnz/ijDfHF9u7u9EDEaU4kaS5TiulJFJKqe9b58ayLIvCzK4vpYWUEqGMMTrviKiyRc65qiopZdu2796/L6xdrTYzRPP8/HwuzDnnnIERpJQvX74EQV999dXknERy0+SGwWhtrfaT8+MwJ/mlDPvTcDichMCYmZRKKR32u8KWVTOEkIbJh5BICK3tOI1WN3P+X8751PXDMAxdX5Zl9EEVchwGrTUyhRCUMm3bQl1n71RwxHA4trvj4dR2IGRhPYoHLpPVUiIBM4fEGkEQoiAioQ0ImRE252f3h+N4OAipYoxt2xqpg4tumoSimV0KnBCyMaYoCqNEzrltW2O0MdKH5IK/vR3qqqzK5WK57ruT9wlRSKm1ynOK57wA45SFEJDBOdceWlXJtu3H0dX1QkoNs0sRQAgx4zmJKOXgw5Q5GqWQi2lMPnRdNxZV3fahbfu6WQY/TZNfr9cc+c3LN7MGipkfP31yfX293d7tdrtf/OzPlstGzvE3CZQkKeXowzSOkTOSBIC6WJy6fhhHIF/YylZ6Cqprh77vB59UUS6X67E/lIzNo4sQRzfZ7e3+s6++J1V5e/PGJ1IqGyVF5sAgpXx0fjG/qRDx9vbWjagEArAbh902na2WVVncfngvCC/PzzabdfJj17dWCU75fL2ZhpP3UWkdQ7bWFo1FNK/f3wDANE2K0Bbl1cW5EowEQojS0DQJLYUkwTz77HQ/TLvjCRkriyCQyCfvpBLLuhqHDgA457EfAHi1qJQSMfqLiwvkFIIvixqY+qHt+1FK6V2y1vqQT6eurstZY6m1HkYXEwNJJRGlaITOSD6k6GIIoaoqQMzMktScC59zzsNARM6NEinKpK1plothcj5MNJEyNofochaAi8UihOCcK6tmuWrGyWutlbHH4xEYheaZxkgcykKbJ2chptE7Y4r7rXz38aaggpFyzEZpYi+EVFIW2qSUJGN2QRitgJQyUuccRc5ZCgYOnH1lNBGZolStHxO6mJlyCl5oi4JSjsH5jARS+Qzj6CKDtVpabZXqupPUmpTmlLSQREJbCwDDMEBO8+q9H5yUD/bIWZGQPrEEZhU0AiTIAFkQPaBNAOfGleGBQACMmXHm8WWYm1rMwMAM8AA6m2tzRkAEgTyXQwQgwoRICEiEszh89i0hSfkruD0Ow/AQ/pUyACTDgOBimPdvs0QLiWYajUAMIcwH5nw/8y6mlKRWLIQyVuWcUhgnDwBaayIhCzX3smaeBHh/PO5DCGWzKowmzFKglcjMZV3FlKcQXcopz7BkIhISxcPTQPHwcjIzp5zh00wbCFEpKYyWOKechHl9iIiQ88O9R4gY8m63myVaV1eP2rbbHQ4hpLquQw7HdiqKwrF6eXP45v0+AO3b6UP/DSo7RgCgHEmOfkr8YfsziFIYG0hHDJkRFPmMUqiUUkrsfUQBVlgprQTmmKLVbooaQYlCpYr8VAv79Ows7G/rpjwduji2nz+5XMJvp9F5741d5RynaZoZU0XVDP2UUgYFKaVxGrNAYwy4nHLWWsr5FR5P3Th019fXiAicjTECSQihjDbG5JicczHG68srFHS33S/Xq9/+7d85tMPd/vDtL36+UPz6dQDXImJhit/9nd/+5tWH12/eNUUBhen7fhgGpZQWMqXkvRdIVpvFYqG17rouTE5YNFLFGBeLZUqpGwZFNAzDXIbv7+8Jcb4WGVMIpUkqbbk9nq6fPP3pT3+al/mLLz4/Ho9hclorPwyLqkrGnA77HCMBrpr67OzseDiMIQEJVdSIeJqm7maXUnJubEDuhp0xRko9BldKo4pidzq54zGF7NJISlZFaW3WUsYYz87Ojsf96XS6PD/PGeYm/ng83uy2Wqlh6MLklFJXV1eqqIJPzgU9Y645IVOOKTNqLd0UyArA3HYcQw4hCEX3u8M4+ZwBmUOIkLIqlNUmpZQ4KSHrphRYp+CUkDnncYhITICr1coP/eGwb8rLpqm9c/0QPn7YjlNnJbpxXC+bpqq01lVVPX/6tO97FwIiDtM4vB3GcUwD910vhIAE/z+u/uzXtjXLD4TGGF8329Xstbtzzj23jSYjIiMzbJf7gsJ2lXAJISEaFwIeUAkhxAuIEo9+4R3BP0BJSGAhFS+AqgpVlSHttDNtE7Yzo+9ue7rdrnZ2XzcGD3PfyKxaT1v37r21z1xrzvGNX6uVnaaJLc8UdVlW1toQY855vrF9CMFDCAGRMqvMOkWZxmRsnMaktQ0+7baHOco1+uScO+zuS6d29/dlac/Xl/OjRFIcJp9y0MYpV5BCfxyFUGvLtnVl45QevU8Q/NgTsSlMiLmu2xDZlUVVL5yeiBB0vrp4/vr1zeeffvHhxx9JTm2zvLl793j/rmpWZbUoirIwLsYwdPuqKuoSUyqDHzgmZ6gpnEbQCjNC6cw49dNQFFZFH9pqZYy5u7tbLOw0Tt6PtqyQcHvsmKa2dpqgrlxVVaUzdWmEM7AYRZJD4bCwBnIixMVioWjjY7i93z3udt0waKsUQoiBgBQQJwaAs9XqvevrrjtGP+0eH4zCh7ubxaKdneIxRkUGtc45M+j7x91yuXRFKaBijCLQ+8hCIUdAAiIRSAIzLBFTSik1bVsUxazJEBGt9TB2IcSHx8fCOTDQ7w+LulkuLNDJez8OAzOzqPv7hxDT82dXh9M4PxCNsaducM65ojidTrWtNCql0DidUpj6XiQjyKquco6bRdXtdeOMs9XDdt82CwYGAKddXbUpxhQ8C4u1IWdlCK1yikAjUWYE53Dj6t6nIcoU4tR5YK7LVhWOFChUMcbT0OcspDQAMvOYAyXc7vfrtnVV7bTqh4mZ67oxxhBACEFiJGBMopUunUucfYpzD8Rcb4uEzJgQUT0NWCJEUkhKSAAxg8xGGQ2UEUFy5kTytN4Syty9AwBKZt8xMALO+VmEs94IBQCYRTTA1x19qK0RESCkzDMkm3OOmZWxLEJI2mgBHMYp5zz5YEgrpeauAq21fP1Sxvo49OM0j+0QQkrJCbAfSRsCmZ7MtQiovJ+l2gwAMxOstV6uzlDp4zCOMSlId/ceJJbWLJdLRlKu0ASzdlJSJoSsEBGtMZJYmB2TVqgIs8hTMgEKIhqlnSGtkIQHDs6Yp38mMwESoTG2sMpPU04CLIh4dXUFQse+u7+/X1x8vO/GN7f3gshox5yVLT/67nfe3T0Okx8TIKI17v44FSWnEABUIcSEylVGGUFIIaXMRMqHuCjrlJKMQWsd/QQAI2XlrHGYRgVBSsmVAgf03b/w12H10Xs3W4PbP/yDH37jk4/6/fHN28e6rYOfRLJPuagXq815CNEUjjMIKs6CShVWpxwlgCal9/v97PZZLtar9aI/nqZhXCwW7969mzXxwzAEH8dprOu6LMuc+OOPv+HMUz2yM+bi4mJh5HxTIfI0hi55T14pXLT1/f2t0vTkIUs5sswrVOEKAPBhWiwW49BP01QUbhzH0jkkmiGy9cWl1rrrTkVRKKXKqkoxzu/cvM5P0xQzn06nDz/8cL/fK6Kc0sP93fX19Xq16rpus15V1iCiM5qIJHPK2YewWCyMA++9jxByAGRX1AEUKhwzF8T1YoGIPobFaklE1hTz4TFy5ghnq3UWrkt3+26YjRMzCPzq1ZsY4xDjGBMB1svVer2+OD8/nU6H/cnHNGeraKUUYE5JgzJKJ+A58oUBmRQYXp+f98Nw9/iQGTIneoIToy0KzjLrGFFAK0BSIsIxzb5ba9TxeLIaF6tVSLxann316gtE6rsxp0kWBY1Qly4Y/fBwp5FmBMIBMLNCGsahdMWYtFHWOTdrH3KMOefg/dwnQ0rlaZpiyDmHnJKwcBGSOKcJVYw5JUZFYz8gcE5hzJG+DvlbNjUAFJrSNDhDktLlZqOU+uqrr4q2KcsyA8aUOIUcMylEpQF4fxxIKzQckhfIU5gQkRTEIXbj0boqJzlfr5cuGgPM6Q//8R8dTsf3PnjZ9/0vfvPrs83lcrGqC5NTOu3227wty9JY6g77HGzTFgiNNeb+tNdav//yGXIeh76wOkwjsHg/aiqO3cmH6aPiw+VyiQBVvejGyaIhYhF5vL/3MbJg0zSWUCvsDgdOKYSpLMvVypKQpJhTAJZJq6IorDEvX1wtls3pdPIhIDBig5xZEudymiYOPisgEKNQchh8IgUsaRhi3/cpZWNMzjKOY0Y9DJNSZiCYcSbnnFFq4pgiZwiCJmUYfAgpCsBmsxnH0Vo7V+rOnAgiFkUx5cDCtbbW2WkKY/AAgMKr1arrupSlrktG2u72IUYistYiIghVVSVI4zhWVcWBT8djllTXpVIYszdGA8hwPKDSmtyibkC4cLayxhJaZ3ISY5TFtGgqjtYRWoDKUGmU02iMIcWMQASkHYjVp155DrUTkTFk55TWuus6UYjCWmuOKcYYBbXWdWGQ8zRNoSxIKTJWfABQITECz81cmFkkKoXLRflw6HPwwlnPJQApzQ7g2SnFzIKinroEFIOgIMKToHouCEVAEXjigFHoqVHgqfHWPAUdA4DM5WQEeaafEPJccpuy0NexIQIaETkD81OHEAtyFqU05ywwhwkxxyQioOaiaMw5p8SIkkUSCwMboxAxg6AgCDBQSJwlLCsz+iDCKGCMBdJZMAqEEBWicw6N9dM0DH7OJUSlEaGuF5xCGPuRuXvY5iSolHWlLYv5eQgCISXhzBIkZ4USSYxGpwCsnq+ntUYRAErOGYSdUVYbVDrnDICkNMwF6YBGK6dNF4fDYRCRs/Pz9dlytVoR0T//1Vtm9jFmMqwwUrE9Tl5vjSshsZtj4AQSUUJtmnKaQlZqDJ6IACWkCADM2SitAM9Xa4nh4e4WObVlobWekiHUKaQYUuNMlfObz370f/njH//N3/+bm803l5fnr776WV1pP+XMqu/8sxcupEly9iHoqnr23ssvJ5YkUdIs7WaGuS1aaUACvVgsxnHs+16T2u0fT/sDIk7TtFi2Xdd961vf6vv+5ubGGHN2vrm9vX3/5Xu3796MfffrX/4qgVK2aOpiv3/4q9//xrc/evnu3bt//qc/2w/7IGpW7U7xqQ2D5AlPmIYRUFxhlVJf61E5+BFBhBNnBICZJD4ejwDgfbwvhJcAAQAASURBVCjLcu4rLZzTWh8Oh7Zty7JMKTlndrsdABeFvb6+RIFpmrRWTeH608kZWxR2FvL5MGpDSYCRfMqd91MWIgMAEQyAMUSZ2WdAgzkkgLRaNCmluT10BnYeHh5SCjnn7nhYNO3bOW6zrheLxWazKYriEMPDw8OiqZdtWzr77uZmmp4aK402kDmn6Aq7aJcaJIyToMQYMxGyzMWl4xQedvsQM2kVvC+KQpMahqH8emXx0zCOY0AxSltrtbUzXRRzYgZDrl0udrvbm7t7RSYxFaVWGo22hNSNQ/STVqgAi6LIOZVlOU1htVg0VQVEZmTkzAjRB3IOEY1SAdE6x8wp55ATM8yViFYpBgHCLJxzTn6KOZSlC5NXCiVHo03V1Eiw2WzWy9XDw8PnX/w6WVot6hDC/e2bummeP7s6nI6r1QqQjv2w2x9ziIV1szQ3s6SJQ46sxFotiDnlcfQpgdG6O53q0saYvrz58tkPvnk8bt++u18smxcv3nt3++7Z5dWuOy3WZ7/zO7/z6vVdCLzbH8MEq+XZ5fknAoEUDJPOOa6WrYjk4AGFCDjlU3dYti0RGeM+/PDjHIMP8WG7m4ZxvV73fdwfbx93h/3xlBiqpg4hdpLHoZuP8HVZphBQwBdKICRFwEIoHI8ddaZw2jgitWzalEJKCSTnHP2Yr87OYvLTNJ0OOwTZbNZFYU+nU1mWp9Pp7u5BKVOUldY2hjT002maiMhvd8D57OxMaz0MQ2JBrbKwgEJCMqSz1lobg977GYUCIDIKAJy1iKi0DnmvkUY/kVZN2869wkAkIkVRxcQ5SVEUl5fXp3GyU5hinGLQgDGzpOxjNsa4wmXMecpTiEphjJl0wczDGDabMxBcrc6605BzLqtiGDqSYG1RaUhxAoTa2KYwmFOJXBldFdpaIqMYMoNorWOAyiCR1nqxWiwfT/0w+WmcZjhUaTKuHmN+PHQhZFuUGdl7L5m7rvPjVBQFkZIMRHpkVoBWadJEDKumudqc7U4nBHZaWatCjJEFQDInIs0gcwS6EANolowZDT4Fa0jOiChKwRPUDAAMAgqAvh66iJhEQITgqfCHAElIoWhCnCv5ZNZfPfUvpWmaYwBEhIjm2r8Z0CatACDmNKciK62AOcc55gEFIXF+4rMZYg4hcRbO+qk5MLFkydo0KQtLdsZmgeMwOZOUUiCyP53UOBWuRDIJfBZBEdIu5TTGLFkiU+lclljU5tSPfpy4n/gpJd7UZeUK0w9BIVhDWlHOeXpiO3Jh7dxil1OsnDWImhQ5m1kAZO7dgicEnpn54tnV9PmX2tDpdNrv96P3FxcXAPBv/N73/vE//WMCsGW5n7Ln7OrF7tTn/VEbVRitNY3j6Jwb/MTjoIzWoiEnEM0cQvDGGEQwCjRS7E+FVhaFWc7Xi4zweC+ayBIpbTgMQI/f/Paq+ei7/+T/+4frs7tXbz7f73/2nW8/++TlD94cbxbNyjrlxzQN4+CDq4vl+SW92/X9AEYb47KklBkESURrgyB6v98752ZM0o9Ts1ycLVd1XV9dXL55+/ru7u7u7m4uMuv608cff3zc715/9eVf/ks/SCn/+vOvxslLCo0xn33x5fbuXUg5ZR6neJx6pdRms9mH9CSyAHjqu8gRoMw5O+fGvlNKaVLz8XkcRzFsrXXazPy/c2673c4fX6318XgchqFpmqZp3r1713Wdj1NT1WdnZ7vHrVKqLsvjfr94/mIKY3c8BGtjLKZpOj8/N1Z99dVX69VFPw6Tj8aVjJFhpkFFA4Ys1hgBGUcPwFphP42Qef4zmqa5uNxUdXE6nWZE/dmzZ1nSbneYmZ6mrlNia5zWOmd5fHzUpEKIdVmJoGSeTQ6otXG2rmvJsetOri5hTphSGHJCxC9fvxrHsarrnDOnnEJEEmvUZrO2Su+Oh6fTDIpzzmkzF+5qrbWhtm2603F7YE2mH8eqsCFm54wiA0SZY4xkrDKmqAqXYwaJnDWBFIVVqkwpgQKBPE2TMQaVqsvCOYNK5ZxDjCHmEBML5ixJgJj6sSOiFBMAKMKiNE3TjP0wdMeqWuYYlOKL87Pri41SKoXimx9/dDgcIKf1ot1utydOz66vc44+TFNIMcSqdKRVDFk4F9YNgQypBKK0SjGlkDnHFLlwTinT1K0fBlwU77//YU7w3/hb//arF69vbt4+PO7qZrmwSu3KcfDaKE2wOD8zxkze9/2pXRRKFV2/V6o9HfuLi03liuPpECZ/eX7WVBtrVF2Wl+fn0U8PDw85Borp7uFx2a4+//JtCOHF+x+8/GDDr17144CIzrnFYrFer0tXaK2RZbvdTuNwd7+vCpetBuHCGqXJ+xgSLBblOIwAYIzSZBAUCrCKINFqVSybslDj0PmpI3RNY8vCLVd1Udrd9jROk1LK+3g4HMaUjvvDYtF8+OGHs0nDGBNCKFXpjM0AWdAoFVUCzixCys2QEhk7fz8qEgYfgyBFFogZ+6luSlRaae2AJx8BAEgdj0NMuV4sy6oBHXbvbjFKSENmQK1YoEICEjTaYDUbRcLhFKMKQU7HUFZZa220a5fae59zHKfOcJhPeUZYfAJwyhalIUuyKGzdGGOUsgoIY84MolE4awrMnKy2KWrMQSK7ssoCQIi6cFkCI/ajMtoYLLTmmIDFGEOkiCiLAGGKSRuLJDmkojDW6a47rpcLjR05w4K77siBhVTOWSPN6c0AwIKZGZAAZCY251FBT2Qt5jzPsJkOBuSnCF4EFAZEzAAEMLPEioFJJDOAKESAuX1bAAAwW6WBFMgc4ghzOwvAU7oRAGSBxJmB5kMwCufEMP9lQEiojEIQ72PMnHMOiXNmpVTKbK099U9ccubAKaeUiqKYsY1uDEopxhmzMyGmfuoT91prAi6dFU6BJXqvdVLGIKBSgCA5pm7wh1MPAKumVQpLJgIDJISiQGJMo/fzauSRSSo0ZI3SWmVJgIwCsx+MjHnSoE3D5eX54+PjZ19+ZYxxtnx4uB+GYdXH/+bf+htvH07/6R/8cQxYLNaDjyjcVGXw/TgMThuElJOQiLZWMBklRVmkELPk0lCSSFqRYo5xPI2mqtuymJLv+5PPqaIl5Akl1bZEHwmOH3y8fNac/91/738BdP2LP/7P/uRf/7/EHxJTuzzr9idTmHRKOUtMcnF+GYUW7WqcQs5CmrOAMLCA5EykUw766urKWnt3d+efYMaF9/7m5ubHP/7xi+fPROT73/9+SunLz79IKU3D+PqLz59fnpfWvPjoQ0Z49fbhvefXw/6RBXaH48N23ycE25DGyU8pcuBklS6MnQWTc+4VAIQQjCLn3NyRt1gsSEHKqqzbnPPxeETExWJBRF3XlWVZlsVut6vr+uzs7O7u7nQ6KaWapllvVjmmGGPTVpC5Ox5WixZy2qyWbVXe399LyoZUiJMxZrFYAMDpcARUl5cX4+S7YZxbF3+rBeMckdCgyjmHcSybZmZTttvtOI4AMs/j/rSf/ACSAXh/OmWR/fEw1/yFKVTGFVU99oMzVmtNpIdhGIa+MLapa0R43D0oEdIqhsDMRVFUVTVLJPb7fVmWp+ORiIrCWqOYmawGgP3p+LVbUWZX3KwnzDkbY8ZxjP5BKxrHXDtTFAWitG2jiDVRUVjIbK2qKqcUiOTMQYQRZbmqrS1EpOujNaoqLUiq6nqapqyQU9SkYmQRyTkHn4AUZ4yBc5ps4YjodDpyykVRVIW9vrzIHE/7MqdUulWMcfd4Nw2ns9VSmAtnuakRMaTgCmuNu719x4L9MGpbFEWRhAHROQdCu3Q4Wy9Ow3i/25O2RFS6xmiEivt+qJtqGP1q3ez2Wx4pHeHTz96UWn/8yTc/++LzP/nJn5ydb4qqrptFSPH8/NyVdc7Rlfp4PKaYjSlyUilOczbNjLvY1bJ0JviQUhKBxDyF2C5XwzCM47i5uiaxCY0uss+SU6rb9vrFCxGZY+WVtuMUqkrnlH3Ku1NvjFkuamX0cDqCMAiOU0zd+PB4NMbUdZmtzZyMImeUs6WgKEUC2Rqszhdl6QypkMMMflh9tVqtHh8O4+g9cNNWa1c+v75KPnAKfd+LSN22ZVlqrVFhSCn6oBCtRmcVAKByfxa7yDxOnpTOIMMwaGWihLJuUvC7w8lqmlUwDAhCiKZuWiElQPvDSYBsUWWB7tAVdZ1SjjE+e++FQBrHMUxBGauNi7nzMfopltVqHIMxklKs2wqAQxyso9YWlshIXixahFRZXRle1uZsWZ+tF1bRFAOgYoUYwcdUO+10baeI6Bm1ZE3grFb740nbIguxeKXsoq4QMSZWWpVtOwzDMAznq4sMcjycZipxvn0QMmpYb9arZf14d9+2a8mMVoeYUAARSeGsG0IkIZg7BTOQAhCcJYpzqzzO/qEn9xABAII8jec5DGSO4hKYwWQA4Sd/LELKAjjDzF930wODwJST1oCIIoiASFrNm3TOcwEUEWWkEJ8qJUqjmZmIlNJAqJSZDxwhMWkjSECYchQgQKW0FQXKFcASc8gioFRIuRsOxhhU2jg3Rs5TNMaAdsKYIGlS+2PPQADgAFAXYNQY5rhfstba0tqv5dBj13FOPeaxsIvataVFrbTRIURBBagmP0FOg0JAXrYLYAbm+FRmVZCrkAiYFVmV8/PyuVLq7vFh7khN0b/54tfBj2fPP/7d73z7//ezX58OB7BOaz2Np8JoZYph6IhQBIvSdaeBLIZpKo0NYyeIrqpSTkRqHAeVZVEv2qauqqrz/duHu0RAubMuIzGKpDyRCYWjMYY//Zc/+vY3a1by8sXFcMJpGHNOZaUBYOx6yeITlOuz2+3erS6ttcGPM99DZBiycMaUYvL68fFxHnIiUpeV974fTt/8+JOXL1/uto8hhLub29PpAADMaRq6v/D977WVzdEPx11lbGH13d2d5kh6VdXVm7st6roPmYxNk48pIoKQIOJ8zkopFkUxO46ysCOaaWZArlwpKR+PBwBYr1fTNMUY6rper1dKqRhCU9dKqb7v52ZK5xwRpeC995uzs8fHRwVojOkOR43krI0hIOL5+XnXH0OMSqnr6+txiIfDoazLmQAzRhlX9n3PkiAjKHHGAieQXFo7l+gZY6YYyrJIKQqn1bIdx/HyYvPu9mYcfQiTIYUkImit5gxNUSQfjn1njEFhS1XMsSkrb4xVuqwL4AwJ6soppcI4pZSKwmmEDLK9v7vcnHnvz5aLEMKz62e73a5saleVDw8PdV2z4NB1F2cb6zSnJyI2CffTGPzQ1lVVVYvKbVY1gSgUlqQJtaEYfVPapnHOqBR9TB4RqrowRuWcvB+UUoUzUz8BJGspJ++sstYkEWEprB4PE7BAhq7rtHGKHDPPzgcALIoixtjn+PkXnzptlMJpHPrTiVMgAgLpui7GqJRJKSKi1U8cRIyxKGvnEmmFShsGrWWcJp98XbpuPJVFVZfVcfAAkoOUhTbIq8Vyfo5P42CIyrLa7R5ev3qA3L98+VIZ+7vf/8GPf/pzf7svisezzebjb35jv99XbTGNPkM+DaNxtYCdpm7WHBTWJJ+aqsw57Xa7+VREpJbrsxhjN4xAStvST5JFoTExQT8NqMwUWESqZhlCANLb4+HVu7umrEVgmHKji7d3j3VVaAR/GkORx2EUEaW1cXg4dXVdloWbCQ5jVMhzYh+CMc6ZorRKYY1ORIgQSwMAcVnN9SQAgPN+Rup0Ou23UwgBUZxRQ5dIG9KqLExMkXN2BnOWxMlHUUpxzkRUlmU3DlXVWFvkHF1ZpZgTiyISVMwcQirLcgoxTFPXDa6orCtJmcOpF6SUMhk9jGPbtudX18Y4QNrv94gYJ69RL9s6R042qSd1qwx5CsOpsLq+PO/704cX521bG00pjIVTbWkqA4vafuvjD3MKfX9ikSzMWXLMOcaQRwbELLVTUSQ5k1IikPr6ApTtfdh3w9Cdjv2oXZFRnKLxdMTMq7IkzjlLXRZEysdMRIfusF4u2nIxxfD23TGn0DSL1WpVNfXDfr+YwhhT3/dEmpmnqS/LkghFRBOmLIhYqD8TOolISjPRZgCEU57tA/S12QsREwsiEqJCFIAswJwhgyYAgSxPvfT0dTWeUZjlKbIL4CnQQoRzZgAUmauNAZ6CrTGxKKVZJPhAWhfKMEsIYQoBQSltfQxzUaLRBWkDJD5mAJAszJBznjjmnBMgEXFkpVQUCD5qrXVRcMynYQCth5QJMAE6Y2LIBBq1SOZhmGZxOILSWhdVrRGMxsKgQnnc7pu6cFZXzr59+64sixxzThFyutycZwaWFNN8/BWl0YADEAlRRKgsIaXLy/Plsj32Q1VVX3wRIebd3d2bu+3VR9/drNc0RDDl7ngoiiL6wac4KxhQKe9901beTygSJt+2bcx5DJN2NucMRML5OPZzJJmqimxNe7bSXk6HLTBoDcxslG7KWkK+ffB1s99u9ymMiiTlkDlYEwV5mqahn5BMvdr0MXev3uYUlKb4lJ3GhKCUSZwB4GkAr5crY8wcWdW0V3Mz3e3NO+dcKnz0frVaoOTN+iz6vkujU/TLn/90YmV0sTscXz67JG1+9vOfDyGrqjRFe3O/K5w1zjEnAMg5zyQuIhZlmWKc46vmygQRQYZ5RU6gqqpSSg1976dpFuLPq7CIzBqTOTcn51zXtfcjId7d3R13+6urq/VyVRdlymG3e9xsNt6P+8NWKyuMQz85W2qMFxcbIj1Mo58m0kpyVChlWXLOklNmIZT1YlFXxTAMY2Kj9Xb7SFVtNHXjiJA++eQTa+12+3B/f2+N7ccBsVovl5P3eYoxRq2wKQsiGsdxOB1BUdMsSnDTNMXoOce2qoAwhCmnYI3ZPt5rrcu6SHEsixVh3qzXt7e3H37wwhrVj8PFxcZ778qiKNVisVi09TR0wzDM+ajzTTs7MsvSFYUFAKUxh1C6ylrlLGmNxqjSGWeVIs4xosylLDCH4KacU85ITIpJGPHr2FzGTCAZlSIfwsxFpZRylphFGQKRHDlwlJQnycDGKstJoo8hhGdXl7NoOsastf06iV6ysDHGlZWIpMyzdJNTQFKAoJXCOTnT8OPh1NZlP6TECKRyyFliiqGs7Ga9ePeu3z7sYBwcwXbbf+vbV69vbryPdbVMmYY+LpZnYwhd133w0fu//M2vQ45VVY1TeP3mtq6bqqpmSPZ0OmlS1trjviMFZdWEEA6HwzyJXVmQVrf3dyHoOc43g3g/KaOLosgiuD+EEIuimKYQfOqnozEuqwK0Hqdx3O0XTX3cPZyfbcqqVErF6KcQ5rtAW4UIriz82JfOAXBKGYABU8qTtWYmiZRSBmaHB1VFHEY/TROAXl2c12UFAN//vd/d7XY3NzdIChETAyKgnkV+IQc/9Cc2y3ndzzkKGkQsikobwyKklDUGUTDR3K4hOaOxQ0jeB1JGG+dDyhiUUl3XhZRTFtK6tA4Ru+54OByeX55dby7ubm68HyqjkBliXNb1fv+YEc/OzjTAbrdz2CzrRaUa4kyciXnVlOtVbVVuK/Xes4uUO5GsMBNmZgYhTYTWKdGJM0POPkKGwhAtypCwm2Jk0aScsTGxQkBgg6CyVForp0QkpWwInDKJIULMIAAwjmMMYhQQCqf48PCgbZE4e++ttWW7aJqGGbz3Iv1sVgGAGacpyzLnjIyIKF/rnEUEeBZAq6eipSfpNHCWxKKQRDI/Vc8+dc7P6vc5FApRAHGWVccsyAkR5SmfQr4WZ8GTpwcA5tRrQQEafXhi+gAkxsRMqEUEScssyGIg0qg0yyzR4lmiA2CYYxYGVNqazMyMkjKnNCepZciQ5sIoAqCYhDkbASSDAKUzKYVZHYaAk/dz7DlWNhFYU2mlOfnl2WZRud1um1IqrRnHcbWox7EvnN53vSlcysnHoLWeN5O+7zebDZVl7vtpt6uaOqboCrNQTQjhww/f/9Mf/uh4PLZXLz79za/Wy81x2oYUZt9UiMmQRqUTYIqxrtqr58/evv5qmvyiqn1MIUWf5rRfjCktXJViAqQhpuFxi4Xyx65SumcpTZnQIoWzdl2QBqtD8CjFhy/ev//y1wNP1dXZw9u3FFmQcpZpSqJse35lqtZiCkMGyBkkg+QsSjhDRhFh0Dmmqm211vNzXGnsuu6zzz4jQmGuy8J7v2iqd2/eXl1fWE2ng++m7vnV+e9///ciqk+/vBEk55yP2VbtyNMQMojfXF7mEILvzZ+TwqeUtFYA4EOgvjfGVFWhs+77PqVU1rXWFiB0XXd2dnZ5eXlzc7NYLJj5cDjM5rCcc9/384S21jLzOAyLxcJpIymHyU9uWiybrusQsR8HBmmrhTHm+PatT7EsS5DUlFXISWsqrNbWCpIYIhTvJ1u6srBj193dvmvrxlorgCJycbYxmm7evqlLV1qzvbstq+r55YZQXr95p4TXy0WK0Rq13rTH4zGnsFq2zthpKnPOQOismWLgFE1pQuS+OwKksihWdQWE3BQhBKdw0ZTLpmyfXQLL+fpbYeibquj7/u7u7vr5MyB88/pd6Yph9NvtvjvujdIAswmqXq+XWpHVpBByjm1ZgiZrTVXYqjTOYumorg0hS06cEjx5CoVI4dwxAnk+aM8ReqQAkREVCQYfrKYJxWgSsd0w5cSIQGQ1KdGgEE2twuQLY0pX5ZzP1kVKKcUMQIvFasZpjVOKWeXMgNoY4yxn4OCdNtM83RWSYJCQU84pCcdVU91uh6aqJ5/ubm/Xbal1dtoKp8KpsrDc1px4nMJnn3+VYXd1dZ0Zzi8u/+bF8x/96Ce2tAD8+ZdfkBaRjAqWq7Px9jFl6HrvXMwpxTDVZXHqu826rUoXxsGP48j9XLQ1gzfW2nEcjx3TU9uP1sYK4akfjt0phhwzl2VZlQ2RPp06Ig8AZHLpHIGOwKIILa3O1kRwe3s7Tr1JJmWbedIKN+sVahLEnLPkTAQppRgzCFtjUowAQKRQsiHEyopkztj3wzhQTlNKyZqiqcrr68thmKxz3ocsKAiRRSmUzCH6icU5l4VTxJwzApE2c9L9TPML5BwTgGgiAYyRtdZIuh8nBCVEmSHGaRxHBszCBjHklFMsimIY+k7D+dnZ+aIp3JogG6MUAYp87xvfur29TTEsnVnaVYy5kPT+8yuYYlHalLxCEE6gWClz6g5WIwoDiNKYGYEzonZKK0U6aa2FiGQIKCAIU/SFVn4MnJhAjCajCAESspKMiHVRzG+fDzEJS84KMeeUchx8LJ1hBmcoCcSQfexPXf9w2I0xrdYbawsiKopymvzQ9QxSlsV8cuKc57Pj7JCcZa4CLACz5hTxyU00D2ZmFoE849kIKJyf9t2nO3FWa83YNs1TGAWfYG8RmCuYNADkuU8dnn5g5o0RiZFCZhJAJBZOIQEkIo2oGCRzTszWFkrplJIIZmYWYVH09Q5NREprjjHnGVZXDDlmhgwiSWsirRkweB9jigIMgYC99wSCKFYMKi2CDE9FyMwwjqPVpUKcpkkjbDbn3k9zYkpgmHw+HA7WuMvL6/bswnVdSkkYM0dOue/71jlFBjEPwzAv9K4qT4+n6+vrb3zzd263P7y7u1s//ygoE6cRXH12dnY89dqUmfnYT0NI1hYJsR8no8tIchpCSuny8lKnEHJKKTX1ojt1yKJJMcjy/Ny19Zvbm6hR67YLXChwIk1RFkTb7dgf/TBMLy5WD1Nc1+svb04xcV3X29FzBM6oi8YtVkc/AWuFlCHOFe8AgiDq6eKIttZ677335xdnVb04Ho/e+3ZdLZdLQnnx7Pnj/e1+9/je8+v1eg3MH3/zGwbBkhRV+fDu8as3r5vF8mG7l+hjmIxz6/Nnv/niHWiTwjR2ndVqdrAIASLMRsZxHBfL5TSORBpIlWWplJrztVGYQE6HvTHGKFII4zjkmIClKAqjtPeeAK1zc7ylVdoP43q9ds493N2PU1+Udnc8FMZaa6uqmjmYuq4rEY5p8oNSHkHVZYVPJaBRCUvKhdVaYQ5RkyrqWkROp5Nt2qnvq9KRtqUzTV0um6Ys7PF4nIK/e/v68uzMuLpsm4urZ9vtdne3Wy3rMOnsvU9htVzGGO8et0XhCq1Gkv54FE7OklUEOQmn68urs/WCOaUUbm9Om2V1fXn+5s2b8dStzjbPrq/f3d7mQK6odsfDaRhSyv049EMvqIyzCmnOmTPGVKWtrKqsVpiNVs5Yay2BADMKcM7DEJE5TqO1VpABCIBw7hwhiUzMcSaTFCJgFlIATEilMyLCKSJQ4XQIiCJZcOynylkUzCKF1ShTSuynoLW+f3io6/qJQX88Wqudc2SNJpqD1733XT/ODwJlzMy0ASMCOW3mkbBp16/fbdvSrlarr17fXF9uSquckq7f5lAFP1pry/NzDcjTNJ663WFvXTEM4U9+9Kcv3/vo5csXv/n8N64wmfOnX3xZ13VMHGKvtRUkQl2Vehg6hXB1cX5/+85Pw2a9HvTeZwbgFCal1PF4SClpa5RSm/PlfKlDjMMw5JytKy+K5tR3/ehHHyOPxrjDGGbuv+C8qqq6clN3evHBB4Wm0zjEMClrVDY+hboufIoC0I99U5dPXkw9d5FzYg4x+SkoTQikrDKKEIUyQGEUlt7HECbmFEIYYKiqilAXhT0cTyllIRSgyBlRKYVWq8mLSJYshlQGzCxEFFOKMRORtVopCyanlDjFlJKg7oZ+XvuMMbvjMeestC2s1dbmnBOL7zqwplotUDJMk0Nx1uQ8Wo0Qu5zDoq0vl5tNdXk4nB4etk1lAUxZ1SqHwMlPMedojBuGqGpb1JXW6McO52gqJqWUFkImZXRKzMDWWtJaaRtZYgZANcasBp6fHkappioEVUpJgZr8INkWtuKkwjTklHNM1lUCpFSlFFqn/TgkgQyYAZTS1tklgJo8M3Rdl1KeZfxNVR8O+xRizhlR2BqtDM4H1qdRiwBKIDPIHDQxA8VPRiYRxKdRLSICMjdBZQBSqAR5nuFAMiupBTQ9RUrz13kgLIygYpaUeP7NQE+bsFJE2sYYJWdjDCkjklJKkKPWlkgRoVLy9T4tAKCUSSkxZ6UUkp5do4DKOj0MU4pZa5UEQoggOGtlgFCQGJC0I62RFCKPfVdXhVYUc5bkGRAAUpbT6XS+WZeFC8E3pXNFgwrHKZRlmWJMMWcCV7WIGKJsD8OF0qYoptMpA/gpGaMPx65uFv3QK6VnbZAxZmagd7vd1Yvnv/t7P/jhj36c/PTexx/sT9Ovv3pLjo0xQspPPkdBsqRM8Onu9kGTBjKooayqCLA/nKy1zhUKoLQOBTJHZ9049vvjrq1r7ylnrIsGMhCmy9USw74q6pSP1tHYdWGKi+XZ3d3bwqq2qLrjEGNOEcp2ocv6oRtLVTiRDIkRGRUyAhAgCGVk0mEanHNKqaqqZmtg27bOuXEYUgrHw27s+qZwxuhpGOq67kYfp6E/bO/u7nTRNs0CSFujvvGtbxwPu8+/ev3w8LBYNn03CIfCaZCn+CSWuQn7qXl+jtZarlYppZByZV1KTKSf4l1E5qyrlJJSar1etm2LiCEE7/3pdLLWtm1bVVWYYBzHWWRIWimt5yc+KCqbOkU+7Q/zx1Rra4zJHOcUtKou5q8VqZxCSrEsy8LYEHxRFM7amQxYVvV2u+1PXR6xNLotXekUh/FivUiJr88v29V68P7N25vpuK+smUqbYjSWNqt18ON+98jMy7pSwknAacWEm/UGJCqAlJJGHPvTBx+87PsTqWZVu+392+3tm836HFLQIsisEPdd97Of/WxKSQQHP0lKKaSysPPFrKrKFYYIndVGk9FUGDJKlovKmmIYu5RDjEiMElkhKGWINAMDogCJ4BxmO+9YRCICs7vxt+EAhXPMXFilbenKyhh1OJym4C3osnKSeRi6sY+Hw44AO2cIcLZPzJI6pdT5+fnU9fHki6Ka+ctpmuYYEGNcnEIWxrk2DmAGPMYQp7EHibvtLvLekG6XbWlUaQFhIoQcIrA87h8v1qvr68t0tnzxrCai/f744x/99IsvvvjWt75V1YUIrxYrrfUwTVXVdsNoy6LfHjebi8J4NlYRGqUWba2J/Nin4F9cnRPR7cM9Z/ZT533kARBxs1487naPjw85Z6UNGR1jZI6KjDU0Tnl/HJRJ0xiKSiGnV68f67q9vr7e73bD3cOyKYFF61kGhSnmlHjR1qU1WqFSRmmH89kmswATM2eZpqC1FvYAYK11RrECRWA0dYMXkZRYKTUr+PaHU9M04xSU0soaUso5N2fAEVE4ZhBJKSltZ1CKkUKMc2FPHAMKkAICnKW2QZAyzfNjvjkjM+a4XFTauPk5riEzc2FAgbY++eF0sVlFH41hQg0sq9po8e89v2y++dHr12/v7x8P++5yXd/d3fV9KivHzJJNCPL2dNBKvff8MrCCFFPKSoHRzlpkUahoDHkaJpERlYoxsaCgNppiFmNMrRF9wiSIpK2JIStjuw6sVggJIVmtiqIQVNvjkUSMdUVRKK1TiFppa0B88j4OMfqQ5hGlrTNGvPdVUc6qjmGaQggsKYeYSz0vt7NjlZ6U0jSTO3P6Fc4b7NMABXkyKYHM4VnzWM0iJAhISAgIwHPmR5InY/Gsw5p/bv5SkFhYBCDLLMiaVZxPBQ+kNFIWSHPFHyaNWmlFwgzCnLOwAgGlhPEJ9wKYnZCIoEijUjlzmMYYUgYhImRlFEiSLKCMVcYCYMisSVB9LR2D2ZeFmSFnjhJjjM35pj+Eh+1jodXzZ1dau+1hr5FSCs+urzXRZrMZ+lPXT2N/ev/9913RHE/j/tjNhvWzdWzbdYoxp0PXnZqm8ceuLOvd7uCqi/XZcr1o98f9my9+c7VevX4raLGfPWQI1pWAzCkJs3NGg86QyWgf/bjfl4XVgjx0hGCVijEYBYUyTtAJUBxRimXbIEA/nQx3i2pRW709jFTo82dn8vBqc3ZJWFy/+Bg5yHATUprG1HdTcb0wdcu9EoCUUsacSTFkRMVCJBkEOYsuy/Li4mK32929u5lx3dLaaZo2ZytOrjvu26Z6+fy5ZM4pdKd09Iw5LMtqc349JU5oM2JZlj//5S/NfKur4jSFFMdlU2Y/iLbGaqUIsnDOIYSc8xzy4L3fbrcpJaP1U+JHCGeLGgTKoqjrCjgBUOmcIMYYrbXW2qappmlyzszhixqkKkoUmLMVtbaT92ebDTM/PD6ikLFGRLyPKFRY1y7Xp9PJh3E2bDjnSMAPQ2GMpDTFNI7jSGStVURtu3y4v1+v15VVp8NOAbdlcb3ZhOCfXV0bZxer9b/44b++v7v3fb973L73/geAXDUlcA5x8H7SBMoYzlkri1lmc/fl2bo7Hgpn27Z+/ennxzRtfvD91bL68Z/+68169W/+9b/y0x/9+PJs+clHH/zm01dTTHVZvXvcJwqmrMZxVICcoyECQkF0zlRVtVy1kLNSSiSllEEpMsoYvds+TNOoUKCyYEghWKNQYc7821tFCIk0KlZirQBiJMoof/a8IBTmpEjq0mbIkoNSua7MYlkd+9Q0haSkqfTTYA0RUVnoly9ffuc73/mjP/ojienDjz9IKW23WwBYnV8opWJK/TjEGJ17csUURTGfrsZxnONWyrJUmtLQlcasmvLdw/7YD4cDfvdb37q/u8s5797s2uXZ8/c/SCEQkVAep5Nz5xcXFyJvzjaLq6ur6+vrsiwHP/3m159pU0wxWSf0VALGfX9oV24ah7PVYuy7QutFU+fox9NRXV9cXV1qRSzifRj8dOoGZr69fTOOPnoPpImJIwgJKZdS1taUddv73TBOMQslRkUpyi9/9ZkItkUzxaPS1emw0woRUSktou7vtigbqWTZNpxn0wjmLJmzQmVMISI038PZ5xCttdZprbVCVEYtFothGHKeUsqJszamqiofEiIKYUhRQtLOAqrZfVA5241DzlEQsiCzcHpSaRhjlNKalDYkmWMM8wmsdAUijqNP0Vd1MSMTcx7ODAYYlK4/GsllYQ+nXXw8PbteN3WrgK2GnDwJZ5+iD/XGfe93vjl+8P6vfvPruq7P1h92Houi+PLV6+PxaIyepnh/f9icXWqqEo6ZIYugYkIFyMJcFnVOEkL4mtXKiRkEY0wouXJNkimkoAk1kXKYFTXLhVWEIARQV86VJSkjCIdTNww9spjCKWW0NoYQRU8hAWftrEYlSCKSQmDmrusMKVe4oijGsZ9iiDEKQH5CljPiTLgrANAA/PXAJICn+QjCOePXL5E8D2sAkMyztHrWMCPSnBkN/LWpGJ7WVkZAUIgkJLNyejZSighkzgJZAJASS3oKnwcFNMuanhQYKc2oeM45eAHAp2DcGHPOhFpriJBJG4c0TJ4xIWkWmcbBKUwsDKiTFIUSycLJIjqtvPeZcHYxhZRTjspoI08Ex/Pnz7vT/u2bVze39x9++L4IjjEC4HZ3cFaPo45+GsbYFunYTZvNitDWzQoRAehxf+j7kZkPh5O1FoDadglAq9XZab+rqkqTGAn94w1zerZu7OLsZ5++JtQEyDkqpQhFk2jIBm0WFkgx+cIap7B7eHx+fk6c1+v27bs3isx0vFcg1+v1zc2Nte7weJpDuxfnxabRPAUGudtvb7vtOZJ2TR+lWV/4bn98jCHlcYopwdX6glFngMQCOaIVIEEkSCCz+YQFmHX04bg/MPPZ2dlisfB+OhwOAND3fYr+fLMByTc3N9/99rf2+/32/kHqMwV6jJm0Oe13AYOx9vPHh3VtbVkSc70+K6fgjBpOh9qak8+s+bei/1mjD0rZsnRVpZGGYUiZj4cTIhKqvu9Xq9XhcDgej+v1OoTQ98PZ2fn80fHeA3OYprauraYcwYBCouOxm6bBuNm+NgjhHI6jlGmIAKAqSuec9x4tpZSGfgKAZdOSyHzs2D1utdbr9booCmPsYrE4nU6P221blqXRD7e3VaE/fPk+cXz15Zd1VRyNGfyU+fN+fyDOdVHUZXXz+hUXzvsRgWdHHLKYOe7AqGa1GMfxsN9u7++QebNonl2c725uLq/OV4v2zdsvN+vV5cVZCuPlZpXC2B/AanXqh+NxXxRFUjoBCKNotNq1ZdnUZenssq3bukEUrYkIjDIKokAmVNPY7/d7Tejq0hhjtCYURBDG4JmICFUmhCysBYGAEEETomCcaeDfntYRIaEYTeOp9+mYRYwtzs4W4/QQplNKoShcWTZ1M0PiRVnazz779ej7Z8+v9/tdPwxN01xeXi7W1+M47vf73ntUIkghZUjZT4GIyrKqqmqO4SWiEMLV5eVG4JOq+emvPx2nqeu64/4uhOHy/Goc/O3tfVktlFLWaueMLIovP3sFjHVZGI1t49rGvXrz1e98+3sP99vtrtO6OB4GbQ3HdH5x7v3otFktmraujKaL9dIoRLCfc7y7edc2hTVYlI3W2ofUjUPf903EEMI0eRZUxgGpkCRlLBgSkDL52A9TSqgISJE2wYsx+vbd9sv+2B0Pf+kHv0ui97vT5eW5UkpVJvphGlOcvGTQhLoYmTnGSICFM9ZajaAIlFKKMCXOeQwRjTFaz6oIGP1EinKIp+Oprtpm0R4PXVHXxtlpDMe+k5hZpnkAz/oUYUkpMZA2hoEIEWjOi49THq2bEXDUxiDjMAyISAQhZBHRCtumnWMOjVHWGKtXy7YUySICq+rs7Mw6TQjL5ZJDuHncV4XuwU9tOh47a3VRumfXm+12yyAhoEgmQq21dZU2hY/86vXd1cU5gRZgFBYG0ZBTZOYgBojmZhelVEqccggJUwjj6EvtFJLVxCFJjjnLEL1CItCSk0AWgRQCULpYrwhVCI85JhFBVIlDAlhUTWk4pOxjDCnNSZkpstGASlChJjUPqsJYq8g/6aGYmdVTvAYqpRifZqVGeorQggzw22n6X3rNK+fTbYbw578F1VP+89ydxILCModEchYR+BrZfqKZE2dSBE9uqKduXQbIWWLwc8lujElrrZRKMcfonwTqMh8QMEPOwgCgBVBpa21iiTGGEHxIiQMqzYAxzbmKShOKQq01ZJ5R+Bn3YmZUuihsURR3dzdHrYzGtm27w/Ht25tnz57d3d0BwPZwPF+f5RQJ1TR6SOHV63eFq0kbK1CWRc7t0PVJg9Lm0PWIg+n65XKpld1sNovWDUP/yQfv7Y8HVy1e3Tz8lR989yefvlaQnNLIEGMgJkJRkjFl4yqfQw5oNBDGOPj3rza/961vlEr9/u8v/6P/+/HVm6+uNuvS6KbAl5+8rBo433z75Uff+MN/9i/C8d1yYQ77ybMdCaIitgZscX62Ai83/gCaj4fTNAVCs9qcDyH6SJrFfC3EyyA4Ix1AAAxCumnrYejXZxtr7c3NzVzLMZdVFcs2TuPxcFiU1WeffRYnTwoOx1OpyGO02oDSCBQzLxYLq7jveyA6vnu3P3RIgDn0IdfLC9LqqQWIaP5YzPJga203TciilEqc55DFOJ1CCDOkrPUsfS+qqiiKau62nCfrfAYvikIbLSKg1GKxAMIknHP23ldVdXl52XWD975y1XykKIviOPSIOINyWuth6MuyPFutUWAYhsViUde190FrXVWNCJ4eHzjHpq7/jb/0+07h/bvXk0Dy4fWrV6v1OmYGyUZpzqkfB045xtjWVV1VkJMiUoBt3cQY88zHSS5dAZyGrj85C1eX69UCBX79q1+8efMqptEqPl99smwXr169Od8Uy0VzmrY5Z6X0lNIQYsqMpEg77axzzlpDRD4GZxWpufcCRJIhVZal1iQpq9JZbUgghkAgCRElK6WMccyMrERYMAJBjEl4Fs0hoCAQ0Rx2i0JoNK9Wi6IqfYo+pL7vh+64XDWn0yn4oW1K5xxnFUJgCa5QzlUv0rOHhwcfw3svX8QYu/70809fTdM04xlFUcyH8XnczmdwRAzRK6WqolRIJMAph+C/971vF1V5d3d72u1//fNffvTxBy/f//hnv/qs63rrVExhf3jwUy99OnXHs7PFOPaffvbLpi0IBVAuLy/HIWXW+8NOW4OE+/2WJd2H0/PrZ9PYo9NXV1cPN2+cNaVz09Dd37xLidvV8myzsUZtiqVVuhSyzong4Xg6HE7HbpoSC+j94ZSAjKuV0oWrGBCIAGC9OffjNI5+tdpcXVwKq5jCYrna707aqKYq33vxQZjG5If+OMbkM3BKaYaF6rosrNMEWmHb1m1dWWtj9NM0zR3GIqKq1XzpEDEnub2/c65sFiutddsstfWRZfaMJs7GmKJ0xWSzQZ9yjJkBpzCyYNW0+FTSInM2DhEaYzBDXdciMo5jTmG1Ws1Y9/yQJSKt6Xx9YYx53D7c399nyEgSo6+aFkGRNlq7ofdjPxljF22bUtgfds2iRMV+7Jw9e3h8iCnPYhSlTFnWgnq/P5VOG41a6zn+cB4xyhjnXM45hRBjAqAw978DRB+UC6RdURRAKYSQUmCjc4oxBqcIUWLMKSVtinHaEpqmaeboYwAAJAI8nU7GWQGMMY7TBETWFkopEYgxppRAWClVl5Vxdhi6wJmZOXPOmRFBSM+QMogwExETqCcJ1ZNO6s900V+/Znj/vwJQP32Nf/7bkJ9kW5Bixq9rdhCR6Enryk9jXlJOAKDpt3lS4FOkQIg4k3SzppUlzZne89sKAIlzSkkpM44jKj1bHk6nU8qita6qSlsXUp589t4rpTIBMgVgp1EpyjGllLKA1loZC5DKsjAKlfDpuHt+/UwjhRA+/fTTaZrKsjTG7I6HyllFoEnlJN1piImtLV7d3m/Wy7ZtoZIvv/zy6uqqLOr9fr85u7h5d9s0zel0gsyEEmOcpnG9XB0e7gLjxea5hq98SqR0aY0iiGNPhMu27k4nkExISCIhVoZ2N+/+h//b/+Df/bf/9v/pP/zf/eUffE/S6ery/BsffMR+ylO43f7oePPw//n5v1pfP3/5vY9zGNpm+fj61hTN+fNnu198aoWqxfJCF19+/pNh6oZhGoZBRKqyzgJImgA06ZCnpCBzhgRzXcUsrNM5gbNVGIKncbNaD0M/ny4Pu2OnVLNoE9p3h14b0/ejUqosrWpWw9hPEQSwqYuh6/yYiuXy/PlF13U8DM+vzo1zKaVXr14VRMa66XQiIsl5imHwY1EUktL2cJgfwWdnZ+M4bqexLMtVveAk0Sdr9em4N0SrZZvHHcNgs3++dsduen6x1KYYI1dlQyo9Pm7Pzy6Ou70xpq6KTdVyTgXz6myVp+EwjCeO1lSAyii9qEoUiNZM01hY2x0Oyua2qQxXZlMT+Bqg1akuYHndPt77X3XxeLh/773fabCHED553rbfuPzi88/6vl+X+dl7L+8e9r/89PPH/f1yc15Zh81qu90GkLZtm7LkHAvDBWaC1FbKLEulmsfHbfXB+3W7vLn90kssi7qfRJmzfjw+nnDjMzkzED/E4L16OOV9J+SAlBYeHSoN5BQVRJbEKiFOihmzijkXBoWlcObyfE2YX3/1hXVOaxBknyFknlkiIqNEYcxOyAgios5zGolJKQAAMgKgVqQAhIQl5phZcukMgLm9uV8uz5IGP0XMx8umMuvVsRvSMKWUmqZaNI1BHPe7eNyZHK6vL1erRRJ48/rd493j/OCYrWWzjyVn0rpgZu85c2qatutPp+lQVdUx+zRFhVZ4t33Yv3jxYjhB18nN3f7Fe1f//b/37/6zf/pHDw/b2zevv/2N75iyra/clOTzm8fHsb2oV31a5egfv3od+t7KSPUy4uo4pdPpJDlWheuKIlJ1mvYpj8O0u3q2moaxWbWnzh8mrUiHI3TT3ig5Wy8kRQNiUrIGO39rUwf9vjJNYFdpe/PQUVUgLZgCap6ih5TWuhOcQnao1gzmOMH93Xa1apvGMESxMsROqZSz1wQx5mPMxhhblkbpql0YhV13cqS2pyEj2aRRROsCUUIIOXNt2aIBhAjcNIvFchNCDD6HOPRDqOt61S76vp/ypFBxSIFjWdaP+x0p47QZQ6xccTx2d+/ezsVobdtKikM/uMJOIa4WVZBUFAU15cFQWVpCrRWGEJhAJFKOEKAs2ufnVevO8tT04xBPRyrKNPnH3cEnCBmjT26Ir24eri834zAhUVXUp+MRSLftegF0OvUc+7ouq6oSSTEni6SNTgKYwDlnXZljAphyysnHsiidcSnF0pqUg9HU1EUWdtYy6jH0aJswZp9Aa0cCQdAoIkk5RyStgGP0DjNDRsVAOPRjBGnKhQg0ZcEpT8OgtfZj166WXdeNIRdFgciSs2awKGisYwkhJM6QgRRp1PPAExFCEsGchREAEEDDXGY4r7bAiKiQSCEiQn6CCQUggwjLfCxFZpozppm1gEKVUo4xCBAgkNGcQRCJFAsjKhV7yXPapQJCRiUiCZSABMwspJXOhALolI5ahK2IZAZiRBGjEEVB5JyFREeflHECpIvSDxMAjrq2pESlosgITCAaKUw+GZsiFGRTikah5OQs5rE/NlqH0ChoIH3r5ZWfTmcrfXZ+TVoN3fjmqzc5DmRajyqgYqWvGAHo3c1jUxmZRhhQVFotzt5Vzb2nV6N5u8fyg7PiyoZ+u7awVWevX7+FhKejHDAsrr7981/+8veXzz663tw+PmSkol4c+jECZLLV6nmf3sLIJVgKSabhdz950anT88X+7/6Ny/Tu8z/8B//h559+8b3/wX83vt1++vkvgKC19th1Nni///L2Tes++OjZy4/60y//2vvnl/GhuXo+lMUkfql8mcYvtn3e3t6P0745txfPde/LmCZdd1Q6U+hwKnBi5UZ2vSjNooT1XIcyE6tz6HHXdavVaiZZU/AE+OzZM6317e3tarVCoBD85mytSQ1Dt2zb6Edjijlgdj6RDdMk4wgA1hbee4AnnVTbNoWxYrMmZVwxp2nHGDlnZ+2sAuv60RjTtMtx6rve13W5O/VVYfaHvnRFWS+ZXDeGKfFitVpfnL979dl8cl+era3S+91jjLFtm2N32h8PZ2dnLDiOk4iAcM65Kgwzt21zf5/u7+6IoCiKcRyLopjGDoXPFq12tqnr4/G43W6ttR998EHTNCK4aBfdYccxfOMb39jv90VZxRivr69vHra9Dwg4RI/d/qyuiqpUIAozQeaQQeL52bqpS41YVVVdN9vdoTvurTboHJIapykmrpr61A+H/enZ840w7HfHfsjb7YklaXLG6ZyLHNlpU1hrrTXGKYWIyCAppaq0InEG0nPOp9O+KIqiKDjD/C5kECI9F4vOh2IRYdZIEhAVEnPOPLsQUaGAEOinytP5kB5CSJkXyybn2HWdMS5m5n7UVmJm51xR1RcXm/Vy8ebVl/v9/sWLF977yQdO2fvp4e7m+vIq5qQUlkU5k5QxBG1dnEZjnHV2mjhOPqXEnKZpWCzbKY3ausfHx5Ty3d3d4XBIKb1582byXQa5uX9w2qxXmzfv3i6apU+jq9rFYrE/nh4eHn6N6cOrs8VicXV90f/i17u+K8rlw/64WCzG/jRL2GbxQZr6t69ef/tbH9d17awNDibvtRFLSmvnLA3DcNzvBGmzXo1DuL56uTMH5iKDAV2YIQvhw2GfY8IUIXBjKKW0P+6Wi3VbL1KY7re3hLhaLaZpWixcCDxNQSGQcJ681UaUhpiLonBGzy55MEo/VZZhSkkkG6Wcs4Uzxpg52HlGEcqydAWGmIdhPHSnzfnlOI6Hw8EY0zTNnPM6TVMGEsBFXQmpeacRUotFQx1YRQrhtN8JcFWUzuiUEmdfOL05W6SUgjdGAxHHGEtntDYzd2iMshpEVLTUTZlQRMCHSSlVOpOjj5JzjpyyApzxLT9NSolGPYQJAMqmNcYUhSUijQCktFbakEICYgDOOQLTvEnOkfLzZ3LGyawFm0X7DKhSCiGnGCMocc6FKaTgq6oqrOm6rrDauSpMfsb5mCcQVApRkS2LeXY2i4XWOqWd914ZY60VkfkC/jbIz6qnjpmQn6TIc4uviOQsAKKUEpAn+9BTFjQiYk5pFhgqUn/enkRET/fZ06KMT//9a2fwzMGRgDxJpyVniTFyBtIKEVNOItECMooACM+/6UnvzMxWmxm6SDlIULM2NsQEAIkZWGjuOCYSxNnllEFAZssUElHISaWkCRWRJgTJwHn26c0J1ACglQIhRJWzCIiO6IdYaLRN4YeEQg/b7fEwnF9dFtpdnz/ru9nPpmOWonBWBqvN4/bmvfe+8/LF7//pD/95vax8GA2p+/uH3cMpTvlP/vVPFpZ+95svI4cXlyvL6Rc//w2K/PxnP3r5/schhHf3D9rVugwPD1uTB2PcamlzksPDzeHudVvXGvN0OtRaHMUv79/+9/7b/y3i/L/8n//PfvWzn//9v//3N5v29v7m2fXVdv/4m9/8ZuqHv/gXfn82Jf/BH/zB5fPfXFy/f/XivVm5UprN2y9+pRLc3t5+9dVX97f3h1OkzXMkO4euiGRklXNEYRJg5D9n+AQdc5ivYLtojDP9ba81tW1dOrfdboe+Xy6XRtE49Odnm/V6/fh4rxVwioFHTWCMQoGxHzabzfxkLIqKId7fP/oY6rrW9FSTorWa2fiZ4q2qapz6uU2vKArn3OP9Q9M0yjqlVJCsXKEFspAGJWBZ+NRNjEcRIFukMAyTP3355Vlbn52d5cizDtDYwhizXC6ttfcPt9baqigRaRx8zhKEoWi77mStaZum644aSWmsq3YaOmNM7WxKKXGyWo/jOI7jy5cfLJqmqYsY4/YwSgxKOx+iAF5cXGTAkLkq3Xe/9U00NoS0WrTDMGz3h2maLOTj0IWczs9WCCwp+ZxTjEpra5QojTENiTGKtqVMOabkYz71Q/+bExk7dsPp6LuuY6DoA0POKRpTGKv+LKlcDCNCFsC5SkVprQtnMIMhVVaFMTbNuW4zSEVzNEKcL9eT4FbyTF8xcwbUSIhCgEahiEbz9OxgZmHQWjdV/bg91EW5ubz66vWrKaXCkraurJsY4/7YbR8en11d1GWljZrdYj//6Y8Xq7OLzVmgJTMbp3POoMimtI8nyaxIT9MwQ51tU7V1FZOflS8IcHd3UxVtwgyZ67rcHxUiMtDj4+Pd3R2CutxcFqooqpI0/OIXvyjblTFmnHrvfVFYn+Jle35xcXH7y0+FKcfQnp8rzH6cttvtsikWi6bb93Pc4zSMxpi2dfs3tzqzMSbGOHR9Tl4kE+nDoVu0q93j1PWsdUtAtqqTnC6vni1ucbd7DIERuG1rP4xfeFUouNqsok9xGm5v75eL+uryPEafM08+pzRU1lhbMuBpOJHWKSXgrJ++SFqrGCOAilFEaG7Qc1bPFMzxNCBJDEkyj9PU92OIGQB224eirIvC/tZZgIhVVVHG0UdFEJJnFkVKENaL0micpqksDLMCTnXtjFGFbZSKwzBwntqmruxmztJJMY7jaAwgYs5JKyRKIqIVLJqyqRyh0m523tHQHwm5rsqqsHVdKqSyrHL0pbW4Pp8eh5yzcDDauMIyMxIrhc5qhJxyUoCgNQKzcM6ZnpgRIiIkcs5lDgBJREhB7VwCxSKKUIStQZuJqNAInIISnmkgpdEY29SLw+noYw4hxZRnBqQpG+DUDyMRtW1tS8eCOaa5wWY+Fc0a0iaLcy6mp7IZoXko5j8nm0AhRHkqSiLC2S0MAPMfj8D/FcD5t5DynzmFvh7SX9OriAqVKGZOkkAwQ8opMTw1CgeUr8e4zK6C+TBNZiaGc8ppvnrzYwGImDnGLDkiIoN1VpNRcYo+BaWt5JRBAIiMzkPwfiSQwhqlFQJyEq201loEAbL3ERyIsEIBBmtdYUyaBqzc2I0VVVrR1dkFOd0W9fbhceqn9fJMafvF27e2bbr7h+tL0Uap0n71+stvf/Oj9eWm6/uWDAIPx9OyrB/uD5Ds9pReVQ/vP79+9/lPX7730eliqW29bhdfvHqltd7uTt/6vd//k0/fQNGOzGM/4H5XKPjmRx/8Wz/4r11uzldLqiwYgFe//upf/aN3y9L94//iP//FT/70P/jf/K9+97sf/cmP/uXjdnvx/Prly5fPNhe//NlP/+E//IdXVxeffPLNjz766Ce/+NWb24e/993v7h7vN5cX/eOBCMZxNMZYa68uLn2Jzce/t7i4fhgEEYkzWSUsnCXhjIHMJDAiijaF67pTlrx/3Hddd3F1ToDR+9I5pdR6vc4xvXv1erFYuKp69+aVtXSxObu7uwORtm377gjImeOpO4SYY4yHU0+kbeGU0VqZsR+I6OJ8Y609HI8556IoTqdTDJMmVVUVsIQQ0EJTVQ93d8vNGSIuFquceD54xskXRTMmYQQipZ2dUjZWZUmgaOh7RTSNIeecbTGHSx+7btE0i8Ui5+zDSEBaoVaYc+xOJ6MphklE2qpGkjCNGkSTQqKqKvrTsS6Lsiw/+cZH+Xvp3cO2Ox5AklHUH7fILFxP07Rqmy+++OKjb3yzKN31xYWrKh/Cu3e3KtB5W9R6eeo0kC4Veu81zSnlMmtHEWhRL2KW3Zs3uylrFY0pfeAYozHm2I3Rd5zyw/1uu+t9xqJYuMKiIq3VTJjOUhoiUAqRlCAopWOM1pl54K1q115sJKWcs63KoiittZkhxthPXkRSlhl6EhBmiCAAkDMjYiYgQIL8FBeASitZr9ddf0oxK1JowVnDhvrjoV1t3r59O8QOEU+Dn6bp4w8/+PhbH8ZxaNv6s09/8/j4OAen1KUzhUtqE5M/Ho/d0BljbFGUhSXS/TCBsDVOOBGgVgpECzFDVkZfnJ9Xrvri89dEqm7by8uLxLkoijev3wGqs/V5SFkjImnmGDMPj7uyruq6NsY8Pj6eL8uvvvriYnNxfX3qAhRlG1IGFskJEVJK67PmtLs5Ho9v375t6+Y73/nOF1+907eP0zTVdQ0APkYCEGYiyMxF3dx/dfPV6xttrc8ppLfLs8Un3/ro+vl693h79/ZmOB4/eHF5frb5L374M+/9onTs7HvPLr76snl7c1tVVmt9Oo7DMBnCsSwWTdWURbU+UyLMCRHrukbJ3o/GaETSWv92DXrK7yyKp45IIpCQQXJK0zQVVdm2rU9pfsdTSiFMv90v/bFXEFnAGlUpB4SJwTjtp5QwOu2stTkrraFyZrVaCA+cRqfFaUkAcUptWzvXeu+ZOSbPbGY6n4hk3fanoW1bYbx/3Er2TWX60qQwaK2NBhDx0wBp9uYyEa4W9TiOABkQnSVEJZKVoswBBVABqNmWgyg4O+hmKyozk1LW2phEq2BIOW1cYcfAhElJ8jEBaZJIQrMbqiwMwNzVm0JmWgARaY2kjY4ZtSIiRbDbPR6Px6pdFM6kmJKwAI2Tn4Fl/vo1wsjMyprfjs9Z9aQZvuZlCebYhbniCObNWDPAjEI9/asQCZ9o2t9OXwSaI6EzxNlerEA9mYUQQSNHUEoJQswQYlTMQmitjf6px5BZEPm3CSEESERTzjMJpZTKSXLOqETmvmHlENhz8lOacYUUIxEGziKYhJVSSJRSihQVglPzDcERM5EGBNQqp5QEUohGK1CISofptGnb2mmVfNNWm7NWGbp9uI9hXLbVcDwedvers/PzsyYAnK02zzauqqrPvvwi6jQFBm274xZRn6/XD7vBiztbNAzox3jzcF/W7rqi/f1bS/zs+vKv/tXv/V//o384RpKyuNsebL00dTOOw7R/WDj1nfev/jt/9/eqP0e9//Cf/pP/7D/9T5aF6XeP/+yf/OHz682/87f/zf/4P/l//u//D//Hv/Y3/sbf+x/9TzSpvjt98sknzuq7m9svPvvUunrRtI+H7p/90T/9K3/trwPnaRiXTRv7hIhXV1fvpncIWLTriambRu0MSkLGBJwBRUhmkxgkBiER3XUnY8zgp+vr67473t/frxbLFKYY/fnZZhiGx/3+448/Loriyy+/vLi4cAVtNptx6Oe3+eHhARGttT4krTUqAyEQaWX0nNNirJ69XHM6VYpxGse6KmKMzlhgiX5cr1Za6/6wL509Hh7fe+894VBXdXfodg8Pq+WyPx6sUTmwEnSkQFLl7K47Nk0z7Puu66y1i3Y1Q+jxdBLIx+5kNCHi2Wo5jp5QrLJVVd3d3SzWawCo26ptW8kJmJ0zfhpT8Eqpq6urpirD5GecNnpfFIUiIISqbpUwKVWWLmSOmcdxxGmqSuOnAYSvNmvHXvwoMRgC1FSs1zHGlJi0HqeQMmitFRmfIgtaVxYoStkYhLRSrLq+v719e3Wx/vCD9wnNdve5QgrRm1QgkDZGPSnJOaXErJkhMyAwKJ0yIz65b4uiWBZ26I9ZFBFZpbRWKDIHzxGRpMQsLIws870vIjmzEGoEAFYArJDUHOgDXdfVTd3Urff+dBpzzikGAEpFUbarYZy2u11ZlotlO6X8k5/+Yho7g2CUICnrig8++MAYM0wh5JByPJ1OxhljjOTsvU+pF5mVoFKXldLInIahjzEulk3wkeMEGdqmendzZ4ze7XYxJ1AwBa+UGSdfl83V1bPHx8flcnl9/fzNu9u2rqbhmBLGrPpxaAqXUiAUP/Zls44xRv/Uz7E/HgzFWV7EzLvd7u7u4fLqvcNp/M2nXxwOB2N12y436/Z42EdIimwfpsv3X3z29na7O045Hk4nvL3ddt3Zur1YL58/+3BqTymmw2P37Pwyc7xYr06nw7J2H7x/vds/RD8iNofjUJalXtQ+4d3jHi8377/3PHaHWRFTVUWYJuZUlaXWZI1iTnPqOCKA0DwC5wgkbaiwBREBImkDQm1ZpJRFkkDu++Ccm+s7C6eMdsPoiVBbiDkX1miFZ+uFrNr5w+O9VyCaIPpeay604Rj6Y3qiLUmEI+cgIihitXbmyfbtnNNAw9ALwnrVcIa7h/t+OC6WdVWUi8WidI7AMLMhm3xyziBla+cdXSE+6bpFMgIbM2efqLmYff6/CJQ4q0wpJZaEpK3TDTQhnSILiqBkq1VTu0oqa+1xmh4eHpQqAWFGfdq2PRwOPkTvfQhBUGnrjLbKGq0tcSoLN4wKgGNMKYt2xRzuGDnn9HSLwZMxjElkzrX6Lc4sT8srK0AF/6WXiMzvVxYhYQAgRCKYqxvmGfkUD4vzfYcgT6qr2S8sIgxPjQ3CALMJipkRCEhEMtL8bSBIT0OcASDG5JyzipA1EAkjzx1NRqeUUsrzmA8pMrNzDkAyQhROT2B0VlprrSWLAKcUUkKaU9tEAFgpZV0JqFgk5ZneIp24VPn6+UYFf7m8HLvt4zFqDatN89577/3sxz/7wV/8/i9//qvzi+XDYTfud4ikcWNUMwzcLJtDF8eRgawxZr97/Pj99z57c/f9731zsV7dbW+3D28fTvc1q/c+fD7J8Q/+8A//Jvydv/N3/s4f/rN/efJyOBycc9v9njmvFvXh1S9/72//RRsBmEEDTMd/8A/+zz/+0Z+2VYOm+elPfnJze/z3/6f/4yl6W+p/5+/+rd2+Ozs7a5pF8iHFOA3j3P1D2oyRjVHv3r4e+2793rOqsL7r+r4viiolHk/HtzeT+XbqEmVyBhE5IAMCJgYGBKScM4AokSxZN00zP3dub29TDqvFMoQgIKvVavTT6XS6vr5OKX3xxRcA8Pj4iJS2220IAQB8iDOADEB1YX2KHLksS63tFPz8uVw2i2EY+rEDAGXmKuacQpxbSD/7za9evnyJAtu7248/fP/29jbE/vhwh6Dshi3motQ6TU1dL9tqG4c07lWxvt4s6mbx01/+ajoejDEze+2cm8ODbVk5rZarZr97ROGyqlIIi/XKe8/Zt4vaGgUAVqswjTlG54yf0rJtwqQPu62S6mHoU/Rdf5yG0ZbVermaQ9GstVphGEfm8fmzq2mavvjis6fqrq6b/awC4kNCobpufeIxxMOpH4bJORejR5aqqs7PL0G7se+j4NT3rpC+G2LMx+ORMM+i1rquP/jgAx8Ald0d+4yEWlnnfIxzN/fTMpTznLbNnCurYjYIqq1qq3TOyRmLRnnvp2liPyGSwJyyoQByZmEUEJxt+yKQGTmlgIgCCoU1KYWGMiHkDCGECXtUerVaPNxv70+npm4nFh+yT9lWbRK5vd/uDsdC6xxHSbGwprBmfxycc+tNU7fF4003juPheKybanaEp5RFsKqqnGRu7rSucM5orUTEKOR4Wl1dDKfJLBpEvH/YfvzxxzEnViiHQz/ulcCpH8zusD47DyFoWxhj3n///Zu3X/nx0LaXzJxBbm7fKkSF4Kehbdr9fh9C2O0eq9LEGGtnUuSqbIb+lHLKOS8Wi9V6SdqIyPF4PDtbbc4vxji8u7kzZXF5/uyDb778yc9/PR48OjdM/k9/8UWOcd0svvnBB88uznNIYTgEjJrwdNwbo7rT/u7urqmKZtF2YwZARO2nNOSU84AEQHhR2fk5Pk0Tf90NN5tKlDLKKE3AnGNOPDIgA6qvQxgSAFhrc85ZOA6egeZ48K7rsqSUAwCUzgIYZs45A2cU0QrLQteqhK/lspWzMQSQnCIY0ig09pNzzlmdYtjvdszctnXhSqUUoQop398/dqdBKdU2xVOIyjgSaWf1ctnmmGaPHJJYbefiteg9M7Aka7RzdvazKkWijVLWmFYgA2f1dZBI8mkcx9k9Z61BUIkziwBAURTWTDYzCyuC2lijNCmtna3byiB/LbDXISTOUSEtGkcwZwPmGKMiPc+SunSb9bJpqtGHfpy0NUrbMcS5oTyludCGZiheRFLM9OdeX0PHnDODYJA/0yrPbgLzlGqFQormbkKkp712js7CuTfpSf38W3nzk8hZniY9kYo5pMghpyysgTLD5CPoQkSEEyEIkDyJbQXndZWZiLTSaXYPCzvWv+WblVJPE5RznFKKnBnms35OSTODyCwZm38pKUStiYgBrS2NMVk4jD5zAtBEJAi991++eQshIIBBPGz3gHmV/GkcXV3f7/Y+83EYf/f73/7jf/FDlrTdDm9vt6iKmCCyPHvxfHf3bhzH9Xr9Jz/+eXv+7PPPPy+37be/+0lR0257d3O3e/ujX129+KA8e/bH/+pPf/D7f/Hs7Ozw+m3wU/RiEeraDds3/nCjpv39F/ta2d3x4R//4T/8+c9/WpWlM+Z0Ou32x48/ef/3/sJfRK2P/bBYLf/yX/uvF2U9hNjUZQjqxz/+8QcfvvzhD3/47e989+NPvnn9jO4fd//kD//R3/vkQ4QnBftut8vCThug3J5d6Wol4Tj60WlBJAQlNEdwwCxsnd9fPU3eGK0AlVKc1TRNy3ahlAohKKWMK+q22e/3U/AvXry4ubmpKhtTRmNm/25VVUAUY5SYifQ0HedRVJZ12RTTNA2n7nG/c85dXFxM0zCrD47jWDr3/NlVHAejKUcPLH4cry4uLtbvv379+u72obUEGhBFoVA6OKRVRePoZTrWy9XS6U3t7v1ACk1dEkAYJxFhhhj9xLEsTNM0IHw67MahO1vUxPrNmzemLBRCYe1xv0eURdM6a6ZhvLu5IYIQphA0gNRVy5JIq9VqlWLyPizaunRmHPvIXBTVOIXbmxvnzPXF5cPj/TT0zy4uAOCLTz9brNZMarfbbY+9slVMMmWZhilOvh9OInLzsD0738zzptAicewOD4t25ZR0fXd+fiaZQwjr1dl7L6Mt6vJue/PwmAHn9oXfak8QVQiBABAlBjZYTdM0WvKxGsdxysFoBVG89ymyEAkCgkpMKeWUJWYRQQFJIsiCiCwUsqAwARDM+RuaWZiR+emwHf0gjAJZMucUdVWQ6fvdFGKeAwSmLgw0GcLlYjENPSgESyDwuO+7rrvbjURU123MEdJTlG4IaRqDMa7rhq4bDgdq2ursbLVYLDj5qqpOhw6QjTZNU81tuFfvPR8nXzVtZByGSRu7PezvHh+Z+erqShsrIh+8//LnP75/3O8++ej70fdAeH5xhtp+9eYuRW6bipTxflytGvZ98KlsrPdxHP1ut+8Hr0x59ezZcrnq+/6XP/+ZfP7l5eW50RzHgSRN0/Gb33iexX/5+n7XBer8UlcIeuynX7/aPh7ietloVBJ7kHTqDu+99+xss7p/kLqyALJsWr5AJHs47kTycrGylna7nUvlrA8yRjljnCtijCIZEcuC5hWKWXKOROSMJTV/HpSPMcZICoiMVSSCc+iNc3q5XMSYZuR25i/rogw5aeMQMWZWSvX9CQC0trOki5ln6UZgsqYkNFVVgOSu6zgFa+3tqWua1jintc1M45AOhy4nIVxaa+eabeaJRWYM/0n3hzhvclpbEVHGFEqUUkbrORlGa6sUVlXprA5hCiEgSVUUxpguDSmlLGqeIlk4Z8mSYkpA6JwVoG7ywMzgp8EDEfTk6nqzWs7OcmX0NIbH3ZYUzF4mQBaGHBgs5JyJgIiNUYummqepts7HlENUSpEyRJJCiDGGlPIsYZP053ncP7/s/lbq+FtOl4gyIQLOlYKEmgiIiPApq/LP/TiygAhrzTnnOazqa5IYURGCYiBGnjsYWFCERZAVQM7CgsIWn/qJRUQpZE5fD3qErymnYRhmLxAza2OU1qe+64fpacxzttoQkRDFGDUSatK/JeGJZnIkC8xW0hizj8Fqk4VDTjqm5PHQ81mz+sVnt21l6oIuLy/Jmldvbol0f+ytdofP3gYxZBoA8hxut3dZ4ndefrJsXVVoWDU//9FXZbl6/uL9T18/fPr524tn10P4xTc/eb+u1/rZ5k9/8ou30w0L7rf94Z//8OOPPnjvxXUG+hd/8uOmKnEa//P/x//tf/3v/3u3r379H/+j//fucfB+VI4ur68m72POx3766u3ti+eXXtQ/+qf/ol1ffPr6bfP/Z+rPgy1Nk/M+LDPf7dvOdre6tXRVr9PT0zODGQwGIAkQAAGQggxBFiXCJkhZMmmGZDuscEgOyeFwmFZIlhWyRMtS2FIEbUqhCNl0mDQpy6BADUls4gIMZgazz3T3dHd17Xc927e9W6b/+G6Pdf6qqOVU3brne/PNzOd5fssDsg6ZKlKPP3r03/z933bFL3zqU5+6vL56/ryJLG3Xh5weffub905PUFMO8Wtf+5ozKoRgXTk7OOkTdD6VwFVR9KMHRVNcNwOIsMg01RFNAu12f3h4uN2sc86np6/M6mq9Xl8PAyI2TdP2fWI2zj158TylNO68tXYCVxljhjFYa5vZom370tmqqibRpuRsFKrSpZTmTSUiwGkKObLWls41TWWUPljOb926FcYxhzC2+9rZUplbq4PTg0Nr9di3t2+doCThVBYWoHnx4kXbDWlQ0ZrGudHa6uCAma+u1kPfCkLfjUaTCD96/PDenducwnxWO4Wb9XVVlHdun1yu1+urC2stClR1ud3lvtvVZTmb1fvtbrq5G6MnSjER7bc759wwDAhszNIYM4m8nNVHR0eXl+e//5UvHyxXRtHYtVVdHN++7VM+P79uxxSEtJY+hKlFicxVMyei3XZtnC2KIuVQGOyHPo+7L/7MTy4Wy7/9pS8Vpb19cqtpGgC4vr5k2LSDH8auni3yx8+z0qiUQpSUchKxmkQ4xBwVtG1/qTA3zmDGnEIKoMi5QlvDCSLHmDhETgwxM2dhJBYkEkTKjAIkkJlFA7BgYkjCilFrZ601xqzXaxF48OCBNcUPfvBB107BFCMLJgGtDCA21RIhrfdD5Qow5a4PSoH37XK5zDJaWyxW8w8++IExyTlX1TMk71xpTXF1vck5A6nM4ANv267fXh0eHq9Wq/2+tabYd1euKi8uLi4216vjY23cwcGRMd12u92st2VRpIzbXUtEL168eP2Ve9batht8SFrbSah6+/QkMf3g4SPr6hCzKezZ2ZnTomflMOSPPnp8+9bJanV4dn7hamrmlSsLQdDWbXZ7VDS37uTgZHe1tgpeevnBT/34Zz/z6fTehy+++86jy/Xog8wXq5xz4LDz3ofB+X6xrC8vLq6vL9/61CdCjN6nft0rN4xe6toioiKyTiOK92MICgCmM3E6FmNOhXPOGSIIIYlkqwmRcuZIGXISEeMUAGhNVrsYozAqq5VSkfP0Pm3b+hgKUxSu8t4zoe8HFrS26LouZkbEoqiI6PmzsxhjVVXb7baqxsrVy+Ui+GiMaery5MQN7T6lhKA4w3bb5dRqa1MEQMOSX5xdnZyczGYz0qrruhgCqDzZvhNnEfEhxOQVoIAwTGBEiBJFwChNIASkiIioLktnTIx+SiYRESJdGDcMQ9+NY/AiiErHmMlkY0xmhGEETsyKU9TWiEiOYwZi5qppBu8X80Zr3Y9+8HGKQUWEj628SZFGgOCHnLOxSieSnDjFsrBEigXylBVFZJRCnpgH+MPGN3+ccgUAQChTbjOqKWASSAHRtOBHIZEMStHUAiut6L8dnaFY5GZKIZCnqK2PO2BEJAYymkgrTaQ45ZAEQEgrFXOSzJAToSggg8g4ecQn678BxBiTDynnrJQySpWu6Meh7Xvrbl6I2HWd1hoFnHOcc0Ya86hJ8URrUAhT7WeZAFE59ynf+PiLohjGbhKNG1KX62Exu2Uq2477mCTJ7uig6UdJKaag2j7F6BmfswSt1apSgtk4UJrfe/c7tw7m9+/cPr519N77D++//iNX33lRzE5aj+tHl0T69GR50adW7GafBh+tLp9e7wM/PJiVmeOb92/vu/a/+Jt/TY2bT7x08rXf/tvd9grAndw+Ja1SAsFC2aoP28vN+kd/7PPvP/zo+9/7ljZYVfXTZ+ef/NTnttvt4aoZxg4AvvzlL7/++ut1XSPKd77zrefPzw6Pjr77nW/ev/MLOcSu6/7IT/7Uh++99/6jM2WWtpr3IYG2h6vZ6aL4/g/eF6szIwhNdz642fuxLmypUHf7VqE6Pjlazhcphc1mU1XV5NBgEFSkjK5LN93F9vs9EVlbTPPnnBlQKa2992OIBUCOUSRziiJSNbPJ2uS9L8uSAZwxTVNpUs9fPHXaPHvy5MH9e8Wd27vt2o/9+oIXy9lqtXzy+MPVcrZaVkO7NUoZLcaY5esv+4yZCXUJYlbzw3XoAcBqA0DjGJazWdd13g855nZ7ZYj2aTRKF0WxWswUmapunr94JiLz+XzsB8lpsTxEFIXUNFXXSY5xUnLlnJum2e1205B5GIaU5lO+zX7fbjjcvX3aNJUmHLp2tVppQ23bgm3W15vAXM6ayhQJyJRVSkmT8kN3sFyEcbhz62DaNVpDvr38iS/8+Pffe/fR+9/903/2nxX+md/93S+XpTt79tyWRV2X17tOiJXCkKIgaFKIaBRNXcWEBvU5loWNMfaYNfBegZJUGEJhxmyVyQw5CoICBEBiSN57QGKklGXK1DXGKGtEkERbpwxi5bRRGIMvaxtjFLETjaosq+31ldJ4dHTw/vefICrURitd2DILl2UtwJyxakrmNESICXNIRVFf7fzlehPPL2bXNSC2/eDK6uT0th/jZrPbta0yxlYVM+96z9RVXDVVs93sWqW0UkHCbFafffAQlO3ajkkbW1hXklIhppOTk+vr6wTm6nqjlQjH589VP3pheuf9D1+9f2/fD20fyrper68Wi8V278cQDyp3cHQoYSxLN6vKsd1u960ifb3ZlRHe/eBhTvLaG6+z4HbfzhbLRbPa77cS+PzJC6uoni98hnuH8/DSre31u7u+W1+f103TzGpWuZwXZXDGmdc+8dbQX5Myy+XBo8dPUs4Gmrp0RIDCnEK7CfN53RROa9113ZRRkEUUYFlWShEzE2lEJlLGFV3XFXaa/t2kK01ZnlmgLEsQijlZqxWI0XaCfpLWIqJtFRL4rhvGsG/72XyRE+csi8V8GMN6fcmArqxYyBV1iNlp2e/blGLOOcTx+PBwtlzgtMgEUW3ftUPwCUgt5ivvfeai7YKxqdA2CzEAC2njBDAxdGF02mSGievejQMlKIrCKJMSIypmCGEoq2JoO1Lwsbx22nlHZh72PQAMfvTeCyqtb4bwwzgYW5ZlScqQtq4sdvtOhKMPRMQgbds656YhQVUVZHTa5WHImZmUkpwMKUQYhn42m1VlOfqYjM0CDDiGCACcgjEGkabc40EGRDDKTDODH0ZbeO9RETMb49THbqVpqCAiCEJEpBUCp5RI0fRLyjm86YMxpjRdOBAx3piPJYSQp+EHiFLKAJPWOYbEQtoAAAswAwP44BVSYXRmEUFSyscBBf3gnYOyrFGDEVRGi8isrMYQckxOGxFJKRmldaVjjClEL8lo3ZQVA+mpmVY3Q+nCaq015zRJARILgWJmTnm7W6Ow1ho4k9GlK4fBQ4qv3n+ZfXd+/qjdXTZ1LYKAlHKeL1faGhapSnt+vZ7PyjAML549f/PV2+364smjR4cHx0/P/KMXV+e7jsp5yFEELy+um0KtNykxjZnBlIk0Vni+bQ8ODsZN98pL99otfeW3vvTP/+qf3F6+OHvxZF6XO6+++93vvvL6mwdHt/ohurJ+8uyr/TgkSZ/4xJvHh0cXl2cPP3zv+dMXwXcISVLeXF0/uPfSa5944/Dw8B/97pdv37778kv3l8vl1772td/+jb/3Mz/5hyazxuPHT3vvN9vWnbxiymoM034B56ul1rqPEagQBGAkIgUKJGeGiZSE89lsOZsbox++/0GI43w+X60WHz15fHJycnV1cffuXaXwan3tnJuI01pr5wqtdRIex9afXxCRcJ7i4CXHk6PjlIMCVAiasKqK4+Nbm82mqophGD766OLe3dsckyuryhlJud1v290mpVTfuv/0ydnTp0/HoY1pXF897/fb48NFWZg7d+4eHB6Zsj4/33/05CIw1c0cHObMG78LwR/MG2aOQ+sqh6KPj4/82PfdvimcM6rd7YmomM8Xi0XfdpxiWTqrtbXaKE0EWhd9308w9vmNFzAyyzAMWmsEvr6+Lp3ZbTbRO6Vhv9/Pmur09LTb75h58N4Zsx1aAHaFVdaA1ooxZM6JCaQszNhtysLWheq68f6d48V8fvFYXr5/enKy+P2vfO3b3/yDLFBVxX63Q9JnZ2cp8+DDfghCmohS5olOMaW9o0BknniCwkiaFBkgnZj6kJmZJtSgJkJNoBhAGBOLCCKpJJCz5CyZIQNDZswCRIiCoCbY6BSbJiJ935+eHM5ms+fPnz9//lwYq9m8rut7d+88e/acCBKzMSaHmIQJdeARsgzdoLWu69oP/ZMXl13Xvf7qK+v1GlBKa0zh5oumqBpbwK4dBr+/3uxIm7J0iKofwr4dYmONMeOunfBhzWL+2huvX15trx8/jtv9YmlCvGFoJ85VVQ0JQXLKPqXU9UPwyQ/hQ3l+fbU5PlwgwNn5VTvGcraYz+d53/kY6nImCMvVwasv3c2+v7682rV7ERy892McfPjBBw9Xi4WrZj5wJuszbvYBMbzz/Y+KynX9mLVhMJ/8xP3Hz87Orjb1rG67rm2jUqoSM0RdzWtbzTKqey/dDTFtNi0LEVFR2ll9p2s3hUVSvJg3TVEYZ1HAe++cCQkAQlEUKbNInNrcYfBFUZRlKSIiN/nqzJw/bsiEcYppFJCUUp4SgQEQcbPbxRgFsWlmAlCWtZBytry63oSQ+n70MRkhIkDlCqezxJDFFaZuKpA0hsFoyDkLsNHWOVM3Tc7S9YMICskwQGZebzs9BBFJIjEnrckYJSnh4LPNImIIgVAYmMX7kDNwyjHmaYU6dgMRsk9KBxBSSlIKu90+hECmJCJjDABN3WDmyRf7sZBYkda60poFvfeojIiElHPOYwgYU2bIwqD09D4kAqgySIqcUxZJ4zgyS8qZU4iJZUISKUTRDBglSmJEAhZQOHW901ZYPo6EnPapH++DZZK2sQiIlO5mAa8VTgUshPAxDXbKCoWJWpNSYmajtR/jpL1ihpCYmbMGwGyIsqBMGo7pD+Y88ggsCVIQLpzxKYaQQaSuywwSMvM4EJFSmhCm9HVh1kQAWhAyc0wpM2tSrjIigixh9ApRkyKiPo3GGCUYRh+GobSuLMsUM2lIiTnH5WKRc5ScckxlWSAEhSrEfVO4YdhqGb7wuTed5qJwf/CN7+bERWUB477dnRwvl/Niuy69R0OF0dUffOXbP/WHPscx7YcwZB67fhO8tQGRZ/NSm3i9PZ+Xx3R88MHTc1NWu94XxrmZ3gxpt+vf+8EHBYVxv37jwd1+t57Na47+8vLF87MXL738BmFBiIWrUDISfPbTb906OfR9//lPf/Zf/Jf+JXC4++jdb3/nw92TJ1rrd95554/+7M/cuXPn9ddff/r06eh9zvmtT7yx2663m+vD5XK9Xn/zm99cLBaZbNkcBJ/EZqXUoydPtHhbVPvW/1DoDkB8A95ADcwoOYfIOT188ni5nC/mjUh++OH7h4eHOfjVrGm31yGlWVWklJy2Cuzgx/0uWmszi1EK6AZX6YexrusUxrbbiYhGmqBgRPTw4Qda6+VyCQCvvvrqxfmL5Ww2m81Ko1P0nMK8mRmjGEhZF0Kum/l8sdztLruhpw1/8Qufv3vvHoheb/dPnj17+Oh5PT8aPAvtm6Y5Plyevzj33W65XL795utaUdvuMsfa1ou6yDlLZiJdVRWz1GUR/QgAdVmK5L7tiMAYU5bl4eHhdJNNN2w8LOtqv90VhXZWj+MYfbfbb4xaNqY0xtR1nUN0ZVUUllMWER6C1loEAAVRlFHW6EKDM4pA2o0vjcph0Jge3Dk5Ozur6vLD939gnHvrrTfLpmyH9Pbbn3n3vfcRiVBdri8FoSgaUS4kZIRpkzANwZiTQkBU1lpjVWGstUYgd2P0nq0SQ+Rqw8qhJgVTDqgk5syC2kBiALmRhGTJkFNKxqEiUkqRCKJoUtPFViPtdru6Kl577TUAfO/d94cQ3/rk259e3oPMCWBMwkQYcbvZM7MxJqKfcgTX211KydrCxxxjHMdRgIvCIuLTJ8/Pzy61tpwl5mSLMguGxERERpPSV9drrbVCqptydXSIpNs+7PtucXAYE+fMGSaYoRPJIcWiXlpN/W693+/D2BKCpmLfBmNc26eX7921Zt+fXwy9zyRZCLU6uX2a+j4E33fDvKr37eMXz89dWe2HQRlb2xKIdu3w+uuf0EgPry52603w3ijNKczEhqzGIaCBQg+z5ex8u724vMxMIURElXUOYj748PGrr94VUBnw9u273j9KjMFHP7ZlWTaVLctCOBilEdG5MkaPirS2KYXBZ2OM1kaEtZr0N0RKjT4qosQJkLQxSilMKcbox5hzJq1izECaIWWRKYkFABBrzpE/Jsj2fowxKm211jkLkALg4BMRFYUty9rocRgGQERi5iQQSVkBIUFjibKUpQYkbTFnQeLdfkTE6JPEWBQFgMosJCpEQWCGICKKQKaaxKyVylkUISnDOTPzBEL2flQKp/wAZh7HkZmtKfoQtNYsjIgCmBlC5syARD7F0acxpOSgKOuqqoioD5lFcs4hZSUAhPlGfcxTAcYpRJJZIShNOWEIgVlIKa11lgwCSjBkBhRkVCiIShCNmdzVICJaqfzxjnaaSPMN/ffm3gMfS7Gm+EZgyYm11siTcgLzZMOdHtHpZkGUcwah6YtFxBt4CkDO7L3PglNqqQgC4lTXBVhrgowAoJTKzDllY0w/eGYgwslKBUoISSmFwjfrXBFmhpyEBTNrQILpd5BClMxE5Jyplg3nOLQdkbLG5RCHrreFm5X19fW1Frk6P7NGl6V7+f4dFNhsHxsd7p7e8V0/dtcv3z2sbHzx9OGdO3fuHDch6+fnmxRjXdmT41kMfVk2koMfw+HyVqOV9zT0oRsz2vKjR88jiUi2RpnCVHVxclBLL+364u5BGbUJIShrRi/P1i1lmq0OP/jOV42m26cnWoa6mW/Wlz4Mfdcaped1Q6Tr0nEOkMEavHzx9Gg5+7HPfR5yhIwzZ7/+5X/03vceXlxc/vzP/7wx5upyDQAnJyf37t37u3/37242m+V88f67772oyrKsf+GP/2Nf+f3fbwPeni0PDg6uNtGnWFiz64d922WwAEJT3AIigWKJIKg5RRQwWq3X65PDA5Gc43B5fr5YLCAFQCxds9ltX7p3T0Sur685e2eMysRArnDdMGiibuinqhBjbJqKiYTT9DkTkcPDwyyslLp9+zYAPH36FCSXZXlwcFCVjoBzEk2otS4LlzPeOX1pt726vDpbr7fWmE+8+an7d2+//urLiPj0+dnjJy+u1usxBuz79XZXlT4Hv1gsTg6XKSXft444K5Q0WKTFwYIZurYHoBBS27aurojIGaOUcs5wosBhUuTvdrspIJqIxjEwg1JGcgRC51xVOmcUClujrFJFUWiluq579PQJALz88svawjAMTdO4ghlIlMkMPibvPaeobQk5I8jBcp5j2Gw2k4Ozrubz5erJs6d66F3vP3z0vJkdtn3suq6ZzxAVacUg4zCgKgtdRBh/qJPUpMBkQ8o5MzGVEcT7EP2IOVlDVpuakDGKMloTs3y8TQKBG9KCUoYxI99EcygSNkY4IQAKEJHVWgGD5PXVNed4fHJ669atkPjZsxfvvvvu7Vc/pYi3uy4B7TvvysYoBGsMqf1+rxC01pNLXWub/fi1r33t8PDw1ulJURQxxt1uZ4yZz5dNvdApg+jej1Mz13ZDCOHl05P9fu+qYjafkzKDH88uL0KKPjKD3vWbqmymSayzdhzH9X7bFAUqqutacpyWqZK5KOrl6ujDh4/7vjNFgUpX8wUqVzq4vFp366s8Ds8fP82+l5zfePNN0XSLtC7KP/j6t0zhDJnLq/WnPvXp6zw+efRh6LwzhVF2HUat9WbXJWhb//Tw6CSx2vWdNY2QzZkijLU1pPGjR8/6bp3CW0VhjTHJx6oulFI5R+G8320Wi1mMWfKUlKSUMlnYx6QQQmLG5LRBon3b1lWhlEopJ+QJY6DIcGY/xsmegIokCwBoraf49BhjYhjHMWfJOQveqKJSz8MwqN2ububGuKOjIwDKaUI1oCBkDqREaRDKhbPWGms1ATEnrSGBDMNea+usHYMHDE1TTZLjyDlnQSJCBYDj6LW+EexIlpxDnpDHCUXEGjDGBQkcAyKOIRGi+fgVYxYZ8sRonAx4gDlnBsyTlEFoiCllyYCoVMoyBC+Mg4+9j5MJJ2XJDKgIgEABh0xEZeViyIMfU8ogQESo9STOt4jWFqQhhBRi4hhQG0HWpCZ+EWoSEQby3k9triIKiad+g5lFC8DHiIUbSfMNSIpz7Hufc7aKRCTFaO3kELmJ8lDKENHkT5kmjlkmgwIppeKExYg+Z2FmQdBkpwG4ISRAUErpm5LMAiwwhqgVGUVIClhyjiKkFAHf0B8IbzbZpBG0+aHMm2CSXE2rX6W1Rk39vhXJVhXbcTcMw3K51KQUYV2VpVVl6cahy2Fsqur1l1+5OL98/uzZrYOjxazQIJr5/MkjSqFZnKSMVVG1fbfd7i/PzSsP7h6uDoIfL8+fXW82i7L44OHTqipWJ3fMcHm+fd9VB3sfhhgIc1MuVwf33/5Ms/hu8fd+5x/eee2tweZd6LoxreaLtu+udsOHHz48PT2tCpdD6AdfNvPVanV62tV1qQ04VopYIzDAe9/7zkvHR8Dy0XvvfvTheyF2f+Qnf+ylu7dXs5NHjx6PMfR9T1o557797W+/8cYbv/Irv8I5Pn/+/Hvf+952s3711VcvL6+7flTlYnFwHP0Qx7xYLaLnF5fXzWyBSabNPwMJQwZhBuSsU44hjCxRUkwWjdHL+eygqbt+f3SwWiwW/dB+7u1PjOP4g3fevb2YV1UVQjq/jDFxYchSQdrm6AfvEa1z5vr6Ooz93bt3U/SocLO9JgWjj0VRPHr0aDabrVYra1Rd13VZXV5e9u3uaLm4ffs25yQp+5RibM8vnm+uL3k+u3v75JUHr7752suc0ze+8Y33P/jQR5ktD++cHiehIhvftct5bRCRoDS2vb7Y+J3VZjari6IwCAlkOZ8NPm33bU6CJnCaBAiYc1ZEs1mNiPv9PoSQUspZJgG9LRwSzeuVUkqRatvWGeWMPj05HPp2HPurqysAaNu2qmdKW2utKSoi3Q3D6FMUCCmLz5xBkdm3/a3DA85ZUM1WR0Pk/RCa5eHl8/MywHx1/Oz8Im76dswvrp5I1t0YxrQ1tlCGAstiMWe2PrAxdkqTFREisaC1Iv3xJomZYxKfYYrJSSIwZIbEkIy5SWCZijdzntJ/iIA/1sSLSAgBJEtSlkCJLq0yzihgP/YK0Xu/2WyI1OHh4fV6++zZC1W+4JyNwrqcAZrMwAiS8ziOGhiykILD5Wz6H1YQFcJyPqucHfsWEQ9XC6NdEri6uogZYshjDMroSQmiNIC2rq4FYfTx+dkLRvDeJ5bNdq9N4WPWKkwnl1JqNputr7f7rl015RtvvEac9/tu1/YZ+exq2+27WWWWy1UUINdcbHZREHKnBIgj98O92yent1/yY392cVnUVWSxVdDOXpyvnXPM27JezO+sAvB6HA5cg7YY+kgMHdv1bktKb59el0XtqgM/JkPOGk3ahxw0maZqCms2253aT1iwBEDe+7Ksy7pu2xZAX15dH6zq0hgiCiH0fSKComkm4Y9YzADTt+Do6EhrzZKs1agIOU8H8dRmEgNATgzZ+34cQShyFpFxDKRAaUVEWd2sLeu6FJGyaqqqsbYYQ+y6gXseuq7vR8bN0WpZls5pU5eFIkQWbbVRFgCaygw+TO1giGPhdFEdtG3rvZLRD8NAyhRFEUPOCYgwRTAkOKE0EZTSJJASh5SdwykoURGkFOqm0lYzghC6yjU4Tyxt205BNDAxCgSiAIuwCDP4lAEVoPjoJUSlTBZgUSKShEIKAJmIhFBlk4Un9Kq1og0NAwafUkraGkTKOafISIlIA0BOEREBGBgmHzYzIwoiYIYfyq+01lWhJ8kYM08rXQCSj7vaqYGdol611lbRpLMj+v8Hd3w8zc5TzztFgCEpjZQSxRSne0IGucmUhQxCOBF2FBBKioG0kkydH1hEKRWTL8syc/Qhas1aKcyZma21SX6o/MKp0546kJvbW4zDMOQcyRhUlIXX5+e3bh0v5s311eVus543zXLe9G3nu/bk6Oj6+poIIafbx8eSopJ09mKXIjCTH/l62NvsPvP6g1/4mT8+juOQ6J3336sXt4hw243ff/fJYnl4/+7oLGu9ePromR/s0eFh13VP3/ngqgs+JFtiUc76brhe53b94unTrXzu1snR0U987lP7MdqT+TtPLrNS1uq33v7U9vEHwti3u9EPi7pqlitlzV2Wg8Nbh8cHGZI2YK05PjkEAGZ5443X/tO/8p+k6O+cnvzSL/13nr94fHJ8++237r711qfe/NRb5Usvn333O1/5ylc+/elP37t37/LiTCn1uc985m/+jb/xjW98YzabAamiql9cXf3o4kA4WSV+bGPwrlmMGRFRCSAwCjIRT7ZvAc0Qi8JqQwcnt9ZXV7PmwBI6Z0vdHC1mi1kZCy3dfn95efdohYgGYqERlxUqI6R7n8eU2ftCq5CCj7GqKmbed4PCm8D96+vroiy3261Sqq5rrWkcR+/HF2fPOMVX77/0yoOXfN8/+ehRWbmDhRuHnZLw6v27q8VCEVw8fd5eXo599+jRI2vtnVvHy8NbIfPldptFeTU7OTpEls16vd91TsNiNiMFq9V89J6zR9DDMLS9R0RrTRjHGGPOUSkMo9d6+jTmEAIRFUWVUgopTr0CAMiMfe8JxY/dqHAc9gpeEslTsrQxZr5YVU0tSP1E3wTZ937f9plBUGdBU9alK7bra1FWFbOrTdd66bz4830WrorFd977yBam7ft2jCzGByBlitKOvnXOxugPj05WR7cfPX6hEMhYEVY06SEQaaqmHIMXQBFMLCyUBDlCZBaEKCEwGRM1KSTQSESUc5yOBYAweRG1UkSkp4twTsyQIOeoqDRIYq1ViEXhjDEpZRFpmub09FQbVRRWgJLkWV09PztH0kqpOAxlYY+OVlXhkARZ5pZ8U7z55psA4P2gEMqb9F3w+67b75QpirIkojGGYRiYmZR68uxFXdecRrVaDsGnlFBpkTCfz/uQCmWm/VdRFCF4a83B0eF+femjjzFabQR1ZgxR2u1w+OBO222rqmLhx4+fbMfk5otby5pTmrs51KFwZUpsjLNEF9fXCfDJd74vSgPQZtutVqvr9W52e/76y693x0NTL9ebveDY9n7vOUGBoFjYJ3BGVbXimKrCHCwPZ0119eK867rD5UJrQODLy8vZrC4rF5M6WC232307DMwooHLOzhUAMI5DzHlW1EVRjOPotOq7URuar1aX67Var8uydM6NmEQwxkxEShljcMqXKFwFkEKI3nthJGOJlLVWgLSeuDdc1/UUdSGCggiA/dBeXa2v1ruptRp6v1rZoqgAaBxHZy0qygg6Q9+PKYWyLIWQmce+H7oOlRIMMfQpZU1AhIoAAXIWpRQwxpisJueM0YQIVhOQTnwD57baWGsJxfsQQjBG5RxTAkRHRLawOpg85snKOKVJQI4558CARJwh5JABQ8wiaBxorZlQRBLHkPhGpaxIa1FK5Y/B5IWxVulgg/c+AWkNKaXgk/deKRZBItKALBJSICJSSlCsVkqpmKPV5oe7XuccM++nejzVQ5lUSjcWo8KZlIOIFEVRWsPMKXoA/CEWzBhzYyQRIcoE05pZiqJUSuUupyzW6t6PLJxlGmilnCcxtlhFkBkJWSSEIAAZMKXESIiikZQAi+ScFIpFLciCLPnmGJnAEUYpY8wEiq7rkm8COH1RFE3TXJ1fFM7cOjr2Q280HSxXcb7Ybbda4WJe5RCNVi/fuz323TvvvFMuDkFUznh2tXtw6+CVV18JIX34wUNrrdjZ9br1OB8ju2rVdfzeB0/Xz77ZLI+Wq1uJ84ur7fPLnVIqZD6+d/+el/efXFYHtwQNk8Rsrnf5y1//7h/9yT/0xmuvvTh79vDp89dvLz48b9cXz7nbzRUdHa5QJAy9Wdaz5XIIsW6Wt++tiqLohlGBUoZO79wTgKfPL37wwUeC/KM/9vkf/dHPnd45TShnZ2fBP3377U+XiwUQHh4ejsF/4xvfEJHgB9/32+126Pu7d+9a4zbr7b/3f/z3f+t3n/yDb394fXHRLE+7lMuqaseQMjhFInkSHIiIoBJAmbjRqJQIt9329umRH7o2dMXhQQ7D9flzv3fL+SIJ314tN5uN9944pZVaVc4Uxa73mXKQiJDDED3zMAx37txRSk2jRQYSkdlsdnLr1nvvvadUdXZ2No59jPHWyfFisZCc9vv9+++/35TlZnu93sjnPn3/aLG4fTwvTLFdb4a264ahizH44WS5unPvrnZ633da06oxRVkOQzn2rVF6VlcqR7GKCDRRt98QauXcGP16vWUwWrmL6+u6tEqpCYU9Vd9xHCcVzzAMfT8qoyfmcz+OOefoQ2H0cjGrSmsUdiQpJWepLGfWWhZxzMxwdnHV9t1+12YqRSRmRqW1LYAUIsfsRblHzy9uvAQ7v2t70korUwAC6P2mG3PUxgEbUxSFm/V928xWSDH1yTkXvU8hO1cFGDRqdSP1YIQsGVIQ0mZiKGTBmCUmEGHKIMA+g58YO5q0Jj0pMFg+bnoFAFDfaEZIEU3zbY2ThpMUKkEA5AklC722rmmapc9jiBfnFzHljDREXh6dFEWx2+0AoKkLhVI7XZeWU1RWOeIesyja7/dIMmsaRGnb1thi1lQpMbMQkrEKVMFww79D5VLizOJDROKQoi2qCnH02WfJCRlEk9Fah7HPmTIjAHRd9/DhQ6sNomawLKqer/rO+67/YL8VRcVsUc3KMfG+bePoR62XhR2IEvqyLA4OloujoxeXF4Hho0dPfEi3bt0+XB3GmJ+++9Baa1xBkJGjVmKdNsb0Y+7acblcFk4pSEeHM99tFA3tPrbba6P01NI449brq4ODg9XBTBnCcRzDMPiRRbrBp8RLMFMLBYAfm+wzM/f9OI69UXq5mh8eHvZ9r3J2SilSicEPg+Q4BTblnBHUeredOihripATImZmJA2SEYUUE5HSGMPoRUII3scsGGPat32O3trCuLqqqvlMaW04IzACo9bWKIKUk+fMsPNdM6+tsTlLVTY554v9VUwRgZSmqrCJUUSM0pNASYEAkEINAMCJmaYnMaQ0jmM2mUC0oZxzSsJsACjG6GMIIaXIE+RAKYVKowBkQUwswMxDTCHFzAiklKLEMgbPg2dygjBFljDgZJCd5E43PgLESQJirdaa2jEREaEGCZOoDRn5hmHAKqI2xhiTUjLOaq2HyJkjsyjU0+w9paQ0geC0CZ6e+ClniojKspiGzIYwf/yaVrxT33mDalBqaqwVTYxIRJSitEJ1N4xTjLNIVpoQdYxRhJXSRNZgNrrIDGOISqkEOLXJ683OFcYZzUKaiHPUBCEE0noKpQWmCWuMoPIENEwJUcqyRK04cMqZcpKUp/vBMAw5xsPF4ayprq6uXn75frvdldZFAE18dXE+n9XLWfV8tz1YHaecq7q43m3/0Zd/7/5JuTl/cnx6696te2+89YkRq8t1u283mXDddj/y4DSDub7YnF90mVU/hnsv3TlezK7Wa8Ak4KPfo1acgBGU1gOUz6/2q0X90u3j0tDvf/u9uwcnwDuOgzBXVlfWPH708O2337jab+O+jzqL0mCUYi0iCeXkzkuVc8+eX17vui6EYlbODhZjSrODk698/Z2FXSPSV/7v//l21/7sz/2xo8OTN99886OPPvrWN79+cnh4/6WXXnvttcViUbjivfc/+HN/7s/9+f/5v/+/+Nf+lb/+W1//3e/9wMzm3ovSLuTEQDht5llYURZkYc2gU44smUAk6/1+7xTlnF48e6pBnKJ5eXK4WAx9q0AWdbU4PV2vX6ScAdlprWW0RmsfEHj0vXHlwcFB3/fb7d6V5X6/jTkZyK+//npK6fT01BiXcz49PTk/Pyei9Xo99l0c+jD2q/k8jP2tW7e63eXxg1dLV11fb9rd5vTo9OWX7gunh+//QCvCnFJIhLmsHQ6xba8BKoVEgCBpsVgYhednL+qqERFBaPe7KGiM6YbEUZRSMcbJgx9jVHVjrZ7cyZvNBgCUMpAikVbGuLJERIlp3tTG6PX1ZlYWt27d0gpS9MYY74euH1ERKh5Dt+/6YRhAIyrtYw7JE46C0zCHUKAoChDZbLcANIyBEcpKtV1rC0NGZc7drlemErb9ZndwcKAwDuOuaRpE6rpuuVy2+zFDVkoBIqfMHKfZIzOTTkgKSANQiDklBgCNGGJKmVMimzgZ5YxilVVWk09guvYCACVIxCICOWhSRqExpdXKaaO1JhY/ppQikkVKQGoMnoiqspnPNQu0o+98SwKHq+V+v0fhHP2sqUHYj23lLEoag5/V1ZYFkA1ppxUoqutaKbPbd6vlfN8OMeeUpiQ7QBRjbOEqAa5c0w691Woy5HAGzlCWZdv5oigmzfBUewKDMabUjdZ6HEPX77WptTLLxVwrbnfitCqaejuMSUsCs93uy8J677uUh/0OOSuAq8365PRWVdVquz85Odm343y+6PpRaz3Ter+96oaBQcDaGHJVLvGoKsrQdn4cR7SKMHFsmxpybAu3Kkyx22xBIPmUtJmy27ZbVoaKori4uOj7IEzWOGOttialtNvtiqKoqrLrumEYqsJOIere+yePn9176c5kk+v7vijctCmMiUXCzbkJCgitdfWsWcxXPuWUUj94EZk1xRQlnXMkgpSCiAhMC1ZBxLKwiMrawjknDH5sCdThcuWsrqvaKLKIwXsR1Mq0Q0ug6mpmTQGKLq/ONYGqbM6YomTMOcaE3NTzKf3KKNRKi0jykTmJE9LaGDONXpk55zQpwpRCAEg5GDJaWwAyGolo6JPWGkiRgECe6rFGwhSJ1JgiZ0ZlUJEEiTEkvEEn/bCkTfVPhKZxa84xRo4xaqUQhUhP+B9r7fTwpshJ2FobYmLmsijJKu9BK1KKmqaZ5MpFUSCofhxSSkVZ+DFMBX66eQjccIAnERYR5ZxyztaYoq6JaBxHFJDMQjfV96Z0s1hrY0rej64sy7L0MbTtSEohKuOsfByBaa1VSsHYa1eMH6+lM8sE50DElFIYvcJcl6XRFHMWkaKqJhW9AjUlayhSRusQwnTEnV9dOufquiStur5XqJuyyjkKc2HtMAxbgrIsN1fXdV3vtpvN9SWnaI26e/vk7bffNpeXF+frbhwRa1vQ/GB2597hFz73xlf/4GsMWTQMfd+sZkPYC2qfBsVU1wttiw8ed8/Ptw8ePNhs+kdPn4Ts7by+99KtJ2dXoCrUKmVWZLdBfvDRU/Hbg0pee+XBF+iTV0G98uobXeethJ/+s7/4/N2vvPO97/zKf++fns1mI4NFG1M0wkVd5MRKmZfuP/jkW5/+zre/cXxy+oUvfnFxeEDO7PZDVa9+5Atf/Mt/6X9nrTs8OX7rU58Wxi9/+cuk4DNvf+rk+PBLv/7rfhw/85nPAMDZi7Ojo6Pf+73f+9/8xX/9X9iGn/gTv/TaZz/3a3/vdx5fXFcHJ0VVQ/AgN5c/EWEBZEjCWrAKKacYCgtWQ1SiwZSmnM1KicGUy+eXGyJYLmaM2IOocokIXd+XxkTg7X63aXvJ0RnDmYGlKgo6WA5DN6/cYrEYA3z06BkRnJ7cOjk6kJwvLy9TPwwxmfl8uTyAeTP0+6Zw83vHq8W83+0KVYXelxq/8CNvLJty1uDZ2eXpqdHWIKqUAVUpoCL7vBu19aawBRVAYDRprW+frgAwZXFF040X7a6zZQMkbT9UZc059MED6sz4bLMDVILKlSsf9DiOpTEpRFGyXCzGsScAjNGPI2d1eHjsfdeHqDVxRsvUR9z2jErVTb3vdiGWgMU+YeinrSRZayZkQs7ZWjsGL5lJYd93pXPMycjApYgEFOvIkkaQjDRoFXOI5KwrqPdxvdkJKudA2ay7SCKMGDNnICINBAysUIUYAeJ0rChtc85kDU52osxIDKwgYRRQWQCQctZEU46rRiSc0tWLDFBaJZwkBlODAY2YjAIU9P0QQqirmUEsNUNFoIsQQlNZlaSUzbzU9UvLp89fVM2sKI1ITBmTsCZh8W3XI9NRWRitrCUh7BL4OJQa+tD70GVR2hW+D7u+V2RE2wpBBAcflHJMZkxJYi7LClK33241kmKFAgpQGxtjrIS6AIElxbRarHp/zqkti2ZeiSE6euOVwmhFcHCwbHebp0+fnl2IYz5YzpeL0hI4S1bTbrfbXZ5bV8IwQsoPHjzoQxBEcJab4nyzJldaVypTUt+HnAqSaq5U7LDf1jhXShmqY8iklssCl8tlqbU1KoR01e6sLUjX65FzJyn1TbUU7AbfFlZQPDESZKOAk3/y5AkiNk2za4dpnqRt5dDsel/VCwBIKfksQ7tfzRdZZLvbL5fLZT0XkeVy2XVdDpHDWCjd5UB5bNt2s1FVVYmID7H3HWfQ1mXBvo/DEODj1qchpy354Gtj53VDRNq4LNzuuxC8cGJORuHIoY/DTDVaQc5xtShn82UW6Id4ebXbbrZ9CMYWQ/SoJGNUSjMKg1jjctbJ53EYnTNESpkihFErnRkIydiCGY0pC6MRRSnI4rWTptA5CUPOoL1SIQohiIgCHMexcHXMMvhRW4fAWiEolVKKUxKYCBMJ6YCUjfOMGBFRg2QMSaEYrVvQHANxqq0qAYIfIMSFtggynzWjc6P3CqAsjQ8jD+1c5lq5rJQPWTm7PF61Q39+/kIpEpnyfimBzmiyGAg6p9ZqLDQ4VKUhp7WaAE/W+pymCJIYoyLSCMn7AdBYZ7RWRCQShwFjNkDCOnFmz8YYY5UmQMlxGAVAUrTGFDb5lAE4QYg5K63HGIwxSdRVN5aVK4yFDKi0nRWp64d+NEiaFJAf4sCSbDkzqHSmlFK/89YWM7d64fsQ0sKZGFpLwpn9kBEbUOg5FpWpg6lAFZR+5KXVz3zxAcT53/rNr/3m1y+wWl6PugjlN957UZX2tfv3QrfpLs/GVGOlQkJrajDmxdX+9aMHlFCVpjlePu+6k1unB0e33nnne3aX791bLM3Y9sE1tScJUfpcPtqbNarS0SMedOhm4FfmfOH93/q1X/u1//j60UdP2m5zebG9f3ioh90lDTkmkFib+RAiSlotiz/+c1/87re+en7x5OT0dlnNtCkS7MiMV9uH7Tj+2Gfe+sM/9eNjSNtxd3T/wTjIl37nG0eL+o23PvOJ1+594Yuf++pX/6DrhqvnmxLn9rP/xOPWfesv/5Wf+OLn/vw/+Ud/91vf+42vfDvaedkshqgNRpV8kVOksmUzZKd/KM+LMe73nSLGnAdnxqG7fXpkC3d1eV4Xrhv6vu9111ujvfcp87Slc84VPp0N18pW1lgfQvThxuim9TiOPqLWKqfwwQcfXJ6/sFqXZfng/v0p4ZaAV8ujsW21ksPVPMdwfO+etXYY+rIotNb9ODZ1Udd1Vbqqnill+mHc7jsfuWmqqqqmDCClUBFVriCC3a4dxwCkzq+uxqFD4bHvYsyFNTH4nCMAMCQkPQxDZpgC2adrbN8mFIDMZWFTSsMwHDVlZoiDJyJrrHFOoWTM683uertBMHVTdl3XdoMra2so7bsfXrcRUaEoUkSUUlBIgEJEi1nTNI33PqWkyTjnACiGrJQOISRhW5YTPKWazRJAjMICXT+mlEgrUMQiSXjaG00zqylFfbpc0w1iLDJzpUkEE4AkFkmJkiY16aW11qIEEZljzqQ1IaJWKuccQraoyE2Jd0KopjSlDLKsZxOJlojquta1yjmP/ZBj6vteW/uZt99KKbmyGkMchs5ai2IkS1EURiHqWkTGcRxjqKpqNpvRMA67/aQzSkkmqrS1N8FVUzvMApxylJvU+77vJxGvq8phGArrgOje6SkRffD86dgFbTXHpCG/cv/e9eV5DOPjhx++9uqD09M7CoVArq4v9ptNWRYPHjTAaT5zx0fz06MDo/Dy/ExRHROcXa2JrDP2+dNn+8ErV2hrdleZ1ERypXEctdYTQmrqOZbL5TRXiDEKgCtMyOHFxSVyTklXVTOmzIAiELN0XZdCiD6UzpRlySBaKTIaSIfEAOBc4b3fte1isQBUMWdBzCKcEQhzzl03NGpmXbnvB0R0RYWkQanzs7PIrLU2xsQMu77dbrfe+xizKksfYkppCDGGzCAJMGcWQWOttRYA2rbv+x4ArLVlXSrjvPd934tIij6llGNcHSxiltlsHmLuuuHo6CClYGazfZ/Pzi422z2ArmdN3O1zzszph0hEJPnhmQMkOUbvGUQmdMoUBjVxCeljrgARWm0ywXTgTF52HyXzNHUPKSVEcs7FFDJDWZaCNB1BIfONHehGagTMmbOIBEZAIIUT+0tYJEbPJIAiOXfdmJTSBGhURsicJCcBAAXGGKNEETIbxSqDtmXpM1/v9v3AzphZXXg/AIIS8TlKSgJJGVZGFJKeGAnIk6SZCLKIUsrQTReLiNmHLKy1jikFPyqlSnuzX7DaVBUmAc0GAJVSClHTDTN40mBPCZFJIDNrrW1RxMzTgTPlYSnA6Sm7evbs5OjWsmoimbEfJGcGBGAhTJzBKFHUtj1ImCm1nB3MDeyur5wUpTZ9CMOQjKaGIefUVPXhagZxHHbXn/nkJzPgN7/3+AtvHfxTv/zzx/ef/p2//43r/fi8k9Xrdy63g0GVE2pTSszby/N+GGRWVFUJNHbj0I4cY0yZr3f7wCCSBdUwjuvNzhgTY2dzbIpm43cRM4AMfeg3g+G+31wfL+fNa6//u/+nf/M3/uu/1RhCjAer+v/76//V//DP//NlisvnF/u+I6UMLbCa79pu08mP/ZFf+ENf//63v//4L/y5nx2HdtjmGS4abq4/vPzy7737hR/9/K3DW+3Qf/nv/MbXv/q1n/6ZXzhYfP7Dd77z9NmHf+pP/onf/K0vrdfbhx99dH5xdXb57D7tnRN3cPq3v/rub733/Bd/8R/7n3z2U1/69d9574N3V4eniWwHRZTJDeZDt9ExRpZslJ6mH9YWkpNzBkC2u1Yp1W73pBV3XgS0NVeXV8vl0joVfCLSKDklbur5lKkkKW+3W5FMRAjAISAV053aGWWU1krNZ7VSiJwPDpfb9fXF8+fWYNlUHIZ53awOjy6vNxdnz06OVykM7W6d4zhrKlcUzCmEEEIiBRbJoSFtkbK1ti5KQJbMXdeNw75rh5Dy0A6FNQIgqMuyTCxnF5dWG9KKmRNnZFZEVhtB2G3aKQDrcHWAiM/PXiiknLPv9qvVCoHHGDSBMboq3Xw+H5NnNqgoMfsoicERKmOIQESA0xR2DsBEShNmQDM9bDkbhVVhC6tTSgCslOnHkEG0swyUgkdtCDExaOOUST57EPLB55wVQEof+wtJIyIgASInFkEGyCnnJMwcQtIavPA0pmPAMSQALqy1pAggppwFCYSIFHJOgog5ptJpIo0I2jptjTDGHJwrbTlwhizc9h0iFkWROI9+LF2RU/Bje/v0NPgUfP/2W298+OFHtTNOoTHGaJScXGFTDCGEKdKSEUgZpVRg0XpATFrZxCmkLIKScgTRSF1Ok+1qSu6d1pwpReY8n899PxRFUdf15nr9/sMPP/OZz/zoZ9766le/aq0trdntdmlMs9IkBZtxZzRI9k9fPNtcXV9dXQrkxWJx+86BVtg0UBb5YGWM1u0OrC33e79sqpBJZUbSKeWYk1POVYVSuh88Ihqj45TwwLyYz0FkGLrD4yOt7eHR0bNnzzPIvvVDuy/Lsqq0yjnE1I0doe7H6fqlQuh2u2xQrFGLZqb0MuasjEFQALBcNVkgM6ecIEJRaGbsfZjUOsoW+3aYzerzy0tEXC0X17uu9LloFqZsnHP7Xffs7JkgVFVV2jLtW9IuifQhx5jzjWhAYmIAEiQf06TRBVQhZiRu23a/309rGk0AAMYordR6szs8WGbBeVMj6c12rxVeXl7bcj65pwY/poxKKWONMWbyk042VuYUgSer7GTnm2oDESqUyShFQEKIfAMJUEqRgpyzcw5Qp5RDGlNKkrMisooCojNGIBtlssB0jfPeJ3T/bT8uKRJguanBKCIJQBNqAgFMnDKA0ZPbhqxWAOxTTDkjUhROkLNwTB6FIDMipNw1czf4PieZzwsWibE7Plr0HaUUUuKCQRAz6CiQOUyIoymiY9r7Tr5nJJhMokqpsijGzChcOgejTzFAJrJWISkQUoiRFSgkijl5HxVS0giZRfLUKxtrUCsdQosoiMoY9jdxHzmzcxpRTbunW8uD2LZjSKvF8qCZD8Pg/ZAlsZJ932ljPOQAnJhDt4uKlk0BTWOtzimPflAsYwiuYADoh9YZ1EavDo7ee/hke331uc9+pjTdrZM7P/kjd+dW/fW/+Wucdbvbn62rBw9eefH06ZA4Dv36/PzuK6+Vs/nZ1WV1e75vR890td6Krsqi6voxCxujxiQ+5dlsrjZb37fJj6Uy+5zmZVM5vHh6eb0mlupsKDbvXL7xE798740vqLh99vA7WsWLPv3m177zh//oT1WhUrgeg8/RgqLFsg4pppz/wl/4n77/7ncR3J2jZbe5dtZePTn/wbfe/cd//icLVQz7cHFxVZnqRz79I/1u//57P0hj+6u/+qss2Tlz+/at66utK+rj09unn3o1QFonMLde3Qzjf/pX/8sfe/PBr/6TP/30o0//rS/9xt6r4vhejhA55twjJW2s5oTGGFBYWFcWLqdpgppDzL0PCWjbDou51tqs970kGENULN5H1JMigqwxGZQPQ1mW4zgiymxV+2EEQCLSBJGlrEvmXFX14XL14vnTxWJhEF5/+cH52bOx3R6vlk5BXbnB++dn55v1mhQ0pVE4xexZVxjv/ejbYQyISmlbz8qDg4MQfOkKa230wzAMbNThYna4WISY2j74LCEDaffi8mq7646XjQ9Zax2z5HEwhFnEWD2GdP/e3SfPnmtS19fXdVGWldvv9kdHRyGMGWAYfIyhqYoiS0gyBBERU9Y+pk07GFfauupDEO+NUgoRgJXSVhskCwCSk9HGTNk3KRKRVoCIThmf88dRRZIZGEmUDQkAoRuHRNsYY0ycUvYxp5Q0sIgQkbV2ysjMOaeUblZBilKMMabpJxkkMzjnSm2RiCWTKCYFpHOOKXpOWWlyzji0k1wji1SFA0V5wqUpwyhZZPAjknb2pr0ry7IsS2Y+Kkvv/aIuu8Jur87X6/W9lx4cn96GHGdNyVkzs7XK2rIsy8vzs4xKWZMEovd+s0GlBZVWRpuchZHZoAKEfhhjTsaY/egBQBNNjVRZQlEUAFCWlSElKTvn9vs9EIYQnjx58rm37//4Z988Pz/v+/7+7UNF5L2XlDeXTx4//IHfr11hCqe/8KOfLcsyhHBwUBTWEEoOw363LotCkwAhYsy5u3fvlYv1dv/sbFarTdsmH30qAQhQZdTOqXEcjS04R5+SdS6EkLPs2w0LXG83Rrvgs2cFkS2oy+vd4MeuG6xzWk87TfJjCsM4q6vjk9PDw8PRt4hYVnNE7McA2sVx3O3axWIxDEPIH2PbUaZJMjOeX+/HhCmlbrisqsqUtSvrdTvG9X673TKz0W7TrW9WlZWklAbvAcBoRxqBZfQhZpm8TxzThPX0/bhv+9LwtDp1zhGpCcrWNM3Qt10/FsXSx5xlLKzZew/AEoOxtiiKXbcZAxvnbOGUmirN5KxhmQjzAEhSV3VVFW3bxhiBhYxC4Bi90QXesOUFWEB9HOgYEzmaorXopoyJNVqyDCGWha3q2fVmRwTHhwfr9dr3PBmepgKMpKfNbAZhlpwmRgWg0kyCAs5oYWbJbCAK5xwTZ7Q2I4DiDDCpvgVBAZAo24BAzsLG6nFqxLUSCYeLGrgUyQDEgCnLEOIwhijktJrSbT5m9d4ItJAz58w5W6VVWRCAcw6IhpE5JuBECkujgWUQFhbURibHNlHOKJA1EnOaxmCGFCAmgTBx2n2YFDDjOBJpY4wIpsQMmVMWlbz3BFjXtTGq9R2CDPudBSSism5i5q4bLtbXhsuiqDim3a4d+0EhgsST0/Kzn3rzd37r74Sh//mf/alu3777/Xeag9PLNj+6GJ+efe8zb7z6mZePn336wd//2jdDv3h6sQ10efHiultfzOvy9fu3Fovi6dV5aWw/xAR5iGCMUUXZ73pX1gw0jr2rZyHz06dPkx9vH5+E0TN7myP70TaH5fywB1ocnSrlnr+4KA9P7t+97fcXl6N//ZW7P/2zP/X3fuc3mvfPfvKV2/Zo8ejRI++9JDZorCIBJqQP3/3uv/pr/+9/4y/+rx+8dLrfbR5ffvif/bX/4q2X7//3/9SfVlB85Xe/8e3vv/v5H/3x5eLgyftPbt89/mM/+yf+7X/rX99sL3/u536hmR0/f/4Rok710TZgFKAcqsKag6PvfPD0nf/w/V/6uZ/7F/7Hf+of/d7D//q3/75qFuSqfchSzLXWOqTMzEapG1Az4xBj4SwoikzlbN73Pbd96VxRFJUtdrtdUVWkzL5tlbWr1WG8Xu/2fUqpcJVSShEYpcXonPNstchTPI8PhbMv3bnLOa7Xa+BkSerCHsxnaladHh1y9nVRXOxHQbVcHTKAMual2/cOVk1VuxS9MWo+b46OirKqkoAIFoVZNsU00UJGEmNVZQ0CUEx8dGQZqPMJyQDI0O5jDJWrrHOolOkMadOPgZSGfXt5eblaLCcdo4hsN3tjTNePy9W8qOvIMnofGZWolGQ/7ImoqqqUckyp1lxUdei60Y8pBa211cZZo7VWCDn6JNkpYkkGlS5t4RwRxehzziCYYyiszqL27eAzAKoxhszS++CvN6i1iPTdiIjMwJgndVUWmWQU6cbWrKwxxhgAnBh/OTNAFkUYM6lsNSltFZGghJgRICTmFI1oY4wgaDKEWkNOKXXdiJa4djIx1LSLyTPzTa6k95OB2FqrQUIOKQx1aXrJx4fLtz7x2sXV9WpeGEOZMio3DWattUPXDp3EmIdxjDEKUo4JSCUWrW3gSFFpTaRUEZNMEQqZmXkiJOaclUrWslaWY/KQmrquqmqxWPih77ru4uLs/DEfHR2dHi6ejm2hhCDXTeGc8+2t3W7H2RvSYxpjGOazSpGJPUuIKFEr8EMkBk2qbdujg7m1tuuurMEHD46LshZFu93uowvZ7nYheZ2FhawtjDEvXlyvlvOcM4u8ODtDrdfbVhmdOQoqsoXPsfNx6AfvAymNyoaUpx2BUQiktXVV03TDoHm01o6Rb7ZC7dD3fV3P2iFeXW2nwYNxlpl9GmKM3vvDw0NG61OsqgpNebXpLq73u93u7t27q5M7wzBsNpv9rgMA0qr12+ly5lyJBpUoZg6JU2JrFZHOJIzELDkxACQWa21RGWMM3eQYF1nQuhJRlLZIKCJZiLRRStmi8qEFUk3T2ARZhDmJoDaKgJBoqjdKkb5hGGSYUH3CAjK55IwipZQhRQpQWISmvDaNlHOipMC4Wd0IqMzbkFKIEZk1AgAYTXXpysodHR4Zo7aPLicRViKSjwVLmpTkBMAoWXIKSUSxNqSUkhtVY0o5ocI4YQVBMovWmUCh8OQkmUpniG1TzxExI8aYOIMirZAsYeGctVYgx5C99w6hIrXLk8aMIDPBNJBHIgIBqzQjQE6MMA2WCbB21mmIMSoEBexKZ60NKa63LQHAD0OyEEEQFKXgbyRXOTNO+KzsY0zpRrAGN1hiFhFjTOs7YTSqCBIlUWlUJlDKCEejrFGaBYHAKguZROTyxfP5fGlduVgdzBaw2Wz266uzqzUq89rrn3jve9/+8KPHRNpUi20/dNf76x0fVQTwwXJW/OIv/TFtzbvPN2PMTx8/4RwLp0+W5awu5svZdnO9bXdnKMe3Tl+5e//Ji3Xb7euq2Q9DyBxzDpGHNs/q4s6Dl04PDojTfrudz5bvP3m6uVyPogaB3LWcNyHvx5CsO1pHuPPZPxwRfu+7z1kffenv/h7/4dtf/OJPfPL20X69ST6kcdhcXJJSpXF/+k//yv/+3/7X/1d/8X/5f/mP/oNibtxB/Zf+8v/2EI6Lqvztf/APx5R/+Zd/ud33f/X/8Z/fvX3nT/2pP/ebf/c3v/a1b7z88v39btys+90+tG0LnW1qYxSI36GyYlxaHJT1/K//9u99/d3Vf/eP/+QnX7v7//mvvvStR49jeYR6ro3SrLNINqYwzqJWFoo+9ikzkuo324ODg8CyvtoAwP3792dVRXYMKWmtY0wxg7bobInKO+dCilqTIoo+HCyW49hv1tda6+PD1dC2hnCzvnr88KOycgqJEJ89frKYV6dHByml0Pftdtsl0w++Ko3WhKSz4BhCVVjnHHPy3gOwVogM3nvv89hO/rnpYg0ETMDC0tQVoMqM3dCHGO+dHqPk52dniKV2dsLiKuNIa1R68OPp6WnOcrW+7vvRaE3GCkEGaUevi7KoGh+zD4klVVUFKKMP/bCZbJSXm+0ss9baOCccp9JLINGPoBA4W0OaUBiMBk1ImFP0mNmgjDHHFAxNa0VQSjHq0Pc+pMgQUqIsiNiPg1JGISWIWmsQzsGLH+Emp4aUoh+Oan/YEBMRKBWZYfRspSgKAsiJh+g1EueMAglzCIFAqCis05Sh71tHsqwW1loREVCkwaBh5o+3dDcINme1JRgH3EcvnF5+cHc+X2olaexPjlZt26YYjCbgtLneCKoQgg+IiDeph6g4RhBhQCBUyiiVcwIBcc7FLMMwoLGUMiBP3BgAkAzGqLqsY4zBj1gWhFQ3ZcpBm2bsd08f7z/99tuLpliv1/v9vnLFycnhS3duheBL5y4uLp4/f9q3O6PQGesDakPOqnpRk2g/Zs6QM+x3w+rgyPSDKEoA3dArVLdODpZ3H3zrW9/58OFDm1XK+4OjEwYERdfrrdGUUsrMmBgQfMwWFZBOkgD0MAZty8EnpUzOObGUdeOMLazebzdaU0jctruDWsUkiKC1TpxjlsS03u61Nf3otbJkADN6n7o+jDFYa8+vt+M4GlKb7YVz7ujoaL3eNE3z8Ok5ACwWC9JVViGEoBGstoSitdiydEUJQCklZbKP/aTgVT+UDVtTFIXB1DSN1jql5McROO/b7noTUHi+aC4vr4lAEVqr7927lyXHIfZjiIlBaU0EKbHgtDS/KRU3pMKJ64M5hr7lYRy01gTAkiwqa61Vky8dCWSy3BlSQKS0mqbYoKiuSh9SP4bBRwQpCzv6GMNQlTZlbnebdr/9YayEIOTEN/Q+BTiRv+Am8THmJKgBFedojJpufoCkjGbO3nskJRI1sQESzhlBBBDEqFQdFjF2SlRpXQgphtQ0DYFM4y9EbYwY0AZykJy0MqQUUoYpi04AQCGOIRhnraKcJfqgiZQ2SZKzVBa15Dzp1TWBUXrZ1F03ZJhCsghuXkoAEEAye+99CEJTGD8QYF06BlJKaVLK2OlboLUuynnXdQFYOKVMoc/eDxrJFaYqCmYehpEZjC0NI6KeLeY+Bh+SoBYkIpovl7t997133p2Vul4sv/feB2VRa1Ps9qOyDMqt2zFznL/74ec+9fqbn3htcTRsRlqe3n30+OG4v7p9stxcX148e2jieGCVIG33XUiPlrPSmHS52c6K2s1WMee26wjh7Tdfx+R3lxcHi7oyeFTQMK8ux9S3o1KaYx98b406vXvn8dMXWXRghVn2fV/q+sHLn/r2u+88v/qHr7766t3T28VMb4fzZ8PVycGxj97O6n/5L/47/97/4d/6H/yL/8p/8n/7vx7dfuN6L4+fPdTOXg9Xn/r8J3/lV/6Zv/ZX/59/5p/9kz/xxR//9re/+fd/93eUgqp2WpMrTMq5qKv54jjHMWfOwIKTxgLW/bY4WD65Xv+l/+iv/LGf/EN/5p/7pd/7g6u/9Rv/cL+90kVhiWCSk4hIP3qFMMbQjXk5mw8hXG02ADD42Pf95fpbn3/zDWHe7TZ1WQFgimnXjVFgPp+3wxhCUEojMEt2zmmFrIMfBo1YGH2wWgCnlMNidoyIm82mLorl8kBrg6Ca+fLq4ux6vR36PietF/U4hhfn5znOnDHjmGdNVZZljGGz2ez3+34cnHOlK5RSVhskMKS01k1TO1fEkDf7FpU7Pjro+hAzAGejUFmjldns25zy4GMWCOyHwZO29ayJZ7lpmmkgXBSF1lpIuq6z1mpr0Bhri8IV68GPPotk0AYIh2EQBGttWbr5fO6cIUBAjiNbrTRprSmnQAoLZyAnZFCSUaFSGkevJMUwpOxzlqnfBaAheEQUhKEbi6IwSqcUgfQUZnuzwkK01hptp6ETA40h9WNgZo1KERKqKTIog3zcb2kRFk4xs3BCyQohxZCjYUmSHXHiHKvKWK2YU4xoCECx5Dx9Qtq2zTmWhdUKiUArxTkfHKwmL3VVlzGE23eOu25IcRiGeHa2Xm827TBaUxhXGLsQEQnJx5ByzDkr65Q2MbOgKOtQYhhDCHG6SaAtiAg4oQCRIpSUUvTgEYiwdKapisePHz948BLNZ2fnLzjDJOJTSt29fdsfHOz3e+B8dHBsFNV1fXSweuXBvW6/32632+02xJSZFLn1ZrNXVFhtjCnLpU/pe99///T2S9cX27Pr65Nbt9p+f3TknvUv1pttZJYYhphsNTRNc/fOS7v9Zmi7YeynCe3Ryel3vvf99XY3X6x8SFohx6wKpYwOIdjCTbMETRi9nzqzxLmuZyG3JLEs6qqZ+7iOMSuVzs4v796928wWSunJZT6GGEIYg5d2KIoi54hVZaum7bru6XOlVOuvnHPKmKvtjplFQJsipmTM9LEArS2imj7qANA0TYwxx6S1nj75GskYFZPPAilETjnEKCI5i++7lGNKyTmniVxhrTO7Xeucu9pfgVBkSZEZQCtrrZ5UdAoJUUCAmRMLivwwbRGArVZIYoyxWmmjpnAoFACcqF8ZtUwGPBDhHDBnQe2srgo7eC0ioIxIRs4IzDm1bbu5vFTFkWSeIMRT/UdEBWSUTphJacMmpBhCCokZcqE1M4eUc2ajVWELI1kpRaSYWQEQCIgAkNKEAndO74KAI1vW9fXVDkk3VRnG4IqSmDCDMVS5ko0dELqcPBJARhCtAUEDwBRsqYUIhRAFOeUoqBE1AEpOqBFBSqOJKAlP1KDFvOp8ogxCSoCmQKvpioyTuEtNtJUsIlprBtFIyqrJaiQiQkKAkWNRV1rr3fUuxlxYF5PXpE7cgbV26D1klgw+jyIokK0FFPFj71ypteEUqqLYj+03v/PtwtByMYMMhbFD5AQADFlV69E/vh4VPnVVefnk0aff/lz48Pl4/uiTL91+/6Pu7PLKh5EjlkXx0r0Hl8O+67o4DpBCgXI0M/u+NUlb5yCpEMLV5fm429aGlFTVrBHu753OPrk6ev/x04t9f73vJCUBevriClVJyMB8fLhqCvPsyUcBzb37P/H4yZPz33+S4TEQOOe0UR9utn5oLeHhvP4f/cv/7m9+6df/tb/4H/9zf+ZXP/P2H/cPvvHi/PIn3/xk0zTvPX1y8tLtf+ILn/s//wf/Yd92P/jg+0yB82i0dP16u7u4/+qblabNyB4MVQvSKHmw4gmyBhONWTx467/83e/++u9+/8/+6X/mX/2f/fKXfv2rehzHlFIYx2jMNNEqy9LH1DRNF0JiMUjMHAWKZjZ0/XuPHi1ncwTSrthsNiEEZR0ozSDdOEx8JJRMIrvdRhFJTgYBJYJEqyn6dOv4ZHoYhtEbY0LMuxiebK9jGA9XC2uL2WyWUxDJbe9T8Mum2u32i1mVUmJOPxTy6RAk38grSCtFqLQmwOmr8DFnZpCEWscYQ+K223nvGzuBYoIxjkO2hQOfnHPvf/jR8ckpauWq2hhz9+7dJ0+ejONYFsr3k+LGKNRKKVA0xuBTXC6XdV0SkbUaSfphKEuXcwTWQOi00U4Ka3KOIFkRKACNQEaXZQnAnFIIgVCq0g0+9+PgA6PKoqwxqjA2gyDJOERr6lmzbDctEQXJ8jHre4J3GmNERFh++AQqpUgpTimDILMxxpCOMYYQPICz1hillU5RJCck1IQKBTKn4HMYSmcL51JK2+1WSV0YhZKNNUQkwiJZWDgFP3QoCa07PDqaVtFTQKDWymg19kNdlzHk6+uNUmq5OhRQg4999Ig4psRCZDRoFIQx5SzAWbTWDqjthm4cEFRRFLuUNKEwAwspAoaYBomI2RmrQFHf7svC+HFQBHdvn2q/8SG88+77zlhtqLBOa302nO33e8lpVtXzRcMpG0VV4aw+2LvROm2t3lyvfRhDMn13rZQTUADV9XocRux7+OCD8+12+/13nm7ReR9dUY4pl3XJzH3f73MmkN6PZVlGzkBaGQtC1pVCxMw+JYXQc7LajGk4qA5SSjmG3vv9dl0WTutit9tpQsreGNO1Q0ppHMNkCH711VdjjNMi3MdYlmVR1aRNFqjrerK2xxgRVT1feO/rup4+CdP5zswTfDekiB6IaHqr6TXNXVKIRmmrFQkgZ4485LzdBlsWQ3edUiqKQjKnlKxRAnhyfGu+mHX73cHRqnLF5eU5Ig7DcLXeam1JW6X0FGjMKQvkm1AXUAhZAAGQYSqEhIgoTmtNCpqqtNZKTgCTO5lEOOfMwMxsjEkpOudIaRFAyVqRs2SNQsQx5MIaBohxcMrQrByHchtSnkBJpBFpAhqIiLVGZRIBIMRAYQJ7ZPHDZhodVVUxq2ZEMI4JfVYGOMbMIkSAhM5pa41SElhrHYfRkbOkJUbOqXIFpKy0csYao4wCFpCsJdsh5sSACIoMaY2gEBEIi6KI0d/otFGmOQQnyTGMORFwU5VVWYQUfcpKGauo5ywsqAgRJhdvjDELK9LGGFJqjClM1gml233nikI7m1IiginqFREL0n6MSWVCtNqEELqunzXVGFJZlkWtQGkf4uhjElCkSJtCGwY6XDRV1Tx//nw5K28dvfb48UcCEsFUTXm96yQyM1eVljRa5862a4Xq5X1Qtrx4/uxoZp+eXbpbRyAIRV3WB1cX177t6cUlW1CACHyyaiZR97bro+TDW8sfPHy83V0/a69La+6/+spmszk+PBDHZ88fvlnjayt1d1Z/98PtRcRtyGAKpRXnVBjoNud7SagArH68Tnpxbww+p0RKdTkvylk/9rdffn3o2vcePxxw+dmf+ade+ez1r/2D3/9vvv3sj/7E8b2Xv3BweGt7dXk17L/34dW/8W/+2Y/ef/SP/+JPv/b6W9/42ldundxBkW63R0TSJmEWo0KC7AMlsJgLlOxHxgyqvtxHvbgTxuEv/2d/9bOv3PnFn/spTQCcUlmWiDghU1JKxrmY8zAM1tosqLQtaz0Mg3KFT2HddccHh5u2SwLNYrnZbm2p+3EAwt3QHa0OQLJvOxFhTrXTti52u81yNpcU/dgXzrb7vu2727dv94P/7jvvVIUxAEajkNUa+37MaTxeLepqThJEcBI/5CRTAIVC4pRTSoeHh4JQFiUz+5AQqPdea92PQ0w8jmFMwwwItbq+vBagm9ksyeHh4cXl9XbborWbXeequiiK/X5/9/6D/X7vQ1hvtixwevtOHLeG1GKxuLy8ThJzlpRSWZZOm8rZwtiQgzbUNPVut+3afaX10PVVXUBR1mUhnMuiQEhWae+HnGLZNChZRJxzRHSojY+p7a4AWGvFKGXpMKboTDOfeT9apYwx1pjq+DDGuE8xhzhZG/FjGLhSKox+mj9PPImUktbaOQccP052VZLzFDjQlAWhNGVTuoPtZn18uFrOZ0Vhvffjfp2jT94HlYuqUEgppaKyhSuK0qYUCSUScAopBF0X1jnUGrRWABBjjBFFlFLWGWau6tTM59V8aVxztW0zyphyDJlIg8acMyBlkTGEmFkEJbIAMQsIGWtijFppIvLeh9GfHh06oznEFL21drmo69Ix536/2V1fzGa1c262OJy+/N16kzLs294ac5O1C9hyu99trLUowJKGYRgS0ghKqRBiSsnvBufKMfA0knFl1cd9Wc0F8eJqHXMqlivByCBFUQnjZrs3xlSlS5yMdv0wENF+v9/u3yWtSlcIYdM0lxdnx4cHwMlZjdRIjiw5ZcnRLxbz4IfN9eWt4yMRmO49t27dCiHkHMuyLIpCW1WWZd/3rLUyJoQw+FCWZV3XZVkXxU3CzK7bKeH5fG6MGYYhpjSJIpVSACKMTT1HYBIAlGEYprCFqe5OpVdrvV6vjVV+GLXWRuvdbuecU6hiyKRAKcUihOi9HwZtjMk5X11dhRCCH7XWdT1jZldW3gdFN09cUVpEUESISEgpREacKAuKxFrrnANkq+2049BqomFmEZ6kWNMUOsZorck5ayQkrUhZhKapY05tH4qiiBm2uzblmHIah8GSICSNxBNPUE1IgyQAObNRyseYIgMZV1a+H2PiKR4SSXXdEGOsyyqGkWOSpLL33g9N07DSA3MIYb5cRB+7/d6R8V1rlSIFfTdYo8CQs8QSohd0Wil0VltTd9t9SkzaKK1CEuOUIuNjUAqJHOeEIKx1yiFFVZYlhwgARhsRGYcOFWmSkDiOIwIbrTMLI2ulhphyzoY0kjbWphBD6AGgcGVZV3U9e3F2JiLG2f2+67puwrfMG124MsTIQH2KOSVnLTNcXl4uFoss7EMaU2qHkYytq1IpyDnP6tIatbs6S8O+unU4m892q+XF1XrXj+0YKlcYp5021mj2Y/bx4OAAdPzGux9++v7tq32fu4u2Gza7nXKVCD692Ag51urJVXtwYBZ15RTU1nbtZlG408PbgQWtbt56xX7u09/53vc5pq7r6roex1CV5tOfeouHvUZ/9/bJsiofb4avvfd0F3chqOPj4xSGofOkgFB33TAokDAqQGUIQYTl8npDApmpWRyEx0/OuzGsR6XxEz/9synnL3//o9/+1ncXy/PaKn/1zKXZ6vCTHKv3P7h++f7dP/En/unX7t99+tHDdusVlfP5QWuqtveksgXWkEkwhKz1LGZCLJPf+dQvmiaoxbeePHv///U39M0Y05jJPMoAxloDwMxlWVpri6Ka9OsxZq1BGzd2/fV2Y0gtmnq6lo7e67KIQ+ecQ43Z3xhSC2eUJGfVaj5/6c5dpfHJ42fMrDSiwDAMN8bTJAwpMzx78dya+vjogJMZhqEweHRycDCvQVLOTOSIIGEEoKKomBlYjCtSFhFAVP3oAaCwjpTz+5YFRx+7i8thjNtdG2MWVCJ5ygGacv5CgufDRT/4oigmo+04jj6E5XI1m822263GMAzD0PVlWW+326ZpOAarVGTs+n3mWBQ2p5SjX86b1WoVxjh0bfCJZEBhq7FwqnAFCVvTpBSRBRRMncckQpkK/GyuOp+37WAIVVkUhS3rirnu+z6EUJZl6aqu68btjnEC5uDU+04p1tNGZ/rBFIIzNUDW6cnekJFQQEQAJk6NdGEc+w6Ed7tN9L0zuixLlDyOfVNOXDxnjNnv98DlOI5zaZxzVVVBtil6EU4hXoeNtda4cvrbtbXTuq+q62EcrbWr1UEfIY7JZ+l9ZrEhhZwDIDKSUgBIgjqmMWdB0kIAipxz2hpUWhAlZwJE4XEcgU3tbFMXu801SFS4WMzr1WLOkkRy3+2jT3Xp5vP5bIVD3+/bYRh84UzlCtJkjBPRADAMHTOnxAKV94E52arSGjJ6n7NSNrE8uzwfBu/KIuWURY7urFJKe6h93g+DLzSVVRlj7Pu+H9q6rIhwNpshorZuHELftyFEWxYaJ/oCW4UkYJUiwmU9izFOwBpnbBIWEVIohPWs6bquqqrJLK6U8sOIFSIiIaSQiKgs3fR9n81q7733ngjm8/n071FKZeZpLHFjDVdAREphHnMSIYUT5BFYhLIhrbXuhxYkOzt9DGDacVRVlXNGlmY2K0qbQgTJAADCQ9cXhY2jn3TIfd8jImpjrYVpZQuAAEVhrbEpexKWzPlj3kAYbowxamroaIqakMwJ+OPp8w1qQUQANH8MKgBEQgTMorUpC5tzg9j1YxDB0pIwpiysUAwtye7a3hgLBL3vAMBqCyAZgAgUmj6k/eg7H1MGBmLCrh8UoFFaRfY8ovCsKK3RbG1H1LV7mux5aNq2dRDK0n3+R96OMT756NEwDOh4HK5IqUVznDiXVWGsitE3M5dSemN1b73etH1gALJapondMFqnb8BWShGg92HaGTlDmlAppbW2hkTEx4jMVpNPyRidUQ0xtW3LDNpZQDZF2Y2+7ToAGvw4jiMqbZ2brmUqJ2NUjDGEcbFYQEi2dEXtnMtm9GMMAmCtVRpjjPu2jSw+Z58iAIzbTVG6FP2ycq+/fP+Dd98JPT179OH8+FZOQspkVAwopOq6VCI5epXGO3dOwaD3HVgl1UG72ygN7nD+re//wBvXC4EuONN+7A8Wh1qPU8QuAB8u5jl5iAMJbLdXrlnEHG4dzEcfXzw7W778yu2TW93uAqmaHzaO+ORwvlr55bYtdHjv+fW1h3ZYMxaqXr71+ieePfpoc3mRak+KBFTOCQWUJq0JAT54/KFSysyqXrJpqiGEzXqTQWbNK5Wrh8i7/f50+WqT12TmzeLEj7uvff07V7ePD5rm+mrDDF3XHZ+cfgiQCYxEI4mYGXUSG3MBqJNPWpggRr8NSKGcezK6KkpmRkVTiikiTkGjUzDCdI4j4jT21FoLkLKOQZBotVqtr69zzlqbST9sC4oxjmOvmUffF3pWFur4YBVjVMR923OOTdNM72+Ncs4RoTOqKuZW4+Z6LSqhcF0WIMo5k2Nq25aQSzebdEVaWyLSGkRq+v9R9Se/uqXJmidkZm+7mq/ZzendPfqImzdv1s1OUCQMqkRJhZQDBgwQElkIUaoZE0Aw4D9gACOEKAZMCmVSgERNkBACKQVJFmTWrcwbt4vwiPDm+Ol283Wre1szBmt7ZHIGR37cjx/tfb61XnvN7Hl+D1FKJYQgIk3TrMbKEGutNaRSGLW2KeVxWkIq1rc3TTsNk4TQbzd93+MJMZVt345Lyind331k5qbvjNan40FpXWv1rWmcn+f5cjk9f/5sHsclJQDoui5OKUbZbjtjqXHeW9N4R6CkcilpZRoAUM5VEdSUr6921ppSSsx5nhdjTN/3Oc+55pwzKSolLfOUStXW+7ZZHR2brh24alJt60k4IQ3DsLa/1lqFFGOUypvNZuWfrMfx+l8BYDX9r7jBp+jf9aO0OqXqvPvhD75AyXGZ47I0TeO2vusaqGmaJqfQKBTmaYnGGKGly2yd9s5570uOMSwMAMRAuTKsZk0UBq5caoyxMmpr4rRMeZoWPpzHOdMaqGCt1VaL0pW5VKkCubCyILUKEBCHkEop5L0ANE2jCRExpWQ1KU37/T7HcD6fSg5c8vV+673lWsaFpyUKTsDFGHP74gXUSihTCFYRAFil29ZrrVNK4zgyq1xpmEa7MpcRUsldqzNLqHmpkURnSNYbIvXw/tPdmLTWSpnCdRyncZlrLZu2m+e5lOSMRcSmE2YIISgyISe3koRTaDedM2bltRFRLUUrtaTQNo7ArjcqUsDMIQQgdI2f5zmlwfpmVWkY6zNXYTDOIs6b/W69bK09ovd+xbDnnLUx1tq1m2QuUlEEcqn0JILC7yV7GZmqRaMphVi+v8CtpTGEAKiMMVcvXvSb9nI6I8qzZ881wsPjfePsNJyt3tzeXF8ul82mq6WAUYg4L4v3LYgACIGkMPV9iyRcas5Zaa2U4sxEhMi/R3OsbS6IINIaB6RWYgVXBkAwhBpAAKAIYxEQ1giayDsl4BUSCyLwPE8kcn216fvtp+NS0hTTTNZ1VqdScxydc0RSa0JAlFpSqBWUaRUR80wrCRLXnGWjRTSp1hqt3abx50GJ0sdpEK5E1O7sy+fP4zJu++4Hn9189+3b5zdXpZS7x4PVqbU210XY9J3VBp23IJicAcaQYam15Apat51PKcmaloP4/Wr8iVeCShWpqhRnHRFZEWPw5nof7w+p5iLVW5uziqmkZe66bpymZYmMwLUyiPVNjDHl7JxDbcZxFKlrTCcAKK0ZQQDR2EZrWVYk/nxzfb3pemAJMXeteTifl5Q3u/Yyjle7nbbmm2++mefxb/3Nf+NPf/nnp8eD7TbKulwqs7BIt+l7a7CWPJ4ulxNoU7hq00zQvr1/92y7q3M4ZyGUWrNGRUzMhaUQkXa+lvx4PL96fm1dk3O8DJfNdj/H+fTwoG0zX8ZnN1eH+wcS0Ir+8f/z//vs9rqx8rMfvXy2973N/9Z/4a/tfv3NP/nl78akwTZV9NfffVQVCYxLxRglJJmFRciqCqoIF62eaK/zoozWRKKV1jpkjHnRpvO7jZjw4av396dPO8+tsU37POXl27e/+/qrL7/7eG/6m3bXqXDRNSECo8pAArYQACBIDXESqEIYYynakm2Xyk8SwVrqar9Z78vrNPH7zhgAGLgQsNWUsfabDZYMKWulmPl0Ovl+E7nknAUBWJSsMnrSWlurjNIoLKXmuOw3/YsXL95/usspeKt2245AFIpWfLXd9q0+HqbT4b7vmqvdhmsZxrOibr/drBsm54x3brWirm62xlkimqZpXWitElNrfNfR8TSGVEoWY1xHFknlnFvnprBYo6TGFBejzU9+9MNhmpeYlcJhmJQ02qrz8T7GeHt7GyPvdjvnnNb61atXq3gnxiXn6JxVRMJlvbkz8ziO1rbGWaWwaZqa00p94qI2XbOacxHROb9eWWJMruswllRIUHvf7nYogIKUwpJzdo1v21ahhHlcc4q2m064LAuIiLNaaw3IOedc4gofAARSYK1p20YpleYLAK3r4RXQgUSMkHId5xBj3J6O27Zpuh4Ra2W/afab/vHhXhuNZB4Op8aZcZi2u02uXIs0bFBANxZxJc1GRgJUwKJFO1QoDMwph/XxqEWMsdN5PM/pMme0rSgstU7jiKCU0UBYMmfmnHOjLSIZ47S24ziKSI4JANq2NcZwyWsY7BLi5tmtSM0pjuOIwrLbKCKuaIxCqc4oACVcjNHKKmfs+ZSFIJcaQ2KEzjdd77Vxp1CLpHRO5/nsGk/aDvN8noN2XhjR+ktISuF+uweAdjuboq21MZUYEyji76Pcuk0f5kkhhZCIApKuuZDVwpJSEi5VY025Iq6Y/lprznH15nIFMjqV7MGbps0htp1h4FqrMnpaZt92KSWlNSI2TbPEwMxFOOcMBEQkhPM8x5KttW3b5lIAwBhTclYKRXB9r3POQqRQIaIwVKjMDMgisoRpLeHLsqxxGmssT+GaS7ycj8Kl1kyInFMmsFo9v712b15wLSXH3bZ98eLFw8PdlGQYhrAMWqEioxVxjcycU7DWOGcVAjMbZRiBiIym7ynQFVhWx7AogcpKIT2JsRSsTTEhEAihWt84KbUIklYojdERg9Zm3zcke1C68Z0xZr/f71r9zbsPd4ezbzbe6wC42zREdBnnJRfiuu5VAUtiNpBQkUKlBCtAFfTOeav3++2mbbQhxtdZ4Ldvv/n46X6apscyOGN2Gw9CN1dtXjpE+Pzzn7z/1L14/fp0Ge8eHqdlLoqf3b4iBWnK0lipkEuyylTmWjnVohSB1JWqJoBPxzCqXCsASM2iwHlttdGGlLa+1K71OvNxmAUQKhtNIMKkCtQCUEs9n4eU836/X0/FyzQ3TbPb7cbxUkpZL+gZMZZUa1HWKWPJW6oFkszzbLAlFiOoSXdaSyqWQfn2chm82s0xDVP8+pu3qAwhM0LTNLrUdVNwPg/V29aaKWWtTcxVUH14uMz5ay5wCBdvYL4s11v1xeevAKDrNr8cT5fznYNWKe2tSxLvz8vVtr958Wx7k//ln/3L58+f/+2/9cf7q5v//f/h/2yNcd5+8803tu//+N/8Nx8/fdBY7g/D+XgQDi+m8ouf/sHtZ7/4v/9//vSbj5dYSyZAVK9+8IN3b79VpIWBGSpgLZilpFpvb28VmePjo/WbmkAqcqqh5LIroYjXVIUZwxjuxvnTeDx+eH9vLf4H/94/+OHzZ29ePMuga3v97PWbb+YziRTtEtq0vutUpS5Sa66BQVe0i1QUZVhsKdpam3OutRLgGhFPiCt9xmptVt/YSnVgJkDvvVZauIaUxnF89fzFPM+XeR5TIGtjjASw3e1brfdNs99sw3T48OGD0+r6ate33Waz2e02H95/t9+2ACB56bf9tu84L50V03Wd9ZfLRWEdh1NO8/Vua6+3BJxCFGAAXtPIcym0SiIB1mh3ZiDSOedpXLotICjnmpj5PF6O5wGQtLYVBEtovXaGDqeLMwgE3pmcVSnpizev3n/85Kxt++52vzmfz13XFKZxnL33RLQGAD9/fjsMw/F42O/3ApUAmXmapvXMiimXVLjWOaSSgiVUiAopV4nnYV3NKqVW5lyIYYlJGDNLqRlR9X1fKscYBQWsqiWlREqpeQ6HeNBa236DLBop5ZQ4gLVSKgkoQG/s01mmtLVWAaYl5MprfKoAMayUKWBBUspYX3L85tu3L25vf/CDz5sOj48Ha0Baj6R22yvv1PnxYclcUgmPl23famN1oWFJIUUNUIqkVEBlJA0sqyXKKSSlCNBaHVNk5q7bnH7z/uNxyoxet1rbVMJlmHJh5xwZU2ol0rUyphWkhwBQBQtDWAIz51SZ+Qm+b0xhHpYlpWxJGWPXgWIMWaAqEFBiDXW+CXEOIczLPH2fM0NGp1ouw3i+TKvWN+VZGb55sbuMpIxbQkkspTLnSGgFQQSsNZ/uF4VEate2IkBxmucYm6bxTSPMoEhr3fe9M3YcZxHkKkTaWVuJORcAcM6tWtyU0jqfWDkqa//qrFs5owyiG0eAwzDMS2zaHlClnEmplFIRaPtO15JKJaJxnlrfANAqS8ylKH7iF6730VLralN5IjOoWoVAESDWWgBAKwIi5rqCMSoDoAIEIgJUAoJS11WUVmhNM5yOv/3dJ03YNe5fvP/27/29/9Lz22fTNDy7uWoar5CP4xzmi7fKajQG1/Af7/3pdAhl0X3vvcm5IoLVGgCUAln3sk+BfbRyRmhFV4FCBQqRGUWQmQno+1yDp4w/BCaUCmyUkAattEhjjNXaVmatyh/+5PNn19u/+vKrJVdj29Q4Y5S1Vkoi4JmYSxEWoFxyFU6ICAaUdiHmZZx4t9l0VwUkljgswVpjmub51c04zvOyHE8XpejnP/vi2c21lOX1iz2Xwun8i59+rrTbbbvDw91wPEjffyj5iy++2HrrjSWcjsNUCoNoY61xNscoiAqIiBipguRaudbCa1gREyKvQkupCNUo9EYjgVkCIyCwRk0aiggLHo7nlJJSCoCWlD0pAVltBd57730pJdcCBUcQVBqQa+QallKKRuo2G08qzrMWNNaVUm63+xc37jIOaLTf9p8+ffoY5uur3SWUl28+TyW/+3TnlGm8s9aGcThfLpdT3bTd1VU/XCbSZompCqTTKITPrrZKiWl3j8dDnC5/7Q9+8fMff/4nf/LPS+E52O/e/2az2XRd9+k0fXN33N+fDZWq3K9+89UwzYpMY9TrF89Pp0tj1IXjr7/+rYPy49evVK2//qu/ur69tRv7z/+v/+8/+pt//Hd/8VNXf/X+cD7NyyQmKWQDDAWYUEChSGElbCtfN71S6vTxTpFeYiStyFsUKXJwvmEu8zLDBudpzMtYwtS25nTM/69/8s/o7/7d/+4/+PcfztO/+O37YwDM2WgHqCsqFmEARMhcas5V68pUeb0/gqSiBLRGqgKwZvOJ5Lp6bddxFiIKM9dcpBYCYS5WuZJzqw0YO12GH7z+7PWLl+PvfuuNRaNLKQRgSGkkYS4xKLVilvFyuWhFz25vnDXe6ZVEapRsvHp50zu9QeEcQ63gHVqtKmdCfXW97ftWag4xW6tFZC296/oz5zycL0RUc6lVmqbJhS+XwzCFq6ub82V4/+nh/vFgfbfdXV0u48e7uzc3/vWLN977eR6vrnaXYUxx8obMpptDfHl7dX19i0rlnDWKiHi7HYYhhBSjNI0TqNpQLKnruqZ1T7p/gVXSAkDjOJeSUKCUglJFozM610KkRYlRRkSWmHKVzWZjXHMcJ6WIiXKqAOyccdoopUKKxuhxWXJK2jil1DgHiUmnvBp/19D7lOJaWmpF5xwApPSUfIyIIdSnFg1UBa4AmStXIL1qxNE3XQzz8XLhb741Sk/TgJLatt10LjE31Fw9ezkOZwbkUudU8TLnXK0hhKJAtEKFXEpBygQaETVCBSQSrakmKiVppbLI4/FwuWS/2QkSKr2agEEhao2kAbAwC1DOGQCUMmsNRkRmiWt2T85KkbXWNUwAU0xhiU4hs1Ii52EyCG3rrSrWqDAdaxqttbc3u5SaYRhijMfzAACKjLV2WSJfBhExjhCx6Tdt04N2IU1InpCG89J2NoZMpAHo8fFojFJEQ2Fmnucl1UJKOUSj9bpdM4o0rVlymlHWO9YcU4pLZ522nqAorUUq8yoFIlJGG4oxKm0rQwUUAe98ztk4n6TmeWrblkNAxJpqKdnkHFJOJa8ft4iEsCCR0hoQiTSQQqW9cd/vj2gdUa936MJoAIGEAQ2h0kYRMpMiiPOyLIsQkjaVeVlCrbUxlFPY7zYiksOy22+NVqfDw89/9pM/+7Nf/st/8Se7vttfbbBm31jn3G7XpLi7ud6vmZ7W2lqrc2a/ax4fH5Z5sLt937frdbmUsgqef/9xPym3AZQ1mp7C4UVVZMYV50yCIFyfSrQI1/q0NLRGKa1SKlgLExVhYUjTqCW/vNm2zS8+3B2nOdRqQ4hSQ2MByUxROw25IGhtgOo8K2uYIddSpDLwaZ7Du9EptFhqTldXV5vNprBgKb1vipQQy9tv37262e8b2+oNQXl8fKzLBLqOS9y3Xdpfn86DJPj49tO+M/3+dr/b9McBEuT1DeWnJZGgsDCBFlIasYKw1gwMXHMpc1iq0khSVVVktFKo9NV2F0pNMTOw0fq4hGkYY6lACrVxTiHiOI7GmK7rACCkqBQRqFVMSpBrqZkllBJLrlU671rrhmHw2qzq+hAClNIaa53LXC+Xi/MNa3tZSpFc744ph/UARMTVxjmFaJVOQICojD4cjtdXz26evXj36UOt+Xg+/uCzVzFH22zGZfzP//RXttv98Ke/+M3vviTruqvrD3cHM5Wf/Oznl8vpz7969+bV7atnr7rt1XA+/NEvfvTX//APp3EpMdW+u6TLu/ffvLm9vrt/ePns5dXLH4aQv31/3PRXX/3lX7x5/VyHw95CrQCi7g6Pba+Qn1DBikGjsgCg1cff/U5bQ1xyYlBSkENKSmvPVCsQGas6iPN0uHS2X+KcK19fdb/58t2f/fO/nM75v/nv/fv/rX/wH/yv/qP/45JbrS0iaMmWawEoiDFxZUVkhEVW8LNIrQUR9RrfXWpZb+JrOKVzpusaEdGkBEkhaaSkSSnFlQGAAL11YRrv7+6k1Ourq0rqPI9d4zWpHJNSxMsiMaISZ3Wt9eF8NFpdbTdSslM0z+P+ZrNpW+8U1di3rXe2ZhJbnSVrjUKymrrGL2FKy9J4i2hiXIZB1v30KphcK7G1dhimlBIzKKWZ+f3797lITokrrBP1VfP57GZ3td+WzJu+NVaFoLlG32xS4WWa933bt05Ezsu47b0x5jBrUub9++8Eqvf25cvnx+Ox69qQ59PlYrU2xjjbWAe1ylo/iLQmVIRGrXEslFMpXEGwlISISpnCfLoMKaWqda2CoAWl1sohrgx9rQgAmCuzKC2krbWwNgrMTN+T/aQyEWlS2+12Tb9Yp3mXy2XVZ4EiqHVFZ6wpfoJcGLxzsVYytiGap2EY3ndN23bNw/m8KdV7D0oXACWYK5aKV9fP5mn49Hh0Rm9bR8gKoWuc0znVYqtY8EopJFml2draFAIKGGPevb8LS+o2m267B+eZOaacaqUVfYCgyIQ4a61zZa01abXKf0opuRKgIiJlHCkQgMKgFKVcBSjlUnJslapNm3MSkc21vr7eTtOUc87LVL252m+3m/ZwPMcYzpcBUe12V8roFPM0z01p53nCx1gA2w7JdqWWcQohSpGQcyll2mz6J4S9UpZ4LedknqicKaWU4rZvV8U4CRhSWViTWuUUpRSz2YhIWQcaCOtu9YnNqHWtNeWKimIq1quYcymFlEKlp2EQpKZxpbAyoJSaQ0glp5RYxPtWGyshTeMIAMZ5VFqhbppmnYU4Y5iZcN1BrHRRqMLISIigNCKygIjEWFAbtQI3cqqFmblp2ttdE2P03t9//PD+/fvnz2771j97dqO1/jt/+2/efXifcnDGWqf7vvXGKo7PbvdPBiSG9f6XUnp2e2UNffP2W+batT7ELAKIUp8SRJ6qbxVWQCCklAKitSoTGqInv/LqYa3CxMLMiEACUusTbYOLJuw3rTDO87ws8aaTspxrzdvNddl1wIVQB42lcNv4WCVm7hufFo5cSipKwBmfawkxVxCj9FLzw+O9V7hxtO831moACNMszEaRbjdK6sPh8tvffvXDV1dXvT0eHrrWhXEgVYj0zfaq87vTZpzn2aJ7frsHZU/3x8PjY1ENg9ECjADI60gdABQBatTKKEIhJSWv26OUEirWhkQk5WiManyLWi+PZ6mFBbTXl3Gupd48u621Hh5PRNw0DZIg6ZifpCFEsIZt9H3vpjnVXEs1gkA2ca6Zw7yEceyePSeUEkNFGKdxqKndbLHmWqQUrrU2Tb9/9uzxcG9Q9vs9Sk0pAhdjrLXV+U67HjF2rdV0czqdwzJpq6UuWquHj+8VoiXz/LOf3t/f/5M/+cvPfvDaXz03Ss+x7p+/PpzHX375bRFuzPbdMYR87yDfbiwA/Pmf/3nftFarn//0h+r+3cU3taDZvvjV24fG+c3OL6ePP/ji89b15/PRadEFN10/ncqzzXbhSWmNAiXnggzIhBpEkFTmQoZCikhakTaIzhhbmdGAGKpCgFjgZru5nx/MbgfKP3y491b/b/7hP/oP/+F//A//L/+PKPVEtiOtIINkw5kEFeo5iaBOlUSAEVkYsYKWUote9ZkAAIpWJz6uGlSt11wjIjIKQRkkAZalVoO0LIsnZY05PR667eav/8Ffe3t3d5oG770mJVI1auQKADFGrXDT9m3jdtvNdrvNKex2m03nNGItqdvujBatwJKAUw1rrUgRaK2vthtr1HA6UWMJibmEENb0yhVGDwApRufcpu+XKZzP5xBSLlUErW+Vph0pVA61rgyru9c5ni7nVLlrulQKAU/TeDxdQipN0+3322EcAEBq0dbEsHz6tJSSX7/+7HI5bXe9iJBSd3d3a3ex2WxEpBZxzvmmSSE1m67UpAm5Fm81CiuUkPMwDNt+432Lipj5fD4vywJCwZlaxBmDqBAoxhhC8N47b8Mal6TNqstwzhnrENadIq846LVd0FpzqaGUlFaJkIoxrhmIqZZaa86FBQFAAI02WlshBFQCaLS21oImIIghXW19zOlyuTy7vc65vv3wTgG2bdO0fQghxJyWwCWjZGtIa22VQKmZorJGpDJTZSkCVj3txXPN33zzTQjh9uaNsfbtp0/MvKQojK63RBRiKVxLKUqZ38sA14vg+gQCAGplUQNhjEtMufGusBhnoWCZk2nbl69eKWGt1G27XO833iml1MPh8e7D+/P52Pdb58yrV69ubp8N86LIpFQgl5jy+DgBoTIwp3Q43O9vb2PgnASAHh8P1toQFlLivV3OZ+89um3hp8ev1hpCAIC28TEq2zREpIwiIil1VQY41+SY+r5Xigid1qpt22WeV5UyGQMA4tz6+a6Yi5QWACg577db37Zr/VvbC+NcFdjv25TzNC1COE0TEQlCKcURIeJ6CVsZpX3bMa/GklJzBgDQllkQmdbUJhaoRUSMsQiSckkpee+v9n0phRGMMafT6e3XXy3L8vrVS+fc6fj44x99fjg8Esqz5ze7zYalWEWX4+HEfPXq1jc2p5pzXsUHTdNM03B//+nq6mrbd4IIIDmFUoUZ1if5iWdZKwALrohKKaWsGBmlnngy8GQcgForrNay71kzImKVIlIZpOacKxPRbrdRfN50zRy5pNlZ6r2tgjmB8VppvxRum9i1fpGSkpRSSKSUknONNaecAbn31vWtQ+76ZrvtM1crte2azWYHAM9efbZtza9++Z+9f//BlCnsPNZ0Ph2s9bcvtmMoSlmNbFC/ef5ZSikuwTRKK2WUJqVrBRF5Cqn4136ICNcqQMwozEopbYggrzq1WqsIEkBNOcXIzN77cV4upzOzoFIx11UMv+ryuq67XC5rJLOIiNR1A7Isy631AQlRJZAllxDnIY5hHF48f7YsS0xLqTVWzsQ1x/PjfcfQtZtY4v72RQzpw/3BW5fzHEJwhrRCqRVVzYXzHC5TLKfHttneXL9snzf39/dU2CrmHMZwUdSwGHKbIO54eTx/+Q0p0fO4u3p29fz2ksm7dpwXUSCYH0/n17etoHr34f22a29vbk7HSy35tu3SlPzz1+cA/ubV+f79VY9fvN7E87f99bbWebfbUd9cPgzPr2+ZzYfT0jQeNU1lKZIzEoNkLohImmpmY70mpUljLbQUwWxNMy3JEVpS7775Ws4PX3z++jjOoJvL4eEylVfX7cOcljz+2//Of+X/9p98pZCMiBEhEQLRUk3NgjrXwsoyqVxmY9go5jJro1yGarQ23l3qAKjbplWo52nQiLmmpmkYcQnpPExd1wHHkAsikVbk/SXlHBNeBuebjW+naWKFiCLWXj27AgAeo1Lq5uZmt+2khGW+dN7M06BJDOqrfme0kIJQinJOKdU15rAcpmWySmtRfd9q7RQqAc4xG2VBoGZuNn494Ij8ErLzsL3eLnlBhqbx1rWENoSktdYIgGIt5S0j5q3bmO9/AKor33aKhml+PA4giUOwSl+GmZSVapYl/uhVr4xblrhtroEUV6ggzra1VqXQG59TKhL6ptUMVSCli9a65IqItQoRWWev+35ZliEk13hNylgvLoMQVyjTrJRKNQsUIo3Gi+CcIVRWymsNS5hqWXabTkSmaYzUoFZEBJWWZSEia10uhUoZ5inn/JT7prVSKjOvbYPGtWHgmgvXLAioxBGUMK/sHCHNwITEZDSp0xjef7hvGzeFog1hrneHUwiFVTMsl9M0Omt6Z0BLKY2x6ERpSqDQGLAMIrIELGL15vmHT8P9gqesvvvy68Jku22MURntvV+maAy7xs/TRMoMMRIgUxEEYxSwoAJxGjSGVEkbgxYUpiK6IEjlGrcOO08dhHz8dphOL25v1M31lIeK6v3Hx3FK46wpyGGYUHiz7V6/vH35goQTl5hTc7+Vu0d9f38PlPpegSKjRskPu43vNzvrb3/3u2+AU2Mgh6VWnKcUwuMwh1igsToLFHDO6tM0ppSWaWwbp5FCKiEzaG9c08Pw6vMbbYgZMkAmtbAEQG2dt0YrSmFG4r5103TebTZk2tPpoLXeba+meRaoTdPcH4/riXk8n3fbqzWNUUoNl1G0sdYyECqXCo/z2TmvtSZC0jSMs/OGU0aUCmCtlbxorQjAADfkQGqRiCgWSq1ZarZaNo3+4RfbGOPd3Z3QjTYulPSDLz63mn72kx8/PtzlnPu+3+/3tRbXtoeHj8I5pXL/8dMc0263W4noXd/kXPtOKepijF1jnj179t1372tbgVEKA6NBQ0wgAsBIFQAUiTUCHIzWiCiclHHe+1plWZbVv0dEAmolTBYRBAQABsUMiKiMVQbWij4HVyL2261Shoe5b9U8B8hTFkiUhPzNtpvGUJajV7jb6FNSISwxF+9bBWqcl4Bk9XYuBSZ8eHy82TQ/+bx7eXM1X44lp47OL64/O95ezeP03SGZ/hlyHC7LfsN+OonINJ5A+3kaXNMUgVNEDsvd4YgKkZiYlTZzzEAKkECZFeMFdTEKNVEHUhEYdKmUwSURzEKQiIpzpZZJQ8U6d80+RFFt96JZzudzmIeNNq5ziKAUWQvYKC0qlSxQgbBIUWgrgkCuedm2DSlzOJ/IqKrbwnK4O26vrs9jbdq+7xtc4uFw2PRb64a4XK42m86WRmGJnNKoiGJiUbZWRMRWNRUTKdn03WmOMeHLZjNMQ3A05Lh3vS/dHGZp7Fhik8Y3r15BTccwqdbX9uUp1PfvPmz6huvY+dI0Pscaq/401Y+X+bOXL9PhfPiXv/r81ct/42+86ChSHvr8UE9DmMKb6xuT81z1eVRv/uBvcPl4d/f22csXX/D2u3f3V1e393zmFF6+fI1lnlMtuXTeF9G1VEGpIplTUbpyYadRUTfbJUeylil9Gt9+mj71gGb7RtL0P/wf/U/+zh/99f/iH/8kLPMPXr/84sVuOH+8lgAhKq0L6CWz8+3zl68f0tdQWWFWwCKgEYlNZSmJ9TSNSwy1sM6JhZvGW6dFaokp1+obS4DCjMBeq5pz5eSt06hqraWyiAzTOEwjInrvmHm4nFr/rwQm6L2I/OVf/uXN9e52v0MoXWOttbdX+6a1++3GWruC/tfmLxbDzH3TAspqajQKrTWa1FiH1aNmnBEgFlRK17rkVGqt2+22bdthni6XMeU1t04vc2iaxlhNxEgNIuyaLqXEXBA1KgYsTWt955+/ejmM4TLPcQqIvIRBGbfddNYbEWSGaV4upwuS7rYbY4x1uuvaFGLjbSl8Op1ur66NKfzkyykkEEuGyqWUoIPWOsQUUnbOddsNoeYKy7L0fZ9rWZZYKjeNFpGwBFLq977e1jcAvHZaKxpm1av/nnsFIMbolBJ/H9y2rhLkiTyPSqkKgFlWafrvLcJPHxCwCALwmhM8DJP3FqTePTw2zgqXBm1Ipcq8LEsIoWbRpHKppzIxgiVA5bwiFpjnWTjvN03bdVkBcVGE8zwPw0TaeGWGOU3z4F1bS53n+erqSghzTCjApSKANnpFIwEjERpjGoQYIUGqWQiQa0GWmpGQnTHdptm5q5e3/c22HY73VtMcyvv33z179qZpN999+FZpnwtXLiwlHTJz3m0aZ1VOwWrabvbG9dc3+2EYtvt9Kvk8DtfX+08PjwL017740bPnr96/v7sM8+HxtKSl73sp5QksxZWInDPOGqc2Ggsg5MKMwIAAKFJLSf2+X7ckSlEpMl0G7HtvLADnnGMojTOkValijH08nnxTtba11nmetdaIZt2hxBgVGRA6Ho9rU2isH8dxDc1VSsWYEVFrXWtJKe12WxLg7x8AImIOpRRvrVJKIThjvTUgtWoiAoWw2z1f99MA/PVX33ZdZ43X2nz22eu//OWf/va3X+63/eX4cHV1VUomwvP5dH19fTw91hTDggCy2XbDMDHzdrs9nU5KY9e1pZTtfi+Fa5XW+xcvXozDklJas72rNtYaRQoQWESgENEKkzHmyZHx+5+11rmW37fCK/8cEYGZiKr8q9hBEfk97njdAtQqq8vFWruGk5aKCdhpu91u97E+nKblPEVRjGStZZAlxpQSg5SiUCoxaSDSNlUOMbeb7fu333733Xuu5NveGLdM8/kyW8VXN7c//8kXX/3219ZaVjRPkyCsbbnvfMp5HXiEDIgYYySy8rT8RhQEFERBICAEZC4cShLQRltjDCGvm52cl7ZtXafnCPfHSwhVu8ZqY5RG57fbrXMur2iEtiUiAZBlLiyEpLXRCrnWS1y01mQdEfXbzWZ/lQo/HB6ZcJguq/IxlwBcfGOQqlFaOVoNF51vAFbiVZtSqilnrusvr672l8slhbBOMz5+/CAIYRrbtq0ptpsdIF/iQlLjEoDLdttPeQkpIABzSVKjsDekNYVhkpq/eP3q/Xdva45vv/5m48xnL1/N0+XLX/36F5+/udo/M1b3G3d923326vWHDx9evfp8/mr+T//pP0sFdturw6dPx/HCspyO56bbDcP08dOjABZRpCkLVRDjmxiXzBVQQWVhIUWIpJ1ViSswosyXy77tdsI3m+Zw9/gf/W//13//P/5H37z9+n/6P/4f/Prb7z4+nn97dxG89s4tSzDOee/v7u/nkGqtxtiQIiIikVIUS15BSRpIuq5JlUWEgJDEagVcCEBQOmcbo0NOmqX3rhQOomplfNJJYiklpVR4laeqVQlMqJdx4pRb33TeKqV2fde1vml8LeHjx4+7bX8eh6Z9ZoxDhBSLrBF7xotI5lpqYWbQVWsiwJwx1BBics4hqVwkxDmWTESQq4icz0Mq2Vq9LkcBeFkWrW1KyVjtnBGp1mlE6DrXtquTWKdSS8mo0Vh/meamVYVNSKFTeglDSaXrPQCHELkwCNeakZlLKikQUVZRoIqIUVQEYozMdR1Kx0gATICRY8iJI3vvm7Yx2i3Lcr6MAFQFpiX4tqtVbm5uSuXLZVxBGcu8rGeHc84YhQKrKx8R42pzXjkeoEDBah7TGhpwjLCOcNe/TyL6XgwJyGvuLyGiImRmtYbbrCEQqNZTL2eqDCUz55mZvTVLqnOcVzVNrVgBCbDkoolQ2wKUKudSnTVkrFLEQJUh5ZKrFIZPD8dPjwfVXotSqbJVdLPbzjHEGL11qeQYovEupQRrKs7a2QCIIDCCVKOxc7YyAEiuOZeipJjGxpiGgTuzce1WGaNcN02jsyZXfbjMOS/DnLy3S4gi0rZNjWGex2nX31ztclqcsQK86fzrNy++/fbbEEOIwRC+fvkKUQ1L+uqrr/ZXz0jpkEpiYVLjkpa4ANfdZmd9k1lEBFm0MSkmlnUricLIiFopa1RaFkQgUs6YQrmWhMDWKACVc3LOWavXD9Q3HZK+DEvTNERavmc2WqO6fns8HsdxXJcOTdPFGNu28d4/nk8iYoybpoWeErpKranE9P27AP+6aGBF7hhS3jurFddKgKRA43q9Y+dc0zQx5hgzAHy4+8Y6fXN7fb3foeTL+dS2DVH33XfflVIOxwdEaZx5dnPT9a1VpJ0PYX7x4oX3FgBKZc5cy4Couq4j0qnw+TwgCnMRqAAaVhYLkoiIKERVBSGvUFVk5oJcyhNXhIXXCS2iCJmngS09Reyu3+n3EA9AROf97+Vd1lqDyrlKRAI4TrlOIXPxzlztd4VpmeMwp1oqki65rgnouUopURNxqb1TS65ChppWUKZc58cB4E4pE5fQOHMcZsnz7e1Pl4Kvf/gjTfTx4yffuszpcDr6tm/IgAhIXVlszviSq7ZqCXn9OgEBFRE4IECFRiMAM9W1AFtrrSFFWZEobKvwsJSrq5theTzPI6IqMThtnDYKkHNZlaohn7z3jfdKqcIVAJUxqzJmytkR5TAbY0IMhStpy8hFklbWOVd4yQuUUhSC1Wa73a7GmeF0XiH53lulkAhub58551Z/MBGFZeram5rx9uZ217WXy+Xm+toYNZ8uHz68u7q6gpKvr3be+2kaGu+tUTEmQ7Lp+lqyrEIHIkB+fnPdW//Zy1caJM2jJbGkl1Su2vZ4vGz311bDz37+wy9//RcPjx+ubzYxjX/4Bz/9q1//LoTxfPx0Gc+55tvr3YdP7yf47PPPfngaxsfj2XWbKmx9Czmfx7Mz1hkbQgCBq81WKXU+nxeQJKLEtNadzmeLEM/HD7/91e3mSvJw/O63JUxf/OBHE7XHGf7qd3fY36SUrPfzPGvr+r6/DEPbb9bhDRJKrStWBQCWZdHzPDZNAyCIpI1WCJqAGbhmZ5TVSglbwoLgvBcRiRBjzPyE5q/CggCKXNsM86QAfdtQlWVZUowpROh907qXz269M8KZSI/jtOnbEFJOJeaCKNO01FpRrTEshARaVCp1BUpUoxwiM1TBJeaQyloscmbmorkYZ4dxfDjc28Y3TRNTCSGGpRjjQgiVrfcWEUopxmjU7NYY3SLG4HbX0hJiSCjZe4tERYqQRQXC6BpNqhvOl+P5UjKUnJHqeDnHGK+u91zzCtFtmqb1PiwphDDlSETyff+a6+qvwNN5GKel6zZa6zCHEKK19sXLVzGGlEvK69ZT2rZRIcVlqjmj1CRV6lNM5PouNc6tCTbrJhIRQWpJIgjMlUgxyHqgr4fReiqtTZL6XherlRIRQtQKldJKoSb63oKp53GopTIhxBJSzjmv9xVjDAEyQ1VAokGwgApFGKuO5KzCxpKmmEpMg9JOQMdSz8NYmZzxARQZk5ZRuFhC07QxzLkWYGmdJ4HVDqeQSGsBBOBSVk+jSCnALEQEYpAVwXC5XG871/hY+f7xcNLgFDEYDe445no++GZjbPdwGKy1OZfT+W67abWSyzATaam5OBQRqudpGg4P98roxjVTCHefPkmV/XY3p3L/cBimcBxm59td2z8eTs+fPx/nSTtrrG60KlWOx+Nxnq3ViihWUPAEU3TOtY2jnDdttzZwGYBEakpTKbvdrgpsu36e51iKiKQSjTHGy5KSMcYqM88BWfpNi4h9v52mqQo4Y40xIYR1pdf3PaJaPfFPlYbFab0qALTWLGWlUa7iypwrIqOWUhSy1JJqTqTAaTNPyzq2LYWvrm5ijK5pyPqm8XmZS001h88//7xr/TzPm2339u3bfvN8HIfXL390db3z3jbWhMwxqmmatHWrhtZ7NU0Lc7HW51SnyzSOI1fpum6360IUIGERhai1FlFcy7JE7z0VkdUfjOsFX/3+YV73O0zqe+E0rVrodeoDCCLwe50m0FrbWUQIuQIopVLMAKtBgBWiM6pxxnllxcdhqrXmUhmEtJUSKoPRpnAWYx8v0/Y8uaY7P94dh2Xb+vvj8Pz5c3LdeR6zwK7bHJdU7g6dV23rQ4XvvnsbM2y2V6nEh/tJG9c6P4ZMiRlESq6opNY1v0whAarKwiLMCEWAlLEmV8hcsSSttVe65Nk1ruYiIsbatt/oMYeSCbHx/vdkE6VMBZRaU0rWWud9SimlRABEConR+6pUqUwWQCtO1Tnd9o1rLAAMwyAiXbdBtJfLpWkw55xz9t5vNptSymaz0Uoty8JaT+OoiFgKp+Kc22/7ZRo6p3KJoPrb22ul1DQPKmXVd7WWTd/VlGKtBZfk/DIOP/ji8w9v723XDmFxlvZXV1zyeDnFaf72dNrtdje3N0H4izcvrzbdr/6Sf/Gzn6d0+fLLL6210zz8jT/6Ox8+vvvVX/zlZ5+9Pp0PXYe+bV69evP+44dXbz7vus0//sf/+Ecv/8anh4e0BBT57NXrt58+Hc4n3zZkXchFE2htai55DhVRYqbOaKVrERG5nIbxOJS7x/e/+yAK/sF/77/9P/9f/M/+l//h/+7Fs+1/47/z35+5YXvjnLtM477tlLGVebPfxcpTWLQyxhiWJ3GD8YaImqbRAjWXWISNdpoMkpSc4zx5q3dda0mB1NaaGhPWssoBjHacS4plFXlmqSEEJKqlVEKVySlqmo5Q1mAslvLtt991reVanEHf9oCq63tQOizRN844Lymt0Q7eOmNM27bOGURLRLVKSgURYy5PwzdlgXTFGkt2wlqkVi4MVghQGUPClNO8An3WUa21OpdorVlxkghqHMeUEqJiBOYVBRAJddM0pUrjXCplHqclDJfLhUvd7fef9TtGWKdSWpNSOI0jKUKSWut6LNbKWhttnTGm1gJZGaOdc/M8hxBP5wsoWjv+ikSlFuaVflBrvd5fCfDp8VGjKKMQQRMYrayx8DRswyxojC6avg+lcAxSSglLAgBE0IhCiomfvC7CK/dIK6UU4ZrvawxyxacCjEapVQXCzCVDYWHBFWW1qqybplmmaB0arUSEtCFNqebjZXaqVcpWpFIlpKxI2TUnXblU+fF4ejhetPdkXVkKabvb9EahN0276d+++y5XYebxopxz/P/v7yTSxigArsKskBEJFSmORXJO1mprdUx5Gi4lxd2m71o7DXOP9vr2zeUyFcH9zfMiD+M8KeOcAt+2IKUwV8ZaKIZxnudHzCKCqPrdVri0zrEgKoPatVXuDue2bdH4+8PJ+vaHP/lxCfOTzC2nMC+5VATu+75wZcZaJUtFEKWACInQO2e0Zi7MhYRJOMdJRHIK63e6LItrWxYZhokRWteGkMZpWcPEiGiJudbqjSXUOdWSgwA535acz+eh3W5W5Z1zjpmRRQTatislrySslHidgmitRayxBgC0VoRPGfXGWYVPeQYANSzx/u7BGJO5qjW2lwS4dK1/HE5EsNlsHh8fU877613M6W/9rb/VegfA61C9aTeb7XYYhnmenz9/nlMdh3kd2HyYPhnj1ld4ngfrDKAQmad7JK6qwFKrQOWqOYoA1PVB/dfVSU9VFiBD/v0//34j81Rp5cnR9BQmzPz73yPMJIwEikArSEVACgF4pzeNNzEREVdh5lwKQy1VtDahVIOUmQDo3d1jZZ7GiyaTMhjfDnOZ58BcKzIa5rvT9c7nZXjz+vnti1cM6tPdYRguiMRpbjfbtttqEGt0yNlo0s4wAsvqgQZeZymlAgArUMoA0XpwSy0aahTqWh9jYECtzNcfPh6GbJyvRSzpVaaKilItMUYWMcYoIgFg5pRSXKIxxjnltQmcESnlQFkRobamljQO591u57QuYbbWhjAJcxov1DU/+sUfvn37NoTQtq1zrta69lrMZVnqdtv/7Cc//c1vfhOX8Obzz6ZpqvMwDEMI4cWz2zjNjTV937989eJ0ON59/LTbdN77j58+Xcazs/b8cNe1TetdGGHTtS+e3S7TUHMElr7vd9vtw8PDyxe3bz77Yjg91lp/+cs//zt/9+evX7/8i7/4q9Dt/5x/S4Cff/Zjlnh1tb/at+N0+fTxN/vN1eOHt89+8dd//ObNN8fj/PDxx69ef/3+4/2HrzVqLnE4x93V9cxzqawBoLJIIaUbZc4pdv1OjCo5ncfw8XHYkguSlMZ/9H/6T8Z57nbNV/cX6m/H4i/JllKNtrXWm5ubu/vH7777zlhfa00rDMC3t7e3x8t5WWIIwVqru65d1TqIWGqSWLmUEMK2bbTWtWZnbesbEQkhhZAKqppWs6YqpaS6nmi8jiNqLpyL32y01gTYdL5xQIDXN3sSPjzepyUZTZpg0/cxlbreb1kQqBYuuU51ttUaZ3vXGaNWpwcirmGlTdMY16wrsZiiCFjvSRsC8YqqyPl8aXzXbnrbtDnVUsoa97behXPOOaXCMwDMc0hLyFwVGWOsMJbKSmPr/P3jeR6mVHmdqHeNz7qgcE5hnUT7zjNzimEdekNlRiy5OOcqC5DKXIGJRTJzLYVBzSET6ZRTmJda6/76Whl3OI27TVMFqmDf913fxmXeb3sArrlUYa2tb1sgFUIQpZxzc0hakdZUFa4qR1SqFHYuppRyYWYGEI1UaDWBPB1eK99OKpMCIjDariG7mtbpHXCppeYsBkEx55JyrdkZ27Sd1jbkWgUUKq51iZkap5SpqGJllYoJYJW2WjuNximlbMl8GeLbdx8fjidUfRVIpQhq4bpMY9dt+tZ76zyhoEJFq/5Za70m7jGLtdoYM92frbXOmbVDMFbttn3Xdefjo3Nut+mcfQaSlxjyWFHo491RKWV9E4b546ff3N7eet8cDo9ayTiK0UggtYpSBip4R5u2GmMIVQV5eLhvu9319fU4xWGa0bha6xJyrGCU6hoXQvBKpbiM87hCjJ02YCQzKWvnlHKuWmlvVdN4771RCBVCmDUp501jNgSrUt2cx6lrN5fLhRE1Q65QUS/LEsPQ933MY5qW/XYLiCEWrfA0DFprBYCIIUTvGxHwTbssS865bVtrbSm1lPp9sZEVLlvr+oQ/rRhWMYFoVVIWYI1gjQJS1RCUVboM2vlpnrfb7bIsNUelsG1cKWW323348OHjx49v3ryZ5lkr++LlM2V0qiXOU9d6IogVtttt2/aPj8e3b9+5dR9mDDO7piFttLOfNZ9dLpdSSowLKrWOvuQp40sESJFeB+CIQgqJiBGIgQjoaf6MzCD1yRBB/5qKmJkL/6tNsDF6nQOJPP2b9SnSWoNgTCWXqkAUgdXknRYIyLXkvL5H6++vq4ARuFzSbrMZ4kLHoWvbXPOU6rP+6nA+PT4e9vt9WtJ5Gne9W6Lbdvbjw/EyTq9evPRt9yf/2b/YbvfCusRQjL/ebZ+1/f3j6f54mYeL8U1iERBh+f6eAQBQBEpl5CIrKgWl1pwSGmQkiSk9nqf37z48jFFUn4VeXG9yXc+9mkouXBGxIhLzkjOKlJRZ2CJqIgCw2pVSEBWCAua4BJRqgLZt2/lGCXRdN47jfrs7HA6Hw+Hjp/vD8bwsS9s0fd8iywpJZalaqQ8fPvziF7/Y7Xbn8/Hh7hMiWhZmTjnfPz5QLAutRBqRWp89v/nx5z84Xc6k1OF0bBv34dvvyFXnDChIKY3zdLmcGWG7315fXy/jMIS5fPxkrNr3ne66UPLdp+N+9/x693B9fX14uE85/OKnP3n2/HUMcy3s7Gbb8zxM4zAo5Oe3u0/392Y53P3u8OL6dqp5yPPOUiEtOTpFQJprRW2NsZZUrIFgYWZhxaTf/PgPj9/+VoYPj8uXmeUcDOjdzfVtXu7N1avDIs3uxaJxieF8P/YhVgCjXa1irQWkEPM8z4+Pj8M8Iar1WdUogAIKIKccQiAiZ4zW2jXeOUcgu93O+7bdbEMIcDjefbwvMT1xfLQyhE77pm/WHZ7UUpmnELGyM3a9lZKmZ8+ekYBWeD4dh9PRWj2MkzEmI+YyrNErqTIZG8KsrTPakla5cs5ZpLa+MUqvg9CaY0qpCq7VUVtHSpGAQB2my+Uy9n2+AvSu1RqZGdXa47JWNqWsdTNPaWXcN93WVRjHcZzGtu1jLDElQPX4eJjmxMxNt1GGrFFt2yISV6gAlet0GbSm9UgSkVIYEVZt1FLr+p57v2o1iZQzzutcqogCZUEP0zhOUamSc95v+3mZcwxG4eV07lv74x/+IMdlPaGASFuTyoqFFQC4udrVupoXJKdaayaptYoza6+fal4v+nVFB5HGp8MJmVDQEAqgVCQioJUMLRWRAFAQkRi0oRSFiBCtMc5aH3PiCkvMggq4pFSUUpuucc7WmudYNOm+adZ82ZxA9BpWsQzzwqKAVEgFFGnShpXWGlGWZVEKc+UqAozCCIQKgWEl9oOpRmt48eq1UmrlI67FQzdKKXzz5s3p8Hh/f7/pO6NIoJbCzpkqNYY4jCHGmHOOMfjG/uTHXzzcfehav+27aTjP46CJFJnddvvyeRNjzKk0fdd1m1xAWKSyNerdx/fnYSbjSy6EhFBDmG3TWWulZkuCinKtGjFK4YKlPHmUSdvVNEwgxhgRNMZ0vnHOaMLT6eS9b5oGlJ6XXBHnkApLLpwFFSnrmsoQlinmKqmiSNt6RabWglobYxhhnufvXSWgtTHGEtVaQ64llSzDoLVOKZeSnyYnoISxFuFaiQBRgwKoT9eyNaNXaZVjiDGuDvJcitIWEU6nizU3cV6MJmMsADDg5z/4IRFN0xBC+vTpQ9+1t8+uay4FMORyc7PvNtv3799vNrsYc2GyVu92V6WUlII26vnz5yHMIfjDsBQpNX0vaxASeTL50mqoB/q+gooIlZp/3xAXEVWehIf0ZBqGFeG5/rKUQmSZuQo+qSJWhw9zySzARpN1qBPzElMMOS4GofFGREiLrpIYCkOIWRnNBaYwr/lRlzlWwBDmjVLvH4/b/e657z/efeSat5smDfNlunz+4gbA1xqb4+XN65c//MHnyxJ/+gc/ubt7+Pjw6IW3XbvtuiXlOgaoFZmlShUEQvxeLFlKFilrc68QSRMjcIEIdbvdVtTW1hev35y+evc4TRV0+jAhIoPkUoowKgLSEJ78SwpFkzKkcuWQCgCkWmIIACyZueRpGrTCTdec7g+bzz+32kipUqqz9sXz5yWVj3d3pVbvG20sC2qtyXCVCoztZnM4PpyHS7/dpJJrLtY6lVMohRxWhucvnt+/+zAvp1Ocr3e7TdNZrZdpnpbZte6zN581oN5d5inN1poEXBHQOlTY7DZffvOVty6WMsUg3/EXn70xbXc5nf75P/3lj378g8/efJ7SePts95tffzhfDlxLzkUre3N9vWmaV8+ah8f3zOX6evtv/Z2bP/7Zmz//8tfbm9t3j6dff3PntCuRTLudUwXUzjWgcJ7nsVSrtHVqnkZG3+6v/96/8/f/8Oc/eXj/u99++VdobLPpf/1Xf/H1V7/lTrHfn+acUcUclTJtp8dxDjlp4zLzm+ev7+7u1vo1zNN6L7TWzvOsndXMkFKJS0g5NU2jtYkhlMxLzIiiYzpcpsJ1ifnjx4+XKVtrLUAIoQhvNpu270IOzDxNEyPUkIZh8Nt94+h0Oj3mSSk1TdPrVy+utpvV1GgIhyn2PRNByXWaF+99qWiMadqtgMwpK+uIsNY6TdMwDF3TMq9uxoyI3vtU8nAep2laXcvWO+c3TUEkPU5hXpIxJqWoSSEoRjLe5bkOl6i1NrYnIlIGkK0XQIugCSHnyTduu7n2rhyOxxxy4TxNk/dVkUGltptNrm4YBmP0ze11ztlouyxxWaJrmw8fPs5VVnQfM8whLMuy2ZiNa9Jl8K5VzCnXytB0Xdu2Oee7h8P19V4ThhCmy2l0pjHaGN14w9XkWmIMpTIKg0gIi1K0LMt66JSUMldCXYWt9cDVKK1apRLmVHMtOWejcO3+URhRzPeLNKllXakCrKWXNKEmXQG1dgYBUeIS1mNxvY3HGInIW6218957bwnJe6+Bu85d73bbljiFUgqQHZcwLbmK0sYtpSxxRufXQ9I3jpQa5oG0SjEBoVW+gDBzLFkpgcoissSQa/HeIZaUCinTbbRUjik9PDz0bcu1GmPWBqVv+xDnZYmbzS6EcDweY4xGU07h89e3StH17kcgtbHmnqNVetNtuFaj3XkYAPBwOCzv3lvjBenh8aCMKxVrLt6qOczCsul7b2Db9lVMiWnOqWvcfr9noEtI9Tg8XubIKEiFoZSaUkrEGkxCFhGFoFAUttZa523TNLmWw/kCZAUo5mxdE8MMqIDoPAw5ZwKKqSCw95ZIg6YwhpxqtdI0TSp8HqaU0mbbrQbip3myMUqpWisZjUohCAnkXEpZ1q1w05Amq521WnHJRiFpVVKUzJ5ohaRqY3b7/cPDoZRCGr1z07hYTczg+v7V8xe28caYw+GgjE+Zne2880Y3wuFw/2C0PR3Pl8u4LFlkHIe5aZq+7+/vjkqjtfr9uw9X1/t1ZSMiKZWUUinFkCGiNeRbIWlDREZEcRVAYS5EhAy4YitWnTOyIAiCQkBEEFn1/0S0BpgygyCIrOV8pdtVFHBWA0DWAqveLAUU8dYYKje7bdfkOeXTOMcQFWqQylVIkfVuDuHZzU3N+TLNzrnTNFy+/eZ5fOXa5tPprEBQkYJStRwvk9Xqxc2rEOL9/aNVeojnZVlEBGrx3veN941asSqpiuZaawEBYCWk10wGIrV+uPLUFDMp0ppA+P7wiGRRGWNlClFp13ZbSCGVzMK6MaXUcZ4zx3UCscY4Gq0tlVS5saxJMQiCEoBxnLkkLpyXFOf4s5/+WCnz+HhapSSfPh2ttUp737r7+3trkaosw2CtdcbWwqj0HJP17eF0UYCllJvbm2EYlOD2an+cBswFhF6+enN3vA9cbNsqo7/63TfffnibNYJWWj789LPPfJGHxztD6v7+7nAZUg6llGeglW0fLsfGugr8/v7xOFy8Vn/37/7t51/88N27t8Pl/IPPXymFKYR5XHKsfbf99HD/9u2Hq6urUkLb+b/4i68/++y1Tsdn1/v/+r/7b4+5dF9+te2bqdBXHx7uzxdnuowQQiDUylllpDJrQG8Ma3+4XAg4RMLdm5/9l38koAvzj/7mvzWPxw/fvbsb0lxlzvLiiy9Op9PDwwEUWWpWTcbd3V3MqRbxXZumgojTNGy327b1WnIRQaxMgI1rCVUppe36InwcRufM4bt30xJyLeMcamVFbp05EAEh5ZyH4dw0TRHmXErO1phdv+maTirHkAVr5jrP8/F0mee5826axuFyfvX8WQHUoEKcWegyzErhvATtDCJWnlKpmnC1qQPLSmZIKcVlur6+7lqP2AyEQ8HzOBNRW6CUok0TYwwxEkGtY0rh2e3tEsMwFZR1bF6rACK2bTsOk7U2hmStJ6MLw/XVjbZO23Q6D9vttlbZP9ul9I0xpu+2a5evCY2izWYDLEQUQoilpFIOp7sQgt9dlVrzEltU4zijIkD1eDjNU6gM0zSLiDG2gqRaQoqlivcteX+4+6AQiaiUTMgAQAqIpW8bBpyWkKswoNakuqaU4pwPIdxeXZ2GAQW1JuYCShljnLGLDrZqEce8rupFIREgrQFvJZM1+qlnEKUUyhPKWWFBkdY7BDFrEG9cEMg6XWslYIXgrLGagKs2qBVaQk1Qclwm1sTGmGUJwxg/3D/mUkPKc6ism4aU0pTncn1zc3941Nowc+UsTAyxMCOqNC5d12ltvHMikkopy6qGVb7rlnEMIXlnUkrDNDmj+s2maxqu9WkAI7Isk1Kq9W7TtZwLS8lp8b2P86RIUDe3+w0CNN6lJU3TxXbmcrlo07Rkj6eLUvr29vkSIwN2ygzjLLVahKtN67vm8XAYsyFYpbY4TeP26spkimEWrgoVEFpNtZaUeCxh9+qFV6v+GIB0zOXwcL8sS90ykEJQS4gFUCmbap2miYGKImZunPFdp4lWyDkD9X279vSCFPPKDTAlxGGcSxWlrdZ6mkPTNNq4WsLv6crKGqyFK9RaU608LWqrYgyrtaZU6AiMsyhAGuvCbddprecQ++3m06dP++31528+Ox8PMcxQoDIdh/n09v0auuWc8d5u+jZlOV2mvm/nJYjEeZ5jyNb642nQWs8hKGOAqNay3fbK2G++fXd7e621qRyPx4Oz1tlmzePquu58PmuzGupoLQBr/VgHx08DHUQREIDVVROWJybrKsWqRQBAa51rFZHVFbmiwYiAqS5LLKXWnFIISELCwDIvowbsvKklOQVeU1aknBXhcV5QW4XEyAAAhDHXKmmt69/dfQSgGKPWBOP4Yr/tdt04jzXeQam9NwppvJyBMcT86vXrWHnVq09h4pq3rR9DUqhQIMRcuQAwgQGUdar0xPxSa4BVzSxKI6Iyzk1zvrt7QKKccrxctn03DEMFado+S00synq7auPjqvUxoDSTWpghF4WkiUJItzdXwHI6PCiju6atoM9jaPr9+XzOqS7lMk/Btc0pLMZ5JMosqEyuwlBQWCkVYiSiRpllmZxrPt0/eu9t17357PPp69+lJfzmm29e7m+cb1HB4/EUTxPmzEDa2FTLHJaQyrAsKZaH4cFpM4dFKbXZ7r/87W+VUkq7WJlIXd2+qHFe0vLrL7/68R//8Gftq//0n/6zTx/evXn9+e3V67u7j9vNxjd2s33tnDudL6dTevfu0blmnD+9vi1TjmJMv736xc9+vLs/se20+fbhT/7MeGqb/nEYU82olbGGUENYEDEtwff927s7BQKisGBiNtodltT73c2bZgiLdgZqOp1OQmpJEUl3XXcaRlrzQFE//+z54XBY38o1J/SLL77Q3lhm4FKJKhBppQCRQRQpEBnmOE1TyKkiZgRQGkWtrT7sAAEAAElEQVRKKdM0rdTiJ7ltrUikjXK2Q5YY4yVXZ4wyert7phVeLhdmzoV//dvfjefT61cv0LhpyVJm733bt1rru7s7RBMyAOeY6hzjtuucN8KglZ5DbH3TdV1j3Zol97TUFJ04xjneHwbnmv1+T9ot81xqVgjGOkCltDG2OR2OyzLc3F6t/6MyWjvLAKAINXrvc+F5iZFLydy0xvj94+Pjsiy73U4pA2v9TolB9vt9LJGZQ8oxF0Lr204b37T9zMAMKcVcy3Z3tSq2vG9sSufzpdtulFKfPn2awvLmzZt1Ep5Sar0VEdS03fYAEELw3nKpzCwlCWpE9FaRtofDYVW3EsGaJNM6F0IULkZp/YSATnGZ1wOolqTVGkgMzMwlP3lRgAFo9dwqBAYGECT05nu5aalGoe2anOqy5gcYdEZboxXWFCZi5XRXY6LWakL1RCbSzDAv8XgahnFZMpBtLHAoEsKiuD7fbYd5yrUI4LjM4zRp67yxOWet0beNiBChyNPUPeUKALVG71lpbbxHRGU4hcjMbo5WaUUIAMJYSglhttoYY6w1pnWEIrXMw8VoJKgxzATQ+TbHCQFfPL/9zft307S0bXv77MXrL37YtZs1vu18Gi7TqMxhu+tJmVLKMJzH42N2NwTcNo2zupacQywp7fq+8uj63WWalnncdp3W2mo6Ho/U9YgIXILRjbOsVBU4nM5XN89IQ1pCZiKQCiXmmnPICN57VAYRmUVEauVlWdZEh1VUuJpZETGkVGstDKfL6JwD0ivI3TWemVc8b9M0XdcbY6Zpmqbp9etXwiWXQkTOWkRJtXAIfd8vIRWu4zw1TaesSbX0273z/XlYzpf5fDoQSq7weLyIiDbmPC465FdNb13HwMfLNM2hVpnnybu2bbbH4ynEuN3ua61LSCHmlFLKBVCWkB4PF62JyQBQLqyoOOfWCto0jSalFAJwrYC4apuxlIJarxey1YVRSklFCuecKwDoJ18SIEspBXPRerUR01OsEqLW2jidc70M07JERCSiruu0h2lZdki1JijJkNq2TiklyqzT4PXivix5WZa2bTe7bQgBQBXAxKI1msZbp5VWieX+eP7i+Y1HfvP5D0uYf/lnf/nZm1cr6ObhNIxTADI6MxB6o0spBgUQQJPVPqQcYq6SldFMTmpFACJABCRARCAkIm1czjxOSwU0xtUUCufDcFbOT+Nw/+GddV4ULUsYU3LOpVKgcsrFIFltvDVEpKQKEVq95FJT1L7RmgTw7nAYhuH5y1djLgAUY2Ega/1G21VYIBoEkJkR2Rirjak55lLWWJqUq1JGBJcQ3n34VKtsN3tyJYucjpdm28WYSk1WBEig1lRyMe7Lr76OyszzuGm7NXaagI6P56ZtV84BITpvrfFN1/7m17/q/PyrL//0xfOXLz97tmm2WsO3337d9+3pfNCTUgp924RUmVD75oc/++u//NM/+/rT7652+19/d//mzefjOP3Vr77+a3/0N3ebbds0IeXz/FgVmaZNJY9zUAppzsqRMNxcX6W8KKTzeVBaEVlQtgothYmVGFdACtbHT3fWWtd4YYylWudEIJVMpM7n85ryCQDdpj+cjj/7xc91460i45yjaYq5wrp8UGpeRu+9cCkAoZSQSwUBIbOq5SsY0zrrSk211LQsu+srRU4jcamZRaFalyUAEFMZp+k0DNaaeYmu7ci603mIMXZNO8dUU37z5o027nQ6KW/3+z2wHA4PMZWb631NCaQqAq4igNZoIMuyDpeUoK6stdWx0pJ5/HivtZZarNPM2VUT08Om66+vr0kbgdy07f39fal5u92urq+cs2/94fRISqGRuCwxl26z7b2fwzQM02qdXO8sy7IsMeQcjXfrnimlBCiONJAiBZpks9tO07TMseSFQTAra3mYp2672W63McbPP/98lXwTUZwXAMg5P56O+74vhU/D5Xa/894zc66lFEZihVBymaYpxHleRiLq2o2IlBwVUUqxUSQEa+XikqRmRETBvmk1qX9lyWBek90U0mriME8qbgUA1up1L8glF4F1a7Zah1Gr7aYnopKCJtx2XhMqYpCsyRgFJKyQiCikehzmw2VZCixJppDmVBOLFtBahxTTMTe+TbUM4zgts0q5gnjXaq28sykVZh6GAbjUWkOG9VwupTDR+nmBsDfWOJNYPt0/otTtpm+9Q9+25BExzMswDPvtpmt9ysF3rXPaKBGuJWVAUUqhVqfToet3KfOS6/Eyz7EeLyGVvCzLPIU1M3VNcEPET58+xenyVx8fvNX77Rvv7TxzKcUo+uHnn+F374dl+dGb15fLZRjPJdYClqx+PI+aQGvtqlQWEBClSynHy2CbJhdecpFYYq25RCItwDnncbpw8X3ft20rzDnH9RsXqMoYBiocEbFputPlLEhASlu3bf35eJqW6ByM44iIWttUGJZIMSulm26zLFFrQtJANIfEJXlvvbOx5JV2WUq1IAb1EhIqmkMeLuPj/UMKizFK6VEppbQOYVyW2Xu/hHI4DShMWBtrkKjrt7VKiElpvfOt1jbn+TxM66VhjomZpyXlCrvdThCMsatezLYtPAWhakW0CsdqrSkFRCStEKHkCgBg0GhCpaRIKgmgWmtLKblIKYVA1u04fZ8XuSrm1j8NEVmg1uqca/sd6ubt+/vjGJiw6zpo7OVy8VYzaKW4MESunbOImAs3TTOOduW8eu9Lqc41mSsTMkhKqQSuilCkQfz0eHq+3cwZG9ex9qx82/rHSzgej8fj42ZcAGCz2TjXaK2NqkSsKmcWqQiGCgshECGTgnXoQvK9nRsFSGtznsbLZWBm7awrlYRyLbXWrutc2yw5VwZUEnLKhYVREISFgcmIKIVapzCnWnJKoWSQSgIqwWazWaZ5TKncfdLW5cqilLL2cRg11zWnUmQF0TgASCWvn9oKIVeIa2vBzKkyT0spfImX627z2Q9+AO/fnoeBlBKCWuvnX3zx9XdvU8nJFGMc5NrZNi8BETWpXJMzprUNp2qcJ4Lrq90yDHFM1/u9QjXHcn+8/PU//AUKf/7m9TfffPPLf/mnzHJz/eLbt++7zVWuLEjWNX/55Z+3O/eu7DnrT8MU8OH57bN2c/Xt+0+MFoS8c+2+i4LH4ZxSarpmHMetbQuzlPxw9z7NAwBYTUqrnAsyIUjOlQjQmCKFRZ6/fPH4cLTWZa45FWNtFfHGP56OdZ6IyLfNsiyrgOnrr7/WzmjjHCUVcy4c+Mmzjs42xts6TyklfpIwaEZU9IRPYuZcIpfqnG29h1y9tdZpAJDqrdLCHOd4OB1FBEhNc6jMylpn7ePh8vlnr+cl+qZTpBjKp/sHa61vN0wwzTHnNM0ppXI+DymFZ7fX17t9KMJLakBlLisQKuf8GOVyGa11RjtErDUhofNdjIvWqgqkmImCukzLksY53h8ehdBoP86z3dt+u1mW5XQ5d11XBaTUyzicx8HPk/dN5bLb7ZhX42AppayenFLSsiyb3b7tTQWVC4hgzCWlMuUIqEBIaz3OU99vlFJTWNYvOMa4ark73xCR0uh3OxEhUn23ZS6plt5bpTWszC9jQpgAq1JGUHIMXdcNw1BrtU5v7EZb45zz3p4vY0lpSQmUUgSNt+uOzCkCEJCKgEYRKS0iawUCFiLQhla5uwJ0ztWSRYSUFWtSSjkXjcptOkFAxJRCrsk61zZGgRBC65xR9Ht3SBVcQjpcxo+P56r7ipSFQi4MAliWZclzaNu26fppnEopXbdZ41b2u+u1ymoChVJzJEAUsEYJFwae55xzjSUrpQypJWdQqzejolS9hMqMAF1rEVA3zc43zhokQpE5Jq2IFHVtV0wuAN55pdRvv/rm+s2Pte/SPJ/HheZYWNZ9ZK4lMeec9XkQoNubq7ZtN5vdbWnmeR7WVYL1zjkrYjVtO3c6PtRl8AarNUhUKkNmTglY2g6VMVNcI3UBSGvnlLYhlZSL861G1EipJkdam+855yGgiLPae78mXmeuFhVRTSWvk1WlbamChMM0MkjMJeeMimJOWmtgTCmtI+umaQBASlJKKZRsNaGgQK0SYl3faCKqDKVK5TyHZK0FZiK7lOJ8a7SaYzEG0zQKgm06Ze1lXg6nY2NV42zy9Wbf9X1/OQ+1pr7fojLH4/FwOHVdF3MRkZiLMQbQXaaUZbi62gmqNQpXagWtAXiFYtXKq9lvXS6sauclhipcBZCsUsgVWBARS5VcWCqvywjrZG18a45r/+q9t9YapQVqSsk5lwvHGDUY1MoYs8xRBBrrZq37tkulcixKmGPWXkEtOaWVUkL0FNsFAJdpXlW+iLjExWjNpKFyIZrHqWu63739aJAPU64fH1++fH6e5tPhnEvNsNRaE2PfStM0TdMopQpzCKEYy0A55xASOA0AFaQKi1QUrrKydChlmZdcGUhppcQ5RwJ1zpd5bJqm3+5gmsdlFgaoXKEAABICSBXOhZecqOR5vHRdBwpQkbcOSh6GQWmyzvlSYg7kTOGitUUFiqltDDMjCQIBQK0ZAIx6qsfrCamMWSkIq3gk52ytAaZY8vF0qkXatp3HEY3Z7Xc//NFPphhOp1MIAVigEgoTkdSaoSqlSABYvHUxxs1mgwLeOoU6TGWZ5o95/qMXry7zcjreVYj7m81/7e//V//qL758fLj86Ec/+frb96VCKLnKuekbXjipLZIy3WZhexwzaMeAIeZXr169/fTw+OFDv7/y1oYwQaXWKZSVPQbLcBFgImqd4Vq0IoRaSXKuIlCrzCGkWnoyFaQIA5AApFJyzlWwbdvr6+t3H97XWvu+Xy+7wzBogTUqp65QJ5Yn0Y02xLnM81xKaXzj2y7XusSEAMYqzlJrZRAuVTt02minjTGllPP5nFLatF3f903fkIEYl2VZ5rCEFPu2EaJ20w/jvNv2S8pKmbbf3N/fr6Af7V3XdURgve+aRik1T0Nm/f7ukYi898bEdRm2Lnv0Zn+eluXhpJVFJO+9CBNWJN52rfPKasOgphC1aXxDl2Ha7/dt66dxZFAMKEi5cq4QYiyFi7BvOm3sZRjath/G2TmHRKWUUsqyLKgIAGKJNE3TEg7Hc2UyrtfGKWXaxkzTtIrCju/eAWC76dfjI6U0jmPftCufMsbQtm3jfN/383jZbrfPbvYkHJchVYZUUslr30NEWqm+77quvcxhlUQ654ggxUXhUw5MTqnUurpNrPdrcZL6tENFREJa1xFPJwgKkTLGOK1YkYhooxAqyZPjEtgACyplnFlnmMDSt82m90SgQLq+6TVp4rXnMMaWKmPIh/NymhPrdA4QMhQgJKkgwhW5KmtEcEUtbne7dWY1j5f9fj8vU+sbLkzMq0eWAUspvumM96sMR4CmmLz3cZwVSOecd00oNaQZEQW5FtFK9X1/HCYN+OLZVS1xXIrNgGCU0jnGcbwopZZU5iUKo4AKKVWBXGUdlF7f3sRcYhWs9eF0mUMkgNtnL0svh8PhcrnEnFvvzbI450oKW2/++A9/9vbbd0Kqc2YMEcmMS/DKVMhLrkillsTMwLWUstnf+r7rt4uKAdUTrlmBOG9WjbQhktUFwGXle9vGq1pFRBCssTnnOSyCegphY/Qyh1TYKATCwgKkBEmQGLAKA1NMhZlNo0Eo1cy1GE1aU66Qc9JaE+klJGYGiswMoAD1vMTGe2N907Stt0RkjFlSrEWeKB+xCEtvHWiVCseQYjiM45hZGMka2W63TdePw4RarZIrqCBkKudlqc4mJDFEq6PPGKWVlloQIYVQUtTWrVNiAsUsSFpyLpkDZa2lrq4rgWVekEBrjUqv+4hcaiVpGrtC3NYYpfXWvsyjMS7GfLpMyubVVLAOsUspCtAZy5A1i3MuFEHENYxovAzGuaZpBHElSpZcS82lVuecc43VBqTGUoHQa/vpOMYCJc2X86mblrs5IWKt1Rsf0QDxFGoulypCAGvRMsZ0nSVllmUhADGaAQrXVNYgOhCRKsIhn4fL3eFUUCuljIFWqcisCYzCOaRluDTOGb1ZQtSkCq/GEaxPsRc5RmZmZy2XWnNsjP7hDz7/2Y9+9NVvvvzP/+RPuq4rMdxeXS0h9dbmWuZx3G63Jca1C18vOk3jRNavSFBYQAggpaSI1udWWculQMmIGHN6vJye3dy+efH817/+9el0PI6Xf/HLP9UIrXVZYSmlUbppOkV0dbUL03w8nne73Woodc59eP9d3/hXL5/1TWdIgOvldDpMUbfld99++vbt3R/+/CefvXzxR3/jj7/67VdK21/84c+//Oqbr795B9oa6+8eD+dQLNXnV/3rNz+oYQrz4pz/9i+//OHP/trn9vXdn/5FSfH69qbx+tPdB6VUVtUqW0O11sYYW+dFgFBqWYQUgUIURqwMFZWx5pvv3hpjapVS1wC6dYNWtdbH82m3253P53VPtDa6OsaA6ukBLzWnmFdQfgq5cEUWrZRGAlSMrBgKZM1EiFIzKGcUlZQRGMGte5e11RvHceVY3d5clVKcA+/t6XDYXV2nEO/u77VSKaUQwvXVTiMZY7p+27W+AIYQjDG73RVU/nj3YZ7ntm3neX6ao1aYpkk765xDxJ7NHEplJKXmKYTEANy3bn+1tY0VLFVgXmK+zH27ERFSZphSTswMMcplGEMIiHS+zK5pfavNnA0p37Ux4+kyQ+W+79cY0t3VfqVeWGsxqaZplHPKNgwqZRnnFFLYXe2GYRAEVbWIKGuIaJqm/X5fa+VcjDFaq23f3y/LMs0a6XQ6lRSu9zuldC3RNu04T/vtbhmG82VUBNa2iKgIrHUFyDlX4cnZzMyX4TSNCxCuRXZ1FykipZTRjPLkm3wynKw2jFykZiIiYJLvc1hRRIS+t0vWWklB0zQMkEv5PsBCGQXOkjeklbTOGhKFtKrqSZkYl8uULlOcAx+W4+NYplhIK5bKlZUIKe19CwBaqSXXeZxiCCvZ//b2FqusOcr7bd/65ulZmidBteQ4jVMWIGWQNOVKpEvNeZxd0q2xWhEhfXf3cL27nmLIjArxeB5CzG3jWq8ZVDgMSq9Kt1JiUa69XIYqHFKJuWRhJF1QsTLv7o+ci9bUWncal2GKhtRu26PS/XaDaoVvS8zFOWe0apzd7/eYU8j1cZhJYP3TEotSjpSeU0kxAgCJxJg+PT7eIhpns0BKqZRMCF3fOuOUIrUiXQ1yXQMuadN2S1rrIgAAg5AyBmhYYikZkJxvQJi0zTVOy1Jr1dYa5+D/R9SfPVuWbtd92Jzz61azu9NlW+3tLy4BECADACWFLUU4QnbYpukHh8P/m8J/gN4ctiiTFEVKBEQBIACS4AVuVd26VZmVzcnT7Wa1XzPn9MM6BZ+HjMyTkXlyn9zra8Yc4zfIPjYBqyDRNHLTOEPEUjgWx8a54LwvJTlDMRdV1DnlIog4zyUx6zQBmlPf9T1WVcXMZM1msymlMAtYcM4zIAuw8unU73a7Zr1JKa1X23meT/2Qcz52fVVVgGaek4goEDM7h/McrTXNul2tWm/RW2NIUhZvbF74GcJLYaJqJiJEgyisojHnVLJwKctzINZaIEUgXZybAKq4CE7MnHOO0SAqKSjQ4XCo6jaEMCeepnIc5jkV4+wcGdEggDHGO1Jyc9HIbK1d1U0RmKZJAFIqMSZjTOU9sxEAslTmSUANWSSwLpTCN4c+CTDnAjbOfMwnb0NwJgMUgMqaBKisc8zO0pyiQWqaFgBKjkvdC4AKqIIQKOOCF0EAQmuneNzvj2I8+DCXIsYpQGWJCcUiK6dpJOtq55TFIGVhVQWEBbhlLJGiB1QpxpCk+OH1d8+32ydnu6vtGlWfPr26u7tDgMrS2Wo1eVNyBGNTSopqCYwxlpBZvHPGmJKjs9YglsLGGC2ihaeSWhdIVEHB2yz54eHu9u1bS0hECnA4HZ1qW4UffPb5j37+0/5u//r166auSylTimjx+sOH9XpdhKdh3p2dIXA/Dp9+/PyrL6/Xqwaq1f2QX35y+ekPfv+Xf/VXX3zxAbmeJ/nkk8/ef3g7zceXzy8VIUt49+Hh4W7wzS4Pw0McfzNPz652L55eiMjnn738+utfffqTX3z6ycsx5of72x//+Mette/fv09WxjjmnEUc2aofmAx4Q0XYEmTJDCgUUipE1oWaaDbGLX40F0JKiawPIRhnv/nmmx/84Ae73e7h4cFau9ls+r63xhGiIigREIEoa9FSrKpIKcG5nPM8TmSNAlUhCJCzTpjTPBtFVwVjsa1qcraUMscRWIioqHBO3ti379893nV4nUppmuby8vJ0OhmDd/v9qq5X7abve01p8f4shOcYc85L4Xxerc9UFZ2o0hzjGOM057Nmq7ZKOc8P+5xKXbeFsbBO82AsKjA5mqahCtYY440tiUecjTHTcajrenYiUoStAp9OEzMrYtMoGhrGkiXuMJydX9luICzGuK7rhmFYhoJVVdngfal8U7ssSDGLSd3EEoFM3/c5ZyBkls8++2xztpum6Xg8brfbDx8+aOGU4tCl8/Pz3dnm7u5uv49XV1fLkUW0oBZH2ATPzIJgjHGWjEEpOU4qJSs4VX1kZcMiCyckDb4KzgPh4hclAmPQWovl+/4yYebHljqWHEJYDjQ5R5HyKEp/jzJYLtnOOQSTmTOn5TjlvQfJXAp6F+zSMWCCM1VwRHZKsevH0zSdhvn+2N923GVwdYvWcp5LSqWkdtug4DwlQhun0zKqDCHcXH8Izl+cnZWSQB4NY5W3L55essiU892hI+sfTn03Tr5q8zS1bWuMZ81zVi7REnjrBD26qpTp0Mfa+jGWbng4227m2teVBSnWGu/9arXOPAZf96eRRUQgs44xFchgHZBZbbfjOILokIsAtLXLoveHoQcZx5FZWaBtKlRMKUHWTeUfrt9WzjlXCZCvV13kLDqNoyIUgVIkK6AogDDi/tjPqSxnI2ttXdfLN5O5eO8W24FwVlXnXBOqpXiYma13zJy5WOOttQARgPb7Y9NUAJB5VFVRsD4I4Dw/EqGtdTln5gxgYIwA6p3xxgNqKVJKAVHVIkysIiqqKqo5x6KiYcn+KjNbYets3awKKwsYZ5kLcypl3jS19zalJMsFPXEIYU4RUTMzIvbDlFJRIGOcMYBo58RunENw3DTGGOeMSJK8sDVgtVotN+bMS18IiCycfCiZmRPDI9hvCf4uPxERi7BAsxHxrG3X6/VSxvfYaKKP1CBVyFy6cZ6jLneUOZYFoaUCoESkwGKM0VIQjHEGAaYYu25YsKlEBMWTMcYbJFrAkOSCsXbKjKKG3P0w55x8sKBqVRpQIQMFWXIquEJXtzWQqeqaywKzw6WjfeHlKRYGzSrMS6GoUVQVDrbarLc+PHRTKqJDjIUIkEIVUMr5ZmOcu7l7YC4LsXJOBZlVgUAVFBUMAjl7UTUppbnrtOQP3333H+fpycX5Wd38+Ic/eHp18U//6T999uIjItrszjabze3Dvd9efvHFF9M0VXVtLI7joKpPn1yenZ29evUKVWKKwbnK2wKac0YHUrJB65wzdTgNfS5iVJpqReL6OFzutjAlYHn9+nWXRgfm7v5uHAdLj1y8qgno7cX5ru/7GKfKu0N3OAzHqqlv7u82Zy9/8+rD61f/8yfPnz376LNxf/frr7+9u6m+e/XaGBymeXN2+bA/MbqHh4fNdnXfTTZNbVXfvXmVj9f+889C2/xn/+j3GeDNm28LU8mlezjsb+7OdpubN++KZM7iqpoLrFcXt/d7a2hM0TvvapenqbCWUqaYBOycBudCLqWU0jTNErRLpTDzarPebDa3t7fLeXpJo6mq3WxWKZVxmIpwCE5VxykOfbeYGqoQADDmJEBTTMwqTsma4H0Rcc5WPhjUBXq3KITtqmbFJc7vq6r0ab1eE1ERXq+3t/f3Z6XEnGTiOI/A8qsvv3DGtm1LICLi62pZ/S8uLh6jb2j6vkvMIQQTao8OyK/PLkMIwzBIGQtDTCXGabXaXF09JYJT9zDPc5/Gpq1BeFU3xjidphDqcUpxLohoDMa5cE455+35WQjhcDyWwruzC57Gm7v98+fPnQvehaVgFRFjTMzcNE3i0o+DF8lFprkkgXGcSyl13W427Wazsd6N4wQA7969yzkv9L6cc54jEW7Xm8JpaQh+eHhYvlfjPA1jt6rrKphSkoLUIXhjc5oXJORCG6hDnXOGQstTuqhq2+32sXEBTCllTo/wL0RUZmvMUg4/p7gsNEtLqDGoqouUZCwtnwSRx6T1Yn3KQqpV1TAvaG4NjhbWJKJaZyyR9956m4XHce6HaRrjlHJWUDIKWlizZFBFa6BACHXOues6AVi+kHdOCiNinKbz3YZzEuauO3IuT58+Bc2EVHJWKVfnF9Vqsz8Om7OzDzd3wziD6KqpiPB42CuX8+2uWoX7h0PbrsjI4XRCRSJ/e/+QNk3fU9v41ap5OBxjLjFG76tFn3eVJ8+zcI7JojPWn8YJFdu6mYbx7nAcBr+qq1XbomQRcSHInAENIXGJrnYA0lRV5qIgF2db6DNVNKUizNM0TVN0zpBxLCWmqIWttTHlpc7n+3m/qaoqZ0bEUgooG2PImJzzYR5zzkVg8THlnMkaERnmiQGUcH861nWw1o7j6PwjOVxVExdrbU5l2Z9U1RvLRZGU0AoKp8K5KEgdfM45lcysxoh1XlVUMZeyWrXTNDnnkqZxHHfnZwBwGnprbetCFiYVstRu1uumHu/v9g/HZ8+ebbc+pXQ8Hr2vUkpzijlxKoxgSpkzS1231tq+H0vxlXerNnhbpxhVctvWosVYr0JEUjlPZGOMMWYRFJFSSkpl0YFYgFlJlVQRCwCAsfh9IdLhcECgrutFebPZ1HXtDVlrT6ceUZ0NVQVgELwWteN0n3MuIkV0aR0uReCxiAljTGiMryoRWIblqgqghqj2tQ32cSonMk0xx9K2LWcWFGMcOBcqdzydgBmJrXfKGqcJpKxCUC5pHqvgvPcLPf57nJmkPCtAVsggCgRGFVCYjoebdr1br7cZezFuXlZz59M8tlXtvC0sqyoU1lIygix+WEEAgMKsqERkySjLk7OL0ftgkOMMadacP3/5Mo9D/4CNtS8vzuZcbt6/tVI8FwO6XrcAMk3DcnBk5r4/rdetQbh68rQ7HmOMQ9cvkpv1BLGgCpdsMZAlSWwVDaB1hAmnaWoA8xwhmN/85jcGqQkVEAKR815EsvBwfJhjNMbMKYpmsqafRlc5Bn7Y49nFZysPXX97edb4QMIxJTo8HLtuUDBXz+35kysxOMe4PT97evXDr/72lw4Znm5vr7+7ff/6xSefcpxePH/yx3/+F2F1bnzz6SefBO8/efmRpPxn33xrrc2lEIYpS9VuRYoS9fPBBZO4sKLAY2Yjp6Koy+OcSoldV0QWUEHXdcuTvowjF48tEVnOVUpzycYgkUYi2zTm1HfHaWQRHgcbKkGc54mISoo+gUMLkD1ZBIpS1k3bz1NKKcbYNI0KSCne2FJKicnb9TRN61X9+aefvH//lmeJNl5sz4ZTF8gSUeIigAFsqCtg7uNc1zUZM2aNmVlA+v7qyVXXdfPY73Y7VDeOurXRIpdy3A+zNQZALy5aFXYVOOe6kcA4MdgNpambjDUSqXNszNnTp8scKMZYChtTxYKpjzTmnCWlks1gjDn1U9ONTdNoiVqkXW9s1aghQXNMWter2rWn0ylnFtVgzLPz1Xa7TSkNioeH/Xp1jtmKSJfz2Xq92Wxs8H/1H/591dRIWjht1mdXP7n88m9/dYop3u6rqlo37Xp1dnt7e3G+WbehqPXN6nTYXz19Ng9jdzoJIAutAY5x9gBTmjXHBYdUQa4JLai1iMGk4FllLnmKcwyGvAcgGbNkIWfJOkDHAqBqDKkyCLtgKx+aKghPwWNhBhBjA6NwLKAiWJwng0IglbUVGQMGmZKxxBCEuu6gyn6pBCCaC8+Ks4gH9QZr68o0OyxxZhvww7GfS96dn8U4p5wom03tGwMfn+/ej11x1Etp1y2TlllyjiXGp+eXXYxTKt7y4eG9tVgyk7XjOCirKq1XF5FhPM6qnIS8NWgpxonjvNusqnYFACNLHPnhMNbZqOp82FdVk1K6vKyHYTr2yXufp+zJe1HjrBR2IdRmN40xZmEwZKheG0QUmEXL4XRarZoDgxYzjmPf92dnZ2U8EqCmVAGMRqvKTlNGVGZWBBZSxCmDreu5FCLSwvMwbzbbKLLcvYacameb2hBILjOIWksX27Mhpjnmgq5k8FXICIMOhUtzdpbIxsyJoSStvHXGIBBhmVNRFVBlkMIFTQiWLOEpzQRgHSEgs3YlE1pAiwqG1WpB5VJyMEYLN007jmNiQjSHbjYmN1UNXJzxrsL7mw9ht526WGIBNcfDcS5wdXUVU5kSPhxPwzgllqZpcxoASAwhUWTJyCdmL3nC0yj8k88/3u7O+sO9I9M2bZrm0NRcSkwxBFzOmrNqKRxFCmIuUBQADZnAnL1xMRVnsWmDcYbzTIChJuP5sx88H8cxz7HyVPmw3q6fP+MPHz7kzOumyTn30xgCfbQKX3/QdzcHFZoyZAwZkdGICmAJpCqxqkwRzdYVgXEcx5IMJ9ZSlyqgGYZhTrGA2iqwE7UqRayz8zgbhoqtLQMaFe/2cxSEb9/dXyfZNK4yulP1KRmF4HxlazGUSoE5uboSlLnMIoo5W8XgAlr//v27QWQ0Osy9sXatxhtPm9r7MKd06k4plapuW+fWAseuy2zRmtM8jnE2dSggkmNfTpO4MaXnFxfrtnn/1X+62sBnTz8+P7v6k//lP86p/vpdUaMPAx/ffxuCmod+ijwVa+sr4ZTmYbOqcsrffPcOCD/c37oyGSnBu7FotTqD+eH8yfPr9w91WJ9dPMs377KM6vzbUxes86YqJXfIpvaA3unKuVxU0VcMOKoRFQO4u7iauq7Ms0cbwCrqN19fbzYbxfM17gOHKmzv76bfvP5wdb5db3Zs+OnFkycyOWMV4ds3X/3wp7+wVf3Fb16luf/FLz4eu9OXX933fve+1H/1t/3Z9de/+OmPfvT3/vCb19+NYuapwHCfIHtNP6mdqcNX333n2pbHBysEgk1oJ+PmsZxfvnx3fxdTsdbWZE9DT6tWgUophmhOBdAl5jrUzjkrkudJpVhQUj072z083NkFc5pzLiqL3iWq1topJVgmigCL3Wk5CWrhxygxqBYlg7HkhQ69DGWXP0KIVQgppWmOSBLT+O7dm3keL853hec0j87Tpm7HcXx28XzJBoRgvK+7To3BaRqm7mitXa/XdV2naeaUlwqnqmqqqlLVYYpF4NmzZ8zLwNLe3t4a551zOedhGKZp2m22zvvT6eScuzzfdV23HNms9+eXTxYRabqL/elUShEF7/3xdCqlXF5expTGaaotGGOkcMyshac5ZRG01nnPAnPMqpqBrSMchnme6925c+50OqGqNf6jly9TzuM4Uk6ffPJJKeVwOFQ+GGMs0nrT/uTy4v2bd0N3NCpN8AvVK+csnHIapeTgrEXy3i8j88aHVd10c29A680ml2iRnKXgrDPGEqqqMVhAiQlJQQAAuDAiOm9ALSICCrAU1eU+gcrymHWhxlpVAEQhYuacSykFgUQEF+6BAjMnFEIFAIPSTVFn50mryofare6P09gTiCT2rsolxilvn16uwu7mw9ANYwIV1VJkmpMwC2sq3A/T0XfTnIwPKc4uVDb4wrKPvfXVWMrh5pYV1ND5btePUy6Sx8Qp1lWz0FQyZwBgTqo6DB1b4x8hjbikxZaDFxD54KfpsbxvGKZF9HPB13W9yJj7/X693Szld7gUOBojqtM0OUvL+x8AqmZVRFIp1uIUZ0VIJR+PRwCo6zrmMk2TeG++bx9bWjEWepeqLpVZzrlcYozxdDoRkQdSEGNwISQbJNVKpCzD+GmacpGiGDMv9jQFBHjsZ7VkQl0RIDMvftSlBojILinYx9SciFpjCRSglIIKS9XHYpsHUSQQwIUt9b19D4kIRIsyEVU+AD7Ge6pg6rqe59ki4IibdW2s7fox5WvvvcLSAQAAMIwTAKE1Zc6ZE6KBCKG2pbAxzlp/OHZQUls19WrFJWdhytkYg8hFZJmRASMzL3FiUWBAUWEojgyLqIomPvZaWWzrarPdhpCt9d5Vbut66Pu+7/hUVdVutzs7OxvHURWL96vVSgmbphkNvb+9K6WgWgC2ZAFKLnEZCiz1M957YyFm9t6Dt8LL45OXb5cxRlTs9/UJlsw8z2VOULgJlXWBkYZxRm85FgJz2h/nE17uVhVZNlhSzrkjE+q6daFar88fhr5LM1gohUtMtfWhmGV6waySi5bMIA4dIk5ZYsnjMO33D4AmVJWqHee43W7v94e+7wGhaRohYBYFbY0db/eF8fb6djAa1uvTNO9P3f7UH8cTOBriYCr/j/6zP7z78Jsv/uav1tuaQkUkkedgYNWscp7AULAmZ47zbIxWxltbGdb+NK48dF1njFHgL7/80ntSTinlul4ZQFD+3vGpiGCtVU0iskAFVIoWRUuE4L0tkkuOOeuqbq7OL25ubnLO5PR2f7hgbTdnVVXth6Ebhp98+lyVLza7OA8vPvo4zvlXf/PLfua6XX3569+8+vab/+IP/7Bdrbt335ndNnX9u3fvNM/BW2ttVlTVh/t7nbt/9A///sXnqze3199eX6uqsdZZt2q2p1M351RtNov0G2MMrqqqypyf33QnReCiZO3ygOD3U5ISExGAShGxROM4rlYre319jYjLfF4Uweiy3a5WKxZhZkFaNqpF+Qn2kequ3wvE4zSnOa7WbWgaFCYiZ60xWFXVOI5AOvYp5zhO4r21DtNctrsGhI2hj55/NI7jw/19XdfrOiDm9mLT9z1jqStnrM1TL5xzzksRd845tS0+wparze6sCMzzNMXZkB2mcXt2PkzTsRtKKW0dijAzrzdbLnmY4jD0Uy6LDJsKz/O89Njkwi6Eha7XNE1VN6f+UWA5Dn3TrHKcUi42eEZz6rphLlVTHw6HrusM0oIOaObCORe0zHz74QZVXzx77upwe3vbD0O9alerFVndrNqmCt1xn6cxON9sVxael5S7bpiGPgRXVRXnaZpGhJDjfH9/31Z1XVVVaG5vbqzK5eW5LyZ4u6qrUsgYAyUrZ2ONd3YZ14kqMYLwgkBCUDBECsyKSxpBsRRWAINAxhrABfpqKgOASJaRWL6fBwM8rsLfF8+UjAlYVS2kYKjytg225AhIV2e7zz76iPbjaboRFGXMAPM8G0+GXGKZTr1rKkklZgYEFZkL+8rfPOz/9quvFhTMMOc+ZiUsaAGmvu+DDc65PMa2pcqE2mL7rJmmaU4pxkkUwKBzTsZcB7eg05KId6YOXlW89+v1mlWnaZpTnqaplNINI6Dx1h32p7oJrBJzcs6xyjiOhHYxjqJ93IREpOvn7w+jUDctGnt42I/j7L1tmiazpn7IOTdzcc417fph6K1FBGBmELDBASwEMmRmR4uD/XFTWa1WmplBLVrnHBlHJIEoZxiGAY1jZkTy1rAic04pg0dVZRFVBIvOkSEjUpawuEEyFhd7LQESLL25LKoARpQ1CSIa96jZioosfQhkFva4iOT8KIoiKbKoFNFibagbjyBLz50lsznbpmm+e9hXVaWgXT+GwMaHxKJIpZQYc71qDTmBxKzOoXVOWVhk6KdVFaYpGRXUyto5eBOqhplzTinNS12xSGHGIqCKAMqAZRlZAyWOtThr0BBx0TEnRKyaojovu2OoKu/9NCwtGpim0YZKVUVYRJ1zDBpCDTxxjqhorV+G9JWzZrNNKTGmRecLdWOsX3AozhkVoaWnRERVqWTIvBC2c85oIaeEqqxCzkaYeS5oXRuCcRi0NipQ0uG+S/0UglfVWErkSagzzm1MyCoJhZyZpgkyX6xdJXw8Hm0VyLi6UkTimEgFc55zJLaZCxECQRZWTqLlcDo6Z4KEfhpzKqbywbuY8xZ9N2dBy4aqzdoVE6f79nzXVs1v3t9jmvoy4Bhvbm/LnJ9ePZvJdUO/u3hKzt5/+JAKVc4SmVxyQFOtN2er5v7mlpJe7C6GmXPqAbMqMbMBrIPLWVEfkV6EaqxBBF7A9aiVt8M0a47GelVAkJxLd9jnNAdD2/VGSm5XTRU8ITx9chWMzO+vtxeXq+35l19+aUhtmV+9ff/TT558+dUX6+C60+HFi09vHo4SzPX1jfcmpvzLL776rV/87n96dXs8Hp2rEPH29pYMdENszy7R+9VmV3i6uX+or/yTp89/+7fpi6+/7oepOEAc/+Ef/eG/+eP/NRd58+Ztd+zOry4NmDHOlfNEhIZAhYxxjphnIMMpElEpqa68AavAzjoWeXb5zB4OB1rKRoypqsZYm+c5xmS8mx+njKiEi+eWmU0IArqU9pZSlvYVVhjGiUUR1CIYIu+tQUXlKhhrGhEGln44ztMpePv86ZPL86u3370CrX/rZ58pfwTCTdMQQI50f3/fNd5aP07x+vamqcNufRYLZy7B11XbLOe4ULfjPO3vH0SERZlnIkvWQhFjTNu2z5492+/vT/1Qc+FcQuVdqMZpEpGqqhTAOt8P45SzqfxqsxGGmLmM02p3FmM0wY8pEtgo0A9zzMUVrdtVAbPfn+Lt/XIiaZpGRKmoTElEug/vpHBdNcG5OUUaabNZsZahO+YcicgSzWNvkFZVGOI0HsvFZhP8+XffvT0ej6CuPwFzXq/auvZpGons4ijZbbfX79/nOIBsVlUoac5pRMTKejAIha2BJVCpyIhoga1RrwBohSCmMrGIFrJojVUiBTQGLRlnyBh01gZvl2YkIlIkFlkkDZWFUkkEioCioqAiwAJx6P2qTfNEjP3plFjFVM+vzm+PUxNMnoq1vrLVNPaeVqvVpks69H1T1TCnpGrIKsicRcp01rZZybpKRNTInKL19m4cvbGncXKGDSBkPh66knNd17uzM2+NMcEHC4invjuNQw3mdDqplIvdjlD7vre02q5XmdkBeO+tD4e3b0MIijSOY9Oui3CORRGYWRh86+u6zkUWksCcc4pRVRUoxlhgIRp6ABMLo/GsMKYUU55j6ZbOImPmnBnAhkBESwmzqgKgMxYkp8JLV66ICLPK35XMPz5oyy9LKWCQ4PFM7J0LouMUcymgSGQRFcAAgyggaiqZR1kKPck4JAVAJLLWWksigqJkrUGyBLDsPFIQEQuSJwWG7z9UVUERkDMvxBbSv/stKSVXzoXKcS6H04EUvLdxTjHl/bE7IxtCjQpzLsjLcNLGaYqZvQAZqpuV85xzVoW6biwh59idpsr5klLf931fXV3uXr58LlyGoeunsdvfLyrCPCkDknGoLLkwAysSLRBKiFwyajBAACbyqRtql7G185yAoZQSQu29N4CIyCnK9xXCpQgRGW/Oz3dPri7e3jwgqTMUY1EwJSaFRyDzPM9AxgOxgHOOCQRAC0/zWEpRBe+9r6qszKWUlEvKlqiuquCcqhaApFpbN6dMSpxK27aSgLTkpM6h84GtTjHthzH3412SsGqElKyZpoljAjCtr0yobdX03WmcE+dSYnHKMReoTEkzFyGLWWQc+1A3VVP1/ViK5ByDt45CLgWKBGNlSN44NT6zJtH1artu7a+/+PpnP/nxpx9/9O2Hvy62Fsi//PJXf/9nP/QEb8dcUPvuEEJ9vt1wSTnOoOmTlx99/PKjL371q/54MmQF6fCwX2/OUtRSCoDPMbWrOqXRECiAN5RFF6sbopbCqkJG6rrOmQUUlJVhaS7nki7Pzof+tNmsgzPb9eav//qvS0qbj14g8h/9F//5v/3zvyqv3wlgMNBaV7Xbi8unGCeCfHV1NQzDP/i9f/D16/c3d8dZ9Ld//tsfv3hKribrNeuTJ0/evXtnfYjTeHZ2Ztv2/tizgAr9zZe/no7dj3/687/3935+u98b2/dT6uf5N69eu6Y69EMsxVt3fDguZW4gKmS8s4iqzEAEUsjSNI9VVVXBLWdlAGAjkjkXtrHkqqq8cyww52SEl01lSjHFOMcsSwewc6KyxNSWjAoaUkIRQmvatonjNM+zs0ZBwRIIxCiVdylFizjnUjgZpLOz3XazSvN0f39/eX6R0/zzH/84x+F03NchbNfrh7uBOHoLCrRdtetVA9ZNcyxF0Xu0JqWccrE+FMVhjMYYFg3BC2BQvb/fs8r2bMfMp75jBR9CKlK39dl2d319nRcyjsgYY7taHe/7eU5VVb17/yELP/v4pTV+GMeUkqJZXBgmcUrMosfxVCXOrFmxAJG1zJoVjfVgvRrrgm2rRkTmMQ7TVHm/Wa3X6/X55cV+vx/HcRxHAJHCzoG3pgl+ta4QpDvcp7EzKnEajpx3m7Vzbpqm5W4dXNWdTnWIq7o53zXKJdQVoaaU2rb1zqIyGVN5KyJcEmtRQgSorDFkkQwzowKosrGKJKBEKILOkHXGERoib03lA2lOOWdhBSq8CJikAMYQAeJy3xApBEZVFdumsQTz2IMzjszpdDhM+2MEyPOuqUVTBmIAh37VtKfuoMYUBVYUQBUlg2JMTCmVDIDmbr9ZF+tcu17zZB/2+1MRlRSnsm39PEfOGTJXwS2U0MIMhsRgqCpWqb1b+Wq326QYmYsIrzZr693dw369Xo/zXlVdqEuRdt1YVztfDfO8YJIEwSKhoTnmqjJt2wJA4uIAvsetlpxzASciIdSKNM2pruvVehtjHPpekNA6V1XW2sKsmWMqTaistVpUC2fkx0sSKMGjXPmYEEOb5nTk06qpF9khlqzMxaJBKKxA9u8E4cdhEKm3LmcWVkQU1iwFsYCigC6hWwVRxeXyocIiYkiMNZaIC5MomMdaNEQEJVUhAkIAIFAVZG9t5YOA5pxoybMZNKgpzynPwVlALMKpH8cxOeea1ToVFo0AkHNRUiIqrE27Bpz7YRIZ2nblvV80WxAga4umw7Efx9Fo8Q5WjWfVzfZMJTkXzi+uDvv7cRwBgGFpE9GF6sbMAgYRVDWrLGVHjIYMJYFjN2nFiJawq+rgCJ133laqKghLHFPkEalofShZx6Hbrtrr2z2AOlQtEY1T4ZwTCoQQllpMACAQIqcEpJCBF1UDQAEUUCVz4WIQF2z7IzWvZBucJyQ0IlBycsbVde1rb1FJ8nrTqqF+mrPwpgqMZNM4c993k/XOkCuSp2mofGialSjGmOcpWWNCqKFAmgeDUKSIiHfGkmEFkbJ0yi0Ob1AgYVDWLGTMmPLnP/tRT/T6+noqcv1hTwG2rf+z/+mPoVqNwwkaxKpG6+66fj4c7if1IXhjOc7ifE6lDU0cuie7zW/94JMPr76+mUY1pm6b+XCY5lMIISdtm6rvx3HoDBZyJAzN9nKeU85RlB/9wMZ47xdKlCWz8HA8VdYaBJNznMfx+t2b3WZ7vllbgtDWr775tan8w6lDFC2laloSTiUO0/zmZp9neXp5maAacu4/3DXtZrXaPMR0dxrJPjTtOjQrHo/LxTLHRGSM8+M4Jy4sWrmARLfH4+rmJjEbMH/wB3/0p3/+l1PKv3n9HSMhGRVGEUPG+lCExRAhOBtUUinFElVVFUJAZUK73W5Pp1PiREQli4je3e/t8r5xNgCXBUeXS7HeB+tma71ILrgIUAbRh2rJQrgqOAussDDkMofgPKcISED6yCrjUoVgnck5pxibqt082bx48aIO/tU3X7dN+9u/+Nnf/Mf/8E//6X9/sV1rTnEaP/v8U0+hzJMnACTyTlVvHo4f7u9Xu4tV204p3d596IbRGOOrhojO1s1q7UXkfn8wznnvi/DhdFqtVtc3NzHGddtaS6vNOjQ1GCq51HU9TtP1h9tnz54poa+rmLhu1wF0jnmzqQVUkfpxmqYJ0IqIc65qVqAwjDMax0g+1Nb6wihqmtWKiAQAjUfLJUbr3WazOe5Pzldk3Lt377a7ta+qqqpECijznKZxbJp62zgRmLq5cuRdNU6zNdS2rTNWGC8uLryx4zjmnNM0X15erlua51mEHZEJ1appLcHYRwSxBKgCINaQgKoqGduEWkBjQnaFjFOgXGTORREMqbFkQJcVg8AQCC6j38KiWFgFgYDksVAVRES4IBclQ1pEtC9jW1Xrpl41YbVaATnsx4pNP+thuOc4MlpRs16vfbCH7w7QnCnhmJIAAqACIRlBMs7PhaNwVLm/31fTbH0lYJXjMIyrutmeXeQ55jkSyNOrJ31/qutaRKZ5mOYZVFKKU0rJjDFGY6mtG8nldDrVoXLOeRZrbYzx/sOtcRan6Jw33us8T/O8eMeoqqw1sWQjDnNiXkjnuty9YBFDUxKRuiwDEURE7ytmFVVjrbEWAUoWVbDesSKqyPf4TxRVzgDovTcGjfGKsDyAS1goxlj5x36nUgoSiYIYQ4jW2mWS5Jwj58pyNLSIZZmc6TJFstYKwpwyGSQFXGa6QCgKyiLCiMFag4TWwvce7MUgvdx5CVFxKRxQEAxNvUy5Fqm5qj2AMPM8j4gY3Nq5UDSDpZyZUFerNsYoCMY4EOVSlo7qqmqats3HI7MsmX5jTNM0joyINPWqcIpTT94uzcrvbh525+cqufauqcN2d66qx+PRu7OUUimpFAElY0hFmbWUYq1FS8aYpclElFg4JhGecuJNER+Mz6RNAOHlbF2ExyGxgiqGrF3fT4k26/bZk8uC7jCmKctcBJWlsCJYpAVVvwBhHIgIsohB8m1riZh5ijHm5J0F0DpUj9DKlDOzt1YVEWgc5xBCjLHero3BtqoqI1btblszs8niKmrJINl61w7jeA/TEAdD1arxwZmKZOpOSBaUSRRAXKict8E61+KxO0kZWdlbp2gySz/1zoXK2aahcZxTyeu6WcpXyJov334rzUq9YyRP9tmTJ//wR5/+zX/4y+vD4YcvXr4bY3u2u765+XC7tyTOrrBkQ+IBMLNRqJyPJUOOWOazbdPH6WbfV9vN2ZOzfjhJKVXVIoglJGNevHx2ff3OeZviJAUQQESWItRFJRrmGREDeWsp2OCc5ZJKyqFtnj59Ovan4/H4q18NiPrTH/9IVb/69tfTeLrYtET27Ozs+t0bVLq9v++6bh6HZ6dkcJkUOKLJh/bh7ugPJ0EzvPlwfXdQsK9evVpvNyB1jHGY5qhYhTrGyFJy5lXtu3G6vf1ymmJ/GhTp4dQ1u12aoyo+ffq0rVdffPXlEOdqtS4lK9Cc4jzPC8Pg8YUhkoGmaYZhICJX1SJiEceYbFVV8zyPU7TWVm1jjBmnKefiqyC5LNYbhMcFIoRglEshay0QGiABiJnnKc3zTKAlY105NpSjOEvMhQsra1O3zHo89H33taqejvtVXb/+5vUnL19Izt/s3zbB7darN999cGQQ0VfNzHG4u5+yHIexaVbTNIF1ZKxZNlmgxeqy2Wzu7h4E9Pnz56nI+w/XqZSqau7v9wJKRDHnVPDN+3dd1y3Tu6Wcy9cVkK2rChHn6WC9e/785evXr7/77u2C8WvbVhFSZlVlVMzFuFAkApICTXPabKq6aa21u7Pzvu+7ros2j8O4Xq+RqIiK4sPxNOfi6+r1m3eXl5dk7dyPqFCHoKp5joN25+eXTy/O1u1qTtx3Y1EZhx604ZyS6twPnLM15nQ6WTLIdlnJc87OOclFHJVSUpxIwVoySMYQijCIt+RIi2gB9cYQaVZgBRIBJTRolxI3EFUqJeVoXLD6fbcdIiACIoGILCW9XLgwiQhwYSCFUKNXrFe7lOL9w+nucFDyq9Vms46VO66CS4pCdrNu4zSXlLON1rt5nkUVCBMXR6aIhhAcwmmcWMAY0w3TeH+IMYLxknh12R4ORy3FeaOIN4c7Y0waexTOOddVFXy9KuW0P/RlssGv6iamuetOqjqngohCZrVaF6CZC8ccWZsG/fcfZgkBAIgoAP6d42aZETILAAizMAMYIlwANy6EGGMIwTnXtq2qztMkDAuwcBGZradFZA7eLl2BOTMsMCE0McblvomIdV2nlDKLt0aAWIAIQABRrPfr7XaeZ56mlBOrqKhIMeisWSLjapAAWEBZl+ssKqgnMtY6axwZQovy2NYnWgh0uVALABGlwgtxVhENLe8AAMIFYTFNIxJUtW/bWlVTmpdQ3BKlWDYwABzm2c7gXHi83JPlcczzLIrjfr9er0OodruzZRlabt5AFONsmoqIXKhCcKxFGE/deL/vmuCF8/HYbdYtoDXk8fvjijFGEUBBQEQeH+pSREELweIRcdaIYlaAWMgmEwWBw+hEyqpp0Lgp5pgLK6Qoh9MUYxwTz6nEYaRqXVl6cr693Z+6LtbBx8yKCCxzykQkoMK5AKaUSKFpGldVzhmiECq3OGOJKKcCoguGGoiIQVUXAnyMseuUeLLbdnO+qgDOWqNFg1hVO8/IAqvtKktrPnt5u98fjoOv2lJgjrMBLBkNFx67ORe/481mW20b33rNZRrGHHMsCsai96u6AaCHhwfvKwUgQGWZU6yqKmOB2o85ZlGOVNL04eaue/ns6bMXP/ud3/nlq+9e3/3anl95tMb4eZp90PPNRucOmas6FLXzMD45P/MoZerG/nA47EO77ecJQQ0BIlzsttfvb3frjbHw5Hw3dg9xLtM4kPHGGAGE73ffnLOxHpQVwXtf+0CoXRdFZL1ep5Ri5nXbIAiAvHnzpq58SckSffLkAiUrDzsHx1MHtt5PaUxm2pe+73er2hvI8xCssVULrnl7e+i67uLy6Xfvr4HMPM8hBEWIuRjfiKoiOFcL0u3xfn8cAllg+NM/+/PLFx/V6zSXMpVSYopj/PiFvTg7d+PUxylz8VWbWUTUGCsAKhJjXBiRS5+EknHOzVNCa0TVLod8AGDGNM0MaohW67UxdhgGERESMGQIhJf3m6QU55xKFrKGrI9xApGlA06EHZkQggVu6ipYl6ZIiE1o+2lkNKVI3425KLTh/uHYdV+fbdrL891qs1aCmNOYJ2aGbiqi5MPm7FJtb6uaT/39/YPzVV6o8caJSEopT6O1dnd+tlqtfvPt68PhYH1VSl+3DTNn1SIMAGUo1virq6tpGKYpAsDHLz4ma4/HYylSRA+HU9+PAJAyW+NVdOinGNOUNYQw9f39fl/XNSssXtlH0R9gmqZ5nk+n00LqqHfNMEVVdWiQ6OF4VCJU2O7Ou37kkgyqt4bo0dq2WzdN7VDBoHUmWTIs8HA8VJU/zf39/enibHfx5AmoxnHaP+xTxPPz8zmmvh+sNSmls7MzH2pmVsIsypotWAUxSMFVmgqKWGBnlHPhXJTFESGCCBmDIIqPjY+wBEwZ0FqLZElYGARBFxj44tDhpaRJoACIHFj7MVoX9ne3Jc3TND159sJ7v12vfvaTH30U+cP+NKXim/Vvvv3Wez9yqn09xoRIysAiYCRziRlffvbp/vbuzfWHy/MLX4VHktrZ7ubmprZ+6nvnDSKSI2EZh9M4DJaMATN0o5a7zXrd1HXbbIwxdV3v9/vMshR2jeOcsry7uRWGqqqOx4dGQdEA2ZIXvhIuC+LSkOFDOD87UwWiR+sfABhDVRWmPi3wEyJYrZo4RxXjndG6ZmbCx+J3YzGE4L2vDSQuC4/JOSeKj+k1IiJgZkOPBihCQ2hyzkvlUVEgIQFRRevw1HcL35QFUBiRYJ5zyc40UgoCeGMn5mmKLnDbtjkmQ6jGLXuVI2uRwErOadmoFpMzoxBaskZSXjbg5VKMxoCCQZ2miKjee+ft911M0DSNtXae52mattszEehOvQgoUN+Pu51n5sJc1633fhhnke+7RGNsmpq5IAZnDZdsKx+CU+BUHmMOU0xNFVjy19+82a3bH3z2CVklEwht3eDpMIuoIbdYaCUzKejfsduIgndEJCAx5oQqyKHywgpzXOobjNWcxbgS0M2xoHUklEt/6Prg67Ozzd3DYbtZRaGhG7ytncFVUxclAACyj+K5cIkxiVDVgBTjnLNkCHLJOWdVJNRAlDLnOLPCdrtd/IwEJnNx1qKoD3aah8Y3gJXybBy2npAUrTgyxQRVpaaOOX/86ac/ks/fXX9gof2xv3849P2YY3LMLWUI8GTtVjVYy1PKDuh8s1Vj+pSOw2iQttvt/f19XdeXl0+6rns4HIjCYs63DipXDw+nXbuFkj2F2777N3/x73708fMfv3gRru/SOFdg/s//9f/x//vP/kXl22fPrzT1cYzB4qb1H332w5ubm+HhRuN08+6tFbjcntvd5XfvbwwygHz28tn52cXDh/uPnj+5vX0/Hh8ud+vXr9619Rm6oAi5lCIZF8AvCJIpRVJKjLDINlq4aZq7u3vnnPd+npNyqby9u7trm+q3f/6L/f3N3ds3v/vzH+22K/zhp7/69s1/+OIV+7Vdrx4i2/Y8endz925XuzjHCd3rdzfWEoB9f3tXV60inZ2dTTHV6/X765uUUlbNXFIqRFA3K2BAASQk1uubOzbIgGQMkE1zGscxx9LWQS3E/pRZUkpSZGHGsXCJ0a69IVdKIectFmu8QARRY6wlY5aVIqXknLOqS5ro/u5WSiFARQRRAPHWWoNxntOcUsnr3c6QG6bx6dXVfr/nnECK934cR2+0rStjTNNWP/rs87uHh/v9vgnVbtfc3N0yszUe0BhXW2tOU57e3Uwxt3UIIVycPfn222+fv3wyxXh9d397nKaYw6otWR4Ox4srN88zM5NqXdc555ubY9M0D4d9qNsliHz55Nndw/08z8voeln7AMRaOwyDMjPzk6tnwzCklLpxWBYd+V4sUIRFZi+l5FyGWIjo/v7ehXB5eZm5jGO/3x+tcyEEZt5ut/v9fsmBiMjxNKhqU9VTKcE666tumERku1v7KqQo3prxdMzRXJzt2rZta+CcpOSqXrHqqR8RDUg5PNxdnp/FujrbbpQFAa6urtbtCmjuui7F4ry5PxyePHkypSS5sMCUshQGkLrylfPGWRGxBCwMwsCsXCyhtb4AIGJh5byMixwBgahzrqg81ncvZXgKIGpAASGmrCKEqAALGbWuKiBNzL9+fW1QKxvQm37KOxcOp+40zNX63FvqxzyPA6oSQU5xcdEXfnR4LVzyxOXm5iY4d35+fjgdy0PJmbfbLZf8g88/G8exCu729sPV1dVutb6/v0cAS+Zss63r+nTohjjcPxwQESq8uroCgGmK5+eXh+Px+ctPvv3228hS1euHh4duGFNKLlTdMJJ1lTUL3WxRFBald57nh/3eO1fX1RIZX1QsAKi8MrN3KLlwnJtQgYpFE7m0VRWsmaZptWq9r4wxXdedne9qrIJ1U4pE9Lg9GzHGLOm7JQRlyC7eXhZhkcxI1hQVTtkYFIS6rhG07/tmvcJSlhiVs7bkQgSFiwHLnAGkpFxcXmzLcx6daZmQFUNl0lyMd46MNQggS4+BiMxzQkNQtKhIKohYV946K6rOUuFkravq2liQJS6xBBdLsd7NKQKSr+qcs2axFuZ5VlVjPeLjfH0xNMzzvNlshNk7l2Jc0FfWQWHJOS8lm+M4sqiC2W42nOKpG1+/eW8Q+tW8WTXy2BWjiKqJORci68mO06yqKIygOQMSWDLoDICSrVhBUDVy8OSqQMY3IQDAqe/JuDlJjBOjta7ORY0xL549mYs8nAYg240zaaksnuZMoCKlqStnDTMv9IVCEHy13OattSnNhmghbaXMKkKAzttlolm3DRZlzgC4+Lm8Q+ZcUowRWrJkIM/lbLsxZFV1ntOb/fHy4snpODrnL3ZX3TCdYBiOhyJ8ebZFUdmt1qt2s1mJyH6/P/Q2jtPVs6dJ+HR9zbkM4z6n0qzWKXUPDw/LvB8Rq6oqpTQegHMl4nISEUWJBt5N3enb6f3Qj/10eXZ+/eYtgl/Xq2ma7g8fdm3YXaym02ma+8Ph7mc/+fF/+LNbb83Ke2Qu0zzMtxVAW7Wrys99dxtTG+yv/+Y/keFVuDh1XRy7KrQWwpTynGZjtKpra6rjsSfv1u3quN8D8FRy7YMPDlRzKct79R/83u/dXL97dnmR5umLL//21198+ezqvKrrf/u//PFHz56tt7tnzz46Rnr9MB4ygXMTl6kf6qadSxRmDXWMsVptV6vV4XAQFS7l2Hf9MOYi5LwkFi51VQOZOca5cCDHKrWv4jgbZ8XQeDoJoLWWSfYPx5TS84+f27Y+Dp2gQeNIaelRNcb5tWdQRLM/dcu0O+e8BJQB0J6fnw/DsKwyzOy9L3NedCpQJYTH4nRmEPXWZcDtbl2yTONUTKqstcC1IzE+TpMB2a3aZbqTc/5we/viyUVwmNN09eTZzf19znF7tiGiruvmnIyrLi6vtuv2/vb2NIzr9ZqRErn7fhKEdndxt98PMU0s1gUyru/G9aZ1zi2b1na9smSmafrt3/2d2/v94XCw3vHSxIc4z/OyxC/Ol5SKKlrABc1jre26rnJekBZcOz82l5UiXFV10zSq6urV/f19CGHZbs93Z93xNAydMWa9apxzd7e3S5rTt42qGhemaVrai8n6OM+Li607DYDShBBzQmPX69Ui4uUcjfPG4NCdhjGtmgqN2+/vQ1WpqpTcnQ4AQIBpmo0xrkYWOPXdYmA5HjrvKu89IYzTGGOsvHXOTRpFpHJVKXNJhYUNmbryYGxmnXJJJTMvlcBkjDGARQurCEPJsqj3qCC6IITJEAVvCTDHaL1zznHOXdcVkRACgcZpPr84Y6T3bz6oa/puCHVzf3cTU+GcLJkQ3Ha7PZ5OIqWklEWRjCoy50Wsu7758POf/eS3/uHvf/mrL47HjplRSYDvHm5zTFXtt23jUQ3L2tkhxc1mi4hxGInIVU4ErHfDcHy4vVttN977YRydC1Ockew4RSRb1Y3oaBVy4ZQLUt+ct97ZnJL3noiEqACkGA3ROAwi6xBC27bLAhpCaLKKmLapSyl1HULwOWfmErxbr9pSigpXIdR1RUQpTuM4VlUlwiWmZZtZSmIU2DlXREUEFBeyVSkFjJlzXlk7jLM16IydptlaO80RKhSERWjZ7XYicn19LeJAgRRySpXzqhpz2u8fdtstp2ydLSn3KbL1IMVb50OFCNYgiIIwESkCGjuMc1ERUQaw8Fg6C6xFBY0jWp4msO7x4m6tXYohhLkUFlHjgvWo+QSIiAYAinAu8v0e7Jdi8mUnripv0IBozsl7h/gY1CYiay0YEoWqXYUQlqGaGSOAYS5gHpuIrLOqJjOriDVA5KapCBdDCIJF0nLmRkMKoFAWGZ4FY2GjJsYppYJQigiCM86ZokVy13Xeexfq7ao1NmfmYEyE4gmsdWSctTlnoyzRQCmFQuO9J/dYReOMTSk5Q8olWDunYlDtUunpPS9HJFTrlphZY1Qkp+OxC8pnzbnxq2nMr2/31noBfPPu7Ri5m2DdtHXdIOI4pzEmdL51brPZ5XnKKXpvyUDmggac83XTdqdBLa3XW0YrfT8MQ2aZpmhtVkQRKZIhZVZZZQLVLZEFHGI0FYF1anA/j3g6/u5v/f0v/+arP/q93/7jP/lfTWjW2+0kx3Ger55dppTuHvbG193pBMIg/P7dm9gdA6MPnox7+exSczymlKZxOOx//PlnoOnTz56vNusvvn599zDHkofuZDx6H+Z5LGmoq9XEPM/zerWSPJPwPI3e+6Zprq6urj/cCsuH21tD9m7/IDHWodq2q/fvPmianlw9tfX6u+v7f//ld2F3lRKAMKFDKVxyoqJEvmoKQ92sj904zlmlWEMEsN/vq2ZN3sxTEi3rVSOK3TQqWEQqwnlOomZzfn6a52GaRADJDMNYGSegAnw4HFYXZ5ZMVFxgdtba8+3GGHN/f68iS6d127ZxnNI8GmNKyt57qyIX5+fLceDh4UFVU5yMMY6wCHORZWjqrAWAlKK3ZIFcZZ0l55wIzONoAKrgPnpy9YMffnZz/d4ZTHOsm2o+zb/85X8EoKqpx+mwO2uvnl6s1lsAfPXqu+vr65cvX3755a+O3erJ06vrd+8hpTdf/JqI0vWts8F6V9XtvuvX6+0vfvrD6+t3h/uHGO3F2W75b01xTik1TdP3vQFcCHzDMKDKNE1L9HOxbac5Ll7WKeVQVdM0WWtTSt5XoQne+34YRITIWO+sd+v1er1eq2oq0jTVet2q6uHh7unVxdn5FnBBKBgyxjk1hmKcmLVtW1+FnHPwvm3Xp9NpHuelefDUd21TVVU1jSXm2HXs7M57l3nKJZLzxsCCKNtsNtt1ezodp2lAVOdcWzchhGmKnLIotuttP87BueVGNc4xFUZUY51HUJXMAopgAQCstayijIJASGrQGIOGTMRMC1+FjDGgRASqKAD8CFYDREQFRLUGi6pBMqj9NCZEAlBlKXnKuV2vpikmwf1pGsexO/W3f/FXm83GJR6nOdRtVWGfEitaH0IIKRVVNYCItHSGKEssebfbffvqVUrp048+/tnPfvb1V7+JMbJBkmwMTt3JE23r+rwK3Tw/f/5ytVrtT93Nwz6WhIiucSrYNvXpdOJSABGM3WzPYoybzaYbhyyChlR1vV5XVRVjFGEtbIyZ59l7B6DWGgCfc16tVksV2AJeWNXN4qpYtzUzB+e6eU7TVDm3aqplJFF5O5ZECqSKIiqy6DRN06SU5nkKTb1clUIIY5yDN6oMQMu/SkSILNCSYIBYCjNiTYCmKDALxmidB9VSeJ7nx7+ZyfuqCO8PB7LG2Pppe1mv2vdvvlMu9aoF4XmKJGxQrbXH08k7VzmnwCVlRPW+WubQAMuPwKCZC2YUKbXzKpoKixZSDRpC5YxZ4DyLZA2CsIATAQCBRECAgRWLjDHmUiyAqho1qjDPM5fCbGaemdn4pm3XaKhIUYXg/MKoUVUugopElpCnKatOIQTJUUpSQigAKiACqg4x5Qk1IwABEpK1NgT/fZN3RgQiAmNFeI5saWl4IEHgogDFkl3MaJV30zSlIorIRZwx6zagc2ZKx2EuAt6aYE0pKdjKkjllABUC9dYol1VTj6CWsJTinZdcjCMymESqpiZjcxpSzJglllT7qglN60zr6Xi8vw/x/hjnYv/62/fXd/fbiydkjPSTYKfgjGtSLjf3D904zYwZwWdNWUsGiHLi2I1dN/RDl23wNw8PYMnV9ZQSkEWjObMACAAh+iogYuZCSCCKylaF+1NrLYiKwVSkbtfri8u5lLPLi/cf3q3O1nPh43wMtR/n/Prd/aZptxfVGJMdp21tKm8327PnVxdzkfuH02a3BZ72/U0puq7bs09eXmyaOOVn55tY8t//rZ/9yZ/9x+vrDz/8yU+L5Hc3b8/PL+6uH7SwMyZOsxI4FAR48eRqnmcik1KK0xxCePv2rUN8fnX55s2bJ1cX//v/+n/7P/zzf3M4HOrt02p39mT9JL7/cBrGkkRVyfiV8+otiFHgLIKE1jvIIkhENucIvJCJnRrLOpOCRUjCBIgGQckYg7VVtEI0TPMcExm7CGaqUJhjTi6ltq5zmmcBa/1CvHk4nlA0pbzdrhFgHMd56Ju6TikBp7bypGqbphrHQaQYg86ZcRzneT47O1PVi/NzIoopLXOppdhHUpymyaC53G1DCOM4jiMzAwHnNL759hvnjKva+9u74+ngvW8q9M4Zg7uzLVmnQN9+81Wom9vba2uxaH7+/PnpdPr21StjzDevX1W+aprV8XhK8Viv2nxzf3l1dTyd/t1f/MWnn3xy9ezpzfU7Kfni/Ew5r9ZrQFvX9fX19Wazqaoqc1nmcJV3vqqMMWl+5DV6Y1NMCwlr4R607XqM8yYEWdheLMP3Vcmx5Jv7OxFpm/U0TTHGjz/+WFVjjIf7u34cLi6ucs6Q82azqauWiG7ubhE1pVTXtTNGRAhwSYUaQ9vt1lmKMRqDbdumsbdkpKRRU4qladAY55ybx1FK2Z1tnKVJ2TsTggOQnDOAxJIJdLvd7na7TbuZ57mqqlN3GKYpVC6E4J1VLgC6OFcHGrYrFyg40Mw6p8hZyFpnDYhVzalIKTknXrgQqYiv3GKQWT6zuGwQpAqOFCwZZ0lySXNUVQ3Vk6Ye45zmiazr+vHVq1eIeHFxcTj1hbvN2a4bhuMwd3OJinPMaBAAQFQBNBcWVQFWRoLT0BvQh4eH4dR9+vEny5j83cO9AV1VoarDyrq191bkYrXatM1quz3brJ9eXry9uzv2gxi8e9hTim3wgNRP43qzBWUQc3l1wddLlIiZC5dsTYPBihCCqCiCcI5AjogsIgV/Oh0XRTrPUUTcer1AysZx/DuBR4GdN4ti37YtIpZSln7lRS6rqmoZBS0eKxdC27aNtgt4jqyhQsZ6TXkYhilmay04472f5qSqjBgz1z7EVFarlYDYUNXezfO88MmbpindaJAzF+9Ms2qMMWRtZe26XRHAdrvWwkYFARKXfDj4ph3LNM+zRQQUApziqWSxIfCi8BKpCBctUFRZHGWOBtFaR6hF1WSx1uKC9FFQ++jXK1JKkcqaJFoKi2QFKoVFAAWITC4CKmht5by1ppQle62LOYWIAB4LvhBRWRInEAZRMohoWBHIWszO1aoqAmqwrStFFNGHh4dQezQkIgDaNr6qAgCUksmAedzVRUFBJPPjvRz/7isaNoacM3Mq8zxbW4xzCFR529QhSWrraoo5F7UI1hlbrUAKCA+nue97zxUtZRUh1MGbpk7zDEolOFEcYjp0R+x9u1oJ5rnMhhwIWeNK5oRIoldPXtar9tvrvRBKezEc8+E4kQ8/Wm+7GPfffItKSEYMMlIUHabTu30/j1MpJVQ1eptRp5zyvmvXq33fMZKLaSrFeo/GiYC1i9fh/883JKLDODauRuGf/+jHOec3796exuHpi6eb803tw1/++//44snTUko3HqpVU9WVpBBCk/Oc2AdDp/2Hbe0M4MPxcLV7cblbD3334uIJAux2V6+/ieluuthslLn1Ztr3f/G//DEa+p1/8EdPdpvb26NRadbt7Z3Z393VdR1cmIU569MnVxrnw/2HP/wH/+Xt7e2//+v/NI/jxfluGOftZlt5N02DNahc/tv/9r8TQDT+l1+9ev4yT3F2Ifiq2XiepmlKPYgVRFaDZAVAciwiodokLlKKtzblZHw1zBODERFHMI+dKAQbYhFrkYsiYpQyPtzPMTnngKyyLIuD9d5pObu8aKpwvt4O96N1wMzBGku4eIaY+fLiIk1jXfnaGY3FGtA0IaldJqDDMMzzzCmv6oYULKEJPoSwnIjt47jeEZFvQlk1pRRvTRwH5Lyq3MND56rqB5983Pf9q1evpmkyzr58+TKl9LOf/3bXdV9++eWhH9p2JSLH43F8/0FEjqf+7du3//gf/2Nm+Wf/7J+FEJhliqlq9Hd/7/dE4FdffMUxN+vVT37+s7/883/37atXhuD/8X//v5UU//1f/eXLly/ncTKbtu/77XqTSzHOWV8jYicSQliv2rpul9dlAJc6veWcKwgK6KpQxgEX6g8iWZOmoqq+rnLOwzjWdb0/Hp48eQKE9/dLIbFX1XXTbjYrIur7cb/fwxm8eP6RgJ5Op3mcmqrq+oGIzra7VVPFGImgCs4YsqDWOF/7mSQ4RBUywXoTUykleesQcRg75zE4+9HL5wurYZ7S/njnfRWqakr98XgkfMQN1lVVysq4eH5+njlxSaGpK2tKnLEUb60iIIE3XnOGBEvvEwEF50oRJWBUEQUyaHBJwS6HhlLyMthGEBG7qhtClVxWdZNNrL1fSu4+3LwdpxgTJ8GLq6ef/fBH33zzTVEw1g+xN9afb1aFTm8f3iYGV9egstiCOAuzAOFiZyWDpWSyJuXsvT/1g7euaRo53hEZa/2ubb2KIYpDv2maPM8jHuYUp5x5OkGOTVg/O99gTGTdw+EQEaAUzSmJHh/unaUQalUVznEeuczBOl9XjUdmrjbrOWXCxSHA1tomVIjojUWv4zg+PDw4S3VdKwuSQQUCBCRLBhVKygtAdMm24t8BWYkWq+DyKC1jYO/8/nR0ziksdA4gIiDLPDOzsC2sqICkFlUBiIqW4kKyZGKMS+vG+fk5c+m6rq68c3aB7KAwC8dpBCkOoa5rS8bW3iKICKgeDocyJ2Ox9o6s0cICbMhhBYvTm8gSyTLpR0MGTCpZVIxxzoUFojXnDHNsmmYhcnIpwiCgj75ogJJzfqyfVQajSKrkyCEKEAlLUTAKZKwPARAKi4ogkiUDAAslQ5Qr51WhHztD1DQVkIs5rSqw9u/C0NYYQ2iBMDhSVWaNMQpA8MYaSCkRwlKjaZEIFdEsZyMlssaogCFQEZBiEC3ptHQQqaYUVUGNJwBUIaTz3U7RDMNAIOfbFSj3x0NbhTiN3hLnmLjkEjftar1uj4VLKW1VjTEaAmttN44KAAEiS22NqBbRIaac86jcdZ1w+ujjj19+9kk+9hGtX63vD8dfd/fbZmWRplOvqn61mkUO4wBkc54lC1nXDUWTQl3NrIBl6IdiDBqXFRiJCwOAdw4URBVULTgAAQBjjGA1i6yrauZ0cba7u7/d7jaHQxenhKQhhOub9//oj/5wfV198dWvznBri0kxVlXVn0a3bj/76KP9zZuuG19cfXR3OLaV6Y+3nuDpk8vUP5xtwid2neYUrPvo6vyiwYf9h3a7zvPQhvDTH/7w9Yeb+2/vq7Z2xiIAKayqSubp/atv/zf/+R9uf+en//pf/osQwng8rs8u/9Ef/sEv//ZX79+8/YP/3X/1zVe/2n94/+Tyqhvzd999tz47++RHPxrHSY397LMf/Omf/tu2Dg6FgjehilmGWABJFByZKFJUUswWod2umuAfTn1SUFRDhFqAi0FUFVQFQWYuCuRcEQFj5ylZK8Dig63P6jdvXtchfP75p7fXH27fv6OwFo7r1YZVxmEGWCL1+OHd28rZPE1zmjxKmiZnqTLeTtPQNI1zZh7GnHPTNOvVKuesREPfL6XT3ntVjnNW1W6pka98VQVJc/DeB5sm37b1/c37VMpmvUKCcZqrqrLW/vf//F82TfPk6qqUUjKUIpWvj/tTXbc//cmL7tT/yb/5k5hLCPVms3ny5FlK82Kw/N3f/d37/cO7t/nu7k5V67omAwbpyy+//J1f/JYB/M1vfsM5oV9tt1sieiTdGDPH2RmzZGfbWnbrjQFMMZacETFyQcSSxVh76rpxHO8e7hdJcLnzFeY5xnEc+2kUhDjmR5JnKZvNZgEIP3v2bGltIrLH47E7Db+evl48nOu23t8/BO8BTZwmZ2zlnYjMwxgqu9qsoUQCXq+aNE+eQNAqWlEWESAkRQJEkJim1fqi708xxtV6O0UfYyS0u93uuD807SrnSIgppSo4583xtDfWghaQTGItgfM+OFevAjMvQi8iOmPIWCTTDeMcsyiUwrmIERVFLCILGgnxseUNFdGhcE5zVVXMpWQZ+8EYQwoi8pNPP7q5fzh0s69b49vTqVfAh/v91ZPLJ0+eGefqtglzFsC5ZO98GjoRIOussiorGiBULTGnqgp15ftTlzMPp6HyofKhRAHSUaZNCIKQSszzVHkTpdSN8w6d8+vN88Opn1MkXxVrASA6W52f7Y8d1bVRHrtTvWoJVbTsVjWs6s16ZYzhlNvKMHPTrLphILJzivMk35sG0rKhWmudsc6btm1DpaWUmNM4T84bASUEsmYxHIiICk7TtLyXFhF7t9vlnPf7fRYehqHIKaVkLQBiKpkF0NrVaoWIXdctvvq2bXPOjOyqME6TIeq7sW6Cqor0nCKs16CynJNC8OtV60O1lApMYw+qIqIi09jXPiz0aVAJwfcxW3kEgKgKAJKl4Hwu5XsHNKiUJYEGCkXYkgXCmLMlcs4hY8pzjNkYQ9ahSCozM5OzRJSL5CwiCISgxMIiACy5xKZp0JmcCkgBQoOEAKmAtRZQOUc0GqwhIhV2xqrysnOWksdZ0UBt61KyqlTeL+VdORXQXLkqnK2HYYox2sbTI34MwBCgeIfO0XJmIiICIyJNVS/+9sUNJwiIhguhWy0yydD1U4yAJouxBCkXY7xxpjgTp8glNd5iXRfnSimsZY4RVZlZ6ko4e2ecsZllHCfn3NPLKzd0CpQ0I0ourIpDTME6BqoIt2ebOPVvPrwfOKEx3jqOqa3q/eFYspyvVs3lSkQA0YhsmubhcGRUQVWByIukInPharHBhqAIXMpyXDOAqECKqKjAqkqEi3NlLqSaM+K3796QNZ//+EcvXrz4H//1v04pW29VpG2bd6+/hhx/8eLJ0B3JpjGWPCTjqNsPnz79fP3y6fluFbzROD2cehA43Hz48Y9+UBirBg46HsaxxHi4vf7k42dPz5t6vfpPv/r2/duHN7fD5fOXu/PP37z7bp6Td/XMgAkvdqu7d8dvvvrVbtW8uDybU3n+5OLh2P2rf/k/7Hbn3tl/+yf/BtJsAT68fa3NzjfVNE3x/ds/+IM/+Lf/9k/efvfN+W6zWjU586EfUixT4ZjVGQTW1aqhJF2MQKgKwzBsmu+bQNFISSnNwQCRmefJ122JyTjLokJYUFPJIPry+Yuvv/5mhHF4mFzwReTP/uzPnl9d/vSHP7oe57vbh2SNiILqer2OMQKLdcZbI5I4zT/90Q9Qcn86fvTiuTXG7Pf7aRhUlQw83N+2bVtV1TjOy90XiXLOPLMSWmsJEES9sW1VeQJV7Q57TcmuVyVFIvNbv/Wzv/7l37Dob7593batD5t+mA11pRTC/vz8vO/H2jd5Tt2xe/b0xdXV1fXN7Z/92Z/t1hf/p//D/+XNu6//x3/1r7788stf/s1fn51frtZNN0yvXr16cnEJKKWUv/zLv1w39Waz2Z1tvnv1+vr++Omnnx6Px3a9ijmP4zjFuaqq891OVQ+HQ1OvgvdVCF3Xccp12zjnpjGq6jCNMafbh3vvfd8PuEQ/CZUQEEIIC86iqpq2rbuue/v2rfd+tWqOx6Ocjgt6/fz8HMl++PChruvt9qwKjlCfXV2mVOZxyuPYrmpEJEIpeRy6ypKvXO3s3Pdc0hBnEWlCVVU1gI5Tn+OsHNfrduhOOc7zPJ+dX15eXj7sj6XwNPQppdnMcz+IyNid0Jo5xaLl8vK8ritQVtU6VLVzzlggBEUgQEPWWlW0xoGxTVUTWkHElCEyIAISAEAqzAzfkxEXKCESjePojamrChVAOE3zspitgll//PLbtx/GAu/efnfoxp/85Cc3NzfW+fOLi1TKF199/fbmITMaH/ohAlApRQUQzYLlITKIVCILYC7ignfGaubMZVufvWi3nGOw9uL8ymLpH+6msasb23hnPQWyIlI37crb/f5YSmmfPfN19cMf/lBAf/nFl6d+nNLsq0ZzTiqci7X2bLtumrqtq/1+jwqVD0SwXa8V0UyGmVMszLzsUmmOi8GVGHLO7u8aDJ0LfhE5yyOaSpXQkqMF0brchBdv46KyWmtTycuFeI552bBBmZm9q8gaso68L/LYJ88CJUtZIr/GuCzeQilFWPu+987Vda2cx7GPMS9elcp5rpucs3cWhZcYIiIiQSnFV+Fqsz6dDsMwsLN1VTlnVbUfhu32bM6JmVFUVQ2iiEhhNCSgpYiqZtCFUoTGlSzLmW55daUkzQgAAtVjQs8YAGFd6NNqgAQR0FoXEBxZWvLVpZQQyCIiFhUUAYJFU8SYpiq4tq3neY4xluLQGovgnfHeem+XIYWIkMGSkkGpg7XGLWNsADBkWRJoEVYDCIAACgvSXBkRLZmqciKSSl6ML13BgEtDCRjnYirTGEEMLFhTH0SkpHx8uJcmeGuI3LqpD91p4YUaS8Jl6PomVDb4fpwRgVSQoPahj1OwISdhViBTWBTzGLNHTTzW3hDz/c37zdn5eVNNudzePeRm+93+eOj5+eXFdr0tpYzDEdGcnZ8H66bTOA2DFYmiUYs3Miglg4LKwqLigRwZMjbnYlQN0vJOIAJRYeaSNfh6zMNu0/7q1a8/ev7Ru7vbbo71qp1LsgYSpzTJ//W/+i9f7jZ//j//m799/+6zzz4ZxazPzr/621/eX7/+yQ8/Wa/bf/cXf/Xpx5+c9qcX2/bTz3764UO3u3j2x//rn//27/+9bdW8ffVdmafdun793TvnjHd2Hvqmqq7fv8PgyNAPfvDZ2M8P9ycf6Hh//0d/8Pua5i//5q9B+Z/8k3/i6/V/98/+RdNub+8frLV5Spym51cXv/33fvZP/+TfhRCkxJ//7Gfvvvv6ydn6w7vXV1dP7u4ekmA3RvI1mcp5DKGZ55lLKkVFCMkAwPF41JyIiAlTTNu2tgEtRwTIhSvnM2DkwirDOMwxK8PZand5fn58OL6/u96c76w3cRo3VXP97n0bqiFGBBHOddViSqf9wRgTvP3hDz5//fXXn3/84vb67acfPf/5Tz77iz/901UT7H6/XzyopZQFj9c0DSKaZe7CwKyPYoVImuZgTUnzOCIBXJ7vzs937wwYgpjTZrdDY9++ffvhw4dQ1ZmVmUuBH3z+k9Wq+c3XX1tnHu4PlfNjGVWw23d5evX69RtrfR2am5u7/+a/+X9ePqmdpefPn324uyspF1FL0FYrEcklOkOffPLJu3fvJOfC6fr6+uUnP1wGbFVVAcD19TUaijFWVbPklA7znplDCCjqnENjrLXG8ZL4tMEv7lNjbYwxlrxohlVTE9FwOkHGh4cHgPNPPvlkmqa+78/Pz0NTd1232awefa3GPX/+HBFVsT91u93u4uLi4f5+XZ/d3Nzc3t6e73ZNW9WhVo5t2zqjpeT1ul2vGj5N8zRlUVsKiFRVtW6bkkYf3DyPTVPFnO/ub+pqvTAcUkqrVWPBiPclJiLKzNM0FS193xPhuq7qEJZUq5rcl2yt9a4KISAaZkUgQdxsNnaKRZUhpTwqECKoPI5+VRVJEVFFtWRBpyrLoh+cbUKV57gUBs/DQ2g23uLm/PL5R5/uuxmQROT8/Hwcx/V2y6/ezClmdGgDWnO2Xh+PXZzToq5ass2q9ZVLnIzBXFIcdZqmXbvetJuzs7O+m+rdhbMYY1QC693u7MzXFaj242ANlpRLTNv1xm43fT+cuqN0B+MCi9ahOhxO0zB671WNtw6dlVJKSd0x7VYfbTer/rB33sRpXm3WIvC46aa0Xq+nOHMuRLRer40xcxy7rmtaXHLDSxRnUZnIgHfVMpdd3PIL/2i9XgPy8bRv2/b5i6f3++OconOuG4Y5RVAqoi6YlLIwLPS00zw752KMRCSch2kM3saYrTGTCIIQ6nq9XqDfh8Nh3dYg4u1jwAlE6qoCVVFNKf1d2GnZaDebTT9rXdfOWEugoIjUto3zPsa8bKWkQASGFuKjCCiWsmgAIDpPaZnh1z6kUjj2zJy5MDApiQiTZREiIl0Q10DWW0RrKWUuZbSIdahAOXFaCqeFwQRrqkZKFimssCDwCNA5gwKlJFWLFktJpsK6Do9A3FxQhUCl5HkcqqoJdQUA8zwri6oyFySVnLQgWgtEWkDQODILLh8tOkvTnOI0O+cE1Ll22ZubpqnbdpoTY1/U9g8HLmk5ZomWkqXvs5Qs7ZMQgp2sZTPOkwNbShEQYFmvnUFcte3MPOS8sIyaps1J+hgRUVHRWYJChDFHYdnWNaqmcTideu+rbeXvyM/oJUu6vve3dyJlmAa0+MlHL55cnG9CmGpPxh3G/t3+bs6Zq0BVlUWQbFV5YwyJchFrDIhaY76Hej82bXhbEWK13nbjyTfVu/tbLVJvVqlIs97kPHBOMpf927fuw4f//Ge/uPhkJ7b961+/6g6ZKG7Wq92m/err37hQHU/D8HAow3j+kx+mTF9+9fb6Zrj55//s8vzq5dNnx8PD6XAoKX/99VdRg7V2PoxPn79EZ+cy/87v/M5f/cV/UNXKByCsfPitX/zszTdfpnn+n/7Vv5ozq/HW2s8///z923eZ9PnzZ5999Pz4sA9VVXKsg6ssjTJ/8uLqdLy3hCEEQjeJzYpzYgF1XglN13VMoW534zQHZ/1qVVI0oRI0LOnFixeXm6q/e59SclMGV4HUb28/0DJ+9V6KDsPw53/67xRg3a5yzldPL7/dP1REL1++rNA8WTci8Pb9h6snz4rI119/Xdchx/T6m2/TPO73e1IByZWFH3/+6f/n//3/sgFNidkAApCxiED7h7uLi4tF4UmZT0OfUwFEFhwzPySonHVl3iSe4nw6HRpn1pV/cXVxe3v78ec/IBss2l9+8VUBFDVjGr99/3bVVKylco7IWe+0GAC3atffvH4FQNvtNhqoKv/7v/f7p/1tu2HjbFTz4qOXQ5rfv38/aunGuFu1P/nxTyrjvv7yq1UVfvL5Dz99+tmb97/57Z/94Ouvv37z7vU4p8vd9uGwH6cYp3R/tw9NzczGuNvDcb1eO+Yydd77aYy+rlLKddPOuXBRsAwMkqUIFYHSL912CnGO07wYQ6ZpWgrsmLWpG+QSDDHo6fhgkdrVahyHVeVTim+/+XZ7tlNVcna9PfNVUEEi6wzlKRmLdfDKYoy72IYT0kJBKinHlNiiNauYfagaAHCocYxjnBar7TyPl5eXoal32/O7u7vT6cTMzgaPldEwddIfurMza4w5HE6uCnXQujK1l7oKBu007lOcm6ZCnqAUZa0MamXGpGnOU2QAsNYAgDHWOScopWQG4sIQjDIbg0XnpqHVyqKymLPDMICBJ2eVsDzfbO/vju/Hw013+NHP/15Sg+TmVGxTtasqF1kQFmSUuagkUdQieaRV2yIio/GuAlfFcSqhHE+nik++rJBxzrkQWWuNr6KGYsycBRMoGEr83YdbH1wRfuhLP43DcA2IbdvS5twLfTh0Fxdh7kdrTN+fzs/PL8/OX3+4e/ny5Rrc6fBgjLl+96Gu68urpzHmh3z87v0HIEPWElGi3NbEaOacTMmPSUpr51I053rVojFRpBhS77oUm1WbSik5GmNIbRZ3tx+dc6IWtLAYH1okP4xz5swxzbmst7U6l2JcGxVLrFAAiqUp5jjMzlpGQtVxisG6NCXvLTOnXLREh1gUADDGJGRSUabAIv3Q77YNgEwp58yq3HHvyaiyt7CgEFFk6vtRFYyRnLUwuJBV5qgh1AmylmjIZMYEQIogwMzAElWMNWBM0RIXVCkrAMTMoOqNLaksB/dpHowxVAhRrbXobBG2SMEGzuw8xTRaqterZhqTNYYQVBmQqsqLFm8IKxdRSLMRg6YtQnkuMU3L2aiuAylsduvt9gwR7+7uxnFcrFUlJXIVmYBERVXL48Q9IyHgNKb/H1n/9azZluSHYZm53HafO6bcvXVt3zbTBj3TMwMMBxhCIECIAEWGKJCQwFAEEXxT6En/hx74IAVDD3oQoQgIAgkKkggEMAYzMNPT3t7uvr58Hf+Z7ZbL1MM6dYEInYeKqjrnVH3n23uvzPzlz6SUUu5DijGkYjjTOg8AgCpmjElQGzLLw/Ywj+I9+BjI6JntHINSSpu6juryZptEfMLRp8phYzSlEOdp5tg0jav0bkqiKAefDmNWpqlUZtz3u3bRcfA5xsS5tmbRbg7TWNe1rVfDwY8ZXbtYvdgZhkMKU22u4qCtpqWDyJ+9uDrsksq5rmy9bHcx52oZxDcpK6VSYs6iWQEJgwhhIgghgLHZz01ltVEEkPOMjFa7hTKLejGNg0bFWnHwmDMFgtG3TTWF8SefPfnml99bHS1+7727//rPfoGXZy8v+tN7d7/89hv3jvTdxVuPPnv57MXhjYfvDsPhR49ePLy7ev3e0aZ958ePz6Bd/fDZdj/zR999sqjtt77xW49/9kMfvdbx1770Jqvq2YuzP/xnf+jHfa3gYnd06oZPvv8H9vwLDzcnHzz/5ebeerjUOt7hbVyst9Ub+eVH0swb8PDDT/4gDO8u15uc0yfPbtbrkz/+3s8R0UtvjFkfbTiEe6+//vzs/DDNMewyM5k1Mcs4NYjvvfXORx99lEQg5JQOLeHHv3of33sHTXO9m+Y59JfXGUkb108+MfgEZK0YTIhtXYnkeX+4udwT1jezerG7+cpXv/Yba5xj6J9N8frlwc+1ZsUBQU5Xq+707qNPP7ZaffzpecJ6e9i6176gu64r1hbW2syxbK3GsYxEt/YUAjBP0xxTzhlMnVLKMaV5OOzyBcGvf/3XvvjGG8+fP73/8I2m7c6vd9rZ1WZ9fn2zH/oQktb6kGPX1Eop1zTjOHrvJx9d1bz22muXVzfjODrnlsvlw4cPv//82dX2hkHGcZxDVGScrff9obLuZrf/6c9/sWq7d995+9OPP/nJ+79477335pj+xZ/8y7fffvtr3/jmx598enl9tVis6ha2u0OMUx7HmHix0EV1johJUlVVbdsm4WJu7L2fpsm6uiq2lPNcSORE9PprD06W6+12WwZZAFitVgCQc+4PO6WUc66qqmXbFcFPId1EHw5+iDEuVqvNcsXM0zQlkdqSq5xSUFYOKafz83PbLphTSoFTzBxSDCIMSitFF7vtouvI6HG/c85VdRWHQQj3Q59BUCvX1AvCaZqGYdJaJ4GpPwCAvHIQtCkSWADy3u92bBUZdZtHeyviBCnmi0opopzzXBaBpdMvQLRP0YcEzCHMlrA5PeIcm6apqkYpvLy+unf3wX67u9kdJEnbcoz+zp3Tjx89+fa3v+265aHfr5fLmTn5MIaZ0eSciwbONqbcDF3XlbiIEAKiWjRtruq6rpVSnV4ZYwBIkMLsJz/VDMqUtxEFYLlcP3r0KOdY3B7ELYuF5DBMSaCqKkAsCc1HR0eFkThNfqom59zFxcXJoiNtX7x8frReX91cD+PcLleb46OLqxsWyTn3fU9EldUhRqVUDJmIEkfrXGOtMSaEsF6v9/t9sSMWkd1uF0IoHAirbHGACkEVmhIZJSF3m42rp+DTHGNK/TSMiFNI8aiurbOJs1Vq8rNWlpkr5whQCRulrLGoVCkkhflltNMkcwjzEEhpZZ1rqv1+rwjmeSQUzloUKaVuNwoi5V51zpW5Oedc8r+NMYl59jPz7VfG4MuXee8Lk7EQqilSTLd8Omtt6Q5zziJQfswktwXYApSscQCJMeYYIpDTpjLaOYcUPiflFt8XJBK6DY8qL8+a6hWpDUOIRaXMGUBuPXMK3rDrh8pYpUxd17vtPsZotM0AZZQvP07ZciPi4TBMwWcGAEiZS+YbAAzjCEDM4GNmISAbc/HlFqO1ECpjYkoyxSRirSVko3DqJyDWIJpQkl8tF0Yk+dDWjoG2Q59mTwJa4Xa7tXVllK6qar/vjTHOFM48TNMkKb2K6FA3Nzfpipf1qRY0DDkhSY1MAhBjMK7e+VgbXdXNIcnz661ZbaBSGKeCQJRtYcgBUBljUVgrMqhV+URmBEApl09fX1+v2saQAmCrVMhcWft7f/EvPX708ae/+sVxVxljPnv8OPr57T//8Jt/7jdP7x3OrvYvL56fPf2kv7DvvvsegrvZPg/oPMQs6eWH+0eXcVF3X/naNx49e3n3/uLw2RNt3cmdu4dhvNzuQuRusXr/F7+qutXl9TbG6Jz70hfeveph/9mj/8V/9Ne/+Gtv/l//0R9Adfzv/fbf/On3f/zTH73/xa+8+/X3vhKncSHn3/3JB2ep+b3f+1//yb/4qZ8m4+yLFy8Oh92XvvSlq6ureZ5tVS2Xy+ub7TAMXddd3GzXxyf7wyHGKCLW2nmeP/vsMyBkyAT0xhtvFAXH4dWHc65um8MwTZOf5rldn877g/cegBDlcDhYo5xzh/1+nGbbtPM8//ynP926GHNuuuUXv/Dl7/zgh5OXr339yxdnl4c5oZH66PSw3/3i0dOPnr+oanvnzh1dkvtijNM07ff7vu+bpmFBpSjmFBLfmsEGn7Mopfp5ckYbBUprETi/vnz68mzy89XV1Xq9ZmV8Zu0cGh1z5hS1saVilceyQHzKmNY6Rri52d96GjM/f/787/8//wFmjik1TRMzf/LxZ4xAWgFQzAykfcpPXp4dn5xExIurq+sf9s7JPM9TyN/85jfPLi6X66Ob3bZbrhdrjYNlZodYN03xnRFEP3trqm61pJSQ1OfxMsUO1BhTDDhLioXWerVaHQ6H9XpdVVYZXTx+U0pldae1ds6RdeU4c85N/f74+DilNM7T5fk5Ii4Wi8rqGOPhcFCS2s0ac/I+Ss5amxAnQAl+LDLTMM91XRNBzBiT3x0SggJFIac8z6j1enPc9/3sI+8Ot4aRyghMgORshUAiMo3zMAxNW2utb3YH54IzyiBg5ZyrrSUBBhQhBJZcCOBaK5XL6SQiIUXMKQsTETOkxFaTDwksTSFwzALe1U1T1fdffximeQ7RGcvCL168uLrZrTfHX/var13txqdnF23dXN68RFcL51XT+cwiehKuatd1Xd9X8zwTYArRGGOUKsI7EUkxcs7inChT13XbLfu+H8exWLJMIU3z0NbNdt+/8dY7sx/btn38+PH1PsbEddPthrE/jD4ka+3m+MR7P4dIpO/eezBPw2GctKsUUALeHB8NU9903RzCnONxXaOzFzfbeQ6ubpTRifMUPIBYpcvdoshobUUElPbTXExMJz8bNpK5WK+U+4SMtooYOedcrCGMVjkrzlGBWKNAhNo2iSilmK1RSmmdQtakNClTVcVYikVQmBHL0piLo5Y1TmsQquvq3r2VAF1tb3b7Qw6+NqapVzlExNuxz1ljrdVIIlwahQJQF7Gsds57H2Ke/eh9VMrEV6ip957wVmTvvUcBIvIpOqOMMcqacuveis5zQhQSICJ6JSxGRK2p/B44C0uWxEwxpZwna21lLIMorYsbNzMrZZX6XDaDGnVKKYSELDExvepi88AFi26aJCJ7pFvmeUw5c+RI1oDALaeBS/gdJgFGKOlPIEV0RwAKAEgJI3HMgiCImWNMQkTHx8eHYdrt+/FwCEU5ikDC2Y9dZRQ1rnY5d64yxGm9aCpEZ2wI6eYwLBsLiBe7g5JcOJDNYrE+Ojq/vNbWcMqH3c2q64QRtcmAs49VVWlrc4z9NDKptlsnzuLnGLMxiqwdw+y0TinH/Y2gMnUzjZ4B0SEnIUQiVe5DRETOGkkpbVGJcoYQWESyQuODT4oqqzknkJyiZ6XadnG9215enN05OXn5WeW9f/b8+cM7J7/84MMXH/38G7/+zaPj47ozy6kaej/10/mzm/t3Ht4c4uU42LZRdfvi5fb980kBn988J2X7kDbHJ0D46aPHH4cpB/YZ2Kdlo7/5zW9+53s/sNZury/7ORKCDuNRa65388VhGrz+h3///7WskJq8C8O/+pPvHy4uoqFcy8z8q588RQAiQhKjcLlcPnjwIHGenr/Q2n7y2afz5LWrrrY3TdNcXV1pYxbLbvaeOXfLdr/fAcBisTgcDmeXF1XbjOP48vzSGJNFfIyJGVC1y3bOcnl52SxXcwjGOYV42O3Q6uBD3/d1s9BI1igifN5PbduGkP/sez+OjNbUTx6/2O4PdduePXturXVtq4DjHPLMjx691MU1rfBuMgOgqpuuaRofg6VKW0hZ0ATUahimaZ4TACYBVJQFFInRT84uPn70GADMy4uHb0bXttMcdocBlUZFxpjMAEQhZQDY96OIAGHTdoIl2IdTSsU0Y57nqm5NzkLobD15n5m1sRnFx2SttU0zx/iDn/3MaqOtZWfnOKK2geVP/s2fCcJ8fRNi9mmLSoUYGaGqqmGeCp3Vp+i0G/1sQ+W9F8AiqSxEoBxTSgkFFl3DzJUzbzx87YP3f1lV1enpcXkILy8vU4hNW5VOipmLr7rVWhNpoqOjtTEmZ2l8s6XtOI45zaCrzaKxWiuF4zjO41A7gwLWatJZa+2Lk6UwKTBWWasV6aquh2EK2TtbpZQOw75puujDNM2k9bjfl5nemsq6JuccUkRF1pjSSbDkvu/nMPXj4Ixd1JVSKguA0gicc8pJMgsigiJkUYqcMyEJIEKGEEIMuez+U0zD4FEyQPPk+WVTad5GpSugKh76uSQosGTOJ3furDablHHXD8Owe/vtt5qbrRA9fnkBhJVbtNoQ0V7pkJOk3NZVZU3OMgeviQQRhAhRK1XITVe7g9Z6JdhWtSijXM1IU8wE0i3WzHmcwnJNs8/b3UskfXSyPD8/j1mCT6iIvcw++pCKg/fkZzMOwGJdbYzxIVxez0dH66OTUwA4Pr0zTONh6McQVkeb6ezCh7BarVlSytlZKwRGm5RS07WI2Pd9of5e39wcHR0pMiCktHZVU86FENI4D+rVhwgrTSX7YRgGQ7pxZlapdtb7WKIaJj8rJAL8PDUh55xibOuKmEohiTkpAaWUc3VjyVZOa60UOldV9V1n1PnltXF2sWj7vkfEGCPCvw2cgVf5g2WGLo9/P03jOPqQJj9zBiJKMTtXkzIpeQbRSqGG7AMzm2LyQo6MhldxjaXM1+q2Pa3creRPOJdUVxFhzgqxBAyHnHLOWpdoxdtht6Q6MEvwCZxWWSXKVmurK61TjJFFcmZJgoiYIr4KKk751rOvPwzMYK1F0jFGJA8AiKr4biILZ1IQjXbJQPapGIKJCKIwAhqllRIgQMVAs0+cAwGl4CurvVPTnBTKsq0KOFgr3bRu0VjULEJGQ/ZRpn3VtceLxXYfRwm2ra21PswI9mrMcz/EmE1da6S2bpRSVunamhR89KEfppbM0fHJGPN4cZFVCCFVWhBU17bFi5tTOF0eEcjl+fO+z0frzXwYO1XZqvaQSYFCZE6A0DhHoMZx1NYhKhAxoLWAgIAQIelaOEVLVFuz6Fbz2L/33nuC+Pjps2dPPt1vd6dHq9PV/atnTy9vtl/98pcePX75b3766I2HYdnVd1/7wu7m8ub88jDMpj5UlevPnqdpcEtxdZVQmPX1MAOEKLCfzt5++915nrf9pFCOju/cXF7l/eGnP/3pNAxV0yhT7fvpcpt/8yvvPH76/sffHTHWjsNf/Atffv/9H0SwZ1tK/c4p+cY3f33M5sd/9qd3X7sr6vji4uLBvdc/9f7Jkydz8OM4x5QF8LDvydiT09Ozy6u2NdZGANz3u4JjFQfcKXicRiEcx7GIXBgk5lQ17f379588eaK1evDgAYMC0+/6XhkT5llrXdf1NPZVVb333nvPnr9MOazX66urq6OTo+TTOE2NdZqla1sk0kpCHBerbo6z57zuFoFZSlZpYQIrpayzR0dH3vuqqYGQARBh8nPJ51HaKq2LSD7kJCQ5gyYwzWLkzKhj9JCyubqh/WG37+cQrbVZhAFEGAEFMaR46A8ioozz231MXDX158rLYTw4Y21V+xgOhwNppW1FILFY9CFOc/AhWWPIaNe28zD6ebI5vvbw4cOHb9Z1fXF5fXF1OR6uM0jbLJJAionFF4j76Ojo6uqKOZesqHGai/0sIhYG6Xa7BRHrdFVVxhir9NnzF8aYuq43m01pFBaLhbGq73suGYXGAACnXPruEi4XY1SIR+vl8WYxDaP3PoVZcgQFfk4pRLiVZUpja2vYGIOgykGWIXIGP0eiXO4jQiVIqDRpx4DBR+vqRbe6vLm+vL6c59C2bdu2i0U7jHPOOUVvjFl0rUZlrbW1TTHmmA7DyMzWmqqyRhMzZilmMUqK+3kuCeSejC6WyDHEAufGmKYpdG3NQqOPVd0q67woUS6Mh5igabrKuWG/A4CqqkLKcsiV1V/64hf8L3516lO7WJ1dbadx0Kbquu705KhofaytTOXmeXZVU7D6EFKZzGKMIQSltZ+ij1tjBkVkrTUK59lbrbWlDJkBfEgx5P2+f/PNN3sv7WKllLre3sSYkXTlnK2rlLOyxijdH0ZFsF6vY7q1m7i62dbOKqVSSqhUZokxNsvVahPPXl6klEgBKi0AglAEriXZkIzOOWtjdEr7/b7UM611sb5KKRlrx+lwKwVRigATswCTwszJGrPomjpyCAFS1oRGq5CUMaYmHMbpNtHs80gzvN2YlGWq0loAiotW2SJVVXDOdU1NJxtm7ioX5pGINBIjFBF8gWELLbHgUuWlFixXKayti5xTTDHfxo2Umh1SNKLJaIhp8rMzNudcON4i8mqvkY21WikAqIwFgCAQEQGRM2fJKMKIrFFr54w1Cpu6vGfEXNJ8sYS0M0KZVkWEWZQCRUYUZpGcM4CwMAhK5tLcTD7rQjxXDiD7WNzcFN8a02aCAu+Q5JwZnKso5GILipgBbqVLLJOgKhAuA6mYEAUgD/u+WSyaSqdgI2djtLVWG2NTDmlWyHHwxpIj1S4dxrSuNeVpUxtzst6NQUg9vHs8hzg9vcp59PPYT6My1RxDVTUaAZUGSqT15MMYLn3Kh2EMLKrinDxoh4iAEYW1kLPqvTceHC2aD1Qc++Gb3/j6px99XNn65bPnF9qJCMKt4aliUCROkQLRpHPKQopBKUQgUUqJyhqEAKZp+iv//u9GHz799JOjk2MCAcJ7d079PCplvvrnvmkBfvWLn09C250P/DIOw9Fy0TW2a5svfeOrP/jB9z59/AR1rcWEfhJtIEcyqO1mGAaraRznYZ5Am6pd9P0+k/n13/rt7/zZn4bw6V/48//eD37yUxY8jF7r9fnus7/6u7/+rd/74j/+J08fv/jwW7/15TFcvvjRNqTaHOE4vzjfT1947V33a4ezR/968e6/v73Gx48/k1vNTySt26oOOS3Wm7ppPvnks8RcGs3CbVRKsWbv/Ze+8pXVavW9732v5EmjolKPQgjDNE3e26p58eLs4uZHzXLV1F27PNr3fVVV5+dnOab1aoGIb7311osXZzFErXxbOaWw7qqLw/b1N15/9OlnJ6u7d+7e/Vd/9kyhoYyUvDN26reQcqX1PO51jLFtW2NMjBEVtYuOmbf7PTPUbWNcXTGgImfrfhzm4BkwhKCUEeCYWRnDSXTVACoAuO5HZs7FWEpQKV1qr59jqjnGAECJMwmWnNIYbrNoSg3WWh+mwRijqzrnLCA5ZyTdNnVIEQBEcuSMiMPstTMco9LVOMXzq2vnnPfh/OqKUDtnJz8X0GyaJmPMw4cP33jjjadPn/aHbYwRSc0+lMVVyLzdbjebTVkMTP1werQpFff6+rqtu7quLy8vEdE67Zwbd33hqVqlyDlgycXeIUelFLBYa5U2BKIUdk1VW+W92t1c+1Fyzl3Xte0SgOZ5VsYZC0Zp3TqlKYSQQ/Tee+9LaiwoDDk5U43zNPQTtKQQQdFhLJlOVADSYRqL29eiqRWB0coYk/wMANrayrkw+3nsRUQprZQCBFdrBkmZhVSIIYY5BC6LfwIkQqVUkISI2jntnPfB2GpOmUHPPnWL5vLmkDLePVr4yLPPda2bxfKwvSnrc1eZNa1+9cHPD7u+qVxmcUYdHT14+uyFV6ql1jkbmREYMjPz0O9DzDHGnCUzG2MA0bpKOeu9n7yfQqjr2rpKSDHkxMyAmSHktN8ftNHauN32kJX10zSHMPaDtma5PCoXqzDDF4sFS0ohzvPsp3mz2RhblSSrBw/uGWPu3Lkzzv57P/jh4NNiuW6aYZin2jqtJcZY67osd+d5noJfLBb9MJQlzs1uq5TiIJSi1lYElTJaW9RShCtEpEmVMffWFXWaSivd6KYsYosQHwAi55QjpxxzAgACjIiKSAEkZiRBRVnYx+CtPkw9MJf19n6/F07GmGnyh8Ou3++AFBEJqkLa2iwWIpJSIro1VS6dnzHaORdiNEYZMDMFCIwCUXKOt36cmpRkKMHDMSeHgKAAcvlsYSanFCtXQ+aC61ZVpYXneWbJmkgpRQSalNbaOVM7p41YbYggx6iIMgCgCEhxgwFSnHOQW+IbM4PSAsTCAIqZOUOWpAFCSjrnYqqaUinSxWiiRGqCRiQkQOJbo9Bi5XELKrAgESISaa0IBYWhWFGCViAxNbXRkIxRZt3ebpQRjUHkfOhvlKbKmTtHy8qqk83SAgNna8w0x3nqMU0GTKVQUNZdhyxjjHMG5cxu3x8Og0aqK2uMWbRdpc3+cHjy8uU4B1u5kEZlqF00wtj3s5+DBXC1efbxx3JydGe5gXbVIP3m17+W/eyvXuzBpJyApERXxXlCrVtjOIM1asqRARAAlUFBJPJz74wRZpT87W9/20+T9363251fXjRNk6w92qyePntxeXZ+5/T4d/7SX37/J98P0zjuzpVAGGQ/2/Pz83e/9OX/4G/8jf/2v/2/QGJJKSJkw1ihMnAYYtW0kBPqOE2TsdUYss8k5MYQc85xnt7/2U+KAGeYfI0vH1+/+MEHr52eL3/00x+1R80/+P/8seQUp94a1/e7atF++OGHVx+//Lt/+3/+Q3n2vY8+jDktN+vr3Z5JfeGdd588ezZOvutM2y0Ph8N2v3vrnXdCivuLfdd10QdmJEJrza9+8f7JnbtlC2MtFTQ0pdQt18q4x4+fxhiPT05vdtuLi4umXTFCVbcxhqaqAwXv/TiOP/vZz957790f/+RnzjlCmfuhOzk5Pj52TX33/p2PP/1ou7852axDDm3t4jSmPDVVnYR9jNZZrZQyziqldoc9M1dNU0g9ymiZZxGcgxfGEHNKyRjDSMyci3SHaPCRCFPkLAQA0+yNMc5VOefEmYrhnEiKYbvfKQQiKnT/mPjOnTuHcRQRP46Tn53VqCiEGAOXOo2CACCQU0rO2JA8kVotF0qpgq3NMdTaHYZ+N/Y583K5JKWqqi6walnQbq+uReRwODx79mS/3xWTBIBblScjOS2IuNls7t+5++mnH4+Hfdu225ublOLJyYkCGsaDiDRNM89z2ViXWadExaIAoQAgCThtrCNNKufop6wVEQEBGuRFWyulchZBjDFrjSGmFy/PNstWKVVVVYMORLVNrWg2yoiI1lbySKC6ukk+ZB8CUs5ez3o/9DlL1dTr9rhQxpRGo0paHFlrFYiyWkQO8wjOFSORnG2MMcZsLSGSUgpJJWGiMm1k4WyUIoVEyijyCgjJOauUzjlra3VmrXVgzqK89/Fmt9/dHK2X0c/b7W61bI+PT6zVNzc3F5fXq/VJ3O7HsV+f3Bumua2raTi8+cbrIjJOfh4nQWDElLMAFp9IZTQpTNPEzIiEWiUBRhJBERCgyDnNKcaoFd1t22mAxXG3vb5cLk855ZSS0lBVVik8OjoKIYBkaypjmxK/0dROxE48FjuC6CftmuPj42maQgiX5xcxxnsPXvuNP/fN7//wp8J89+7d4gNDRAo1EYWUlDXTPAefQpVDSMagMlAiq72fRaRAoMaYnLN1plRQESGtrLXa2uyDs9U0TYe+J2UUslIqxjjPc9W5LJx8UFjKFXnvE2es0DlHhDlEACCtE0McZ47BKs2Sxzk0la2dBeG+75VSKXqtdRZgoJxyCXrb7/dlNVgQ/gLkCOE8TiISQ0CiqmqMMVI3GSQkmGEWTiUCPPqQsyijFVKJR6SEKRUWNmqtU4pEBAKIqJAEwQCkFGOORGSMUkoZJKUQABIzpKgJiTRAYXsAAqNwcbR3IsWNHI0qT1NMmDMwAyADAJcvT6C1EVCZC3QPqHR5z8udQ4QZSISUgAhkztM0xRgBygJYsAQagygSQlbaAEDAjKAR7DgmJcAQnaXjZqU1xRiHYZimoTKmdYYlLWt973jVOt1Y7TSkEJqmuc77OB/8OIGuOEMYJmILKYV5ImVBuK5rlRMA9cOoaCKibrG4c//B5XY3patx8nXXxBjnIQKpxGCbJg3jtp9M26yO74398OTs2flhznHc37xsLK3ak0lmzwkFjNKZhbIojQDZOu2ZBCFBBgBFmAG6roveV1XFAWPIxtgitlyv16UzO7+4qqzbj8Pw+Pk0py/fu3vvdHm4fo4pcEBQ3fn1MOzHVQdvvvnmxflV1S7HRNfDxGBDkhzz8enpwwf3/uxf/8l+v12ujplofXLy8vwiTIff/d3fffTxB8PQ/5W/9jf/3//099t28XvfOE3xC//ij7+tzGeLzcnV5LfPbBqujzYqpBeadRzdN7/+NRv6P/yDfzrtx3GaSanz8/O6W/Szf/78OSIO05gFjo/d6288DCmKyBe/+MUX52fzPJPSheJzenr6wQcfDIf9vTunnz1+0jRNStx1XfCpBCcTaaVxt++bbrlcn7w8PzOu3u/3iHg7gBkFAM65q6srQpznki8gh0Ns2uXLm/3pnfu1DyOApJgj1zX99q//+cMwPHrydAxRWZeJtKtt3/elDbRVlXM+DKMgTD7mEtIiOPvZ73dzDCnlCIiIxriUmKwOIbZtO06DLgxP7QgxxYwECinMHskoAtfUfvbLRSsiddtOfrakh3ku8Nfp8fHmaHV1cRnmqWqbMsxlyACEiAowBF837v6DN4ZhEACWBJJTAqcNI+ScCpJ8s91uNpum6cZx9MOkmubozjL52Xt/cXF2cf6yaZrdfl/OejK6JIc3TdN1Xdu2l5eXzHxycqKIlstF27Znz1+0bVdg1XEcjTF937ftbQucQ0BEa5RWSqGIiLFKKxDJkDMZQmFIGQg0IVozjjMqqlwz+RhTBgBjXD96Zl5EzoFTDmqBJWgPAK4vzolotVrVGt1mYwiHYWAyxV7Yp1h+6kKga7u6rh1wgpz9OEw5Hq2Xy0W72KxzzteXlyEETpEgpRiOjzcxFXSBBIGIKmsAIMYsCTWhtbooiRPnHGJWXPjAdV2XjcDso9aWRRixn5KfPad5e9hfXl994Z23j0/uTCFebW/qbnn37t0XF9f3Hzzk52dKmRLmI5y8j8bZ4tJgrA0xzsFrrY2rlTXGunmefQhkLAAwArDknD8Po7SmmecZgIno9ddfv76+KteodqYfIAGfHK2990JoNBlrCSSlJJy6rnOKYvTMLJzHcdTdYtl1fhqbprm+vASgN996+/XXX9/3w+npad/3KcZiyzX7kYEQFGcQhGEYGERbM01TYt73fVmszvNMqK1RKUZntTEGBed5nqY5Z/Yhl6QQjIkRI+fdeCi084w0DAdtHQA0TcPjAFT8aZUxxjmnlJpEUkop8eT7aZoMUu0qrUmr2/1uCfoNMYpgXdch5Tnk2XsmlRmEg1KqbZvyP3rvI+cQIgC0bau1zsxl8U+kcs7KuLqqYowx+pQSaQWEnLLpnBBGzkBKKWS+TSG8jerL7JzTdGv4rLVusAbCMv46q52xRpNSijiXPiDGqDWJiDKKQFMBooEIGZByFpFUOuYkObPc5isUBjVAThK8L4dj6RfTLY2fAAAyokIRzFj4R1hMXrUmpVFnEpFygEWeFUHllDGm+Md5Hw8azs7OFJJF5ShabZd1taxV3xMwaeq22xsluVG4WdYauHU2KIhhWjbV3eP1zXaXWZ0s10apnXCoVchajB6CJ2U0UhJerRYhhGmeE+Dm2Bpnm0U3zQGSoYxxziH7MYTV+ohspYS3Q/jg0Qsg9XJilaNW/Nf/l//xz3/4p3OoASgMPafk6tqSyiHmFAoPTmnMIMzMyCQomMN8++ZLzqirGP3R0fEc5pRS5GyNM1qnnHXVEOB1P3/6Qk8xHbX41S+9gwk+++RyPux/9KffP1xdfuML71wdtXcfPPzg0cvtLz7JSbFoUrTd7y/PnpVwOQDoum67OzRde3Nz+cV339nU9p/8k3/yR3/wzytnhaVuqxePrjSp49Ojy11v9NqC2x4Of+u/+E+Wx5u/9/f+J8bmxz/7+dv3m//qb/2NH/7Rz5598Kv/6u/+r372i+d//K/+tXPV7rAXwJJM9ezZs5xkuT767LNH55cX5dkM0YuIInj+7AmnvFos75zeubnZppSQ1PZ6V9X10dFJznm33b8yNM+kBZUq/jYFOW2axhhjK3d2dvbuu+8WBOvy8tLaRWL1+OVVt1hMcjUxLuoqMuaI05i0cv3hup+S6Cpr5zlr5xwzT5MvaEwWaNt2DsEPUz8O3WI1TdMcg6ucqartdmuULrRDhVR2SOM4ikAUVghKowjmnBRREUs450RKsTElV3WaphAzMyeR4id8dXXV1G616LY5cYwxx8lPzjitFWQW4aqyyc8vnz0t/vgioolExDmnAUthWCwWLKC1TinE6GP0zPbly5d+ngCAEEKMyfvjO6dd11VV9fTp03GcD4cDM1trAYBjitE75/q+t9Yctrvj4+P9MBSCibV2nKaUc0wpxFhXVdl+WWtRACWjQPQh+2it1Qpzjtpqjmkefdd1KaWmqVJiY0xIPBx6EXF1o0kXLgApsIjBT1qRJhn6/bqriMgZ5jBWVXXvqMureh/SPHtALljxOI6FgF3AzOgnH2bkJNn7eaiMihQLc7utG06hQHmHw6GqbOaotM6A4zgDUFVVWrMDHUKappEBrbW1sdPoCaBU+pzzarU6Ozszxqzqep5nykiMGahql0rS5cXZD3/8k69+9avD5Ou2OTo+dvVqP4Zf/OIX681J13Vko1Jqu99pp+YYsnC7WGbmxFkQ5xAyktJKAHxOTdOEaWZmp5Ut28KCW8SoNe33+2XXhDgrlM1qfTgcEFhydqRMXaeUcqlFnCFFS2itifNEbUPIhFB0LaZuwjRjNk3TAfMIcHN5Za1bL7u+7znlo83m8vKy3w+L+130qmrqyc8F+c/Czrk5BGaYJq+UKbAnKhM5l6hpOYRSFWLIPuaUozFgXTXNc8icc458UKrc5yKaVJaUQonkW6/XIlJbF0IoMXjzPAPILYYUhZH6KaB2jTUsMsWoramdJUSECII+JiBtrKpIASokNGW1AfAq+UByTlVVuaoCAFKqgLe3DUHO/ZzL5Ipoy9CslBKtUxYjUh4NQPhc3ZGFwxQQSSmtnNbWphSdNkmpkjtgrCrpmURklRa8Dfxo27r8hplzZq0VA2pEAQUsmZgTAECCUGjVAMh8uycGgCwCigiwvKSyd2fmlICIUIEIpsQl9ksrBIUAJdQrrRad976u3Xq93h+uLi8vRaHSBJC1Uu2iOlpUp+v24uIipSShn700q/Vm1baa90PipJyG1um6Mq2zTqE1uFys9/s+ZVmtF1/76q/d7Kebw3C6anuQnDxp9fJqKyyJcwZKIRtSpYOc9ts5xWaxzDmTgpTQGKeRfQyd0dN+a0hVTcM51W0zMu5TdopOF/Vm1Wnw19fX7aIDQtDGZ4YUl3Ub5wkExn6PGiUnawxIBh83m6NhDvxqGBjHWUSW6yYjzPNsrBOAkLLWWkAlEWb81U18cthV+ezTZ4+/+vY7iLZtXM2M8aA9ndQwXjxznJaGDjkqpdhqP42v3bsXp+Hm5qbv981yU1eWRHKMP/j+d//mX/udP/4jd9he1es7guHHP3tx/eSnv/Xn3v2P/7P/6P/43/zR9mL7m7917+2/+Z/98+981+OyT26zboa+/+xq+Hv/93+cnzyWzf3nZ/Pv/sUHF7uv/ZvvfLduOmNd8anb7XYX11cAoK1JiQFAEE6PTwqDZ71e+yncXF8jotUmhKBAnHPDMJ02XSads8w+iDHzbrfdbrW1Maa6ruu6vtnuy9Px5ptvPnr06PHTJ68/eO1WERe9tZYEEBg4+2mGECyRQpCUP/zww6ubnXUOjL0+7Oqu013XERHiYSrmLMIxZwCq2+bQjznnZtHR7MvMV1KmQQQBBYofPSplRASAQUAYBQVRESEAIIOIpMQIrMtzkjMR1XVNxtzc3MQYF4tFnOdPP/20qdzJ0boHrmsXo5bMKUWFqJQ2WhcoO6eIOQuhJVVVtmka51zOJ58TVeZ5nuaJiNqmVoTOGqPVqlscn2xuScuCKaVxnNfro9df787Pz0sBm6bJWOOc6/s9iAC0iHhzczOFUKTSN9ttwc/LdCLMpnLFfgtR6qo2ioiIME7DGHK2RtW2zoiKsHZWE+WiqwzBe/+qNZGmbcaxj2kaR5+V0roypJzTy2YVQsgpEEWNudLKWouoa1hfX2+vr+1+d50SV3UrhNa6RbfIWYp0pLIuBeEUvZ/6EKexJ9Rt7UQsAe53B6Wprp0ga2etqUr4KJE2RrRtRMYYY4pJBEqTUdZ+AICkU5ZusfIhzd4bawGRBet2xWlWzq5PTuehf/byYp7nOR6u9iOpOgu23UJbK0jZ+xRz1dRGO/RzTHmeZyRdTBXmEFNKPkVny8+LpeVy1hZJjFIkKY8heO+b2s3zvFp2JU120TW5diklrdA4l3OepinnLIQ5SSHcAYBwNgqtdqms28fplkAn2ShtlPY5bK+uF6vN8WaTmP00N1WtlCoKscM0FrgoCwNT4lveUNXUr4SwkjMjslLaWmMJhmGY5wmJKteAoswcs4jSCaKQIutIqRhj5qyIRJI2xtiKEbz3PngiWiw7AmJmjilJFoSYUhEjuXbJiCEm0UqTyUIpAygMCQAksmgEUFqBEiBm1soiqZSZYyoKIRGZvfchlLe6EDJSjK94ywy3vQqVtWJZZyilmCEzlD+W2omJRUmJNYycDbNSZXMNzKCYAIoeNwMQ5JRAnC39NLz6v0ATgiIRiKUVAEQUzbcGTkXZVIpu+bV8l4hoBIFbsa8UKzcSKiqjfMsBBwRgEQQCEMhaERIgxNWyZkkA4e7JunHKWls4Ozne/uPd8dJijjEiiog0TWUM5QDb7K3Be3eONSEHz6kGpeq6Q+Hj401M7FNuOlqu1u78+uX5RefaxkBM3FUGYg6CgRkNTWOvjLbOZi/9fjv52dSVjzmpfLRZ8LhdrOsY8+EwvvvGO9vLcx/7i5ePPDmt0BD7m+1dS3cwfZxTP0+6dhkBAIxR5QK1tRv9DIzKIHGslUKDdxbNC4b9vNfOMYIxznt/uBWqKCJdYuFBbi3qhVB3y2kM9+5/8fi4e/T8fPvyYtV261Vz53Rxc31+fHJvu5/OX+7aZjVMI1MGRkIZDjsUaaoqZNjvdkopgFw78+LZ8z/8oz/97d/8jYz6T7/3ozlJl/jv/Kd/rVG7P/nn3x1386btXj79ZbWez2+mPphKmX640W03TLy4/7rh/NHl8M9///c/ffylly9fPnz4cPZxGKcQUoyxcDWUcXfu3EnC/TB470kgTPP9+/ffe++9MIXtdvvi+fO6ajQpKTT+un758iwLurp66+13X+622+2WiJiTtXA4HB4+fHjn7v0f//jHwzS9PD9frJbXl1dPnz8bDv39+3crvdgP+6VTEKbsh7VB4BzHvq4q4Ly9PlstVsvV5qPPPnvrwf3Faq37vu+6zloLREoZnqc0TMM0LroVInrv2+WSKPKrqDK6fRAIERlAWERSeRhEBJiFoOj/SCAXJiJSeTBizAFCimycGJZylxuiDCV6InvvCzGKcwIABEVE1hlnLLNJPqSUhMQSWWuM0pjZTxMAjPOcEpcRARHLWF/O3P32WhO8tXhDIZ2fnw8+XFxczfN8fX3tqqqu69PT04cPH3788cdnZ2fLtlsuV4RShrzj4+PiZxliLAyNqmq0ttfX15vNpq6aqqpimIehzzEerVeb1Sr43moVvN9utwpk0XZN04SYWcQ5xwzaurv3Xzs/vzj0fVtXWWalxTlNkGKcg09O2aZadW0D4jiGvu9z9Na4RWeYefLknFssFrt9j0aT0eM4pcyFHpxTivPkuvro6EgBG6ss49SPt2GtAFl4GidjlA/BNfWitmSdZvEhCZBx1WGchnlKmVNiIOQYI9+6K2jjCuG2bpu+72NmbUmI+tmTMeMUYlYESlctmmo6jMMYVtXCNc3w4iIkbpSOiYvShlAzAipSRIf9LmXplmsfw+HQMwII+jkUs3gEIQStVSmfJJARtSGC4msBBUf181hZp5TiFGL0bdvqphmGYZhGjmlK8VaDLplTsNoopcgKgQTU1hhk5pQ1qdpVktmHEGffLJb9MAFAXddaaz8NZfQERkQEoQyimBkEABBQkSZUcFsnsDwvSmttUmYvAowILLMPhsWneOiH0m0YY1KJYKqcFgCAmDwDlXilIqi11ipAQcRSibMAktaGRWISIHRKA+mQmSUaTcACAMKQVVlxcqE0JiktQk4pgdJaa0ESEUVKBLnk+nKRO6BSyoAqjcXtM16cxbUSgJBiltt6XLqjxFkECjYTE88UKrBEBIpQGBEBUYFoUlqhQlJEKKVSqH+3rJYmADKIgLqFmm8/C/JvJU8AiIwIQFRUNQoRWZJABkREAmCnrDAzJwQEYRBAEgIiBShsjdaGnMaTo+U4HAzyerFsKysiWutcuxijAizdPyzrFHV5W+raEVFtkUyFAk3TzNNQQpeBhQiKF7+x6vT0+Op6/+LlCxR5eP9OvJrvHS1bn5q2vdqPI9NumMbJc04I4lNKMdWVC5IlBqdIWcw8nKzrO6v1G6+9/uzpS87xm3/+m2cvnz85u5iHwShLIu+9/to9Z//Gt771rx+/n4RyZtFkrSVBEe66LvtZK2WsQZKcPMRwZ7E8ce5p2mqFxU+GSduqTgIxJmu13L7jJISASIIIKs3nXa0vzs/bzG/df/P68nB12G3urg4xYLOh5u773//BbgZveMogKBaj0WqaJoW0Xq+PXH19s/PTbC0lgmkaf/bT9x88eGCrGoW/8Wtf/ivvnda83d8c/tUffi/qN4JeXOz9L3//26vXv+Ac6pyNay+CRLLf/fDp21VnbO7H6ZcffpCydKvl0dHi7Xc2v/jFL4razhhzGA7G2aPTEx/Cvj9cXl6HkG5udr/85QeXl5dVVa2Wm+Vi9emjx0orALVaLeaQo5/7w7hr96TVzW778LXXF4v28WefEYHW+pe//CVpbQG2+14pzMwmQ7dcMHPdUlUtz188V4BG4zQMbdu4zdrHMPpZWz2Mu7oxtYaVVWtrNMotEQOVKuSRxWLBgjEnpZRPKYRQTGW11tM0oQAQ3g64grfZXZAJCUWg8GVum1QkomJ/r4mYMwpk5hBCzGmx0BxTsdFxVmc/G0XO6kpAYirWEES6iJREi4gUvYExxlldgGjJDJr6vp+8J6KUuGmaQh8o1lfW2twsUoq/+tWvbq6uh2FQ7ZKImratm+bq6mq73bft4kc//ikA1FVbd205btab47apwq08V+q6traaY2AEISRjQwgxBEmpcqbrOqt1GbkWrZtnUUQcg3MOFVnjnMVhGJyrY+YQwjAMu92WWeqqsrURkcN+a0kTW2dJE+7215VFAlZa1Y1TWHfLTmu13w+Xl4NSxlpbtY2AZoHIEn2gQ9/UlVEaUKHSTdMQgiaUECeAnDMiEeoMoq0gERrDpIc5jp7Hye/6AQTbdnEY+si5rmtmMEonzsUYgZGMsymlafQZaZg8A8ScERUA1CwJEJXtD3tEyTwHxs3xnTHGuB+Vcxjl5eXVcrkUoMo1qBUzT7NPnEFIJIlIYVFprZUxBdKMMcrswzTnEAvLt6j3jFVVVYtwVbVlTNPGzcHXdS0iBJBzdOiWy6W2xnvPI8fZo+QiOXPGphRQwDmX060fRc5ZISkU51xmmP2YhFFp55y1lgiYXc6ZUGfOUEgszDEnEdHKIJIoUEQKShkDEcxZ0FCzWGjnhmHgMpwRChUihTHGuKq2Rt9WOABbueKunDgppZqqvp1EYyqcLEn5lhSmFINMfdSaLFhGyizMLJqUUspYQoSciUjK2CgCInNMpcZnQCim34gFsJ1jQC9KKSzsRwBErJ3z4H3mIlorvyKiIM4hIWYiYkEAyoKQOJJoIgJMkHLOnEGb4qomIqIRiUhpdMooQkSkV4GMBYco3YtwEpEMLFkYUTOAKmZtpJGlZBGiKhSrciYUo3hEZCYRIRDCLCBGCaMwYlmEAYgm1EoUAaI2CmtnjabKKhTHzDl6Apj9jGKdc5XVVpucc87RWfLjVFoiQ6gUmdbZehljrJ2bDI5Tn3PMxOM4Nk2NilLKOceco1XStR0I3cumNqoap7qujXEe6SQfs8Cjx0+nEMtRSnCr018dHZ/tLu+//fbG6sP5xVlCjebevQdvPjitDT89e8oS7732+ounLz797NE//Idnf/HLD1MaW20EUhIUUSmBRqWRUpKmqYDAx9EgLZz5yrvvrqv2J0+fdpXLKWqk2/2CSGl2XzVDoJEAbommRxWF8aAAf/XxJ5V1737t6+dnL3757Ly6qhTZqx98tljfBcqE6u5y8+Li3GpxWqGxh8Ph6urGmB4RCZKf8rsP38hhyjHc3OyMm+7dPf2f/d5vf0k++Of/7Oevvfm1O0fHv/NXf+enHzz/4GNeHd/lcJB4zmJV/dAafdXfuKr6+eXu4f2TlEI/Dhlk9/yl1vp15srZYRhLlIhzLoTw8uxsnGfSZrlYhGne7Xa73e74+Phmv+uAsnA5BCpXA9Fh6AGV0ubp85eBsFusdoe9MWqz2VRVtdvtlFIhJR/zatN1Xbff3hydHL/z9pvf/e53Ly8v79050VobwTjNcfZvf+XXfvN3fuOf/eGf3Dx91nV1bSvbtK4enz19IUl0VVWSWVuDSo3jTERd1xU9vjE28u3z9oqkT4kD3T4vJCIagAGYC28fqKjthAEIFJGiFLO6lf3VpGCaJj9HItrv98UvQjJXlVVWxTAftrtMhlgIlGRIKWZhYZghAICz1hhNArOPMnpSQER+SkUWtVwuS44TC/R9f3UrTPLXN9dWaUXG1VW76CLZ3W5XVVUIwVrrXN33fQihaZqY037XO+fCPFbVrftdzqnrOhGcY0DEAvRrrZkBJKeU2ChjLCKW2V0ElUJDiuu6HBlz8DlL03bb/e5wGLz3rp9q65Q1T58+OTqp79696zZHR8tWEWrIhHJzdXl9s2tqt9lsmm45jvPuMJVU2u1UL1erEDOQCjHHmIA0AMxJYj92teu6Zb1oEmAYekU0TlPOOTFYa3OWGLN1bRLOQIfd1E9XMeWcZfIRSNV9yJxEJDEppck4IRSUKMwhaa1zlkywO+zneY452RBzktVqtd330c+r5RpNIODr/YGZUaeb3UHUOMxJkFhwiimHWFVVzqy0Xi6XjGTduN0f5nG0VdU1LRDWVYO3lNrk4+e4bi4TYWGhx5xQYAoeciJEY3RMnIepNYa09T5m6QHAmionaRYmhCCogCXGmG0GQEDMWVJKt/RBrY2iKcfSFIaUxnGs2w5RtFWFBp9ysEjzPJewHQbhlEHQOHWbKi2YAUoLSiI558M0WmtTER6JgLr1+FRKlXZBK7JKa1cVLnqevFIKCHMIImytK/yOVwUYfIpyG1QFKSWtqXCmQgisyRktRTiOhc1+q/EjwPJ3ogwR8S2LAlNKzFkLMidgQRJ3G8Ry+73CCZCVRhJKWYRLQgNYWwEERCStOHAIMWdGRGFhjUqyZE7IzGyiBmTnbFHaKiQUQCqD8itPLiRCQoTigJkZWJBAGAEBIucMYggtEAoTfv5zcWkMOAMKAzCWy8BAyCjlX/SaSBmFpWBLJkQiMKokFrJVVMgBzpgQ577vtdZ+mjllglvzamOUdaaubKhdCba63XihxSQEJBybyqI4YHHOIWLiXDubhElB5dRmvahcs98fVJh52MXDjGR46n0UVs5W3VsPHhzGYb0+Ogz9J4+ftEYrVx2vliunh7OLh2+8obvN9noCnawZWqfGYZf8oak7VGCbdnd1aE/ur197c1N9HMYDVRZRccC26mohnvODBw9QY4Q8TCr7qa6qfrub083pegmonjx71i2PAMkXYmllcwoioMtlQhFhECQAPyZmU3etEfj5o8+uhv6dN97az+BDHqcejLk6nN27d2e1PJqmAHUdeep3+7pb1E2Xs8x+3iw6Blkv6r7fS+bf/Nav/+AHP1BKvXbv/vOnL989HZ+92H306Cdz2q/d3u8/ud5xi93v/O5vX5+9/8GHj65eXC7vvbVs2hx6rOjmcKiqioGOjo9ubm68nx48uGeN+uD6xrkKBBZt6zNvDz0qAtLOVjmxrWoAuHPvfj9Oh6G/2e1TzrZuhjC/uLrUxpCxPiTSqijixuFwfn7OKf3lv/yX+3H+wz/643qx0k5pZeuqPajDxdV1Of9B6efnV5tumVnIVJu76/c/efyTTx5NKWnXXA3eBrg+TEoQlH70/FwXOaBEr5RJKbGgdkprrZIWScUzttBui76z3Hev+iNBFJEswErpUqZvjx9EJA0AVUVGYXHmM5pyTImisVYplZglZ11VVtPYD5Kjs2YYslZaEYQUQ0oFfWJmUzlRFFOOMaYYAMCQIiKfYoHQmTmmPO/2V1dX5bDebDbHx8d37twtPC9F5t7d+4/Ozk9PT/f7/TiOJU+wTMzDMFCJhCJCZWKWYZiIwDmTsyTJMcaYklJGayhU3sZZUGoavce5srpramttmMe6aoprxziOpqrLhqwfZwBo23a9Xhc7hZyj5Pj8yU3jmtrZlAAJbNMsu7a2dY6pOHTe3OzPLi67rhNsRIVx6o11ISfSVnKc5wCofIopTRLnvVN3j9aLtmZHqGzOsZ9Ga5211lXNOM5zmDOqEOPowzCNcwhACpCALGnL5Lg0GZPXOouyRORTjoGJaJ69976qKtLW1UpEfOac+DAOOURCOT6Osw/OOWUqTuniehuz1Is2pF27WrhOXVxcGCRjeI5Ba620pQIiZyYiyKAAMwuUfTNA5ZyEQERKl7uLXFPfeqco7SoTfVDGEhEi1F03DENBdIEwhiwIIpJBlNLWIhHGGIfJO1s3baWQ+r5nwRijUZgz6lsLYrFOk1aQmAHm4KumLnOP1ho4FwvPcomFARQBwDiOSpnStJWXGjlziixRR62UyiAxhDLpFjWwIZVy5JAyQG20NRYARvCkleRbK+ZiJMkxlRmdWUopZ5CcJSexRgOAQM751l4h5zwOSRuy2hDKrXw2s9IaiZm0iIC8qmHCzLc7XTKKUDIIR0YUa4zWuh8mZi4kgMwsgJ8fAsWBCwRTzDGFot5OwAiCpJCRgZkhE9OtrhetpkKVABbAJALlGvGrbW4Zvcs0LEBQ8H0oxpOQFTp1u49AUMwqp8TMwgkBOEcERYSoCJCVIqWU5uCcMc6V20ZEJOeUgjPWOu2nsbLWaM05oTEEGONtKJxILh55OedCHFNK2aaxdQ386vKIQAgWkZm1UoQ5peScUUaLsE9ea7VcLiDzsD9Yks2i3V5Pm7YBgJuZLbD4ECTsb7akjNLWILTW3t1smkUXWdq6bixhVy+MElOpk/Z8u//ej370+GN47+H6y6/deXIzvbw4iyNv1ptPnzy3Yf8f/oXf/v7Pfvai3+ekVEUWABNrpGmYPQd0BMaEsQdtnp293Lh6c7qu6vbi/BxyKoMVIuaSsAkMjKiAgIvtCQqMAZtmcbWf62a1PnaPnn7a7w/3ju9U2jy4d+fFxdM33nqLFM+Hnd8d3jq5P+r8/MXZEBIQAqFSBoA5hX4X3377zQ8++OjPvvfDYRjncQjz9KUvvrt68JX/9L9498H9xT/4B//ox9/5zt/5z//26bef/cG3P/zo46cQJ4Xwza998RePrnMIad5tKgypWtjq8ubaTfPv/u7vfv/73/34o4++/OUva6Sf/vwXdd3kHMfR13WdAH0MT5+/EJGqst775y9fNF0bc5rmIQMqZhaYfTy5ey8m3g1XSlsCGIahrqpF25y9ePGjH/2obhfL5fIwzQI6smwPfV27HOeXL18uFm2K/v5rr0/TtLu+WSwWRw/uL1P68NNP18fHQHR1dTNNftUtXnvwIMb44tlzXUbvV6ObyjHnnOu6nrwvrXoIoa5rZo4hAICyRkQYQSCTQHEVBmGlipQOAOVz81URqaxyzgHzNE1RIb+yJy17tZTSbnstXdPWdVetAcXVFFIKKdmcTAxzSDmLEEDimG77Y+cqay0C5JxO1qumawnV8+fPr65vEHE/jIvFIgO27cIYN/t4OBzGcbTWXlxfl/2W1nocRwBydXV2cb7oVsU5gRkYsK7reZ5DSkqpIoauu5aI+mFCTMvlElDN8wyZCbExtq4rozClNE1TV8nspxJTmAFTSjHkojRNiYfJH5coiJR2N1vJ3Lhud324SeH82VnX1g9fux/nnELY7W5izH3fC6o5+Ka7M/l4cT2JwHZ3SIgsKKi0cWMIsw/ee86p7/sYPKd4erTYLDpjHADOPnZd7VwtqDOYyYc58Dj5KWQgrYzLAsKYheIctYHEkKMI4jB5rfU8p3yb1QHTHFiwrmulrY+BJQnAOHlCsUrvDsNhN7gqlHatH+fdYd/MoarbzHJ5dX52dna6XFdVVdd1TuK9jzFe3+xIq0W3mCaPiMSikWKM4+zLqVdKnVIKtbbWElFKsZ/GDLXkqElpDUCEgiwoQNY659wwjeM4gSKljYgAYmbJLCnGYZ6K/AxQpRj8HJ1Rswy1q1JKDELaAGkiiBxjTsM0IqKkTIl8vIVMszBnKZwI7/00eeegzHNlfBfGGLOymJmV1qhQkgBhYeo6bYzVmhqUrJAUQQp+nmdT1aVOFJBJ69stDADklFJmBUjGoIAgaWPolnuRlbqN0Egpi0jKLIYJhYgUFJErivArGPhW90qoFQEAFBiAAFMOnDMRFL6VSAYQBRiFP1/QlgWwcw6BQrEe1oZFisdyZtGEqJUGjYqIUBEgotXaWq0JNd5imyBS2FtaqUIHY7kdLgsWWo4SFABEFmERW/x6tKFbWw8qfmExxpwTgJQCfwstWOMUVnXtnCtvJhGFEKYR2ratrBsRnLPAorVJPiBgIZp9TgIvoJfArZfZreGX3EY7pJQMSiIxWueYCFCTCiFo4KZphEQphcJ1Xd07PVHKHLa7ZV0TQM41Y4rLZeKDZwU8CQAh9Nc3WbjSKg7DEMJ42H/rjY1Suls159vnYuzJgzs3149/68994S999eEPv//tX3vjK//yZ08/3fcN8n/yN//azZNfvn7v3ulq+cc/+P6nl5eO0Pd9imjJphAnSSmw7SwT7KZhIchaTbub1aI7Xi+u96Ny2irNgDGFAkILMGQRYskAgCS4bvX+sLe2lYAP773227/2zvNP3m9NWrabi5u9iHzw0aN+PDDzolpebj9m8brucpa6WQpQnIf+cFhUGnNGxHaxenF2/sbrrzX37n/28S8//fjjY948OHodAcYkTy6H3/LUdW3d6GdnL7/0xmqD4Qj6h0fuZ893i9USp0ug9upmu14fXV1d3ey29+7d+/CDXx62dx8+fO3Zs2fDFMoyK6UUWIi0EINIyqKN2x32zrmQGBRZbS9utnfu3Vtkvt7vUGlT1TFGIUJ964JORFdXV/UclNKrVbXtJ2Md+znnbFxVLbuz58/+8m9+89d/4ze+873vzf3N7PtPHn/w2oOHnEO/u3nvnXe/9dVf+853vjP2Wz8vBAF11gVyQQFrra309c3ucBhuHwYEAJhG72ytyAD827JaenMiJCREYf48HLtsm1BEkjAzz3Ouqirl3B8Oxqi2bUvYw+f7vLZtj442Stg6XVlHCBfXVzH4qmmMrRLv5+DJ6P1+X8wNlNJCmIQl5Rjj7rC31+74+Lg8g91quaDb5+QwDofDoSB11tpFtypv4uFwCCEcHx8T6cnPIYT9fr/ZbFbL5TzPwzC0i2VVVbcW2ZzI6BgjIC4Wi3Ech2HQWi8WnSFV13XrKgQehh6F27pOKRfAoAgtnHPztNsd9s5U3k/TNDWuKo72dV0Pw5AT+tE3TYPAwhSDvNxeJh+22+31bjuN/s69e/04kblWZJbr0/1+e3lznZmiIJMxdVORVtpqM89T79OcYj67OL+6ePnGa/ce3Ltz/8GDly/PQwj7oSdlbeWmmJUxpB3PIWaxSgSV0rZYc4ccEdFoImViYpbsQyCi2fu2bb33/TgkzuVyF7pNSqlyZpqm62vUmkBoGkdQpJSp20VdtRkhhKC17RarovtaLTe2rk6OjgWhH2et9TzPzOKsFYbjzZHWuqAUTdv0fZ9SVkqX1VRmZoHMMs9z0zScY86ikPZDn3OuyOScGSDGtB/6qqpK2C0RpeRL+zWOU85Mr5wOY05KIXByIEiSQgKWmItljiaifhybpmFhP0454S2hWhAAUCvOeZ5na60uWuo5iIgwlmlYkFPOebplKtV1lWM+9PvsKhdsbZ1WqLQgE2Qmvn0o0qv0nqI+KDdSTkkArbVodGQxnEkpjiHnzKwAAFkyZGu0MSaFmYgQWIEoIiI0pBiQEY2zABBjTPFWsXNLj1JUWFcKkAhAJOdcVxUgimDIKeUcM0/ehxBQaSLykGKMhZQQY0wpMTEKkEanNHzOVUZIKYlRiEiIUIxuBZDImFuJswDM85xj+LxFzq9W1PQK8BWRsgOKMWqt67r5nLmtCWNEkaxUUeWjNmSd7ipT2jgAMJqMcQgQvK+sqyqbgtWkQgrWNTfDldXGVKZI+xBRayrQGsCtyrmUcHklGs45C+eckna1T0kkW2smP2PGJEmSlIBXaxQ0FTJMCmujr68nBfT6vbvdhvfTJ2H0jauA9DR5NNhUDfq5j/GLb7+N2txpDnOIxuSHbz345bPrpnHf+s1v1NS/+PgXv/3em+u7b71x/71/+E//1TxND49W8Qn+5Dvf/tt/9+9c7rfnu11bt9fXe4ONpMyErnZMqW669f27h+cv6mV7cXU9p6Ft28o5wtGQmmIERdZagkQgKBkAOJULoQAljS9W9VEMLBE/+PHPwv3q4b3q/Nlnob/c7qGfEepOdy0gBwFQvNSmajdXj1+oKlurRCQn+cIXvvD1L3/57/+D/8c7X/jynbsPPvn0Y3u81lp/8MEH0xO+0y2CTx8+e8GL4//z/+1/lGyVXbAPrcH/+r/8W//9P/hHz57s1PLuYQ53zYLsYp7HfhqPj48/+eSTy/Mza9RPf/rT1x48+Et/6S99+zvfe3F+2Sw3N0Nv6ma7749XyxLMoJQibeeQEBEIfYqIuN/vb/aHzfGpMvbZ85fKmkLmTX4mkHIzjONIylauefjw5NPPHnVdxzl57xHyer1+8sHPTfaPP/mIWVhra6qj48X93fri7Gx79uyN043jkCk//+zDqmtBGP/L/91/k3Nu2zbkVNjb4zi6qinyXxEZp6lq6uIZOwzDnNLnh6+1VkSm4D9XxIrg5/0jAFhrgSMiNlWd51BX9ni9YUmIuNls5nksUU9WU+0qa8xyuYxxfv78pdLm+OReP8fn5+f97NHqkBMja61r6xpXSUyQYL1a6cZqrZeLxfvvv//Vr371+vpaRIq5oDFGAI6OjpQ1xecrxmhRVVXFCDc3O2OMNsYYN89z07WHw6Gu667rwjwBwHK5rKpKMhR/Mudc9L6E08XoX3vttRIL07bt4XBYLpdlD3fcqKIV2+/7cpg6Z3KM3vumcs7aME2uMpvVOuecg7/Y75nh6OT48uraGFc0u8D5sL0ikOinFGKMYb3eFGq3advz88sHr7/++Omz65ttu1gpYxloHOeLi4uy2EZEjqHrugcPHpxWVLp4730xHPXet4uVraonz174lENmIePqplCUA89l6Cza4tJx7Xb7kg8NADHxOI7Mr/yQia21iggA3KsJtVQO772IaGdJ6aLrF5GltsWJxnu/OTqy1n7yySfG2bZt53kOObVt27ZdTCmEMM9zBuz7HkGRVkoZ6xwzz/Nc/nckOTo6IoLDbp85zvO8ca7rurpq53lmgPOry7rpkvAUorV28l5ynsfpzunxerHcb3ch+cJFAKVTZB8DYEnTkzLqlXpQmr++71khABRmVgkQQ1Rd1ymliv9G2VJnuWURO6uL7rCMdAXbHMexso6IKmOrqjKF4E1oSPkwlaLCQAWa8iHGGEuZFGAsjHRNumRfyi01+PMShUjGGKtUAXJTSgJZa13cXYRDyXHKOSOo2wUS8zAMhUKRmUO8LTZa3/p/AWG5vcd5LhYW5WYor6EYblhr53EK2sbolUBXVU3lrCatwCjsugYRlcLKGasNsjCz0fqky9ZWbbccx3noZwCagk8psQiSlHV1SkkpU6ZYl6M2tOrq49Widmp/c2Osatvaez8HX24MYxQiGqOJqLWmTK7DMBSP97IUb5pGaypetOM4VlVFCpg5iRGRcRxJbjcF2lCZ+stmgQjUrcfWbYdUQH6R4ufG5WysXaW1qqqKlEqvGIXDMGz3+3mcbnZbrSzZ+qPPnk65enxxGKI6P4SEBnRB/nf3751Ulb2jJ6X0tp/ao9OnF7vv/+xXdx+81dQuD9sGpt/9ja//ua999ZefPP3v/vt/Kt3pPtD9Vn39W996//Ennz1/DkIqi2aojdWEmFND+Mb9O1/64rs/++D9WeVnFy+8vq8VYg5OC0Zvtco5GuMSFyUShRAWbeeMkpRi9BMvBTIRIzFwImRDiCx3jjaYeOj7tqqVwu1hjwhAcmfx9H//X/8f/vRffPbP/uhP9dHGG1s5/OobyyPatar6x//0R+/8xl//1fljhusj3f+Hv/Pn6z58+PEHVFW/fPpSFid7qYOgEzBhVHFCxKiqgUnV1ewHrQlEKwI/ToqgrVxxip1C7BYrZd04zfvD4JwLcWbmk5OThatevjhj5gzoQ3J1JajmEID0zXa/Wq0SS9d1x8fHP//5z2POndYHsNcpJ8xGvMpslGPRSuSN+5thuLrqh1QtxykeVU7HsTxTxWhdSKZpun///re+9a3f//0/RMRhGuuqZRZtTYzRmkqXzS4oIqFyZCBiSuHz35uUNCmldVnSQIylJS/3X84Z+TY4tuj0i0IJAMqM29bWGNO1XVCzpDj6GTJbp6dpYs5N01ijcohGq9payHkYhjfffHMYJz+PhNogWoJpHgVBadVYiwgpJavUolts1uv93F+cnx/2+7qunzx5cnFxYa0tIOfz58+//o1vfOlLX3r/V7+8vr7WWocQam2FsHwNII7jqFS0lSvufaWLR1Qx+sPh4L2vXVNy5eZ5dsZ0XcfMzplhGErwXAEkyxdXVTVMEZXe90OOiQgQcdHWUSTHkGIkhJQSeUHEtnIj581qte/7w+GglDo/PzfG3Lt3L8fgnOv3u9fu318tlt77Z8+exRj3+33NPEzT+++/j0rnnKuq2veDcbVS6uj4+MXz55eXl13XKYV9319cXEhtCiJqrPIpTvOklbWVCznFnHJmbSpBijHGxMUBn17ls8YYEUvqjhvHsWkaY60SVEoV62ARYQ7ySnlZ6kRB16umJqJpmub9rqobRAw5dV1nndNabzabaZoAwFZufbRBRCFcHW2IiAWKGVOhKU0hrlarUhq99yxSSPtlSCoMBme0Uqof9mU5GnPiYShRx23bhpi2/QGVziLee8m5XM3Z2FteYUoiSAayQEpJgIVQKZ2Zi857GIZSdfq+R6uLkcUrboQU1ERESKm6dpBT4lsj4nJH4at85dLJGWOstSHFpmnIaJ9i2TUaraNSzujy8vJtFHepqViclnMuc2kmAin1IGelFGpThrbSLtArt2dERBLIkGNCzcYYAf1vH97EiXPOgohVVY3TJAClqy6veRzn8laX0yDmHEKAYqnN7L1vui75ZIyxxnjvjXGX/QBASmHRTVirrVGVMczZOa01cYbAQQEWKBmRE+fD4RBjzjmnFGOKRGQ1hRASZ2OMsrZQsxigyIdSioC8WR93jcs5ishyuezH4fLiOuagtXauqmtnjIHoi4FMCAGEOIMxBglLw4GIAKS1XSwWiNj3/TiM5ZZAFrkNS9aArPB2u19+NBIocokMYtVtEDgzl+lCa52FIUmxPXg1NCtj1Wq16rquamoAYND379/vo8q6/eVnZ01V3/TzNM5HJ8fFmSCl0NlQN92du/cvd1PTru7dfaCNOT8/N5CA0qePnyttgyjSao6xdt12f/37/+IPPEIicqay1hjBECIbMgYSwbOLs8cvHjPJvTcfICpIkVAZTc4oARbOTV33w2StTTmtNqc5pn63XxxvQs7MoG4ZPkBIokpKDALK9dW2sjYmPgwTKWi6tqqqq6vLcTA/+enTJIBKMWc/70Xkw48e/9aXXv/1b33zT3/45Be/+hGt1851+/3w/Gz6q19/67d+5xvf/vGHk+keX/dxvwPUoI0odXT6RuOqOYaboT+/2tWrbvaxskYrfPP1h8+ePi6HUozx6Ojo3v3XvvfDH1V1ozSGOJczbbFY8OyHebLWJuYsnAVnP5E2fd8753aHPZHux/H5y5dlhvQ+ZoOIiogUGI1ZkYKEKczOOYTF+W6PnBdto1F+65u/9cFHn5Tn7uLiwjm3Xh/d3Nz87Gc/K0l6bdvGkI+PT+Z5HsdRKaXHcTSVczHmV3mlVVUJQAhDSZDAgqQBlLVZnqbP2VjyShqUQYq5BDMjvloUiZRDmZkJMExzCjGEZIwC1WrvD4ddXdll2x2frtZdOxz6F08f28UixltV3P3To9OjjU8xcAZN51eXPiRm3myONekwhqfPnplaM+e+PzjnRPjO8clisVDWPHny5J133lmtVh988MFut1utVsMwLJfLOyenSqmcZblSTdOcnV1cXF1ipMKQKhRHeuUuUi5nWYoj4uFwkJyryoaQcs6bzSbM/ubmpn61ZApl5kVk5snPmvBova5rd3y0OnvxcjjsCJw1Oue4v7lu25aI4jyLyDSOy8Vqs9mIyPX1paS8WXVd15W38e7du9vtdrvf+ZDuLteb49OPPvqkqps333p3u+8r1wyzPxQ/UYC6aQAxxkxOH8ahVjUiUgo6lfUkaaOudrsiaZ1SQEEWECAyGpkRuEwMr3YKUiS3zjkWYQZjTFVVWttignZycjIMQwEJp74vJm2r1aofh2K7nXIax3GxWFSmSinNwVeE+/7AzIvFwjV1BskpZeFSbEIIZQ723hcJASIO48zMxlbGmHEcGZE5G1Kl3tfOVlV16MkZW9d1CIFzKL5CGWS7O0wxKGM1MzNXztWuUmRuXS0L+pTZIiAqQZhDAADrcBzHnHMhtRack5n9OJauK996uNuccz8MKSWtLeJcXMrLu1Q2nQLAIsaYpm3HcUw5k1IsmBkS55xzChEA6rquzC0no+RwAwDSbYp2WQBprQHLGQhZpMT0lteGiJqIMyVJtxOqZADUpLJwSsl7yTkXKzEiQlBAGZiIRGsdUyqED2b2KQFAzJmZKedC71SmBF7XWRhIEalGmWGYSsE+9H3xq7nllyFoc0tJA4AMYl5N5JyyUorMLT3bx+TQZBCtrSLo+94qqqqqbqopTOX1MGcEUgTWaEPcNjUC7/fbSoM1ypAqHU/lGueGOCYW5Aw5IZFYbX1IpFRVtyIQUoo5I4K1NmUhgmkOwzAoo51zc4jex/Isg/Ar4huzJP1vL4QqqjlJOeccOSdKRFS8DgC5NIXW2jK74+26G5RSlWtIFa2EMLOgOT3GeNkLh1Vb5yHXlWGQYuLddkuRXNVO23qxOb3oXxBZUDqxHB2fGog1puXpvUDm6YurfvZ60bHEdl3Ph97VtQaSmEUItCZLCVk5fZiGxcnxV9/79U8effbo8dOsqXMEIJQ5c0TJCvHo6MiYQ/DJ+0FiKOmP4zhqrWNIqsoAxXZJEEUBiAACGGdT5qZdpJRCnL/45rtHR+s//ON/Ybr7f/AvvwtBgVGvP3xwfrjcHV4Enn7xyw//6u/9B/+b/+1//n/67/7HIU5KV0Dr7/3k47/y9de/++Nf/f3/4X+68+YXlOC9ZbteH/3q08fJNo8udpUbFpXmMB8t6t5HECUiOXPRyg7DYdUtcpbz83NXNXVdE1LMERByzjmnx48faVBN08zBV3VLlmPKTbe4vLzMAjknRihgho/BWkukqtqhMiEmz5Iyg4gSIZDl0appmuubcwCqjEWi6XD46JPPmGG32xWLixBC27aI7ZMnz+7du3fn3l2tLCIWnKatmy9+8Yt69LMDsf+O01B5oqBti0O9Vkobk4XLHFDwyZxzgdQKtUFESCAJvxqC/61FHED23qcQJWUCTDkDwDRNzMl7L5wwZ8WpgkTM62U7C1+ev1wu121dWZDXHtwJOWlrPn70qDVKUjzMc78/5MxGu9XRRiGfbI5KpS/WJycnx6vVurgg7Xa7co5Pc0BQd+/cr6rq4uLCex9CAKA79+6+d/Te06dPFZni+8HMBcQbx3EYpmJBfHx83LbtOI4hZzLaIRLRvXv3lFKffPLJPE5lC2iMCSnvDsNi0XZdV5Yon336yenxEUqMfk7Bb1aLtnaAPE59OTYPh8M0eQTaHB+t10ePPv1kCsFaW8IBrTZnZ2eurtaoUuRnL866rtv3h9H7Kaaqaa+2N/McWKT4/1nrYgw+BFLKh5Cn/vj4uKpsKFJXpTQAIOyGMQEmhuDHmLMyrrVdzEliKMMlIn7u188iKWc/js7lxWJhrSXSRTIeQlgul5Vz4zhCzgVayDEt16snT56U+ApIebVaGedijD7FOOaqbZytrvbbMXoGmWavrNn1h7Kk11oro+M4aDFEhKSXSzuOY0xpnmfUelnXIsKcObNwHoYppYBCRCSIMeTbBpHw83OzlOrSDrZ1nTgzo9U6ScpZBBKgUgYEVc4+plzVDTOP/lZxJCkCQNU2eRrLHmiaJudq6xwSla1wcSKLnJVSBBJyyiDGmMgSYxJSTVNZ4X4cio/36GeflCGVWXLOpJOtMDEAaecw51y4z58zkl7xqxWgSOZyuSV7AgahkkBsjKrQFlC6XD6ticjFGFP0OedxCkVhX3q7lFgAkJT3AbWevM/TZK1JKe0O3hhjtdFaJ4YwTUCojY7zvN1uhSGlVNc1S4hEzHxWUiusQ0Qi/P+DUjQkBk7MyYgQIuSkCFTtENXhMCilmrq11hqrF4tWJNf1MiY/jX6eJmGorW3btra2qi1xJk6APE0zVlVdVURUW+tcvdsPc47CpLWrKocqAynSRik1jsWOOwPAcolZQGs9xzT6gPt+tVLKOJGyALYZY8HJmVkEk4il2335bVEWECTmXAzJi105Ar1aBBSd2y0WUt4Na60oU9fQNE3f9ze7Q5jn5MdK4707R3w94pgSy263ExTnTNM0QLBYnzx5fv7Dn7wfyQWGwHsQrjRijoMPzHx2ecVaOacvbq76m73rlgolpkhoynFNRkee93PfVOrysP3k6eOL6ytlKiDQkgFAoQgwCGTOu+0h+CmEcLxeDft9ztnZ4s5bKWM1MCIyZhEmBBBgERSInLXWo/eISNp+8tnjR8+eKm3RLt94++7LJ88u9oeY8707p/3hJYhbHd//n/7Zn6nKvv3W6UdPrwTRZ8povvfjn46slHXJh+12f/fOyV/9vd85u9pejTEqSCltzy615LfeestM6Wo7hJCNpu1h76pKRE5P74YQHj19Mhz6xtl+mhFEkYoxVtbFGAMwIgrQ6OfMgNrEnLR1kHNkIaU4gyKFkjNICIGTRAw+pVTyHZm1YYOyvbh4JHGYR2st5KxJ6bp+9uxF23Vt1223W2utNq4fB0RkkKqpnXOPHz3dbDYFFZum6dGjR7fecqV6vcKmsgi64sTG+fYpSrmcy/KKeVj6OLwN7GQiUlmg+GO8Wo38u5VYa62UFoDZh9l7bUgRI3AfPc99HPats6u24cT1Zn282eSYdtcv20r7EJLwwtlc1ZKyWdjV5uhmd9jt9gBAnPRaicj2+sZWrixrvQ9938/zrA6HnMWn29DDFy9eFEjNxyCCxtDhcNhtD4lBOJ2dnZXTv2mrk6Pjz6FXrWiapmma5nme5mEYD8aYzXL10Ucfla2qMnq73crhoJRaL9vSDQCn9ao9Wa99U1vC9fro3snRNIxF0JJzTpmBsF7Ui7ZdLtezDxdn5+Wz5czSZEMMqc7jOAaf5nk2lTvsh699/RuHftjuD8fHp7OPWuuqVjGmYlM8+dlaa5xLzMx5zKmJSZQmAqXNHGMcxuVyOfghgZBWyBJjSDFQ8ABQaVWG/vJRYgGVUt7fMpjKpUdMJSm5/HUIoa6rtqr6vvferxbLOfiiw9Zad8tFGZcRcT8Ox8fHu6EPNyGlPM7ee2+czcKCoK0pY2VVVYUrV9XtOI62cinLYRymab57926Zj6cpzeOoNE7DmKKv61qjHsc5CTttRu+11k278JkPZ2c+JmVMaZKstZI5p5yVKpZVAjj5WbHR2gpCzrmfxgxiXhGSC8BzfHxcAr5Sum1KMMZysPbTHFIsr9wYE1OavQeAyjkASDmncczMMcYYslIKUFIOEMEYo5AYZAw+HYRv9bLFJ6rQuSAJm2IHEUsopyBBWfbD7bonMkNpsG6RZykejZyzQkTrtFaYUgI0/06FUICRM4ecUN9+IyBqY0npafaHfY+Iy+WysJB8iKZyIYRyKZk5slilX0G1WSnFeUJEZY1IuXFKKBFPkzcmKY3I4JMP3lulK+uGyZsku0OvtTau0lorpZhTit4YZbUyjbOE3kerqKsbUv3YHzTh3eP1Zr28ub7KOX1OOgEq+BPEmGcflY7rdaVMFKQsMAcfYgYAbWicvYrJORdiEsAQ8zj5z88rZma+ddItzSgAkLpdw/27HzlnESrLpixsUBHqEuCmlJJXQGC5akQkwonRGtM0jZ9jT3MKXqLf7wfNRgkjpLaq9tPw9MXLruvUolLN+qfvf/Dk7NJ16/jqsnqtIKerQ79ardxyA97v9jdfePO1Vt/51aefodaSoFjNc0opBSCpK6uAwzR675klCdi6w2lCVZyVEDQR6O122zbNneOTFy9eIOJXvvKVcZyfvzzDEk9GoBRkocxZkUIUZiBEQBKkjNlprZTqx6EAhwc/v//RL/08NqvlJ5981q0bZ9o0h8+ezE/zUzCzaXE69ItNlR0lkD/+4c+++N6X33vv3c8+efLg9M5+f/iH/8P/N4TctvV29kzKLjanq8WLs4tF06ow0WLh57GqKmZgZltXZHTXdQJ5GkatSGu1H/qqaqwxKUbUKqUUWZp6AQC7fkBKSuvDNLu6mkaPWmXOKaXT09NhGIY+CCZN4OqaSaWQFbARWB4fheiLbnseD7pum7pr792fpmm1WsdYlP85hayUItQfffhJgYi8903TlH3lNE3684DScuwWtK30a3rS2WcRYUnWacTWODuEuardLbnjFchcmMYFKQdEn8ueWIsUVhaLgJBizgqQtEJE5ggsoqTr6nubda3RD/007HTVHm82Y7+HzJYo+0kyxxBVXWulCNFqo0m1VR2mua3d/Xuv73a7y8urlEOnuzsnp5OfP/zwIyjuCqju3j1uFt08z5dXV7vdrtjoIypj9GEYzi+vmbkYUs4xFOOhGPJudyjPzitvJu29Tzl0Xdc0TQEekYu7JN8We6US5ykUKpnXIESUUuiaKoVpvwubzWa17JRSpNV+15egYm3tu+++y0Avz8+ur26uL6+KQGu/36vVUnK8ubmxphr9fHF51XUdKf3xxx+//sab84ef7Ha7qm6/8IUvzj48fvokxli1zepow8xqHAuiqCSL0lNM0zTVtXPOlUT4qmn7cVCaNBKG4FOEaarrW0PjWxGICIt8vnEo0Nw0TSLonEq3p4/UdZ1i3O12Cm6hNni1ZZ+mKUfx3guDqZxS6v9H1Z89WZdl92HYWmtPZ7hjDt9Yc3dXowd0Aw0IZIAQRYImZZsiw6RERUiUIhwhPzoc/gv86jc/2nqTaYuWyWDQFEVaIkEBTczoBtCNZg/VNXxV9c053fkMe1rLD/tmNvw9ZWRlZd577jl77/Ub58ulj9HHWOLVZov58vRks9n0+7211jknjH6MQ+8JdUiRFK+3G9yV3CV0VYVEXd8PwxBDyClV1YQAOR/p58wBEQWBMxeWejqdppw3u71xzjg7juOh741Staums9m+O5AWAPAxCotRhEorK+M4QjHMKLLOZWE/jCKilMkMSvOdyomZQR0PsoBY9vh0fJRsymKMunMTZZAknBIXdzIRZQFFyhyh7EGFqJQq2yERkSI8BpmhiGTOzIwsiCgMObHRWDzBKSUJoaz3dGu5IUCAhDgeaQWtalOJSE636iFESQkAjK1CCMZWmFI3emNMPZmGzJLiMAxCmHKCzElARBJL09RF+mC1CT6JSNu2HJIy2uiSjQUMEnNGyQCMiCUM3SgkKknv7MXfpDydTrWpiShlSZJ8CgDGGpVSUghaGWdsGKMwa4WokBQC59H33QE5JlSq6w62akPMfgwl10tExjGkxMZyiJGyMPPo4zFKmjQdhwHvfVBaAdEYgve+trYshoVo0Ki0ttYe54qYEueSK32c7Jm5qBkKyoK1w5S898aquq5F67vdt/xzdZOCV0o102kzm00mMyRjLjavrz4bI6UASli5yjSn+67f7vZhc0PtIoB2k8X5w0cpi0jerG+AEK1NMYudiMZ4OCyn7X/6d/5W7fv/y//1v1YImQhRilwcY3CGxA8gXCPtrlfG1WTcvh/vGZVBUkqZQVlTVU6luDw5OZlNv/iFd5n5O9/5jnX1UTafw6S2ShsUQAECQUBBIDIA6GNwpsqA3o/T6VQpdX19KXWNSoIAodjKccpI6KMB1ZKRL7z3+NnLn0ys3D+ZvLzZex9lcvbBZ8/+D/+7/yr7+N0//rM/++DJ9jBiXY9DRwCKtM+w9jkrZ7V6++Hyg6u9c3YYhjj6k5Oz1XoLkkMIRS3ryJ2dneWclaKmqazVF6td27bxcHDOMVLcbLWlru8AwHvPCCTCzNoaATK2AsUokThLTokxxETMJAEC2Kbt+tEYczI7v7682sc0W5wDqsurGyRARSlFUgoIS49ZjLEodr33eNsPpLU1JUQ332asFxHmbDYrR93IuWmatm0H9CHFkpebY2LJR+MvQKE98DbTDllAhIqMAeT2MI4ICo1pmsZYlbxHjvOJO11Mz0/mJ5MGYkjeY9vOp7MXL15sV1tr7c31ZYjsM4NyiVAYrdNjPxAh53hzfTEcdqVk6ezkFFCt1+vE+Z133omcD6VsVanC5M3ny2HwVzfr8/Pzvu8Pu51z9XJZF730zc0KAKihwvkd9nvnXM5jSbCra6cU9v2hLFsiUtoJ0+FQyhyXy2VBFbq+v1qtNMn909O2bcPQ14aa+XQxnXjvV6u1MUZru+8OnIGZt92QEg8+7re7IrQp3GTtqnEc27aFzGMMztWT2TQnQVQh5SdPnmz2u93LV/Vkev/Bg8lsVtf1y9eXTdPM5svtdkvKEJEPwWcOLG3b7vad3+1PT21VVVXTMuAwBrCiAiilDEOhu8bgi7YLEeVWSSciRY4UQmAEZ2tUquAcWqlhGEDEuSqlOHa91rqogtu2zSAT5n4YCys5DEOZhgucMJ1ON5uN9z4nQVDCCEIiXCrBETH6EEJiAM6ijBYGhbLabnR3KIOXMqZoklEgDGPOmTEbY3Nia62xlpmttffu3bterV1dt20rIsACpDND1w0+xpyztk5bB4qAlFIKFalsc87GOERVbmwfw/XqxtiqLLuF20vCzECSuq7r+n703hijrCkER1VBpQwcNUyktRHOWuci9DPGlSNayEmVsHTOPolBUPlYW2JcVc4TORcIWgFwBgGRnKJP0epjmS5AefIEBRFVYkARpUihsECKKQtbaxOnclzOOSNS2VREEGIOIaBWKafyRFRN7epKss05E5JSGHMSBFJKkQGhofd11aaUSivU9WqNiPP5lMCKlZiFxkAIAKxQqsoCkiBkAWOt0pJj9DEBqTGyIuVj5P2BQEhJVc8YhBBzTilmTpJSQiE/hGaCy9ncWS0x7Pf7ovYXkZxjiCFED3Bsj9CajFFlIRaJMebiESiTQ2msE8la6/liWiaK4jMpD8JROndMqC7LcsEg4hFVRqUUaEMpS0oJjnltFpFzzhgRG8RbFLrM6EQEFEEkg0DwCkk4LRdTIBszfvjscrzpJPohxHq2rJo6ZEbBDz79dIg0XZ40s/lqtRq7LgtDhnq6aE6arutyzvP5vKb8+Uc/+fnT83dPT1+Ooay+SaIhZY2SMFTafOmtN7709rsXl6sfffLEh2iaJoVOAEmZhJJRD5ET03a/v7m+fO/tt9568zERAYuxxlVtkWKUW01Eblu6j874pmkASHKqrOkP+5TSrKnHSADG1EarikMWidpoN1PdPk5PZ1/4uS/9wjff/L3f+f3ltLm8WGtR6334q3/xVyYzuHw+2Nq6tjGm2Y2j1jrGEGNUrr1e72cGY4zf+Pmvh2dXT548QVR1O7m8ua6t++Y3vzkMw7Rpu26fg5/UzascD7u9L/A4qRijdfVqtRJSxtj9vi/Oq2EMpbHb+yjMxVAj6DRlyYlTBm2trSyySXlWVW++88UffPBTZ5u3Hz8Kh/1+ZDI67mOBSXLO7eSYnmvblkEkc/mkdttt0xzD/jQAuLoyxpRymHKsizEuFov5fJ44b/fdfr/PwiVaSNkSYWu894LALHIUBx5pquNKcPsdlgzqKOKHElJDyIIhJyVZa1NeQ9u28+Y0+/Fys5nU9ovvvvXB+NMQZRxHIVPV026M9WQ2q2okWu+2i9m0rvQ4jttNN5/P67pumubeg/tD71eb9Xy+GIJXSg1j2B72aZPGIewOexEhRa9fvwaA+XzODCFFQcj5GIm3PRymLPP5jG87Ctfr9WKxyDlba8vOvdvtptNpVVUxRh9jocwPh11RXqTEiNjUbd/3KU2Xy5mSHIc+pVQ7Y04WPubNZrfb77SygtCPMQs8fvPttm2vb1aFIC/oYttOjVEJU6mADInPzs6n89MY48X1len8e+/dv7xZvXz56jznkJiZb9arzW5LRHVdAwCRrqd1iGlKqplOYwyCahzCftcBgBA645jFGKOUGccxDGNd2eNnBwC3cRDHtUNpkERwdK2EEIxxVaPvlGsiUIiMEnsymUx23SGmPJlMknBxZwGqrusI9XQyb5t2t9sVYUKJgweAov8qMSmHwyEjFLu2tTaxaK1XNxul1Gw2UyCEGMdxMZ8XU5DV+uB9VdWRs2Yu/Ry+O+wPh7Zt67quqsr7CABGaRKIKXXDmEEm1pLRhAoIGUQpE+IoAKRUORoXDiXnXCklRzeqKGtuhYeojSmnzyRsSBtzbOctwFKZfu7W4sIZ3yoZcRz9bZ8BobXaukJtsEhhAe5EWDnnxAJ8pBUBwOeEnFCObUIxZgCw1lbGMkettXMOFcQYY+QEWTgTUUql2KfkT0EqDQcIkDOhnkznAMBZtLKBR21NYROGXSDkqrKoYjf0Spl+9FVV2QqRqJm0XdcdDodc11proyIKKSSjFSryKStrrDZF24SkGAgAAit/8KU3EkkRYhwOIrlt7HI+RaX92EefcmbguN/vu6GbtvXD+/fbeb1ZpfVmS0RV1axWKy4JJ5XlXLSfKWeYzdriWMup1worZyIBIvqxL4ax2Wwym0w3m40fRqUoJxYGEdBGK00ppZBTwfnoGN5ZFDDJOWesraqmrlsAHsex77picLLWlpYtAIj5VhMHICKQc8kcBRGwDnEHOfW79aQ2y0m92vVaSYV6HMd11yttDz75HOdnD/ZD+OzzZ0pjjqPWKqR86McKTXcYJyez2sHh4vPv/v7v/JX/9L/8L/6Tv/ePf/O3fvr6KiOA1pIyIjw4u3c+a2Ecf/Qn329nS4uqB/AlyhxJawMMqFXK2TbtmIJW+qMnn3z80U+ttcaa03sPh9H3fS8IgIQoAEfYn7lUacBRACRMAM4oixk5OTPJooMPrDMkb7Xs+97UU9Wo1+tX3/sz/3f/xq/dm0w+/PGfzZp7J8t7N1v4+JPPftvZf/e9PxVUoqtDt02CY8qune6HsdKynLR5PGx23e9857u+XiillDIhBOfqkNL3vvc9a9TZvfs3N1dvPH7cNJUC/NYv/cKhGz755BOqWmurvu+trVCr7W5vjRGgEKNzruu6s7N7h8NhtVrN53PvfTf4WjNwZkAhJqVEchiHQJBSij6Y6fQL77wzdfbbf/gnNzdrp1XZO3LOwae6cefn569fvy5kvPf+4YMHzlpErIy+ubnRQHrfDecnDWvWWZe19fT0tDzGiEctqIk2JZ7OZ2R08cw0TdP3PXNUpHJKJbujLKAliaLrupRS09YAcBg7rS0g5yzHhTV5Tdz1/bhfv0zRfOOrp+9/cez4dD45nU8QVP0L3yRlf/Djn15cb2PmwzAOGc8ftpvd3hgzmzQxquuxnzbtYeiL5Gy73XaH4WZ1s93ubF0N44ioigS6qmg+n8ecqknLzJvNZrvda2uISBiE4M5BO45jXVeFKSxb0X6/Pzk52e12ZTkDkd1ut1gsyne0NTc313VdP3jw4PXr12Vj1lr3+8Nms6HUOgU5jlYrr3U5EDGzMO6GvVLaVhNmXq/XJUq3XLpx6EmgHwcnLuccOz/GEFO+Wq33Y9xsNojq0HXL83vn9+51XR9jXK02ZQnu+15Zg1qVU5QCHMexH3xOopROKRtjbjYbEtDOIqK1dtK2nMEZOwwDoa6cLc7RMoSVW2cI3iE553a7HWGqqup6ta6qavS6aRpTSOKciUgjKFCMcBh6Y2yIabPfWWsFqOu6snMsFosi8jo5OSkKxhhzVVWHw6GqhBn2+64oCbsYEYGM3h26MXhEpY1GxH13UEiGcNK2291OKyxO4vKJcMqbza4UcpQjY2Lx3sN+fyRNLKDAMAyolRLhkn1JKECAavS+QOuFDjTaKIVFOLNabQDAVPU4jmk/ppSm06l1bjqdltbnMQbvfQGNmVnGcH5+vt/vgah2bgy+spaIMsh+vy8Xeex6AKjrejlfKEkl9QnLGo0oAFqpEkAhIkopUEWryUQUQr4FOQv8DJzy6DvvkjFGQfLMmpTWBADdMOYQiUioYFdHfQbepitrawh1mY/Ld5TGnHMMmVBPJpNit51MJsPgC1WBSknOPqa+H5BU4lSwtJiZiASzRAEySpEPCQCcNoIQE6MIaZvpWIDIKfYhayWZ0YdcVSSonLNtO91v9jdXK2VViIkye5V3u31tllXVtG2rUOecT06X/TB23WCd9d4jKZGcmQ+7dHp62tZVGAfPWTKfn54VLZVIvrq62m93ijDFmFNE0ErpAia3bRtjjCFxliGGmEJljgtCWQeYeRh8cWoRETNMptO6rgklhNBMJyWMRWszdF1ZT8ZxtNoVQr12DnKwRldOnZ8uLjc9cGysntbViI4zNU2z7fpmMsk+rHZbUbb3PY55MWm6rjOuyqisNohIAu+/9wX9+Nzw8Ae//4fV+fl2uwUAVT5kzkarlNLl5WUaevRps+/ZOgDUBjPrmDM5xZxCSG3b5ugJKKT43rvv3VxdxtF3XdcMnbVVzoGoKnDm3aHQWp0zl8M35yQpaxL2Q05h0jQjBhZCMISAWocwKNN2QwQlDOnp81e/99t/9HB5+vN/86sfP7/53gefT61Ryv72H/3Zoeva2hgVYhayE2WqfZ/bdvHzX/3SD7//xzVxzynXy1KPUdftoeusdUicRXxIz58/PVkuv/rVr1xdXTGn169fx8SIKoyxMswZhrFTSocx1m1z6IZy6NztDoftjpkVYA5xPplmy7nbEIAhhUQ+JcrhbDEfttsPPvhgMZ1trq+efvKpdcWJcDwxF3pRKTUOgXldBuLZZKKUurq6YuZ7pyff+ta3vv3tb+t+8NaobhzCMMbkjToSwNfX17vdLqQj3sIZlNHr9Tpyns/nBY0s4M8wDCnluq6L8BhuM9vK4pJSKq5cAFJK2aoyzoUcUgpKmV3X6+Rboz57+oxDvHd+aiF88tHeWmtsFQXLuJCiuLo6OX8w+hBC4Ag//OEPQVL0w6GHDDIMw3vvvWe0S2nPzJEzj+P19XXTTE5OTqy1I47MvFmtZb8rgHlxW9rKHROv4ChAR1IppZjSbrczxty7d28cx+12e3V1dX5+TojT6bTg8957q6gIdwHg+vpaa3047M7Pzo7urJwvri4rjQ/OzoBUzMyJSZupa13ThhCVUuttVyDZ7Xa3WC7LPa21eX11ebKY1XVN2jLzZrsjbZbz5WJ5utt3q9VqjOmzzz47v3cvcd6sNgxUwpjqus4gnCFFXt1sJk2Tc2rb1ih9OBxAGIGHsXfaiIikjIiGVEbUWpfuxZRS4lzyuo9SdkUAEELqui4zkMGCVJcJb7/fiwiyaE3F5RKJ4zACwDHb3VZ8m2FUREkgYq0lUCklTgJA1qriOCpIUdu25UZKRL0fD/tuDF6AlAIfQuFK2qYRUj4ERSiiYk51XUMEELLWxJjHcWTmyujyOmPOVdOKxN1uZ7RdzOciEFNmZmOZBfuhryq+kzXwbXpGSolIl5Nl59OdiKkcEVhkvV6LiHN14RecO5K+4ziyyoWHRkQoEcciRIoANKrkIyJOp7OC+XsfhKNlKXkRJFAcL+VSw5EGLugfiDAA+8xlFmHOpYKQSJE2oI0gpQyQcyLRchQQpZSJju5BIoLblKkCfaUxG+2O/sMScWyOWY/CqG5jQYdhqKrGex+PXYQKlZSmS2eMtZI4lyD3JKwpoyJSlgEzQ+SMLNn76IMwU90cAXpElYBZOENkGXzoh6i1ddYIKgESxJSSMRBj9mMex6AIm6atrHW1rSdTtd1671MKSmF5qPu+r5Q1igCAQCprF7NJU9kiIquq6v75OREy89j1kBMpKsmFiFiAwIJXAwAI+tKHobSI9KNXSlVNG0IYQ2DJrsjFUypdEdZaQ8oYBQDK3MZQi8TonbGgQJiRQClVu0pAd2N+dO90vQ+1xeXJ+TYIb/b1ZNHFXWOrPPh93xurSLCcYlGkqW3fHTTAYb/96KcffPHxeVtVv/OHf9Ce30ukUkoMQ11Nijj/atM1VhsiMhqAq6bKh06BFqWNNqhUPMqCOgKpnGFWLy+vIGdtbA5+GLrzk2U8PVkfxpSYCCSL0lRV1Th4Y03O2ftROEGKRqvltDlbPvroJz/JFZn6jOxEWTV0w+hxUS99HiP709P7S6Ttevzrf+Fbl9efG9ov2ig0WXV+dnr/3a/9/MunT/rdlTHW5+SZlG4lyU9+8AMJw8iZrBVbz03TdV3f94g0Bq+QjDHTupq31bOnnzdV/fabb3366Wfr67XP3DaT5Wzx/PlL41xlq8GPiGi0mzQ09P3gfe0qTlkQyjRcVdXp6cnTm9fLWeMTQOZKa87wta997eXTzzfrw6NHD1v35uefPrG1JYKYgnXNHT91pxEpj3PX9Y8fP1rd3OQc1+t113UooIs3JSZOwoRaGZ1jKskAy+VyvdlpHRPnlJJkYOaSDxVjLMqjQg9vNpuy2OlbjXTBWwq8zLkkwkuMMXEvIj6MIFK3LYchpJAFLm+2u+3h7OKqBn96emrrajqdMhmjxBnKIEOE68vXpK3knFAmTTubt86oIRmt9cXFxaHvdvuu+LeGEDLz1772NSINipRSz58/v7m5qWqbScUYjykQ1iokQuiGoayYiEgacs5a62Ecyw5UgqO11n3XpRiLJjbG2Fau4HhF7FMOws7at994o+/2TdPUdd2FULXtarMlWhYgt7ZVXTc6JemGwp8NvUedtDGFu2JmH0JVVcbV0/lys9ummHVVG1dlhtevXw/DkEFOTk6Q6MGDB1kEEV++vgQA0qppmiTcHQa6TaTKWRCVrauSFyEiWlnSRpECQUTSWlHOIuKc64rFzx9noHKOE0IirZQZxrFkQRbQOKVUVU1KoVwWzJiSVykV22vZOYSUIsghZGFlbE4SYxyHm1JI1fc96aPt2Htf13VKDCDWumEYcpb90A392A194my0YwRGElIZcPR+lFEhLGdza21MrLWULZzqukzYWmtk4ZyN0sqYvu+L/52IUs7OucwRkpAyOcZuHBjBuRqULl0dRzonJWZTzpQqSYExUkqKDCrKiUNI8/m8ePmOsIE+yhuVq8v0k1IKxWs7htKpcAcjp5R2u50mlXM2TpWpl25nU52PREDBq5mPgHY5ViciAAZBFsCS1ayU0hqVykcXTSaSLIXwFWNc2csBVZacwzHuseDbRJRyYEk6HbmhxKksIiKCcDxWlu8UqZf3Psvx7ZTU9yySWGJOKmIhUJUw5kxFkMlKg6BStnIEKK6JMQJIynJIgyaxCjJTzLDvegSADN77n9VPMZRG5N1uX1emsoYleS/MXFXVgwf3913XdV1MXmttjUopiOSSMadUQITC4xpj0q1qPYTQNJUxKqWkSd158FJK5W0WF0DRmRZBDd/WxMUYy8kya74VsZI1qq5roSMNp7UubsaUEoVYV1YjiQgCak1V7bSpt/txOmnOTufVwnrdjF2YTiGDXl2vN7stAwIcM3+8MAnFGCnEMIzzdgJ5fP360km6cRoWy9njR6+fPZ/MptP5aeOaV69eRY5CakDZh7BsJvdPzz9+8mk9m4fola1jjKnfG6LkewSYzmb77WYymcQYU0gE0k5nkvJ+txmHfYo8m80UUsl1YKUhs2Q2xgxDP2vqJHnsd9f7+Bd+4ef/+r//q//oX/y/Lq43YKHrk9F0tjzdbEeyDiGK4HRx2l0873x8+53H8/uLR2+9+S9/68OcOXv/05/+dD6f1PPT7XZLmmpjQ0w5ZMijIm0ndQC4Xq/40LmqYaQMoMEWFvUrP/f+tK5ePH/2k5/85PXr16Q1EDllM6BzdVVVidl772zdj9vVaoWoYk51MzkcDvfv31+cLH/84x8XNHS4eKWM7sdAylhFPsYQxh/95KcSgya9ub7ixv3Kr/zKb3772wDQtk0KrJSyxqSiJCBJieU2MGO3273zzjtPPvqw7/t/869/o65rrYwJKe52u5xzXdlG2QKwWGuXpydlY76+WdetCyESKY7Jy1Bm3GEYihdwPp9vNhuljsjMkfdi1koJwG2FX7EnxszaWpszJhYiJaD6kHRViTI3++FBq/sxoc7n5+eCsP3kU0kdZTqdNq+vNz6MZw8e3r9//vr1S+/948fvhmydcwI0DEOQWNc1GT2s1mVT3Ow3h0O/Xq+dc5PJZL1eu6a1tzpvBhrH0TlnrYkxISIRMlMR0McYlT5aLAjxjcePLy4uynJ5eXl57/TETiZd15VBwXvvrCVESWm1Wi0Xs6E7bNa7pnKZydaTMbFkZo6DT24IxlWkjdXmvXfPlVKfPXsmKWlr5vP5Zrct6L11/mHdpJvVfhhd3WTBzf5wOOzm82UznW13O07p+fPni5OT+Xy+2e/8eKyZIiFo26IKLraJruum06kyFvGo69ZaW+dEhATuJHiIxx5oRBzHgChl900pAbB1TillzFF/UYS7ZWwlZQhQCBCNNbauG2YWQsxl4aYswCxAeBwuQYBQEHwMWjQAAeSY2AnGlLz3NsaSvjsGzyDOOZUlcg4+lgWxcHK1tZxj70dFR6tbeRflUytbZoyRMwiKUXqzO8Sc6qopIgYibatKtKBWkhMAhZC0zuX0MARfBMxJjmpSpZSrTHnIrTJ3kpxyt/BtOFdZuKuqWkxnvutzzsMwlN3XWku3N1U5oBQ5xtD15dZCo6RwjZxFhBCZiIRUxrvADQAA0gA5J06xYMVQRHOAKjFA5JxESmy2iLqlh5gZjslWYsAgIt+meZSXpEkdZzXIcgzUQWNMIcJT9kU+LSLD0BnjSlJKoXWVUrkU8R59dBmFjs2GiWMalKaktIiAVk6rtmmttX3OLAkZ4Og4R1EkDAgqhrRJ+5yzQnTOMYoCAgCfohlREmhVW21T9Oo4sktJz6ysi0jWWmCZVFYppTXN5/MSbOD9dhjG2WxWdAwF2C8o3W63CwkBiBmK5CclBuBS06KUAYCSklkemXHsitKibMn96BWCc6aYBarKGlICR/dRObiAlGgOECkGbEOSFUjO+XA4+LEfU3yxvnq57veR+8hQqRwyKLKoQgg+h6Zp79279+rVRYx+Upm2sUpUz+litVOEdlpd9OPW+0XTblbXA1mJIQOD0tloZS0ruxvH0/MTH+O8lE/HcT6bWK32u818Pu+6nSXsDwfjal21HDwIjWO/XfE49K6ZG0TJ2RJpMBIS4bGtCwH6vkcO3/qFX3jxyYff/YPf/8q7/9nX3//mtF0/vVy///77nz/9rG3q5P0h9Mby+vqizlmN8ff++AdWHRLH19fbl1e2atz+4uU3vvWLV9vN6jAkNeWUbR4tS1U1UjX7occgLIkIHj16tFpvQwiorBCQsX13+JM/+d5iUu92u+12+/jx4+ubDbNPwJLjarMJKTFL4pyCJ9KnJyfr7Y4Ji4WV4Vg4VqCvB48fYT55/uxZZauqbda77XR5Ejk3lctjmLfVfr366MOPgUplVCBQwJkILSlEzMJFP8QpW2ebun727Fl59o0x1mntU0wp5cwKMSU+DH2xn9dc56vVGEORvyKSqdzhcOj77uTkhJmTDwrQe6+UWi6XZU1kPgZSlvGIiDJCaTih2wA8vg0S2u12TeUmiyXGyJwzGSQVhUefYtzdXF1885tfrzR89ORTMs1uiPPZG89eXod+v17rfdcD0Q8/+JCoLhfLVq5t2xKDsFgsLi8vn796qZR69OiRc6YMtZPJZPQ+HZE64pScc/P5fBxHgOGomuFcRjFmzhydbQtJWX7DUYFG6nA4FPN0ufMq50RkMplsri+7w84QEkEpKWoqe//8XhRRSgNJ733nu8ZlUzki6q+vTeXefPPNdjJ78tmnm83m7bff/rmf+7kXz56u1+vPPvvs0A/aVlc3axa0VTWbzl1VXV9fv3792jm3O+wH78tuBAAKqexbs9lMBCPi4D0qdej7uy3k0O+LiMkwA0ASQVSoFZTWVWPKxzSOY86RiEzltNZdN4QYvffO1UQ0+mgQiSjEbJ1WpJgZUGlNoCjkxMyGjACkxDGHcRwTM6IyCFrrwlV7H31IgEppyTkzwhB8ysmn6FNk5nEcxWjEYl0TSMwiSAiKFBoRIKOVUinHmBMBbg/7yuqqcmXnsNaiwBhHpUxGQMS6rueV2+8OzCyCwzAoBcaYEFLOUnblvu/bti0UoAhqrTnnMm4WNRze/vPeF8C8HEarqionmyJ3TCFGUmXALMQ/EBrCyrphGElrZoZbWtc4KyJACAoRkREAFXJmEWAGAEFEEEUESFR+CDHnrOlnPO7d9kwAIoxwTJNVtyAzAIRbfleQrSYirRRaY0rCJQiXugRDGgFzykRCIJpUJqWQRElSmBm01olzCiGEgIq0VoilVokYpJw2iAhI+xgTMynQQogYEkhOknQ5xw3RF72SVsppY5QizMwcQtCVFhHIXE8mBDh2Iyis24pTIgXNpJnPZ7XTKdq6rQi1T3H0/lYxZ6uqMcoaxd7HcQwlx0sEYuxLInrOOcY0DAMzl5IYRCWS79RzfJvzXI4XRWBY8kT5Nucg5mTIWGWUKoeIDEB0TEqgpFJpngBCEtJaC4uklEuoliCAAEBM3LYNEYYQDv0QfAxhTJk06c1hWC6X/aELISznsyzADP3oUZFk1gqHfo8soHQAdM7tYtxeraenZ/2hr0iHoVdE88l040cQJG1jkm2/nTW1xIiGKMmDxfSwX0fJM6dpPBjOlWvHjENIxjpl62EcJlVzspjgbLIf0+b6onaVLs2sqIhBNIWU4cg4CxG98fjNTz748e/93u/NT96kfEjj2O1X905nl69eh5ErrSfTerpYPvnpJ7/2K3/xxacfXb16BpLrZmKnc5E4mTTz2eTF5fW+j6aekHiNyWkBCLsuUTMNISjhWeMMqbKZCaqQOTNXbUOcNpvNYrGcz+cnJycZqA+5D4mU2263BdIJia2FmNJmtx9DQFSJg3Pu5YtXry+vxhCdcz6mzeqKQLmqZYbkx0qTD6NSSphhGHIYvvjuu6aq2JiPn34Ww0hsM4hSyhqnjM7jyCm71h78ISUsvXxxHBazeTupx3HUPiQCJKcLn9/3fRx915m2bY3pUKvM0DRNsSgY7ei2VrOAzCSYUirBH8xcTDt3iBkzZxBEVFoXNkUpFULwflgsFjnjGCIwayDMbK05O7s3XL1E4jcfnVlrT5fTd944j8Pm4mr1+GS5PoR7J+3r1eGzJx8zmuW9M06amYdhaKcT51wGublZ7Q+HGCMoWi6Xzrmzs7OHDx9++OGHl69eLhaLpmmGYSjM0yAynczm09nLvj/qTpnLvGKMicmPoyqKMyJarVZt2+YQkw6TSdN1nbVWmPuuY+amaZRSL1++fOPe+fn5+cXFxWI2qRaLzWaTRW0OnUJs27ata6XNMAxDCGOMxRuBWo8+TPoRQV1eXPXduFjObFV/8f2zjz9+strszs7r6WyBSh32fbE/VVV179693WHvnDNGF0JrHC+LZ9cHPwwDoprNZmSIUG82m/V2W5TAWTDFzMwxp7JwKzimDYhI4UXatp1MJn3fhxy6zaC1LRtzWRlJK7oNN27bVqti3oiIyKLGIXi/n0wmKUvfj/04hBBiFq01kNR1q5RK3neH3nsfOSthDaIqG8dxdXWZcxYkY0zbtrUxY/AhxRhyLuuHpZL2TEQ+RuXRKG2IUGkQPnRd7RYi0nWDEqisQcSSBFFXtW2qLH1ZJsrmKiJ9P1bVke4t+2iR4znnStZguW9jjMAZnAuBU0oFgi7m70JezCbTuq7LubMYtwpX6upKKVUqfkNOsT9S/nXV1HWtlBpDyF1XHo0CMiNAUQWD0sTHdQ1vS7hBCI6VY4hKGTp6TEvF791+XHYIhcdSJpYkICBM2sktIRk5azxGQhIBAZbQvpIwcpzRbyfawgsU/USMkQU4Ze9HACi9RiICKCkyCIoqlpujtouBRQQz+pg45YgSKYjUACASBRJnEhFVVcYYzsyJkyTW6shA+9L4lJTCEHxTu7qtrNVEoDVlhs1mkyILKUKltQ0hBB81Ra11BkEQFsaUjSFtrWXWIY0hFcnMkU9xWeeUhOXWynGHzJdlocTrxxgT58QZhZVS2hoJFGMQkbZuyhqitbLWCicACjmhlDPYUf1eTvPlcSvUfgl+qaqKU17O5hHD5X6VYkRlAdiZatj3KcVH9+7Xk/bVxfWh7zufUEShjL47bvnGqarp0JiMVeNSzGPw06kDEUkCKc/qSRdj7pNGrJULfnSWhn43IXM+X773YH714vkw7vf7rpmfjkNnm1nIlCKYyijDMfrXL18tZ83bb757Ops8fvjo6urq6dNn1tUxZWCTRYBAWUPI3/v+D04n1XK53Gx2P/h3f5rQ2yo+//zDpplIZAN02KxSdMKLDOH15ibVcz2VypnN+rpaVtGL0/a3f+f3VTVt3CQktsakGDh4lmBs0/ddO5uGPq9udou3ptao/RAEwVbtsThHkdJ6Op0CwHe/+8cZ1BCyrlrjzOzkZLPZ+GEAorN753U/vrq4Ojk7Xa02rqlzzt04PDp7bJw9HA7GWd93LJqU836IA9vKgEhGQmAN3O83z8cRTD0CfO1rX3vx+tnVxW46nYuIT4ElF5qm0Mldd7h/795k0pwtTz578mmMEVn03R2QkdRtm41GKuZaY8x46ElrYk5JjDEppGMdfdMc71GB1WpVhNNaq5SOis0yAcd0VNICFH0WIktSqsDCVqssWFkH2oaMhyE8uv/o4vVzH7O15rOPP/zSe4+/8oXH88Z8+OTlyez8/sNH448+2fVjVPZqvXVVk/3Y9303DKhVCGH0XilVjJhlN/3Rj340m80qY+sHD7quY5bC4oSQsnDmeDgcCqtdaOzC6+wP27Ls7na7wub2fd9W9S7EMvhut9u2aTabjdzKZQsGgJL90M2nbdGp1VW72+2aSXvo+pA4howkYTzGPYqga5oQwmazu7pZEWoyWmv96aefxhiXy6W19u233wZtdvtek3n81tuH3Y0gAGEzaX0Mi8XCWut9uHfvHijq+96a6vLychiOu2ZFNSK24pBR+QAAxqJJREFUufFxREWC4OqKAIF0CQgrhlohBEJhWS6XZWspn2DKiYicc3hbvzqOIefsbF0mVDK6yGr4NsAyC4cU992hqJBCij5mIiKtJPNR+gviUyzE3qHvfAwhBCFklqptyzp16LuUUtM0gsD5mNSKCJzZhwAiVVVJoWlBBj+WGr7ysjlla125A40xWSDnzCkPwzAGr5UpBYVlYruj+gBAkSmSwzImlpVYKaVJMecYo1K2sIM55wKKKKWstYQ/2/mKeEchAkAf/Z1KIOfMIrHvlVK7w74fBwCIPhRUZQwBRWxTiwgAKTqmMiGi+nPbKgiJCBCVk24qE1suiJlkRCJFRJIzIkJhKyEf8c/MmW/haBANiBoVIHMSQYVERMgSitfz9sfK3yUByCmLKpP0MAzl0DCduZwkcS77SiZRRxwbCjBNJTUkCVPMGViRJVRa5ZxzElRsNEkSQLbaVM5En4DBmPKHKOfc9XtDyjotwlqr6bSdTZtJZarKWKcA3W63G4fASAhUtxMCRSDdYWDms/PZXb3EkZBWpowBRJSzKKWryiqliuA53maNhRAKhXEkNRBiimUzvtuki0CEb7sjlSJjTGFDyuIDwKXRDxEIEBG1IcnMxHIkzrXWiii9fPn88vJyevZwaZr5kNejiKkjqu56d7pYNLU9HA43Nzdg3Gy62A8jICJERFSGSDlWLqAZM52yzSOPeZzNZpv1pjFm3kzHmLUGy8pqhzGmsf/yl97Zjev1IZsxdjcX//n/9r9YX1189JMfPnn67NX1rpqcHsZgTdNH6Ac/cVphmrbTX/qFb/zgRz80pDCH5XTycddXxk6a9jCMMadSKDepTGWr/b4LILvNtjIP+nQ4PZ/8nb/3X/6jf/jfj5zu3T9v6uknnz/FaB4+fvNie31z1U/dkkVFUmF7ZVzVH6Ce3uvHQBJrghwzKZ0VtZP6/tn5j37y08YsqGr2CQ6HQ9d1MYNtq67rQJEi6vvDctputtsUwhtvvfnBTz+pJ/PAeHNz895Xvny9usnCiPTi5WvtLBBuD3symkWMddqayWRijHn16tXjx48V0HrnY8zz2cKI3/d7NEZIC+S2bX/1l3/x5mr1x//ugx6wz+N8VlttThbzwY9xGwGg6EYOhy7nBABKqRx8uXNCCKaEqyFiqcF2zmml+v4QR1/IswKTjuM4Wy78GFebtUEpeUlFLlg2rclkUtf13biQbtPGCwxY0EVEZE7eZxEBhPL7AcDZKotkH6OEGFOdpg8fvbHZXD1/GmJXEXdKUo7Z95shyoPp6Vd+7v2t/+Annz4zzaT3eeqOh4bJfHY4HMoZwtaVtba0jJU44n70TdPknMfo27btuk4E75/f68dhtz2cnZ3tukN5qJRSnMIwxBJaKYR939e3oh7nXLHxnZ2d7Xc7AGia5uTkpO/7zWZzfn4eY3z9+nVd18vlchxCjLHv+74bifQ4hpSSIRVCEE7WWqVU3+1FZPTRVg4h7fvuRt3U1mmtV6vVvQcP4jBeXd0oaw/73ZizkihHx2e8Iztns+n19XVlbdChfCiFt9tsNroyzFzX9cnJCQCEcCSAGST6pDQaYxiBU8lO47JjFQNPVVWKTdmfjNZFwoNK332+xR5atCcKMHMJPc8islqtcs6CYLQryUTlntGkMMVy/5FWxlkJQVmDnIEBlZQ5Yww+xuicG8dRGW0qB1klBlSklFLa5hzruvbDiArrpibAnHNI0QWqqmrStK2rri8vikZBKd2PYz8OiKTpKGxeLBbb7da1zXFDEslZSCtnXbkUZf2tnFFKJWNDGBHRCxRQp1yictZUSJFZa12QTKPUer32IWitYz7WMnLxUgOUBBIiEoGiz2qqGo/FXEoUlpYtLLFiQET4Mzm6HDt5CuJMRBAzEgkdE9oLyQP8swFOICMLspAwEMRcCu4hpVQqjSEDIGtSwIIEGklpUqiOWjNkpw0dhdasEMt9a4wZfeyGviirS9yPrSsfIgFySpzyGGI+1gGVo0454BAisuBRyAaD1lopY5Rtm6qt6l5Ycmxql+JgtbZapRxKClt/6AB5t9sAx0l9AsDDELSmxWLRmzFkHvoxRx56z8wACAA361U5OE4ms7ZtEQAzoaIQs6uItNLGaOsSS44j3yZWlYvsnCsVjdqa/X5f3NvjEArLA0IIkrMXEWA4HA6ltsQoCmE0mohIBAmKJhaYBRGr2qZbfD5yJhFUVutkjF2enkwWi3E7Pn7w8OrgL9ada2ez6QIR/DCM/YEAQ0rduJ9MZyEOcYyVASmtEARDzqpq7TB2Q2cqE8Y4mU0Ny+FwmEyXIbBm0YKaEZV59vTpw7fODyNVROurq09++pP/5V/7+je//Ohf/k/f1uZFqhbjdddHrqqGADVlyBBCuHj1Oo1dN8YPh/6b3/jFe+enylb1dLbe7d94/HjMMeekFXCKjx+98aU3Hx+226ef7jgNk3aKkJRSjbMc5Cvf/NrhwB98/rFagJ64b/zyL68v9tkfwjbMbO1zzsqxKOdqSl5yJK0SUB8j+rBaX1lI/e4mQZvBeT+en59frXcpizHGVK7bbbU1RfvWdd3jN990znkfyWrU6k+//z1rbakc7X1QUCauzCKttfv9HhV9/uzpbrdbnp50Q1+pCIAlxz7FoTI6GjMIj8Mwb48lYEI4mSxSGl+8fOb0SVnzi4AmeA+I5rZkpUwpH3/8sdWmPMK6bDlaF4MEsMg4hiwZUEU/JBRrrdNUiVRWjZIVZCsawDASmhqVzQJENIwxpWCdaactWd11XfCJU545y5y0JibwiYmIlKLSMa4NKeScxhi99wqJrH7JoQsps3v+sq+vxtMX6cHZqdF2h/edbq67qJyezdsHZ3M0NmbedF1hNEOMptQhhICZIXMO2evoXJ2ymNrsvV+cnN3TlFIau4Nx1XTaLk8XWl/Z2tqoBUEZnVNW2krODITKkFLdYXfvZCEa33/nQezHfjiICIKDk/n1anN9fW2Ev/7+l16/fi0iy9oVEBtjvH8y/+STTzTQsN9N5ouu70VQGZs4183kMAalJGRljBkQh81Y1zWZdhiGmtDvR0kRq75p6nfffXd9fTUxpLVcbg6EMl8uzs7OPn36+a7v0bgujZlRhIbAIYy2acvI3g2DzaKUCuOYjyCnSjkDitYKtRGAzGTAJEkhZQCCmH3MSillTDWZjpsNC1ZVfdTI5BQKu0WZiLTTrjTz5Ky1BuTDGAotis4QK2ZOkEc/5pxb1RqjQFGMkZCo1sEn75PW2oeQci6h0AQkKDmnqnJ13VTGlDqNlLOPgUj5GEEBGWs0Vc6ggAOVI6eQW1sr67LQEHPXbzIqckqURq2AVBZJmSOSkMXWXHSDmy5AEEQqVw1+HENMKZW0c23cfujF+7meQxgr55Rqu65THGqCqnHWWgPZex9D5uBREadUxqbF2Wnnx811X2stACUdOucMgjHGWTPhmBGxrlwhawiysFRWaUMpcsGYiVCpY42EAgUAiZmFb4FoLoOaJsvMwkxAeHyKhQEYjktzGUZZkJlEhCHmlAFAk0qMEjwiGqWO2aOZi/EJETUSKRoZNmMAAGdMwcgVZq01s5DSbdsCC9jjASsNY+1MypIAAud+TJqUtbo2pZBWSlhpRhLEJERCVoeEYWqb6cSdnah5a58d9iI8cdXAGMbBTpuq0gLh5GzZNOBYBFgzX7x6rRQt5tPlcjlbzBYner87vBxfxugn83oYhhi9IAxBx+gra5zNa791lRFGa6qqgaNTmYwPLDlljpxyTEyqRNBouU257w+dMWYcgiAoVynBmFNWKglpUt57pZBQoSBG9inXlUW0PqEFRUjImQiMNkQEgYx2qCgCk7UJSJLUzeQLbz8O3dpWvZUhH1ZfnIytD+vN81EvKzd5tdnppkkiYQhtrWN3EGZUNqBSlixhBTiLng6Xg0ZTEUAGoZgVA1JjRmSmpEiS+KSh5K2/vNnHaGQ6WyznH3/+0Y//NN9r4CQ8+dYb9sOLFy9C1NW9ju1h8Iumdgo5pScvPrsRXNR1DPKnf/SDOPpf+dYbZye0evpsXs8eLh//8LvPGqSpll979wv/3vvVd3/zX/zh8M68nr3+9GX36vl/8Gtf/8f//NvKnOCHPw2xm4H/xts/9+Hnn789nw6r7cXORzP3XowxkoMiIWPI1rtdxEwK1ERPxcvldqyqM4VKIxKGAVzKOpp23x2sUlXmig8W06JdfPXrv/ibv/eHe8Zc18N+5/xwUts+T0II7Wy633X37j+8uroxlW2N2x32MaYCHVXWpar2wzidTve6Zg6cA6ja41wba2B8WMV7Cyfd4erl0+0hR5gCTmM2rmlbzDcXr6umFaQcokgJa1cilHMc+rGpnNZWKRp7f/7oVB8xFiDrKkSIITBzVZcmNSzKBWdsDhER752eaQNZJDNhiN043gX9YOOm0+kw9Pv9PnFWSk0mk8Ko8W29axmPCoRljCEkRBDmVBSkVhORH+OTqye1oUnlJJLf769fv7p3fl5VVUyHzaE/uXcfb+u9gBSRn06nZbpFgELDjOO4Wq2Yj/GeLMdJcbfbdSlUdb1cLg/D+OLFi8lkEkLohqEsSQBAt1HYBYaqdG2t3Wy207b69Mnnb7/5ePNqE3xKnJfL0zKFeO9vbm6MMcvlcu7MixcvmqaZTCb77nB+/17lmtV2U9Q9tm7aphpLBG0IVdsUqnXo+pBi4ZmOhi5S3Th0Q4+Ik7YVERZMKU0mk5jT559/fnbvAQCu1+sY8/V6dbI8E5HEeT6dlVNIuSYFGEwphRSVUqVcstB4hagv8xnehpiVD8jHACMUMrgg0mWKuWMiyxqtlCKWgtX342C8EUQRBIKcxRh7y0RopYwIDoO39bF3K8aYU1DKEGIWKSMOEYEAANR1UxjrUBKzjREATMjMnFKZ/ku8mlZKay0cmLnoXjbDICJOayISTkVprI3JiCEOXd8zjYAqpJyFbdMWzCDEAAgliDTn3HWHAjAOwzBt6ltGI0LmQmEQ0cnJyeFwGHqPiAzHAbdc89PTU+3sOI5Y3mnOfd/n0r5bVeXSlc3Sex8jldi1ofeq5BvcMb63UGeZPvE2o1syH8fX2/6xI8Cqj4F0xYt4/NkS3YsCIMKikPg2y73wxD6l8sbLey8vWAEiYsBb1WSM6rbVxyiltWZEhYRKEBGOKKz4IjfjUhwER/o8Jd3WSMe4LjkG1IpPkdi4prKmIXTCOmeuXJ1TXK1WVWVRcr/fLRazs9Plcr7gdjruNm+88cbV5cu+D8GPbVOt1+tiskgpKWUYBEEprQVARDLgtKpqZ8fgh64vsA0qWixONrt9YeuNomIWyDlXVV1VlTpGBYTdblcYtHJVc84p5pRiKXtizqNPMUZ1LHkETYiIKbLWnEESCEhGFAtHygBBilpNRACEiFAEUKravvfeO4MfmgXrav72F9pnl/sPPvx8uB4UgUHmnDQSSs4RCEToqFIvv0oABEs0sxybi4sWBxBR8P//dgIAYRRgABh2h5OzWQZ9s88Pzx9vRv3+V7/e6+sX+2d+6N94cD5763G3XW8vbxZt9cV3H//ZS9/vV0yxbd2Q+4+ef/7Nr//6m/c+//GPnmCzmi0nwh7b5s9eXP7Kr/7iX/5b//vf+G//7c36xtSnTy7Ht+7P//ov/9wHP/nk+rMfnr/5Fd6df/D0qjX6J3/wG/sxZ6y0bjNHEE4gPnpNQpxBQTOtN5tNZZ1IblvXD52qamP0dDZ78ezZuN0koMen59vdulsfppP2nTcef/jRR+lHTxaLRz/80SektbHzGMedh+IBKVGANzc39+/fPwz9Yd8ppQpTW27+6XTa9/3hcMC2kug1GuI0qesQgw+7r33zG1996+zFRx985zvfd/M3Thezy+1mcTZTyLk/KKWqypY42JBiSLngz0S03+/HvivegclkstlsNACAZAXKGeusHZlFcvSh5FMSUQrRGDPGaLReLpch9oe+BwRrdUwaBRJT3/c54KSyChk47fohpNROp8657fUqw9HFcXQWFrtLjIlLSQ8m4WIi1NaEEGzlhHm73UZnzmcz5vj64qJtW+0qpc3NJ0/6EKfT6Xp/iJmtM0pTTrEE4Zb9pii3AdU4js10QkS7/TFuWxFsN5vlyYnTZr3bXl1dVU375ptvPn3+/LjMKXXH/3nvdylWzsSUVqvVvZMTY8z5vQdf+tKXvv3t3x5DCiFo4/KtieLq6ursC+9oa2azWWa+ublRxtiquX///qHvdG8nk8l8PlemH4bBJwwhrDc3dV23batjyDkXh3HhqLTWfTeWLoFHb751cfHqsN2xIWsqoPHp06fWVYhqe9i3zZSZm0lbZB23TbS42+0AqK5rVKRBK6Xo9hhUZjW6jYZAxDD6GKOtzJGVEBGR4/QmXObacpC6e+xTSpOqFYCUJfb94CPcZu8ZY3yK5V3oW2cOIuYxaK0FOPtAAJXRxtgh+FDOAYjGmEkzKXfI9eWVNVpEQozDMJbfxiAoUDlnrSVAjaS1LhbY2jo0OhmjlTJGS8rjOCJppW0fOh9C74P3npRRTgHnoQsnTYv6mKYJAKghBp9yVkrNptOcc7/fKZAUY86xMrZcAhEZhmE2m7mqEcYsrJRiTuXi+xgAwCoNxoo6ChIJ1R1tXETgIYRC8pYPotx4dyebOxJHI4FiRCEiBZTl2JFX1tTyeui2DghvHb1yVBkLM5MIA5aFubiLCoUhIkW0VW48vAUzyvnsCGiXUhOtj8d4ABHpRVKKxTJ7tAaUu4JUY2iMSRKjSALJmYFFiLquaysHzpYOCe3QGKcRdLRaKglqYN6tu2G71yCVsbU1PgzWaOv02HVjW0GcpjimlE4WU4R7fV+vV9f7/b7sKMwgTP3gU0qjzVLUzCKZsXbKVlXYHdmZnDODOFeX93iUmDETlHBeXSy/isiYUjebAcCoiiijcKHrjDakVQghJs4FbYBERKJJE8acdCIgBEYAVgRCiotwFZEUAglLJjAaARBAGI1aLOeyzU6ZbuTrvZ9Pm3fefNybA2gSzBfrDWhTG52TJE5aGUFkZADFCMICgFKOpbfNS4hICAj450nr8l+PeGcGQ/ricjPuKI75T37wyXyyDPbs0ZsL/MEn7y1OOGxmEXN/fTisM9uffO96aL9odcVK7QHU6fJyt87o/sav/83X//SfH4BHTkPyu15/ctn/+P/8D//e3/hrzBywGtj81h/+6M1J+s/+13/pb/37v/xb3/ngv//tH+2jHXv/7nun//nf/tv/t//m//6Ft9783qcXoyQNAAqNM36MPnZvv/nWw4cPv/e97wFGBTyOXW1M391wNN/42q/8e19889CPP/zxT1avP5tUlVhtqdJu5sWtD0kZnVkJmyQYuZLIRHGMAQukFNNut4ucQwjF61hkleUG+MIXvtB13YtXzxZtc//k3m7XbbbbqqnB0OXzzybx+v5y9h/9r/4XL1f+uz/+vK0I0rg8me2zJ4LKOoZiPBBUWmftY3DGggHgo7QTALTWmlCcqxRSDH5A0EjzyVQIq6oSyUN3SImXs3nlnKR8OBwEoh8G42pnK664bRpmhhwnTZWCz947o42inDGMPnEu7yr5cMsGHVE1EeGcmBlKXgRhyIkPh8iMzOPQ1QpJGyGczRZhGOrJFJB8SP0wKFtPp9PD6F1txpQPu30IYT6fa21KL6+1tq5ra6rCySXh4zYDvL25vnfv3oP791frtbJmHuNqvX7y5EmRpKbExYtSNjARcUb3w8AaT5aLzW7/nT/+06///FeffPa0mUwYsNWzuuG7TMGu615dXOy7bnc4FGHa2dmZj6GZnNjKHfox5nB9fe1jaJp2eVLlnNtJ7b0fhiGFpK25NX2hcw4ANvtd5Hx1dfX2m2/FxMpVyqjNdjuZTEnpYRjqum5n06aefPjhhydnpyml9Xpdu6qs0VVVFc9iIbdijMT8swE057L6K62NUsro4oGLMRa6K4TQj0PTNEVDdCdWKpaLskCPPiAiAJIxWIyTWUQgsaSUU8xGW21dTsyZjdES+iwZgFCkMqayDhG1YMhcV5WtKxAMo8/CBeTIxwQDX8hmAHDOGasBAAUk54RMd32X1sjt+SOnFGLMAJxS2O1EZIwpC2utAQkkK4K2tkqhc4YlMWsfQ/KhlPW202ld14ftBhFTjM6ZbjeyYlA0xsCRQwhKDVprV1chhLqub25uen9xenJurS3NmIjY9T0iWuvqtjnStJmLhquQvk1bo7BPWYNkkDJoHkGGMnXdpmuUjYZAEAVRyg6s1THGpPxw+aLUwJc/l7MUSzaUXsCYERCFCYSP46gws1E6cy48ZYkBCCHEGAMfRVjlNcOdvIg5HOcquVVZgohMKuO99ymzYMkbQUSrdess1pW6zdICgGO4mJpDljBGwbzLe+Th/HRRV7qqbE5mNpvWdf3y+dNhd8iLhSSurLm+uVYKJ5NJ21SvX7+MMe92h9l0zgiIavQj+IRaAaGIcIZDh977FDyBFG2ECN7c3BwhaBFRZLXSSuOtYaycxiiXJKMsCBJCkUCX2rsYA8SCHmkAEqSUEt42tSBi8IkNiSJNKHI8DKVckjc1IBepVtHogzCkDARVZfuQ20l9tbmJw7jf3tRoNocd+544GVMf4hCGcnQGAUFAABZBBiyRzEWthygArEDKh15eEgKVNA8RKXpvRohjHobxl37pL3/+5Mn15Vala2ofvfPGA0r8tbceIcLFxcWvfvntDzD+B3/11/+Hf/k/9nmlQbSpd56ZoWbzm7/zeyfzKWhkJhbrM3jVVotmdXXxz37396aLezbpEDOibLrwm3/w/ffevE/K/vqvfv2TT19efH794qevP/3wncbUn3/04Zfeef/D11flpnzrrbe22+2rV6/2u9Wrl0+tJgsU/DBtKkjh619//+OPP/rOv/0370zd22+/+Re+/OD0/i/84Z/82Q8/+jwvH/zggw8y2T5xv7ueTGY+pH4cQduIaFXOY66cCylqbVfbjVJKENSRSjga/Mq0GoKvCWQY+tW1U67R1DqtqmZ1/dqN5uwrX07MYRw1Bl3VIQ2vXq0d1pFz3+1j4izgY1TGJmFEjCkopYCZQN599931zY1I1mEYq8nUOauIrNJN7apqCSQhhBKxhCIpB02ljjTZWjnnmroRwuDZkGhrYFIDQOx2RChIHLwzFWhtsMJ8fG4lc4qpmBPKchlT5iwAjIoUKRHpw0hKxxBEsJlMtdFD5FZwMp8j0enJ+fNXL7WtUKv1et00jbUV9733HjJrpEldG1IAwCknSdbayrow+sGPkBkBnHNf/fLP9X0/jqOztmnsvu/qYUDv27oZg4/eg8I7WSMAkEBVVTGM+/1+MZtYrT746Uez2czaKgxBWzP4kZk3u20JAnzx6vXp6WnTNC9evV5vN8roEAKiOj0/t1YL0q3ZKZUA6vtn56vVqhdhSSGIUgaIimtLKfXGW28jInB+9uq1JqjrejGb7/eHq+trra0I7rp91UxyzouTZSmbLHtkCW2eTqe7Q5c4l6cuxJjHsawvRDQEL+mY+VyUNdY5ljT4kYOvCAVBmIuxskACdxCiUqpEPcXAKaUkfLdM422zgq2cIUVIJEdfeIyxUseVTrTS2iqBzBkASiWXRE7CpZVB3aqayyNRVVXx13LKiIqISACVOkLQt744IChOjxIRqqwDgDD6qqmzcDlthBByDM7a+cnSKktECpAUqAwCYEjVrjKkfN9570FEKayt6/HQ9z0ZW16PsqY4hvVt6NXDhw+HYTh0u7zLs9kspuLyImYuwAbfNskAQtXU5VTEAjGVvEl9h0wWlRVkQGQhuXt3t7+BibAMowpQASqkEvhw1HKXvRYQ+bhVF/JYABBLaCVqUgx496pQl3UHiFRJzivpXV6OZ7K7W6tMUWUn42ObeIJ4DMzCrHPOuURMEAAoTVQ7szyZz5umrlxhNDjn4Iecgs4CWgkGYxhBTRr34HxRVzrE4c0336ytSyl109l2vV5drwFgeVodDoe6dsGPbVs757QWpcx0OvWBfYRhjD5mEnU8eRB57/suWK0AQBMys7Huzl2Wc6bKKWe1pvjneq7KwEhKCQBnYTi6y4AQRTilLMKcYyYRIRDOCCiJhG5jBgAAWECBKIwKVVYAmYkEctkjjwYxQSxdcZDr2pFOytWHIQ3jdtqYzRAcynLakjV2MqusXfMeSlWxQiC4vaUACEGASBCB5DZiFEDuQlURS23C3bZcEJRqMv/ejz5CVF4vjIUfP7syrrZV89d+/S/91r/6DfL7//g/+uV/8A+3/+7Pvn+6WB72L2bt5LDrT9xZH0QxfPLZk5eNoely9Xrj2lnt2sGjl2gbE7Df9qMfusoajrIO/N2PL//kw88qCP/hX/5LX7tH90Lz63/17/53/+SfX46e6/bF86eJtUbKOYdu0CKn06mk6IQ1y1sP7xPH50+fNk4tnfqrv/Kttm7+3e/9y7ceTE5Pl1/9+ntf+tKb3/3RJ//4f/ptPb+vrB28bybVMG5EEEkiYMiMHOuqHccRFYnI6enpdrst56PykRXvz36/v76+zjlNFDy6dy9H3qx3zBIGbCr+4ntfkO7m/Pz8+YuLTz75CLDyXQKDzmgDZJU22gWdMgOiABGylIhYa20Io1H6rbfeAk7jOGoCyDkJ60k7mU3buq6dM8zcj4P3Hpi11ofdPsWRc7bWEXDTNHXtQgjASaI4p6vlfBiGvk/GWl1V3WGIDMIymU+67YYQtdZFZUPHGKOk2gYUQcqcRWkqpdAK9OBTCmnSVn2IYRwWk3Y/BK2tIfIpkzaUY1XXu8O43W6JOlB62rRtVZfTq3MWkcZxrKrKD6OYzAgInFPo+l5rnZsmxmhjIq382LeVmzx+Y7XdLBaL1XqNAqhIa10SE4vetWkabCqOoR+DnU1sVW92+7aBYRh00Dnnx2++MQ6dJtU01eXlZTcM0+n09PT0cDiIyMnJidaqaZqqqrKUFKFht/fO1oUMaNtWO3tzsxp91NZyCNvtHgjbtgXSLHkc/aE7aK3JOgF6/8tfubm5+fjTJ9ba05PzruuAcD6fr1arskQmzpWqis78iDSWgIhbk0zvx0I6sjDnxOMwxmCtrUqkoVCK3KWjzyTcslxUanyKOJwRSVljEZKIIGNBKcvjXcw5RJRLFgSBIizdDzVma6siARWREnNqFAbB6EOISVmDiKh0jCmEZCtTnDDGGDI4dj2yCLMApNLnc3tWYskhhaqqouQMop3F0qAuSMYOY+gHr/XRc5I5Wm2coqp2ZWtBPpqhkUxVWZEcQnDWdl0HmbuuKxM5IObbFMlNv0vC06YtYaVN0zBzmYarqoJxTCndjZKI6GPQ6ighNhYbVCn6shOINYX3pZLCUQoSkG5ZV1JIDKlkXZTzxxFpPH7JiHCcjPmowQLg0i6hiErKKQAoa8qBGBFTSipgily+LnM2It39QDmvxNvepJxjudSImEu6jlao6BYEPu7AjHQLeJK1qrK2rV1T1UYrq8kpaxBijCCZGJual7P2ZH6ynFezVreOnMPV6nro9lfETT2pnJtPpykEIp1CHIbh5GSBIPv9tuu2VVUhQl3XfT/6wDmLoBKULJS49KWycW46nc6m7dAdxnGM40jMQMrQ8eI6a4wxWmHOscRdiRwToYmonD/uDnmISIQiQgAoMnhkyUphFkAAzcQEIsBZYkm2zmC1UkRRZSHSjJxBqSJlLwbpondHYAQk17QqwcPz0/XqcDKfXKzXBsEpmtRNyOzHot5QWmsGBASiEsMCwOWe4fIdAqDbzqI7DvgOgs4MAAiATIhKb8dR6Uq0BcjPr9bbzXWdw2/8zne6wQ8ZPn0RTNPMtXv66idf/tK7v/qLv/Bvf+O33n//S9/+ne+8994bfqw/e/3qpJ39jb/xK7/1r/9NpRUAjeOgLGdOY7drqzolJmXcZJl5mLWLvL/83p/88V/55W8t3nnr3S+e/u3/zd/5r//f/2Rk/dbbX+IXr6bTaUrp4tmLlEJT18j56194//xs8cPvfy8O3ZfeePStb37j/unp/+Mf/Dff+tYv/M2//bf2m3XXdT/96GmXab3bGGOQSBujUjQaEuYQA4IFHomIE2hDWVgDgSJjTCnqK+bSku5QSKKmaZh1o9XNep9DBKDT0/OcY3+4efjgce4qY5uv//wvfP8nnxHa1tV98EojRFBKITABAxEBKoXMGGMAo4GVQooxfvzhBwWs1dPJBADiOIxaOUUawSrinJuqLuVilXVt23JMMQQs5pPiUzB2UlcF1ZxOmpNZu1qtrjfbqq5Pl/PVob/Z7IcQLWFZhpxSKUalNRH1fU8C1tqscowxZk4cy+2ulfXgRUAZa7WrJtO6qXVVu6q6uFkRkXXVvQeP4Prm2U9eWlsZZ5umqWwdQgijJ0AAlFw4OS6hr1ZpX07+KXX7A4h4763Y4raaTFvmSfJjitFZHVMiwIwZkK1SRrv9fv/l97/Y73d9dyCtCaAfQ+Rs67poOkIIq9VqMZtzCqenp7vd7nA4nJyceO+ZoSRwXbx6UUbSSVMj4nq9Dn5QGn0YHtx/VE9aRHry6eeJwTlXt03XdUTUj4MxZtcPWttuGBJv9313dnb24MGDxWqzWq1OH5+v1+ubm5vi6SqSrv1+v7M7a23MyRgzjuMwDEU2Um6v4q06hhUrVb5ZuMBxHBGRQYoy7ojJsJSiIbytzeHb2tSUUkpRKeWMcVqnpgaAfNvTkAmttZA5MpQhW7O3VmdmxZgRqChEEEXEGIOkhNB7jyxHmOQWktWkKmNJgBANqTIciwhqpbUShJwxCe/7jogUaSCVcvY+Rs4IahzHmHyjFSIaq4yqEEE4g0iKEaAkDh4ZzfI2Sy6ESFZKFVJwPp+OSfb7/Z2TJITgrdXOjn2gkZQ1s9msSLeGYUDEMXHOOeZUnuoMx6ClMmkJEIMISEhJ8DhWAkAZYEgrReUwU5hkfbuM/ozuJWXuMMYjPsEMUrzieMzEISr8roiQsKiSSYdleo46l96e209W7gxp5ZYo57Cqqpjtn5/jEQmQjvaoY31TNtZQFmYWJKVUZW1TVW2lc/AJEiuojCYFmFhrXdful7/+th/6nAbgMY4IruVEnPx8PhvH0Zqqy9JUrdHVMPoc01TVRBSDb5qm7w9a65TCarUSphAFyQAQkBIgYUBFOfcAMJ/Pl4vZWLn1eg3FgoV4976c0UoRAGttM4hRWsSWof8OeD9OtGXU/HOPQGJiFgEpE2gGpMysKGQ2gkACxFzCvZiZCYAYhIQQBFiyZBICUhISGgRmyaM2zXw2QeGnTz4GdTKO45BZT+brfb/dbkVoNpv1fX/kd0sdrxS6F4Dl1j1e4EsugVt864QWkVvBnCBiJEzJt+1kGAPnWE9aVzdjf8ikf+u7fwY5zCbtP/in/2K1WQMpIv356/7in//rhxP91ffO3zr7K1cXr95+8yv/z3/yP2xfvZ408zfOp6ubC1VPFWoCg6o2oJWrvCQkOOzX50v763/pL26vXl0+f/673//4m1/+ynYHD99Y5JwA6enlDabc7Q9aawJcLhY5xMRxtVoZwv/k7/7HTz978qff/aPf+p+//df+6l/++3//7//h7//BCF/84LMPLy8v3//a1y7Xh3/9u985efzFq0NgJTnn7TC2ruqDF5UJVONcpjwMg9aakTRiUfAVvKfYVsvCeHJyst/vmHkfyZBxzXQYxl3XtZMq5vz9H37w+Gz60ydP33zz7YePHz17fTOOvbEuxOhQGYU5M6eEShGKVihCTdWOMWSOVmuyerVaGaUJRefgnXOodQ5xdXN12NvpdJolubrmFCtrEKW2bswMxjhjB38oWlpnnVazw3aXU5BkBGk5n67Xaz+OVttJ0w4+hZhLykdZXkt8B4t470uaB9wOMGWt11p3fXDOhZiNkcY4bR1o8/TFixzT+fn5crHYbvc3NzdXV1clgrVkRpKC6XRaqOXD4SACu822bVulVD8OOedJXU+bxnvvjNNabbdbhVhZCzGtr6+HYYjMaRwn02nOOXNGYU2qclVRzX322WeztmnbtuuG4gJEUsbAfr9/cP/+zc2NVvb09HR9c+V7r0BdXV01TRNj7A9d9OPZ2VkRKJYOWKuV1eboHw359evXk/mMlJrP5yExKrKkSlCsNhYQrLWr1arve63JGbu62bx6eVHGrLJPnyyW16ubImQt4RUF8yyreLyVDZfo+bKmFOKwyIKUUsrolFM39CVtsSyyd4yIdiaDpCLlzbnM0+VhVkRUDjcciagyWkTGHI/NgEaRcMyRUDjHw3azmNY+hDKaa1eRUsRQgAEgFEEiIq2I1Oj9MI4CualquA09qJwroR93J3qlFGmV5Nj+W3brxDmnnAQySMqS0jj60TnXNA2CRB9MoypXKYWHwy6EVJZUTahJOefKyzPG5OCLJ9tau92stNaO9AH6FBNiXiwWhTcqf3TXHapc3e5VzMyHwyGkIvotkTWFoE0Zjkh+8QuISFnrtTYAKAzCgBrpNvyEbiXoVKoXuMDYiIjp1nh91Mfd7hBFW1RSwIqw/LgD3KaYpZQAlFLKMIec7majErElCDEnyBDlZ3ppABDJZVs/Du7C5YUhISGSUv0YAEApo5V2zlXOWK2BpbaqNWrmbOXU2CfC1Dh7upycLuTl4dp3u9YurKqbymitT09Pd7v9bHE2ny0///wp6VqU3u8O5RkPIVTOnZ4unz79rD8ctLJ934MoH9i6CQvlLCxcQiKR9DiOfd8TCiIUd0Y/jgBY0mQR0Rl9h/Arpcfgw7HFyypjS7gSKq3t8fRZ7roCnBS+GG/bHXPOGUr0OSgtihQqAnX8BJlZgIQpC2pAZgBhBAQkAIiDF4gpC3p5/vLq5vKi262uk7TzZWa5PAyXV2tta2PcYd8rXRo7hBEBmVhABEDd7awAgHzcegtfc/v5/uwLRsiQSaMPvdYABEO3zto0bS3Z9SlUZn6TwvVqN58uEXh7OKQD6CFM6+qf/4//6nwxO6ntzMCU0m6/ef+Nh//hf/Ar//j/889eb7umnSNJt74mUzlSgmEcummjuN8/+fGPHzx8/MY7X/vd3/7dj16u43d+8Pbbb05n9SqlSms7n11dXSHibDabzxcvXjyrq/rl5eVmvwNNzz791Lhqs9v9yY8++OY3vo7t9CefrT++Ci9f9Z25ubhZt/M3hkGcqhIgAdZVFULIWSmlc8yasjIqCRMeDSDHKx8jaTWZTY3Sfd93XVeS+IZhEFSJaBh6pcykqaumTX62Wm8Pq5sH58tuSCAURu/qNobktIWUUACFNRESGYUKIQEHPxiltFbMGUQmbV006rpyjogMYVPX1loUPj1djuN46DsRKZ0YrjLB+xxTgWKIyI8jG22VriurEcqva5qGgdb7frPvDvu+MjbFETIjS5kIi7AoxVjSORCxLC/ee2U0Khr8mLPYugbJpJQ2btv1N+s1MFutmNTF1c04jsaHQls65yrrYowEWFd2t+9u6VtAxN1u17YNMPthuLm6euONN9q68eOIIJVzIMI5v/HGo8PhUFc2Rb5OCUGmdeVDQN0govfeGYskcfSbzeagaDKZWGsvr64Bad8PhlTOWWuznM/L+IKIJycnjx89evXqxW1NOux2h8lkIpmHrp/OZ5oIMscYOeV+8GQ0GeOq6v6jh4d9f+iHpm27ri+nMyIKwWtj3n///evra05xGIZykGfmzWZTEtfm05mPwXtfsLKfcaIiRZVWzjdl910sFmVZKT/jvS863pyz1aaESxDRHc83DENJO2Hmfd8VaVvJneAcyw1ToPVuf7BWS05G0X63ZebZdFpXLvmQc1rOp8zpcDgAQMiJMtdNA4QIyhgsKtQ7sd4xHDTnnPOkaQvFwDmHYYRbCZipHDOHPibhkAIzt9amlMcwIijUJsQcY1TWTKt5ZayIlGTyoiSOowdUABx8dNURtA8DKqXaqr4D8HPOWqnFYpFS8jG3bbtareZmWi5peTGPHz/+5JNPivJuHMfSDVwOMXVd7/f7bn/Q1pR5dgg+3Z6KhIjTkXochsFqU6EDgMgZIhCg0kYB1HWNJCVjS5O6g0ZRmzuwFG8rNY+qCxEU+NnSf/tjpUFERIbBlySQEAJnuBNSFR373bRXAIA7A+HxsKK1tfYuDyumY3QlAzJzVVdVVVmjrCKU3DpHHAzR0K3F02LSVovz2lXGmDSsH99byPn83tmZZEZUimyfYz/wGLpDn8fILy8uNSndVH30IqpkZXrvq6rqDwfv/WKxMLp69fqaOQEZpVT0sZwSEJIiOBwOnCMA6CNgSyklJF1gHh+jCDljYxwyHIPri0+vVGVst9sjKHK0G5G6bWgGrEipzElENCittVaIIAw5AyFnSKLJMLNgkcvpnFmyICJq1IQIBFmEIWcJIVRVFVMOwwgxztsWqwd7nzbbzWp3MFUdEo4+W+sUSMYkwpITokhBtQG1QgRGERDIt7EtBc+QY93F7eJAZSBOAMjMwqIJnFUCcBhHVCaLjmK0McZCNm7sDs18ef7Wl19+8uNnN11buY+ePWu4j4Gdc994+90/+qM/2hyG+cnjy/71dtdNGqUxZsLXF8+nk7quhKPX1r14tc0y3dyschYF8uTTDwSGSWP6Loft9WBrUWSs3Ydxf/XaTSeDD3axHKP/4x/9GEScMbaefHRxnT98cu/evc8vDi/WYzTLD16unavZwDiOAImUDikdhlFpayezMHoiCX7wiUoaWmlKBRFjTOJcNpTD4cA5l5UHEYwxObOP4ezsDBFvrq9mrY1+mLoGks8JHzx4QALC/PT5a6udCAqwcEJBAuEcjVLA3FhTtAJGkRASEQhnH0xV6QcP7jlt1qvVdrttKnd6emq18ThYq5nZGNNU1TAMInkce+fqxWyCiPv9LgSPdWOttaq0ko1KTd996+3w5AkZNzk5X233yjgkaWfT9Xrd930Z0eq6zrc2RLkdfDPzrRVEpxQIMed8GAantdLGD+N02qw225OTE83CzPPZMuYVM9/cXJ2cnJTlQKsxioQQTk5O9vtD2zaIWB4kJFlvbpRSVrtxHJnTYjrz3ne7/fn5idb6s6fPDWG33SDpvu+ni0XKuWmappkMwzCtq6urSyJdVdVmt3XObQ/ddDplgNHHWVM755IPbdsO3dgdDvvdLsb88N79cRy7rtNIL9fP60m7Xq/HcXz46I3FIj9//nykXk8niNQPQ2ZQxpFWgNh1/RC8a2ofY20dIjrnTk5Pz8/Pd5v15eWltfajjz76+te/PpvNbm5uXr16VcKojbMnJyciMo7jZrdtmqZyR0D1Tivkvc8p35lZywEQAIy1dV2H0ZeQ0SI5KVRx+YG7s3NKqRsHIsogjoRzHMaxdAvGGBFbpRRLWi5miAiZOYbKGecmWmvQqjiP+74fxhBzirEwd0SitdVaa/ZjCCML1nVN4spJSFIGrcsGcNxgCEUk5SyEhIpYEakYE4MQ6gwCzCL5dqGRlBLnaBVN2rqqaxAex4DGWGutBUB1t2+llPb7fZk8y5qbUhrHBAC2aTfrtbFqNpsVMKAkXonIgwcPLi8vAcAYc7jdGK7WGwSZtpNi8i6i7vIWbq8/c8l6JCq4QtGiA4DSyMw5SZIUUnT2CI8DMIswCCoqgrXyAuKtt6EEsx9hDKQ7dBoAQozFgVbXLZEugjUERSR3iioGKa8NERmASRml858btY+uJE1yjOcka6ry88JHnqKuKo1gSJxWRsG8bS2mk3Z6upzmcTw5XUJmRJk3DTN3h8PN5SZnNrrOPKy33XY3iool11kbVTurEZRSKct8sbBGCee2nXJKMeTT5Ymt2tV63/VeGaqMK6gPEBKhc7au65zjOI7z6cRau90f5NblNfqYc66dlcwxcaG0iz4rhpQTK2uqph1DBACDpBQhA4MQKmerUTQRiRwtZCKilNaacgyIgAh09O4d/8WQyVLJ+qZbPy6zAINWRtWtUiqmUFXVg3tnTrsfrrVKopSq6rbvI5DhlEkZyIEEuND8AohMoEmY/hwAXRCXOwL4bvzFW4kZIiogrUkrK6lsQ0IKtTaJQRsrIjGz0mqM2daND/H61cVu27fO9F5Jex8lyOm7X3rw/v/8u3/sJot/9W9+kxEmJ/cVSNjvZ5Xpwv7dt+5v9x0TIeKQso+52vSc8Y0H97v1q69+8d5f/gtf+d6f/n6F86qZveyH6Wzaj15EBGhS1WNM3eirygmqFKIQHkLgmA6fPZtdb8YhDSC6qVNkn6KGjCo5rXzqpfRXomHAQEKckTKzVVorrVtjrq9vSKsvfelLKaWPPvqodNSWC9U0Td931lpFZJv66ubKGbuYNUO/QxE/9pPKNU1zulhaBV//ynv/3T/6Z32fx9CRNSQgwAhsUAuWDk3WAEprUhRCIADnXEIEZj0cOmya+XxaO3t1dYWSkWQYxxhj3TYEPAyj9/He2XlT1SGEvu+cc1VVVVWlkVY3V7vg57OJ1vrZs2dvv/Pe+dn9l9c3wWeFVBkrik9O7k+nkxDCfn/YbDZN06QYkaiEeB31QTkVrZA1VZnbYowhBGmbWTtRJkUBbZyP2cc8n8/LMFdCE4mIOb169coYE2Mmopubm0ePHnVd9/r1a2vt6cnCj/3q+mq5XM4mU+T88uJacqxd9cFPfvTm4fEv/dIvncymHPxiNqmayZPPPjVEkpJTWhEM/cFpPWsnIYSbm5umaXoZ3nrrrf2uK44dEVmvVnEcjNYPHz6czWZlGPrm17+22+0A4PHjx6vVqplODodDzoKI5+fnRDQMXk9apa33vht87gfvY8qMiMWwiIhdTOUs9uSTT5bL+XI6O10um6aSHIduf+/evYtXo6sMkhh7nGCcc2f3zl+/utzvurFKZcUsp5+7gQZShsxa6VJ2NAxD9KGwoHfPcAk91lrXdR1CUH/OQ1ymt5xz1Hg3YJVRm4gAmQCLs8v3Q1F0I0IIXqFj5iycpewQqFSBBpVg8dKIQlLHuDSsdV3GEWtMeeXa2ex9BiFSmTly1tYoUgVcDSEQasacU045lVMdsuQc29PTuppoBEIcxxFYgFQWDuPAzJVryvxdjoZlFiHSAMcC4HJGLovsOI4XFxdKqdl8vt/v67rebLeLxaKclHPOJcWw7/vlbM7M6JRJJuaUcx7GkMMRBIoxKpQ73QewaHck43POnI6F3lmpIhLRR04Aj0J6kZyPjT3l3IC3+LPc6tWFRCklIHzEvbGqGjjWUYiyRhhJ4l12erFk3M3NcMsNFyVYkarp22JEU9EAHREVoxoiGtNaa8dxbCsnnCxBa5XF7BSdzRcGUugP58vZ1Jmr64uHDx/utn4Y/G63IyBCq3QcfBp9RmOZwecsRSxmVc5Saxx8vLlZTybNfNaenJws59Pdbrff7YlU21QAOPqYMoAkQEZARfjnRGcREUvz4KEbivqhQBFKHXO/hbkk+aSYUStM0SAhYghJKWUMHUsJmTOgsk6iiBzLskSEUFLWRMf4SYTjE3d3oIkiDhEEkSFDRgACDYJc+pwBqdR2VbZyNqfw8vnrq33ndRUyIikWBKVSYg0Ct74iRFBHHuBo+b3bdP/8F8UhRYh8uxMDAKSM5YgGqnyXQCkk5uiMLvlLBpWk1M5ONuPq+mLjtLWV2YWUle2G/Jvf/5QyXu+V8/svvPPWr/2lX/yn/99/pVnN5stxvzV8MHjv3sNHH3/2+dm0pXH8a7/2a8HLd//oO5rgjbNZ3L7C3bP/0//xv/pv/+Uf/d4PPmsW93KIEDMQAsjqeoWKgHQWEtRRUmYism46iSmNovthRabyyTMqUxmDSkLKPLJkAUpAWXIGSACaSDhpbUII9+/fjzFu93tr7eeff17WzOL9lcw/+tGP8Dble+L04HujQes8HrohDO89ejyp6sN2hwLXV5fjfiXjG5ZjJtTWRkUlkUKXQZcwZSCQgnUoBNJKKVVZzZpyzlppbGonIk1VN5W9zbHE0jJW7p7JxBWsyTmXMjdNU07rYRhDioikjUspCdDTFy9dO7m4uEiibNMyyNVq1XXdOI4nJyd1fTS5ioh1rmB38DPyCQBgHEo2LCprkCWlfBj6AhUS4P7QN211OByUUvfu3TscDqXSpDz/4zjGxJPJpGy9ZZmYzyZvvPHGycni448/zjm/fPb89GxZ1TaF2C7mY1s7pZXwYtL+8AffXy6XKHC+XDDQW28+HocgIpTZVHRzc6O1BsLNZlPXTd/3RTg6DENCqK2tqmo2nZ6dnRHRbDYbx/EwjOvddjKZKGtcUxNpIr3bbz///Nny7FRZN+72mxe7uq7HkMqB24fYtq1r6rZtx3EsinxjtNF6u133vem2GyJyzmitLy4uLi4uiGixWLRtOwTf9/16vW7bdraYl8bTQlKKHM2aja4KEVCQf2ZOR/Go3EGUR8zgNtIBEUtbAINkYdKqfD9zHvyo0JWtVx/Db8V7z1mMrUKKeRiSD4joAQroLaY/4rpJUkpAWDrgcs5KmcS5/HWnTBlwK2ettfHYoJ6KoA8QQwiiiHMOKaIiJC2MgBQSK3V8O3fjGiI2zdQWTBuEiGIZaIwJvqdbG+s4jiGEum7ruh6GQd02HZXM5/JMTpu21FdsNhsi0sYUTdbp6WlZgqfTaSwB0Uoh4mwy7boOEAWyJmWtTZxDZGdMkDyEkYmaptGkxnEsL+mIIXMpIhRgSUqhSDERGGOcM4iYEjOXqlqO8Rg5SUQxcYj+buRFZE1yxwFnAkCIoUyu5Q2mO4SZQUqEcvnfc86ob1lPRCIFBApJEUhKSqmqshpzgdljjJLZGGU0KasdAbPUxhhkgzIOe2j1g0fnGH1dWcn+ZD4zhGBOV5vL/V5yDsWhzQJVO0VjY06Jo1IgEAUo55QYANSh91prZ3WKkQhKZHffd3XtnHPbfZ9LfX1gAChp8F3XWaMIoOs6KaaMlDKIUzoJIEPOPKZRKVUZWz7oxCW9PMc0KKUyg4CkLFoQAHxIfT947wFcyIljKioWAEgp5MS1swXqLffhUbGFCdEUdjZKAChJ6UikEJFFEEkp5RzNZtjvPaE4jcl3SdC6NoMDVecQOYYS8w3A/z+u/utX9m1LD8NGmOEXKqy004k3971NiqRokC1SEimSgmEThm3AEPRgwA9+9v9iGDBgvZkCBBg2BAG2SLtFm5JomuxmdzNc3r59czhxhxWr6pdmGsMPs6rOodbDxj777L1WVf3mHOEb3/g+RjjyGBEVmbCcZk90NLE8JWAGKNXrGY4T4mqtJVlDTohMZIkIFDWLAWXJINkZppwACEq1ffbs8HB4EmOKsu9XuygoRE2Tw1PcDX/zL7/q3N/9z/4v//VuTuQ2tsBvP/8S7EPJIYyS4/KjP/vRenXTbrfTcv/9v/CX/urv3CwPX3JO/8n/5G/tH//+Tw4wjbMzhshkATQsSNMyhyTM7NjBaVMoLPtxCHGevvvxN98+7h92oyUOIUjOxnBKmoCTclEuQEVNnZ3U4POr3/zaGHuuthEYFEop4zhqkbZtiTCl1HiflxlUvLMpLO8/v+kZORUGfHh4IoSUUucdQXl5c/nLT969+uD9zx8eTvgDEpIC1DR8HAQoVvM6zUlFUNVYNrvdzhoqzu0eH5umWXXdHJem9f1qVU+VSNk9Hdb96urqapygadyyxLr00q+3fdNaQ+PT0+Xl1ePuyQNcX1/fPuyXZWE2l5eXt7e3+/2+XlHn3LIEVaW65MBcCSnn+RMzOGdq0Hdscs6i0PS9AHjnlmVhsjEVDWmz2eScFVJO5c2bN5vNRUrJ++ZMFMITV+L29q21drPZdI179+4uxvjRB+8bopTCxWb97OZqnqbtZvXs6rKIXG7Xj7sDGZaQVPKbN2/ee/Xy937vr/z4xz/+Vz/818hmtd4W0TreW5ala64/ev+9ZTp89ptfp3lZQiil7Ha7pmmurq4eHx93u8MSUozRe3+YxsNhZGYw7H1zGMYhpGmJIuDbxlmDxM41FRe4enEhIm3blJxfv/6i9c1+96gxr9fr/e7x4f728mKz2+36vt9u1wC0v7tFRBB42u+mOaDhfrOew4KnliillIhrPkYA75yIlJPcUpGiuUSRWvrlk69zbceNs/UPa7tTtznneQZRqjOsuTKis6o6YxCVoJJWCACk6hjknOErbhEillwQoajUjhOUQBURENSxMcY0xjJSXWmNMYYUjDOCEEtmglJKiBkpK1B9wTmLCNRVH+e+kpQSkWWZNBfvPZEJMZeUvVfrbdM0KR4VQJumqxQqc1IkrdB9RVnqryK5883+1Jf/4Ac/KKWcVVcRueLAKc7ee8lRoaBwKaWAGjCWzXnUfcSKc8mkAGqMEQGtGz6nBSSp/ZEqZEAs5ymsKtSfdS6ezvj5ueerv6Yz9Qa0ZKgPok5/a20BVcOyMtb0OC2ueUhVQJUIiYkAkZQUSCBrIcXGmoZaY0zfdUdfCqa6zwoAytBZhhwtoSGUkqZhtChd6ysfMMa4n9K4aAIHIIq2AACxsokpppwLFEtMgCKV04BPu0PbdanovMS2scswopa2capYxjmLdq1r+9XucCiPDyll57akknJIUasIUUipLrFXUouqkmFRLLm40zVRVTLWuUY0LEsMIRnvUipZlmqsuSxxnkOMUb1RKIBCDGyOcRa0lFIQlAhL0Zwxk4IWLWIN56yoBbAQgQorGSWjCIiEVRYcpPXu5avnIrDjfUH57e1OtZnnQ9uzFNFSlJSgVDlSUkBiBUKtTIAqTqnnA4BnA9nj/znqmAKAMU4KaF0RRzrNg2PjDebMmi2bEBZk+/T0FENaXLGStej11fWccRwPGRYGbJum88am+F/+F/+fy/e/ZU1XfJsZl3DFNDeY/nf/2//1l59++l//g3/4m7dv50++aAx/9xvv/dN//eNf/tp+eLP99vu+seEDv/zpW/RM6349LWGeZ9+0KS2bbhXzETMbhkG7LsdUUgZRR/Y//L1//xe/+eS//yd/oFi87zP7eVpCoUxGBTQTIoIyghVg4uScLbNWNkbtBJxj7/1h2L158wa1jn6P7EgQNWQQufKfXj67fvvZF7/55LOrm+cXVxcP++Hxza9fvvj3n796+dm7/cPTARWq6E01ThEQrAMeAEFAFRQ4cylUxDBjjGmZ48V688EHHzhnQwiu9U/7HTNVUk+M0TmD1cYkx2mCStoEpMZ5smael+ub5yKCbB+fdjmXlJJt2rbrnuaDa3xfemau/O8ad+Z51lMoIaJK3xQRQ4Ci8zwFmmvr45wz6zUC+K7zvjGGHbhpmm5v740xCrFCXiG8tb6Zl4iIbXvELQEl53x/f19feddc/87v/M4XX3x2c3PDqJ998uk8jQ+3t2Gavv/97//ge9/7xa9/rSUvw4HYTsP47Nmzb3/80eFw+Od/8AfGmO9++zuv375LS1BmRxTjESXe7XbD7qnx3atXL/qri08//RQNi8hnn39+GIa+79/d3znnhnlaQqptGVvr+pYOtjfN4XAooraoQBaBmDOJ1NXSUso4HFIK0zBax6Tw8Tc+ijHe3d1pLss4PXv2DAA26/XrN2/ivGwuL5DMHJZ5nn3XOueqLKLiyY+IkoikGBNAdXqpQCicmDt1PHnuhms3VlSWITRNU7u6JGWJoRoWhZQBAFCPfbaCMUZRUlhWq5VzXnIJIYAWJGbHcCJgV6BVRKoKdKxS9QC97WpiEBFHjCoppFIywHGuOS7zEmKWQpJVMJYMKRbQUtQoIJGokiqdcdQcqyNW167atu26VUppnkPOWZGuN+sQwnCYardUmTu1Wjq+BufqiVW1ADAMQ9d1Fxcb1bKkWE5fABBy8saLSCVhEVHMyaqSgkhCBctc9ZBzTGwNIjrnJBdVFSkVcwgh1K7OGsvMeCbT1XaGOAtIPMp2OucoAwAyH7lgIoBIiiAix65I9NwJqcISY03XRbVUmbS60FVK1bX8GmJZD4CoKgEaxmoeDFpQwbvGEnfOMlgiaozxjDFGRxhSsQaqfgvkWVMSUGs455hSuLy6JCLj3ZLiZ59/totr1YLGkFVuvGNGphDnJcWUMzNTUWKUAoQEhVzbDcMUwzx60zYGoVxsVhUdMYyllKLFO7q+XIvm/X5ftzwIdRwHb+1qtVLElHLX97SEJQRVBaCcc5FixFTBNT2qo1MVmSkCkKSUssSYc2nbFpGMc8a5/RJU5YzYixQiqNrSSjXhHS9RfRygUVTRgrF1PK+qolqqan/OWTSjgjPUtv7Fs8vvav/lmy9uD+NTDp3zJcX1apVnzHFCQEAUBCVSRAIGpOr6+vUvPR2h0yn6t6DpXL5abgYRRWFQNoSIRQWIhTgDIuKyzGiInWoqhl1ehIxVies1pzQ/HnYffOt733t286M/+hebHbz34Td/fvvGtFjclUyp1emf/3//8YcffLy5ur4dgunaQvn17mnd2HefHR5n85f/6jfG128sSil6ff38vffe+5N/8a9819ejG0KYY0Ayzrmma9u+SymwpVJyy+Y/+z/+H2KRy6vnFvXh/sl160jNkguCQcym7sSBskIGyDmP41R7p1IKMquiN1yREmttbRvGcVn1fc6Z0BXFotx0m7fv7mScrKKC5WazFJz3Axv/6Zu3n/z2iyHmftvglOrnTFCfP9T2Jqs4awFURBC0zkHCNJva03zwwQcX601dKuj7Pqukkh8eH413la0zDeN+/5Rj2qztkpZSxDhbsuRSuMiSkoxDKQWRhmEYprkU8ES3t+/U1fEepJTW63X1IKtDwaNBG9agf2T0kzEA6rzlKtpmvmoX7u/vLy4uLNI8TfVIzfN8edXP81yhuY+/8Y27u7sz9cA5VySN4+icWW96ARNj3O+fnLEph1Sk61sDsD88TeMhp6CCaVnuU3r58vnj467tVpLyEqZpGJ6/fJlSistyfX05zSlVVTkiEbm7u5v29tWzm/7m5unx/sv727ZtV6vV4XAYl3lc5iQFmYDQmmZcQkpZmA7TyL5pu9Xar2LKIkLGptNOCyJOw1Ad9whhs1q/9+rF0/2D9/Z73/veF198Mc/zNI3zPDHTuq5OlXKSmFBrbdu4kFMpUmMTfL3WOX3V7vbM1nHWGmNSzjFFQaj0q9MxpWpJBABZRZJUWhYiCqCq5pS6zjaNV1VvXZHsqQPiJeY4LykHZ2zbNs450FJ/aK3KCdhbBwDtuqkpuXKIlgXneS4ps6GKogPKEdJIaYlBVbMIsz21LEfJPWKb0lJKUWUAQC0553meN6s1aBnHMaVSe0RnPRlbbbsQse97Vdzv99771WqVsyxLrB4/tcyqRCdn2RoznwTFUpoeHsB7LwiHw7jY+Pz5c07pcDjUwqLa8yqqb2yd1FTIsK57IVfmLBvmcrLQZsbznBXqHBcRTstXRCQF6+iXUAjk60Pfs4fwOeaqqiIgHPdW6/r/GW+vNUc5iZ/rSUP4FJQJsUqZKBFZYiaoCsbee8NV9MdUd3pmZwCNJCQhTQqlaRoA7TrvWLd9+/6LGyZNYTGGnnaHaZqub54vBxLJOYUiCYzYxrSrTvf7aRcBlQ2LZDROBAyRFEwpxxhvrjZt2zKJiqjqw8Od961zxlq72w9xmX3bXF2sLOvj7ij43DWNMaYWkcM0q2p1VKyfUFFgNAJqjFmv19a4OYan3SGEBIRt207Loiej1UqsQmbnHKcMAJqPFHFUQCA9TuWRgJiAT9VM3SUupQgjMztv67gdCQ07wFKWzIqGmABKLkTAEr1VB8lbjkVDmLFpUQuCIikgEla/Q1YgQBYs1abh61m2XrdTZ1zrMqiKhFEVERiVQZgUTsY5WUWZFWlWEOdFBJnYGF4yorApT9M7063QQsg6Lew3H/zsi91nn75prXt6vJtxn5fRgy/xdds0ITR/+MPf/ugXXwrktmsDSPT9p8O8Tbou8Pnnb/6r//s//nPf+/YvnnjOk2vci/ff63758xDzksJqe3EYRtOYLDClGQgPy15E2DAZhin+3b/7H798+fIf/r//0eN+t9qsn+YwFyxMhpQlkyTVUkBVDYoy87Nnz+7u7jabjWuaui+6LIvm4pyLMaDC9fU1gIYQrLVpAdP5JWbnnXX27ungwbh288W7B3aGYd649KNf/ConAL95nGN3PAN4Fo2v19cAGiJVRcOq2jrfOl9iMtba7Xbb9/1+vzeGq7ReiuHi4mJ/ODx79mwcJ0m5wu4pZJGji0tOSYo2XQtAT7vdZr0Wkd1+j4hFdRjGWMRYO4VwxDCJr66u7u/v27Z1zo3jKDlXrA+MOevpVP4JMxvDJYtrm/V6TQqVxhBjTEtwJ9Gl1WpVwfrnz5//+T//543zt7e34zA0TXNzczOO4zQf0blhGCTlKuA1DMO8jBf9uvE+Tcs8TvUlXV9fE5Fvm1jKxcVF07VS4DDsmPndmzdt3ztnlpgrFaht21W/+fzzLw+HQ3t1WbHE3W7nNpuYk4g0XXtzc1PtJQDAWP/xxx//4te/evPmbb9axVR2u917H37g3OpwOKhibVKNc/XjyjF6b3dPj957VDEEu93OOfPzn//cOZtSJKLValV/6G44tG1XZbdFkQyj52m/I2JuLNQJ39EmXfGkghTmBQCqdnM56ZRptadEPM8FSykphgrLzDEgYtM09UfP87zEwlwtDrlu4tY8igphiUhg2XTtChFL0WWJ1hyr8ioNlpNwZZyl1Pc9WJtSSiGUFFHrSogHEWCWXHKO9Wl67/fDUIoCcf3OAKdNVqAYM4CoMBFZRmO49T6ERRVEYJ5DzoKIvu2stUUzO+vYtG0rArU0rJ3huRhaln0pxbWNqlpDh8OhbkyF4dC2LQDsdjvftZeXl09PT4fDoW9aAMi5MMMc5/Vq65mtd4pcb3VdA6tJnZmZjuZIIQTnO6ySkPiVvwIRiZZ67yoqXos/RUAlFcipTv4ACSuKiEiqWhesjwoNojmXOmOuuHqtIZjZey8ide2qfgJ1PGwM114QSQ0SMxtGy8YbrgNDJuoaDwCVSrYgUFFnGQj7tru82qrqe8+fMQlrKXFuvB8PO0RMKZSi8xySmGWZ4jIbA84jFmmwyRIBi6Ag2mrAqEWALAjmLNZSSklx9d57L6XEHJcUlhJDJjbGqeo4DdMykWHnbNuacRwNYyUS7vd7RFxi8k3H7rgIYC2DaussEVnSWtIBwHq9btt+DmmJRxlOAIghS1lqOVj7mGVZYjqunDEea5bzgyOqVS8xkzEMgKqApHwU8TZAFtgBMiAaQwSWiDSpghhjrjarb374/i9f312//Ohf/uzTtumn8VBheQQUqCLPjMcxMCOinjhZ9UbIaQPt3BKfO2NVZd+DJFRBFCZFVIBcRJQNslGgRdQQLyk01hbQtnhLEXkBX2ZQds28ULN6b04sOJuWc9kZI6XkrW95SZ3uEF480houroOOvjxaWAKau4X9+vlh2Ddp8BR/8qM//Vd/9pvrj3/nL//V9R//8R///Le/3lxcZlDbNUlKITWGQSWk2DVdjFH1yCRLedIyfe/b13/yR+7u8W7TX0+ax0UUBAgJA2METQCgaEQhluZcxz978WKewziO3vuiGpfFOkaFx8dHY44Ct8h2CcWvuqxxXoJB47p+notp+izJWL/k0DUOFZYC5BvKx4URpmPJXiQjQG0jVbVOuFKMCBCWxXz7+VW32pRS7qZD37YImuKy7rthGK4vLjddzwqffvbZ9fU1IiIjIzl22LhhXOYYlsexbRpifxim6+vLIhJSlinZtn8aF/Z4fbl9fHzs2nW/Wk9znJfUNKwxG+tDzH3f5ZyhiEGu6F8upVIkpnG21jrAZZxEpAZ9VsmaEwighBDabe8QHVpE/slPfzkMYwiBUFujjYaY9iYcehIoOizR95vDosbmIRdHriwlHfY5l2JWuymF290gtgBcbDff++D9//6//UfykJ9f33z729+svcK7N2/nIQBiKnme5oubZ2OMmzUvESaRT949xJiM3UBMm83m4eGBmR8e9123Nk2p0e3Pfvazy8vLjz9u7u5u1+v17uH+ntE511K6vLxkZx8eVAGAzQBhHwModl2zLHFQzaLjUvrNtSF2xjnnfbvKAK9v75cYrq+v92F/xA9Fcs6e7fvPr9+9e+e4BSs1WLPhKYX9PIKotTaDGmOcMSKKVKzzAMCNzTkjUVmWQtB0fUqJc04pKWHf98MwPDw8VJtKZm4sqqrrWiIUKIiyLPOxDWPwTWOJc86WmY0JIYAcFYgAGZAUJZWSq0WEMV3XhRTHcfR91zGnlNQ5IpyXxRjH1IZlRuXK3uraJqsQGlUNOXrvBZVyWDU2xqi5NH3jrE2xoHMxxpySACGiMihTgsJQPB53e2KMROScEQQ0uiwRDQIBGV5fXlRx6Zzzl9Pctu16vTb9Gsd5yYolpSImFnZ4udnudjtJucZlRBMU0zwxc0vILGSNJUSJaCuRKmMu1jlLJktGtlaCcy5lSSlZ3yJRzkVRQ4rMbJi11jc1K+cidKRfHbN1zgJUVM9DrONGEzOoEoDDjMilBAa2bKsMRMm5qIAIIyqAATCINTkIFgVFATLKoASkqrGI5rJqO984RWHJjSGnk7VJMK0uViku87h/3vWvnt10nasDpv1eQ8ypYJrTuCTDbj4MIWYRQVJmB2oB2tu7MM0sZQsKS0RHkJMCqpqEhIcw3nRXocAwLq9fP3atc2Q+/OA7w3B4eHiYc5qWkIqwb8Kw9P26oRQketfPUwxJjXUhBO8aT03rfBnGXKJnpwjOemaTDkNhICLjWDU766xtxrejFMqRc6FawbJBABjHLBSJKBYhgqqtZgxViTUBLYpZIGa0tiEyImogMTOBSZEWROeIWbVMxAzWGjaacwmllEIKRRZv5m+/Wn3x6uKQ5u9t7ecPb8S2QS0aJ2oQlFEQixx1vllzpGoljXQkP4ASkxQRBEDAE8numKPDQkTMRkFiOfp8GCQUQC0GtW4atMCYlQgPvS+REDe2gipSrAXMj40kRAUha7fLsjCTgBbDaF+oqIGDQZNLjtgd9mG9Xn+EMD++JdBsuzdmxQ0plNvD3eic664IYRnnvvXLNApAwwZFh93Yr9YSxRZTcry6WE3DAfoP/7t/8dv/5z/7KZIJsoEF45J80VyfBneLuoJijFXVJc+G4P72FhFJ5N2XX0rOrIW1ICIZNES1hSCyVTo+oxwlv0WZqQAPIRKr5rx2Nseo0EyLdc5hHCk8LMjM3DRNjoszDColJBKhAl3rUiyska3LQsNhtr4xrz78KISw3+/71aptW7Ku6lCr6rJMy9TknC8vLgxzztk7p5IribQqFZeiKaW2bQ/7JxFZrVb7N2+ttYvoarNW5N1uF2PcbDZE9PT09OrVq2rEVpc6KnRWT0JFSquAlDHGu+ZcitYhXEppnmdQ8d5ba4lSSmnMiQxP0+R8W3vNm5ubD14+C+MwTdN3v/vdx8fHwzQvWUB0PAxd77rGT9NSUo4h55xfvXr19PQEQJ9+8XnXuLoNdnl98+7dm4f9YUo4TcPD3X3bti9fvRiG4aObm6T66RdfMiAgkpaSwiFJKbJZMTuu6lS1ggaASoSu7/Hu7g4RX7x4+a1vfevd6zeffPIJ0VF9wpv26uoqVpteIuccAqeUDPE8hxTi+++9aprm3dvPiXgOCyAw24vLTYXR+tWqmjh575Zl2e12ubQXFxd3h9FaW1uciifX2rzhprawowjKV0SeIKnSSkspglBRu2pmfN4ErU+t/qbp2xOIJzEG+JoWhLNWRMrJCqbulZEzdZlnmqYKtLI79mTjOIYU6SSJXskHjXVEFGM8HA6lFDbGOhdScsYuy0JkjIOsx71VEbGO26avJIOcEqgCgCGbiay1WUXl2G7W04J0lKo/0wBFj6u69WWf9TTqej4AVE54XV8xJ+nKJOXpsF93fd0PPnfSueTzMa6bYMystbaooPHJk+jICsmLnmStgOp2qYBixYqPX1+Dl1PK9rSgVb9nXXQ4Pwj5mmoYInrfIuJRgQtIpE6g5fSUjo6QzjnLBhHr4wM5+UNUJeFSnHMhBITCjbWGVaWAsjWrbsNItuucMTnnt3e3m37VNe1ut2NrUiwVuFLicVqMcQpVnAQFNWfJ45wVVCmlpApEaK1RRCApRUJamDjkpEKHCZhAinOECDJNo6rudk/TEi6vb9i4et56Q1fX18MwFVDvbThutOs4HZAKGyR2RJRKrtKhBsCSJYOqklIpurDxzrklLGTI1A0xSSJkDLFnhqMkFrOFIrkUVTRMiFRnYVJQ+DhfY0Db2PogalEuUhBRoaw2m9qWLsuSY0JEKHI4HND6h6eD9f3V9vLD3/13dyn/03/xr97c7QHZsGFWhZzLQmiQEfSoHXueI3xtDPw/dJjW05FARNVSSTjnv1b/SaXgff0f9vmpaAEFRlKVCqfVK9P3fdeviGhKJeZcQVhMSUTatq1Cjznn7XYLAK1vxnGsVOQYF2+dtTbE/PY3v3HO1EHsNE1EuFlv9uNUJdbrR906n0SapvnWNz7+5a8/UVVTzDe++W3r23/+x38MZGzTSq4yY8dTLSLVYK3SD+sh/5t/82/+yZ/8ydu3byvOZ4wJIZwHiDGExvkomZmJkAlzinzacWdQBWFrDPHl9VXXNJ99tpCxGrMqSMr1Ahoma7wzICWrIDCVrFkLICpCzGJuHx8uLi66zTo+7R92++tnN2zN4e7w/PlzAPDGTtPkjE0hVsEplQTEKRUlQ0QxLvM8gvOI+Pj46Bo/zrNp+vqMfdPs5kONCzVeV7XrOiGr1nvlJDx7Zlxb445N8DQR0Xq99t5P01RPQOP9ie4vh8OhVZjDQsaJYt93lUr+xRf5g/eev3r1fpUlury+ae6f3t4/rPpVCmNWXXWrruumabm7u9vv95X1Y4xBtvth/O3nX6y63nWr3X4fE7Rt+zf+xt/Y73bOuY8++LBb9SkXa/3t/eOSM1HMSaz1zLZtusuNr+lqnueq53B42tWwWePy9fV13/fjOG632+985zs5p5oMbm9vESnEuN1uV223LEsusXraX15ujTHLEkghpRTj2HQdMM1LtNYadksM8zzXpmeMY23mVLDrOjOH89CdTnq2xpg5LKWUHKtVQ3V0NQDgnJnneVmW/TjUqmiz2VR1xjM/pZ7j+n2ChMrUTSnFGORkJlOfeIwxqDKgmKPiQCrFiFRWlLXWGVuBmjksbdtWJFxVh2msGHtlRqy6vspUoWFiIyKb1eru4QGAQDQvwXrnjLHWeqa26UIIJWesNKWjjmMDhJVTg4gpS20yzjAsfeWpJyISQqyNZh2b1fn3siwFsB5La+16va6jmZxz3fhaUuz7nqGm54z6lWJ2/c1Zi/uMCgpolsKlHOFo9qLIVWspfwUe4lnqudZQpyhJoF+Xqaq+g/loxPQVCfYEhxJbRkTNoEA17iBAXc1SlIqK1wTMWKMwg6hSIUD82mi5cvekJEaFjMpg2DprnQFAcaaJqjkmLZJcGlWnZY67HIsQm3EJxvq25XGaiDtkLFpyKaUkACiKRQGURASAsmZWZIAEUhI4AyEkMJxjIima/Kr3OI3OmP1+vyxL23bWcpHivQ8hPOyn1XoLhKYuOaUqPghsbT3AAGq9syIhJRGx1ivCsixFJUnJRfMSQyjGGAU+SqAUQJEiRRJ6YzUXxwYVilT7ODrmLNUT6ZVKkZIV6WtKkEdwQmsCDvNsjIlLiDFWXl4OcRgGaHQ3z7tx/smf/tZefPbyW99m463zKcOyLNZi2zKTUWVQKQWBjytk9cCcZhD8tXT8bx2MY0w4N8T4VeI+l25Vcrr+SaMn5+y6zYwoQDlnVzVTwiNbo6retznnkFNniJmHYXDO7ff7ruv+zt/5O7//+7+/W46Wr4D08QffjDG+ffva1B0QgrqNverbZVm+/e1v/+qTz79489a4lpmdc6iAiPf399NwmEMOKVrjd7vd5bX73ve+96tPPk0pVV0dpaOrZykVJABmowrTNDVN+/DwOI5T3TBgNuv1ZhiGnEtKmdk0DYUQRYWBSynMphQlS7VbIaawLFCEG3p42g1myCJlWXrXEAOgMHENNjlGRiuiqcS2W5WiuVa7yIhsouhunFSVnNUYvnzzpqRUGxRELJIgVwkYYMMWSImKqnOulNw4D8W5jVEoMWBKsVbW8zyL6DDvt9Zut9uUUq0vqkZx7XsqReXIxpLjzTfGiBxXtYwxq9XKGEdE+/2w2WymaVBVBUwlO7SVTLvMo6q+9957d/ePy7J478Oy7MLSODJMy7L0/fpptweRrmla559f9IdpFJFN1/ZtG0IYhv16vV2q2xrbi5tnovrZ29vxsLfWWiNE9O7d3XDYXaw38zC+e3drnbNI8ziGVCRLybru1m3bi8jD3b1vm1KKPy06V4HvGrKrt26lMTvnwjRvt5umafb7vTGGrMERiajrmhd8jch9379+/VpERDQvszBdXFzsdjtrTc4lxYXYAleDqeS8s9bWSrNtW1Wd5rBer+uGDJz1klKqoHq9alQzz8mMYTccqolTnW7mnHe7Xdd15+4QABQg51xEUs6IdJaVrj/iTHImOh5/g0eCj7XWWs4iMWdiNsYsMVBOrW/OmUwRjLWaoKZ8KVBiMsY0zhNRyUJIm9UaALarLQDM81yIPRlPZtOvAeCYdE81Hx49bWZmEiEuysTKCgqEWl/t+atiUwLgva2i1wBQROrkJsY4LqGe4ToTqX1nfcpY9T0ALi4uAGAcRxEBrLWXRMiEEYEQSIoqEhMZgzlnkWrGgI7Z+67yh+uPq2+hnHZjAABPiNG5ezlnZEFAZYXzBjB+vepCRGRSQSRSIFXNKlKgygTrad7MiMxs6MiIrvQ3AABRAKmuSnqaxDsmAIglW2Odb9u+heVgjW8a55z11mrJzAyiIRVkYxmT6Ju3t2xc07TG+2nBnFWO/CY5Dk0RQavxk5SiGQkQDYIlRDSA1lqf05xLqT7qzvI0DLnEruu69YqZc06ayzzPq7bJJW42V0tM05y6rpnnEHNouxWAsGXVoloAVDQj4TBN3jtFSiWFJYUUkV3br5Y5pSwipYAYywBSSk4pCLdSoG2blEOlhqCK5ITGCICgMDFp9R0T0SqBSUTE9FVKrHBLmI9VKRo7TdMcQ0opGfn1J1/cP6arZ6/e7KZ/+s/+OJMxvvNtBxQIY85RJTE5ww4Fc60aqw2hkp5wZzn9tGOCPellnS5KVfkmxMrT/7cko+s3VEUASMqqlQx/OmCI9YAwaJGclyg5I2QP6BkKQM654pp936vq3//7f7+6Dyy7xVqLQOMcco5EhoxBwBBi45iMc76d5tCtNz/4wQ/e3D2cy9BSxDmXc6K+D8PEZAX0i9dvP/3yjXEu59y0fUilctCP3HM9SqI3XZtztlL69epnv/h5luLbxhjjjB3HsX7+NQAeqfXGVJ3RhFilfkqRYRzXq+7Z85dv33xZRFHl4Wlwzvm2WcZDpWi0rdciQMzWsPWvXrz/7t07BU6aiY0iG5Bc1OzHyYTjPSdjD49PIOqciTEaYwzxzc0NFPmqW0UZppmMK6I5SzKJgZclieRu1ZNxyvP+/kHZ5jozd0c8s0aTSlSp2bf2iHXfA6rfHBE7nsIiCOt2yycR2vqWchbVAgCEDISp5DjHrXedb7eXF4dhevv2bSVSlZJub+9XfWPoKy2F3ePTDp78By9e3tx8+foNSLbG1R0GVVyv17vdLub8tDsQUQaMQDfPXjRSbu/v3715u+r6OC+tb5quHaY5FMEsDBhFQGWehnmcrLWXF6taahFRZZw2TbMfhwoN1c6+8mjmed4f9k3jiahyQ4BpWYKINN4T4rJMUlLfNQjcWPftjz56eHiAanebU87JGIOEsZTaltRqpuZ4AJiGkYjmZam5vz4CPKoqLohYVUkVMUkpMdS2ptQRQ0o1nSBinRe0bQuIZ7seOK2cWuvOF5uP27fu3ARX9gEi5hBrEQAFKy7tjDOuiVlUFJCdb8dprvL9IYS2X6+NeXx81JQRcbVer7tVkjJOUwihgAJA17a1Xu+7rtYWTIQMzrJ3xhozTdPZAZNPqhoqyowe2eDRNlFOS8/HW0BEAGj5GA0RY4ygWivIOR51m4+rRyHUf1VB/nEcKzxbv3OMsYge2RyIWY4859pbw8liofaUcNoBOy40q8SYjp9eiueQyCezvyOwhseVZSmQUwaQrzcyFYU+/v3K2EIAQlIq1YYWjuuVpRSQU7etQkTOWCISLESWAHOOmiFrrsvHx10dQRUiSZIyERWVFR7B7b5v111//3D3tD84661rrfWPu0NImdhlwTd3j977rM5aJsIipZRURdCAEIBUERSLagQpgAiG2ExLKFlQgaREgzGXEHNKIaV4dX0tIsMwGbbe+8MwGSTvfco5pJRKJgI01kgpUwohYOM643OWeZ6rHUXbdQBEjEWKCpExdUmgtpJViEJUEJm4SohCDAEAmAiNLSlrEYXjCIaAtLKaqieggJLGk/4JKZ1bVcKjs3L9T++Od4oUfvW4n2K8f9pDYxTdenWhjX/Yjcv+0DS+aZoUDylHNkSoJRe0pvaVAFAtomtl9vUvRARgBERArlIvoABIgJVSfU69X33pSaHTNOf2GhEt100KkyV7NkSMUiQXyKloMcwKtkjZH2bvmgr/1nvhnDPeEXJK6eHpUXIxxjx/+d6nX76ph9K5ZncYC+if/ujP1ldXRFQNrFJKVQkHEf/yX/7Lv/3sy1/+8pcIaIy52GyGaXEWx2U21oMQVjnQU40BAOlk+Xx3dwcndRprbUgxpuidq9+5FtyIyHy8rTnn1nnRUu9+TOXpsI+pOM+HcYIiK9/sD8Nl45i55qkiGbISQSllnkLJypaYGRBzSqLIhGY/js+fP1fVcb/vuu7FixfMPOwPIDnGmGO6ubmpSwi1TOv6LouKSN+vbu/ucww1j1YOpwWCqgOVpVcwpx2SOp6s6k562ks7LryfRP8rkXiJi7W+jutCSFX6ruu6tm2HYQih1BFyXSfouq6xbonht7/59Oh9NE2gxRBcvXj+8O7tMocYQtO2bdt//MGHpZT9/tE5x0jjODYdrvtVWFIo5TAM3WqFiEtK1jnftAo4jNMY5+fPX0AqhtGTabxl5lW/edzvXrx4McxL2e174+YQD4enZzcvAGDYH5qu7fu+W/XW2v1+H0s27MZxzCxVa7NkLVk364say2pFQsQhxHme6+C8lHJzecVEMYakMqO2jRPF7cV6mkNKyZa8hKg5EdaSHKoHUT1YRQUI03JUGawVQJ3s2sbHGPGs2g9H2SYkJKDVamWtvbm52e12+/2+FoZcxQusrd1VTWYVlP4q3eJX6aQWT+dZZYmp/qwpLMYYEMlSQoqqKqBTWLKKJUbDuZQlRc621i6uNTFGER2GQQndURNDQk5N0+acG+frfHRZFsnlaDPFbC17b6vEKap0jSciRoj5DDVrrepKdRc+9eiVu5RDPHkSUAghhOCcQwDvfU149aOuwRQUVSDFzGQA4Olx1/d923QxpCVM5zailBJSVATJxx22CiTUMqh+dNM0p5SAqYY8Oq1inwFDQjr/YV0ikAJSvnKvOoeVM5hYLa5PygOoikWPgHZ9j7UsqIO3o2J/EbUFCVUURAWKpJxOXoQFsLLMpOpXs1lSxGFURXaFrZtDXJY4L/HhYTeNo3UNAHiPBagATzGloiGVAoVtQlHDxIy1mJNSUkyEpnbjClgKAmAgKolWaASxCDZN27W+6xpkAimXl5dNUys/TkWWeakN5dt37y4vrx8fH5Gs8c1ymBARDYcYc45hniqEoIRN21rrke00TdVCzXjnvR3GcRjGXFQERKRIKZKMmmPVBXVpXtu2RcQQZjxiMF+huapFjvILx7qNiE6Lc0etz+qgWncT6u/bttVcLoFevnrxxdvldndAvybXHA6zMwaZRXNK4hvXeRPnnEO03CnB12uvOuwA/TrszHgUzqqv7iuKAKCcddDOReE5+9Yvg5AJABCQVTUWIEJBViItGGO2ho1fgaEUlwLoDBswjXWCYPgocVND3Ha7rXGp8e2iS8xJEbquK6VIit/+7nc+//SzmMOf/wt/8Z/+4R+oas7J+AYAQAGJpnn+9PPPQshzDNb4zcVFFkklZynONkVFjpn3FAwrclMDneoSo7W2fgQ1Svd9b9nURcQKW9bqHACQqE5coGRnLLJNJXv1ZN24zI4tOz5Ms/XNHKa6O8Gckcha2/etMebd3S0zSwrV2VJKZGTvvDHWT/OcYgSAaZpVCjMPh8O664kIROvlzPNRFiPsUogBALyTxjspDSEg8TAMwzTOISkb37Y5xI7wqC/jXB1ubzabzz77rHqK1cRce0E+eXvlnEvR+rarFiChmZYY5rmem2pGtN8/1ejDzPMSh2Hc40iGu1W/TLM1dHGxXZbl+tnzME/zPG/W67v7x6Zp+r6/ury+v3tQhP0wbgUuLq5KKcsylVJiDCIKTJXE5NqGiLZtJ0AF0sX6qsQwjPPLFy+q6n0I4WhNyMiMTdtuLzd946dlBqBhmIhtDDkVJTS5aigC1BanuiiO44jaD8PonEOk9cU2SQEA5+yqbe/u7kJY+GTVunt6vLq6Kln7vifDKZY5hiLqQUvR6qCwxFSFmgGAjFlirIPVo/DvKfGUk/aknqSDsbrPMk9DqBPFp6enGGNt4ivE/bVLC8ysCJAQkQQUAZCqdOmRu1TzjYrk07JZ7cLrvwVmqa7sCNYcu2rbHCfNtRwZprGKcymCr5xhFVWtb7AijVWhGhHrj6iFqp5ITIa467p6rmoCqx2tnuevlSV6Qs7r8p6exKSqoVidhuBphXpjXf14K/Kccy5Z4ITf1O6/mgHXAqIa18tpiaXiECLiras7P3iizCwxhpQkLSJi2FW55fp2zpRmLQLM8NWS7klV8eRexSe9bgAgc8zHFZmoH1RMGU+vIVUNlmMJyAjI59a5LrorANdUXZu/AnBUjhiGISyJDaIoQsGSAYBt3HofC8SchmFgppxzKThPi7X2cXgUAWSbhKxzZP00Tf2mIQIicN42zjNiCHEZp5IEQUFFlRRRkUomKZqMquIC0dkmpDTNKpm8ow7hcBi991dXV4+7/Zs37yo44dvWuWYOWQFSLNMyG2JVlZxKjjnH7XrVdB0zG+Pmed7vnurDillTqYxI65wbxtkYJhJJUspXxD2sBpqozjKhl5KIoHHWEDIqEyBVNpOqSrULrM0uldplEiMREJujZmpcwnEhUDVJAYmX6+5y249hmUvWHFHi5eXzZy+e39292+1uCUzXdVCWkMRbN8OEx2nRcS/5XGv+W03wV2yrgnAcLNTXWf/4K+4e8NdFtYwGLApsFLAo5KJFWZFEEI0BRkFYRHIGIN92/fNt+9FHHwHAH/7xH1XqDyISmdXKI7JIdt4dDgdmZjKfffp5KcqMq9XqT3/0Y984Efn//cE/W0Jk5pgilMxAomKM9d7//Oe/TEKG3RyW73z/+4+7/bv7h1hEY2brat1xDkf17SzLUuv1iumKCIhU/8EYY5RQB1jVia5t21JyfRZElHM2CEWFEAXoMA4ESGSGeXHOGGNUSuN8hTTqV72bKcSbq+umad6+fZvC2DRNZwGgGFkMKqDSqt/0bfvb3/768f7h8upi3a8O47hZdUS0xEBEwzBUkpgztt7nYdy3TUPQdI1TZCSw3j3sD3NIUUTZEFFcopzq9Iqt1yzeNE0Va6xhxVpbiT85Z9v4+pEREQJX3spmszkcDiGk5hgNOedQNT0aYwR01a8eHx9vbm6csdM83D08OUM5S1zmzeZCgXJMLz786HA43O/2yxL69RbyEkLaHfbPnj2Dh/t5DinlF69e7schpLher+cYjDFLTveff3q9vfzNp5+smrb1zW8//+zq6kqRng6PCuSbJuYkoP1m3fTdF59/ISIiS0rJN02McbXdlFLmsFTtvVTyEhbfNv16Y5wvaZmmyXctENUlnxpwr7YXwzAY4hcvXtzf38/TVMe6MSdVjSELQuW7O+eeDvuUSkppDrFaIMwhWKJSdA7DefGaiKp+5/3TozHmPHrH075KDT0VQX16eqp06K7rDoeDiEA8ruEiYtVaEhFrj/7B9DXbuwqHlFLoRB1iZmUMIRGzQjVIpUqDMs5aNjWt1mogpVROubZ3LTP7rgWAUk/JsgBTzV6llLNGdL1RlczCSFLlAE+Js4YPNoR0FLgmhaxSc1W1tqyhqlrdVZTFEQlo1WCsN6rEJCqVyB1CeHx8dM51bV9pDWf8KoQwz3PTNFu3rdNcOr1lPXEy5VRE1ltQB/NVDVHtsSGu5YuIMJ6MGUqxpy8iElBGg0y1na1+D7Xa+6q0OuX+nDMBici0LPVx1/KiHgYAVDq23URECqqaQoKqbxyTghCRFI1FUkpIhtEsKULJjXe+633TK+NuXFQ1JsF4pJqnlMiUxncFihQ1vi2qKWvTbVKarGPDrgKfRNw4a6CLc9ACVSVMv9aWHZ9CKSmVfZyXGVpLVxd9iI139jCNbB2RUdXtZnN1/QyJH/c7BQpJBWLTtKWUOM8gRynQ9faimq4WlXGcitoiSoClQCnChkSgZO3bTvGoWFKrorqRxQTeV/nuamBXZVbBNxalEAJhOXaWKHgiJ9cni4iSEawiHbFoQ2y6rhILiKht229eX4DY29v55llzt493w3w/aVmGxztUybXeYua+7yUuyxLUfzXRh69pcXztP+WUf8/AFVZa01fUMYBcAdivVavHVy6iCiQF2ZSavwsQK6FaAIaIInGZU05acsrrz/ZYeZSSctM0qjoMQ9v2ALDdbu/v7+vnYM7irJZTSvf399Zaw1YMHA4HNhxTqWLGiMpMdVfFOleyxpiA+F/+6x8ys/etxkyG51jp7lgxNjxxzIrI0R50HF++fDlNExpTqRuIaI1pmmaeZxHpum6e5yrdfIKaCjsjKVc6tfd+nsfVatW0bSkFkFVhydkysWVBsCfD9WWec4m/8+y7kjbTAUuOeZlBE3tvcpZ5mKmnQz60vkur+NFHH+WYHh4eJmNCmL33IWVm9mwyYJqn91+9F0KQkkqKYZ5KUd82zthc5OrqajdO949PAtk6X0qq7/zy8rIe3JTSdrt9eno69yve+wpyrtfrGujrANIaD3wk1FSfu77vd/vH3XDwxpaSa+RdVLuuG5eFAXa73fZi3WgTQohZ5of7zWrtGk9El5eX+6eHeZ7b1cUU7u8fntbrtXXNerWtaMM0TetN752hURrn1+v1quTD4QDGXr942TmLpd/dP9zd36/6fpi/BKZhnKcU1puLfrOZpukwDvmLz/O8PHv27PXr1wrw9u3bpu86kX69UoRhmLz3h8N4eXlZneByzta4ovM8haZ1r1+/HsexNnAPuyciYmt2u92yLNM4juNhvV4LHgHYtm3v7u4A6eLiIj3c991qmmdk8r4BojmEaVr6niu6AAD19C/LQkTb1TqrLMsCp+asDgjmECTnqorsnauV1mq18v7oxjGOY8q56zpFOFWIUr+DZXN2Qjve4/OgyNrahZdSnPeqCoh1wkrVsPZE+ZETITmVXG/mfhy89zxZJFpvNmwMmiNjuWajGI/2wM5tACq3tNSEdxQPmeem9TFGB8b7tiCFIiratO1ut2tbX0opJam62iNWmL0ObpdladtWGVW1xtlpDiAiKV+sN4tdvLGHaZyXiU9fXdft9/saYXPOyHRshUupLzuEUPlZxhw3suq44di4m4pgYZaiRb4OBp5/UylgFWOoGNI5ZJ+R6oqN10+p3ik9bj1BtZ0rJ8HRWoI0ja885zMG0DrPzEGyFhERBWmcDyHUhF5ncqUUVWp80/Wdazrrmrune1UtJZ+rH1UoaCyZjIDGEQCyURFkRSaD1rFd9et5GpYSxJRV1zWGs+Ht+uLx8XF/GACJLYUS2TgAmKbp6mIFAIrknbcWpyl6N4/jvFn1u91hu902TdevNiEEIZOixigpF1GMmlUVkYpASqnrm7Skg46quoRAaKQAKMWQcy4CSlmIKKUFEdvWo+p2vTqMQwip0h1aA8cgu8zW2lwiKnPrRbJlMoRMZEgJtYBCjtbycaBACKLsnbW2lEyAWoRODUllxoQQDOSPXt2w9p98sTP4uIRhprIUmXdRiBEERR8eHm4unxMZMKyazqS8emDON6uejYoAf50pef5f505XT39Sq2EmWxunGAI2DggUuWRhZgdgmOZ5bK01ZSEo0+Hxf/O/+l/+tb/y4X/z+3/yj//bf7RsPn56evrOd77zuN8tc6h0RZFMZJ6eHkpJlWIJAKLFsJGUvHciRQGmsFQ6+qbriyzpSFO3IYSm6QroEmMBLlXIjLkIpBQVKRZRVWIW0Szl6x9FXY2uazW15NVS2ra11qYQ6+pNrUoJ0BlLpxlwSskaE2Nsna/7hykl74/4orduWZa+76GIMgtQESUt1lCOyTpG0f3u0RLdXG6e7t96J//Bv/fXf/ynPzIGDRGUnJnMMAze+/vbe2ZarVYhRQFcbS/WiLvdbslJQB3zOI4phc43rbdaXFhSCsuyJFGNuSxTmKfg2qZIlpSda+qDrG1uDVK13Kg6z7W3Xq/X4zgaY7IIEjnnLDs52QafAera9KhqzvFICCo0L4uKCKHOc0yLc269Wh37Cd+y9TEFNuitW6bp7vFpc3E5TVNWODcKxpiucfvd06sXzxnp4enBEMScvTUPwwHXm65pvXd9zsQsRCIyzwt7i6APh92SMzsrCE+H/auL65zzZru9vb1NUq6e3aQiYZjmkBQRiKz3WaSEMI4jABiCfr2q9jshDCIS4xJCsMbU5elFF+/cdrsN1Vq4a6qdgYh2XV8JyeuuX1JCxCNxBqBtW+Y8h6XardcmrzKNjzE3pYr0FhFEqvwgEGma5tgPnfzsDJJvu1XbCULXdfvDoZRSUoaT7Pvx9qqmlAHAnIbNX8ey6twUTkNNPBN0y4nrC3jGya21lo0zlq2pzPZaKCQpSY5qMrUEvri4qOdnmqYQ5rSEi4uLmuG2260SxhRW677C2ppLbReqZFgl9+XjLsoRrDpS5E556zwfPUO+6/W6QjUxxtVqVZNcrQDwpGbV9339jaq65tgW64mr1TRN43ytMuG0hoenNSGiyvM8JsiaFKnaLNJxlEtERaWaIC9LsNYikjFV2eoowlofipxs8k5dYwoh1jtYC+JSw721IkqEUEdCxAAaS8aUihYCzDkbPD7WtmswJdXK4CGRHEPewxRjfGImOUmSqRIAMxAREscCRo+1xddPQimYEHNAQJ9TzDE4tpu+YVBnZN2aHElJ0GQUtR7yEJvGTdNUMr96cX2xXYGkedqPU+zbRsEM4y4X7fp1zvnu7q6ABaAU8xwikqnkmnkaLtari+0mpTCPh9YwAs9zQMSYjaqWIgoIAiFEESGC9aaPIfimOY5pVXOkxvmm4ZR0nhOBMGrnXSklxBmdM3T01WQiw2gMOTbMWB/9ebEn5wxa6mrK6SjieVo07R+I1y8u+2E3ev98XvZSli8fDoYaZdaiyORMc3t73zWXOWHty7+egL+ehlFUc/HGGjallBRD4/iMedRBQ318zrlpmlzbVqXGZR6991cvnx8Ohxij90ZVS46okJNuGp/DCFpQ81Vnf/wv/vAvfe/Dv/T9b//RP/6H2ZhxmT9//eVwGPko/kXHsWbOL26evXrv5b/8k3+RoO7r87QMMcxttyJrDvPc9qsXL168u72tOe+M24WcAIDQLLkIIDEBkGguAogV2f8q+9KpE0VEAagiAfUKrLqudsNd18EJrKZaXSIys+hRfu6MJdRXMs9z17RzCJbRWltZ5SklJESFogCofOZXqjLBmzevn11evP/+8ze//emrq+3zi277P/pzppQiglJCDTfvvfpAVbfbzThPt7e34zTlnAvo0zDUQt4Urcihs2yIWudKyo93O3TOsLPMmw3HVJAp5ER4XH2p8QgAamyqytc13s3zvNlsKr7dNE3KR5YgG8qhlJT17Gx60ltAxFKO3dWSoohpGmeYSCHGYK1la9IggrSfx2maWEVLYIBV1y/jzNO86vtasKhqiPN777/s+iZ+8snnn3/erfrry4txmqz3Oee27cZ53j89tb7Zrtabq2siCiHMT48ZUBEUKatIVTf0npifdrurq6tnL1/knGMuu8N9KqXi7UDI1hWtz6sqgE9FMWZRZEHIKknU+7ayP7qu6/o+LQGZNtttLsU0LQCkXMZpqps8Mcb1ep12+wqf1kjdNI33OM7TGTuqM1GCI63GW4c5lVJKzr5pa7D+6vKrIpH33tWLeqLLqSoTnSeXcOLiolanM0EAPYsJS5W9JEJC0YqZH/MKYk0nSIqIkkstsc/rxcecB9j3fYwx5YiGFcQ6A6jE2K86Y0zbtsaYcRwvN9vD4aCqKceLy23T+v1+X/H5cRz7vi+l2MYzUs27Z7sOlZONBBERAhyJ3IfDIZwscmvarkRfKaXxFhtXSkGQeZ7rSCXn7Jgs+2kJXdedfURAVEGoKhOJhnmpYeh8L+qPOE+pASoR+sjVRGZCBJScEpKhk2GznPQFFTGetn75tKRRinzlinOqkE4Q9HHTtz7umPNxJHlSk04pKQkT1I/F+VY0xxjR2JyxlKJQZ+oEiCJaimaNKaURBUW71p3fIAImUQI1TF3XWOsQESSfTPRARMKkxRUpUyqRDTbepFTu7x69xXXrX764JFPGaeo23Zzj/nC43m5TSsY0L1889xaHcW4bS+z3wzRPyziFEBcaxsuLq2ma5iWUo0c9OediKtUPZr1ev3jx3FkD0t7lPB0m37bO2MfdnmwnAiklVMKTUnoN2d7by4t1KSXFxhg3DMMyzY65aZq+pxi5QkeqauxxgksFmJGsddY4y8xVQQsAwHDFdUFKqY7CZ/pCva1HbGMu4/5eYPno1SU1K7Z59emX18+ufvqbt2BMSoGRQoiAlEoshYCPULN+zRiYFCqb9QxZi2ZA5aOtM1TIpM59BAARK2tHROZ5XverUkoIYbveXPT+N7/5Td1kL1IqnJsNtN3qsH9aNe2L91/98pe/+N//n/5zZlqoVyRQPOyPkzU9WpeaGOO3Pv7GvEzjYViv+2kYrq+vP/vsk7/0u7979/j06WdftOtNEWXrxnF8enpyzjFBSEEKdF2XFZaQECXEiIjsPABIRpGixArKbIrm84fQdd12u728vPzxT36ye3wMIXhrwzzXarVGsAo/1Kdz3q2/uLqoAykRscY0TTfuD5X7CQCi2Zi23qyuabnyn5GBqig7AEFVgkVk1ZRSePHi+b/zuz/48b/657/95U9bR6YOz5rGpRg3m02/WqkqGX758mUIYRjHu8eHzWZ7dXVlrZ1jCtNguKmkGFBddy0z3z8+FJEQ5ykWtC6llKZUVNarVSiyWq1ev369Wq3qwuvl5WVNxufBJCJWylk9gvVLRHKO1X+53oR4FNlXxBN9n6hkLXxE0tgZQw6IDuMcckpSDsPkmD589bL35uHdu5iWm5trJmqahkFF5PPPPnn+/Pmf/psffutb3/rOd771+ZdvSsoVH3ZNs9/v2+0FMwfRYZxijCgKAEnKar2Zw7LkzGRTljAO9TFXwZBxmQGAjE0psbW7wwGZPLU5y3G/yxjkik/xtMzjPPV975uOcwbky4sNADx9/vluPxDbYTjsx2HVdqWU3VNcrVbAhtnW9r0ULaU8v76ZY3ja7eY5oK3kHawgp7VWcoGTPkMtw5XQAaTqf0CcAUopjJRz5tN+tmOjDYtIXAJbU7UYaw4GREZSBAIsRTIIM4MKIOacScEwFzgyg2rZWDPrnCKo1q0eKELMhhiNFRFSqAKVBokAK9237brKN259cy4R5nmupFNJ2VsDbdO3nXe2lFK723rJQwgXFxeIWA2krXFFIRVxlqv2OCEzK52skfE4WvYVBjzHLzntHYnIsT4+hci+a+ZZtchXfy3FZRqpVjzG1CFu/RzOUDAzV/D5XMToaQ2pykHUjaATzQdEj1WCiFQVYjkz6QDPS94Vmyml4HFud/y2fNoGrr+iwrmWZWvrXyqlABMUELECgnikBcScSsqlaIZcJJ/LkZRyLrnqZKFC1lwlo5eQmfUolFTLTEQ6UuILiiKIN8awAcxJEqIVwcMwx5KdZyLaS5j3972jq013eflSJMY4ffjh8zmGn/zs6Wl3//zm2cuXzx2bp8d7RGWCp4cny2bKMYm2zoNCCKkmzlR4nucQExpLbM8lo3Nu1TfzODLjet0L0DiOXeODKCKAFFExxlhiQWVU503T2BTmGON23T179uLN67e73SHGcp5c1NtRBwrWGimQNBk+9lKALCIFjk/Wu2pglSveW//tOXHWE2KMudxeto2mSEnUmPy73/1QID/+6a8gLYchkGtTKk3TfPzRN9++eRiGRYqcs84Rc0ZSLgCiUAARtBjmEAQRrbE11modlB6hCwRAY8yyLNXBIoTgnTVMD4/3711frlarp6enVb/JUsZ5Wm8vpmkyltrN9W5/eM9tvvPv/NWf/OTHAOq650XFOKsI1rtzViMiQ/jZp5+8evXiN7/6hSE0hNO4u7m8CMv8zY8+/MY3vvHL3/z2YTeEebkN4f333jscduM4Nk3j2+bpcS9IiPy0P4hxXItHIAAogKCKSDGn0wTkK4NOVb3YrI0xw4AxRmstAS7L0nVdNUCrSgfGmLqSxUSHw+E4GiNq2/biYlNiqiJr1rE3FhENMaAolFyKZXf68AFAVVBQgGhaoiF49+7uZz/7+Tdf3fyn/+l/kqf9L376Z0YJfdeyoWVZAKEqQuwPuxqC27Z9eHjcw943HQCN+8NN11lvq8aapEjerdqmb7sploSFiLx11phSimV7dbm9308PDw+bzSbGWPdQn56e6iiino86HqvChOXkynImf5aSVaso9nHWUhGhE15HxjEohhBKTqXYGvKmJTBzykWZNeZhGl8+/7Bz7unxfiQ6PO3WvS+oT4+3zpjNqoOXL1NKqeS2be8eHhWBjBvGhY1/enry1nljrbVVKK6IAMB+HHLRVCRBQOSjJFtWdYiGQwi+7TabTUjJGAOEOQsgAuI0z845CMEYm4ZRpeRScs6iaIyxjpEpF0XE65vnWmSYp361AYBpWQxxER3GOS4BAFQDEa3X63rt1+t1TpJSMdYKQIypxn1ELJhTSqTgja3jw2EYWuc70w04IFIqqaTc9t08xSPkkMs+5QqiVQ5tmJcKqxY4Oo3XNg5O/irV0erY1eIRO5WTh0/9E2sqmShLklmKM1atbZwDELTExhKRsbWHVgKZx8kQVw/dGitQtG9aKZJKaHqbU76+vFim6ebqYr/f+7atfd7z58/3+33OebvdIuI0zlUOxRgjCNMwHjMTH8u7WqykkonIWld5GZW0+dWQTLXEgCdS9DJOTdeeD3BOUqQcI1fXtepASr3bejLSka+x1WqtfZ5ny2m9smZES8RHgnc6/68TYnmU4wGAmI+yl1/P7mSMqhL8D/k4xhhUPINpRMSnwkJPTEnnHDMykgqmWPbjrpRkDWUVSMU7h4hd144PjzFmAbTWImGJBVEd2SQllpxVCmhjj+JeztZpZUFQi2BJvREVpVIy2ZTSnCIZnmIS0KtNt72+ydPeNW0pClWxK6bxMFnm56+un1/fMOMXX342j1Pf9zEEQjuMY9u2hhu2jUheYmZjlpSl5K7rrCvDPJUCVRR2mcfd/qnkVnJULQCEWmplQwyEqo6lgLeMzpSEgKVrmxcvbioHrus6QwgqJUdVG2MkMk3TGOMKKKmcbIoUkVUxpxK4WAEAMVDOdwERpQAgMhsRgSIlpnMTUvM0gluWvbPdOI/KWURWHj3rh69e3A/y7IOPP3n9BTDM87zkOZZwrhoBgFEJFVCgjkhT1iL1CsQjupOr8EzOmSutEo6H01qvZQaA1jcxhkrgmIfDTw6LKlBzEdGosTnHwxzYuMMcLFO32fzkp79gQ2wbLRKKCgIApZStJWbLBohIUnbeLtNoGQm08W6eUxiXlNJl27x7/fl7H35jmqau65Lofjg8PDwAHH3Kicg2XpSnJbimjaICWgSq5VFNfXW1HY8cBa0Q9NPT08PDAyNeXFwYYtO08zz/9b/+1z///PNf/OIXq9WqXiJQJUQ4wXjV9a4C5k9PT2mZx3FcdX2QmZSJeZ4G51zbtpILIioVURBhAVVUUdQK6TetM6zO/dnPf/Hm89/+z/7Of/Dnfvc7TGCUCa3JJdmuSWEpKoaqIeLovb++vJ6mebc7hCVtNhd9u9pcbkByGAYQNWByCsy279pp3hNR62xlbRKiYVymueouXVxcVJGmlFINSbXtqDOPCkcfGYaapMixpjnR9lQFkRSqR945GoqIGONLiiJQhQYrGlAUfNt161VjHYksMX722WdxHrFk7LbPn13ev33jnCGQ/dPjT//sx2zNBx989Nlnn7H1OecMyMamUtiY7XoT5yXEwHUCZy2WkkQrdlfF/QnRsLV8xAZFYLVaN11LxkgIT/vddns5TlMNkfM8hxBVteooMR/hxBBCyMkWKyKgMwA07RGrCal478m4oloLUmSz6tqcc5jn+tGN43h1ddV13ThPQNX66gg81lvX+cYY03hPJyd5UIUipRSDZInVqDM2VzkUZgDJMcEp2Rw5isYKqJZ8ZJBZWxcZK/FYk0ARNlwpCd57BEwxAYBrfIW/nHOllArnHi32RGrHaehoRlubMz2JV/R9m3POMTRNQ8ApLKtuW7t5RiVDFikhWTbeuse7eyXsum6Z5so4yyrWONVJTxsgMeY5JkRk0Xk/VtCvotmMhEQpHUU3LTOcpr/nYWq9kAAwzwOiMttcLXtQvHHOuVpiHlXNCQtCEQEBQmQEBNWSFaEa9gICMWIBUBU9rRupZlGsqkZ1tHsCJ0spKS9w6rDP0PE5hZ8rhuoKfirF/63hFiJWyzw4lUd02mISAK5bKQhFRRFTSoQGEBiobduYU5XJq9Du8QUjgKJA3Tk95nsiAtCc86IJciIEz2CYsgALG0JPkhs0YuZhilqWZcnit9u+aTty1jX9flhKxrbZ3t3u394/dP3F1Xa13z90TX+53Vg24zjGJXRdJ2BUOWWFEIkxxrnrOmI2qBcXG7bucbefpglJGdEY3j89hnG/WnVMOE1D27abvnvcH7xvcqoUHnDO9l1jDKOmtnMXm363ezQWQdLD3W6Z9paByJSix2ViZFS11qNoTtmaanKAIeVSijPGGBaNdQ6aktKJAMXMrfMiEmOM85L1qAzT9/1+ioo2FVXI42G6fHbz6tXV75m/9N/9sz9DKQ93j8sUxjg87h6yAJEh5MoDINCvBL6Pat5oDFtrEbSueCF8RW4QERWsk4saqdq2zTmnErq2tZbTEkQkgvGNVy3DOPZtK5hjWJy1hjCFJcfgjB3HQ9M03vsUAmCDCIDHXRg84mRaUpacf/A7358O+zdfftE07jvf+ubj4+P/4n/+d/+v/7f/8h/+N7///je+lQFUy/e///37+/v9/omZQhXQBQwxzCH2602KUQuUUgqoSM0XWH11AUAAqultc1YHyhlUV6vV7e0tEf3hH/wBAFxfXdWcRV/DlugrdWQxzGRtfUB937988XIeD2/fvn354pm9uri/vZvHabWqcoEFgAHkqJ2ugIhC9OzVq7dfvialbn2Ry/JP/uCPXj3/n/7O979j3ty9m5bZObNZrVPJT4c9HxBUVqvVOEzjOM7jVFLu2hWKMtOyLIZgXkZSddRJysaYvu/nIJBySDrNCxTxxraNl1zO5JFKe6nTsrp0VUqpvxGRCtARkWYtpaQc4Ky2g4iIVcqDmfFU1NfZJBurCErorU9hAYBUchaglERxHB87555t16tVD63vW/9wmFEzaD7sx1XXf++73/ni9ZfrfvX4eN80XVFE0pxKyNk17TTPWGSegxZJXJY5TsvMztYN6zmk4xMqEFLImBhIE3ddx9bc3d3NIbjGD8MwL5GICqi1Fo1ZQiilGO9UFZiWGI0xCMAnElBWIaLDOK/ajo2rBi/eW4PErgkxGcNLTDkGUM1ZznF2vV5nKfv9Pp82RytqaIzxziNiZRJWqLai5TlEa13bNBgCyrEsMEjccHHZWgtFKiDs1msAENACOs/zvCwAUHVWq4aDYyNItVvtuq6mhyOvhOnY3oFaYnXknNMixpiK1h4XIVT1RFaqccE1vs6fAEBLYUTLXFIiRGMMiFpjlmle9ytDvO5XyPRw/1Rp2wDw7NmzcZkP+4GtweNij6jG89Tz3IvUGggR2ZqUUsVgvz5GrVlwu9nUe6gA6/WaiOZ5nufA1czOMSh560rVDgOoc8FzvsTTRkctRI55UQHYFEBEjHTESM+Y9tfV8GuWreINiJhzNtbVG3RGGgCgKg1lVYLjGzxnxByPu17IdReM6u6vHsEnLKUcEXY4QrWSc04JGEVyKjmlNA6T8Q0iiuqplzqKRRPrKaDnlABBMwipWNR175/dXG/7FnJQyZaJACGhII3CeUlzXqKm+72Zxn1HYBENaC2vQ4pzysas727flKKEgEjzPFo2m5ttzRYhhDmkAurQKHJW6TdbD5BymMNChE3jlxhCyow6L8uquyRGAOnaxjiTU7m+vpxTBgjGWseOkJvGr7oGIK/6Zjg8fvbpb6x1bdtXqS8ACgWWZck5lqKuaZi5FB6GAbXUo2OZGKEQ5CyW0eKRfKeCZyEIUgA6CsqWUo6MSABrrW/XIR6enp4uL9bLbrh99/o3X77dPvvu82c3X969/vKzz7lrvPeusSGEVI5HhU6Yx+lwg0hh5mp8URueOuBQqHJ4oIJJyhlZ/Kr/qfNgt+q223dvXxMWy3me594ZzpPJ4a//3l95enr6xS9+YYhunr/w3o/DFg2/efOuaVo8UrqO86NSCqoYZpDivf3v/vt/9PL581evXnz5+Rf/4//4b/3hH/7z/+I//3u/99f+Q7TN67sHtA05t9vt6oByWergiVJM0zSBMYfDAV0LIAX0eDEQBY6cIeRqT1kAYIkRKzikxRh6eLh7/vzm9vb24uLi8fHx9vbtarXKmfW0c8XMxnBKknOuiDwRMWCMi+Ty5evPry8uK6B7c3OTY7i/v0dEyZmt5WonSlRLYEEkpcenYQyxMdz3vYxpWOL/4x/8/t/49/89Y4wZpnFDfa1QUlzY2LrIqAKq2rY9ALVNc4S/JFxsVkSUp3Gx1DgDTJqPnrKI7Kztuo6IrOVhGJZlefny5cPDwznvVpS4LiBVVLkuNdZIZ/H4m3LS5Dt3RbXJSDHVEcsRS0mJGaXqYqbUNI2AipQ5LD1b7z0TjfP03ovrbXtx2D1KyU+H/Z//3R9cX1//9Kc/nefREMcUlhCFbBRlNhf9+vEwxJR8120aR4Cq2jRN5S3XOmCeQz7uvAIDNtYZ5AoGzmGRp6PksoBO0zSM83q9Zmf7vt9sto+Pj3XXXr72VV+8dd46E5dQJ+L7cbB0tGudpqVt28PT0zzPbr2Zl4mR+q5T1ZRyKWWe54ur/vr6OqU0TCOfaD75RLQpOYcQLJumaUrKNbxWplLNQDFGZ3wppVI2jgFdoaaZaphqmNpVDwDzspRSdrv9PM8VfsET5hxCeP78eTmpQ4jINE2pZGttSqHyfbumFRFTKV0K1n1l6VMfdy0gVqvVfpob542z1Uz68vISAJZpBtH1ej2PkzGm0klLzsx88+zqMM45581mUxnRqnq0oBao68J1N7G+dz6lIjmZ4xJRjPk8mj0DxYgY43LEokup2uZ1CmAbLydPke12W8cZteI8VxXnzv5cX8tpbfprP+vrDgpwRo/P7a+qEjPiUUGTgIqCrbtbKeFJU71W7nhqBc598Pmi6Wn9rBzTZxVIwTNHWko9ORW9jKVInCdirJ9PCEGBshxHnsYYywYATFVVTDkEMEjWsGewhtrGXV9effdb33x2tR33j4+3t2EaU15ShiRaSuj6dozLNIyHwZiuL86Mw9IYPuwOKWUks7m+Dos+zo/vvfeeqg7DofaI6/V2HOda2R+LckbvfUqBmRV1mqaUMxqbkyzzTAxd14YlHYZ921jv/W63s9ocNVtASyHv2853cUkphWnKuYRl2Yukq6ur9XqdUo5BcpZlWQ5TIqKu7UspIcQzkJBCLiVRVG/YO4uGRFJapHWl1mGEhIh8AjBqGDw3rDX0tW3LBpuuV1VAuLy8vH+6//KLzz79YljkKoVwcXERUW3Lh2UgIkaJSesY+auqC1DxKLJRaRxnMQpVLSfFtFJKLvk09RARudxeHA4HUXXe7vd7QvXeX2LePX35d/7G39jv9z/84Q8b12CZGospzG2/3h2G/DSCsQ6t+FUgayDWJk1EnLVHIgWb6jsuuTzc3f27f/EvfPPDD/7e3/s//6W/8BcfHx+XMP213/sr/9Xf/31jjCI+PDxUHHTV9+M0GWP/9t/+2598+uWf/vSnKUtRLUeHYwKQeovq/cpFVZO1RyqGloKITNWqQJqm+cEPfnB3d/fxxx875z755JNzkXoeD5VSCI8DuGVZSMEYs+r6mJZ5njfr/s2bN4fdfrtdt22LWoXlEQEJgRQAIatA0YLwtN+vNhdhHB73h6uuMYBziP/63/zIiHRN60vBw5jbxpnW+cZPyyg5N61frdbDlwM6VZOqwsNGtCyzRwLjFEzTX4YQ2Nmriz6+HYOEbePyXKZ5jJnTMnqHTAUhERYkFk3lpHoK7EspsUSypAVDtYfDhCCgUEqWogDAZGvja62tkiVEtCxxvV4zaykjAlamC7sGre+tszESUQpL03UAUND84vPbqrf8rPdt279+9/D567d3725FS51P39/erTbrtlttLjbdanPZtQ+Pj8yg06NOw3q9bkxxnels1zTN/eNTT7qEKAhFlJgz5Qy03W6dW+2HwzIt1lrjW9+0V7apWqw552EYp3kJIVSUsho11m7JOhdiJGZQGYZhs9l4YwkVQFGKtzbGeP/2zT6nq6urRRN6W1RnVWvMFOaI6I15GvYAsr3cLHGe50POeU5ylGeKAUXZGGTOUqxzDbW7YWBjDvPinNteP3/37l3ZD9vtdp7nFCIirtf9Mk0xxu3FummcFpmmiWNVpcQ5J3p+6SefUnp6eurbNuc8jmPbtg/jU9d1zBDjdHFxsbpc73Y7Y4wucb/fM9N4OFhrTdNUUs+0zFUpzDhrjKmaEs6528cnIopL4JQL8BxLktB1ne17y+Zx97TuO+9MypPk5JwrAIBwdbPtVv7u7k6QAGRzsVmWhQwbolRiFnj50Qe73S6pcjnSiZ89e3Y4HIwxqGCIM6TGWTiayQApecMhhEMIqtpY13WdlMKAyEZVuRRvzLIsbJgsMqKUwCTOGjiJYCCo4boGJjnNzKxSSimGDShKEQQkUQKtQr2naEg55yrZXBG2HDMi16BmcuqtAQApxRFVU0ZGACkgUu8PIFZlegSUVI56y6KlHMntDREAGADPbAlLTuHkn7ifZgBQYvaOnB9E5oKzSsrpyC8DnJf5anuBnodp6swqx0SiK9dsVytZBhPD97/9gffy/ArL8EXzvNnF+d39fhijtX4sNoSAeRViaXJDhDrDfhnN5fqAya7tex+833szHp4YEugy42UprSoY7gjz23evtYRX7728vb0Ny2C9X683QIjGtN7P8zwGZe4eHm83W5uzhJAv1itQC+iBfdZGtbBbK+D+ENigYbZoDKB3BKq3t/fG0rIsFe1gcjcvPkopv317q5zTHADbEAOZsOqcQhbJKUJOAYRiLIRGLIzzdH21KiUBiuN+TlgQyRogFFWELISWKaVZNPrOY8zEdprmx6fDs8vobFdsyQl8e9G2/Z/7wfaHP/7li5vrX3/65ZiHuahxl0WaORa2tsi+lm7VkkmkAGkd99RCLJ8yfU0zuYQKHmy365ur61/96lcfv/feJ598wqIO1KoYJihSE7WKZMbV9ubnv/rUWtttr1Xwj/7kh89fvezXWwF97/1Xn3/++TjsLW2tTAS0kDadTzE6SyWH7aofhlRKsNYepnm1Wr0bph/++osP33t/V/p/8sNftzcf//hXr//mB997/70Pb29vrWJDlebNYZpb301L+uWf/XqJiRJ5IHexHsdxWmZQtWhEiqhYQtWCRbxzhFhiZCYwnHOOhl3TmiJffPH6o1evHt+8a1++ctb23k1zyCoKpMhZKGUg13FatIRcwBGWkgwwafiLf+77H3/04f/r7/8DxYIyQ+SLzo3TwTctxGytZTVkrBYhBWPx+c313bvbZ91ml0CLH8Yl+aYUe/ummDAPjaFm1U7TUNLSNUbi3LV+SQqiEpMzRku52l5Vj5dw904R1+sN0VB5Var6cH/vm7Zb9R2ZYTpaLPi2yzkfTu4xZFhOO9GIWEDODQczI6NRUq2bLCceARb4mmR53b+sVj/GLIiac0ol12UVOW2M7MKBAWs9Oy8LqHrv66o1AIQUr66uDuP49t3r9168/PDDDxCx7/tf//o3IYT9MMUYbUpZ0jzPZPh6vd1e3Azz9LAfvnzz+vmzl6/ffbG+uCg5s29VhQokKVwQGUNS4kQIwIQIpeSUoqoaY2LJ1aBESibGZ89vrq+vEfFH/+ZPawN0eXnZtu0S5hiw67oS07CMINq2rem5vgVjTB4GSAWhSjrEbHLjjGdz8/wy5xzj0jSNYX5+fTOO4zzPDVAppaSqrQhErFBSyWGIzjnvnShAFQQukZmvt5vNZlM/zKryTUSr1aqUQmRUj1ue1aA+xpQVsAiJtnz0Zeuuri1xzjkMU+sbwzztDtZao0hFwdqLqyr/uQCiIhrnUilERxt5EfEAx8bUGEaszK+cc9s1oOicA1QRmeNYn3IIoWs8GBoPg+n6eZ4ZELKs204JI1sUMYAOkNmyawRUUy4hppQuNuvafEzTdGSjnGwzztC0nuipqloFs7yxfEKwVbXEJCkXf1Ryr0hDY7ht2xKrFycYJCY2WDtgcFX3WHMpolKgCAMioGl8xYf0xJGuH3idZ1fee/6adQSI1N2kfJoBExEjK37VA2FNwBVJOrK4v+rszUkpjJkJsDaR5x/R1uwOaphUcsiplFyWyIjVHS0t4dnm4mK9HYaBk0g4WKLGuc6hpUQOV+3q+np9sWnv775MrR/Hww9/+K9CgucvPvz0ky8eqdOjyxYKI1jOIkXlbvc4z/4w7NrvfPP9Fy+unl3N4xDDvLt9DCm3bbuEqeS4Wm/nmHZP+7rZaYw5HA71VKixMcYwh/V63a/aeuRaZ40x1hmkxnuf89GHJsS5rkHWN55S2u12m826bduHx7vqbFgxsN/85jfWOmOOCirOdapFSwkhsAHvHSIT0HCIqlqkGEuGKKeiIICSQhBmLQUhM6izRAgkSJYQkdmWnGOM1fFiGIbW6RKyMQ4AcwmXl/3F9aXx5tM3D32PKRS7wH7/kMi6thvGxRKCnux863xXQcvXhMFPR6I+3wp4zOP08YcfffDBB5988snr16/XXZ9Senx8rPdi3a/A2ioI7xpXicEffvjh3f3jssyV+5lzFtAvPv0MCLu2rdrpMcbeN/M4P7u8rKuoEpNnCiFFkRfXV7v90Dft4/3dl599btkxm6UEB/JH//pfvnu4S0WMJzKm5PSNb36z6btf/PLXKSx/9oufWdcsJTLbwyGkpEUsIiJgoeNtLUW5MYdpapoGra3FonOdhSy5OMPMPI7jarVSLdM0jfuDsrHOIplUCkhWtCJCplGAIomZkdyc4jym/Zz/zZ/9ahdy3/QZ4JDgg2fP3Ori7u7uonUhJbSGEZSxlJxS/uLtG0b89M2XjGSNQeeiqIIiocG8MPg4peHxfrNZJTW2a+dDBJApLATYuUaT5hClFATyvp3nOTKTsZ5NkmKMWa82Wco8BcEEQNa6cZqyqHPu+Wa7LAsyMRBA8R5rL4hI5SiabwVUsqpUJDmdRl9UigIcN6md80Rad7Zyzsa4umlT11HIcBXyR8S64klIVTc/5wyIehqPhbCElI2zXbuKJWfVVdMOwziFRQp0q56tffv2rXWN9ZVNQ03TqGICY5u16frn/WaYpiAqIuMUbOMVSNU4403T7fZPdcJnT3hLkiIIdZms6zrfNpasc269XtfxeW1l6mqNqk5hQUTv/Xa7PRwOy7KsVqvDOIrI5XYbRUMIKmK9l1IMsUVO1e8sJke8bjsR6baNQXJssvMhhDAvOcdzqC2lCME8z0mKdb5yqaZp8o2d5iVU+vTRoFCRDFvPJLW1bftVzLlpmpeX18MwvLm79dZawvXl9WG3C3Pwa0eAl5dXD3f3cTqGRcgFFZTINE5KYcSXz58DwDiOaExd4cAT0claS4iSc1UXUVXXNM41bd/Vv1ZJA2SNt3b/9LhZ98Y5yblb9QgmFHVAqIrWqWrTuJBit2oHZACs8pPTODZonGM50ZLrnKlqOJ8BZzytIZ35MkQ1MXPKokUIEJQEyDvPxITqrBcNIosqWusrNfwc6fC4Z0JEXEoRgTp1+goGp6NMzXk2kU9Sz3oyvDrj1XgSMnPOecR0ookhIvJXu8IAgKrHBRhzzMoVq6vDYObT2JdQcn1JVQiisvkURSQXzMJFEcEj1xF+SQFU37++6Zom7fbOWuty1zSNay3Qxapr7XYZH3/yk59846NX03y4ZLp/3G2vrp1bff7Fu3mJtzE65+oMz1rLiElESmYVtMaY5m4Yxl/8/OZiKzl9+cVnbXexn0JSMs4tKcZhItRnz5594+NvDuOhMk7Y2nmec0x901hi5wxR93B7x6jWOdGy2z0SoCEMJ8fbEpPmMh32bFvrOOe8WnXb7UX9PInBGGONB51iTMsSVHFZlrAk5xKBnEslY4whC0K7p1lEpEirltnmnIlRiiZNqoqqJao4Wx0WQSQlUMWmaSjkmRIhM6bDODLzZrXujAHNJc37+cC++eiDTb917db/8Gef/vSTNxIVyBYBMo6gnEtGPplz1Pa3ug0CAsHRLqmaX4/DvL24+uWvfvPzn/+ywoEpLcz8H/3Nv/WjH/0oxjxMs6p+99vf+fLLL1Xx5tmLjz76qOu6P/vZL9frzeNux7xY78I8Zwl1leCshJqnpWdb5jAPY9u4sMSYltVqpQCaVYs4bwlZvRp2iChonqZpvyzgnO/MMM+kJWl5HA/vX18V5iHGbrVmY6p3ZFKDSGi5wukiRzmClHNj7PXzF0+7HWZhts6bZVkslbOfWAghhVBS3A+HdtUTWzSccs0vxtY4YNxut0MkRRLJ3rVLmH7445+sV72y6zaXWmS3f5xjaZoOjc+Uybmkao0BEdNxSVmIVuv17e3bvnFTKd66XDIRZ1Dz4roDSH3bzbsMaXa+W3mzWa2XZQkhWGuNccthvn/zzpN1zmlc6ij36elpvV7X/aqi8vj4qIpFyrQMRLharappEhg3DA8AwGxSPg4DpKhjJwLV20WrFSiwiCIwHYt0rCem5oyUijHGuWaappRK27ZSIMXiGmuMOez2fd8TcUqp79fzPJeSmBmRVcuyxJKkhqrnV8+XmHe7XWNdTPr5Z2+22+1nn33y3nsfGGeXOU7zgmTW6/V6u91uL4YpziF+/M1vlC+/nJaQCvrWiS7zEpqmEaCUhZl92wHRw9PeMapqDmGOMYRgqlwX0hJijBGtRWuZoYR4//gUQujWm6Zpxnkax0PUggox5ZD2676z/hLIhLiM05JzVhHrnWE75XmZhxiSNcY2JqVSioaQ6gT06WmPiF3XIXLb9mMpjfOWTZ3TH4Xa+ehPsLFOCWMqwzyJyLObFyHOlaNhraxWqzoMVoBxWZYldKtt33UhLM65brNNCh8Yl1J6eHh4dnlzub64vb1NKe2HHSuvunUNBMaYuiGz3W6HeQKlUuTxYVevgTEG6+KpKKGpWoyqKkVUYbPuikrJCkUOu70xRx/1lKIlHuNYmUwxJhTtV+t5CKikBQyx5OMsGYBSSiB1rlHYWC2lbZqUkrKvZiGAltjGtCgYYhfTAie1JlUSRREUZQXSoqmytwCJ2BjL1p22pKQoCBCylQIpixIX0QJ15kcV0QGELJCyZAFF1hoZtYp3AhHX3ApQtC60oHpfyVZKBPVDOOZaZkUSQEJiPirfnsa+hHg0u1FQVIUjGRZV4WguDARAApURrUULFBEFrI4FqjHmesFVNeeSsxAoATbGLnHWKJ1pNk0XlwVitsa05F5eP7vYXM7DPA9jnpMKSXZfvN1P8zAs+OYhLUH6jn77xZMqirdgbQppWZITtGxizpKLZZBh9t6/edjnZbzfPjHCPMfH3Zvr6+vDOG3XK+da8v5ys/ZN8+7+rvWOCAzhw+07JM0559gY48ASo6a8fPzxx8+f36jIz372M+fsvBxEZNOvVDWl4L23thMhkRym+XKzTksoKb149uzu7g4FUwhaCgJBkbDEcRjath/mkRmNtUSkpcQlidHqP+jYxFKLJyxF2bBInGNonEdnM6OIoKKqlKIZojGG0IgcPUPnOcQl/Ppuev683FwrSrAGVuuWMOYlG9CXz1Zv7te/eX2b91PBPIeRXX/iYSECStHKakYBVaWTX5mAHvOyiNaGGXG12SzTnHJRQECMKf/BP/+jytO0vhmG4ebly1DK7edfALkf/+yXbdvGLMMcne/IGiL64KOXj7unw+GARIAcojB7R6WxbjwMv/s737/cbJ92D59//nmICZme9gMQDeMUi3jvhzkYogkjM2vJjARZrGsQ0drms3fv3j7th/H/3963BmtyVIed04+Z+V73vXtX0i6SVgIskISQ/EIxCk+ZBBKK2OUUlAvjOKGoSqUsG0wIJVeQQWVsU0RxxeCiUiQQglMhRQwBUQQQMa8IhAQCTPRA+9Jqd+/u3nu/98z045z86Jnv/d2HhOxy1Z6aune+mZ7u092nT3efc/qcvtBRXKt2+2nmPOpIYdCpg3PesSt0RsRMLpZR1t3W4IHBplZXKolkkpKJg1l2s9tr1KqvetWrmu32177xdSYjSINAlJJABH358mJDC4rjmD1lxqDESCI7n/fasVJ5r12r1RqVaPPiOQGYJIlxVIlj51yr00VEcl5KWa0mmbWoIgciNTkJBSi0UJ5IXX6gUY0T7/368jUb5841avryA8tRFG27THix2GggyrxROdNuuSzTiGna897rSC0sNuI47nQ63ntE7HTaUZI4AiJXqVSMccamS4vLpzY7eT+rVCoKhQsrfgYBstj0sBAsRDixLxCI2CMzhJOkwCBQSpDMzOQFQ6xijhgRq0kVfI+ck6gkqkhGsYoRkSyxY5e7WEcCBHvwlrwPYUsFomw120HycOWVV6dpmqY9Zswy99RTZ51zVx+99uDBQxsXLm5vbifVSr+f9XptZv7+9x5YWlwRwN6mrMT21oVKrSoFxlooJY33nfZWtVqtV6vBN2SYbxiAEJxz4AQhyEgjYmbygrMjdDodpSLrnZCy3ljM89zkKQiM47jd76e5iWKdJLElX6lVtdb9NK9WayrSvbTf7fcajYbQClBESeyZZJwgYrfTrVaTcHAPEcGTljKOFGsuooITEdFiYyFIqTKTL9ajlaXl7e3tPO0l9UY40m6tzY0jogpKAZA7H1WqqXWm1dFapu1Op9sTQqw0GsHkRwhRq9V6vV44wLbdaoawhlppRnDkvXXNZjP4PwpCwjBL9Pt9K0Sj0QjqDClEwFIrpbUOUYO8z8hLASApWIuQt84LEEIsLSyy84BQrdSQoVKpGGM8UxQl4FIhRG59v98XqvCI65lirWu1Wr1e7/V6VkdZnvfTjJkjYpSq2e4sLCyI4NkRADB48UIQUqhgBE6IECQEsvSpGSI7MULYhqpICyWZWasYWCD4UePSYP3EhfnVUFbMHCZKRgjnRIgJg2sxZ8MpEaFkIVwJwtJqrQ4AwSeHUkqULgwDEMJoEJyBNkeUNueFlFIIJUJ4YmApwtnoYLVHXLoUDafynSNnhRAuimKlVcK1ShU99VudREcCUMvowsbW1oVuJaogSm8dERKrDMC5qHU+1YosYW56SbzgLDMZ8uCtM5llD6TZW09EkYwWGvV6Y3nr/Mba6vLS8srG2TOASkj2jAqF9a6xsFjRslqtBB1tnnaztBdFkQC32FgM09j64cu2trZ6vd7znnv1Nddc45wzxlx11ZFms7mytL65udlsbddqtbUDq1LKPM8XGsvtdjtNU2PMxYsXszwN67NGoxG+DQq1JEm63W6/343jOiIogUois7AuJ6JI6lolliLq9XrOOYEkhVJCstBK4yAyVVgtIQE7572XQjvnvOc4Svquz8yNRmOrnf3or4+tH1xaW26k3a2V1cbhw5ejBNvPcwtrS4tXrB+82H6Kotj0ibyVOJTcIEBBXRKZCKQUMKLgK+5QCLTGB3/XcRJrrTudjhCq0+sHnYv1vtZYePTRx/v9PiG2+30i6PaylYOHut0uIPbSbH19/YYX3fjQ9x7up3kYWbmzURRFzBaslPKJJ5742Rff/PKX/cJ//W/nvbG1Wh2dbff7Oo6EJQ+oK3Ge59Wklud5WIYHzxvBhb5gYXKrtT64stbvZ85YhYKBrTXsHYH3zlFwsg3gmS87eOD5z3/+/fffz87VajVW2rmMvHdCE5ElWl1aTpTsdbqbm5vPueqqWq2Wmtx5zwQEKAQoFSmlTLcj2ZleRkT1StWYHlt3xeHLrj16zY9+9EPyfmWpduFcFxBWV1eyvE9O2NwEiVesNAmSUnZb3VSmtWrVGIsoAUKUMAsAKkL7nMNHkiiy1rY2z9z8ohc85/CRarX26KOPnjp5WqGrVOLK4cvzXlehTVR1/eojTz75JAA3GpXW9vbm5mat0VhZWXGullQrxvpmx1ZiWU0iT7n3ab1SMfV62MVqIQSy8469r1QTC0zk2QUDpqCqshWtB6o1guCOBIhYChBMkl0swXtn064gt1CNvffgzVK9AuCddYlCl/ViCYIsEDgi9F4BoCdvyXhvBK4tr0gpT58+VUmSfr/rsvQXf+5njx07trGxcfzxR+qLS4uLi+yNy3ChmizURKvVWqw2VlcXnqLe4kI9qVYq6rJWp9vpNG2vi1Gy0Kgzo4CcM2tFRETAJIXQSmmtejYnk8XhcAu7SETe+06zSSbTSlmbBScsSZIIsFKwUkoKjgQoCYnCOBKJVkksASj3eadrAUBIdj7PcqE0Gimr1cQ5t7SwqLXOcxQKrTeETimVEATL/OC8CqRgx47Z5/0oirSKwaN1GRBUlNBxRAo4lgCA4CQ7JTBSAMjVRBORM2maFyt0raUQImtvVatV8vn582eUUmmaSilWVxeZudfrpWlmTBHSqlKLe73eamOx2+0KZ1Rx3gFRy6BjZvZSykpUvInjOI5jk/WSWK0vH0QlpdDdbtc4MMZUKqper5ssjzUSQKxlLBEAMnRxVQNAHKk8J8fGk0XhEaFa04hJP0ulJKU5jhVAYoXsNDeRPHkvtDiwsthsNrVgRPJQSHS59CiLyALBM2uFSVyc8kIiBAHeKKVQoSMP4FCwRJLgI4mCiQQjEgBBcfISmMmBU+iDLLAUegtAGU4q584gWSQvgRkYgbQWQoASXgIgktIQRZHgMqi20JECIdhz4dQQAGRwOFzqgxkYJCCiHDJhRiREDtZnQXVYbK/ZM3sdS++cc866nMghEAqqxDrSUK9UwSeRElneEdJfdmhVCpHaHnkAAK0lSOWIHLPx/vz5llLKsZPaHlg7lLmsZ5wQyvc63hnpfQW9DrEaYgXESuD6yvJVR45Qv1tRUaNWb8dxc2tTKnQmWlpc6XbaLuvVawmZ6kKjRs532s16JVlbXaofuQKArLUXL15MYnVgbdmalNieevJ4rVYj68iZxUYthB5eXKxdcfnlzWbz3NkzCwsL1mTemWoldtZIgZGSaa+bRNpkKSIKYKlVkiRSqiytpGlar9eInNJQqSQSOc9Ta50DiCIlhIitbrdTBCkkeS8BgBGCExUPgyP0QsTx1taW9KRQEKDWyhHn1kQ6WVo7ePzUyezUuYV6AzA+e2bL5Lyyttrpm4ud7Hw772636lGkGlXjeoDClnYARScSB3NrFiyQEIvAR+GtQBZKBKe8EklrjUh52lUiRN/jShQbYyRAoqKrrzz88MMPJ1FsjIniCAC67e0oipxzS/Xq+Y0z3//ed7c3N73JTQpaYTj3mEhhc5NUpHfu29/55k+eeCQ3HaXEi2564ZNnz3SPHXfOWvbgQnALxWn/0MqK1npjY+PQ0mK3220oLZgYSGt9cXObk/jy1QNpeyuEgcE4Djo1IYL/x+JMs2RaqFZe+pJffPDBB02eKSUqWiaN6vqRI1ubmxc3zqPpC+TlevzwQ98+dfwxl7YVQhJHKhzIdiTAMLHQQCSU0NZaraVEbQU4Y4j88tLCmTNnzj11JoqVECLP+ghQQzTWrq+vb29vx1L0svQF11/f7XZPnjxZVbJvch1pJYXxGPSMaqkRSciPXH7ZD3/4w+bmGW8658+ePHr0aCTI5d3tzfNK6Wq1mqXNfq9JPqvUCCjb2to61e1unD+nlDoEh4BzYDx29oQn0Frnaaeb9pvb7Vqt1nPY63aD3wYiQpDBxiRfWuTykIxzhQdw55wPOpJSByZE4WogmFAFb1mmPIBbq9VC8Iqg8A/ed4PU2uT5QHsHpRlqUBFtaC2E8N7Xa5VGo7G8tNBu1ZPYI/Tbrd721ukzKtJaHzlypJ7obmsza24YYyDbtr1e6nurtcOdfPvwSl0farRare9//wcbJ7vB1ygi9qjwyA9l1Jrg8wwRg5el4INwe3u7H8e1Ws24MnKfEEIIpUTYTkVRVK9WsyYBcRzH5IrQvKpaC0SWZ5lNIetGABDHcRxrn9cheDXxxMyVSiWOY9fPBlsihQV1BsVBnueOQ5A+xcyOvFIRaR1cGzrnwJMQItcymCkFyUF5jtCLSqXb7QqGFrP3Pnc2BHJARJuKra2tYMPFzGmaxpXkwIEDROSb56Iosj4Jp+jC9qJ13gTHs3EcS1cNLpmY4zxH73IptYPUMznrm532UKXqF/r9/sV+GidROBMcRVEzbSNIHUfh5AARKaUJ4OL2dlBguzxPre33+2nnnLXWkeg0m4FUqB9Lu5B3u9u2GSQ0xeaPhg7Zg8NYktKVkVWwPMVRKL2cs+WHUspIax6PZYSlY5OAXjhHLkqfnZnJvffBvNGVoUcGMzSNHPaVUiZJgiUXJ629Uoww+GrAZ8PqdjAcBjskABhsiQZOzQAAaBgNomsyY4zzJssyCRjsaV292m+pXhR7kwtAZ61CkXcWdCTjKgoVpX3baSODsJ6YOc3zNO9vb2+rODLGnD+/FEdVY5wU2na3RiPzDKQpsVbHuxvY36J+99yFJ7vnT6ZZz3vfz3q15CqXx+3t81s2f84Vh6iqbM4bmxeqSRzFtXZr05p+HMdRpLSC7c0Na63Nex2ft5nTej2YiWRZFildr8VBNa+1ROQ07ZEX3vsoUoiYJBEgEVGcaETQWqFIpNBElGU97x0i9LtbQgjvgH0mJOR5bnLHjEAoUHvvs6zrSTov87wvJMRaBfEOCG3JW+dQKkTpvO/1+1pHIc5jr99PM5MbV11ZPXT5+umTx46devLgynKtvgKQtNru5OmzW9305LnNk+cuZKiw1draarFUQsJo/44YARRkMwqB/V522WUXT50Ox/ZarVbgUc+75trTpzeeOrVZq9WEEL2L/vzJRxAxWVvjPD9z+uLRo0c7rQudPNdaG6WEFI89fGppaQmsbbbyQbTdljNay1hH7D0AnDuzyYjWu6988Ww/N8Y5HSfeMwAYY+Kogv0OdDbe9a6333vvl771rfujKPJK9TOT5zmjsNbWDjauXE2e/H9b5zYuaK07MiEqPFwWgysEsdjeOPX4D9fX18+ePq3LKOBSyt7m6TA1OkBv7C/9vZcw80MPPWi9Y5RSKwJ2NsRpjRCxa5yUcm1tzXS7m2c6QkCk9Pa5J7fOnhRCGJMZIYIdUh/BGHO4mlz3vOcJwVdcuX7//fcj4g++uVFfaKRbW7apnHNax0P1fBzj2TMXg9USM/f7fSXk8vJSnjtrrSeQUhtjqrVqlrl+v58kCSFIicaYSKrCcAYKN9/tTq9arXpAa20Ux84RM2e+iDblB+FxCgO9wtDUlc5yQxpUYnQCDjo8oqHJyYAfDURqg/NzAZ/gB78gQT/GHwGAUZJziBxFkbOGmZMkcXm2tNTIMpvneRj/qbFCiEajinkGXBBuZk04kusJkiQWApIqbGz0lIpC91vyIKNCIAkFVw1HTq21lVriHPV6vXDeJmQFKJzzgxOcxcpUli3FLLGwvhHB32+krTWhjiEuR+DFiCilcM7XKjLLXOhj55wSsvDLT8MJABiJWEpkhNBNWHpkRBBErBQCQCBErZEZiMAYG0WqkF0xxDEaA1JDr5fX67ExHOIj+TJ6l1Iqt7ZYfFgbNLuKKdxgaVccWH+xbi2PIYbgScZQJAUzOOdUrJxjIdC64GMEnPPVqsxSJ6UsEHaEZfiwMGUa65JEew9SgveAEowZlCWsdUgyitDaEOceiEBrsBa0BucAEYQI3qJACEAEG3xeISCBD479JBABIhABYBD6ASEEh0Sq/JCo8KgRCFNKyHMSKAJiIf+w1Q0K2hH3GwM/VhBYlVJFjxSVwhIlHOIZkCcscAu8tzzfCKNRYosPfXEf6jtAyZbV955k6AuTVauJAGBPxphIaSBWQlibxzpCnWkdp7kTqFCozDiUEiUaY5USxhcR0pjZe1ZKRTZE6QgOaIMbZFQBYQYpATxYkydJ7KzRWndz26hGxpKWgrxPEhlr8I4x0DM5Zg4OMJ1zzlqhRTg6Ec4KSyltbgZkliQ6OFuoVKJA4YgFhSuFQoBzHEWY5957X61G1hbzlpTCOTbGMAilhJAQvC8Fr+BKaWeD6Sh0uy6KFDN7skoJAJBBL4uslQBE8A6QyPvgPoU8qCiyuQ1cUVYr1nKn1V6o1rx1kVRSqW6nRyBISIyjnKCbG9AaNeaWg9OCQDASETE4mhv6YxkygcBelAijgwi85zjC0PtRBN4XRCgEhCVlGCPhYaBzZlAKnAOlwBMIAc6zlJjnViklJYICJrDWSUAtCxmAJQIUKoZ+ClIXNByYbOLAWre+rnq9ounCwGEE8iAULC3BdguYwTiIIuiXg6UYBSVVew9xDO02LS8I64b0TwgSQCIwAeW8uIhJAu02ZAZQAUpwHrwHrUEAWAugwVqo1yHPygHCwIFRSFAKrAUhgH3BNxJPBw+IrW3Ic9to6MyEMYsFV4nBOfAeIg3WgnOMYW4LLHUMEMgDDIZuGLQMCEVzw8gNEaAAIhACLIGUwDDsFVnmwCMNNAqeQYYYsuUTS1ycgQUQ5YcegBlUsBoAmFzO7QFwpIjR3tohK8WTT3ikDjT5cm5W0ymHGc5/hVN5mqm3O2cyKHdmy098SADxvPznFTCe70Q1d6ja0wCeup+ulJyDyTx89Lyy5qDO40VOjpo9JCiez+mPfbfY+Ac8r5tLGDTLHodPacM1BJy6ESM/GSyAYBAAGIY8j+QgpnIYoDETsekR6njsVXB3gIH/zqo7T3ZkeRpnOvF00+9hzPAYIZY/5nU6FIt55GF7AdJU6cM2IDQAgIDAAkAgF4yy/A8U4kqVGUjYHUZpckAw8wh1AnYmsOlMcgQRzj6N93UgjNDpo1SxA/4DChmlqOn0E4Q9ga8pH0oevgpZEQ7JdZrIJ3Ierenocyo/mOCr0w+LfIiGnAoH1FD8xqEgqzBlByiWQsI5r5QswohisfZnBiEgNxRFYUcLSjoA8OSlkMSEKACCfQk55+JoyPAZ2HsPUggQAGCc0UoHc3kCcs5FKgIAR04JRVBI/3AeJxu0znilCceaq3gbfMXM/JyKLubB6BkgPKNkIdhMP90ZwYnfIdtxfMpOYeApORIyTH8wALcToxWj81T4Xvt5zGMKrWIczMZ/ItUAvNhhKTID1GQOuMP3Agr/A4PE02nG0GOB5GfntRtd7Rnm8PW5K5p9wn7x3MuqbTQJj7O4seaf0RWIAwoupuGCTBgACRkCjxq46PJT9DmC4Az8sFwiIo8nmNgBDfGfXckh33hm/cDD7yeWEONbirK0CbO48s1oS469J+iXD8OaJtyAKNlEaNKybfdfmV2XbHuHWSzIIRYTMI9jh8BlTXHAQxhA5lMsZWCtMEw1ADHkVzz5DmCaRFlGwdHTWGIc/B0pmsNPO/4kpKTxJyOlCDWBLQAM5vrRdEVOIwRKozfkfbCoJPbnzm/cd999t99++9rqmgAFAEx04sSJq48eBQCT59baXq934MABFAIAPv3pT994443XXnutc+7+b3w9TVMhRKfTue3lL1taWtrY2HjooYde+7rXhVK+8pWvbG9vLy0t3X777YD4nQe+I4S4+eabBQpP/qGHHmq1Wq965asYGAE/9/nPXXnllddffz0RSSFhbACE+sDOwKNNXFDtdAOPwk5ryhnMlfc3wUysnwBgcmG2R8DxAT/Mft5ecQ7Mw38eo99vdfc73nHuj9mwbxa0z/ruF3h0lT/6fP4uaV/wU1sojMOAf/hRafXgZodeH5EpDDZ5w2zL3yWZsaLpPkOeOy/g1IJvBLHhKy5/4mT/TnfERFb7Jeh5MHvl63dNMQnFBEBQbITKegEUvGl8OhH7HgDPMoxPmxPcKPTm6Cs1MuFNtBDjLInTbh06QQCiTDO6IMDyCsF7xxYKM/OfTyQ4saCf2p9MygxDNEj2I5cNV256zObf/+kHAOGVt/99neAffeBuZutseuMN1/3Cz9/MbMnnzDbS+NZ/8ZvMNu2311YXb3/1y5WEr/3VV+79/GckiNf98mt//sU/d+Xlz3nikZ+0LjYTGR9ev+KytUOml3/9vq/FIvqNN735t978z9jQXXe+R4M6cujwv/7dd7Lnf/KP3vC8q597cPnA7S9/NXu+6YUvuvmGF8ci+vxffo49syHbN2OI7+WiqWvnt7tkNwnTGex87fHDITzt+u4t2b7x37V5J+qw3wKeef/ueO0Xnf337+4080xg/yj5qWs//esnqzcJO3SBn+7Q6daY0VxjBZIZXmyYDZMtWdbwqzntvxfYL8HNKH2HTnfj1+70U5JoSG+ZLXvL3rGnkHNo0vLds03P+73cgEwmu36EKkbwH0uxB7q0Ix0werk5F43lH64CxUm6JmaanfkO1869Pz1gy/1ysJ8ZkckTUaSj3OR/+Ifv/9Sn/uJXf+VXH3ns0bvvvhsAPvjBDz7++OOveMUrmAiF+J077mDm4KjynnvuufXWWz/z2c8++sgjV1999Wc+85nnXvMz/+vezwEAeAAJ73z7u37t1974sU/8p5XFNWbx7W9/99ZbX3rXXe+78ugRAPiD9929sXFxdW3xmqPPf+/d7//W/Q+cPfekd/DYY48zwcN//WOTmTvvvPO//4//eftrXqsUqnieCm8+7LxAnKHS232dOrqkmSPQ3OXbmQoDmKXPkKOSjT1sfiYlP/OgVErtF3+Fe8VkiM+zCfuVqO23vvuHp2Gr8KzC/vBR00LdHbX+87If7NpGduwEo5sQHvm+HBWDsgalyAkRNU7vUSb2gH8z7S/Gb+bukHbFZrK9y8qMMGgxOx8E4L8Bet43+KAAxrGqDalosK0NW8+ZEo5p4BE62R8yBSUOxQilTnpShTClLNgHYvOhIO2yaDX8EGBYIoNAAcSxrt37+f/9hje84a73vPf1r3/9f/nYJ5j59975rk63/4UvfAGFMsb8u3v+9IljJ85f2PSev/vg9+79whdvvfWX7v+/3yb29frCEydPvOTW2zY2Nowxx48ff/Dh799www2AECXJX372s2fOnTt+6sRbfus3H3jggW6vtbS8/KlPferGG288derUl770pY0LG7e99BXf+NY3PvLnH7nuBc9921vfFiURAJ84fkJFQB6m9KHPLjwbwr6ghh2VOs+s0zDBLCR2kJpJ2A1v3lPF5snF961Cmmd8tKPqeXbZ+2yKAYz5ppiTZl619qJC3UuTzFPY7VeivN/1zN6zDzn73djQlAYFZj6gcrDy2CuaQe8jKvLwl0qpICPIEZY1rzJPa5zu1zptGsT4/WxKxH0VVC5BBtJnOb1gh1J8Wt7Oz+ynALu27RyTh/E0Qwdt4RhcOT3PVz3A9NodAQAkTy855ljJAACAE5MF7Mwx1J5S7VT6TBigNKTmIV7lO+9ZKqxV6ieOn9hutt7xjndcddW1x08cY4Bmu6OjKrHop1aqJDdkHQip2+3um9706x/96Eff8pa33HHH777xjW8kNF/92pd+/OMft9ttoUknuLBcdeyrizFo/4F7/uhP7nm/c2ZxcfGxJx7d2HzqBT/zwptuumnlwILQtLq2+LVv3veTn/zklltu+adv+pVP/MV/JjYf+tCH3vyWN375y18OXi2FGBmQY+jPqfn4untOe40Ypu2qNBqH6R3DLsAk9/PJzMJ36PMRgp6TCsf0ZGrnFdwMVPenM5s7wOZNzGM6++mEk+xsGvv5rUsAoPfLcHex8dpzmnmvnr0ZtYDx/tpJpRrQcSMvJriXmMBWDvuXSoPQ0fVdMMAs7gkIylkZh4UO4icWzxmELPPCPUp9dk/yU4fpZpw7B5cwtfiY2fUTK9/iL43aDXG5h4NZpzYm83mmMFKpaeKZlpcMbahGU9H4xmNwPA5Gp6TJrMaG/4BOpis89QSH2MqhnfLgSbAIGyPTwYoHcJT+9wA7SExndc382hJIJZzl66+/8d3vfvd77vr9d/+b3//oRz/GDN7TQmOp3W4jQhzHQkBwcMEM/+Afvu6Tn/ykEPLYsWO33HJLp9NZPbgkI3jRTdczMIB/9Wte8fGPf/zfvufO48eP/eM3vPafv/U3rrrqqjvffWeW5c+99uh77/6D7/3ggUceeeTYycd++TWv3GxedJw99PB3Dhxa1gl2eh0C08tap8+ekgo9WBTIo1ZqewAeZ9k0R2YzYs6xA4OeOcBmZbgTV6XdeO6YYR7OtiKei2RZXwHgx028Bp8V24zwpDw1MDe7SXiWZco03sgCJs3uSiiafULQtXsBM1bQO8O4CHT3/PdpBLdf2G/zD0QNBUZ+9MeMPNHCcBk6YULkS4uV4edYaLWCh4+RAzblLnZgLCiGRlITxzTGlDAIngEFABUDdjapP2NZ2K7z5c7fAsC4UQ+MPhtiN7l83F3iOjI5jZoODY3FKMy+IeCVmr+S/enAmKiqJJ558rGZE2Q5j4oRs985SE83zuixuHA/oYWc355FuX4ET1/KWwBx3Np2iPUOrHVmIfMn7GnpBfKsDVuh1SNmEAp+9OOHX/ayl33wnj9J0/SLX/y8QBBK1KrJ5Zetk/dMDiFaW11eWV4Epjt++1/91f+5Twi87rrr7rjjjnvvvff8UxePHrm21+s1m80//uM/fsc7fu8jf/YfI5m8+dffnMjqv3zbb992223vu+v9H/6zDyNoJF1LFpeWlu69914E/eH/8OeJrksp77vvvljV3v47b1ciWVtb++pXv4qg2TkxCPfxdGH3Y3M7ZT+zb3bZUjwj2H8+o1/s5Yzgs7192G/2e8L5mcDfxnbpbxP2WV+cv0bfLUMxptAdT4nTyXYr4VmnhKc5iU9KaCZeTTXPeCm7dQdO5D9LoBVaRg3SPKvwtPOf+nBmTrtl/8yVjnovxexLKzcOu2E4/tnoMaTZEHxIjbqmCu6ogg8mgBHXKuX9IHxbcAEdntOIk9IQ78laG1xE6dL/8yBx8JA1KCIELhxFKaAx7VztElyCS3AJLsEl+DsB8/fXzBAcApeT6yBIanDWCADBYWzwhhE8TTJzcDo4cAdYRFAhCl8Fvx/BpfPA82JwxDhwCUJFxF8FAEWEHCkBIPhMHuB2CS7BJbgEl+AS/N2F/w96U+KRqMTLpAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "img = Image.open('../data/iss.jpg')\n", + "img" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "PIL.JpegImagePlugin.JpegImageFile" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(img)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "imgarray = np.asarray(img)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "numpy.ndarray" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(imgarray)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(435, 640, 3)" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "imgarray.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(835200,)" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "imgarray.ravel().shape" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "835200" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "435 * 640 * 3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sound" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "from scipy.io import wavfile" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "rate, snd = wavfile.read(filename='../data/sms.wav')" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "from IPython.display import Audio" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Audio(data=snd, rate=rate)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "110250" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(snd)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([70, 14, 27, ..., 58, 68, 59], dtype=int16)" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "snd" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAD4CAYAAAD//dEpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAoz0lEQVR4nO3deXyU1b3H8c+PhC0IIUCAQICwuSAqQkTcURRQbLFebbFW0dKi1tpa672CWnda9F5r616qVrT3KrgV64aIWjcKBgFZZAmCEtbIDpJAknP/mCdxQmYms08yfN+v17zyzHmec+YclvnlOec855hzDhERkfo0SXUFRESkcVDAEBGRsChgiIhIWBQwREQkLAoYIiISlsxUVyBROnTo4AoKClJdDRGRRmX+/PnfOOdyA51L24BRUFBAUVFRqqshItKomNlXwc6pS0pERMKigCEiImFRwBARkbAoYIiISFgUMEREJCwKGCIiEpa4BAwze8rMtpjZEr+0O8xsvZkt9F7n+Z2baGbFZrbCzEb4pQ8ys8XeuQfNzLz05mY2zUufa2YF8ai3iIiEL153GE8DIwOkP+CcG+C93gAws37AGOBoL8+jZpbhXf8YMB7o672qyxwHbHfO9QEeAO6NU73DsmVXGbOWbU7mR4qINDhxCRjOuQ+AbWFePhp43jlX7pxbAxQDg80sD2jjnJvjfJt0PANc4Jdnqnf8IjCs+u4jGX405d/8/JkiKqu0d4iIHLoSPYbxSzP73OuyyvHSugLr/K4p8dK6escHp9fK45yrAHYC7Q/+MDMbb2ZFZlZUWloat0Z8tXVv3MoSEWmsEhkwHgN6AwOAjcD9XnqgOwMXIj1UntoJzk1xzhU65wpzcwMuhSIiIlFKWMBwzm12zlU656qAvwKDvVMlQDe/S/OBDV56foD0WnnMLBPIJvwusJipJ0pEJIEBwxuTqPYDoHoG1avAGG/mU098g9vznHMbgd1mNsQbn7gcmOGXZ6x3fBHwrtNm5CIiSRWX1WrN7DlgKNDBzEqA24GhZjYAX9fRWuAqAOfcUjObDiwDKoBrnXOVXlHX4Jtx1RJ403sBPAk8a2bF+O4sxsSj3iIiEr64BAzn3CUBkp8Mcf0kYFKA9CKgf4D0MuDiWOooIiKx0ZPeIiISFgWMCGjYREQOZQoYEfhk9dZUV0FEJGUUMCJw+VPzKN1dXitt/lfb2LqnPEgOEZH0kbZ7eifK5l1l5LZuzq+eW8Cri3yPiXRvl8UH/3VmimsmIpJYusOI0PkPfQRQEywAvt72baqqIyKSNAoY9fho1TeproKISIOggFGPddt19yAiAgoYIX329XYmvrw41dUQEWkQFDBCuPDRT1JdBRGRBkMBIwp6gE9EDkUKGFFYXbon1VUQEUk6BYwoVGiDDBE5BClgRGHCS/UPhBdMeJ1fPbcgCbUREUkOBYwoLFy3I6zr/B/uExFp7BQwREQkLAoYIiISFgUMEREJiwKGiIiERQFDRETCov0w4uyT1d8wY4FmR4lI+lHAiLMf/3VuqqsgIpIQ6pKKk73lFamugohIQsUlYJjZU2a2xcyW+KW1M7NZZrbK+5njd26imRWb2QozG+GXPsjMFnvnHjQz89Kbm9k0L32umRXEo97x9MHK0lRXQUQkoeJ1h/E0MPKgtAnAbOdcX2C29x4z6weMAY728jxqZhlenseA8UBf71Vd5jhgu3OuD/AAcG+c6h3U9c9HtqzHNf/7WYJqIiLSMMQlYDjnPgC2HZQ8GpjqHU8FLvBLf945V+6cWwMUA4PNLA9o45yb43zrhz9zUJ7qsl4EhlXffSTKPxZGPnD97X51S4lI+krkGEYn59xGAO9nRy+9K7DO77oSL62rd3xweq08zrkKYCfQ/uAPNLPxZlZkZkWlpcnvInr43eKkf6aISLKkYtA70J2BC5EeKk/tBOemOOcKnXOFubm5MVQxOuEuSphIM5du4v63V6S6GiKShhIZMDZ73Ux4P7d46SVAN7/r8oENXnp+gPRaecwsE8imbhdY3FQ24v0urnp2Pg/pTkdEEiCRAeNVYKx3PBaY4Zc+xpv51BPf4PY8r9tqt5kN8cYnLj8oT3VZFwHvugTuk/r4v1YnqmgRkUYrXtNqnwPmAEeYWYmZjQMmA+eY2SrgHO89zrmlwHRgGfAWcK1zrtIr6hrgCXwD4auBN730J4H2ZlYM3IA34ypR1m37Nqp8n6zeGueaxN+UD1Zz9h//lepqiEgjFJcnvZ1zlwQ5NSzI9ZOASQHSi4D+AdLLgItjqaP4/P6N5amugog0UnrSW0REwqKAEcCHq75JdRVERBocBYwA1u/Yl+oqiIg0OAoYDdCw+9+nYMLrqa6GiEgtChgp4pwj2Mzg1aV7AZj9xeZkVklEJCQFjBQ57s636TnxDQ5UVgW9ZtzUoiTWSEQkNAWMFNlV5luocMHXO1JbERGRMClgJIFzjreXbqLKW3Lkq617a51LtE07y5j0+rKazxcRiYa2aE2CGQs3cP20hXTJbsFfLivkew9/VHNuelEJJ/b6buHd4i174v75v31hIR8Xb+WvH66pSdtTXkGLzCZkZuh3BhEJj74tkmDzrjIANuwsqxUsAF767LsV3Vdt3p2QZTsOVNa9s+h/+0xumL4o7p8lIulLAaMB2eQFlnj7vGRHwPRXF0W+SZSIHLoUMA4BZQeCz8QSEQmXAkYD8M2ecgAemh39PhbOuage9lu2YVfUnykihxYFjCSob/fxwnve4f0VW5i3Nvo9oQ6eAFUw4XVueWVxvfnOe/DDqD9TRA4tChgNxBV/+zTuZf7v3K/jXqaIHLoUMNJEMp7nEJFDmwJGEui7XETSgQJGglVWOe6ftTLV1RARiZkCRoK9vXQT+ytSN621egZWKGUHKuu9RkREASPBDiRh/aZv9pQzY2Hgh/AK73mn3vwTX65/NpWIiAJGghXFMFU2XOOfKeK3L0S/zMcrC9bHsTYikq4UMBLsmTlfJfwzNu5MzJIiIiL+Eh4wzGytmS02s4VmVuSltTOzWWa2yvuZ43f9RDMrNrMVZjbCL32QV06xmT1oVt/jcBKJx/+1muWb9NS3iASXrDuMM51zA5xzhd77CcBs51xfYLb3HjPrB4wBjgZGAo+aWYaX5zFgPNDXe41MUt1T6q5/LkvK50x+cznff+jjpHyWiDROqeqSGg1M9Y6nAhf4pT/vnCt3zq0BioHBZpYHtHHOzXG+J9Se8cuT1p76eE3I819s3BW3Lqn9IbaLFRFJRsBwwNtmNt/MxntpnZxzGwG8nx299K7AOr+8JV5aV+/44PRazGy8mRWZWVFpaWmcm9Ewnfvn+K4F9eqiDXpqXEQCSkbAOMU5NxA4F7jWzE4PcW2gcQkXIr12gnNTnHOFzrnC3Nzc6GrbACVza9VfPbeA5z9dV/+FAezbX0nBhNcZ93T818USkdRLeMBwzm3wfm4BXgEGA5u9bia8n1u8y0uAbn7Z84ENXnp+gPRDwr4gD9bN/yoxU3ajfS5j617fQ4Kzl2+p50oRaYwSGjDMrJWZta4+BoYDS4BXgbHeZWOBGd7xq8AYM2tuZj3xDW7P87qtdpvZEG921OV+edJesC/gku37klyTxHHO8e8vt6o7TKQBS/QdRifgIzNbBMwDXnfOvQVMBs4xs1XAOd57nHNLgenAMuAt4FrnXPWv19cAT+AbCF8NvJngujcYh8L84ReKShgz5d+1to3dVXaA6UXRdY+JSPxlJrJw59yXwHEB0rcCw4LkmQRMCpBeBPSPdx0bg0Phd+6vtu0FYN22b2vSbnrxc95csol+eW3o3zU7VVUTEY+e9G4EgnXTbNu7P2Gfed1zCyLOE0tvUqC8m3f5pgtrcUSRhkEBoxHYflBgeHf5Zrbt3c+dCXyo75+LYptT8MXGXXXqLSKNW0K7pCQ+7vjnMnp0aMWufQdYvmk3j72/Oimfu2T9zoi6gvwXazn3zx+Sn9OSj246KwE1E5FUUMBoJK5MwJ7f9dm570DY127ZXUbxlj210qKZxeW/RNiCdTsAWL9jH4VBrheR5FHAkIj8cdZKPlxVSqtmmXRt25Jzj+nM0CM6cuLvZ8d9K9rq8n79/EKO75ZD9/ZZ8f0AEYmIxjAkqEAB4MHZq1jw9Q4+Kv6GaUXruMK780n04xOn//d7fLDy0FjuRaShUsCQhCqY8DqfhrGJVDjxJpEBY+ue8ppZWSISmAKGJNwdry6t95rdZb7xkkffK2bb3v0UTHi9zjVPfLSGcU9/yqJ1O/jrB1+yfkf8nnQfdM87nPj72XErTyQdaQxDglq6YSen9u1Q8xzI6tI9Aa+b+PLn9ZSzi4IJr7PsrhFM/3Qdu8oqWLt1L/9z0XE0aeIb5N66xzcFd+/+Sj4v2RG0rNnLt9QslfLSZyW8dX2otSxFJJ4UMCSoP7y5nLEnF3Dk794Ked1z88JbvqPfbTNrvf/dqH7ktGoGQOnu8pr07d+G9/zG8k27a4737a/E4chqpn/SIomi/10S0tV/n5+wsv2f2yj6anvN8W+mLYq4rGPvnMmBSsfayaPiUTURCUBjGBLS+ysSN9Bc/ZzHnf+sf4wjmAsf/ZjT73uPA5W+brP7314R0fMjB9PAt0hwChiSMje95Bv7+NvHa6Mu47Ovd/C134KFD71bzD2vBV4yZce3+2sG14NZ883eiOvw8mclLFm/s1badc8t4P63V7Bld1lSN8ASSSQFDEmZnfsqElLu7OVbqKisYvgD/2LWss1UVTn2V1Qx4K5ZnDDpnZB5o3me5Ibpizj/oY9q3u8qO8A/F23goXeLGTxpNr1ufgPnXNBJAyKNhcYwJGUStc/Htr37+Xz9TlZu3sNNL33OaX07MGOhbzHFsgNVFEx4nUE9cnj00oF0atOiVt6yikrKKyppnpkR9edXVtaNOtdPW8iMhRs4rltbjunahnsuOCbq8kVSRXcYkjLLNu5KWNkXPvoJ4Ase1cHC3/yvtnPrP5bUSb/yb59yxK1vUXagki27ypi1bHNEn3vD9IUcf/esOunVdVi0bgd///fXEZUp0lDoDkNS6pk5a1P22cs37WLHt/sZcFfdL3j/qcRL7xxBq+b1/1cJ9LChSDrRHYak1G0zop8hFat12/bx2+n1T+E96/73mbFwfZ105xwzl26K6rO37C7z6vAtt89YwsJ1O/gyijGOlZt388PH5/Dt/sSMB4n4U8CQQ1r1U+OhbN5Vzq+fX0jBhNdr7f73wvwSrno2uudUbnzhc5xznHbfe0yd8xUXPPIxZ93/r4jLufu1Zcxbu42pn3xVK31PeUXQnRpFoqWAIRKBm19ezM59B6iscsxZvTXqcj5YWcopk9+tk74hwvWxqqfz3vvWcqYXraOyyrFx5z763z6TJz9aE3G9Fq7bwR9nreTNxRt5aPaqiPNLerN0/S2ksLDQFRUVRZVXfdFSn/atmrE1QVvQZjXL4Nv9lVxxcgE3n3cUW3aX8c6yzVxxSs9a14144ANWbN4dNH+1687qw6+H9SUzo/bvh845nKNmPa+qKkevm98IWKe+HQ9j2FGduGnkEbU2uZL0Y2bznXMB9yxTwAhAAUMaspnXn05WswxOu++9iPJ98J9n1mxCtW9/JSdMeoc95RVM+kF/pn6ylpWbwxtDWTt5FN/ur6hZG+zIzq2jWgRy4suf07F1C647qw9NzGjSxNi57wBNDFq3aBpxeRIfChgRUsCQhu635xzO/bNWRpzvtetOpX/X7IT8G3/00oEc1jyTy5+ahxl0bduSyipHr9xWrNy8h09vORvw3dmUV1TVWdTyp6f05KmP19Qqb+gRuXUWlHTO8eGqbzi1T4eau6OS7d9y3p8/ZFdZ7cH//JyWXDK4O6f3zeWYfN/+9Dv3HaCisor2hzWP+59BOkibgGFmI4E/AxnAE865ycGuVcAQaXiuP7svf3on8rGRv1w2iJ4dWlF+oIrvPfxR/RkCOK1vB07q3Z773lpRK/2sIzuya98BBvXI4S8ffEmX7BZcMrg7/bq0obLKcU6/TrW64Sa+/DnPzVvHb84+nDcWb+Su0UezunQvN7+yGIDLT+pB/67ZnH9sHplNmtAss+5QcVWVw8y3h/2S9TvZue8Alz4xlzMOz6XKOfrlteHSE3uwu/wAR3fJrpXPAU28vImQFgHDzDKAlcA5QAnwKXCJcy7gwkHRBowtu8sYPEkb6YhI43VSr/Y8N35IVHlDBYzGNEtqMFDsnPvSObcfeB4YHfdPaRzxU0QkqDlfRj+DL5TGFDC6Av479ZR4aTXMbLyZFZlZUWlpdMtyh/NEr4jIoagxfTsG6rCrdT/gnJsCTAFfl1Q0H9KyafSLzolI4mS3bMq+/ZXsr6xK6uc+dulAzunXif2VVXV2jazPn8cMoKB9K47r1pbZX2wmL7slj7xXzKVDuvPS/PVs3Vte754zK+4ZSfPMDEp3lzPt069p2SyTw5pnMKRXe9q0aEp2y6as3LIbw9hfUUXTTOPIzm1iaXJQjWkM4yTgDufcCO/9RADn3B8CXa9Bb0lnR3ZuXWuL2kj86UcDuH7awvhWKAz/njiM3NbNeX3xRn713IKw8z14yfGMPLozzTKbUFXl+GLTLnJbN2fzznL2HajkxfnrmF5UErKM3rmtmP3boYBvAcj2hzXjk+KtjD6+S8QrE1dVObZ9u58OaTrLKl0GvTPxDXoPA9bjG/T+sXMu4GJEChiSrubfejaVzkU1OWPuzcPo1KZFTP/GF952Dje+sIh3vvhuWZU1fziPfd6yKVnNMmuWJQk1k+eUye+yaVcZK+85t2bWzy2vLKZV80z2lldw4/AjavZ8D9eCr7fz9bZvOe+YPDK8ZzskMqECRqPpknLOVZjZL4GZ+KbVPhUsWIgk2h8uPIaJLy9O+OdcMKALPyzsRnlFFWccnhvTF+Ci24aTneV7IO6dG05nd1kFh3dqTfPMJizdsIvRj3xcbxnPjhtM26xmPDH2BMA3q7Bk+z7MrNbzEuFM+fx4wll10ib9ILZ9Qo7vnsPx3XNiKkOCazQBA8A59wYQeO0CkSQ6r38et89YGvf+9Hv/4xgGds9hdeleRvbvHPLak3u35xO/9axe/sXJTP90HVv37q+1j8eto45i1LF5NcECoE/H1rXKOq5bW9ZOHlXnzuOjm84kPycraB06tm5Bx9Ytgp6X9NKoAoZIvOVlt2DjzrKI8vx93IlkZzXlN+cczr1vLY9rfX50QncA+nZqXc+V8H8/H8LnJTv4/sMfc0Sn1gzsnsNA77frrXvKyWhiNM1oEtHMv7WTRwEw98utHN6pdcRdQpLeFDDkkHXj8MPJapbJXa8FfPYzoCfHFnJq3w4AXHlKQdQB454L+vO9Y7vQLLMJ+yuqmLl0E4d3rj9IHKx/l2x+dmpPxp5cUCs91mUvTuzVPqb8kp4a03MYIlH7y2WD6qT97LReHJufHeDq4E7p06HmuEXTDNZOHsWH/3VmxPUZdlRHsrOa0rJZBtlZTfnhCd0Y0K1txOU0aWLcen4/urUL3m0kEi8KGJJS06JcviBSOVl1u1ZaNM2gsKAdN593ZFhl3DrqKFoEeE6nW7ssHrt0IFef0Tvmeoo0ZOqSkpRKZNfH2smjePjdVfzP2yvJy27BezcOZcWm3XRs05w2fstnjz+9N79/I3TX0t0X9OeyIT2Cnj/3mDzOPSaPqZ+srZleGkrnNhoolsZHAUPSzrn9O3Pr+f0A+MXQPvywsBsdvS/onh1aRVzeLecdxU9O7B7WtV/cPZIPV5Vy2ZPzatIuGdyd9q2a8fB7xUy5bBCtWzTVJkTSKClgSNo5Kq8NXdu2BHx9/B0j/G3+2jN788h7q+nVoRVTfzo44vGBzCa1e3p/PLg7x+Rnc+OIIyIqR6ShUcCQlDuhIIdP126PuZzDmmeyp7yi/gtDuOr0XvzniCMZeXQe+Tkto5pW2q9LGzKbGH+9vJDDWmTWbNwj0thp0FvC9vhP6s40isWDlxwPQJM4dc9ccdDU0ki08wLDz0/vBcAx+dlRP4OQ3bIpxb8/jzOP7MgJBe2irpNIQ6OAIWE5snProE8enxTlwHXH1oGfFajuTgrHezcOBeCaobHNUDrSewYi0O5oIuKjLikJqcNhzXl23GC6eF/ix3Vry6J1O2pd89z4IXFbsHHYkR0p3VPO+h37wrq+Z4dWNU8nz1m9lYffK+bEnpH/Vv/4ZYNYun5XrdlTIlKbfp2Seh2V14bslr4v0ntG92dwQTvuv/i4uJU/7KiONcftDwvdDVTQPotLBncD4Lqz+tQ6d1Lv9qy4Z2RUU3XbtGjKSb31dLNIKLrDkIgck5/N9KtPAuC3LyyKS5k/P60XByod/z1zBYbRo30rPi/ZGfDabu2y+MOFxzLh3KNqgpi/SPc2EJHwKWBISO1DDPzOu3lYTGV38qa7mhljTujGC0Xr+PnpvcjLbsEFA7owbmrd/UyG9+sEEDBYiEhiKWA0Yr1zW7G6dG/Cyj+uW1se/8nAoOcjfb6h2tAjcrnje0dT4PcQXfvDmvP+f363JtOwozrVybf4juEcpj3XRVJG//sasWlXnUThPe8krPwnLi8kN8hMpmjc+x/HsG9/JaMHdI1qymprDUiLpJQCRiPW2PYUrt7rIVJ/uPAYLhkcXV4RiR/NkmqkekWxJlIy/eqsPhT2iM9WmT8s7BaXckQkNgoYjVTrFom/OXS4qPPeMPwIerT3BbXvHdeFq7wnqKOREcM+1iISP+qSaqSi/ypPnuoVP07r2yGqu4Rotk8VkcRRwGikqpwvZJzWtwMfrvomIZ9hxPab/fjTe/HhqlLOOrJj/RcHMPu3Z7C/oiqmOohI/KhLqpHy4gXPjjuRPh0PS8hnZDWL7SG4wzu1Zu7NZ0c9OJ/VLJO2AXbKE5HUSFjAMLM7zGy9mS30Xuf5nZtoZsVmtsLMRvilDzKzxd65B83bZcbMmpvZNC99rpkVJKreDd35x+YB0Nxvkbz8nPAX6wvHhQO7Mv/Ws2mlZx5ExE+i7zAecM4N8F5vAJhZP2AMcDQwEnjUzKp/lX0MGA/09V4jvfRxwHbnXB/gAeDeBNe7wfrZab7B40Q+k5DZxGjfyKbsikjipaJLajTwvHOu3Dm3BigGBptZHtDGOTfHOeeAZ4AL/PJM9Y5fBIbZIbrH5XH52Uw490ju/+F3i/+5OIyAd2vXkkd+PJCcrKZceUrP2AsUkbST6IDxSzP73MyeMrPqSfldgXV+15R4aV2944PTa+VxzlUAO4E6S4ua2XgzKzKzotLS0vi2pIEwM64+o3fcH9q7cfgRjDo2jwW3DeeovDYR53/7N6dz30XHxrVOItKwxBQwzOwdM1sS4DUaX/dSb2AAsBG4vzpbgKJciPRQeWonODfFOVfonCvMzc2NtDkN3me/Oydget84DHp//7guMeU/vFNrPWAnkuZiGtV0zp0dznVm9lfgNe9tCeD/zZIPbPDS8wOk++cpMbNMIBvYFn3NG6d2QdZfuuncI2mW2YRH318dddnx6uG77fx+SXmoUESSL5GzpPL83v4AWOIdvwqM8WY+9cQ3uD3PObcR2G1mQ7zxicuBGX55xnrHFwHveuMcjcKlJ8a+DtLUnw4Oeq5pRpOoNg1KhJ+e2pOLdachkpYS+avgfWY2AF/X0VrgKgDn3FIzmw4sAyqAa51zlV6ea4CngZbAm94L4EngWTMrxndnMSaB9Y6rl645iZlLNwPQunkmu8sroiqnaT3LYxySMwBEJKkSFjCcc5eFODcJmBQgvQjoHyC9DLg4rhVMgW7tsli2cVdCyu7eLish5YqIVNOT3gn33e/+3x8Q28ByKAUxrF579lHRLd0hIocWBYwEy/TrSmqo3Ubx3CRJRNKXAkaCHZufXev9P649hT/9aEDAay8b0iN4QQmMNr87v1/iCheRtKGAkWAHT1cd0K0tFxzfNeC1qfjiXnTbcLKaaRqsiNRPASNFPrrpTEYdm1crrVlm8v86srO0T7aIhEcBI0Xyc7J45McDU10NEZGwKWAkwUm9fQ/VDQywx3W/KNZtEhFJBQWMJDjziI4svXMEJxS0q3Pu3P6dAfiPgfl1zomINCQa7UySYJsRZWT4BsW7tG0RMv/RXbJDng/mzCNyObFXezbs2Mczc76KqgwREVDASLkrTi5g084yrjqjd9Brrj6jN9ktIx+cfuLyQs7u1wmA22YsqedqEZHQFDBSLKtZJneNrrMaSi0/OiG6xfyqgwUEfozj+rP7RlWuiByaNIaRRtZOHhX0XKDlyzVuIiKRUMA4RDQJEDC0b4WIREIBoxFo1Twj5jLGnlx72ZFfDO1N26zAGzKJiASigNEIdGwdegZVOLq3y2LcqT1r3udlx16miBxaFDAOEWamRQZFJCYKGIeoeO3hLSKHDgWMBu7VX54S1/LO9xY8zKxny1cRkYNpmkwDd2x+27iWd+f3jyarWUbQJdZFRILRHUaaGdyz7npV/tof1pz7LjqOFk1jn3klIocWBYwAXrvu1FRXIWrTxg9JdRVEJE0pYATQpkV0mwrV99t9sjTNMG7/nmZEiUh8xRQwzOxiM1tqZlVmVnjQuYlmVmxmK8xshF/6IDNb7J170LzpOmbW3MymeelzzazAL89YM1vlvcbGUudEah6HHfPWTh7Fg5ccH3V+M2PVpPO48pSe9V8sIhKBWL/hlgAXAh/4J5pZP2AMcDQwEnjUzKo7zR8DxgN9vddIL30csN051wd4ALjXK6sdcDtwIjAYuN3M6u5EFEfRzjgNtPxGVJ8fl1JEROIrpoDhnPvCObciwKnRwPPOuXLn3BqgGBhsZnlAG+fcHOecA54BLvDLM9U7fhEY5t19jABmOee2Oee2A7P4LsikJT0iISINUaLGMLoC6/zel3hpXb3jg9Nr5XHOVQA7gfYhyhIRkSSq9zkMM3sH6Bzg1C3OuRnBsgVIcyHSo81T+0PNxuPr7qJ79+5Bqla/aH/D75rTMurPFBFp6OoNGM65s6MotwTw3/UnH9jgpecHSPfPU2JmmUA2sM1LH3pQnveD1HUKMAWgsLAwYFBJlEd+PJBhR3Xk/+Z+HXNZwbZzFRFJpUR1Sb0KjPFmPvXEN7g9zzm3EdhtZkO88YnLgRl+eapnQF0EvOuNc8wEhptZjjfYPdxLa1BGHZtX52G4phnR3aoMPTwX0H4VItKwxPSNZGY/AB4CcoHXzWyhc26Ec26pmU0HlgEVwLXOuUov2zXA00BL4E3vBfAk8KyZFeO7sxgD4JzbZmZ3A596193lnNsWS73DaFciiw/r85feOYIMrfckIg1ITAHDOfcK8EqQc5OASQHSi4A6m1g758qAi4OU9RTwVCx1TQUXQ6eYuqVEpKHRk94B5GRF96S3iEg6U8AIIKtZJmsnj6pZClxERBQwREQkTAoYIiISFgUMEREJiwJGCLE++Xdct7bxqIaISIOguZsJMuPaU+iZ2yrV1RARiRsFjATR3YWIpBt1SYmISFgUMOKgc5sWqa6CiEjCKWBE4aVrTk51FUREkk4BIwqDeuRwyeBu9V8oIpJGFDBC6NUhvFlObbX2lIgcAhQwQvj1sL48O25wyGuO7tKGp68MfY2ISDpQwAghM6MJp/XNDXnNpSf2oHO2Br1FJP0pYIiISFgUMKJ00SDfoPcpfdqnuCYiIsmhJ72jNKhHDmsnj0p1NUREkkZ3GCIiEhYFjAj1DHOqrYhIulGXVASW3z2SjCaW6mqIiKSEAkYEWjTNSHUVRERSRl1SIiISlpgChpldbGZLzazKzAr90gvMbJ+ZLfRej/udG2Rmi82s2MweNDPz0pub2TQvfa6ZFfjlGWtmq7zX2FjqLCIi0Yn1DmMJcCHwQYBzq51zA7zX1X7pjwHjgb7ea6SXPg7Y7pzrAzwA3AtgZu2A24ETgcHA7WaWE2O9RUQkQjEFDOfcF865FeFeb2Z5QBvn3BznnAOeAS7wTo8GpnrHLwLDvLuPEcAs59w259x2YBbfBRkREUmSRI5h9DSzBWb2LzM7zUvrCpT4XVPipVWfWwfgnKsAdgLt/dMD5KnFzMabWZGZFZWWlsavJSIiUv8sKTN7B+gc4NQtzrkZQbJtBLo757aa2SDgH2Z2NBBoTqqr/qgg50LlqZ3o3BRgCkBhYWHAa0REJDr1Bgzn3NmRFuqcKwfKveP5ZrYaOBzf3UG+36X5wAbvuAToBpSYWSaQDWzz0ocelOf9SOskIiKxSUiXlJnlmlmGd9wL3+D2l865jcBuMxvijU9cDlTfpbwKVM+Augh41xvnmAkMN7Mcb7B7uJcmIiJJFNODe2b2A+AhIBd43cwWOudGAKcDd5lZBVAJXO2c2+ZluwZ4GmgJvOm9AJ4EnjWzYnx3FmMAnHPbzOxu4FPvurv8yhIRkSSJKWA4514BXgmQ/hLwUpA8RUD/AOllwMVB8jwFPBVLXUVEJDZ60ltERMKigCEiImHR4oNheP/GoazZujesa1/5xcl8sXF3gmskIpJ8ChhhKOjQioIw98E4vnsOx3fXyiUikn7UJSUiImFRwBARkbAoYIiISFgUMEREJCwKGCIiEhYFDBERCYsChoiIhEUBQ0REwmK+FcTTj5mVAl/FUEQH4Js4VaehUdsap3RuG6R3+xpT23o453IDnUjbgBErMytyzhWmuh6JoLY1TuncNkjv9qVL29QlJSIiYVHAEBGRsChgBDcl1RVIILWtcUrntkF6ty8t2qYxDBERCYvuMEREJCwKGCIiEhYFjIOY2UgzW2FmxWY2IdX1CcbMupnZe2b2hZktNbNfe+ntzGyWma3yfub45ZnotWuFmY3wSx9kZou9cw+amXnpzc1smpc+18wKktzGDDNbYGavpVPbzKytmb1oZsu9v7+T0qhtv/H+PS4xs+fMrEVjbpuZPWVmW8xsiV9aUtpjZmO9z1hlZmMT2c6wOef08l5ABrAa6AU0AxYB/VJdryB1zQMGesetgZVAP+A+YIKXPgG41zvu57WnOdDTa2eGd24ecBJgwJvAuV76L4DHveMxwLQkt/EG4P+A17z3adE2YCrwM++4GdA2HdoGdAXWAC2999OBKxpz24DTgYHAEr+0hLcHaAd86f3M8Y5zkvn/L+CfR6or0JBe3l/oTL/3E4GJqa5XmHWfAZwDrADyvLQ8YEWgtgAzvfbmAcv90i8B/uJ/jXecie9JVUtSe/KB2cBZfBcwGn3bgDb4vlTtoPR0aFtXYJ33JZcJvAYMb+xtAwqoHTAS3h7/a7xzfwEuSfTfYX0vdUnVVv0PvlqJl9agebexxwNzgU7OuY0A3s+O3mXB2tbVOz44vVYe51wFsBNon5BG1PUn4L+AKr+0dGhbL6AU+JvX3faEmbUiDdrmnFsP/A/wNbAR2Omce5s0aNtBktGeBvldpIBRmwVIa9Dzjs3sMOAl4Hrn3K5QlwZIcyHSQ+VJKDM7H9jinJsfbpYAaQ2ybfh+ixwIPOacOx7Yi69bI5hG0zavL380vu6YLkArM/tJqCwB0hpk28IUz/Y0yHYqYNRWAnTze58PbEhRXeplZk3xBYv/dc697CVvNrM873wesMVLD9a2Eu/44PRaecwsE8gGtsW/JXWcAnzfzNYCzwNnmdnfSY+2lQAlzrm53vsX8QWQdGjb2cAa51ypc+4A8DJwMunRNn/JaE+D/C5SwKjtU6CvmfU0s2b4BqFeTXGdAvJmWTwJfOGc+6PfqVeB6hkVY/GNbVSnj/FmZfQE+gLzvFvq3WY2xCvz8oPyVJd1EfCu8zpUE8k5N9E5l++cK8D3d/Cuc+4nadK2TcA6MzvCSxoGLCMN2oavK2qImWV5dRoGfEF6tM1fMtozExhuZjnendtwLy21Uj2I0tBewHn4ZhytBm5JdX1C1PNUfLeonwMLvdd5+Po/ZwOrvJ/t/PLc4rVrBd4sDS+9EFjinXuY71YAaAG8ABTjm+XRKwXtHMp3g95p0TZgAFDk/d39A98smHRp253Acq9ez+KbMdRo2wY8h2885gC+3/rHJas9wE+99GLgymT/3wv00tIgIiISFnVJiYhIWBQwREQkLAoYIiISFgUMEREJiwKGiIiERQFDRETCooAhIiJh+X90dv5MOjJ0XAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(snd)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'Time (s)')" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEGCAYAAABPdROvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9a6xt25YWhn2t9T7GnHOttR/nnHvrdavKxAYsGaTglOWgRImwZSn8QIJEmCp+BKyUUpg4gUR2gm1FMYr/mCSQByWRVIQFRWIwgihBCIRio8j8KLCpOFKCsWUeFdetW1X3nnvO2Xs95hxj9N5bfrRH72Pufc65Dr7cKu8zpK219lxzjtlHf7Tn175GIoIvri+uL64vri+uL67/fy/+Tg/gi+uL64vri+uL65f39YUi+eL64vri+uL64vp7ur5QJF9cX1xfXF9cX1x/T9cXiuSL64vri+uL64vr7+n6QpF8cX1xfXF9cX1x/T1d+Ts9gL/f13S4lcPN+wAB4mpUADLwmpC9Rv0zJACavYFo97n4u/iNKO5Bw3uE9vcEAGoA2X2FKP6+e+8wtre9FyLx9xjT7j5XXxr37PeSwZwYxxzf2ez9di8BIJkgSf/DRd8DBoT1+akJqA43vR5GzBkgST/31vdAn78/e38mahLPG9/7nzUI8e3TFxdXe3YankEE1PrnhanPuY+X7I/jPqsSz9km1nUR2yci+oy2VtT0/QDQsr5O9t7YA7Qfa6ztOAbCbo9dP6jvk7hRjN3HZX/ivjZ+33GMkvrYY78M+8LXD/iUsQzf++YYfTz9g8K2V+2cEwCqfTx6P9rLgav7xlcPc+afxfiSALB56nKEYszf0p4c12pcE9FvER6+P553OBeMt571cY3f+MpPkVvjMHRP6v/v73/uQxH58tuG/84pkuPxPfyj/5X/AdpMqDMBRCr0mm261AUSVRXSwkBLb9nFbxF81ARsArRlQkv2Vj90DNRZvyOtguncQPXtm1mSjlF4vyG4IsZbZ0LLPl49+LwB+aKr3yZCnXRTh8Bp/dnGDab3FTt81Dd06+/1TeVzFopEBPXIWO8YkghcBLxJjKFlAlXBdNbX20QxD9RUIAsN7236HP66H5K0NvCi960nRp30mZr91PmRLoBHge7ClfWgcxVwQQiBN9e3z70fWrLnpbIX7sIUCpGLIC0NkP48IN1Dsc6jMB7WYicUBV152JqM+8nnZhTSu73oQs32L4k+LzV7Lb85D+O656XFWpUjoyXs9sH01JDOVffpkXUNhr0znhsu/Vy8YVRdCW0uogI/9qxLbjuP/h3Y3+dtioaLINk+rBOhTaRztwm4ClomlCPFul3PAzXbc5ugHhjlSGiJkFZBWl2R6xpQFeSLgIpA7L4gQloa8rnpeT0x6sx9L14pGj1Tts82ARcfI6vhNsyX7zt/Tpcx+rvsDM7q8k5U7nCR/n0ARoVKdVRQfW/91J/5H/9/35xhvd45RSKZsL5IusFWnfByJJSTbrD5viGfq25g28RueQODFUD7SXaLSphQ7eC31DfY9NSQLs022JvCVpIJnBio/vAFH6+WVXkAKky4umAgNBd+zLEZp6cGSYTtxoRZBmRywQzkRRVBywSZ3ZLrAoXr8BO6yV04urAk+7x7b8JAPVAIneTCf9jQ/mwtEcqhP7sqpr6ZuQJUW7e2TRHsLNjRw+HhDy6Dhpd4UyUwKkMXBr7GEJ0TqvaYifR5AHAhW7c3hRnZs2833PfFlfIYFbIwUCe2tRDkpfX5Z+wUxSiAhYHqVnfqCiEtKiBHYaD7ZT9WnT+7r8AU1N6KLkcGDl048ab3qrPfi1EPFGMcFc04H7FG6B6CMMBFDR6qgGTs9z/1veDP3VKfT1eo473HdR49jtFSp6pnJq0q8CEAJ4IkMcGt76sHVTxcBfmsn0tLgxCD2c+sKdTHZn/ztVJDKG0I4+hyysOzU/dOAfX4ByXAq+7bciSsd3sLIa2CfDa5dWLUQz/7biRyAqipfMmXZvuNQFUVW0t67/Hy74cA7L7WIMM+73r3FAn6hmzZ/EnqB3u7Y2x3vLPER5e9ZaBlHiwnxITvNi/s8ybo1doRNCKzCM3i9DBNBdgsofAyGtSaEr93H8dofXlIwy2k7hbb52wj5LNaTLuQl3RLEaQRB0DHos+AnWfm1nxLCM8hbTp+CQ+mH9jrUFsoIADNQ2WjkC9dkaS1AQ1osylfHjb81TV6Ta741ENAzG8/LBJz1l13QjMXv06AJFavqAxW26Dc86XpPMyExn1d3hYq8t950/0iCSgHgphle3issY8AdA/EBDqvXblEeMiUhXtjIcTdirdnGL2wnTebXHkCJGo1X4d3XWhT7XudqyBt9Mb+AwSp0c7TSasgr7Lz3GLemxoe6zNWb6n1/aKGg467ThQCmzeztJlCGM8PDfmhQjJju+VQcj6m0Virs855ZfXSd2tU+3f01/T3ciTAvIvRk/C1Fma0mUKmCKvhND1WUBVsz5J6PUThIblSGcNlgq4Q/Iz6XvZ9y9XXs3tWqhykG36ln9f1LoHsLM33DcJAudF5cpnh3q+HoiNCw0C7SxrR+JzrnVMkQBcoPV7aXfFyUCHOFRZaATxcQrD/L32z7dxs9EVwbyCtbp0zthuOxeNtHJBa7+OChTA0udsSoU0mTAYB6ZssXwTHjwrSUrHdZGwWYipHDxW5O++fkzcEB1VBqthdXATp0kBV1Nqyf9stm7KzMBS650XNrOCJ9oJs/C7pY4cJTA3VAduJNWzDHK59y/0+o8Lw8A57HHmwiGkQSC2pwO05B+wGJPym5RUHrQ4eqAnq5UVSZbeZYGATeuTCUnxp47V8bhr2SAQhNk8CYXVy7YrNPWZhirCdW7w+XnblsKknIqbcRw/BjSQupsgTIJOu2XQejJREaMNajfuMKtASd4XqDzZc17lFDaOpMEUT1FNS78XmObwhojDKPATVchf0qrzsOxLp8pIpHdicP88RMm5ZvcV8aaDSx+LKp037EGsfj763zX2NZfB6/Bn9rCebc58/DR2a8SP6vvVZin2jno5ECEpYDaldOI6gRol7ZlcGSbzmYaekBta1R4xKiHCt3XN7kdC+DDPQumw6fLSBl4p6k7G+yGqQNLJzRbu5/qzr3VMk1C1pGjaxa3qu3W2OeHUInW5NCWs4zIV/WJ1+L1HhU2fbYEtDrlfCYPBi2hDa8pCPHg7uVm4TS35SF5YmOFsCLu9nQHK3mKAHMZlXND3WiHlvtwnVV3+worv13a24OvuEdEGZFsF8XweBQxYuQjybWqZ4I98Sczl4ByDSKIRbSCb0ypHtgHYh4/MkScxlVyHNRVBnRjmRWbnd81DB0eIe14KwZUKTfc6hZUI5AFwHbwP67B7zbgcK4Y3h36gwY40mUiFhc4gqET4FAY0EZIKq+b5qgzebKJQP21wKkYY4JgtlLB7714XV50EIZg+dhOJzL2/0vmEh04tE3sxzQuWo8xuetIVofJ55FUyPDVQa6jFheZlDibesCu34UcX0WFCOCcvLFCFRDzPmre2Vlm/JIUcQwnjItfUws54bygNAwYzBdC+Wfxv2qoVA64F7TvIque3rSGXIk5nS959uMEo2xfik791uWT1qAnDwZxXzvhFrAeqeXxgjftxZPaJ6AMopxd7wczGOtyUAiXaek4aXh/0+EbYE1GnW/ZJ6uJwaILbn23QVcvyU691TJIB5HCr4BOgxX7Mwc0HfmKQWjC9YnQn1oKGv6anhsPVw1C7haSESV1otsVol5GEw6i6lCUpPkDuqpR00Ruqufyi0NnoTbqFabgb9cI9XZaA9TztPgCv2B5CGw/oGkmCvaFQw9BAfF7WI1eocDiO6kPLvcEHqISxJZomZsgFgQINu6UV+xO4XyetZPce8IBQVb/p+D7/5dZ2QHoXM9NSQHzUhsj7PKKfuvfizR8gnAdVizM2t2cG6bBkQS6i6YUHNgG1xaPt+cUs8QhrocxRhTLOmNUSi783o7/fczHrLsQd6qEJDld3CF0jbr//43Q5S6EYKoR1M2eXu9eibCbwB8+uK/FjRZsb6PKHlFPdhB4HYuVpeMi7vHUKY5kUVuOfJ3CLerZUr+Kttee3ZAp730s/zNuQhMyL85KHSXZK5vWW9hz0gDIgbMQ7CEICqKvFxHuvUjUxXniDNnUWOcEj4j3mjdB3KFET0xHM4gIMHgAgHFsEbABE7E/nckJ90DMW8Q1UuqrTroXs3YSgxUI+MOuNzr3dOkVAD5oe2O/hp625uOTLa0S3BwVIzATsKyHJg0CTdMpDBQhqEKOCWfbcwe7gEPXFMg2VFMEtbuidih6UcWQ8d9Y3LRa3uuG8INbdi9fsjybkMLnbuiB5PbkZM+8paDZSIW2GEPQplCLmNm97nzsfTMiKuv0uQTnsPLITsKEBGgSd636cPEsAAr4iwBcTyHvb5QN6Nlqbnxm4s9GjhicMrzYG48NHv716C5zo0hOfPNwgZFwDS4+67RDX633fWt30urRLCNKDNVZAvXRn3PdDRb8ksbU2S6r2msyA/NUjSmLmGWF3hhgR+49LncQHmghlh0YzKXZiwPctm/QrSqvNdJ1vXwYOhCrB7i5Z/87ylJ5k9HJsvHWHkhgdXibBVPXQP1fMcAHqobgJwotgDYxh67+kj3rPbG2Zcxnp7FGEAk7hXMaIHfY+QaOJeEVyD0pLhPS70GzA9VMwfr2rQvJyx3foHDOm5aagZpsBa7c+uxpwrpsEAFlWiy/t5p5A1fE9woE059bHjjPAw6YvQ1puXamdRVIa56JEvoS4cHMkDOCywT/howQDDpgKwQyMNkFS3nDQBxnB3c4TsurudVkWy1IPnIsw6lq60Tg8qGDTRSrtDOYbPuAh4AYRFraExt9IEaUzS02hlCVD74bu2BEerNJ5tUIyunD28N4ZWaMVuvHVW1BYJMD0ZdJY89NLRSD4HACyko4JZD6IeVIcih5JNBE/cp7UfmB5Ll8EiMy8jc8BAez5GwHaAR4RdXhpw0dfKQfcPF3RvQPrBdWETxkTzfABs7LoWQrb2SXNFLkxV2FyNgYCWxEKLfU6pAa11wbyderw+wBYk6LBXG48l7tXLNmDJEL7JiyA/6sbfbjXMNe6BeDYBiDT0CGh4dQfp1RRToAe5dmAJb/153g5lZdRb3699Y441Lz3UPCjyidCyKoV8aeBV0A6E7TRAa/1e1RWTBNy7gQAPLZYuM+qk59QFdygWW/cxPzc9NQVqGHrLX3d0lTBhfW8OgzG8MHvMknQtR7AIbB71Xj3H1hKwPNcDny+2bgSUE4ds2iw/57kwqkCdgOXl1YR8zvXOKRJhQg3cOOAmlcekR3y4W1s9pKACMl8GS9Hgwe6FBDwvLBwCQTeiu7/U0F3IJzuUzxLWZwyqwPxgMf9NFGlhMW6PBQP6+RDSs+UJFmhic+qWLxdAHFEFO+i1Q195E0UFWay9DdBcP8CSbI68XmFQGDoPCA+Ki4S16ZvfYZUj4oWLPjtVAd30TRvxZgv/CQMlk4ZsfM5MqbgHNYby3Or3pLxbsaCesHdPU8hguoMHB5ilb7kRF+JqXRN26CxbX3/26dwTvKMi8xxAWnROvXYhDISmQjCs8mGuGxG2kypKRYvpvqwHCo8k5q5p7gSDJS22RyLn4l7QUDtzDQ8eDSW3aF05tEy4vJfiXmkEjQChBH3d5wfd3/XgdVvmGQ6KVah7kdTcI3GlZAIOEp61Cne/h3RjbQjHxbPZ2Ykz4/O0qcEiKe1ySO6FEIYzzIqCa7mf8zZ4kh391MN4jmwEqfJNr/o8ODQ8zocZe76u9cC7/chVPYNIgLO/bpEUIrS5h8x9n/vYADN0bK8X8+IU2qz7ux4Y5QA7Y135vrVG6S3XO6dIPF7ohWIR9zYrTUMuQ+JY9u6oJ8a6BaYSM6yohkCXjNDDnogdhHEijbn6W2wTKkzxavUcCmhjHZE8Pka1qFXgKCJHEDBf1rESUQhWYTEBYlaJo8Es1EA2Vkdf+UEBXABIzEsP04h5c1Z3MViNXFSw8Kr1NNXi1B5yciE01p9whcbzi4TA306OkJEe7giFAVQPQdU9cCFQWWIew5CbGZOS86MLGcJ2Gg6+fbZ7Wxr6aolALNgSx1jyxaHhQwgwPCxgehRQazFPO6SQOCqo7zEXctc1Tbv592JYQQjHCN+uMghKMQ9K11dDHC44RgSS9GJJf3xCt96HkNzobUXIiwjliPje6dwGT6eP3+/roUUP7QFmzSfaKQhHMPocBDLPvCn37HTeCGLfM4Zjyw1H2CgtjnrrBZ/Cmlck8XCPrrfXXIVBZrkJ3hrapKUD9cRIm3ofERIbFPl1bZgkwvqMwtPxmqtIsouBIyzhHnkYEHAa9i/2++F6b4QBu/U9pXtOPzw9yW5Mcb+3AB+ur3dOkQgT1ru0m/y0WuiExDaj7BbMBdbb6CIAi/ebYK92UCDqIQSqwt8voiggVheyHNy6ky4w/P6j1VMlFFCdKGKu+tn+/v45O4jcFYRX2pMQMGDrtxsKS90TsHXuWP1d8hX6DPN9QzpbgeWNVus6IoiaWEiuexHJFO3ygtFSGqqpfV4QuSgv6NIH6Icg8ik+76knNEfUiisuj017SCbgnhae5GKQXAtZ+r1aAppZb4EYG9bFQ5marBTMS+vQW/OE3PoeE/oaazdIbwbGolGgx9p3Ap8pAAwKyJDdwdZna10RDJX2sefTkB+yjRuKQnRveT6rTQTKg/KNUBhijKPHfX3tkuJDjZLuv66QOzKp/31M+IvXllh1d5+z7mlHviTCiJ47AHhrtg4cwIh81qLglgn1xN0LG86zRfwiN+gK3sOIKtgpZIIwUJ4l1KkDWRy1qTmfgf3A5+YqNB75RNmf/xHQ8DaQQYBcWA2eOlN4Lx7yGr2qXRGn50fde/daId8PA8J0/NynXe+eIiEMbnMPwVRHwwwVui5ANZYJAAYpvSqWAvR9aUBhRTjANrrSLDTUmbHdGeQRCOXkNAzjpYl7fmMhVdjod/XQioR73S1sCivVLRuFy5pSQj+UsTE3DSEUMFqWXW3DmKSucz+IGh6rqAfG8oLfsGbCQnLoMnQ8dUJPvtrGVUoXgBohD0nQyN9YXFiIgLEaejAK8rmGJTgifRw66+Py74N5lIdzjXnveSkde5t6KElrPBCW4pgnUK91OHyDwaL5Gj3smgeTHYXNGPob12fkiCoHs6It7OmW+HZDO8GsnzMPtAIJEns/wmcGshCrrB+NBl9n6Dbaee77or/hu8JTkr5VRgEog4HG8d8Y98h0EGs1KOProsbw4uarLyPAvWw3Ev3ceuW5rlGH4sbHfZ+5t2EeWDzqeESHOfHz5QWsXID8VCNsVA+swYEAUOzh12gAwWQQXc2T35+60leAQt+nXLqh4mwB9aDh6sh/jHyBw1mO/KufU4vM6Pm4NkLefr1zisRDSm3qNAH5onF3NaK6YEvnpjHtmXVBYtOLbaIe8hktZmEADJSJ1OqsgulMSItb+YhCO0+0elKz5ye6JxHjNst2ehLkJ+U4Wp8nTVSb4nALKChUCilc2OLKMiTjIAAPBziABmSWnnShH6g1t0y9QpoJ2+0wTpgl54cfAOXuJUTiulwj3fRv871RyVjRo75O+5CakSCmDRGD90t4EHRtMAhc8bImXD0J34u7NAl5vVe6xzQoU1tncsPC4+rNE/eAmEeXFq3ujjW0/bc8S+YVmZchHc6peTLjscq295yNweLulQzAYMi2abH9dOiGxxuQ6wbMj5Zknjp/U14apscGiKCeGOXA4XVJgiWnPUbvc7NHGGqYuDMdjEoDsJyEe4QDnZAW2Voob1VhPAJeEPunGw1siXsCoRgakgtw+qjGnHkedAz55ouCWpzDrs5kFegNXAXbbcJ2q88x8lz5WKkJ0kDfEzxiVUCXUauqF7neafzN86470lU3OtBliisHsRyS55LC82q+f+xzbmCQhwt17MsLHlBZw74lV3bSz+g28sXtFb+fnfQFaustly0abx0l4oJVBTW5MYN64ni/J8UdSQWMFlPfFEC36HaLUkVx3gmgBMDRMqMlbgKw5wj0UHIb0GLkkMcUB1W5g4DpvqrXc0xhJbtFJqR1KZ0ADxHSWY8c44480EDTEgpuIPdzT8WV20iip8pVpS2JCsqoAvZlcG9hdPNdaFs4zscpTKgJg9LuhWBRvzLRrpDQQ5JpNes4rHULLXrxIXtsuiczNTndv78v4tVP9PH456LyedUPj8nnCBHJgFAqvX5ImGOdR2TNTqBEzmcfwhrDJ2O4ascabB5sm7DbB5Io0DvFkuKeQI79mXuc3+ckjIHwGlTA+7OJh1XNi3E+O61T2Fft9/mhqKWI9RnClv6+zoumCoia2LnIcSb9fj4nLdvzZq+HcTgz4l5cyPaI7xndLyCPLOzBHbvLFSoMGTaEl1T402B0WMjXPnctxB3J5Tx65aB0PM6dF0Sv9ln3btzDYJNBAfQY8omhpGIPdyUFILxkNzzS+fOTJO+cIiGgx4OHYrVy7PDJTiNi75sI7dSx1w7RHKHAo9XXXXzEf5RgjRVyem6gUlHukrLlMsXrAMKNjVAEeTjExpNUKQRyyalP/IANB2i7Iax39jcLg+Vzw+HjgrQ1bDcZYmOI58DgFXF3c7FRKIjqJ8DmaawHGX8X564y178vxF6JeIJRUVfJ5gGBdgrqiaD+oG41c/8OD/nsiDXJKo6vHY5w6/W7nLJiZPFVK1YBEM4S28MADlbQZ/ME7JhTSFsn4auHN2Gm/jrQPRFP8q933IWXe1c+hR6GgFnYo8c4WPs7CRx/3yuERoAS+u3fHpYyEN5pWhvSxaxrt6I9yTyRhtLss2Muz2s8JAFytPu5cvf5n3o90yio3aJmU8y+Xv63kS4Fkylnr6nivu8lIShQdE8hwouumCLRDVzVECHugbbPG3nYqBklkQvh4JrDcCbsHL6Rb7XLa7wAm5NgjUCExeqscUE10BzAkFBtPvIiu3owwPJoi+7DNlEUVrpi2ee2epGsQvc/P0nyzimS68sFxxhrlIFfa0TIELr2hikVkf7eEVYIqIDwkJhWOxNw8Hi2+qfKuWV5iSObhWVw2dSTtgB2NQISMFOL9xIgp568nV/r4MQ5r1hhpH5o2sSIGodrdlnBQJzXecFGwes5Dw8B8tbQjE9MGY+V6gIYrMqwyGyT+wH1fIADDoIfq7vcfnjYwizCyn5aBlYC/S7Lgclg/dntW6aOHLMwS/P8xJDX8BqBMezlrwNiiCotWCw3FOE3nxf3igDzinJXkhEqWhQqXA+qNEBqKDhS6vB6UKwWYtJoEcUae53OWPvhFn7aejEa7PmB7t14bYOw7sFke70z5u4t5Iivx5kh1NsUiLOdxxChx5FqvYdbx8sVMkCRs1QUVc//+P3conZknysVvzzJHXnCqwLUSJr7ebWq8uV2MDJsf0+PDek8etwYkG6dfNHv74jN+aEbPCPtia/VdmK0GeqdDMaAKxbPYfkap00H1M8ChXHZJgIN0ZF86es9VssDwMYMnuw7rPYMV+sbUQH0n9dr+2nXt02RENEPAPhJAN8DBQr+hIj8b4nofQD/JoBfAeBnAPw2EfnYPvMvAfhRABXA7xGRv2Sv/xCAPwYFu/0FAL9XRISIDvYdPwTgmwB+WER+5rPGJXBN3/HWY4JxtO4q+qbjbSj2y9SVQ6KdF9MmQpvSkDhW68PpvZvRiFQTauHBVE3W++faZNaFWX8jF5cfvmskS3hCleJQRTOqIQxSJ6XSp8A6qnATS6z58+54fNAP4hgKAtQ7aodkMXL0pK0nFi3XExaSHTo21FBPpLpAtGHR9Q52+u1O6KeoKwR02rm/YtwxJ4LsYagENBkOkgvmFSa8PFdkCD6Hww5gCMf6e7X5boPZLzvvgVwYj9Q4loeyedlugOVZirCS05DHGg3WY8CkY23tOS3HF0lxMzx8zyRn0CXNFY39eGyKY56D48tqc2JvzL4fhpoQEziqJB2d1s9KNC8TREi3JfWYtQrbvDkB2i1hvcvxLAF4yN2y97qkeHbp+064F/3uwn/DGLHC6NJ7hMHRbX4GCzgMmh7+sn3GqhSA/jyOyPQc2m4/mCfCFcA2eAtmuEXlP7ryCk/JQ8kFkCSorEAdlUVX+2P4zh2zxEDSSs28O+7GGgtp/dcQ4urjxude306PpAD450Xk/0lEzwD8NBH93wH8MwD+bRH514joXwTwLwL4fUT0jwD4EQC/BsD3Afi3iOhXi0gF8EcA/BiAvwpVJL8RwF+EKp2PReRXEtGPAPgDAH748wamISpPCu7DD86FE8qjYVfJHCgmAABBPF4/xMrjUFdBsvCAMv4KaKYd6sWtsHLoVa5Oj+HCYNcREQB53wTqP/XB9Eeb3Mql3QajJiDzLoKgrfbakLQqumfs8BcHkVyxqaVYJ8I2O9oH/XvcsppHEkpEUnCsVaFrllPzCD0RWOfBEjPlkBbS5LVDS6Vbc+p9iMZqbP5HzH6EFNwS5G61Uhkq6o8qncKzICiqpmp8nFd9b8uE7VkKgfK22PkbMFlxq9I8lk1w+EQne7tjrHcdmbQ7/G+5Xw9D2poaiGRHBTPu72E9vZ7DLWmH0Pb12edSHJXoPEwQQblJCiyIwfnz2X1rz/+8icTSZ4niXhqUYYW1VBhqQyqCQ42rFtF6spkNUl2dWmVQ+mqAmcJwChWRnXKFeXo1IbirZMMuGe75OR6JFK8Wlwswvy7gtaHcJGXTzUBNtKezsf0fdShDVb8DTwQ9JylJa6e8iJCL7sfIJQ7nZjSqdsW5rXvoIddYgSEtdXYDmO0ZoWlTWp93fdsUiYj8PICft9/viehvAvgKgN8M4DfY2/44gP8HgN9nr/8pEVkA/F0i+lsA/nEi+hkAz0XkpwCAiH4SwG+BKpLfDOD3273+DIAfJyISkf0Kf9oYbUHLgUAjfbTHyx1xUoaY4URoEYJCJJHVY5FO9e4bzwrpNMwFO9iWTEz7GLLDFL3LWrMaj+vOaBo+QoTSxsSg53ncSh6FeyQe2+BBDcixrnScDG4PKY34uinAyXM6g9fT8fbdAhXyhLfxO4l/b0+k+nwFT5adXjZ+o/G+5agfiBoC//7wLqU/hx8IU8bNEDuSvEJan1tOgCQNNwY4gDznQSHUhAg4AkK6KGwV7S2RJXv7OgGGCDRhOXaz9LlumdBu+/jzuQvWHS8XRs/CX7Cx2zpzNfRh7RBmD/V5vmU6a45DklheRHbeeYSQ/CzMBndezIvIiMp277MzxtcdqQcA0wplL7AaLCcvjS6BXntDNv5t3Gc2R1VpfHqi+3pu+hx14AFiX6mQHs6AzWNavKLbaIhsP0yPEmElhU+rzO6h0+E5hzwNiRYwLu/lENIAIkzrHGpjq18P9+WLDLUf3L28pESsY42SiIEamhm1nn+zUgE/205N40bGGKIaz5wrtHwRHD7ZQE2w3WSUmx7u+057JHER0a8A8I8C+GsAvtuUDETk54nou+xtX4F6HH591V7b7Pfr1/0zP2v3KkT0CsAHAD789MHYpvf1dO4mdwcHjqkoMKuiCUYRtJRMWPQQBeAxcYMcDrUl1wgupwbhOkAwB6tfOxlSTwCbAB3ZgbeTU3n3x9J8CtvhkaCuEAIwFqeRToJ7Uhpr73Ph9RdRvzJYxmxCGnCBvEevjZf3yBgT75GLcAVtcx1JV5iiOHEf26UZ71RHYmVbixGpFA2FVqW3p6INhbZblWwOp20zQ1JSFJgXj8K9FwxW4WDVwxFKQ8I/DyGHqOYHGAaccDqUNPRlsfsEhNzuVUcU1ehFjIV4PscRgu2eh7NFy0AKOYI3RhSah8UcyQMBcBgVQfd+rwsV3VrvRW7DuN0SRjdeWiZcjChwnEu/8kVw+voG3hq2Zxnr84SoebAamGrJcoKE4eD5CmA/j8XZtm3/O128J9DLDQenmyOpRoUb8Hl7ljiT9rdReQB9HnxeA2p+FSKKHCyGsyBdCbcErM95dy+f8z2sHpFDdNg3B2ouqXHQOr1Smymg3OpxYGfkBaqOCeUECE/duDGDaGQ9+Kzr265IiOgOwJ8F8D8Ukdf0Rty7v/Utr8lnvP5Zn7kew49BQ2M4nF7u+Kt2OZKRUgQdakniEM4u1AMeWZTbyr2EsT5Crdj9E6r1zpEQ9Pu3sHj76271u3D3EIpaDxVgaF8R8yhGhmCvy0hGBhmhA0cjnZU+upwYm1nE84NED24PPYkLQu7J4C74bR4WL65jlBsOehWgW6u7ft/+0+PyQ4LUeYAAaCxeCGkDjh/XCHk559I1TTw1ncPlZY77umex3bIS2I0Gglm65JQh5i14zisadVUtWF1vFd0WsOIrkkCuQIPXAwBkRW8exvGc2D5xDGAan6F7LyH0rorYAM1DTAbqGKHhXXgZ27R04ScEyNQ9AAqqn4HKx44PV2B6XZAuFe2QsD2zItohIes5wjHdNBoeaN1IGcfnoIM6E9aXGdQExfqhC3Vm6vHckEB7olRBO/b3+pl0oZcWKxK185qyAjN8Tpv1bUmL1iuVU0KdJIAYvkaj0iLzQkbFGs3ESEOS5cjKw/fUdM689sy88qCBN+/Fe+14Ez1v+zsq5zFy4HIhCg9b74kUys7XxaHw1I21lgnbQd+TDQUpRErDQz13OyIvQ+kYwOOzrm+rIiGiCapE/s8i8n+xl3+RiL7XvJHvBfB1e/2rAH5g+Pj3A/iavf79b3l9/MxXiSgDeAHgo+txiMhPAPgJAHj28vuFi/R+134ITIlom9Ue9qBmELyxlzmwM0d2kzxsGo9RBo576wcp3MxBFXpCf7T6WiYgY2cNaQiFERWo3GP/Ow8ANvYI6yAEaZ1Tj/3aZt1uGOstD3FW30g+FkDYvBAbj+aQuHsyThsu/b4RF4fh271YzV8flbfFiwMbn3SChTlCBteudoTfrorg8sXo0wkotwlyeNPC8xxVnaBwT2jiUZoA3MMFitTxsfQitzEJ6xXv7kkKDIF0aRYKbaCtod5knD/IQd/Cda+UIqyDQZjY6yOltydiR8ESxlHtQhEe4gvrGv17r+Z0tHLXlxktTzvjRpkDmu01QvP9NhqIDqO273Mlqha4GRhN13a9G1oQUN/3mp/odmTLUFJTO19jbiU83dzPyIiCqpOu4fzYcPywBmpxu0vdMNg81+lKu3uCjmrkQkq9Ur0uphcpR14zaRi7HjlCZmkVZYmGKo8OghDkBUFPouM1huKQGQMvmuWY3EjpaEhglycx44iG/VSdmcG+w9dfOeEELMZyMDxv3Pc7WZBIapL+UQB/U0T+0PCnPwfgdwL41+zn/214/d8goj8ETbb/KgD/rohUIronol8PDY39DgB/+OpePwXgtwL4y5+XH6kz4f4rCU5jAAFaA5yGPFBDjj33zd38QCBguHXq1nPaBGIdz3o4YJgPS9bKRFhvqec4nDOo9Ipg95B2/E3De0fFFQgMt/zDddW/O4zX4+dOia0HQiCZQ7GV4wAECGoVAOg5H88/pIsS1TmraDlRVEC7e9x7MHQrWOO7il7JS4uNPlYhOw7f0T/A8MwCYCRftAOZ7L31qMpQw4uD1jBLTBhohhgKcj8xjRk1EB4u6FBinUvpazkIHMAsTOvDHqFFI+CshxQH0kMeXJWhgB0QIENITbogvFaS4C5MxOhdnJxwZ4BY2HRcS6ArTsCEpIeCvFgN3aJ1+n+n8Y9KaYfZVtICW6A3JkNXSpEjRDeqfK9zkYj3wxLzYbwQoiiyhwiH/GUmFEeADVxbfo2kjc4WIORCnAOhpcrBvOwIrfZcaQBSzLiLreRjGChzqGleVSH86Odb3EPt8qUzD9iaJeyQhr0thJ3dTXB8rIGga9azR5mPhz0rw94UDOHyYR+54jU4ua/TLl/V9qzP1ySTb7u+nR7JfxXAfxvA/5uI/l/22r8MVSB/moh+FMB/AuCfBgAR+RtE9KcB/AdQxNc/Z4gtAPjd6PDfv2j/AFVUf8IS8x9BUV+febUMnL9Lu7pla97ilzBQj4j44BiC8YKq+bVgvtf3brcd419nRGjL3fl6QDSzSgsZPYPdn/V9vLjQcIuOOuTREmoQVRZhXQyMnRGaGSyyiJ8T0GxT8UZReyCspHVOaeFz4MrKwzRu5TrMUw+t5W9uXMsaZJcQKCivGvf7hqd1dUVtSEHU3lDlqLtwdNGIrklBe9+rv1u2nhJsHFSP6gHQoPR5q5GzKLepJ++TCgAAbx4Y9x4x7AXpynXMkbBlLlXpDwWEa+v39WS57zcT5Kpw+yEO4IQdfBUIQ60PbJ/V1ven5/rsWTQc6UAB0ja+zRK7i8bP1zs1IvIyCMOhyDYtErUJo0Lw8eJtNptgp5R87viiSXdYDmyksenFnPYBe05VmGR9TXqNRjNaFFfIEfL0IbB7WcMZgTMdKPP3an1+xpxF5Awi6oCd0kmrGpxj50kSTdB7R8Hm7AbmOZG/z9ZyBK/Eug1G0vQkSBcd8HbDWO/YFPmbXSPHupi0dkMnQCE0KK2m9x7zcxGdmLqCBvQ+DXruGrqx9FkXfYsAp//cXMev/ID8wH/vfwRwn+S0aKxQErDdCepJBZVuaBOexSykR0J+pO4hNECy8SsNcXdAlVI9DoK8uDWjFm9aCMn6S7RZ/+2uyN1ceSTusbjim/rr49+pAemCSHpT6Ugbr0+J3iU0bHi7PGww4ugDYVOuLEHy7+4W2C5uPxzYSErW4b2W2I8kM3VXfncNAnVkCvZuf6PnEvkFwi5XMXoUfoirxeiBgT59iJXHe81zc2vfvYzx2ffFjb1wjWr/vphjr6+4Emje43wco6P9wnuZxuZP3VIW6museRgrXmudHLTOmhtrmTA9aQErNbd4Karr22S0HIam27VfGNfGlSwhFNHOQyHA4dej59H3SLese0GorUUxive5C7xrostAYtUhROVWvSvZSDAroKVlfbb5caB796T4EDby/RbnypWO5SU8n7bzvgdjIqaIen5oXNdRuYzvHcPHEXobPdi5r8XYAMt/pkUwPSiwp86911A+N6Sloh4S1ucpYOC+36ZH5R9zY61aZOXf+z/9Cz8tIv8Y3nK9c5XtkoDtZQNthHTRTbN8uYCfbwr1KwRpBFQCNgZVghwa6L0CAbA8TCj3CVyA6TUhP6kgX18I2sE0vQkcmQSSBWABpgZKArH7ohFoJaQLh+ehgoZCQdWjYHvZIJOAnxjTg+6SNgvaNJp8UGVngkqpIGxjZ4V6pkfGs7/LOH1osVpLRnq4DuiCkBoCjtisEU/3SGweI+zjCrWPZ4fS8k0+RJm6kO8/I9k7KKGowEUXBt0C1/DarrWwHXa2nIG/VwjAAbu8GNxq9OTyJpiH3iZRE5R7WEaL5672UxmLMN06FBwerBf2saPbRhi2e49jGCau5sWqw3jt80H34UIRLqC7MI1ErHs6bjQlzRfofBp4YumgC2CfQAeulJQpEc8dXEORZVhzoBstfc0MHHBlmPj31pkgGAp1B2PDC3C97sVpRLyHvCpXWNJ8SNgPSgroRsThE18LE+5Bciq7ccXekzfvhRg77XjINFFthpAvnRtlNl7eBIf7Fk3lQqF6jdHO8JJ+trM3Y+vRBAI0p3c1pyAldb1W+KDuyYcyDEbrYT+SnyV87vXOKRKwQE5VE8R+Ei08ztxwfFYwpYq1JJwfDpCN1TMpZs7ODfWloG4EKgnUSL2Y715xuF1RtoS6qskx36y4PS1ojXFZJ9TCoIMg5woiYNsStiUDjVCeEtJZQz0uQNoskEMDsqCRYLV+DnJTkU4q0VsloBFkYaT7BC6ENgnaoWmKgEzQJj2UaZVuudomuraaYEKDPETm1vZgydeZUQ+IsNTIUQTo9/rh2G4Y24kCVTNSWbyR0L8i8fOwXfUQU3hbDobw53PLzGPMZHmTBjIp596Cw201P0EYw2uhPCbezxMQlf6jAI1QiCvG5jBVr+nZK69ATFX3MHt+a+xkGOihosgx79LovVSoAjzk8WLOBm4mDVO2XXfOeuAAaGh4iPfhleHqnpKgCYVCCaE4xOcdmDIme8fCS5DmRDzxO0JQAQ253XxYwttyy301luRrz3aEHcda2HzUGQYmGYwPQXBTjZ+PXAgNoV8itOPIDKBCW1KnJxnh+GRhNK4G7S9i1P48eEGAJ8S7xysxBu2XTshLQ36qANFghHRNMHpx3hKCBJEj9Nq0se4K8P1m3zdAx6nB2m0rOaMajxyGhe/Vz7veOUVCSXB4voTiAIBaGa0yiAWHacPtvKEJ4fmNVvUtW8ayZU0OitaglC1j2zTpVU+6U2sl5KnicNxAJGASNCuayLmCuaG4gqoMnirypKtUWPsWmImpP5OApgZiASZAPPQyNaSk/06HFcepYKsJ53XSZ1km4FEVFICwpuph37fC46VRtORhlqZII94alvcynr5biynne2B+pYJyemo4frK34J3GXFgr4L23Ny+C6bELyKh5OKjH0YZk49hj2y8uHfnUZt6x6XqsfSS69EurejkO8HWM2b0q9QJNAEJQZo62xiO0NsZjHEgkAC2A9yWJmDX1XhdOVw6xOdm6gA1I9cVzHey8fJE7ALTSvtp4dySCtrZeF+Fz4paz53K8x4yHttKCoACR5JT+7qn2/EWE7Xbj6R5RS2ohUyWj1HECwdETsj27GiDF70WwQsW+FsuL1L2XJjqP15X6GITi6JRL916uSTyjZ3um3kjOw05h0HhvGQ6jYLL9GxDnOCv63bITxvaah4hk+DyrcSKD4vdxwliVozHe4PKWA/cCZ1ceXgXf+voIDUXKBmLJZwnwhrDnkvpc71B2MOBQSnvDjjra7/Oud06RJG54drOASJBMkZSaUCqDSHCcChI3HLjhlDcwBB+eb3FeZtTC2B4n0FNStMr7C/j7igrsklC3BKBimpoiWYTsvqq05mzfxwNkAgBIMB2KFoYJVPlcJQfEFQyAtjFaYWwCnD85ahguCWhWpSP2f7CAsoBSgxRGPguOH9XwOK6TioHSKdDeENX6KrwEyo0ig6YHaOtS6oKtnCjCVx67LkdCuk2gpsWc+VFhl/XIu9AJNa1cxur3HK1Ye/YEiLWxHTe1W3ujENlxqNXO5jqS6OmUOw2LPfvB2HY9ht/239VDG9Yw6Kge1nzfMD3tff82KTS0mcfnUFUPkSnxpHoKbdLK6tFy9fAcW27AYdDjlvD6IPIaEFPO5cQR6w6BZQW4zTytXeM2z+dNXfj3xD0C8dMBBghh6txle3SPgFeKeXDEVHwH3GtDKA1dyyHZG53/9Dsp7T1BDcOY4B4YekdF62OMvJkAXBpy1c94wS0ZSAIyeCcyMCyILz4CGBEKyhB/weyQYJ4F7/ZkujTk12a0HixXYUaKgyzG+hRXfFNpcc6cvDJITX3OzADLlxbjdY9YVkI+DzkUg/9L042x92RHlo0hWvAtKBHgHVQktTFe3Z92r6Ws1j2RQBbChRu2mrAsE1pVajex+DdlgdxWgAU5NzA35CyYTgsSC9aSsJUEEcI0FdwcCpoAl3XCUpLez1ZHKqNUViVxSeAza07jWcF0LOpdXBJQCbQy0qOuen3WIKfB3ySAnhLmr03gjbDdCspzVRhi8XIqmqzcnqX4WISCBpoKFzyXlxpUFwZuf1Y0/OcMsUwKQmjQDZl4J6QDEWJ4dxyBNmdVNE7+V2SfQDR21HLkDu9Fv5+HS3jT5Ks3D3J+sh1yaaDr8Doe90jaRFifd8JDBwnks2Bah/FUj30jEp6OPovWzLDvMOHSeY0QxWuh2DAIbumU52N4h4uABwLIETbt3EqBIrtYCAQq4Nrci9DcS/GeFLv8C7oSGTmX9sodkW9xlFM5ctQhid/jisusGZpw7Pw3AhDGnILH37OFU8pNCus7QjJjLmkD5gftfNmmzv47Mkn4nt4lvaUzUExngLcGFFVODPWq6lEjCz18a8K0Knv2+ixFEzEPpyYLQQkRtudJ8xZAhDd17G4JcXhP7eDeqDWjciJMA9KokZJin0UdicHi02roq2u0pYEo2kTRgTWfG6aHAqc9aTPvlK1HJKgBDdYbBaNRgH1O6DOud06RSCOUNSEfCu5uVPgnNiUiZGGsqedFuYEJ4EnA3HCYCk6z4nvboK5DOSChbCn+TwCYBDeHDem0oFl4rAnwdDlgeZwjBBUHYknYxv4QWSBzQX1ui7sk0DlBLImPqUGq02CY9VZIFYlzKCXB8hJoqcc+bcC78EIIE3tNkR89/DXWKVxOHjbySu+YjJ3rPMIs2WpY/KD5YccRgUCanixEcrCKeFN4IupF0dQ3eRymEUdvHoVTqyt0WA9HORIuHxC252o5p4uOKV88do3gWeJEmkPwivewninICj2vMSaGHWXj73VKmLDAaWgPEEqwH2z9u1nMzQ82dpZry72CP+DRQy8QhRYj5sm/iy0301szGx2/VYpHRbd5leWU4nOpdmaByEuYUKoDSeeYc9FaCektGajvhzbRjrdLPbeOHPPL58zDTq7gAUSuScOQiHBTnxf7vM+J0dvUQ0e94fqfzS9Mwfh+CFaFRFhepAjFOReZowOdONLDgQ4LjnFZjtDzcz4+/ZvACvEDUenC34085eyjjhYD0HKKPE45Wsg4M8pp1jGk7m2NYa6WCMhAEGxeef00Rk4+43rnFAkEkDWhEPDEAmZBKYzWGEyCw3HDad5QG4FZ0BphXSas9zpV5dmKOasluJaE0hhTqnh2WDEly3eUhNYIx3nDzUG7UfnaVCGsJaE1xrpk4NWkhX8JGo4iaIK2KncODlVzJH6TYcNTIdCi5djpQphfaa1KuYGGgljdW0DvWQ8qbAK6SJbYt4PaJrFQAVBPihabPkm4/VlGfuohgp5bGRiKLQ6rwuntcXzALcbB6gSUede8gcjTwCwyE25soYxyw1ozMqJWBIaYkp2FenjdML9WpV+OCW1i5eJ6ZaG78HSA4FaCYehtHGOeIB7Hw2R2uafiyfOwwO1yQZG2HpaIsL/Xu0iH1vrrvuweUttuGMsLCrh5mwAqwPxKIZtp6424RgjuSP/fEvTUS/fmxLxNQldo47p5LukaseQFsEA3AlzxaZjRPSiKdfIxOBuDz00UHA77M5B9BmDIT4P3YlY9QXaelA66I8PUoLCq7dQ9HH//qPSEB06ymw5qyBeDcDeTsrZ3HawC9Pybr693lPQ6Hn+e6DEiVqczIvHIoc12T2fNFgpJHU27vHbGnyVohlRBRa2IOPRfBoVLvdTARQtRKOFmytIRXN/pgsRfmhdBBewlYb3XFZNTRT4WNCE8fHyDh01XlVYCNUI7NvDdhpQr7m4ueHGw+MMBaCBMXHFMG7LFEjYLX93MG+7mBVUYD+uMZct4usxYPjqBFkZ+JMyve4GTj889g3oE1vcJMltGzQUaQ9FcDQpRLoR6FFwcEizeUY0gs0AmQaOmHk0S7KU8uuSwuUFh0JmRHhh1Frz6hzVWO3/MOH5I4FWLMvNZD205IKzUKAZj9waA6akhXxQRVa36e+Rh6hY6DcwC3drNi2DeagiptKrA95qIqDlh9ddliCFvN7rFxYRpOTLWl8D2XEAbkM/e/jWmzvioCB6ei3yLh76syLBlReZ4vkQVG4HXhulB6zLqIVldBoLAMS4RyDyEjKIGwbrcbYKWrRlShjZE4i6M61HAm3qeLvCdybqTZpqAs73j0OhOMd6rqIG3hDVo2C42xqDaMUix3//a29oxSwPhHTgliXO+oQHLy4TLBxwJfIdGT6+VRkQNhO7xpE3Dq7GFm2jIx5BLbty4d9OYIEcARzMgpOdPeh1Qi2cYa5sCwoyQu13I27PHfvG6jsG7H8lJgR6e1HHsz6LDsiGqMBzA4Hto9Ir6Php+ZTK+OlWAHgarM3d0WoWOZ7jGfMmoYN9mSL3tegcViSCdinL9eN+KRigXjV+kQwXfVJTLBL6fkS5AaYyWE2QmbEc9OUUYn5yPuKwT5lzx8uaMQ1Jl5KgvAfBqOUbIrDRFh/k4JGmIhIpW2eezwHMQYKBUKOV2o32c/K5gut1ALIYGU8+plARphO2SQY9ZE7CTAFmA3HC4XTHPBa2xeWGEsmTIWd+bzgxejOrkqXs363vqnQj5hrNqd6tA5yLKRTDwXAFA9CYxgbuvzv50Ijh/Vj/AvU+5ewP+TobSRHR6EodlUlGBVG64H3BGsP16lbl7L8FxVCmSwSRAHqqA3QLsh9Is6yF0AgvZlBvbJxY20hh90wroBKNRH4gnR4GNfi+nqRcL7TTDaaRFhRAXIJ29+HDfo8X7hAfqJ563h3dapqhgDwDCtBduOvfU18Dh0EPCP7yqHXJPBdkYLgmLOLsXiYHGvO0aZe0K8Uz5UUCxDRE1hlAnAqb9nAb6iryQ1Asz+/3d0xn537Zb7iFL24teJKq8a+oxugKPULAXjHphp817CONhHhzJFXvWgAA+B9uttjDuyEi7RXvTFmyZINMwNtu/zgk3FkKmFRFNiJNkUQZgQO7ZWn0r4a13TpEQKRR3vFqjgOlCCLXojNe7inYkLSo0c0SEsBpUQhFeCvNda8JWE57WCY/nA0SA43HD7WFVKDA3jSgcCuQ5oTUCpQbkhlIY9e/cYP679h1ZqazVgre6l0ogsz7TqeLZ3TnyO4kE5y3joSQ0IfDUIM83PcCFFdVVGOvTjPUygXPD4bBhmkTrWQhaJ3NmpGWgaCFgegCOH3EIdg/j6Ca9Qjmhb/I6kYbYHI3kCdN7q2VJ0Da5dtg9hu7kdy1ZIaQnYI0s0kMGVIHjRw3TY9sLOdKDgAOsJa4pu9RDAV68SYWi2l9DBbYFzK23Jxo2D4YkpYde2hBe60LTBZl7WGH11j4Oz4EEqmvCYEmroogWBtUrvmmXuHYhoyUaBoKAFh6O9PMeCpzOGuaIuLx4SLLBWRqAPfT5jcJDD4F4opYIEo2bOnJPBSRCsenxouB5ahlaMOfhIat3cUqe0dBQS92ELfdnaofBwvcftTM3hAEAn/8u9N3zqNZfSL0QRzm5lyGdw84Uu3j9x9AeoK8HxXjH/Ew4/Q5YSYQyKCZJPHhGe8EtCSiG2ho9h/mhKZM5qcHkii9fJDxmVwhcBLwgQtHloGzF04PC/OuRryDEaphcV+d/2vXOKRIRYFszUq44HAqIBKUklM02QGpgFtRMKKQspZQEnBuYBJkbqimdMdk+/p5zhQihVsb9+RiQ3tYIKTXc3CxI3LCWjHXJqIWRElAsLru+0NqUemiQ2wKaG+SSgJWBJki54uXpgkwt6lXuZsLL0yXGIdcmC9SzEgD3lwMePrmBbAyaK/KhABNhK1bbcCbcfo0wv1JL6fhR7/pWbhO8PmD0PlzgCAAQcP4y4fEHFTk2vWLkB0I+934hbrVGFbsV9Wmuxa1KPUTLC8L5exraQSv0p0cY8SSBJPXDdfXIvTOjMbIaEeDt19wwkL215aG5ITndXXwMcFC9SABex1AQ4rsUBopQjsLA03cx6tEStFv/W1q68OANoYjapIqjTR1dFWgpi7U7WkzRaeoWeajKlajSqdjYnFZjSOAqeuiqhsDW0QvtHIgQEwX0UIvnUAyemheJudxOe0kbiLGqY9lu9Vl9HjyXlAOsgAhRqeECjEotEu9hhLjXo2+I0FYCyq0mqnkDjh9ZIe0mUYhXTwnbrYUXK5A9N2B7hCvAlpCuh4HZexv2wMCe4MizEabr66PfYdB3mBeSPNdiSMNR6TjwZFBK9UC45M7i7fNVThTzHeE1oeDAA8xwIgUBSObwjEbPG0JIW/ul0Y/kl9qVc8MH7z3g9eMRD794p+GiY0M+FnBquLu54DQVPC4zXi0Z2BhSgFoYlQTnpJBfEcJ5mbFtSRXMVEFjzJYEOTXMuaI2wtNlRq2MsiaclyOUIoXBF63CFgYev6KUKvWugg6KxMLKwJLgTKBgDV194+EWmRtu5g2HbAWJ24RSGWtJWJdpB1sGAcRi8pO0xsSUyOm4QQBs5wmOFHNBXk6M85emQIR40tXrGhym6EVijvw4fUhoUzJryAS/tQ11BMv0JBDqhVOeHKUGSzSLtjUDALBay9LfAwy1CUMVcw/vmPVMiO/gqj1evI+Mwkjf7DESXRGHynZHgAWqSAA+DMSNA/9YR1lJhEWWF4xy7ON3xNHhvkZNScsSSV/v2ucwUGUS1ufNZ8H8agMY2O6yNkgbksn7ugzNU0VtQ0PQiuygs55T8JyNr3HtiWdVAn2u3cKGw4eZINwVLu+d/13+QDsSDrkO956uDBRhCqiy1tagW+cWxgrqdAMNuFHhe1MSsNQEp5/RJLJ5JC/y7l6IPd3HpaEoikLVEOg+FcEjJnb+NX8K6nUmuk99j3YosbfGFtbPMDQikaobIRpy7agwxLl6G6VLfM9u4u019+bsPm7w+F4cuc4ADcGWAz73eucUCZPg2WHBzbRhefYEEYrwEJNgShWJ1PtYbjO2ySraLQl3Omz40s0TGgjnecNaE5Yt43ye0RpDGiBVTcfpWMAkIBI8v70gsd7X1/xxmfF41oq4lFt4Mu7BiAC1JAiAVhht0xOWpqY1Jo2j4n5dM+rrWWG/zrsFwJlUNfmuiqUdG/B8A08NtSTcv86QSkgfZ0yvGVT0c+VGLbj1pR6i+RPC8Rt6oMtJkR/UjEW5qCfhVj814PhN2XsJormMOiV48R1IPxs9tifvJa5gAw+j5POba9kmwmrWqEMaqQBkVPZO8x/QUHbF6hazFZgltY656GEtR0QDpOlRPZGWgHYgjHF0QO/RdsgxVxTS4Zom0E/fbDh+hJ2CotYblo2szSOSqBwRraD99XLDqId5Z0F6DgswwWAwU83FuVKhCON4T/axJkEr1NHDOwaY6Hmi7j1GYt6tXuvA54oobYgujdut5oqi3e+yR5aN5KEuIB2uK6zfsd3YxFO3/HlTgkH3dMJDmoakt7MesId9jLjw0qwZm6EON3mjeBR4UygHRY95Pw4ljr85m/EQBnZSAK2j0rPidEFCCG8gDKCd8aPek9eU+LMFlT36M461MOM+jfoWG2PMb+SJO8Rf9yLt98DnXO+cIiEIMjWc5g3vswp6DwetLePrj3d4Wmb1KHLVf9yQUw9tFeFIpjNZniI3oApqS5CiK5jvNAmfuSkNvI+BrGalaBC7NUZbGdtmmHrW8BqzYDqtYFNy/rm1JE2sm8KBEFox6ydBUWmOljk08Kw5lnbOoJUUVrwxatXcBwqHgGqzQE7A8mVFe6ECvBKoaqGjCxYPJfFmDMNFhbUSG5rH4pDFDaAiqCfC+bsF5bYhPzHmTwi8GnTVKtvX54Ttzg6So5SShBWWLkqUqWOF8opNWnkvU8PhGxkv/pYlqHkv9B1mfXmPhzi77wsEZHV5j7C+1FDL4ZsakisnG1e6skR9HlbC/No5j0xgez+SK1bngJl6Itasze0WKHf7JOh0T7j7OY2Hl4OzCOh46nGY37FSXKz+52wosu2KYy0S2mZdAyHAgp5Eek2JFiQ67YsEenA7dGbYMFiajacBdRa07O5cZ6F2T2ik/vD1AToUGOheUIzL58+q3aPGJgAXg7fXgEZAMw+tHtQbpgJAEvKBg55nZB/W7xWk2sfmsHVfm7GWBYII57kBwcUg61CvXrzhWNP77mDWuBLyY/My6sluh4d7Hi02Lvr3+lijB8ngEV4jvbSJXOvz6hX6BmohAChjLPHTr3dOkTQhnMuEc5lCON9OK+6mRQsHJ42leNEgADw/Lvjem9fIXPHJeoPXi57gm0kpVMrMODlSS0gT3ub5PJsuKJLwejniUjKaEGqjyGHc3V4gQthqQim8Gyuz4DRvmFLF0zLj4Umr4Ka54Oa47t57XiYsiyUujw3TzYqUBPNUcJiK5mwaoTZGbaq0pBG286RJ/EYWX7XQwUGBACCg3tmXrIxtU6WSzsqeLE0PZ/VWotZFcLlRYRyhEwLa1FBfFuRTwfZ6RrpoSCFdqB+kopBWzY+oktCuc6IKMpN6BnZIqJqHQRIwWK88f/g+xuP3qYJNZ2sVkIFyQmdPNitwfk04fKzC4PiR4PAJMCaJwUA7mEIb8gg9zKYIPICijkIMVRUwZ7vqQZVq9Is3C7SeJChFRoHrAqplxvpMPcHtDii3DdSoP5sJEACYXxHmx33S1eeGl6aW8Y0KwyodFZgvmiAPZSlurfo8j89uUGzqbRRaVgWnVrYaGQHbdjr9AcHkntl2Q9iedS8toMKLDMqE3qjF8JbCuFqPDu2lgPS6V0KW06nmSXr9j4IzdHCKqnOl1fdJeHncman3l74WcG1Xrla57rBuwLyngQlZ98IQNjTvxuG+7nVqwn/wen0ek87X8aOCdC4oNxnri3wFN+5eiyIQCSN79FjY6srzW7neOUWSSHA3L+plmLpuwnjYDsjU8IPPPsJdXlGFUFpCA+F+O+Ablzs0IZzyhu+6ud95MoB6JgwLj3END8Tfd0wb1prRQFhrQhXG0zbh4aIByGenC+7mVRWTmRu1MZaaVPgPcQtXQswNp6ngkAvqifFkSimnislqWl6dj/jk/qRK6eDFllpE2YTAqWHNkyqSwUTioQiSzFynI0CsPvP2NKFcEviJkZ8IuRnq6KhKYH0pWL9c1OpuAMQU0CcZ+HDCvAFsEMxRoCzvEZYPdOweKhLu42pHQb3RPAyvrPeowPEXldo/P3lCmdW7edECdefPd43d13slzHZQ15fqfZEg+tAoogq7Qw946MTGSIRSrDbFrPnFPCxAQz1UYIpAlYYKNx1XfmQcvrn3eLSntnX3O5gXlmHtAVQh1mPr4zKBJylpv5tVYdxjYyqy0E+bHKqs4wGA09cZ/A21Utlj/M7y27ATatuNKY1s4cBZkVK8Wc7iNWG+b70QLpBY6lnXA2F5TkbrobU9HurkQqANOHxCyAZndYp8AOFJ5bM1zCKlOmmDx0gCTA8Nh02908v7Ceszt/q70ol2yzNhvcsD0q1b9Y4A00iQnT9HGg4N4zqzMmF5byhwtJDd8UPg+LEEUKPnHj0U1+HtPs9OxJgW6Z4QOYxaJ8LRgfr3CVQnmwdHr1GEPsWq2X3vu3IJ8laD1Adb9/b5hSTfzla7/zqA3wTg6yLya+21fxPAP2xveQngExH5dUT0KwD8TQD/kf3tr4rIP2uf+SH07oh/AcDvFREhogOAnwTwQwC+CeCHReRnPm9cmRvePzyBqWGyXIgLfqaGg4W7/GpC2FrChzVhqQlfv7/DctGVnuaClFokvTM3PG0THi9qat4eV7w4avFiMU9gvBIJXpwu8T3nbYoxeuLeFQIdJCrnXXlkajjkgpkLSku4mxfzeDjCb3fHBYdJn2lOFYkbHpYDHh6PqOYBEenGkY21Vwo5Bbwd7CT9d4+ZQz0GmQTlRgs3t1tg+aBpeCxLKJH0kJCeTAmadcebhoyoAsv7wP0/qNa+HAswv2Xjin1vJf1HQLupaHcCFIakBF71ILIhug4fCQ4fqSYsJ4pq8HL7phDXpDVZzBuQycIidw3esTcQMAXqxfnzsLLattmtZEY6q5e1vgdcvrvoM58ZvCoKq900pbcxDjUq3XsZIaNe0Q+oUjl8LAENjhxA7vPqzyNZvR5JwFyGOhFDpFF1RS4aXrzX7+RNUA9mxa+IsJFfHvtXJUbYngEtC+qNoM2CdGaks9W5VDEDwcM+gMP6HDXknkK+6JpFsp26ABcC6uSJcLL6lBZWtRiLtNOnB6hAAJoIbJDp7U7/eQ7GocReJOpCuiVge6YKNi3A6RcF84PsQkUe/hEyOO2xN7vTuhjg8HEHTHDVs6DtlfXz2y2hJYXh5rOBNVofV7lhzYEYuhGwZLtX7UsHH5TnjO1O98/00I20yHtQD135FWg8906cf84US3zuO5wj+WMAfhwq7AEAIvLD/jsR/UEAr4b3/20R+XVvuc8fAfBjAP4qVJH8Rmir3R8F8LGI/Eoi+hEAfwDAD7/l87vrcZ3x7/3sDwYNO5Pg7rjg2bxEDsS9gq2qR5Ko4blVsycS3Fte5O6w4pQ3LDXj46cTqiXI3WO4bBm1nTClhmeHBS/mC4owzmVCbSroPdfy+nxUBUWCw6GE0vDr6TJjfVIFtb18wvc+09DW/XpAbSdsjfG0zKiNMefOB/ZwOeCyTDbnZpVWViXStOYk5YpWGe2bMw4f9sQvSIVjuVHFoI26TMgXFX4yCZ5+sCj78MLI9ypEY52b8VltKvC2O9EkfVVK+rQq11ObVfFMH2fkR63UX79ckO42LR4tHA3H0pON3dBgMgHlWUN5r2FbGNsLBm0a3jl+pAdzfu3eCCJkdXmf8fgVDVkt7zUs79kbzMNIZ8bxG6y1EANSLOyMCBOoorp8WVBO+n1alazV+8cPswksnddyJCyTWqL5dcLtzylbgDL+YgfnjKK8qmy72SrwD68kUEbLe4ztBjshnM/a+MuRQcIAGmkjqyrgmdEyR5+R6PMdsG71UK+dt5YQ7aXbwUKEFp7khcwLUgGWLjCPRKL4EUCguxyoIZ5fsLVJNg/lQDh/F2H7sn255ZSO36Sg7vDmZyHYGYEQHL2Xbq0jvLdAlEl/toBFV1UiaUEU9zngQBem7wV2YeyetcGZD19r8RlfFw8z1plweU89uumRcPyo9fDhsE+nJwkhX9g53fRvXncEaFFqOvexSYaCa8wAUzYB3cAB8bZ2B8gIloFrmqI6E3D4DioSEfl3zNN44yIiAvDbAPyTn3UPIvpeAM9F5Kfs/z8J4LdAFclvBvD77a1/BsCPExHJt9g7+Dhv+K67B8wW4nFL/qPzDZYtBwW8iHJmvThdkLnhdlrx/HDB1hK++XiDD+9vtac0IX76zmyNcamMCxAhLH2OnjjXuSJczjPqWQPc23lSqG4STHMBG9Pw/PIJBPVefu7VCxAJ5lwwpaYIsNdHSGFcTgVyq72uN2Mc9u8BNCR2vNFCyWWZsL4+ABvh9E3G6RsWJjCahTYR2BP0g1TRfIF0i4WA/EA4fZ16kysT2F7015LyQnmHOLfubn5BcPoGd5RIEkWFTRnFkFQRoz53RdVmzSsIQQX9ouCBehDQBLSnDtV0Wo4eftCCxtOH+vvlfcblA/3uQPg8Ek7fUGu0pT0SyIWah43yWcNqLXMIQsBzDrYfrJ7hQMDNLzKEGGlRYEBY1279D4K1Ex72rZ2LbzPB4RUiFLPrruf7zcKHwp5stni6tSceW8xG7qlJUKXHH+CFb4AXmKaLoaQOEtBSLfZE1KU4BXpsH+qP43Mj4xp7KIvt/pb3idyRoQa56F6bnypGGpExNzwqmAB1GCDA8zEeAsoXnRNgT6QIdDRd90olqusdItvDYAgv2McQvdOHe2qjNAJZHktDr7QzVPqD9Hv3ZHzn1PI5i2c2ReHjHWt6+jP7fNoauCJuYx4Hb+ynt13fqRzJfw3AL4rIfzy89l8gon8fwGsA/1MR+SsAvgLgq8N7vmqvwX7+LACISCGiVwA+APDh9ZcR0Y9BvRrkL71Aq4zXDye8en0DQPMBbDTyyQoSS0lYniZIYSzzhPMyg7ntYLnlKWudB2Po/9HA1o+kFtZwEaB/c4PDIHfpWHGy4sQXzx8xvWdjsJ0kALaqTMKlslKsiFbFa8Ej4fHVSQsLV+XGogrUU8YndxOQBPlYcDgaW7F9rmwJ51dHoBD4MeH4Wi34w8fA/CDYToTle4H1xRB7F+DwkcJ/HbJ47fIqi26LOgWvrBYGKmv+5PIlRVhN94TT1wVYKKxuwCG7wNQE+AVVJiFgLc7M63ggO0wxhJgduOle25mqFWchgywQdqWl0FqQvfdjVXyd86r3x95u1Tpu03AIC3B4BeRHU1aLxZRLL8rz3uqK2NHagKgNqYMABfr3hlXuSV0AQzW8o+UcejsK6R6S6MlZFfxavZ0XaJ3C8Jmxmdgo6HbhjmGp06KItuPH7m0wHr6XsT3XtUmXzqNWjleCkRAeRFqt++MmKDeM9Y4tmdwF5OFVU0UpfWy+nj6uZpxh0RlwPPvBCKBKS5waxbnMvKnUQKM/Qrj390K0Jh6LMakKEjpCsPH15ymUpI+dN8H01NfdWw2MtSHehyagxG5sBOcYQFtfb8+txDxVQR6QY5t7L1YjwxXRUlsBJBRGZDn0KnkHIHzW9Z1SJL8dwJ8c/v/zAH5QRL5pOZH/KxH9GrxdFw6r86l/278o8hMAfgIADj/4A1K/eVDLM9kEHrSYUEC9bmNjyDlrH49KWAnKwmu7rW0Mvu9hmPrBhnSoaIVRn0yC5qYdDj2/QECrGqZBA+pTxsOS+sgFAAM8V6SsUiYq1StZDQRpoaKx9pKFmNJF6zy4AKsAq1kf5fWM+tEBtBGme31fzgDPEla31kqoxcabILPCTiEcyCnAhZeHDcyaDcJEROhHCMFCCxiCJROms2B6MMx+9ZgwdkLC296C1MJ3K9Ct0rEY8W27YbRsp7PxKDWAN2sjOrMV3VFAR6MOxavg517o6N4Qb5pH2MF/BSCLUaMCybssiilZ65/iLVnHinnAvDV/HVACRLraxDY3At17McdDbD/eSu417fnCYBY3YEJ8UDpj7YX+3eP61tzJlFXE5R0Wa1ezPh13X6vAz3cLfPQ+xudAA/LWenX2rNxczag5CIpsSquSfO6o4e0z0dgKqqjakWNvOMTYFdGoGJvxjAlZTQr1vIY/lzMn14PmJxwlxgYFrvFdxi9mwr0bTTpPabH6lqY1NHVi8/x0DJqf8HEqKk7IDR4Jo0lDUwO0l2HN2IyZuvY5jzNg701DyNJDsF7j4uPWpmp9Tj1E5wSo5Uio81C1+inX33dFQkQZwH8LmiQHAIjIAmCx33+aiP42gF8N9UC+f/j49wP4mv3+VQA/AOCrds8XAD76vO/nDTh9LWF7Idi+vIHnqigWUdy09x9JqQFHjU/Uyqgm8NOhYpoqVslB3V7PhK3OVoPRwLebHr77Cek+7UgQPVYOAnjRJCOgkNRy0vqPcpuwHZp6Md5qF6bISMCzcnfVLUE+OiA/mYK4qJXsdR8C6EarGp6aP1HaE004W3jjovF8t+IlaXz45heaJSiV7qQd+gYMpEsFRrGXVsH0WEFVUE5JCROBEKbCQBoqxbvlhN7Y6sSozkG1dJbdeujQUFc+zkzqcfuWvWq5C0mvom9TCotY7y3dU/ED5zBR4X14hIYQlVvUAcsdvQCzVOHKgYI7DEAvOIzLwiVXyWwAoezivmTcVWeNu293jO2WY/68Ijk/Cqi1rhw8HDNAOl3YjbDWOB/FrG4ToF4VvvN8fFi1W8k+/0q+WMFrw/Y84fJCi0/zYmEyu8+IMlJEk9iaSHC6jX8fIb3xd9JQ4nZLPS/lisC8wIAKAyAHGgCAQ7TDGyDkS8P8ibpS210G3XAUc25Xe0uoE0j6XOm9evg0eMQIwQA8zp/CvynWSr3Ra0vCjBzjz1L+NSjAgx0JZ15XGXqmsEYgWu55lcn2TlpF35sVAu5ejlPNeJGqP9u1Z/a26zvhkfxTAP5DEYmQFRF9GcBHIlKJ6B8E8KsA/B0R+YiI7ono1wP4awB+B4A/bB/7cwB+J4CfAvBbAfzlbyU/omgIQX4kHD7S5PX5y4L25VVJFC2Y2TYGPWTQRpCDACftC1KfMmqdQJsRHHq8Mb4AWtkOgBeN5ytDq+Lqow1q6uNx65ar8uEkMGQ1a+xY1XsC+qEvjFZJreCzFliRI36KNmyihXR1CbrpHLbp9AobIPY5LzCLA+jjMq/gxd+xpOGww+NgN3TmUkOaCFFUqPt7nepkRLvEMwHAicKC9Mpqb2k7Ik5I9rxGbgm6+x+hAdE5rtMeKeeWulb29lCIJohbCNmof3HrbuthjXIcKsU3FRKjgPbOgR4miyTzQLY4Qkwj+WuW8Ri/blZ1LwadrY3jYKfVhanRpLtg23kidnvnizIl3DIA7+nh6B3/jF3NujhSBfJjA1fBdpuwPtMQVF4QRYtYJHjCLu8lgMzw8vavLrjhykzvO58VatzZch2mSvH5tIlxbenfFTXWzwSvjpQSrVa3+WquiNgbWHVrv9nfxzqSciSU75l3a6VeArQnO2DhIwpvFzBWZqttcmUYuTSi3dGxNEj3lgRWcEuhcHqPnNET6VXsYUxRv7ErFS7KduxhO28VEA3LGFhedN45D5m1rBBzIYcz21kZQm2fdX074b9/EsBvAPAlIvoqgH9FRP4ogB/BPqwFAP91AP9zIipQpvx/VkTcu/jd6PDfv2j/AOCPAvgTRPS3oJ7Ij3xLAzOBXQ+ilcqsLL+OaPJ8SQGiaE1yAxlaiV9POHyTu3uYujJQzU9W2a6bQZIYc6giNKIKO6lbGqEVY3bVAioBNhoS8gJakrbabdBwXBKg9VAHzL1maHHa6eu8Q9xQ0wM3UnCMxUnUekJ63ORKrKdWTn4SzA8qTMcOc6sRxwGDdW0KATClcByEKRCHWcfmfFXA9FiRzg2StWWofwc1fdCWOnWFf4+HTDzyWIdY8Hyu8FzFmNPxkFwkUROBhoM6PZplO7Dxttw9FT/sY/+OLrX7dd2o6PpQjmGlbokPHfzsMNNqBINOF1+64N1O6C2HLfbdecSurHkL07iVe23+upIPQWZ7fHkvdSjr1pWO8lwJDh8XpEtFPSasL3N4BJE3GDnLUt8n9aBvUgPD5nZX8d6fwRl9efXQFyCcQlG3DODIcR59HjqpYwcY5MVaDThCaVTwgEGl31jOuOpEqC/V40jWMtjXreUhXzhWqbuHyG40ucFjlfpEsQd871wnu0cPYfSMPTcHsrzcwdvq2j4Egd2YsDkISLZdwb4h+3kZ+dg+7fp2orZ++6e8/s+85bU/C+DPfsr7/zqAX/uW1y8A/un/1OPKwPJBhUwCOhUQC6apYp5VmWRWUsa1ZDzBPBM2lFWjEP5uLTbWBkPledX6h8Kgs5LDpTMhP3VLOyB7zypwqEhzA08aPlteHcH3abAkCZIFdKzKiSWEZl392m0F3+jnvOc7PWRQTVpJLIhGTZqo1QNSFFuggsRgjd6604uWIifhiURBxKNJrKc60DepdKtm7GRYT6x0KURvWLp+rxCqZEJAALlL4BPDC7PEhBfVfp8onBqseu/twJbIjBBRdKnrh2q08oKYkPWGIWyb5sw8vJJWJXt0yhCtaZBu6WWlr4+Q1+BV+PzBuuWNSfwRMUXhKSHG5R3xvF6gHglCvAuTBWlkdaiwT7L+0Ep/dzvtR3KeMduftv5er9EF997bG+P1Yw5ie56xPVdx4qFDF5ZCZG17+3PuKrjFzpF5wwlDxbYh3SKXIdDmVF7cg8ED9dBSkFeOirTnzBxoEYrL2zQPebLtNnUP4IoBWpPcqoj0ee37jQRR10WUrdgT5O51DrUxsUAjuio8Gd9n6N9dh4p63/em7Lzl83guXNH0OeiGSTRpG0g8fc5a7qFBtd8+TZ32652rbEcSyF0BlgT+cAYE2F4WpBcLmBsKGCzaJKqtCVi9eZLubJkE23O9lVtW9djAzzakqWJ7fUB6TAF3Xd5T76PdNFU0DcpttSTUjVGz7ebqiz4U85EAlVCbWj5iBW9ohPaUdX0Nrgq2HAtr+KpNg3s9eEwuiHlo2qP5ESNhNFI/x8/XSZVCS5YnOMM8FT04VIH5HpHL2G4GT8gFyRi3nd0F93hz3/ghWAcryft3tIMLVgQclqR7hc5a20Q7BPrzekhlF8+faG8dous5ZzDOjxVtZoAS3KisMwNj9JQs3GAdIp3rKa1mIVbZeRnrMy9co4DYcsHgBfYQh3uIIA8XjgCFnivwMKIqFqCdeuJ5rGavs1nPa1di+ezazoWX7nEPm1Tj9urtXVsPQRGsyK6vRYQT5yGfVbsQeoOOfPjvWPfh+RQvemyJ4tndu3QWXt8Prhz2SlBCQOr6KWGoh7l8DXtI0KhgoH9PGyJ0qEpHooZDmKxlMSKJLUShcP3sSTLwwLmZgrJGZ8McaGsFDR2WE6s3QYhz6Ovp40LScFka+8qM02rP4woZwK7ZV5sUTLCff4l8HldA/Nmn67ze2693TpGkXPHeBw8ojVGsgZUTM2pvD4BIaU0oNaMTaEhWbd2mhvW2Q3rB2qtkPmqVe3rvgvrMnERL4AMAbWyswFAOKyGkm4Lb2wtyqnhb8SiRBGPwVhO2klCFcH46aEdHIBLwMhHqjSqDetMgt1V7q0zKKjwWta6XDHk1ayvhSp123Rh80bSoLOg8numh5kVBA1qE5SguTd57uGt5rnTv1KCoMtHDkFZBmQlP30PY7hS9dfyGClzJ3SrXg0hRuNcr0PWnN6QCRs8COw4sP0j5orkphTmSWfVW4Z4cqdUtbvcclucJl/dSWMFKeOgJYhVibYYJY1UE2iDJBN8kFgbae0I6aAuTeZvbBm00JR0VFwc4QiQqwKp5EYApQxdkFqoCujDmYg2xhl7wbuE7y24IULNMAfRaAlM0XHvIxlkDRsRUOfBuLUalgqir6l7Bbt1c2FK3iF0J5CeFcJVTAgXNCIXBsYMri+V+xrChW+vGE9YSsD7TMC0XYHroTc9GBJkyDHcgh4euYk49BxLeLEWPl6AUKW2PomJCueV4Tr+ilbEnu4dIwHiNIWhhBBO5w8FJgPzUkJZmXGc85OX6GHa5uF0eB5E3pNYNgcg9ftEh8c3LCRJvDytePn8dBYkAgtBxq0kF8+2q3dPsQDA33L5c8d7xjAbCwzpjLUlRXqaI1pKwlozWCNuWottiniuIvbiwgsloNYSwbBPWNaEa+y+ZdcjccDgUZG5RAQ8Ap5sFuFnieQCglITtLqE1wum04r3bM5gEl5KVat7eK0I43qwoc4UIUNaMetFQHIyu25O0AEArIz8qp5UYhxYJkO9JNw+R9mwnpUhZX6CzogKBMqFm/Q9utEJ+fSnYniEsYGeVne6VOkWShuLaZB3zZh1bulDQrcCEdJtEld2hhYUIAfI9Y3pNXWFUii6N86r3LQcXyEO+yb0j6sia9Y6wvO9wVFiBplV0F1V423NtRjbdE47fUIHVJgR5nws3pbFQi3dUkucvkz7HIITSmbSS++LhQ71HuSWsz+w9K6Lo0yGpakUqqaNuFL2nwjnRPVT0e3l3PA3hKB3L9DSEoBxQcaTIRcWzDfPmAJSWtMrbE9ZcFTI7P2iOwuG9ILLaCr1NnQmXD/IuJMpVwCbE65E1xEoIRoBAeHmfDW8PMJnSp2ENWh+zMNAcxZYR+RS6ELxb43prymKCEXMC06OyJURdiFebG1w50HzSUYWAzmswMVthp0Y1zPCgHqrzc6GKnBE1K5uelZHZt5xYz38gGBH1QWPdSxeEewOMKkCnobmZRzGGffJZ1zunSOZc8Q+89zFKY2xNyRNv84rns/ILXOqE0hhryzgflcrkmDe8POjfP1lOuF8PIAAvDhccbwrOZcLHlxM268vuns48V6TjhjQ0oGKS6HfysB5wfzkoqeOxAcdt19kwc8PNYcXEDZeScV5VQt8cVtzNe/bfoFsZlKIqqYxlNe+le+1oVb2mPBekk0Ee14y6uokIQAhyU1GeK5xZnjLy6wTtBQ8N+SwqyOaHhpbVG6lHQT1aOG+EtBm9SVRDzwLhBrhgbgDVBC4q7NaXTQkagRAobSaFLrNAbirSqaKuDLrPCrUevlIYWN43a9JrYFa1rLUrYT+Mkoz7aFLiyO25ID0Rbn9eMD0OiCbSavpyV1U5Phh6T7SyPz/oJK8v9L4Bq/aw3iRIi/E/JYf06n3XZ124+JXYYNVn6Yl77qFFm1bQpCgVl5D5DAhzhM489Og0/eOc1oMqeK1/AHCxPTRpaDMgsoOiABC5OIX/9hCQMwHXk6DY+s0fMw6vFECiYAitkNecwn4t2AwPahJtYxWsMlrVEmtcroAcbk17rsnHPkLH432p978h6YqYjYgRQqbgZJd8dmFLrSP6dFKwv/z/bpg1DR+JAQxcWI/FjaFIIpekSEzPmzi6Kij0E3B+n7E9cyRW9zC9JssVXsuE9YUafSOcP50Fh9cSIdcIbzpbwOdc75wimajiu4/3ABTJACBYe/Xvhs6iTub40XqDb1zusNWEV+cjHs8ziICP80nrTdD3S+aGbGEw5hY93QXAUjKy9S5hEmXt9YSefSeT4Jg3HFNBEa1md2r6ar0dDqnq2EgwG8lk5oaZCxIJHsuMh00V1CGXUDCbEUc+rRMeV2tmdWy4O6l386BPoA9CWixHJFHH0nJDuyVIZdRPJkyvNZGt6DfG+oKwvmhoJ8spAXaaoQfDINNa54KIn68vBOW9AmRge7+hPFOgAZ5tmOa6C5FIo6j5ifs3VVDKutsF0vbMmIIJ6mE2rz63rpQmFIBere0Ehk5lf/8PwChdVDjzCvAE8KIWYnleUdi8nSdWj0E3lQ7P8P5KQ9+ALNgqYfmShhVpszBi1Zqe4zc8FgTzwBRBli+C1UgHJXtRGnpubKAGIaiA5A2QDfBkbmf8xc7rVO/DGAYunbp9OndrfxQs5aT3X59b/xR2S7yBV8L0qJB059+ipjByXgdBZcJTqXAQAhUw76r0YjverqTzEJa7VmxaBEqYLGlOr3ut0eU9rb6nZKSSTRXr+XsEde6GhiemYfvl5uuCwyul3vd+MMEsIJZHnBhRaxP5oZ6jCPCFK7LBvvJ1BMywMFixtodmBBjCj5OHw6wbZUCUF31OPY8U+cy0ebiw6dgLYzKDJ0AAVmgcFPkZkYejqzYIb7veOUVShPGN5S7+z1DBPXPBRA3PpgsOrMJ3Mylzm1eUwxNKYzw/XFCe8876T9xwk1ejpm9v0MgXYdxvh/B2nrYZW2OUmrCa93KaN5wm9Uge1gNeydHCcBzf4xDlp23CZnQpb7sOqeKY9V6vL0c8nA9B6xJ942+VSn+rCfdPB6VPMfoXD+M5lbzziMWMpYr6jLAcGHxhUHPrEhZ3ATAJkNXLyJ9krZRHP1Ae3uGq1Czy1Unj2C+UnVcK0GjCljIwNfChhkKDkHpVawKKtSwuPfSiVr10FmKC/gTQTsD2AqZI7Pka4fjzCXc/J0hFwznUtPr56XtIrXXouIAeutPDqx4aWDm+Ggum14zT11SYri+8L4sAs02AIYsEAJr1AymE09cSjt/sYRJt3Wo5CdHGV0/fK2gHu99VrYsDMchCbv6a14lwEZy+oYWpjrLrSVz7YQLKK6B9zTzxXCf1CrVlgCqxCIcCYbG7RZ1W9TCmB8HhfhCGHoOvALEV5N52paWWNaHcU1CuaKU9kAwMoWuSOpKQEG73yDsVzascwUQ9ZJNWpetJA907CKizKWfq3ph3zNT7dy/v4fsSlvd1LbMRlDpPXSg8UgV5+zXBzYeK+Xe24+jGSO799dc70SWFZ+E1P1GoS14HJVFc6cSoit5yw2NAulnIy9FbcRG0t7shuZb3OdB2n3W9c4pkKRl/+8MPMOeK47xh4oaXxzNOhw2bMP7Ow5fwuM2qSKopkmnFB8dHzLmiSMVaE4okfHI54VKyUrPzIbwaF/CHXMJz8NeWmvHqfESpjOO84Ut3ujM/fLjFh5+ogmNS82yaKm6PK6ZUjESy+5getnr9cEI9ZzhkGADS7Ybnd2fk1JBTxQfPHiFQNuLWtKf7+Txr18RLBj1ZSKhY4p2BcnCBJ8Cs1fVSKWjmMStSDXfA04sEVAJdGNMrxvTIYf1CNEGfNk183/5CxXzflIL8hiOkoJYQMN9bMjwrLbZk9SzKlwVpbp1iRgBsrHTuBKwfaHKWnxjzJ+r5pIUg9x2uDDLK7ZPmaXhjJPOO0qaHbUyG8ga8/x9VpKVhvUu4vGeIpYygEcln9WTKkbB8oHQ5+aGjdw6fwGhhCJJ5R0AIYBf6mO67da2ClgBD2zgE9fDxkKS3tarOwmv3JVFghD6LQDYKD9HDHhH7dlTdkJdxBZYvTdFTTAYOUDAGFXTwRkDAbR4vpCg+Q67lc4fyVhNu3tyJNw3xtaxeKntveM/31O4ded5HPTzudTPScw5auOmehSXFk4EkhOI706qKbX5oqGdCPnPAbH1N6qwKk7eelB+vOiliT1iZm+dPKAwkaqI6PvIw3UsBFFrsdPHBzDx6GslDhGMrXf1sWgWT1Z5F8l46rQwEoF9EoMgcFh+XfUbs89qznXZej9MFee1Zojef//p65xQJkeA4bzhNBe+fnsAQXGrGz9y/r4SGjSMJvpaE1hj3lwN+4f6ZdlA8rLibND/hPT5KY3xyPmrL3EbawhbANFVMqSrb7lQwWULelcfENUJYAKIneyOo4Lb+JSlpT/mcetiN7f/zXLABKJcM/iSBV0K9MD7x+hdGFDbWi1rwaAQ2pty8UVjz0WkveU92RVR5oi8vBPZGS7eCdrKEBANgQXpi3P2sVtZ6klMFZo/Xat0K96Q1uw40j8VCPDioa1QPZpV/OKtyvVCw/5Zb9TqoaDiFN3Xvp4ehlgI9dCCkwmF5qfflqq1+IUpvf/mShaJsXPMrwnv/ISE/ihEMUrR4BcyqNWGQFsHsXldr4VU4LNctQxcoAXelt8Mr8yJ7gQ8VqodXFJ8Zrd0QQsZsvD4HHr+i97/5BcLtz1MkaqmqgFW4cq+zAazmZO0hGRdq4alUMep3tb7b13UBO8qpV2Y7Em7MAQAdqi3WW0NIARCnjzyEih2M97Mqqx1J56FATyJrHqaHCYMOxt4z0rBoiIqiQRXQQQk+98G95lMe8GpBGhT1+Hdfv07pYn1xZkKbtNtlPWjIdH7dcyORH6kGyMAQEiMFiLh3kq1ANV8kGny1mdCYNd+y6t/b3D0dbXZlXueQ/3GYdCTZi+Dmw31R5add75wiSSx4ebpgMt/X8ySOjEr2k0miY+Gr5YhXj6dOhmYexnnL2GpCIsHNrEl1v5yW3tvqvj4fI6x0nAoSN4jM8V4mwe3zyxvjFSG0xli2hLKl2ExvdMAkgcyi/aknzW+AFO48TYbQytpeVxFh+jDreUJ9mIBCyDPQzgRJEkJaBwFAVIkcPukhk0JaYwOrfwEsYZ1ViRTvKe6oKSvg4oPG2deXndLdLXVee1gCoqSS3tuCmkJs/b6HT2gPBTbBfXm/w25HiKwn4tPFYMxu1RMgmVBuW0+AVhVoT9/FWO8GGNrwXY6ciWS6Jcq9J4XDJ6+5itTC715N1PdUBGR6vTNYbXO6iv085bOGejwW6YrEoZuHJhreImUkaBlaf1AAjvAVlP/JkGX6bCPtj85t0LRwH4PP47w2e3YKqvSRb8wJF1vqa+EsDi1bYj6p5d+bUiE8uum+Il8qyinh8n4Kgb4zkk3ZTufWlc4YamMCM9CeCFpEqmu03XYCTw+BeVFqtp73mkfriXCv+fGeIi7Q/Vx6aMwRdtQEdSItGRhyKL7vfYz+rx728Gwn4CRT1kLdidXPqjAoR107hacjvIzgeRuVqBde+uuAzosrLZtP9Vh4B/74tOudUySlMr7xcBvJ7fFqQtiK9k5PSXA6rMipQYRwc9SE9O284ZQ3NKj3UmoCs3ZJdGVUbXW20nMggK75tmVczjNECMQNOev9l/MEOXvm16z8SpoDaKQ0LUfNExyOG26Pa9SZJBIsJePx2YxaOZp2EQlqZZTCIFIPiVm/r5QEEYCnhnZbtH/7xMpu6lbRptBWtsRkmwRP39O9i3xPgPNdJc1HPP5gT/6RIb8iL1KA8qBeT7kBlvcbZNqvgTeVokZW54KA7WoFbj+AtUBrTlh2UErPi6igt+9vdgAt9u7JY/cwFHWlcTaPp5Nozma7o4j3R33MCEiz0x3x9aPmMyT1RDtgSqshvqOP0b0bI+TbiYr++1hcmh8VgsqFMD2oRVpO6m21Q1fc1NS7LDc99KIV0qOARIeq3mhuyJWdz4V7Ux6iJFGFHgSQ5mHGPMCU3aPed7vVjoMal0fPZxn81HM7vS6GgKa1H1yyFtQNAlLXTAJckTZVPvk8hk07x9SYzK8zYfmKhn2oYNe4rOcL+rx3xF6vQPcmWV5vky6DMZEQnq6zR/g8VWuVzBU4ftRpTXzvpkXXUtgITO2ZvWI/PKFhDlomLC85amTSpfNqFWdtLjpHEChhZXNlSju4PkS9+s5MgC88kk+7WmOwhZm8CNGvnCpk4HIqVZFOpaow9pqRrSY8rROWZQJzxlqyQnsNqQVYe1373HHecJhK3KuaMN/WbHtUgEPrhdNC8B4nIlCl8jChsQCnDe+fnpBcgVFFkYTlpD3hGTIkx7GDFAPAh083ePj4BlgZdCo43qmSPOMIKVakaMJWSGGcmt3rtRb12CvwxcYJFiApwqoV0gr+q2v9QH9SNUWxKVuATPYdTu0PQI6+CATa2DwO6YJ54V4t7Y7S8KgyCdqxqZW96DMhA+XQuoXm0Y+Ngv5CzHILLL8jlqyGwHumUyMl47x0YdOhvuYFUB+fWD0DlY7UirAbVIGOJ1LDQ6SIpw3RN96hxItV8C8vqX+vQ105dM4OKuzeZYxXXDnaRHCfQ7e0W7L6nwy0rXOZtQkBYlBhvfcWWgWaOdkyhpYaorOlC16lh0F4lc3G2g5kXtrguRXz0sLT1NDM+f0ESWmnNPIFmJ4aBITtRqHdI4SXHMUGGOTY5oixt8TNEEpnU7qe17DHjhyTK5oJWJ+rVt15vqbAGwlgObmgLBHntuOY04AC2/NEWwIBzh9k9b5Tfx6FclN83huMYQaqPZsm5gfUot/f/qWhOFcLX6/DH29e76QicUt9tfoKZg31EGlf9JwaaiNc1inyHh4SAoDaKEJkh2cPOG8TXl8OynsFgCxAP6VeMe91JB7yakK4vxywGgy3XTKwEcAA322Y5oJaEuqaNMkNRPhoXTO+/nCHnLRne+aGrTEeLodotXswDq/HZca6ZhDBmnZpc67js0XDXSXh8tiryuS2KsTWLEKHQarwURgzRGGS/ES2eSUESuD83boW9CQ+upByYRvW6GofHoWcCbjRo1BIqd5jeyam5EwIk77fBVL/Mls6s8zmjxXl1bIqybdVEgNdcIUQuXRLvEavCvRGXwloDCPNHCC3Jtx3CW2bm53Act1PiEJMjb1TVzro7x17qaCp8oj6Bisq9CuY7j3EV9VydSofD8X1SRis66L5olhf8zqoAa2Nns6wbm79n0xgOZcaIepYXDlQ1PjYo425JEMjOV2KziGZ19q9RK9gx4B483mqs/fcQKCuRuG8Q6x5iNXgvWNoS2tjoFQoQ6i23BDKLcKb8uf3kFTUa4hBmq0rpHuBwSxdATooTN33nxs2zep5FH6ta8FVcPN1914UwXUdCvW8R1oQbRCUvXrYTwRgCP2WI+1pXL6F651TJESaD9kkBeS1CAXtQEqGUBL1XCCEVkg7HRLAvODZSWs3qmh1+yFVfP+LV5i5Ym0JS9VpzdQi53IpEy4lozbGsmVUIWxb7qvZoFY3C9qSsAHap/xi5plZrr6zSlOvZikp0JfVoMKXdcJlnUAkOEwFt8+eIEJ4Wqd4j1/SCLIa6qqYh5C12I+mBlkS+D6BN7Lwlc2jIXTaJHq4LOnNCxlaYPCIElCTjj2ERFWrqAtPN+9C1vbPA2G1r8+bKi2hoEsZ4/nCfYyA/l0TkOYx2f95w75YzQWvUM/TDJYaW+iERA+7W3KSgWaCwhFG5aSC5bqQKxBZyRRY6o8fT+DQ17WH8/JZx7c969xtXHSc1FSxeuGZKyUPs/jv/v35aaisToTqOSpTck7yGbmM8b6+XL68FUht2MK+ne2f904flXF/UMu9HNFDmaYQvabBPS+3iEMgOwjBvBOnsInCwtrRU1FwSGTNycYZh4FJhtoPYxuoR2CbHImG4EuTASobW9y9Da/hSA760OfR3JWulcKwfX0ooLl0k7q3ZV6EMKLbolOz7KDCYyTlIsad1vdZV7y6F7aAEiMMEN9jPSfTFXkgvL7Ikbx5ifSQkxhCSxrQCmuP9FPBzWFDbRRUJzITWiMwC778/AE/+OxjMDWUliKUlLkikeBcJzyVORLogOZeiDQBXhvjvEyoJWmOI2siXA4m4P0z3qL34OYurIRZw0aX8wzihmmqSKlp7/WHWdvn3hTc3C1gEpyXGQ+PFiMiiXa/riSJgHRTdAyFNSQF6MaqpIrtpmmowRFaDQBS33xDbwgtZJLImQBQK8y8G+2b4m61/X0bhOKmgkCSobKMf8lddC1OG5SvH7hJ79dmgRybKg3vJGlj04A2sJ3s/6Y80YB05u59oQvEMFrNIgb0+8Lad8Hi1mjtgrCZoqmzCb7iORD3AvatBFxxCXkoqSvM/gw6Tz4mSaK5Cg8PbeoN8oJdBz//rNZr0O77Ri+Cq54Hku4N+PP5FvD5qYfOOebr5izEHbFGIWC9HieuQRDyqgoT0PDMetPH4NXa6YJAnDm/Wz5bTiEJQKxzzhQdEIMmBKa4pVvtXAXlYCABE5huIGTr7675F0cBSgjw5aXmo9wI8dCVzx8wtE6g7mFNj4hCQQ/RRb7Kt6oA0SnUt9dgJHiOa6SR137z0vcu9P7Tk3s0b7Zf8DVwg8q9nt3atGEPfMb1zikSJsFp3rCQex264VJWT2TOFTlVNEnaGXFgL21Nw1H/Cd4DgKgUn1LFzbQhUcP9esCrJ0V43R5XvDheUBrjYTlYHQdFon2aaoSgLrlhnY3KBAjiSKn2fuqmuhvvaIxSTCkAyKei0RISbMbbVUvSMJXdmKgrTpVYpAI3BIX9buEsexEArCmWHaYskTOgTT2Z4a07K4ZWq2YH+veQekM+rnYAIEYOaQn0sHzdSgJ6AhuI2oWYl2YekdFJ7AT33FsG+yCp2LhMkLasoQZKPZzmQr4lQPx53dIGolJcBbaGPJQxFSFk8nmwBKFCcV61ur4laIGhKQiyEB41AKsq4bR05Rr3NcEvDMidMQm0ziwMoCe/h/CZh7VaQgAU5nvg+M2xaZeN03m7soZvdh6W9JxBULYcB2OgefJblej0gDA0NoO9ejX2WBAXqDlTzPkJ+zoOV/DmoW83hJbUqBk7Pnq4zxVa5AY2re7eTowtW52F92AxtJjudcJm8N9qSnIMh1EF5ldqNOWzjdEtePMAwtNxESIq0NcMY1SmobOiGy/jpu+KPjlnlkhEFJg78WI5aZU+FWB+7MWSZRpQYlckn5Ej8TlbdZA9FNfH/XnXO6dIALVK5qxCXIRQqlKREEmgmpiAeSqQSZFWW+RTGp4fNIO4VOXWqo3xsM6oJtAPk5qrtRG++XiDxEqHcnfYEy0uNeGyTtprxIXqMMb4afsKGDYlVNlMU8WcS+RdRKgrQN9wScz7UTTXuia0TcNZSAJMGp+g+6z9U+BoGukQWjIls2lFuBwa5K6pxb9p33iIKodAIBWj3VhMwJMJ6xH2aD8D8XQSlGT9Glx52v1UeJn3Yha+s+V25l8JyCkZagukh5XJFEXlHXzUY/ih/FiT8Vy0nwxtiOQqYF5GQq8HKf3sK2leT0772HqoiHr4zYXXSn08oRR1samosOXNYM/OxeWhnapFimgUTdPKrY7Ju/ZFTsOEyJi8puIeEEUI1b2YcqKYl+DaGi8zTELRR72Jji9Z33oSRIMphw3nJ7eeR+9Kb5uMv00YRgRK3WsCol5o7OxJpiiiJ7kh4erUwQG+Dzyk5gWMddY10vDl4EX4s3Gfv/hOH2/0+NDn9J7xdSLUte8H5wnzZdbmU/pFmkDXtYzmckDU2wDqfWBU5PB16YqiJTU412cUnvi4z3e1VRYCnM5aVxT0LzwYg+4FXa/7W65vmyIhon8dwG8C8HUR+bX22u8H8N8F8A17278sIn/B/vYvAfhRaMTx94jIX7LXfwi9Q+JfAPB7RUSI6ADgJ6G9378J4IdF5Gc+b1y1MV49HG2MKoxPhw0vTuo5fPJwwrZkpNxwOq045KrC2RBIIoSlZk2Wm5fhxYKKAFOB7d9Vm4Y41ppQGuO8Tnh6OqBVimJBAKiFe8W2h2RyAx9rAAEiP7IlyJpgdY/h5ehPADKQN1YK72NzLyOJ9aoX7UVvNB8kXYE0S6BTIfCFIuwzon0iSemW7zjRrEK9ezX2b4jH+/vTQlqECD1w7WBJfWtMpGENCuHgV5s10T96LIRuPeoL+gHlwKLIt7TI07hwo8E6pggx+bO5QIcA5Vbhy34YvTWwPycVrVNxuK6MiqT5ZLx5jeGLqIBPRj3j0cmiUTsf+3jYebM6n+sI0g7WOizJIDC2O3txXOMG0KLCeR8KGazuE7qVO7RTHo0Dn3NJ0LyKtXIVqyNpo4AcDaWqnkwovSq7ZwvUVuxJiXX38JAwR86sNS2o7DkxAa3mLcmV0OzHbacgo5lYEWQvtiRt+DbOk7cr8P2rhYPo/WC82Vp4jBT7uIkp4CrIlk8pR6130cLY3qVU8x0WHkVvR7ADE6Cvxfi799Ah2xDe0dSh1mO49vOub6dH8scA/DhU2I/X/1pE/lfjC0T0j0Bb5f4aAN8H4N8iol8tIhXAHwHwYwD+KlSR/EZou90fBfCxiPxKIvoRAH8AwA9/3qBSanj/+dMbrxfzJl7enYE7FfDJFEMTLeZrTWlTPno6AeghJSLBnJUwca1JaduHTBiNUtd+EyHVMF5gNlVgtnjJoAj8qpU7eqsRwIheJI5C2y5ZPQI2okXbMDypFCGWSMy7yUVmxQOaTI+Yf0PkDxwVJZaHAIB0UWr5fkMLdaz6mXrUJDxYrF+DeQM+B9TvVbxZmCBgxwQokgQAWMkBffJ202lCJj0ZsmkyFBntFVRYltkoUqzWpEFDblKxa6h1fZF7ZnBGXPv96HmhnrgMwSfquXhhp1vkwJtCS+ePete9QUC6ghvBAQ5gCEGUBoXxNkUyKgdPxrpgMYXn3wtLsPvajpXvYyJWhrX3/4uHzAjIBLSNAp00zo9fEe4bwkpjZ8A3nmk4FgI1Bl0wlmznonalzVWQXg9jt0r4Zp0gIdC+9Fc9NxypNY4xLYL5Qdl7g7kh5teJLrVfej0wVuGOPqv92cqxF146u0HMH8N6jOjkXqP13AshsRyJV/XH/fyf9sTxfj4YzswOjpx0H6TVWgOLoba8P1D5DudIROTfIaJf8S2+/TcD+FMisgD4u9aH/R8nop8B8FxEfgoAiOgnAfwWqCL5zQB+v33+zwD4cSIikc/uwiKiHFUOnfXaD0+Me4jI+39sjZFYixNFtNhwLX3aiLTp1PqUNWEtnSLFR8KsXs9h0u9jbkBSiG27mCY5FsyTqv7wMCqjbqzKIQl40jp8HgoO3avSYkN5I0TmCohYw3IpCWrRIkW4B2OhLRnal3qeRD0Rr1PomkCSVSIDu1h0Pbpb3oWt9wiPEJL3m/fcjHkqOqHoFvyQtNUQkd3bLWobnwDKNSXD5+ECnAJGmlZAit5AnLfJLf/hc2E9t344R4vOE/dulWPSG/CEUMS7UJUrl9LrPZAH2LE/j0GMdX77666AvDp8DLOQKHyUzggLXxJAW4fGjnBaBTvYa4Zycl4s9Ug7VYa4jOJhDQYPaExO+zwpMgqBmFJBRt0A8M/7mFzAjcriStBJ1tfY94t7H7ZPHXWkoVUVfvmsNDWjFxF5pXEd4a91PjMPUXHROXeGYslG4CleuzFaAgRkaCdKn7MR5OB8VsN+EiNYjOZlVgUffG8TxXNqhbtNjysSa37mzxZnzJ/5ylDpZ3dYN5u/lrV7Y+xzU/ynbxbMn+xbVrzt+k7kSP77RPQ7APx1AP+8iHwM4CtQj8Ovr9prm/1+/Trs588CgIgUInoF4AMAH15/IRH9GNSrQf7SCzyeZzALHll/3h0XvLC8xyYJm3kazml1mDZMR22A9fX7Ozy+PoKS4OWLR7x/cw6CxypOi8K4YsUAgMihTFNFSxKKJ/7uCsgUCaeGw3EDs6KytotKET61SNIDsO9nrY4vDJ4rsimWnLegQ9nBfs3raRtDVu4Wy9Xmk6xFfeHD+1iTgLxYzIoYx4srer5lMgVjwlST6dBCRLMgXansQmbjpi7Q/wyCox6NJl6Gz4+QYEFPzptU/MyY7+j6u6ezoXsJNgVRxS0AL7RD1wBuNfZ5TOvV3BSAzxQH2JPe5VawvK9Irvm1FjtKtjBaklCcoeT9GQnh2fKmyvJtoAd/BjLGvrGWpVptwhsKdVAemjfqIb42I/a5J7clKUx5JAoMBJjnPe462iiKEA99DG8Np9Cg2BLQuHNxTU8NIIX5NiNpXF5yD4u6pzP0MAegnSmHfMqYz3KuKyIKw6IBHT04INpcaeyS1778MX+6bsmVlaGhPM+mbLxekW7esudIBo9ll78YPEXfa/GdNo9uIPh3SALWO1ZKlQaFjteBuHO8HZty4QM+7/r7rUj+CIB/FfrI/yqAPwjgv4O3H235jNfxOX/bvyjyEwB+AgDufvX3yJdfPuwo2G+mTckVSXDKm0J7JUUi/VwmfPPxBrUxmATPXpzNkxE8rDMSaSHjRILaOCjemQzyK4SnZdaCxbeErQD1Wry3iV+ecwG0HbDM/bOXdQJzw5wr5qynrh4KWmbkqWKaCghK07IsZiUF3FnRYBCCLAxaOBBPDkdss9c5iJ0gy5NYBXMIfN+8XttgdCqSBbtCPHufdzr0RDiFpyLxEyZkUN/8HhrRZCbIe2vg/r3egtQN13pqYQGPiiZi4SxKvX1Vl9ESdDyDgFUrfm9h7vYb2/MwAvoMMpp5tyD9eaxvh1rBPbTlxW+AxbyN5dgfvQ1hxhAy1e7R7NFyv5cLSG0xPIx98HQA7MIj6VFzGfVAwcT8thwZyIAAA+ABULRafsQ+tFaB5M+YvY6ke0oA0A4aPnQPJ2p6aleC/t3lCLSJA+IqyeZ0VRiyh4B07yEaNdWTzcVmvVKqdDhtzDOZQNdfeXNaGgloc6y5KaEYgysiUaXnr+WzWBM4wnrHvReLd/VcelW5w4Jjr5ui4erKSJBWg1ffGFOw9L9zgXKpoSfjA8GVzNsJ774TnUa+hoDlBePyHj73+vuqSETkF/13Ivo/Avjz9t+vAviB4a3fD+Br9vr3v+X18TNfJaIM4AWAjz53DFCvYascNPHLlnGfDtpXZNpwSAVbS7hfDthqz4PkVHGaCm6nFQ2EpeSd95KpYYwOuSKojbFwQzVkmJ8C5+gSIZyXCefHGSBgmrX/e2uMtWqPkLolNFMI6aYg5w1EqqRaSUr6eFpAJCg1odi4s9Hll8a4nGe0wmhLAj/koCdpc4NAtPnTleBGgvYWYYGsDF44ajfUuu9UKa0BdLQdyIrtJ1EqFN5sk3sB1HC1IWwyXh6+kQTIpIkTpTIB3Avx9/CmAluyK0GlDA9YclM3Qxhot03HZo2ltBDNlGgStFsbS7O8xRC2CcvVxsrmsUjqYaURahuNrewzUXE86SFmUCShqQLJPDv1VFxg7HmofG6k0htz5uuiCV79TD1aQagnjD1XY/9G/qzRKneOJ09Ou95ygkd/HpilLHDLl8LadfivVl4jBJx7Q8lqR7y/SSjFNigSQ801a+kc+6PZHBjzsPaod6/JCvisfqIlQ475GBZ9Hlc6nivRyvUBGNF6jsr7fYyCNn7amo/UIuVmKHSssHwkdaJIPyq1j6FOhO00kFdWCc+jMSE5Kq0JauIg0wS64vIQXpvUowABvGpdjO+hjpozZuPBSJkfBdNjG7yXT3Ph+/W5ioSIGMB/EZoEPwP4G6NC+E9zEdH3isjP23//mwD+P/b7nwPwbxDRH7Lv+VUA/l0RqUR0T0S/HsBfA/A7APzh4TO/E8BPAfitAP7y5+VHAA0fvXo8ReMm9yzmpCf0UjKeNm2x6/07EmtfDyZNyj9uM6poBflmpI3HKSFxQ6kJixE1Js+HQJXKadZCx+qegfSix+XhAH6dISxYbhJobvvaEVYFQtAciXgyDsr9VRqjWJ2KezcihGWZ8FTVVPTZobmhvbBORQ2adGgEOlNviOSWb4IWKXp4bFZElRaAQTfmyjsBB2BHBMer3Zck4rouJCAENmy8gVXQrixeRdj4aUGEOMZEf0tKmQ+z7AX9MAZyCKYUDBCgiWHzHIaENa+9SLAnLxFhjVGRjIlg3gBYjYZS6iCoTrq1bt9x7sy/njvg1XIk/r1meXuyuh5IBZ2HXzDMuSn3djDvCoSIuFH3PnaJ1jEllnXunZ8p5tr7eQw5DY/xO2qOC2G67/mdHhY1NBj5vPY5u8Kf7CqsPb9GgggpjYIu8k9ivFAjoIJU4CcLFQG2X6pa4G2oKpcEzWtYDmfMN6SLKabWCxK1qhxDzkZ/piKRn/Bq8rQI6JV+/3arnS1rAtY77b8eSyNdmKsSFOTF97QpLfQwmoZDbUOLF2MSVutXD2+T646b57MyocILYy1vaU3ceFOF6/T0vteckqV9C+7Gp76FiP4hAL8PwD8F4D+GQnaPAH41ET0B+D8A+OMiI2nA7vN/EsBvAPAlIvoqgH8FwG8gol+nQ8XPAPhdACAif4OI/jSA/wCKGfnnDLEFAL8bHf77F+0fAPxRAH/CEvMfQVFfn3sRuZBF9FYHEBTwa0mRcC/WUfBSJ4XJAjjcrnh2s5iH0qLu5GJIrWy9RwANK12sz7qHtLxfejNzJKjpDxX4cu3hLNthtWr+QoBdz3WH+26rQpHZChynqcXfAGCeS0CMfQzrkrEtc9CF9MDrYDHn3r418hNuGQO9HkS6BSr2NhCQrK6EAJALCSFMJiidq4haR+l4yAEO6R1CMpG/cE/IlYRbrp7IJttBw6UCaP+MIfzhHksXto6ICkXkn5mHMeQucAK9FoIMIBMG9UAg5zUiFwbUn909D9OMwvr5wzcVIVSOhMuXepFg38jdcveivTaRFqg6HXvrYw8v0NNdQwI9rd2ar9a4S9dVdJwT4CzPY/7CW9OCtBYjPI4hFBV8YFuveA8jJSNa147vzasqT/H8ROTRupAcDRdXPM1IEB2OzUZV78lrrT/RfEA5Se/PQVd7Ch46tD219H3gDLpjX3PhXqviuRI1HDxkabQ0NCjk1pWn1qEM62pjyRdtVuUhLjHFXg3A0NIg5Kl7NWEECSJZPxbRjlBm/7wn+YWh4BG4Aus5ps+66NOMeFMEfwTAX7m29InouwH8dij89o9/7rf8ErqO/9BX5Af/wO/aFfa5YJZmNRobg3LDdNQQUymMWrRQgZOYRwC0miANvWhQCDw1TCa8y5Z29ScAwstwtBVxiyrvN1rnipEn+uz7nw1tRUlwOG2YpoJty1ge56A1YatlibEB4KxQ4VZJw2RD0SJVQnrQvudC3VIfLddRII3uvIcAuuClztME7MI9frHHxIdn87xAHRSJJx59ahwiG/DJunfLHU0FWCFkVFnr+yUD201XBFFMCISQG5UVew5k9JBGwTxeb7GaI53jgm4a3kdv4ZjyWgzL8zhZJBfRjnnmkaQNQR+iFmbvEhjK18cwCK98FlV83C3eoFqHIYGMYyo/CfIyEBeat9CMu6ovptWDZA8rAR29tpcvZKEir7weWQAiIb1YGMa9E0PQjYporM0Znz3e63tksNC7l00B2+bN5qTq5732w0Omrmj0g3jTmyLs+Ml6SM5bNisU2K39UDTDxcUamZnneb13+n6xHi5zp/93WPH4Of9d2QsowmdBQnkVmvN1ca8nikeb5ZpsT/61P/Uv/LSI/GN4y/WpHomI/PbP+NsvAvjffNrff6lfo2UPDB4CgDwX0AF7K75psaAqHGfAJdSVozo8HTRZ79BcEWA7T+DXWd3f1VA6s6C+LBa6Asjwp61qApwIgNWBtCWB7zOoAPWmge6K1odYPQiRFjLWqsB9yg1gvY/nU2huSNNbpJ4HaMWEsXE+0QaFZh51rJ4/8PCL5w6mB9JOeclqKSYJSxsekjj1EzHG+COGm9+0joUG4e473ZUDmYC1sBkXaG2MJ+49BuLrPIRKqvFRRZ7GiBm9b4QneAEEmV2/EaLgjsQq1y0Rrkl+xMGMkAyGMVooqVWg7e7bw0ZROW+hhfyE6HgnqUNCx+JHDxFm8xxYVPh7uMQNAe8fTk3pPBS9Q2p5Gs3GPqzjrXZVkbRMKG4MDNaxW9OoVtAJfZZiuY6oQB+9IhubW7+9JsUMGtGugNO5Xb2ve62eU3BB596YEHXqMzbdQcqFpy/q2nAV8FWho4eV0uIeFkW9kHYXhPGBSaDF8pPm7Zbn1tfc9pY3oHK+L++37vvb19i7ZO6MM58LkejY2DKhHLkTjNpc5osgLc32AnW+LvseVx6AnhnPdfgZzKtgemjgraFNrOGsgMWTrRV1UMdnXN9KjuRvA/hfisj/fnjtz4vIb/rcu/8SvUSAsmXUs0ovPhZMh6J9NNzaJxjtuuY5qle4Vw5CRUoCyk3JHo08sVbGumQLXQFtbooSWklhoAS0RanhJQm8f0fA4gWKevL/j57BagVOuYENPrydp12eAwCQW+RYpBHKklRppQZiKEHlhYMZ1y0wD9m4MGQjU5zuVck49QdIrdLNQh28WsfBSHLq4StH6orGuy2+RaeN/FChcIbwj/Y7R0cmmbWoHEeIBHIU5RW8YTXWg+VeLFbfGVj1LTwknD2kI1kPn89JPfYxR8HbSFZoSrQejP3XQ2ARPzdBuGk1dVolhLyvQXg6giiKc3hwhN/Qn2usv6CqvTe8A6BbwVyg1OWDhe7KewzvAIBxecLrTyLR6saXfSfFnJsXsZpArlfKY8jNuFfQBg/V38ul7dryeh2EKxGfcwBDO2ATsie2EF1vTRtTVGXfwiAUPvWxWLLZiwx1TyIMn/m1RKjNlZ+SPXY3W5tRkYEGdO/mRYDmuSSdh3y2HvBDZTtgXg0GqhwQ1pkCtRUevSnCyInZ3qlzNzbiDqbo/Sxcc5a1pKgsgKMgVL0WE0i+5lfRhLdd3wpqawPwTxDRfxnA7xKRFb2W45fdJZWw3B9ASZBONZpbaV8FbWsrDd6cEDAIr4egmEQL+K6ubUtKlChdEU03G/hZQ2uEsmRsTte+EnhNpkgAIQEODXxQrF4rDOc/kYMHpNX6BgApjLoQwIJ0Ksi5olVGWVNUtvs1HUu02l2XSWkiCJC5QbL2bk9nq+5mrWWI+KoXTw2hnnQmBK4+C2ioFPZcioYJEMK/TaJU2YJQDtC32qKohCGBoZcoDjFXU2BHzdns4KfoB7sdNOGenwiH1yrUt2eE9RksjCMRi09MaBVR7CZmPbtSyEJIV13hdmGn1L0pt2g17t4P3ZhYdkHvFBSStKf6CO0ELFzl4T57xjHMMgrmMQkfCCMyRt7mn5OYx513NncF49b4+H0hbHNXnu4xcO3wVLLqcPcMRuiwCzqt+YBKmkEwucXs4RkvWgUsJOPQcfdUmioJV4RRqHfVaxxAF8aC4LSKUJw9mwMgXOA7keV16Mzzbr5Vw9ukroSrE3f6XNtzRJ932hseCi2XUJJ76K19N1l0AtKNm/A0u+Jbb/fKg612pBdjdiMkznUDXEjVofI98jWkg9Zc6RVZ56dc34oieRKRHyai/wmAv0JEv60v2S/DiwGaGvJUtdiPNFTldCd+tUYoxajmRSG2ADAfCu4Oq6K6Bjp4dq6toUmWFzRWISwE1GxFiOZxSKPoIkjGPkwA0qTQ3lZZG1s1DVvlqQ6nBJDGaJWwrnO8RqwV8JNVyddKWC5TN85ZgNRUiBHQbiraDYBGSI+s6KqGqDVok2D5QBN+aSVVJIKeu2D1NgSwSmAVLPUkGv4ho0ofD0rqhyoK7MJStHvrR1HRDz2A7nG4YPSD4O8/Ak/fa0LPQysE4EDaXZJ1bLrI+pyjsAd5qI7icLHF/CNMAGUKcMEME6ZUAG6iFdAW3nkj5k3oVB2pf28IcX9vxtCLAm/E60P4kCNsLDRzMe9xVsvYvUtXTlys6C2p1+g1HGk1Nmyr4I4EeeRTJNYI8eydRh5CSFCDoQ0x/Cgs9KR50/AbbzrG9YVa0mnpYbmYKwxzx/tnCSp9E8au4LhYcZ0ZODVThCHDWIALc33dBb4DHYAedgoBa3u+JTO6fB5EDQDNJe2VVXhdW+/o6N5DCGlWmPb8WJV6ZeZoXDV61dfeho5Rlau4ATEBKOqVJgtJ6h6gnecbwI7RE01+LunKkOyeyWdd34oiUb0o8r8gop8G8JcAvP8tfO6X5JVSw4sXT7vENkFRWwIM6CoKJdIVhQrmh8ej9k4/bJhuLrv7M1m7XiE8LjPOl0mbaeWKw2GL8Fhn9/Xv7PeI/cgNyfh8AsFlz5ByQ0VDWyZgZWASTKdNX68U3lEk9IFQcrUyKqPTyW96QuupoVn71t1JtgMha6/haCCl+bDN6N356o0ePu/jrh+EagT4ZtL3bne6Y8lCc6PlHYfRPuOWeFp7h8QQxqSHXAhWFzNUzBeKzwdvmH2GAMAOOCwZDrhFaNbqWX/KrFxOYwIUwI4KxpFp19DWUBLwsWJPW2KKrB56EWIkywlYX3TpGqGiYmvhiolM0S9i1jqF4mlX37WbX4ZWlXv83NYAGBWU5QbKOHZVInWoKfG9457GGDr0e7ek7W53cwardTlS5GiSr/HoxbilXjp6iqvmESJsZrmCcuiKx/ucjMLd5zi4wRiRy6Cq4afJay1SV2SxbpG8JmMSZlA1Ft8i3ROyz2UZ2jhT/y5/tnYgSNEuh4EyKxIsyMXzF/4M1O/locVp0X2/vEg7z3K8dh499/2bWleejuZykEX7z8gj+Z/FvIv820T034DWb/yyvESArSqs1yGyh7ng7rigifJwFevpPhmMN3NDtqrzoJwHjKNLFcfdvCJRQxX9u0OB61GV0nnV2pRrWhRHb7GFznyMQWFCrRckXnS55KDShFlw9/KMPNSqOB+YKyvn7fLv8vcRCZBgsV/o5tpYazCSoN5VYG5wmnhNSBu54iD8+sRit3HV6nNpG/u9o8GGz2mPeP1sm0UbQTXrFWLhHP9dSMNYADpE2b7QQw5uRQJA9EMfvAP3hDR8o94UDZ7JiOQKz2IQ2J78JwF4oV2hl8NR2zwcdOqf02fuz7W773CN/yWfR9b5AwBOPeQQiKusQjoaiBUV/p4sVm+rh75CobZuiceyUBc6krQWAkAfN67GbHPesjalCkXhHpd/zr28zRLAN+iV4DaGahXaYw5Kva2+rh568iZckoDlhnc9N9Sq7qijCINOhOWFKgDtZKiel/LH+bpThHW00HRvwe/gtOZZSiYs76ny8HwhG9uwgh0MkbYJIBJhujYRthO/kYsYuxOmDcDaujFg+aFerT50TuQ391Pswwbr2a4L4x67kOfDqOeVGNiOCA/ps67PqiP5L9mvPzf87tefv37/L5fLubUSNyTb5U5DQiS4mbb4v6M9fv7+GT7+hedAI0wvL/jyy4f4LAC7lxM/th3ViVe2J25YS0apjPPCaJXBqSHnFgrAcyvKjSXmDakiSKkAx/1pD4UArXAvVssSDbvQvZDWCMuTcnGhEaKZ1dRAloeRJCgzh1LBwlq1PjcVYgRzPbCrHVGB5L1LzBW+rsY2wb0T8n75+8aXkqDeCoQEtHG0m1V3u2uriF83RS21rAovGAaCI6UrimhENXxhHB4f3yjsfaltjDSw9PYbmEKA5yFkUGqKhGkHVZRUBbxQKBJ/8HQ2tmIycMAsMY74/gjp6P2okUaaXCm5wDAYL9AFMlgFt9NyjD3fPa0WDZDscxFSs8utdwBGwGmve4gLXQFpuMqm/zh4L/4emNKug2IDgArwmEdzT+PG5sDp2gkQ5j4+E7Ad+uugg25AaCtbQ68Z2KScBgHsY5A+xlCKpdPBa5LfzpjXuDhgo+nzbs9UyDuwIoAY3pvEnq3nvpwCpQv2NutzpTcYITrjgiMq3Vjw6vvoVulz44ZSc1CD1Q25pxUGDe2e/drIeNv1WR7JHxx+/yEoyaIvmQD4Jz//9r/0LvVIOKhP3KM4pKp5j8YoRp1SvTkMgNsv6Yk4TBsIygr8uMxY14x5Lvjg9gmnvOFSJry+HCBCeHZccDcvaFCP5LJO2NaM8pSBwqCbgmwtcUvrXoSTNo4hNa/E94LCsiaAFK6cs6LFypZ2NPIEoEk/EflQgIPmg5rlXkASvFsorJQirhCSqAB+SioMJ0G70Z3ZvD9Jo96JkNBN/ywaV4dZ1L6h7eKCEKaR9Lb3ZrPAQ1Wzeh+IMIn0H0L6P1NmGpqgoBxxriulwx68EEa38AkgobBuHUU2Wu2h7DwXYmEl5/Xye/XiOgphrX1DCG1Rq1XYqDYmu5fxdinYoT+i076kDYr+mUxgExSSPdZ+uNLxcRaEpzSe2nTRUM8IufZCPQiAo/ZxD8/symvy9rNCrpRsjT22XtFZh1lb7MYhgr4e4cIhrJSMgVgI2J4TtltYLUvn5vL77AgGQ/H3hL8wdvUg1PTc97ooCsBEQGTNowgbxYV0VU8oeSdD3w82sSTqzaStf2/NKsTnV2LrQzh/ySrXvTiRe7JeQ2luFEgvUt56oeLoiQXSzsEnduw8oT89OqJtyMc4wg66hwIlGcoF3ZjbGVi7k/ip12fVkfwTcTOif19Eflkqjk+7InSEXtWeuCl547x2Knn7Wf1nYzytkwp6aOV45oZLyVhrCoXRGmEtCZ+ko74vV7y4PUNuCPX5m+zAtfW8SZ5qeCnFmlLVyDYLprngdFqV3ys1JOPxWku6yvMA25pRtwRiYD5syLliXbMSOVZVGm6OUiGkC3drLCz8BpkEtBHSo4XXUq983xXskXsk3XrmlTrU2LofCiEo59WRM6V2Vby4yy8A0WXQQy6wFrN6iExAOHTRE/no43Od4Pd25QIgaEKcadc5vKJOxEIGylSrA0sXRPHcWOVdbnrYja7Poc9ZAAZsHmpXDoA9dwa8awFVVQRjrB2wmhN79jp35XdNbeEJVE+h+PNEr24Xtrb+/q8N993JFX9mDHsA/XsjZDbspxFMMNaRRDjKn6d2ZecdH3dtef2eDVG3Ea1tq9Ga+HOa3HWyQp0np4bv+9TbD5MpXM0JKWHlNlLhiwl/5+iyNQ8vww2OyOuJNs8CdjmWvDn7rxiNvK+T5inWO0Y5qaKfHzpazkOr6x1rN0Qgqv5JsC9itnXQvJjmdLzboheixvdebVMPDb4RQXjL9a2SNn6+SvplcmVu+PLtYyCqAM2ZrE2JD59NC455QxPCWjMaCPfrAQ/nY7D/+sUWWiILX0mEqHRJ5lxxc1CldFmn6NneLFfikGNAiRpvjusuXFUilwO0mlBX1jyHEPi4xX09jDV2RxTo72Oh49ImrDxBBFr5nhukMsT6ttNAM1K9Q2JViLDGcgX12EJIx0EdwgFqXdMb0tO5ubwDIy+E/KgcXW0WaxLUk/mBBrNQmSO5GlPkehSGLCGQ3ZPIj9xhy84JxlYxj8FKdYvVxt4XVoUKox/CgE0CO9oNb7vrz+/CVwvbBsW4P9s9rFG0mA/iz4PuDbiiyf1v3hXTFQEJtMJ9ELweLnGPpB560nsMh3gRo4895tTyShBoJJMs3NIQlvx4Lw/FuQJ2T4o3ID8a9cpBeaqoAWwWfh2ocSQjINVOlLjfQOhQ5WEO20zYrFEUrx0m6xcVIAUctyeXQ8kNChWOCoNb8NgZStzQE/u2BqO3Gv9ngDZvY9vXZSxMjDljUo/T1kyVK8f9XXm6RyHmUfm4Q7nYfOicoGuFrnt6F8UBps2mzLTVrn7OIcpclLwxnz9fk3yriuQ/N1dpCb94/+wNge3MvB/SrXVFpEiOp6T8WTk1FGMNJhIcckW2XerdFLe6T6iT/e0wFeTGKJWxFiWPrCWhnTWmUw4J27yP/zTxNrmAVAY8NDPTLq/i+ZaxudU1nBlA9HFvosol0GLSvYVAsBiDriQBsX5OLRR7rnIFmx0vArSiFwCLhnyyCXFXekkFuydKo2DR2XgjP2GWINzyAnYNsQKhYHOWgTa3eC3yKZ7wZ6AcBMgClJ7Q5w273umhC8ms59a/aswvOM+VJKsjyf2zbyhGD32JP5t+p9O4OFLG5zBi8xUaqmt4k68qqXcUsXQjpBxDcfkM4DK8Zh7NjjJ9NAauaWUs4UyMnmS293nbAV4BMRi0U7ekRTpiiiWUbzsoSklDLwjlVecBuReWv+0FDGNFH2u6CLIL+tqfj+reaABMKIsBAu5UCYUCubpvvkivBRqUrVOSlAMF0i0g1YRI0IuxFnguQgkVNex0uO9N0YRVmHsxZjlobYeizQR5aXDyRPF0kEFyid1g7Al0XVcLZ5mHpZ5jry9Ji0Q3St8DXHrB9OjtbreM7eZNWXJ9fVay/Q+ji4nvJ6L/3fh3Efk9n3v3X5KXIqSYekgL6Al3DxVtVYW+C+QLsioFbjjNW3gjnky/X+ZOs5L7fReLS0QDIG44mqCT4wp5poK9VNaqefdYLNeR52KwY81rAOrJXM5a4ZeSYD5skUdRh6V7KO71BILLwj1SHc40/LOLGoCVQnj7D0mmEARgYTjPlXsOCkmlnqCNjCr0sHoxZumn1kMBvA6Kx4vRrO6DivZKITcGefi7D3FojBXoV8/joD+jewtizMNRKU7QXiYETVQbFUd+3PcIiefxg/ZMk6oRyqgKpZQhx6KHuRf+jf+88t9zL/ms99Z6jC5QAQDFFJrPG9wjGRBng/HoCdR6UKXNlVTxXXzO7I2DV8WDx/K2qw0eVssAebX/MM4eWiPUqVO75ydVuFqno98zPQFB/z+FTRPPGazJBMihMwD4d3oCHYCy+MbWMiG/dfr0cV7aRJHbCvDAMKcKVLCwzuAdOltAL5i091peycNdjg7bCWaxvNJ8bfxQV6K2BoC1vD0mcNXQFy9GhbNpS9w6c9SJ1BkBeW4z4GwA/j1Oe9JIen5vImw3FMzDiO8fwmz10/fCeH2WR/LXh99/+vNv9cvlMkFNgtqsmJCAZBQoyv47qccxKfnieZnxeH+ENCVlzFnpUJ6dFsy5IE8bXh612dVH5xt89OoWTQjppuFkKDBv51saRzfFtaSgkQcwILYaBJozKWvugr+Qxv23jLoRJAvK84J83JCSK0iBcOsMwaagiAXzoUSOZH2cIy8BLzabiwpSgeZPnF5+pQ7HPeupa1lQT9Lj1J4wJrNchxBHftAQlmRBuRnCY77Xq1vu2h+E3WIewgvhsdD+wAOIGhFq+r561yJ3EoAA74kC93ao5ymgY3XalDKJUtM0CuoUT3SHMvGD1rqQiWLL2kMz5YgACbiicSs4Qm/oXkpzoIGBB1r2MOPgjTXs+tFzwf+PvX8N1mVbz8Kw5x2X7u+bc67L3vucI44kFIGRIIAJRkBRcS5QxBXsBAOVBPCPQIGCDCEFqfgHiLiAiosqyIWkjMpgEYORHG52AiEpqQDZhUmqJGOMqTLGEIMlS0fXc/ZlrTm/S3ePMd78eC9j9Fxr77UgcmmrTrpq1Zzrm9/XX/fo7vf6PM8r+hO2JmbIhhKUT6uMAN+g91u0ZOVN9dDPow2SMMPj45uXwIZrwZDrBgAp9IyiTV2g0RwJhs+GReenaMmJBtjsY0PvmcroOBkISiAEYTdq1pyPNa9rFueKQP37eG/wbX6HN+4jCeJrhZfqygBzNiduw8lE14w9WLByWj6zZ7Dbscvv2LkZB4eYd06dSYmTGcAxwljpHyevI0HTICkfRB+ua9LBm+9WOjMCa+fTdOHON22f1Gz/U2/89E/CrTXC+TrtXqs1SAkJcAQTRRE7DLGJQVFdrSd3F3zm5uylpQZCDhXPpwuS/vyapx8CABI1H5L10XrEpWSc1gkfvrhFLVJKoyh3SV2iEAsBMexmCE2OfcjpOTP40ICoKr9MKFvAtsrc+BAE7RUCYz5swmdhyWLWRS55NOmVYWO7AQkg7SdwJbSsCC81YsRyXB2rr04kMdqxSaZgx9yAcA37yYvT/saUElLPKKx2T9r4b4m7EQ/cyzB2TRNEtkazCl8/TTU4SMbkAAdzQFo2A8sxWiObNiBthFBpx1tx1rNJmQC9xk9yChatLs/hfR1vJg99JbCi6jI6cmyjPhbZmtCWWW3wMiEIzukxh21imfYdIy/D+g9+DpYt3cCb6f59u/V59DsUdXQVI+U1/7iHFTvJcILX9Q1ZRo0EJnuFjhFW8ugs+7D7yVFglmnZOanTE6Y4uyimGHzaSdeYETf7aoRJzxYALf0N+mNWZjsQtid6b+jaehYDMcqODLMgJqmDIkgANvai9DgFdsxglgzRel67qJ8ABoHAA9gh7Hs29j5zkgNiDSDvV+2kV+zYD7RTIxbH2x2aBYcgyba3p0P08DHbJ5W2vhXAv8rMf+c1f7sF8OsALMz8f3njt3zKNmF3k0vDx9Qw3y5oTYxxU4RRq4TWoog0LlLwLMcVz2Yp/L5YjlK6SsC1JkwgrDXiWjMaE26STFIsOq73vAnaa5o31BR8AFVrhPNyBC0BCAzOorvFjaTx1gjM6lgA0E3BdOjlLNusLxMCe9lORu3KZTZZmG2LWK9ZmvBDeYivUfgjDaCFQJXE6N9WIDEo90ifr1F4JoGFIJmbwIcXhRBHjbaTZCA1MFAI8SEinIM4hyN7ecq5KFrbqBFoNxWcGmgNSKegjHZLR9Q4JRW9fB37dnAcPvLWoM2BwRU6IdEw+Vo+U0RaI4Vp2t81ch25FN7PwZApkUWV6sQ0A3Ey5mig0XszYSUlxgHbU5lHL0g6yZZaIrABBhocCVdnBt/KdZHmqWQrSfdbZkXIDc4dEX0ypW7mRF83g956GV1wkXpDGoNxb32d/PPUm9xMjDBwjGTgGbT0Ysui0YxlC6NApmV/UXbMJhXDEH6O3h9mIEeNNJtXMvafWgaWWZ8bzQYs40mbCjUaX6YCUcs+vJLzbeJF4dPUeyRNS3UtaoCh2ZlkMaGfv8nlx+GncXNMq+tRALQjLqozqRN1Z2hqCxpPWZbmaD297lbie0yE3DlwiMN+0/ZJpa1/DcDvJaJ/EjLJ0AZbfR2ApwD+BICPdSJE9CcA/A8B/Bgz/1x97X8H4FcCWAH8QwC/iZk/IqKvBfCfAfj7+vHvYebfqp/5BvTBVt8B4HcyMxPRDODbIByX9wH8Omb+vjedMBFjygUbRZknoq/XKoio+bA6X8NY4VuQUhS0J7LWhEBNG+4FjQkfXKWcdVozThfhkczzhptpAxHjkAruFFZ8qz83hey2FrAcCqqWrugawacInhjhdkOIjPJyQv5I7rBtrrg5rIiBdXKjjvPdEiqTT2ZkJhTqd4mU0AJyrnhyI6TM0zLhoiN46RqQX4ZdZFsrAIreeHeiX2rguTozH1BjELj3VhpAHHbZCxr16FeNLSBZFgDU3B0mGkCrONKWpOkfNjE+0kxkr6HvSmVDncV7J8a7YNpFq5wVOnrTUJXD4dyTjZBO1CXlCbvySijA9BFjOonG1PIs+FyOcqtAhUI+SS9dqasK33AfFGXlMaDLvjAUSQeExeDNli4C6UH6HeJIDMrKMhdem/r1gG6E0J0dWYakulNRM4QRxu2qzckMDmtTmvoSW5YwZAthVR5DVbHNo6Ds5o+A8MWevVQlMMq9IGKb+aWco5XBTJK+3cnY5N0xojsX4elAHJ3+cYzE6wHS/Fa47+5+sfPgno1QA9I9I5/kfrZMx66/EzbVYcpMFPlbgPCyQgF47cdl37k+I/A76MeoziSdB5itOp3poUvVewM/65RG08+yYxmyiMeABGIGKknvTkt1xpp3ZekhEAgDf2VsvH/S9kmlrb8N4NcS0R2AXwjg85BRu/8ZM//9j/vcsP2bAL4FYuxt+6sAvpmZCxH9IQDfDJnCCAD/kJl//mv280cBfBOA74E4kl8BmZL4jZDBWj+DiH49gD8EyZLeuBUl/sUkd9s0FUypIIbey3BeBhNSqqiTrGxOFacyobSAl9cZy5YxpYJ3bi44hIq1Ru9NXC8TrteMGBk3hwXHXLCUhNN1QikBZU1glbInhd8iMPhYQVkb5zWgWGqtRLp83PC5uwdMseImrZhCwdoSXq6HYS68bCbZMm7XknB/OaAUcZ45V7TYsE6p603F5ml7uErjvSX2xnE4JVDRm3FuPrcdU9sZWwaA1CHRjrcthHgRJ1FvK+i2wEoCj3XHeA1oIbhx2p60V2/usSxjQpiFXF5EgAIAmB1xRo36yNtKjkhrE0skaU1n6gbBvsMMz/IuYXmXulGtg1FKQDs0FAUo0Bq8D2NOuQ39mnRSIEAF6Ni/u2mPpJlBhxoza6jqd4fSRTV3zin0czCo7e55iHCk0IjqGg1nU3gvmEE6e8PeC+yd0KLOO6wdgrw9eRRh67mJwVcp9CPcCtqxC3KMFG2Ejm5ThyC6UJ2bZPeCldTCxjpqgFEP5JIsPmLZyj+813qrM2F5rpUJdSJhG/pKQe4HRhf5pCpoL9JBWwIeENJizyZI7qOmaK+hrzGW1igA6y2hzLH3u8ZekWYhXkp7/AxgcA48aHSh39ek1whA7/88ckb+DLwhKXkj/JeZHwD8tTe97zWf++uaaYyv/ZXhv98DmbX+sRsRfR7AU2b+bv3/twH41RBH8qsA/H59678D4FuIiN40tz3Fhs89fXCiIQD/aR80MqKN3DWWORGQY8UxbSgt4JoSSo2IgZ1jQsSYpjJ8hrUkTlhK0gxErlTKFcg652SN4LUbfNYGeciS+bTc0G7kxp7ngvM2YWtVZFwScC0ZS01+zPXRuQGCTCPAnU2MDVOqOEwbagv4oEQUjzQlO4I6E9ZoBtocbgmgoBDhuQGZPYoWQ9ENs3A5xDpRkdKZRb2ILDf61fL5/jl/IAgdijz0Nex7dugwv3lYSxJqxEvnyYStM+rFSLDMlbd0vkpJIKgwoulCyaAjBpIgj+xBdK6AGpdyFOFIEbUcjEhuUlqpQLwq1wXyGTMkXkKyhn+QNQn2Po2iX2cY3IGMpRA1Ct6/qJKJjOvlUTM0wl/3f29F3uTqsNYDObDI0RghVHkZzaDeAzHOSJrUZCjaOKXRvqsc+vn064hXtnzqc9rbNAxsUumPFgZEFhMaD9poG8CqJvBKSUfX7LHhtEtozoFiL9XJQcDLqzbgShy5zjFROK71Y2zcrzTxB2eG/r3E6FMNgzpGWDBBfl19brxOlWwJKDdDr8juCz3Ox5sFDTat0te/SSazU3D+hO0nkkfymwH8ueH/P42I/mMALwH8y8z8/4LMPfnC8J4voM9C+SoAPwAAmuG8APAegC990pdGanhnPqNw3DkScxhLFdHGGCsOSbKQy5Zxuk4u+LiUhMKS1Uj2Qjitk4zXrf3unFLBlKobcHttzuJoaiMXeFxjQs2CIsuToKvG2eutBf992yK++PIOITR8mI+YUsWyJZzOM1oLCLE6BFmY7QEhMW5ur7iZNtSm8isBOF8nvHx5FGLiErysM0peGK4/FJ1AZ9GqzlNBFEkW3nRgVt0//fTYGtiDpsq8bSOwSVwr5He3NSCU4J9Dk8ytHRica3cotu8iT1kwpNaj6NnnlhOET6JGucVOZvOeir6PGrxHI1BVs+Z49WGTGscOgikoNHWGilLrmRGGrEIdXKReYrO6PfQzLM5w9KGAfm4WZ0eFepPYHSrtjfRgtLxMs8KNfDlaVG3HR4ORAehEwLlzR3ZCjCqoWY527wDTiyHbGJBKAJDvgfkjkfYoR3KWuhMIzSkGlf0Yggdr/Fu935vteq5diqSj6RwpNThk28zhmNpxM4PvWRHLs/CI5Cn3J/trJh3fPBvGUApkhPN4LJr9UL8uNuzKCY1B1tH0vvoBo0/ahDgrBwE8gu+OZb0RouzPOuC8GGrKp3mLme0/IY6EiP7XAAp6j+WHAXwNM7+vPZG/SEQ/B6+NR3wJP+lvj7/vmyDlMRy+4gmuNSMQY9JCYOOABnEmWQmGS024X2asJWKrUaRKADHYcULQvscxb9hqxGmRclcpfcDVtkWZnBganh2vuMkqaxIaAhgv1gM+Oh9RARzmDeGgvZMSsSzZswbrQzhjfqo45ILGwHXNeDjP0nhXefmyRVxPkvuH3JB0+uO2JdxXPcYlebOdAoN0Rok09aHNdgw5Lhz9tFt5BmiJ4JW9PCcPFQ2wWO7GYESzWB17Vg2vofFvJSrjqrjzMRkRUuLXUN4BIBmLvWQoFBjSytRcWYYtqUEGxGBtx377EKty7oV8TrwPkKrKXDfD0LDTjfI55IHd+FpWKk1QI63J/BCROJGo3aJUaZiKU62OuCKfF+NrZ4bQnN1FggDPkPR1uEQNOpS4wB2Z63YNyCOP6vVzIPZGLYAOToB+BhYgyLH2shF8JDFH0d+qWQ2zlVOgPR3NeOJFz33u7Pc6wq8V5Ze00W19gF0PhYUzYeOJtyfUp1xaMOEXfLinmxIdL7IGpREo27W29GQfPDAJcur4fkM+NZRjwPI0dFRf6Of4mEcybgbL9muRJZCYX4jYpAz9kuu73RLKrZbw7N7kfoys7wWUHHq1aoLeh9bYN6fT+oLYvVNf14x/zfZGR0JEP/d1yK1/3I2IfiOkCf/LrQzFzAuARX//j3S879dDMpCvHj7+1QB+SH//AoCfCuALRJQAPAPwweu+k5m/FcC3AsCzn/UVbE7kJkmOX7SPUFrEqUxYSsKmzevSAm7nFV/17AWmWDGF4rLtRctIa0vIsYrD0d4KEePdmwveO5yQqCGHikRNpOqbZDSnIiTGpurAITRA+xnMQmy8mTdMqYAAd3L2PfZe45+YFH0tQYmHIpECEixLUKZTzhWHWc69cReLrLkKx6YS2hS91+DXbojSX+vGrURCAIhlkBST8x84MdpdAabmDkzOVZBTzl8ZMhqfImlEyCUgGHptI8QapAx0WxFUGcAcblu0XNiAkDRCb4r1r1KCKndDf8fmpzTdRwM4BaBxR3sBiKcgvAzSMta8twjhSsj3ck71yKiHHiEC+tBukOFh6PPfyx2j3Fhz9dXMrFVlU3sWRB1pVQk1snBvghrzjTwitrp8XHqmAmjEnABW51EnjZ57VapH6JqlGlCwZRaH0BRxNqgJA1rOevpq4OGlxQysqrcWF/J5JOa0WxKn02a9j8yAD1lRG7Sydr2gAIDolXkxfg3s/Gg8rp5xxAUq5kgakUspan2H0KL83bIb+45QCXWOCFvwXohnBpqptEg+LdJnsKvkvKGuvLGvDqhkYLsLnd+TgMfPX7P7i4frNGh4tQysT0kyH+vFeICwdzqhoKsTEAPr6x72/fY2GckfI6IJ0jz/08z80Vt85rUbEf0KSHP9v8vM5+H1zwL4gJkrEf10CDLsv2DmD4jonoh+CYD/AMBvAPBH9GN/CTIX5bshvZZ/7039EQBIVPHufMK1Zny0yhP8FYd7fMXNSwDA0hI2zRELC1orU0PSp2NtCZsWdrO+FsD+90wVmepOk2vjiPtywKVmnMqED5cbbDUihobPP5XvNU5KAOOYNqRQUZpogNUWUDigquPIseKYRWvrmDdUJpyXCfcPR7RCyIeCdz9zjxgYOVZEEskXRu+Z2PHVJkrITYmSpTDCxEhPrsI/UVmXsU/UGuF6ngQoYBsTODXwkT2D8D+Z0yAgRukbsX5GT16tAonMvb1uvZUofBsiBt8EFM1S4lyRckFrAuXmsaTGBMoNrCW+etcFiG2Esjd2AfAWRJ6FlYCpTXq7jAJ0kHMoTyrqnZZXrFRgpbpGqDdNDCj0NesVGWJoaqg38M8yqaGfK9KsPbNzEsTao80ywpZbH/k8ilNaSfIakR8A1qxQb1TUA6MCLktj5RArk8ULIZ21+X3owpy2jWU8IsloOUj/w7TPTE+tL644GlOWLpkFVEL92Laneq2He4cKST9lUeNnkb29LUiE78PAbI0ifKKjZbAOgAA8o+gnhe6gCOAoc0XqJGXM7ZbRJpsFIuvLiR0VR2q8a7agwLhLw72h/+JlIF6u3cGYIWeTjdHr5Y+I3gpu5LmrH4CBfLG58T3jkD6MZieJvPy1PRFZHSpCVDUyqq+J3/PA9l6fe/NJ29s02/9bRPR1kJ7G3ySivwHgTzLzX/2kzxHRnwHwSwF8hoi+AOD3QVBaM4C/qjBCg/n+dwD8b4hI6VL4rcxs2cVvQ4f/fqf+A4B/A8C3E9E/gGQiv/7Npyskwc9OD0ihIUIQWoewqfFvOFDBrHjPqEXW71/fwz88fRbXmnCtWQZjQfobtQXMqeDZdFEVYHEWAPBsuuBZvr7y/bdpRYnBs6JAbeesbFtbwov1gBIijmAEDadMcLIxoTQ5lveOZ4TnH/pn2xCyBDAKB+//XEvCy8tBIc/Kw2DpvTTVEQPkgfLyGkQeJgYh9sXYUI5xLz5J7IS6GGUYGENKamUTkEG9xt6QB+RhP1RMB80Oc0PbBGgQdfwwgC6tfSiIsfnxbmsSvo2pGavjkeyoZz32XWCoPIwew9BbQZTmOE/QJ5VAaxB0mmUt+joqQBBpfRADCWBDrJmjArqeGQEUO9rM1pgi+/yaskWUSxJE28u0m+wHaMP/KEZYVA4ePeGBvTzIuaHOQTK9yDtjYL0oc0q0BMRLJ0tud+yG1eQ0BAQgIII2t/45G4R2Mzg2c9BrUFScTLWMy6Brpj2GcjAHIU1pj8Q1OyxHgA5Wb9G1Y3j/YyTaudyNOQXAezXWE/DK59gn03tj06zT+1nJCJTk2dz0IbnYoy3/rgfhgIh+jxviDiS/u7S+fTF352wEVWpS8kwXOHLOSlhRmeamYAwCNoKUuTRYeKz8bGXSEXARr4T5QwEutEmAAhxUt0vFKaf7vu6ftNFbBPHyRqIIQUz9q5CGOAH4Pcz8f3urHXxKtruv/yn8877lNyLHitu8IlHDe/MJn5kfhA+y3uJS884QT6HgLq0IYFxqxqVmFA44l8mVgy+bTEC8rNlnpE9TwWHakGLDO4cLbrPkwk3Di2tNuJYshMUtiRgkgDkXzyTmVHxoluuBUUOghhQaplAxh4KNgxMhrQcDAGuLWPWuMhjweZvw4fmIUgPmXHCcpM/zpS89AX0w6Q1vvBEGzc2Nss05CbGpQSfUSuAWQKF5k7+UgKrzUbgETQOwM9xekjhU5BvpTI5THFNqTrg0VeXlmsXYjrftiOSKDFLCoTkKZgBLdPl5Uy7myM5fQW5CuIT8nZs8neEUXR7+lRIJwac0cmLw1HZOTM5Dj5EYIXV+jwtuLhF0Vfr1EKFDCZKwvpAaT49srzLnXHoOrJIfnfm+R7DZOmHPp9E1kwFUSmjzLEmMi8FkrWfTsjhM4HG2pd9bNfuwXpj2SHZ9nEGPrenn0pmQTnDCp/UWtjt2RrzpptHWxSmjgQMIDpHtkvOqL6Xlvu1OSpG7NRl+t2yKGMLdcYLlwIPi7oAMiTV/yJjuVfbkVhvYg3MwZQHPoJxUqsCJBd4n25WuLNup0rNxoqhen+1OJO7NQXhfZBp7kj3TjIs9d8M5WJaMfn7xCu+njFnj3/5j/9J/xMy/EK/Z3qZH8vMA/CYA/wMID+RXMvPfIqKvhJSVflI5ksaE85pxM8E1kH7w/Az/xf17wh1RJeDaCGsRyZE5F9zNK3KsmGPBIW5oHHDaJlxLX0ITdJySoLJMHJKZ8MXTLX6kPUEMArk16fmqIo2XRYZeAcA5yJz1nCtuDyumWGV8rjqCKVYnQtYWVLdL+Cm1BtwcVjy/kQypT26UzXS/5lwQQ8B1zXjx8kYMfg3gO0VBqUwFAwLNtWb/kP4SqxTDoSLkhrombKcAk3Yx1nhcVcIjdHl6l4Ania63FzbGDn6XL9q0R2TQVHt57LinXrcSwOfUh3KpiB9tqg9WJSIOpk92o8apkmuEiQUC0EiNUzcGXhZxMhv3ZjbgEF1a7AXaRan6ElpQUUhl/CNIdsMkZEsXoWxAukY5Zj1240+0eVCO1bKTNextYJMZOIfeHtgHX0m0KUbYDKXDji1q12ygR9di7IyPgBD972ZomiKxHHIcVEJF4a3pTD26NoRR7ex7cC/TpAsw6fzxfC9oLBu+JWMH+vGOiLfphYyxLUfhgLQk65LvNUujbhV3SDl1dnUiUQAYHK9lJ5SgoqTy2XwWEqGUjSBzQQiSVekamLROOjPmD/VeVScZCpDPDWFj1EnEE3dqzCTX0516FodICgkmlv3KuIK9wXfpGgV++DpBj2t4LWx2v7GMHK79vjHnvBOA/JjtbXok3wLgj0Oyj4u9yMw/RET/8lt8/lO1BWKBwDLhh++fdKIcgBgkAziO43aJBf67ZjBPTloUIy5O4HWS9DI2t5eJAAyz0wtyaJhjdSmTegzev7AsxPom5jA2LWddtoT76yyN+yWhVTH0BInkH04H3J90oNa8Odx4LdEVhrlJzlJPGeEU5WFW6XgrD0mUOUS4zZ4swGVbII6mmhG1zbIasIj/OWBdDJJxKUYUF2Awxv6dTGLU4zVJHfqgZRT/OyOsAdNLqaVz0ohvPBwejoe04azwWUMjWe3byxEGl2UIh0b3y4+eKark8y7cSNVexqHhwTT2eT8ucqIkQwyaRb/5BCXSdTSYiAsOx23naJGywYQfRdvRGuHoWQ6ClMmkGUy745T3iYPyqFrLOE7KY+wQSS13Q+j72IQ1L43f4fhsnc1x2f2ln7UBVLZZKclG4rbc+wjUZN2MHMpxv+4tK7tejyE/7I9Bzkcb0hMcQmwG3yDRck0l8whV9aqOcC5HNO6NPROxG+GWCdd3e3ZBVTK79Y46ws5kS4ywiGFdLItogkJLF+XLqLoyIOssREjlp1gQgEf7svtF77cOKujOxgeABThy703b2ziSfw7AhZmFg0oUAByY+czM3/4Wn/9UbbUFfHg6+jwQQJR/DWZ7XiRNaS0I+smazF6q6CULG3/bGrmBHqG625Ikmg+McJDvCLE5IbDW4LDiw2HDIRcE4l2WY1uprzLUhUGvWmDaU/BjVIu3rUn0w1qQ/sQWeuQPINxHTB/Z4Cq4FIax6EVGpDnqxw3ucJNDSy9e3gksjestdI7CgDB6XPZwKW8S9BkbtFf5D0GHP43N0N4cJIfFhk0iY3s4rewE4JVJh9KItYyDXBsJ2GchdZL1CBshv6Qd1LdH3mokyqMSlBkOQ+NM3TiZgbbj3vFJhr+b5hO4K84SPyrp5G6IbBshvY7IIfjI4rASpheyJnLd9XpusqZCnuu18n3UDjQztjasagPo2u8Lh6TWfiw+LyN1yZHde1UGJig0WfoJYhjDpjIiFWimK6UO1eZ+uFz86ChKX4c+X4QdwQfNNFvQnsMsn8v3jHzW43FobY/YQwSC9XTsnto9nOZcNHh5XVBvx5/ku00axWDGaek9Kh/xyx1dBVhwYdeZFB4sa2zTI6mpDI4OwaoTdeUGbfaHCh9gtd0GbMOo4sdjsl+3vY0j+S4A/z0AD/r/GwB/BcB/8y0++6nbWiOsi0wVNJSPBWIhMHKqmFQ6pbEY661GrNrURYA3lFsLqBXaJwi+8naZKTAwV78BapG56ospDCt/AwRczgHXkGUS4kMCLQE8N+SnK1IWJ2SwYzk2+ZZWSRBHgVF0EiIP7GNK/TvCVIGpOvlQRP7IiVMmzSCoGClLhALgIr2blhXqqk7FcPtBh1GxeAJZhsGApHOv55t+kz1Eu6YuSxOWKlSPqjO913eaOLbc+xqkkx05aW+AxWH5eNcGKXeR6k/NcKgqFXm4ks7DaIaAQT92QMsEjzYeCYg2wGv8u5UUAJ9x3qNK+JrZHI7tqDVtXzMpAxnJT6JGAMSox84bMMNgY3blhkDPFrQub4x7NGGVG6fDSkVshozEcYzGi4NKfOhxpwv7zJRy6IbXpN9bFmc3EuSsXGVGj/Q7DGFEBJdtt36Kybjke0bWhq8ZTJujvnt4qZ8rNbjxH5vxY1nWHAIHuBWMK3vfrs6qXtDIHZwFQGC9dwZehjW3vY9mEb4l12bszXkGuGZWqIzpJfd7o6rzLuww6HIMrzw3+cyYHpQScBNQJ0IAgQvA6gBNJblOhOWpOT75GRdGfsGI14Z6EN4LRwJVRj6rBt3044TagmQf5kTAzA9EdPMWn/t0blsA//AB7aYh3G2gIDX2ZYmgwChzQckyw6NsCa2KhHyIUqNnhk8a9I0YKYmA4XpNqKfs0Q5S88iVCOK81uC8Cp7F4TABQbOcdqhe3tnOGRtl/x4igJI0uhtrI7sBSIzpZhM01RZRtigPijW7G0k2os3DqL0DqnCSVp2llh5XwuFLhPzA9rUAgHITsA2wVQAe+fuYUnvYTTG3CvIj30tD+DKRolLsQaPd50QSHs40t+/xh1hr6gKl7E7QItER1eLNSCbkeyV60b4pa1u+74Qt20YZizoR6lGOK16A/EKuWTlK7TpoQ5SqGhat4dcJPsJUnIWsi5VL6Aq/l0bBxrB0I8AGSGuixwWITEjWGj2oZ0W2mQ6Tw2WtFzJT54mEHkDIAYhjne/Faa+3wadY2r7rQSQ4gKH2Py4byXzyXSnFzu0RWEEMfi+rdOesuxyMcShAWlRyxO89ElLekbzsY07QIn3jpRDDxQg5iBPkUTamWmZkFh+77NCyYdtGnaygI4A5iCw8RyiPR7OBlZGuDUzClak6mTEugLEiPXAx59pYlZilXOX8kr7MO+6HOU/oHPbHZSxTTZBgoCEt6iiy6HmROlduqkhgA7x+HEtbJyL6Bcz8twCYGu/lDZ/59G6k5ZvckOeiMu59PG6rAcs1ght0zC2hoYFInzqHuLKXsZZLRv3iLHXxiYGbJrLrc0WalBdQhOiHQgiX4IxqQEXZjg31oNlLUOSRldQ8yxCkD68RDYr0UXgqtoB10dAhsnMwSPfHjXTmhoovHmQAlotFajYQF3JyWW/E9nqpl5cIYoybsryhka2S76QhKM369Ynq/0T0jIYxoJL6g1RnaGNYGs2wss+ImtFjqFmVXUMvycUzSb9ESW35JJ+Ji0S9LRPajWQfQUllYRyiRFYfp12ZJRVGPkH5FaTkrm4QmYRpDKBLl/NQ/qnA9EIbtHgUuRqB70CiN0VmsAeHrO/z/SZgO5qXhR9L0LII1X685UB9aJGufdgY80sZ8VoOhE2HNK1PCcu7cZ9lRHJWeVykqb1nkIvzNuMa1wYwsDyLuL4bXE/Km9BDzyde2DWlrI9TBrVd21jXmCAG2/5ujG0mOH8iruwEv3IglBu5D6W8yo5IqxMpu557n07vxXxmpEtzww6NzrdbG6FLu/M3xxM3gK7svRHADL48m6J6IFmIrJncd0Wvj4hMaiB0DFjv4M4un/u6W/V6vQt+bOY4JQveB0XizHpAYGs1lrksE0pXRlya977GUtrHbW/jSP6XAP5tIjJG+efxliq7n8aNcsP0U84y0rYGtBqQcsVhkmmIU6reTDf139ICtk0QXLVEbApljVF4DtzI+VctM+i2IERGXQO2e4HTQjkRdFNAdwVMLI3u+9gfMmOSM6RnFyBS7TrAKmdBe5m8fasBJSSwlnjCVbMTsnKGML7zXMCpoUbGps6MtrBTxgUA7dlLRLKQR+Tb004yewyP3D9Mqj4LyVIM5tiyOClP56MmNVUk58tRnIDDESNLBrWyczgsCrVSHEiY4EasihdCuMqbbCBRPgHz+3pus+g3wZrW6pykv9B7JNZctfkf22uE9eoE0V8i7Ayq32ODYwT1Ov0uYg7wB7U8gdfHjUrUhu+MV3PM2BmssEn0uDwLKDfjcUj5apzQZ8bIjCZY54Pb5ELVXKIGhOvQtE3kxyDZgK4jeoQv1xuAzim/Pk9eUpKSUF8Ty4rGYKRBS3gr+74aW3AzBBkToYL6/a3PivezZjHSdQaCKgBYlsc6UXB90rOXvNrNO1w8y7wmgEMQiZQD9TKhqgrHlXfjBQANMmb5rrAB+SIOvaW+ZvascJBMaix12b7GcQFNNbqCltCt9AzA19iRcFbW2wS9xiZeaU527KM9ylh2azkcjwiYPrrBX7O9DSHxPySinwXgZ+rX/z1m3t7wsU/tZgS7GOGN9BDYpUoezrM0sK330AjhUHC8XTtRr0jPwHoX3AjbsYGj9jWylMGIGE0b4A6dJSBlyYQwbwifYedH1E2uHqkIYiBGytXlT6Kiwww5VlvA9ZgEOFADyhpdGoVNRiQ2l0zhq3ApODL4UCUzsPG9DCDKdEPJxCKi3vzxSoiAwku5G0JFG7E25l1ioupwH+tlELnkB+usDM5QeKQqCCv5K1yVyWzlCRVSpAbv+8iCyvcxifAjR4gky/5qO3TRHJiXUYa3OkpHeyQW2ZlxGoUWDe5pZTdvUg/lH0ciAUgXcpRTuellIYcOR/leL03ZcVmyoT0Mqt3oiJNk5BP57+ki+6pZnKVMaVTnoNkZAJSpCxu6qOHQbLcejZ97EstCtxKFj5pjHAlszfjUgQh17pMEe2myr6mhvYJeU3Pay5NhbRp2jnMsp/q6BMkCXYlZEUgcNTu060CPjC2Ty8GHTdbOovGxl+E9ogaZ2x60xEjDMaHv15x1aFKGS9em5VPRAuNAWJ8Ezz5GeLVnnZpVMpnDl2tYDuj9KjvG1LOJ/KClWXUazmVhy+7Zm+Ytdpj4OEaYVeCUsiDSrE9D43P3Mdvbijb+IgBfq+//p4gIzPxtb/nZT9VGBEypumQIAJeUH2dmxMSgScQOU6qY8yY9DOpCilMqSFFl3luQyYo1YHupFikzQq6gAMQgziXniifHq0N/k14let7Z6pvKooybKxQDuKwZl1VA6jE05Elk7S1bwXAuI6iAjH+hZTKby+6ZCUFKYrmhfKahAPIelf7oByPQ3bACPmkvM+rEqMraNTJjR1fpT3Wo5DwTIGzBH8w2McqxwUb0Ss8BPoCKqiivimEQo+FIKc2U0okchba8y7sozMEBtRsEi2g9upvYDZc97C2zRP16f3RYJvk+oIi0MBhp4u6gxvUbEU02mKnlTlazLUAiaVLDbA6oHgjXz6AboUc1fHe8rPs96LnpVElz1AwtxWnvqU2D8y7i1MfGsXNOANAki0rD+Zi4oq3Pjpdgt4GvqThWcV7sw6EseqYqWVWoUn5bnpFnjVZONCdomeQryAf09+d7KQ+1KCxwg/vWWZxLfmBMD1IOqJqtmTS8cT/Cxh3Vp87fBDDHrU6EOlmJkBE3eE9in0Vo5qGZw3ZHbri9PzGsv5MtWa5TUG5TOZKuJTsKMF0Z08u2K3NxJCzPA8qkkOgNoHXvROMmir+9P/TjkJEQ0bcD+CcA/G10IBhjP7DqJ80WSZR4lxqxbEmIg7EikGQrz28qcqxO9DMOh8BvRTbeUF0G840k0u81ysztlMS5pNCQVQ6+1ODTC8tAeuzcEsk0AHQnwBAHZcehkiY384bPPpGZKteSsNWAFBpoKvu+J4AUq+/XtuuWcHo4gEsAI/RZ7ZWALcLJgjrLQyI7icqhUVKdO5vaZULGrUn5zCNK6H5S0zkdCgCAPRz6ewOayXcfG3zK4EIu1gjsI2pSAAHpsW5PdB1Tl+8259EiUA+tR5B27jbJEEOkqJsbW4vYBm0r44a4kYZlXPKG/CJgeiFGY30mZMhQRM+KNvTSi2oz2dRER7qFwbib8jHb5zRbCN3Q9BsdO2do5UsweXaVT7L2dYYDCUxKgy0OUGSZzVYXmK6JQer6186G5gBXAnC+hzvd/bWz0bY2R8Q3Q71NQLmTrJKKaFTRiR2CLCizDvvdQaiHKHoMJGzmSdjkvnInG6B9DXgWYNmMO/sghh4El9s3hWFrcHv5aCgPxSv1/sPC4E2yAhuy5ag6SB8vXeGB1eNSlGR8w5raPdw0OCDyoKElgCl09NpAcDTei2fPEaYBK9yodchEXvXNr2xvk5H8QgA/+20EEX8ybClUfO7mXiRH0LMAQFSA37/e4qxyJ9dNykbPby/4Gc+/hDlK2CEOJuBhm7G2iPMmIdpaIlIUdjsAbFUUhAFhxx90+mIk+V5RHBZHUWrARZntzlWBZBxJGfJxboih4S6veDIJ/tG0ttYacS0ikXJMG55MVz+3cbhVYxGAXJ503a1lk4FYy5pQhrJdCE14KJesDGx1Nsz9xg7qcEySxIzs1ByxFpPwZ2xjhs+rByAcnGGOS4AqGN9nhEsQgby7JiCEJSBeBGJcbxtwqI5kc10um+FyjYAKH7bbfpzBkHSV0NboznEkS3qm4f0EqJaWECAdVjwPMiu6UVV9Jga2pw3bs/09WGdGPcoxmAQKANGwUvmRYshAEsMOYtAlIj0o5ydBpUNY5S86sQ3E3qQHxIk0VemNl54BGQKv3DDKk6YLDwdBGJPaB1ARA6QETCvtqMFc3wFWKKx6lfMqd8DyTpN11zV2+LWCNNJJHLRlFrs+GVPPtqJldsau17U2Pogex65kOWZ5Y2ZsDxfJcRl8vU1ANfjvQcAc49YmJXGGvr5UgeklOZrOv9tKV4DD3sfARbIQy87hfB3SDFLuI3hGuT2hLub4cZtlga7uTN53G0t81hd0af6Ifu+wjkVWPTzLDt+0vY0j+TsAfgpkZshP+i0QMIWKY9xwmxZENMyh4EZddFDV1gZC5eA/N5ZBWD+6PMGXrndoTM5+z7HiZl6RU8RWIl6cRI70OK94clgwp4L3Dic8SQs2DlhbQmPCtWYsJaGBMMeCKRSdk1KRQsW1ZrxYjijcWe+BRB34Jq2IxC5Rv7XoGmCJ5JzsPLYmx34uk+iClYyHZUapQXovgRFDlftbMzMTc5wPGw5HWZuqs0xYMyVW3oqBDsw5dNLmowyrkZMjWwVK6Wx86ynFKCRPZgLfrD7cq5YomcHT5grC1juqNWBZsszKjoz5uIIIuLDMopeL1BCyoImawaEBRbhBpuOwypQcmggQNhKyZyXsBBFvKmDcHDVIXAntmsThzhW407+n5iKTtUSBYgNu8ShKH2xUQGiNxHmvGi7qsQGCinOAg5Z3yi1je8L7Et8qWQ0AF3u099rWo11LrzA41NEQqsRKBOpdw5bVCVqGCvSoleCIQStjggFaIsh4IlEhrcQDRFenUTbdpWUFEb1PMxAsTSGAzPFBszp1Ml3aHTIRkuHaYePxUgOqnu9KAF7psw3rhCHTGVBo6xPGdicOcnopSLI2kBXLEY78GsEpIwBhzBbcIY5OUbNkA20Qy37Lzcc4STtWtjXv11NXS5z+oF5g+1ifAuVWysrx0uH0n7S9jSP5DIC/q6q/i58Y8z//Fp/91G05VHzV8SOfC9IQcaQNc9gQwZhVCXjcvrQ9wQ8tz7EokPvpdN1F+oEYn7/ZEElEHc+q/vs0X/E8C1LaRSBrwllnnzRt9kcw7vKCZ/peyzISNeRYpe6ppTJAhBh/7PJkNyTL1H0bi1O6y4v8nUTgsbHss7aAKVQ8P8p3nbeM8zL5ueQsDuh12ezNvOF4J+r/ly1jKVFJmSq7wvDyW63a4NdzNCiyZDoFtQZRG24aKumSbxBnZtwcc05pYO2bA2fABRBtY8Bla0Jk8LF4ZO+9IjV2FBuCOqViKgS6E39vbqLJNvRFeAvgS5b/D2KPNA33DcubuRKqhs9Euj/qDnfMzJZrluOoBCxBSoNAN/QRMgDstdH1/qVaCdszMbK0CvOfAQdGYDCaY/bSEsCT8KW858DkI2oRSZxlYNEL09kyJkjZmNxRc4UgERtAa9c1I7tQgAM2kNnLVUKmfJTlNXaYuhlhYCj7Nfh8dzD7zBRjrtsyhlXAGTv1X1s/I9wSeo/P1X8NUk7e4zIIv2UfdWacv1Id2MouhPmKaoICBdpRvkdKcur0h2mKpnoAdDSfCGxaMEHgZJUCeI/KxgM8Rmk5oMOyPAsWNPM2wqhLo1i/6y1qW2/jSH7/W7znJ812rQl//+VXYFLxxagPqTmWH7i841nAVmUeybP5iq843qsKcEWii4g21glLTQjEyNS64Qa7RtZFpzHad5zqhPevt7iWhJu84YkqAv/I6Sn+8+UzPhek1oDDtOHd27OX1NYqho6Z/PheXA5Yt4SUKu4OC+ZY8bIc8GI5eH9HwAQyEMtG9hblyFgmAEjE3Nr+pqHQswTTF7P3z6mi1O40GoduzJi898LV0GTopS+LXPU7zFDb7wSJzA080NSgtUqeCVHS7AVwp4Um8vKAOgM7jk1LWEGNuWY9ddP3LFauAtgIMltAuI/Owt7pTa3yAJcbRjtoqWwAF7hhmBtorrsJl7xFtEsEbVKOghpNGx/rM1G8Z6PRbAHCNfb9G0rqrgKzZFsu0U8MqBAkRwbP4qzTOQgqTr6oN4wtqrcMy8AHQU/JrjsB3ACCMKhhmelDBC3iZ4JFz2Pfhh4ZbeqZE3ivOeZOeyg7eckGBh6Q8lJ+QaKfReZU5NrkB1ayrfYiDF6u/QgRD9XXUl+HcBVgSVhUYdgyqvEnemkRQFdTAAHWeyA4Eq4NoBArnUrfDiIlVNEnRbYu+Nn7PYOky7DFC9wZSK+ury8ALTNSd7zqMFwpYdic8KjrbjBjk6550/Y28N9/n4j+awC+jpm/S1ntb1E1+3Rvq84WaUz44fYUlaVf8eJywLIlhMCYUkEMjC+e7vAj909AxHh6WPDOfNYeR+9PPKyz8E2qGHhADO2cRBL+K27u8Sxf8IQWTHcFpUUUDlirTEvcBgdyvUxoa8SSMk6XCTGy63oRieikDbYat1KF9/JwnXE5TR0KzGKgQ1ZZ9sEwB6qIUY3qGvuwKjUoYIKDPqaGeBCjaNBnIkbOBTkD65qwXrLLxpNGo/GkcytUeZczwxj2ALqelxkbLSOZHLzMghdHQBshqgGut1X6CgAMEcb2WYITQMFKAl2oR8MshqDeNo/MeWo9y4jioNpMUr9ii3bhKB1iYF4IQNQmKDujuk1idcJDBL2Q0NCW1FFbGonag1oPvBtZa0bYu0dsxkb6C3HVSPiUZLJhBOpNc6i1l2mGyNschWUqzjDfMETonUltDkUIn4LwM80qF45k7BvOYThe3adI0LD3hHwdNjvfjlYy2RmOwmEyRd5iGVQhH+XrC8RiWBMDVNgn/IHld0NfVeP/VPH4oQF0Dr629i8/AOnEDnYwEmRTYqaUmLQioVI20v+Bkytttvr13YDre3A4ss27scwwXglYoIOmVLEAe5JhMjkbZbNzALiycMjQAQcGvzZghK1DOjOmU1djML5LV7Tu92ZaugSNqy28YXsb1NZvgcw7fxeC3voqAH8MwC9/8+4/fZvMWt92Uw3NqDcm3ObVxRGTNscvJeNhnURBt0b82PkJGMBakvcZcmxOZGTWJnITpd6lJFy27Eq/tkVif60xYU4VLVbc6BjcsYxj2YDsN+CyZXckNhfksmb/3O2TqxzvmkScUktFxuRHUfXfElGuXYIl3G1oJYB0Qh8nNfzaTK/avC6X1PsMFolTZ9L3WaaQhrQKKLZZm69MbgAcIUbjvnSRNHth7VmA+teS9S+sFKHRFLT+jhJAq4W/chyuzFvFOFBV1vOgTwbj8wBSbzdIrmVuFSg2X0WNQyjCqo9XAg6qHOCcG01TdMYLFQLOQTMOllFv+uuIQDLHyNqEHtFp9cAot3pYWmbhquFpGHokLFlTPSpPx0bm2nUZYhFSZ2nOKmjjvE5wNjrPe2cnzdwOAQbg+xyNUFjFYO4yHR5+2ntZyjhhg3A3PlIukBl6/YzX+7V0BABwPg5h4+F7lXiYLizHEIFyq30LW2v0qJwYfa4IejZj0TygSLfhGPaDqUh5Q+QZw/zR44yMdn0PmxVSjzKH3fZr96TJGI3OwbMedAfGvNf9Mil7gDwicXXlprI+jC4cSf2z3rbzMsPHb29T2vrtAH4xZNQtmPk/J6LPvelDRPQnILPZf4yZf66+9i6APwfhpHwfgF/LzB/q374ZwDdCEr/fwcx/WV//BvQJid8B4HcyMxPRDIEgfwOA9wH8Omb+vjcdV2mCzBo3m9E+IrVM3RfoNi0Q47nOYS8t4n6bcS0JOTQc0oYUGi4l436ZwUyYUsEUq7PjGVDYb3Bob9Ua/3LNoo8FeN3eSjbjhaQAHI4r7g5yR6dYHZ3FAJgJOVafeYLDItnGcG45Fzy/k2b9ec24LBNqJZQlScNYjTsfeuQKDnBpeaAjtTzTEQ6Lo6AIPgCJ7Wa2kJwAsNWCaXgNcI4L4KWeXdN2FYTSaGxbBsrTKg3yAJCRQKsctzcu2aJceZ8jzghgan4MtERHXcmOpDZusxv20TN2xtgN3EaOxvK/FepDkjTylQjTnCA5SqoemszBqFbmkoyu6mAmZ/jrsQlxUVUAhmWj4QamCswfEKaXOgPjaZca2Z2DJFk6OwWuTQaCil2Sr6U0ztmlNoBumIM2awGB3TpsVb+Ph6g8bAKHJpbylGllst0XttZ+kPodW8+G0rlraRnJE+jOxyJxalC0GKNNvfQlwQB22YnDY/URMCdqLHIrz8WFe0ZnxzrM8fDX7T5Gdz6g7ijiBcJlgRl8fb9xV4xsSbZuw99bD2oc0m/lMe4Ol6kHTaZo0NJ4boSgDtWO903b2ziShZlXHY0LIkpvt2v8m5BZJt82vPa7Afy7zPwHieh36/9/FxH9bMio3J8D4CsBfBcRfb1K1/9RSEb0PRBH8isg43a/EcCHzPwziOjXA/hDeAvpltIivvRwixQbpiQh1HVLWEuSMk2sMq9EuSOGzjJ0kzW8Gwj3y4zTdRKjfcMACk7rhPvzAbWSl6SIBMY7wnENjWS9irJF8CoF6YaGEOVm2NX5G4EiY3pS8JV3LzDFitu4Yo4FS0041ekVuO841Mq2a814uRywtYC7ecWz4xVbjfjRD56inGXuh8FAPYVXeGQ7qoFnkqc9MmhqiKlKxKs9i3EjABQkE2pr9HTcni6aRPfM+giGCqvXJKWp1ES5mAC+IxRt7GOJyqJnYK4ISVQGTJEAAeAbQaNB1QLkAds7CQDAFvqM9CTjZGkj5PswTEhkLw2ZpeuGgwe2MKPdVoW9DilUUgfG0N7PcAxszlH368OlZOgVVLzRHDlb47lpRlIh89lBTij0HoDJZEyM81cyzp/vir67izRugzFtSaDW0hju2mxj6QpBYbEqCGr9DYu0d7NYmHaNbibpIwSollxkbwIbDFUyLLjIqPFBOMp5cwTW6VUlZi8RBskyys3+7nSmuJ6LKQ/s36M/XU0Xzufw9d86wVn6Q+wCkG3QkN9xlEYHqa/VA9AmevW99tba4b11hmuzjetqTqeZakLAjv8TVRDUme0jpoP1eLRf9XhOzcdtb+NI/n0i+j0AjkT0zwD4nwP4f7zpQ8z814noax+9/KsA/FL9/U8B+GsAfpe+/meZeQHwvTqH/RcT0fcBeMrM3w0ARPRtkHG/36mf+f26r38HwLcQEb2J78IsPJBtzbg/iwuepuLcj+uWcF3zzvhXJiyLILGMfwIAN3mTjAPAVctXtQVMufj0xUCSXRynDTk0mZd+PrgDYcskKvUyDQU06Wh68zmoZIpxJb50uZNpi0Eyj61FnNbJZ53kPm0JgNxrecheACmtrTXicpHGfLPvV5y8R6bgbgyGOjVVUqSLokd0hosbRltzKxvx8BPwTIQvEev5NbfiiJSqVgOh7gx0xjoCXNxyfPBoDa6/1WwGtx+D7GOM2PyBKbKjsBGSyq7XSUh7IMk2vCau0XDLhO0JwJmVJxE9ihWDwECJvn67CzMalmavsRT8DbnF8ImPYJVesZnuEc7BAHrGZL2XEDQKta8aDKcsTjfYLqdCcCl4MeJWo+oO1QmU1rQfGvYUFD2kl7UN3JCgCrVUlH8xOC3P/sYymWUwmh1RkVKRrxnEIbxCyhxuI4fYaloTNbv0jGvIOoxvk66yBuUGPvOlGIJvvL9TzyhsTSVjNEQWC4JtON6P3Wg4Zx0uJdeyK2b7fBVVJJBr3j9vZcioJE5b/6aBhfe+Rph0gU/ifKyhxq8dprLf3saR/G5I9P+fAPgXIVnB//ktPve67SuY+YcBgJl/eCiRfRUk47DtC/rapr8/ft0+8wO6r0JELwC8B+BLj7+UiL4JktUgvvccDy+OSFPF4SjlnTb0FxxZwzJMCuj8CQJQD8EN8qwZTQBjisIBOZcJp00ygylUd0ZTKEgmBnkrMN0Pr0d8cH8rA7FmoBnPYYlgY5gr0a4tEbWIoS9bxPWQEQJjzhuywkdJey4f3t9g/VDu7PxswfOnAtk9DTBfy1TuTwfUj8RJ0k1Ffi53nk1Q5CZwTsuIHBUELaeQyNTXKAO2+Gq6G+y9EFqk0d0SwMcKTKYMAF9r5y9co0w6DGKUOTCoBjeg7cDAQRhWdJX9cgR4Cqp/xTACHx8r2p3k++ao2UtTvf8A+CntNg4A3fT0XxyPcCraDKAB+SQG3UocnaimDmxSQpwK6Jlul2mS1VknPob9d1MJ4KoKyj6gy6JnAy6QN97Dip0G1KgnRq0zq03Z2TMVoKsVAypbIuvncvub9FuCKgPYFL821NBEImWfuY3JcGh6wc1BZXTIL3qkTXXkYgiz3foAvi9tOltzO6psSbr0LMCvoQpyCjteJO7HramulKOWzMBmOMgkXQFc4TDesWfjZaGRLEhacjsY8VK5GNyvyw7MEKhDlKv0OqgCYTgf4d1gp81mjkbOs1/L/JI9GDCnJI5EnQ73fRrSDQFdAgj2vg4keNP2NqitBhm1+8ffvLt/7O11Lo8/4fVP+syrLzJ/K4BvBYDDP/FVPOvcDhNBNC6ElVXMmRhKKgTGNBWEwHj3eMbX3n6g3AwhLFrjPqKhopMHC0fhdoBwKhPWmvBiPeCL93dY16iEOkYIwLYEQUyZQW0Ezg1xrj5jpGmRk0vAcs2ISYiQt9MqPZAiDuru5op2WB3++3CRzEvOUZ2EnisRkJ6vTgrs59yVhrct9uzJSk8poma9iyuhXqOoFN9trojsXIxDkQYwdf5EqzLkiyuBTgnpPuyurCUOSAA0OyIG0n1A/JI8NS2z1uUZjdidF2VVWrbIHpLxOYptEocCVVUGgHZJoKtCok1AbyOPjg2i6SUoNQblBlje7UYtXOFMZg4sD+o8lsQgg7imLmnud+5w93JuQFbuy6aOz0AJ6EYOTHB0piHhWFSY80kWUSDAeqki45HCeB+AZxmUlrDiFS4Lw1GayyYqCAMrRPYoF2k/zdKb7qErNftxalDP2h+iSmhWsjkC1/f0uxbsInE3wqqvZZG7leDcmcVubI3Vn87cZ+xoBL/diSJwy2Iw4+lRdmoRvmV71TJQzULs/rLrGHrUH5W5Lo7ZnH5v2PuyayYos2dEUp4YoKmfs91zNVMvV+lwLcuMw8ZuFW3KqItxFmCyQVxa6qyTECd92qdlx/q7XcMfL9TW9wKvGmhm/ulv3v0r248S0ec1G/k8gB/T178A4KcO7/tqAD+kr3/1a14fP/MF7ds8A/DBmw4ghoYnN9ednlUKYtwIcBn52oIT7kIQOmEMDYUDfmy52/UejF0ewHixHfD+9RbMhOfzBe/MZ39PSJvAhW8itjn6MVQ11hURCAw6inQ8AWglqBovQFkY0qyRf0sRHzHhcsh9SiOEVGhje03Tqxpx0JSNlyjZxWCcYNIfY2lKeQgIAB0qZlVBLrH599ndwSzGmpswzOMsoW8tAXWRJnwtwWG0qCJwGAbOhI37JXvdOA+6keLapWGq43UzYX1Ozg1oU+sQ1N2HLUTXf2DBy2sZSWr4rPBMSJObgxhM7jIX6dox/B5lakQdikSncj5W3rBIndyhWN8iXQjp/tGoYwI4CPqKgS57UsNOMBCAwqCbjjgmRcKJA1PhWW/ok/YtHEaaxWkEBTC4sX4EEgCgsiUArXDoM1WADYmlpZNRot/LaATQS3KmvW/mIKz0ZD2mgzodBmjua+ycEj8o4a1EQAIDFl4UJ80yovYDFjHSLYlWFpP0IaxsNH/Euk57qXUz8Pk0zG15Iu/pUTp1IzzcZqJcDXdExjnBkH04YECFGLmRziMxZyQqvlZuEkfEXq6S+61PMiw2n2aw1mND3/pK43GmC8CjY3NH1M8/PI48XrO9rdaWbQcA/xMIFPgfZ/tLAH4jgD+oP//vw+t/moj+MKTZ/nUA/gYzVyK6J6JfAkGN/QYAf+TRvr4bwP8YwL/3NnpgKTZ87vZBOB/KLjfiIQDkIDBeQV2JNdqqSJ/Y2F3jnzyss89X9wY6S6MYAO6XCT9Iz6SXEav3LaZYMcXqOlelBYHlHkUh2OXphwzJJEsAadSKsW64OayYc3EFYwCq2yX1gKDlLssGAIAoiJZTIClXWZOZBKk1lod8siIAPkcsDzdS558bwlwBBtqmTkn3Ach/K7TMZbNPHl8dbcxbhAWS0hVric/Ii+EapOmtpCyPJp+IwbTafjqpLtcW1QFC6/JmQCUqNGPXJsgslMh7h2rN+CH78O9lkaZYnzBCJUwvgPwl5RtkLV8FFTlM+wa5Nd3jQpg+oh3RkZV70nRqX9jQ5fTN8WkzFWZ4g/IVzhHUdEDaxE66s89RAdIwfMwi9PzQVZ17XR7OrB5Z2Pb3elCZFVa0mDoVGyEw9l9cP2tw6jtwwBD9jt+XLtKfaklgunWyCYTiZMNK3puKS4f32v7Cxpgv/RjqTGDsM0k7Lmkm0w6hJefDTsbL5yblMw4+9CxUkRgBSYN+LNEZOCAOTW/YlEP73gbN+AAboPZKDYb62o0NcVbn2xJcEn57IkPR4gIc3mfkC8vgt1kcZz4x8kWmNBab0hgAqtyvjz3CY6/pzT4EwNuVtt5/9NL/iYj+3wB+7yd9joj+DKSx/hki+gKA3wdxIH+eiL4RwPdDnBKY+T8loj8P4O9CAqnfrogtAPht6PDf79R/APBvAPh2bcx/AEF9vXFbS8T3ffAu5rzhybw6zLbUiMbAtYmTiEHEFyMxNogzYQY+PB/x4iJ3jWUlKTYnHtrrVlYyB2UOa2vBRRK3orPgVaeJloAWGOshivx87DIhjvSx9dXSTW0Ba+mMd1l7xkGlTtYiKsemiZVSRRneH4IIKjITyhoFvgt0Q27f2SRSFeSHOB9+SJIZPI4UMRg/+yzkgaq3VZrIg6HeYVQbtNmNznc4NCy32ldZg8jLDzc4E4Cs2YRLzjNoE4HH3QNqqTrJQ59fmrXt+zNY8Qh/nF4Ctz8iktznz0ZcP6fHlgVWaiie3RRIP3/qGVaFZgBibKwmLw8zOfekzUA9Nics9mxBd5m706E8TM7T6zQu0CiBYiJHI5u6AwL2zqMeMPAQdK1Dz6bK1BWB80sSqXSr/Vt5pOi1N9QWke/f7rNgx2DLpT0HaiL9PpUelcs1kXfuHPywhdrhuNtxmLZoTs7PRV5X/rATDqkCh/fF+DLJFEInZibJ+rYDOVw2Lh3m/IojIDkecmcn9xo11j4ZXDzRe1sK5c065XHXvyFIxjxeE+VsGaKsHuDjnstRvk8mQgoApBzFwdg8llCt/0P9eDUL+TgAw+PtbUpbv2C8RpAM5cmbPsfM/8LH/Om1REZm/gMA/sBrXv+bAH7ua16/Qh3RP8oWAuPusEh5pvWMo6hGlM0XiTpISgiMxdFZIw9kLcLL2CqrdEhyOfpAjGPe8HxaUFrAB5cbXNYs9llH+9aqNfkATE8XTFNREqGU1AjmHCSbMPn6yuR6UuYEWd/LLJDiUiRHN0cB/7uuw6C8Wy5SBJapjCxEvnNEXGS+eju0jtax6HrIopvOc+g1eji3AdAHIfY6vTuRJp8TtrRFxiTZhDXbH2UJ4RqQH+Th2G4Z7SjZCw3OzKVK9LuIIXBm5Wg4+zwzeBank15GTC/lO9okpSAxzLKj9TmwvCtOp02sf5cMJE6jF5I1SGdonbpLfwgogPs0xqYIJSUhttyjQ4NdewkrivGBRdaVHKnWdFgYNV0HlTa3WSJ2rtSEq+FTGK2Jzd1gtARHHAo3Y7hmUAOl7HCD6Zqxq5OstTu1IeMQguHQMM49O2FoeUdBAOVGRCYN4RfUWXEloA2DzsgclO5XHUNYgQliDOu8h7jurtPgiLzfohlWnQnLU80cVDLeInifZqmSOo8RcHJCcAcmPRbyzI2055auMvdDDLg4KD+eJplW3KSPUY4Ek6XzkljV7wNL/47k/+kqzqHYgDkFSJjgZ9iAME6HHJ0sQ5QBTEF4DAg/YXub0tb/Yfi9QImEb/G5T+VmBn4KFcckhc61RWzKpgpgdwQmiHgp2ZFYp2XC9TKBQsPtccXT49WzD9u/MeKZCadNILmbclJyrLg5LEgKBTbncjNtOKQiCLIpe5YByPVc14SXZwlF5uOG47w60bGqY7KSWs4VNwfRsWAmVO2fLEsW1roJBZI0c9lIhK2T6Dg3lGk4AIaUfkxfSGHJ3EhY8hVAhJMQPUhkEb2z3ktYwytY/zY1NG/EKqw4sGQZqYnwnzWcsyityue6pLd9V1iBYLPr1bg48U0f1LAZ3l7Y4ESEdmAsWZ2HyW+MBnZilOMwSItlYcotUG8YJupng7jabGQ7zU6G/YqRkEyjY/mVwW6OE4ORaoABMFzdt4gTFjgxdXipGm4pF/JuHagw5peEdJZm//oEjlqz6zyidMY6v/UOWmZ3JH2eSP83vtcgpbYv57XotRizyrHP4EbaylCGlrqzN6IbPY3g+7UGaNaBWVaaHMqSHckm//egQo/Zry2J8ZVBUTKYqui45lFWBDC0GcMlR9TROGs8U5fIj+ZI+xRDK5PZ/eAsfxrmpes1H7NH602NWyiQXg8LEMVLi1Z6hGbOSaYiprOg3lqSUQkgFYZc5P4th1dRc6/b3qa09cvevJufPFttAR+djzhMXYZkaxFLSahMuK5ixEetLeOCBGI8O17xzs1l13soLWDVYVUpNByz7PuyZZw3EW085ILbSfSxKhNKSTivWXS1mHC6P4hRJlXItR7JUM6KqWM6Tc/LzkHk38V8lxKxXB/BmQEhA1YS46zsYYoM0l4H16CkNrwSqfim/3fSH8HRUqjUh1kNn3fZDSaX9DalVYH3CkQYgBtfMqgx5HuEwUu9OQvLMMzxmYbXwEGI8ro19kfUD0O+x6L+fozoxwEIh0adz6zN4nrg3cx2i2zjaqx1XYAAjCJ8XoO2SJK7IQYINbB0j0n7K77eeo6JQerIWJcGrCipIkZF5mWglyKH60cNOqRK9pcuAC69l+GIHWdA97UQqKpkQFT0kp/JG7+jHIp9rs5wpz8a6Ka9o3gVqG/YpBFcbrsRtixtPH5ncZtzRf/b+F5WlnYzZ7f17/Zb2a6vMbrNgL7kV5zOdkvYSLKU7RbexE8KuGgJIoo5XE8OInfCup5Nr9v8oSLHSIy5Z2gTNGuxTFizlmVAxalzM4Z6PrEPE7s+D9gUKl1t9swK3PyoZOwt93kmlpEI21+dbu2lsZaARcdsj3ykT9reprT1v/qkvzPzH37z13x6NiLGnItMKuSAAEYOFbdH0dh6SYwUkzfIo2YO17X3Tmxm+u0krPI5ArfqtZcqxEQGcEgFT2d50qyx35iAGsEkpME6FSl1DVfCVG9bjY52Ip2nEfTvRZV6S4meZRhZMcaGaZarb8361khERx2OIe8NoSFYFlFjdyTALqWl4XdmoJ2Tiy66thVB6+CMMe0wQUYf61tJUFKTZkVrb8Yb2qn3J1QaZBBX9NDRxAkrCStdj2c3c0L3Exdtbke4wKG8R4517D9YVOhWh4CaWKAm48ss59siOpJJNZQIUM5KN3omeUFa6iNoJGyjb8OQvWyD87XoOUAyt56AyYM/YUgBoSXGbni9D6MGiez3jF5O0WavQ0aHbGx3bA0uUYOgSKDR0VhEDW3AX8mdtzeP1WHVI+Ois8EF9UZ+DK67pSWW0Rmb8fUMaszsknxvfimRfm/oE+qxl9/C2o1+uvbb1XoKPuyJ+nda0GCOyQyzZSE8fC5dgOmF8EHKLaHdQst2hBbFYewQeAwQuJe4FNln4A0b+zveT9uRsD4xgU3yewIRjkCzPk49UJ8OqYGMcVyosoMw5D7tyDIBNYyR5Ou3t0Vt/SIISgoAfiWAvw4lA/6k2xja4yAPnFNovbRFQjQcM45DKi43f8wbjir6aFughoMSEq81IQeZCX+IBVMsKC3gUjKupTfZrQlvEu3LNaNoo1ucgji9w5NlN2hq3FKqeHKzIKme16ZcmKhcEBNy3EyEUGHMtURsp1kM8KEiHzfljDBYQ3HSsJ+1PMCQ7CVYVDo1h7KSaW1tUeZoFEFPQR2FzYZHNCFDyRwkKg8YR9eKoqwyp0e2ujHqt+CQYE7cdaittJO4O67BGRWVcPE5GiPDnIEWhZVlD6kZGcsyWmYxHGHcL1ywEFBDMplibI/eSYmkVRFpxCTqyFYK8kxFMzbAMxlW5+yGzMt48Lq+T2msHZ3GCVLuGhzB+NlXmsKPuAJWzw/FHCBJdkZaUrTSSuzvl+OW4wwsa+fllAP6PPpHZTA/BlNhNmejmaCUa+AjcUXbCp3Too4oLhAZd3VG1YZLmROjwakPDeuxD+UBnQUBVdFVpTsVEFx+5JVNHXDLwPU9u7Dd8VlZrxGJBh1ZBqaZUGCFiQ/BmY4AbklLbda/AHbIPxuV66WoIJ8FtG/0EvJ5db7j5ug27XmFyxCMvcX2No7kMwB+ATPfAwAR/X4A/zYz/8/e7is+XVtjwnnpvAsixu1xwfPjFUtJ+NLLW6znCVAYbogy4S5GMcLnNQ+aUFKmSqF5lnNaJpwuE7gFF1cMxMih4SZvXpIKTVFcW+oTB1u/8dAkOilbfIUsGKM4OOGJkAyt0rG9hsQyTTAjHQLYESybls5aJaynCVb+ccFEWzDuxqulJk3boEOhdKATN/gsEJNOkY+Gnjlk6XWEU0RYxaA3lZugwWhi/F5DdQGebYSFfJ4GJ+qCh2YMKkAIYGKERRjxFkWGKjpUbdbySmKwyr3z1FBNkl5hwrQFbXHIOWUdp+qDlzTTsdp2Uxl5Q2bJMcJ7BmRrPETYtBGiGgbv4wBDyQv95NSREEvvwSQ81mcq32JLF2Qxm5X13IiafAs6rHRw0oBkEEEbty1J6UOOU8Qa7bhZHWNTh22sdCuFkBrzoqWtsADTR0O0b7c6D5/Xz4nRtDUd4MZ1uB/smjep8QOQ+ShDtgb0LELKOISautOhgt3M9p4Ro/eiqhAZ01UykHJDnnGkixyXgDNGB8/DAyQGuh51zaaOSIurHQsjn7j3ekicSZ2ELGmbqROMcF0ez1WP3Z0E9/Wltp/BbigwY/1Lv4T3fatxH2/Y3saRfA18XAugv3/tW3zuU7mFwHh6c8VaIq7KtbA+yJwKnt9dsMyb8Ex0gl8t2XsNKRdMk5WN5LXSAlj31ZgwTRVEBZNmNo0JH56PLrliTfFaRJvKYbuGk08yN6SWiHJOnaPBBARGfrrg2d3V+zZEjFIF6ttaQFTHJlkVY41NeiTNJhkKSdB6MiFX7cdoGY1JInz9Piu9gAlYTGVYsycz9lZxYY1+N+o6V5NEzKbf1bKI++V72Wc9AO1G5qF7Q7kR6NqNnh1Dm3TeuW2kBkwVchHlQSSFmb4yDEmNRdpIouytR/sG+XW9KSt5ParH78pv+rdQhP9ATevOd1o+a3DDzFXROcO+gjkdzxwgjk3LUXvZe8CZ0zOwGEAhoJP1rPyiasXEElHHRYxTue3ljt6E1vtvyEI88oauv0nZV2v07y6BoPS2/jm2jGKIfMfyrV0H0ywbWdh+bFXlSdxS6umuvZFthq5FoN5I5J4ujMMHinhK5HyLlnU8jTXE9Vqns/wu/QK9p6ycSFKaqgeN1DeIBQxdhXd0WnHlzr0JfV823yMurLIuwPyyIiyMchtwfR6E0LmpggLkPVzte7mvk84jqZM4KW+8K7otnQQcMCLZXCKFMKDyGOkChNK89+LB3FgheIus5G0cybcD+BtE9Bd0978Ge0Xfn1RbbeQz1W3S32XN2Ir0MNYtoQ4jWUOQsKRH9e21+7XyE1oAK6Hx/nTAh2sCBcY0F+GEECMqx+NKWUQOAaSpYJ6Lw3dbDYipIt5JmLGdJoQXUbDxYcJLPTZTFx6lXbYS8aIcPfuw7CTGCkSgJtK5JDpD/Rq9z2AkuJagWlkYeiEY4LiaqRAGVVd9r4oGhiJOJ5A4WGrwiNiaugx90E7abCfoE67locBweXWG3LHD90GRSwRyA2rZSzqrKCApdv7Q03XVVHSIrBng119cdCei2YAjm8aa/yCXHy89I2mm2Gv7spJMEwO9PZUyYbwS0kUs064/oQaBzCmhR5IICgiAGuZlz+mRurwaPX9RD/M1tzJHeJZBBUg6FKq2fq4WEYdKIGsGRy3H1v3gq1H23rRcev+rO7NdNqboNzeQxhBXaxXVobkj1PvJnA9HwvIcvo52nmFlnQtCO4fnGWNTpvdwjmaw7R6wslKo/TjTlfuQsYP0M+Q8NZMq3OWCGry3tN3GXYPd1kbAGvqdmnZ4xjNcw2DSBbBz0MBNpyW22BFmDhXmfh3t2TFSozX0vV9Icqw2HuCTtrdBbf0BIvpOAP9tfek3MfN//OZdfzo3bjLsSf5DADFyrqAsmlvbJqS8kBvmw4oUm8uLMMsY13WRZjpXie5HOO3+ywghaV+iUtfK0re1GgUpxUBZE5qWvcwptdblUUBAU6cCArbLHpNHsSGqwGOt0oAH4MRFbtgz0K0XcI3IOgDJWdhsDVXaZQO0AEH7Lc2Jf3DHQIV0VKkaNRMuLJDxqzADYCHc8BBog1a4B0qMKlLeG2eBtDJMbGzUI9tlIN2ZIRym9o0QUPBQzRlqLHIu5DLbHm0OUSfI6sk9QrX3hjGrsN/1/KgB0wvtGQwRZJ0BvtWgZZgx0ksScEKiCEB2o2eZQTqRc2R8AJU1vUejy9Y83UfM/X6Fy7wMt3BH7hC6wYHqUhVyA+oDpqgfe7zKIqQzfPLf2JNoaZhjYtI3Z4mUQWLEzWk6kbR05zAeD1VGMkFKvW7+SLKWsxgY56DUSQKrFodyFaSEZc1pR+bpvbZzhDpXpyoQIV0Aak0yIBVXlCyPYWKJPUCQA2wjNJqwgwW7CKXeE/26kWdATNTVlYctsBCZ5Rni/fMBOCrM7gcjJO7ud359wPF4e5uMBABuALxk5j9JRJ8lop/GzN/7lp/9VG0hMG5ulp02lRltIsaT2yvCk4ZSI65LxrpkUGiI0QxyELl1QJrPYO9hAECrYT9rgoC6BYSPDj6xLio6pT1p4OcFlDSb0UZBLQJ5dcVdAAgMOjTPovxmsAgeUEQYCYBAy2+1qCqvSqFQUfa0jbGdxFGS9jestj/ebBZNcWaU2wYvJ+lDRSX03rY2htEIre1vbH8YHp2DRb8EOOpFev3kEuVmLLwnYqc9RO6jAeuQ2X4ePqtcy0Nel9emumcZ5gyGn+MDZTV86PHWAeG16/WoM0tDX8QM3/aUtYfRS1KCcoIbOE7wxrVt5jBkLdTwajmKIwR8oMaLBg5Hi/0cOnHz8ZrpfhWqKsGARdXy93ogsCKQRgTYWMbxZvC4JlHq/YIUYs8wPRusvdeBNjSM3bmJ3hVYyjnlCEc4Wf+JSj/WOCCrbKysydePjjpddSSuXXfjzQz32MiTocI75+T3lpE8I4DYyYdgJRau7CW4PvBKs7UI0b8jWYNgPZ9Afg+apEkwNrpqh7XYsys7r5FcKgjCPivHkFp2POM1MNFHd/QD1PhN29vAf38fBLn1MwH8SUiF7d8C8E+/3Vd8urZWA+4/uEWcK443goi6nGcZHUtAmCpiqqhbRHvIAitNjC01IDLy3YrnOsb2skw+1dA2QUZpuSpVpNRQSsBSArYYenmIAKQGmtQ5aKoJAEGnzqGZYq1GrIZ44q7c6yW1YRO4rxxDjA2U5S7nYx+o1RatYZAa/6Z6Xpax2BAnoBvu0oX3JDLqGYXVk72xO36eeznLo0erN2t67QZhyBxIC/RjBNgy0NTZebo+Rspu1BpoJhTrGWgm5CgoNXxR1WI9kifscP/d+Y0XeTA0j6K1ETLq3nVo+No/gyPb+shPOBJoV1oZhjhVJYS64xsMBnjvQGxrEzq6TddiPI+RK7CD3lbABoRtJjOC/rd8z5gepA+xPJdJg/EqIohxlamJxip3Up5CVWUkM5yoF61U5EZblHC3WzGi6SoN71BYobBqWDd2sMIIp/VyFNTQ6yAv53jMAEcRSZQsgn1GOiAcjfkFepACeY+tXTmQ8HFIjsH72Pooyn6lryFcFeOMdOl3v50aQNXg4ISqo3pt9rs/VwE6+AtdoaJ2pzO+T/7Yr1e0kcPcj5H1GvBwC3qmpJs7nDdsb+Nvfg2AfwrA3wIAZv4hInqjRMqndQux4fb5RSYeqhE+HFcUNbZmmFNqqFP1shPOCSik8iay0DmXV3omJk3CDCc1TkmGZ1npbFsSWEtPXAkgQpwq8tSnBMq+AkrLWkKTsg5IymUpCeR2ysXhv1VniEQSqRcAWEp0ba2QrWRG2JIc53ZN4BaF25DFoO+jSepRP+BwYHlwNTOz90egJsDEGB1BE1uPmBQRJcaf+3doc9+ZykxqyHrkBOxLav7waj/G52UYv4RYZDkA8IHd8dkmWkTYPygWiSsKyfgGnOBNWnlYx6exG2N/SL3JybusqDdMe4RITR5wTh3FPDouc6zxSjh8oCc+OKWmxzbKfVDpTVvPRMzpRHNKcJSZZQBRobUCYX5DffwJOWS0HnTtj1DFWtobp9idnZWnOA0aUywlUNKMw+aH2z5K6ExwN6rUG8+7jeF9Bg9MSAiCdp6235ZIuSXUgwDsAQm9LNRRaybnLvsiJYp2Q90yYbNpi4MDTgp8EOiy/KwTYTvSK6XGFgnks0f0moyG3taH7LqSlPeuek012LRAydbPy3N2WOaAtBTq5U0GQF1W6ZO2t3Ekq85IF9tAdPumD3zaN4vgmxYlU2iYDhKSGdnQRu3WFlByxaalojw4nDlVkDbOR1n5UYW3qGbWnCpi2LCmiKtKsNcihEOPLizCZygpMQiDvBKQlThI0rjbtqT9D/lMihV3h8X5LnYcpQZsTD41McWGpURpsrcgEF5V2+U1itIvwespzGroIQbalOOtIb6rsZuBtc/vmuLwcp3tz7Mfa6YT0OYmn6NuVP3z/vQPDq4NzfIKkPV5oh6QlXE8UzEnA7CihrgNkij2lWb0MBh8G/4UAeThxDXbaMYqNyNP8n2jofPMxId2qYSMro8dh5PGWDIpM6DlMOzjsZEfG6M20XFcP1uDIVK169Zrk/BmK1VpbLekEFlFoVkWZqNeheMhDlN4F/16ujMZSlDmvMb1Kwdgu6FeShrIoX4ZLaOIw7k/QpD5LoM5+A6rDSvLPRgB9t4LejlrKPWli4AqxEma+oGhzPQe8r4Td7LrYV8OIsYOZWZlKvm+V7OIXekx9cq2B2V6b+3KZKROXzW91ufY9dH8mg69Huvv7EiRerygoby59aznk7a3cSR/noj+dQDPiei3APjN+K92yNV/pZsZVIHOymulBp/ZHoPwQYKy2o3oZ7Luh1ycsHhMG6LNcNcrcS0Zp3VCY2DOBXdKasyxIpIQH0+pyiCqLWEJAi3Ok6gHN803nS9ylLBSpjTK02j6R0Gb/ClWBFKiJTHWErGW5PLzhhZL+t4YGuZURe14zViuExhS1rPphT4EiiHEqTFEbvBJhgD2kZQ2EBEJ7OiTwekcpOgvA5ssr5b3y1sJ2JSMZYZ/yIIcbWNaXDqoqepsewyf4908azt22T95SUt2POpY+XtZEE+7hw/wGd39psJuHahoHwzaLJ6GB9GtKRw6vftOPb+aRgc0Rtf0yq5MXZnKIyNu6CqFlLIZHDPCtv8h49yeANfPsDa9uxqA8Q5s5rx9nvVauGT/eHxDKc5mhiOojMtQaoOtaZFrICNk0Q1kAGTkM7qjKT1bGCc+cujzUZj0uRyytFBY1Bu0Wb3ri4S+ZsZh4eH1fp0GNBhjlymNSsPWj5G5L70/FDb0eeqaLM6qOgAAoYJJREFURYwkw12PzYKUSK8GAMMWVFhSekQ906n2DNi9guFacg9cdqitV8rL9OoXPto+0ZEQEQH4cwB+FoCXkD7J72Xmv/rGPX9KtxhEL2uUeH96KDgmIQt+cLnBR2eBznatLckoiBjvHC5473DyDKQxYW0RD9uMygHP5wt+2tP3EcD4cD3ixXr09wEyxfD+Mnu5CVpKW9eE5ZJBQbgqxng3p3dtWVBeDOSpYJ6Kc0jGTeaoVBw1U6psc1IIW4m4bsmlVfq0RD0Ule0w8IDDh1MFQRyVQZO3AFSHYumXJ9HtMqSYHRsD3SlZdN1C536Mkav2h8ShyPs4N2AWB2RSMMwEXoM7IxuWxQmATkh0BwbpL5la8ngsrJ/nLUg/TA2OZ0uDgWflqCAplJhp72SGiLnYgKohovSMqGnjnwkIOtKWlCcwlv00K/Jzs88DQn58JEdDhVCvsqY2z3vkwBCwK2PYEC2/d+xvw3u49ah97GVhOC9Az32Va1lueefkAC0VqfrsmPnZL/UAFJ1WGQfSqZ0vFUW8VTX8Sdfd5guzRd8szXgt23l2xwBm+UIrByKo81WWfDnqfBrqRNOxfxZWIJ/7e7c7u26DI7HrNm4NApWugrCLVziCy+RHmp7PyCMZy4GBWK8F9Wtg6zcEIzTWoWjYh3JovBlvZVArt4b9Z7zfOF7rT9g+0ZFoSesvMvM3APhJ6zzGjbkLHtr6NCYsVZbimDdMqcgAqy1h2WRG+5wLYmhoIJzLhAbCpWQsRXS5jmnDFDdca8L3P7yzm40eiBHJ5FYIN/OGknpub/yVDbEH0Cx3iJXaTjWgnhPQxL6GIL2O9ZLFGEZGnDqqy1BgMY4DrfpNRprD1kpolyGH9saD/owMOlQ34OZA880K3IgjqlsAVzXIq/RpKDEoScmsXZIY6YaurDtGzAv1qXCZXF7ksSEmgsClV41cL1FIj0HlN3RELF9VYXiI+nkjeZKCzFx3Q500nM9NQQcQFJrBcC1ad6cxZEfD5teNLModHIlHuXpeQa6vGxPb71DWEEss65Uu8rNN7Kq+8RQssREBTEO1ZQBTQyuEoMaJjv08XN5/OAdzPF7+GiJiK9EJJLiXYrz/8zizUNj3LqLVSL3lYUrjI5CC9Xm8ejnqpZEEObBZ6QOHhM5APkmEX6wHEhTFpgg3O2YjW1qp0gh8NpArJDn2XQDOcF7MaHD7yNxHvQ27T9C/V7JS+Wy5sf5LD0IMrRca7/SxdsY9AMZ/seOL6zBNcZJnR+bJd089ovEI4lTTST4ng8MEEBFXID+YWnHnwryNEwHerrT1PUT0i5j5P3y7XX66NwZ5JmJb0v+bMq+VuWxc7TZMHBRJeHl6riVJ2SswthoRiLHW6O+dc8Eh6YApVQeW3krBMTMelgnn6+QDq4xcaLPcmQnXTS4REZDv5I5OuSKpI7LMRBSFo6OyRtVgQO4tE3qUFzSKjYxwFCIkl4DHkw6BwTlcIugkPZ86mbyIGc0hzCSAC4QpzwAtMmCKA6MddJaHOhUwoc3sBqAdes/GjDatAfHHsjRiDzqDhGROSjuoITwHBDW29VacCgppEx/iJHLPBqipYzMCC4ZjN+P/uITgf2MvdTh4wJbMkgRFxLmYIQPxHLoy8VCP39XE46O1jyzlNY0e41U/TBr1kzgl49nI9EcdyTuw+p00Op6OOaLIPtzJShnOBdqgw7t419AfHYccqEW7wnC3c3ocNHjppPT/Mxnzm/rahH4+Bm025nXcgDhMQLy+R7vIeXR2j9e3GDpPQQdNGeBBARbzB/36jH0Lqf1q05r634UfBEwPXU1XNLEk2yAG0u7YuoEe7wHJZsj7a7amfl+9Zhvl6Y2EaD0qVIYMz3q1D1NuBGFn2Zqx7uv8qvMYr/UnbW/jSH4ZgN9KRN8H4GSnzsw/7y0++8pGRD8TUi6z7adDpi0+B/BbAHxRX/89zPwd+plvBvCNELPwO5j5L+vr34A+PfE7APzON43bTdTwzuHio3EBIMeKQ5ROaskRTVfSBl89rDMeFvJphJt2nANBexOEc83ek7C+icmjAEDUufBRHUmiJsa/BZcuMSNvv0tZSY4mhIaqoW2MzScgurxKIyDB+TEVNjyLUKvI4ucsvZJSA5brhFYJMTXkQwEzsJ4n8KJ9i+GGN/FFPjQUm244OA2k1g2vpfnV+h/yNssCeNJmetVIrg1zOzxFJIBEDBLEOhtF92eZDuBABI5AvauodjxquMWoqXGK8joVEj2pTXS6+pjf7hzGpveuf6HLwkQiw8/YsbBtPcToDVGhlUhmRj32z1lpa2dQIA9vWMm5CWMjVDIAOz+9FENjW1BJMt8ijj2YoVTnTtBmfmh/Qxq0XQk56mwSYoiuWdX3pf0t4MdIADVGCH0/zmZvva/EhL3leWTQyg1QMxwFWNGdT2javF5kfQWGC+dHuHyLruUYtW9P5L0eRzZ1LqkfhwcDw/V3Eqc5Jrum+pl6AK4T+efc8Os1GSG/NsJ33LwHYr+P3KcqDunxNEUjaI4SJnZM1QbNoa9Dm3r5LJ11/R5tdu7mIHdr8obtYx0JEX0NM38/gH/2zbt5+42Z/z6An6/fEQH8IIC/AOA3Afg/MvP//tFx/GzIGN2fA5nn/l1E9PU6ivePAvgmAN8DcSS/An0U72u3rUX88MunOEwbnk4LYmgoLeC+HqRctWUx8JpZtEZIqeJm2kBUdEIiad9EGuRbjTgtEyoTbqcN7x3PCMS4X2ecVsEI5liRQ5PZI6vMILmsGctVHFBM1UtQpUSwEvpaE8y9aWQB8ntRpd+tRhefNFFGWWc535yrQ4H36yqSFq0Slk0nJF5jn62uKTobfDUCNFeEG9lxXaLMeh/vMjPigNyA5kwC0LSERFMDpSb9CROJLAQyOPQw2ImHBqRbra33NcK1S7r4iNrMMorUwm0MD4gazXIjLGNn8psR10xCEDvCb5FhU4LgkRnnWqaxRmyS9xjhMZTOPvfyljoKQ2qBRXPLhPRsiNPYbxk/1+KwrsDu+lhphAoBkbWxywhaGgNkTWy2/SgyyUP208sw7NlAy52rEq+S5LVMKnLIHQ7txpb6eqM7I0Bmk/kfAkkJsSpxsGnW864dx6AyoPBroBt3jlKSsfvCRgabEKMcg1z/YCx4EgeUqJ+7o/Fq3+8rUGKgG+yGnTS/gRY4CSDAMkYqdt3lGI0UCWjZz6RVLr3JHqC8q6osNBYn2LlGcMfkfb+NhTOk2YzPgzHQx5D5UQWC9ozSVfS+vF/CcnzbLXnfSNBcpkT86po83j4pI/mLENXf/5KI/q/M/D968+7+kbdfDuAf6nd83Ht+FYA/y8wLgO/VGe2/WDOkp8z83QBARN8G4FfjDY6EwMiKYlqbUH63GrFqbj/Fijn2yL1QQCT2stRN3nBIG7YW8cHpBpclI+eKd24umHXC4WkT51Gb9FcI6nRCxdYi6pZFHTiLsCMALFvGto0NcGkIF0UjUWqIPr+9l9+kf7OhKXjAsqIOJSbPini4I5KRFC1iaSRy84uWTeYGTgprqeQZRB2m7mFWDTJrgI/TFrk/6OPoW75GsEJwaBNGvZedGAiXoOrAg+EdNs6spS9Cmxs4qDMLcDhtuAaPrHjSBruVbEZ7bIKUruclGcL2VHtKTC73biOAHxscRxhBzqMmuFzFDvbbgHAKXcpkQGW5cTB/H4F6aCJ0uZGUxNZHD7SVK6D1d5LzcGVdYjHeQ8Yh82AYUXsYkm2QC1oyifCk8UjqpM1nM7yQz6SLfHmdJcva91t687olYLvt59tSzzzCqtmAzjOhIs6aeDCKpAZYAQU7yLAaynjVccDmiINda/l/nZQFr+WsEfJrPZJgWQT7V7nRDu4c5DOewY63pRlkUtFHDIKhvHdOcl8DyMJrsTUL6gzluvRgjNVBuZRJlCoDE6tkDul9yAJXfgxBnvr95wKkbOsM1FtyhYQwZJByb/W5KW/aPsmRjLftT3/zrv6xtl8P4M8M//9fENFvAPA3AfxLzPwhgK+CZBy2fUFf2/T3x6+/shHRN0EyF8xf8QTPDtfd36dQ8VQlxG28buGAmywqwJct4+E6gxm4bgk5TggEHKYNt/OKFJqXs64l4f46K3qqeJ8lh4pJHVRjQtWBWeumGUlomI5Fj7c7AZOG3zbhflSG9DWIEWJDPlRMqaJUoCgiS6Tk2fdlfZNSgs+CJ+3H9EwGaLcbmkrDe4kKDKnnQBzKNpTSGsTIpGHOyDAAic0ArFJKcsMeBZXlEWZid0otsUjQNCC4pAv6jBGN6EEMTOLwPKvRUbx81Dt/DQjXoNGqyL+0xKhHdmKaII30c7PWLzZSUAD1AVOkDf0hU/Bmvv7dNq+vkz68iroKCnGVoVYkGWGSkqE11l0KfCVx6oDLsNi0P4MAv1pyoG7gzIFDn5Sh/1DV+AeTy2cRmXT5DHUk4rgkSmUdEhXXPoGyWr9LnjHJAkgmHco90o1XXFRAE2KMHfU2cFZsv15VdQdFj/4/rHUUZ+WO0ZPvVwNTqsKg5yi9DI6yNvkkmcH6RCcgWqbSZN1rHhzNmNyPX6G3vzlR0pIUsSAnDXBhM9vt2L38ZeVCVWAwoqo1+Nc72mUkNta3JXhPjlQCJqmmWUvUFZXN0ZISPlUrLq6MeNXez2Qad5rtcL82b9o+yZHwx/z+47IR0QTgnwfwzfrSHwXwr+h3/SuQWfG/Ga+7IzzRe+3rr77I/K0AvhUAbr7u8/zB+bj7e6BuvA2VtJaIyzK5zLtNFnz32QlfefcSUyx4lq+4TYsQ/1iGVa0t4VQmH2x11N7L0iIaB6wt7sbzbltE0zLVePAE+LwQNAIX6ryLuYEn4ZwsW/J58QDUKTQnJtpUxpQasjboG3f47+hMjvOKSd+z1eAzTtY1SSmKyTOlthh5kYEs80lg60iQ7KQGgBmMIBMGEyPdbcjTvki8rQl1U8s1DL5iZmclmvGUZrd1T9EdnpaS6FBxfHJ1sc2i169VzdgaRLzy1WqfRvkMzAyeAS6EgKi8EyBue0NtxyP9Fy2rWYnDpOGHKLdNEAl8HpxBg2R7ZBlSPxfLtKxX5PgJhgAjFKwQrkH6HdSznLCRly/GTGY0hH3qYS93Le+wGx/LbEj/LhG+SKJI74Awv69w2gmDUoEZ3o7OalnXNAHlrkmvzCZmNnQILWt/yEQi1SGHVZ0dW2mR/Tx9Howa/A7pFZkV10UL+30Cctw+gEo/a7fBazd9a52VD6PXyqHGAxcmLnZu6L0TczLMIFNyVoFHmBFfHxlxKZy4DLxdz7AB01md94GwPZE1HEmGY0Djz4mVJNEzmjr30QcGf/ce4OuelUfbJzmS/wYRvdSlO+rvtpTMzE/fvPtP3P5ZAH+LmX8UssMftT8Q0R8H8P/U/34BwE8dPvfVAH5IX//q17z+iRuzzGUXdJSsUCSRYx8zAG9+k5L+dEbIZ25O+Nq79xHRm9+ZKu6iDLDaOGLJCY1JYL9o2Dii8AGlEdaa8HI5YK0ysOq9pyfhr3x0h/bRJFF8ZtHhIoiBjmLxvVqk/YYQGp4cFzyb+2wSQPkeLFMgL1vGsiWfCOnN+CJ/Pxw2PL+5AADurzM+epgEIaaDuqZUfDgXAY4Qe3k54HqZQKFhnqVXZGU0hhEolbW/s2TsxEpznvWSQGetnSjJENAsJAM2TZFYDY9OkrRyFgIEopx0ANlg763vFOcNUbPBEWgh9wSwLllgzI2GbEz3r5FjU/ipgwMsotaHN1+DZGLaexHnIbPp5QHWjI3QHeYSEU9BYKdDyQVTA81VHGolLcIP1i0ApFl0y5qVDVurBFoUIpzZjXy4hv0MbhYxQyGz9VILoG0ZJs+wvNms/YeoMGzAjI06MzNgzP7adsdoN1oy1GNDsx6Mlik1M2ttPBY1jptE148VnjnAMxgrv3G2rGhw5pqxhA0CSjFnDXJj6aoEg7GmIvDisGI3BIsjO6CCtO+xW/8JKDeaRev+jOQZdVTAON3Rfm8RMv8dw+cGp/J4aNZOX07XwPoxcZXsZASDMEmfC4qCc8UC0l6d9YDGzPaxgsJrto91JMxv8/H/n7Z/AUNZi4g+z8w/rP/9NQD+jv7+lwD8aSL6w5Bm+9cB+BvMXInonoh+CYD/AMBvAPBH3vSlMTQ8vxXDaVH71oJG9cLbaAxVA5beQU4VN/MqhjVUXGpGaREvtgPOZcIUKu7ygjkUvL/c4kuXWxTdZ2PJeKZUkBW5dZNX3E2MrUUsJQGx4p1nJ5S7i8N42yPDAMD7HzlXJ0tOsUqvB/DMZK0Ra4k+UrjDi6UZn5PwYqzsdVomlBZwenkA7jM4Mq6HKvIpDJWyF7l82JTGXDHNmzjkIfsptaPQuInRrtckjfndhWDQVPuDNisEyXoyFhb6A00DokgHZM1N7mCb2KilnHWNAKJPnXTiYbE6gkTAfZSvOq9HMtxohHgNveFp18GkKdQXdMkQdYBqaLyhrTX1eAqOIrPzHhuibdKphsPMF64EukYh4mUWBB2A8CIh38s61AP27HnoOSXtDxXyOSWv8HjU1kqJhFUBWl5vmXeoINutTzJMkmVQlWwhKtdkRJC1WUtiV0K8Rj/vvph6O6wB9FHw9TMDNh5DHbIQK2O5c9Cvtr6G/d3Y72ZAx2jcUVZjxqAGPS7a+wpGVIT3N8xRGuEznUj6NHrM3vMi8ve6VlZmlFsVcywa9W8Aln4cr1vvdJXy2yg576U+Ce3Bm/aWZjnusWzoz9HgdMjWQe9PGhybleeyck7etL2lSPCP70ZENwD+GQD/4vDy/5aIfj5kab7P/sbM/ykR/XkAfxfSCvrtitgCgN+GDv/9Tryh0Q6Isb2/zm7sALhhDcSI2hyvTAilyfuY8HCdvbl9SJu8ts24lowaC1KoKBzw0XLE+/e3qJVcwoSZ8KIcRNuKGFGzG8uKmElmti/KGUndKJJBiZVhHmPDe7dnfPb44CWy0iJSqN7fudaEa80eeTf0hjsAJ0gCQOWApSRsLeB6mQTeCwBF16epYdcSjCFzSmRsanzDbUHKVTKdq5AmKcsoXgIQ5wrO4jRG2XtAn7ep7MABlsXUGroq8VN1VluQhj70OxQKTI+a8ubgrOrHQA8zE4OpAUUNOxN4blJC0oOSY2DUQ+u8gKEcZcZ0V1qZWcs8LLNjNOuQ8QOEGoU9T8NDW2dImWc0roH13Bi1MZxzE+D8IJmAaNZBNbu0F2FNWXNm0hSX+yw2eE/H/k4MX3NS0IODHZS46aU27QlRE+cUVjFe5cmw/vorKbse0DUxgqQabWn2NiAA4Urap6EOdQ1q/EenbJF1kmMOOkUQGBwEII7XrpX28rYnwPqcvWQHAPV1NSwe2PWhO7N9eU2Js15nQr83AC9vuaHXt+2kTsavJLufOjRXSJqyvusTgpWorBm/3cjESyn39qzH59ccpfH+Sl9p6OFZSe7xe2xZfHb8G7afEEfCzGcA7z167X/6Ce//AwD+wGte/5sAfu4/yncHEqKh6Wsxi3M5L5OTEA1JlWNDC4ytRGxFSlFTqPjcfI+lJbxYjjitE7Yk422Ni5JSBVFQJWEgxoq74+JQ4euWUHVuSa19ZjsAQPsVMVUXbgSLbpX1KAIxnqQFKVQpyw13QQPhUjNSEaM4hYpshATdlprwUGblyQgrP9SEpsQ+jgDfFYS59l5Hg9TlzeBUKTO1WdBkt8cFMTDSO1VJnNEhyqsqENt6ELGUvlbJvNKkMiwDyACAAwdGqXyeCE3RLlUJmK9cY3PCkaUFYFkJAARRAAgKxfbBYUsEHrI/+GYMfP68SYpAo+BC4lvn1ol6asxZpWJsZHJSZ2eOsTH5jBgKHWHXNunHgAFeA+oq5R8ri7FlTcSodxVL0jkyW9d+8mizSBkFBKzPGO0IcGgohoIC3AjKWGT5YMvs5EUTlBQjpam1gRwgCrjVMme7DA0+616/pH+VouPiQhL5m0ElcQxtBqDs7lBMdl2yxriqtEg1A6sfHTg0/o2hz5o3UAEHkW6xaziOFXgFWg1Fq930zNB6M64WbSUzvWHMIHt2YyXPplmEET41WzJUnL+uFatyAHqtrn+XwZjHpng9CpT9dRmeb7R3qGT3qWUper+PDH8jf5JlWG/hJX5CHMlP5HZMG37Oez/i/6+aWZw2KSyOTXcr2ZQWXEKlgfAP7j8rxgCEu3lBCg0pNDQWh5IVnRVD23E4qvZfImkpRg0kEQPHV/PHpix6a4qHIBH+y+sBf698rr9PHYyV0oqy6McthoabecUcK7YmTP2qGRKRwJtjatieF1BgJJ3L0mpA1eFGnBtwUKOsiCoEoG4Rp8ssQ72GqZGkCKt6kcY8NVJ9LaAdGHxbEJJkfctVYFSWkfj52sRH619oRAwCwlQRonBt2kMGFdHlCjdyDm2NSrDsUTQIqBd2fp5tgpiibiAsKo/Dg6oPaZvl+KU5O9THg0y7o0rgl1laO6yISjOKCiG2Pox/BwBshLCKvAtn7Y01uCYZNym7Wl3+cYnCSieAHH8xTEKUiB8cPBtgc066L481KoEXklM2gxkA2oSBOTaqR/kY+86P3RivkOQEvhsUdqyTHs0Zkh0jOYfD+jQdUSZG7pFf3GV8HIGivB5oj8LfSwr9NcHP8RyGc6/zAKLQCaB1VjKr3T+2FnodBDIun98h+hSB599ljjD249+VTM05WdnJvg+6b9aox0pzr3Mk9Ohvw/ekdThWWxOVbDFU1+P+z+u2LztHEqnhWb6gtIhNn8S7tCIcBUuwcUDTRrX9flUnwkw4pg03aXXNrbVKVHwpUkq6X2ZcV4H0TrlgSqK2e5M35CCqv5cipEcC+jz10JC03LS23t8Y5VzMsQnXpaCyQJMBQ2cBj5vITUUZK8n+zuo01lXu3JQrDtOGFCvmw4aUdbZJJYn4AXkgtQPppZVj0WhaRCRjbKiBUaBcGIZPVgyHCjrW/bhfzQLaNYKOFfm4eSnQoNSsa15KxKZZGYUOkrAMjQiId2V33qxIN9qCl4ZeGdo1OAqHDZNkMo/5K/4QsjpRldtvA3Q3ngNChUyRfLIhJEYr5LNnRoRZJ26Ss87NKRFJCcQNauJeujAo8UZOZHTHF+EKAs4sh0WVclHCSqreN5xaFP4L0I0XazOYtI/fDs3HMBNruWMo2bhUTOu6XWEVFQF3ygqOsL6R1P5pV5MHeklIxC+lFwNGnyUyMLp3Bnx0JK+RlzfD7T2LXReYe59kWFM5N/vXIevpTKBTN8D20+VYBhTZaMCdxxLQEXq2JnoPhCL38Ai7dfTaJrwZkhijj+gd1aL1+8JGDkcem+Yjl8Scclx1zDCrhMqtvKctgw7bJ2xfdo7kWjP+Py8/JzNIQlF9rIS1RRdv3KoY0E2dxJwK7iYpTRUOeCiz72+KFR9dj/iRD56irBFpqri9WRBCwzEXHPOGSA1Ppytu07o7lu9/eAc/+MEztBowzcWJhcuWnPNhkXg+bnhye0WODSEVHGLB2iLOyFi1xGNORDIhcQgPpwO2axJl3xtGygUpb7iZ11dmqFjzvZaA7ZR7g9we0CLz00FAu6mgo0irlC12mLTuj0twBrojlQxJpON+WdVnKTZMOtSr6RyY1gLKJqUvLsEzC9pIBBiBXQ2fDlUQbjCnB1Bi8E2V772PfWCTNiM5qWRLYOn1pD3OsZUAXIztTw7fTAt5rdwNibHKg6xTO6U+u8UkW0oAqhhYkWgnFzO0WnybuTs4I0BmgLlL3UuGRR6FBsvyJhbEToRzeGwzxQLjqkijOuykMAB4U5gDe7Nc4Le67poREMgZ9YZG8pkcM9SZyTo3Gnokbp0BUuVeY/cbXLnZmmrfqU7ovQ6N0INKzIzEPyv/SETdpdTbrP2YQ+cCEeDrZ9F+VPFQY7C7lIk6ijoL4VAc6qAssAKx7J2KZRTmIKXhT6DcjT+0xLW7TiOfpvWfZCOPK/ZsdeVn1WngjFi8tOgM+fqabMUyPgMyHHofJi5K8rRb4zU9ncfbl50jOaYN/+RzQQk/bkAvLeFLyx0ethkN5NnGO4czvurwEQIxTnXGQ5kUwVWQqeFrb9/H/NnicF9XyKWKTBUNhBfliOXRAOSvvfsA7x1O0jDnKLpb6szGspPNPnmarwgkzfS1JemVTAvu8oq1RVw2yYpy7OTH927PPld+ihWJdDbJQLw0SGzj4Dpjtl1Kxv0yuzilzUx5uM5Y1wSbJmmgAStN8dzRYiaJn7S8NsV9z6a2gE3Lfssmjlwg18p7aYRy3LP+oaVDy2IO04as3JHqpMyG/Bp5mJHpbzX+rfZJksb2LzEKJBiAzbcHyVjVR0CuDtUmAQRgtToMPAPgyEDSka5H0qhbXkNgxEPFYe57tsywrIM6s2UCqSEkCRasF2VrQgTpP50yjNhpzPh60O/zkg66sgAxkBnBVQ8s41Eek2ZP5HwaLYGRcCrqQSGlR/kOjiwqBFp68YzsNX2tEaHXF0A+4xyT1j8rhpF3JM7XldZabp1zsmggpPu2iLyqdLwQJbHP8jSz8EDhUKWkVMiBE968tyw3qNOvj45XRRQNgDCW0TyzmoaPDY7pdTNTbJ9SIuyKBJZt2bEjDfsy8IUCCOwnDfdDucM+y/v/O5JXtwNt+PqD9EgMuRTQCXynmxkbR+GDtIyNozuECsKPrU+9XzJOIzQnMRrjpJ8zx3KMGyIa5lBkyFU+y5wRJiwt+T7GBrrty0pcTe8i6+Ec44YpFJQWsTThixzjhidZ2PtrS1hqQoM4KHMc15LRIHIuZy2P3eRNGu/6/YEa5kjALH2iORZ3As/mK7ZHc1jNIdg5ZH1vVWIj6+8PJYlw5Jbc4Mco1+AwbXim6n3Wr5pC1eNqKNzlbLahBLjW6A7C+k5bFVKpNewBcWp3hwWzOkTjvWCFa5bZADBmwnrYVO+Mdd94hbNjnCMrBU43G+Z3hLdisjV+XID3zmJoOC8TLhchsB6PK+4OC2oLOF0nycjUmDOj950IABPKJg2CpNI5BmYABHBQjCBINsMF4BIFUhzYFRKalSxZSo/tZLR/q5FAEG1aUvQJo1Wc9g71QxDJd2KEKKARMGE7ZxklYA41ckcBqlPyjdBLZ4OMjYt11qCODe6sqRFoISfS+WTMAIe3gslH/JanrWejquxQxoyvkGfOOKg+XNEAYQNoCwoxpm6EbWMx4PXYxGlzX57tOCD0GmBjpqnsM9x+7Cr7Y7NlWoc7twSwwqu3J7wHDdiS6lqSno+XcZPI76RTAF3gTgbArlz4Gpf/2u3LzpG8v97i23/gl+Cn3L7Ez7z7UdyoUFJVB/DhdoOLDWOGGPC7uOBpuiJSw11ccHNcca4T/svzu/hwuXGWukjMBxQtjSU1GDlWvHO44C4vKC04NNfKawAcSgyIoTFZlbu8YAoVcxCWfAgFt0ka85kqPpMfcBNWnNuEF+XYHZ92T1+UI7YWEcA4ThcEMC4148V2QGkRz6YL3pnPKC3iB++f4QcenoMNGs1iFMxQRT0XIsZxmBRps1ZaIFDtkxkNBHBWUiTQ+zxbFckXZsJ8WHHIQmo0Z1ZawMM6S1aYJMsKkF7UWTOv6yplPSJZMxuRXLUvZMTSkb3fGuGDl7edqa/XmdANpOvk2d9ZGfFlyDJYPkSpiUEOjKww5hiaw8nHGTCWLVlmR5BRA8b1YSbcXw4wyf9dX6pqiW80WFr6qjw5AMGffDWQZtit7EfmFHTf9VHpUE4capwVrTcxMGvpTzNOAEiHDSk1L4c2FvJkWyLQdGxAiH48fFvcSFufjEnkYlC7MZbSW+ioLTs0Ox8zjizOI+hArZYls2ItlRF3dJ0Z0G2CDE87VgTtB3KVNQ65IuYKbgHlXsAbpH/jEJRjo9ckM9pRPHy4EsLgUKz0Fk3i5nEW8SjT8UzGzn3ImoBHDPNdIwg6oEszStOMW0KHgBu03D7WgPDQQRek6Y/3BEm+dzcB9C22LztHIpF5xBfun+NHTk89ch2b2gZZPV8n1BJxd3vF55++RAoNH1xucH+dBUY8bR7ZAlCeSa/TlyYQY4OanrZpV8Zp9iCrUSxbdFkUa2rbz/l2xXtPT8ih4fksxn9rEf/JR1+Ja8keJZuhflzOAno2cyoTProcpbeix2pclrpKxArtZbTEqMNN6o3hQ0WcKkJsOMwb5lxwWTPOD7MY3Eoi+crwaIgDYBMQEVmY2YFxvUxYltzPl8XgmSLySwBfpFtHchlAAQBSbCg14P7lUaYcRhYiJbFDl7np+ShnxCOuXbO9OdkPS3Toa3rQXkbW/sMg+27GjQNQiFEw9Yf2MblRS1xUxAjRbUFM7bU9TK6EdsoIF1k/q84Jd0Tv40n7F9afUD6HcVn82EhLV8YX2Dqp00h7Y+OZKmAaauUoM2doI+DDCQ1SQknaQC9HxvXYZB0NZWalkCAZB5T9Hi+DUrMhmcxhyYM5qAQMQAGdSe5NaYJPGwT3zwBwnk+LKl8SJIlK6pTqLD0oKgQ6ZRDnngwRwKH3tXbVHM2cwiY8kqD/t2PwmSkEJzyKSXjVGIcynicAVtHMWd4uOlfDualDaAoV7n0YQrwAloLuSmEj6k3XbxQaJTvBouW+qv2hixIlpz7nZMxOPmn7snMkBHY5dyvDAHAJkKTs82Pe8OwoJZatRnzxdIfGotK7rjLfozJhjXUH07XxuPJdstUa8OJ0xIeNkHPF3WHBIcnExVnowDhriUkcjBj3FBuezAsSNRQODuktHJRdHySTYuGbSMlU+gyGHLPIHMCu9DFOUrTX8iTEwtYIW07gEgSZZYbZ5Dp0v+UiTXxuMuGxmpOxRvFA8DNiXggMCk2ynsFh+iNHcNRXLRG1REE+rdGzAK9H2+/K/g5qpKuVLOrg+EaJc61Jd0kMdZJX+Q7agg9TWt+VmjhVgS6DIYz6w6NxvpVEe8wcoSoQ72bBA27M+Tp5pAyYIdB9NTHWNs3P1ISR2GVaXMsJym+40THJanxaEp4CtKwRrvpFuwYuqeFglNsmDXKT9ieWpn0YEGBNjqPO6i8KEI2NTqFfRDvXMRLXBj+TBAlmpHaaTq8RB7TPiHAnvEltnIc6i/4XNeGZhA0i/6Hy/9aofqXWr+WvYNklC/jA5q+4ASXosDH4uj82rH5th/eGDUgnIFT2RrghtVrWfemaUgPSVV7z6zbs1++BR1nNWCKz2TGPS1SvLZmpUzHV4VAZLZLobul1cUXrwQF90vZl50gaC7O9qvEFRL5k1kFRpsYLoJOt0A1vjhXhINyH6zXj3OZeFrHGs2YGRfWmALheV1aZ+jmWXRZxk1d3KlbaCtrQl+MWYUgAWErCj25PUJvMgC8aRtlxryWibB2s7oQ35WHsCHFmwPxE+/lSrrvS1uiYzMBTFKZ+ShUpAXSQkLnWgG2TEEqkSiAPSiVwkeYxKzRXSlCPLpRF9UPkCgBIvRlsGwfVg3IEkhhD2oLzVuJiCsTsRDAqWgoA7confKxomp24bWwE1uFFaASsUj4T0UFrOqtzbj1ateNx42QOTAUeHTnE8OjSztcF97SWztQNQksAmbaUZhxjxkeWPTKJvL3J9G9yvBLldkdPG7l8i0TLQWRPbAytGthxbCxrNualG1tDy4oLiVox+zLsri9VQj7ByzYW1UszGK9uTZxQvWFsT3Q3Bh1uDExdryxsAJfhWkBfX9DZ82MvYAgw7L07uKx+l80+8etEcqyGo4kqhW+lRoNxjxkfFVmrlnqWYbNhTCnBjT/2mUFU+C/0nG1tWxyyPXN8bTjWMHyXOiWyBv44XtiulYlQbtz38Qnbl50jYYZOJVQJDl3B0Qi3FqSEMpAG3blw/1xrWrOOjEm5FAR4A3Nbk0BvCWhTRcoVlyrjdR9v41Aq27/JVjAT8lRwnFeE4WFcS8TDw0Fmrg9NQy6kk4QATE0MrzsIWQOpm7PwOEzWpHZ5jXZsklFUQq3KvAroM84BMXYr4XoyMDs6wqZ2QUMzNKaK6/IXCgfdGRw1un69qMNie2SU5CGdm88m8XkjVZuu9n99CJpKhoDNGJAMHDowEDDMjSfUQ0Cbm+DwL52vQcND1pSrYVP5WoTCTPmVUpFBVUeLShfaR7Y0QGSBneOJ44zzIfo1Y5Gu5CNxtztZr2CaWWxR8H5R/VpYSclKRfp/1lkibYaPzqUK5A0yJxVAM7LgGLX7we2NcdABVTtk1Wi4A4bhT3D1X4vEaQXCS/JSnE/7uwzT/ph3THA5xj4Fsx406rbzbHAdK4MK14NcKhtd7GUhPTc/xlXJek0zDztei/aHrGacRy+SL5qFFICYd4TDUBhRJVBq7oz5oO8d57b7+jIwXVggxqF/zu49Yu68pHH5rU8TCLFyH9o13pb86muv274MHYnM9ojKXbCttI7YCamiMmFT8cRRKVgatwDAPVhuhHWRPkVMDTkXmMoulgiOjHiz4uawYC0JyzXvJFGsmeslKEXntDWCz8JjKMeMchdlBkmuXj6b5oKaai8VseglOVu6Eto19ajeDJpH+yT1bSZg7c4knANAQfgek7yftgC6PJqzyvASiZUoAPRhSdC6rzVEI2RcrgkwQgUYjxbFopc4LDKPECa8Mb0tU2QIY74I+iSs2EV/u1KLOQL7vEXAK8EE7gD5Wz4BOEWEVeZxx4VRZ8J21/fPCUBh5AfC9ELKPcu7BMyEhi40KGUCOXeDx0IbA1LvF0Nt247NbM6QH/2N4bIbhG5UXabDyIH2uQqZmMjD+lI3cBT0vmZ1GsJgFYfLYjSnl2JoQmXPHNan5NwDAM7odkKhBgx2m9v6m5aWKdl6sKFGcjS8I5O+l6B66QUkBDr/O3oUHSoL0e4q+1lZvwN7A1kn8uMHS19FxCDlDbuykH4+FPZsKK6M2BEaev8TtiN55mF6bekix8SayYDUmS28CxK89Md9HZh6QEMMASiMjlgzsjqj90aCnEDYhmmLdj5sGZQ5Yv1hEikNiBeWY3vD9mXnSIz3sK4Rl3tByMS5YpoKag1YT5MMFAosUt6BkeaCwyRopbUkn2RIoSEGOMqJFYpqEh8xVdBTLVFNxbOJskVpDKeGqPj91roY4W7qfFL4Y2SULYKKlMuWIMbfhQ2DKPKGwFjPE+hBy0c2Iz2qEGDkV2dyBABND9oyF3/QCFio39HDTWjvCwW7dF2iuP6gpVNA1Ie53DI4kX8vA156YpKySb1hrd8OrOeFQGFvMLSg1NnYZggUp8+JPVK2Q6YAsF0g7OvKAtZjLzcxEdanigBSAwgAbRAjLDcS6Y4ZCUJ/wJ3kRvpwgzvwBoNRYGmejqNczee73EfoBpYafJ6FnKtmRVlmmsic+H0mBewNe9SMxfSf7KA4yrUQByTfVY4EOnRjb9chXdSx3sAFMpv1Jvg1tXa9xtYfCSvruZGXs8IKhAt7FmHy8eZcxzKaTzqsIpkeNvh91EB+fqD9Ocu66ChZzTjSlZEu6MGLZZXU7xHnc1jmoYEJNQVdHIIEGUNGIs6b/V51x2D7i+J4fNPrGxdxZiLz8jjL6Mdk/RY5hq4f5g6QOyBA3sv73hMR4saIi4ygXm8DOJpTJ/Rw++O3LztH4ttQOgpBCG0AMM+bw1dzrIhBeh3GcgdkDjoAF14MqSIRXiM6GNDWiBYYV8qoWRjbKVdwaggj6S4H1Ll052D1bSOCLQH0MsnFf7ZhfqICkf5d0rcoVRriBMAyD5o03Fa+A3v9HPAsBZBGtWYLUKJXWE2NNaAe2If5GGZd5NQZFEUNtR2rfOc5CkbdGrQqohdXyXzqxKg37A1el78wxEmUjMaj1VHzyh6OlRwq2TIDEzQ7MuOkn2PaDehhY37bvrB/bwBEIItYBPJSf4C9wXvo/QFv4tp6DhFsObIOJNKyVej+efyMGYHRqbXMjhbqDXbbr+ybWB1dNcNGQOnrtv+OIWOwy65Gy9a0pR4pW1DgjWHumSYg2lhZy1y7/Vq2VCW6pya9iVAHI58BngC+tQi/O9F6AEok/15z9jJSeFhfzU5sLrxN/gsrY7pnhApsR8J21+VmvCyU5N6loo1qXT8RTcRuBroHVXqdvJ9iGc0sDo/NCXtm9mokXw69tBWKzmzXtbPX4sbd4Fd1MgwfKOaZQ+iN+7GU5mW2LGUuudf6XJKSyMtv9tlKEgwRk9yvu97dK6fxyvZl6UhCaJgPG6a5ePaw6aApcx61kcxyL7RrMo+8ACJGHElfYlN9m6YCKLfgOG2YUhGtLRVMHFVtpWTWyWuNNNTQOROB2JViD5NInGw14uXpgG1NzpUgkt6HzUAHQTKWyEjzhpyr9G7OuWsuGb7UhATNuDQSiYoD4HecGScSY0wNwBp6E9EE8Ehq/mi97CVpt2RIHNgZ3b5kDOntaHMZ0PUcg7W18wbqrBIoDEcbUWBHqrSsZTkwcP0YbSptcrpDaKziiT37ctkQNSyj0muHekIa3UP0CgARohHmhqeiR9NB/k+Q/9cji8YRdWdDzFpmIJRBk8k3Xfd0lUZ4nVklVXoUPDLC2RJR6sfdMkCm+mOvm8F/DGPW95hDdcdvfTDruXB3GtaX4tbX0aP93b0xvGa3ZB4c4rjxcIyGglJjXI+Ek5bc2pAJjSUjH3kbdK485J7b9YqsYa7XK2hg5ffksIbQDC5ddG6Ioq/YsughcDAH4xnBRNjUaaeL6ng1llHI6ty3WxKHMlyfMePgKH0xDr3xDr0H3MnQ8J0RGK+sPe/jNWbSOSw0vP4x25edIzFnMWpTGcN53AIJFHiEzgLiTIytvK46JhfwOyrEiknLYCYD3xpQagBRxCEVfO6dB0dj2ba2pLLu6FwQ+wlhmRt/QqRUZAriIRVcS3K5D2bCiWZsq4S+NFckdWY568wSha2yft/jTIqBPZ9Dv7dW0f4CEyj2me94B2i6D7uh3OEOjjIQY1K5lFIi1kVG+IbUM7OqfSmuBL4kIYRFliZ/APjYv6vDWjAAE9AfCCPlAaghoJnjNCdoTXpZZO8rcSbUoz606REKCpDZJUeZyepr1xSiXAmm3QUAJQeEJbiz8wfaMrpI++GG/rAPTkPlzG3k7eOtHhmLfXboKXgJrQHWiHY4qJ2zfZdO+xuzKWeXszp2hoMyRsNt5SNqcJ0sdy6P7KjzRbRH5k3tYfM+lGcO2jTPcsxU4IQ5H3w1bo/tngVUNn+lPSqb6pqERVVvPescDK9F8Lq/uMr7LSAxFFRhcjitHW9L6CAK69FRd6bjVm4IeE+Mt4lb+jUKjLiSIs90v5PGdzqeWBSKX82GTHV4zJrG+8XBL5CsN17t+f0UOxIi+j4A95D4rDDzLySidwH8OQBfCxls9WuZ+UN9/zcD+EZ9/+9g5r+sr38D+mCr7wDwO5l5v4KPNptHMo5bTSr9bpuRCZeSUBtkEqHOKKneB6EuL8GdmWzsb0BVfCshRmEw306rikSKzEcaFX9rdE6IbYka5mTw34BVYb6mDry2iNOasZaEpGxqy0qWqewmFTrTW/cfI6NRcwNs592qZF0hCt/DUGMMIOWKdFxhkyN9fruizCg0xMg+b6SO2lV6VYwwy1Xhv6ys6Ci/8xokU1KEGCujOibpV9k8j36xCCB221FLAF/sidG/N4DWgHgVp9QmKcXtQjI1kiAIO3pWdJqOPOYtCDfEiKKKiuNBVqMr4IZdY/x1kZ5lQFQkdCdIuY8nlob0NYCucENkUfkYnTtE1A3CkDHq9z6GtZpApC2d7cfZ1BhfC54t2Dx6aUJ3uQ5SzkmbtEdi52wZn4+jVUdKUt500t1wb/ilGFBSPkO9yveYca1z582EZXA6+l1RkXs7cp6V3AZHMmZTNgnR1m9cXwyHSVAnMMsahK2XHKXvAjjcVtfaZPp7X2K4H6y3RRCyo5ZQoyLdrL/G1L9L+D9A096WZ1g0lNoG5+CTJPXvTeX3x96TQb2lHC3PR9y4Z7afsP1EZiS/jJm/NPz/dwP4d5n5DxLR79b//y4i+tkAfj2AnwMZtftdRPT1OiXxjwL4JgDfA3EkvwJvmJJoExJzrDjk4gbIFH+vW0JR3aZN1WdvjyvePa6IoeFhnXFapaB/nDaP1gnipE5rxvk6gxm4PS743NOHncruZcs4r0ImtFnxAHC6zFivud+tTKDUXKJ9zgU304YcK55MC96dz2hMeDZNuKosiU1CPKQCPvRMyjIZ0+8qLE6SdT1M1uV0OoAvUWxvUn0mNaBUCeuhYVP5eEH6sOs4BWqoJWK5Ri2liXQIAHm/HksYRuJaNF9KFIQbgDBLJ9GzHQBlS9geJrwyRGSuOoVRnQmJ0+GbDteWtZSIrhw0I8lybIaOI6BPg2ToWF7NIs651/qLGPy2RnB8td7iNfObBnoisvjlkmRULjTjedSbkRvHSlDm/ICivSoXPgwAXSLSyzA8/MKLKUeIA2KSUMuO5RHqxyLXx/IY4wmYQi4HBg76k+DAk3qNwEPo/Axt3MZzN8y9D8Egq9EPx7LdsgMSgkKxLVMBSQ/G+yF6XCM3R1BbulbjZdAZGiNAwftZUUqtNtWQ6sCPsOBqhYwkHp2bPguPkYBhg6gh23mZozYmPrqBtoyEWLOFVRyOkzQjfHKijdIFzPlilzm0JJMed/0vADUPjs9KcdY/sgQ+9TXdcUNIS4gGbd7sGDsG503bp6m09asA/FL9/U8B+GsAfpe+/meZeQHwvUT0DwD8Ys1qnjLzdwMAEX0bgF+NNziSZ9MV//2v+XvIVF08ERAj20C4rwfJRlrGqU6oTHiaFnx2uncl340jthbxUbnBQ5lwLhPev966mCBph+q6ZixbRo4VX/XsBT57eNhNJ5yCjO2V0pUY49LiTt3XSmDmjBI1fGZ+wHv5JBpX6GNzg/5cWnYxyArJcuzzEc1fa0z4YLvF+4sc+/XmguXdKFlbKsihYmsR1yKKvKfrhOt50mxMJiPmXPG5Jw94Nl1wrRkPq5A9D6ngNq+76Y12jIEYa0s+w2U8P9PtArAbFVxMHbhGLFva6X01Jpe5qSrDzxDhSBssFlWxAOiZ2Tglcxy9nO6qOzvbnNeD/XtNwwvAIJzIHliEJ6JA7OfCfX/20+R5cqyYVNHXVJDHPtr1mrHdZHE4KroIwIEZIksjmRFXEo1FAtqzgsNTCZm3VRUIhtOjIBkooFWggahKEPThNBVEEjmh9bmE1ON0x+qKB93qWJABSOZWmYbsV15jUwOoHTjRJfQ1y6uQXpoFJq55hV1a1TJekaYxwUc5EXaFZlLisE/JbIRq+2PIWo4lUnX4JhwJ7qCVcB+1r9GBD20CijqwfbN+cA4DY94AImN/rYM5eJdJPi7dsWWiPuMGvnZkYo/+Xv1eH23QMzc71vRAyA/yJR83Gvjx9hPlSBjAXyF5Qv51Zv5WAF/BzD8MAMz8w0RkIwC/CpJx2PYFfW3T3x+//spGRN8EyVzw3ldO+Pm3369y732FG+9XqyJgYyk3meGtCPiw3OKsGgbP0xnv5pPIktwkbBxxqRPudV5JooYcKqZQ8NnpAc9U5L+xSJssnHCukw7Rin4MNlArUNspBs/qVM5twoflBqVFXGrG0hKOccO708mVim+CDN/60naH++0AAJhjcRn5qIXpY9zwfDp7z0VUdIOXz57kBV9z9+FOYdi2QM3fW1pACjK2t+h53K+yDmOfaY5F+jTEeDZdEIhxLpMoFGs4xSzCh8/ni0v1G+v/UjNORdbsWjO2Ksd0WiasJSKpui8BqnUmaLvzklFrkF6RDhsD0OVsyJQG4IoDROwKz5VJM1VzKvqgWTQbmmeMo57aFKuXJ80ZmjROCg2nbcL9MqM2wpSqa7fJcYtzmlNFisIdWiaVsFkT6iYSNocnq5c1bZ3LMOp4vAYxVYQwHLuWBhkAmGS87xqAAKTbDdO8eURaB2cKEsUDI+Eiww1zHXpv9trlMqFehEgaZ5m+yS2ghS69w0mPZ5gPz+b01BHYsVY9XheAVMfnSr/+8A+/q/MCE+oSxXHkhulmk/OgDphZrhPqIpY1pAYKEJ6WOT6VkQeAdmxY71i4N6cgQpGJO/fJema8d5g7lF8QhzAOYONpcJ4DN8h4VKJZ18/NA4y5dYdp126JQmuwjFzVjHkJ3vMyMrFJ7oAfZWefsP1EOZJ/mpl/SJ3FXyWiv/cJ731dYsWf8PqrL4qj+lYA+Mx//TP8XR/+bCRqOEbpWXSZ+ID7csClZmwt4lwyGge8M5/xuVkzkiGCvokrsjLZzOnk6SVyKIiw/RZUBDzUA8519uwBkCzoJq6oLEq3H66iJPxiPWIpyWVSiBi3ecXTfPU57WnYTw4Vl5rxvaf3XFV4nLZozXnbTmXCB+cjSo1SMsvbThrdzg8APlqO+NHzHZgJT+YF78xnJGp+HHJ3d+mWD69HlBowpYpD2neGRQl48v2bFMx5y7houXA05i+XA1JoLkFvOmJrUbl9VfwlYsy54DBtIhuzGfig95yI4HNTkiLz7BjsJhvFIIkYp3XCFz+6k3KOPaiARLamhLsEMWSR8dGxz2m3XpFJzIfAuDmsOE4bTuskMvE2vEz7LSE1N2h2zACwQuR61pKwLqnfg1nWL0ZRYaiNVLVBRj4fpg2B4M5v2RKuH90gnKKACA61GzhDdjl6h1G3gBVZzmGJ/fz16dtSk1JiI/ASu0F/vFnT3iL78U/6OrvGl/K6dC6LrREAB4DYBeNG4GtCPO+DQC+V6SkZuKHNHc1o0jZYAtZr7Men6gewKZiQz7JmDsGM/HA+NGi61Zsmy6Cin7QR2rGBVF2Ct6CQedsJQBshnHvJMmzi3FuSbGDnF5tC6Bk6yExqT54IBoAXEalEgziuBmSdVinnAzyeAOrqByRZXFXO004n7hO2nxBHwsw/pD9/jIj+AoBfDOBHiejzmo18HsCP6du/AOCnDh//agA/pK9/9Wte/8TN5nIsEINqA6wMNXXeJmwqRV6q/PzB9AxT+iwiMZ4fLnhvFvD8D9R3UDjspOHP24STjdpNgpKaU8Hnb17i3emEwpJFVCZkNciNA754vcNHyxHnLeP9D+/QTglIjHgsCKFhmkTs0cb23uq436UkzwAsEryWhLMeg/QfNBqNvGPoA8BWIq4aNZ6XCctVhSMLefRmd/IXpyqz3LVnYxLohhYbJdyva8YLFiNa1oi2Gt4TsB6IGZiYmhuOMdq3bTln0PuTqPDOrONtGchSqqDAvRmvZSr/qv9ve28aa9uWnYV9Y865mt2c27ym3itXucFgI2EgGAidlYQEJSGA4iQiEvmBowTFAYEACQkRlIYEIRFEjAghRCYgYoGDkGhiERtCJBLywxhsx9jYJYMxxn6uqlf1mnvv2c1q5pwjP8YYc8597n0NKdd7VXX3kK7uOfvsvfZac689xhxjfOP7SFUfFy+NfA0IlOlC392cP4DiyNclIN12IB1QNWQTLQ60yoS/19JA9lLeSZ6R0AhfWcnBMdYl4OCzgAuOXVEttPXNHki2G1cHKMdoShZaQnJn4cICZKM5QXsAu1TXRa8nL15QDpngJhG5wkLgSRx3YRW27ZmWV+LWI/YZLWqraNQzFWSZOTer6RdH18k5sYN8bn0GMYEfB+TCXkBwDAyPCeObcr7Lgw7rzSjrsVfdkKz06CyOzmR/w8EjHPXcFHbsFqA7CAw3bklUDR3JHFRfr6/ekPq6tvfS/LmWmrjK4wIC7WQbHGxex1BGXQAZSKNDGkMhvJQ+DSpzgUGNWYEIizzez6gkkjoblAMV2HVuoPBm1ptiAsKZ0N2iUN7cRY5lj8IqjBklEyrLotdxF1X3LPvAAwkR7QA4Zr7Vn/8NAP8NgO8A8B8C+MP6//+mL/kOAN9ORN8CabZ/DYC/x8yJiG6J6FcA+B4A3wTgT7zX+w8u4qu2byJBAoD8X/XbzVpxqTkH3MZBGtl+RaCMc+rwz24f4tFxgz4kvLA7YfBR69yuUtHnDsHJbvuJlpisPzH6FftOateOMsYgpZHupYTlQdD1qjtn32QNVno6rqIbb6qItoM3iPPYlDzMUqaimSK/647YSXM/Z8JqnTmXS50bpIy8ySFGh0mzCCt3yK5f+gs2rAkAoU9gHeJ0ygdmXGdgumjAp1R38H0XJXvwGXOXha7GsQi+aePe+yznswZkIyS0/oXumMt2zTNMohYMuIOHfyOAGFjvZ6T7i06+68IwQNsIbFGdKSBlGJ1ELnDXtgQQhEXAZnoseNu1A0AekjTsrddBLEgw+zLbd7oEFX2t0tnwUiNN4RFzAEUHTgympjvltORDEoS5zCNo4Iwyo1Br+bIjpgTQLLoi3OxWi+m5MYC8Rclo3OLqTrZ9erP29h42RxT3wFlpRCgC/WNxdDE65M5VpFW2eRtJOXLHIurEldsNAOYX9T1jnccAC1WIXEd1ulnBBbS60mTmJnuyRrfBjklngexamFD6GaadbqgxI3oUdgNC3FzCimuPpB7L5mJsQr58uWDnYI/ZuV0OxxokWlxaHVatw74VIWaQ58JfZvedfna5vvW72oeRkbwC4K+KXjMCgG9n5r9BRH8fwF8iot8C4CcB/PsAwMw/TER/CcCPQOaNf7sitgDgt6HCf78L79FoB0RV7/X5XhGOAlAa5m1TGsDFz2ZeXxfZYdutWIYg7ME+SpBx0hdhJhydOHmrE5t075Ll/8My4I3zXnb1TQ3enDwBCD7pTesApb/vNGC0lrLDCkGfzTFoE5lKs9Zr+af3wiO2aMnjbl1eCCMF6kvKRVZIadkyBn3PZDxk1VkKNxmV1wkUWOhjpNSjJ3yn8WrqhKS1d0CypVV7HOQyPAlUOCmzsesSoqr8DeNSgsoF63Cii3OGY2BUJ5Ql8zL0D89S4ig0+NDshHRXP7sCd5U/4uKLZzVmdgJXdiYmpSWu5dRLjR0oThRAbZabkJJn0DYi9BGcncj96vu6wGBm5E1GLAGs+aZnlPUvzVv7pTSvlY2Y6/MubnVzTF0zX2KO1UpgjHpwy1QuRLcANxH8SR6Le9O10bWGOjsVXsrBldhSz6MuFXtgvZcL+sx6Bu0O/hJyXc+jytRyQTRxc3z77CyjIsjv9hzSj6fMvTAhjywKiADCyRXeK5rrGhiU2KDSdk1FO6ahMSmosMiFWr+FbVtAcQkXLAMACszXgjylyiCcOwYCFWYGJr02DSppw7iD/K63dyaQ8qK9l33ggYSZfxzAv/CMx98E8Gve4TV/CMAfesbj3wvg5//zvP9x7fE9n/xKeJex6ddS+jDzLpdG7XHukZKTGZBhQecTDqFmETfdhF1YEFzCNizoKOPxOuK49g2KiMBEhWIlZofzGpDVsXrHyCylICN+DJ3swmNyOJ4GcJb5FHv8wXjGV+8FOS26JF5ld5eKRNEMq5XqzTqnkkEX0r3SuA44rx2OJ6HFd9pITcmJkmGG1PJ18hxZ0UFDxs3LB7ywPV+s80WjVXsgjiTg2LBvbpyGBb1Rgx0zlRKjlRmL1rq+RrIeYWoeuigIrQ7wW/n2WcNZ3oue2UBrS2l3J5BydkVsjEIG273S7rTt1skEtqnoLmPcLEVN0o51IiAG0bLph7UgyuyapqlDXIKwF2ykgR6zw3SW+5Cc9EMAYDW1RJZdKvIdL8zNYzp7gSwZmTEF8zYJu8Ds4I86x6P67WxccyZz65pypL2FBU5FX5WAaOuTXXFCaVDN+wwg+YIoK1PijstwXTm+Beom43MRRQkRAOCcIIvAhUZHHP7lrAs7Rtwz8rYd6JD3hfLd8eAuNhaXNwqkpAnZgeWBwRsp++WVKvHmO+3euQbAkqmclIEhaLmLJDD6SY4TR3H0QqGi15OESJFYpt3X+/kie6JEIgWsSCzJfrjAou1+MWh57lFmfQobwyTBuVzKF2hG8qGadxn3t2d0ipyxQJKb1XJgRJaGZdZM4bR0IAp4eP+En7V7E3MO+MnjQzxeRs1GZMw3Zo/TKhQojhi9TWwzIWkwKQgax0Ub/Jgc4iRg88wSONqSUWEThmQd8RljsRIUgGPq8XiRMtroRaIXkAwruFT13UGlzLbkIBT6NmjHhGTTscQgDxm2Yt1VspAvUp8Ksskkhw3mar0K035JACjX4xfJVu25MBNup6FouBic1pGsU7hzQ2ddOxsY7bSsZ0GSNHDl7HA+94iz0O1LP0XEtQr9TaIyZGiOs0A8zSnbF3FxcJPTUpHu2jOk/xBl83DuBsw+lYzNxLrsmmx2xtgPZFGozLZYz2ldA+IcZJ6ny3BDzWKoUL7YtDpdNrTbzEkf545rOU4RT6JNLp+pW5Ti3gFx48B9FqeTNSPtJcCIByzpjhyvkwWyUmjeJCwPqGRG9hruMjJRyU6kjOYQzlr6sl26Obd20BHyWWS9eUwQi3RN7FSsTAQr+9k1G2ND1D4ZQWiBm4zlmY7TCThBq9N6HrL2xnnlNDiYIFkZkLTAys3Pjdl1SVmL6yS5Q4HnGlccO2C90Y2Pl6wPdCcbM2uDcjvUSvpd9kAas2w0dE6qZLEByMRFo+a97LkLJCk7PDmP6ENE7qmgdgwhNfiI3kVkdhi8zihkj1VnRBwxjnFABmH0Eff7SWGwhDlL49sRg0lmMcYg5a59N2PjV9yuUs6am+OBGEMfgT2KY4mrhw8J2+1cqFqs9PbWeYvvWz6OlB1Oc4919ej7iPubCZ1POC49DmeB3lpTnEiUIR3xhcNvM4eUHUIfQSQ8YcFlKZVpA955Bms5sFCoeDnecRH47TR3z9RDN7soMwHlxj3Yr6qaKGzGtTwESB6/njuZXAeAIcP1qezwvZc+UqfB+7x0QtnPCiMVbyuNd/aSXa0kDWAb/GMAhkDSnaDUq3Xq3MnOOnVNGWElKc+MWSoYDkingIQgjnoVp8l9BnVZgsBZ3oO7DNgUfeNkpsVj9lmkgmeBnDIckg1CKsLJvCbrLrqFixqsU258IdnyZ1EBLNPUTnbvRbuk4aayHklZhwzwwsidBNHS82g/ZCvHtHUqDQhl+p5Qd/xZnkCxOk07r1Ly0ZmHliHASkzOhva40W1pSkKl9g9tpEPO/YIjrKGWL9TwqvHCXifBu0vvn5XXDIBo2Sg1fNqwsOQshHCW412oG+bm3CxoJUNqoXLW3VnTSr2Pwtwrf9dzbyjlLViVNbf35fq+ZW4ku8rW3KxdyZyeFaCeYc9dIAHEWVsPAUApnwBVnRDAU/xanhgf2d6W4cSvHN+Eo4xTGvD6cg9zCvjY9hF+zs1nAaA08T2xzkMk3O/O+Mh4wJo9buOAR/MGa/Z4wmOdbG92ySfNbKozFA2SsZfSyCv3brEJayn7ZCb0Y8LNIOW3zqUyt2FAgSkFHNcBUYPl6NcSSAPlgmSLLFQuNmRowYyZMK1Cp2/SwlIqlHLhxVqzDP7F7MR/6Jp2IWHXLwgu47D0OM2iZz9NnfQjCBfDeGUWxWdwcOVn68NYphdCwv1xgqeMdfBYt/4pHrW71wKgXA8gapbeZ6xrwHxs+hpmhPJtljh4yQdGTgff7hpb8AV4o2SToUoZt4dvAQjYNYfQh/y29oSmc488e1Gr7GVOKM4BDBEsMxkCAIhDbt5EnHq2DIvR9EUk8zDkl6mFytS/BqgElAaaZUIawAqFxyBrgk6CqCDsJPjn5BAXYULIu4j1Fc1kVl/f407/B8BF057N2WUqmWGLHEsjI25qyavMYBjBZgOF9Wcn8sXcTMSXYNZ8BgDSJoP3gvhLD2QpCqu2zpn4s24AFAgBoFDFtL0cC2CAACcw1tsFeqvlQa9Zz7ecu788L8vG7AELKn6WxroxSyctpVm8zz3LZ0W6Rm1f5M7351n23AUSImHPvSwx5ZKZRNVfN2qRgunX11rmsZK/mBzvnQz7zTngrWVbBgpt5iNo/u2RCwnjxq/AIDxbt/2AuZOhuXzyoFXQMsnJDgddFjoQEj2TYxL9912/IJDOR2jAeLKMOMy9Zhky7GazGYA4zdNxRI6EYbviwf4ERyzOVDOlrpm1CC5j0IG4zqULEIJlMm1psLWYHQ7zgDXpNDlLUJiWDk+Oo/SNVi9zCgR02wXbBxIE7TNaV491CuCkGUSUtaGRdWCOS/lvjh5vHrflszazY7XByTvGEGJBxS2+MhM4O57Tb6OVYEidaWmaW+lEaynJnL3sfEOf0ClowUpZVb9GndaiHeBmuM7thZ3a5AE4o8KxgQt4r3MMt4lF9My5jNRHxI1vEGgNJ1ymAiKQzxAiV6DlDVKxr8wEDgK9LbID1Pxr6u5udmWnLCSQuHCgiARWEEl26v2iA80OLksAy0oFI9IHcnCj4yk9Olu3pCnc7C7QWpbFWLZgGZf9fBFAyo5fN2EdY9Vmvlv0dQ0KqqDUSIPBQZGVmr0ScFGmEq0R7Tl1uWYYVhZMVJy2SSCjOUbJUAngLCSj7LhwdRGj8GsJtYpsqCyLMLZi+z0VeYAqvMZ60pQAf/T1/d8H5Le15y6QbMOKX/jyp7BmjyU/vVttLWZfdueT0nm8Ne3w3fPPuphsbgfbjkuP2/Mg0Nt+xVZ36Nw+tziyyug7hogXH2iB58V6Di3RYjkv3eEzE948bvHGYQfvMnqd2G614KP2J5gYfagBk7dzIV58dBDHa8NwzITjEorGu5lvWHqXJUgDGAApozBbTwEoOu3MVGGtJDvjAie2a4zqmPXxluUYQIHRgqRH4Jw4GXvP4mxZ518W5UoPDaWFZS5NqUhgcU1ZSR+jXrTqy2NlvkSDRK67ytoMpoKGsoljJsa6eMQu6HVWZ3FZ79N/NvVMQD50mCYPLA7dIw8/E9KgejAGPVXHnbX8kxMhaXmHg+mf8MWuu0wvN5Bgiqptz03JhCEqmXDicAy9leiO7oisU2YU1Jb97xOBlxqwyg67/fg16/ATwc++KclwCQr2eq/PN5gtgFIOK8cnTZJ0TQvpI9u1a0+jV2eaa9nH6O2ZUHoEFnTgpF9gMs2iV3/ns+RaAmwFqETjpUkdLIA3vZu73FnEFWrMZJ+nQJn9hJJtWPA2nXtr6JcSlWVuzRwJGGVuyNlckhFPMooGPenz7hCVP9Oeu0CyZo/XzzfF0RpP05zqtLQ4+4xRKUWOucfbpw0YwKgsvm0JbPAR97oJg4+4XQfcDiMyCJuwYhsWxOxwu4w4R6nz27T6mjwO83CBXpJzePaUuZk13p1j7IYFo/FNWXmOKlEjhYjgSSncE3qXMLtKO2/IMaMRWWbFFFIz77Ha9i2i7+pdVViFV1k712VsNlKuMpRUSg7TqUc2wYWo8w0quEWWppdj6lAjKiqLmya01103s5A9xijQWI5VKZKGVHbchjRyrikVSdxETq4oTBbqiwzgLFotMv2dBdnEqI13c/h86cjKDq8DsjWkiWtW4LnOsqyuqUXIOWLIwM6ig56LZ8R9RtooZDNI/411516CMwE5Su+FkjaRi9wy4GxK23xfhnpmEpiuasjnQRuwTIUht/RNdLAyD5ByycldKFtKaalCV+/qiLTNcgtals2lULOINltop73DQUtmQxWgKs4ya49EzzcPl0SLzDY4qD0LzVpMvK1Fhdlrsg68l/mRSI2zJSXKbPopWjbKHYMC6qxRx3UY0CDGWYJn4bmyGY4myyulKcuASK4hHAHKLMOWG9SsKchnbY15CyJyEij3qWv4t9rPyOZX/Az0jyVQpo2u9XvYcxhIHD59e1McKFAdOwDEpS+8R7t+QedkxmI7LJJlhIheG85zClizE9js2pdm/U0/AQBulxFvnbdCp9IteGE8Ycnac2j6MsyE09RjmTqQY3R9LCqMbfkt+ARHwHZYcH9zJ/Mwenu9nsohxXD6N8msgr63lKS8E3RYYfks/SGUob8CkSbGNNchREGWiZ6GlV1i9MhOJ+oVfUUO8PtYXic/4CKDsfdNURBWVopqG/NE4vwL0pJEYyUlQmygqEjau/Csol2CmEtUr4vuaM2w0WOYE7Pd7eoETjlTIeaLGyBvBQ4MdWgWVMBQuC2XbKBkMrPXyXB1IgkiRrVLgCMgApx8DVZWz9dJbjc5Yf9l4UJK2ywHj+ovSAIfEwOLkxq9OfS2Ri9PBuuOmdbqWCgqhX0WBJJfZLe7PFBHlVEyr+K8dLdfsqlmnsHrXEWZc+B6DqL4KOeYNiz8TpptGRVJCUoksyj2+nBudh+2/uZ0tVkOWJYhm4pURNpQptjJynmW6Rh5ZbNmZYMQtMzMdaofgMxGNQHa25yIZRwZVWO+nDMXOVtKgFeJ3/Z6TF+kvR/ZyfAmQEVbBRkIprWjWUSh0Nf7udWpKRLX9h65HvuulU0ePf231p67QOId4/5mQnC5MM2uykclg21n9C4huFT+P6wDbt0oPFZUy0N7PxcnvmqZ7By7wifV+YR9P8M4ph7PchffJfwjEh6moZd6vZEKytBk1vPOZYDSjhHZ4XYeMK9B+zwSEBemQnXvHWuwMO4pKTtZw3ldOsT4jDvojhFx0aQHIDt8b85YhsmYgWUKFxkEAWUCXSDFrpIFMusdncudSE6BBZlERCsT2ulv8vV8vDakCwmhDiDmRXihBLCgL9DzyaXeTxe7eRn1tfOpJRtxmoQ8ZiyayaDLcEMSZ7r4Upbj0eoNKGU6ZCrULKQ9EPaM9WGqjqp1II5Lw9oG1wQtppmBOXMmCXKlHmXHqLt6CTQowattvrKH9CUcg4ZmMLOx3DFWfYwSQGeS3kdQkkcNKvZcQ3LRqo7ZM2LfvN4m3/RjRUCR7RVBpstSkZV0zGEaFDV3KMOAbiF13CLnnL04x3AiBRpAFCPtsOY09bbgrBuLEkj07+15FIiyyjBngUnbhLmVjWyK3ZQXTamwlMdg2ZAcyy8oMz1xA924aFbkgHVsylG2wVM6m9KbKn0pOU+5dsAvjHVPWO5LYLf5FMse88AadOipDCiNKBryRdDrzr1x1567QGI74TV5zEr8b84xuIy+S9h3s85WCKV7ZC90KaTUJLErWUagLHTwOqthSCdmnUBXFBQRF+Eqy0RWbex7ArxLJWh0vja0rU+wajYBAF0DDtj1C3b9UibajRp9meW5oUsFDmsoJWs4O5Idu805rEtAig7kGYMOzGUto0k5jYpjFr15yWZWnQL2NqNBSlaYLOPCRbAiyFQ8KxkibRLG7VLmK4rqZFSEkGfpHN7xdSk5pCS0LfEcap/FSkjARYYFSKAqTp5Q+zXRSQ8DEDErLUGxcY4ZUaNmNCX7iQbvVXQOqIhhgRraE/NkWpoqgdQWRO/N0sS3TAIoO304Rrypr6nEe1z+K5xYKyEcXNnNl51pVxllZXm03q+SzqYEaadovQMbUryA/KLu4C+YCjq5n4zWBLjc7Ze5lyYD5kYjvTXKdYDPMojcM5KXk8sdKm2LZTs2GMp1x07UXEebcUY9Rw06dyWAaz+B6q7da//EU2l4+wl1APBOD9CuVxf84iZmy6Yaavlkmyo9LoBC82IzJQAQtxBEGqBwbzn/5b58rrklYvRoWCUqrN2ukbIGsCagvt9sBHgOA4mQNvrSR/AuY9ct2IcZGYQpdnhrlq2nOfM1SWMeAHqX0HVLefyYPTxlbIP2BpLCde+8ryMZ5nPEZXdiDXOhRREiSZt+z5kQfMbNOAs1OVNhtV008zA+L9N/tzJX5xO6bSqlLmvy78cZg09YlSG3HRgkkqDjvHBaTedeNC26jHFc4VyCcw7JhuWiV34rBzwJ8JNDHDPWfRKH23JeKfKJNLNwJAGHd+pwHCMq9DYlVwfL+gT0kAb5JMEZnpGsgd4wxlKXgc4IGNU5ATAodfG1mQT9pf2HopeRSOjTCQAJzXZODnTyNTPQL2W2QMUAra7stAnqbAJVlI5jQJ00R3W2trsujQA9t45l2A8ouuvWxAdDwAO9BlS79hZRBaDI4wajWkdxgJSAcCSR/rW6ujqNbIEkotTjS/mGAXd21fmboyxxrCKDLkokjuv8RRMsC+WGU6EpByBxzVjawJpRKD3sHC3ACeULCh1ICTQdsO4roWRJ0lYAM5UgwoSLKXgOkEl+iKM1jqrc1x6HGZX1hgylNmWwcp1lp1+DB2UqmZH0sXDBg0WxNukvzN7PSznUfrbyZwv8YFc/GgvkpWlOUsYuQduO6+px20D31Hm8gz13gcRTxv1BwrwFit5JScmBsQ0LtkARU7JsxRh2XxyP+Oj4GIAISK3s0FHGvXAuQlBzDkhwF/T0cxaxqlU1REz7w1iDp9hhtkxGMwcrbzHLzWeiR2tyiFHKWftxRu8v+ymj0rgYmAAQBJoRPWbuChps06+4GeYi7GWT7medzpdekpwH6ZpZv8XYkedtQIoefSOAZMGQCNiPM3a9BF87nyV5mR1pyzKoDXYAdyjV5f9lCViXIEOTw4qhi0hMWNegssZcXtei6dp+iMF7W9TcWenpbSA0Z2XyZSD16iXaLMfKHZsI8lVTA837ALjMSDSIwEECjWZH5I1jTDi6DEhgPGFyIMAFmcGwjI8VlMAatJ2vMxrr6pEmYSg27jApPXqQqj+WXkeflX+MSx+nlPes3FeCXt0IYSUhaATXp1DDktzMI7SzLBVCzKW0yDo9b+tszALZMiDL/hQxVXoSRaeDRKf8TjCzzAgAWJl/AVQ0k/J9seNLHrJVkmB2CgLQ/o7tEFOZmOe6Nllh0JEkSIa6XndRc8hUezQtY/IgJboSECzuaZaFeotJwImXpamngAZqvAA8E4SxQOWmMxUwQ26zNdQ1cmst4b2bPXeBhAhl3gKA0KFkj0MD9W1LUOZYLeB/dtrjoMJV9jf7GQAezyMeHzdgJjzYn/Dy9viUk25LTG0Jy0SYivNkUo4swmnpcJpky7AdFzzcnotDP2hQ6bUktmaPW6VImVMoAWpthI6IhHZkiR6fWfa6cdJrydIsN310yyyGccV+M5fgBogz3m1mOEJp4JeBPw1Ep6XDqgFiTVVWt22k3+W7IgK8hzpNV2Yw1jkgK5XMoq/LmWTOJDpELUEZiolXVzIWp5mMfVecz+j7WEpqMco3167ZSlqyXUX9BicSWnaCzDZYP8We47nsbBFJpHZJuJlom7TZL3/OqwOfRNExh4wYuDbmjZ7Cnpskq7F6vpW3RAVQKOhzTxLYSvDSTIhqMCtZi+PanlG2ANPQgGPktkzTbsG1BGIwU3YQjftm5sR6JS0iyha/qP2Zk2dclMyKbgihBh/9PgDQfg+VDCucJGNJG65a5Lqrv2C91Z/bkhcHIDmIdHSkZuaECymiiyglzDDJeea++XujY1/fV+jeQVwn2y3AaXBuew8WMCS70+9/au65sgYoyK52mt0so1lry/64CThJhxOVb0ukjjWQKAdROAoNP0ho+Eum8i723AUSZkVbJV/gsttuLdPhRodijLxWPpoV4nrqOgyd7Lp33YIhCLHerLrpg0945f5teb9bRWjdTkM5hqGR+l502L3Lys0FZAgs2MSJjD5+Tb5MvoeQEbNQrzwYz1WT/Rl56K7JTKYkWcacAo6KTjOo7cXrzXHZF1edyboEPNJeR05eGrQArG/gvAwIOuW+GjZSzF2iR0ySDS2zzJ94L5T1NgsCaABbfenThJBkN0YSxomAbojIXdJAk5W7isB9UvI5LrQzzgMYALCyBs9eSl/6vJQczqdBUGurk9IWa7NYxaowKPxXPjn5YgeWLqfCeMlo09WZ5A0De+mzcMdgKBlUqNmR8VeTz3A3+niGDgsCGBMwog7fMUDZFd0LHlWXpbVIwNzprItK7UJ3zlqiIqM6MWizZ3md8XZZKSgR3ATw4u88F9LkZ+jgoTr8QUS9ZGjQS7DqVF9Fl65ka+ZAqZZYsss100lUJGL9LNfMliFBApjV86WUqLftYrQmSkZI0PkIvb+0REUZ8Gc5RqsPL2g6Oc+WoiUNcp3kgLUpl7WDkLmsg7yu0usQuqnCirNHCep+hpJQKsTWUFau9l5KGdD2FKq1QhlY94S4q9kX0ARO+10/d2YuQ8OtvkruazZlQYcDEHf1uXeD1bPsuQskKTs8Om8uZjcyi0AUgMI4W8oixCBypVm76Ve8uDkhkOp/UC6DjelZ+DmIg74ZZ2yHSwzgqvrjbZYCSLAzNNRp7ksGEDq5c60Zn5lwu4hOiqc6pd1mSvb+9r8DF8p4k2I1Fb+0+kpPYn0NzxcOPysayrkMdFJyK5QXWSRgmQkzMQ6a9qfohPaiMXZawrLsyx4HysT2unrE6GG66BZQWj31ksE4hmv4rktznbiup/J4pVzLKaXsZPBVoDDgys1BUle3XTNQSz6J0L/l0R0IuQOWe0IzQQvBvT6Is1CHkz0QHyTQfoUBPiqUSK8l3yGOtL9p6YY7RryfymOkokbc6Rtpb8OwnaW80d6WuhunlcDZ135DcY6VNTecHCgaSsoVWG+xrjp3LKr02M4uNFlaO9PQJjdlYhxotFgMakyShd3tyRAjWe/GpsoZpQRDTMAJF7t+0+aQEhbKnIVbCf4szhsEhQc391dTQqMoSKtCLAlUXi77aptfDkAeNKjRM4AE2sspjLvN662kVY6nQcfW0Jy/DabSnfMp11k+h5rZsmaxVZJYvqOt5oj1S6TvpIOK72HPXSCRoOHLUB8AnKa6iqad4UPCbjOjDwlLDDgfe3FCiooy6vd19Re7YwClNCWzFEL/PQwrhpAQk5PgYY1oEmdYGteAqv5BHLkez1QAAajcrL8IAt6LEFSRjtXgMy2dNLKJi0LiMneIh06cZJfhRwlQZaZDd8YAgRfCfOieXsgG/RS5+bvdvJ5LQDA5WrIegT7P3q8o3pF5XgBZp7QjVQbXu+9BQIHbdo0AlzXYrRmtO+yCfqqJ1KXT0//9JHVuAlQNEBe75/b5wsZqQkEA3ZF9Fa0IOUd/cMDtWJbvbs3bq4OzMg33WZyXyrCyDe0Rw82uOJ+LGQFb3+a45Zq5ziYIvFiWT+rj8nzX7IILakx3xz4LXfrFDt8av/pWhZbDSiqWFRlEVp0TZfk9jVyceFn/RQSmdC8lu+JYnWlLxFiunfG0mh+JQ8yDfD5+JvSP6ofPmrH0j58O6gAaGhJ6uoTUoQzwuaiffQS6I5ehR0FwEShxcfZxJKHLz7oOhta626yHfk65YQOmy+dWwSyUIUsw0K1AqzUD1CBETT2ZPSGOKKAEy/LaIc8wMfxyZwPxDHvuAolzjG2/Yk0OC4y4sQaAzZDKPIbt5Df9ik53gn1IVRzKtMN9xm5cSs9hXjul7ZDaPrHW+RV/14Ukvi25Qpne9RFOSxVZ5Wq9F91t7xinuRckFdvuWx2K4yIRO2lZIwShZbdrsq2JBB3Z4fv9Wr4ptgK8OtAs51Mcd3HuovrnVKEvzULfIXoOlfepRfKUwKTBgcEXDqP8HfU1WHQQjyAT3IGBTrikyLH0FGzSXnfqgOzeybHsipd2SyfvRYuw3lpAMKcpHEf1y9M6LxBK2aPNUsKtQ3cr57jeKClgs/u92IFrJmOlmYt1vWMG4Wx/L5QqCp81NFgumFatdz+DMba8hTpNSjJfYUy1NntQmIBJyjEmgFSo0JuMgAMQu+azNges/zIgKLV8eT4FlZTVMTfBin1dO8uO7Gf7erbLdZfV1oSe7P1KNqBwZYpUAvdT0/bq/ClJqWjdo+7WNZv0ub7WVATbfks5nyA9BUqM1JMGEmmkl109NYE6oA50apmsSbrgVpELzoERNzLDY835i/uN6mttPSgxclfPodwDLOU7m8QvgTqjZGoCG9b3acpy72YfhtTulwP4NgCvQm6Zb2XmP05EfwDAfwLgs/rU38/M36mv+c8A/BYIBuR3MvPf1Md/CapC4ncC+F3Md+WJLi1naVzL66t6oIkMiQytcFmtq8w02MyEPd92+464TKCf5g5AJwEj1q1c6CrKZl7DRQqZsyszE5wZ2Ynzjasv0FtjtF1XX3XUk9CbwDP8mAqSp0U5iZAW9Bp09sNZ/aJO9VvZiJnAI1Wm7hZWmNRLTL7OWowZGHTsdhZSQWJSGlSFv1opJJuzplKjv2g0qjORoIU6AW3cVMzICJcIojufsiCcNIAEBpjlvC0TIi5ysval9bPSbrBMiscd11kDz2UWwy+yi0xAcSJxawEBlzV8J4vG9twyLc91lwj5HQDc4uAmunRIVI9dX4CL8pubXdmhF06mxvGLWBKKN7bjxx0jjbbD1XsgURFZIt3Vkzp9zgBBnGOZ+m8yNL7TAyGggexWWGxB/9jTNbvzE11ep91+lamnBBQO8rG2GViZqyAtFemtalmXSdOWoGSvM8ftgOWenENuWX6bbCp1AKnDt127UKHoUqT62ck5SDAOzbR6CXzKwSVoMFmHAs3NdSmIuayxBWBYwOR6jheNddsQJa5qiKH5W/OdqdT6Gjd9MxRpGZZmf6l/xgd0xz6MjCQC+D3M/P1EdAPg+4job+nf/hgz/9H2yUT08wD8JgBfB9Fs/z+J6GtVbvdPAfhmAH8XEkh+Ld5Dbrdl9TXOtTl6zIqIslp8Sg4petnFawmJCEWsyjuZ8bDZDTv2FANOcw+GoMPaAGW0H9bE7zuhg89MWIzGnAXGCc9wqlfuNWBZADOac0eM7bBg8OkpUakCBdaMBkChgonJY46+wFyNvNF6HcwkjLRWc7eY0uVKYGgL6jJolwoK6W7PA8AF060RQZKr6KriJLVh77zMcKTFX8xeIBkKwN6r/u/6JOuG5rvVvC8nuZ4yU8KEtAfWB3qQhmLcms4gKSXlIMEl91mhu4Skzy+04FZi09MtMrp9Bg2C+ip8XlzfiwMj7fSMDSZKKLTryCSNz1Ksl+eK09NjuGb6u4GDkkY+7rgMueUMgFUxzwYPLVNkbU4vVIKlKfeV87JAjgo/lXOwc6MyRMi6swWJoiDspebso5bJbJNRwAHN+zU3kiVrRq5IDNEct6HHdohOzWVdV0hDW/TZUQktM5WMRpw8PbXbLz0L0pJjk80RmjkUZ810uVUv+gymVzI2Ac8Sa222W59HJtDpolxlVCYWKAAgDVT135vgGjfyQ8kyLJjZ2rj6/vYebZB1DuKlA5ADgRoZg3eyD0Nq91MAPqU/3xLRJwB87F1e8o0A/iIzzwD+KRH9GIBfRkQ/AeAeM383ABDRtwH4d/AegcQRYz8I2moXFjjKZRq91eSILFDVyA5PplEpz2Um4stvHqFinWTGJGaHyB73+6mQAk4pFOoUk97tXJaJeJdxXPuCnvIuY+zFmVqgWpNolieWKXmTBt52K7bdUs7X4MU2Bb/vZtzvRHDrnDosOSBmh1PsCx3MEITSe4mhBJVlDsg2DFiCWZ1NaCnYLdNxTogaN/0qwlZLpz0bYSM2TjO5Hofz3KtoVy49najwXiJg6FaMVpbT9V0aUAJpKQ5Qn2bBWbXm38mySvU6quABlNdDND2OSgs+ZPguSxntEIBFd94qO2soIQZqD4arQ+QhI+zWQg1j8rgWsC/uR1dnXWadkSnStZOH8XVJzYFKQ5qHJI1hQvEUHB3orLrvVoq7qAmR0vCTsN+21ObPXDTJMovoV8li9c9KO8OJwOcgzf+BkfaAlSatTOSPToghnSKlAgCje9cMNvcZxAR3cs2keAMF1mMaTJcZSBtx7lbSgmMRmjoTXNRMcmxeb5nDkMtxk20Cmmy3lELRZBOMS7EwvQmKGJWHEHbqRHkpr2nJsoAaLFtTWLCfCN2tIrgCpLxGyuirxJAlSTXKedaAatDvocKRzQobgGW7munbsGU5VsZFpQRAmfB/vxHiQ+2RENFXAfh6AN8D4BsA/A4i+iYA3wvJWt6GBJm/27zsNX1s1Z/vPv6s9/lmSOaC8ZUbgfqCcFQiIE+5DPXF7DA1Y6yBMvbDjGAkiAA+fbxX2HaN+HBQcaeWAsUG+UzTw6kTMS4uR1wG9ZbkS88lMyFrdmGWmBAb+HDMTnVCYn1fveOfLCOm1JXjJg10FsxsuNCT6MVHzbxSEuQNeca4Fc3wJfoy5V7KAlQDDBFLNhVF5MrUGO08U3aYFo+4CvQ2hIRhXKXUt6jjJhR0lQwFVgJKAFhXpXxhgf/uNlJwNvnelByWKSBHB9dlDOPaBApdr0jIUWdRzp18ebqM0Ddbtk6+aJy1BwQAuwjeQWC+SjBYmv+OQWNC6IRFwPQyCEBaPBI8YsgN4gxPbQ+dzxUCq1P9bLDipMN3jiX7aGZDaPW1lxG4wHsBVGnZ5n3kZ8hu1ByKXk/RywBkWDFKhsWB69BdA1ow5oGiyGiZkGVZ9paGJgNKRiIBV3oG7NX5OQEVhFtfr0HLRm4hQDOO9pJKycycOBRdzQ65Y6Qty0zR2tDeN6VDO25xsAQU5mJ7H+U1K0g2y8ygzngV1BjpuloJSkpVBJzlrKUxL2vuZ2MKpguK/LQBEkvm0h3kcReBpKwKadRJfStzZbt+GeR0ZBloNRe1dMgSbFOo72cLaZP0tRQKQIcxSxn4Cxn+S0R7AH8ZwO9m5idE9KcA/EHI/fMHAfx3AP5jPHvPxO/y+NMPMn8rgG8FgP3XvsqHtYenOrGd2RcnbESOFyWrVA/7yvYWr45P0JFAcL1+ovbczIS1gfcYDNcEsCLLZPuqPF5T6kpZKmrpphVe2g4LCMCTaSgzD0sX0PcRnU94cZewaxQOTdjqrfNWfB5VuPCuW6pDU+t8wo3Ckvf9jH0nTtoyrsiSyRippVHE2yxOzA5zDEVBz86/8zU421ClDUXm7ND1VSHxtHY4L11hRJ6WDt5nDN2KzmesPqFTTXcbUCzvo9PpRgrZ2qZfsR/mpzK3Fm5tWVzU9xa6Gl84xpYl6NBhkp4QUClWbGeu71t4xrg6W+dqn8x7OdcSnKMD+Yykk+3kGONuEQVP14muiucLOeHduDTSyPUa6pCnrvPqkc5BnGOf4LssMcgClT5X/kfx/mzbUwcprwVBIBQK/Y5Vmx0ScIzssaCzBG1WaFTM7q0XyDvWtRk1O5RSsivnnzMKNc7FpD1QAhdY5nFIOa+kx2BB0kqHmrEAjTohlSl80uAIDciFudgGM0kDLXAxN1OyGAKKOqR+hiBUyp22JMkEf3Rybk05quURi1tg3cnzCxDB+mCLBDJB7skiFtZm6700JSp2wLqrm4rCTg2U8qE1+6XfhTKIaRuL92sfSiAhog4SRP4CM/8VAGDm15u//2kAf11/fQ3Alzcv/ziAT+rjH3/G4+9qjhj7TvRETGL2nWYuepfgKOP10z28cdiVBvtOcZe3ccCSwkVZafQrtmGFo4yOJGNITEKLkqVUdlhlSNHKZwDQ+4Tt/ghAgpmZBbigPZlcvvzy/+084LD0RW/EEZchQyupHZcOjoAhSPAxgkcpqdXd8nHp8Sm+uTi+OXdmIHhBg1kGZhK7QnPiC7MwM2FpMrOYZNq9nVD3PmNaA0j/bjK3lp3E6BDjUKDVQ7fCkYAaTnMHQqVIadkArFTFTLg9DXh8uwGIMQyxUOvb85wyJts5GvdZUTK07C2oE7b+hunWs8x9pFlKUBekjhZkEmFeO4CEy2zVgOd9LrtbtmMtDmsRrgDcGOt7AJiSzOkAKMJh9lwrTVh5j7NOuDuBdYtOPYQIMxEKuSWhBIQCz2Ypv/hHHlT03SFlvWZXX2hPmCRLg2Ynkwa1hhbFZlYsq6FESAREp/jh9ny4Xhf6DB5YztsGRfX8Soal9C8FyIF6DCOOVLyFnIs6fyYUFl4wkDuqcrOWddnzSdl/ZwlE5ugBVLSdk1IUOy2/tvsa/YDyHRQcaRCXxzTzYoBBAHMzkFjpSywDo1z7YahPq+irXns6aMpYuDweB1QaFs2+uieEMAmjd9qg6sS8i30YqC0C8GcAfIKZv6V5/KPaPwGAfxfAP9SfvwPAtxPRt0Ca7V8D4O8xcyKiWyL6FZDS2DcB+BPv9f7BZbw4HpXrKiAyIVC6oE0xk52rx66b8WX3npTd7E8cXnjquLbDnTXLsF5LcAlRsw/rlxj1SnAZQ5C7wjKADCrPs2MQMaJ2s60sFXxSji6ZFO98BjSQTFkGGTMTgkrmGq+U7c5FSZGUnl480mHuMRn9fKtDAvkexOQQlS/BdtcGWiBi5FR7JIYGA4AQZH3hcrnj1uRlt68ghiL93fRi2rkcC7h2PECc6bzK9a9zKGU5ywzi4sFaoopDkIn2xkyXBADiEspzqctFc70dHDTZV+dkZoWz6KCY8iEnwYOScmIBQFq9DBnqLrb0dBZtvJuTsu84VSfD0OPa8ckhtzth3eWi4ZuyvkZxpATJEIYkz4tC2sg6dQ8brhwVaaZINwaLMFPWTKAdemycbMlkWv6rXNfsWcgzN7vCAmAoqDRypb1fqfQBynuU0qDtnmvm4KI56VYfBU9ZaZo7FDZjsAR76XU076vxogUtmNO/uIdyA1Agaayzk4wuKxKxlMaeZRY4LSA2jf123VrUlZ0Ce8Ydl/XUtZdBSW7OgeTeIgZo5Yvltb8nQ82tQLdcXvOz7MPISL4BwG8G8ENE9AP62O8H8B8Q0S+CLOtPAPhPAYCZf5iI/hKAH4FgCX67IrYA4Lehwn+/C+/RaAc0EyW9gfTT2nczHnRnAEBm0R9PTEVqd0qhEB7Kc6jQyI8+XmiXZHaF4DFmV45hFlzGJkgXL2V3ySqswWFOIj7ldNfviDH6Cua242Um7PtaprHHxxBLWcmCUYYQMc5KVbJGXwKN6+pd5O6UJILL6EIqZa12V2/XYL2iqhGiJZ1mOPKuGYOwZScX9PN6LCAXpJwBDeY1YC7zP/WcQ5/AXaqU8plk7mUb5RgKfeasaLBMcH3CZhSN88UxVqt/uxpgSmM5OaRVuco6of035JlcD2ADkOypHIc9A8rYG7qEEJKW5gTYUHi3LCjcXSdicDZ+E9SSEauna3fvPtddfZMVkTbvpdbJyBulbGmeW1iQoy+78QtqlckCXw1kPCa4McFQccZIzDbECdTXNLBm69EwZN6jPFagt1RVHh3XHbz92dbVPpsSILg097mQL1bSwTQyeOAKAjAzx6z6LAAuBvqMroUiFfSUDVHa05KxJzMKgqtkLWT6LTLD4WcqZasiKdxCmjXLKAHFgl/7WdtaPCtZsFNvX9+kLdZjKnLAijost5/OxJTnP+MtnnrL9xi7+JKz/de+yr/oT34TOp+w6xY4MM6xK1K7zypz3X38WY/ZMzttgAPSX7hL8d6+booB50WYeDsddGRIwzllKZfZrr3rUoHybrsVY1hLBrRmd9HzaXnEOnX+KTuc1k6b4qrvToykGZJJ7a6LjB+HYKJRAj++GwxK6Ysr825RHyz/6/UqzNjMMh279Wzi3p5rj1t2IiUx+dbK7I066pAlO2jeN64ecfaXaCrHCJuIflgvEF45K60HQ+jtLZAoS0GKDnEOVWu9UHigDGmW3xMJ51YS1Ja/WUtg5OZ1bQkOsCxH12l1hSKFugznGZxRmvhYHPxJzrcQG+pAqAsZefGgo4dbBTpatE/MmbQlIdQSSyErrNWVi6l4DiykjI6B1RVK+TxoP8TWWY9PhgRqBiwFJSbRw80OTmlj8pgvnTogWVNEheYqhNd2+BdzR3qylKUvYoy9rROt18L19/b6muyu7TmUFzZlMNcGSarPLRP3Rhtj0HA0z2cpL9kciSGuKi+XBpc76KqnTPtzpYmPy+Oy1wBmn7ct1d2s6B3WQIKdPB6b0taP/ee/5/uY+Zc+44yew8l2Uk4qaG+EUGv92eEcO0E6ZVdq+0NI2HRCrni/n/BwOIk+SOqwaAByTT6ZNSPpfZXlNTvFDm/PWyzJgwDsG/6ti8DEgv4x8ajgMzotN53WDrdzD+8YY4gYrTymX6xNWLHXoLINC0a/YskBb047nNfugl49MCHq6/oQgR0KF1fNDMTmNWCZO4EoDxFDtyIQMIR6jS2Hmc3peC2BJS1FFZXFph9V34MKFDilWiIbxyjAGq7UNjZLw0AJZqETVFhh9F2rEJf1UoZhrWhPKzUlDVaA8nFpj6QTVBWz7rabzOOiJtBl0DY+ldF53wxm6nuRy+h7yYSM3YAZhbuKCHC+zvRwkHPnDcA36vCToqsAIGpABMC7JPFOy1jywWa4XiQI+Cw08lVaWEpYJkELoJZbUkViwRiEAeRtrtdsGZmuBzPAvQVxVGfcaLikTUZ6VqnHbn+vjLOs34lyLD2eMQQw4M+1eZ0DEE1NsuMCFS6zNebcazIj5bCNMQ5o4GUl7tRBxzKgmgi81vMp/YnQoLosYCflz7rTTzFYcCmZ5XoeF2tANcu5CH7t+7oa+4XTq1lKGybUQEOo79WWvlrkmG5xlIreNgaVEufd7LkLJJ4yHg4n9C5hMB0SUobd7PH2ssEpXvImt7TvvZcglEA4rAMOyyDIp25GcAlLDpijNODPsSsDkPe6CRu/wnVZ5Xml8W5OdfQrRh9lbmUZsWavUruVoBGQUtJb5y1O04AQEu6PEtiM3beltU/Z4XHa4DE25THLTmx+Zewi9irUZRlUZoLXG3BJvohgjf2Kh7uzNPSZynucl076NCHh/mZC55OAAM5DaWpbdhFcRu8YKZNO3xNyk710IZVSmnO5BCM5f+E3W7Th3PcRrglilplYZpa0r8SQ0lRlEZAvie8SxlFYlJmBFK3RLediMyBtI5uZME8d8lkyN+olGyDUbINcZRmIsdLmd6W0Jagq1kkwZhUgizUjyZ5KpmLDnkQMr0wKKTGyU/hu00C3hj8cSfkFgBsEoswMRAY4iic1Ys6LkpqWuXJ0oCXATYQ8MOgmwdlsjXHCBaHMKXMkhnJq+iXF2vkLQtmJ09og4Cwz0WHPotyoEGNjOYBnEQDTe9CcbOl7NBmH9IEgENlFsorsgbTNYFsrNOdFrNmUKw6UZyolqtapl4Rlrc5ZiH3bfgTXzOFuQGiUKK1UZywFz6wnEUpPBqyzQjpMmDdcymN2XpVOhWRwc65ZZ1vGsmzEwKYlk2wD5nvYcxdIptjhE599RRzoMEsDGpX25Bw7rIbeUTiomXeCjPrIcMAAwtKL9vvoVzzsTxhcxDn1uI3DRbPcUcaD7oyNXwt6CwCQgYWlV/FTTx7icJaCcdvoNucVQsKgg4qbbsW9cUIgKVuJAJcr5bOYXdFUaVmFzdENIeLeIK/vfcToV2R2+Ox5j9t1KAiwzqfSF8ksFC9vHWTacuiicIZxzRra0p3X3kqF0QrHVzKddRKqeUcoaC8AF4JYXtfQjmlrs90KRNk+I3vce8mq9sNSMsw24An9jcc0S+BzrpJibocVYTvJPbB0AiyIHufDIDDdIEOKZKW0IcGax2kW4s4ysKdwVjlJ+QyJICzIFyU+gPXeIwCuz6IIqTQ7BTzgYyn/WUCO0SN5CY5x1exE5X5NTriSWEKAB5kETrtas10HEGyHK2clPxLAu4i8F9+NJD0tRCeDhywluxRzfa0GB39uym9jAwU2B+crus2CZFocMPtmi41y7hfNfc226BhgMF8X9ZzXCuu9oGbR9mIaGFEb+rVZLxQ1yFTZC+Rjk4yAcElb02RYJvHLPdWykYNkQokKoMB6PlYSbUttFnSKlK5BlIHK0pubeZXms2KbfLcNjJYT3YrLcqAtpQaa3GkAQn19KanhsiR5kea8iz13gYShZIlOB/S0WWxsuuLIal8DQKFI8T7jo5vH+A0PfwAJhB+fX8EbcY/7/oyv7N/AjTtfQHcn7jDlHgmEKXdYWZQT163Hyh6HNOLtdYtzlonz49QLAmnpSyPWvnwzOhyy7FJ3+wkPNhO6LuGr92/g1f4JTrnHo3WLOQfcC2c87E4XSLDEDoc0YM6hzLIkJuzDgpswwUOypsO2x8av+LLhMe6HEzI7JJD8X4AIDqfcY1aoqodkAHMOuI3jU6qHG79icPECyHCMA96at2Wg00qAS/YFtTZHEXzaditeHI/o7RhMiOzw5rTDcenLtH/nKsAAkCzPqP5f6I/YK3NeQgVNrBrI5xxwVqiKASSeLCNee3wf09RhGCLubSZ0qhHTuVQADjaDclw6xOQxdBG7/pJ5oFxb8qU/Z9djn9GjaYPbaQAR4944Y6uZ4l0ZAPk5l0zV1nVJHodlKOvfiqcRpJ91nPsLan6j/DEJAgNOpEw4TQPW1SOEhJutDOXenkecDkKR3w0RwxB1bkjQgUnBEkXmWb9LRhdkmWjOhD4kPNieMfj4TB2g1pJ9R/X7mzTDXA898tmJXsg+IvQNw6CVLTWY51UzN8/oNiu6LiFGj3UWcIbrsg7UovTemFHg4Cl65JMCOTYRw2YtJdicHZwTWWoDpLSUSClVaDlr2TSrAiavTsTPNOsyXrOsfHZkmRJB0YEW/JsAZkF6daAnDn4lxIERH0QprWZc9vgsIC8S5PImw9+TezauHnlxgAP8kOD8sxo1l/bcBZIhJHz1S28WESsA2FJGv00XX1L5vwaSJQfpLRDjH5y/Ait7fGa5waN1g41f8ca6x+Ai3lx3+PR0D0sKOMcO59ih8wkf3T7BC/0Rcw54vG6wJC9fLn2vwUe8dHMUJ9kMx9mXcugittqn2YQVoxcoymunB3jt9AC9T7gJMzqX8Pp8D//48JEy22LXYBPuFjAZwP1hwiubWyQm/OTtC3jjsJNe0GbCJqyYU8Dt3CMmXxyOZSnmuG3eZkpdcWS9OsvMhLenDU6zlAuDTwUubCUoG5pM2eHJNJSBxE0vX8q3Thu89tYD0bEPqfCX2efTBTmXfTdjSh2Oa4+UHQ4YimP6/uPHS38ndNKfWFePuIhj6LcLbrZzOS8AOM09Do+24Mlj7TLO41Agw8a4bKACI+vMTIiDK4Jkx7nHee5ABHSdrN2aRrx2foichFetU5VGczzeZ6x5LSJkT6YBa/LoQ8SmE4f/6DzKgCpQpXaDKD56b70XqVv4ICW6GB3mwwBMDgjKqOwZB+Mju+O8rSfEiXALyfrWRlcmzgFxvitmXjNfoAlmXtY9JWUWWBxOfcZp6mWm6NSDDwEXUroEoLehSAi8miGMBJ0EcihklyOBU4fousueCjX/rE+T5NzT6gVtplDsdPLIJgdomYWCBygB8FDZYj0XQMqUxx40yWjyrRfSLFJgRFWARJEHyEOuA58FUo0CEy4zLNnJZ8WoVCZcy2hxw6VfRStpT0uyjDgKnf34WldRZM18JCAZ4/oggQcJvmkW5gusVMXLnoRn97Pu2HMXSJhlhuG49ridpJR0fzNhGw4AoPBd+bIYYWO7swyUMLgVyEBk0Vz3xDK5DsIb8x7/5O0XscSg9XFCCBlzDHhr2JaGvvFujQoFnrTJL+egXz4QYvPJk5bKXhiO+Oj4BDE7vLXucIw9ehcxOIEid06CYosUC5Rwv5c+zSH2eGPaY80e2yA745jrNHfOhEfnEbdUJYUZonSY7qS6fUh4YXPCvotw+WlRLQDlPFrercEn7Pu5lP6sb7RmV+hfdv0iQTOEp3a7jlgCiE/oGpnhB/0ZH908AQC8Pt3gs6edAgeESsKaLkTAMESM41og4TKgqci7ICqYyy5g7f1FD4Szw6rldZtIrwFKro+ZkPTvplUzdgKMSCwzRIZ4W+ZOzo20BOYT1sELWzEJN1x7H8bsMJ17xMf9hbNMnrEw1R2kNnpluFI2EK5PMjAXMvoh1ob/atS66vwdIwyxzOxU6WSZ4GfIrt17LrQzrLICpbwG1J2ysg84h/KadlYIjEqzEmrpqd78gOtTASJ0GkjyjpBcAJJOjStiLY+5QopNBqGvMHOb3cmJhVQ3EWDzLdq3IJLeSL5bntNzMQ61NCYkJYCEZT2wvgddNMZBEP4yW+tMQJfByjyA2YNmd9mXYJQgkgOQN7mCJUp5TZ9aUH6ynm6QMqTNugAoSpE2R2RlWSM9TdnLoAVQBd7ew567QLIkj596+0FJjwFgWQMenwW2YsuWs+zomAl9H7EfZww+4cu2Hlu3wIPRuyhDh5TRUcKgI6dr8oW/ChBnsusWvDQehG6EHXJRZJTgUWhCksO6KHmiOhYQY+2l9DaEiI1f8RXDm+gowSMLrcsdbF9uMJUOGSsHnPKAiQNOacCD7ow5B+z9jH2YcUo9lvQqptsBrkvYPVzwYHPGee2kHKKzJ4aC6npxMj0S7vUTXh2fYMkBL48HCZI6jAkAX73PF6g2ADinHo/XEZkJLw5HvNwf5Hoe6pdTS3FGN2NUNEY1M+eAnzo+xNvTRkpB3YQH3VkZBRISHF4cmjW4xyVgWV/MylKWca5JSj6CdIvII+Ej29tSOrobINse1Dl2eHwesUaPm82Cr7z3NjZ+LYESqCWzZOUoJizZ47AOF30smRsSEEDMrkgkH9Yej84jcnbY7yYMDw4XiDdDxSUmKdksMra835/x4u5U700N1JYRttZCx+3agsvYKRsEgFJSMwJQZkJ+QCX7m5YK+rANxNBFDBrgavmslqvuPzjBvWDHt+uhMnBKJIOoRFxQlABw6HtMG52ee/kyGwKEXDRF6WH1w4qxl9e1MgqABMoleixrKI9blmhwcWNZsM2BlbCCz6IgmUUCwpQ/7W6REp8ElLx4RcABcNJPc11GP+ic1NwhnaSkS4FBijaMpk1D0mMiAK7L5XzsGphlo3PX/WtiJKXBWXpd8CylK6U9Muoc6rOQdKJmge9lz10g2YQVP//VT2kJSZxUUGTU3bkR+9eyA39m2uO7088GIEGg5W5a2eOmm/DRm1vMKWjTW3TcH44n7MNSauIAMIYVLwwnOGK8OPrSNDfpXuCyvJbYwYFxu4740dOryOzwJA5YcsDGr3ihOyK4jEfrBp+d9uW81+wRSEpi7aQ9M+HF8YiPjo8BAB/ZHZBfkUb5vl8w+Cglo34GM+G49jjp3EubXZxij89MNxdO0Rxiyg6fPe5wOA1C6thH9KoUaX2p3ShBy4Exp4BZ19rrMaYYcFpE66XzFdXV+yTDly5hyR6P1k1xzpkJp9jjtPZCUbN0hRSztTrLUif1vds+xWdljt6yM3usyiLXL/Jp7vHp4z1Zm7XDtEhJbdNLz+a8dnh02EgWQLXh37IFP9hM2PczzrHDW8ctYnLoQ8LNOIMAPDpt8PjJtjZeNYvwXqfuuTrJ89zjde39LXMQ1U5fM6VlDqX2j5BBqlbpulwa/G/7jezg8+UcTkvTz5mEamVyoEzIY4bbC4HmwVUFUZMScD4XeYTDcUQ8dmVK35rTZfDQs5ybYxybmR9myTQ5OYE2L672E/SfzdKcO4+p68U5zqKCyR0LbFtndor0wOyrlLGROpoRw22lR8JMmM8d+KzwKfXWlGupqdDTE4Cu0blf5dwyB0zJhOM1Q7BjsBBCkLEXlHNQNoBRyWSjE559V9eMrAeSUckrCYAxBQdGYiAHamSn9X2YVKemKnG+mz13geQmzPhXXvhH6CihpwiHXHbviR1W9liVJ7w0mUGYlaN56xYMbsUp9/in55fxxrzDOXV4fb6H4BIerxtk6LyCzncMPmLnF2zcgt044ys2b8mu063Y+6mcmwWZtSGRNJPzkn+3ccSjdQNPjHthxuAOSHCYc4dzFv32l8cDMjvcxgGHVUtUkOAZXMJH+jM8CW/YoLCWn3vzOr5m/xkkyET+yjLoaJZ0555YoM+n2CO4jAf9CRu/ImaP3qWy04/ZY4HOwHS1YZeyQIJ3owSEl7ZHfNXuLWQI/cwUt5JlDBO24fIubktnhfIFjEFh2WvTvI6ckFiuba+ElTbEWbIJPa4NdMr5VQqbMayFqLLlOWvZBQDZyd9OA2J2uBlnfNnuMTZ+xW0cLuDkjrgwNhvtSw1SKE3bdvffa+Ak4hIM+xDR3aSnBmhtsNMoaAzx1/kEtusLCotmcerOMdgckqK9HHHprXReApih9wwNd5p7zGtQlgIJVNwDPFS4PBjIieDVO0qvKDWQ6qqFg53GxbKzFocOnbyWwFZ7VMyQ7H3x4ji3MgfVNq9b+n+DQRMxeKcbtQaqbVUKZiD3WQILN4zABCn/2CapZCo6mAnpoZR+V6JyPXKxQBmUBapyKDWy1IsDFiflrxIs9cV3ej68Seg2kmHFRal4nGQZ1ifLi3DgwTIae28mKWuFKlEtdEBcAiI7Rt7kwj7wbvbcBZKFA35yfrEgjQBgzqH8++y0x+2qutq66puw4uFwEqqRO+WNmzAjg8rrp9iVZvlkKXzn8ODeCV+9+SwOacSnlvs4pw6Di3jsNg36hnBIA/7R44/graPsioPe5DfDrMilhJeGA7529whT7vCp6T4+M+8l41ASytenG3z6cHOxm7YMgnQnv+9n9D7h6HsctcH42WmPJ7OUm2Qok0rWAaAIYhGkr2QQ4pg9FpI5HJuNebxs8HgaEVWDRBQeVWMjEmgX8fCFA8Y+IjPh0bqBo4x7vQSPNkN8/XSDn37jAeLqRfjKZTif8fDmhIejUNsY0itQdcJzCphiKNBlQ+Qti5Qfui5hvxE00hgibrq5oKfO6iDfyhthHlA9GAB4dNwILNh2cZlAfcbmZsLQSQ/kzWmnw6P9BWnmECKeTCPefHMva2H3EzG6+zNeuHcCaRY2RXXSz2AFOJwGrIceNnFPicBjwv7FEzb9CuaMrMOsAOrMjjbQY1R24Civd4sGl46RPSOFDOxWadJnh7dPmwtAADMwTz3SJI6eJqcCTyRiUgzEewn+wQJyGSl6rJMohPpeVD2zOW6jcFkkk6FFGui5Z+DBiu7eelmyyQ4JMkdS5JqtGQ8IA8CtTM+nXnsKnmWwM8hxCumllY8BpMmDzhKA3EpC0e5ElMsCUh5FxC1Tdbo5ukqGOTtQbBIYrk10kDTIebApxCbAKBLLNTMcNmeCLP0NSgJhNkp59g7R6yzSpBmUV7Ztn8GTh7/1ylygfGAeWO5n5E2W97wVee52HQp6zNgCvhCldj9sC5TwUnd78dgpDegooaOEN2lXHNKuE2f7Un/EV27ewEix1OCllBWQQPBgdCRomlPucUjjRUbRUcIr3WPc+DNe9Ad8vH8LgGQZC4uju80jTtoTOK8dTqcB5GQn71xl9u2c9EUcGFu34Gt3r8NRxpoDTlmIGgcXca+bdFedLrIKANj5BS/3txjdiil3mLPAkl/qDXAgZToDHVhN3xiNzZ6FbrN+wk0348WxKyUmEwmbovCIjTrL0ruI+92El4YDPHKB5s454I15jykF7LoFX/bi4wsUWnAZD4Yz7mlm1fYizCyrAnDBQmDBbhsWFQDTQA6CA+Mrtm8juIRjHPDTp/tFP8Y2Efe2E3bjUpw8MyH4jHvjJJkRSf9MmKZnuB1fvH4TVuz6BWuuA6mOGPeHCQ/6cxmSlde4cr4xOyxZ7pd744T1oa8wWyaMIeKV7S02XtB21o+bkwzJtpaYRPuFhZJHshdhUjDGACP87HwSxCBlTLHDcemRGdgOK+iBgBQMXFKGMomxDwnbYSn3XykXciUuZRZFz3ntsMyaQXUiG+BJZBR6Zaw2BdAWmr/E2qcxcAs2hHxf3sckDayvYQ1ys7YsGTuHuFHiTtQ+iVKnXWQvnU/oFYhg55CUxdoCXgly2udkQAKOygeEPsGHLPBhlcbmTEoiSRcEmSvkGAgiK0BOsugSsPpUkw3LPAaRKLgIWA7wuxWbPhZIM2tJzVlPaHXgWXpXeY/3Zc9dIHngzvjGmx+8eGxlh8mc5gvVafZalJw44EmWLOWem7B1Io97ZJkNmbjDkzxi5YCdm/FykEDVUUSvkz3WDN/5GS/7I0ZKgtrR5vGbeYvbvMExD/hIf4u3X9mWxjIAvNo/wc8ZP42eEo55wJQ7dBTxYjjgxk1Y2WPiDokdekoYadVrkAAp1+mRQDLL0mimWNCbuCvBUUp68rxjHpDZ4b4/4oE/wVPWmRIFK+ixVg4XZTmbqTFQQILDMUuwnHOHU+6R2GF0K7ZuKc6zaLxs+QJMYNxgZqNbMdKKlQOOuUeGzLrYuk3clZKkowyvXzW7vk4ReB4Zb8QbvL1KFvix4W28HG6xssej/VZKihqo7XpGt5Z5GptFMXPEJeMd3arvwc3fc1kTe759PnIsOe6UO3jKZW3m3OGU+hJszew4cw44JPmsdv0JH9s8Epoct2DrZ2R2Os90eb62Xu0GYs0et3HAFDuMYcX97oyuQdjZOtjPdg4ACix8yl2ZzbE1kfPsngIdtP1JC35tQG03C/YaWTNXSsJljgg10JxTh1O8Ix2IWha9eIxyQTy2GzC752L2mDWQt+dmLBXysyv+4y4FkGXqp1VkEFoAw8V5PWNWyDYQrdnsDYAyqyNr1Qjq3dlctYCTJXncrmMBmVzMclmfUlnDAeAnn1rF5rzf5W9fkjazx4+vLwAQhwLg4ku+sOz3HXIJAgt7nPKABIdPxocXzirB4VPLA/zg44+VstDdgbwxRPyCh5/EV41vXLzX1s248VKaeSvu8TiJ03ocN8UBWi3+lHt8Nt7DSCte7R7h5b5mVVmDh2RK7uLxhVpHL05+hVeHHtBRhFfKl0+uD/HGeoM5B3xquo/DOiC4hG1Y7mQijAfdCffDGR0l3PcnbN2MnhIehCM8GIv2mhIIj9IOhzRKfyeNmHNARwlbv5QgsnUzPGUc84BTHsTZQvotnjJ2boGnjIU9Jl2b27TBW7zXz1KDF9RJkzpIkh7XIY04JXH6hp4KlLDxEkjawPo4bss6prrnKwH0lHs8iWPpV5mzNHupP+LLx7ekl5YGHNIIB8ZL3S1u3Lkg6FYoIo1l/U9pwMwiNzBnCcqOGJPr0FHCkzjirWVXpJ3bbMYR4xR7vD1tMK0BN8OCF8Yjep/wQn/Cg3Aq98BdIEc7SGqyzEBFmcm1s7Jby3MA4aizTYo52IRKqmkBSd5LstmVXZF/bml9THIBAJYcSvZhYJbBR+y7uTBZ2zneDUBy3jVzs56OlXR7F7HkgM8cbnBeA3b9ihfGU4Hh1+HRUL7HFlCOscfjeYPIDoMyQtj3zM7JmLtbM9CNoerWKEOejhibsF5kWHMM5TpMQoJZACTMpMPTkkkanLwdVM2gUl7fdCtCIycug9W+nGPmqvJqCDTLShiata5PB+Fn2XMXSN6Me3zb67/qAm3V8l6l7EqJw+CRr4y3+Nrd6+go4RPHj+InDw/hXcYrm1u80B1xSAMCSd/hblMWkC/cOXX4zHKv2XVS+aJlJhxTjyl2mFLAW+ctzor0MebdV29u8XX3A+6Hc7mWlQM+vd7HbR7hwTLfAuBTywP89PSg9CxidqW3svczTrnH7aoO3dVBzMfrKKJb7HBYeiyxOtcWnuqdNMhfGIQW5qabdHKd1KEImuyteYeYHR7PI05zX2Y/DBX20a00pA2CnNjh9fkeHq8jepfw0fEx7ocz3lj3+OT5filN2WdnJRsb0myb4kZYeb+bENnhk8f7eHvaNJPVdeLaEFXbbi10OXfNdn/WZDbdFdZZI+8zhkEGKN/ebpFB6F3Ea6cH+MxJxMI2YcUQIuYY8MZpiyWGMvHtXcYYIgZfpYptNzorwi7qjI3xmy1L5eoqn40yIq/J44lOyXe+7iqtDGb9rqSKlUk5vkKX6mc0yBxPzA6T7uqPscdh6YuzbEtTMbpS/rHSmJWV2un609wjKqTXrtUINsvEd9JZFi3/hCA9Ku8ynpxGnI+DlGyMCsaQYwyRKV5kloJ3CeO9GSEk7IZFSooKjFijyFufV/murdFX8IBOqxOgktIVsSZDngl9L8JjyyIQ44tzSCQzJXdvJYsxIeO0Fb68GL1AcplAPsMFARIUqHDbpNdBRjhGGC4JSlMS4ETXCbXRZx7tsd4OBaxQqGdyQ8Zp3+8xoduuICc6PlnPB3fRYu9gz10gIU1bZdcTLgKKIGTWsvOyKH5MPf7Z9KJQzqcOG1VATEx4Ejc4pw5T6kpz12RjozYT+152L0bRIeUa2bFFlt1KoIx9N6P3sVDaW226cwkf2z7GR/onGHVW5TZtMHGH2zzicRT+KwtQbyx7vH6+wZwCHp3HQvD4kZsDHg6yM63IJ1/SX3O+Sw5Y/aVmPACclw7T3MEplf2D/nwxX2E72zV7LAo5hqs7ZsDEsRw6l4uufMweh1SHH3eK1Hpj2eONZY9Pne7hpx/fx7p6odNXlcYxxLKjKwABdqUfYPLAS/J447TF7WFTdluAsgcPKzwxzktXgncfUqFCGbxOo2dfWKGt9u49gx3BQ6bW741zaagfYg9PXdlxM4AnywAsA5bocZoGpOgwU6Xd7zpBV7XQanP4NtcU11ARTQWqKoN03DPyzQofpK9mAQqo5RkLAEv0MrOQhNOrEDHuGZthQaevJQVRHBZhCTivQYOoK0itnEhEwQzianr2xk/WBubmekuN3prtdxwvExCZkHMuMrwGR97sBJK+LgFpdbXxrk7PtFRIA6tdc+YBKVfphJxlfsQR43jusZ56OcYqawoPxD6rIHxtSOfVYTl1FfKbm/+hcNuZSsOckvpl00RhhzQFZO/qccma9/r5Tg5uvsxuQAArLDnGmv3lQtwJrJ30UNIpwD/2tWmvgKy0y9LwV3gvRUJeCeuq8y/Riaa9NfzfmyHleQwkQEcZ+/6EzXiJDgJwUbeW2rxwSJ1yXzKXSeu327CicwvOSahQJnVgm34tSKGFAryWHT677PFCf8LP234SD/wRI0mNH6j9BOs9JOW0aqHJVts3G2nFy+EW9/0Zp9zjM8s9RA4IlAt9/EOdUwGq0FZkma7PTHh5c8DHNo+0XxBrqYJDIX60ss+TOBZE2wv9CffCudTgOxfhOy49h7t9mLY/AUid/FbLXR5Sm07s8Gjd4pj6omkfs8e+m/H1r75WGJqtMX6KPZbk0ftUIMjPshwc7r88Ib1kMNtL6hjjqVpyQO8iXt3cXpQObXjR1uPuvJFcTyhcZ4OL2AXZNLhRgnOdS9IyyL6Wpu4OI2aW8sSaHYIGFgDotqmUMs5rV8o/9VwqnHY7LHg4nhFIIMzt2hhMuq27t9d0d1gzs8MmyD296QLOXQQDylVXkYG2Nna+SwzafKaCkiLP2G3ngoC7gFTrKRStGx2Ctc2YcZ0ZPU+LdizHuBj4QKkymFmpaKfv3zb+d5sFi07MW5Cx1wAQlJkGNHIVBSlPuoyAJbOCNb8bCQKWYcNhtxRQgdH+tASm7XubLTFgnmSWy/mkMhMVft2+xm8jspKL2sZDPmA9phe5YyN4NO15HhN4Y9eC92Vf9IGEiH4tgD8O0XL7n5n5D7/b80+xx/e//vELvW5jumWmC/EnS8vv9TNe3hxKGeheX2c/DoqMsdJKa2OIhZTQGHaPccBPTC+hcw/x5rLHZ+Y9Yna430/Y+QXH1OMfP3oZjxRuaaWXL7v3BF93/1MY3SplFs0+jPDRGpRGNvhkHi/I73Lzs6ybNnjTfbw57Uqd1Xagj86j1GLLAJp9WYXi4sWbI17dPSl17rt1YRssbNl063sDQ7fipe2pzCbY+ZlQF4BCXXJcOtweR+Tk5csZHcjJF3E7znAEfJpuSnPQpIPfPm1wPA11aO5OhkWOy1zCMETsBpk1ee32gU4TVylfZlQHkeUc7DEpOTB8nwvSR96g7r6ZZeq5vK7F9dvE8jZi3C4XEsMGtQVQtUsyIU++wmWVCyp34gQQGLdjwpPtWAKE+YO2lLWeuwL/tUE+3iV0u6XsvC1zsOFDTlSnnRu4KJ29aKN7VDr3LsMNou7E0YlAmAMOiXD0g1DSn0JhynUm6aqgJQ6MvEugPmOdA07HQUpMkRoqe53+Tg44BBnA0500AMR9grtZBbIbqxyyC1keSySzG7oGbnJFS8SvVHirONwR1MqErJBe0ysBQ2DUGXALoZ8aKK9yYC33M9I+gyMwzSMmyOdPa1Nu0uzBLSLURZHgZ8lq4hbI94T+hSMhRylb2YChUc2YWFa34ELdkR0Q9yxiVYwiqAWusZAJpQzm56ow+W72RR1IiMgD+JMA/nUArwH4+0T0Hcz8I+/12vPcF44j0tkEYf3k+uVJslN5Mox4sgzwxKVGbc274DKmGPD4uBFHAdxRxBNuoONNj/vjhM4lPF5HBMp4so54e5LQf4o9HgxnHNYBj04bnI+9pKuqI36ee4x+xTYshU13zgFvzjsc1gG9l6Z4oCr21DpOR1xKnSlLEy1nwuQzgrss6ZzXDm+/vQefQuHsacn0Vs/41BTw9nED7zNuxhmj1v6Pc38BNsjZ4XQY5FjqXMgzli4gJl/q6MEJ19C0ClWJJ8ZuWFRquFM1Q/EwpqOREunUeIVqmhqjXXvQeYX10ItcrDoog2Nm/Zxi32HqhUm46yOCzxJIzh3yqsyspl44u+L0RBOCy/yF12OX2YTohXUWSmkxSC8pzSYlQMUh8+IwQc6hyO+igXOqMRNo9vAHJTEE9O+MNIgHyKvD6ajlwnMAzSpmNWRQl2Vo7+yL0xHHK1odK3oUKo47nFmcCdCZExO2YpIAURI9o0KPXia+bc0dAwngY1/0U6DrR4upIlZNDu4Ii/Ym5L1RJXBtbRKLtHF06A4O/lynyQGAssdKQJHhJYmAeQ01GCpvFZvQFzQg6jxMd5SgnwdG3EhAsFKR8Fhdfj5gwK2AmyEKjxZIHNB5naj3lQ+MFodwokLwWI6hZSWKQDih6J5wIORQZ0wAUTWkLMdNQ9UpsaBc7hGG6LhbtmXvaUESEjy0Cn8hAfxu9kUdSAD8MgA/xsw/DgBE9BcBfCNE3/2Z5ihjp6qEcfXIJFxaQ6fyuLlycMmkp+zGrPF8PA9YTgIDlS8adGfavIllkK7SXhjZXsyuzCXMSZp7gDjQzx53xRF6U8XT3VWKDqcoDet9WHAvTJhzKKzEmWXa3Hb32+4ShdKmyFPscAsZMLQSnF2bpOS64+wzsIjTdJHgJwc/yc11+jiQR6HctmnrwzTgcBirfodXDp9FvzxBgrZg5x2evL0FmBDGiO12lmlh2/XrZ+EUmjgMK1KQHXnWJnNaPbJNh2f7vFA5gxqBJepUyKhtILLqROhr4iqTwTb4mFcHHIPstHud/nYsu9dZjuFnAiUnTKok9XQKwk4rGvG6sbDzcAyXgVz00nOzs28yndVVFliz4jiUDfaOUSQJLibyYY5yl4GbVaalFwdeQrlf2TPcqo6MVTPlrI5ukxspXTsHqqWRSGC9d5gY6OT9jHDRHxz6x3Ivxa0M0pninltVuKpxeNkD8EIqCF2a4bMOfnFIIzA/zFWu1zJgJTO07C73fPFdpAR0jySY5U7ICu0cKAIc5HGTppU1Y8QthNxSswuT0+2O6hN62dUTA+FICGc5/7SR9wDJz4llR18CW1LNdi/eW9ZfsjELNrZ+7BhMBHLCoUgMOTaj6K3bfZCV6JIJdQAS9fkWQGVd9Zya+6n93IouvX0u7yNKfLEHko8B+Knm99cA/PK7TyKibwbwzfrr4bv/zT/yox/Auf2M2z/5mT/kSwDe+Jk/7BetXdej2nUtLu26HsBXvtMfvtgDybOSrqfaQ8z8rQC+9fN/Ol9cRkTfy8y/9MM+jy8Uu65HtetaXNp1Pd7d3Hs/5QvaXgPw5c3vHwfwyQ/pXK52tatd7bm0L/ZA8vcBfA0R/Swi6gH8JgDf8SGf09WudrWrPVf2RV3aYuZIRL8DwN+EwH//LDP/8Id8Wl9Mdi33Xdp1Papd1+LSruvxLkbMT7UUrna1q13tald73/bFXtq62tWudrWrfch2DSRXu9rVrna1z8mugeQ5MCL6tUT0o0T0Y0T0+57x919NRI+J6Af033/5YZznB2FE9GeJ6DNE9A/f4e9ERP+9rtUPEtEv/qDP8YO097Eez9O98eVE9LeJ6BNE9MNE9Lue8Zzn6v54v/ZF3Wy/2nvbPweNzP/DzL/hAz/BD97+HID/AcC3vcPf/y0AX6P/fjmAP4VnDLl+Cdmfw7uvB/D83BsRwO9h5u8nohsA30dEf+vOd+V5uz/el10zki99KzQyzLwAMBqZ59KY+e8AeOtdnvKNAL6Nxf4ugAdE9NEP5uw+eHsf6/HcGDN/ipm/X3++BfAJCHtGa8/V/fF+7RpIvvTtWTQyd78cAPAriegfENF3EdHXfTCn9gVp73e9nid77u4NIvoqAF8P4Hvu/Ol6fzzDrqWtL317PzQy3w/gK5n5QES/DsBfg6Tuz6O9L9qd58ieu3uDiPYA/jKA383MT+7++RkveZ7vDwDXjOR5sPekkWHmJ8x80J+/E0BHRC99cKf4BWVX2p3Gnrd7g4g6SBD5C8z8V57xlOv98Qy7BpIvfXtPGhkiepVIFDSI6JdB7os3P/Az/cKw7wDwTYrO+RUAHjPzpz7sk/qw7Hm6N/Q6/wyATzDzt7zD0673xzPsWtr6Erd3opEhot+qf/+fAPxGAL+NiCKAM4DfxF+ilAdE9L8C+NUAXiKi1wD8VxAlDVuL7wTw6wD8GIATgP/owznTD8bex3o8N/cGgG8A8JsB/BAR/YA+9vsBfAXwfN4f79euFClXu9rVrna1z8mupa2rXe1qV7va52TXQHK1q13talf7nOwaSK52tatd7Wqfk10DydWudrWrXe1zsmsgudrVrna1q31Odg0kV7va/08johcbVtxPE9FP688HIvofP0/v+buJ6Jve5e+/gYj+68/He1/tau9kV/jv1a72M2BE9AcAHJj5j34e3yNAKEt+MTPHd3gO6XO+gZlPn69zudrVWrtmJFe72s+wqYbHX9ef/wAR/S9E9H8Q0U8Q0b9HRH+EiH6IiP6GUnKAiH4JEf3fRPR9RPQ334FR9l8D8P0WRIjodxLRj6guxl8EAB0W/L8APA+071f7ArFrILna1T7/9rMB/HoIBfmfB/C3mfkXQCbFf70Gkz8B4Dcy8y8B8GcB/KFnHOcbAHxf8/vvA/D1zPwLAfzW5vHvBfAv/YxfxdWu9g52pUi52tU+//ZdzLwS0Q9BaGr+hj7+QwC+CsDPBfDzAfwtpbXyAJ7F3/RRiEaG2Q8C+AtE9NcgrLxmnwHwZT9zp3+1q727XQPJ1a72+bcZAJg5E9HacFVlyHeQAPwwM//K9zjOGcDY/P7rAfzLAP5tAP8FEX2dlr1Gfe7VrvaB2LW0dbWrffj2owBeJqJfCQiV+TsISH0CwM/R5zgAX87MfxvA7wXwAMBen/e1AJ6pwX61q30+7BpIrna1D9lUAvk3AvhviegfAPgBAL/qGU/9LkgGAkj5689ruez/BfDHmPmR/u1fBfC/fz7P+WpXa+0K/73a1b6IjIj+KoDfy8z/+B3+/gqAb2fmX/PBntnVnme7BpKrXe2LyIjo5wJ4hZn/zjv8/V8EsDLzD3ygJ3a159qugeRqV7va1a72Odm1R3K1q13talf7nOwaSK52tatd7Wqfk10DydWudrWrXe1zsmsgudrVrna1q31Odg0kV7va1a52tc/J/j+fH0s4zpjdIAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "_ = plt.specgram(snd, NFFT=1024, Fs=44100)\n", + "plt.ylabel('Frequency (Hz)')\n", + "plt.xlabel('Time (s)')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Data Exploration Exercises" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 1\n", + "- load the dataset: `../data/international-airline-passengers.csv`\n", + "- inspect it using the `.info()` and `.head()` commands\n", + "- use the function [`pd.to_datetime()`](http://pandas.pydata.org/pandas-docs/version/0.20/generated/pandas.to_datetime.html) to change the column type of 'Month' to a datatime type\n", + "- set the index of df to be a datetime index using the column 'Month' and the `df.set_index()` method\n", + "- choose the appropriate plot and display the data\n", + "- choose appropriate scale\n", + "- label the axes" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 2\n", + "- load the dataset: `../data/weight-height.csv`\n", + "- inspect it\n", + "- plot it using a scatter plot with Weight as a function of Height\n", + "- plot the male and female populations with 2 different colors on a new scatter plot\n", + "- remember to label the axes" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 3\n", + "- plot the histogram of the heights for males and for females on the same plot\n", + "- use alpha to control transparency in the plot comand\n", + "- plot a vertical line at the mean of each population using `plt.axvline()`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 4\n", + "- plot the weights of the males and females using a box plot\n", + "- which one is easier to read?\n", + "- (remember to put in titles, axes and legends)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 5\n", + "- load the dataset: `../data/titanic-train.csv`\n", + "- learn about scattermatrix here: http://pandas.pydata.org/pandas-docs/stable/visualization.html\n", + "- display the data using a scattermatrix" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/course/3 Machine Learning.ipynb b/course/3 Machine Learning.ipynb new file mode 100644 index 0000000..54b455b --- /dev/null +++ b/course/3 Machine Learning.ipynb @@ -0,0 +1,1177 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Linear Regression" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../data/weight-height.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
GenderHeightWeight
0Male73.847017241.893563
1Male68.781904162.310473
2Male74.110105212.740856
3Male71.730978220.042470
4Male69.881796206.349801
\n", + "
" + ], + "text/plain": [ + " Gender Height Weight\n", + "0 Male 73.847017 241.893563\n", + "1 Male 68.781904 162.310473\n", + "2 Male 74.110105 212.740856\n", + "3 Male 71.730978 220.042470\n", + "4 Male 69.881796 206.349801" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA7QklEQVR4nO3deZwU9Z34/9e7qo8Zh0Mc8IBhREV0GSIkkqAhIR7ZRI1idjXGYDS7Odzdn6wxnomuIsuaTTyyq6tJFqPfXJgEMYmKJsZEjMJGDJqBABolHjBATJwgAmLPdPf790dVD31U9/TM9DXd7+fjwYOZ6qrqT3VDvetzvT+iqhhjjDHZnGoXwBhjTG2yAGGMMSaQBQhjjDGBLEAYY4wJZAHCGGNMIAsQxhhjAlmAMGUhIueJyC+K3PcfRGRluctULBF5XEQ+W6Zzt4vIbhFxi9h3koioiISG8H4bROSEwR4/gPc5QUS6Sr2vqS4LEKaPiHxJRB7O2vZinm3nFjqXqi5R1Q+VqFxlu2EPlIhcLyLfD9iuIjK5v+NVdbOqjlDVRLnKkvV+Har6+FDfq5xE5BUR+WC1y2FyWYAw6Z4AZqeebkXkYCAMvCtr22R/X2NMHbMAYdL9Fi8gzPB/nwOsAP6Qte2PqrpNREaLyF0isl1EtorIf6QFkoxmIxH5kIj8QUR2isjXReTX2bUCEblZRHaIyMsicqq/7Qbg/cDtftPM7UEFF5F7ReRP/vmfEJGOtNe+LSJ3iMhDIrJLRFaLyBFpr/+tiDzvH3s7IEP4DBERR0S+KCJ/FJFuEVkqIgf4r2U0G4nIYX55d4nIL/1yZtcKzhORzSLyuohc4x93CnA18HH/c1mbpyx9T+d+jWOpiHzXf78NIjKzwHXcKiJbRORNEXlGRN6f9lqz/7nuEJGNwLuzjs2oUfn7/kfAe3wPaAce9K/jShFpEpHv+5/dGyLyWxE5qNBnbsrDAoTpo6o9wGq8IID/95PAyqxtqdrDd4A4Xo3incCHgJymIBEZCywDvgS04gWc92btNsvfPha4EbhLRERVr/HLMN9vmpmfp/g/A44EDgSeBZZkvf4JYCEwBtgE3JBWtvuAf/Pf+4/A7DzvUayLgY8CHwDGAzuAO/Lsew/wNN7ncj1wfsA+7wOOAk4GrhORv1HVnwNfBn7kfy7TiyzbXOCHwP7AA0BgwPX9Fu/B4AC/nPeKSJP/2gLgCP/Ph4FPFfn+GVT1fGAzcIZ/HTf65xoNTMT7XP4Z2DuY85uhsQBhsv2afcHg/Xg35yeztv3af6I7FbhEVfeo6p+B/wKC+iZOAzao6o9VNQ7cBvwpa59XVfVOv23+O8AhQNFPjap6t6ruUtUY3o12uoiMTtvlx6r6tP/+S9hXIzoN2Kiqy1S1F/jvgLJlO8d/su37k/X6PwHXqGpXWnnOlqzOZhFpx3vyvk5Ve1R1Jd5NO9tCVd2rqmuBtUCxwSDISlV92P+cv1foXKr6fVXtVtW4qt4CRPECFcA5wA2q+ldV3YL3nZZKL15gmKyqCVV9RlXfLOH5TZEsQJhsTwDvE5ExwDhVfRH4P+C9/rZp/j6H4jVHbU+7Sf4v3hN8tvHAltQv6mWIzB7F8qe019/yfxxRTIFFxBWRr/hNOm8Cr/gvjQ06P/BW2rmDyraFwpaq6v7pf7JePxT4Sdrn8hyQIDfgjQf+mna95HnvfGUfjOxzNWUHrhQRuUxEnvOb3t7Ae6pPfaYZnxvw6hDKlO17wCPAD0Vkm4jcKCLhEp7fFMkChMn2G7wbwYXAKgD/6W2bv22bqr6Md3OIAWPTbpSjVLUj4JzbgbbULyIi6b8Xob+Uw/OAM4EP+mWflHqrIs69Ha8pI71sE/PvXpQtwKlZQaRJVbcGvPcBIrJf2raBvHfZUjH7/Q1X4dUUxvhBcCf7PtOMzw2vHyHdW0D6dR1c4O0yrkNVe1V1oapOxWuKPB24YKDXYIbOAoTJoKp7gTXApXhNSykr/W1P+PttB34B3CIio/yO2SNE5AMBp30IeIeIfNR/Wr2IwjeMbK8Bhxd4fSResOrGuyl9eQDnfgjoEJG/98t28QDLFuSbwA0iciiAiIwTkTOzd1LVV/E+6+tFJCIixwNnDOB9XgMmiUg5/h+PxOtf+gsQEpHrgFFpry8FviQiY0SkDfjXrOM7gXl+7e4UvP6YfDK+XxE5UUTeId6AhzfxmpyGPCzYDJwFCBPk13hNRemT1570t6UPb70AiAAb8Tpil+H1HWRQ1deBj+F1PncDU/FujLEiy3MrXhv+DhEJauv+Ll4Tx1a/LE8Ved70sn3FL9uR+DWnIbgVry/hFyKyyy/PrDz7ngcc77/3fwA/ovjP5V7/724ReXbwxQ30CF7H/wt4n+3bZDYpLfS3v4z3oPC9rOM/jxfs3sC7xp8WeK//BP7Nb5K7HC9AL8MLDs/h/XssON/DlIfYgkGm0vwn3i7gPFVdUe3y1BIR+RHwvKouqHZZjLEahKkIEfmwiOwvIlG88fvCAJ7065WIvNtvmnP8ppgzKfy0bUzFDDrHizEDdDzeWPpUk9RH/f6ORncw8GO8YZ1dwL+o6u+qWyRjPNbEZIwxJpA1MRljjAk0rJuYxo4dq5MmTap2MYwxZlh55plnXlfVcf3tN6wDxKRJk1izZk21i2GMMcOKiBQ1892amIwxxgSyAGGMMSaQBQhjjDGBLEAYY4wJZAHCGGNMIAsQxhgzzHTvjrF2yxt07y42r+PgDOthrsYY02ju79zKVfetI+w49CaT3HjWMcydMaEs72U1CGOMGSa6d8e46r51vN2bZFcsztu9Sa68b13ZahIWIIwxZpjo2rGXsJN52w47Dl07ypP30gKEMcYME21jmulNJjO29SaTtI1pLsv7WYAwxphhonVElBvPOoamsMPIaIimsMONZx1D64hoWd7POqmNMWYYmTtjArMnj6Vrx17axjSXLTiABQhjjBl2WkdEyxoYUqyJyRhjTCALEMYYYwJZgDDGGBPIAoQxxphAFiCMMcYEsgBhjDEmkAUIY4wZglJlVq1UhtaBsHkQxhgzSOmZVXsSCeafeCTzZrUPeI5CJTO0DoTVIIwxZhCyM6vG4sotj77Ae7/yGA90bh30edIztFa7VmE1CGOMGYRUZtW3yUyeF4t7N/jZk8dm1CS6d8cC02MEnSfsOCxZvZmvP76pqrUKCxDGGDMIQZlVUxwRNmzbyZwpBwKFm5CCztOTSHDHik3E4sm+wBEUdMqtbE1MIjJRRFaIyHMiskFEPu9vv15EtopIp//ntLRjviQim0TkDyLy4XKVzRhjhtp8k8qsGg1Jzmtv9ST43HfX8EDn1n4X+QnK0Dr/xCOJuJVb9yGfctYg4sBlqvqsiIwEnhGRR/3X/ktVb07fWUSmAucCHcB44JciMkVVE2UsozGmjuVr1in0RJ/vmCCpzKr3rN7M7f4Tf0osrlyxbC13XvDuwCakrh17+86fnaEV4I7HN2W8VznXfcinbAFCVbcD2/2fd4nIc0ChBrQzgR+qagx4WUQ2Ae8BflOuMhpj6ldQEJg9eSwbtu3kymVricU1p/lm5abXBzyaqHVElH89+UimT9yff/7eM7zVu++ZNhZXfvPH14ta5Cc7Q+uNZx3DlVllqWTzElSoD0JEJgHvBFYDs4H5InIBsAavlrEDL3g8lXZYFwEBRUQuBC4EaG9vL2/BjTHDUnqzTioIXLq0E9dxcB0hFteM/cOOw4ZtO3OOyW73L1S76Bg/ioTm9kncveoVrjt9Kose2jigm30l133Ip+wBQkRGAPcBl6jqmyLyDWARoP7ftwCfBnIb8rx9MjeoLgYWA8ycOTPndWOMCRoZFE9CPE+nsveELwWbgrJrJNeePpVp40f33bxbR0SZf+KR3PLoCxnnjrgO0yaMZtVVJw34Zl+pdR/yKWuAEJEwXnBYoqo/BlDV19JevxNY7v/aBUxMO7wN2FbO8hlj6lOhEUbp9gu7JFFuPOsYOsaPytsUFFQjueYn62mJuCRU+5qi5s1qz+mLSJ1jsDf7gfSJlFo5RzEJcBfwnKp+LW37IWm7/R2w3v/5AeBcEYmKyGHAkcDT5SqfMaZ+ZY8MioaEsJvZSBENOXzz/GNZddVJzJ0xoeB6z6kaSbY9PYmMUUmtI6LcdHbp1oy+v3Mrs7/6GJ/81mpmf3VgE/BKoZw1iNnA+cDvRaTT33Y18AkRmYHXfPQK8E8AqrpBRJYCG/FGQF1kI5iMMYOV3Ya/atPrOZ2+c6aMK3hM6sbeX43EFelriipV30FQraXScyHKOYppJcH9Cg8XOOYG4IZylckYUz+KaXpJb9Yp9sYd1BSUql1ced86XEfYE8t8dt3Tk+DnG7ZnNCUFnX8gzUX5ZlinD48tN5tJbYwZdnI6jD8ylWkTRvcNHc13E+6vH6DQDTw9wKx+qZsv/+z5jNe/8fhL3L3yFW46O3ho7EAT8gXVWio9F8IChDFmWAnsMP7pekZEXWLxJKpKczhU9DyGVFBYv3VnzlDUoMlz0yfuD8CIqMvurJpELJ7k8mXrmHrIKMa0RDImvg20uSi91lKtuRAWIIwxw0q+JHnpN+tdsTiw7yacOi7fjOqQI33HFzN5bvbkseztCe4i7Ykn+fB/P4HjCE0hl95kkotOmDyo5qJqz4WwAGGMGVbaxjTTkyhu/Ep2VtT0NRtg31N9EE16s6CvuHctPYnMWdeXfnAKiQKzsBIKiYTSm/AC1e0rXiS7S7bY5qJqzoWw9SCMMcNG9+4YS1ZvJpEsbo5sTyLJHSteDFyz4Z7VmwOHrqbEEsoXfuQFh3SuI9z4yPN5jgoWcV3mnzi5ZMNfK8VqEMaYYeH+zq1cuWxdxiQ0AEcgKF5EQg7zT5zM4ideIhaPZ7wWiycDn+qz9QacuDehRFwn76zs4PMkmTernXmz2quaOmOgrAZhjKl5qY7p7OAA0Bx2cybBRVzhns+8h+kTR+dtjkp/qm+JukWVw3VgwRlTCQoNqZtpU9gh5EDYlZzaQuuIKNMn7j8sggNYDcIYMwzk65gGSKhy/dwOFi3fNwLpnGPb+OTdTxN2nMDaBXjNT+lP9eu37uT6BzfQW6BzQZMwa9IBXHTCZG5fsQlX4C2/DyNVst5Ekkc+PydjFNNwCQjZLEAYY2pO9nyEfDOZoyHpG456SsfBdO3YS0vE5fTbV2YMKQ3y6dmT+m7cqff49+UbCpYrCZx220qiIQdQTn3HIdz3bGbKuEQStu3cy+SDRha15GgtswBhjKkp6RPKehJJ5p84mXmz2rnxrGO4dGknqVYmB7jsb4/KmeewbWf+2ka6u1e9zN8cMqrv+K4de4m4bk5/RbaeRJKehHfuB9Zuz7NXZpPXQCfJ1QoLEMaYqgh6ou7eHevriE7d4G959AVuX/Ei153ekdFclAS+/LPnaYmGGNEU4splXhqMeCKZu05AgFhcM+ZJ7Nzbw97ewsEhm5Onj3v86KaM66x2TqXBsgBhjBmSfE0nhbYvWb2ZO1a8SMR1Myaf3fKLFwI7omNx5br71wf2J1x3/3ocRzL6DgQvW6sjwt7e/HMmXJG+eRIhRwh464KyFx4Cr5N6T9okulrIqTRYFiCMMYOy70a/iYib2XSSr0nl/s6tfRPPgL7mnEuXduKI5Mw5SJfvpdSktHQKzDmylWjIZfnv/5T3nHt6Etz6yxcKTnobjNQaEqk+kWrnVBosCxDGmAHz5iSs7XuCTj31X3mfl4coqEll/OgmLvlhZ2Dzj3d4ae/Sjz73l6L2K2VwiLjCtadPzUnPcc7MNpau6RpQTqVa6NS2AGGMGZB9cxJy76xhx6Fzyxs5TSqaVM69c3WJQ0DtcR3h3x/cSCKZJJ7cl9dp6Zouls9/H3t6EkXd8GulU9smyhljMnTvjrF2yxt0744Fvp5vdTXwmk5mTNw/p0klllDiRabHGM729iaJxZM5fRlhx+uXKGaSXHqn9q5YPGPFukqzAGFMA8sOBvmWuEzfL/+cBG/G8OSDRmYs3RlxhabwwG41+UYHDVcD6XMICsCpTu1KsyYmYxpU0KI7ix7amNN3sOvteM46Cecc28Z3n9rcd67T3nEQi858BwBrt7zB7MljWXXVSRkT1waiVisb0ZBw4pQD+fnG1wruF3YFR8gYpVVsP0ItLBSUIqo1+k0UYebMmbpmzZpqF8OYYad7d4zZX30sI9V1xBUiISdjXYWWqEtvPJkxuigaEkAyhqM2hZ2+ABPUbr7413/MWYFtuFr2T8dx3l1PZ1x/yAHXcTJGcw1lHYcHOrfmLBRUyj4IEXlGVWf2t5/VIIxpQBu27cSRzHacsOvkDDPtTai/fV/QcMXJSYIqwIIH1md0zF6xbG3fZLADWiJluY5KCzsQDrncdHbuSm9BAWGwo4+qvVBQigUIYxpM9hDVlIQqC86YmpH07trTp3LdT9dn7BeLJwi5mW3kewMW3YnFlf/51YtMmzCaMfuFS38hVeA40rfsaCkDQpBqLhSUYgHCmDrVvTvGhm07AaFj/ChaR0QLDlGdO/0Qzpt1aF/Su7Yxzfx8/Z9y5wmI0FvklONv/+bVoV/IEIUEAi534Odx4Kazp2cEg2rfwMvNAoQxdWjJU69y3QPr8XPKEXLga+fM4NDWlrzHLF2zlcnjRjLr8FbaxjSzY08PCx5Yn7Nfsau51QoVgUH0tYZd4fq5HUwc00x6kE2phYls5WYBwpg6s+SpV7kmq1konvT6BJZ8ZlbeNZjBT34XcYnFEyST9JMPdXgYbEBzBE7pODjw5l8rE9nKzeZBGFNHunfHWLh8Y+BrgnDH43/s9xx7ehLE6yQ4DIWIBM49qKWJbOVmAcKYOuKtaRA8y+zteJIVfyguP5GBt3uTtERylyKtpYls5WYBwpg60jamuSFSWlRC1JWMtN0ptTSRrdwsQBhTB1KpMIC+NBepmkS9pa2oFPGHtGZrHRHlnGPbMradM7OtLjuqLUAYM8xl508CWD7/fX2ZU61C0b+QA3979DhCDrREXJrCTt70GN27Yyx9pitj29I1XWx6bVfBJIfDkY1iMmYYC1qi84pl6/j07EkZK6yZwlwRfr2pm6awS0/CmzCYb1RS0ApxAKfd9iTRkFtXo5qsBmHMMLZk9eacJTpj8SSLn3y5SiUanmIJpSeeZHcsQU88yaLlG/PWBIL6IN7u9fJV1duoJgsQxgxT3btj3P7YC4GvDbfJbNXgQN505IVGJbWOiGamMw85RLNGjtXLqCZrYjKmxEoxwzb7HEFpM7715EsEDLIxRXJduHDO4Zw67eCcdOT9jUpKT6bXl848rUmvXkY1WYAwpoRKMcM2+xznzGzjB09v6etTcAXOetcElj6ztRyX0DB6E3DH45uYN6udaz8ylYUPbiDsOiRUi1q/IT0X041n5WZ3rYdRTbYehDElErTGQlPYYdVVJxV9swg6hymfkdEQn5tzOF9/fBMhR/o6qM+bdeiAzzWccjMVux6E9UEYUyKlmGFbaL1nU3o9iQR3rNjE273FdVAX0joiWtSa08OJ/Us0pkT6m2GbmsxWaLx825jmjMV5TOm54tUcmsIO8088kojbGGkzBsP6IIwpkdTolqC26FS/AnhDIlOznBec0cF5x+1rzli56fWMEUiuwAeOHMdjL1gOpVL50YXHEQ65fYH7jsc3ZbxeLx3MpWABwpghyG53DloqMj37Z0pqac9rfroeBM6bdSjdu2NctrST9GkNCcWCQwldcHw7Mw9rzdhWrx3MpVC2ACEiE4HvAgfjZQ5erKq3isgBwI+AScArwDmqusM/5kvAZ4AEcLGqPlKu8hkzVPlGLGWvNJZv5m3KgvvX0xtP0JtQilyozQxAxBXOPraNT88+jMkHjcx5vVbWf65FZRvFJCKHAIeo6rMiMhJ4Bvgo8A/AX1X1KyLyRWCMql4lIlOBHwDvAcYDvwSmqGreBlkbxWSqZSAjlrp3x3jvV34VuMynqYyBjiard1UfxaSq21X1Wf/nXcBzwATgTOA7/m7fwQsa+Nt/qKoxVX0Z2IQXLIypOQMZsbRy0+uWMK9CrvjQFG7/xDvZL5y5joN1PA9ORUYxicgk4J3AauAgVd0OXhABDvR3mwBsSTusy99mTM3JN2KpJeJmjFBK9T+kJ86z9NvlpBx98EiSZEZk63genLJ3UovICOA+4BJVfVMk7/+OoBdynrtE5ELgQoD29vZSFdOYAQkasXTOzDY+8j8rcURIJJMsmNvBtPGjc4612kT53L7ij/zPij9yzsw2lq7pso7nISprgBCRMF5wWKKqP/Y3vyYih6jqdr+f4s/+9i5gYtrhbcC27HOq6mJgMXh9EGUrvDH9yM7Hc+ptT2bUFK75yXo+f9JkmxVdQXv9z3rpmi6Wz38fe3oS1vE8BGVrYhKvqnAX8Jyqfi3tpQeAT/k/fwq4P237uSISFZHDgCOBp8tVPmNKITV7dtvOvYHrL9z22KaAo0wpBd3Ewo7Dnp5E3c1srrRy1iBmA+cDvxeRTn/b1cBXgKUi8hlgM/AxAFXdICJLgY1AHLio0AgmY6ohf76d4KZTq+IOnVD4cwyqn1mfQ2mULUCo6kry/a+Bk/MccwNwQ7nKZMxQZM97uPb0qUwbP5q2Mc1s+etb1S5e3RpokI2G8i8XagbGZlIbU4T02dCpCW/X/GQ9LRGXnnjCJrhVSMih4Ge9X9jlm+cfy5wp4ypXqDpmyfqMySM9ud6K5/9M0JzSPT0JepPWlFQpIsLVpx5NU9ihJeLmvJ5E6Rg/qgolq09WgzAmwJKnXmXhgxtAlZ6kl66hJ6AT2lSWALMOb2XVVSfRtWMv67ftZNHyjTactUwsQBiTZclTr3pJ9NJYcKg8Fy8pW7qehLL65W6mTzyibwTZKR0HWx6lMrEmJmPSdO+OsXD5xmoXwwDieB3O2W5+5A8Za2nU40I9tcIChDFpunbs7VurwVTXlR8+OrBvJ+xaXqVKsSYmMyyVYv3f1DlaIm7fjNveeIKYDUmquqtPPZoLP3AELU0hrvlJZnNfQtXmOFSIBQgz7ORbh2EgUp3QIhCLK1G/Ezr9idV1IGGxouL+5QOHc+EHjgC8hZRQWPjgBsKuQ0LVOqIryAKEGVaC5iNced86Zk8eW/RNI6gTOhbQCW3BofIirvDZ9x+ese284w7llGnWEV0NFiDMsBK0Olsq138xNw7rhK5tC+Z2BH6P2av0mcqwTmozrORbh6HYNmkvwFgndDUFjQEIOcINH53mNSmZmlFUgBCRrxazzZhyS63D0BR2GBkN0RQeWN4dL8DYnIZa4wiMbLIGjVpT1JrUIvKsqr4ra9s6VT2mbCUrgq1J3biGMoppyepXc0bGmMoJu4Kg9GTNgrN1oyunJGtSi8i/iMjvgaNEZF3an5eBdaUqrDEDNZDJUamcSqnJVefNOpSrTzs6sKnDlF/EdfjUeyfRHC5uTW9TPf3V6e4Bfgb8J/DFtO27VPWvZSuVMSWSk6L7I1Pp3tPDHStexCE3lYMpvz09Ce5ZvaVv9bcUW8Oh9hQMEKq6E9gJfEJEXOAg/5gRIjJCVTdXoIzGDEpgiu6fWtNSJTgCjgjxPP09e9Lal1oirs1vqFFF9QqJyHzgeuA19i3gpEBV+yDM8FWKmdD9nbdrx16SNpmhOhSaIg67Y/sCQTTkIELGGt37RVwWzu3gxKMPtOBQg4odNnAJcJSqdpexLKZBlGImdDHn/XDHQfRYfKiKprCTkwE3kUzmLPbzVo+X2sSCQ20qdh7EFrymJmOGJL3ZZ1csztu9Sa68b11Gds5Snff+zu0lKrUZqCSw4IypfcORg7Kypix6aOOQv39THgVrECJyqf/jS8DjIvIQ0PdNqurXylg2U4dKMRM6qGkq6LymOkIOfbXC1FoNO/f2ctGSZ9kVi+fsP5Dv31RWf01MI/2/N/t/Iv4fYwZlKDOhCzVNtY1ppsf6G2rCDz93HDMPawX2pcjo3h3L+d5TbPRS7epvFNPCShXENIbUTOgrs270/T09FpOk7/R3HMx9v9uWc6wrYAvClYbrgCi4jkNSk3SMH01n177W5wuOb+8LDunSv3dNKrGE0uTPg7DRS7Wr2FFMD5K7LvtOYA3wv6r6dqkLZurX3BkTmD15bE5TUaGRTYWapu57pouv/vz5vEHAgkNxHIFCWUiiIeGms6fnfHebXttF55Y3mDFxfyYfNDLv8enfe/oaHBYcalexo5heAsYBP/B//zjekNcpwJ3A+aUvmqln2dk5+xvZlK9p6u6VL3H/WuuMHqr//LtpfKjjYP7nVy/ynd+8mvM0uF/E5ZuffBdzphwIkPHdTT5oZMHAkM6ysg4vxQaId6rqnLTfHxSRJ1R1johsKEfBTOMIaj66/N61TD1kVN+NJ6hp6tIPTuHLP3u+mkWvG//20/U8t/1Nlj7TxX7+0326pCod40dXqXSmWooNEONEpD01c1pE2oGx/ms9ZSmZaRhBzUc9CeW0/1nJzWcf09csMXvyWFZddVJfE8W3/++V6hW6ziQUvvtUbmIEm+Xc2IoNEJcBK0Xkj4AAhwH/n4i0AN8pV+FMYwhqPgLoiSe57N61OAIR1+2rNbzSvYela7rypnEwpdESdVl4hs1ybmRFpfsGEJEocDRegHi+FjqmLd13/Xigcytf+FGndSjXkLArPPWlky041KFSpfs+yf/774GPAEcAhwOn+duMKYmph4zCFnqrLb0J5VtPvpR3lnN2GnVTf/prYvoA8BhwRsBrCvy45CUydWEgyfju79zKFfeupdfmudWcb/z6Je5a+QoL5k7NWA60XPm0TG3pb6LcAv/vf6xMcUw9GMjNIzWCKTuxm6kdPYmktwKfwnnHHVrUpEVTH4pdk/ogEblLRH7m/z5VRD5T3qKZ4WigyfhSI5hMdTWHnX5X2Fv44Ia+mmH2d2arwdWnYv9nfht4BBjv//4CXgpwYzIM9ObRNqaZWNzWdaumiAs3nX0M/+8f383Vpx5N2A3eL+w6fc2Gg82nZYaXYgPEWFVdir9YkKrGsdUaTYCB3jxaR0T52LETK1E0E8AVOPfd7Vy+bB0XLfkdX/vlC1zx4aNxA0YMxP3vMTVpMZXKuyns2DyJOlXsPIg9ItKKn49JRI7D1odoSP11PgfNeL72I1P7ahBBx/zj7EksedpWr620ppDDzR+bzuXL1mb0J9z8yB9oDmeuBgcw/8Qj+76/fPm0TH3pbz2IS4BVwJXA/cDhIrIKLy/Tx8peOlNTiu18Tr95rN+6k0UPbSx4zOSDRnLB8e189zcWJCpJgVHN4dwkiG7uanDRkMO8We0Z2yyvUv3rr4mpDbgV+Lm/76PAPcB7VXVtmctmqix9nHsxnc/p+7eOiNI2pplFD23MOObye9ey6bVdOcd8/uQp/PILc7johMNxrc+6Is561wQ6xo/KaRJMqGasBtcUdrjpbGtCakT9DXO9HEBEIsBM4L3AScA1IvKGqk4tfxFNNWTXFi46YXLBleCWPPUqC5dvJOIK8aSXu+fQ1paCOZZ2vR1n4YMbCLsO8WSS900ex+N/+LPNpq6QT88+LO/6HOmrwVkTUuMqtg+iGRgFjPb/bAN+X65CmeoKGud++4oX8bKs7NObTNIScfnqz57jG79+CYAef0XJK+9bx/L57yuYY6nXjwQ9Ca+t+1fP/7lMV2SyXXB8e1+m3Hz9CdaEZPrrg1gMdAC7gNXA/wFfU9UdFSibqZKg7KoR1+XCOYdzx+Ob+p40z5nZxmm3PRk4yc0RYU9PghvPOobL712bs0+vVRMqKhoSlnxmFq90v5WzsM9AZr2bxtJfDaIdiAIvAluBLuCNYk4sIncDpwN/VtVp/rbrgc8Bf/F3u1pVH/Zf+xLwGbzhsxer6iMDuRBTOvmGqs6b1c68We196bZPufUJ4nnSY7zVk2D91p2cd9yhjB/dxNn/+1QFSm7y+fi7JzLzsNac5UAtZYYppGB3oKqeArwbuNnfdBnwWxH5hYj0t171t4FTArb/l6rO8P+kgsNU4Fy82sopwNdFJM90HVNuhca5t46IMn3i/mzb+Xbe4JCy4IH1bHptFz8OWCfaVNbSNV05s9kHOuvdNJ5++yDUywe+XkTewJv7sBOvZvAeYEGB454QkUlFluNM4IeqGgNeFpFN/vl/U+TxpsT6H+fefxNRPAmn3PqkrdtQYa7jDVV9uzd4QEFKoXW+ranJQP99EBfjjVyaDfTizYn4DXA3g++kni8iFwBrgMv8/owJQHobRJe/LahMFwIXArS3twftYiqgY/xowq7025dgwaEyrj7taI4+eBSg7Bd2mXfX0xmvB81mt5QZpj/9jTifBCwD3qOqh6vq+ar6dVVdq6qDSc78Dbw1JWYA24Fb/O1BacIC7yyqulhVZ6rqzHHjxg2iCKYY93duZfZXH+OT31rN7K8+xgOdWzNebx0R5ZaPTSfSX4Y3U3b/csLhXDjnCOZMGceOt3r55N1PI/5CYE1hJ28qDEuZYfrT3zyIS0v5Zqr6WupnEbkTWO7/2gWkJ+RpwxtKa6qg2HTOc2dMYP/9wvzz95/lrR5LzVUN0ZDDZ993OJD5vaUkk8rDF78/Y9RSOkuZYQqp6JxVETkk7de/A9b7Pz8AnCsiURE5DDgSeDr7eFMZA8nI2jF+NMkil601pbNfxM2Z4Rz0vUVDLnv6Cd6pgQcWHEy2YifKDZiI/AA4ARgrIl14HdoniMgMvOajV4B/AlDVDSKyFNgIxIGLVNUeSatkIG3T6TNxHSAWT6KAdT2UT8iBb37yXXSMH51xU7c+BVNqZatBqOonVPUQVQ2rapuq3uX3YbxDVY9R1bmquj1t/xtU9QhVPUpVf1aucpn8UnmRgAG1Tc+ePJbZR7TyVm+ShFpwKLczZ0xgzpQDrU/BlF3ZahBmeAmaMLXqqpMKtk13747xrSdf4s4nXiJuQaFi/uUDR+R9zfoUTClZgGgg+VIqdO+OceWytcTi2tcpffm9a3n44vczfeL+gcev3PQ6X/hhJ4MZymYG75yZE/J2OKdYDiVTKhYgGkShlApLVm8mllUFSM+6OnfGhIzjexJJYv1NozYl1xx2OW/WpGoXwzQQCxANoNCwVYA7VmwKPK4n7qVemHrIqJzjTWk4kPOJukJgyvO4dTibCrMA0QCCUio4ImzYtpPRzREirpO3RhB2HDq3vIErNiGuHII+9XyT09WGE5sKs7W7GkDQ8Me3ehJ87rtrWL91Z+CaDSmxeIItf32r37H0pvyaw6HAuSjGlIsFiAaQGv4YDWV+3bG4suihjVx7+r7lJcOuEHIgmpZC49bHgpugTGXZnAZTadbE1CC8tBgR/vl7z/BW777agIMwuinM4vNnAsr40c08/6c3uXTpOkADFwMypdcScelJJFFVmsOhvgWZlq7pyhhYYKOTTCVZgGggHeNHkczKgfhWb4L5P/gdTWGHeCKJiPSNVDLlFw05XHfGVKaNH91XO0gfivz5k6fYnAZTNRYg6kSxy0ZedMJkbvvVC/Rm3f/3JXhTehPW31AJIQfuvGAmc6ZkZiVO//5sToOpJgsQdaC/ZSO7d8dYsnozd6zYhAg5wcFURzwJ40c3VbsYxuRlAWKY6y819/2dW7ni3rXWl1CDoiHHRoeZmmYBYpjLN+wxtf3ye9f2u+qbqQ4RbFSSqWkWIIa5loibsUAMeP0JLRGXDdt2WnCoIWF/6HAk5JBIqo1KMjXPAkSN694dY8O2NwHNyf8PsKcnQdQVYmmBIOqK33Rhs59riesIi88/ltHNERuVZIYFCxA17P7OrVy2tJNUFoywK9zysekZHdBtY5oRJzN5jzhC25hm2sY0E3IgPYtGUO4fU3qO5K6L8XZvkvGjm/vNxmpMrbCZ1DUqlYI7/ebem1CuWLaO7t2xvm2FFolpHRFl3nvaM85rwaEygtImRfpqdsYMD1aDqFFdO/biigNk3lBcR+jasTejeSLfIjHdu2Pc8/TmShbb+AJ7fkSsU9oMK1aDqFFtY5pJaO7zfiKpOTeZfJPkNmx7E1u2oXYsOGOq9TuYYcVqEDWqdUSUm86ezqVZfRA3nZ058iV7kty1H5nKtAmptA02gqlWhBw4pePgahfDmAGxAFHDUk1H+UYxBU2Su+an62kOOyQVPj17EmFXbKhrCYUc+OIpRxNyHaaNH8V5dz1d1Op6qVTdVoMww4k1MdW41hFR5kwZx5wpBwKwdssbfZ3UqYWAsu3t9ZYE/cavXyKZVMKu0BS2r7oUkkm4+dEXOKAlwszDWrnpbG+AQOrzDTtCxN035yHFUnWb4chqEMNEUL6lqYeMIhYvPComoRASOP+4Q7nzyZcrVNr6lcQbrppKZ5I+QKAl4rKnJ0HbmGZWbXqdK7O+L6s9mOHGAsQwENSU9IUfdRJyHUQEUEIC8TwtSb1x5Xev/rVyBW4AYcfpazIKyriab2SZMcOJBYhhIGhN6YRCIq3tO19wAO+pd83mnWUs4fDnCjiO0BTyFu7pTSRzJrqlK6bJyFJ1m+HOAkSNCRqyGrSmtCkd14FHPj+HMS2Rvs9+1abXuWLZOlS9VfVcf7J61BXEEWsyMg3BAkQNybeuQ2q29GVLO20thxJwAHG8ZiIFrjt9Knt6EoxpgekT9wcI7FtI72Ow4GAagQWIGlFoXYcde3roiSc5+W8O4ucbXqtySYe/RX83jVM6DqZrx17Wb93Jooc2Bi62ZE1EptFZgKgRQf0MYcfh2p/+nofXW1AolZaIy7S0+SQfX/ybvIstGdPobHB8jQjqZ+hJJC04lFg8rXM5aB5JanRSPt27YxlzUYypZxYgakRQVtaz3jWh/wMNgjcKqRjzTzyyYOd/odFJ93duZfZXH+OT31rN7K8+xgOdW4dSbGNqngWIISrlE+XcGRNYddVJfP+zs1g+/32894jWEpSw/kVCwo8uPI6IW/ifczTkMG/WvvTnhVKlZ0vvI9oVi/dNlrOahKln1gcxBPlGHRUraEhr64goKze93ndebxpcrnzbG1HEdQmHXP71pMnc8ugLOa/vF3FJavASn8VOaMvXR2T5lUw9swAxSIVGHRVzw0gPLj2JBPNPPJJ5s9rZsaeHK5atoyeezLgZpUs9JzdSgDi8tZnXdvUELriTahaaN6ud21e8SCxt1mA0JHzzk+8KXK41pZjRSgNtjjKmHlgT0yDl6+DcsO3NfpucspsrYnHllkdf4Lj//BUf/u8n6OknO6jSeCvDnXDUgSQClmmLhjJX0Lvp7OkZTUY3nT2dOVMOHPJT/kCao4ypF1aDGKSgJ8q3euJ87rtriLiFm5yCmiuAotNyN1LNIaU54nLjWcf0JcBLr3WBl+W2bUxzWXMgWX4l02gsQAxS3+zme9f23dhT+ZFS6wMENTl1746xc28PPQlbm3ggFj/5MtfP7WDVVSdl3KALzT4vB5s8ZxqJBYghmD15LE6B4ZXZnZipm5krQjypODReU9Fg9SaUa36yHhTOO+5QYOj9QMaYwqwPYgi6duwl4rp5X0/vxEy/me3pSZBIesHhnRNHV6i09WHhgxsKLpjU30S3YthkOGM8ZQsQInK3iPxZRNanbTtARB4VkRf9v8ekvfYlEdkkIn8QkQ+Xq1yllC/LakvUzenE7NqxF1dyqxu/22JpuFNcyV2JLVvY3RcAyjGyyCbDGbNPOWsQ3wZOydr2ReBXqnok8Cv/d0RkKnAu0OEf83URyf9oXiOCRrbc8NFp3PPZ41h11UkZHdRtY5rpTRTfoBR1xcs6WoZy16rF5x/b7z4J1b4AUOqRRTYZzphMZeuDUNUnRGRS1uYzgRP8n78DPA5c5W//oarGgJdFZBPwHuA35SpfqRQzsiU1Ie7yDx3Fl3/2fFHnjRU5oqleNIUdwiEHDRjKmpI+pDWllCOLbDKcMZkq3Ul9kKpuB1DV7SJyoL99AvBU2n5d/rYcInIhcCFAe3t70C4VV2hky5KnXmXh8o1EXKE3oRzeuh8vdb9V4RJW3zkz27jvmS4Kxz2hORxiVyyesTXswMUnT2HerPbAz7lUI4tsMpwxmWplFFNQS0rgrURVFwOLAWbOnFnTj9lLnnqVa37qdcH0+Pe8RgwOAA+s3cYjl8xh2863AWXLjr0sWp65DkPH+FE5N+hIyOHhf30fkw8aWfYyppqsrswaNmu1B9OoKh0gXhORQ/zawyHAn/3tXcDEtP3agG0VLltJpJqTWiIuCx/cUO3i1AxXhD09CeZMGde3LbVoT3rTUNANuhLBIcUmwxmzT6UDxAPAp4Cv+H/fn7b9HhH5GjAeOBJ4usJlG7L0SVuxRBIKtKdXgyvw7kljeOrlHRV/795EblNNUNNQvht0UGLDcrHJcMZ4yhYgROQHeB3SY0WkC1iAFxiWishngM3AxwBUdYOILAU2AnHgIlUdVlONgyZt1Zr/+Og0Fi7fWJX3XnBGR9E33ewb9FCz5hpjBqeco5g+keelk/PsfwNwQ7nKU25BI2Cawg7JpBJ2Hd7u9eJdNQcnxeJJQoWmfvcj5AiqSlPEJZ5IktTM/FFhV7yZ5eqNwoqGHBRYcMZUzpt16KDe02ZLG1M9tdJJPewFjYBRhYcvfj97ehK0RFzue7aLxU+8VJUg4Qjs2NPD7lhmxcx1hESy/wI5wMK5HZwy7WA2bHuTfB3NqeahlojLnp6EDT01ZhizAFEiqREwly7tJJWtO5FMsnH7myhw5bJ1fUn8qiGpcOtjm3K2//uZHcyadAB3r3qZe9dsoTdPEZPAooe85qlFD+0LCtd+ZCrTJozOWfSoVGzoqTHVY7mY+pGel6e/HD273o6THgPiSbhi2dpBBYdoqPxzqFsiLtPGj2byQSP58t8fw1NXf5DL/nYK0ZBDczj3n4YrwsLlGzNmGi96aGNZO45tHQZjqsdqEAWkd46+HU+gqjSHQ4Edpd27Y4EdwIIgATmY+pO+Klq5pKetAO9mPG9WO9MnjubNvb1cdu/ajHL0JpJEQk7fnA6oTHOPDT01pjosQOSRb1RSapZvdkdp1469SMCw1kQyWXSAcB1wRIpeOGiw9os4JJWcJ/Hs0UIff/dEfvTbLbjikNAk153e0dfMlFKp5h4bempM5VkTUx5BqaTTZS8v2hJxA/MnXfHho1kwt6Pf93MFFn/y2AEHh5DjHbtf2CEaEk7+m3GkJ0QVvNFFTX6TUcQV4gnl2o9MzakBZSeq+8HTW7ypHOKdaWRTyJp7jGkgVoPII18q75S9vZnLi5501IE5+0RDDrMOb+WV7j15FweKuN640Js/NoOxI5uIulIwUZ/gpZ+IuGnNXhGXnoSy4IwOzpt1KN27Y2zYthMQOsaPYseeHk677UkAevxzL3poI6dMOzijBpQ9WigVrFKr31153zpWXXVSzqpuxpj6ZDWIPLI7R8OuEHJgZDRENOT1K8Ti+562H17/p4CzKC0Rl6vuW5d36lxSQcT7GtrGNCP9zFMYEQ1x5wUzueO8d+KI1xG+O5agJ55k0fKNdO+O0ToiypwpBzJnyjhaR0TZ05MgGsrMnp69sE5/ATH9mNYRUaZP3N+CgzF1zmoQBWR3joL3pL1zbw8XLfkdvYl4wePnn3gke3oSOU/m6eJJJZ7Uvqfz9FxEPYkEvQklfZrC3t44HeNH9a1mF4vvK0O+DuNihopmJ6rrSSRJJJMZo7JseKkxjcUCRD+yO0dbR0Tp3h3r92k7GnKYN8tLR97fvrDv5p4elFoiLqfe9iTJtCanVIf3QOYHFJulNDsg3vrLF/juU5v7Xj9nZpvVGoxpINbENAhBY/MvOL6dprBDS9QlEnK47oypfcElte9+AXMLUtJv7qkmnD09CZqymoaaQm5fLWEgHcZzZ0xg1VUn8f3PzspZ7S772qZP3B+Apc90Zby2dE2Xra5mTAOxGsQgBY3NP+qgUSx8cANh12HR8o2MjIaYO2NCxr53r3qJ+zu3950n7AquI4E39/5qCQOdHzCQoaKW4sIYYwEiQLGppdNvuN27Yyx6aCM9Ce0b9XPFsrV9cyVaR0RZuel1HtnwGi0Rh1hCueiEIzjp6IPyvk8xTUPlmh9gKS6MMRYgsgw2tXTQE3csrtyzejP/evKRGfMMUv73iZe44PhJBW/w1VofwVZXM8ZYgEgzlNTSbWOa+2oO6W5fsYl5s9qH1GRTrfURLMWFMY3NOqnTBM2ezp4vkE/riCjzTzwyZ3vEdfpusKVosgma8XzlfevK1nlscx6MaVwWINIM9SY+b1Y70VDmR5o6vlRZSYcSxIwxZiCsiSnNUNvdW0dEuens/McX02TTX9+CdR4bYypFNCAD6XAxc+ZMXbNmTUnOlX5jBobU7j7YDuRi+xYe6NyaE4RsjWZjTLFE5BlVndnfflaDoPSdvoMZejqQDnLrPDbGVELD90FUutM3n4H2LVjnsTGm3Bo+QAyl07e/JUgHwvoWjDG1puGbmAZ7Yy5Hs5RNTDPG1JKGDxCDuTEPZUJdIda3YIypJQ0fIGDgN+ZyJrKztZeNMbWiYQNE9lDUgdyYrb/AGNMIGjJADLX/wPoLjDGNoOECRKn6D6y/wBhT7xouQJSy/8D6C4wx9azh5kFY/4ExxhSn4QJEqbKqGmNMvWu4Jiaw/gNjjClGQwYIsP4DY4zpT8M1MRljjCmOBQhjjDGBLEAYY4wJZAHCGGNMIAsQxhhjAg3rNalF5C/Aq2V+m7HA62V+j1rTiNcMjXndjXjN0JjXnX7Nh6rquP4OGNYBohJEZE0xi3vXk0a8ZmjM627Ea4bGvO7BXLM1MRljjAlkAcIYY0wgCxD9W1ztAlRBI14zNOZ1N+I1Q2Ne94Cv2fogjDHGBLIahDHGmEAWIIwxxgSyAJFGRF4Rkd+LSKeIrPG3XS8iW/1tnSJyWrXLWWoisr+ILBOR50XkORE5XkQOEJFHReRF/+8x1S5nKeW55rr+rkXkqLRr6xSRN0Xkknr+rgtcc71/118QkQ0isl5EfiAiTYP5nq0PIo2IvALMVNXX07ZdD+xW1ZurVa5yE5HvAE+q6rdEJALsB1wN/FVVvyIiXwTGqOpVVS1oCeW55kuo8+86RURcYCswC7iIOv6uU7Ku+R+p0+9aRCYAK4GpqrpXRJYCDwNTGeD3bDWIBicio4A5wF0Aqtqjqm8AZwLf8Xf7DvDRapSvHApccyM5Gfijqr5KHX/XWdKvud6FgGYRCeE9/GxjEN+zBYhMCvxCRJ4RkQvTts8XkXUicnc9Vb99hwN/Af6fiPxORL4lIi3AQaq6HcD/+8BqFrLE8l0z1Pd3ne5c4Af+z/X8XadLv2ao0+9aVbcCNwObge3ATlX9BYP4ni1AZJqtqu8CTgUuEpE5wDeAI4AZeB/2LdUrXlmEgHcB31DVdwJ7gC9Wt0hll++a6/27BsBvUpsL3FvtslRKwDXX7XftB7szgcOA8UCLiHxyMOeyAJFGVbf5f/8Z+AnwHlV9TVUTqpoE7gTeU80ylkEX0KWqq/3fl+HdPF8TkUMA/L//XKXylUPgNTfAd51yKvCsqr7m/17P33VKxjXX+Xf9QeBlVf2LqvYCPwbeyyC+ZwsQPhFpEZGRqZ+BDwHrUx+o7++A9dUoX7mo6p+ALSJylL/pZGAj8ADwKX/bp4D7q1C8ssh3zfX+Xaf5BJlNLXX7XafJuOY6/643A8eJyH4iInj/vp9jEN+zjWLyicjheLUG8Jog7lHVG0Tke3jVUAVeAf4p1Y5XL0RkBvAtIAK8hDfCwwGWAu14/+A+pqp/rVYZSy3PNd9G/X/X+wFbgMNVdae/rZX6/q6Drrmu/1+LyELg40Ac+B3wWWAEA/yeLUAYY4wJZE1MxhhjAlmAMMYYE8gChDHGmEAWIIwxxgSyAGGMMSaQBQhj8hCR3Vm//4OI3N7PMXP9RGiF9jlBRJbnee0Sf1imMVVnAcKYElLVB1T1K0M4xSV4ydWMqToLEMYMgoiME5H7ROS3/p/Z/va+WoaIHCEiT/mv/3tWjWRE2noUS8RzMV7unBUisqIKl2VMhlC1C2BMDWsWkc603w/AS1cAcCvwX6q6UkTagUeAv8k6/lbgVlX9gYj8c9Zr7wQ68NIwr8JLFHmbiFwKnJi+Jokx1WIBwpj89qrqjNQvIvIPwEz/1w8CU71UNwCMSuXySnM8+3Lu34OXgjnlaVXt8s/bCUzCW+TFmJphAcKYwXGA41V1b/rGtIDRn1jazwns/6KpQdYHYczg/AKYn/rFT/6X7SngLP/nc4s87y4guyZiTFVYgDBmcC4GZvorkm0EsvsYwBuRdKmIPA0cAuws4ryLgZ9ZJ7WpBZbN1Zgy8ecz7FVVFZFzgU+o6pnVLpcxxbJ2T2PK51jgdn/RljeAT1e3OMYMjNUgjDHGBLI+CGOMMYEsQBhjjAlkAcIYY0wgCxDGGGMCWYAwxhgT6P8HMWHwwspWcm4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot(kind='scatter',\n", + " x='Height',\n", + " y='Weight',\n", + " title='Weight and Height in adults')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.plot(kind='scatter',\n", + " x='Height',\n", + " y='Weight',\n", + " title='Weight and Height in adults')\n", + "\n", + "# Here we're plotting the red line 'by hand' with fixed values\n", + "# We'll try to learn this line with an algorithm below\n", + "plt.plot([55, 78], [75, 250], color='red', linewidth=3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def line(x, w=0, b=0):\n", + " return x * w + b" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "x = np.linspace(55, 80, 100)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "x" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "yhat = line(x, w=0, b=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "yhat" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.plot(kind='scatter',\n", + " x='Height',\n", + " y='Weight',\n", + " title='Weight and Height in adults')\n", + "plt.plot(x, yhat, color='red', linewidth=3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Cost Function" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def mean_squared_error(y_true, y_pred):\n", + " s = (y_true - y_pred)**2\n", + " return s.mean()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X = df[['Height']].values\n", + "y_true = df['Weight'].values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_true" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = line(X)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mean_squared_error(y_true, y_pred.ravel())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### you do it!\n", + "\n", + "Try changing the values of the parameters b and w in the line above and plot it again to see how the plot and the cost change." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(10, 5))\n", + "\n", + "# we are going to draw 2 plots in the same figure\n", + "# first plot, data and a few lines\n", + "ax1 = plt.subplot(121)\n", + "df.plot(kind='scatter',\n", + " x='Height',\n", + " y='Weight',\n", + " title='Weight and Height in adults', ax=ax1)\n", + "\n", + "# let's explore the cost function for a few values of b between -100 and +150\n", + "bbs = np.array([-100, -50, 0, 50, 100, 150])\n", + "mses = [] # we will append the values of the cost here, for each line\n", + "for b in bbs:\n", + " y_pred = line(X, w=2, b=b)\n", + " mse = mean_squared_error(y_true, y_pred)\n", + " mses.append(mse)\n", + " plt.plot(X, y_pred)\n", + "\n", + "# second plot: Cost function\n", + "ax2 = plt.subplot(122)\n", + "plt.plot(bbs, mses, 'o-')\n", + "plt.title('Cost as a function of b')\n", + "plt.xlabel('b');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Linear Regression with Keras" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.optimizers import Adam, SGD" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.add(Dense(1, input_shape=(1,)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.compile(Adam(learning_rate=0.8), 'mean_squared_error')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X, y_true, epochs=40)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.plot(kind='scatter',\n", + " x='Height',\n", + " y='Weight',\n", + " title='Weight and Height in adults')\n", + "plt.plot(X, y_pred, color='red')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "W, B = model.get_weights()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "W" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "B" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Evaluating Model Performance" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import r2_score" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The R2 score is {:0.3f}\".format(r2_score(y_true, y_pred)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Train Test Split" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y_true,\n", + " test_size=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "len(X_train)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "len(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "W[0, 0] = 0.0\n", + "B[0] = 0.0\n", + "model.set_weights((W, B))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train, epochs=50, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train_pred = model.predict(X_train).ravel()\n", + "y_test_pred = model.predict(X_test).ravel()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import mean_squared_error as mse" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The Mean Squared Error on the Train set is:\\t{:0.1f}\".format(mse(y_train, y_train_pred)))\n", + "print(\"The Mean Squared Error on the Test set is:\\t{:0.1f}\".format(mse(y_test, y_test_pred)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The R2 score on the Train set is:\\t{:0.3f}\".format(r2_score(y_train, y_train_pred)))\n", + "print(\"The R2 score on the Test set is:\\t{:0.3f}\".format(r2_score(y_test, y_test_pred)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Classification" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../data/user_visit_duration.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.plot(kind='scatter', x='Time (min)', y='Buy');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Dense(1, input_shape=(1,), activation='sigmoid'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.compile(SGD(learning_rate=0.5), 'binary_crossentropy', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X = df[['Time (min)']].values\n", + "y = df['Buy'].values\n", + "\n", + "model.fit(X, y, epochs=25)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ax = df.plot(kind='scatter', x='Time (min)', y='Buy',\n", + " title='Purchase behavior VS time spent on site')\n", + "\n", + "temp = np.linspace(0, 4)\n", + "ax.plot(temp, model.predict(temp), color='orange')\n", + "plt.legend(['model', 'data'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "temp_class = model.predict(temp) > 0.5" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ax = df.plot(kind='scatter', x='Time (min)', y='Buy',\n", + " title='Purchase behavior VS time spent on site')\n", + "\n", + "temp = np.linspace(0, 4)\n", + "ax.plot(temp, temp_class, color='orange')\n", + "plt.legend(['model', 'data'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X)\n", + "y_class_pred = y_pred > 0.5" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import accuracy_score" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The accuracy score is {:0.3f}\".format(accuracy_score(y, y_class_pred)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Train/Test split\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "params = model.get_weights()\n", + "params = [np.zeros(w.shape) for w in params]\n", + "model.set_weights(params)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The accuracy score is {:0.3f}\".format(accuracy_score(y, model.predict(X) > 0.5)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train, epochs=25, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The train accuracy score is {:0.3f}\".format(accuracy_score(y_train, model.predict(X_train) > 0.5)))\n", + "print(\"The test accuracy score is {:0.3f}\".format(accuracy_score(y_test, model.predict(X_test) > 0.5)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Cross Validation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.wrappers.scikit_learn import KerasClassifier" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def build_logistic_regression_model():\n", + " model = Sequential()\n", + " model.add(Dense(1, input_shape=(1,), activation='sigmoid'))\n", + " model.compile(SGD(learning_rate=0.5),\n", + " 'binary_crossentropy',\n", + " metrics=['accuracy'])\n", + " return model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = KerasClassifier(build_fn=build_logistic_regression_model,\n", + " epochs=25,\n", + " verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import cross_val_score, KFold" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "cv = KFold(3, shuffle=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "scores = cross_val_score(model, X, y, cv=cv)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "scores" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The cross validation accuracy is {:0.4f} ± {:0.4f}\".format(scores.mean(), scores.std()))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Confusion Matrix" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import confusion_matrix" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "confusion_matrix(y, y_class_pred)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def pretty_confusion_matrix(y_true, y_pred, labels=[\"False\", \"True\"]):\n", + " cm = confusion_matrix(y_true, y_pred)\n", + " pred_labels = ['Predicted '+ l for l in labels]\n", + " df = pd.DataFrame(cm, index=labels, columns=pred_labels)\n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pretty_confusion_matrix(y, y_class_pred, ['Not Buy', 'Buy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import precision_score, recall_score, f1_score" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"Precision:\\t{:0.3f}\".format(precision_score(y, y_class_pred)))\n", + "print(\"Recall: \\t{:0.3f}\".format(recall_score(y, y_class_pred)))\n", + "print(\"F1 Score:\\t{:0.3f}\".format(f1_score(y, y_class_pred)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import classification_report" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(classification_report(y, y_class_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Feature Preprocessing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Categorical Features" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../data/weight-height.csv')\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['Gender'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pd.get_dummies(df['Gender'], prefix='Gender').head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Feature Transformations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 1) Rescale with fixed factor" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['Height (feet)'] = df['Height']/12.0\n", + "df['Weight (100 lbs)'] = df['Weight']/100.0" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.describe().round(2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### MinMax normalization" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "mms = MinMaxScaler()\n", + "df['Weight_mms'] = mms.fit_transform(df[['Weight']])\n", + "df['Height_mms'] = mms.fit_transform(df[['Height']])\n", + "df.describe().round(2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 3) Standard normalization" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import StandardScaler\n", + "\n", + "ss = StandardScaler()\n", + "df['Weight_ss'] = ss.fit_transform(df[['Weight']])\n", + "df['Height_ss'] = ss.fit_transform(df[['Height']])\n", + "df.describe().round(2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(15, 5))\n", + "\n", + "for i, feature in enumerate(['Height', 'Height (feet)', 'Height_mms', 'Height_ss']):\n", + " plt.subplot(1, 4, i+1)\n", + " df[feature].plot(kind='hist', title=feature)\n", + " plt.xlabel(feature);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Machine Learning Exercises" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 1\n", + "\n", + "You've just been hired at a real estate investment firm and they would like you to build a model for pricing houses. You are given a dataset that contains data for house prices and a few features like number of bedrooms, size in square feet and age of the house. Let's see if you can build a model that is able to predict the price. In this exercise we extend what we have learned about linear regression to a dataset with more than one feature. Here are the steps to complete it:\n", + "\n", + "1. Load the dataset ../data/housing-data.csv\n", + "- plot the histograms for each feature\n", + "- create 2 variables called X and y: X shall be a matrix with 3 columns (sqft,bdrms,age) and y shall be a vector with 1 column (price)\n", + "- create a linear regression model in Keras with the appropriate number of inputs and output\n", + "- split the data into train and test with a 20% test size\n", + "- train the model on the training set and check its accuracy on training and test set\n", + "- how's your model doing? Is the loss growing smaller?\n", + "- try to improve your model with these experiments:\n", + " - normalize the input features with one of the rescaling techniques mentioned above\n", + " - use a different value for the learning rate of your model\n", + " - use a different optimizer\n", + "- once you're satisfied with training, check the R2score on the test set" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 2\n", + "\n", + "Your boss was extremely happy with your work on the housing price prediction model and decided to entrust you with a more challenging task. They've seen a lot of people leave the company recently and they would like to understand why that's happening. They have collected historical data on employees and they would like you to build a model that is able to predict which employee will leave next. They would like a model that is better than random guessing. They also prefer false negatives than false positives, in this first phase. Fields in the dataset include:\n", + "\n", + "- Employee satisfaction level\n", + "- Last evaluation\n", + "- Number of projects\n", + "- Average monthly hours\n", + "- Time spent at the company\n", + "- Whether they have had a work accident\n", + "- Whether they have had a promotion in the last 5 years\n", + "- Department\n", + "- Salary\n", + "- Whether the employee has left\n", + "\n", + "Your goal is to predict the binary outcome variable `left` using the rest of the data. Since the outcome is binary, this is a classification problem. Here are some things you may want to try out:\n", + "\n", + "1. load the dataset at ../data/HR_comma_sep.csv, inspect it with `.head()`, `.info()` and `.describe()`.\n", + "- Establish a benchmark: what would be your accuracy score if you predicted everyone stay?\n", + "- Check if any feature needs rescaling. You may plot a histogram of the feature to decide which rescaling method is more appropriate.\n", + "- convert the categorical features into binary dummy columns. You will then have to combine them with the numerical features using `pd.concat`.\n", + "- do the usual train/test split with a 20% test size\n", + "- play around with learning rate and optimizer\n", + "- check the confusion matrix, precision and recall\n", + "- check if you still get the same results if you use a 5-Fold cross validation on all the data\n", + "- Is the model good enough for your boss?\n", + "\n", + "As you will see in this exercise, the a logistic regression model is not good enough to help your boss. In the next chapter we will learn how to go beyond linear models.\n", + "\n", + "This dataset comes from https://www.kaggle.com/ludobenistant/hr-analytics/ and is released under [CC BY-SA 4.0 License](https://creativecommons.org/licenses/by-sa/4.0/)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/course/4 Deep Learning Intro.ipynb b/course/4 Deep Learning Intro.ipynb new file mode 100644 index 0000000..a047d0c --- /dev/null +++ b/course/4 Deep Learning Intro.ipynb @@ -0,0 +1,560 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Deep Learning Intro" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import numpy as np" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Shallow and Deep Networks" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.datasets import make_moons\n", + "\n", + "X, y = make_moons(n_samples=1000, noise=0.1, random_state=0)\n", + "plt.plot(X[y==0, 0], X[y==0, 1], 'ob', alpha=0.5)\n", + "plt.plot(X[y==1, 0], X[y==1, 1], 'xr', alpha=0.5)\n", + "plt.legend(['0', '1'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", + " test_size=0.3,\n", + " random_state=42)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.optimizers import SGD, Adam" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Shallow Model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Dense(1, input_shape=(2,), activation='sigmoid'))\n", + "model.compile(Adam(learning_rate=0.05), 'binary_crossentropy', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train, epochs=200, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "results = model.evaluate(X_test, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "results" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The Accuracy score on the Train set is:\\t{:0.3f}\".format(results[1]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_decision_boundary(model, X, y):\n", + " amin, bmin = X.min(axis=0) - 0.1\n", + " amax, bmax = X.max(axis=0) + 0.1\n", + " hticks = np.linspace(amin, amax, 101)\n", + " vticks = np.linspace(bmin, bmax, 101)\n", + " \n", + " aa, bb = np.meshgrid(hticks, vticks)\n", + " ab = np.c_[aa.ravel(), bb.ravel()]\n", + " \n", + " c = model.predict(ab)\n", + " cc = c.reshape(aa.shape)\n", + "\n", + " plt.figure(figsize=(12, 8))\n", + " plt.contourf(aa, bb, cc, cmap='bwr', alpha=0.2)\n", + " plt.plot(X[y==0, 0], X[y==0, 1], 'ob', alpha=0.5)\n", + " plt.plot(X[y==1, 0], X[y==1, 1], 'xr', alpha=0.5)\n", + " plt.legend(['0', '1'])\n", + " \n", + "plot_decision_boundary(model, X, y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Deep model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Dense(4, input_shape=(2,), activation='tanh'))\n", + "model.add(Dense(2, activation='tanh'))\n", + "model.add(Dense(1, activation='sigmoid'))\n", + "model.compile(Adam(learning_rate=0.05), 'binary_crossentropy', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train, epochs=100, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.evaluate(X_test, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import accuracy_score, confusion_matrix" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train_pred = model.predict_classes(X_train)\n", + "y_test_pred = model.predict_classes(X_test)\n", + "\n", + "print(\"The Accuracy score on the Train set is:\\t{:0.3f}\".format(accuracy_score(y_train, y_train_pred)))\n", + "print(\"The Accuracy score on the Test set is:\\t{:0.3f}\".format(accuracy_score(y_test, y_test_pred)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plot_decision_boundary(model, X, y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Multiclass classification\n", + "\n", + "### The Iris dataset" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../data/iris.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import seaborn as sns\n", + "sns.pairplot(df, hue=\"species\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X = df.drop('species', axis=1)\n", + "X.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "target_names = df['species'].unique()\n", + "target_names" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "target_dict = {n:i for i, n in enumerate(target_names)}\n", + "target_dict" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y= df['species'].map(target_dict)\n", + "y.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.utils import to_categorical" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_cat = to_categorical(y)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_cat[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X.values, y_cat,\n", + " test_size=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Dense(3, input_shape=(4,), activation='softmax'))\n", + "model.compile(Adam(learning_rate=0.1),\n", + " loss='categorical_crossentropy',\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train, epochs=20, validation_split=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred[:5]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_test_class = np.argmax(y_test, axis=1)\n", + "y_pred_class = np.argmax(y_pred, axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import classification_report" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(classification_report(y_test_class, y_pred_class))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "confusion_matrix(y_test_class, y_pred_class)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 1" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "The [Pima Indians dataset](https://archive.ics.uci.edu/ml/datasets/diabetes) is a very famous dataset distributed by UCI and originally collected from the National Institute of Diabetes and Digestive and Kidney Diseases. It contains data from clinical exams for women age 21 and above of Pima indian origins. The objective is to predict based on diagnostic measurements whether a patient has diabetes.\n", + "\n", + "It has the following features:\n", + "\n", + "- Pregnancies: Number of times pregnant\n", + "- Glucose: Plasma glucose concentration a 2 hours in an oral glucose tolerance test\n", + "- BloodPressure: Diastolic blood pressure (mm Hg)\n", + "- SkinThickness: Triceps skin fold thickness (mm)\n", + "- Insulin: 2-Hour serum insulin (mu U/ml)\n", + "- BMI: Body mass index (weight in kg/(height in m)^2)\n", + "- DiabetesPedigreeFunction: Diabetes pedigree function\n", + "- Age: Age (years)\n", + "\n", + "The last colum is the outcome, and it is a binary variable.\n", + "\n", + "In this first exercise we will explore it through the following steps:\n", + "\n", + "1. Load the ..data/diabetes.csv dataset, use pandas to explore the range of each feature\n", + "- For each feature draw a histogram. Bonus points if you draw all the histograms in the same figure.\n", + "- Explore correlations of features with the outcome column. You can do this in several ways, for example using the `sns.pairplot` we used above or drawing a heatmap of the correlations.\n", + "- Do features need standardization? If so what stardardization technique will you use? MinMax? Standard?\n", + "- Prepare your final `X` and `y` variables to be used by a ML model. Make sure you define your target variable well. Will you need dummy columns?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 2" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "Build a fully connected NN model that predicts diabetes. Follow these steps:\n", + "\n", + "1. Split your data in a train/test with a test size of 20% and a `random_state = 22`\n", + "- define a sequential model with at least one inner layer. You will have to make choices for the following things:\n", + " - what is the size of the input?\n", + " - how many nodes will you use in each layer?\n", + " - what is the size of the output?\n", + " - what activation functions will you use in the inner layers?\n", + " - what activation function will you use at output?\n", + " - what loss function will you use?\n", + " - what optimizer will you use?\n", + "- fit your model on the training set, using a validation_split of 0.1\n", + "- test your trained model on the test data from the train/test split\n", + "- check the accuracy score, the confusion matrix and the classification report" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 3\n", + "Compare your work with the results presented in [this notebook](https://www.kaggle.com/futurist/d/uciml/pima-indians-diabetes-database/pima-data-visualisation-and-machine-learning). Are your Neural Network results better or worse than the results obtained by traditional Machine Learning techniques?\n", + "\n", + "- Try training a Support Vector Machine or a Random Forest model on the exact same train/test split. Is the performance better or worse?\n", + "- Try restricting your features to only 4 features like in the suggested notebook. How does model performance change?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 4\n", + "\n", + "[Tensorflow playground](http://playground.tensorflow.org/) is a web based neural network demo. It is really useful to develop an intuition about what happens when you change architecture, activation function or other parameters. Try playing with it for a few minutes. You don't need do understand the meaning of every knob and button in the page, just get a sense for what happens if you change something. In the next chapter we'll explore these things in more detail.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/course/5 Gradient Descent.ipynb b/course/5 Gradient Descent.ipynb new file mode 100644 index 0000000..b77dfc9 --- /dev/null +++ b/course/5 Gradient Descent.ipynb @@ -0,0 +1,1055 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Gradient Descent" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Linear Algebra with Numpy" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "a = np.array([1, 3, 2, 4])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "a" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "type(a)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A = np.array([[3, 1, 2],\n", + " [2, 3, 4]])\n", + "\n", + "B = np.array([[0, 1],\n", + " [2, 3],\n", + " [4, 5]])\n", + "\n", + "C = np.array([[0, 1],\n", + " [2, 3],\n", + " [4, 5],\n", + " [0, 1],\n", + " [2, 3],\n", + " [4, 5]])\n", + "\n", + "print(\"A is a {} matrix\".format(A.shape))\n", + "print(\"B is a {} matrix\".format(B.shape))\n", + "print(\"C is a {} matrix\".format(C.shape))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "C[2, 0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "B[:, 0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Elementwise operations" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "3 * A" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A + A" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A * A" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A / A" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A - A" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Uncomment the code in the next cells. You will see that tensors of different shape cannot be added or multiplied:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# A + B" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# A * B" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Dot product" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "B.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A.dot(B)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "np.dot(A, B)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "B.dot(A)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "C.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "C.dot(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Uncomment the code in the next cell to visualize the error:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# A.dot(C)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Gradient descent" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![](../data/banknotes.png)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../data/banknotes.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['class'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sns.pairplot(df, hue=\"class\");" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Baseline model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split, cross_val_score\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "from sklearn.preprocessing import scale" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X = scale(df.drop('class', axis=1).values)\n", + "y = df['class'].values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = RandomForestClassifier()\n", + "cross_val_score(model, X, y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Logistic Regression Model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y,\n", + " test_size=0.3,\n", + " random_state=42)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import tensorflow.keras.backend as K\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense, Activation\n", + "from tensorflow.keras.optimizers import SGD" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "\n", + "model = Sequential()\n", + "model.add(Dense(1, input_shape=(4,), activation='sigmoid'))\n", + "\n", + "model.compile(loss='binary_crossentropy',\n", + " optimizer='sgd',\n", + " metrics=['accuracy'])\n", + "\n", + "history = model.fit(X_train, y_train, epochs=10)\n", + "result = model.evaluate(X_test, y_test, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "historydf = pd.DataFrame(history.history, index=history.epoch)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "historydf.plot(ylim=(0,1))\n", + "plt.title(\"Test accuracy: {:3.1f} %\".format(result[1]*100), fontsize=15);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Learning Rates" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dflist = []\n", + "\n", + "learning_rates = [0.01, 0.05, 0.1, 0.5]\n", + "\n", + "for lr in learning_rates:\n", + "\n", + " K.clear_session()\n", + "\n", + " model = Sequential()\n", + " model.add(Dense(1, input_shape=(4,), activation='sigmoid'))\n", + " model.compile(loss='binary_crossentropy',\n", + " optimizer=SGD(learning_rate=lr),\n", + " metrics=['accuracy'])\n", + " h = model.fit(X_train, y_train, batch_size=16, epochs=10, verbose=0)\n", + " \n", + " dflist.append(pd.DataFrame(h.history, index=h.epoch))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "historydf = pd.concat(dflist, axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "historydf" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "metrics_reported = dflist[0].columns\n", + "idx = pd.MultiIndex.from_product([learning_rates, metrics_reported],\n", + " names=['learning_rate', 'metric'])\n", + "\n", + "historydf.columns = idx" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "historydf" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(12,8))\n", + "\n", + "ax = plt.subplot(211)\n", + "historydf.xs('loss', axis=1, level='metric').plot(ylim=(0,1), ax=ax)\n", + "plt.title(\"Loss\")\n", + "\n", + "ax = plt.subplot(212)\n", + "historydf.xs('accuracy', axis=1, level='metric').plot(ylim=(0,1), ax=ax)\n", + "plt.title(\"Accuracy\")\n", + "plt.xlabel(\"Epochs\")\n", + "\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Batch Sizes" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dflist = []\n", + "\n", + "batch_sizes = [16, 32, 64, 128]\n", + "\n", + "for batch_size in batch_sizes:\n", + " K.clear_session()\n", + "\n", + " model = Sequential()\n", + " model.add(Dense(1, input_shape=(4,), activation='sigmoid'))\n", + " model.compile(loss='binary_crossentropy',\n", + " optimizer='sgd',\n", + " metrics=['accuracy'])\n", + " h = model.fit(X_train, y_train, batch_size=batch_size, epochs=10, verbose=0)\n", + " \n", + " dflist.append(pd.DataFrame(h.history, index=h.epoch))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "historydf = pd.concat(dflist, axis=1)\n", + "metrics_reported = dflist[0].columns\n", + "idx = pd.MultiIndex.from_product([batch_sizes, metrics_reported],\n", + " names=['batch_size', 'metric'])\n", + "historydf.columns = idx" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "historydf" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(12,8))\n", + "\n", + "ax = plt.subplot(211)\n", + "historydf.xs('loss', axis=1, level='metric').plot(ylim=(0,1), ax=ax)\n", + "plt.title(\"Loss\")\n", + "\n", + "ax = plt.subplot(212)\n", + "historydf.xs('accuracy', axis=1, level='metric').plot(ylim=(0,1), ax=ax)\n", + "plt.title(\"Accuracy\")\n", + "plt.xlabel(\"Epochs\")\n", + "\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Optimizers" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.optimizers import SGD, Adam, Adagrad, RMSprop" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dflist = []\n", + "\n", + "optimizers = ['SGD(learning_rate=0.01)',\n", + " 'SGD(learning_rate=0.01, momentum=0.3)',\n", + " 'SGD(learning_rate=0.01, momentum=0.3, nesterov=True)', \n", + " 'Adam(learning_rate=0.01)',\n", + " 'Adagrad(learning_rate=0.01)',\n", + " 'RMSprop(learning_rate=0.01)']\n", + "\n", + "for opt_name in optimizers:\n", + "\n", + " K.clear_session()\n", + " \n", + " model = Sequential()\n", + " model.add(Dense(1, input_shape=(4,), activation='sigmoid'))\n", + " model.compile(loss='binary_crossentropy',\n", + " optimizer=eval(opt_name),\n", + " metrics=['accuracy'])\n", + " h = model.fit(X_train, y_train, batch_size=16, epochs=5, verbose=0)\n", + " \n", + " dflist.append(pd.DataFrame(h.history, index=h.epoch))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "historydf = pd.concat(dflist, axis=1)\n", + "metrics_reported = dflist[0].columns\n", + "idx = pd.MultiIndex.from_product([optimizers, metrics_reported],\n", + " names=['optimizers', 'metric'])\n", + "historydf.columns = idx" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(12,8))\n", + "\n", + "ax = plt.subplot(211)\n", + "historydf.xs('loss', axis=1, level='metric').plot(ylim=(0,1), ax=ax)\n", + "plt.title(\"Loss\")\n", + "\n", + "ax = plt.subplot(212)\n", + "historydf.xs('accuracy', axis=1, level='metric').plot(ylim=(0,1), ax=ax)\n", + "plt.title(\"Accuracy\")\n", + "plt.xlabel(\"Epochs\")\n", + "\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Initialization\n", + "\n", + "https://keras.io/initializers/" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dflist = []\n", + "\n", + "initializers = ['zeros', 'uniform', 'normal',\n", + " 'he_normal', 'lecun_uniform']\n", + "\n", + "for init in initializers:\n", + "\n", + " K.clear_session()\n", + "\n", + " model = Sequential()\n", + " model.add(Dense(1, input_shape=(4,),\n", + " kernel_initializer=init,\n", + " activation='sigmoid'))\n", + "\n", + " model.compile(loss='binary_crossentropy',\n", + " optimizer='rmsprop',\n", + " metrics=['accuracy'])\n", + "\n", + " h = model.fit(X_train, y_train, batch_size=16, epochs=5, verbose=0)\n", + " \n", + " dflist.append(pd.DataFrame(h.history, index=h.epoch))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "historydf = pd.concat(dflist, axis=1)\n", + "metrics_reported = dflist[0].columns\n", + "idx = pd.MultiIndex.from_product([initializers, metrics_reported],\n", + " names=['initializers', 'metric'])\n", + "\n", + "historydf.columns = idx" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(12,8))\n", + "\n", + "ax = plt.subplot(211)\n", + "historydf.xs('loss', axis=1, level='metric').plot(ylim=(0,1), ax=ax)\n", + "plt.title(\"Loss\")\n", + "\n", + "ax = plt.subplot(212)\n", + "historydf.xs('accuracy', axis=1, level='metric').plot(ylim=(0,1), ax=ax)\n", + "plt.title(\"Accuracy\")\n", + "plt.xlabel(\"Epochs\")\n", + "\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Inner layer representation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "\n", + "model = Sequential()\n", + "model.add(Dense(2, input_shape=(4,), activation='relu'))\n", + "model.add(Dense(1, activation='sigmoid'))\n", + "model.compile(loss='binary_crossentropy',\n", + " optimizer=RMSprop(learning_rate=0.01),\n", + " metrics=['accuracy'])\n", + "\n", + "h = model.fit(X_train, y_train, batch_size=16, epochs=20,\n", + " verbose=1, validation_split=0.3)\n", + "result = model.evaluate(X_test, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "result" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.layers" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "inp = model.layers[0].input\n", + "out = model.layers[0].output" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "inp" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "out" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "features_function = K.function([inp], [out])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "features_function" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "features_function([X_test])[0].shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "features = features_function([X_test])[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.scatter(features[:, 0], features[:, 1], c=y_test, cmap='coolwarm')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "\n", + "model = Sequential()\n", + "model.add(Dense(3, input_shape=(4,), activation='relu'))\n", + "model.add(Dense(2, activation='relu'))\n", + "model.add(Dense(1, activation='sigmoid'))\n", + "model.compile(loss='binary_crossentropy',\n", + " optimizer=RMSprop(learning_rate=0.01),\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "inp = model.layers[0].input\n", + "out = model.layers[1].output\n", + "features_function = K.function([inp], [out])\n", + "\n", + "plt.figure(figsize=(15,10))\n", + "\n", + "for i in range(1, 26):\n", + " plt.subplot(5, 5, i)\n", + " h = model.fit(X_train, y_train, batch_size=16, epochs=1, verbose=0)\n", + " test_accuracy = model.evaluate(X_test, y_test, verbose=0)[1]\n", + " features = features_function([X_test])[0]\n", + " plt.scatter(features[:, 0], features[:, 1], c=y_test, cmap='coolwarm')\n", + " plt.xlim(-0.5, 3.5)\n", + " plt.ylim(-0.5, 4.0)\n", + " plt.title('Epoch: {}, Test Acc: {:3.1f} %'.format(i, test_accuracy * 100.0))\n", + "\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 1\n", + "\n", + "You've just been hired at a wine company and they would like you to help them build a model that predicts the quality of their wine based on several measurements. They give you a dataset with wine\n", + "\n", + "- Load the ../data/wines.csv into Pandas\n", + "- Use the column called \"Class\" as target\n", + "- Check how many classes are there in target, and if necessary use dummy columns for a multi-class classification\n", + "- Use all the other columns as features, check their range and distribution (using seaborn pairplot)\n", + "- Rescale all the features using either MinMaxScaler or StandardScaler\n", + "- Build a deep model with at least 1 hidden layer to classify the data\n", + "- Choose the cost function, what will you use? Mean Squared Error? Binary Cross-Entropy? Categorical Cross-Entropy?\n", + "- Choose an optimizer\n", + "- Choose a value for the learning rate, you may want to try with several values\n", + "- Choose a batch size\n", + "- Train your model on all the data using a `validation_split=0.2`. Can you converge to 100% validation accuracy?\n", + "- What's the minumum number of epochs to converge?\n", + "- Repeat the training several times to verify how stable your results are" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 2\n", + "\n", + "Since this dataset has 13 features we can only visualize pairs of features like we did in the Paired plot. We could however exploit the fact that a neural network is a function to extract 2 high level features to represent our data.\n", + "\n", + "- Build a deep fully connected network with the following structure:\n", + " - Layer 1: 8 nodes\n", + " - Layer 2: 5 nodes\n", + " - Layer 3: 2 nodes\n", + " - Output : 3 nodes\n", + "- Choose activation functions, inizializations, optimizer and learning rate so that it converges to 100% accuracy within 20 epochs (not easy)\n", + "- Remember to train the model on the scaled data\n", + "- Define a Feature Funtion like we did above between the input of the 1st layer and the output of the 3rd layer\n", + "- Calculate the features and plot them on a 2-dimensional scatter plot\n", + "- Can we distinguish the 3 classes well?\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 3\n", + "\n", + "Keras functional API. So far we've always used the Sequential model API in Keras. However, Keras also offers a Functional API, which is much more powerful. You can find its [documentation here](https://keras.io/getting-started/functional-api-guide/). Let's see how we can leverage it.\n", + "\n", + "- define an input layer called `inputs`\n", + "- define two hidden layers as before, one with 8 nodes, one with 5 nodes\n", + "- define a `second_to_last` layer with 2 nodes\n", + "- define an output layer with 3 nodes\n", + "- create a model that connect input and output\n", + "- train it and make sure that it converges\n", + "- define a function between inputs and second_to_last layer\n", + "- recalculate the features and plot them" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 4 \n", + "\n", + "Keras offers the possibility to call a function at each epoch. These are Callbacks, and their [documentation is here](https://keras.io/callbacks/). Callbacks allow us to add some neat functionality. In this exercise we'll explore a few of them.\n", + "\n", + "- Split the data into train and test sets with a test_size = 0.3 and random_state=42\n", + "- Reset and recompile your model\n", + "- train the model on the train data using `validation_data=(X_test, y_test)`\n", + "- Use the `EarlyStopping` callback to stop your training if the `val_loss` doesn't improve\n", + "- Use the `ModelCheckpoint` callback to save the trained model to disk once training is finished\n", + "- Use the `TensorBoard` callback to output your training information to a `/tmp/` subdirectory\n", + "- Watch the next video for an overview of tensorboard" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/course/6 Convolutional Neural Networks.ipynb b/course/6 Convolutional Neural Networks.ipynb new file mode 100644 index 0000000..cdc79a4 --- /dev/null +++ b/course/6 Convolutional Neural Networks.ipynb @@ -0,0 +1,988 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Convolutional Neural Networks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Machine learning on images" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### MNIST" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.datasets import mnist" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "(X_train, y_train), (X_test, y_test) = mnist.load_data('/tmp/mnist.npz')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_test.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.imshow(X_train[0], cmap='gray')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train = X_train.reshape(-1, 28*28)\n", + "X_test = X_test.reshape(-1, 28*28)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train = X_train.astype('float32')\n", + "X_test = X_test.astype('float32')\n", + "X_train /= 255.0\n", + "X_test /= 255.0" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.utils import to_categorical" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train_cat = to_categorical(y_train)\n", + "y_test_cat = to_categorical(y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train_cat[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train_cat.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_test_cat.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Fully connected on images" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "import tensorflow.keras.backend as K\n", + "\n", + "# K.clear_session()\n", + "\n", + "model = Sequential()\n", + "model.add(Dense(512, input_dim=28*28, activation='relu'))\n", + "model.add(Dense(256, activation='relu'))\n", + "model.add(Dense(128, activation='relu'))\n", + "model.add(Dense(32, activation='relu'))\n", + "model.add(Dense(10, activation='softmax'))\n", + "model.compile(loss='categorical_crossentropy',\n", + " optimizer='rmsprop',\n", + " metrics=['accuracy'])\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "h = model.fit(X_train, y_train_cat, batch_size=128, epochs=10, verbose=1, validation_split=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.plot(h.history['accuracy'])\n", + "plt.plot(h.history['val_accuracy'])\n", + "plt.legend(['Training', 'Validation'])\n", + "plt.title('Accuracy')\n", + "plt.xlabel('Epochs');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "test_accuracy = model.evaluate(X_test, y_test_cat)[1]\n", + "test_accuracy" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Tensor Math" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A = np.random.randint(10, size=(2, 3, 4, 5))\n", + "B = np.random.randint(10, size=(2, 3))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A[0, 1, 0, 3]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "B" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### A random colored image" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "img = np.random.randint(255, size=(4, 4, 3), dtype='uint8')\n", + "img" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(5, 5))\n", + "plt.subplot(221)\n", + "plt.imshow(img)\n", + "plt.title(\"All Channels combined\")\n", + "\n", + "plt.subplot(222)\n", + "plt.imshow(img[:, : , 0], cmap='Reds')\n", + "plt.title(\"Red channel\")\n", + "\n", + "plt.subplot(223)\n", + "plt.imshow(img[:, : , 1], cmap='Greens')\n", + "plt.title(\"Green channel\")\n", + "\n", + "plt.subplot(224)\n", + "plt.imshow(img[:, : , 2], cmap='Blues')\n", + "plt.title(\"Blue channel\");" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Tensor operations" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "2 * A" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A + A" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "B.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "np.tensordot(A, B, axes=([0, 1], [0, 1]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "np.tensordot(A, B, axes=([0], [0])).shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1D convolution" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "a = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0], dtype='float32')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "b = np.array([-1, 1], dtype='float32')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "c = np.convolve(a, b)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "a" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "b" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "c" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.subplot(211)\n", + "plt.plot(a, 'o-')\n", + "\n", + "plt.subplot(212)\n", + "plt.plot(c, 'o-');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Image filters with convolutions" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from scipy.ndimage.filters import convolve\n", + "from scipy.signal import convolve2d\n", + "from scipy import misc" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "img = misc.ascent()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "img.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.imshow(img, cmap='gray');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "h_kernel = np.array([[ 1, 2, 1],\n", + " [ 0, 0, 0],\n", + " [-1, -2, -1]])\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "plt.imshow(h_kernel, cmap='gray');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "res = convolve2d(img, h_kernel)\n", + "\n", + "plt.imshow(res, cmap='gray');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Convolutional neural networks" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.layers import Conv2D" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "img.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(5, 5))\n", + "plt.imshow(img, cmap='gray');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "img_tensor = img.reshape((1, 512, 512, 1))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Conv2D(1, (3, 3), strides=(2,1), input_shape=(512, 512, 1)))\n", + "model.compile('adam', 'mse')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "img_pred_tensor = model.predict(img_tensor)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "img_pred_tensor.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "img_pred = img_pred_tensor[0, :, :, 0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.imshow(img_pred, cmap='gray');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "weights = model.get_weights()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "weights[0].shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.imshow(weights[0][:, :, 0, 0], cmap='gray');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "weights[0] = np.ones(weights[0].shape)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.set_weights(weights)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "img_pred_tensor = model.predict(img_tensor)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "img_pred = img_pred_tensor[0, :, :, 0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.imshow(img_pred, cmap='gray');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Conv2D(1, (3, 3), input_shape=(512, 512, 1), padding='same'))\n", + "model.compile('adam', 'mse')\n", + "\n", + "img_pred_tensor = model.predict(img_tensor)\n", + "\n", + "\n", + "img_pred_tensor.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pooling layers" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.layers import MaxPool2D, AvgPool2D" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(MaxPool2D((5, 5), input_shape=(512, 512, 1)))\n", + "model.compile('adam', 'mse')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "img_pred = model.predict(img_tensor)[0, :, :, 0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.imshow(img_pred, cmap='gray')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(AvgPool2D((5, 5), input_shape=(512, 512, 1)))\n", + "model.compile('adam', 'mse')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "img_pred = model.predict(img_tensor)[0, :, :, 0]\n", + "plt.imshow(img_pred, cmap='gray');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Final architecture" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train = X_train.reshape(-1, 28, 28, 1)\n", + "X_test = X_test.reshape(-1, 28, 28, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.layers import Flatten, Activation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "\n", + "model = Sequential()\n", + "\n", + "model.add(Conv2D(32, (3, 3), input_shape=(28, 28, 1)))\n", + "model.add(MaxPool2D(pool_size=(2, 2)))\n", + "model.add(Activation('relu'))\n", + "\n", + "model.add(Flatten())\n", + "\n", + "model.add(Dense(128, activation='relu'))\n", + "\n", + "model.add(Dense(10, activation='softmax'))\n", + "\n", + "model.compile(loss='categorical_crossentropy',\n", + " optimizer='rmsprop',\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train_cat, batch_size=128,\n", + " epochs=2, verbose=1, validation_split=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.evaluate(X_test, y_test_cat)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "### Exercise 1\n", + "You've been hired by a shipping company to overhaul the way they route mail, parcels and packages. They want to build an image recognition system capable of recognizing the digits in the zipcode on a package, so that it can be automatically routed to the correct location.\n", + "You are tasked to build the digit recognition system. Luckily, you can rely on the MNIST dataset for the intial training of your model!\n", + "\n", + "Build a deep convolutional neural network with at least two convolutional and two pooling layers before the fully connected layer.\n", + "\n", + "- Start from the network we have just built\n", + "- Insert a `Conv2D` layer after the first `MaxPool2D`, give it 64 filters.\n", + "- Insert a `MaxPool2D` after that one\n", + "- Insert an `Activation` layer\n", + "- retrain the model\n", + "- does performance improve?\n", + "- how many parameters does this new model have? More or less than the previous model? Why?\n", + "- how long did this second model take to train? Longer or shorter than the previous model? Why?\n", + "- did it perform better or worse than the previous model?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 2\n", + "\n", + "Pleased with your performance with the digits recognition task, your boss decides to challenge you with a harder task. Their online branch allows people to upload images to a website that generates and prints a postcard that is shipped to destination. Your boss would like to know what images people are loading on the site in order to provide targeted advertising on the same page, so he asks you to build an image recognition system capable of recognizing a few objects. Luckily for you, there's a dataset ready made with a collection of labeled images. This is the [Cifar 10 Dataset](http://www.cs.toronto.edu/~kriz/cifar.html), a very famous dataset that contains images for 10 different categories:\n", + "\n", + "- airplane \t\t\t\t\t\t\t\t\t\t\n", + "- automobile \t\t\t\t\t\t\t\t\t\t\n", + "- bird \t\t\t\t\t\t\t\t\t\t\n", + "- cat \t\t\t\t\t\t\t\t\t\t\n", + "- deer \t\t\t\t\t\t\t\t\t\t\n", + "- dog \t\t\t\t\t\t\t\t\t\t\n", + "- frog \t\t\t\t\t\t\t\t\t\t\n", + "- horse \t\t\t\t\t\t\t\t\t\t\n", + "- ship \t\t\t\t\t\t\t\t\t\t\n", + "- truck\n", + "\n", + "In this exercise we will reach the limit of what you can achieve on your laptop and get ready for the next session on cloud GPUs.\n", + "\n", + "Here's what you have to do:\n", + "- load the cifar10 dataset using `keras.datasets.cifar10.load_data()`\n", + "- display a few images, see how hard/easy it is for you to recognize an object with such low resolution\n", + "- check the shape of X_train, does it need reshape?\n", + "- check the scale of X_train, does it need rescaling?\n", + "- check the shape of y_train, does it need reshape?\n", + "- build a model with the following architecture, and choose the parameters and activation functions for each of the layers:\n", + " - conv2d\n", + " - conv2d\n", + " - maxpool\n", + " - conv2d\n", + " - conv2d\n", + " - maxpool\n", + " - flatten\n", + " - dense\n", + " - output\n", + "- compile the model and check the number of parameters\n", + "- attempt to train the model with the optimizer of your choice. How fast does training proceed?\n", + "- If training is too slow (as expected) stop the execution and move to the next session!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.datasets import cifar10" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/course/8 Recurrent Neural Networks.ipynb b/course/8 Recurrent Neural Networks.ipynb new file mode 100644 index 0000000..71232f9 --- /dev/null +++ b/course/8 Recurrent Neural Networks.ipynb @@ -0,0 +1,565 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Recurrent Neural Networks" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Time series forecasting" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../data/cansim-0800020-eng-6674700030567901031.csv',\n", + " skiprows=6, skipfooter=9,\n", + " engine='python')\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from pandas.tseries.offsets import MonthEnd" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['Adjustments'] = pd.to_datetime(df['Adjustments']) + MonthEnd(1)\n", + "df = df.set_index('Adjustments')\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "split_date = pd.Timestamp('01-01-2011')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train = df.loc[:split_date, ['Unadjusted']]\n", + "test = df.loc[split_date:, ['Unadjusted']]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ax = train.plot()\n", + "test.plot(ax=ax)\n", + "plt.legend(['train', 'test'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "sc = MinMaxScaler()\n", + "\n", + "train_sc = sc.fit_transform(train)\n", + "test_sc = sc.transform(test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_sc[:4]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train = train_sc[:-1]\n", + "y_train = train_sc[1:]\n", + "\n", + "X_test = test_sc[:-1]\n", + "y_test = test_sc[1:]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Fully connected predictor" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "import tensorflow.keras.backend as K\n", + "from tensorflow.keras.callbacks import EarlyStopping" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "\n", + "model = Sequential()\n", + "model.add(Dense(12, input_dim=1, activation='relu'))\n", + "model.add(Dense(1))\n", + "model.compile(loss='mean_squared_error', optimizer='adam')\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "early_stop = EarlyStopping(monitor='loss', patience=1, verbose=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train, epochs=200,\n", + " batch_size=2, verbose=1,\n", + " callbacks=[early_stop])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.plot(y_test)\n", + "plt.plot(y_pred)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Recurrent predictor" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.layers import LSTM" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#3D tensor with shape (batch_size, timesteps, input_dim)\n", + "X_train[:, None].shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train_t = X_train[:, None]\n", + "X_test_t = X_test[:, None]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "model = Sequential()\n", + "\n", + "model.add(LSTM(6, input_shape=(1, 1)))\n", + "\n", + "model.add(Dense(1))\n", + "\n", + "model.compile(loss='mean_squared_error', optimizer='adam')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train_t, y_train,\n", + " epochs=100, batch_size=1, verbose=1,\n", + " callbacks=[early_stop])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test_t)\n", + "plt.plot(y_test)\n", + "plt.plot(y_pred)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Windows" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_sc.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_sc_df = pd.DataFrame(train_sc, columns=['Scaled'], index=train.index)\n", + "test_sc_df = pd.DataFrame(test_sc, columns=['Scaled'], index=test.index)\n", + "train_sc_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for s in range(1, 13):\n", + " train_sc_df['shift_{}'.format(s)] = train_sc_df['Scaled'].shift(s)\n", + " test_sc_df['shift_{}'.format(s)] = test_sc_df['Scaled'].shift(s)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_sc_df.head(13)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train = train_sc_df.dropna().drop('Scaled', axis=1)\n", + "y_train = train_sc_df.dropna()[['Scaled']]\n", + "\n", + "X_test = test_sc_df.dropna().drop('Scaled', axis=1)\n", + "y_test = test_sc_df.dropna()[['Scaled']]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train = X_train.values\n", + "X_test= X_test.values\n", + "\n", + "y_train = y_train.values\n", + "y_test = y_test.values" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Fully Connected on Windows" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "\n", + "model = Sequential()\n", + "model.add(Dense(12, input_dim=12, activation='relu'))\n", + "model.add(Dense(1))\n", + "model.compile(loss='mean_squared_error', optimizer='adam')\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train, epochs=200,\n", + " batch_size=1, verbose=1, callbacks=[early_stop])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test)\n", + "plt.plot(y_test)\n", + "plt.plot(y_pred)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### LSTM on Windows" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train_t = X_train.reshape(X_train.shape[0], 1, 12)\n", + "X_test_t = X_test.reshape(X_test.shape[0], 1, 12)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train_t.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "model = Sequential()\n", + "\n", + "model.add(LSTM(6, input_shape=(1, 12)))\n", + "\n", + "model.add(Dense(1))\n", + "\n", + "model.compile(loss='mean_squared_error', optimizer='adam')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train_t, y_train, epochs=100,\n", + " batch_size=1, verbose=1, callbacks=[early_stop])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test_t)\n", + "plt.plot(y_test)\n", + "plt.plot(y_pred)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 1\n", + "\n", + "In the model above we reshaped the input shape to: `(num_samples, 1, 12)`, i.e. we treated a window of 12 months as a vector of 12 coordinates that we simultaneously passed to all the LSTM nodes. An alternative way to look at the problem is to reshape the input to `(num_samples, 12, 1)`. This means we consider each input window as a sequence of 12 values that we will pass in sequence to the LSTM. In principle this looks like a more accurate description of our situation. But does it yield better predictions? Let's check it.\n", + "\n", + "- Reshape `X_train` and `X_test` so that they represent a set of univariate sequences\n", + "- retrain the same LSTM(6) model, you'll have to adapt the `input_shape`\n", + "- check the performance of this new model, is it better at predicting the test data?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exercise 2\n", + "\n", + "RNN models can be applied to images too. In general we can apply them to any data where there's a connnection between nearby units. Let's see how we can easily build a model that works with images.\n", + "\n", + "- Load the MNIST data, by now you should be able to do it blindfolded :)\n", + "- reshape it so that an image looks like a long sequence of pixels\n", + "- create a recurrent model and train it on the training data\n", + "- how does it perform compared to a fully connected? How does it compare to Convolutional Neural Networks?\n", + "\n", + "(feel free to run this exercise on a cloud GPU if it's too slow on your laptop)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/course/9 Improving performance.ipynb b/course/9 Improving performance.ipynb new file mode 100644 index 0000000..9a7559f --- /dev/null +++ b/course/9 Improving performance.ipynb @@ -0,0 +1,872 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 9 Improving performance" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Learning curves" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.datasets import load_digits" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "digits = load_digits()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X, y = digits.data, digits.target" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for i in range(8):\n", + " plt.subplot(1,8,i+1)\n", + " plt.imshow(X.reshape(-1, 8, 8)[i], cmap='gray')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.utils import to_categorical\n", + "import tensorflow.keras.backend as K\n", + "from tensorflow.keras.callbacks import EarlyStopping" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Dense(16, input_shape=(64,), activation='relu'))\n", + "model.add(Dense(10, activation='softmax'))\n", + "model.compile('adam', 'categorical_crossentropy', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# store the initial random weights\n", + "initial_weights = model.get_weights()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_cat = to_categorical(y, 10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y_cat,\n", + " test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_sizes = (len(X_train) * np.linspace(0.1, 0.999, 4)).astype(int)\n", + "train_sizes" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_scores = []\n", + "test_scores = []\n", + "\n", + "for train_size in train_sizes:\n", + " X_train_frac, _, y_train_frac, _ = \\\n", + " train_test_split(X_train, y_train, train_size=train_size)\n", + " \n", + " # at each iteration reset the weights of the model\n", + " # to the initial random weights\n", + " model.set_weights(initial_weights)\n", + " \n", + " h = model.fit(X_train_frac, y_train_frac,\n", + " verbose=0,\n", + " epochs=300,\n", + " callbacks=[EarlyStopping(monitor='loss', patience=1)])\n", + "\n", + " r = model.evaluate(X_train_frac, y_train_frac, verbose=0)\n", + " train_scores.append(r[-1])\n", + " \n", + " e = model.evaluate(X_test, y_test, verbose=0)\n", + " test_scores.append(e[-1])\n", + " \n", + " print(\"Done size: \", train_size)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.plot(train_sizes, train_scores, 'o-', label=\"Training score\")\n", + "plt.plot(train_sizes, test_scores, 'o-', label=\"Test score\")\n", + "plt.legend(loc=\"best\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Batch Normalization" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.layers import BatchNormalization" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def repeated_training(X_train,\n", + " y_train,\n", + " X_test,\n", + " y_test,\n", + " units=512,\n", + " activation='sigmoid',\n", + " optimizer='sgd',\n", + " do_bn=False,\n", + " epochs=10,\n", + " repeats=3):\n", + " histories = []\n", + " \n", + " for repeat in range(repeats):\n", + " K.clear_session()\n", + "\n", + " model = Sequential()\n", + " \n", + " # first fully connected layer\n", + " model.add(Dense(units,\n", + " input_shape=X_train.shape[1:],\n", + " kernel_initializer='normal',\n", + " activation=activation))\n", + " if do_bn:\n", + " model.add(BatchNormalization())\n", + "\n", + " # second fully connected layer\n", + " model.add(Dense(units,\n", + " kernel_initializer='normal',\n", + " activation=activation))\n", + " if do_bn:\n", + " model.add(BatchNormalization())\n", + "\n", + " # third fully connected layer\n", + " model.add(Dense(units,\n", + " kernel_initializer='normal',\n", + " activation=activation))\n", + " if do_bn:\n", + " model.add(BatchNormalization())\n", + "\n", + " # output layer\n", + " model.add(Dense(10, activation='softmax'))\n", + " \n", + " model.compile(optimizer,\n", + " 'categorical_crossentropy',\n", + " metrics=['accuracy'])\n", + "\n", + " h = model.fit(X_train, y_train,\n", + " validation_data=(X_test, y_test),\n", + " epochs=epochs,\n", + " verbose=0)\n", + " histories.append([h.history['accuracy'], h.history['val_accuracy']])\n", + " print(repeat, end=' ')\n", + "\n", + " histories = np.array(histories)\n", + " \n", + " # calculate mean and standard deviation across repeats:\n", + " mean_acc = histories.mean(axis=0)\n", + " std_acc = histories.std(axis=0)\n", + " print()\n", + " \n", + " return mean_acc[0], std_acc[0], mean_acc[1], std_acc[1]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mean_acc, std_acc, mean_acc_val, std_acc_val = \\\n", + " repeated_training(X_train, y_train, X_test, y_test, do_bn=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mean_acc_bn, std_acc_bn, mean_acc_val_bn, std_acc_val_bn = \\\n", + " repeated_training(X_train, y_train, X_test, y_test, do_bn=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_mean_std(m, s):\n", + " plt.plot(m)\n", + " plt.fill_between(range(len(m)), m-s, m+s, alpha=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plot_mean_std(mean_acc, std_acc)\n", + "plot_mean_std(mean_acc_val, std_acc_val)\n", + "plot_mean_std(mean_acc_bn, std_acc_bn)\n", + "plot_mean_std(mean_acc_val_bn, std_acc_val_bn)\n", + "plt.ylim(0, 1.01)\n", + "plt.title(\"Batch Normalization Accuracy\")\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Accuracy')\n", + "plt.legend(['Train', 'Test', 'Train with Batch Normalization', 'Test with Batch Normalization'], loc='best');\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Weight Regularization & Dropout" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.layers import Dropout" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Dropout(0.2, input_shape=X_train.shape[1:]))\n", + "# first fully connected layer\n", + "model.add(Dense(512, kernel_initializer='normal',\n", + " kernel_regularizer='l2', activation='sigmoid'))\n", + "model.add(Dropout(0.4))\n", + "model.add(Dense(10, activation='softmax'))\n", + "\n", + "model.compile('sgd',\n", + " 'categorical_crossentropy',\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data augmentation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n", + "\n", + "generator = ImageDataGenerator(rescale = 1./255,\n", + " width_shift_range=0.1,\n", + " height_shift_range=0.1,\n", + " rotation_range = 20,\n", + " shear_range = 0.3,\n", + " zoom_range = 0.3,\n", + " horizontal_flip = True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train = generator.flow_from_directory('../data/generator',\n", + " target_size = (128, 128),\n", + " batch_size = 32,\n", + " class_mode = 'binary')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(12, 12))\n", + "for i in range(16):\n", + " img, label = train.next()\n", + " plt.subplot(4, 4, i+1)\n", + " plt.imshow(img[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Embeddings" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.layers import Embedding" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Embedding(input_dim=100, output_dim=2))\n", + "model.compile(loss='binary_crossentropy',\n", + " optimizer='adam',\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "emb = model.predict(np.array([[81, 1, 96, 79],\n", + " [17, 47, 69, 50],\n", + " [49, 3, 12, 88]]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "emb.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "emb" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Sentiment prediction on movie Reviews" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.datasets import imdb" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "(X_train, y_train), (X_test, y_test) = imdb.load_data('/tmp/imdb.npz',\n", + " num_words=None,\n", + " skip_top=0,\n", + " maxlen=None,\n", + " start_char=1,\n", + " oov_char=2,\n", + " index_from=3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train[1]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "idx = imdb.get_word_index()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "max(idx.values())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "idx" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "rev_idx = {v+3:k for k,v in idx.items()}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "rev_idx" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "rev_idx[0] = 'padding_char'\n", + "rev_idx[1] = 'start_char'\n", + "rev_idx[2] = 'oov_char'\n", + "rev_idx[3] = 'unk_char'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "rev_idx[3]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "example_review = ' '.join([rev_idx[word] for word in X_train[0]])\n", + "example_review" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "len(X_train[0])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "len(X_train[1])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "len(X_train[2])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "len(X_train[3])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.preprocessing.sequence import pad_sequences\n", + "from tensorflow.keras.layers import LSTM" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "maxlen = 100\n", + "\n", + "X_train_pad = pad_sequences(X_train, maxlen=maxlen)\n", + "X_test_pad = pad_sequences(X_test, maxlen=maxlen)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train_pad.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train_pad[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "max_features = max([max(x) for x in X_train_pad] + \n", + " [max(x) for x in X_test_pad]) + 1\n", + "max_features" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Embedding(max_features, 128))\n", + "model.add(LSTM(64, dropout=0.2, recurrent_dropout=0.2))\n", + "model.add(Dense(1, activation='sigmoid'))\n", + "\n", + "model.compile(loss='binary_crossentropy',\n", + " optimizer='adam',\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train_pad, y_train,\n", + " batch_size=32,\n", + " epochs=2,\n", + " validation_split=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "score, acc = model.evaluate(X_test_pad, y_test)\n", + "print('Test score:', score)\n", + "print('Test accuracy:', acc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 1\n", + "\n", + "- Reload the IMDB data keeping only the first 20000 most common words\n", + "- pad the reviews to a shorter length (eg. 70 or 80), this time make sure you keep the first part of the review if it's longer than the maximum length\n", + "- re run the model (remember to set max_features correctly)\n", + "- does it train faster this time?\n", + "- do you get a better performance?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 2\n", + "\n", + "- Reload the digits data as above\n", + "- define a function repeated_training_reg_dropout that adds regularization and dropout to a fully connected network\n", + "- compare the performance with/witouth dropout and regularization like we did for batch normalization\n", + "- do you get a better performance?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 3\n", + "\n", + "This is a very long and complex exercise, that should give you an idea of a real world scenario. Feel free to look at the solution if you feel lost. Also, feel free to run this on Floyd with a GPU, in which case you don't need to download the data.\n", + "\n", + "If you are running this locally, download and unpack the male/female pictures from [here](https://www.dropbox.com/s/nov493om2jmh2gp/male_female.tgz?dl=0). These images and labels were obtained from [Crowdflower](https://www.crowdflower.com/data-for-everyone/).\n", + "\n", + "Your goal is to build an image classifier that will recognize the gender of a person from pictures.\n", + "\n", + "- Have a look at the directory structure and inspect a couple of pictures\n", + "- Design a model that will take a color image of size 64x64 as input and return a binary output (female=0/male=1)\n", + "- Feel free to introduce any regularization technique in your model (Dropout, Batch Normalization, Weight Regularization)\n", + "- Compile your model with an optimizer of your choice\n", + "- Using `ImageDataGenerator`, define a train generator that will augment your images with some geometric transformations. Feel free to choose the parameters that make sense to you.\n", + "- Define also a test generator, whose only purpose is to rescale the pixels by 1./255\n", + "- use the function `flow_from_directory` to generate batches from the train and test folders. Make sure you set the `target_size` to 64x64.\n", + "- Use the `model.fit_generator` function to fit the model on the batches generated from the ImageDataGenerator. Since you are streaming and augmenting the data in real time you will have to decide how many batches make an epoch and how many epochs you want to run\n", + "- Train your model (you should get to at least 85% accuracy)\n", + "- Once you are satisfied with your training, check a few of the misclassified pictures. Are those sensible errors?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/data/HR_comma_sep.csv b/data/HR_comma_sep.csv new file mode 100644 index 0000000..be6211c --- /dev/null +++ b/data/HR_comma_sep.csv @@ -0,0 +1,15000 @@ +satisfaction_level,last_evaluation,number_project,average_montly_hours,time_spend_company,Work_accident,left,promotion_last_5years,sales,salary +0.38,0.53,2,157,3,0,1,0,sales,low +0.8,0.86,5,262,6,0,1,0,sales,medium +0.11,0.88,7,272,4,0,1,0,sales,medium +0.72,0.87,5,223,5,0,1,0,sales,low +0.37,0.52,2,159,3,0,1,0,sales,low +0.41,0.5,2,153,3,0,1,0,sales,low +0.1,0.77,6,247,4,0,1,0,sales,low +0.92,0.85,5,259,5,0,1,0,sales,low +0.89,1,5,224,5,0,1,0,sales,low +0.42,0.53,2,142,3,0,1,0,sales,low +0.45,0.54,2,135,3,0,1,0,sales,low +0.11,0.81,6,305,4,0,1,0,sales,low +0.84,0.92,4,234,5,0,1,0,sales,low +0.41,0.55,2,148,3,0,1,0,sales,low +0.36,0.56,2,137,3,0,1,0,sales,low +0.38,0.54,2,143,3,0,1,0,sales,low +0.45,0.47,2,160,3,0,1,0,sales,low +0.78,0.99,4,255,6,0,1,0,sales,low +0.45,0.51,2,160,3,1,1,1,sales,low +0.76,0.89,5,262,5,0,1,0,sales,low +0.11,0.83,6,282,4,0,1,0,sales,low +0.38,0.55,2,147,3,0,1,0,sales,low +0.09,0.95,6,304,4,0,1,0,sales,low +0.46,0.57,2,139,3,0,1,0,sales,low +0.4,0.53,2,158,3,0,1,0,sales,low +0.89,0.92,5,242,5,0,1,0,sales,low +0.82,0.87,4,239,5,0,1,0,sales,low +0.4,0.49,2,135,3,0,1,0,sales,low +0.41,0.46,2,128,3,0,1,0,accounting,low +0.38,0.5,2,132,3,0,1,0,accounting,low +0.09,0.62,6,294,4,0,1,0,accounting,low +0.45,0.57,2,134,3,0,1,0,hr,low +0.4,0.51,2,145,3,0,1,0,hr,low +0.45,0.55,2,140,3,0,1,0,hr,low +0.84,0.87,4,246,6,0,1,0,hr,low +0.1,0.94,6,255,4,0,1,0,technical,low +0.38,0.46,2,137,3,0,1,0,technical,low +0.45,0.5,2,126,3,0,1,0,technical,low +0.11,0.89,6,306,4,0,1,0,technical,low +0.41,0.54,2,152,3,0,1,0,technical,low +0.87,0.88,5,269,5,0,1,0,technical,low +0.45,0.48,2,158,3,0,1,0,technical,low +0.4,0.46,2,127,3,0,1,0,technical,low +0.1,0.8,7,281,4,0,1,0,technical,low +0.09,0.89,6,276,4,0,1,0,technical,low +0.84,0.74,3,182,4,0,1,0,technical,low +0.4,0.55,2,147,3,0,1,0,support,low +0.57,0.7,3,273,6,0,1,0,support,low +0.4,0.54,2,148,3,0,1,0,support,low +0.43,0.47,2,147,3,0,1,0,support,low +0.13,0.78,6,152,2,0,1,0,support,low +0.44,0.55,2,135,3,0,1,0,support,low +0.38,0.55,2,134,3,0,1,0,support,low +0.39,0.54,2,132,3,0,1,0,support,low +0.1,0.92,7,307,4,0,1,0,support,low +0.37,0.46,2,140,3,0,1,0,support,low +0.11,0.94,7,255,4,0,1,0,support,low +0.1,0.81,6,309,4,0,1,0,technical,low +0.38,0.54,2,128,3,0,1,0,technical,low +0.85,1,4,225,5,0,1,0,technical,low +0.85,0.91,5,226,5,0,1,0,management,medium +0.11,0.93,7,308,4,0,1,0,IT,medium +0.1,0.95,6,244,5,0,1,0,IT,medium +0.36,0.56,2,132,3,0,1,0,IT,medium +0.11,0.94,6,286,4,0,1,0,IT,medium +0.81,0.7,6,161,4,0,1,0,IT,medium +0.43,0.54,2,153,3,0,1,0,product_mng,medium +0.9,0.98,4,264,6,0,1,0,product_mng,medium +0.76,0.86,5,223,5,1,1,0,product_mng,medium +0.43,0.5,2,135,3,0,1,0,product_mng,medium +0.74,0.99,2,277,3,0,1,0,IT,medium +0.09,0.77,5,275,4,0,1,0,product_mng,medium +0.45,0.49,2,149,3,0,1,0,product_mng,high +0.09,0.87,7,295,4,0,1,0,product_mng,low +0.11,0.97,6,277,4,0,1,0,product_mng,medium +0.11,0.79,7,306,4,0,1,0,product_mng,medium +0.1,0.83,6,295,4,0,1,0,product_mng,medium +0.4,0.54,2,137,3,0,1,0,marketing,medium +0.43,0.56,2,157,3,0,1,0,sales,low +0.39,0.56,2,142,3,0,1,0,accounting,low +0.45,0.54,2,140,3,0,1,0,support,low +0.38,0.49,2,151,3,0,1,0,technical,low +0.79,0.59,4,139,3,0,1,1,management,low +0.84,0.85,4,249,6,0,1,0,marketing,low +0.11,0.77,6,291,4,0,1,0,marketing,low +0.11,0.87,6,305,4,0,1,0,marketing,low +0.17,0.84,5,232,3,0,1,0,sales,low +0.44,0.45,2,132,3,0,1,0,sales,low +0.37,0.57,2,130,3,0,1,0,sales,low +0.1,0.79,6,291,4,0,1,0,sales,low +0.4,0.5,2,130,3,0,1,0,sales,low +0.89,1,5,246,5,0,1,0,sales,low +0.42,0.48,2,143,3,0,1,0,sales,low +0.46,0.55,2,129,3,0,1,0,sales,low +0.09,0.83,6,255,4,0,1,0,sales,low +0.37,0.51,2,155,3,0,1,0,sales,low +0.1,0.77,6,265,4,0,1,0,sales,low +0.1,0.84,6,279,4,0,1,0,sales,low +0.11,0.97,6,284,4,0,1,0,sales,low +0.9,1,5,221,6,0,1,0,sales,medium +0.38,0.52,2,154,3,0,1,0,sales,medium +0.36,0.52,2,147,3,0,1,0,sales,medium +0.42,0.46,2,150,3,0,1,0,sales,medium +0.09,0.94,7,267,4,0,1,0,sales,medium +0.43,0.52,2,158,3,0,1,0,sales,medium +0.24,0.46,7,224,5,0,1,0,accounting,medium +0.91,1,4,257,5,0,1,0,accounting,medium +0.44,0.5,2,148,3,0,1,0,accounting,medium +0.71,0.87,3,177,4,0,1,0,hr,medium +0.4,0.49,2,155,3,0,1,0,hr,medium +0.43,0.47,2,144,3,0,1,0,hr,medium +0.09,0.85,6,289,4,0,1,0,hr,high +0.43,0.52,2,160,3,0,1,0,technical,low +0.9,0.96,4,258,5,0,1,0,technical,medium +0.84,1,5,234,5,0,1,0,technical,medium +0.37,0.48,2,137,3,0,1,0,technical,medium +0.86,0.68,5,263,2,0,1,0,technical,medium +0.11,0.84,6,251,4,0,1,0,technical,low +0.37,0.57,2,133,3,0,1,0,technical,low +0.4,0.46,2,132,3,0,1,0,technical,low +0.14,0.62,4,158,4,1,1,0,technical,low +0.4,0.46,2,135,3,0,1,0,technical,low +0.75,1,4,216,6,0,1,0,technical,low +0.11,0.84,6,300,5,1,1,0,support,low +0.46,0.49,2,138,3,0,1,0,support,low +0.11,0.92,6,260,4,0,1,0,support,low +0.38,0.49,2,132,3,0,1,0,support,low +0.7,0.89,3,183,5,0,1,0,support,low +0.09,0.82,6,250,4,0,1,0,support,low +0.37,0.45,2,151,3,0,1,0,support,low +0.1,0.83,6,292,4,0,1,0,support,low +0.38,0.57,2,140,3,0,1,0,support,low +0.9,1,5,221,5,0,1,0,support,low +0.44,0.51,2,138,3,0,1,0,support,low +0.36,0.5,2,132,3,0,1,0,technical,low +0.31,0.84,7,133,5,0,1,0,technical,low +0.1,0.84,6,283,4,1,1,0,technical,low +0.42,0.48,2,129,3,0,1,0,management,low +0.74,1,4,249,5,0,1,0,IT,low +0.73,0.87,5,257,5,0,1,0,IT,low +0.09,0.96,6,245,4,0,1,0,IT,low +0.45,0.53,2,155,3,0,1,0,IT,low +0.11,0.8,6,256,4,0,1,0,IT,low +0.37,0.47,2,152,3,0,1,0,product_mng,low +0.84,0.99,4,267,5,0,1,0,product_mng,low +0.41,0.46,2,151,3,0,1,0,product_mng,low +0.76,0.92,4,239,5,0,1,0,product_mng,low +0.11,0.87,6,306,4,0,1,0,IT,low +0.84,0.88,4,263,5,1,1,0,marketing,low +0.39,0.5,2,147,3,0,1,0,marketing,low +0.11,0.91,6,278,4,0,1,0,marketing,low +0.45,0.56,2,154,3,0,1,0,marketing,low +0.37,0.52,2,143,3,0,1,0,marketing,low +0.4,0.52,2,155,3,0,1,0,marketing,low +0.39,0.48,2,160,3,0,1,0,sales,low +0.11,0.8,6,304,4,0,1,0,accounting,low +0.83,1,5,240,5,0,1,0,support,low +0.11,0.92,6,305,4,0,1,0,technical,low +0.39,0.5,2,136,3,0,1,0,management,low +0.45,0.45,2,132,3,0,1,0,marketing,low +0.1,0.95,7,301,4,0,1,0,marketing,low +0.9,0.98,5,243,6,0,1,0,marketing,low +0.45,0.51,2,147,3,0,1,0,sales,low +0.79,0.89,5,239,5,0,1,0,sales,low +0.9,0.99,5,260,5,0,1,0,sales,low +0.11,0.84,7,296,4,0,1,0,sales,low +0.43,0.55,2,129,3,0,1,0,sales,low +0.31,0.54,5,132,5,0,1,0,sales,low +0.32,0.5,2,135,5,0,1,0,sales,low +0.45,0.57,2,158,3,0,1,0,sales,low +0.81,0.99,4,259,5,0,1,0,sales,low +0.41,0.46,2,160,3,0,1,1,sales,low +0.11,0.78,7,278,4,0,1,0,sales,low +0.1,0.88,6,284,4,0,1,0,sales,low +0.7,0.53,2,274,4,0,1,0,sales,low +0.54,0.74,4,164,2,0,1,0,sales,low +0.41,0.48,2,148,3,0,1,0,sales,low +0.38,0.5,2,140,3,0,1,0,sales,medium +0.37,0.51,2,127,3,0,1,0,sales,medium +0.11,0.85,6,308,5,0,1,0,sales,medium +0.4,0.47,2,146,3,0,1,0,sales,medium +0.1,0.84,6,261,4,0,1,0,accounting,medium +0.89,0.99,5,257,5,0,1,0,accounting,medium +0.11,0.8,6,285,4,0,1,0,accounting,medium +0.36,0.55,2,141,3,0,1,0,hr,medium +0.4,0.46,2,127,3,0,1,0,hr,medium +0.09,0.85,6,297,4,0,1,0,hr,medium +0.4,0.46,2,143,3,0,1,0,hr,medium +0.37,0.55,2,152,3,0,1,0,technical,medium +0.44,0.51,2,156,3,0,1,0,technical,high +0.09,0.8,7,283,5,0,1,0,technical,low +0.92,0.87,4,226,6,1,1,0,technical,medium +0.74,0.91,4,232,5,0,1,0,technical,medium +0.09,0.82,6,249,4,0,1,0,technical,medium +0.89,0.95,4,275,5,0,1,0,technical,medium +0.09,0.8,6,304,4,0,1,0,technical,low +0.27,0.54,7,278,3,0,1,0,technical,low +0.1,0.91,6,287,4,0,1,0,technical,low +0.1,0.89,7,285,4,0,1,0,technical,low +0.77,0.94,5,226,6,0,1,0,support,low +0.9,0.82,5,259,5,0,1,0,support,low +0.39,0.5,2,135,3,0,1,0,support,low +0.76,1,5,219,5,0,1,0,support,low +0.1,0.93,6,256,4,0,1,0,support,low +0.87,0.9,5,254,6,0,1,0,support,low +0.38,0.5,2,153,3,0,1,0,support,low +0.77,0.99,5,228,5,0,1,0,support,low +0.78,0.87,4,228,5,0,1,0,support,low +0.44,0.5,2,128,3,0,1,0,support,low +0.38,0.52,2,153,3,0,1,0,support,low +0.43,0.46,2,156,3,0,1,0,technical,low +0.39,0.5,4,294,3,0,1,0,technical,low +0.88,1,5,219,5,0,1,0,technical,low +0.45,0.46,2,153,3,0,1,0,management,low +0.4,0.53,2,151,3,0,1,0,IT,low +0.36,0.51,2,155,3,0,1,0,IT,low +0.36,0.48,2,158,3,0,1,0,IT,low +0.9,0.98,5,245,5,0,1,0,IT,low +0.43,0.53,2,131,3,0,1,0,IT,low +0.89,0.87,5,225,5,0,1,0,product_mng,low +0.1,0.84,6,286,4,0,1,0,product_mng,low +0.37,0.5,2,135,3,0,1,0,product_mng,low +0.37,0.51,2,153,3,0,1,0,product_mng,low +0.87,0.9,5,252,5,0,1,0,IT,low +0.4,0.56,2,149,3,0,1,0,accounting,low +0.9,0.97,4,258,5,0,1,0,accounting,low +0.37,0.46,2,158,3,0,1,0,hr,low +0.44,0.54,2,149,3,0,1,0,hr,low +0.85,0.95,5,236,5,0,1,0,hr,low +0.78,0.98,5,239,6,0,1,0,marketing,low +0.42,0.47,2,159,3,0,1,0,marketing,low +0.92,0.99,5,255,6,0,1,0,sales,low +0.11,0.83,6,244,4,0,1,0,accounting,low +0.42,0.56,2,134,3,0,1,0,support,low +0.48,0.57,4,270,4,0,1,0,technical,low +0.83,0.85,4,255,5,0,1,0,management,low +0.4,0.53,2,151,3,0,1,0,marketing,low +0.43,0.45,2,135,3,0,1,0,marketing,low +0.43,0.53,2,146,3,0,1,0,marketing,low +0.1,0.97,7,254,4,0,1,0,sales,low +0.1,0.87,7,289,4,0,1,0,sales,low +0.37,0.46,2,156,3,0,1,0,sales,low +0.38,0.53,2,156,3,0,1,0,sales,low +0.4,0.5,2,128,3,0,1,0,sales,low +0.89,0.86,5,275,5,0,1,0,sales,low +0.45,0.46,2,155,3,0,1,0,sales,low +0.37,0.48,2,159,3,0,1,0,sales,low +0.46,0.49,2,148,3,0,1,0,sales,low +0.87,0.91,4,228,5,0,1,0,sales,low +0.11,0.84,6,298,4,0,1,0,sales,low +0.79,0.87,5,261,5,0,1,0,sales,low +0.79,0.92,5,254,6,0,1,0,sales,low +0.19,0.59,7,192,3,0,1,0,sales,low +0.87,0.98,4,248,5,0,1,0,sales,low +0.6,0.92,2,258,5,0,1,0,sales,low +0.44,0.45,2,156,3,0,1,0,sales,medium +0.11,0.81,6,266,4,1,1,0,sales,medium +0.42,0.54,2,156,3,0,1,0,sales,medium +0.88,0.88,5,232,5,1,1,0,accounting,medium +0.11,0.84,6,287,4,0,1,0,accounting,medium +0.46,0.46,2,154,3,0,1,0,accounting,medium +0.82,0.97,5,263,5,0,1,0,hr,medium +0.44,0.56,2,131,3,0,1,0,hr,medium +0.11,0.78,6,260,4,0,1,0,hr,medium +0.42,0.5,2,139,3,0,1,0,hr,medium +0.84,0.93,4,251,5,0,1,0,technical,medium +0.11,0.95,6,286,4,0,1,0,technical,medium +0.45,0.53,2,129,3,0,1,0,technical,high +0.38,0.56,2,156,3,0,1,0,technical,low +0.38,0.86,6,139,6,0,1,0,technical,medium +0.44,0.51,2,127,3,0,1,0,technical,medium +0.11,0.84,6,251,4,0,1,0,technical,medium +0.81,0.93,5,270,5,0,1,0,technical,medium +0.09,0.96,6,296,4,0,1,0,technical,low +0.11,0.9,6,254,4,0,1,0,technical,low +0.81,0.95,5,238,6,0,1,0,technical,low +0.1,0.97,6,267,4,1,1,0,support,low +0.74,0.89,5,229,6,0,1,0,support,low +0.09,0.78,6,254,4,0,1,0,support,low +0.82,0.81,4,233,4,1,1,0,support,low +0.1,0.98,6,268,4,0,1,0,support,low +0.27,0.56,3,301,3,0,1,0,support,low +0.83,0.92,5,267,6,0,1,0,support,low +0.1,0.93,6,289,4,1,1,0,support,low +0.38,0.47,2,144,3,0,1,0,support,low +0.4,0.56,2,148,3,0,1,0,support,low +0.11,0.83,6,306,4,0,1,0,support,low +0.11,0.79,6,292,4,0,1,1,technical,low +0.82,0.91,5,232,5,0,1,0,technical,low +0.36,0.48,2,137,3,0,1,0,technical,low +0.4,0.46,2,128,3,0,1,0,management,low +0.87,0.84,5,231,5,0,1,0,IT,low +0.41,0.49,2,146,3,0,1,0,IT,low +0.11,0.91,6,308,4,1,1,0,IT,low +0.1,0.93,6,253,4,0,1,0,IT,medium +0.38,0.51,2,146,3,0,1,0,IT,medium +0.39,0.55,2,156,3,0,1,0,product_mng,medium +0.4,0.52,2,147,3,0,1,0,product_mng,medium +0.45,0.48,2,136,3,0,1,0,product_mng,medium +0.74,0.84,5,249,5,0,1,0,product_mng,medium +0.45,0.55,2,151,3,0,1,0,IT,medium +0.12,1,3,278,4,0,1,0,RandD,medium +0.1,0.77,7,250,5,0,1,0,RandD,medium +0.37,0.55,2,127,3,0,1,0,RandD,medium +0.89,0.87,5,255,5,0,1,0,RandD,medium +0.45,0.47,2,135,3,0,1,0,RandD,medium +0.37,0.46,2,149,3,0,1,0,marketing,high +0.11,0.81,5,287,4,0,1,0,sales,low +0.41,0.48,2,145,3,0,1,0,accounting,medium +0.1,0.94,6,285,4,0,1,0,support,medium +0.1,0.93,7,305,4,0,1,0,technical,medium +0.11,0.95,7,300,4,0,1,0,management,medium +0.4,0.54,2,139,3,0,1,0,marketing,low +0.41,0.49,2,130,3,0,1,0,marketing,low +0.1,0.81,6,268,4,0,1,0,marketing,low +0.73,0.86,4,245,6,0,1,0,sales,low +0.43,0.47,2,135,3,0,1,0,sales,low +0.37,0.46,2,153,3,0,1,0,sales,low +0.11,0.94,6,276,4,0,1,0,sales,low +0.4,0.46,2,130,3,0,1,0,sales,low +0.41,0.54,2,153,3,1,1,0,sales,low +0.82,0.84,5,244,5,0,1,0,sales,low +0.61,0.47,2,253,3,0,1,0,sales,low +0.11,0.91,7,287,4,0,1,0,sales,low +0.37,0.45,2,131,3,0,1,0,sales,low +0.41,0.52,2,135,3,0,1,0,sales,low +0.37,0.52,2,157,3,0,1,0,sales,low +0.88,0.99,5,262,6,0,1,0,sales,low +0.1,0.85,6,266,4,0,1,0,sales,low +0.44,0.48,2,148,3,0,1,0,sales,low +0.38,0.57,2,140,3,0,1,0,sales,low +0.11,0.85,7,302,4,0,1,0,sales,low +0.09,0.98,6,271,4,0,1,0,sales,low +0.45,0.52,2,145,3,0,1,0,sales,medium +0.1,0.81,6,290,4,0,1,0,accounting,medium +0.45,0.47,2,151,3,0,1,0,accounting,medium +0.77,0.87,5,266,5,0,1,0,accounting,medium +0.44,0.51,2,140,3,0,1,0,hr,medium +0.39,0.5,2,142,3,0,1,0,hr,medium +0.1,0.91,6,246,4,0,1,0,hr,medium +0.09,0.89,7,308,5,0,1,0,hr,medium +0.37,0.47,2,141,3,0,1,0,technical,medium +0.9,1,5,232,5,0,1,0,technical,medium +0.41,0.56,2,143,3,0,1,0,technical,medium +0.37,0.52,2,155,3,0,1,0,technical,medium +0.1,0.86,6,278,4,0,1,0,technical,high +0.81,1,4,253,5,0,1,0,technical,low +0.11,0.8,6,282,4,0,1,0,technical,medium +0.11,0.84,7,264,4,0,1,0,technical,medium +0.4,0.46,2,149,3,0,1,0,technical,medium +0.09,0.8,6,304,5,0,1,0,technical,medium +0.48,0.93,3,219,6,0,1,0,technical,low +0.91,0.91,4,262,6,0,1,0,support,low +0.43,0.57,2,135,3,0,1,0,support,low +0.33,0.88,6,219,5,0,1,0,support,low +0.41,0.57,2,136,3,0,1,0,support,low +0.41,0.55,2,154,3,0,1,0,support,low +0.37,0.54,2,149,3,0,1,0,support,low +0.31,0.62,6,135,5,0,1,0,support,low +0.09,0.91,6,275,4,0,1,0,support,low +0.1,0.87,6,290,4,0,1,0,support,low +0.76,0.9,4,263,5,0,1,0,support,low +0.41,0.54,2,145,3,0,1,0,support,low +0.72,0.96,5,267,5,0,1,0,technical,low +0.4,0.5,2,141,3,1,1,0,technical,low +0.91,0.87,4,235,5,0,1,0,technical,low +0.1,0.83,6,258,4,0,1,0,management,low +0.4,0.56,2,131,3,0,1,0,IT,low +0.82,0.86,5,243,5,0,1,0,IT,low +0.1,0.82,6,266,4,0,1,0,IT,low +0.37,0.45,2,142,3,0,1,0,IT,low +0.36,0.51,2,135,3,0,1,0,IT,low +0.39,0.48,2,141,3,0,1,0,product_mng,medium +0.36,0.57,2,142,3,0,1,0,product_mng,medium +0.86,0.84,5,254,5,0,1,0,product_mng,medium +0.73,0.99,5,262,5,0,1,0,product_mng,medium +0.56,0.71,4,296,2,0,1,0,IT,medium +0.44,0.56,2,158,3,0,1,0,accounting,medium +0.31,0.56,4,238,2,0,1,0,accounting,medium +0.77,0.93,4,231,5,0,1,0,hr,medium +0.44,0.45,2,156,3,0,1,0,hr,medium +0.38,0.46,2,145,3,0,1,0,hr,medium +0.45,0.48,2,144,3,0,1,0,marketing,medium +0.38,0.51,2,159,3,0,1,0,sales,medium +0.36,0.48,2,156,3,0,1,0,accounting,high +0.75,0.9,5,256,5,0,1,0,support,low +0.1,0.93,6,298,4,0,1,0,technical,medium +0.1,0.97,6,247,4,0,1,0,management,medium +0.45,0.5,2,157,3,0,1,0,marketing,medium +0.42,0.57,2,154,3,1,1,0,marketing,medium +0.78,1,4,253,5,0,1,0,marketing,low +0.45,0.55,2,148,3,0,1,0,sales,low +0.84,1,4,261,5,0,1,0,sales,low +0.11,0.93,6,282,4,0,1,0,sales,low +0.42,0.56,2,133,3,0,1,0,sales,low +0.45,0.46,2,128,3,0,1,0,sales,low +0.46,0.57,2,139,3,0,1,0,sales,low +0.09,0.79,6,293,5,0,1,0,sales,low +0.87,0.83,4,265,6,0,1,0,sales,low +0.1,0.87,6,250,4,0,1,0,sales,low +0.91,1,5,251,6,0,1,0,sales,low +0.76,0.92,4,246,5,0,1,0,sales,low +0.74,1,5,275,5,0,1,0,sales,low +0.92,0.93,5,240,5,0,1,0,sales,low +0.76,0.87,5,245,5,0,1,0,sales,low +0.47,0.5,4,254,4,0,1,0,sales,low +0.73,0.99,5,241,5,0,1,0,sales,low +0.09,0.94,6,257,4,0,1,0,sales,low +0.91,0.92,4,246,5,0,1,0,sales,low +0.82,0.98,4,233,5,0,1,0,sales,low +0.28,0.45,6,218,4,0,1,0,accounting,low +0.84,0.99,4,262,6,0,1,0,accounting,medium +0.45,0.53,2,138,3,0,1,0,accounting,medium +0.45,0.54,2,142,3,0,1,0,hr,medium +0.91,0.97,5,233,5,0,1,0,hr,medium +0.42,0.48,2,155,3,0,1,0,hr,medium +0.82,1,4,229,6,0,1,0,hr,medium +0.11,0.9,6,264,4,0,1,0,technical,medium +0.42,0.53,3,199,4,0,1,0,technical,medium +0.82,0.85,4,223,5,0,1,0,technical,medium +0.09,0.96,6,268,4,0,1,0,technical,medium +0.1,0.94,6,287,4,0,1,0,technical,medium +0.86,1,5,257,5,0,1,0,technical,medium +0.4,0.46,2,143,3,0,1,0,technical,high +0.45,0.46,2,130,3,0,1,0,technical,low +0.42,0.51,2,136,3,0,1,0,technical,medium +0.74,0.92,4,261,5,0,1,0,technical,medium +0.55,0.6,3,180,4,0,1,0,technical,medium +0.37,0.45,2,126,3,0,1,0,support,medium +0.41,0.52,2,127,3,1,1,0,support,low +0.89,0.65,5,195,6,0,1,0,support,low +0.41,0.57,2,160,3,0,1,0,support,low +0.44,0.51,2,150,3,0,1,0,support,low +0.87,0.84,4,264,6,0,1,0,support,low +0.1,0.84,6,309,4,0,1,0,support,low +0.41,0.47,2,135,3,0,1,0,support,low +0.11,0.85,6,261,4,0,1,0,support,low +0.43,0.53,2,160,3,0,1,0,support,low +0.77,0.9,4,237,5,0,1,0,support,low +0.41,0.52,2,136,3,0,1,0,technical,low +0.41,0.48,2,139,3,0,1,0,technical,low +0.36,0.78,2,151,4,0,1,0,technical,low +0.77,1,5,229,5,0,1,0,management,low +0.81,0.98,5,245,5,0,1,0,IT,low +0.39,0.54,2,127,3,0,1,0,IT,low +0.09,0.94,6,283,5,0,1,0,IT,low +0.44,0.46,2,143,3,0,1,0,IT,low +0.1,0.84,5,298,4,0,1,0,IT,low +0.36,0.48,2,159,3,0,1,0,product_mng,low +0.81,0.92,5,239,5,0,1,0,product_mng,low +0.81,0.9,4,226,5,0,1,0,product_mng,medium +0.85,0.98,5,248,5,0,1,0,product_mng,medium +0.1,0.87,6,286,4,0,1,0,IT,medium +0.37,0.54,2,145,3,0,1,0,RandD,medium +0.09,0.97,7,254,4,1,1,0,RandD,medium +0.44,0.53,2,127,3,0,1,0,RandD,medium +0.86,0.93,5,223,5,0,1,0,RandD,medium +0.77,1,4,255,5,0,1,0,RandD,medium +0.41,0.48,2,136,3,0,1,0,marketing,medium +0.4,0.48,2,137,3,0,1,0,sales,medium +0.43,0.49,2,135,3,0,1,0,accounting,medium +0.43,0.5,2,137,3,0,1,0,support,medium +0.8,0.53,3,255,5,0,1,0,technical,high +0.8,0.85,4,273,5,0,1,0,management,low +0.82,0.98,5,234,5,0,1,0,marketing,medium +0.37,0.54,2,152,3,0,1,0,marketing,medium +0.37,0.48,2,134,3,0,1,0,marketing,medium +0.09,0.95,6,292,4,0,1,0,sales,medium +0.9,0.92,5,245,5,0,1,0,sales,low +0.41,0.52,2,159,3,0,1,0,sales,low +0.1,0.85,6,260,4,0,1,0,sales,low +0.44,0.53,2,149,3,0,1,0,sales,low +0.89,0.85,5,266,5,0,1,0,sales,low +0.42,0.56,2,149,3,0,1,0,sales,low +0.87,1,5,242,5,0,1,0,sales,low +0.45,0.57,2,134,3,0,1,0,sales,low +0.11,0.87,5,271,4,0,1,0,sales,low +0.09,0.79,6,275,4,0,1,0,sales,low +0.76,0.83,5,227,5,0,1,0,sales,low +0.11,0.96,7,277,5,0,1,0,sales,low +0.37,0.49,2,151,3,0,1,0,sales,low +0.1,0.79,6,274,4,0,1,0,sales,low +0.77,0.87,4,242,6,0,1,0,sales,low +0.42,0.54,2,143,3,1,1,0,sales,low +0.38,0.52,2,145,3,0,1,0,sales,low +0.32,0.95,5,172,2,0,1,0,sales,low +0.38,0.49,2,135,3,0,1,0,accounting,low +0.19,1,4,192,4,0,1,0,accounting,low +0.1,0.83,7,276,4,0,1,0,accounting,low +0.76,0.88,4,206,4,0,1,0,hr,medium +0.53,0.56,4,281,6,0,1,0,hr,medium +0.39,0.51,2,151,3,0,1,0,hr,medium +0.11,0.83,6,244,4,0,1,0,hr,medium +0.1,0.94,6,309,4,0,1,0,technical,medium +0.84,1,5,218,5,0,1,0,technical,medium +0.82,0.99,4,263,6,0,1,0,technical,medium +0.1,0.82,6,244,4,0,1,0,technical,medium +0.59,0.49,7,263,4,0,1,0,technical,medium +0.44,0.48,2,143,3,0,1,0,technical,medium +0.89,0.95,2,181,5,0,1,0,technical,medium +0.91,0.84,5,265,5,0,1,0,technical,medium +0.66,0.57,5,161,5,0,1,0,technical,high +0.11,0.87,7,282,5,0,1,0,technical,low +0.43,0.51,2,155,3,0,1,0,technical,medium +0.78,0.83,4,217,6,0,1,0,support,medium +0.11,0.97,6,289,5,0,1,0,support,medium +0.83,0.98,4,259,5,0,1,0,support,medium +0.39,0.54,2,158,3,0,1,0,support,low +0.38,0.55,2,158,3,0,1,0,support,low +0.37,0.57,2,155,3,0,1,0,support,low +0.44,0.48,2,146,3,0,1,0,support,low +0.53,0.85,2,164,5,0,1,0,support,low +0.09,0.96,6,259,4,0,1,0,support,low +0.11,0.89,6,293,4,0,1,0,support,low +0.83,0.96,5,275,5,0,1,0,support,low +0.88,1,5,219,6,1,1,0,technical,low +0.1,0.89,6,247,4,0,1,0,technical,low +0.09,0.86,7,309,4,0,1,0,technical,low +0.44,0.54,2,151,3,0,1,0,management,low +0.39,0.51,2,129,3,0,1,0,IT,low +0.87,0.94,4,274,5,0,1,0,IT,low +0.74,0.99,4,233,5,0,1,0,IT,low +0.1,0.95,7,289,4,0,1,0,IT,low +0.74,0.82,4,239,6,0,1,0,IT,low +0.75,0.99,5,221,5,0,1,0,product_mng,low +0.41,0.56,2,150,3,0,1,0,product_mng,low +0.41,0.45,2,144,3,1,1,0,product_mng,low +0.09,0.9,7,289,4,0,1,0,product_mng,low +0.09,0.8,6,301,5,0,1,0,IT,medium +0.39,0.57,2,145,3,0,1,0,accounting,medium +0.4,0.56,2,137,3,0,1,0,accounting,medium +0.37,0.54,2,131,3,1,1,0,hr,medium +0.1,0.84,6,246,4,0,1,0,hr,medium +0.43,0.51,2,136,3,0,1,0,hr,medium +0.75,0.85,5,240,6,1,1,0,marketing,medium +0.37,0.56,2,156,3,0,1,0,sales,medium +0.11,0.85,6,305,4,0,1,0,accounting,medium +0.45,0.45,2,154,3,1,1,0,support,medium +0.87,1,5,261,5,1,1,0,technical,medium +0.11,0.94,7,244,4,0,1,0,management,medium +0.45,0.54,2,129,3,0,1,0,marketing,high +0.81,0.87,4,254,5,0,1,0,marketing,low +0.77,0.91,5,236,5,0,1,0,marketing,medium +0.89,0.92,5,237,5,0,1,0,sales,medium +0.43,0.49,2,135,3,0,1,0,sales,medium +0.78,1,5,236,5,0,1,0,sales,medium +0.37,0.47,2,149,3,0,1,0,sales,low +0.37,0.5,2,141,3,0,1,0,sales,low +0.85,0.82,4,270,5,0,1,0,sales,low +0.41,0.47,2,138,3,0,1,0,sales,low +0.11,0.96,6,298,4,0,1,0,sales,low +0.75,0.99,5,254,5,0,1,0,sales,low +0.82,0.85,5,248,5,0,1,0,sales,low +0.79,1,5,257,6,0,1,0,sales,low +0.43,0.53,2,150,3,0,1,0,sales,low +0.1,0.9,7,281,4,0,1,0,sales,low +0.46,0.48,2,141,3,1,1,0,sales,low +0.43,0.57,2,157,3,0,1,0,sales,low +0.43,0.55,2,136,3,0,1,0,sales,low +0.11,0.8,7,296,4,0,1,0,sales,low +0.09,0.86,6,279,4,0,1,0,sales,low +0.37,0.53,2,131,3,0,1,0,sales,low +0.4,0.57,2,160,3,0,1,0,accounting,low +0.1,0.77,7,291,4,0,1,0,accounting,low +0.41,0.53,2,157,3,0,1,0,accounting,low +0.79,0.58,3,294,4,0,1,0,hr,low +0.11,0.79,7,310,4,0,1,0,hr,low +0.1,0.97,6,282,4,0,1,0,hr,medium +0.44,0.51,2,134,3,0,1,0,hr,medium +0.25,0.46,4,214,4,0,1,0,technical,medium +0.44,0.52,2,137,3,0,1,0,technical,medium +0.73,1,4,252,5,0,1,0,technical,medium +0.75,0.97,5,243,6,0,1,0,technical,medium +0.36,0.47,2,148,3,0,1,0,technical,medium +0.37,0.49,2,151,3,0,1,0,technical,medium +0.39,0.49,2,129,3,0,1,0,technical,medium +0.48,0.78,2,198,2,0,1,0,technical,medium +0.57,0.72,4,275,6,0,1,0,technical,medium +0.9,0.96,5,243,5,0,1,0,technical,medium +0.39,0.55,2,159,3,0,1,0,technical,high +0.44,0.51,2,145,3,0,1,0,support,low +0.81,0.88,5,242,5,0,1,0,support,medium +0.74,0.87,5,242,5,0,1,0,support,medium +0.44,0.56,2,145,3,0,1,0,support,medium +0.41,0.56,2,154,3,0,1,1,support,medium +0.4,0.51,2,139,3,0,1,0,support,low +0.46,0.57,2,152,3,0,1,0,support,low +0.8,0.83,2,211,3,0,1,0,support,low +0.87,0.9,5,258,5,0,1,0,support,low +0.39,0.54,2,155,3,0,1,0,support,low +0.38,0.55,2,148,3,0,1,0,support,low +0.66,0.67,2,255,3,0,1,0,technical,low +0.1,0.8,6,264,4,0,1,0,technical,low +0.37,0.54,2,132,3,0,1,0,technical,low +0.1,0.77,6,255,4,0,1,0,management,low +0.09,0.87,5,263,4,0,1,0,IT,low +0.86,0.84,5,222,5,0,1,0,IT,low +0.11,0.9,6,263,4,0,1,0,IT,low +0.37,0.46,2,157,3,0,1,0,IT,low +0.11,0.92,7,307,4,0,1,0,IT,low +0.77,0.98,5,259,6,0,1,0,product_mng,low +0.84,0.94,5,222,6,0,1,0,product_mng,low +0.1,0.84,7,250,4,0,1,0,product_mng,low +0.83,0.9,5,245,5,0,1,0,product_mng,low +0.11,0.79,6,292,4,0,1,0,IT,low +0.86,0.92,5,252,5,0,1,0,RandD,low +0.38,0.56,2,161,3,0,1,0,RandD,medium +0.11,0.88,5,250,4,0,1,0,RandD,medium +0.45,0.49,2,134,3,0,1,0,RandD,medium +0.1,0.85,7,279,4,0,1,0,RandD,medium +0.09,0.95,7,256,4,0,1,0,marketing,medium +0.39,0.53,2,127,3,0,1,0,sales,medium +0.37,0.47,2,138,3,1,1,0,accounting,medium +0.81,0.97,5,243,5,0,1,0,support,medium +0.09,0.9,7,296,4,0,1,0,technical,medium +0.1,0.88,7,267,4,0,1,0,management,medium +0.39,0.49,2,144,3,0,1,0,marketing,medium +0.83,0.95,4,251,5,0,1,0,marketing,medium +0.45,0.57,2,148,3,0,1,0,marketing,high +0.43,0.51,2,141,3,0,1,0,sales,low +0.8,0.75,3,268,2,0,1,0,sales,medium +0.1,0.86,6,247,4,0,1,0,sales,medium +0.1,0.55,2,247,4,0,1,0,sales,medium +0.36,0.52,2,146,3,0,1,0,sales,medium +0.38,0.5,2,140,3,0,1,0,sales,low +0.78,0.98,5,263,6,0,1,0,sales,low +0.44,0.49,2,145,3,0,1,0,sales,low +0.41,0.46,2,156,3,1,1,0,sales,low +0.72,0.85,5,244,6,0,1,0,sales,low +0.46,0.54,2,144,3,0,1,0,sales,low +0.1,0.9,7,286,4,0,1,0,sales,low +0.34,0.67,4,141,2,0,1,0,sales,low +0.11,0.89,6,260,5,0,1,0,sales,low +0.38,0.56,2,154,3,0,1,0,sales,low +0.82,0.92,5,225,5,0,1,0,sales,low +0.39,0.57,2,127,3,0,1,0,sales,low +0.44,0.53,2,140,3,0,1,0,sales,low +0.43,0.52,2,147,3,0,1,0,sales,low +0.84,0.83,4,227,5,0,1,0,accounting,low +0.43,0.48,2,153,3,0,1,0,accounting,low +0.37,0.52,2,128,3,0,1,0,accounting,low +0.74,0.97,4,228,5,0,1,0,hr,low +0.73,0.97,5,235,5,0,1,0,hr,low +0.37,0.47,2,148,3,0,1,0,hr,low +0.58,0.62,4,238,3,0,1,0,hr,low +0.4,0.54,2,141,3,0,1,0,technical,medium +0.51,0.83,5,249,4,0,1,0,technical,medium +0.46,0.5,2,151,3,0,1,0,technical,medium +0.45,0.54,2,129,3,0,1,0,technical,medium +0.46,0.5,2,156,3,0,1,0,technical,medium +0.39,0.45,2,134,3,0,1,0,technical,medium +0.09,0.88,6,269,4,0,1,0,technical,medium +0.09,0.77,6,290,4,0,1,0,technical,medium +0.37,0.51,2,132,3,0,1,0,technical,medium +0.1,0.89,7,308,4,0,1,0,technical,medium +0.77,1,4,232,5,0,1,0,technical,medium +0.79,0.86,5,235,5,0,1,0,support,medium +0.43,0.55,2,130,3,0,1,0,support,high +0.38,0.53,2,146,3,0,1,0,support,low +0.77,0.91,5,221,6,0,1,0,support,medium +0.44,0.5,2,130,3,0,1,0,support,medium +0.39,0.46,2,136,3,0,1,0,support,medium +0.78,0.89,5,274,6,0,1,0,support,medium +0.1,0.79,6,256,5,0,1,0,support,low +0.1,0.77,5,276,4,0,1,0,support,low +0.75,0.85,5,267,5,0,1,0,support,low +0.46,0.62,6,213,3,0,1,0,support,low +0.91,0.97,4,274,6,0,1,0,technical,low +0.1,0.92,6,258,4,0,1,0,technical,low +0.72,0.6,3,153,5,0,1,0,technical,low +0.11,0.95,6,245,4,0,1,0,management,low +0.11,0.94,6,264,4,0,1,0,IT,low +0.46,0.57,2,154,3,0,1,0,IT,low +0.37,0.46,2,149,3,0,1,0,IT,low +0.46,0.5,2,157,3,0,1,0,IT,low +0.43,0.57,2,127,3,0,1,0,IT,low +0.11,0.82,6,270,4,0,1,0,product_mng,low +0.73,0.89,5,236,6,0,1,0,product_mng,low +0.43,0.47,2,158,3,0,1,0,product_mng,low +0.86,1,5,229,5,0,1,0,product_mng,low +0.1,0.83,6,269,4,0,1,0,IT,low +0.4,0.49,2,128,3,0,1,0,sales,low +0.11,0.87,7,278,4,0,1,0,sales,low +0.86,0.98,3,158,5,0,1,0,sales,low +0.42,1,3,202,3,0,1,0,sales,medium +0.79,0.84,4,240,5,0,1,0,sales,medium +0.1,0.96,7,255,4,0,1,0,marketing,medium +0.09,0.92,7,254,4,0,1,0,sales,medium +0.09,0.82,6,257,4,0,1,0,accounting,medium +0.87,1,4,228,5,0,1,0,support,medium +0.36,0.49,2,145,3,0,1,0,technical,medium +0.42,0.75,3,218,4,0,1,0,management,medium +0.84,0.86,5,268,5,0,1,0,marketing,medium +0.1,0.83,6,278,4,0,1,0,marketing,medium +0.78,0.71,3,249,5,0,1,0,marketing,medium +0.35,0.99,3,236,4,0,1,0,sales,medium +0.1,0.81,7,291,4,0,1,0,sales,high +0.11,0.8,6,306,4,0,1,0,sales,low +0.43,0.48,2,135,3,0,1,0,sales,medium +0.38,0.45,2,156,3,0,1,0,sales,medium +0.46,0.54,2,143,3,0,1,0,sales,medium +0.89,0.82,4,243,5,0,1,0,sales,medium +0.45,0.5,2,147,3,0,1,0,sales,low +0.44,0.53,2,159,3,0,1,0,sales,low +0.74,0.54,5,216,3,0,1,0,sales,low +0.45,0.54,2,152,3,0,1,0,sales,low +0.79,0.93,4,226,5,0,1,0,sales,low +0.79,0.91,5,271,5,0,1,0,sales,low +0.11,0.87,6,255,4,0,1,0,sales,low +0.42,0.48,2,140,3,0,1,0,sales,low +0.64,0.9,6,252,2,0,1,0,sales,low +0.4,0.55,2,159,3,0,1,0,sales,low +0.84,0.98,5,270,5,0,1,0,sales,low +0.73,0.92,5,232,5,0,1,0,sales,low +0.4,0.51,2,144,3,0,1,0,accounting,low +0.36,0.45,2,127,3,0,1,0,accounting,low +0.43,0.47,2,131,3,0,1,0,accounting,low +0.11,0.78,6,243,4,0,1,0,hr,low +0.91,1,5,244,6,0,1,0,hr,low +0.8,1,5,260,5,0,1,0,hr,low +0.42,0.49,2,139,3,0,1,0,hr,low +0.31,0.87,4,184,3,0,1,0,technical,low +0.44,0.47,2,130,3,0,1,0,technical,low +0.38,0.54,2,135,3,0,1,0,technical,medium +0.45,0.56,2,146,3,0,1,0,technical,medium +0.43,0.46,2,149,3,0,1,0,technical,medium +0.45,0.46,2,153,3,1,1,0,technical,medium +0.43,0.57,2,160,3,0,1,0,technical,medium +0.43,0.49,2,160,3,0,1,0,technical,medium +0.09,0.83,6,282,4,0,1,0,technical,medium +0.43,0.47,2,128,3,0,1,0,technical,medium +0.79,0.94,4,232,5,0,1,0,technical,medium +0.85,0.58,3,226,2,0,1,0,support,medium +0.38,0.45,2,129,3,0,1,0,support,medium +0.11,0.92,7,255,4,0,1,0,support,medium +0.83,0.99,5,258,5,0,1,0,support,high +0.81,0.91,4,229,5,0,1,0,support,low +0.42,0.56,2,143,3,0,1,0,support,medium +0.11,0.87,6,257,4,0,1,0,support,medium +0.11,0.85,7,275,4,0,1,0,support,medium +0.1,0.89,7,291,4,0,1,0,support,medium +0.5,0.54,5,153,4,0,1,0,support,low +0.44,0.49,2,154,3,0,1,0,support,low +0.11,0.9,6,301,4,0,1,0,technical,low +0.39,0.52,2,134,3,0,1,0,technical,low +0.11,0.78,6,245,4,0,1,0,technical,low +0.36,0.5,2,132,3,0,1,0,management,low +0.43,0.51,2,130,3,0,1,0,IT,low +0.4,0.5,2,127,3,0,1,0,IT,low +0.86,0.84,4,246,6,0,1,0,IT,low +0.38,0.49,2,145,3,0,1,0,IT,low +0.46,0.45,2,138,3,0,1,1,IT,low +0.37,0.57,2,129,3,0,1,0,product_mng,low +0.43,0.52,2,150,3,0,1,0,product_mng,low +0.66,0.93,5,253,5,0,1,0,product_mng,low +0.37,0.48,2,160,3,0,1,0,product_mng,low +0.77,0.92,5,235,5,0,1,0,IT,low +0.38,0.55,2,151,3,0,1,0,sales,low +0.39,0.54,2,127,3,0,1,0,sales,low +0.41,0.55,2,151,3,0,1,0,sales,low +0.1,0.9,7,290,4,0,1,0,sales,low +0.09,0.93,6,249,4,0,1,0,sales,low +0.41,0.47,2,131,3,0,1,0,marketing,medium +0.39,0.46,2,159,3,0,1,0,sales,medium +0.83,0.99,4,223,5,0,1,0,accounting,medium +0.09,0.87,3,214,2,0,1,0,support,medium +0.75,0.81,5,227,5,0,1,0,technical,medium +0.44,0.54,2,127,3,0,1,0,management,medium +0.1,0.84,6,293,5,0,1,0,marketing,medium +0.42,0.46,2,141,3,0,1,0,marketing,medium +0.1,0.83,6,300,4,0,1,0,marketing,medium +0.1,0.86,6,309,4,0,1,0,sales,medium +0.31,0.77,4,149,3,0,1,0,sales,medium +0.42,0.54,2,159,3,0,1,0,sales,medium +0.38,0.5,2,152,3,0,1,0,sales,high +0.39,0.57,2,158,3,0,1,0,sales,low +0.1,0.97,6,254,5,0,1,0,sales,medium +0.11,0.93,6,294,4,0,1,0,sales,medium +0.1,0.92,7,269,4,0,1,0,sales,medium +0.11,0.9,7,247,4,0,1,0,sales,medium +0.44,0.65,3,271,4,0,1,0,sales,low +0.91,0.96,4,232,5,0,1,0,sales,low +0.72,1,4,245,5,0,1,0,sales,low +0.36,0.46,2,132,3,0,1,0,sales,low +0.44,0.57,2,131,3,0,1,0,sales,low +0.85,0.99,5,248,5,0,1,0,sales,low +0.78,0.93,5,225,5,0,1,0,sales,low +0.39,0.46,2,156,3,0,1,0,sales,low +0.78,0.81,3,222,2,0,1,0,sales,low +0.1,0.92,6,243,4,1,1,0,sales,low +0.23,0.99,4,204,4,1,1,0,accounting,low +0.11,0.87,6,301,4,0,1,0,accounting,low +0.9,0.83,5,259,5,0,1,0,accounting,low +0.91,0.89,4,247,5,0,1,0,hr,low +0.11,0.79,7,295,4,0,1,0,hr,low +0.43,0.54,2,150,3,0,1,0,hr,low +0.45,0.49,2,151,3,0,1,0,hr,low +0.11,0.91,5,291,4,0,1,0,technical,low +0.11,0.93,6,253,4,1,1,0,technical,low +0.43,0.5,2,161,3,0,1,0,technical,low +0.91,0.97,4,251,6,0,1,0,technical,low +0.43,0.55,2,153,3,0,1,0,technical,medium +0.85,0.82,5,264,6,0,1,0,technical,medium +0.1,0.77,6,310,4,0,1,0,technical,medium +0.81,0.95,5,266,5,0,1,0,technical,medium +0.36,0.62,4,237,2,0,1,0,technical,medium +0.45,0.54,2,138,3,0,1,0,technical,medium +0.86,1,5,227,5,0,1,0,technical,medium +0.71,1,4,300,5,0,1,0,support,medium +0.11,0.97,7,310,4,0,1,0,support,medium +0.84,0.93,5,236,5,0,1,0,support,medium +0.09,0.97,7,288,4,0,1,0,support,medium +0.38,0.49,2,127,3,0,1,0,support,medium +0.15,0.55,6,139,4,0,1,0,support,high +0.1,0.92,7,253,4,1,1,0,support,low +0.8,0.97,4,218,5,1,1,0,support,medium +0.84,0.97,5,251,5,0,1,0,support,medium +0.11,0.87,6,264,4,0,1,0,support,medium +0.89,0.79,3,149,2,0,1,0,support,medium +0.45,0.51,2,138,3,0,1,0,technical,low +0.11,0.93,7,284,4,0,1,0,technical,low +0.74,0.93,5,244,5,0,1,0,technical,low +0.41,0.5,2,128,3,0,1,0,management,low +0.44,0.53,2,154,3,0,1,0,IT,low +0.37,0.56,2,138,3,0,1,0,IT,low +0.11,0.86,6,308,4,0,1,0,IT,low +0.1,0.93,6,269,4,0,1,0,IT,low +0.7,0.74,6,136,3,0,1,0,IT,low +0.59,1,2,160,5,0,1,0,product_mng,low +0.38,0.53,2,138,3,0,1,0,product_mng,low +0.72,0.95,4,220,5,0,1,0,product_mng,low +0.73,1,5,274,5,0,1,0,product_mng,low +0.39,0.48,2,161,3,0,1,0,IT,low +0.89,0.82,5,224,6,0,1,0,RandD,low +0.89,1,4,260,5,0,1,0,RandD,low +0.11,0.78,6,300,4,1,1,0,RandD,low +0.43,0.56,2,133,3,0,1,0,RandD,low +0.09,0.93,6,308,4,0,1,0,RandD,low +0.81,0.9,5,238,6,0,1,0,marketing,low +0.37,0.53,2,126,3,0,1,0,sales,low +0.36,0.56,2,138,3,0,1,0,accounting,medium +0.11,0.85,6,299,4,0,1,0,support,medium +0.1,0.85,6,254,4,0,1,0,technical,medium +0.66,0.47,7,156,2,0,1,0,management,medium +0.39,0.47,2,152,3,0,1,0,marketing,medium +0.44,0.51,2,146,3,0,1,0,marketing,medium +0.1,0.84,6,253,4,0,1,0,marketing,medium +0.79,0.94,5,227,6,0,1,0,sales,medium +0.1,0.81,6,301,4,1,1,0,sales,medium +0.54,0.94,6,294,3,0,1,0,sales,medium +0.37,0.47,2,151,3,0,1,0,sales,medium +0.37,0.57,2,128,3,0,1,0,sales,medium +0.82,0.89,5,217,5,0,1,0,sales,high +0.45,0.52,2,160,3,0,1,0,sales,low +0.79,0.9,5,263,5,0,1,0,sales,medium +0.42,0.56,2,156,3,0,1,0,sales,medium +0.1,0.85,6,273,4,0,1,0,sales,medium +0.11,0.78,6,303,4,0,1,0,sales,medium +0.74,1,4,253,5,0,1,0,sales,low +0.1,0.93,6,270,4,0,1,0,sales,low +0.79,1,4,218,5,0,1,0,sales,low +0.43,0.48,2,144,3,0,1,0,sales,low +0.41,0.47,2,154,3,0,1,0,sales,low +0.39,0.55,2,146,3,0,1,0,sales,low +0.1,0.94,6,260,4,0,1,0,sales,low +0.82,0.85,5,218,5,0,1,0,sales,low +0.41,0.46,2,128,3,0,1,0,accounting,low +0.42,0.56,2,128,3,0,1,0,accounting,low +0.74,0.88,4,248,6,0,1,0,accounting,low +0.38,0.57,2,152,3,1,1,0,hr,low +0.39,0.56,2,126,3,0,1,0,hr,low +0.87,0.94,4,260,5,0,1,0,hr,low +0.1,0.9,5,263,4,0,1,0,hr,low +0.78,1,5,220,5,0,1,0,technical,low +0.14,0.73,7,282,5,0,1,0,technical,low +0.11,0.94,6,277,5,0,1,0,technical,low +0.91,0.94,5,257,5,0,1,0,technical,low +0.49,0.63,6,265,3,0,1,0,technical,low +0.38,0.47,2,143,3,0,1,0,technical,low +0.82,0.97,5,263,5,0,1,0,technical,medium +0.38,0.88,3,154,4,0,1,0,technical,medium +0.89,1,5,253,5,0,1,0,technical,medium +0.11,0.79,6,294,4,0,1,0,technical,medium +0.37,0.51,2,128,3,0,1,0,technical,medium +0.38,0.5,2,153,3,0,1,0,support,medium +0.78,0.87,5,256,5,0,1,0,support,medium +0.41,0.51,2,127,3,0,1,0,support,medium +0.41,0.51,2,137,3,0,1,0,support,medium +0.11,0.83,6,295,4,0,1,0,support,medium +0.11,0.79,6,281,4,0,1,0,support,medium +0.43,0.57,2,131,3,1,1,0,support,medium +0.75,0.86,5,237,5,0,1,0,support,high +0.74,0.99,4,276,5,0,1,0,support,low +0.85,0.85,5,267,5,0,1,0,support,medium +0.73,0.92,5,266,5,0,1,0,support,medium +0.1,0.79,6,294,4,0,1,0,technical,medium +0.44,0.56,2,134,3,0,1,0,technical,medium +0.3,0.56,3,309,4,1,1,0,technical,low +0.11,0.77,7,273,4,0,1,0,management,low +0.84,0.83,5,238,5,0,1,0,IT,low +0.78,0.94,5,271,6,0,1,0,IT,low +0.43,0.53,2,145,3,0,1,0,IT,low +0.36,0.55,2,152,3,0,1,0,IT,low +0.43,0.47,2,128,3,0,1,0,IT,low +0.45,0.46,2,142,3,0,1,0,product_mng,low +0.76,0.93,5,238,5,0,1,0,product_mng,low +0.1,0.78,7,286,4,0,1,0,product_mng,low +0.09,0.86,6,291,4,0,1,0,product_mng,low +0.92,1,5,259,5,0,1,0,IT,low +0.92,0.9,5,248,5,0,1,0,sales,low +0.79,0.98,4,271,5,0,1,0,sales,low +0.43,0.51,2,140,3,0,1,0,sales,low +0.8,0.95,4,274,5,0,1,0,sales,low +0.44,0.49,2,127,3,1,1,0,sales,low +0.89,0.87,5,275,6,0,1,0,marketing,low +0.48,0.88,3,239,3,0,1,0,sales,low +0.11,0.82,6,304,4,1,1,0,accounting,low +0.38,0.55,2,145,3,0,1,0,support,low +0.11,0.85,6,259,4,0,1,0,technical,medium +0.82,0.86,4,264,5,0,1,0,management,medium +0.37,0.45,2,160,3,0,1,0,marketing,medium +0.4,0.48,2,138,3,0,1,0,marketing,medium +0.43,0.47,2,137,3,0,1,0,marketing,medium +0.44,0.5,2,156,3,0,1,0,sales,medium +0.42,0.56,2,147,3,0,1,0,sales,medium +0.11,0.8,7,243,4,0,1,0,sales,medium +0.78,0.87,4,236,5,0,1,0,sales,medium +0.46,0.86,2,212,4,0,1,0,sales,medium +0.77,0.91,5,261,6,0,1,0,sales,medium +0.83,0.82,4,243,5,0,1,0,sales,medium +0.32,0.58,5,271,5,0,1,0,sales,high +0.9,0.92,5,154,4,0,1,0,sales,low +0.42,0.52,2,151,3,0,1,0,sales,medium +0.1,0.96,6,254,4,1,1,0,sales,medium +0.1,0.91,6,285,4,0,1,0,sales,medium +0.44,0.49,2,130,3,0,1,0,sales,medium +0.1,0.95,7,301,4,0,1,0,sales,low +0.11,0.8,6,286,4,0,1,0,sales,low +0.1,0.89,6,246,4,0,1,0,sales,low +0.39,0.47,2,135,3,0,1,0,sales,low +0.92,0.92,4,245,5,0,1,0,sales,low +0.43,0.56,2,136,3,0,1,0,sales,low +0.11,0.89,6,301,4,0,1,0,accounting,low +0.81,1,5,235,5,0,1,0,accounting,low +0.11,0.85,7,272,4,0,1,0,accounting,low +0.87,1,5,274,5,0,1,0,hr,low +0.37,0.46,2,131,3,0,1,0,hr,low +0.39,0.56,2,135,3,0,1,0,hr,low +0.61,0.86,4,196,4,0,1,0,hr,low +0.11,0.95,6,285,4,0,1,0,technical,low +0.09,0.9,7,289,5,0,1,0,technical,low +0.36,0.52,2,157,3,0,1,0,technical,low +0.09,0.94,6,308,4,0,1,0,technical,low +0.41,0.71,4,301,5,0,1,0,technical,low +0.4,0.46,2,131,3,0,1,0,technical,low +0.1,0.91,6,262,5,1,1,0,technical,low +0.46,0.53,2,143,3,1,1,0,technical,low +0.39,0.57,2,133,3,0,1,0,technical,medium +0.41,0.5,2,153,3,0,1,0,technical,medium +0.1,0.94,7,281,4,0,1,0,technical,medium +0.39,0.51,2,132,3,0,1,0,support,medium +0.73,0.83,5,270,5,1,1,0,support,medium +0.41,0.45,2,150,3,0,1,0,support,medium +0.37,0.51,2,140,3,0,1,0,support,medium +0.38,0.5,2,150,3,1,1,0,support,medium +0.8,0.63,5,180,5,0,1,0,support,medium +0.09,0.85,5,281,4,0,1,0,support,medium +0.85,0.92,4,275,5,0,1,0,support,medium +0.42,0.54,2,130,3,0,1,0,support,medium +0.41,0.48,2,130,3,0,1,0,support,high +0.38,0.46,2,147,3,0,1,0,support,low +0.72,1,5,264,5,0,1,0,technical,medium +0.11,0.74,6,290,5,0,1,0,technical,medium +0.37,0.47,2,150,3,0,1,0,technical,medium +0.1,0.81,6,304,4,0,1,0,management,medium +0.36,0.54,2,136,3,0,1,0,IT,low +0.92,0.94,5,307,5,0,1,0,IT,low +0.11,0.87,5,303,4,0,1,0,IT,low +0.39,0.56,2,156,3,0,1,0,IT,low +0.11,0.95,6,271,4,0,1,0,IT,low +0.45,0.45,2,140,3,0,1,0,product_mng,low +0.44,0.55,2,130,3,1,1,0,product_mng,low +0.85,0.97,4,266,6,0,1,0,product_mng,low +0.43,0.52,2,139,3,0,1,0,product_mng,low +0.75,0.86,5,260,5,0,1,0,IT,low +0.11,0.55,2,137,3,1,1,0,RandD,low +0.36,0.5,2,158,3,0,1,0,RandD,low +0.1,0.79,6,249,4,0,1,0,RandD,low +0.74,0.89,5,259,5,0,1,0,RandD,low +0.4,0.46,2,144,3,0,1,0,RandD,low +0.09,0.77,6,244,4,0,1,0,marketing,low +0.76,0.91,4,219,5,0,1,0,sales,low +0.45,0.57,2,151,3,0,1,0,accounting,low +0.84,0.88,4,269,5,0,1,0,support,low +0.38,0.45,2,127,3,0,1,0,technical,low +0.38,0.46,2,144,3,0,1,0,management,low +0.38,0.54,2,157,3,0,1,0,marketing,medium +0.86,0.94,5,224,5,0,1,0,marketing,medium +0.37,0.46,2,155,3,0,1,0,marketing,medium +0.37,0.5,2,131,3,0,1,0,sales,medium +0.87,1,4,258,5,1,1,1,sales,medium +0.11,0.85,6,267,4,0,1,0,sales,medium +0.42,0.5,2,141,3,0,1,0,sales,medium +0.43,0.48,2,160,3,0,1,0,sales,medium +0.09,0.8,6,247,4,0,1,0,sales,medium +0.54,0.56,4,260,3,0,1,0,sales,medium +0.4,0.47,2,151,3,0,1,0,sales,medium +0.36,0.52,2,137,3,1,1,0,sales,medium +0.87,0.9,4,256,5,0,1,0,sales,high +0.75,0.88,4,239,5,0,1,0,sales,low +0.43,0.53,2,152,3,0,1,0,sales,medium +0.43,0.47,2,149,3,0,1,0,sales,medium +0.1,0.87,6,284,4,0,1,0,sales,medium +0.11,0.78,7,248,4,0,1,0,sales,medium +0.44,0.53,2,156,3,0,1,0,sales,low +0.39,0.48,2,138,3,0,1,0,sales,low +0.4,0.55,2,155,3,0,1,0,sales,low +0.92,0.87,4,229,6,0,1,0,sales,low +0.36,0.47,2,136,3,0,1,0,accounting,low +0.86,0.95,4,241,5,0,1,0,accounting,low +0.74,0.87,5,258,5,0,1,0,accounting,low +0.8,0.95,3,146,5,0,1,0,hr,low +0.36,0.48,2,145,3,0,1,0,hr,low +0.42,0.57,2,159,3,0,1,0,hr,low +0.42,0.47,2,129,3,0,1,0,hr,low +0.4,0.45,2,142,3,0,1,0,technical,low +0.46,0.53,2,129,3,0,1,0,technical,low +0.09,0.9,6,287,4,0,1,0,technical,low +0.88,0.89,4,275,5,0,1,0,technical,low +0.1,0.82,6,272,4,0,1,0,technical,low +0.1,0.97,6,307,4,0,1,0,technical,low +0.11,0.93,4,295,3,0,1,0,technical,low +0.84,0.88,5,237,5,0,1,0,technical,low +0.42,0.56,2,158,3,0,1,0,technical,low +0.1,0.86,6,266,4,1,1,0,technical,low +0.1,0.95,6,256,4,0,1,0,technical,medium +0.46,0.54,2,158,3,0,1,0,support,medium +0.09,0.97,7,268,4,0,1,0,support,medium +0.89,1,4,237,5,0,1,0,support,medium +0.82,1,4,273,6,0,1,0,support,medium +0.11,0.89,6,309,4,0,1,0,support,medium +0.81,0.84,5,258,5,0,1,0,support,medium +0.81,0.94,5,233,6,0,1,0,support,medium +0.77,1,4,249,6,0,1,0,support,medium +0.63,0.94,3,179,2,0,1,0,support,medium +0.4,0.57,2,128,3,0,1,0,support,medium +0.86,1,4,250,6,0,1,0,support,medium +0.37,0.49,2,151,3,0,1,0,technical,high +0.44,0.5,2,132,3,0,1,0,technical,low +0.74,0.89,5,232,6,0,1,0,technical,medium +0.79,1,4,229,5,1,1,0,management,medium +0.09,0.92,6,261,4,0,1,0,IT,medium +0.37,0.48,2,129,3,0,1,0,IT,medium +0.09,0.78,6,244,4,0,1,0,IT,low +0.09,0.84,6,258,4,0,1,0,IT,low +0.1,0.8,7,292,5,0,1,0,IT,low +0.45,0.56,2,143,3,0,1,0,product_mng,low +0.4,0.51,2,136,3,0,1,0,product_mng,low +0.31,0.95,6,235,5,0,1,0,product_mng,low +0.7,0.93,2,310,3,0,1,0,product_mng,low +0.36,0.48,2,152,3,0,1,0,IT,low +0.34,0.97,6,157,5,1,1,0,RandD,low +0.87,0.83,5,267,5,0,1,0,RandD,low +0.11,0.91,6,302,4,0,1,0,RandD,low +0.47,0.81,4,133,3,0,1,0,RandD,low +0.43,0.52,2,142,3,0,1,0,RandD,low +0.43,0.47,2,129,3,0,1,0,marketing,low +0.45,0.57,2,136,3,0,1,0,sales,low +0.74,1,5,223,5,0,1,0,accounting,low +0.1,0.89,6,244,4,1,1,0,support,low +0.78,0.87,5,243,5,0,1,0,technical,low +0.9,0.95,5,275,3,0,1,0,management,low +0.53,0.95,6,205,4,0,1,0,marketing,low +0.45,0.54,2,154,3,0,1,0,marketing,low +0.86,0.83,4,270,5,0,1,0,marketing,medium +0.74,0.89,4,267,5,0,1,0,sales,medium +0.09,0.79,6,276,4,0,1,0,sales,medium +0.8,0.95,5,244,5,0,1,0,sales,medium +0.46,0.53,2,128,3,0,1,0,sales,medium +0.86,0.95,5,269,6,0,1,0,sales,medium +0.86,0.95,4,238,5,0,1,0,sales,medium +0.9,0.91,4,269,5,0,1,0,sales,medium +0.87,0.88,5,231,6,0,1,0,sales,medium +0.83,0.94,4,267,5,0,1,0,sales,medium +0.77,0.83,4,245,5,0,1,0,sales,medium +0.77,1,4,272,5,0,1,0,sales,medium +0.9,0.86,5,254,5,0,1,0,sales,high +0.73,0.92,4,273,5,0,1,0,sales,low +0.91,0.9,4,250,5,0,1,0,sales,medium +0.36,0.53,2,133,3,0,1,0,sales,medium +0.38,0.54,2,150,3,0,1,0,sales,medium +0.44,0.46,2,157,3,0,1,0,sales,medium +0.73,1,5,230,5,0,1,0,sales,low +0.89,0.91,5,260,5,0,1,0,sales,low +0.11,0.77,6,275,4,0,1,0,accounting,low +0.1,0.77,7,308,4,0,1,0,accounting,low +0.37,0.46,2,129,3,0,1,0,accounting,low +0.38,0.48,2,134,3,0,1,0,hr,low +0.42,0.48,2,132,3,0,1,0,hr,low +0.44,0.46,2,153,3,0,1,0,hr,low +0.11,0.83,6,262,4,0,1,0,hr,low +0.09,0.97,7,262,4,0,1,0,technical,low +0.43,0.47,2,130,3,0,1,0,technical,low +0.38,0.52,2,156,3,0,1,0,technical,low +0.11,0.89,6,254,4,0,1,0,technical,low +0.37,0.49,2,130,3,0,1,0,technical,low +0.44,0.57,2,139,3,0,1,0,technical,low +0.72,0.82,5,269,5,0,1,0,technical,low +0.1,0.91,7,297,4,0,1,0,technical,low +0.73,0.86,5,249,5,0,1,0,technical,low +0.09,0.82,7,267,4,0,1,0,technical,low +0.44,0.46,2,149,3,0,1,0,technical,low +0.09,0.82,6,251,4,0,1,0,support,low +0.1,0.87,6,306,4,0,1,0,support,medium +0.11,0.86,6,279,4,0,1,0,support,medium +0.42,0.46,2,131,3,0,1,0,support,medium +0.09,0.85,6,260,4,0,1,0,support,medium +0.72,0.88,5,249,5,0,1,0,support,medium +0.75,0.97,4,245,5,0,1,0,support,medium +0.44,0.5,2,138,3,0,1,0,support,medium +0.11,0.91,6,278,4,0,1,0,support,medium +0.38,0.47,2,147,3,0,1,0,support,medium +0.39,0.57,2,131,3,0,1,0,support,medium +0.1,0.9,7,301,4,0,1,0,technical,medium +0.43,0.52,2,141,3,0,1,0,technical,medium +0.39,0.57,2,158,3,0,1,0,technical,high +0.88,0.87,4,235,6,0,1,0,management,low +0.1,0.85,7,261,4,0,1,0,IT,medium +0.1,0.89,5,270,4,0,1,0,IT,medium +0.11,0.93,6,290,4,0,1,0,IT,medium +0.37,0.47,2,149,3,0,1,0,IT,medium +0.37,0.48,2,160,3,0,1,0,IT,low +0.77,0.87,4,150,4,0,1,0,product_mng,low +0.91,0.94,5,218,6,0,1,0,product_mng,low +0.46,0.51,2,155,3,0,1,0,product_mng,low +0.11,0.87,6,291,4,0,1,0,product_mng,low +0.86,0.91,5,265,5,0,1,0,IT,low +0.87,0.88,5,262,6,0,1,0,sales,low +0.09,0.92,6,303,5,0,1,0,sales,low +0.42,0.46,2,132,3,0,1,0,sales,low +0.82,0.83,4,245,5,1,1,0,sales,low +0.46,0.48,2,129,3,0,1,0,sales,low +0.88,1,5,226,6,0,1,0,marketing,low +0.1,0.91,6,286,4,0,1,0,marketing,low +0.43,0.45,2,140,3,0,1,0,sales,low +0.37,0.49,2,153,3,0,1,0,accounting,low +0.8,0.95,5,217,5,0,1,0,support,low +0.83,0.95,5,258,5,0,1,0,technical,low +0.39,0.57,2,156,3,0,1,0,management,low +0.77,0.92,5,255,5,0,1,0,marketing,low +0.43,0.46,2,129,3,0,1,0,marketing,low +0.79,0.96,4,234,5,0,1,0,marketing,low +0.39,0.55,2,152,3,1,1,0,sales,medium +0.1,0.88,7,300,4,0,1,0,sales,medium +0.39,0.53,2,131,3,0,1,0,sales,medium +0.11,0.89,6,301,4,0,1,0,sales,medium +0.4,0.51,2,156,3,0,1,0,sales,medium +0.42,0.52,2,141,3,1,1,0,sales,medium +0.57,0.85,4,219,2,1,1,0,sales,medium +0.11,0.95,7,269,5,0,1,0,sales,medium +0.36,0.73,4,276,2,0,1,0,sales,medium +0.11,0.94,7,302,4,0,1,0,sales,medium +0.35,0.8,6,281,2,0,1,0,sales,medium +0.78,0.99,5,241,5,0,1,0,sales,medium +0.11,0.93,7,288,4,0,1,0,sales,high +0.1,0.96,6,303,4,0,1,0,sales,low +0.42,0.54,2,135,3,0,1,0,sales,medium +0.43,0.5,2,127,3,1,1,0,sales,medium +0.79,0.84,5,245,5,0,1,0,sales,medium +0.45,0.45,2,145,3,0,1,0,sales,medium +0.09,0.91,6,248,4,0,1,0,sales,low +0.11,0.91,6,302,4,0,1,0,accounting,low +0.45,0.49,2,144,3,0,1,0,accounting,low +0.11,0.91,6,272,4,0,1,0,accounting,low +0.09,0.8,6,294,4,0,1,0,hr,low +0.78,0.71,4,296,3,0,1,0,hr,low +0.38,0.5,2,151,3,1,1,0,hr,low +0.82,0.82,4,249,5,0,1,0,hr,low +0.85,0.89,4,221,5,0,1,0,technical,low +0.45,0.46,2,146,3,0,1,0,technical,low +0.77,0.89,5,243,5,0,1,0,technical,low +0.39,0.5,2,127,3,0,1,0,technical,low +0.91,0.9,4,245,5,0,1,0,technical,low +0.11,0.77,6,264,4,0,1,0,technical,low +0.46,0.45,2,143,3,0,1,0,technical,low +0.43,0.49,2,135,3,0,1,0,technical,low +0.11,0.96,6,262,4,1,1,0,technical,low +0.1,0.93,6,299,4,0,1,0,technical,low +0.09,0.8,5,279,4,0,1,0,technical,low +0.36,0.51,2,155,3,0,1,0,support,low +0.11,0.89,6,264,4,0,1,0,support,low +0.09,0.77,6,256,5,0,1,0,support,medium +0.44,0.51,2,129,3,0,1,0,support,medium +0.73,0.97,5,217,6,0,1,0,support,medium +0.21,0.58,7,203,5,0,1,0,support,medium +0.8,0.85,4,264,5,0,1,0,support,medium +0.37,0.55,2,159,3,0,1,0,support,medium +0.79,0.96,5,218,5,0,1,0,support,medium +0.09,0.8,6,298,4,0,1,0,support,medium +0.75,0.74,6,134,3,0,1,0,support,medium +0.83,1,5,263,5,0,1,0,technical,medium +0.1,0.77,5,252,4,0,1,0,technical,medium +0.44,0.55,2,136,3,0,1,0,technical,medium +0.42,0.97,6,259,4,0,1,0,management,high +0.43,0.56,2,158,3,0,1,0,IT,low +0.09,0.84,7,307,4,0,1,0,IT,medium +0.44,0.53,2,152,3,0,1,0,IT,medium +0.81,0.98,5,237,5,0,1,0,IT,medium +0.1,0.79,7,284,4,0,1,0,IT,medium +0.1,0.93,6,243,4,0,1,0,product_mng,low +0.11,0.83,6,268,4,0,1,0,product_mng,low +0.09,0.77,6,244,4,0,1,0,product_mng,low +0.75,0.83,5,262,5,0,1,0,product_mng,low +0.38,0.55,2,134,3,0,1,0,IT,low +0.09,0.87,7,278,4,0,1,0,IT,low +0.74,0.97,5,238,5,0,1,0,IT,low +0.44,0.56,2,127,3,0,1,0,IT,low +0.76,0.95,4,259,5,0,1,0,RandD,low +0.42,0.56,2,146,3,0,1,0,RandD,low +0.75,1,4,243,5,0,1,0,RandD,low +0.36,0.52,2,137,3,0,1,0,marketing,low +0.75,0.93,5,229,5,0,1,0,sales,low +0.4,0.46,2,134,3,0,1,0,accounting,low +0.75,0.89,4,228,5,0,1,0,support,low +0.09,0.84,6,301,4,0,1,0,technical,low +0.39,0.46,2,127,3,0,1,0,management,low +0.4,0.48,2,142,3,0,1,0,marketing,low +0.39,0.54,2,131,3,0,1,0,marketing,low +0.1,0.85,7,310,5,0,1,0,marketing,low +0.42,0.55,2,148,3,0,1,0,sales,low +0.37,0.52,2,143,3,0,1,0,sales,medium +0.11,0.98,6,250,4,0,1,0,sales,medium +0.09,0.88,7,265,4,0,1,0,sales,medium +0.41,0.54,2,152,3,0,1,0,sales,medium +0.42,0.49,2,145,3,0,1,0,sales,medium +0.4,0.49,2,140,3,0,1,0,sales,medium +0.36,0.47,2,129,3,0,1,0,sales,medium +0.74,0.9,4,226,5,0,1,0,sales,medium +0.66,1,5,269,5,0,1,0,sales,medium +0.38,0.47,2,152,3,0,1,0,sales,medium +0.43,0.51,2,132,3,0,1,0,sales,medium +0.43,0.53,2,148,3,0,1,0,sales,medium +0.1,0.85,6,297,5,0,1,0,sales,high +0.82,0.85,4,274,5,0,1,0,sales,low +0.1,0.77,6,280,4,0,1,0,sales,medium +0.1,0.93,6,288,4,0,1,0,sales,medium +0.43,0.49,2,155,3,0,1,0,sales,medium +0.09,0.94,7,247,4,0,1,0,sales,medium +0.41,0.54,2,138,3,0,1,0,accounting,low +0.1,0.82,7,284,4,0,1,0,accounting,low +0.88,0.92,4,225,5,0,1,0,accounting,low +0.43,0.57,2,151,3,1,1,0,hr,low +0.42,0.5,2,155,3,0,1,0,hr,low +0.85,1,4,234,5,0,1,0,hr,low +0.38,0.49,2,144,3,0,1,0,hr,low +0.39,0.47,2,142,3,0,1,0,technical,low +0.41,0.48,2,126,3,0,1,0,technical,low +0.88,0.92,4,233,6,0,1,0,technical,low +0.78,0.96,4,241,5,0,1,0,technical,low +0.45,0.48,2,138,3,0,1,0,technical,low +0.09,0.95,6,260,4,1,1,0,technical,low +0.44,0.56,2,145,3,0,1,0,technical,low +0.11,0.84,6,252,4,0,1,0,technical,low +0.36,0.51,2,143,3,0,1,0,technical,low +0.86,0.98,4,270,5,0,1,0,technical,low +0.1,0.92,6,285,4,0,1,0,technical,low +0.45,0.53,2,149,3,0,1,0,support,low +0.42,0.53,2,158,3,0,1,0,support,low +0.36,0.55,2,134,3,0,1,0,support,low +0.45,0.55,2,129,3,0,1,0,support,medium +0.38,0.57,2,131,3,0,1,0,support,medium +0.11,0.97,6,288,4,0,1,0,support,medium +0.45,0.46,2,142,3,0,1,0,support,medium +0.87,0.95,5,227,5,0,1,0,support,medium +0.45,0.53,2,131,3,0,1,0,support,medium +0.1,0.83,6,283,5,0,1,0,support,medium +0.44,0.54,2,139,3,0,1,0,support,medium +0.78,1,4,267,5,0,1,0,technical,medium +0.38,0.56,2,148,3,0,1,0,technical,medium +0.85,0.84,5,272,6,0,1,0,technical,medium +0.36,0.48,2,148,3,1,1,0,management,medium +0.75,0.88,5,270,5,0,1,0,IT,high +0.81,0.81,4,218,5,1,1,0,IT,low +0.4,0.55,2,150,3,0,1,0,IT,medium +0.83,0.83,5,260,5,0,1,0,IT,medium +0.41,0.52,2,127,3,0,1,0,IT,medium +0.42,0.57,2,134,3,0,1,0,product_mng,medium +0.09,0.83,7,258,4,0,1,0,product_mng,low +0.87,0.81,5,304,5,0,1,0,product_mng,low +0.43,0.56,6,149,4,0,1,0,product_mng,low +0.39,0.51,2,139,3,0,1,0,IT,low +0.1,0.9,6,272,5,0,1,0,RandD,low +0.41,0.52,2,132,3,0,1,0,RandD,low +0.72,1,2,240,2,0,1,0,RandD,low +0.44,0.55,2,137,3,0,1,0,RandD,low +0.38,0.5,2,139,3,0,1,0,RandD,low +0.46,0.52,2,148,3,0,1,0,RandD,low +0.4,0.49,2,149,3,0,1,0,marketing,low +0.45,0.45,2,131,3,0,1,0,sales,low +0.89,0.89,5,262,5,0,1,0,accounting,low +0.1,0.97,7,284,4,0,1,0,support,low +0.46,0.48,2,161,3,0,1,0,technical,low +0.09,0.78,7,290,4,0,1,0,management,low +0.45,0.57,2,149,3,0,1,0,marketing,low +0.89,0.98,4,242,6,0,1,0,marketing,low +0.62,0.77,5,227,4,0,1,0,marketing,low +0.11,0.93,6,276,4,0,1,0,sales,low +0.44,0.5,2,135,3,0,1,0,sales,low +0.09,0.94,6,266,4,0,1,0,sales,medium +0.56,0.75,5,236,2,0,1,0,sales,medium +0.77,0.89,4,270,5,0,1,0,sales,medium +0.39,0.49,2,146,3,0,1,0,sales,medium +0.1,0.92,5,272,4,0,1,0,sales,medium +0.72,0.85,5,246,5,0,1,0,sales,medium +0.4,0.52,2,136,3,0,1,0,sales,medium +0.11,0.81,6,260,4,0,1,0,sales,medium +0.88,1,5,247,5,0,1,0,sales,medium +0.37,0.51,2,127,3,0,1,0,sales,medium +0.11,0.96,6,267,4,0,1,0,sales,medium +0.4,0.52,2,143,3,0,1,0,sales,medium +0.1,0.86,6,306,4,0,1,0,sales,high +0.62,0.89,3,131,4,0,1,0,sales,low +0.78,0.86,4,249,5,0,1,0,sales,medium +0.37,0.52,2,144,3,0,1,0,sales,medium +0.76,0.82,4,254,5,1,1,0,sales,medium +0.42,0.53,2,131,3,0,1,0,accounting,medium +0.1,0.77,6,272,4,0,1,0,accounting,low +0.42,0.47,2,157,3,0,1,0,accounting,low +0.1,0.96,7,301,4,0,1,0,hr,low +0.1,0.81,6,252,4,0,1,0,hr,low +0.42,0.47,2,130,3,0,1,0,hr,low +0.09,0.86,6,297,4,0,1,0,hr,low +0.1,0.8,6,248,4,0,1,0,technical,low +0.11,0.89,7,257,4,0,1,0,technical,low +0.44,0.53,2,147,3,0,1,0,technical,low +0.87,0.9,3,307,5,0,1,0,technical,low +0.44,0.46,2,154,3,0,1,0,technical,low +0.41,0.56,2,143,3,0,1,0,technical,low +0.51,0.79,4,134,3,0,1,0,technical,low +0.89,0.96,5,221,5,0,1,0,technical,low +0.1,0.96,6,275,4,0,1,0,technical,low +0.9,0.94,5,247,5,0,1,0,technical,low +0.36,0.55,2,131,3,0,1,0,technical,low +0.44,0.54,2,150,3,0,1,0,support,low +0.39,0.57,2,150,3,0,1,0,support,low +0.38,1,5,137,4,0,1,0,support,low +0.73,0.95,4,223,6,0,1,0,support,low +0.1,0.96,6,292,4,0,1,0,support,medium +0.89,0.83,5,130,4,1,1,0,support,medium +0.87,0.85,5,221,6,0,1,0,support,medium +0.84,0.89,4,245,5,1,1,0,support,medium +0.11,0.77,6,274,4,0,1,0,support,medium +0.74,1,5,248,5,0,1,0,support,medium +0.79,0.97,4,243,5,0,1,0,support,medium +0.1,0.92,7,273,4,0,1,0,technical,medium +0.83,0.95,5,221,5,0,1,0,technical,medium +0.1,0.79,6,271,4,0,1,0,technical,medium +0.45,0.5,2,157,3,0,1,0,management,medium +0.29,0.48,2,249,4,0,1,0,IT,medium +0.46,0.46,2,145,3,0,1,0,IT,high +0.11,0.83,6,262,5,0,1,0,IT,low +0.75,0.89,5,272,5,0,1,0,IT,medium +0.4,0.5,2,129,3,0,1,0,IT,medium +0.37,0.46,2,134,3,0,1,0,product_mng,medium +0.41,0.52,2,147,3,0,1,0,product_mng,medium +0.1,0.83,6,293,4,0,1,0,product_mng,low +0.39,0.52,2,129,3,0,1,0,product_mng,low +0.4,0.45,2,140,3,0,1,0,IT,low +0.41,0.52,2,132,3,0,1,0,RandD,low +0.11,0.89,6,284,4,0,1,0,RandD,low +0.74,0.99,5,263,5,0,1,0,RandD,low +0.42,0.46,2,143,3,0,1,0,RandD,low +0.88,0.88,4,265,5,0,1,0,RandD,low +0.37,0.53,2,147,3,0,1,0,RandD,low +0.78,0.81,4,253,5,0,1,0,marketing,low +0.46,0.5,2,141,3,0,1,0,sales,low +0.74,1,5,222,6,0,1,0,accounting,low +0.11,0.86,6,273,4,1,1,0,support,low +0.8,0.87,5,240,6,0,1,0,technical,low +0.37,0.48,2,154,3,0,1,0,management,low +0.87,0.92,4,253,6,0,1,0,marketing,low +0.9,0.84,5,221,5,0,1,0,marketing,low +0.1,0.88,6,263,4,0,1,0,marketing,low +0.43,0.46,2,145,3,0,1,0,sales,low +0.11,0.91,6,279,4,0,1,0,sales,low +0.4,0.46,2,146,3,0,1,0,sales,low +0.09,0.93,7,270,4,0,1,0,sales,medium +0.4,0.5,2,135,3,0,1,0,sales,medium +0.14,0.7,5,236,3,0,1,0,sales,medium +0.4,0.49,2,151,3,0,1,0,sales,medium +0.11,0.79,6,244,4,1,1,0,sales,medium +0.72,1,4,169,3,0,1,0,sales,medium +0.39,0.57,2,157,3,0,1,0,sales,medium +0.82,0.93,4,246,5,0,1,0,sales,medium +0.41,0.52,2,142,3,0,1,0,sales,medium +0.45,0.51,2,156,3,0,1,0,sales,medium +0.2,0.7,6,281,5,0,1,0,sales,medium +0.43,0.53,2,146,3,0,1,0,sales,medium +0.39,0.55,2,156,3,0,1,0,sales,high +0.11,0.86,6,299,4,1,1,0,sales,low +0.45,0.47,2,136,3,0,1,0,sales,medium +0.11,0.87,6,272,4,0,1,0,sales,medium +0.84,0.86,5,240,5,0,1,0,accounting,medium +0.86,0.96,5,245,6,0,1,0,accounting,medium +0.79,0.93,5,269,5,0,1,0,accounting,low +0.39,0.57,2,130,3,0,1,0,hr,low +0.15,0.62,4,257,3,0,1,0,hr,low +0.81,1,4,241,5,0,1,0,hr,low +0.39,0.53,2,136,3,0,1,0,hr,low +0.92,0.94,4,219,5,0,1,0,technical,low +0.9,0.98,5,271,5,0,1,0,technical,low +0.32,0.6,2,280,4,0,1,0,technical,low +0.46,0.46,2,140,3,0,1,0,technical,low +0.83,0.98,4,254,5,0,1,0,technical,low +0.39,0.47,2,131,3,0,1,0,technical,low +0.2,0.9,6,138,3,0,1,0,technical,low +0.11,0.85,6,295,4,0,1,0,technical,low +0.11,0.96,6,301,5,0,1,0,technical,low +0.1,0.95,7,296,4,0,1,0,technical,low +0.75,0.87,5,246,5,0,1,0,technical,low +0.44,0.57,2,145,3,0,1,0,support,low +0.86,0.93,5,241,5,1,1,0,support,low +0.1,0.82,6,269,4,0,1,0,support,low +0.39,0.49,2,146,3,0,1,0,support,low +0.45,0.48,2,149,3,0,1,0,support,low +0.1,0.94,7,287,4,0,1,0,support,medium +0.36,0.55,2,138,3,0,1,0,support,medium +0.57,0.61,4,158,5,0,1,0,support,medium +0.09,0.87,6,266,4,0,1,0,support,medium +0.87,0.91,4,255,5,0,1,0,support,medium +0.43,0.52,2,156,3,0,1,0,support,medium +0.36,0.5,2,147,3,0,1,0,technical,medium +0.91,0.99,5,265,5,1,1,0,technical,medium +0.41,0.48,2,136,3,0,1,0,technical,medium +0.37,0.52,2,140,3,0,1,0,management,medium +0.43,0.45,2,146,3,0,1,0,IT,medium +0.43,0.57,2,142,3,0,1,0,IT,medium +0.4,0.53,2,155,3,0,1,0,IT,high +0.1,0.89,7,285,4,0,1,0,IT,low +0.76,0.99,4,253,5,1,1,0,IT,medium +0.82,0.93,4,248,5,0,1,0,product_mng,medium +0.11,0.83,7,255,5,0,1,0,product_mng,medium +0.43,0.52,2,154,3,1,1,0,product_mng,medium +0.11,0.88,7,305,4,0,1,0,product_mng,low +0.41,0.48,2,141,3,0,1,0,IT,low +0.73,0.87,5,252,5,0,1,0,RandD,low +0.37,0.57,2,157,3,0,1,0,RandD,low +0.11,0.89,6,250,4,0,1,0,RandD,low +0.46,0.52,2,131,3,0,1,0,RandD,low +0.41,0.5,2,149,3,0,1,0,RandD,low +0.78,0.78,4,260,5,0,1,0,RandD,low +0.78,0.86,5,260,6,0,1,0,marketing,low +0.72,0.86,5,251,5,0,1,0,sales,low +0.63,0.83,6,242,5,0,1,0,accounting,low +0.55,1,6,136,3,0,1,0,support,low +0.45,0.55,2,155,3,0,1,0,technical,low +0.39,0.51,2,155,3,0,1,0,management,low +0.1,0.81,6,248,4,0,1,0,marketing,low +0.4,0.5,2,136,3,0,1,0,marketing,low +0.39,0.54,2,133,3,0,1,0,marketing,low +0.78,0.45,4,128,2,0,1,0,sales,low +0.42,0.53,2,142,3,0,1,0,sales,low +0.39,0.54,2,149,3,0,1,0,sales,low +0.46,0.57,2,145,3,0,1,0,sales,low +0.1,0.92,6,279,4,0,1,0,sales,medium +0.45,0.47,2,146,3,0,1,0,sales,medium +0.1,0.83,6,264,4,1,1,0,sales,medium +0.1,0.89,7,272,4,0,1,0,sales,medium +0.78,0.86,5,256,5,0,1,0,sales,medium +0.4,0.65,2,296,5,0,1,0,sales,medium +0.45,0.51,2,155,3,1,1,0,sales,medium +0.39,0.56,2,130,3,0,1,0,sales,medium +0.43,0.48,2,157,3,0,1,0,sales,medium +0.09,0.96,6,245,4,0,1,0,sales,medium +0.79,0.86,5,226,5,0,1,0,sales,medium +0.44,0.47,2,156,3,1,1,0,sales,medium +0.79,0.95,5,228,5,0,1,0,sales,high +0.38,0.46,2,155,3,0,1,0,sales,low +0.36,0.56,2,159,3,0,1,0,sales,medium +0.39,0.57,2,142,3,0,1,0,accounting,medium +0.09,0.93,6,271,4,0,1,0,accounting,medium +0.16,0.65,4,277,5,0,1,0,accounting,medium +0.09,0.77,6,310,4,0,1,0,hr,low +0.11,0.87,6,254,4,0,1,0,hr,low +0.44,0.56,2,142,3,0,1,0,hr,low +0.11,0.88,7,253,4,0,1,0,hr,low +0.11,0.97,6,260,4,0,1,0,technical,low +0.45,0.52,2,147,3,0,1,0,technical,low +0.1,0.96,7,288,4,0,1,0,technical,low +0.4,0.46,2,160,3,0,1,0,technical,low +0.38,0.55,2,130,3,0,1,0,technical,low +0.39,0.56,2,133,3,0,1,0,technical,low +0.38,0.55,2,160,3,0,1,0,technical,low +0.38,0.45,2,151,3,0,1,0,technical,low +0.17,0.75,3,188,4,0,1,0,technical,low +0.79,0.84,5,247,5,0,1,0,technical,low +0.1,0.85,7,259,4,0,1,0,technical,low +0.37,0.48,2,129,3,0,1,0,support,low +0.42,0.49,2,152,3,0,1,0,support,low +0.44,0.48,2,128,3,0,1,0,support,low +0.11,0.83,6,253,4,0,1,0,support,low +0.39,0.48,2,151,3,0,1,0,support,low +0.1,0.83,5,271,5,0,1,0,support,low +0.4,0.46,2,155,3,0,1,0,support,medium +0.86,0.91,5,245,5,0,1,0,support,medium +0.37,0.46,2,157,3,0,1,0,support,medium +0.4,0.51,2,160,3,0,1,0,support,medium +0.43,0.48,2,149,3,0,1,0,support,medium +0.88,0.88,5,248,5,0,1,0,technical,medium +0.44,0.52,2,128,3,0,1,0,technical,medium +0.87,1,4,224,5,0,1,0,technical,medium +0.4,0.46,2,156,3,0,1,0,management,medium +0.45,0.52,2,143,3,0,1,0,IT,medium +0.84,0.93,4,250,5,0,1,0,IT,medium +0.1,0.68,3,179,3,0,1,0,IT,medium +0.72,0.99,5,257,5,0,1,0,IT,high +0.4,0.5,2,127,3,0,1,0,IT,low +0.45,0.5,2,145,3,0,1,0,product_mng,medium +0.89,0.98,5,274,5,0,1,0,product_mng,medium +0.4,0.55,2,131,3,0,1,0,product_mng,medium +0.38,0.53,2,136,3,0,1,0,product_mng,medium +0.38,0.47,2,140,3,1,1,0,IT,low +0.1,0.82,7,265,4,0,1,0,RandD,low +0.42,0.48,2,148,3,1,1,0,RandD,low +0.74,0.86,5,262,5,0,1,0,RandD,low +0.1,0.8,6,261,4,0,1,0,RandD,low +0.82,0.9,5,248,5,0,1,0,RandD,low +0.38,0.55,2,131,3,0,1,0,marketing,low +0.41,0.56,2,160,3,0,1,0,sales,low +0.4,0.47,2,152,3,0,1,0,accounting,low +0.83,0.98,4,249,5,0,1,0,support,low +0.36,0.57,2,144,3,0,1,0,technical,low +0.75,0.98,4,245,5,0,1,0,management,low +0.44,0.53,2,146,3,0,1,0,marketing,low +0.1,0.94,6,297,5,0,1,0,marketing,low +0.39,0.52,2,148,3,1,1,0,marketing,low +0.09,0.84,7,260,4,0,1,0,sales,low +0.4,0.57,2,152,3,0,1,0,sales,low +0.41,0.54,2,135,3,0,1,0,sales,low +0.83,0.92,4,235,5,0,1,0,sales,low +0.42,0.47,2,145,3,0,1,0,sales,low +0.61,0.46,5,220,4,0,1,0,sales,low +0.44,0.52,2,128,3,0,1,0,sales,medium +0.77,0.81,5,237,5,0,1,0,sales,medium +0.81,0.95,4,275,5,0,1,0,sales,medium +0.1,0.78,6,310,4,0,1,0,sales,medium +0.73,0.84,5,251,6,0,1,0,sales,medium +0.09,0.83,6,250,4,0,1,0,sales,medium +0.9,0.99,4,259,6,0,1,0,sales,medium +0.88,1,4,259,5,0,1,0,sales,medium +0.09,0.87,7,305,4,0,1,0,sales,medium +0.4,0.56,2,130,3,1,1,0,sales,medium +0.17,0.55,6,250,5,0,1,0,sales,medium +0.82,0.82,5,220,6,0,1,0,sales,medium +0.9,0.83,4,266,5,0,1,0,sales,high +0.83,0.92,4,255,5,0,1,0,accounting,low +0.44,0.5,2,154,3,0,1,0,accounting,medium +0.5,0.85,4,138,3,0,1,0,accounting,medium +0.14,0.61,6,291,5,0,1,0,hr,medium +0.77,0.82,4,217,5,0,1,0,hr,medium +0.09,0.83,6,286,4,0,1,0,hr,low +0.11,0.88,6,290,4,0,1,0,hr,low +0.44,0.57,2,148,3,0,1,0,technical,low +0.43,0.52,2,146,3,0,1,0,technical,low +0.12,0.8,5,136,2,0,1,0,technical,low +0.1,0.86,7,261,5,0,1,0,technical,low +0.1,0.96,6,274,4,0,1,0,technical,low +0.4,0.48,2,132,3,0,1,0,technical,low +0.41,0.47,2,145,3,0,1,0,technical,low +0.37,0.48,2,153,3,0,1,0,technical,low +0.4,0.48,2,139,3,0,1,0,technical,low +0.74,0.96,4,231,5,0,1,0,technical,low +0.39,0.48,2,154,3,0,1,0,technical,low +0.11,0.9,5,307,4,0,1,0,support,low +0.36,0.51,2,129,3,0,1,0,support,low +0.8,0.83,5,275,5,0,1,0,support,low +0.6,0.85,3,250,2,0,1,0,support,low +0.36,0.54,2,158,3,0,1,0,support,low +0.1,0.96,6,310,5,0,1,0,support,low +0.65,0.86,2,181,2,0,1,0,support,low +0.49,0.73,4,244,3,0,1,0,support,low +0.73,0.96,5,256,6,1,1,0,support,medium +0.11,0.8,6,259,5,0,1,0,support,medium +0.73,0.91,4,247,5,0,1,0,support,medium +0.43,0.46,2,129,3,0,1,0,technical,medium +0.73,0.93,5,229,5,0,1,0,technical,medium +0.76,0.85,5,236,6,0,1,0,technical,medium +0.09,0.96,6,281,4,0,1,0,management,medium +0.9,0.81,5,264,5,0,1,0,IT,medium +0.1,0.81,6,308,4,0,1,0,IT,medium +0.43,0.48,2,147,3,0,1,0,IT,medium +0.41,0.55,2,159,3,0,1,0,IT,medium +0.41,0.57,2,154,3,0,1,0,IT,medium +0.1,0.87,6,307,4,0,1,0,product_mng,high +0.4,0.46,2,132,3,0,1,0,product_mng,low +0.4,0.53,2,152,3,0,1,0,product_mng,medium +0.36,0.48,5,310,3,0,1,0,product_mng,medium +0.83,0.95,5,230,5,0,1,0,IT,medium +0.83,0.94,5,273,5,0,1,0,RandD,medium +0.41,0.51,2,144,3,0,1,0,RandD,low +0.11,0.93,7,296,4,0,1,0,RandD,low +0.68,0.62,5,198,5,1,1,0,RandD,low +0.43,0.53,2,157,3,0,1,0,RandD,low +0.44,0.51,2,145,3,0,1,0,marketing,low +0.87,0.94,5,219,5,0,1,0,marketing,low +0.43,0.54,2,153,3,0,1,0,sales,low +0.89,0.48,3,178,5,0,1,0,accounting,low +0.83,0.88,5,239,5,0,1,0,support,low +0.11,0.87,6,278,5,0,1,0,technical,low +0.85,1,6,260,3,1,1,0,management,low +0.89,0.97,4,264,5,0,1,0,marketing,low +0.09,0.92,7,301,4,0,1,0,marketing,low +0.43,0.55,4,134,3,0,1,0,marketing,low +0.42,0.46,2,147,3,0,1,0,sales,low +0.43,0.54,2,130,3,0,1,0,sales,low +0.1,0.93,6,307,4,0,1,0,sales,low +0.37,0.46,2,156,3,0,1,0,sales,low +0.76,0.98,4,237,5,0,1,0,sales,low +0.88,0.89,4,254,5,0,1,0,sales,low +0.39,0.48,2,151,3,0,1,0,sales,low +0.45,0.54,2,131,3,0,1,0,sales,medium +0.91,0.95,5,241,5,0,1,0,sales,medium +0.86,0.85,5,267,5,0,1,0,sales,medium +0.39,0.53,2,153,3,0,1,0,sales,medium +0.89,1,4,217,5,0,1,0,sales,medium +0.11,0.86,6,254,4,0,1,0,sales,medium +0.1,0.87,6,265,5,0,1,0,sales,medium +0.38,0.57,2,146,3,0,1,0,sales,medium +0.4,0.54,2,156,3,0,1,0,sales,medium +0.86,0.97,5,269,5,0,1,0,sales,medium +0.1,0.86,6,288,4,0,1,0,sales,medium +0.1,0.85,6,283,4,0,1,0,sales,medium +0.42,0.5,2,128,3,0,1,0,accounting,high +0.36,0.46,2,130,3,0,1,0,accounting,low +0.39,0.48,2,127,3,0,1,0,accounting,medium +0.43,0.47,2,137,3,0,1,0,hr,medium +0.36,0.49,2,133,3,0,1,0,hr,medium +0.09,0.91,6,275,4,0,1,0,hr,medium +0.42,0.55,2,146,3,0,1,0,hr,low +0.42,0.46,2,135,3,0,1,0,technical,low +0.91,0.89,5,217,5,0,1,0,technical,low +0.41,0.56,2,154,3,0,1,0,technical,low +0.11,0.78,6,247,4,0,1,0,technical,low +0.09,0.83,6,295,5,0,1,0,technical,low +0.83,1,5,224,5,0,1,0,technical,low +0.11,0.78,6,281,4,0,1,0,technical,low +0.1,0.93,7,258,4,0,1,0,technical,low +0.42,0.55,2,150,3,0,1,0,technical,low +0.1,0.97,7,282,4,0,1,0,technical,low +0.38,0.51,2,138,3,0,1,0,technical,low +0.77,0.98,4,238,6,0,1,0,support,low +0.11,0.85,7,244,4,0,1,0,support,low +0.87,0.97,5,250,6,0,1,0,support,low +0.1,0.88,7,282,4,0,1,0,support,low +0.1,0.89,7,253,4,0,1,0,support,low +0.09,0.9,6,256,4,0,1,0,support,low +0.84,0.85,5,260,5,0,1,0,support,low +0.11,0.86,6,245,4,0,1,0,support,low +0.81,0.97,5,230,5,0,1,0,support,low +0.77,0.85,5,276,5,0,1,0,support,medium +0.42,0.47,2,137,3,0,1,0,support,medium +0.36,0.56,2,140,3,0,1,0,technical,medium +0.81,0.83,5,269,6,0,1,0,technical,medium +0.37,0.46,2,130,3,1,1,0,technical,medium +0.1,0.96,6,264,4,0,1,0,management,medium +0.14,0.55,6,175,5,0,1,0,IT,medium +0.41,0.51,2,159,3,0,1,0,IT,medium +0.44,0.55,2,128,3,0,1,1,IT,medium +0.82,0.94,5,232,5,1,1,0,IT,medium +0.67,0.54,3,166,5,0,1,0,IT,medium +0.44,0.57,2,141,3,0,1,0,product_mng,medium +0.42,0.54,2,143,3,0,1,0,product_mng,high +0.84,0.83,4,239,5,0,1,0,product_mng,low +0.86,1,4,232,5,0,1,0,product_mng,medium +0.56,0.86,5,252,2,0,1,0,IT,medium +0.09,0.93,6,255,4,0,1,0,RandD,medium +0.1,0.81,7,270,4,0,1,0,RandD,medium +0.39,0.54,2,149,3,0,1,0,RandD,low +0.75,0.89,5,276,5,0,1,0,RandD,low +0.43,0.55,2,159,3,0,1,0,RandD,low +0.09,0.96,7,274,5,0,1,0,marketing,low +0.83,0.94,4,264,5,0,1,0,sales,low +0.59,1,3,156,4,0,1,0,accounting,low +0.44,0.54,2,135,3,0,1,0,support,low +0.38,0.49,2,128,3,0,1,0,technical,low +0.76,0.98,5,242,5,0,1,0,management,low +0.22,0.86,4,293,3,0,1,0,marketing,low +0.4,0.46,2,141,3,0,1,0,marketing,low +0.41,0.48,2,155,3,0,1,0,marketing,low +0.38,0.51,2,141,3,0,1,0,sales,low +0.45,0.68,4,212,4,1,1,0,sales,low +0.39,0.56,2,160,3,0,1,0,sales,low +0.45,0.47,2,150,3,0,1,0,sales,low +0.42,0.53,2,132,3,1,1,0,sales,low +0.1,0.87,6,248,4,0,1,0,sales,low +0.78,0.96,5,272,5,0,1,0,sales,low +0.39,0.56,2,160,3,0,1,0,sales,low +0.1,0.87,7,299,4,0,1,0,sales,low +0.1,0.8,6,292,4,0,1,0,sales,medium +0.43,0.46,2,126,3,0,1,0,sales,medium +0.38,0.45,2,132,3,0,1,0,sales,medium +0.09,0.77,6,282,5,0,1,0,sales,medium +0.39,0.53,2,141,3,0,1,0,sales,medium +0.73,0.99,6,206,5,0,1,0,sales,medium +0.38,0.49,2,140,3,0,1,0,sales,medium +0.1,0.91,6,255,4,0,1,0,sales,medium +0.41,0.54,2,133,3,0,1,0,sales,medium +0.43,0.51,2,131,3,0,1,0,sales,medium +0.79,0.96,4,257,5,0,1,0,accounting,medium +0.1,0.81,6,269,4,0,1,0,accounting,medium +0.11,0.97,6,254,4,0,1,0,accounting,high +0.42,0.5,2,143,3,0,1,0,hr,low +0.36,0.51,2,157,3,0,1,0,hr,medium +0.63,0.93,5,163,3,0,1,0,hr,medium +0.41,0.56,2,133,3,0,1,0,hr,medium +0.36,0.46,2,157,3,0,1,0,technical,medium +0.1,0.9,6,301,5,0,1,0,technical,low +0.11,0.96,6,310,4,0,1,0,technical,low +0.44,0.54,2,133,3,0,1,0,technical,low +0.77,0.96,5,249,6,0,1,0,technical,low +0.91,1,4,251,6,0,1,0,technical,low +0.26,0.46,2,242,3,0,1,0,technical,low +0.81,0.93,5,265,6,0,1,0,technical,low +0.11,0.87,6,280,4,0,1,0,technical,low +0.92,0.89,4,241,5,0,1,0,technical,low +0.1,0.86,5,253,4,0,1,0,technical,low +0.45,0.51,2,137,3,0,1,0,support,low +0.11,0.94,6,266,4,0,1,0,support,low +0.23,0.7,5,168,4,0,1,0,support,low +0.86,0.95,4,270,5,0,1,0,support,low +0.44,0.55,2,141,3,0,1,0,support,low +0.41,0.56,2,133,3,0,1,0,support,low +0.84,0.97,5,256,5,0,1,0,support,low +0.42,0.52,2,160,3,0,1,0,support,low +0.11,0.88,7,275,4,0,1,0,support,low +0.38,0.46,2,160,3,0,1,0,support,low +0.11,0.96,7,244,4,0,1,0,support,low +0.1,0.83,6,271,4,0,1,0,technical,medium +0.86,0.88,5,268,5,0,1,0,technical,medium +0.91,1,4,253,5,1,1,0,technical,medium +0.37,0.53,2,140,3,0,1,0,management,medium +0.46,0.5,2,146,3,0,1,0,IT,medium +0.1,0.89,6,259,5,0,1,0,IT,medium +0.37,0.46,2,127,3,0,1,0,IT,medium +0.4,0.48,2,161,3,0,1,0,IT,medium +0.09,0.78,6,260,4,0,1,0,IT,medium +0.11,0.89,6,272,4,0,1,0,product_mng,medium +0.39,0.48,2,159,3,0,1,0,product_mng,medium +0.89,0.96,4,219,6,0,1,0,product_mng,medium +0.09,0.91,6,243,4,0,1,0,product_mng,high +0.88,0.97,4,255,5,1,1,0,IT,low +0.11,0.9,7,245,4,0,1,0,RandD,medium +0.1,0.95,6,264,5,0,1,0,RandD,medium +0.91,1,4,245,6,0,1,0,RandD,medium +0.44,0.52,2,137,3,0,1,0,RandD,medium +0.63,0.76,2,157,4,0,1,0,RandD,low +0.1,0.87,7,247,4,0,1,0,marketing,low +0.36,0.51,2,144,3,0,1,0,sales,low +0.45,0.51,2,149,3,0,1,0,accounting,low +0.73,1,5,253,6,0,1,0,support,low +0.37,0.55,2,140,3,0,1,0,technical,low +0.09,0.85,7,307,4,0,1,0,management,low +0.41,0.71,3,205,4,0,1,0,marketing,low +0.72,1,5,234,5,0,1,0,marketing,low +0.36,0.54,2,127,3,0,1,0,marketing,low +0.9,1,4,229,5,0,1,0,sales,low +0.44,0.56,2,141,3,0,1,0,sales,low +0.78,0.95,4,260,5,0,1,0,sales,low +0.37,0.52,2,141,3,0,1,0,sales,low +0.4,0.47,2,144,3,1,1,0,sales,low +0.84,1,5,250,5,0,1,0,sales,low +0.09,0.86,6,245,4,0,1,0,sales,low +0.83,0.93,4,269,5,0,1,0,sales,low +0.11,0.87,6,273,4,0,1,0,sales,low +0.37,0.5,2,142,3,0,1,0,sales,low +0.09,0.93,6,273,5,0,1,0,sales,low +0.43,0.47,2,248,2,0,1,0,sales,medium +0.39,0.56,2,147,3,0,1,0,sales,medium +0.85,0.9,2,168,2,0,1,0,sales,medium +0.38,0.52,2,128,3,0,1,0,sales,medium +0.76,0.84,5,227,5,1,1,0,sales,medium +0.44,0.51,2,135,3,0,1,0,sales,medium +0.73,1,4,268,5,0,1,0,sales,medium +0.43,0.53,2,136,3,0,1,0,sales,medium +0.43,0.51,2,149,3,1,1,0,accounting,medium +0.09,0.96,7,264,4,0,1,0,accounting,medium +0.43,0.53,2,143,3,0,1,0,accounting,medium +0.45,0.57,2,138,3,0,1,0,hr,medium +0.42,0.48,2,146,3,0,1,0,hr,high +0.41,0.46,2,150,3,1,1,0,hr,low +0.44,0.55,2,156,3,0,1,0,hr,medium +0.09,0.92,7,245,4,0,1,0,technical,medium +0.41,0.51,2,156,3,0,1,0,technical,medium +0.43,0.51,2,143,3,0,1,0,technical,medium +0.38,0.51,2,159,3,0,1,0,technical,low +0.85,0.96,4,217,5,0,1,0,technical,low +0.88,0.91,4,234,6,0,1,0,technical,low +0.44,0.46,2,138,3,0,1,0,technical,low +0.11,0.92,7,265,4,0,1,0,technical,low +0.38,0.5,2,145,3,0,1,0,technical,low +0.09,0.78,6,263,4,0,1,0,technical,low +0.11,0.79,6,264,4,0,1,0,technical,low +0.11,0.88,6,253,4,0,1,0,support,low +0.44,0.48,2,155,3,0,1,0,support,low +0.38,0.51,2,137,3,0,1,0,support,low +0.1,0.87,6,254,5,0,1,0,support,low +0.45,0.57,2,143,3,0,1,0,support,low +0.11,0.94,7,280,5,0,1,0,support,low +0.36,0.48,2,136,3,0,1,0,support,low +0.72,0.95,5,271,5,0,1,0,support,low +0.43,0.48,2,157,3,0,1,0,support,low +0.45,0.5,2,150,3,0,1,0,support,low +0.4,0.53,2,127,3,0,1,0,support,low +0.1,0.81,6,271,4,0,1,0,technical,low +0.83,0.93,5,257,5,0,1,0,technical,low +0.11,0.8,7,305,4,0,1,0,technical,medium +0.43,0.5,2,152,3,0,1,0,management,medium +0.38,0.5,2,144,3,0,1,0,IT,medium +0.83,1,5,269,5,0,1,0,IT,medium +0.11,0.82,7,285,4,0,1,0,IT,medium +0.43,0.52,2,136,3,0,1,0,IT,medium +0.11,0.88,6,294,4,0,1,0,IT,medium +0.43,0.46,2,157,3,0,1,0,product_mng,medium +0.1,0.89,6,280,4,0,1,0,product_mng,medium +0.44,0.51,2,152,3,0,1,0,product_mng,medium +0.82,0.91,5,276,6,0,1,0,product_mng,medium +0.1,0.86,6,247,4,0,1,0,IT,medium +0.1,0.95,5,286,4,0,1,0,RandD,high +0.3,0.89,5,257,5,0,1,0,RandD,low +0.1,0.93,6,258,4,0,1,0,RandD,medium +0.39,0.5,2,151,3,0,1,0,RandD,medium +0.14,0.47,4,175,2,0,1,0,RandD,medium +0.82,0.92,4,252,5,0,1,0,marketing,medium +0.1,0.85,6,266,4,0,1,0,sales,low +0.09,0.9,6,295,4,0,1,0,accounting,low +0.54,0.83,6,165,6,0,1,0,support,low +0.61,0.58,2,264,4,0,1,0,technical,low +0.1,0.79,6,275,4,0,1,0,management,low +0.1,0.9,6,299,4,0,1,0,marketing,low +0.36,0.49,2,147,3,0,1,0,marketing,low +0.1,0.97,7,306,4,0,1,0,marketing,low +0.84,1,5,242,5,0,1,0,sales,low +0.38,0.51,2,159,3,0,1,0,sales,low +0.41,0.49,2,147,3,0,1,0,sales,low +0.37,0.51,2,154,3,1,1,0,sales,low +0.43,0.56,2,129,3,0,1,0,sales,low +0.46,0.53,2,161,3,0,1,0,sales,low +0.09,0.84,6,269,4,0,1,0,sales,low +0.78,0.86,5,274,5,0,1,0,sales,low +0.45,0.53,2,159,3,0,1,0,sales,low +0.42,0.47,2,135,3,0,1,0,sales,low +0.46,0.53,2,147,3,0,1,0,sales,low +0.39,0.49,2,142,3,0,1,0,sales,low +0.36,0.51,2,130,3,0,1,0,sales,low +0.43,0.53,2,147,3,0,1,0,sales,medium +0.85,0.87,5,246,5,1,1,0,sales,medium +0.11,0.92,6,281,4,0,1,0,sales,medium +0.11,0.9,6,253,4,0,1,0,sales,medium +0.38,0.47,2,128,3,0,1,0,sales,medium +0.43,0.57,2,129,3,0,1,0,sales,medium +0.75,1,5,223,6,0,1,0,accounting,medium +0.11,0.92,6,269,4,0,1,0,accounting,medium +0.1,0.9,7,269,4,0,1,0,accounting,medium +0.1,0.81,7,244,5,0,1,0,hr,medium +0.37,0.5,2,154,3,0,1,0,hr,medium +0.11,0.93,5,140,5,0,1,0,hr,medium +0.45,0.46,2,159,3,0,1,0,hr,high +0.44,0.48,2,158,3,0,1,0,technical,low +0.44,0.56,2,133,3,0,1,0,technical,medium +0.11,0.77,6,247,4,0,1,0,technical,medium +0.79,0.93,5,268,5,0,1,0,technical,medium +0.8,0.9,5,267,5,0,1,0,technical,medium +0.1,0.87,7,251,5,0,1,0,technical,low +0.09,0.93,6,279,4,0,1,0,technical,low +0.7,0.84,6,161,4,0,1,0,technical,low +0.72,0.84,4,256,5,0,1,0,technical,low +0.11,0.8,6,304,4,0,1,0,technical,low +0.39,0.51,2,137,3,0,1,0,technical,low +0.4,0.49,2,144,3,0,1,0,support,low +0.43,0.54,2,142,3,0,1,0,support,low +0.76,0.87,5,262,5,0,1,0,support,low +0.4,0.48,2,142,3,0,1,0,support,low +0.09,0.89,6,282,4,0,1,0,support,low +0.37,0.54,2,157,3,0,1,0,support,low +0.87,0.91,5,228,5,0,1,0,support,low +0.1,0.86,6,283,4,0,1,0,support,low +0.11,0.86,6,286,4,0,1,0,support,low +0.43,0.5,2,148,3,0,1,0,support,low +0.1,0.81,6,245,4,0,1,0,support,low +0.11,0.95,6,279,4,0,1,0,technical,low +0.85,0.87,5,245,5,0,1,0,technical,low +0.37,0.49,2,138,3,0,1,0,technical,low +0.44,0.52,2,141,3,0,1,0,management,low +0.1,0.83,7,302,5,0,1,0,IT,medium +0.11,0.89,6,268,4,0,1,0,IT,medium +0.87,0.88,5,240,5,0,1,0,IT,medium +0.39,0.49,2,127,3,0,1,0,IT,medium +0.1,0.94,7,264,4,0,1,0,IT,medium +0.44,0.53,2,155,3,0,1,0,product_mng,medium +0.4,0.49,2,143,3,0,1,0,product_mng,medium +0.76,0.98,5,217,6,0,1,0,product_mng,medium +0.46,0.55,2,147,3,0,1,0,product_mng,medium +0.9,0.92,4,271,5,0,1,0,IT,medium +0.85,0.87,4,273,5,0,1,0,RandD,medium +0.1,0.78,5,285,4,1,1,0,RandD,medium +0.43,0.49,2,131,3,0,1,0,RandD,high +0.2,0.5,5,135,6,0,1,0,RandD,low +0.81,0.92,5,239,5,0,1,0,RandD,medium +0.83,0.85,5,237,5,0,1,0,marketing,medium +0.14,0.75,4,277,5,1,1,0,sales,medium +0.1,0.84,5,303,5,0,1,0,accounting,medium +0.91,0.98,4,242,6,0,1,0,support,low +0.37,0.57,2,158,3,0,1,0,technical,low +0.42,0.57,2,147,3,1,1,0,management,low +0.39,0.68,2,282,5,0,1,0,marketing,low +0.39,0.54,2,154,3,0,1,0,marketing,low +0.44,0.52,2,149,3,0,1,0,marketing,low +0.37,0.45,2,149,3,0,1,0,sales,low +0.39,0.53,2,146,3,0,1,0,sales,low +0.72,0.94,4,258,5,0,1,0,sales,low +0.37,0.49,2,148,3,0,1,0,sales,low +0.82,0.94,5,236,5,0,1,0,sales,low +0.42,0.52,2,134,3,0,1,0,sales,low +0.59,1,2,155,5,0,1,0,sales,low +0.82,0.86,5,257,5,0,1,0,sales,low +0.73,0.97,6,189,2,0,1,0,sales,low +0.78,0.66,3,164,3,0,1,0,sales,low +0.09,0.95,6,271,4,0,1,0,sales,low +0.1,0.97,6,280,4,0,1,0,sales,low +0.45,0.46,2,149,3,0,1,0,sales,low +0.83,0.81,5,219,5,0,1,0,sales,low +0.43,0.51,2,128,3,0,1,0,sales,low +0.4,0.47,2,128,3,0,1,0,sales,medium +0.43,0.46,2,157,3,0,1,0,sales,medium +0.78,0.93,4,225,5,0,1,0,sales,medium +0.39,0.45,2,140,3,0,1,0,sales,medium +0.11,0.97,6,310,4,0,1,0,accounting,medium +0.36,0.52,2,143,3,0,1,0,accounting,medium +0.36,0.54,2,153,3,0,1,0,accounting,medium +0.1,0.79,7,310,4,0,1,0,hr,medium +0.4,0.47,2,136,3,0,1,0,hr,medium +0.81,0.85,4,251,6,0,1,0,hr,medium +0.4,0.47,2,144,3,0,1,0,hr,medium +0.09,0.93,6,296,4,0,1,0,technical,medium +0.76,0.89,5,238,5,0,1,0,technical,high +0.73,0.93,5,162,4,0,1,0,technical,low +0.38,0.49,2,137,3,0,1,0,technical,medium +0.72,0.84,5,257,5,0,1,0,technical,medium +0.4,0.56,2,148,3,0,1,0,technical,medium +0.91,0.99,5,254,5,0,1,0,technical,medium +0.85,0.85,4,247,6,0,1,0,technical,low +0.9,0.7,5,206,4,0,1,0,technical,low +0.46,0.55,2,145,3,0,1,0,technical,low +0.43,0.57,2,159,3,1,1,0,technical,low +0.89,0.88,5,228,5,1,1,0,support,low +0.09,0.81,6,257,4,0,1,0,support,low +0.4,0.48,2,155,3,0,1,0,support,low +0.76,0.83,6,293,6,0,1,0,support,low +0.4,0.57,2,151,3,0,1,0,support,low +0.37,0.48,2,160,3,0,1,0,support,low +0.37,0.53,2,143,3,0,1,0,support,low +0.11,0.96,6,280,4,0,1,0,support,low +0.37,0.52,2,158,3,0,1,0,support,low +0.09,0.89,7,310,4,0,1,0,support,low +0.88,0.86,5,258,5,0,1,0,support,low +0.84,0.94,5,262,5,0,1,0,technical,low +0.1,0.98,6,265,4,0,1,0,technical,low +0.41,0.47,2,143,3,1,1,0,technical,low +0.84,0.91,5,232,6,0,1,0,management,low +0.41,0.55,2,161,3,0,1,0,IT,low +0.53,0.76,5,132,6,0,1,0,IT,low +0.42,0.47,2,139,3,1,1,0,IT,medium +0.36,0.5,2,131,3,0,1,0,IT,medium +0.38,0.52,2,161,3,0,1,0,IT,medium +0.36,0.48,2,152,3,0,1,0,product_mng,medium +0.46,0.54,2,138,3,0,1,0,product_mng,medium +0.37,0.47,2,159,3,1,1,0,product_mng,medium +0.42,0.49,2,153,3,0,1,0,product_mng,medium +0.44,0.56,2,156,3,0,1,0,IT,medium +0.92,0.82,5,265,5,0,1,0,RandD,medium +0.1,0.79,6,301,5,0,1,0,RandD,medium +0.76,1,4,220,6,0,1,0,RandD,medium +0.11,0.79,6,247,4,0,1,0,RandD,medium +0.43,0.48,2,136,3,0,1,0,RandD,high +0.4,0.49,2,160,3,0,1,0,marketing,low +0.11,0.84,7,310,4,0,1,0,sales,medium +0.84,0.82,5,240,5,0,1,0,accounting,medium +0.84,0.84,5,238,5,0,1,0,support,medium +0.51,0.6,7,243,5,0,1,0,technical,medium +0.66,0.91,5,248,4,0,1,0,management,low +0.42,0.56,2,137,3,0,1,0,marketing,low +0.38,0.49,2,155,3,0,1,0,marketing,low +0.15,0.63,7,229,3,0,1,0,marketing,low +0.38,0.53,2,140,3,0,1,0,sales,low +0.43,0.54,2,156,3,0,1,0,sales,low +0.37,0.57,2,147,3,0,1,0,sales,low +0.11,0.92,7,293,4,0,1,0,sales,low +0.41,0.53,2,157,3,0,1,0,sales,low +0.84,0.96,4,247,5,0,1,0,sales,low +0.4,0.51,2,148,3,0,1,0,sales,low +0.58,0.74,4,215,3,0,0,0,sales,low +0.82,0.67,2,202,3,0,0,0,sales,low +0.45,0.69,5,193,3,0,0,0,sales,low +0.78,0.82,5,247,3,0,0,0,sales,low +0.49,0.6,3,214,2,0,0,0,sales,low +0.36,0.95,3,206,4,0,0,0,sales,low +0.54,0.37,2,176,2,0,0,0,sales,low +0.99,0.91,5,136,4,0,0,0,sales,low +0.5,0.75,6,127,3,0,0,0,sales,low +0.74,0.64,4,268,3,0,0,0,sales,low +0.56,0.58,4,258,3,0,0,0,sales,medium +0.34,0.39,2,136,3,0,0,0,sales,medium +0.48,0.94,5,255,6,0,0,0,accounting,medium +0.73,0.62,3,218,3,0,0,0,accounting,medium +0.59,0.87,3,268,4,0,0,0,accounting,medium +0.81,0.57,3,224,2,0,0,0,hr,medium +0.9,0.66,3,231,3,0,0,0,hr,medium +0.41,0.84,6,191,6,0,0,0,hr,medium +0.89,0.92,4,165,5,0,0,0,hr,medium +0.48,0.84,4,252,3,0,0,0,technical,medium +0.79,0.97,5,266,2,0,0,0,technical,medium +0.98,0.66,5,248,3,0,0,0,technical,medium +0.75,0.7,4,144,4,0,0,0,technical,high +1,0.41,4,174,3,0,0,0,technical,low +0.24,0.82,5,179,6,0,0,0,technical,medium +0.84,0.43,6,246,4,0,0,0,technical,medium +0.56,0.86,4,201,3,1,0,0,technical,medium +0.92,0.93,4,208,3,0,0,0,technical,medium +0.61,0.98,3,267,3,0,0,0,technical,low +0.84,0.77,4,262,4,0,0,0,technical,low +0.85,0.59,3,235,3,0,0,0,support,low +0.67,0.57,2,160,4,0,0,0,support,low +0.54,0.94,4,267,4,0,0,0,support,low +0.75,0.56,5,175,4,0,0,0,support,low +0.82,0.79,4,224,2,0,0,0,support,low +0.76,0.6,4,177,2,0,0,0,support,low +0.19,0.53,6,191,4,0,0,0,support,low +0.61,0.41,3,138,3,0,0,0,support,low +0.51,0.8,3,218,2,1,0,0,support,low +0.52,0.88,3,179,2,1,0,0,support,low +0.74,0.58,3,241,3,0,0,0,support,low +0.98,0.91,4,240,3,0,0,0,technical,low +0.71,0.92,3,202,4,0,0,0,technical,low +0.33,0.88,6,260,3,0,0,0,technical,low +0.98,0.97,3,196,3,0,0,0,management,low +0.52,0.59,2,176,3,1,0,0,IT,low +0.84,0.65,2,140,3,0,0,0,IT,low +0.87,0.5,3,242,2,0,0,0,IT,low +0.48,0.85,3,279,4,0,0,0,IT,low +0.58,0.55,4,202,3,0,0,0,IT,medium +0.58,0.84,5,228,3,0,0,0,product_mng,medium +0.73,0.69,4,171,3,0,0,0,product_mng,medium +0.68,0.54,4,153,3,0,0,0,product_mng,medium +0.41,0.68,3,165,3,1,0,0,product_mng,medium +0.85,0.6,3,182,3,0,0,0,IT,medium +0.54,0.7,5,239,5,0,0,0,RandD,medium +0.81,0.61,5,231,2,0,0,0,RandD,medium +0.7,0.52,4,255,3,0,0,0,RandD,medium +0.63,0.66,4,237,2,1,0,0,RandD,medium +0.68,0.54,3,251,2,0,0,0,RandD,medium +0.7,0.53,4,178,2,0,0,0,marketing,medium +0.82,0.65,4,148,3,0,0,0,sales,high +0.72,0.94,4,240,4,0,0,0,accounting,low +0.77,0.78,3,269,3,0,0,0,support,medium +0.86,0.91,4,147,3,0,0,0,technical,medium +0.15,0.97,3,198,5,0,0,0,management,medium +0.81,0.99,5,143,3,0,0,0,marketing,medium +0.93,0.98,3,238,2,0,0,0,marketing,low +0.62,0.74,4,213,4,0,0,0,marketing,low +0.53,0.81,3,226,3,1,0,0,sales,low +0.86,0.99,3,169,2,1,0,0,sales,low +0.92,0.65,4,238,2,0,0,0,sales,low +0.97,0.83,4,202,3,0,0,0,sales,low +0.39,0.78,2,205,6,1,0,0,sales,low +0.45,0.66,3,111,4,0,0,0,sales,low +0.41,0.47,4,104,3,0,0,0,sales,low +0.51,0.69,3,212,3,0,0,0,sales,low +0.74,0.62,4,236,4,0,0,0,sales,low +0.69,0.57,5,245,2,1,0,0,sales,low +0.84,0.64,4,267,4,0,0,0,sales,low +0.69,0.66,5,106,5,0,0,0,sales,low +0.93,0.53,5,198,3,0,0,0,sales,low +0.33,0.45,6,239,3,0,0,0,sales,low +0.25,0.65,5,220,3,0,0,0,sales,low +0.63,0.59,5,224,3,0,0,0,sales,low +0.81,0.62,3,100,3,0,0,0,sales,low +0.12,0.87,4,244,5,0,0,0,sales,low +0.52,0.66,4,139,3,0,0,0,sales,low +0.57,0.51,2,152,2,0,0,0,accounting,medium +0.84,0.58,4,208,3,0,0,0,accounting,medium +0.6,0.95,5,205,3,0,0,0,accounting,medium +0.73,0.44,2,194,6,0,0,0,hr,medium +0.2,0.58,3,209,5,0,0,0,hr,medium +0.58,0.9,3,212,3,0,0,0,hr,medium +0.48,0.56,2,151,3,0,0,0,hr,medium +0.54,0.67,4,282,6,0,0,0,technical,medium +0.86,1,4,256,3,0,0,0,technical,medium +0.94,0.83,2,185,3,1,0,0,technical,medium +0.76,0.74,5,132,3,0,0,0,technical,medium +0.61,0.95,5,233,3,0,0,0,technical,medium +0.56,0.94,4,215,2,0,0,0,technical,high +1,0.74,3,220,4,0,0,0,technical,low +0.15,0.53,6,222,3,0,0,0,technical,medium +0.19,0.58,5,182,2,0,0,0,technical,medium +0.17,0.73,5,258,4,0,0,0,technical,medium +0.71,0.57,3,209,2,0,0,0,technical,medium +0.86,0.79,3,242,2,0,0,0,support,low +0.59,0.88,4,155,3,1,0,0,support,low +0.74,0.76,5,104,4,0,0,0,support,low +0.98,0.92,4,201,3,1,0,0,support,low +0.93,0.75,5,143,3,0,0,0,support,low +1,0.92,5,161,3,1,0,0,support,low +0.59,0.81,4,200,2,0,0,0,support,low +0.98,0.55,4,255,2,0,0,0,support,low +0.35,0.5,5,227,2,0,0,0,support,low +0.42,0.96,3,270,6,0,0,0,support,low +0.61,0.85,5,230,3,0,0,0,support,low +0.78,0.72,5,270,3,1,0,0,technical,low +0.93,0.52,4,200,3,0,0,0,technical,low +0.5,0.95,5,207,3,0,0,0,technical,low +0.67,0.51,5,182,3,0,0,0,management,low +0.75,0.85,4,234,3,0,0,0,IT,low +0.79,0.51,4,237,2,0,0,0,IT,low +0.84,0.89,4,187,2,1,0,0,IT,low +0.72,0.5,3,257,6,0,0,0,IT,low +0.57,0.48,2,194,2,0,0,0,IT,low +0.73,0.52,4,162,3,0,0,0,product_mng,low +0.74,0.58,4,148,2,0,0,0,product_mng,medium +0.52,0.83,4,210,2,0,0,0,product_mng,medium +0.56,0.76,3,213,2,1,0,0,product_mng,medium +0.76,0.68,4,189,2,1,0,0,IT,medium +0.82,0.93,4,185,2,0,0,0,RandD,medium +0.76,0.83,3,186,2,1,0,0,RandD,medium +0.62,0.59,3,128,3,0,0,0,RandD,medium +0.48,0.8,4,268,3,0,0,0,RandD,medium +0.64,0.77,3,213,3,1,0,0,RandD,medium +0.74,0.82,4,142,2,0,0,0,marketing,medium +0.52,0.43,2,199,2,0,0,0,sales,medium +0.67,0.5,4,157,2,0,0,0,accounting,medium +0.71,0.76,5,172,2,1,0,0,support,high +0.72,0.63,3,176,3,1,0,0,technical,low +0.33,0.58,2,183,2,0,0,0,management,medium +0.91,0.56,4,270,2,0,0,0,marketing,medium +0.88,0.68,5,157,4,1,0,0,marketing,medium +0.96,0.6,4,185,3,0,0,0,marketing,medium +0.97,0.68,3,167,3,0,0,0,sales,low +0.27,0.59,5,226,5,0,0,0,sales,low +0.65,0.64,3,223,4,0,0,0,sales,low +0.68,0.73,3,257,3,0,0,0,sales,low +0.68,0.46,4,143,3,0,0,0,sales,low +0.69,0.74,3,215,2,0,0,0,sales,low +0.79,0.99,3,194,4,0,0,0,sales,low +0.74,0.92,5,193,3,0,0,0,sales,low +0.8,0.83,3,163,3,0,0,0,sales,low +0.38,0.94,5,252,5,0,0,0,sales,low +0.26,0.83,3,168,3,0,0,0,sales,low +0.81,0.86,3,231,3,0,0,0,sales,low +0.67,0.54,2,141,2,0,0,0,sales,low +0.55,0.81,4,260,2,0,0,0,sales,low +0.87,0.71,3,132,2,0,0,0,sales,low +0.46,0.69,2,159,2,0,0,0,sales,low +0.63,0.57,4,177,3,1,0,0,sales,low +0.54,0.96,4,248,3,0,0,0,sales,low +1,0.49,3,185,2,0,0,0,sales,low +0.97,0.66,4,149,2,0,0,0,accounting,low +0.9,0.92,3,152,3,0,0,0,accounting,low +0.75,0.7,3,129,3,0,0,0,accounting,medium +0.92,0.84,4,208,2,0,0,0,hr,medium +0.8,0.94,4,136,2,0,0,0,hr,medium +0.57,0.81,3,142,2,0,0,0,hr,medium +0.81,0.94,3,225,4,0,0,0,hr,medium +0.64,0.6,3,143,3,0,0,0,technical,medium +0.71,0.54,4,215,3,0,0,0,technical,medium +0.35,0.58,3,229,6,1,0,0,technical,medium +0.88,0.81,5,193,5,0,0,0,technical,medium +0.13,0.59,5,160,5,0,0,0,technical,medium +0.82,0.73,4,195,5,1,0,0,technical,medium +0.17,0.92,4,189,2,0,0,0,technical,medium +0.21,0.82,4,207,5,0,0,0,technical,high +0.89,0.47,4,108,3,0,0,0,technical,low +0.2,0.72,6,224,4,0,0,0,technical,medium +0.99,0.81,5,180,3,1,0,0,technical,medium +0.26,0.85,6,152,4,0,0,0,support,medium +0.22,0.53,4,244,2,0,0,0,support,medium +0.79,0.84,3,176,3,0,0,0,support,low +0.73,0.79,4,145,2,1,0,0,support,low +0.83,0.54,3,149,3,0,0,0,support,low +0.42,0.54,3,122,4,0,0,0,support,low +0.18,0.8,2,110,5,0,0,0,support,low +0.92,0.91,4,222,2,0,0,0,support,low +0.87,0.52,3,237,3,0,0,0,support,low +0.72,0.65,4,224,3,0,0,0,support,low +0.64,0.58,5,115,5,0,0,0,support,low +1,0.66,4,180,3,0,0,0,technical,low +0.83,0.65,4,162,3,0,0,0,technical,low +0.98,0.58,4,136,3,0,0,0,technical,low +0.7,0.87,3,260,2,0,0,0,management,low +0.9,0.79,4,150,2,0,0,0,IT,low +0.55,0.99,4,248,3,0,0,0,IT,low +0.78,0.84,3,233,3,1,0,0,IT,low +0.89,0.53,5,272,3,0,0,0,IT,low +0.17,0.59,3,197,5,0,0,0,IT,low +0.14,0.64,5,164,5,0,0,0,product_mng,low +0.85,0.57,4,216,2,0,0,0,product_mng,low +0.84,0.79,4,266,3,1,0,0,product_mng,low +0.7,0.69,3,102,4,1,0,0,product_mng,medium +0.16,0.98,5,284,5,0,0,0,IT,medium +0.51,0.69,3,145,2,1,0,0,RandD,medium +0.6,0.89,3,167,4,0,0,0,RandD,medium +0.5,0.63,3,172,2,0,0,0,RandD,medium +0.43,0.39,5,198,5,0,0,0,RandD,medium +0.5,0.7,4,201,4,0,0,0,RandD,medium +0.91,0.89,4,197,4,0,0,0,marketing,medium +0.65,0.93,4,270,2,0,0,0,sales,medium +0.59,0.52,2,149,3,0,0,0,accounting,medium +0.89,0.56,3,256,3,0,0,0,support,medium +0.97,0.6,3,162,3,0,0,0,technical,medium +0.56,0.97,5,163,2,0,0,0,management,high +0.76,0.93,3,266,3,1,0,0,marketing,low +0.28,0.55,4,208,4,0,0,0,marketing,medium +0.75,0.51,4,138,4,0,0,0,marketing,medium +0.78,0.81,4,232,3,0,0,0,sales,medium +0.26,0.63,6,100,4,0,0,0,sales,medium +0.53,0.72,2,172,5,0,0,0,sales,low +0.25,0.41,3,133,6,1,0,0,sales,low +0.82,0.51,3,234,3,0,0,0,sales,low +0.71,0.57,2,183,4,0,0,0,sales,low +0.61,0.95,4,174,4,0,0,0,sales,low +0.89,0.68,3,175,2,0,0,0,sales,low +0.57,0.78,3,109,3,1,0,0,sales,low +0.93,0.8,4,248,3,0,0,0,sales,low +0.61,0.84,5,104,4,0,0,0,sales,low +0.56,0.62,3,154,2,0,0,0,sales,low +0.7,0.89,6,214,2,0,0,0,sales,low +0.9,0.64,4,209,4,0,0,0,sales,low +0.15,0.74,6,212,2,0,0,0,sales,low +0.39,0.36,3,168,3,1,0,0,sales,low +0.74,0.72,4,176,3,0,0,0,sales,low +0.7,0.61,4,163,4,1,0,0,sales,low +0.72,0.93,4,148,2,0,0,0,sales,low +0.61,0.97,3,137,3,0,0,0,accounting,low +0.96,1,5,162,3,0,0,0,accounting,low +0.7,0.59,4,216,3,0,0,0,accounting,low +0.92,0.49,3,240,2,0,0,0,hr,low +0.72,0.56,4,176,2,0,0,0,hr,medium +0.53,0.75,6,192,6,0,0,0,hr,medium +0.67,0.85,3,160,4,0,0,0,hr,medium +0.78,0.8,4,194,2,1,0,0,technical,medium +0.53,0.75,4,239,2,1,0,0,technical,medium +0.9,0.48,4,204,3,0,0,0,technical,medium +0.16,0.9,5,258,3,0,0,0,technical,medium +0.62,0.38,3,257,3,0,0,0,technical,medium +0.62,0.98,4,137,3,0,0,0,technical,medium +0.22,0.52,6,175,4,0,0,0,technical,medium +0.91,0.82,3,183,3,0,0,0,technical,medium +0.87,0.74,4,190,4,0,0,0,technical,medium +0.95,0.69,3,225,2,0,0,0,technical,high +0.99,0.75,3,215,3,0,0,0,technical,low +0.99,0.57,3,176,4,1,0,0,support,medium +0.77,0.99,4,153,3,1,0,0,support,medium +0.75,0.68,3,150,2,1,0,0,support,medium +0.83,0.54,4,259,5,0,0,0,support,medium +0.61,0.39,3,99,2,0,0,0,support,low +0.91,0.97,3,167,2,0,0,0,support,low +0.47,0.64,3,192,3,0,0,0,support,low +0.77,0.61,5,146,3,0,0,0,support,low +0.55,0.51,3,190,3,0,0,0,support,low +0.32,0.48,5,246,3,0,0,0,support,low +0.96,0.67,6,190,3,0,0,0,support,low +0.72,0.79,5,260,2,0,0,0,technical,low +0.8,0.9,4,136,3,0,0,0,technical,low +0.61,0.55,4,231,3,0,0,0,technical,low +0.97,0.88,3,204,2,0,0,0,management,low +0.63,0.93,4,201,3,0,0,0,IT,low +0.92,0.92,3,159,3,0,0,0,IT,low +0.94,0.74,5,171,3,0,0,0,IT,low +0.79,0.72,6,240,4,0,0,0,IT,low +0.75,0.73,2,152,4,0,0,0,IT,low +0.78,0.99,3,151,3,1,0,0,product_mng,low +0.96,0.45,6,232,2,1,0,0,product_mng,low +0.65,0.68,4,128,5,0,0,0,product_mng,low +0.18,0.94,3,187,6,1,0,0,product_mng,low +0.94,0.51,3,160,2,0,0,0,IT,low +0.84,0.79,4,259,3,0,0,0,RandD,medium +0.67,0.54,2,136,2,0,0,0,RandD,medium +0.71,0.5,4,253,3,0,0,0,RandD,medium +0.56,0.64,3,260,3,0,0,0,RandD,medium +0.29,0.56,5,231,6,0,0,0,RandD,medium +0.47,0.9,3,101,2,1,0,0,marketing,medium +0.4,0.69,2,174,3,0,0,0,sales,medium +0.81,0.82,4,167,2,0,0,0,accounting,medium +0.96,0.99,3,148,3,0,0,0,support,medium +0.99,0.75,6,139,5,1,0,0,technical,medium +0.75,0.77,4,136,3,0,0,0,management,medium +0.75,0.74,4,153,2,0,0,0,marketing,medium +1,0.86,4,161,2,0,0,0,marketing,high +0.52,0.53,2,163,2,0,0,0,marketing,low +0.98,0.74,3,164,3,0,0,0,sales,medium +0.6,0.64,2,137,5,0,0,0,sales,medium +0.38,0.44,3,137,3,0,0,0,sales,medium +0.51,0.41,6,106,5,0,0,0,sales,medium +0.91,0.61,2,272,2,0,0,0,sales,low +0.56,0.62,5,238,3,0,0,0,sales,low +0.58,0.69,4,223,4,0,0,0,sales,low +0.51,0.53,3,201,2,0,0,0,sales,low +0.91,0.55,6,97,4,0,0,0,sales,low +0.8,0.98,2,232,6,1,0,0,sales,low +0.55,0.83,4,199,3,0,0,0,sales,low +0.62,0.53,3,141,3,0,0,0,sales,low +0.62,0.6,3,171,2,0,0,0,sales,low +0.87,0.58,4,212,3,0,0,0,sales,low +0.65,0.5,5,270,2,0,0,0,sales,low +0.51,0.64,3,267,2,0,0,0,sales,low +0.98,0.77,3,134,2,1,0,0,sales,low +0.13,0.43,4,165,5,0,0,0,sales,low +0.78,0.76,5,168,4,1,0,0,sales,low +0.6,0.98,3,262,2,0,0,0,accounting,low +0.68,0.69,3,185,2,0,0,0,accounting,low +0.55,0.84,3,237,3,0,0,0,accounting,low +0.99,0.79,4,192,3,0,0,0,hr,low +0.92,0.68,5,236,2,0,0,0,hr,low +1,0.65,4,202,4,1,0,0,hr,low +0.77,0.93,4,171,2,0,0,0,hr,medium +0.86,0.7,5,160,3,0,0,0,technical,medium +0.89,0.84,2,252,3,0,0,0,technical,medium +0.58,0.55,5,206,3,0,0,0,technical,medium +0.56,0.66,3,212,2,0,0,0,technical,medium +0.38,0.64,3,111,3,0,0,0,technical,medium +0.62,0.64,3,240,2,0,0,0,technical,medium +0.66,0.77,2,171,2,0,0,0,technical,medium +0.3,0.44,3,129,2,0,0,0,technical,medium +0.82,0.83,3,271,2,0,0,0,technical,medium +0.96,0.68,4,162,2,0,0,0,technical,medium +0.66,0.95,3,191,3,0,0,0,technical,medium +0.79,0.5,5,176,3,0,0,0,support,high +0.97,0.77,3,182,2,1,0,0,support,low +0.59,0.65,3,226,3,0,0,0,support,medium +0.57,0.48,4,161,3,0,0,0,support,medium +0.64,0.53,4,163,3,0,0,0,support,medium +0.14,0.51,5,173,4,0,0,0,support,medium +0.48,0.55,3,228,2,0,0,0,support,low +0.78,1,3,139,3,0,0,0,support,low +0.96,0.62,5,128,5,0,0,0,support,low +0.82,0.97,3,115,2,1,0,0,support,low +0.94,0.9,5,191,4,0,0,0,support,low +0.95,0.66,4,183,3,0,0,0,technical,low +0.59,0.43,3,173,3,0,0,0,technical,low +0.69,0.89,4,174,2,0,0,0,technical,low +0.74,0.72,3,213,3,0,0,0,management,low +0.67,0.67,4,192,4,0,0,0,IT,low +0.83,0.52,3,167,2,1,0,0,IT,low +0.81,0.85,3,263,3,1,0,0,IT,low +0.54,0.73,2,100,3,0,0,0,IT,low +0.89,0.83,3,164,3,0,0,0,IT,low +0.79,0.74,5,172,2,0,0,0,product_mng,low +0.46,0.58,4,171,3,0,0,0,product_mng,low +0.99,0.93,4,236,3,0,0,0,product_mng,low +0.75,0.9,5,186,4,0,0,0,product_mng,low +0.93,0.82,4,175,3,0,0,0,IT,low +0.65,0.6,5,227,3,0,0,0,RandD,low +0.19,0.63,4,142,6,0,0,0,RandD,low +0.48,0.61,2,121,2,0,0,0,RandD,medium +0.95,0.64,5,234,3,0,0,0,RandD,medium +0.92,0.77,4,185,3,0,0,0,RandD,medium +0.84,0.54,4,160,3,0,0,0,marketing,medium +0.37,0.63,4,153,3,1,0,0,sales,medium +0.22,0.74,3,199,6,0,0,0,accounting,medium +0.64,0.54,3,166,2,0,0,0,support,medium +0.72,0.88,2,247,3,0,0,0,technical,medium +0.48,0.69,4,245,3,0,0,0,management,medium +0.12,0.55,5,242,4,0,0,0,marketing,medium +0.78,0.98,5,158,2,0,0,0,marketing,medium +0.71,0.74,3,163,3,1,0,0,marketing,medium +0.38,0.69,3,99,3,1,0,0,sales,high +0.57,0.85,4,164,3,0,0,0,sales,low +0.72,0.51,3,160,3,0,0,0,sales,medium +0.6,0.57,2,184,3,0,0,0,sales,medium +0.61,0.55,5,266,2,0,0,0,sales,medium +0.67,0.64,4,190,2,0,0,0,sales,medium +0.97,0.97,5,192,2,0,0,0,sales,low +0.22,0.6,3,205,6,1,0,0,sales,low +0.15,0.53,4,205,5,1,0,0,sales,low +0.6,0.6,3,258,3,0,0,0,sales,low +0.15,0.8,5,151,2,1,0,0,sales,low +0.5,0.81,3,148,2,0,0,0,sales,low +0.9,0.67,3,179,2,0,0,0,sales,low +0.84,0.51,6,141,2,1,0,0,sales,low +0.74,0.78,5,216,2,0,0,0,sales,low +0.72,0.51,3,235,2,0,0,0,sales,low +0.93,0.63,3,160,4,1,0,0,sales,low +0.54,0.69,3,141,4,0,0,0,sales,low +0.87,0.65,4,246,2,1,0,0,sales,low +0.19,0.98,5,226,4,1,0,0,accounting,low +0.33,0.4,4,212,2,1,0,0,accounting,low +0.94,0.93,4,220,3,0,0,0,accounting,low +0.77,0.49,4,266,2,0,0,0,hr,low +0.48,0.82,3,183,2,0,0,0,hr,low +0.7,0.74,5,263,3,1,0,0,hr,low +0.54,0.93,4,161,4,1,0,0,hr,low +0.61,0.98,4,199,2,0,0,0,technical,low +0.97,0.4,4,258,4,1,0,0,technical,medium +0.6,0.85,3,209,2,1,0,0,technical,medium +0.93,0.84,5,135,3,0,0,0,technical,medium +0.48,0.69,4,222,2,0,0,0,technical,medium +0.16,0.76,5,192,3,0,0,0,technical,medium +0.18,0.75,3,250,3,0,0,0,technical,medium +0.84,0.75,3,187,3,1,0,0,technical,medium +0.69,0.63,4,217,3,0,0,0,technical,medium +0.22,0.88,4,213,3,1,0,0,technical,medium +0.83,0.52,4,273,3,0,0,0,technical,medium +0.58,0.5,2,132,3,0,0,0,support,medium +0.61,0.62,4,140,3,1,0,0,support,medium +0.67,0.5,4,173,2,1,0,0,support,high +0.56,0.76,4,189,2,0,0,0,support,low +0.74,0.74,3,156,3,0,0,0,support,medium +0.92,0.97,4,238,5,1,0,0,support,medium +0.81,0.68,5,230,2,0,0,0,support,medium +0.48,0.49,4,242,2,1,0,0,support,medium +0.73,0.72,4,197,3,0,0,0,support,low +0.97,0.66,6,164,5,0,0,0,support,low +0.15,0.51,6,248,5,0,0,0,support,low +0.69,0.76,5,255,6,0,0,0,technical,low +0.61,0.68,5,225,4,0,0,0,technical,low +0.86,0.58,3,151,2,0,0,0,technical,low +0.55,0.88,4,252,3,0,0,0,management,low +0.9,0.74,4,206,4,1,0,0,IT,low +0.65,0.4,2,141,2,0,0,0,IT,low +0.81,0.92,5,259,3,0,0,0,IT,low +0.65,0.86,5,250,3,0,0,0,IT,low +0.47,0.86,4,169,6,0,0,0,IT,low +0.93,0.53,3,200,3,1,0,0,product_mng,low +0.77,0.9,4,104,5,0,0,0,product_mng,low +0.87,0.82,6,176,3,0,0,0,product_mng,low +0.87,0.84,5,137,2,0,0,0,product_mng,low +0.65,0.75,2,151,3,0,0,0,IT,low +0.21,0.7,6,130,6,1,0,0,RandD,low +0.75,0.59,4,199,2,0,0,0,RandD,low +0.72,0.86,4,191,2,0,0,0,RandD,low +0.88,0.63,3,273,3,1,0,0,RandD,low +0.66,0.58,3,205,3,0,0,0,RandD,medium +0.8,0.75,3,181,3,0,0,0,marketing,medium +0.22,0.55,4,261,3,1,0,0,sales,medium +0.92,0.69,3,192,3,0,0,0,accounting,medium +0.54,0.77,4,271,3,0,0,0,support,medium +0.91,0.56,4,158,3,0,0,0,technical,medium +0.77,0.83,4,231,2,0,0,0,management,medium +0.61,0.51,3,156,3,1,0,0,marketing,medium +0.48,0.9,4,201,4,0,0,0,marketing,medium +0.25,0.69,3,187,4,0,0,0,marketing,medium +0.91,0.7,3,132,4,0,0,0,sales,medium +0.72,0.58,5,147,3,1,0,0,sales,medium +0.77,0.71,4,223,3,0,0,0,sales,high +0.41,0.4,2,194,2,0,0,0,sales,low +0.51,0.49,4,234,2,0,0,0,sales,medium +0.72,0.79,3,149,3,0,0,0,sales,medium +0.47,0.57,3,162,3,1,0,0,sales,medium +0.53,0.67,4,238,2,0,0,0,sales,medium +0.65,0.52,5,149,3,0,0,0,sales,low +0.18,0.75,4,170,5,0,0,0,sales,low +0.61,0.48,3,250,2,0,0,0,sales,low +0.86,0.72,4,167,2,0,0,0,sales,low +0.14,0.77,4,166,5,0,0,0,sales,low +0.63,0.8,3,205,2,0,0,0,sales,low +0.79,0.57,3,250,3,0,0,0,sales,low +0.78,0.97,4,142,3,0,0,0,sales,low +0.14,0.52,4,217,6,0,0,0,sales,low +0.85,0.54,3,139,3,0,0,0,sales,low +0.85,0.75,4,139,3,0,0,0,sales,low +0.91,0.76,5,152,3,0,0,0,accounting,low +0.76,0.74,3,224,2,0,0,0,accounting,low +0.62,0.72,5,180,3,0,0,0,accounting,low +0.53,0.69,4,216,2,0,0,0,hr,low +0.97,0.63,3,133,3,0,0,0,hr,low +0.48,0.53,4,271,3,0,0,0,hr,low +0.5,0.55,4,148,3,1,0,0,hr,low +0.32,0.42,2,99,4,0,0,0,technical,low +0.58,0.77,4,196,2,1,0,0,technical,low +0.81,0.83,3,196,2,0,0,0,technical,low +0.48,0.84,4,228,3,0,0,0,technical,medium +0.96,0.88,4,165,2,0,0,0,technical,medium +0.56,0.9,3,235,2,0,0,0,technical,medium +0.63,0.96,4,167,2,0,0,0,technical,medium +0.21,0.5,5,255,5,0,0,0,technical,medium +0.94,0.78,3,184,3,1,0,0,technical,medium +0.94,0.89,4,239,3,0,0,0,technical,medium +0.96,0.54,3,153,2,0,0,0,technical,medium +0.49,0.5,4,187,5,1,0,0,support,medium +0.82,0.68,2,285,2,0,0,0,support,medium +0.6,0.5,3,274,3,0,0,0,support,medium +0.76,0.5,3,156,3,1,0,0,support,medium +0.69,0.64,5,265,2,1,0,0,support,high +1,0.94,4,144,3,0,0,0,support,low +0.62,0.66,4,143,3,0,0,0,support,medium +0.4,0.99,4,214,6,1,0,0,support,medium +0.94,0.91,3,163,3,0,0,0,support,medium +0.76,0.84,4,236,4,0,0,0,support,medium +0.58,0.69,3,146,4,0,0,0,support,low +0.85,0.78,4,106,2,0,0,0,technical,low +0.45,0.52,2,105,3,0,0,0,technical,low +0.13,0.67,3,181,4,0,0,0,technical,low +0.24,0.5,5,174,4,0,0,0,management,low +0.64,0.69,3,207,2,1,0,0,IT,low +0.63,0.61,6,118,2,0,0,0,IT,low +0.61,0.99,4,251,2,0,0,0,IT,low +0.71,0.99,2,136,3,0,0,0,IT,low +0.9,0.89,5,249,3,1,0,0,IT,low +0.17,0.76,4,171,5,0,0,0,product_mng,low +0.93,0.97,3,256,2,1,0,0,product_mng,low +0.83,0.89,5,141,3,1,0,0,product_mng,low +0.58,0.75,4,186,2,0,0,0,product_mng,low +0.76,0.5,3,258,3,0,0,0,IT,low +0.5,0.78,3,228,2,0,0,0,RandD,low +0.22,0.81,5,205,4,0,0,0,RandD,low +0.9,0.88,4,174,3,0,0,0,RandD,low +0.7,0.63,3,155,4,1,0,0,RandD,low +0.73,0.85,5,245,3,0,0,0,RandD,low +0.84,0.87,3,271,3,0,0,0,marketing,low +0.55,0.63,5,184,4,0,0,0,marketing,medium +0.63,0.98,4,175,2,0,0,0,sales,medium +0.51,0.92,3,224,3,0,0,0,accounting,medium +0.81,0.76,4,177,3,0,0,0,support,medium +0.8,0.96,4,268,3,0,0,0,technical,medium +0.99,0.97,4,208,3,0,0,0,management,medium +0.9,0.87,5,219,2,0,0,0,marketing,medium +0.65,0.67,5,128,5,0,0,0,marketing,medium +0.75,0.75,3,273,3,0,0,0,marketing,medium +0.62,0.49,4,218,4,0,0,0,sales,medium +0.61,0.63,5,230,3,0,0,0,sales,medium +0.24,0.6,4,195,5,0,0,0,sales,medium +0.71,0.63,3,254,3,1,0,0,sales,high +0.49,0.8,2,275,2,0,0,0,sales,low +0.44,0.66,3,162,2,0,0,0,sales,medium +0.75,0.87,4,193,3,0,0,0,sales,medium +0.74,0.84,3,239,4,0,0,0,sales,medium +0.62,0.87,5,149,3,0,0,0,sales,medium +0.51,0.58,3,155,3,0,0,0,sales,low +0.61,0.59,5,271,2,0,0,0,sales,low +0.56,0.49,5,163,3,0,0,0,sales,low +0.79,0.76,3,160,3,0,0,0,sales,low +0.68,0.75,6,274,5,0,0,0,sales,low +0.9,0.84,2,199,3,0,0,0,sales,low +0.83,0.93,5,241,3,0,0,0,sales,low +0.94,0.82,3,187,3,0,0,0,sales,low +0.21,0.65,5,223,3,1,0,0,sales,low +0.58,0.87,3,268,2,0,0,0,sales,low +0.52,0.38,6,169,3,0,0,0,accounting,low +0.18,0.67,5,285,5,0,0,0,accounting,low +0.94,0.91,5,254,3,0,0,0,accounting,low +0.69,0.5,3,208,4,0,0,0,hr,low +0.65,0.83,4,218,3,0,0,0,hr,low +0.46,0.62,2,187,3,0,0,0,hr,low +0.72,0.62,4,256,3,0,0,0,hr,low +0.3,0.37,6,278,3,0,0,0,technical,low +0.51,0.51,4,204,2,0,0,0,technical,low +0.43,0.75,3,108,2,0,0,0,technical,low +0.56,0.94,3,226,2,0,0,0,technical,low +0.63,0.91,4,246,3,0,0,0,technical,medium +0.61,0.55,5,260,3,0,0,0,technical,medium +0.53,0.73,4,248,2,0,0,0,technical,medium +0.87,0.75,3,132,3,0,0,0,technical,medium +0.68,0.7,4,185,4,0,0,0,technical,medium +0.78,0.84,3,269,2,0,0,0,technical,medium +0.49,0.95,4,156,2,0,0,0,technical,medium +0.96,0.81,3,212,3,0,0,0,support,medium +0.83,0.74,3,221,2,0,0,0,support,medium +0.48,0.67,5,273,3,0,0,0,support,medium +0.63,0.86,4,271,3,1,0,0,support,medium +0.87,0.38,4,183,5,0,0,0,support,medium +0.21,0.9,4,271,6,0,0,0,support,high +0.79,0.58,5,165,3,0,0,0,support,low +0.8,0.96,3,257,5,0,0,0,support,medium +0.78,0.82,4,143,3,0,0,0,support,medium +0.67,0.65,5,156,2,0,0,0,support,medium +0.67,0.71,3,190,3,1,0,0,support,medium +0.26,0.67,2,242,6,0,0,0,technical,low +0.89,0.83,5,267,4,0,0,0,technical,low +0.7,0.53,4,152,3,0,0,0,technical,low +0.51,0.48,5,136,4,0,0,0,management,low +0.53,0.88,3,157,3,0,0,0,IT,low +0.76,0.51,4,281,3,0,0,0,IT,low +0.86,0.93,5,208,2,0,0,0,IT,low +0.63,0.96,5,152,3,0,0,0,IT,low +0.58,0.86,5,271,3,0,0,0,IT,low +0.58,0.83,4,163,3,1,0,0,product_mng,low +0.9,0.82,4,136,3,0,0,0,product_mng,low +0.79,0.57,4,233,2,0,0,0,product_mng,low +0.8,0.74,4,221,4,0,0,0,product_mng,low +0.53,0.65,2,189,2,1,0,0,IT,low +0.52,0.84,2,226,3,0,0,0,RandD,low +0.82,0.59,5,201,3,0,0,0,RandD,low +0.68,0.9,2,133,4,0,0,0,RandD,low +0.21,0.61,3,173,2,0,0,0,RandD,low +0.81,0.5,4,152,3,1,0,0,RandD,low +0.57,0.9,3,256,4,0,0,0,RandD,low +0.99,0.72,3,119,2,1,0,0,marketing,low +0.9,1,4,207,3,0,0,0,sales,medium +0.76,0.64,3,189,3,0,0,0,accounting,medium +0.56,0.92,4,172,2,0,0,0,support,medium +0.5,0.93,6,150,3,1,0,0,technical,medium +0.48,0.89,5,179,3,0,0,0,management,medium +0.99,0.97,3,257,2,0,0,0,marketing,medium +0.76,0.8,5,229,2,0,0,0,marketing,medium +0.93,0.97,4,227,3,0,0,0,marketing,medium +0.99,0.78,4,140,3,0,0,0,sales,medium +0.85,0.78,4,251,3,0,0,0,sales,medium +0.63,0.95,4,137,3,0,0,0,sales,medium +0.63,0.78,3,153,3,1,0,0,sales,medium +0.5,0.65,5,242,3,0,0,0,sales,high +0.52,0.57,3,150,3,0,0,0,sales,low +0.63,0.99,3,247,3,0,0,0,sales,medium +0.78,0.5,4,212,2,0,0,0,sales,medium +0.98,0.53,3,234,3,0,0,0,sales,medium +0.14,1,5,174,5,0,0,0,sales,medium +0.7,0.9,3,225,2,0,0,0,sales,low +0.88,0.6,4,224,2,0,0,0,sales,low +0.72,0.62,3,270,4,0,0,0,sales,low +0.88,0.51,4,139,3,0,0,0,sales,low +0.71,0.51,3,248,4,0,0,0,sales,low +0.6,0.85,3,172,2,0,0,0,sales,low +0.88,0.86,4,224,3,1,0,0,sales,low +0.55,0.72,5,232,4,0,0,0,sales,low +0.85,0.55,4,260,2,1,0,0,sales,low +0.84,0.51,2,117,4,0,0,0,accounting,low +0.91,0.61,4,243,2,1,0,0,accounting,low +0.82,0.62,4,202,2,0,0,0,accounting,low +0.6,0.91,2,168,4,0,0,0,hr,low +0.89,0.71,5,194,3,0,0,0,hr,low +0.6,0.97,4,219,4,1,0,0,hr,low +0.64,0.52,4,207,3,0,0,0,hr,low +0.93,0.88,4,177,3,0,0,0,technical,low +0.81,0.99,3,239,2,1,0,0,technical,low +0.31,0.49,4,165,3,1,0,0,technical,low +0.68,0.69,4,225,2,0,0,0,technical,low +0.78,0.59,3,212,2,0,0,0,technical,low +0.44,0.42,4,159,4,0,0,0,technical,medium +0.64,0.93,4,233,2,1,0,0,technical,medium +0.81,0.63,4,108,6,0,0,0,technical,medium +0.5,0.49,3,214,3,0,0,0,technical,medium +0.69,0.61,5,229,3,0,0,0,technical,medium +0.77,0.75,4,223,3,0,0,0,technical,medium +0.69,0.56,4,178,3,0,0,0,support,medium +0.87,0.68,4,246,2,0,0,0,support,medium +0.85,0.91,4,145,3,0,0,0,support,medium +0.83,0.83,4,224,4,0,0,0,support,medium +0.68,0.51,3,259,3,0,0,0,support,medium +0.78,0.65,4,207,2,0,0,0,support,medium +0.78,0.89,3,253,3,0,0,0,support,high +0.93,0.68,4,196,2,1,0,0,support,low +0.54,0.75,3,240,3,0,0,0,support,medium +0.76,0.56,3,255,3,0,0,0,support,medium +0.4,0.72,3,139,2,0,0,0,support,medium +0.73,0.81,3,168,2,0,0,0,technical,medium +0.86,0.98,5,233,3,0,0,0,technical,low +0.38,0.68,5,211,6,0,0,0,technical,low +0.71,0.48,5,114,3,0,0,0,management,low +0.58,0.97,5,202,2,0,0,0,IT,low +0.67,0.59,3,177,3,1,0,0,IT,low +0.55,0.76,4,233,4,0,0,0,IT,low +0.76,0.98,2,111,2,0,0,0,IT,low +0.7,0.82,3,178,3,0,0,0,IT,low +0.66,0.46,4,204,4,0,0,0,product_mng,low +0.96,0.72,3,272,3,0,0,0,product_mng,low +0.6,0.77,4,157,4,0,0,0,product_mng,low +0.54,0.94,5,229,3,1,0,0,product_mng,low +0.85,0.9,5,202,3,0,0,0,IT,low +0.96,0.84,3,264,3,0,0,0,RandD,low +0.86,0.62,3,256,3,1,0,0,RandD,low +0.53,0.87,3,151,2,0,0,0,RandD,low +0.91,0.95,3,251,3,0,0,0,RandD,low +0.33,0.7,5,271,4,0,0,0,RandD,low +0.75,0.73,4,274,2,0,0,0,RandD,low +0.97,0.8,3,169,3,0,0,0,marketing,low +0.68,0.51,4,176,4,1,0,0,sales,low +0.68,0.7,5,168,2,0,0,0,accounting,medium +0.57,0.87,4,171,2,0,0,0,support,medium +0.87,0.9,4,214,3,0,0,0,technical,medium +0.5,0.91,5,224,2,1,0,0,management,medium +0.76,0.59,3,191,4,0,0,0,marketing,medium +0.79,0.61,5,96,4,0,0,0,marketing,medium +0.17,0.9,6,217,6,1,0,0,marketing,medium +0.6,0.62,4,135,2,1,0,0,sales,medium +0.89,0.67,3,226,3,0,0,0,sales,medium +0.69,0.87,3,202,2,0,0,0,sales,medium +0.68,0.85,2,180,6,0,0,0,sales,medium +0.61,0.87,5,174,4,0,0,0,sales,medium +0.63,0.5,3,140,2,0,0,0,sales,high +0.5,0.96,4,147,3,0,0,0,sales,low +0.49,0.74,2,263,3,1,0,0,sales,medium +0.83,0.55,5,261,5,0,0,0,sales,medium +0.59,0.71,2,176,2,1,0,0,sales,medium +0.75,0.93,2,98,5,0,0,0,sales,medium +0.66,0.48,3,192,3,1,0,0,sales,low +0.68,0.51,4,157,3,0,0,0,sales,low +0.73,0.58,5,230,3,0,0,0,sales,low +0.98,0.53,4,192,2,1,0,0,sales,low +0.86,0.65,3,161,3,0,0,0,sales,low +0.5,0.55,3,176,3,0,0,0,sales,low +0.76,0.76,3,216,3,0,0,0,sales,low +0.3,0.47,4,176,2,0,0,0,sales,low +0.3,0.86,3,276,5,1,0,0,accounting,low +0.64,0.59,3,174,3,1,0,0,accounting,low +0.59,0.75,3,106,2,0,0,0,accounting,low +0.85,0.63,4,154,3,0,0,0,hr,low +0.76,0.93,3,271,5,0,0,0,hr,low +0.63,0.5,5,246,2,0,0,0,hr,low +0.65,0.86,4,264,2,1,0,0,hr,low +0.43,0.68,3,197,2,0,0,0,technical,low +0.83,0.56,4,165,2,0,0,0,technical,low +0.49,0.77,4,218,2,0,0,0,technical,low +0.67,0.73,3,203,2,0,0,0,technical,low +0.9,0.47,2,107,6,1,0,0,technical,low +0.83,0.96,3,179,2,0,0,0,technical,low +0.92,0.84,5,264,3,0,0,0,technical,medium +0.83,0.7,5,154,3,0,0,0,technical,medium +0.64,0.55,4,167,3,1,0,0,technical,medium +0.93,0.97,4,158,3,1,0,0,technical,medium +0.6,0.87,4,227,3,1,0,0,technical,medium +0.74,0.69,3,230,2,0,0,0,support,medium +0.56,0.75,5,143,5,0,0,0,support,medium +0.61,0.77,4,142,3,0,0,0,support,medium +0.63,0.62,4,184,4,0,0,0,support,medium +0.24,0.62,5,169,4,0,0,0,support,medium +0.17,0.56,5,218,4,1,0,0,support,medium +0.46,0.64,2,121,3,0,0,0,support,medium +0.68,0.48,4,251,4,0,0,0,support,high +0.68,0.6,2,192,6,0,0,0,support,low +0.16,0.71,6,227,5,0,0,0,support,medium +0.15,0.56,6,140,5,0,0,0,support,medium +0.55,0.49,3,152,2,0,0,0,technical,medium +0.72,0.66,4,202,4,0,0,0,technical,medium +0.91,0.89,2,219,4,0,0,0,technical,low +0.3,0.91,4,248,4,0,0,0,management,low +0.56,0.68,5,203,2,0,0,0,IT,low +0.94,0.94,3,255,3,0,0,0,IT,low +0.82,0.63,5,177,3,0,0,0,IT,low +0.66,0.86,5,185,3,0,0,0,IT,low +0.74,0.64,4,101,6,1,0,0,IT,low +0.63,0.5,3,246,3,0,0,0,product_mng,low +0.65,0.42,6,220,2,0,0,0,product_mng,low +0.56,0.81,3,145,2,0,0,0,product_mng,low +0.32,0.73,6,194,5,0,0,0,product_mng,low +0.8,0.9,4,241,2,0,0,0,IT,low +0.34,0.87,6,175,4,0,0,0,RandD,low +0.62,0.71,5,149,2,0,0,0,RandD,low +0.5,0.86,3,253,2,0,0,0,RandD,low +0.58,0.98,5,218,3,0,0,0,RandD,low +0.94,0.9,2,263,3,0,0,0,RandD,low +0.67,0.99,4,247,3,1,0,0,RandD,low +0.2,0.74,6,148,4,0,0,0,marketing,low +0.91,0.59,5,162,2,0,0,0,sales,low +0.91,0.67,2,255,4,0,0,0,accounting,low +0.78,0.87,3,191,3,1,0,0,support,medium +0.82,0.55,3,217,4,1,0,0,technical,medium +0.54,0.96,3,201,3,0,0,0,management,medium +0.53,0.81,3,253,3,0,0,0,marketing,medium +0.47,0.55,4,122,5,1,0,0,marketing,medium +0.87,0.5,3,269,3,0,0,0,marketing,medium +0.5,0.68,4,161,3,0,0,0,sales,medium +0.59,0.83,3,156,2,0,0,0,sales,medium +0.89,0.69,3,173,3,0,0,0,sales,medium +0.54,0.49,4,152,3,1,0,0,sales,medium +0.62,0.85,3,145,3,0,0,0,sales,medium +0.91,0.85,3,248,3,0,0,0,sales,medium +0.84,0.99,2,184,2,0,0,0,sales,high +0.69,0.65,4,232,2,1,0,0,sales,low +0.76,0.63,3,162,2,0,0,0,sales,medium +0.8,0.54,4,269,3,0,0,0,sales,medium +0.4,0.47,5,108,3,0,0,0,sales,medium +0.8,0.99,3,248,3,1,0,0,sales,medium +0.76,0.4,2,122,5,0,0,0,sales,low +0.55,0.9,4,273,2,1,0,0,sales,low +0.98,0.63,3,285,6,0,0,0,sales,low +0.54,0.56,4,227,3,0,0,0,sales,low +0.63,0.56,4,248,2,1,0,0,sales,low +0.88,0.63,3,257,3,0,0,0,sales,low +0.5,0.95,5,194,3,0,0,0,sales,low +0.52,0.72,3,253,3,0,0,0,accounting,low +0.89,0.95,4,141,3,0,0,0,accounting,low +0.55,0.9,4,199,3,0,0,0,accounting,low +0.51,0.81,3,143,2,0,0,0,hr,low +0.35,0.52,5,244,3,0,0,0,hr,low +0.54,0.71,5,173,2,0,0,0,hr,low +0.72,0.84,4,186,3,0,0,0,hr,low +0.61,0.93,2,247,3,0,0,0,technical,low +0.17,0.93,3,218,4,0,0,0,technical,low +0.71,0.88,3,140,2,0,0,0,technical,low +0.88,0.52,4,166,2,0,0,0,technical,low +0.48,1,3,216,2,0,0,0,technical,low +0.16,0.97,6,235,3,0,0,0,technical,low +0.62,0.72,3,188,3,0,0,0,technical,low +0.59,0.47,3,143,2,0,0,0,technical,medium +0.14,0.9,4,198,4,0,0,0,technical,medium +0.96,0.92,4,148,3,0,0,0,technical,medium +0.96,0.42,6,101,4,0,0,0,technical,medium +0.13,0.89,4,249,6,1,0,0,support,medium +0.64,0.61,5,249,3,1,0,0,support,medium +0.64,0.67,5,198,2,1,0,0,support,medium +0.57,0.72,3,202,3,1,0,0,support,medium +0.49,1,3,176,3,0,0,0,support,medium +0.89,0.79,4,133,2,0,0,0,support,medium +0.94,0.75,5,238,2,0,0,0,support,medium +0.51,0.58,2,181,4,0,0,0,support,medium +0.8,0.85,5,242,3,0,0,0,support,high +0.74,0.51,4,185,2,1,0,0,support,low +0.66,0.85,4,237,3,1,0,0,support,medium +0.66,0.99,5,244,3,0,0,0,technical,medium +0.59,0.62,3,178,4,0,0,0,technical,medium +0.91,0.57,3,164,3,0,0,0,technical,medium +0.83,0.98,5,189,4,1,0,0,management,low +0.5,0.91,3,212,2,0,0,0,IT,low +0.69,0.97,4,233,3,0,0,0,IT,low +0.87,0.91,5,268,3,0,0,0,IT,low +0.37,0.43,2,155,2,0,0,0,IT,low +0.9,0.98,4,257,3,0,0,0,IT,low +0.68,0.41,4,254,5,0,0,0,product_mng,low +0.93,0.63,4,143,3,1,0,0,product_mng,low +0.95,0.45,3,225,2,0,0,0,product_mng,low +0.99,1,4,223,2,1,0,0,product_mng,low +0.64,0.9,2,101,6,0,0,0,IT,low +0.96,0.37,2,159,6,0,0,0,RandD,low +0.92,0.54,5,141,2,0,0,0,RandD,low +0.22,0.52,5,147,5,1,0,0,RandD,low +0.82,0.99,5,252,3,1,0,0,RandD,low +0.75,0.89,3,196,3,0,0,0,RandD,low +0.2,0.89,6,244,3,0,0,0,RandD,low +0.64,0.73,3,142,3,0,0,0,marketing,low +0.62,0.9,4,155,4,0,0,0,sales,low +0.73,0.59,3,219,2,0,0,0,accounting,low +0.52,0.51,3,213,4,0,0,0,support,low +0.63,0.67,5,263,3,0,0,0,technical,medium +0.84,0.92,4,274,3,0,0,0,management,medium +0.49,0.96,3,140,3,0,0,0,marketing,medium +0.54,0.78,4,176,2,0,0,0,marketing,medium +0.52,0.78,4,206,2,0,0,0,marketing,medium +0.66,0.63,6,223,6,0,0,0,sales,medium +0.73,0.41,2,231,6,1,0,0,sales,medium +0.54,0.64,3,250,3,0,0,0,sales,medium +0.72,0.68,5,266,4,0,0,0,sales,medium +0.75,0.64,4,247,3,1,0,0,sales,medium +0.77,0.57,3,189,2,0,0,0,sales,medium +0.42,0.94,5,227,5,0,0,0,sales,medium +0.13,0.69,4,127,4,0,0,0,sales,high +0.73,0.88,5,204,5,0,0,0,sales,low +0.5,0.95,5,137,3,0,0,0,sales,medium +0.92,0.62,4,265,3,1,0,0,sales,medium +0.73,0.66,3,135,2,0,0,0,sales,medium +0.74,0.38,2,126,3,0,0,0,sales,medium +0.76,0.78,3,189,2,0,0,0,sales,low +0.53,0.92,3,207,4,1,0,0,sales,low +0.65,0.72,3,134,3,0,0,0,sales,low +0.91,0.85,4,203,2,0,0,0,sales,low +0.69,0.76,5,222,3,1,0,0,sales,low +0.56,0.66,3,232,2,0,0,0,sales,low +0.55,0.81,4,267,5,0,0,0,accounting,low +0.74,0.5,5,131,3,0,0,0,accounting,low +0.86,0.86,3,155,4,0,0,0,accounting,low +0.82,0.74,3,232,3,0,0,0,hr,low +0.35,0.8,3,137,5,0,0,0,hr,low +0.93,0.99,4,136,4,0,0,0,hr,low +0.55,0.77,3,237,2,0,0,0,hr,low +0.99,0.68,4,190,3,0,0,0,technical,low +0.91,0.89,4,144,3,1,0,0,technical,low +0.24,0.65,6,194,3,0,0,0,technical,low +0.77,0.67,3,186,2,0,0,0,technical,low +0.64,0.66,3,218,3,0,0,0,technical,low +0.58,0.76,5,260,2,1,0,0,technical,low +0.65,0.99,4,200,4,0,0,0,technical,low +0.44,0.68,3,140,3,0,0,0,technical,low +0.59,0.75,2,156,3,0,0,0,technical,medium +0.99,0.56,3,193,3,1,0,0,technical,medium +0.75,0.79,4,145,3,0,0,0,technical,medium +0.77,0.49,4,217,2,0,0,0,support,medium +0.85,0.64,4,162,3,0,0,0,support,medium +0.77,0.93,5,182,4,0,0,0,support,medium +0.54,0.95,3,221,3,0,0,0,support,medium +0.69,0.82,4,208,2,0,0,0,support,medium +0.66,0.65,5,161,3,0,0,0,support,medium +0.51,0.65,4,269,3,0,0,0,support,medium +0.74,0.59,4,155,3,0,0,0,support,medium +0.55,0.72,3,110,3,0,0,0,support,medium +0.65,0.84,3,154,3,0,0,0,support,high +0.2,0.77,6,213,4,0,0,0,support,low +0.92,0.94,5,248,3,0,0,0,technical,medium +0.57,0.6,3,202,3,0,0,0,technical,medium +0.75,0.78,2,251,6,0,0,0,technical,medium +0.68,0.84,3,239,2,0,0,0,management,medium +0.97,0.7,3,203,3,0,0,0,IT,low +0.79,0.48,4,184,5,1,0,0,IT,low +0.66,0.75,4,203,3,1,0,0,IT,low +0.96,0.69,3,214,2,1,0,0,IT,low +0.73,0.69,4,161,3,0,0,0,IT,low +0.29,0.58,5,234,2,0,0,0,product_mng,low +0.58,0.56,3,151,2,0,0,0,product_mng,low +0.72,0.58,4,149,3,0,0,0,product_mng,low +0.94,0.87,4,240,3,0,0,0,product_mng,low +0.48,0.56,5,140,2,0,0,0,IT,low +0.6,0.99,3,187,2,0,0,0,RandD,low +0.97,0.58,5,156,2,1,0,0,RandD,low +0.74,0.41,4,250,4,0,0,0,RandD,low +0.97,0.61,3,165,2,0,0,0,RandD,low +0.88,0.67,5,260,3,1,0,0,RandD,low +0.5,0.7,3,274,3,0,0,0,marketing,low +0.93,0.98,4,160,3,0,0,0,sales,low +0.3,0.7,5,280,4,1,0,0,accounting,low +0.69,0.53,3,142,3,0,0,0,support,low +0.69,0.9,2,155,2,0,0,0,technical,low +0.53,0.67,4,167,2,0,0,0,management,low +0.32,0.8,3,263,3,0,0,0,marketing,medium +0.73,0.75,3,259,4,0,0,0,marketing,medium +0.77,0.61,4,223,3,0,0,0,marketing,medium +0.59,0.81,6,123,5,0,0,0,sales,medium +0.19,0.51,5,226,3,0,0,0,sales,medium +0.78,0.95,3,270,2,0,0,0,sales,medium +0.84,0.74,3,139,3,0,0,0,sales,medium +0.65,0.77,5,241,2,0,0,0,sales,medium +0.38,0.43,2,160,6,0,0,0,sales,medium +0.12,0.47,3,258,5,0,0,0,sales,medium +0.74,0.81,5,106,5,0,0,0,sales,medium +0.67,0.82,4,171,2,0,0,0,sales,medium +0.5,0.79,3,186,3,0,0,0,sales,high +0.99,0.39,6,214,5,1,0,0,sales,low +0.79,0.89,4,240,3,0,0,0,sales,medium +0.72,0.51,4,164,3,0,0,0,sales,medium +0.83,0.57,4,232,3,0,0,0,sales,medium +0.69,0.55,5,242,2,0,0,0,sales,medium +0.5,0.89,5,222,3,0,0,0,sales,low +0.82,0.84,3,139,2,1,0,0,sales,low +0.68,0.56,4,272,3,0,0,0,sales,low +0.82,0.69,4,262,2,0,0,0,sales,low +0.32,0.81,2,249,3,0,0,0,accounting,low +0.93,0.86,4,219,3,0,0,0,accounting,low +0.42,0.73,4,208,5,0,0,0,accounting,low +0.22,0.44,3,166,6,0,0,0,hr,low +0.56,0.88,3,174,3,0,0,0,hr,low +0.77,0.75,4,225,3,0,0,0,hr,low +0.29,0.48,2,116,6,1,0,0,hr,low +0.97,0.65,3,219,2,0,0,0,technical,low +0.91,0.7,4,196,2,0,0,0,technical,low +0.52,0.67,4,210,3,1,0,0,technical,low +0.54,0.64,2,219,3,0,0,0,technical,low +0.54,0.98,3,197,3,0,0,0,technical,low +0.67,0.52,2,102,6,0,0,0,technical,low +0.72,0.85,3,186,4,0,0,0,technical,low +0.68,0.51,4,224,2,0,0,0,technical,low +0.65,0.98,3,283,2,1,0,0,technical,low +0.72,0.98,5,197,4,0,0,0,technical,low +0.51,0.79,5,267,3,0,0,0,technical,medium +0.8,0.58,4,172,3,0,0,0,support,medium +0.83,0.93,4,261,2,0,0,0,support,medium +0.15,0.86,3,204,4,0,0,0,support,medium +0.5,0.73,4,237,2,0,0,0,support,medium +0.8,0.55,2,212,3,0,0,0,support,medium +0.96,0.62,4,217,2,0,0,0,support,medium +0.67,0.7,5,159,3,1,0,0,support,medium +0.98,0.96,5,139,3,0,0,0,support,medium +0.88,0.59,5,230,3,0,0,0,support,medium +0.85,0.79,3,157,4,0,0,0,support,medium +0.75,0.7,5,269,3,0,0,0,support,medium +0.38,0.77,2,170,3,0,0,0,technical,high +0.55,0.82,2,197,4,0,0,0,technical,low +0.63,0.89,4,246,3,0,0,0,technical,medium +0.78,0.51,4,278,3,0,0,0,management,medium +0.99,0.84,5,138,2,0,0,0,IT,medium +0.72,0.87,3,238,3,0,0,0,IT,medium +0.14,0.83,5,175,6,1,0,0,IT,low +0.81,0.67,4,216,3,0,0,0,IT,low +0.73,0.86,4,196,4,1,0,0,IT,low +0.58,0.8,5,187,3,1,0,0,product_mng,low +0.24,0.85,4,155,5,0,0,0,product_mng,low +0.31,0.86,3,205,5,0,0,0,product_mng,low +0.74,0.63,3,230,2,0,0,0,product_mng,low +0.86,0.69,5,157,3,0,0,0,IT,low +0.22,0.8,4,287,4,0,0,0,RandD,low +0.66,0.7,4,161,3,0,0,0,RandD,low +0.21,0.76,5,239,2,0,0,0,RandD,low +0.95,0.61,3,267,2,0,0,0,RandD,low +0.24,0.55,5,208,5,0,0,0,RandD,low +0.66,0.95,3,133,3,0,0,0,marketing,low +0.88,0.86,3,187,3,0,0,0,marketing,low +0.67,0.61,4,140,2,0,0,0,sales,low +0.75,0.58,4,270,3,0,0,0,accounting,low +0.93,0.48,3,147,3,0,0,0,support,low +0.64,0.71,3,181,2,0,0,0,technical,low +0.51,0.53,3,156,3,0,0,0,management,low +0.98,0.5,4,207,3,0,0,0,marketing,low +0.72,0.63,4,241,4,1,0,0,marketing,medium +0.51,0.75,4,154,3,0,0,0,marketing,medium +0.54,0.58,4,206,3,0,0,0,sales,medium +0.99,0.76,4,204,2,0,0,0,sales,medium +0.44,0.9,4,117,3,0,0,0,sales,medium +0.74,0.48,5,144,3,0,0,0,sales,medium +0.9,0.77,3,156,3,0,0,0,sales,medium +0.86,0.58,4,211,4,0,0,0,sales,medium +0.66,0.52,3,149,4,1,0,0,sales,medium +0.64,0.96,4,152,5,0,0,0,sales,medium +0.5,0.59,4,192,2,0,0,0,sales,medium +0.88,0.68,4,274,4,0,0,0,sales,medium +0.72,0.47,5,168,6,0,0,0,sales,high +0.53,0.53,4,205,3,0,0,0,sales,low +0.83,0.77,3,228,3,0,0,0,sales,medium +0.24,0.52,4,228,5,0,0,0,sales,medium +0.66,0.75,5,227,3,1,0,0,sales,medium +0.43,0.63,3,156,3,0,0,0,sales,medium +0.75,0.66,5,177,2,0,0,0,sales,low +0.42,0.89,6,188,5,1,0,0,sales,low +0.54,0.74,3,185,4,0,0,0,sales,low +0.84,0.85,3,153,4,0,0,0,accounting,low +0.95,0.79,4,174,3,0,0,0,accounting,low +0.6,0.61,4,209,3,0,0,0,accounting,low +0.95,0.71,3,251,2,1,0,0,hr,low +0.62,0.89,3,153,3,1,0,0,hr,low +0.89,0.73,3,210,2,0,0,0,hr,low +0.73,0.93,5,167,3,0,0,0,hr,low +0.86,0.94,3,151,2,0,0,0,technical,low +0.76,0.73,3,158,2,0,0,0,technical,low +0.91,0.76,3,116,5,0,0,0,technical,low +1,0.81,5,178,2,0,0,0,technical,low +0.98,0.78,4,155,3,1,0,0,technical,low +0.65,0.89,3,151,2,0,0,0,technical,low +0.62,0.79,4,216,2,1,0,0,technical,low +0.83,0.82,5,179,3,0,0,0,technical,low +0.75,1,4,135,4,0,0,0,technical,low +0.82,0.63,4,232,4,0,0,0,technical,low +0.69,0.68,4,168,3,0,0,0,technical,low +0.41,0.96,6,171,5,1,0,0,support,medium +0.52,0.64,5,258,2,0,0,0,support,medium +0.74,0.86,3,221,2,0,0,0,support,medium +0.33,0.96,5,97,3,0,0,0,support,medium +0.8,0.69,3,164,3,0,0,0,support,medium +0.82,0.89,4,237,3,0,0,0,support,medium +0.59,0.65,5,161,2,0,0,0,support,medium +0.98,0.8,4,134,2,1,0,0,support,medium +0.93,0.94,4,188,3,0,0,0,support,medium +0.49,0.95,4,181,3,0,0,0,support,medium +0.6,0.94,4,160,2,0,0,0,support,medium +0.34,0.82,6,197,5,1,0,0,technical,medium +0.71,0.77,3,145,3,0,0,0,technical,high +0.6,0.64,5,221,2,0,0,0,technical,low +0.12,0.78,6,260,5,0,0,0,management,medium +0.16,0.87,3,99,5,1,0,0,IT,medium +0.57,0.61,3,243,3,0,0,0,IT,medium +0.72,0.8,5,244,3,0,0,0,IT,medium +0.91,0.55,4,179,4,0,0,0,IT,low +0.95,0.49,4,146,6,1,0,0,IT,low +0.71,0.9,3,262,2,1,0,0,product_mng,low +0.9,0.69,4,174,2,0,0,0,product_mng,low +0.66,0.81,4,148,4,0,0,0,product_mng,low +0.48,0.59,5,235,3,0,0,0,product_mng,low +0.82,0.82,5,285,2,1,0,0,IT,low +0.83,0.79,4,143,3,0,0,0,RandD,low +0.85,0.82,6,141,5,0,0,0,RandD,low +0.84,0.47,3,125,4,0,0,0,RandD,low +0.99,0.51,4,232,3,0,0,0,RandD,low +0.54,0.72,3,172,2,0,0,0,RandD,low +0.64,0.42,5,283,5,0,0,0,marketing,low +0.67,0.68,3,189,3,0,0,0,sales,low +0.48,0.54,2,144,3,0,0,0,accounting,low +0.58,0.77,4,145,3,1,0,0,support,low +0.54,0.59,3,200,3,0,0,0,technical,low +0.25,0.65,3,264,4,0,0,0,management,low +0.9,0.53,3,215,3,0,0,0,marketing,low +0.48,0.39,4,272,3,0,0,0,marketing,low +0.76,0.9,5,142,3,0,0,0,marketing,low +0.72,0.53,5,240,2,0,0,0,sales,medium +0.95,0.66,4,168,2,0,0,0,sales,medium +0.73,0.55,4,171,4,0,0,0,sales,medium +0.93,0.7,3,159,2,0,0,0,sales,medium +0.89,0.61,3,175,4,0,0,0,sales,medium +0.7,0.97,4,244,3,0,0,0,sales,medium +0.98,0.57,3,198,3,0,0,0,sales,medium +0.72,0.65,5,151,3,0,0,0,sales,medium +0.49,0.69,2,188,4,0,0,0,sales,medium +0.15,0.85,3,199,2,0,0,0,sales,medium +0.57,0.96,4,257,3,0,0,0,sales,medium +0.21,0.81,4,144,4,0,0,0,sales,medium +0.46,0.57,4,275,3,0,0,0,sales,high +0.56,0.52,3,243,3,0,0,0,sales,low +0.81,0.66,3,181,2,1,0,0,sales,medium +0.93,0.59,5,172,3,0,0,0,sales,medium +0.82,0.97,3,244,5,0,0,0,sales,medium +0.76,0.51,4,242,3,0,0,0,sales,medium +0.97,0.81,3,249,2,0,0,0,sales,low +0.38,0.81,5,128,3,1,0,0,accounting,low +0.46,0.49,3,213,3,0,0,0,accounting,low +0.34,0.57,4,152,3,1,0,0,accounting,low +0.63,0.76,4,245,3,0,0,0,hr,low +0.57,0.56,4,113,3,0,0,0,hr,low +0.17,0.76,4,280,5,0,0,0,hr,low +0.74,0.67,3,273,3,1,0,0,hr,low +0.59,0.56,4,221,3,1,0,0,technical,low +0.49,0.61,5,133,3,0,0,0,technical,low +0.49,0.58,3,136,4,1,0,0,technical,low +0.61,0.71,4,243,3,1,0,0,technical,low +0.81,0.79,5,135,3,0,0,0,technical,low +0.74,0.63,3,231,3,0,0,0,technical,low +0.91,0.98,3,259,4,0,0,0,technical,low +0.71,0.66,3,238,2,0,0,0,technical,low +0.73,0.71,3,210,3,0,0,0,technical,low +0.44,0.4,3,120,6,0,0,0,technical,low +0.6,0.56,2,203,4,0,0,0,technical,low +0.73,0.88,4,148,2,0,0,0,support,low +0.8,0.54,4,258,3,0,0,0,support,low +0.97,0.5,3,225,2,0,0,0,support,medium +0.99,0.75,4,208,2,0,0,0,support,medium +0.96,0.82,4,274,3,0,0,0,support,medium +0.24,0.7,5,147,6,1,0,0,support,medium +0.45,0.39,2,167,3,0,0,0,support,medium +0.74,0.96,4,154,4,0,0,0,support,medium +0.6,0.98,4,195,3,0,0,0,support,medium +0.67,0.56,3,237,4,0,0,0,support,medium +0.57,0.99,4,222,2,0,0,0,support,medium +0.87,0.71,5,145,4,0,0,0,technical,medium +0.25,0.83,3,257,5,1,0,0,technical,medium +0.98,0.84,3,286,4,0,0,0,technical,medium +0.3,0.64,2,137,3,0,0,0,management,high +0.21,0.52,5,130,2,0,0,0,IT,low +0.56,0.7,3,214,2,0,0,0,IT,medium +0.75,0.96,3,138,2,0,0,0,IT,medium +0.5,0.77,3,166,3,0,0,0,IT,medium +0.61,0.92,4,159,5,0,0,0,IT,medium +0.83,0.59,5,160,4,0,0,0,product_mng,low +0.66,0.76,3,155,4,1,0,0,product_mng,low +0.84,0.68,3,231,3,0,0,0,product_mng,low +0.87,0.57,4,227,3,0,0,0,product_mng,low +0.48,0.37,3,181,2,0,0,0,IT,low +0.84,0.79,4,222,3,0,0,0,RandD,low +0.49,0.71,3,196,3,0,0,0,RandD,low +0.67,0.93,3,206,3,0,0,0,RandD,low +0.12,0.93,6,257,6,1,0,0,RandD,low +0.99,0.67,5,153,2,0,0,0,RandD,low +0.17,0.59,5,250,5,0,0,0,marketing,low +0.58,0.66,3,250,5,0,0,0,sales,low +0.5,0.73,3,148,3,0,0,0,accounting,low +0.35,0.69,3,141,2,1,0,0,support,low +0.93,0.95,6,147,3,0,0,0,technical,low +0.73,0.87,3,142,3,0,0,0,management,low +0.91,0.54,3,210,2,0,0,0,marketing,low +0.72,0.66,3,152,2,0,0,0,marketing,low +0.51,0.39,3,149,3,0,0,0,marketing,low +0.55,0.92,3,198,3,0,0,0,sales,low +0.66,0.76,3,139,5,0,0,0,sales,low +0.84,0.41,6,255,6,1,0,0,sales,medium +0.81,0.8,4,229,2,0,0,0,sales,medium +0.81,0.69,5,134,2,0,0,0,sales,medium +0.5,0.75,5,255,3,0,0,0,sales,medium +0.78,0.68,5,189,3,0,0,0,sales,medium +0.76,0.74,3,183,3,0,0,0,sales,medium +0.49,0.71,3,154,2,0,0,0,sales,medium +0.99,0.61,3,167,3,0,0,0,sales,medium +0.73,0.48,4,139,5,0,0,0,sales,medium +0.88,0.74,5,245,2,0,0,0,sales,medium +0.79,0.91,4,200,3,0,0,0,sales,medium +0.83,0.98,3,159,2,0,0,0,sales,medium +0.21,0.44,4,163,6,0,0,0,sales,high +0.87,0.52,3,158,2,1,0,0,sales,low +1,0.89,3,194,3,0,0,0,sales,medium +0.49,0.98,3,267,3,1,0,0,sales,medium +0.51,0.63,3,183,2,0,0,0,sales,medium +0.63,0.64,3,174,2,0,0,0,accounting,medium +0.91,0.63,4,240,3,0,0,0,accounting,low +0.54,0.5,2,123,4,1,0,0,accounting,low +1,0.59,4,174,3,0,0,0,hr,low +0.64,0.91,5,246,3,0,0,0,hr,low +0.65,0.96,5,173,2,0,0,0,hr,low +0.15,0.93,4,185,5,0,0,0,hr,low +0.81,0.83,4,259,3,1,0,0,technical,low +0.61,0.83,3,112,4,1,0,0,technical,low +0.86,0.55,5,219,2,0,0,0,technical,medium +0.71,0.62,3,258,2,0,0,0,technical,medium +0.72,0.82,5,287,3,0,0,0,technical,medium +0.84,0.37,5,186,2,0,0,0,technical,medium +0.38,0.74,3,159,4,0,0,0,technical,medium +0.75,0.56,4,230,3,0,0,0,technical,medium +0.93,0.77,5,106,5,0,0,0,technical,medium +0.71,0.64,4,189,3,0,0,0,technical,medium +0.75,0.96,3,252,3,0,0,0,technical,medium +0.56,0.68,4,220,2,0,0,0,support,medium +0.57,0.82,5,218,3,0,0,0,support,medium +0.63,0.83,4,145,4,0,0,0,support,medium +0.59,0.91,4,142,3,1,0,0,support,medium +0.77,0.62,3,218,2,0,0,0,support,medium +0.65,0.7,4,157,4,0,0,0,support,medium +0.84,0.49,4,178,3,0,0,0,support,medium +0.9,0.45,4,241,6,0,0,0,support,medium +0.6,0.83,3,230,3,0,0,0,support,medium +0.9,0.74,5,249,3,0,0,0,support,medium +0.94,0.7,5,147,2,0,0,0,support,medium +0.56,0.9,4,115,3,0,0,0,technical,medium +0.95,0.86,5,143,3,0,0,0,technical,medium +0.97,0.85,4,219,3,0,0,0,technical,medium +0.55,0.63,4,218,2,0,0,0,management,medium +0.79,0.6,5,235,2,0,0,0,IT,medium +0.49,0.76,5,237,3,0,0,0,IT,high +0.49,0.58,5,186,2,0,0,0,IT,high +0.57,0.65,5,177,2,0,0,0,IT,high +0.89,0.81,4,228,4,0,0,0,IT,high +0.66,0.59,3,204,3,0,0,0,product_mng,high +0.94,0.77,5,210,3,0,0,0,product_mng,high +0.98,0.95,4,250,2,1,0,0,product_mng,high +0.18,0.52,5,185,6,0,0,0,product_mng,high +0.57,0.73,3,146,3,0,0,0,IT,high +0.67,0.55,3,217,2,0,0,0,RandD,high +0.12,0.61,6,172,6,0,0,0,RandD,high +0.48,0.95,3,184,2,0,0,0,RandD,high +0.61,0.97,3,148,3,0,0,0,RandD,low +0.23,0.52,5,236,4,0,0,0,RandD,low +0.4,0.38,3,280,2,0,0,0,marketing,low +0.57,0.6,3,218,3,0,0,0,sales,low +0.95,0.98,5,155,3,0,0,0,accounting,low +0.93,0.66,4,242,4,0,0,0,support,low +0.7,0.88,3,166,5,0,0,0,technical,low +0.58,0.9,4,175,3,1,0,0,management,low +0.52,0.95,5,234,3,0,0,0,marketing,low +0.98,0.88,5,232,3,0,0,0,marketing,low +0.93,0.94,4,156,3,1,0,0,marketing,low +0.34,0.63,5,248,3,0,0,0,sales,low +0.87,0.75,4,218,2,0,0,0,sales,low +0.52,0.96,5,251,2,1,0,0,sales,low +0.58,0.91,4,173,4,0,0,0,sales,low +0.65,0.51,4,157,3,1,0,0,sales,medium +0.74,0.59,3,274,3,0,0,0,sales,medium +0.63,0.7,5,182,3,0,0,0,sales,medium +0.74,0.74,4,233,2,0,0,0,sales,medium +0.65,1,4,249,3,0,0,0,sales,medium +0.48,0.94,3,162,3,1,0,0,sales,medium +0.84,0.75,3,184,3,0,0,0,sales,medium +0.6,0.62,3,135,2,0,0,0,sales,medium +0.56,0.57,3,143,2,0,0,0,sales,medium +0.13,0.8,5,203,5,0,0,0,sales,medium +0.83,0.51,5,143,4,0,0,0,sales,medium +0.91,0.42,2,142,3,1,0,0,sales,medium +0.97,0.97,5,171,2,0,0,0,sales,high +0.9,0.96,3,223,4,0,0,0,sales,high +0.57,0.87,4,148,3,0,0,0,sales,high +0.84,0.79,6,140,2,0,0,0,accounting,high +0.84,0.74,4,226,2,0,0,0,accounting,high +0.17,0.93,5,183,5,0,0,0,accounting,high +0.97,0.86,5,135,3,0,0,0,hr,high +0.94,0.66,3,236,2,0,0,0,hr,high +0.83,0.61,5,257,2,0,0,0,hr,low +0.91,0.73,3,155,3,0,0,0,hr,low +0.9,0.76,2,211,4,0,0,0,technical,low +0.95,0.86,3,207,2,0,0,0,technical,low +0.69,0.95,3,126,6,0,0,0,technical,low +0.49,0.98,3,267,2,0,0,0,technical,low +0.45,0.37,6,226,2,0,0,0,technical,low +0.21,0.9,2,239,2,0,0,0,technical,low +0.67,0.61,3,202,2,0,0,0,technical,medium +0.76,0.62,3,150,2,1,0,0,technical,medium +0.19,0.78,5,156,6,0,0,0,technical,medium +0.52,0.73,2,233,3,0,0,0,technical,medium +0.66,0.59,5,262,2,0,0,0,technical,medium +0.95,0.67,3,183,3,0,0,0,support,medium +0.95,0.78,4,225,2,0,0,0,support,medium +0.57,0.54,5,216,3,0,0,0,support,medium +0.48,0.57,5,227,3,0,0,0,support,medium +0.95,0.5,4,242,2,0,0,0,support,medium +0.7,0.67,4,224,3,0,0,0,support,medium +0.48,0.61,3,223,3,1,0,0,support,medium +0.62,0.58,3,202,2,0,0,0,support,medium +0.58,0.76,3,220,3,0,0,0,support,medium +1,0.87,4,129,5,0,0,0,support,medium +0.79,0.65,2,193,5,0,0,0,support,medium +0.58,0.73,3,165,2,0,0,0,technical,medium +0.59,0.79,4,209,2,0,0,0,technical,medium +0.66,0.8,4,183,2,1,0,0,technical,medium +0.71,0.59,4,138,3,0,0,0,management,medium +0.9,0.74,5,152,3,0,0,0,IT,medium +0.74,0.63,4,170,2,0,0,0,IT,medium +0.66,0.93,5,185,3,0,0,0,IT,medium +0.92,0.53,2,249,2,0,0,0,IT,high +0.55,0.51,4,155,3,0,0,0,IT,low +0.51,0.43,3,204,4,0,0,0,product_mng,medium +0.49,0.52,5,188,4,0,0,0,product_mng,medium +0.88,0.52,5,264,4,0,0,0,product_mng,medium +0.6,0.8,4,146,2,0,0,0,product_mng,medium +0.93,0.65,4,212,4,0,0,0,IT,medium +0.86,0.59,3,215,3,0,0,0,RandD,medium +0.78,0.98,4,239,3,0,0,0,RandD,medium +0.69,0.55,3,188,3,0,0,0,RandD,medium +0.84,0.51,4,259,3,0,0,0,RandD,medium +0.48,0.62,3,200,3,1,0,0,RandD,medium +0.63,0.86,3,245,2,0,0,0,marketing,low +0.54,0.61,3,182,2,0,0,0,sales,low +0.85,0.53,4,181,2,0,0,0,accounting,low +0.51,0.52,3,164,3,0,0,0,support,low +0.88,0.86,5,257,3,0,0,0,technical,low +0.87,0.93,3,178,3,0,0,0,management,low +0.54,0.5,4,224,3,0,0,0,marketing,low +0.96,0.67,5,170,3,0,0,0,marketing,high +0.58,0.75,4,233,2,0,0,0,marketing,low +0.21,0.57,5,239,3,0,0,0,sales,high +0.5,0.56,5,185,2,0,0,0,sales,high +0.52,0.54,4,184,3,0,0,0,sales,low +0.5,0.7,3,188,2,0,0,0,sales,low +0.74,0.86,3,186,3,1,0,0,sales,high +0.69,0.63,3,226,3,0,0,0,sales,low +0.61,0.74,2,143,6,0,0,0,sales,medium +0.5,0.82,3,213,3,0,0,0,sales,high +0.79,0.53,2,217,2,0,0,0,sales,medium +0.73,0.68,5,190,2,0,0,0,sales,medium +0.49,0.69,2,147,2,0,0,0,sales,medium +0.7,0.77,2,235,3,1,0,0,sales,medium +0.27,0.62,6,136,3,0,0,0,sales,high +0.8,0.54,5,261,2,0,0,0,sales,medium +0.45,0.6,6,176,4,0,0,0,sales,medium +0.63,0.64,4,212,4,0,0,0,sales,medium +0.76,0.52,2,148,3,0,0,0,sales,high +0.42,0.74,6,218,6,0,0,0,sales,medium +0.41,0.87,6,262,6,0,0,0,sales,high +0.74,0.46,6,145,3,0,0,0,accounting,low +0.82,0.75,3,230,4,1,0,0,accounting,medium +0.82,0.65,4,210,2,0,0,0,accounting,medium +0.53,0.73,4,227,3,0,0,0,hr,medium +0.71,0.77,4,142,2,0,0,0,hr,medium +0.5,0.9,4,171,2,0,0,0,hr,low +0.68,0.89,3,241,3,0,0,0,hr,low +0.68,0.99,3,247,2,1,0,0,technical,low +0.48,0.86,5,246,3,0,0,0,technical,low +0.59,0.72,3,188,3,1,0,0,technical,low +0.21,0.7,3,104,2,0,0,0,technical,low +0.99,0.73,5,197,4,1,0,0,technical,low +1,0.88,4,191,4,0,0,0,technical,low +0.84,0.51,4,173,2,0,0,0,technical,low +0.86,0.82,2,207,4,1,0,0,technical,low +0.52,0.54,5,247,4,0,0,0,technical,high +0.94,0.97,5,197,5,1,0,0,technical,low +0.55,0.81,3,242,2,0,0,0,technical,low +0.79,0.59,3,145,2,0,0,0,support,low +0.91,0.9,4,174,3,0,0,0,support,low +0.82,0.99,3,195,2,0,0,0,support,high +0.84,0.94,4,270,3,1,0,0,support,low +0.72,0.68,4,238,3,0,0,0,support,low +0.68,0.85,4,156,2,0,0,0,support,low +0.99,0.96,5,261,3,0,0,0,support,high +0.74,0.85,5,135,2,0,0,0,support,low +0.8,0.41,6,185,4,0,0,0,support,medium +0.55,0.55,3,197,3,0,0,0,support,high +0.56,0.95,3,241,3,0,0,0,support,medium +0.88,0.98,3,263,3,1,0,0,technical,high +0.86,0.49,4,251,2,0,0,0,technical,medium +0.64,0.95,3,218,2,0,0,0,technical,medium +0.82,0.58,4,183,3,0,0,0,management,medium +0.66,0.8,4,252,3,0,0,0,IT,medium +0.64,0.95,3,98,3,0,0,0,IT,medium +0.17,0.78,6,284,4,0,0,0,IT,medium +0.75,0.68,4,220,2,0,0,0,IT,medium +0.45,0.39,4,275,3,0,0,0,IT,medium +0.99,0.9,4,164,3,0,0,0,product_mng,high +0.93,0.67,5,237,4,0,0,0,product_mng,low +0.88,0.8,3,133,3,0,0,0,product_mng,medium +0.62,0.52,5,256,4,0,0,0,product_mng,medium +0.94,0.88,4,270,3,0,0,0,IT,medium +0.59,0.92,4,196,2,0,0,0,RandD,medium +0.93,0.89,4,209,2,0,0,0,RandD,medium +0.71,0.39,3,261,3,0,0,0,RandD,medium +0.6,0.6,3,221,2,0,0,0,RandD,medium +0.71,0.69,4,180,3,1,0,0,RandD,medium +0.91,0.57,4,145,3,0,0,0,marketing,medium +0.78,0.96,4,111,2,0,0,0,sales,high +0.52,0.63,4,232,3,0,0,0,accounting,low +0.99,0.7,5,195,3,0,0,0,support,low +0.86,0.51,4,211,2,1,0,0,technical,low +0.74,0.68,4,194,2,0,0,0,management,high +0.15,0.84,4,275,5,0,0,0,marketing,low +0.57,0.54,3,140,3,0,0,0,marketing,low +0.67,0.6,3,157,3,0,0,0,marketing,low +0.8,0.93,4,258,3,0,0,0,sales,high +0.83,0.82,5,273,4,0,0,0,sales,low +0.69,0.53,3,135,2,0,0,0,sales,low +0.64,0.83,3,188,4,0,0,0,sales,low +0.95,0.52,5,222,2,0,0,0,sales,low +0.97,0.52,4,231,3,0,0,0,sales,low +0.85,0.86,3,255,2,0,0,0,sales,low +0.72,0.51,3,254,2,0,0,0,sales,low +0.91,0.85,3,244,3,1,0,0,sales,medium +0.81,0.83,3,132,4,0,0,0,sales,medium +0.13,0.67,5,234,6,0,0,0,sales,medium +0.95,0.81,4,272,3,0,0,0,sales,medium +0.82,0.54,4,191,3,0,0,0,sales,medium +0.63,0.93,4,238,4,0,0,0,sales,medium +0.55,0.69,3,225,2,0,0,0,sales,medium +0.83,0.95,3,211,2,0,0,0,sales,medium +0.54,0.98,3,217,3,0,0,0,sales,medium +0.89,0.91,5,156,4,0,0,0,sales,medium +0.79,0.55,3,147,3,0,0,0,sales,medium +0.56,0.73,4,134,3,0,0,0,accounting,medium +0.89,0.7,4,235,2,1,0,0,accounting,high +1,0.66,4,238,4,0,0,0,accounting,low +0.43,0.72,3,258,4,0,0,0,hr,medium +0.71,0.55,5,224,3,0,0,0,hr,medium +0.98,0.59,4,149,2,0,0,0,hr,medium +0.81,0.7,4,219,2,1,0,0,hr,medium +0.71,0.53,3,186,2,0,0,0,technical,low +0.99,0.6,4,259,4,0,0,0,technical,low +0.34,0.62,3,119,2,0,0,0,technical,low +0.58,0.91,3,223,2,0,0,0,technical,low +0.77,0.49,4,184,3,0,0,0,technical,low +0.64,0.5,3,238,4,0,0,0,technical,low +0.13,1,4,157,5,1,0,0,technical,low +0.98,0.6,2,249,3,0,0,0,technical,low +0.72,0.84,4,195,2,0,0,0,technical,low +0.55,0.79,3,162,2,0,0,0,technical,low +0.62,0.91,4,231,3,0,0,0,technical,low +0.74,0.91,2,264,3,0,0,0,support,low +0.69,0.96,3,210,3,0,0,0,support,low +0.6,0.63,4,192,3,0,0,0,support,low +0.54,0.43,3,192,2,0,0,0,support,low +0.56,0.75,4,249,3,0,0,0,support,low +0.58,0.86,5,206,3,0,0,0,support,low +0.21,0.66,4,165,5,0,0,0,support,low +0.52,0.85,5,183,3,0,0,0,support,low +0.98,0.7,4,253,2,0,0,0,support,low +0.85,0.97,3,256,3,0,0,0,support,low +0.62,0.88,2,263,4,0,0,0,support,medium +0.63,0.61,3,234,3,1,0,0,technical,medium +0.84,0.97,6,223,2,0,0,0,technical,medium +0.71,0.69,2,172,3,0,0,0,technical,medium +0.36,0.55,6,226,6,0,0,0,management,medium +0.79,0.56,6,205,4,1,0,0,IT,medium +0.59,0.55,4,235,2,0,0,0,IT,medium +0.5,0.53,4,263,3,0,0,0,IT,medium +0.88,0.66,4,271,3,1,0,0,IT,medium +0.65,0.69,6,131,5,0,0,0,IT,medium +0.71,0.56,4,238,4,0,0,0,product_mng,medium +0.89,0.54,3,214,2,0,0,0,product_mng,medium +0.83,0.84,3,267,3,0,0,0,product_mng,high +0.73,0.53,3,184,2,0,0,0,product_mng,low +0.71,0.67,3,264,3,0,0,0,IT,medium +0.53,0.66,3,109,2,0,0,0,RandD,medium +0.74,0.7,3,253,4,1,0,0,RandD,medium +0.6,0.52,4,207,2,1,0,0,RandD,medium +0.47,0.6,4,263,5,0,0,0,RandD,low +0.88,0.88,3,214,2,1,0,0,RandD,low +0.62,0.67,2,153,3,0,0,0,marketing,low +0.24,0.48,5,123,5,1,0,0,sales,low +0.15,0.36,5,159,2,0,0,0,accounting,low +0.92,0.82,3,185,3,0,0,0,support,low +0.74,0.7,4,167,3,1,0,0,technical,low +0.86,0.77,3,271,3,0,0,0,management,low +0.96,0.61,3,140,3,0,0,0,marketing,low +0.54,0.6,4,141,3,0,0,0,marketing,low +0.99,0.87,4,190,2,0,0,0,marketing,low +0.72,0.73,5,134,2,0,0,0,sales,low +0.96,0.75,5,176,4,0,0,0,sales,low +0.73,0.73,4,194,2,0,0,0,sales,low +0.67,0.44,5,212,4,0,0,0,sales,low +0.58,0.72,5,234,3,1,0,0,sales,low +0.9,0.99,4,190,2,0,0,0,sales,low +0.99,0.37,5,155,3,0,0,0,sales,low +0.89,0.58,4,232,2,0,0,0,sales,low +0.72,0.95,4,216,3,0,0,0,sales,low +0.77,0.8,3,207,3,0,0,0,sales,low +0.8,0.94,4,200,4,0,0,0,sales,medium +0.89,0.86,3,178,4,0,0,0,sales,medium +0.59,0.81,4,173,2,0,0,0,sales,medium +0.24,0.87,5,268,5,0,0,0,sales,medium +0.94,0.59,6,212,2,0,0,0,sales,medium +0.74,0.5,4,216,3,0,0,0,sales,medium +0.63,0.62,5,212,6,0,0,0,sales,medium +0.63,0.59,3,155,3,1,0,0,sales,medium +0.77,0.65,4,164,2,0,0,0,sales,medium +0.87,0.74,3,209,3,0,0,0,accounting,medium +0.79,0.61,4,136,3,0,0,0,accounting,medium +0.54,0.84,4,223,3,0,0,0,accounting,medium +0.59,0.83,4,239,4,0,0,0,hr,high +0.86,0.87,3,205,4,0,0,0,hr,low +0.98,0.68,3,203,3,0,0,0,hr,medium +1,0.79,5,152,4,0,0,0,hr,medium +0.9,0.79,4,236,3,1,0,0,technical,medium +0.34,0.6,4,114,3,0,0,0,technical,medium +0.95,0.93,3,209,2,0,0,0,technical,low +0.79,0.48,4,178,2,0,0,0,technical,low +0.13,0.91,4,175,5,0,0,0,technical,low +0.72,0.69,3,270,4,0,0,0,technical,low +0.63,0.54,3,145,2,1,0,0,technical,low +0.81,0.76,5,134,2,0,0,0,technical,low +0.71,0.75,4,272,4,0,0,0,technical,low +0.49,0.76,3,208,2,0,0,0,technical,low +0.59,0.65,4,219,3,1,0,0,technical,low +0.87,0.59,5,154,3,0,0,0,support,low +0.66,0.6,3,179,4,0,0,0,support,low +0.78,0.92,5,137,2,0,0,0,support,low +0.65,0.7,4,211,2,0,0,0,support,low +0.8,0.97,5,271,4,0,0,0,support,low +0.56,0.75,4,192,2,0,0,0,support,low +0.85,0.67,4,228,4,0,0,0,support,low +0.14,0.46,2,267,6,1,0,0,support,low +0.74,0.62,4,272,2,0,0,0,support,low +0.86,0.93,2,260,2,0,0,0,support,low +0.71,0.96,4,161,3,0,0,0,support,low +0.83,0.99,4,226,2,0,0,0,technical,low +0.52,0.49,4,249,4,1,0,0,technical,medium +0.63,0.8,3,243,3,0,0,0,technical,medium +0.92,0.93,4,247,2,0,0,0,management,medium +0.66,0.87,3,186,2,0,0,0,IT,medium +0.77,0.7,3,155,3,0,0,0,IT,medium +0.74,0.97,2,135,4,0,0,0,IT,medium +0.81,0.76,5,198,4,0,0,0,IT,medium +0.67,0.55,3,175,2,0,0,0,IT,medium +0.75,0.92,3,192,3,0,0,0,product_mng,medium +0.65,0.36,2,282,3,0,0,0,product_mng,medium +0.81,0.6,4,179,3,0,0,0,product_mng,medium +0.57,0.77,4,245,3,0,0,0,product_mng,medium +0.89,0.66,4,235,3,0,0,0,IT,high +0.5,0.56,4,266,2,0,0,0,RandD,low +0.21,0.42,4,269,4,1,0,0,RandD,medium +0.79,0.67,3,264,2,0,0,0,RandD,medium +0.66,0.57,3,161,2,1,0,0,RandD,medium +0.82,0.95,3,203,3,0,0,0,RandD,medium +0.85,0.85,4,258,2,0,0,0,marketing,low +0.72,0.96,3,143,3,0,0,0,sales,low +0.52,0.92,3,214,3,0,0,0,accounting,low +0.5,0.62,4,166,3,1,0,0,support,low +0.52,0.82,3,192,3,0,0,0,technical,low +0.13,0.87,3,185,4,1,0,0,management,low +0.87,0.98,4,173,3,0,0,0,marketing,low +0.53,0.98,2,163,3,0,0,0,marketing,low +0.15,0.76,5,277,4,0,0,0,marketing,low +0.64,0.86,5,274,2,1,0,0,sales,low +0.52,0.44,3,119,2,0,0,0,sales,low +0.79,0.67,4,267,3,0,0,0,sales,low +0.74,0.89,3,160,2,0,0,0,sales,low +0.81,0.84,4,198,2,0,0,0,sales,low +0.94,0.6,3,193,3,0,0,0,sales,low +0.67,0.84,6,250,2,0,0,0,sales,low +0.93,0.84,3,237,4,1,0,0,sales,low +0.52,0.96,4,170,2,0,0,0,sales,low +0.48,0.74,2,157,2,1,0,0,sales,medium +0.57,0.92,6,267,4,0,0,0,sales,medium +0.71,0.77,4,192,4,0,0,0,sales,medium +0.9,0.74,4,218,2,1,0,0,sales,medium +0.58,0.61,4,210,3,0,0,0,sales,medium +0.66,0.48,4,229,4,0,0,0,sales,medium +0.59,0.66,3,186,3,0,0,0,sales,medium +0.96,0.5,3,234,2,1,0,0,sales,medium +0.13,0.91,2,149,5,0,0,0,sales,medium +0.93,0.92,3,205,3,0,0,0,sales,medium +0.54,0.72,3,148,4,0,0,0,accounting,medium +0.54,0.77,5,270,3,0,0,0,accounting,medium +0.87,0.62,3,176,3,0,0,0,accounting,high +0.79,0.91,3,226,2,0,0,0,hr,low +0.83,0.57,3,232,4,0,0,0,hr,medium +0.73,0.6,3,137,3,0,0,0,hr,medium +0.29,0.42,6,253,3,0,0,0,hr,medium +0.8,0.7,6,231,4,0,0,0,technical,medium +0.29,0.81,3,189,6,0,0,0,technical,low +0.43,0.85,6,168,2,0,0,0,technical,low +0.99,0.93,3,261,3,0,0,0,technical,low +0.86,0.51,4,152,3,0,0,0,technical,low +0.85,0.78,5,263,2,1,0,0,technical,low +0.66,0.68,3,258,3,0,0,0,technical,low +0.57,0.99,3,205,3,0,0,0,technical,low +0.31,0.64,6,183,2,1,0,0,technical,low +0.88,0.88,3,153,3,0,0,0,technical,low +0.72,0.72,5,194,4,0,0,0,technical,low +0.75,0.66,4,202,2,0,0,0,support,low +0.82,0.71,4,164,4,0,0,0,support,low +0.82,0.67,3,213,2,0,0,0,support,low +0.15,0.52,4,265,6,0,0,0,support,low +0.16,0.88,6,218,3,0,0,0,support,low +0.95,0.4,5,286,4,0,0,0,support,low +0.87,0.73,3,172,3,1,0,0,support,low +0.85,0.89,4,251,2,0,0,0,support,low +0.58,0.6,3,110,3,1,0,0,support,low +0.63,0.86,3,269,4,0,0,0,support,low +0.69,0.68,3,151,3,1,0,0,support,low +0.53,0.85,5,161,2,0,0,0,technical,medium +0.96,0.71,4,210,3,0,0,0,technical,medium +0.73,0.83,2,167,3,0,0,0,technical,medium +0.5,0.6,3,270,3,1,0,0,management,medium +0.81,0.83,3,133,3,1,0,0,IT,medium +0.82,0.59,3,249,3,0,0,0,IT,medium +0.76,0.72,4,266,3,0,0,0,IT,medium +0.27,0.82,4,276,2,0,0,0,IT,medium +0.64,0.38,6,215,3,0,0,0,IT,medium +0.57,0.9,3,262,2,0,0,0,product_mng,medium +0.49,0.84,5,193,3,0,0,0,product_mng,medium +0.66,0.92,2,102,4,0,0,0,product_mng,medium +0.71,0.36,4,278,4,1,0,0,product_mng,high +0.61,0.63,3,250,4,0,0,0,IT,low +0.52,0.89,5,193,4,0,0,0,RandD,medium +0.62,0.91,3,133,3,0,0,0,RandD,medium +0.98,0.65,4,216,4,0,0,0,RandD,medium +0.67,0.56,5,174,2,1,0,0,RandD,medium +0.85,0.62,2,280,4,0,0,0,RandD,low +0.84,0.85,4,246,2,0,0,0,marketing,low +1,0.53,3,142,3,0,0,0,sales,low +0.72,0.76,4,144,3,1,0,0,accounting,low +0.66,0.75,6,100,4,1,0,0,support,low +0.64,0.71,5,212,2,0,0,0,technical,low +1,0.76,5,201,3,0,0,0,management,low +0.75,0.59,5,206,2,0,0,0,marketing,low +0.81,0.77,4,197,3,0,0,0,marketing,low +0.31,0.98,5,232,5,0,0,0,marketing,low +0.32,0.97,6,272,2,0,0,0,sales,low +0.48,0.5,4,173,3,0,0,0,sales,low +0.62,0.42,2,124,2,0,0,0,sales,low +0.77,0.86,5,282,4,0,0,0,sales,low +0.76,0.8,2,219,4,1,0,0,sales,low +0.68,0.41,3,106,6,0,0,0,sales,low +0.72,0.79,4,192,4,0,0,0,sales,low +0.87,0.91,5,190,2,0,0,0,sales,low +0.59,0.57,2,156,2,0,0,0,sales,low +0.7,0.64,3,180,2,0,0,0,sales,low +0.73,0.81,4,245,2,0,0,0,sales,low +0.58,0.62,3,169,2,0,0,0,sales,medium +0.64,0.66,3,188,4,0,0,0,sales,medium +0.89,0.66,5,224,2,0,0,0,sales,medium +0.95,0.71,3,263,2,1,0,0,sales,medium +0.84,0.9,3,262,2,0,0,0,sales,medium +0.6,0.99,4,225,3,0,0,0,sales,medium +0.71,0.63,5,224,3,1,0,0,sales,medium +0.6,0.95,3,266,3,0,0,0,sales,medium +0.91,0.68,3,218,3,1,0,0,accounting,medium +0.75,1,3,102,3,0,0,0,accounting,medium +0.7,0.67,4,181,3,0,0,0,accounting,medium +0.23,0.64,5,150,5,0,0,0,hr,medium +0.73,0.83,4,270,2,0,0,0,hr,high +0.99,0.49,4,270,2,0,0,0,hr,low +0.62,0.68,5,265,3,0,0,0,hr,medium +0.98,0.89,4,169,3,0,0,0,technical,medium +0.61,0.94,3,224,4,0,0,0,technical,medium +0.52,0.92,3,150,2,1,0,0,technical,medium +0.65,0.66,5,239,4,0,0,0,technical,low +0.59,0.9,3,245,3,1,0,0,technical,low +0.71,0.8,3,182,2,1,0,0,technical,low +0.18,0.7,5,182,4,0,0,0,technical,low +0.21,0.93,4,243,4,0,0,0,technical,low +0.15,0.67,6,209,5,0,0,0,technical,low +0.97,0.53,4,195,4,0,0,0,technical,low +0.39,0.48,3,190,2,0,0,0,technical,low +0.35,0.66,2,140,2,0,0,0,support,medium +0.88,0.58,4,147,4,0,0,0,support,medium +0.58,0.97,3,265,3,0,0,0,support,medium +0.61,0.78,3,238,2,0,0,0,support,medium +0.59,0.98,3,155,3,0,0,0,support,medium +0.55,0.41,4,132,5,1,0,0,support,medium +0.52,0.8,5,257,3,0,0,0,support,medium +0.71,0.77,2,255,3,0,0,0,support,medium +0.63,0.82,5,229,2,0,0,0,support,medium +0.17,0.84,5,216,4,0,0,0,support,medium +0.95,0.49,4,269,4,0,0,0,support,medium +1,0.73,3,205,2,0,0,0,technical,medium +0.73,0.96,2,151,3,0,0,0,technical,medium +0.8,0.64,4,246,3,1,0,0,technical,medium +0.63,0.8,4,256,4,0,0,0,management,medium +0.95,0.59,4,235,3,0,0,0,IT,medium +0.75,0.83,4,229,2,0,0,0,IT,medium +0.64,0.72,5,158,3,0,0,0,IT,medium +0.72,1,3,197,3,0,0,0,IT,medium +0.72,0.53,3,151,4,0,0,0,IT,medium +0.85,0.63,3,167,3,0,0,0,product_mng,medium +0.24,0.94,4,146,4,0,0,0,product_mng,medium +0.69,0.53,4,281,4,0,0,0,product_mng,medium +0.69,0.7,3,212,2,0,0,0,product_mng,medium +0.87,0.59,5,261,3,0,0,0,IT,medium +0.78,0.91,3,238,2,0,0,0,RandD,high +0.76,0.74,4,235,3,0,0,0,RandD,high +0.35,0.7,3,107,3,0,0,0,RandD,high +0.88,0.59,6,243,4,0,0,0,RandD,high +0.78,0.79,5,233,3,1,0,0,RandD,high +0.36,0.42,3,206,5,0,0,0,marketing,high +0.24,0.7,5,172,4,0,0,0,sales,high +0.55,0.82,3,248,2,0,0,0,accounting,high +0.91,0.53,3,147,4,1,0,0,support,high +0.66,0.61,5,259,3,0,0,0,technical,high +0.57,0.82,3,267,3,0,0,0,management,high +0.64,0.64,3,263,3,0,0,0,marketing,high +0.63,0.98,3,160,4,1,0,0,marketing,low +0.49,0.92,5,176,3,0,0,0,marketing,low +0.7,0.7,3,224,3,0,0,0,sales,low +0.3,0.71,3,155,2,0,0,0,sales,low +0.51,0.52,3,132,3,0,0,0,sales,low +0.71,0.87,5,173,3,0,0,0,sales,low +0.64,0.67,3,165,3,0,0,0,sales,low +0.67,0.66,6,272,3,0,0,0,sales,low +0.83,0.94,5,156,3,1,0,0,sales,low +0.92,0.96,3,154,2,1,0,0,sales,low +0.84,0.53,3,237,3,1,0,0,sales,low +0.97,0.75,2,271,6,0,0,0,sales,low +0.19,0.91,6,152,3,0,0,0,sales,low +0.86,0.51,4,152,3,1,0,0,sales,low +0.71,0.69,3,172,3,0,0,0,sales,low +0.76,0.56,4,214,2,1,0,0,sales,medium +0.68,0.88,5,201,3,0,0,0,sales,medium +0.61,0.99,2,275,3,1,0,0,sales,medium +0.85,0.79,3,156,3,0,0,0,sales,medium +0.84,0.89,3,234,2,0,0,0,sales,medium +0.62,0.63,2,123,2,0,0,0,sales,medium +0.77,0.76,3,201,4,0,0,0,accounting,medium +0.79,0.93,5,160,4,1,0,0,accounting,medium +0.97,0.5,3,173,2,0,0,0,accounting,medium +0.59,0.61,4,141,2,1,0,0,hr,medium +0.93,0.62,3,231,6,0,0,0,hr,medium +0.85,0.54,4,174,2,0,0,0,hr,medium +0.7,0.57,4,211,3,0,0,0,hr,high +0.54,0.91,3,249,3,0,0,0,technical,high +0.42,0.86,2,108,5,0,0,0,technical,high +0.96,0.75,4,165,3,0,0,0,technical,high +0.58,0.8,3,181,4,0,0,0,technical,high +0.61,0.59,3,237,2,0,0,0,technical,high +0.62,0.97,5,180,2,0,0,0,technical,high +0.68,0.7,3,209,3,0,0,0,technical,high +0.6,0.73,3,191,5,1,0,0,technical,low +0.7,0.91,4,181,2,1,0,0,technical,low +0.65,0.55,4,250,2,0,0,0,technical,low +0.48,0.59,2,179,2,0,0,0,technical,low +0.75,0.73,3,225,4,0,0,0,support,low +0.69,0.78,5,267,2,1,0,0,support,low +0.34,0.46,2,169,2,1,0,0,support,low +0.59,0.49,4,164,3,0,0,0,support,low +0.94,0.95,4,155,3,0,0,0,support,medium +0.98,0.77,5,223,2,1,0,0,support,medium +0.72,0.66,3,160,3,0,0,0,support,medium +0.79,0.7,4,268,2,0,0,0,support,medium +0.54,0.61,4,151,4,1,0,0,support,medium +0.73,0.95,3,156,2,0,0,0,support,medium +0.82,0.58,4,136,3,0,0,0,support,medium +0.57,0.45,3,189,2,0,0,0,technical,medium +0.98,0.93,5,203,2,0,0,0,technical,medium +0.91,0.65,5,174,2,0,0,0,technical,medium +0.72,0.91,3,239,2,0,0,0,management,medium +0.48,0.73,5,152,6,0,0,0,IT,medium +0.57,0.86,4,268,6,0,0,0,IT,medium +0.86,0.96,4,146,3,0,0,0,IT,medium +0.63,0.85,3,232,4,0,0,0,IT,medium +0.81,0.52,3,255,5,0,0,0,IT,medium +0.21,0.37,4,129,4,0,0,0,product_mng,medium +0.9,0.66,3,261,3,1,0,0,product_mng,medium +0.79,0.78,3,101,2,1,0,0,product_mng,medium +0.95,0.49,4,229,3,0,0,0,product_mng,medium +0.29,0.43,3,162,4,0,0,0,IT,medium +0.81,0.52,4,270,3,0,0,0,RandD,medium +0.21,0.56,6,277,5,0,0,0,RandD,medium +0.7,0.83,5,261,4,0,0,0,RandD,high +0.66,0.64,4,204,2,0,0,0,RandD,low +0.16,0.86,2,215,2,0,0,0,RandD,medium +0.72,0.8,3,219,3,0,0,0,marketing,medium +0.51,0.5,3,147,4,0,0,0,sales,medium +0.59,0.63,5,243,2,0,0,0,accounting,medium +0.66,0.4,2,155,5,1,0,0,support,medium +0.69,0.84,3,253,2,0,0,0,technical,medium +0.69,0.94,4,235,3,0,0,0,management,medium +0.89,0.79,5,257,3,0,0,0,marketing,medium +0.52,0.56,4,225,2,0,0,0,marketing,medium +0.91,0.91,3,167,3,0,0,0,marketing,medium +0.96,0.53,5,224,4,0,0,0,sales,low +0.8,0.58,5,127,3,0,0,0,sales,low +0.55,0.77,3,256,3,1,0,0,sales,low +0.93,0.63,4,233,2,0,0,0,sales,low +0.93,0.86,4,169,4,0,0,0,sales,low +0.54,0.48,3,152,2,0,0,0,sales,low +0.48,0.76,5,236,2,0,0,0,sales,low +0.19,0.99,3,154,2,0,0,0,sales,high +0.95,0.71,3,223,2,0,0,0,sales,low +0.96,0.81,4,211,3,0,0,0,sales,high +0.63,0.89,4,192,2,0,0,0,sales,high +0.81,0.8,4,227,2,1,0,0,sales,low +0.5,0.88,4,265,3,1,0,0,sales,low +0.76,0.72,5,228,2,0,0,0,sales,high +0.84,0.49,4,152,3,0,0,0,sales,low +0.2,0.95,5,169,5,0,0,0,sales,medium +0.78,0.92,3,169,3,0,0,0,sales,high +0.8,0.68,4,157,3,0,0,0,sales,medium +0.94,0.57,4,251,2,1,0,0,sales,medium +0.44,0.74,5,253,2,0,0,0,accounting,medium +0.92,0.85,3,155,2,0,0,0,accounting,medium +0.54,0.8,3,232,2,0,0,0,accounting,high +0.56,0.56,4,195,2,0,0,0,hr,medium +0.66,0.69,4,198,3,1,0,0,hr,medium +0.8,0.91,3,246,3,0,0,0,hr,medium +0.6,0.81,2,214,3,0,0,0,hr,high +0.73,0.73,5,249,3,0,0,0,technical,medium +0.55,0.74,3,211,3,1,0,0,technical,high +0.7,0.71,5,269,3,0,0,0,technical,low +0.53,0.68,4,214,3,0,0,0,technical,medium +0.9,0.94,4,231,3,0,0,0,technical,medium +0.8,0.78,3,175,3,0,0,0,technical,medium +0.51,0.6,5,175,3,0,0,0,technical,medium +0.86,0.96,5,238,5,0,0,0,technical,low +0.63,0.79,4,228,4,0,0,0,technical,low +0.83,0.93,3,220,4,0,0,0,technical,low +0.85,0.55,4,233,2,1,0,0,technical,low +0.8,0.57,3,225,4,0,0,0,support,low +0.79,0.97,5,187,3,0,0,0,support,low +0.37,0.71,3,117,3,0,0,0,support,low +0.85,0.9,3,184,3,1,0,0,support,low +0.76,0.56,3,216,3,0,0,0,support,low +0.99,0.62,4,140,2,1,0,0,support,low +0.55,0.63,3,201,2,1,0,0,support,high +0.69,0.69,4,167,3,1,0,0,support,low +0.68,1,5,203,2,0,0,0,support,low +0.69,0.9,5,231,2,1,0,0,support,low +0.65,0.7,3,141,4,0,0,0,support,low +0.17,0.88,6,226,3,1,0,0,technical,high +0.48,0.65,3,199,2,0,0,0,technical,low +0.65,0.59,4,192,3,0,0,0,technical,low +0.57,0.49,4,247,2,0,0,0,management,low +0.8,0.67,3,164,3,0,0,0,IT,high +0.8,0.6,5,234,2,0,0,0,IT,low +0.5,0.6,2,177,3,1,0,0,IT,medium +0.95,0.87,3,208,2,0,0,0,IT,high +0.69,0.93,3,233,3,0,0,0,IT,medium +0.74,0.57,4,172,3,0,0,0,product_mng,high +0.68,0.59,3,141,3,0,0,0,product_mng,medium +0.68,0.55,3,213,3,0,0,0,product_mng,medium +0.65,0.37,5,128,3,1,0,0,product_mng,medium +0.85,0.92,4,151,3,1,0,0,IT,medium +0.49,0.48,4,247,3,0,0,0,RandD,medium +0.19,0.8,6,143,4,0,0,0,RandD,medium +0.95,0.61,3,164,3,0,0,0,RandD,medium +0.63,0.62,3,183,3,0,0,0,RandD,medium +0.83,0.8,4,274,3,0,0,0,RandD,high +0.62,0.78,4,261,2,0,0,0,marketing,low +0.74,0.98,5,200,3,0,0,0,sales,medium +0.7,0.87,5,177,2,0,0,0,accounting,medium +0.28,0.38,5,139,4,0,0,0,support,medium +0.39,0.56,6,228,5,0,0,0,technical,medium +0.62,0.63,3,230,2,0,0,0,management,medium +0.79,0.54,5,212,4,0,0,0,marketing,medium +0.87,0.74,4,265,4,0,0,0,marketing,medium +0.29,0.75,3,124,4,0,0,0,marketing,medium +0.37,0.88,4,155,3,0,0,0,sales,medium +0.68,0.55,4,215,4,0,0,0,sales,high +0.9,0.51,4,214,2,0,0,0,sales,low +0.97,0.65,3,181,3,0,0,0,sales,low +0.6,0.77,4,229,2,0,0,0,sales,low +0.58,0.79,5,262,2,0,0,0,sales,high +0.83,0.86,3,165,3,0,0,0,sales,low +0.83,0.73,5,136,3,0,0,0,sales,low +0.94,0.71,4,151,2,1,0,0,sales,low +0.69,0.9,5,226,4,0,0,0,sales,high +0.81,0.81,5,215,2,0,0,0,sales,low +0.19,0.5,6,143,5,1,0,0,sales,low +0.18,0.64,3,223,4,1,0,0,sales,low +0.58,0.63,4,271,3,0,0,0,sales,low +0.76,0.65,3,220,3,0,0,0,sales,low +0.26,0.47,6,182,4,0,0,0,sales,low +0.78,0.87,3,190,3,0,0,0,sales,low +0.71,0.56,3,198,3,0,0,0,sales,medium +0.76,0.61,3,141,2,0,0,0,sales,medium +0.44,0.81,3,248,2,0,0,0,accounting,medium +0.26,0.69,2,168,5,0,0,0,accounting,medium +0.75,0.57,5,162,3,0,0,0,accounting,medium +0.64,0.9,4,211,3,0,0,0,hr,medium +0.79,0.71,4,271,3,0,0,0,hr,medium +0.96,0.61,3,271,2,0,0,0,hr,medium +0.63,1,5,244,2,0,0,0,hr,medium +0.65,0.55,5,261,3,1,0,0,technical,medium +0.76,0.81,3,225,3,0,0,0,technical,medium +0.26,0.9,4,266,5,0,0,0,technical,medium +0.84,0.73,3,146,5,1,0,0,technical,high +0.74,0.77,3,233,3,0,0,0,technical,low +0.53,0.45,4,180,3,0,0,0,technical,medium +0.7,0.56,5,208,3,0,0,0,technical,medium +0.62,0.69,4,165,4,1,0,0,technical,medium +0.71,0.68,4,221,4,0,0,0,technical,medium +0.5,0.65,3,215,2,0,0,0,technical,low +0.53,0.5,6,264,6,0,0,0,technical,low +0.88,0.89,2,160,4,0,0,0,support,low +0.79,0.83,2,192,3,0,0,0,support,low +0.69,0.89,5,201,2,0,0,0,support,low +0.57,0.96,4,264,2,0,0,0,support,low +0.68,0.8,4,186,3,1,0,0,support,low +0.6,0.82,4,272,3,0,0,0,support,low +0.7,0.9,4,216,3,0,0,0,support,low +0.71,0.76,4,142,2,1,0,0,support,low +0.49,0.51,4,133,3,0,0,0,support,low +0.74,0.7,4,260,2,0,0,0,support,low +0.2,0.93,4,101,5,0,0,0,support,low +0.57,0.5,4,230,2,0,0,0,technical,low +0.83,0.48,3,242,4,0,0,0,technical,low +0.22,0.64,3,193,2,0,0,0,technical,low +0.67,0.57,2,234,4,0,0,0,management,low +0.54,0.84,3,132,3,0,0,0,IT,low +0.54,0.53,4,183,3,0,0,0,IT,low +0.64,0.61,4,191,4,0,0,0,IT,low +0.23,0.84,5,140,4,0,0,0,IT,low +0.88,0.87,5,257,3,0,0,0,IT,medium +0.83,0.54,4,219,3,0,0,0,product_mng,medium +0.88,0.67,5,141,2,0,0,0,product_mng,medium +0.9,0.85,5,162,2,0,0,0,product_mng,medium +0.49,0.61,3,181,3,0,0,0,product_mng,medium +0.55,0.49,3,191,3,0,0,0,IT,medium +0.92,0.69,4,149,6,1,0,0,RandD,medium +0.72,0.67,3,164,4,0,0,0,RandD,medium +0.63,0.5,4,235,3,0,0,0,RandD,medium +0.98,0.66,3,199,3,0,0,0,RandD,medium +0.76,0.52,3,248,3,0,0,0,RandD,medium +0.42,0.56,2,103,3,1,0,0,marketing,medium +0.58,0.65,4,248,4,0,0,0,marketing,high +0.85,0.82,3,153,3,1,0,0,sales,low +0.67,0.95,4,241,4,0,0,0,accounting,medium +0.58,1,4,258,3,0,0,0,support,medium +0.84,0.76,5,172,5,1,0,0,technical,medium +0.56,0.68,3,149,2,0,0,0,management,medium +0.63,0.83,4,217,3,0,0,0,marketing,low +0.51,0.92,3,243,3,0,0,0,marketing,low +0.95,0.81,5,120,3,0,0,0,marketing,low +0.85,0.55,3,137,3,1,0,0,sales,low +0.73,0.78,5,150,3,0,0,0,sales,low +0.2,0.49,5,199,5,0,0,0,sales,low +0.78,0.79,3,203,2,0,0,0,sales,low +0.83,0.8,3,273,3,0,0,0,sales,low +0.87,0.56,2,214,3,1,0,0,sales,low +0.98,0.99,5,141,3,0,0,0,sales,low +1,0.81,5,243,3,0,0,0,sales,low +0.7,0.55,4,159,3,0,0,0,sales,low +0.62,0.88,5,146,3,0,0,0,sales,low +0.67,0.72,4,159,2,0,0,0,sales,low +0.86,0.96,4,196,3,0,0,0,sales,low +0.44,0.57,5,183,2,1,0,0,sales,low +0.19,0.86,4,192,4,0,0,0,sales,low +0.76,0.83,4,246,2,0,0,0,sales,low +0.89,0.93,5,191,4,0,0,0,sales,low +0.25,0.97,3,158,3,0,0,0,sales,low +0.68,1,4,167,2,0,0,0,sales,low +0.38,0.5,2,187,2,1,0,0,sales,medium +0.64,0.95,4,199,4,0,0,0,accounting,medium +0.76,0.62,4,157,3,0,0,0,accounting,medium +0.26,0.45,2,157,3,0,0,0,accounting,medium +0.69,0.67,3,178,2,0,0,0,hr,medium +0.98,0.66,3,154,2,0,0,0,hr,medium +0.86,0.83,5,208,2,1,0,0,hr,medium +0.14,0.68,4,273,5,1,0,0,hr,medium +0.58,0.63,4,159,3,0,0,0,technical,medium +0.63,0.97,4,234,2,0,0,0,technical,medium +0.7,0.91,5,139,3,1,0,0,technical,medium +0.73,0.62,4,210,4,0,0,0,technical,medium +0.89,0.52,3,164,3,0,0,0,technical,high +0.17,0.61,3,241,5,1,0,0,technical,low +0.86,0.73,5,259,2,0,0,0,technical,medium +0.59,0.73,3,159,3,1,0,0,technical,medium +0.22,0.51,4,131,2,0,0,0,technical,medium +0.55,0.57,3,266,2,0,0,0,technical,medium +0.74,0.6,3,153,2,0,0,0,technical,low +0.55,0.54,3,253,2,0,0,0,support,low +0.67,0.94,4,141,2,1,0,0,support,low +0.64,0.8,3,199,3,0,0,0,support,low +0.58,0.71,3,205,3,0,0,0,support,low +0.9,0.6,4,252,3,0,0,0,support,low +0.89,0.9,4,153,3,0,0,0,support,low +0.74,0.37,2,171,4,0,0,0,support,low +0.78,0.91,5,150,4,0,0,0,support,low +0.97,0.53,4,247,3,0,0,0,support,low +0.52,0.92,4,150,2,1,0,0,support,low +0.99,0.86,4,206,2,0,0,0,support,low +0.76,0.44,4,192,4,1,0,0,technical,low +0.69,0.96,5,164,3,0,0,0,technical,low +0.59,0.69,3,186,3,0,0,0,technical,low +0.95,0.63,3,249,3,0,0,0,management,low +0.69,0.81,3,214,2,0,0,0,IT,low +0.76,0.75,4,193,4,0,0,0,IT,low +0.7,0.84,2,114,4,0,0,0,IT,low +0.87,0.6,2,122,2,0,0,0,IT,low +0.44,0.55,3,170,3,1,0,0,IT,low +0.54,0.91,3,151,3,0,0,0,product_mng,medium +0.55,0.75,3,156,3,0,0,0,product_mng,medium +0.81,0.75,5,170,3,1,0,0,product_mng,medium +0.5,0.55,3,188,2,0,0,0,product_mng,medium +0.93,0.74,4,201,3,1,0,0,IT,medium +0.64,0.5,6,254,6,0,0,0,RandD,medium +0.57,0.78,3,206,4,0,0,0,RandD,medium +0.95,0.74,4,216,3,0,0,0,RandD,medium +0.86,0.67,5,200,3,0,0,0,RandD,medium +0.82,0.58,4,202,2,0,0,0,RandD,medium +0.18,0.79,4,217,4,0,0,0,RandD,medium +0.58,0.7,5,151,4,0,0,0,marketing,medium +0.57,0.56,3,224,2,0,0,0,sales,high +0.94,0.83,5,148,3,0,0,0,accounting,low +0.2,0.97,6,224,5,1,0,0,support,medium +0.73,0.75,2,243,5,1,0,0,technical,medium +0.94,0.8,4,238,3,1,0,0,management,medium +0.99,0.61,3,254,3,0,0,0,marketing,medium +0.22,0.49,4,218,4,0,0,0,marketing,low +0.67,0.66,3,237,3,0,0,0,marketing,low +0.49,0.67,4,185,2,0,0,0,sales,low +0.78,0.95,4,184,3,0,0,0,sales,low +0.15,0.74,2,176,3,1,0,0,sales,low +0.91,0.89,4,260,3,0,0,0,sales,low +0.7,0.78,4,254,4,0,0,0,sales,low +0.6,0.95,3,221,3,0,0,0,sales,low +0.59,0.57,5,257,2,0,0,0,sales,low +0.59,0.93,3,265,3,1,0,0,sales,low +0.55,0.64,3,138,3,1,0,0,sales,low +0.42,0.75,3,163,2,1,0,0,sales,low +0.57,0.81,3,144,3,0,0,0,sales,low +0.72,0.51,3,146,2,1,0,0,sales,low +0.83,0.81,3,242,6,0,0,0,sales,low +0.89,0.93,4,249,3,0,0,0,sales,low +0.55,0.59,3,245,3,0,0,0,sales,low +0.53,0.75,4,201,2,0,0,0,sales,low +0.74,0.59,4,177,4,1,0,0,sales,medium +0.63,0.98,4,160,2,0,0,0,sales,medium +0.63,0.4,6,177,2,1,0,0,sales,medium +0.61,0.97,4,153,3,0,0,0,accounting,medium +0.76,0.79,3,197,5,0,0,0,accounting,medium +0.67,0.82,4,246,4,0,0,0,accounting,medium +0.51,0.95,4,258,3,0,0,0,hr,medium +0.67,0.55,3,137,3,0,0,0,hr,medium +0.16,0.94,3,178,4,0,0,0,hr,medium +0.34,0.85,4,123,4,0,0,0,hr,medium +0.58,0.73,5,162,3,1,0,0,technical,medium +0.5,0.71,5,210,5,0,0,0,technical,medium +0.56,0.48,4,197,3,1,0,0,technical,high +0.56,0.98,3,220,3,0,0,0,technical,low +0.74,0.71,4,133,2,0,0,0,technical,medium +0.69,0.99,3,198,2,0,0,0,technical,medium +0.15,0.81,4,160,5,0,0,0,technical,medium +0.58,0.67,2,180,2,0,0,0,technical,medium +0.8,0.79,3,217,3,0,0,0,technical,low +0.5,0.57,3,223,3,0,0,0,technical,low +0.66,0.92,4,229,2,0,0,0,technical,low +0.81,0.78,4,159,3,0,0,0,support,low +0.14,0.68,5,253,5,0,0,0,support,low +0.92,0.85,3,235,2,0,0,0,support,low +0.69,0.91,4,186,3,0,0,0,support,low +0.66,0.99,4,263,2,0,0,0,support,low +0.85,0.39,4,239,4,0,0,0,support,low +0.83,0.69,4,151,2,0,0,0,support,low +1,0.49,3,106,4,0,0,0,support,low +0.68,0.65,3,183,4,0,0,0,support,low +0.26,0.97,3,125,2,0,0,0,support,low +0.35,0.41,3,157,2,0,0,0,support,low +0.12,0.58,3,241,2,0,0,0,technical,low +0.91,0.93,4,184,3,0,0,0,technical,low +0.65,0.67,4,144,3,0,0,0,technical,low +0.78,0.72,3,255,4,1,0,0,management,low +0.61,0.82,3,261,4,0,0,0,IT,low +0.64,0.51,4,207,2,0,0,0,IT,low +0.58,0.73,4,205,4,0,0,0,IT,low +0.63,0.76,4,217,2,1,0,0,IT,medium +0.94,0.6,4,215,2,1,0,0,IT,medium +0.26,0.81,5,139,4,0,0,0,product_mng,medium +0.59,0.69,3,146,3,0,0,0,product_mng,medium +0.78,0.8,4,175,3,0,0,0,product_mng,medium +0.86,0.64,5,188,3,0,0,0,product_mng,medium +0.79,0.73,5,155,3,0,0,0,IT,medium +0.89,0.73,4,171,4,0,0,0,RandD,medium +0.34,0.99,4,184,3,0,0,0,RandD,medium +0.29,0.77,3,164,6,0,0,0,RandD,medium +0.71,0.89,3,244,4,0,0,0,RandD,medium +0.93,0.58,4,222,2,0,0,0,RandD,medium +0.94,0.76,4,231,3,1,0,0,RandD,high +0.91,0.72,3,213,3,0,0,0,marketing,low +0.71,0.96,4,144,4,0,0,0,sales,medium +0.67,0.81,3,221,4,1,0,0,accounting,medium +0.54,0.42,3,138,3,1,0,0,support,medium +0.89,0.58,3,183,4,0,0,0,technical,medium +0.94,0.91,3,250,3,1,0,0,management,low +0.15,0.89,3,219,6,0,0,0,marketing,low +0.45,0.92,6,164,4,1,0,0,marketing,low +0.92,0.67,4,161,4,1,0,0,marketing,low +0.63,0.56,4,274,5,1,0,0,sales,low +0.8,0.66,4,181,3,1,0,0,sales,low +0.45,0.72,3,148,2,0,0,0,sales,low +0.72,0.54,3,226,2,1,0,0,sales,low +0.84,0.36,6,256,5,0,0,0,sales,low +0.61,0.51,3,141,2,0,0,0,sales,low +0.63,0.88,3,177,3,0,0,0,sales,low +0.49,0.54,4,173,2,0,0,0,sales,low +0.68,0.51,2,196,3,0,0,0,sales,low +0.64,0.85,5,179,2,0,0,0,sales,low +0.61,0.64,4,201,3,0,0,0,sales,low +0.83,0.55,5,247,3,0,0,0,sales,low +0.94,0.51,5,238,2,0,0,0,sales,low +0.27,0.66,3,133,6,0,0,0,sales,low +0.6,0.49,2,194,4,0,0,0,sales,low +0.83,0.69,4,232,2,0,0,0,sales,low +0.53,0.75,3,232,3,0,0,0,sales,low +0.79,0.97,4,204,3,0,0,0,sales,medium +0.96,0.49,4,252,3,1,0,0,sales,medium +0.5,0.56,3,164,3,0,0,0,accounting,medium +0.68,0.81,5,266,2,0,0,0,accounting,medium +0.24,0.54,4,226,4,1,0,0,accounting,medium +0.8,0.8,4,252,6,0,0,0,hr,medium +0.62,0.74,4,155,3,0,0,0,hr,medium +1,0.85,3,202,2,0,0,0,hr,medium +0.64,0.75,3,214,3,0,0,0,hr,medium +0.51,0.55,4,267,3,0,0,0,technical,medium +0.74,0.5,4,265,3,0,0,0,technical,medium +0.49,0.99,3,221,2,1,0,0,technical,medium +0.96,0.83,4,132,6,0,0,0,technical,high +0.59,0.62,4,227,4,1,0,0,technical,low +0.84,0.57,4,234,3,0,0,0,technical,medium +0.16,0.84,3,238,6,0,0,0,technical,medium +0.62,0.75,3,149,2,1,0,0,technical,medium +0.79,0.67,4,152,3,0,0,0,technical,medium +0.53,0.83,4,249,3,1,0,0,technical,low +0.17,0.48,6,270,5,0,0,0,technical,low +0.57,0.76,3,200,2,0,0,0,support,low +0.65,0.82,4,207,2,0,0,0,support,low +0.69,0.74,4,266,2,1,0,0,support,low +0.3,0.8,6,250,3,0,0,0,support,low +0.99,0.92,3,220,3,0,0,0,support,low +0.5,0.69,4,177,2,0,0,0,support,low +0.54,0.96,3,147,2,0,0,0,support,medium +0.69,0.57,4,227,4,0,0,0,support,medium +0.5,0.85,4,272,2,0,0,0,support,medium +0.66,0.73,3,244,3,0,0,0,support,medium +1,0.93,5,182,3,1,0,0,support,medium +0.15,0.61,3,146,6,1,0,0,technical,medium +0.31,0.54,5,259,5,1,0,0,technical,medium +0.65,0.49,4,184,4,0,0,0,technical,medium +0.72,0.69,4,149,2,0,0,0,management,medium +0.84,0.85,4,185,3,1,0,0,IT,medium +0.55,0.8,3,254,2,0,0,0,IT,medium +0.6,0.58,4,249,3,0,0,0,IT,medium +0.84,0.48,4,269,2,0,0,0,IT,medium +0.68,0.87,3,168,3,0,0,0,IT,medium +0.13,1,6,225,3,0,0,0,product_mng,medium +0.88,0.98,3,160,2,0,0,0,product_mng,medium +0.64,0.57,5,149,3,1,0,0,product_mng,medium +0.19,0.95,5,193,3,0,0,0,product_mng,medium +0.83,0.88,5,171,3,1,0,0,IT,medium +0.17,0.41,4,232,3,1,0,0,RandD,medium +0.44,0.74,4,250,6,0,0,0,RandD,medium +0.52,0.55,4,243,2,0,0,0,RandD,medium +0.66,0.62,4,250,2,0,0,0,RandD,medium +0.96,0.55,4,153,3,0,0,0,RandD,medium +0.19,0.5,5,126,3,1,0,0,RandD,medium +0.86,1,3,192,3,0,0,0,marketing,high +0.65,0.57,3,137,4,1,0,0,sales,high +0.61,0.97,3,199,3,1,0,0,accounting,high +0.53,0.96,3,181,3,1,0,0,support,high +0.14,0.76,5,260,6,0,0,0,technical,high +0.74,1,4,199,4,0,0,0,management,high +0.47,0.62,6,171,5,1,0,0,marketing,high +0.6,0.56,4,260,3,0,0,0,marketing,high +0.81,0.58,3,243,4,0,0,0,marketing,high +0.95,0.59,2,154,4,0,0,0,sales,high +0.98,0.8,2,201,2,0,0,0,sales,high +0.52,0.8,5,234,3,0,0,0,sales,high +1,0.97,3,216,3,1,0,0,sales,low +0.16,0.74,5,205,4,1,0,0,sales,low +0.19,0.83,3,225,4,0,0,0,sales,low +0.94,0.87,3,229,3,0,0,0,sales,low +0.58,0.43,6,132,3,0,0,0,sales,low +0.92,0.69,4,180,3,0,0,0,sales,low +0.65,0.8,4,164,4,0,0,0,sales,low +0.74,0.74,5,175,3,0,0,0,sales,low +0.6,0.53,5,103,2,0,0,0,sales,low +1,1,5,142,4,0,0,0,sales,low +0.81,0.96,4,212,3,0,0,0,sales,low +0.54,0.67,2,129,3,1,0,0,sales,low +0.18,0.81,5,140,4,0,0,0,sales,low +0.82,0.88,4,149,2,0,0,0,sales,low +0.9,0.96,2,258,2,0,0,0,sales,low +0.62,0.62,4,136,2,0,0,0,sales,medium +0.77,0.76,2,216,3,1,0,0,accounting,medium +0.58,0.86,3,151,2,0,0,0,accounting,medium +0.27,0.47,5,217,6,0,0,0,accounting,medium +0.78,0.72,4,219,3,0,0,0,hr,medium +0.98,0.66,3,150,3,0,0,0,hr,medium +0.75,0.5,4,98,4,0,0,0,hr,medium +0.74,0.67,5,140,3,0,0,0,hr,medium +0.9,0.99,3,259,3,1,0,0,technical,medium +0.73,0.71,5,215,6,1,0,0,technical,medium +0.9,0.62,4,258,3,0,0,0,technical,medium +0.68,0.91,4,162,3,1,0,0,technical,medium +0.9,0.74,3,260,4,0,0,0,technical,high +0.64,0.93,5,198,2,0,0,0,technical,high +0.63,0.9,2,242,3,1,0,0,technical,high +0.87,0.89,4,219,4,0,0,0,technical,high +0.6,0.55,4,204,3,0,0,0,technical,high +0.7,0.74,3,157,3,0,0,0,technical,high +0.15,0.94,5,244,6,0,0,0,technical,high +0.45,0.75,3,122,3,0,0,0,support,high +0.43,0.9,5,282,5,0,0,0,support,low +0.92,0.46,5,195,5,0,0,0,support,low +0.72,0.81,4,134,2,0,0,0,support,low +0.94,0.84,3,210,2,0,0,0,support,low +0.74,0.52,3,170,3,0,0,0,support,low +0.48,0.71,2,140,3,1,0,0,support,low +0.84,0.76,5,215,2,1,0,0,support,low +0.53,0.86,3,150,3,0,0,0,support,low +0.45,0.88,5,268,3,1,0,0,support,medium +0.95,0.67,4,270,4,0,0,0,support,medium +0.95,0.58,3,163,3,0,0,0,technical,medium +0.7,0.85,3,188,2,0,0,0,technical,medium +0.19,0.93,3,110,4,0,0,0,technical,medium +0.74,0.91,5,135,3,0,0,0,management,medium +0.54,0.59,4,228,3,0,0,0,IT,medium +0.5,0.69,5,172,2,0,0,0,IT,medium +0.95,0.72,3,168,5,0,0,0,IT,medium +0.69,0.69,5,160,3,0,0,0,IT,medium +0.24,0.74,5,282,3,0,0,0,IT,medium +0.96,0.7,5,184,2,1,0,0,product_mng,medium +0.61,0.5,4,217,4,1,0,0,product_mng,medium +0.76,0.53,6,281,3,0,0,0,product_mng,medium +0.61,0.64,3,245,2,0,0,0,product_mng,medium +0.37,0.48,2,285,5,0,0,0,IT,medium +0.81,0.9,4,165,3,0,0,0,RandD,medium +0.59,0.9,3,146,3,0,0,0,RandD,medium +0.73,0.82,3,133,3,0,0,0,RandD,medium +0.87,0.57,2,181,6,0,0,0,RandD,medium +0.67,0.66,6,152,3,0,0,0,RandD,medium +0.96,0.78,2,284,3,0,0,0,RandD,medium +0.98,0.51,3,157,3,0,0,0,marketing,medium +0.5,0.58,4,165,2,0,0,0,sales,high +0.49,0.71,3,255,2,1,0,0,accounting,low +0.13,0.65,4,194,4,0,0,0,support,medium +0.57,0.68,3,102,6,0,0,0,technical,medium +0.51,0.94,4,247,2,0,0,0,management,medium +0.99,0.69,3,206,2,0,0,0,marketing,medium +0.8,0.77,3,171,2,0,0,0,marketing,medium +0.56,0.39,5,263,4,0,0,0,marketing,medium +0.96,0.84,4,272,4,1,0,0,sales,medium +0.96,0.5,3,158,2,1,0,0,sales,medium +0.87,0.53,6,216,6,1,0,0,sales,medium +0.61,0.9,5,113,3,0,0,0,sales,medium +0.18,0.6,3,140,4,0,0,0,sales,low +0.24,0.77,5,178,5,0,0,0,sales,low +0.86,0.48,4,153,3,0,0,0,sales,low +0.25,0.62,6,271,5,0,0,0,sales,low +0.25,0.82,3,269,5,0,0,0,sales,low +0.63,0.55,3,160,3,0,0,0,sales,low +0.89,0.68,4,258,2,1,0,0,sales,low +0.87,0.82,4,251,3,0,0,0,sales,high +0.87,0.78,3,170,2,0,0,0,sales,low +0.71,0.99,4,238,4,1,0,0,sales,high +0.98,0.87,4,152,2,0,0,0,sales,high +0.16,0.51,3,262,6,0,0,0,sales,low +0.83,0.68,4,273,2,0,0,0,sales,low +0.65,0.77,3,233,2,0,0,0,sales,high +0.95,0.64,3,262,3,0,0,0,sales,low +0.67,0.67,3,183,3,0,0,0,accounting,medium +0.53,0.88,3,150,3,1,0,0,accounting,high +0.74,0.94,3,132,3,0,0,0,accounting,medium +0.77,0.79,3,200,4,0,0,0,hr,medium +0.13,0.72,4,148,5,0,0,0,hr,medium +0.82,0.92,3,187,3,1,0,0,hr,medium +0.88,0.65,4,224,2,0,0,0,hr,high +0.89,0.5,4,147,2,0,0,0,technical,medium +0.85,0.51,3,153,4,0,0,0,technical,medium +0.93,0.87,5,154,2,0,0,0,technical,medium +0.62,0.7,5,270,3,0,0,0,technical,high +0.58,0.96,3,202,2,0,0,0,technical,medium +0.98,0.5,4,264,3,0,0,0,technical,high +0.52,0.45,2,145,3,0,0,0,technical,low +0.76,0.49,3,138,2,1,0,0,technical,medium +0.73,0.91,3,238,2,0,0,0,technical,medium +0.74,0.64,4,147,5,0,0,0,technical,medium +0.49,0.48,3,190,2,0,0,0,technical,medium +0.91,0.97,4,183,3,0,0,0,support,low +0.74,0.92,5,255,3,0,0,0,support,low +0.86,0.82,4,252,4,0,0,0,support,low +0.52,0.47,6,141,5,1,0,0,support,low +0.95,0.81,3,260,2,0,0,0,support,low +0.65,0.98,3,136,3,0,0,0,support,low +0.7,0.56,4,182,2,0,0,0,support,low +0.14,0.66,6,142,5,0,0,0,support,low +0.92,0.53,2,261,4,0,0,0,support,low +0.54,0.6,3,209,2,0,0,0,support,low +0.76,0.95,2,156,4,0,0,0,support,high +0.78,0.66,4,214,2,0,0,0,technical,low +0.85,0.86,4,250,3,0,0,0,technical,low +0.78,0.8,4,197,3,1,0,0,technical,low +0.55,0.72,3,149,3,0,0,0,management,low +0.68,0.61,5,271,2,0,0,0,IT,high +0.91,0.68,4,187,2,0,0,0,IT,low +0.76,0.56,3,154,2,0,0,0,IT,low +0.15,0.67,4,264,3,0,0,0,IT,low +0.95,0.6,2,144,3,0,0,0,IT,high +0.74,0.37,6,200,3,0,0,0,product_mng,low +0.92,0.56,5,197,2,1,0,0,product_mng,medium +0.64,0.89,3,175,3,1,0,0,product_mng,high +0.96,0.9,3,161,3,0,0,0,product_mng,medium +0.21,0.72,3,245,6,0,0,0,IT,high +0.85,0.67,3,167,4,0,0,0,RandD,medium +0.52,0.86,5,168,3,0,0,0,RandD,medium +0.54,0.81,5,261,6,0,0,0,RandD,medium +0.56,0.81,5,274,4,0,0,0,RandD,medium +0.59,0.79,4,181,3,0,0,0,RandD,medium +0.88,0.58,5,266,3,1,0,0,marketing,medium +0.7,0.84,4,184,3,0,0,0,sales,medium +0.95,0.58,3,193,2,0,0,0,accounting,medium +0.83,0.88,3,217,2,1,0,0,support,high +0.76,0.62,4,197,3,0,0,0,technical,low +0.82,0.92,5,252,3,0,0,0,management,medium +0.55,0.97,4,136,3,0,0,0,marketing,medium +0.89,0.55,5,194,4,0,0,0,marketing,medium +0.66,0.94,4,190,3,0,0,0,marketing,medium +0.41,0.61,3,185,2,1,0,0,sales,medium +0.83,0.77,3,232,2,1,0,0,sales,medium +0.88,0.72,3,200,2,1,0,0,sales,medium +0.56,0.66,5,155,2,0,0,0,sales,medium +0.53,0.72,3,228,3,0,0,0,sales,medium +0.8,0.41,3,188,4,0,0,0,sales,high +0.95,0.78,4,245,3,0,0,0,sales,low +0.9,0.88,4,205,2,0,0,0,sales,low +0.5,0.97,4,269,3,0,0,0,sales,low +0.4,0.59,3,207,6,0,0,0,sales,high +0.52,0.85,3,250,4,0,0,0,sales,low +0.51,0.5,5,251,3,1,0,0,sales,low +0.84,0.62,5,217,3,0,0,0,sales,low +0.78,0.98,5,252,3,0,0,0,sales,high +0.91,0.71,2,159,3,1,0,0,sales,low +0.59,0.71,5,169,2,0,0,0,sales,low +0.69,0.97,5,105,4,0,0,0,sales,low +0.87,0.93,4,268,2,0,0,0,sales,low +0.66,1,5,145,2,0,0,0,sales,low +0.5,0.54,4,165,3,0,0,0,accounting,low +0.95,0.75,3,253,4,0,0,0,accounting,low +0.77,0.64,3,254,3,0,0,0,accounting,medium +0.66,0.5,3,218,2,0,0,0,hr,medium +0.61,0.98,3,138,5,1,0,0,hr,medium +0.7,0.87,5,239,3,0,0,0,hr,medium +0.89,0.71,5,182,2,1,0,0,hr,medium +0.6,0.78,4,152,3,1,0,0,technical,medium +0.62,0.51,3,222,3,1,0,0,technical,medium +0.59,0.9,2,219,2,1,0,0,technical,medium +0.69,0.59,4,266,4,0,0,0,technical,medium +0.36,0.94,3,113,5,1,0,0,technical,medium +0.59,0.93,4,146,3,0,0,0,technical,medium +0.5,0.51,5,238,4,0,0,0,technical,medium +0.53,0.99,3,188,3,0,0,0,technical,high +0.84,0.9,4,237,2,0,0,0,technical,low +0.51,0.95,4,201,3,0,0,0,technical,medium +0.53,0.56,5,188,3,0,0,0,technical,medium +0.98,0.63,3,137,3,0,0,0,support,medium +0.95,0.81,4,263,3,0,0,0,support,medium +0.13,0.76,5,217,3,0,0,0,support,low +0.5,0.64,4,213,4,0,0,0,support,low +0.93,0.76,3,244,3,0,0,0,support,low +0.5,0.87,3,252,2,0,0,0,support,low +0.66,0.84,4,168,2,0,0,0,support,low +0.89,0.79,4,212,3,0,0,0,support,low +0.46,0.43,4,258,3,0,0,0,support,low +0.67,0.6,4,210,3,0,0,0,support,low +0.96,0.9,4,246,3,0,0,0,support,low +0.98,0.76,4,221,3,1,0,0,technical,low +0.67,0.57,5,215,4,0,0,0,technical,low +0.72,0.72,4,175,4,0,0,0,technical,low +0.65,0.49,5,221,2,0,0,0,management,low +0.72,0.67,5,219,3,0,0,0,IT,low +0.78,0.58,3,154,3,0,0,0,IT,low +0.93,0.56,3,266,2,0,0,0,IT,low +0.73,0.85,5,224,4,0,0,0,IT,low +0.2,0.57,4,269,5,1,0,0,IT,low +0.47,0.5,4,159,2,0,0,0,product_mng,low +0.56,0.62,4,247,3,0,0,0,product_mng,low +0.72,0.86,4,137,2,0,0,0,product_mng,low +0.91,0.56,4,251,4,0,0,0,product_mng,medium +0.79,0.49,5,210,3,0,0,0,IT,medium +0.53,0.75,2,123,4,0,0,0,RandD,medium +0.14,0.51,4,253,6,0,0,0,RandD,medium +0.78,0.92,5,242,4,0,0,0,RandD,medium +0.52,0.74,3,238,3,0,0,0,RandD,medium +0.94,0.68,5,151,2,0,0,0,RandD,medium +0.83,0.8,4,158,4,0,0,0,marketing,medium +0.44,0.68,2,120,2,0,0,0,marketing,medium +0.72,0.74,3,187,2,0,0,0,sales,medium +0.84,0.58,3,140,3,0,0,0,accounting,medium +0.76,0.99,3,164,2,0,0,0,support,medium +0.92,0.94,5,253,2,0,0,0,technical,high +0.58,0.93,5,235,2,0,0,0,management,low +0.85,0.81,4,189,4,0,0,0,marketing,medium +0.74,0.51,4,246,3,1,0,0,marketing,medium +0.74,0.87,4,258,2,0,0,0,marketing,medium +0.72,0.8,3,158,3,0,0,0,sales,medium +0.76,0.98,4,173,3,1,0,0,sales,low +0.85,0.72,3,201,3,0,0,0,sales,low +0.82,0.49,5,185,3,0,0,0,sales,low +0.6,0.93,5,270,3,1,0,0,sales,low +0.39,0.64,3,152,2,0,0,0,sales,low +0.83,0.53,3,211,4,1,0,0,sales,low +0.7,0.92,3,162,3,1,0,0,sales,low +0.84,0.97,4,253,2,1,0,0,sales,low +0.9,0.77,4,236,3,0,0,0,sales,low +0.18,0.84,4,231,5,0,0,0,sales,low +0.52,0.71,2,231,2,0,0,0,sales,low +0.87,0.51,4,233,3,0,0,0,sales,low +0.6,0.79,5,217,2,0,0,0,sales,low +0.72,0.93,4,174,2,0,0,0,sales,low +0.48,0.64,4,227,3,0,0,0,sales,low +0.75,0.53,3,222,2,0,0,0,sales,low +0.85,0.55,2,207,6,0,0,0,sales,low +0.39,0.41,6,115,3,0,0,0,sales,low +0.61,0.68,3,254,2,0,0,0,accounting,low +0.6,0.61,4,170,3,0,0,0,accounting,low +0.57,0.64,2,206,3,0,0,0,accounting,low +0.19,0.68,5,149,3,0,0,0,hr,medium +0.48,0.77,3,197,3,0,0,0,hr,medium +0.69,0.75,4,261,3,0,0,0,hr,medium +0.7,0.55,4,256,4,0,0,0,hr,medium +0.65,0.92,3,219,3,0,0,0,technical,medium +0.81,0.96,4,143,3,1,0,0,technical,medium +0.85,0.95,4,171,3,0,0,0,technical,medium +0.93,0.76,4,207,2,0,0,0,technical,medium +0.72,0.94,4,235,3,0,0,0,technical,medium +0.49,0.55,2,173,3,0,0,0,technical,medium +0.94,0.47,5,131,6,0,0,0,technical,medium +0.81,0.84,4,143,2,0,0,0,technical,medium +0.92,0.78,5,193,4,0,0,0,technical,high +0.97,0.82,3,135,2,0,0,0,technical,low +0.98,0.61,4,265,2,1,0,0,technical,medium +0.44,0.45,3,133,2,1,0,0,support,medium +0.72,0.87,4,184,4,0,0,0,support,medium +0.8,0.73,5,135,3,0,0,0,support,medium +0.6,0.72,4,267,4,0,0,0,support,low +0.89,0.65,4,184,3,0,0,0,support,low +0.69,0.57,5,227,2,0,0,0,support,low +0.54,0.81,4,257,2,0,0,0,support,low +0.97,0.75,5,235,3,1,0,0,support,low +0.37,0.4,4,161,2,0,0,0,support,low +0.73,0.52,4,215,3,0,0,0,support,low +0.57,0.69,4,146,3,0,0,0,support,low +0.86,0.66,4,191,2,0,0,0,technical,low +0.83,0.85,4,261,3,0,0,0,technical,low +0.19,0.52,5,200,5,0,0,0,technical,low +0.55,0.93,4,239,4,0,0,0,management,low +0.6,0.65,4,160,2,0,0,0,IT,low +0.62,0.71,3,177,3,1,0,0,IT,low +0.65,0.55,5,215,2,0,0,0,IT,low +0.4,0.48,4,97,2,0,0,0,IT,low +0.82,0.78,5,231,2,1,0,0,IT,low +0.75,0.69,2,257,2,1,0,0,product_mng,low +0.83,0.53,3,232,3,1,0,0,product_mng,low +0.77,0.78,4,212,3,0,0,0,product_mng,low +0.59,0.98,4,198,3,0,0,0,product_mng,low +0.8,0.79,5,240,4,0,0,0,IT,medium +0.84,0.55,3,242,3,0,0,0,RandD,medium +0.88,0.71,4,250,3,0,0,0,RandD,medium +0.37,0.9,3,229,6,0,0,0,RandD,medium +0.88,0.66,4,133,2,0,0,0,RandD,medium +0.69,0.85,3,200,2,0,0,0,RandD,medium +0.54,0.49,2,155,2,1,0,0,marketing,medium +0.76,0.57,5,139,4,0,0,0,sales,medium +0.51,0.58,4,272,3,0,0,0,accounting,medium +0.16,0.52,3,100,4,0,0,0,support,medium +0.65,0.6,5,160,3,0,0,0,technical,medium +0.54,0.81,5,195,4,0,0,0,management,medium +0.66,0.68,4,152,3,0,0,0,marketing,high +0.95,0.65,5,182,3,0,0,0,marketing,low +0.83,0.57,3,137,2,0,0,0,marketing,medium +0.98,0.84,4,182,3,0,0,0,sales,medium +0.72,0.72,3,217,2,0,0,0,sales,medium +0.71,0.62,4,192,4,0,0,0,sales,medium +0.36,0.65,3,116,2,1,0,0,sales,low +0.55,0.65,4,170,4,0,0,0,sales,low +0.64,0.52,3,223,3,0,0,0,sales,low +0.62,0.57,3,174,2,0,0,0,sales,low +1,0.95,3,193,6,0,0,0,sales,low +0.91,0.91,6,167,2,1,0,0,sales,low +0.81,0.67,4,225,3,0,0,0,sales,low +0.71,0.92,4,248,3,1,0,0,sales,low +0.97,0.74,3,104,5,0,0,0,sales,low +0.75,0.86,6,148,4,0,0,0,sales,low +0.68,1,3,148,4,1,0,0,sales,low +0.87,0.68,5,187,3,0,0,0,sales,low +0.96,0.57,3,151,2,0,0,0,sales,low +0.41,0.86,6,215,5,0,0,0,sales,low +0.81,0.61,4,142,4,0,0,0,sales,low +0.68,1,6,258,5,0,0,0,sales,low +0.63,0.56,4,228,3,0,0,0,accounting,low +0.6,0.84,2,221,3,0,0,0,accounting,low +0.66,0.97,3,263,3,0,0,0,accounting,medium +0.69,0.82,4,273,4,0,0,0,hr,medium +0.23,0.37,3,247,4,0,0,0,hr,medium +0.52,0.63,3,225,3,0,0,0,hr,medium +0.65,0.86,4,269,2,1,0,0,hr,medium +0.78,0.4,6,174,3,0,0,0,technical,medium +0.6,0.65,5,201,2,0,0,0,technical,medium +0.9,0.62,3,254,3,0,0,0,technical,medium +0.59,0.95,5,254,2,0,0,0,technical,medium +0.89,0.78,3,185,2,1,0,0,technical,medium +0.96,0.85,4,200,4,0,0,0,technical,medium +0.68,0.76,3,190,3,1,0,0,technical,medium +0.52,0.72,2,160,2,0,0,0,technical,high +0.68,0.94,3,264,2,0,0,0,technical,low +0.6,0.59,3,172,3,0,0,0,technical,medium +0.28,0.83,5,279,4,0,0,0,technical,medium +0.98,0.54,5,260,3,0,0,0,support,medium +0.67,0.52,4,262,2,0,0,0,support,medium +0.86,0.6,5,134,2,1,0,0,support,low +0.83,0.9,3,195,3,0,0,0,support,low +0.79,0.86,3,139,3,0,0,0,support,low +0.54,0.86,4,205,5,0,0,0,support,low +0.51,0.86,5,212,2,0,0,0,support,low +0.75,0.65,4,148,2,0,0,0,support,low +0.51,0.67,4,228,3,0,0,0,support,low +0.73,0.74,5,230,3,0,0,0,support,low +0.17,0.4,4,286,3,0,0,0,support,low +0.88,0.59,4,142,3,0,0,0,technical,low +0.76,0.79,3,161,3,0,0,0,technical,low +0.29,0.77,3,152,3,1,0,0,technical,low +0.62,0.97,4,266,3,0,0,0,management,low +0.5,0.85,2,143,3,0,0,0,IT,low +0.16,0.65,5,165,3,0,0,0,IT,low +0.18,0.99,4,204,6,0,0,0,IT,low +0.86,0.68,4,170,2,0,0,0,IT,low +0.68,0.52,5,203,3,0,0,0,IT,low +0.68,0.85,3,199,3,0,0,0,product_mng,low +0.89,0.78,4,223,3,0,0,0,product_mng,low +0.86,0.88,4,220,2,0,0,0,product_mng,low +0.43,0.41,4,190,3,0,0,0,product_mng,medium +0.85,0.58,4,143,6,1,0,0,IT,medium +0.94,0.8,5,111,4,0,0,1,RandD,medium +0.58,0.71,4,145,3,1,0,1,RandD,medium +0.43,0.6,3,138,3,0,0,1,RandD,medium +0.72,0.49,3,203,3,0,0,1,RandD,medium +0.95,0.96,5,175,3,1,0,1,RandD,medium +0.35,0.67,3,119,3,0,0,1,marketing,medium +0.77,0.79,3,157,3,0,0,1,sales,medium +0.74,0.7,5,135,2,0,0,1,accounting,medium +0.5,0.6,4,200,2,0,0,1,support,medium +0.87,0.56,4,121,2,0,0,1,technical,medium +0.55,0.48,3,162,3,0,0,1,management,high +0.8,0.65,3,135,3,0,0,1,marketing,low +0.49,0.52,4,183,2,0,0,1,marketing,medium +0.54,0.92,4,228,3,0,0,1,marketing,medium +0.21,0.87,4,148,5,0,0,0,sales,medium +0.77,0.77,3,219,2,0,0,0,sales,medium +0.53,0.73,4,147,3,0,0,0,sales,low +0.89,0.49,5,165,6,0,0,0,sales,low +0.25,0.59,4,218,3,1,0,0,sales,low +0.53,0.59,3,231,2,0,0,0,sales,low +0.44,0.45,2,124,3,0,0,0,sales,low +0.7,0.44,2,131,2,0,0,0,sales,low +0.54,0.76,3,199,4,0,0,0,sales,low +0.9,0.56,3,220,3,0,0,0,sales,low +0.69,0.8,5,215,3,0,0,0,sales,low +0.78,0.59,4,180,3,0,0,0,sales,low +0.91,0.49,6,272,6,0,0,0,sales,low +0.92,0.61,2,228,2,0,0,0,sales,low +0.96,0.88,3,168,2,0,0,0,sales,low +0.8,0.77,4,205,2,0,0,0,sales,low +0.52,0.67,3,244,3,0,0,0,sales,low +0.52,0.97,3,185,2,0,0,0,sales,low +0.93,0.96,5,135,3,1,0,0,sales,low +0.89,0.9,4,160,2,0,0,0,accounting,low +0.83,0.61,4,262,4,0,0,0,accounting,low +0.7,0.84,6,225,6,0,0,0,accounting,low +0.89,0.74,4,174,2,0,0,0,hr,low +0.21,0.37,6,266,3,0,0,1,hr,medium +0.67,0.78,4,241,4,0,0,1,hr,medium +0.73,0.97,3,245,2,0,0,1,hr,medium +0.85,0.51,3,261,4,0,0,1,technical,medium +0.54,0.85,4,157,3,0,0,1,technical,medium +0.74,0.94,3,286,6,0,0,1,technical,medium +0.71,0.65,4,263,2,1,0,1,technical,medium +0.76,0.52,2,229,3,0,0,1,technical,medium +0.85,0.5,4,159,2,0,0,1,technical,medium +0.82,0.89,4,196,3,0,0,1,technical,medium +0.71,0.79,4,133,3,0,0,1,technical,medium +0.79,0.65,5,228,3,0,0,1,technical,medium +0.86,0.56,4,247,3,0,0,1,technical,high +0.9,0.78,5,215,3,0,0,1,technical,low +0.65,0.8,6,233,3,1,0,1,support,medium +0.53,0.74,5,237,2,0,0,1,support,medium +0.51,0.91,4,269,5,0,0,1,support,medium +1,0.76,6,246,3,1,0,1,support,medium +0.92,0.82,4,168,3,0,0,1,support,low +1,0.59,3,168,3,0,0,1,support,low +0.23,0.67,4,163,5,0,0,1,support,low +0.52,0.77,3,142,2,0,0,1,support,low +0.8,0.83,4,183,2,1,0,1,support,low +0.59,0.72,4,264,3,0,0,0,support,low +0.75,0.55,2,184,2,0,0,0,support,low +0.99,0.58,4,138,3,0,0,0,technical,low +0.57,0.76,3,195,3,0,0,0,technical,medium +0.87,0.95,4,251,3,0,0,0,technical,medium +0.52,0.47,3,108,5,0,0,0,management,medium +0.57,0.9,3,144,2,0,0,0,IT,medium +0.32,0.77,6,112,4,0,0,0,IT,medium +0.66,0.81,2,201,3,0,0,0,IT,medium +0.53,0.8,4,204,3,0,0,0,IT,medium +0.55,0.62,5,226,3,0,0,0,IT,medium +0.66,0.9,3,217,4,0,0,0,product_mng,medium +0.69,0.92,4,149,2,0,0,0,product_mng,medium +0.67,0.99,5,237,3,0,0,0,product_mng,medium +0.75,0.37,3,256,3,0,0,0,product_mng,medium +0.7,0.98,4,194,2,0,0,0,IT,medium +0.71,0.74,3,202,2,0,0,0,RandD,medium +0.97,0.6,5,133,2,0,0,0,RandD,medium +0.5,0.48,3,246,3,0,0,0,RandD,medium +0.34,0.92,3,206,3,0,0,0,RandD,medium +0.67,0.74,3,204,3,0,0,0,RandD,medium +0.78,0.98,4,157,3,0,0,0,marketing,medium +0.52,0.91,4,187,2,0,0,0,sales,medium +0.91,0.51,2,211,2,0,0,0,accounting,medium +0.79,0.92,3,204,3,0,0,0,support,medium +0.83,0.53,5,182,2,1,0,0,technical,medium +0.74,0.76,3,244,3,0,0,0,management,medium +0.77,0.97,3,184,3,1,0,0,marketing,medium +0.49,0.71,2,117,3,0,0,0,marketing,high +0.94,0.89,3,230,3,1,0,0,marketing,high +0.99,0.91,3,241,2,0,0,0,sales,high +0.69,0.84,3,227,3,1,0,0,sales,high +0.88,0.59,5,147,4,0,0,0,sales,high +0.89,0.9,3,240,3,0,0,0,sales,high +0.8,0.58,4,238,2,0,0,0,sales,high +0.22,0.89,4,262,4,0,0,0,sales,high +0.87,0.83,4,215,2,0,0,0,sales,high +0.66,0.66,3,211,4,0,0,0,sales,high +0.9,0.68,3,156,3,1,0,0,sales,high +0.95,0.54,4,180,5,0,0,0,sales,high +0.49,0.56,4,260,6,0,0,0,sales,low +0.71,0.68,4,228,2,0,0,0,sales,low +0.2,0.96,2,249,3,0,0,0,sales,low +0.95,0.64,3,242,5,1,0,0,sales,low +0.68,0.8,2,254,2,1,0,0,sales,low +0.93,0.68,3,272,2,1,0,0,sales,low +0.85,0.57,5,210,3,0,0,0,sales,low +0.82,0.68,3,140,2,0,0,0,sales,low +0.87,0.42,5,252,5,0,0,0,sales,low +0.88,0.84,3,266,3,0,0,0,accounting,low +0.98,0.79,4,138,3,0,0,0,accounting,low +0.89,0.98,3,220,3,0,0,0,accounting,low +0.92,0.51,5,214,3,0,0,0,hr,low +0.48,0.6,2,121,5,0,0,0,hr,low +0.67,0.49,4,195,3,0,0,0,hr,low +0.84,0.55,3,135,3,0,0,0,hr,medium +0.97,0.78,4,261,2,0,0,0,technical,medium +0.65,0.53,5,205,3,1,0,0,technical,medium +0.79,0.87,5,240,2,1,0,0,technical,medium +0.75,0.75,2,141,4,0,0,0,technical,medium +0.69,0.64,4,200,3,0,0,0,technical,medium +0.85,0.6,4,257,3,0,0,0,technical,medium +0.34,0.41,2,141,3,0,0,0,technical,medium +0.97,0.68,3,185,2,0,0,0,technical,medium +0.39,0.99,6,235,6,0,0,0,technical,medium +0.54,0.81,4,264,4,0,0,0,technical,medium +0.78,0.67,4,260,3,0,0,0,technical,medium +0.49,0.79,4,158,3,0,0,0,support,high +0.17,0.83,6,195,5,0,0,0,support,high +0.98,0.81,3,180,2,1,0,0,support,high +0.9,1,2,114,5,0,0,0,support,high +0.24,0.89,5,228,4,1,0,0,support,high +0.92,0.79,5,243,3,1,0,0,support,high +0.36,0.72,3,179,3,0,0,0,support,high +0.19,0.76,2,158,3,0,0,0,support,high +0.75,0.76,4,254,4,0,0,0,support,low +0.91,0.81,3,220,3,1,0,0,support,low +0.72,0.95,5,171,3,0,0,0,support,low +0.62,0.64,4,142,2,0,0,0,technical,low +0.97,0.75,3,241,2,0,0,0,technical,low +0.69,0.64,3,275,3,0,0,0,technical,low +0.98,0.56,3,157,2,0,0,0,management,low +0.62,0.53,5,169,3,0,0,0,IT,low +0.59,0.82,2,233,2,0,0,0,IT,medium +0.73,0.98,4,160,3,0,0,0,IT,medium +0.71,0.79,3,189,3,0,0,0,IT,medium +0.85,0.58,4,273,4,0,0,0,IT,medium +0.8,0.94,4,141,3,1,0,0,product_mng,medium +0.48,0.38,3,134,3,0,0,0,product_mng,medium +0.64,0.4,3,248,3,0,0,0,product_mng,medium +0.19,0.64,6,222,5,0,0,0,product_mng,medium +0.82,0.69,5,219,3,0,0,0,IT,medium +0.99,0.96,4,202,3,0,0,0,RandD,medium +0.45,0.58,3,200,2,0,0,0,RandD,medium +0.89,0.89,3,138,2,0,0,0,RandD,medium +0.75,0.78,4,158,5,1,0,0,RandD,medium +0.8,0.86,3,136,2,0,0,0,RandD,medium +0.78,0.49,4,222,2,0,0,0,marketing,medium +0.95,0.76,3,236,2,1,0,0,sales,medium +0.68,0.67,4,135,2,0,0,0,accounting,medium +0.82,0.97,5,235,3,0,0,0,support,medium +0.9,0.69,4,274,2,0,0,0,technical,medium +0.59,0.99,3,235,2,0,0,0,management,medium +0.66,0.57,3,169,4,1,0,0,marketing,medium +0.63,0.56,5,286,4,0,0,0,marketing,medium +0.73,0.78,3,166,2,0,0,0,marketing,medium +0.63,0.93,3,236,4,0,0,0,sales,high +0.87,0.62,5,197,2,0,0,0,sales,low +0.62,0.87,6,169,2,1,0,0,sales,medium +0.53,0.9,3,210,3,0,0,0,sales,medium +0.94,0.83,4,156,2,0,0,0,sales,medium +0.94,0.55,5,231,2,0,0,0,sales,medium +0.55,0.64,3,101,2,1,0,0,sales,medium +0.58,0.72,4,259,3,0,0,0,sales,medium +0.98,0.88,5,203,5,1,0,0,sales,medium +0.74,0.76,5,255,4,0,0,0,sales,medium +0.65,0.48,3,131,3,1,0,0,sales,medium +0.97,0.79,2,272,2,0,0,0,sales,medium +0.58,0.75,4,253,2,0,0,0,sales,low +0.49,0.77,2,254,2,0,0,0,sales,low +0.69,0.98,3,214,2,0,0,0,sales,low +0.55,0.49,5,195,3,0,0,0,sales,low +0.65,0.89,4,240,3,0,0,0,sales,low +0.87,0.49,4,149,2,0,0,0,sales,low +0.12,0.7,4,276,4,0,0,0,sales,low +0.65,0.84,4,247,4,0,0,0,accounting,high +0.23,0.66,4,212,4,1,0,0,accounting,low +0.62,0.77,4,256,3,0,0,0,accounting,high +0.86,0.72,4,178,2,0,0,0,hr,high +0.85,0.6,4,255,4,0,0,0,hr,low +0.74,0.76,3,224,2,0,0,0,hr,low +0.53,0.76,2,204,4,0,0,0,hr,high +0.99,0.44,6,104,6,0,0,0,technical,low +0.48,0.81,5,113,3,0,0,0,technical,medium +0.72,0.74,3,243,2,0,0,0,technical,high +0.76,0.72,3,242,5,1,0,0,technical,medium +0.41,0.7,4,177,3,0,0,0,technical,medium +0.85,0.88,3,235,2,0,0,0,technical,medium +0.62,0.49,4,175,3,0,0,0,technical,medium +0.16,0.78,4,280,6,0,0,0,technical,high +0.58,0.61,3,205,2,0,0,0,technical,medium +0.73,0.95,4,243,3,0,0,0,technical,medium +0.28,0.76,3,150,2,0,0,0,technical,medium +0.77,0.61,4,178,2,1,0,0,support,high +0.85,0.86,3,231,3,0,0,0,support,medium +0.56,0.76,3,134,2,0,0,0,support,high +0.81,1,5,143,2,0,0,0,support,low +0.83,0.87,3,156,3,0,0,0,support,medium +0.49,0.48,4,249,3,0,0,0,support,medium +0.81,0.97,3,247,3,0,0,0,support,medium +0.56,0.92,5,222,4,0,0,0,support,medium +0.77,0.83,3,160,3,0,0,0,support,low +0.73,0.5,4,224,4,1,0,0,support,low +0.95,0.72,4,235,2,0,0,0,support,low +0.69,0.68,5,167,3,0,0,0,technical,low +0.79,0.89,3,104,4,0,0,0,technical,low +0.63,0.57,5,160,2,0,0,0,technical,low +0.8,0.79,4,168,3,0,0,0,management,low +0.64,0.61,2,153,2,0,0,0,IT,low +0.92,0.9,4,249,3,0,0,0,IT,low +0.96,0.75,4,177,2,0,0,0,IT,low +0.56,0.85,3,225,3,0,0,0,IT,high +0.37,0.61,3,186,2,0,0,0,IT,low +0.5,0.82,3,133,2,1,0,0,product_mng,low +0.49,0.58,4,213,4,1,0,0,product_mng,low +1,0.73,3,245,2,1,0,0,product_mng,low +0.82,0.75,5,160,3,1,0,0,product_mng,high +0.52,0.54,4,212,3,0,0,0,IT,low +0.76,0.96,4,135,3,1,0,1,RandD,low +0.2,0.53,3,149,4,0,0,1,RandD,low +0.6,0.9,4,178,3,0,0,1,RandD,high +0.69,0.9,6,224,4,0,0,1,RandD,low +0.93,0.51,3,196,2,0,0,1,RandD,medium +0.7,0.64,4,178,3,1,0,1,marketing,high +0.56,0.54,4,191,2,1,0,1,sales,medium +0.97,0.61,4,167,3,0,0,1,accounting,high +0.24,0.65,6,275,5,1,0,1,support,medium +0.83,0.91,3,168,3,0,0,1,technical,medium +0.55,0.85,3,152,2,0,0,1,management,medium +0.68,0.99,3,263,3,1,0,1,marketing,medium +0.48,0.53,3,113,4,0,0,0,marketing,medium +0.75,0.95,3,253,3,0,0,0,marketing,medium +0.61,0.5,4,271,3,1,0,0,sales,medium +0.5,0.74,4,165,2,1,0,0,sales,medium +0.78,0.54,5,257,3,0,0,0,sales,high +0.61,0.68,4,244,3,0,0,0,sales,low +0.48,0.5,4,179,3,0,0,0,sales,medium +0.93,0.92,3,248,2,0,0,0,sales,medium +0.78,0.58,3,224,2,0,0,0,sales,medium +0.92,0.99,5,236,4,0,0,0,sales,medium +0.71,0.98,5,213,3,0,0,0,sales,medium +0.15,0.42,4,238,3,0,0,0,sales,medium +0.14,0.83,5,153,5,1,0,0,sales,medium +0.56,0.72,4,247,2,0,0,0,sales,medium +1,0.84,3,154,3,0,0,0,sales,medium +0.77,0.82,3,147,4,0,0,0,sales,high +0.86,0.66,3,150,2,0,0,0,sales,low +0.88,0.95,3,137,3,0,0,0,sales,low +0.85,0.84,5,179,3,0,0,0,sales,low +0.95,0.56,5,194,2,0,0,0,sales,high +0.65,0.65,4,224,3,0,0,0,sales,low +0.7,0.55,3,253,2,1,0,0,accounting,low +0.6,0.55,3,177,3,1,0,0,accounting,low +0.84,0.83,3,215,3,0,0,0,accounting,high +0.23,0.59,5,245,5,0,0,0,hr,low +0.89,0.75,3,134,3,0,0,0,hr,low +0.98,0.91,4,273,2,0,0,0,hr,low +0.88,0.83,4,163,3,0,0,0,hr,low +0.87,0.52,3,152,4,0,0,0,technical,low +0.93,0.96,3,268,4,0,0,0,technical,low +0.13,0.95,5,149,2,0,0,0,technical,low +0.99,0.56,6,128,4,0,0,0,technical,medium +0.52,0.51,3,218,2,1,0,0,technical,medium +0.58,0.98,3,146,3,0,0,0,technical,medium +0.85,0.57,5,190,2,1,0,0,technical,medium +0.41,0.59,2,182,3,0,0,0,technical,medium +1,0.8,5,162,3,1,0,0,technical,medium +0.63,0.64,3,243,3,0,0,0,technical,medium +0.63,0.58,4,141,3,1,0,0,technical,medium +0.63,0.9,3,142,3,0,0,0,support,medium +0.59,0.62,3,203,4,0,0,0,support,medium +0.88,0.77,4,168,4,0,0,0,support,medium +0.72,0.7,3,149,3,0,0,0,support,medium +0.67,0.81,4,168,2,0,0,0,support,high +0.41,0.54,2,190,4,0,0,0,support,low +0.3,0.68,3,229,6,0,0,0,support,medium +0.83,0.84,3,249,2,0,0,0,support,medium +0.73,0.93,4,162,2,1,0,0,support,medium +0.87,0.9,4,163,2,0,0,0,support,medium +0.93,0.74,2,169,4,0,0,0,support,low +0.97,0.91,4,257,3,1,0,0,technical,low +0.7,0.54,4,150,4,0,0,0,technical,low +0.66,0.95,4,183,3,0,0,0,technical,low +0.62,0.66,3,208,3,0,0,0,management,low +0.56,0.52,4,158,2,0,0,0,IT,low +0.32,0.72,2,240,5,0,0,0,IT,low +0.55,0.81,5,251,3,0,0,0,IT,low +0.69,0.91,5,205,2,0,0,0,IT,low +0.91,0.63,4,226,3,1,0,0,IT,low +0.33,0.82,5,249,6,0,0,0,product_mng,low +0.37,0.74,2,197,3,0,0,0,product_mng,low +0.95,0.57,5,216,3,0,0,0,product_mng,low +0.17,0.91,4,260,5,0,0,0,product_mng,low +0.95,0.53,4,263,3,0,0,0,IT,low +0.27,0.69,2,177,5,0,0,0,RandD,low +0.91,0.95,4,171,3,0,0,0,RandD,low +0.49,0.61,3,148,2,1,0,0,RandD,low +0.6,0.56,4,138,3,0,0,0,RandD,low +0.52,0.57,4,183,3,0,0,0,RandD,low +0.54,0.65,3,202,3,0,0,0,marketing,low +0.86,0.53,4,160,2,1,0,0,sales,medium +0.78,0.87,4,264,3,0,0,0,accounting,medium +0.6,0.81,4,245,3,1,0,0,support,medium +0.15,0.91,2,207,3,0,0,0,technical,medium +0.72,0.92,3,225,3,0,0,0,management,medium +0.94,0.85,4,236,2,0,0,0,marketing,medium +0.92,0.56,4,170,3,0,0,0,marketing,medium +0.6,0.88,3,261,3,1,0,0,marketing,medium +0.41,0.68,4,273,3,0,0,0,sales,medium +0.5,0.43,3,184,2,0,0,0,sales,medium +0.8,0.91,3,202,2,0,0,0,sales,medium +0.67,0.83,4,195,3,0,0,0,sales,medium +0.71,0.88,4,266,3,0,0,0,sales,high +0.66,0.85,3,266,5,0,0,0,sales,low +0.77,0.74,5,263,2,0,0,0,sales,medium +0.62,0.54,3,142,2,0,0,0,sales,medium +0.95,0.53,4,162,3,0,0,0,sales,medium +0.89,0.75,5,258,2,0,0,0,sales,medium +0.74,0.83,4,170,2,0,0,0,sales,low +0.19,0.8,4,249,5,0,0,0,sales,low +0.83,0.77,3,171,3,0,0,0,sales,low +0.53,0.64,2,177,4,0,0,0,sales,low +0.98,0.75,5,188,2,0,0,0,sales,low +0.74,0.99,5,146,2,0,0,0,sales,low +0.22,0.88,5,154,5,0,0,0,sales,low +0.76,0.68,4,204,3,1,0,0,sales,low +0.89,0.91,5,224,3,1,0,0,sales,low +0.5,0.84,3,156,4,0,0,0,accounting,low +0.17,0.82,6,259,4,0,0,0,accounting,low +0.46,0.38,6,165,3,0,0,0,accounting,low +0.68,0.78,3,264,3,0,0,0,hr,low +0.77,0.86,4,215,2,0,0,0,hr,low +0.68,0.83,3,133,3,0,0,0,hr,low +0.15,0.7,4,220,4,0,0,0,hr,low +0.7,0.98,4,176,5,0,0,0,technical,low +0.66,0.96,4,103,2,0,0,0,technical,low +0.54,0.52,5,155,3,0,0,0,technical,low +0.57,0.57,4,141,3,0,0,0,technical,low +0.78,0.58,3,150,3,1,0,0,technical,low +0.14,0.83,5,171,6,0,0,0,technical,medium +0.73,0.86,4,179,3,0,0,0,technical,medium +0.65,0.97,4,145,2,0,0,0,technical,medium +0.31,0.59,3,176,3,0,0,0,technical,medium +0.77,0.55,2,172,2,0,0,0,technical,medium +0.68,0.85,3,243,4,0,0,0,technical,medium +0.79,0.69,4,209,2,0,0,0,support,medium +0.92,0.62,4,196,3,0,0,0,support,medium +0.77,0.96,6,225,4,0,0,0,support,medium +0.48,0.89,3,261,2,0,0,0,support,medium +0.63,0.66,4,157,2,0,0,0,support,medium +0.92,0.49,5,259,3,1,0,0,support,medium +0.5,0.85,4,224,6,0,0,0,support,high +0.52,0.91,5,193,2,0,0,0,support,low +0.73,0.79,4,157,3,0,0,0,support,medium +0.99,0.87,4,223,3,0,0,0,support,medium +0.91,0.99,3,188,3,1,0,0,support,medium +0.85,0.79,3,217,2,0,0,0,technical,medium +0.95,0.69,4,207,2,1,0,0,technical,low +0.67,0.85,3,153,4,0,0,0,technical,low +0.86,0.55,3,269,2,0,0,0,management,low +0.71,0.54,4,198,3,0,0,0,IT,low +0.99,0.95,4,102,5,0,0,0,IT,low +0.57,0.61,3,167,2,1,0,0,IT,low +0.98,0.72,3,252,2,0,0,0,IT,low +0.62,0.58,3,192,2,0,0,0,IT,low +0.74,0.79,5,237,4,0,0,0,product_mng,low +0.7,0.6,4,158,3,0,0,0,product_mng,low +0.8,0.93,3,260,3,0,0,0,product_mng,low +0.65,0.69,4,153,3,0,0,0,product_mng,low +0.53,0.52,3,233,4,0,0,0,IT,low +0.43,0.62,2,180,3,0,0,0,RandD,low +0.59,0.65,4,163,3,1,0,0,RandD,low +0.16,0.96,6,211,6,1,0,0,RandD,low +0.84,0.8,3,151,3,1,0,0,RandD,low +0.78,0.95,3,249,4,0,0,0,RandD,low +0.66,0.91,5,199,3,1,0,0,marketing,low +0.7,0.74,4,247,2,0,0,0,sales,low +0.73,0.63,4,174,3,0,0,0,accounting,low +0.65,0.88,4,268,4,0,0,0,support,medium +0.79,0.59,5,197,4,0,0,0,technical,medium +0.57,0.68,4,154,3,1,0,0,management,medium +0.24,0.58,5,279,4,0,0,0,marketing,medium +0.95,0.78,3,204,2,1,0,0,marketing,medium +0.38,0.54,2,112,3,0,0,0,marketing,medium +0.9,0.78,4,261,2,1,0,0,sales,medium +0.5,0.4,3,180,4,0,0,0,sales,medium +0.68,0.61,3,261,5,0,0,0,sales,medium +0.5,0.78,6,138,3,0,0,0,sales,medium +0.85,0.81,4,164,4,0,0,0,sales,medium +0.95,0.52,3,144,3,0,0,0,sales,medium +0.92,0.92,3,244,2,0,0,0,sales,high +0.83,0.87,5,233,3,0,0,0,sales,low +0.9,0.78,4,225,2,1,0,0,sales,medium +0.21,0.77,6,215,4,0,0,0,sales,medium +0.94,0.86,3,223,4,0,0,0,sales,medium +0.7,0.85,4,232,3,0,0,0,sales,medium +0.54,0.76,3,157,4,0,0,0,sales,low +0.77,0.65,4,268,3,0,0,0,sales,low +0.62,0.49,3,158,2,0,0,0,sales,low +0.93,0.55,5,222,2,0,0,0,sales,low +0.81,0.86,3,210,3,0,0,0,sales,low +0.99,0.79,4,133,2,0,0,0,sales,low +0.78,0.49,3,224,3,0,0,0,sales,low +0.66,0.63,5,264,5,0,0,0,accounting,low +0.9,0.72,5,237,2,0,0,0,accounting,low +0.74,0.53,5,141,2,0,0,0,accounting,low +0.65,0.78,4,238,5,1,0,0,hr,low +0.99,0.52,4,167,3,0,0,0,hr,low +0.83,0.72,4,161,3,0,0,0,hr,low +0.6,0.82,4,194,3,0,0,0,hr,low +0.55,0.93,3,217,3,1,0,0,technical,low +0.96,0.71,3,170,3,0,0,0,technical,low +0.83,0.94,4,243,3,0,0,0,technical,low +0.95,0.7,4,267,3,1,0,0,technical,low +0.77,0.88,2,169,3,0,0,0,technical,medium +0.83,0.95,3,255,3,0,0,0,technical,medium +0.87,0.54,4,211,3,0,0,0,technical,medium +0.69,0.49,3,198,4,0,0,0,technical,medium +0.67,0.58,3,246,3,0,0,0,technical,medium +0.55,0.49,3,146,2,0,0,0,technical,medium +0.55,0.82,4,134,6,0,0,0,technical,medium +0.39,0.48,3,169,3,0,0,0,support,medium +0.51,0.93,5,232,3,0,0,0,support,medium +0.39,0.38,2,106,3,1,0,0,support,medium +0.96,0.93,4,260,3,0,0,0,support,medium +0.68,0.81,3,232,2,0,0,0,support,medium +0.67,0.71,4,173,3,0,0,0,support,high +0.68,0.44,5,152,5,0,0,0,support,low +0.56,0.58,3,173,3,0,0,0,support,medium +0.9,0.7,3,274,3,0,0,0,support,medium +0.69,0.59,3,233,3,0,0,0,support,medium +0.99,0.71,4,232,3,0,0,0,support,medium +0.42,0.59,3,156,2,0,0,0,technical,low +0.28,0.51,3,124,3,0,0,0,technical,low +0.55,0.65,3,207,3,0,0,0,technical,low +0.91,0.53,3,273,6,0,0,0,management,low +0.53,0.98,3,219,4,0,0,0,IT,low +0.87,0.74,4,207,3,0,0,0,IT,low +0.57,0.6,4,248,4,0,0,0,IT,low +0.59,0.77,3,169,3,0,0,0,IT,low +0.76,0.89,4,181,3,0,0,0,IT,low +0.59,0.42,3,196,3,0,0,0,product_mng,low +0.5,0.54,3,254,2,0,0,0,product_mng,low +0.55,0.55,4,191,4,0,0,0,product_mng,low +0.92,0.53,3,238,2,0,0,0,product_mng,low +0.8,0.51,5,196,3,0,0,0,IT,low +0.93,0.66,4,228,3,0,0,0,RandD,low +0.67,0.57,4,165,3,0,0,0,RandD,low +0.78,0.55,3,144,2,0,0,0,RandD,low +0.61,0.7,4,243,3,0,0,0,RandD,low +0.74,0.84,3,206,3,0,0,0,RandD,low +0.5,0.49,3,180,3,1,0,0,marketing,low +0.84,0.96,3,161,2,1,0,0,sales,low +0.89,0.55,4,196,2,0,0,0,accounting,medium +0.77,0.89,5,152,3,0,0,0,support,medium +0.64,0.71,3,231,4,0,0,0,technical,medium +0.77,0.89,2,215,5,1,0,0,management,medium +0.74,0.58,4,233,4,0,0,0,marketing,medium +0.88,0.96,4,155,2,0,0,0,marketing,medium +0.88,0.96,5,182,4,1,0,0,marketing,medium +0.89,0.88,3,165,4,0,0,0,sales,medium +0.74,0.59,2,257,4,1,0,0,sales,medium +0.63,0.74,4,155,2,0,0,0,sales,medium +0.63,0.8,4,243,2,0,0,0,sales,medium +0.68,0.92,2,184,4,0,0,0,sales,medium +0.14,0.81,4,138,3,1,0,0,sales,high +0.86,0.94,5,209,4,0,0,0,sales,low +0.73,0.53,3,205,2,0,0,0,sales,medium +0.57,0.56,3,191,3,0,0,0,sales,medium +0.97,0.75,5,270,3,1,0,0,sales,medium +0.67,0.36,4,97,4,0,0,0,sales,medium +0.89,0.74,4,174,2,0,0,0,sales,low +0.8,0.96,5,124,3,0,0,0,sales,low +0.3,0.51,2,178,3,0,0,0,sales,low +0.14,0.73,5,266,6,0,0,0,sales,low +0.91,0.8,4,181,3,0,0,0,sales,low +0.49,0.81,4,233,3,0,0,0,sales,low +0.57,0.68,3,254,4,0,0,0,sales,low +0.59,0.62,3,219,3,0,0,0,sales,low +0.5,0.7,5,166,2,0,0,0,accounting,low +0.69,0.97,3,158,2,0,0,0,accounting,low +0.81,0.68,3,151,3,0,0,0,accounting,low +0.79,0.82,3,98,3,1,0,0,hr,low +0.55,0.91,4,187,4,1,0,0,hr,low +0.92,0.62,4,266,2,0,0,0,hr,low +0.94,0.59,5,250,3,0,0,0,hr,low +0.67,0.55,5,193,3,0,0,0,technical,low +0.53,0.92,4,223,3,1,0,0,technical,low +0.77,0.59,5,189,5,0,0,0,technical,low +0.57,0.82,5,138,3,0,0,0,technical,low +0.64,0.97,4,268,2,0,0,0,technical,low +0.35,1,6,186,2,0,0,0,technical,low +0.66,0.71,3,136,3,1,0,0,technical,medium +0.59,0.84,4,245,3,0,0,0,technical,medium +0.49,0.93,4,184,3,0,0,0,technical,medium +0.91,0.99,5,152,3,0,0,0,technical,medium +0.12,0.6,2,194,4,0,0,0,technical,medium +0.74,0.68,3,242,5,1,0,0,support,medium +0.84,0.94,4,246,2,1,0,0,support,medium +0.51,0.99,4,211,3,0,0,0,support,medium +0.94,0.71,4,189,3,0,0,0,support,medium +0.74,0.66,3,254,2,0,0,0,support,medium +0.52,0.54,5,239,3,0,0,0,support,medium +0.31,0.92,4,133,6,0,0,0,support,medium +0.72,0.59,3,255,2,0,0,0,support,high +0.92,1,3,212,2,0,0,0,support,low +0.56,0.64,3,270,3,0,0,0,support,medium +0.76,0.45,5,177,6,0,0,0,support,medium +0.59,0.9,4,261,4,0,0,0,technical,medium +0.5,0.74,3,220,3,0,0,0,technical,medium +0.88,0.72,2,144,4,1,0,0,technical,low +0.86,0.49,4,274,2,0,0,0,management,low +0.66,0.99,4,195,3,0,0,0,IT,low +0.7,0.69,4,158,3,0,0,0,IT,low +0.98,0.93,5,145,4,0,0,0,IT,low +0.61,0.73,3,165,3,1,0,0,IT,low +0.57,0.66,4,270,2,0,0,0,IT,low +0.84,0.91,5,208,3,0,0,0,product_mng,low +0.76,0.4,2,245,5,0,0,0,product_mng,medium +0.64,0.99,4,180,4,0,0,0,product_mng,medium +0.87,0.7,5,225,3,0,0,0,product_mng,medium +0.62,0.69,3,261,2,0,0,0,IT,medium +0.16,0.99,3,213,6,1,0,1,RandD,medium +0.83,0.87,3,230,3,0,0,1,RandD,medium +0.36,0.59,2,198,2,0,0,1,RandD,medium +0.47,0.51,6,190,5,0,0,1,RandD,medium +0.54,0.51,4,137,4,0,0,1,RandD,medium +0.83,0.83,3,186,3,1,0,1,marketing,medium +0.96,0.68,4,137,2,0,0,1,sales,medium +0.91,0.74,5,192,3,0,0,1,accounting,medium +0.56,0.59,4,164,3,0,0,1,support,medium +0.73,0.66,6,195,3,0,0,1,technical,medium +0.97,0.63,4,151,3,0,0,1,management,medium +0.75,0.74,5,231,3,0,0,1,marketing,medium +0.49,0.76,3,257,2,1,0,0,marketing,medium +0.57,0.94,4,257,3,0,0,0,marketing,medium +0.41,0.58,5,274,2,1,0,0,sales,medium +0.53,0.7,3,138,2,0,0,0,sales,medium +0.93,0.6,4,184,3,0,0,0,sales,medium +0.58,0.9,3,151,3,0,0,0,sales,medium +0.6,0.54,3,265,3,1,0,0,sales,medium +0.74,0.8,4,241,2,0,0,0,sales,medium +0.62,0.52,3,148,3,0,0,0,sales,medium +0.7,0.76,5,165,3,0,0,0,sales,medium +0.93,0.75,3,243,2,0,0,0,sales,medium +0.75,0.9,4,197,2,0,0,0,sales,medium +0.95,0.48,5,214,6,1,0,1,sales,medium +0.43,0.98,4,164,3,0,0,1,sales,medium +0.77,0.58,4,243,4,1,0,1,sales,medium +0.67,1,4,145,3,1,0,1,sales,medium +0.51,0.72,4,163,4,0,0,1,sales,medium +0.94,0.53,5,257,2,0,0,1,sales,medium +0.9,0.85,3,253,3,0,0,0,sales,medium +0.8,0.78,4,234,3,0,0,0,sales,medium +0.34,0.89,5,266,6,0,0,0,sales,medium +0.45,0.53,3,181,4,1,0,0,accounting,low +0.97,0.66,4,193,4,0,0,0,accounting,low +0.5,0.48,3,163,4,0,0,0,accounting,low +0.89,0.62,5,144,2,0,0,0,hr,low +0.76,0.5,4,245,3,0,0,0,hr,low +0.66,0.84,4,197,2,0,0,0,hr,low +0.74,0.63,3,180,2,0,0,0,hr,low +0.69,0.74,4,237,3,0,0,0,technical,low +0.59,0.57,2,170,3,0,0,0,technical,low +1,0.85,3,150,3,0,0,0,technical,low +0.61,0.75,2,100,4,0,0,0,technical,low +0.98,0.42,5,226,3,0,0,0,technical,low +0.59,0.71,5,222,3,0,0,0,technical,low +0.22,0.69,4,182,6,0,0,0,technical,low +0.71,0.95,3,150,2,0,0,0,technical,low +0.86,0.53,4,244,3,0,0,0,technical,medium +0.65,0.59,5,271,3,0,0,0,technical,medium +0.93,0.67,5,167,3,0,0,0,technical,medium +0.49,0.69,2,128,2,0,0,0,support,medium +0.78,0.77,3,149,4,1,0,0,support,medium +0.62,0.7,4,141,4,0,0,0,support,medium +0.72,0.63,3,149,2,0,0,0,support,medium +0.7,0.56,4,107,6,0,0,0,support,medium +0.54,0.93,5,189,2,0,0,0,support,medium +0.61,0.95,4,169,4,0,0,0,support,medium +0.84,0.95,4,208,3,1,0,0,support,medium +0.8,0.58,3,197,3,0,0,0,support,medium +0.58,0.5,4,225,3,0,0,0,support,high +0.97,0.87,2,175,6,0,0,0,support,high +0.92,0.55,3,172,2,0,0,0,technical,high +0.96,0.51,3,237,4,0,0,0,technical,high +0.73,0.87,4,155,3,1,0,0,technical,high +0.73,0.71,4,148,3,0,0,0,management,high +0.53,0.83,4,246,3,0,0,0,IT,high +0.17,0.82,5,193,5,0,0,0,IT,high +0.75,0.76,5,175,4,0,0,0,IT,low +0.76,0.44,3,121,4,0,0,0,IT,low +0.76,0.77,4,223,3,0,0,0,IT,low +0.92,0.55,3,259,3,0,0,0,product_mng,low +0.82,0.88,4,171,2,0,0,0,product_mng,low +0.38,0.5,2,170,3,0,0,0,product_mng,low +0.49,0.72,4,246,3,0,0,0,product_mng,low +0.53,0.8,3,175,3,0,0,0,IT,low +0.56,0.59,3,185,2,0,0,0,RandD,medium +0.69,0.98,3,168,2,0,0,0,RandD,medium +0.62,0.99,4,171,3,0,0,0,RandD,medium +0.71,0.76,3,201,2,0,0,0,RandD,medium +0.52,1,4,148,3,0,0,0,RandD,medium +0.2,0.53,6,189,4,0,0,0,marketing,medium +0.93,0.61,3,166,3,0,0,0,sales,medium +0.74,0.81,4,150,2,0,0,0,accounting,medium +0.78,0.45,3,253,6,0,0,1,support,medium +0.85,0.79,3,243,2,0,0,1,technical,medium +0.79,0.56,5,250,2,1,0,1,management,medium +0.92,0.91,3,228,2,0,0,1,marketing,medium +0.58,0.97,3,186,3,0,0,1,marketing,medium +0.68,0.72,3,213,3,0,0,1,marketing,medium +0.9,0.67,4,233,3,0,0,1,sales,medium +0.67,0.71,5,265,2,0,0,1,sales,medium +0.79,0.73,4,226,3,0,0,0,sales,medium +0.23,0.48,5,221,6,0,0,0,sales,medium +0.98,0.99,3,253,4,0,0,0,sales,medium +0.8,0.75,3,134,4,0,0,0,sales,medium +0.77,0.84,3,188,4,0,0,0,sales,medium +1,0.91,3,160,4,0,0,0,sales,medium +0.6,0.92,4,164,4,0,0,0,sales,medium +0.49,0.54,6,214,3,0,0,0,sales,high +0.91,0.99,5,228,4,1,0,0,sales,low +0.97,0.52,5,149,3,1,0,0,sales,medium +0.71,0.76,3,175,2,0,0,0,sales,medium +0.62,0.91,3,195,3,0,0,0,sales,medium +0.61,0.92,3,222,4,0,0,0,sales,medium +0.21,0.6,5,249,4,0,0,0,sales,medium +0.64,0.97,2,226,3,1,0,0,sales,medium +0.61,0.65,2,117,2,1,0,0,sales,medium +0.58,0.75,4,255,3,0,0,0,sales,medium +0.41,0.9,6,155,2,0,0,0,accounting,medium +0.98,0.73,5,185,3,0,0,0,accounting,medium +0.5,0.88,4,275,5,0,0,0,accounting,low +0.98,0.61,3,226,2,0,0,0,hr,low +0.4,0.85,4,198,2,0,0,0,hr,low +0.63,0.92,2,198,2,0,0,0,hr,low +0.75,0.53,4,251,3,0,0,0,hr,low +0.82,0.84,3,237,2,0,0,0,technical,low +0.55,0.62,5,197,2,0,0,0,technical,low +0.44,0.36,2,136,3,0,0,0,technical,high +0.92,0.88,3,184,3,1,0,0,technical,low +0.57,0.56,2,159,3,0,0,0,technical,high +0.73,0.86,4,133,3,0,0,0,technical,high +0.82,0.92,5,198,3,0,0,0,technical,low +0.54,0.75,3,260,2,0,0,0,technical,low +0.64,0.95,3,154,4,0,0,0,technical,high +0.99,0.76,4,185,5,0,0,0,technical,low +0.19,0.92,5,193,6,0,0,0,technical,medium +0.86,0.96,4,167,3,0,0,0,support,high +0.65,0.66,5,165,3,0,0,0,support,medium +0.52,0.81,3,253,2,0,0,0,support,medium +0.85,0.49,4,142,3,0,0,0,support,medium +0.61,0.64,5,186,4,0,0,0,support,medium +0.77,0.57,4,203,3,1,0,0,support,high +0.54,0.94,4,217,2,0,0,0,support,medium +0.76,0.74,4,187,3,0,0,0,support,medium +0.79,0.9,3,152,4,0,0,0,support,medium +0.89,0.93,5,150,2,0,0,0,support,high +0.6,0.8,3,191,2,0,0,0,support,medium +0.51,0.58,4,140,3,0,0,0,technical,high +0.2,0.72,5,123,2,1,0,0,technical,low +0.93,0.6,5,170,2,0,0,0,technical,medium +0.77,0.54,3,227,4,0,0,0,management,medium +0.8,0.87,4,220,2,0,0,0,IT,medium +0.8,0.97,5,258,3,0,0,0,IT,medium +0.62,0.92,5,149,3,0,0,0,IT,low +0.79,0.72,4,192,3,0,0,0,IT,low +0.88,0.73,5,267,3,0,0,0,IT,low +0.96,0.73,5,169,3,1,0,0,product_mng,low +0.34,0.69,2,178,3,0,0,0,product_mng,low +0.34,0.65,2,165,4,0,0,0,product_mng,low +0.88,0.85,4,231,3,0,0,0,product_mng,low +0.66,0.61,3,260,3,0,0,0,IT,low +0.55,0.71,4,181,2,1,0,0,RandD,low +0.59,0.51,3,243,2,0,0,0,RandD,low +0.62,0.73,4,191,3,0,0,0,RandD,high +0.78,0.93,3,200,3,0,0,0,RandD,low +0.73,0.75,5,265,3,0,0,0,RandD,low +0.71,0.94,4,246,3,0,0,0,marketing,low +0.97,0.86,3,187,2,0,0,0,sales,low +0.21,0.74,5,141,4,0,0,0,accounting,high +0.52,0.96,4,246,3,0,0,0,support,low +0.73,0.88,4,236,3,1,0,0,technical,low +0.74,0.83,3,170,3,0,0,0,management,low +0.26,0.71,6,189,2,0,0,0,marketing,high +0.52,0.78,4,237,3,0,0,0,marketing,low +0.69,0.54,4,180,3,0,0,0,marketing,medium +0.79,0.59,2,157,6,0,0,0,sales,high +0.93,0.62,4,258,3,0,0,0,sales,medium +0.34,0.87,4,283,2,0,0,0,sales,high +0.77,0.52,4,216,3,0,0,0,sales,medium +0.36,0.73,3,187,3,0,0,0,sales,medium +0.93,0.58,3,215,3,0,0,0,sales,medium +0.7,0.58,3,211,3,0,0,0,sales,medium +0.51,0.49,4,182,2,0,0,0,sales,medium +0.83,0.78,3,165,3,1,0,0,sales,medium +0.89,0.89,4,265,2,0,0,0,sales,medium +0.94,0.59,3,137,2,0,0,0,sales,medium +0.8,0.55,4,269,3,0,0,0,sales,high +0.74,0.66,3,177,2,0,0,0,sales,low +0.5,0.91,3,240,2,0,0,0,sales,medium +0.54,0.84,4,174,2,0,0,0,sales,medium +0.5,0.54,3,134,3,0,0,0,sales,medium +0.17,0.91,2,271,4,0,0,0,sales,medium +0.57,0.53,5,216,2,1,0,0,sales,medium +0.8,0.51,4,213,3,0,0,0,sales,medium +0.45,0.64,5,133,4,0,0,0,accounting,medium +0.87,0.5,4,267,2,1,0,0,accounting,medium +0.98,0.64,3,263,4,0,0,0,accounting,medium +0.55,0.8,4,260,3,0,0,0,hr,high +0.53,0.5,4,185,3,0,0,0,hr,low +0.75,0.48,2,284,6,0,0,0,hr,low +0.96,0.59,3,229,3,0,0,0,hr,low +0.71,0.97,3,189,3,1,0,0,technical,high +0.7,0.63,3,209,3,0,0,0,technical,low +0.33,0.94,4,166,6,0,0,0,technical,low +0.93,0.94,3,183,2,0,0,0,technical,low +0.64,0.65,3,181,2,0,0,0,technical,high +0.27,0.45,3,239,4,0,0,0,technical,low +0.99,0.99,3,158,2,0,0,0,technical,low +0.81,0.62,3,187,3,0,0,0,technical,low +0.6,0.91,4,236,3,0,0,0,technical,low +0.32,0.4,6,162,5,0,0,0,technical,low +0.48,0.68,4,163,2,1,0,0,technical,low +0.87,0.51,4,173,3,0,0,0,support,low +0.91,0.79,5,273,4,1,0,0,support,medium +0.24,0.89,5,142,4,0,0,0,support,medium +0.66,0.56,4,141,4,0,0,0,support,medium +0.94,0.59,3,234,2,0,0,0,support,medium +0.93,0.97,5,255,4,0,0,0,support,medium +0.19,0.55,5,148,4,0,0,0,support,medium +0.88,0.45,5,274,2,1,0,0,support,medium +0.76,0.47,3,223,2,0,0,0,support,medium +0.67,0.64,5,248,3,0,0,0,support,medium +0.54,0.5,4,146,2,0,0,0,support,medium +0.53,0.95,2,101,5,0,0,0,technical,medium +0.67,0.92,4,265,4,0,0,0,technical,medium +0.5,0.38,5,175,4,0,0,0,technical,high +0.49,0.76,4,202,3,0,0,0,management,low +0.82,0.71,3,160,3,0,0,0,IT,medium +0.86,0.71,3,235,3,0,0,0,IT,medium +0.5,0.5,4,267,3,0,0,0,IT,medium +0.82,0.6,3,261,2,1,0,0,IT,medium +0.95,0.78,2,148,2,0,0,0,IT,low +0.64,0.87,3,239,4,0,0,0,product_mng,low +0.91,0.5,3,178,2,0,0,0,product_mng,low +0.79,0.75,2,221,3,0,0,0,product_mng,low +0.83,0.56,4,269,3,0,0,0,product_mng,low +0.66,0.6,3,262,2,1,0,0,IT,low +0.92,0.8,4,263,4,0,0,0,RandD,low +0.59,0.47,5,191,3,0,0,0,RandD,low +0.6,0.83,2,189,2,0,0,0,RandD,low +0.68,0.97,5,207,4,1,0,0,RandD,low +0.58,0.73,3,265,6,0,0,0,RandD,low +0.93,0.77,5,224,2,0,0,0,marketing,low +0.66,0.5,3,229,3,0,0,0,marketing,low +0.8,0.99,3,158,3,0,0,0,sales,low +0.28,0.79,5,202,5,0,0,0,accounting,low +0.84,0.59,4,216,2,0,0,0,support,low +0.86,0.58,4,220,5,0,0,0,technical,low +0.46,0.45,2,172,2,1,0,0,management,low +0.94,0.92,3,187,2,0,0,0,marketing,low +0.8,0.76,3,270,2,1,0,0,marketing,low +0.13,0.63,6,219,6,0,0,0,marketing,low +0.95,0.73,3,243,3,1,0,0,sales,medium +0.93,0.88,4,261,4,0,0,0,sales,medium +0.86,0.81,4,179,3,0,0,0,sales,medium +0.67,0.93,5,133,2,0,0,0,sales,medium +0.73,0.6,4,224,3,0,0,0,sales,medium +0.62,0.92,4,198,2,0,0,0,sales,medium +0.53,0.81,5,135,2,0,0,0,sales,medium +0.68,0.68,3,143,3,0,0,0,sales,medium +0.69,0.55,4,234,2,0,0,0,sales,medium +0.66,0.92,3,177,3,0,0,0,sales,medium +0.98,0.56,5,180,3,0,0,0,sales,medium +0.57,0.39,3,193,6,0,0,0,sales,medium +0.64,0.78,5,148,4,0,0,0,sales,high +0.71,0.58,3,194,4,0,0,0,sales,low +0.94,0.7,3,271,4,0,0,0,sales,medium +0.8,0.85,3,135,2,0,0,0,sales,medium +0.59,0.94,4,136,2,0,0,0,sales,medium +0.95,0.7,6,243,3,0,0,0,sales,medium +1,0.39,2,210,5,0,0,0,sales,low +0.53,0.59,3,163,4,0,0,0,accounting,low +0.35,0.59,5,268,3,0,0,0,accounting,low +0.73,0.66,3,244,3,0,0,0,accounting,low +0.89,0.63,4,164,3,0,0,0,hr,low +0.21,0.93,4,260,3,0,0,0,hr,low +0.21,0.85,5,153,3,0,0,0,hr,low +0.6,0.83,4,216,2,1,0,0,hr,low +0.94,0.69,2,198,3,0,0,0,technical,low +0.92,0.68,4,196,3,1,0,0,technical,low +0.92,0.78,3,218,3,0,0,0,technical,low +0.71,0.98,5,167,3,0,0,0,technical,low +0.69,0.83,4,264,3,0,0,0,technical,low +0.26,0.51,2,284,2,0,0,0,technical,low +0.21,0.78,4,218,6,0,0,0,technical,low +0.36,0.42,2,192,2,0,0,0,technical,low +0.81,0.92,5,255,4,1,0,0,technical,low +0.54,0.88,3,251,2,0,0,0,technical,low +0.63,0.87,5,248,2,0,0,0,technical,low +0.86,0.75,5,157,4,0,0,0,support,low +0.8,0.79,5,240,2,0,0,0,support,low +0.55,0.58,5,262,3,0,0,0,support,medium +0.18,0.6,3,130,2,1,0,0,support,medium +0.88,0.98,3,152,3,0,0,0,support,medium +0.65,0.86,4,256,2,0,0,0,support,medium +0.99,1,3,139,2,0,0,0,support,medium +0.88,0.93,4,195,2,0,0,0,support,medium +0.67,0.59,3,205,5,0,0,0,support,medium +0.53,0.59,4,265,2,0,0,0,support,medium +0.83,0.61,5,246,3,0,0,0,support,medium +0.36,0.71,3,100,3,0,0,0,technical,medium +0.62,0.64,5,150,3,1,0,0,technical,medium +0.72,0.67,4,147,2,0,0,0,technical,medium +0.79,0.54,4,244,3,0,0,0,management,high +1,0.87,4,256,3,0,0,0,IT,low +0.65,0.52,4,266,3,1,0,0,IT,medium +0.84,0.91,3,199,4,0,0,0,IT,medium +0.81,0.59,2,236,3,0,0,0,IT,medium +0.59,0.51,3,203,2,1,0,0,IT,medium +0.78,0.53,3,156,3,0,0,0,product_mng,low +0.22,0.52,5,109,4,0,0,0,product_mng,low +0.96,0.98,5,248,3,0,0,0,product_mng,low +0.85,0.8,4,254,2,0,0,0,product_mng,low +0.12,0.73,6,166,3,0,0,0,IT,low +0.6,0.68,4,264,2,1,0,0,RandD,low +0.93,0.84,5,266,3,0,0,0,RandD,low +0.73,0.86,4,138,2,0,0,0,RandD,low +0.7,0.66,3,151,2,0,0,0,RandD,low +0.18,0.59,4,132,3,0,0,0,RandD,low +0.81,0.6,4,133,3,0,0,0,RandD,low +0.28,0.9,4,275,6,0,0,0,marketing,low +0.74,0.79,3,275,3,0,0,0,sales,low +0.5,0.74,4,272,5,0,0,0,accounting,low +0.83,0.85,4,201,2,1,0,0,support,low +0.55,0.66,3,164,2,0,0,0,technical,low +0.77,0.94,4,224,2,0,0,0,management,low +0.92,0.58,4,201,2,0,0,0,marketing,low +0.59,0.89,5,169,2,1,0,0,marketing,low +0.45,0.72,4,149,3,0,0,0,marketing,low +0.76,0.97,3,271,3,0,0,0,sales,low +0.89,0.69,4,137,3,0,0,0,sales,medium +0.73,0.5,3,208,2,0,0,0,sales,medium +0.65,0.7,3,231,3,0,0,0,sales,medium +0.14,0.96,3,196,5,1,0,0,sales,medium +0.3,0.47,2,159,4,0,0,0,sales,medium +0.53,0.82,5,184,3,0,0,0,sales,medium +0.66,0.89,3,257,3,0,0,0,sales,medium +0.84,0.59,3,234,2,0,0,0,sales,medium +0.74,0.97,3,239,4,1,0,0,sales,medium +0.56,0.4,2,255,3,0,0,0,sales,medium +0.42,0.47,4,146,3,1,0,0,sales,medium +0.29,0.8,5,103,6,0,0,0,sales,medium +0.54,0.72,5,206,4,0,0,0,sales,high +0.8,0.52,3,253,2,1,0,0,sales,low +0.89,0.93,4,245,4,0,0,0,sales,medium +0.92,0.58,3,261,3,1,0,0,sales,medium +0.87,0.68,4,217,3,0,0,0,sales,medium +0.76,0.82,4,172,3,1,0,0,sales,medium +0.64,0.61,3,221,3,0,0,0,accounting,low +0.83,0.57,2,246,5,1,0,0,accounting,low +0.55,0.6,3,145,4,0,0,0,accounting,low +0.83,0.7,5,168,3,0,0,0,hr,low +0.58,0.62,5,184,3,0,0,0,hr,low +0.67,0.97,4,186,3,0,0,0,hr,low +0.65,0.57,3,238,3,0,0,0,hr,low +0.89,0.95,5,203,3,0,0,0,technical,low +0.84,0.5,5,195,3,0,0,0,technical,low +0.5,0.7,5,264,2,0,0,0,technical,low +0.7,0.51,3,256,3,0,0,0,technical,low +0.79,0.83,5,268,3,0,0,0,technical,low +0.19,0.72,6,243,6,1,0,0,technical,low +0.89,0.5,4,136,2,1,0,0,technical,low +0.36,0.6,2,136,6,0,0,0,technical,low +0.62,0.66,5,165,3,0,0,0,technical,low +0.84,0.93,6,166,4,0,0,0,technical,low +0.65,0.87,4,267,2,0,0,0,technical,low +0.65,0.7,4,233,3,0,0,0,support,medium +0.87,0.92,3,141,2,0,0,0,support,medium +0.66,0.73,5,249,2,0,0,0,support,medium +0.83,0.9,3,102,4,0,0,0,support,medium +0.89,0.63,3,268,3,0,0,0,support,medium +0.91,0.97,4,139,3,0,0,0,support,medium +0.91,0.56,3,168,2,0,0,0,support,medium +0.83,0.5,4,259,2,0,0,0,support,medium +0.87,0.82,4,248,2,0,0,0,support,medium +0.62,0.79,3,274,3,0,0,0,support,medium +0.54,1,3,169,2,0,0,0,support,medium +0.84,0.53,5,190,3,0,0,0,technical,medium +0.33,0.82,2,114,5,0,0,0,technical,high +0.79,0.58,4,191,6,0,0,0,technical,low +0.31,0.41,2,263,3,0,0,0,management,medium +0.68,0.81,3,166,2,0,0,0,IT,medium +0.52,0.7,4,247,5,0,0,0,IT,medium +0.54,0.64,3,203,4,0,0,0,IT,medium +0.73,0.78,4,181,4,0,0,0,IT,low +0.49,0.74,3,229,3,1,0,0,IT,low +0.37,0.67,2,159,2,0,0,0,product_mng,low +0.53,0.84,3,151,3,0,0,0,product_mng,low +0.58,0.75,4,222,3,1,0,0,product_mng,low +0.2,0.51,2,163,2,0,0,0,product_mng,low +0.91,0.6,4,163,5,0,0,0,IT,low +0.53,0.78,2,138,2,0,0,0,RandD,low +0.99,0.72,4,136,3,0,0,0,RandD,low +0.97,0.87,3,207,4,0,0,0,RandD,low +0.18,0.93,3,245,4,1,0,0,RandD,low +0.83,0.93,6,130,5,0,0,0,RandD,low +0.49,0.47,4,285,3,0,0,0,RandD,low +0.74,0.93,3,204,4,0,0,0,marketing,low +0.7,0.6,3,183,3,0,0,0,sales,low +0.97,0.91,3,246,2,0,0,0,accounting,low +0.92,0.91,3,250,4,0,0,0,support,low +0.94,0.7,3,176,3,0,0,0,technical,low +1,0.98,3,177,2,0,0,0,management,low +0.5,0.51,3,169,4,0,0,0,marketing,low +0.77,0.89,3,142,3,0,0,0,marketing,low +0.68,0.71,5,135,4,1,0,0,marketing,medium +0.57,0.43,3,167,3,0,0,0,sales,medium +0.57,0.61,5,191,4,0,0,0,sales,medium +0.48,0.97,3,224,6,0,0,0,sales,medium +0.7,0.95,5,234,6,1,0,0,sales,medium +0.68,0.43,3,161,2,1,0,0,sales,medium +0.62,0.68,3,124,3,0,0,0,sales,medium +0.61,0.51,4,242,3,0,0,0,sales,medium +0.83,0.77,2,186,2,0,0,0,sales,medium +0.99,0.8,5,254,5,0,0,0,sales,medium +0.58,0.72,4,170,2,0,0,0,sales,medium +0.93,0.83,4,225,2,0,0,0,sales,medium +0.66,0.5,4,263,3,0,0,0,sales,high +0.52,0.98,4,148,3,0,0,0,sales,low +0.5,0.6,5,216,3,0,0,0,sales,medium +0.16,0.7,5,257,4,0,0,0,sales,medium +0.62,0.74,4,173,2,0,0,0,sales,medium +0.49,0.49,6,188,3,0,0,0,sales,medium +0.56,0.91,4,188,2,1,0,0,sales,low +0.96,0.59,4,108,6,0,0,0,sales,low +0.5,0.75,5,179,3,0,0,0,accounting,low +0.99,0.99,4,195,2,0,0,0,accounting,low +0.54,0.51,3,265,3,0,0,0,accounting,low +0.52,0.9,4,285,2,0,0,0,hr,low +0.81,0.99,5,202,4,0,0,0,hr,low +0.5,0.73,4,271,2,0,0,0,hr,low +0.51,0.88,3,202,4,0,0,0,hr,low +0.41,0.47,6,171,2,0,0,0,technical,low +0.62,0.72,2,180,2,1,0,0,technical,low +0.56,0.68,3,269,3,1,0,0,technical,low +0.96,0.75,3,231,3,0,0,0,technical,low +0.58,0.64,2,249,2,0,0,0,technical,low +0.66,0.75,3,228,2,0,0,0,technical,low +0.56,0.75,2,264,2,0,0,0,technical,low +0.56,0.93,4,210,3,1,0,0,technical,low +0.67,0.91,3,256,3,0,0,0,technical,low +0.72,0.71,5,137,3,0,0,0,technical,low +0.59,0.79,4,272,3,0,0,0,technical,low +0.95,0.55,5,185,2,0,0,0,support,low +1,0.93,3,264,4,0,0,0,support,medium +0.56,0.64,3,238,3,0,0,0,support,medium +0.52,0.49,4,98,3,0,0,0,support,medium +0.88,0.9,4,248,2,0,0,0,support,medium +0.58,0.84,4,271,2,0,0,0,support,medium +0.86,0.92,3,180,2,0,0,0,support,medium +0.19,0.64,5,181,4,1,0,0,support,medium +0.6,0.6,4,182,3,0,0,0,support,medium +0.82,0.87,3,204,4,0,0,0,support,medium +0.64,0.75,4,170,3,0,0,0,support,medium +0.83,0.67,4,139,3,0,0,0,technical,medium +0.57,0.75,3,159,2,0,0,0,technical,medium +0.98,0.92,3,254,3,0,0,0,technical,high +0.54,0.69,4,168,2,0,0,0,management,low +0.72,0.66,3,256,2,0,0,0,IT,medium +0.89,0.87,4,209,2,0,0,0,IT,medium +0.41,0.57,3,193,3,1,0,0,IT,medium +0.93,0.62,4,142,2,0,0,0,IT,medium +0.9,0.9,3,274,3,0,0,0,IT,low +0.38,0.59,4,276,2,0,0,0,product_mng,low +0.52,0.88,4,155,3,1,0,0,product_mng,low +0.99,0.72,3,220,2,1,0,0,product_mng,low +0.69,0.74,2,271,2,0,0,0,product_mng,low +0.76,0.76,5,175,3,0,0,0,IT,low +0.42,0.46,3,128,2,1,0,0,RandD,low +0.78,0.9,4,104,4,0,0,0,RandD,low +0.37,0.46,3,173,6,0,0,0,RandD,medium +0.89,0.39,6,190,3,1,0,0,RandD,medium +0.93,0.49,5,167,3,0,0,0,RandD,medium +0.98,0.56,3,187,3,0,0,0,RandD,medium +0.65,0.56,3,259,3,0,0,0,marketing,medium +0.3,0.61,3,138,5,0,0,0,sales,medium +0.97,1,5,251,2,0,0,0,accounting,medium +0.84,0.49,5,189,2,0,0,0,support,medium +0.76,0.76,4,149,3,0,0,0,technical,medium +0.5,0.74,4,246,3,0,0,0,management,medium +0.48,0.61,3,146,3,0,0,0,marketing,medium +0.56,0.63,4,204,4,0,0,0,marketing,medium +0.99,0.77,4,184,3,0,0,0,marketing,medium +0.65,0.94,4,174,3,0,0,0,sales,medium +0.92,0.81,3,196,2,0,0,0,sales,medium +0.88,0.76,3,223,3,0,0,0,sales,medium +0.99,0.86,3,198,3,0,0,0,sales,medium +0.96,0.93,5,141,2,1,0,0,sales,medium +0.55,0.85,4,273,2,0,0,0,sales,medium +0.71,0.94,4,209,3,0,0,0,sales,medium +0.72,0.68,3,135,4,0,0,0,sales,medium +0.23,0.5,5,100,3,0,0,0,sales,medium +0.78,0.61,3,193,3,0,0,0,sales,medium +0.82,0.61,3,229,2,0,0,0,sales,medium +0.49,0.74,4,104,4,0,0,0,sales,medium +0.96,0.82,4,201,2,0,0,0,sales,high +0.5,0.78,3,206,3,1,0,1,sales,high +0.98,0.57,5,141,3,0,0,1,sales,high +0.85,0.57,4,150,3,0,0,1,sales,high +0.72,0.75,3,166,3,0,0,1,sales,high +0.78,0.83,4,252,2,0,0,1,sales,high +0.62,0.43,2,106,2,0,0,1,sales,high +0.64,0.38,5,171,6,1,0,1,accounting,high +0.24,0.5,4,232,3,0,0,1,accounting,high +0.84,0.78,5,172,2,0,0,1,accounting,high +0.61,0.61,4,239,2,0,0,1,hr,high +0.79,0.71,4,222,3,0,0,1,hr,high +0.86,0.77,3,152,3,0,0,1,hr,low +0.7,0.54,3,198,3,1,0,1,hr,low +0.53,0.76,5,143,4,0,0,1,technical,low +0.58,0.88,3,157,4,0,0,1,technical,low +0.45,0.55,5,268,2,0,0,0,technical,low +0.86,0.87,4,183,3,0,0,0,technical,low +0.95,0.81,4,238,2,0,0,0,technical,low +0.51,0.84,4,214,2,0,0,0,technical,low +0.35,0.41,6,244,3,0,0,0,technical,low +0.99,0.57,3,221,3,0,0,0,technical,low +0.73,0.49,4,200,2,1,0,0,technical,low +0.44,0.48,2,226,3,0,0,0,technical,low +0.43,0.74,4,121,5,1,0,0,technical,low +0.81,0.77,5,249,2,0,0,0,support,low +0.77,0.83,3,204,3,0,0,0,support,low +0.52,0.86,5,256,3,0,0,0,support,medium +0.21,0.92,2,211,2,0,0,0,support,medium +0.88,0.93,3,162,3,0,0,0,support,medium +0.48,0.8,5,235,2,0,0,0,support,medium +0.21,0.63,5,226,3,0,0,0,support,medium +0.81,0.53,4,242,3,0,0,0,support,medium +0.38,0.77,3,173,5,0,0,0,support,medium +0.67,0.77,5,167,2,0,0,0,support,medium +0.87,0.94,4,256,2,0,0,0,support,medium +0.85,0.41,2,229,6,0,0,0,technical,medium +0.52,0.9,5,176,3,0,0,0,technical,medium +0.9,0.95,3,133,4,0,0,0,technical,medium +0.85,0.56,5,203,3,0,0,0,management,high +0.77,0.52,3,210,3,1,0,0,IT,high +0.61,0.97,4,198,2,0,0,0,IT,high +0.74,0.54,3,175,3,1,0,0,IT,high +0.56,0.85,5,245,3,0,0,0,IT,high +0.28,0.97,4,102,3,0,0,0,IT,high +0.86,0.68,2,192,3,0,0,0,product_mng,high +0.63,0.78,4,160,2,0,0,0,product_mng,high +0.85,0.96,3,211,2,0,0,0,product_mng,low +0.84,0.84,6,261,5,0,0,0,product_mng,low +0.98,0.6,4,191,3,0,0,0,IT,low +0.51,0.78,5,225,4,0,0,0,RandD,low +0.71,0.85,4,157,2,0,0,0,RandD,low +0.88,0.69,3,248,4,0,0,0,RandD,low +0.16,0.81,2,159,6,1,0,0,RandD,low +0.98,0.86,4,254,2,1,0,0,RandD,low +0.81,0.76,3,203,3,0,0,0,RandD,medium +0.17,0.79,2,126,5,0,0,0,marketing,medium +0.22,0.65,6,212,4,0,0,0,sales,medium +0.67,0.69,5,225,3,0,0,0,accounting,medium +0.72,0.83,5,193,2,0,0,0,support,medium +0.67,0.91,3,147,3,0,0,0,technical,medium +0.47,0.55,2,156,2,0,0,0,management,medium +0.51,0.75,3,234,2,1,0,0,marketing,medium +0.88,0.71,5,246,3,0,0,0,marketing,medium +0.48,0.94,4,231,4,0,0,0,marketing,medium +0.66,0.99,4,209,3,0,0,0,sales,medium +0.58,0.5,3,144,3,0,0,0,sales,medium +0.23,0.96,2,234,4,0,0,0,sales,medium +0.86,0.77,5,230,2,0,0,0,sales,medium +0.81,0.99,2,156,5,0,0,0,sales,medium +0.75,0.54,6,138,4,1,0,0,sales,medium +0.49,0.89,2,233,4,1,0,0,sales,medium +0.31,0.5,3,262,5,0,0,0,sales,medium +0.83,0.75,6,215,5,0,0,0,sales,medium +0.7,0.55,4,227,3,0,0,0,sales,medium +0.49,0.99,3,199,3,0,0,0,sales,medium +0.57,0.92,3,238,2,0,0,0,sales,medium +0.37,0.45,6,100,5,1,0,0,sales,medium +0.69,0.75,3,179,2,1,0,0,sales,high +0.62,0.98,4,107,2,0,0,0,sales,low +0.5,0.68,4,274,4,0,0,0,sales,medium +0.81,0.73,4,272,2,0,0,0,sales,medium +0.2,0.41,6,264,3,0,0,0,sales,medium +0.22,0.58,2,255,5,0,0,0,sales,medium +0.63,0.79,5,215,2,1,0,0,accounting,medium +0.68,0.53,3,156,4,0,0,0,accounting,medium +0.52,0.49,3,146,2,1,0,0,accounting,medium +0.22,0.52,6,217,6,0,0,0,hr,medium +0.51,0.82,3,206,4,0,0,0,hr,medium +0.66,0.92,4,239,3,0,0,0,hr,medium +0.26,0.37,2,232,3,1,0,0,hr,low +0.42,0.4,3,160,2,0,0,0,technical,low +0.86,0.77,5,237,3,1,0,0,technical,low +0.52,0.68,3,162,4,1,0,0,technical,low +0.95,0.64,3,138,4,1,0,0,technical,low +0.63,0.94,2,228,2,1,0,0,technical,low +1,0.54,3,151,2,1,0,0,technical,low +0.54,0.58,3,169,2,1,0,0,technical,high +0.9,0.7,3,147,4,0,0,0,technical,low +0.49,0.99,6,205,5,0,0,0,technical,high +0.81,0.6,3,140,2,0,0,0,technical,high +0.5,0.66,4,150,4,0,0,0,technical,low +0.7,0.88,4,191,3,1,0,0,support,low +0.5,0.85,4,150,2,0,0,0,support,high +0.98,0.66,2,255,3,0,0,0,support,low +0.86,0.51,3,230,3,0,0,0,support,medium +0.93,0.77,3,202,5,0,0,0,support,high +0.62,0.75,3,180,3,0,0,0,support,medium +0.64,0.57,3,179,3,0,0,0,support,medium +0.66,0.94,4,198,3,1,0,0,support,medium +0.65,0.86,4,267,2,0,0,0,support,medium +0.89,0.84,3,166,2,0,0,0,support,high +0.77,0.58,4,162,2,0,0,0,support,medium +0.4,0.36,4,128,4,0,0,0,technical,medium +0.36,0.44,4,114,4,0,0,0,technical,medium +0.3,0.48,2,104,2,0,0,0,technical,high +0.9,0.64,4,139,3,1,0,0,management,medium +0.23,0.49,5,214,5,0,0,0,IT,high +0.24,0.79,2,175,5,0,0,0,IT,low +0.98,0.92,4,175,2,0,0,0,IT,medium +0.49,0.48,2,186,2,0,0,0,IT,medium +0.23,0.48,3,139,4,0,0,0,IT,medium +0.79,0.71,3,202,3,0,0,0,product_mng,medium +0.21,0.76,4,165,6,1,0,0,product_mng,low +0.38,0.92,5,238,2,0,0,0,product_mng,low +0.17,0.59,4,179,4,0,0,0,product_mng,low +0.56,0.69,5,239,2,1,0,0,IT,low +0.97,0.7,5,195,2,1,0,0,RandD,low +0.22,0.78,6,206,6,0,0,0,RandD,low +0.84,0.88,3,194,3,0,0,0,RandD,low +0.64,0.63,5,105,5,1,0,0,RandD,low +0.78,0.69,5,256,3,0,0,0,RandD,low +0.23,0.4,6,110,4,1,0,0,marketing,low +0.99,0.82,6,185,4,1,0,0,sales,high +0.15,0.76,4,255,6,0,0,0,accounting,low +0.24,0.96,3,174,6,0,0,0,support,low +0.84,0.71,4,273,3,0,0,0,technical,low +0.82,0.58,2,248,6,0,0,0,management,low +0.17,0.86,3,286,6,0,0,0,marketing,high +0.72,0.71,5,248,2,0,0,0,marketing,low +0.86,0.91,3,234,3,1,0,0,marketing,low +0.75,0.55,3,162,3,0,0,0,sales,low +0.93,0.82,5,272,3,0,0,0,sales,high +0.75,0.52,3,260,3,1,0,0,sales,low +0.45,0.55,3,151,3,0,0,0,sales,medium +0.44,0.87,2,140,4,0,0,0,sales,high +0.55,0.9,5,237,3,0,0,0,sales,medium +0.78,0.56,5,252,2,0,0,0,sales,high +0.5,0.52,4,178,3,0,0,0,sales,medium +0.96,0.66,4,268,3,0,0,0,sales,medium +0.72,0.53,5,244,4,0,0,0,sales,medium +0.77,0.55,3,225,3,0,0,0,sales,medium +0.89,0.94,5,223,3,0,0,0,sales,medium +0.58,0.79,4,149,6,0,0,0,sales,medium +0.75,0.96,5,190,3,0,0,0,sales,medium +0.77,0.8,4,167,3,0,0,0,sales,medium +0.76,0.87,4,161,3,0,0,0,sales,high +0.87,0.76,4,218,2,0,0,0,sales,low +0.95,0.74,3,212,3,0,0,0,sales,medium +0.73,0.54,3,150,3,0,0,0,sales,medium +0.2,0.56,5,181,6,0,0,0,accounting,medium +0.55,0.43,3,120,6,1,0,0,accounting,medium +0.21,0.53,3,229,5,0,0,0,accounting,medium +0.91,0.74,3,139,5,1,0,0,hr,medium +0.61,0.87,4,151,3,0,0,0,hr,medium +0.89,0.59,4,230,3,0,0,0,hr,medium +0.65,0.76,4,193,2,0,0,0,hr,medium +0.7,0.48,4,229,2,0,0,0,technical,high +0.79,0.95,3,222,4,0,0,0,technical,low +0.99,0.67,3,200,2,0,0,0,technical,low +0.52,0.77,4,134,4,0,0,0,technical,low +0.71,0.97,3,219,3,0,0,0,technical,high +0.21,0.58,5,197,4,0,0,0,technical,low +0.4,0.62,3,283,5,0,0,0,technical,low +0.74,0.75,4,149,3,0,0,0,technical,low +0.79,0.6,4,161,3,0,0,0,technical,high +0.88,0.58,5,264,3,0,0,0,technical,low +0.89,0.93,4,137,2,0,0,0,technical,low +0.61,0.72,3,144,2,0,0,0,support,low +0.48,0.54,4,105,5,1,0,0,support,low +0.81,0.98,6,196,2,0,0,0,support,low +0.71,0.74,3,250,3,0,0,0,support,low +0.92,0.53,3,253,3,0,0,0,support,low +0.99,0.71,4,199,4,0,0,0,support,medium +0.74,0.55,6,130,2,0,0,0,support,medium +1,0.94,3,257,4,0,0,0,support,medium +0.81,0.55,3,127,4,0,0,0,support,medium +0.59,0.7,2,153,2,0,0,0,support,medium +0.9,0.58,5,260,2,0,0,0,support,medium +0.98,0.9,4,247,2,0,0,0,technical,medium +0.56,0.55,3,250,4,0,0,0,technical,medium +0.86,0.89,4,136,4,0,0,0,technical,medium +0.82,0.59,3,210,3,0,0,0,management,medium +0.94,0.53,4,183,3,0,0,0,IT,medium +0.68,0.96,4,255,3,0,0,0,IT,medium +0.81,0.69,5,109,2,0,0,0,IT,high +0.59,0.59,3,173,3,0,0,0,IT,low +0.54,0.82,4,266,2,0,0,0,IT,medium +0.77,0.87,5,257,2,0,0,0,product_mng,medium +0.62,0.61,6,103,4,0,0,0,product_mng,medium +0.58,0.57,5,105,6,0,0,0,product_mng,medium +0.63,0.84,3,269,2,0,0,0,product_mng,low +0.78,1,4,154,2,0,0,0,IT,low +0.82,0.78,5,232,3,0,0,0,RandD,low +0.73,0.86,3,215,4,0,0,0,RandD,low +0.53,0.74,4,272,2,1,0,0,RandD,low +0.88,0.62,4,221,2,0,0,0,RandD,low +0.65,0.6,4,200,4,0,0,0,RandD,low +0.57,0.61,5,254,5,0,0,0,marketing,low +0.93,0.76,5,187,3,0,0,0,marketing,low +0.83,0.64,2,192,2,0,0,0,sales,low +0.73,0.45,5,232,4,0,0,0,accounting,low +0.78,0.67,4,221,3,1,0,0,support,low +0.9,0.62,3,233,5,1,0,0,technical,low +0.59,0.66,3,166,3,1,0,0,management,low +0.67,0.89,2,173,3,0,0,0,marketing,low +0.59,0.51,4,184,2,0,0,0,marketing,low +0.53,0.54,4,257,3,1,0,0,marketing,low +0.56,0.73,4,226,2,0,0,0,sales,low +0.72,0.89,3,221,3,0,0,0,sales,low +0.81,0.49,2,205,5,1,0,0,sales,low +0.54,0.68,3,158,3,0,0,0,sales,low +0.91,0.87,3,199,3,0,0,0,sales,medium +0.51,0.96,3,192,3,0,0,0,sales,medium +0.59,0.39,4,190,5,0,0,0,sales,medium +0.64,0.86,5,222,3,0,0,0,sales,medium +0.95,0.68,5,225,3,0,0,0,sales,medium +0.75,0.69,3,274,2,0,0,0,sales,medium +0.44,0.38,3,197,2,0,0,0,sales,medium +0.55,0.6,4,176,3,0,0,0,sales,medium +0.6,0.81,3,226,2,0,0,0,sales,medium +0.84,0.58,5,186,2,0,0,0,sales,medium +0.49,0.65,3,226,3,0,0,0,sales,medium +0.75,0.71,4,209,3,0,0,0,sales,medium +0.35,0.81,5,182,5,0,0,0,sales,high +0.68,0.78,3,232,3,0,0,0,sales,low +0.52,0.53,2,286,3,0,0,0,sales,medium +0.78,0.57,3,177,3,0,0,0,accounting,medium +0.44,0.92,6,268,4,1,0,0,accounting,medium +0.18,0.86,5,267,4,0,0,0,accounting,medium +0.37,0.52,4,211,4,0,0,0,hr,low +0.71,0.76,3,246,3,0,0,0,hr,low +0.55,0.83,5,220,3,0,0,0,hr,low +0.98,0.78,3,197,2,0,0,0,hr,low +0.88,0.53,3,188,3,0,0,0,technical,low +0.79,0.9,5,212,5,0,0,0,technical,low +0.96,0.66,3,230,3,0,0,0,technical,low +0.3,0.55,6,178,2,0,0,0,technical,low +0.59,0.9,4,226,2,0,0,0,technical,low +0.72,0.55,4,202,3,0,0,0,technical,low +0.59,0.87,4,191,2,0,0,0,technical,low +0.93,0.68,2,150,3,0,0,0,technical,low +0.49,0.86,5,235,5,0,0,0,technical,low +0.73,0.95,3,258,3,0,0,0,technical,low +0.53,0.6,5,247,3,0,0,0,technical,low +0.77,0.83,6,271,3,0,0,0,support,low +0.45,0.62,6,129,5,0,0,0,support,low +0.95,0.78,5,246,3,0,0,0,support,low +0.86,0.69,5,157,4,0,0,0,support,low +0.59,0.58,4,233,4,0,0,0,support,low +0.95,0.63,4,153,3,0,0,0,support,low +0.7,0.92,4,142,2,1,0,0,support,medium +0.56,0.64,5,241,3,1,0,0,support,medium +0.5,0.92,3,186,2,0,0,0,support,medium +0.76,0.92,4,154,3,0,0,0,support,medium +0.85,0.77,5,263,3,0,0,0,support,medium +0.98,1,5,150,3,0,0,0,technical,medium +0.65,0.4,2,277,2,0,0,0,technical,medium +0.44,0.97,4,240,5,1,0,0,technical,medium +0.55,0.97,3,222,2,0,0,0,management,medium +0.16,0.8,4,140,5,1,0,0,IT,medium +0.16,0.9,6,213,2,0,0,0,IT,medium +0.75,1,4,272,4,1,0,0,IT,medium +0.59,0.57,4,261,2,0,0,0,IT,high +0.48,0.87,3,236,2,0,0,0,IT,low +0.18,0.68,6,154,5,0,0,0,product_mng,medium +0.8,0.72,3,271,2,0,0,0,product_mng,medium +0.8,0.88,3,154,2,0,0,0,product_mng,medium +0.15,0.52,4,207,4,0,0,0,product_mng,medium +0.62,0.86,4,181,2,0,0,0,IT,low +0.21,0.99,6,165,4,1,0,0,RandD,low +0.9,0.82,3,203,2,0,0,0,RandD,low +0.51,1,4,197,2,0,0,0,RandD,low +0.99,0.9,4,177,3,0,0,0,RandD,low +0.71,0.49,4,273,2,1,0,0,RandD,low +0.89,0.93,4,141,2,0,0,0,marketing,low +0.74,0.67,4,158,3,0,0,0,sales,low +0.84,0.85,3,243,2,0,0,0,accounting,low +0.4,0.64,3,188,3,0,0,0,support,low +1,0.71,4,216,2,0,0,0,technical,low +0.48,0.51,5,286,3,0,0,0,management,low +0.99,0.6,3,262,2,0,0,0,marketing,low +0.73,0.81,5,173,3,0,0,0,marketing,low +0.84,0.91,3,247,4,0,0,0,marketing,low +0.55,0.7,3,237,4,0,0,0,sales,low +0.44,0.99,5,119,2,0,0,0,sales,low +0.95,0.67,4,227,3,0,0,0,sales,low +0.76,0.65,4,195,3,0,0,0,sales,low +0.94,0.7,6,217,5,0,0,0,sales,low +0.85,0.5,4,267,3,0,0,0,sales,low +0.57,0.62,3,154,2,0,0,0,sales,medium +0.67,0.49,5,161,2,0,0,0,sales,medium +0.7,0.67,3,179,3,1,0,0,sales,medium +0.67,0.55,4,214,3,1,0,0,sales,medium +0.72,0.84,3,167,3,0,0,0,sales,medium +0.71,0.53,6,203,3,0,0,0,sales,medium +0.51,0.8,4,231,3,0,0,0,sales,medium +0.98,0.65,4,263,2,1,0,0,sales,medium +0.52,0.83,2,227,4,0,0,0,sales,medium +0.21,0.9,4,235,4,0,0,0,sales,medium +0.43,0.93,6,127,3,1,0,0,sales,medium +0.91,0.62,4,158,3,1,0,0,sales,medium +0.74,0.85,4,105,5,0,0,0,sales,high +0.34,0.81,3,257,5,0,0,0,accounting,low +0.28,0.46,4,260,2,0,0,0,accounting,medium +0.7,0.79,6,145,3,0,0,0,accounting,medium +0.53,0.59,2,201,3,1,0,0,hr,medium +0.97,0.51,4,241,4,0,0,0,hr,medium +0.96,0.59,3,214,2,0,0,0,hr,low +0.74,0.53,4,166,3,0,0,0,hr,low +0.79,0.86,4,173,4,0,0,0,technical,low +0.61,0.47,4,181,5,0,0,0,technical,low +0.36,0.4,4,114,4,1,0,0,technical,low +0.15,0.91,5,267,4,0,0,0,technical,low +0.61,0.5,4,216,2,0,0,0,technical,low +0.59,0.94,4,265,3,0,0,0,technical,low +0.58,0.77,5,272,2,1,0,0,technical,low +0.49,0.92,4,229,2,0,0,0,technical,low +0.92,0.96,5,174,3,1,0,0,technical,low +0.72,0.92,3,264,3,0,0,0,technical,low +0.77,0.85,5,221,5,0,0,0,technical,low +0.6,0.57,3,202,3,0,0,0,support,low +0.21,0.4,3,262,3,0,0,0,support,low +0.83,0.75,3,150,3,0,0,0,support,low +0.71,0.95,3,251,3,0,0,0,support,low +0.94,0.46,2,230,2,1,0,0,support,low +0.59,0.99,3,185,2,0,0,0,support,medium +0.59,0.59,4,216,2,1,0,0,support,medium +0.99,0.68,3,181,3,1,0,0,support,medium +0.64,0.7,5,140,4,0,0,0,support,medium +0.54,0.5,4,160,3,0,0,0,support,medium +0.78,0.63,3,192,2,0,0,0,support,medium +0.7,0.79,6,257,4,0,0,0,technical,medium +0.9,0.62,5,236,6,0,0,0,technical,medium +0.14,0.74,6,160,5,0,0,0,technical,medium +0.33,0.69,3,125,3,0,0,0,management,medium +0.73,0.53,4,139,2,0,0,0,IT,medium +0.8,0.87,4,217,3,0,0,0,IT,medium +0.17,0.91,6,246,5,0,0,0,IT,high +0.34,0.91,4,284,4,0,0,0,IT,low +0.61,0.9,3,263,3,0,0,0,IT,medium +0.18,0.95,4,241,6,0,0,0,product_mng,medium +0.72,0.94,3,258,3,0,0,0,product_mng,medium +0.32,0.79,4,136,3,0,0,0,product_mng,medium +0.85,0.81,2,223,3,1,0,0,product_mng,low +0.85,0.74,5,170,4,0,0,0,IT,low +0.8,0.81,4,194,3,1,0,0,RandD,low +0.36,0.82,4,218,5,0,0,0,RandD,low +0.8,0.99,6,178,5,0,0,0,RandD,low +0.55,0.9,3,181,3,1,0,0,RandD,low +0.69,0.56,3,183,4,1,0,0,RandD,low +0.71,0.61,2,198,2,1,0,0,marketing,low +0.74,0.56,3,203,3,0,0,0,sales,low +0.76,0.89,5,204,3,0,0,0,accounting,low +0.81,0.62,3,257,3,0,0,0,support,low +0.59,1,4,169,2,0,0,0,technical,low +0.97,0.69,4,203,2,0,0,0,management,low +0.98,0.74,4,260,2,1,0,0,marketing,low +0.96,0.87,5,202,2,0,0,0,marketing,low +0.82,0.63,4,199,2,0,0,0,marketing,low +0.97,0.93,2,270,4,0,0,0,sales,low +0.74,0.51,5,258,2,0,0,0,sales,low +0.14,0.52,4,108,6,0,0,0,sales,low +0.3,0.67,3,232,3,0,0,0,sales,low +0.74,0.89,4,149,2,0,0,0,sales,low +0.85,0.48,4,214,3,0,0,0,sales,medium +0.69,0.65,4,136,2,0,0,0,sales,medium +0.6,0.95,4,164,4,0,0,0,sales,medium +0.53,0.85,3,236,6,0,0,0,sales,medium +0.94,0.88,3,270,3,0,0,0,sales,medium +0.57,0.63,5,156,4,0,0,0,sales,medium +0.2,0.73,3,250,5,0,0,0,sales,medium +0.82,0.92,4,196,3,0,0,0,sales,medium +0.62,0.92,5,169,2,0,0,0,sales,medium +0.88,0.59,2,144,3,0,0,0,sales,medium +0.82,0.62,4,160,3,0,0,0,sales,medium +0.62,0.91,3,142,6,1,0,0,sales,medium +0.74,0.48,5,165,2,0,0,0,sales,high +0.91,0.66,4,163,3,0,0,0,sales,low +0.7,0.96,3,263,3,0,0,0,accounting,medium +0.84,0.9,3,178,2,0,0,0,accounting,medium +0.35,0.57,3,109,3,0,0,0,accounting,medium +0.28,0.83,4,206,5,0,0,0,hr,medium +0.37,0.37,3,168,3,0,0,0,hr,low +0.75,0.5,4,155,2,1,0,0,hr,low +0.34,0.6,4,154,2,0,0,0,hr,low +0.55,0.5,4,179,3,0,0,0,technical,low +0.97,0.92,3,168,3,0,0,0,technical,low +0.91,0.57,3,158,3,0,0,0,technical,low +0.48,0.63,3,180,2,1,0,0,technical,low +0.53,0.71,4,227,3,0,0,0,technical,low +0.84,0.67,3,139,2,0,0,0,technical,low +0.31,0.69,3,120,3,0,0,0,technical,low +0.81,0.62,4,255,4,1,0,0,technical,low +0.78,0.95,5,273,2,0,0,0,technical,low +0.64,0.68,3,272,3,0,0,0,technical,low +0.41,0.77,4,231,6,0,0,0,technical,low +0.74,0.81,5,281,3,1,0,0,support,low +0.89,0.86,3,208,3,0,0,0,support,low +0.26,0.43,4,215,4,1,0,0,support,low +0.72,0.39,5,111,5,0,0,0,support,low +0.84,0.74,2,168,3,0,0,0,support,low +0.52,0.8,2,144,4,0,0,0,support,low +0.65,0.95,3,266,3,1,0,0,support,low +0.66,0.56,3,169,2,1,0,0,support,medium +0.86,0.63,4,162,2,0,0,0,support,medium +0.91,0.9,3,243,3,0,0,0,support,medium +0.84,0.6,3,186,3,1,0,0,support,medium +0.87,0.57,4,231,4,0,0,0,technical,medium +0.57,0.54,4,167,3,0,0,0,technical,medium +0.68,0.5,3,139,3,0,0,0,technical,medium +1,0.59,5,182,3,1,0,0,management,medium +0.86,0.74,4,261,2,0,0,0,IT,medium +0.7,0.99,4,248,3,0,0,0,IT,medium +0.28,0.7,2,164,4,0,0,0,IT,medium +0.84,0.9,3,230,3,0,0,0,IT,medium +0.68,0.92,3,226,2,0,0,0,IT,high +0.45,0.6,2,98,3,0,0,0,product_mng,low +0.37,0.74,5,117,3,0,0,0,product_mng,medium +0.98,0.84,4,200,2,0,0,0,product_mng,medium +0.67,0.57,3,206,3,1,0,0,product_mng,medium +0.74,0.83,4,142,3,0,0,0,IT,medium +0.48,0.46,2,174,3,0,0,0,RandD,low +0.22,0.63,5,284,6,0,0,0,RandD,low +0.14,0.79,5,163,6,0,0,0,RandD,low +0.93,0.92,5,189,2,0,0,0,RandD,low +0.83,0.54,4,189,4,0,0,0,RandD,low +0.94,0.79,3,256,3,0,0,0,marketing,low +0.7,0.98,3,215,2,0,0,0,sales,low +0.74,0.86,4,221,2,1,0,0,accounting,low +0.83,0.85,4,263,3,0,0,0,support,medium +0.97,0.61,3,208,3,0,0,0,technical,medium +0.61,0.71,3,216,4,0,0,0,management,medium +0.77,0.71,2,242,2,0,0,0,marketing,medium +0.66,0.73,2,135,6,0,0,0,marketing,medium +0.92,0.99,3,190,3,0,0,0,marketing,medium +0.62,0.55,3,108,2,1,0,0,sales,medium +0.15,0.67,6,195,2,0,0,0,sales,medium +0.82,0.68,3,160,4,0,0,0,sales,medium +0.7,0.48,5,273,2,0,0,0,sales,medium +0.18,0.39,2,177,6,0,0,0,sales,medium +0.99,0.59,3,163,2,0,0,0,sales,medium +0.22,0.9,4,106,2,0,0,0,sales,medium +0.61,0.83,5,236,2,0,0,0,sales,medium +0.78,0.91,3,132,2,0,0,0,sales,medium +0.84,0.61,3,253,2,0,0,0,sales,medium +0.87,0.74,4,151,4,0,0,0,sales,medium +0.73,0.9,4,266,3,0,0,0,sales,medium +0.7,0.86,3,141,2,1,0,0,sales,medium +0.98,0.71,5,217,3,0,0,0,sales,medium +0.85,0.49,3,258,3,0,0,0,sales,medium +0.56,0.83,5,275,2,0,0,0,sales,medium +0.48,0.62,4,210,2,0,0,0,sales,medium +0.65,0.7,3,243,3,0,0,0,sales,medium +0.84,0.59,3,234,3,1,0,0,sales,medium +0.17,0.73,4,274,3,0,0,0,accounting,high +0.84,0.61,4,261,2,0,0,0,accounting,high +0.96,0.59,3,158,3,1,0,0,accounting,high +0.62,0.96,5,251,2,0,0,0,hr,high +0.57,0.7,3,158,3,0,0,0,hr,high +0.98,0.87,3,246,3,0,0,0,hr,high +0.72,0.99,4,227,3,0,0,0,hr,high +0.43,0.46,4,169,5,0,0,0,technical,high +0.68,0.57,5,187,4,0,0,0,technical,high +0.69,0.86,4,238,3,0,0,0,technical,high +0.91,0.66,4,139,3,0,0,0,technical,high +0.42,0.37,2,284,3,0,0,0,technical,high +0.8,0.99,4,255,5,1,0,0,technical,low +0.79,0.57,5,230,2,0,0,0,technical,low +1,0.94,3,272,3,0,0,0,technical,low +0.63,0.75,4,155,3,0,0,0,technical,low +0.61,0.51,6,163,6,0,0,0,technical,low +0.78,0.98,4,260,3,0,0,0,technical,low +0.72,0.96,5,223,3,1,0,0,support,low +0.64,0.51,4,247,2,1,0,0,support,low +0.79,0.86,3,126,5,0,0,0,support,low +0.64,0.55,3,147,2,0,0,0,support,low +0.82,0.88,4,259,3,0,0,0,support,low +0.51,0.86,4,196,2,0,0,0,support,low +0.18,0.51,6,227,2,0,0,0,support,low +0.67,0.58,5,161,3,1,0,0,support,low +0.65,0.85,3,213,2,0,0,0,support,low +0.7,0.8,4,183,2,0,0,0,support,medium +0.59,0.59,3,194,2,1,0,0,support,medium +0.56,0.76,3,237,3,0,0,0,technical,medium +0.17,0.94,5,273,4,0,0,0,technical,medium +0.8,0.89,2,166,3,0,0,0,technical,medium +0.91,0.62,5,169,4,0,0,0,management,medium +0.51,0.54,3,154,3,1,0,0,IT,medium +0.76,0.59,3,201,6,1,0,0,IT,medium +0.82,0.59,3,178,2,0,0,0,IT,medium +0.44,0.66,3,161,3,0,0,0,IT,medium +0.5,0.48,4,269,3,0,0,0,IT,medium +0.54,0.49,3,203,3,1,0,0,product_mng,medium +0.56,0.63,4,271,2,1,0,0,product_mng,high +0.77,0.66,6,181,4,0,0,0,product_mng,high +0.39,0.38,4,135,2,0,0,0,product_mng,high +0.52,0.62,3,275,2,0,0,0,IT,high +0.63,0.91,3,252,2,0,0,0,RandD,high +0.49,0.46,2,129,2,0,0,0,RandD,high +0.2,0.47,4,230,4,0,0,0,RandD,high +0.21,0.94,3,287,5,0,0,0,RandD,high +0.85,0.98,5,156,2,0,0,0,RandD,low +0.54,0.82,2,279,3,1,0,0,marketing,low +0.23,0.88,5,156,4,0,0,0,sales,low +0.65,0.96,3,168,2,0,0,0,accounting,low +0.19,0.85,6,259,3,1,0,0,support,low +0.76,0.58,4,188,3,0,0,0,technical,low +0.83,0.8,4,149,3,0,0,0,management,low +0.97,0.47,3,157,4,0,0,0,marketing,low +0.67,1,3,201,4,0,0,0,marketing,medium +0.53,0.62,3,185,3,0,0,0,marketing,medium +0.34,0.71,2,160,3,1,0,0,sales,medium +0.58,0.48,5,251,3,0,0,0,sales,medium +0.96,0.68,5,145,3,1,0,0,sales,medium +0.72,0.76,3,269,3,1,0,0,sales,medium +0.58,0.62,3,213,2,0,0,0,sales,medium +0.39,0.67,6,276,6,0,0,0,sales,medium +0.24,0.57,5,232,3,0,0,0,sales,medium +0.64,0.73,4,184,3,0,0,0,sales,medium +0.98,0.55,3,260,3,0,0,0,sales,medium +0.64,0.99,3,214,2,0,0,0,sales,medium +0.56,0.41,2,194,2,0,0,0,sales,medium +0.53,0.74,5,181,2,0,0,0,sales,medium +0.62,0.57,4,215,3,0,0,0,sales,medium +0.85,0.69,3,194,4,0,0,0,sales,medium +0.76,0.85,4,190,3,0,0,0,sales,medium +0.69,0.5,3,260,4,0,0,0,sales,medium +0.35,0.67,2,171,3,0,0,0,sales,medium +0.54,0.47,2,193,4,0,0,0,sales,medium +0.63,0.49,3,252,3,0,0,0,sales,medium +0.58,0.58,5,171,2,0,0,0,accounting,medium +0.7,0.93,3,185,4,0,0,0,accounting,medium +0.48,0.51,4,152,4,0,0,0,accounting,high +0.59,0.92,4,183,2,0,0,0,hr,low +0.96,0.8,4,145,2,0,0,0,hr,medium +0.99,0.77,3,190,4,0,0,0,hr,medium +0.73,0.59,4,214,5,0,0,0,hr,medium +0.7,0.73,2,139,2,0,0,0,technical,medium +0.85,0.88,5,236,4,0,0,0,technical,medium +0.66,0.61,3,156,3,1,0,0,technical,medium +0.94,0.97,2,221,2,0,0,0,technical,medium +0.54,0.64,6,278,2,0,0,0,technical,medium +0.78,0.47,4,129,2,0,0,0,technical,medium +0.64,0.85,3,213,4,0,0,0,technical,medium +0.68,0.56,3,146,3,0,0,0,technical,low +0.92,0.84,4,159,3,0,0,0,technical,low +0.72,0.73,3,198,2,0,0,0,technical,low +0.78,0.74,6,251,4,0,0,0,technical,low +0.35,0.54,2,124,3,0,0,0,support,low +0.97,0.77,5,223,2,0,0,0,support,low +0.57,0.65,3,163,2,0,0,0,support,low +0.9,0.66,4,242,3,0,0,0,support,high +0.31,0.61,4,97,2,0,0,0,support,low +0.17,0.5,4,267,6,0,0,0,support,high +0.8,0.4,5,199,4,1,0,0,support,high +0.19,0.76,3,107,5,0,0,0,support,low +0.57,0.65,5,144,3,1,0,0,support,low +0.22,0.96,3,213,3,0,0,0,support,high +0.15,0.9,5,284,4,0,0,0,support,low +0.62,0.67,5,259,3,0,0,0,technical,medium +0.61,0.41,3,103,2,0,0,0,technical,high +0.87,0.81,5,236,3,0,0,0,technical,medium +0.54,0.75,4,199,2,0,0,0,management,medium +0.71,0.54,3,201,2,0,0,0,IT,medium +0.66,0.67,3,123,4,0,0,0,IT,medium +0.7,0.68,4,143,5,0,0,0,IT,high +0.53,0.5,5,159,2,0,0,0,IT,medium +0.92,0.54,5,203,3,0,0,0,IT,medium +0.93,0.73,4,168,2,0,0,0,product_mng,medium +0.62,0.7,5,180,4,0,0,0,product_mng,high +0.65,0.53,5,142,3,0,0,0,product_mng,medium +0.87,0.98,4,266,2,1,0,0,product_mng,high +0.97,0.89,5,265,2,0,0,0,IT,low +0.76,0.77,5,257,3,0,0,0,RandD,medium +0.96,0.55,4,234,4,0,0,0,RandD,medium +1,0.8,3,223,3,0,0,0,RandD,medium +0.99,0.85,5,261,4,0,0,0,RandD,medium +0.67,0.84,4,197,2,0,0,0,RandD,low +0.61,0.52,4,171,2,0,0,0,marketing,low +0.62,0.92,3,228,2,0,0,0,sales,low +0.62,0.79,3,141,3,0,0,0,accounting,low +0.97,0.76,3,147,3,1,0,0,support,low +0.86,0.56,5,237,3,0,0,0,technical,low +0.15,0.44,3,199,2,0,0,0,management,low +0.14,0.95,4,144,5,0,0,0,marketing,low +0.7,0.98,4,146,3,0,0,0,marketing,low +0.95,0.7,4,139,3,0,0,0,marketing,low +0.63,0.86,4,169,2,0,0,0,sales,high +0.45,0.75,4,169,2,0,0,0,sales,low +0.9,0.6,3,268,3,0,0,0,sales,low +0.15,0.87,4,194,4,0,0,0,sales,low +0.75,0.86,3,249,3,0,0,0,sales,low +0.14,0.52,4,122,2,0,0,0,sales,high +0.5,0.94,5,176,4,0,0,0,sales,low +0.45,0.45,4,168,2,0,0,0,sales,low +0.86,0.92,3,260,2,0,0,0,sales,low +0.52,0.62,3,179,3,0,0,0,sales,high +0.79,0.48,5,200,3,0,0,0,sales,low +0.47,0.56,4,165,3,0,0,0,sales,medium +0.76,0.64,4,144,2,0,0,0,sales,high +0.52,0.72,4,186,2,0,0,0,sales,medium +0.84,0.54,4,156,4,0,0,0,sales,high +0.5,0.7,4,162,2,0,0,0,sales,medium +0.52,0.63,3,269,2,0,0,0,sales,medium +0.76,0.37,3,127,4,0,0,0,sales,medium +0.59,0.58,2,267,3,0,0,0,sales,medium +0.65,0.79,4,196,2,0,0,0,accounting,medium +0.68,0.83,3,144,2,0,0,0,accounting,medium +0.52,0.72,2,247,4,0,0,0,accounting,medium +0.92,0.5,5,258,3,0,0,0,hr,medium +0.53,0.84,4,219,2,0,0,0,hr,high +0.5,0.95,2,208,2,0,0,0,hr,low +0.98,0.77,4,184,3,0,0,0,hr,medium +0.85,0.6,5,178,2,0,0,0,technical,medium +0.49,0.83,4,194,3,0,0,0,technical,medium +0.52,0.73,4,245,4,0,0,0,technical,medium +0.96,0.77,3,193,3,0,0,0,technical,medium +0.86,0.85,3,254,3,0,0,0,technical,medium +0.35,0.59,3,281,2,0,0,0,technical,medium +0.99,0.97,5,229,2,0,0,0,technical,medium +0.52,0.92,4,112,2,0,0,0,technical,medium +0.75,0.91,4,243,3,0,0,0,technical,high +0.67,0.66,3,151,3,0,0,0,technical,low +0.49,0.37,4,216,4,0,0,0,technical,low +0.51,0.62,3,110,3,0,0,0,support,low +0.65,0.6,3,142,2,0,0,0,support,high +0.73,0.8,4,251,2,1,0,0,support,low +0.46,0.75,6,276,6,0,0,0,support,low +0.94,0.82,4,159,2,1,0,0,support,low +0.53,0.69,4,257,4,0,0,0,support,high +0.6,0.79,5,154,2,0,0,0,support,low +0.63,0.97,5,146,3,0,0,0,support,low +0.75,0.77,4,204,2,0,0,0,support,low +0.69,0.53,4,156,3,0,0,0,support,low +0.81,0.5,4,170,4,0,0,0,support,low +0.74,0.84,3,239,3,0,0,0,technical,low +0.72,0.55,4,145,3,0,0,0,technical,low +0.27,0.39,4,193,4,0,0,0,technical,medium +0.86,0.74,2,178,3,0,0,0,management,medium +0.5,0.59,3,260,3,0,0,0,IT,medium +0.82,0.5,3,198,4,0,0,0,IT,medium +0.73,0.51,4,249,5,0,0,0,IT,medium +0.7,0.72,4,202,3,0,0,0,IT,medium +0.9,0.72,4,143,3,0,0,0,IT,medium +0.72,0.95,2,178,4,1,0,0,product_mng,medium +0.63,0.85,3,151,4,1,0,0,product_mng,medium +0.84,0.99,4,134,3,0,0,0,product_mng,medium +0.98,0.92,5,221,3,1,0,0,product_mng,medium +0.41,0.48,6,165,4,0,0,0,IT,medium +0.72,0.58,4,255,2,0,0,0,RandD,high +0.87,0.89,3,140,2,1,0,0,RandD,low +0.63,0.71,5,141,2,0,0,0,RandD,medium +0.6,0.96,4,99,6,0,0,0,RandD,medium +0.58,0.79,5,197,3,0,0,0,RandD,medium +0.64,0.52,3,240,3,0,0,0,marketing,medium +0.74,0.62,3,216,3,1,0,0,sales,low +0.93,0.7,5,206,4,0,0,0,accounting,low +0.74,0.75,4,257,3,0,0,0,support,low +0.98,0.6,4,160,3,0,0,0,technical,low +0.87,0.82,5,138,3,1,0,0,management,low +0.76,0.99,3,216,3,0,0,0,marketing,low +0.15,0.91,6,281,3,0,0,0,marketing,low +0.18,0.57,6,238,6,1,0,0,marketing,low +1,0.67,3,199,4,0,0,0,sales,low +0.98,0.63,3,135,3,0,0,0,sales,low +0.73,0.97,3,165,2,0,0,0,sales,low +0.67,0.72,3,180,3,0,0,0,sales,low +0.9,0.74,3,227,3,0,0,0,sales,low +0.54,0.53,3,251,2,0,0,0,sales,low +0.15,0.39,5,229,4,0,0,0,sales,low +0.58,0.54,4,199,2,0,0,0,sales,low +0.81,0.51,4,271,2,0,0,0,sales,low +0.17,0.51,5,221,3,0,0,0,sales,low +0.68,0.73,4,251,3,0,0,0,sales,low +0.68,0.49,4,153,4,0,0,0,sales,low +0.7,0.93,4,241,3,0,0,0,sales,low +0.49,0.68,4,201,4,0,0,0,sales,medium +0.55,0.96,4,267,3,0,0,0,sales,medium +0.48,0.84,3,146,2,1,0,0,sales,medium +0.63,0.98,4,210,3,0,0,0,sales,medium +0.83,0.69,4,233,2,0,0,0,sales,medium +0.48,0.87,3,221,2,0,0,0,sales,medium +0.98,0.96,5,183,3,1,0,0,accounting,medium +0.57,0.72,4,221,3,0,0,0,accounting,medium +0.72,0.66,3,167,3,0,0,0,accounting,medium +0.9,0.8,4,240,3,0,0,0,hr,medium +0.64,0.59,3,200,2,1,0,0,hr,medium +0.55,0.98,2,144,2,0,0,0,hr,medium +0.56,0.59,5,209,2,1,0,0,hr,high +0.8,0.55,3,206,2,0,0,0,technical,low +0.65,0.76,3,111,5,0,0,0,technical,medium +0.75,0.78,3,241,3,0,0,0,technical,medium +0.69,0.79,3,207,3,0,0,0,technical,medium +0.91,0.76,3,197,3,0,0,0,technical,medium +0.78,0.63,5,200,2,0,0,0,technical,low +0.71,0.68,4,242,4,0,0,0,technical,low +0.79,0.96,4,180,3,0,0,0,technical,low +0.86,0.72,4,173,3,0,0,0,technical,low +0.87,0.82,3,224,3,0,0,0,technical,low +0.76,0.99,2,183,2,0,0,0,technical,low +0.76,0.8,4,226,5,0,0,0,support,low +0.74,0.66,3,257,3,0,0,0,support,low +0.56,0.81,3,165,4,0,0,0,support,low +0.54,0.91,3,142,2,0,0,0,support,low +0.84,0.79,4,258,4,0,0,0,support,low +0.55,0.69,5,193,2,0,0,0,support,low +0.69,0.51,3,176,2,0,0,0,support,low +0.79,0.88,4,188,3,0,0,0,support,low +0.21,0.38,3,275,5,0,0,0,support,low +0.57,0.58,3,132,3,0,0,0,support,low +0.89,0.95,3,246,4,0,0,0,support,low +0.72,0.98,3,181,4,0,0,0,technical,low +0.56,0.58,5,266,3,0,0,0,technical,low +0.84,0.68,4,151,2,0,0,0,technical,low +0.94,0.76,3,257,4,1,0,0,management,low +0.29,0.88,6,183,4,0,0,0,IT,medium +0.54,0.93,3,124,5,0,0,0,IT,medium +0.93,0.73,4,153,2,1,0,0,IT,medium +0.8,0.68,4,199,2,0,0,0,IT,medium +1,0.73,5,142,4,0,0,0,IT,medium +0.89,0.56,4,159,3,0,0,0,product_mng,medium +0.6,0.78,6,211,4,1,0,0,product_mng,medium +0.49,0.94,5,136,3,0,0,0,product_mng,medium +0.65,0.75,4,153,2,0,0,0,product_mng,medium +0.6,0.71,5,263,2,1,0,0,IT,medium +0.51,1,3,168,3,1,0,0,RandD,medium +0.74,0.89,4,234,3,1,0,0,RandD,medium +0.57,0.42,4,154,5,0,0,0,RandD,high +0.82,0.84,5,173,2,0,0,0,RandD,low +0.19,0.63,5,206,6,0,0,0,RandD,medium +0.5,0.64,4,208,2,0,0,0,marketing,medium +0.91,0.68,4,178,3,1,0,0,sales,medium +0.19,0.86,4,198,6,0,0,0,accounting,medium +0.94,0.84,4,220,3,0,0,0,support,low +0.88,0.67,4,226,2,0,0,0,technical,low +0.9,0.87,4,231,5,0,0,0,management,low +0.49,0.96,2,206,2,0,0,0,marketing,low +0.99,0.55,4,179,4,0,0,0,marketing,low +0.72,0.81,4,200,2,0,0,0,marketing,low +0.66,0.69,5,202,6,0,0,0,sales,low +0.96,0.51,4,237,3,0,0,0,sales,low +0.49,0.69,4,270,3,0,0,0,sales,low +0.73,0.49,3,168,2,1,0,0,sales,low +0.48,0.98,5,132,4,0,0,0,sales,low +0.57,0.78,3,162,2,0,0,0,sales,low +0.63,0.82,3,269,3,0,0,0,sales,low +0.46,0.87,5,254,5,1,0,0,sales,low +0.64,0.5,3,261,2,0,0,0,sales,low +0.56,0.73,4,148,3,0,0,0,sales,low +0.97,0.75,5,228,4,0,0,0,sales,low +0.69,0.68,3,138,3,0,0,0,sales,low +0.23,0.97,4,200,3,0,0,0,sales,low +0.77,0.48,4,258,4,1,0,0,sales,low +0.76,0.57,4,266,3,0,0,0,sales,low +0.98,0.66,3,204,2,0,0,0,sales,medium +0.92,0.77,3,236,3,0,0,0,sales,medium +0.63,0.67,4,149,3,1,0,0,sales,medium +0.91,0.69,5,240,3,0,0,0,sales,medium +0.4,0.67,3,115,3,0,0,0,accounting,medium +0.82,0.62,4,267,3,1,0,0,accounting,medium +0.81,0.88,4,149,3,0,0,0,accounting,medium +0.61,0.69,3,224,3,0,0,0,hr,medium +0.3,0.57,2,158,2,0,0,0,hr,medium +0.59,0.72,2,107,3,0,0,0,hr,medium +0.2,0.56,3,217,5,0,0,0,hr,medium +0.75,0.56,2,212,2,0,0,0,technical,medium +0.59,0.79,3,270,3,0,0,0,technical,high +0.63,0.53,4,243,2,0,0,0,technical,low +0.77,0.68,5,162,4,1,0,0,technical,medium +0.82,0.6,5,232,2,0,0,0,technical,medium +0.6,0.85,5,187,4,0,0,0,technical,medium +0.83,0.72,3,259,2,0,0,0,technical,medium +0.67,0.6,4,209,2,0,0,0,technical,low +0.84,0.56,5,97,6,0,0,0,technical,low +0.68,0.79,5,139,4,0,0,0,technical,low +0.74,0.92,4,258,3,1,0,0,technical,low +0.63,0.64,3,208,2,1,0,0,support,low +0.88,0.9,2,233,3,0,0,0,support,low +1,0.81,3,168,4,0,0,0,support,low +0.7,0.87,4,252,2,1,0,0,support,low +0.5,0.71,5,171,4,0,0,0,support,low +0.94,0.66,5,219,3,0,0,0,support,low +0.67,0.54,3,213,4,0,0,0,support,low +0.8,0.88,5,199,4,0,0,0,support,low +0.7,0.88,4,245,2,0,0,0,support,low +0.24,0.73,4,273,5,0,0,0,support,low +0.98,1,4,202,3,0,0,0,support,low +0.76,0.65,4,240,3,0,0,0,technical,low +0.78,0.5,4,155,4,0,0,0,technical,low +0.42,0.91,3,209,2,0,0,0,technical,low +0.83,0.64,4,210,3,0,0,0,management,medium +0.98,0.81,4,266,6,0,0,0,IT,medium +0.64,0.81,2,226,2,0,0,0,IT,medium +0.67,0.75,4,133,2,0,0,0,IT,medium +0.26,0.39,3,99,4,0,0,0,IT,medium +0.97,0.64,3,237,3,0,0,0,IT,medium +0.48,0.6,4,230,3,0,0,0,product_mng,medium +0.84,0.55,4,149,2,0,0,0,product_mng,medium +0.71,0.74,4,206,4,0,0,0,product_mng,medium +1,0.84,3,185,3,0,0,0,product_mng,medium +0.6,0.76,5,269,2,0,0,0,IT,medium +0.95,0.37,6,233,5,0,0,0,RandD,medium +0.56,0.56,3,162,2,0,0,0,RandD,high +0.75,0.49,2,173,3,1,0,0,RandD,low +0.98,0.53,6,253,4,0,0,0,RandD,medium +0.7,0.72,5,134,3,0,0,0,RandD,medium +0.65,0.92,4,133,3,0,0,0,marketing,medium +0.8,0.81,5,143,2,0,0,0,sales,medium +0.49,0.78,3,264,4,0,0,0,accounting,low +0.32,0.73,3,180,6,0,0,0,support,low +0.88,0.54,3,235,2,1,0,0,technical,low +0.8,0.97,4,232,2,0,0,0,management,low +0.73,0.74,4,181,4,0,0,0,marketing,low +0.72,0.58,3,198,2,0,0,0,marketing,low +0.58,0.78,5,211,3,1,0,0,marketing,low +0.66,0.96,4,216,3,0,0,0,sales,low +0.63,0.79,3,197,3,1,0,0,sales,low +0.69,0.56,2,214,2,0,0,0,sales,low +0.49,0.59,3,185,3,0,0,0,sales,low +0.6,0.45,3,173,2,0,0,0,sales,low +0.5,0.63,4,229,4,0,0,0,sales,low +0.34,0.81,4,116,3,1,0,0,sales,low +0.79,0.6,5,223,3,0,0,0,sales,low +0.98,0.68,4,154,3,0,0,0,sales,low +0.96,0.97,5,240,2,0,0,0,sales,low +0.88,0.89,3,139,2,0,0,0,sales,low +0.6,0.61,2,275,2,0,0,0,sales,low +0.62,0.73,3,158,3,1,0,0,sales,low +0.4,0.72,3,204,4,1,0,0,sales,low +0.16,0.82,5,121,2,0,0,0,sales,medium +0.81,0.98,5,243,6,0,0,0,sales,medium +0.69,0.69,4,195,2,0,0,0,sales,medium +0.66,0.51,5,149,3,0,0,0,sales,medium +0.66,0.62,5,214,2,0,0,0,sales,medium +0.61,0.53,4,266,3,0,0,0,accounting,medium +0.99,0.77,5,222,2,0,0,0,accounting,medium +0.73,0.54,3,283,6,0,0,0,accounting,medium +0.63,0.72,2,161,5,0,0,0,hr,medium +0.6,0.91,3,157,4,0,0,0,hr,medium +0.44,0.44,3,126,2,0,0,0,hr,medium +0.64,0.95,3,131,6,0,0,0,hr,medium +0.91,0.81,4,139,2,0,0,0,technical,high +0.55,0.59,4,230,3,0,0,0,technical,low +0.7,0.73,4,240,2,1,0,0,technical,medium +0.37,0.59,3,134,3,0,0,0,technical,medium +0.16,0.56,6,196,3,0,0,0,technical,medium +0.69,0.97,5,240,4,0,0,0,technical,medium +0.96,0.47,2,233,5,1,0,0,technical,low +0.62,0.91,5,267,3,0,0,0,technical,low +0.94,0.45,2,211,3,0,0,0,technical,low +0.67,0.83,3,260,3,0,0,0,technical,low +0.89,0.57,3,113,3,0,0,0,technical,low +0.6,0.63,5,267,3,0,0,0,support,low +0.89,0.62,5,196,3,0,0,0,support,low +0.6,0.89,3,232,2,0,0,0,support,low +0.93,0.95,2,156,3,1,0,0,support,low +0.38,0.78,4,159,5,0,0,0,support,low +0.62,0.57,3,223,3,1,0,0,support,low +0.86,0.86,4,197,3,1,0,0,support,low +0.61,0.62,2,192,2,1,0,0,support,low +0.77,0.64,4,192,3,0,0,0,support,low +0.85,0.73,4,174,3,0,0,0,support,low +0.94,0.62,4,191,3,0,0,0,support,low +0.59,0.59,4,270,2,0,0,0,technical,low +0.9,0.92,3,139,3,0,0,0,technical,low +0.86,0.65,4,243,2,0,0,0,technical,low +0.72,0.7,3,238,2,0,0,0,management,low +0.84,0.52,5,189,2,1,0,0,IT,low +0.64,0.5,4,189,3,0,0,0,IT,medium +0.81,0.75,4,206,3,0,0,0,IT,medium +0.66,0.7,5,254,2,0,0,0,IT,medium +0.75,0.55,3,253,6,0,0,0,IT,medium +0.54,0.67,3,243,2,0,0,0,product_mng,medium +0.98,0.76,3,224,2,0,0,0,product_mng,medium +0.8,0.85,4,139,2,0,0,0,product_mng,medium +0.68,0.7,5,270,3,0,0,0,product_mng,medium +0.54,0.57,3,257,2,0,0,0,IT,medium +0.88,0.84,4,170,2,0,0,0,RandD,medium +0.71,0.62,3,222,3,0,0,0,RandD,medium +0.77,0.58,2,247,2,1,0,0,RandD,medium +0.6,0.6,4,201,3,0,0,0,RandD,high +0.53,0.75,4,263,5,0,0,0,RandD,low +0.85,0.5,3,168,2,1,0,0,marketing,medium +0.59,0.75,4,190,2,0,0,0,sales,medium +0.23,0.77,4,140,5,0,0,0,accounting,medium +0.7,0.6,3,224,3,0,0,0,support,medium +0.92,0.49,5,145,3,0,0,0,technical,low +0.95,0.37,4,285,3,0,0,0,management,low +0.39,0.43,3,154,3,0,0,0,marketing,low +0.85,0.8,4,200,2,0,0,0,marketing,low +0.98,0.7,3,255,2,1,0,0,marketing,low +0.15,0.48,6,204,6,1,0,0,sales,low +0.68,0.54,3,270,4,1,0,0,sales,low +0.24,0.91,5,177,5,0,0,0,sales,low +0.77,0.59,4,140,3,0,0,0,sales,medium +0.36,0.69,3,165,3,0,0,0,sales,medium +0.5,0.89,3,187,4,1,0,0,sales,medium +0.2,0.98,4,166,4,1,0,0,sales,medium +0.86,0.56,5,141,2,0,0,0,sales,medium +0.84,0.63,4,135,2,0,0,0,sales,medium +0.9,0.98,5,148,4,0,0,0,sales,medium +0.4,0.51,3,120,6,0,0,0,sales,medium +0.63,0.62,3,141,3,0,0,0,sales,medium +0.73,0.95,3,222,4,0,0,0,sales,medium +0.25,0.67,2,136,6,0,0,0,sales,medium +0.7,0.57,3,180,2,0,0,0,sales,medium +0.6,0.97,3,187,3,1,0,0,sales,medium +0.99,0.66,3,202,3,0,0,0,sales,medium +0.29,0.86,3,251,4,0,0,0,sales,medium +0.53,0.63,4,259,2,0,0,0,sales,medium +0.83,0.76,3,262,2,0,0,0,accounting,medium +0.18,0.92,5,251,4,0,0,0,accounting,medium +0.14,0.74,4,117,5,0,0,0,accounting,medium +0.5,0.66,4,155,2,0,0,0,hr,medium +0.36,0.89,3,197,6,0,0,0,hr,medium +0.34,0.56,3,139,2,0,0,0,hr,medium +0.51,0.75,4,175,2,0,0,0,hr,medium +0.5,0.52,5,137,3,1,0,0,technical,medium +0.69,0.93,3,228,4,0,0,0,technical,medium +0.52,0.51,2,232,4,0,0,0,technical,high +0.32,0.5,2,143,3,0,0,0,technical,high +0.88,0.99,3,190,5,0,0,0,technical,high +0.6,0.87,3,196,3,1,0,0,technical,high +0.72,0.8,3,213,3,0,0,0,technical,high +0.65,0.9,3,200,3,0,0,0,technical,high +0.82,0.78,5,166,2,0,0,0,technical,high +0.67,0.92,5,258,3,0,0,0,technical,high +0.44,0.87,5,104,4,0,0,0,technical,high +0.52,0.85,5,173,2,0,0,0,support,high +0.54,0.51,2,176,3,0,0,0,support,high +0.67,0.76,5,181,3,0,0,0,support,high +0.16,0.64,6,143,5,1,0,0,support,low +0.81,0.73,4,186,3,0,0,0,support,low +0.77,0.85,3,136,3,0,0,0,support,low +0.84,0.99,4,219,2,0,0,0,support,low +0.56,0.56,5,229,4,1,0,0,support,low +0.67,0.97,5,239,3,0,0,0,support,low +0.65,0.7,4,182,2,0,0,0,support,low +0.39,0.57,2,132,3,0,0,0,support,low +0.77,0.75,3,272,3,0,0,0,technical,low +0.41,0.96,5,167,3,1,0,0,technical,low +0.59,0.67,3,180,2,0,0,0,technical,low +0.14,0.72,6,100,5,0,0,0,management,low +0.6,0.82,4,134,2,0,0,0,IT,low +0.14,0.98,6,221,5,0,0,0,IT,low +0.88,0.8,3,166,2,0,0,0,IT,low +0.6,0.91,4,214,2,0,0,0,IT,medium +1,0.49,4,227,3,1,0,0,IT,medium +0.56,0.98,4,207,3,0,0,0,product_mng,medium +0.72,0.54,3,286,6,0,0,0,product_mng,medium +0.59,0.83,3,240,3,1,0,0,product_mng,medium +0.74,0.75,4,111,4,1,0,0,product_mng,medium +0.52,0.69,4,164,2,0,0,0,IT,medium +0.77,0.74,2,187,6,0,0,0,RandD,medium +0.48,0.81,4,248,2,0,0,0,RandD,medium +0.99,0.56,5,210,2,0,0,0,RandD,medium +0.23,0.78,4,163,6,0,0,0,RandD,medium +0.63,1,5,241,4,0,0,0,RandD,medium +0.51,0.83,3,136,3,0,0,0,marketing,high +0.54,0.55,4,208,5,0,0,0,sales,high +0.53,0.73,5,174,3,0,0,0,accounting,high +0.72,0.84,4,250,3,0,0,0,support,high +0.57,0.61,2,189,2,1,0,0,technical,high +0.81,0.77,3,204,3,0,0,0,management,high +0.64,0.57,4,217,3,0,0,0,marketing,high +0.77,0.57,5,162,3,0,0,0,marketing,high +0.83,0.55,3,257,2,0,0,0,marketing,low +0.6,0.71,3,195,2,0,0,0,sales,low +0.86,0.87,5,156,4,0,0,0,sales,low +0.5,0.55,2,128,3,0,0,0,sales,low +0.6,0.75,5,233,3,1,0,0,sales,low +0.85,0.73,4,260,4,0,0,0,sales,low +0.4,0.87,5,250,4,0,0,0,sales,low +0.38,0.79,5,176,3,0,0,0,sales,low +0.96,0.59,6,133,5,0,0,0,sales,medium +0.59,0.57,4,197,2,0,0,0,sales,medium +0.56,0.5,3,156,3,1,0,0,sales,medium +0.84,0.96,3,162,3,0,0,0,sales,medium +0.94,0.99,3,207,2,0,0,0,sales,medium +0.72,0.63,3,223,2,1,0,0,sales,medium +0.82,0.7,3,149,2,0,0,0,sales,medium +1,0.95,3,275,3,1,0,0,sales,medium +0.62,0.77,3,271,2,0,0,0,sales,medium +0.76,0.89,3,273,2,1,0,0,sales,medium +0.23,0.74,5,219,4,0,0,0,sales,medium +0.7,0.99,5,135,4,0,0,0,sales,medium +0.71,0.88,3,158,3,0,0,0,accounting,medium +0.32,0.37,3,167,3,0,0,0,accounting,medium +0.69,0.67,4,274,4,0,0,0,accounting,medium +0.66,0.59,3,145,3,0,0,0,hr,medium +0.7,0.67,6,233,6,0,0,0,hr,medium +0.91,0.76,3,159,3,0,0,0,hr,medium +0.2,0.7,4,221,5,0,0,0,hr,medium +0.72,0.83,3,132,2,0,0,0,technical,medium +0.74,0.93,5,140,3,0,0,0,technical,medium +0.53,0.79,3,206,3,0,0,0,technical,medium +0.99,0.92,4,229,2,0,0,0,technical,medium +0.75,0.85,4,272,4,0,0,0,technical,high +0.86,0.78,4,164,2,0,0,0,technical,low +0.93,0.86,4,145,3,0,0,0,technical,medium +0.81,0.95,3,212,3,0,0,0,technical,medium +0.49,0.67,3,254,2,1,0,0,technical,medium +0.97,0.72,5,260,4,0,0,0,technical,medium +0.62,0.89,3,201,3,0,0,0,technical,medium +0.75,0.79,4,176,4,1,0,0,support,medium +0.87,0.58,3,140,3,1,0,0,support,medium +0.93,0.65,5,201,3,0,0,0,support,medium +0.74,0.68,3,206,2,1,0,0,support,medium +0.68,0.57,3,197,3,1,0,0,support,medium +0.49,0.63,3,245,4,0,0,0,support,low +0.75,0.84,3,145,3,1,0,0,support,low +0.95,0.58,4,131,5,0,0,0,support,low +0.95,0.75,5,235,3,1,0,0,support,low +0.67,0.65,5,242,3,0,0,0,support,low +0.71,0.6,2,251,3,0,0,0,support,low +0.81,0.73,4,258,2,0,0,0,technical,low +0.79,0.36,3,114,3,0,0,0,technical,high +0.57,0.52,3,143,2,0,0,0,technical,low +0.85,0.65,3,187,2,0,0,0,management,high +0.15,0.78,5,255,3,0,0,0,IT,high +0.48,0.87,3,267,2,0,0,0,IT,low +0.92,0.91,4,247,3,0,0,0,IT,low +0.73,0.67,4,153,3,0,0,0,IT,high +0.68,0.71,3,237,3,0,0,0,IT,low +0.88,0.55,5,182,3,0,0,0,product_mng,medium +0.8,0.55,4,144,5,1,0,0,product_mng,high +0.66,0.9,3,176,2,1,0,0,product_mng,medium +0.19,0.8,5,203,6,0,0,0,product_mng,medium +0.3,0.53,3,148,4,0,0,0,IT,medium +0.8,0.8,3,175,2,0,0,0,RandD,medium +0.66,0.84,3,211,4,0,0,0,RandD,high +0.22,0.67,6,175,5,0,0,0,RandD,medium +0.57,0.59,4,206,3,0,0,0,RandD,medium +0.83,0.73,4,262,2,0,0,0,RandD,medium +0.57,0.5,4,177,2,0,0,0,marketing,high +0.78,0.54,3,134,3,0,0,0,sales,medium +0.88,0.89,2,201,3,0,0,0,accounting,high +0.48,0.69,3,105,3,0,0,0,support,low +0.91,0.82,4,259,3,0,0,0,technical,medium +0.3,0.97,3,171,4,1,0,0,management,medium +0.63,0.98,4,228,3,0,0,0,marketing,medium +0.62,0.36,2,137,4,1,0,0,marketing,medium +0.74,0.72,5,196,3,0,0,0,marketing,low +0.5,0.53,3,207,4,0,0,0,sales,low +0.36,0.74,6,280,3,0,0,0,sales,low +0.57,0.65,4,162,3,1,0,0,sales,low +0.73,0.55,4,267,3,0,0,0,sales,low +0.77,0.67,5,207,2,0,0,0,sales,low +0.86,0.5,4,196,2,0,0,0,sales,low +0.24,0.55,6,231,4,0,0,0,sales,low +0.83,0.62,4,242,3,0,0,0,sales,low +0.72,0.63,4,207,3,0,0,0,sales,low +0.52,0.82,4,206,2,1,0,0,sales,high +0.99,0.54,4,236,4,0,0,0,sales,low +0.15,0.68,5,246,2,0,0,0,sales,low +0.79,0.94,3,204,2,1,0,0,sales,low +0.19,0.91,3,268,4,0,0,0,sales,low +0.59,0.62,3,212,2,1,0,0,sales,high +0.15,0.74,6,178,3,0,0,0,sales,low +0.75,0.72,5,260,3,0,0,0,sales,low +0.47,0.71,2,241,4,0,0,0,sales,low +0.64,0.64,3,234,3,1,0,0,sales,high +0.66,0.76,3,207,2,0,0,0,accounting,low +0.8,0.91,5,242,3,1,0,0,accounting,medium +0.82,0.52,5,225,2,0,0,0,accounting,high +0.8,0.98,3,161,3,0,0,0,hr,medium +0.98,0.98,4,259,2,0,0,0,hr,high +0.95,0.96,3,250,3,0,0,0,hr,medium +0.88,0.61,3,236,3,0,0,0,hr,medium +0.9,0.97,4,239,4,0,0,0,technical,medium +0.66,0.83,4,266,3,1,0,0,technical,medium +0.99,0.62,5,133,3,0,0,0,technical,medium +0.86,0.95,5,275,2,0,0,0,technical,medium +0.96,0.95,5,189,2,0,0,0,technical,medium +1,0.63,5,171,3,0,0,0,technical,medium +0.46,0.38,6,140,3,0,0,0,technical,high +0.19,0.85,6,116,3,0,0,0,technical,low +0.73,0.6,3,145,6,1,0,0,technical,medium +0.63,0.5,4,167,3,1,0,0,technical,medium +0.68,0.89,4,227,3,0,0,0,technical,medium +0.78,0.96,4,245,3,0,0,0,support,medium +0.79,0.56,4,132,3,0,0,0,support,medium +0.86,0.99,3,254,2,0,0,0,support,medium +0.98,0.53,4,166,2,0,0,0,support,medium +0.89,0.79,2,208,3,1,0,0,support,medium +0.86,0.87,3,197,4,1,0,0,support,medium +0.65,0.83,4,263,3,1,0,0,support,high +0.52,0.98,4,272,2,0,0,0,support,low +0.54,0.65,3,147,3,1,0,0,support,low +0.68,0.73,4,197,3,0,0,0,support,low +0.88,0.65,3,268,2,0,0,0,support,high +0.75,0.85,4,181,3,0,0,0,technical,low +0.17,0.93,6,192,4,0,0,0,technical,low +0.92,0.83,5,270,3,0,0,0,technical,low +0.79,0.66,3,183,3,0,0,0,management,high +0.52,0.66,5,184,3,0,0,0,IT,low +0.95,0.73,4,238,3,1,0,0,IT,low +0.72,0.49,4,148,2,0,0,0,IT,low +0.4,0.41,4,127,3,0,0,0,IT,low +0.61,0.59,3,162,2,1,0,0,IT,low +0.49,0.97,4,166,5,0,0,0,product_mng,low +0.32,0.55,4,283,4,0,0,0,product_mng,low +0.82,0.77,3,108,6,0,0,0,product_mng,medium +0.9,0.79,3,154,2,0,0,0,product_mng,medium +0.95,0.74,3,139,2,0,0,0,IT,medium +0.55,0.6,5,271,3,1,0,0,RandD,medium +0.91,0.78,4,153,3,0,0,0,RandD,medium +0.45,0.41,3,216,6,1,0,0,RandD,medium +0.65,0.6,3,218,4,0,0,0,RandD,medium +0.88,0.89,3,171,2,0,0,0,RandD,medium +0.78,0.76,3,238,3,0,0,0,marketing,medium +0.77,0.71,3,134,3,0,0,0,marketing,medium +0.32,0.75,3,255,4,0,0,0,sales,medium +0.98,0.38,4,140,6,0,0,0,accounting,medium +0.51,0.76,2,239,3,0,0,0,support,high +0.81,0.59,4,187,2,0,0,0,technical,low +0.64,0.9,5,279,5,0,0,0,management,medium +0.73,0.94,4,213,3,1,0,0,marketing,medium +0.49,0.56,5,202,2,0,0,0,marketing,medium +0.84,0.54,3,265,2,0,0,0,marketing,medium +0.81,0.86,4,249,3,0,0,0,sales,low +0.77,0.5,4,281,2,0,0,0,sales,low +0.24,0.83,3,208,5,0,0,0,sales,low +0.77,0.78,3,165,2,0,0,0,sales,low +0.13,0.88,3,146,5,0,0,0,sales,low +0.94,0.66,4,230,2,0,0,0,sales,low +0.61,0.82,3,209,2,0,0,0,sales,low +0.95,0.49,4,178,2,0,0,0,sales,low +0.22,0.92,6,220,4,1,0,0,sales,low +0.65,0.56,3,142,3,0,0,0,sales,low +0.95,0.67,3,153,2,0,0,0,sales,low +0.98,0.62,5,254,5,1,0,0,sales,low +0.88,0.72,3,193,4,0,0,0,sales,low +0.94,0.69,3,248,3,0,0,0,sales,low +0.62,0.75,4,216,2,0,0,0,sales,low +0.81,0.96,3,226,3,0,0,0,sales,low +0.56,0.51,4,140,2,0,0,0,sales,low +0.52,0.86,6,103,4,0,0,0,sales,low +0.88,0.57,4,185,2,0,0,0,sales,low +0.56,0.92,5,160,3,0,0,0,accounting,low +0.36,0.63,3,130,5,0,0,0,accounting,low +0.56,0.85,5,230,3,0,0,0,accounting,medium +0.89,0.46,4,248,5,1,0,0,hr,medium +0.95,0.42,3,189,2,1,0,0,hr,medium +0.48,0.52,3,280,2,0,0,0,hr,medium +0.75,0.75,4,266,3,0,0,0,hr,medium +0.65,0.54,4,260,3,0,0,0,technical,medium +0.4,0.86,2,264,5,0,0,0,technical,medium +0.52,0.53,5,182,2,0,0,0,technical,medium +0.52,0.68,4,233,2,0,0,0,technical,medium +0.68,0.49,3,230,3,0,0,0,technical,medium +0.72,0.61,5,170,3,0,0,0,technical,medium +0.78,0.72,4,258,3,0,0,0,technical,medium +0.54,0.9,3,164,3,0,0,0,technical,high +0.18,0.46,4,249,4,0,0,0,technical,low +0.51,0.5,2,235,2,0,0,0,technical,medium +0.63,0.86,6,206,6,0,0,0,technical,medium +0.83,0.86,4,139,3,0,0,0,support,medium +0.91,0.82,3,145,3,1,0,0,support,medium +0.79,0.66,4,139,4,0,0,0,support,low +0.52,0.95,3,171,3,1,0,0,support,low +0.83,0.94,3,160,3,0,0,0,support,low +0.92,0.74,3,137,2,0,0,0,support,low +0.14,0.72,4,254,4,0,0,0,support,low +0.8,0.38,3,215,6,0,0,0,support,low +0.79,0.72,3,216,4,0,0,0,support,low +0.86,0.6,3,229,2,1,0,0,support,low +0.95,0.47,6,215,4,0,0,0,support,low +0.77,0.9,4,163,3,0,0,0,technical,low +0.55,0.72,4,273,3,0,0,0,technical,low +0.42,0.91,2,176,3,0,0,0,technical,low +0.79,0.86,5,270,2,0,0,0,management,low +0.41,0.48,3,182,2,0,0,0,IT,low +0.66,0.72,4,223,4,0,0,0,IT,low +1,0.65,4,237,3,0,0,0,IT,low +0.87,0.74,5,248,2,0,0,0,IT,low +0.51,0.99,3,233,4,0,0,0,IT,low +0.63,0.79,2,206,5,0,0,0,product_mng,low +0.86,0.86,4,227,2,0,0,0,product_mng,low +0.4,0.98,4,154,3,0,0,0,product_mng,low +0.79,0.97,6,113,2,1,0,0,product_mng,medium +0.7,0.9,4,254,3,0,0,0,IT,medium +0.49,0.91,5,231,3,0,0,0,RandD,medium +0.76,0.62,4,190,3,0,0,0,RandD,medium +0.89,0.52,3,190,3,0,0,0,RandD,medium +0.83,0.86,3,179,2,0,0,0,RandD,medium +0.19,0.69,4,269,6,0,0,0,RandD,medium +0.68,0.67,3,228,2,0,0,0,RandD,medium +0.62,0.68,4,251,4,0,0,0,marketing,medium +0.87,0.49,2,251,3,0,0,0,sales,medium +0.66,0.75,4,200,4,0,0,0,accounting,medium +0.37,0.41,2,146,2,0,0,0,support,medium +0.57,0.49,3,159,4,1,0,0,technical,high +0.66,0.81,5,135,2,0,0,0,management,low +0.63,0.88,5,260,3,0,0,0,marketing,medium +0.65,0.96,5,226,2,1,0,0,marketing,medium +0.33,0.85,2,127,3,0,0,0,marketing,medium +0.66,0.57,6,278,3,0,0,0,sales,medium +0.87,0.95,3,242,5,0,0,0,sales,low +0.85,0.85,3,182,3,0,0,0,sales,low +0.49,0.51,2,182,3,0,0,0,sales,low +0.87,0.8,4,197,3,0,0,0,sales,low +0.17,0.49,4,286,5,1,0,0,sales,low +0.55,0.46,4,226,5,0,0,0,sales,low +0.91,0.71,5,156,3,0,0,0,sales,low +0.96,0.62,5,185,3,0,0,0,sales,low +0.53,0.5,3,231,3,0,0,0,sales,low +0.25,0.59,4,166,5,0,0,0,sales,low +0.98,0.57,3,229,3,0,0,0,sales,low +0.83,0.36,4,242,3,0,0,0,sales,low +0.71,0.83,5,206,3,0,0,0,sales,low +0.74,0.77,4,206,3,0,0,0,sales,low +0.56,0.7,4,135,2,0,0,0,sales,low +0.23,0.9,5,234,3,1,0,0,sales,low +0.35,0.64,4,147,2,0,0,0,sales,low +0.48,0.98,4,174,3,0,0,0,sales,low +0.83,0.74,3,259,3,1,0,0,accounting,low +0.73,0.87,3,227,4,0,0,0,accounting,low +0.85,0.97,4,104,5,0,0,0,accounting,low +0.8,0.95,3,247,3,0,0,0,hr,medium +0.98,0.74,4,139,3,0,0,0,hr,medium +0.96,0.85,3,186,2,0,0,0,hr,medium +0.67,0.75,3,194,3,0,0,0,hr,medium +0.58,0.91,3,124,2,0,0,0,technical,medium +0.83,0.86,3,273,3,0,0,0,technical,medium +0.9,0.57,4,186,4,0,0,0,technical,medium +0.89,0.66,4,252,3,0,0,0,technical,medium +0.99,0.92,3,154,3,0,0,0,technical,medium +0.89,0.5,4,238,3,0,0,0,technical,medium +0.79,0.5,4,151,3,1,0,0,technical,medium +0.64,0.41,3,231,6,0,0,0,technical,medium +0.22,0.57,5,174,6,0,0,0,technical,high +0.94,0.6,5,278,2,0,0,0,technical,low +0.56,0.97,3,270,3,1,0,0,technical,medium +0.85,0.8,4,158,3,0,0,0,support,medium +0.8,0.62,3,191,3,0,0,0,support,medium +0.86,0.53,3,163,3,0,0,0,support,medium +0.96,1,5,152,4,0,0,0,support,low +0.51,0.61,4,251,2,1,0,0,support,low +0.73,0.95,3,149,2,0,0,0,support,low +0.31,0.75,4,220,3,0,0,0,support,low +0.62,0.51,4,175,3,0,0,0,support,low +0.55,0.91,3,179,3,1,0,0,support,low +0.51,0.8,4,257,2,0,0,0,support,low +0.54,0.54,3,196,3,0,0,0,support,low +0.65,0.95,3,190,3,0,0,0,technical,low +0.65,0.75,4,270,2,0,0,0,technical,low +0.9,0.64,5,226,2,0,0,0,technical,low +0.55,0.71,3,211,2,0,0,0,management,low +0.59,0.89,3,192,2,0,0,0,IT,low +0.34,0.67,5,96,2,1,0,0,IT,low +0.31,0.92,5,197,5,0,0,0,IT,low +0.83,0.71,3,243,2,1,0,0,IT,low +0.8,0.73,3,168,2,0,0,0,IT,low +0.66,0.85,5,271,4,0,0,0,product_mng,low +0.98,0.39,5,158,4,1,0,0,product_mng,medium +0.89,0.52,4,243,5,0,0,0,product_mng,medium +0.64,0.94,3,148,2,0,0,0,product_mng,medium +0.95,0.68,3,165,3,0,0,0,IT,medium +0.96,0.85,5,171,2,0,0,0,RandD,medium +0.96,0.82,5,164,2,0,0,0,RandD,medium +0.63,0.81,4,265,2,0,0,0,RandD,medium +0.83,0.71,4,196,2,0,0,0,RandD,medium +0.61,0.72,4,182,2,1,0,0,RandD,medium +0.89,0.66,3,272,3,0,0,0,RandD,medium +0.67,0.63,3,241,3,0,0,0,marketing,medium +0.61,1,5,139,2,0,0,0,sales,medium +0.58,0.77,3,180,2,0,0,0,accounting,high +0.56,0.76,4,206,2,1,0,0,support,low +0.13,0.49,6,227,4,0,0,0,technical,medium +0.39,1,5,204,5,1,0,0,management,medium +0.94,0.48,4,218,3,0,0,0,marketing,medium +0.63,0.61,3,205,2,0,0,0,marketing,medium +0.75,0.63,4,261,3,1,0,0,marketing,low +0.7,0.83,3,159,3,0,0,0,sales,low +0.28,0.83,4,162,3,0,0,0,sales,low +0.77,0.42,4,98,2,0,0,0,sales,low +0.79,0.64,4,263,2,0,0,0,sales,low +0.51,0.46,3,176,3,0,0,0,sales,low +0.96,0.99,4,233,3,0,0,0,sales,low +0.72,0.99,4,156,2,1,0,0,sales,low +0.97,1,3,198,2,0,0,0,sales,low +0.55,0.9,4,191,3,0,0,0,sales,low +0.32,0.45,2,188,3,0,0,0,sales,low +0.78,0.65,3,157,2,0,0,0,sales,low +0.17,0.57,5,286,3,0,0,0,sales,low +0.88,0.5,4,216,2,0,0,0,sales,low +0.97,0.5,3,188,3,1,0,0,sales,low +0.74,0.86,5,153,2,0,0,0,sales,low +0.26,0.45,5,187,2,0,0,0,sales,low +0.87,0.92,4,141,3,0,0,0,sales,low +0.29,0.47,5,139,4,0,0,0,sales,low +0.91,0.95,3,189,2,0,0,0,sales,low +0.71,0.77,3,193,3,1,0,0,accounting,low +0.6,0.63,3,182,3,0,0,0,accounting,medium +0.5,0.61,4,135,3,0,0,0,accounting,medium +0.49,0.85,4,238,2,0,0,0,hr,medium +0.53,0.92,3,199,2,0,0,0,hr,medium +0.42,0.38,2,115,3,0,0,0,hr,medium +0.53,0.82,3,133,3,0,0,0,hr,medium +0.34,0.62,4,158,2,0,0,0,technical,medium +0.68,0.51,5,158,3,0,0,0,technical,medium +0.56,0.77,5,238,4,0,0,0,technical,medium +0.72,0.71,3,242,2,0,0,0,technical,medium +0.76,0.55,4,250,3,0,0,0,technical,medium +0.87,0.57,4,175,2,0,0,0,technical,medium +0.97,0.63,3,270,4,1,0,0,technical,high +0.8,0.62,3,171,3,0,0,0,technical,low +0.67,0.81,5,175,6,1,0,0,technical,medium +0.6,0.97,5,145,2,0,0,0,technical,medium +0.88,0.5,3,170,3,0,0,0,technical,medium +0.64,0.74,3,267,2,0,0,0,support,medium +0.85,0.7,3,188,2,0,0,0,support,low +0.9,0.48,3,213,3,0,0,0,support,low +0.76,0.84,5,249,3,0,0,0,support,low +0.55,0.66,3,134,3,0,0,0,support,low +0.76,0.77,5,234,3,0,0,0,support,low +0.87,0.72,3,201,3,0,0,0,support,low +0.8,0.82,3,178,3,0,0,0,support,low +0.54,0.68,4,183,2,0,0,0,support,low +0.84,0.91,4,207,3,0,0,0,support,low +0.85,0.64,4,147,3,0,0,0,support,low +0.95,0.49,3,188,3,0,0,0,technical,low +0.48,0.56,3,229,3,0,0,0,technical,low +0.53,0.77,2,271,2,0,0,0,technical,low +0.8,0.82,4,175,2,0,0,0,management,low +0.4,0.46,2,109,3,0,0,0,IT,low +0.76,0.69,4,253,3,0,0,0,IT,low +0.99,0.64,3,174,4,0,0,0,IT,low +0.49,0.64,3,142,4,0,0,0,IT,low +0.94,0.71,3,175,3,0,0,0,IT,low +0.54,0.73,4,266,3,0,0,0,product_mng,low +0.13,0.93,4,253,5,1,0,0,product_mng,low +0.91,0.84,3,237,2,0,0,0,product_mng,medium +0.73,0.56,3,215,3,0,0,0,product_mng,medium +0.65,0.97,3,171,3,0,0,0,IT,medium +0.23,0.51,6,194,4,1,0,0,RandD,medium +0.23,0.88,5,238,6,0,0,0,RandD,medium +0.89,0.51,3,249,3,0,0,0,RandD,medium +0.81,0.8,3,183,2,1,0,0,RandD,medium +0.51,0.74,3,271,4,0,0,0,RandD,medium +0.35,0.81,6,256,3,0,0,0,RandD,medium +0.49,0.66,3,169,3,0,0,0,marketing,medium +0.51,0.8,3,254,2,0,0,0,sales,medium +0.66,0.86,4,112,6,0,0,0,accounting,medium +0.74,0.96,5,222,2,0,0,0,support,high +0.57,0.96,4,177,2,0,0,0,technical,low +0.8,0.74,5,181,4,1,0,0,management,medium +0.79,0.84,4,144,2,1,0,0,marketing,medium +0.74,0.94,4,255,4,0,0,0,marketing,medium +0.74,0.8,3,219,2,0,0,0,marketing,medium +0.4,1,6,206,2,0,0,0,sales,low +0.14,0.71,2,155,3,0,0,0,sales,low +0.83,0.87,5,248,3,0,0,0,sales,low +0.76,0.52,4,259,2,0,0,0,sales,low +0.8,0.8,3,271,4,0,0,0,sales,low +0.95,0.38,2,103,3,0,0,0,sales,low +0.88,0.76,4,159,4,1,0,0,sales,low +0.92,0.85,4,184,3,0,0,0,sales,low +0.16,0.88,4,201,6,0,0,0,sales,medium +0.7,0.63,3,157,4,0,0,0,sales,medium +0.71,0.93,3,287,5,0,0,0,sales,medium +0.52,0.82,2,242,3,0,0,0,sales,medium +0.49,0.58,5,246,3,1,0,0,sales,medium +0.5,0.57,3,219,3,0,0,0,sales,medium +0.86,0.94,3,212,3,0,0,0,sales,medium +0.49,0.99,5,262,2,1,0,0,sales,medium +0.69,0.91,4,128,3,1,0,0,sales,medium +0.96,1,3,231,6,0,0,0,sales,medium +0.87,0.54,3,260,2,0,0,0,sales,medium +0.36,0.4,3,160,3,0,0,0,accounting,medium +0.86,1,3,166,3,1,0,0,accounting,medium +0.79,0.74,4,222,2,0,0,0,accounting,medium +1,0.52,4,171,4,0,0,0,hr,medium +0.88,0.88,3,220,4,0,0,0,hr,medium +0.49,0.65,4,176,3,1,0,0,hr,medium +0.52,0.62,3,160,2,0,0,0,hr,medium +0.76,0.78,3,162,3,0,0,0,technical,medium +0.69,0.91,3,167,2,0,0,0,technical,medium +0.69,0.81,5,217,2,0,0,0,technical,medium +0.75,0.58,3,159,3,0,0,0,technical,medium +0.47,0.47,4,191,3,0,0,0,technical,medium +0.88,1,3,125,3,0,0,0,technical,medium +0.49,0.43,5,210,4,1,0,0,technical,medium +0.92,0.67,4,241,3,0,0,0,technical,high +0.24,0.48,4,145,3,1,0,0,technical,high +0.69,1,5,237,3,0,0,0,technical,high +0.81,0.57,4,213,4,0,0,0,technical,high +0.61,0.48,4,257,2,0,0,0,support,high +0.75,0.86,6,114,4,0,0,0,support,high +0.69,0.86,4,214,2,0,0,0,support,high +0.53,0.49,3,191,3,0,0,0,support,high +0.93,0.96,4,223,3,1,0,0,support,high +0.15,0.67,5,249,5,0,0,0,support,high +0.48,0.41,5,286,3,0,0,0,support,high +0.67,0.73,4,251,3,0,0,0,support,high +0.36,0.93,3,162,5,0,0,0,support,low +0.35,0.54,3,138,4,0,0,0,support,low +0.65,0.62,4,235,3,0,0,0,support,low +0.8,0.5,4,125,3,0,0,0,technical,low +0.97,0.96,5,210,6,1,0,0,technical,low +0.67,0.64,4,136,3,0,0,0,technical,low +0.58,0.78,3,223,3,0,0,0,management,low +0.61,0.67,3,188,5,0,0,0,IT,low +0.97,0.66,4,214,2,1,0,0,IT,low +0.87,0.97,4,160,3,0,0,0,IT,low +0.8,0.71,4,200,2,0,0,0,IT,low +0.91,0.55,3,223,3,0,0,0,IT,low +0.63,0.73,3,272,2,0,0,0,product_mng,low +0.79,0.96,4,170,2,0,0,0,product_mng,low +0.89,0.57,2,235,3,1,0,0,product_mng,low +1,0.87,3,274,3,0,0,0,product_mng,medium +0.6,0.73,5,203,2,0,0,0,IT,medium +0.7,0.8,4,236,2,0,0,0,RandD,medium +0.79,0.81,4,203,3,0,0,0,RandD,medium +0.88,0.72,4,249,3,1,0,0,RandD,medium +0.87,0.48,4,133,2,0,0,0,RandD,medium +0.52,0.58,3,203,2,0,0,0,RandD,medium +0.59,0.75,3,168,3,0,0,0,RandD,medium +0.64,0.75,4,172,4,0,0,0,marketing,medium +0.81,0.83,3,177,2,0,0,0,sales,medium +0.87,0.57,3,149,2,0,0,0,accounting,medium +0.74,0.61,3,231,2,0,0,0,support,medium +0.73,0.89,3,226,3,1,0,0,technical,high +0.97,0.58,4,187,4,1,0,0,management,high +0.54,0.81,3,145,2,0,0,0,marketing,high +0.59,0.55,4,138,2,0,0,0,marketing,high +0.99,0.95,3,153,4,0,0,0,marketing,high +0.79,0.75,4,168,3,0,0,0,sales,high +0.96,0.37,3,111,2,0,0,0,sales,high +0.54,0.67,3,154,2,0,0,0,sales,high +0.79,0.84,4,171,3,0,0,0,sales,low +0.64,0.79,3,253,2,0,0,0,sales,low +0.65,0.53,4,160,3,0,0,0,sales,low +0.87,0.86,3,196,4,0,0,0,sales,low +0.7,0.59,4,178,3,0,0,0,sales,low +0.89,0.81,3,268,3,0,0,0,sales,low +0.61,0.58,6,146,3,0,0,0,sales,low +0.9,0.49,4,185,2,0,0,0,sales,low +0.49,0.54,4,247,3,1,0,0,sales,medium +0.85,0.97,4,210,2,0,0,0,sales,medium +0.54,0.58,3,234,3,0,0,0,sales,medium +0.64,0.57,4,271,2,0,0,0,sales,medium +0.81,0.77,5,102,5,0,0,0,sales,medium +0.49,0.66,3,163,3,0,0,0,sales,medium +0.58,0.57,3,144,4,1,0,0,sales,medium +0.62,0.49,3,172,3,0,0,0,sales,medium +0.8,0.84,3,203,3,1,0,0,accounting,medium +0.64,0.64,3,192,3,1,0,0,accounting,medium +0.81,0.86,5,159,2,0,0,0,accounting,medium +0.8,0.74,3,159,2,0,0,0,hr,medium +0.92,0.81,4,206,2,0,0,0,hr,medium +0.66,0.98,4,225,2,1,0,0,hr,medium +0.79,0.89,3,252,2,0,0,0,hr,medium +0.74,0.54,6,113,3,0,0,0,technical,medium +0.79,0.74,3,238,2,0,0,0,technical,medium +0.87,0.94,3,217,3,0,0,0,technical,medium +0.49,0.57,4,145,2,0,0,0,technical,medium +0.3,0.44,5,128,4,1,0,0,technical,medium +0.85,0.89,4,177,3,0,0,0,technical,medium +0.61,0.97,4,256,4,0,0,0,technical,medium +0.68,0.55,3,182,3,1,0,0,technical,medium +0.67,0.67,4,226,2,0,0,0,technical,high +0.63,0.73,5,168,3,0,0,0,technical,low +0.63,0.94,4,145,3,0,0,0,technical,medium +0.5,0.88,4,172,4,0,0,0,support,medium +0.7,0.55,4,233,2,0,0,0,support,medium +0.18,0.46,5,202,4,0,0,0,support,medium +0.77,0.55,5,255,2,0,0,0,support,medium +0.78,0.61,3,257,3,0,0,0,support,medium +0.54,0.77,3,185,3,0,0,0,support,medium +0.9,0.69,3,231,4,0,0,0,support,medium +0.56,0.76,3,207,2,0,0,0,support,medium +0.63,0.81,3,215,3,0,0,0,support,medium +0.68,0.75,5,243,3,1,0,0,support,low +0.96,0.54,3,198,3,0,0,0,support,low +0.85,0.87,6,232,6,0,0,0,technical,low +0.82,0.66,4,150,3,0,0,0,technical,low +0.44,0.39,2,188,3,0,0,0,technical,low +0.86,0.97,4,155,3,0,0,0,management,low +0.56,0.68,3,109,3,0,0,0,IT,low +0.69,0.94,3,170,3,0,0,0,IT,high +0.91,0.85,5,214,2,0,0,0,IT,low +0.99,0.94,3,244,3,0,0,0,IT,high +0.76,0.84,5,137,4,0,0,0,IT,high +0.63,0.67,5,250,2,0,0,0,product_mng,low +0.21,0.62,4,247,3,1,0,0,product_mng,low +0.63,0.43,2,222,4,0,0,0,product_mng,high +0.58,0.51,2,100,2,0,0,0,product_mng,low +0.52,0.84,4,212,3,0,0,0,IT,medium +0.89,0.64,3,184,5,0,0,0,RandD,high +0.81,0.81,4,177,3,0,0,0,RandD,medium +0.62,0.73,3,138,3,0,0,0,RandD,medium +0.83,0.5,4,167,3,1,0,0,RandD,medium +0.85,0.99,3,201,3,0,0,0,RandD,medium +0.52,0.61,5,162,3,0,0,0,marketing,high +0.57,0.97,5,126,5,0,0,0,sales,medium +0.93,1,4,145,3,0,0,0,accounting,medium +0.78,0.89,3,211,3,0,0,0,support,medium +0.65,0.59,3,167,2,0,0,0,technical,high +0.42,0.74,5,256,6,0,0,0,management,medium +0.22,0.61,6,237,5,0,0,0,marketing,high +0.71,0.96,5,135,4,1,0,0,marketing,low +0.44,0.68,5,209,4,0,0,0,marketing,medium +0.6,0.52,4,190,3,0,0,0,sales,medium +0.68,0.61,3,134,4,0,0,0,sales,medium +0.53,0.41,2,148,2,1,0,0,sales,medium +0.8,0.82,4,202,3,0,0,0,sales,low +0.97,0.82,4,176,2,0,0,0,sales,low +0.47,0.47,2,221,6,0,0,0,sales,low +0.96,0.93,3,156,3,0,0,0,sales,low +0.81,0.45,6,98,3,0,0,0,sales,low +0.86,0.65,4,134,4,0,0,0,sales,low +0.59,0.82,4,203,4,1,0,0,sales,low +0.53,0.97,3,189,3,0,0,0,sales,low +0.57,0.86,3,258,2,0,0,0,sales,low +0.7,0.48,4,237,3,0,0,0,sales,low +0.58,0.59,4,224,3,0,0,0,sales,high +0.43,0.86,5,125,3,1,0,0,sales,low +0.92,0.82,4,207,4,0,0,0,sales,low +0.24,0.7,5,194,3,0,0,0,sales,low +0.67,0.52,3,273,3,0,0,0,sales,low +0.68,0.84,3,209,3,0,0,0,sales,high +0.54,0.75,3,181,3,0,0,0,accounting,low +0.73,0.63,3,172,4,1,0,0,accounting,low +0.59,0.41,4,139,3,0,0,0,accounting,low +0.22,0.64,6,260,4,0,0,0,hr,high +0.49,0.83,3,168,4,1,0,0,hr,low +0.91,1,6,242,3,1,0,0,hr,medium +0.18,0.97,4,206,3,0,0,0,hr,high +0.71,0.41,5,107,4,0,0,0,technical,medium +0.56,0.66,5,216,2,0,0,0,technical,high +0.84,0.62,4,152,3,0,0,0,technical,medium +0.59,0.49,5,122,5,0,0,0,technical,medium +0.88,0.62,4,138,3,0,0,0,technical,medium +0.8,0.52,3,182,2,0,0,0,technical,medium +0.53,0.63,3,205,2,0,0,0,technical,medium +0.53,0.83,3,267,4,0,0,0,technical,medium +0.3,0.67,3,150,2,0,0,0,technical,medium +0.91,0.7,4,134,2,0,0,0,technical,medium +0.32,0.66,5,116,5,1,0,0,technical,high +0.73,0.87,3,181,3,0,0,0,support,low +0.87,0.54,3,268,3,0,0,0,support,medium +0.57,0.73,3,129,3,0,0,0,support,medium +0.62,0.94,3,151,4,0,0,0,support,medium +0.55,0.91,3,243,4,0,0,0,support,medium +0.93,0.57,5,143,2,0,0,0,support,medium +0.3,0.47,6,156,2,1,0,0,support,medium +0.57,0.7,3,210,2,0,0,0,support,medium +0.9,0.85,4,279,6,0,0,0,support,medium +0.83,0.79,4,270,3,1,0,0,support,medium +0.38,0.64,5,160,3,0,0,0,support,high +0.97,0.95,4,173,2,0,0,0,technical,low +0.7,1,4,261,3,0,0,0,technical,low +0.26,0.73,4,178,6,0,0,0,technical,low +0.58,0.58,3,122,3,0,0,0,management,high +0.69,0.57,5,227,4,0,0,0,IT,low +0.88,0.6,2,168,3,0,0,0,IT,low +0.57,0.91,4,252,4,0,0,0,IT,low +0.94,0.8,5,170,4,0,0,0,IT,high +0.94,0.58,3,135,3,0,0,0,IT,low +0.46,0.49,5,286,5,0,0,0,product_mng,low +0.49,0.57,2,213,3,1,0,0,product_mng,low +0.96,1,5,148,3,0,0,0,product_mng,low +0.29,0.95,5,117,4,0,0,0,product_mng,low +0.94,0.69,3,164,2,0,0,0,IT,low +0.56,0.64,3,262,2,1,0,0,RandD,low +0.18,0.49,5,250,5,1,0,0,RandD,medium +0.84,0.83,4,222,3,0,0,0,RandD,medium +0.58,0.96,3,192,4,0,0,0,RandD,medium +0.21,0.6,5,151,6,0,0,0,RandD,medium +0.59,0.53,4,216,2,0,0,0,marketing,medium +0.66,0.65,3,234,2,0,0,0,marketing,medium +0.58,0.82,4,268,3,0,0,0,sales,medium +0.66,0.49,4,194,5,0,0,0,accounting,medium +0.56,0.78,3,200,2,0,0,0,support,medium +0.92,0.78,3,194,3,0,0,0,technical,medium +0.56,0.69,3,176,3,0,0,0,management,medium +0.57,0.59,4,158,3,0,0,0,marketing,medium +0.99,0.79,3,271,4,0,0,0,marketing,high +0.76,0.93,4,187,4,0,0,0,marketing,low +0.78,0.91,4,202,2,0,0,0,sales,medium +0.99,0.48,5,202,2,0,0,0,sales,medium +0.71,0.95,6,204,3,1,0,0,sales,medium +0.51,0.96,4,204,3,1,0,0,sales,medium +0.88,0.82,3,244,3,0,0,0,sales,low +0.96,0.83,3,234,3,0,0,0,sales,low +0.9,0.64,4,217,3,0,0,0,sales,low +0.77,0.51,4,142,4,0,0,0,sales,low +0.95,0.5,4,186,3,1,0,0,sales,low +0.85,0.67,3,267,2,1,0,0,sales,low +0.46,0.79,2,108,3,0,0,0,sales,low +0.57,0.95,3,274,4,0,0,0,sales,low +0.93,1,3,148,4,0,0,0,sales,low +0.78,0.68,5,168,3,0,0,0,sales,low +0.68,1,4,185,2,1,0,0,sales,low +0.83,0.78,3,257,2,0,0,0,sales,low +0.56,0.51,5,256,4,1,0,0,sales,low +0.93,0.78,2,188,2,0,0,0,sales,low +0.13,0.53,6,173,4,0,0,0,sales,low +0.71,0.99,5,208,2,1,0,0,accounting,low +0.98,0.74,4,202,3,0,0,0,accounting,low +0.83,0.82,3,134,3,0,0,0,accounting,low +0.78,0.65,3,154,2,0,0,0,hr,low +0.35,0.58,3,103,3,0,0,0,hr,low +0.67,0.55,4,256,6,0,0,0,hr,low +0.86,0.88,4,274,3,0,0,0,hr,medium +0.33,0.61,2,163,3,0,0,0,technical,medium +0.3,0.86,6,232,3,0,0,0,technical,medium +0.75,0.63,4,268,3,0,0,0,technical,medium +0.8,0.98,3,209,3,0,0,0,technical,medium +0.98,0.53,5,238,3,0,0,0,technical,medium +0.72,0.48,3,155,2,0,0,0,technical,medium +0.82,0.52,5,270,3,0,0,0,technical,medium +0.91,0.59,3,134,2,1,0,0,technical,medium +0.84,0.78,3,221,3,1,0,0,technical,medium +0.95,0.74,4,258,3,0,0,0,technical,medium +0.53,0.51,6,272,5,0,0,0,technical,medium +0.5,0.5,4,184,3,0,0,0,support,high +0.36,0.95,6,276,2,0,0,0,support,low +0.33,0.38,4,186,3,0,0,0,support,medium +0.38,0.47,3,189,5,0,0,0,support,medium +0.7,0.9,3,224,3,0,0,0,support,medium +0.44,0.45,6,237,6,0,0,0,support,medium +0.32,0.66,3,144,2,0,0,0,support,low +0.63,0.93,6,171,3,1,0,0,support,low +0.56,0.54,3,232,2,0,0,0,support,low +0.56,0.78,4,193,2,1,0,0,support,low +0.81,0.78,3,166,2,0,0,0,support,low +0.89,0.75,3,167,2,0,0,0,technical,low +0.63,0.87,2,101,3,0,0,0,technical,low +0.64,0.66,5,266,3,0,0,0,technical,low +0.46,0.53,3,135,2,0,0,0,management,low +0.76,0.56,4,137,3,0,0,0,IT,low +0.99,0.71,3,191,3,0,0,0,IT,low +0.85,0.76,4,262,2,0,0,0,IT,low +0.78,0.99,3,174,3,0,0,0,IT,low +0.91,0.56,4,241,2,0,0,0,IT,low +0.16,0.57,5,144,4,1,0,0,product_mng,low +0.71,0.57,3,218,3,0,0,0,product_mng,low +0.92,0.68,5,210,2,0,0,0,product_mng,low +0.21,0.98,6,208,5,1,0,0,product_mng,low +0.74,0.6,3,232,3,0,0,0,IT,low +0.76,0.6,3,140,2,0,0,0,RandD,low +0.62,0.95,3,189,4,0,0,0,RandD,low +1,0.61,5,264,3,0,0,0,RandD,medium +0.67,0.54,5,157,2,0,0,0,RandD,medium +0.81,0.87,4,161,2,0,0,0,RandD,medium +0.84,0.69,4,149,3,0,0,0,marketing,medium +0.84,0.99,3,144,4,0,0,0,sales,medium +0.97,0.97,4,242,2,0,0,0,accounting,medium +0.7,0.5,6,214,5,0,0,0,support,medium +0.52,0.74,4,174,3,0,0,0,technical,medium +0.46,0.88,5,169,3,0,0,0,management,medium +1,0.87,4,268,2,0,0,0,marketing,medium +0.91,0.58,3,257,3,0,0,0,marketing,medium +0.16,0.69,4,187,5,0,0,0,marketing,medium +0.58,0.62,5,270,2,0,0,0,sales,high +0.75,0.61,5,173,4,0,0,0,sales,low +0.96,0.62,6,193,4,0,0,0,sales,medium +0.92,0.78,4,212,2,0,0,0,sales,medium +0.35,0.63,3,156,3,0,0,0,sales,medium +0.56,0.96,3,244,3,0,0,0,sales,medium +0.27,0.96,3,255,4,0,0,0,sales,low +0.66,0.72,5,152,3,1,0,0,sales,low +0.66,0.98,4,163,3,1,0,0,sales,low +0.98,0.69,3,150,2,0,0,0,sales,low +0.51,0.58,4,169,2,0,0,0,sales,low +0.51,0.83,3,133,3,0,0,0,sales,low +0.53,0.94,4,202,3,1,0,0,sales,low +0.69,0.7,4,169,2,0,0,0,sales,low +0.66,0.74,4,270,2,1,0,0,sales,low +0.89,0.76,3,251,2,1,0,0,sales,low +0.74,0.64,3,267,5,0,0,0,sales,low +0.82,0.75,4,224,3,0,0,0,sales,low +0.66,0.9,3,250,2,0,0,0,sales,low +0.59,0.97,3,258,2,0,0,0,accounting,low +0.13,0.65,2,209,5,0,0,0,accounting,low +0.68,0.74,4,215,3,0,0,0,accounting,low +0.5,0.81,3,183,3,0,0,0,hr,low +0.6,0.82,3,143,3,0,0,0,hr,low +0.87,0.98,3,174,3,0,0,0,hr,low +0.51,0.89,6,170,4,0,0,0,hr,low +0.78,0.63,3,202,2,0,0,0,technical,low +0.66,0.96,4,160,2,0,0,0,technical,medium +0.72,0.73,5,211,2,0,0,0,technical,medium +0.57,0.98,3,236,3,1,0,0,technical,medium +0.5,0.49,4,236,3,0,0,0,technical,medium +0.72,0.62,4,252,2,1,0,0,technical,medium +0.41,0.48,3,155,2,1,0,0,technical,medium +0.55,0.65,5,138,2,0,0,0,technical,medium +0.49,0.94,4,195,3,1,0,0,technical,medium +0.8,0.94,3,150,3,0,0,0,technical,medium +0.78,0.51,3,172,3,0,0,0,technical,medium +0.69,0.56,3,240,2,0,0,0,support,medium +0.83,0.98,3,229,6,0,0,0,support,medium +0.89,0.73,3,169,3,0,0,0,support,high +0.94,0.82,3,246,3,0,0,0,support,low +0.51,0.53,4,260,2,1,0,0,support,medium +0.89,0.9,4,101,6,0,0,0,support,medium +0.99,0.69,3,190,3,0,0,0,support,medium +0.79,0.66,3,154,4,0,0,0,support,medium +0.98,0.97,4,196,4,0,0,0,support,low +0.98,0.97,3,209,3,0,0,0,support,low +0.97,0.67,4,223,3,0,0,0,support,low +0.71,0.71,4,221,3,0,0,0,technical,low +0.49,0.6,4,141,3,0,0,0,technical,low +0.72,0.71,3,135,3,0,0,0,technical,low +0.58,0.61,2,191,3,1,0,0,management,low +0.65,1,4,195,3,0,0,0,IT,low +0.18,0.55,5,217,4,0,0,0,IT,low +0.83,0.99,4,184,3,0,0,0,IT,low +0.2,0.76,5,188,3,0,0,0,IT,low +0.96,0.93,6,240,6,0,0,0,IT,low +0.59,0.69,4,226,3,0,0,0,product_mng,low +0.97,0.99,3,196,3,0,0,0,product_mng,low +0.14,0.99,6,251,4,0,0,0,product_mng,low +0.75,0.96,4,150,2,0,0,0,product_mng,low +0.71,0.63,3,249,3,0,0,0,IT,low +0.84,0.52,4,251,3,0,0,0,RandD,low +0.57,0.75,5,252,3,0,0,0,RandD,medium +0.46,0.55,5,261,5,0,0,0,RandD,medium +0.77,0.94,4,225,2,0,0,0,RandD,medium +0.44,0.65,2,151,3,0,0,0,RandD,medium +0.68,0.59,4,147,2,0,0,0,marketing,medium +0.94,0.58,4,159,3,0,0,0,sales,medium +0.73,0.91,4,241,2,1,0,0,accounting,medium +0.51,0.5,5,176,5,0,0,0,support,medium +0.93,0.87,4,218,4,0,0,0,technical,medium +0.74,1,4,219,3,0,0,0,management,medium +0.82,0.9,3,227,3,0,0,0,marketing,medium +0.86,0.91,4,182,2,0,0,0,marketing,medium +0.99,0.86,4,196,2,1,0,0,marketing,high +0.58,0.86,4,257,3,0,0,0,sales,low +0.96,0.6,5,182,5,0,0,0,sales,medium +0.72,0.67,4,192,3,0,0,0,sales,medium +0.23,0.94,4,142,4,0,0,0,sales,medium +0.99,0.79,4,172,2,0,0,0,sales,medium +0.95,0.58,4,188,3,0,0,0,sales,low +0.75,0.55,5,281,3,1,0,0,sales,low +0.95,0.54,4,255,2,0,0,0,sales,low +0.97,0.84,3,223,3,0,0,0,sales,low +0.98,0.86,2,219,4,0,0,0,sales,low +0.79,0.98,3,195,2,0,0,0,sales,low +0.54,0.91,2,156,3,0,0,0,sales,low +0.51,0.51,5,259,4,0,0,0,sales,low +0.83,0.91,4,266,3,1,0,0,sales,low +0.6,0.7,3,147,2,0,0,0,sales,low +0.58,0.83,4,207,3,0,0,0,sales,low +0.55,0.68,3,185,2,0,0,0,sales,low +0.5,0.64,5,195,2,0,0,0,sales,low +0.46,0.41,6,148,4,0,0,0,sales,low +0.61,0.82,3,157,2,0,0,0,accounting,low +0.91,0.98,4,146,3,0,0,0,accounting,low +0.5,0.94,3,262,4,0,0,0,accounting,low +0.75,0.82,3,169,3,0,0,0,hr,low +0.74,0.87,3,192,3,1,0,0,hr,low +0.62,0.53,4,147,2,0,0,0,hr,low +0.87,0.76,5,254,2,1,0,0,hr,low +0.13,0.72,3,244,4,0,0,0,technical,medium +0.71,0.43,2,100,6,0,0,0,technical,medium +0.7,0.9,3,173,2,0,0,0,technical,medium +0.32,0.87,2,197,2,1,0,0,technical,medium +0.84,0.72,3,256,4,0,0,0,technical,medium +0.79,0.87,4,253,2,0,0,0,technical,medium +0.97,0.64,4,152,2,0,0,0,technical,medium +0.76,0.58,5,136,3,0,0,0,technical,medium +0.97,0.63,3,141,3,0,0,0,technical,medium +0.53,0.4,5,212,3,1,0,0,technical,medium +0.61,0.57,4,144,3,0,0,0,technical,medium +0.94,0.89,2,118,4,0,0,0,support,medium +0.52,0.79,5,265,3,1,0,0,support,high +0.91,0.67,3,143,3,0,0,0,support,low +0.52,0.63,3,230,2,0,0,0,support,medium +0.59,0.68,5,243,2,0,0,0,support,medium +0.61,0.71,3,152,4,1,0,0,support,medium +0.78,0.78,3,252,3,0,0,0,support,medium +0.44,0.67,3,113,2,0,0,0,support,low +0.8,0.97,4,259,2,0,0,0,support,low +0.54,0.6,4,139,5,0,0,0,support,low +0.96,0.91,4,228,3,1,0,0,support,low +0.98,0.49,4,214,3,0,0,0,technical,low +0.83,0.91,4,210,4,0,0,0,technical,low +0.64,0.89,4,146,3,0,0,0,technical,low +0.51,0.78,3,155,2,0,0,0,management,low +0.31,0.42,2,169,5,0,0,0,IT,low +0.53,0.68,3,258,3,0,0,0,IT,low +0.81,0.53,3,258,2,0,0,0,IT,low +0.17,0.85,3,168,4,0,0,0,IT,low +0.72,0.98,3,211,2,0,0,0,IT,low +0.49,0.49,2,245,3,0,0,0,product_mng,low +0.81,0.95,3,204,2,0,0,0,product_mng,low +0.75,0.98,2,161,3,0,0,0,product_mng,low +0.74,0.73,3,267,3,0,0,0,product_mng,low +0.82,0.73,3,183,3,0,0,0,IT,low +0.36,0.4,2,105,3,0,0,0,RandD,low +0.89,0.55,3,260,2,0,0,0,RandD,low +0.78,0.87,3,183,4,0,0,0,RandD,low +0.81,0.56,4,262,3,0,0,0,RandD,medium +0.61,0.78,4,244,4,0,0,0,RandD,medium +0.23,0.96,4,242,6,0,0,0,marketing,medium +0.73,1,4,146,3,0,0,0,sales,medium +0.4,0.65,4,252,6,0,0,0,accounting,medium +0.99,0.63,5,229,2,0,0,0,support,medium +0.62,0.54,4,170,3,0,0,0,technical,medium +0.61,0.93,3,250,4,0,0,0,management,medium +0.9,0.98,2,243,3,0,0,0,marketing,medium +0.93,0.67,4,135,3,1,0,0,marketing,medium +0.52,0.75,4,266,3,0,0,0,marketing,medium +0.77,0.72,4,223,3,0,0,0,sales,medium +0.59,0.76,4,234,3,0,0,0,sales,high +0.51,0.59,4,187,3,0,0,0,sales,low +0.67,0.95,3,229,3,0,0,0,sales,medium +0.95,0.65,3,155,2,1,0,0,sales,medium +0.75,0.76,3,246,3,0,0,0,sales,medium +0.54,0.61,3,152,3,0,0,0,sales,medium +0.45,0.71,2,172,2,0,0,0,sales,low +0.66,0.66,4,255,5,0,0,0,sales,low +0.36,0.69,3,98,2,0,0,0,sales,low +0.3,0.47,6,141,6,0,0,0,sales,low +0.61,0.63,4,146,4,1,0,0,sales,low +0.71,0.7,4,213,3,0,0,0,sales,low +0.6,0.99,4,160,3,0,0,0,sales,low +0.19,0.61,3,272,4,0,0,0,sales,low +0.91,1,4,125,4,0,0,0,sales,medium +0.98,0.69,3,152,2,0,0,0,sales,medium +0.9,0.78,3,162,2,0,0,0,sales,medium +0.73,0.94,3,251,6,0,0,0,sales,medium +0.52,0.56,3,225,3,0,0,0,accounting,medium +0.77,0.56,3,236,3,1,0,0,accounting,medium +0.98,0.62,3,203,2,0,0,0,accounting,medium +0.79,0.5,4,252,3,1,0,0,hr,medium +0.73,0.91,3,135,2,0,0,0,hr,medium +0.97,0.95,3,257,2,0,0,0,hr,medium +0.38,0.6,5,145,5,0,0,0,hr,medium +0.59,0.48,5,267,3,0,0,0,technical,medium +0.73,0.79,4,208,5,0,0,0,technical,medium +0.84,0.53,4,206,3,0,0,0,technical,medium +0.61,0.59,4,247,2,0,0,0,technical,medium +0.79,0.78,2,228,2,0,0,0,technical,medium +0.73,0.91,4,248,2,1,0,0,technical,medium +0.22,0.9,4,209,5,0,0,0,technical,medium +0.84,0.52,5,171,3,0,0,0,technical,medium +0.21,0.85,6,221,5,0,0,0,technical,medium +0.44,0.69,2,173,2,0,0,0,technical,medium +0.2,0.52,5,218,5,0,0,0,technical,medium +0.51,0.86,4,223,3,1,0,0,support,medium +0.55,0.98,3,169,2,0,0,0,support,medium +0.24,0.38,6,109,2,0,0,0,support,medium +0.65,0.77,4,273,2,0,0,0,support,high +0.44,0.42,3,178,3,0,0,0,support,high +0.98,0.67,4,189,4,0,0,0,support,high +0.69,0.8,5,203,2,1,0,0,support,high +0.71,0.56,3,177,4,0,0,0,support,high +0.54,0.71,5,253,2,1,0,0,support,high +0.77,0.98,3,273,3,0,0,0,support,high +0.53,0.43,2,139,3,0,0,0,support,high +0.64,0.72,3,185,2,1,0,0,technical,high +0.69,0.59,5,182,4,0,0,0,technical,high +0.93,0.71,5,270,2,0,0,0,technical,high +0.58,0.65,3,139,4,0,0,0,management,high +0.33,0.46,5,261,6,1,0,0,IT,low +0.95,0.57,3,238,3,0,0,0,IT,low +0.65,0.9,3,241,3,0,0,0,IT,low +0.9,0.7,3,223,2,0,0,0,IT,low +0.59,0.8,3,258,3,1,0,0,IT,low +0.88,0.55,4,205,4,0,0,0,product_mng,low +0.63,0.83,4,243,4,0,0,0,product_mng,low +0.53,0.61,4,198,2,0,0,0,product_mng,low +0.63,0.64,4,178,3,0,0,0,product_mng,low +0.96,0.76,4,158,3,0,0,0,IT,low +0.7,0.73,3,194,2,0,0,0,RandD,low +0.73,0.36,4,253,2,1,0,0,RandD,low +0.94,0.8,4,228,2,0,0,0,RandD,low +0.82,0.58,5,227,3,0,0,0,RandD,low +0.44,0.63,3,162,2,0,0,0,RandD,low +0.58,0.9,5,257,3,0,0,0,marketing,medium +0.55,0.97,2,140,2,0,0,0,sales,medium +0.92,0.84,3,164,2,0,0,0,accounting,medium +0.91,0.59,4,177,4,0,0,0,support,medium +0.69,0.61,4,260,4,0,0,0,technical,medium +0.23,0.7,4,233,2,0,0,0,management,medium +0.21,0.81,4,227,5,0,0,0,marketing,medium +0.51,0.6,4,140,3,0,0,0,marketing,medium +0.73,0.74,3,254,4,1,0,0,marketing,medium +0.65,0.67,3,245,3,0,0,0,sales,medium +0.64,0.48,2,157,2,0,0,0,sales,medium +0.77,0.49,3,265,3,0,0,0,sales,medium +0.71,0.79,4,261,3,0,0,0,sales,high +0.2,0.38,6,212,6,0,0,0,sales,high +0.99,0.57,4,216,3,0,0,0,sales,high +0.77,0.57,4,238,3,0,0,0,sales,high +0.8,0.56,2,204,3,0,0,0,sales,high +0.97,0.5,4,216,2,0,0,0,sales,high +0.89,0.53,4,208,3,0,0,0,sales,high +0.97,0.7,4,218,2,0,0,0,sales,high +0.23,0.99,5,176,4,1,0,0,sales,low +0.6,0.75,4,144,2,0,0,0,sales,low +0.52,0.63,5,241,3,0,0,0,sales,low +0.86,0.63,3,271,2,0,0,0,sales,low +0.86,0.95,4,184,3,0,0,0,sales,low +0.76,0.58,3,262,2,0,0,0,sales,low +0.79,0.77,6,233,6,0,0,0,sales,low +0.35,0.52,3,155,3,0,0,0,sales,low +1,0.97,5,141,2,0,0,0,accounting,medium +0.2,0.8,6,251,5,0,0,0,accounting,medium +0.57,0.62,5,141,3,0,0,0,accounting,medium +0.23,0.46,4,274,5,1,0,0,hr,medium +0.82,0.97,3,160,2,0,0,0,hr,medium +0.98,0.8,3,166,2,0,0,0,hr,medium +0.52,0.7,4,219,3,0,0,0,hr,medium +0.96,0.61,4,158,6,0,0,0,technical,medium +0.69,0.64,4,190,4,0,0,0,technical,medium +0.92,0.77,5,191,2,0,0,0,technical,medium +0.91,0.43,4,117,5,1,0,0,technical,medium +0.85,0.96,4,240,6,0,0,0,technical,medium +0.91,0.77,4,239,2,0,0,0,technical,medium +0.79,0.55,4,145,3,0,0,0,technical,medium +0.74,0.95,3,157,4,0,0,0,technical,medium +0.73,0.72,3,166,3,0,0,0,technical,medium +0.55,0.98,4,137,2,0,0,0,technical,medium +0.79,0.97,5,208,4,1,0,0,technical,medium +0.53,0.51,4,174,2,0,0,0,support,medium +0.7,0.6,3,267,3,0,0,0,support,medium +0.74,0.56,3,125,6,0,0,0,support,medium +0.95,0.76,4,220,3,0,0,0,support,medium +0.49,0.57,4,141,3,0,0,0,support,medium +0.79,0.9,5,146,3,1,0,0,support,high +0.99,0.86,3,166,2,0,0,0,support,low +0.56,0.79,4,197,2,0,0,0,support,medium +0.7,0.79,4,240,2,0,0,0,support,medium +0.93,0.65,4,258,3,0,0,0,support,medium +0.46,0.66,6,229,3,0,0,0,support,medium +0.24,0.61,5,252,4,0,0,0,technical,medium +0.32,0.41,3,138,3,1,0,0,technical,medium +0.5,0.78,4,208,3,1,0,0,technical,medium +0.58,0.72,3,113,3,1,0,0,management,medium +0.83,0.81,4,209,4,0,0,0,IT,medium +0.57,0.42,2,248,4,0,0,0,IT,medium +0.51,0.83,5,161,3,0,0,0,IT,low +0.65,0.96,2,246,2,1,0,0,IT,low +0.52,0.41,3,283,3,0,0,0,IT,low +0.77,0.7,3,145,2,0,0,0,product_mng,low +0.42,0.77,3,270,3,0,0,0,product_mng,low +0.68,0.79,4,273,4,0,0,0,product_mng,low +0.83,0.92,4,187,6,1,0,0,product_mng,low +0.66,0.63,3,166,3,0,0,0,IT,high +0.75,0.57,3,158,2,1,0,0,RandD,low +0.65,0.48,4,229,3,0,0,0,RandD,high +0.49,0.6,3,191,3,1,0,0,RandD,high +0.77,0.96,3,232,2,1,0,0,RandD,low +0.65,0.97,3,198,3,0,0,0,RandD,low +0.65,0.49,5,238,4,0,0,0,marketing,high +0.44,0.58,2,157,2,0,0,0,sales,low +0.61,0.72,4,134,2,0,0,0,accounting,medium +0.98,0.89,3,150,3,0,0,0,support,high +0.68,0.88,5,256,2,0,0,0,technical,medium +0.58,0.5,3,208,3,0,0,0,management,medium +0.81,0.92,3,136,3,0,0,0,marketing,medium +0.76,0.5,4,136,3,0,0,0,marketing,medium +0.14,0.93,4,180,4,0,0,0,marketing,high +0.49,0.91,3,227,3,0,0,0,sales,medium +0.97,0.78,5,156,3,0,0,0,sales,medium +0.91,0.6,4,133,4,1,0,0,sales,medium +0.15,0.98,2,96,2,0,0,0,sales,high +0.82,0.63,3,171,3,0,0,0,sales,medium +0.67,0.87,3,177,4,0,0,0,sales,high +0.5,0.96,4,274,3,0,0,0,sales,low +0.57,0.39,2,145,3,0,0,0,sales,medium +0.99,0.94,5,221,2,0,0,0,sales,medium +0.97,0.94,3,202,2,0,0,0,sales,medium +0.93,0.58,5,238,2,0,0,0,sales,medium +0.62,0.6,4,170,2,0,0,0,sales,low +0.62,0.51,4,208,2,1,0,0,sales,low +0.96,0.61,4,199,3,0,0,0,sales,low +0.98,0.96,4,253,3,0,0,0,sales,low +0.52,0.57,4,239,3,0,0,0,sales,low +0.56,0.77,5,279,4,0,0,0,sales,low +0.14,0.41,6,114,3,0,0,0,sales,low +0.29,0.38,6,105,5,0,0,0,sales,low +0.76,0.81,4,193,3,1,0,0,accounting,low +0.39,0.58,3,152,3,1,0,0,accounting,low +0.96,0.72,4,228,2,0,0,0,accounting,high +0.84,0.93,3,242,4,0,0,0,hr,low +0.81,0.62,4,197,3,0,0,0,hr,low +0.51,0.51,5,222,4,0,0,0,hr,low +0.87,0.75,3,222,3,0,0,0,hr,low +0.94,0.77,5,233,4,0,0,0,technical,high +0.69,0.97,4,264,3,0,0,0,technical,low +0.44,0.53,3,132,3,1,0,0,technical,low +0.85,0.55,5,182,3,0,0,0,technical,low +0.18,0.86,6,264,3,0,0,0,technical,high +0.91,0.74,6,253,2,0,0,0,technical,low +0.81,0.83,3,193,3,0,0,0,technical,medium +0.82,0.59,5,143,2,1,0,0,technical,high +0.48,0.79,3,180,2,0,0,0,technical,medium +0.92,0.84,3,220,3,1,0,0,technical,high +0.94,0.88,5,150,4,0,0,0,technical,medium +1,0.56,3,182,3,0,0,0,support,medium +0.96,0.91,3,257,3,0,0,0,support,medium +0.24,0.74,3,269,4,1,0,0,support,medium +0.62,0.89,5,243,3,0,0,0,support,medium +0.55,0.76,4,257,3,0,0,0,support,medium +0.82,0.52,5,233,2,0,0,0,support,medium +0.62,0.56,4,267,4,0,0,0,support,medium +0.61,0.69,4,160,2,1,0,0,support,high +0.72,0.52,3,143,4,1,0,0,support,low +0.45,0.76,4,143,2,1,0,0,support,medium +0.51,0.93,3,162,4,0,0,0,support,medium +0.42,0.53,3,181,5,0,0,0,technical,medium +0.69,0.64,3,286,3,0,0,0,technical,medium +0.61,0.66,2,111,3,0,0,0,technical,medium +0.5,0.98,5,177,4,0,0,0,management,medium +0.25,0.68,4,279,5,1,0,0,IT,medium +0.88,0.89,4,135,3,0,0,0,IT,medium +0.81,0.66,3,160,2,0,0,0,IT,medium +0.75,0.77,3,178,4,0,0,0,IT,high +0.77,0.8,3,147,3,0,0,0,IT,low +0.55,0.72,3,204,2,0,0,0,product_mng,low +0.7,0.73,5,151,2,0,0,0,product_mng,low +0.96,0.78,3,209,2,0,0,0,product_mng,high +0.18,0.73,6,225,4,0,0,0,product_mng,low +0.22,0.62,6,142,3,0,0,0,IT,low +0.95,0.49,3,158,2,0,0,0,RandD,low +0.37,0.71,2,139,4,0,0,0,RandD,high +0.84,0.45,3,263,2,0,0,0,RandD,low +0.8,0.68,3,160,3,0,0,0,RandD,low +0.57,0.55,2,173,2,0,0,0,RandD,low +0.98,0.63,3,169,2,0,0,0,marketing,low +0.95,0.62,3,161,3,0,0,0,sales,low +0.8,0.65,4,172,3,1,0,0,accounting,low +0.52,0.7,3,257,3,0,0,0,support,low +0.31,0.62,2,139,3,0,0,0,technical,medium +0.71,0.59,5,245,2,0,0,0,management,medium +0.71,0.85,3,260,3,0,0,0,marketing,medium +0.5,0.96,5,229,4,0,0,0,marketing,medium +0.95,0.9,2,129,5,0,0,0,marketing,medium +0.95,0.77,3,184,4,0,0,0,sales,medium +0.65,0.85,4,204,3,0,0,0,sales,medium +0.94,0.72,3,152,2,1,0,0,sales,medium +0.72,0.85,4,142,3,0,0,0,sales,medium +0.94,0.79,4,136,2,0,0,0,sales,medium +0.79,0.94,4,216,4,0,0,0,sales,medium +0.6,0.58,3,201,3,0,0,0,sales,medium +0.62,0.76,4,163,3,0,0,0,sales,high +0.94,0.74,4,224,5,0,0,0,sales,low +0.24,0.5,4,209,3,0,0,0,sales,medium +0.17,0.71,5,257,4,1,0,0,sales,medium +0.66,0.83,4,234,4,0,0,0,sales,medium +0.65,0.56,3,221,2,0,0,0,sales,medium +0.51,0.62,2,186,2,0,0,0,sales,low +0.41,0.75,4,199,3,0,0,0,sales,low +0.98,0.99,3,235,3,0,0,0,sales,low +0.96,0.55,5,211,2,0,0,0,sales,low +0.55,0.97,4,136,4,0,0,0,sales,low +0.99,0.71,4,155,3,0,0,0,sales,low +0.51,0.98,4,269,3,0,0,0,accounting,low +0.74,0.9,3,285,3,0,0,0,accounting,low +0.81,0.87,5,241,3,0,0,0,accounting,low +0.51,0.87,3,180,4,0,0,0,hr,low +0.53,0.55,5,224,2,1,0,0,hr,low +0.67,0.48,6,107,2,1,0,0,hr,low +0.68,0.64,2,167,2,0,0,0,hr,low +0.69,0.63,3,137,3,0,0,0,technical,low +0.71,0.65,4,239,3,0,0,0,technical,low +0.64,0.56,3,239,3,0,0,0,technical,low +0.62,0.58,3,148,2,1,0,0,technical,low +0.81,0.5,4,231,3,1,0,0,technical,low +0.84,0.54,4,179,2,0,0,0,technical,low +1,0.67,3,181,2,0,0,0,technical,low +0.72,0.73,5,184,4,1,0,0,technical,low +0.57,0.67,3,207,2,0,0,0,technical,medium +0.73,0.99,4,152,4,0,0,0,technical,medium +0.91,0.59,4,133,4,0,0,0,technical,medium +0.98,0.85,4,178,3,0,0,0,support,medium +0.58,0.95,4,173,3,0,0,0,support,medium +0.73,0.52,2,113,5,1,0,0,support,medium +0.96,0.95,3,236,2,0,0,0,support,medium +0.57,0.98,3,188,5,0,0,0,support,medium +0.77,0.73,3,269,2,0,0,0,support,medium +0.3,0.85,2,203,3,0,0,0,support,medium +0.85,0.75,3,214,3,0,0,0,support,medium +0.49,0.83,2,185,6,0,0,0,support,medium +0.77,0.43,4,265,6,0,0,0,support,high +1,0.99,4,184,4,0,0,0,support,low +0.85,0.74,3,157,3,0,0,0,technical,medium +0.87,0.75,3,258,3,0,0,0,technical,medium +0.9,0.79,3,222,6,1,0,0,technical,medium +0.71,0.8,5,248,4,0,0,0,management,medium +0.59,0.56,5,162,4,0,0,0,IT,low +0.85,0.74,3,250,3,1,0,0,IT,low +0.72,0.82,4,231,3,0,0,0,IT,low +0.73,0.65,3,165,3,0,0,0,IT,low +0.9,0.54,3,272,2,0,0,0,IT,low +0.59,0.65,4,177,2,0,0,0,product_mng,low +0.52,0.9,3,133,3,0,0,0,product_mng,low +0.85,0.49,4,159,3,0,0,0,product_mng,low +0.35,0.4,3,130,3,0,0,0,product_mng,low +0.7,0.68,3,185,4,0,0,0,IT,low +0.58,0.86,3,182,3,0,0,0,RandD,low +0.89,0.5,2,238,4,0,0,0,RandD,low +0.54,0.63,3,211,3,0,0,0,RandD,low +0.55,0.89,4,209,3,0,0,0,RandD,low +0.77,0.62,5,190,3,0,0,0,RandD,low +0.55,0.61,4,272,4,1,0,0,marketing,low +0.6,0.77,3,202,3,0,0,0,sales,low +0.75,0.9,4,185,3,0,0,0,accounting,low +0.57,0.88,3,176,3,0,0,0,support,low +0.69,0.94,4,239,3,0,0,0,technical,low +0.87,0.98,4,238,3,1,0,0,management,low +0.69,0.36,5,269,6,1,0,0,marketing,medium +0.58,0.92,3,232,5,0,0,0,marketing,medium +0.87,0.64,2,148,6,1,0,0,marketing,medium +0.71,0.77,3,149,2,0,0,0,sales,medium +0.74,0.78,4,203,2,0,0,0,sales,medium +0.75,0.53,5,235,3,0,0,0,sales,medium +0.5,0.54,2,269,2,1,0,0,sales,medium +0.59,0.86,4,260,2,0,0,0,sales,medium +0.81,0.84,3,216,3,0,0,0,sales,medium +0.34,0.55,3,136,2,1,0,0,sales,medium +0.53,0.87,5,158,3,0,0,0,sales,medium +0.94,0.85,4,180,4,0,0,0,sales,medium +0.76,0.77,5,133,2,0,0,0,sales,high +0.2,0.58,5,199,4,0,0,0,sales,low +0.97,0.67,3,169,2,1,0,0,sales,medium +0.96,0.72,3,195,2,0,0,0,sales,medium +0.81,0.5,5,205,3,0,0,0,sales,medium +0.2,0.48,4,156,4,1,0,0,sales,medium +0.53,0.71,3,125,2,1,0,0,sales,low +0.75,0.76,3,171,4,0,0,0,sales,low +0.55,0.91,4,199,3,0,0,0,sales,low +0.58,0.65,5,187,2,0,0,0,sales,low +0.99,0.64,4,218,4,0,0,0,accounting,low +0.96,0.86,4,268,3,0,0,0,accounting,low +0.82,0.92,3,257,2,0,0,0,accounting,low +0.88,0.77,4,224,5,1,0,0,hr,low +0.78,0.97,4,221,4,0,0,0,hr,low +0.46,0.47,6,101,5,0,0,0,hr,low +0.88,0.59,3,224,2,0,0,0,hr,low +0.91,0.55,3,223,4,1,0,0,technical,low +0.6,0.68,4,271,4,0,0,0,technical,low +0.82,0.51,3,210,2,0,0,0,technical,low +0.67,0.56,4,241,3,0,0,0,technical,low +0.55,0.61,3,209,3,0,0,0,technical,low +0.73,0.62,5,186,4,0,0,0,technical,low +0.59,0.68,4,273,2,0,0,0,technical,low +0.4,0.65,6,172,2,1,0,0,technical,low +0.56,0.99,3,209,2,0,0,0,technical,low +0.87,0.57,4,175,2,1,0,0,technical,low +0.5,0.53,5,239,3,0,0,0,technical,medium +0.98,0.79,4,231,4,0,0,0,support,medium +0.71,0.96,4,131,3,0,0,0,support,medium +0.72,0.89,4,217,3,0,0,0,support,medium +0.5,0.83,4,242,2,0,0,0,support,medium +0.89,0.56,3,224,2,0,0,0,support,medium +0.56,0.68,3,208,3,1,0,0,support,medium +0.32,0.55,4,167,5,0,0,0,support,medium +0.96,0.88,5,269,2,0,0,0,support,medium +0.67,0.92,4,156,2,0,0,0,support,medium +0.26,0.7,3,238,6,0,0,0,support,medium +0.51,0.9,5,193,4,0,0,0,support,medium +0.16,0.78,4,196,5,0,0,0,technical,high +0.77,0.71,5,233,2,0,0,0,technical,low +0.67,0.52,2,152,5,0,0,0,technical,medium +0.36,0.77,4,252,2,0,0,0,management,medium +0.69,0.82,3,262,5,1,0,0,IT,medium +0.72,0.76,3,261,4,0,0,0,IT,medium +0.72,0.81,4,144,2,0,0,0,IT,low +0.88,0.95,4,234,3,0,0,0,IT,low +0.91,0.55,2,234,2,0,0,0,IT,low +0.96,0.6,4,170,2,1,0,0,product_mng,low +0.49,0.8,3,238,4,0,0,0,product_mng,low +0.59,0.97,5,242,3,0,0,0,product_mng,low +0.8,0.87,4,209,3,0,0,0,product_mng,low +0.91,0.67,4,206,3,0,0,0,IT,low +0.18,0.79,4,240,5,0,0,0,RandD,low +0.94,0.58,5,215,2,0,0,0,RandD,low +0.44,0.61,3,147,4,0,0,0,RandD,low +0.96,0.59,2,265,2,0,0,0,RandD,low +0.55,0.97,4,162,3,0,0,0,RandD,low +0.99,0.54,4,239,3,0,0,0,marketing,low +0.75,0.88,3,224,2,0,0,0,sales,low +0.66,0.78,4,256,3,0,0,0,accounting,low +0.96,0.57,3,263,3,0,0,0,support,low +0.6,0.86,6,272,4,0,0,0,technical,low +0.64,0.78,4,159,4,0,0,0,management,medium +0.85,0.8,4,219,2,0,0,0,marketing,medium +0.3,0.53,3,210,6,0,0,0,marketing,medium +0.74,0.95,4,237,3,1,0,0,marketing,medium +0.14,0.8,5,226,3,0,0,0,sales,medium +0.93,0.76,3,212,3,0,0,0,sales,medium +0.75,0.48,3,250,5,0,0,0,sales,medium +0.58,0.63,4,171,3,0,0,0,sales,medium +0.59,0.6,3,149,4,0,0,0,sales,medium +0.2,0.9,5,228,6,0,0,0,sales,medium +1,0.84,3,215,2,0,0,0,sales,medium +0.51,0.51,3,272,3,0,0,0,sales,medium +0.16,0.72,4,192,6,0,0,0,sales,high +0.77,0.56,5,226,4,0,0,0,sales,low +0.61,0.47,2,149,3,0,0,0,sales,medium +0.73,0.51,3,244,2,0,0,0,sales,medium +0.52,0.85,4,193,3,0,0,0,sales,medium +0.13,0.72,4,247,3,0,0,0,sales,medium +0.73,0.62,3,181,3,0,0,0,sales,low +0.39,0.68,2,137,3,1,0,0,sales,low +0.92,0.8,3,211,4,0,0,0,sales,low +0.34,0.78,5,137,4,0,0,0,sales,low +0.94,0.51,4,229,2,1,0,0,sales,low +0.82,0.65,4,168,3,0,0,0,accounting,low +0.26,0.69,4,180,3,1,0,0,accounting,low +0.78,0.53,4,177,2,0,0,0,accounting,low +0.61,0.95,4,191,2,0,0,0,hr,low +0.5,0.53,3,191,2,1,0,0,hr,low +0.52,0.96,4,125,3,0,0,0,hr,low +0.89,0.79,4,152,3,0,0,0,hr,low +0.85,0.52,4,174,2,0,0,0,technical,low +0.62,0.86,4,135,3,0,0,0,technical,low +0.38,0.67,2,117,3,0,0,0,technical,low +0.55,0.49,2,180,5,1,0,0,technical,low +0.83,0.84,4,146,3,0,0,0,technical,low +0.62,0.65,3,249,3,0,0,0,technical,low +0.6,0.54,3,136,3,1,0,0,technical,low +0.62,0.5,4,198,3,1,0,0,technical,low +0.23,0.88,5,201,3,0,0,0,technical,low +0.13,0.74,6,132,4,1,0,0,technical,medium +0.96,0.63,4,142,4,0,0,0,technical,medium +0.5,0.74,5,256,3,1,0,0,support,medium +0.66,0.72,3,135,2,0,0,0,support,medium +0.61,0.72,4,209,2,0,0,0,support,medium +0.45,0.48,5,287,5,0,0,0,support,medium +0.5,0.95,4,222,3,1,0,0,support,medium +0.75,0.82,3,227,2,0,0,0,support,medium +0.88,0.5,4,162,2,0,0,0,support,medium +0.49,0.79,5,206,2,0,0,0,support,medium +0.82,0.87,5,273,6,0,0,0,support,medium +0.92,0.65,4,135,3,0,0,0,support,medium +0.4,0.85,5,99,2,1,0,0,support,high +0.36,0.61,4,166,4,0,0,0,technical,low +0.8,0.99,5,187,3,1,0,0,technical,medium +0.68,0.65,4,134,3,0,0,0,technical,medium +0.54,0.45,4,137,3,1,0,0,management,medium +0.73,0.69,3,175,2,0,0,0,IT,medium +0.64,0.49,5,188,2,0,0,0,IT,low +0.12,0.39,5,161,4,0,0,0,IT,low +0.6,0.7,4,145,6,0,0,0,IT,low +0.36,0.62,4,111,6,0,0,0,IT,low +0.63,0.76,3,176,2,0,0,0,product_mng,low +0.67,0.94,2,192,3,0,0,0,product_mng,low +0.83,0.9,3,179,2,1,0,0,product_mng,low +0.48,0.9,4,224,3,0,0,0,product_mng,low +0.89,0.56,4,241,5,0,0,0,IT,low +0.71,0.96,3,201,3,0,0,0,RandD,low +0.31,0.59,4,138,2,0,0,0,RandD,low +0.89,0.84,5,168,2,0,0,0,RandD,low +0.38,0.51,2,120,3,0,0,0,RandD,low +0.88,0.92,3,179,3,0,0,0,RandD,low +0.64,0.85,3,250,3,0,0,0,marketing,low +0.65,0.74,4,237,3,1,0,0,sales,low +0.65,0.81,4,192,3,0,0,0,accounting,low +0.54,0.97,4,258,3,0,0,0,support,low +0.69,0.76,4,257,4,0,0,0,technical,low +0.77,0.78,2,271,3,0,0,0,management,low +0.28,0.66,3,184,2,0,0,0,marketing,low +0.33,0.4,6,214,6,0,0,0,marketing,medium +0.83,0.68,4,198,3,0,0,0,marketing,medium +0.89,0.73,3,274,2,0,0,0,sales,medium +0.76,0.6,5,279,2,0,0,0,sales,medium +0.83,0.64,5,272,2,0,0,0,sales,medium +0.57,0.85,4,152,3,0,0,0,sales,medium +0.61,0.89,2,287,4,0,0,0,sales,medium +0.96,0.89,2,239,6,1,0,0,sales,medium +0.17,0.5,4,274,6,0,0,0,sales,medium +0.61,0.6,4,121,2,0,0,0,sales,medium +0.73,0.74,5,199,2,0,0,0,sales,medium +0.3,0.39,3,175,3,0,0,0,sales,medium +0.42,0.67,2,115,3,0,0,0,sales,high +0.65,0.75,3,194,4,1,0,0,sales,low +0.17,0.45,2,119,3,0,0,0,sales,medium +0.12,0.82,5,162,4,1,0,0,sales,medium +0.7,0.78,5,264,2,0,0,0,sales,medium +0.87,0.88,3,179,2,0,0,0,sales,medium +0.43,0.44,5,213,3,0,0,0,sales,low +0.84,0.65,3,269,2,0,0,0,sales,low +0.94,0.55,3,160,3,0,0,0,sales,low +0.89,0.76,4,133,2,0,0,0,accounting,low +0.69,0.75,5,201,3,0,0,0,accounting,low +0.18,0.99,4,160,5,0,0,0,accounting,low +0.98,0.69,3,274,3,0,0,0,hr,low +0.3,0.88,5,245,4,0,0,0,hr,low +0.51,0.53,3,237,3,0,0,0,hr,medium +0.76,0.9,3,279,6,0,0,0,hr,medium +0.67,0.96,4,207,3,0,0,0,technical,medium +0.12,0.84,4,218,6,0,0,0,technical,medium +0.42,0.41,5,240,2,0,0,0,technical,medium +0.69,0.76,3,153,3,0,0,0,technical,medium +0.63,0.96,3,144,2,0,0,0,technical,medium +0.66,0.62,2,159,3,1,0,0,technical,medium +0.5,0.5,3,237,2,0,0,0,technical,medium +0.67,0.82,5,148,2,1,0,0,technical,medium +0.59,0.62,4,205,3,0,0,0,technical,medium +0.75,0.78,2,264,3,1,0,0,technical,medium +0.88,0.89,5,189,2,0,0,0,technical,medium +0.99,0.75,3,243,3,0,0,0,support,medium +0.44,0.42,2,199,2,0,0,0,support,medium +0.65,0.78,4,205,2,0,0,0,support,medium +0.88,0.63,3,184,4,0,0,0,support,medium +0.58,0.79,2,274,4,0,0,0,support,medium +0.99,0.9,4,181,3,0,0,0,support,medium +0.76,0.71,3,205,2,0,0,0,support,medium +0.14,0.98,5,172,5,0,0,0,support,medium +0.57,0.86,3,164,2,0,0,0,support,medium +0.52,0.82,3,138,2,1,0,0,support,medium +0.71,0.55,5,262,3,0,0,0,support,medium +0.27,0.75,5,264,3,0,0,0,technical,medium +0.49,0.52,3,225,2,0,0,0,technical,high +0.59,0.5,3,199,2,0,0,0,technical,high +0.24,0.65,6,210,5,0,0,0,management,high +0.18,0.87,6,226,4,0,0,0,IT,high +0.73,0.62,5,134,3,0,0,0,IT,high +0.78,0.63,6,111,6,0,0,0,IT,high +0.94,0.73,5,142,2,1,0,0,IT,high +0.86,0.53,3,213,3,0,0,0,IT,high +0.97,0.88,4,139,2,0,0,0,product_mng,high +0.49,0.54,3,145,3,0,0,0,product_mng,high +0.82,0.48,4,149,6,0,0,0,product_mng,high +0.86,0.64,4,147,2,1,0,0,product_mng,high +0.3,0.39,3,193,3,1,0,0,IT,low +0.7,0.38,4,270,2,0,0,0,RandD,low +0.8,0.78,5,266,3,0,0,0,RandD,low +0.36,0.63,2,278,4,0,0,0,RandD,low +0.4,0.61,3,165,2,0,0,0,RandD,low +0.8,0.58,4,175,2,0,0,0,RandD,low +0.98,0.73,4,140,4,0,0,0,marketing,low +0.92,0.67,3,149,3,0,0,0,sales,low +0.68,1,3,205,4,0,0,0,accounting,low +1,0.59,3,253,3,0,0,0,support,low +0.8,0.54,3,222,4,0,0,0,technical,low +0.85,0.69,4,216,4,0,0,0,management,low +0.69,0.6,3,139,2,0,0,0,marketing,low +0.57,0.52,4,252,2,0,0,0,marketing,low +0.33,0.72,2,173,2,0,0,0,marketing,low +0.19,0.48,6,178,3,1,0,0,sales,medium +0.5,0.63,3,160,2,0,0,0,sales,medium +0.52,0.88,3,261,4,0,0,0,sales,medium +0.13,0.52,6,188,3,0,0,0,sales,medium +0.18,0.73,4,219,5,0,0,0,sales,medium +0.86,0.64,4,263,3,0,0,0,sales,medium +0.86,0.59,4,165,3,0,0,0,sales,medium +0.16,0.76,6,218,6,0,0,0,sales,medium +0.43,0.46,2,239,3,1,0,0,sales,medium +0.79,0.63,3,212,2,1,0,0,sales,medium +0.51,0.67,4,133,3,0,0,0,sales,medium +0.83,0.55,5,250,3,1,0,0,sales,medium +0.61,0.45,3,114,3,0,0,0,sales,high +0.65,0.57,3,168,2,0,0,0,sales,high +0.95,0.83,4,252,2,0,0,0,sales,high +0.63,0.64,5,189,4,0,0,0,sales,high +0.72,0.6,3,265,2,1,0,0,sales,high +0.8,0.57,3,176,3,0,0,0,sales,high +0.7,0.57,4,150,4,0,0,0,sales,high +0.45,0.79,5,97,6,1,0,0,accounting,high +0.64,0.85,4,265,2,0,0,0,accounting,low +0.94,0.48,4,260,4,0,0,0,accounting,low +0.57,0.76,4,164,2,0,0,0,hr,low +0.35,0.56,4,142,2,0,0,0,hr,low +0.75,0.81,2,247,4,0,0,0,hr,low +0.7,0.92,5,182,3,0,0,0,hr,low +0.7,0.47,2,238,3,0,0,0,technical,low +0.61,0.62,3,191,3,0,0,0,technical,low +0.78,0.87,4,178,3,0,0,0,technical,medium +0.97,0.77,4,208,2,0,0,0,technical,medium +0.51,0.76,3,256,2,0,0,0,technical,medium +0.56,0.71,5,243,3,0,0,0,technical,medium +0.87,0.55,3,233,3,0,0,0,technical,medium +0.64,0.78,5,200,3,0,0,0,technical,medium +0.6,0.85,2,226,2,1,0,0,technical,medium +0.9,0.76,2,150,2,0,0,0,technical,medium +0.54,0.62,2,141,2,0,0,0,technical,medium +0.23,0.8,5,139,3,0,0,0,support,medium +0.8,0.81,3,199,4,1,0,0,support,medium +0.23,0.78,4,154,6,1,0,0,support,medium +0.81,0.51,3,247,2,0,0,0,support,medium +0.35,0.6,5,239,5,0,0,0,support,medium +0.67,0.8,4,137,2,0,0,0,support,medium +0.46,0.6,4,119,5,0,0,0,support,medium +0.84,0.98,4,134,5,1,0,0,support,medium +0.92,0.79,3,243,4,0,0,0,support,medium +0.75,0.93,5,210,3,0,0,0,support,medium +0.7,0.57,4,265,2,0,0,0,support,medium +0.7,0.75,4,204,3,0,0,0,technical,medium +0.9,0.81,6,273,5,0,0,0,technical,medium +0.8,1,3,177,2,0,0,0,technical,medium +0.5,0.65,5,285,6,0,0,0,management,high +0.84,0.72,4,222,2,0,0,0,IT,low +0.48,0.94,3,185,2,1,0,0,IT,medium +0.98,0.87,5,151,6,0,0,0,IT,medium +0.64,0.96,3,109,4,0,0,0,IT,medium +0.58,0.53,4,192,4,0,0,0,IT,medium +0.66,0.89,4,139,3,0,0,0,product_mng,medium +0.76,0.98,4,191,2,0,0,0,product_mng,medium +0.32,0.42,6,114,3,0,0,0,product_mng,medium +0.49,0.87,3,212,2,0,0,0,product_mng,medium +0.81,0.51,3,162,2,0,0,0,IT,medium +0.42,0.48,5,191,5,0,0,0,RandD,medium +0.17,0.85,3,234,3,0,0,0,RandD,low +0.49,0.59,4,265,3,0,0,0,RandD,low +0.34,0.69,6,283,2,0,0,0,RandD,low +0.86,0.81,3,232,4,0,0,0,RandD,low +0.51,0.71,4,208,3,1,0,0,marketing,low +0.49,0.99,4,258,3,1,0,0,sales,low +0.49,0.63,3,175,2,0,0,0,accounting,low +0.51,0.59,3,238,3,0,0,0,support,high +0.64,0.52,3,166,3,0,0,0,technical,low +0.62,0.85,4,225,2,0,0,0,management,high +0.81,0.52,4,221,6,0,0,0,marketing,high +0.95,0.57,2,263,3,0,0,0,marketing,low +0.88,0.66,4,218,4,1,0,0,marketing,low +0.87,0.68,5,236,4,0,0,0,sales,high +0.73,0.68,5,133,2,0,0,0,sales,low +0.98,0.73,2,237,3,0,0,0,sales,medium +0.77,0.48,3,204,6,0,0,0,sales,high +0.76,0.99,3,166,3,0,0,0,sales,medium +0.21,0.93,4,189,2,1,0,0,sales,medium +0.72,0.63,4,251,3,0,0,0,sales,medium +0.41,0.56,2,121,2,0,0,0,sales,medium +0.9,0.56,3,149,2,0,0,0,sales,high +0.96,0.9,5,198,2,0,0,0,sales,medium +0.61,0.48,4,163,3,0,0,0,sales,medium +0.6,0.8,4,222,2,0,0,0,sales,medium +0.5,0.76,2,107,4,0,0,0,sales,high +0.79,0.61,4,162,2,0,0,0,sales,medium +0.32,0.69,6,192,3,0,0,0,sales,high +0.85,0.59,5,236,3,0,0,0,sales,low +0.9,0.62,5,225,2,0,0,0,sales,medium +0.74,0.54,4,167,2,0,0,0,sales,medium +0.21,0.76,6,219,4,1,0,0,sales,medium +0.91,0.61,3,255,3,0,0,0,accounting,medium +0.9,0.66,5,137,2,0,0,0,accounting,low +0.74,0.99,4,193,3,0,0,0,accounting,low +0.76,0.75,3,239,2,0,0,0,hr,low +0.45,0.61,5,179,5,0,0,0,hr,low +0.73,0.63,3,205,2,1,0,0,hr,low +0.6,0.73,3,140,5,1,0,0,hr,low +0.8,0.77,5,256,2,0,0,0,technical,low +0.53,0.7,4,243,3,0,0,0,technical,low +0.97,0.63,5,163,3,0,0,0,technical,low +0.64,0.99,3,167,2,0,0,0,technical,low +0.92,0.59,4,190,5,0,0,0,technical,high +0.6,0.57,5,145,3,1,0,0,technical,low +1,0.6,4,265,4,0,0,0,technical,low +0.69,0.63,4,272,2,0,0,0,technical,low +0.53,0.45,5,140,5,0,0,0,technical,low +0.63,0.58,4,236,2,0,0,0,technical,high +0.57,0.89,4,255,3,1,0,0,technical,low +0.79,0.45,5,131,6,0,0,0,support,low +0.68,0.92,4,209,6,0,0,0,support,low +0.56,0.61,3,250,2,0,0,0,support,high +0.48,0.51,3,201,2,1,0,0,support,low +0.59,0.67,4,271,2,0,0,0,support,medium +0.34,0.76,6,237,5,0,0,0,support,high +0.98,0.87,3,239,4,0,0,0,support,medium +0.36,0.45,2,135,3,1,0,0,support,high +0.6,0.58,2,182,2,0,0,0,support,medium +0.24,0.54,6,193,4,0,0,0,support,medium +0.67,0.72,4,192,3,1,0,0,support,medium +0.17,0.6,5,144,6,0,0,0,technical,medium +0.57,0.58,3,251,3,0,0,0,technical,medium +0.7,0.85,3,161,2,0,0,0,technical,medium +0.73,0.62,3,171,3,0,0,0,management,medium +0.61,0.86,4,153,5,0,0,0,IT,medium +0.95,0.96,4,161,2,0,0,0,IT,high +0.85,0.55,3,226,4,0,0,0,IT,low +0.72,0.9,3,193,3,0,0,0,IT,medium +0.84,0.66,4,204,3,0,0,0,IT,medium +0.57,0.47,2,158,2,0,0,0,product_mng,medium +0.69,0.69,3,236,4,0,0,0,product_mng,medium +0.57,0.68,4,191,3,0,0,0,product_mng,medium +0.52,0.59,6,104,4,0,0,0,product_mng,medium +0.56,0.55,3,245,2,0,0,0,IT,medium +0.75,0.74,3,186,3,1,0,0,RandD,medium +0.98,0.75,5,168,4,1,0,0,RandD,medium +0.48,0.55,4,262,3,1,0,0,RandD,high +0.35,0.67,2,116,3,0,0,0,RandD,low +0.66,0.93,4,187,2,0,0,0,RandD,low +0.79,0.9,5,184,3,0,0,0,marketing,low +0.86,0.53,4,155,3,0,0,0,marketing,high +0.88,1,5,190,2,0,0,0,sales,low +0.83,0.64,3,242,3,0,0,0,accounting,low +0.8,0.64,5,204,2,0,0,0,support,low +0.64,0.69,4,232,3,0,0,0,technical,high +0.72,0.59,4,245,2,0,0,0,management,low +0.67,0.61,3,251,2,0,0,0,marketing,low +0.75,0.7,4,179,2,0,0,0,marketing,low +0.65,0.95,4,153,2,0,0,0,marketing,low +0.98,0.98,5,210,6,0,0,0,sales,low +0.68,0.8,2,257,2,1,0,0,sales,low +0.52,0.37,3,137,4,0,0,0,sales,low +0.68,0.93,4,179,2,0,0,0,sales,medium +0.92,0.74,4,213,3,0,0,0,sales,medium +0.86,0.79,3,106,6,1,0,0,sales,medium +0.5,0.99,4,272,2,0,0,0,sales,medium +0.35,0.37,4,153,2,0,0,0,sales,medium +0.76,0.97,5,172,3,0,0,0,sales,medium +0.66,0.95,4,224,2,0,0,0,sales,medium +0.58,0.71,3,230,3,1,0,0,sales,medium +0.55,0.97,4,222,4,0,0,0,sales,medium +0.9,0.53,3,270,3,0,0,0,sales,medium +0.75,0.71,4,205,3,0,0,0,sales,medium +0.9,0.63,4,134,3,1,0,0,sales,medium +0.14,0.54,5,275,4,1,0,0,sales,high +0.86,0.57,4,183,3,0,0,0,sales,low +0.56,0.84,4,143,4,0,0,0,sales,medium +0.54,0.63,5,259,2,0,0,0,sales,medium +0.36,0.8,5,186,4,0,0,0,accounting,medium +0.82,0.59,3,155,3,0,0,0,accounting,medium +0.49,0.42,2,266,3,0,0,0,accounting,low +0.77,0.97,3,215,2,0,0,0,hr,low +0.64,0.83,4,179,3,0,0,0,hr,low +0.93,0.53,3,217,3,0,0,0,hr,low +0.96,0.94,5,235,3,0,0,0,hr,low +0.6,0.97,3,164,2,0,0,0,technical,low +0.58,0.55,3,178,5,0,0,0,technical,low +0.52,0.49,5,170,3,0,0,0,technical,low +0.74,0.79,5,241,3,0,0,0,technical,low +0.64,0.99,4,222,2,0,0,0,technical,low +0.93,0.59,3,233,3,0,0,0,technical,low +0.76,0.49,5,243,3,0,0,0,technical,low +0.5,0.54,4,175,2,0,0,0,technical,low +0.79,0.55,4,266,3,0,0,0,technical,low +0.97,0.95,5,201,2,0,0,0,technical,low +0.6,0.49,5,259,4,0,0,0,technical,low +0.84,0.73,5,105,5,0,0,0,support,low +0.75,0.99,5,189,3,0,0,0,support,low +0.24,0.91,4,232,2,0,0,0,support,low +0.24,0.91,5,258,6,0,0,0,support,low +0.51,0.58,5,173,3,0,0,0,support,low +0.5,0.88,4,147,3,0,0,0,support,medium +0.66,0.36,3,256,6,0,0,0,support,medium +0.97,0.77,3,206,4,0,0,0,support,medium +0.61,0.5,4,175,3,0,0,0,support,medium +0.77,0.49,4,274,2,1,0,0,support,medium +0.74,0.64,3,229,3,0,0,0,support,medium +0.92,0.98,4,161,3,0,0,0,technical,medium +0.78,0.99,2,188,2,0,0,0,technical,medium +0.56,0.57,3,205,3,0,0,0,technical,medium +0.82,0.63,3,246,3,0,0,0,management,medium +0.26,0.98,5,161,5,0,0,0,IT,medium +0.69,0.85,5,246,3,0,0,0,IT,medium +0.78,0.83,4,158,3,0,0,0,IT,high +0.67,0.86,3,175,3,0,0,0,IT,low +0.77,0.91,5,268,3,1,0,0,IT,medium +0.8,0.63,4,211,2,0,0,0,product_mng,medium +0.51,0.51,3,274,2,0,0,0,product_mng,medium +0.77,0.52,4,241,3,0,0,0,product_mng,medium +0.65,0.71,3,170,2,0,0,0,product_mng,low +0.58,0.53,3,287,5,0,0,0,IT,low +0.67,0.39,2,235,6,0,0,0,RandD,low +0.33,0.39,3,98,3,1,0,0,RandD,low +0.78,0.66,6,105,5,1,0,0,RandD,low +0.58,0.83,3,226,3,0,0,0,RandD,low +0.63,0.59,4,171,4,0,0,0,RandD,low +0.63,0.51,4,153,4,0,0,0,RandD,low +0.59,0.55,3,183,4,0,0,0,marketing,low +0.6,0.9,5,139,3,0,0,0,sales,low +0.93,0.9,5,210,3,0,0,0,accounting,low +0.78,0.77,2,177,4,0,0,0,support,low +0.65,0.6,3,148,2,0,0,0,technical,low +1,0.61,4,198,2,0,0,0,management,low +0.96,1,3,137,4,1,0,0,marketing,low +0.54,0.97,5,233,3,1,0,0,marketing,low +0.98,0.69,2,204,4,0,0,0,marketing,low +0.34,0.59,2,164,2,0,0,0,sales,low +0.71,0.53,5,162,2,0,0,0,sales,low +0.64,0.64,3,180,2,1,0,0,sales,low +0.71,0.93,2,199,2,0,0,0,sales,low +0.58,0.63,4,190,2,0,0,0,sales,medium +0.87,0.96,4,151,3,1,0,0,sales,medium +0.58,0.85,4,162,3,0,0,0,sales,medium +0.87,0.67,3,139,2,0,0,0,sales,medium +0.72,0.86,3,231,3,1,0,0,sales,medium +0.67,0.83,5,269,2,0,0,0,sales,medium +0.53,0.97,4,249,3,0,0,0,sales,medium +0.78,0.61,3,148,2,0,0,0,sales,medium +0.19,0.63,4,233,5,0,0,0,sales,medium +1,0.88,4,240,4,0,0,0,sales,medium +0.75,0.75,5,229,2,1,0,0,sales,medium +0.29,0.66,3,256,2,1,0,0,sales,medium +0.37,0.7,2,188,2,0,0,0,sales,high +0.78,0.5,3,167,2,0,0,0,sales,low +0.24,0.64,5,190,4,0,0,0,sales,medium +0.49,0.7,4,168,3,0,0,0,accounting,medium +0.18,0.64,6,154,5,0,0,0,accounting,medium +0.76,0.85,4,135,3,0,0,0,accounting,medium +0.5,0.97,4,217,3,0,0,0,hr,low +0.82,0.94,3,253,2,0,0,0,hr,low +0.97,0.94,3,180,3,0,0,0,hr,low +0.72,0.9,4,225,2,0,0,0,hr,low +0.98,0.64,4,134,3,1,0,0,technical,low +0.76,0.73,3,192,2,0,0,0,technical,low +0.72,0.88,3,224,3,0,0,0,technical,low +0.96,0.91,3,260,5,0,0,0,technical,low +0.62,0.78,3,178,3,1,0,0,technical,low +0.25,0.98,4,166,5,1,0,0,technical,low +0.82,0.56,5,180,3,0,0,0,technical,low +0.59,0.9,3,189,2,0,0,0,technical,low +0.94,0.73,3,154,3,0,0,0,technical,low +0.72,0.88,3,236,3,0,0,0,technical,low +0.53,0.78,5,198,3,0,0,0,technical,low +0.67,0.83,3,148,3,0,0,0,support,low +0.99,0.52,4,205,2,0,0,0,support,low +0.64,0.53,4,133,3,0,0,0,support,low +0.61,0.57,4,160,3,1,0,0,support,low +0.89,0.85,4,201,2,1,0,0,support,low +0.61,0.7,5,157,4,0,0,0,support,low +0.9,0.74,3,260,2,0,0,0,support,medium +0.96,0.51,5,152,3,0,0,0,support,medium +0.62,0.55,4,218,3,0,0,0,support,medium +0.89,0.57,3,252,2,0,0,0,support,medium +0.52,0.67,4,216,3,0,0,0,support,medium +0.66,0.99,3,183,2,0,0,0,technical,medium +0.96,0.6,5,269,2,0,0,0,technical,medium +0.95,0.89,5,132,4,0,0,0,technical,medium +0.75,0.98,4,170,4,0,0,0,management,medium +0.39,0.87,5,257,5,1,0,0,IT,medium +0.93,0.69,3,138,2,0,0,0,IT,medium +0.44,0.54,3,115,3,0,0,0,IT,medium +0.9,0.67,3,165,2,0,0,0,IT,high +0.75,0.81,3,214,3,0,0,0,IT,low +0.45,0.75,2,246,2,0,0,0,product_mng,medium +0.42,0.6,2,188,3,0,0,0,product_mng,medium +0.99,0.82,3,255,2,0,0,0,product_mng,medium +0.89,0.91,4,190,2,0,0,0,product_mng,medium +0.96,0.9,4,164,4,0,0,0,IT,low +0.5,0.46,3,165,3,0,0,0,RandD,low +0.59,0.59,3,141,3,0,0,0,RandD,low +0.57,0.69,3,154,2,0,0,0,RandD,low +1,0.87,3,165,2,0,0,0,RandD,low +0.6,0.59,5,266,2,0,0,0,RandD,low +0.21,0.85,6,235,6,0,0,0,RandD,low +0.63,0.83,4,159,2,0,0,0,marketing,low +0.8,0.82,3,218,3,0,0,0,sales,low +0.51,0.96,3,149,4,0,0,0,accounting,low +0.89,0.96,5,239,3,0,0,0,support,low +0.83,0.58,4,225,3,0,0,0,technical,low +0.77,0.74,6,247,3,0,0,0,management,low +0.79,0.99,4,183,2,0,0,0,marketing,low +0.63,0.85,5,214,2,0,0,0,marketing,low +0.68,0.48,5,113,2,0,0,0,marketing,low +0.74,0.69,4,244,2,0,0,0,sales,low +0.49,0.67,6,286,4,0,0,0,sales,low +0.46,0.55,3,139,2,0,0,0,sales,medium +0.9,0.91,5,176,3,0,0,0,sales,medium +0.7,0.67,5,136,3,0,0,0,sales,medium +0.84,0.71,4,222,2,0,0,0,sales,medium +0.89,0.77,4,269,4,0,0,0,sales,medium +0.59,0.87,4,183,2,0,0,0,sales,medium +0.57,0.72,3,206,3,0,0,0,sales,medium +0.53,0.49,3,158,3,0,0,0,sales,medium +0.83,0.89,4,136,3,0,0,0,sales,medium +0.51,0.66,4,182,2,0,0,0,sales,medium +0.78,0.61,4,268,3,0,0,0,sales,medium +0.52,0.69,3,144,3,0,0,0,sales,medium +0.42,0.5,5,286,4,0,0,0,sales,high +0.61,0.38,2,268,3,0,0,0,sales,low +0.85,1,3,255,3,0,0,0,sales,medium +0.17,0.85,6,245,5,0,0,0,sales,medium +0.79,0.52,3,134,2,1,0,0,sales,medium +0.56,0.98,3,251,3,1,0,0,accounting,medium +0.5,0.73,5,165,2,0,0,0,accounting,low +0.51,0.53,3,223,2,1,0,0,accounting,low +0.77,0.67,4,225,4,0,0,0,hr,low +0.84,0.9,3,196,3,1,0,0,hr,low +0.21,0.49,3,253,3,0,0,0,hr,low +0.65,0.57,5,222,3,0,0,0,hr,low +0.95,0.87,4,135,3,0,0,0,technical,low +0.8,0.75,4,217,2,0,0,0,technical,low +0.77,0.85,5,192,2,0,0,0,technical,low +0.57,0.7,3,172,3,0,0,0,technical,low +0.92,0.55,4,183,3,0,0,0,technical,low +1,0.71,5,186,2,0,0,0,technical,low +0.85,0.67,4,163,3,0,0,0,technical,low +0.57,0.8,4,262,3,0,0,0,technical,low +0.66,0.68,3,202,3,0,0,0,technical,low +0.85,0.8,4,248,3,0,0,0,technical,low +0.99,0.5,5,214,2,0,0,0,technical,low +0.91,0.82,4,260,4,0,0,0,support,low +0.96,0.97,4,260,3,0,0,0,support,low +0.49,0.52,4,251,2,0,0,0,support,low +0.39,0.85,5,179,5,0,0,0,support,low +0.87,0.74,4,178,2,1,0,0,support,medium +0.19,0.85,6,210,4,0,0,0,support,medium +0.9,0.83,3,273,4,0,0,0,support,medium +0.5,0.5,5,166,2,0,0,0,support,medium +0.7,0.9,5,246,2,0,0,0,support,medium +0.52,0.55,5,192,3,0,0,0,support,medium +0.71,0.69,3,274,3,0,0,0,support,medium +0.4,0.41,3,232,3,0,0,0,technical,medium +0.96,0.53,3,158,4,0,0,0,technical,medium +0.86,0.92,5,137,3,0,0,0,technical,medium +0.68,0.85,3,209,2,0,0,0,management,medium +0.56,0.64,3,206,2,0,0,0,IT,medium +0.65,0.56,3,230,2,0,0,0,IT,high +0.98,0.61,5,239,3,0,0,0,IT,low +0.18,0.51,5,159,6,0,0,0,IT,medium +0.66,0.65,4,244,2,0,0,0,IT,medium +0.14,0.51,5,259,5,0,0,0,product_mng,medium +0.94,0.8,5,245,3,1,0,0,product_mng,medium +0.56,1,3,141,2,1,0,0,product_mng,low +0.56,0.8,5,202,4,0,0,0,product_mng,low +0.59,0.89,5,143,3,1,0,0,IT,low +0.63,0.62,4,286,5,1,0,0,RandD,low +0.97,0.88,5,173,3,0,0,0,RandD,low +0.76,0.7,5,195,3,0,0,0,RandD,low +0.85,0.58,4,167,4,0,0,0,RandD,low +0.23,0.73,5,197,4,1,0,0,RandD,low +0.68,0.62,3,255,5,0,0,0,RandD,low +0.71,0.73,3,274,3,0,0,0,marketing,low +0.5,0.59,3,192,2,0,0,0,sales,low +0.61,0.7,3,225,3,0,0,0,accounting,low +0.99,0.65,3,209,2,1,0,0,support,low +0.97,0.86,5,222,3,0,0,0,technical,low +0.82,0.71,5,208,2,0,0,0,management,low +0.72,0.68,5,162,5,0,0,0,marketing,low +0.53,0.74,3,135,2,0,0,0,marketing,low +0.55,0.87,4,200,3,0,0,0,marketing,low +0.52,0.53,4,159,4,0,0,0,sales,low +0.8,0.81,5,156,2,0,0,0,sales,low +0.51,0.95,4,169,3,1,0,0,sales,low +0.66,0.65,4,154,3,0,0,0,sales,medium +0.56,0.43,2,169,3,0,0,0,sales,medium +0.5,0.84,3,233,3,1,0,0,sales,medium +0.94,0.78,3,218,2,1,0,0,sales,medium +0.42,0.8,4,279,6,0,0,0,sales,medium +0.6,0.61,3,195,3,0,0,0,sales,medium +0.55,0.71,4,223,3,0,0,0,sales,medium +0.76,0.72,3,275,4,1,0,0,sales,medium +0.84,0.74,3,234,3,1,0,0,sales,medium +0.33,0.62,4,113,6,0,0,0,sales,medium +0.61,0.95,3,133,5,0,0,0,sales,medium +0.91,0.93,5,158,4,0,0,0,sales,medium +0.73,0.74,4,214,3,0,0,0,sales,high +0.87,0.67,4,272,4,0,0,0,sales,low +0.38,0.42,2,127,4,0,0,0,sales,medium +0.8,0.51,4,141,3,1,0,0,sales,medium +0.69,0.8,5,263,3,1,0,0,accounting,medium +0.99,0.92,5,174,5,0,0,0,accounting,medium +0.92,0.76,5,246,2,1,0,0,accounting,low +0.6,0.88,3,201,2,0,0,0,hr,low +0.89,0.93,3,181,3,0,0,0,hr,low +0.91,0.93,3,238,2,0,0,0,hr,low +0.35,0.52,3,167,2,0,0,0,hr,low +0.88,0.68,5,224,2,0,0,0,technical,low +0.66,0.69,3,182,3,1,0,0,technical,low +0.21,0.55,4,189,2,0,0,0,technical,low +0.78,0.64,3,169,2,1,0,0,technical,medium +0.21,0.96,4,287,5,0,0,0,technical,medium +0.64,0.94,3,150,2,0,0,0,technical,medium +0.68,0.95,4,146,2,0,0,0,technical,medium +0.99,0.87,4,162,4,0,0,0,technical,medium +0.85,0.55,4,158,5,0,0,0,technical,medium +0.86,0.51,3,185,2,0,0,0,technical,medium +0.89,0.98,3,214,3,0,0,0,technical,medium +0.49,0.85,4,200,3,0,0,0,support,medium +0.76,0.97,4,219,2,0,0,0,support,medium +0.79,0.87,3,218,3,0,0,0,support,medium +0.89,0.64,4,237,2,0,0,0,support,medium +0.34,0.51,3,105,3,0,0,0,support,medium +0.81,0.92,3,251,3,1,0,0,support,medium +0.96,0.7,3,227,2,0,0,0,support,medium +0.7,0.87,3,158,2,0,0,0,support,medium +0.92,0.61,4,252,2,0,0,0,support,medium +0.5,0.76,4,198,3,0,0,0,support,medium +0.75,0.72,2,192,3,0,0,0,support,medium +0.42,0.38,2,139,4,0,0,0,technical,medium +0.29,0.4,6,205,3,0,0,0,technical,medium +0.91,0.48,3,224,3,0,0,0,technical,medium +0.55,0.97,4,267,4,0,0,0,management,medium +0.57,0.81,4,200,3,1,0,0,IT,medium +0.27,0.48,3,97,6,0,0,0,IT,medium +0.7,0.43,6,253,3,0,0,0,IT,high +0.63,0.68,4,191,2,0,0,0,IT,high +0.97,0.63,5,199,2,1,0,0,IT,high +0.28,0.52,3,127,4,0,0,0,product_mng,high +0.7,0.6,3,187,2,0,0,0,product_mng,high +0.83,0.51,4,215,3,0,0,0,product_mng,high +0.22,0.76,4,176,6,1,0,0,product_mng,high +0.55,0.47,3,194,2,0,0,0,IT,high +0.33,0.77,3,216,3,0,0,0,RandD,high +0.5,0.78,4,185,3,0,0,0,RandD,high +0.93,0.88,5,140,3,0,0,0,RandD,high +0.77,0.66,3,260,4,0,0,0,RandD,high +0.93,0.97,5,137,4,0,0,0,RandD,low +0.72,1,4,151,2,0,0,0,RandD,low +0.78,0.53,3,152,2,0,0,0,marketing,low +0.55,0.75,4,166,2,0,0,0,sales,low +0.39,0.86,3,261,2,0,0,0,accounting,low +0.67,0.78,3,235,3,0,0,0,support,low +0.61,0.89,3,201,2,0,0,0,technical,low +0.6,0.69,6,250,5,1,0,0,management,low +0.48,0.64,4,146,2,0,0,0,marketing,low +0.75,0.84,4,195,3,0,0,0,marketing,low +0.87,0.58,4,259,3,0,0,0,marketing,low +0.51,0.54,4,166,4,1,0,0,sales,low +0.63,0.9,4,188,4,1,0,0,sales,low +0.6,0.57,3,203,2,0,0,0,sales,low +0.7,0.99,3,167,3,0,0,0,sales,low +0.5,0.99,2,258,3,1,0,0,sales,medium +0.59,0.51,2,126,3,0,0,0,sales,medium +0.52,0.39,6,246,4,0,0,0,sales,medium +0.55,0.49,3,205,3,0,0,0,sales,medium +0.81,0.62,5,201,3,1,0,0,sales,medium +0.94,0.98,4,197,3,0,0,0,sales,medium +0.98,0.61,3,272,3,0,0,0,sales,medium +0.83,0.84,4,206,2,0,0,0,sales,medium +0.93,0.62,3,184,3,0,0,0,sales,medium +0.99,0.54,3,199,2,0,0,0,sales,medium +0.55,0.57,4,220,3,0,0,0,sales,medium +0.96,0.83,3,233,3,0,0,0,sales,medium +0.28,0.77,3,221,3,0,0,0,sales,high +0.97,0.6,6,168,5,1,0,0,sales,high +0.8,0.78,3,251,3,0,0,0,sales,high +0.75,0.55,2,188,3,0,0,0,accounting,high +0.89,0.88,3,203,3,0,0,0,accounting,high +0.6,0.76,5,168,2,1,0,0,accounting,high +0.73,0.98,3,227,2,1,0,0,hr,high +0.88,0.75,4,159,2,0,0,0,hr,high +0.5,0.7,3,159,3,0,0,0,hr,low +0.53,0.78,5,275,5,0,0,0,hr,low +0.95,0.43,6,283,2,0,0,0,technical,low +0.94,0.53,5,169,3,0,0,0,technical,low +0.49,0.8,3,227,4,1,0,0,technical,low +0.59,0.57,3,147,4,0,0,0,technical,low +0.51,0.91,3,227,2,0,0,0,technical,low +0.66,0.66,4,166,3,0,0,0,technical,low +0.76,0.94,4,168,6,0,0,0,technical,medium +0.12,0.59,3,229,6,0,0,0,technical,medium +0.84,0.65,3,134,3,0,0,0,technical,medium +0.94,0.81,3,196,3,0,0,0,technical,medium +0.63,0.84,4,181,3,0,0,0,technical,medium +0.79,0.99,4,177,3,1,0,0,support,medium +0.85,0.68,3,272,2,1,0,0,support,medium +0.74,0.52,3,213,3,0,0,0,support,medium +0.23,0.75,6,220,3,0,0,0,support,medium +0.62,0.51,4,274,2,0,0,0,support,medium +0.36,0.56,6,242,6,0,0,0,support,medium +0.7,0.83,4,182,3,0,0,0,support,medium +0.57,0.75,5,172,4,0,0,0,support,medium +0.83,0.99,3,226,3,0,0,0,support,medium +0.71,0.96,3,132,2,0,0,0,support,medium +0.23,0.72,6,121,3,0,0,0,support,medium +0.59,0.69,4,207,2,0,0,0,technical,medium +0.69,0.61,2,141,3,0,0,0,technical,medium +0.63,0.81,5,189,3,0,0,0,technical,medium +0.9,0.59,6,269,4,1,0,0,management,medium +0.31,0.57,4,200,4,0,0,0,IT,medium +0.92,0.62,3,199,2,0,0,0,IT,medium +0.96,0.87,4,213,3,0,0,0,IT,medium +0.66,0.51,6,105,4,0,0,0,IT,high +0.48,0.97,4,141,2,0,0,0,IT,low +0.15,0.55,3,255,3,1,0,0,product_mng,medium +0.59,0.79,3,217,4,0,0,0,product_mng,medium +0.66,0.85,6,165,5,0,0,0,product_mng,medium +0.69,0.92,5,220,2,0,0,0,product_mng,medium +0.65,0.79,4,241,4,0,0,0,IT,medium +0.58,0.94,5,274,3,0,0,0,RandD,medium +0.72,0.57,4,224,4,0,0,0,RandD,medium +0.65,0.99,5,240,5,0,0,0,RandD,medium +0.63,0.77,5,210,3,0,0,0,RandD,medium +0.55,0.87,3,215,2,0,0,0,RandD,medium +0.74,0.56,4,254,2,0,0,0,marketing,low +0.58,0.84,4,150,4,1,0,0,sales,low +0.71,0.72,4,177,3,0,0,0,accounting,low +0.83,0.37,5,101,4,1,0,0,support,low +0.63,0.52,3,183,2,0,0,0,technical,low +0.56,0.61,3,224,3,0,0,0,management,low +0.88,0.55,3,263,3,0,0,0,marketing,low +0.82,0.55,3,207,2,0,0,0,marketing,high +0.69,0.72,3,243,3,0,0,0,marketing,low +0.57,0.54,3,157,4,1,0,0,sales,high +0.75,0.69,3,242,3,0,0,0,sales,high +0.6,0.98,4,265,2,0,0,0,sales,low +0.96,0.92,3,196,4,0,0,0,sales,low +0.75,0.67,4,135,2,0,0,0,sales,high +1,0.61,6,270,3,0,0,0,sales,low +0.92,0.97,4,201,2,0,0,0,sales,medium +0.84,0.93,5,225,4,0,0,0,sales,high +0.82,0.77,4,205,3,0,0,0,sales,medium +0.74,0.42,3,131,3,0,0,0,sales,medium +0.21,0.39,2,118,4,0,0,0,sales,medium +0.62,0.64,5,187,3,0,0,0,sales,medium +0.54,0.48,3,275,2,0,0,0,sales,high +0.55,0.97,5,125,4,0,0,0,sales,medium +0.84,0.55,4,270,3,1,0,0,sales,medium +0.61,0.56,2,123,2,0,0,0,sales,medium +0.64,0.53,3,281,3,0,0,0,sales,high +0.92,0.51,3,223,2,0,0,0,sales,medium +0.86,0.87,3,268,2,0,0,0,sales,high +0.6,0.74,4,174,3,0,0,0,accounting,low +0.86,0.92,3,162,3,1,0,0,accounting,medium +0.55,0.51,3,192,3,0,0,0,accounting,medium +0.54,0.58,4,178,3,0,0,0,hr,medium +0.49,0.9,3,250,2,0,0,0,hr,medium +0.98,0.72,3,262,4,0,0,0,hr,low +0.55,0.55,5,194,3,1,0,0,hr,low +0.64,0.5,3,146,3,0,0,0,technical,low +0.54,0.53,4,245,2,0,0,0,technical,low +0.58,0.45,3,131,2,0,0,0,technical,low +0.57,0.37,3,108,4,0,0,0,technical,low +0.65,0.64,5,206,3,0,0,0,technical,low +0.6,0.4,3,146,4,1,0,0,technical,low +0.59,0.45,2,171,2,0,0,0,technical,low +0.77,0.5,4,173,2,1,0,0,technical,low +0.55,0.49,5,240,3,0,0,0,technical,high +0.5,0.6,4,199,2,0,0,0,technical,low +0.43,0.77,3,237,3,1,0,0,technical,low +0.58,0.84,3,258,4,0,0,0,support,low +0.66,0.68,4,269,3,1,0,0,support,low +0.7,0.8,5,245,4,0,0,0,support,high +0.82,0.54,4,164,3,0,0,0,support,low +0.49,0.49,4,256,3,1,0,0,support,low +0.99,0.79,4,213,3,0,0,0,support,low +0.96,0.73,3,193,3,1,0,0,support,high +0.7,0.57,3,179,2,0,0,0,support,low +0.22,0.89,6,278,5,1,0,0,support,medium +0.91,0.52,3,256,2,0,0,0,support,high +0.18,0.76,5,173,4,0,0,0,support,medium +0.84,0.68,4,179,3,0,0,0,technical,high +0.66,0.38,4,145,5,0,0,0,technical,medium +0.49,0.65,3,168,4,0,0,0,technical,medium +0.88,0.89,4,213,3,0,0,0,management,medium +0.69,0.91,6,150,5,0,0,0,IT,medium +0.83,0.75,3,262,3,0,0,0,IT,medium +0.56,0.84,4,149,4,1,0,0,IT,medium +0.95,0.77,5,139,2,0,0,0,IT,medium +0.56,1,3,272,2,0,0,0,IT,medium +0.93,0.73,3,252,4,0,0,0,product_mng,high +0.84,0.52,3,232,4,0,0,0,product_mng,low +0.84,0.48,3,266,2,0,0,0,product_mng,medium +0.52,0.65,4,264,3,0,0,0,product_mng,medium +0.98,0.8,4,142,2,0,0,0,IT,medium +0.66,0.64,5,208,4,0,0,0,RandD,medium +0.92,0.49,5,178,2,1,0,0,RandD,medium +0.71,0.8,5,192,3,0,0,0,RandD,medium +0.65,0.92,4,242,2,0,0,0,RandD,medium +0.23,0.47,4,277,5,0,0,0,RandD,medium +0.71,0.97,3,173,2,1,0,0,marketing,medium +0.21,0.65,4,276,6,0,0,0,marketing,high +0.7,0.72,2,189,3,0,0,0,sales,low +0.9,0.5,4,139,2,0,0,0,accounting,low +0.6,0.52,5,140,3,0,0,0,support,low +0.58,0.63,5,191,3,1,0,0,technical,high +0.73,0.72,5,178,2,0,0,0,management,low +0.56,0.67,4,184,3,0,0,0,marketing,low +0.97,0.57,3,144,3,0,0,0,marketing,low +0.92,0.91,3,160,2,0,0,0,marketing,high +0.77,0.68,3,225,2,0,0,0,sales,low +0.97,0.81,5,266,2,0,0,0,sales,low +0.7,0.69,5,154,2,0,0,0,sales,low +0.78,0.82,4,142,2,1,0,0,sales,low +0.77,0.87,3,207,4,1,0,0,sales,low +0.66,0.53,4,162,3,0,0,0,sales,low +0.25,0.98,6,287,5,1,0,0,sales,low +0.89,0.87,2,270,6,1,0,0,sales,medium +0.15,0.66,5,160,4,1,0,0,sales,medium +0.26,0.91,6,113,2,0,0,0,sales,medium +0.74,0.58,4,178,4,0,0,0,sales,medium +0.52,0.83,3,153,2,0,0,0,sales,medium +0.95,0.62,4,255,2,0,0,0,sales,medium +0.66,0.82,4,257,3,1,0,0,sales,medium +0.79,0.66,4,243,3,0,0,0,sales,medium +0.98,0.94,3,179,3,0,0,0,sales,medium +0.4,0.37,3,123,2,0,0,0,sales,medium +1,0.68,3,132,2,0,0,0,sales,medium +0.71,0.79,3,134,3,0,0,0,sales,medium +0.48,0.45,3,277,2,1,0,0,accounting,high +0.76,1,5,265,2,0,0,0,accounting,low +0.61,0.62,4,269,4,0,0,0,accounting,medium +0.74,0.9,4,156,4,0,0,0,hr,medium +0.24,0.94,6,237,5,0,0,0,hr,medium +0.79,0.97,3,271,2,0,0,0,hr,medium +0.75,0.98,3,206,2,0,0,0,hr,low +0.6,0.98,4,192,3,0,0,0,technical,low +0.72,0.95,4,230,3,0,0,0,technical,low +1,0.6,4,261,3,0,0,0,technical,low +0.55,0.88,3,173,3,1,0,0,technical,low +0.3,0.98,2,109,4,1,0,0,technical,low +0.89,0.59,3,247,4,0,0,0,technical,low +0.84,0.84,5,163,3,0,0,0,technical,low +0.67,0.64,4,149,4,0,0,0,technical,low +0.15,0.48,6,218,6,0,0,0,technical,low +0.59,0.75,4,194,2,0,0,0,technical,low +0.5,0.59,4,157,2,0,0,0,technical,low +0.23,0.68,5,244,3,0,0,0,support,low +0.95,0.58,5,169,2,0,0,0,support,low +0.31,0.53,2,146,3,1,0,0,support,low +0.47,0.55,5,207,3,0,0,0,support,low +0.26,0.95,3,195,5,0,0,0,support,low +0.55,0.64,6,148,4,0,0,0,support,low +0.89,0.58,3,272,2,0,0,0,support,low +0.88,0.68,3,185,2,0,0,0,support,low +0.98,0.62,5,260,2,1,0,0,support,low +0.96,0.48,3,182,2,1,0,0,support,medium +0.85,0.65,3,195,3,0,0,0,support,medium +0.96,0.85,3,168,3,0,0,0,technical,medium +0.85,0.88,3,198,4,1,0,0,technical,medium +0.59,0.93,5,172,2,0,0,0,technical,medium +0.51,0.5,4,216,2,1,0,0,management,medium +0.5,0.75,3,232,2,0,0,0,IT,medium +0.53,0.59,3,148,3,0,0,0,IT,medium +0.44,0.83,4,210,2,0,0,0,IT,medium +0.99,0.55,3,197,2,0,0,0,IT,medium +0.73,0.83,4,241,3,0,0,0,IT,medium +0.51,0.71,5,154,2,0,0,0,product_mng,medium +0.5,0.84,3,259,2,0,0,0,product_mng,high +0.52,0.76,4,106,2,1,0,0,product_mng,low +0.74,0.74,5,262,2,0,0,0,product_mng,medium +0.69,0.89,2,202,2,0,0,0,IT,medium +0.22,0.65,5,174,5,1,0,0,RandD,medium +0.49,0.89,4,240,2,0,0,0,RandD,medium +0.7,0.57,5,247,3,0,0,0,RandD,low +0.68,0.63,4,148,3,0,0,0,RandD,low +0.66,0.84,5,187,2,1,0,0,RandD,low +0.99,0.58,4,183,3,0,0,0,marketing,low +0.88,0.59,4,240,2,0,0,0,sales,low +0.2,0.54,4,149,3,0,0,0,accounting,low +0.56,0.44,2,130,3,0,0,0,support,low +0.68,0.85,4,203,2,0,0,0,technical,low +0.85,0.6,3,218,3,0,0,0,management,low +0.95,0.95,4,204,3,1,0,0,marketing,low +0.6,0.77,4,163,3,1,0,0,marketing,low +0.61,0.53,4,183,3,0,0,0,marketing,low +0.55,0.55,4,211,4,0,0,0,sales,low +0.64,0.78,5,156,5,1,0,0,sales,low +0.64,0.6,3,196,3,0,0,0,sales,low +0.87,0.54,4,162,2,0,0,0,sales,low +0.2,0.9,3,218,4,0,0,0,sales,low +0.99,0.64,4,135,2,1,0,0,sales,low +0.96,0.7,2,273,3,0,0,0,sales,low +0.53,0.65,3,241,3,0,0,0,sales,low +0.7,0.39,6,285,4,0,0,0,sales,low +0.68,0.61,6,236,3,0,0,0,sales,medium +0.96,0.48,4,222,3,0,0,0,sales,medium +0.64,0.64,4,242,3,0,0,0,sales,medium +0.86,0.65,5,166,3,0,0,0,sales,medium +0.87,0.84,3,172,3,0,0,0,sales,medium +0.53,0.56,4,249,2,0,0,0,sales,medium +0.72,0.98,4,180,2,0,0,0,sales,medium +0.83,0.59,4,197,4,0,0,0,sales,medium +0.97,0.54,5,185,2,0,0,0,sales,medium +0.92,0.76,3,171,2,0,0,0,sales,medium +0.82,0.95,6,191,6,0,0,0,accounting,medium +0.59,0.56,4,250,2,0,0,0,accounting,medium +0.84,0.95,5,199,3,0,0,0,accounting,high +0.71,0.84,3,139,2,0,0,0,hr,low +0.49,0.98,3,224,3,0,0,0,hr,medium +0.78,0.61,3,227,3,0,0,0,hr,medium +0.84,0.81,4,198,2,0,0,0,hr,medium +0.85,0.96,5,165,5,0,0,0,technical,medium +0.87,0.93,4,199,3,0,0,0,technical,low +0.94,0.84,5,203,3,0,0,0,technical,low +0.82,0.97,4,243,3,1,0,0,technical,low +0.78,0.78,3,135,3,0,0,0,technical,low +0.47,0.55,4,100,4,1,0,0,technical,low +0.5,0.48,2,150,3,1,0,0,technical,low +0.75,0.82,4,252,3,0,0,0,technical,low +0.36,0.39,3,98,3,0,0,0,technical,low +0.91,0.61,3,262,3,0,0,0,technical,low +0.87,0.68,3,257,3,0,0,0,technical,low +0.97,0.94,3,160,3,0,0,0,support,low +0.71,0.65,3,190,3,0,0,0,support,low +0.83,0.65,3,231,2,0,0,0,support,low +0.42,0.51,3,190,4,0,0,0,support,low +0.53,0.51,4,181,3,0,0,0,support,low +0.56,0.88,4,273,3,0,0,0,support,low +0.26,0.7,5,214,6,1,0,0,support,low +0.53,0.49,4,192,2,0,0,0,support,low +0.99,0.73,4,224,2,0,0,0,support,low +0.48,0.43,3,96,3,0,0,0,support,low +0.91,0.5,3,276,4,0,0,0,support,low +0.76,0.79,3,162,2,1,0,0,technical,medium +0.67,0.8,4,190,4,0,0,0,technical,medium +0.58,0.6,4,147,3,0,0,0,technical,medium +0.57,0.78,4,143,3,0,0,0,management,medium +0.55,0.57,5,280,6,1,0,0,IT,medium +0.79,0.49,3,137,2,0,0,0,IT,medium +0.48,0.98,3,259,6,0,0,0,IT,medium +0.68,0.69,4,176,3,1,0,0,IT,medium +0.19,0.64,5,231,4,1,0,0,IT,medium +0.99,0.48,3,104,3,0,0,0,product_mng,medium +0.3,0.76,5,224,2,0,0,0,product_mng,medium +0.81,0.85,4,202,3,1,0,0,product_mng,medium +0.58,0.74,4,180,3,0,0,0,product_mng,high +0.74,0.61,3,228,2,1,0,0,IT,low +0.59,0.74,5,165,2,0,0,0,RandD,medium +0.46,0.63,2,177,6,0,0,0,RandD,medium +0.58,0.43,3,194,2,1,0,0,RandD,medium +0.77,0.95,3,192,4,1,0,0,RandD,medium +0.79,0.77,4,171,2,0,0,0,RandD,low +0.51,0.95,3,187,2,0,0,0,marketing,low +0.7,0.58,3,205,3,0,0,0,sales,low +0.84,0.73,5,230,4,1,0,0,accounting,low +0.19,0.9,5,172,2,0,0,0,support,low +0.9,0.52,4,167,3,1,0,0,technical,low +0.19,0.91,5,145,3,0,0,0,management,low +0.96,0.53,3,166,3,0,0,0,marketing,low +0.87,1,3,148,3,0,0,0,marketing,low +0.5,0.89,5,223,3,0,0,0,marketing,low +0.88,0.58,2,123,4,0,0,0,sales,low +0.55,0.99,3,158,3,0,0,0,sales,low +0.89,0.86,3,223,2,0,0,0,sales,low +0.58,0.69,3,252,3,0,0,0,sales,low +0.58,0.96,5,143,2,0,0,0,sales,low +0.34,0.88,5,131,6,0,0,0,sales,low +0.54,0.65,5,206,4,1,0,0,sales,low +0.59,0.54,4,210,3,0,0,0,sales,low +0.88,0.96,4,262,3,0,0,0,sales,medium +0.72,0.69,4,147,3,0,0,0,sales,medium +0.79,0.75,4,259,3,0,0,0,sales,medium +0.51,0.73,4,174,3,0,0,0,sales,medium +0.84,0.84,3,150,4,0,0,0,sales,medium +0.95,0.67,4,219,2,0,0,0,sales,medium +0.58,0.88,5,178,4,0,0,0,sales,medium +0.69,0.98,3,269,3,1,0,0,sales,medium +0.17,0.64,6,205,5,1,0,0,sales,medium +0.81,0.72,3,232,3,1,0,0,sales,medium +0.41,0.5,3,193,3,0,0,0,sales,medium +0.12,0.42,3,110,2,0,0,0,accounting,medium +0.71,0.6,4,208,3,0,0,0,accounting,high +0.32,0.69,5,157,4,0,0,0,accounting,low +0.83,0.98,5,187,4,0,0,0,hr,medium +0.74,0.92,4,226,3,0,0,0,hr,medium +0.67,0.85,4,266,3,0,0,0,hr,medium +0.85,0.56,3,159,3,0,0,0,hr,medium +0.49,0.75,4,259,3,1,0,0,technical,low +0.7,0.74,4,150,3,1,0,0,technical,low +0.44,0.58,4,152,3,0,0,0,technical,low +0.5,0.87,5,245,2,0,0,0,technical,low +0.63,0.74,5,227,2,0,0,0,technical,low +0.87,0.77,4,261,3,0,0,0,technical,low +0.82,0.53,4,162,3,1,0,0,technical,low +0.97,0.89,4,193,3,0,0,0,technical,low +0.9,0.81,4,144,2,0,0,0,technical,low +0.41,0.5,6,151,2,0,0,0,technical,low +0.58,0.94,4,225,2,0,0,0,technical,low +0.77,0.5,5,170,2,0,0,0,support,low +0.89,0.75,4,246,3,1,0,0,support,low +0.64,0.72,4,254,3,0,0,0,support,low +0.31,0.79,2,193,4,0,0,0,support,low +0.6,0.88,4,175,3,0,0,0,support,low +0.2,1,3,123,4,0,0,0,support,low +0.13,0.6,3,178,5,0,0,0,support,low +0.95,0.9,3,259,2,0,0,0,support,low +0.15,0.96,5,201,6,0,0,0,support,low +0.22,0.98,4,185,3,0,0,0,support,low +0.33,0.51,2,166,3,0,0,0,support,medium +0.23,0.96,4,213,4,0,0,0,technical,medium +0.85,0.79,4,138,2,0,0,0,technical,medium +0.79,0.57,3,168,2,0,0,0,technical,medium +0.6,0.6,4,197,3,0,0,0,management,medium +0.89,0.74,5,220,3,0,0,0,IT,medium +0.65,0.92,3,101,3,1,0,0,IT,medium +0.61,0.7,4,175,3,1,0,0,IT,medium +0.4,0.79,5,181,5,0,0,0,IT,medium +0.49,0.57,3,157,3,0,0,0,IT,medium +0.95,0.75,3,247,2,0,0,0,product_mng,medium +0.85,1,5,244,2,0,0,0,product_mng,medium +0.24,0.39,4,152,5,0,0,0,product_mng,high +0.85,0.99,5,176,4,0,0,0,product_mng,low +0.99,0.98,5,241,2,0,0,0,IT,medium +0.49,0.49,4,240,2,0,0,0,RandD,medium +0.56,0.73,3,226,3,0,0,0,RandD,medium +0.65,0.66,6,240,4,0,0,0,RandD,medium +0.62,0.68,3,253,5,1,0,0,RandD,low +0.78,0.68,4,174,3,1,0,0,RandD,low +0.54,0.7,3,213,2,0,0,0,marketing,low +0.61,0.77,4,195,2,0,0,0,sales,low +0.49,0.99,6,230,4,0,0,0,accounting,low +0.29,0.85,2,248,6,1,0,0,support,low +0.64,0.79,4,274,2,1,0,0,technical,low +0.93,0.94,4,217,2,0,0,0,management,low +0.16,0.66,6,229,6,0,0,0,marketing,low +0.68,0.85,5,173,3,0,0,0,marketing,low +0.71,0.8,2,146,4,0,0,0,marketing,low +0.62,0.82,5,151,5,0,0,0,sales,low +0.74,0.75,2,137,3,1,0,0,sales,low +0.81,0.5,3,198,3,0,0,0,sales,low +0.2,0.82,4,190,5,0,0,0,sales,low +0.51,0.91,4,206,3,0,0,0,sales,low +0.55,0.99,4,238,3,0,0,0,sales,low +0.45,0.41,3,193,2,1,0,0,sales,low +0.91,0.61,4,176,3,0,0,0,sales,low +0.73,0.59,6,121,5,0,0,0,sales,low +0.98,0.88,4,145,2,0,0,0,sales,low +0.62,0.65,4,212,3,1,0,0,sales,medium +0.57,0.62,3,198,4,0,0,0,sales,medium +0.99,0.57,3,189,4,1,0,0,sales,medium +0.82,0.68,2,200,3,0,0,0,sales,medium +0.24,0.81,4,217,5,0,0,0,sales,medium +0.84,0.73,5,245,3,0,0,0,sales,medium +0.9,0.55,3,260,3,0,0,0,sales,medium +0.13,0.73,5,206,5,0,0,0,sales,medium +0.6,0.67,3,249,2,0,0,0,sales,medium +0.72,0.87,4,154,2,1,0,0,accounting,medium +0.68,0.61,4,147,3,0,0,0,accounting,medium +0.51,0.72,3,148,2,0,0,0,accounting,medium +0.74,0.58,3,220,2,0,0,0,hr,high +0.86,0.73,3,241,3,0,0,0,hr,low +0.85,0.51,3,242,3,0,0,0,hr,medium +0.63,0.85,2,156,3,1,0,0,hr,medium +0.74,0.87,3,155,3,0,0,0,technical,medium +0.6,0.5,3,211,3,0,0,0,technical,medium +0.69,0.82,4,137,2,1,0,0,technical,low +0.56,0.96,2,269,2,0,0,0,technical,low +0.5,0.67,2,142,3,0,0,0,technical,low +0.84,0.5,5,267,2,0,0,0,technical,low +0.93,0.48,5,134,6,0,0,0,technical,low +0.12,0.5,5,287,4,0,0,0,technical,low +0.52,0.58,4,134,3,0,0,0,technical,low +0.6,0.54,3,185,2,0,0,0,technical,low +0.71,1,3,181,4,0,0,0,technical,medium +0.21,0.81,5,169,4,0,0,0,support,medium +0.15,0.84,3,201,6,0,0,0,support,medium +0.38,0.55,2,215,6,0,0,0,support,medium +0.27,0.86,3,222,5,0,0,0,support,medium +0.86,0.64,4,137,2,0,0,0,support,medium +0.17,0.52,6,176,5,0,0,0,support,medium +0.66,0.69,3,257,2,0,0,0,support,medium +0.95,0.51,3,224,4,0,0,0,support,medium +0.59,0.92,5,226,3,0,0,0,support,medium +0.49,0.61,5,196,3,0,0,0,support,medium +0.9,0.88,5,256,4,0,0,0,support,medium +0.98,0.81,3,153,4,0,0,0,technical,medium +0.52,1,4,221,3,0,0,0,technical,medium +0.12,0.95,3,236,3,0,0,0,technical,medium +0.91,0.67,5,137,3,0,0,0,management,medium +0.99,0.62,4,256,2,0,0,0,IT,medium +0.49,0.8,4,161,2,0,0,0,IT,medium +0.92,0.51,4,167,3,1,0,0,IT,medium +0.21,0.84,3,194,2,0,0,0,IT,medium +0.89,0.9,3,231,3,0,0,0,IT,medium +0.84,0.81,4,152,2,1,0,0,product_mng,medium +0.72,0.68,3,150,3,1,0,0,product_mng,medium +0.57,0.46,3,207,3,0,0,0,product_mng,medium +0.9,0.69,4,172,3,0,0,0,product_mng,medium +0.59,0.75,2,273,2,0,0,0,IT,high +0.97,0.69,4,134,3,0,0,0,RandD,high +0.56,0.85,3,109,2,0,0,0,RandD,high +0.78,0.59,4,124,3,1,0,0,RandD,high +0.64,0.72,4,253,4,0,0,0,RandD,high +0.58,0.9,5,224,3,0,0,0,RandD,high +0.68,0.58,3,217,2,0,0,0,marketing,high +0.82,0.73,3,148,4,0,0,0,sales,high +0.83,0.78,5,240,3,0,0,0,accounting,high +0.49,0.49,2,226,3,0,0,0,support,high +0.57,0.95,4,176,3,0,0,0,technical,high +0.66,0.93,4,248,3,0,0,0,management,high +0.78,0.6,2,206,2,0,0,0,marketing,low +0.55,0.8,3,192,3,1,0,0,marketing,low +0.98,0.62,3,140,4,0,0,0,marketing,low +0.89,0.51,4,141,3,0,0,0,sales,low +0.67,0.83,3,220,3,0,0,0,sales,low +1,0.49,4,140,3,0,0,0,sales,low +0.67,0.44,4,194,2,1,0,0,sales,low +0.2,0.98,2,228,3,0,0,0,sales,low +0.71,0.87,4,238,3,0,0,0,sales,low +0.65,0.91,3,207,3,0,0,0,sales,low +0.82,0.82,4,164,2,0,0,0,sales,low +0.48,0.89,3,224,3,0,0,0,sales,low +0.96,0.9,4,201,3,0,0,0,sales,low +0.52,0.63,3,171,2,0,0,0,sales,low +0.24,0.78,5,131,5,0,0,0,sales,low +0.92,0.95,6,239,4,0,0,0,sales,medium +0.66,0.89,3,202,3,1,0,0,sales,medium +0.93,0.68,3,137,3,1,0,0,sales,medium +0.77,0.59,4,153,3,0,0,0,sales,medium +0.6,0.48,4,219,4,1,0,0,sales,medium +0.78,0.49,3,194,3,1,0,0,sales,medium +0.6,0.53,4,228,3,0,0,0,sales,medium +0.31,1,4,177,5,0,0,0,accounting,medium +0.49,0.68,3,181,3,0,0,0,accounting,medium +0.33,0.95,4,280,3,0,0,0,accounting,medium +0.76,0.91,3,133,2,0,0,0,hr,medium +0.65,0.63,3,237,3,0,0,0,hr,medium +0.88,0.75,5,152,3,0,0,0,hr,high +0.52,0.92,5,280,6,1,0,0,hr,high +0.48,0.5,6,253,4,0,0,0,technical,high +0.2,0.59,5,105,4,0,0,0,technical,high +0.93,0.84,3,159,3,0,0,0,technical,high +0.55,0.92,4,257,2,0,0,0,technical,high +0.73,0.64,3,202,4,0,0,0,technical,high +0.57,0.56,3,241,3,0,0,0,technical,high +0.63,0.8,3,267,3,0,0,0,technical,low +0.23,0.88,4,175,6,0,0,0,technical,low +0.93,0.53,3,257,2,1,0,0,technical,low +0.78,0.86,4,240,3,0,0,0,technical,low +0.75,0.73,5,181,3,1,0,0,technical,low +0.61,0.82,3,271,3,0,0,0,support,low +0.36,0.97,5,151,3,0,0,0,support,low +0.59,0.67,2,168,3,0,0,0,support,low +0.78,0.63,4,265,3,0,0,0,support,medium +0.93,0.53,5,204,2,0,0,0,support,medium +0.67,0.72,4,223,3,0,0,0,support,medium +0.52,0.63,4,136,2,0,0,0,support,medium +0.69,0.95,5,184,2,0,0,0,support,medium +0.25,0.8,5,186,4,1,0,0,support,medium +0.4,0.43,3,128,3,0,0,0,support,medium +0.98,0.83,5,211,3,0,0,0,support,medium +0.92,0.89,4,236,4,1,0,0,technical,medium +0.57,0.98,3,214,2,0,0,0,technical,medium +0.81,0.52,4,274,3,0,0,0,technical,medium +0.56,0.67,5,165,3,1,0,0,management,medium +0.86,0.71,5,235,4,0,0,0,IT,medium +0.74,0.9,4,189,2,0,0,0,IT,medium +0.57,0.61,3,112,5,0,0,0,IT,medium +0.9,0.64,3,163,3,0,0,0,IT,medium +0.8,0.57,3,162,2,0,0,0,IT,medium +0.22,0.8,4,149,5,0,0,0,product_mng,medium +0.73,0.84,4,238,2,0,0,0,product_mng,medium +0.48,0.47,3,160,3,0,0,0,product_mng,medium +0.52,0.94,3,263,3,0,0,0,product_mng,medium +0.53,0.71,4,271,3,0,0,0,IT,medium +0.97,0.48,4,221,3,0,0,0,RandD,medium +0.97,0.54,3,255,2,1,0,0,RandD,high +0.54,0.88,4,170,4,0,0,0,RandD,low +0.99,0.7,4,190,4,1,0,0,RandD,medium +0.79,0.76,4,216,4,0,0,0,RandD,medium +0.71,0.54,3,249,3,0,0,0,marketing,medium +0.82,0.76,3,174,3,0,0,0,sales,medium +0.6,0.7,4,265,4,1,0,0,accounting,medium +0.17,0.88,2,206,4,0,0,0,support,medium +0.73,0.6,4,222,3,0,0,0,technical,medium +0.69,0.54,5,152,3,1,0,0,management,medium +0.86,0.61,4,221,2,0,0,0,marketing,medium +0.67,0.55,5,239,2,0,0,0,marketing,medium +0.25,0.96,6,217,4,0,0,0,marketing,low +0.65,0.66,3,164,2,0,0,0,sales,low +0.81,0.56,3,142,3,0,0,0,sales,low +0.58,0.53,4,181,3,1,0,0,sales,low +0.14,0.57,4,207,5,0,0,0,sales,low +0.15,0.37,2,167,3,0,0,0,sales,low +0.98,0.51,3,243,2,0,0,0,sales,low +0.91,0.5,4,231,3,0,0,0,sales,high +0.86,0.71,4,250,3,1,0,0,sales,low +0.56,0.63,3,145,2,0,0,0,sales,high +0.58,0.77,4,190,6,0,0,0,sales,high +0.54,0.64,2,128,2,0,0,0,sales,low +0.59,0.99,5,254,3,1,0,0,sales,low +0.92,0.88,3,145,4,1,0,0,sales,high +0.82,0.8,4,246,3,0,0,0,sales,low +0.86,0.68,5,246,2,0,0,0,sales,medium +0.66,0.77,5,236,3,0,0,0,sales,high +0.85,0.66,3,234,3,0,0,0,sales,medium +0.8,0.6,3,247,2,0,0,0,sales,medium +0.99,0.61,3,154,3,0,0,0,sales,medium +0.25,0.45,3,228,5,0,0,0,accounting,medium +0.93,0.99,4,209,3,1,0,0,accounting,high +0.5,0.54,5,173,2,0,0,0,accounting,medium +0.68,0.71,4,206,2,0,0,0,hr,medium +0.62,0.87,3,151,2,1,0,0,hr,medium +0.99,0.54,4,196,4,1,0,0,hr,high +0.93,0.52,3,229,2,1,0,0,hr,medium +0.2,0.75,3,235,4,0,0,0,technical,high +0.58,0.61,4,200,3,0,0,0,technical,low +0.94,0.76,4,261,6,0,0,0,technical,medium +0.18,0.54,4,165,3,0,0,0,technical,medium +0.18,0.62,3,165,4,0,0,0,technical,medium +0.7,0.74,5,255,2,0,0,0,technical,medium +0.93,0.92,5,185,5,0,0,0,technical,low +0.5,0.76,4,229,3,1,0,0,technical,low +0.54,0.71,3,153,3,0,0,0,technical,low +0.74,0.63,4,238,2,0,0,0,technical,low +0.66,0.67,3,199,2,0,0,0,technical,low +0.61,0.87,3,185,2,1,0,0,support,low +0.74,0.98,3,196,6,1,0,0,support,low +0.48,0.51,4,201,4,0,0,0,support,low +0.65,0.84,3,189,2,1,0,0,support,low +0.94,0.49,2,250,5,0,0,0,support,low +0.91,0.79,4,254,2,0,0,0,support,high +0.87,0.65,3,212,3,1,0,0,support,low +0.23,0.79,5,196,5,1,0,0,support,low +0.4,0.73,4,146,3,0,0,0,support,low +0.68,0.85,3,250,3,0,0,0,support,low +0.95,0.88,3,266,2,1,0,0,support,high +0.63,0.96,4,133,2,0,0,0,technical,low +0.47,0.53,4,181,3,0,0,0,technical,low +0.2,0.5,6,282,6,1,0,0,technical,low +0.72,0.84,2,173,2,1,0,0,management,high +0.56,0.57,5,237,2,0,0,0,IT,low +0.7,0.74,3,202,2,0,0,0,IT,medium +0.59,0.82,3,162,2,0,0,0,IT,high +0.78,0.96,3,248,3,0,0,0,IT,medium +0.62,0.64,3,165,3,0,0,0,IT,high +0.71,0.61,2,216,2,0,0,0,product_mng,medium +0.72,0.45,4,143,6,0,0,0,product_mng,medium +0.76,0.77,3,254,3,0,0,0,product_mng,medium +0.83,0.56,3,186,3,0,0,0,product_mng,medium +0.92,0.99,4,245,4,0,0,0,IT,medium +0.67,0.77,3,157,3,0,0,0,RandD,medium +0.56,0.45,3,184,3,0,0,0,RandD,medium +0.91,0.63,4,210,3,0,0,0,RandD,medium +0.56,0.86,4,137,2,1,0,0,RandD,high +0.72,0.95,3,145,2,0,0,0,RandD,low +0.56,0.86,4,181,3,0,0,0,marketing,medium +0.92,0.56,3,174,3,0,0,0,sales,medium +0.74,0.88,5,183,3,1,0,0,accounting,medium +0.88,0.84,4,171,4,1,0,0,support,medium +0.69,0.72,2,190,2,0,0,0,technical,medium +0.87,0.78,4,142,3,0,0,0,management,medium +0.98,0.5,3,198,3,0,0,0,marketing,medium +0.9,0.61,3,185,3,0,0,0,marketing,medium +0.49,0.87,4,171,3,1,0,0,marketing,medium +0.78,0.57,4,264,3,0,0,0,sales,high +0.58,0.98,3,175,3,0,0,0,sales,low +0.91,0.88,5,210,2,1,0,0,sales,low +0.92,0.75,4,212,3,0,0,0,sales,low +0.36,0.66,4,97,2,0,0,0,sales,high +0.55,0.53,4,214,3,0,0,0,sales,low +0.95,0.96,4,244,3,0,0,0,sales,low +0.5,0.67,3,246,3,0,0,0,sales,low +0.42,0.73,3,115,6,0,0,0,sales,high +0.75,0.68,3,237,5,0,0,0,sales,low +0.88,0.7,4,146,4,0,0,0,sales,low +0.53,0.63,5,159,4,0,0,0,sales,low +0.84,0.4,4,246,3,0,0,0,sales,low +0.49,0.93,3,226,3,0,0,0,sales,low +0.71,0.91,3,261,3,0,0,0,sales,low +0.83,0.64,4,242,2,0,0,0,sales,low +0.88,0.93,4,177,3,0,0,0,sales,medium +0.87,0.53,4,144,3,0,0,0,sales,medium +0.43,0.82,2,221,5,0,0,0,sales,medium +0.8,0.9,5,265,3,0,0,0,accounting,medium +0.32,0.67,5,224,4,1,0,0,accounting,medium +0.77,0.56,3,167,4,0,0,0,accounting,medium +0.97,0.77,3,245,3,0,0,0,hr,medium +0.98,0.63,4,232,2,0,0,0,hr,medium +0.62,0.64,5,229,2,0,0,0,hr,medium +0.53,0.94,4,128,6,0,0,0,hr,medium +0.93,0.49,3,211,2,0,0,0,technical,medium +0.51,0.91,4,194,2,0,0,0,technical,medium +0.76,0.76,4,214,3,0,0,0,technical,high +0.69,0.89,3,216,4,0,0,0,technical,low +0.58,0.6,4,222,3,0,0,0,technical,medium +0.98,0.77,4,144,4,0,0,0,technical,medium +0.58,0.54,3,287,6,0,0,0,technical,medium +0.57,0.97,4,224,4,0,0,0,technical,medium +0.84,0.79,4,157,4,0,0,0,technical,low +0.15,0.67,5,216,6,0,0,0,technical,low +0.88,0.72,5,181,4,0,0,0,technical,low +0.69,0.99,3,133,3,0,0,0,support,low +0.56,0.84,5,154,2,1,0,0,support,low +0.49,0.58,3,265,3,0,0,0,support,low +0.4,0.45,4,113,3,0,0,0,support,low +0.67,0.36,3,280,4,0,0,0,support,low +0.79,0.5,3,213,3,1,0,0,support,low +0.47,0.44,5,255,5,1,0,0,support,low +0.82,0.54,3,243,4,0,0,0,support,low +0.82,0.87,3,206,2,0,0,0,support,low +0.63,0.57,5,149,3,0,0,0,support,low +0.91,0.53,2,273,3,0,0,0,support,low +0.89,1,4,226,2,1,0,0,technical,low +0.96,0.93,3,238,2,0,0,0,technical,low +0.83,0.72,2,226,3,0,0,0,technical,low +0.75,0.92,3,199,3,1,0,0,management,low +0.75,0.82,5,202,3,1,0,0,IT,low +0.41,0.69,2,152,4,1,0,0,IT,low +0.96,0.94,3,167,3,0,0,0,IT,low +0.58,0.79,4,130,3,0,0,0,IT,medium +0.74,0.89,3,229,3,0,0,0,IT,medium +0.78,0.74,4,261,3,1,0,0,product_mng,medium +0.5,0.72,3,182,2,1,0,0,product_mng,medium +1,0.52,4,198,3,0,0,0,product_mng,medium +0.85,0.91,3,244,3,0,0,0,product_mng,medium +0.82,0.89,4,275,3,0,0,0,IT,medium +0.19,0.81,5,245,5,0,0,0,RandD,medium +0.9,0.9,3,147,3,1,0,0,RandD,medium +0.59,1,4,275,3,0,0,0,RandD,medium +0.53,0.46,2,167,2,0,0,0,RandD,medium +0.57,0.5,5,149,5,1,0,0,RandD,medium +0.85,0.99,4,233,2,0,0,0,marketing,high +0.64,0.67,5,167,2,0,0,0,sales,low +0.57,0.54,3,159,3,1,0,0,accounting,medium +0.86,0.85,2,195,4,0,0,0,support,medium +0.6,0.7,5,229,2,0,0,0,technical,medium +0.17,0.76,4,199,5,0,0,0,management,medium +0.54,0.63,3,174,3,0,0,0,marketing,low +0.35,0.78,5,275,4,0,0,0,marketing,low +0.92,0.77,5,217,4,0,0,0,marketing,low +0.66,1,4,192,2,0,0,0,sales,low +0.83,0.9,4,195,3,0,0,0,sales,low +0.89,0.86,3,261,4,0,0,0,sales,low +0.94,0.61,4,199,3,0,0,0,sales,low +0.24,0.85,4,160,5,0,0,0,sales,low +0.69,0.8,3,177,4,0,0,0,sales,low +0.45,0.46,3,179,2,1,0,0,sales,low +0.78,0.93,4,161,3,0,0,0,sales,low +0.91,0.38,5,279,5,0,0,0,sales,low +0.63,0.65,4,246,6,1,0,0,sales,low +0.71,0.8,4,199,2,0,0,0,sales,low +0.73,0.69,3,161,3,0,0,0,sales,low +0.69,0.52,5,219,3,0,0,0,sales,low +0.52,0.57,5,162,3,0,0,0,sales,low +0.78,0.66,4,258,3,0,0,0,sales,low +0.94,0.69,3,269,3,0,0,0,sales,low +0.55,0.73,4,201,3,0,0,0,sales,low +0.43,0.38,2,278,3,1,0,0,sales,low +0.77,0.66,3,147,2,0,0,0,sales,medium +0.59,0.8,5,247,3,0,0,0,accounting,medium +0.65,0.54,4,191,4,0,0,0,accounting,medium +0.82,0.37,2,280,3,0,0,0,accounting,medium +0.31,0.72,2,191,3,0,0,0,hr,medium +0.84,0.65,4,264,2,0,0,0,hr,medium +0.15,0.4,3,236,5,0,0,0,hr,medium +0.64,0.52,4,271,2,1,0,0,hr,medium +0.48,0.63,5,129,5,0,0,0,technical,medium +0.82,0.58,4,249,5,0,0,0,technical,medium +0.99,0.54,3,188,3,0,0,0,technical,medium +0.8,0.52,3,147,3,1,0,0,technical,medium +0.94,0.92,3,273,3,0,0,0,technical,high +0.94,0.81,4,237,3,1,0,0,technical,low +0.77,0.79,3,273,2,0,0,0,technical,medium +0.48,0.54,3,190,3,0,0,0,technical,medium +0.62,0.68,3,226,3,0,0,0,technical,medium +0.61,0.9,4,216,3,0,0,0,technical,medium +0.27,0.6,6,205,5,1,0,0,technical,low +0.89,0.65,3,208,2,0,0,0,support,low +0.58,0.81,4,266,2,0,0,0,support,low +0.64,0.77,3,249,2,1,0,0,support,low +0.73,0.88,5,134,2,1,0,0,support,low +0.74,0.85,2,189,3,0,0,0,support,low +0.75,0.82,4,143,2,0,0,0,support,low +0.78,0.84,4,173,3,0,0,0,support,low +0.18,0.95,6,248,3,0,0,0,support,low +0.8,0.84,3,186,6,0,0,0,support,low +0.89,0.64,5,191,3,0,0,0,support,low +0.84,0.5,3,227,2,0,0,0,support,low +0.64,0.38,2,269,5,0,0,0,technical,low +0.53,0.82,3,254,3,1,0,0,technical,low +0.15,0.66,4,180,4,0,0,0,technical,low +0.66,0.62,3,144,3,0,0,0,management,low +0.49,0.78,5,137,3,1,0,0,IT,low +0.78,0.72,3,223,4,0,0,0,IT,low +0.39,0.75,5,286,5,0,0,0,IT,low +0.9,0.83,3,151,3,0,0,0,IT,low +0.96,0.74,5,244,2,1,0,0,IT,low +0.63,0.81,4,216,4,0,0,0,product_mng,medium +0.63,0.74,4,173,3,0,0,0,product_mng,medium +0.89,0.81,3,186,3,0,0,0,product_mng,medium +0.93,0.57,2,205,4,1,0,0,product_mng,medium +0.87,0.59,4,202,3,0,0,0,IT,medium +0.56,0.53,3,189,3,0,0,0,RandD,medium +0.97,0.55,4,181,5,1,0,0,RandD,medium +0.61,0.51,3,207,3,0,0,0,RandD,medium +0.73,0.46,4,240,4,1,0,0,RandD,medium +0.61,0.69,2,164,2,0,0,0,RandD,medium +0.99,0.71,4,212,2,0,0,0,marketing,medium +0.57,0.75,4,151,2,0,0,0,sales,medium +0.74,0.96,4,197,3,0,0,0,accounting,high +0.86,0.61,5,265,3,0,0,0,support,low +0.68,0.72,4,274,3,0,0,0,technical,medium +0.66,0.63,3,201,4,0,0,0,management,medium +0.86,0.89,3,250,2,0,0,0,marketing,medium +0.85,0.78,3,165,4,0,0,0,marketing,medium +0.98,0.53,5,186,3,0,0,0,marketing,low +0.14,0.73,5,273,4,1,0,0,sales,low +0.2,0.54,5,162,6,0,0,0,sales,low +0.9,0.97,3,141,3,0,0,0,sales,low +0.51,0.96,5,268,4,0,0,0,sales,low +0.63,0.77,3,176,2,1,0,0,sales,low +0.83,0.88,3,223,3,1,0,0,sales,low +0.67,0.72,4,218,2,1,0,0,sales,low +0.96,0.52,4,228,3,0,0,0,sales,low +0.69,0.75,3,204,3,0,0,0,sales,low +0.69,0.9,4,148,2,0,0,0,sales,low +0.64,0.94,3,221,2,0,0,0,sales,low +0.62,0.48,4,271,3,0,0,0,sales,low +0.55,0.75,3,191,3,0,0,0,sales,low +0.98,0.51,4,223,2,0,0,0,sales,low +0.83,0.78,5,250,2,1,0,0,sales,low +0.73,0.77,3,230,2,0,0,0,sales,low +0.58,0.86,3,226,2,0,0,0,sales,low +0.52,0.67,4,182,3,0,0,0,sales,medium +0.91,0.7,3,195,3,0,0,0,sales,medium +0.72,0.64,3,231,2,0,0,0,accounting,medium +0.7,0.74,3,224,3,0,0,0,accounting,medium +0.86,0.92,4,229,4,0,0,0,accounting,medium +0.82,0.57,2,158,3,1,0,0,hr,medium +0.83,0.78,4,242,3,1,0,0,hr,medium +0.99,0.64,3,183,3,0,0,0,hr,medium +0.88,0.58,5,213,4,0,0,0,hr,medium +0.68,0.74,4,263,2,1,0,0,technical,medium +0.9,0.49,3,237,2,0,0,0,technical,medium +0.59,0.67,6,126,3,0,0,0,technical,medium +0.76,0.71,6,168,2,0,0,0,technical,high +0.23,0.63,5,151,4,1,0,0,technical,low +0.8,0.85,4,239,3,0,0,0,technical,medium +0.62,0.49,4,174,3,0,0,0,technical,medium +0.28,0.46,5,277,6,0,0,0,technical,medium +0.81,0.97,3,133,3,0,0,0,technical,medium +0.64,0.91,4,150,3,0,0,0,technical,low +0.76,0.6,5,244,3,1,0,0,technical,low +0.79,0.87,3,232,2,0,0,0,support,low +0.72,0.91,3,267,2,0,0,0,support,low +0.22,0.59,5,162,2,0,0,0,support,low +0.18,0.73,5,228,5,0,0,0,support,low +0.91,0.49,2,180,3,0,0,0,support,low +0.69,0.63,2,252,3,0,0,0,support,low +0.91,0.66,5,212,3,0,0,0,support,low +0.67,0.84,4,224,3,0,0,0,support,low +0.98,0.62,2,240,3,1,0,0,support,low +0.69,0.62,4,183,4,0,0,0,support,low +0.96,0.74,5,160,5,1,0,0,support,low +0.69,0.68,4,225,3,0,0,0,technical,low +0.65,0.68,3,268,2,1,0,0,technical,low +0.7,0.75,3,221,3,0,0,0,technical,low +0.48,0.94,3,173,2,0,0,0,management,low +0.48,0.51,4,103,4,0,0,0,IT,low +0.16,0.89,4,196,3,1,0,0,IT,low +0.72,0.97,3,239,3,0,0,0,IT,low +0.91,0.71,3,171,2,0,0,0,IT,low +0.74,0.54,3,243,3,0,0,0,IT,medium +0.56,0.56,2,153,2,0,0,0,product_mng,medium +0.56,0.41,6,142,3,0,0,0,product_mng,medium +0.88,0.55,5,168,2,0,0,0,product_mng,medium +0.86,0.9,5,180,4,0,0,0,product_mng,medium +0.66,0.84,4,186,3,0,0,0,IT,medium +0.41,0.45,3,236,2,0,0,0,RandD,medium +0.68,0.83,5,267,3,0,0,0,RandD,medium +0.59,0.47,3,129,2,0,0,0,RandD,medium +0.52,0.78,3,181,3,0,0,0,RandD,medium +0.3,0.54,2,99,2,0,0,0,RandD,medium +0.44,0.67,5,170,3,1,0,0,marketing,medium +0.75,0.64,3,195,3,0,0,0,sales,high +0.23,0.94,4,149,6,0,0,0,accounting,low +0.34,0.46,6,132,2,0,0,0,support,medium +0.52,0.59,3,164,3,0,0,0,technical,medium +0.79,0.83,4,250,2,0,0,0,management,medium +0.5,0.77,3,204,2,0,0,0,marketing,medium +0.89,0.65,3,210,3,0,0,0,marketing,low +0.84,0.52,6,98,3,0,0,0,marketing,low +0.26,0.47,3,241,4,0,0,0,sales,low +0.57,0.96,5,203,4,0,0,0,sales,low +0.14,0.99,3,257,4,1,0,0,sales,low +0.94,0.62,5,201,2,0,0,0,sales,low +0.3,0.58,2,124,3,0,0,0,sales,low +0.29,0.43,6,175,3,0,0,0,sales,low +0.82,0.75,3,161,3,0,0,0,sales,low +0.62,0.75,4,183,4,1,0,0,sales,low +0.64,0.99,5,262,5,0,0,0,sales,low +0.17,0.52,4,184,4,0,0,0,sales,low +0.75,0.56,3,207,3,0,0,0,sales,low +0.49,0.73,4,185,3,0,0,0,sales,low +0.84,0.58,4,180,2,0,0,0,sales,low +0.48,0.96,4,224,2,1,0,0,sales,low +0.54,0.53,3,184,3,0,0,0,sales,low +0.76,0.99,5,252,3,1,0,0,sales,low +0.77,0.84,4,196,3,0,0,0,sales,low +0.95,0.97,4,203,2,0,0,0,sales,low +0.72,0.83,4,181,3,0,0,0,sales,low +0.74,0.67,4,148,3,0,0,0,accounting,medium +0.9,0.55,4,211,3,0,0,0,accounting,medium +0.67,0.55,3,246,3,0,0,0,accounting,medium +0.97,0.55,4,258,3,0,0,0,hr,medium +0.55,0.59,3,231,4,0,0,0,hr,medium +0.32,0.95,2,184,5,0,0,0,hr,medium +0.4,0.42,3,146,2,1,0,0,hr,medium +0.66,0.54,2,136,2,0,0,0,technical,low +0.7,0.77,4,266,2,0,0,0,technical,low +0.69,0.89,2,220,3,0,0,0,technical,low +0.72,0.57,2,248,2,0,0,0,technical,low +0.21,0.65,3,183,3,0,0,0,technical,low +0.91,0.9,3,169,3,0,0,0,technical,low +0.72,0.71,3,132,2,1,0,0,technical,low +0.96,0.72,3,197,3,0,0,0,technical,low +1,0.89,4,152,3,0,0,0,technical,low +0.63,0.51,3,126,6,0,0,0,technical,low +0.24,0.74,6,106,5,0,0,0,technical,low +0.44,0.38,4,128,2,0,0,0,support,low +0.92,0.57,3,191,3,0,0,0,support,low +0.51,0.51,4,189,3,0,0,0,support,low +0.77,0.71,5,141,3,0,0,0,support,low +0.8,0.97,4,220,3,0,0,0,support,low +0.84,0.46,5,118,3,0,0,0,support,low +0.91,0.88,5,223,3,0,0,0,support,low +0.64,0.61,3,263,3,0,0,0,support,low +0.15,0.59,5,209,4,1,0,0,support,medium +0.74,0.58,4,193,3,0,0,0,support,medium +0.94,0.78,4,211,3,0,0,0,support,medium +0.57,0.58,3,192,3,0,0,0,technical,medium +0.92,0.63,5,156,3,0,0,0,technical,medium +0.76,0.54,5,278,2,1,0,0,technical,medium +0.73,0.92,3,199,3,1,0,0,management,medium +0.24,0.6,2,194,6,0,0,0,IT,medium +0.42,0.47,2,125,4,0,0,0,IT,medium +0.92,0.82,4,96,4,0,0,0,IT,medium +0.92,0.94,3,234,2,1,0,0,IT,medium +0.68,0.55,6,181,3,0,0,0,IT,medium +0.49,0.86,4,246,2,0,0,0,product_mng,medium +0.57,0.98,3,171,3,0,0,0,product_mng,medium +0.3,0.66,3,198,2,0,0,0,product_mng,medium +0.17,0.81,5,280,4,0,0,0,product_mng,medium +0.91,0.49,3,267,3,0,0,0,IT,medium +0.83,0.91,3,251,2,0,0,0,RandD,medium +0.87,0.76,5,182,3,0,0,0,RandD,medium +0.71,0.8,4,157,3,0,0,0,RandD,medium +0.88,0.5,3,206,2,0,0,0,RandD,medium +0.63,0.94,3,237,3,1,0,0,RandD,medium +0.99,0.58,2,166,3,0,0,0,marketing,medium +0.99,0.81,4,229,2,1,0,0,sales,medium +0.77,0.53,5,256,3,0,0,0,accounting,medium +0.64,0.69,5,114,6,0,0,0,support,medium +0.61,1,5,243,2,0,0,0,technical,medium +0.37,0.82,3,199,5,0,0,0,management,medium +0.19,1,4,188,4,1,0,0,marketing,medium +0.96,0.87,4,187,2,0,0,0,marketing,medium +0.8,0.62,4,216,2,0,0,0,marketing,medium +0.14,0.63,6,215,5,0,0,0,sales,low +0.15,0.69,6,213,6,0,0,0,sales,low +0.52,0.82,4,198,4,0,0,0,sales,low +0.27,0.55,5,121,3,1,0,0,sales,low +0.97,0.96,3,212,3,0,0,0,sales,low +0.52,0.93,2,271,3,0,0,0,sales,low +0.98,0.89,3,186,2,0,0,0,sales,low +0.96,0.95,4,265,2,0,0,0,sales,low +0.28,0.92,3,151,3,0,0,0,sales,low +0.65,0.55,5,206,3,0,0,0,sales,low +0.59,0.63,4,153,3,1,0,0,sales,low +0.64,0.48,4,267,2,1,0,0,sales,low +0.71,0.48,3,161,3,0,0,0,sales,low +0.83,0.84,2,149,3,0,0,0,sales,low +0.95,0.94,2,269,4,1,0,0,sales,low +0.73,0.49,3,248,3,0,0,0,sales,low +0.81,0.75,4,243,2,0,0,0,sales,low +0.71,0.44,2,207,4,0,0,0,sales,low +0.8,0.56,6,111,6,0,0,0,sales,low +0.85,0.53,3,226,2,0,0,0,accounting,low +0.41,0.7,2,151,3,1,0,0,accounting,low +0.51,0.84,4,224,2,0,0,0,accounting,medium +0.49,0.57,4,146,4,0,0,0,hr,medium +0.76,0.55,4,163,2,1,0,0,hr,medium +0.57,0.69,4,255,3,0,0,0,hr,medium +0.54,0.48,6,196,2,0,0,0,hr,medium +0.68,0.74,3,227,2,0,0,0,technical,medium +0.7,0.5,3,251,2,0,0,0,technical,medium +0.77,0.87,4,209,3,0,0,0,technical,medium +0.95,0.51,3,254,4,0,0,0,technical,medium +0.5,0.64,3,249,2,1,0,0,technical,low +0.99,0.53,4,131,3,1,0,0,technical,low +0.94,0.51,5,142,2,0,0,0,technical,low +0.83,0.66,3,239,3,0,0,0,technical,low +0.64,0.81,3,225,3,1,0,0,technical,low +0.16,0.73,6,170,3,0,0,0,technical,low +0.83,0.71,3,254,2,0,0,0,technical,low +0.93,0.73,4,156,2,0,0,0,support,low +0.32,0.64,3,151,3,0,0,0,support,low +0.12,0.9,3,200,3,0,0,0,support,low +0.5,0.5,3,184,3,1,0,0,support,low +0.57,0.74,3,257,2,0,0,0,support,low +0.25,0.75,5,194,5,1,0,0,support,low +0.98,0.56,3,139,2,1,0,0,support,low +0.81,0.51,3,273,2,1,0,0,support,low +0.94,0.63,5,261,3,0,0,0,support,low +0.83,0.57,3,135,3,1,0,0,support,low +0.77,0.4,4,207,5,0,0,0,support,low +0.57,0.65,4,265,3,0,0,0,technical,low +0.18,0.96,5,208,6,0,0,0,technical,medium +0.67,0.71,4,159,2,1,0,0,technical,medium +0.35,0.47,4,151,6,0,0,0,management,medium +0.78,0.44,3,97,4,0,0,0,IT,medium +0.72,0.79,4,154,3,0,0,0,IT,medium +0.9,0.58,3,264,3,0,0,0,IT,medium +0.58,0.49,3,135,2,0,0,0,IT,medium +0.64,0.56,3,238,2,0,0,0,IT,medium +0.91,0.79,4,166,3,0,0,0,product_mng,medium +0.59,0.51,3,156,3,0,0,0,product_mng,medium +0.76,0.8,3,202,3,0,0,0,product_mng,medium +0.76,0.85,3,204,2,1,0,0,product_mng,medium +0.51,0.69,3,135,3,0,0,0,IT,medium +0.54,0.55,4,252,3,0,0,0,RandD,medium +0.67,0.93,5,254,3,1,0,0,RandD,medium +0.68,0.44,5,165,3,0,0,0,RandD,medium +0.97,0.58,3,200,2,0,0,0,RandD,medium +0.5,0.74,3,155,3,0,0,0,RandD,medium +0.81,0.52,3,162,3,0,0,0,marketing,medium +0.77,0.73,4,159,3,1,0,0,sales,medium +0.59,0.75,4,266,3,0,0,0,accounting,medium +1,0.96,4,155,3,0,0,0,support,medium +0.74,0.95,5,170,4,0,0,0,technical,medium +0.91,0.52,4,172,4,1,0,0,management,high +0.77,0.65,3,187,3,0,0,0,marketing,low +0.79,0.98,4,185,2,0,0,0,marketing,medium +0.82,0.51,5,232,3,0,0,0,marketing,medium +0.89,0.96,5,260,3,0,0,0,sales,low +0.83,0.62,4,218,3,0,0,0,sales,low +0.72,0.7,4,217,3,0,0,0,sales,low +0.7,0.74,3,212,3,0,0,0,sales,low +1,0.89,3,189,3,0,0,0,sales,low +0.57,0.66,4,158,2,0,0,0,sales,low +0.55,0.54,5,168,2,0,0,0,sales,low +0.47,0.7,4,134,3,0,0,0,sales,low +0.95,0.77,4,213,3,1,0,0,sales,low +0.29,0.57,5,149,3,0,0,0,sales,low +0.71,0.5,3,201,2,0,0,0,sales,low +0.89,0.68,4,146,3,0,0,0,sales,low +0.81,0.97,4,212,2,0,0,0,sales,low +0.72,0.64,4,140,2,0,0,0,sales,low +1,0.85,4,156,3,0,0,0,sales,low +0.79,0.49,4,163,3,0,0,0,sales,high +0.69,0.84,3,154,2,0,0,0,sales,low +0.97,0.66,4,218,3,0,0,0,sales,high +0.61,0.59,3,157,2,0,0,0,sales,high +0.71,0.89,3,222,3,0,0,0,accounting,low +0.96,0.76,4,152,3,1,0,0,accounting,low +0.77,0.73,5,263,2,0,0,0,accounting,high +0.57,0.99,3,231,3,0,0,0,hr,low +0.92,0.76,4,258,2,0,0,0,hr,medium +0.99,0.92,5,213,2,0,0,0,hr,high +0.86,0.73,3,159,3,0,0,0,hr,medium +0.78,0.66,4,156,3,1,0,0,technical,low +0.85,0.66,3,235,3,0,0,0,technical,low +0.38,0.6,4,190,2,0,0,0,technical,low +0.63,0.93,4,238,2,0,0,0,technical,low +0.66,0.72,4,137,3,0,0,0,technical,low +0.19,0.79,5,171,3,1,0,0,technical,low +0.63,0.59,4,249,2,0,0,0,technical,low +0.32,0.74,6,205,3,0,0,0,technical,low +0.73,0.55,3,149,3,0,0,0,technical,low +0.75,0.89,4,139,3,0,0,0,technical,low +0.7,0.66,4,168,3,0,0,0,technical,low +0.77,0.61,4,181,2,0,0,0,support,low +0.83,0.8,4,150,3,0,0,0,support,low +0.75,0.49,4,246,3,0,0,0,support,low +0.97,0.54,3,271,3,0,0,0,support,medium +0.75,0.55,5,204,3,0,0,0,support,low +0.66,0.84,3,170,4,0,0,0,support,low +0.56,0.49,3,208,3,0,0,0,support,low +0.77,0.98,2,226,3,0,0,0,support,low +0.82,0.81,3,149,3,0,0,0,support,low +0.85,0.59,2,264,2,0,0,0,support,low +0.49,0.79,5,177,2,0,0,0,support,low +0.24,0.87,4,262,3,0,0,0,technical,low +0.32,0.74,3,211,3,0,0,0,technical,low +0.77,0.51,4,141,3,1,0,0,technical,low +0.77,0.83,5,197,4,0,0,0,management,high +0.93,0.87,3,154,3,1,0,0,IT,low +0.22,0.74,5,178,5,0,0,0,IT,low +0.24,0.89,5,169,4,0,0,0,IT,low +0.99,0.99,3,228,4,0,0,0,IT,low +0.61,0.5,3,231,3,0,0,0,IT,high +0.6,0.91,4,185,3,1,0,0,product_mng,low +0.79,0.7,3,195,2,0,0,0,product_mng,low +0.94,0.62,3,147,3,0,0,0,product_mng,low +0.18,0.85,5,192,3,0,0,0,product_mng,high +0.51,0.73,5,241,3,0,0,0,IT,low +0.55,0.92,3,151,3,0,0,0,RandD,medium +0.73,0.74,3,221,3,0,0,0,RandD,high +0.41,0.63,5,263,3,0,0,0,RandD,medium +0.88,0.66,3,178,3,0,0,0,RandD,high +0.23,0.56,5,169,5,0,0,0,RandD,medium +0.78,0.56,3,271,4,0,0,0,marketing,medium +0.34,0.69,3,155,3,0,0,0,marketing,medium +0.51,0.41,2,164,4,0,0,0,sales,medium +0.8,0.86,3,226,2,0,0,0,accounting,medium +0.66,0.57,4,220,2,1,0,0,support,medium +0.62,0.63,5,153,6,0,0,0,technical,medium +0.5,0.97,2,252,4,0,0,0,management,medium +0.96,0.94,3,182,3,0,0,0,marketing,high +0.5,0.84,3,150,2,0,0,0,marketing,low +0.73,0.69,6,273,4,1,0,0,marketing,medium +0.47,0.39,6,215,5,0,0,0,sales,medium +0.49,0.83,3,172,2,0,0,0,sales,medium +0.92,0.62,3,264,2,0,0,0,sales,medium +0.24,0.39,5,158,2,0,0,0,sales,medium +0.61,0.58,4,142,4,0,0,0,sales,medium +0.83,0.89,4,137,3,0,0,0,sales,medium +0.88,0.66,4,275,3,0,0,0,sales,medium +0.61,0.55,3,245,3,0,0,0,sales,medium +0.68,0.54,4,165,4,0,0,0,sales,high +0.51,0.7,4,142,4,1,0,0,sales,low +0.88,0.58,4,215,2,0,0,0,sales,low +0.94,0.84,5,240,3,0,0,0,sales,low +0.58,0.88,4,255,3,0,0,0,sales,high +0.63,0.98,4,265,3,0,0,0,sales,low +0.81,0.49,4,285,4,0,0,0,sales,low +0.61,0.86,3,238,2,0,0,0,sales,low +0.65,0.63,3,137,3,0,0,0,sales,high +0.67,0.63,3,270,5,0,0,0,sales,low +0.64,0.62,4,145,3,1,0,0,sales,low +0.25,0.76,6,182,3,0,0,0,accounting,low +0.13,0.62,3,264,6,0,0,0,accounting,low +0.14,0.89,3,212,6,0,0,0,accounting,low +0.74,0.51,5,198,3,0,0,0,hr,low +0.8,0.81,5,200,3,0,0,0,hr,low +0.5,0.56,3,263,4,0,0,0,hr,medium +0.69,0.75,4,249,4,0,0,0,hr,medium +0.91,0.53,4,212,3,0,0,0,technical,low +0.8,0.51,3,159,3,0,0,0,technical,low +0.93,0.52,3,181,3,0,0,0,technical,low +0.57,0.99,3,100,4,1,0,0,technical,low +0.51,0.58,2,218,2,1,0,0,technical,low +0.98,0.54,4,178,3,0,0,0,technical,low +0.85,0.83,4,219,3,0,0,0,technical,low +0.73,0.56,5,239,3,0,0,0,technical,low +0.97,0.9,3,255,2,0,0,0,technical,low +0.52,0.61,4,163,2,0,0,0,technical,low +0.31,0.38,3,173,2,0,0,0,technical,low +0.49,0.77,3,147,3,0,0,0,support,low +0.81,0.44,4,166,4,1,0,0,support,low +0.52,0.8,5,209,2,0,0,0,support,low +0.69,0.56,5,271,3,0,0,0,support,low +0.7,0.74,3,253,4,1,0,0,support,low +0.65,0.85,4,233,2,0,0,0,support,low +0.54,0.71,2,194,2,0,0,0,support,low +0.57,0.49,2,237,2,0,0,0,support,low +0.78,0.9,4,238,2,0,0,0,support,low +0.99,0.92,4,212,3,0,0,0,support,low +0.57,0.83,5,189,3,0,0,0,support,low +0.33,0.58,3,115,3,0,0,0,technical,low +0.97,0.58,4,159,3,0,0,0,technical,low +0.95,0.58,5,133,3,0,0,0,technical,low +0.69,0.83,5,225,3,0,0,0,management,low +0.97,0.91,2,112,5,0,0,0,IT,low +0.4,0.59,3,111,4,1,0,0,IT,low +0.67,0.71,4,178,6,0,0,0,IT,low +0.96,0.58,5,178,3,0,0,0,IT,low +0.49,0.95,2,181,4,1,0,0,IT,low +0.56,0.66,3,139,2,0,0,0,product_mng,low +0.99,0.78,2,177,4,0,0,0,product_mng,low +0.49,0.88,4,270,3,0,0,0,product_mng,low +0.53,0.69,4,135,3,0,0,0,product_mng,low +0.75,0.5,4,166,4,0,0,0,IT,low +0.51,0.89,3,230,4,0,0,0,marketing,low +0.65,0.9,3,163,3,1,0,0,marketing,medium +0.45,0.66,2,236,3,0,0,0,marketing,medium +0.98,0.91,3,264,4,1,0,0,marketing,medium +0.9,0.74,3,185,2,0,0,0,marketing,medium +0.37,0.62,4,253,2,0,0,0,marketing,medium +0.52,0.99,4,253,3,0,0,0,marketing,medium +0.96,0.78,3,135,3,0,0,0,sales,medium +0.99,0.7,2,182,4,0,0,0,accounting,medium +0.66,0.56,5,202,3,0,0,0,support,medium +0.84,0.54,5,186,2,0,0,0,technical,medium +0.16,0.87,5,163,3,0,0,0,management,medium +0.75,0.59,3,242,3,0,0,0,marketing,medium +0.52,0.74,3,160,2,0,0,0,marketing,high +0.86,0.86,3,173,3,0,0,0,marketing,low +0.75,0.53,3,154,2,0,0,0,sales,medium +0.73,0.99,3,160,3,0,0,0,sales,medium +0.98,0.84,3,139,2,0,0,0,sales,medium +0.8,0.84,3,251,3,0,0,0,sales,medium +0.18,0.48,4,176,4,1,0,0,sales,low +0.37,0.72,2,163,3,0,0,0,sales,low +0.97,0.86,3,257,4,0,0,0,sales,low +0.56,0.68,4,159,3,0,0,0,sales,low +0.32,0.65,2,183,3,0,0,0,sales,low +0.63,0.88,4,260,2,0,0,0,sales,low +0.36,0.78,6,151,3,0,0,0,sales,low +0.75,0.49,4,246,3,1,0,0,sales,low +0.42,0.86,3,160,4,1,0,0,sales,low +0.96,0.66,3,155,2,0,0,0,sales,low +0.62,0.78,5,250,6,0,0,0,sales,low +0.78,0.96,2,174,3,0,0,0,sales,low +0.93,0.89,3,262,2,0,0,0,sales,low +0.93,0.87,4,257,2,0,0,0,sales,low +0.45,0.42,4,140,2,0,0,0,sales,low +0.44,0.56,3,123,3,0,0,0,accounting,medium +0.57,0.55,3,264,2,0,0,0,accounting,medium +0.77,0.51,2,254,5,0,0,0,accounting,medium +0.6,0.98,4,205,4,0,0,0,hr,medium +0.25,0.94,6,199,4,0,0,0,hr,medium +0.59,0.43,3,171,3,0,0,0,hr,medium +0.29,0.57,5,98,5,0,0,0,hr,medium +0.5,0.95,3,166,4,1,0,0,technical,low +0.91,0.94,4,264,4,0,0,0,technical,low +0.78,0.65,3,176,2,0,0,0,technical,low +0.73,0.76,2,166,3,0,0,0,technical,low +0.51,0.59,4,169,3,0,0,0,technical,low +0.65,0.82,4,257,3,0,0,0,technical,low +0.25,0.87,3,265,4,0,0,0,technical,low +0.5,0.63,5,167,2,0,0,0,technical,low +0.53,0.58,4,134,2,0,0,0,technical,low +0.57,0.76,2,176,3,0,0,0,technical,low +0.77,0.91,5,274,3,0,0,0,technical,low +0.94,0.77,3,201,3,0,0,0,support,low +0.5,0.53,3,121,4,0,0,0,support,low +0.47,0.57,3,97,4,0,0,0,support,low +0.92,0.54,4,217,4,0,0,0,support,low +0.9,0.87,3,220,3,0,0,0,support,low +0.54,0.46,2,98,4,0,0,0,support,low +0.58,0.97,5,265,3,0,0,0,support,low +0.95,0.87,3,201,3,0,0,0,support,low +0.52,0.71,3,151,3,0,0,0,support,low +0.83,0.51,4,199,3,0,0,0,support,low +0.54,0.92,4,175,3,0,0,0,support,low +0.8,0.85,5,253,3,1,0,0,technical,low +0.52,0.57,3,183,2,0,0,0,technical,low +0.83,0.8,5,223,3,0,0,0,technical,low +0.74,0.55,5,168,4,0,0,0,management,low +0.87,0.71,5,244,2,0,0,0,IT,low +0.45,0.87,2,268,4,1,0,0,IT,low +0.72,0.72,4,218,4,0,0,0,IT,low +0.27,0.85,2,277,6,1,0,0,IT,low +0.51,0.88,5,225,2,1,0,0,IT,low +0.55,0.55,4,257,3,0,0,0,product_mng,low +0.89,0.69,4,170,3,0,0,0,product_mng,low +0.85,0.86,3,179,3,0,0,0,product_mng,low +0.29,0.85,4,211,2,0,0,0,product_mng,low +0.96,0.5,3,217,2,1,0,0,IT,low +0.9,0.68,3,135,3,0,0,0,RandD,low +0.28,0.94,6,167,3,1,0,0,RandD,low +0.93,0.98,4,189,3,0,0,0,RandD,medium +0.51,0.57,3,162,3,1,0,0,RandD,medium +0.97,0.76,3,193,3,0,0,0,RandD,medium +0.71,0.55,4,273,3,1,0,0,RandD,medium +0.52,0.69,6,138,5,0,0,0,marketing,medium +0.87,0.84,4,237,3,1,0,0,sales,medium +0.78,0.61,5,260,2,0,0,0,accounting,medium +0.57,0.82,3,149,5,1,0,0,support,medium +0.34,0.49,4,149,3,0,0,0,technical,medium +0.95,0.95,4,137,4,0,0,0,management,medium +0.72,0.73,5,167,3,0,0,0,marketing,medium +0.61,0.37,4,165,6,0,0,0,marketing,medium +0.39,0.39,2,131,2,0,0,0,marketing,high +0.72,0.59,5,138,2,0,0,0,sales,low +0.86,0.91,4,234,3,1,0,0,sales,medium +0.69,0.67,4,141,3,0,0,0,sales,medium +0.5,0.65,4,266,3,1,0,0,sales,medium +0.62,0.68,3,134,2,0,0,0,sales,medium +0.76,0.55,4,147,3,0,0,0,sales,low +0.97,0.88,4,237,4,0,0,0,sales,low +0.78,0.57,5,114,4,0,0,0,sales,low +0.81,0.89,4,166,2,1,0,0,sales,low +0.15,0.95,4,173,5,1,0,0,sales,low +0.72,0.5,3,205,3,1,0,0,sales,low +0.8,0.5,3,219,3,0,0,0,sales,low +0.76,0.74,3,173,2,0,0,0,sales,low +0.19,0.73,4,231,3,0,0,0,sales,low +0.75,0.75,5,133,2,0,0,0,sales,low +0.94,0.49,4,220,3,0,0,0,sales,low +0.93,0.59,5,158,3,0,0,0,sales,low +0.96,0.92,3,182,4,0,0,0,sales,low +0.14,0.57,6,275,5,0,0,0,sales,low +0.75,0.71,3,237,3,1,0,0,accounting,low +0.6,0.59,5,146,4,0,0,0,accounting,low +0.65,0.48,4,144,3,0,0,0,accounting,low +0.59,0.79,2,195,3,0,0,0,hr,low +0.93,0.78,5,191,4,0,0,0,hr,medium +0.5,1,3,149,2,0,0,0,hr,medium +0.62,0.55,4,137,3,1,0,0,hr,medium +0.24,0.58,3,184,5,1,0,0,technical,medium +0.66,0.87,4,139,3,0,0,0,technical,medium +0.55,0.95,4,249,4,0,0,0,technical,medium +0.91,0.66,3,168,3,0,0,0,technical,medium +0.59,0.51,2,145,5,0,0,0,technical,medium +0.74,0.54,5,221,3,0,0,0,technical,medium +0.43,0.51,2,123,3,0,0,0,technical,medium +0.85,0.99,6,153,6,0,0,0,technical,medium +0.46,0.54,3,183,4,0,0,0,technical,medium +0.48,0.56,4,271,3,0,0,0,technical,high +0.96,1,4,167,2,1,0,0,technical,low +0.55,0.9,4,177,3,0,0,0,support,medium +0.82,0.74,3,256,3,1,0,0,support,medium +0.24,0.65,3,143,4,0,0,0,support,medium +0.69,0.71,3,241,3,0,0,0,support,medium +0.29,0.68,4,210,3,0,0,0,support,low +0.53,0.7,4,155,5,1,0,0,support,low +0.65,0.77,2,248,3,0,0,0,support,low +0.57,0.53,3,162,3,0,0,0,support,low +0.6,0.5,4,137,3,0,0,0,support,low +0.79,0.55,5,242,2,0,0,0,support,low +0.41,0.5,6,257,6,1,0,0,support,low +0.79,0.72,5,245,3,1,0,0,technical,low +0.5,0.8,3,234,3,0,0,0,technical,low +0.8,0.76,4,135,2,0,0,0,technical,low +0.61,0.79,5,269,2,0,0,0,management,low +0.99,0.68,4,238,3,0,0,0,IT,low +0.77,0.86,3,101,5,0,0,0,IT,low +0.7,0.52,5,200,2,1,0,0,IT,low +0.55,0.87,3,241,4,0,0,0,IT,low +0.87,0.63,3,143,3,1,0,0,IT,low +0.97,0.6,3,169,2,1,0,0,product_mng,low +0.56,0.99,4,270,2,0,0,0,product_mng,low +0.99,0.81,4,246,3,1,0,0,product_mng,low +0.57,0.66,4,151,2,0,0,0,product_mng,low +1,0.84,3,227,3,0,0,0,IT,low +0.97,0.74,3,134,3,1,0,0,marketing,high +0.81,0.54,4,155,4,0,0,0,accounting,high +0.76,0.48,5,173,3,0,0,0,accounting,high +0.95,0.55,5,134,3,0,0,0,IT,medium +0.81,0.65,3,195,2,0,0,0,IT,medium +0.8,0.65,3,264,4,0,0,0,management,high +0.72,0.57,3,203,2,1,0,0,marketing,medium +0.68,0.65,3,243,2,0,0,0,sales,medium +0.21,0.61,6,159,5,1,0,0,accounting,medium +0.46,0.4,3,145,2,0,0,0,support,medium +0.8,0.7,3,238,2,0,0,0,technical,medium +0.57,0.64,4,151,2,0,0,0,management,medium +0.58,0.57,5,205,2,0,0,0,marketing,high +0.91,1,4,211,3,0,0,0,marketing,low +0.63,0.67,5,169,2,0,0,0,marketing,medium +0.95,0.86,2,263,4,0,0,0,sales,medium +0.87,0.67,5,143,3,0,0,0,sales,medium +0.22,0.53,5,160,4,1,0,0,sales,medium +0.95,0.65,5,142,2,1,0,0,sales,low +0.18,0.5,4,169,4,0,0,0,sales,low +0.87,0.63,5,214,3,0,0,0,sales,low +0.23,0.84,5,131,5,0,0,0,sales,low +0.93,0.69,3,213,4,0,0,0,sales,low +0.58,0.75,4,244,4,0,0,0,sales,low +0.68,0.55,4,169,3,1,0,0,sales,low +0.76,0.71,4,156,3,0,0,0,sales,low +0.68,0.84,5,161,3,0,0,0,sales,low +0.99,0.47,3,152,5,0,0,0,sales,low +0.64,0.55,3,201,2,0,0,0,sales,low +0.61,0.83,5,269,5,1,0,0,sales,low +0.51,0.5,5,242,2,0,0,0,sales,low +0.69,0.66,3,113,4,0,0,0,sales,low +0.85,0.6,3,251,2,0,0,0,sales,low +0.55,0.89,6,99,3,0,0,0,sales,low +0.56,0.89,4,263,3,0,0,0,accounting,low +0.69,0.68,4,214,4,0,0,0,accounting,low +0.61,0.46,4,172,3,0,0,0,accounting,low +0.47,0.65,4,172,2,0,0,0,hr,low +0.58,0.79,4,196,3,1,0,0,hr,low +0.16,0.56,5,152,5,0,0,0,hr,medium +0.53,0.64,2,109,3,0,0,0,hr,medium +0.82,0.82,5,193,4,0,0,0,technical,medium +0.68,0.61,4,227,3,0,0,0,technical,medium +0.6,0.72,3,181,2,0,0,0,technical,medium +0.93,0.44,5,190,5,0,0,0,technical,medium +0.58,0.49,2,107,3,0,0,0,technical,medium +0.61,0.96,4,161,3,1,0,0,technical,medium +0.74,0.71,4,243,3,0,0,0,technical,medium +0.88,0.91,3,157,2,0,0,0,technical,medium +0.94,0.8,6,147,3,0,0,0,technical,medium +0.44,0.46,3,121,3,0,0,0,technical,medium +0.73,0.52,3,274,2,0,0,0,technical,high +0.9,0.68,4,204,4,1,0,0,support,low +0.97,0.49,3,199,2,0,0,0,support,medium +0.86,0.96,5,246,3,0,0,0,support,medium +0.81,0.98,3,141,3,0,0,0,support,medium +0.24,0.76,6,213,4,0,0,0,support,medium +0.92,0.97,4,199,3,0,0,0,support,low +0.34,0.62,2,257,6,1,0,0,support,low +0.95,0.53,4,143,3,0,0,0,support,low +0.94,0.81,3,150,2,0,0,0,support,low +0.54,0.82,3,284,2,1,0,0,support,low +0.87,0.57,3,149,3,0,0,0,support,low +0.54,0.74,4,160,6,0,0,0,technical,low +0.75,0.49,4,208,4,0,0,0,technical,low +0.88,1,3,248,3,0,0,0,technical,medium +0.78,0.86,3,210,3,0,0,0,management,medium +0.88,0.71,5,219,2,0,0,0,IT,medium +0.51,0.94,4,155,3,0,0,0,IT,medium +0.31,0.7,4,182,3,0,0,0,IT,medium +0.22,1,6,244,3,0,0,0,IT,medium +0.56,0.83,5,157,3,0,0,0,IT,medium +0.38,0.63,2,182,2,0,0,0,product_mng,medium +0.56,0.47,5,185,4,0,0,0,product_mng,medium +0.55,0.9,4,206,3,0,0,0,product_mng,medium +0.74,0.99,4,156,3,0,0,0,product_mng,medium +0.64,0.92,5,211,2,1,0,0,IT,medium +0.69,0.91,6,247,6,0,0,0,RandD,medium +0.99,0.54,3,247,3,0,0,0,RandD,medium +0.66,0.75,4,235,3,0,0,0,RandD,medium +0.79,0.93,5,169,3,0,0,0,RandD,medium +0.92,0.54,3,246,3,0,0,0,RandD,medium +0.84,0.49,3,172,4,0,0,0,RandD,medium +0.31,0.59,4,218,5,0,0,0,marketing,medium +0.34,0.52,6,265,6,0,0,0,sales,medium +0.88,0.96,5,173,4,0,0,0,accounting,medium +0.8,0.84,3,195,3,0,0,0,support,medium +0.75,0.92,3,160,3,1,0,0,technical,medium +0.71,0.7,4,237,4,0,0,0,management,medium +0.66,0.49,3,206,2,0,0,0,marketing,medium +0.54,0.72,6,222,5,0,0,0,marketing,high +0.47,0.4,3,113,3,0,0,0,marketing,high +0.87,0.79,3,244,3,0,0,0,sales,high +0.9,0.52,3,162,2,0,0,0,sales,high +0.51,0.63,3,234,2,0,0,0,sales,high +0.62,0.71,4,168,2,0,0,0,sales,high +0.47,0.43,3,120,3,0,0,0,sales,high +0.59,0.94,5,274,2,0,0,0,sales,high +0.87,0.62,4,202,3,0,0,0,sales,high +0.59,0.97,3,209,3,0,0,0,sales,high +0.87,0.71,6,224,6,0,0,0,sales,high +0.89,0.93,3,168,2,0,0,0,sales,high +0.73,0.68,4,227,3,0,0,0,sales,low +0.79,0.98,3,217,3,0,0,0,sales,low +0.8,0.74,2,205,3,1,0,0,sales,low +0.73,0.89,5,223,3,0,0,0,sales,low +0.96,0.9,3,175,3,1,0,0,sales,low +0.66,0.96,3,175,2,0,0,0,sales,low +0.53,0.97,4,254,3,0,0,0,sales,low +0.86,0.56,5,215,2,0,0,0,sales,low +0.92,0.86,3,166,4,0,0,0,sales,low +0.31,0.95,5,205,3,0,0,0,accounting,low +0.69,0.73,4,233,2,0,0,0,accounting,low +0.7,0.83,3,189,3,0,0,0,accounting,low +0.63,0.74,4,202,3,0,0,0,hr,low +0.24,0.53,6,165,5,0,0,0,hr,low +0.13,0.94,4,213,5,1,0,0,hr,low +0.47,0.41,2,140,3,0,0,0,hr,medium +0.53,0.58,4,251,2,0,0,0,technical,medium +0.96,0.96,5,243,3,0,0,0,technical,medium +0.92,0.88,4,111,4,0,0,0,technical,medium +0.56,0.59,3,178,2,0,0,0,technical,medium +0.51,0.88,5,230,4,0,0,0,technical,medium +0.22,0.85,6,172,6,1,0,0,technical,medium +0.83,0.92,3,268,2,1,0,0,technical,medium +0.85,0.48,2,208,4,0,0,0,technical,medium +0.85,0.92,3,188,4,0,0,0,technical,medium +0.85,0.9,5,247,2,0,0,0,technical,medium +0.73,0.82,4,205,4,0,0,0,technical,medium +0.18,0.52,3,213,4,0,0,0,support,high +0.63,0.87,4,145,3,1,0,0,support,high +0.5,0.48,2,106,2,0,0,0,support,high +0.63,0.47,3,180,3,1,0,0,support,high +0.15,0.95,4,251,5,0,0,0,support,high +0.96,0.69,4,156,5,0,0,0,support,high +0.96,0.91,5,179,2,0,0,0,support,high +0.31,0.51,4,229,6,0,0,0,support,high +0.59,0.49,4,149,4,0,0,0,support,low +0.75,0.98,4,198,3,0,0,0,support,low +0.96,0.51,3,241,6,1,0,0,support,low +0.69,0.67,4,156,3,0,0,0,technical,low +0.92,0.89,3,220,2,0,0,0,technical,low +0.96,0.82,5,185,3,0,0,0,technical,low +0.67,0.7,4,222,3,0,0,0,management,low +0.49,0.56,3,221,3,1,0,0,IT,low +0.85,0.65,4,280,3,1,0,0,IT,medium +0.85,0.53,3,250,3,0,0,0,IT,medium +0.91,0.77,4,167,3,1,0,0,IT,medium +0.7,0.48,4,238,3,0,0,0,IT,medium +0.98,0.99,4,132,2,0,0,0,product_mng,medium +0.48,0.48,2,245,5,0,0,0,product_mng,medium +0.39,0.6,2,161,2,0,0,0,product_mng,medium +0.66,0.89,3,242,3,0,0,0,product_mng,medium +0.6,0.61,3,104,5,0,0,0,IT,medium +0.88,0.9,4,152,4,0,0,0,RandD,medium +0.85,0.83,3,226,2,0,0,0,RandD,medium +0.76,0.81,3,175,3,0,0,0,RandD,medium +1,0.67,5,241,4,0,0,0,RandD,medium +0.79,0.74,2,158,3,0,0,0,RandD,medium +0.63,0.52,5,226,4,0,0,0,marketing,medium +0.5,0.83,2,220,2,1,0,0,sales,medium +0.83,0.74,4,233,3,0,0,0,accounting,medium +0.71,0.81,3,141,3,0,0,0,support,medium +0.94,0.87,4,157,3,0,0,0,technical,medium +0.56,0.57,2,112,4,0,0,0,management,medium +0.78,0.71,4,216,2,0,0,0,marketing,medium +0.34,0.46,5,131,3,0,0,0,marketing,medium +0.62,0.67,3,212,3,0,0,0,marketing,medium +0.82,0.74,3,163,2,0,0,0,sales,high +0.42,0.5,2,151,3,0,0,0,sales,low +0.51,0.79,3,137,3,0,0,0,sales,medium +0.63,0.78,2,158,5,1,0,0,sales,medium +0.43,0.81,3,102,3,0,0,0,sales,medium +0.5,0.49,5,256,3,0,0,0,sales,medium +0.81,0.87,4,203,2,0,0,0,sales,medium +0.63,0.7,5,177,2,1,0,0,sales,medium +0.86,0.7,4,197,3,0,0,0,sales,medium +0.92,0.91,3,202,2,0,0,0,sales,medium +0.72,0.78,3,229,2,0,0,0,sales,medium +0.78,0.63,4,181,2,0,0,0,sales,medium +0.76,0.65,3,254,2,0,0,0,sales,low +0.84,0.63,2,162,3,0,0,0,sales,low +0.78,0.54,4,102,3,0,0,0,sales,low +0.57,0.59,4,197,3,0,0,0,sales,low +0.15,0.42,3,98,3,0,0,0,sales,low +0.69,0.77,3,232,2,0,0,0,sales,low +0.73,0.6,3,252,4,1,0,0,sales,low +0.96,0.54,5,161,3,1,0,0,accounting,high +0.91,0.78,4,169,4,0,0,0,accounting,low +0.58,0.97,2,216,3,0,0,0,accounting,high +0.84,0.56,3,266,3,0,0,0,hr,high +0.51,0.58,3,141,3,0,0,0,hr,low +0.71,0.95,4,249,3,0,0,0,hr,low +0.63,0.82,5,268,3,0,0,0,hr,high +0.66,0.51,3,192,3,0,0,0,technical,low +0.5,0.8,6,201,5,0,0,0,technical,medium +0.56,0.89,3,163,3,1,0,0,technical,high +0.57,0.46,3,167,4,0,0,0,technical,medium +0.7,0.65,5,202,3,1,0,0,technical,medium +0.84,0.62,5,245,4,0,0,0,technical,medium +0.33,0.59,3,243,2,0,0,0,technical,medium +0.64,0.94,3,204,2,0,0,0,technical,high +0.93,0.54,4,239,2,0,0,0,technical,medium +1,0.58,4,229,2,1,0,0,technical,medium +0.91,0.49,3,213,4,0,0,0,technical,medium +0.56,0.59,5,254,4,0,0,0,support,high +0.62,0.52,6,253,4,0,0,0,support,medium +0.98,0.68,4,253,3,0,0,0,support,high +0.96,0.85,5,211,4,0,0,0,support,low +0.61,0.99,5,98,2,0,0,0,support,medium +0.92,0.66,4,133,3,0,0,0,support,medium +0.58,0.67,5,265,3,0,0,0,support,medium +0.47,0.49,2,112,3,1,0,0,support,medium +0.87,0.7,3,224,3,0,0,0,support,low +0.8,0.64,5,180,2,0,0,0,support,low +0.54,0.53,3,203,2,0,0,0,support,low +0.14,0.83,6,275,6,0,0,0,technical,low +0.98,0.76,5,168,3,0,0,0,technical,low +0.13,0.58,4,203,4,0,0,0,technical,low +0.64,0.81,3,209,3,0,0,0,management,low +0.91,0.75,3,166,2,0,0,0,IT,low +0.24,0.71,3,187,5,0,0,0,IT,low +0.34,0.42,6,287,5,1,0,0,IT,low +0.51,0.85,2,248,4,0,0,0,IT,high +0.91,0.7,3,193,2,0,0,0,IT,low +0.86,0.9,4,162,3,0,0,0,product_mng,low +1,0.61,3,188,4,0,0,0,product_mng,low +0.37,0.41,6,101,3,0,0,0,product_mng,low +0.46,0.73,6,256,4,0,0,0,product_mng,high +0.86,0.8,5,134,2,0,0,0,IT,low +0.36,0.68,2,126,4,0,0,0,marketing,high +0.52,0.93,2,243,3,0,0,0,accounting,high +0.51,0.73,3,205,4,0,0,0,accounting,high +0.69,0.94,5,259,2,0,0,0,IT,medium +0.67,0.5,5,219,3,0,0,0,IT,medium +0.6,0.99,5,161,3,0,0,0,management,high +0.71,0.57,3,207,3,0,0,0,marketing,medium +0.65,0.79,3,201,3,1,0,0,sales,high +0.48,0.92,3,234,3,0,0,0,accounting,medium +0.67,0.58,4,158,3,0,0,0,support,medium +0.68,0.63,5,185,4,0,0,0,technical,medium +0.74,0.85,3,176,3,0,0,0,management,medium +0.9,0.77,5,163,3,0,0,0,marketing,medium +0.67,0.83,3,171,3,1,0,0,marketing,medium +0.64,0.66,5,163,4,0,0,0,marketing,medium +0.54,0.87,4,163,3,0,0,0,sales,medium +0.6,0.73,2,180,2,0,0,0,sales,high +0.72,0.67,3,243,3,0,0,0,sales,low +0.97,0.49,4,213,2,0,0,0,sales,medium +0.99,0.89,3,273,2,0,0,0,sales,medium +0.75,0.93,4,195,3,0,0,0,sales,medium +0.84,0.98,4,246,3,0,0,0,sales,medium +0.76,0.5,3,196,3,1,0,0,sales,medium +0.96,0.51,5,205,2,1,0,0,sales,medium +0.12,0.81,4,287,6,0,0,0,sales,medium +0.54,0.79,3,211,3,0,0,0,sales,medium +0.69,0.98,3,261,4,0,0,0,sales,medium +0.77,0.71,5,204,3,0,0,0,sales,high +0.96,0.86,2,163,3,0,0,0,sales,low +0.53,0.62,4,162,2,0,0,0,sales,low +0.54,0.72,4,259,2,1,0,0,sales,low +0.89,0.64,4,151,5,0,0,0,sales,high +0.52,0.84,2,266,2,0,0,0,sales,low +0.29,0.65,5,110,5,1,0,0,sales,low +0.93,0.6,4,271,3,0,0,0,accounting,low +0.71,0.68,4,208,2,0,0,0,accounting,high +0.23,0.5,2,150,6,0,0,0,accounting,low +0.89,0.96,3,122,4,0,0,0,hr,low +0.51,0.5,4,246,3,0,0,0,hr,low +0.27,0.64,2,188,3,0,0,0,hr,low +0.9,0.53,3,167,3,0,0,0,hr,low +0.88,0.57,4,261,4,0,0,0,technical,low +0.91,0.83,4,235,3,0,0,0,technical,low +0.65,0.63,4,199,2,0,0,0,technical,medium +0.68,0.5,4,166,4,1,0,0,technical,medium +0.58,0.63,4,272,3,0,0,0,technical,medium +0.68,0.62,3,158,3,0,0,0,technical,medium +0.59,0.76,3,264,3,0,0,0,technical,medium +0.56,0.57,5,274,3,0,0,0,technical,medium +0.74,0.44,5,169,3,1,0,0,technical,medium +0.5,0.91,4,148,2,0,0,0,technical,medium +0.85,0.65,4,162,2,0,0,0,technical,medium +0.57,0.48,5,221,3,0,0,0,support,medium +0.89,0.58,3,167,3,0,0,0,support,medium +0.76,0.66,5,206,2,0,0,0,support,medium +0.96,0.7,3,169,3,0,0,0,support,high +0.81,0.68,4,179,3,0,0,0,support,low +0.79,0.85,4,100,6,0,0,0,support,medium +0.63,0.66,3,177,2,1,0,0,support,medium +0.92,0.82,5,252,3,0,0,0,support,medium +0.77,0.74,4,202,4,0,0,0,support,medium +0.73,0.87,4,263,2,0,0,0,support,low +0.74,0.98,4,160,2,0,0,0,support,low +0.8,0.74,5,229,3,1,0,0,technical,low +0.82,0.85,5,195,4,0,0,0,technical,low +0.48,0.81,3,212,2,0,0,0,technical,low +0.79,0.54,6,190,4,0,0,0,management,low +0.87,0.41,3,219,3,1,0,0,IT,low +0.96,0.88,2,193,2,0,0,0,IT,low +0.96,0.58,5,197,4,1,0,0,IT,low +0.69,0.66,3,206,2,0,0,0,IT,low +0.42,0.58,2,140,3,0,0,0,IT,low +0.7,0.76,3,173,2,0,0,0,product_mng,low +0.97,0.76,6,142,2,0,0,0,product_mng,low +0.6,0.59,3,237,4,1,0,0,product_mng,low +0.63,0.63,5,252,2,0,0,0,product_mng,low +0.65,0.82,4,196,2,0,0,0,IT,low +0.85,0.81,3,205,3,0,0,0,marketing,high +0.54,0.83,3,201,3,0,0,0,accounting,high +0.23,0.74,5,120,4,0,0,0,accounting,high +0.95,0.73,2,187,2,0,0,0,IT,medium +1,0.51,5,274,4,0,0,0,IT,medium +0.77,0.93,3,227,3,0,0,0,management,high +0.8,0.53,3,245,3,0,0,0,sales,medium +0.88,0.56,4,243,4,0,0,0,accounting,medium +0.73,0.68,3,132,2,0,0,0,support,medium +0.54,0.9,3,206,3,0,0,0,technical,medium +0.92,0.58,5,205,2,1,0,0,management,medium +0.14,0.88,3,162,4,0,0,0,marketing,medium +0.65,0.79,5,266,3,0,0,0,marketing,medium +0.17,0.89,5,261,5,0,0,0,marketing,medium +0.18,0.67,5,209,4,0,0,0,sales,medium +0.58,0.5,5,184,4,0,0,0,sales,medium +0.63,0.67,4,229,3,0,0,0,sales,medium +0.68,0.81,3,180,2,1,0,0,sales,high +0.91,0.98,5,135,3,0,0,0,sales,low +0.95,0.94,3,174,3,0,0,0,sales,medium +0.89,0.76,2,278,2,0,0,0,sales,medium +0.76,0.76,3,197,2,0,0,0,sales,medium +0.96,0.72,3,157,3,0,0,0,sales,medium +0.78,0.63,4,156,3,0,0,0,sales,low +0.98,0.9,3,186,4,0,0,0,sales,low +0.76,0.42,3,217,2,0,0,0,sales,low +0.63,0.49,5,192,2,0,0,0,sales,low +0.39,0.37,3,127,3,0,0,0,sales,low +0.91,0.67,3,257,2,0,0,0,sales,low +0.8,0.8,4,229,4,0,0,0,sales,low +0.89,0.64,4,274,2,1,0,0,sales,low +0.75,0.41,5,196,4,0,0,0,sales,low +0.94,0.85,3,137,3,0,0,0,sales,low +0.5,0.75,4,239,2,0,0,0,accounting,low +0.75,0.95,4,177,3,0,0,0,accounting,low +0.84,0.78,5,164,3,0,0,0,accounting,low +0.55,0.81,5,229,3,0,0,0,hr,low +0.59,0.82,3,149,3,0,0,0,hr,low +0.58,0.43,3,224,6,0,0,0,hr,low +0.91,0.59,5,179,3,0,0,0,hr,low +0.43,0.92,5,151,4,0,0,0,technical,low +0.51,0.79,5,222,2,0,0,0,technical,low +0.81,0.96,4,219,2,0,0,0,technical,low +0.72,0.39,3,257,3,0,0,0,technical,low +0.89,0.99,4,258,3,1,0,0,technical,medium +0.61,0.74,5,185,2,1,0,0,technical,medium +0.57,0.7,3,248,2,0,0,0,technical,medium +0.74,0.82,5,154,2,0,0,0,technical,medium +0.87,0.64,3,187,2,0,0,0,technical,medium +0.58,0.62,3,182,3,0,0,0,technical,medium +0.63,0.59,3,189,3,0,0,0,technical,medium +0.89,0.85,4,195,4,0,0,0,support,medium +0.49,0.74,2,154,3,0,0,0,support,medium +0.59,0.59,4,244,3,0,0,0,support,medium +0.71,0.99,3,228,2,0,0,0,support,medium +0.58,0.62,3,218,3,0,0,0,support,medium +0.84,0.61,5,202,3,0,0,0,support,high +0.92,0.48,4,208,3,0,0,0,support,low +0.91,0.59,3,266,2,0,0,0,support,medium +0.92,0.78,4,177,2,0,0,0,support,medium +0.95,0.65,3,183,3,0,0,0,support,medium +0.53,0.62,4,201,3,0,0,0,support,medium +0.89,0.89,5,179,2,0,0,0,technical,low +0.81,0.84,3,198,2,0,0,0,technical,low +0.78,0.67,5,209,3,0,0,0,technical,low +0.66,0.48,3,203,4,1,0,0,management,low +0.37,0.71,6,266,5,0,0,0,IT,low +0.55,0.84,4,200,4,0,0,0,IT,low +0.79,0.88,3,195,4,0,0,0,IT,low +0.89,0.83,5,269,3,0,0,0,IT,low +0.54,0.76,5,226,2,0,0,0,IT,low +0.74,0.8,4,200,4,0,0,0,product_mng,low +0.7,0.47,2,176,5,0,0,0,product_mng,low +0.37,0.85,2,185,3,0,0,0,product_mng,low +0.84,0.71,3,179,2,0,0,0,product_mng,low +0.55,0.58,5,208,3,0,0,0,IT,low +0.93,0.79,5,241,4,0,0,0,marketing,high +0.97,0.55,4,166,3,1,0,0,accounting,high +0.64,0.53,3,216,3,0,0,0,accounting,high +0.62,0.64,4,185,2,0,0,0,IT,medium +0.26,0.91,5,183,6,0,0,0,IT,medium +0.93,0.49,4,255,2,0,0,0,management,high +0.27,0.61,3,213,6,0,0,0,sales,low +0.9,0.63,4,173,3,0,0,0,accounting,medium +0.16,0.7,6,246,4,0,0,0,support,medium +0.75,0.63,3,148,4,0,0,0,technical,medium +0.72,0.74,2,238,3,0,0,0,management,medium +0.68,0.51,3,185,3,0,0,0,marketing,medium +0.13,0.77,4,201,5,0,0,0,marketing,medium +0.96,0.92,3,150,2,0,0,0,marketing,medium +0.71,0.72,4,137,3,0,0,0,sales,medium +0.85,0.66,5,189,3,0,0,0,sales,medium +0.87,0.91,3,229,3,1,0,0,sales,medium +0.86,0.93,3,199,3,1,0,0,sales,medium +0.49,0.85,3,250,2,0,0,0,sales,medium +0.99,0.59,5,263,3,0,0,0,sales,high +0.75,0.95,3,268,3,1,0,0,sales,low +0.61,0.64,3,187,2,0,0,0,sales,medium +0.89,0.84,6,196,4,0,0,0,sales,medium +0.77,0.7,4,232,3,0,0,0,sales,medium +0.7,0.79,3,226,4,0,0,0,sales,medium +0.5,0.58,4,96,3,0,0,0,sales,low +0.61,1,4,133,4,0,0,0,sales,low +0.98,0.53,4,214,2,0,0,0,sales,low +0.61,0.77,4,252,2,0,0,0,sales,low +0.85,0.56,3,199,4,0,0,0,sales,low +0.42,0.85,3,150,3,0,0,0,sales,low +0.56,0.75,4,141,3,0,0,0,sales,low +0.88,0.8,4,239,3,0,0,0,sales,low +0.92,0.69,3,139,2,0,0,0,accounting,low +0.85,0.77,3,146,4,0,0,0,accounting,low +0.66,0.74,4,179,3,0,0,0,accounting,low +0.82,0.93,3,160,3,0,0,0,hr,low +0.14,0.58,6,205,3,0,0,0,hr,low +0.6,0.98,5,213,3,0,0,0,hr,low +0.92,0.65,4,260,2,0,0,0,hr,low +0.51,0.72,3,242,3,0,0,0,technical,low +0.85,0.46,3,123,5,1,0,0,technical,low +0.43,0.84,2,285,5,0,0,0,technical,low +0.98,0.56,3,103,5,0,0,0,technical,medium +0.84,0.55,5,264,3,0,0,0,technical,medium +0.7,0.52,3,227,2,0,0,0,technical,medium +0.82,0.82,5,267,2,0,0,0,technical,medium +0.94,0.67,3,142,3,0,0,0,technical,medium +0.55,0.79,3,254,3,1,0,0,technical,medium +0.98,0.5,3,251,3,0,0,0,technical,medium +0.78,0.63,4,158,3,0,0,0,technical,medium +0.99,0.77,5,160,3,0,0,0,support,medium +0.74,0.58,4,215,3,1,0,0,support,medium +0.5,0.74,4,237,2,1,0,0,support,medium +0.25,0.8,5,237,6,0,0,0,support,medium +0.49,0.55,4,268,4,0,0,0,support,high +0.63,0.74,4,234,3,0,0,0,support,low +0.68,0.73,3,250,2,0,0,0,support,medium +0.62,0.54,4,212,4,0,0,0,support,medium +0.89,0.52,4,189,3,0,0,0,support,medium +0.31,0.37,2,104,3,1,0,0,support,medium +0.89,0.61,3,211,2,0,0,0,support,low +0.72,0.65,3,109,5,1,0,0,technical,low +0.84,0.75,2,168,2,0,0,0,technical,low +0.88,0.71,3,184,3,0,0,0,technical,low +0.74,1,4,242,2,0,0,0,management,low +0.96,0.95,6,215,4,0,0,0,IT,low +0.82,0.89,5,182,3,0,0,0,IT,low +0.7,0.64,5,260,3,0,0,0,IT,low +0.61,0.84,4,265,2,0,0,0,IT,low +0.65,0.83,5,182,2,1,0,0,IT,low +0.77,0.64,3,191,3,1,0,0,product_mng,low +0.81,0.77,5,167,4,0,0,0,product_mng,low +0.87,0.66,3,270,2,0,0,0,product_mng,low +0.96,0.73,4,273,2,0,0,0,product_mng,low +0.48,0.7,3,251,3,0,0,0,IT,low +0.78,0.96,3,217,3,0,0,0,marketing,high +0.75,1,4,222,2,1,0,0,accounting,high +0.23,0.87,5,258,4,1,0,0,accounting,high +0.85,0.76,3,197,5,0,0,0,IT,medium +0.67,0.56,3,193,2,1,0,0,IT,medium +0.71,0.81,2,182,3,0,0,0,management,high +0.72,0.7,3,163,3,1,0,0,sales,medium +0.8,0.77,4,224,2,0,0,0,accounting,medium +0.64,0.86,4,143,2,0,0,0,support,medium +0.54,0.42,6,218,3,0,0,0,technical,medium +0.73,0.67,3,208,4,0,0,0,management,medium +0.73,1,2,229,3,0,0,0,marketing,medium +0.55,0.62,5,184,4,0,0,0,marketing,medium +0.63,0.41,3,180,5,1,0,0,marketing,medium +0.15,0.8,5,121,5,0,0,0,sales,medium +0.6,0.5,5,203,3,0,0,0,sales,medium +0.38,0.51,3,151,2,0,0,0,sales,medium +0.81,0.77,4,239,3,0,0,0,sales,medium +0.75,0.53,3,166,3,0,0,0,sales,high +0.52,0.92,3,268,3,0,0,0,sales,low +0.51,1,5,196,4,0,0,0,sales,medium +0.66,0.62,4,241,3,0,0,0,sales,medium +0.8,0.87,5,251,3,0,0,0,sales,medium +0.85,0.69,3,263,3,0,0,0,sales,medium +0.77,0.73,3,224,2,1,0,0,sales,low +0.29,0.4,4,138,4,0,0,0,sales,low +0.15,0.67,6,167,6,0,0,0,sales,low +0.73,0.83,5,266,5,0,0,0,sales,low +0.55,0.74,2,116,3,0,0,0,sales,low +0.2,0.69,2,160,4,0,0,0,sales,low +0.56,0.68,3,144,3,1,0,0,sales,low +0.55,0.54,3,190,3,0,0,0,sales,low +0.9,0.49,6,175,4,0,0,0,sales,low +0.73,0.55,3,206,4,0,0,0,accounting,low +0.48,0.99,5,180,2,0,0,0,accounting,low +0.64,0.74,4,157,4,0,0,0,accounting,low +0.95,0.75,4,203,3,0,0,0,hr,low +0.82,0.66,4,238,3,1,0,0,hr,low +0.95,0.65,3,273,4,0,0,0,hr,low +0.92,0.9,4,179,3,0,0,0,hr,low +0.22,0.84,3,131,5,1,0,0,technical,low +0.17,0.77,4,151,6,0,0,0,technical,low +0.51,0.55,3,261,3,0,0,0,technical,low +0.67,0.64,3,203,2,1,0,0,technical,low +0.6,0.66,5,143,2,0,0,0,technical,low +0.99,0.55,3,97,6,1,0,0,technical,medium +0.35,0.71,6,204,4,1,0,0,technical,medium +0.13,0.72,4,154,4,0,0,0,technical,medium +0.97,0.93,2,160,6,0,0,0,technical,medium +0.49,0.61,4,232,3,1,0,0,technical,medium +0.62,0.71,3,255,2,0,0,0,technical,medium +0.35,0.54,3,128,3,0,0,0,support,medium +0.81,0.79,4,222,3,0,0,0,support,medium +0.57,0.75,5,171,4,0,0,0,support,medium +1,0.66,4,173,2,0,0,0,support,medium +0.93,0.71,4,272,2,0,0,0,support,medium +0.89,0.85,3,166,3,0,0,0,support,medium +0.64,0.61,4,143,2,1,0,0,support,high +0.54,0.95,4,149,3,0,0,0,support,low +0.52,0.85,4,257,2,0,0,0,support,medium +0.12,0.65,5,262,6,0,0,0,support,medium +0.14,0.49,4,115,4,0,0,0,support,medium +0.57,0.54,4,142,4,0,0,0,technical,medium +0.57,0.64,4,144,4,0,0,0,technical,low +1,0.56,5,247,3,0,0,0,technical,low +0.94,0.58,4,216,3,0,0,0,management,low +0.93,0.48,3,276,3,0,0,0,IT,low +0.91,0.88,5,123,5,0,0,0,IT,low +0.85,0.77,4,264,3,0,0,0,IT,low +0.8,0.98,3,189,6,0,0,0,IT,low +0.68,0.69,3,148,2,0,0,0,IT,low +0.91,0.6,5,150,3,0,0,0,product_mng,medium +0.93,0.9,3,172,3,0,0,0,product_mng,medium +0.81,0.68,3,236,2,0,0,0,product_mng,medium +0.51,0.74,4,151,3,0,0,0,product_mng,medium +0.49,0.52,3,168,3,0,0,0,IT,medium +0.55,0.55,5,256,3,0,0,0,RandD,medium +0.17,0.51,6,213,3,0,0,0,RandD,medium +0.8,0.79,4,148,3,0,0,0,RandD,medium +0.61,0.67,3,266,3,0,0,0,RandD,medium +0.59,0.73,3,195,2,0,0,0,RandD,medium +0.67,0.77,4,242,3,0,0,0,marketing,medium +0.96,0.81,4,183,3,0,0,0,sales,medium +0.72,0.66,3,134,3,0,0,0,accounting,medium +0.72,0.76,4,189,2,0,0,0,support,medium +0.99,0.61,5,196,3,0,0,0,technical,medium +0.22,0.61,4,150,6,0,0,0,management,medium +0.32,0.52,4,191,2,0,0,0,marketing,medium +0.64,0.86,4,248,6,0,0,0,marketing,medium +0.9,0.49,3,256,2,0,0,0,marketing,medium +0.86,0.9,3,158,2,0,0,0,sales,medium +0.67,0.76,2,210,2,0,0,0,sales,medium +0.9,0.59,3,247,2,0,0,0,sales,medium +0.52,0.8,3,156,3,0,0,0,sales,medium +0.57,0.89,3,202,2,0,0,0,sales,medium +0.55,0.83,3,157,2,0,0,0,sales,medium +0.2,0.83,4,258,4,0,0,0,sales,high +0.89,0.66,4,176,3,0,0,0,sales,high +0.15,0.56,4,214,5,0,0,0,sales,high +0.8,0.6,3,212,3,0,0,0,sales,high +0.55,0.48,4,271,6,1,0,0,sales,high +0.53,0.64,5,281,4,0,0,0,sales,high +0.62,0.77,3,204,4,0,0,0,sales,high +1,0.58,3,112,2,0,0,0,sales,high +0.31,0.75,3,120,4,0,0,0,sales,high +0.62,0.51,5,134,3,0,0,0,sales,high +0.73,0.61,5,222,3,0,0,0,sales,high +0.52,0.61,3,203,3,0,0,0,sales,high +0.33,0.65,2,239,5,0,0,0,sales,low +0.88,0.5,3,142,3,0,0,0,accounting,low +0.65,0.54,2,177,3,0,0,0,accounting,low +0.91,0.7,6,201,2,1,0,0,accounting,low +0.83,0.91,3,196,4,0,0,0,hr,low +0.2,0.87,3,140,6,1,0,0,hr,low +0.96,0.8,5,195,4,1,0,0,hr,low +0.75,0.89,5,154,4,0,0,0,hr,low +0.93,0.57,3,141,2,0,0,0,technical,low +0.87,0.49,4,213,3,0,0,0,technical,low +0.94,0.58,5,222,3,0,0,0,technical,low +0.85,0.72,3,150,2,1,0,0,technical,low +0.63,0.5,4,172,2,0,0,0,technical,low +0.78,0.63,5,261,3,0,0,0,technical,low +0.87,0.92,2,248,3,0,0,0,technical,low +0.77,0.76,5,149,2,0,0,0,technical,medium +1,0.61,5,178,3,0,0,0,technical,medium +0.93,0.81,3,212,3,0,0,0,technical,medium +0.5,0.4,2,108,2,0,0,0,technical,medium +0.9,0.66,4,160,2,1,0,0,support,medium +0.61,0.56,2,160,3,0,0,0,support,medium +0.57,0.97,5,196,2,0,0,0,support,medium +0.43,0.5,4,121,5,1,0,0,support,medium +0.6,0.56,5,268,2,0,0,0,support,medium +0.56,0.92,3,232,2,0,0,0,support,medium +0.57,0.62,5,263,2,0,0,0,support,medium +0.56,0.82,3,208,2,0,0,0,support,medium +0.64,0.9,6,143,5,0,0,0,support,high +0.53,0.56,5,236,4,1,0,0,support,high +0.19,0.6,5,198,4,0,0,0,support,high +0.5,0.8,4,261,3,0,0,0,technical,high +0.86,0.97,4,258,3,0,0,0,technical,high +0.92,0.66,3,230,3,0,0,0,technical,high +0.82,0.97,3,137,3,0,0,0,management,high +0.54,0.51,5,258,3,0,0,0,IT,high +0.23,0.51,5,139,6,0,0,0,IT,low +0.65,0.71,4,186,2,0,0,0,IT,low +0.99,0.98,4,259,3,0,0,0,IT,low +0.54,0.59,4,202,3,0,0,0,IT,low +0.99,0.68,4,235,3,0,0,0,product_mng,low +0.76,0.89,4,224,2,0,0,0,product_mng,low +0.57,0.54,4,210,3,0,0,0,product_mng,low +0.53,0.75,4,240,4,0,0,0,product_mng,low +0.86,0.55,5,149,4,0,0,0,IT,medium +0.97,0.96,4,250,6,0,0,0,RandD,medium +0.13,0.76,5,171,5,0,0,0,RandD,medium +0.73,0.89,3,139,3,0,0,0,RandD,medium +0.62,0.95,4,132,3,0,0,0,RandD,medium +0.59,0.37,3,125,2,0,0,0,RandD,medium +0.63,0.7,6,141,3,1,0,0,marketing,medium +0.64,0.52,3,269,2,0,0,0,sales,medium +0.5,0.85,5,249,3,1,0,0,accounting,medium +0.58,0.89,3,256,2,0,0,0,support,medium +0.32,0.87,4,179,4,0,0,0,technical,medium +0.72,0.67,5,210,2,0,0,0,management,medium +0.61,0.74,3,160,3,0,0,0,marketing,medium +0.97,0.55,2,267,4,0,0,0,marketing,medium +0.87,0.64,2,169,3,1,0,0,marketing,medium +0.88,0.81,4,235,6,0,0,0,sales,medium +0.52,0.99,3,136,3,0,0,0,sales,medium +0.95,0.81,5,210,4,0,0,0,sales,medium +0.96,0.62,5,230,2,0,0,0,sales,medium +0.98,0.58,5,186,3,0,0,0,sales,medium +0.51,0.51,2,271,3,0,0,0,sales,medium +1,0.63,2,105,2,0,0,0,sales,medium +0.97,0.67,2,147,2,0,0,0,sales,medium +0.79,0.56,4,177,3,0,0,0,sales,high +0.64,0.45,3,135,6,0,0,0,sales,low +0.84,0.76,5,243,3,0,0,0,sales,medium +0.94,0.57,3,166,4,0,0,0,sales,medium +0.7,0.79,4,194,3,0,0,0,sales,medium +0.64,1,4,201,2,0,0,0,sales,medium +0.56,0.88,4,248,2,0,0,0,sales,medium +0.32,0.81,5,111,4,0,0,0,sales,medium +0.75,0.72,5,174,3,0,0,0,sales,medium +0.78,0.58,3,241,3,1,0,0,sales,medium +0.7,0.49,4,173,3,0,0,0,sales,medium +0.21,0.39,6,132,5,0,0,0,accounting,medium +0.64,0.96,3,274,3,0,0,0,accounting,low +0.54,0.52,3,115,3,0,0,0,accounting,low +0.79,0.98,4,170,3,0,0,0,hr,low +0.91,0.58,3,172,3,0,0,0,hr,low +0.76,0.73,4,148,2,1,0,0,hr,low +0.77,0.95,3,246,3,0,0,0,hr,low +0.92,0.88,4,151,3,0,0,0,technical,low +0.53,0.57,5,141,3,1,0,0,technical,high +0.44,0.52,3,269,4,0,0,0,technical,low +0.54,0.52,5,170,4,0,0,0,technical,high +0.93,0.5,2,135,3,0,0,0,technical,high +0.67,0.68,4,254,3,0,0,0,technical,low +0.66,0.99,3,228,2,0,0,0,technical,low +0.7,0.6,3,266,2,0,0,0,technical,high +0.79,0.57,4,152,3,0,0,0,technical,low +0.5,0.75,5,178,6,0,0,0,technical,medium +1,0.75,3,237,3,0,0,0,technical,high +0.61,0.52,5,255,3,0,0,0,support,medium +0.72,0.5,4,245,3,0,0,0,support,medium +0.78,0.95,3,155,3,1,0,0,support,medium +0.87,0.84,5,216,3,1,0,0,support,medium +0.57,0.58,3,251,2,0,0,0,support,high +0.85,0.96,2,260,3,0,0,0,support,medium +0.83,0.67,5,132,2,1,0,0,support,medium +0.4,0.37,3,169,3,1,0,0,support,medium +0.91,0.69,4,259,3,0,0,0,support,high +0.48,0.98,3,257,2,0,0,0,support,medium +0.94,0.58,5,190,3,1,0,0,support,high +0.65,0.76,4,171,4,0,0,0,technical,low +0.54,0.49,4,190,3,0,0,0,technical,medium +0.76,0.81,5,270,4,0,0,0,technical,medium +0.88,0.59,4,227,3,0,0,0,management,medium +0.9,0.55,3,195,3,0,0,0,IT,medium +0.64,0.75,3,169,3,0,0,0,IT,low +0.74,0.75,4,169,4,0,0,0,IT,low +0.45,0.54,2,184,2,0,0,0,IT,low +0.61,0.62,3,240,3,0,0,0,IT,low +0.16,0.97,6,282,4,0,0,0,product_mng,low +0.67,0.74,3,226,3,0,0,0,product_mng,low +0.74,0.74,2,254,3,0,0,0,product_mng,low +0.53,0.57,4,250,3,1,0,0,product_mng,low +0.75,0.98,3,143,2,0,0,0,IT,low +0.76,0.98,4,258,3,0,0,0,RandD,low +0.72,0.72,5,265,3,0,0,0,RandD,high +0.65,0.54,6,181,4,0,0,0,RandD,low +0.69,0.66,4,178,3,0,0,0,RandD,low +0.7,0.74,3,194,3,0,0,0,RandD,low +0.66,0.84,4,253,4,0,0,0,marketing,low +0.13,0.48,3,210,3,0,0,0,sales,high +0.67,0.53,3,264,2,0,0,0,accounting,low +0.99,0.7,3,219,3,0,0,0,support,low +0.51,0.86,3,198,2,0,0,0,technical,low +0.61,0.7,4,161,3,1,0,0,management,high +0.9,0.6,3,255,4,1,0,0,marketing,low +0.61,0.62,4,233,3,0,0,0,marketing,medium +0.15,0.89,3,251,4,0,0,0,marketing,high +0.53,0.85,5,268,3,1,0,0,sales,medium +0.41,0.48,3,135,3,0,0,0,sales,high +0.9,0.64,4,201,2,1,0,0,sales,medium +0.67,0.9,5,171,3,0,0,0,sales,medium +0.22,0.7,4,225,4,0,0,0,sales,medium +0.35,0.56,3,144,3,0,0,0,sales,medium +0.66,0.96,4,185,2,1,0,0,sales,medium +0.63,0.82,5,275,3,1,0,0,sales,medium +0.89,0.67,3,269,3,0,0,0,sales,medium +0.88,0.75,4,201,2,0,0,0,sales,medium +0.73,0.6,4,166,3,0,0,0,sales,high +1,0.83,4,280,4,1,0,0,sales,low +0.99,0.89,4,254,3,1,0,0,sales,medium +0.12,0.84,5,230,4,0,0,0,sales,medium +0.64,0.43,5,269,3,0,0,0,sales,medium +0.65,0.72,3,248,4,0,0,0,sales,medium +0.56,0.57,4,161,3,0,0,0,sales,medium +0.88,0.62,4,237,2,0,0,0,sales,medium +0.54,0.68,3,144,5,0,0,0,sales,medium +0.77,0.8,2,255,2,1,0,0,accounting,medium +0.66,0.67,5,148,3,0,0,0,accounting,medium +0.54,0.65,3,185,2,0,0,0,accounting,high +0.14,0.43,2,238,3,0,0,0,hr,low +0.85,0.69,5,273,3,1,0,0,hr,low +0.9,0.66,3,256,4,0,0,0,hr,low +0.81,0.79,4,177,2,0,0,0,hr,high +0.14,0.76,5,215,4,0,0,0,technical,low +0.94,0.96,4,270,3,1,0,0,technical,low +0.69,0.82,4,272,2,0,0,0,technical,low +0.66,0.67,4,268,2,0,0,0,technical,high +0.75,0.61,4,272,2,0,0,0,technical,low +0.53,0.61,4,182,3,0,0,0,technical,low +0.91,0.82,6,280,3,0,0,0,technical,low +0.93,0.61,4,205,3,0,0,0,technical,low +0.89,0.91,3,264,3,1,0,0,technical,low +0.84,0.79,2,150,3,0,0,0,technical,low +0.94,0.86,3,150,2,0,0,0,technical,low +1,0.86,4,195,4,0,0,0,support,medium +0.79,0.68,5,272,3,0,0,0,support,medium +0.62,0.61,3,171,3,0,0,0,support,medium +0.45,0.43,4,253,4,0,0,0,support,medium +0.54,0.48,3,158,2,0,0,0,support,medium +0.13,0.97,3,156,2,0,0,0,support,medium +0.99,0.73,3,181,2,0,0,0,support,medium +0.54,0.75,4,249,4,0,0,0,support,medium +0.52,0.38,3,132,4,0,0,0,support,medium +0.24,0.65,4,248,3,0,0,0,support,medium +0.12,0.7,5,277,3,0,0,0,support,medium +0.52,0.96,6,166,5,1,0,0,technical,medium +0.44,0.63,3,193,3,0,0,0,technical,high +0.81,0.53,3,148,3,0,0,0,technical,low +0.25,0.64,4,226,5,0,0,0,management,medium +0.63,0.91,3,233,4,0,0,0,IT,medium +0.61,0.46,3,171,3,0,0,0,IT,medium +0.51,0.56,4,157,3,0,0,0,IT,medium +0.66,0.54,5,191,2,0,0,0,IT,low +0.86,0.59,4,189,2,0,0,0,IT,low +0.98,0.89,5,181,3,0,0,0,product_mng,low +0.99,0.37,6,219,6,0,0,0,product_mng,low +0.78,0.91,3,166,2,1,0,0,product_mng,low +0.84,0.53,2,275,3,0,0,0,product_mng,low +0.17,0.59,6,160,2,0,0,0,IT,low +0.48,0.72,4,186,3,0,0,0,RandD,low +0.63,0.66,3,256,4,1,0,0,RandD,low +0.58,0.67,3,156,2,0,0,0,RandD,low +0.7,0.48,5,99,4,0,0,0,RandD,low +0.61,0.85,4,273,3,0,0,0,RandD,low +0.91,0.81,4,135,2,0,0,0,marketing,low +0.34,0.82,6,202,3,0,0,0,sales,low +0.56,0.49,4,256,3,0,0,0,accounting,low +0.93,0.81,3,143,3,0,0,0,support,low +0.56,0.81,4,216,2,0,0,0,technical,low +0.99,0.5,4,173,3,0,0,0,management,low +0.77,0.83,4,154,3,0,0,0,marketing,low +0.76,0.61,4,172,2,0,0,0,marketing,low +0.65,0.65,5,180,2,0,0,0,marketing,low +0.5,0.76,3,174,3,0,0,0,sales,medium +0.59,0.61,3,210,2,0,0,0,sales,medium +0.68,0.58,4,186,2,0,0,0,sales,medium +0.85,0.82,5,184,3,0,0,0,sales,medium +0.83,0.77,3,260,2,0,0,0,sales,medium +0.7,0.58,4,207,2,1,0,0,sales,medium +0.16,0.76,6,210,5,0,0,0,sales,medium +0.66,0.95,5,206,2,0,0,0,sales,medium +0.81,0.84,4,173,4,0,0,0,sales,medium +0.96,0.74,5,194,4,1,0,0,sales,medium +0.66,0.54,5,203,2,0,0,0,sales,medium +0.83,0.53,3,186,4,0,0,0,sales,medium +0.99,0.9,4,175,3,1,0,0,sales,high +0.99,0.83,4,274,2,0,0,0,sales,low +0.67,0.78,4,193,3,0,0,0,sales,medium +0.54,0.61,2,264,3,0,0,0,sales,medium +0.22,0.69,3,212,3,0,0,0,sales,medium +0.25,0.82,5,244,5,1,0,0,sales,medium +0.73,0.98,4,216,2,0,0,0,sales,low +1,0.88,4,252,4,0,0,0,accounting,low +0.4,0.58,3,135,3,0,0,0,accounting,low +0.45,0.5,5,99,4,1,0,0,accounting,low +0.61,0.81,5,136,3,0,0,0,hr,low +0.81,0.64,6,176,5,0,0,0,hr,low +0.61,0.76,4,135,2,0,0,0,hr,low +0.57,0.94,3,230,2,0,0,0,hr,low +0.9,0.65,4,221,3,0,0,0,technical,low +0.43,0.82,4,138,5,0,0,0,technical,low +0.99,0.98,4,169,3,1,0,0,technical,low +0.62,0.49,4,174,3,0,0,0,technical,low +0.63,0.65,3,162,2,0,0,0,technical,low +0.89,0.99,4,274,4,0,0,0,technical,low +0.61,0.84,3,206,2,0,0,0,technical,low +0.62,0.89,4,254,3,1,0,0,technical,low +0.86,0.61,4,181,4,0,0,0,technical,low +0.75,0.62,5,144,3,0,0,0,technical,low +0.63,0.54,4,147,4,0,0,0,technical,low +0.69,0.8,3,212,4,0,0,0,support,low +0.71,0.76,3,134,3,1,0,0,support,low +0.63,0.95,4,134,3,0,0,0,support,medium +0.89,0.7,3,256,4,0,0,0,support,medium +0.71,0.36,2,132,5,0,0,0,support,medium +0.88,0.82,4,109,2,0,0,0,support,medium +0.73,0.52,4,141,3,0,0,0,support,medium +0.52,0.83,4,180,2,0,0,0,support,medium +0.77,0.65,2,162,4,1,0,0,support,medium +0.94,0.48,4,143,2,0,0,0,support,medium +0.99,0.87,5,211,2,0,0,0,support,medium +0.89,0.56,4,225,4,0,0,0,technical,medium +0.53,0.52,2,135,4,0,0,0,technical,medium +0.23,0.64,3,228,4,1,0,0,technical,medium +0.87,0.73,5,111,4,0,0,0,management,high +0.21,0.69,3,144,6,1,0,0,IT,low +0.71,0.51,4,202,3,0,0,0,IT,medium +0.75,0.71,5,147,4,1,0,0,IT,medium +0.63,0.89,3,239,3,0,0,0,IT,medium +0.55,0.4,5,219,4,0,0,0,IT,medium +0.93,0.55,3,134,3,1,0,0,product_mng,low +0.53,0.89,3,167,2,0,0,0,product_mng,low +0.94,0.89,4,192,2,0,0,0,product_mng,low +0.46,0.82,2,189,5,0,0,0,product_mng,low +0.59,0.53,4,213,2,0,0,0,IT,low +0.75,0.56,5,231,2,0,0,0,RandD,low +0.76,0.63,3,198,3,0,0,0,RandD,low +0.96,0.89,3,163,2,0,0,0,RandD,low +0.55,0.93,4,251,4,1,0,0,RandD,low +0.52,0.82,3,170,3,0,0,0,RandD,low +0.55,0.5,5,231,3,0,0,0,marketing,low +0.52,0.98,4,165,2,0,0,0,sales,low +0.49,0.5,5,183,3,0,0,0,accounting,low +0.49,0.89,3,213,2,0,0,0,support,low +1,0.89,3,230,3,1,0,0,technical,low +0.97,0.62,3,167,3,0,0,0,management,low +0.97,0.89,3,264,3,0,0,0,marketing,low +0.21,0.43,2,249,3,0,0,0,marketing,low +0.24,0.7,6,153,5,1,0,0,marketing,low +0.76,0.79,3,111,2,0,0,0,sales,low +0.78,0.6,3,232,2,0,0,0,sales,low +0.59,0.52,6,190,4,0,0,0,sales,medium +0.54,0.71,3,145,3,1,0,0,sales,medium +0.34,0.69,2,193,3,0,0,0,sales,medium +0.91,0.82,3,183,2,0,0,0,sales,medium +0.49,0.61,3,240,3,0,0,0,sales,medium +0.71,1,5,210,3,0,0,0,sales,medium +0.64,0.72,4,152,3,1,0,0,sales,medium +0.6,0.61,4,140,4,0,0,0,sales,medium +0.91,0.66,3,208,4,0,0,0,sales,medium +0.92,0.6,3,198,2,0,0,0,sales,medium +0.91,0.52,3,178,3,0,0,0,sales,medium +0.88,0.77,3,279,3,1,0,0,sales,medium +0.86,0.82,3,263,6,0,0,0,sales,high +0.81,0.54,3,215,4,1,0,0,sales,low +0.84,0.73,3,181,3,1,0,0,sales,medium +0.56,0.55,2,270,3,0,0,0,sales,medium +0.6,0.52,3,236,3,0,0,0,sales,medium +0.71,0.87,3,271,2,0,0,0,accounting,medium +0.62,0.79,5,172,3,0,0,0,accounting,low +0.73,0.65,3,145,2,0,0,0,accounting,low +0.56,0.69,5,198,3,0,0,0,hr,low +0.6,0.74,3,175,3,1,0,0,hr,low +0.55,0.64,4,260,3,0,0,0,hr,low +0.5,0.7,4,135,3,0,0,0,hr,low +0.42,0.73,3,108,4,0,0,0,technical,low +0.51,0.94,5,260,4,0,0,0,technical,low +0.66,0.94,4,176,2,1,0,0,technical,low +0.79,0.67,5,222,4,0,0,0,technical,low +0.3,0.66,4,119,3,0,0,0,technical,low +0.57,1,3,241,4,0,0,0,technical,low +0.74,0.93,6,225,4,0,0,0,technical,low +0.98,0.56,5,188,3,0,0,0,technical,low +0.17,0.73,4,188,5,0,0,0,technical,low +0.62,0.77,3,225,4,1,0,0,technical,low +0.32,0.4,2,132,3,0,0,0,technical,low +0.58,0.91,5,185,2,0,0,0,support,low +0.59,0.9,4,173,3,0,0,0,support,medium +0.59,0.55,3,179,3,0,0,0,support,medium +0.8,0.58,4,189,2,0,0,0,support,medium +0.84,0.85,5,246,3,0,0,0,support,medium +0.54,0.76,2,166,4,0,0,0,support,medium +0.51,0.98,4,245,3,0,0,0,support,medium +0.66,0.56,2,104,3,1,0,0,support,medium +0.37,0.52,4,151,2,0,0,0,support,medium +0.49,0.63,4,213,3,0,0,0,support,medium +0.88,0.71,5,255,3,0,0,0,support,medium +0.66,0.9,4,268,3,0,0,0,technical,medium +0.25,0.53,4,160,4,0,0,0,technical,medium +0.49,0.52,4,267,2,0,0,0,technical,high +0.87,0.77,3,190,3,0,0,0,management,low +0.54,0.95,5,255,2,0,0,0,IT,medium +0.24,0.95,3,168,4,0,0,0,IT,medium +0.65,0.74,4,228,2,1,0,0,IT,medium +0.58,0.87,4,181,3,0,0,0,IT,medium +0.77,0.54,5,252,2,0,0,0,IT,low +0.86,0.63,4,244,3,0,0,0,product_mng,low +0.62,0.69,3,207,4,0,0,0,product_mng,low +0.56,0.48,3,134,3,0,0,0,product_mng,low +0.75,0.53,3,244,2,0,0,0,product_mng,low +0.8,0.96,4,160,4,0,0,0,IT,low +0.56,0.93,4,260,4,0,0,0,RandD,low +0.83,0.6,4,170,3,0,0,0,RandD,low +0.51,0.98,4,171,2,0,0,0,RandD,low +0.82,0.9,4,232,3,0,0,0,RandD,low +0.81,0.91,3,184,3,0,0,0,RandD,low +0.52,0.64,4,268,3,0,0,0,marketing,low +0.79,0.56,4,248,3,0,0,0,sales,low +0.83,0.5,5,274,3,0,0,0,accounting,low +0.97,0.81,3,145,3,0,0,0,support,low +0.61,0.88,5,134,4,0,0,0,technical,low +0.84,0.66,3,114,6,1,0,0,management,low +0.9,1,4,218,2,0,0,0,marketing,low +0.82,0.77,4,152,2,1,0,0,marketing,low +0.69,0.76,5,174,3,0,0,0,marketing,low +0.18,0.73,6,231,4,0,0,0,sales,low +0.33,1,2,210,3,1,0,0,sales,medium +0.15,0.92,5,164,3,0,0,0,sales,medium +0.61,0.78,4,198,3,0,0,0,sales,medium +0.92,0.55,4,220,2,0,0,0,sales,medium +0.13,0.61,6,283,5,0,0,0,sales,medium +0.18,0.48,4,240,4,0,0,0,sales,medium +0.27,0.85,5,142,6,0,0,0,sales,medium +0.66,0.61,4,263,4,0,0,0,sales,medium +0.21,0.81,5,142,4,0,0,0,sales,medium +0.92,0.9,4,203,4,0,0,0,sales,medium +0.97,0.5,3,266,3,1,0,0,sales,medium +0.97,0.7,3,253,3,0,0,0,sales,medium +0.64,0.61,4,136,3,0,0,0,sales,high +0.75,0.9,3,140,3,0,0,0,sales,low +0.9,0.76,4,252,4,0,0,0,sales,medium +0.81,0.75,5,101,5,0,0,0,sales,medium +0.99,0.72,3,163,3,0,0,0,sales,medium +0.49,0.5,5,170,2,0,0,0,sales,medium +0.92,0.4,2,238,3,0,0,0,accounting,low +0.74,0.56,4,190,3,1,0,0,accounting,low +0.37,0.37,5,173,2,0,0,0,accounting,low +0.67,0.61,4,145,4,0,0,0,hr,low +0.74,0.89,5,182,2,0,0,0,hr,low +0.85,0.64,4,188,3,0,0,0,hr,low +0.72,0.71,3,133,2,0,0,0,hr,low +0.75,0.71,4,155,4,0,0,0,technical,low +0.91,0.4,6,153,3,0,0,0,technical,low +0.84,0.62,4,138,3,0,0,0,technical,low +0.64,0.51,4,177,3,0,0,0,technical,low +0.15,0.91,6,98,6,1,0,0,technical,low +0.66,0.66,3,225,3,0,0,0,technical,low +0.2,0.69,6,236,4,0,0,0,technical,low +0.97,0.78,3,268,3,1,0,0,technical,low +0.59,0.73,2,230,3,0,0,0,technical,low +0.88,0.6,4,162,2,0,0,0,technical,low +0.16,0.73,4,197,2,0,0,0,technical,low +0.61,0.96,3,247,3,0,0,0,support,low +0.52,0.79,4,234,3,0,0,0,support,low +0.82,0.49,4,276,4,0,0,0,support,low +0.75,0.94,5,217,2,0,0,0,support,medium +0.62,0.5,4,156,2,0,0,0,support,medium +0.91,0.88,3,189,2,0,0,0,support,medium +0.61,0.98,2,238,4,0,0,0,support,medium +0.79,0.77,3,201,6,1,0,0,support,medium +0.9,0.93,4,263,3,1,0,0,support,medium +0.75,0.83,3,146,3,0,0,0,support,medium +0.81,0.64,4,213,3,0,0,0,support,medium +0.59,0.88,3,159,2,0,0,0,technical,medium +0.56,0.83,3,236,3,1,0,0,technical,medium +0.98,0.79,5,257,4,0,0,0,technical,medium +0.59,0.72,4,168,4,0,0,0,management,medium +0.61,0.67,4,151,3,0,0,0,IT,high +0.78,0.7,4,139,3,0,0,0,IT,low +0.55,0.93,5,196,3,0,0,0,IT,medium +0.2,0.97,4,237,5,0,0,0,IT,medium +0.79,0.44,2,236,3,0,0,0,IT,medium +0.52,0.98,4,265,3,0,0,0,product_mng,medium +0.97,0.52,4,207,3,0,0,0,product_mng,low +0.63,0.94,4,219,3,0,0,0,product_mng,low +0.85,0.99,3,208,2,0,0,0,product_mng,low +0.59,0.74,3,240,3,0,0,0,IT,low +0.64,0.6,3,135,3,0,0,0,RandD,low +0.8,0.67,3,236,3,1,0,0,RandD,low +0.61,0.75,3,140,3,0,0,0,RandD,low +0.87,0.61,3,162,2,0,0,0,RandD,low +0.75,0.59,3,117,3,1,0,0,RandD,medium +0.96,0.51,4,225,3,0,0,0,marketing,medium +0.75,0.92,3,211,3,0,0,0,sales,medium +0.19,0.58,4,173,5,0,0,0,accounting,medium +0.52,0.97,4,170,3,0,0,0,support,medium +0.6,0.6,3,242,3,0,0,0,technical,medium +0.9,0.81,4,175,3,0,0,0,management,medium +0.89,0.92,3,195,2,0,0,0,marketing,medium +0.54,0.93,4,184,2,1,0,0,marketing,medium +0.99,0.55,3,170,3,0,0,0,marketing,medium +0.66,0.56,4,185,3,0,0,0,sales,medium +0.92,0.64,4,259,2,0,0,0,sales,medium +0.19,0.72,4,102,3,0,0,0,sales,medium +0.39,0.37,5,156,4,0,0,0,sales,medium +0.41,0.68,3,191,4,0,0,0,sales,medium +0.6,0.49,3,239,2,0,0,0,sales,medium +0.95,0.54,4,235,4,0,0,0,sales,medium +0.51,0.87,2,130,4,0,0,0,sales,medium +0.54,0.74,2,166,3,0,0,0,sales,medium +0.16,0.54,5,206,5,0,0,0,sales,medium +0.98,0.77,3,191,2,0,0,0,sales,medium +0.65,0.75,3,214,3,0,0,0,sales,medium +0.38,0.5,3,196,3,0,0,0,sales,medium +0.95,0.71,4,151,4,0,0,0,sales,medium +0.6,0.62,5,165,2,0,0,0,sales,medium +0.78,0.91,3,177,2,0,0,0,sales,high +0.19,0.63,6,241,6,0,0,0,sales,high +0.56,0.99,4,230,3,0,0,0,sales,high +0.21,0.71,4,270,2,0,0,0,sales,high +0.83,0.71,3,234,4,0,0,0,accounting,high +0.5,0.64,3,257,2,1,0,0,accounting,high +0.74,0.87,5,264,3,0,0,0,accounting,high +0.75,0.83,4,133,4,0,0,0,hr,high +0.85,0.66,4,155,4,0,0,0,hr,high +0.93,0.59,3,202,2,0,0,0,hr,high +0.76,0.7,3,136,2,0,0,0,hr,high +0.91,0.78,3,269,3,1,0,0,technical,high +0.22,0.54,6,169,4,0,0,0,technical,low +0.78,0.52,5,192,3,1,0,0,technical,low +0.53,0.8,4,241,3,1,0,0,technical,low +0.58,0.69,4,165,3,0,0,0,technical,low +0.99,0.81,3,183,2,0,0,0,technical,low +0.62,0.64,4,163,3,0,0,0,technical,low +0.59,0.69,3,162,3,0,0,0,technical,low +0.13,0.76,5,219,4,0,0,0,technical,low +0.19,0.63,4,278,6,0,0,0,technical,low +0.94,0.99,2,273,4,0,0,0,technical,low +0.53,0.96,4,272,2,0,0,0,support,low +0.96,0.85,5,168,2,0,0,0,support,low +0.62,0.87,4,221,3,1,0,0,support,low +0.81,0.86,4,213,3,0,0,0,support,low +0.63,0.78,4,275,3,0,0,0,support,low +0.92,0.68,5,177,4,0,0,0,support,medium +0.83,0.74,4,249,2,0,0,0,support,medium +0.49,0.37,5,246,3,0,0,0,support,medium +0.8,0.66,4,223,3,0,0,0,support,medium +0.54,0.76,4,244,2,0,0,0,support,medium +0.37,0.72,3,169,2,1,0,0,support,medium +0.93,0.56,5,140,3,0,0,0,technical,medium +0.88,0.99,5,253,2,0,0,0,technical,medium +0.79,0.87,3,194,2,0,0,0,technical,medium +0.65,0.88,4,173,3,0,0,0,management,medium +0.72,0.7,4,172,3,0,0,0,IT,medium +0.58,0.49,3,167,3,0,0,0,IT,medium +0.37,0.51,2,153,3,0,0,0,IT,high +0.87,0.97,4,243,3,0,0,0,IT,high +0.63,0.72,6,163,4,0,0,0,IT,high +0.72,0.79,3,221,3,0,0,0,product_mng,high +0.36,0.55,3,191,3,0,0,0,product_mng,high +0.96,0.7,4,272,3,0,0,0,product_mng,high +0.52,0.37,2,118,2,0,0,0,product_mng,high +0.16,0.83,5,173,4,0,0,0,IT,high +0.63,0.55,4,200,3,1,0,0,RandD,low +0.92,0.76,5,132,3,1,0,0,RandD,low +0.82,0.49,4,180,2,0,0,0,RandD,low +0.18,0.54,4,145,5,0,0,0,RandD,low +0.73,0.48,4,139,2,0,0,0,RandD,low +0.44,0.61,5,230,6,0,0,0,marketing,low +0.73,0.62,4,247,4,0,0,0,sales,low +0.62,0.95,4,140,2,0,0,0,accounting,low +0.94,0.8,4,266,3,1,0,0,support,medium +0.76,0.74,4,261,3,0,0,0,technical,medium +0.89,0.49,4,275,3,0,0,0,management,medium +0.9,0.88,5,254,2,0,0,0,marketing,medium +1,0.93,5,231,2,0,0,0,marketing,medium +0.71,0.9,3,138,3,0,0,0,marketing,medium +0.73,0.97,4,163,3,0,0,0,sales,medium +0.97,0.9,5,262,3,0,0,0,sales,medium +0.6,0.59,4,201,3,0,0,0,sales,medium +0.82,0.67,3,229,3,0,0,0,sales,medium +0.95,0.48,4,228,2,0,0,0,sales,medium +0.88,0.65,5,228,3,0,0,0,sales,medium +0.79,0.49,3,273,3,0,0,0,sales,medium +0.52,0.96,4,171,2,0,0,0,sales,medium +0.22,0.61,3,148,5,0,0,0,sales,medium +0.59,0.96,5,211,3,0,0,0,sales,medium +0.84,0.64,2,211,3,0,0,0,sales,medium +0.54,0.41,3,175,3,0,0,0,sales,medium +1,0.86,4,245,4,0,0,0,sales,medium +0.93,0.59,3,273,2,1,0,0,sales,medium +0.96,0.55,3,225,4,1,0,0,sales,medium +0.56,0.41,5,152,3,0,0,0,sales,medium +0.49,0.66,5,194,3,0,0,0,sales,medium +0.89,0.51,4,185,3,1,0,0,sales,high +0.57,0.91,3,193,2,0,0,0,sales,low +0.96,0.64,3,166,2,0,0,0,accounting,medium +0.65,0.89,5,223,3,1,0,0,accounting,medium +0.14,0.66,5,281,4,1,0,0,accounting,medium +0.64,0.49,3,241,3,0,0,0,hr,medium +0.98,0.91,3,165,2,1,0,0,hr,medium +0.71,0.59,4,143,2,0,0,0,hr,medium +0.96,0.49,5,137,3,0,0,0,hr,medium +0.9,0.57,4,185,3,1,0,0,technical,medium +0.52,0.96,3,271,3,1,0,0,technical,medium +0.78,0.98,4,207,2,1,0,0,technical,medium +0.62,0.69,4,184,3,0,0,0,technical,low +0.6,0.8,4,253,2,0,0,0,technical,low +0.82,0.62,3,152,6,0,0,0,technical,low +0.52,0.55,3,225,2,0,0,0,technical,low +0.13,0.84,5,189,5,0,0,0,technical,low +0.97,0.93,3,153,2,0,0,0,technical,low +0.63,0.9,4,245,3,0,0,0,technical,low +0.68,0.78,5,233,3,0,0,0,technical,high +0.74,0.83,4,210,3,0,0,0,support,low +0.89,0.57,4,176,4,0,0,0,support,high +0.28,0.95,5,191,3,0,0,0,support,high +0.61,0.9,3,224,3,0,0,0,support,low +0.67,0.49,3,185,3,0,0,0,support,low +0.86,0.64,3,245,4,0,0,0,support,high +0.87,0.93,3,173,2,0,0,0,support,low +0.7,0.95,4,231,3,0,0,0,support,medium +0.68,0.84,3,270,3,0,0,0,support,high +0.69,0.75,5,196,3,0,0,0,support,medium +0.97,0.83,3,238,2,0,0,0,support,medium +0.62,0.89,4,261,2,0,0,0,technical,medium +0.55,0.87,3,201,2,0,0,0,technical,medium +0.61,0.73,3,252,3,0,0,0,technical,high +0.15,0.81,3,191,5,0,0,0,management,medium +0.84,0.86,3,199,3,0,0,0,IT,medium +0.87,0.64,5,234,2,1,0,0,IT,medium +0.93,0.86,4,192,4,0,0,0,IT,high +0.14,0.73,6,237,5,0,0,0,IT,medium +0.96,0.7,3,207,3,0,0,0,IT,high +0.41,0.63,2,145,2,0,0,0,product_mng,low +0.84,0.96,6,155,5,0,0,0,product_mng,medium +0.94,0.69,5,145,2,0,0,0,product_mng,medium +0.6,0.86,6,247,6,0,0,0,product_mng,medium +0.7,0.73,4,182,3,0,0,0,IT,medium +0.29,0.91,4,183,4,0,0,0,RandD,low +0.31,0.51,2,146,3,0,0,0,RandD,low +0.73,0.99,3,241,3,0,0,0,RandD,low +0.51,0.52,5,261,3,1,0,0,RandD,low +0.58,0.77,4,140,3,0,0,0,RandD,low +0.59,0.97,3,257,3,0,0,0,marketing,low +0.95,0.9,3,186,2,0,0,0,marketing,low +0.84,0.93,3,159,3,0,0,0,sales,low +0.28,0.37,3,164,4,1,0,0,accounting,low +0.94,0.52,4,217,6,1,0,0,support,low +0.49,0.59,4,137,4,0,0,0,technical,high +0.72,0.5,4,164,2,1,0,0,management,low +0.19,0.85,5,249,3,0,0,0,marketing,low +0.83,0.95,3,264,2,0,0,0,marketing,low +0.79,0.92,4,208,2,1,0,0,marketing,low +0.72,0.61,3,175,3,0,0,0,sales,high +0.97,0.74,4,209,2,0,0,0,sales,low +0.92,0.83,4,268,4,0,0,0,sales,low +0.95,0.53,3,264,3,0,0,0,sales,low +0.76,0.64,4,234,2,0,0,0,sales,high +0.24,0.62,5,199,4,0,0,0,sales,low +0.89,0.99,4,205,2,0,0,1,sales,medium +0.69,0.63,5,140,4,0,0,1,sales,high +0.92,0.98,3,257,3,0,0,1,sales,medium +0.79,0.61,4,227,2,0,0,1,sales,high +0.87,0.94,4,189,3,0,0,1,sales,medium +0.89,0.88,5,241,2,1,0,0,sales,medium +0.75,0.77,5,199,4,0,0,0,sales,medium +0.78,0.6,4,206,3,0,0,0,sales,medium +0.13,0.62,5,268,3,0,0,0,sales,medium +0.94,0.86,3,221,3,1,0,0,sales,medium +0.94,0.88,4,262,2,0,0,0,sales,medium +0.67,0.6,5,253,6,0,0,0,sales,medium +0.6,0.73,5,241,3,0,0,0,sales,high +0.62,0.94,4,252,4,0,0,0,accounting,low +0.38,0.52,2,171,3,0,0,0,accounting,medium +0.8,0.77,4,194,3,0,0,0,accounting,medium +0.61,0.42,3,104,2,0,0,0,hr,medium +0.61,0.56,4,176,3,0,0,0,hr,medium +0.66,0.8,4,192,3,0,0,0,hr,medium +0.56,0.74,3,154,2,0,0,0,hr,medium +1,0.55,4,186,4,1,0,0,technical,medium +0.73,0.86,3,200,4,0,0,0,technical,medium +0.6,0.66,4,132,4,0,0,0,technical,medium +0.78,0.59,5,236,3,0,0,0,technical,high +0.48,0.53,3,211,4,0,0,0,technical,low +0.9,0.77,4,273,2,0,0,0,technical,low +0.16,0.76,4,223,4,0,0,0,technical,low +0.5,0.75,3,204,2,0,0,0,technical,high +0.66,0.65,3,196,3,1,0,0,technical,low +0.44,0.37,2,219,2,0,0,0,technical,low +0.95,0.67,4,261,3,0,0,0,technical,low +0.9,0.65,3,254,2,0,0,0,support,high +0.27,0.48,4,185,2,0,0,0,support,low +0.51,0.74,6,98,3,0,0,0,support,low +0.68,0.76,3,260,4,0,0,0,support,low +0.97,0.93,5,137,2,1,0,0,support,low +0.91,0.75,4,159,3,1,0,0,support,low +0.76,0.88,5,265,4,0,0,0,support,low +0.88,0.61,4,177,4,1,0,0,support,low +0.83,0.73,4,247,2,0,0,0,support,medium +0.78,0.54,3,161,3,0,0,0,support,medium +0.52,0.38,2,103,3,0,0,0,support,medium +0.63,0.49,4,151,3,0,0,0,technical,medium +0.9,0.74,3,193,3,0,0,0,technical,medium +0.48,0.58,3,194,3,0,0,0,technical,medium +0.7,0.6,5,208,3,0,0,0,management,medium +0.68,0.66,4,229,3,0,0,0,IT,medium +0.7,0.87,3,166,2,0,0,0,IT,medium +0.77,0.5,3,141,3,0,0,0,IT,medium +0.73,0.93,3,249,2,0,0,0,IT,medium +0.87,0.48,4,264,3,0,0,0,IT,medium +0.65,0.98,3,252,2,0,0,0,product_mng,high +0.62,0.7,2,134,3,0,0,0,product_mng,low +0.53,0.51,3,274,2,1,0,0,product_mng,medium +0.59,0.39,5,200,4,0,0,0,product_mng,medium +0.87,0.72,2,154,3,0,0,0,IT,medium +0.47,0.53,3,111,4,0,0,0,RandD,medium +0.96,0.81,3,247,3,0,0,0,RandD,low +0.79,0.74,3,169,3,0,0,0,RandD,low +0.84,0.6,3,250,3,1,0,0,RandD,low +0.68,0.49,3,178,3,1,0,0,RandD,low +0.86,0.66,4,251,3,0,0,0,RandD,low +0.73,0.98,5,272,2,0,0,0,marketing,low +0.9,0.67,2,229,4,0,0,0,sales,low +0.63,0.64,3,180,3,0,0,0,accounting,low +0.71,0.72,3,271,2,0,0,0,support,low +0.71,0.68,5,226,3,0,0,0,technical,low +0.95,0.62,4,150,2,0,0,0,management,low +0.51,0.86,4,260,3,1,0,0,marketing,low +0.77,0.91,4,161,3,0,0,0,marketing,low +0.48,0.51,3,136,3,0,0,0,marketing,low +0.93,0.91,2,238,2,1,0,0,sales,low +0.83,0.86,4,98,4,0,0,0,sales,low +0.61,0.73,5,156,4,0,0,0,sales,low +0.97,0.89,4,248,2,0,0,0,sales,low +0.5,0.81,3,170,2,0,0,0,sales,low +0.84,0.54,3,245,3,0,0,0,sales,low +0.58,0.38,4,203,5,0,0,0,sales,low +0.59,0.72,3,182,3,0,0,0,sales,medium +0.77,0.83,3,175,3,0,0,1,sales,medium +0.78,0.4,4,145,5,1,0,1,sales,medium +0.6,0.96,4,220,3,1,0,1,sales,medium +0.53,0.77,4,259,2,1,0,1,sales,medium +0.73,0.69,3,228,2,0,0,1,sales,medium +0.76,0.94,3,189,3,0,0,0,sales,medium +0.12,0.61,6,257,3,0,0,0,sales,medium +0.2,0.98,3,180,6,0,0,0,sales,medium +0.5,0.77,4,180,3,0,0,0,sales,medium +0.79,0.65,5,215,2,1,0,0,sales,medium +0.96,0.68,3,132,2,0,0,0,sales,medium +0.26,0.69,5,213,2,0,0,0,accounting,high +0.8,0.72,4,173,3,0,0,0,accounting,low +0.43,0.71,3,186,2,0,0,0,accounting,medium +0.87,0.71,4,157,2,0,0,0,hr,medium +0.63,0.75,4,175,4,0,0,0,hr,medium +0.58,0.48,3,135,3,1,0,0,hr,medium +0.2,0.42,4,256,5,0,0,0,hr,low +0.62,0.71,4,268,3,0,0,0,technical,low +0.91,0.94,5,159,3,0,0,0,technical,low +0.66,0.91,3,191,4,0,0,0,technical,low +0.53,0.81,3,275,2,0,0,0,technical,low +0.52,0.98,5,217,2,1,0,0,technical,low +1,0.88,6,201,4,0,0,0,technical,low +0.73,0.67,4,205,3,0,0,0,technical,low +0.65,0.67,3,240,2,1,0,0,technical,low +0.5,0.95,5,137,3,0,0,0,technical,low +0.94,0.59,4,241,2,0,0,0,technical,low +0.48,0.86,5,198,4,0,0,0,technical,low +0.67,0.87,5,254,2,0,0,0,support,low +0.73,0.94,4,262,3,0,0,0,support,low +0.63,0.71,4,244,2,0,0,0,support,low +0.84,0.84,4,266,3,0,0,0,support,low +0.2,0.94,6,191,5,0,0,0,support,low +0.76,0.57,3,148,3,1,0,0,support,low +0.55,0.54,3,233,2,0,0,0,support,low +0.8,0.55,4,178,2,1,0,0,support,low +0.64,0.91,3,165,3,1,0,0,support,low +0.59,0.97,5,179,6,0,0,0,support,medium +0.92,0.98,3,149,3,0,0,0,support,medium +0.75,0.76,3,269,2,1,0,0,technical,medium +0.69,0.74,5,227,2,0,0,0,technical,medium +0.82,0.93,3,247,3,0,0,0,technical,medium +0.88,0.85,3,220,3,0,0,0,management,medium +0.89,0.91,3,233,2,0,0,0,IT,medium +1,0.79,5,171,5,0,0,0,IT,medium +0.66,0.91,4,234,2,1,0,0,IT,medium +0.76,0.92,3,176,2,0,0,0,IT,medium +0.8,0.62,5,190,4,1,0,0,IT,medium +0.58,0.86,4,168,2,0,0,0,product_mng,medium +0.73,0.93,3,205,3,0,0,0,product_mng,high +1,0.73,5,189,3,1,0,0,product_mng,low +0.18,0.9,4,282,4,0,0,0,product_mng,medium +0.47,0.46,2,152,2,0,0,0,IT,medium +0.92,0.64,4,217,4,0,0,0,RandD,medium +0.51,0.5,4,130,3,0,0,0,RandD,medium +0.81,0.62,4,153,4,0,0,0,RandD,low +0.52,0.57,3,270,3,0,0,0,RandD,low +0.95,0.96,3,220,3,0,0,0,RandD,low +0.93,0.64,4,253,3,0,0,0,RandD,low +0.98,0.67,4,209,6,0,0,0,marketing,low +0.79,0.79,4,231,2,0,0,0,sales,low +0.99,0.73,4,240,4,0,0,0,accounting,low +0.64,0.9,5,266,3,0,0,0,support,low +0.54,0.44,3,153,2,0,0,0,technical,low +0.79,0.59,4,187,2,0,0,0,management,low +0.55,0.98,4,185,2,1,0,0,marketing,low +0.18,0.81,4,147,4,0,0,0,marketing,low +0.56,0.81,4,188,3,1,0,0,marketing,low +0.92,0.67,2,252,2,0,0,0,sales,low +0.99,0.75,4,163,2,0,0,0,sales,low +0.77,0.85,4,189,2,0,0,0,sales,low +0.49,0.52,3,156,2,0,0,0,sales,low +0.98,0.58,3,183,3,0,0,0,sales,low +0.18,0.54,6,209,5,1,0,0,sales,low +0.8,0.82,4,271,4,0,0,0,sales,low +0.81,0.77,5,251,2,0,0,0,sales,low +0.13,0.61,5,198,5,0,0,0,sales,medium +0.58,0.97,3,274,4,1,0,1,sales,medium +0.75,0.63,4,209,3,0,0,1,sales,medium +0.8,0.94,4,271,4,0,0,1,sales,medium +0.78,0.6,4,143,2,0,0,1,sales,medium +0.92,0.6,5,236,3,1,0,1,sales,medium +0.85,0.98,5,222,3,0,0,1,sales,medium +0.52,0.63,3,233,3,0,0,1,sales,medium +0.95,0.84,3,270,3,1,0,1,sales,medium +0.81,0.92,5,258,3,0,0,1,sales,medium +0.16,0.82,6,202,4,1,0,1,sales,medium +0.91,0.74,3,150,2,0,0,0,accounting,medium +0.62,0.51,4,193,3,0,0,0,accounting,high +0.24,0.42,5,210,5,0,0,0,accounting,low +0.88,0.51,3,208,3,0,0,0,hr,medium +0.94,0.73,3,196,3,0,0,0,hr,medium +0.76,0.79,5,187,4,0,0,0,hr,medium +0.49,0.67,3,140,2,0,0,0,hr,medium +0.93,0.9,4,256,4,0,0,0,technical,low +0.92,0.66,4,113,3,0,0,0,technical,low +0.19,0.94,4,196,5,0,0,0,technical,low +0.66,0.76,3,170,3,0,0,0,technical,low +0.16,0.94,4,261,6,0,0,0,technical,low +0.83,0.99,5,132,3,0,0,0,technical,low +0.69,0.53,3,153,3,0,0,0,technical,low +0.82,0.53,3,147,3,1,0,0,technical,low +0.88,0.72,5,244,2,0,0,0,technical,low +0.31,0.42,4,108,4,0,0,0,technical,low +0.83,0.49,4,218,2,0,0,0,technical,low +0.94,0.52,5,133,3,0,0,0,support,low +0.65,0.79,5,233,3,0,0,0,support,low +0.6,0.6,4,147,3,0,0,0,support,low +0.52,0.43,3,176,3,0,0,0,support,low +0.66,0.89,4,169,4,0,0,0,support,low +0.87,0.87,4,144,3,0,0,0,support,low +0.2,0.99,5,151,3,1,0,0,support,low +0.63,0.91,4,252,3,1,0,0,support,medium +0.69,0.98,4,180,3,0,0,0,support,medium +0.48,0.61,3,251,3,0,0,0,support,medium +0.8,0.8,4,263,4,0,0,0,support,medium +0.89,0.74,5,260,6,0,0,0,technical,medium +0.67,0.63,3,227,3,0,0,0,technical,medium +0.37,0.86,6,260,3,0,0,0,technical,medium +0.93,0.61,5,158,3,0,0,0,management,medium +0.69,0.52,3,186,3,0,0,0,IT,medium +0.16,0.61,4,171,6,0,0,0,IT,medium +0.81,0.55,3,199,2,1,0,0,IT,medium +0.97,0.63,5,258,2,0,0,0,IT,medium +0.77,0.59,4,273,2,0,0,0,IT,high +0.75,0.78,2,259,3,0,0,0,product_mng,low +0.88,0.82,3,265,3,0,0,0,product_mng,medium +0.43,0.51,5,168,4,0,0,0,product_mng,medium +0.99,0.99,4,163,4,0,0,0,product_mng,medium +0.59,0.65,5,265,3,0,0,0,IT,medium +0.89,0.71,4,190,3,0,0,0,RandD,low +0.54,0.73,3,157,3,0,0,0,RandD,low +0.32,0.86,4,266,4,0,0,0,RandD,low +0.17,0.55,6,240,6,0,0,0,RandD,low +0.78,0.55,3,143,3,0,0,0,RandD,low +0.73,0.68,3,121,5,0,0,0,RandD,low +0.65,0.76,2,170,5,0,0,0,IT,low +0.8,0.71,4,161,4,0,0,0,IT,low +0.61,0.86,3,239,3,0,0,0,IT,low +0.67,0.49,3,224,3,0,0,0,IT,low +0.63,0.57,3,242,3,0,0,0,product_mng,low +0.51,0.58,4,140,2,1,0,0,product_mng,low +0.82,0.59,5,170,3,0,0,0,product_mng,low +0.79,0.67,5,156,2,0,0,0,product_mng,low +0.49,0.6,2,113,5,0,0,0,IT,low +0.7,0.59,3,138,3,0,0,0,RandD,low +0.13,0.5,3,137,5,0,0,0,RandD,low +0.83,0.52,5,217,3,0,0,0,RandD,low +0.83,0.91,3,155,3,0,0,0,RandD,low +0.19,0.83,5,280,4,0,0,0,RandD,low +0.8,0.81,5,248,2,1,0,0,RandD,low +0.49,0.67,2,190,8,0,0,0,marketing,medium +0.92,0.99,3,176,8,0,0,0,sales,medium +0.81,0.55,4,217,8,0,0,0,accounting,medium +0.62,0.91,3,269,8,0,0,0,support,medium +0.21,0.7,3,238,8,0,0,0,technical,medium +0.95,0.74,5,243,6,0,0,0,management,medium +0.51,0.8,4,198,6,0,0,0,marketing,medium +0.52,0.89,3,188,6,0,0,0,marketing,medium +0.64,0.56,3,257,6,0,0,0,marketing,medium +0.62,0.79,4,268,6,0,0,0,sales,medium +0.73,0.88,5,233,4,1,0,0,sales,medium +0.32,0.86,4,214,5,0,0,0,sales,medium +0.78,0.96,2,285,3,0,0,0,sales,high +0.65,0.91,4,224,2,1,0,0,sales,low +0.56,0.92,4,224,3,0,0,0,sales,medium +0.96,0.89,3,142,4,0,0,0,sales,medium +0.79,0.82,4,220,3,0,0,0,sales,medium +0.66,0.58,4,244,3,0,0,0,sales,medium +0.67,0.68,4,171,3,0,0,0,sales,low +0.86,0.82,4,274,2,1,0,0,sales,low +0.57,0.72,4,214,2,1,0,0,sales,low +0.86,0.87,5,171,2,0,0,0,sales,low +0.52,0.59,5,150,2,0,0,0,sales,low +0.73,0.61,4,260,2,1,0,0,sales,low +0.78,0.63,5,259,3,0,0,0,sales,low +0.95,0.63,3,153,2,0,0,0,sales,low +0.75,0.61,3,263,3,0,0,0,sales,low +0.83,0.52,2,149,2,1,0,0,sales,low +0.48,1,4,261,3,0,0,0,accounting,low +0.3,0.58,2,189,4,1,0,0,accounting,low +0.72,0.85,5,237,4,0,0,0,accounting,low +0.61,0.52,3,224,3,0,0,0,hr,low +0.31,0.87,6,240,3,1,0,0,hr,low +0.62,0.81,3,245,2,1,0,0,hr,low +0.48,0.49,3,268,3,0,0,0,hr,low +0.97,0.89,4,208,2,1,0,0,technical,low +0.61,0.83,4,153,2,0,0,0,technical,low +0.93,0.99,3,169,3,0,0,0,technical,low +0.89,0.39,5,218,2,0,0,0,technical,low +0.95,0.9,3,155,3,0,0,0,technical,medium +0.36,0.44,5,155,3,0,0,0,technical,medium +0.29,0.39,6,105,6,0,0,0,technical,medium +0.65,0.83,4,251,2,0,0,0,technical,medium +0.72,0.54,4,219,2,0,0,0,technical,medium +0.51,0.56,4,198,2,1,0,0,technical,medium +0.54,0.53,4,158,2,0,0,0,technical,medium +0.66,0.58,3,157,2,0,0,0,support,medium +0.59,0.54,4,178,2,0,0,0,support,medium +0.45,0.48,3,145,2,0,0,0,support,medium +0.15,0.91,5,230,3,0,0,0,support,medium +0.95,0.53,3,174,3,0,0,0,support,medium +0.49,0.59,5,140,3,0,0,0,support,high +0.68,0.97,3,174,2,0,0,0,support,low +0.7,0.76,4,173,2,0,0,0,support,medium +0.9,0.73,2,203,4,0,0,0,support,medium +0.94,0.95,5,170,3,0,0,0,support,medium +0.8,0.86,3,203,3,0,0,0,support,medium +0.59,0.53,5,169,3,0,0,0,technical,low +0.43,0.96,3,109,6,0,0,0,technical,low +0.7,0.54,5,263,3,0,0,0,technical,low +0.51,0.62,4,185,3,0,0,0,management,low +0.12,0.49,4,191,5,0,0,0,IT,low +0.14,0.56,5,259,4,1,0,0,IT,low +0.86,0.91,4,253,3,0,0,0,IT,low +0.97,0.5,3,216,3,0,0,0,IT,low +1,0.86,2,264,3,0,0,0,IT,medium +0.49,0.63,3,181,3,1,0,0,product_mng,medium +0.9,0.93,3,209,3,0,0,0,product_mng,medium +0.82,0.89,4,239,2,0,0,0,product_mng,medium +0.59,0.48,3,197,3,0,0,0,product_mng,medium +0.97,0.57,4,150,2,0,0,0,IT,medium +0.69,0.88,3,164,10,0,0,0,management,medium +0.73,0.84,3,216,8,0,0,0,management,medium +0.48,0.74,2,271,8,1,0,0,management,medium +0.94,0.49,4,176,8,0,0,0,management,medium +0.74,0.73,3,156,8,0,0,0,management,medium +0.65,0.63,4,143,8,0,0,0,management,medium +0.93,0.94,4,233,6,0,0,0,IT,medium +0.57,0.67,3,138,6,1,0,0,IT,medium +0.9,0.49,3,259,6,0,0,0,IT,medium +0.55,0.86,4,169,6,0,0,0,IT,medium +0.59,0.73,3,172,6,0,0,0,product_mng,medium +0.72,0.98,4,156,3,0,0,0,product_mng,medium +0.87,0.52,4,140,3,0,0,0,product_mng,medium +0.86,0.82,4,212,2,0,0,0,product_mng,medium +0.61,0.5,4,269,3,0,0,0,IT,medium +0.45,0.63,5,111,5,0,0,0,management,medium +0.51,0.63,4,198,2,0,0,0,management,medium +0.87,0.92,4,263,3,0,0,0,management,medium +0.29,0.38,5,191,5,0,0,0,management,medium +0.57,0.64,3,188,3,0,0,0,management,medium +0.69,0.83,4,252,3,0,0,0,management,medium +0.61,0.9,2,142,3,0,0,0,marketing,high +0.96,0.85,4,247,3,0,0,0,sales,high +0.16,0.61,6,269,2,0,0,0,accounting,high +0.96,0.82,4,244,3,0,0,0,support,high +0.77,0.81,4,164,3,0,0,0,technical,high +0.85,0.87,6,232,5,0,0,0,management,high +0.37,0.49,3,177,3,0,0,0,marketing,high +0.68,0.65,3,173,3,1,0,0,marketing,high +0.87,0.6,5,165,2,1,0,0,marketing,high +0.95,0.8,3,225,2,0,0,0,sales,high +0.84,0.63,3,121,3,1,0,0,sales,low +0.44,0.51,2,219,4,0,0,0,sales,low +0.94,0.73,4,204,2,0,0,0,sales,low +0.85,0.94,5,235,4,0,0,0,sales,low +0.75,0.51,2,215,2,1,0,0,sales,low +0.76,0.67,5,243,3,0,0,0,sales,low +0.13,0.97,4,162,6,0,0,0,sales,low +0.6,0.79,4,262,3,0,0,0,sales,low +0.45,0.55,4,206,2,0,0,0,sales,low +0.49,1,2,125,4,1,0,0,sales,low +0.19,0.36,3,167,5,0,0,0,sales,low +0.68,0.89,5,218,5,0,0,0,sales,low +0.53,0.91,5,181,3,0,0,0,sales,low +1,0.77,5,269,3,0,0,0,sales,low +0.99,0.86,3,167,2,0,0,0,sales,low +0.29,0.75,6,271,10,0,0,0,sales,medium +0.54,0.83,4,201,8,1,0,0,sales,medium +0.25,0.9,6,229,8,0,0,0,sales,medium +0.71,0.76,4,148,8,0,0,0,accounting,medium +0.96,0.84,3,147,8,0,0,0,accounting,medium +0.8,0.9,4,211,8,0,0,0,accounting,medium +0.82,0.87,5,145,6,0,0,0,hr,medium +0.19,0.97,6,269,6,0,0,0,hr,medium +0.43,0.74,4,129,6,0,0,0,hr,medium +0.62,0.84,3,270,6,0,0,0,hr,medium +0.75,0.85,3,250,6,0,0,0,technical,medium +0.56,0.48,5,192,2,1,0,0,technical,medium +0.88,0.91,4,233,4,0,0,0,technical,high +0.63,0.57,4,192,3,0,0,0,technical,high +0.75,0.93,3,247,2,0,0,0,technical,high +0.74,1,4,192,4,0,0,0,technical,high +0.55,0.68,3,178,3,1,0,0,technical,high +0.87,0.55,4,197,3,0,0,0,technical,high +0.13,0.9,5,264,6,0,0,0,technical,high +0.33,0.64,2,274,3,1,0,0,technical,high +0.89,0.97,4,147,2,0,0,0,technical,low +0.56,0.94,3,154,3,1,0,0,support,low +0.95,0.61,3,224,2,1,0,0,support,low +0.57,0.59,4,250,2,0,0,0,support,low +0.72,0.53,3,179,3,0,0,0,support,low +0.28,0.44,4,170,2,0,0,0,support,low +0.54,0.61,4,118,5,0,0,0,support,low +0.54,0.95,4,256,3,0,0,0,support,low +0.99,0.8,3,209,2,0,0,0,support,medium +0.37,0.69,2,146,3,0,0,0,support,medium +0.77,0.87,3,275,4,1,0,0,support,medium +0.7,0.88,4,180,2,0,0,0,support,medium +0.8,0.74,3,228,3,0,0,0,technical,medium +0.52,0.63,3,204,3,0,0,0,technical,medium +0.69,0.55,3,172,2,0,0,0,technical,medium +0.6,0.62,5,274,3,0,0,0,management,medium +0.74,0.64,3,136,2,0,0,0,IT,medium +0.69,0.82,4,252,3,1,0,0,IT,medium +0.78,0.89,4,137,3,0,0,0,IT,medium +0.77,0.75,4,191,3,0,0,0,IT,medium +0.91,0.68,4,132,4,0,0,0,IT,medium +0.54,0.68,6,249,5,0,0,0,product_mng,medium +0.48,0.77,6,274,6,0,0,0,product_mng,medium +0.55,0.96,3,194,3,0,0,0,product_mng,medium +0.17,0.36,6,191,2,0,0,0,product_mng,medium +0.77,0.83,5,216,4,0,0,0,IT,medium +0.93,0.98,3,241,3,0,0,0,IT,medium +0.65,0.91,4,243,5,1,0,0,IT,medium +0.67,0.52,4,207,3,0,0,0,IT,medium +0.95,0.88,3,199,3,0,0,0,IT,medium +0.61,0.97,6,286,4,0,0,0,product_mng,medium +0.57,0.39,4,132,3,0,0,0,product_mng,high +0.65,1,4,229,4,0,0,0,product_mng,low +0.85,0.81,4,260,3,0,0,0,product_mng,medium +0.61,0.96,3,214,2,0,0,0,IT,medium +0.65,0.9,6,217,4,1,0,1,RandD,medium +0.92,0.93,4,225,2,0,0,1,RandD,medium +0.37,0.41,2,113,3,0,0,1,RandD,medium +0.48,0.77,5,250,2,0,0,1,RandD,medium +0.82,0.91,5,271,2,0,0,1,RandD,medium +0.84,0.75,4,135,3,0,0,1,RandD,medium +0.57,0.46,2,100,6,1,0,1,marketing,medium +0.8,0.75,4,224,3,0,0,1,sales,medium +0.49,0.91,4,134,4,0,0,0,accounting,low +0.79,0.82,5,158,2,0,0,0,support,low +0.48,0.67,3,183,2,0,0,0,technical,low +0.28,0.89,4,97,6,0,0,0,management,low +0.47,0.56,4,226,3,0,0,0,marketing,low +0.91,0.6,4,235,4,1,0,0,marketing,low +0.75,0.6,4,186,10,1,0,0,marketing,low +0.61,0.89,3,242,10,0,0,0,sales,high +0.47,0.79,3,284,10,0,0,0,sales,low +0.22,0.7,2,274,10,0,0,0,sales,high +0.5,0.48,4,130,10,0,0,0,sales,high +0.56,0.87,3,146,10,0,0,0,sales,low +0.84,0.85,4,207,10,0,0,0,sales,low +0.69,0.72,4,210,2,1,0,0,sales,high +0.53,0.64,3,143,2,0,0,0,sales,low +0.17,0.57,4,116,3,0,0,0,sales,medium +0.48,0.71,2,162,3,1,0,0,sales,high +0.94,0.51,3,242,3,0,0,0,sales,medium +0.77,0.89,4,153,7,0,0,0,sales,medium +1,0.72,5,194,7,1,0,0,sales,medium +0.49,0.65,4,233,7,0,0,0,sales,medium +0.93,0.73,4,283,7,0,0,0,sales,high +0.38,0.43,3,188,7,0,0,0,sales,medium +0.6,0.54,4,182,6,0,0,0,sales,medium +0.5,0.82,2,286,6,0,0,0,sales,medium +0.97,0.55,5,212,6,0,0,0,sales,high +0.93,0.95,5,176,6,0,0,1,accounting,medium +0.5,1,5,264,8,0,0,1,accounting,high +0.52,0.84,3,261,8,0,0,1,accounting,low +0.5,0.71,4,163,8,0,0,1,hr,medium +0.55,0.4,3,139,8,0,0,1,hr,medium +0.95,0.84,3,261,8,1,0,1,hr,medium +0.48,0.42,2,275,6,1,0,1,hr,medium +0.51,0.39,5,132,6,1,0,1,technical,low +0.96,0.48,3,202,6,0,0,0,technical,low +0.97,0.84,4,177,6,0,0,0,technical,low +0.97,0.66,5,234,6,0,0,0,technical,low +0.71,0.54,4,188,6,0,0,0,technical,low +0.82,0.49,5,203,6,0,0,0,technical,low +0.57,1,4,227,10,0,0,0,technical,low +0.48,0.93,3,150,10,0,0,0,technical,low +0.71,0.64,3,267,3,0,0,0,technical,low +0.63,0.61,5,186,10,0,0,0,technical,low +0.99,0.84,4,142,10,0,0,0,technical,high +0.79,0.83,3,126,10,1,0,0,support,low +0.65,0.85,4,201,10,0,0,0,support,low +0.7,0.85,4,142,2,0,0,0,support,low +0.99,0.94,4,167,4,0,0,0,support,low +0.65,0.62,4,258,2,0,0,0,support,high +0.92,0.85,3,207,2,0,0,0,support,low +0.24,0.5,4,282,4,1,0,0,support,low +0.39,0.89,3,188,5,0,0,0,support,low +0.82,0.85,3,214,2,0,0,0,support,high +0.78,0.89,4,272,2,0,0,0,support,low +0.62,0.79,3,259,3,0,0,0,support,medium +0.6,0.61,5,191,2,1,0,0,technical,high +0.49,0.57,3,192,3,0,0,0,technical,medium +0.82,0.82,3,164,3,0,0,0,technical,high +0.48,0.81,4,149,2,0,0,0,management,medium +0.69,0.56,4,149,3,0,0,0,IT,medium +0.4,0.89,2,165,3,0,0,0,IT,medium +0.72,0.8,3,222,3,0,0,0,IT,medium +0.75,0.84,5,222,3,1,0,0,IT,medium +0.5,0.77,3,265,3,0,0,0,IT,medium +0.78,0.5,5,247,4,0,0,0,product_mng,medium +0.76,0.45,4,147,2,0,0,0,product_mng,medium +0.94,0.52,3,273,3,0,0,0,product_mng,high +0.24,0.94,6,144,4,0,0,0,product_mng,low +0.99,0.66,3,181,2,0,0,0,IT,medium +0.67,0.64,3,198,2,1,0,0,management,medium +0.76,0.57,5,255,4,0,0,0,management,medium +0.76,0.77,4,169,10,0,0,0,management,medium +0.55,0.64,4,201,10,1,0,0,management,medium +0.74,0.6,4,274,10,1,0,0,management,medium +0.81,0.85,4,134,10,1,0,0,management,medium +0.98,0.67,3,190,10,0,0,0,IT,medium +0.98,0.98,4,170,10,0,0,0,IT,medium +0.58,0.91,3,154,10,0,0,0,product_mng,high +0.18,0.75,3,142,2,0,0,0,product_mng,low +0.57,0.67,5,235,2,0,0,0,product_mng,low +0.7,0.62,3,110,3,0,0,0,product_mng,low +0.49,0.77,3,211,3,0,0,0,IT,high +0.7,0.56,4,214,3,0,0,1,management,medium +0.16,0.93,5,210,7,0,0,1,management,medium +0.58,0.59,3,207,7,0,0,1,management,medium +0.66,0.57,4,161,7,0,0,1,management,medium +0.51,0.55,2,102,7,0,0,1,management,medium +0.48,0.84,4,186,7,0,0,1,management,medium +0.56,0.71,3,211,6,0,0,1,marketing,low +0.81,0.62,3,240,6,0,0,1,sales,low +0.57,0.7,4,237,6,0,0,0,accounting,low +0.66,0.53,3,164,6,0,0,0,support,low +0.22,0.91,6,222,8,0,0,0,technical,low +0.96,0.71,3,205,8,1,0,0,management,medium +0.87,0.88,4,140,8,0,0,0,marketing,medium +0.61,0.42,2,103,8,0,0,0,marketing,medium +0.66,0.85,3,178,8,1,0,0,marketing,medium +0.9,0.51,4,137,6,0,0,0,sales,medium +0.64,0.67,3,143,6,0,0,0,sales,medium +0.76,0.82,4,170,6,0,0,0,sales,medium +0.97,0.41,5,135,6,0,0,0,sales,medium +0.69,0.76,3,174,6,0,0,0,sales,medium +0.98,0.55,3,166,6,1,0,0,sales,medium +0.18,0.61,5,174,6,0,0,0,sales,medium +0.62,0.91,3,251,10,0,0,0,sales,medium +0.29,0.37,6,187,10,1,0,0,sales,high +0.87,0.48,5,170,3,0,0,0,sales,low +0.91,0.64,3,241,10,0,0,0,sales,medium +0.53,0.79,3,221,10,1,0,0,sales,medium +0.69,0.73,4,257,10,1,0,0,sales,medium +0.14,0.58,4,275,10,0,0,0,sales,medium +0.7,0.77,4,245,2,0,0,0,sales,low +0.77,0.75,6,246,6,0,0,0,sales,low +0.77,0.76,6,263,6,0,0,0,sales,low +0.76,0.99,3,133,4,0,0,0,sales,low +0.66,0.49,4,157,3,0,0,0,sales,low +0.5,0.95,3,198,4,0,0,0,accounting,low +0.57,0.9,5,145,3,0,0,0,accounting,low +0.97,0.62,6,118,2,0,0,0,accounting,low +0.26,0.99,5,184,5,0,0,0,hr,low +0.72,0.62,3,243,2,1,0,0,hr,low +0.83,0.93,3,247,2,0,0,0,hr,low +0.55,0.4,3,158,3,0,0,0,hr,low +0.77,0.74,5,243,2,0,0,0,technical,low +0.24,0.63,4,203,5,0,0,0,technical,low +0.8,0.96,3,161,3,0,0,0,technical,low +0.5,0.59,4,214,3,1,0,0,technical,low +0.66,0.59,4,179,3,0,0,0,technical,low +0.66,0.77,4,188,2,0,0,0,technical,low +0.66,0.81,3,174,3,0,0,0,technical,low +0.96,0.83,3,177,4,0,0,0,technical,low +0.75,0.94,5,194,4,0,0,0,technical,low +0.78,0.77,3,244,2,0,0,0,technical,medium +0.57,0.82,4,269,2,0,0,0,technical,medium +0.78,0.68,2,159,3,1,0,0,support,medium +0.57,0.88,4,140,2,0,0,0,support,medium +0.84,0.56,5,224,2,0,0,0,support,medium +0.23,0.94,5,242,4,0,0,0,support,medium +0.53,0.37,3,180,3,0,0,0,support,medium +0.82,0.71,3,150,3,0,0,0,support,medium +0.59,0.64,5,269,3,0,0,0,support,medium +0.5,0.52,2,178,2,0,0,0,support,medium +1,0.74,2,187,3,0,0,0,support,medium +0.94,0.61,3,140,2,0,0,0,support,medium +0.86,0.61,4,193,2,0,0,0,support,high +0.73,0.49,4,243,2,0,0,0,technical,low +0.49,0.94,3,144,3,1,0,0,technical,medium +0.79,0.73,2,147,2,0,0,0,technical,medium +0.83,0.5,6,165,3,0,0,0,management,medium +0.85,0.67,3,176,2,0,0,0,IT,medium +0.65,0.37,3,170,6,0,0,0,IT,low +0.94,0.65,4,213,2,1,0,0,IT,low +0.76,0.81,4,242,2,0,0,0,IT,low +0.77,0.54,4,139,3,1,0,0,IT,low +0.77,0.91,4,239,3,1,0,0,product_mng,low +0.59,0.64,5,123,2,0,0,0,product_mng,low +0.69,0.9,3,185,4,0,0,0,product_mng,low +0.51,0.85,4,186,2,0,0,0,product_mng,low +0.8,0.67,3,178,3,0,0,0,IT,low +0.98,0.7,3,153,10,0,0,0,management,high +0.69,0.72,4,185,10,1,0,0,management,high +0.14,0.76,4,142,10,0,0,0,management,high +0.95,0.9,4,221,10,1,0,0,management,high +0.53,0.61,3,148,10,0,0,0,management,high +0.64,0.52,5,258,10,1,0,0,management,high +0.51,0.73,4,229,3,0,0,0,sales,low +0.36,0.73,2,111,2,0,0,0,sales,low +0.62,0.97,2,271,3,0,0,0,sales,low +0.98,0.58,4,133,3,0,0,0,sales,low +0.53,0.7,4,223,3,0,0,0,sales,low +0.8,0.95,4,272,2,0,0,0,sales,low +0.73,0.77,3,233,3,0,0,0,sales,medium +0.82,0.8,3,162,3,0,0,0,sales,medium +0.62,0.75,5,165,4,0,0,0,sales,medium +0.87,0.48,5,242,3,0,0,0,sales,medium +0.43,0.65,4,124,2,0,0,0,sales,medium +0.57,0.6,2,163,3,0,0,0,sales,medium +0.91,0.77,3,144,3,0,0,0,sales,medium +0.75,0.59,5,149,4,0,0,0,sales,medium +0.76,0.8,5,217,2,0,0,0,sales,medium +0.85,0.49,4,139,2,0,0,0,sales,medium +0.56,0.67,3,270,2,0,0,0,sales,medium +0.86,0.84,3,177,3,0,0,0,sales,medium +0.21,0.43,5,175,2,1,0,0,sales,high +0.94,0.59,3,151,2,0,0,0,sales,low +0.98,0.74,3,185,3,0,0,0,sales,medium +0.42,0.45,3,227,3,0,0,0,sales,medium +0.98,0.89,4,218,2,0,0,0,sales,medium +1,0.93,5,167,3,0,0,0,sales,medium +0.95,0.52,3,183,2,1,0,0,sales,low +0.95,0.5,4,259,3,0,0,0,sales,low +0.68,0.53,3,138,2,1,0,0,sales,low +0.64,0.38,5,122,4,0,0,0,sales,low +0.24,0.62,6,225,6,0,0,0,sales,low +0.37,0.72,3,121,2,0,0,0,sales,low +0.67,0.4,4,274,3,0,0,0,sales,low +0.86,0.89,4,153,4,0,0,0,sales,low +0.43,0.38,3,119,2,0,0,0,sales,low +0.67,0.67,4,141,2,1,0,0,sales,low +0.92,0.6,4,161,3,0,0,0,IT,low +0.43,0.46,2,186,2,0,0,0,product_mng,low +0.52,0.8,3,252,4,0,0,0,product_mng,low +0.16,0.42,3,182,3,1,0,0,product_mng,low +0.49,0.6,4,264,2,1,0,0,product_mng,low +0.37,0.63,4,167,3,0,0,0,IT,low +0.98,0.68,5,171,3,0,0,0,management,high +0.33,0.97,5,130,4,0,0,0,management,high +0.14,0.79,5,271,4,0,0,0,management,high +0.54,0.79,5,249,3,1,0,0,management,high +0.63,0.48,4,180,4,0,0,0,management,high +0.55,0.69,4,220,3,1,0,0,management,high +0.84,0.53,3,210,4,1,0,0,marketing,medium +0.51,0.97,4,258,2,0,0,0,sales,medium +0.15,0.75,3,150,4,0,0,1,accounting,medium +0.97,0.79,5,259,3,0,0,1,support,medium +0.67,0.69,3,231,3,0,0,1,technical,medium +0.48,0.67,4,220,3,0,0,1,management,medium +0.69,0.58,4,149,3,0,0,1,marketing,medium +0.6,0.62,3,238,4,0,0,1,marketing,medium +0.82,0.71,2,209,5,0,0,1,marketing,medium +0.86,0.95,4,149,3,0,0,1,sales,medium +0.69,0.59,4,264,3,0,0,0,sales,medium +0.87,0.87,5,207,2,0,0,0,sales,high +0.17,0.78,3,239,6,0,0,0,sales,low +0.94,0.51,6,239,5,0,0,0,sales,medium +0.5,1,4,258,3,0,0,0,sales,medium +0.16,0.72,3,203,3,0,0,0,sales,medium +0.89,0.99,2,258,3,0,0,0,sales,medium +0.69,0.51,3,257,3,1,0,0,IT,low +0.5,0.51,5,134,3,0,0,0,product_mng,low +0.16,0.46,6,240,2,0,0,0,product_mng,low +0.75,0.99,2,237,5,1,0,0,product_mng,low +0.64,0.66,5,157,2,0,0,0,product_mng,low +0.78,0.43,4,275,3,0,0,0,IT,low +0.81,0.74,2,228,3,0,0,0,management,high +0.55,0.58,3,254,2,0,0,0,management,high +0.53,0.53,4,257,2,0,0,0,management,high +0.69,0.73,3,231,2,1,0,0,management,high +0.8,0.53,3,217,3,0,0,0,management,high +0.77,0.98,3,286,6,0,0,0,management,high +0.84,0.8,4,236,3,0,0,0,marketing,low +0.64,0.55,4,215,2,0,0,0,sales,low +0.78,0.57,4,157,3,0,0,0,accounting,low +0.67,0.7,3,149,3,0,0,0,support,low +0.81,0.77,3,221,2,0,0,0,technical,low +0.91,0.82,4,238,2,0,0,0,management,low +0.75,0.89,6,250,2,0,0,0,marketing,medium +0.78,0.96,3,202,4,1,0,0,marketing,medium +0.54,0.52,4,173,2,0,0,0,marketing,medium +0.77,0.71,5,250,3,1,0,0,sales,medium +0.89,0.63,4,270,3,1,0,0,sales,medium +0.16,0.98,3,232,5,0,0,0,sales,medium +0.77,0.99,4,260,3,0,0,0,sales,medium +0.69,0.48,5,232,4,0,0,0,sales,medium +0.61,0.81,4,134,3,0,0,0,sales,medium +0.59,0.81,4,189,3,0,0,0,sales,medium +0.58,0.8,4,113,3,0,0,0,IT,medium +0.88,0.67,5,264,3,0,0,0,product_mng,medium +0.51,0.63,5,260,2,0,0,0,product_mng,high +0.31,0.7,3,132,3,0,0,0,product_mng,low +0.52,0.52,4,168,3,0,0,0,product_mng,medium +0.57,0.46,3,186,3,1,0,0,IT,medium +0.5,0.77,3,267,2,0,0,0,management,high +0.74,0.63,3,180,3,0,0,0,management,high +0.74,0.77,3,211,3,0,0,0,management,high +0.82,0.51,2,268,2,0,0,0,management,high +0.74,0.71,3,206,3,0,0,0,management,high +0.2,0.59,6,113,3,0,0,0,management,high +0.63,0.48,4,179,3,0,0,0,marketing,low +0.19,0.8,6,157,6,1,0,0,sales,low +0.4,0.62,4,127,5,0,0,0,accounting,low +0.71,0.37,2,179,5,0,0,1,support,low +0.84,0.73,4,197,3,0,0,1,technical,low +0.59,0.84,4,251,4,1,0,1,management,low +0.57,0.85,4,250,3,1,0,1,marketing,low +0.81,0.61,2,176,5,0,0,1,marketing,low +0.8,0.7,4,246,3,0,0,1,marketing,low +0.49,0.66,3,155,3,0,0,1,sales,low +0.55,0.64,3,178,2,0,0,1,sales,low +0.68,0.4,3,213,5,1,0,1,sales,low +0.55,0.67,3,150,2,0,0,1,sales,low +0.59,0.62,3,166,2,0,0,0,sales,low +0.91,0.8,5,169,4,0,0,0,sales,low +0.48,0.9,4,208,3,0,0,0,sales,low +0.84,0.66,3,209,2,0,0,0,sales,low +0.73,0.54,4,167,3,0,0,0,IT,medium +0.28,0.59,6,281,3,0,0,0,product_mng,medium +0.77,0.65,3,156,4,0,0,0,product_mng,medium +0.67,0.65,3,265,3,0,0,0,product_mng,medium +0.5,0.53,3,142,3,1,0,0,product_mng,medium +0.32,0.47,3,143,4,0,0,0,IT,medium +0.57,0.78,3,134,3,0,0,0,RandD,medium +0.51,0.8,5,268,3,0,0,0,RandD,medium +0.61,0.6,3,255,2,0,0,0,RandD,medium +0.83,0.73,4,157,2,0,0,0,RandD,medium +0.87,0.97,5,151,3,0,0,0,RandD,medium +0.7,0.63,3,157,2,0,0,0,RandD,medium +0.78,0.65,3,139,3,0,0,0,marketing,high +0.71,0.53,4,196,2,1,0,0,sales,low +0.68,0.99,3,159,2,0,0,0,accounting,medium +0.75,0.53,4,224,4,1,0,0,support,medium +0.7,0.53,3,215,7,1,0,0,technical,medium +0.59,0.94,5,157,7,1,0,0,management,medium +0.64,0.87,4,157,7,0,0,0,marketing,low +0.61,0.88,5,146,7,1,0,0,marketing,low +0.77,0.49,2,286,7,0,0,0,marketing,low +0.51,0.64,3,203,3,0,0,0,sales,low +0.49,0.49,3,168,7,0,0,0,sales,low +0.77,0.75,3,170,7,0,0,0,sales,low +0.31,0.86,3,266,7,0,0,0,sales,low +0.54,0.76,3,183,3,0,0,0,sales,low +0.56,0.66,4,264,3,0,0,0,sales,low +0.65,0.77,4,205,3,0,0,0,sales,low +0.49,0.36,2,192,3,0,0,0,sales,low +0.82,0.79,3,176,3,0,0,0,technical,low +0.6,0.52,3,183,2,0,0,0,support,low +0.64,0.63,3,156,6,1,0,0,support,low +0.7,0.68,3,150,3,0,0,0,support,low +0.65,0.89,4,204,8,1,0,0,support,low +0.69,0.78,5,131,8,0,0,0,support,low +0.93,0.74,5,248,8,1,0,0,support,low +0.55,0.52,4,168,8,0,0,0,support,low +0.75,0.87,4,146,8,1,0,0,support,low +0.47,0.43,4,246,3,0,0,0,support,low +0.72,0.88,5,216,10,1,0,0,support,medium +0.59,0.92,3,203,10,0,0,0,support,medium +0.98,0.49,3,199,10,0,0,0,technical,medium +0.39,0.52,2,102,8,0,0,0,technical,medium +0.93,0.87,4,139,8,0,0,0,technical,medium +0.71,0.97,5,208,8,1,0,0,management,medium +0.49,0.54,4,215,4,0,0,0,IT,medium +0.63,0.93,4,233,3,0,0,0,IT,medium +0.45,0.64,3,169,10,0,0,0,IT,medium +0.77,0.64,3,190,10,1,0,0,IT,medium +0.77,0.63,4,236,7,0,0,0,IT,medium +0.5,0.92,4,266,7,0,0,0,product_mng,medium +0.45,0.42,4,156,7,0,0,0,product_mng,high +0.81,0.47,4,153,7,0,0,0,product_mng,low +0.83,0.67,3,175,3,0,0,0,product_mng,medium +0.47,0.76,6,174,10,0,0,0,IT,medium +0.25,0.89,4,154,10,0,0,0,management,high +0.89,0.55,5,251,10,0,0,0,management,high +0.97,0.57,3,164,10,0,0,0,management,high +0.6,0.65,2,225,10,0,0,0,management,high +0.67,0.72,2,134,10,0,0,0,management,high +0.89,0.77,3,144,3,0,0,0,management,high +0.6,0.91,5,211,3,0,0,0,sales,low +0.64,0.79,4,139,3,0,0,0,sales,low +0.57,0.66,3,268,3,0,0,0,sales,low +0.56,0.98,5,171,3,1,0,0,sales,low +0.6,0.9,4,260,2,0,0,0,sales,medium +0.17,0.66,6,224,3,0,0,0,sales,medium +0.74,0.49,4,233,3,0,0,0,sales,medium +0.44,0.41,3,125,7,0,0,0,sales,medium +0.51,0.89,4,233,7,0,0,0,sales,medium +0.86,0.57,3,162,7,0,0,0,sales,medium +0.96,0.48,4,198,7,0,0,0,sales,medium +0.87,0.82,4,198,7,0,0,0,sales,medium +0.58,0.79,3,243,3,1,0,0,sales,medium +0.24,0.56,4,281,7,0,0,0,sales,medium +0.42,0.8,4,259,7,1,0,0,sales,medium +0.65,0.94,4,184,7,0,0,0,sales,medium +0.73,0.92,6,189,3,1,0,0,sales,medium +0.63,0.6,4,258,3,0,0,0,sales,medium +0.95,0.48,4,225,3,0,0,0,sales,medium +0.52,0.83,5,145,3,0,0,0,sales,medium +0.96,0.55,3,164,3,0,0,0,sales,medium +0.66,0.51,4,254,2,0,0,0,sales,medium +0.98,0.44,4,154,6,1,0,0,sales,medium +0.56,0.79,5,248,3,0,0,0,sales,medium +0.97,0.54,3,154,8,1,0,0,sales,medium +0.72,0.92,3,242,8,0,0,0,sales,medium +0.74,0.78,4,194,8,0,0,0,sales,medium +0.2,0.6,5,261,8,0,0,0,sales,medium +0.73,0.56,3,245,8,0,0,0,sales,medium +0.76,0.79,3,247,3,0,0,0,sales,low +0.65,0.54,4,147,10,0,0,0,sales,low +0.66,0.5,3,139,10,1,0,0,sales,low +0.96,0.97,6,137,10,0,0,0,sales,low +0.57,0.55,4,177,8,0,0,0,sales,low +0.61,0.82,4,184,8,0,0,0,IT,low +0.57,0.69,3,212,8,0,0,0,product_mng,low +0.59,0.47,3,159,4,0,0,0,product_mng,low +0.92,0.68,4,178,3,0,0,0,product_mng,low +0.79,0.56,3,149,10,0,0,0,product_mng,low +0.95,0.66,4,223,10,0,0,0,IT,low +0.24,0.81,6,263,7,0,0,0,management,high +0.49,0.52,4,161,7,0,0,0,management,high +0.49,0.68,3,192,7,0,0,0,management,high +0.97,0.51,5,215,7,0,0,0,management,high +0.55,0.78,4,261,3,0,0,0,management,high +0.76,0.56,5,222,10,0,0,0,management,high +0.53,0.99,3,223,10,0,0,0,marketing,low +0.51,0.86,3,182,10,0,0,0,sales,low +0.57,0.93,2,204,10,0,0,0,accounting,low +0.58,0.91,3,195,10,0,0,0,support,low +0.6,0.98,4,146,10,0,0,0,technical,low +0.65,0.74,4,233,4,1,0,0,management,low +0.91,0.75,2,147,3,0,0,0,marketing,low +0.65,0.55,3,156,5,0,0,0,marketing,low +0.18,0.49,3,240,2,1,0,0,marketing,low +0.66,0.9,4,177,7,0,0,0,sales,low +0.78,0.8,3,135,7,0,0,0,sales,medium +0.82,0.65,5,178,7,1,0,0,sales,medium +0.54,0.64,3,190,7,0,0,0,sales,medium +0.95,0.84,3,240,7,0,0,0,sales,medium +0.65,0.85,4,172,3,0,0,0,sales,medium +0.83,0.55,3,271,7,0,0,0,sales,medium +0.15,0.6,5,188,7,0,0,0,sales,medium +0.59,0.59,4,197,7,0,0,0,IT,medium +0.99,0.94,5,151,3,0,0,0,product_mng,medium +0.76,0.72,3,263,3,0,0,0,product_mng,medium +0.64,0.67,2,223,3,0,0,0,product_mng,medium +0.95,0.75,4,151,3,0,0,0,product_mng,medium +0.53,0.66,3,191,3,0,0,0,IT,high +0.59,0.5,2,162,2,0,0,0,management,high +0.69,0.86,5,195,6,0,0,0,management,high +0.5,0.49,4,222,3,0,0,0,management,high +0.89,0.96,3,179,8,0,0,0,management,high +0.56,0.39,3,106,8,0,0,0,management,high +0.77,0.68,3,214,8,1,0,0,management,high +0.15,0.75,3,259,8,1,0,0,marketing,high +0.88,0.58,3,145,8,0,0,0,sales,low +0.89,0.86,4,153,3,0,0,0,accounting,low +0.65,0.52,2,117,10,1,0,0,support,low +0.58,0.99,3,207,10,0,0,0,technical,low +0.56,0.85,3,265,10,1,0,0,management,low +0.25,0.72,5,279,8,0,0,0,marketing,low +0.87,0.89,4,225,8,0,0,0,marketing,low +0.62,0.4,3,158,8,1,0,0,marketing,low +0.72,0.75,4,211,4,0,0,0,sales,medium +0.49,0.94,4,175,3,0,0,0,sales,medium +0.57,0.91,4,224,10,0,0,0,sales,medium +0.63,0.65,3,190,10,0,0,0,sales,medium +0.91,0.63,5,240,7,0,0,0,sales,medium +0.7,0.68,5,225,7,0,0,0,sales,medium +0.66,0.95,5,192,7,0,0,0,sales,medium +0.77,0.48,5,262,7,0,0,0,IT,medium +0.68,0.97,3,250,3,1,0,0,product_mng,medium +0.34,0.46,3,155,10,0,0,0,product_mng,medium +0.97,0.64,4,238,10,1,0,0,product_mng,medium +0.57,0.75,4,249,10,0,0,0,product_mng,medium +0.66,0.65,3,272,10,0,0,0,IT,medium +0.68,0.67,4,162,10,0,0,0,management,high +0.49,0.78,4,254,10,0,0,0,management,high +0.72,0.66,4,184,3,0,0,0,management,high +0.77,0.89,4,269,10,0,0,0,management,high +0.77,0.73,3,201,10,0,0,0,management,high +0.59,0.73,4,247,10,0,0,0,management,high +0.41,0.67,6,221,10,0,0,0,marketing,medium +0.94,0.64,5,247,10,0,0,0,sales,medium +0.91,0.61,4,135,10,0,0,0,accounting,medium +0.7,0.84,3,260,4,1,0,0,support,medium +0.51,0.52,3,188,3,0,0,0,technical,high +0.22,0.7,4,159,5,0,0,0,management,low +0.69,0.65,3,153,2,0,0,0,marketing,medium +0.2,0.68,5,167,7,0,0,0,marketing,medium +0.9,0.85,3,158,7,0,0,0,marketing,medium +0.76,0.85,3,180,7,0,0,0,sales,medium +0.88,0.51,3,211,7,0,0,0,sales,medium +0.31,0.63,4,104,7,1,0,0,sales,medium +0.17,0.66,6,174,3,0,0,0,sales,medium +0.91,0.77,3,195,7,0,0,0,sales,medium +0.97,0.38,5,211,7,1,0,0,sales,medium +0.61,0.77,5,232,7,0,0,0,sales,medium +0.74,0.67,5,216,3,0,0,0,sales,low +0.65,0.82,5,265,3,0,0,0,IT,low +0.87,0.73,5,184,3,0,0,0,product_mng,low +0.56,0.71,5,244,3,0,0,0,product_mng,low +0.78,0.69,4,202,3,0,0,0,product_mng,low +0.73,0.57,3,146,2,0,0,0,product_mng,low +0.66,0.78,4,161,6,0,0,0,IT,low +0.15,0.81,5,280,3,1,0,0,RandD,high +0.52,0.69,5,208,8,1,0,0,RandD,low +0.44,0.66,6,134,8,0,0,0,RandD,high +0.7,0.7,3,162,8,0,0,0,RandD,high +0.63,0.52,5,209,8,1,0,0,RandD,low +0.89,0.59,3,265,8,0,0,0,RandD,low +0.96,0.85,4,173,3,0,0,0,marketing,high +0.98,0.99,4,261,10,1,0,0,sales,low +0.62,0.82,3,204,10,0,0,0,accounting,medium +0.62,0.73,3,144,10,1,0,0,support,high +0.69,0.43,5,113,8,0,0,0,technical,medium +0.5,0.91,4,144,8,0,0,0,management,medium +0.71,0.93,5,140,8,0,0,0,marketing,medium +0.5,0.68,3,245,4,0,0,0,marketing,medium +0.93,0.6,3,188,3,0,0,0,marketing,high +0.95,0.77,5,199,10,1,0,0,sales,medium +0.17,0.61,6,154,10,1,0,0,sales,medium +0.92,0.68,4,138,7,0,0,0,sales,medium +0.64,0.48,3,147,7,0,0,0,sales,high +0.27,0.42,6,173,7,0,0,0,sales,medium +0.66,0.87,3,223,7,0,0,0,sales,high +0.59,0.69,3,200,3,0,0,0,sales,low +0.93,0.98,4,189,10,0,0,0,sales,medium +0.58,0.67,5,133,10,0,0,0,technical,medium +0.96,0.6,3,160,10,0,0,0,support,medium +0.69,0.85,3,153,10,0,0,0,support,medium +0.41,0.38,4,142,10,1,0,0,support,low +0.36,0.41,3,167,10,0,0,0,support,low +0.71,0.78,4,227,2,0,0,0,support,low +0.94,0.9,4,144,4,0,0,0,support,low +0.51,0.76,4,140,3,0,0,0,support,low +0.83,0.48,4,220,3,1,0,0,support,low +0.22,0.62,3,180,3,0,0,0,support,low +0.66,0.89,4,173,4,0,0,0,support,low +0.14,0.58,3,179,5,0,0,0,support,low +0.16,0.96,5,137,5,1,0,0,technical,low +0.81,0.78,3,165,3,0,0,0,technical,high +0.73,0.94,3,177,3,0,0,0,technical,low +0.7,0.58,5,168,3,0,0,0,management,low +0.62,0.73,3,245,4,0,0,0,IT,low +0.5,0.83,5,258,2,0,0,0,IT,low +0.7,0.88,3,159,2,0,0,0,IT,high +0.53,0.73,3,163,3,1,0,0,IT,low +0.87,0.9,3,174,2,0,0,0,IT,low +0.59,0.6,3,214,2,1,0,0,product_mng,low +0.94,0.67,4,191,3,1,0,0,product_mng,high +0.2,0.53,5,272,5,0,0,0,product_mng,low +0.42,0.44,3,183,2,0,0,0,product_mng,medium +0.43,0.66,4,135,2,0,0,0,IT,high +0.43,0.76,6,154,2,0,0,0,management,high +0.77,0.86,5,238,3,0,0,0,management,high +0.76,0.98,2,235,3,0,0,0,management,high +0.82,0.9,3,215,4,0,0,0,management,high +0.75,0.66,5,234,2,0,0,0,management,high +0.63,0.98,4,187,3,0,0,0,management,high +0.51,0.75,3,133,3,0,0,0,sales,medium +0.23,0.7,3,123,5,0,0,0,sales,medium +0.77,0.58,4,202,3,0,0,0,sales,medium +0.54,0.63,4,140,3,0,0,0,sales,medium +0.63,0.85,4,182,3,1,0,0,sales,high +0.55,0.45,3,179,2,1,0,0,sales,low +0.31,0.63,3,150,3,1,0,0,sales,medium +0.98,0.74,4,151,3,0,0,0,sales,medium +0.16,0.95,6,117,7,0,0,0,sales,medium +0.54,0.78,3,156,7,0,0,0,sales,medium +0.73,0.48,3,211,7,0,0,0,sales,medium +0.16,0.63,6,286,7,0,0,1,sales,medium +0.57,0.82,5,233,7,0,0,1,sales,medium +0.88,0.88,4,222,3,1,0,1,sales,medium +0.95,0.81,4,258,7,0,0,1,sales,medium +0.93,0.7,5,231,7,0,0,1,sales,high +0.91,0.58,3,220,7,0,0,1,sales,low +0.77,0.82,4,134,3,0,0,1,sales,low +0.24,0.94,6,141,3,1,0,0,sales,low +0.74,0.74,5,160,3,1,0,0,sales,high +0.53,0.59,4,259,3,0,0,0,sales,low +0.89,0.77,5,232,3,0,0,0,sales,low +0.23,0.77,5,272,2,0,0,0,sales,low +0.69,0.66,3,215,6,0,0,0,sales,high +0.52,0.72,4,222,3,0,0,0,sales,low +0.9,0.58,3,244,8,0,0,0,sales,low +0.92,0.63,5,224,8,1,0,0,sales,low +0.72,0.59,5,200,8,1,0,0,sales,low +0.92,0.61,4,143,8,0,0,0,sales,low +0.79,0.86,5,238,8,0,0,0,sales,low +0.48,0.89,4,145,3,0,0,0,sales,low +0.27,0.76,4,108,10,0,0,0,sales,medium +0.67,0.49,3,247,10,0,0,0,sales,medium +0.48,0.7,3,213,10,0,0,0,sales,medium +0.99,0.6,4,209,8,1,0,0,IT,medium +0.49,0.88,4,240,8,0,0,0,product_mng,medium +0.39,0.45,3,100,8,1,0,0,product_mng,medium +0.99,0.92,4,265,4,1,0,0,product_mng,medium +0.78,0.57,3,209,3,0,0,0,product_mng,medium +0.5,0.73,3,154,10,0,0,0,IT,medium +0.61,0.79,5,230,10,0,0,0,management,high +0.88,0.6,4,208,7,0,0,1,management,high +0.44,0.44,2,141,7,1,0,1,management,high +0.73,0.78,3,262,7,1,0,1,management,high +0.58,0.84,4,206,7,0,0,1,management,high +0.74,0.98,3,166,3,1,0,1,management,high +0.32,0.48,4,117,10,0,0,1,marketing,medium +0.88,0.83,4,273,10,0,0,0,sales,medium +0.81,0.9,4,270,10,0,0,0,accounting,medium +0.59,0.92,3,138,10,0,0,0,support,low +0.79,0.65,3,235,10,0,0,0,technical,low +0.92,0.64,4,190,10,1,0,0,management,low +0.76,0.85,3,192,3,0,0,0,marketing,low +0.91,0.65,5,214,3,1,0,0,marketing,low +0.8,0.84,4,242,2,1,0,0,marketing,low +0.73,0.72,4,233,2,0,0,0,sales,low +0.88,0.53,3,218,4,0,0,0,sales,low +0.65,0.4,5,125,4,0,0,0,sales,low +0.84,0.5,4,178,2,0,0,0,sales,low +0.93,0.5,5,272,3,0,0,0,sales,low +0.64,0.6,3,265,4,0,0,0,sales,low +0.66,0.72,4,271,3,0,0,0,sales,low +0.76,0.56,3,179,3,1,0,0,sales,low +0.34,0.72,3,118,4,0,0,0,IT,low +0.48,0.8,4,196,5,0,0,0,product_mng,low +0.79,0.61,4,173,2,0,0,0,product_mng,low +0.82,0.67,4,156,3,0,0,0,product_mng,low +0.51,0.71,2,180,3,0,0,0,product_mng,low +0.84,0.78,4,263,3,0,0,0,IT,low +0.66,0.79,5,134,3,0,0,0,management,high +0.72,0.88,3,189,3,1,0,0,management,high +0.53,0.91,4,167,4,0,0,0,management,high +0.81,0.8,5,132,2,1,0,0,management,high +0.58,0.9,3,209,2,0,0,0,management,high +0.82,0.56,2,227,5,1,0,0,management,high +0.72,0.99,4,239,3,0,0,0,marketing,medium +0.9,0.54,4,172,4,0,0,0,sales,medium +0.98,0.91,3,188,4,0,0,0,accounting,medium +0.56,0.74,3,265,3,0,0,0,support,medium +0.77,0.82,3,153,3,1,0,0,technical,medium +0.61,0.89,4,242,2,0,0,0,management,medium +0.97,0.61,4,262,3,1,0,1,marketing,medium +0.64,0.55,3,246,2,0,0,1,marketing,high +0.99,0.97,4,211,2,0,0,1,marketing,low +0.61,0.42,3,145,4,0,0,1,sales,medium +0.72,0.71,4,256,3,0,0,1,sales,medium +0.67,0.91,2,245,2,1,0,1,sales,medium +0.9,0.56,3,151,3,0,0,0,sales,medium +0.9,0.73,4,245,2,0,0,0,sales,low +0.63,0.61,4,171,3,0,0,0,sales,low +0.64,0.88,3,252,2,0,0,0,sales,low +0.44,0.65,3,175,2,0,0,0,IT,low +0.64,0.94,4,210,3,0,0,0,product_mng,low +0.65,0.95,2,180,2,0,0,0,product_mng,low +0.69,0.9,5,103,5,0,0,0,product_mng,low +0.93,0.51,4,110,3,0,0,0,product_mng,low +0.73,0.9,5,184,3,0,0,0,IT,low +0.83,0.6,4,161,2,0,0,0,management,high +0.82,0.49,5,210,3,0,0,0,management,high +0.39,0.91,2,212,2,0,0,0,management,high +0.53,0.47,6,106,6,0,0,0,management,high +0.88,0.81,4,179,3,0,0,0,management,high +0.8,0.6,5,217,3,0,0,0,management,high +0.68,0.79,4,184,3,0,0,0,marketing,low +0.66,0.6,3,210,2,0,0,0,sales,low +0.61,0.61,4,246,2,0,0,0,accounting,low +0.74,0.55,4,262,3,0,0,0,support,low +0.61,0.83,4,245,3,1,0,1,technical,low +0.57,0.99,3,222,3,1,0,1,management,low +0.68,0.54,4,146,4,0,0,1,marketing,medium +0.75,0.79,4,263,3,0,0,1,marketing,medium +0.29,0.57,5,134,2,0,0,1,marketing,medium +0.81,0.81,5,250,4,0,0,1,sales,medium +0.53,0.68,4,173,3,0,0,0,sales,medium +0.42,0.96,6,173,3,0,0,0,sales,medium +0.64,0.67,4,252,3,1,0,0,sales,medium +0.63,0.5,2,230,4,0,0,0,sales,medium +0.81,0.81,4,212,2,1,0,0,sales,medium +0.71,0.66,5,187,2,0,0,0,sales,medium +0.7,0.83,5,241,2,0,0,0,sales,medium +0.53,1,3,164,4,0,0,0,IT,medium +0.16,0.93,6,218,6,1,0,0,product_mng,high +0.17,0.55,4,194,3,0,0,0,product_mng,low +0.7,0.95,3,158,2,0,0,0,product_mng,medium +0.43,0.88,2,149,4,0,0,0,product_mng,medium +0.49,0.62,4,161,2,0,0,0,IT,medium +0.5,0.9,5,226,2,0,0,0,management,high +0.57,0.59,2,111,2,0,0,0,management,high +0.68,0.75,4,258,3,0,0,0,management,high +0.62,0.61,3,266,2,0,0,0,management,high +0.69,0.75,3,253,3,0,0,0,management,high +0.63,0.7,5,160,3,0,0,0,management,high +0.76,0.62,5,230,3,1,0,0,marketing,low +0.62,0.76,5,198,3,0,0,0,sales,low +0.82,0.69,3,250,3,0,0,0,accounting,low +0.2,0.7,4,225,5,0,0,0,support,low +0.16,0.7,3,178,3,1,0,0,technical,low +0.2,0.78,4,196,3,0,0,0,management,low +0.53,0.51,4,240,2,0,0,0,marketing,low +0.71,0.63,3,204,3,0,0,0,marketing,low +0.7,0.93,3,250,3,0,0,0,marketing,low +0.92,0.94,2,224,2,0,0,0,sales,low +0.81,0.92,4,268,3,0,0,0,sales,low +0.79,0.62,5,167,3,0,0,0,sales,low +0.53,0.64,3,168,3,0,0,0,sales,low +0.51,0.56,4,168,2,0,0,0,sales,low +0.78,0.9,5,158,3,0,0,0,sales,low +0.5,0.91,3,240,3,0,0,0,sales,low +0.92,1,4,261,4,0,0,0,sales,medium +0.59,0.54,4,176,2,0,0,0,technical,medium +0.77,0.55,3,217,3,0,0,0,support,medium +0.74,0.87,5,224,2,0,0,0,support,medium +0.67,0.97,4,196,3,0,0,0,support,medium +0.56,0.59,3,223,3,0,0,0,support,medium +0.84,0.44,5,131,5,1,0,0,support,medium +0.53,0.77,2,167,2,0,0,0,support,medium +0.86,0.71,5,273,3,0,0,0,support,medium +0.77,0.68,3,98,3,0,0,0,support,medium +0.97,0.94,4,253,3,0,0,0,support,medium +0.69,0.87,5,174,3,0,0,0,support,medium +0.73,0.9,3,274,2,0,0,0,support,high +0.42,0.47,6,174,5,0,0,0,technical,low +0.4,0.47,5,173,5,0,0,0,technical,medium +0.33,0.41,2,198,4,0,0,0,technical,medium +0.68,0.66,3,238,2,0,0,0,management,medium +0.78,0.8,3,256,2,0,0,0,IT,medium +0.92,0.6,3,179,2,0,0,0,IT,low +0.66,0.66,4,273,4,1,0,0,IT,low +0.6,0.45,3,104,4,0,0,0,IT,low +0.86,0.83,4,208,3,1,0,0,IT,low +0.61,0.49,3,275,2,0,0,0,product_mng,low +0.71,0.68,3,231,2,1,0,0,product_mng,low +0.86,0.62,4,186,3,0,0,0,product_mng,low +0.96,0.59,3,241,3,0,0,0,product_mng,low +0.7,0.54,3,194,2,1,0,0,IT,low +0.38,0.49,4,196,3,0,0,1,management,high +0.39,0.75,6,185,3,0,0,1,management,high +0.49,0.4,2,148,2,1,0,1,management,high +0.78,0.62,4,150,3,0,0,1,management,high +0.74,0.79,5,121,5,0,0,1,management,high +0.82,0.76,4,266,3,0,0,1,management,high +0.6,0.42,2,109,6,0,0,0,sales,low +0.72,0.99,3,143,4,0,0,0,sales,low +0.73,0.97,3,174,3,0,0,0,sales,low +0.89,0.55,4,159,2,0,0,0,sales,medium +0.74,0.94,4,157,2,0,0,0,sales,medium +0.83,0.57,2,222,2,0,0,0,sales,medium +0.24,0.88,5,199,5,1,0,0,sales,medium +0.93,0.89,3,255,7,1,0,0,sales,medium +0.96,0.62,4,253,7,0,0,0,sales,medium +0.16,0.68,5,149,7,1,0,0,sales,medium +0.21,0.85,6,285,7,0,0,0,sales,medium +0.69,0.54,3,164,7,0,0,0,sales,medium +0.66,0.96,3,243,3,1,0,0,sales,medium +0.67,0.39,2,207,7,0,0,0,sales,medium +0.85,0.58,4,186,7,0,0,0,sales,medium +0.37,0.92,4,211,7,0,0,0,sales,high +0.64,0.64,2,190,3,0,0,0,sales,low +0.91,0.82,2,241,3,0,0,0,sales,medium +0.96,0.68,3,206,3,0,0,0,sales,medium +0.74,0.7,4,273,3,0,0,0,sales,medium +0.94,0.99,2,157,3,0,0,0,sales,medium +0.37,0.72,3,183,2,0,0,0,sales,low +0.92,0.85,3,151,6,1,0,0,sales,low +0.86,0.72,3,217,3,0,0,0,sales,low +0.66,0.49,5,235,8,1,0,0,sales,low +0.19,0.61,4,127,8,0,0,0,sales,low +0.65,0.61,5,167,8,0,0,0,sales,low +0.92,0.44,3,260,8,0,0,0,sales,low +0.83,0.8,3,240,8,0,0,0,sales,low +0.94,0.82,4,187,3,0,0,0,sales,low +0.42,0.69,3,126,2,0,0,0,sales,low +0.78,0.53,6,168,3,0,0,0,sales,low +0.58,0.76,4,197,5,0,0,0,sales,low +0.5,0.64,2,170,8,0,0,0,sales,low +0.82,0.76,3,219,8,1,0,0,IT,low +0.97,0.92,6,137,8,1,0,0,product_mng,low +0.8,0.93,3,225,4,0,0,0,product_mng,low +0.82,0.84,3,194,3,0,0,0,product_mng,low +0.95,0.99,5,251,4,0,0,0,product_mng,low +0.88,0.51,5,195,4,0,0,0,IT,low +0.5,0.86,3,180,7,0,0,1,management,high +0.53,0.8,2,225,7,1,0,1,management,high +0.82,0.74,3,229,7,0,0,1,management,high +0.15,0.74,6,144,7,0,0,1,management,high +0.92,0.7,3,129,3,0,0,1,management,high +0.53,0.74,3,172,10,0,0,1,management,high +0.58,1,4,220,10,0,0,0,marketing,medium +0.88,0.74,3,273,10,0,0,0,sales,medium +0.85,0.72,3,245,10,0,0,0,accounting,medium +0.99,0.68,5,264,10,1,0,0,support,medium +0.94,0.73,3,268,10,0,0,0,technical,medium +0.63,0.94,3,172,3,0,0,0,management,medium +0.85,0.9,3,245,3,0,0,0,marketing,medium +0.95,0.66,5,192,3,0,0,0,marketing,medium +0.71,0.66,3,268,4,0,0,0,marketing,high +0.49,0.88,4,244,3,0,0,0,sales,low +0.71,0.69,4,222,4,0,0,0,sales,medium +0.52,0.62,5,239,2,0,0,0,sales,medium +0.48,0.72,3,143,4,0,0,0,sales,medium +0.82,0.79,3,160,3,0,0,0,sales,medium +0.83,0.76,2,255,7,0,0,0,sales,low +0.85,0.87,4,152,7,0,0,0,sales,low +0.57,0.64,4,226,7,0,0,0,sales,low +0.16,0.63,5,266,7,0,0,0,IT,low +0.85,0.64,5,256,7,0,0,0,product_mng,low +0.82,0.67,3,198,3,1,0,0,product_mng,low +0.9,0.89,4,254,7,0,0,0,product_mng,low +0.92,0.64,2,104,7,0,0,0,product_mng,low +0.9,0.48,4,136,7,0,0,0,IT,low +0.82,0.8,5,205,3,0,0,0,IT,low +0.84,0.81,4,236,3,1,0,0,IT,low +0.92,0.65,3,176,3,0,0,0,IT,low +0.82,0.82,3,148,3,0,0,0,IT,low +0.8,0.8,4,146,3,1,0,0,IT,low +0.6,0.85,3,242,2,0,0,0,IT,low +0.14,0.38,5,115,6,1,0,0,marketing,high +0.85,0.89,4,150,3,0,0,0,accounting,high +0.55,0.81,3,239,8,0,0,0,accounting,high +0.49,0.71,4,178,8,0,0,0,IT,medium +0.82,0.58,5,263,8,0,0,0,IT,medium +0.59,0.77,3,272,8,0,0,0,management,high +0.9,0.82,3,133,8,0,0,0,marketing,medium +0.62,0.72,3,149,3,1,0,0,marketing,medium +0.61,0.68,3,193,2,0,0,0,marketing,medium +0.52,0.55,5,174,3,1,0,0,sales,medium +0.79,0.87,4,223,5,0,0,0,sales,medium +0.49,0.89,4,201,8,0,0,0,sales,medium +0.73,0.67,2,139,8,0,0,0,sales,medium +0.67,0.49,5,241,8,0,0,0,sales,medium +0.52,0.61,4,187,4,1,0,0,sales,medium +0.72,0.64,4,192,3,0,0,0,sales,medium +0.48,0.5,5,142,4,0,0,0,IT,medium +0.19,0.79,4,229,4,0,0,0,product_mng,medium +0.49,0.49,3,104,7,0,0,0,product_mng,high +0.9,0.76,3,255,7,0,0,0,product_mng,low +0.49,0.49,4,212,7,0,0,0,product_mng,medium +0.6,0.53,2,235,7,0,0,0,IT,medium +0.62,0.85,3,237,3,1,0,0,IT,medium +0.64,0.5,4,253,10,0,0,1,management,high +0.22,0.94,3,193,10,0,0,1,management,high +0.9,0.55,3,259,10,1,0,1,management,high +0.74,0.95,5,266,10,0,0,1,management,high +0.85,0.54,3,185,10,0,0,1,management,high +0.33,0.65,3,172,10,0,0,1,marketing,high +0.5,0.73,4,180,3,0,0,0,IT,low +0.38,0.53,2,157,3,0,1,0,sales,low +0.8,0.86,5,262,6,0,1,0,sales,medium +0.11,0.88,7,272,4,0,1,0,sales,medium +0.72,0.87,5,223,5,0,1,0,sales,low +0.37,0.52,2,159,3,0,1,0,sales,low +0.41,0.5,2,153,3,0,1,0,sales,low +0.1,0.77,6,247,4,0,1,0,sales,low +0.92,0.85,5,259,5,0,1,0,sales,low +0.89,1,5,224,5,0,1,0,sales,low +0.42,0.53,2,142,3,0,1,0,sales,low +0.45,0.54,2,135,3,0,1,0,sales,low +0.11,0.81,6,305,4,0,1,0,sales,low +0.84,0.92,4,234,5,0,1,0,sales,low +0.41,0.55,2,148,3,0,1,0,sales,low +0.36,0.56,2,137,3,0,1,0,sales,low +0.38,0.54,2,143,3,0,1,0,sales,low +0.45,0.47,2,160,3,0,1,0,sales,low +0.78,0.99,4,255,6,0,1,0,sales,low +0.45,0.51,2,160,3,1,1,1,sales,low +0.76,0.89,5,262,5,0,1,0,sales,low +0.11,0.83,6,282,4,0,1,0,sales,low +0.38,0.55,2,147,3,0,1,0,sales,low +0.09,0.95,6,304,4,0,1,0,sales,low +0.46,0.57,2,139,3,0,1,0,sales,low +0.4,0.53,2,158,3,0,1,0,sales,low +0.89,0.92,5,242,5,0,1,0,sales,low +0.82,0.87,4,239,5,0,1,0,sales,low +0.4,0.49,2,135,3,0,1,0,sales,low +0.41,0.46,2,128,3,0,1,0,accounting,low +0.38,0.5,2,132,3,0,1,0,accounting,low +0.09,0.62,6,294,4,0,1,0,accounting,low +0.45,0.57,2,134,3,0,1,0,hr,low +0.4,0.51,2,145,3,0,1,0,hr,low +0.45,0.55,2,140,3,0,1,0,hr,low +0.84,0.87,4,246,6,0,1,0,hr,low +0.1,0.94,6,255,4,0,1,0,technical,low +0.38,0.46,2,137,3,0,1,0,technical,low +0.45,0.5,2,126,3,0,1,0,technical,low +0.11,0.89,6,306,4,0,1,0,technical,low +0.41,0.54,2,152,3,0,1,0,technical,low +0.87,0.88,5,269,5,0,1,0,technical,low +0.45,0.48,2,158,3,0,1,0,technical,low +0.4,0.46,2,127,3,0,1,0,technical,low +0.1,0.8,7,281,4,0,1,0,technical,low +0.09,0.89,6,276,4,0,1,0,technical,low +0.84,0.74,3,182,4,0,1,0,technical,low +0.4,0.55,2,147,3,0,1,0,support,low +0.57,0.7,3,273,6,0,1,0,support,low +0.4,0.54,2,148,3,0,1,0,support,low +0.43,0.47,2,147,3,0,1,0,support,low +0.13,0.78,6,152,2,0,1,0,support,low +0.44,0.55,2,135,3,0,1,0,support,low +0.38,0.55,2,134,3,0,1,0,support,low +0.39,0.54,2,132,3,0,1,0,support,low +0.1,0.92,7,307,4,0,1,0,support,low +0.37,0.46,2,140,3,0,1,0,support,low +0.11,0.94,7,255,4,0,1,0,support,low +0.1,0.81,6,309,4,0,1,0,technical,low +0.38,0.54,2,128,3,0,1,0,technical,low +0.85,1,4,225,5,0,1,0,technical,low +0.85,0.91,5,226,5,0,1,0,management,medium +0.11,0.93,7,308,4,0,1,0,IT,medium +0.1,0.95,6,244,5,0,1,0,IT,medium +0.36,0.56,2,132,3,0,1,0,IT,medium +0.11,0.94,6,286,4,0,1,0,IT,medium +0.81,0.7,6,161,4,0,1,0,IT,medium +0.43,0.54,2,153,3,0,1,0,product_mng,medium +0.9,0.98,4,264,6,0,1,0,product_mng,medium +0.76,0.86,5,223,5,1,1,0,product_mng,medium +0.43,0.5,2,135,3,0,1,0,product_mng,medium +0.74,0.99,2,277,3,0,1,0,IT,medium +0.09,0.77,5,275,4,0,1,0,product_mng,medium +0.45,0.49,2,149,3,0,1,0,product_mng,high +0.09,0.87,7,295,4,0,1,0,product_mng,low +0.11,0.97,6,277,4,0,1,0,product_mng,medium +0.11,0.79,7,306,4,0,1,0,product_mng,medium +0.1,0.83,6,295,4,0,1,0,product_mng,medium +0.4,0.54,2,137,3,0,1,0,marketing,medium +0.43,0.56,2,157,3,0,1,0,sales,low +0.39,0.56,2,142,3,0,1,0,accounting,low +0.45,0.54,2,140,3,0,1,0,support,low +0.38,0.49,2,151,3,0,1,0,technical,low +0.79,0.59,4,139,3,0,1,1,management,low +0.84,0.85,4,249,6,0,1,0,marketing,low +0.11,0.77,6,291,4,0,1,0,marketing,low +0.11,0.87,6,305,4,0,1,0,marketing,low +0.17,0.84,5,232,3,0,1,0,sales,low +0.44,0.45,2,132,3,0,1,0,sales,low +0.37,0.57,2,130,3,0,1,0,sales,low +0.1,0.79,6,291,4,0,1,0,sales,low +0.4,0.5,2,130,3,0,1,0,sales,low +0.89,1,5,246,5,0,1,0,sales,low +0.42,0.48,2,143,3,0,1,0,sales,low +0.46,0.55,2,129,3,0,1,0,sales,low +0.09,0.83,6,255,4,0,1,0,sales,low +0.37,0.51,2,155,3,0,1,0,sales,low +0.1,0.77,6,265,4,0,1,0,sales,low +0.1,0.84,6,279,4,0,1,0,sales,low +0.11,0.97,6,284,4,0,1,0,sales,low +0.9,1,5,221,6,0,1,0,sales,medium +0.38,0.52,2,154,3,0,1,0,sales,medium +0.36,0.52,2,147,3,0,1,0,sales,medium +0.42,0.46,2,150,3,0,1,0,sales,medium +0.09,0.94,7,267,4,0,1,0,sales,medium +0.43,0.52,2,158,3,0,1,0,sales,medium +0.24,0.46,7,224,5,0,1,0,accounting,medium +0.91,1,4,257,5,0,1,0,accounting,medium +0.44,0.5,2,148,3,0,1,0,accounting,medium +0.71,0.87,3,177,4,0,1,0,hr,medium +0.4,0.49,2,155,3,0,1,0,hr,medium +0.43,0.47,2,144,3,0,1,0,hr,medium +0.09,0.85,6,289,4,0,1,0,hr,high +0.43,0.52,2,160,3,0,1,0,technical,low +0.9,0.96,4,258,5,0,1,0,technical,medium +0.84,1,5,234,5,0,1,0,technical,medium +0.37,0.48,2,137,3,0,1,0,technical,medium +0.86,0.68,5,263,2,0,1,0,technical,medium +0.11,0.84,6,251,4,0,1,0,technical,low +0.37,0.57,2,133,3,0,1,0,technical,low +0.4,0.46,2,132,3,0,1,0,technical,low +0.14,0.62,4,158,4,1,1,0,technical,low +0.4,0.46,2,135,3,0,1,0,technical,low +0.75,1,4,216,6,0,1,0,technical,low +0.11,0.84,6,300,5,1,1,0,support,low +0.46,0.49,2,138,3,0,1,0,support,low +0.11,0.92,6,260,4,0,1,0,support,low +0.38,0.49,2,132,3,0,1,0,support,low +0.7,0.89,3,183,5,0,1,0,support,low +0.09,0.82,6,250,4,0,1,0,support,low +0.37,0.45,2,151,3,0,1,0,support,low +0.1,0.83,6,292,4,0,1,0,support,low +0.38,0.57,2,140,3,0,1,0,support,low +0.9,1,5,221,5,0,1,0,support,low +0.44,0.51,2,138,3,0,1,0,support,low +0.36,0.5,2,132,3,0,1,0,technical,low +0.31,0.84,7,133,5,0,1,0,technical,low +0.1,0.84,6,283,4,1,1,0,technical,low +0.42,0.48,2,129,3,0,1,0,management,low +0.74,1,4,249,5,0,1,0,IT,low +0.73,0.87,5,257,5,0,1,0,IT,low +0.09,0.96,6,245,4,0,1,0,IT,low +0.45,0.53,2,155,3,0,1,0,IT,low +0.11,0.8,6,256,4,0,1,0,IT,low +0.37,0.47,2,152,3,0,1,0,product_mng,low +0.84,0.99,4,267,5,0,1,0,product_mng,low +0.41,0.46,2,151,3,0,1,0,product_mng,low +0.76,0.92,4,239,5,0,1,0,product_mng,low +0.11,0.87,6,306,4,0,1,0,IT,low +0.84,0.88,4,263,5,1,1,0,marketing,low +0.39,0.5,2,147,3,0,1,0,marketing,low +0.11,0.91,6,278,4,0,1,0,marketing,low +0.45,0.56,2,154,3,0,1,0,marketing,low +0.37,0.52,2,143,3,0,1,0,marketing,low +0.4,0.52,2,155,3,0,1,0,marketing,low +0.39,0.48,2,160,3,0,1,0,sales,low +0.11,0.8,6,304,4,0,1,0,accounting,low +0.83,1,5,240,5,0,1,0,support,low +0.11,0.92,6,305,4,0,1,0,technical,low +0.39,0.5,2,136,3,0,1,0,management,low +0.45,0.45,2,132,3,0,1,0,marketing,low +0.1,0.95,7,301,4,0,1,0,marketing,low +0.9,0.98,5,243,6,0,1,0,marketing,low +0.45,0.51,2,147,3,0,1,0,sales,low +0.79,0.89,5,239,5,0,1,0,sales,low +0.9,0.99,5,260,5,0,1,0,sales,low +0.11,0.84,7,296,4,0,1,0,sales,low +0.43,0.55,2,129,3,0,1,0,sales,low +0.31,0.54,5,132,5,0,1,0,sales,low +0.32,0.5,2,135,5,0,1,0,sales,low +0.45,0.57,2,158,3,0,1,0,sales,low +0.81,0.99,4,259,5,0,1,0,sales,low +0.41,0.46,2,160,3,0,1,1,sales,low +0.11,0.78,7,278,4,0,1,0,sales,low +0.1,0.88,6,284,4,0,1,0,sales,low +0.7,0.53,2,274,4,0,1,0,sales,low +0.54,0.74,4,164,2,0,1,0,sales,low +0.41,0.48,2,148,3,0,1,0,sales,low +0.38,0.5,2,140,3,0,1,0,sales,medium +0.37,0.51,2,127,3,0,1,0,sales,medium +0.11,0.85,6,308,5,0,1,0,sales,medium +0.4,0.47,2,146,3,0,1,0,sales,medium +0.1,0.84,6,261,4,0,1,0,accounting,medium +0.89,0.99,5,257,5,0,1,0,accounting,medium +0.11,0.8,6,285,4,0,1,0,accounting,medium +0.36,0.55,2,141,3,0,1,0,hr,medium +0.4,0.46,2,127,3,0,1,0,hr,medium +0.09,0.85,6,297,4,0,1,0,hr,medium +0.4,0.46,2,143,3,0,1,0,hr,medium +0.37,0.55,2,152,3,0,1,0,technical,medium +0.44,0.51,2,156,3,0,1,0,technical,high +0.09,0.8,7,283,5,0,1,0,technical,low +0.92,0.87,4,226,6,1,1,0,technical,medium +0.74,0.91,4,232,5,0,1,0,technical,medium +0.09,0.82,6,249,4,0,1,0,technical,medium +0.89,0.95,4,275,5,0,1,0,technical,medium +0.09,0.8,6,304,4,0,1,0,technical,low +0.27,0.54,7,278,3,0,1,0,technical,low +0.1,0.91,6,287,4,0,1,0,technical,low +0.1,0.89,7,285,4,0,1,0,technical,low +0.77,0.94,5,226,6,0,1,0,support,low +0.9,0.82,5,259,5,0,1,0,support,low +0.39,0.5,2,135,3,0,1,0,support,low +0.76,1,5,219,5,0,1,0,support,low +0.1,0.93,6,256,4,0,1,0,support,low +0.87,0.9,5,254,6,0,1,0,support,low +0.38,0.5,2,153,3,0,1,0,support,low +0.77,0.99,5,228,5,0,1,0,support,low +0.78,0.87,4,228,5,0,1,0,support,low +0.44,0.5,2,128,3,0,1,0,support,low +0.38,0.52,2,153,3,0,1,0,support,low +0.43,0.46,2,156,3,0,1,0,technical,low +0.39,0.5,4,294,3,0,1,0,technical,low +0.88,1,5,219,5,0,1,0,technical,low +0.45,0.46,2,153,3,0,1,0,management,low +0.4,0.53,2,151,3,0,1,0,IT,low +0.36,0.51,2,155,3,0,1,0,IT,low +0.36,0.48,2,158,3,0,1,0,IT,low +0.9,0.98,5,245,5,0,1,0,IT,low +0.43,0.53,2,131,3,0,1,0,IT,low +0.89,0.87,5,225,5,0,1,0,product_mng,low +0.1,0.84,6,286,4,0,1,0,product_mng,low +0.37,0.5,2,135,3,0,1,0,product_mng,low +0.37,0.51,2,153,3,0,1,0,product_mng,low +0.87,0.9,5,252,5,0,1,0,IT,low +0.4,0.56,2,149,3,0,1,0,accounting,low +0.9,0.97,4,258,5,0,1,0,accounting,low +0.37,0.46,2,158,3,0,1,0,hr,low +0.44,0.54,2,149,3,0,1,0,hr,low +0.85,0.95,5,236,5,0,1,0,hr,low +0.78,0.98,5,239,6,0,1,0,marketing,low +0.42,0.47,2,159,3,0,1,0,marketing,low +0.92,0.99,5,255,6,0,1,0,sales,low +0.11,0.83,6,244,4,0,1,0,accounting,low +0.42,0.56,2,134,3,0,1,0,support,low +0.48,0.57,4,270,4,0,1,0,technical,low +0.83,0.85,4,255,5,0,1,0,management,low +0.4,0.53,2,151,3,0,1,0,marketing,low +0.43,0.45,2,135,3,0,1,0,marketing,low +0.43,0.53,2,146,3,0,1,0,marketing,low +0.1,0.97,7,254,4,0,1,0,sales,low +0.1,0.87,7,289,4,0,1,0,sales,low +0.37,0.46,2,156,3,0,1,0,sales,low +0.38,0.53,2,156,3,0,1,0,sales,low +0.4,0.5,2,128,3,0,1,0,sales,low +0.89,0.86,5,275,5,0,1,0,sales,low +0.45,0.46,2,155,3,0,1,0,sales,low +0.37,0.48,2,159,3,0,1,0,sales,low +0.46,0.49,2,148,3,0,1,0,sales,low +0.87,0.91,4,228,5,0,1,0,sales,low +0.11,0.84,6,298,4,0,1,0,sales,low +0.79,0.87,5,261,5,0,1,0,sales,low +0.79,0.92,5,254,6,0,1,0,sales,low +0.19,0.59,7,192,3,0,1,0,sales,low +0.87,0.98,4,248,5,0,1,0,sales,low +0.6,0.92,2,258,5,0,1,0,sales,low +0.44,0.45,2,156,3,0,1,0,sales,medium +0.11,0.81,6,266,4,1,1,0,sales,medium +0.42,0.54,2,156,3,0,1,0,sales,medium +0.88,0.88,5,232,5,1,1,0,accounting,medium +0.11,0.84,6,287,4,0,1,0,accounting,medium +0.46,0.46,2,154,3,0,1,0,accounting,medium +0.82,0.97,5,263,5,0,1,0,hr,medium +0.44,0.56,2,131,3,0,1,0,hr,medium +0.11,0.78,6,260,4,0,1,0,hr,medium +0.42,0.5,2,139,3,0,1,0,hr,medium +0.84,0.93,4,251,5,0,1,0,technical,medium +0.11,0.95,6,286,4,0,1,0,technical,medium +0.45,0.53,2,129,3,0,1,0,technical,high +0.38,0.56,2,156,3,0,1,0,technical,low +0.38,0.86,6,139,6,0,1,0,technical,medium +0.44,0.51,2,127,3,0,1,0,technical,medium +0.11,0.84,6,251,4,0,1,0,technical,medium +0.81,0.93,5,270,5,0,1,0,technical,medium +0.09,0.96,6,296,4,0,1,0,technical,low +0.11,0.9,6,254,4,0,1,0,technical,low +0.81,0.95,5,238,6,0,1,0,technical,low +0.1,0.97,6,267,4,1,1,0,support,low +0.74,0.89,5,229,6,0,1,0,support,low +0.09,0.78,6,254,4,0,1,0,support,low +0.82,0.81,4,233,4,1,1,0,support,low +0.1,0.98,6,268,4,0,1,0,support,low +0.27,0.56,3,301,3,0,1,0,support,low +0.83,0.92,5,267,6,0,1,0,support,low +0.1,0.93,6,289,4,1,1,0,support,low +0.38,0.47,2,144,3,0,1,0,support,low +0.4,0.56,2,148,3,0,1,0,support,low +0.11,0.83,6,306,4,0,1,0,support,low +0.11,0.79,6,292,4,0,1,1,technical,low +0.82,0.91,5,232,5,0,1,0,technical,low +0.36,0.48,2,137,3,0,1,0,technical,low +0.4,0.46,2,128,3,0,1,0,management,low +0.87,0.84,5,231,5,0,1,0,IT,low +0.41,0.49,2,146,3,0,1,0,IT,low +0.11,0.91,6,308,4,1,1,0,IT,low +0.1,0.93,6,253,4,0,1,0,IT,medium +0.38,0.51,2,146,3,0,1,0,IT,medium +0.39,0.55,2,156,3,0,1,0,product_mng,medium +0.4,0.52,2,147,3,0,1,0,product_mng,medium +0.45,0.48,2,136,3,0,1,0,product_mng,medium +0.74,0.84,5,249,5,0,1,0,product_mng,medium +0.45,0.55,2,151,3,0,1,0,IT,medium +0.12,1,3,278,4,0,1,0,RandD,medium +0.1,0.77,7,250,5,0,1,0,RandD,medium +0.37,0.55,2,127,3,0,1,0,RandD,medium +0.89,0.87,5,255,5,0,1,0,RandD,medium +0.45,0.47,2,135,3,0,1,0,RandD,medium +0.37,0.46,2,149,3,0,1,0,marketing,high +0.11,0.81,5,287,4,0,1,0,sales,low +0.41,0.48,2,145,3,0,1,0,accounting,medium +0.1,0.94,6,285,4,0,1,0,support,medium +0.1,0.93,7,305,4,0,1,0,technical,medium +0.11,0.95,7,300,4,0,1,0,management,medium +0.4,0.54,2,139,3,0,1,0,marketing,low +0.41,0.49,2,130,3,0,1,0,marketing,low +0.1,0.81,6,268,4,0,1,0,marketing,low +0.73,0.86,4,245,6,0,1,0,sales,low +0.43,0.47,2,135,3,0,1,0,sales,low +0.37,0.46,2,153,3,0,1,0,sales,low +0.11,0.94,6,276,4,0,1,0,sales,low +0.4,0.46,2,130,3,0,1,0,sales,low +0.41,0.54,2,153,3,1,1,0,sales,low +0.82,0.84,5,244,5,0,1,0,sales,low +0.61,0.47,2,253,3,0,1,0,sales,low +0.11,0.91,7,287,4,0,1,0,sales,low +0.37,0.45,2,131,3,0,1,0,sales,low +0.41,0.52,2,135,3,0,1,0,sales,low +0.37,0.52,2,157,3,0,1,0,sales,low +0.88,0.99,5,262,6,0,1,0,sales,low +0.1,0.85,6,266,4,0,1,0,sales,low +0.44,0.48,2,148,3,0,1,0,sales,low +0.38,0.57,2,140,3,0,1,0,sales,low +0.11,0.85,7,302,4,0,1,0,sales,low +0.09,0.98,6,271,4,0,1,0,sales,low +0.45,0.52,2,145,3,0,1,0,sales,medium +0.1,0.81,6,290,4,0,1,0,accounting,medium +0.45,0.47,2,151,3,0,1,0,accounting,medium +0.77,0.87,5,266,5,0,1,0,accounting,medium +0.44,0.51,2,140,3,0,1,0,hr,medium +0.39,0.5,2,142,3,0,1,0,hr,medium +0.1,0.91,6,246,4,0,1,0,hr,medium +0.09,0.89,7,308,5,0,1,0,hr,medium +0.37,0.47,2,141,3,0,1,0,technical,medium +0.9,1,5,232,5,0,1,0,technical,medium +0.41,0.56,2,143,3,0,1,0,technical,medium +0.37,0.52,2,155,3,0,1,0,technical,medium +0.1,0.86,6,278,4,0,1,0,technical,high +0.81,1,4,253,5,0,1,0,technical,low +0.11,0.8,6,282,4,0,1,0,technical,medium +0.11,0.84,7,264,4,0,1,0,technical,medium +0.4,0.46,2,149,3,0,1,0,technical,medium +0.09,0.8,6,304,5,0,1,0,technical,medium +0.48,0.93,3,219,6,0,1,0,technical,low +0.91,0.91,4,262,6,0,1,0,support,low +0.43,0.57,2,135,3,0,1,0,support,low +0.33,0.88,6,219,5,0,1,0,support,low +0.41,0.57,2,136,3,0,1,0,support,low +0.41,0.55,2,154,3,0,1,0,support,low +0.37,0.54,2,149,3,0,1,0,support,low +0.31,0.62,6,135,5,0,1,0,support,low +0.09,0.91,6,275,4,0,1,0,support,low +0.1,0.87,6,290,4,0,1,0,support,low +0.76,0.9,4,263,5,0,1,0,support,low +0.41,0.54,2,145,3,0,1,0,support,low +0.72,0.96,5,267,5,0,1,0,technical,low +0.4,0.5,2,141,3,1,1,0,technical,low +0.91,0.87,4,235,5,0,1,0,technical,low +0.1,0.83,6,258,4,0,1,0,management,low +0.4,0.56,2,131,3,0,1,0,IT,low +0.82,0.86,5,243,5,0,1,0,IT,low +0.1,0.82,6,266,4,0,1,0,IT,low +0.37,0.45,2,142,3,0,1,0,IT,low +0.36,0.51,2,135,3,0,1,0,IT,low +0.39,0.48,2,141,3,0,1,0,product_mng,medium +0.36,0.57,2,142,3,0,1,0,product_mng,medium +0.86,0.84,5,254,5,0,1,0,product_mng,medium +0.73,0.99,5,262,5,0,1,0,product_mng,medium +0.56,0.71,4,296,2,0,1,0,IT,medium +0.44,0.56,2,158,3,0,1,0,accounting,medium +0.31,0.56,4,238,2,0,1,0,accounting,medium +0.77,0.93,4,231,5,0,1,0,hr,medium +0.44,0.45,2,156,3,0,1,0,hr,medium +0.38,0.46,2,145,3,0,1,0,hr,medium +0.45,0.48,2,144,3,0,1,0,marketing,medium +0.38,0.51,2,159,3,0,1,0,sales,medium +0.36,0.48,2,156,3,0,1,0,accounting,high +0.75,0.9,5,256,5,0,1,0,support,low +0.1,0.93,6,298,4,0,1,0,technical,medium +0.1,0.97,6,247,4,0,1,0,management,medium +0.45,0.5,2,157,3,0,1,0,marketing,medium +0.42,0.57,2,154,3,1,1,0,marketing,medium +0.78,1,4,253,5,0,1,0,marketing,low +0.45,0.55,2,148,3,0,1,0,sales,low +0.84,1,4,261,5,0,1,0,sales,low +0.11,0.93,6,282,4,0,1,0,sales,low +0.42,0.56,2,133,3,0,1,0,sales,low +0.45,0.46,2,128,3,0,1,0,sales,low +0.46,0.57,2,139,3,0,1,0,sales,low +0.09,0.79,6,293,5,0,1,0,sales,low +0.87,0.83,4,265,6,0,1,0,sales,low +0.1,0.87,6,250,4,0,1,0,sales,low +0.91,1,5,251,6,0,1,0,sales,low +0.76,0.92,4,246,5,0,1,0,sales,low +0.74,1,5,275,5,0,1,0,sales,low +0.92,0.93,5,240,5,0,1,0,sales,low +0.76,0.87,5,245,5,0,1,0,sales,low +0.47,0.5,4,254,4,0,1,0,sales,low +0.73,0.99,5,241,5,0,1,0,sales,low +0.09,0.94,6,257,4,0,1,0,sales,low +0.91,0.92,4,246,5,0,1,0,sales,low +0.82,0.98,4,233,5,0,1,0,sales,low +0.28,0.45,6,218,4,0,1,0,accounting,low +0.84,0.99,4,262,6,0,1,0,accounting,medium +0.45,0.53,2,138,3,0,1,0,accounting,medium +0.45,0.54,2,142,3,0,1,0,hr,medium +0.91,0.97,5,233,5,0,1,0,hr,medium +0.42,0.48,2,155,3,0,1,0,hr,medium +0.82,1,4,229,6,0,1,0,hr,medium +0.11,0.9,6,264,4,0,1,0,technical,medium +0.42,0.53,3,199,4,0,1,0,technical,medium +0.82,0.85,4,223,5,0,1,0,technical,medium +0.09,0.96,6,268,4,0,1,0,technical,medium +0.1,0.94,6,287,4,0,1,0,technical,medium +0.86,1,5,257,5,0,1,0,technical,medium +0.4,0.46,2,143,3,0,1,0,technical,high +0.45,0.46,2,130,3,0,1,0,technical,low +0.42,0.51,2,136,3,0,1,0,technical,medium +0.74,0.92,4,261,5,0,1,0,technical,medium +0.55,0.6,3,180,4,0,1,0,technical,medium +0.37,0.45,2,126,3,0,1,0,support,medium +0.41,0.52,2,127,3,1,1,0,support,low +0.89,0.65,5,195,6,0,1,0,support,low +0.41,0.57,2,160,3,0,1,0,support,low +0.44,0.51,2,150,3,0,1,0,support,low +0.87,0.84,4,264,6,0,1,0,support,low +0.1,0.84,6,309,4,0,1,0,support,low +0.41,0.47,2,135,3,0,1,0,support,low +0.11,0.85,6,261,4,0,1,0,support,low +0.43,0.53,2,160,3,0,1,0,support,low +0.77,0.9,4,237,5,0,1,0,support,low +0.41,0.52,2,136,3,0,1,0,technical,low +0.41,0.48,2,139,3,0,1,0,technical,low +0.36,0.78,2,151,4,0,1,0,technical,low +0.77,1,5,229,5,0,1,0,management,low +0.81,0.98,5,245,5,0,1,0,IT,low +0.39,0.54,2,127,3,0,1,0,IT,low +0.09,0.94,6,283,5,0,1,0,IT,low +0.44,0.46,2,143,3,0,1,0,IT,low +0.1,0.84,5,298,4,0,1,0,IT,low +0.36,0.48,2,159,3,0,1,0,product_mng,low +0.81,0.92,5,239,5,0,1,0,product_mng,low +0.81,0.9,4,226,5,0,1,0,product_mng,medium +0.85,0.98,5,248,5,0,1,0,product_mng,medium +0.1,0.87,6,286,4,0,1,0,IT,medium +0.37,0.54,2,145,3,0,1,0,RandD,medium +0.09,0.97,7,254,4,1,1,0,RandD,medium +0.44,0.53,2,127,3,0,1,0,RandD,medium +0.86,0.93,5,223,5,0,1,0,RandD,medium +0.77,1,4,255,5,0,1,0,RandD,medium +0.41,0.48,2,136,3,0,1,0,marketing,medium +0.4,0.48,2,137,3,0,1,0,sales,medium +0.43,0.49,2,135,3,0,1,0,accounting,medium +0.43,0.5,2,137,3,0,1,0,support,medium +0.8,0.53,3,255,5,0,1,0,technical,high +0.8,0.85,4,273,5,0,1,0,management,low +0.82,0.98,5,234,5,0,1,0,marketing,medium +0.37,0.54,2,152,3,0,1,0,marketing,medium +0.37,0.48,2,134,3,0,1,0,marketing,medium +0.09,0.95,6,292,4,0,1,0,sales,medium +0.9,0.92,5,245,5,0,1,0,sales,low +0.41,0.52,2,159,3,0,1,0,sales,low +0.1,0.85,6,260,4,0,1,0,sales,low +0.44,0.53,2,149,3,0,1,0,sales,low +0.89,0.85,5,266,5,0,1,0,sales,low +0.42,0.56,2,149,3,0,1,0,sales,low +0.87,1,5,242,5,0,1,0,sales,low +0.45,0.57,2,134,3,0,1,0,sales,low +0.11,0.87,5,271,4,0,1,0,sales,low +0.09,0.79,6,275,4,0,1,0,sales,low +0.76,0.83,5,227,5,0,1,0,sales,low +0.11,0.96,7,277,5,0,1,0,sales,low +0.37,0.49,2,151,3,0,1,0,sales,low +0.1,0.79,6,274,4,0,1,0,sales,low +0.77,0.87,4,242,6,0,1,0,sales,low +0.42,0.54,2,143,3,1,1,0,sales,low +0.38,0.52,2,145,3,0,1,0,sales,low +0.32,0.95,5,172,2,0,1,0,sales,low +0.38,0.49,2,135,3,0,1,0,accounting,low +0.19,1,4,192,4,0,1,0,accounting,low +0.1,0.83,7,276,4,0,1,0,accounting,low +0.76,0.88,4,206,4,0,1,0,hr,medium +0.53,0.56,4,281,6,0,1,0,hr,medium +0.39,0.51,2,151,3,0,1,0,hr,medium +0.11,0.83,6,244,4,0,1,0,hr,medium +0.1,0.94,6,309,4,0,1,0,technical,medium +0.84,1,5,218,5,0,1,0,technical,medium +0.82,0.99,4,263,6,0,1,0,technical,medium +0.1,0.82,6,244,4,0,1,0,technical,medium +0.59,0.49,7,263,4,0,1,0,technical,medium +0.44,0.48,2,143,3,0,1,0,technical,medium +0.89,0.95,2,181,5,0,1,0,technical,medium +0.91,0.84,5,265,5,0,1,0,technical,medium +0.66,0.57,5,161,5,0,1,0,technical,high +0.11,0.87,7,282,5,0,1,0,technical,low +0.43,0.51,2,155,3,0,1,0,technical,medium +0.78,0.83,4,217,6,0,1,0,support,medium +0.11,0.97,6,289,5,0,1,0,support,medium +0.83,0.98,4,259,5,0,1,0,support,medium +0.39,0.54,2,158,3,0,1,0,support,low +0.38,0.55,2,158,3,0,1,0,support,low +0.37,0.57,2,155,3,0,1,0,support,low +0.44,0.48,2,146,3,0,1,0,support,low +0.53,0.85,2,164,5,0,1,0,support,low +0.09,0.96,6,259,4,0,1,0,support,low +0.11,0.89,6,293,4,0,1,0,support,low +0.83,0.96,5,275,5,0,1,0,support,low +0.88,1,5,219,6,1,1,0,technical,low +0.1,0.89,6,247,4,0,1,0,technical,low +0.09,0.86,7,309,4,0,1,0,technical,low +0.44,0.54,2,151,3,0,1,0,management,low +0.39,0.51,2,129,3,0,1,0,IT,low +0.87,0.94,4,274,5,0,1,0,IT,low +0.74,0.99,4,233,5,0,1,0,IT,low +0.1,0.95,7,289,4,0,1,0,IT,low +0.74,0.82,4,239,6,0,1,0,IT,low +0.75,0.99,5,221,5,0,1,0,product_mng,low +0.41,0.56,2,150,3,0,1,0,product_mng,low +0.41,0.45,2,144,3,1,1,0,product_mng,low +0.09,0.9,7,289,4,0,1,0,product_mng,low +0.09,0.8,6,301,5,0,1,0,IT,medium +0.39,0.57,2,145,3,0,1,0,accounting,medium +0.4,0.56,2,137,3,0,1,0,accounting,medium +0.37,0.54,2,131,3,1,1,0,hr,medium +0.1,0.84,6,246,4,0,1,0,hr,medium +0.43,0.51,2,136,3,0,1,0,hr,medium +0.75,0.85,5,240,6,1,1,0,marketing,medium +0.37,0.56,2,156,3,0,1,0,sales,medium +0.11,0.85,6,305,4,0,1,0,accounting,medium +0.45,0.45,2,154,3,1,1,0,support,medium +0.87,1,5,261,5,1,1,0,technical,medium +0.11,0.94,7,244,4,0,1,0,management,medium +0.45,0.54,2,129,3,0,1,0,marketing,high +0.81,0.87,4,254,5,0,1,0,marketing,low +0.77,0.91,5,236,5,0,1,0,marketing,medium +0.89,0.92,5,237,5,0,1,0,sales,medium +0.43,0.49,2,135,3,0,1,0,sales,medium +0.78,1,5,236,5,0,1,0,sales,medium +0.37,0.47,2,149,3,0,1,0,sales,low +0.37,0.5,2,141,3,0,1,0,sales,low +0.85,0.82,4,270,5,0,1,0,sales,low +0.41,0.47,2,138,3,0,1,0,sales,low +0.11,0.96,6,298,4,0,1,0,sales,low +0.75,0.99,5,254,5,0,1,0,sales,low +0.82,0.85,5,248,5,0,1,0,sales,low +0.79,1,5,257,6,0,1,0,sales,low +0.43,0.53,2,150,3,0,1,0,sales,low +0.1,0.9,7,281,4,0,1,0,sales,low +0.46,0.48,2,141,3,1,1,0,sales,low +0.43,0.57,2,157,3,0,1,0,sales,low +0.43,0.55,2,136,3,0,1,0,sales,low +0.11,0.8,7,296,4,0,1,0,sales,low +0.09,0.86,6,279,4,0,1,0,sales,low +0.37,0.53,2,131,3,0,1,0,sales,low +0.4,0.57,2,160,3,0,1,0,accounting,low +0.1,0.77,7,291,4,0,1,0,accounting,low +0.41,0.53,2,157,3,0,1,0,accounting,low +0.79,0.58,3,294,4,0,1,0,hr,low +0.11,0.79,7,310,4,0,1,0,hr,low +0.1,0.97,6,282,4,0,1,0,hr,medium +0.44,0.51,2,134,3,0,1,0,hr,medium +0.25,0.46,4,214,4,0,1,0,technical,medium +0.44,0.52,2,137,3,0,1,0,technical,medium +0.73,1,4,252,5,0,1,0,technical,medium +0.75,0.97,5,243,6,0,1,0,technical,medium +0.36,0.47,2,148,3,0,1,0,technical,medium +0.37,0.49,2,151,3,0,1,0,technical,medium +0.39,0.49,2,129,3,0,1,0,technical,medium +0.48,0.78,2,198,2,0,1,0,technical,medium +0.57,0.72,4,275,6,0,1,0,technical,medium +0.9,0.96,5,243,5,0,1,0,technical,medium +0.39,0.55,2,159,3,0,1,0,technical,high +0.44,0.51,2,145,3,0,1,0,support,low +0.81,0.88,5,242,5,0,1,0,support,medium +0.74,0.87,5,242,5,0,1,0,support,medium +0.44,0.56,2,145,3,0,1,0,support,medium +0.41,0.56,2,154,3,0,1,1,support,medium +0.4,0.51,2,139,3,0,1,0,support,low +0.46,0.57,2,152,3,0,1,0,support,low +0.8,0.83,2,211,3,0,1,0,support,low +0.87,0.9,5,258,5,0,1,0,support,low +0.39,0.54,2,155,3,0,1,0,support,low +0.38,0.55,2,148,3,0,1,0,support,low +0.66,0.67,2,255,3,0,1,0,technical,low +0.1,0.8,6,264,4,0,1,0,technical,low +0.37,0.54,2,132,3,0,1,0,technical,low +0.1,0.77,6,255,4,0,1,0,management,low +0.09,0.87,5,263,4,0,1,0,IT,low +0.86,0.84,5,222,5,0,1,0,IT,low +0.11,0.9,6,263,4,0,1,0,IT,low +0.37,0.46,2,157,3,0,1,0,IT,low +0.11,0.92,7,307,4,0,1,0,IT,low +0.77,0.98,5,259,6,0,1,0,product_mng,low +0.84,0.94,5,222,6,0,1,0,product_mng,low +0.1,0.84,7,250,4,0,1,0,product_mng,low +0.83,0.9,5,245,5,0,1,0,product_mng,low +0.11,0.79,6,292,4,0,1,0,IT,low +0.86,0.92,5,252,5,0,1,0,RandD,low +0.38,0.56,2,161,3,0,1,0,RandD,medium +0.11,0.88,5,250,4,0,1,0,RandD,medium +0.45,0.49,2,134,3,0,1,0,RandD,medium +0.1,0.85,7,279,4,0,1,0,RandD,medium +0.09,0.95,7,256,4,0,1,0,marketing,medium +0.39,0.53,2,127,3,0,1,0,sales,medium +0.37,0.47,2,138,3,1,1,0,accounting,medium +0.81,0.97,5,243,5,0,1,0,support,medium +0.09,0.9,7,296,4,0,1,0,technical,medium +0.1,0.88,7,267,4,0,1,0,management,medium +0.39,0.49,2,144,3,0,1,0,marketing,medium +0.83,0.95,4,251,5,0,1,0,marketing,medium +0.45,0.57,2,148,3,0,1,0,marketing,high +0.43,0.51,2,141,3,0,1,0,sales,low +0.8,0.75,3,268,2,0,1,0,sales,medium +0.1,0.86,6,247,4,0,1,0,sales,medium +0.1,0.55,2,247,4,0,1,0,sales,medium +0.36,0.52,2,146,3,0,1,0,sales,medium +0.38,0.5,2,140,3,0,1,0,sales,low +0.78,0.98,5,263,6,0,1,0,sales,low +0.44,0.49,2,145,3,0,1,0,sales,low +0.41,0.46,2,156,3,1,1,0,sales,low +0.72,0.85,5,244,6,0,1,0,sales,low +0.46,0.54,2,144,3,0,1,0,sales,low +0.1,0.9,7,286,4,0,1,0,sales,low +0.34,0.67,4,141,2,0,1,0,sales,low +0.11,0.89,6,260,5,0,1,0,sales,low +0.38,0.56,2,154,3,0,1,0,sales,low +0.82,0.92,5,225,5,0,1,0,sales,low +0.39,0.57,2,127,3,0,1,0,sales,low +0.44,0.53,2,140,3,0,1,0,sales,low +0.43,0.52,2,147,3,0,1,0,sales,low +0.84,0.83,4,227,5,0,1,0,accounting,low +0.43,0.48,2,153,3,0,1,0,accounting,low +0.37,0.52,2,128,3,0,1,0,accounting,low +0.74,0.97,4,228,5,0,1,0,hr,low +0.73,0.97,5,235,5,0,1,0,hr,low +0.37,0.47,2,148,3,0,1,0,hr,low +0.58,0.62,4,238,3,0,1,0,hr,low +0.4,0.54,2,141,3,0,1,0,technical,medium +0.51,0.83,5,249,4,0,1,0,technical,medium +0.46,0.5,2,151,3,0,1,0,technical,medium +0.45,0.54,2,129,3,0,1,0,technical,medium +0.46,0.5,2,156,3,0,1,0,technical,medium +0.39,0.45,2,134,3,0,1,0,technical,medium +0.09,0.88,6,269,4,0,1,0,technical,medium +0.09,0.77,6,290,4,0,1,0,technical,medium +0.37,0.51,2,132,3,0,1,0,technical,medium +0.1,0.89,7,308,4,0,1,0,technical,medium +0.77,1,4,232,5,0,1,0,technical,medium +0.79,0.86,5,235,5,0,1,0,support,medium +0.43,0.55,2,130,3,0,1,0,support,high +0.38,0.53,2,146,3,0,1,0,support,low +0.77,0.91,5,221,6,0,1,0,support,medium +0.44,0.5,2,130,3,0,1,0,support,medium +0.39,0.46,2,136,3,0,1,0,support,medium +0.78,0.89,5,274,6,0,1,0,support,medium +0.1,0.79,6,256,5,0,1,0,support,low +0.1,0.77,5,276,4,0,1,0,support,low +0.75,0.85,5,267,5,0,1,0,support,low +0.46,0.62,6,213,3,0,1,0,support,low +0.91,0.97,4,274,6,0,1,0,technical,low +0.1,0.92,6,258,4,0,1,0,technical,low +0.72,0.6,3,153,5,0,1,0,technical,low +0.11,0.95,6,245,4,0,1,0,management,low +0.11,0.94,6,264,4,0,1,0,IT,low +0.46,0.57,2,154,3,0,1,0,IT,low +0.37,0.46,2,149,3,0,1,0,IT,low +0.46,0.5,2,157,3,0,1,0,IT,low +0.43,0.57,2,127,3,0,1,0,IT,low +0.11,0.82,6,270,4,0,1,0,product_mng,low +0.73,0.89,5,236,6,0,1,0,product_mng,low +0.43,0.47,2,158,3,0,1,0,product_mng,low +0.86,1,5,229,5,0,1,0,product_mng,low +0.1,0.83,6,269,4,0,1,0,IT,low +0.4,0.49,2,128,3,0,1,0,sales,low +0.11,0.87,7,278,4,0,1,0,sales,low +0.86,0.98,3,158,5,0,1,0,sales,low +0.42,1,3,202,3,0,1,0,sales,medium +0.79,0.84,4,240,5,0,1,0,sales,medium +0.1,0.96,7,255,4,0,1,0,marketing,medium +0.09,0.92,7,254,4,0,1,0,sales,medium +0.09,0.82,6,257,4,0,1,0,accounting,medium +0.87,1,4,228,5,0,1,0,support,medium +0.36,0.49,2,145,3,0,1,0,technical,medium +0.42,0.75,3,218,4,0,1,0,management,medium +0.84,0.86,5,268,5,0,1,0,marketing,medium +0.1,0.83,6,278,4,0,1,0,marketing,medium +0.78,0.71,3,249,5,0,1,0,marketing,medium +0.35,0.99,3,236,4,0,1,0,sales,medium +0.1,0.81,7,291,4,0,1,0,sales,high +0.11,0.8,6,306,4,0,1,0,sales,low +0.43,0.48,2,135,3,0,1,0,sales,medium +0.38,0.45,2,156,3,0,1,0,sales,medium +0.46,0.54,2,143,3,0,1,0,sales,medium +0.89,0.82,4,243,5,0,1,0,sales,medium +0.45,0.5,2,147,3,0,1,0,sales,low +0.44,0.53,2,159,3,0,1,0,sales,low +0.74,0.54,5,216,3,0,1,0,sales,low +0.45,0.54,2,152,3,0,1,0,sales,low +0.79,0.93,4,226,5,0,1,0,sales,low +0.79,0.91,5,271,5,0,1,0,sales,low +0.11,0.87,6,255,4,0,1,0,sales,low +0.42,0.48,2,140,3,0,1,0,sales,low +0.64,0.9,6,252,2,0,1,0,sales,low +0.4,0.55,2,159,3,0,1,0,sales,low +0.84,0.98,5,270,5,0,1,0,sales,low +0.73,0.92,5,232,5,0,1,0,sales,low +0.4,0.51,2,144,3,0,1,0,accounting,low +0.36,0.45,2,127,3,0,1,0,accounting,low +0.43,0.47,2,131,3,0,1,0,accounting,low +0.11,0.78,6,243,4,0,1,0,hr,low +0.91,1,5,244,6,0,1,0,hr,low +0.8,1,5,260,5,0,1,0,hr,low +0.42,0.49,2,139,3,0,1,0,hr,low +0.31,0.87,4,184,3,0,1,0,technical,low +0.44,0.47,2,130,3,0,1,0,technical,low +0.38,0.54,2,135,3,0,1,0,technical,medium +0.45,0.56,2,146,3,0,1,0,technical,medium +0.43,0.46,2,149,3,0,1,0,technical,medium +0.45,0.46,2,153,3,1,1,0,technical,medium +0.43,0.57,2,160,3,0,1,0,technical,medium +0.43,0.49,2,160,3,0,1,0,technical,medium +0.09,0.83,6,282,4,0,1,0,technical,medium +0.43,0.47,2,128,3,0,1,0,technical,medium +0.79,0.94,4,232,5,0,1,0,technical,medium +0.85,0.58,3,226,2,0,1,0,support,medium +0.38,0.45,2,129,3,0,1,0,support,medium +0.11,0.92,7,255,4,0,1,0,support,medium +0.83,0.99,5,258,5,0,1,0,support,high +0.81,0.91,4,229,5,0,1,0,support,low +0.42,0.56,2,143,3,0,1,0,support,medium +0.11,0.87,6,257,4,0,1,0,support,medium +0.11,0.85,7,275,4,0,1,0,support,medium +0.1,0.89,7,291,4,0,1,0,support,medium +0.5,0.54,5,153,4,0,1,0,support,low +0.44,0.49,2,154,3,0,1,0,support,low +0.11,0.9,6,301,4,0,1,0,technical,low +0.39,0.52,2,134,3,0,1,0,technical,low +0.11,0.78,6,245,4,0,1,0,technical,low +0.36,0.5,2,132,3,0,1,0,management,low +0.43,0.51,2,130,3,0,1,0,IT,low +0.4,0.5,2,127,3,0,1,0,IT,low +0.86,0.84,4,246,6,0,1,0,IT,low +0.38,0.49,2,145,3,0,1,0,IT,low +0.46,0.45,2,138,3,0,1,1,IT,low +0.37,0.57,2,129,3,0,1,0,product_mng,low +0.43,0.52,2,150,3,0,1,0,product_mng,low +0.66,0.93,5,253,5,0,1,0,product_mng,low +0.37,0.48,2,160,3,0,1,0,product_mng,low +0.77,0.92,5,235,5,0,1,0,IT,low +0.38,0.55,2,151,3,0,1,0,sales,low +0.39,0.54,2,127,3,0,1,0,sales,low +0.41,0.55,2,151,3,0,1,0,sales,low +0.1,0.9,7,290,4,0,1,0,sales,low +0.09,0.93,6,249,4,0,1,0,sales,low +0.41,0.47,2,131,3,0,1,0,marketing,medium +0.39,0.46,2,159,3,0,1,0,sales,medium +0.83,0.99,4,223,5,0,1,0,accounting,medium +0.09,0.87,3,214,2,0,1,0,support,medium +0.75,0.81,5,227,5,0,1,0,technical,medium +0.44,0.54,2,127,3,0,1,0,management,medium +0.1,0.84,6,293,5,0,1,0,marketing,medium +0.42,0.46,2,141,3,0,1,0,marketing,medium +0.1,0.83,6,300,4,0,1,0,marketing,medium +0.1,0.86,6,309,4,0,1,0,sales,medium +0.31,0.77,4,149,3,0,1,0,sales,medium +0.42,0.54,2,159,3,0,1,0,sales,medium +0.38,0.5,2,152,3,0,1,0,sales,high +0.39,0.57,2,158,3,0,1,0,sales,low +0.1,0.97,6,254,5,0,1,0,sales,medium +0.11,0.93,6,294,4,0,1,0,sales,medium +0.1,0.92,7,269,4,0,1,0,sales,medium +0.11,0.9,7,247,4,0,1,0,sales,medium +0.44,0.65,3,271,4,0,1,0,sales,low +0.91,0.96,4,232,5,0,1,0,sales,low +0.72,1,4,245,5,0,1,0,sales,low +0.66,0.66,3,225,3,0,0,0,technical,low +0.2,0.69,6,236,4,0,0,0,technical,low +0.97,0.78,3,268,3,1,0,0,technical,low +0.59,0.73,2,230,3,0,0,0,technical,low +0.88,0.6,4,162,2,0,0,0,technical,low +0.16,0.73,4,197,2,0,0,0,technical,low +0.61,0.96,3,247,3,0,0,0,support,low +0.52,0.79,4,234,3,0,0,0,support,low +0.82,0.49,4,276,4,0,0,0,support,low +0.75,0.94,5,217,2,0,0,0,support,medium +0.62,0.5,4,156,2,0,0,0,support,medium +0.91,0.88,3,189,2,0,0,0,support,medium +0.61,0.98,2,238,4,0,0,0,support,medium +0.79,0.77,3,201,6,1,0,0,support,medium +0.9,0.93,4,263,3,1,0,0,support,medium +0.75,0.83,3,146,3,0,0,0,support,medium +0.81,0.64,4,213,3,0,0,0,support,medium +0.59,0.88,3,159,2,0,0,0,technical,medium +0.56,0.83,3,236,3,1,0,0,technical,medium +0.98,0.79,5,257,4,0,0,0,technical,medium +0.59,0.72,4,168,4,0,0,0,management,medium +0.61,0.67,4,151,3,0,0,0,IT,high +0.78,0.7,4,139,3,0,0,0,IT,low +0.55,0.93,5,196,3,0,0,0,IT,medium +0.2,0.97,4,237,5,0,0,0,IT,medium +0.79,0.44,2,236,3,0,0,0,IT,medium +0.52,0.98,4,265,3,0,0,0,product_mng,medium +0.97,0.52,4,207,3,0,0,0,product_mng,low +0.63,0.94,4,219,3,0,0,0,product_mng,low +0.85,0.99,3,208,2,0,0,0,product_mng,low +0.59,0.74,3,240,3,0,0,0,IT,low +0.64,0.6,3,135,3,0,0,0,RandD,low +0.8,0.67,3,236,3,1,0,0,RandD,low +0.61,0.75,3,140,3,0,0,0,RandD,low +0.87,0.61,3,162,2,0,0,0,RandD,low +0.75,0.59,3,117,3,1,0,0,RandD,medium +0.96,0.51,4,225,3,0,0,0,marketing,medium +0.75,0.92,3,211,3,0,0,0,sales,medium +0.19,0.58,4,173,5,0,0,0,accounting,medium +0.52,0.97,4,170,3,0,0,0,support,medium +0.6,0.6,3,242,3,0,0,0,technical,medium +0.9,0.81,4,175,3,0,0,0,management,medium +0.89,0.92,3,195,2,0,0,0,marketing,medium +0.54,0.93,4,184,2,1,0,0,marketing,medium +0.99,0.55,3,170,3,0,0,0,marketing,medium +0.66,0.56,4,185,3,0,0,0,sales,medium +0.92,0.64,4,259,2,0,0,0,sales,medium +0.19,0.72,4,102,3,0,0,0,sales,medium +0.39,0.37,5,156,4,0,0,0,sales,medium +0.41,0.68,3,191,4,0,0,0,sales,medium +0.6,0.49,3,239,2,0,0,0,sales,medium +0.95,0.54,4,235,4,0,0,0,sales,medium +0.51,0.87,2,130,4,0,0,0,sales,medium +0.54,0.74,2,166,3,0,0,0,sales,medium +0.16,0.54,5,206,5,0,0,0,sales,medium +0.98,0.77,3,191,2,0,0,0,sales,medium +0.65,0.75,3,214,3,0,0,0,sales,medium +0.38,0.5,3,196,3,0,0,0,sales,medium +0.95,0.71,4,151,4,0,0,0,sales,medium +0.6,0.62,5,165,2,0,0,0,sales,medium +0.78,0.91,3,177,2,0,0,0,sales,high +0.19,0.63,6,241,6,0,0,0,sales,high +0.56,0.99,4,230,3,0,0,0,sales,high +0.21,0.71,4,270,2,0,0,0,sales,high +0.83,0.71,3,234,4,0,0,0,accounting,high +0.5,0.64,3,257,2,1,0,0,accounting,high +0.74,0.87,5,264,3,0,0,0,accounting,high +0.75,0.83,4,133,4,0,0,0,hr,high +0.85,0.66,4,155,4,0,0,0,hr,high +0.93,0.59,3,202,2,0,0,0,hr,high +0.76,0.7,3,136,2,0,0,0,hr,high +0.91,0.78,3,269,3,1,0,0,technical,high +0.22,0.54,6,169,4,0,0,0,technical,low +0.78,0.52,5,192,3,1,0,0,technical,low +0.53,0.8,4,241,3,1,0,0,technical,low +0.58,0.69,4,165,3,0,0,0,technical,low +0.99,0.81,3,183,2,0,0,0,technical,low +0.62,0.64,4,163,3,0,0,0,technical,low +0.59,0.69,3,162,3,0,0,0,technical,low +0.13,0.76,5,219,4,0,0,0,technical,low +0.19,0.63,4,278,6,0,0,0,technical,low +0.94,0.99,2,273,4,0,0,0,technical,low +0.53,0.96,4,272,2,0,0,0,support,low +0.96,0.85,5,168,2,0,0,0,support,low +0.62,0.87,4,221,3,1,0,0,support,low +0.81,0.86,4,213,3,0,0,0,support,low +0.63,0.78,4,275,3,0,0,0,support,low +0.92,0.68,5,177,4,0,0,0,support,medium +0.83,0.74,4,249,2,0,0,0,support,medium +0.49,0.37,5,246,3,0,0,0,support,medium +0.8,0.66,4,223,3,0,0,0,support,medium +0.54,0.76,4,244,2,0,0,0,support,medium +0.37,0.72,3,169,2,1,0,0,support,medium +0.93,0.56,5,140,3,0,0,0,technical,medium +0.88,0.99,5,253,2,0,0,0,technical,medium +0.79,0.87,3,194,2,0,0,0,technical,medium +0.65,0.88,4,173,3,0,0,0,management,medium +0.72,0.7,4,172,3,0,0,0,IT,medium +0.58,0.49,3,167,3,0,0,0,IT,medium +0.37,0.51,2,153,3,0,0,0,IT,high +0.87,0.97,4,243,3,0,0,0,IT,high +0.63,0.72,6,163,4,0,0,0,IT,high +0.72,0.79,3,221,3,0,0,0,product_mng,high +0.36,0.55,3,191,3,0,0,0,product_mng,high +0.96,0.7,4,272,3,0,0,0,product_mng,high +0.52,0.37,2,118,2,0,0,0,product_mng,high +0.16,0.83,5,173,4,0,0,0,IT,high +0.63,0.55,4,200,3,1,0,0,RandD,low +0.92,0.76,5,132,3,1,0,0,RandD,low +0.82,0.49,4,180,2,0,0,0,RandD,low +0.18,0.54,4,145,5,0,0,0,RandD,low +0.73,0.48,4,139,2,0,0,0,RandD,low +0.44,0.61,5,230,6,0,0,0,marketing,low +0.73,0.62,4,247,4,0,0,0,sales,low +0.62,0.95,4,140,2,0,0,0,accounting,low +0.94,0.8,4,266,3,1,0,0,support,medium +0.76,0.74,4,261,3,0,0,0,technical,medium +0.89,0.49,4,275,3,0,0,0,management,medium +0.9,0.88,5,254,2,0,0,0,marketing,medium +1,0.93,5,231,2,0,0,0,marketing,medium +0.71,0.9,3,138,3,0,0,0,marketing,medium +0.73,0.97,4,163,3,0,0,0,sales,medium +0.97,0.9,5,262,3,0,0,0,sales,medium +0.6,0.59,4,201,3,0,0,0,sales,medium +0.82,0.67,3,229,3,0,0,0,sales,medium +0.95,0.48,4,228,2,0,0,0,sales,medium +0.88,0.65,5,228,3,0,0,0,sales,medium +0.79,0.49,3,273,3,0,0,0,sales,medium +0.52,0.96,4,171,2,0,0,0,sales,medium +0.22,0.61,3,148,5,0,0,0,sales,medium +0.59,0.96,5,211,3,0,0,0,sales,medium +0.84,0.64,2,211,3,0,0,0,sales,medium +0.54,0.41,3,175,3,0,0,0,sales,medium +1,0.86,4,245,4,0,0,0,sales,medium +0.93,0.59,3,273,2,1,0,0,sales,medium +0.96,0.55,3,225,4,1,0,0,sales,medium +0.56,0.41,5,152,3,0,0,0,sales,medium +0.49,0.66,5,194,3,0,0,0,sales,medium +0.89,0.51,4,185,3,1,0,0,sales,high +0.57,0.91,3,193,2,0,0,0,sales,low +0.96,0.64,3,166,2,0,0,0,accounting,medium +0.65,0.89,5,223,3,1,0,0,accounting,medium +0.14,0.66,5,281,4,1,0,0,accounting,medium +0.64,0.49,3,241,3,0,0,0,hr,medium +0.98,0.91,3,165,2,1,0,0,hr,medium +0.71,0.59,4,143,2,0,0,0,hr,medium +0.96,0.49,5,137,3,0,0,0,hr,medium +0.9,0.57,4,185,3,1,0,0,technical,medium +0.52,0.96,3,271,3,1,0,0,technical,medium +0.78,0.98,4,207,2,1,0,0,technical,medium +0.62,0.69,4,184,3,0,0,0,technical,low +0.6,0.8,4,253,2,0,0,0,technical,low +0.82,0.62,3,152,6,0,0,0,technical,low +0.52,0.55,3,225,2,0,0,0,technical,low +0.13,0.84,5,189,5,0,0,0,technical,low +0.97,0.93,3,153,2,0,0,0,technical,low +0.63,0.9,4,245,3,0,0,0,technical,low +0.68,0.78,5,233,3,0,0,0,technical,high +0.74,0.83,4,210,3,0,0,0,support,low +0.89,0.57,4,176,4,0,0,0,support,high +0.28,0.95,5,191,3,0,0,0,support,high +0.61,0.9,3,224,3,0,0,0,support,low +0.67,0.49,3,185,3,0,0,0,support,low +0.86,0.64,3,245,4,0,0,0,support,high +0.87,0.93,3,173,2,0,0,0,support,low +0.7,0.95,4,231,3,0,0,0,support,medium +0.68,0.84,3,270,3,0,0,0,support,high +0.69,0.75,5,196,3,0,0,0,support,medium +0.97,0.83,3,238,2,0,0,0,support,medium +0.62,0.89,4,261,2,0,0,0,technical,medium +0.55,0.87,3,201,2,0,0,0,technical,medium +0.61,0.73,3,252,3,0,0,0,technical,high +0.15,0.81,3,191,5,0,0,0,management,medium +0.84,0.86,3,199,3,0,0,0,IT,medium +0.87,0.64,5,234,2,1,0,0,IT,medium +0.93,0.86,4,192,4,0,0,0,IT,high +0.14,0.73,6,237,5,0,0,0,IT,medium +0.96,0.7,3,207,3,0,0,0,IT,high +0.41,0.63,2,145,2,0,0,0,product_mng,low +0.84,0.96,6,155,5,0,0,0,product_mng,medium +0.94,0.69,5,145,2,0,0,0,product_mng,medium +0.6,0.86,6,247,6,0,0,0,product_mng,medium +0.7,0.73,4,182,3,0,0,0,IT,medium +0.29,0.91,4,183,4,0,0,0,RandD,low +0.31,0.51,2,146,3,0,0,0,RandD,low +0.73,0.99,3,241,3,0,0,0,RandD,low +0.51,0.52,5,261,3,1,0,0,RandD,low +0.58,0.77,4,140,3,0,0,0,RandD,low +0.59,0.97,3,257,3,0,0,0,marketing,low +0.95,0.9,3,186,2,0,0,0,marketing,low +0.84,0.93,3,159,3,0,0,0,sales,low +0.28,0.37,3,164,4,1,0,0,accounting,low +0.94,0.52,4,217,6,1,0,0,support,low +0.49,0.59,4,137,4,0,0,0,technical,high +0.72,0.5,4,164,2,1,0,0,management,low +0.19,0.85,5,249,3,0,0,0,marketing,low +0.83,0.95,3,264,2,0,0,0,marketing,low +0.79,0.92,4,208,2,1,0,0,marketing,low +0.72,0.61,3,175,3,0,0,0,sales,high +0.97,0.74,4,209,2,0,0,0,sales,low +0.92,0.83,4,268,4,0,0,0,sales,low +0.95,0.53,3,264,3,0,0,0,sales,low +0.76,0.64,4,234,2,0,0,0,sales,high +0.24,0.62,5,199,4,0,0,0,sales,low +0.89,0.99,4,205,2,0,0,1,sales,medium +0.69,0.63,5,140,4,0,0,1,sales,high +0.92,0.98,3,257,3,0,0,1,sales,medium +0.79,0.61,4,227,2,0,0,1,sales,high +0.87,0.94,4,189,3,0,0,1,sales,medium +0.89,0.88,5,241,2,1,0,0,sales,medium +0.75,0.77,5,199,4,0,0,0,sales,medium +0.78,0.6,4,206,3,0,0,0,sales,medium +0.13,0.62,5,268,3,0,0,0,sales,medium +0.94,0.86,3,221,3,1,0,0,sales,medium +0.94,0.88,4,262,2,0,0,0,sales,medium +0.67,0.6,5,253,6,0,0,0,sales,medium +0.6,0.73,5,241,3,0,0,0,sales,high +0.62,0.94,4,252,4,0,0,0,accounting,low +0.38,0.52,2,171,3,0,0,0,accounting,medium +0.8,0.77,4,194,3,0,0,0,accounting,medium +0.61,0.42,3,104,2,0,0,0,hr,medium +0.61,0.56,4,176,3,0,0,0,hr,medium +0.66,0.8,4,192,3,0,0,0,hr,medium +0.56,0.74,3,154,2,0,0,0,hr,medium +1,0.55,4,186,4,1,0,0,technical,medium +0.73,0.86,3,200,4,0,0,0,technical,medium +0.6,0.66,4,132,4,0,0,0,technical,medium +0.78,0.59,5,236,3,0,0,0,technical,high +0.48,0.53,3,211,4,0,0,0,technical,low +0.9,0.77,4,273,2,0,0,0,technical,low +0.16,0.76,4,223,4,0,0,0,technical,low +0.5,0.75,3,204,2,0,0,0,technical,high +0.66,0.65,3,196,3,1,0,0,technical,low +0.44,0.37,2,219,2,0,0,0,technical,low +0.95,0.67,4,261,3,0,0,0,technical,low +0.9,0.65,3,254,2,0,0,0,support,high +0.27,0.48,4,185,2,0,0,0,support,low +0.51,0.74,6,98,3,0,0,0,support,low +0.68,0.76,3,260,4,0,0,0,support,low +0.97,0.93,5,137,2,1,0,0,support,low +0.91,0.75,4,159,3,1,0,0,support,low +0.76,0.88,5,265,4,0,0,0,support,low +0.88,0.61,4,177,4,1,0,0,support,low +0.83,0.73,4,247,2,0,0,0,support,medium +0.78,0.54,3,161,3,0,0,0,support,medium +0.52,0.38,2,103,3,0,0,0,support,medium +0.63,0.49,4,151,3,0,0,0,technical,medium +0.9,0.74,3,193,3,0,0,0,technical,medium +0.48,0.58,3,194,3,0,0,0,technical,medium +0.7,0.6,5,208,3,0,0,0,management,medium +0.68,0.66,4,229,3,0,0,0,IT,medium +0.7,0.87,3,166,2,0,0,0,IT,medium +0.77,0.5,3,141,3,0,0,0,IT,medium +0.73,0.93,3,249,2,0,0,0,IT,medium +0.87,0.48,4,264,3,0,0,0,IT,medium +0.65,0.98,3,252,2,0,0,0,product_mng,high +0.62,0.7,2,134,3,0,0,0,product_mng,low +0.53,0.51,3,274,2,1,0,0,product_mng,medium +0.59,0.39,5,200,4,0,0,0,product_mng,medium +0.87,0.72,2,154,3,0,0,0,IT,medium +0.47,0.53,3,111,4,0,0,0,RandD,medium +0.96,0.81,3,247,3,0,0,0,RandD,low +0.79,0.74,3,169,3,0,0,0,RandD,low +0.84,0.6,3,250,3,1,0,0,RandD,low +0.68,0.49,3,178,3,1,0,0,RandD,low +0.86,0.66,4,251,3,0,0,0,RandD,low +0.73,0.98,5,272,2,0,0,0,marketing,low +0.9,0.67,2,229,4,0,0,0,sales,low +0.63,0.64,3,180,3,0,0,0,accounting,low +0.71,0.72,3,271,2,0,0,0,support,low +0.71,0.68,5,226,3,0,0,0,technical,low +0.95,0.62,4,150,2,0,0,0,management,low +0.51,0.86,4,260,3,1,0,0,marketing,low +0.77,0.91,4,161,3,0,0,0,marketing,low +0.48,0.51,3,136,3,0,0,0,marketing,low +0.93,0.91,2,238,2,1,0,0,sales,low +0.83,0.86,4,98,4,0,0,0,sales,low +0.61,0.73,5,156,4,0,0,0,sales,low +0.97,0.89,4,248,2,0,0,0,sales,low +0.5,0.81,3,170,2,0,0,0,sales,low +0.84,0.54,3,245,3,0,0,0,sales,low +0.58,0.38,4,203,5,0,0,0,sales,low +0.59,0.72,3,182,3,0,0,0,sales,medium +0.77,0.83,3,175,3,0,0,1,sales,medium +0.78,0.4,4,145,5,1,0,1,sales,medium +0.6,0.96,4,220,3,1,0,1,sales,medium +0.53,0.77,4,259,2,1,0,1,sales,medium +0.73,0.69,3,228,2,0,0,1,sales,medium +0.76,0.94,3,189,3,0,0,0,sales,medium +0.12,0.61,6,257,3,0,0,0,sales,medium +0.2,0.98,3,180,6,0,0,0,sales,medium +0.5,0.77,4,180,3,0,0,0,sales,medium +0.79,0.65,5,215,2,1,0,0,sales,medium +0.96,0.68,3,132,2,0,0,0,sales,medium +0.26,0.69,5,213,2,0,0,0,accounting,high +0.8,0.72,4,173,3,0,0,0,accounting,low +0.43,0.71,3,186,2,0,0,0,accounting,medium +0.87,0.71,4,157,2,0,0,0,hr,medium +0.63,0.75,4,175,4,0,0,0,hr,medium +0.58,0.48,3,135,3,1,0,0,hr,medium +0.2,0.42,4,256,5,0,0,0,hr,low +0.62,0.71,4,268,3,0,0,0,technical,low +0.91,0.94,5,159,3,0,0,0,technical,low +0.66,0.91,3,191,4,0,0,0,technical,low +0.53,0.81,3,275,2,0,0,0,technical,low +0.52,0.98,5,217,2,1,0,0,technical,low +1,0.88,6,201,4,0,0,0,technical,low +0.73,0.67,4,205,3,0,0,0,technical,low +0.65,0.67,3,240,2,1,0,0,technical,low +0.5,0.95,5,137,3,0,0,0,technical,low +0.94,0.59,4,241,2,0,0,0,technical,low +0.48,0.86,5,198,4,0,0,0,technical,low +0.67,0.87,5,254,2,0,0,0,support,low +0.73,0.94,4,262,3,0,0,0,support,low +0.63,0.71,4,244,2,0,0,0,support,low +0.84,0.84,4,266,3,0,0,0,support,low +0.2,0.94,6,191,5,0,0,0,support,low +0.76,0.57,3,148,3,1,0,0,support,low +0.55,0.54,3,233,2,0,0,0,support,low +0.8,0.55,4,178,2,1,0,0,support,low +0.64,0.91,3,165,3,1,0,0,support,low +0.59,0.97,5,179,6,0,0,0,support,medium +0.92,0.98,3,149,3,0,0,0,support,medium +0.75,0.76,3,269,2,1,0,0,technical,medium +0.69,0.74,5,227,2,0,0,0,technical,medium +0.82,0.93,3,247,3,0,0,0,technical,medium +0.88,0.85,3,220,3,0,0,0,management,medium +0.89,0.91,3,233,2,0,0,0,IT,medium +1,0.79,5,171,5,0,0,0,IT,medium +0.66,0.91,4,234,2,1,0,0,IT,medium +0.76,0.92,3,176,2,0,0,0,IT,medium +0.8,0.62,5,190,4,1,0,0,IT,medium +0.58,0.86,4,168,2,0,0,0,product_mng,medium +0.73,0.93,3,205,3,0,0,0,product_mng,high +1,0.73,5,189,3,1,0,0,product_mng,low +0.18,0.9,4,282,4,0,0,0,product_mng,medium +0.47,0.46,2,152,2,0,0,0,IT,medium +0.92,0.64,4,217,4,0,0,0,RandD,medium +0.51,0.5,4,130,3,0,0,0,RandD,medium +0.81,0.62,4,153,4,0,0,0,RandD,low +0.52,0.57,3,270,3,0,0,0,RandD,low +0.95,0.96,3,220,3,0,0,0,RandD,low +0.93,0.64,4,253,3,0,0,0,RandD,low +0.98,0.67,4,209,6,0,0,0,marketing,low +0.79,0.79,4,231,2,0,0,0,sales,low +0.99,0.73,4,240,4,0,0,0,accounting,low +0.64,0.9,5,266,3,0,0,0,support,low +0.54,0.44,3,153,2,0,0,0,technical,low +0.79,0.59,4,187,2,0,0,0,management,low +0.55,0.98,4,185,2,1,0,0,marketing,low +0.18,0.81,4,147,4,0,0,0,marketing,low +0.56,0.81,4,188,3,1,0,0,marketing,low +0.92,0.67,2,252,2,0,0,0,sales,low +0.99,0.75,4,163,2,0,0,0,sales,low +0.77,0.85,4,189,2,0,0,0,sales,low +0.49,0.52,3,156,2,0,0,0,sales,low +0.98,0.58,3,183,3,0,0,0,sales,low +0.18,0.54,6,209,5,1,0,0,sales,low +0.8,0.82,4,271,4,0,0,0,sales,low +0.81,0.77,5,251,2,0,0,0,sales,low +0.13,0.61,5,198,5,0,0,0,sales,medium +0.58,0.97,3,274,4,1,0,1,sales,medium +0.75,0.63,4,209,3,0,0,1,sales,medium +0.8,0.94,4,271,4,0,0,1,sales,medium +0.78,0.6,4,143,2,0,0,1,sales,medium +0.92,0.6,5,236,3,1,0,1,sales,medium +0.85,0.98,5,222,3,0,0,1,sales,medium +0.52,0.63,3,233,3,0,0,1,sales,medium +0.95,0.84,3,270,3,1,0,1,sales,medium +0.81,0.92,5,258,3,0,0,1,sales,medium +0.16,0.82,6,202,4,1,0,1,sales,medium +0.91,0.74,3,150,2,0,0,0,accounting,medium +0.62,0.51,4,193,3,0,0,0,accounting,high +0.24,0.42,5,210,5,0,0,0,accounting,low +0.88,0.51,3,208,3,0,0,0,hr,medium +0.94,0.73,3,196,3,0,0,0,hr,medium +0.76,0.79,5,187,4,0,0,0,hr,medium +0.49,0.67,3,140,2,0,0,0,hr,medium +0.93,0.9,4,256,4,0,0,0,technical,low +0.92,0.66,4,113,3,0,0,0,technical,low +0.19,0.94,4,196,5,0,0,0,technical,low +0.66,0.76,3,170,3,0,0,0,technical,low +0.16,0.94,4,261,6,0,0,0,technical,low +0.83,0.99,5,132,3,0,0,0,technical,low +0.69,0.53,3,153,3,0,0,0,technical,low +0.82,0.53,3,147,3,1,0,0,technical,low +0.88,0.72,5,244,2,0,0,0,technical,low +0.31,0.42,4,108,4,0,0,0,technical,low +0.83,0.49,4,218,2,0,0,0,technical,low +0.94,0.52,5,133,3,0,0,0,support,low +0.65,0.79,5,233,3,0,0,0,support,low +0.6,0.6,4,147,3,0,0,0,support,low +0.52,0.43,3,176,3,0,0,0,support,low +0.66,0.89,4,169,4,0,0,0,support,low +0.87,0.87,4,144,3,0,0,0,support,low +0.2,0.99,5,151,3,1,0,0,support,low +0.63,0.91,4,252,3,1,0,0,support,medium +0.69,0.98,4,180,3,0,0,0,support,medium +0.48,0.61,3,251,3,0,0,0,support,medium +0.8,0.8,4,263,4,0,0,0,support,medium +0.89,0.74,5,260,6,0,0,0,technical,medium +0.67,0.63,3,227,3,0,0,0,technical,medium +0.37,0.86,6,260,3,0,0,0,technical,medium +0.93,0.61,5,158,3,0,0,0,management,medium +0.69,0.52,3,186,3,0,0,0,IT,medium +0.16,0.61,4,171,6,0,0,0,IT,medium +0.81,0.55,3,199,2,1,0,0,IT,medium +0.97,0.63,5,258,2,0,0,0,IT,medium +0.77,0.59,4,273,2,0,0,0,IT,high +0.75,0.78,2,259,3,0,0,0,product_mng,low +0.88,0.82,3,265,3,0,0,0,product_mng,medium +0.43,0.51,5,168,4,0,0,0,product_mng,medium +0.99,0.99,4,163,4,0,0,0,product_mng,medium +0.59,0.65,5,265,3,0,0,0,IT,medium +0.89,0.71,4,190,3,0,0,0,RandD,low +0.54,0.73,3,157,3,0,0,0,RandD,low +0.32,0.86,4,266,4,0,0,0,RandD,low +0.17,0.55,6,240,6,0,0,0,RandD,low +0.78,0.55,3,143,3,0,0,0,RandD,low +0.73,0.68,3,121,5,0,0,0,RandD,low +0.65,0.76,2,170,5,0,0,0,IT,low +0.8,0.71,4,161,4,0,0,0,IT,low +0.61,0.86,3,239,3,0,0,0,IT,low +0.67,0.49,3,224,3,0,0,0,IT,low +0.63,0.57,3,242,3,0,0,0,product_mng,low +0.51,0.58,4,140,2,1,0,0,product_mng,low +0.82,0.59,5,170,3,0,0,0,product_mng,low +0.79,0.67,5,156,2,0,0,0,product_mng,low +0.49,0.6,2,113,5,0,0,0,IT,low +0.7,0.59,3,138,3,0,0,0,RandD,low +0.13,0.5,3,137,5,0,0,0,RandD,low +0.83,0.52,5,217,3,0,0,0,RandD,low +0.83,0.91,3,155,3,0,0,0,RandD,low +0.19,0.83,5,280,4,0,0,0,RandD,low +0.8,0.81,5,248,2,1,0,0,RandD,low +0.49,0.67,2,190,8,0,0,0,marketing,medium +0.92,0.99,3,176,8,0,0,0,sales,medium +0.81,0.55,4,217,8,0,0,0,accounting,medium +0.62,0.91,3,269,8,0,0,0,support,medium +0.21,0.7,3,238,8,0,0,0,technical,medium +0.95,0.74,5,243,6,0,0,0,management,medium +0.51,0.8,4,198,6,0,0,0,marketing,medium +0.52,0.89,3,188,6,0,0,0,marketing,medium +0.64,0.56,3,257,6,0,0,0,marketing,medium +0.62,0.79,4,268,6,0,0,0,sales,medium +0.73,0.88,5,233,4,1,0,0,sales,medium +0.32,0.86,4,214,5,0,0,0,sales,medium +0.78,0.96,2,285,3,0,0,0,sales,high +0.65,0.91,4,224,2,1,0,0,sales,low +0.56,0.92,4,224,3,0,0,0,sales,medium +0.96,0.89,3,142,4,0,0,0,sales,medium +0.79,0.82,4,220,3,0,0,0,sales,medium +0.66,0.58,4,244,3,0,0,0,sales,medium +0.67,0.68,4,171,3,0,0,0,sales,low +0.86,0.82,4,274,2,1,0,0,sales,low +0.57,0.72,4,214,2,1,0,0,sales,low +0.86,0.87,5,171,2,0,0,0,sales,low +0.52,0.59,5,150,2,0,0,0,sales,low +0.73,0.61,4,260,2,1,0,0,sales,low +0.78,0.63,5,259,3,0,0,0,sales,low +0.95,0.63,3,153,2,0,0,0,sales,low +0.75,0.61,3,263,3,0,0,0,sales,low +0.83,0.52,2,149,2,1,0,0,sales,low +0.48,1,4,261,3,0,0,0,accounting,low +0.3,0.58,2,189,4,1,0,0,accounting,low +0.72,0.85,5,237,4,0,0,0,accounting,low +0.61,0.52,3,224,3,0,0,0,hr,low +0.31,0.87,6,240,3,1,0,0,hr,low +0.62,0.81,3,245,2,1,0,0,hr,low +0.48,0.49,3,268,3,0,0,0,hr,low +0.97,0.89,4,208,2,1,0,0,technical,low +0.61,0.83,4,153,2,0,0,0,technical,low +0.93,0.99,3,169,3,0,0,0,technical,low +0.89,0.39,5,218,2,0,0,0,technical,low +0.95,0.9,3,155,3,0,0,0,technical,medium +0.36,0.44,5,155,3,0,0,0,technical,medium +0.29,0.39,6,105,6,0,0,0,technical,medium +0.65,0.83,4,251,2,0,0,0,technical,medium +0.72,0.54,4,219,2,0,0,0,technical,medium +0.51,0.56,4,198,2,1,0,0,technical,medium +0.54,0.53,4,158,2,0,0,0,technical,medium +0.66,0.58,3,157,2,0,0,0,support,medium +0.59,0.54,4,178,2,0,0,0,support,medium +0.45,0.48,3,145,2,0,0,0,support,medium +0.15,0.91,5,230,3,0,0,0,support,medium +0.95,0.53,3,174,3,0,0,0,support,medium +0.49,0.59,5,140,3,0,0,0,support,high +0.68,0.97,3,174,2,0,0,0,support,low +0.7,0.76,4,173,2,0,0,0,support,medium +0.9,0.73,2,203,4,0,0,0,support,medium +0.94,0.95,5,170,3,0,0,0,support,medium +0.8,0.86,3,203,3,0,0,0,support,medium +0.59,0.53,5,169,3,0,0,0,technical,low +0.43,0.96,3,109,6,0,0,0,technical,low +0.7,0.54,5,263,3,0,0,0,technical,low +0.51,0.62,4,185,3,0,0,0,management,low +0.12,0.49,4,191,5,0,0,0,IT,low +0.14,0.56,5,259,4,1,0,0,IT,low +0.86,0.91,4,253,3,0,0,0,IT,low +0.97,0.5,3,216,3,0,0,0,IT,low +1,0.86,2,264,3,0,0,0,IT,medium +0.49,0.63,3,181,3,1,0,0,product_mng,medium +0.9,0.93,3,209,3,0,0,0,product_mng,medium +0.82,0.89,4,239,2,0,0,0,product_mng,medium +0.59,0.48,3,197,3,0,0,0,product_mng,medium +0.97,0.57,4,150,2,0,0,0,IT,medium +0.69,0.88,3,164,10,0,0,0,management,medium +0.73,0.84,3,216,8,0,0,0,management,medium +0.48,0.74,2,271,8,1,0,0,management,medium +0.94,0.49,4,176,8,0,0,0,management,medium +0.74,0.73,3,156,8,0,0,0,management,medium +0.65,0.63,4,143,8,0,0,0,management,medium +0.93,0.94,4,233,6,0,0,0,IT,medium +0.57,0.67,3,138,6,1,0,0,IT,medium +0.9,0.49,3,259,6,0,0,0,IT,medium +0.55,0.86,4,169,6,0,0,0,IT,medium +0.59,0.73,3,172,6,0,0,0,product_mng,medium +0.72,0.98,4,156,3,0,0,0,product_mng,medium +0.87,0.52,4,140,3,0,0,0,product_mng,medium +0.86,0.82,4,212,2,0,0,0,product_mng,medium +0.61,0.5,4,269,3,0,0,0,IT,medium +0.45,0.63,5,111,5,0,0,0,management,medium +0.51,0.63,4,198,2,0,0,0,management,medium +0.87,0.92,4,263,3,0,0,0,management,medium +0.29,0.38,5,191,5,0,0,0,management,medium +0.57,0.64,3,188,3,0,0,0,management,medium +0.69,0.83,4,252,3,0,0,0,management,medium +0.61,0.9,2,142,3,0,0,0,marketing,high +0.96,0.85,4,247,3,0,0,0,sales,high +0.16,0.61,6,269,2,0,0,0,accounting,high +0.96,0.82,4,244,3,0,0,0,support,high +0.77,0.81,4,164,3,0,0,0,technical,high +0.85,0.87,6,232,5,0,0,0,management,high +0.37,0.49,3,177,3,0,0,0,marketing,high +0.68,0.65,3,173,3,1,0,0,marketing,high +0.87,0.6,5,165,2,1,0,0,marketing,high +0.95,0.8,3,225,2,0,0,0,sales,high +0.84,0.63,3,121,3,1,0,0,sales,low +0.44,0.51,2,219,4,0,0,0,sales,low +0.94,0.73,4,204,2,0,0,0,sales,low +0.85,0.94,5,235,4,0,0,0,sales,low +0.75,0.51,2,215,2,1,0,0,sales,low +0.76,0.67,5,243,3,0,0,0,sales,low +0.13,0.97,4,162,6,0,0,0,sales,low +0.6,0.79,4,262,3,0,0,0,sales,low +0.45,0.55,4,206,2,0,0,0,sales,low +0.49,1,2,125,4,1,0,0,sales,low +0.19,0.36,3,167,5,0,0,0,sales,low +0.68,0.89,5,218,5,0,0,0,sales,low +0.53,0.91,5,181,3,0,0,0,sales,low +1,0.77,5,269,3,0,0,0,sales,low +0.99,0.86,3,167,2,0,0,0,sales,low +0.29,0.75,6,271,10,0,0,0,sales,medium +0.54,0.83,4,201,8,1,0,0,sales,medium +0.25,0.9,6,229,8,0,0,0,sales,medium +0.71,0.76,4,148,8,0,0,0,accounting,medium +0.96,0.84,3,147,8,0,0,0,accounting,medium +0.8,0.9,4,211,8,0,0,0,accounting,medium +0.82,0.87,5,145,6,0,0,0,hr,medium +0.19,0.97,6,269,6,0,0,0,hr,medium +0.43,0.74,4,129,6,0,0,0,hr,medium +0.62,0.84,3,270,6,0,0,0,hr,medium +0.75,0.85,3,250,6,0,0,0,technical,medium +0.56,0.48,5,192,2,1,0,0,technical,medium +0.88,0.91,4,233,4,0,0,0,technical,high +0.63,0.57,4,192,3,0,0,0,technical,high +0.75,0.93,3,247,2,0,0,0,technical,high +0.74,1,4,192,4,0,0,0,technical,high +0.55,0.68,3,178,3,1,0,0,technical,high +0.87,0.55,4,197,3,0,0,0,technical,high +0.13,0.9,5,264,6,0,0,0,technical,high +0.33,0.64,2,274,3,1,0,0,technical,high +0.89,0.97,4,147,2,0,0,0,technical,low +0.56,0.94,3,154,3,1,0,0,support,low +0.95,0.61,3,224,2,1,0,0,support,low +0.57,0.59,4,250,2,0,0,0,support,low +0.72,0.53,3,179,3,0,0,0,support,low +0.28,0.44,4,170,2,0,0,0,support,low +0.54,0.61,4,118,5,0,0,0,support,low +0.54,0.95,4,256,3,0,0,0,support,low +0.99,0.8,3,209,2,0,0,0,support,medium +0.37,0.69,2,146,3,0,0,0,support,medium +0.77,0.87,3,275,4,1,0,0,support,medium +0.7,0.88,4,180,2,0,0,0,support,medium +0.8,0.74,3,228,3,0,0,0,technical,medium +0.52,0.63,3,204,3,0,0,0,technical,medium +0.69,0.55,3,172,2,0,0,0,technical,medium +0.6,0.62,5,274,3,0,0,0,management,medium +0.74,0.64,3,136,2,0,0,0,IT,medium +0.69,0.82,4,252,3,1,0,0,IT,medium +0.78,0.89,4,137,3,0,0,0,IT,medium +0.77,0.75,4,191,3,0,0,0,IT,medium +0.91,0.68,4,132,4,0,0,0,IT,medium +0.54,0.68,6,249,5,0,0,0,product_mng,medium +0.48,0.77,6,274,6,0,0,0,product_mng,medium +0.55,0.96,3,194,3,0,0,0,product_mng,medium +0.17,0.36,6,191,2,0,0,0,product_mng,medium +0.77,0.83,5,216,4,0,0,0,IT,medium +0.93,0.98,3,241,3,0,0,0,IT,medium +0.65,0.91,4,243,5,1,0,0,IT,medium +0.67,0.52,4,207,3,0,0,0,IT,medium +0.95,0.88,3,199,3,0,0,0,IT,medium +0.61,0.97,6,286,4,0,0,0,product_mng,medium +0.57,0.39,4,132,3,0,0,0,product_mng,high +0.65,1,4,229,4,0,0,0,product_mng,low +0.85,0.81,4,260,3,0,0,0,product_mng,medium +0.61,0.96,3,214,2,0,0,0,IT,medium +0.65,0.9,6,217,4,1,0,1,RandD,medium +0.92,0.93,4,225,2,0,0,1,RandD,medium +0.37,0.41,2,113,3,0,0,1,RandD,medium +0.48,0.77,5,250,2,0,0,1,RandD,medium +0.82,0.91,5,271,2,0,0,1,RandD,medium +0.84,0.75,4,135,3,0,0,1,RandD,medium +0.57,0.46,2,100,6,1,0,1,marketing,medium +0.8,0.75,4,224,3,0,0,1,sales,medium +0.49,0.91,4,134,4,0,0,0,accounting,low +0.79,0.82,5,158,2,0,0,0,support,low +0.48,0.67,3,183,2,0,0,0,technical,low +0.28,0.89,4,97,6,0,0,0,management,low +0.47,0.56,4,226,3,0,0,0,marketing,low +0.91,0.6,4,235,4,1,0,0,marketing,low +0.75,0.6,4,186,10,1,0,0,marketing,low +0.61,0.89,3,242,10,0,0,0,sales,high +0.47,0.79,3,284,10,0,0,0,sales,low +0.22,0.7,2,274,10,0,0,0,sales,high +0.5,0.48,4,130,10,0,0,0,sales,high +0.56,0.87,3,146,10,0,0,0,sales,low +0.84,0.85,4,207,10,0,0,0,sales,low +0.69,0.72,4,210,2,1,0,0,sales,high +0.53,0.64,3,143,2,0,0,0,sales,low +0.17,0.57,4,116,3,0,0,0,sales,medium +0.48,0.71,2,162,3,1,0,0,sales,high +0.94,0.51,3,242,3,0,0,0,sales,medium +0.77,0.89,4,153,7,0,0,0,sales,medium +1,0.72,5,194,7,1,0,0,sales,medium +0.49,0.65,4,233,7,0,0,0,sales,medium +0.93,0.73,4,283,7,0,0,0,sales,high +0.38,0.43,3,188,7,0,0,0,sales,medium +0.6,0.54,4,182,6,0,0,0,sales,medium +0.5,0.82,2,286,6,0,0,0,sales,medium +0.97,0.55,5,212,6,0,0,0,sales,high +0.93,0.95,5,176,6,0,0,1,accounting,medium +0.5,1,5,264,8,0,0,1,accounting,high +0.52,0.84,3,261,8,0,0,1,accounting,low +0.5,0.71,4,163,8,0,0,1,hr,medium +0.55,0.4,3,139,8,0,0,1,hr,medium +0.95,0.84,3,261,8,1,0,1,hr,medium +0.48,0.42,2,275,6,1,0,1,hr,medium +0.51,0.39,5,132,6,1,0,1,technical,low +0.96,0.48,3,202,6,0,0,0,technical,low +0.97,0.84,4,177,6,0,0,0,technical,low +0.97,0.66,5,234,6,0,0,0,technical,low +0.71,0.54,4,188,6,0,0,0,technical,low +0.82,0.49,5,203,6,0,0,0,technical,low +0.57,1,4,227,10,0,0,0,technical,low +0.48,0.93,3,150,10,0,0,0,technical,low +0.71,0.64,3,267,3,0,0,0,technical,low +0.63,0.61,5,186,10,0,0,0,technical,low +0.99,0.84,4,142,10,0,0,0,technical,high +0.79,0.83,3,126,10,1,0,0,support,low +0.65,0.85,4,201,10,0,0,0,support,low +0.7,0.85,4,142,2,0,0,0,support,low +0.99,0.94,4,167,4,0,0,0,support,low +0.65,0.62,4,258,2,0,0,0,support,high +0.92,0.85,3,207,2,0,0,0,support,low +0.24,0.5,4,282,4,1,0,0,support,low +0.39,0.89,3,188,5,0,0,0,support,low +0.82,0.85,3,214,2,0,0,0,support,high +0.78,0.89,4,272,2,0,0,0,support,low +0.62,0.79,3,259,3,0,0,0,support,medium +0.6,0.61,5,191,2,1,0,0,technical,high +0.49,0.57,3,192,3,0,0,0,technical,medium +0.82,0.82,3,164,3,0,0,0,technical,high +0.48,0.81,4,149,2,0,0,0,management,medium +0.69,0.56,4,149,3,0,0,0,IT,medium +0.4,0.89,2,165,3,0,0,0,IT,medium +0.72,0.8,3,222,3,0,0,0,IT,medium +0.75,0.84,5,222,3,1,0,0,IT,medium +0.5,0.77,3,265,3,0,0,0,IT,medium +0.78,0.5,5,247,4,0,0,0,product_mng,medium +0.76,0.45,4,147,2,0,0,0,product_mng,medium +0.94,0.52,3,273,3,0,0,0,product_mng,high +0.24,0.94,6,144,4,0,0,0,product_mng,low +0.99,0.66,3,181,2,0,0,0,IT,medium +0.67,0.64,3,198,2,1,0,0,management,medium +0.76,0.57,5,255,4,0,0,0,management,medium +0.76,0.77,4,169,10,0,0,0,management,medium +0.55,0.64,4,201,10,1,0,0,management,medium +0.74,0.6,4,274,10,1,0,0,management,medium +0.81,0.85,4,134,10,1,0,0,management,medium +0.98,0.67,3,190,10,0,0,0,IT,medium +0.98,0.98,4,170,10,0,0,0,IT,medium +0.58,0.91,3,154,10,0,0,0,product_mng,high +0.18,0.75,3,142,2,0,0,0,product_mng,low +0.57,0.67,5,235,2,0,0,0,product_mng,low +0.7,0.62,3,110,3,0,0,0,product_mng,low +0.49,0.77,3,211,3,0,0,0,IT,high +0.7,0.56,4,214,3,0,0,1,management,medium +0.16,0.93,5,210,7,0,0,1,management,medium +0.58,0.59,3,207,7,0,0,1,management,medium +0.66,0.57,4,161,7,0,0,1,management,medium +0.51,0.55,2,102,7,0,0,1,management,medium +0.48,0.84,4,186,7,0,0,1,management,medium +0.56,0.71,3,211,6,0,0,1,marketing,low +0.81,0.62,3,240,6,0,0,1,sales,low +0.57,0.7,4,237,6,0,0,0,accounting,low +0.66,0.53,3,164,6,0,0,0,support,low +0.22,0.91,6,222,8,0,0,0,technical,low +0.96,0.71,3,205,8,1,0,0,management,medium +0.87,0.88,4,140,8,0,0,0,marketing,medium +0.61,0.42,2,103,8,0,0,0,marketing,medium +0.66,0.85,3,178,8,1,0,0,marketing,medium +0.9,0.51,4,137,6,0,0,0,sales,medium +0.64,0.67,3,143,6,0,0,0,sales,medium +0.76,0.82,4,170,6,0,0,0,sales,medium +0.97,0.41,5,135,6,0,0,0,sales,medium +0.69,0.76,3,174,6,0,0,0,sales,medium +0.98,0.55,3,166,6,1,0,0,sales,medium +0.18,0.61,5,174,6,0,0,0,sales,medium +0.62,0.91,3,251,10,0,0,0,sales,medium +0.29,0.37,6,187,10,1,0,0,sales,high +0.87,0.48,5,170,3,0,0,0,sales,low +0.91,0.64,3,241,10,0,0,0,sales,medium +0.53,0.79,3,221,10,1,0,0,sales,medium +0.69,0.73,4,257,10,1,0,0,sales,medium +0.14,0.58,4,275,10,0,0,0,sales,medium +0.7,0.77,4,245,2,0,0,0,sales,low +0.77,0.75,6,246,6,0,0,0,sales,low +0.77,0.76,6,263,6,0,0,0,sales,low +0.76,0.99,3,133,4,0,0,0,sales,low +0.66,0.49,4,157,3,0,0,0,sales,low +0.5,0.95,3,198,4,0,0,0,accounting,low +0.57,0.9,5,145,3,0,0,0,accounting,low +0.97,0.62,6,118,2,0,0,0,accounting,low +0.26,0.99,5,184,5,0,0,0,hr,low +0.72,0.62,3,243,2,1,0,0,hr,low +0.83,0.93,3,247,2,0,0,0,hr,low +0.55,0.4,3,158,3,0,0,0,hr,low +0.77,0.74,5,243,2,0,0,0,technical,low +0.24,0.63,4,203,5,0,0,0,technical,low +0.8,0.96,3,161,3,0,0,0,technical,low +0.5,0.59,4,214,3,1,0,0,technical,low +0.66,0.59,4,179,3,0,0,0,technical,low +0.66,0.77,4,188,2,0,0,0,technical,low +0.66,0.81,3,174,3,0,0,0,technical,low +0.96,0.83,3,177,4,0,0,0,technical,low +0.75,0.94,5,194,4,0,0,0,technical,low +0.78,0.77,3,244,2,0,0,0,technical,medium +0.57,0.82,4,269,2,0,0,0,technical,medium +0.78,0.68,2,159,3,1,0,0,support,medium +0.57,0.88,4,140,2,0,0,0,support,medium +0.84,0.56,5,224,2,0,0,0,support,medium +0.23,0.94,5,242,4,0,0,0,support,medium +0.53,0.37,3,180,3,0,0,0,support,medium +0.82,0.71,3,150,3,0,0,0,support,medium +0.59,0.64,5,269,3,0,0,0,support,medium +0.5,0.52,2,178,2,0,0,0,support,medium +1,0.74,2,187,3,0,0,0,support,medium +0.94,0.61,3,140,2,0,0,0,support,medium +0.86,0.61,4,193,2,0,0,0,support,high +0.73,0.49,4,243,2,0,0,0,technical,low +0.49,0.94,3,144,3,1,0,0,technical,medium +0.79,0.73,2,147,2,0,0,0,technical,medium +0.83,0.5,6,165,3,0,0,0,management,medium +0.85,0.67,3,176,2,0,0,0,IT,medium +0.65,0.37,3,170,6,0,0,0,IT,low +0.94,0.65,4,213,2,1,0,0,IT,low +0.76,0.81,4,242,2,0,0,0,IT,low +0.77,0.54,4,139,3,1,0,0,IT,low +0.77,0.91,4,239,3,1,0,0,product_mng,low +0.59,0.64,5,123,2,0,0,0,product_mng,low +0.69,0.9,3,185,4,0,0,0,product_mng,low +0.51,0.85,4,186,2,0,0,0,product_mng,low +0.8,0.67,3,178,3,0,0,0,IT,low +0.98,0.7,3,153,10,0,0,0,management,high +0.69,0.72,4,185,10,1,0,0,management,high +0.14,0.76,4,142,10,0,0,0,management,high +0.95,0.9,4,221,10,1,0,0,management,high +0.53,0.61,3,148,10,0,0,0,management,high +0.64,0.52,5,258,10,1,0,0,management,high +0.51,0.73,4,229,3,0,0,0,sales,low +0.36,0.73,2,111,2,0,0,0,sales,low +0.62,0.97,2,271,3,0,0,0,sales,low +0.98,0.58,4,133,3,0,0,0,sales,low +0.53,0.7,4,223,3,0,0,0,sales,low +0.8,0.95,4,272,2,0,0,0,sales,low +0.73,0.77,3,233,3,0,0,0,sales,medium +0.82,0.8,3,162,3,0,0,0,sales,medium +0.62,0.75,5,165,4,0,0,0,sales,medium +0.87,0.48,5,242,3,0,0,0,sales,medium +0.43,0.65,4,124,2,0,0,0,sales,medium +0.57,0.6,2,163,3,0,0,0,sales,medium +0.91,0.77,3,144,3,0,0,0,sales,medium +0.75,0.59,5,149,4,0,0,0,sales,medium +0.76,0.8,5,217,2,0,0,0,sales,medium +0.85,0.49,4,139,2,0,0,0,sales,medium +0.56,0.67,3,270,2,0,0,0,sales,medium +0.86,0.84,3,177,3,0,0,0,sales,medium +0.21,0.43,5,175,2,1,0,0,sales,high +0.94,0.59,3,151,2,0,0,0,sales,low +0.98,0.74,3,185,3,0,0,0,sales,medium +0.42,0.45,3,227,3,0,0,0,sales,medium +0.98,0.89,4,218,2,0,0,0,sales,medium +1,0.93,5,167,3,0,0,0,sales,medium +0.95,0.52,3,183,2,1,0,0,sales,low +0.95,0.5,4,259,3,0,0,0,sales,low +0.68,0.53,3,138,2,1,0,0,sales,low +0.64,0.38,5,122,4,0,0,0,sales,low +0.24,0.62,6,225,6,0,0,0,sales,low +0.37,0.72,3,121,2,0,0,0,sales,low +0.67,0.4,4,274,3,0,0,0,sales,low +0.86,0.89,4,153,4,0,0,0,sales,low +0.43,0.38,3,119,2,0,0,0,sales,low +0.67,0.67,4,141,2,1,0,0,sales,low +0.92,0.6,4,161,3,0,0,0,IT,low +0.43,0.46,2,186,2,0,0,0,product_mng,low +0.52,0.8,3,252,4,0,0,0,product_mng,low +0.16,0.42,3,182,3,1,0,0,product_mng,low +0.49,0.6,4,264,2,1,0,0,product_mng,low +0.37,0.63,4,167,3,0,0,0,IT,low +0.98,0.68,5,171,3,0,0,0,management,high +0.33,0.97,5,130,4,0,0,0,management,high +0.14,0.79,5,271,4,0,0,0,management,high +0.54,0.79,5,249,3,1,0,0,management,high +0.63,0.48,4,180,4,0,0,0,management,high +0.55,0.69,4,220,3,1,0,0,management,high +0.84,0.53,3,210,4,1,0,0,marketing,medium +0.51,0.97,4,258,2,0,0,0,sales,medium +0.15,0.75,3,150,4,0,0,1,accounting,medium +0.97,0.79,5,259,3,0,0,1,support,medium +0.67,0.69,3,231,3,0,0,1,technical,medium +0.48,0.67,4,220,3,0,0,1,management,medium +0.69,0.58,4,149,3,0,0,1,marketing,medium +0.6,0.62,3,238,4,0,0,1,marketing,medium +0.82,0.71,2,209,5,0,0,1,marketing,medium +0.86,0.95,4,149,3,0,0,1,sales,medium +0.69,0.59,4,264,3,0,0,0,sales,medium +0.87,0.87,5,207,2,0,0,0,sales,high +0.17,0.78,3,239,6,0,0,0,sales,low +0.94,0.51,6,239,5,0,0,0,sales,medium +0.5,1,4,258,3,0,0,0,sales,medium +0.16,0.72,3,203,3,0,0,0,sales,medium +0.89,0.99,2,258,3,0,0,0,sales,medium +0.69,0.51,3,257,3,1,0,0,IT,low +0.5,0.51,5,134,3,0,0,0,product_mng,low +0.16,0.46,6,240,2,0,0,0,product_mng,low +0.75,0.99,2,237,5,1,0,0,product_mng,low +0.64,0.66,5,157,2,0,0,0,product_mng,low +0.78,0.43,4,275,3,0,0,0,IT,low +0.81,0.74,2,228,3,0,0,0,management,high +0.55,0.58,3,254,2,0,0,0,management,high +0.53,0.53,4,257,2,0,0,0,management,high +0.69,0.73,3,231,2,1,0,0,management,high +0.8,0.53,3,217,3,0,0,0,management,high +0.77,0.98,3,286,6,0,0,0,management,high +0.84,0.8,4,236,3,0,0,0,marketing,low +0.64,0.55,4,215,2,0,0,0,sales,low +0.78,0.57,4,157,3,0,0,0,accounting,low +0.67,0.7,3,149,3,0,0,0,support,low +0.81,0.77,3,221,2,0,0,0,technical,low +0.91,0.82,4,238,2,0,0,0,management,low +0.75,0.89,6,250,2,0,0,0,marketing,medium +0.78,0.96,3,202,4,1,0,0,marketing,medium +0.54,0.52,4,173,2,0,0,0,marketing,medium +0.77,0.71,5,250,3,1,0,0,sales,medium +0.89,0.63,4,270,3,1,0,0,sales,medium +0.16,0.98,3,232,5,0,0,0,sales,medium +0.77,0.99,4,260,3,0,0,0,sales,medium +0.69,0.48,5,232,4,0,0,0,sales,medium +0.61,0.81,4,134,3,0,0,0,sales,medium +0.59,0.81,4,189,3,0,0,0,sales,medium +0.58,0.8,4,113,3,0,0,0,IT,medium +0.88,0.67,5,264,3,0,0,0,product_mng,medium +0.51,0.63,5,260,2,0,0,0,product_mng,high +0.31,0.7,3,132,3,0,0,0,product_mng,low +0.52,0.52,4,168,3,0,0,0,product_mng,medium +0.57,0.46,3,186,3,1,0,0,IT,medium +0.5,0.77,3,267,2,0,0,0,management,high +0.74,0.63,3,180,3,0,0,0,management,high +0.74,0.77,3,211,3,0,0,0,management,high +0.82,0.51,2,268,2,0,0,0,management,high +0.74,0.71,3,206,3,0,0,0,management,high +0.2,0.59,6,113,3,0,0,0,management,high +0.63,0.48,4,179,3,0,0,0,marketing,low +0.19,0.8,6,157,6,1,0,0,sales,low +0.4,0.62,4,127,5,0,0,0,accounting,low +0.71,0.37,2,179,5,0,0,1,support,low +0.84,0.73,4,197,3,0,0,1,technical,low +0.59,0.84,4,251,4,1,0,1,management,low +0.57,0.85,4,250,3,1,0,1,marketing,low +0.81,0.61,2,176,5,0,0,1,marketing,low +0.8,0.7,4,246,3,0,0,1,marketing,low +0.49,0.66,3,155,3,0,0,1,sales,low +0.55,0.64,3,178,2,0,0,1,sales,low +0.68,0.4,3,213,5,1,0,1,sales,low +0.55,0.67,3,150,2,0,0,1,sales,low +0.59,0.62,3,166,2,0,0,0,sales,low +0.91,0.8,5,169,4,0,0,0,sales,low +0.48,0.9,4,208,3,0,0,0,sales,low +0.84,0.66,3,209,2,0,0,0,sales,low +0.73,0.54,4,167,3,0,0,0,IT,medium +0.28,0.59,6,281,3,0,0,0,product_mng,medium +0.77,0.65,3,156,4,0,0,0,product_mng,medium +0.67,0.65,3,265,3,0,0,0,product_mng,medium +0.5,0.53,3,142,3,1,0,0,product_mng,medium +0.32,0.47,3,143,4,0,0,0,IT,medium +0.57,0.78,3,134,3,0,0,0,RandD,medium +0.51,0.8,5,268,3,0,0,0,RandD,medium +0.61,0.6,3,255,2,0,0,0,RandD,medium +0.83,0.73,4,157,2,0,0,0,RandD,medium +0.87,0.97,5,151,3,0,0,0,RandD,medium +0.7,0.63,3,157,2,0,0,0,RandD,medium +0.78,0.65,3,139,3,0,0,0,marketing,high +0.71,0.53,4,196,2,1,0,0,sales,low +0.68,0.99,3,159,2,0,0,0,accounting,medium +0.75,0.53,4,224,4,1,0,0,support,medium +0.7,0.53,3,215,7,1,0,0,technical,medium +0.59,0.94,5,157,7,1,0,0,management,medium +0.64,0.87,4,157,7,0,0,0,marketing,low +0.61,0.88,5,146,7,1,0,0,marketing,low +0.77,0.49,2,286,7,0,0,0,marketing,low +0.51,0.64,3,203,3,0,0,0,sales,low +0.49,0.49,3,168,7,0,0,0,sales,low +0.77,0.75,3,170,7,0,0,0,sales,low +0.31,0.86,3,266,7,0,0,0,sales,low +0.54,0.76,3,183,3,0,0,0,sales,low +0.56,0.66,4,264,3,0,0,0,sales,low +0.65,0.77,4,205,3,0,0,0,sales,low +0.49,0.36,2,192,3,0,0,0,sales,low +0.82,0.79,3,176,3,0,0,0,technical,low +0.6,0.52,3,183,2,0,0,0,support,low +0.64,0.63,3,156,6,1,0,0,support,low +0.7,0.68,3,150,3,0,0,0,support,low +0.65,0.89,4,204,8,1,0,0,support,low +0.69,0.78,5,131,8,0,0,0,support,low +0.93,0.74,5,248,8,1,0,0,support,low +0.55,0.52,4,168,8,0,0,0,support,low +0.75,0.87,4,146,8,1,0,0,support,low +0.47,0.43,4,246,3,0,0,0,support,low +0.72,0.88,5,216,10,1,0,0,support,medium +0.59,0.92,3,203,10,0,0,0,support,medium +0.98,0.49,3,199,10,0,0,0,technical,medium +0.39,0.52,2,102,8,0,0,0,technical,medium +0.93,0.87,4,139,8,0,0,0,technical,medium +0.71,0.97,5,208,8,1,0,0,management,medium +0.49,0.54,4,215,4,0,0,0,IT,medium +0.63,0.93,4,233,3,0,0,0,IT,medium +0.45,0.64,3,169,10,0,0,0,IT,medium +0.77,0.64,3,190,10,1,0,0,IT,medium +0.77,0.63,4,236,7,0,0,0,IT,medium +0.5,0.92,4,266,7,0,0,0,product_mng,medium +0.45,0.42,4,156,7,0,0,0,product_mng,high +0.81,0.47,4,153,7,0,0,0,product_mng,low +0.83,0.67,3,175,3,0,0,0,product_mng,medium +0.47,0.76,6,174,10,0,0,0,IT,medium +0.25,0.89,4,154,10,0,0,0,management,high +0.89,0.55,5,251,10,0,0,0,management,high +0.97,0.57,3,164,10,0,0,0,management,high +0.6,0.65,2,225,10,0,0,0,management,high +0.67,0.72,2,134,10,0,0,0,management,high +0.89,0.77,3,144,3,0,0,0,management,high +0.6,0.91,5,211,3,0,0,0,sales,low +0.64,0.79,4,139,3,0,0,0,sales,low +0.57,0.66,3,268,3,0,0,0,sales,low +0.56,0.98,5,171,3,1,0,0,sales,low +0.6,0.9,4,260,2,0,0,0,sales,medium +0.17,0.66,6,224,3,0,0,0,sales,medium +0.74,0.49,4,233,3,0,0,0,sales,medium +0.44,0.41,3,125,7,0,0,0,sales,medium +0.51,0.89,4,233,7,0,0,0,sales,medium +0.86,0.57,3,162,7,0,0,0,sales,medium +0.96,0.48,4,198,7,0,0,0,sales,medium +0.87,0.82,4,198,7,0,0,0,sales,medium +0.58,0.79,3,243,3,1,0,0,sales,medium +0.24,0.56,4,281,7,0,0,0,sales,medium +0.42,0.8,4,259,7,1,0,0,sales,medium +0.65,0.94,4,184,7,0,0,0,sales,medium +0.73,0.92,6,189,3,1,0,0,sales,medium +0.63,0.6,4,258,3,0,0,0,sales,medium +0.95,0.48,4,225,3,0,0,0,sales,medium +0.52,0.83,5,145,3,0,0,0,sales,medium +0.96,0.55,3,164,3,0,0,0,sales,medium +0.66,0.51,4,254,2,0,0,0,sales,medium +0.98,0.44,4,154,6,1,0,0,sales,medium +0.56,0.79,5,248,3,0,0,0,sales,medium +0.97,0.54,3,154,8,1,0,0,sales,medium +0.72,0.92,3,242,8,0,0,0,sales,medium +0.74,0.78,4,194,8,0,0,0,sales,medium +0.2,0.6,5,261,8,0,0,0,sales,medium +0.73,0.56,3,245,8,0,0,0,sales,medium +0.76,0.79,3,247,3,0,0,0,sales,low +0.65,0.54,4,147,10,0,0,0,sales,low +0.66,0.5,3,139,10,1,0,0,sales,low +0.96,0.97,6,137,10,0,0,0,sales,low +0.57,0.55,4,177,8,0,0,0,sales,low +0.61,0.82,4,184,8,0,0,0,IT,low +0.57,0.69,3,212,8,0,0,0,product_mng,low +0.59,0.47,3,159,4,0,0,0,product_mng,low +0.92,0.68,4,178,3,0,0,0,product_mng,low +0.79,0.56,3,149,10,0,0,0,product_mng,low +0.95,0.66,4,223,10,0,0,0,IT,low +0.24,0.81,6,263,7,0,0,0,management,high +0.49,0.52,4,161,7,0,0,0,management,high +0.49,0.68,3,192,7,0,0,0,management,high +0.97,0.51,5,215,7,0,0,0,management,high +0.55,0.78,4,261,3,0,0,0,management,high +0.76,0.56,5,222,10,0,0,0,management,high +0.53,0.99,3,223,10,0,0,0,marketing,low +0.51,0.86,3,182,10,0,0,0,sales,low +0.57,0.93,2,204,10,0,0,0,accounting,low +0.58,0.91,3,195,10,0,0,0,support,low +0.6,0.98,4,146,10,0,0,0,technical,low +0.65,0.74,4,233,4,1,0,0,management,low +0.91,0.75,2,147,3,0,0,0,marketing,low +0.65,0.55,3,156,5,0,0,0,marketing,low +0.18,0.49,3,240,2,1,0,0,marketing,low +0.66,0.9,4,177,7,0,0,0,sales,low +0.78,0.8,3,135,7,0,0,0,sales,medium +0.82,0.65,5,178,7,1,0,0,sales,medium +0.54,0.64,3,190,7,0,0,0,sales,medium +0.95,0.84,3,240,7,0,0,0,sales,medium +0.65,0.85,4,172,3,0,0,0,sales,medium +0.83,0.55,3,271,7,0,0,0,sales,medium +0.15,0.6,5,188,7,0,0,0,sales,medium +0.59,0.59,4,197,7,0,0,0,IT,medium +0.99,0.94,5,151,3,0,0,0,product_mng,medium +0.76,0.72,3,263,3,0,0,0,product_mng,medium +0.64,0.67,2,223,3,0,0,0,product_mng,medium +0.95,0.75,4,151,3,0,0,0,product_mng,medium +0.53,0.66,3,191,3,0,0,0,IT,high +0.59,0.5,2,162,2,0,0,0,management,high +0.69,0.86,5,195,6,0,0,0,management,high +0.5,0.49,4,222,3,0,0,0,management,high +0.89,0.96,3,179,8,0,0,0,management,high +0.56,0.39,3,106,8,0,0,0,management,high +0.77,0.68,3,214,8,1,0,0,management,high +0.15,0.75,3,259,8,1,0,0,marketing,high +0.88,0.58,3,145,8,0,0,0,sales,low +0.89,0.86,4,153,3,0,0,0,accounting,low +0.65,0.52,2,117,10,1,0,0,support,low +0.58,0.99,3,207,10,0,0,0,technical,low +0.56,0.85,3,265,10,1,0,0,management,low +0.25,0.72,5,279,8,0,0,0,marketing,low +0.87,0.89,4,225,8,0,0,0,marketing,low +0.62,0.4,3,158,8,1,0,0,marketing,low +0.72,0.75,4,211,4,0,0,0,sales,medium +0.49,0.94,4,175,3,0,0,0,sales,medium +0.57,0.91,4,224,10,0,0,0,sales,medium +0.63,0.65,3,190,10,0,0,0,sales,medium +0.91,0.63,5,240,7,0,0,0,sales,medium +0.7,0.68,5,225,7,0,0,0,sales,medium +0.66,0.95,5,192,7,0,0,0,sales,medium +0.77,0.48,5,262,7,0,0,0,IT,medium +0.68,0.97,3,250,3,1,0,0,product_mng,medium +0.34,0.46,3,155,10,0,0,0,product_mng,medium +0.97,0.64,4,238,10,1,0,0,product_mng,medium +0.57,0.75,4,249,10,0,0,0,product_mng,medium +0.66,0.65,3,272,10,0,0,0,IT,medium +0.68,0.67,4,162,10,0,0,0,management,high +0.49,0.78,4,254,10,0,0,0,management,high +0.72,0.66,4,184,3,0,0,0,management,high +0.77,0.89,4,269,10,0,0,0,management,high +0.77,0.73,3,201,10,0,0,0,management,high +0.59,0.73,4,247,10,0,0,0,management,high +0.41,0.67,6,221,10,0,0,0,marketing,medium +0.94,0.64,5,247,10,0,0,0,sales,medium +0.91,0.61,4,135,10,0,0,0,accounting,medium +0.7,0.84,3,260,4,1,0,0,support,medium +0.51,0.52,3,188,3,0,0,0,technical,high +0.22,0.7,4,159,5,0,0,0,management,low +0.69,0.65,3,153,2,0,0,0,marketing,medium +0.2,0.68,5,167,7,0,0,0,marketing,medium +0.9,0.85,3,158,7,0,0,0,marketing,medium +0.76,0.85,3,180,7,0,0,0,sales,medium +0.88,0.51,3,211,7,0,0,0,sales,medium +0.31,0.63,4,104,7,1,0,0,sales,medium +0.17,0.66,6,174,3,0,0,0,sales,medium +0.91,0.77,3,195,7,0,0,0,sales,medium +0.97,0.38,5,211,7,1,0,0,sales,medium +0.61,0.77,5,232,7,0,0,0,sales,medium +0.74,0.67,5,216,3,0,0,0,sales,low +0.65,0.82,5,265,3,0,0,0,IT,low +0.87,0.73,5,184,3,0,0,0,product_mng,low +0.56,0.71,5,244,3,0,0,0,product_mng,low +0.78,0.69,4,202,3,0,0,0,product_mng,low +0.73,0.57,3,146,2,0,0,0,product_mng,low +0.66,0.78,4,161,6,0,0,0,IT,low +0.15,0.81,5,280,3,1,0,0,RandD,high +0.52,0.69,5,208,8,1,0,0,RandD,low +0.44,0.66,6,134,8,0,0,0,RandD,high +0.7,0.7,3,162,8,0,0,0,RandD,high +0.63,0.52,5,209,8,1,0,0,RandD,low +0.89,0.59,3,265,8,0,0,0,RandD,low +0.96,0.85,4,173,3,0,0,0,marketing,high +0.98,0.99,4,261,10,1,0,0,sales,low +0.62,0.82,3,204,10,0,0,0,accounting,medium +0.62,0.73,3,144,10,1,0,0,support,high +0.69,0.43,5,113,8,0,0,0,technical,medium +0.5,0.91,4,144,8,0,0,0,management,medium +0.71,0.93,5,140,8,0,0,0,marketing,medium +0.5,0.68,3,245,4,0,0,0,marketing,medium +0.93,0.6,3,188,3,0,0,0,marketing,high +0.95,0.77,5,199,10,1,0,0,sales,medium +0.17,0.61,6,154,10,1,0,0,sales,medium +0.92,0.68,4,138,7,0,0,0,sales,medium +0.64,0.48,3,147,7,0,0,0,sales,high +0.27,0.42,6,173,7,0,0,0,sales,medium +0.66,0.87,3,223,7,0,0,0,sales,high +0.59,0.69,3,200,3,0,0,0,sales,low +0.93,0.98,4,189,10,0,0,0,sales,medium +0.58,0.67,5,133,10,0,0,0,technical,medium +0.96,0.6,3,160,10,0,0,0,support,medium +0.69,0.85,3,153,10,0,0,0,support,medium +0.41,0.38,4,142,10,1,0,0,support,low +0.36,0.41,3,167,10,0,0,0,support,low +0.71,0.78,4,227,2,0,0,0,support,low +0.94,0.9,4,144,4,0,0,0,support,low +0.51,0.76,4,140,3,0,0,0,support,low +0.83,0.48,4,220,3,1,0,0,support,low +0.22,0.62,3,180,3,0,0,0,support,low +0.66,0.89,4,173,4,0,0,0,support,low +0.14,0.58,3,179,5,0,0,0,support,low +0.16,0.96,5,137,5,1,0,0,technical,low +0.81,0.78,3,165,3,0,0,0,technical,high +0.73,0.94,3,177,3,0,0,0,technical,low +0.7,0.58,5,168,3,0,0,0,management,low +0.62,0.73,3,245,4,0,0,0,IT,low +0.5,0.83,5,258,2,0,0,0,IT,low +0.7,0.88,3,159,2,0,0,0,IT,high +0.53,0.73,3,163,3,1,0,0,IT,low +0.87,0.9,3,174,2,0,0,0,IT,low +0.59,0.6,3,214,2,1,0,0,product_mng,low +0.94,0.67,4,191,3,1,0,0,product_mng,high +0.2,0.53,5,272,5,0,0,0,product_mng,low +0.42,0.44,3,183,2,0,0,0,product_mng,medium +0.43,0.66,4,135,2,0,0,0,IT,high +0.43,0.76,6,154,2,0,0,0,management,high +0.77,0.86,5,238,3,0,0,0,management,high +0.76,0.98,2,235,3,0,0,0,management,high +0.82,0.9,3,215,4,0,0,0,management,high +0.75,0.66,5,234,2,0,0,0,management,high +0.63,0.98,4,187,3,0,0,0,management,high +0.51,0.75,3,133,3,0,0,0,sales,medium +0.23,0.7,3,123,5,0,0,0,sales,medium +0.77,0.58,4,202,3,0,0,0,sales,medium +0.54,0.63,4,140,3,0,0,0,sales,medium +0.63,0.85,4,182,3,1,0,0,sales,high +0.55,0.45,3,179,2,1,0,0,sales,low +0.31,0.63,3,150,3,1,0,0,sales,medium +0.98,0.74,4,151,3,0,0,0,sales,medium +0.16,0.95,6,117,7,0,0,0,sales,medium +0.54,0.78,3,156,7,0,0,0,sales,medium +0.73,0.48,3,211,7,0,0,0,sales,medium +0.16,0.63,6,286,7,0,0,1,sales,medium +0.57,0.82,5,233,7,0,0,1,sales,medium +0.88,0.88,4,222,3,1,0,1,sales,medium +0.95,0.81,4,258,7,0,0,1,sales,medium +0.93,0.7,5,231,7,0,0,1,sales,high +0.91,0.58,3,220,7,0,0,1,sales,low +0.77,0.82,4,134,3,0,0,1,sales,low +0.24,0.94,6,141,3,1,0,0,sales,low +0.74,0.74,5,160,3,1,0,0,sales,high +0.53,0.59,4,259,3,0,0,0,sales,low +0.89,0.77,5,232,3,0,0,0,sales,low +0.23,0.77,5,272,2,0,0,0,sales,low +0.69,0.66,3,215,6,0,0,0,sales,high +0.52,0.72,4,222,3,0,0,0,sales,low +0.9,0.58,3,244,8,0,0,0,sales,low +0.92,0.63,5,224,8,1,0,0,sales,low +0.72,0.59,5,200,8,1,0,0,sales,low +0.92,0.61,4,143,8,0,0,0,sales,low +0.79,0.86,5,238,8,0,0,0,sales,low +0.48,0.89,4,145,3,0,0,0,sales,low +0.27,0.76,4,108,10,0,0,0,sales,medium +0.67,0.49,3,247,10,0,0,0,sales,medium +0.48,0.7,3,213,10,0,0,0,sales,medium +0.99,0.6,4,209,8,1,0,0,IT,medium +0.49,0.88,4,240,8,0,0,0,product_mng,medium +0.39,0.45,3,100,8,1,0,0,product_mng,medium +0.99,0.92,4,265,4,1,0,0,product_mng,medium +0.78,0.57,3,209,3,0,0,0,product_mng,medium +0.5,0.73,3,154,10,0,0,0,IT,medium +0.61,0.79,5,230,10,0,0,0,management,high +0.88,0.6,4,208,7,0,0,1,management,high +0.44,0.44,2,141,7,1,0,1,management,high +0.73,0.78,3,262,7,1,0,1,management,high +0.58,0.84,4,206,7,0,0,1,management,high +0.74,0.98,3,166,3,1,0,1,management,high +0.32,0.48,4,117,10,0,0,1,marketing,medium +0.88,0.83,4,273,10,0,0,0,sales,medium +0.81,0.9,4,270,10,0,0,0,accounting,medium +0.59,0.92,3,138,10,0,0,0,support,low +0.79,0.65,3,235,10,0,0,0,technical,low +0.92,0.64,4,190,10,1,0,0,management,low +0.76,0.85,3,192,3,0,0,0,marketing,low +0.91,0.65,5,214,3,1,0,0,marketing,low +0.8,0.84,4,242,2,1,0,0,marketing,low +0.73,0.72,4,233,2,0,0,0,sales,low +0.88,0.53,3,218,4,0,0,0,sales,low +0.65,0.4,5,125,4,0,0,0,sales,low +0.84,0.5,4,178,2,0,0,0,sales,low +0.93,0.5,5,272,3,0,0,0,sales,low +0.64,0.6,3,265,4,0,0,0,sales,low +0.66,0.72,4,271,3,0,0,0,sales,low +0.76,0.56,3,179,3,1,0,0,sales,low +0.34,0.72,3,118,4,0,0,0,IT,low +0.48,0.8,4,196,5,0,0,0,product_mng,low +0.79,0.61,4,173,2,0,0,0,product_mng,low +0.82,0.67,4,156,3,0,0,0,product_mng,low +0.51,0.71,2,180,3,0,0,0,product_mng,low +0.84,0.78,4,263,3,0,0,0,IT,low +0.66,0.79,5,134,3,0,0,0,management,high +0.72,0.88,3,189,3,1,0,0,management,high +0.53,0.91,4,167,4,0,0,0,management,high +0.81,0.8,5,132,2,1,0,0,management,high +0.58,0.9,3,209,2,0,0,0,management,high +0.82,0.56,2,227,5,1,0,0,management,high +0.72,0.99,4,239,3,0,0,0,marketing,medium +0.9,0.54,4,172,4,0,0,0,sales,medium +0.98,0.91,3,188,4,0,0,0,accounting,medium +0.56,0.74,3,265,3,0,0,0,support,medium +0.77,0.82,3,153,3,1,0,0,technical,medium +0.61,0.89,4,242,2,0,0,0,management,medium +0.97,0.61,4,262,3,1,0,1,marketing,medium +0.64,0.55,3,246,2,0,0,1,marketing,high +0.99,0.97,4,211,2,0,0,1,marketing,low +0.61,0.42,3,145,4,0,0,1,sales,medium +0.72,0.71,4,256,3,0,0,1,sales,medium +0.67,0.91,2,245,2,1,0,1,sales,medium +0.9,0.56,3,151,3,0,0,0,sales,medium +0.9,0.73,4,245,2,0,0,0,sales,low +0.63,0.61,4,171,3,0,0,0,sales,low +0.64,0.88,3,252,2,0,0,0,sales,low +0.44,0.65,3,175,2,0,0,0,IT,low +0.64,0.94,4,210,3,0,0,0,product_mng,low +0.65,0.95,2,180,2,0,0,0,product_mng,low +0.69,0.9,5,103,5,0,0,0,product_mng,low +0.93,0.51,4,110,3,0,0,0,product_mng,low +0.73,0.9,5,184,3,0,0,0,IT,low +0.83,0.6,4,161,2,0,0,0,management,high +0.82,0.49,5,210,3,0,0,0,management,high +0.39,0.91,2,212,2,0,0,0,management,high +0.53,0.47,6,106,6,0,0,0,management,high +0.88,0.81,4,179,3,0,0,0,management,high +0.8,0.6,5,217,3,0,0,0,management,high +0.68,0.79,4,184,3,0,0,0,marketing,low +0.66,0.6,3,210,2,0,0,0,sales,low +0.61,0.61,4,246,2,0,0,0,accounting,low +0.74,0.55,4,262,3,0,0,0,support,low +0.61,0.83,4,245,3,1,0,1,technical,low +0.57,0.99,3,222,3,1,0,1,management,low +0.68,0.54,4,146,4,0,0,1,marketing,medium +0.75,0.79,4,263,3,0,0,1,marketing,medium +0.29,0.57,5,134,2,0,0,1,marketing,medium +0.81,0.81,5,250,4,0,0,1,sales,medium +0.53,0.68,4,173,3,0,0,0,sales,medium +0.42,0.96,6,173,3,0,0,0,sales,medium +0.64,0.67,4,252,3,1,0,0,sales,medium +0.63,0.5,2,230,4,0,0,0,sales,medium +0.81,0.81,4,212,2,1,0,0,sales,medium +0.71,0.66,5,187,2,0,0,0,sales,medium +0.7,0.83,5,241,2,0,0,0,sales,medium +0.53,1,3,164,4,0,0,0,IT,medium +0.16,0.93,6,218,6,1,0,0,product_mng,high +0.17,0.55,4,194,3,0,0,0,product_mng,low +0.7,0.95,3,158,2,0,0,0,product_mng,medium +0.43,0.88,2,149,4,0,0,0,product_mng,medium +0.49,0.62,4,161,2,0,0,0,IT,medium +0.5,0.9,5,226,2,0,0,0,management,high +0.57,0.59,2,111,2,0,0,0,management,high +0.68,0.75,4,258,3,0,0,0,management,high +0.62,0.61,3,266,2,0,0,0,management,high +0.69,0.75,3,253,3,0,0,0,management,high +0.63,0.7,5,160,3,0,0,0,management,high +0.76,0.62,5,230,3,1,0,0,marketing,low +0.62,0.76,5,198,3,0,0,0,sales,low +0.82,0.69,3,250,3,0,0,0,accounting,low +0.2,0.7,4,225,5,0,0,0,support,low +0.16,0.7,3,178,3,1,0,0,technical,low +0.2,0.78,4,196,3,0,0,0,management,low +0.53,0.51,4,240,2,0,0,0,marketing,low +0.71,0.63,3,204,3,0,0,0,marketing,low +0.7,0.93,3,250,3,0,0,0,marketing,low +0.92,0.94,2,224,2,0,0,0,sales,low +0.81,0.92,4,268,3,0,0,0,sales,low +0.79,0.62,5,167,3,0,0,0,sales,low +0.53,0.64,3,168,3,0,0,0,sales,low +0.51,0.56,4,168,2,0,0,0,sales,low +0.78,0.9,5,158,3,0,0,0,sales,low +0.5,0.91,3,240,3,0,0,0,sales,low +0.92,1,4,261,4,0,0,0,sales,medium +0.59,0.54,4,176,2,0,0,0,technical,medium +0.77,0.55,3,217,3,0,0,0,support,medium +0.74,0.87,5,224,2,0,0,0,support,medium +0.67,0.97,4,196,3,0,0,0,support,medium +0.56,0.59,3,223,3,0,0,0,support,medium +0.84,0.44,5,131,5,1,0,0,support,medium +0.53,0.77,2,167,2,0,0,0,support,medium +0.86,0.71,5,273,3,0,0,0,support,medium +0.77,0.68,3,98,3,0,0,0,support,medium +0.97,0.94,4,253,3,0,0,0,support,medium +0.69,0.87,5,174,3,0,0,0,support,medium +0.73,0.9,3,274,2,0,0,0,support,high +0.42,0.47,6,174,5,0,0,0,technical,low +0.4,0.47,5,173,5,0,0,0,technical,medium +0.33,0.41,2,198,4,0,0,0,technical,medium +0.68,0.66,3,238,2,0,0,0,management,medium +0.78,0.8,3,256,2,0,0,0,IT,medium +0.92,0.6,3,179,2,0,0,0,IT,low +0.66,0.66,4,273,4,1,0,0,IT,low +0.6,0.45,3,104,4,0,0,0,IT,low +0.86,0.83,4,208,3,1,0,0,IT,low +0.61,0.49,3,275,2,0,0,0,product_mng,low +0.71,0.68,3,231,2,1,0,0,product_mng,low +0.86,0.62,4,186,3,0,0,0,product_mng,low +0.96,0.59,3,241,3,0,0,0,product_mng,low +0.7,0.54,3,194,2,1,0,0,IT,low +0.38,0.49,4,196,3,0,0,1,management,high +0.39,0.75,6,185,3,0,0,1,management,high +0.49,0.4,2,148,2,1,0,1,management,high +0.78,0.62,4,150,3,0,0,1,management,high +0.74,0.79,5,121,5,0,0,1,management,high +0.82,0.76,4,266,3,0,0,1,management,high +0.6,0.42,2,109,6,0,0,0,sales,low +0.72,0.99,3,143,4,0,0,0,sales,low +0.73,0.97,3,174,3,0,0,0,sales,low +0.89,0.55,4,159,2,0,0,0,sales,medium +0.74,0.94,4,157,2,0,0,0,sales,medium +0.83,0.57,2,222,2,0,0,0,sales,medium +0.24,0.88,5,199,5,1,0,0,sales,medium +0.93,0.89,3,255,7,1,0,0,sales,medium +0.96,0.62,4,253,7,0,0,0,sales,medium +0.16,0.68,5,149,7,1,0,0,sales,medium +0.21,0.85,6,285,7,0,0,0,sales,medium +0.69,0.54,3,164,7,0,0,0,sales,medium +0.66,0.96,3,243,3,1,0,0,sales,medium +0.67,0.39,2,207,7,0,0,0,sales,medium +0.85,0.58,4,186,7,0,0,0,sales,medium +0.37,0.92,4,211,7,0,0,0,sales,high +0.64,0.64,2,190,3,0,0,0,sales,low +0.91,0.82,2,241,3,0,0,0,sales,medium +0.96,0.68,3,206,3,0,0,0,sales,medium +0.74,0.7,4,273,3,0,0,0,sales,medium +0.94,0.99,2,157,3,0,0,0,sales,medium +0.37,0.72,3,183,2,0,0,0,sales,low +0.92,0.85,3,151,6,1,0,0,sales,low +0.86,0.72,3,217,3,0,0,0,sales,low +0.66,0.49,5,235,8,1,0,0,sales,low +0.19,0.61,4,127,8,0,0,0,sales,low +0.65,0.61,5,167,8,0,0,0,sales,low +0.92,0.44,3,260,8,0,0,0,sales,low +0.83,0.8,3,240,8,0,0,0,sales,low +0.94,0.82,4,187,3,0,0,0,sales,low +0.42,0.69,3,126,2,0,0,0,sales,low +0.78,0.53,6,168,3,0,0,0,sales,low +0.58,0.76,4,197,5,0,0,0,sales,low +0.5,0.64,2,170,8,0,0,0,sales,low +0.82,0.76,3,219,8,1,0,0,IT,low +0.97,0.92,6,137,8,1,0,0,product_mng,low +0.8,0.93,3,225,4,0,0,0,product_mng,low +0.82,0.84,3,194,3,0,0,0,product_mng,low +0.95,0.99,5,251,4,0,0,0,product_mng,low +0.88,0.51,5,195,4,0,0,0,IT,low +0.5,0.86,3,180,7,0,0,1,management,high +0.53,0.8,2,225,7,1,0,1,management,high +0.82,0.74,3,229,7,0,0,1,management,high +0.15,0.74,6,144,7,0,0,1,management,high +0.92,0.7,3,129,3,0,0,1,management,high +0.53,0.74,3,172,10,0,0,1,management,high +0.58,1,4,220,10,0,0,0,marketing,medium +0.88,0.74,3,273,10,0,0,0,sales,medium +0.85,0.72,3,245,10,0,0,0,accounting,medium +0.99,0.68,5,264,10,1,0,0,support,medium +0.94,0.73,3,268,10,0,0,0,technical,medium +0.63,0.94,3,172,3,0,0,0,management,medium +0.85,0.9,3,245,3,0,0,0,marketing,medium +0.95,0.66,5,192,3,0,0,0,marketing,medium +0.71,0.66,3,268,4,0,0,0,marketing,high +0.49,0.88,4,244,3,0,0,0,sales,low +0.71,0.69,4,222,4,0,0,0,sales,medium +0.52,0.62,5,239,2,0,0,0,sales,medium +0.48,0.72,3,143,4,0,0,0,sales,medium +0.82,0.79,3,160,3,0,0,0,sales,medium +0.83,0.76,2,255,7,0,0,0,sales,low +0.85,0.87,4,152,7,0,0,0,sales,low +0.57,0.64,4,226,7,0,0,0,sales,low +0.16,0.63,5,266,7,0,0,0,IT,low +0.85,0.64,5,256,7,0,0,0,product_mng,low +0.82,0.67,3,198,3,1,0,0,product_mng,low +0.9,0.89,4,254,7,0,0,0,product_mng,low +0.92,0.64,2,104,7,0,0,0,product_mng,low +0.9,0.48,4,136,7,0,0,0,IT,low +0.82,0.8,5,205,3,0,0,0,IT,low +0.84,0.81,4,236,3,1,0,0,IT,low +0.92,0.65,3,176,3,0,0,0,IT,low +0.82,0.82,3,148,3,0,0,0,IT,low +0.8,0.8,4,146,3,1,0,0,IT,low +0.6,0.85,3,242,2,0,0,0,IT,low +0.14,0.38,5,115,6,1,0,0,marketing,high +0.85,0.89,4,150,3,0,0,0,accounting,high +0.55,0.81,3,239,8,0,0,0,accounting,high +0.49,0.71,4,178,8,0,0,0,IT,medium +0.82,0.58,5,263,8,0,0,0,IT,medium +0.59,0.77,3,272,8,0,0,0,management,high +0.9,0.82,3,133,8,0,0,0,marketing,medium +0.62,0.72,3,149,3,1,0,0,marketing,medium +0.61,0.68,3,193,2,0,0,0,marketing,medium +0.52,0.55,5,174,3,1,0,0,sales,medium +0.79,0.87,4,223,5,0,0,0,sales,medium +0.49,0.89,4,201,8,0,0,0,sales,medium +0.73,0.67,2,139,8,0,0,0,sales,medium +0.67,0.49,5,241,8,0,0,0,sales,medium +0.52,0.61,4,187,4,1,0,0,sales,medium +0.72,0.64,4,192,3,0,0,0,sales,medium +0.48,0.5,5,142,4,0,0,0,IT,medium +0.19,0.79,4,229,4,0,0,0,product_mng,medium +0.49,0.49,3,104,7,0,0,0,product_mng,high +0.9,0.76,3,255,7,0,0,0,product_mng,low +0.49,0.49,4,212,7,0,0,0,product_mng,medium +0.6,0.53,2,235,7,0,0,0,IT,medium +0.62,0.85,3,237,3,1,0,0,IT,medium +0.64,0.5,4,253,10,0,0,1,management,high +0.22,0.94,3,193,10,0,0,1,management,high +0.9,0.55,3,259,10,1,0,1,management,high +0.74,0.95,5,266,10,0,0,1,management,high +0.85,0.54,3,185,10,0,0,1,management,high +0.33,0.65,3,172,10,0,0,1,marketing,high +0.5,0.73,4,180,3,0,0,0,IT,low +0.38,0.53,2,157,3,0,1,0,sales,low +0.8,0.86,5,262,6,0,1,0,sales,medium +0.11,0.88,7,272,4,0,1,0,sales,medium +0.72,0.87,5,223,5,0,1,0,sales,low +0.37,0.52,2,159,3,0,1,0,sales,low +0.41,0.5,2,153,3,0,1,0,sales,low +0.1,0.77,6,247,4,0,1,0,sales,low +0.92,0.85,5,259,5,0,1,0,sales,low +0.89,1,5,224,5,0,1,0,sales,low +0.42,0.53,2,142,3,0,1,0,sales,low +0.45,0.54,2,135,3,0,1,0,sales,low +0.11,0.81,6,305,4,0,1,0,sales,low +0.84,0.92,4,234,5,0,1,0,sales,low +0.41,0.55,2,148,3,0,1,0,sales,low +0.36,0.56,2,137,3,0,1,0,sales,low +0.38,0.54,2,143,3,0,1,0,sales,low +0.45,0.47,2,160,3,0,1,0,sales,low +0.78,0.99,4,255,6,0,1,0,sales,low +0.45,0.51,2,160,3,1,1,1,sales,low +0.76,0.89,5,262,5,0,1,0,sales,low +0.11,0.83,6,282,4,0,1,0,sales,low +0.38,0.55,2,147,3,0,1,0,sales,low +0.09,0.95,6,304,4,0,1,0,sales,low +0.46,0.57,2,139,3,0,1,0,sales,low +0.4,0.53,2,158,3,0,1,0,sales,low +0.89,0.92,5,242,5,0,1,0,sales,low +0.82,0.87,4,239,5,0,1,0,sales,low +0.4,0.49,2,135,3,0,1,0,sales,low +0.41,0.46,2,128,3,0,1,0,accounting,low +0.38,0.5,2,132,3,0,1,0,accounting,low +0.09,0.62,6,294,4,0,1,0,accounting,low +0.45,0.57,2,134,3,0,1,0,hr,low +0.4,0.51,2,145,3,0,1,0,hr,low +0.45,0.55,2,140,3,0,1,0,hr,low +0.84,0.87,4,246,6,0,1,0,hr,low +0.1,0.94,6,255,4,0,1,0,technical,low +0.38,0.46,2,137,3,0,1,0,technical,low +0.45,0.5,2,126,3,0,1,0,technical,low +0.11,0.89,6,306,4,0,1,0,technical,low +0.41,0.54,2,152,3,0,1,0,technical,low +0.87,0.88,5,269,5,0,1,0,technical,low +0.45,0.48,2,158,3,0,1,0,technical,low +0.4,0.46,2,127,3,0,1,0,technical,low +0.1,0.8,7,281,4,0,1,0,technical,low +0.09,0.89,6,276,4,0,1,0,technical,low +0.84,0.74,3,182,4,0,1,0,technical,low +0.4,0.55,2,147,3,0,1,0,support,low +0.57,0.7,3,273,6,0,1,0,support,low +0.4,0.54,2,148,3,0,1,0,support,low +0.43,0.47,2,147,3,0,1,0,support,low +0.13,0.78,6,152,2,0,1,0,support,low +0.44,0.55,2,135,3,0,1,0,support,low +0.38,0.55,2,134,3,0,1,0,support,low +0.39,0.54,2,132,3,0,1,0,support,low +0.1,0.92,7,307,4,0,1,0,support,low +0.37,0.46,2,140,3,0,1,0,support,low +0.11,0.94,7,255,4,0,1,0,support,low +0.1,0.81,6,309,4,0,1,0,technical,low +0.38,0.54,2,128,3,0,1,0,technical,low +0.85,1,4,225,5,0,1,0,technical,low +0.85,0.91,5,226,5,0,1,0,management,medium +0.11,0.93,7,308,4,0,1,0,IT,medium +0.1,0.95,6,244,5,0,1,0,IT,medium +0.36,0.56,2,132,3,0,1,0,IT,medium +0.11,0.94,6,286,4,0,1,0,IT,medium +0.81,0.7,6,161,4,0,1,0,IT,medium +0.43,0.54,2,153,3,0,1,0,product_mng,medium +0.9,0.98,4,264,6,0,1,0,product_mng,medium +0.76,0.86,5,223,5,1,1,0,product_mng,medium +0.43,0.5,2,135,3,0,1,0,product_mng,medium +0.74,0.99,2,277,3,0,1,0,IT,medium +0.09,0.77,5,275,4,0,1,0,product_mng,medium +0.45,0.49,2,149,3,0,1,0,product_mng,high +0.09,0.87,7,295,4,0,1,0,product_mng,low +0.11,0.97,6,277,4,0,1,0,product_mng,medium +0.11,0.79,7,306,4,0,1,0,product_mng,medium +0.1,0.83,6,295,4,0,1,0,product_mng,medium +0.4,0.54,2,137,3,0,1,0,marketing,medium +0.43,0.56,2,157,3,0,1,0,sales,low +0.39,0.56,2,142,3,0,1,0,accounting,low +0.45,0.54,2,140,3,0,1,0,support,low +0.38,0.49,2,151,3,0,1,0,technical,low +0.79,0.59,4,139,3,0,1,1,management,low +0.84,0.85,4,249,6,0,1,0,marketing,low +0.11,0.77,6,291,4,0,1,0,marketing,low +0.11,0.87,6,305,4,0,1,0,marketing,low +0.17,0.84,5,232,3,0,1,0,sales,low +0.44,0.45,2,132,3,0,1,0,sales,low +0.37,0.57,2,130,3,0,1,0,sales,low +0.1,0.79,6,291,4,0,1,0,sales,low +0.4,0.5,2,130,3,0,1,0,sales,low +0.89,1,5,246,5,0,1,0,sales,low +0.42,0.48,2,143,3,0,1,0,sales,low +0.46,0.55,2,129,3,0,1,0,sales,low +0.09,0.83,6,255,4,0,1,0,sales,low +0.37,0.51,2,155,3,0,1,0,sales,low +0.1,0.77,6,265,4,0,1,0,sales,low +0.1,0.84,6,279,4,0,1,0,sales,low +0.11,0.97,6,284,4,0,1,0,sales,low +0.9,1,5,221,6,0,1,0,sales,medium +0.38,0.52,2,154,3,0,1,0,sales,medium +0.36,0.52,2,147,3,0,1,0,sales,medium +0.42,0.46,2,150,3,0,1,0,sales,medium +0.09,0.94,7,267,4,0,1,0,sales,medium +0.43,0.52,2,158,3,0,1,0,sales,medium +0.24,0.46,7,224,5,0,1,0,accounting,medium +0.91,1,4,257,5,0,1,0,accounting,medium +0.44,0.5,2,148,3,0,1,0,accounting,medium +0.71,0.87,3,177,4,0,1,0,hr,medium +0.4,0.49,2,155,3,0,1,0,hr,medium +0.43,0.47,2,144,3,0,1,0,hr,medium +0.09,0.85,6,289,4,0,1,0,hr,high +0.43,0.52,2,160,3,0,1,0,technical,low +0.9,0.96,4,258,5,0,1,0,technical,medium +0.84,1,5,234,5,0,1,0,technical,medium +0.37,0.48,2,137,3,0,1,0,technical,medium +0.86,0.68,5,263,2,0,1,0,technical,medium +0.11,0.84,6,251,4,0,1,0,technical,low +0.37,0.57,2,133,3,0,1,0,technical,low +0.4,0.46,2,132,3,0,1,0,technical,low +0.14,0.62,4,158,4,1,1,0,technical,low +0.4,0.46,2,135,3,0,1,0,technical,low +0.75,1,4,216,6,0,1,0,technical,low +0.11,0.84,6,300,5,1,1,0,support,low +0.46,0.49,2,138,3,0,1,0,support,low +0.11,0.92,6,260,4,0,1,0,support,low +0.38,0.49,2,132,3,0,1,0,support,low +0.7,0.89,3,183,5,0,1,0,support,low +0.09,0.82,6,250,4,0,1,0,support,low +0.37,0.45,2,151,3,0,1,0,support,low +0.1,0.83,6,292,4,0,1,0,support,low +0.38,0.57,2,140,3,0,1,0,support,low +0.9,1,5,221,5,0,1,0,support,low +0.44,0.51,2,138,3,0,1,0,support,low +0.36,0.5,2,132,3,0,1,0,technical,low +0.31,0.84,7,133,5,0,1,0,technical,low +0.1,0.84,6,283,4,1,1,0,technical,low +0.42,0.48,2,129,3,0,1,0,management,low +0.74,1,4,249,5,0,1,0,IT,low +0.73,0.87,5,257,5,0,1,0,IT,low +0.09,0.96,6,245,4,0,1,0,IT,low +0.45,0.53,2,155,3,0,1,0,IT,low +0.11,0.8,6,256,4,0,1,0,IT,low +0.37,0.47,2,152,3,0,1,0,product_mng,low +0.84,0.99,4,267,5,0,1,0,product_mng,low +0.41,0.46,2,151,3,0,1,0,product_mng,low +0.76,0.92,4,239,5,0,1,0,product_mng,low +0.11,0.87,6,306,4,0,1,0,IT,low +0.84,0.88,4,263,5,1,1,0,marketing,low +0.39,0.5,2,147,3,0,1,0,marketing,low +0.11,0.91,6,278,4,0,1,0,marketing,low +0.45,0.56,2,154,3,0,1,0,marketing,low +0.37,0.52,2,143,3,0,1,0,marketing,low +0.4,0.52,2,155,3,0,1,0,marketing,low +0.39,0.48,2,160,3,0,1,0,sales,low +0.11,0.8,6,304,4,0,1,0,accounting,low +0.83,1,5,240,5,0,1,0,support,low +0.11,0.92,6,305,4,0,1,0,technical,low +0.39,0.5,2,136,3,0,1,0,management,low +0.45,0.45,2,132,3,0,1,0,marketing,low +0.1,0.95,7,301,4,0,1,0,marketing,low +0.9,0.98,5,243,6,0,1,0,marketing,low +0.45,0.51,2,147,3,0,1,0,sales,low +0.79,0.89,5,239,5,0,1,0,sales,low +0.9,0.99,5,260,5,0,1,0,sales,low +0.11,0.84,7,296,4,0,1,0,sales,low +0.43,0.55,2,129,3,0,1,0,sales,low +0.31,0.54,5,132,5,0,1,0,sales,low +0.32,0.5,2,135,5,0,1,0,sales,low +0.45,0.57,2,158,3,0,1,0,sales,low +0.81,0.99,4,259,5,0,1,0,sales,low +0.41,0.46,2,160,3,0,1,1,sales,low +0.11,0.78,7,278,4,0,1,0,sales,low +0.1,0.88,6,284,4,0,1,0,sales,low +0.7,0.53,2,274,4,0,1,0,sales,low +0.54,0.74,4,164,2,0,1,0,sales,low +0.41,0.48,2,148,3,0,1,0,sales,low +0.38,0.5,2,140,3,0,1,0,sales,medium +0.37,0.51,2,127,3,0,1,0,sales,medium +0.11,0.85,6,308,5,0,1,0,sales,medium +0.4,0.47,2,146,3,0,1,0,sales,medium +0.1,0.84,6,261,4,0,1,0,accounting,medium +0.89,0.99,5,257,5,0,1,0,accounting,medium +0.11,0.8,6,285,4,0,1,0,accounting,medium +0.36,0.55,2,141,3,0,1,0,hr,medium +0.4,0.46,2,127,3,0,1,0,hr,medium +0.09,0.85,6,297,4,0,1,0,hr,medium +0.4,0.46,2,143,3,0,1,0,hr,medium +0.37,0.55,2,152,3,0,1,0,technical,medium +0.44,0.51,2,156,3,0,1,0,technical,high +0.09,0.8,7,283,5,0,1,0,technical,low +0.92,0.87,4,226,6,1,1,0,technical,medium +0.74,0.91,4,232,5,0,1,0,technical,medium +0.09,0.82,6,249,4,0,1,0,technical,medium +0.89,0.95,4,275,5,0,1,0,technical,medium +0.09,0.8,6,304,4,0,1,0,technical,low +0.27,0.54,7,278,3,0,1,0,technical,low +0.1,0.91,6,287,4,0,1,0,technical,low +0.1,0.89,7,285,4,0,1,0,technical,low +0.77,0.94,5,226,6,0,1,0,support,low +0.9,0.82,5,259,5,0,1,0,support,low +0.39,0.5,2,135,3,0,1,0,support,low +0.76,1,5,219,5,0,1,0,support,low +0.1,0.93,6,256,4,0,1,0,support,low +0.87,0.9,5,254,6,0,1,0,support,low +0.38,0.5,2,153,3,0,1,0,support,low +0.77,0.99,5,228,5,0,1,0,support,low +0.78,0.87,4,228,5,0,1,0,support,low +0.44,0.5,2,128,3,0,1,0,support,low +0.38,0.52,2,153,3,0,1,0,support,low +0.43,0.46,2,156,3,0,1,0,technical,low +0.39,0.5,4,294,3,0,1,0,technical,low +0.88,1,5,219,5,0,1,0,technical,low +0.45,0.46,2,153,3,0,1,0,management,low +0.4,0.53,2,151,3,0,1,0,IT,low +0.36,0.51,2,155,3,0,1,0,IT,low +0.36,0.48,2,158,3,0,1,0,IT,low +0.9,0.98,5,245,5,0,1,0,IT,low +0.43,0.53,2,131,3,0,1,0,IT,low +0.89,0.87,5,225,5,0,1,0,product_mng,low +0.1,0.84,6,286,4,0,1,0,product_mng,low +0.37,0.5,2,135,3,0,1,0,product_mng,low +0.37,0.51,2,153,3,0,1,0,product_mng,low +0.87,0.9,5,252,5,0,1,0,IT,low +0.4,0.56,2,149,3,0,1,0,accounting,low +0.9,0.97,4,258,5,0,1,0,accounting,low +0.37,0.46,2,158,3,0,1,0,hr,low +0.44,0.54,2,149,3,0,1,0,hr,low +0.85,0.95,5,236,5,0,1,0,hr,low +0.78,0.98,5,239,6,0,1,0,marketing,low +0.42,0.47,2,159,3,0,1,0,marketing,low +0.92,0.99,5,255,6,0,1,0,sales,low +0.11,0.83,6,244,4,0,1,0,accounting,low +0.42,0.56,2,134,3,0,1,0,support,low +0.48,0.57,4,270,4,0,1,0,technical,low +0.83,0.85,4,255,5,0,1,0,management,low +0.4,0.53,2,151,3,0,1,0,marketing,low +0.43,0.45,2,135,3,0,1,0,marketing,low +0.43,0.53,2,146,3,0,1,0,marketing,low +0.1,0.97,7,254,4,0,1,0,sales,low +0.1,0.87,7,289,4,0,1,0,sales,low +0.37,0.46,2,156,3,0,1,0,sales,low +0.38,0.53,2,156,3,0,1,0,sales,low +0.4,0.5,2,128,3,0,1,0,sales,low +0.89,0.86,5,275,5,0,1,0,sales,low +0.45,0.46,2,155,3,0,1,0,sales,low +0.37,0.48,2,159,3,0,1,0,sales,low +0.46,0.49,2,148,3,0,1,0,sales,low +0.87,0.91,4,228,5,0,1,0,sales,low +0.11,0.84,6,298,4,0,1,0,sales,low +0.79,0.87,5,261,5,0,1,0,sales,low +0.79,0.92,5,254,6,0,1,0,sales,low +0.19,0.59,7,192,3,0,1,0,sales,low +0.87,0.98,4,248,5,0,1,0,sales,low +0.6,0.92,2,258,5,0,1,0,sales,low +0.44,0.45,2,156,3,0,1,0,sales,medium +0.11,0.81,6,266,4,1,1,0,sales,medium +0.42,0.54,2,156,3,0,1,0,sales,medium +0.88,0.88,5,232,5,1,1,0,accounting,medium +0.11,0.84,6,287,4,0,1,0,accounting,medium +0.46,0.46,2,154,3,0,1,0,accounting,medium +0.82,0.97,5,263,5,0,1,0,hr,medium +0.44,0.56,2,131,3,0,1,0,hr,medium +0.11,0.78,6,260,4,0,1,0,hr,medium +0.42,0.5,2,139,3,0,1,0,hr,medium +0.84,0.93,4,251,5,0,1,0,technical,medium +0.11,0.95,6,286,4,0,1,0,technical,medium +0.45,0.53,2,129,3,0,1,0,technical,high +0.38,0.56,2,156,3,0,1,0,technical,low +0.38,0.86,6,139,6,0,1,0,technical,medium +0.44,0.51,2,127,3,0,1,0,technical,medium +0.11,0.84,6,251,4,0,1,0,technical,medium +0.81,0.93,5,270,5,0,1,0,technical,medium +0.09,0.96,6,296,4,0,1,0,technical,low +0.11,0.9,6,254,4,0,1,0,technical,low +0.81,0.95,5,238,6,0,1,0,technical,low +0.1,0.97,6,267,4,1,1,0,support,low +0.74,0.89,5,229,6,0,1,0,support,low +0.09,0.78,6,254,4,0,1,0,support,low +0.82,0.81,4,233,4,1,1,0,support,low +0.1,0.98,6,268,4,0,1,0,support,low +0.27,0.56,3,301,3,0,1,0,support,low +0.83,0.92,5,267,6,0,1,0,support,low +0.1,0.93,6,289,4,1,1,0,support,low +0.38,0.47,2,144,3,0,1,0,support,low +0.4,0.56,2,148,3,0,1,0,support,low +0.11,0.83,6,306,4,0,1,0,support,low +0.11,0.79,6,292,4,0,1,1,technical,low +0.82,0.91,5,232,5,0,1,0,technical,low +0.36,0.48,2,137,3,0,1,0,technical,low +0.4,0.46,2,128,3,0,1,0,management,low +0.87,0.84,5,231,5,0,1,0,IT,low +0.41,0.49,2,146,3,0,1,0,IT,low +0.11,0.91,6,308,4,1,1,0,IT,low +0.1,0.93,6,253,4,0,1,0,IT,medium +0.38,0.51,2,146,3,0,1,0,IT,medium +0.39,0.55,2,156,3,0,1,0,product_mng,medium +0.4,0.52,2,147,3,0,1,0,product_mng,medium +0.45,0.48,2,136,3,0,1,0,product_mng,medium +0.74,0.84,5,249,5,0,1,0,product_mng,medium +0.45,0.55,2,151,3,0,1,0,IT,medium +0.12,1,3,278,4,0,1,0,RandD,medium +0.1,0.77,7,250,5,0,1,0,RandD,medium +0.37,0.55,2,127,3,0,1,0,RandD,medium +0.89,0.87,5,255,5,0,1,0,RandD,medium +0.45,0.47,2,135,3,0,1,0,RandD,medium +0.37,0.46,2,149,3,0,1,0,marketing,high +0.11,0.81,5,287,4,0,1,0,sales,low +0.41,0.48,2,145,3,0,1,0,accounting,medium +0.1,0.94,6,285,4,0,1,0,support,medium +0.1,0.93,7,305,4,0,1,0,technical,medium +0.11,0.95,7,300,4,0,1,0,management,medium +0.4,0.54,2,139,3,0,1,0,marketing,low +0.41,0.49,2,130,3,0,1,0,marketing,low +0.1,0.81,6,268,4,0,1,0,marketing,low +0.73,0.86,4,245,6,0,1,0,sales,low +0.43,0.47,2,135,3,0,1,0,sales,low +0.37,0.46,2,153,3,0,1,0,sales,low +0.11,0.94,6,276,4,0,1,0,sales,low +0.4,0.46,2,130,3,0,1,0,sales,low +0.41,0.54,2,153,3,1,1,0,sales,low +0.82,0.84,5,244,5,0,1,0,sales,low +0.61,0.47,2,253,3,0,1,0,sales,low +0.11,0.91,7,287,4,0,1,0,sales,low +0.37,0.45,2,131,3,0,1,0,sales,low +0.41,0.52,2,135,3,0,1,0,sales,low +0.37,0.52,2,157,3,0,1,0,sales,low +0.88,0.99,5,262,6,0,1,0,sales,low +0.1,0.85,6,266,4,0,1,0,sales,low +0.44,0.48,2,148,3,0,1,0,sales,low +0.38,0.57,2,140,3,0,1,0,sales,low +0.11,0.85,7,302,4,0,1,0,sales,low +0.09,0.98,6,271,4,0,1,0,sales,low +0.45,0.52,2,145,3,0,1,0,sales,medium +0.1,0.81,6,290,4,0,1,0,accounting,medium +0.45,0.47,2,151,3,0,1,0,accounting,medium +0.77,0.87,5,266,5,0,1,0,accounting,medium +0.44,0.51,2,140,3,0,1,0,hr,medium +0.39,0.5,2,142,3,0,1,0,hr,medium +0.1,0.91,6,246,4,0,1,0,hr,medium +0.09,0.89,7,308,5,0,1,0,hr,medium +0.37,0.47,2,141,3,0,1,0,technical,medium +0.9,1,5,232,5,0,1,0,technical,medium +0.41,0.56,2,143,3,0,1,0,technical,medium +0.37,0.52,2,155,3,0,1,0,technical,medium +0.1,0.86,6,278,4,0,1,0,technical,high +0.81,1,4,253,5,0,1,0,technical,low +0.11,0.8,6,282,4,0,1,0,technical,medium +0.11,0.84,7,264,4,0,1,0,technical,medium +0.4,0.46,2,149,3,0,1,0,technical,medium +0.09,0.8,6,304,5,0,1,0,technical,medium +0.48,0.93,3,219,6,0,1,0,technical,low +0.91,0.91,4,262,6,0,1,0,support,low +0.43,0.57,2,135,3,0,1,0,support,low +0.33,0.88,6,219,5,0,1,0,support,low +0.41,0.57,2,136,3,0,1,0,support,low +0.41,0.55,2,154,3,0,1,0,support,low +0.37,0.54,2,149,3,0,1,0,support,low +0.31,0.62,6,135,5,0,1,0,support,low +0.09,0.91,6,275,4,0,1,0,support,low +0.1,0.87,6,290,4,0,1,0,support,low +0.76,0.9,4,263,5,0,1,0,support,low +0.41,0.54,2,145,3,0,1,0,support,low +0.72,0.96,5,267,5,0,1,0,technical,low +0.4,0.5,2,141,3,1,1,0,technical,low +0.91,0.87,4,235,5,0,1,0,technical,low +0.1,0.83,6,258,4,0,1,0,management,low +0.4,0.56,2,131,3,0,1,0,IT,low +0.82,0.86,5,243,5,0,1,0,IT,low +0.1,0.82,6,266,4,0,1,0,IT,low +0.37,0.45,2,142,3,0,1,0,IT,low +0.36,0.51,2,135,3,0,1,0,IT,low +0.39,0.48,2,141,3,0,1,0,product_mng,medium +0.36,0.57,2,142,3,0,1,0,product_mng,medium +0.86,0.84,5,254,5,0,1,0,product_mng,medium +0.73,0.99,5,262,5,0,1,0,product_mng,medium +0.56,0.71,4,296,2,0,1,0,IT,medium +0.44,0.56,2,158,3,0,1,0,accounting,medium +0.31,0.56,4,238,2,0,1,0,accounting,medium +0.77,0.93,4,231,5,0,1,0,hr,medium +0.44,0.45,2,156,3,0,1,0,hr,medium +0.38,0.46,2,145,3,0,1,0,hr,medium +0.45,0.48,2,144,3,0,1,0,marketing,medium +0.38,0.51,2,159,3,0,1,0,sales,medium +0.36,0.48,2,156,3,0,1,0,accounting,high +0.75,0.9,5,256,5,0,1,0,support,low +0.1,0.93,6,298,4,0,1,0,technical,medium +0.1,0.97,6,247,4,0,1,0,management,medium +0.45,0.5,2,157,3,0,1,0,marketing,medium +0.42,0.57,2,154,3,1,1,0,marketing,medium +0.78,1,4,253,5,0,1,0,marketing,low +0.45,0.55,2,148,3,0,1,0,sales,low +0.84,1,4,261,5,0,1,0,sales,low +0.11,0.93,6,282,4,0,1,0,sales,low +0.42,0.56,2,133,3,0,1,0,sales,low +0.45,0.46,2,128,3,0,1,0,sales,low +0.46,0.57,2,139,3,0,1,0,sales,low +0.09,0.79,6,293,5,0,1,0,sales,low +0.87,0.83,4,265,6,0,1,0,sales,low +0.1,0.87,6,250,4,0,1,0,sales,low +0.91,1,5,251,6,0,1,0,sales,low +0.76,0.92,4,246,5,0,1,0,sales,low +0.74,1,5,275,5,0,1,0,sales,low +0.92,0.93,5,240,5,0,1,0,sales,low +0.76,0.87,5,245,5,0,1,0,sales,low +0.47,0.5,4,254,4,0,1,0,sales,low +0.73,0.99,5,241,5,0,1,0,sales,low +0.09,0.94,6,257,4,0,1,0,sales,low +0.91,0.92,4,246,5,0,1,0,sales,low +0.82,0.98,4,233,5,0,1,0,sales,low +0.28,0.45,6,218,4,0,1,0,accounting,low +0.84,0.99,4,262,6,0,1,0,accounting,medium +0.45,0.53,2,138,3,0,1,0,accounting,medium +0.45,0.54,2,142,3,0,1,0,hr,medium +0.91,0.97,5,233,5,0,1,0,hr,medium +0.42,0.48,2,155,3,0,1,0,hr,medium +0.82,1,4,229,6,0,1,0,hr,medium +0.11,0.9,6,264,4,0,1,0,technical,medium +0.42,0.53,3,199,4,0,1,0,technical,medium +0.82,0.85,4,223,5,0,1,0,technical,medium +0.09,0.96,6,268,4,0,1,0,technical,medium +0.1,0.94,6,287,4,0,1,0,technical,medium +0.86,1,5,257,5,0,1,0,technical,medium +0.4,0.46,2,143,3,0,1,0,technical,high +0.45,0.46,2,130,3,0,1,0,technical,low +0.42,0.51,2,136,3,0,1,0,technical,medium +0.74,0.92,4,261,5,0,1,0,technical,medium +0.55,0.6,3,180,4,0,1,0,technical,medium +0.37,0.45,2,126,3,0,1,0,support,medium +0.41,0.52,2,127,3,1,1,0,support,low +0.89,0.65,5,195,6,0,1,0,support,low +0.41,0.57,2,160,3,0,1,0,support,low +0.44,0.51,2,150,3,0,1,0,support,low +0.87,0.84,4,264,6,0,1,0,support,low +0.1,0.84,6,309,4,0,1,0,support,low +0.41,0.47,2,135,3,0,1,0,support,low +0.11,0.85,6,261,4,0,1,0,support,low +0.43,0.53,2,160,3,0,1,0,support,low +0.77,0.9,4,237,5,0,1,0,support,low +0.41,0.52,2,136,3,0,1,0,technical,low +0.41,0.48,2,139,3,0,1,0,technical,low +0.36,0.78,2,151,4,0,1,0,technical,low +0.77,1,5,229,5,0,1,0,management,low +0.81,0.98,5,245,5,0,1,0,IT,low +0.39,0.54,2,127,3,0,1,0,IT,low +0.09,0.94,6,283,5,0,1,0,IT,low +0.44,0.46,2,143,3,0,1,0,IT,low +0.1,0.84,5,298,4,0,1,0,IT,low +0.36,0.48,2,159,3,0,1,0,product_mng,low +0.81,0.92,5,239,5,0,1,0,product_mng,low +0.81,0.9,4,226,5,0,1,0,product_mng,medium +0.85,0.98,5,248,5,0,1,0,product_mng,medium +0.1,0.87,6,286,4,0,1,0,IT,medium +0.37,0.54,2,145,3,0,1,0,RandD,medium +0.09,0.97,7,254,4,1,1,0,RandD,medium +0.44,0.53,2,127,3,0,1,0,RandD,medium +0.86,0.93,5,223,5,0,1,0,RandD,medium +0.77,1,4,255,5,0,1,0,RandD,medium +0.41,0.48,2,136,3,0,1,0,marketing,medium +0.4,0.48,2,137,3,0,1,0,sales,medium +0.43,0.49,2,135,3,0,1,0,accounting,medium +0.43,0.5,2,137,3,0,1,0,support,medium +0.8,0.53,3,255,5,0,1,0,technical,high +0.8,0.85,4,273,5,0,1,0,management,low +0.82,0.98,5,234,5,0,1,0,marketing,medium +0.37,0.54,2,152,3,0,1,0,marketing,medium +0.37,0.48,2,134,3,0,1,0,marketing,medium +0.09,0.95,6,292,4,0,1,0,sales,medium +0.9,0.92,5,245,5,0,1,0,sales,low +0.41,0.52,2,159,3,0,1,0,sales,low +0.1,0.85,6,260,4,0,1,0,sales,low +0.44,0.53,2,149,3,0,1,0,sales,low +0.89,0.85,5,266,5,0,1,0,sales,low +0.42,0.56,2,149,3,0,1,0,sales,low +0.87,1,5,242,5,0,1,0,sales,low +0.45,0.57,2,134,3,0,1,0,sales,low +0.11,0.87,5,271,4,0,1,0,sales,low +0.09,0.79,6,275,4,0,1,0,sales,low +0.76,0.83,5,227,5,0,1,0,sales,low +0.11,0.96,7,277,5,0,1,0,sales,low +0.37,0.49,2,151,3,0,1,0,sales,low +0.1,0.79,6,274,4,0,1,0,sales,low +0.77,0.87,4,242,6,0,1,0,sales,low +0.42,0.54,2,143,3,1,1,0,sales,low +0.38,0.52,2,145,3,0,1,0,sales,low +0.32,0.95,5,172,2,0,1,0,sales,low +0.38,0.49,2,135,3,0,1,0,accounting,low +0.19,1,4,192,4,0,1,0,accounting,low +0.1,0.83,7,276,4,0,1,0,accounting,low +0.76,0.88,4,206,4,0,1,0,hr,medium +0.53,0.56,4,281,6,0,1,0,hr,medium +0.39,0.51,2,151,3,0,1,0,hr,medium +0.11,0.83,6,244,4,0,1,0,hr,medium +0.1,0.94,6,309,4,0,1,0,technical,medium +0.84,1,5,218,5,0,1,0,technical,medium +0.82,0.99,4,263,6,0,1,0,technical,medium +0.1,0.82,6,244,4,0,1,0,technical,medium +0.59,0.49,7,263,4,0,1,0,technical,medium +0.44,0.48,2,143,3,0,1,0,technical,medium +0.89,0.95,2,181,5,0,1,0,technical,medium +0.91,0.84,5,265,5,0,1,0,technical,medium +0.66,0.57,5,161,5,0,1,0,technical,high +0.11,0.87,7,282,5,0,1,0,technical,low +0.43,0.51,2,155,3,0,1,0,technical,medium +0.78,0.83,4,217,6,0,1,0,support,medium +0.11,0.97,6,289,5,0,1,0,support,medium +0.83,0.98,4,259,5,0,1,0,support,medium +0.39,0.54,2,158,3,0,1,0,support,low +0.38,0.55,2,158,3,0,1,0,support,low +0.37,0.57,2,155,3,0,1,0,support,low +0.44,0.48,2,146,3,0,1,0,support,low +0.53,0.85,2,164,5,0,1,0,support,low +0.09,0.96,6,259,4,0,1,0,support,low +0.11,0.89,6,293,4,0,1,0,support,low +0.83,0.96,5,275,5,0,1,0,support,low +0.88,1,5,219,6,1,1,0,technical,low +0.1,0.89,6,247,4,0,1,0,technical,low +0.09,0.86,7,309,4,0,1,0,technical,low +0.44,0.54,2,151,3,0,1,0,management,low +0.39,0.51,2,129,3,0,1,0,IT,low +0.87,0.94,4,274,5,0,1,0,IT,low +0.74,0.99,4,233,5,0,1,0,IT,low +0.1,0.95,7,289,4,0,1,0,IT,low +0.74,0.82,4,239,6,0,1,0,IT,low +0.75,0.99,5,221,5,0,1,0,product_mng,low +0.41,0.56,2,150,3,0,1,0,product_mng,low +0.41,0.45,2,144,3,1,1,0,product_mng,low +0.09,0.9,7,289,4,0,1,0,product_mng,low +0.09,0.8,6,301,5,0,1,0,IT,medium +0.39,0.57,2,145,3,0,1,0,accounting,medium +0.4,0.56,2,137,3,0,1,0,accounting,medium +0.37,0.54,2,131,3,1,1,0,hr,medium +0.1,0.84,6,246,4,0,1,0,hr,medium +0.43,0.51,2,136,3,0,1,0,hr,medium +0.75,0.85,5,240,6,1,1,0,marketing,medium +0.37,0.56,2,156,3,0,1,0,sales,medium +0.11,0.85,6,305,4,0,1,0,accounting,medium +0.45,0.45,2,154,3,1,1,0,support,medium +0.87,1,5,261,5,1,1,0,technical,medium +0.11,0.94,7,244,4,0,1,0,management,medium +0.45,0.54,2,129,3,0,1,0,marketing,high +0.81,0.87,4,254,5,0,1,0,marketing,low +0.77,0.91,5,236,5,0,1,0,marketing,medium +0.89,0.92,5,237,5,0,1,0,sales,medium +0.43,0.49,2,135,3,0,1,0,sales,medium +0.78,1,5,236,5,0,1,0,sales,medium +0.37,0.47,2,149,3,0,1,0,sales,low +0.37,0.5,2,141,3,0,1,0,sales,low +0.85,0.82,4,270,5,0,1,0,sales,low +0.41,0.47,2,138,3,0,1,0,sales,low +0.11,0.96,6,298,4,0,1,0,sales,low +0.75,0.99,5,254,5,0,1,0,sales,low +0.82,0.85,5,248,5,0,1,0,sales,low +0.79,1,5,257,6,0,1,0,sales,low +0.43,0.53,2,150,3,0,1,0,sales,low +0.1,0.9,7,281,4,0,1,0,sales,low +0.46,0.48,2,141,3,1,1,0,sales,low +0.43,0.57,2,157,3,0,1,0,sales,low +0.43,0.55,2,136,3,0,1,0,sales,low +0.11,0.8,7,296,4,0,1,0,sales,low +0.09,0.86,6,279,4,0,1,0,sales,low +0.37,0.53,2,131,3,0,1,0,sales,low +0.4,0.57,2,160,3,0,1,0,accounting,low +0.1,0.77,7,291,4,0,1,0,accounting,low +0.41,0.53,2,157,3,0,1,0,accounting,low +0.79,0.58,3,294,4,0,1,0,hr,low +0.11,0.79,7,310,4,0,1,0,hr,low +0.1,0.97,6,282,4,0,1,0,hr,medium +0.44,0.51,2,134,3,0,1,0,hr,medium +0.25,0.46,4,214,4,0,1,0,technical,medium +0.44,0.52,2,137,3,0,1,0,technical,medium +0.73,1,4,252,5,0,1,0,technical,medium +0.75,0.97,5,243,6,0,1,0,technical,medium +0.36,0.47,2,148,3,0,1,0,technical,medium +0.37,0.49,2,151,3,0,1,0,technical,medium +0.39,0.49,2,129,3,0,1,0,technical,medium +0.48,0.78,2,198,2,0,1,0,technical,medium +0.57,0.72,4,275,6,0,1,0,technical,medium +0.9,0.96,5,243,5,0,1,0,technical,medium +0.39,0.55,2,159,3,0,1,0,technical,high +0.44,0.51,2,145,3,0,1,0,support,low +0.81,0.88,5,242,5,0,1,0,support,medium +0.74,0.87,5,242,5,0,1,0,support,medium +0.44,0.56,2,145,3,0,1,0,support,medium +0.41,0.56,2,154,3,0,1,1,support,medium +0.4,0.51,2,139,3,0,1,0,support,low +0.46,0.57,2,152,3,0,1,0,support,low +0.8,0.83,2,211,3,0,1,0,support,low +0.87,0.9,5,258,5,0,1,0,support,low +0.39,0.54,2,155,3,0,1,0,support,low +0.38,0.55,2,148,3,0,1,0,support,low +0.66,0.67,2,255,3,0,1,0,technical,low +0.1,0.8,6,264,4,0,1,0,technical,low +0.37,0.54,2,132,3,0,1,0,technical,low +0.1,0.77,6,255,4,0,1,0,management,low +0.09,0.87,5,263,4,0,1,0,IT,low +0.86,0.84,5,222,5,0,1,0,IT,low +0.11,0.9,6,263,4,0,1,0,IT,low +0.37,0.46,2,157,3,0,1,0,IT,low +0.11,0.92,7,307,4,0,1,0,IT,low +0.77,0.98,5,259,6,0,1,0,product_mng,low +0.84,0.94,5,222,6,0,1,0,product_mng,low +0.1,0.84,7,250,4,0,1,0,product_mng,low +0.83,0.9,5,245,5,0,1,0,product_mng,low +0.11,0.79,6,292,4,0,1,0,IT,low +0.86,0.92,5,252,5,0,1,0,RandD,low +0.38,0.56,2,161,3,0,1,0,RandD,medium +0.11,0.88,5,250,4,0,1,0,RandD,medium +0.45,0.49,2,134,3,0,1,0,RandD,medium +0.1,0.85,7,279,4,0,1,0,RandD,medium +0.09,0.95,7,256,4,0,1,0,marketing,medium +0.39,0.53,2,127,3,0,1,0,sales,medium +0.37,0.47,2,138,3,1,1,0,accounting,medium +0.81,0.97,5,243,5,0,1,0,support,medium +0.09,0.9,7,296,4,0,1,0,technical,medium +0.1,0.88,7,267,4,0,1,0,management,medium +0.39,0.49,2,144,3,0,1,0,marketing,medium +0.83,0.95,4,251,5,0,1,0,marketing,medium +0.45,0.57,2,148,3,0,1,0,marketing,high +0.43,0.51,2,141,3,0,1,0,sales,low +0.8,0.75,3,268,2,0,1,0,sales,medium +0.1,0.86,6,247,4,0,1,0,sales,medium +0.1,0.55,2,247,4,0,1,0,sales,medium +0.36,0.52,2,146,3,0,1,0,sales,medium +0.38,0.5,2,140,3,0,1,0,sales,low +0.78,0.98,5,263,6,0,1,0,sales,low +0.44,0.49,2,145,3,0,1,0,sales,low +0.41,0.46,2,156,3,1,1,0,sales,low +0.72,0.85,5,244,6,0,1,0,sales,low +0.46,0.54,2,144,3,0,1,0,sales,low +0.1,0.9,7,286,4,0,1,0,sales,low +0.34,0.67,4,141,2,0,1,0,sales,low +0.11,0.89,6,260,5,0,1,0,sales,low +0.38,0.56,2,154,3,0,1,0,sales,low +0.82,0.92,5,225,5,0,1,0,sales,low +0.39,0.57,2,127,3,0,1,0,sales,low +0.44,0.53,2,140,3,0,1,0,sales,low +0.43,0.52,2,147,3,0,1,0,sales,low +0.84,0.83,4,227,5,0,1,0,accounting,low +0.43,0.48,2,153,3,0,1,0,accounting,low +0.37,0.52,2,128,3,0,1,0,accounting,low +0.74,0.97,4,228,5,0,1,0,hr,low +0.73,0.97,5,235,5,0,1,0,hr,low +0.37,0.47,2,148,3,0,1,0,hr,low +0.58,0.62,4,238,3,0,1,0,hr,low +0.4,0.54,2,141,3,0,1,0,technical,medium +0.51,0.83,5,249,4,0,1,0,technical,medium +0.46,0.5,2,151,3,0,1,0,technical,medium +0.45,0.54,2,129,3,0,1,0,technical,medium +0.46,0.5,2,156,3,0,1,0,technical,medium +0.39,0.45,2,134,3,0,1,0,technical,medium +0.09,0.88,6,269,4,0,1,0,technical,medium +0.09,0.77,6,290,4,0,1,0,technical,medium +0.37,0.51,2,132,3,0,1,0,technical,medium +0.1,0.89,7,308,4,0,1,0,technical,medium +0.77,1,4,232,5,0,1,0,technical,medium +0.79,0.86,5,235,5,0,1,0,support,medium +0.43,0.55,2,130,3,0,1,0,support,high +0.38,0.53,2,146,3,0,1,0,support,low +0.77,0.91,5,221,6,0,1,0,support,medium +0.44,0.5,2,130,3,0,1,0,support,medium +0.39,0.46,2,136,3,0,1,0,support,medium +0.1,0.79,6,275,4,0,1,0,management,low +0.1,0.9,6,299,4,0,1,0,marketing,low +0.36,0.49,2,147,3,0,1,0,marketing,low +0.1,0.97,7,306,4,0,1,0,marketing,low +0.84,1,5,242,5,0,1,0,sales,low +0.38,0.51,2,159,3,0,1,0,sales,low +0.41,0.49,2,147,3,0,1,0,sales,low +0.37,0.51,2,154,3,1,1,0,sales,low +0.43,0.56,2,129,3,0,1,0,sales,low +0.46,0.53,2,161,3,0,1,0,sales,low +0.09,0.84,6,269,4,0,1,0,sales,low +0.78,0.86,5,274,5,0,1,0,sales,low +0.45,0.53,2,159,3,0,1,0,sales,low +0.42,0.47,2,135,3,0,1,0,sales,low +0.46,0.53,2,147,3,0,1,0,sales,low +0.39,0.49,2,142,3,0,1,0,sales,low +0.36,0.51,2,130,3,0,1,0,sales,low +0.43,0.53,2,147,3,0,1,0,sales,medium +0.85,0.87,5,246,5,1,1,0,sales,medium +0.11,0.92,6,281,4,0,1,0,sales,medium +0.11,0.9,6,253,4,0,1,0,sales,medium +0.38,0.47,2,128,3,0,1,0,sales,medium +0.43,0.57,2,129,3,0,1,0,sales,medium +0.75,1,5,223,6,0,1,0,accounting,medium +0.11,0.92,6,269,4,0,1,0,accounting,medium +0.1,0.9,7,269,4,0,1,0,accounting,medium +0.1,0.81,7,244,5,0,1,0,hr,medium +0.37,0.5,2,154,3,0,1,0,hr,medium +0.11,0.93,5,140,5,0,1,0,hr,medium +0.45,0.46,2,159,3,0,1,0,hr,high +0.44,0.48,2,158,3,0,1,0,technical,low +0.44,0.56,2,133,3,0,1,0,technical,medium +0.11,0.77,6,247,4,0,1,0,technical,medium +0.79,0.93,5,268,5,0,1,0,technical,medium +0.8,0.9,5,267,5,0,1,0,technical,medium +0.1,0.87,7,251,5,0,1,0,technical,low +0.09,0.93,6,279,4,0,1,0,technical,low +0.7,0.84,6,161,4,0,1,0,technical,low +0.72,0.84,4,256,5,0,1,0,technical,low +0.11,0.8,6,304,4,0,1,0,technical,low +0.39,0.51,2,137,3,0,1,0,technical,low +0.4,0.49,2,144,3,0,1,0,support,low +0.43,0.54,2,142,3,0,1,0,support,low +0.76,0.87,5,262,5,0,1,0,support,low +0.4,0.48,2,142,3,0,1,0,support,low +0.09,0.89,6,282,4,0,1,0,support,low +0.37,0.54,2,157,3,0,1,0,support,low +0.87,0.91,5,228,5,0,1,0,support,low +0.1,0.86,6,283,4,0,1,0,support,low +0.11,0.86,6,286,4,0,1,0,support,low +0.43,0.5,2,148,3,0,1,0,support,low +0.1,0.81,6,245,4,0,1,0,support,low +0.11,0.95,6,279,4,0,1,0,technical,low +0.85,0.87,5,245,5,0,1,0,technical,low +0.37,0.49,2,138,3,0,1,0,technical,low +0.44,0.52,2,141,3,0,1,0,management,low +0.1,0.83,7,302,5,0,1,0,IT,medium +0.11,0.89,6,268,4,0,1,0,IT,medium +0.87,0.88,5,240,5,0,1,0,IT,medium +0.39,0.49,2,127,3,0,1,0,IT,medium +0.1,0.94,7,264,4,0,1,0,IT,medium +0.44,0.53,2,155,3,0,1,0,product_mng,medium +0.4,0.49,2,143,3,0,1,0,product_mng,medium +0.76,0.98,5,217,6,0,1,0,product_mng,medium +0.46,0.55,2,147,3,0,1,0,product_mng,medium +0.9,0.92,4,271,5,0,1,0,IT,medium +0.85,0.87,4,273,5,0,1,0,RandD,medium +0.1,0.78,5,285,4,1,1,0,RandD,medium +0.43,0.49,2,131,3,0,1,0,RandD,high +0.2,0.5,5,135,6,0,1,0,RandD,low +0.81,0.92,5,239,5,0,1,0,RandD,medium +0.83,0.85,5,237,5,0,1,0,marketing,medium +0.14,0.75,4,277,5,1,1,0,sales,medium +0.1,0.84,5,303,5,0,1,0,accounting,medium +0.91,0.98,4,242,6,0,1,0,support,low +0.37,0.57,2,158,3,0,1,0,technical,low +0.42,0.57,2,147,3,1,1,0,management,low +0.39,0.68,2,282,5,0,1,0,marketing,low +0.39,0.54,2,154,3,0,1,0,marketing,low +0.44,0.52,2,149,3,0,1,0,marketing,low +0.37,0.45,2,149,3,0,1,0,sales,low +0.39,0.53,2,146,3,0,1,0,sales,low +0.72,0.94,4,258,5,0,1,0,sales,low +0.37,0.49,2,148,3,0,1,0,sales,low +0.82,0.94,5,236,5,0,1,0,sales,low +0.42,0.52,2,134,3,0,1,0,sales,low +0.59,1,2,155,5,0,1,0,sales,low +0.82,0.86,5,257,5,0,1,0,sales,low +0.73,0.97,6,189,2,0,1,0,sales,low +0.78,0.66,3,164,3,0,1,0,sales,low +0.09,0.95,6,271,4,0,1,0,sales,low +0.1,0.97,6,280,4,0,1,0,sales,low +0.45,0.46,2,149,3,0,1,0,sales,low +0.83,0.81,5,219,5,0,1,0,sales,low +0.43,0.51,2,128,3,0,1,0,sales,low +0.4,0.47,2,128,3,0,1,0,sales,medium +0.43,0.46,2,157,3,0,1,0,sales,medium +0.78,0.93,4,225,5,0,1,0,sales,medium +0.39,0.45,2,140,3,0,1,0,sales,medium +0.11,0.97,6,310,4,0,1,0,accounting,medium +0.36,0.52,2,143,3,0,1,0,accounting,medium +0.36,0.54,2,153,3,0,1,0,accounting,medium +0.1,0.79,7,310,4,0,1,0,hr,medium +0.4,0.47,2,136,3,0,1,0,hr,medium +0.81,0.85,4,251,6,0,1,0,hr,medium +0.4,0.47,2,144,3,0,1,0,hr,medium +0.09,0.93,6,296,4,0,1,0,technical,medium +0.76,0.89,5,238,5,0,1,0,technical,high +0.73,0.93,5,162,4,0,1,0,technical,low +0.38,0.49,2,137,3,0,1,0,technical,medium +0.72,0.84,5,257,5,0,1,0,technical,medium +0.4,0.56,2,148,3,0,1,0,technical,medium +0.91,0.99,5,254,5,0,1,0,technical,medium +0.85,0.85,4,247,6,0,1,0,technical,low +0.9,0.7,5,206,4,0,1,0,technical,low +0.46,0.55,2,145,3,0,1,0,technical,low +0.43,0.57,2,159,3,1,1,0,technical,low +0.89,0.88,5,228,5,1,1,0,support,low +0.09,0.81,6,257,4,0,1,0,support,low +0.4,0.48,2,155,3,0,1,0,support,low +0.76,0.83,6,293,6,0,1,0,support,low +0.4,0.57,2,151,3,0,1,0,support,low +0.37,0.48,2,160,3,0,1,0,support,low +0.37,0.53,2,143,3,0,1,0,support,low +0.11,0.96,6,280,4,0,1,0,support,low +0.37,0.52,2,158,3,0,1,0,support,low \ No newline at end of file diff --git a/data/banknotes.csv b/data/banknotes.csv new file mode 100644 index 0000000..c532ca7 --- /dev/null +++ b/data/banknotes.csv @@ -0,0 +1,1373 @@ +variace,skewness,curtosis,entropy,class +3.6216,8.6661,-2.8073,-0.44699,0 +4.5459,8.1674,-2.4586,-1.4621,0 +3.866,-2.6383,1.9242,0.10645,0 +3.4566,9.5228,-4.0112,-3.5944,0 +0.32924,-4.4552,4.5718,-0.9888,0 +4.3684,9.6718,-3.9606,-3.1625,0 +3.5912,3.0129,0.72888,0.56421,0 +2.0922,-6.81,8.4636,-0.60216,0 +3.2032,5.7588,-0.75345,-0.61251,0 +1.5356,9.1772,-2.2718,-0.73535,0 +1.2247,8.7779,-2.2135,-0.80647,0 +3.9899,-2.7066,2.3946,0.86291,0 +1.8993,7.6625,0.15394,-3.1108,0 +-1.5768,10.843,2.5462,-2.9362,0 +3.404,8.7261,-2.9915,-0.57242,0 +4.6765,-3.3895,3.4896,1.4771,0 +2.6719,3.0646,0.37158,0.58619,0 +0.80355,2.8473,4.3439,0.6017,0 +1.4479,-4.8794,8.3428,-2.1086,0 +5.2423,11.0272,-4.353,-4.1013,0 +5.7867,7.8902,-2.6196,-0.48708,0 +0.3292,-4.4552,4.5718,-0.9888,0 +3.9362,10.1622,-3.8235,-4.0172,0 +0.93584,8.8855,-1.6831,-1.6599,0 +4.4338,9.887,-4.6795,-3.7483,0 +0.7057,-5.4981,8.3368,-2.8715,0 +1.1432,-3.7413,5.5777,-0.63578,0 +-0.38214,8.3909,2.1624,-3.7405,0 +6.5633,9.8187,-4.4113,-3.2258,0 +4.8906,-3.3584,3.4202,1.0905,0 +-0.24811,-0.17797,4.9068,0.15429,0 +1.4884,3.6274,3.308,0.48921,0 +4.2969,7.617,-2.3874,-0.96164,0 +-0.96511,9.4111,1.7305,-4.8629,0 +-1.6162,0.80908,8.1628,0.60817,0 +2.4391,6.4417,-0.80743,-0.69139,0 +2.6881,6.0195,-0.46641,-0.69268,0 +3.6289,0.81322,1.6277,0.77627,0 +4.5679,3.1929,-2.1055,0.29653,0 +3.4805,9.7008,-3.7541,-3.4379,0 +4.1711,8.722,-3.0224,-0.59699,0 +-0.2062,9.2207,-3.7044,-6.8103,0 +-0.0068919,9.2931,-0.41243,-1.9638,0 +0.96441,5.8395,2.3235,0.066365,0 +2.8561,6.9176,-0.79372,0.48403,0 +-0.7869,9.5663,-3.7867,-7.5034,0 +2.0843,6.6258,0.48382,-2.2134,0 +-0.7869,9.5663,-3.7867,-7.5034,0 +3.9102,6.065,-2.4534,-0.68234,0 +1.6349,3.286,2.8753,0.087054,0 +4.3239,-4.8835,3.4356,-0.5776,0 +5.262,3.9834,-1.5572,1.0103,0 +3.1452,5.825,-0.51439,-1.4944,0 +2.549,6.1499,-1.1605,-1.2371,0 +4.9264,5.496,-2.4774,-0.50648,0 +4.8265,0.80287,1.6371,1.1875,0 +2.5635,6.7769,-0.61979,0.38576,0 +5.807,5.0097,-2.2384,0.43878,0 +3.1377,-4.1096,4.5701,0.98963,0 +-0.78289,11.3603,-0.37644,-7.0495,0 +2.888,0.44696,4.5907,-0.24398,0 +0.49665,5.527,1.7785,-0.47156,0 +4.2586,11.2962,-4.0943,-4.3457,0 +1.7939,-1.1174,1.5454,-0.26079,0 +5.4021,3.1039,-1.1536,1.5651,0 +2.5367,2.599,2.0938,0.20085,0 +4.6054,-4.0765,2.7587,0.31981,0 +2.4235,9.5332,-3.0789,-2.7746,0 +1.0009,7.7846,-0.28219,-2.6608,0 +0.12326,8.9848,-0.9351,-2.4332,0 +3.9529,-2.3548,2.3792,0.48274,0 +4.1373,0.49248,1.093,1.8276,0 +4.7181,10.0153,-3.9486,-3.8582,0 +4.1654,-3.4495,3.643,1.0879,0 +4.4069,10.9072,-4.5775,-4.4271,0 +2.3066,3.5364,0.57551,0.41938,0 +3.7935,7.9853,-2.5477,-1.872,0 +0.049175,6.1437,1.7828,-0.72113,0 +0.24835,7.6439,0.9885,-0.87371,0 +1.1317,3.9647,3.3979,0.84351,0 +2.8033,9.0862,-3.3668,-1.0224,0 +4.4682,2.2907,0.95766,0.83058,0 +5.0185,8.5978,-2.9375,-1.281,0 +1.8664,7.7763,-0.23849,-2.9634,0 +3.245,6.63,-0.63435,0.86937,0 +4.0296,2.6756,0.80685,0.71679,0 +-1.1313,1.9037,7.5339,1.022,0 +0.87603,6.8141,0.84198,-0.17156,0 +4.1197,-2.7956,2.0707,0.67412,0 +3.8027,0.81529,2.1041,1.0245,0 +1.4806,7.6377,-2.7876,-1.0341,0 +4.0632,3.584,0.72545,0.39481,0 +4.3064,8.2068,-2.7824,-1.4336,0 +2.4486,-6.3175,7.9632,0.20602,0 +3.2718,1.7837,2.1161,0.61334,0 +-0.64472,-4.6062,8.347,-2.7099,0 +2.9543,1.076,0.64577,0.89394,0 +2.1616,-6.8804,8.1517,-0.081048,0 +3.82,10.9279,-4.0112,-5.0284,0 +-2.7419,11.4038,2.5394,-5.5793,0 +3.3669,-5.1856,3.6935,-1.1427,0 +4.5597,-2.4211,2.6413,1.6168,0 +5.1129,-0.49871,0.62863,1.1189,0 +3.3397,-4.6145,3.9823,-0.23751,0 +4.2027,0.22761,0.96108,0.97282,0 +3.5438,1.2395,1.997,2.1547,0 +2.3136,10.6651,-3.5288,-4.7672,0 +-1.8584,7.886,-1.6643,-1.8384,0 +3.106,9.5414,-4.2536,-4.003,0 +2.9163,10.8306,-3.3437,-4.122,0 +3.9922,-4.4676,3.7304,-0.1095,0 +1.518,5.6946,0.094818,-0.026738,0 +3.2351,9.647,-3.2074,-2.5948,0 +4.2188,6.8162,-1.2804,0.76076,0 +1.7819,6.9176,-1.2744,-1.5759,0 +2.5331,2.9135,-0.822,-0.12243,0 +3.8969,7.4163,-1.8245,0.14007,0 +2.108,6.7955,-0.1708,0.4905,0 +2.8969,0.70768,2.29,1.8663,0 +0.9297,-3.7971,4.6429,-0.2957,0 +3.4642,10.6878,-3.4071,-4.109,0 +4.0713,10.4023,-4.1722,-4.7582,0 +-1.4572,9.1214,1.7425,-5.1241,0 +-1.5075,1.9224,7.1466,0.89136,0 +-0.91718,9.9884,1.1804,-5.2263,0 +2.994,7.2011,-1.2153,0.3211,0 +-2.343,12.9516,3.3285,-5.9426,0 +3.7818,-2.8846,2.2558,-0.15734,0 +4.6689,1.3098,0.055404,1.909,0 +3.4663,1.1112,1.7425,1.3388,0 +3.2697,-4.3414,3.6884,-0.29829,0 +5.1302,8.6703,-2.8913,-1.5086,0 +2.0139,6.1416,0.37929,0.56938,0 +0.4339,5.5395,2.033,-0.40432,0 +-1.0401,9.3987,0.85998,-5.3336,0 +4.1605,11.2196,-3.6136,-4.0819,0 +5.438,9.4669,-4.9417,-3.9202,0 +5.032,8.2026,-2.6256,-1.0341,0 +5.2418,10.5388,-4.1174,-4.2797,0 +-0.2062,9.2207,-3.7044,-6.8103,0 +2.0911,0.94358,4.5512,1.234,0 +1.7317,-0.34765,4.1905,-0.99138,0 +4.1736,3.3336,-1.4244,0.60429,0 +3.9232,-3.2467,3.4579,0.83705,0 +3.8481,10.1539,-3.8561,-4.2228,0 +0.5195,-3.2633,3.0895,-0.9849,0 +3.8584,0.78425,1.1033,1.7008,0 +1.7496,-0.1759,5.1827,1.2922,0 +3.6277,0.9829,0.68861,0.63403,0 +2.7391,7.4018,0.071684,-2.5302,0 +4.5447,8.2274,-2.4166,-1.5875,0 +-1.7599,11.9211,2.6756,-3.3241,0 +5.0691,0.21313,0.20278,1.2095,0 +3.4591,11.112,-4.2039,-5.0931,0 +1.9358,8.1654,-0.023425,-2.2586,0 +2.486,-0.99533,5.3404,-0.15475,0 +2.4226,-4.5752,5.947,0.21507,0 +3.9479,-3.7723,2.883,0.019813,0 +2.2634,-4.4862,3.6558,-0.61251,0 +1.3566,4.2358,2.1341,0.3211,0 +5.0452,3.8964,-1.4304,0.86291,0 +3.5499,8.6165,-3.2794,-1.2009,0 +0.17346,7.8695,0.26876,-3.7883,0 +2.4008,9.3593,-3.3565,-3.3526,0 +4.8851,1.5995,-0.00029081,1.6401,0 +4.1927,-3.2674,2.5839,0.21766,0 +1.1166,8.6496,-0.96252,-1.8112,0 +1.0235,6.901,-2.0062,-2.7125,0 +-1.803,11.8818,2.0458,-5.2728,0 +0.11739,6.2761,-1.5495,-2.4746,0 +0.5706,-0.0248,1.2421,-0.5621,0 +4.0552,-2.4583,2.2806,1.0323,0 +-1.6952,1.0657,8.8294,0.94955,0 +-1.1193,10.7271,2.0938,-5.6504,0 +1.8799,2.4707,2.4931,0.37671,0 +3.583,-3.7971,3.4391,-0.12501,0 +0.19081,9.1297,-3.725,-5.8224,0 +3.6582,5.6864,-1.7157,-0.23751,0 +-0.13144,-1.7775,8.3316,0.35214,0 +2.3925,9.798,-3.0361,-2.8224,0 +1.6426,3.0149,0.22849,-0.147,0 +-0.11783,-1.5789,8.03,-0.028031,0 +-0.69572,8.6165,1.8419,-4.3289,0 +2.9421,7.4101,-0.97709,-0.88406,0 +-1.7559,11.9459,3.0946,-4.8978,0 +-1.2537,10.8803,1.931,-4.3237,0 +3.2585,-4.4614,3.8024,-0.15087,0 +1.8314,6.3672,-0.036278,0.049554,0 +4.5645,-3.6275,2.8684,0.27714,0 +2.7365,-5.0325,6.6608,-0.57889,0 +0.9297,-3.7971,4.6429,-0.2957,0 +3.9663,10.1684,-4.1131,-4.6056,0 +1.4578,-0.08485,4.1785,0.59136,0 +4.8272,3.0687,0.68604,0.80731,0 +-2.341,12.3784,0.70403,-7.5836,0 +-1.8584,7.886,-1.6643,-1.8384,0 +4.1454,7.257,-1.9153,-0.86078,0 +1.9157,6.0816,0.23705,-2.0116,0 +4.0215,-2.1914,2.4648,1.1409,0 +5.8862,5.8747,-2.8167,-0.30087,0 +-2.0897,10.8265,2.3603,-3.4198,0 +4.0026,-3.5943,3.5573,0.26809,0 +-0.78689,9.5663,-3.7867,-7.5034,0 +4.1757,10.2615,-3.8552,-4.3056,0 +0.83292,7.5404,0.65005,-0.92544,0 +4.8077,2.2327,-0.26334,1.5534,0 +5.3063,5.2684,-2.8904,-0.52716,0 +2.5605,9.2683,-3.5913,-1.356,0 +2.1059,7.6046,-0.47755,-1.8461,0 +2.1721,-0.73874,5.4672,-0.72371,0 +4.2899,9.1814,-4.6067,-4.3263,0 +3.5156,10.1891,-4.2759,-4.978,0 +2.614,8.0081,-3.7258,-1.3069,0 +0.68087,2.3259,4.9085,0.54998,0 +4.1962,0.74493,0.83256,0.753,0 +6.0919,2.9673,-1.3267,1.4551,0 +1.3234,3.2964,0.2362,-0.11984,0 +1.3264,1.0326,5.6566,-0.41337,0 +-0.16735,7.6274,1.2061,-3.6241,0 +-1.3,10.2678,-2.953,-5.8638,0 +-2.2261,12.5398,2.9438,-3.5258,0 +2.4196,6.4665,-0.75688,0.228,0 +1.0987,0.6394,5.989,-0.58277,0 +4.6464,10.5326,-4.5852,-4.206,0 +-0.36038,4.1158,3.1143,-0.37199,0 +1.3562,3.2136,4.3465,0.78662,0 +0.5706,-0.0248,1.2421,-0.5621,0 +-2.6479,10.1374,-1.331,-5.4707,0 +3.1219,-3.137,1.9259,-0.37458,0 +5.4944,1.5478,0.041694,1.9284,0 +-1.3389,1.552,7.0806,1.031,0 +-2.3361,11.9604,3.0835,-5.4435,0 +2.2596,-0.033118,4.7355,-0.2776,0 +0.46901,-0.63321,7.3848,0.36507,0 +2.7296,2.8701,0.51124,0.5099,0 +2.0466,2.03,2.1761,-0.083634,0 +-1.3274,9.498,2.4408,-5.2689,0 +3.8905,-2.1521,2.6302,1.1047,0 +3.9994,0.90427,1.1693,1.6892,0 +2.3952,9.5083,-3.1783,-3.0086,0 +3.2704,6.9321,-1.0456,0.23447,0 +-1.3931,1.5664,7.5382,0.78403,0 +1.6406,3.5488,1.3964,-0.36424,0 +2.7744,6.8576,-1.0671,0.075416,0 +2.4287,9.3821,-3.2477,-1.4543,0 +4.2134,-2.806,2.0116,0.67412,0 +1.6472,0.48213,4.7449,1.225,0 +2.0597,-0.99326,5.2119,-0.29312,0 +0.3798,0.7098,0.7572,-0.4444,0 +1.0135,8.4551,-1.672,-2.0815,0 +4.5691,-4.4552,3.1769,0.0042961,0 +0.57461,10.1105,-1.6917,-4.3922,0 +0.5734,9.1938,-0.9094,-1.872,0 +5.2868,3.257,-1.3721,1.1668,0 +4.0102,10.6568,-4.1388,-5.0646,0 +4.1425,-3.6792,3.8281,1.6297,0 +3.0934,-2.9177,2.2232,0.22283,0 +2.2034,5.9947,0.53009,0.84998,0 +3.744,0.79459,0.95851,1.0077,0 +3.0329,2.2948,2.1135,0.35084,0 +3.7731,7.2073,-1.6814,-0.94742,0 +3.1557,2.8908,0.59693,0.79825,0 +1.8114,7.6067,-0.9788,-2.4668,0 +4.988,7.2052,-3.2846,-1.1608,0 +2.483,6.6155,-0.79287,-0.90863,0 +1.594,4.7055,1.3758,0.081882,0 +-0.016103,9.7484,0.15394,-1.6134,0 +3.8496,9.7939,-4.1508,-4.4582,0 +0.9297,-3.7971,4.6429,-0.2957,0 +4.9342,2.4107,-0.17594,1.6245,0 +3.8417,10.0215,-4.2699,-4.9159,0 +5.3915,9.9946,-3.8081,-3.3642,0 +4.4072,-0.070365,2.0416,1.1319,0 +2.6946,6.7976,-0.40301,0.44912,0 +5.2756,0.13863,0.12138,1.1435,0 +3.4312,6.2637,-1.9513,-0.36165,0 +4.052,-0.16555,0.45383,0.51248,0 +1.3638,-4.7759,8.4182,-1.8836,0 +0.89566,7.7763,-2.7473,-1.9353,0 +1.9265,7.7557,-0.16823,-3.0771,0 +0.20977,-0.46146,7.7267,0.90946,0 +4.068,-2.9363,2.1992,0.50084,0 +2.877,-4.0599,3.6259,-0.32544,0 +0.3223,-0.89808,8.0883,0.69222,0 +-1.3,10.2678,-2.953,-5.8638,0 +1.7747,-6.4334,8.15,-0.89828,0 +1.3419,-4.4221,8.09,-1.7349,0 +0.89606,10.5471,-1.4175,-4.0327,0 +0.44125,2.9487,4.3225,0.7155,0 +3.2422,6.2265,0.12224,-1.4466,0 +2.5678,3.5136,0.61406,-0.40691,0 +-2.2153,11.9625,0.078538,-7.7853,0 +4.1349,6.1189,-2.4294,-0.19613,0 +1.934,-9.2828e-06,4.816,-0.33967,0 +2.5068,1.1588,3.9249,0.12585,0 +2.1464,6.0795,-0.5778,-2.2302,0 +0.051979,7.0521,-2.0541,-3.1508,0 +1.2706,8.035,-0.19651,-2.1888,0 +1.143,0.83391,5.4552,-0.56984,0 +2.2928,9.0386,-3.2417,-1.2991,0 +0.3292,-4.4552,4.5718,-0.9888,0 +2.9719,6.8369,-0.2702,0.71291,0 +1.6849,8.7489,-1.2641,-1.3858,0 +-1.9177,11.6894,2.5454,-3.2763,0 +2.3729,10.4726,-3.0087,-3.2013,0 +1.0284,9.767,-1.3687,-1.7853,0 +0.27451,9.2186,-3.2863,-4.8448,0 +1.6032,-4.7863,8.5193,-2.1203,0 +4.616,10.1788,-4.2185,-4.4245,0 +4.2478,7.6956,-2.7696,-1.0767,0 +4.0215,-2.7004,2.4957,0.36636,0 +5.0297,-4.9704,3.5025,-0.23751,0 +1.5902,2.2948,3.2403,0.18404,0 +2.1274,5.1939,-1.7971,-1.1763,0 +1.1811,8.3847,-2.0567,-0.90345,0 +0.3292,-4.4552,4.5718,-0.9888,0 +5.7353,5.2808,-2.2598,0.075416,0 +2.6718,5.6574,0.72974,-1.4892,0 +1.5799,-4.7076,7.9186,-1.5487,0 +2.9499,2.2493,1.3458,-0.037083,0 +0.5195,-3.2633,3.0895,-0.9849,0 +3.7352,9.5911,-3.9032,-3.3487,0 +-1.7344,2.0175,7.7618,0.93532,0 +3.884,10.0277,-3.9298,-4.0819,0 +3.5257,1.2829,1.9276,1.7991,0 +4.4549,2.4976,1.0313,0.96894,0 +-0.16108,-6.4624,8.3573,-1.5216,0 +4.2164,9.4607,-4.9288,-5.2366,0 +3.5152,6.8224,-0.67377,-0.46898,0 +1.6988,2.9094,2.9044,0.11033,0 +1.0607,2.4542,2.5188,-0.17027,0 +2.0421,1.2436,4.2171,0.90429,0 +3.5594,1.3078,1.291,1.6556,0 +3.0009,5.8126,-2.2306,-0.66553,0 +3.9294,1.4112,1.8076,0.89782,0 +3.4667,-4.0724,4.2882,1.5418,0 +3.966,3.9213,0.70574,0.33662,0 +1.0191,2.33,4.9334,0.82929,0 +0.96414,5.616,2.2138,-0.12501,0 +1.8205,6.7562,0.0099913,0.39481,0 +4.9923,7.8653,-2.3515,-0.71984,0 +-1.1804,11.5093,0.15565,-6.8194,0 +4.0329,0.23175,0.89082,1.1823,0 +0.66018,10.3878,-1.4029,-3.9151,0 +3.5982,7.1307,-1.3035,0.21248,0 +-1.8584,7.886,-1.6643,-1.8384,0 +4.0972,0.46972,1.6671,0.91593,0 +3.3299,0.91254,1.5806,0.39352,0 +3.1088,3.1122,0.80857,0.4336,0 +-4.2859,8.5234,3.1392,-0.91639,0 +-1.2528,10.2036,2.1787,-5.6038,0 +0.5195,-3.2633,3.0895,-0.9849,0 +0.3292,-4.4552,4.5718,-0.9888,0 +0.88872,5.3449,2.045,-0.19355,0 +3.5458,9.3718,-4.0351,-3.9564,0 +-0.21661,8.0329,1.8848,-3.8853,0 +2.7206,9.0821,-3.3111,-0.96811,0 +3.2051,8.6889,-2.9033,-0.7819,0 +2.6917,10.8161,-3.3,-4.2888,0 +-2.3242,11.5176,1.8231,-5.375,0 +2.7161,-4.2006,4.1914,0.16981,0 +3.3848,3.2674,0.90967,0.25128,0 +1.7452,4.8028,2.0878,0.62627,0 +2.805,0.57732,1.3424,1.2133,0 +5.7823,5.5788,-2.4089,-0.056479,0 +3.8999,1.734,1.6011,0.96765,0 +3.5189,6.332,-1.7791,-0.020273,0 +3.2294,7.7391,-0.37816,-2.5405,0 +3.4985,3.1639,0.22677,-0.1651,0 +2.1948,1.3781,1.1582,0.85774,0 +2.2526,9.9636,-3.1749,-2.9944,0 +4.1529,-3.9358,2.8633,-0.017686,0 +0.74307,11.17,-1.3824,-4.0728,0 +1.9105,8.871,-2.3386,-0.75604,0 +-1.5055,0.070346,6.8681,-0.50648,0 +0.58836,10.7727,-1.3884,-4.3276,0 +3.2303,7.8384,-3.5348,-1.2151,0 +-1.9922,11.6542,2.6542,-5.2107,0 +2.8523,9.0096,-3.761,-3.3371,0 +4.2772,2.4955,0.48554,0.36119,0 +1.5099,0.039307,6.2332,-0.30346,0 +5.4188,10.1457,-4.084,-3.6991,0 +0.86202,2.6963,4.2908,0.54739,0 +3.8117,10.1457,-4.0463,-4.5629,0 +0.54777,10.3754,-1.5435,-4.1633,0 +2.3718,7.4908,0.015989,-1.7414,0 +-2.4953,11.1472,1.9353,-3.4638,0 +4.6361,-2.6611,2.8358,1.1991,0 +-2.2527,11.5321,2.5899,-3.2737,0 +3.7982,10.423,-4.1602,-4.9728,0 +-0.36279,8.2895,-1.9213,-3.3332,0 +2.1265,6.8783,0.44784,-2.2224,0 +0.86736,5.5643,1.6765,-0.16769,0 +3.7831,10.0526,-3.8869,-3.7366,0 +-2.2623,12.1177,0.28846,-7.7581,0 +1.2616,4.4303,-1.3335,-1.7517,0 +2.6799,3.1349,0.34073,0.58489,0 +-0.39816,5.9781,1.3912,-1.1621,0 +4.3937,0.35798,2.0416,1.2004,0 +2.9695,5.6222,0.27561,-1.1556,0 +1.3049,-0.15521,6.4911,-0.75346,0 +2.2123,-5.8395,7.7687,-0.85302,0 +1.9647,6.9383,0.57722,0.66377,0 +3.0864,-2.5845,2.2309,0.30947,0 +0.3798,0.7098,0.7572,-0.4444,0 +0.58982,7.4266,1.2353,-2.9595,0 +0.14783,7.946,1.0742,-3.3409,0 +-0.062025,6.1975,1.099,-1.131,0 +4.223,1.1319,0.72202,0.96118,0 +0.64295,7.1018,0.3493,-0.41337,0 +1.941,0.46351,4.6472,1.0879,0 +4.0047,0.45937,1.3621,1.6181,0 +3.7767,9.7794,-3.9075,-3.5323,0 +3.4769,-0.15314,2.53,2.4495,0 +1.9818,9.2621,-3.521,-1.872,0 +3.8023,-3.8696,4.044,0.95343,0 +4.3483,11.1079,-4.0857,-4.2539,0 +1.1518,1.3864,5.2727,-0.43536,0 +-1.2576,1.5892,7.0078,0.42455,0 +1.9572,-5.1153,8.6127,-1.4297,0 +-2.484,12.1611,2.8204,-3.7418,0 +-1.1497,1.2954,7.701,0.62627,0 +4.8368,10.0132,-4.3239,-4.3276,0 +-0.12196,8.8068,0.94566,-4.2267,0 +1.9429,6.3961,0.092248,0.58102,0 +1.742,-4.809,8.2142,-2.0659,0 +-1.5222,10.8409,2.7827,-4.0974,0 +-1.3,10.2678,-2.953,-5.8638,0 +3.4246,-0.14693,0.80342,0.29136,0 +2.5503,-4.9518,6.3729,-0.41596,0 +1.5691,6.3465,-0.1828,-2.4099,0 +1.3087,4.9228,2.0013,0.22024,0 +5.1776,8.2316,-3.2511,-1.5694,0 +2.229,9.6325,-3.1123,-2.7164,0 +5.6272,10.0857,-4.2931,-3.8142,0 +1.2138,8.7986,-2.1672,-0.74182,0 +0.3798,0.7098,0.7572,-0.4444,0 +0.5415,6.0319,1.6825,-0.46122,0 +4.0524,5.6802,-1.9693,0.026279,0 +4.7285,2.1065,-0.28305,1.5625,0 +3.4359,0.66216,2.1041,1.8922,0 +0.86816,10.2429,-1.4912,-4.0082,0 +3.359,9.8022,-3.8209,-3.7133,0 +3.6702,2.9942,0.85141,0.30688,0 +1.3349,6.1189,0.46497,0.49826,0 +3.1887,-3.4143,2.7742,-0.2026,0 +2.4527,2.9653,0.20021,-0.056479,0 +3.9121,2.9735,0.92852,0.60558,0 +3.9364,10.5885,-3.725,-4.3133,0 +3.9414,-3.2902,3.1674,1.0866,0 +3.6922,-3.9585,4.3439,1.3517,0 +5.681,7.795,-2.6848,-0.92544,0 +0.77124,9.0862,-1.2281,-1.4996,0 +3.5761,9.7753,-3.9795,-3.4638,0 +1.602,6.1251,0.52924,0.47886,0 +2.6682,10.216,-3.4414,-4.0069,0 +2.0007,1.8644,2.6491,0.47369,0 +0.64215,3.1287,4.2933,0.64696,0 +4.3848,-3.0729,3.0423,1.2741,0 +0.77445,9.0552,-2.4089,-1.3884,0 +0.96574,8.393,-1.361,-1.4659,0 +3.0948,8.7324,-2.9007,-0.96682,0 +4.9362,7.6046,-2.3429,-0.85302,0 +-1.9458,11.2217,1.9079,-3.4405,0 +5.7403,-0.44284,0.38015,1.3763,0 +-2.6989,12.1984,0.67661,-8.5482,0 +1.1472,3.5985,1.9387,-0.43406,0 +2.9742,8.96,-2.9024,-1.0379,0 +4.5707,7.2094,-3.2794,-1.4944,0 +0.1848,6.5079,2.0133,-0.87242,0 +0.87256,9.2931,-0.7843,-2.1978,0 +0.39559,6.8866,1.0588,-0.67587,0 +3.8384,6.1851,-2.0439,-0.033204,0 +2.8209,7.3108,-0.81857,-1.8784,0 +2.5817,9.7546,-3.1749,-2.9957,0 +3.8213,0.23175,2.0133,2.0564,0 +0.3798,0.7098,0.7572,-0.4444,0 +3.4893,6.69,-1.2042,-0.38751,0 +-1.7781,0.8546,7.1303,0.027572,0 +2.0962,2.4769,1.9379,-0.040962,0 +0.94732,-0.57113,7.1903,-0.67587,0 +2.8261,9.4007,-3.3034,-1.0509,0 +0.0071249,8.3661,0.50781,-3.8155,0 +0.96788,7.1907,1.2798,-2.4565,0 +4.7432,2.1086,0.1368,1.6543,0 +3.6575,7.2797,-2.2692,-1.144,0 +3.8832,6.4023,-2.432,-0.98363,0 +3.4776,8.811,-3.1886,-0.92285,0 +1.1315,7.9212,1.093,-2.8444,0 +2.8237,2.8597,0.19678,0.57196,0 +1.9321,6.0423,0.26019,-2.053,0 +3.0632,-3.3315,5.1305,0.8267,0 +-1.8411,10.8306,2.769,-3.0901,0 +2.8084,11.3045,-3.3394,-4.4194,0 +2.5698,-4.4076,5.9856,0.078002,0 +-0.12624,10.3216,-3.7121,-6.1185,0 +3.3756,-4.0951,4.367,1.0698,0 +-0.048008,-1.6037,8.4756,0.75558,0 +0.5706,-0.0248,1.2421,-0.5621,0 +0.88444,6.5906,0.55837,-0.44182,0 +3.8644,3.7061,0.70403,0.35214,0 +1.2999,2.5762,2.0107,-0.18967,0 +2.0051,-6.8638,8.132,-0.2401,0 +4.9294,0.27727,0.20792,0.33662,0 +2.8297,6.3485,-0.73546,-0.58665,0 +2.565,8.633,-2.9941,-1.3082,0 +2.093,8.3061,0.022844,-3.2724,0 +4.6014,5.6264,-2.1235,0.19309,0 +5.0617,-0.35799,0.44698,0.99868,0 +-0.2951,9.0489,-0.52725,-2.0789,0 +3.577,2.4004,1.8908,0.73231,0 +3.9433,2.5017,1.5215,0.903,0 +2.6648,10.754,-3.3994,-4.1685,0 +5.9374,6.1664,-2.5905,-0.36553,0 +2.0153,1.8479,3.1375,0.42843,0 +5.8782,5.9409,-2.8544,-0.60863,0 +-2.3983,12.606,2.9464,-5.7888,0 +1.762,4.3682,2.1384,0.75429,0 +4.2406,-2.4852,1.608,0.7155,0 +3.4669,6.87,-1.0568,-0.73147,0 +3.1896,5.7526,-0.18537,-0.30087,0 +0.81356,9.1566,-2.1492,-4.1814,0 +0.52855,0.96427,4.0243,-1.0483,0 +2.1319,-2.0403,2.5574,-0.061652,0 +0.33111,4.5731,2.057,-0.18967,0 +1.2746,8.8172,-1.5323,-1.7957,0 +2.2091,7.4556,-1.3284,-3.3021,0 +2.5328,7.528,-0.41929,-2.6478,0 +3.6244,1.4609,1.3501,1.9284,0 +-1.3885,12.5026,0.69118,-7.5487,0 +5.7227,5.8312,-2.4097,-0.24527,0 +3.3583,10.3567,-3.7301,-3.6991,0 +2.5227,2.2369,2.7236,0.79438,0 +0.045304,6.7334,1.0708,-0.9332,0 +4.8278,7.7598,-2.4491,-1.2216,0 +1.9476,-4.7738,8.527,-1.8668,0 +2.7659,0.66216,4.1494,-0.28406,0 +-0.10648,-0.76771,7.7575,0.64179,0 +0.72252,-0.053811,5.6703,-1.3509,0 +4.2475,1.4816,-0.48355,0.95343,0 +3.9772,0.33521,2.2566,2.1625,0 +3.6667,4.302,0.55923,0.33791,0 +2.8232,10.8513,-3.1466,-3.9784,0 +-1.4217,11.6542,-0.057699,-7.1025,0 +4.2458,1.1981,0.66633,0.94696,0 +4.1038,-4.8069,3.3491,-0.49225,0 +1.4507,8.7903,-2.2324,-0.65259,0 +3.4647,-3.9172,3.9746,0.36119,0 +1.8533,6.1458,1.0176,-2.0401,0 +3.5288,0.71596,1.9507,1.9375,0 +3.9719,1.0367,0.75973,1.0013,0 +3.534,9.3614,-3.6316,-1.2461,0 +3.6894,9.887,-4.0788,-4.3664,0 +3.0672,-4.4117,3.8238,-0.81682,0 +2.6463,-4.8152,6.3549,0.003003,0 +2.2893,3.733,0.6312,-0.39786,0 +1.5673,7.9274,-0.056842,-2.1694,0 +4.0405,0.51524,1.0279,1.106,0 +4.3846,-4.8794,3.3662,-0.029324,0 +2.0165,-0.25246,5.1707,1.0763,0 +4.0446,11.1741,-4.3582,-4.7401,0 +-0.33729,-0.64976,7.6659,0.72326,0 +-2.4604,12.7302,0.91738,-7.6418,0 +4.1195,10.9258,-3.8929,-4.1802,0 +2.0193,0.82356,4.6369,1.4202,0 +1.5701,7.9129,0.29018,-2.1953,0 +2.6415,7.586,-0.28562,-1.6677,0 +5.0214,8.0764,-3.0515,-1.7155,0 +4.3435,3.3295,0.83598,0.64955,0 +1.8238,-6.7748,8.3873,-0.54139,0 +3.9382,0.9291,0.78543,0.6767,0 +2.2517,-5.1422,4.2916,-1.2487,0 +5.504,10.3671,-4.413,-4.0211,0 +2.8521,9.171,-3.6461,-1.2047,0 +1.1676,9.1566,-2.0867,-0.80647,0 +2.6104,8.0081,-0.23592,-1.7608,0 +0.32444,10.067,-1.1982,-4.1284,0 +3.8962,-4.7904,3.3954,-0.53751,0 +2.1752,-0.8091,5.1022,-0.67975,0 +1.1588,8.9331,-2.0807,-1.1272,0 +4.7072,8.2957,-2.5605,-1.4905,0 +-1.9667,11.8052,-0.40472,-7.8719,0 +4.0552,0.40143,1.4563,0.65343,0 +2.3678,-6.839,8.4207,-0.44829,0 +0.33565,6.8369,0.69718,-0.55691,0 +4.3398,-5.3036,3.8803,-0.70432,0 +1.5456,8.5482,0.4187,-2.1784,0 +1.4276,8.3847,-2.0995,-1.9677,0 +-0.27802,8.1881,-3.1338,-2.5276,0 +0.93611,8.6413,-1.6351,-1.3043,0 +4.6352,-3.0087,2.6773,1.212,0 +1.5268,-5.5871,8.6564,-1.722,0 +0.95626,2.4728,4.4578,0.21636,0 +-2.7914,1.7734,6.7756,-0.39915,0 +5.2032,3.5116,-1.2538,1.0129,0 +3.1836,7.2321,-1.0713,-2.5909,0 +0.65497,5.1815,1.0673,-0.42113,0 +5.6084,10.3009,-4.8003,-4.3534,0 +1.105,7.4432,0.41099,-3.0332,0 +3.9292,-2.9156,2.2129,0.30817,0 +1.1558,6.4003,1.5506,0.6961,0 +2.5581,2.6218,1.8513,0.40257,0 +2.7831,10.9796,-3.557,-4.4039,0 +3.7635,2.7811,0.66119,0.34179,0 +-2.6479,10.1374,-1.331,-5.4707,0 +1.0652,8.3682,-1.4004,-1.6509,0 +-1.4275,11.8797,0.41613,-6.9978,0 +5.7456,10.1808,-4.7857,-4.3366,0 +5.086,3.2798,-1.2701,1.1189,0 +3.4092,5.4049,-2.5228,-0.89958,0 +-0.2361,9.3221,2.1307,-4.3793,0 +3.8197,8.9951,-4.383,-4.0327,0 +-1.1391,1.8127,6.9144,0.70127,0 +4.9249,0.68906,0.77344,1.2095,0 +2.5089,6.841,-0.029423,0.44912,0 +-0.2062,9.2207,-3.7044,-6.8103,0 +3.946,6.8514,-1.5443,-0.5582,0 +-0.278,8.1881,-3.1338,-2.5276,0 +1.8592,3.2074,-0.15966,-0.26208,0 +0.56953,7.6294,1.5754,-3.2233,0 +3.4626,-4.449,3.5427,0.15429,0 +3.3951,1.1484,2.1401,2.0862,0 +5.0429,-0.52974,0.50439,1.106,0 +3.7758,7.1783,-1.5195,0.40128,0 +4.6562,7.6398,-2.4243,-1.2384,0 +4.0948,-2.9674,2.3689,0.75429,0 +1.8384,6.063,0.54723,0.51248,0 +2.0153,0.43661,4.5864,-0.3151,0 +3.5251,0.7201,1.6928,0.64438,0 +3.757,-5.4236,3.8255,-1.2526,0 +2.5989,3.5178,0.7623,0.81119,0 +1.8994,0.97462,4.2265,0.81377,0 +3.6941,-3.9482,4.2625,1.1577,0 +4.4295,-2.3507,1.7048,0.90946,0 +6.8248,5.2187,-2.5425,0.5461,0 +1.8967,-2.5163,2.8093,-0.79742,0 +2.1526,-6.1665,8.0831,-0.34355,0 +3.3004,7.0811,-1.3258,0.22283,0 +2.7213,7.05,-0.58808,0.41809,0 +3.8846,-3.0336,2.5334,0.20214,0 +4.1665,-0.4449,0.23448,0.27843,0 +0.94225,5.8561,1.8762,-0.32544,0 +5.1321,-0.031048,0.32616,1.1151,0 +0.38251,6.8121,1.8128,-0.61251,0 +3.0333,-2.5928,2.3183,0.303,0 +2.9233,6.0464,-0.11168,-0.58665,0 +1.162,10.2926,-1.2821,-4.0392,0 +3.7791,2.5762,1.3098,0.5655,0 +0.77765,5.9781,1.1941,-0.3526,0 +-0.38388,-1.0471,8.0514,0.49567,0 +0.21084,9.4359,-0.094543,-1.859,0 +2.9571,-4.5938,5.9068,0.57196,0 +4.6439,-3.3729,2.5976,0.55257,0 +3.3577,-4.3062,6.0241,0.18274,0 +3.5127,2.9073,1.0579,0.40774,0 +2.6562,10.7044,-3.3085,-4.0767,0 +-1.3612,10.694,1.7022,-2.9026,0 +-0.278,8.1881,-3.1338,-2.5276,0 +1.04,-6.9321,8.2888,-1.2991,0 +2.1881,2.7356,1.3278,-0.1832,0 +4.2756,-2.6528,2.1375,0.94437,0 +-0.11996,6.8741,0.91995,-0.6694,0 +2.9736,8.7944,-3.6359,-1.3754,0 +3.7798,-3.3109,2.6491,0.066365,0 +5.3586,3.7557,-1.7345,1.0789,0 +1.8373,6.1292,0.84027,0.55257,0 +1.2262,0.89599,5.7568,-0.11596,0 +-0.048008,-0.56078,7.7215,0.453,0 +0.5706,-0.024841,1.2421,-0.56208,0 +4.3634,0.46351,1.4281,2.0202,0 +3.482,-4.1634,3.5008,-0.078462,0 +0.51947,-3.2633,3.0895,-0.98492,0 +2.3164,-2.628,3.1529,-0.08622,0 +-1.8348,11.0334,3.1863,-4.8888,0 +1.3754,8.8793,-1.9136,-0.53751,0 +-0.16682,5.8974,0.49839,-0.70044,0 +0.29961,7.1328,-0.31475,-1.1828,0 +0.25035,9.3262,-3.6873,-6.2543,0 +2.4673,1.3926,1.7125,0.41421,0 +0.77805,6.6424,-1.1425,-1.0573,0 +3.4465,2.9508,1.0271,0.5461,0 +2.2429,-4.1427,5.2333,-0.40173,0 +3.7321,-3.884,3.3577,-0.0060486,0 +4.3365,-3.584,3.6884,0.74912,0 +-2.0759,10.8223,2.6439,-4.837,0 +4.0715,7.6398,-2.0824,-1.1698,0 +0.76163,5.8209,1.1959,-0.64613,0 +-0.53966,7.3273,0.46583,-1.4543,0 +2.6213,5.7919,0.065686,-1.5759,0 +3.0242,-3.3378,2.5865,-0.54785,0 +5.8519,5.3905,-2.4037,-0.061652,0 +0.5706,-0.0248,1.2421,-0.5621,0 +3.9771,11.1513,-3.9272,-4.3444,0 +1.5478,9.1814,-1.6326,-1.7375,0 +0.74054,0.36625,2.1992,0.48403,0 +0.49571,10.2243,-1.097,-4.0159,0 +1.645,7.8612,-0.87598,-3.5569,0 +3.6077,6.8576,-1.1622,0.28231,0 +3.2403,-3.7082,5.2804,0.41291,0 +3.9166,10.2491,-4.0926,-4.4659,0 +3.9262,6.0299,-2.0156,-0.065531,0 +5.591,10.4643,-4.3839,-4.3379,0 +3.7522,-3.6978,3.9943,1.3051,0 +1.3114,4.5462,2.2935,0.22541,0 +3.7022,6.9942,-1.8511,-0.12889,0 +4.364,-3.1039,2.3757,0.78532,0 +3.5829,1.4423,1.0219,1.4008,0 +4.65,-4.8297,3.4553,-0.25174,0 +5.1731,3.9606,-1.983,0.40774,0 +3.2692,3.4184,0.20706,-0.066824,0 +2.4012,1.6223,3.0312,0.71679,0 +1.7257,-4.4697,8.2219,-1.8073,0 +4.7965,6.9859,-1.9967,-0.35001,0 +4.0962,10.1891,-3.9323,-4.1827,0 +2.5559,3.3605,2.0321,0.26809,0 +3.4916,8.5709,-3.0326,-0.59182,0 +0.5195,-3.2633,3.0895,-0.9849,0 +2.9856,7.2673,-0.409,-2.2431,0 +4.0932,5.4132,-1.8219,0.23576,0 +1.7748,-0.76978,5.5854,1.3039,0 +5.2012,0.32694,0.17965,1.1797,0 +-0.45062,-1.3678,7.0858,-0.40303,0 +4.8451,8.1116,-2.9512,-1.4724,0 +0.74841,7.2756,1.1504,-0.5388,0 +5.1213,8.5565,-3.3917,-1.5474,0 +3.6181,-3.7454,2.8273,-0.71208,0 +0.040498,8.5234,1.4461,-3.9306,0 +-2.6479,10.1374,-1.331,-5.4707,0 +0.37984,0.70975,0.75716,-0.44441,0 +-0.95923,0.091039,6.2204,-1.4828,0 +2.8672,10.0008,-3.2049,-3.1095,0 +1.0182,9.109,-0.62064,-1.7129,0 +-2.7143,11.4535,2.1092,-3.9629,0 +3.8244,-3.1081,2.4537,0.52024,0 +2.7961,2.121,1.8385,0.38317,0 +3.5358,6.7086,-0.81857,0.47886,0 +-0.7056,8.7241,2.2215,-4.5965,0 +4.1542,7.2756,-2.4766,-1.2099,0 +0.92703,9.4318,-0.66263,-1.6728,0 +1.8216,-6.4748,8.0514,-0.41855,0 +-2.4473,12.6247,0.73573,-7.6612,0 +3.5862,-3.0957,2.8093,0.24481,0 +0.66191,9.6594,-0.28819,-1.6638,0 +4.7926,1.7071,-0.051701,1.4926,0 +4.9852,8.3516,-2.5425,-1.2823,0 +0.75736,3.0294,2.9164,-0.068117,0 +4.6499,7.6336,-1.9427,-0.37458,0 +-0.023579,7.1742,0.78457,-0.75734,0 +0.85574,0.0082678,6.6042,-0.53104,0 +0.88298,0.66009,6.0096,-0.43277,0 +4.0422,-4.391,4.7466,1.137,0 +2.2546,8.0992,-0.24877,-3.2698,0 +0.38478,6.5989,-0.3336,-0.56466,0 +3.1541,-5.1711,6.5991,0.57455,0 +2.3969,0.23589,4.8477,1.437,0 +4.7114,2.0755,-0.2702,1.2379,0 +4.0127,10.1477,-3.9366,-4.0728,0 +2.6606,3.1681,1.9619,0.18662,0 +3.931,1.8541,-0.023425,1.2314,0 +0.01727,8.693,1.3989,-3.9668,0 +3.2414,0.40971,1.4015,1.1952,0 +2.2504,3.5757,0.35273,0.2836,0 +-1.3971,3.3191,-1.3927,-1.9948,1 +0.39012,-0.14279,-0.031994,0.35084,1 +-1.6677,-7.1535,7.8929,0.96765,1 +-3.8483,-12.8047,15.6824,-1.281,1 +-3.5681,-8.213,10.083,0.96765,1 +-2.2804,-0.30626,1.3347,1.3763,1 +-1.7582,2.7397,-2.5323,-2.234,1 +-0.89409,3.1991,-1.8219,-2.9452,1 +0.3434,0.12415,-0.28733,0.14654,1 +-0.9854,-6.661,5.8245,0.5461,1 +-2.4115,-9.1359,9.3444,-0.65259,1 +-1.5252,-6.2534,5.3524,0.59912,1 +-0.61442,-0.091058,-0.31818,0.50214,1 +-0.36506,2.8928,-3.6461,-3.0603,1 +-5.9034,6.5679,0.67661,-6.6797,1 +-1.8215,2.7521,-0.72261,-2.353,1 +-0.77461,-1.8768,2.4023,1.1319,1 +-1.8187,-9.0366,9.0162,-0.12243,1 +-3.5801,-12.9309,13.1779,-2.5677,1 +-1.8219,-6.8824,5.4681,0.057313,1 +-0.3481,-0.38696,-0.47841,0.62627,1 +0.47368,3.3605,-4.5064,-4.0431,1 +-3.4083,4.8587,-0.76888,-4.8668,1 +-1.6662,-0.30005,1.4238,0.024986,1 +-2.0962,-7.1059,6.6188,-0.33708,1 +-2.6685,-10.4519,9.1139,-1.7323,1 +-0.47465,-4.3496,1.9901,0.7517,1 +1.0552,1.1857,-2.6411,0.11033,1 +1.1644,3.8095,-4.9408,-4.0909,1 +-4.4779,7.3708,-0.31218,-6.7754,1 +-2.7338,0.45523,2.4391,0.21766,1 +-2.286,-5.4484,5.8039,0.88231,1 +-1.6244,-6.3444,4.6575,0.16981,1 +0.50813,0.47799,-1.9804,0.57714,1 +1.6408,4.2503,-4.9023,-2.6621,1 +0.81583,4.84,-5.2613,-6.0823,1 +-5.4901,9.1048,-0.38758,-5.9763,1 +-3.2238,2.7935,0.32274,-0.86078,1 +-2.0631,-1.5147,1.219,0.44524,1 +-0.91318,-2.0113,-0.19565,0.066365,1 +0.6005,1.9327,-3.2888,-0.32415,1 +0.91315,3.3377,-4.0557,-1.6741,1 +-0.28015,3.0729,-3.3857,-2.9155,1 +-3.6085,3.3253,-0.51954,-3.5737,1 +-6.2003,8.6806,0.0091344,-3.703,1 +-4.2932,3.3419,0.77258,-0.99785,1 +-3.0265,-0.062088,0.68604,-0.055186,1 +-1.7015,-0.010356,-0.99337,-0.53104,1 +-0.64326,2.4748,-2.9452,-1.0276,1 +-0.86339,1.9348,-2.3729,-1.0897,1 +-2.0659,1.0512,-0.46298,-1.0974,1 +-2.1333,1.5685,-0.084261,-1.7453,1 +-1.2568,-1.4733,2.8718,0.44653,1 +-3.1128,-6.841,10.7402,-1.0172,1 +-4.8554,-5.9037,10.9818,-0.82199,1 +-2.588,3.8654,-0.3336,-1.2797,1 +0.24394,1.4733,-1.4192,-0.58535,1 +-1.5322,-5.0966,6.6779,0.17498,1 +-4.0025,-13.4979,17.6772,-3.3202,1 +-4.0173,-8.3123,12.4547,-1.4375,1 +-3.0731,-0.53181,2.3877,0.77627,1 +-1.979,3.2301,-1.3575,-2.5819,1 +-0.4294,-0.14693,0.044265,-0.15605,1 +-2.234,-7.0314,7.4936,0.61334,1 +-4.211,-12.4736,14.9704,-1.3884,1 +-3.8073,-8.0971,10.1772,0.65084,1 +-2.5912,-0.10554,1.2798,1.0414,1 +-2.2482,3.0915,-2.3969,-2.6711,1 +-1.4427,3.2922,-1.9702,-3.4392,1 +-0.39416,-0.020702,-0.066267,-0.44699,1 +-1.522,-6.6383,5.7491,-0.10691,1 +-2.8267,-9.0407,9.0694,-0.98233,1 +-1.7263,-6.0237,5.2419,0.29524,1 +-0.94255,0.039307,-0.24192,0.31593,1 +-0.89569,3.0025,-3.6067,-3.4457,1 +-6.2815,6.6651,0.52581,-7.0107,1 +-2.3211,3.166,-1.0002,-2.7151,1 +-1.3414,-2.0776,2.8093,0.60688,1 +-2.258,-9.3263,9.3727,-0.85949,1 +-3.8858,-12.8461,12.7957,-3.1353,1 +-1.8969,-6.7893,5.2761,-0.32544,1 +-0.52645,-0.24832,-0.45613,0.41938,1 +0.0096613,3.5612,-4.407,-4.4103,1 +-3.8826,4.898,-0.92311,-5.0801,1 +-2.1405,-0.16762,1.321,-0.20906,1 +-2.4824,-7.3046,6.839,-0.59053,1 +-2.9098,-10.0712,8.4156,-1.9948,1 +-0.60975,-4.002,1.8471,0.6017,1 +0.83625,1.1071,-2.4706,-0.062945,1 +0.60731,3.9544,-4.772,-4.4853,1 +-4.8861,7.0542,-0.17252,-6.959,1 +-3.1366,0.42212,2.6225,-0.064238,1 +-2.5754,-5.6574,6.103,0.65214,1 +-1.8782,-6.5865,4.8486,-0.021566,1 +0.24261,0.57318,-1.9402,0.44007,1 +1.296,4.2855,-4.8457,-2.9013,1 +0.25943,5.0097,-5.0394,-6.3862,1 +-5.873,9.1752,-0.27448,-6.0422,1 +-3.4605,2.6901,0.16165,-1.0224,1 +-2.3797,-1.4402,1.1273,0.16076,1 +-1.2424,-1.7175,-0.52553,-0.21036,1 +0.20216,1.9182,-3.2828,-0.61768,1 +0.59823,3.5012,-3.9795,-1.7841,1 +-0.77995,3.2322,-3.282,-3.1004,1 +-4.1409,3.4619,-0.47841,-3.8879,1 +-6.5084,8.7696,0.23191,-3.937,1 +-4.4996,3.4288,0.56265,-1.1672,1 +-3.3125,0.10139,0.55323,-0.2957,1 +-1.9423,0.3766,-1.2898,-0.82458,1 +-0.75793,2.5349,-3.0464,-1.2629,1 +-0.95403,1.9824,-2.3163,-1.1957,1 +-2.2173,1.4671,-0.72689,-1.1724,1 +-2.799,1.9679,-0.42357,-2.1125,1 +-1.8629,-0.84841,2.5377,0.097399,1 +-3.5916,-6.2285,10.2389,-1.1543,1 +-5.1216,-5.3118,10.3846,-1.0612,1 +-3.2854,4.0372,-0.45356,-1.8228,1 +-0.56877,1.4174,-1.4252,-1.1246,1 +-2.3518,-4.8359,6.6479,-0.060358,1 +-4.4861,-13.2889,17.3087,-3.2194,1 +-4.3876,-7.7267,11.9655,-1.4543,1 +-3.3604,-0.32696,2.1324,0.6017,1 +-1.0112,2.9984,-1.1664,-1.6185,1 +0.030219,-1.0512,1.4024,0.77369,1 +-1.6514,-8.4985,9.1122,1.2379,1 +-3.2692,-12.7406,15.5573,-0.14182,1 +-2.5701,-6.8452,8.9999,2.1353,1 +-1.3066,0.25244,0.7623,1.7758,1 +-1.6637,3.2881,-2.2701,-2.2224,1 +-0.55008,2.8659,-1.6488,-2.4319,1 +0.21431,-0.69529,0.87711,0.29653,1 +-0.77288,-7.4473,6.492,0.36119,1 +-1.8391,-9.0883,9.2416,-0.10432,1 +-0.63298,-5.1277,4.5624,1.4797,1 +0.0040545,0.62905,-0.64121,0.75817,1 +-0.28696,3.1784,-3.5767,-3.1896,1 +-5.2406,6.6258,-0.19908,-6.8607,1 +-1.4446,2.1438,-0.47241,-1.6677,1 +-0.65767,-2.8018,3.7115,0.99739,1 +-1.5449,-10.1498,9.6152,-1.2332,1 +-2.8957,-12.0205,11.9149,-2.7552,1 +-0.81479,-5.7381,4.3919,0.3211,1 +0.50225,0.65388,-1.1793,0.39998,1 +0.74521,3.6357,-4.4044,-4.1414,1 +-2.9146,4.0537,-0.45699,-4.0327,1 +-1.3907,-1.3781,2.3055,-0.021566,1 +-1.786,-8.1157,7.0858,-1.2112,1 +-1.7322,-9.2828,7.719,-1.7168,1 +0.55298,-3.4619,1.7048,1.1008,1 +2.031,1.852,-3.0121,0.003003,1 +1.2279,4.0309,-4.6435,-3.9125,1 +-4.2249,6.2699,0.15822,-5.5457,1 +-2.5346,-0.77392,3.3602,0.00171,1 +-1.749,-6.332,6.0987,0.14266,1 +-0.539,-5.167,3.4399,0.052141,1 +1.5631,0.89599,-1.9702,0.65472,1 +2.3917,4.5565,-4.9888,-2.8987,1 +0.89512,4.7738,-4.8431,-5.5909,1 +-5.4808,8.1819,0.27818,-5.0323,1 +-2.8833,1.7713,0.68946,-0.4638,1 +-1.4174,-2.2535,1.518,0.61981,1 +0.4283,-0.94981,-1.0731,0.3211,1 +1.5904,2.2121,-3.1183,-0.11725,1 +1.7425,3.6833,-4.0129,-1.7207,1 +-0.23356,3.2405,-3.0669,-2.7784,1 +-3.6227,3.9958,-0.35845,-3.9047,1 +-6.1536,7.9295,0.61663,-3.2646,1 +-3.9172,2.6652,0.78886,-0.7819,1 +-2.2214,-0.23798,0.56008,0.05602,1 +-0.49241,0.89392,-1.6283,-0.56854,1 +0.26517,2.4066,-2.8416,-0.59958,1 +-0.10234,1.8189,-2.2169,-0.56725,1 +-1.6176,1.0926,-0.35502,-0.59958,1 +-1.8448,1.254,0.27218,-1.0728,1 +-1.2786,-2.4087,4.5735,0.47627,1 +-2.902,-7.6563,11.8318,-0.84268,1 +-4.3773,-5.5167,10.939,-0.4082,1 +-2.0529,3.8385,-0.79544,-1.2138,1 +0.18868,0.70148,-0.51182,0.0055892,1 +-1.7279,-6.841,8.9494,0.68058,1 +-3.3793,-13.7731,17.9274,-2.0323,1 +-3.1273,-7.1121,11.3897,-0.083634,1 +-2.121,-0.05588,1.949,1.353,1 +-1.7697,3.4329,-1.2144,-2.3789,1 +-0.0012852,0.13863,-0.19651,0.0081754,1 +-1.682,-6.8121,7.1398,1.3323,1 +-3.4917,-12.1736,14.3689,-0.61639,1 +-3.1158,-8.6289,10.4403,0.97153,1 +-2.0891,-0.48422,1.704,1.7435,1 +-1.6936,2.7852,-2.1835,-1.9276,1 +-1.2846,3.2715,-1.7671,-3.2608,1 +-0.092194,0.39315,-0.32846,-0.13794,1 +-1.0292,-6.3879,5.5255,0.79955,1 +-2.2083,-9.1069,8.9991,-0.28406,1 +-1.0744,-6.3113,5.355,0.80472,1 +-0.51003,-0.23591,0.020273,0.76334,1 +-0.36372,3.0439,-3.4816,-2.7836,1 +-6.3979,6.4479,1.0836,-6.6176,1 +-2.2501,3.3129,-0.88369,-2.8974,1 +-1.1859,-1.2519,2.2635,0.77239,1 +-1.8076,-8.8131,8.7086,-0.21682,1 +-3.3863,-12.9889,13.0545,-2.7202,1 +-1.4106,-7.108,5.6454,0.31335,1 +-0.21394,-0.68287,0.096532,1.1965,1 +0.48797,3.5674,-4.3882,-3.8116,1 +-3.8167,5.1401,-0.65063,-5.4306,1 +-1.9555,0.20692,1.2473,-0.3707,1 +-2.1786,-6.4479,6.0344,-0.20777,1 +-2.3299,-9.9532,8.4756,-1.8733,1 +0.0031201,-4.0061,1.7956,0.91722,1 +1.3518,1.0595,-2.3437,0.39998,1 +1.2309,3.8923,-4.8277,-4.0069,1 +-5.0301,7.5032,-0.13396,-7.5034,1 +-3.0799,0.60836,2.7039,-0.23751,1 +-2.2987,-5.227,5.63,0.91722,1 +-1.239,-6.541,4.8151,-0.033204,1 +0.75896,0.29176,-1.6506,0.83834,1 +1.6799,4.2068,-4.5398,-2.3931,1 +0.63655,5.2022,-5.2159,-6.1211,1 +-6.0598,9.2952,-0.43642,-6.3694,1 +-3.518,2.8763,0.1548,-1.2086,1 +-2.0336,-1.4092,1.1582,0.36507,1 +-0.69745,-1.7672,-0.34474,-0.12372,1 +0.75108,1.9161,-3.1098,-0.20518,1 +0.84546,3.4826,-3.6307,-1.3961,1 +-0.55648,3.2136,-3.3085,-2.7965,1 +-3.6817,3.2239,-0.69347,-3.4004,1 +-6.7526,8.8172,-0.061983,-3.725,1 +-4.577,3.4515,0.66719,-0.94742,1 +-2.9883,0.31245,0.45041,0.068951,1 +-1.4781,0.14277,-1.1622,-0.48579,1 +-0.46651,2.3383,-2.9812,-1.0431,1 +-0.8734,1.6533,-2.1964,-0.78061,1 +-2.1234,1.1815,-0.55552,-0.81165,1 +-2.3142,2.0838,-0.46813,-1.6767,1 +-1.4233,-0.98912,2.3586,0.39481,1 +-3.0866,-6.6362,10.5405,-0.89182,1 +-4.7331,-6.1789,11.388,-1.0741,1 +-2.8829,3.8964,-0.1888,-1.1672,1 +-0.036127,1.525,-1.4089,-0.76121,1 +-1.7104,-4.778,6.2109,0.3974,1 +-3.8203,-13.0551,16.9583,-2.3052,1 +-3.7181,-8.5089,12.363,-0.95518,1 +-2.899,-0.60424,2.6045,1.3776,1 +-0.98193,2.7956,-1.2341,-1.5668,1 +-0.17296,-1.1816,1.3818,0.7336,1 +-1.9409,-8.6848,9.155,0.94049,1 +-3.5713,-12.4922,14.8881,-0.47027,1 +-2.9915,-6.6258,8.6521,1.8198,1 +-1.8483,0.31038,0.77344,1.4189,1 +-2.2677,3.2964,-2.2563,-2.4642,1 +-0.50816,2.868,-1.8108,-2.2612,1 +0.14329,-1.0885,1.0039,0.48791,1 +-0.90784,-7.9026,6.7807,0.34179,1 +-2.0042,-9.3676,9.3333,-0.10303,1 +-0.93587,-5.1008,4.5367,1.3866,1 +-0.40804,0.54214,-0.52725,0.6586,1 +-0.8172,3.3812,-3.6684,-3.456,1 +-4.8392,6.6755,-0.24278,-6.5775,1 +-1.2792,2.1376,-0.47584,-1.3974,1 +-0.66008,-3.226,3.8058,1.1836,1 +-1.7713,-10.7665,10.2184,-1.0043,1 +-3.0061,-12.2377,11.9552,-2.1603,1 +-1.1022,-5.8395,4.5641,0.68705,1 +0.11806,0.39108,-0.98223,0.42843,1 +0.11686,3.735,-4.4379,-4.3741,1 +-2.7264,3.9213,-0.49212,-3.6371,1 +-1.2369,-1.6906,2.518,0.51636,1 +-1.8439,-8.6475,7.6796,-0.66682,1 +-1.8554,-9.6035,7.7764,-0.97716,1 +0.16358,-3.3584,1.3749,1.3569,1 +1.5077,1.9596,-3.0584,-0.12243,1 +0.67886,4.1199,-4.569,-4.1414,1 +-3.9934,5.8333,0.54723,-4.9379,1 +-2.3898,-0.78427,3.0141,0.76205,1 +-1.7976,-6.7686,6.6753,0.89912,1 +-0.70867,-5.5602,4.0483,0.903,1 +1.0194,1.1029,-2.3,0.59395,1 +1.7875,4.78,-5.1362,-3.2362,1 +0.27331,4.8773,-4.9194,-5.8198,1 +-5.1661,8.0433,0.044265,-4.4983,1 +-2.7028,1.6327,0.83598,-0.091393,1 +-1.4904,-2.2183,1.6054,0.89394,1 +-0.014902,-1.0243,-0.94024,0.64955,1 +0.88992,2.2638,-3.1046,-0.11855,1 +1.0637,3.6957,-4.1594,-1.9379,1 +-0.8471,3.1329,-3.0112,-2.9388,1 +-3.9594,4.0289,-0.35845,-3.8957,1 +-5.8818,7.6584,0.5558,-2.9155,1 +-3.7747,2.5162,0.83341,-0.30993,1 +-2.4198,-0.24418,0.70146,0.41809,1 +-0.83535,0.80494,-1.6411,-0.19225,1 +-0.30432,2.6528,-2.7756,-0.65647,1 +-0.60254,1.7237,-2.1501,-0.77027,1 +-2.1059,1.1815,-0.53324,-0.82716,1 +-2.0441,1.2271,0.18564,-1.091,1 +-1.5621,-2.2121,4.2591,0.27972,1 +-3.2305,-7.2135,11.6433,-0.94613,1 +-4.8426,-4.9932,10.4052,-0.53104,1 +-2.3147,3.6668,-0.6969,-1.2474,1 +-0.11716,0.60422,-0.38587,-0.059065,1 +-2.0066,-6.719,9.0162,0.099985,1 +-3.6961,-13.6779,17.5795,-2.6181,1 +-3.6012,-6.5389,10.5234,-0.48967,1 +-2.6286,0.18002,1.7956,0.97282,1 +-0.82601,2.9611,-1.2864,-1.4647,1 +0.31803,-0.99326,1.0947,0.88619,1 +-1.4454,-8.4385,8.8483,0.96894,1 +-3.1423,-13.0365,15.6773,-0.66165,1 +-2.5373,-6.959,8.8054,1.5289,1 +-1.366,0.18416,0.90539,1.5806,1 +-1.7064,3.3088,-2.2829,-2.1978,1 +-0.41965,2.9094,-1.7859,-2.2069,1 +0.37637,-0.82358,0.78543,0.74524,1 +-0.55355,-7.9233,6.7156,0.74394,1 +-1.6001,-9.5828,9.4044,0.081882,1 +-0.37013,-5.554,4.7749,1.547,1 +0.12126,0.22347,-0.47327,0.97024,1 +-0.27068,3.2674,-3.5562,-3.0888,1 +-5.119,6.6486,-0.049987,-6.5206,1 +-1.3946,2.3134,-0.44499,-1.4905,1 +-0.69879,-3.3771,4.1211,1.5043,1 +-1.48,-10.5244,9.9176,-0.5026,1 +-2.6649,-12.813,12.6689,-1.9082,1 +-0.62684,-6.301,4.7843,1.106,1 +0.518,0.25865,-0.84085,0.96118,1 +0.64376,3.764,-4.4738,-4.0483,1 +-2.9821,4.1986,-0.5898,-3.9642,1 +-1.4628,-1.5706,2.4357,0.49826,1 +-1.7101,-8.7903,7.9735,-0.45475,1 +-1.5572,-9.8808,8.1088,-1.0806,1 +0.74428,-3.7723,1.6131,1.5754,1 +2.0177,1.7982,-2.9581,0.2099,1 +1.164,3.913,-4.5544,-3.8672,1 +-4.3667,6.0692,0.57208,-5.4668,1 +-2.5919,-1.0553,3.8949,0.77757,1 +-1.8046,-6.8141,6.7019,1.1681,1 +-0.71868,-5.7154,3.8298,1.0233,1 +1.4378,0.66837,-2.0267,1.0271,1 +2.1943,4.5503,-4.976,-2.7254,1 +0.7376,4.8525,-4.7986,-5.6659,1 +-5.637,8.1261,0.13081,-5.0142,1 +-3.0193,1.7775,0.73745,-0.45346,1 +-1.6706,-2.09,1.584,0.71162,1 +-0.1269,-1.1505,-0.95138,0.57843,1 +1.2198,2.0982,-3.1954,0.12843,1 +1.4501,3.6067,-4.0557,-1.5966,1 +-0.40857,3.0977,-2.9607,-2.6892,1 +-3.8952,3.8157,-0.31304,-3.8194,1 +-6.3679,8.0102,0.4247,-3.2207,1 +-4.1429,2.7749,0.68261,-0.71984,1 +-2.6864,-0.097265,0.61663,0.061192,1 +-1.0555,0.79459,-1.6968,-0.46768,1 +-0.29858,2.4769,-2.9512,-0.66165,1 +-0.49948,1.7734,-2.2469,-0.68104,1 +-1.9881,0.99945,-0.28562,-0.70044,1 +-1.9389,1.5706,0.045979,-1.122,1 +-1.4375,-1.8624,4.026,0.55127,1 +-3.1875,-7.5756,11.8678,-0.57889,1 +-4.6765,-5.6636,10.969,-0.33449,1 +-2.0285,3.8468,-0.63435,-1.175,1 +0.26637,0.73252,-0.67891,0.03533,1 +-1.7589,-6.4624,8.4773,0.31981,1 +-3.5985,-13.6593,17.6052,-2.4927,1 +-3.3582,-7.2404,11.4419,-0.57113,1 +-2.3629,-0.10554,1.9336,1.1358,1 +-2.1802,3.3791,-1.2256,-2.6621,1 +-0.40951,-0.15521,0.060545,-0.088807,1 +-2.2918,-7.257,7.9597,0.9211,1 +-4.0214,-12.8006,15.6199,-0.95647,1 +-3.3884,-8.215,10.3315,0.98187,1 +-2.0046,-0.49457,1.333,1.6543,1 +-1.7063,2.7956,-2.378,-2.3491,1 +-1.6386,3.3584,-1.7302,-3.5646,1 +-0.41645,0.32487,-0.33617,-0.36036,1 +-1.5877,-6.6072,5.8022,0.31593,1 +-2.5961,-9.349,9.7942,-0.28018,1 +-1.5228,-6.4789,5.7568,0.87325,1 +-0.53072,-0.097265,-0.21793,1.0426,1 +-0.49081,2.8452,-3.6436,-3.1004,1 +-6.5773,6.8017,0.85483,-7.5344,1 +-2.4621,2.7645,-0.62578,-2.8573,1 +-1.3995,-1.9162,2.5154,0.59912,1 +-2.3221,-9.3304,9.233,-0.79871,1 +-3.73,-12.9723,12.9817,-2.684,1 +-1.6988,-7.1163,5.7902,0.16723,1 +-0.26654,-0.64562,-0.42014,0.89136,1 +0.33325,3.3108,-4.5081,-4.012,1 +-4.2091,4.7283,-0.49126,-5.2159,1 +-2.3142,-0.68494,1.9833,-0.44829,1 +-2.4835,-7.4494,6.8964,-0.64484,1 +-2.7611,-10.5099,9.0239,-1.9547,1 +-0.36025,-4.449,2.1067,0.94308,1 +1.0117,0.9022,-2.3506,0.42714,1 +0.96708,3.8426,-4.9314,-4.1323,1 +-5.2049,7.259,0.070827,-7.3004,1 +-3.3203,-0.02691,2.9618,-0.44958,1 +-2.565,-5.7899,6.0122,0.046968,1 +-1.5951,-6.572,4.7689,-0.94354,1 +0.7049,0.17174,-1.7859,0.36119,1 +1.7331,3.9544,-4.7412,-2.5017,1 +0.6818,4.8504,-5.2133,-6.1043,1 +-6.3364,9.2848,0.014275,-6.7844,1 +-3.8053,2.4273,0.6809,-1.0871,1 +-2.1979,-2.1252,1.7151,0.45171,1 +-0.87874,-2.2121,-0.051701,0.099985,1 +0.74067,1.7299,-3.1963,-0.1457,1 +0.98296,3.4226,-3.9692,-1.7116,1 +-0.3489,3.1929,-3.4054,-3.1832,1 +-3.8552,3.5219,-0.38415,-3.8608,1 +-6.9599,8.9931,0.2182,-4.572,1 +-4.7462,3.1205,1.075,-1.2966,1 +-3.2051,-0.14279,0.97565,0.045675,1 +-1.7549,-0.080711,-0.75774,-0.3707,1 +-0.59587,2.4811,-2.8673,-0.89828,1 +-0.89542,2.0279,-2.3652,-1.2746,1 +-2.0754,1.2767,-0.64206,-1.2642,1 +-3.2778,1.8023,0.1805,-2.3931,1 +-2.2183,-1.254,2.9986,0.36378,1 +-3.5895,-6.572,10.5251,-0.16381,1 +-5.0477,-5.8023,11.244,-0.3901,1 +-3.5741,3.944,-0.07912,-2.1203,1 +-0.7351,1.7361,-1.4938,-1.1582,1 +-2.2617,-4.7428,6.3489,0.11162,1 +-4.244,-13.0634,17.1116,-2.8017,1 +-4.0218,-8.304,12.555,-1.5099,1 +-3.0201,-0.67253,2.7056,0.85774,1 +-2.4941,3.5447,-1.3721,-2.8483,1 +-0.83121,0.039307,0.05369,-0.23105,1 +-2.5665,-6.8824,7.5416,0.70774,1 +-4.4018,-12.9371,15.6559,-1.6806,1 +-3.7573,-8.2916,10.3032,0.38059,1 +-2.4725,-0.40145,1.4855,1.1189,1 +-1.9725,2.8825,-2.3086,-2.3724,1 +-2.0149,3.6874,-1.9385,-3.8918,1 +-0.82053,0.65181,-0.48869,-0.52716,1 +-1.7886,-6.3486,5.6154,0.42584,1 +-2.9138,-9.4711,9.7668,-0.60216,1 +-1.8343,-6.5907,5.6429,0.54998,1 +-0.8734,-0.033118,-0.20165,0.55774,1 +-0.70346,2.957,-3.5947,-3.1457,1 +-6.7387,6.9879,0.67833,-7.5887,1 +-2.7723,3.2777,-0.9351,-3.1457,1 +-1.6641,-1.3678,1.997,0.52283,1 +-2.4349,-9.2497,8.9922,-0.50001,1 +-3.793,-12.7095,12.7957,-2.825,1 +-1.9551,-6.9756,5.5383,-0.12889,1 +-0.69078,-0.50077,-0.35417,0.47498,1 +0.025013,3.3998,-4.4327,-4.2655,1 +-4.3967,4.9601,-0.64892,-5.4719,1 +-2.456,-0.24418,1.4041,-0.45863,1 +-2.62,-6.8555,6.2169,-0.62285,1 +-2.9662,-10.3257,8.784,-2.1138,1 +-0.71494,-4.4448,2.2241,0.49826,1 +0.6005,0.99945,-2.2126,0.097399,1 +0.61652,3.8944,-4.7275,-4.3948,1 +-5.4414,7.2363,0.10938,-7.5642,1 +-3.5798,0.45937,2.3457,-0.45734,1 +-2.7769,-5.6967,5.9179,0.37671,1 +-1.8356,-6.7562,5.0585,-0.55044,1 +0.30081,0.17381,-1.7542,0.48921,1 +1.3403,4.1323,-4.7018,-2.5987,1 +0.26877,4.987,-5.1508,-6.3913,1 +-6.5235,9.6014,-0.25392,-6.9642,1 +-4.0679,2.4955,0.79571,-1.1039,1 +-2.564,-1.7051,1.5026,0.32757,1 +-1.3414,-1.9162,-0.15538,-0.11984,1 +0.23874,2.0879,-3.3522,-0.66553,1 +0.6212,3.6771,-4.0771,-2.0711,1 +-0.77848,3.4019,-3.4859,-3.5569,1 +-4.1244,3.7909,-0.6532,-4.1802,1 +-7.0421,9.2,0.25933,-4.6832,1 +-4.9462,3.5716,0.82742,-1.4957,1 +-3.5359,0.30417,0.6569,-0.2957,1 +-2.0662,0.16967,-1.0054,-0.82975,1 +-0.88728,2.808,-3.1432,-1.2035,1 +-1.0941,2.3072,-2.5237,-1.4453,1 +-2.4458,1.6285,-0.88541,-1.4802,1 +-3.551,1.8955,0.1865,-2.4409,1 +-2.2811,-0.85669,2.7185,0.044382,1 +-3.6053,-5.974,10.0916,-0.82846,1 +-5.0676,-5.1877,10.4266,-0.86725,1 +-3.9204,4.0723,-0.23678,-2.1151,1 +-1.1306,1.8458,-1.3575,-1.3806,1 +-2.4561,-4.5566,6.4534,-0.056479,1 +-4.4775,-13.0303,17.0834,-3.0345,1 +-4.1958,-8.1819,12.1291,-1.6017,1 +-3.38,-0.7077,2.5325,0.71808,1 +-2.4365,3.6026,-1.4166,-2.8948,1 +-0.77688,0.13036,-0.031137,-0.35389,1 +-2.7083,-6.8266,7.5339,0.59007,1 +-4.5531,-12.5854,15.4417,-1.4983,1 +-3.8894,-7.8322,9.8208,0.47498,1 +-2.5084,-0.22763,1.488,1.2069,1 +-2.1652,3.0211,-2.4132,-2.4241,1 +-1.8974,3.5074,-1.7842,-3.8491,1 +-0.62043,0.5587,-0.38587,-0.66423,1 +-1.8387,-6.301,5.6506,0.19567,1 +-3,-9.1566,9.5766,-0.73018,1 +-1.9116,-6.1603,5.606,0.48533,1 +-1.005,0.084831,-0.2462,0.45688,1 +-0.87834,3.257,-3.6778,-3.2944,1 +-6.651,6.7934,0.68604,-7.5887,1 +-2.5463,3.1101,-0.83228,-3.0358,1 +-1.4377,-1.432,2.1144,0.42067,1 +-2.4554,-9.0407,8.862,-0.86983,1 +-3.9411,-12.8792,13.0597,-3.3125,1 +-2.1241,-6.8969,5.5992,-0.47156,1 +-0.74324,-0.32902,-0.42785,0.23317,1 +-0.071503,3.7412,-4.5415,-4.2526,1 +-4.2333,4.9166,-0.49212,-5.3207,1 +-2.3675,-0.43663,1.692,-0.43018,1 +-2.5526,-7.3625,6.9255,-0.66811,1 +-3.0986,-10.4602,8.9717,-2.3427,1 +-0.89809,-4.4862,2.2009,0.50731,1 +0.56232,1.0015,-2.2726,-0.0060486,1 +0.53936,3.8944,-4.8166,-4.3418,1 +-5.3012,7.3915,0.029699,-7.3987,1 +-3.3553,0.35591,2.6473,-0.37846,1 +-2.7908,-5.7133,5.953,0.45946,1 +-1.9983,-6.6072,4.8254,-0.41984,1 +0.15423,0.11794,-1.6823,0.59524,1 +1.208,4.0744,-4.7635,-2.6129,1 +0.2952,4.8856,-5.149,-6.2323,1 +-6.4247,9.5311,0.022844,-6.8517,1 +-3.9933,2.6218,0.62863,-1.1595,1 +-2.659,-1.6058,1.3647,0.16464,1 +-1.4094,-2.1252,-0.10397,-0.19225,1 +0.11032,1.9741,-3.3668,-0.65259,1 +0.52374,3.644,-4.0746,-1.9909,1 +-0.76794,3.4598,-3.4405,-3.4276,1 +-3.9698,3.6812,-0.60008,-4.0133,1 +-7.0364,9.2931,0.16594,-4.5396,1 +-4.9447,3.3005,1.063,-1.444,1 +-3.5933,0.22968,0.7126,-0.3332,1 +-2.1674,0.12415,-1.0465,-0.86208,1 +-0.9607,2.6963,-3.1226,-1.3121,1 +-1.0802,2.1996,-2.5862,-1.2759,1 +-2.3277,1.4381,-0.82114,-1.2862,1 +-3.7244,1.9037,-0.035421,-2.5095,1 +-2.5724,-0.95602,2.7073,-0.16639,1 +-3.9297,-6.0816,10.0958,-1.0147,1 +-5.2943,-5.1463,10.3332,-1.1181,1 +-3.8953,4.0392,-0.3019,-2.1836,1 +-1.2244,1.7485,-1.4801,-1.4181,1 +-2.6406,-4.4159,5.983,-0.13924,1 +-4.6338,-12.7509,16.7166,-3.2168,1 +-4.2887,-7.8633,11.8387,-1.8978,1 +-3.3458,-0.50491,2.6328,0.53705,1 +-1.1188,3.3357,-1.3455,-1.9573,1 +0.55939,-0.3104,0.18307,0.44653,1 +-1.5078,-7.3191,7.8981,1.2289,1 +-3.506,-12.5667,15.1606,-0.75216,1 +-2.9498,-8.273,10.2646,1.1629,1 +-1.6029,-0.38903,1.62,1.9103,1 +-1.2667,2.8183,-2.426,-1.8862,1 +-0.49281,3.0605,-1.8356,-2.834,1 +0.66365,-0.045533,-0.18794,0.23447,1 +-0.72068,-6.7583,5.8408,0.62369,1 +-1.9966,-9.5001,9.682,-0.12889,1 +-0.97325,-6.4168,5.6026,1.0323,1 +-0.025314,-0.17383,-0.11339,1.2198,1 +0.062525,2.9301,-3.5467,-2.6737,1 +-5.525,6.3258,0.89768,-6.6241,1 +-1.2943,2.6735,-0.84085,-2.0323,1 +-0.24037,-1.7837,2.135,1.2418,1 +-1.3968,-9.6698,9.4652,-0.34872,1 +-2.9672,-13.2869,13.4727,-2.6271,1 +-1.1005,-7.2508,6.0139,0.36895,1 +0.22432,-0.52147,-0.40386,1.2017,1 +0.90407,3.3708,-4.4987,-3.6965,1 +-2.8619,4.5193,-0.58123,-4.2629,1 +-1.0833,-0.31247,1.2815,0.41291,1 +-1.5681,-7.2446,6.5537,-0.1276,1 +-2.0545,-10.8679,9.4926,-1.4116,1 +0.2346,-4.5152,2.1195,1.4448,1 +1.581,0.86909,-2.3138,0.82412,1 +1.5514,3.8013,-4.9143,-3.7483,1 +-4.1479,7.1225,-0.083404,-6.4172,1 +-2.2625,-0.099335,2.8127,0.48662,1 +-1.7479,-5.823,5.8699,1.212,1 +-0.95923,-6.7128,4.9857,0.32886,1 +1.3451,0.23589,-1.8785,1.3258,1 +2.2279,4.0951,-4.8037,-2.1112,1 +1.2572,4.8731,-5.2861,-5.8741,1 +-5.3857,9.1214,-0.41929,-5.9181,1 +-2.9786,2.3445,0.52667,-0.40173,1 +-1.5851,-2.1562,1.7082,0.9017,1 +-0.21888,-2.2038,-0.0954,0.56421,1 +1.3183,1.9017,-3.3111,0.065071,1 +1.4896,3.4288,-4.0309,-1.4259,1 +0.11592,3.2219,-3.4302,-2.8457,1 +-3.3924,3.3564,-0.72004,-3.5233,1 +-6.1632,8.7096,-0.21621,-3.6345,1 +-4.0786,2.9239,0.87026,-0.65389,1 +-2.5899,-0.3911,0.93452,0.42972,1 +-1.0116,-0.19038,-0.90597,0.003003,1 +0.066129,2.4914,-2.9401,-0.62156,1 +-0.24745,1.9368,-2.4697,-0.80518,1 +-1.5732,1.0636,-0.71232,-0.8388,1 +-2.1668,1.5933,0.045122,-1.678,1 +-1.1667,-1.4237,2.9241,0.66119,1 +-2.8391,-6.63,10.4849,-0.42113,1 +-4.5046,-5.8126,10.8867,-0.52846,1 +-2.41,3.7433,-0.40215,-1.2953,1 +0.40614,1.3492,-1.4501,-0.55949,1 +-1.3887,-4.8773,6.4774,0.34179,1 +-3.7503,-13.4586,17.5932,-2.7771,1 +-3.5637,-8.3827,12.393,-1.2823,1 +-2.5419,-0.65804,2.6842,1.1952,1 \ No newline at end of file diff --git a/data/banknotes.png b/data/banknotes.png new file mode 100644 index 0000000..ca7833b Binary files /dev/null and b/data/banknotes.png differ diff --git a/data/cansim-0800020-eng-6674700030567901031.csv b/data/cansim-0800020-eng-6674700030567901031.csv new file mode 100644 index 0000000..d821155 --- /dev/null +++ b/data/cansim-0800020-eng-6674700030567901031.csv @@ -0,0 +1,329 @@ +"Table 080-0020 Retail trade, sales by the North American Industry Classification System (NAICS), monthly (dollars x 1,000)(2,3,4,5,6)" +Survey or program details: +Retail Trade Survey (Monthly) - 2406 +Monthly Retail Trade Survey (Department Store Organizations) - 2408 +Geography,Canada,Canada +North American Industry Classification System (NAICS),Retail trade [44-45] ,Retail trade [44-45] +Adjustments,Unadjusted,Seasonally adjusted +Jan-1991,12588862,15026890 +Feb-1991,12154321,15304585 +Mar-1991,14337072,15413591 +Apr-1991,15108570,15293409 +May-1991,17225734,15676083 +Jun-1991,16342833,15507931 +Jul-1991,15996243,15556313 +Aug-1991,16064910,15430645 +Sep-1991,15015317,15427313 +Oct-1991,15606864,15410250 +Nov-1991,16237366,15662790 +Dec-1991,18381340,15349625 +Jan-1992,13084963,15477875 +Feb-1992,12773972,15513022 +Mar-1992,14198775,15527933 +Apr-1992,15558390,15708556 +May-1992,16776396,15642000 +Jun-1992,16716231,15823989 +Jul-1992,16637483,15869453 +Aug-1992,15842075,15844631 +Sep-1992,15812400,15983239 +Oct-1992,16562268,16125835 +Nov-1992,16015869,16049478 +Dec-1992,19682921,16095727 +Jan-1993,13672727,16408864 +Feb-1993,12900733,16239039 +Mar-1993,15211859,16314960 +Apr-1993,16642246,16577426 +May-1993,17442405,16472045 +Jun-1993,17444074,16351907 +Jul-1993,17610326,16712914 +Aug-1993,16645660,16703413 +Sep-1993,16790330,16755338 +Oct-1993,16921755,16819382 +Nov-1993,17124609,16958202 +Dec-1993,20928208,17021436 +Jan-1994,14005058,17076164 +Feb-1994,13799079,17393150 +Mar-1994,16865149,17890903 +Apr-1994,17494589,17507688 +May-1994,18739509,17775079 +Jun-1994,19323481,17882069 +Jul-1994,18297834,17785800 +Aug-1994,18101290,17881976 +Sep-1994,18161417,17952647 +Oct-1994,17998875,18193703 +Nov-1994,18516766,18264676 +Dec-1994,22688647,18387840 +Jan-1995,14927996,18337565 +Feb-1995,14520623,18259470 +Mar-1995,17457477,18225708 +Apr-1995,17774107,18217661 +May-1995,19740889,18333051 +Jun-1995,20319460,18503481 +Jul-1995,18747299,18407254 +Aug-1995,19280525,18720783 +Sep-1995,18860566,18628735 +Oct-1995,18177152,18412692 +Nov-1995,18962903,18506305 +Dec-1995,22308880,18525162 +Jan-1996,15379086,18531426 +Feb-1996,15521981,18657652 +Mar-1996,17613469,18774049 +Apr-1996,18421405,18739023 +May-1996,20624568,18758009 +Jun-1996,20099348,18977805 +Jul-1996,19423284,18914063 +Aug-1996,19889359,19071178 +Sep-1996,18589571,19019991 +Oct-1996,19686383,19488074 +Nov-1996,20293165,19820074 +Dec-1996,22897980,19688254 +Jan-1997,16882321,19857365 +Feb-1997,16033605,20141489 +Mar-1997,18225453,20056949 +Apr-1997,20432272,20215340 +May-1997,22594727,20386953 +Jun-1997,21577744,20466883 +Jul-1997,21570145,20681230 +Aug-1997,21065784,20605349 +Sep-1997,20532806,20646564 +Oct-1997,21491163,21037021 +Nov-1997,20904746,20973561 +Dec-1997,25507180,21749250 +Jan-1998,17736224,20776214 +Feb-1998,16797018,21153779 +Mar-1998,19408883,21041225 +Apr-1998,21501677,21504619 +May-1998,23312947,21504262 +Jun-1998,22654803,21247311 +Jul-1998,22594775,21385620 +Aug-1998,21512734,21335980 +Sep-1998,21645562,21660645 +Oct-1998,21994089,21565457 +Nov-1998,21461344,21714061 +Dec-1998,25874332,21605209 +Jan-1999,18438151,22074043 +Feb-1999,17658952,22286260 +Mar-1999,21082603,22402680 +Apr-1999,22587382,22389229 +May-1999,23892100,22300484 +Jun-1999,24036828,22450487 +Jul-1999,23994614,22614164 +Aug-1999,22926469,22806183 +Sep-1999,22984278,22817165 +Oct-1999,22813633,22967565 +Nov-1999,22972959,23036527 +Dec-1999,28143999,23387176 +Jan-2000,19324692,23434451 +Feb-2000,19140440,23378327 +Mar-2000,22918829,23813646 +Apr-2000,22914155,23537859 +May-2000,25659687,23644020 +Jun-2000,25945400,23841011 +Jul-2000,24821347,24204193 +Aug-2000,25102965,24266358 +Sep-2000,24710257,24495699 +Oct-2000,23687124,24330740 +Nov-2000,24556357,24373656 +Dec-2000,29057176,24518477 +Jan-2001,20607642,24640517 +Feb-2001,19444855,24477976 +Mar-2001,23652255,24583988 +Apr-2001,24370700,24944482 +May-2001,27585889,25143416 +Jun-2001,27243919,25190078 +Jul-2001,25507932,24813831 +Aug-2001,26322941,25017925 +Sep-2001,24263969,24703734 +Oct-2001,24917747,25149772 +Nov-2001,26048646,25657476 +Dec-2001,30481412,26124705 +Jan-2002,22361219,26496729 +Feb-2002,20787209,26105990 +Mar-2002,24642692,26072633 +Apr-2002,26405170,26657565 +May-2002,29087583,26165998 +Jun-2002,28363263,26768924 +Jul-2002,27912328,26620588 +Aug-2002,28202300,26767279 +Sep-2002,26054411,26620259 +Oct-2002,27131743,27061844 +Nov-2002,27276942,27015215 +Dec-2002,31300554,27172388 +Jan-2003,23301871,27137545 +Feb-2003,21980804,27622538 +Mar-2003,25468203,27275170 +Apr-2003,27059495,27176306 +May-2003,30417563,27484615 +Jun-2003,28912102,27569750 +Jul-2003,29492832,27707861 +Aug-2003,29102135,28020755 +Sep-2003,27467571,27841344 +Oct-2003,28223631,27825024 +Nov-2003,27391422,27777531 +Dec-2003,32325789,27704978 +Jan-2004,23778728,27935993 +Feb-2004,23008594,28719948 +Mar-2004,26967793,28689514 +Apr-2004,28592026,28254086 +May-2004,30479247,28554094 +Jun-2004,30711705,28550528 +Jul-2004,30898334,28616168 +Aug-2004,29535183,28836665 +Sep-2004,29245397,29243662 +Oct-2004,29445711,29561177 +Nov-2004,29232659,29901036 +Dec-2004,34561103,29593609 +Jan-2005,24498615,29888781 +Feb-2005,24028226,30460620 +Mar-2005,28600602,30006264 +Apr-2005,30600811,29940271 +May-2005,31948565,29935878 +Jun-2005,32967426,30590992 +Jul-2005,32620077,30800241 +Aug-2005,32025283,30647393 +Sep-2005,30914826,30600008 +Oct-2005,30241532,30887481 +Nov-2005,30828069,31012789 +Dec-2005,36726743,31230056 +Jan-2006,25993203,31747679 +Feb-2006,25128165,31744450 +Mar-2006,30760061,31871717 +Apr-2006,32106585,32354405 +May-2006,34894460,32048264 +Jun-2006,35049112,32242363 +Jul-2006,34341547,33040218 +Aug-2006,35045180,33007575 +Sep-2006,33056559,32492838 +Oct-2006,31830349,32595465 +Nov-2006,32663281,32814138 +Dec-2006,38605976,33515367 +Jan-2007,27777968,33221023 +Feb-2007,26548520,33466188 +Mar-2007,32818504,33910296 +Apr-2007,33621240,34385868 +May-2007,38434319,34789277 +Jun-2007,37555708,34436278 +Jul-2007,35635889,34430726 +Aug-2007,36978090,34725483 +Sep-2007,34057842,34341226 +Oct-2007,34070363,34305870 +Nov-2007,35091406,34958995 +Dec-2007,40006665,35625285 +Jan-2008,30525699,35933156 +Feb-2008,29418898,35526909 +Mar-2008,32925876,35530142 +Apr-2008,36272111,35914167 +May-2008,39778972,36006888 +Jun-2008,37842321,36400129 +Jul-2008,38632038,36403867 +Aug-2008,37775417,36137537 +Sep-2008,36138751,36390521 +Oct-2008,36158245,35747571 +Nov-2008,34230901,34661690 +Dec-2008,38256712,33303365 +Jan-2009,29192654,33747849 +Feb-2009,26804723,33869426 +Mar-2009,31356949,33894022 +Apr-2009,33942769,33930673 +May-2009,37316515,34345160 +Jun-2009,36865690,34735113 +Jul-2009,37191480,34755444 +Aug-2009,36049418,35039739 +Sep-2009,35537357,35239195 +Oct-2009,36133694,35330869 +Nov-2009,34354756,35250896 +Dec-2009,40969765,35577384 +Jan-2010,30668321,36080033 +Feb-2010,28632551,36051781 +Mar-2010,34967182,37001843 +Apr-2010,36469949,36148495 +May-2010,38424455,36041318 +Jun-2010,38973462,36350588 +Jul-2010,38932294,36295314 +Aug-2010,37395330,36515170 +Sep-2010,36923390,36632898 +Oct-2010,37014326,36879707 +Nov-2010,37408825,37568029 +Dec-2010,43147947,37392857 +Jan-2011,31191594,37392259 +Feb-2011,29797949,37437926 +Mar-2011,36099866,37617167 +Apr-2011,38035760,37755408 +May-2011,40046516,37723958 +Jun-2011,40839556,38228307 +Jul-2011,39832282,37925826 +Aug-2011,39541248,37976798 +Sep-2011,38877263,38181654 +Oct-2011,38203872,38623692 +Nov-2011,39174736,38779553 +Dec-2011,45089701,39087795 +Jan-2012,32361808,39102435 +Feb-2012,32087072,38968001 +Mar-2012,37933733,39201228 +Apr-2012,37775805,38920526 +May-2012,42584571,38841267 +Jun-2012,41789242,38773515 +Jul-2012,40130908,38854126 +Aug-2012,41321526,38854279 +Sep-2012,39069513,39058649 +Oct-2012,39487597,39277317 +Nov-2012,40095933,39224805 +Dec-2012,43489091,39050651 +Jan-2013,33574671,39523536 +Feb-2013,31636843,39710038 +Mar-2013,37561378,39811962 +Apr-2013,39401295,39655045 +May-2013,44577490,40295930 +Jun-2013,42169145,39992542 +Jul-2013,42417829,40388278 +Aug-2013,43237460,40660890 +Sep-2013,40170270,40631164 +Oct-2013,41560987,40813306 +Nov-2013,41893714,40798569 +Dec-2013,44796794,40716614 +Jan-2014,34980327,40976155 +Feb-2014,32905708,41256280 +Mar-2014,38460091,41242344 +Apr-2014,41809373,41852467 +May-2014,46379543,41906455 +Jun-2014,44178750,42457216 +Jul-2014,45285331,42562972 +Aug-2014,44359733,42456214 +Sep-2014,43017529,42685882 +Oct-2014,43775478,42690228 +Nov-2014,42968326,42603501 +Dec-2014,46887481,42317955 +Jan-2015,34820395,40971992 +Feb-2015,33174923,41801906 +Mar-2015,39444291,42420253 +Apr-2015,42297319,42331926 +May-2015,46670930,42721761 +Jun-2015,45584849,42989280 +Jul-2015,46295664,43154020 +Aug-2015,44793347,43309509 +Sep-2015,43999627,43303889 +Oct-2015,44507776,43378904 +Nov-2015,43696305,43921767 +Dec-2015,48097829,43078048 +Jan-2016,36415115,43977584 +Feb-2016,35649450,44205540 +Mar-2016,41403762,43839996 +Apr-2016,44881587,44181416 +May-2016,47337082,44176591 +Jun-2016,47399117,44162244 +Jul-2016,46321314,44110862 +Aug-2016,46201453,44216280 +Sep-2016,45528702,44534797 +Oct-2016,44770113,45061618 +Nov-2016,46285062,45141762 +Dec-2016,50016137,44943929 +Jan-2017,37628452,45952103 +Footnotes: +2,The total for retail trade excludes North American Industry Classification System (NAICS) 454. +3,"This CANSIM table replaces archived table 80-0014, 80-0015 and 80-0017." +4,"Quality indicator: Code A=Excellent. Code B=Very good. Code C=Good. Code D=Acceptable. Code E=Poor, use with caution. Code F=Unreliable (data not published)." +5,"Data for Northwest Territories includes Nunavut, from 1991-01 to 1998-12." +6,"In April 2013, data from 2004 onwards will be based on the 2012 North American Industry Classification System (NAICS). Data prior to 2004 will continue to be based on the 2007 North American Industry Classification System (NAICS)." +Source: +"Statistics Canada. Table 080-0020 - Retail trade, sales by the North American Industry Classification System (NAICS), monthly (dollars)" +"(accessed: April 19, 2017)" diff --git a/data/diabetes.csv b/data/diabetes.csv new file mode 100644 index 0000000..9e6a362 --- /dev/null +++ b/data/diabetes.csv @@ -0,0 +1,769 @@ +Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age,Outcome +6,148,72,35,0,33.6,0.627,50,1 +1,85,66,29,0,26.6,0.351,31,0 +8,183,64,0,0,23.3,0.672,32,1 +1,89,66,23,94,28.1,0.167,21,0 +0,137,40,35,168,43.1,2.288,33,1 +5,116,74,0,0,25.6,0.201,30,0 +3,78,50,32,88,31,0.248,26,1 +10,115,0,0,0,35.3,0.134,29,0 +2,197,70,45,543,30.5,0.158,53,1 +8,125,96,0,0,0,0.232,54,1 +4,110,92,0,0,37.6,0.191,30,0 +10,168,74,0,0,38,0.537,34,1 +10,139,80,0,0,27.1,1.441,57,0 +1,189,60,23,846,30.1,0.398,59,1 +5,166,72,19,175,25.8,0.587,51,1 +7,100,0,0,0,30,0.484,32,1 +0,118,84,47,230,45.8,0.551,31,1 +7,107,74,0,0,29.6,0.254,31,1 +1,103,30,38,83,43.3,0.183,33,0 +1,115,70,30,96,34.6,0.529,32,1 +3,126,88,41,235,39.3,0.704,27,0 +8,99,84,0,0,35.4,0.388,50,0 +7,196,90,0,0,39.8,0.451,41,1 +9,119,80,35,0,29,0.263,29,1 +11,143,94,33,146,36.6,0.254,51,1 +10,125,70,26,115,31.1,0.205,41,1 +7,147,76,0,0,39.4,0.257,43,1 +1,97,66,15,140,23.2,0.487,22,0 +13,145,82,19,110,22.2,0.245,57,0 +5,117,92,0,0,34.1,0.337,38,0 +5,109,75,26,0,36,0.546,60,0 +3,158,76,36,245,31.6,0.851,28,1 +3,88,58,11,54,24.8,0.267,22,0 +6,92,92,0,0,19.9,0.188,28,0 +10,122,78,31,0,27.6,0.512,45,0 +4,103,60,33,192,24,0.966,33,0 +11,138,76,0,0,33.2,0.42,35,0 +9,102,76,37,0,32.9,0.665,46,1 +2,90,68,42,0,38.2,0.503,27,1 +4,111,72,47,207,37.1,1.39,56,1 +3,180,64,25,70,34,0.271,26,0 +7,133,84,0,0,40.2,0.696,37,0 +7,106,92,18,0,22.7,0.235,48,0 +9,171,110,24,240,45.4,0.721,54,1 +7,159,64,0,0,27.4,0.294,40,0 +0,180,66,39,0,42,1.893,25,1 +1,146,56,0,0,29.7,0.564,29,0 +2,71,70,27,0,28,0.586,22,0 +7,103,66,32,0,39.1,0.344,31,1 +7,105,0,0,0,0,0.305,24,0 +1,103,80,11,82,19.4,0.491,22,0 +1,101,50,15,36,24.2,0.526,26,0 +5,88,66,21,23,24.4,0.342,30,0 +8,176,90,34,300,33.7,0.467,58,1 +7,150,66,42,342,34.7,0.718,42,0 +1,73,50,10,0,23,0.248,21,0 +7,187,68,39,304,37.7,0.254,41,1 +0,100,88,60,110,46.8,0.962,31,0 +0,146,82,0,0,40.5,1.781,44,0 +0,105,64,41,142,41.5,0.173,22,0 +2,84,0,0,0,0,0.304,21,0 +8,133,72,0,0,32.9,0.27,39,1 +5,44,62,0,0,25,0.587,36,0 +2,141,58,34,128,25.4,0.699,24,0 +7,114,66,0,0,32.8,0.258,42,1 +5,99,74,27,0,29,0.203,32,0 +0,109,88,30,0,32.5,0.855,38,1 +2,109,92,0,0,42.7,0.845,54,0 +1,95,66,13,38,19.6,0.334,25,0 +4,146,85,27,100,28.9,0.189,27,0 +2,100,66,20,90,32.9,0.867,28,1 +5,139,64,35,140,28.6,0.411,26,0 +13,126,90,0,0,43.4,0.583,42,1 +4,129,86,20,270,35.1,0.231,23,0 +1,79,75,30,0,32,0.396,22,0 +1,0,48,20,0,24.7,0.14,22,0 +7,62,78,0,0,32.6,0.391,41,0 +5,95,72,33,0,37.7,0.37,27,0 +0,131,0,0,0,43.2,0.27,26,1 +2,112,66,22,0,25,0.307,24,0 +3,113,44,13,0,22.4,0.14,22,0 +2,74,0,0,0,0,0.102,22,0 +7,83,78,26,71,29.3,0.767,36,0 +0,101,65,28,0,24.6,0.237,22,0 +5,137,108,0,0,48.8,0.227,37,1 +2,110,74,29,125,32.4,0.698,27,0 +13,106,72,54,0,36.6,0.178,45,0 +2,100,68,25,71,38.5,0.324,26,0 +15,136,70,32,110,37.1,0.153,43,1 +1,107,68,19,0,26.5,0.165,24,0 +1,80,55,0,0,19.1,0.258,21,0 +4,123,80,15,176,32,0.443,34,0 +7,81,78,40,48,46.7,0.261,42,0 +4,134,72,0,0,23.8,0.277,60,1 +2,142,82,18,64,24.7,0.761,21,0 +6,144,72,27,228,33.9,0.255,40,0 +2,92,62,28,0,31.6,0.13,24,0 +1,71,48,18,76,20.4,0.323,22,0 +6,93,50,30,64,28.7,0.356,23,0 +1,122,90,51,220,49.7,0.325,31,1 +1,163,72,0,0,39,1.222,33,1 +1,151,60,0,0,26.1,0.179,22,0 +0,125,96,0,0,22.5,0.262,21,0 +1,81,72,18,40,26.6,0.283,24,0 +2,85,65,0,0,39.6,0.93,27,0 +1,126,56,29,152,28.7,0.801,21,0 +1,96,122,0,0,22.4,0.207,27,0 +4,144,58,28,140,29.5,0.287,37,0 +3,83,58,31,18,34.3,0.336,25,0 +0,95,85,25,36,37.4,0.247,24,1 +3,171,72,33,135,33.3,0.199,24,1 +8,155,62,26,495,34,0.543,46,1 +1,89,76,34,37,31.2,0.192,23,0 +4,76,62,0,0,34,0.391,25,0 +7,160,54,32,175,30.5,0.588,39,1 +4,146,92,0,0,31.2,0.539,61,1 +5,124,74,0,0,34,0.22,38,1 +5,78,48,0,0,33.7,0.654,25,0 +4,97,60,23,0,28.2,0.443,22,0 +4,99,76,15,51,23.2,0.223,21,0 +0,162,76,56,100,53.2,0.759,25,1 +6,111,64,39,0,34.2,0.26,24,0 +2,107,74,30,100,33.6,0.404,23,0 +5,132,80,0,0,26.8,0.186,69,0 +0,113,76,0,0,33.3,0.278,23,1 +1,88,30,42,99,55,0.496,26,1 +3,120,70,30,135,42.9,0.452,30,0 +1,118,58,36,94,33.3,0.261,23,0 +1,117,88,24,145,34.5,0.403,40,1 +0,105,84,0,0,27.9,0.741,62,1 +4,173,70,14,168,29.7,0.361,33,1 +9,122,56,0,0,33.3,1.114,33,1 +3,170,64,37,225,34.5,0.356,30,1 +8,84,74,31,0,38.3,0.457,39,0 +2,96,68,13,49,21.1,0.647,26,0 +2,125,60,20,140,33.8,0.088,31,0 +0,100,70,26,50,30.8,0.597,21,0 +0,93,60,25,92,28.7,0.532,22,0 +0,129,80,0,0,31.2,0.703,29,0 +5,105,72,29,325,36.9,0.159,28,0 +3,128,78,0,0,21.1,0.268,55,0 +5,106,82,30,0,39.5,0.286,38,0 +2,108,52,26,63,32.5,0.318,22,0 +10,108,66,0,0,32.4,0.272,42,1 +4,154,62,31,284,32.8,0.237,23,0 +0,102,75,23,0,0,0.572,21,0 +9,57,80,37,0,32.8,0.096,41,0 +2,106,64,35,119,30.5,1.4,34,0 +5,147,78,0,0,33.7,0.218,65,0 +2,90,70,17,0,27.3,0.085,22,0 +1,136,74,50,204,37.4,0.399,24,0 +4,114,65,0,0,21.9,0.432,37,0 +9,156,86,28,155,34.3,1.189,42,1 +1,153,82,42,485,40.6,0.687,23,0 +8,188,78,0,0,47.9,0.137,43,1 +7,152,88,44,0,50,0.337,36,1 +2,99,52,15,94,24.6,0.637,21,0 +1,109,56,21,135,25.2,0.833,23,0 +2,88,74,19,53,29,0.229,22,0 +17,163,72,41,114,40.9,0.817,47,1 +4,151,90,38,0,29.7,0.294,36,0 +7,102,74,40,105,37.2,0.204,45,0 +0,114,80,34,285,44.2,0.167,27,0 +2,100,64,23,0,29.7,0.368,21,0 +0,131,88,0,0,31.6,0.743,32,1 +6,104,74,18,156,29.9,0.722,41,1 +3,148,66,25,0,32.5,0.256,22,0 +4,120,68,0,0,29.6,0.709,34,0 +4,110,66,0,0,31.9,0.471,29,0 +3,111,90,12,78,28.4,0.495,29,0 +6,102,82,0,0,30.8,0.18,36,1 +6,134,70,23,130,35.4,0.542,29,1 +2,87,0,23,0,28.9,0.773,25,0 +1,79,60,42,48,43.5,0.678,23,0 +2,75,64,24,55,29.7,0.37,33,0 +8,179,72,42,130,32.7,0.719,36,1 +6,85,78,0,0,31.2,0.382,42,0 +0,129,110,46,130,67.1,0.319,26,1 +5,143,78,0,0,45,0.19,47,0 +5,130,82,0,0,39.1,0.956,37,1 +6,87,80,0,0,23.2,0.084,32,0 +0,119,64,18,92,34.9,0.725,23,0 +1,0,74,20,23,27.7,0.299,21,0 +5,73,60,0,0,26.8,0.268,27,0 +4,141,74,0,0,27.6,0.244,40,0 +7,194,68,28,0,35.9,0.745,41,1 +8,181,68,36,495,30.1,0.615,60,1 +1,128,98,41,58,32,1.321,33,1 +8,109,76,39,114,27.9,0.64,31,1 +5,139,80,35,160,31.6,0.361,25,1 +3,111,62,0,0,22.6,0.142,21,0 +9,123,70,44,94,33.1,0.374,40,0 +7,159,66,0,0,30.4,0.383,36,1 +11,135,0,0,0,52.3,0.578,40,1 +8,85,55,20,0,24.4,0.136,42,0 +5,158,84,41,210,39.4,0.395,29,1 +1,105,58,0,0,24.3,0.187,21,0 +3,107,62,13,48,22.9,0.678,23,1 +4,109,64,44,99,34.8,0.905,26,1 +4,148,60,27,318,30.9,0.15,29,1 +0,113,80,16,0,31,0.874,21,0 +1,138,82,0,0,40.1,0.236,28,0 +0,108,68,20,0,27.3,0.787,32,0 +2,99,70,16,44,20.4,0.235,27,0 +6,103,72,32,190,37.7,0.324,55,0 +5,111,72,28,0,23.9,0.407,27,0 +8,196,76,29,280,37.5,0.605,57,1 +5,162,104,0,0,37.7,0.151,52,1 +1,96,64,27,87,33.2,0.289,21,0 +7,184,84,33,0,35.5,0.355,41,1 +2,81,60,22,0,27.7,0.29,25,0 +0,147,85,54,0,42.8,0.375,24,0 +7,179,95,31,0,34.2,0.164,60,0 +0,140,65,26,130,42.6,0.431,24,1 +9,112,82,32,175,34.2,0.26,36,1 +12,151,70,40,271,41.8,0.742,38,1 +5,109,62,41,129,35.8,0.514,25,1 +6,125,68,30,120,30,0.464,32,0 +5,85,74,22,0,29,1.224,32,1 +5,112,66,0,0,37.8,0.261,41,1 +0,177,60,29,478,34.6,1.072,21,1 +2,158,90,0,0,31.6,0.805,66,1 +7,119,0,0,0,25.2,0.209,37,0 +7,142,60,33,190,28.8,0.687,61,0 +1,100,66,15,56,23.6,0.666,26,0 +1,87,78,27,32,34.6,0.101,22,0 +0,101,76,0,0,35.7,0.198,26,0 +3,162,52,38,0,37.2,0.652,24,1 +4,197,70,39,744,36.7,2.329,31,0 +0,117,80,31,53,45.2,0.089,24,0 +4,142,86,0,0,44,0.645,22,1 +6,134,80,37,370,46.2,0.238,46,1 +1,79,80,25,37,25.4,0.583,22,0 +4,122,68,0,0,35,0.394,29,0 +3,74,68,28,45,29.7,0.293,23,0 +4,171,72,0,0,43.6,0.479,26,1 +7,181,84,21,192,35.9,0.586,51,1 +0,179,90,27,0,44.1,0.686,23,1 +9,164,84,21,0,30.8,0.831,32,1 +0,104,76,0,0,18.4,0.582,27,0 +1,91,64,24,0,29.2,0.192,21,0 +4,91,70,32,88,33.1,0.446,22,0 +3,139,54,0,0,25.6,0.402,22,1 +6,119,50,22,176,27.1,1.318,33,1 +2,146,76,35,194,38.2,0.329,29,0 +9,184,85,15,0,30,1.213,49,1 +10,122,68,0,0,31.2,0.258,41,0 +0,165,90,33,680,52.3,0.427,23,0 +9,124,70,33,402,35.4,0.282,34,0 +1,111,86,19,0,30.1,0.143,23,0 +9,106,52,0,0,31.2,0.38,42,0 +2,129,84,0,0,28,0.284,27,0 +2,90,80,14,55,24.4,0.249,24,0 +0,86,68,32,0,35.8,0.238,25,0 +12,92,62,7,258,27.6,0.926,44,1 +1,113,64,35,0,33.6,0.543,21,1 +3,111,56,39,0,30.1,0.557,30,0 +2,114,68,22,0,28.7,0.092,25,0 +1,193,50,16,375,25.9,0.655,24,0 +11,155,76,28,150,33.3,1.353,51,1 +3,191,68,15,130,30.9,0.299,34,0 +3,141,0,0,0,30,0.761,27,1 +4,95,70,32,0,32.1,0.612,24,0 +3,142,80,15,0,32.4,0.2,63,0 +4,123,62,0,0,32,0.226,35,1 +5,96,74,18,67,33.6,0.997,43,0 +0,138,0,0,0,36.3,0.933,25,1 +2,128,64,42,0,40,1.101,24,0 +0,102,52,0,0,25.1,0.078,21,0 +2,146,0,0,0,27.5,0.24,28,1 +10,101,86,37,0,45.6,1.136,38,1 +2,108,62,32,56,25.2,0.128,21,0 +3,122,78,0,0,23,0.254,40,0 +1,71,78,50,45,33.2,0.422,21,0 +13,106,70,0,0,34.2,0.251,52,0 +2,100,70,52,57,40.5,0.677,25,0 +7,106,60,24,0,26.5,0.296,29,1 +0,104,64,23,116,27.8,0.454,23,0 +5,114,74,0,0,24.9,0.744,57,0 +2,108,62,10,278,25.3,0.881,22,0 +0,146,70,0,0,37.9,0.334,28,1 +10,129,76,28,122,35.9,0.28,39,0 +7,133,88,15,155,32.4,0.262,37,0 +7,161,86,0,0,30.4,0.165,47,1 +2,108,80,0,0,27,0.259,52,1 +7,136,74,26,135,26,0.647,51,0 +5,155,84,44,545,38.7,0.619,34,0 +1,119,86,39,220,45.6,0.808,29,1 +4,96,56,17,49,20.8,0.34,26,0 +5,108,72,43,75,36.1,0.263,33,0 +0,78,88,29,40,36.9,0.434,21,0 +0,107,62,30,74,36.6,0.757,25,1 +2,128,78,37,182,43.3,1.224,31,1 +1,128,48,45,194,40.5,0.613,24,1 +0,161,50,0,0,21.9,0.254,65,0 +6,151,62,31,120,35.5,0.692,28,0 +2,146,70,38,360,28,0.337,29,1 +0,126,84,29,215,30.7,0.52,24,0 +14,100,78,25,184,36.6,0.412,46,1 +8,112,72,0,0,23.6,0.84,58,0 +0,167,0,0,0,32.3,0.839,30,1 +2,144,58,33,135,31.6,0.422,25,1 +5,77,82,41,42,35.8,0.156,35,0 +5,115,98,0,0,52.9,0.209,28,1 +3,150,76,0,0,21,0.207,37,0 +2,120,76,37,105,39.7,0.215,29,0 +10,161,68,23,132,25.5,0.326,47,1 +0,137,68,14,148,24.8,0.143,21,0 +0,128,68,19,180,30.5,1.391,25,1 +2,124,68,28,205,32.9,0.875,30,1 +6,80,66,30,0,26.2,0.313,41,0 +0,106,70,37,148,39.4,0.605,22,0 +2,155,74,17,96,26.6,0.433,27,1 +3,113,50,10,85,29.5,0.626,25,0 +7,109,80,31,0,35.9,1.127,43,1 +2,112,68,22,94,34.1,0.315,26,0 +3,99,80,11,64,19.3,0.284,30,0 +3,182,74,0,0,30.5,0.345,29,1 +3,115,66,39,140,38.1,0.15,28,0 +6,194,78,0,0,23.5,0.129,59,1 +4,129,60,12,231,27.5,0.527,31,0 +3,112,74,30,0,31.6,0.197,25,1 +0,124,70,20,0,27.4,0.254,36,1 +13,152,90,33,29,26.8,0.731,43,1 +2,112,75,32,0,35.7,0.148,21,0 +1,157,72,21,168,25.6,0.123,24,0 +1,122,64,32,156,35.1,0.692,30,1 +10,179,70,0,0,35.1,0.2,37,0 +2,102,86,36,120,45.5,0.127,23,1 +6,105,70,32,68,30.8,0.122,37,0 +8,118,72,19,0,23.1,1.476,46,0 +2,87,58,16,52,32.7,0.166,25,0 +1,180,0,0,0,43.3,0.282,41,1 +12,106,80,0,0,23.6,0.137,44,0 +1,95,60,18,58,23.9,0.26,22,0 +0,165,76,43,255,47.9,0.259,26,0 +0,117,0,0,0,33.8,0.932,44,0 +5,115,76,0,0,31.2,0.343,44,1 +9,152,78,34,171,34.2,0.893,33,1 +7,178,84,0,0,39.9,0.331,41,1 +1,130,70,13,105,25.9,0.472,22,0 +1,95,74,21,73,25.9,0.673,36,0 +1,0,68,35,0,32,0.389,22,0 +5,122,86,0,0,34.7,0.29,33,0 +8,95,72,0,0,36.8,0.485,57,0 +8,126,88,36,108,38.5,0.349,49,0 +1,139,46,19,83,28.7,0.654,22,0 +3,116,0,0,0,23.5,0.187,23,0 +3,99,62,19,74,21.8,0.279,26,0 +5,0,80,32,0,41,0.346,37,1 +4,92,80,0,0,42.2,0.237,29,0 +4,137,84,0,0,31.2,0.252,30,0 +3,61,82,28,0,34.4,0.243,46,0 +1,90,62,12,43,27.2,0.58,24,0 +3,90,78,0,0,42.7,0.559,21,0 +9,165,88,0,0,30.4,0.302,49,1 +1,125,50,40,167,33.3,0.962,28,1 +13,129,0,30,0,39.9,0.569,44,1 +12,88,74,40,54,35.3,0.378,48,0 +1,196,76,36,249,36.5,0.875,29,1 +5,189,64,33,325,31.2,0.583,29,1 +5,158,70,0,0,29.8,0.207,63,0 +5,103,108,37,0,39.2,0.305,65,0 +4,146,78,0,0,38.5,0.52,67,1 +4,147,74,25,293,34.9,0.385,30,0 +5,99,54,28,83,34,0.499,30,0 +6,124,72,0,0,27.6,0.368,29,1 +0,101,64,17,0,21,0.252,21,0 +3,81,86,16,66,27.5,0.306,22,0 +1,133,102,28,140,32.8,0.234,45,1 +3,173,82,48,465,38.4,2.137,25,1 +0,118,64,23,89,0,1.731,21,0 +0,84,64,22,66,35.8,0.545,21,0 +2,105,58,40,94,34.9,0.225,25,0 +2,122,52,43,158,36.2,0.816,28,0 +12,140,82,43,325,39.2,0.528,58,1 +0,98,82,15,84,25.2,0.299,22,0 +1,87,60,37,75,37.2,0.509,22,0 +4,156,75,0,0,48.3,0.238,32,1 +0,93,100,39,72,43.4,1.021,35,0 +1,107,72,30,82,30.8,0.821,24,0 +0,105,68,22,0,20,0.236,22,0 +1,109,60,8,182,25.4,0.947,21,0 +1,90,62,18,59,25.1,1.268,25,0 +1,125,70,24,110,24.3,0.221,25,0 +1,119,54,13,50,22.3,0.205,24,0 +5,116,74,29,0,32.3,0.66,35,1 +8,105,100,36,0,43.3,0.239,45,1 +5,144,82,26,285,32,0.452,58,1 +3,100,68,23,81,31.6,0.949,28,0 +1,100,66,29,196,32,0.444,42,0 +5,166,76,0,0,45.7,0.34,27,1 +1,131,64,14,415,23.7,0.389,21,0 +4,116,72,12,87,22.1,0.463,37,0 +4,158,78,0,0,32.9,0.803,31,1 +2,127,58,24,275,27.7,1.6,25,0 +3,96,56,34,115,24.7,0.944,39,0 +0,131,66,40,0,34.3,0.196,22,1 +3,82,70,0,0,21.1,0.389,25,0 +3,193,70,31,0,34.9,0.241,25,1 +4,95,64,0,0,32,0.161,31,1 +6,137,61,0,0,24.2,0.151,55,0 +5,136,84,41,88,35,0.286,35,1 +9,72,78,25,0,31.6,0.28,38,0 +5,168,64,0,0,32.9,0.135,41,1 +2,123,48,32,165,42.1,0.52,26,0 +4,115,72,0,0,28.9,0.376,46,1 +0,101,62,0,0,21.9,0.336,25,0 +8,197,74,0,0,25.9,1.191,39,1 +1,172,68,49,579,42.4,0.702,28,1 +6,102,90,39,0,35.7,0.674,28,0 +1,112,72,30,176,34.4,0.528,25,0 +1,143,84,23,310,42.4,1.076,22,0 +1,143,74,22,61,26.2,0.256,21,0 +0,138,60,35,167,34.6,0.534,21,1 +3,173,84,33,474,35.7,0.258,22,1 +1,97,68,21,0,27.2,1.095,22,0 +4,144,82,32,0,38.5,0.554,37,1 +1,83,68,0,0,18.2,0.624,27,0 +3,129,64,29,115,26.4,0.219,28,1 +1,119,88,41,170,45.3,0.507,26,0 +2,94,68,18,76,26,0.561,21,0 +0,102,64,46,78,40.6,0.496,21,0 +2,115,64,22,0,30.8,0.421,21,0 +8,151,78,32,210,42.9,0.516,36,1 +4,184,78,39,277,37,0.264,31,1 +0,94,0,0,0,0,0.256,25,0 +1,181,64,30,180,34.1,0.328,38,1 +0,135,94,46,145,40.6,0.284,26,0 +1,95,82,25,180,35,0.233,43,1 +2,99,0,0,0,22.2,0.108,23,0 +3,89,74,16,85,30.4,0.551,38,0 +1,80,74,11,60,30,0.527,22,0 +2,139,75,0,0,25.6,0.167,29,0 +1,90,68,8,0,24.5,1.138,36,0 +0,141,0,0,0,42.4,0.205,29,1 +12,140,85,33,0,37.4,0.244,41,0 +5,147,75,0,0,29.9,0.434,28,0 +1,97,70,15,0,18.2,0.147,21,0 +6,107,88,0,0,36.8,0.727,31,0 +0,189,104,25,0,34.3,0.435,41,1 +2,83,66,23,50,32.2,0.497,22,0 +4,117,64,27,120,33.2,0.23,24,0 +8,108,70,0,0,30.5,0.955,33,1 +4,117,62,12,0,29.7,0.38,30,1 +0,180,78,63,14,59.4,2.42,25,1 +1,100,72,12,70,25.3,0.658,28,0 +0,95,80,45,92,36.5,0.33,26,0 +0,104,64,37,64,33.6,0.51,22,1 +0,120,74,18,63,30.5,0.285,26,0 +1,82,64,13,95,21.2,0.415,23,0 +2,134,70,0,0,28.9,0.542,23,1 +0,91,68,32,210,39.9,0.381,25,0 +2,119,0,0,0,19.6,0.832,72,0 +2,100,54,28,105,37.8,0.498,24,0 +14,175,62,30,0,33.6,0.212,38,1 +1,135,54,0,0,26.7,0.687,62,0 +5,86,68,28,71,30.2,0.364,24,0 +10,148,84,48,237,37.6,1.001,51,1 +9,134,74,33,60,25.9,0.46,81,0 +9,120,72,22,56,20.8,0.733,48,0 +1,71,62,0,0,21.8,0.416,26,0 +8,74,70,40,49,35.3,0.705,39,0 +5,88,78,30,0,27.6,0.258,37,0 +10,115,98,0,0,24,1.022,34,0 +0,124,56,13,105,21.8,0.452,21,0 +0,74,52,10,36,27.8,0.269,22,0 +0,97,64,36,100,36.8,0.6,25,0 +8,120,0,0,0,30,0.183,38,1 +6,154,78,41,140,46.1,0.571,27,0 +1,144,82,40,0,41.3,0.607,28,0 +0,137,70,38,0,33.2,0.17,22,0 +0,119,66,27,0,38.8,0.259,22,0 +7,136,90,0,0,29.9,0.21,50,0 +4,114,64,0,0,28.9,0.126,24,0 +0,137,84,27,0,27.3,0.231,59,0 +2,105,80,45,191,33.7,0.711,29,1 +7,114,76,17,110,23.8,0.466,31,0 +8,126,74,38,75,25.9,0.162,39,0 +4,132,86,31,0,28,0.419,63,0 +3,158,70,30,328,35.5,0.344,35,1 +0,123,88,37,0,35.2,0.197,29,0 +4,85,58,22,49,27.8,0.306,28,0 +0,84,82,31,125,38.2,0.233,23,0 +0,145,0,0,0,44.2,0.63,31,1 +0,135,68,42,250,42.3,0.365,24,1 +1,139,62,41,480,40.7,0.536,21,0 +0,173,78,32,265,46.5,1.159,58,0 +4,99,72,17,0,25.6,0.294,28,0 +8,194,80,0,0,26.1,0.551,67,0 +2,83,65,28,66,36.8,0.629,24,0 +2,89,90,30,0,33.5,0.292,42,0 +4,99,68,38,0,32.8,0.145,33,0 +4,125,70,18,122,28.9,1.144,45,1 +3,80,0,0,0,0,0.174,22,0 +6,166,74,0,0,26.6,0.304,66,0 +5,110,68,0,0,26,0.292,30,0 +2,81,72,15,76,30.1,0.547,25,0 +7,195,70,33,145,25.1,0.163,55,1 +6,154,74,32,193,29.3,0.839,39,0 +2,117,90,19,71,25.2,0.313,21,0 +3,84,72,32,0,37.2,0.267,28,0 +6,0,68,41,0,39,0.727,41,1 +7,94,64,25,79,33.3,0.738,41,0 +3,96,78,39,0,37.3,0.238,40,0 +10,75,82,0,0,33.3,0.263,38,0 +0,180,90,26,90,36.5,0.314,35,1 +1,130,60,23,170,28.6,0.692,21,0 +2,84,50,23,76,30.4,0.968,21,0 +8,120,78,0,0,25,0.409,64,0 +12,84,72,31,0,29.7,0.297,46,1 +0,139,62,17,210,22.1,0.207,21,0 +9,91,68,0,0,24.2,0.2,58,0 +2,91,62,0,0,27.3,0.525,22,0 +3,99,54,19,86,25.6,0.154,24,0 +3,163,70,18,105,31.6,0.268,28,1 +9,145,88,34,165,30.3,0.771,53,1 +7,125,86,0,0,37.6,0.304,51,0 +13,76,60,0,0,32.8,0.18,41,0 +6,129,90,7,326,19.6,0.582,60,0 +2,68,70,32,66,25,0.187,25,0 +3,124,80,33,130,33.2,0.305,26,0 +6,114,0,0,0,0,0.189,26,0 +9,130,70,0,0,34.2,0.652,45,1 +3,125,58,0,0,31.6,0.151,24,0 +3,87,60,18,0,21.8,0.444,21,0 +1,97,64,19,82,18.2,0.299,21,0 +3,116,74,15,105,26.3,0.107,24,0 +0,117,66,31,188,30.8,0.493,22,0 +0,111,65,0,0,24.6,0.66,31,0 +2,122,60,18,106,29.8,0.717,22,0 +0,107,76,0,0,45.3,0.686,24,0 +1,86,66,52,65,41.3,0.917,29,0 +6,91,0,0,0,29.8,0.501,31,0 +1,77,56,30,56,33.3,1.251,24,0 +4,132,0,0,0,32.9,0.302,23,1 +0,105,90,0,0,29.6,0.197,46,0 +0,57,60,0,0,21.7,0.735,67,0 +0,127,80,37,210,36.3,0.804,23,0 +3,129,92,49,155,36.4,0.968,32,1 +8,100,74,40,215,39.4,0.661,43,1 +3,128,72,25,190,32.4,0.549,27,1 +10,90,85,32,0,34.9,0.825,56,1 +4,84,90,23,56,39.5,0.159,25,0 +1,88,78,29,76,32,0.365,29,0 +8,186,90,35,225,34.5,0.423,37,1 +5,187,76,27,207,43.6,1.034,53,1 +4,131,68,21,166,33.1,0.16,28,0 +1,164,82,43,67,32.8,0.341,50,0 +4,189,110,31,0,28.5,0.68,37,0 +1,116,70,28,0,27.4,0.204,21,0 +3,84,68,30,106,31.9,0.591,25,0 +6,114,88,0,0,27.8,0.247,66,0 +1,88,62,24,44,29.9,0.422,23,0 +1,84,64,23,115,36.9,0.471,28,0 +7,124,70,33,215,25.5,0.161,37,0 +1,97,70,40,0,38.1,0.218,30,0 +8,110,76,0,0,27.8,0.237,58,0 +11,103,68,40,0,46.2,0.126,42,0 +11,85,74,0,0,30.1,0.3,35,0 +6,125,76,0,0,33.8,0.121,54,1 +0,198,66,32,274,41.3,0.502,28,1 +1,87,68,34,77,37.6,0.401,24,0 +6,99,60,19,54,26.9,0.497,32,0 +0,91,80,0,0,32.4,0.601,27,0 +2,95,54,14,88,26.1,0.748,22,0 +1,99,72,30,18,38.6,0.412,21,0 +6,92,62,32,126,32,0.085,46,0 +4,154,72,29,126,31.3,0.338,37,0 +0,121,66,30,165,34.3,0.203,33,1 +3,78,70,0,0,32.5,0.27,39,0 +2,130,96,0,0,22.6,0.268,21,0 +3,111,58,31,44,29.5,0.43,22,0 +2,98,60,17,120,34.7,0.198,22,0 +1,143,86,30,330,30.1,0.892,23,0 +1,119,44,47,63,35.5,0.28,25,0 +6,108,44,20,130,24,0.813,35,0 +2,118,80,0,0,42.9,0.693,21,1 +10,133,68,0,0,27,0.245,36,0 +2,197,70,99,0,34.7,0.575,62,1 +0,151,90,46,0,42.1,0.371,21,1 +6,109,60,27,0,25,0.206,27,0 +12,121,78,17,0,26.5,0.259,62,0 +8,100,76,0,0,38.7,0.19,42,0 +8,124,76,24,600,28.7,0.687,52,1 +1,93,56,11,0,22.5,0.417,22,0 +8,143,66,0,0,34.9,0.129,41,1 +6,103,66,0,0,24.3,0.249,29,0 +3,176,86,27,156,33.3,1.154,52,1 +0,73,0,0,0,21.1,0.342,25,0 +11,111,84,40,0,46.8,0.925,45,1 +2,112,78,50,140,39.4,0.175,24,0 +3,132,80,0,0,34.4,0.402,44,1 +2,82,52,22,115,28.5,1.699,25,0 +6,123,72,45,230,33.6,0.733,34,0 +0,188,82,14,185,32,0.682,22,1 +0,67,76,0,0,45.3,0.194,46,0 +1,89,24,19,25,27.8,0.559,21,0 +1,173,74,0,0,36.8,0.088,38,1 +1,109,38,18,120,23.1,0.407,26,0 +1,108,88,19,0,27.1,0.4,24,0 +6,96,0,0,0,23.7,0.19,28,0 +1,124,74,36,0,27.8,0.1,30,0 +7,150,78,29,126,35.2,0.692,54,1 +4,183,0,0,0,28.4,0.212,36,1 +1,124,60,32,0,35.8,0.514,21,0 +1,181,78,42,293,40,1.258,22,1 +1,92,62,25,41,19.5,0.482,25,0 +0,152,82,39,272,41.5,0.27,27,0 +1,111,62,13,182,24,0.138,23,0 +3,106,54,21,158,30.9,0.292,24,0 +3,174,58,22,194,32.9,0.593,36,1 +7,168,88,42,321,38.2,0.787,40,1 +6,105,80,28,0,32.5,0.878,26,0 +11,138,74,26,144,36.1,0.557,50,1 +3,106,72,0,0,25.8,0.207,27,0 +6,117,96,0,0,28.7,0.157,30,0 +2,68,62,13,15,20.1,0.257,23,0 +9,112,82,24,0,28.2,1.282,50,1 +0,119,0,0,0,32.4,0.141,24,1 +2,112,86,42,160,38.4,0.246,28,0 +2,92,76,20,0,24.2,1.698,28,0 +6,183,94,0,0,40.8,1.461,45,0 +0,94,70,27,115,43.5,0.347,21,0 +2,108,64,0,0,30.8,0.158,21,0 +4,90,88,47,54,37.7,0.362,29,0 +0,125,68,0,0,24.7,0.206,21,0 +0,132,78,0,0,32.4,0.393,21,0 +5,128,80,0,0,34.6,0.144,45,0 +4,94,65,22,0,24.7,0.148,21,0 +7,114,64,0,0,27.4,0.732,34,1 +0,102,78,40,90,34.5,0.238,24,0 +2,111,60,0,0,26.2,0.343,23,0 +1,128,82,17,183,27.5,0.115,22,0 +10,92,62,0,0,25.9,0.167,31,0 +13,104,72,0,0,31.2,0.465,38,1 +5,104,74,0,0,28.8,0.153,48,0 +2,94,76,18,66,31.6,0.649,23,0 +7,97,76,32,91,40.9,0.871,32,1 +1,100,74,12,46,19.5,0.149,28,0 +0,102,86,17,105,29.3,0.695,27,0 +4,128,70,0,0,34.3,0.303,24,0 +6,147,80,0,0,29.5,0.178,50,1 +4,90,0,0,0,28,0.61,31,0 +3,103,72,30,152,27.6,0.73,27,0 +2,157,74,35,440,39.4,0.134,30,0 +1,167,74,17,144,23.4,0.447,33,1 +0,179,50,36,159,37.8,0.455,22,1 +11,136,84,35,130,28.3,0.26,42,1 +0,107,60,25,0,26.4,0.133,23,0 +1,91,54,25,100,25.2,0.234,23,0 +1,117,60,23,106,33.8,0.466,27,0 +5,123,74,40,77,34.1,0.269,28,0 +2,120,54,0,0,26.8,0.455,27,0 +1,106,70,28,135,34.2,0.142,22,0 +2,155,52,27,540,38.7,0.24,25,1 +2,101,58,35,90,21.8,0.155,22,0 +1,120,80,48,200,38.9,1.162,41,0 +11,127,106,0,0,39,0.19,51,0 +3,80,82,31,70,34.2,1.292,27,1 +10,162,84,0,0,27.7,0.182,54,0 +1,199,76,43,0,42.9,1.394,22,1 +8,167,106,46,231,37.6,0.165,43,1 +9,145,80,46,130,37.9,0.637,40,1 +6,115,60,39,0,33.7,0.245,40,1 +1,112,80,45,132,34.8,0.217,24,0 +4,145,82,18,0,32.5,0.235,70,1 +10,111,70,27,0,27.5,0.141,40,1 +6,98,58,33,190,34,0.43,43,0 +9,154,78,30,100,30.9,0.164,45,0 +6,165,68,26,168,33.6,0.631,49,0 +1,99,58,10,0,25.4,0.551,21,0 +10,68,106,23,49,35.5,0.285,47,0 +3,123,100,35,240,57.3,0.88,22,0 +8,91,82,0,0,35.6,0.587,68,0 +6,195,70,0,0,30.9,0.328,31,1 +9,156,86,0,0,24.8,0.23,53,1 +0,93,60,0,0,35.3,0.263,25,0 +3,121,52,0,0,36,0.127,25,1 +2,101,58,17,265,24.2,0.614,23,0 +2,56,56,28,45,24.2,0.332,22,0 +0,162,76,36,0,49.6,0.364,26,1 +0,95,64,39,105,44.6,0.366,22,0 +4,125,80,0,0,32.3,0.536,27,1 +5,136,82,0,0,0,0.64,69,0 +2,129,74,26,205,33.2,0.591,25,0 +3,130,64,0,0,23.1,0.314,22,0 +1,107,50,19,0,28.3,0.181,29,0 +1,140,74,26,180,24.1,0.828,23,0 +1,144,82,46,180,46.1,0.335,46,1 +8,107,80,0,0,24.6,0.856,34,0 +13,158,114,0,0,42.3,0.257,44,1 +2,121,70,32,95,39.1,0.886,23,0 +7,129,68,49,125,38.5,0.439,43,1 +2,90,60,0,0,23.5,0.191,25,0 +7,142,90,24,480,30.4,0.128,43,1 +3,169,74,19,125,29.9,0.268,31,1 +0,99,0,0,0,25,0.253,22,0 +4,127,88,11,155,34.5,0.598,28,0 +4,118,70,0,0,44.5,0.904,26,0 +2,122,76,27,200,35.9,0.483,26,0 +6,125,78,31,0,27.6,0.565,49,1 +1,168,88,29,0,35,0.905,52,1 +2,129,0,0,0,38.5,0.304,41,0 +4,110,76,20,100,28.4,0.118,27,0 +6,80,80,36,0,39.8,0.177,28,0 +10,115,0,0,0,0,0.261,30,1 +2,127,46,21,335,34.4,0.176,22,0 +9,164,78,0,0,32.8,0.148,45,1 +2,93,64,32,160,38,0.674,23,1 +3,158,64,13,387,31.2,0.295,24,0 +5,126,78,27,22,29.6,0.439,40,0 +10,129,62,36,0,41.2,0.441,38,1 +0,134,58,20,291,26.4,0.352,21,0 +3,102,74,0,0,29.5,0.121,32,0 +7,187,50,33,392,33.9,0.826,34,1 +3,173,78,39,185,33.8,0.97,31,1 +10,94,72,18,0,23.1,0.595,56,0 +1,108,60,46,178,35.5,0.415,24,0 +5,97,76,27,0,35.6,0.378,52,1 +4,83,86,19,0,29.3,0.317,34,0 +1,114,66,36,200,38.1,0.289,21,0 +1,149,68,29,127,29.3,0.349,42,1 +5,117,86,30,105,39.1,0.251,42,0 +1,111,94,0,0,32.8,0.265,45,0 +4,112,78,40,0,39.4,0.236,38,0 +1,116,78,29,180,36.1,0.496,25,0 +0,141,84,26,0,32.4,0.433,22,0 +2,175,88,0,0,22.9,0.326,22,0 +2,92,52,0,0,30.1,0.141,22,0 +3,130,78,23,79,28.4,0.323,34,1 +8,120,86,0,0,28.4,0.259,22,1 +2,174,88,37,120,44.5,0.646,24,1 +2,106,56,27,165,29,0.426,22,0 +2,105,75,0,0,23.3,0.56,53,0 +4,95,60,32,0,35.4,0.284,28,0 +0,126,86,27,120,27.4,0.515,21,0 +8,65,72,23,0,32,0.6,42,0 +2,99,60,17,160,36.6,0.453,21,0 +1,102,74,0,0,39.5,0.293,42,1 +11,120,80,37,150,42.3,0.785,48,1 +3,102,44,20,94,30.8,0.4,26,0 +1,109,58,18,116,28.5,0.219,22,0 +9,140,94,0,0,32.7,0.734,45,1 +13,153,88,37,140,40.6,1.174,39,0 +12,100,84,33,105,30,0.488,46,0 +1,147,94,41,0,49.3,0.358,27,1 +1,81,74,41,57,46.3,1.096,32,0 +3,187,70,22,200,36.4,0.408,36,1 +6,162,62,0,0,24.3,0.178,50,1 +4,136,70,0,0,31.2,1.182,22,1 +1,121,78,39,74,39,0.261,28,0 +3,108,62,24,0,26,0.223,25,0 +0,181,88,44,510,43.3,0.222,26,1 +8,154,78,32,0,32.4,0.443,45,1 +1,128,88,39,110,36.5,1.057,37,1 +7,137,90,41,0,32,0.391,39,0 +0,123,72,0,0,36.3,0.258,52,1 +1,106,76,0,0,37.5,0.197,26,0 +6,190,92,0,0,35.5,0.278,66,1 +2,88,58,26,16,28.4,0.766,22,0 +9,170,74,31,0,44,0.403,43,1 +9,89,62,0,0,22.5,0.142,33,0 +10,101,76,48,180,32.9,0.171,63,0 +2,122,70,27,0,36.8,0.34,27,0 +5,121,72,23,112,26.2,0.245,30,0 +1,126,60,0,0,30.1,0.349,47,1 +1,93,70,31,0,30.4,0.315,23,0 \ No newline at end of file diff --git a/data/generator/class 0/squirrel.jpeg b/data/generator/class 0/squirrel.jpeg new file mode 100644 index 0000000..010db1a Binary files /dev/null and b/data/generator/class 0/squirrel.jpeg differ diff --git a/data/heart.csv b/data/heart.csv new file mode 100644 index 0000000..c211c93 --- /dev/null +++ b/data/heart.csv @@ -0,0 +1,304 @@ +age,sex,cp,trtbps,chol,fbs,restecg,thalachh,exng,oldpeak,slp,caa,thall,output +63,1,3,145,233,1,0,150,0,2.3,0,0,1,1 +37,1,2,130,250,0,1,187,0,3.5,0,0,2,1 +41,0,1,130,204,0,0,172,0,1.4,2,0,2,1 +56,1,1,120,236,0,1,178,0,0.8,2,0,2,1 +57,0,0,120,354,0,1,163,1,0.6,2,0,2,1 +57,1,0,140,192,0,1,148,0,0.4,1,0,1,1 +56,0,1,140,294,0,0,153,0,1.3,1,0,2,1 +44,1,1,120,263,0,1,173,0,0,2,0,3,1 +52,1,2,172,199,1,1,162,0,0.5,2,0,3,1 +57,1,2,150,168,0,1,174,0,1.6,2,0,2,1 +54,1,0,140,239,0,1,160,0,1.2,2,0,2,1 +48,0,2,130,275,0,1,139,0,0.2,2,0,2,1 +49,1,1,130,266,0,1,171,0,0.6,2,0,2,1 +64,1,3,110,211,0,0,144,1,1.8,1,0,2,1 +58,0,3,150,283,1,0,162,0,1,2,0,2,1 +50,0,2,120,219,0,1,158,0,1.6,1,0,2,1 +58,0,2,120,340,0,1,172,0,0,2,0,2,1 +66,0,3,150,226,0,1,114,0,2.6,0,0,2,1 +43,1,0,150,247,0,1,171,0,1.5,2,0,2,1 +69,0,3,140,239,0,1,151,0,1.8,2,2,2,1 +59,1,0,135,234,0,1,161,0,0.5,1,0,3,1 +44,1,2,130,233,0,1,179,1,0.4,2,0,2,1 +42,1,0,140,226,0,1,178,0,0,2,0,2,1 +61,1,2,150,243,1,1,137,1,1,1,0,2,1 +40,1,3,140,199,0,1,178,1,1.4,2,0,3,1 +71,0,1,160,302,0,1,162,0,0.4,2,2,2,1 +59,1,2,150,212,1,1,157,0,1.6,2,0,2,1 +51,1,2,110,175,0,1,123,0,0.6,2,0,2,1 +65,0,2,140,417,1,0,157,0,0.8,2,1,2,1 +53,1,2,130,197,1,0,152,0,1.2,0,0,2,1 +41,0,1,105,198,0,1,168,0,0,2,1,2,1 +65,1,0,120,177,0,1,140,0,0.4,2,0,3,1 +44,1,1,130,219,0,0,188,0,0,2,0,2,1 +54,1,2,125,273,0,0,152,0,0.5,0,1,2,1 +51,1,3,125,213,0,0,125,1,1.4,2,1,2,1 +46,0,2,142,177,0,0,160,1,1.4,0,0,2,1 +54,0,2,135,304,1,1,170,0,0,2,0,2,1 +54,1,2,150,232,0,0,165,0,1.6,2,0,3,1 +65,0,2,155,269,0,1,148,0,0.8,2,0,2,1 +65,0,2,160,360,0,0,151,0,0.8,2,0,2,1 +51,0,2,140,308,0,0,142,0,1.5,2,1,2,1 +48,1,1,130,245,0,0,180,0,0.2,1,0,2,1 +45,1,0,104,208,0,0,148,1,3,1,0,2,1 +53,0,0,130,264,0,0,143,0,0.4,1,0,2,1 +39,1,2,140,321,0,0,182,0,0,2,0,2,1 +52,1,1,120,325,0,1,172,0,0.2,2,0,2,1 +44,1,2,140,235,0,0,180,0,0,2,0,2,1 +47,1,2,138,257,0,0,156,0,0,2,0,2,1 +53,0,2,128,216,0,0,115,0,0,2,0,0,1 +53,0,0,138,234,0,0,160,0,0,2,0,2,1 +51,0,2,130,256,0,0,149,0,0.5,2,0,2,1 +66,1,0,120,302,0,0,151,0,0.4,1,0,2,1 +62,1,2,130,231,0,1,146,0,1.8,1,3,3,1 +44,0,2,108,141,0,1,175,0,0.6,1,0,2,1 +63,0,2,135,252,0,0,172,0,0,2,0,2,1 +52,1,1,134,201,0,1,158,0,0.8,2,1,2,1 +48,1,0,122,222,0,0,186,0,0,2,0,2,1 +45,1,0,115,260,0,0,185,0,0,2,0,2,1 +34,1,3,118,182,0,0,174,0,0,2,0,2,1 +57,0,0,128,303,0,0,159,0,0,2,1,2,1 +71,0,2,110,265,1,0,130,0,0,2,1,2,1 +54,1,1,108,309,0,1,156,0,0,2,0,3,1 +52,1,3,118,186,0,0,190,0,0,1,0,1,1 +41,1,1,135,203,0,1,132,0,0,1,0,1,1 +58,1,2,140,211,1,0,165,0,0,2,0,2,1 +35,0,0,138,183,0,1,182,0,1.4,2,0,2,1 +51,1,2,100,222,0,1,143,1,1.2,1,0,2,1 +45,0,1,130,234,0,0,175,0,0.6,1,0,2,1 +44,1,1,120,220,0,1,170,0,0,2,0,2,1 +62,0,0,124,209,0,1,163,0,0,2,0,2,1 +54,1,2,120,258,0,0,147,0,0.4,1,0,3,1 +51,1,2,94,227,0,1,154,1,0,2,1,3,1 +29,1,1,130,204,0,0,202,0,0,2,0,2,1 +51,1,0,140,261,0,0,186,1,0,2,0,2,1 +43,0,2,122,213,0,1,165,0,0.2,1,0,2,1 +55,0,1,135,250,0,0,161,0,1.4,1,0,2,1 +51,1,2,125,245,1,0,166,0,2.4,1,0,2,1 +59,1,1,140,221,0,1,164,1,0,2,0,2,1 +52,1,1,128,205,1,1,184,0,0,2,0,2,1 +58,1,2,105,240,0,0,154,1,0.6,1,0,3,1 +41,1,2,112,250,0,1,179,0,0,2,0,2,1 +45,1,1,128,308,0,0,170,0,0,2,0,2,1 +60,0,2,102,318,0,1,160,0,0,2,1,2,1 +52,1,3,152,298,1,1,178,0,1.2,1,0,3,1 +42,0,0,102,265,0,0,122,0,0.6,1,0,2,1 +67,0,2,115,564,0,0,160,0,1.6,1,0,3,1 +68,1,2,118,277,0,1,151,0,1,2,1,3,1 +46,1,1,101,197,1,1,156,0,0,2,0,3,1 +54,0,2,110,214,0,1,158,0,1.6,1,0,2,1 +58,0,0,100,248,0,0,122,0,1,1,0,2,1 +48,1,2,124,255,1,1,175,0,0,2,2,2,1 +57,1,0,132,207,0,1,168,1,0,2,0,3,1 +52,1,2,138,223,0,1,169,0,0,2,4,2,1 +54,0,1,132,288,1,0,159,1,0,2,1,2,1 +45,0,1,112,160,0,1,138,0,0,1,0,2,1 +53,1,0,142,226,0,0,111,1,0,2,0,3,1 +62,0,0,140,394,0,0,157,0,1.2,1,0,2,1 +52,1,0,108,233,1,1,147,0,0.1,2,3,3,1 +43,1,2,130,315,0,1,162,0,1.9,2,1,2,1 +53,1,2,130,246,1,0,173,0,0,2,3,2,1 +42,1,3,148,244,0,0,178,0,0.8,2,2,2,1 +59,1,3,178,270,0,0,145,0,4.2,0,0,3,1 +63,0,1,140,195,0,1,179,0,0,2,2,2,1 +42,1,2,120,240,1,1,194,0,0.8,0,0,3,1 +50,1,2,129,196,0,1,163,0,0,2,0,2,1 +68,0,2,120,211,0,0,115,0,1.5,1,0,2,1 +69,1,3,160,234,1,0,131,0,0.1,1,1,2,1 +45,0,0,138,236,0,0,152,1,0.2,1,0,2,1 +50,0,1,120,244,0,1,162,0,1.1,2,0,2,1 +50,0,0,110,254,0,0,159,0,0,2,0,2,1 +64,0,0,180,325,0,1,154,1,0,2,0,2,1 +57,1,2,150,126,1,1,173,0,0.2,2,1,3,1 +64,0,2,140,313,0,1,133,0,0.2,2,0,3,1 +43,1,0,110,211,0,1,161,0,0,2,0,3,1 +55,1,1,130,262,0,1,155,0,0,2,0,2,1 +37,0,2,120,215,0,1,170,0,0,2,0,2,1 +41,1,2,130,214,0,0,168,0,2,1,0,2,1 +56,1,3,120,193,0,0,162,0,1.9,1,0,3,1 +46,0,1,105,204,0,1,172,0,0,2,0,2,1 +46,0,0,138,243,0,0,152,1,0,1,0,2,1 +64,0,0,130,303,0,1,122,0,2,1,2,2,1 +59,1,0,138,271,0,0,182,0,0,2,0,2,1 +41,0,2,112,268,0,0,172,1,0,2,0,2,1 +54,0,2,108,267,0,0,167,0,0,2,0,2,1 +39,0,2,94,199,0,1,179,0,0,2,0,2,1 +34,0,1,118,210,0,1,192,0,0.7,2,0,2,1 +47,1,0,112,204,0,1,143,0,0.1,2,0,2,1 +67,0,2,152,277,0,1,172,0,0,2,1,2,1 +52,0,2,136,196,0,0,169,0,0.1,1,0,2,1 +74,0,1,120,269,0,0,121,1,0.2,2,1,2,1 +54,0,2,160,201,0,1,163,0,0,2,1,2,1 +49,0,1,134,271,0,1,162,0,0,1,0,2,1 +42,1,1,120,295,0,1,162,0,0,2,0,2,1 +41,1,1,110,235,0,1,153,0,0,2,0,2,1 +41,0,1,126,306,0,1,163,0,0,2,0,2,1 +49,0,0,130,269,0,1,163,0,0,2,0,2,1 +60,0,2,120,178,1,1,96,0,0,2,0,2,1 +62,1,1,128,208,1,0,140,0,0,2,0,2,1 +57,1,0,110,201,0,1,126,1,1.5,1,0,1,1 +64,1,0,128,263,0,1,105,1,0.2,1,1,3,1 +51,0,2,120,295,0,0,157,0,0.6,2,0,2,1 +43,1,0,115,303,0,1,181,0,1.2,1,0,2,1 +42,0,2,120,209,0,1,173,0,0,1,0,2,1 +67,0,0,106,223,0,1,142,0,0.3,2,2,2,1 +76,0,2,140,197,0,2,116,0,1.1,1,0,2,1 +70,1,1,156,245,0,0,143,0,0,2,0,2,1 +44,0,2,118,242,0,1,149,0,0.3,1,1,2,1 +60,0,3,150,240,0,1,171,0,0.9,2,0,2,1 +44,1,2,120,226,0,1,169,0,0,2,0,2,1 +42,1,2,130,180,0,1,150,0,0,2,0,2,1 +66,1,0,160,228,0,0,138,0,2.3,2,0,1,1 +71,0,0,112,149,0,1,125,0,1.6,1,0,2,1 +64,1,3,170,227,0,0,155,0,0.6,1,0,3,1 +66,0,2,146,278,0,0,152,0,0,1,1,2,1 +39,0,2,138,220,0,1,152,0,0,1,0,2,1 +58,0,0,130,197,0,1,131,0,0.6,1,0,2,1 +47,1,2,130,253,0,1,179,0,0,2,0,2,1 +35,1,1,122,192,0,1,174,0,0,2,0,2,1 +58,1,1,125,220,0,1,144,0,0.4,1,4,3,1 +56,1,1,130,221,0,0,163,0,0,2,0,3,1 +56,1,1,120,240,0,1,169,0,0,0,0,2,1 +55,0,1,132,342,0,1,166,0,1.2,2,0,2,1 +41,1,1,120,157,0,1,182,0,0,2,0,2,1 +38,1,2,138,175,0,1,173,0,0,2,4,2,1 +38,1,2,138,175,0,1,173,0,0,2,4,2,1 +67,1,0,160,286,0,0,108,1,1.5,1,3,2,0 +67,1,0,120,229,0,0,129,1,2.6,1,2,3,0 +62,0,0,140,268,0,0,160,0,3.6,0,2,2,0 +63,1,0,130,254,0,0,147,0,1.4,1,1,3,0 +53,1,0,140,203,1,0,155,1,3.1,0,0,3,0 +56,1,2,130,256,1,0,142,1,0.6,1,1,1,0 +48,1,1,110,229,0,1,168,0,1,0,0,3,0 +58,1,1,120,284,0,0,160,0,1.8,1,0,2,0 +58,1,2,132,224,0,0,173,0,3.2,2,2,3,0 +60,1,0,130,206,0,0,132,1,2.4,1,2,3,0 +40,1,0,110,167,0,0,114,1,2,1,0,3,0 +60,1,0,117,230,1,1,160,1,1.4,2,2,3,0 +64,1,2,140,335,0,1,158,0,0,2,0,2,0 +43,1,0,120,177,0,0,120,1,2.5,1,0,3,0 +57,1,0,150,276,0,0,112,1,0.6,1,1,1,0 +55,1,0,132,353,0,1,132,1,1.2,1,1,3,0 +65,0,0,150,225,0,0,114,0,1,1,3,3,0 +61,0,0,130,330,0,0,169,0,0,2,0,2,0 +58,1,2,112,230,0,0,165,0,2.5,1,1,3,0 +50,1,0,150,243,0,0,128,0,2.6,1,0,3,0 +44,1,0,112,290,0,0,153,0,0,2,1,2,0 +60,1,0,130,253,0,1,144,1,1.4,2,1,3,0 +54,1,0,124,266,0,0,109,1,2.2,1,1,3,0 +50,1,2,140,233,0,1,163,0,0.6,1,1,3,0 +41,1,0,110,172,0,0,158,0,0,2,0,3,0 +51,0,0,130,305,0,1,142,1,1.2,1,0,3,0 +58,1,0,128,216,0,0,131,1,2.2,1,3,3,0 +54,1,0,120,188,0,1,113,0,1.4,1,1,3,0 +60,1,0,145,282,0,0,142,1,2.8,1,2,3,0 +60,1,2,140,185,0,0,155,0,3,1,0,2,0 +59,1,0,170,326,0,0,140,1,3.4,0,0,3,0 +46,1,2,150,231,0,1,147,0,3.6,1,0,2,0 +67,1,0,125,254,1,1,163,0,0.2,1,2,3,0 +62,1,0,120,267,0,1,99,1,1.8,1,2,3,0 +65,1,0,110,248,0,0,158,0,0.6,2,2,1,0 +44,1,0,110,197,0,0,177,0,0,2,1,2,0 +60,1,0,125,258,0,0,141,1,2.8,1,1,3,0 +58,1,0,150,270,0,0,111,1,0.8,2,0,3,0 +68,1,2,180,274,1,0,150,1,1.6,1,0,3,0 +62,0,0,160,164,0,0,145,0,6.2,0,3,3,0 +52,1,0,128,255,0,1,161,1,0,2,1,3,0 +59,1,0,110,239,0,0,142,1,1.2,1,1,3,0 +60,0,0,150,258,0,0,157,0,2.6,1,2,3,0 +49,1,2,120,188,0,1,139,0,2,1,3,3,0 +59,1,0,140,177,0,1,162,1,0,2,1,3,0 +57,1,2,128,229,0,0,150,0,0.4,1,1,3,0 +61,1,0,120,260,0,1,140,1,3.6,1,1,3,0 +39,1,0,118,219,0,1,140,0,1.2,1,0,3,0 +61,0,0,145,307,0,0,146,1,1,1,0,3,0 +56,1,0,125,249,1,0,144,1,1.2,1,1,2,0 +43,0,0,132,341,1,0,136,1,3,1,0,3,0 +62,0,2,130,263,0,1,97,0,1.2,1,1,3,0 +63,1,0,130,330,1,0,132,1,1.8,2,3,3,0 +65,1,0,135,254,0,0,127,0,2.8,1,1,3,0 +48,1,0,130,256,1,0,150,1,0,2,2,3,0 +63,0,0,150,407,0,0,154,0,4,1,3,3,0 +55,1,0,140,217,0,1,111,1,5.6,0,0,3,0 +65,1,3,138,282,1,0,174,0,1.4,1,1,2,0 +56,0,0,200,288,1,0,133,1,4,0,2,3,0 +54,1,0,110,239,0,1,126,1,2.8,1,1,3,0 +70,1,0,145,174,0,1,125,1,2.6,0,0,3,0 +62,1,1,120,281,0,0,103,0,1.4,1,1,3,0 +35,1,0,120,198,0,1,130,1,1.6,1,0,3,0 +59,1,3,170,288,0,0,159,0,0.2,1,0,3,0 +64,1,2,125,309,0,1,131,1,1.8,1,0,3,0 +47,1,2,108,243,0,1,152,0,0,2,0,2,0 +57,1,0,165,289,1,0,124,0,1,1,3,3,0 +55,1,0,160,289,0,0,145,1,0.8,1,1,3,0 +64,1,0,120,246,0,0,96,1,2.2,0,1,2,0 +70,1,0,130,322,0,0,109,0,2.4,1,3,2,0 +51,1,0,140,299,0,1,173,1,1.6,2,0,3,0 +58,1,0,125,300,0,0,171,0,0,2,2,3,0 +60,1,0,140,293,0,0,170,0,1.2,1,2,3,0 +77,1,0,125,304,0,0,162,1,0,2,3,2,0 +35,1,0,126,282,0,0,156,1,0,2,0,3,0 +70,1,2,160,269,0,1,112,1,2.9,1,1,3,0 +59,0,0,174,249,0,1,143,1,0,1,0,2,0 +64,1,0,145,212,0,0,132,0,2,1,2,1,0 +57,1,0,152,274,0,1,88,1,1.2,1,1,3,0 +56,1,0,132,184,0,0,105,1,2.1,1,1,1,0 +48,1,0,124,274,0,0,166,0,0.5,1,0,3,0 +56,0,0,134,409,0,0,150,1,1.9,1,2,3,0 +66,1,1,160,246,0,1,120,1,0,1,3,1,0 +54,1,1,192,283,0,0,195,0,0,2,1,3,0 +69,1,2,140,254,0,0,146,0,2,1,3,3,0 +51,1,0,140,298,0,1,122,1,4.2,1,3,3,0 +43,1,0,132,247,1,0,143,1,0.1,1,4,3,0 +62,0,0,138,294,1,1,106,0,1.9,1,3,2,0 +67,1,0,100,299,0,0,125,1,0.9,1,2,2,0 +59,1,3,160,273,0,0,125,0,0,2,0,2,0 +45,1,0,142,309,0,0,147,1,0,1,3,3,0 +58,1,0,128,259,0,0,130,1,3,1,2,3,0 +50,1,0,144,200,0,0,126,1,0.9,1,0,3,0 +62,0,0,150,244,0,1,154,1,1.4,1,0,2,0 +38,1,3,120,231,0,1,182,1,3.8,1,0,3,0 +66,0,0,178,228,1,1,165,1,1,1,2,3,0 +52,1,0,112,230,0,1,160,0,0,2,1,2,0 +53,1,0,123,282,0,1,95,1,2,1,2,3,0 +63,0,0,108,269,0,1,169,1,1.8,1,2,2,0 +54,1,0,110,206,0,0,108,1,0,1,1,2,0 +66,1,0,112,212,0,0,132,1,0.1,2,1,2,0 +55,0,0,180,327,0,2,117,1,3.4,1,0,2,0 +49,1,2,118,149,0,0,126,0,0.8,2,3,2,0 +54,1,0,122,286,0,0,116,1,3.2,1,2,2,0 +56,1,0,130,283,1,0,103,1,1.6,0,0,3,0 +46,1,0,120,249,0,0,144,0,0.8,2,0,3,0 +61,1,3,134,234,0,1,145,0,2.6,1,2,2,0 +67,1,0,120,237,0,1,71,0,1,1,0,2,0 +58,1,0,100,234,0,1,156,0,0.1,2,1,3,0 +47,1,0,110,275,0,0,118,1,1,1,1,2,0 +52,1,0,125,212,0,1,168,0,1,2,2,3,0 +58,1,0,146,218,0,1,105,0,2,1,1,3,0 +57,1,1,124,261,0,1,141,0,0.3,2,0,3,0 +58,0,1,136,319,1,0,152,0,0,2,2,2,0 +61,1,0,138,166,0,0,125,1,3.6,1,1,2,0 +42,1,0,136,315,0,1,125,1,1.8,1,0,1,0 +52,1,0,128,204,1,1,156,1,1,1,0,0,0 +59,1,2,126,218,1,1,134,0,2.2,1,1,1,0 +40,1,0,152,223,0,1,181,0,0,2,0,3,0 +61,1,0,140,207,0,0,138,1,1.9,2,1,3,0 +46,1,0,140,311,0,1,120,1,1.8,1,2,3,0 +59,1,3,134,204,0,1,162,0,0.8,2,2,2,0 +57,1,1,154,232,0,0,164,0,0,2,1,2,0 +57,1,0,110,335,0,1,143,1,3,1,1,3,0 +55,0,0,128,205,0,2,130,1,2,1,1,3,0 +61,1,0,148,203,0,1,161,0,0,2,1,3,0 +58,1,0,114,318,0,2,140,0,4.4,0,3,1,0 +58,0,0,170,225,1,0,146,1,2.8,1,2,1,0 +67,1,2,152,212,0,0,150,0,0.8,1,0,3,0 +44,1,0,120,169,0,1,144,1,2.8,0,0,1,0 +63,1,0,140,187,0,0,144,1,4,2,2,3,0 +63,0,0,124,197,0,1,136,1,0,1,0,2,0 +59,1,0,164,176,1,0,90,0,1,1,2,1,0 +57,0,0,140,241,0,1,123,1,0.2,1,0,3,0 +45,1,3,110,264,0,1,132,0,1.2,1,0,3,0 +68,1,0,144,193,1,1,141,0,3.4,1,2,3,0 +57,1,0,130,131,0,1,115,1,1.2,1,1,3,0 +57,0,1,130,236,0,0,174,0,0,1,1,2,0 diff --git a/data/housing-data.csv b/data/housing-data.csv new file mode 100644 index 0000000..d53b2ef --- /dev/null +++ b/data/housing-data.csv @@ -0,0 +1,48 @@ +sqft,bdrms,age,price +2104,3,70,399900 +1600,3,28,329900 +2400,3,44,369000 +1416,2,49,232000 +3000,4,75,539900 +1985,4,61,299900 +1534,3,12,314900 +1427,3,57,198999 +1380,3,14,212000 +1494,3,15,242500 +1940,4,7,239999 +2000,3,27,347000 +1890,3,45,329999 +4478,5,49,699900 +1268,3,58,259900 +2300,4,77,449900 +1320,2,62,299900 +1236,3,78,199900 +2609,4,5,499998 +3031,4,21,599000 +1767,3,44,252900 +1888,2,79,255000 +1604,3,13,242900 +1962,4,53,259900 +3890,3,36,573900 +1100,3,60,249900 +1458,3,29,464500 +2526,3,13,469000 +2200,3,28,475000 +2637,3,25,299900 +1839,2,40,349900 +1000,1,5,169900 +2040,4,75,314900 +3137,3,67,579900 +1811,4,24,285900 +1437,3,50,249900 +1239,3,22,229900 +2132,4,28,345000 +4215,4,66,549000 +2162,4,43,287000 +1664,2,40,368500 +2238,3,37,329900 +2567,4,57,314000 +1200,3,76,299000 +852,2,70,179900 +1852,4,64,299900 +1203,3,11,239500 diff --git a/data/international-airline-passengers.csv b/data/international-airline-passengers.csv new file mode 100644 index 0000000..404288c --- /dev/null +++ b/data/international-airline-passengers.csv @@ -0,0 +1,145 @@ +"Month","Thousand Passengers" +"1949-01",112 +"1949-02",118 +"1949-03",132 +"1949-04",129 +"1949-05",121 +"1949-06",135 +"1949-07",148 +"1949-08",148 +"1949-09",136 +"1949-10",119 +"1949-11",104 +"1949-12",118 +"1950-01",115 +"1950-02",126 +"1950-03",141 +"1950-04",135 +"1950-05",125 +"1950-06",149 +"1950-07",170 +"1950-08",170 +"1950-09",158 +"1950-10",133 +"1950-11",114 +"1950-12",140 +"1951-01",145 +"1951-02",150 +"1951-03",178 +"1951-04",163 +"1951-05",172 +"1951-06",178 +"1951-07",199 +"1951-08",199 +"1951-09",184 +"1951-10",162 +"1951-11",146 +"1951-12",166 +"1952-01",171 +"1952-02",180 +"1952-03",193 +"1952-04",181 +"1952-05",183 +"1952-06",218 +"1952-07",230 +"1952-08",242 +"1952-09",209 +"1952-10",191 +"1952-11",172 +"1952-12",194 +"1953-01",196 +"1953-02",196 +"1953-03",236 +"1953-04",235 +"1953-05",229 +"1953-06",243 +"1953-07",264 +"1953-08",272 +"1953-09",237 +"1953-10",211 +"1953-11",180 +"1953-12",201 +"1954-01",204 +"1954-02",188 +"1954-03",235 +"1954-04",227 +"1954-05",234 +"1954-06",264 +"1954-07",302 +"1954-08",293 +"1954-09",259 +"1954-10",229 +"1954-11",203 +"1954-12",229 +"1955-01",242 +"1955-02",233 +"1955-03",267 +"1955-04",269 +"1955-05",270 +"1955-06",315 +"1955-07",364 +"1955-08",347 +"1955-09",312 +"1955-10",274 +"1955-11",237 +"1955-12",278 +"1956-01",284 +"1956-02",277 +"1956-03",317 +"1956-04",313 +"1956-05",318 +"1956-06",374 +"1956-07",413 +"1956-08",405 +"1956-09",355 +"1956-10",306 +"1956-11",271 +"1956-12",306 +"1957-01",315 +"1957-02",301 +"1957-03",356 +"1957-04",348 +"1957-05",355 +"1957-06",422 +"1957-07",465 +"1957-08",467 +"1957-09",404 +"1957-10",347 +"1957-11",305 +"1957-12",336 +"1958-01",340 +"1958-02",318 +"1958-03",362 +"1958-04",348 +"1958-05",363 +"1958-06",435 +"1958-07",491 +"1958-08",505 +"1958-09",404 +"1958-10",359 +"1958-11",310 +"1958-12",337 +"1959-01",360 +"1959-02",342 +"1959-03",406 +"1959-04",396 +"1959-05",420 +"1959-06",472 +"1959-07",548 +"1959-08",559 +"1959-09",463 +"1959-10",407 +"1959-11",362 +"1959-12",405 +"1960-01",417 +"1960-02",391 +"1960-03",419 +"1960-04",461 +"1960-05",472 +"1960-06",535 +"1960-07",622 +"1960-08",606 +"1960-09",508 +"1960-10",461 +"1960-11",390 +"1960-12",432 \ No newline at end of file diff --git a/data/iris.csv b/data/iris.csv new file mode 100644 index 0000000..20bd6ee --- /dev/null +++ b/data/iris.csv @@ -0,0 +1,151 @@ +sepal_length,sepal_width,petal_length,petal_width,species +5.1,3.5,1.4,0.2,setosa +4.9,3.0,1.4,0.2,setosa +4.7,3.2,1.3,0.2,setosa +4.6,3.1,1.5,0.2,setosa +5.0,3.6,1.4,0.2,setosa +5.4,3.9,1.7,0.4,setosa +4.6,3.4,1.4,0.3,setosa +5.0,3.4,1.5,0.2,setosa +4.4,2.9,1.4,0.2,setosa +4.9,3.1,1.5,0.1,setosa +5.4,3.7,1.5,0.2,setosa +4.8,3.4,1.6,0.2,setosa +4.8,3.0,1.4,0.1,setosa +4.3,3.0,1.1,0.1,setosa +5.8,4.0,1.2,0.2,setosa +5.7,4.4,1.5,0.4,setosa +5.4,3.9,1.3,0.4,setosa +5.1,3.5,1.4,0.3,setosa +5.7,3.8,1.7,0.3,setosa +5.1,3.8,1.5,0.3,setosa +5.4,3.4,1.7,0.2,setosa +5.1,3.7,1.5,0.4,setosa +4.6,3.6,1.0,0.2,setosa +5.1,3.3,1.7,0.5,setosa +4.8,3.4,1.9,0.2,setosa +5.0,3.0,1.6,0.2,setosa +5.0,3.4,1.6,0.4,setosa +5.2,3.5,1.5,0.2,setosa +5.2,3.4,1.4,0.2,setosa +4.7,3.2,1.6,0.2,setosa +4.8,3.1,1.6,0.2,setosa +5.4,3.4,1.5,0.4,setosa +5.2,4.1,1.5,0.1,setosa +5.5,4.2,1.4,0.2,setosa +4.9,3.1,1.5,0.2,setosa +5.0,3.2,1.2,0.2,setosa +5.5,3.5,1.3,0.2,setosa +4.9,3.6,1.4,0.1,setosa +4.4,3.0,1.3,0.2,setosa +5.1,3.4,1.5,0.2,setosa +5.0,3.5,1.3,0.3,setosa +4.5,2.3,1.3,0.3,setosa +4.4,3.2,1.3,0.2,setosa +5.0,3.5,1.6,0.6,setosa +5.1,3.8,1.9,0.4,setosa +4.8,3.0,1.4,0.3,setosa +5.1,3.8,1.6,0.2,setosa +4.6,3.2,1.4,0.2,setosa +5.3,3.7,1.5,0.2,setosa +5.0,3.3,1.4,0.2,setosa +7.0,3.2,4.7,1.4,versicolor +6.4,3.2,4.5,1.5,versicolor +6.9,3.1,4.9,1.5,versicolor +5.5,2.3,4.0,1.3,versicolor +6.5,2.8,4.6,1.5,versicolor +5.7,2.8,4.5,1.3,versicolor +6.3,3.3,4.7,1.6,versicolor +4.9,2.4,3.3,1.0,versicolor +6.6,2.9,4.6,1.3,versicolor +5.2,2.7,3.9,1.4,versicolor +5.0,2.0,3.5,1.0,versicolor +5.9,3.0,4.2,1.5,versicolor +6.0,2.2,4.0,1.0,versicolor +6.1,2.9,4.7,1.4,versicolor +5.6,2.9,3.6,1.3,versicolor +6.7,3.1,4.4,1.4,versicolor +5.6,3.0,4.5,1.5,versicolor +5.8,2.7,4.1,1.0,versicolor +6.2,2.2,4.5,1.5,versicolor +5.6,2.5,3.9,1.1,versicolor +5.9,3.2,4.8,1.8,versicolor +6.1,2.8,4.0,1.3,versicolor +6.3,2.5,4.9,1.5,versicolor +6.1,2.8,4.7,1.2,versicolor +6.4,2.9,4.3,1.3,versicolor +6.6,3.0,4.4,1.4,versicolor +6.8,2.8,4.8,1.4,versicolor +6.7,3.0,5.0,1.7,versicolor +6.0,2.9,4.5,1.5,versicolor +5.7,2.6,3.5,1.0,versicolor +5.5,2.4,3.8,1.1,versicolor +5.5,2.4,3.7,1.0,versicolor +5.8,2.7,3.9,1.2,versicolor +6.0,2.7,5.1,1.6,versicolor +5.4,3.0,4.5,1.5,versicolor +6.0,3.4,4.5,1.6,versicolor +6.7,3.1,4.7,1.5,versicolor +6.3,2.3,4.4,1.3,versicolor +5.6,3.0,4.1,1.3,versicolor +5.5,2.5,4.0,1.3,versicolor +5.5,2.6,4.4,1.2,versicolor +6.1,3.0,4.6,1.4,versicolor +5.8,2.6,4.0,1.2,versicolor +5.0,2.3,3.3,1.0,versicolor +5.6,2.7,4.2,1.3,versicolor +5.7,3.0,4.2,1.2,versicolor +5.7,2.9,4.2,1.3,versicolor +6.2,2.9,4.3,1.3,versicolor +5.1,2.5,3.0,1.1,versicolor +5.7,2.8,4.1,1.3,versicolor +6.3,3.3,6.0,2.5,virginica +5.8,2.7,5.1,1.9,virginica +7.1,3.0,5.9,2.1,virginica +6.3,2.9,5.6,1.8,virginica +6.5,3.0,5.8,2.2,virginica +7.6,3.0,6.6,2.1,virginica +4.9,2.5,4.5,1.7,virginica +7.3,2.9,6.3,1.8,virginica +6.7,2.5,5.8,1.8,virginica +7.2,3.6,6.1,2.5,virginica +6.5,3.2,5.1,2.0,virginica +6.4,2.7,5.3,1.9,virginica +6.8,3.0,5.5,2.1,virginica +5.7,2.5,5.0,2.0,virginica +5.8,2.8,5.1,2.4,virginica +6.4,3.2,5.3,2.3,virginica +6.5,3.0,5.5,1.8,virginica +7.7,3.8,6.7,2.2,virginica +7.7,2.6,6.9,2.3,virginica +6.0,2.2,5.0,1.5,virginica +6.9,3.2,5.7,2.3,virginica +5.6,2.8,4.9,2.0,virginica +7.7,2.8,6.7,2.0,virginica +6.3,2.7,4.9,1.8,virginica +6.7,3.3,5.7,2.1,virginica +7.2,3.2,6.0,1.8,virginica +6.2,2.8,4.8,1.8,virginica +6.1,3.0,4.9,1.8,virginica +6.4,2.8,5.6,2.1,virginica +7.2,3.0,5.8,1.6,virginica +7.4,2.8,6.1,1.9,virginica +7.9,3.8,6.4,2.0,virginica +6.4,2.8,5.6,2.2,virginica +6.3,2.8,5.1,1.5,virginica +6.1,2.6,5.6,1.4,virginica +7.7,3.0,6.1,2.3,virginica +6.3,3.4,5.6,2.4,virginica +6.4,3.1,5.5,1.8,virginica +6.0,3.0,4.8,1.8,virginica +6.9,3.1,5.4,2.1,virginica +6.7,3.1,5.6,2.4,virginica +6.9,3.1,5.1,2.3,virginica +5.8,2.7,5.1,1.9,virginica +6.8,3.2,5.9,2.3,virginica +6.7,3.3,5.7,2.5,virginica +6.7,3.0,5.2,2.3,virginica +6.3,2.5,5.0,1.9,virginica +6.5,3.0,5.2,2.0,virginica +6.2,3.4,5.4,2.3,virginica +5.9,3.0,5.1,1.8,virginica diff --git a/data/iss.jpg b/data/iss.jpg new file mode 100644 index 0000000..f05ac4f Binary files /dev/null and b/data/iss.jpg differ diff --git a/data/sms.wav b/data/sms.wav new file mode 100644 index 0000000..0827dc5 Binary files /dev/null and b/data/sms.wav differ diff --git a/data/test.csv b/data/test.csv new file mode 100644 index 0000000..c841075 --- /dev/null +++ b/data/test.csv @@ -0,0 +1,301 @@ +x,y +77,79.77515201 +21,23.17727887 +22,25.60926156 +20,17.85738813 +36,41.84986439 +15,9.805234876 +62,58.87465933 +95,97.61793701 +20,18.39512747 +5,8.746747654 +4,2.811415826 +19,17.09537241 +96,95.14907176 +62,61.38800663 +36,40.24701716 +15,14.82248589 +65,66.95806869 +14,16.63507984 +87,90.65513736 +69,77.22982636 +89,92.11906278 +51,46.91387709 +89,89.82634442 +27,21.71380347 +97,97.41206981 +58,57.01631363 +79,78.31056542 +21,19.1315097 +93,93.03483388 +27,26.59112396 +99,97.55155344 +31,31.43524822 +33,35.12724777 +80,78.61042432 +28,33.07112825 +47,51.69967172 +53,53.62235225 +69,69.46306072 +28,27.42497237 +33,36.34644189 +91,95.06140858 +71,68.16724757 +50,50.96155532 +76,78.04237454 +4,5.607664865 +37,36.11334779 +70,67.2352155 +68,65.01324035 +40,38.14753871 +35,34.31141446 +94,95.28503937 +88,87.84749912 +52,54.08170635 +31,31.93063515 +59,59.61247085 +0,-1.040114209 +39,47.49374765 +64,62.60089773 +69,70.9146434 +57,56.14834113 +13,14.05572877 +72,68.11367147 +76,75.59701346 +61,59.225745 +82,85.45504157 +18,17.76197116 +41,38.68888682 +50,50.96343637 +55,51.83503872 +13,17.0761107 +46,46.56141773 +13,10.34754461 +79,77.91032969 +53,50.17008622 +15,13.25690647 +28,31.32274932 +81,73.9308764 +69,74.45114379 +52,52.01932286 +84,83.68820499 +68,70.3698748 +27,23.44479161 +56,49.83051801 +48,49.88226593 +40,41.04525583 +39,33.37834391 +82,81.29750133 +100,105.5918375 +59,56.82457013 +43,48.67252645 +67,67.02150613 +38,38.43076389 +63,58.61466887 +91,89.12377509 +60,60.9105427 +14,13.83959878 +21,16.89085185 +87,84.06676818 +73,70.34969772 +32,33.38474138 +2,-1.63296825 +82,88.54475895 +19,17.44047622 +74,75.69298554 +42,41.97607107 +12,12.59244741 +1,0.275307261 +90,98.13258005 +89,87.45721555 +0,-2.344738542 +41,39.3294153 +16,16.68715211 +94,96.58888601 +97,97.70342201 +66,67.01715955 +24,25.63476257 +17,13.41310757 +90,95.15647284 +13,9.744164258 +0,-3.467883789 +64,62.82816355 +96,97.27405461 +98,95.58017185 +12,7.468501839 +41,45.44599591 +47,46.69013968 +78,74.4993599 +20,21.63500655 +89,91.59548851 +29,26.49487961 +64,67.38654703 +75,74.25362837 +12,12.07991648 +25,21.32273728 +28,29.31770045 +30,26.48713683 +65,68.94699774 +59,59.10598995 +64,64.37521087 +53,60.20758349 +71,70.34329706 +97,97.1082562 +73,75.7584178 +9,10.80462727 +12,12.11219941 +63,63.28312382 +99,98.03017721 +60,63.19354354 +35,34.8534823 +2,-2.819913974 +60,59.8313966 +32,29.38505024 +94,97.00148372 +84,85.18657275 +63,61.74063192 +22,18.84798163 +81,78.79008525 +93,95.12400481 +33,30.48881287 +7,10.41468095 +42,38.98317436 +46,46.11021062 +54,52.45103628 +16,21.16523945 +49,52.28620611 +43,44.18863945 +95,97.13832018 +66,67.22008001 +21,18.98322306 +35,24.3884599 +80,79.44769523 +37,40.03504862 +54,53.32005764 +56,54.55446979 +1,-2.761182595 +32,37.80182795 +58,57.48741435 +32,36.06292994 +46,49.83538167 +72,74.68953276 +17,14.86159401 +97,101.0697879 +93,99.43577876 +91,91.69240746 +37,34.12473248 +4,6.079390073 +54,59.07247174 +51,56.43046022 +27,30.49412933 +46,48.35172635 +92,89.73153611 +73,72.86282528 +77,80.97144285 +91,91.36566374 +61,60.07137496 +99,99.87382707 +4,8.655714172 +72,69.39858505 +19,19.38780134 +57,53.11628433 +78,78.39683006 +26,25.75612514 +74,75.07484683 +90,92.88772282 +66,69.45498498 +13,13.12109842 +40,48.09843134 +77,79.3142548 +67,68.48820749 +75,73.2300846 +23,24.68362712 +45,41.90368917 +59,62.22635684 +44,45.96396877 +23,23.52647153 +55,51.80035866 +55,51.10774273 +95,95.79747345 +12,9.241138977 +4,7.646529763 +7,9.281699753 +100,103.5266162 +48,47.41006725 +42,42.03835773 +96,96.11982476 +39,38.05766408 +100,105.4503788 +87,88.80306911 +14,15.49301141 +14,12.42624606 +37,40.00709598 +5,5.634030902 +88,87.36938931 +91,89.73951993 +65,66.61499643 +74,72.9138853 +56,57.19103506 +16,11.21710477 +5,0.676076749 +28,28.15668543 +92,95.3958003 +46,52.05490703 +54,59.70864577 +39,36.79224762 +44,37.08457698 +31,24.18437976 +68,67.28725332 +86,82.870594 +90,89.899991 +38,36.94173178 +21,19.87562242 +95,90.71481654 +56,61.09367762 +60,60.11134958 +65,64.83296316 +78,81.40381769 +89,92.40217686 +6,2.576625376 +67,63.80768172 +36,38.67780759 +16,16.82839701 +100,99.78687252 +45,44.68913433 +73,71.00377824 +57,51.57326718 +20,19.87846479 +76,79.50341495 +34,34.58876491 +55,55.7383467 +72,68.19721905 +55,55.81628509 +8,9.391416798 +56,56.01448111 +72,77.9969477 +58,55.37049953 +6,11.89457829 +96,94.79081712 +23,25.69041546 +58,53.52042319 +23,18.31396758 +19,21.42637785 +25,30.41303282 +64,67.68142149 +21,17.0854783 +59,60.91792707 +19,14.99514319 +16,16.74923937 +42,41.46923883 +43,42.84526108 +61,59.12912974 +92,91.30863673 +11,8.673336357 +41,39.31485292 +1,5.313686205 +8,5.405220518 +71,68.5458879 +46,47.33487629 +55,54.09063686 +62,63.29717058 +47,52.45946688 \ No newline at end of file diff --git a/data/titanic-train.csv b/data/titanic-train.csv new file mode 100644 index 0000000..5cc466e --- /dev/null +++ b/data/titanic-train.csv @@ -0,0 +1,892 @@ +PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked +1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S +2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C +3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S +4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S +5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S +6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q +7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S +8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S +9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S +10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C +11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S +12,1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S +13,0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S +14,0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S +15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S +16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S +17,0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q +18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S +19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S +20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C +21,0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S +22,1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S +23,1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q +24,1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S +25,0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S +26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S +27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C +28,0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S +29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q +30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S +31,0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C +32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C +33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q +34,0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S +35,0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C +36,0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S +37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C +38,0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S +39,0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S +40,1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C +41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S +42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S +43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C +44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C +45,1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q +46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S +47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q +48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q +49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C +50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S +51,0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S +52,0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S +53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C +54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S +55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C +56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S +57,1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S +58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C +59,1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S +60,0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S +61,0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C +62,1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28, +63,0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S +64,0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S +65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C +66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C +67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S +68,0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S +69,1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S +70,0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S +71,0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S +72,0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S +73,0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S +74,0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C +75,1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S +76,0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S +77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S +78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S +79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S +80,1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S +81,0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S +82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S +83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q +84,0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S +85,1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S +86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S +87,0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S +88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S +89,1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S +90,0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S +91,0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S +92,0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S +93,0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S +94,0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S +95,0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S +96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S +97,0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C +98,1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C +99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S +100,0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S +101,0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S +102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S +103,0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S +104,0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S +105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S +106,0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S +107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S +108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S +109,0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S +110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q +111,0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S +112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C +113,0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S +114,0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S +115,0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C +116,0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S +117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q +118,0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S +119,0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C +120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S +121,0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S +122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S +123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C +124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S +125,0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S +126,1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C +127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q +128,1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S +129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C +130,0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S +131,0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C +132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S +133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S +134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S +135,0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S +136,0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C +137,1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S +138,0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S +139,0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S +140,0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C +141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C +142,1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S +143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S +144,0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q +145,0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S +146,0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S +147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S +148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S +149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S +150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S +151,0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S +152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S +153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S +154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S +155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S +156,0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C +157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q +158,0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S +159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S +160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S +161,0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S +162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S +163,0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S +164,0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S +165,0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S +166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S +167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S +168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S +169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S +170,0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S +171,0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S +172,0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q +173,1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S +174,0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S +175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C +176,0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S +177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S +178,0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C +179,0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S +180,0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S +181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S +182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C +183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S +184,1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S +185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S +186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S +187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q +188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S +189,0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q +190,0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S +191,1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S +192,0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S +193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S +194,1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S +195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C +196,1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C +197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q +198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S +199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q +200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S +201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S +202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S +203,0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S +204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C +205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S +206,0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S +207,0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S +208,1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C +209,1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q +210,1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C +211,0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S +212,1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S +213,0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S +214,0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S +215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q +216,1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C +217,1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S +218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S +219,1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C +220,0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S +221,1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S +222,0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S +223,0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S +224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S +225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S +226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S +227,1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S +228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S +229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S +230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S +231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S +232,0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S +233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S +234,1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S +235,0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S +236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S +237,0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S +238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S +239,0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S +240,0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S +241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C +242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q +243,0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S +244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S +245,0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C +246,0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q +247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S +248,1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S +249,1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S +250,0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S +251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S +252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S +253,0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S +254,0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S +255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S +256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C +257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C +258,1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S +259,1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C +260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S +261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q +262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S +263,0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S +264,0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S +265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q +266,0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S +267,0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S +268,1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S +269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S +270,1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S +271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S +272,1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S +273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S +274,0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C +275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q +276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S +277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S +278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S +279,0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q +280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S +281,0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q +282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S +283,0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S +284,1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S +285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S +286,0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C +287,1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S +288,0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S +289,1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S +290,1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q +291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S +292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C +293,0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C +294,0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S +295,0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S +296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C +297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C +298,0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S +299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S +300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C +301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q +302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q +303,0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S +304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q +305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S +306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S +307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C +308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C +309,0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C +310,1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C +311,1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C +312,1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C +313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S +314,0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S +315,0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S +316,1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S +317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S +318,0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S +319,1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S +320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C +321,0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S +322,0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S +323,1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q +324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S +325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S +326,1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C +327,0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S +328,1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S +329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S +330,1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C +331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q +332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S +333,0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S +334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S +335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S +336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S +337,0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S +338,1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C +339,1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S +340,0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S +341,1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S +342,1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S +343,0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S +344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S +345,0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S +346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S +347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S +348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S +349,1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S +350,0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S +351,0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S +352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S +353,0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C +354,0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S +355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C +356,0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S +357,1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S +358,0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S +359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q +360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q +361,0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S +362,0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C +363,0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C +364,0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S +365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q +366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S +367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C +368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C +369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q +370,1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C +371,1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C +372,0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S +373,0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S +374,0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C +375,0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S +376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C +377,1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S +378,0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C +379,0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C +380,0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S +381,1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C +382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C +383,0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S +384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S +385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S +386,0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S +387,0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S +388,1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S +389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q +390,1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C +391,1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S +392,1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S +393,0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S +394,1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C +395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S +396,0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S +397,0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S +398,0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S +399,0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S +400,1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S +401,1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S +402,0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S +403,0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S +404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S +405,0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S +406,0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S +407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S +408,1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S +409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S +410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S +411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S +412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q +413,1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q +414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S +415,1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S +416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S +417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S +418,1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S +419,0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S +420,0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S +421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C +422,0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q +423,0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S +424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S +425,0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S +426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S +427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S +428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S +429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q +430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S +431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S +432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S +433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S +434,0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S +435,0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S +436,1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S +437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S +438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S +439,0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S +440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S +441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S +442,0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S +443,0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S +444,1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S +445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S +446,1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S +447,1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S +448,1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S +449,1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C +450,1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S +451,0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S +452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S +453,0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C +454,1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C +455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S +456,1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C +457,0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S +458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S +459,1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S +460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q +461,1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S +462,0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S +463,0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S +464,0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S +465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S +466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S +467,0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S +468,0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S +469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q +470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C +471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S +472,0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S +473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S +474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C +475,0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S +476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S +477,0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S +478,0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S +479,0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S +480,1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S +481,0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S +482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S +483,0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S +484,1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S +485,1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C +486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S +487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S +488,0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C +489,0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S +490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S +491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S +492,0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S +493,0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S +494,0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C +495,0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S +496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C +497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C +498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S +499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S +500,0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S +501,0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S +502,0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q +503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q +504,0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S +505,1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S +506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C +507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S +508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S +509,0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S +510,1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S +511,1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q +512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S +513,1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S +514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C +515,0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S +516,0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S +517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S +518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q +519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S +520,0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S +521,1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S +522,0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S +523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C +524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C +525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C +526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q +527,1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S +528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S +529,0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S +530,0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S +531,1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S +532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C +533,0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C +534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C +535,0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S +536,1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S +537,0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S +538,1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C +539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S +540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C +541,1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S +542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S +543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S +544,1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S +545,0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C +546,0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S +547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S +548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C +549,0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S +550,1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S +551,1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C +552,0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S +553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q +554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C +555,1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S +556,0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S +557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C +558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C +559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S +560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S +561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q +562,0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S +563,0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S +564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S +565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S +566,0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S +567,0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S +568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S +569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C +570,1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S +571,1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S +572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S +573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S +574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q +575,0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S +576,0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S +577,1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S +578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S +579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C +580,1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S +581,1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S +582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C +583,0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S +584,0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C +585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C +586,1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S +587,0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S +588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C +589,0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S +590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S +591,0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S +592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C +593,0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S +594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q +595,0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S +596,0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S +597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S +598,0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S +599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C +600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C +601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S +602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S +603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S +604,0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S +605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C +606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S +607,0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S +608,1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S +609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C +610,1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S +611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S +612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S +613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q +614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q +615,0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S +616,1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S +617,0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S +618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S +619,1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S +620,0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S +621,0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C +622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S +623,1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C +624,0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S +625,0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S +626,0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S +627,0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q +628,1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S +629,0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S +630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q +631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S +632,0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S +633,1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C +634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S +635,0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S +636,1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S +637,0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S +638,0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S +639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S +640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S +641,0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S +642,1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C +643,0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S +644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S +645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C +646,1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C +647,0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S +648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C +649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S +650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S +651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S +652,1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S +653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S +654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q +655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q +656,0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S +657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S +658,0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q +659,0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S +660,0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C +661,1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S +662,0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C +663,0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S +664,0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S +665,1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S +666,0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S +667,0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S +668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S +669,0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S +670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S +671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S +672,0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S +673,0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S +674,1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S +675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S +676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S +677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S +678,1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S +679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S +680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C +681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q +682,1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C +683,0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S +684,0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S +685,0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S +686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C +687,0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S +688,0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S +689,0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S +690,1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S +691,1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S +692,1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C +693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S +694,0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C +695,0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S +696,0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S +697,0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S +698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q +699,0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C +700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S +701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C +702,1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S +703,0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C +704,0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q +705,0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S +706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S +707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S +708,1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S +709,1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S +710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C +711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C +712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S +713,1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S +714,0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S +715,0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S +716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S +717,1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C +718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S +719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q +720,0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S +721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S +722,0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S +723,0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S +724,0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S +725,1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S +726,0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S +727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S +728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q +729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S +730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S +731,1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S +732,0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C +733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S +734,0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S +735,0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S +736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S +737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S +738,1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C +739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S +740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S +741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S +742,0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S +743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C +744,0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S +745,1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S +746,0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S +747,0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S +748,1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S +749,0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S +750,0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q +751,1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S +752,1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S +753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S +754,0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S +755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S +756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S +757,0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S +758,0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S +759,0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S +760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S +761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S +762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S +763,1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C +764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S +765,0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S +766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S +767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C +768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q +769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q +770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S +771,0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S +772,0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S +773,0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S +774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C +775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S +776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S +777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q +778,1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S +779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q +780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S +781,1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C +782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S +783,0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S +784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S +785,0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S +786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S +787,1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S +788,0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q +789,1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S +790,0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C +791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q +792,0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S +793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S +794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C +795,0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S +796,0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S +797,1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S +798,1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S +799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C +800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S +801,0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S +802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S +803,1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S +804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C +805,1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S +806,0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S +807,0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S +808,0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S +809,0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S +810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S +811,0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S +812,0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S +813,0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S +814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S +815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S +816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S +817,0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S +818,0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C +819,0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S +820,0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S +821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S +822,1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S +823,0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S +824,1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S +825,0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S +826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q +827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S +828,1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C +829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q +830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28, +831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C +832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S +833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C +834,0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S +835,0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S +836,1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C +837,0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S +838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S +839,1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S +840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C +841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S +842,0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S +843,1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C +844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C +845,0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S +846,0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S +847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S +848,0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C +849,0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S +850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C +851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S +852,0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S +853,0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C +854,1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S +855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S +856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S +857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S +858,1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S +859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C +860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C +861,0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S +862,0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S +863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S +864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S +865,0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S +866,1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S +867,1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C +868,0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S +869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S +870,1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S +871,0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S +872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S +873,0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S +874,0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S +875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C +876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C +877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S +878,0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S +879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S +880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C +881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S +882,0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S +883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S +884,0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S +885,0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S +886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q +887,0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S +888,1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S +889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S +890,1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C +891,0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q diff --git a/data/us_retail_sales.csv b/data/us_retail_sales.csv new file mode 100644 index 0000000..fefc768 --- /dev/null +++ b/data/us_retail_sales.csv @@ -0,0 +1 @@ +YEAR,JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC 1992,164083,164260,163747,164759,165617,166098,167305,167797,169407,170681,171025,172995 1993,175078,173770,172328,176766,178445,178201,180759,180692,181800,182910,184746,186339 1994,185128,188077,191588,191632,190940,193196,193763,196157,197754,199579,199723,200670 1995,201583,198383,200230,201048,202993,205507,204959,206529,206978,206157,208661,210434 1996,208731,212011,213855,214644,216304,216059,216374,216355,219240,221039,220989,221898 1997,223524,225409,226136,224588,222906,226048,228738,229317,230284,229822,230486,231197 1998,231605,231664,233043,235976,237055,238958,237423,236412,238542,242531,244307,246577 1999,246891,249510,250657,252418,254738,255472,257441,260253,261352,261825,264883,269876 2000,268091,272020,275214,271004,271418,273440,272638,272943,277523,276973,275923,275736 2001,278916,278799,276468,280804,281540,280399,279522,281423,276095,294613,286960,283708 2002,283577,285061,284263,288820,284994,287401,290427,292582,288434,289634,291475,293819 2003,295294,291178,296347,295643,296395,299662,302788,307745,305916,304824,308551,307362 2004,309225,311427,316935,313531,318962,314971,318532,318945,324607,326680,327837,331877 2005,329187,332847,332517,337608,334551,344034,346715,342950,343711,344390,347047,347441 2006,357626,354614,356357,357320,356423,357763,359217,360497,358468,358435,359256,364300 2007,363462,364090,367714,366065,370887,367933,369472,370982,373138,375048,378371,375349 2008,375303,371661,371961,373877,375790,376584,374774,372091,366167,352900,339942,332065 2009,336977,335765,330219,331314,334290,339532,340286,346705,338356,341590,344911,346258 2010,346349,346972,354625,357086,354430,353830,354536,356560,359440,363855,367352,369299 2011,372041,375003,378472,380284,380398,383081,382966,383541,387313,390302,391478,391695 2012,395280,400181,401830,400095,399463,395723,397516,401937,405707,405598,407327,409468 2013,412207,416783,412514,413391,414207,415989,417962,417101,417682,419686,421056,422891 2014,419195,424657,429707,433082,434161,435587,435429,438598,437932,439829,441445,437996 2015,435881,433579,440463,440355,444400,444747,447112,447738,447641,446489,448724,450831 2016,446757,448895,447757,453397,454135,457409,457849,457722,462284,465321,466028,470616 2017,473104,471865,470844,,,,,,,,, \ No newline at end of file diff --git a/data/user_visit_duration.csv b/data/user_visit_duration.csv new file mode 100644 index 0000000..02ac335 --- /dev/null +++ b/data/user_visit_duration.csv @@ -0,0 +1,101 @@ +Time (min),Buy +2.0,0 +0.6833333333333333,0 +3.216666666666667,1 +0.9,0 +1.5333333333333334,1 +2.8833333333333333,1 +0.8,0 +1.4666666666666666,0 +1.1166666666666667,0 +0.6,0 +1.35,1 +3.183333333333333,1 +2.7666666666666666,0 +2.183333333333333,1 +1.5,1 +1.3333333333333333,1 +1.5333333333333334,0 +0.7833333333333333,0 +2.9833333333333334,1 +4.15,1 +0.85,0 +2.033333333333333,1 +1.6,0 +2.6166666666666667,1 +2.683333333333333,1 +1.95,0 +0.4666666666666667,1 +2.716666666666667,1 +2.333333333333333,1 +3.4166666666666665,1 +0.26666666666666666,0 +1.3833333333333333,1 +0.5166666666666667,0 +2.7,1 +2.05,0 +2.95,1 +1.2333333333333334,0 +3.6166666666666663,1 +1.4333333333333331,1 +2.066666666666667,0 +2.066666666666667,1 +1.5,0 +2.433333333333333,0 +2.95,1 +2.216666666666667,1 +0.9166666666666666,0 +2.1,1 +3.75,1 +1.0,0 +0.0,0 +2.65,1 +1.55,0 +1.0666666666666669,0 +2.0166666666666666,1 +0.0,0 +0.0,0 +0.6666666666666666,0 +2.5166666666666666,1 +1.0666666666666669,0 +1.25,0 +2.95,1 +0.0,0 +1.9666666666666663,0 +2.2,1 +2.9,1 +3.85,1 +2.3833333333333333,1 +2.083333333333333,1 +3.183333333333333,1 +3.8666666666666663,1 +2.183333333333333,0 +2.833333333333333,1 +2.7333333333333334,1 +1.3833333333333333,0 +1.1666666666666667,0 +0.38333333333333336,0 +1.1666666666666667,0 +1.5166666666666666,0 +3.216666666666667,1 +1.1333333333333333,0 +0.7,0 +0.8166666666666667,0 +3.883333333333333,1 +2.216666666666667,1 +0.75,0 +2.566666666666667,0 +0.0,0 +0.0,0 +1.7666666666666666,1 +1.6833333333333331,1 +0.21666666666666667,0 +0.0,0 +2.8833333333333333,1 +2.466666666666667,1 +1.2666666666666666,0 +3.75,1 +3.883333333333333,1 +1.5666666666666669,0 +1.6666666666666667,0 +2.15,1 diff --git a/data/weight-height.csv b/data/weight-height.csv new file mode 100644 index 0000000..361c9b5 --- /dev/null +++ b/data/weight-height.csv @@ -0,0 +1,10001 @@ +"Gender","Height","Weight" +"Male",73.847017017515,241.893563180437 +"Male",68.7819040458903,162.310472521300 +"Male",74.1101053917849,212.7408555565 +"Male",71.7309784033377,220.042470303077 +"Male",69.8817958611153,206.349800623871 +"Male",67.2530156878065,152.212155757083 +"Male",68.7850812516616,183.927888604031 +"Male",68.3485155115879,167.971110489509 +"Male",67.018949662883,175.92944039571 +"Male",63.4564939783664,156.399676387112 +"Male",71.1953822829745,186.604925560358 +"Male",71.6408051192206,213.741169489411 +"Male",64.7663291334055,167.127461073476 +"Male",69.2830700967204,189.446181386738 +"Male",69.2437322298112,186.434168021239 +"Male",67.6456197004212,172.186930058117 +"Male",72.4183166259878,196.028506330482 +"Male",63.974325721061,172.883470208780 +"Male",69.6400598997523,185.983957573130 +"Male",67.9360048540095,182.426648013226 +"Male",67.9150501938206,174.115929081393 +"Male",69.4394398680395,197.73142161472 +"Male",66.1491319608781,149.173566007975 +"Male",75.2059736142212,228.761780615196 +"Male",67.8931963386043,162.006651848287 +"Male",68.1440327982008,192.343976579187 +"Male",69.0896314289256,184.435174408406 +"Male",72.8008435165003,206.828189420354 +"Male",67.4212422817167,175.213922399227 +"Male",68.4964153568827,154.342638925955 +"Male",68.6181105502058,187.506843155807 +"Male",74.0338076216678,212.910225325521 +"Male",71.5282160355709,195.032243233835 +"Male",69.1801610995692,205.183621341371 +"Male",69.577202365402,204.164125484101 +"Male",70.4009288884762,192.903515074649 +"Male",69.0761711675356,197.488242598925 +"Male",67.1935232827228,183.810973232751 +"Male",65.8073156549306,163.851824878622 +"Male",64.3041878915595,163.108017147583 +"Male",67.9743362271967,172.135597406825 +"Male",72.1894259592134,194.045404898059 +"Male",65.2703455240394,168.617746204292 +"Male",66.0901773762725,161.193432596622 +"Male",67.5103215157138,164.660277264007 +"Male",70.1047862551571,188.922303151274 +"Male",68.2518364408672,187.060552163801 +"Male",72.1727091157973,209.070863390252 +"Male",69.1798576188774,192.014335412005 +"Male",72.870360147235,211.342496819640 +"Male",64.7825829779871,165.611626182250 +"Male",70.1835498874837,201.071918099568 +"Male",68.4914502529394,173.423960346601 +"Male",67.3308308810162,181.407679285937 +"Male",66.9909440825232,169.737707400252 +"Male",66.4995499002499,163.309528309674 +"Male",68.3530566463988,189.710209942456 +"Male",70.7744590703974,192.124847346168 +"Male",71.2159236694709,198.1984641076 +"Male",70.0133653490674,209.526499837126 +"Male",71.4031822207589,198.759792659859 +"Male",69.5520050948319,198.079523654438 +"Male",73.8185345577699,195.290612189727 +"Male",66.99688275225,164.943302997003 +"Male",71.4184658930907,179.863902339297 +"Male",65.2793002090043,155.250420694049 +"Male",68.2741914742284,184.519391248574 +"Male",72.7653699463424,220.678041465283 +"Male",68.0993798003468,183.31265530722 +"Male",68.8967060721692,196.451312291183 +"Male",69.2895099633052,184.595608300273 +"Male",70.5232245234565,207.532838518544 +"Male",69.6637252265179,177.200928752348 +"Male",67.5952688079157,163.108002209381 +"Male",72.5081203801037,216.218230112735 +"Male",71.2529856038086,204.655493822323 +"Male",71.8091868893668,200.920571219495 +"Male",72.2451654792519,220.901769881142 +"Male",66.5126276609347,196.449860340782 +"Male",66.0290340048182,168.640810039015 +"Male",67.577153942735,181.432713008126 +"Male",68.2465686016242,198.658673326418 +"Male",73.8261270026308,237.916735863185 +"Male",69.8024643604904,173.041255909233 +"Male",65.9595777848988,160.683916639879 +"Male",71.0790175757451,188.602919070666 +"Male",66.5961965372077,208.345694035109 +"Male",68.9515350928246,193.435118452271 +"Male",68.2444617923064,174.109693790620 +"Male",72.3168251228452,197.368589249335 +"Male",71.8154204495308,201.620666747742 +"Male",65.2370495188386,181.011973240364 +"Male",70.6405300907292,182.122485978660 +"Male",64.731925597255,177.549263423371 +"Male",67.1035511824075,164.974580682475 +"Male",65.1174848880457,165.717112190107 +"Male",71.7012340230177,193.094163543063 +"Male",66.8328782059274,180.683886970857 +"Male",66.4712752615182,172.773722928412 +"Male",69.4115262206039,177.470616229738 +"Male",70.0521774745245,200.818737313254 +"Male",66.7436046519631,167.739775344302 +"Male",66.2743291154144,154.395624779233 +"Male",68.328447992915,177.984728603887 +"Male",70.0758881952341,183.938856956780 +"Male",68.7329881487344,179.204782068600 +"Male",67.556051261876,158.567987385418 +"Male",66.2536325347937,166.503531642942 +"Male",69.1822026805756,171.983677611956 +"Male",67.6091049416397,174.36418237859 +"Male",69.2927380218867,187.745351863374 +"Male",68.1906840077038,201.487962380610 +"Male",71.6070857988906,204.927012136803 +"Male",69.1968575103315,178.685546470181 +"Male",67.2619609790619,164.014427741951 +"Male",73.6851933999998,223.270004412371 +"Male",69.5372150072948,202.958306269835 +"Male",68.3115598414683,189.391785609949 +"Male",67.7389634664393,178.170555578466 +"Male",71.7057626011001,223.299335239803 +"Male",63.6322646037867,167.028706658323 +"Male",68.7211984556865,180.468682011870 +"Male",66.9493416501869,164.439145622362 +"Male",62.7069897353164,149.969618421042 +"Male",72.2584089235993,192.910266551722 +"Male",70.9086530626676,201.883998700574 +"Male",67.609843601682,179.868025984495 +"Male",70.8015589556942,196.467724673936 +"Male",69.3047690450735,187.551649491386 +"Male",66.2428983411553,171.69315968571 +"Male",67.4921929772739,191.699604784328 +"Male",65.8062482913584,165.850647784905 +"Male",71.4437056615428,185.662741323862 +"Male",68.4644058223141,178.281800729884 +"Male",63.98792460498,150.979051250134 +"Male",71.0018976858456,209.929323430504 +"Male",68.1397241925525,174.157804341493 +"Male",68.395400248121,179.878977102334 +"Male",68.0962197450165,167.747141247633 +"Male",68.1405903559209,183.044660372103 +"Male",68.8600903087433,169.556820782151 +"Male",66.1488525422307,173.431672660432 +"Male",66.2060320529589,180.889554609418 +"Male",67.4321202146878,183.508932854723 +"Male",69.471106031247,205.977910165675 +"Male",70.5158596943462,183.759845192649 +"Male",71.3383760399558,201.954495466668 +"Male",71.0019447673538,216.120094736912 +"Male",66.202347706273,159.390323744187 +"Male",72.5433070453887,210.336424661861 +"Male",67.4793517580411,178.618350159953 +"Male",65.3504105558103,146.739797635802 +"Male",70.8440624208882,195.937014974314 +"Male",69.9384752593112,170.175853813004 +"Male",64.7398154829922,169.654054121188 +"Male",69.3084028803936,198.378693643572 +"Male",68.8384628598724,179.907716915983 +"Male",61.9373232676829,147.263686501559 +"Male",68.5933355351181,176.984251121287 +"Male",65.2185755780772,185.467788373205 +"Male",64.3336481069845,177.49380233889 +"Male",68.7489067017398,169.827477419625 +"Male",72.4896554004081,198.581698249799 +"Male",67.2339309182551,203.350339274846 +"Male",67.263604843261,193.217672687431 +"Male",65.1185042831735,178.134945178843 +"Male",66.2628200381632,162.779583404690 +"Male",67.7016796596273,159.286510598869 +"Male",65.530695966695,172.114311951227 +"Male",69.8689698092041,201.837042594883 +"Male",68.481875364733,170.352329550626 +"Male",72.2139633457195,205.389760708631 +"Male",68.1795326940723,169.787768075943 +"Male",71.9812065428705,200.437310528735 +"Male",66.0651367327304,178.588954037204 +"Male",66.6561641698185,168.014029738329 +"Male",67.5994241952902,177.766425839946 +"Male",68.245944093831,193.277623999542 +"Male",64.808621440717,162.379540639612 +"Male",67.4922182698406,183.383824391458 +"Male",68.1807307068654,181.056095285359 +"Male",69.553384902902,210.871798957101 +"Male",66.4022496683603,165.568499073011 +"Male",66.5921571146877,196.148449846229 +"Male",71.9358865828482,202.046425151919 +"Male",68.2870417278818,170.413602496365 +"Male",69.9554511951638,201.948085296608 +"Male",71.8511291454027,193.386984552842 +"Male",65.7554986406737,179.855689615225 +"Male",67.0318520789828,156.489934998191 +"Male",76.7098348578592,235.035418820022 +"Male",72.5711213712958,230.560534959742 +"Male",69.7288048973671,203.895654986365 +"Male",72.799224004586,218.216396639014 +"Male",72.5393540719418,222.667177921523 +"Male",72.2947433844169,208.474865890573 +"Male",67.2533248158638,180.779780013772 +"Male",75.9444603760016,231.924748509110 +"Male",66.3162319187446,170.593858104457 +"Male",71.1560534900436,188.271456288347 +"Male",71.1922022869477,196.061529163376 +"Male",72.1975120071642,214.603584170431 +"Male",75.1408214339315,224.124271329560 +"Male",64.4115293597211,158.579397323387 +"Male",64.7344243580774,166.501114745286 +"Male",63.4145871379546,160.140615622405 +"Male",67.8486652335686,176.172634254583 +"Male",65.9317848288,174.485294666451 +"Male",70.9665504363426,193.906498798923 +"Male",67.5807472772935,186.991606706801 +"Male",68.589270437901,173.595796099507 +"Male",70.3247534441504,193.346560303991 +"Male",72.3944804051075,208.436509038226 +"Male",70.8208567145256,206.032977800797 +"Male",65.9033012610258,172.57523095707 +"Male",74.7953750218274,232.635402847360 +"Male",67.6809190342573,177.24014549544 +"Male",67.1559627687305,175.646690214202 +"Male",71.7748412248401,212.626102288605 +"Male",64.6652319449664,166.969204009677 +"Male",68.1227683623759,196.414415275124 +"Male",66.786927239528,165.431242225646 +"Male",66.805849836748,176.565818557689 +"Male",67.8860137980274,174.652034715810 +"Male",69.1735769192432,195.237529301091 +"Male",70.2249233263794,205.684438396274 +"Male",64.8557991775539,158.341442360480 +"Male",67.8210932715426,169.081008273884 +"Male",63.4402474670865,135.655875865835 +"Male",71.8484348479039,218.157469450706 +"Male",66.7280736470863,155.899541329016 +"Male",71.9683056520603,201.528177430467 +"Male",76.0213474760963,235.926060648678 +"Male",71.4761012826014,195.392617577504 +"Male",67.3698086448686,176.636163567362 +"Male",70.5552437595499,198.460248600108 +"Male",69.8671012814472,185.716910023673 +"Male",67.9475700421625,177.347779818472 +"Male",74.104558863713,215.759703523821 +"Male",69.167836299535,187.022420301570 +"Male",66.557228572704,171.587884316854 +"Male",66.7016049901078,172.839809078093 +"Male",67.2460649543824,168.280286893893 +"Male",69.0513854849974,163.820488927750 +"Male",70.6727471767308,190.023434180521 +"Male",65.4989951214088,156.869951668729 +"Male",65.1872208535622,172.606482559614 +"Male",67.5681430060826,169.063982994918 +"Male",73.8153856882339,231.374508117238 +"Male",71.606564208448,207.250476751691 +"Male",67.724749235945,172.152772178008 +"Male",68.231131952185,199.827758022834 +"Male",65.9294217100738,168.090412215803 +"Male",71.5484957096636,197.819614833288 +"Male",69.1643811220365,196.892315040706 +"Male",68.5976593239588,180.221780102342 +"Male",71.0575108857852,189.134012435934 +"Male",63.6440595814991,158.422717319974 +"Male",71.1824553956369,208.922682655891 +"Male",66.1286731698491,187.141119453372 +"Male",65.0573731150978,157.582431535246 +"Male",68.0913743588464,181.644444983884 +"Male",70.993143899047,204.746678174754 +"Male",74.2211748776249,231.130189759308 +"Male",69.3271181795885,186.258429614423 +"Male",64.9313421940842,181.093869638880 +"Male",68.3468423145436,198.920979667801 +"Male",70.9291250844694,203.370463215939 +"Male",61.4778092015939,161.028752141872 +"Male",68.4908127185185,189.806681842181 +"Male",72.0498898708186,200.202828506602 +"Male",72.5216670257767,221.862650308484 +"Male",71.233911393331,214.060148220865 +"Male",72.2591151862599,201.701421617410 +"Male",67.5650399045651,187.187093632233 +"Male",72.26760699498,196.527466895855 +"Male",62.6002479975529,151.720703729313 +"Male",66.2364372917754,167.297530251137 +"Male",69.6504374123688,198.843695964623 +"Male",69.2859214061721,178.789547981921 +"Male",70.7252787373505,193.539252115985 +"Male",68.8286149599904,197.737905022318 +"Male",66.0144282335004,184.461811520982 +"Male",66.4148820603895,155.194771686925 +"Male",66.6156243917126,160.991989871194 +"Male",68.0348217821036,189.084461735075 +"Male",70.5023980440946,172.985777146208 +"Male",69.1577294930868,195.895256857188 +"Male",70.7950226136223,215.746455305230 +"Male",65.1943771233415,166.707373059357 +"Male",74.7857143190925,239.464342902696 +"Male",71.0669062761598,184.279245833050 +"Male",69.334197785954,199.983890906512 +"Male",69.8992039506227,191.412231132701 +"Male",64.4251937917821,169.109401417791 +"Male",67.85213069861,194.744522494038 +"Male",67.549069488044,183.266533117893 +"Male",74.7674468449337,210.369908709756 +"Male",71.4189459863648,198.042483889936 +"Male",67.1203443862066,172.664090375104 +"Male",69.8595879120267,197.070856157865 +"Male",68.4308133914105,190.505810039573 +"Male",67.9334826070233,184.555483105293 +"Male",68.4953431552723,179.929816647941 +"Male",65.2441434106539,159.503219765390 +"Male",70.18535204699,197.884507071155 +"Male",71.1041331645307,217.269605198307 +"Male",68.4475785430627,187.907425986628 +"Male",65.4205768240508,176.861684237851 +"Male",67.7007881137183,185.148202101777 +"Male",74.2230630621199,223.308040304474 +"Male",71.1672458708534,206.942981776074 +"Male",67.2307718899502,171.016940600979 +"Male",67.880559193661,175.222847965396 +"Male",67.3763754684836,173.310395551927 +"Male",68.7612469290256,181.125973501963 +"Male",71.7052725009646,202.609008338003 +"Male",69.3809947926619,199.850920048803 +"Male",73.7165276342286,223.514722344292 +"Male",69.4533762078207,219.261706666844 +"Male",70.7862898094215,211.216080923481 +"Male",71.7684637369012,200.798982967421 +"Male",69.3434539586165,208.809775337563 +"Male",65.2860255086334,161.420081658509 +"Male",70.9218444138077,207.835944561795 +"Male",68.5966626863791,180.831237755497 +"Male",68.6037964328568,176.815476209732 +"Male",69.4787441197736,194.603768502719 +"Male",65.9308962149966,163.008431653289 +"Male",68.5233452979566,173.270657154824 +"Male",73.9291241262215,215.620035427178 +"Male",71.1979378222303,210.134529042031 +"Male",66.5565868729681,185.042324084993 +"Male",71.7422762291745,187.965355359453 +"Male",69.7448293316538,188.181124848229 +"Male",66.7506541256505,179.542017143198 +"Male",69.6924222571513,211.718428961730 +"Male",70.4035168308414,197.692142083456 +"Male",69.0197361098685,186.287991990979 +"Male",64.732287155256,166.106072437390 +"Male",70.9980744408969,188.811769976897 +"Male",64.4598142530512,161.378773212037 +"Male",69.749522583002,193.476258831235 +"Male",71.5268488121848,189.282246099829 +"Male",68.327915863972,207.784924645001 +"Male",70.7647201641119,199.323094259304 +"Male",71.4190496341516,209.858256604748 +"Male",69.3904740948909,180.175472763871 +"Male",72.001732217799,196.214414481383 +"Male",69.1914749733353,189.438840351539 +"Male",66.1663632831791,165.514607433147 +"Male",67.272142995153,182.39433469242 +"Male",70.9158354035361,189.557637460086 +"Male",69.1198877896665,189.625914076302 +"Male",67.409025871346,170.191325429211 +"Male",72.938649040208,216.097454719831 +"Male",70.4909286959958,177.067774350773 +"Male",69.0082594618674,196.051188755039 +"Male",66.7621099176273,167.700496231312 +"Male",69.1206637294553,179.607870051102 +"Male",73.1262671878997,220.661405093753 +"Male",67.4868238954174,164.295241252612 +"Male",64.95507833495,156.544786349540 +"Male",67.7824890749697,183.681029038066 +"Male",67.662398796047,170.305493490476 +"Male",66.4763970064683,168.627263912841 +"Male",72.9870702010434,209.637974489395 +"Male",69.5632322771984,195.346026970440 +"Male",71.0035601394697,194.322601360166 +"Male",69.9156373621056,219.367916747189 +"Male",71.697141788046,205.161748286445 +"Male",67.6499408575301,178.882633665742 +"Male",68.2955545645253,181.724931465833 +"Male",68.687255673712,203.560333836071 +"Male",68.9157716453463,165.155898683434 +"Male",68.9608796727544,197.931429550253 +"Male",67.2472352041876,173.284033013291 +"Male",68.915863641061,183.947788899966 +"Male",65.8385445036175,139.534046940100 +"Male",64.6710755478367,160.188531344114 +"Male",66.2958977236134,163.604002191910 +"Male",67.0975857472015,193.955107443761 +"Male",66.998289732799,189.893342494401 +"Male",70.9619709026438,184.223932043739 +"Male",68.4208722048485,190.795542169576 +"Male",67.6525275866462,188.200679380904 +"Male",75.6201931582543,226.207779869446 +"Male",70.549242022249,197.879373104868 +"Male",68.8908389093416,190.51348690364 +"Male",68.2845319195117,176.246583436270 +"Male",64.9950782592052,177.727094498411 +"Male",65.5757715426728,173.691592194197 +"Male",69.3060882402712,210.463687540605 +"Male",65.7047154221532,170.100563318173 +"Male",67.8039910102957,173.459891805983 +"Male",69.2161473119131,184.936690322645 +"Male",68.015006008896,194.286945947274 +"Male",61.9269489433641,149.149684837724 +"Male",67.2663627155588,192.4707695606 +"Male",67.6768218539142,179.750807982436 +"Male",69.9709036159667,202.863293032098 +"Male",65.3134615369232,163.357331518913 +"Male",71.9060054405707,217.027714643657 +"Male",66.2339040421843,183.16123245569 +"Male",65.814942824229,166.583610507509 +"Male",72.8449478550183,205.250889151117 +"Male",70.9494434526129,189.703088823966 +"Male",71.3438076277468,218.586336397370 +"Male",71.0556641579506,203.139433025567 +"Male",61.9255472947778,139.905070315411 +"Male",68.7624575579021,196.293805874861 +"Male",67.5839414255894,179.937011167166 +"Male",67.3616946688862,164.145922397398 +"Male",65.8791565562673,168.174864370716 +"Male",68.6947621511413,189.742541903603 +"Male",69.5348615536043,195.170391498940 +"Male",66.6346908282865,190.467958779164 +"Male",69.8099015736912,204.426598301005 +"Male",68.6798736853237,196.151622823601 +"Male",71.615178750348,209.670773879197 +"Male",69.6897953335489,190.933400489868 +"Male",70.9010863653248,197.944832362141 +"Male",68.005813992332,186.78033784958 +"Male",70.6157439783607,188.663832117765 +"Male",71.5711941575576,176.376642766115 +"Male",73.0128632629827,209.329483369428 +"Male",60.748117867457,136.167865724177 +"Male",69.082119625473,190.935182500985 +"Male",69.3387376279613,191.445654280964 +"Male",67.7571377115653,184.938229910773 +"Male",76.0270818630512,232.313470969478 +"Male",72.2276161601432,201.778853950381 +"Male",68.9210413450252,188.328807061518 +"Male",65.334927680754,174.655697250193 +"Male",65.932403451767,183.943338755166 +"Male",70.4666893102283,187.517442017500 +"Male",73.181043621139,213.847452872237 +"Male",68.550879686478,175.219518795655 +"Male",68.5294082502857,169.544805445436 +"Male",63.5964554204545,144.591922421247 +"Male",67.1442412277953,175.679190176701 +"Male",70.8163706158515,197.198401561075 +"Male",73.530284807779,222.925916699257 +"Male",66.1410689194018,165.404545337709 +"Male",67.9068497483934,170.417231213329 +"Male",71.4333758216347,216.633999687682 +"Male",67.1126797980262,173.707504236685 +"Male",73.2839179655908,217.896039742328 +"Male",63.6725831540933,161.013145838894 +"Male",69.2253203013539,193.756325798869 +"Male",69.6701240248717,177.119160725399 +"Male",70.4854481656936,204.827449737938 +"Male",69.0046778666841,176.731892478922 +"Male",68.4578940081104,192.761885655036 +"Male",66.024733782518,166.961020473440 +"Male",69.3181691252784,186.737995548307 +"Male",69.0777405646964,188.506178710684 +"Male",73.5622703667904,208.361491812853 +"Male",66.0876888866475,161.495814307993 +"Male",73.5259843332352,214.966459199799 +"Male",69.6790602156639,205.133435498665 +"Male",66.6767811169297,183.197306840047 +"Male",72.9616654677117,208.895044285857 +"Male",68.246872144459,207.925576545187 +"Male",71.9566258887157,210.663827812062 +"Male",71.0586333491432,204.272837745409 +"Male",66.9769499482511,195.198730107264 +"Male",68.478002075726,190.686022530134 +"Male",71.2844413912849,199.635326578537 +"Male",64.980456290984,166.821547345859 +"Male",66.7618838734058,178.797508975099 +"Male",68.7661617238793,185.772157505947 +"Male",68.9925435671764,193.754990936111 +"Male",71.295194595564,228.800516094148 +"Male",69.0494784004474,192.349701712414 +"Male",66.5414820162944,175.983491137569 +"Male",68.5155234451208,176.141239163871 +"Male",67.4597153131659,177.482524908403 +"Male",71.3573824126824,201.760776882651 +"Male",68.5904060416654,176.843079926229 +"Male",69.736086706944,185.524260351598 +"Male",69.8338570670345,188.041029020603 +"Male",72.4105857637391,189.384438292527 +"Male",65.4345968678659,166.096744020516 +"Male",66.2676567702434,170.250178653613 +"Male",69.9743008732506,212.80425895999 +"Male",71.2091942237274,196.14550620845 +"Male",69.9374001925209,202.279069679297 +"Male",71.3860221929526,201.332006891009 +"Male",64.5887816699057,158.454094446398 +"Male",68.7929844158731,174.489486264089 +"Male",68.4457467280668,183.783382685316 +"Male",69.2015781220676,188.103506112668 +"Male",69.4260173088723,176.193429823813 +"Male",69.6062252013619,194.200711875856 +"Male",72.8817069731098,194.199508871416 +"Male",62.1783312217775,145.898842373806 +"Male",68.8747066201055,191.833709173715 +"Male",71.0800835585909,209.853553640725 +"Male",72.1825341217157,201.261464391648 +"Male",72.0627549780187,208.781853387475 +"Male",67.3800578933842,182.673405387725 +"Male",67.9346345330211,166.435068826956 +"Male",70.8019302593082,193.393542614483 +"Male",65.5491212718992,178.448179734226 +"Male",70.1912244814707,205.941790671464 +"Male",71.7789953682703,199.209842441218 +"Male",68.1302884151545,192.029566571562 +"Male",68.3594825628257,175.260864429376 +"Male",66.090357013204,170.006445104546 +"Male",71.5801231387686,205.347596206115 +"Male",73.5366677229231,196.043295071718 +"Male",71.1155318413304,208.145256645714 +"Male",70.7943025458134,202.890757825725 +"Male",71.7290604846774,188.595023951021 +"Male",63.1965303693731,162.429727448715 +"Male",68.1011134090994,182.852399097347 +"Male",65.8560997291531,157.317461364304 +"Male",68.3464565013792,178.675992067492 +"Male",69.5602289299611,187.217485931716 +"Male",68.7283040728389,171.620966570458 +"Male",70.1582776521047,200.534178304201 +"Male",68.9233366538642,193.927360410157 +"Male",64.3001741979872,155.489728964615 +"Male",70.4556330557961,192.527904959489 +"Male",68.6240631902513,159.862467400555 +"Male",69.6647517445683,176.25927439784 +"Male",69.0588845404837,171.708926273601 +"Male",67.2269862252501,181.709618932242 +"Male",66.115799694985,171.386659244003 +"Male",68.617387345682,179.132024597883 +"Male",69.2490128135195,187.469371391246 +"Male",69.6419061835922,182.004522302487 +"Male",72.7970283570657,214.474035549004 +"Male",75.0439950721537,208.526426975474 +"Male",70.9726841308934,190.221992860972 +"Male",74.3880124251986,217.14379049327 +"Male",64.3621638717144,156.073898515176 +"Male",71.3270010663305,206.385191144764 +"Male",67.172024442062,178.152781433495 +"Male",74.4016718853099,228.838395801115 +"Male",63.8679209595893,174.473362892894 +"Male",68.885991766866,164.21490258191 +"Male",72.1319902243921,212.157275700066 +"Male",68.403726169279,206.014939808132 +"Male",65.0926563918755,167.433532984504 +"Male",69.229679115924,195.218639696094 +"Male",71.9477882649162,209.175489088048 +"Male",67.4629906554446,182.301285584692 +"Male",69.3129086423205,190.185146911980 +"Male",63.7310481676985,160.344903874399 +"Male",60.6798174028202,129.301023766729 +"Male",70.6633230772118,195.626319057537 +"Male",67.594031125615,186.751416941505 +"Male",74.6495078833149,227.500645068307 +"Male",70.4670788540361,197.187532031265 +"Male",71.9440105192761,209.5562827193 +"Male",74.0257508102552,209.75927206677 +"Male",70.782228162223,220.436786379453 +"Male",64.7272569610009,169.207936994027 +"Male",68.3830240801838,185.845616779891 +"Male",71.4692208023458,192.691493116905 +"Male",66.9444537375838,177.026087781898 +"Male",70.7969790042164,199.947383058908 +"Male",65.2924347799135,168.710290250236 +"Male",61.7540098289705,123.528143020198 +"Male",62.4806713089603,160.242238208749 +"Male",67.8056798701788,197.082611042199 +"Male",69.5259942797687,161.970937553318 +"Male",72.5007566339455,201.655055938162 +"Male",70.4852947444441,194.786198325054 +"Male",66.689735993223,162.565406733935 +"Male",71.29191758372,175.810967713132 +"Male",71.7967671979694,209.379310185811 +"Male",73.0563442505026,204.4603316173 +"Male",68.8533543682849,210.869084178877 +"Male",66.045443857521,169.326284191826 +"Male",73.985901415574,223.326104950414 +"Male",69.2516178781137,192.946891078924 +"Male",69.3406572151521,172.904801447625 +"Male",70.976264966752,191.572153555511 +"Male",63.5612776251623,157.119544459453 +"Male",69.7701509519637,182.795494321816 +"Male",65.1884775622368,151.886942249695 +"Male",69.978940819921,193.341082818018 +"Male",69.7505971518031,185.427970139056 +"Male",71.1714311524347,195.382310760510 +"Male",70.5720017829453,174.196887301378 +"Male",65.6510895191431,164.649813939991 +"Male",67.138414139275,163.845001328561 +"Male",65.9180869418123,174.719958105635 +"Male",73.7866364434803,212.900555995405 +"Male",67.7372513405283,172.794260611103 +"Male",65.5440762535086,171.980331261146 +"Male",71.2139125656884,195.923416498401 +"Male",65.5923540298347,174.815348513060 +"Male",65.6675544806922,174.566855841687 +"Male",61.9727358785594,140.277749662033 +"Male",73.8999386863723,215.559703251912 +"Male",72.3421836419704,215.858233901414 +"Male",70.3116943408726,184.243860348496 +"Male",67.1155643547224,168.202167127644 +"Male",65.9324817643713,151.384618198034 +"Male",67.2277450207952,185.970160851636 +"Male",70.1143436293898,203.241731802719 +"Male",74.8414997197116,223.945670277953 +"Male",64.5273026254953,148.472185853494 +"Male",70.0512546906491,207.194647294605 +"Male",71.8331687752888,205.193061760797 +"Male",72.8367396943866,209.422484275198 +"Male",73.301865746729,199.166928678883 +"Male",66.39319244743,165.064609545545 +"Male",66.5151619602185,180.760534823182 +"Male",69.2728126084372,202.298760151666 +"Male",68.2319539277068,195.261990296064 +"Male",70.4138690342612,184.232661744937 +"Male",69.7268852052361,188.453759671202 +"Male",65.510733890584,157.205025302195 +"Male",69.1372693569977,196.5523243152 +"Male",73.6661887960567,208.366179328565 +"Male",65.8927525257603,158.184985696975 +"Male",68.3544289583384,184.598427955692 +"Male",70.424730529607,197.907521149770 +"Male",72.0802011466065,202.867236668923 +"Male",71.711124785333,199.080778987396 +"Male",65.7291618715397,156.223958465888 +"Male",63.8983381991847,168.299537977425 +"Male",70.3160097119508,201.510688097382 +"Male",65.788729792806,174.584879939493 +"Male",69.8274641852115,196.930792028562 +"Male",68.3311500917703,197.756770319413 +"Male",67.7415892669206,165.64328330518 +"Male",75.0338894406835,232.886117051993 +"Male",73.4040585211468,192.732404676961 +"Male",69.55476187936,192.181668737126 +"Male",64.5390397840475,157.129277198286 +"Male",67.5467614711226,163.495202566767 +"Male",73.0964779848914,205.157577990748 +"Male",66.5539810727358,171.428591885687 +"Male",73.9916041888572,208.964583561346 +"Male",70.8626880592361,209.759114032409 +"Male",71.5687336966565,206.260457759816 +"Male",65.8383911344328,177.211696598095 +"Male",70.2755336626221,211.716253810906 +"Male",61.773521995356,149.514839170261 +"Male",74.8249453074994,220.336366886695 +"Male",71.6051458474554,192.427913613357 +"Male",67.260103577221,163.386512746963 +"Male",70.9241944325351,199.778372639881 +"Male",75.0596686483632,218.583687985000 +"Male",73.1008762422727,223.206451566012 +"Male",70.6619920308473,217.951882605948 +"Male",67.1446673494398,171.207778898624 +"Male",67.1231534297474,147.537956155257 +"Male",69.5249439626314,170.037186251170 +"Male",65.2246916634494,160.836074452623 +"Male",68.4104628205716,185.127735469558 +"Male",68.763463696161,177.083388175076 +"Male",67.9368688125212,188.884096818794 +"Male",69.2378286911685,159.244886180877 +"Male",68.46572391809,188.079276046176 +"Male",65.6942935969472,150.960619570537 +"Male",69.4309980463662,172.325881178479 +"Male",66.1353914165956,166.363818692456 +"Male",70.8770481302174,186.339824370789 +"Male",65.9730649994945,187.658379142995 +"Male",64.9391154197026,163.880198525282 +"Male",68.368603321184,196.949506368912 +"Male",69.5255513063261,189.707398780834 +"Male",66.4556021398344,188.974847308905 +"Male",69.474581761728,177.343917682018 +"Male",68.7300987032260,184.130431971036 +"Male",73.7812744801257,221.240095762718 +"Male",76.50188334064,217.882346394923 +"Male",71.2257019248704,199.182762952512 +"Male",64.5062104482427,164.500366620687 +"Male",66.5038149399263,163.269889315846 +"Male",69.2104130403531,187.624820339102 +"Male",63.5463697191554,150.346658456669 +"Male",69.7311284328782,202.707102372802 +"Male",68.6082084641792,181.724836528158 +"Male",71.464130247868,206.590856693051 +"Male",69.5094880014557,203.985415487617 +"Male",73.7596357420018,231.608670942233 +"Male",68.2777867627378,195.189930156404 +"Male",72.4546334226458,200.290004474109 +"Male",70.7691932703988,195.353057497215 +"Male",70.4521407449342,188.098837300362 +"Male",68.9040988533852,194.659769774523 +"Male",69.2384271868614,197.412091355179 +"Male",67.2778472839007,156.416342192304 +"Male",71.4637646915818,207.768534974947 +"Male",68.8406335127133,171.921149933427 +"Male",71.4059647136753,216.923291191821 +"Male",70.144874073255,190.585376753341 +"Male",70.6796910335925,206.119839185486 +"Male",68.5411160545877,201.108892294769 +"Male",71.4347269121165,206.594058750348 +"Male",65.2208204814207,158.987186084825 +"Male",70.7731514183424,208.223566139917 +"Male",69.760094789524,187.812061866277 +"Male",63.9625306846396,168.349456798515 +"Male",70.3041632689917,196.835051662201 +"Male",70.3168492217264,205.521885795243 +"Male",67.4054078779366,164.574391291788 +"Male",67.121503053709,167.191527196189 +"Male",68.3775798868721,168.997323920848 +"Male",69.5782389725199,184.219818154564 +"Male",62.5322532839863,168.153326219890 +"Male",69.3368215258868,184.119415287208 +"Male",66.7874672787514,172.175466312667 +"Male",75.3912922303323,218.604697288874 +"Male",70.2136290842041,189.658273775163 +"Male",71.1035636159129,196.759936203758 +"Male",69.7938878917517,181.723193180931 +"Male",66.4718444604063,175.389151760833 +"Male",70.7137140881225,208.710438585204 +"Male",63.618717286078,162.674975183263 +"Male",70.5492797174363,191.318810834470 +"Male",67.4028210941089,192.672675824117 +"Male",71.4351749033072,213.337773308762 +"Male",68.5934051359775,187.402530930982 +"Male",71.4523265352799,203.448273004639 +"Male",70.6987899471723,189.985478828833 +"Male",71.3914644848076,197.307058582909 +"Male",70.4856431655714,193.359946993498 +"Male",74.4081878556543,226.701022932309 +"Male",63.4004232290441,185.188138040552 +"Male",68.3997191187644,171.329108454027 +"Male",67.4298541805405,175.124366331655 +"Male",70.8119999651241,196.221113490145 +"Male",67.1102710065681,194.752353698099 +"Male",67.7282199001928,184.468450401731 +"Male",68.5508321853167,179.556789891852 +"Male",68.619484972581,192.605638565238 +"Male",70.605761010108,197.341247176261 +"Male",67.0867812193882,164.175700818982 +"Male",65.3117081851018,167.327702757749 +"Male",69.9241467518784,185.866584288640 +"Male",68.364634884563,193.981747611358 +"Male",70.869804923435,205.863934518421 +"Male",76.0123000122601,235.437966081368 +"Male",67.9659678054035,176.966727879219 +"Male",69.7650874422372,199.02642762377 +"Male",69.5686723852038,200.704051660034 +"Male",71.5600187424886,213.978596580713 +"Male",70.9580492704939,201.663337321292 +"Male",65.4409223111664,144.132026850880 +"Male",70.9761245175843,202.603188030477 +"Male",67.9928512420125,183.958089153383 +"Male",70.5185150906246,199.568441028307 +"Male",69.1091914382834,176.045407011543 +"Male",71.6055730996525,194.932568526505 +"Male",69.8895585817577,203.518326493008 +"Male",66.4568987750028,166.684648751465 +"Male",70.2913541843552,207.508542611603 +"Male",62.6199652024419,152.852974718754 +"Male",66.621681831888,146.230804742359 +"Male",65.3502881767895,156.761337138797 +"Male",71.6067398889196,209.964943185152 +"Male",69.4129144287566,183.902110439132 +"Male",69.8938135929651,200.796854476097 +"Male",65.665958564131,164.215639183560 +"Male",64.4082732512145,154.641041608773 +"Male",68.62688583476,189.44924046642 +"Male",69.6002826442675,176.594888560523 +"Male",67.4532312427657,173.272217789955 +"Male",68.1699945979806,185.253109882045 +"Male",69.553614036104,203.811090942794 +"Male",65.7472979878932,182.051690329734 +"Male",73.1223931509758,201.703778019228 +"Male",66.6209260032382,177.842655342218 +"Male",69.1459089866395,202.628196093564 +"Male",65.965795047667,186.225430725101 +"Male",67.2032664163271,185.454007229585 +"Male",65.4539571708589,175.844485044790 +"Male",73.0300920269224,209.587800507552 +"Male",68.3172449023022,179.370856017665 +"Male",66.3342814592302,165.368276469302 +"Male",72.3619834817878,198.262970327058 +"Male",67.7174274900004,184.931804199742 +"Male",70.4775913017474,200.247996191067 +"Male",71.1629916473587,199.443988986417 +"Male",69.3547795615889,202.332215731187 +"Male",70.0972376450384,201.993728023585 +"Male",69.2972916961487,197.358760710745 +"Male",63.3099692849417,157.003543665807 +"Male",67.8872298890947,183.343327242353 +"Male",73.2029699010359,203.023116063971 +"Male",73.1411550985637,193.926034192487 +"Male",70.8959825454072,195.601365349029 +"Male",72.1426926653778,214.853925271526 +"Male",72.1327778674956,184.147188834447 +"Male",71.2066187430906,193.743259981117 +"Male",66.2521505114177,170.109499628414 +"Male",72.3415887742695,205.699621116357 +"Male",68.068922111764,166.263500115293 +"Male",71.3973089137367,198.406733806725 +"Male",65.7260320477284,169.675260295768 +"Male",67.1104474203962,160.050285251246 +"Male",72.2150349075593,204.937760149992 +"Male",63.0097830848321,147.901820043978 +"Male",69.5691552119986,180.949823360142 +"Male",70.4040016797078,217.837244762115 +"Male",68.0302155969993,189.361639792627 +"Male",69.7779103180642,176.090289339977 +"Male",62.0786351862267,130.277274850818 +"Male",65.8344196799245,159.319115073327 +"Male",70.7809360391759,191.968177874730 +"Male",69.5714302095419,182.154139159232 +"Male",67.3270648124962,188.35172566903 +"Male",67.8146018831068,191.760001792547 +"Male",66.682242766975,162.766968330461 +"Male",69.6397087490569,197.596213071005 +"Male",64.7742374037153,182.589844094188 +"Male",73.9629410745522,200.007160851719 +"Male",67.9333838365102,184.409520002429 +"Male",66.7700394702836,165.489768001822 +"Male",68.936357575679,176.652179225913 +"Male",76.4345587137262,228.872990637662 +"Male",68.996145368249,180.350924390491 +"Male",73.5018396237801,225.972218321773 +"Male",69.6031034024769,189.816644900283 +"Male",72.067379985717,202.262074138673 +"Male",70.4892245364657,178.918714208691 +"Male",67.0348505611985,167.044233115506 +"Male",66.184108496297,172.637611536679 +"Male",68.6942095017358,179.962508790081 +"Male",66.6532337437077,160.147436127873 +"Male",69.8386570782748,178.392482558206 +"Male",66.2450648070515,154.588689585938 +"Male",72.8110316092765,208.848846495439 +"Male",64.4747469568808,169.430634272192 +"Male",69.7544793252549,181.641048884472 +"Male",70.6614443891591,203.844791576438 +"Male",72.4706184938672,184.446325303497 +"Male",68.1715328455939,199.70181147917 +"Male",72.9871714255633,206.629399212360 +"Male",70.5335647702984,196.584345936451 +"Male",70.0469530715995,190.002405191259 +"Male",69.0160671628343,196.76390754959 +"Male",73.5491622682398,222.297492120609 +"Male",68.118097827498,180.065609406600 +"Male",68.2876370331869,178.432597736547 +"Male",71.527047694968,202.748739711506 +"Male",73.3965429282898,220.945760743646 +"Male",69.8445640844681,198.630278194117 +"Male",70.15196587967,203.734480758039 +"Male",66.2997258732792,150.149361277111 +"Male",76.4929339594115,227.139295974484 +"Male",71.0323851971723,186.762487511985 +"Male",66.6310409367559,170.421149332108 +"Male",66.0755368151504,182.428002531571 +"Male",70.6131624145417,187.472023542885 +"Male",65.2034806844673,158.664555216949 +"Male",66.8618612870774,175.797275435425 +"Male",73.7579982986776,220.770232006582 +"Male",69.8980860723227,195.758935463703 +"Male",69.5273197188296,189.027367850759 +"Male",66.7444774700376,154.126850429328 +"Male",69.0744920316712,179.386816722320 +"Male",68.5617507293083,172.195363687745 +"Male",70.3225500128014,190.461776758205 +"Male",71.9491204211446,208.088946513166 +"Male",70.9165517924984,191.883267018275 +"Male",70.37112335334,197.382415661258 +"Male",67.796477151995,189.683151319762 +"Male",68.6999956299772,208.068199264981 +"Male",69.1146317960513,188.717272552453 +"Male",67.6971036455845,187.423896421090 +"Male",71.2803302309239,217.903599366613 +"Male",71.4275751935442,201.842808664398 +"Male",71.0433563208046,204.627727659118 +"Male",64.7262559397982,143.347565498203 +"Male",67.1481594371304,182.031248036570 +"Male",72.29169702561,202.104371634163 +"Male",70.2428661701033,192.796112562644 +"Male",64.457857849175,158.916699285487 +"Male",74.4649885443558,213.482102570528 +"Male",65.2989151495077,162.818275468988 +"Male",72.7495261139615,212.180718812816 +"Male",65.7181787540213,155.175542786984 +"Male",68.8900949391591,194.681434643233 +"Male",73.0384086139,209.475388083627 +"Male",69.86074638417,198.321828121241 +"Male",69.8611969523225,179.662496461814 +"Male",71.7655616628825,192.690383151505 +"Male",66.8208458858784,179.801568231632 +"Male",67.7876938262705,190.506795646304 +"Male",69.2507138496364,196.141144482203 +"Male",68.9296721083659,180.826457432256 +"Male",68.9971098556648,186.635312996650 +"Male",66.3739949336111,167.784391028618 +"Male",66.3765193269966,179.468886431732 +"Male",69.0545697565698,181.360351242341 +"Male",65.6674754047304,161.422210929555 +"Male",62.7528775216661,149.759706016500 +"Male",66.577986705883,161.201890594841 +"Male",67.2721706595338,187.363365848207 +"Male",69.836551651926,176.011673267755 +"Male",74.216430944514,238.569450876454 +"Male",71.2305285617873,209.032876811002 +"Male",70.7628651265818,194.796567253093 +"Male",67.8789538779499,163.724432624055 +"Male",67.1145266908252,182.512451120851 +"Male",66.5398122216795,175.093254689416 +"Male",67.0912186560557,180.880724606769 +"Male",68.8934176530557,172.654237864262 +"Male",71.8826967420196,207.57561358173 +"Male",70.5318761057351,194.009472984818 +"Male",69.2081081950178,187.867102546193 +"Male",66.8547377457483,161.223964804125 +"Male",77.1608008945486,228.707300850029 +"Male",68.1985373165711,176.456828376649 +"Male",66.7957930920407,186.993898606724 +"Male",74.0702062076238,218.423584474029 +"Male",69.6917430451575,184.618952908832 +"Male",70.4827574106373,199.359223999908 +"Male",66.2029636090014,164.634463670180 +"Male",71.8578879072308,193.429989763484 +"Male",65.975207182975,171.076831440131 +"Male",72.6769610901306,217.561415368678 +"Male",69.8120217064516,188.064983938564 +"Male",69.0431459809296,178.184817464393 +"Male",63.8506783939551,151.996661485131 +"Male",64.9097852365578,145.176135872661 +"Male",65.045444008848,147.66026013933 +"Male",68.8743961941656,183.438539153398 +"Male",69.9822194992417,178.348439117701 +"Male",62.709303709749,152.820468105226 +"Male",66.9234367580027,173.634257094193 +"Male",67.2690439717089,180.035672697479 +"Male",72.1225255313879,200.336805594253 +"Male",69.6114032550123,170.296196746773 +"Male",65.18470087045,166.73855470482 +"Male",74.0802749473551,194.778854330805 +"Male",61.121828632923,152.791130086580 +"Male",68.321452866911,206.426146941539 +"Male",63.9529283994475,164.771475352160 +"Male",68.5813735185472,181.167060950369 +"Male",64.9259089634653,185.001854178420 +"Male",69.6597535242007,209.520424599613 +"Male",71.1207533229965,197.345436026506 +"Male",62.8041907055702,148.605042361239 +"Male",70.8112617091695,201.224277133599 +"Male",69.5495105694549,199.193814754676 +"Male",67.0323461956309,188.459689131546 +"Male",67.396834254227,178.300196634959 +"Male",69.3718433314283,173.430169608834 +"Male",74.5451369404472,218.437567908138 +"Male",66.5565249852091,173.386830210271 +"Male",67.2599528243859,186.320797193534 +"Male",66.0019677250915,165.167722781655 +"Male",67.2835074243167,203.135759560563 +"Male",67.924633636526,161.670827844243 +"Male",66.0576338070287,164.470503879209 +"Male",65.8445804640368,170.792356904563 +"Male",69.031062851652,170.310122186155 +"Male",70.3271164111783,192.497160869606 +"Male",66.5343065072948,166.371257998110 +"Male",71.4716748983661,196.540959991148 +"Male",70.0469307663445,183.619620777862 +"Male",68.6057105628212,187.291391863172 +"Male",68.9823807296095,178.282409486653 +"Male",73.7888849042811,222.397560523835 +"Male",69.0728108169759,190.587912957767 +"Male",73.1879491114706,204.103816962433 +"Male",68.6773844055852,192.196246087213 +"Male",64.9223362561123,179.409091862310 +"Male",66.1112291402564,192.765580966011 +"Male",67.7489898525367,169.740272090197 +"Male",71.8139035569294,192.816441679395 +"Male",69.1954412203952,185.729196133650 +"Male",67.4071716573248,188.594092236700 +"Male",69.8766334089165,179.680930323501 +"Male",64.366676724607,162.495082455027 +"Male",67.492853857301,183.383780173245 +"Male",73.1224332056134,221.445902076745 +"Male",67.6529454789154,188.889864542325 +"Male",68.5379018504103,191.822914272445 +"Male",70.7247580226813,214.261518198021 +"Male",68.230150312392,182.382822151331 +"Male",67.6971234115329,163.939878580161 +"Male",73.7167427530004,198.462226895361 +"Male",68.8584572194312,187.395085781024 +"Male",66.473765965897,175.947367804346 +"Male",69.9722813210905,188.625911160118 +"Male",67.5561832236562,200.779691031520 +"Male",74.2720186547956,209.937492806304 +"Male",72.0938599798142,201.862658416185 +"Male",69.5697796657481,182.794844209970 +"Male",71.6140894517358,206.163432503748 +"Male",67.1385496121352,171.876966350462 +"Male",68.4156512567171,171.321216279214 +"Male",78.0958674715774,255.690834836788 +"Male",68.6426275979686,178.816794561407 +"Male",70.0268418933568,186.35870219412 +"Male",74.3256770078908,220.845727450162 +"Male",72.2316362418495,202.137160078903 +"Male",67.6666640962661,193.081646916164 +"Male",66.4241871307394,157.288087962353 +"Male",65.07111347024,180.756525640392 +"Male",69.1569821008043,206.515190253783 +"Male",67.8053118990619,180.004548166251 +"Male",68.2387453921122,193.983821325417 +"Male",72.5488519758884,203.627583742114 +"Male",74.0564268450105,211.730517311015 +"Male",73.2367882181052,201.099800596744 +"Male",72.837684879727,212.204039573755 +"Male",68.2698199019828,167.910728878334 +"Male",70.0718191269297,207.086675062813 +"Male",71.7386947669324,185.842621819595 +"Male",68.6739597005891,172.847184869266 +"Male",70.1821393878583,184.723330838492 +"Male",66.9466142031627,182.369716830891 +"Male",67.6759885362138,188.311394125276 +"Male",67.9035731889727,168.677913221024 +"Male",67.1994321067045,173.488599343786 +"Male",66.9978619626889,178.057335561343 +"Male",66.0297085023259,174.058235447194 +"Male",67.8142858982252,192.066391951822 +"Male",71.4476515071247,191.177157677356 +"Male",70.0793233086792,189.595960181422 +"Male",73.7216132391354,210.223500594746 +"Male",66.3880066376365,159.376926005903 +"Male",68.1960877832841,189.874929158184 +"Male",68.2753597268864,176.179068841408 +"Male",65.939647420795,177.285414729857 +"Male",66.8718778782401,170.323957507193 +"Male",66.1980089454775,165.933327485891 +"Male",73.3030102192602,232.250643278525 +"Male",69.2850360858696,206.883393042889 +"Male",71.7697616639065,200.356448013113 +"Male",63.6394826469139,163.257901840427 +"Male",72.1615449731694,188.913332426328 +"Male",72.0032804408459,207.542120793402 +"Male",68.1658368140247,173.456455329526 +"Male",69.0848967998428,189.856785924252 +"Male",67.1884505190303,169.890822911143 +"Male",63.6150187831657,160.787653754239 +"Male",71.7206116065485,211.007580137624 +"Male",70.4751258360072,193.857356069757 +"Male",72.8675874434281,217.335253299588 +"Male",68.1628438201794,176.741831285592 +"Male",69.6791496982697,203.317012295753 +"Male",63.0000474918155,165.555965906858 +"Male",71.758125042279,211.737441830037 +"Male",71.6296782559616,201.50381284692 +"Male",71.0641053823961,200.684159640694 +"Male",70.1151444079114,189.532927026649 +"Male",70.4488743514707,206.499744183883 +"Male",68.541467407648,173.299721611495 +"Male",71.3339207759372,221.122033631478 +"Male",67.1809386261221,169.829453896223 +"Male",73.106344278894,219.786604201796 +"Male",70.8874866086991,182.887947720361 +"Male",71.9102260205694,198.078825480167 +"Male",73.5692978094574,216.617777777970 +"Male",69.8015752287252,203.258375100339 +"Male",70.6278697921492,185.246976614569 +"Male",66.3145767354902,148.265730183655 +"Male",70.2693597330089,192.307026835925 +"Male",70.9787025892809,206.522974050485 +"Male",70.3150663683053,181.789408810838 +"Male",71.513700527161,212.72870492711 +"Male",70.9985462096108,195.959044747928 +"Male",66.6953092197976,155.128964521951 +"Male",72.6589995697388,207.506378684704 +"Male",66.510042769778,181.938176062062 +"Male",66.5782346185595,164.117030445541 +"Male",66.724680167423,185.313911322154 +"Male",69.2955464784272,178.175369775758 +"Male",68.3229823060042,178.41318865345 +"Male",65.7979530477724,162.027735634929 +"Male",70.1237614326212,217.425674975721 +"Male",69.0640886145382,189.806645514336 +"Male",70.907736687617,197.216551955857 +"Male",66.7541298089417,178.382812540571 +"Male",68.5893591252093,178.045313954736 +"Male",70.9737877713209,184.982601283505 +"Male",63.1785973050145,153.606833081922 +"Male",69.903210979087,221.897619021438 +"Male",67.7337208766801,175.564339661591 +"Male",71.0929562627261,198.829117326426 +"Male",70.1217961506218,189.279522505883 +"Male",65.788024186045,166.276987710018 +"Male",71.5072424097625,202.518457548790 +"Male",71.7154979726929,220.273900961904 +"Male",71.4544113112009,213.336592538630 +"Male",69.3856358757495,171.331248469425 +"Male",70.151264910493,191.568259905213 +"Male",72.1091123164682,200.701730727388 +"Male",71.6202858302892,208.755718174636 +"Male",69.20709958564,172.775162679409 +"Male",71.1056269376139,188.839285203562 +"Male",67.0683040230582,187.573493767063 +"Male",75.9999570462348,224.440459195823 +"Male",67.9863735952195,170.276247779189 +"Male",69.3813459840736,197.281444316140 +"Male",71.423946436313,195.364915235699 +"Male",70.4713972712467,198.419138481736 +"Male",71.859848860773,196.351299762106 +"Male",72.7161660256644,195.356431283068 +"Male",72.9213671359476,213.924486409781 +"Male",71.7617473109073,201.315770747422 +"Male",74.6691968221783,227.460303839897 +"Male",67.3237143198475,157.029935498149 +"Male",70.5550039573969,192.260745340535 +"Male",65.180936559831,169.459630912183 +"Male",69.7310134328264,197.639549584084 +"Male",71.7514225465602,215.935393918098 +"Male",68.9704141815399,173.292344309260 +"Male",65.0412211274532,163.004141133667 +"Male",70.0208093261174,208.609783230505 +"Male",71.0348292167102,202.039446006115 +"Male",72.8715387429678,229.740753102393 +"Male",71.9202218421528,202.609274682145 +"Male",73.9677226935135,227.022346935739 +"Male",65.6645179140051,166.44368093132 +"Male",70.8579319787426,187.105363830888 +"Male",68.1565892187146,181.051742367739 +"Male",67.1779165872217,175.352108616357 +"Male",70.8569501677738,197.727299041801 +"Male",63.8109745499868,166.461037984827 +"Male",66.9495911176366,166.441384916996 +"Male",70.2806922973296,187.258692333223 +"Male",70.3234932488186,186.065532235059 +"Male",70.5660638405893,205.052685186402 +"Male",69.2941675737702,189.463363575212 +"Male",74.3892257028474,210.144312138310 +"Male",66.8923146946385,186.204005825044 +"Male",73.6215439658806,206.492212937395 +"Male",69.0905631901075,189.21364600271 +"Male",67.5420227771115,168.761479501684 +"Male",62.9219488933032,144.170644410384 +"Male",68.8501522535562,187.578704206314 +"Male",69.6117828468981,193.635366334802 +"Male",69.515658538578,185.348836960862 +"Male",69.1069169741858,188.245103226897 +"Male",66.8227632176705,166.171185085083 +"Male",71.1121440756254,202.357719518503 +"Male",67.761713150215,191.544633956937 +"Male",66.5607406026772,162.018087559150 +"Male",67.1025195408383,175.957982681998 +"Male",69.5821112394664,193.367198069336 +"Male",72.2804004250609,192.691521628113 +"Male",69.2076661054548,186.177473787603 +"Male",69.0264745471975,198.014376792176 +"Male",65.4350594576355,167.727961678569 +"Male",68.4655715588414,200.010156872524 +"Male",71.9630151795891,199.981620301624 +"Male",73.7595502260715,217.219800777168 +"Male",70.5325130216882,194.302259302534 +"Male",69.0133350151182,190.513513766847 +"Male",73.611985368161,236.780537487324 +"Male",68.4910721358846,181.211239129842 +"Male",64.091613053367,151.643103482541 +"Male",67.972159825298,170.715693118665 +"Male",70.834553554723,197.388666478500 +"Male",71.647579805356,200.286508731924 +"Male",67.3114985365535,158.435205191034 +"Male",68.2430018377665,186.42319775766 +"Male",65.4772247418039,166.654143140105 +"Male",70.7110301409631,204.755780077144 +"Male",67.1761153618309,174.579024534819 +"Male",67.7492068507248,178.583626608061 +"Male",68.4549038321081,185.377673195131 +"Male",72.3003078956615,194.723253157762 +"Male",65.402874534923,159.605444148410 +"Male",65.6425841377384,162.685521145423 +"Male",69.4424211834076,180.137520344932 +"Male",67.9984092613359,171.923633566188 +"Male",71.6927656587184,191.902095992769 +"Male",73.603006605303,219.512521601935 +"Male",67.2771975309743,176.308719672789 +"Male",72.1249100332093,215.443400528279 +"Male",68.6158120198116,194.120844891984 +"Male",65.2270970447013,167.115458785238 +"Male",66.3275173287769,166.079708289101 +"Male",70.0773150916612,216.624207248647 +"Male",66.6382691751102,171.275112569011 +"Male",72.9722633706646,204.491790609527 +"Male",74.7587524407353,209.723549650136 +"Male",65.8480610833912,187.546897605636 +"Male",66.601283321681,162.557438538084 +"Male",68.2379541853656,184.292560481673 +"Male",69.6414647695794,191.363774717338 +"Male",65.2524791548656,156.010575751174 +"Male",66.5819985137788,181.227981479645 +"Male",68.2566445960853,201.868142674519 +"Male",69.0073899850199,170.171571447315 +"Male",70.0646884710531,192.045217981351 +"Male",71.0848038405032,178.535490108330 +"Male",71.104247761678,185.827095200257 +"Male",68.5410421871881,180.666158203383 +"Male",69.0205130460682,177.952382199355 +"Male",66.8878193396546,187.581627340598 +"Male",68.8863667479848,197.642243684058 +"Male",68.3708428620063,195.122627832118 +"Male",66.2096172860712,182.946419068857 +"Male",64.6866910596959,157.016808620085 +"Male",67.9921137884113,172.515530483668 +"Male",64.7370890418541,150.050812798280 +"Male",70.0804399795118,203.159659639421 +"Male",66.4670414178992,164.318044781732 +"Male",72.1740783551613,186.188841932583 +"Male",64.5872560932148,158.374086948933 +"Male",74.4012095099531,223.825507204988 +"Male",71.2888438677571,190.077998432432 +"Male",65.3793247430515,158.072060406185 +"Male",68.0663780438904,170.986012664571 +"Male",64.6992944791965,155.664255314845 +"Male",69.5948262285148,191.525964959596 +"Male",72.4258059659707,228.974646724056 +"Male",66.7299160588956,164.907761760776 +"Male",68.6712873977612,178.168394075036 +"Male",69.5612965429514,199.494335791778 +"Male",72.7718748251832,211.164231978894 +"Male",69.4756082831272,203.021282365804 +"Male",69.4199123426469,185.359129586182 +"Male",65.8060628711679,149.240406483442 +"Male",71.6803477761641,214.259285867982 +"Male",66.351741525466,160.372738689544 +"Male",66.4680246923346,180.463827337715 +"Male",70.4765053343174,197.029178701327 +"Male",68.1036264821955,186.210891190217 +"Male",65.8316543879234,165.592195006656 +"Male",69.1952984648356,201.303695501329 +"Male",72.8810918503987,201.333186893465 +"Male",67.7782298018313,190.730793090200 +"Male",70.0260489470193,193.089736632761 +"Male",71.3507825807641,213.313319203983 +"Male",71.4657023618362,209.960397276235 +"Male",69.212011125578,181.214072619528 +"Male",68.034731117295,170.648409333435 +"Male",71.9674817033336,229.514503000297 +"Male",71.3378207273618,199.741559491755 +"Male",72.3943234618083,201.410929953869 +"Male",60.3633115596032,134.146848185454 +"Male",70.4644564912116,189.626283044298 +"Male",71.7136745905976,193.108946518177 +"Male",70.5426410107103,185.469880800942 +"Male",73.1220063070153,206.897643984916 +"Male",62.0638358387075,175.071171408461 +"Male",69.0805772727402,176.556144577618 +"Male",71.5107297946254,209.381199760833 +"Male",70.5846835183374,205.707877350487 +"Male",65.0310334970139,154.841142061745 +"Male",67.9192792827025,196.447702297553 +"Male",68.8908721340211,176.186841667854 +"Male",70.708075083398,198.759126649571 +"Male",64.5773120396846,150.183474291271 +"Male",70.9659857187419,179.231624200043 +"Male",68.7953827477904,187.050906024182 +"Male",65.4132806897686,142.593067283448 +"Male",65.2065329311008,163.633596622498 +"Male",69.9327101871935,185.429022314038 +"Male",66.9012117360477,168.863548479767 +"Male",67.2558941429024,165.264808645585 +"Male",68.5061009493525,164.499918603085 +"Male",67.7573606675094,186.09901588702 +"Male",66.3897787194532,165.499806679614 +"Male",70.2091371985465,193.953120998722 +"Male",68.7016969754071,193.509268905675 +"Male",70.7721645348325,204.439540295656 +"Male",74.9550649859763,221.15946610755 +"Male",66.3581370533707,173.355927890825 +"Male",66.0766957855465,171.292975369886 +"Male",66.8388529798032,170.077766470185 +"Male",72.1657566562563,204.577436307788 +"Male",68.2563559898149,190.390382444733 +"Male",69.4457147757344,178.675599056506 +"Male",70.4347502834248,189.906583756497 +"Male",72.390657222607,199.574049263885 +"Male",69.2270810616583,185.916021451773 +"Male",67.104539992369,165.373824201930 +"Male",70.3439986028262,177.473281889006 +"Male",72.3853009731566,189.16559194736 +"Male",70.582610325899,206.425748253995 +"Male",67.4031966627947,199.679714874490 +"Male",73.4387722959234,226.225699981621 +"Male",67.2019628987584,174.440823103791 +"Male",74.0298688238091,215.293495258098 +"Male",68.9027232022797,175.435302434213 +"Male",63.8749717459608,168.077899357531 +"Male",68.0738491155711,185.533758050653 +"Male",67.777168193215,179.864803032459 +"Male",69.5184361845722,189.617453817508 +"Male",68.4008673800895,182.259613679654 +"Male",68.8837165079006,181.512004045444 +"Male",69.7678456329977,194.604061298549 +"Male",65.7162499777754,174.413364062060 +"Male",66.227479321589,180.903575944401 +"Male",62.7730414686307,163.186028632591 +"Male",67.1292865105787,177.719799008478 +"Male",69.8959573133937,181.448134946726 +"Male",67.6875306412973,177.909685022625 +"Male",69.6048275739551,191.033419619927 +"Male",69.7022575108606,177.149091287160 +"Male",67.4352276783718,159.812472364942 +"Male",68.143078450147,188.145142121778 +"Male",70.4905213679766,208.764897458028 +"Male",70.9840710709963,192.111319555456 +"Male",71.2429186491898,220.261890190739 +"Male",68.4857245400115,186.412944993412 +"Male",69.2854624999697,197.194547517085 +"Male",64.6010455256992,140.195963341194 +"Male",68.7011438011813,180.223939414464 +"Male",68.2926466361122,176.007136256108 +"Male",65.7136084316278,167.828760290252 +"Male",67.8477490629686,153.031320830066 +"Male",67.407614960974,162.822942442544 +"Male",66.0975760266862,163.641496074105 +"Male",67.6122197276871,190.416503573136 +"Male",66.2460989997015,191.636714076471 +"Male",67.7276312535175,175.209963984455 +"Male",69.0442107029707,184.039980470244 +"Male",78.4620529193772,227.342564876735 +"Male",70.6162434515603,198.387752456214 +"Male",70.4044364967184,193.856769419105 +"Male",67.8717672334668,176.904595990082 +"Male",70.8509201113202,185.351532936086 +"Male",67.9033403504816,192.651604750575 +"Male",74.724139030466,207.298331446494 +"Male",68.3833071865262,179.164866559106 +"Male",75.7534457684558,226.503344326265 +"Male",71.0265434592106,186.229238409764 +"Male",70.7526469789256,202.741657260278 +"Male",76.2941841342612,233.503811307299 +"Male",69.6012779599044,192.113162775823 +"Male",69.5666933012413,194.984263204543 +"Male",69.5802082180323,196.135525888408 +"Male",65.8277866303781,157.607935883848 +"Male",67.7962143713953,184.862913284896 +"Male",68.3901087403571,179.352181643448 +"Male",64.9224230596659,158.412559422739 +"Male",68.4445618953093,182.449407759534 +"Male",72.6739936528497,206.980218180064 +"Male",66.0539636432144,161.557632389248 +"Male",61.3107984316976,150.316448600407 +"Male",68.274580728557,159.982314524349 +"Male",75.2632015265357,223.449994700595 +"Male",66.4702457205614,182.468057432679 +"Male",66.5252941069139,179.222968575523 +"Male",67.7503298756465,179.115883355397 +"Male",71.7757488487743,210.728852153638 +"Male",68.9974401119397,200.313015630429 +"Male",68.3059335930715,185.279622912512 +"Male",73.9644933728154,215.043888912532 +"Male",68.7519905246801,194.132352504809 +"Male",73.5732840799078,207.209460472941 +"Male",66.9288070076352,169.103561818858 +"Male",69.3517876025531,195.170813951101 +"Male",67.0174863178823,183.381298301548 +"Male",72.0605923744993,200.074044483172 +"Male",67.8777511152011,175.462661781329 +"Male",63.9432760462042,153.947203717433 +"Male",66.1201343232182,172.508657352486 +"Male",73.815245828881,208.866033768226 +"Male",64.7552065986994,160.975017654154 +"Male",67.0147175713096,188.974631866541 +"Male",70.8786331014574,194.073974555957 +"Male",67.4131518595126,168.634975042482 +"Male",66.9346504859662,175.040665266767 +"Male",64.6802313235266,176.074223023218 +"Male",67.3218171055081,168.744755227066 +"Male",68.3010221836752,194.546079562477 +"Male",73.8030245447724,227.435183683422 +"Male",66.2552250484991,176.486226930439 +"Male",67.7056032167863,177.256999087197 +"Male",65.8542048098795,178.031459645313 +"Male",71.8069104245931,211.360826582070 +"Male",65.3432032653399,155.729380273101 +"Male",67.968565438378,192.059873564602 +"Male",75.1554100851024,214.370580515003 +"Male",63.4089478988436,163.074353392299 +"Male",65.1020520682183,156.658459671895 +"Male",67.7269564222104,164.933108061125 +"Male",72.3106346028605,201.912662820293 +"Male",69.4432551690944,197.645645149133 +"Male",64.8768027516837,176.796108141724 +"Male",66.975152007659,188.024718066127 +"Male",66.908837369118,181.996286828824 +"Male",68.1275769262105,175.636538177126 +"Male",70.3879249547533,176.064870198970 +"Male",70.5059273766486,206.44094248033 +"Male",69.7695676029757,197.828357596479 +"Male",68.4078481982453,177.110738810674 +"Male",67.2940178575846,174.087727656322 +"Male",68.2258227677972,175.670978633246 +"Male",67.5335403786495,180.269693232838 +"Male",74.4064813701917,220.720177027006 +"Male",68.998446926877,181.941318051727 +"Male",68.3423649083619,187.633463430525 +"Male",69.0021652768888,188.330895833239 +"Male",64.8338041314194,164.596581574972 +"Male",73.0632933432493,216.040061430521 +"Male",71.6016964982537,211.031651935789 +"Male",70.2522527350803,190.916365269166 +"Male",71.0157309402509,198.272093568884 +"Male",69.3685765882715,187.571057528204 +"Male",64.1256965813375,157.663617167938 +"Male",70.5345782760185,204.418731071108 +"Male",63.3990591811379,141.056988933775 +"Male",71.4097165454652,207.303495880325 +"Male",69.877147361429,217.994839569920 +"Male",66.8753630492468,169.635640520880 +"Male",71.2501360815194,191.067619588993 +"Male",73.5739718915865,199.469319030450 +"Male",68.1679352028489,201.438831024148 +"Male",73.5750830263678,215.070870247718 +"Male",69.8954037618712,171.919035546331 +"Male",64.8794180795133,161.611017836206 +"Male",72.0330446599993,209.573666911108 +"Male",67.4057551244925,163.476510066492 +"Male",67.6293765117623,177.429507082272 +"Male",69.5503763773702,199.807846405863 +"Male",66.3040376980219,179.759741725801 +"Male",68.6974605884443,178.015094996932 +"Male",70.5540467319427,181.679921764156 +"Male",66.3401000010943,163.001274168673 +"Male",68.368066311252,176.505303319986 +"Male",72.3699335917171,224.603810671148 +"Male",67.1921516361147,193.788816001288 +"Male",67.5316570524766,164.004352795121 +"Male",68.6186309848695,189.702187874025 +"Male",68.5579507813317,186.064853856785 +"Male",70.3001789602721,196.585057723116 +"Male",68.9048510892203,195.408551100029 +"Male",69.3820173803323,198.850085211327 +"Male",72.611327294094,200.633687920939 +"Male",67.5658637345031,178.371833700566 +"Male",69.2364010619199,202.203230656129 +"Male",70.0620961540313,184.505182791394 +"Male",69.304977600477,193.529606316647 +"Male",74.6870925952898,230.136923281846 +"Male",67.5541980518356,172.870347001759 +"Male",67.0478395971856,171.345745907840 +"Male",72.7422091550301,202.873682756823 +"Male",68.3561653489311,204.358874673228 +"Male",67.092217087872,168.320498217950 +"Male",74.2092159540775,197.474827622943 +"Male",60.8202705373382,137.775310144586 +"Male",69.6339697781423,200.342813718824 +"Male",67.7306111200947,194.18044459866 +"Male",69.7900894179377,194.400735358696 +"Male",69.9899530101181,208.107782762267 +"Male",64.4373753506252,166.490219384593 +"Male",64.8035422213359,185.259530616791 +"Male",69.5595271982408,197.188228018465 +"Male",68.0026044356898,193.911524655417 +"Male",70.4913724868496,203.285035100182 +"Male",74.0538461289773,207.728204147378 +"Male",71.8139752953244,197.802779117100 +"Male",67.2716153306742,182.898115429334 +"Male",67.5918946367521,174.434991417039 +"Male",62.2946949169642,149.497251734629 +"Male",71.9548677972,215.155762529435 +"Male",68.414820467778,179.828343785579 +"Male",69.5659947031846,203.215930022219 +"Male",71.0890620694282,182.777412454632 +"Male",72.1288256780905,216.216814748089 +"Male",72.5413265923868,213.716956783022 +"Male",64.7296155113039,161.952431163973 +"Male",70.9594893867206,212.230144740824 +"Male",70.7320604266085,197.811882243136 +"Male",66.3515413194102,171.963792430396 +"Male",70.6783761708838,203.274633071396 +"Male",66.8548789146642,164.701103595252 +"Male",70.1726093609949,192.631630023646 +"Male",71.6150007183468,208.671871861817 +"Male",70.2428159924974,198.199957603597 +"Male",67.846160211572,168.067015324700 +"Male",72.088510419573,209.532429389397 +"Male",68.8868952755747,175.992018097055 +"Male",69.7354421717841,196.218174027164 +"Male",69.3303465194418,194.827390618945 +"Male",68.5609875528216,178.691768606115 +"Male",68.6307965197387,193.128832358554 +"Male",74.0930974122164,217.712531331905 +"Male",72.378675031591,216.938374463743 +"Male",68.415251589545,190.128213590258 +"Male",68.6109219180778,181.230543349614 +"Male",65.0565885309662,173.434762345030 +"Male",75.5724387360354,217.118015264041 +"Male",70.340936458423,199.133426685317 +"Male",73.4245096594727,220.207660219683 +"Male",73.2794448452252,209.228853966766 +"Male",65.3518889624403,172.567381412296 +"Male",74.6863668071705,224.630423960364 +"Male",68.9552800868043,207.744486041115 +"Male",69.726859733262,191.211766237953 +"Male",66.938626493497,175.942606656407 +"Male",73.9953111954398,213.371576086756 +"Male",70.5342018238768,181.855197361081 +"Male",72.7716028203607,210.657667000328 +"Male",69.633161690341,189.651557182534 +"Male",69.7500324346538,204.179760964189 +"Male",66.6611031108434,184.470442822833 +"Male",68.8754238308693,199.994622028532 +"Male",67.901808661601,170.846760280748 +"Male",71.9705260493935,211.542784549023 +"Male",75.4649926309027,217.971052703788 +"Male",63.6646875052149,160.125909026144 +"Male",69.1048034357093,184.901892345230 +"Male",71.052778593152,193.999617046952 +"Male",75.6986182493622,249.565627981400 +"Male",71.1407885642128,191.44174460506 +"Male",69.9228101460632,197.26637924836 +"Male",67.7806016782241,182.611550308877 +"Male",67.9859751370308,185.687955027015 +"Male",70.7617524507795,198.655821530763 +"Male",65.6359972889684,172.539082609337 +"Male",73.8536626753213,217.886922005966 +"Male",71.7920220563227,197.417014408726 +"Male",62.1689692569458,147.859653364299 +"Male",64.8071889528013,158.010842545683 +"Male",62.7580191747154,140.266628386203 +"Male",69.0014983992313,191.238945562397 +"Male",69.719093297633,204.217022100385 +"Male",67.559300556797,171.196984161435 +"Male",73.2781836251718,202.279055505837 +"Male",69.7727569152484,197.984766074009 +"Male",70.88614442153,224.695162461364 +"Male",67.5211171560713,188.409426189908 +"Male",71.0521485106455,191.980253087584 +"Male",70.3785389827948,207.795407831978 +"Male",70.7986267026323,195.875839414498 +"Male",69.4472097849116,190.447700798734 +"Male",65.0906614319938,152.524792423902 +"Male",72.6184085193962,207.161233261586 +"Male",68.9686795966456,177.809028049410 +"Male",66.5407893508447,173.474397365090 +"Male",75.8190402827074,230.939454209339 +"Male",72.2795167050262,198.836514614642 +"Male",66.8541106775866,180.544376625543 +"Male",63.6481439988488,160.875108800433 +"Male",68.3799761433483,188.775536517828 +"Male",69.6329393035072,200.562613220454 +"Male",72.7046044178536,203.192182107662 +"Male",73.7379282801458,208.162383941076 +"Male",65.9344308820116,162.549680444354 +"Male",66.6277502258848,160.117371390339 +"Male",68.4698240786034,201.086014382762 +"Male",73.4591841359929,211.789007861233 +"Male",63.1836411236444,148.618673958965 +"Male",67.940578352507,191.330652815400 +"Male",74.7096124843703,207.243853998445 +"Male",64.6383741461495,172.501320855784 +"Male",71.1983161780362,183.637283815726 +"Male",67.3960198498187,180.659638009296 +"Male",67.3675535943183,170.477946458786 +"Male",70.8371585589687,201.403402398429 +"Male",68.515999087264,192.122242688462 +"Male",71.1410478778114,211.816016520079 +"Male",67.1981589640572,185.745590146909 +"Male",70.7167503719475,176.955063189612 +"Male",69.1848294664222,201.122190097214 +"Male",73.4461872017863,203.240583689209 +"Male",71.6499170962301,200.677163947353 +"Male",69.9449860345159,182.346218481131 +"Male",74.6976372029527,209.373125875119 +"Male",67.8676651992023,168.817571526638 +"Male",71.6908689267356,188.656335367107 +"Male",72.2008873577522,195.275537730392 +"Male",68.0988736639499,173.896236897721 +"Male",66.5748867342449,163.241254688207 +"Male",70.1907691564409,181.320105973850 +"Male",76.4565780764772,239.581389419794 +"Male",66.1416971142251,165.997434175877 +"Male",65.9247410948696,152.949488391698 +"Male",71.8480449921956,200.413424520015 +"Male",69.1176573779058,197.491802106448 +"Male",73.358436641133,217.389544639018 +"Male",69.0526282274144,194.680901790180 +"Male",71.865845248237,203.488800960605 +"Male",71.8574874474702,204.422633460166 +"Male",60.7988856121428,128.390221027060 +"Male",69.0438666249045,181.377015019601 +"Male",68.3088861450042,188.829591757712 +"Male",70.9927345738887,198.636737557155 +"Male",71.9424089171008,198.926513135479 +"Male",69.94155395174,187.403600545410 +"Male",71.9121190113416,204.780910475438 +"Male",71.007888258908,194.080612217446 +"Male",72.2819283450067,205.927099209038 +"Male",66.2761384092256,174.209764123141 +"Male",68.2484429572457,183.454229197182 +"Male",72.3674921385285,218.394554707762 +"Male",67.4955751464423,175.210297477134 +"Male",70.752197577819,206.378365532734 +"Male",71.6685570532706,189.392841331649 +"Male",71.5229643054445,214.302464440455 +"Male",66.0799589860269,175.547707873406 +"Male",70.4741613870774,200.361281966151 +"Male",70.950441232888,216.34113010094 +"Male",66.6284354436438,159.482828827659 +"Male",65.2646044561427,167.755869852531 +"Male",69.7252073294272,182.481686860063 +"Male",71.8537220901297,212.814664230367 +"Male",66.9689359230578,169.392797057265 +"Male",69.2307676438561,175.911589331214 +"Male",65.2536708473629,174.943977756174 +"Male",72.69525855305,181.325329135447 +"Male",72.8139065054898,188.951474114366 +"Male",66.577515666538,178.488156967759 +"Male",62.5869716621146,144.641418170592 +"Male",67.7678200273996,164.157890079859 +"Male",68.4827075052988,174.455554221592 +"Male",67.7280173908753,169.458093984868 +"Male",76.6175459376512,255.863326492899 +"Male",73.5752957686342,222.686143771868 +"Male",67.6508442095371,167.864136576335 +"Male",69.7548341761355,201.00854801062 +"Male",65.7105998655828,170.900676935445 +"Male",68.7689024072135,172.980946843261 +"Male",70.6988955344424,187.368193287917 +"Male",69.2080678412148,184.929293121148 +"Male",74.633827265613,213.069042246911 +"Male",70.3546168638415,202.034955305555 +"Male",68.1156716635966,167.880720453114 +"Male",71.0961130989543,210.821194296704 +"Male",69.9831374596516,206.41441183225 +"Male",65.2715625732843,156.579802693243 +"Male",67.68008390976,169.611562032223 +"Male",74.0674315170364,228.407444091575 +"Male",68.7589926914302,172.094198548326 +"Male",69.2523748147062,192.408896724658 +"Male",68.8059345153141,174.239708246180 +"Male",67.7454928656511,179.554213412234 +"Male",71.4713872338541,192.929107075105 +"Male",70.6552305807625,195.441863148289 +"Male",68.3689798391143,187.923052494574 +"Male",71.4697583311449,204.595732770733 +"Male",69.3780372604957,212.017025587930 +"Male",74.458497765373,209.94876840802 +"Male",72.2785561512953,196.709024642257 +"Male",73.0741805393995,208.058043324187 +"Male",68.1092145934145,176.261190472641 +"Male",67.4279615768796,189.404203156975 +"Male",70.8214314938544,194.327152035254 +"Male",67.2406988227067,176.746305447761 +"Male",71.2236274423739,209.733538764472 +"Male",65.7960499191064,158.460323820345 +"Male",64.5208474624288,171.303495123217 +"Male",67.4770312447816,180.294820634159 +"Male",71.356628080496,211.395638565135 +"Male",68.1763064567274,190.132725436454 +"Male",67.4730988142564,178.365728160163 +"Male",65.6569205746668,163.195116394641 +"Male",67.7003580213677,155.162586782756 +"Male",62.2088286210429,130.838073839864 +"Male",67.4450805149459,186.838868203851 +"Male",69.5790902343589,194.094561074301 +"Male",69.9262412340003,204.875691679207 +"Male",68.8610815030965,199.281311432827 +"Male",70.943499589006,192.206150964704 +"Male",71.5747233612873,207.816943794113 +"Male",66.5028989134252,161.757176072928 +"Male",69.011160640682,191.026743469822 +"Male",68.0684949386101,171.056290533074 +"Male",70.4199561065357,188.242982263771 +"Male",71.2218282169113,200.708467329946 +"Male",70.1857009860286,188.529396626822 +"Male",66.4815974899995,165.589097549253 +"Male",70.3892007063949,178.851348335504 +"Male",68.8463098212285,174.887367132372 +"Male",69.5666223421231,187.468986917995 +"Male",69.2138739823169,201.527753115406 +"Male",71.6784302176178,206.401780751861 +"Male",68.5078149084514,200.87727945768 +"Male",70.0593309810197,225.014367955245 +"Male",70.9037444490067,199.362352527213 +"Male",67.1143608404288,170.789162512475 +"Male",67.6284843992187,174.865451365505 +"Male",70.9874133207565,214.792992556764 +"Male",66.8785157845366,175.366252001374 +"Male",68.477456530666,187.205394744676 +"Male",66.2670564801136,163.638150655659 +"Male",65.7740120104543,156.968073866854 +"Male",64.4613458971268,158.900434324327 +"Male",65.8549627565603,154.965398921107 +"Male",69.9027563992005,177.712966560632 +"Male",69.1344005045772,196.330311649716 +"Male",70.4816238228905,194.161782264978 +"Male",73.5073600149748,209.698039292538 +"Male",72.3147754051967,194.891588953445 +"Male",73.7487510165311,203.999702807105 +"Male",73.541184326439,212.030375733436 +"Male",63.0944832212484,154.888895277244 +"Male",72.2670868251364,209.633317284708 +"Male",71.119087573139,174.552344065815 +"Male",72.0057094040432,205.961922492582 +"Male",66.7034796444077,189.430028578934 +"Male",63.5714114494818,144.815032029167 +"Male",70.6980120714592,187.018458438731 +"Male",75.6828079116554,232.104476046529 +"Male",68.1621465269653,183.232711788673 +"Male",70.2252520013285,191.709066845333 +"Male",71.5652564587241,194.721856413693 +"Male",71.6576596011603,204.426255570436 +"Male",74.6704347564838,207.908061632395 +"Male",66.80502560959,174.335490583107 +"Male",68.0245691600181,185.404851939128 +"Male",68.2131444752004,168.168504168262 +"Male",72.0595913647095,203.925879957815 +"Male",66.7049804510998,164.179485990267 +"Male",65.0996356494004,180.793710519115 +"Male",68.2276145940888,174.712431932758 +"Male",70.2775896278986,198.728522620424 +"Male",68.9929940710554,166.795209231282 +"Male",72.8176363279467,202.948003531212 +"Male",70.4832883358863,190.522037427247 +"Male",69.2651396159888,172.30039050559 +"Male",66.1180620994522,181.014107898674 +"Male",60.9667232822144,134.822826663623 +"Male",66.0829084373533,169.617201955091 +"Male",69.3382979522991,198.389549089506 +"Male",70.7963452377364,192.293168460958 +"Male",64.8415282349549,161.193051350145 +"Male",66.9148940813195,169.882489592538 +"Male",71.1965868763911,191.683842483212 +"Male",67.6604230453665,173.384719262428 +"Male",68.4961334362529,182.182992130117 +"Male",67.1401859752249,188.848498569182 +"Male",68.0311723088424,176.665352902051 +"Male",71.0306169514211,217.490957724472 +"Male",65.6249209440502,168.035235364942 +"Male",68.6790348699896,177.521933002092 +"Male",72.2642057730165,204.416126921461 +"Male",69.8072752097695,217.18974145849 +"Male",66.3981283772914,170.217451156822 +"Male",67.590168231932,174.009152152765 +"Male",71.0890956635457,188.116045768091 +"Male",65.8199775510954,172.746364978593 +"Male",68.5608541143992,186.401101170042 +"Male",69.7186418095458,205.149302542524 +"Male",72.0552070166135,205.676441963688 +"Male",67.6525299734888,180.871137652334 +"Male",69.7628785446196,189.828312637646 +"Male",66.9163353055282,175.203934564897 +"Male",71.6938805892545,196.726281981995 +"Male",69.0340650960745,183.557049016817 +"Male",68.6397698200344,203.005896094637 +"Male",68.2112871008897,190.584200470746 +"Male",67.4562718277839,166.39065630828 +"Male",68.164232772446,191.830234706788 +"Male",70.9468359659473,193.506341058435 +"Male",70.686247451505,194.943655052901 +"Male",70.9675854605587,212.826348541347 +"Male",74.6046680483172,249.946283195065 +"Male",64.9485459017462,168.534190221593 +"Male",67.3926409938615,174.030954321797 +"Male",70.6745173506145,193.55919238721 +"Male",71.7035773054573,207.110572231481 +"Male",70.6782077440821,205.817295757818 +"Male",70.4736776514207,199.356143981321 +"Male",68.4235864937691,178.620033231448 +"Male",70.4180872399804,189.579472496520 +"Male",71.6763671720677,200.20620696213 +"Male",67.904421608325,165.763925844188 +"Male",63.0061801676474,151.350571899256 +"Male",66.8007189202471,174.988190526957 +"Male",66.017591670216,174.612100076323 +"Male",64.9098453269633,166.243922643802 +"Male",68.5032610130771,193.982059494858 +"Male",70.0247144837372,189.911964641080 +"Male",64.5489720237124,148.787471303952 +"Male",72.461527924717,223.315510189209 +"Male",69.9639120678988,191.065447505672 +"Male",69.3194375313327,172.455099569056 +"Male",69.573259797481,191.547176722161 +"Male",69.6743679475224,192.091677730476 +"Male",69.2292191172492,177.592699608627 +"Male",64.4483876826173,162.619097273375 +"Male",67.4512093255625,177.845988319030 +"Male",73.4948611201265,214.819847970880 +"Male",70.9685634065889,204.410163253705 +"Male",74.6955227193401,225.512386458999 +"Male",68.1880966668789,190.268425459741 +"Male",69.8560223215865,207.916686230298 +"Male",67.1975110041172,177.313563708361 +"Male",67.8417923970019,192.741685042469 +"Male",70.8769871061978,218.231538558013 +"Male",71.2431116560846,192.017261043750 +"Male",74.4629865565583,219.812906452887 +"Male",69.5532683769463,183.751097324621 +"Male",70.6070255239616,183.577380543142 +"Male",67.9456298131804,183.704177453964 +"Male",72.185992275691,215.868613523803 +"Male",68.0726530945031,177.554863409929 +"Male",68.6403250785417,176.011959093185 +"Male",68.8292162440198,200.330819451536 +"Male",68.0201882652601,181.986734456754 +"Male",73.6314305763311,215.554558736004 +"Male",67.35327100956,171.160451955719 +"Male",73.8418843982711,214.032503768682 +"Male",66.3581208265962,170.053832577434 +"Male",72.1735564385227,198.685021659980 +"Male",71.408518163844,205.618956456024 +"Male",70.6688631861614,198.02356346314 +"Male",65.8381692148508,164.988985581497 +"Male",71.7657992928584,202.230595607237 +"Male",70.8687664141297,201.931535144540 +"Male",69.8438130383337,188.686246513285 +"Male",70.408748573255,198.738874084069 +"Male",70.8256026765881,173.963577354641 +"Male",66.6756070565549,183.438337284452 +"Male",65.9869679343627,183.830964149676 +"Male",68.5270580555406,170.888430806093 +"Male",68.3120637440907,184.778847954911 +"Male",68.2628496555134,169.225034720373 +"Male",66.4755618527674,197.646409253487 +"Male",64.3624802658162,149.457587374100 +"Male",68.7713361716633,174.336609988285 +"Male",72.4337460247806,200.085232523965 +"Male",70.9520088674667,194.288669865327 +"Male",72.5094255929879,206.749170891674 +"Male",70.3818321073232,197.431510808387 +"Male",72.3375692151384,216.713477707922 +"Male",72.0566449899634,220.13451713839 +"Male",70.0371149855241,175.978079815872 +"Male",69.2425405584851,189.627852131872 +"Male",64.3694533300218,154.008091361488 +"Male",69.4949376644663,188.419220038699 +"Male",64.608098550389,172.315967408525 +"Male",71.411474860824,210.430610474423 +"Male",68.7537907220922,175.367969918661 +"Male",67.5175198384496,157.918618761967 +"Male",69.4403382849517,202.308297333384 +"Male",66.5343521839511,176.189278477426 +"Male",68.089941436288,178.453013433888 +"Male",68.0190781638069,174.265162856676 +"Male",66.1747938937256,166.680607855786 +"Male",70.8044088313543,196.268462332393 +"Male",68.2125076940042,192.815177861212 +"Male",70.6938408702887,199.962857108451 +"Male",71.8970446424071,216.053051514245 +"Male",71.279461772804,209.900130709698 +"Male",65.0990352791908,164.258462124584 +"Male",66.4889289859654,173.352455763600 +"Male",72.0219745956485,202.746637492460 +"Male",68.3630125681797,179.949089266523 +"Male",69.9221433981034,181.731834175094 +"Male",73.187758852763,201.219317713982 +"Male",68.6440703335837,172.54858762963 +"Male",69.8003600207724,184.292065461883 +"Male",65.4207079382805,167.55203159963 +"Male",68.7865740167745,175.838797375723 +"Male",66.274407999872,158.387310490431 +"Male",72.3875690410247,199.446899235481 +"Male",68.0396163344462,174.369476434232 +"Male",71.7603637271684,211.561669771946 +"Male",70.9201445328627,196.835300359931 +"Male",72.6956241876436,220.866365165126 +"Male",71.0838599660559,207.585582084626 +"Male",70.0913443174716,220.52341240301 +"Male",71.6138860543854,210.039924523976 +"Male",75.9811743504595,226.474034459707 +"Male",71.2996563664132,199.272274753083 +"Male",66.9168322971377,160.432210626658 +"Male",71.1136247739351,202.993310739851 +"Male",70.5983807298175,195.543444952148 +"Male",68.5081861509006,183.647248251892 +"Male",63.8447215674422,147.88701545115 +"Male",68.8194304575907,184.718503166652 +"Male",67.097417968484,187.098600429723 +"Male",66.3265967615466,163.747154568295 +"Male",70.0260594634301,200.917454307987 +"Male",65.6419185352144,170.2141084504 +"Male",67.2317042032661,186.274797055811 +"Male",71.2939313747985,202.944771090379 +"Male",69.4608263244162,202.970501103326 +"Male",68.8970191650767,196.136269159319 +"Male",69.6177637771825,180.506932024877 +"Male",69.1376833523533,188.630073594756 +"Male",68.6121161704564,187.739192919863 +"Male",64.8211556438604,158.877273572478 +"Male",66.9449989974955,171.105004357758 +"Male",68.9395828813609,185.77874641179 +"Male",64.0316883935576,157.850426617772 +"Male",66.9330784510431,151.199152884171 +"Male",69.7486635801118,195.241316060114 +"Male",71.0942733128126,188.681388571309 +"Male",73.0495953683893,218.711326951769 +"Male",74.3490130557742,206.017285254686 +"Male",70.1848772058531,189.915872272644 +"Male",71.5269155551209,212.254428252453 +"Male",68.8791273917068,171.850465105816 +"Male",67.6758559007358,179.299232124016 +"Male",71.7011163645597,212.039012006443 +"Male",68.7920508077479,197.6794459518 +"Male",66.6869926987119,174.739288176264 +"Male",73.058463097391,195.5928859972 +"Male",73.5426946138857,206.100367221865 +"Male",71.8277766229144,198.973565272060 +"Male",76.4728798657647,246.232321295104 +"Male",70.9332502645594,213.244997948584 +"Male",72.4395007512294,230.234109872155 +"Male",72.099193048905,212.845611755792 +"Male",68.2269692542835,192.451676424637 +"Male",67.7600946371582,172.216450569573 +"Male",61.7645093762568,135.544201374823 +"Male",68.6949893379098,195.115896090981 +"Male",71.477745102195,214.980507983321 +"Male",71.6529255236951,207.069124877482 +"Male",71.751476421859,198.119065756371 +"Male",72.1623670923316,207.864317298000 +"Male",70.4480202679973,183.238978419727 +"Male",68.2570470197552,185.646596436309 +"Male",66.8027823655084,165.110173087063 +"Male",67.452861842561,160.009408617561 +"Male",69.7815059522226,188.070801276438 +"Male",67.4482236930392,174.387869104450 +"Male",65.6928298091434,168.232586357251 +"Male",61.7953263595716,135.894447504341 +"Male",73.6083646890028,220.033778159626 +"Male",64.181482934993,169.800144021808 +"Male",69.3248580265385,193.279265476510 +"Male",70.4047236835582,195.42271064384 +"Male",63.0553014731148,157.437901555752 +"Male",67.7048782109221,170.136428196672 +"Male",77.4466199509585,232.651078874823 +"Male",69.6746141599963,177.598009109881 +"Male",71.1748137598859,185.212105043586 +"Male",67.9733503743945,185.02505666042 +"Male",68.9618876114194,184.025701322644 +"Male",74.8609075999309,225.280819424265 +"Male",65.7357738710417,148.140596531116 +"Male",67.4450406758823,162.844519064920 +"Male",65.9228221623512,175.424032286394 +"Male",67.6615928273772,172.059555900311 +"Male",69.6854831423461,181.936701352328 +"Male",71.3214760232179,192.947873561237 +"Male",71.3582106287526,195.937072750386 +"Male",65.2827406626041,163.957634646130 +"Male",71.5424912101482,203.783434776047 +"Male",67.0641239541523,178.514819597391 +"Male",63.9016449000789,140.434705425235 +"Male",71.1651542686907,194.060584184096 +"Male",68.2995558065346,182.233359674924 +"Male",68.7928775408471,179.086529417514 +"Male",59.9818650708608,112.902939447818 +"Male",68.3620127243186,188.786166592441 +"Male",68.2585698583648,171.350323500254 +"Male",75.0099443270489,221.454089079376 +"Male",68.4461922132042,199.382880743295 +"Male",64.9854983591548,159.112310378071 +"Male",70.7152956036217,209.161474219645 +"Male",74.4305013107653,228.375178875481 +"Male",62.2734014792637,154.280690719851 +"Male",66.9047823374526,164.359962718780 +"Male",70.1899992237606,195.717885138051 +"Male",71.0777660029665,183.727095501776 +"Male",76.1166746823735,240.638103496331 +"Male",71.2767018317682,205.176109561169 +"Male",69.3423664103133,197.217939751914 +"Male",68.0467959728592,177.123991036941 +"Male",69.2959320582737,172.346492962392 +"Male",73.4912049380059,218.673755640913 +"Male",66.3209674766257,167.214625512908 +"Male",71.8732522912439,211.322776441833 +"Male",67.3065748410187,172.065221180016 +"Male",68.8785526310529,182.30909810641 +"Male",70.7866950247979,194.695572528465 +"Male",69.9844049710536,192.144110491612 +"Male",67.6591095508037,171.702946081668 +"Male",69.1624698844448,190.849070077584 +"Male",69.2136324872646,205.699460639469 +"Male",68.0006259917706,177.601802567899 +"Male",66.3616356929638,153.321686194167 +"Male",67.6714135494779,174.724534344994 +"Male",67.7845379591434,198.311756175959 +"Male",66.8630397625652,189.409124116844 +"Male",70.8668694250787,199.657175172799 +"Male",72.2447236216435,203.369881581884 +"Male",67.6060586161904,180.254815838747 +"Male",69.6984479981389,197.052357044188 +"Male",68.0643489361753,188.37574625345 +"Male",63.1182535820783,160.756703262985 +"Male",70.5054568738792,187.135750244654 +"Male",74.2979207026757,229.094316921744 +"Male",66.5185887565785,167.076642378442 +"Male",70.4656632518219,182.802806044838 +"Male",67.6532703918937,182.481228574266 +"Male",68.3243794678531,183.215209343242 +"Male",75.5332113409862,227.945247678575 +"Male",65.4782668048409,164.487098814841 +"Male",71.3658959591733,214.99874505938 +"Male",72.1751368510111,203.963892048091 +"Male",67.4182407068399,166.542143207125 +"Male",63.7032637399529,152.571178067106 +"Male",72.089899249837,210.125958830038 +"Male",65.5136231579644,173.178827365729 +"Male",64.0111726170773,151.131314398232 +"Male",66.6594928467085,182.746513591033 +"Male",72.6104688843883,216.590561024740 +"Male",67.006480129285,197.799299766309 +"Male",69.667115169749,192.558899475879 +"Male",65.0785235017764,174.743509598687 +"Male",69.2182049384623,189.199501151371 +"Male",67.2477025852977,188.002666869840 +"Male",70.2149471583506,192.877485339665 +"Male",67.1703593519119,186.988740323602 +"Male",69.4376478885438,195.44738609605 +"Male",70.6934242571042,184.941949261699 +"Male",65.0571806094136,150.580878166379 +"Male",68.3717836935412,188.427798427743 +"Male",66.4164141686343,193.601091494664 +"Male",71.1161766271985,202.655919318012 +"Male",70.4338671580626,186.550232737993 +"Male",67.7517760693441,188.475320267361 +"Male",68.8219802859712,197.616787760036 +"Male",72.6644055036027,219.877297797870 +"Male",78.9987423463896,269.989698505106 +"Male",67.175972358731,176.447504294775 +"Male",66.7355917176637,166.251965359255 +"Male",67.0461168780053,160.156115646141 +"Male",74.0130064637048,227.940503751013 +"Male",65.194751388926,154.741692711312 +"Male",67.5271016627673,167.209586154744 +"Male",67.7692941952837,170.296762912926 +"Male",69.360059291613,177.742428212743 +"Male",69.4356247137799,178.366554827108 +"Male",64.9810856931893,151.013842658202 +"Male",68.0377335547962,175.445138090546 +"Male",72.3652287194522,195.01383683324 +"Male",70.1336061249603,202.988055431583 +"Male",67.9952003132874,152.622871806401 +"Male",67.0405897586907,188.605099476104 +"Male",73.1640798477115,213.509492257167 +"Male",70.5751115437319,194.792540402055 +"Male",69.157777848104,177.723979092692 +"Male",73.9866900209496,217.579162265683 +"Male",69.4463907052094,198.827817062209 +"Male",69.47030446666,183.295606263358 +"Male",71.5318020235873,218.203258217546 +"Male",72.2843969186324,207.54051320958 +"Male",67.7757429990539,174.098011857465 +"Male",67.7998001022004,182.193273221945 +"Male",71.0355954202262,214.475993981488 +"Male",68.3951640033857,169.634399045072 +"Male",68.7749864942673,191.476409599666 +"Male",71.2340357837764,200.779898445710 +"Male",67.4484173546206,174.720311987316 +"Male",66.8567174373183,169.375820795168 +"Male",66.183980706375,171.561906872241 +"Male",66.8749067066368,168.449683646485 +"Male",68.5910212089941,178.929042696548 +"Male",63.9786612566585,158.207409568587 +"Male",66.4831064273937,169.611473556961 +"Male",65.8693714983607,167.768237390181 +"Male",69.2127772206538,188.947625431233 +"Male",73.5223109267346,212.866099174391 +"Male",65.198863323951,147.360270291434 +"Male",70.3362270993055,214.225885559486 +"Male",69.7643008589258,196.014585086913 +"Male",70.6803962691179,199.508656245495 +"Male",67.9186456459956,183.543801407909 +"Male",71.8835004211866,211.851700424867 +"Male",71.127360865269,175.50776141398 +"Male",67.0779311697598,181.526491908666 +"Male",68.0233742761253,169.786696674258 +"Male",67.9681327760678,194.953452707325 +"Male",66.8777833476298,186.880959945505 +"Male",70.3880860466344,206.902726781956 +"Male",73.567046258289,219.403772607113 +"Male",65.8065569179362,154.877629117978 +"Male",70.5649669292682,180.476287057256 +"Male",68.0859207359008,187.310481870080 +"Male",77.4655691046729,252.556689436658 +"Male",72.3935124291211,209.420947695632 +"Male",65.438042517702,178.446423040865 +"Male",65.9085274006312,168.221009034230 +"Male",75.624031351581,241.202330051514 +"Male",69.6434076511078,195.033700530063 +"Male",69.7297501998193,205.228706404825 +"Male",69.0106416889045,177.586828357483 +"Male",69.0102193475529,208.536195228748 +"Male",68.6981752201033,184.216697540227 +"Male",70.4144581915074,185.157333965547 +"Male",67.8888425328838,169.250230857150 +"Male",71.5224187008527,194.264264366817 +"Male",67.8399309381921,166.146108589911 +"Male",70.2933874170617,189.249206322568 +"Male",70.8273825769591,197.925353850612 +"Male",69.1568941286959,190.695532793412 +"Male",74.1478574749085,211.237967951941 +"Male",69.3948962199594,192.708502929128 +"Male",72.5976629480473,205.095540164959 +"Male",69.3296028759004,180.358843274719 +"Male",64.259747389958,161.311622031900 +"Male",62.4184339174809,162.541691417064 +"Male",66.2290956339519,156.676674742941 +"Male",64.2373029407713,135.171792444257 +"Male",72.0852995257673,210.636523766533 +"Male",70.2483601066413,202.921363965856 +"Male",65.8281957952779,168.421282630185 +"Male",75.2090219800456,227.581431836074 +"Male",73.4628048017999,223.07017786921 +"Male",66.6289461179895,174.887786513081 +"Male",67.1644730396849,193.392309166884 +"Male",67.9902118820713,188.115112429199 +"Male",64.1247670013316,152.838649831156 +"Male",70.1769553931397,189.206850674596 +"Male",69.5225670457475,173.976658825753 +"Male",71.6088194274225,204.488412374024 +"Male",68.2777592692468,182.205420082896 +"Male",74.5646010757551,210.687811343022 +"Male",72.6331067350844,208.066256946822 +"Male",73.0060971576812,201.745667002798 +"Male",71.9605479216621,208.815055822955 +"Male",69.2844187964243,189.936249102177 +"Male",67.362064268148,177.375007662166 +"Male",67.2854464094672,179.009083297158 +"Male",70.0941169135012,167.301408606857 +"Male",64.3367925900582,175.683276108440 +"Male",69.8688828446104,195.71469296987 +"Male",63.9928990838624,154.963174147379 +"Male",66.6931156219066,185.370620196101 +"Male",72.4351612302368,201.614897367215 +"Male",69.6765282240288,211.71338512852 +"Male",67.6419890406368,166.263466663380 +"Male",68.4148650588014,188.997022977755 +"Male",72.0893613001118,200.435327304454 +"Male",70.2450921958255,193.012051655726 +"Male",71.370012820862,205.538501313755 +"Male",71.1034552596694,201.849475093177 +"Male",69.3756577139015,196.225085674717 +"Male",70.1369472337517,192.782153682397 +"Male",67.2815268578408,174.974135995046 +"Male",70.7430825518542,201.129382197899 +"Male",66.3675404602978,166.401886217710 +"Male",67.225929825744,177.306474665523 +"Male",68.269647594262,172.077304734761 +"Male",68.1704946616428,178.719105244279 +"Male",67.6727948973452,183.739947864270 +"Male",66.4748368010421,168.897518041255 +"Male",76.5692735211876,229.858095084796 +"Male",68.9635344504657,187.519514498714 +"Male",72.4463481555628,196.632239389221 +"Male",68.0414607141863,203.161598329019 +"Male",66.7174217170206,181.824686682987 +"Male",70.6729106676447,185.75988375147 +"Male",71.4729979957842,190.552372176071 +"Male",71.5825546470589,207.924949003577 +"Male",67.4217028687931,181.112349079167 +"Male",69.5335958060772,200.677823835259 +"Male",70.7645983316512,188.792456922384 +"Male",67.6026625484407,149.5671682469 +"Male",71.2382799033735,205.385709879611 +"Male",69.5821133204446,214.606055462764 +"Male",73.3658913151143,216.695992568754 +"Male",73.498412325145,223.413224318441 +"Male",69.4099946945755,187.084888803081 +"Male",71.7878822732622,221.702505691943 +"Male",67.5991155944152,168.826379194773 +"Male",67.6710443857597,179.187251256512 +"Male",68.5905627163459,182.081228596730 +"Male",71.3527309913091,208.337046818561 +"Male",67.9355070420684,207.683864875999 +"Male",67.4380469454298,173.230659998737 +"Male",69.9942899154843,212.056980674965 +"Male",68.5175785353356,187.901374763361 +"Male",66.6926712875303,158.733411950259 +"Male",68.4813088502541,185.765866647311 +"Male",73.9878545196903,200.584185743067 +"Male",73.334107636586,222.866199735729 +"Male",72.5608161732327,208.657945903000 +"Male",67.6751478717208,193.5865353569 +"Male",69.9385869453601,204.181186883414 +"Male",65.32533031817,163.05514228224 +"Male",68.1661063295858,197.179570385407 +"Male",69.2627590362177,206.733530945646 +"Male",70.0314406479355,197.692756439348 +"Male",69.028915972653,174.479935117332 +"Male",69.1422729406844,175.832446550486 +"Male",66.7821872958244,176.611992901323 +"Male",69.4541359481042,194.820667547117 +"Male",71.45613950513,209.6777853537 +"Male",70.3519975852191,187.820473129580 +"Male",72.0881801034979,219.296601248835 +"Male",69.2507757859547,176.251744913945 +"Male",66.7003203830076,164.034219272782 +"Male",68.074619757401,176.977425541785 +"Male",63.4151658902191,156.129232829763 +"Male",67.4275147301254,177.115331747636 +"Male",70.5097942501667,191.357118845178 +"Male",68.6635939323027,184.262796213996 +"Male",67.1261355945304,170.043604968565 +"Male",69.5146035094702,174.215001443927 +"Male",59.9386496524854,141.459578916043 +"Male",68.0252604758265,160.085290018413 +"Male",67.6244772604476,193.769780239924 +"Male",69.6677240187454,216.731633459018 +"Male",67.3500077013417,189.58386209989 +"Male",67.2407156671749,181.66223674898 +"Male",71.3791800149684,205.872457528787 +"Male",68.7001244073467,186.812060623585 +"Male",63.3993496538682,152.130506079927 +"Male",72.2187361478107,198.388265212198 +"Male",69.9322707815918,185.787303663375 +"Male",64.4895748475673,166.704316001462 +"Male",71.5825515145273,192.727036250921 +"Male",69.7119378069138,201.152847636991 +"Male",69.968216193196,188.766505678706 +"Male",72.2540714452639,187.612181934069 +"Male",71.7953186765601,204.260258830279 +"Male",66.9649019847839,190.373598547610 +"Male",68.269014261786,196.843333927174 +"Male",67.0359290230292,175.452167682807 +"Male",65.7409721305617,178.106266737452 +"Male",69.1230578419663,179.024645043399 +"Male",71.1632216520385,203.279407190787 +"Male",68.2096830916399,174.321828734599 +"Male",69.4732270432208,206.744339245614 +"Male",68.1447609508474,181.265824807129 +"Male",63.458860002728,165.747828805705 +"Male",67.5113580364166,176.085424269687 +"Male",65.9373519436693,160.490289220020 +"Male",71.8937415683906,203.220867405978 +"Male",64.8041404853487,165.604490445990 +"Male",71.7296112873384,203.621207666061 +"Male",65.7045390313265,173.058822994667 +"Male",72.858079634616,216.064745309942 +"Male",70.2227782355916,185.945007739211 +"Male",65.5628041481892,162.521915643865 +"Male",67.4970151395353,178.786913695361 +"Male",64.8211713800995,166.776837931805 +"Male",69.5987769458794,173.922130447017 +"Male",67.6719844516121,182.015225519155 +"Male",71.9065923582893,212.876015229567 +"Male",66.4520384909345,174.913816677933 +"Male",68.1060020651049,186.582536426182 +"Male",65.0779018941258,165.313806839966 +"Male",73.0719769487447,206.79014203395 +"Male",66.6565205921956,172.937957941029 +"Male",66.9334135583024,183.085375588415 +"Male",69.6129901512832,184.198451873963 +"Male",69.1044985054162,183.404685767611 +"Male",65.4826708328615,174.529056452169 +"Male",64.7216222191692,150.61945722694 +"Male",69.0304914203637,183.852038225363 +"Male",62.9489510330904,154.059125493671 +"Male",68.003463799582,186.369952686245 +"Male",67.5251055082847,180.056549443701 +"Male",65.1939877041466,156.286199055648 +"Male",69.7706685472737,169.749522023692 +"Male",74.8803080235834,236.360677960665 +"Male",67.672652670073,169.810674958778 +"Male",70.4896205409174,188.798292951655 +"Male",64.4853902915506,159.378629571107 +"Male",74.3974590270399,212.636167793697 +"Male",65.0940645340457,165.862942977357 +"Male",71.4107543170012,189.204802539803 +"Male",71.6515242841932,184.98181425035 +"Male",67.0040762692562,190.555592352721 +"Male",69.3464738927624,181.851584428601 +"Male",68.5365827248447,181.29525646113 +"Male",72.6076974070845,221.175596114028 +"Male",68.2358861491826,186.742654116017 +"Male",71.1366968657054,191.317269283196 +"Male",68.3236676403245,183.586860436387 +"Male",70.5733264895945,213.059851128224 +"Male",69.030771726533,183.728880770479 +"Male",68.266586787432,186.289792971552 +"Male",71.1706116015316,200.356641747284 +"Male",70.3246996352912,199.013268539426 +"Male",62.108640349289,145.768215981202 +"Male",69.1551140432006,178.751727209640 +"Male",64.2573893787447,158.028620579154 +"Male",69.509323943647,192.594226632306 +"Male",73.5846783015337,215.755104589064 +"Male",73.4053573956574,209.260758499741 +"Male",66.1664652340974,174.175176595102 +"Male",71.8602732247586,198.407146347278 +"Male",68.5865538742055,187.288478865185 +"Male",66.6227393753642,166.631749453768 +"Male",70.2887387369666,192.737926737728 +"Male",70.4023192554236,190.828037444581 +"Male",73.487295469423,209.974958477984 +"Male",64.3601355568853,175.085125541678 +"Male",67.7780817309766,182.164432334564 +"Male",71.8432786362585,202.152955387985 +"Male",68.9162928314408,192.632402702021 +"Male",68.055400218734,176.249659285991 +"Male",63.7703629870608,161.002115230281 +"Male",66.8912382865693,191.102989265346 +"Male",68.7838728276878,187.635463802389 +"Male",67.803603739297,158.347245692258 +"Male",63.2731514962835,143.248671752226 +"Male",67.378319443287,186.677088387516 +"Male",64.0629521897044,166.685112465687 +"Male",74.0345977469417,217.815797987992 +"Male",71.317651009031,198.75247096451 +"Male",70.4094367996334,206.346938652321 +"Male",69.5600329019007,187.491500656212 +"Male",62.3467160461908,139.196621068627 +"Male",71.3532087785568,209.309880125881 +"Male",70.8688075125817,199.508654365893 +"Male",63.7541488655653,156.460632901291 +"Male",66.685825149981,179.297684282303 +"Male",67.0548033920279,169.814525371342 +"Male",72.7385925117877,190.282758630298 +"Male",63.4724141868824,141.096824886518 +"Male",71.1705874712953,185.051728818797 +"Male",64.4645502964371,157.310480696028 +"Male",66.408718905892,177.146418687725 +"Male",67.2041088078578,168.982091609734 +"Male",71.2535351070399,205.353927314775 +"Male",66.4882661651719,170.989832607274 +"Male",71.7234906243437,202.268277404949 +"Male",67.9799625190845,184.374878270726 +"Male",67.5811265877706,180.853935558147 +"Male",68.0350952876528,162.124431514500 +"Male",64.9637723936137,165.070582829592 +"Male",68.5417285354561,187.321635984211 +"Male",67.9508375310481,178.702061027292 +"Male",76.8063436350608,227.220342792631 +"Male",65.7634935034213,163.230840261037 +"Male",70.3653926348662,185.297115112021 +"Male",68.3125196930066,186.120002390678 +"Male",69.4892466712537,187.843253324295 +"Male",71.4961402371602,192.887289170862 +"Male",61.2268286608375,153.520978630761 +"Male",70.0240514023442,197.255376590188 +"Male",75.9933603294536,231.347400923535 +"Male",65.7399612130522,145.991682489195 +"Male",67.3608239966572,198.893883187425 +"Male",70.3998742879326,203.537194767087 +"Male",66.3842319328963,162.017030191035 +"Male",67.8565390825337,191.710332303504 +"Male",75.6943140029078,235.136674227533 +"Male",61.4610130865399,135.511115650790 +"Male",59.3806495599258,136.391005519883 +"Male",66.3928549260601,186.066678088675 +"Male",71.0913321748536,198.030957907615 +"Male",69.576571845724,192.466355504937 +"Male",67.2855980659836,182.518199763126 +"Male",73.6216771468202,225.293143906792 +"Male",70.4562985483542,187.518140769157 +"Male",65.134165695608,138.654827915664 +"Male",68.3600721836798,176.413500728368 +"Male",64.8463013698296,157.718438434822 +"Male",71.1594004820348,192.351116685837 +"Male",62.8131554356113,153.495897463749 +"Male",65.6087684647238,152.913063657854 +"Male",72.9658800157952,202.624892849943 +"Male",66.0442680742162,170.79874387414 +"Male",70.3410581098996,206.235470111623 +"Male",64.9399896121834,133.511983471512 +"Male",65.8732341058732,174.498555669522 +"Male",64.6139756312696,153.281212195716 +"Male",66.9835356404729,173.663573094459 +"Male",70.019504685774,196.250331636822 +"Male",65.105442700628,149.106918776500 +"Male",67.2591979443731,181.673354241019 +"Male",71.9800094541378,191.016162221626 +"Male",68.4972345081854,192.339740712785 +"Male",70.9471139157593,202.047112302666 +"Male",64.6829084798005,160.789864174721 +"Male",69.080666511316,174.391088447286 +"Male",67.0476697285805,173.816373962663 +"Male",67.1351749028692,177.984361143984 +"Male",69.7426421173442,199.891271492252 +"Male",68.8945293119046,180.691815546380 +"Male",70.2534009734233,189.271868577753 +"Male",62.307438525405,149.439096779242 +"Male",70.4620129165386,185.021223481928 +"Male",63.7149513282762,139.411145312383 +"Male",73.4596099568632,199.868208976835 +"Male",71.6483083070671,199.039288959202 +"Male",70.1433861134691,182.832196917338 +"Male",66.6415689050248,155.763813806818 +"Male",70.7520120246337,197.838902123071 +"Male",68.1525343485532,193.159348804157 +"Male",68.9537194533545,178.287785533690 +"Male",71.1208266236791,193.804892442478 +"Male",68.847612185539,178.256907646413 +"Male",71.3343489114511,184.520036987219 +"Male",74.3402058830245,209.237513065822 +"Male",69.3298515857457,178.954373950107 +"Male",71.1045893455297,206.239749589886 +"Male",71.5052062678725,205.883495751742 +"Male",71.5796959944105,200.393123500352 +"Male",70.3477552657045,194.328792059639 +"Male",66.4023970655201,165.955934671191 +"Male",74.5178760319385,201.957971666922 +"Male",72.229902099848,206.223537862173 +"Male",73.1060590461094,207.239547355378 +"Male",69.558051898981,181.321297491082 +"Male",72.658071600659,221.885941634049 +"Male",65.7047738480621,160.203314026261 +"Male",68.0117487265409,175.015090454059 +"Male",70.18876718924,192.860019954761 +"Male",70.839116270156,213.736135894646 +"Male",66.0718645884626,179.704410058826 +"Male",66.5581140816002,154.627588397121 +"Male",74.5209720871559,216.533191277225 +"Male",63.7324378928949,162.221023324056 +"Male",69.8962171082176,187.056772431363 +"Male",75.8501122218929,227.277965379289 +"Male",68.388869473202,185.439840508362 +"Male",71.008540415621,207.550279927852 +"Male",68.2657235226031,184.988497969991 +"Male",72.3919402692833,215.675265584521 +"Male",67.1671943275299,158.46989586734 +"Male",69.3789501193117,194.488942344429 +"Male",68.4643740899053,182.904011737154 +"Male",68.4329923224506,196.103082819615 +"Male",68.9882868135247,180.365955212988 +"Male",70.616362867501,185.444865293505 +"Male",65.0385320500325,170.632537515233 +"Male",73.0242056315614,205.281493175 +"Male",68.7202431773936,182.455923303949 +"Male",68.9253088352626,200.060003456691 +"Male",75.1469078867175,221.329227716926 +"Male",63.1542722595019,119.242855919903 +"Male",64.4977259510755,169.841015617733 +"Male",69.1694841724535,181.815921528124 +"Male",67.1178740741552,178.266543425340 +"Male",64.572896855173,176.718916993233 +"Male",69.9818915473326,193.718587513775 +"Male",67.2907755320768,154.718344015327 +"Male",67.578739260442,167.581356732465 +"Male",70.0306732915134,198.696298551089 +"Male",67.285733279077,199.006613105584 +"Male",67.7179469415444,175.159200203876 +"Male",71.2524174586648,196.317164230109 +"Male",70.9816065331949,191.138848069447 +"Male",66.7989765317594,173.208632104584 +"Male",66.3835760239606,172.741451887899 +"Male",73.5135948991932,210.399769531925 +"Male",69.3741611914573,183.936860264066 +"Male",68.7206084483133,173.888102715451 +"Male",71.5392985030705,207.307916607988 +"Male",73.0691967049406,207.652627821709 +"Male",69.5052293431528,187.368175986248 +"Male",67.2688622118818,190.361496901964 +"Male",69.0162747931198,198.707762313651 +"Male",72.888870152212,220.908141910003 +"Male",70.7109383642151,202.067981453202 +"Male",68.9643667326337,181.537669681696 +"Male",70.4721950619616,200.575743461554 +"Male",69.0062973916329,190.818100843512 +"Male",66.4464197394787,162.941041216352 +"Male",68.8748761581227,177.133135520817 +"Male",68.4231670839035,180.257979819171 +"Male",74.2422931391381,232.23264687361 +"Male",69.069036069054,198.772190696892 +"Male",73.4010332774128,208.221064804361 +"Male",70.2738215373148,185.718381426101 +"Male",74.3408608692076,210.111536115141 +"Male",67.705332854901,196.933267718119 +"Male",66.4544411858916,162.811081805815 +"Male",69.0557467034876,204.258750662721 +"Male",68.0357238794662,172.436208796169 +"Male",68.7637713606666,209.281454445367 +"Male",70.8925193425129,201.418036626955 +"Male",70.8658154487942,201.511537970608 +"Male",69.2241151930911,167.738248191338 +"Male",68.4395762706979,190.815684355948 +"Male",68.2534867517229,179.252155716455 +"Male",72.226732736188,203.390169329490 +"Male",70.8468214026945,196.306309951181 +"Male",68.7871342748427,187.952799687315 +"Male",68.8747759608915,168.359034877323 +"Male",66.7430038037071,170.662332411944 +"Male",61.675406762752,144.763012787371 +"Male",63.3312265883684,138.147593056833 +"Male",64.914932300492,148.906905063138 +"Male",72.963161157143,204.181096319557 +"Male",70.0742964754103,205.387909895344 +"Male",66.014958328424,169.099038408555 +"Male",66.6837510636697,174.571334398574 +"Male",62.4015335166755,144.545057014570 +"Male",69.5872800833215,194.49835579945 +"Male",73.0848942216874,230.678778196553 +"Male",70.6489407806026,193.519854917824 +"Male",72.3720657331386,199.376234589203 +"Male",69.2634288100419,178.354124502323 +"Male",66.2057152194741,167.629659838571 +"Male",64.6028074324739,149.937712593204 +"Male",68.3685971047031,164.903328343631 +"Male",68.8907838942253,192.438686892985 +"Male",65.0553035477947,174.355752142735 +"Male",71.5360560807917,207.199559368969 +"Male",73.0597785759867,196.059169371603 +"Male",65.3353347489034,154.115056078303 +"Male",69.7984568782605,181.418073997721 +"Male",71.8987124231403,203.458766787122 +"Male",69.8930377508689,194.532819194395 +"Male",69.2602915436242,197.411781826015 +"Male",68.5709291211613,192.606716690451 +"Male",74.1530645069888,212.276327844442 +"Male",67.5029664837143,189.006568648402 +"Male",72.7934862727461,217.163282456028 +"Male",68.9094912858568,184.615535693413 +"Male",68.7205292483486,195.670171492147 +"Male",68.3123418831717,169.780839733618 +"Male",61.0744871038506,122.680111752611 +"Male",69.5735915739679,165.784742409677 +"Male",71.1650178616645,198.711519430380 +"Male",71.7688224564508,182.07224175813 +"Male",68.1619250144793,170.476126933133 +"Male",64.8904252076047,157.249289180483 +"Male",66.4732805906825,176.600529696569 +"Male",67.1729318343523,165.026284456612 +"Male",62.562141478974,164.051982770603 +"Male",70.0497022922758,176.589379237761 +"Male",69.326188964555,177.363587799360 +"Male",65.6001784302861,146.334379431727 +"Male",69.0775774988267,188.259134970082 +"Male",64.8725705815475,162.310278328889 +"Male",70.704093739471,202.910599271068 +"Male",63.7447268654662,146.159211075878 +"Male",66.1060379528454,170.262306089256 +"Male",64.5643638232429,164.888434776875 +"Male",71.993173644477,188.564977808902 +"Male",73.0756565099108,203.809263328034 +"Male",66.03495574946,160.193763825116 +"Male",70.8032012227552,191.947799747621 +"Male",65.204521937012,177.049658566176 +"Male",66.2428166536137,161.680383359996 +"Male",65.9964642618552,183.470679724807 +"Male",67.5167678484563,158.113339678303 +"Male",66.3070705425612,162.506036879899 +"Male",60.2691078279205,126.455612757901 +"Male",68.6971236647522,171.143030033184 +"Male",66.7341709198179,181.493157652824 +"Male",67.2732935501438,185.285081776391 +"Male",66.560104631177,164.963433682578 +"Male",67.5163696122937,173.520052717905 +"Male",69.148775311209,182.753570178696 +"Male",69.4161194172908,194.334751311389 +"Male",71.6164758130122,208.339311634581 +"Male",70.3109443106717,196.749787808627 +"Male",68.3951917160158,197.787940433631 +"Male",67.7776368682961,191.498220559793 +"Male",70.4890526389897,174.042609528828 +"Male",74.706964103516,215.225508792443 +"Male",67.1157030295813,187.073883863321 +"Male",67.6194866038072,194.518819453717 +"Male",69.0713143436101,193.434664774821 +"Male",69.4586625542238,187.910875685823 +"Male",65.5195414396373,178.289459153456 +"Male",71.4629608419721,174.347358666318 +"Male",67.4242401728615,176.485090451344 +"Male",72.4488466681926,213.359530360382 +"Male",72.088106511736,192.820500467739 +"Male",71.3313126649412,194.401079380422 +"Male",69.2797032321474,173.273011526316 +"Male",70.7687621567279,188.71103570989 +"Male",65.4091468910957,143.418013320364 +"Male",62.7889915181073,137.324178310072 +"Male",68.2788418439826,183.429056469698 +"Male",66.1089024472783,182.875348946605 +"Male",69.0506381923026,191.522274876366 +"Male",71.2120760243906,198.045548342651 +"Male",67.5939622905641,173.830870073092 +"Male",65.4090705909958,167.629078784546 +"Male",71.273326413992,209.112998212183 +"Male",72.4326175593517,204.564479012419 +"Male",70.8577943188606,199.966387454232 +"Male",70.1714787491531,192.347835853360 +"Male",72.1227847321693,200.907146122523 +"Male",70.0414169249094,201.546424499691 +"Male",70.2466542328547,187.655698757810 +"Male",69.4407539429827,184.436002879659 +"Male",68.4483486280848,191.824596578723 +"Male",72.6885141118863,194.241737568849 +"Male",70.1711756121192,207.776547320785 +"Male",73.4339533938154,218.692100035152 +"Male",69.8956240742108,200.120360949887 +"Male",73.1810749085631,223.397572330014 +"Male",68.4112747746483,184.148654336179 +"Male",70.116970128596,209.975992897927 +"Male",68.5801272996216,196.419011993851 +"Male",64.575075618789,160.165790971480 +"Male",64.9115210174544,159.195105564942 +"Male",69.6549653050958,189.609858053808 +"Male",69.5824438336788,199.267861131506 +"Male",70.035068335856,181.324779190868 +"Male",67.1747147572883,178.674937818679 +"Male",70.662339523852,189.139705683327 +"Male",68.0000811333113,181.146041967053 +"Male",69.1300382457198,179.006333462107 +"Male",68.0500257764757,173.196265684568 +"Male",66.7379274004653,193.726278474487 +"Male",70.4417673016369,194.901770200233 +"Male",69.3996495235908,189.939907896801 +"Male",69.9476363051415,188.314969689569 +"Male",68.7424575350868,188.757037229810 +"Male",65.2191249894502,155.137550948868 +"Male",67.5049012568772,171.975039175074 +"Male",64.8451615525444,154.441122475824 +"Male",69.1068982563448,191.148807911295 +"Male",68.9574385961177,182.192512817545 +"Male",65.5514242829528,175.898626877746 +"Male",65.7524856447476,167.667058345196 +"Male",67.5649415946167,156.181339882736 +"Male",64.8280715241918,146.95451586425 +"Male",66.1818786661366,156.490890700244 +"Male",71.1728685612537,193.720043582488 +"Male",70.4822308864686,215.487571789749 +"Male",67.9790568899048,179.415810617979 +"Male",72.3092648708471,203.24503016597 +"Male",74.8140524727739,232.209377348429 +"Male",74.0168971080304,207.710756876508 +"Male",70.236489814395,184.277627751434 +"Male",68.5285125548728,172.515038867338 +"Male",65.386094729396,156.865743203845 +"Male",67.2904043502669,185.857730988428 +"Male",65.8926857716889,175.258072138987 +"Male",74.1178821587467,217.354137242609 +"Male",68.4870776141712,193.726609048864 +"Male",71.456487434455,179.443186246513 +"Male",69.2444455670418,175.232834842116 +"Male",65.4935087932992,170.810300958355 +"Male",66.8162553383686,176.830676963356 +"Male",71.7987186685319,205.899263878253 +"Male",68.0746232752868,171.695509695384 +"Male",70.2123516263216,185.712759569799 +"Male",76.8426788279609,211.724166456081 +"Male",63.7247268700785,165.979417261085 +"Male",63.222824740972,172.024814098477 +"Male",67.1713740401178,158.368763158193 +"Male",68.9497200019384,181.783259324536 +"Male",70.4157303970418,216.214906264873 +"Male",70.0985771391676,176.671149980511 +"Male",68.2248597694462,186.197249914529 +"Male",65.0717845477403,174.705111282301 +"Male",64.6264020963261,135.894462208143 +"Male",68.3745308889225,190.920242818057 +"Male",65.7593989209542,164.086411397045 +"Male",71.9484863946171,208.204435251595 +"Male",66.7056733197167,173.957855841447 +"Male",68.2790225238186,184.813909218697 +"Male",72.9752100560429,218.572801626461 +"Male",68.1312709424856,175.017649585535 +"Male",68.6024127083851,186.965591006150 +"Male",65.521632994187,159.936436035272 +"Male",71.4290969498032,205.703629131647 +"Male",74.1411082830313,219.051728320848 +"Male",65.599913029659,165.229522729146 +"Male",73.0358069121006,196.655011862858 +"Male",71.0599558629686,189.324670708463 +"Male",65.6611243670706,169.958789237495 +"Male",69.5692353755488,182.866563183096 +"Male",75.2594567571919,227.437138179421 +"Male",71.9109115778848,204.031741317729 +"Male",73.5416086953574,214.343290696445 +"Male",65.3896290766619,178.437949265981 +"Male",67.8947765533491,178.177298042261 +"Male",67.919671377749,179.245883100950 +"Male",66.6587633395239,183.171527834575 +"Male",73.1817674817105,208.83916249552 +"Male",70.1278873879568,192.081131356246 +"Male",72.7317876678943,213.683943406133 +"Male",68.9672247722024,175.552123767977 +"Male",69.4750761769502,183.124801570931 +"Male",62.1829285247805,152.791828342801 +"Male",68.0485307533177,182.755815169608 +"Male",65.5943017632295,171.224026973693 +"Male",70.3302134803551,185.588740124496 +"Male",72.5044101891815,204.627156418296 +"Male",71.1547167578502,190.860975190272 +"Male",68.005429002183,194.754189235412 +"Male",72.979450587083,202.176783574756 +"Male",67.7183933664317,182.361396476652 +"Male",68.5222310437138,188.053333094449 +"Male",66.3513311088302,171.685169645879 +"Male",68.180093074225,172.962111007754 +"Male",71.8787168799373,211.041211202106 +"Male",71.7655591994397,200.800921111292 +"Male",71.1535238540064,210.048406699503 +"Male",66.0943192986516,175.648762705368 +"Male",70.8158798619579,186.597895634720 +"Male",71.3018406964116,206.164718336642 +"Male",69.806290688136,186.673516437421 +"Male",65.5223891849772,175.571312856724 +"Male",68.5583535155871,191.088939684088 +"Male",72.2674140170487,211.464487907527 +"Male",63.5805658253015,142.174759588665 +"Male",71.0447560719962,205.843338309040 +"Male",65.678390073919,163.142051843036 +"Male",65.2073466646762,151.875669056137 +"Male",64.8381936073312,142.725871196537 +"Male",69.9648106258336,186.451542800869 +"Male",67.3785183467397,170.001347870670 +"Male",63.2308119997902,164.502235058658 +"Male",70.3753442005972,180.298356688671 +"Male",71.6085597220403,193.070142165756 +"Male",67.0875518839637,176.417238785546 +"Male",63.9735571007627,160.063501695535 +"Male",67.5754728091751,180.419530268538 +"Male",65.1928622148426,185.348210815347 +"Male",71.781995967799,205.169235058932 +"Male",72.1002995643528,206.224026920736 +"Male",72.3721936385913,210.187294028833 +"Male",73.0992837673105,215.709114395579 +"Male",69.9105345826093,181.591178707636 +"Male",64.5608284830163,161.889769141679 +"Male",70.3461044359,197.683319350645 +"Male",68.5389783858712,179.571466448354 +"Male",67.7893805121246,186.11903739595 +"Male",72.629122695722,192.328966620348 +"Male",67.1965191153681,179.209194759411 +"Male",75.9468664416188,237.567608315894 +"Male",63.9562257501968,152.645848084592 +"Male",69.0126572462833,196.322531072484 +"Male",64.9663466773012,172.524968877121 +"Male",72.0553240378125,202.334695478699 +"Male",66.976667906741,193.823778090071 +"Male",70.2800864760863,186.922283676769 +"Male",67.1931713444248,179.722743052527 +"Male",65.9030878188522,167.616692609915 +"Male",73.6968592231206,232.718677743803 +"Male",67.974679560537,171.725456845952 +"Male",65.629901787505,179.995123993462 +"Male",65.8239507501989,163.585798539797 +"Male",71.7158700011345,190.994310790650 +"Male",73.5042682274291,205.473091074701 +"Male",64.0323188386272,147.371284240101 +"Male",68.2799077635859,199.602839934239 +"Male",74.3387388213286,220.383448053015 +"Male",69.8115195799813,206.285580615798 +"Male",71.4179456442086,209.226566604938 +"Male",73.29150846491,228.558785151439 +"Male",72.087031565042,205.389055805672 +"Male",63.9145410829098,167.842391509704 +"Male",72.2473247514787,193.511695213042 +"Male",70.5970245232896,188.4506741498 +"Male",70.8656161119303,214.981393879642 +"Male",71.9583877120553,198.404176487734 +"Male",68.1537017938172,178.165801687660 +"Male",68.929542399055,189.583425533766 +"Male",66.2991930296065,180.201266068932 +"Male",65.2735393556391,149.934606411734 +"Male",68.4840293015593,180.896286583736 +"Male",65.6415358932932,170.100647282763 +"Male",68.8687503295272,178.818827668585 +"Male",68.4594298086293,181.363397153935 +"Male",69.3213053675037,194.330003140625 +"Male",70.4643184519456,203.258480173709 +"Male",72.6652418845385,219.09516559478 +"Male",69.3396673761276,181.904824008691 +"Male",68.5689593987114,185.975825102227 +"Male",71.6178240738735,201.679351976306 +"Male",68.9039419009733,175.445063361930 +"Male",72.6645041014485,188.395182289828 +"Male",71.3803112293486,217.368487922352 +"Male",70.2811622513829,211.579496114353 +"Male",70.7104060308907,197.060884068186 +"Male",68.5212502601429,186.718801866057 +"Male",61.740657718642,140.009978611136 +"Male",68.7724639911909,187.550830706638 +"Male",73.5686363372985,205.359460048360 +"Male",66.5597303979436,179.216570220812 +"Male",70.3097777619389,208.496496627010 +"Male",72.5642205690907,211.766426777818 +"Male",73.6898079730097,228.448826901403 +"Male",68.1416418429715,170.799951410169 +"Male",68.45706108374,186.208565777245 +"Male",73.8389292762859,229.339511647714 +"Male",66.6678935095837,176.882637427565 +"Male",74.4006581136326,240.94226656803 +"Male",67.7665131591181,172.66956644217 +"Male",64.069492271936,155.344797788702 +"Male",66.6351149391748,170.372215566906 +"Male",69.3803026970744,194.749523524474 +"Male",70.0019801481263,190.088062866182 +"Male",74.5947363255385,227.116581954833 +"Male",68.4613830882305,175.624619753943 +"Male",69.5816999725411,187.028747460720 +"Male",67.0477018673448,183.063058066491 +"Male",71.2234233851763,194.941406763195 +"Male",67.0735038044545,167.284904210123 +"Male",73.1196932175068,208.578476343062 +"Male",66.463444636652,169.965151554604 +"Male",67.7863330273628,164.336269035969 +"Male",70.3494997526009,195.971476927673 +"Male",71.1257543950501,205.636049561946 +"Male",72.2975838279981,212.058246979834 +"Male",68.9553349088772,193.828444651234 +"Male",67.1435095657555,165.143923827387 +"Male",69.9667995979482,189.838617717709 +"Male",68.5726842539187,189.126581719615 +"Male",68.0929648474786,169.936600992961 +"Male",75.8854331273875,224.133192020663 +"Male",71.9916433891508,211.019112804057 +"Male",68.4567543665949,185.534021112646 +"Male",72.4670249302543,208.294588690205 +"Male",67.73714618014,166.352335304736 +"Male",70.0348210937522,174.324839218450 +"Male",72.1929099784557,216.196483053183 +"Male",69.5929425862754,187.863071139607 +"Male",71.050918440655,200.734578094148 +"Male",70.8095594700837,181.5636902091 +"Male",68.0619139707749,189.368823710319 +"Male",73.3909870598365,203.513414634719 +"Male",75.3415841386064,218.533015522811 +"Male",72.252704720084,205.234402993673 +"Male",66.175870316724,176.479343050833 +"Male",61.6784810166065,156.445474818204 +"Male",71.8922178708786,199.829698644094 +"Male",62.4768026980243,148.914287795590 +"Male",67.9664064800478,186.606551866311 +"Male",69.6934080122532,201.481471986313 +"Male",62.9486815067409,150.670937904556 +"Male",71.3594719071156,197.472655563994 +"Male",67.3323783007279,187.708566102105 +"Male",67.7796703221261,192.199788192446 +"Male",69.1614040925226,175.296969396497 +"Male",68.8632081958863,201.79550419993 +"Male",67.075851920541,203.49368734225 +"Male",67.3033862313183,187.346637246704 +"Male",67.5246393181245,174.399730368785 +"Male",68.5683746655455,179.795968121258 +"Male",71.5665173364477,198.026785132530 +"Male",73.2291160189156,210.545969530572 +"Male",69.4398604703421,169.496510888749 +"Male",71.6230975707903,220.337155483954 +"Male",65.7685176293773,171.405225641703 +"Male",72.7445445618532,208.381539189436 +"Male",67.2312608515946,178.073055063128 +"Male",70.8778262504891,192.349521779271 +"Male",69.9628111350435,189.022745690670 +"Male",65.8723498540595,178.216677929299 +"Male",70.8591906944626,184.493250594327 +"Male",71.5949264511216,197.887062757889 +"Male",70.0509901129706,184.833519784275 +"Male",67.5000671773765,175.879804411091 +"Male",65.1486876162663,140.512792427105 +"Male",69.0229741366314,187.568690225956 +"Male",70.8219166778792,184.447666728551 +"Male",70.8593468293598,190.799189796735 +"Male",68.0544500023942,177.031906663830 +"Male",69.8369766346359,186.283925066469 +"Male",63.4920992472081,160.490300954204 +"Male",66.6314017569255,164.059156735141 +"Male",70.8846656569365,191.888042930316 +"Male",67.3565979381263,181.372970577429 +"Male",70.440713078525,225.797524697619 +"Male",69.427611657233,196.249697812958 +"Male",68.8451168683983,187.027828507430 +"Male",71.3298978387032,196.619819738355 +"Male",75.2828470066327,219.113209500242 +"Male",68.3141883278045,174.243488335751 +"Male",66.7787237253305,158.715870170122 +"Male",70.5694550880664,185.963995077841 +"Male",66.9911674234912,159.761656400265 +"Male",67.608066531934,178.886204768114 +"Male",72.7782097654647,201.185084766091 +"Male",72.3582490369051,175.165507653974 +"Male",70.6399789015695,189.809770041737 +"Male",68.5621793113471,190.365472252670 +"Male",68.1384263518259,192.570363041621 +"Male",63.3931588374683,136.672643534397 +"Male",63.6712878481583,161.578640664553 +"Male",69.578030076433,195.322675034756 +"Male",69.1019833071204,194.581051002032 +"Male",70.9633688265073,178.55119125664 +"Male",70.3596905601338,196.138027509672 +"Male",69.2446403786744,179.366456640459 +"Male",68.93206938145,187.626609141929 +"Male",72.4227613520024,204.706101293299 +"Male",68.4341193584622,194.607053071902 +"Male",71.5958321642372,196.672556535149 +"Male",72.970282502345,200.510726183031 +"Male",68.7218244822965,186.425419562670 +"Male",70.597420179817,200.372577544792 +"Male",70.5440078477089,209.706729850380 +"Male",61.1364754370795,125.827021940119 +"Male",70.819303798392,204.580698547964 +"Male",67.8379857277858,192.368777166558 +"Male",72.3547717597445,224.603654842262 +"Male",70.087753142143,198.702175855683 +"Male",65.5139065810319,162.729848423525 +"Male",69.3682213071743,187.333481356689 +"Male",70.4347390270299,188.758432103071 +"Male",69.1631877439559,200.606237588936 +"Male",69.0824453501192,194.280065866594 +"Male",65.625005629703,188.318587629018 +"Male",70.2542610707768,176.048644141936 +"Male",74.2618767906827,218.508338895266 +"Male",73.4279700737196,223.190699773500 +"Male",68.95308193894,180.482258816931 +"Male",69.3095027322902,191.415025361841 +"Male",71.9695979612664,210.494003253908 +"Male",69.2636786808727,196.375781838728 +"Male",69.3222239786402,206.077885072159 +"Male",64.5710173368115,167.444140149937 +"Male",69.6058825883667,187.531900174482 +"Male",71.9778962599426,203.076478821740 +"Male",71.3825768532746,205.545794719179 +"Male",68.914254430953,186.714567782714 +"Male",70.6471391547845,207.556408191843 +"Male",71.5906840125055,201.611493751708 +"Male",71.860624653893,202.906859257730 +"Male",64.1496958890354,153.881377247791 +"Male",68.0825461504266,162.510469344354 +"Male",71.1879114486,192.969276085467 +"Male",68.2600188146995,186.304599622142 +"Male",68.1554664740712,179.253570060408 +"Male",66.2702572454373,159.008991628002 +"Male",64.7622593838677,177.224826339205 +"Male",64.5944587099029,161.636100335791 +"Male",67.4059505310382,158.753628516535 +"Male",72.1177573565846,184.683527293819 +"Male",68.1439825448122,167.29454214241 +"Male",69.5520414173986,186.902312654022 +"Male",71.8036685401297,196.206256661538 +"Male",68.0717872785892,172.706258283303 +"Male",68.5030556608283,205.891233824314 +"Male",69.2416420300541,192.100036015839 +"Male",62.807212179616,139.310570947475 +"Male",63.7864019423456,169.072735522900 +"Male",71.4586641035715,189.176174665403 +"Male",70.3585219055563,201.601812203815 +"Male",70.4392214845332,194.09613129562 +"Male",68.3843868838641,168.153561193501 +"Male",70.9494725324929,185.971650002441 +"Male",71.1055775682653,206.493612895375 +"Male",70.1352657255547,186.108408386061 +"Male",60.9357397012703,140.151715704819 +"Male",71.7023898005896,199.946154572196 +"Male",71.1595359349137,197.258662277712 +"Male",71.1270828486855,207.575178539761 +"Male",70.4515850235969,182.85621286571 +"Male",72.3633543160283,216.056503165273 +"Male",67.9067632809089,167.726192282098 +"Male",67.7249359840463,180.051856171051 +"Male",71.7742059792106,190.408985001033 +"Male",72.7967298380232,196.504136070637 +"Male",70.4036733012705,188.594408168625 +"Male",73.1431777100326,217.238225088706 +"Male",70.4389286008299,197.17758847358 +"Male",68.5220494533128,176.707355062972 +"Male",62.4947330970405,144.461723373137 +"Male",69.3258818591242,218.906557006405 +"Male",71.9183019193573,203.846582041009 +"Male",72.0631803415622,205.941639835332 +"Male",72.7072240809875,204.365103834944 +"Male",67.8948122354009,178.327235526801 +"Male",69.8931506734591,200.120674175944 +"Male",68.3191868840158,173.777186361387 +"Male",71.7042175732941,202.995132804937 +"Male",65.5403025125114,145.913544882471 +"Male",64.8215038669723,166.12961409456 +"Male",68.6903732515005,200.307314478977 +"Male",75.4271605167415,222.183966911474 +"Male",70.5937269076303,217.644149327757 +"Male",71.0067486753143,195.230402860451 +"Male",67.3634902857182,178.173833179945 +"Male",67.1670215163877,186.354915991701 +"Male",72.5880210913366,204.343186871633 +"Male",67.7198142648655,171.731927542274 +"Male",71.7737439924026,200.129819441304 +"Male",60.936236039347,152.349379859679 +"Male",68.2754914380131,181.454462321991 +"Male",68.6502179585665,176.030067232873 +"Male",67.8376080142153,185.733802058209 +"Male",72.3919480375828,206.672708199405 +"Male",69.3574910685678,187.401429968938 +"Male",69.5081817430195,200.24247867568 +"Male",66.9702864105193,180.636688869968 +"Male",68.058837015473,187.779075398895 +"Male",73.8475295776639,205.479367857883 +"Male",70.4284737446407,199.144177535778 +"Male",68.3606064047014,187.923291305653 +"Male",75.1568785837882,250.317150668765 +"Male",66.1187630936604,184.130541739592 +"Male",67.7737864692234,187.163668614167 +"Male",60.267190118023,132.948178886676 +"Male",70.7796702953679,193.759932289639 +"Male",65.1193493128246,165.839045167054 +"Male",66.2146637464049,180.575334078804 +"Male",69.0173775982,191.813673599935 +"Male",67.1445299209752,185.787865358235 +"Male",69.4761501521454,209.17758056437 +"Male",69.7415958786736,183.676901945623 +"Male",68.3045359435121,203.230651520549 +"Male",71.0525589545229,191.007761650311 +"Male",67.9629351447896,190.964765515607 +"Male",65.7756583112014,170.219947470445 +"Male",70.5459805769923,195.179269636360 +"Male",68.8548567103192,196.719284222186 +"Male",67.616382973757,165.955952926709 +"Male",63.7640494873022,157.511938265132 +"Male",69.7171379649828,201.471330687198 +"Male",69.559053186111,188.241225678204 +"Male",70.0089732579007,184.061795734488 +"Male",68.1110970979283,163.700812006311 +"Male",72.0934681212874,207.130108912299 +"Male",73.0753448487736,211.114809685062 +"Male",73.9036701988807,206.641216768758 +"Male",67.0035558341377,171.536554598756 +"Male",65.7388827173833,166.622732409779 +"Male",63.8615537584981,157.413147081601 +"Male",67.7826581132307,189.909671216622 +"Male",68.0329083425684,182.741959980889 +"Male",66.5282661653498,164.724934932117 +"Male",69.3579763635786,200.941915713867 +"Male",65.8769377809418,174.301247259743 +"Male",68.3598740643196,194.466166022013 +"Male",75.537221162046,212.008742592347 +"Male",67.8020438310124,187.289802156572 +"Male",67.8643122295256,175.602707870081 +"Male",66.4998225910671,162.624327333045 +"Male",64.9508117081588,162.900240863430 +"Male",69.3534266660166,180.520579792551 +"Male",67.9427850880266,185.009609592898 +"Male",67.4486562662053,170.505748711461 +"Male",69.6397376244276,190.251042014441 +"Male",72.4452127194584,209.323421366744 +"Male",67.4598988659109,182.629347823580 +"Male",69.9481027786183,196.473753637730 +"Male",71.6792949642772,215.875149258531 +"Male",64.988090122599,169.409645165324 +"Male",60.217018557323,146.956646118938 +"Male",71.414336818034,192.573545548766 +"Male",68.9146225978287,202.737714374539 +"Male",73.6091065220879,211.460479807153 +"Male",68.6895150998656,180.932595959431 +"Male",74.3198902659849,210.041703167251 +"Male",67.3520187546327,174.629994693538 +"Male",68.3628584666732,189.203924505248 +"Male",69.6836434210941,188.152167728974 +"Male",68.8430120886585,153.468050364256 +"Male",66.5502881782999,179.097248801662 +"Male",68.9920786205981,186.025664909116 +"Male",67.3185454961927,178.078360397352 +"Male",64.9611799709311,164.295440778111 +"Male",71.3635949081281,212.594865491945 +"Male",68.7483882341235,174.654960984733 +"Male",69.9150925357475,196.429542735612 +"Male",73.972510658213,216.859756161093 +"Male",69.0680880284594,183.581658567534 +"Male",68.7469855161992,195.116243512739 +"Male",67.9717209925306,166.311929952205 +"Male",65.8060149938198,178.972481199624 +"Male",64.5797174449321,156.917314173313 +"Male",70.462302710932,191.920727299067 +"Male",71.3305536715798,198.423279196709 +"Male",70.968527555884,183.196713510058 +"Male",65.2396350305159,158.61976108754 +"Male",69.5012228835296,186.595514738058 +"Male",70.192414255252,198.141175293546 +"Male",68.4994406951495,184.660637079457 +"Male",69.1918244334515,166.253275901213 +"Male",70.563361050068,189.702969875501 +"Male",69.4264826985682,199.339857106691 +"Male",69.7778750693985,191.497898579147 +"Male",67.4711699438224,181.552991717343 +"Male",64.4345667470181,166.669569884275 +"Male",66.900260454806,192.015678647341 +"Male",70.1500203704164,200.147704905639 +"Male",66.6870384699495,170.712229694375 +"Male",61.6111205420045,136.668509038573 +"Male",68.163315167029,194.177979499539 +"Male",69.2195680048631,218.314451313483 +"Male",70.065929679604,195.857013304231 +"Male",69.8834508500669,181.674739027445 +"Male",69.0338236669336,180.804449752242 +"Male",70.7174393828663,205.549671597655 +"Male",69.0827029866825,183.405526128932 +"Male",68.4133661184686,184.010267120472 +"Male",70.1022462080805,191.995692788387 +"Male",72.1972301612506,193.790994645888 +"Male",71.6369735696071,200.713270906352 +"Male",68.647412310577,178.403969552575 +"Male",66.3784113235918,163.783702801819 +"Male",69.0721768756841,207.018104532187 +"Male",68.8586802310066,185.540118616566 +"Male",72.289596098559,213.896689527779 +"Male",65.4897623984061,172.467087897332 +"Male",70.6394505733988,210.798262631521 +"Male",71.9591877482264,209.783979953586 +"Male",71.053248957745,215.258776030128 +"Male",69.780164148828,191.959128602238 +"Male",69.4312591996592,200.2184902137 +"Male",72.3112608811738,199.751429968704 +"Male",65.8099119333478,191.563494836714 +"Male",65.9149706573986,167.72262883503 +"Male",70.6451908139862,204.868290709098 +"Male",65.2341016680361,167.372980050571 +"Male",70.1969204017049,214.004437733449 +"Male",64.0683620999564,147.19719036458 +"Male",66.8192507182576,178.169090523627 +"Male",74.1123042062869,240.8517285055 +"Male",69.0015374154057,211.124825201028 +"Male",69.9966626904509,196.50774098467 +"Male",67.4677707514482,170.484397384987 +"Male",74.4466076176889,213.701377011624 +"Male",70.119097746151,180.243708931419 +"Male",68.7863163727577,179.937695870664 +"Male",67.7272495705881,178.300512796430 +"Male",70.8398723802529,201.390763412069 +"Male",70.3327152499591,190.409829226301 +"Male",69.4774099201808,191.76385209845 +"Male",70.9672665637126,194.197812324396 +"Male",64.1442217409307,159.633740321226 +"Male",70.6646995099228,201.802788619146 +"Male",69.4915234202537,185.683585728877 +"Male",68.4891639587714,182.331487189421 +"Male",66.9337377924034,177.60344566602 +"Male",66.8571937563683,180.344335374479 +"Male",69.8614390783957,183.813798258816 +"Male",66.6952963994548,157.728114223695 +"Male",70.5672238896023,205.281296152093 +"Male",64.3285802013004,163.977237925945 +"Male",64.9914045104988,144.551043767014 +"Male",68.1289905812942,177.897336186379 +"Male",71.9546801297194,207.693089133366 +"Male",68.7332489637036,184.510023158701 +"Male",70.9620420449436,188.730942756504 +"Male",70.8995166962719,193.454164583137 +"Male",71.8344661389853,208.693235554288 +"Male",65.712982296789,162.291215156799 +"Male",68.491311718304,193.458536971397 +"Male",70.1203784006513,182.417416592148 +"Male",66.8672456973977,166.398121654861 +"Male",72.445633797004,202.993331043340 +"Male",70.893889775787,194.687100760466 +"Male",68.3093744572512,171.305465081297 +"Male",71.5947829781187,201.260629439894 +"Male",68.8791794591658,192.345052405555 +"Male",69.3533197548637,194.450557167277 +"Male",70.0371582171478,199.499124221591 +"Male",68.6714646998142,186.129921985574 +"Male",66.4673781407486,180.765908593914 +"Male",70.2995853867691,213.472574289259 +"Male",72.3502415960447,201.914847084821 +"Male",70.3799320090554,189.717054272321 +"Male",65.0109045236611,157.611469827764 +"Male",68.1563118657056,177.003760055668 +"Male",69.9237142098118,207.074912989175 +"Male",73.4327364722673,208.870917718083 +"Male",63.7202595179898,156.769607037403 +"Male",62.2586364626978,129.291982421435 +"Male",72.2101532208955,202.091037355264 +"Male",74.2441239982815,222.246795350425 +"Male",70.1146936218391,216.946546571983 +"Male",72.2012036814976,201.877656555686 +"Male",68.0928547589357,175.155597000441 +"Male",68.0410545467272,186.057643771908 +"Male",71.4228870725134,188.959904524735 +"Male",72.8732032068169,219.026140872277 +"Male",69.6418207897076,192.942067548301 +"Male",67.684325532839,188.223099466658 +"Male",67.3831359803017,180.092295787923 +"Male",63.4187633663839,150.856910420554 +"Male",65.2155559870031,174.931143238132 +"Male",69.465858804757,192.978528624568 +"Male",68.9307290750948,186.781003542819 +"Male",69.2170091490298,188.089942149186 +"Male",68.9416586042578,172.382546943496 +"Male",67.4527672696579,195.154313749051 +"Male",65.3764350085399,152.289839453128 +"Male",69.6393119078689,174.157633322696 +"Male",64.7904511350664,157.000463793552 +"Male",68.8629875977668,192.027534217816 +"Male",67.0832641697457,182.008910846813 +"Male",67.0388652261268,167.912792643045 +"Male",67.295350598399,189.809761363850 +"Male",70.5491530734941,194.210823255243 +"Male",65.4048857028292,176.155548889135 +"Male",67.1101003447744,159.311291947559 +"Male",66.8627250647371,173.532699084423 +"Male",71.9553618381654,205.564071301754 +"Male",64.0377595555002,163.048934465506 +"Male",61.6258610740856,147.866824542197 +"Male",70.9595910436341,202.116280036011 +"Male",66.9118632816853,166.901514585429 +"Male",69.2206683275423,168.521566689212 +"Male",67.3747648517319,188.77215441011 +"Male",71.541082249022,211.836464140572 +"Male",71.8906646662965,203.895457654318 +"Male",73.610215053458,216.402264467345 +"Male",64.0963255375646,161.809544775425 +"Male",70.9626171236153,195.017206431056 +"Male",70.280271694611,203.465191838017 +"Male",67.4444541091852,171.380602557206 +"Male",69.4730963745151,187.120945229628 +"Male",68.7436471208239,189.780275471416 +"Male",70.901460796356,200.466281466370 +"Male",66.6687269099779,157.48818323462 +"Male",67.788799326341,173.643040393328 +"Male",68.4570350328042,183.522520057091 +"Male",69.509852369113,193.223196819712 +"Male",69.7696044375304,188.844172398325 +"Male",66.4872313451816,176.009083385557 +"Male",72.7266201973182,219.133231049009 +"Male",71.4901791634649,189.990127110246 +"Male",71.4735705576821,198.077199385214 +"Male",64.6394488390014,165.071396716903 +"Male",69.689848438937,186.377447726310 +"Male",70.0048866781933,187.716780027983 +"Male",67.0328296969054,157.451539975264 +"Male",69.885301125946,185.729441009546 +"Male",65.3577593032289,158.043230120099 +"Male",64.4450976718689,138.092635852909 +"Male",68.2864257170627,181.404808371928 +"Male",69.9364473254541,177.381766370311 +"Male",68.3825216310947,191.593624389339 +"Male",67.5109499047117,182.897360017505 +"Male",71.8725840567383,193.138076765630 +"Male",72.038944494344,181.290483845475 +"Male",68.6889307087597,178.507499588265 +"Male",68.6888551356641,187.322574823783 +"Male",67.5591491239,192.957731294709 +"Male",69.5156404511835,189.425072472240 +"Male",72.2038769116687,194.867542885399 +"Male",71.3057142971261,196.972717188348 +"Male",69.6345266160616,175.390825124519 +"Male",69.2063484445445,196.268707797904 +"Male",67.1920760790597,187.114143580948 +"Male",72.1698101464408,199.03956780688 +"Male",69.6285565798632,206.017256740469 +"Male",67.9008749867293,184.207415563849 +"Male",64.766566005506,159.076587711134 +"Male",69.0265010461381,180.702751395431 +"Male",69.3804994951514,192.759875462793 +"Male",63.0124453032331,162.690594098404 +"Male",69.773920902644,197.628079004138 +"Male",70.229470039308,195.146306947524 +"Male",64.9357444096278,145.765027349235 +"Male",76.2686678609258,247.38674101635 +"Male",66.4634067938917,166.015738476118 +"Male",68.4119528471094,179.427933239853 +"Male",71.7810574220172,199.714420710854 +"Male",67.3831525126228,198.550575484524 +"Male",70.0951751594895,196.188048348087 +"Male",72.7206032440343,206.396597039918 +"Male",70.5505484693878,190.365182258908 +"Male",64.4840241907055,164.646469755969 +"Male",68.419982758101,189.603113989514 +"Male",67.3967832020134,179.573295110834 +"Male",69.7619298448695,188.955832482260 +"Male",66.8118017540862,179.537041762848 +"Male",69.3949917651708,204.586729668011 +"Male",70.4196937664862,190.840498780827 +"Male",62.6933238488153,153.889337017852 +"Male",71.2016596829157,210.169870145623 +"Male",65.0357858257653,168.618675855630 +"Male",69.5758912724684,206.600442166756 +"Male",73.7989360517566,211.764140768071 +"Male",68.0880489605233,177.372815267237 +"Male",71.4471936652853,192.914809354679 +"Male",68.0376764552986,178.113252905524 +"Male",67.7748703797821,159.08886542681 +"Male",68.1791976790722,170.541400967346 +"Male",72.990915597589,205.649920044037 +"Male",69.907080582895,183.280806712051 +"Male",68.1987958205034,188.202321094232 +"Male",68.784717006336,192.407835423950 +"Male",67.5683852020563,186.056729156222 +"Male",70.8246427164575,184.516687556543 +"Male",73.6824661606068,211.285555004193 +"Male",62.9511502615306,145.694359366681 +"Male",65.4558548230619,161.328227752182 +"Male",72.7362929932649,211.170289060502 +"Male",68.8402105649315,181.552558614164 +"Male",67.4670859102263,162.475957317792 +"Male",61.3285017825521,139.827983784206 +"Male",73.3583829090763,212.256252827360 +"Male",65.1594389659925,157.69050156762 +"Male",71.9818297461252,220.757256110849 +"Male",70.8638003729676,185.422777885581 +"Male",67.6191962613368,181.905318555656 +"Male",68.3382369019073,182.676041653178 +"Male",70.34761712038,211.490800973906 +"Male",70.4826813757293,197.287686243769 +"Male",67.783782229416,182.621729823730 +"Male",72.4606087939657,203.421675833258 +"Male",70.4320483001562,193.237604666057 +"Male",71.053367544567,212.110879184422 +"Male",69.6229170546832,186.354367392259 +"Male",65.6823645970644,186.270772730656 +"Male",70.4276026086633,174.046350502894 +"Male",69.5785254182889,180.714443779292 +"Male",68.0849867358666,183.329033473548 +"Male",72.6170375162674,199.056247019883 +"Male",70.9569900553812,196.560307688201 +"Male",78.5282104258694,253.889003841814 +"Male",66.7759834012336,156.881099578167 +"Male",69.2370515527964,197.560030950356 +"Male",67.724181993054,176.269147813157 +"Male",72.1405301177477,204.635439705712 +"Male",67.7996452932454,177.786077589165 +"Male",71.4566622698453,200.592581805722 +"Male",66.0455071549084,170.237314321099 +"Male",67.6738585793992,185.099404217225 +"Male",66.7336340551268,171.524041744032 +"Male",69.5859562372491,176.165703946487 +"Male",65.12073518167,156.377043919319 +"Male",67.4415352989535,168.431869160444 +"Male",69.8160994668863,203.223323290572 +"Male",73.4132064237389,222.220351964461 +"Male",66.2225182302978,163.571042147135 +"Male",69.940973022437,180.47345776757 +"Male",71.8394427261804,189.032685065552 +"Male",73.205342358939,220.663387279626 +"Male",73.8468914828124,228.275180426949 +"Male",67.3207762405653,163.292431968096 +"Male",71.5240377431825,194.087869342880 +"Male",71.3194280648361,210.270568536018 +"Male",68.194200258067,181.028404236627 +"Male",64.7037921187518,155.878194227401 +"Male",74.8428746157352,213.334890879739 +"Male",67.8904052054035,162.955173257109 +"Male",69.3561086815591,185.916641885235 +"Male",70.9510295871737,196.699671301864 +"Male",69.1975479405903,191.542328945010 +"Male",69.2679023087232,172.321311854682 +"Male",68.824451540163,190.764014395057 +"Male",66.9463010370476,174.166587147448 +"Male",69.9208223571176,194.724702717296 +"Male",69.133081397475,192.172136792121 +"Male",71.8433084180584,196.505813604593 +"Male",74.0668789221699,214.342465803496 +"Male",66.6779015437526,174.741784443711 +"Male",61.8903594991126,140.804101695825 +"Male",67.2503832649139,166.594569919160 +"Male",63.0087225302095,158.316027971635 +"Male",72.0755228656988,202.849636858283 +"Male",74.8852187331568,211.166267656408 +"Male",70.6602496413011,185.755060391124 +"Male",65.7378121171633,179.48949039803 +"Male",72.7617106246435,200.507356240265 +"Male",67.639214554505,164.583050800347 +"Male",60.7210796557876,123.628359577062 +"Male",63.8734089118585,152.554619713603 +"Male",63.774862824128,160.627933946605 +"Male",72.3621120218197,207.394830496583 +"Male",70.406171630899,200.842246885076 +"Male",68.6331574878612,193.937299203048 +"Male",66.4047821689647,168.289126959861 +"Male",66.3498816741056,172.734764801689 +"Male",70.3550331221229,182.688091027712 +"Male",67.5243275584397,185.299376887166 +"Male",69.5588798202877,196.480848013769 +"Male",66.0301759401809,168.875994011458 +"Male",68.5078117197223,183.595058725788 +"Male",71.2309315089778,198.066508069798 +"Male",67.8804072160341,177.249146440514 +"Male",66.8730344500532,173.061340380256 +"Male",65.9522583451574,185.927996877053 +"Male",70.0201124838092,182.564517970492 +"Male",68.2957784061551,171.916742428320 +"Male",70.0137797416633,184.374503622629 +"Male",69.1705613879918,173.847925739409 +"Male",69.77668670674,203.455105272185 +"Male",68.0879038938594,170.125244838241 +"Male",69.6082984727492,181.558603352668 +"Male",69.7551069464023,180.167612941969 +"Male",69.844205201139,195.892670872397 +"Male",71.3041757282943,192.847099412231 +"Male",65.3621653092439,158.877206213842 +"Male",67.3288010426883,189.215790136331 +"Male",69.8620565276248,191.913024974299 +"Male",68.7684868652997,187.844857048172 +"Male",70.2725823162492,188.916579069715 +"Male",68.1689355527895,200.006437828300 +"Male",68.7686446443589,187.706154021520 +"Male",65.504822685682,161.745070770761 +"Male",69.9933537684833,185.678101758984 +"Male",72.3181720872865,211.761337882801 +"Male",72.6596286970028,186.189999394026 +"Male",69.1138284178452,184.338081904228 +"Male",70.030762146807,205.847783596065 +"Male",67.6555433886759,178.915940089694 +"Male",71.1609046991552,194.379365806191 +"Male",65.0777524600098,177.715214955184 +"Male",72.5459925449438,199.168830256129 +"Male",65.9249593087153,148.386418452028 +"Male",72.3505008750601,203.042213035135 +"Male",63.5296342406563,156.789293194340 +"Male",72.3236985302843,209.450911024349 +"Male",68.4662110111661,192.533340148004 +"Male",67.7447069350451,176.264735539186 +"Male",67.2974779422128,166.807838725463 +"Male",64.0669565568624,145.86408599181 +"Male",69.5296711701739,187.533674712581 +"Male",70.106640863826,201.879429264648 +"Male",66.7749163303971,161.559300847782 +"Male",67.9575799142011,169.055490815102 +"Male",66.7172738026057,183.715814848729 +"Male",71.4151872458157,197.862665414347 +"Male",71.4050703560096,211.172791103462 +"Male",69.3292133983502,196.139533714755 +"Male",70.9764907630517,199.809881461528 +"Male",68.2055411243857,178.905299609104 +"Male",68.793425111898,170.523536073805 +"Male",62.453383131306,150.715885040710 +"Male",65.542514323846,168.300029263155 +"Male",71.428568577738,184.340747253979 +"Male",69.0898022775605,198.410626705823 +"Male",66.1937718059295,176.585339759219 +"Male",71.146705499924,205.764891897379 +"Male",64.9707184739898,166.753110888736 +"Male",68.1456210090961,197.476929784559 +"Male",62.6724869664439,166.102425028272 +"Male",64.5263409447573,156.540928884023 +"Male",69.4112054408869,178.591841606022 +"Male",66.1665328921595,187.308370250510 +"Male",70.1870204541365,182.904303662755 +"Male",70.9822732131825,183.743104831437 +"Male",69.7483715818259,178.502339612176 +"Male",68.990680339432,195.42111622529 +"Male",67.9939948307712,187.695368895699 +"Male",69.1260223378865,190.692105263721 +"Male",69.1639888671025,174.395147818847 +"Male",67.9015149298272,173.915819257889 +"Male",67.6914301738886,177.113345728953 +"Male",72.4304688231764,189.179011191401 +"Male",66.5296063374273,180.296519921324 +"Male",67.3932285352018,185.556555102052 +"Male",71.8161058100474,205.925139709548 +"Male",65.5618740179489,172.808129352515 +"Male",68.2810002068333,186.677678273241 +"Male",73.6491383535261,223.289805871570 +"Male",67.9349904164766,182.271021297224 +"Male",67.429826997364,188.436837827009 +"Male",72.0057660694562,213.070019345003 +"Male",70.3968790273976,199.985201879309 +"Male",67.9896120611209,181.782545607851 +"Male",71.5832716350912,193.085491194987 +"Male",68.312478317523,184.532865869033 +"Male",69.5911798284485,197.363129548398 +"Male",70.0949350684081,196.639266212491 +"Male",69.7101762448349,184.055958773671 +"Male",69.7414813542449,176.995816783479 +"Male",65.4269828685912,189.943108953863 +"Male",68.306625327667,178.628881386007 +"Male",67.1782344074091,172.469625405963 +"Male",71.6780546835656,200.896047890864 +"Male",67.3917737722535,174.658930950808 +"Male",71.6355006983213,200.755320338255 +"Male",69.7165537336115,181.942890215534 +"Male",67.1745720047522,170.302575341979 +"Male",70.4357014075553,186.809199246236 +"Male",70.7906321819446,200.364977928366 +"Male",68.2317381094273,167.930407891267 +"Male",69.7032216006146,191.703763489647 +"Male",70.691597577465,184.689522521487 +"Male",69.7813198293436,184.841583387451 +"Male",67.9560489762333,166.552966199901 +"Male",72.268322638736,207.585872586577 +"Male",75.4410579317434,230.987021605729 +"Male",68.5781313106775,181.487445778666 +"Male",71.6753933986812,193.441744085767 +"Male",68.7772149946257,177.356392951709 +"Male",69.8414229527,190.270866412347 +"Male",72.3844934101481,228.209886603237 +"Male",70.3150493587315,192.967756253144 +"Male",72.1162479633344,203.053787131399 +"Male",64.7040110175763,173.585149761681 +"Male",67.9927141677415,167.176045050284 +"Male",67.4148608163448,164.867861691065 +"Male",70.0657738714313,186.913937859903 +"Male",68.4293723742355,184.252544069174 +"Male",66.342742515113,176.309573680082 +"Male",73.0059059772369,193.086474197542 +"Male",68.205842610253,200.754487560994 +"Male",67.1728284572243,181.886240895002 +"Male",71.472055070747,201.448678960314 +"Male",70.0143654838054,179.774158162484 +"Male",74.4031992567184,227.824915619996 +"Male",71.4537368927103,210.692147696716 +"Male",64.0426247285427,154.423732932323 +"Male",65.5597541871199,163.011692082770 +"Male",67.5455697885065,195.860324468161 +"Male",64.2178241001615,152.756689897132 +"Male",72.5418967030323,198.733934415516 +"Male",67.4973035428096,167.474748426274 +"Male",66.6996060354192,177.292476610336 +"Male",69.3846609362989,198.516606640857 +"Male",72.5873748229986,189.104045711967 +"Male",70.2885823619121,195.917873135354 +"Male",71.7023601044284,214.787698329876 +"Male",71.3300644834237,205.815358424294 +"Male",66.7139500377788,170.065479451333 +"Male",73.4121190256045,218.755755368872 +"Male",71.7958086347472,209.128402587117 +"Male",68.832327123595,172.269276632334 +"Male",74.9719358130996,237.575313557795 +"Male",63.275899191781,164.553854886961 +"Male",70.8841087698227,190.554244038064 +"Male",69.1398802205973,181.756130263158 +"Male",67.2699937679887,171.474445787458 +"Male",69.8935583319675,190.100836362948 +"Male",73.6652736370644,222.528389858935 +"Male",65.5288565491606,184.428199110272 +"Male",68.5088511977406,191.395758926253 +"Male",69.296829956567,185.649086336434 +"Male",70.5422014229517,210.198844900926 +"Male",73.9125491549722,202.429959589620 +"Male",67.3960207821367,144.277671090823 +"Male",72.7389699965634,187.222908934528 +"Male",72.1771929263436,217.517537151141 +"Male",68.9951071687184,182.898116863840 +"Male",66.6688002718378,175.192720785303 +"Male",70.8816081449114,181.988856370998 +"Male",70.7764147622261,203.241192341915 +"Male",70.071183691101,188.262995756588 +"Male",67.0893022736261,164.548645662177 +"Male",66.0675478969365,153.056657731588 +"Male",70.8747915307346,219.801240634199 +"Male",70.9962587566796,185.895287293008 +"Male",68.7275729852243,191.608447395941 +"Male",69.7596380733157,196.731371561523 +"Male",67.3841806165813,183.540569026173 +"Male",67.196187609427,176.950744485422 +"Male",67.0712627748715,177.335254638963 +"Male",71.2919759886533,187.964720563133 +"Male",62.470602988714,146.045528108168 +"Male",69.5416968515718,182.816421625060 +"Male",70.090420510288,173.808421558347 +"Male",71.1545758301195,194.38301107735 +"Male",66.8813142648219,173.554645118575 +"Male",64.9808500234197,151.449737418287 +"Male",70.028869440849,198.095971593545 +"Male",66.1458678659944,202.130274056957 +"Male",73.2566806408888,205.575284102209 +"Male",69.201759003463,185.258335027981 +"Male",71.6954824916327,197.375665701557 +"Male",67.7094384591199,168.919827100414 +"Male",70.4189573442233,201.673083141507 +"Male",73.5261650303016,202.310574467365 +"Male",75.8244633444096,230.43823669816 +"Male",71.3699900599603,214.283578818917 +"Male",68.1464736642155,192.153701298245 +"Male",67.1162590047371,180.825220467346 +"Male",70.0530080136921,186.586027761307 +"Male",65.4190814929917,171.935770913568 +"Male",71.5938315174582,203.231489397679 +"Male",71.6873915829994,203.561845923571 +"Male",65.411491860328,160.969554932694 +"Male",69.7621679000208,187.116817810077 +"Male",74.2283244704298,219.709084885449 +"Male",65.8575773848209,174.763421661818 +"Male",72.9218709882587,209.748798893372 +"Male",70.3651377165622,206.579524604729 +"Male",66.2734170059562,178.614290572656 +"Male",66.0894495244225,166.506640877559 +"Male",61.3145252823968,149.877065730976 +"Male",73.9760052424978,214.203286663676 +"Male",71.9651578147017,213.697373670434 +"Male",74.1336639229843,204.367106967780 +"Male",71.603022737784,208.019660901643 +"Male",69.1295121196834,206.838905290186 +"Male",65.7658779335604,161.085465285848 +"Male",71.8871841573019,200.299452078704 +"Male",66.7283203894083,167.794963875779 +"Male",67.2834652849401,184.116924387548 +"Male",71.8160950208503,205.756373667806 +"Male",64.784732603828,173.900510656103 +"Male",70.0745963220627,176.612260252465 +"Male",63.2344782294149,159.168232426291 +"Male",68.2379523116118,173.263974263402 +"Male",68.9797938140487,195.122147532018 +"Male",71.6712553012472,213.105827076438 +"Male",69.258554352234,184.654127863989 +"Male",70.9134685594946,205.376736565815 +"Male",66.2860528762587,191.279163405694 +"Male",71.0409197464826,207.260633349837 +"Male",66.2276849313055,169.250343217074 +"Male",66.5850935042583,175.056233911292 +"Male",64.8744426903976,164.092780848501 +"Male",68.5735424597214,199.487271198336 +"Male",68.9386792374231,178.209301402565 +"Male",72.2523502437517,193.487309132651 +"Male",72.118646751665,210.907435779066 +"Male",68.3747952454153,184.634413540264 +"Male",70.2535336797593,208.063890315076 +"Male",72.5568249314721,215.282006684141 +"Male",70.6060922182683,197.854673533081 +"Male",69.926236680931,197.002452473722 +"Male",69.6916891296127,190.145864881414 +"Male",67.5431920536973,169.887039234791 +"Male",66.4451469338002,163.293386740245 +"Male",66.152837851189,168.263672809496 +"Male",71.8022124979906,190.354210360156 +"Male",76.4537196519925,213.732348152943 +"Male",63.6312313419503,158.685876851254 +"Male",69.2821378066052,177.804321027551 +"Male",72.8542132005059,210.499350997964 +"Male",67.0657558383286,175.088561856406 +"Male",69.1428488099553,186.856967934112 +"Male",67.383450736845,164.200352836151 +"Male",68.9888352396799,186.035697036747 +"Male",71.4527801632563,196.142630885838 +"Male",67.1747664150677,174.356697449342 +"Male",67.0711894162546,176.91257196018 +"Male",74.1486445150526,224.935328570726 +"Male",68.9163141794859,213.143153783936 +"Male",69.9711567294641,195.237215570304 +"Male",64.7391008503217,171.390033246777 +"Male",63.5261937306465,154.124330818015 +"Male",66.3401391578515,179.771695401876 +"Male",68.9943278372994,199.782400694049 +"Male",64.9919095501616,153.655214424155 +"Male",69.713918636219,185.131222853729 +"Male",65.3778490438432,171.141743401851 +"Male",65.22037867453,161.719569770897 +"Male",66.4413770025592,185.995470559149 +"Male",72.5501873216986,224.747484520258 +"Male",63.6128111159306,155.433246561107 +"Male",68.3712696379176,185.536558599738 +"Male",68.9612163361526,191.354179730734 +"Male",68.9400392454081,171.910335234252 +"Male",65.2316636955706,176.929981292182 +"Male",71.6222661962623,194.419229822917 +"Male",72.4729941947761,228.749628076241 +"Male",69.5667671400081,175.448594726192 +"Male",68.4010551268552,202.866092233022 +"Male",67.9047009265287,176.632479457545 +"Male",71.8554547201479,213.084104661612 +"Male",69.513035537976,177.201552760643 +"Male",69.6496606499686,211.914748371743 +"Male",70.8896843546012,195.773075283178 +"Male",68.8913457092014,191.881403466871 +"Male",68.928716684663,167.415548932463 +"Male",73.0771195839435,210.210137233834 +"Male",70.1825897572044,213.67605429966 +"Male",67.797073214846,171.241016685433 +"Male",69.924374632472,211.740000564014 +"Male",67.8932416856053,188.623549343073 +"Male",67.290282944289,187.001020203223 +"Male",68.5312196959252,192.525147558551 +"Male",68.2679185313807,193.465097652721 +"Male",66.4725634295799,178.302198281704 +"Male",71.567979756536,177.924173628369 +"Male",69.5631642082661,168.666735857766 +"Male",68.054519051518,182.213524889990 +"Male",69.9763973898253,197.916159286945 +"Male",66.8227439750516,189.236103800728 +"Male",72.4371503978542,210.705601793342 +"Male",69.1763161496092,196.605301582096 +"Male",69.3318001265486,182.123250244944 +"Male",69.9442505668457,172.898850270504 +"Male",70.2078017302564,194.205522589796 +"Male",74.6045913696159,227.698982848865 +"Male",66.9282666367389,164.230196785402 +"Male",70.34760169895,190.817513434908 +"Male",65.2398454104988,167.453172181989 +"Male",66.4692190675672,185.692555335763 +"Male",69.7016376399768,181.219880202299 +"Male",72.2155368859669,212.11994212474 +"Male",69.7403577153004,181.152034984095 +"Male",72.1458518119725,191.874169287363 +"Male",72.755214392232,206.710916509747 +"Male",72.7908064849952,198.337249683593 +"Male",66.5215365830075,165.442751105114 +"Male",67.4459611572294,174.379363333192 +"Male",74.5687317319457,234.809179633524 +"Male",70.1234956383183,186.759015473652 +"Male",70.485748777908,196.541177490601 +"Male",73.375074609262,224.355489914698 +"Male",67.8102511309367,170.457825627499 +"Male",66.3727821088677,167.964459583 +"Male",67.6188455918898,190.740873102623 +"Male",62.557679831966,132.262980453140 +"Male",69.0357575216808,190.214007962646 +"Male",67.7531002440196,172.640139682114 +"Male",68.2800864515352,177.630111723563 +"Male",72.3461547935265,213.12967321174 +"Male",77.0083360356505,251.425050545674 +"Male",67.4952180527907,188.956673957718 +"Male",67.0751932652642,182.241531585206 +"Male",71.8202866818639,217.393962524059 +"Male",67.8856481745227,173.598942323202 +"Male",65.2166963455988,166.093503855355 +"Male",69.3874864225265,210.485106047439 +"Male",70.2093824317211,198.641636197926 +"Male",65.9270721025651,159.281486102732 +"Male",66.193759732435,176.019621604136 +"Male",66.3422088539265,165.699391787903 +"Male",69.7570066677427,181.155093365384 +"Male",68.7538937820144,183.173493103944 +"Male",67.0181793035546,164.893570410268 +"Male",68.741348876554,183.401074600251 +"Male",66.9662680128975,166.433244778843 +"Male",63.9323068334758,158.925779374481 +"Male",70.064167694791,197.178222709336 +"Male",72.535578705148,205.561789340040 +"Male",71.4342519497525,199.437922702396 +"Male",66.2547135903433,179.252581891644 +"Male",68.1237818059657,182.796933543627 +"Male",69.4320194571414,200.341272203950 +"Male",67.9302597276854,174.334468643487 +"Male",72.1989792983851,218.063751401917 +"Male",71.4708610793986,202.839156020285 +"Male",73.7827953580717,224.630486182485 +"Male",70.4024782014671,175.672962827388 +"Male",72.4169729175341,217.722610111543 +"Male",69.2378319798358,178.336603552245 +"Male",69.6371894405707,205.297105488172 +"Male",65.5387684792915,158.703141332814 +"Male",69.48171426881,206.824928017642 +"Male",67.8818894560776,203.454868633794 +"Male",67.928135504694,183.475220126706 +"Male",67.5053481366087,166.388727542124 +"Male",70.712415303207,182.04572007037 +"Male",68.9167884819936,170.658317975343 +"Male",71.4014657327597,202.539217686743 +"Male",67.0242427795819,187.769634861541 +"Male",65.4482702587067,157.103232403777 +"Male",70.4783148117138,192.793460165216 +"Male",68.2333038132489,181.614111128035 +"Male",71.174162576379,209.216320943032 +"Male",64.4306958859468,168.795614634928 +"Male",65.7407433964426,173.875963217753 +"Male",68.1930117228479,166.521110878272 +"Male",70.2840560244511,183.789892599096 +"Male",73.3669329801502,224.717696461241 +"Male",73.6956873393538,218.415504458001 +"Male",71.856628833364,213.727914835904 +"Male",73.8472936471559,208.357964070332 +"Male",74.5834613176231,213.202605668609 +"Male",70.0525106688094,194.974115927247 +"Male",71.6240954279123,193.365913894133 +"Male",68.9235738571774,186.492898108706 +"Male",67.1556485489103,176.219278556831 +"Male",70.5059653713676,214.26941396547 +"Male",67.1017604014447,153.212462525188 +"Male",68.0614872671051,168.519763118647 +"Male",69.556342326635,174.856849524344 +"Male",67.3053285575701,173.105548810837 +"Male",69.6741827653077,189.525576663962 +"Male",67.372491543083,187.194155275239 +"Male",67.6012211231547,179.065049650268 +"Male",68.4869511449693,181.500788788491 +"Male",68.908949521329,192.428065822730 +"Male",71.4151651623308,196.500492679805 +"Male",70.0451697616832,180.424599217939 +"Male",71.7124963122395,211.579158342379 +"Male",65.0141475223805,162.127953744518 +"Male",69.1566260268187,193.178917075216 +"Male",66.5781653383685,184.755854794232 +"Male",64.5904951486658,163.653647452837 +"Male",67.882105174723,186.503549964805 +"Male",69.8536641257162,201.866648524126 +"Male",66.925723852764,182.802828488013 +"Male",68.9826192280773,183.245915338138 +"Male",69.1468943379911,202.242485332384 +"Male",66.3122611250763,168.374071280025 +"Male",70.5335505678504,212.435238249859 +"Male",70.5768141296914,198.182717865879 +"Male",63.9285190034928,154.260979446019 +"Male",70.5568038677139,184.379448771756 +"Male",72.6931754598046,224.807831827396 +"Male",72.4428992070112,200.857658372645 +"Male",63.1805101624924,144.773327446812 +"Male",66.9539016472247,172.935390833047 +"Male",78.621373968548,245.733782726093 +"Male",68.55417937269,194.284740916442 +"Male",65.0759669309302,149.333894318918 +"Male",72.0420431381606,206.980896312816 +"Male",67.9643399635844,190.363523332790 +"Male",71.3522012311905,207.891509178371 +"Male",70.451624265015,200.942722723972 +"Male",73.6861703150793,220.711888309321 +"Male",63.7671516709609,159.294090456045 +"Male",66.7533700929135,181.923421850237 +"Male",70.3524997977392,185.864594606426 +"Male",71.9418367957432,198.672697481603 +"Male",72.4107267625413,210.364091058104 +"Male",67.7882964111762,180.077792220340 +"Male",70.5787602090088,192.503206844985 +"Male",71.4620387835147,201.903092142954 +"Male",67.903612050282,177.352589754280 +"Male",74.9917528047198,227.010084050185 +"Male",67.8647472660432,202.441043226235 +"Male",67.457132945158,167.554496152723 +"Male",73.2493572298299,217.426659183025 +"Male",64.2004025752315,174.873875622716 +"Male",73.0423169118097,212.348964540199 +"Male",68.7395071477266,199.842516075866 +"Male",70.4956821075345,203.907421994433 +"Male",69.1583443043667,155.324029293590 +"Male",70.2657561365655,192.689381620611 +"Male",69.8102913222406,199.681981039903 +"Male",71.1770825871222,205.619480953876 +"Male",65.4580307067719,173.816261106847 +"Male",67.0317772687462,188.155622361558 +"Male",70.2040812796259,199.704062687249 +"Male",69.1215868729572,192.373651924227 +"Male",64.2483526367047,153.120063448002 +"Male",71.124285954398,196.278033964153 +"Male",63.6174896345623,168.944897691471 +"Male",69.4340291402995,214.588317240019 +"Male",68.9505702951587,177.02318933412 +"Male",69.3685618387487,182.093279408494 +"Male",68.9128498978588,177.235863787699 +"Male",68.2319485327552,176.583316750997 +"Male",73.3628921811052,202.235567823986 +"Male",70.0189303059104,201.213167700413 +"Male",74.3088869487248,210.267888499549 +"Male",72.1991428599497,218.292733091252 +"Male",69.007422480103,185.879498039269 +"Male",71.9681408427847,207.853053017636 +"Male",69.417340325122,195.306359940358 +"Male",62.9600113309438,154.434508300897 +"Male",63.1748469058869,139.902071061690 +"Male",67.7458038766475,197.923247726417 +"Male",73.0371838336885,211.720856811130 +"Male",66.3833199961678,183.239355850447 +"Male",66.801285882628,182.775012149290 +"Male",65.976074968155,177.339839216117 +"Male",67.546418071752,159.557691967017 +"Male",64.0728788500002,156.797857988006 +"Male",68.9817188638453,164.721307430671 +"Male",67.9973152231026,177.619862912849 +"Male",76.7199849250776,236.146730225573 +"Male",70.9668342907983,197.235840807583 +"Male",70.3041042426717,196.190623010548 +"Male",69.8703764170983,200.36663019857 +"Male",73.7441928861604,215.162528642991 +"Male",72.0311312584852,208.696207945507 +"Male",66.1153862145479,186.848358765007 +"Male",66.7764378234337,178.620052332972 +"Male",71.4488814701957,210.204478888210 +"Male",66.6371139056117,155.764454584395 +"Male",71.8525372580339,203.620430705333 +"Male",73.6149715862598,207.679028491486 +"Male",68.893072235194,201.867678856593 +"Male",72.7580540391032,211.749664066102 +"Male",74.1955760229253,225.327779059732 +"Male",72.4973905739619,175.172101098606 +"Male",69.7517875420475,184.158554267461 +"Male",62.202788951146,142.252545535624 +"Male",66.8623927047375,171.733288383300 +"Male",66.429741469109,191.946488427172 +"Male",70.4105267336954,178.575510367281 +"Male",69.9130099834792,188.353784160094 +"Male",70.7875397672357,206.586964348073 +"Male",70.1830830586539,201.378733803205 +"Male",71.3078522150546,202.485157247497 +"Male",64.853513183986,160.23940021717 +"Male",62.7534911457975,148.102118487775 +"Male",67.6185295009016,175.436511058618 +"Male",72.9336393273722,224.305079170130 +"Male",68.6766407867295,182.183981149124 +"Male",65.2133918089393,158.851804819075 +"Male",63.8289713844006,148.916937318908 +"Male",72.107025915413,204.038125039021 +"Male",70.2548469789108,213.903062821077 +"Male",70.4549914645118,190.824937901440 +"Male",73.0996864679129,213.43172840756 +"Male",69.23425085558,193.071008990324 +"Male",69.9094216434507,198.999408193499 +"Male",71.0179478649994,203.860914092075 +"Male",70.929547648062,205.695751278621 +"Male",70.32349210341,183.821787651893 +"Male",69.4960594475521,203.353900351092 +"Male",69.078706734852,204.244873446668 +"Male",75.0384115138975,224.303507469314 +"Male",69.9587190695622,188.787360865428 +"Male",72.4360097554835,207.637832718733 +"Male",71.6935305416969,206.940726173686 +"Male",72.6574044555652,191.928823483273 +"Male",71.1823832672089,204.657403612981 +"Male",68.9640508060485,192.858335833834 +"Male",67.3421407592253,197.532280979268 +"Male",71.7925237599894,199.8985003613 +"Male",69.048058154819,187.46816242593 +"Male",66.3249535779601,166.615538494989 +"Male",69.6659635864823,182.387247100752 +"Male",65.7406491037346,159.957495962827 +"Male",63.9539583939789,155.993443496741 +"Male",65.6417492791339,156.288168385739 +"Male",69.053924064725,171.775983463814 +"Male",66.4237753380541,167.393255098349 +"Male",69.3223167407435,208.984970881189 +"Male",67.9974559914588,185.123523721441 +"Male",68.9152116618598,172.930340699224 +"Male",71.6561754618086,202.530765233343 +"Male",64.7683722627762,169.898732923490 +"Male",71.3559021908976,203.37635393957 +"Male",67.5532284262426,175.658896305290 +"Male",65.3467679097834,162.687710272736 +"Male",66.0745535978453,178.332049600864 +"Male",63.9474170160906,149.329898452067 +"Male",69.2314686833257,173.829606022707 +"Male",73.884575949743,209.626572419174 +"Male",70.2475311041381,190.882937250424 +"Male",64.1178916502217,147.399589914605 +"Male",67.0221444834477,191.874573127880 +"Male",69.6748184754065,194.455593554963 +"Male",69.2949121484848,198.956076591684 +"Male",67.6984505178563,179.287031263939 +"Male",64.6185128824824,169.021100731815 +"Male",63.9777044983261,142.343711561615 +"Male",71.2302284629934,212.752855482248 +"Male",71.6388214240745,196.420170259723 +"Male",67.0319802933961,171.732943347725 +"Male",62.6429710950535,140.042018509502 +"Male",70.6475141490876,201.2655905099 +"Male",66.8882494755539,174.086875736044 +"Male",76.2393666681996,229.294745824706 +"Male",71.8271747900718,212.867963025049 +"Male",69.0676816041352,194.822086911727 +"Male",71.3012228276606,224.357532518425 +"Male",71.5903472755779,210.046394665473 +"Male",68.1332102674215,191.588221045901 +"Male",69.8424545787291,174.213404449956 +"Male",77.0673550156967,249.110241600421 +"Male",67.2820244545793,182.269967984594 +"Male",66.7960364899697,161.585591056127 +"Male",66.1487831560917,170.793778489157 +"Male",68.1861656592132,171.528338387337 +"Male",71.8457779434424,192.39048440549 +"Male",67.6242757404535,178.233066353302 +"Male",68.6564917272265,188.589565709332 +"Male",65.6055455395965,190.005414854354 +"Male",76.5371613195285,243.267497419798 +"Male",70.4401616680842,214.172512070730 +"Male",61.5141294021722,136.471510645135 +"Male",69.5036473738117,198.721843463453 +"Male",63.820818667219,155.187428152435 +"Male",67.1921025928344,175.590881865137 +"Male",69.1025947094925,192.433733864839 +"Male",69.1692908245573,186.306298774477 +"Male",67.1518639381071,183.689826234423 +"Male",67.8190821483444,189.720348321737 +"Male",68.9162339563182,183.109209603338 +"Male",66.116644596928,146.189967034633 +"Male",67.4586851826768,182.959215858444 +"Male",68.3319576911493,204.681430732802 +"Male",67.7300813566241,175.953797048530 +"Male",71.7817140738157,196.522152004661 +"Male",67.2274450523167,182.546137959834 +"Male",68.8026918034643,184.765811309672 +"Male",69.5241003129209,184.109730174762 +"Male",68.4823336773937,178.547208187336 +"Male",70.5621887288753,181.186370917090 +"Male",69.5693470420185,199.829282116170 +"Male",64.7176246069987,167.111674312998 +"Male",69.8274877880673,206.592175127763 +"Male",70.7856278192419,198.936792160038 +"Male",68.2296038311483,189.841976070972 +"Male",67.030415060392,183.249614417679 +"Male",66.634691023532,165.461382023424 +"Male",70.4666227168029,187.283252209128 +"Male",74.2930365320761,222.327978021071 +"Male",69.256722458519,173.279165164433 +"Male",69.1199197574605,188.983145752021 +"Male",74.3837152826026,213.653765004901 +"Male",69.6034980805977,193.726895637358 +"Male",69.0199083087571,174.411741345279 +"Male",70.7060075587161,203.190610671248 +"Male",74.3504437288776,204.412959582247 +"Male",71.1375729190273,198.824169852665 +"Male",72.1237512378175,203.372965412860 +"Male",63.4508577377362,147.445172214614 +"Male",68.1853493768153,181.650971526375 +"Male",68.8663022069334,190.385361121489 +"Male",68.7292281916179,188.339285448556 +"Male",66.7977398519111,172.530025424969 +"Male",62.3325628205706,140.463266545205 +"Male",73.2080258175756,221.779278560574 +"Male",69.2724275439566,172.767898109782 +"Male",68.9234125332813,196.274977170374 +"Male",66.3137508476483,163.466629826812 +"Male",70.9094620063586,201.358596039301 +"Male",73.6400390073057,198.894295424992 +"Male",72.8596390341845,200.991476274266 +"Male",70.2250897904765,196.949125709664 +"Male",67.6402901079882,186.935279969432 +"Male",65.0612402249785,157.030391404326 +"Male",69.6965667629509,181.206639603027 +"Male",72.2865411552293,189.180183795342 +"Male",72.9347673999795,210.054856010528 +"Male",70.4289415163797,196.727035125791 +"Male",73.8738922252638,217.625073057232 +"Male",65.8560430168292,169.676266732480 +"Male",67.479777540048,184.209501103775 +"Male",66.4079457853008,181.901814348062 +"Male",69.1198027872998,174.564806081808 +"Male",74.317007993397,229.565477935106 +"Male",69.5059599786522,192.842105715014 +"Male",70.6486468783228,199.894169324319 +"Male",68.1151663027618,171.452922070786 +"Male",70.8816195863934,190.678519403256 +"Male",71.4691849683880,197.416687271549 +"Male",67.8170757985361,183.678674173798 +"Male",70.5645414936814,193.321111841505 +"Male",69.0509542873868,181.410663462465 +"Male",65.5537970083078,164.515650945001 +"Male",69.7542135903978,193.459981115456 +"Male",66.648475244758,172.317508574215 +"Male",68.1718753908101,194.990195228688 +"Male",73.3391677575075,203.064741738865 +"Male",61.4703691672621,128.724049595521 +"Male",69.0122992512732,177.057807017784 +"Male",69.8725029290227,179.664958614565 +"Male",72.3161401866656,203.988287972572 +"Male",68.6621442214813,178.085844481126 +"Male",72.7834260157113,200.832792228216 +"Male",68.6329563006384,185.538019698976 +"Male",68.9196035164306,194.278450689546 +"Male",70.9399735505669,199.648257930634 +"Male",73.2743270977024,221.431073291153 +"Male",66.3923064898095,188.191995852659 +"Male",67.3933460662424,173.127460636371 +"Male",73.9722780162461,201.205101528797 +"Male",69.9573417230263,191.495526516890 +"Male",65.4260781609568,165.848029266853 +"Male",69.1180452520127,203.596695378063 +"Male",74.3089606245795,212.156853976996 +"Male",67.4349139491072,158.439049448593 +"Male",70.0486672870582,204.779499250912 +"Male",65.8482464315009,158.193446084243 +"Male",69.5461086688239,181.671650812897 +"Male",64.8742014693454,172.818716095951 +"Male",66.0575516378233,167.982022512595 +"Male",66.533872328423,159.656646762861 +"Male",66.3430726365689,171.690124914633 +"Male",71.602230803852,209.018700094943 +"Male",66.1341753696406,162.682728759439 +"Male",72.0772371138461,213.188863570632 +"Male",67.3827771549597,184.716311734428 +"Male",69.2014932770188,176.220869569746 +"Male",66.7517235557101,166.366264560012 +"Male",73.2810402497187,201.407019000057 +"Male",68.5853149654815,191.026243931068 +"Male",71.7787289334816,195.024268974457 +"Male",71.3184340915254,211.983344399568 +"Male",67.0840433478276,167.893176922926 +"Male",71.4271438809247,215.154985406312 +"Male",65.7699667927621,170.572520913216 +"Male",67.412046032636,195.472663918172 +"Male",65.8292966168988,163.105924049836 +"Male",73.295350593677,223.870178030187 +"Male",65.1861213914429,165.028012640068 +"Male",65.3485896341496,156.274801434304 +"Male",72.3564470019659,199.972455176131 +"Male",66.9881287128124,176.198725184527 +"Male",66.6265193462048,179.053683004071 +"Male",69.081456752367,176.867604161727 +"Male",72.109559993712,206.603433846240 +"Male",74.7932882435025,215.235440192050 +"Male",71.7943848783154,199.316043562422 +"Male",66.1132419928436,172.403019419652 +"Male",69.0395224965333,192.092449211837 +"Male",64.805302885928,147.363350276346 +"Male",71.1107821821191,184.144711111688 +"Male",67.3325661747305,173.059213490754 +"Male",69.0764356063413,173.363267679951 +"Male",71.0903637209687,181.030637176652 +"Male",63.9318040372715,162.247075758548 +"Male",69.9222245807765,183.779095971085 +"Male",69.7412396393621,206.636440218598 +"Male",65.126893844251,167.300255680145 +"Male",71.6082488278993,210.325952008248 +"Male",72.9068175533633,212.799040453567 +"Male",66.6870696361505,169.207323155429 +"Male",69.62454974967,171.396663132362 +"Male",64.0848340866297,164.462737014583 +"Male",72.4363238272856,211.942717816643 +"Male",71.2379681926701,208.494080766995 +"Male",69.0550708370863,176.141893827807 +"Male",75.553552225046,218.887283327876 +"Male",66.8969915133392,177.573446455673 +"Male",73.298338885144,194.948577135866 +"Male",65.8640344749623,175.56257866451 +"Male",68.7798587415388,174.579325278338 +"Male",69.342607631827,186.206275034938 +"Male",67.9644693970273,173.911384044234 +"Male",69.2082410739386,188.384881861092 +"Male",68.5091491736712,199.896558562946 +"Male",71.0518734357455,189.594976663833 +"Male",71.0478237814855,206.689585451311 +"Male",69.5042374371988,188.665144898766 +"Male",74.9769526518056,248.8488726642 +"Male",68.5031915142394,183.731286117888 +"Male",70.6267527240265,196.415983180694 +"Male",67.3942812009941,168.520743208648 +"Male",65.0424470905307,178.301600333992 +"Male",70.8138900127919,196.348029154279 +"Male",70.750805211364,196.296643499022 +"Male",72.4995798036306,198.939997056035 +"Male",70.4211836640729,205.465481239682 +"Male",75.5794443353472,239.333840315283 +"Male",65.1240419483023,170.056181810867 +"Male",69.371178264009,191.405711075729 +"Male",68.0747358888746,187.335136792891 +"Male",71.9348431728697,215.280294898330 +"Male",72.1211495572177,204.457450295104 +"Male",73.912908382747,227.257086652111 +"Male",65.6776085322676,181.382417042021 +"Male",73.3796782646495,200.011262518687 +"Male",73.7495365138171,197.605874735158 +"Male",64.5987969022366,173.992094268605 +"Male",66.3083725837049,181.98781574556 +"Male",65.9741449195987,177.664315615015 +"Male",68.602856206573,179.187804000123 +"Male",67.1367592016168,182.962242783551 +"Male",68.629930675173,184.289728965999 +"Male",71.4841494097764,229.639861491959 +"Male",71.5478186714699,199.797381303741 +"Male",68.6175683940527,183.13822371098 +"Male",72.6305940036647,204.761965470611 +"Male",69.7438052049668,186.705759585163 +"Male",66.6382533135472,168.039237104874 +"Male",68.0172808705494,180.158380235136 +"Male",70.6036801959668,188.423812318267 +"Male",67.3667952725085,167.291994880019 +"Male",71.789941614854,193.437528654870 +"Male",66.4139667403527,182.710149533919 +"Male",68.1713988260531,190.235688311971 +"Male",67.9530162603119,181.595756618972 +"Male",65.334074935713,183.769605369823 +"Male",69.8576476952053,186.428481539558 +"Male",65.8089913681022,170.704844471673 +"Male",70.8966005150552,215.062268826601 +"Male",71.5004477406619,195.476003211213 +"Male",74.1613143798719,223.612953199062 +"Male",71.9835519901657,215.453961443983 +"Male",65.9789764412681,168.450365986034 +"Male",69.0042995527855,196.362336212804 +"Male",68.4651634393393,183.672869075466 +"Male",65.0385030205002,164.330133205380 +"Male",73.680958444381,223.609136475135 +"Male",69.553012381007,176.282408555645 +"Male",68.9210464703126,180.79742710884 +"Male",67.7302749164575,168.545076355386 +"Male",66.9504805967336,174.845396598486 +"Male",69.5431163518097,188.090866648531 +"Male",70.4477916623115,199.383452889840 +"Male",65.7012443142669,173.211608727510 +"Male",64.8127073004397,163.428121742457 +"Male",75.0760764727887,229.233671294062 +"Male",67.5429283763125,166.334796590382 +"Male",69.9900983879953,206.660949042745 +"Male",73.4317291499693,216.015176365581 +"Male",70.2018896651885,192.528056808982 +"Male",72.152093843505,181.243648063488 +"Male",71.8189261546497,207.709155586242 +"Male",68.2671032059243,190.469466185276 +"Male",68.9936005179232,188.775621877801 +"Male",68.9334261296966,199.632935051206 +"Male",69.7465307640816,195.526568621515 +"Male",66.2262530887009,166.052640868074 +"Male",64.4997101773162,164.723130530328 +"Male",71.1061963061444,203.983052809861 +"Male",70.3341357383126,187.247847502349 +"Male",68.0422060105184,169.430852318367 +"Male",67.1128761229939,175.776350093822 +"Male",71.8416851655764,207.957832473152 +"Male",71.7436748646054,197.936832130393 +"Male",67.4495010651725,192.585560750949 +"Male",65.7157085786502,163.008036874116 +"Male",69.3753243425993,204.973546938437 +"Male",66.643246902504,167.813501531290 +"Male",67.7799121676394,173.387966081254 +"Male",73.3658506177066,206.033858632294 +"Male",69.1571915097223,185.414435390982 +"Male",73.7421445984726,199.513071075091 +"Male",69.701668481179,197.350489259023 +"Male",65.8448804890073,164.276917855489 +"Male",75.4563283585185,206.503557529833 +"Male",65.6826550678392,180.490439873199 +"Male",70.4335879900971,199.06839753 +"Male",72.2037937631139,195.576430204512 +"Male",71.0355086391,192.756097368058 +"Male",72.464759914417,225.633703427390 +"Male",60.2437181028691,153.831429216947 +"Male",71.4840745803273,193.009757912692 +"Male",68.6265969129178,163.387454914258 +"Male",70.642802923956,187.506566365527 +"Male",70.1098295752512,219.857610461200 +"Male",67.1334442916497,175.152372753389 +"Male",66.8012409799403,175.043755479441 +"Male",66.0543772240985,162.517072642348 +"Male",65.4421255751776,169.379709559426 +"Male",68.6537780569762,194.939858305624 +"Male",69.5339449884536,175.818974977575 +"Male",73.9338806181208,218.550093254024 +"Male",68.0415276766908,185.183339389795 +"Male",69.827310105956,200.232020572465 +"Male",68.5701254397349,192.329282181503 +"Male",68.9855539478644,186.341902051518 +"Male",68.5168794396837,186.362411645933 +"Male",70.1089904322315,184.135436160748 +"Male",65.8254451927654,156.804215038989 +"Male",66.2823017245277,163.836439171189 +"Male",67.7214921667194,177.663755958389 +"Male",68.6730422761976,182.163561701064 +"Male",72.8666729122285,215.453272816054 +"Male",68.999607560707,171.409465241574 +"Male",74.348485150254,210.369030639573 +"Male",70.8794672489916,186.270382988466 +"Male",70.1878493105397,194.400248420937 +"Male",69.351832242262,174.359598738334 +"Male",70.6810437360309,195.985898110075 +"Male",63.7691149798678,165.701730944036 +"Male",71.2536148826262,193.829564444462 +"Male",69.3850625328453,194.615457891224 +"Male",71.4643326881547,203.632951634329 +"Male",71.7856156071885,192.550820558374 +"Male",65.0054061792742,152.801310681396 +"Male",65.9756468309282,178.295096132824 +"Male",68.2807475988903,178.062364738300 +"Male",67.6811164490451,179.131733758258 +"Male",64.6006005377932,165.463352397708 +"Male",71.9543552002517,205.012924750896 +"Male",71.6537033892934,203.560177162322 +"Male",68.4449674035786,170.046480059318 +"Male",63.8530119602319,163.020712290409 +"Male",67.9451830843268,176.935955204858 +"Male",68.7895393943756,176.936187302851 +"Male",71.5952389944303,207.796144117030 +"Male",69.4989464774697,197.456280496505 +"Male",66.171479665222,150.023472711261 +"Male",67.2402582750194,180.410028167943 +"Male",71.9886269995038,203.619892177037 +"Male",66.8580051449311,177.403382388963 +"Male",67.5759710489801,175.891959595933 +"Male",68.9919775552593,194.350108768264 +"Male",74.6290981211044,226.892153616578 +"Male",70.8121622451816,206.293369554484 +"Male",70.8535496255446,195.251666491753 +"Male",68.5507144535643,197.011049712799 +"Male",65.0383833813307,154.104776734366 +"Male",69.9892052553004,185.845964022221 +"Male",71.9937450614421,206.337325448888 +"Male",70.3985435860698,179.424881771189 +"Male",68.4137911385991,194.385230284124 +"Male",67.0861118731947,177.543107576026 +"Male",70.8475808780624,195.969325053707 +"Male",67.9075589075407,179.310232906941 +"Male",66.3529082736873,172.301393950189 +"Male",62.4762567176972,140.160658613611 +"Male",67.0600208165061,187.725678368781 +"Male",66.7560292174062,165.989782092878 +"Male",70.185950915161,188.001394221727 +"Male",69.2112071037496,183.096624151011 +"Male",71.1765712130773,204.47592322294 +"Male",71.6354070267975,211.607861393655 +"Male",70.872811462741,179.368529700098 +"Male",72.1895620404837,214.686484468206 +"Male",64.3984832271446,146.683845559696 +"Male",67.6943047368205,178.159153413349 +"Male",70.475543576638,197.894757432703 +"Male",71.542832896417,204.716798447032 +"Male",70.1078517456433,199.451431257303 +"Male",64.059623006241,161.015154591803 +"Male",69.4627154392701,179.697918533356 +"Male",68.7930601669446,197.114929937545 +"Male",66.3595061199446,166.122860775823 +"Male",67.2498003057156,182.842746657182 +"Male",71.9701401976461,206.823605271503 +"Male",72.7152245437666,207.24658122651 +"Male",65.1865694174926,172.453691601477 +"Male",71.5670024732117,211.153566451220 +"Male",65.840638295757,162.484866133794 +"Male",67.942327464776,169.927496823046 +"Male",72.5583724718679,198.809186864260 +"Male",69.0962029934429,180.78017477071 +"Male",65.9340903421704,157.706693721179 +"Male",63.8071784549547,167.362944407411 +"Male",67.319520128829,177.16161181273 +"Male",71.8795384923435,196.638566065010 +"Male",68.7042590395085,184.277158793982 +"Male",67.9346615924944,182.688022191678 +"Male",69.2698292892284,175.046841795658 +"Male",64.8682718320948,163.198206099379 +"Male",67.1800452753145,177.821657075053 +"Male",73.1586418690673,230.994904705117 +"Male",65.7553236599575,166.965345014142 +"Male",63.3697644893544,141.901777414332 +"Male",76.8668549581823,240.536796698663 +"Male",68.2710499073989,172.941248241725 +"Male",65.4808580990564,150.292307200069 +"Male",71.4081522081335,208.059373566721 +"Male",67.678644043458,186.504349407445 +"Male",68.6713910540146,170.431873368585 +"Male",67.2409041032986,174.295299596564 +"Male",64.8150085176793,159.940417052520 +"Male",68.023799653567,180.128532379147 +"Male",72.7469167831248,204.614317732258 +"Male",67.5383087679076,181.865044346081 +"Male",71.7599909290842,211.480853499342 +"Male",66.2872442901916,180.914926525865 +"Male",75.1847948257597,222.475210974731 +"Male",63.4886836517284,156.732431299329 +"Male",67.2300135468972,163.476266634742 +"Male",67.7958934057648,169.039215418834 +"Male",66.3818587336622,172.781824110699 +"Male",67.1958155305088,194.235438031997 +"Male",71.4807287997842,202.671539299672 +"Male",68.1790660556521,165.113235363145 +"Male",73.2945837202624,225.260179000951 +"Male",77.1008721027022,240.455351800759 +"Male",62.605034873978,152.726549748073 +"Male",69.5761714022238,203.289127006805 +"Male",75.4236865563582,220.757114442976 +"Male",63.0902897651848,140.517044492207 +"Male",76.6909627296268,233.1586923868 +"Male",66.9276689663426,169.535121116643 +"Male",64.1164285273487,146.237397860166 +"Male",69.5783300161394,191.377252247276 +"Male",71.1902992551411,183.845507094266 +"Male",67.519372152622,200.897021073657 +"Male",73.1930084082932,206.750503917448 +"Male",71.6256009036064,179.753943802224 +"Male",67.7685968800007,190.320218810512 +"Male",72.2751824966983,227.269347547858 +"Male",65.4181191974688,160.736645446975 +"Male",69.5438003916511,207.874838789751 +"Male",68.7912043849282,167.670428882281 +"Male",75.1812608641992,218.513276857409 +"Male",72.3088137820774,209.455552279001 +"Male",69.326932139984,212.289297441882 +"Male",64.9305300745508,149.837680356683 +"Male",69.4862874005581,199.534131277679 +"Male",66.7904794483487,186.930370461676 +"Male",70.9617877127908,181.050984276392 +"Male",72.9932971547313,190.904148445298 +"Male",71.7323427196252,198.635976259846 +"Male",60.9720323052125,150.865014390545 +"Male",67.524889145181,177.020905756561 +"Male",68.3146756401921,186.632185304330 +"Male",69.3397805355218,193.041363498725 +"Male",67.9263853240683,168.685986420117 +"Male",69.4542504692111,205.550568068128 +"Male",68.0204197072484,172.546900989922 +"Male",76.8487612691053,254.209073180735 +"Male",70.501368203878,180.135324446521 +"Male",69.9823440907218,176.464926128901 +"Male",65.8952150956405,151.183699012324 +"Male",69.6184519516426,189.584957331078 +"Male",68.4510841264866,166.832798718981 +"Male",68.2408015505215,163.632516077347 +"Male",70.6937611666062,194.230612852264 +"Male",67.7491296818774,171.875902745534 +"Male",72.0025203669615,189.386299571946 +"Male",72.7134907568074,207.459681732912 +"Male",66.1477384703774,183.935070087864 +"Male",68.3768266999005,189.465942705764 +"Male",71.5872158686328,184.457925783800 +"Male",70.3561662279372,185.024507597114 +"Male",65.8889513998202,159.005856092890 +"Male",62.525783739867,144.750084449321 +"Male",68.5562814918414,189.036497671960 +"Male",69.1969826515158,194.257747797597 +"Male",63.8460483229035,161.697693477066 +"Male",73.1433355001015,205.721863940232 +"Male",71.9251064558823,198.674655193774 +"Male",69.604026653413,185.639510744775 +"Male",68.5660918222243,180.889582602943 +"Male",74.0407798950764,217.122686245623 +"Male",67.5629128378475,171.266429819698 +"Male",73.0283155143541,225.564077060447 +"Male",63.7561632979229,158.747207600433 +"Male",71.7897799722807,207.493691093771 +"Male",67.725618928594,201.116400930408 +"Male",71.5290014827599,220.94065027989 +"Male",66.6877422279383,184.508237773870 +"Male",75.0444861944777,222.034564699976 +"Male",70.7896983309274,186.575625957980 +"Male",67.4972703606998,180.742459288516 +"Male",72.0747755144427,195.046634080451 +"Male",69.105846253042,190.213987201726 +"Male",69.1485331637724,190.345610968053 +"Male",69.33697762557,180.239516481440 +"Male",66.8782860897404,172.285307522221 +"Male",71.1644057925392,199.042919819346 +"Male",70.2359843634208,196.461413498625 +"Male",69.8454220544944,178.674044434546 +"Male",64.7373387162336,161.650244516174 +"Male",72.9239700895835,204.220209116356 +"Male",71.1845576397817,200.837100922882 +"Male",63.1219267893518,153.944731337291 +"Male",66.4336836456774,173.995006760975 +"Male",69.6064373218433,184.644156760949 +"Male",70.2510370438515,190.654090176271 +"Male",69.6996037726914,182.700813581942 +"Male",67.8627382412041,170.795052136636 +"Male",67.3602233102933,174.586148187258 +"Male",70.983670488761,182.136435149657 +"Male",72.8712626131453,221.756660052584 +"Male",62.3483179935539,150.721987710062 +"Male",63.2183603040133,142.158882740641 +"Male",70.1742946114119,201.713032391986 +"Male",68.9555250979195,204.427510315559 +"Male",70.1563997432059,189.509015405781 +"Male",66.673870982868,174.159263609077 +"Male",69.9440797901785,196.178101276605 +"Male",64.0980072075644,164.482231596251 +"Male",66.29944080787,159.235987804992 +"Male",70.5573381083313,204.280202715582 +"Male",73.3002326791658,206.103156712409 +"Male",67.0178481210553,156.544812316039 +"Male",71.419541743596,199.667482774619 +"Male",69.2620291447985,162.288236226001 +"Male",76.6001829545762,239.697207027428 +"Male",68.7114178724069,195.391862159653 +"Male",61.0907475005205,147.266463481623 +"Male",71.850344819342,202.669703139689 +"Male",65.2525663468544,170.522745558528 +"Male",67.2267185892044,158.125458070433 +"Male",74.8531636229816,229.402041956599 +"Male",64.8709114048426,154.935691951312 +"Male",67.8413625063854,179.647844388469 +"Male",68.6817811859002,188.273424525799 +"Male",68.8499886145476,193.762099235717 +"Male",70.0377611559296,190.715368073540 +"Male",67.5436217554202,196.493315163641 +"Male",68.4293969443223,172.915306526056 +"Male",67.680014500842,171.617124623648 +"Male",69.1689560591429,191.820572556407 +"Male",71.8102807633512,203.271066643973 +"Male",73.865890460385,223.464746852520 +"Male",69.7629047258566,186.236750761078 +"Male",66.609468641525,191.841854586274 +"Male",66.1688164617831,154.594031762614 +"Male",67.1436545681765,182.609139212536 +"Male",76.4823187091377,230.794195470194 +"Male",69.5496995552631,184.494827819341 +"Male",70.0012309744693,200.500678135024 +"Male",73.8462248688545,222.620663681748 +"Male",68.9884453717738,173.098430301644 +"Male",70.6431925632497,198.491167722058 +"Male",65.1469076866683,153.296437253659 +"Male",65.2327708069421,168.739899747244 +"Male",70.1031643750325,186.67546614618 +"Male",67.7944603103637,179.913766051073 +"Male",68.7755036786373,199.601514226796 +"Male",68.0291151422145,167.541952036877 +"Male",68.7892271430625,187.056791918512 +"Male",68.2995143116332,184.840081739358 +"Male",66.937451868686,169.450393889519 +"Male",65.3437055704396,166.958560451201 +"Male",66.2124337212599,176.747909726572 +"Male",68.9498577517652,196.035689822723 +"Male",69.7236968410306,188.249505345517 +"Male",62.0280433365798,149.231284287071 +"Male",67.2623418758255,167.074596747779 +"Male",65.2859132174667,161.148234552839 +"Male",69.42534001901,188.779449754868 +"Male",66.0711396118842,162.201840372466 +"Male",69.0508397846292,198.371794256232 +"Male",68.1246915328235,186.907661618339 +"Male",72.717612705243,210.365361519962 +"Male",71.300221532449,189.794534874093 +"Male",70.7816425068478,209.511912850533 +"Male",69.7835319920342,180.137289236640 +"Male",70.5240492043179,193.094687490084 +"Male",67.6369665865025,161.544106573257 +"Male",69.1283566295392,184.142280775944 +"Male",69.3474920063227,180.285708246862 +"Male",68.0967595584502,189.266348767830 +"Male",73.768660920017,216.968238466275 +"Male",72.0989044448574,207.539909456573 +"Male",72.3860981627709,212.212518831504 +"Male",69.5386843604893,189.533169703578 +"Male",71.36206500728,189.156791331041 +"Male",67.425499838467,187.952602764065 +"Male",63.7013645640432,169.759770984934 +"Male",71.66933582106,208.335506865296 +"Male",74.4606944911152,217.631866436072 +"Male",68.5073970671532,167.861298195562 +"Male",68.1178089734949,171.706782634827 +"Male",63.0341698280492,131.800702916443 +"Male",68.73713054322,190.149003712083 +"Male",72.0372677997777,209.934707622310 +"Male",69.41066207624,180.718257678176 +"Male",70.9497700994047,194.256851262025 +"Male",71.0146142921773,192.873509134883 +"Male",73.1053070852177,206.818026615073 +"Male",69.1938714016702,182.427616361242 +"Male",69.8932686264077,196.075636901452 +"Male",71.074818364463,198.021691384998 +"Male",65.5661013584934,162.374232259260 +"Male",67.2293422715995,161.703536178370 +"Male",72.2477471839842,217.378498294396 +"Male",69.442300077574,174.885728547394 +"Male",74.1009902457718,217.187610639723 +"Male",69.5924791921135,181.616836714879 +"Male",68.6430173384938,181.371723130548 +"Male",73.8953152272514,208.037702066837 +"Male",72.031923917951,198.9535791767 +"Male",68.4852135129936,184.657139958437 +"Male",66.7552191174723,141.674976833422 +"Male",69.2898855810603,179.561863817312 +"Male",72.1219265019249,199.120862389857 +"Male",71.3169877488631,199.157694522968 +"Male",67.2528410428749,174.175000727874 +"Male",65.6408449039344,154.503178418822 +"Male",65.8497985691504,165.542689956940 +"Male",65.5946128268641,162.291597258272 +"Male",68.8369333583183,183.697826799390 +"Male",64.4512115827048,147.044657352242 +"Male",67.3817728386335,179.319259045558 +"Male",71.3663654768859,199.881585246269 +"Male",69.3005304360303,202.838700722612 +"Male",70.2043479472151,176.659089639663 +"Male",66.7103909924789,174.990111793505 +"Male",72.4320810423557,210.722947438366 +"Male",69.9361907343168,187.728757464405 +"Male",68.5023678249719,192.578382265299 +"Male",63.6515082468666,159.604267027382 +"Male",72.2611846469261,216.867467177739 +"Male",65.9045066406036,186.015505146442 +"Male",74.0911900374635,215.994558454458 +"Male",69.6565112136457,182.942292479785 +"Male",71.8615998138472,194.764540000883 +"Male",69.0120284697781,182.686684277419 +"Male",68.5613711736471,175.041945711247 +"Male",70.2304111293059,207.412833653302 +"Male",65.7967781937743,175.912287800921 +"Male",66.2964227716638,176.252799588434 +"Male",67.7985803261825,184.716884970712 +"Male",68.2116569609695,196.058997845219 +"Male",72.7932197292912,209.806121474225 +"Male",68.7212180185426,190.120244516944 +"Male",67.0429030337102,182.721452432648 +"Male",70.7703571321698,197.332612713016 +"Male",67.5226605508798,172.867726636091 +"Male",72.9622270487991,207.50145546613 +"Male",66.5539863814558,171.467480830700 +"Male",64.3958283684289,145.39863231907 +"Male",69.997463823523,198.817508176949 +"Male",69.2176337106093,197.355995147650 +"Male",71.4537373827253,195.538165951745 +"Male",71.9384959492937,217.559784019170 +"Male",68.995658520388,192.513164591725 +"Male",65.034102155477,163.995593439738 +"Male",70.0304887722538,196.01833670293 +"Male",68.3050007333406,181.173558781912 +"Male",73.1131767925108,211.419775075714 +"Male",70.724292066026,197.361246600794 +"Male",68.8494796592457,189.791341203241 +"Male",65.9369230675052,180.500485214155 +"Male",71.5273414341669,206.543953428620 +"Male",72.6531446179203,223.935449889002 +"Male",67.5259727503096,175.470021177302 +"Male",70.2216472898035,203.995316841321 +"Male",73.2230709356739,216.149217729092 +"Male",69.6844576252451,201.625724652623 +"Male",69.7449152056439,197.655268021174 +"Male",69.5114690301677,198.955946204012 +"Male",69.812724635604,196.613143811568 +"Male",62.5371392122177,159.64599620432 +"Male",71.5705082207623,200.546570081206 +"Male",70.4599451027778,199.183533286829 +"Male",68.1861571479218,184.095237378594 +"Male",70.1560126502743,185.257822705305 +"Male",69.6726186921254,203.038218257480 +"Male",68.3844491037778,178.307495336133 +"Male",61.9766861508983,137.666526856629 +"Male",67.1070656270633,186.879192802052 +"Male",65.1029348660786,159.104753561143 +"Male",68.5919540264725,196.184005335904 +"Male",66.3746183608329,166.923412925573 +"Male",68.1061090732165,187.420090888079 +"Male",67.1890459715083,168.695154616812 +"Male",64.7089540624648,184.426610901015 +"Male",68.7335142635047,186.992237179932 +"Male",68.10845837403,178.461168551695 +"Male",75.6903839208958,223.587548119164 +"Male",65.66251180719,170.932863963365 +"Male",70.7225053435769,198.121183383210 +"Male",67.5533213058089,178.247784671234 +"Male",77.5471863409053,242.041172648909 +"Male",68.015294615227,186.094459710412 +"Male",70.7627956594325,196.765261064146 +"Male",67.878401716611,152.896964847604 +"Male",68.0701901396216,169.315686503236 +"Male",68.464565083481,182.130883035614 +"Male",68.1385508788607,187.078465595271 +"Male",70.8304806689428,204.697661970683 +"Male",73.166638105566,232.761166336534 +"Male",64.7461743198555,176.948432999639 +"Male",64.7784801980082,158.17255009629 +"Male",69.3476174583757,185.667025995320 +"Male",68.4444403761031,183.818407694197 +"Male",69.284240158114,206.332544990546 +"Male",72.3334760051182,210.964440516914 +"Male",66.7472734922552,156.097266729178 +"Male",67.5228908707639,179.046712630959 +"Male",69.0888645946349,196.738709318429 +"Male",67.455245877847,192.835593292195 +"Male",70.3749846216782,179.374213738752 +"Male",70.3290936155985,209.58529221358 +"Male",68.6087581009146,201.781982901540 +"Male",71.0069025307876,192.794562338277 +"Male",70.9442297643081,190.751029969281 +"Male",67.7607874306241,178.820340152924 +"Male",71.8047729223144,220.398127200159 +"Male",72.9397364716663,199.095171377781 +"Male",71.3688907648952,205.216921791890 +"Male",72.8536001008955,199.814707675520 +"Male",65.7573321116953,167.667432358641 +"Male",68.7643601372847,185.934778195764 +"Male",68.6671579610973,206.515756632978 +"Male",67.5360280897294,177.056515488706 +"Male",71.9740370456364,211.98785025273 +"Male",65.8692531243916,176.181289497547 +"Male",66.9088342309804,195.405195410463 +"Male",70.5311746623251,176.993077929943 +"Male",67.3858091764909,171.05608268942 +"Male",70.513230652926,205.725383948652 +"Male",72.4304550804762,208.141537132869 +"Male",70.5423927817371,197.041858519770 +"Male",70.1965802854446,194.699193524582 +"Male",71.1929614495965,206.196180056506 +"Male",63.5771768953184,156.820414854543 +"Male",67.839590246404,169.459305890162 +"Male",67.0085793991972,168.926794443904 +"Male",65.4972624621934,175.427247822009 +"Male",65.5317996336412,177.618224335460 +"Male",68.7978790473127,186.857838775599 +"Male",70.891173443606,182.28370589774 +"Male",66.3276990468685,156.606046359655 +"Male",64.2399122762245,169.850769070359 +"Male",65.9790480935737,173.886761190519 +"Male",66.0364448092802,172.140801009789 +"Male",70.8523785395008,221.053227883920 +"Male",68.977802627208,190.148682339593 +"Male",68.9253585994432,191.065682955728 +"Male",63.8650182456655,161.740260215780 +"Male",68.4766174538759,176.762771610032 +"Male",72.1365459360299,214.536568827229 +"Male",72.9548954312415,214.511760594122 +"Male",67.8902088460191,168.824926999625 +"Male",67.7223203245706,175.634877438213 +"Male",68.4860830678464,203.009243569307 +"Male",69.8897376153977,203.390800819221 +"Male",67.6568927918774,192.121523980545 +"Male",71.4398698519055,182.174364296503 +"Male",73.2809668311317,225.207435378074 +"Male",59.8680779342708,117.803841692011 +"Male",70.836937997105,215.946998824017 +"Male",65.0008063302381,149.287684034864 +"Male",69.031825524802,188.258598618738 +"Male",69.9605218878937,199.816809834134 +"Male",67.1660564007431,162.801063885889 +"Male",72.7619063895942,226.736155125258 +"Male",68.5347706293347,186.703104499025 +"Male",66.1714582613775,149.999075714197 +"Male",69.1634530739506,189.146861384614 +"Male",69.3493930993854,184.316088219314 +"Male",69.8055810049848,208.435223167274 +"Male",67.4289082159466,172.112076471477 +"Male",73.6313363648411,212.485152792428 +"Male",68.5257336631355,194.110669885852 +"Male",66.6756827176355,169.253940175445 +"Male",69.3830474047613,200.566659110968 +"Male",69.0613820988925,172.035239471501 +"Male",71.2506239765993,209.482124657112 +"Male",70.6024088402538,216.511147837803 +"Male",65.8801355873964,157.450579917075 +"Male",66.5317464234284,168.247436849264 +"Male",69.0857938231438,194.643178186085 +"Male",72.8389938936161,221.080417861228 +"Male",69.1531022926345,201.994030074385 +"Male",67.9233106303920,173.348646161641 +"Male",67.9015249363869,184.059658918228 +"Male",64.4859290574204,160.677632557097 +"Male",67.001350214733,183.826758564917 +"Male",68.4885098078028,184.006789542178 +"Male",67.1788915930131,179.444445235512 +"Male",71.915045131092,182.671577948220 +"Male",69.8235038816249,189.808602549499 +"Male",69.7686528442783,199.672842705658 +"Male",66.5573566284942,153.372626085851 +"Male",68.3799962978338,190.500939450456 +"Male",71.6971771413658,212.509061383528 +"Male",67.8992838299366,186.381289115608 +"Male",66.7940077491144,165.25964315067 +"Male",67.9075830232353,173.898085386098 +"Male",70.6435771873362,180.668873838164 +"Male",61.8348491587699,143.421461766188 +"Male",68.7352545196221,181.954867075458 +"Male",67.6044185001555,179.389011247273 +"Male",69.9297057558467,199.721623719246 +"Male",67.4102139689504,178.833361389928 +"Male",67.4647771451662,180.875860459663 +"Male",68.8293337723017,195.162042097346 +"Male",68.3884270330404,180.737760655285 +"Male",71.3296991041762,210.664498242699 +"Male",70.2327259474281,184.025130592843 +"Male",67.2979732686591,175.338659816857 +"Male",70.5957777118295,197.314564065227 +"Male",69.8416671006111,188.512232923125 +"Male",65.1111161037714,183.862263280682 +"Male",73.7060271658048,231.697887262719 +"Male",69.3081267829753,195.176476367972 +"Male",67.9059322950369,174.086727116819 +"Male",72.3595000009733,213.297887303790 +"Male",68.9303494469266,187.801336939277 +"Male",70.876666835473,209.240253629637 +"Male",64.6366312274614,162.40702669862 +"Male",69.064130558356,176.355211205018 +"Male",67.6854899419856,178.556922838024 +"Male",76.732446458109,241.686601265952 +"Male",67.8820009353618,181.046205435866 +"Male",63.1501309080411,154.801973019894 +"Male",68.3132579294602,175.226648576104 +"Male",71.5284242920317,192.072946759933 +"Male",68.511889336449,175.433105819427 +"Male",66.6154888987567,165.350100773614 +"Male",68.066866584895,187.038344717004 +"Male",70.287376218039,203.531508961978 +"Male",67.9222131262908,177.021334759353 +"Male",71.4519300391906,199.234438721485 +"Male",68.0889431093448,173.828764940752 +"Male",69.1457747814604,184.487833523429 +"Male",69.8329704297875,196.347783266342 +"Male",71.7750231711273,189.639305713299 +"Male",67.9079954305426,199.479457999465 +"Male",66.3414830491598,166.107467078417 +"Male",69.2034285319249,186.393762304283 +"Male",67.7770087271898,179.784084060020 +"Male",71.2837358812353,211.627537668269 +"Male",75.3308465172577,240.44081593557 +"Male",68.1714041982134,174.873336993624 +"Male",66.7524196522147,176.100266728785 +"Male",68.5408946169118,190.131233920062 +"Male",66.720492842324,169.684086844348 +"Male",72.447983717585,213.239108590857 +"Male",65.2416370801193,152.223696532683 +"Male",67.1294975106874,155.520712829209 +"Male",65.1161720362222,153.128067140559 +"Male",63.7508280687841,154.666008652389 +"Male",65.4524639642861,174.910328161193 +"Male",66.9901405254427,160.178971538123 +"Male",67.3093046958745,195.012129532863 +"Male",65.0018964277919,157.559024052726 +"Male",67.6991017090096,185.006776560315 +"Male",67.2667358455084,178.634684467998 +"Male",68.211373877601,174.898716996865 +"Male",67.2224674889485,176.538232159961 +"Male",70.0300095284061,208.272738618747 +"Male",68.2841631248024,185.537597227484 +"Male",68.3914832395403,181.695335403659 +"Male",71.9293400915774,215.049659956354 +"Male",69.1316918736416,167.82576492018 +"Male",69.8593314375424,202.805975086246 +"Male",68.5418416884537,180.353225489144 +"Male",68.8570110543018,176.642421881176 +"Male",73.5965326326326,229.554636629063 +"Male",68.3326048406708,195.876815264353 +"Male",68.2627394326726,183.078953381949 +"Male",71.4333045402772,196.380703986065 +"Male",71.2792428096875,192.675508043898 +"Male",67.1722774950073,168.183014977891 +"Male",68.4221502236242,178.171410103334 +"Male",69.4694468167024,202.649823456785 +"Male",69.3707199184009,175.937148417667 +"Male",65.0782893941959,163.672480582963 +"Male",70.3198275994047,190.047879666060 +"Male",70.1200300326293,192.553956170328 +"Male",68.6607851306331,182.35904328602 +"Male",68.4316603406336,166.114508566524 +"Male",71.1893840849912,202.782735719744 +"Male",67.9918954453877,179.390563783689 +"Male",65.3444634368326,174.258682971630 +"Male",68.919881174651,189.918571067353 +"Male",69.5985512716625,186.898568969186 +"Male",71.6483448651963,211.240333178922 +"Male",66.3290572591395,175.683587869239 +"Male",67.6353232711792,196.624788877726 +"Male",66.887823114077,181.567085710306 +"Male",67.4930115906159,171.606063299967 +"Male",68.4864120329415,172.546072028237 +"Male",74.677470902286,218.845025702795 +"Male",64.318061116299,157.783020746768 +"Male",68.6021004178577,191.958900203991 +"Male",72.4995835558049,212.970303259001 +"Male",72.553741616469,222.361125020361 +"Male",64.4160349317962,158.088177729036 +"Male",71.6875267418006,202.821543098354 +"Male",69.6899134730683,177.988816163596 +"Male",68.2076337049941,184.027977160472 +"Male",70.047065512364,179.723488430778 +"Male",70.6544387948162,184.383603208706 +"Male",67.272645282248,190.302849963033 +"Male",64.7943886700372,153.626119562073 +"Male",70.5188417210663,202.468599851873 +"Male",68.9027140136862,191.835824742788 +"Male",71.2295289574237,182.808731549851 +"Male",70.6889433329694,186.792362671577 +"Male",67.952921585074,171.21714133587 +"Male",73.9214285338255,211.163054452425 +"Male",66.1835752777016,180.112060402530 +"Male",65.3159988232662,189.420728160687 +"Male",70.1423146566048,175.180490189231 +"Male",58.4069049317498,121.338322555937 +"Male",72.4507213695112,201.919563133632 +"Male",67.4952603409439,165.250263812122 +"Male",67.0018041360757,165.603321431167 +"Male",68.1047853043503,186.908019925609 +"Male",68.254144878136,178.929604083831 +"Male",68.6058472945698,169.548131726275 +"Male",72.1191035791778,205.491229435449 +"Male",67.236978375492,175.908649800196 +"Male",72.6933787427792,203.453595842764 +"Male",63.1756549936294,139.132976418735 +"Male",66.5707725621267,189.843709342592 +"Male",72.9006512255815,222.509054888283 +"Male",74.5294545564111,225.540078907474 +"Male",69.4285574073058,169.574620818447 +"Male",72.7837660754439,201.668039598642 +"Male",70.2948149158061,191.986612707550 +"Male",72.2122970853614,188.935909316701 +"Male",70.3877465290357,181.002358907756 +"Male",71.5737775152923,215.297447449297 +"Male",67.5644570022929,168.540416464356 +"Male",67.5124846483694,186.291276195306 +"Male",72.875444304985,190.341920750120 +"Male",67.6527859307046,165.103769834012 +"Male",61.7672589768196,146.396972718713 +"Male",69.1622308250648,179.817768188541 +"Male",65.6595048250479,151.627434333072 +"Male",65.854525211549,160.111998791411 +"Male",69.7688621939797,186.332843345925 +"Male",67.0121854088821,166.631665835137 +"Male",67.6684485047045,193.304068842539 +"Male",74.975230833088,214.495489269683 +"Male",73.5042593769053,188.875893529098 +"Male",65.6736434092637,170.062794097362 +"Male",67.1658594001592,182.680352432697 +"Male",70.378607812303,193.945086866535 +"Male",70.7982707392368,198.388000808297 +"Male",71.2217634694065,204.359917546015 +"Male",66.7528662909405,163.690688814000 +"Male",69.359457953741,185.284807206561 +"Male",63.009573422471,135.630877138289 +"Male",67.0769690473284,182.555284762756 +"Male",71.1711534560498,213.457232614393 +"Male",66.6615647492038,172.014538315318 +"Male",68.5029434854037,195.045319296530 +"Male",70.0995449281213,181.956001488203 +"Male",69.5997949529986,208.948774636174 +"Male",70.6950010426886,192.025785860003 +"Male",71.2085658090395,204.242177018492 +"Male",74.6505402664529,213.320520443745 +"Male",72.1974895052807,199.49198859641 +"Male",66.37565643783,175.691355271653 +"Male",65.82763577673,192.881640534385 +"Male",67.6832185802234,192.150041915083 +"Male",71.2201778723495,210.456504601406 +"Male",73.1033640538637,214.372161472232 +"Male",68.1739637087841,179.070339397527 +"Male",67.8845153200526,182.226331233505 +"Male",66.7858035604488,186.304735627593 +"Male",65.9411193658542,181.069175790509 +"Male",65.3886284831394,165.546212938478 +"Male",70.2944398467073,183.823945444194 +"Male",66.765467424153,168.074511931168 +"Male",67.4142774006172,183.839221408314 +"Male",69.0219010922145,198.622989558571 +"Male",66.7307545541728,174.156893015953 +"Male",65.091960817426,160.470735856154 +"Male",72.7258065631587,225.984684115917 +"Male",70.534667254932,203.763291531888 +"Male",68.4745852641165,183.375133902353 +"Male",67.9304599001737,178.965963782647 +"Male",71.542808179959,212.443510123348 +"Male",70.0350426795083,193.775477318303 +"Male",67.5435971769712,187.354159098741 +"Male",70.9309293899503,188.703885266529 +"Male",72.4951768182044,225.378590274705 +"Male",69.9698858378657,203.275694600745 +"Male",66.4286519252902,176.218204621022 +"Male",70.4179702961361,190.324439626527 +"Male",71.3870199005143,198.822647415191 +"Male",62.4302762486154,152.841340807724 +"Male",72.1753091181222,188.630657238075 +"Male",67.8300013361605,172.776568980666 +"Male",70.4363473835276,196.175553508369 +"Male",68.4167672422548,188.117700345724 +"Male",71.483440226678,209.914741516558 +"Male",72.1535110041023,196.538474025017 +"Male",68.9086520378441,185.055132548027 +"Male",66.0223055376785,167.378816529532 +"Male",74.2105213931492,204.759343692016 +"Male",64.5852633931835,157.556611541136 +"Male",71.8700110838311,219.197877948184 +"Male",63.9584961713448,138.576564110431 +"Male",65.5200757970214,166.422109232451 +"Male",71.9736933807892,205.856369992931 +"Male",67.3666401182682,167.937531281634 +"Male",66.4242479825577,169.405618895853 +"Male",71.5855240582124,193.978622618299 +"Male",72.7603246597996,219.521253776724 +"Male",68.809922560961,186.908816513133 +"Male",68.3790979519897,179.632490713938 +"Male",70.4748147089426,193.647456075930 +"Male",70.0406405251763,199.037679063698 +"Male",70.1783070523867,198.367612206909 +"Male",72.8314344195098,206.665313669606 +"Male",66.4162258416784,177.676880522868 +"Male",73.8017665730408,218.979725750831 +"Male",64.2764930680842,159.738668065138 +"Male",66.7244445669455,182.198405909344 +"Male",70.4149212539265,192.683061466135 +"Male",65.3991820948526,146.146730027501 +"Male",68.2152297970961,183.1433826074 +"Male",68.5148872512248,169.135073809257 +"Male",66.6697750359324,180.468741850148 +"Male",73.6833643424223,213.546686840463 +"Male",70.372074455918,192.078251235246 +"Male",67.8514590700922,181.718885083568 +"Male",70.5551256742648,205.989402021695 +"Male",66.8140260260694,186.324839805672 +"Male",74.217090997325,222.829850613626 +"Male",67.6728752379897,173.807418332666 +"Male",67.2840061842762,172.676874059096 +"Male",72.6144618351339,205.374252591854 +"Male",65.3733665582574,172.942984226681 +"Male",72.1693910043912,204.985511717953 +"Male",68.0837821109529,194.143049202359 +"Male",66.1416134798381,170.898027754784 +"Male",67.8890821850513,170.930201784064 +"Male",68.1301680653248,194.925271146555 +"Male",63.791446089604,147.144958260896 +"Male",67.0716599206962,164.806605914513 +"Male",69.3887324558585,194.230427615346 +"Male",69.576910461382,182.888713352003 +"Male",72.5596952881594,210.863639710134 +"Male",68.007994184228,171.222080694357 +"Male",68.5540972956237,172.215745405675 +"Male",67.6374661865604,194.827041178524 +"Male",66.0671152576339,167.485795452626 +"Male",68.3876488596868,179.651758621182 +"Male",69.6134038324844,188.868777815123 +"Male",69.7896325283724,192.438324720181 +"Male",70.7507801350366,212.64766663837 +"Male",70.5104101560048,174.884884359253 +"Male",72.9832209363286,224.372519860368 +"Male",67.0138284235961,176.465211274895 +"Male",70.358557603781,183.383772184424 +"Male",65.673076953518,181.595631192572 +"Male",64.533737605798,153.583453266102 +"Male",63.8620410671123,155.081236703994 +"Male",70.8098265262868,203.978417730569 +"Male",67.8090146892489,179.934465358978 +"Male",67.6159544950297,185.579959015503 +"Male",67.9024370702648,173.397528071836 +"Male",72.67888503907,216.68631525849 +"Male",65.2556091498026,145.335260567609 +"Male",67.512204323907,177.422820109922 +"Male",68.7372207368562,169.641736925312 +"Male",70.3673141609706,202.571580239465 +"Male",72.0408340759254,199.173600442789 +"Male",66.9958641306279,166.567359396403 +"Male",71.5311788037522,199.973543676069 +"Male",69.6820883873604,187.576051609740 +"Male",66.1902380972063,170.414340979886 +"Male",66.8231541998584,173.610736598779 +"Male",65.8514183198708,169.606859808599 +"Male",74.0079626803179,219.895739057804 +"Male",66.3814354332932,172.735908265385 +"Male",69.8284492616355,195.979019588875 +"Male",70.1447629127649,194.831395532055 +"Male",71.7093075693084,205.648449202477 +"Male",67.5306062690097,167.613776859818 +"Male",66.0080674395092,167.011632074001 +"Male",67.445142662697,165.274244872490 +"Male",68.931795241309,182.364295307144 +"Male",66.5308350442977,189.361395082828 +"Male",71.1694471518134,195.330595550546 +"Male",68.9128309304113,180.823137965411 +"Male",65.4183342603759,160.770308692432 +"Male",70.4371769711896,200.20473429455 +"Male",71.2689307374579,189.307461274244 +"Male",68.3598105857093,174.198289239276 +"Male",73.3395900024196,217.061053258419 +"Male",72.3001903913442,213.229451657476 +"Male",74.043289756811,219.337908800423 +"Male",68.3028391832953,193.702694008131 +"Male",65.1423142899643,171.616709864373 +"Male",60.6141147615686,156.458354816187 +"Male",68.9744813993748,192.129879968925 +"Male",69.484562922529,188.855205531895 +"Male",65.0014131583689,161.029415825707 +"Male",70.2133754264451,197.500019161713 +"Male",64.9928915425001,138.92417255949 +"Male",71.6444188193627,190.063285629929 +"Male",72.6168163296781,224.85790171382 +"Male",71.0465619010339,191.274561952476 +"Male",72.7263417773615,218.766293664343 +"Male",69.1198305542332,176.665959237319 +"Male",68.9739418276205,182.312208712821 +"Male",71.5309776799117,203.820261045102 +"Male",65.3273367078766,171.762517973172 +"Male",73.0928708226033,193.944180606132 +"Male",68.8600624723444,177.131052159944 +"Male",68.973422833645,159.285228223534 +"Male",67.0137949681931,199.195400076662 +"Male",71.5577184876743,185.905909489285 +"Male",70.3518798786343,198.903011944154 +"Female",58.9107320370127,102.088326367840 +"Female",65.2300125077128,141.305822601420 +"Female",63.3690037584139,131.041402692995 +"Female",64.4799974256081,128.171511221632 +"Female",61.7930961472815,129.781407047572 +"Female",65.9680189539591,156.802082613991 +"Female",62.8503786429821,114.969038250962 +"Female",65.6521564350254,165.083001212576 +"Female",61.8902337378544,111.676199211845 +"Female",63.6778681520585,104.151559641935 +"Female",68.1011722359871,166.575660760601 +"Female",61.7988785298549,106.233686988457 +"Female",63.3714589617276,128.118169123676 +"Female",58.8958863500041,101.682613361014 +"Female",58.4382490995692,98.1926209281421 +"Female",60.809798678611,126.915463276282 +"Female",70.1286528332314,151.254270351714 +"Female",62.2574296463807,115.797393408160 +"Female",61.7350902197,107.866872355221 +"Female",63.0595566947049,145.589929145704 +"Female",62.2868383725748,139.522707668371 +"Female",61.8274775548724,122.766166670135 +"Female",66.3475372155375,157.380964816028 +"Female",65.3206320269197,145.037375621008 +"Female",66.1038727954936,148.645182574529 +"Female",64.5271820296461,132.680868243034 +"Female",56.5479749809036,84.8721236452797 +"Female",62.7392809291012,138.530421130127 +"Female",61.585198645852,137.425286781889 +"Female",62.0244248323023,124.603940620149 +"Female",65.3113341377437,140.266700393455 +"Female",61.2049560689218,108.290104228827 +"Female",67.025093515345,150.219175933031 +"Female",60.2111665623754,119.037534152405 +"Female",63.9399727739834,139.495957335990 +"Female",63.3578051598708,125.613238151682 +"Female",63.685068445343,132.282977854988 +"Female",60.2888703924791,130.440809040632 +"Female",63.4072897919724,128.848389435403 +"Female",60.6316001185165,109.719696252994 +"Female",67.3735965886919,146.023295039745 +"Female",66.8727415972973,158.855194208793 +"Female",60.0471472234037,114.603525896347 +"Female",64.1544722687217,133.138355593842 +"Female",63.4616648933184,128.950960852672 +"Female",67.2438679477325,154.061574837338 +"Female",66.2135945099311,139.001133618245 +"Female",64.6928213839027,138.680813564999 +"Female",66.1992832819946,180.698317098880 +"Female",65.853375824511,149.118528392780 +"Female",65.0495202214884,145.073538581697 +"Female",64.477615149807,144.638245692437 +"Female",62.5400773193173,139.478643930727 +"Female",61.59623161922,129.977149249753 +"Female",60.9503289147806,117.422588668035 +"Female",63.5532238018192,137.492070428581 +"Female",62.2483463509287,138.382413290926 +"Female",66.190590843343,141.271956088319 +"Female",62.5480579760466,123.712853940157 +"Female",66.6298343220198,145.594711615587 +"Female",59.6085601361981,109.813156032597 +"Female",64.493394759493,159.456065776193 +"Female",64.9365559015708,152.419352004462 +"Female",61.3792584854039,141.427450563345 +"Female",66.0707872085545,147.752330110449 +"Female",63.914431661526,131.513704638389 +"Female",69.6198060242191,157.023733848368 +"Female",67.1815358769843,156.950847065556 +"Female",63.3990508337142,143.840429687839 +"Female",61.2131714955926,98.7074925949256 +"Female",59.6678488000619,126.355255679648 +"Female",64.0894064651938,134.211017209693 +"Female",60.5780628792393,118.242811799265 +"Female",62.114866399197,145.337359446736 +"Female",56.1594580191187,90.8152556552271 +"Female",67.449272973975,170.830353595279 +"Female",65.0651446274894,156.163126863795 +"Female",65.5288561745669,138.989535511843 +"Female",63.1496527400666,124.193771665091 +"Female",58.8743006695406,102.927077538710 +"Female",66.0212319116557,141.656245159955 +"Female",61.5250911236378,133.528507704123 +"Female",63.5843104973355,133.189403796986 +"Female",59.7867629089699,116.904871470824 +"Female",67.1492063558276,139.552814769724 +"Female",62.323087083779,127.130913031099 +"Female",65.1476595576194,134.662024671615 +"Female",70.6285964525231,170.148468502777 +"Female",67.3874511948522,164.892658411008 +"Female",68.130408809775,177.240131210861 +"Female",63.4884596395885,124.052871755915 +"Female",61.1630652757277,107.23544334682 +"Female",70.7101395263283,161.363484297774 +"Female",65.2088548097869,137.703041572099 +"Female",61.3594893280584,123.420134597368 +"Female",62.0717151894243,142.663619361408 +"Female",65.4048818826678,144.025941163566 +"Female",61.8233681172395,112.001861732583 +"Female",62.9471972521971,123.684238635036 +"Female",64.3630337197069,133.183927036323 +"Female",64.038537483693,147.240564000238 +"Female",69.7883326870588,167.437658866369 +"Female",62.8223500167531,126.816039038744 +"Female",71.9912565421476,177.366001765282 +"Female",61.9940865436986,134.417291950693 +"Female",65.8046058667036,139.483209612705 +"Female",60.030610123321,104.497331810975 +"Female",64.4988656513921,146.125363035389 +"Female",62.0496445072297,119.865377360177 +"Female",64.5679794100138,137.534164326015 +"Female",60.5043159198482,116.381974250403 +"Female",61.2144499154672,128.266498910134 +"Female",65.7806082972014,146.856354296309 +"Female",60.674278397707,115.805035158068 +"Female",64.7898526139103,124.172527335362 +"Female",62.9965793146519,131.004284503501 +"Female",63.8094826504867,142.421776480813 +"Female",62.2799001065922,133.255261053524 +"Female",61.7110319057525,108.028807023383 +"Female",64.8226454585033,142.697039339943 +"Female",65.5350871813485,146.135542370311 +"Female",61.3366590164904,127.341819977669 +"Female",57.1038694679138,93.506315903823 +"Female",56.4456850266095,96.6402446637704 +"Female",60.8155622040312,132.174817011755 +"Female",61.4647835289526,137.299168988017 +"Female",61.9240636007588,126.431696747156 +"Female",66.6645901535482,153.948513395745 +"Female",65.0826657837113,141.125351061446 +"Female",63.4931430001388,160.554603918248 +"Female",64.5902856291067,140.176081684439 +"Female",61.0243422117445,134.193712558431 +"Female",62.2470807592287,117.230337235004 +"Female",65.0601256724748,140.985245791637 +"Female",63.2198242886745,142.973406430632 +"Female",63.2290195165613,131.238126208326 +"Female",63.2789284322783,134.827593587405 +"Female",66.0506705716618,138.906378734208 +"Female",63.0377049362755,127.070393942324 +"Female",62.6280829350044,121.724752976693 +"Female",61.6685660209029,111.619612391082 +"Female",63.4440555002437,126.507631240561 +"Female",62.0694248149154,121.961284895735 +"Female",68.0068039692137,161.164709184170 +"Female",66.5349588948616,163.561500746848 +"Female",62.5498457985719,118.903203961550 +"Female",65.1822388637889,133.514009654304 +"Female",65.2269007475441,123.173382052447 +"Female",63.9548303820439,121.888637124568 +"Female",63.8260384360516,149.369118956566 +"Female",64.0912122326925,130.972209739261 +"Female",59.6456491039143,116.551867007723 +"Female",64.2992174382013,140.106806448349 +"Female",66.1576281723834,143.709183931123 +"Female",59.088694630918,129.272607527928 +"Female",63.9615351757076,140.762188360656 +"Female",62.4070641317515,120.303349805267 +"Female",65.4607849419499,141.885129657558 +"Female",64.9819782864878,157.829151800939 +"Female",61.8176552663779,121.615000159206 +"Female",63.8260177297046,153.846107496592 +"Female",64.2707720747361,134.13881613433 +"Female",57.9619361820506,112.226983636465 +"Female",58.5972254723861,104.797463356533 +"Female",62.4308668218842,127.765249467294 +"Female",61.2184548963704,119.275426752581 +"Female",61.7063937760483,110.923344274973 +"Female",67.4078762473504,159.728213586267 +"Female",63.0419971036865,122.087245508190 +"Female",63.9177194287055,135.697284242661 +"Female",66.2595580379875,138.839939938552 +"Female",60.9673174396153,113.795249953307 +"Female",62.3828475994099,125.347102031623 +"Female",65.7528095339208,160.290048457993 +"Female",66.2526040466702,150.096454812290 +"Female",65.95375621906,163.597121888682 +"Female",62.028373055852,103.275029340058 +"Female",61.5206085297862,127.390660904010 +"Female",65.1436158860325,141.575300322436 +"Female",65.2743311062302,136.508506170129 +"Female",57.4425669680862,104.486636219839 +"Female",64.5661075838473,129.775457057716 +"Female",57.3139027398949,95.1390467981634 +"Female",61.8392298475715,110.414161092118 +"Female",63.6178151757957,122.59035594592 +"Female",64.4851647256286,150.402898695227 +"Female",66.1141556115706,158.953933508482 +"Female",61.6685228676763,112.935590557600 +"Female",63.3095949331229,144.017519304721 +"Female",60.8455119968138,135.956449885158 +"Female",60.447396660563,117.653785035939 +"Female",58.8616250965517,90.7285608829213 +"Female",66.563772045055,156.83219101961 +"Female",66.345674662825,158.28513170699 +"Female",62.6964285223027,134.395978725645 +"Female",63.1138692587779,124.818530125508 +"Female",61.7430549493235,111.964092547299 +"Female",61.6299865883532,111.172465906796 +"Female",61.5260223271191,124.882434098149 +"Female",64.2344698443578,130.219638125047 +"Female",61.759546496511,131.022230398974 +"Female",64.8301932747815,148.984312804607 +"Female",66.7590705407222,150.881329670661 +"Female",67.1907633167527,176.432901559757 +"Female",62.9552737535274,150.582520877049 +"Female",64.2762427390933,123.298801482061 +"Female",60.7791579742199,110.880045352394 +"Female",60.6284986157526,130.999824233273 +"Female",59.0280872446527,111.833549001828 +"Female",63.3060181635752,134.323769255019 +"Female",61.6199458712052,113.170156124666 +"Female",61.1972231892203,115.906395897950 +"Female",63.2187589332422,140.407857970989 +"Female",61.9799346927729,119.910845573051 +"Female",56.7854343692644,83.9930774713752 +"Female",62.8061993667207,116.733315098915 +"Female",58.7512536320208,97.7224905977011 +"Female",61.2362474889617,111.502707371425 +"Female",63.3198176682499,119.315988261806 +"Female",66.909452269651,151.612890693732 +"Female",68.2767254397253,177.085241926696 +"Female",58.6486596777328,100.234250669338 +"Female",64.0628724771001,142.86946947706 +"Female",64.4932362576784,141.735675802085 +"Female",64.3187898134621,136.113112416632 +"Female",66.5375281932,162.0245078289 +"Female",62.6740943947114,147.517898734144 +"Female",64.3163283525621,135.154220744067 +"Female",58.0615529715125,113.060720349670 +"Female",58.9265027030452,105.329901527587 +"Female",66.2552984349504,148.832458010864 +"Female",65.6656495604404,131.339756031349 +"Female",61.3495814422394,120.500037006939 +"Female",64.5868557403,147.179384480972 +"Female",65.4655470077031,150.469160712364 +"Female",63.0140721214378,129.189009965093 +"Female",64.8525499753406,140.228602729561 +"Female",63.1819005014715,144.684993267094 +"Female",62.0273574864439,131.358662095764 +"Female",64.7708720817028,139.034575173835 +"Female",61.4565043263512,119.548497493285 +"Female",65.2713830952983,145.245082896938 +"Female",64.3927112060248,133.318356933567 +"Female",62.5989133602596,119.146173612437 +"Female",63.8500081784127,149.761885603035 +"Female",65.2968684923415,150.253650333801 +"Female",65.129065854611,147.772480425275 +"Female",64.4904227143592,157.116970421069 +"Female",62.4570895407546,124.436526398277 +"Female",67.4031614914766,154.259068464375 +"Female",70.392737827924,184.658610479957 +"Female",61.791885722479,118.166394232429 +"Female",65.333637392558,149.725394082419 +"Female",68.1748921244644,144.817907648842 +"Female",64.4670652353147,143.663382287202 +"Female",63.6004800623691,131.040872806245 +"Female",65.0600117405822,144.758964434927 +"Female",61.1247265949404,117.388948978733 +"Female",64.6768789154258,131.1821481418 +"Female",65.6706172883962,158.044333094153 +"Female",65.6299184575689,130.134356372411 +"Female",62.8119078563338,129.822383356382 +"Female",61.7526959532595,112.909947814590 +"Female",63.4758721970993,127.160704835653 +"Female",60.8945194705127,128.103419034246 +"Female",62.9349262148006,132.616525370780 +"Female",64.9600151276839,154.739031155818 +"Female",68.5049300948965,155.720652613621 +"Female",68.481368641366,180.922454085005 +"Female",66.1100750805556,176.352784845131 +"Female",61.1042051296563,133.184099825599 +"Female",62.5013641801295,128.581091995706 +"Female",63.9867085026774,146.265814757148 +"Female",65.5027242869999,150.300950175204 +"Female",61.4687033842901,128.742972861135 +"Female",63.3060862385002,128.729688256535 +"Female",63.0123623919906,128.148812904635 +"Female",66.6682857273936,145.34609366298 +"Female",59.5287882585904,114.752101723709 +"Female",58.9871389352788,100.743008049753 +"Female",63.9659421942122,130.611869495422 +"Female",61.6599217548307,104.342469807496 +"Female",65.8750206552292,146.962716661053 +"Female",70.4354630538055,163.218061552294 +"Female",62.6450417377898,117.460636379714 +"Female",62.9659218299081,130.024532169872 +"Female",63.9217762335782,135.665990376898 +"Female",67.4085278522187,157.853324468035 +"Female",64.0724731933834,153.465039447212 +"Female",60.8596200372557,112.090753334639 +"Female",62.5174090733556,128.661047841967 +"Female",63.5993726430893,130.048574977112 +"Female",60.9699127252181,115.22816590943 +"Female",63.1868648875671,132.977067402018 +"Female",67.151191453272,166.520118793196 +"Female",60.8077120880396,117.183531552643 +"Female",65.5647207551733,155.256044301334 +"Female",68.5841947603568,165.807872916003 +"Female",66.9869801293675,155.33023439413 +"Female",59.304006674877,124.667939944881 +"Female",57.3977403653233,106.587562707410 +"Female",63.3000056139882,121.948216965336 +"Female",63.9304349811277,134.409159480214 +"Female",66.3948756331919,162.303398750158 +"Female",65.3799742061384,142.875141463859 +"Female",61.4586449817035,109.208331364350 +"Female",62.0703964153284,119.298986787558 +"Female",60.9117709191833,131.710812833578 +"Female",67.0419717239002,139.993373972995 +"Female",58.4450728445732,90.4066747700377 +"Female",62.2245020221864,133.875237869795 +"Female",60.7177828443625,120.569576018192 +"Female",63.5687601892505,154.14541190635 +"Female",62.1916974375019,112.935460903956 +"Female",59.7764551910631,120.743637801798 +"Female",61.6273472434732,123.637225339968 +"Female",62.4269612065783,127.616505950701 +"Female",60.2433587713343,131.661110167329 +"Female",61.099684522662,117.196783823799 +"Female",63.8035583689906,146.069789093321 +"Female",60.1214940797834,110.277399096982 +"Female",62.1515390284783,117.622643059512 +"Female",60.8455082792894,107.446054418329 +"Female",60.8149266614059,110.141214580722 +"Female",66.6406919712605,133.006943491138 +"Female",63.9734478999678,149.408992650491 +"Female",62.1103513180408,136.870855338002 +"Female",64.6232920305636,134.611015330786 +"Female",65.2359128237191,128.446414954298 +"Female",62.9747851017198,137.474569849565 +"Female",64.7207937398357,143.840839802554 +"Female",61.991103315523,124.263052907899 +"Female",63.0344867270615,125.467016142592 +"Female",61.7220786947145,107.224707081941 +"Female",66.235472294563,149.413467570318 +"Female",64.9485359270927,155.133186403789 +"Female",68.0047071978932,142.289254801081 +"Female",63.5649944650528,134.111374252931 +"Female",65.9047444550849,126.277039892645 +"Female",61.5826702131507,127.686515250633 +"Female",60.8508818055655,108.945837143582 +"Female",61.470937755893,114.674279364657 +"Female",63.2365175403148,132.175494890553 +"Female",67.9453913666469,162.163974662772 +"Female",64.3635203905005,155.573499373380 +"Female",55.336492408949,88.3665825783999 +"Female",61.5871964272971,117.478149437881 +"Female",67.098583252735,160.693329855376 +"Female",66.4708459825994,161.374932965809 +"Female",65.0497203709364,128.039086079110 +"Female",61.1779832423059,121.327062450280 +"Female",65.9426580836807,157.022986870301 +"Female",62.1960203776221,124.157289067095 +"Female",66.9351291414654,154.947305136066 +"Female",61.4323999425898,127.844520031770 +"Female",62.996069969002,141.072078285295 +"Female",62.7320919601965,126.373784882524 +"Female",62.164904387045,119.304213033600 +"Female",62.9254755099168,120.192431587993 +"Female",62.4557192957967,138.360765182304 +"Female",55.6682021205121,68.9825300912419 +"Female",60.9601467947002,124.876795694859 +"Female",65.4710910498764,144.379121833208 +"Female",60.8929255610217,134.713555165105 +"Female",59.8050927800746,102.147229843053 +"Female",64.4434955523069,151.523947280029 +"Female",69.0078312369192,159.086870772944 +"Female",66.6546363773709,156.764291927540 +"Female",64.3283172106086,134.744705000123 +"Female",63.7850382085228,152.559196426352 +"Female",66.5560973073082,154.393417449840 +"Female",65.5674452507982,166.959825735408 +"Female",67.8037894478938,162.509490965831 +"Female",68.3171198579942,150.53320061435 +"Female",67.4606049324002,165.866935218659 +"Female",61.4552792378346,101.801104556745 +"Female",59.973722018482,111.224290083868 +"Female",62.7867326752516,107.695853478586 +"Female",62.0712021112973,122.633793869728 +"Female",57.882977877878,110.725972142648 +"Female",59.2391987586138,111.181236095562 +"Female",60.8483432381663,114.949997304144 +"Female",59.7634004434417,112.741362002212 +"Female",63.6846975166008,134.263881206765 +"Female",62.6359268260796,119.789160101035 +"Female",65.1252205395475,141.597218212974 +"Female",57.8697044083998,93.533752874761 +"Female",69.9094619536732,162.465432383775 +"Female",62.8616279247227,135.520535634779 +"Female",59.6319099013699,109.281638742373 +"Female",64.3254057975894,156.800503578845 +"Female",62.7745323390548,144.906207413141 +"Female",63.642045335268,118.186717861156 +"Female",69.8258260971064,171.486365149906 +"Female",60.1625103505144,94.232330573943 +"Female",62.2851140096946,132.091499136112 +"Female",64.328491192675,135.819093790461 +"Female",62.5182337160901,129.279567833282 +"Female",62.8928308396335,131.130446581715 +"Female",62.3961536333553,127.032748132563 +"Female",60.1211674783819,113.406966734996 +"Female",62.0910912813511,123.697903291224 +"Female",64.2556542421888,142.503455243134 +"Female",66.351365899781,131.277990256992 +"Female",64.7446553819592,125.775812303844 +"Female",64.4044917904229,142.161396233841 +"Female",69.3217453937076,157.161889030641 +"Female",61.8635413009161,127.018966168159 +"Female",64.5604883757869,134.198153325494 +"Female",66.8244076938673,165.966231405226 +"Female",64.7858059969865,147.190935111554 +"Female",63.7311128493592,135.598592190331 +"Female",66.323922447613,153.220042862039 +"Female",66.2572465189432,142.715293703949 +"Female",61.7055757907997,126.787299377007 +"Female",64.6875911866408,124.728487203707 +"Female",69.7949870329252,182.45116816137 +"Female",61.1619212877002,119.040161837050 +"Female",63.3710129855295,139.299934580169 +"Female",66.4188654356773,134.244934974749 +"Female",64.6426127422204,128.606254115255 +"Female",63.291301795676,126.409991249452 +"Female",61.8245071244127,133.692684009314 +"Female",67.0324664782839,179.727325039126 +"Female",59.3351078902134,120.819870074702 +"Female",61.2369877967915,114.160746392997 +"Female",57.9231593597871,100.540042842024 +"Female",63.4060849249549,129.372212442842 +"Female",64.42841794434,142.205860672309 +"Female",65.2363218490845,143.939347554022 +"Female",66.5350086370735,147.501913797559 +"Female",65.7477314420735,145.576248360178 +"Female",63.7317326816991,114.269749554834 +"Female",61.5797765712626,117.903634880013 +"Female",59.2527254716231,139.140812286463 +"Female",61.4562621266792,117.028716831825 +"Female",62.611869335698,134.765898952825 +"Female",68.7596360266078,153.689738524650 +"Female",64.5974345354265,144.330320141990 +"Female",60.6030101186213,100.001590658139 +"Female",64.657939990267,134.444784807854 +"Female",62.4538156072119,132.697317246472 +"Female",62.4053361255275,116.602306473742 +"Female",64.7855512218543,148.431176858902 +"Female",65.0877442549353,148.264304715129 +"Female",62.0775229481741,128.493024202435 +"Female",66.4651840424592,160.083864210568 +"Female",62.5478779512339,125.598026309247 +"Female",65.9785772877327,141.113930522559 +"Female",60.8896815106693,116.567487619501 +"Female",62.7509967144146,120.545152927970 +"Female",63.7355604496328,142.491203674906 +"Female",63.1992030737393,125.467253919726 +"Female",62.1486693111973,131.114126484876 +"Female",63.9714726655432,150.377404742749 +"Female",61.472110562733,118.918114328354 +"Female",64.9485469479208,141.689745352379 +"Female",62.1121735944475,118.979326164760 +"Female",63.9105157740826,140.730951619697 +"Female",65.2410722836874,150.229901485131 +"Female",64.3178639340617,114.065008310172 +"Female",65.0376071535425,140.190188753279 +"Female",57.3130235163555,93.876437404092 +"Female",63.21573488063,127.005158871953 +"Female",66.8927365581372,161.098982098272 +"Female",63.9739246653843,133.45950261332 +"Female",60.5417796163516,118.376376113162 +"Female",65.2631142388383,138.074901360749 +"Female",63.4580537184868,133.575257573268 +"Female",65.0533825651357,150.106493587000 +"Female",63.2219071891592,140.272834359120 +"Female",65.6529509085425,151.182098017021 +"Female",60.5521255218089,113.232336211797 +"Female",60.5858203774355,112.599493992172 +"Female",66.6743600250031,132.004280081081 +"Female",63.2065614774725,129.954140226785 +"Female",68.3067631381034,166.781194968542 +"Female",63.5802764717087,135.780213650099 +"Female",60.9180252416831,119.772634041478 +"Female",61.2923629781984,118.330546968483 +"Female",64.8290993311632,154.856569081163 +"Female",63.2639771202887,139.071144275766 +"Female",64.3082114857892,140.879463008474 +"Female",62.5871156965349,153.574348447221 +"Female",67.3109193480839,160.395789915512 +"Female",64.062578774024,137.254518317345 +"Female",64.241109008327,142.579014412498 +"Female",60.5115488791556,123.693718263582 +"Female",64.5508407642547,133.311057115518 +"Female",66.0369906490538,150.994562500593 +"Female",61.6989411060057,117.003707390074 +"Female",63.6719719524865,149.155947076426 +"Female",62.9675196987056,124.810695121021 +"Female",68.2692742007694,155.587147229121 +"Female",63.3917872708458,144.049387433744 +"Female",62.4880358544193,138.393841101676 +"Female",65.3136848056351,136.880954026378 +"Female",65.4110529854993,146.977077807044 +"Female",65.8200234464721,155.941972817023 +"Female",66.3323351436742,147.725695974025 +"Female",65.5819630301696,143.541242212163 +"Female",64.3409196248961,137.841074854066 +"Female",64.6237587121933,148.922934610244 +"Female",65.1762534245278,139.996347326218 +"Female",61.8348171745656,141.039826994712 +"Female",64.400188270258,140.033502099948 +"Female",64.8022125176934,149.631948558897 +"Female",66.7006517050195,173.532518008275 +"Female",63.9214312444869,142.843103380073 +"Female",64.6539409098882,135.07388613303 +"Female",66.2292600252637,169.101686826467 +"Female",60.9364387860402,118.618540931868 +"Female",62.4172265791266,130.795699390072 +"Female",62.985253475543,122.322000450754 +"Female",60.5583547356878,121.465205228422 +"Female",62.7929560060569,144.875397677067 +"Female",67.3034054445073,165.018629756849 +"Female",59.3902798125922,123.830413116507 +"Female",63.6744824391735,134.660232151018 +"Female",65.819006672503,170.627119265832 +"Female",62.6223371329449,106.593985687972 +"Female",64.1515761711753,130.434558208938 +"Female",70.1551179927514,164.003370219607 +"Female",68.2593111409607,171.856035488825 +"Female",59.9684185677438,115.476812840551 +"Female",58.417163446819,96.4221710048584 +"Female",61.3074456940536,137.065084958094 +"Female",63.5510697224229,133.378699080680 +"Female",65.4285104758149,128.039695652442 +"Female",61.4944578000568,129.420924180631 +"Female",62.1317499066882,132.808352593369 +"Female",63.4355938700062,120.184682701804 +"Female",66.9710141729402,166.398387131634 +"Female",64.4828948391264,143.339869524192 +"Female",64.1761633597464,129.602202769888 +"Female",67.0134125677726,166.436635591387 +"Female",62.681352506608,144.199475712639 +"Female",65.2820544319443,160.485732696033 +"Female",66.1390603645017,151.500754694049 +"Female",64.2980081681169,121.339437182554 +"Female",62.6332596216282,137.976895846461 +"Female",63.0841710443907,148.955189789064 +"Female",63.2324193735435,131.906070938145 +"Female",64.8180778022974,151.493586981401 +"Female",61.0085441877015,118.038053266885 +"Female",64.7432660120597,141.434997471028 +"Female",63.144169145211,120.555017173442 +"Female",63.141208873533,138.651477740768 +"Female",64.366194026362,149.660186416663 +"Female",63.2174878945598,135.601005744142 +"Female",60.8077724069542,112.436341613195 +"Female",60.4359641599548,118.098866565329 +"Female",66.3770424654759,151.309180072980 +"Female",67.6291331328271,163.112272488408 +"Female",63.091703137238,121.008872902635 +"Female",67.5354147442836,175.019563892355 +"Female",65.4010385942373,158.224826445444 +"Female",58.9969439920839,113.734396983804 +"Female",66.5689402328776,149.082480309893 +"Female",67.129880241637,146.604283911017 +"Female",61.9915610492115,129.321530441353 +"Female",65.1110636621304,129.070359037732 +"Female",65.220797969986,151.569783701549 +"Female",61.6005970877239,136.609345601026 +"Female",66.2954044521177,154.696731646770 +"Female",62.6164606594454,114.988391905055 +"Female",69.3299216808351,167.582852426375 +"Female",63.2380660879524,115.985360957491 +"Female",65.013435001229,140.600831139430 +"Female",60.6748561538626,128.615808477141 +"Female",65.3866908281118,154.239363331212 +"Female",63.1028497186618,153.520357385879 +"Female",63.0242234616811,131.639253708063 +"Female",64.4954896927827,142.495848026494 +"Female",63.6691129398454,141.914930746632 +"Female",62.1097570425215,124.483947181836 +"Female",67.0688136559148,152.456870971246 +"Female",64.5563984334083,146.411541695103 +"Female",66.0049985990387,146.668808011168 +"Female",63.8260546124413,125.556013177822 +"Female",67.6166729266317,171.112202786287 +"Female",66.5384938612383,164.161857019799 +"Female",62.5376588122446,124.920283434545 +"Female",69.0583292258541,174.727654536209 +"Female",64.1981553087341,130.296177151677 +"Female",65.065914319463,154.493133335891 +"Female",63.1767412364093,133.305962960520 +"Female",62.8924807371768,142.895625913257 +"Female",61.5004865343244,126.088338208402 +"Female",62.5092134625984,132.122065997657 +"Female",65.8175965051632,138.710513674517 +"Female",62.6992776704058,126.639871233991 +"Female",62.0045067675116,136.975398054233 +"Female",64.1571004654397,130.624199724108 +"Female",61.025224979151,121.055279305515 +"Female",62.7430546559301,135.352914549541 +"Female",62.763723922867,134.619078048893 +"Female",65.5488123192662,150.069691938647 +"Female",63.115267498179,127.508135982421 +"Female",63.7387846485527,136.204024074546 +"Female",67.4816970921321,170.617082005891 +"Female",59.762156488396,95.5003308531445 +"Female",64.0269597600027,138.87640638951 +"Female",63.9323879354694,130.936857530366 +"Female",68.2618555144814,173.395692395635 +"Female",60.2762621629998,92.0379430397919 +"Female",63.2385247118844,109.197849767591 +"Female",65.3397249536015,161.431657506077 +"Female",62.0693336458313,132.654701141979 +"Female",65.9876102918289,166.844114319683 +"Female",63.6001516903264,142.682825085499 +"Female",58.6212042754936,105.682555962401 +"Female",62.35161807096,147.776633057825 +"Female",62.064464782076,135.553886774225 +"Female",65.1329984432297,163.390770134078 +"Female",63.7804505357159,125.964967064398 +"Female",61.595700475738,125.690445565054 +"Female",63.140719924336,134.749660807651 +"Female",61.3876900470254,139.325303119848 +"Female",62.4040612072824,132.859670011568 +"Female",63.0996464734617,127.897077555075 +"Female",65.2870994428939,145.469236629349 +"Female",67.8334497064817,180.289831374591 +"Female",60.9011029650348,117.069212796024 +"Female",62.0118603437534,122.709384363170 +"Female",68.0060889738665,160.498871328297 +"Female",64.4186641653042,159.951109604137 +"Female",64.7420043709058,146.046996429122 +"Female",61.177417249355,119.026199791625 +"Female",69.1288146980393,173.743433577378 +"Female",59.7616961246051,106.181546007383 +"Female",63.8829118578512,133.274269386444 +"Female",63.5988925995822,124.829550138566 +"Female",66.5002841569765,164.212378062450 +"Female",64.39724056546,148.369054489955 +"Female",67.5558985148114,154.436977189173 +"Female",63.4876370769227,152.939283220944 +"Female",62.1989274746945,134.416769094881 +"Female",65.3279690131631,139.04543565718 +"Female",66.7661566062845,152.944405048544 +"Female",64.1231482423097,144.457759045625 +"Female",66.5485395589009,155.940305599885 +"Female",63.7915820567127,137.413177969282 +"Female",66.1837581260769,146.077559642319 +"Female",65.0345368407552,145.706062161174 +"Female",58.3992732847804,114.914523775531 +"Female",62.7552630779708,143.679072724016 +"Female",61.0169136485069,122.551131346505 +"Female",60.4106109489089,106.642293994736 +"Female",65.2381384425361,135.648212327642 +"Female",66.2136806163984,142.916533748820 +"Female",63.374620073333,130.403337418144 +"Female",65.888565594617,136.802560143162 +"Female",62.0886315795757,112.748109757602 +"Female",63.9256629281186,146.805057738270 +"Female",58.7817576324036,90.7747091832357 +"Female",65.6031682309183,152.793643566824 +"Female",66.290520331928,139.939393704934 +"Female",65.4202438116462,142.726785943638 +"Female",68.1270163237332,155.431006532304 +"Female",67.3990489604949,161.387355893036 +"Female",68.3016220795609,168.786938659971 +"Female",68.821431782895,188.691862114076 +"Female",64.1643366015432,139.644700239823 +"Female",66.5867359089946,143.998415428368 +"Female",68.1977955440264,172.381274901777 +"Female",67.9105865875531,164.395261722055 +"Female",69.3797348894693,177.700043739673 +"Female",64.5562119271014,146.335896831846 +"Female",64.9976097965344,123.868429160287 +"Female",60.7325592012657,129.93164947606 +"Female",66.6670985158094,161.034529438125 +"Female",65.4259315004385,142.451122039710 +"Female",65.0563251192091,148.805739652020 +"Female",66.2451658543593,165.61655605684 +"Female",65.3286775638761,133.693674862405 +"Female",63.761419932705,117.551987292536 +"Female",66.6157115789694,148.707952227472 +"Female",64.705436895879,146.848712168825 +"Female",60.6808456196719,113.642060430966 +"Female",63.784909476139,140.410741148516 +"Female",60.8583531423618,117.696491881752 +"Female",64.859973239722,140.784838024313 +"Female",65.80002802435,151.556946419100 +"Female",62.6330053145602,127.536664725424 +"Female",63.386660312589,114.504560767949 +"Female",62.573491827726,120.583444827689 +"Female",70.6643003503891,162.281555177633 +"Female",62.7213495566306,119.486517223659 +"Female",67.3919259559781,167.488226481695 +"Female",59.5596477140795,110.918225634754 +"Female",63.6880398794519,130.336549114258 +"Female",63.7414312550819,140.454048475041 +"Female",66.2173148683178,143.042566799264 +"Female",61.511383226993,135.051580448911 +"Female",62.7810480514985,135.628790604296 +"Female",61.9455232926966,110.657142075488 +"Female",66.2048298983819,137.164879397097 +"Female",63.7848705959536,134.228371270992 +"Female",63.128042988196,136.592800500294 +"Female",63.8894436057504,144.37596784709 +"Female",66.8372303694138,152.919820790312 +"Female",66.0554726305611,150.995672533918 +"Female",64.2646579812066,162.804122273241 +"Female",61.4896336601811,119.330341229469 +"Female",66.8302430947442,165.352733012123 +"Female",60.1078614836828,122.363789403639 +"Female",65.177100228481,134.671249126970 +"Female",62.4587916193706,136.098915292115 +"Female",61.3640524103822,115.175752886687 +"Female",63.623574223705,137.904633308725 +"Female",60.7720543835753,103.274543570465 +"Female",64.5422498909552,162.413463280536 +"Female",65.5981804983064,145.080404329489 +"Female",67.5170380601641,169.308893401756 +"Female",61.8314398602573,144.912759286863 +"Female",57.6548850278643,98.8767225455992 +"Female",66.1629308541201,158.172355213959 +"Female",65.6923233964042,174.794468987562 +"Female",58.6428888204366,91.1363036572996 +"Female",66.2150732581635,175.080993699551 +"Female",59.0017419565727,102.478664670655 +"Female",67.9652660098935,147.304044263115 +"Female",68.258236847678,165.845779437455 +"Female",64.13259552012,150.518295372649 +"Female",65.05626826711,141.160100509472 +"Female",60.2133953702512,109.662813179920 +"Female",61.1201164293565,123.581164718325 +"Female",69.1192918242978,168.864402796581 +"Female",66.7398825824609,152.936623367452 +"Female",61.7122667642139,129.777130481080 +"Female",66.1685183044283,172.006997965417 +"Female",56.0786997324948,94.4883740514904 +"Female",67.9598135606305,175.353450340295 +"Female",63.3499879341012,139.223151035297 +"Female",61.4502821665807,100.817996164838 +"Female",68.5054423225546,176.904921236491 +"Female",61.4680996449647,122.868498594010 +"Female",68.469715400869,172.577358071262 +"Female",65.4030257273507,146.950388715448 +"Female",56.108902096181,80.5312593808895 +"Female",67.4643693664088,175.837259465974 +"Female",63.9165972026092,145.624290589582 +"Female",64.8066858300476,138.485217717169 +"Female",61.2244579969429,130.539050835342 +"Female",63.5720738747121,139.189754635499 +"Female",58.5038208838195,102.124460727719 +"Female",68.1601590941242,158.096183401911 +"Female",63.7560237265498,148.878322871828 +"Female",66.3996869750026,148.633153610737 +"Female",59.5676198493025,130.119245608480 +"Female",64.0607208343705,137.798691417923 +"Female",61.8229563157747,151.621748021954 +"Female",67.7635043217747,154.041758704619 +"Female",59.550766330213,132.98838873545 +"Female",62.667580120138,124.033977823712 +"Female",65.9417881940748,142.839645892174 +"Female",60.7868835207597,133.235538441663 +"Female",67.3824748767537,158.817502397030 +"Female",62.8140534616654,114.333915530655 +"Female",63.3665552927455,128.037235319090 +"Female",67.3571661976723,163.667183228395 +"Female",62.5657303998949,128.871196256066 +"Female",63.0711709583662,141.214977779151 +"Female",62.2346329852014,118.852705355753 +"Female",60.6794569073923,120.952343048977 +"Female",62.1406891954094,117.287234136288 +"Female",60.5033265387832,117.673179032708 +"Female",62.1839823428074,131.659119191964 +"Female",64.489375631941,141.926122065719 +"Female",65.268411971242,148.201080454699 +"Female",66.78882198784,152.410698939111 +"Female",59.8913966191576,108.625579032739 +"Female",66.2065976991153,169.089759579162 +"Female",67.9022522420795,150.724448776685 +"Female",59.0866684886879,101.037153610585 +"Female",69.1291556325151,164.81908286244 +"Female",66.81189039961,139.786475579899 +"Female",64.1504027430315,144.985145957166 +"Female",63.2632746056996,137.364902527897 +"Female",62.6176900041191,138.082482281735 +"Female",64.7256018545135,157.971880190933 +"Female",63.44051580012,140.143427227101 +"Female",63.4029164816637,118.271687679224 +"Female",64.295861990972,120.115820761886 +"Female",60.266154767081,106.138265858869 +"Female",64.923624559071,122.485795292252 +"Female",66.5173447485184,143.074198031542 +"Female",64.3289227653181,140.181267726941 +"Female",65.3410408308385,148.721399690314 +"Female",62.2422084376345,133.324581124254 +"Female",60.6263943477523,128.617380700552 +"Female",64.469422853858,135.193971875581 +"Female",66.414583993891,150.957699589141 +"Female",68.9749909103401,167.219940456707 +"Female",61.9842298634471,117.640454127762 +"Female",62.1608492873229,118.512310847137 +"Female",61.4105897100327,139.899818308485 +"Female",64.7471479759165,124.546685632424 +"Female",63.8440598448956,140.008238050349 +"Female",66.258258030821,160.530052507513 +"Female",64.6045811718413,151.030972352349 +"Female",64.4097945427114,136.245058498943 +"Female",67.8247150033196,153.269571608594 +"Female",63.732847083697,144.777657493938 +"Female",69.2719782406486,168.181741476728 +"Female",67.6435386568677,145.907967969146 +"Female",60.5684836937429,110.490718413001 +"Female",60.037287660545,117.605873795749 +"Female",59.6266045472612,107.471732438746 +"Female",68.3334475088363,175.134535138437 +"Female",65.6879082977069,158.840720250103 +"Female",68.1679857043417,164.961351967609 +"Female",67.5183990233758,151.764313582989 +"Female",63.4626198297076,126.689845437587 +"Female",63.7430398445612,126.293962316978 +"Female",67.0736607623134,160.459758969941 +"Female",62.694682057334,126.692714269078 +"Female",67.2346539451645,153.426506052046 +"Female",62.8032334146675,126.010565667123 +"Female",62.1175122119449,137.282178100606 +"Female",57.8073228489915,107.705025913598 +"Female",63.4138540642601,121.200849225363 +"Female",62.3855341496913,137.533670497237 +"Female",62.0501442011013,127.051031458001 +"Female",63.7780793626365,149.894951440861 +"Female",68.7174196489747,166.799975787303 +"Female",65.0779682795104,148.733153676712 +"Female",61.5606091197838,116.626798287403 +"Female",61.7189238838311,121.606508600220 +"Female",64.5216098418886,147.025010556358 +"Female",60.7710584976098,109.837385673708 +"Female",65.2547298526553,140.505386618028 +"Female",63.2546663036786,135.865663634336 +"Female",65.0422212012702,142.904254064657 +"Female",63.7838704037937,139.340537312666 +"Female",62.9200494946017,131.57367513268 +"Female",63.271718526254,149.122726526788 +"Female",64.4243382873525,136.976951830596 +"Female",65.1550798754679,137.806165718192 +"Female",64.2428154724719,138.406496385409 +"Female",61.8936565184405,117.646102933760 +"Female",62.7559587583006,122.515319572172 +"Female",67.7112315413313,145.408446289980 +"Female",66.2939197475216,168.143509951866 +"Female",58.5775758255851,109.051629285320 +"Female",61.651771889465,129.028241356304 +"Female",58.4709836424501,103.045952845206 +"Female",64.9563447510511,144.759089436304 +"Female",57.9470911003493,91.4689976337068 +"Female",68.1114186443258,154.785882837839 +"Female",60.1438688169522,107.166050588278 +"Female",65.6426217600759,155.911023326178 +"Female",63.8227248654108,138.895712416732 +"Female",67.5466633053304,150.887869458715 +"Female",67.4502833890771,168.517067145212 +"Female",64.9641466246892,125.820071532799 +"Female",62.149295755193,131.114972670710 +"Female",64.6013585348886,168.907893686434 +"Female",65.1142153551371,142.971914418017 +"Female",64.3105091847238,158.745129301723 +"Female",62.6593439584431,124.257211247832 +"Female",63.963226842032,110.581001855524 +"Female",64.9346429569326,129.219354503378 +"Female",66.6903528715739,157.793825220765 +"Female",68.0222823506091,162.652528233230 +"Female",62.9027288010334,137.041794764637 +"Female",63.6657977906739,122.148252708969 +"Female",58.3768121939762,96.5792120329965 +"Female",62.2438493000684,113.29063745559 +"Female",67.2772495748027,155.642603187778 +"Female",61.9236976699269,134.682126594453 +"Female",61.6466411754478,134.475773050625 +"Female",63.132339355837,130.514736487237 +"Female",65.6783060394966,146.513376669120 +"Female",61.8272781508049,129.68531010624 +"Female",61.6664350850308,120.606159272429 +"Female",65.6981278803086,145.625184197326 +"Female",59.2644116953942,117.535231988082 +"Female",64.5206270450062,133.294238258861 +"Female",63.9056469656532,169.079129369228 +"Female",60.6143859598376,130.370011518555 +"Female",65.9394256591248,157.160363540210 +"Female",59.2796539717926,86.8907118416325 +"Female",66.8024913405,152.067766650711 +"Female",63.7905286347469,122.121197764408 +"Female",65.6820332301062,137.067229035461 +"Female",67.4130635740314,146.090040562755 +"Female",64.765449819323,150.560675298113 +"Female",66.3239655671198,148.938463980075 +"Female",63.6953074251025,120.965576317010 +"Female",61.7503104664995,141.285499543180 +"Female",62.3446077262348,128.732390202663 +"Female",66.3874352909995,124.277551954560 +"Female",61.5954743189745,140.376801203415 +"Female",67.9417369115361,142.961977935272 +"Female",64.7154646660173,146.189493253909 +"Female",64.5056539129233,143.043457846382 +"Female",62.7888677862447,130.071925160203 +"Female",69.2467636974264,168.218019463714 +"Female",60.9495616747468,114.791401025589 +"Female",65.7774433977874,167.686231738308 +"Female",70.0839211281893,165.771322537549 +"Female",64.3990911588392,141.730512557911 +"Female",62.2671781021688,129.351649873223 +"Female",65.3415308457202,164.030416532173 +"Female",65.880013996992,131.761442822398 +"Female",60.6803877196751,119.195697933808 +"Female",64.3870614645801,133.115212860813 +"Female",68.0593085975349,150.979677796380 +"Female",63.9896920632008,141.487752526284 +"Female",64.1020130333803,141.745050046555 +"Female",64.7490074581613,149.331487345740 +"Female",63.1516293523298,119.191194477355 +"Female",60.9386984898315,135.601568354786 +"Female",61.6943371258118,122.746494612735 +"Female",65.747710914558,139.838362880126 +"Female",68.668672203965,168.540757514377 +"Female",61.6855430637008,126.007336558882 +"Female",64.3746173880224,135.623948166457 +"Female",60.443789129043,109.688325769838 +"Female",65.6063503885667,156.043087297473 +"Female",62.7842763453096,109.029690178438 +"Female",61.100516080586,114.955814222543 +"Female",65.0203140186567,156.735692835617 +"Female",57.4813920896452,87.4965711068527 +"Female",59.5271969623395,123.044667837303 +"Female",62.196274493421,120.008198718904 +"Female",59.9980659303265,113.944988323158 +"Female",62.0150135779691,121.239436200904 +"Female",62.5905347139169,119.541594250199 +"Female",68.621342499956,161.350356478781 +"Female",60.8543111878693,140.811513978200 +"Female",62.1458607025379,128.967996843239 +"Female",59.1817312308563,106.772488510281 +"Female",61.3511138475123,121.966343592203 +"Female",68.6038356448301,179.18192407042 +"Female",64.8314493670077,128.344592012362 +"Female",63.013256878704,121.787566579416 +"Female",59.8377120086964,127.947748191752 +"Female",61.9627954969954,133.374761452122 +"Female",61.2458279351572,102.918033517196 +"Female",61.73903740721,127.160584033742 +"Female",62.6188631643794,118.716168129320 +"Female",65.4808205215746,144.643031686080 +"Female",62.2118424372008,114.850762301452 +"Female",59.9985291119596,96.856488099381 +"Female",65.5315538303727,158.598827675123 +"Female",64.2466719555024,145.028015212802 +"Female",64.0906870957569,140.530167167976 +"Female",62.5044968802861,142.639641930986 +"Female",62.6435170912578,142.887379341998 +"Female",66.644634715642,145.540189733852 +"Female",68.1229008318943,163.344631708686 +"Female",62.0080771491404,136.997220424575 +"Female",65.5935629924078,150.935054290217 +"Female",63.5779273506287,140.760938882789 +"Female",65.5633590016224,141.291784270822 +"Female",56.7576036320284,88.8848531761247 +"Female",58.0483879435182,92.3258299115623 +"Female",68.5906667720027,171.175342045736 +"Female",63.7011397144788,152.904962789341 +"Female",63.1788467544409,139.052102359510 +"Female",67.6321277689353,164.86760520507 +"Female",66.5400154996689,159.992034952514 +"Female",62.231306437616,136.681238290303 +"Female",60.5786306823931,97.9775540088973 +"Female",63.3503418961264,136.181916612555 +"Female",67.0492443214269,160.738096384215 +"Female",67.518692667356,170.330889207843 +"Female",65.6517073770095,159.490164305561 +"Female",62.6238524863747,142.946827368472 +"Female",63.5004535296126,137.198700301645 +"Female",65.8710380337067,156.432378466109 +"Female",64.8472337284786,144.906885673795 +"Female",60.2574933105572,110.101139831754 +"Female",70.9321942044308,175.954400609796 +"Female",59.6643406247125,107.322245909936 +"Female",62.195908169483,137.284026960041 +"Female",66.3091009385077,147.586500017265 +"Female",65.679010990448,148.292152806936 +"Female",58.8583977310176,98.549364155062 +"Female",63.6902996213132,132.971110377536 +"Female",63.1667384919388,130.740933092532 +"Female",60.5977270957684,106.969691988335 +"Female",62.8250805619894,111.615089915203 +"Female",62.7136523745064,119.789782668783 +"Female",62.2050376294717,122.917881852374 +"Female",63.857098025805,125.401719607698 +"Female",60.9780090660765,125.104335777660 +"Female",66.7000747594028,135.856007822104 +"Female",60.3034430760768,134.694862750144 +"Female",62.5594947136909,129.439231106236 +"Female",63.0080671298698,139.393372975680 +"Female",61.3992063189541,118.243214867285 +"Female",64.0136536061212,121.812722244771 +"Female",62.1000960989526,109.349031666849 +"Female",65.253688546256,149.531118367038 +"Female",68.0401433127524,161.881840823847 +"Female",65.6055753685281,136.143748949103 +"Female",65.1748308761764,139.989934059748 +"Female",63.715969976713,144.256790545024 +"Female",64.9670945229996,134.724966128497 +"Female",62.5864637847256,132.732254677612 +"Female",66.0738700860418,162.949944756918 +"Female",60.6668224727029,121.598168438201 +"Female",64.8466441917349,149.668368517619 +"Female",62.3211968836268,132.118590072080 +"Female",63.5249762127878,147.026850497157 +"Female",61.0863776667252,127.166576438328 +"Female",64.1710760328905,127.212313432553 +"Female",66.2615270525255,153.761022070456 +"Female",57.2079464481391,99.494823757459 +"Female",63.3228513649821,130.875115859355 +"Female",58.9805742499834,105.971759903372 +"Female",64.3936934541556,152.223401910660 +"Female",66.3603885993806,152.757084683682 +"Female",64.5370480426537,130.670259933203 +"Female",66.5951368299181,154.317997769328 +"Female",64.7612257338878,151.942264691657 +"Female",59.7654023621743,133.479484363974 +"Female",63.3494163565599,156.005407993291 +"Female",63.9197225629009,146.832640146898 +"Female",65.268557290483,161.477744308455 +"Female",66.3915957093158,148.055640138066 +"Female",64.8531982689437,135.013854029631 +"Female",66.8956296719244,151.531283381560 +"Female",65.8972696829023,150.478851413989 +"Female",63.749253320049,133.511540858199 +"Female",62.4956808670057,137.536814793135 +"Female",66.0595701938935,141.301108236847 +"Female",62.3725869576043,135.722305560273 +"Female",63.4422117789602,134.801973619515 +"Female",64.5289979382754,131.120790736503 +"Female",64.2483429811119,139.252338622666 +"Female",63.4561187875777,124.031688109340 +"Female",64.7457909907791,147.318865953805 +"Female",63.9021615105496,150.187598464574 +"Female",61.0724435059547,111.765896991427 +"Female",63.1808638527067,117.010256885193 +"Female",64.2182482784235,137.606344649293 +"Female",61.49888657429,102.696974533694 +"Female",63.9768333597098,142.372879940519 +"Female",61.2575726538818,131.469281576650 +"Female",65.656126049222,136.881979564154 +"Female",64.1241653747849,135.003347531826 +"Female",67.7290819215933,147.505871272483 +"Female",56.6304119764382,89.480480272958 +"Female",58.2136140977498,98.869252929314 +"Female",60.0407793463283,125.681644042020 +"Female",59.4974060191257,125.601269024671 +"Female",65.5562572176743,133.352164363273 +"Female",63.0684183548493,131.157066933971 +"Female",62.8646332718698,120.247147644501 +"Female",65.476902588083,138.124369185163 +"Female",67.3204066473136,149.078827195281 +"Female",60.4068930646657,122.223338680230 +"Female",62.7904953943164,145.992045419017 +"Female",64.4824946688634,140.010825245196 +"Female",63.7948401617126,124.655638900198 +"Female",63.3741426139251,138.024803709393 +"Female",62.79478140952,123.517806382056 +"Female",62.8948396869464,129.943212021255 +"Female",63.1251364340679,120.274188626291 +"Female",61.3884204016023,130.734180311493 +"Female",65.0581465772376,142.308517030730 +"Female",60.6471053112835,121.880256816862 +"Female",63.8848755242758,126.938871407855 +"Female",65.207359450851,150.498578930879 +"Female",67.9630161715707,162.409988494667 +"Female",62.3024965761823,128.387109264372 +"Female",66.7717159734268,126.360234069603 +"Female",65.223136216003,129.136069457107 +"Female",64.8142919970243,145.905983073062 +"Female",61.3051465213603,122.534743665854 +"Female",64.532862779695,148.206743267389 +"Female",62.0246228538539,116.971457537277 +"Female",61.7814522684375,119.956198553202 +"Female",64.2355616328491,141.401345178251 +"Female",62.3417961766414,137.492143041157 +"Female",59.0303022780839,107.701246562834 +"Female",65.2594419654651,149.599596041979 +"Female",63.6831809886458,127.597515249022 +"Female",66.8941112254811,140.3460606498 +"Female",59.1696039759662,112.043944486811 +"Female",59.1390873118783,113.468730417278 +"Female",60.9662640820926,109.946334605674 +"Female",65.7975156802185,134.342744519461 +"Female",66.4221167700854,156.752631345030 +"Female",57.5402686323147,96.190511238138 +"Female",61.9059184995613,114.568376671197 +"Female",65.204481018529,143.563339319018 +"Female",69.1902638633848,164.044585015642 +"Female",64.0088764698066,154.051429787699 +"Female",63.9573089571671,127.444970022639 +"Female",66.2692991071185,141.902023998710 +"Female",65.1726768644519,143.878029369242 +"Female",61.9323519094684,124.780164610408 +"Female",66.8136805613258,168.597929485838 +"Female",62.90082474974,137.420455826089 +"Female",62.3754184915593,134.870906081511 +"Female",66.842898079791,151.464648722805 +"Female",63.8875151445974,124.753377622056 +"Female",66.8475848218763,165.272511306906 +"Female",66.5046532313147,144.210830467714 +"Female",58.7063154217927,101.990470324876 +"Female",63.177398804039,138.022592491558 +"Female",65.1514754236429,122.751654123712 +"Female",63.0850236136518,124.459625457958 +"Female",62.0998542419859,133.714224546198 +"Female",64.5880784104178,129.393176124176 +"Female",63.293828919941,159.82130423599 +"Female",64.0910936609475,142.162552780834 +"Female",62.2059641381313,130.526883320967 +"Female",61.1919833059315,103.586385470313 +"Female",67.2558041753211,142.866245151200 +"Female",71.4389467760974,175.035491537161 +"Female",60.5506048942084,108.215882832314 +"Female",62.6116600750035,125.094021930470 +"Female",61.8794633631368,108.136639402511 +"Female",62.3157520666132,123.783563825451 +"Female",64.0633172180763,116.471442701904 +"Female",60.1948969474763,127.860000106261 +"Female",68.2305543548021,161.334232064197 +"Female",65.4201831879245,134.612715838218 +"Female",65.6404834126995,148.498919556826 +"Female",59.5129816980911,106.636429529511 +"Female",64.9811959751322,129.839588948602 +"Female",65.8778749776462,159.815468791593 +"Female",59.3077871493332,108.425989559395 +"Female",66.0721927822985,142.595275001706 +"Female",65.1908596008262,152.499760668414 +"Female",65.6935888686274,140.608412362972 +"Female",62.5864298982446,133.928179771128 +"Female",66.4109077861082,161.99138563683 +"Female",65.1295282301444,132.063776409835 +"Female",65.3833115263583,129.375501986123 +"Female",67.1797608759326,159.318643402433 +"Female",64.2619995713383,148.390479746549 +"Female",64.1725254231146,142.433423672126 +"Female",61.1032162867816,120.409350956552 +"Female",68.244709889445,158.251718872370 +"Female",63.4199546377084,125.962116034111 +"Female",65.8807620656729,159.873201407205 +"Female",65.0025119975338,156.057175933406 +"Female",61.7095710275463,120.604339328759 +"Female",69.4368896801976,170.138856676594 +"Female",65.4316983367532,153.818743323927 +"Female",64.8425948916241,142.879180453390 +"Female",64.8896872138484,153.586247185204 +"Female",61.8251695502446,144.555484485503 +"Female",63.9426236505085,125.194118433785 +"Female",63.9211759989884,140.883834629129 +"Female",60.7181902703438,116.690215074499 +"Female",63.9798230457517,156.624549709382 +"Female",68.6360765090186,156.413094350772 +"Female",61.2984846219795,137.994478820382 +"Female",60.8895008371525,113.062457650902 +"Female",64.1226611948796,141.051938228504 +"Female",68.2110663412755,145.486903558213 +"Female",67.0223707095967,162.026552396676 +"Female",70.2662739066393,158.234595970963 +"Female",60.8427403570946,131.305434159197 +"Female",62.8173539608313,143.248770278712 +"Female",67.690562078224,177.50062892361 +"Female",61.2524352280807,122.824105041194 +"Female",66.0766818709977,156.200706089896 +"Female",69.3367356628538,167.635786598418 +"Female",60.5792080632693,127.354500043278 +"Female",61.6541746571694,141.49632459471 +"Female",63.7376822067027,139.674979024569 +"Female",62.2307136151842,108.192002771498 +"Female",65.1828932404828,143.764129771746 +"Female",65.4975909127757,151.542118171723 +"Female",65.2424430570022,144.757202709172 +"Female",65.9190369939423,165.064970123921 +"Female",55.8512138219031,103.767137286226 +"Female",58.8096536336339,93.0540913754368 +"Female",63.7000670167339,142.322039721723 +"Female",62.8523317573488,145.315497088658 +"Female",64.8968616591026,143.344692374485 +"Female",63.3906337002984,110.513180867796 +"Female",64.2352160578657,143.313587978686 +"Female",63.5354693614422,137.622958502453 +"Female",66.2040391981081,153.413708691206 +"Female",60.3946356235736,130.785432134824 +"Female",69.6262621971809,159.867870788118 +"Female",67.2972538491168,161.644762075658 +"Female",62.5900175545683,132.321686028614 +"Female",64.8327522241635,136.430728165546 +"Female",61.9245004850171,113.661109982740 +"Female",64.1104988809597,146.75626290364 +"Female",61.144746927994,118.798229605216 +"Female",64.5877950681436,140.774670960951 +"Female",64.3612490796002,141.201045206224 +"Female",66.066489194068,158.503983325740 +"Female",59.8302635762905,99.7247419691343 +"Female",64.0078381283592,135.667416355705 +"Female",64.1109153622425,134.164839382822 +"Female",61.7743660293559,122.405364444669 +"Female",64.0569755425466,139.436196765653 +"Female",65.9355551232688,152.120566956733 +"Female",63.1185882518193,122.115106126656 +"Female",68.8046648653474,167.946171555331 +"Female",70.2740232838408,187.001787580092 +"Female",62.3255550442168,144.942334803669 +"Female",59.8150485166839,112.097417070758 +"Female",62.9964835977481,122.564700136315 +"Female",61.9834447222965,110.514436990301 +"Female",64.159390750059,136.847598058533 +"Female",60.5229120730461,124.742290932328 +"Female",64.1358562661878,132.991795162713 +"Female",63.7274692550505,140.025285076403 +"Female",66.167536635487,153.750443897188 +"Female",67.7366840897626,152.706192826675 +"Female",67.832737274091,160.354768837742 +"Female",58.1096631726451,96.2662501541608 +"Female",61.532999160452,115.202312834372 +"Female",62.8944904066328,151.347465107385 +"Female",63.1044489208074,138.335712739484 +"Female",64.0729203023192,127.223188135152 +"Female",62.4106343023137,143.347460113507 +"Female",64.3168663346422,143.859569230449 +"Female",65.8810668704332,166.348793459138 +"Female",66.6248838059415,141.187261572672 +"Female",62.0264796805277,123.172683968554 +"Female",61.4673326778037,137.143537430737 +"Female",60.8257662539451,113.619397986316 +"Female",60.5887991674755,109.306131003385 +"Female",60.1241670269045,119.057425460790 +"Female",56.8560821293767,97.3649783271705 +"Female",61.3039241329657,128.269264728816 +"Female",59.7074846568776,109.923623246467 +"Female",69.5981068230002,173.529944739299 +"Female",66.9426227608456,136.132223109725 +"Female",58.6463298569074,96.5248498312934 +"Female",60.7097933802161,117.333173821634 +"Female",61.8397127739331,127.327628233853 +"Female",66.8873234452573,162.872453448311 +"Female",61.0419050946963,131.702313600744 +"Female",62.9523215491681,134.733745611152 +"Female",66.36787715073,157.616005204023 +"Female",65.6741783451272,159.890413782323 +"Female",60.6707844690725,100.559840283468 +"Female",63.1669759374437,120.944577217097 +"Female",65.6467141843977,164.557520932076 +"Female",58.9640689917515,91.785549827755 +"Female",63.5521199204627,131.298644601033 +"Female",66.646720980068,151.445538528458 +"Female",65.0754189285491,140.052978913209 +"Female",59.9002745344656,118.468947054012 +"Female",62.031264677257,128.748688352743 +"Female",68.6872321923365,173.115812588004 +"Female",67.2482236059834,172.713624757025 +"Female",62.5236118770252,127.149734648921 +"Female",60.797820249182,125.934423770373 +"Female",58.6883916120875,119.599000429571 +"Female",64.8613181346612,137.829508366699 +"Female",70.5443059863273,196.107116001942 +"Female",66.2507508327093,140.534427474639 +"Female",62.7591767919005,134.744757267404 +"Female",60.4340546221386,118.481624096983 +"Female",64.8313595058783,143.086255999237 +"Female",61.6306358437811,141.980447214242 +"Female",64.8968783608954,149.545199984187 +"Female",63.2655798154007,148.984215793627 +"Female",64.4352331456538,122.563653466312 +"Female",61.7645690001265,147.957716829586 +"Female",60.1298674461234,107.919315173185 +"Female",59.3125340407551,92.0430875699975 +"Female",66.9410546146316,135.010041347243 +"Female",63.0386943759791,141.170727562953 +"Female",65.5374631224154,149.294182633801 +"Female",63.0342601763786,143.324946029736 +"Female",63.3645364244639,135.900351891681 +"Female",65.2223895395911,153.450440466032 +"Female",60.3601748517583,127.841812513999 +"Female",68.1692678882482,160.347225467517 +"Female",64.7436431302013,141.980646731978 +"Female",65.3971324673664,141.506019820105 +"Female",62.9468079064824,131.267399254072 +"Female",67.109840475482,161.548252255358 +"Female",61.2664978779032,101.244919138932 +"Female",65.0894921495665,133.313495422583 +"Female",65.2849460379949,129.293602421454 +"Female",64.9917135704149,137.801970334798 +"Female",64.8412153964244,154.425304428477 +"Female",60.1908582824432,117.955518204098 +"Female",69.6403815578602,157.014287866744 +"Female",57.6751810901334,125.941865449606 +"Female",61.5694742826729,128.539311293180 +"Female",57.5587103279895,105.173923396841 +"Female",65.7985442654329,143.790203295817 +"Female",62.9525409843533,120.673464017242 +"Female",69.0511806029094,166.451937309373 +"Female",64.0274263083623,146.789985656520 +"Female",59.4990773904988,128.915658582563 +"Female",64.2339455280588,151.540788870287 +"Female",65.7867230221436,159.373921755772 +"Female",62.1987073393976,122.548925366031 +"Female",62.8282480084833,123.071175876530 +"Female",60.673430810886,112.715432765977 +"Female",60.7848160377108,114.892326418711 +"Female",60.1595090304518,116.106376111620 +"Female",58.644611816453,95.7879688678834 +"Female",64.2946984483287,148.066097319915 +"Female",60.7509152510232,113.418401494811 +"Female",66.1904972693211,151.321738329975 +"Female",65.6829449604425,144.236194928815 +"Female",61.5501125732668,129.754367532567 +"Female",63.3965048272174,150.542043818078 +"Female",61.9454767856846,125.224706814081 +"Female",64.0512364004406,135.794065719530 +"Female",64.5732678455844,148.475554544558 +"Female",63.4970658194016,134.915438582361 +"Female",62.6701568243573,111.080658285661 +"Female",62.8103875742565,124.267588126539 +"Female",62.6566187480512,123.870493713578 +"Female",59.4361512802665,111.864139742294 +"Female",64.493942764868,127.704661003082 +"Female",60.6934108818164,130.017847924579 +"Female",63.7099594764057,135.849924747892 +"Female",59.7985872655286,102.787826403860 +"Female",63.5241898654944,129.910745914848 +"Female",68.4605823450771,170.106711796821 +"Female",66.6483558171759,159.593544317633 +"Female",66.7193769639648,146.891576814818 +"Female",65.1574535737745,136.754348214373 +"Female",69.5004004743538,178.020674450648 +"Female",63.0374496097039,131.048845282274 +"Female",60.6797234360632,114.831030020050 +"Female",59.1041956260695,103.418916656386 +"Female",60.0024634791096,114.445720805035 +"Female",62.7925657799972,119.173397008303 +"Female",61.5508608045011,122.883437440469 +"Female",67.4807367148067,164.455343751580 +"Female",64.7910182373408,140.400913206640 +"Female",62.4409303955215,121.427728189135 +"Female",66.5538980156604,150.016876075446 +"Female",62.1852212947346,111.099321508592 +"Female",65.3104361385266,136.434393105399 +"Female",67.8363970813314,156.274296728665 +"Female",63.7812151046128,166.105800451365 +"Female",61.3340325087736,107.44566005185 +"Female",66.3182407416543,138.537010044666 +"Female",64.1160229130275,134.301424967617 +"Female",63.1043474623505,116.902770597259 +"Female",58.2121647882327,101.757024898513 +"Female",63.001431689828,120.185888879339 +"Female",59.3400072593782,110.183222127801 +"Female",63.0306350404741,126.733534709637 +"Female",63.5205745629814,130.429113623409 +"Female",62.0987571475771,136.382333817617 +"Female",63.1826177658809,132.246094440381 +"Female",65.0659658600642,153.570518323377 +"Female",68.6856629343441,165.924318727404 +"Female",63.0362941884185,130.117520780242 +"Female",63.2583509652557,124.217167528261 +"Female",63.9132602193041,131.029178550155 +"Female",58.19008891566,107.057140817042 +"Female",57.8007687381103,86.1909601800444 +"Female",65.3674681551483,139.195691983163 +"Female",62.0596795459491,122.197037105345 +"Female",62.598648179779,114.766881635338 +"Female",63.7111525803582,140.619451067452 +"Female",60.1139197250871,127.712452805848 +"Female",67.6125139624813,157.760811230146 +"Female",58.3872722960955,85.7930852355214 +"Female",60.9100242709036,120.271964808635 +"Female",66.985923375184,142.920389277444 +"Female",60.568529487382,106.791251200868 +"Female",61.6219921069495,123.233766232869 +"Female",62.460812613958,126.679585492026 +"Female",61.8317180411029,116.795015056221 +"Female",60.8705857147916,115.132236501892 +"Female",66.1571798492929,162.339163832511 +"Female",60.9427947533818,110.921330982054 +"Female",60.4961932301216,111.831682461495 +"Female",66.1677332242878,153.677836355102 +"Female",64.5172151999749,139.012683868889 +"Female",63.4368313598477,141.579212145631 +"Female",62.3106683042188,131.363274836162 +"Female",62.8984140743408,125.040891841666 +"Female",64.5120640767188,132.627365790212 +"Female",64.7486644480899,133.541417829553 +"Female",63.3381848169439,144.704339499288 +"Female",62.8117338858984,123.091287052690 +"Female",63.4973037194707,146.229435886445 +"Female",64.0548106472709,149.753473914740 +"Female",64.3476315971152,138.815261189938 +"Female",63.0824857917176,135.946957015882 +"Female",64.4019345814973,139.124799447001 +"Female",64.6824790849082,138.854072645178 +"Female",67.1920732004003,158.342220439684 +"Female",63.8680599445794,126.834671797464 +"Female",63.3134176904304,137.276959741850 +"Female",59.3308190713878,102.515972835535 +"Female",62.6358440193902,134.418862222534 +"Female",60.4213849397397,116.101256403700 +"Female",61.658446198194,114.569944695417 +"Female",60.8342383869735,107.281036034548 +"Female",64.6190905970177,121.575262542001 +"Female",60.6237811608255,120.382573166409 +"Female",64.1773425630975,146.636834123204 +"Female",64.7067164433632,161.677903420103 +"Female",59.9682045037674,103.616818443881 +"Female",65.2941650150928,138.807700108306 +"Female",63.8423043040513,129.555974846026 +"Female",63.1686483726241,142.010379059998 +"Female",65.9596911675545,149.895441706738 +"Female",66.1484588506305,162.244457456505 +"Female",62.791409301769,120.420103328205 +"Female",65.7486011903599,142.067437927928 +"Female",60.9720209774758,138.428510681648 +"Female",64.0955183782878,149.274099544133 +"Female",66.81442135179,156.838580291276 +"Female",66.423943654048,132.616279779813 +"Female",65.8645192773374,158.167168203670 +"Female",59.7613696356758,103.944018725278 +"Female",64.1061809159585,144.765942818329 +"Female",59.6930163509511,110.370347859948 +"Female",62.7895240833095,141.718207045392 +"Female",65.9288687376648,125.515854861365 +"Female",63.1943426938051,139.531254744664 +"Female",66.6271443061042,160.135141832633 +"Female",64.5314780193245,144.088522083089 +"Female",61.7593413335719,110.025793235236 +"Female",67.3850648614665,162.550612450752 +"Female",63.2769596158887,116.761840344260 +"Female",61.1220454563971,123.597949379234 +"Female",64.2637556542925,132.283150711151 +"Female",69.9952020289046,176.550874225454 +"Female",68.3654384654345,153.742635126006 +"Female",67.5078440178079,171.591684287123 +"Female",64.0435875096738,165.326424284525 +"Female",62.5073353104524,121.546400468097 +"Female",63.5395838419634,143.363631326756 +"Female",63.0402794926928,129.545202140483 +"Female",65.7360571868887,139.640354771554 +"Female",66.1276368951701,150.433688847781 +"Female",66.1943499787524,167.734703540521 +"Female",65.6327984107276,138.333397755781 +"Female",62.6829438790182,134.899864407116 +"Female",63.7376719628781,137.940289517604 +"Female",60.798270827389,109.096956288588 +"Female",63.5101510150327,114.087595997379 +"Female",63.4336075291544,145.973897875105 +"Female",62.0601992542499,115.381538188906 +"Female",64.3933663699142,127.743307082642 +"Female",63.8220671456443,153.646201172092 +"Female",62.2492144489699,116.605800703524 +"Female",63.4504017553677,133.515492001933 +"Female",64.0828652967109,133.451352646078 +"Female",63.8962241979306,112.425137694589 +"Female",62.6449123675215,133.110079883077 +"Female",66.4359022522135,145.784964650180 +"Female",63.8632225365902,137.153446020002 +"Female",63.6796180218315,154.912211310770 +"Female",64.7519358010767,138.39317735973 +"Female",66.2530860273699,153.853087444795 +"Female",62.492464178453,117.307067163667 +"Female",65.4815211968108,147.739952846827 +"Female",61.1673763732543,111.572765675295 +"Female",64.3883960776249,130.926901853671 +"Female",62.7192129702128,138.230234010648 +"Female",60.967807186911,115.502468491191 +"Female",62.7631349334808,117.654076787706 +"Female",62.2113989087749,126.001493693523 +"Female",66.195570717868,167.791169173519 +"Female",63.7726037768398,136.298244324940 +"Female",65.8048472802124,156.362511063534 +"Female",63.5917907507405,128.614684828773 +"Female",59.481420066797,108.895812844617 +"Female",63.7099866204872,129.272667510002 +"Female",60.5318365898715,110.363797455051 +"Female",67.8487391021176,163.580383909747 +"Female",60.0155623206961,117.666953570492 +"Female",64.3544151166757,139.315165978067 +"Female",64.2952841312693,131.238651146887 +"Female",60.6596553789213,117.931116327742 +"Female",62.1921763613132,119.824287836539 +"Female",60.1765377712381,109.258419458198 +"Female",59.6405315946486,100.527747331819 +"Female",63.8819459330222,142.992135310370 +"Female",64.4493418991982,140.337115300162 +"Female",64.0887827184629,135.821993620792 +"Female",62.4803421519663,153.286220593713 +"Female",62.2665917969345,138.381679212020 +"Female",59.7087305628415,114.936629125138 +"Female",65.5415388083143,134.699063621454 +"Female",66.3469350914194,156.789401979836 +"Female",63.2447747592981,125.693729070407 +"Female",62.8199231659251,102.400373646523 +"Female",68.410117222915,153.465334505013 +"Female",62.716831922634,108.592687133970 +"Female",64.2805041951824,162.298996107723 +"Female",61.9241968136952,125.821691740655 +"Female",62.7371890177554,141.343095272557 +"Female",63.0930940057529,137.112267429623 +"Female",58.4312689585081,114.504437766370 +"Female",69.3584863661227,181.620926855241 +"Female",67.4607919735716,157.258668127919 +"Female",62.8356806595155,128.850671697200 +"Female",60.2805975643144,116.468154225546 +"Female",67.2813582403504,151.006827602194 +"Female",69.3822453552615,182.308529635185 +"Female",60.3987947778955,123.831414573977 +"Female",62.432426249785,116.161491547557 +"Female",62.2313974453422,142.155661288298 +"Female",60.0762407628217,139.084603688100 +"Female",65.4990108523165,146.784446100872 +"Female",61.2383813168991,130.527647155786 +"Female",60.1809766937198,126.345706579432 +"Female",61.4781357929314,116.277148004896 +"Female",68.554568155727,151.786039269199 +"Female",67.9780198460861,157.833633410408 +"Female",60.5007655934477,120.996983910125 +"Female",62.0483185693854,141.224547036410 +"Female",60.1834384808811,99.3550398494005 +"Female",66.2469657392108,154.406373277828 +"Female",65.9240682228457,137.199153272425 +"Female",63.6415700937888,121.494687965331 +"Female",62.1577512772891,133.951889189126 +"Female",67.0312170911189,145.52519036879 +"Female",62.7179793731272,113.622065762769 +"Female",58.596554530003,107.048405038270 +"Female",66.8749708944032,146.057972372553 +"Female",65.1792627741624,149.947046307033 +"Female",63.6760971019316,122.344654587626 +"Female",63.216686269988,134.896117147254 +"Female",63.4661161157611,132.361844159787 +"Female",66.0810430982694,150.705902781092 +"Female",64.5616787688241,142.841771124436 +"Female",67.0996613263998,148.562706097317 +"Female",65.0387401702194,129.510812116208 +"Female",62.3212719284674,139.320931600689 +"Female",68.3754527268264,163.809745755738 +"Female",61.5119869103612,136.424501103128 +"Female",63.1585225252602,132.234410728138 +"Female",62.2158420710198,133.615154335579 +"Female",65.5643155666142,134.620920196678 +"Female",64.5626271159302,137.440086539848 +"Female",65.095308354207,156.062396331944 +"Female",61.8155231944616,118.325882647957 +"Female",64.6557952517356,136.044220575536 +"Female",66.2304573345808,152.312632220637 +"Female",63.7149300563257,127.876873176677 +"Female",61.8196628362272,121.580383946857 +"Female",63.5528924997549,141.953060290094 +"Female",63.8530882856352,137.148691939272 +"Female",63.5563537144268,134.750594090197 +"Female",66.1559220263282,151.567096250222 +"Female",62.389502626001,110.805629277423 +"Female",68.8742685596147,165.592199289134 +"Female",65.248367004034,137.164305171993 +"Female",59.7181011502269,109.816654764320 +"Female",61.0186105692054,120.826700385081 +"Female",59.1092475164094,104.877067662659 +"Female",61.6670033688642,115.677892392139 +"Female",62.3645496502654,128.419625530123 +"Female",66.0347472144724,132.261165669554 +"Female",64.2608414896929,131.395557032087 +"Female",61.5513666447146,124.514235635028 +"Female",61.6272092334934,134.335283481320 +"Female",65.2554175370148,137.415543495324 +"Female",64.688603071739,120.088892092051 +"Female",64.2053845092834,143.623303795025 +"Female",61.5389201073947,125.497218608813 +"Female",62.7748173963773,137.509995754580 +"Female",60.124776854483,111.576860831724 +"Female",66.7910091388349,142.775819230023 +"Female",64.1094065141738,131.779166586226 +"Female",60.1328489177149,129.735131242109 +"Female",64.5471662617022,143.190660564056 +"Female",64.7553657247725,146.115654341459 +"Female",63.5791007065596,144.055093372015 +"Female",61.9516968671702,127.313316973134 +"Female",62.1535621695042,134.027912784951 +"Female",64.9037990812869,152.572858025664 +"Female",62.9433573974615,136.773155829146 +"Female",58.5101606316805,113.788590299694 +"Female",65.6869228078674,144.49925095425 +"Female",62.3366233478735,134.112154017071 +"Female",59.9035387926638,119.580853820813 +"Female",64.6840329292463,144.404883988058 +"Female",64.8539766018777,158.445602978367 +"Female",60.6675066270986,123.624924360335 +"Female",63.7878975280429,128.204118811137 +"Female",68.0780274880187,182.700436977971 +"Female",62.718076536375,116.056341644654 +"Female",60.9257906631992,114.784399157430 +"Female",63.3551022216768,122.11604765339 +"Female",67.2043717732867,156.172227104204 +"Female",58.3237477025474,117.053155966036 +"Female",68.0143909849971,171.798276279545 +"Female",60.0138637331979,133.327530135541 +"Female",64.113196123206,146.891232620050 +"Female",69.4453867067032,164.369884142347 +"Female",65.7205342700544,140.024855725633 +"Female",66.3785893171629,153.447070977824 +"Female",64.7623660718552,135.780229475904 +"Female",62.8309194126271,142.564695304550 +"Female",56.9494151377438,107.171855854965 +"Female",61.753159576662,113.006257387641 +"Female",67.7429014435532,152.650097547674 +"Female",65.2574451203723,155.164552719508 +"Female",63.0419819967601,119.937293351742 +"Female",63.4284486217658,132.357672235730 +"Female",59.942119715856,123.498491782078 +"Female",67.4264836309286,156.665034611206 +"Female",63.5514031572518,129.162024848008 +"Female",63.595166725964,145.477539500486 +"Female",63.9514165896779,132.106321704748 +"Female",62.6423654799376,146.737562005470 +"Female",58.6199806303476,114.050606687101 +"Female",62.0489256276432,116.514068210916 +"Female",65.0845773303252,149.194092604907 +"Female",64.5549343258853,134.546663725556 +"Female",62.1809970471628,133.884059347308 +"Female",60.4007145012663,118.713809273295 +"Female",56.6781404906408,97.2699666809593 +"Female",62.4484696390075,132.337077539733 +"Female",65.1635008076718,151.978449983096 +"Female",61.9210484640948,115.874817580150 +"Female",54.6168578301035,71.393748738973 +"Female",55.7397368200335,108.121968520277 +"Female",62.276682717882,130.090964169807 +"Female",62.5707914645928,126.181469003783 +"Female",62.4081181742735,142.76441834988 +"Female",60.1773514494768,98.7450377324097 +"Female",61.6676885310788,134.732657779781 +"Female",67.3362746886476,164.929043058758 +"Female",68.7801231492795,176.450817700996 +"Female",60.5418681848476,102.545790872528 +"Female",63.8060445313626,145.429650465367 +"Female",65.7379348720023,144.089916888110 +"Female",60.2188377648127,109.190529197858 +"Female",62.8938215969302,118.217640742940 +"Female",66.6825021462107,147.152815858590 +"Female",62.7304591121103,110.242110829049 +"Female",65.4491063695484,140.608626198260 +"Female",61.7062921526329,124.812240995469 +"Female",67.530860269407,157.715299501870 +"Female",61.6123816146825,117.103154830241 +"Female",63.9399261045257,149.857247128355 +"Female",66.2940589437949,153.138692653924 +"Female",68.2254073300281,162.924771886706 +"Female",66.643322972208,162.160094473799 +"Female",64.3225587969732,148.651472199028 +"Female",67.2962680175572,162.528178374671 +"Female",61.8656142294332,106.732049474341 +"Female",61.6398912057676,117.848626145069 +"Female",62.0733897954425,103.141097116868 +"Female",64.3675909472732,126.519119134419 +"Female",69.1361444266303,165.681833987971 +"Female",63.4226467871166,138.427955614620 +"Female",65.8809718889139,151.065324509502 +"Female",63.3421499833824,138.945613021622 +"Female",66.2084199250643,147.855952838583 +"Female",68.7865661160994,168.944931014248 +"Female",64.704358519924,152.580008937117 +"Female",64.7419034524409,152.978567802506 +"Female",65.6078704483238,154.229073084599 +"Female",66.2350945397925,145.217177513931 +"Female",65.1081200254628,157.584439027933 +"Female",65.7696421670041,152.683155978537 +"Female",66.6737836948828,148.429127913253 +"Female",61.9238750648119,130.767249306575 +"Female",66.0627648620883,160.292250557623 +"Female",67.16180564654,160.201031212767 +"Female",56.9751332313244,89.1698499679495 +"Female",64.081269781806,157.589141097243 +"Female",63.2068304244758,140.457941408830 +"Female",57.9815124140768,92.1184263949018 +"Female",62.6360161380774,129.573204760978 +"Female",67.2774972985599,146.491898249847 +"Female",69.0827594819084,163.632026476272 +"Female",62.379651185778,130.781392883480 +"Female",64.8606586704668,159.568225487359 +"Female",62.2335982938096,122.759629375763 +"Female",70.642135436292,183.287278158289 +"Female",65.3899163560362,140.720092888626 +"Female",63.3095393090567,134.417675049052 +"Female",66.2652226539959,158.742915050982 +"Female",66.2829378218642,132.755788498616 +"Female",63.2427359285594,119.229506104819 +"Female",64.41585420801,117.336588297242 +"Female",70.0148367679715,188.617883435310 +"Female",69.7350669556986,159.629646600913 +"Female",61.8905593072285,110.919687713943 +"Female",64.2108661508261,158.206205959913 +"Female",62.5074655865151,126.114933801602 +"Female",64.255289363374,124.900181375055 +"Female",62.805063803755,124.765437960402 +"Female",62.252717260433,122.580065185696 +"Female",63.0607350477948,133.943536984491 +"Female",61.9572385749377,130.971641450175 +"Female",59.1766095155136,115.448815582697 +"Female",66.3828699734191,150.14229914172 +"Female",65.0741193368074,149.230333232592 +"Female",60.7160823550811,130.647715131428 +"Female",62.644216957666,123.792897499861 +"Female",60.9554866464405,105.880580609229 +"Female",68.8502596015303,178.295462465379 +"Female",63.5937091500711,144.419186927609 +"Female",64.2168207729234,145.603465596979 +"Female",64.4509046740969,153.021775814507 +"Female",56.789386413216,95.3280876779566 +"Female",67.0081865601136,151.735235300403 +"Female",68.9916905873029,183.638580283194 +"Female",59.7609323611866,100.362087004136 +"Female",64.4085998547175,131.524417487282 +"Female",61.580044134072,137.053056598707 +"Female",63.1507454856481,140.680375356368 +"Female",58.0374179835325,100.496830643472 +"Female",66.5841399927365,143.296387880775 +"Female",66.982895497664,140.016621121927 +"Female",66.0403980841735,137.874573591315 +"Female",64.6031356339456,148.638806367736 +"Female",65.9355246730795,135.926725243504 +"Female",65.6551278606797,143.533127451717 +"Female",60.2664077661042,113.069568924979 +"Female",62.9358925657025,130.843636394652 +"Female",66.1189435261362,167.573556523126 +"Female",64.3062188192723,132.864068200096 +"Female",64.1733059984275,149.326567041739 +"Female",64.035496100806,138.701315838669 +"Female",62.6463522783996,122.336024322481 +"Female",63.565374323495,134.800715092180 +"Female",61.3073677559788,119.632028588423 +"Female",64.6408569467034,119.329330186660 +"Female",63.8975258060854,126.614512830558 +"Female",59.3395680493698,105.298655206447 +"Female",66.1238371607167,143.371408369052 +"Female",64.6652423992274,145.979477385155 +"Female",60.3150453482763,111.974874107803 +"Female",66.8549765868893,164.243192515289 +"Female",62.8593737917474,134.051640659371 +"Female",60.1748993202177,110.776088773910 +"Female",63.2819878471528,128.489854292 +"Female",63.1368709433922,117.305005816988 +"Female",67.2129641609691,165.078884979482 +"Female",60.1616691929441,130.820809922092 +"Female",68.9668978203634,152.430938001244 +"Female",61.8950791076939,153.465823856868 +"Female",67.7389204308209,172.362800365281 +"Female",62.0641181848779,125.14364095733 +"Female",62.1928870965855,121.589198303805 +"Female",64.7357322605432,132.594245447223 +"Female",63.9590584877951,159.709278783747 +"Female",63.9247280105252,139.653461308064 +"Female",63.0144591887414,144.440138600963 +"Female",63.3491860007723,144.072707031161 +"Female",61.736889726249,106.438565925417 +"Female",65.3189456601437,154.480913000963 +"Female",61.8356708000742,118.361356571278 +"Female",66.1518928600605,145.176662951848 +"Female",66.421672932557,142.122820700552 +"Female",63.526835643402,131.806333295944 +"Female",65.2000728688147,148.078098820810 +"Female",65.204446002775,130.22819503886 +"Female",67.4622860330137,156.307310695025 +"Female",62.980180936594,129.923012583355 +"Female",62.1593522677598,121.788931972887 +"Female",65.393018736976,142.924166859430 +"Female",68.8236920802898,175.031807554806 +"Female",68.1868137585487,159.033589991075 +"Female",60.0424196500998,97.0346553321367 +"Female",61.4346865096745,119.599116550570 +"Female",67.4268136434204,166.937120481574 +"Female",63.5789823320194,117.709241852597 +"Female",65.790395145954,119.670671677234 +"Female",62.6384566268964,136.629533603639 +"Female",63.8230624833228,136.825948505328 +"Female",64.904535602698,134.818969330538 +"Female",62.4251792410459,117.929910137109 +"Female",59.7470964261647,102.354857714544 +"Female",63.8922616137393,148.971114310970 +"Female",65.1769471193764,145.339906260729 +"Female",65.7811451594002,136.661427239037 +"Female",61.274773473752,110.287342471998 +"Female",57.2026600428674,103.962705070983 +"Female",65.0112525643062,143.397890270859 +"Female",62.490957539387,137.086322357491 +"Female",59.7356852588024,129.004417604914 +"Female",66.4818952901101,148.549695379998 +"Female",60.9586661236777,123.157813951721 +"Female",62.493299806759,118.646287183217 +"Female",65.2409408815651,155.400046346551 +"Female",63.7731858120352,128.278800934202 +"Female",58.8720290218358,92.2682046392832 +"Female",59.8217110299354,139.528116833386 +"Female",64.4724181061073,146.841964238380 +"Female",62.6162136007295,127.965249309513 +"Female",64.2617237107347,122.383432102662 +"Female",65.5264136137104,128.923343708277 +"Female",62.3610923797426,148.713960108758 +"Female",65.0256114310639,136.853110734144 +"Female",63.3273036381936,144.273382407219 +"Female",68.93769670614,157.537640131473 +"Female",63.4641092316783,134.045732124858 +"Female",65.0841673833511,137.168119783590 +"Female",60.5856377146781,116.430074671494 +"Female",63.204342264444,133.681868654585 +"Female",61.6257831684427,118.762925311885 +"Female",58.3865759394898,102.063907340682 +"Female",66.6505397130851,158.221301296675 +"Female",58.523290492565,128.777739142407 +"Female",63.251340474777,143.823094536532 +"Female",69.4459321022436,169.819908603971 +"Female",62.4473335177222,122.606806538548 +"Female",63.0682029208552,93.424239299503 +"Female",63.287513696204,121.250406002931 +"Female",66.0978769473177,154.560236711613 +"Female",64.5297549662538,124.970022965080 +"Female",64.0607871527546,131.307690879035 +"Female",63.8724251271273,130.211705629183 +"Female",69.6110142466156,170.025642721664 +"Female",67.3900200219722,169.626607720642 +"Female",62.850449248909,127.518885313523 +"Female",62.9387181119805,124.292191869965 +"Female",66.1608844979343,155.906891730000 +"Female",63.4012051394349,145.316583178589 +"Female",65.4709896468326,155.580439909483 +"Female",59.9976945996976,115.812815561687 +"Female",62.5760803936105,111.379473827934 +"Female",60.8175901896942,133.879482558839 +"Female",64.0857388302738,126.994626284417 +"Female",62.246303994358,122.034176101357 +"Female",64.487842187011,148.225840518359 +"Female",60.3985158082608,126.983076621141 +"Female",61.4801465364967,108.043177513285 +"Female",64.4966552348729,139.814160267031 +"Female",59.9221619954801,125.547187166399 +"Female",56.0666363500952,89.5712047395611 +"Female",67.4260159958821,157.303923669967 +"Female",62.6400190057392,114.822802773880 +"Female",59.7628981871236,105.152517099366 +"Female",65.9979415886757,141.890779030964 +"Female",59.8095342466238,109.657436717525 +"Female",67.691510479391,163.903050235576 +"Female",61.0122336535468,108.967859722161 +"Female",61.7896119717584,123.681887562023 +"Female",63.425282464969,132.639019207120 +"Female",61.3325812835183,139.792206193116 +"Female",63.9993197515268,145.689533288481 +"Female",69.3133813369547,154.484541722811 +"Female",61.5940662630643,122.221535113172 +"Female",64.8857482253305,130.615848087016 +"Female",66.2643659171894,141.299454688788 +"Female",64.0785595533523,132.366492127765 +"Female",61.9265149061287,131.735986660939 +"Female",63.7530688529558,129.872985401821 +"Female",63.9952980877785,130.577662378410 +"Female",60.3038675679378,120.622362166802 +"Female",66.0547512513851,157.67553246724 +"Female",68.4405667603505,153.584230580735 +"Female",64.6875356311116,119.024652360040 +"Female",63.6124256935818,123.743338578239 +"Female",57.9684983865593,118.720590126508 +"Female",62.9935497718745,136.673908627291 +"Female",62.6570400938303,131.731382544018 +"Female",65.7880838429692,160.831030062061 +"Female",60.24552998231,135.511964950233 +"Female",64.5163492264064,124.592496077081 +"Female",64.4367122254289,151.923769902396 +"Female",61.8256451154768,121.277607966454 +"Female",62.9372692153786,127.725289343243 +"Female",61.0354898793316,111.326962428825 +"Female",63.4111696780531,129.196149161022 +"Female",57.4722523992131,96.3135565290208 +"Female",62.9304242471874,136.596762626887 +"Female",66.2027558306022,151.357788892023 +"Female",59.6011545333216,115.227993009646 +"Female",63.86336603658,116.948330067137 +"Female",62.9811500235096,154.428477515132 +"Female",63.0172574419779,132.008180674873 +"Female",66.4166018776215,142.940118909056 +"Female",64.9861569954852,148.171777071186 +"Female",59.2663032433087,100.648523552276 +"Female",68.7100749700579,165.110459051454 +"Female",64.4341430912102,138.002083669234 +"Female",63.0751976139891,127.702046958862 +"Female",67.0708979448361,160.413714975911 +"Female",62.7473570491129,139.885857751443 +"Female",66.367317765652,156.421116638841 +"Female",60.1296602830221,122.924091237250 +"Female",62.7455231879435,132.733781507518 +"Female",67.444719078617,162.436362745506 +"Female",64.7560205104423,142.125889487156 +"Female",62.1906716426627,119.767149930255 +"Female",63.3384595940784,126.381659570671 +"Female",66.27929714891,144.894263633821 +"Female",59.8949240533751,129.173838843876 +"Female",63.2169648195118,142.426466263503 +"Female",69.0997048970776,177.018151597129 +"Female",66.1637280851813,138.032075185304 +"Female",61.2864640570681,119.536035232557 +"Female",60.2742338674115,106.853923912948 +"Female",63.2179335547522,139.745985788187 +"Female",63.5164997476628,120.810049058451 +"Female",61.8161479812756,116.247391952186 +"Female",66.5558866343793,158.661410589980 +"Female",64.485088567056,133.322581360073 +"Female",60.8720437479104,120.329728806899 +"Female",63.6080208533715,136.642739703650 +"Female",61.3061781326752,121.889180635039 +"Female",63.0590091568904,116.461142760063 +"Female",56.098245784398,104.954100411731 +"Female",63.1920753912695,126.331898826172 +"Female",63.0346856482085,139.281282721488 +"Female",66.9215440184083,145.872308038656 +"Female",64.8021887988608,159.877141996378 +"Female",64.5066921583708,134.613710172598 +"Female",69.3031109315133,178.779110673022 +"Female",61.3730951205005,111.307885465738 +"Female",65.7759283871753,160.861750569939 +"Female",68.4589107358197,176.152647563730 +"Female",60.0985913347773,122.744885450502 +"Female",62.5477598731306,123.965162480870 +"Female",65.6004495046736,151.462245088581 +"Female",67.6522189471494,174.834610855242 +"Female",64.3752497169112,129.305335468191 +"Female",60.9132709085014,123.827603454657 +"Female",61.9904800146353,110.925974999292 +"Female",59.1333142472393,129.537708759531 +"Female",62.8665688313445,111.469959586106 +"Female",65.1048453706957,142.292705036780 +"Female",61.66262810901,112.565576386528 +"Female",58.6327204671158,102.469086784996 +"Female",69.6359311508284,177.589351352631 +"Female",67.5524040763352,160.726511331665 +"Female",62.1803193786528,135.610834999441 +"Female",62.311533182375,136.236832642485 +"Female",60.8589900079646,114.214034424918 +"Female",66.1668762591729,146.678954584022 +"Female",58.1260240211065,98.4028512342667 +"Female",65.6470552009538,143.929981334410 +"Female",66.475461065156,149.205171164975 +"Female",63.6247193052323,144.046264235287 +"Female",62.4147683634091,137.053633683289 +"Female",65.4601013986786,159.043161986306 +"Female",63.4229332047802,124.689046619650 +"Female",61.3680454092299,124.915823563304 +"Female",64.1210647473445,146.801099540977 +"Female",59.3474682310805,100.092095362701 +"Female",65.4486288644,149.817241126221 +"Female",57.7903892106098,103.312056196025 +"Female",59.0259533939983,116.811511736994 +"Female",66.1791113608416,142.628593569601 +"Female",64.0145859014987,136.703387469422 +"Female",64.5917165363395,154.931947987984 +"Female",65.096876700842,142.369714823914 +"Female",60.7315426506603,113.230495815602 +"Female",62.4165867360014,129.753823130793 +"Female",59.447426401833,112.118359627860 +"Female",58.4904670158935,93.1924386532048 +"Female",63.1140543077552,145.26879625192 +"Female",62.3960942599344,121.512779746521 +"Female",64.2183153111119,168.546457720601 +"Female",62.9841806506908,138.924058552704 +"Female",62.6392050525529,123.991476879123 +"Female",59.7352786738488,124.842659567033 +"Female",62.704790197731,135.590644484552 +"Female",58.1344963096015,89.3572282346796 +"Female",65.7343489284889,135.642651899425 +"Female",60.8468627311246,97.7246018780605 +"Female",63.1669012409128,138.029804103007 +"Female",63.5046948605898,123.504327795153 +"Female",63.1108328639923,135.804858726326 +"Female",69.1829595439274,175.9928612072 +"Female",65.113845492676,153.880192555540 +"Female",62.6752082392742,109.147605924986 +"Female",63.9804717552887,137.033434098098 +"Female",63.6504413061419,125.592163659089 +"Female",65.3443102960553,140.587103680462 +"Female",64.0697361108965,128.569472211131 +"Female",68.3782045384245,157.524368370239 +"Female",61.1166085358772,101.097499662153 +"Female",64.5667983838582,137.43164487291 +"Female",69.3518897897901,182.659368946149 +"Female",63.3938511213131,134.33174640659 +"Female",56.7644564465812,79.1743758333647 +"Female",63.8325125789469,132.507460012275 +"Female",58.8502944694345,119.452016573893 +"Female",66.2475915895005,163.577028617583 +"Female",63.0740024560145,134.445701930690 +"Female",63.7625843367692,132.611074008374 +"Female",62.5145777561098,129.174322272705 +"Female",61.8275984497385,123.822844285578 +"Female",63.4912694222218,123.186628805130 +"Female",61.018473982121,120.442300701328 +"Female",63.4896439153582,133.142449306516 +"Female",61.5282119837784,117.654738347276 +"Female",62.6529476723371,122.756385438491 +"Female",64.1930817701103,137.840193859934 +"Female",65.7995608057062,157.293742488265 +"Female",63.7870504011948,120.838528221416 +"Female",61.1862590325358,109.582355619731 +"Female",59.3538310142786,106.108275084455 +"Female",62.7049166540007,142.789501031010 +"Female",61.926249766248,113.648007121316 +"Female",61.9910742589966,131.410731903028 +"Female",58.1624630438929,105.147024548327 +"Female",67.4118336321295,147.360805343919 +"Female",62.0747828069918,119.659324498929 +"Female",65.4980583420813,159.089781373979 +"Female",62.6152799119337,128.168140868402 +"Female",64.4337554607933,162.524500625397 +"Female",63.4492106192036,132.018784650726 +"Female",64.0360087547458,144.489626342583 +"Female",62.8679776104447,122.781815955197 +"Female",61.8449657391164,110.981625519654 +"Female",62.7958160718507,128.806293343160 +"Female",60.396830471111,112.882706758414 +"Female",61.9309590529235,141.441314335719 +"Female",66.4725675389246,162.580953949789 +"Female",61.6114003651734,124.531675552031 +"Female",62.5793233659445,141.375098245458 +"Female",62.0353191067829,119.418134889076 +"Female",61.8730330852759,122.538528152337 +"Female",64.8334732923971,138.521671353659 +"Female",58.9179608162174,111.334359330355 +"Female",63.522955031307,136.570485660579 +"Female",62.353340648806,124.067387848950 +"Female",65.8731063086245,155.915543502642 +"Female",64.962069048165,141.482513741701 +"Female",66.7224387982738,122.793732523590 +"Female",61.3111924053438,113.519613719958 +"Female",63.5017993703251,123.075560184459 +"Female",64.6558482819269,143.826786815177 +"Female",69.4202812301656,181.853797589974 +"Female",62.3379569642366,107.003876853630 +"Female",63.9444056874588,126.978568506184 +"Female",67.6146309369832,174.322489846433 +"Female",67.1170914153179,154.172579921507 +"Female",60.5191830071578,133.539208160737 +"Female",61.8356523835951,141.579654053645 +"Female",66.4779569676677,146.579576770180 +"Female",68.452418975902,171.573255351871 +"Female",68.1786580886526,144.333579379023 +"Female",61.1188703556325,108.438995490801 +"Female",63.395793315672,145.615016741257 +"Female",66.3244698073095,148.670800681898 +"Female",66.0456086685346,143.327828781158 +"Female",64.7424445716161,167.141598260590 +"Female",67.5113620182894,159.949725788353 +"Female",61.7751114962527,113.153725868315 +"Female",65.186934585604,135.432340852366 +"Female",60.4256341356745,130.629367670644 +"Female",63.4607461749803,127.305711380606 +"Female",62.0929152465116,116.764230039087 +"Female",63.6645011655707,132.295552658609 +"Female",60.0508463603663,115.656207992136 +"Female",64.2288700516471,140.997714930396 +"Female",64.3341068573576,138.739445194193 +"Female",60.6073459319762,109.05140536388 +"Female",63.9248923156247,132.960485399147 +"Female",63.7678147266928,134.751636815619 +"Female",61.2071346548003,104.514575966614 +"Female",64.226355415332,152.972108288524 +"Female",62.0119169320373,125.286160354856 +"Female",62.1755194406988,144.184612871390 +"Female",59.850244716096,101.716162645895 +"Female",63.6425966811643,135.422802487943 +"Female",64.9858098368903,141.288353684465 +"Female",62.4764273743129,132.518460719584 +"Female",60.1855418545228,102.098732817094 +"Female",64.6282947362038,137.174866100291 +"Female",61.4241094209123,148.114807352452 +"Female",64.3741026831914,155.082744562303 +"Female",61.4646336735126,120.715162714821 +"Female",64.6508177806484,135.033626423437 +"Female",64.1874572720678,133.350625059257 +"Female",68.7108446478983,178.870748110566 +"Female",64.293269435426,146.701616834121 +"Female",63.5822004848389,147.650478991119 +"Female",65.2191144765081,138.569994661066 +"Female",66.3659022452799,137.287606985786 +"Female",61.6168709720384,117.133586874945 +"Female",64.7954292522828,152.918265027715 +"Female",60.6843760788939,118.077696698914 +"Female",69.5343008050466,163.796138792924 +"Female",66.1780910442507,157.792424198492 +"Female",65.4275869144579,143.336330917209 +"Female",59.1670438872346,109.870097951339 +"Female",65.2960157586116,141.551239478059 +"Female",60.2577763633924,115.389785852213 +"Female",64.4320508457608,159.335936926435 +"Female",59.3847989690841,109.688441653679 +"Female",64.8395638981968,137.700086545495 +"Female",65.615611629581,123.498255823953 +"Female",66.9346286716035,143.203782009350 +"Female",63.6741671113923,135.830954683939 +"Female",57.7648078883808,89.7899984409701 +"Female",68.7521759317412,174.580379341546 +"Female",65.9621872417718,150.763548055290 +"Female",64.2718562267311,121.741340005636 +"Female",66.5408134231897,150.971358256648 +"Female",66.8354886156107,155.995109221324 +"Female",66.7276319099223,162.598816648826 +"Female",63.8828040482993,139.202834593304 +"Female",57.1580335208417,94.263202648759 +"Female",66.7939270749045,127.096778305724 +"Female",60.8097170438054,120.940202299242 +"Female",67.6279194508829,169.687934742153 +"Female",63.0433833566499,117.033984396597 +"Female",59.9065278616466,105.649773684418 +"Female",61.5295834626432,126.352118738195 +"Female",66.011997702534,147.196045864223 +"Female",65.8313688925656,147.15046321916 +"Female",62.0549899082979,115.767138046494 +"Female",67.0449228375836,140.815517479934 +"Female",62.1305677393144,125.283478076033 +"Female",60.2848014518491,126.956702006286 +"Female",64.9814987272783,140.400766521233 +"Female",61.7245405582376,134.255543725269 +"Female",67.9227634574601,172.168292894246 +"Female",64.84395682334,143.462978461094 +"Female",65.0113805431648,151.189080372441 +"Female",65.0564113126271,151.113500080107 +"Female",65.2202120160348,150.441300495906 +"Female",68.3332596673114,159.089482900375 +"Female",66.4365254185167,129.358950668383 +"Female",57.7955339974672,112.458167910890 +"Female",63.067693652116,131.492455984797 +"Female",59.772731464376,127.065546312256 +"Female",58.1186990006697,116.396779983347 +"Female",57.9366743216043,97.7082846904373 +"Female",58.8232618583708,108.359609085696 +"Female",65.5446192385114,142.703632475422 +"Female",65.3350518517926,147.102398686601 +"Female",63.0137307892522,115.961858993977 +"Female",65.7285801912972,137.839895869937 +"Female",66.4698209360831,152.809403175247 +"Female",63.6379643111756,131.420697110637 +"Female",59.6237144814768,107.375239880095 +"Female",63.957320935815,148.369413924417 +"Female",62.3635508968891,113.926880675428 +"Female",64.0888584285991,136.792488653510 +"Female",64.8464594227474,139.169260550047 +"Female",62.5545836634636,135.665547924939 +"Female",61.2788124967258,135.081159304844 +"Female",63.2314173253626,138.831252078422 +"Female",63.417439990576,144.873936146368 +"Female",60.1241678224455,109.388928394541 +"Female",67.8441031587467,171.736596128538 +"Female",63.071178369542,145.870637337015 +"Female",63.4003331722617,147.604935212835 +"Female",62.6879280393794,116.271542013176 +"Female",62.678265448176,120.905938733318 +"Female",63.5876376035106,117.440810971778 +"Female",63.3319130407544,126.108328910639 +"Female",58.5585125217826,131.404223879543 +"Female",65.068037693219,160.800725592022 +"Female",63.879595826396,143.908906921624 +"Female",65.4840527678581,144.410070470814 +"Female",65.2033567140227,125.198700579601 +"Female",64.5596218249224,151.291990541091 +"Female",60.4599065958028,125.463911259826 +"Female",64.920239193102,152.899243244218 +"Female",67.1224220901005,165.324899283495 +"Female",72.4297709549193,177.969532057211 +"Female",65.2315621863496,174.470637325615 +"Female",60.8150594252685,108.708421258134 +"Female",61.6751768204811,134.708122322579 +"Female",65.499938492071,171.131213210522 +"Female",63.8344907670014,133.776896651513 +"Female",64.2582611393541,144.080612407411 +"Female",61.7086682523646,132.915088904272 +"Female",63.9110236867082,128.094073872448 +"Female",59.0262558060589,106.370538958630 +"Female",64.7993937583322,146.036839833797 +"Female",65.4502630634137,150.338793654030 +"Female",61.8931668681119,128.557198366814 +"Female",56.8859710456207,99.873592652194 +"Female",59.1412467089945,103.026622174333 +"Female",63.4768957086912,127.336697539953 +"Female",60.6641682305455,111.165788105148 +"Female",62.9859804938356,129.449238632723 +"Female",69.8090871215674,162.650675686815 +"Female",66.4757110932144,164.865386638469 +"Female",61.1134980230268,114.433436035660 +"Female",66.3702136143256,149.478953346151 +"Female",67.3817998906326,144.306712391127 +"Female",64.4032728250128,162.561183574085 +"Female",63.5008257602947,126.860582596528 +"Female",66.1905716647731,149.581804645982 +"Female",62.3810466339444,117.819984140482 +"Female",63.97034122017,146.302666629339 +"Female",63.5353054428129,121.115927158397 +"Female",65.2714248589465,133.573311047081 +"Female",62.0290144651524,113.888700265216 +"Female",63.8041313556725,120.607957981681 +"Female",66.0596612484963,158.535626059938 +"Female",65.4063008453468,158.055365734088 +"Female",59.3946454616342,124.212181865667 +"Female",65.1307384470393,130.160045517050 +"Female",62.8234429951876,126.796977867036 +"Female",65.2799959581265,157.979981506673 +"Female",60.3990119652801,115.416770678645 +"Female",59.1706875044306,106.139635985780 +"Female",63.9936166909938,139.86774919173 +"Female",62.489080333513,124.175464892566 +"Female",65.6242382442685,153.826971188466 +"Female",64.3376567715843,135.043901093493 +"Female",67.9170502294277,157.971823031305 +"Female",63.7682118376327,143.723793978361 +"Female",61.0194665614671,106.855294660298 +"Female",61.3091084396778,115.788850140333 +"Female",63.1095282917306,117.895846821556 +"Female",68.2977185431035,150.146734705521 +"Female",60.6892002966586,125.569601886453 +"Female",57.5527537088968,98.6439631211755 +"Female",58.7072357667941,120.253512026281 +"Female",62.7036220063421,100.234800710191 +"Female",64.567795559407,153.568256538341 +"Female",63.0807403912198,128.478442313831 +"Female",67.0539943713518,144.347355932324 +"Female",61.4153067712281,106.295001359125 +"Female",66.5355111276663,155.370872010890 +"Female",63.7959572932735,145.878757210495 +"Female",63.1261391707175,136.239929417406 +"Female",61.7576643020811,115.581550799842 +"Female",66.1921299825332,145.579208735676 +"Female",61.6886831190551,117.631365742968 +"Female",60.918302397855,114.033101789345 +"Female",62.3667664952284,131.740460390606 +"Female",67.3343483716378,168.626296087776 +"Female",67.4436612888538,160.288167417213 +"Female",65.6974573610416,142.157675048619 +"Female",64.4972906112441,126.584642127197 +"Female",67.2177194195441,153.989572015241 +"Female",64.6736897170256,143.775262638953 +"Female",66.085399677953,140.322403280307 +"Female",61.745701431103,132.595679803653 +"Female",64.9778759997047,123.699679626214 +"Female",63.1923498898307,140.386703743264 +"Female",61.737734964322,123.080062776970 +"Female",64.217291687705,137.001510230805 +"Female",66.1892085178543,126.376299874420 +"Female",62.7887475838338,126.422734418834 +"Female",62.3030668822716,139.194288951347 +"Female",61.9763096967803,141.855825003357 +"Female",63.1799477496157,124.90602445081 +"Female",63.5626556671376,151.295244170098 +"Female",63.8064817211739,122.779400220847 +"Female",58.7205181329078,106.066862474914 +"Female",65.4400923980753,146.958881516114 +"Female",63.3171511186049,129.306269880838 +"Female",63.1323807585613,126.483785003300 +"Female",62.1901894196916,126.912515456222 +"Female",61.2143488490394,112.915208906285 +"Female",64.7152918722448,143.939716619654 +"Female",66.7387303757463,144.412004792003 +"Female",61.8627333444181,132.602229328457 +"Female",63.1550467589118,141.487418151798 +"Female",67.4198400141083,148.605734775702 +"Female",62.6572940335873,121.087478035969 +"Female",67.9907957276719,172.217648887405 +"Female",63.138861742984,141.769751769082 +"Female",64.1303410995415,121.292596753100 +"Female",57.0726562519626,93.7461421572008 +"Female",68.4143793384505,163.785138209359 +"Female",62.5947589687373,145.987786783849 +"Female",69.4064932432102,156.876698931138 +"Female",63.1534331787895,136.621592575599 +"Female",58.1178719316896,102.088966183677 +"Female",65.2848633008434,125.131053617712 +"Female",60.7606886780906,116.975427749271 +"Female",67.5888398323064,150.380597436566 +"Female",64.4282887433345,138.225737407810 +"Female",61.1538660164304,135.425417795574 +"Female",61.8113882295903,127.248292884252 +"Female",67.1220031251137,148.826486086286 +"Female",62.5494853771572,131.111181192592 +"Female",67.1437307546759,155.831560422294 +"Female",64.7989611645402,152.828705503825 +"Female",65.9652742064042,148.800598054251 +"Female",62.0875945279007,125.450263729454 +"Female",64.1891453660802,112.507011538138 +"Female",64.6242894563227,138.112329636081 +"Female",62.2648301015387,147.964386978245 +"Female",62.7785164006338,140.387944975753 +"Female",63.074027226635,155.278109304186 +"Female",64.2647144784978,150.071344850799 +"Female",67.4182852960096,156.681836887368 +"Female",64.3553428554025,138.311322814244 +"Female",65.962277837649,156.096074244372 +"Female",63.7323742116415,151.238789487023 +"Female",70.3601232241529,185.848720873231 +"Female",66.054472963575,145.139481166407 +"Female",63.8780763249485,125.173586465678 +"Female",65.8171735578993,153.341550871176 +"Female",54.8737275315254,78.6066703120237 +"Female",62.1999501039088,127.229606638475 +"Female",67.4348643652968,170.955041477143 +"Female",67.0707076121726,154.711459145125 +"Female",64.0534944330628,142.999379460173 +"Female",58.4040274115958,106.771114569519 +"Female",59.150511426605,103.998976427179 +"Female",65.4818317922621,134.954434856605 +"Female",62.0971842483706,124.410835543093 +"Female",66.358955997367,154.019108067268 +"Female",67.8689541127261,147.865625304535 +"Female",65.4252305778557,147.021035347300 +"Female",63.7999588750213,134.947032581911 +"Female",67.0229342238859,181.793068596532 +"Female",65.8606286943176,165.414135012143 +"Female",62.356371468031,120.662528666269 +"Female",58.7222194137094,110.538417637148 +"Female",73.3895858660697,190.078728869075 +"Female",64.2583419546562,140.236766031172 +"Female",61.1907163834998,124.463273163155 +"Female",60.3802844905412,115.027231092651 +"Female",66.6204476866371,152.275355644461 +"Female",63.9533279065464,131.453081198777 +"Female",65.946674297991,145.098144824548 +"Female",61.8609237787591,132.473541569064 +"Female",66.6835119027085,142.956797833686 +"Female",68.2642123095288,158.793731631606 +"Female",68.7319514535088,164.110188723456 +"Female",62.3117478029964,105.146363088167 +"Female",63.0750241664874,146.905558126176 +"Female",56.8103172829116,84.1706947685606 +"Female",64.0932233946195,128.417741153788 +"Female",65.3374524964983,139.277280224493 +"Female",61.9682943402663,132.765642087371 +"Female",68.0976891521211,152.179216712455 +"Female",62.7452648071635,133.292831832067 +"Female",61.8665605034954,118.764489912888 +"Female",61.7279285756597,132.711551352170 +"Female",66.2094519012334,140.506413126246 +"Female",67.1513382982195,156.302306778909 +"Female",66.1381724292227,152.083122334257 +"Female",64.4460036682061,142.821216631186 +"Female",62.3692957740735,129.344962657775 +"Female",60.6402661925309,118.136726961146 +"Female",64.5184730055432,129.803719307602 +"Female",60.3886526068239,124.982197346581 +"Female",59.9399817113234,102.466949336749 +"Female",60.9161961014147,120.943247945087 +"Female",67.9990993625186,158.572006495653 +"Female",65.9090465431074,149.059448178539 +"Female",62.9880148156093,142.543946866373 +"Female",63.3835055681941,125.662081296122 +"Female",68.6111164962452,174.978168656253 +"Female",64.0962071844308,146.640546215490 +"Female",67.1117394223513,162.604791122585 +"Female",59.5158900942439,124.889617900995 +"Female",62.2357469976516,120.421334011018 +"Female",64.9393881766096,149.162905979376 +"Female",67.724592112743,161.353307368869 +"Female",63.9356970015143,142.987758923614 +"Female",65.2152313261256,155.611441352197 +"Female",63.758114276467,152.039541910673 +"Female",63.9976955829103,143.341661234668 +"Female",65.8815129204047,138.897783066567 +"Female",67.6798718630526,175.012799747873 +"Female",64.3901691403194,125.610002697303 +"Female",67.031156236937,154.484356890303 +"Female",57.1125394233587,98.794038096719 +"Female",62.8995280524548,117.422674731288 +"Female",64.0450904513746,138.761173888071 +"Female",67.7812819698204,162.155569591109 +"Female",60.0130777083266,113.878352921621 +"Female",61.4406566719271,126.299913218738 +"Female",59.7422795757212,95.933285537061 +"Female",64.3350561766612,138.702045792777 +"Female",61.0434450562291,113.182538192302 +"Female",64.6337945235674,138.146125324249 +"Female",66.0949579884856,153.264188181073 +"Female",59.6056316088103,109.391842484274 +"Female",65.499346929538,152.927061091038 +"Female",66.1055024468506,154.59545113415 +"Female",67.1068511176505,151.911376208450 +"Female",61.3017880778946,127.066942258631 +"Female",60.8221181358334,127.441434013439 +"Female",61.3789517735375,128.444527601689 +"Female",68.9376550725009,155.689830924000 +"Female",64.912130321443,151.491811759122 +"Female",65.3024106069673,149.462818196512 +"Female",62.4856911318762,116.460806849906 +"Female",67.4790516747645,160.882681184436 +"Female",59.4249121111149,94.7470145707541 +"Female",66.9028551373297,141.31754755188 +"Female",62.8471579625354,152.610384327734 +"Female",61.4353315194174,125.978766739902 +"Female",64.6503983040135,143.510788498396 +"Female",59.36813918013,118.764518263849 +"Female",64.8304398670452,152.942983011778 +"Female",63.5058944615779,138.221630721892 +"Female",59.9085446722934,115.525915618152 +"Female",67.2087362144735,171.184913466072 +"Female",60.1433219478219,118.797659019963 +"Female",64.2815984124147,135.966146065618 +"Female",67.9456742479996,168.894471531594 +"Female",61.4544833672535,104.313445031433 +"Female",62.3437817093089,129.9661831447 +"Female",61.9589645904203,132.692405283877 +"Female",70.7420859115169,180.053865742702 +"Female",62.033045348303,108.174020271596 +"Female",64.2691371202651,140.571139361807 +"Female",63.1484373509699,125.386925172440 +"Female",63.7127298392637,138.940035758568 +"Female",63.9817648879527,147.812868567064 +"Female",64.9269000352668,147.923955264791 +"Female",63.336849817675,137.975016013827 +"Female",69.8614309758372,178.391841824564 +"Female",65.9122173981784,159.231768186134 +"Female",67.1251887734022,168.063934159781 +"Female",66.2223287297128,144.686304641875 +"Female",63.3284314887729,136.393240969392 +"Female",61.9169992927485,126.878449400850 +"Female",57.7832316168349,126.143595942272 +"Female",58.7384288577014,96.761941400132 +"Female",63.020298998632,137.899014653914 +"Female",61.0179883521021,120.139649263721 +"Female",67.6744631903692,156.513341078976 +"Female",60.8346811681980,123.805006249194 +"Female",63.3325826301889,163.079037385705 +"Female",66.499866553481,143.75800686392 +"Female",60.9258681631907,131.939426865014 +"Female",62.8177799430666,122.412693365632 +"Female",62.8446674819454,132.368977925599 +"Female",65.6901378510322,142.532357544652 +"Female",60.9420995031292,126.713649298855 +"Female",60.331972034375,86.0590456033491 +"Female",65.0738743041411,141.810065009845 +"Female",64.5482456058877,124.975784487198 +"Female",65.3771683602314,136.199777295795 +"Female",62.2515593558823,135.932372668237 +"Female",65.5694612084522,138.539317263762 +"Female",68.3032330596564,167.999553483597 +"Female",64.7158856942041,139.522762190142 +"Female",62.9808612183184,132.096614760346 +"Female",60.7542193800619,110.133724045189 +"Female",59.9978055592368,113.651111325544 +"Female",61.2178368576599,115.655719719477 +"Female",66.185538128157,154.320800770233 +"Female",61.2862054274955,132.274304269493 +"Female",62.8340200525734,132.169244423955 +"Female",63.0994604589114,133.568111604138 +"Female",63.8148466055053,132.213416243717 +"Female",66.1722123342929,145.798122128445 +"Female",65.1453807924175,138.422641654877 +"Female",57.2581173592998,101.714182141616 +"Female",58.4252325365498,105.754897536208 +"Female",66.8193480373946,149.658877299298 +"Female",63.6948823236959,125.929952145491 +"Female",61.2669592453875,127.880410099806 +"Female",69.4343482796835,162.552096632184 +"Female",62.9839299388613,129.158382941188 +"Female",64.0631037148198,114.059617387543 +"Female",64.8534890963666,147.527955124934 +"Female",67.8118246856619,138.097703200497 +"Female",62.8197521013342,125.441175745584 +"Female",60.5709071131084,122.912179937591 +"Female",61.6223351925267,109.725287141862 +"Female",66.295414129318,134.615343855474 +"Female",61.2535789499672,109.681757895934 +"Female",66.3252156242145,157.638024347118 +"Female",65.4316749066955,139.71750100919 +"Female",63.6880024112429,136.353418523922 +"Female",60.2987012552819,119.483353771461 +"Female",63.6112065397594,136.645861546137 +"Female",63.5401053342686,133.590940892357 +"Female",63.8536871134424,147.66914551589 +"Female",64.8523676532343,140.30452322493 +"Female",64.6731218058782,130.312035326567 +"Female",61.3877719616947,123.018546084783 +"Female",62.8299497248132,146.454147814435 +"Female",60.1818845062468,131.380101247012 +"Female",63.4764268326787,130.647845260601 +"Female",63.913694758352,140.642934772460 +"Female",63.6778366219508,149.897013259758 +"Female",61.2111954742087,118.396130946667 +"Female",63.8516580478874,144.760169070485 +"Female",64.6585655522324,131.119847802229 +"Female",62.724724856915,158.285459522092 +"Female",60.0513579918729,124.679149901128 +"Female",64.0835397150341,134.313713406345 +"Female",65.2115124633965,148.994332578094 +"Female",64.0501612110434,144.662003387572 +"Female",67.1077289871026,161.969222265680 +"Female",62.8423241680706,134.991464818202 +"Female",66.9817308897472,158.847955733687 +"Female",64.0017458581503,118.459623951290 +"Female",67.3248226273167,158.561787786185 +"Female",60.2285922843592,120.970448654204 +"Female",61.7199267544054,120.229463428618 +"Female",62.8074928224685,137.580036588725 +"Female",61.4429503705955,127.601754089176 +"Female",64.5068289769826,138.614774648269 +"Female",63.4565469946693,138.206754175679 +"Female",66.4492182845919,152.482610299665 +"Female",62.3560032096035,124.723533999847 +"Female",63.620062443468,134.723769198402 +"Female",65.168887407263,150.717289984015 +"Female",57.1481980802145,91.6454729392662 +"Female",64.5241474356795,129.201505959375 +"Female",59.9568954281211,101.503752931644 +"Female",64.9453845421275,124.231937266715 +"Female",70.454402452766,175.059003393571 +"Female",66.5333927212395,151.827808060294 +"Female",62.5669643808298,142.376162711184 +"Female",62.3612846237029,143.557780610433 +"Female",62.3577269529011,122.112061020402 +"Female",66.9383452250368,156.021558866271 +"Female",64.7562799058097,137.348471194270 +"Female",65.6732135976802,138.473527651664 +"Female",67.1008369422018,159.590702407731 +"Female",61.4154289542813,128.029571806619 +"Female",60.1495587711234,100.751235761583 +"Female",61.2699716814111,103.718223713730 +"Female",63.3379918103837,131.737184360750 +"Female",60.8599498021097,107.388929941296 +"Female",66.8342583328865,165.092926318781 +"Female",64.753141205598,141.389346471343 +"Female",57.2701470456334,94.4996341477564 +"Female",65.5914099010075,150.637774547655 +"Female",62.1664123872033,132.240797320596 +"Female",58.6222544783433,98.5368809917975 +"Female",63.2374126598571,122.229065088568 +"Female",66.2183144165818,142.655802546228 +"Female",62.6704888986353,148.761225740650 +"Female",65.0431649495389,141.853885013421 +"Female",70.837103218395,192.160584982439 +"Female",60.5738421497342,116.811114935440 +"Female",61.9848725854007,138.869504184458 +"Female",57.6475214876719,99.396030767706 +"Female",58.6806647144322,91.5460043757612 +"Female",59.0832025013209,99.331383442546 +"Female",64.5983761275572,141.477629830916 +"Female",63.3683107754827,149.115504777396 +"Female",65.5673753765178,137.022386265541 +"Female",62.3378624459132,129.256562323502 +"Female",63.447582074036,136.324498357820 +"Female",58.5312456353175,110.589777575260 +"Female",63.7693560706991,145.403687380832 +"Female",62.7998870781647,131.110798848857 +"Female",69.1693527311278,172.795295100148 +"Female",65.152228436634,147.691633324541 +"Female",56.741741124191,103.540488116788 +"Female",62.3974050001003,134.210706732141 +"Female",62.9685208290876,126.822728820300 +"Female",60.3207411072769,112.033261433572 +"Female",65.2035516077722,142.421233485422 +"Female",64.6194742427852,149.673123060416 +"Female",58.913825870141,116.421136368464 +"Female",65.0224221134756,149.594116030134 +"Female",65.9496610162071,155.85347560809 +"Female",61.6508330203639,107.723538064984 +"Female",63.8915421651371,133.290687827197 +"Female",64.9550590860317,125.130920214640 +"Female",60.6846789669358,101.132359099954 +"Female",61.1352148616206,109.509108717160 +"Female",62.074058987907,121.95199423137 +"Female",61.5246052888477,125.01823288843 +"Female",60.1680232842102,113.046437988713 +"Female",64.5743138651905,149.401408289389 +"Female",68.70900894262,151.337910856476 +"Female",63.4709314682854,130.291661305178 +"Female",62.5342300513089,126.162458344502 +"Female",61.7360610920102,145.559462503418 +"Female",66.4890743902074,138.509139827607 +"Female",57.5535052100887,108.151688153841 +"Female",62.3210432270616,123.962780274961 +"Female",65.363737273052,145.92867237291 +"Female",67.2183941492729,167.449994857398 +"Female",65.2524050978778,143.888330008059 +"Female",67.75797031241,148.490398568957 +"Female",60.9468462262195,136.655841082259 +"Female",58.8390938792718,102.848048412167 +"Female",63.5335385140987,130.429148745009 +"Female",67.0160108447014,145.559180885427 +"Female",61.3500917381204,123.908500254437 +"Female",62.9891986938145,142.549562058552 +"Female",62.044035447391,114.478723303558 +"Female",60.3052182074258,107.978308854213 +"Female",62.5936305835178,136.760569754285 +"Female",65.6555249020193,140.942519931258 +"Female",63.9288492009517,142.203868679225 +"Female",64.0357060393282,139.325029610765 +"Female",64.7401256289334,147.269670454769 +"Female",67.0699084000576,163.451650985915 +"Female",56.7371834718755,91.6054372300519 +"Female",69.8941265119169,172.121606024802 +"Female",63.4725267227505,136.918575166116 +"Female",64.3789118730644,127.38635218433 +"Female",62.8111019243342,117.181701114000 +"Female",62.7063378830046,126.98432139872 +"Female",65.4002729606167,144.768076577208 +"Female",67.8631429344428,163.022806128078 +"Female",67.7705094932964,166.779502140496 +"Female",66.088502275048,155.815647833557 +"Female",65.7884934046996,156.867498656085 +"Female",60.236390402201,123.863208510544 +"Female",65.8652442036665,155.248900282561 +"Female",61.1900488527784,114.727957619958 +"Female",70.020252714737,167.312358529085 +"Female",66.5641801142713,165.931397501618 +"Female",64.4678892996281,127.852736440951 +"Female",63.6192890739514,138.508770436753 +"Female",66.228131947261,141.604855301098 +"Female",59.4430400338284,117.174651470467 +"Female",62.1686039925893,126.809692140703 +"Female",65.2221818190445,154.340405321502 +"Female",63.1128888936653,133.514246442373 +"Female",59.6328159944511,101.4551294287 +"Female",58.9721238299542,112.975630066303 +"Female",66.297345404932,165.014955877164 +"Female",69.6417708048343,186.206456202357 +"Female",66.425983126052,153.326613520577 +"Female",65.6383694242505,141.232385624238 +"Female",65.0726663206964,145.668534217610 +"Female",64.4563122365412,144.850698434417 +"Female",55.1485573624105,88.812412112758 +"Female",64.5204306080672,138.789809264946 +"Female",63.6525136467814,132.688211174968 +"Female",63.8845491017559,135.846193989745 +"Female",63.7207663192273,130.086167873638 +"Female",66.597740053578,152.242961212192 +"Female",68.0359068831341,152.125020639838 +"Female",64.6301997551396,155.220813662508 +"Female",68.7485485767874,165.900896658328 +"Female",64.128616235425,145.236805366237 +"Female",65.009259176003,145.823201893364 +"Female",60.7549137356756,112.405120757319 +"Female",59.4901983102036,102.814527107089 +"Female",61.967955845218,133.262532664884 +"Female",61.9849693113418,118.215457726561 +"Female",63.0887894851157,125.867080726794 +"Female",60.4193072261068,101.540179741294 +"Female",60.1013351878586,106.869890760256 +"Female",65.3677139712662,163.352062211233 +"Female",63.9244473864095,150.019817171016 +"Female",64.4339347618679,135.26994152491 +"Female",61.6993301976784,121.053641191411 +"Female",67.9358884779102,154.104349404932 +"Female",60.150030714028,103.979162647724 +"Female",67.7551178489546,162.907242925103 +"Female",69.3236135696079,166.637555472959 +"Female",68.9844684124081,157.32504118728 +"Female",66.6135292349657,148.60525480615 +"Female",63.0958282253417,142.565361070732 +"Female",63.0502034249265,128.227887852603 +"Female",60.646987640002,123.862430020858 +"Female",66.4843268376444,161.063685952681 +"Female",63.0829224692568,134.265299349196 +"Female",63.7577282412983,134.724986778298 +"Female",66.7940653186315,144.836830671716 +"Female",62.9609988825111,137.245971950026 +"Female",66.1089601111588,164.700948899750 +"Female",60.8262004124727,104.232114891407 +"Female",62.7543917548626,131.292879658791 +"Female",61.4392509056909,124.260070655872 +"Female",62.1199686097678,136.721544394352 +"Female",58.0870951473390,94.9448343436297 +"Female",60.6861674597862,114.046828121920 +"Female",62.3884257657738,129.623800133339 +"Female",66.1864525265963,156.380922966499 +"Female",61.6732048619503,133.188976343455 +"Female",60.941103031278,112.428986702258 +"Female",65.3748553420079,136.986076153268 +"Female",62.325635883769,110.963512482787 +"Female",61.686895702723,118.738642506669 +"Female",63.9497389896002,142.364261590957 +"Female",65.899989603729,159.849823425562 +"Female",59.5771885272637,99.6584919612722 +"Female",63.0433846696863,118.641681002697 +"Female",65.6907351497898,139.179987134382 +"Female",64.652558641845,162.593281212831 +"Female",66.2344473885115,147.553007231584 +"Female",66.6898286494956,174.328400227442 +"Female",61.7444361798333,125.448543149665 +"Female",64.3417048328623,138.297275974031 +"Female",63.985140693973,141.067356591485 +"Female",60.334171278339,131.049008259448 +"Female",65.2704268724238,145.614147752515 +"Female",64.9085097037607,142.550309006317 +"Female",62.2428760312028,139.400353264560 +"Female",59.3371092614999,121.185995798438 +"Female",62.9696937158732,102.853899237465 +"Female",64.1678707365579,143.413253277456 +"Female",63.195756348394,114.127221548767 +"Female",64.4167204087049,134.429990160312 +"Female",61.4943422409913,121.272604707266 +"Female",68.5338079165091,156.702269811077 +"Female",61.6263865413227,108.381453928707 +"Female",65.939828117502,153.101528506311 +"Female",59.2425679866762,114.740944746610 +"Female",63.957785121726,138.386111841329 +"Female",64.2065160335796,150.670588139326 +"Female",59.413107337428,103.386161328921 +"Female",66.503762374069,165.808363945837 +"Female",66.9866259232447,163.573336356195 +"Female",60.9747908404808,122.748005799042 +"Female",65.8208644494043,150.946715251891 +"Female",63.8600242953545,147.642319968037 +"Female",67.1134012949861,165.501254256483 +"Female",65.8492827529309,163.498867379070 +"Female",66.6508733115932,156.037047782656 +"Female",60.9531566323166,119.183239508735 +"Female",65.4087818474944,142.904527674887 +"Female",63.4141425020296,118.771264940045 +"Female",63.8709097270893,129.587864426525 +"Female",61.1939320237627,110.701340506353 +"Female",64.6163641392179,146.547643697133 +"Female",62.3850502508703,118.977188481373 +"Female",70.6648647656303,184.517960337069 +"Female",63.2615265457386,126.426792757169 +"Female",66.8897588594489,162.401000843998 +"Female",66.0781786725618,144.585526260348 +"Female",58.9963893636259,105.446788188787 +"Female",64.9220111924834,126.697343235953 +"Female",65.3060946626047,141.379213292682 +"Female",66.1090026738439,156.920752580978 +"Female",69.1252747890173,165.830008047780 +"Female",61.8034912253203,130.442535781398 +"Female",66.53896455013,164.092435507996 +"Female",65.5116330461273,169.348875110222 +"Female",63.9902528989022,156.379506355408 +"Female",59.3949177288618,131.37996833462 +"Female",61.3834605623098,125.754421731247 +"Female",63.8974199447316,138.190282698313 +"Female",61.9721211946316,132.907414346609 +"Female",63.249252941493,131.647765438899 +"Female",69.4436153829986,178.276727577929 +"Female",63.655296507321,128.283430931501 +"Female",61.2057754529634,124.423083650682 +"Female",61.9875304734353,126.409431105259 +"Female",60.2203411634516,120.429932616127 +"Female",64.1722773592349,139.823867554424 +"Female",63.7046639520932,134.093409442141 +"Female",65.2646476986872,151.605507508392 +"Female",63.4670029054455,132.368543794971 +"Female",62.7314184480746,108.656168510615 +"Female",62.0211634817925,136.013538730059 +"Female",61.5766245673981,109.076317238180 +"Female",64.5681508238302,143.236838685381 +"Female",61.4524106027452,121.980092414149 +"Female",63.5731426798083,128.558496285949 +"Female",61.0836290575481,122.442863365485 +"Female",64.6787800036247,131.652285011168 +"Female",65.5518478062711,139.383137119040 +"Female",60.783286619805,113.593997537514 +"Female",63.8121899792567,149.825575478474 +"Female",64.9606364936735,142.093483033212 +"Female",60.1921737819787,96.3587759528881 +"Female",61.5105296831285,117.840302473304 +"Female",66.7061675880873,148.351406528819 +"Female",62.1146025951057,110.917344379577 +"Female",66.9178300684814,181.592417163426 +"Female",66.3376605831011,141.387531916580 +"Female",58.5921354978105,105.808189725732 +"Female",65.3353334954337,130.573205393963 +"Female",63.0559876227757,128.398965765746 +"Female",61.9278304697097,116.792556571570 +"Female",64.9250143571263,142.118166114949 +"Female",68.2916245166065,164.183004342798 +"Female",62.6890338335094,122.998261577229 +"Female",62.6808367408697,125.892492220756 +"Female",66.3177553917042,151.211971866353 +"Female",65.0703469530899,135.605515984563 +"Female",62.4337761731215,137.174597958243 +"Female",64.1852125046744,130.087834383327 +"Female",66.5298081002523,157.929683798501 +"Female",62.1807795078549,111.850588135351 +"Female",61.6489868464626,108.033869563019 +"Female",64.8194236529219,132.578705642439 +"Female",61.4129359359521,123.962285067990 +"Female",65.2860178095874,143.373077174593 +"Female",67.3115988925796,153.910289791171 +"Female",66.3376576244353,155.668743499010 +"Female",62.2810008793625,122.533501204297 +"Female",62.9416573504314,127.248821350561 +"Female",61.0794519671956,124.802926195355 +"Female",65.2485738868804,154.909310178477 +"Female",67.9835332777928,153.438111730142 +"Female",60.4740883317614,126.68352528844 +"Female",64.7475146581568,136.530687014797 +"Female",63.2172784049803,140.159026447613 +"Female",67.3871042566167,153.134385399519 +"Female",61.6229362133595,143.623629604792 +"Female",65.9648269582179,151.631440216846 +"Female",62.4404269475933,128.234428310996 +"Female",66.3867051836085,152.738489949504 +"Female",61.1772757055263,127.197055303308 +"Female",61.2339039304258,103.142561324103 +"Female",62.8486223663988,121.679765033919 +"Female",63.3471828156837,145.524974081491 +"Female",64.4281059378209,141.214470246644 +"Female",68.2543625394003,173.513343771179 +"Female",65.2510017671734,151.729312917159 +"Female",68.026816799122,161.905682619433 +"Female",64.1860521542502,152.265119509105 +"Female",68.1016740752074,166.812092531527 +"Female",62.3690613865757,141.891389096293 +"Female",64.6834712324548,135.708088300298 +"Female",64.5802071176162,126.432720526499 +"Female",67.3841017695964,156.492674361252 +"Female",64.2408237241065,137.414668307977 +"Female",62.6752394484446,137.650841212974 +"Female",66.5323920249645,159.636138297466 +"Female",60.0729432857316,126.389612561301 +"Female",69.186811116755,166.13641093753 +"Female",62.4092643569429,146.809439343295 +"Female",63.341093895695,140.618434726989 +"Female",64.4943181693196,141.875465500897 +"Female",63.1218588316827,132.622973169640 +"Female",64.2202434413069,131.700238301874 +"Female",59.0495118453063,112.029945790866 +"Female",66.148828720191,152.749747162287 +"Female",63.0342403404518,131.970135026466 +"Female",62.7765751948061,114.155852012059 +"Female",62.4722579408584,120.169133253532 +"Female",65.8725959157433,155.570746043881 +"Female",66.2035724633392,172.395015493044 +"Female",63.420512815037,134.999570948388 +"Female",64.93426963137,154.700225446816 +"Female",65.2630619412634,100.982899039723 +"Female",65.371089546192,136.471256041241 +"Female",65.3739828076505,144.018809201117 +"Female",62.2687686031621,138.622815859994 +"Female",66.2874422639476,168.905571923085 +"Female",68.4073819893756,165.572093360069 +"Female",64.5261238533065,136.757930120717 +"Female",58.2566636783877,117.497757237700 +"Female",61.3244212856293,115.224368573338 +"Female",64.3001958311705,129.483342065861 +"Female",63.7896644114931,140.328415782962 +"Female",64.7285396961477,152.378222418738 +"Female",67.7144808195324,147.672830227387 +"Female",62.5185166556805,128.851529473695 +"Female",65.9569855056391,143.253878067555 +"Female",63.7166453300807,138.187700423217 +"Female",63.7042014125732,133.023856713654 +"Female",62.5706819532536,126.912850119797 +"Female",64.855261946483,150.397117772073 +"Female",64.009872579537,127.955175111910 +"Female",61.8150543535665,124.960105719251 +"Female",62.5367886786814,128.357711606643 +"Female",67.6381176208177,152.026630885817 +"Female",68.7095799916193,174.38251631775 +"Female",67.1385167280999,155.016937859477 +"Female",66.8899688065447,145.761659994705 +"Female",60.6236351181435,136.656054750481 +"Female",60.4158461005096,126.703963339534 +"Female",66.9064756007097,156.588617534967 +"Female",62.5997282401031,125.647206889565 +"Female",64.402180013628,144.500892432811 +"Female",62.3613595450316,112.283012471067 +"Female",62.1889327750203,125.179379627261 +"Female",65.238506746658,125.404932688931 +"Female",62.1402449692502,114.926184441192 +"Female",72.2647482777197,188.437304384848 +"Female",60.598584310957,124.603354194048 +"Female",62.2665814965972,111.245008384803 +"Female",58.3010347391725,92.2981464679836 +"Female",64.365890800229,135.600087638517 +"Female",62.6658609887557,130.995189147954 +"Female",67.4233394447381,161.894007812839 +"Female",67.8283434153382,173.360436577976 +"Female",58.8667513609795,100.848899977152 +"Female",62.0664061796513,123.704860088983 +"Female",64.101749313676,146.648296418732 +"Female",60.2399860346275,121.502890813827 +"Female",62.2112282443538,136.204821481275 +"Female",65.2830163165886,150.781482245881 +"Female",67.9727454826759,147.274133077866 +"Female",67.7208555797941,159.495168518468 +"Female",64.1217766985751,136.860507759214 +"Female",63.0980389382577,135.942769557151 +"Female",65.7084959958281,136.957445305497 +"Female",65.12929147627,139.049718412001 +"Female",62.0454434044798,132.192455826157 +"Female",63.6269578796844,145.461391934053 +"Female",61.0680538631378,105.311141498072 +"Female",69.0053177015551,176.832946922530 +"Female",62.9307604409748,149.658822677852 +"Female",63.0203480102767,141.407828111023 +"Female",60.4586125036787,118.428035391858 +"Female",64.8699423529315,144.226986590606 +"Female",66.6521884534505,152.697851303264 +"Female",60.04233796306,129.141595077228 +"Female",63.3790405463248,123.913872067523 +"Female",63.4658817822268,119.351599345712 +"Female",61.9919096861246,112.734337675452 +"Female",69.2476969140613,169.630306849238 +"Female",62.6378787707722,115.11550956742 +"Female",65.7698582819322,147.733361242309 +"Female",68.9008994581607,192.640037250181 +"Female",63.6651475160608,130.077250566254 +"Female",64.6118936669667,143.152427067989 +"Female",61.5301103880946,106.304317303014 +"Female",62.723024274794,121.722090341359 +"Female",66.3175727722566,153.246602135157 +"Female",67.0580877048592,147.797920059682 +"Female",60.1414415988235,110.837854703141 +"Female",66.1513554095234,160.767288095629 +"Female",64.3119610657784,145.477447271881 +"Female",61.1040917304226,135.041198926828 +"Female",63.437494401366,135.027554795509 +"Female",67.9793394462166,160.270525741063 +"Female",59.0860058343248,107.829003624626 +"Female",67.0999039052256,133.235697911489 +"Female",63.8648353995318,158.940059887756 +"Female",67.3520508701372,165.354677900647 +"Female",65.0064570756726,137.900916499105 +"Female",61.979579407219,116.954744870911 +"Female",60.5520165033181,115.251701043388 +"Female",66.2449909510251,153.376155596992 +"Female",66.7098067055299,153.566607359857 +"Female",57.8491050917339,96.2800926912173 +"Female",59.9394047125175,110.614614971048 +"Female",61.7659224552058,122.924680055967 +"Female",67.407253469196,161.458052671168 +"Female",63.7653283078473,143.919802226868 +"Female",65.2878093978769,127.039843168994 +"Female",61.9812103654571,118.821493236688 +"Female",70.6290406859165,195.765259510871 +"Female",62.3277807945213,111.965447665601 +"Female",69.9524668280154,194.240362169639 +"Female",71.2775069444522,162.313393207164 +"Female",64.6189809754171,119.681095103857 +"Female",69.4703226427793,174.146100643492 +"Female",60.7559487962066,103.352010634244 +"Female",68.3738347242206,184.157643412844 +"Female",62.0470851750194,139.114233795898 +"Female",63.3847551388442,129.718974571938 +"Female",67.4616974147976,158.274232858483 +"Female",61.0782175953684,116.431732314344 +"Female",64.6568051141895,138.999060469428 +"Female",62.625985143959,143.768450582718 +"Female",58.2116499335358,77.5237739030693 +"Female",63.0525493945968,128.046825285970 +"Female",63.6328924960761,133.782824929550 +"Female",66.8584688683356,153.011085735304 +"Female",61.955897965469,110.208987221739 +"Female",66.1148750605703,157.725304075873 +"Female",62.8347600585189,137.927244252758 +"Female",63.5306483091914,131.418933694020 +"Female",64.6892164479027,147.802532065034 +"Female",64.539260198594,147.565570477765 +"Female",68.5178731493077,156.372717631145 +"Female",60.8679431345641,126.406554893921 +"Female",61.0417343599374,115.082671804258 +"Female",63.0861588603999,131.093121432032 +"Female",61.5126369847,133.992924220097 +"Female",68.893229963652,181.389695876567 +"Female",64.3582635484732,138.856205743935 +"Female",61.1908372582479,132.977178906000 +"Female",63.546697634464,122.684162544557 +"Female",65.6264261159211,135.782738383760 +"Female",66.4174719209582,139.743280295884 +"Female",65.4186960995766,147.423293951944 +"Female",64.854997492309,146.692797807448 +"Female",61.3514780676978,130.276383053909 +"Female",65.3602162272904,143.894032847717 +"Female",65.2431622266592,134.567162921654 +"Female",67.2367795241886,154.705741916476 +"Female",62.8672442281689,161.268395410738 +"Female",63.2492421147938,125.129350519599 +"Female",64.8320979866949,150.743187121607 +"Female",60.0052568958542,112.664383375473 +"Female",60.4837622986145,104.419849603190 +"Female",61.2258047685156,127.828629847970 +"Female",67.0779375155148,144.848007820046 +"Female",67.9134243941057,168.705551575914 +"Female",65.8810596034969,129.003755219017 +"Female",61.5095289985437,104.405916987955 +"Female",61.6432121827358,121.303170692814 +"Female",61.910381530926,118.746654351646 +"Female",60.6219605007529,96.392483964259 +"Female",60.5612869665713,120.184557574681 +"Female",61.8956934456687,113.043300155823 +"Female",67.7423619397243,162.308665578035 +"Female",62.5619189033833,141.276705100823 +"Female",63.2798351650377,118.851399024487 +"Female",61.8656124330767,136.390117427448 +"Female",61.5319452247018,127.961964112276 +"Female",62.6753894877151,134.182576690945 +"Female",59.0291950607398,98.3726388184667 +"Female",63.172554714776,128.091026110874 +"Female",59.3276371791741,100.470709794843 +"Female",66.828666455576,137.103190402482 +"Female",64.3046601490493,133.875404616058 +"Female",63.5713915886175,121.780597346099 +"Female",65.1471238376027,155.776722258449 +"Female",67.3006788021829,158.466963199327 +"Female",62.813044057126,135.795835790392 +"Female",61.076541653466,131.336443521465 +"Female",61.5711085052211,126.012519837462 +"Female",66.1326052660284,153.593952484600 +"Female",58.1456527922555,112.035274132993 +"Female",58.771639480797,103.537756064271 +"Female",62.8269037406027,118.851401346172 +"Female",62.2024039020137,133.552941693527 +"Female",61.3339346501339,127.655439148815 +"Female",61.7136296930153,118.513012930273 +"Female",61.0452708259408,122.561834731081 +"Female",59.8796705049068,106.782310030936 +"Female",56.1053695899164,87.298869133415 +"Female",58.963525840387,110.815421111937 +"Female",62.6308864211039,129.521854503371 +"Female",59.9176306925363,118.463414143016 +"Female",66.0350169497896,142.986712168219 +"Female",59.2446461531754,104.918825532773 +"Female",63.3419102058422,126.839225475095 +"Female",68.1976206647126,178.192346162115 +"Female",62.8214537155175,138.40290706426 +"Female",66.6747100867273,161.716484018849 +"Female",66.343351735392,163.832917412347 +"Female",62.7156184031955,127.938015572482 +"Female",62.8793026559863,124.954627794587 +"Female",68.1425453912443,163.109726060221 +"Female",61.5491071834553,107.520131452552 +"Female",63.992565238541,134.353308041025 +"Female",68.7334148871494,153.723006039824 +"Female",62.6054044493198,160.613183450756 +"Female",63.9781516864494,135.218469598501 +"Female",63.9481572053959,125.818926471258 +"Female",60.9807618530896,127.297092850238 +"Female",63.5178587113688,129.134983557488 +"Female",65.119162340088,146.431025155674 +"Female",64.6990582263625,147.204547833916 +"Female",59.4748520897304,100.883857637275 +"Female",62.8308677628933,133.056294930910 +"Female",63.292585316475,135.159647202360 +"Female",64.2404321523269,151.657329464398 +"Female",64.4506725832854,128.1972734806 +"Female",63.8888798201699,160.584557338175 +"Female",67.323647992768,146.979969987311 +"Female",66.2450180552918,143.797489736556 +"Female",66.614405140606,169.128652811809 +"Female",63.2576422849487,137.087828917670 +"Female",64.4022813856534,131.378482562544 +"Female",61.7890437911651,123.140730916332 +"Female",62.7195894856765,121.811621034057 +"Female",68.0144173165796,149.716849933735 +"Female",62.1557166087603,126.353741148101 +"Female",68.1291248571907,138.863712967618 +"Female",64.9162089961892,133.200738371244 +"Female",64.4253694318943,151.564255562872 +"Female",65.7662260517481,135.444409336519 +"Female",63.2150848126439,139.356920191524 +"Female",62.732417407007,106.884047248122 +"Female",58.9600403939118,95.7523175393934 +"Female",63.6335140402387,144.974696688722 +"Female",62.3154885506522,122.513984906493 +"Female",57.1373009574261,99.1084992611307 +"Female",63.8578545332626,143.68836678804 +"Female",61.7724130729124,119.262168983767 +"Female",67.9153140772211,159.514292174193 +"Female",61.7831426426367,118.145506871255 +"Female",61.9467827067113,119.795395798445 +"Female",61.78785109145,121.092797347421 +"Female",61.2998596590408,122.740595290885 +"Female",61.223095142364,109.234242733830 +"Female",63.1675637942412,124.490478472305 +"Female",65.1183396137937,146.650334451394 +"Female",63.8080495407049,140.88853256203 +"Female",60.2871306426993,100.156972847148 +"Female",65.8031252632644,159.448865470818 +"Female",62.6414239095342,115.913380588994 +"Female",65.5183107913038,162.048231279623 +"Female",60.9231939348913,111.367257862928 +"Female",59.4477577096542,108.111643651101 +"Female",62.4158797367479,121.033728088398 +"Female",65.0614138941302,131.588929341813 +"Female",64.3593160479614,143.542122034770 +"Female",62.701033748158,121.771555012387 +"Female",64.2291563074856,146.095545612606 +"Female",61.1579832522621,123.345800524612 +"Female",64.0140563938974,136.776717207729 +"Female",64.2169724798357,154.446604850699 +"Female",61.5313233991646,140.980157622981 +"Female",57.7142565482688,94.389732636505 +"Female",70.4231297950142,174.608373602254 +"Female",69.1569421253123,161.114171360313 +"Female",64.7625294990012,131.352370598617 +"Female",62.0937349357015,130.299788340864 +"Female",67.4303776515945,156.076092074605 +"Female",66.862739057473,156.684621332745 +"Female",61.8248515285784,102.692776744418 +"Female",67.7787123113263,166.448484806429 +"Female",65.3047686532258,143.270975876443 +"Female",65.5245769219022,150.365317216921 +"Female",63.8488603078762,121.095961361193 +"Female",60.6698864466237,110.705427344881 +"Female",62.1207989136884,122.034650164414 +"Female",60.41475050224,124.706689846406 +"Female",64.5743951070672,142.095281980248 +"Female",60.1772872079128,116.397024904313 +"Female",63.8188192776955,126.738999890683 +"Female",62.6250491163806,132.152415004582 +"Female",58.9482350565812,103.363555704742 +"Female",62.0698514461539,112.455877756539 +"Female",60.452318720785,114.301057669739 +"Female",64.4893423963608,126.633052479505 +"Female",65.6172181433579,160.622370169889 +"Female",66.866755180099,156.518694727146 +"Female",70.3611186287561,163.945040321028 +"Female",60.230073960458,95.9337324786044 +"Female",63.3051590158136,127.778681522984 +"Female",59.587329390936,104.046180239567 +"Female",65.3236263219733,145.852290843349 +"Female",61.9630512868898,142.404892875298 +"Female",61.6335836541305,131.622520286286 +"Female",60.2219073469292,107.731290925800 +"Female",62.4440887350453,134.451299553178 +"Female",61.4381951811547,123.036175625723 +"Female",65.0328428163339,153.393562055098 +"Female",66.8341651344032,151.933885904572 +"Female",61.2790976384486,141.212122695795 +"Female",62.2641351641317,147.335214770323 +"Female",63.6907199218838,121.633408724521 +"Female",61.230144508313,106.092298330602 +"Female",59.2479257543123,106.067217952156 +"Female",65.0773312027466,152.074626341192 +"Female",63.3365319462159,136.066723993253 +"Female",65.1280235063673,150.143976255014 +"Female",66.3672614196811,153.104104814365 +"Female",59.6273616483559,127.003820747696 +"Female",66.7443634712758,168.866877191217 +"Female",66.5667122845471,138.600079957473 +"Female",65.1909795177654,158.778935660007 +"Female",63.7251435014985,125.417422425669 +"Female",64.6405274625531,135.449502159375 +"Female",68.2221798564946,153.098641625936 +"Female",60.7650934564126,111.364239917823 +"Female",65.078073310325,154.765647291697 +"Female",59.7739064235202,124.418019156623 +"Female",67.0085538675607,151.333898886002 +"Female",71.5522046700191,185.658270832192 +"Female",65.6041003896816,144.508903349688 +"Female",67.7138727887894,163.334449922777 +"Female",63.2139625255087,142.566080498934 +"Female",61.254334615895,115.889543909571 +"Female",65.6386609067559,137.289749812448 +"Female",59.2486557233241,110.587190765996 +"Female",63.2632176712443,141.671147525066 +"Female",63.2851068369893,119.007460625104 +"Female",66.5064030857321,152.440699734892 +"Female",66.8350317213596,160.981093829936 +"Female",60.5611799130383,116.268516432508 +"Female",64.4785671582295,151.886705673811 +"Female",63.7322395071576,154.655272563838 +"Female",68.1441175582664,152.430561603730 +"Female",65.383224212625,140.073641074898 +"Female",63.3526871212887,119.633755791227 +"Female",63.585207215854,128.486555886959 +"Female",66.5381613215888,161.143613146957 +"Female",66.6445262797493,152.569345022058 +"Female",62.4427571301402,126.522643200024 +"Female",59.5883950963049,115.215399374440 +"Female",62.0554714713668,122.674048590663 +"Female",67.9994486762744,161.321899972785 +"Female",64.635679679449,160.100380734081 +"Female",60.145856135236,120.888521635297 +"Female",61.4986393736618,122.049480193377 +"Female",60.46647732630,112.851411720967 +"Female",61.4884411431049,137.091736780398 +"Female",65.5333127181764,148.052070400263 +"Female",57.8372689542339,105.739217158828 +"Female",65.0410429711465,134.280095210813 +"Female",64.1815350496702,147.927495643850 +"Female",63.4307605484845,138.195604859097 +"Female",62.4909590633185,140.611043869758 +"Female",67.3862851924034,168.140553130811 +"Female",64.7635028630058,133.252367479717 +"Female",63.5814065482242,138.229396222889 +"Female",63.798527347582,137.465807551397 +"Female",60.9774144476069,120.660729091593 +"Female",61.7358264298412,110.513241618884 +"Female",64.1913969814589,121.889608784505 +"Female",60.5521922278817,110.299728280255 +"Female",67.1820800126776,164.779375641609 +"Female",65.8756450362095,141.018132108356 +"Female",60.336579370944,82.1984878532933 +"Female",59.125031484915,90.5207839962002 +"Female",68.1870490876192,177.568849558525 +"Female",62.6219776809662,106.001349204059 +"Female",64.7621473457827,142.264983122025 +"Female",63.7170340153881,137.999423060675 +"Female",62.788568531605,119.627917794982 +"Female",66.341333745267,156.232125374109 +"Female",64.8457672614786,160.758900412111 +"Female",65.7559481568196,137.471104119053 +"Female",66.3065498368028,154.904986306002 +"Female",64.2377419661476,147.205490109169 +"Female",63.1049843740447,133.148254236448 +"Female",62.7803016284495,145.794374092131 +"Female",63.4731386049369,155.488895183201 +"Female",66.7491668435107,166.880315557521 +"Female",66.5294933495484,149.739207835778 +"Female",64.942545331931,135.387153805473 +"Female",64.2547599510071,143.363850086033 +"Female",65.6432810545857,159.133382120439 +"Female",66.6623825967266,159.482376464725 +"Female",60.2097381108623,111.048452312775 +"Female",64.5530373378013,137.820944678286 +"Female",65.5224334717415,164.508360393617 +"Female",64.1639392828682,123.412253919656 +"Female",63.4247507821743,153.176615729676 +"Female",68.575694575982,153.319264343621 +"Female",67.460675530594,175.292753048247 +"Female",65.5863987348924,157.146160925858 +"Female",67.38368785698,160.978114729003 +"Female",65.3004338453289,142.520552023611 +"Female",68.6970101196574,171.892025800229 +"Female",62.8818495007199,117.366115998373 +"Female",64.5022454380577,134.045492075742 +"Female",67.129602569104,134.273574598086 +"Female",63.893187894372,135.652300448713 +"Female",63.9470891052939,138.865443523640 +"Female",61.2330699227445,117.144139439547 +"Female",62.36584320303,138.648447317277 +"Female",63.8811965093768,137.170886333196 +"Female",67.2601239702578,151.230951878344 +"Female",61.9809224738095,113.968997548358 +"Female",61.9380059889866,121.187253815547 +"Female",65.1236469361573,163.934531727343 +"Female",59.9499137352606,111.232280911062 +"Female",58.6709529702722,98.5160786144569 +"Female",61.4584372602041,131.700770777790 +"Female",66.3393851113239,160.985106021963 +"Female",67.5842049060273,156.732270778401 +"Female",66.1149178016367,159.372156649349 +"Female",62.7357257028632,138.254437110754 +"Female",62.7371124959095,112.871363392254 +"Female",60.5948235190172,118.758041933192 +"Female",64.2636832301446,147.403128354823 +"Female",63.589548432464,139.686156989160 +"Female",60.5224211232581,113.266333576858 +"Female",65.6505402807652,147.337183786838 +"Female",64.3684095133994,139.550199728775 +"Female",68.094319631298,141.226633056596 +"Female",61.4027042253034,123.983910994488 +"Female",63.6553171963399,148.238011729578 +"Female",56.1672991862273,77.8985592718359 +"Female",60.8593091877939,101.173339432368 +"Female",65.4935300866689,134.900006866972 +"Female",60.090174703046,117.895237394228 +"Female",65.1580905070669,148.361308433515 +"Female",60.5804207001373,102.187820524886 +"Female",59.847446363622,112.144544158221 +"Female",60.1791124588638,97.2613127866806 +"Female",63.8072524431298,139.603647968899 +"Female",65.1595902181177,145.442724219011 +"Female",61.2308417905583,116.858097517902 +"Female",66.256513916737,148.414305257976 +"Female",62.2993404871673,138.994964745233 +"Female",67.3426907135966,144.924252084822 +"Female",64.4825537251333,131.813137863820 +"Female",65.4092266319353,151.532193245431 +"Female",63.3198477002133,132.900102734210 +"Female",69.9982972693628,178.743255729628 +"Female",60.7799998571652,113.877440458301 +"Female",62.7137650978029,124.672840042441 +"Female",64.0631262042994,136.627816992875 +"Female",67.260748440053,154.619460995625 +"Female",62.2273376922072,120.936614250334 +"Female",59.2230444090222,131.159089656364 +"Female",58.3694478311255,113.899109787270 +"Female",59.9773398053071,110.800198280178 +"Female",62.232313213556,131.886497653701 +"Female",61.4046834621872,123.014974292633 +"Female",66.6922974884749,153.556966333125 +"Female",60.829197751082,116.253522178092 +"Female",65.6326003304289,159.096036886897 +"Female",60.1913304215395,115.045772393027 +"Female",66.0987188961904,131.264401547620 +"Female",64.4053315494993,127.943947171077 +"Female",64.8943538927103,129.117041346529 +"Female",63.8633618127893,128.285494343499 +"Female",61.2176124987157,124.523785828336 +"Female",70.0000996614627,176.828201015981 +"Female",64.4870950936288,130.652130869763 +"Female",66.9886126118952,156.256875536016 +"Female",58.3002683655671,95.1214034651925 +"Female",64.3562088139533,154.374633259613 +"Female",67.4090561864154,163.584236174247 +"Female",66.9363105204275,142.767367110374 +"Female",60.7318568323656,119.967881328411 +"Female",65.197125646994,133.014706866683 +"Female",59.9559581707296,119.880437088442 +"Female",65.7402529244201,165.156370747027 +"Female",63.1740888552376,134.931119765396 +"Female",61.4145108452755,131.556847184007 +"Female",61.9537652783583,139.480345206380 +"Female",64.7363555965433,137.770832168014 +"Female",57.2330564010914,99.3712842598644 +"Female",66.001685214129,155.10492540068 +"Female",66.0355514851669,151.873442773797 +"Female",66.1244961715813,162.730381361469 +"Female",59.8735562991131,107.637607473672 +"Female",64.2580677870656,122.937234881327 +"Female",64.5232741331008,146.602980035515 +"Female",70.3985174035204,167.542411293767 +"Female",67.6836069573014,151.280053614573 +"Female",60.9794598983385,108.469169428357 +"Female",64.961958811518,113.726967903199 +"Female",62.8260422397165,129.286756468877 +"Female",63.1839627455561,127.177120707278 +"Female",64.9434359637002,136.663869426503 +"Female",62.6842520182645,124.440025569112 +"Female",64.8269601440787,152.079450824902 +"Female",63.7407624734611,134.111768150996 +"Female",69.8222337040217,174.66738753922 +"Female",63.3356714646882,126.697367322170 +"Female",65.7999224637006,142.146437863022 +"Female",61.8370968244941,136.773825962060 +"Female",59.5488946202499,118.860323196746 +"Female",62.1266548302817,114.142898598438 +"Female",65.3248696308045,145.521060613319 +"Female",66.6144422564336,155.888980999046 +"Female",63.7346231856398,146.971723539681 +"Female",60.1641472280657,120.244526484622 +"Female",65.693383720852,151.987105758169 +"Female",64.39091597417,138.471776884101 +"Female",65.3437691809575,128.240548016760 +"Female",66.2848633755886,154.885142449294 +"Female",64.140632972352,134.459337738029 +"Female",64.889918729116,134.27994876853 +"Female",64.7005698105255,146.402676964792 +"Female",59.9088447631009,94.5636974730176 +"Female",62.4335554152787,124.286143377051 +"Female",64.7727456118938,143.445450391041 +"Female",62.9061449210485,104.050480193677 +"Female",62.2638400362711,124.034273329032 +"Female",66.03868980174,142.755779226000 +"Female",69.2112021776405,147.049381685417 +"Female",61.3195662422527,107.464225385680 +"Female",60.0810068631417,123.776018121216 +"Female",68.985579452326,152.957148403796 +"Female",61.7926573252242,107.455066344878 +"Female",62.9076299339235,141.216627796238 +"Female",64.6002321381755,130.657130926108 +"Female",60.5184395451444,139.760616751574 +"Female",66.9239917963286,155.758133566976 +"Female",63.0675948764312,133.659393628696 +"Female",65.5325102349844,120.847428543239 +"Female",65.0178572053912,147.099105575917 +"Female",60.3504368816909,108.277572058294 +"Female",66.1706818699104,154.514715918111 +"Female",68.0909278742523,161.553910163254 +"Female",63.7904836171276,154.226692697846 +"Female",61.8947031449588,129.562772754748 +"Female",65.7161765440232,157.691150989167 +"Female",64.941030878182,141.539366953023 +"Female",62.5643463349735,123.554175849710 +"Female",64.0722520631115,166.573125095584 +"Female",64.6442875073107,143.015419225919 +"Female",62.2836709099809,132.576418436117 +"Female",68.0702781629556,164.367594984729 +"Female",60.000657153046,95.6256381775232 +"Female",61.6915442254688,118.201971175305 +"Female",69.804816962785,174.027459377758 +"Female",63.5771178792171,126.525139777711 +"Female",63.5034670293069,152.69924649185 +"Female",62.499843013337,132.561613007705 +"Female",59.4083413407457,101.21720262983 +"Female",60.5753149098544,99.2862980777016 +"Female",67.0539164556433,160.943310921227 +"Female",64.2688204047751,148.246595207785 +"Female",66.136130608575,151.814647757933 +"Female",64.3112056122001,138.817429362978 +"Female",62.8346978405317,132.419183779592 +"Female",60.718324427993,124.434406826980 +"Female",65.2892591069429,140.055482833033 +"Female",61.8129850189252,137.338234317463 +"Female",60.9809836860399,132.218541557070 +"Female",65.3944975208545,146.20959507367 +"Female",65.268391373627,164.043947021075 +"Female",65.1267482398175,142.38346518829 +"Female",63.4996473404995,123.586079174951 +"Female",63.0087252655982,127.541750007152 +"Female",61.8493840185535,122.413020792137 +"Female",61.0826769228384,141.50309801532 +"Female",66.4131559385162,167.723491996096 +"Female",69.7292731920596,187.785319535771 +"Female",67.4310286263112,148.623788176728 +"Female",64.4530798783529,134.550509213021 +"Female",64.5389948113405,141.106887854606 +"Female",60.4519061759636,122.155184874694 +"Female",64.8309426383096,156.954376524650 +"Female",64.1534922447874,133.601933044652 +"Female",69.6109082957922,167.738696686611 +"Female",60.7413957672661,118.418728094186 +"Female",65.5242471494712,144.464104628504 +"Female",66.1212030748158,144.939430491863 +"Female",61.0843270540781,117.987569728394 +"Female",63.6921566091057,136.892889770776 +"Female",63.9834939679935,141.479938598873 +"Female",66.7395424793519,148.561606707897 +"Female",64.1200342018962,142.053883569617 +"Female",64.7708440965374,142.835416391176 +"Female",62.8040681729421,129.147672579079 +"Female",64.5067709553058,134.99769033233 +"Female",64.1478240856383,148.645119428226 +"Female",60.3204844248844,114.777133984642 +"Female",62.1876806542036,124.606873604888 +"Female",66.915285627757,168.667905996725 +"Female",63.9464826675548,135.037495427688 +"Female",64.7905511164064,142.533415076392 +"Female",65.0133183524363,134.529192257257 +"Female",64.8150194835038,135.965444929807 +"Female",64.8860511959117,152.866933457110 +"Female",63.1308134990737,141.914162667578 +"Female",65.3320138258011,144.806619669841 +"Female",62.275450588808,145.992377845836 +"Female",61.1526182612024,115.244888470274 +"Female",63.3380151004661,143.708623012450 +"Female",61.5425325614743,118.037046036155 +"Female",64.637492959151,133.379545927519 +"Female",67.3208244978274,153.522260316951 +"Female",65.6582764222463,139.458587269102 +"Female",66.4207333982378,143.874330318647 +"Female",63.2459481457864,121.016091053336 +"Female",64.0734661163267,125.540056240174 +"Female",62.2938285155084,133.020435422027 +"Female",61.6210566067846,108.798198942463 +"Female",63.5397728071705,130.27971411619 +"Female",62.6152812347498,117.439002024287 +"Female",62.2109628577726,136.354632672288 +"Female",59.5336429964067,114.152350974608 +"Female",63.2142206867711,126.026720884472 +"Female",64.3257052898524,155.530713879534 +"Female",68.6784331284575,163.889449990442 +"Female",64.5895008241428,150.205986827452 +"Female",63.5778485844985,120.684128887998 +"Female",60.9001221812197,117.169559135498 +"Female",63.9985239139983,149.364782801046 +"Female",65.7065796786902,149.715822513582 +"Female",64.0414419015282,141.886802103853 +"Female",58.7573709705235,111.65734041017 +"Female",59.8938938234214,116.759560100867 +"Female",66.5597964055882,162.676838002028 +"Female",61.6623671332511,122.708789142191 +"Female",62.1340819210664,132.315456910804 +"Female",61.3182843828611,97.1075042587005 +"Female",70.1759547014681,182.133805699515 +"Female",62.157304372623,128.958406953713 +"Female",65.1254074215185,140.376335631349 +"Female",64.1618175719681,157.909028738342 +"Female",59.5476808478638,107.8537914796 +"Female",58.996286808194,107.839014995551 +"Female",66.1786977209513,151.828279304935 +"Female",63.6539641291906,127.841625732637 +"Female",62.0158111276942,133.652829939242 +"Female",63.7166915247012,143.758991614374 +"Female",66.1111655679784,139.235028722568 +"Female",65.109614478518,136.932301263247 +"Female",58.1871410720517,104.472382202008 +"Female",62.3083009668332,120.671009456357 +"Female",63.825438005784,134.248057133578 +"Female",63.9864556769549,146.303381084661 +"Female",61.8102590379416,132.522516142785 +"Female",65.0469974386592,140.823228588263 +"Female",66.9471980540265,154.782478853802 +"Female",68.3169056442754,160.443182982172 +"Female",65.0967760242844,152.416198216735 +"Female",71.0704512296053,182.083580320696 +"Female",69.1409455400443,186.797931929378 +"Female",62.2185993068968,130.012336322795 +"Female",62.8408008879154,129.250670310846 +"Female",67.2251213560333,158.524336991482 +"Female",60.2705738971792,121.647420362571 +"Female",62.9507926042264,141.910054303157 +"Female",68.9997458610011,179.640836207311 +"Female",63.5047985401421,129.319254342723 +"Female",62.5537313702819,132.006232980316 +"Female",63.9448674769439,137.837637455761 +"Female",67.022819797731,159.24380154288 +"Female",64.6802075935097,151.757775363624 +"Female",60.0355612214283,112.952625183124 +"Female",59.4642590590802,111.710518227827 +"Female",67.5391735256493,138.522789158014 +"Female",61.7733053924659,112.267300513754 +"Female",63.5488876852397,135.814923850623 +"Female",65.7611267754491,170.868939396966 +"Female",69.1800813101138,165.256626683302 +"Female",64.7987046603038,143.826264789058 +"Female",67.200630518134,160.899838249265 +"Female",61.6231030321112,112.543423895046 +"Female",66.014833544935,161.107167807521 +"Female",61.3345101856516,114.718563573216 +"Female",61.6101934475425,112.077615318026 +"Female",66.2277923164394,156.166353265997 +"Female",62.1938626262822,132.060156864781 +"Female",64.1528847776115,151.275532926064 +"Female",58.8924736386833,104.423462162595 +"Female",64.2981341276828,149.190737819956 +"Female",67.5556098689441,170.855319750720 +"Female",61.3894906412277,139.105836976208 +"Female",65.8604389018894,140.382997891746 +"Female",61.1036372750313,111.574376941137 +"Female",66.0424876840815,133.944360535363 +"Female",62.022989674241,125.507080404148 +"Female",64.2740445375728,145.896325083948 +"Female",59.7584445118113,119.164742669656 +"Female",62.7814677041235,125.823187311418 +"Female",61.52887955179,128.643464242143 +"Female",63.905615796127,136.852413117120 +"Female",64.8921521340993,146.610303918176 +"Female",61.8024040097622,114.882857976334 +"Female",69.0997676168324,174.708561656321 +"Female",64.9831331891006,144.259172710796 +"Female",62.323057779829,125.556071470487 +"Female",65.3227707930097,146.752451830434 +"Female",64.2344200830226,137.509552966831 +"Female",61.3233467896375,119.758161452751 +"Female",58.1558883121072,95.6788715811646 +"Female",62.5942702554782,123.739985275625 +"Female",64.6784085432949,123.010507026547 +"Female",63.957582696034,118.892956803453 +"Female",67.670801576127,155.493911611060 +"Female",63.6358284008209,125.504072092971 +"Female",62.5650084471955,144.724947290496 +"Female",67.8956592881614,153.436480930468 +"Female",67.9536581615964,167.090125786042 +"Female",65.0369904342518,147.870356709980 +"Female",59.8385688390406,106.358333022858 +"Female",66.3943434735935,160.493872050002 +"Female",65.3490662269293,156.878287198887 +"Female",64.3924792721491,143.620090740353 +"Female",65.5086948460724,164.442778414257 +"Female",65.1748376899588,129.027267463197 +"Female",63.1747415836602,133.685913555545 +"Female",64.8395308770211,153.572862939911 +"Female",60.2954605891014,116.125957873385 +"Female",59.8159106382053,130.957027598791 +"Female",63.1670305681502,129.670909248600 +"Female",64.2851816410535,155.252860462494 +"Female",62.6383155794665,136.100239364981 +"Female",65.6541338471196,138.104340013144 +"Female",59.5311623696492,124.809570874828 +"Female",66.4954666828606,164.926816248538 +"Female",60.5425947918931,134.713428412532 +"Female",61.5759336988114,121.648439723000 +"Female",65.4876399780526,146.060156343627 +"Female",63.1130576776778,138.451498527306 +"Female",64.9914780008242,143.678940525985 +"Female",64.9046946291545,150.171123875240 +"Female",67.6022940753349,152.365016220443 +"Female",59.2644465400571,117.393702120901 +"Female",62.2149230110556,132.555193184738 +"Female",61.660227269952,120.991716643945 +"Female",60.4839456506518,110.565497391584 +"Female",63.4233715291186,129.921671035264 +"Female",65.5840567646487,155.942670834442 +"Female",67.4299713773882,151.678405459134 +"Female",60.9217908734477,131.253737819413 +"Female",60.8430594839017,116.50475222455 +"Female",64.5698892133442,137.103401171402 +"Female",67.5906368296672,161.783853883340 +"Female",66.446241641536,135.608858594301 +"Female",58.5218733786693,103.764424781280 +"Female",63.7685186448598,139.851059473957 +"Female",67.7006214777105,155.726682682802 +"Female",61.8781568640971,101.525235742981 +"Female",62.9858975547956,112.57379095656 +"Female",61.8599485027306,132.776178367157 +"Female",59.4790437423757,107.869972910744 +"Female",62.9398101246791,120.466153190048 +"Female",64.829604955638,151.685821506122 +"Female",64.5792892535986,144.296026044466 +"Female",61.7893607830965,126.998160603856 +"Female",65.2414293164916,128.721102972444 +"Female",64.3685247885897,138.929385323167 +"Female",63.7882459528995,141.045895728829 +"Female",64.901828981405,150.749956915494 +"Female",64.1156772002082,145.509863709212 +"Female",64.3223032511334,153.024271753804 +"Female",64.46595255684,145.133615510115 +"Female",67.0974560730453,155.502341613017 +"Female",61.3047539960928,104.855761815701 +"Female",65.9663788542698,151.715241934626 +"Female",65.9464715465173,161.686807461074 +"Female",68.1940928978958,170.841539448070 +"Female",61.9092375309623,128.598972976927 +"Female",64.9787306768798,135.206873304074 +"Female",58.777124253358,112.561989237208 +"Female",61.5855609560085,126.125262732023 +"Female",68.2226644764453,161.041578366496 +"Female",66.228113421389,139.638425673039 +"Female",66.6188044770195,159.147958403703 +"Female",63.8668149130383,142.512729446172 +"Female",63.4866809143913,129.289829974431 +"Female",67.0877693447369,158.555209525114 +"Female",66.6923901822954,162.785509792322 +"Female",67.3480921522853,154.877197038327 +"Female",64.0315399217784,136.296628431283 +"Female",63.0609147896584,122.134739672569 +"Female",61.1110523769751,113.099653247491 +"Female",62.1737076379369,136.266341077406 +"Female",62.4214287825992,121.794344142296 +"Female",64.1943122766899,135.971015008065 +"Female",63.953573681628,145.520358339144 +"Female",63.3818075101804,132.974282924293 +"Female",62.9098396766815,139.469037988929 +"Female",70.5436929307446,180.97925020435 +"Female",69.1114366491597,163.903482667662 +"Female",64.1201117660853,142.708667935028 +"Female",65.0312587049244,150.468164319893 +"Female",65.2700969002921,145.768090615387 +"Female",68.7595700883626,175.90345246978 +"Female",64.8780388045506,149.812881569090 +"Female",65.2785984146034,143.531071668535 +"Female",61.5352869739347,129.615749421462 +"Female",66.7766035351065,172.858287596082 +"Female",61.6520018174032,126.460135597711 +"Female",62.9932298086649,139.408491691341 +"Female",57.598029724148,98.1827929074567 +"Female",65.8797883262557,142.855292290848 +"Female",61.9793239112533,137.083427787570 +"Female",64.2473843999019,124.932497974284 +"Female",64.6340412960218,135.272743229695 +"Female",57.445203571258,89.4208948928405 +"Female",61.9337579702405,102.471512542612 +"Female",60.3303629008072,114.468909144872 +"Female",64.1197316778982,139.587210703165 +"Female",67.520343353925,158.209688030415 +"Female",66.7145851224913,162.930817337045 +"Female",59.864891404371,117.729442075966 +"Female",60.725153220583,122.507462547242 +"Female",62.9143891680084,124.316963108680 +"Female",68.804693531554,173.280101791839 +"Female",68.4231690501416,169.467359249734 +"Female",59.7852886751964,118.353635094036 +"Female",64.6846488077826,128.250812929516 +"Female",62.9620401091926,136.799777276035 +"Female",67.2618238759931,162.305549313408 +"Female",72.0887123319944,192.530863261324 +"Female",64.1108212336824,139.245503319972 +"Female",64.5015838730848,135.620026277074 +"Female",62.6079375086972,125.891895990819 +"Female",66.1618229262314,137.657127868271 +"Female",63.1251001948699,148.734203718151 +"Female",64.0352789618228,137.424657358474 +"Female",63.8242139934414,129.297520063129 +"Female",62.1630680329135,108.250636306234 +"Female",64.71270574661,141.33180343126 +"Female",61.789418728741,136.646281939513 +"Female",62.3966112014885,146.807308639362 +"Female",62.3650742508373,132.125296049936 +"Female",60.9610388646673,109.362717070366 +"Female",63.4953029053001,141.026405496844 +"Female",58.3434842769827,110.152236666551 +"Female",61.1431914396364,112.965639642002 +"Female",59.8360407045677,103.265961004576 +"Female",60.4376929014369,136.592186443281 +"Female",66.3200806021745,152.662441471684 +"Female",69.3816433659015,168.245630119510 +"Female",66.4235948239081,153.000558606447 +"Female",62.5543196835943,126.491105015903 +"Female",64.0375769777106,132.816177440416 +"Female",68.5756144772928,163.228849726571 +"Female",62.602258456669,117.130920241326 +"Female",66.0601243803337,146.674215733532 +"Female",59.6170282021774,115.247771834858 +"Female",62.8966467828079,131.575099015890 +"Female",63.1809126458129,135.575404139852 +"Female",69.3050073770746,151.311013988174 +"Female",62.9729584122787,132.159008991046 +"Female",62.1793807565681,103.097460423085 +"Female",62.0542039710283,124.87679021037 +"Female",63.676018088915,127.326985394143 +"Female",63.9792330712939,134.311979088381 +"Female",63.8448736694738,145.579421077492 +"Female",67.4153483527509,150.498250922393 +"Female",62.1933365884006,101.232044530406 +"Female",60.1505224194368,111.302935730514 +"Female",64.5799302070911,127.372238208108 +"Female",64.6065771074767,144.416726162008 +"Female",60.8575428572594,139.246001798841 +"Female",66.4375600541888,153.068001329042 +"Female",69.1904359281649,172.235965626119 +"Female",62.0888260906559,130.941881113391 +"Female",61.6830285758629,116.423510279721 +"Female",64.6087149018801,138.920991399578 +"Female",66.1938915235957,163.811182573868 +"Female",66.1568148770401,128.207178145036 +"Female",61.0841437108486,130.377467219993 +"Female",63.7960323721127,146.455298633415 +"Female",62.8517253104952,126.033916520938 +"Female",63.8953930346843,126.905004317371 +"Female",62.026069360058,118.614219203688 +"Female",63.1033581479829,131.794463059161 +"Female",60.658398101015,119.209300297117 +"Female",55.6518916024929,85.6217764414627 +"Female",64.9739191954757,146.576103423851 +"Female",61.5904542786546,125.517769043557 +"Female",60.6065440026835,115.437373072737 +"Female",61.5287678637509,127.661455482649 +"Female",67.7796515327122,157.665189935402 +"Female",66.976831589091,157.611683331829 +"Female",65.714473554436,147.197859548650 +"Female",63.5216877801212,136.775805341435 +"Female",66.747293134292,162.605759851958 +"Female",65.0600953420888,149.725493237891 +"Female",66.3241413408886,145.911183493048 +"Female",64.410774762604,131.526373255081 +"Female",66.6516180152475,154.011177203265 +"Female",62.7830396678923,131.939335462205 +"Female",60.6789777914626,120.618534909866 +"Female",62.8986253888669,128.560075137572 +"Female",67.7609095704926,155.973930789838 +"Female",65.9528407591821,166.771220095083 +"Female",62.5353247881032,124.833982681173 +"Female",63.9046677412968,146.692290435674 +"Female",65.9919772975016,155.414139041545 +"Female",61.8828139360392,116.711030078486 +"Female",60.7739389820502,114.447804847591 +"Female",64.7414254148999,128.791209901986 +"Female",66.1109808978235,140.998458220540 +"Female",60.3333723850573,102.256837788828 +"Female",67.7358229152339,159.197012809523 +"Female",66.2073535344002,156.537008352962 +"Female",67.408917564228,170.270947718714 +"Female",65.0290716649515,156.822731723117 +"Female",61.906393892811,134.782516534804 +"Female",66.2129798828924,154.959790352475 +"Female",66.3094238826261,139.834825730998 +"Female",64.7298675890735,143.932998940750 +"Female",64.297840961769,138.597196770461 +"Female",64.024721744528,116.886772964662 +"Female",65.8161228106243,148.475424617453 +"Female",64.6346761645216,133.394982757580 +"Female",59.5569083033151,116.191983064210 +"Female",70.8175378934773,184.860623783118 +"Female",66.6464040998428,156.424967571249 +"Female",62.8575373733541,122.802404729026 +"Female",61.4262054327819,118.660420672920 +"Female",70.950659090658,193.225926695814 +"Female",65.0702044066438,132.403738235196 +"Female",63.271892952732,142.994239809958 +"Female",67.1198044457032,158.93064285898 +"Female",62.5721954699236,137.382100711611 +"Female",60.4409610747129,118.224491294444 +"Female",61.2018091899706,102.179562817238 +"Female",66.7994224445267,147.584709658355 +"Female",64.1370445748482,145.307462985894 +"Female",66.8777106013904,153.720384307704 +"Female",61.5740945111476,148.396904766621 +"Female",69.466249813675,169.114862442853 +"Female",70.697142976137,194.048809246781 +"Female",62.3456179871136,121.502008212004 +"Female",62.7190871002672,122.874559484302 +"Female",64.3235437838275,138.976733433855 +"Female",62.8905197442112,147.525951401132 +"Female",64.6039158244996,135.622219896544 +"Female",60.9070153273438,131.736779060302 +"Female",62.4571243766983,124.490297646977 +"Female",60.7095917264777,113.172283464686 +"Female",66.8387621887302,153.326068318602 +"Female",63.3903569860738,128.617638390548 +"Female",65.8201013990582,139.496268617143 +"Female",67.7137578957388,157.22089790489 +"Female",61.5944509357384,117.324787271048 +"Female",65.8892012445277,143.017528222523 +"Female",62.882444469268,119.992575500218 +"Female",64.8376899845937,121.094631098394 +"Female",68.6188042684772,163.667208715041 +"Female",67.303354887169,166.711653627491 +"Female",58.3719864101776,92.035945841726 +"Female",67.5995855731533,159.969308203497 +"Female",68.1731974295347,178.826118003563 +"Female",66.7921473780064,142.853118161288 +"Female",62.3703779752153,138.725475618616 +"Female",63.4173742292794,122.147713644865 +"Female",66.4006388658354,157.827045468444 +"Female",60.8489345232094,119.557245638926 +"Female",66.423548691244,148.320300452130 +"Female",60.5847210127074,116.051246486874 +"Female",63.3882885652124,149.089341369956 +"Female",65.3612908033044,144.026949954807 +"Female",66.3423500772453,147.335296046817 +"Female",62.589981961344,123.643444679756 +"Female",61.4301125464784,131.181929536141 +"Female",65.0881213713662,146.796102729389 +"Female",62.686275922984,130.120432713398 +"Female",65.6728000058047,129.103219625371 +"Female",61.5084288750785,98.3315463731666 +"Female",63.9216834750794,146.384324239399 +"Female",61.1974917400436,103.597987352546 +"Female",64.7283901541704,147.519907389273 +"Female",64.6498320470762,153.263908334908 +"Female",60.8615996244979,110.303388219113 +"Female",67.4729124403219,154.621340351176 +"Female",62.2086537586246,127.596948408639 +"Female",61.633305773273,128.548778597810 +"Female",63.1829901835681,147.997415498463 +"Female",66.4193160802247,151.717651218850 +"Female",62.1058841729617,132.878811788612 +"Female",65.4353608929262,121.172604702616 +"Female",63.4258993749774,124.512003036883 +"Female",62.195348923329,110.023194672644 +"Female",63.2095836922752,119.880041690307 +"Female",61.8327350437378,128.27085778504 +"Female",59.4374294968798,98.7603818570737 +"Female",61.094444415691,124.912102174696 +"Female",60.6552177444151,119.056286999868 +"Female",64.3791805817367,141.657724269145 +"Female",65.6559705788453,150.877474253180 +"Female",60.9110898559262,104.276528816931 +"Female",63.077002520157,141.023647165523 +"Female",63.9638545625408,153.723444041196 +"Female",62.736633518599,124.771600947162 +"Female",58.8384448794105,117.279214153506 +"Female",65.6003734665553,139.892175084004 +"Female",62.5234715140073,136.256130006244 +"Female",63.9758004278133,141.691706812518 +"Female",66.5408072057699,149.820637413597 +"Female",63.1191459534263,138.79412120669 +"Female",60.7862999022937,119.209885387305 +"Female",61.1796014676073,130.410229254931 +"Female",57.8309190849284,83.0268025400783 +"Female",64.3633676937013,139.880864706159 +"Female",64.3413604760312,128.631500410281 +"Female",66.386056354231,159.412698955582 +"Female",66.4695845680022,152.037906917926 +"Female",62.8746296775041,122.619329637871 +"Female",63.4617589792066,115.863932095115 +"Female",64.1017425536959,125.109482735642 +"Female",63.6662554068762,137.079336038602 +"Female",64.6591793106666,134.808478387900 +"Female",65.2467870493548,148.446822981880 +"Female",65.0720918609067,145.663982833019 +"Female",60.383834910664,125.446104416948 +"Female",61.6705096027476,129.401286721447 +"Female",63.5190173101308,124.467490920429 +"Female",62.0726163322587,144.807705416737 +"Female",63.1787255115958,137.426978318656 +"Female",64.9843409259214,142.370643511947 +"Female",62.851894526663,133.456592260286 +"Female",66.1836345632456,147.363223370786 +"Female",60.3884938589853,126.703053378312 +"Female",65.1932535524622,145.519024263834 +"Female",58.2253970159585,114.961707275311 +"Female",64.8384825541293,151.922702049436 +"Female",65.9745826070951,161.061364589181 +"Female",60.7239751565893,103.679874841791 +"Female",60.6922868484414,115.129304990150 +"Female",60.8769150439469,130.068216083634 +"Female",62.8046811107309,143.896465120041 +"Female",66.0937129470602,131.150114364033 +"Female",64.7958166773328,172.691881260367 +"Female",68.1384431345043,168.991862368438 +"Female",61.9300541529371,117.192630145294 +"Female",64.1230652703172,116.807738304763 +"Female",56.5488430793485,90.8475893808927 +"Female",65.7806254089382,156.781257956556 +"Female",62.4109516391201,127.015226079973 +"Female",64.8751271137218,144.747237270206 +"Female",63.0064801748851,131.387132977255 +"Female",59.8165359820357,107.579970919541 +"Female",59.9864954991926,129.417764077037 +"Female",65.9281322846127,139.513352140898 +"Female",67.1669093402562,154.210302036379 +"Female",63.2409916280002,139.127449309181 +"Female",65.1460814235521,138.384175573881 +"Female",62.8899569292617,123.4005903049 +"Female",65.0021317970251,146.027850185156 +"Female",61.1919227875662,142.327635336926 +"Female",65.0170872529823,137.568796620084 +"Female",62.9950841213048,140.450521154904 +"Female",66.3556474902455,154.602145340907 +"Female",65.3252084798592,151.906379567114 +"Female",64.267173971232,140.303090980389 +"Female",61.8646667506084,124.004190746733 +"Female",63.7454886542419,136.348218007956 +"Female",61.4132187098014,102.740469806451 +"Female",66.837535973109,160.397322883391 +"Female",59.4010629944119,109.024081979028 +"Female",60.252291653717,125.34158254282 +"Female",60.3497183994335,132.149554313116 +"Female",64.6259066088472,144.925333133712 +"Female",68.2403796482764,167.445180049925 +"Female",69.2226972697976,155.962039250896 +"Female",68.6327074189002,166.134510011199 +"Female",64.2362870609294,141.0222939848 +"Female",65.6742675555615,149.566531244928 +"Female",67.7191930496848,151.846182102681 +"Female",65.6238094349896,136.394231600013 +"Female",62.0637708675649,121.574206158023 +"Female",63.1999648241147,147.029163554129 +"Female",61.9347160672744,133.460884951638 +"Female",63.9306868396469,141.206012076947 +"Female",64.08597244234,141.339782209881 +"Female",66.3872831579007,144.95550719842 +"Female",67.9129871036528,163.393002309978 +"Female",65.9332551594691,147.659738827700 +"Female",66.5032813809697,161.256546334475 +"Female",62.6041035041875,114.806299076910 +"Female",64.1946129638604,140.718443577433 +"Female",61.9704117297821,126.783071295531 +"Female",61.6017895252985,125.180901787863 +"Female",61.4759039649658,142.518795745625 +"Female",66.2368709603695,156.005339548464 +"Female",59.3548349719576,113.215333636768 +"Female",66.4496081900473,156.932191861795 +"Female",60.0567110414111,112.327629499251 +"Female",58.6026378428478,102.319664235159 +"Female",62.7354086122774,129.755777982750 +"Female",60.5808089227324,108.64817624809 +"Female",65.6514155912713,137.485522150775 +"Female",64.0171572254401,127.939394325614 +"Female",66.1137547323962,159.807688078246 +"Female",64.6480688936906,127.970773840858 +"Female",63.0182741273208,113.155274688855 +"Female",62.1198987815701,117.847425858575 +"Female",61.5012074766309,118.812406699843 +"Female",66.3168859887127,144.666403662957 +"Female",62.7445892051915,117.601882795413 +"Female",69.8138108726794,167.79126564031 +"Female",65.361538185318,145.599638937523 +"Female",62.1160603347628,146.493035831695 +"Female",67.8653732064027,160.916713206875 +"Female",59.8917058025835,95.6331490139455 +"Female",67.3651186782218,154.044531626765 +"Female",58.7619166904071,102.455360842421 +"Female",65.0462571158933,148.992287869633 +"Female",65.9235860939012,168.796480525383 +"Female",64.430185294107,137.597067048918 +"Female",64.4053601192323,125.535720592245 +"Female",66.8686877795546,157.717527033019 +"Female",65.110155267786,141.405274500212 +"Female",62.3737499685612,121.744224314875 +"Female",63.4374354115474,165.571159974716 +"Female",63.7197631757926,134.217253090247 +"Female",62.799045913636,139.814576207508 +"Female",68.0256319897911,154.21755812348 +"Female",66.1616795308481,141.558942391226 +"Female",61.0689078400293,102.402374389675 +"Female",62.0602449031296,123.803906326023 +"Female",69.4709873791619,178.981463730448 +"Female",60.8376866626273,115.5987524907 +"Female",68.6080951862288,172.627998121884 +"Female",61.5525284060704,132.384315996015 +"Female",61.4968574480678,125.413463291674 +"Female",63.2927122803859,129.001461714191 +"Female",67.4387168464623,168.292803829731 +"Female",61.3120602278023,121.786116558227 +"Female",67.8566110821243,174.829181992975 +"Female",68.1377233133845,154.662544552824 +"Female",66.2617947297274,156.890753383091 +"Female",66.084684130535,165.484071768076 +"Female",66.2902680571484,130.868418802778 +"Female",61.5659244172593,132.242032672646 +"Female",58.7794073301374,114.160340644139 +"Female",61.7750389228048,128.342568260293 +"Female",61.982454924662,137.392504943325 +"Female",61.6760610936609,124.072143415762 +"Female",66.6844587329795,151.354625002821 +"Female",62.475772660293,117.215462032710 +"Female",65.5674443443046,136.224693453942 +"Female",65.5169216303795,152.809310919547 +"Female",67.1398891848124,145.081621112428 +"Female",68.1527830510768,171.976777035236 +"Female",58.6116651611251,103.309512821492 +"Female",64.3347880645508,161.746796970365 +"Female",64.852759910083,147.725921111927 +"Female",62.5481169501448,130.596009236314 +"Female",64.2817350316589,136.747878853207 +"Female",65.6259031324161,139.579900047867 +"Female",59.1185027921643,107.470827797302 +"Female",64.4130847575628,142.973056513482 +"Female",63.480010094941,150.470401297209 +"Female",58.8475807628038,117.726692087501 +"Female",64.0309570986433,133.766591761008 +"Female",59.5029591681268,109.974021861301 +"Female",65.0671072312108,135.771360756767 +"Female",62.8455330431555,150.258936716086 +"Female",63.197301847582,140.321785168958 +"Female",62.5234894106735,142.660589331517 +"Female",67.409959539636,165.07538928965 +"Female",63.1739775404987,129.332511810487 +"Female",65.9162490218954,158.996516988388 +"Female",62.6441344678287,118.187888486896 +"Female",63.0161730799956,125.661024907223 +"Female",70.0787642678013,184.215084994391 +"Female",62.9350479542023,124.460002521570 +"Female",67.0194343618599,148.327208994973 +"Female",60.2593262201207,100.585270132320 +"Female",65.602706897149,164.21093305065 +"Female",66.4310004907227,125.347847996218 +"Female",63.9301234376356,146.622209757364 +"Female",62.550440527817,127.391033932806 +"Female",63.8050428263773,131.402247035206 +"Female",64.3331252459001,123.946904256746 +"Female",67.5377984252476,183.740260305341 +"Female",62.3047030955034,119.117423552414 +"Female",61.5165069660115,132.978016394000 +"Female",62.7771272227378,121.768006515088 +"Female",66.2132856391115,173.382712193413 +"Female",68.6423515362814,151.199121067480 +"Female",63.2962500059043,137.919795002486 +"Female",58.525426460434,107.792496451413 +"Female",60.340781078074,111.077754467776 +"Female",61.4339128514658,97.0585492910316 +"Female",65.4759024853153,154.440886903915 +"Female",60.4844450113919,121.797793339047 +"Female",62.0003163925544,117.048353968405 +"Female",59.6676520897522,114.386865401454 +"Female",63.8032994430537,124.813068761729 +"Female",62.8683805126047,132.694868661362 +"Female",66.4065527455098,161.176218324358 +"Female",62.5541763040655,113.449037730277 +"Female",69.6658187244236,166.919445583037 +"Female",62.1589714893252,121.631121533123 +"Female",62.6946633203774,113.344958793507 +"Female",66.6780166253524,137.747980045506 +"Female",61.6748136176181,112.890415069261 +"Female",60.0117844254731,109.049629540284 +"Female",64.625353074651,143.145608450255 +"Female",59.9789622354288,114.299371091190 +"Female",64.8215744242023,155.008924352344 +"Female",66.9326476578703,164.665490070478 +"Female",64.6192625497259,139.416850573026 +"Female",62.5372239843095,136.632728565258 +"Female",58.906377626485,94.9769448720611 +"Female",63.8472594162052,146.390844043121 +"Female",67.6356307408296,169.799419540932 +"Female",64.0549399257567,139.503937784788 +"Female",59.9268570954084,98.4291094289727 +"Female",65.9228431273311,161.747261136108 +"Female",64.2867459557036,143.509867879614 +"Female",63.384732917674,132.819916835868 +"Female",64.8821358317178,140.066733090784 +"Female",64.0772101578906,129.113822921496 +"Female",67.264717279885,179.0066045992 +"Female",58.3455329382085,110.245574597983 +"Female",63.8581076637926,132.994496529638 +"Female",64.4189216104995,141.180550389323 +"Female",61.8985108520901,107.406853085427 +"Female",63.7307348689358,119.066226769403 +"Female",66.8788923144829,155.712389735787 +"Female",63.2238036751848,121.269103735428 +"Female",61.52940407943,126.815048236298 +"Female",63.3217287105328,131.599246199666 +"Female",62.2531281462686,133.782485648975 +"Female",63.8040324384367,131.169741930046 +"Female",66.1004689229617,160.129558020295 +"Female",64.9463164921449,149.602102906545 +"Female",61.1912947465944,129.761861954718 +"Female",65.5792556468706,154.804363625151 +"Female",64.4369965026001,151.979661880657 +"Female",61.0195275637746,114.387793081519 +"Female",59.8601233557773,121.862907218250 +"Female",63.7411007171824,131.687999214627 +"Female",66.5960770336464,151.149081221018 +"Female",60.587728662036,128.183805375338 +"Female",64.4604140330399,138.537481395977 +"Female",63.1396148899333,127.060489414696 +"Female",60.7627947327993,125.018560559388 +"Female",56.8222398387379,101.979923512805 +"Female",69.3633891037202,169.453823851791 +"Female",62.3209205687271,138.804577452673 +"Female",65.8556391815103,162.5440593786 +"Female",62.1284586002395,137.724547736171 +"Female",64.659436607527,151.461272012951 +"Female",66.7059047988235,159.696170551903 +"Female",68.3110321825627,168.372878398774 +"Female",64.5778172609094,131.692896462759 +"Female",64.0029827614456,141.427940606626 +"Female",67.4355930857502,149.82230160742 +"Female",63.4857016654483,129.069106074205 +"Female",61.2131692937785,134.955260864685 +"Female",67.1269772515452,145.759914120496 +"Female",66.957750042078,150.823516056301 +"Female",69.3738437260129,158.455032787559 +"Female",62.2777113817982,144.235252906176 +"Female",65.4624704240378,146.735677047421 +"Female",70.3375343257912,174.031548236652 +"Female",63.9001145586492,142.847849964420 +"Female",61.5091885414927,102.907713641440 +"Female",61.0291607902737,121.638366744739 +"Female",67.0790744878863,167.893575452388 +"Female",67.5251004217047,139.927593430327 +"Female",63.5717171675584,137.784101978477 +"Female",59.3215326801004,102.042028386043 +"Female",65.5696290821571,138.002026183289 +"Female",64.8034934241898,151.041999787936 +"Female",64.004992575683,139.730954544129 +"Female",60.4571772005119,122.879367925637 +"Female",64.9501432262416,142.312608027031 +"Female",66.6740021548212,162.311506135265 +"Female",62.3090152802421,134.097307026664 +"Female",65.1291910263217,156.901637449970 +"Female",60.0912873442943,106.012216406315 +"Female",60.8084236978284,110.984168692645 +"Female",62.1500060329063,137.168476421641 +"Female",66.2493613075937,140.799488544419 +"Female",65.9289620801981,149.991691657697 +"Female",61.9098022031472,142.824915075074 +"Female",61.7446142550536,130.301967792525 +"Female",62.2415495006639,134.403266694157 +"Female",63.007522022665,121.582019824345 +"Female",63.9516216331207,143.791332388129 +"Female",64.4290216900194,130.692337702579 +"Female",61.7071214308111,128.757893176915 +"Female",59.4778184925714,122.163349881514 +"Female",65.2098234080249,150.361662295220 +"Female",66.4657417325722,132.765672510065 +"Female",64.8740791054647,157.388990820760 +"Female",63.8422829667936,129.382082857810 +"Female",59.157519161127,109.198505730858 +"Female",62.995039447234,132.970433348892 +"Female",64.5670088816315,143.072223370680 +"Female",62.2508397278182,119.005386303683 +"Female",67.071860943057,172.451494433254 +"Female",64.0150640725262,146.869676692181 +"Female",67.1678197702471,156.234461922087 +"Female",65.3638680774141,133.071191353919 +"Female",62.246575738126,136.827090215629 +"Female",64.4069964191961,145.900533082200 +"Female",67.6745192392133,172.574370078926 +"Female",65.1911829334184,130.516731017375 +"Female",60.5864467479508,124.360098660678 +"Female",61.9377144672642,127.470148068618 +"Female",66.791462776151,162.020486087884 +"Female",63.9619943137321,144.701465643941 +"Female",65.907580692769,146.414638084339 +"Female",65.7420241203833,152.835833270134 +"Female",63.5934594765503,133.847627276980 +"Female",65.6310477936887,119.203378786973 +"Female",66.313844360887,139.141990606133 +"Female",63.1908783490016,147.716559613173 +"Female",65.021827764664,124.564871972688 +"Female",63.9393635328807,149.230982045662 +"Female",64.7250146489534,130.409986828233 +"Female",62.8083311087128,126.704291730877 +"Female",65.0086999242771,127.172461478563 +"Female",65.3883048232328,147.948674348008 +"Female",61.1798611103505,119.025468917105 +"Female",63.2603627220612,137.811370151255 +"Female",60.9946387314652,112.648034074506 +"Female",64.3411071947662,126.129763501721 +"Female",66.0007524996042,159.130477117323 +"Female",61.1569800137384,126.508145542036 +"Female",67.6843266796178,151.938684617565 +"Female",63.3846629668299,150.046322513742 +"Female",66.2759952479308,152.227716302232 +"Female",63.0237333839477,139.237909754776 +"Female",65.9136422363802,152.000214278373 +"Female",65.3968000388706,149.920266849602 +"Female",65.4548745531048,142.458734638267 +"Female",65.6505076946534,154.660472435919 +"Female",63.9196164201122,140.707170793762 +"Female",62.3355138207728,126.311229615652 +"Female",64.1796298759773,143.859095044246 +"Female",64.9444771017125,142.256136757650 +"Female",64.2719663330519,141.284307970475 +"Female",66.758758808507,148.960573016893 +"Female",64.3900334165197,145.883313646984 +"Female",65.1161003644177,154.458253156982 +"Female",60.8354994354359,104.698454435334 +"Female",62.700117105724,128.052130974831 +"Female",63.6494987333151,134.638714693708 +"Female",62.9847704149438,133.339434255286 +"Female",58.6175219614685,113.168066654880 +"Female",64.4309328307492,130.277478579665 +"Female",65.2728267289433,154.530050379900 +"Female",62.4829787678157,124.649926893117 +"Female",66.9762978466596,151.406741483082 +"Female",64.4531898638574,152.705132751250 +"Female",64.67232952293,148.924409968802 +"Female",62.266084708762,134.327891942180 +"Female",61.6385566208196,128.553974142611 +"Female",64.186437171682,132.196439182278 +"Female",63.4223703674183,134.319447833367 +"Female",67.1197642295393,156.538354439347 +"Female",62.1261499084489,120.339478523766 +"Female",63.8641735106074,138.606089715380 +"Female",64.4756015834027,137.964704698720 +"Female",65.2562601612648,137.634651178042 +"Female",58.4359175660097,113.483900015357 +"Female",68.8791065164837,181.316223363095 +"Female",67.8187471984146,165.149112065422 +"Female",64.777414193792,135.198020031907 +"Female",64.044242207138,149.825871046328 +"Female",60.6268627337497,118.540752921140 +"Female",61.8510038248132,138.648056117202 +"Female",66.7509785948995,168.435940362071 +"Female",65.8235081753239,160.917887844250 +"Female",61.1093866005175,111.734742461889 +"Female",65.1405360248224,139.827624188439 +"Female",61.6177690699442,125.025052179427 +"Female",66.6040459829476,147.679530368386 +"Female",64.4902363244089,163.992006546742 +"Female",60.5736243203538,126.848772597692 +"Female",61.174995151989,134.638053445428 +"Female",62.2170506745986,112.372841814313 +"Female",63.6987477968444,130.611194369789 +"Female",64.339878399503,131.679311149158 +"Female",68.3604562440255,166.570566198547 +"Female",60.6342462997478,136.879127164819 +"Female",63.8250932772937,128.906812971035 +"Female",63.0624877729845,124.296598158519 +"Female",65.4886713164881,135.013164040623 +"Female",63.6830828844946,131.593042914664 +"Female",64.1591344411522,137.684151448708 +"Female",63.0989895624318,132.957960670008 +"Female",61.1761492800566,116.171087057729 +"Female",65.7255721224755,130.568402624542 +"Female",60.9019630769076,131.126189794722 +"Female",64.3992287556915,130.863830035322 +"Female",61.3000310325956,115.028995155316 +"Female",62.2338038061388,151.07616681402 +"Female",65.7385474267877,153.040529129156 +"Female",64.330794806462,145.507009529897 +"Female",63.9284368207987,133.066748554403 +"Female",66.6370546818033,146.411268413887 +"Female",60.1085895031899,98.0885173454698 +"Female",66.6626271836258,151.224619646021 +"Female",64.6375019741103,156.913239949382 +"Female",66.3211094228487,145.352441920009 +"Female",68.9390948500606,168.391698590635 +"Female",65.7135387144039,139.352715507398 +"Female",65.4147294481064,119.778540556575 +"Female",64.0189335550938,133.107341819717 +"Female",64.0871801522136,137.490516042412 +"Female",60.4212549809854,97.263880782195 +"Female",63.5452454257834,121.561150127447 +"Female",63.2508977965646,136.122053523538 +"Female",63.5761010823927,122.564330018901 +"Female",60.6352088047133,109.705890716663 +"Female",61.7736939585565,121.895472058693 +"Female",67.1159348673151,131.720517256489 +"Female",62.0667608534508,114.927593781147 +"Female",62.4993348165401,143.411534557038 +"Female",63.4634293267321,138.039251467109 +"Female",66.8037038522422,151.024840706583 +"Female",63.3477882526882,136.050338109750 +"Female",63.74809373596,137.152976378839 +"Female",64.9458372532086,131.702450200473 +"Female",65.8993869775735,153.530539810275 +"Female",58.9549225796414,99.1789840868066 +"Female",67.8823143567307,144.915793862608 +"Female",66.7585572062827,166.232332686186 +"Female",60.989216539002,123.024730366336 +"Female",63.347579962677,134.977374054391 +"Female",60.8782407546953,128.031249745851 +"Female",61.1994488120088,142.407992019274 +"Female",68.2064137818336,166.688550302958 +"Female",64.553697571942,124.101735203873 +"Female",62.3335476053972,133.294103037557 +"Female",62.7785052639,130.471472868411 +"Female",64.7829390428605,144.260500260998 +"Female",61.7414477618806,130.804933250266 +"Female",64.9633125720389,142.206379663482 +"Female",61.3916436454159,120.681906546154 +"Female",62.7644847915157,128.165570168023 +"Female",62.302019710883,139.137905930751 +"Female",58.3869634457064,100.876274462991 +"Female",61.1306449195704,110.605644084729 +"Female",63.4432499284519,134.892007801295 +"Female",67.600646082386,142.637169580626 +"Female",64.0344832444029,136.379970445889 +"Female",65.8837592809012,131.625265161187 +"Female",63.6963804951439,145.573254253088 +"Female",65.4981690383316,132.30801122843 +"Female",59.6852396536592,108.24004257932 +"Female",65.5926534805385,154.605538882218 +"Female",62.4281144680163,146.435582366983 +"Female",64.2098958758246,148.343021337305 +"Female",62.7607442096268,134.128284769777 +"Female",59.878671608881,99.87728361362 +"Female",63.9050534840444,136.595627678501 +"Female",64.8944853405327,144.593585247652 +"Female",65.078771662725,151.442531232569 +"Female",66.6990537522017,132.252546119560 +"Female",63.9165783415998,156.778585962843 +"Female",64.6042672422984,165.36582552233 +"Female",65.107807007599,133.332513404247 +"Female",61.4075325180114,114.885446467204 +"Female",65.8399507474821,160.265732901395 +"Female",64.6093596200255,154.853506067544 +"Female",61.8426002643591,136.879987980075 +"Female",65.6364896028387,157.919315776876 +"Female",64.0608702319153,151.511363102055 +"Female",64.8352230590168,151.212559379286 +"Female",54.2631333250971,64.700126712753 +"Female",64.1210980406301,161.636377891107 +"Female",64.1206098113892,125.390390871556 +"Female",61.3300191509739,119.713505557257 +"Female",62.8392446023182,138.522098876420 +"Female",67.1322638952038,149.906066104422 +"Female",62.0169710984478,146.227379064224 +"Female",62.2349388377587,121.425250369257 +"Female",66.5969136871831,135.930894459066 +"Female",63.8583241977323,136.852306264119 +"Female",60.6302256402572,121.421189821305 +"Female",64.7652545139895,156.071485547745 +"Female",62.1817207571004,129.344409963241 +"Female",64.7447821030232,143.055719915972 +"Female",65.9515487203149,144.839403133183 +"Female",62.8835262850901,149.606555366288 +"Female",62.1441284315367,130.552297752084 +"Female",62.0090096237039,118.964402735672 +"Female",60.6158112604389,106.702214989515 +"Female",63.2935049809343,138.694005111524 +"Female",63.2216831308406,127.861973082503 +"Female",60.9263483283668,120.554964883368 +"Female",63.7764051559378,122.459648371846 +"Female",62.9522284749815,121.812362638044 +"Female",60.0327691700543,93.2041025189544 +"Female",67.9688974020556,188.872275271893 +"Female",57.1658400564674,106.005031104277 +"Female",66.1604542716245,143.655171885161 +"Female",62.9650814314304,123.215903988835 +"Female",63.7669751380039,129.658195067365 +"Female",64.5018039912363,151.765398829352 +"Female",62.4799525929456,124.291146838613 +"Female",63.6254824860115,128.993772305324 +"Female",57.7985310479726,112.345578239669 +"Female",63.8068228064126,137.996105266234 +"Female",61.9967360166638,149.191964743846 +"Female",62.2342775418938,116.857171433185 +"Female",63.4435307306218,130.308631238596 +"Female",62.2046968515532,131.783117875017 +"Female",65.1138761272885,148.340477003058 +"Female",60.9771232533997,121.398690698863 +"Female",66.774152091131,143.761536925492 +"Female",63.7987661831767,133.593872067829 +"Female",64.4058123983681,125.173247603755 +"Female",63.6000992429856,151.662174233089 +"Female",62.0041302989221,131.856912229764 +"Female",64.1082872005842,149.256016020111 +"Female",64.316281773575,141.41804811276 +"Female",64.8315501689183,141.234368629149 +"Female",63.4569427838517,128.196017267302 +"Female",66.9382061585997,150.894022403312 +"Female",64.7470820663934,144.624626086045 +"Female",62.5972145265338,140.949581092237 +"Female",70.654455414249,158.781223123924 +"Female",66.9438331520537,168.623790601575 +"Female",62.8006114717905,161.015198766528 +"Female",64.587521695997,150.817036498971 +"Female",64.1713813634192,153.174015012178 +"Female",62.1913170949363,117.108723967739 +"Female",62.0997287374862,138.606799363015 +"Female",67.7715150241154,149.619377065273 +"Female",63.382590902502,132.513944108924 +"Female",66.0274133669015,140.494284019290 +"Female",61.8732426235022,120.993659106835 +"Female",65.0412275885192,140.465735097660 +"Female",60.7985432311763,111.899015167472 +"Female",60.5818174540197,101.742253209361 +"Female",63.2547466299895,126.637594952235 +"Female",61.3554509161552,129.961709388801 +"Female",64.7306445368564,130.507734302454 +"Female",64.6547181635873,148.962313682125 +"Female",60.816282600608,114.207873683335 +"Female",60.5701988001849,100.272980557897 +"Female",67.1099662132599,168.069334051731 +"Female",60.6201812824202,116.151374053982 +"Female",61.9122540809676,136.494214680721 +"Female",64.1419596757263,144.071684423605 +"Female",66.2636839117636,149.077022816613 +"Female",62.6430751058233,122.056268278697 +"Female",60.3038414384198,109.274231513403 +"Female",60.800942315209,120.529134636325 +"Female",63.9443728229384,131.428058434086 +"Female",62.2828659521288,113.471263954069 +"Female",62.713023178084,145.343781793306 +"Female",64.4566944569822,148.960597033789 +"Female",60.9447267714851,113.537588687773 +"Female",61.6195509446675,129.670580277501 +"Female",64.0795965896993,123.002429772823 +"Female",61.6473971688797,111.927796152036 +"Female",64.7223994398002,144.809295250913 +"Female",60.5291675545543,122.491672730830 +"Female",64.062040911633,140.420970465235 +"Female",60.5195085688511,119.034710861625 +"Female",64.8699407180183,149.486390193806 +"Female",64.6494322377942,140.896248257945 +"Female",62.4010665258005,133.829923765346 +"Female",61.3076798496563,132.227153212197 +"Female",62.8657902526171,112.896933872332 +"Female",59.1214330510499,107.868436132985 +"Female",63.6585048740946,124.843320974197 +"Female",63.3917088906254,144.534727038643 +"Female",62.531988596341,106.019633371106 +"Female",62.9545335255519,141.169204649486 +"Female",64.4648678911603,156.260435924644 +"Female",65.4766497053168,149.118911636881 +"Female",64.705557795015,147.951506893112 +"Female",65.1654624340785,145.751634430947 +"Female",64.8495270161895,144.550070680981 +"Female",64.2509043494048,151.416382803675 +"Female",64.7238766900798,138.085796102834 +"Female",68.1160394238496,166.796258146827 +"Female",66.0437702308915,145.433881581854 +"Female",62.9224512151646,146.203090037089 +"Female",62.9511196384657,143.288713138325 +"Female",65.8618689144898,149.870734766109 +"Female",67.259531926447,164.172201060228 +"Female",62.4507448865073,138.801656451659 +"Female",64.5708217953311,137.513365883167 +"Female",62.1190392605671,134.128691906617 +"Female",62.2331140084242,133.177228811034 +"Female",68.2382955916389,146.865810204028 +"Female",58.5802901409696,98.585908219447 +"Female",66.064742610184,146.970506537691 +"Female",64.9070617891878,136.218218528288 +"Female",61.7837272097307,120.520643947194 +"Female",64.3855202463768,145.350066853016 +"Female",66.6961628139657,156.777739615059 +"Female",67.8981056423676,153.280480607347 +"Female",63.7662369699983,133.780636291674 +"Female",62.396206784718,108.399305946656 +"Female",63.360509749283,134.955817345201 +"Female",60.1388925128681,109.143470040034 +"Female",65.6880435111746,150.271431909863 +"Female",65.729153236359,137.752134197399 +"Female",60.7250145709736,129.443436572884 +"Female",64.9608233781658,134.050235266308 +"Female",63.2550936718011,123.119527831255 +"Female",65.8186336225677,157.507511451358 +"Female",63.4680884970702,137.826992562929 +"Female",71.122792523624,176.040345192776 +"Female",63.3840376283551,141.950690073773 +"Female",59.6393115870909,127.402907051745 +"Female",60.6019751986672,116.190071408431 +"Female",62.7263939399942,132.576224269357 +"Female",60.6381853617395,116.420944630111 +"Female",66.1580536628821,160.410502733551 +"Female",67.7694275558389,155.902859331900 +"Female",60.5215096481851,120.548162256366 +"Female",69.3004277741934,185.187969769128 +"Female",64.02584244221,134.182427137867 +"Female",65.1259560448078,144.532731183071 +"Female",63.5626600756129,131.795860588235 +"Female",63.3079539712,132.97479067865 +"Female",67.5855094656209,151.894079601504 +"Female",62.6707085652017,143.838190822853 +"Female",68.3947802423528,149.302806065575 +"Female",61.3029256842087,123.609977549619 +"Female",64.7189988477689,149.111052200052 +"Female",66.9828189718338,172.084412079266 +"Female",63.7929134960992,132.119905454684 +"Female",61.6110710611676,128.137741325540 +"Female",60.560412870538,119.462053239018 +"Female",66.2125364010507,154.292867934564 +"Female",62.0327637419294,106.268782884885 +"Female",63.0589263520337,133.490737081326 +"Female",62.5794911069391,142.565483096249 +"Female",63.5588191470243,133.051277752322 +"Female",65.793650605563,140.179483330696 +"Female",60.8321708083984,127.532475155188 +"Female",66.6549832763959,158.963740157672 +"Female",63.5714042381496,130.854172550521 +"Female",67.9480827012671,171.310005723302 +"Female",62.3958239669813,139.849700712198 +"Female",65.737290753818,167.663757142003 +"Female",62.7348392876804,147.370478239625 +"Female",63.3978721601229,140.204396484321 +"Female",64.1608471410639,138.325501984479 +"Female",56.9944562639017,84.4142457069723 +"Female",64.4661937409447,139.517290907884 +"Female",61.4285809545448,103.084810565620 +"Female",61.789364723057,110.459106068582 +"Female",64.6914673151391,137.380640649312 +"Female",63.0605921361258,122.433639344764 +"Female",59.1049943132025,125.049756977720 +"Female",68.6859030388057,157.925011878086 +"Female",67.809664009435,161.619961942107 +"Female",62.4943766370851,126.515655307694 +"Female",63.1816198271634,135.774653896350 +"Female",63.1782408149907,142.050426764469 +"Female",65.7814558043438,143.155041309031 +"Female",65.223663298095,139.550850480833 +"Female",62.993193577494,128.292204045507 +"Female",65.181771217854,142.139623405584 +"Female",62.5613711170025,123.037632223779 +"Female",64.6806468283437,135.841493105884 +"Female",62.0201048595304,122.153979816841 +"Female",67.7266735296034,154.362795395461 +"Female",61.9641737803249,112.833526194014 +"Female",62.3284339818731,114.384283512834 +"Female",65.243656841476,149.201181882833 +"Female",64.9892599110934,130.433691591282 +"Female",59.9130709886747,113.722431143854 +"Female",63.6286663016974,129.119271918245 +"Female",63.722539773484,142.452570887049 +"Female",60.0116497291324,113.056426691520 +"Female",65.8753081449846,149.540932765764 +"Female",62.3845971149001,134.787500986578 +"Female",57.8511151919104,97.040289867381 +"Female",67.7837802752631,162.196323012810 +"Female",61.894771995305,124.310818903679 +"Female",59.7668203835622,111.260036224449 +"Female",62.5272287956092,117.659636968027 +"Female",60.3275095365089,124.206229693321 +"Female",66.1853443779261,157.682950391288 +"Female",66.8506261315395,154.082410864962 +"Female",65.5860286790627,125.982888370193 +"Female",61.7088544362555,114.854464488973 +"Female",60.0378758390918,115.522648033966 +"Female",65.727710786243,144.052257077761 +"Female",65.6209985093952,133.760493295565 +"Female",60.0267497792784,103.386946066912 +"Female",63.8025950000515,127.808693963562 +"Female",57.7868194111043,106.854116572758 +"Female",63.040709476706,119.977632750804 +"Female",60.6947364125673,90.1854056497334 +"Female",61.1463441421336,105.382922391203 +"Female",59.82273531183,122.15238263406 +"Female",63.8536836690749,145.825608023271 +"Female",65.4591958744903,148.636723186113 +"Female",63.3890410098908,149.580424013912 +"Female",63.8329648363879,134.394767438880 +"Female",62.7029883969522,139.195593489926 +"Female",62.3960049504189,130.365896397381 +"Female",65.3865667232265,146.088163246950 +"Female",63.9587951609862,148.238667321828 +"Female",63.7634031141567,136.230864218100 +"Female",62.9356897377354,144.466046183435 +"Female",65.3489087701965,137.426133855077 +"Female",62.5548229947593,107.732872765917 +"Female",66.721445444981,148.423761851276 +"Female",62.5028998376916,144.675912952677 +"Female",60.0964419925663,104.413817265567 +"Female",66.3020764286836,161.753978929902 +"Female",66.4422918301442,145.653808863046 +"Female",63.9529930556816,140.802116118289 +"Female",60.2462571863052,104.965911754172 +"Female",63.032981170548,122.044058599257 +"Female",60.9708563201496,104.855402952307 +"Female",63.3217669379405,129.798274162533 +"Female",65.4897155158,121.330673768906 +"Female",61.4059785460384,125.006103618663 +"Female",62.7680735192718,133.207020218906 +"Female",60.1883920670898,115.584318791353 +"Female",65.0087932524814,151.041648276090 +"Female",70.2208287459956,175.762084564093 +"Female",62.678695754791,136.495860337319 +"Female",60.9059989337814,129.005072364050 +"Female",60.7597279257759,114.306427974064 +"Female",63.7373169124018,130.280159749392 +"Female",63.5526215500581,137.209671998669 +"Female",62.5348057846243,125.585201195041 +"Female",65.5641837275112,164.564272437718 +"Female",58.6564443597335,110.012872871417 +"Female",67.519733141364,163.490831665133 +"Female",66.0711068895137,152.420031336353 +"Female",63.5732517683164,130.436640653772 +"Female",66.1521972166663,150.895695016028 +"Female",64.21512502496,145.821458275697 +"Female",66.015518545992,143.548112405955 +"Female",62.9640000089819,134.431811357482 +"Female",62.0088344524618,127.036632568145 +"Female",59.5466118155454,99.3138152288173 +"Female",65.4836061800174,138.982098177254 +"Female",66.956468614354,164.089308083190 +"Female",64.3494962801686,129.678031762794 +"Female",64.9928079562232,151.90148349884 +"Female",63.6297601316201,168.412968368841 +"Female",62.2994736013515,136.446336063409 +"Female",64.0191966372703,141.175989017874 +"Female",58.7104560049926,96.6447562394442 +"Female",67.1568192775879,150.912424055628 +"Female",57.353092760465,72.7501446905149 +"Female",63.7851172165417,127.652680111666 +"Female",63.4653129727423,126.355405632671 +"Female",59.7731590772369,110.838861335875 +"Female",68.284956608779,158.535927119776 +"Female",64.8779268092515,146.682645587302 +"Female",63.351010225698,134.092030920230 +"Female",66.4117893838934,160.447144972961 +"Female",66.2496161752984,154.857522823554 +"Female",59.0455310013641,105.380905400503 +"Female",66.3157150798263,163.481936613583 +"Female",62.510263852172,133.782664735474 +"Female",69.416718012066,170.626274579613 +"Female",63.8432377682987,129.777710109753 +"Female",68.8367455086542,161.645203459121 +"Female",65.6364969833215,133.415663055818 +"Female",62.4522657866618,123.263809871912 +"Female",65.0228405181778,139.321142518924 +"Female",61.5776872629326,122.543726405007 +"Female",65.7762942574566,134.001346887488 +"Female",65.6306033122231,157.834902333155 +"Female",60.1442606088897,111.190707849205 +"Female",60.252806912898,125.487137274160 +"Female",66.697271768392,166.439965731836 +"Female",59.7599482266044,119.717507263397 +"Female",67.6604675401486,161.962569523575 +"Female",62.5119019578105,139.451959426467 +"Female",59.3092054959464,103.900923572937 +"Female",65.9820785576512,160.730357101028 +"Female",67.2201472207274,168.809399222641 +"Female",63.246641306254,138.144250969423 +"Female",62.5575843370962,136.168888322192 +"Female",64.408825123937,139.604219139648 +"Female",62.4812332615228,122.605320556767 +"Female",65.1642016883498,156.886259983342 +"Female",61.9972800902839,147.914025598756 +"Female",64.0839115736962,127.84323183216 +"Female",65.208720368621,140.586790407329 +"Female",65.0949321191981,120.844445935844 +"Female",63.3294211831034,145.326993964224 +"Female",59.4167432203109,124.400320192758 +"Female",61.4078458164118,126.474528182468 +"Female",63.1099887056508,133.352698304198 +"Female",66.5349364066975,137.655114747205 +"Female",61.4320385119187,131.424788888273 +"Female",65.2305956333639,160.736227123166 +"Female",62.9385419582943,135.587391178160 +"Female",58.6571768471382,113.880263679803 +"Female",64.0475617602143,145.172309314167 +"Female",61.9231579028895,130.906703662912 +"Female",61.2330938493363,124.437053099369 +"Female",64.6940732111665,135.549114424322 +"Female",62.4660098095931,127.302910342301 +"Female",64.5071395706443,141.552480973096 +"Female",66.9150772458008,144.766234782788 +"Female",62.1015201203098,145.44756721962 +"Female",67.2711858766038,137.634318209933 +"Female",65.7072245044643,156.063310980655 +"Female",64.8306079626298,156.911816669712 +"Female",58.0321731714629,92.7914502472375 +"Female",64.7171900766688,146.342313655760 +"Female",61.2063035960139,127.186299549784 +"Female",65.069034351473,142.637415077436 +"Female",58.5162588396366,115.975438243387 +"Female",66.7241930002889,164.487254477317 +"Female",67.3268500356674,160.963549571199 +"Female",59.0411980007634,108.094033944991 +"Female",70.3500153375103,202.237213739559 +"Female",65.861517807889,142.969952434287 +"Female",63.385061463344,139.183355388702 +"Female",65.6373874478275,162.605728749611 +"Female",62.6322504088938,121.986385835249 +"Female",63.6961354284311,130.503520153368 +"Female",62.7718471617383,141.808838171264 +"Female",66.4834369151786,138.612796100984 +"Female",65.8580669951731,161.902044223844 +"Female",67.5813596985901,179.019157511712 +"Female",58.1379227324002,115.64320789109 +"Female",60.7248269897953,116.232713228888 +"Female",65.1358797275796,153.397484882675 +"Female",67.1527557768399,149.024336667854 +"Female",61.9019609452297,131.020255739140 +"Female",65.0716653479706,137.629857954212 +"Female",63.9097591005028,131.560483537676 +"Female",62.2607254422301,128.451609496612 +"Female",64.4111522604649,134.725201196505 +"Female",65.2647953048716,156.209802001068 +"Female",67.2076309249385,152.157986017427 +"Female",61.791117940146,135.633469989130 +"Female",67.0432342390442,153.748232281030 +"Female",63.1063259690399,136.589972754851 +"Female",64.2103261288421,144.137950911822 +"Female",63.7922299272973,129.341080849315 +"Female",62.417973138852,131.349766344210 +"Female",61.5926841560757,118.157335069133 +"Female",64.647098041247,148.689557040019 +"Female",66.5995807879304,130.991053228270 +"Female",64.6594037099422,141.893064746243 +"Female",63.8592791984823,154.2320940536 +"Female",60.8862532028202,139.173175213203 +"Female",62.5786421572284,129.178171019424 +"Female",60.5994364818519,104.850596393218 +"Female",60.1559311212048,108.143759169341 +"Female",61.1437225598377,111.488948150509 +"Female",61.4914377740991,115.648498761258 +"Female",62.5030783916201,129.198008446720 +"Female",63.7403989239607,146.839515295126 +"Female",60.7544855777917,98.8791443666623 +"Female",63.3326543289789,121.965814464381 +"Female",65.3677790504009,156.097455036575 +"Female",63.7263573527539,162.048029882668 +"Female",63.8830723354246,137.388288046594 +"Female",66.6882182114484,160.252614183684 +"Female",61.5933621683868,109.450017974040 +"Female",59.7885012639876,109.827941120932 +"Female",64.641060574983,126.321941371037 +"Female",64.1583371244616,138.794824975025 +"Female",67.8118152454112,146.259558415089 +"Female",64.5006905467644,156.224486881468 +"Female",65.3905225825116,139.111128777132 +"Female",68.6644487735395,160.409122548532 +"Female",67.1565377813676,162.594722245922 +"Female",66.6973677273202,143.624547582329 +"Female",65.8388048297537,143.806592511204 +"Female",57.9955714333302,95.91004289368 +"Female",61.0957894172756,115.224796251500 +"Female",66.7086800768832,164.928049461919 +"Female",64.2237755776852,124.776506028559 +"Female",66.2722402345961,142.945958826692 +"Female",59.7958609680167,118.754040580074 +"Female",61.5693159640859,103.323656402734 +"Female",64.4859270250341,132.953563732544 +"Female",61.5046182003953,122.286750997725 +"Female",62.4118023503333,142.604529174041 +"Female",62.9004839996385,151.557667648506 +"Female",63.2202287688466,125.074858607383 +"Female",68.2810532421262,167.340407722375 +"Female",62.8448709976256,131.134884527499 +"Female",67.4137501280062,159.568614016378 +"Female",65.5367024115553,148.272979501319 +"Female",60.95754175702,104.683149206807 +"Female",65.0484073813885,144.867902167782 +"Female",57.6994920729147,92.2230532384112 +"Female",62.057331949891,138.296689367365 +"Female",68.1070873057482,164.486683428742 +"Female",66.5380772533596,143.664713932853 +"Female",63.0364361534379,143.964153157515 +"Female",67.780446141473,163.204353503093 +"Female",60.8848733674499,128.530333378349 +"Female",66.8423667997649,160.041974166854 +"Female",65.0755738133577,143.185710167675 +"Female",66.3561349202619,156.774386507848 +"Female",64.6422180652013,141.082610968689 +"Female",61.3535153498264,136.302488151554 +"Female",62.3913826281639,125.635115013887 +"Female",65.6791884386852,157.462762647754 +"Female",61.9995385238238,143.218187515032 +"Female",61.801879578739,137.386649281808 +"Female",63.033676483203,127.640417273188 +"Female",67.131102931153,146.575817612363 +"Female",59.7900219868108,128.253923115184 +"Female",65.0378264828721,138.463631551886 +"Female",61.8388418572126,116.403171293482 +"Female",62.9683824331812,124.773902602346 +"Female",62.2838556853730,130.395085483009 +"Female",63.8014841524303,144.96448631367 +"Female",62.867321856224,138.439090326543 +"Female",65.9568647169701,153.441583565852 +"Female",68.287639569503,149.851548001767 +"Female",66.6918800198268,151.812906629730 +"Female",61.1088189454592,118.779106542497 +"Female",66.277273920325,140.856367027129 +"Female",63.7168086529781,144.994885996291 +"Female",59.4372318905798,103.678996286948 +"Female",66.1515532968867,146.287675670735 +"Female",58.6854713882726,101.855708720062 +"Female",66.5824091227795,155.891880934276 +"Female",66.6304251006085,142.874035672232 +"Female",63.1802598389868,131.801773515280 +"Female",65.874520685968,126.088790729601 +"Female",62.3769700407049,115.556599279855 +"Female",67.431010945909,168.922313144745 +"Female",62.788759576151,120.013226214053 +"Female",68.0598389077343,176.244420313940 +"Female",66.7551632092198,137.641530751013 +"Female",65.9083497480437,137.697227865163 +"Female",65.3933598325428,146.714132873857 +"Female",61.2417919647046,135.734081112462 +"Female",64.5002933577746,132.275936262261 +"Female",64.3216756626403,128.544983092704 +"Female",62.9619098533643,138.631288817846 +"Female",63.6860190981696,129.021055261541 +"Female",65.3072621260372,158.410823212046 +"Female",64.8281846265654,150.030359755927 +"Female",56.5341658080891,97.7438964834685 +"Female",56.9752789632804,90.3417842608302 +"Female",69.0712714121013,158.388445663319 +"Female",63.8552141265831,138.347651895244 +"Female",63.684280276189,141.651738822962 +"Female",61.0435720763044,113.889482787263 +"Female",66.317899421915,159.033613387859 +"Female",59.8399237912534,108.101541625255 +"Female",65.6628785355328,143.934405664019 +"Female",61.4952281152822,145.746689074312 +"Female",59.634572560617,111.454582060076 +"Female",61.3457245777591,114.341123894174 +"Female",63.845212126033,153.247365241812 +"Female",65.1761355865157,144.534167850387 +"Female",65.816652600841,110.488486684118 +"Female",60.0259500665801,87.0354160033182 +"Female",68.828104386959,163.431519816008 +"Female",62.5554253421448,144.299189909668 +"Female",61.7266101916917,117.37032054242 +"Female",64.7106239752276,137.741896782866 +"Female",65.6646236546352,139.622573130960 +"Female",66.479275640941,159.792173362601 +"Female",62.2012348524975,129.860973304470 +"Female",61.5046338204293,116.814812074744 +"Female",61.6304558853935,131.524693515469 +"Female",62.7202936746391,136.135549774157 +"Female",63.583680336741,128.219616657185 +"Female",60.7574674745953,137.804815384420 +"Female",66.1180127548593,160.240878588095 +"Female",65.2397367390664,146.238849197409 +"Female",64.6234271641416,138.056157131942 +"Female",64.632119489794,133.588996457765 +"Female",64.5073306544843,136.317374594578 +"Female",67.2196282962777,172.19297773909 +"Female",63.7830427504241,149.344027647034 +"Female",61.551110376156,127.075102184616 +"Female",63.7328306115322,143.187429529605 +"Female",61.2009946946584,115.901128847343 +"Female",62.7434778192535,138.557941544823 +"Female",66.5476085579028,157.090752683150 +"Female",62.8850630208678,128.361153217695 +"Female",61.5819746301437,140.585717556394 +"Female",63.5205327540616,137.958564772148 +"Female",61.597656715669,114.662793564683 +"Female",62.8945987905138,120.616740290476 +"Female",64.1742790637743,135.131330793471 +"Female",62.433723061098,131.506451538133 +"Female",65.9565834339489,153.171812937615 +"Female",65.2322275232837,152.962357434731 +"Female",58.2609650496285,104.872611752261 +"Female",60.025917295093,126.460829766303 +"Female",63.8055284133837,138.151329865328 +"Female",60.571364105579,135.078470284992 +"Female",64.4475209635432,140.087593988013 +"Female",60.4422497363627,123.730406679793 +"Female",61.509106353056,116.065719611182 +"Female",65.0313096229525,156.832880708934 +"Female",64.3103463968169,142.821243757182 +"Female",66.0140320338363,154.288973534832 +"Female",65.700012711963,160.827888745003 +"Female",65.84341746169,161.771728553384 +"Female",63.3828014970703,132.573836916793 +"Female",68.829414722765,162.987082787001 +"Female",63.7394321857554,131.917325200292 +"Female",63.9916768712429,142.636072960776 +"Female",55.9791978761431,85.4175336162677 +"Female",68.9772648900288,178.634086491971 +"Female",61.0838268390588,118.743804741526 +"Female",65.9794869505598,150.485298076258 +"Female",64.9910502875757,150.406938749192 +"Female",61.8038638780122,125.228439302866 +"Female",62.980775363069,121.322628721387 +"Female",62.7764090005046,133.843538722038 +"Female",62.0894335678826,138.625371164627 +"Female",64.9661922096248,147.356066028461 +"Female",66.5889411955057,147.56870130415 +"Female",64.8958190087328,158.21286082543 +"Female",59.2429163796226,108.708030974078 +"Female",63.3780988111644,126.545740424925 +"Female",64.7878214335247,138.791770449594 +"Female",66.0641503179095,171.9378090339 +"Female",65.052618957827,150.097941625046 +"Female",66.419263421535,148.209640329295 +"Female",61.0769727327459,127.089765366110 +"Female",64.8934630158002,133.854826231392 +"Female",62.1274801074527,136.783022358855 +"Female",70.751410247212,192.583638851817 +"Female",64.7205744069328,149.514689486199 +"Female",63.290223692792,133.292934706536 +"Female",69.3588597945758,179.437574807736 +"Female",61.8805579412634,133.781139026222 +"Female",60.9535890911899,120.044594862273 +"Female",65.4827276382499,135.278321527876 +"Female",66.117100052603,137.610001649099 +"Female",64.6981629806958,162.763350038971 +"Female",68.139611177199,174.632557508882 +"Female",61.5276911872735,114.843961444268 +"Female",64.1557293720552,126.87533607939 +"Female",66.2054277891881,151.020552298657 +"Female",67.9691868291836,168.166431454186 +"Female",65.6665872823438,129.664079829454 +"Female",63.5574137107136,148.454148992035 +"Female",61.8544491690001,118.786262779977 +"Female",62.5150724940066,132.103922525704 +"Female",59.8745007044387,131.188147883671 +"Female",64.7553930842213,140.547044547838 +"Female",63.5314631895709,131.435989492709 +"Female",65.6225073758985,151.492030758686 +"Female",64.3474686612606,134.633349355457 +"Female",65.2505188289117,135.303222292726 +"Female",59.3448548761631,113.415890493119 +"Female",67.0847924513218,143.391773467871 +"Female",64.7820531296727,125.459431375893 +"Female",63.7071738295406,132.760921779713 +"Female",64.4729275203453,128.191746209401 +"Female",60.6344392263692,120.640466571973 +"Female",68.974237695907,165.960592264492 +"Female",61.1892084059313,112.250076566388 +"Female",60.602924964864,133.327392100931 +"Female",61.8712411964785,125.045868776162 +"Female",65.6660473852393,139.725461563215 +"Female",59.7650095061103,106.218846541064 +"Female",66.8742045728997,150.597823483562 +"Female",60.6615304876492,114.089467353772 +"Female",61.8084337919203,121.339602002696 +"Female",62.5439172932848,142.486033516691 +"Female",60.9852893321396,120.035845701637 +"Female",67.0372076459625,150.809188101112 +"Female",65.1059318189413,149.694692763121 +"Female",60.9897910515356,113.632693208351 +"Female",64.7688332779472,142.804666976783 +"Female",66.9253361756615,162.713391630611 +"Female",61.1435994857813,127.447740240371 +"Female",65.9654152828791,135.748733719985 +"Female",61.465305996073,144.433032722408 +"Female",57.7401919079034,93.6529568776345 +"Female",62.7029092166342,142.218519457432 +"Female",60.718925910647,123.223480423172 +"Female",62.7896653703462,132.230275678311 +"Female",66.0008544118505,158.946397207326 +"Female",65.8453163836804,146.965778467625 +"Female",65.9433193822939,149.963954697098 +"Female",65.4149925174113,123.778753455340 +"Female",66.7671973803215,157.006813541203 +"Female",57.028857437194,101.202550876713 +"Female",60.7426674718337,122.688297876925 +"Female",63.3050704718277,121.046552259299 +"Female",62.1850832052768,132.247070318045 +"Female",65.3369134960336,132.008418192074 +"Female",62.9480002510758,142.327070199756 +"Female",59.4056541023386,111.853464602486 +"Female",63.3347712202818,151.891617144402 +"Female",66.8024710615704,147.654985752367 +"Female",58.351003040251,110.122150970153 +"Female",64.951112831819,152.999492313979 +"Female",60.0631441116995,102.900046463916 +"Female",66.3440551820552,161.339741617937 +"Female",67.2706148534122,144.039104146160 +"Female",65.9961982391325,150.559976581192 +"Female",66.7905919089783,129.419527343693 +"Female",65.5448328103466,147.993165299471 +"Female",67.1782702732674,166.601376562662 +"Female",58.7524891137083,106.846041391601 +"Female",62.1573761599297,132.001207516842 +"Female",63.0851623479461,124.829873690161 +"Female",65.4451446428084,137.180187654642 +"Female",63.1715347356898,142.747753679809 +"Female",63.3659327519453,154.566870720544 +"Female",62.2793754624535,111.441580151341 +"Female",59.5146782134889,109.421206011743 +"Female",68.5444489214892,148.828165321337 +"Female",62.9559495128415,130.917233923371 +"Female",62.3556111176757,129.515118042822 +"Female",63.6454226791541,147.191477088067 +"Female",68.2595974675301,174.142421017912 +"Female",64.1737578926288,125.647820584166 +"Female",64.7804200409041,137.922681216022 +"Female",63.1350520611177,121.538247974131 +"Female",61.0752102778519,120.515886673744 +"Female",59.901553758242,116.503428958580 +"Female",63.6060194418352,146.621049799341 +"Female",61.9491429296157,124.649015846546 +"Female",66.2915054259673,140.319412644818 +"Female",62.1792003673392,135.957105413468 +"Female",60.4445468071915,115.440497895383 +"Female",61.9151837221662,123.958660959029 +"Female",66.6245441936145,149.828093581128 +"Female",59.0617026444967,123.94704705447 +"Female",64.863385916734,138.484541094995 +"Female",64.0956333974414,133.682431639526 +"Female",61.1107246030827,123.386296199673 +"Female",64.1072603210836,138.730739654770 +"Female",63.0242050262459,134.008136207787 +"Female",61.278349368441,132.534228800380 +"Female",59.6990243061141,111.148256038695 +"Female",65.2913839500395,141.801085493497 +"Female",62.8695662726238,140.298043077455 +"Female",62.9037192220642,144.070328066129 +"Female",62.9689294444869,126.184996626061 +"Female",67.9453607959868,161.281836515085 +"Female",65.2157922644659,150.646649579347 +"Female",66.7736747517196,162.100595728148 +"Female",65.7545476179122,152.284627603385 +"Female",61.6715288928211,140.024792390255 +"Female",62.7284948017706,120.402414130795 +"Female",65.167673917306,135.714823804041 +"Female",61.8260073149363,126.932272804751 +"Female",64.8065108061556,156.095577878988 +"Female",63.9983512735363,155.598037798773 +"Female",68.2023846134737,163.610847154983 +"Female",65.6187368801067,151.500389289413 +"Female",64.6402472958549,155.318297316520 +"Female",60.6537331683682,123.084293029792 +"Female",60.7370306123989,120.926500000733 +"Female",65.3939465118574,143.017835386639 +"Female",66.2519230758127,124.019916834104 +"Female",61.4759043029338,121.387235721557 +"Female",64.494837574551,149.402546671129 +"Female",57.3757585320912,114.192208638152 +"Female",62.0560118896444,125.135896881121 +"Female",60.4722619671056,110.768228534481 +"Female",60.4432638886428,135.559390158229 +"Female",69.8685114859186,177.992065783139 +"Female",65.8307257157602,132.827888768001 +"Female",59.0470285438884,111.707368983008 +"Female",68.041065127316,170.514212621921 +"Female",63.3526975521962,141.906509849061 +"Female",65.6102432668041,151.169475049508 +"Female",59.5387285129225,121.244875534712 +"Female",60.9550842641814,95.6866743332824 +"Female",63.1794982498071,141.266099582434 +"Female",62.6366749337994,102.853563214830 +"Female",62.0778316936514,138.691680275738 +"Female",60.0304337715611,97.6874322554917 +"Female",59.0982500313486,110.529685683049 +"Female",66.1726521477708,136.777454183235 +"Female",67.067154649054,170.867905890713 +"Female",63.8679922137577,128.475318784122 +"Female",69.0342431307346,163.852461346571 +"Female",61.9442458795172,113.649102675312 diff --git a/data/wines.csv b/data/wines.csv new file mode 100644 index 0000000..8f03f53 --- /dev/null +++ b/data/wines.csv @@ -0,0 +1,179 @@ +Class,Alcohol,Malic_acid,Ash,Alcalinity_of_ash,Magnesium,Total_phenols,Flavanoids,Nonflavanoid_phenols,Proanthocyanins,Color_intensity,Hue,OD280-OD315_of_diluted_wines,Proline +1,14.23,1.71,2.43,15.6,127,2.8,3.06,.28,2.29,5.64,1.04,3.92,1065 +1,13.2,1.78,2.14,11.2,100,2.65,2.76,.26,1.28,4.38,1.05,3.4,1050 +1,13.16,2.36,2.67,18.6,101,2.8,3.24,.3,2.81,5.68,1.03,3.17,1185 +1,14.37,1.95,2.5,16.8,113,3.85,3.49,.24,2.18,7.8,.86,3.45,1480 +1,13.24,2.59,2.87,21,118,2.8,2.69,.39,1.82,4.32,1.04,2.93,735 +1,14.2,1.76,2.45,15.2,112,3.27,3.39,.34,1.97,6.75,1.05,2.85,1450 +1,14.39,1.87,2.45,14.6,96,2.5,2.52,.3,1.98,5.25,1.02,3.58,1290 +1,14.06,2.15,2.61,17.6,121,2.6,2.51,.31,1.25,5.05,1.06,3.58,1295 +1,14.83,1.64,2.17,14,97,2.8,2.98,.29,1.98,5.2,1.08,2.85,1045 +1,13.86,1.35,2.27,16,98,2.98,3.15,.22,1.85,7.22,1.01,3.55,1045 +1,14.1,2.16,2.3,18,105,2.95,3.32,.22,2.38,5.75,1.25,3.17,1510 +1,14.12,1.48,2.32,16.8,95,2.2,2.43,.26,1.57,5,1.17,2.82,1280 +1,13.75,1.73,2.41,16,89,2.6,2.76,.29,1.81,5.6,1.15,2.9,1320 +1,14.75,1.73,2.39,11.4,91,3.1,3.69,.43,2.81,5.4,1.25,2.73,1150 +1,14.38,1.87,2.38,12,102,3.3,3.64,.29,2.96,7.5,1.2,3,1547 +1,13.63,1.81,2.7,17.2,112,2.85,2.91,.3,1.46,7.3,1.28,2.88,1310 +1,14.3,1.92,2.72,20,120,2.8,3.14,.33,1.97,6.2,1.07,2.65,1280 +1,13.83,1.57,2.62,20,115,2.95,3.4,.4,1.72,6.6,1.13,2.57,1130 +1,14.19,1.59,2.48,16.5,108,3.3,3.93,.32,1.86,8.7,1.23,2.82,1680 +1,13.64,3.1,2.56,15.2,116,2.7,3.03,.17,1.66,5.1,.96,3.36,845 +1,14.06,1.63,2.28,16,126,3,3.17,.24,2.1,5.65,1.09,3.71,780 +1,12.93,3.8,2.65,18.6,102,2.41,2.41,.25,1.98,4.5,1.03,3.52,770 +1,13.71,1.86,2.36,16.6,101,2.61,2.88,.27,1.69,3.8,1.11,4,1035 +1,12.85,1.6,2.52,17.8,95,2.48,2.37,.26,1.46,3.93,1.09,3.63,1015 +1,13.5,1.81,2.61,20,96,2.53,2.61,.28,1.66,3.52,1.12,3.82,845 +1,13.05,2.05,3.22,25,124,2.63,2.68,.47,1.92,3.58,1.13,3.2,830 +1,13.39,1.77,2.62,16.1,93,2.85,2.94,.34,1.45,4.8,.92,3.22,1195 +1,13.3,1.72,2.14,17,94,2.4,2.19,.27,1.35,3.95,1.02,2.77,1285 +1,13.87,1.9,2.8,19.4,107,2.95,2.97,.37,1.76,4.5,1.25,3.4,915 +1,14.02,1.68,2.21,16,96,2.65,2.33,.26,1.98,4.7,1.04,3.59,1035 +1,13.73,1.5,2.7,22.5,101,3,3.25,.29,2.38,5.7,1.19,2.71,1285 +1,13.58,1.66,2.36,19.1,106,2.86,3.19,.22,1.95,6.9,1.09,2.88,1515 +1,13.68,1.83,2.36,17.2,104,2.42,2.69,.42,1.97,3.84,1.23,2.87,990 +1,13.76,1.53,2.7,19.5,132,2.95,2.74,.5,1.35,5.4,1.25,3,1235 +1,13.51,1.8,2.65,19,110,2.35,2.53,.29,1.54,4.2,1.1,2.87,1095 +1,13.48,1.81,2.41,20.5,100,2.7,2.98,.26,1.86,5.1,1.04,3.47,920 +1,13.28,1.64,2.84,15.5,110,2.6,2.68,.34,1.36,4.6,1.09,2.78,880 +1,13.05,1.65,2.55,18,98,2.45,2.43,.29,1.44,4.25,1.12,2.51,1105 +1,13.07,1.5,2.1,15.5,98,2.4,2.64,.28,1.37,3.7,1.18,2.69,1020 +1,14.22,3.99,2.51,13.2,128,3,3.04,.2,2.08,5.1,.89,3.53,760 +1,13.56,1.71,2.31,16.2,117,3.15,3.29,.34,2.34,6.13,.95,3.38,795 +1,13.41,3.84,2.12,18.8,90,2.45,2.68,.27,1.48,4.28,.91,3,1035 +1,13.88,1.89,2.59,15,101,3.25,3.56,.17,1.7,5.43,.88,3.56,1095 +1,13.24,3.98,2.29,17.5,103,2.64,2.63,.32,1.66,4.36,.82,3,680 +1,13.05,1.77,2.1,17,107,3,3,.28,2.03,5.04,.88,3.35,885 +1,14.21,4.04,2.44,18.9,111,2.85,2.65,.3,1.25,5.24,.87,3.33,1080 +1,14.38,3.59,2.28,16,102,3.25,3.17,.27,2.19,4.9,1.04,3.44,1065 +1,13.9,1.68,2.12,16,101,3.1,3.39,.21,2.14,6.1,.91,3.33,985 +1,14.1,2.02,2.4,18.8,103,2.75,2.92,.32,2.38,6.2,1.07,2.75,1060 +1,13.94,1.73,2.27,17.4,108,2.88,3.54,.32,2.08,8.90,1.12,3.1,1260 +1,13.05,1.73,2.04,12.4,92,2.72,3.27,.17,2.91,7.2,1.12,2.91,1150 +1,13.83,1.65,2.6,17.2,94,2.45,2.99,.22,2.29,5.6,1.24,3.37,1265 +1,13.82,1.75,2.42,14,111,3.88,3.74,.32,1.87,7.05,1.01,3.26,1190 +1,13.77,1.9,2.68,17.1,115,3,2.79,.39,1.68,6.3,1.13,2.93,1375 +1,13.74,1.67,2.25,16.4,118,2.6,2.9,.21,1.62,5.85,.92,3.2,1060 +1,13.56,1.73,2.46,20.5,116,2.96,2.78,.2,2.45,6.25,.98,3.03,1120 +1,14.22,1.7,2.3,16.3,118,3.2,3,.26,2.03,6.38,.94,3.31,970 +1,13.29,1.97,2.68,16.8,102,3,3.23,.31,1.66,6,1.07,2.84,1270 +1,13.72,1.43,2.5,16.7,108,3.4,3.67,.19,2.04,6.8,.89,2.87,1285 +2,12.37,.94,1.36,10.6,88,1.98,.57,.28,.42,1.95,1.05,1.82,520 +2,12.33,1.1,2.28,16,101,2.05,1.09,.63,.41,3.27,1.25,1.67,680 +2,12.64,1.36,2.02,16.8,100,2.02,1.41,.53,.62,5.75,.98,1.59,450 +2,13.67,1.25,1.92,18,94,2.1,1.79,.32,.73,3.8,1.23,2.46,630 +2,12.37,1.13,2.16,19,87,3.5,3.1,.19,1.87,4.45,1.22,2.87,420 +2,12.17,1.45,2.53,19,104,1.89,1.75,.45,1.03,2.95,1.45,2.23,355 +2,12.37,1.21,2.56,18.1,98,2.42,2.65,.37,2.08,4.6,1.19,2.3,678 +2,13.11,1.01,1.7,15,78,2.98,3.18,.26,2.28,5.3,1.12,3.18,502 +2,12.37,1.17,1.92,19.6,78,2.11,2,.27,1.04,4.68,1.12,3.48,510 +2,13.34,.94,2.36,17,110,2.53,1.3,.55,.42,3.17,1.02,1.93,750 +2,12.21,1.19,1.75,16.8,151,1.85,1.28,.14,2.5,2.85,1.28,3.07,718 +2,12.29,1.61,2.21,20.4,103,1.1,1.02,.37,1.46,3.05,.906,1.82,870 +2,13.86,1.51,2.67,25,86,2.95,2.86,.21,1.87,3.38,1.36,3.16,410 +2,13.49,1.66,2.24,24,87,1.88,1.84,.27,1.03,3.74,.98,2.78,472 +2,12.99,1.67,2.6,30,139,3.3,2.89,.21,1.96,3.35,1.31,3.5,985 +2,11.96,1.09,2.3,21,101,3.38,2.14,.13,1.65,3.21,.99,3.13,886 +2,11.66,1.88,1.92,16,97,1.61,1.57,.34,1.15,3.8,1.23,2.14,428 +2,13.03,.9,1.71,16,86,1.95,2.03,.24,1.46,4.6,1.19,2.48,392 +2,11.84,2.89,2.23,18,112,1.72,1.32,.43,.95,2.65,.96,2.52,500 +2,12.33,.99,1.95,14.8,136,1.9,1.85,.35,2.76,3.4,1.06,2.31,750 +2,12.7,3.87,2.4,23,101,2.83,2.55,.43,1.95,2.57,1.19,3.13,463 +2,12,.92,2,19,86,2.42,2.26,.3,1.43,2.5,1.38,3.12,278 +2,12.72,1.81,2.2,18.8,86,2.2,2.53,.26,1.77,3.9,1.16,3.14,714 +2,12.08,1.13,2.51,24,78,2,1.58,.4,1.4,2.2,1.31,2.72,630 +2,13.05,3.86,2.32,22.5,85,1.65,1.59,.61,1.62,4.8,.84,2.01,515 +2,11.84,.89,2.58,18,94,2.2,2.21,.22,2.35,3.05,.79,3.08,520 +2,12.67,.98,2.24,18,99,2.2,1.94,.3,1.46,2.62,1.23,3.16,450 +2,12.16,1.61,2.31,22.8,90,1.78,1.69,.43,1.56,2.45,1.33,2.26,495 +2,11.65,1.67,2.62,26,88,1.92,1.61,.4,1.34,2.6,1.36,3.21,562 +2,11.64,2.06,2.46,21.6,84,1.95,1.69,.48,1.35,2.8,1,2.75,680 +2,12.08,1.33,2.3,23.6,70,2.2,1.59,.42,1.38,1.74,1.07,3.21,625 +2,12.08,1.83,2.32,18.5,81,1.6,1.5,.52,1.64,2.4,1.08,2.27,480 +2,12,1.51,2.42,22,86,1.45,1.25,.5,1.63,3.6,1.05,2.65,450 +2,12.69,1.53,2.26,20.7,80,1.38,1.46,.58,1.62,3.05,.96,2.06,495 +2,12.29,2.83,2.22,18,88,2.45,2.25,.25,1.99,2.15,1.15,3.3,290 +2,11.62,1.99,2.28,18,98,3.02,2.26,.17,1.35,3.25,1.16,2.96,345 +2,12.47,1.52,2.2,19,162,2.5,2.27,.32,3.28,2.6,1.16,2.63,937 +2,11.81,2.12,2.74,21.5,134,1.6,.99,.14,1.56,2.5,.95,2.26,625 +2,12.29,1.41,1.98,16,85,2.55,2.5,.29,1.77,2.9,1.23,2.74,428 +2,12.37,1.07,2.1,18.5,88,3.52,3.75,.24,1.95,4.5,1.04,2.77,660 +2,12.29,3.17,2.21,18,88,2.85,2.99,.45,2.81,2.3,1.42,2.83,406 +2,12.08,2.08,1.7,17.5,97,2.23,2.17,.26,1.4,3.3,1.27,2.96,710 +2,12.6,1.34,1.9,18.5,88,1.45,1.36,.29,1.35,2.45,1.04,2.77,562 +2,12.34,2.45,2.46,21,98,2.56,2.11,.34,1.31,2.8,.8,3.38,438 +2,11.82,1.72,1.88,19.5,86,2.5,1.64,.37,1.42,2.06,.94,2.44,415 +2,12.51,1.73,1.98,20.5,85,2.2,1.92,.32,1.48,2.94,1.04,3.57,672 +2,12.42,2.55,2.27,22,90,1.68,1.84,.66,1.42,2.7,.86,3.3,315 +2,12.25,1.73,2.12,19,80,1.65,2.03,.37,1.63,3.4,1,3.17,510 +2,12.72,1.75,2.28,22.5,84,1.38,1.76,.48,1.63,3.3,.88,2.42,488 +2,12.22,1.29,1.94,19,92,2.36,2.04,.39,2.08,2.7,.86,3.02,312 +2,11.61,1.35,2.7,20,94,2.74,2.92,.29,2.49,2.65,.96,3.26,680 +2,11.46,3.74,1.82,19.5,107,3.18,2.58,.24,3.58,2.9,.75,2.81,562 +2,12.52,2.43,2.17,21,88,2.55,2.27,.26,1.22,2,.9,2.78,325 +2,11.76,2.68,2.92,20,103,1.75,2.03,.6,1.05,3.8,1.23,2.5,607 +2,11.41,.74,2.5,21,88,2.48,2.01,.42,1.44,3.08,1.1,2.31,434 +2,12.08,1.39,2.5,22.5,84,2.56,2.29,.43,1.04,2.9,.93,3.19,385 +2,11.03,1.51,2.2,21.5,85,2.46,2.17,.52,2.01,1.9,1.71,2.87,407 +2,11.82,1.47,1.99,20.8,86,1.98,1.6,.3,1.53,1.95,.95,3.33,495 +2,12.42,1.61,2.19,22.5,108,2,2.09,.34,1.61,2.06,1.06,2.96,345 +2,12.77,3.43,1.98,16,80,1.63,1.25,.43,.83,3.4,.7,2.12,372 +2,12,3.43,2,19,87,2,1.64,.37,1.87,1.28,.93,3.05,564 +2,11.45,2.4,2.42,20,96,2.9,2.79,.32,1.83,3.25,.8,3.39,625 +2,11.56,2.05,3.23,28.5,119,3.18,5.08,.47,1.87,6,.93,3.69,465 +2,12.42,4.43,2.73,26.5,102,2.2,2.13,.43,1.71,2.08,.92,3.12,365 +2,13.05,5.8,2.13,21.5,86,2.62,2.65,.3,2.01,2.6,.73,3.1,380 +2,11.87,4.31,2.39,21,82,2.86,3.03,.21,2.91,2.8,.75,3.64,380 +2,12.07,2.16,2.17,21,85,2.6,2.65,.37,1.35,2.76,.86,3.28,378 +2,12.43,1.53,2.29,21.5,86,2.74,3.15,.39,1.77,3.94,.69,2.84,352 +2,11.79,2.13,2.78,28.5,92,2.13,2.24,.58,1.76,3,.97,2.44,466 +2,12.37,1.63,2.3,24.5,88,2.22,2.45,.4,1.9,2.12,.89,2.78,342 +2,12.04,4.3,2.38,22,80,2.1,1.75,.42,1.35,2.6,.79,2.57,580 +3,12.86,1.35,2.32,18,122,1.51,1.25,.21,.94,4.1,.76,1.29,630 +3,12.88,2.99,2.4,20,104,1.3,1.22,.24,.83,5.4,.74,1.42,530 +3,12.81,2.31,2.4,24,98,1.15,1.09,.27,.83,5.7,.66,1.36,560 +3,12.7,3.55,2.36,21.5,106,1.7,1.2,.17,.84,5,.78,1.29,600 +3,12.51,1.24,2.25,17.5,85,2,.58,.6,1.25,5.45,.75,1.51,650 +3,12.6,2.46,2.2,18.5,94,1.62,.66,.63,.94,7.1,.73,1.58,695 +3,12.25,4.72,2.54,21,89,1.38,.47,.53,.8,3.85,.75,1.27,720 +3,12.53,5.51,2.64,25,96,1.79,.6,.63,1.1,5,.82,1.69,515 +3,13.49,3.59,2.19,19.5,88,1.62,.48,.58,.88,5.7,.81,1.82,580 +3,12.84,2.96,2.61,24,101,2.32,.6,.53,.81,4.92,.89,2.15,590 +3,12.93,2.81,2.7,21,96,1.54,.5,.53,.75,4.6,.77,2.31,600 +3,13.36,2.56,2.35,20,89,1.4,.5,.37,.64,5.6,.7,2.47,780 +3,13.52,3.17,2.72,23.5,97,1.55,.52,.5,.55,4.35,.89,2.06,520 +3,13.62,4.95,2.35,20,92,2,.8,.47,1.02,4.4,.91,2.05,550 +3,12.25,3.88,2.2,18.5,112,1.38,.78,.29,1.14,8.21,.65,2,855 +3,13.16,3.57,2.15,21,102,1.5,.55,.43,1.3,4,.6,1.68,830 +3,13.88,5.04,2.23,20,80,.98,.34,.4,.68,4.9,.58,1.33,415 +3,12.87,4.61,2.48,21.5,86,1.7,.65,.47,.86,7.65,.54,1.86,625 +3,13.32,3.24,2.38,21.5,92,1.93,.76,.45,1.25,8.42,.55,1.62,650 +3,13.08,3.9,2.36,21.5,113,1.41,1.39,.34,1.14,9.40,.57,1.33,550 +3,13.5,3.12,2.62,24,123,1.4,1.57,.22,1.25,8.60,.59,1.3,500 +3,12.79,2.67,2.48,22,112,1.48,1.36,.24,1.26,10.8,.48,1.47,480 +3,13.11,1.9,2.75,25.5,116,2.2,1.28,.26,1.56,7.1,.61,1.33,425 +3,13.23,3.3,2.28,18.5,98,1.8,.83,.61,1.87,10.52,.56,1.51,675 +3,12.58,1.29,2.1,20,103,1.48,.58,.53,1.4,7.6,.58,1.55,640 +3,13.17,5.19,2.32,22,93,1.74,.63,.61,1.55,7.9,.6,1.48,725 +3,13.84,4.12,2.38,19.5,89,1.8,.83,.48,1.56,9.01,.57,1.64,480 +3,12.45,3.03,2.64,27,97,1.9,.58,.63,1.14,7.5,.67,1.73,880 +3,14.34,1.68,2.7,25,98,2.8,1.31,.53,2.7,13,.57,1.96,660 +3,13.48,1.67,2.64,22.5,89,2.6,1.1,.52,2.29,11.75,.57,1.78,620 +3,12.36,3.83,2.38,21,88,2.3,.92,.5,1.04,7.65,.56,1.58,520 +3,13.69,3.26,2.54,20,107,1.83,.56,.5,.8,5.88,.96,1.82,680 +3,12.85,3.27,2.58,22,106,1.65,.6,.6,.96,5.58,.87,2.11,570 +3,12.96,3.45,2.35,18.5,106,1.39,.7,.4,.94,5.28,.68,1.75,675 +3,13.78,2.76,2.3,22,90,1.35,.68,.41,1.03,9.58,.7,1.68,615 +3,13.73,4.36,2.26,22.5,88,1.28,.47,.52,1.15,6.62,.78,1.75,520 +3,13.45,3.7,2.6,23,111,1.7,.92,.43,1.46,10.68,.85,1.56,695 +3,12.82,3.37,2.3,19.5,88,1.48,.66,.4,.97,10.26,.72,1.75,685 +3,13.58,2.58,2.69,24.5,105,1.55,.84,.39,1.54,8.66,.74,1.8,750 +3,13.4,4.6,2.86,25,112,1.98,.96,.27,1.11,8.5,.67,1.92,630 +3,12.2,3.03,2.32,19,96,1.25,.49,.4,.73,5.5,.66,1.83,510 +3,12.77,2.39,2.28,19.5,86,1.39,.51,.48,.64,9.899999,.57,1.63,470 +3,14.16,2.51,2.48,20,91,1.68,.7,.44,1.24,9.7,.62,1.71,660 +3,13.71,5.65,2.45,20.5,95,1.68,.61,.52,1.06,7.7,.64,1.74,740 +3,13.4,3.91,2.48,23,102,1.8,.75,.43,1.41,7.3,.7,1.56,750 +3,13.27,4.28,2.26,20,120,1.59,.69,.43,1.35,10.2,.59,1.56,835 +3,13.17,2.59,2.37,20,120,1.65,.68,.53,1.46,9.3,.6,1.62,840 +3,14.13,4.1,2.74,24.5,96,2.05,.76,.56,1.35,9.2,.61,1.6,560 \ No newline at end of file diff --git a/environment.yml b/environment.yml new file mode 100644 index 0000000..f5aa111 --- /dev/null +++ b/environment.yml @@ -0,0 +1,21 @@ +name: ztdl +channels: +- defaults +dependencies: +- python=3.7.* +- bz2file==0.98 +- cython==0.29.* +- pip==21.0.* +- numpy==1.19.* +- jupyter==1.0.* +- matplotlib==3.3.* +- setuptools==52.0.* +- scikit-learn==0.24.* +- scipy==1.6.* +- pandas==1.2.* +- pillow==8.2.* +- seaborn==0.11.* +- pytest==6.2.* +- twisted==21.2.* +- pip: + - tensorflow==2.5.* diff --git a/exercises/First Deep Learning Model commented.ipynb b/exercises/First Deep Learning Model commented.ipynb new file mode 100644 index 0000000..d6ca278 --- /dev/null +++ b/exercises/First Deep Learning Model commented.ipynb @@ -0,0 +1,197 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# First Deep Learning Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Imports" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np # import the numpy library and assign the name np to it\n", + "%matplotlib inline # magic function that sets the backend of matplotlib to the inline backend\n", + "import matplotlib.pyplot as plt # import the matplotlib.pyplot and assign the name plt to it" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.datasets import make_circles # import the make_circles module from the sklearn.datasets module" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X, y = make_circles(n_samples=1000,\n", + " noise=0.1,\n", + " factor=0.2,\n", + " random_state=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(5, 5))\n", + "plt.plot(X[y==0, 0], X[y==0, 1], 'ob', alpha=0.5)\n", + "plt.plot(X[y==1, 0], X[y==1, 1], 'xr', alpha=0.5)\n", + "plt.xlim(-1.5, 1.5)\n", + "plt.ylim(-1.5, 1.5)\n", + "plt.legend(['0', '1'])\n", + "plt.title(\"Blue circles and Red crosses\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.optimizers import SGD" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.add(Dense(4, input_shape=(2,), activation='tanh'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.add(Dense(1, activation='sigmoid'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.compile(SGD(learning_rate=0.5), 'binary_crossentropy', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X, y, epochs=20)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "hticks = np.linspace(-1.5, 1.5, 101)\n", + "vticks = np.linspace(-1.5, 1.5, 101)\n", + "aa, bb = np.meshgrid(hticks, vticks)\n", + "ab = np.c_[aa.ravel(), bb.ravel()]\n", + "c = model.predict(ab)\n", + "cc = c.reshape(aa.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(5, 5))\n", + "plt.contourf(aa, bb, cc, cmap='bwr', alpha=0.2)\n", + "plt.plot(X[y==0, 0], X[y==0, 1], 'ob', alpha=0.5)\n", + "plt.plot(X[y==1, 0], X[y==1, 1], 'xr', alpha=0.5)\n", + "plt.xlim(-1.5, 1.5)\n", + "plt.ylim(-1.5, 1.5)\n", + "plt.legend(['0', '1'])\n", + "plt.title(\"Blue circles and Red crosses\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/exercises/Jupyter notebook CVML.ipynb b/exercises/Jupyter notebook CVML.ipynb new file mode 100644 index 0000000..ef4940d --- /dev/null +++ b/exercises/Jupyter notebook CVML.ipynb @@ -0,0 +1,2604 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "ab021475", + "metadata": {}, + "source": [ + "## Jupyter notebook Lars Rook & Sem van der Hoeven" + ] + }, + { + "cell_type": "markdown", + "id": "ffa039c8", + "metadata": {}, + "source": [ + "# Week 4" + ] + }, + { + "cell_type": "markdown", + "id": "239c1156", + "metadata": {}, + "source": [ + "## 4.1: ZTDL 1 - First Deep Learning Model\n", + "We hebben bij elk code blok comments gezet die uitleggen wat de code doet." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "155b55bd", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np # import the numpy library and assign the name np to it\n", + "\n", + "# magic function that sets the backend of matplotlib to the inline backend\n", + "# source: https://stackoverflow.com/questions/43027980/purpose-of-matplotlib-inline\n", + "%matplotlib inline \n", + "import matplotlib.pyplot as plt # import the matplotlib.pyplot and assign the name plt to it" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "feeaffc8", + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.datasets import make_circles # import the make_circles module from the sklearn.datasets module" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "c1db0180", + "metadata": {}, + "outputs": [], + "source": [ + "\"\"\"\n", + "roept de make_circles functie aan van de sklearn.datasets module\n", + "de make_circles functie maakt een cirkel met een kleinere cirkel hier binnen in.\n", + "- de n_samples staat voor hoeveel points gegenereerd moeten worden.\n", + "- de noise variabele staat voor hoeveel noise eraan toegeoegd moet worden\n", + "- de factor staat voor de schaling tussen de binnenste en buitenste cirkel\n", + "- de random_state variabele wordt gebruikt voor het genereren van een random nummer die gebruikt wordt voor het shufflen van de dataset en de noise.\n", + "\"\"\"\n", + "\n", + "X, y = make_circles(n_samples=1000,\n", + " noise=0.1,\n", + " factor=0.2,\n", + " random_state=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "46267e93", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 0.24265541, 0.0383196 ],\n", + " [ 0.04433036, -0.05667334],\n", + " [-0.78677748, -0.75718576],\n", + " ...,\n", + " [ 0.0161236 , -0.00548034],\n", + " [ 0.20624715, 0.09769677],\n", + " [-0.19186631, 0.08916672]])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# X bevat de gegenereerde samples van de make_circles methode.\n", + "\n", + "X" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "34c5864c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1000, 2)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# aangezien x de array of shape [n_samples, 2] bevat, geeft dit de gegeven aantal samples en 2.\n", + "X.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "fa762402", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Blue circles and Red crosses')" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUwAAAE/CAYAAAAt2PowAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACITUlEQVR4nO39d3xc1Z0+jj/HaiPJVrGsXtyrhJBtATYQl8VAbLqXluwmsOQXEghL2GwKS5bECRuW7PL7hCQEMElIQg92BJjElJjEdmIQ2MaykJtcZKsXyyq2yqjd7x/PnD1XozszV5qRNCOf5/XSazQzt8255z7n3d/CMAxoaGhoaPjGpPG+AA0NDY1QgSZMDQ0NDZvQhKmhoaFhE5owNTQ0NGxCE6aGhoaGTWjC1NDQ0LAJTZhBCiHEb4UQ/zXG5zwghFg1gv1WCSGqA39FgYMQ4qQQYs0YnCfox0Jj5NCEOU5wPcBdQohzQogWIcSfhBDZ43lNhmHkGoaxfTyvYTzgWpx6XPfijBDiz0KIBeN9XRrBB02Y44vrDMOYDCAdQAOAn4/z9XiEECJ8vK9hlPE/rnuRCaAGwK/H82LOg/EOSWjCDAIYhtENYDOARVbfCyHuFEL83e0zQwgxx/V/lBDicSFEpRCiQQjxjBAi2tP5hBBfFkIcEkKcFUIcFEIscX3+f2qrEGKDEGKzEOJFIUQ7gDuFEFOFEL8RQtS6pOI3PBw/QwjxByFEkxCiQghxv+m7i4UQe4QQ7a5r/X8ejpEohPij6xgtrv+zTN9vF0I8IoTY5fod7wkhppm+/4IQ4pQQolkI8V1PY+EOwzC6ALwGoMDm74l2SagtQoiDAC7ydnwhRK5Lgj3j+v0PuT63Gu8MIcQW17bHhBBf9jWOQgiH6xjNQohWIcRuIUSq67t4IcSvhRB1QogaIcR/CSHCXN/NEULsEEK0CSFOCyF+b3fMzidowgwCCCFiANwGoHiEh/gxgHngQz4HlJK+5+FctwDYAOCLAOIAXA+g2cNxbwCJPAHASwBeABADIBdACoCfWBx/EoC3AOx3XccVAB4QQlzt2uSnAH5qGEYcgNkgOVlhEoDfAJgOIAdAF4An3bb5PIB/cV1LJIBvuq5hEYCnAXwBQAaAJABZsAEhRCyAzwE4ZvP3fN/1O2YDuBrAHV6OPQXANgDvuK5rDoD3TZu4j/crAKpd294M4FEhxBWubT2N4x0A4gFku373V8GxA4DfAehznXcxgKsA/P9c3z0C4D0AieBYBa22M64wDEP/jcMfgJMAzgFoBSdxLYALTN//FsB/uf6/E8Df3fY3wIkvAHQAmG36bjmACg/nfRfA171c0xrX/xsA7DR9lw5gAECixX6rAFS7/r8EQKXb9/8B4Deu/3cC+AGAacMcrwIALab32wH8p+n9vQDecf3/PQCvmr6LBdAjf5vFsX8LoNt1LwYAVADIt/l7TgD4rOm7u+VYWJzncwD2efjOfbyzAfQDmGL67L8B/NbbOAK4C8AH8vpNn6cCcAKIdruev7r+fx7AswCyxvvZCOY/LWGOL240DCMBQBSA+wDsEEKkDfMYyaDUt9elgrWCEkyyh+2zARy3eewqt/3OGIbR4mOf6QAy5LW4ruch8IEFgC+B0vBhl7p4rdVBhBAxQoiNLrW6HSSIBKlCulBv+r8TwGTX/xnmazcMowOepWiJx133YgYokc23+XsGnQvAKS/n8DX25uNkgON91u3Yma7/PY3jC+Ci+KrLdPI/QogI1++IAFBn+h0bQekcAL4NLr4fC0ZL3OXlOs9baMNyEMAwjH4ARUKIjQAuB9UyMzpAUgQAuJHqafABzzUMo8bG6apAFc7WpbntN1UIkWAYRquP41cYhjHX8oCGcRTA51yq7noAm4UQSS5SM+PfQdK6xDCMeiFEAYB94EPtC3UAFso3LpNHko39YBhGpRDi6wB+J4T4o6/f4zpXNoADrvc5Xg5fBUp1Hk9v+r8WHO8pJtLMAR1SvsbxBwB+IISYAWArgCOuVycokfZZ/O56AF8GACHE5QC2CSF2GoZxzMv1nnfQEmYQQBA3gPajQxab7AeQK4QoEEI4QPUNAGAYxgCAXwL4iRAixXW8TJONzR2/AvBNIcRS13nnCCGm+7pGwzDqALwN4ClBh0yEEGKFxaYfA2gXQnzH5RAJE0LkCSEucl3bPwshkl3X3erap9/iOFPAhaBVCDEVtBXaxWYA1wohLhdCRAL4IYYx1w3D+DNIWHf7+j2g7fA/XGOSBeBfvRz6jwDShBAPCDrqpgghLvFwDVWgav3fLkdOPihVvgR4HkchxGohxAUuSbwdQC+Aftf9ew/A/18IESeEmCSEmC2EWOk63i1COdVaQPK2ui/nNTRhji/eEkKcAyf2jwDcYRjGAfeNDMMoBx/6bQCOAvi72ybfAZ0UxS71dRuUSul+rE2uc70M4CyANwBMtXm9XwAfwMMAGgE8YHH8fgDXgTbHClAC/hXoiACAzwI44PrdPwVwu8EoAXc8ASDatX8xaGawBdcYfg38jXUgAQw3mPx/QTU13Mfv+QGoKleAhPSCl+s6C+BK1/HqwXu52ss1fA40EdQCeB3A911kDngexzRwwWgHF98dAF507fNF0Dl2EByTzaBtGqB3/yPX8baAdu4KL9d2XkK4DL4aGhoaGj6gJUwNDQ0NmwgIYQohnhNCNAohyjx8v8oVEFvi+rOMEdTQ0NAIZgTKS/5bMKj4eS/b/M0wDMsQEg0NDY1QQEAkTMMwdgI4E4hjaWhoaAQrxtKGuVwIsV8I8bYQIncMz6uhoaEREIxV4PonAKYbhnFOCLEODGWxDAQWQtwNxr8hNjZ26YIFusqWhoZGYLF3797ThmF4yobziICFFbmyCv5oGEaejW1PAig0DOO0t+0KCwuNPXv2BOT6NDQ0NCSEEHsNwygc7n5jopILIdKEEML1/8Wu8/rK7dXQ0NAIKgREJRdCvAJWrJkmWJ7/+2CiPwzDeAYsTXWPEKIPTHe73dAR8xoaGiGGgBCmYRjeCgrAMIwnMbSWoYaGhkZIQVcr0tDQGDZ6e3tRXV2N7m6rMgDBA4fDgaysLERERATkeJowNTQ0ho3q6mpMmTIFM2bMgMs9EXQwDAPNzc2orq7GzJkzA3JMnUuuoaExbHR3dyMpKSloyRIAhBBISkoKqBSsCVNDQ2NECGaylAj0NWrC1NDQCFm88847mD9/PubMmYPHHnts1M+nCVNDQyMk0d/fj6997Wt4++23cfDgQbzyyis4ePDgqJ5TO300NDRGHaWlQFERUFkJ5OQA69cD+fn+HfPjjz/GnDlzMGvWLADA7bffjjfffBOLFi0KwBVbQ0uYGhoao4rSUuDxx4GWFiAri6+PP87P/UFNTQ2ys7P/731WVhZqauz0ARw5NGFqaGiMKoqKgMRE/k2apP4vKvLvuFbJgqPtiNKEqaGhMaqorATi4wd/Fh/Pz/1BVlYWqqpUK/fq6mpkZGT4d1Af0ISpoaExqsjJAdraBn/W1sbP/cFFF12Eo0ePoqKiAj09PXj11Vdx/fXX+3dQH9CEqaGhMapYv552y5YWYGBA/b9+vX/HDQ8Px5NPPomrr74aCxcuxK233orc3NGtTa695BoaGqOK/Hzgm98c7CX/0pf895IDwLp167Bu3Tr/D2QTmjA1NDRGHfn5gSHI8YZWyTU0NDRsQhOmhoaGhk1owtTQ0NCwCU2YGhoaGjahCVNDQ0PDJjRhamhohCTuuusupKSkIC/PZ2fvgEGHFWlo2IA/1XZGo1KPBnDnnXfivvvuwxe/+MUxO6eWMDU0fMCfajujVaknpLBrF1BRMfizigp+7gdWrFiBqVOn+nWM4UITpoaGD/hTbWe0KvWEFDIygE2bFGlWVPD9KBfKGA1olVxDwwcqKykdmmG32o4/+04YzJwJ3HILSfKii4Ddu/k+QJ0cxxKaMDUmPPy1IebkUJVOTFSf2a2248++EwozZ5Isd+wAVq4MSbIENGFqWGC0nBSBOq7VcQDrY0sbYmLiYBviN79p/9zr13MfgNJhWxuP86Uvje6+EwoVFZQsV67k64wZIUma2oapMQij5aQI1HGtjvPQQ8B3v2t97EDYEGW1ncREoLqar3YJ1599JwykzfKWW4DVq5V67u4IGiY+97nPYfny5Thy5AiysrLw61//OkAX7BlawtQYBDPBAOq1qMi/hzxQx7U6TlMT/1+6dOixA2VD9KfazkSp1DNi1NYOtllKm2ZtrV9S5iuvvBKgC7QPTZgagzBaToqRHNdK9bY6jtMJdHYC27cD9fVAdzcQGQnExgKXXEI1OFA2RH/NCudlTOZllw39bObMkFTJNWFqDEKgnBTuxHD2LPDuu0BPD4lywQIgKsrzcT3ZHmNjhxJgXx9w5gyPd+YMIARw7hxJs6YGMAxg9mz/bYj+2kMDYU/VGF9owtQYhOE4KcykGBVFYurpUUQ1axaJ4ehR4MMPgYgIIDmZ0uCOHSSxRx+1vg5PKrzTyesxX19PDzBlCskyIoLf9fcDDgevoaeH+/tb7dtfs8JomTs0xg6aMDUGwVc7AUmSJSW02efmkqy2b+f3K1YA+/YB7e0ky0mTSJ7TpgHh4UBMDEkuPJzq8/e+B7S2AgkJQEGBUlE9qfDV1UOvb9EiIDUVePNNbudwAGlpJE25z4YN/o+Nv+aKiRaTaRjGqLe19RdWrXj9gSZMjSHw5KQwq5QtLVR9DxygVBcXx22OHFES36FDJLK2Nn5/9iywahXQ0MCsuDNnuO2kSfw/NlapqN5MA+7Xt2EDpViHA+jo4Gc9PUBSUmBjHv01V0ykmEyHw4Hm5mYkJSUFLWkahoHm5mY4HI6AHVMTpoZtmFXK9nZKR93dwKlTwPz53KatjZ93dqrWqvHxSooESKSTJrGDYHQ0/7q6KIleeCHPMxzTQF4e8PzzNAt0dpI029qUnTBQMY/ma+ruppTd3AysWcPFxJdaPZFiMrOyslBdXY0mGaIQpHA4HMhyF+v9gCZMDdswq5Tx8SQ5uXh3d6vPFyygjTIujqSYmcl9Fy3i+8ZGquRRUWp/h0ORbUkJP2tv535C0D6akAA89RTf19UpEm5t5Tk7O/lddzdfu7oorQKUQv31TEtzxdNPA++/Twn2iiv4O+w4b0aze+JYIyIiAjND0MvtLzRhTmAEOoTFrFIuXAh88AGdMJmZJDeAdsioKDp0srNpP5w7F7jpJqCsjNeSksK6C7W1JLXoaJJcfDxw7Bhto9On81qPH6fDaNkyqvk7dnDb8HCq8GfO0CM+eTKjV1at4nUMDPDcQGA90/n5NDNcc81g1Rqw57w572MyQxwByfQRQjwnhGgUQpR5+F4IIX4mhDgmhCgVQiwJxHk1PGM0MnbWr+dxWlro7c7Lo+SXnU2iWrkS6O0lkTz6KCWx557jfpIsc3KA++4j4WVkkDBbW/mamUmbaF6eysypqaGkWltL+2hcHO2TnZ2ULqOjSY6TJlHVl5C2wdGoFlRSwr8331Sxn6HsvNGwj0BJmL8F8CSA5z18vxbAXNffJQCedr1qjBJGI4TFXaWcOxf4zne8H88q9nDLFuD660minZ1KtZ47l/bH2bO5b0MDcPgwSVmSkvR+SzgclGilqj8wMNg2+MQTgfVMl5ZSAhZCmSU+/JDRAvPmDd32vAtSn+AICGEahrFTCDHDyyY3AHjeoI+/WAiRIIRINwyjLhDn1xiK0QhhGQkBeCLusjLrUJ8NG0h2PT1U+cPCqIL39CgiBOiZP3eOtsz+foYtxcRQDTfbBj15pqOiRmbXLCqiBFxWxuvq6yOZV1ZS+pXOHx2kPjExVsU3MgFUmd5Xuz7TGCXk5CgvtYQ/ISybNwNf+ALw2mu0K5aX21PxKytJ1GZ4I26p9n/yCUktJobhSJGRtFO2t1Mq7e/ndTiddL7091P6fOABEqEkJbMZYWCArydOAFVVIzNXVFZSAr70Up6zooKknpKinD+BKvqhEXwYK6ePVaCWZUSpEOJuAHcDQE4oBqiNMTxJfYEMYdm8mXZHGV8ZFkY1OjfXs4ovr+uTT2iXXLKEqvXhw1SdU1KsQ3Gk2i/btPT28nf19VH9jY2l7bOujmQ6eTLtqQsWkEzvv5/ZPTk5ShKU3nYZHJ+ZSXKzY65wH9+oKI5lairPPXcut4uOVoVA7r+ftteMDDrH0tLUffC0UGj1PTQwVhJmNYBs0/ssALVWGxqG8axhGIWGYRQmJyePycWFKrw5dgJVVqy0FHjkEUWWfX3KVlhTY00A5uu65BIS1jvvAH/5C4k2PJyk5Umqy88HbryRTqTERG47Ywb/LriAHvfERJL/5z5Hstyzh+eQgfTl5cC3v82A9vx8xnfGxZGIZD67GVZkZjW+VVWUUFtaSNrV1TzHuXM8d1kZxycjg8T64YdU2QHPEr7u+xM6GCsJcwuA+4QQr4LOnjZtv/Qfvhw7gQhhKSqilCfJUuZqt7dTJV292vd1rVwJvPUWSUVKXampJAZPEqqUkCMjKVnK+MrFi0k8mZl8dTpJSqdP89rCw4HiYpV9VFNDKdA8NnYzbqzGd/ZsnrOnh9JkZCSL7oSFATt3UopNT1dhV0LQex8V5VnC1znmoYNAhRW9AuBDAPOFENVCiC8JIb4qhPiqa5OtAE4AOAbglwDuDcR5z3cM1z440nMkJ5N8+vpInuHhtCtGRKhq596uKy2Nx8jMZPhRaqr1tZaW0v54110ki+uvpyp/5gy/X7ZMEc999/F13z5eV0sLSdwwSOTV1bxmsx23u5uhQCUlDAcqL1d2zZaWob/F0/j29PA3rF3L1/Bweut7e3kcuSBceim3r631LuGPxX3UCAwC5SX/nI/vDQBfC8S5NBTGIjc5J4dE09pKu2N7u3LCPPwwt3H3NltdV1TU0GObr9VT+NE3vwncc4+y76WnA5/5jLJNHjumSDwqihJdUxNJtKGB0uCbb1ICbG7mb8jPpy1UhjUVFFhn3HgbX+n8iYtjxwWZQ2+u9ZCaynFavdp78Q8791HbOIMDY2XD1BgFuHuAy8spOZWU8AENhA1s/XqSUW4uMHUqiSY7G3jyScYdWtne8vKGeqaTk0lW5s/MUp03r3J+Pn+PDILfsoX75udTsgsL4zVNMs3mgQHaG8+epYR36BCJNCeH282dS2m3oGCwV93b+JqvWUYhGAYJe/p0/oWF8R7U1XmWXIdzHkDbOIMJmjBDGGbHTmmpypJJTQXefpsP3Fe/6t+DJc8xbx4lqltvBV54Abj5Zs8k9/77JNadO0luTiczf370I89OKLtqqfs5J0/ma2urijuVkl5CAglV5qKHhQ1uI+NL7fXmOJMkt2+fkp7DwylNxsWRNPfvpxRcVOT9Hvhy0NkJUTKbMwK1WGoMhc4lD1G4q2jp6ZRwZMC3w0GJcN8+/wOmPTmPSkqU7TA+nra7gQES5jXXANddNzjY3JsTyq55wT0gPz2dttTTp3nuuXNpK33/fW4XE8PtTp6k80jmlwNU52trSTKe1Fz3a5bEVFnJ4x0/rupuXnwxC4xMncrzX3ghP7cTtO5tbHwlIegg+bGDJswQhPsDUl5OiTIlhdLc5MmMCzQMkplZtQ3kNbinCH7wAUkrKWn4Hl+7caPuxCorI02fDlx9tdpP1ueUmDaNpCkEr3H3bnrTp07lOHV3+yYZ87hHRNAGCpCgY2Npx0xK4kLiawxKS1l5qbiY17RsGW21wNDPIyNVW46GBpoXzLGs2ss+dtCEGYIwPyD19VTFIyNpr+vtVWXXwsJIPrJkmrtzxt8ukLm5PHd3N8/ndFKCu/XWwdva8fjaLX3mTqzulZHkfk89RSIVQo3FlCkkstJSSt4pKfTgd3fzd3gLxJe/WY779u0k5bAwSrexsbyWTz6hc+mKKzyPQWkpWwMfP85rAni8gwdJ5qdPD/48JYXv4+OBTz+lWi6Llzz+OBdF92vWXvbRgSbMEIRZRTt8mISQlUWJLzqaHuK6OkpVixfzwZQl0wKlslVWAnPmkDQOH1a1LFNSVI1LCbueeztxo1bE+uijQ/e7914S0PHjqoTc7Nl0VhUVUSpPTiahRkdznyNHKL15WlTM4y6ryMtwouho2lEB4MoruYBJabCtje+XLOH3RUV0QMXFqXMLQRMBwHPIz7u6eIz+fi5IERH8HYWFJPuWFl6XNwnU15hqD7x9aMIMQZjVUvngdnczJRAgSQwMqLhFWU0nECqbfLj27aNUtnixqkFZXs5qQ3/6EyW5ggISip0masN5UO0G5MfFkXycTo6DVNNlbGl3tyKmvj6O2/z5nhcV87hLM0RHB48vC3osXkzp8qGHSFqxsarI8fvvM4Pp1CmGM8mUSYDjJAsgywXn3DnaWM+e5fnMZhaJ+Hgev6WFkqmVBGrXzKDtn76hveQhCHMYigzO7u4GLroIuPZaBkzHxjIVcf9+2unmzBl8jJGobObwlosv5oO7Ywel2fJy2t3mz1fq6Pvvk0ysHr7RDpUpKqIktnYtSWrtWr6XmT5ZWRyzri6SUHU1SWbxYs+e6Lw8qsivvUYSq6ri3+TJlPza2ynV/u53qnBITw/NJv39fN/SQmmzuVkF5AO8lpgYVUwZIAF2d/PYsbH8CwsjSR8+zG3a2rgwffObzGrq6yOBXnopIxt8FfzQRUKGBy1hhiDMamliIqWXvDxKTUePUiW79FKSZFsbH/JjxwbXa5Rq8nCkPHfnwqpVtNl99BEf0uXLVTGK9HQljVkdb7QdFd48yw88oOJFq6upHvf0kOjNUp+73XHLlsH7OJ0c84gIkt3SpRwP2YJj7lxKjEePKk96ezvz6xsbudBER5MAGxq4T2QkSVgIkmpvLwk5Job3ua2NxFZbqxZNaeudNYtdO83xqL4WxonWyXK0oQkzRGFWS82kd+QIH65Dh/hQLVjAh3z3blUOLSqKD/qddw5PHXN/uFJT6ZmWoTrDefBG+0E9exb49a8poU2ZQuk7I0N1nZQLTlQUYyfr64dmI5ltr2aCl4vCa69xHGU+fX091e2eHkr+vb20I/f18e/YMRLn4cMk19JSkuDp0/S0X3opyfLvf6ckGRamvPoNDVTVp0yh6i4J25PJwOo3WGEidbIcC2jCnACQ5FlaSglx6lTVifEvf+GDV1NDSWbyZJVCuG3b8KQ8Xw/XcB680XxQN2+m3bazU43De+/xN/3iF9zGKr7SW1iTFcEnJ5O4AJLlhx9SvZfEJheSgQGOvRB0vHV10f77D/+gHDdyHI4coaSYkMC41vffJwlL8wFAEv7MZ7iv+TeMpKTfROpkORbQNswgxUgyN4qK6GwRgn/9/bSTVVXxAczK4sO8ZAkfyuLikRX3lSl8R4+qVMz6elX2zFtBC0/HsptGaAdPPklSmT2bKq50pHR1eQ8c95ZtY1WQOTOT6nhLCyV6GZMqVejMTFU9PiqKBDd5stpfiKEZTtKJJ2tuFhSQhA1DZTY5HHx1v08jKekXqDKA5wuEYa4WEGQoLCw09uzZM96XMeaQ0k5fHyXDpiY+mA8/zJREuU1REclK9sQ5dYp2y/JyPlT19apwRl4epR4ZYrNiBUuuLVxI1V2GBUmJTBbhdbdpms9bUUHvu7SVHj/OeEin057Xe7TCWebOpQ3VPbe8ro4kPxKYvclmSUz2JnrpJar8ixZx+0OHOO5SqkxNpfQox3n+fFUc2Sxhbt+u7ueqVXx/6JCyiQJK0ly71ntRDw3PEELsNQyjcNj7acIMLpSWsmL3qVN8MJKTqWLLQg8vvMDtJKGWlZEYBgb4fV8fi+w2NvJYMhQlO3twWMqKFSSQPXso0cTFkWBra1m/culSRQpWEseGDUNVavl+vB/iVasU6UjI99u3j/y43gje23i4/29+L1ViScTHjlHyX76cEvLmzbynALeRkvKZMzqTxx+MlDC1DXMMYFeSklKMrGhuGPw/KooPU1OTCvfo62MqYkcHw02mTOF2fX0k26uv5oPV3k7psryc+xkG1dSWFhLx8uWUYtvaqDpmZvKYMsQEsH4wg9m7et99rLYOcCFob+fff/6nf8f1Fv/pyxbo6Tv3QPx58wa3JZY93M0JApGRwJo1mizHA5owRxnDCQyWntiUFMZPDgxQbTt2jBJicjIfojNnaC/s6KDU2NtLYk1MpHT40Ue0Ry1ZQvtlRgbJsaSE+155JfOWn3iCUoxU9d58k8RrttV5IsGcHKq3kmzj40m28ljjCWm2ePJJXl9mJslSfj4a8JXa6e07KyI2m14ef5yL4YoVimzv1SW4xwWaMEcZw4k3lFJbcrJqyxAZqXK0c3L4d+IEJcDYWJJlRARtlfX1wN/+RsJ94AHlOZcP6tq1g6VbaT9zOim91NXxzyw5evJc5+UBzz+v1PnWVp7jppuCI9Xu5ptHlyCt4EkC9Wc87ObYa4wNNGGOMoajukoCa2riPvX1Km4yJYWk+d//rSTFyZO5bXc30+iioqxT4rypkeYiENOm8bqam0mc3tIay8qYeikdRgkJdHhs28YAb51qRwQi9TAQvZk0AgNNmKOM4cQbSjuY7DrocJAQExPpZZVZMwUFlC5raihhyqDmxEQGP8vYPl9Ogfx8qvoy02XaNJLeqVNU62+80bM0I4tvmLOHBgZIlrLbI6BLjXnSMJ56ivcpmApeBINmEOzQcZijDKt4w+PHSXJWMZaxsZQeDx0iCa5fD9x+O0myoEAdMyyMBWpvu43kOn068NnP2uuBbYbTSQfRDTfQu7xoEd8vWeK5dQNgHZfY1qZiEc0IFmfQeMCqknx3NyXxYGo5odtg2IMmzFGGe2Cw06lsk+aJuXmzait7ww2U9pqbgY8/Zgre9u20G1odMyWF30myrK8HXn8d2LqVJOutTYUn4vOVceMp8HzZspEdb6IiMhJ491061LZv570xFxgOloIXugiHPWiVfAxgtkFt2EBbo7uK9uSTlBjl+7w84K9/pW1y0SKS65YtVIHde46bpYOaGkovHR20K/b1saJQdbV13ciRpsZ5ckYAOtVOorSU96O9XeWA79jBe7pu3eBtR1MKt6NqB3OYWDBBE+YYw9PErKlh2IhEUxOzbXp7VXEHT3ZJSV5PPcXc495e1UahqYkSqIzh9LTvSLywnpwR2qtLFBXxHmZlqULCcXE0u4y0yLI3mIkxKooxt/X1zMjKy2MImSenky7CYQ+aMMcYniZmZqaqml1fzzCfvj56whsa6PSxWvHND8mJE9y/o0N1SwQo4YSFDd53NA382qtLyMVx0iTeP4Dmi9JS1RguUFK4e78hmdEUE8N5UFZGspbXIRdPb6mu56tm4A3ahjnG8GT7u+8+vpaXM4NHYsoUvm9oGLriuxvqGxtJljJFEmCYUWcnJQ65rzbwjw082Ydlwd9AFrww2yCPHFHxsTU1JGWHg1IuoBZe8zzIz6cUumcP42t//3umaD71lJ4XZmgJc4zhTQWeN4955H19JLL2dkoIhsHCtPPnD17x3UNWUlK4b3OzSq3s7+drcrKqBKS7DI4NrOzDJ05Qm3jiCd57mWAwEpi1hH37WAUfUKq/hGxSJ8lbLrzu80DW8Dx3TrU78Wb/Ph+hJcxxQH4+H6acHE72oiLVrGrWLGaoXHst6yVGRzNG0qrVQ2UlH4bt2+mFPXeO5BgXxzCj3l7uu3r14AlvFeqiDfyBh3s0Q08P709UlP+SvbuWEBkJ7NxJTSQ+nvOiu1u14pAkai6j5z4PDh1SURwxMfyLixtcw2AkZQcnErSEOQ7wlv1htnGmpQ0tMLthg5JMz51j0yupfnV3U8JMSuLDet111rZJbeAfO7hHSERGBkayd5cOFy+mNPjJJ1T5d+7k5ytWsPr8gQNqe6nRuM+DtjYusrGx6jxSMjWr8OdzFpcmzHGAN5XYU5jPZz4zdLKWlHCCm9Uvh4MtWJ95xvP5dZXt8cFwQnd8OeUqK5VzRxY/yc1loZbeXiYhnD7NOF7DYFWqe+8dHIpWX88QNNnhMzKS28oix+fOMUW2p4chak89pU05WiUfB3hTiT1VwC4rGxpYHB6u2lG0t6vCwD093s+vq2yPD+wmCdhxykkVvKuLC6Zse7FsGfDcc2zoVl5OFVs2X5PHMFdAMnf4nD6dMb/9/STbkyfpMExIYDbZtm2qo6XE+WbK0RLmGKO0lIb/4mI6aRYsoNptfnCswnKeeMJzT5nrrlOftbSw2rgvCUWH/ow97Er2dpxyMmTMHULw3j/yCP+X/dcPHKAEKm2R5uObO3z+538CTz/NTDEhGLtZWMg5evw4tZr0dHW+882UowlzDCFX9sxM5ou3tjJkKC+P0qL7g+MeY+l0Dq43mZnJY7S0+FbfzzdbUzDCbpKAHdXd6aQ2YW57UVDAz4uKqJYnJ5P0oqO5T02NCpj3dPz8fBKm06liSCUKCiiJus+388mUowlzDGGWHOLi6JVsbGSJtJ/9zLqLoSS97m52JQS46re1kWQfflhV55YPoA4bCl7YkeztOOXkNqtWqc+kdlFZSZKUbX0dDtopm5oGZ425Hz8qSjkVT5zgnDNXo3I4WHw6MfH8zeLShDkGkJKibJS1cCFVnNRUxktWV3uuvi4ntZy4NTUqCN0cvymlFpm14X68883WFMqwo7p72+bpp6nByFqqvb0kQHMsrlV8qGxfEhHBWN69e4EZM1gyUNZGPd+1FE2YAYSV3RAAvvtdSpKyt0xdnepJ7ckGZKWWzZnDifvcc4PP6a5+V1QwNMSsvp9vtqZQhrfCJuawMtmx0l3ak73RJ0/mfOvsVOUAPbXMcDj4/9GjnCvJyXQCnTlDNXzNGk2WgCbMgMFTjFpXF1WjuDh+fuoUVaPdu4HLL/dsA7IbK2mlfufm8kGaNu38tTWFOtxVd6v5tWWLNYn19Cj7Zng4MHOmausrj2Umy7w84MUXGXHhdKrme1lZdEyuWKGKV5/v0IQZIHiyG773HielNLzPmEGbZUUFvduebEB2PaqeJNHOzvPb1jTRMBy7tDf7phXxPvKIKtYi0yj7+hinOXfuyMw5E7V6e0AIUwjxWQA/BRAG4FeGYTzm9v0qAG8CqHB9VGQYxg8Dce5ggSfPpntM5OTJ3K6nR6WWmdUs88SKjWWsnWEwvs5KmjBLog0NypGUkjJxJulExHAJZThB794WWyvi7e3lHDt1SlW2io4maaaksACy08l56q1FtPw9kZG0tcvSdhMpSsPvwHUhRBiAXwBYC2ARgM8JIRZZbPo3wzAKXH8TiiwBz0HJs2YxNa2ri5Oyq4vvly3zHKBsrr5+3XXskdPZaX1eWf3o6FFg1y6GGZkboZ1vub6hgJFUixpOZXxviQlWSRPR0bSrSxNOby+JMz6eqbeNjSTR114DvvAFzk9vv2ffPpqhenomXvX2QGT6XAzgmGEYJwzD6AHwKoAbAnDckICUEEtKmKZ29Ojgsm0PPsgwIEBN+NmzmabmqS3Ak0/abxcgH46aGkoECQn0as6bN3Em6UTDSNpBeCoLKB2L7vBU4MWKeHt6uMjGxnLezJlDTejsWX4eEcFXGdf5yCODyd399/T0sCyhLCcHTJwojUAQZiaAKtP7atdn7lguhNgvhHhbCJEbgPOOO9zrCUpnS2mpWtVvvpmVgtauZWOxtWuBO+9UYUYlJbQVScjq68OpJmSucrRq1fAboWmMLUZSLWq46ayepNi8vKHE29XFeSNTbKdNA/7xH3mOqVP5Gh2tGtz19g4md/ffI/83E/NEidIIhA3TKknLcHv/CYDphmGcE0KsA/AGgLlD9gIghLgbwN0AkBPkI2xeWRsa6Mzp7aVabLb1WPXfSUyk2tzWxoD05ctVmJG5+rqErwknm2319HDCJidzIktbqbZnBg9GWi1qOOmsnpxEZWVDQ4rWrGG8pmyyB/D6MjOpjicnq8+7u9Xcsvo99fUs2nH0KKVUX/3tQw2BkDCrAWSb3mcBqDVvYBhGu2EY51z/bwUQIYSYZnUwwzCeNQyj0DCMwmTznQpCyJW1oYEpjl1dXJ0bGz3bpMwTedEi2jWFoPriXn3drvplbrYVEcHCCe+9x+u4+GJdUT3YMFz12gqlpcA997Csm1VnUF8FXjZsYDzvhg00D3nqAhARQTKX9ndZY9NM7vL3yG4B0lk0dSpjOHt6JobDBwgMYe4GMFcIMVMIEQngdgBbzBsIIdKEYLkAIcTFrvM2B+Dc4wppD5I9xKOj6U1MSfFskzJP5NRU2hvj4ymdSjVr3jwWb92xA3jrLd8TTjbbWrWK+50+rdLh0tMnltF9IsDfalGlpUyG2L6dhBYZybny0EOKNAPhJLr5ZqbeGgZjhx0OSqFhYYPJXe5fXk6Jsr6ec/ryy4FrruE8nwhkCQRAJTcMo08IcR+Ad8GwoucMwzgghPiq6/tnANwM4B4hRB+ALgC3G4bhrraHHGT4RmMjJ1N1NVfhWbO4ElvZpNzVsdRUTvjVq1WYkVTZr79ehYR4g3uzrbY2Gt3PnlXbaHtmcMGfalFFRZxzcXEqvleIwZ1Bh1vzVF6PDA+SLTTWrwdeeMFeCFRrK4Pko6M5/z/4gNEgE2neBULChGEYWw3DmGcYxmzDMH7k+uwZF1nCMIwnDcPINQzjQsMwlhmG8YH3I4YG5MoaE8PSVwAnTFgY4ycjI4fu40sdG4kH1V2akPUPzSrZuBvdd+1itL4ZFRX8XGNYqKykJmNu1etw8DNJTiORYj05igClwq9fz7no3qKiqIgajRCqQpLDQadmkLsihoWAEOb5jPx84KKL6MDJylLVqru72YHPfWL5msgj8aC6k3BmJgkzI2PkNrKAIyMD2LRJkWZFBd9nZIzjRYUmcnLopDEX8+3uHtwZFBhqqzQ7HjdssCY9b4u1t/jRykraUru7VcyxYbCIx7jOuwBDp0YOA56KaxQXk5gaGlTRg4gIBptbZTp4U39G4kF1L9Ywdy5w003WhRnGDTNnArfcQpK86CIm099yCz83Y9cukqj584oKGnkvu2xsrzlIsX49KwkdO0ZSAmh+mT3bNzl568vjK5vI3fPudDJf/Y47uF1GBqM9Dh/mnI2MpAd+otgvAUAEsymxsLDQ2LNnz3hfBoDBE829JFZTk/J2d3eTLGUQucznbWmh8yY1dWj6mNnGdP31LKpgPs+EKqv117/SQ7FypSrOaIaUPCWZur/XAMD5+PTTXKxl6qy5Z48nbNgwdEE2v/f0nZRIpa28vp7hcFFRnNe5uXy/bBkD34N93goh9hqGUTjc/bSEaRNWcW2Njfx/8WJOFoeDE+joUZKmbIG7cCEl0Pffp9cwK4sxk+3tagJ6i5Mbd+kwUKiooGS5ciVfZ8wYSoLukuimTcDtt2uJ0w2yMvpwUVJCIpM27gULSLhvvMHbUVFBT7gsUm12FJm1n8OHlQ01IUGVEpRV3XNyWPnfXYMayTwOpkIemjBtwqpLX2srjdtpaUoVqa2lDSclhdJkVxe9hQMDNIpLYjSnj6Wm8jNznNyEIEgz3CXFGTM8S44zZ5Isd+xgbEpxMZCdrSTO//1fkqj78YdDoueh6l9ayp8oM3a6uoC//IXJFikpnHNOJ5ud/e1v1H7uu0/NRbPnvbWVWpLTyQw2gCQbFUWbqbvqX17OPPSZM2nrtEt6wdbaVzt9bCIqamiXvuZmtgAASJqrVvHGykK/slSWEHTwFBSo4w03fcyToT5kUFs7mBylJFlbO3RbsyRaXU09b9MmqvNS4iwu9u5A8uWVPw+dUEVFlB4NQ83N9nbaP5csUe1S0tN5ey68kOYhK4clwHl96aVqwTfPX7NG1tjIJmxCKAek3USKkUSNjCY0YdqElal3yhSusOYQoeZmCijLl6vc3Ph4ruDmMJAFCzhRIyN9e7JHUt0m6HDZZdaSJDCY2CoqgI0b+d3q1STV4mJ60N54g5LnihX8fONG4Oc/t5ZUfRGiWfWXRDzB7aSVlZQCL71UzU2Amk9qqlKz4+Npo9y/n5Ee998/mDQ3bACef55FiT3NX3O0h/m47e3DI72RRI2MJjRh2oSsYm3uAX7VVUxvNIcIXXklJ4eUOG+4gZLlP/zD4NCfqChO3iVLOBn37+dxZVUZM4JtlQ0o3IntxRep7xW67PEzZ7JXwgcfUCx69121bUsLXcUXXeTdFuqJEM2qv9UxJhhycjhchw4ps9K0abRBAvzM4eCi39bmPdXXV3icOTZYHre7W5GfXdIbTsbSWEDbMG3CUxXrggKuuBJSGgSGermBwcbrRx/lZ48/Tk6Ij7e20QyneGzIYeZM/m3cCFx9NdDRwSe4qor6YX8/8LvfsWF2dja3e+AB1iLLyeE+u3czWyAsTNkfpY1SEuLKlepzuY0dJ9QEQl4eJcO4OP61tipb5NtvM62xro7CQWYmhQJpj5cLtKfe9u4hcnl5VOcBnkvmo0t7p13SG27G0mhDS5g2YbdggreV1yqQ2Jv0KO2Wn3xCwaqhQZ1n3DN3AonCQg7mU09RFFm8GHjsMZYAf/ZZ2jDDwkhmV1/N4owlJcC6dVTbly3j9tKgDJAsN27kwK1cydeNG5VKLlV06YC65RY6k3buHGzrnEDZSGVlNBUlJNAclJDAOXjuHL+Pj2c4XG8vHZyy2MbChd4XaCuT0ZYtDJGT89kwSKLJycNLpPA37z7Q0BKmTXjq5Gd144bj5fYkPZaUMM4zMRG45BI+x9u30ywwkcpl/R8SE2mTeOMN4J136Nj56COSYGcniU5KhDk53Pbll/n97t2Mnn7+ea4qt9yijtvayqe3q0vpngCNc04njXdSXb/9duD//T9mHjzyyGDP/gSAtGGau4n+9a9cf9au5fuGBg5XVRVjK5cs4RC1tKgF2j3Mp77ecyk5qX257zOcULlgihrRhDkMjMaN85TZ09pKNV1+vnIlS/9//DHtohMqNlOGCfX3k/SKi4Gf/IQrQ2Ii65gBlBCzs+m16Opi8KvTScPxvn188vfupcT6zjuUVP/yFw5wVBTfv/MO8NnP8rwrV/Jc0guflcWBT0sDTp70nI0UorCaa01Ng+tdpqYC117LmOELL1RmIrlAW4X5bNsGXHHF4HO5S6TBRHr+QKvkAcRIQn88qfoJCYO9g2lp1EYXLx6cFxzyqK0lWW7dSrX5yiv5uewel5zM77ZuJZlVVZEQL7iANozycuCnP+V3n/88sHQpyS8+HnjmGcay3HEHX595hp9LqVF624uLSba/+Q1w993AbbdNSEeQ1VyLiBiq4TgcvA1WarCVCSkpiRqRGRPKZGSCljADBG8BtoD3NDZZ+1II1R2yqGhkVblDDpddNjisqLyc0mBqKqXJpiZGUUdHkyi/8hVu9+mnfFLj4zmobW0k1a98ha7dN97gKpOQQN0Q4PuPPgJuvJHvpQMoK4tkuXYtb2RpqXImuTuCQjjg3cqs9PDD9Km9/TaF9agoOnl+9CPrRdnKhFRQQIm0pSU4HDOjCU2YAYKnlgBPPcV0sWPHGLcJkByrq9nbR+aNu9e+DDbv4KiitpZE9+GHHLCFC6mGNzRwYPfupSs3P59EtWkTI6Gjohgjk5ZGQ1p0NMOSOjpUOktUFAdfxtHMmUNJFqA0+oMf0Dj85S+rsjudnfxOeu+/8hVFkP39NCF861tDc91DAO6qcWnp0Bhjb+UlrNR6s0Q64dJ53aAJM0Dw5LzZsoXPbFwcPZO1tfQ8VlfTqSMnGqBei4qodk+onHJfkllFBfD3v7O8TXc3pcvsbIouUqz+5S/5KrvM7dnD7UtKSJBFRfRUzJzJ/sRPPsnvbr+d+8THUyr96CPerIEBSqILF9J93NJC8pw1i+cpLCRZ79mjyLG4mMfzVXUpRFBUREeQDHsFOAzuIUQSnhbyYC2yEWjoakUBwoYNgxtBHT7MgN8zZ0iWYWF83mS4YE8PhZUbbhjcfGpggGT63HPj9lNGB96qEAFDv9u4kYOYlgZ85zvc5qGHWNnkggsYUnTgAPCLX1An3LWLXrL2dhqR//hHEm16OoMKp04FXn+dN+XBB0mQL77Iz6uqKKnGxJAFrriC11JRQbKsqBhKjr6qLoUIzBWIJHzNwWAqhjFS6GpF44y8PEaitLdTo0tIoGSZnMxg4M5OEmVEBIkyIoLvP/xwMGFOSDslYF0PU0pl5jxzKXXGxlIalKFAe/ZwEM+do4o9MEBJNDOTaVLZ2dxv9Woa5OLjKTmuWwe8+iqJ8pNPuEJVVzPcoK4O+Od/pke8vJx///7viiwliU+bpshRXuMECXgfaf3VUCPIQEF7yQOA0lKq3rm5tP/IVrsLFrDYjsw5F4Jk2d9Pk1xODtV0f7oHhhTcUxELC1V+t1nqzMggkc2fT8LbuJHhRp9+SsdMdjZtj9u20V557hx7hMydy4DVujoO/rp1VKHr6ylN5udzgM+eBb7xDa5oH38MfO97vCkZGbRPvvyyIss9e1Tw++7dPL57rrs5tXPXrsHvAfW7gjAAPhAdLM8nnLeEGcjqP9LhM2+eslcODPBZNAzmnEdFMYvCMCg0zZzJz+bNC54sBlvwpzePWTLbtImqsDnfWxKR/JMhPx0dfIrvv5+DZhhcgY4f53eGwVVp/34OcnIyV69XX+XKdOwYpc3WVkqZv/wlB/tvfwO+9jUmT3/+85RWY2IYvN7RwWveu5evp08zhOHZZ1Wuu5SGzVWXMjK4z8aN/F6aF/buDcpKSMGWSRPsOC9tmFbV0/0xXEs7UGMjfQiGwee6q4vPSG4upc69e1Ueb3s7//7nf9jONGQwnIrou3aRSAoLKant3Uupb8cOqsEHDrBI4qJFjG0pLqYD6LOf5T61tcArr1DFvuwy1fvjo494w2TZ+oQEhh/JhkbXXEOpcNky2ib/9V9VqlRDA2+Q9MLJKigXXMBrbm/njUxLo/ouvSEbN/KcDQ301K1bN9gGaw4rkiQpQx4SEwd72s9TBJPtc6Q2zPOSMDdsoO+gpkZFm2RmUqMzF9IYzvFaWijgNDfzeROCz6LDQYFk+XI+6xUVPGdmJouzhhRZSkiS9OUlrqhgoN+5c4y4r6vj52fPMk+8oYFkl5ZGaVMGAubkkNCSkigNypL1K1bQmZOaSqkxLIzbVFXRvjlvHgd58mR62yIiWP4tO5uEtWcPb3Z4OElT6qF5ebwmmTR9wQUMRqyoGOzkeeMN1d+2o4NB7tnZ1sT5178Cv/0tP7vzzpB0DAWS4AItpPiLkRLmeamSl5TQHGYuBvzpp0OzFexC2oEaGzkhUlJUj5+WFj6/+fmUNhctAv7wBwo7IUmWgHVZNCtVHeBKUVdHD3VNDQe5vZ2q88KFHKDdu1UlokWLKEHu20f1d+ZMktqMGcCvf83tzp2jzbGjg/bJc+f4FJ47R6nzxAl6v5cvp5758MO8IdOnMzm6qUl555xOEndYGK+zpkZlE0kb5qZNvMYbb+SEcTp5/pde4jWbPf0y5/3dd7laOhyDS9IFOaSp6sYbKfwfPRqYGqwTpUTheUmYra28adHRqofypEn8fCQw9yc/dIjPY3Y2nasZGfw/lCfJ/0GSotkW+e67iiisCvauWwd8/eskyCNH1Cpy//0kr85OrjCNjcz7joujpHjyJAdL9k/YvZs55Lt3UzpNTCSJdnRwoC+5hMc+cYIS5MUXUyL9zW9InkuX0naybx/jLCdN4o1JSCABVlVx3/37KQ1LiXnvXv7dcgvPl5hIKRhgbFhLC6/VLGVu3MjXBx/kn/wsyEnTXHWopYXDWVbG+ezv3A22QsAjxXkZVpSQQI2tq0sVNh0YGFzMZiRIS+PzKzN6jhyh9rhsmdomFCfJ/0GWTANUiiKgCl5YtdEF+CTOmEGbZUUFI/Bfe43vZ8ygFDgwQHtlby/Jc/p0EtGZM/z+6qt5nJQUSoItLZQoMzIo7R0/TjuH3H//fkq1113HY8yfT5JcsoThQ8uXk3g//3mq+WFhvHmFhbSnHjrEibF06WA75tKlvKnPPktpVlZYuvFGJWnLfSTpSnNAbW3Q2jFLS7mGNTZyiOvrOZ+7u1XfKX/m7kjCl4IR5yVhFhRQGqytVTbM2bMp2IwUMmMiK0v1ZZ48mc9UWhq3aWigk9bppNoTcgG/M2eSDPbuJcnU1CjirK0leUVHDy7Yu3EjRfe4OA60w0FSjYoiQV10EcMIfvxjkt3AAL3csm1hczP32bGDx29tpd2yro4Dm5ZG0qqoIHFeeimf6r/9jd+dPs1zV1XxOB98QCLv7WXGzltv8cZPmaJMBVddReKbOlUR36ZN/D2pqXROPfIIj/nss6oS/IwZ1vnk0usfpJCSZWMjhfWuLlVYeOrUwZXTzQQ3HBvnREn1PS+dPr4M0CMxdltlTJSVMbMvPZ08cuYMn1lzTcuQDOGQDpDubqqc5uwcQBWumDmTT+Gnn1IavPtufv/v/04iu+MO2jRPnqQUKZ/SmBi+RkZSInz3XRJsZyeP2dDA901NXJXCwvikt7WR8Do7eSMcDopL8+bxRr/1Fm2kjz5KdfzHP6ZkGhsL/NM/kRx//GOqBjK33Px7ZPiQDA+SZemys1VGkCx2HOSFOMwwOy27ujhXT5/mX1oah66gYOgzMlwnjvaSjzJGMzXS080bqTfPnBoJUKXZsUM5cg8epN9h9WqGGQFq+5F45scNZg/5u++S6NatU+QiJU5JIFKyMquoFRX0Xksv2ebNlPguv5x2zO5u2iETE0mebW0kz54ePtFz53Kb9nYSWEyM8rJ1d3OAw8O5X10d1fHWVlXqrbOTJCebyXd3K4+3rLmZkkJV4eBB/n/jjbx5MvYSoERbXMzfVVhIifPVV1mYAwiJCkaAWuybmiiAOxxcj6qqKJxbtca1mu/79vEW3XBD8GtPOjVymPCU3uWp6pB7MQJ3wjX3MImP5+QB2Mw+NZXPdkQEJ6VEyNkzrXqLP/QQKwxdcQXDZwC1jYyldCeN2loS0NNPU1KV4Qr79lG86e7mk2cYHKDVqymhnj1LkqquZqzmtm2sPlRRwW37+znYjY1U7dvaqN6fPEkVv7eXUmZ8PInu7rtZ8CMriz2DbruNhC+Jb+FCSpvz56u+QcXFg8OoJMlu28bJIskyhCoYSftiaiotGocOKTPyz37mu8xbfT3XHplTMN69w0cT56WX3BvsePN89TCprlZdJmXP5uH2IQ9KmHO+d+0isYSF0a65ezfw5ptUU5ctUw4Od7LctYtq+DPPUArt6qKE2NPD1aSvTyXanztHVbu0lP///OfA979PifbDDynGxMRQJOrv5z4tLXxqm5v5nUziP3GC70+epK0kN5fOn6Qk2iFTU4E//YmV3r//fUqVL7/Mwh/d3bS3PvYYf5t758mrr1Y2FrPHvLZ25FlRYwgZFnf0KAXqxkbegvvu80x45m6Oso2uEHSchnw0iBdownSDnbaenmLKZA+T556jWmLuQ75wof0+5EELc2/x/n4SyHXX0Tu9dCkrByUlUTozNyQDFFFkZNCmuX8/SWruXEp+MrxItilMSuJgNTbyWIsW0XaZmkriu+wymgSamvh9cjJvRl8ft5PB5QMDNMQVFnLVi4zkdi+9xOD3l17i9R89ShFpyxYS5KZNlGIvvpg3qrWV+e1hYUN/l4zRBFTv9JkzffdGDxLk53OxlyFEMrN0yxbPcZfmHPTWVq5RsmEaEILak02ctyq5J9jx5rnXvqyvpxojTVvr1w89TmQktcfMTEqgIVvfUpJeWBgdPsXFlP5++UumDG7bxja4P/kJSXHJEkUcXV0kK9kAZvduVfMuKYnHkeWdLrqIYUdz5lD6bGigftjcTAnw9GlKhO3tbD5z8iSdN62tFI9aW6ned3byGLIeZn09b0JrK/DeeyTnqCgSc1MTie7wYX42MEB1Wwj+lZYyHEli587BNsvERE4W6TG3qtA0zrUzPdnuy8rYQtoc9mOui2m1n6zXCnB4Lr1UaVQhpz3ZhJYw3WCnGIFZCpX2m7o6CkqvvcYMifLyocf50Y+oiZrb7IYcJPllZNDmEBnJ+MmrruJg3HYb4xsvvBD44Q/ZdGzTJhrEtm9nKFJhIQnv2DGKJomJJMKEBL5GRZGI09NJdk1NJNY1a0h2Tz9N8unvp7TZ1UVb4tmz9JrHx6sUroQEEtvUqTy3DPGRan9DA+2U7e0kz7Iykmx7O6/91Cn+btlq0VxU49VX6SUH+BuXLqW3XfYVkpKlDLUa5x5BVqYkmb3jzRTlaT+A8/j552nmDWntySbOWy+5PzB70ktKSJZNTZxMMm7NMIAXXghRUvQFqVpmZdGueOWVtEdedRWltquuUvbB3/yGMZktLZRIs7OB734X+POfKVHm5JDIpGQ5Y4bKE09IUHnhU6dSBFqyhES2axftm/39HOyICB4vKoqkdOoUpcj2dh67qYmkd9ttFIt6e3m8t95SOe19fZSAZWEPGa29bBltmTLu8pJLSMZme65Us83OHllwBBgcmjROpOnu2QYGvy8vHxybnJGhYpM97ScjPIIpZMgOdC75GMIshdbWUmPMyiI/yFYyvb0jN3oHsvScX/BUyq22VjUOu+02ktqDD3IgrrqKqrIMBl+5kqSUlESJtKqKde+mTuV3dXUkvuZmiil1dSTFhASS0pkztJNOmkRJ8eWX6ZmIilKhQjExfIKlxHnmDNMxL7+cEumZM7Rj1tQwbMnhAL76Vf6Wm25ShUl7ekjUkyerdK3+fl5LVRWl3nXreK1maVHads0q+MmTiiy/8hXr2pljDG9SZF4ef15rK396ayvf5+UN3q++norCjh00147b3BwnaMIcIfLzSWb/9E98RqdOVd91d1Oocfes2yFBb2rTmMOT06K/n+E4//IvFEuWLSMZLlvG99dcA/z+91RFW1roASsqYpm1Z5/lSjNtGp0yy5Zxm/R0kszy5SRDGZDe30+ivOgiFgWuraVE6HBQojx9mmQXG6ve33UXjcrTp/PY2dk83qxZdDjNncuScQ8+yBa92dnKSSUE30tPe1cXyfbZZ3mO6mpVz3PnzsHjJRcTWZgkM3NwWTdJqNLYPcbw5tAsK+PQJyRwOBMS+L6sTO0nzU9dXRTAo6I4NzdvDqI5O8oIiNNHCPFZAD8FEAbgV4ZhPOb2vXB9vw5AJ4A7DcP4JBDn9hf+qhLr1zNlWaox3d38mzNHGb19teA1n7++3l4c6JjAymmxbBlFD9k1cflylTYoP3/nHaqgv/gF8LnPAV/8IiXEZ5+lt3vhQlWSbc8eEtupUxycsjISZXc3cO21lEabmiitRUSQZOPjSWyZmdyvq4vHiIsjKR44wP3/+EeKSI8+Ssn1oYc4yO+9x8rtK1aQ5Hp6eH1CkAkqKnht06fz75lnSLKffkqH1erVvMbHXNNcHmfTJo6PuX2F1ZiOk0ru7og8fpzDLS0Yc+YM3r6nh5Fi06fz5w0McA0EmN576aUcriefpMk6KObsKMNvCVMIEQbgFwDWAlgE4HNCiEVum60FMNf1dzeAp/09byAQKGlu3jwS3sGDNIPl5fF5kkZvT2FITz019PzbtvFZN2NcQzTcS7mFhQ22w0lSPXBAfT5tGlNGvvY1EqRMN1ywgE/e2bMkniNHKJ7X1VFlr67m+/5+OlM++YT64cAA1elTp3iMsDAOiswzB3jMb3+bg3/sGD3dq1eTLLduZWm4JUuYATRnDknz61+nlOl08rqTk6m+d3fzvIZBaVAIrmQAHVa7dlEKffBBOn5ktfjYWBXYHgQquDvMpqTSUhWOmp/PeSsTt86cYYDDli0U2vPzuZ2sHxsdrTzi8fH8fCJUIrKDQKjkFwM4ZhjGCcMwegC8CuAGt21uAPC8QRQDSBBCpAfg3H7B3xp9knAzMvhspKXx2di7l8+9hCfbUXHx0PMnJQ2tyzmuIRruDb/cW+UCfH/PPYPTIJcs4ZNUVsYf2tzMH5GbywHavp3H6uvjwEVGMhunr4+Onx07SJQdHRzMiAiKMcePq/YQkyeT3GJjVexkbS0/v/BC6ox1dVTTBwZIdB0drFB01VVcsQ4epKT6/e/zvL293E+mZw0McKHo6SF7fPwx7aCbNpE0b7mFxryWFnrZrRaTcVLBrSBNSQUF9HnNm8e5JyvW1dZyCJxO3oqTJ7nexMVRyE5I4H4Ab+ELL1ABePFFVdAe0GFF3pAJoMr0vtr12XC3GXP4W6PPnXAnTeIkSU3lBPzud+lb+OQTrt5yMgGcUNJBZEZBAbklKJpSmVMh7UpMMovlK19Rfb7PnePgHD3KWpNSH2xv57ZVVRw0mb44ZYqqc9nVxUG9/HIGkS9fTjHc4aBUmZzMVSYzk3bLXbtIoA8+SG/2179O8T02lk98ayulzbffJnsIQZX6V7/i/gsXUrKsqSFJNzfzRsuam088wcXjllsoVb76KllFiKH58rt2WWc7BQHc5770lwFcG3p6OIfDw7nmfPgh14fmZt5G2X2ktZXHaWnhdrt28fuJGlYUCMIUFp+5xyrZ2YYbCnG3EGKPEGJPkznxehRgJ6vHE0pLad/ZsYOcsHs3n+H4ePJATw81w337+Jy1t3M7WcqxpYXmLvfzOxyM0gmKplTmVEjAnsQkHUVVrvUxKUmF60ydSlEkOpo/vK2NT2pBAaXAsjIS25EjlBJl/53kZEqQJ07wCZ08mfvKPsb33081Ozqa6vqRI3zC336bK9ZLL5G0u7spIpWVqfjPO++kbbW4mGR94400IzidqjJ7VBRZ4OmnGZQvs31aWnjDbruNxzXHaAZhRo8Z7nM/Pp5zNjmZwn5YGN8PDHAoHA7e0jVruJb09anokJkzuV5JqbSmZmLmkQOBIcxqANmm91kA3J8oO9sAAAzDeNYwjELDMAqTk5MDcHmeMdIWo1IVlxXIurr4LPf18ZmMj6ewMmUKJ1V6OoWSuDhqdJIE77nH+vz33KNSLMc1wN2cCinhS2KaOZMrwfe/T7KprCSRzZnDgYiPJ/kAlMry85m0PHu26sPT2UnSczqpWldVcfUoK+P/KSl02oSFUSz6wx/oXFq1ijekqYmdHy+6CPiHf+DAl5byVWYWnT5N0b+8nGTe2clr+s1vqJqHu/yhERGUOmXpuH37SIR79vD658xRFZsAOpo8NYULIrjP/cxMriEAP5s0iZ/39XGNkgEA995Lv9rNN3MeR0ZSwJaWj76+oULAREIgCHM3gLlCiJlCiEgAtwPY4rbNFgBfFMQyAG2GYdQF4Nx+YaQtRqUqvngxn2mAK3B1NQlzwQI1aaTak5ZGx/HixYoEJ2yL04YG/uCUFHoHZK2wSZNIQACfxssv52rz3HP88dOnKxtiYiJJrKODgztzJok3IoJ20Hnz6JE/fZrk9vLLJLAbb1T9jBsa6Blvb6cEKGMwHQ6aANraGBPT1MTrdTp5jX/+s8pBdzgorU6fznPJG753L4957bWqHXB+/tAYzSCF+9ybO5cFm5xORZwRERyOsDBaPzo72cK9tJSRIZWVFAxkeyTD4JrX26vDijzCMIw+IcR9AN4Fw4qeMwzjgBDiq67vnwGwFQwpOgaGFf2Lv+cNFDyVefMGmUs+aRJNaocPU5psbOSznJKiuhcsWaL2s1L3R3L+cYfMbDGTghRBpPQpY1G6uqjiHjxIMbyxkYR26aX8/9w5VXD30ktZyXzpUtol3nuPx7jyShLUP/6j8lZLqe5Xv6KEKhu8b9nCOMw//5kkdvIkb8rJk5QwheC1R0RQrCot5c2cNYtP/eHDJOnoaNoty8u5rdNJcvz973nupCR6+uUYLFtGe+Ytt9A+I3PJgxhWc+9vf+PadvAg16G4OFpNWls5HFVVJMUzZ5QU2t7OWygDGhwO5TwNubntAwEJXDcMY6thGPMMw5htGMaPXJ894yJLuLzjX3N9f4FhGMGX7zgMmO0/aWnUBD/7WZqy5s3j87RkCbVMWcNhQuXXeqvCU1HBMJt16/hj9+xR3RwPH6YIfttttC1KL3d8PKW/998nOV58MbODZID7H/5Az/aGDapwR3IyC3wAJNq6Oua0X3QRJcbYWBrTsrL43dy5JMX4eJLfBRfw+5wcZTo4coQskZ5OcamsjKyQmkqxSfb+OXaMx5Te+k2bVAxqEIYTDQcFBRT8c3I49IahUvJlslRKCh1Avb20iAjBYYqJ4TrZ3z9xw4p0taIRIC+PglBvL5/bzEw+Z+7qtHtQfEhWJ7KCtyo8u3YxhlJWIv+P/wD+679UDbBp0/j/wAAlt1tuoeTZ1kYp8D/+g3bC+fMpTUr1/MUXac9MTaWHXQgO6GOPkWDr6yn1SU+bYXDVOnCAhuTTp7mSzZnDYxYVKTV76VJ67wBKul1dqoe6YShd0+nkdU+eTFKVhYZzc4faLGfODOqmZ54gg9sTElQR+6NHSZAyPlhaNU6f5hDW11M4nzFDtbiYqGFFmjCHidJSan15eXz+mpr4/D/88FAy9KRuh1qhAkuYA9pXrhycVw2oSuQHDvApmjKFosvRo8yYOXqUfXPq6/lUTptGFf3Pf+ZTmJnJfQ2D/3d1Ad/4BtXl7m4SZVYWa1R+9BGf0nnzuIodO6YquCclcZ+6Oj7lspe5w6FiOqOj+bS3tfGmdnWRFGVeemMjf1NaGn9HaipDkR57jC0vZEUjYGhV+hCCnJft7ZQSGxqU5aW/n5aUrCxFnPJ/h0M1ThsYoGYVig3O7EDnkntBaSk91osXU1X56lcZWZKYSA1v9Wrg1lupkpeV2T/mhMi7dQ9od1c/ZSXy48f5FF12GaXPwkIOYHY29zl1SjlXbr2VOeoNDUyrTEsjYUVH05nS0MAVasUK7ifbVVxyCY/18svcRjaaz8gggQL0WpiJ8OxZbrNmDSXMz32ORChD2WbPZhhUeDhJe9IkMsnixfzuo49UpXkpbf/1ryFNlo8/TpNtSwslxuhoLugytT43lz+5vZ1/S5fyM8OgBaS+ngQaFzdBnJcW0BKmB5SWMvD82DFVuGbHDprjZASJhLluoC/J0Rzs3tCg+qfcf7/n/ilBB6vePps2UWVduVLlVv/yl9TbMjO5TU4OVdh160g4qal8yu65h8d97DFKl5s3U/3+6CPaPEpKSHY9PSS82loO4GOPUcIsLaV9sqODBJmdzRs3MMAnPyaG55ZNtnt6KHnOnEkP/U038donT+bTn5RE4pQN1nJyaC4YGGAw7fz5JPgDB4D//m/P0nYIoaiIEuSBA/xpyckUuMvLmc0jt6mspIBgGBzGuDgOx5QptG82NTGoYM2aEJnLw4Suh+kBGzYw7hlQBQe6uijQZGUxDFCipYWTp6qKE8bpVDHVjz46eOJ46tB3+jSFr5BYmT15ybduZWm3O+4geRw+TFU4K4s/VBYNbWwksbzzDss99fSQfH/yEzpuEhKo38kqQmVltHc6HLRB9vWRGP/xHyn5GQaTnw2DA1lfT/V/82Z+Fh2tPHAffkjHTWoq9+3ooCQbEUHH1JVXMmamoYHfxcVxv4gIVW5u9myS67p1vCZZkCRIqqqPBHfdRWWgu1vNd8PgLbv1Vs+dTTdsIKlKonU4QqMerK6HGWBUVqoMBwmHg6qHVeri6dOccICKvTx+nOnKEqWl9G9s3kwyltVfnE56HkOmcZSngPavfY0piU88Qbvk4cO0Kz78sIo76eujLrd3L8lSlofbupUDlJ2t8sFlm1uJ8HDun5tLYnvrLd6MnTvp4W5upjf9X/+V8TF9fdxn2jQOtHmFkvbKyEgVLC+Lg8ieIgUFXPXi4vibZ82igyk2luT4ve8NDicKYQ95Tg7J0TzfrcoUuqOykpKlw8EhDkQ92GCGJkwPyMnhc2WuHNTdTVJbs2ZosPnRo+QDOWmio/m+uJj7mgt1hIfTBtTQwGdcBrtPiFCMFStU9SKZE1pdzR84ezYlxu3bSawXXUSP+tatzDOVmTpZWXwKAa4qU6fycyGoLs+bRyKNiaGNZOVKfnbiBDN1/vhHrmC9vdQXz53jjYiPJ3lOmcLrEoKMMHWqqpFZX8/eyN/6luqDHhHB1W/VKpLlbbfx/c6dXAhkqTsgKAtu2MH69fyZUjrs6uK8zMry7u0eKdGGKjRhesD69ZT6ZBaDbPOSnMz0MPfURWGVLQ/1ubRdzpvHsMG4OApAZ88y+D0tLQRDMawqsv/+95Swrr+eovPll5PEUlL4JDocJJgVK7h6vPoqV5fLLiNpzppFqU3mlUZGcoXJzGRhYtkmV7anqKoiyS1Zws8+/ZTe8e5u2ib7+lQpnsxMEt7p0zx+WBif9rNnGUi7bp1SLV55hedubSVJFxSw8OPatfTWP/ggbaj9/cNPHw1C5OdTEZBquMMxtEyhFUZKtKEKTZgekJ/PpmWrVlFQ6emhIONuk5RYtkw5Ys+epcRZXs4J595kKi2Nz2dWFoWklJQQDWx3D2D/wQ+YivjAAySVO+6g57qnh6/t7VxtqqspndXWUsL86CNKkpdcQgLcsoXElphIsoyMJGnV1pKwjhzhU/1v/0Zb5LZtJN72du5z7hyvLTqa7S2WLiVxNzTwpiQn006akUHVX543NZXbvf46b/rZs5RQo6NZBODrX6fTSEqWDz5ISdodnlp7BFk/cnfcfDPtjrfeSmVg7lzfNvWREm2oQjt9AgTpVa+ooDYZGUkp8uKLVY0IGYMtIZtOzZoVwvGY0mN+0UX0GE+bxpUGYBzmwYNcPWS6yM9+xu++/32uRmvWMEToN7/hYL34IsX5tDSKKlFRKiAwOZkDtmgRJceODm47ZQpvgIzRnDmTUueUKXyCf/ADSod79pAgJ0+m9Pn66xSPZs4kWaam0iFVV6eqITkcvP4vfYnXbG6ta26AZpYy3bcJ4dhMbzBHhUiLidMZGnN5pE4fTZgBRGkpw4MaGyk1LlzIZ1B60Ts6SJjmfudB5RW3kyNuhb/+VYXUyBCj6GhKXwkJdOTs2kXyTE6m+NLeTi/13XfTvhgeDvz2tzzevHlMk5w1iypveDgHUNpErriCRPnCC1yNcnIodUqiXbyYJHzkCFetJUuUMTkmhsevrWXrjFOnqMZ3dPD6V69msG16OiXVujr+n5tr3fnRnQzNrSpC0HNuN6nC3HYlaOezF2jCDBLIsKFJJmPHwAC10AceCPIMH08Pv7eH3SxhSmI4eZIEmpTEghXyWF/+Mn98cjIdK9nZJKsLLqBKfOoUVV4Z4nP8uBLJY2P5VF5xBY/7hz9Qau3rU7bIvj6KOddcQy85wHMcOECpMjWVAerl5Xzie3tpS62tJTHm5fEc//ZvvGFPPcXzZ2aSiAFFqr7GYObMwQuJ+z5BAHdyzMujNcQOCW7YwO+cTgYztLXxli1ezBZIwY6REqYOXA8wcnIG93BuaGDZRaeTkzMvj59XVqqwi6AhTW854lawCmDfuJHfSWnMDOk6ratTBPS3v1FyvOwyklt8PJ06DQ1UiWVPnalTKb4DzAJavpxe8epqSp8ApdqkJJLU1KkU8fv7KfLL/j9f+ALtkcXFJNwjR2invOIKxoHKznQvvkh769at3O/jjxkkv3s3CVpWWJLj5h647p4JFWTVi6wa8z3yCAVpO83MKiu5rhUXc3ji4jic27bx2P7M6WBOHdaEGQCYb7As/Th7Ns1pshPrihUUbJ5/ns/67Nk0jX3hC3yOCgpIpmVl4zxRhpO1Yq7IvmuXalW7dKnqrPi//6tCh+Lj+V1JCfA//6PiKYuL6TWYPp2f7dxJaTAlhYN58iSP/fOfUyr8xjco1vT2kiDPnqXaLtvixsdzfyEopRoGnUXvvstBlXUst2+nF/z4cRL0N79JB9RHH9FhNWkSPR+vvMIY0+nTyS6PPUaHj4Q7OYaFqWZo5kyoIFLLi4o4pPv3q46nZ8/S/j5vntrOU6hbTg6jsGT8JaCivvwp6+atw2owkKYmzGHAauUDeEP7+/kMy6iUEyf4WUIC1ZS0NGVSq6nha1kZJ1lLC5/Rn/5UpVk7neM0UYYjGZntmhkZihxlamRxMQnwjTdoX0xIAL7zHYYP/exnXDFkInJVFW2WL79M+5+sRNvQwAFobaVkKhvI1NdzUPfu5f4Oh+qREBHB1am/n6T3/e9z0Jub+ZumT+d5v/xlDrisnQmQwAGGJgEk+B/8gAtIXh73f/BB1abCSsqW42AVmxkkhFlSwjkaHa2kw3PnKLCb4SnUbf16CuFTp3IoZXvpZcv8i780pw4DwdeyVxOmTXha+WRX2N27+YxHRfEZbWzkZFy1SmmfbW2cnG1tNNXJVLL6evJBeDiP1d1NMs3LG+OJ4ilH3I5kNHMmvcKbNqkBueUWfve//0s75bp1JMb33qN6/ac/UR2vq6NN87XXGG/16ack4EmT6J0+coSDtHQpj7djBwdLCF5jczOf9PBw2iplabbwcNosr72W5cRl/un+/byJF1xAorzySt6Qjg5VBSUxkY3c5O9OSVFS94oV6ndb9T361reGBq6PYz9yK7S2cnildBgdzZ/c2sq53d1NUm1u5vBs3sw5WVLCbRIS+NfZyXUtPp6+tchI+sisYEfVlsW5zQimhA4dh2kTnlryFhfzWe3oUCnHDgef5YEB1TK3vp4TsaxMddhzODgxZZlFmSYZHa1aXozpRBlJ0zMz3HuYS5L41rc4QB9+qNTZG26gZHjmDEORdu1iWFFREVehhQtpVFu9moN1660k07AwikNCcP977yVJhofTztHTwycsIkJVtP23f6PjZ+5cvv/hDylBfvGLfDqrq2kimDZNFTm++urBnnBPlZlG0vcoCJCQwDnX1aUCzqOiVP+399/ndldcwTXt29+mGVf2oTtxgmtIZydv1YoVJEtPscR2q3T505hwLKAlTJuQK19DA5+Z6mpOtP5+1fxQJpT09fFZjoriCl1eTqKU1dejolQ93ehotZ8svgqoWhVj6ly1esiHIxl5Uuclkb7wAh0n2dmURK+8knrgp5+S7PbupTh+7BhtiDNnMqbzwgtJmp98wqfziisoJYaF0Zaxbh3Lwp08SZKMjiaJ9vUxTXLaNBJpQwP7kV9wAY9z7Bil3auu4jXIXucOB+2dM2bwd41U6g5iFBRwqGprlQ1z9mxlv7zmGlVRa9cukuYHH/DWJSRwrnZ20h4vc8m9Fcm2q2rLAsbAYE99sNTW1IRpEzk5NLmZVe++Pv41N1PAmTSJgk9/PydEbCzVlEOHuF16Op/9xkaqMW1t1BBralSstMwgbGujkCRX62D2HALwrs4DHLgvfIGve/aozz/8kAN16hQHsaKC2+3YQRW6s5OrTXg4KxVFRNDO+cADLL6RlkbyPHmSN6ari0Sanq6qpMgiANOnc/Afe4xknZOjpEuA4tVNN/GmbNzIv6VLPUvdIUyYkpguvHAwMa1fz9opUjj44AMqB5Mnc+gaGzn3ZZTXihV8/9xz3s9nV9WWzdmCtVOBjsO0idJSPsf19XweJTFOm8bnsaWF72NjlbozZw4FJDkB3WMzS0u50peUkCcyMzk5m5rICw8/zBX/6afpl5ApzQ5HEAYJewp637OHr1axnbW1HLSXXiI5Tp5MUvvzn1ng4s031WAfP84B3bOHN6K3l46VZ57huTs6OEAASdPpJMlOncq/tjaKR0lJNCR/+ulg43JbGyXP73xHXZfMMLrsMnsB/CEGT4uwjLHcv59D2dCghtTcdDM6moSbmOi5/JuEPKY5002+97XvaECXdxtl5OfzeZe2yYgIkmBSEp/zz3yGz29yslLJw8I4IWU1MTPa2kh+GzbQifzCCzThzZ5Nc90LL5AsH3+cmujUqdyvuJgTN+hKwXmy5WVkeJbQLruMT6NsUeFwUHW+7TY+zdddx9XnyBHegP37KTnu3Em1Pztb9SnPzaWd4+abmRJZWMht6+tJwjLC2umkJHr55bwJ+/czjCEykoQp+zG8+iqPIclSNnmbQJDkaC4iA6ie5VKalHVQpk1TXSK7ujgcdusfuPdBD8naCdAq+bBQUKAcsOaiwlFRfDZTU6mJVlSQ7ObM4aSoqiInyKaFVnYZq/4/GzaQGGVla1n56PBhqkLB4jn0Cm920YoK1d/7K1/hdz/+MVeFG2+kffGii0iuO3ZQPd63jwTX2EiVefp0lVWTm0ub6Je/zEyg8HBWc9+6lYM4aRJtl/Pns9labi5v3FtvMUWro4NkXFzM1c9uAH8Iwa5pR7YzamriEK9Zw/8rK0l4s2Zxjts1DQW7qm0XWiUfBkpLWYxHNiLs6VHx1unplA5LSlSpK1m2TaaQpaUNTkPzFaQu0yx37lQOIcPgCr9ixfipMwHDrl0kw8JCktGmTXTPZmRQMrz9dorYxcVcfSZN4qq1ZQuJb8YM4B/+gTaPNWvo+JHGtrg4SpHR0VyxPvxQlZeLiOB+hsHo67AwSpg33EAPnQwLOnWK72VqY4ir5Xbyv83buCdeBKUpaITQKvkYID8fuPNOPm9SYElPZ4ZEXBw/kyGDp0/T3AZwcvb0KPVn/Xo+83ZDLBYu5OTt6uKft/CNkMJllw2V3BIS+IO/9S2+P3yYLtsVK+gdLyvjoLW1ceXYt48OoL17SXiNjfx+2jQOVmws/77xDaradXUkyP5+SqUFBayytGIF40Ivv1yp5S++SDFq924yR4ir5Z5C44qKOPc2bGCk1ZEjnK/p6YwjjotjMIIslh3qZOkPtEo+TJSVMcvObLx+7TVOMlkHAqDwcuIETXSRkYPjyIYbYpGYyAyKkhKqSWvWMPxwwk1c6Tnfu5erzkcfMRZz3z6q46mpdNu2tZFQf/tb2imWLlXtdlNSVBnwmBhKlwBXmNxcetMPHaLqnpJCEs7OJqn+y79QSs3KolT74IN8NadDhrBa7slTLbN+5Dw0DA7zpZdyyK++msEEIa3NBAiaMIcJq0mXnMzKZbNmcVWWz2h0NB028+cPtleONMRi7dogDCfyF+5qeWEhf7BsKXH6NLdLTQWefZZ2D9kj6D//k2mPBw9SmmxsJBHedBNJUKYoAtwuLY32E4CkW1VFg5w5HGr58sEpnv39tJ/+8z+r1TBE4V4YBuAwtLZyWBITVYylw8F1JTXVd+D4cErCBXVonA1olXyYsMpEyMqidCnTolNSVCKK0zlUjfGUzRAZyVX8rrv4Kqu+WHkyJwwyMihRbtxIG2FVFV9bW0lmmzfzRxcXU+X+zndIZJddxtevfpXdJx0OPvU/+IHKC//Wt1RloS9/md65gwd5Ay64gDbQt96i+O6e2hgWNjgQv7o6pNVxwLOnOiFBdQNYsIDmH8NQaZLezD92M3jsbhfs0IQ5TFhNurAwqslC0KyWlEQn79q1fHUnOatjHD/OAPZQn1A+4d6+YeZMZupUV9Oj9q1v0a54440qZuujj+itLiwcmqaZlcUukQB1R9mETQaWX3YZia66WmXuREWxcPFPfqIitM2Q4VBS8gzhbpBmSI3FvYFfQYFawNPSKGQLwT9fdktvdtGRbBfs0Cr5MOEpPAKw9kBapXRZHSM7mxKm2a55+jRrVMyaFXotADzCTEQytKi4mKT5wguM3l+xgiuF00lb5JIlTFUEVPiR+Xi7dlmnYwKDA+X37KFt1DB4vK98hX9WufLe8upD2I6Zn0/H//btLEW6fTvDXU+c4Pfx8VxP5s9XpUGLihiIYDXv7JqXgr2ohl3osKIAwh8bjXuldpnD29fHoPgJFd7hXqFc9iVvaVHVi+65h84emXQvhIrX9NUewkx0MgMJGJyq6Z6BdJ5g82b2cpOlSwFqSN/4BqM9rEoXegtDspvBM1EyfTRhBgncJ5SsbZuQwPddXXyVJePGc7IFBLJ9w7x5yu7wla+QyN5/n86bu+/mk/3GG4zDvPbawXGQw+lBNNJ+RSEO90X8tddUzcv+fuXHmjdPhcHJ/Tz1pzLPO7u9fYKtB5COwwxxuNs1Gxv5umABJ5fM4ZW2ppBSZ9ztlhUVVImTkhjGk52tJMdbbqFj54YbVGmoG29UK4aZ3IZTWi1Ey7D5AytHy9GjtHQYBhOhDINp+UePDt2vsVGFs37wAW+H+7wz20VLS5lp2t6uYjuttjPbT0NNQ9I2zFGCp+rsnlR2d7tmSgoForQ0TlLJF9KbGUw1An3CbLcEVN+fa6/l36ZNg7eXxDYBy6qNJTzF+/b1qdTesDC+N6vocr+UlMElB2X3DaeTEqacv3IOnzjBQAVZFN+9Y4BV+m+oQRPmKMCqOvtDD6l88qysof183CefWTqYP1/ZMAsKlCQaLDUCfcLcXE0+fWZbpJUzZYI6XcYSVo6WmBjaKnt7KWH29VGTSU0dut+CBcwoBbj98eNc+1asGEqIwd5aIlDQhDkC+HLuWE2epib+v3QpQwF37FA1MWNirFdjs8S5cqXykqenh2DhAnM1dnM1c/mdOwn6W8x4AmGkzkSrQPXsbKbIy7kUGUk7+Wc/q86zbx/rJSxezBCjw4cpPU6ezHkoq+IBihAnihfcFzRhDhN2utpZTR6nk7Vw//hHTsawME7Ajg6+z8hQIUTmhyKkSNEbgrztbLDCny6KVtXLZ8xgqUCnk39RUcxUW7NGnefii6nR7NhBafLCC2l3vOKKwWRpJkRPWUQhYzayCb8IUwgxFcDvAcwAcBLArYZhtFhsdxLAWQD9APpG4p0KFthRPawmT18f88A7OvheBrnHx1Ml+uQT+kDc1R157FBOJ/Orudp5Dn9V3dhYkp9hMHrr0UfV/uY55X6eVas4Jz/6iD63K6+kNCpRX09JVBaVyctjQRkgOFtLBAp+hRUJIf4HwBnDMB4TQjwIINEwjO9YbHcSQKFhGKeHc/xgDCtyj5cESHjV1apMv1UIxRtv8LWri9sbhurpM3kyJ15+PicqoErCdXaOPBQjaHJ3z9OQnkDAar7V1bEh2eLFnu/rcMN4fM1rO2Xfrr9+aMlCIEjmoBvGK6zoBgC/c/3/OwA3+nm8oIedrnbuIRQ9PZx8WVksDdffz7/wcJUaCTDWTSI+ngkwI00nC6rc3fMwpCdQcJ9vDQ0kq8hI7/f1qadYQWvnTv75qtIfGclIrzffZAxwfb2a13LhbW9n2NCOHSz5tmoV7elyXpaVDa57AATRHAwQ/LVhphqGUQcAhmHUCSFSPGxnAHhPCGEA2GgYxrN+nnfcYLerndn+uGGDSjaJi1MSpgzlCAujOm72VLa1UW2XYUQSVoZ0K0nyfPFaTnS4z7dPPuH/ixerRRQYfF9LS4Ft22irjIujVvPhh1TJ5dwxz5nISFYmam9nO4rOTpLi7Nms/yoly/x8zsvqakZrmOer1byciHPQp4QphNgmhCiz+LthGOe5zDCMJQDWAviaEGKFl/PdLYTYI4TY0yRdy0GEkQTgVlZygnV30zMeF0fpUgg2KrzmGhKoexWZZct8S7OeJMmSEntkqxHccJ9vTifVYOl8qa/nvX7pJVXhqqiIC7AsoCH73JeUKInRPGf27WOQ+gUXMGJDztHsbEqN7lpOUhKPZYaVg6eycuLNQZ8SpmEYazx9J4RoEEKku6TLdACNHo5R63ptFEK8DuBiADs9bPssgGcB2jB9/4Sxx3C919IJtHw5K5F1dHBCpqczbrulhRkViYnWBT0Az9Ksp1W8spLbT3Sv5fkAd21FmnDq6yk5CqEakj3+OCXFnByq4gMDJMEpU7hgW2kfPT38vrFR2dCl/dIq4qOggNmrLS3etayJ6Dn314a5BcAdrv/vAPCm+wZCiFghxBT5P4CrAJT5ed6QQl4e7UI7d6qKZXFxjMmU0uQ99/BheOAB7vPEE5zY11/vXZr1tIonJEyMLn0ag2FOoT10iGRpGNRUJAlWV1MyTEkhWXZ2klyXLFExk+Y5Y84ek5DEZmWzdzgYhuRLy5oonSLN8NeG+RiA14QQXwJQCeAWABBCZAD4lWEY6wCkAnhdsOVhOICXDcN4x8/zhgxKSxlukZfHySV7juflUfUxB6Fbxdxt2eJd5fe0isvsoVDv0qcxGOaEhtpaSpaLFil7Ynw8M3kmTSJZTp1KybK9XbVqdp8zCxYoR87AwFCJ0UrLsROpMVE6RZrhF2EahtEM4AqLz2sBrHP9fwLAhf6cJ5RhVn/mzuVnnioNjcRILp0CTU0sQCwJ+eGHJ1jgu8b/wXxfrRbL6GjgkkvoJW9rI9EVFFD1BoY6kqKi6ODJzuai7k5s/pDeRJuDOtNnlDGclLGRpJfl51Ntf+QRSqzJyTzGli0s2TWRJqvGYHiK2Fi2jCQo7ZEAP09P5/9Wkt+jj3qeK3ZJL2jifkcRmjBHGcMxfNvd1n1i1tfz4XAvzhrK4RsavuGr+j/g3SlTX88wpX37GN95zz0jny/+pHCGEjRhjjLsxm3a3dZqYm7bxjxfM0I9fEPDHjxJf97U6NJS4GtfU06jiAhGb1RXAz/60cgIbiLGXFpBE+YowywFlJRwUra3A3fcQdXJvKrbMZJbTUwZFydVLiD0wzc0/IM3Nfqpp0iWYWH0ePf10VF08uTICU5XK9IIKOrr2U22q4tBxxERDDVyX9WtJrpZBd+3j9VkzLAbF6cxMeDLVujr++JiSpYOB18HBhgQf+wYax6MxPbobk5qaKC6715sONThbxymhg9IFXrfPk7MsDB6sgcGGMbR2Og9N9w9KyMykvGc5s6wDgeryTiddPbs3MkqNVbHuuceptUVFLCldyjn9YYiSkuH9p4fDjZvZuHp115jQd+jRwfnZ9upISAE51FfH+fM2bOcjwCdRSPJ9zbHXNbVURhob6e3fiLkkEtowhxlSBW6p4e54w4H0yJPn+b/Tqd3tcW9n/Pixfz8k08GBwNfcQUDlFeuZNvUyMihD9J3v8uJHBHB73fsYCX4iTCRQwH+FkQpLWU0hBCMhujuZoB6f79adM3zTRbeOHIEePppdZxly3j/nU72mpN1DWJiGNw+kn7h5hTOjz+mMLBy5eDiHKHWg9wKWiUfJUi16KWXGFwcFqb6p4SHc7J3d3NF92ZrdLcNpaUxl3jHDuCtt1Sdw/ff9250LyqiNBsXp7pECEFpd6IZ5oMV/jpGiopU6JjMEQdo1omK4v+VlVwQi4u5IMviG3/+M+dkfj61jIMH+dfZyWNNnsxFNzWVC/FIbI/SnCTnrLlU3ESxZ2oJcxRgliQyMmhTbG9XDaS6uzmZ2tuZvuYtVcwqNe3cOT4gK1YwBjMqig9Ed/fg7cyTtLKS53Y41Pd2JFyNwMHfYhSVlUqyPHeOTppTp0h8srhvTg4dgA4HCVUW4EhKGizhTZnC6v7JyfwuJYWvgP8OQzslEEMVmjBHAWZJYtEiSoExMZycaWlUl2Q9QU9hHNLWVVJCNbq8XKngZWVAbq7vCjLHj7MXy1138bW/fzCp2pFwNQIHb0Rix7YZGclsLhk72djIuWQY/Ly0lItvc7MqUN3VxftcUKCIuaiImT1r17Kaeloa5+fBg4HJ956IOeQSWiUfBZjV6NRU4NJLORlra4F/+iffHkNzrGV+Ph04ZWVUnwoKWHt3zhx63g8f5kPX3c3jnz1LYp48maEjy5ZRRauq4nXJGpupqSTQ2bMDN5HPh0wPf+ApzvYzn/Ed9F1ayvvZ2Ki6PTqdfF21itLi00/zvoaFkUAnT6YNcfFiLowy7Mw8P9PSWEXr0CHOn9Wr/c/3nog55BKaMEcB7iEWqamUDlavHpo/bgV3W9fcuar824YN/CsvZ/M0h4NSZn09t42Opl3y8GEa8OPigL/8hQ+nLPF19iwftquvVjnn/uJ8yfQYKcxVyysrWU2qoIBE4n6/nU46au64A7jhBlVEpbubfb8rKnjPJ03i/e7p4Xfvv8/aqqtWqRYS8+eTLM1hZu7zMy2N29idn3Yw0XLIJbRKPgrwVyXxZetav55kKWPp6uspVeTkkBRvvZUqemcnibOjgw/ElCkk0AsvZDuM3NzATWp3b/5E8oz6C7NNOz+f4x8XpyTwykoS3vbtwCuvAK+/rrzX5oLQTicrDk2bRsKdOpVj3dbG75OSOObp6STNuDg2MXMvvzaRVebRhibMUcBIqrKbIW1d9fV8iN58k/1WpGE/P59qeXw8JZb+fkoeU6cqG1lyMiXNtjbVP6ivjwQ7Gs6eiVhdO1DwtZjI2NquLt7Pc+dof25ooPSYmAi0tnLR6+4mYUp79KRJ3L+5mRKrRGoqNYglSyg1mueev/PzfIZWyUcJ/qgk69czPvL4cUqFERF8kA4eZEiI08kHKDOTatT27cq4L0krK4vbREZS+pTOnvT00XH2TMTq2oGCr7RBloqlRtDaShIUgqT4wQe0QyckcC4cO8bXpCQSamQkSdEwVGiRhLfxn6gq82hDS5hBiPx81iaMi2PcXUwMCw43NdFDmpVFsiwuZpDw2bNUvY8fp2R59CidRFOn8qHr6+NrcrL9cKbhQqt5nuErzEb26Tl7lsTX28vPOzt530pKKD3+6EdUtXt7uYjefDPwpz/R2XPvvXr8xwJawgxSOJ18SGQR2JMnVf/ySZPoCGptBf7+dz5AfX18/ctfKH0UFtKT3tZGIo2OJpH29vKh86eUlxUmsmfUX/iqQiWlc4eDERFdXSp+sr6e904SX2oqzS+trfxOqvV6/McGmjBHGSMNtYmKoqodF8e/6mpKIOb23idO8OFKTOT2UlVPTGTxYID/x8UxZGTJEmUHfeKJwIf+aDXPGr7ITBLq2bO0NU+eTOlSmlNk+4nHH6fEeeIEF80zZ6h9mKMRfI2/Dv3yD5owRxH+hNoYxuD3kZF8iMw4dYqqmUyRi46m9FJXx/f19cCePXzAwsLoLDhwgN+tWKFDf/yFJ/Lx9Lm3iubf/CbNK42NvI/z55M8u7o4d6TjaP9+fh8dze9qa+l1t5NeqUO//IcmzFGEP7nDPT0kNamSp6fT9tjZqRpV9ffTAWCG9IbX11M9r6tT+et//SuPExvL465aZf96Qg2jLUl5Ip/rr2fFKF9B6FbXdvvtNJvU1KjePHPm0PwiHUdtbdQYAKrwsmePnWiE86XI72hCE+Yowp+iqtKuJUkNYLB6ba1qVDV7Ngmxt1dJIz09tH394Q/8vLdXBTi3t3P7KVOo/gGUZCZa6M9YSFKeyOfJJynxeSIlb9eWl8cYTFlgQ2Z4dXTQ1OJ0cv50dfF+yqgIu9EI50uR39GE9pKPIvwpQmDldQ4PB372M+C55xhb98Mf8qGSFbPb26m6f+YzfMi6uqiyT55MW9ekSXzwurr4WXMzifXvfx9ebUZfec+bN5Po587l6+bN9o4bCJSWAvffT1PE/v1UcUcjiN5T3GlNjfd4VE8xmU8/Tck0N5dkWVXFkKLMTBJtRgbw4YfKKSTvY0aGfW/4RC6KMVbQhDmK8CfUxk5w8c0303mzcKGqSLN2LXD55VTbZOyeECpUBaAqHxtLaVOq9XZrM0oJqbyc3vfXXmNBW0mKmzcD3/42H+j0dL5++9tjQ5ry2hobaa/t6iLJ1NcHXpJyJ5+GBiYXnD3LV5mqCgwmJU9EW1ysnHWrV3P76dNpgpk0iZ8vW8aFcNYs3tukJGoc7e0kYl/3Li+PjsTXXqN5prxchx4NF1olH0X4G+phx+t58838u+uuwTUIs7IYijQwoDpL9vXxoZwxQ9VQTEvjNnbtWUVFPI7MY4+OplR1993MZd69W5E1wNeuLo7D1q2j65mV0ltKilJbAcaoBjpQ3xwq1N2tcrcvv5xjs2MHbdAOh/c8boCEahiDiVTaKs2kPGcOj/fcc4NV+/h432aH0lJKsFlZVPNramjH/ta3tP1yONCEOcrw1aMnUATi/iAWFlLllpXes7IoVRYWUlp5800+kN3diljsSGGVlXzYHA4et6ZGpelt3kxpxxz6dO4cr6unZ/Q9s9JGt3Ah1VmARNnYaL/HkfneREZSOnc6h94n82Iox3LxYi5AyclMMPjoI5ZPswohAob2Em9rU/cvPp7SuVx4gMGS6nAdOEVFvE/V1bzGGTN4vOefZ3sTTZr2oAlzjDFaDgn3BzEqivaw7Gz1wOflUcpoaVHSi8wmefNNEoRsgeEJOTlUH5OTGdbU3081MSyM0m14uAqynzyZrThkPdCdO3nOyEja7MxtE/xFaSnDp4qLea7eXqrJMs/e2/hKkiwpYSWg3FyaKXbs4PeeQrC8VRh3OBgn6Q47vcS7uzlup04xBvOtt5Q9+uGHuc1wHTiVlSRLqRXI7XXF/eFB2zDHGKNV1cfK5vnooySlBx7gNlu3Usp0Ovl9Z6fyost8dVmI1hPWr6dKfuQICUmGN8nYwOnTlSQzMMBjOp3Kix8XRwKVLRMCAbkIZWTw2mThimnT+JeW5ntfaV8Wgir13r0qaeDIEe/3yWzPbGigdNvWphwy7rbh/Hw6y6TzThLvN7/JsXr/fd6nSy6hlCkztXJzueCVlg7fgZOTQ3I0V9zv7ubCp73k9qEJc4wxmlV9rB5Eq66TnZ30sF9xBe19Ml991So6FHyRd3o6iQlQ3Qb7+0lOU6bQOw7QqRQXx3Okp3tvmWDGcDsrykVo3jyeT0YEnDvHRlyzZ3s+l3kBa2/nvXA4lDQmYx0Bz/fJ7Nw7eJC/zzBoGhjOgpifT3K/5ho67/r6eO3z53Nc581TxxquQ3H9ei6K0l4qi7VkZmov+XCgVfIxRqCr+viyh3qzdckiwmZV0qoBllllLSmh+j1jBom3ooLbmKsiLV5M0pRkt369apnQ3ExJJyHBugf2SEwWZvW0v5/OEYAEKJ1a3lRVua+McZRSmKzwJBc4T/fJrGbX1lKyXLhQSbbuROvtnpmvxxyk7k7aw3Uo5udTnX/kEY5/cjLJODxce8mHA02YYwxfhRiGAzvk4s3WZYe85Tn6+mgjbG/nQxYTQ4nl8su5TWcniWbOHBKnfAjz84E1a9iDpr6ex09JUdKm+/VaEXxTE2MrZ82yXhTMv0OSnvydVr/JDPO+0lnkdFLyam/nNgUFSoLzdJ/k9WzfTieTLNmWljb4/L7umftvOX2a7/v7eeyMDFUnYLi5+zffzH11LvnIoVXyMUYgi7fasYd6s3V5Uuvy8ljNaPFi4KqrSHbl5SS5uDie6+xZEmRvL1X7xYspscydO/T33Hsv1cqICJJpfT0dGjk5Q6/X3WRRX88wmMZGz728168nmb/9Ns0Ax49z+/nzB/8mKzXfPAbJydzOMOgsW7lSlVPzdZ82b2Y8alUVpejaWpJveTmvrb6eHvPrrwd27fIcVG++nmnTeLzOThJlayudWnl5w5omg2BlttGwDy1hjgMCVdXHjqfUm0RrpdZ95jPA736nCtX29/Ph7+uj9BgTQ4lPkmxEBPf72c+8q4PXXw/88Y8kzJgYEm95OWt2mq/XXeo9fJgEnZKiFgVgqGdXFiuJjqa91OmkA6aggMd85BGVcuh0KqkO4PXs2EGpcNky4IUXhnd/Skt5fCF4P86c4Rj19vI3pqVRWjVL6M3NDKpfvpy/TY6B+Z68/TajHQYGeA+ysrh9WRmlRY2xhybMEIYdldqXrcudvDdsoOQTF0fykal4PT2UdmQfof5+OlUiIkiGvgimrEw5g2RYS1cXbaJr16rt3AledklcuFBt474oyLaxhYV8X19PqfjUKZLVyy+rNsfd3byWvDxGEHR0cPyuv14tJsNFUZEiY+nQionhOLW389pklSEZ+3r2LEOGrILq5Vi++CJtxTJvvLuboVraqz1+0IQZwrBrDx2ORFtZqYo8AEotDAvjwz9lCv/PyKDEl5trT+KprKS0V1zM9w4HpcIzZwY7HdwJPiWF9kRZExIYuiiYJW1Zpamjg6psYyOve948kpk5+6emhhJuSgqwYIFy0tgtlSav8ZNP+FuOHeNC4nCQNJua6AyT9yYuTo2nbEznKaj+6ae5oFRUcNGaNo3HdV9gNMYW2oYZwhiNZlY5OarZFkCJRlbOiYzka2IiCWH5cqrpniQec3jQiROUqi69VFVOEoJFjYuKBtsWzXa2n/2MBO0tfMZsp92zhyTc30+C6umhOaGqSm3f16fIbSQ55+6hWv39PP65c7zW3l7+3r4+lcETH68kxJQUjuPp0/zf/Z6VljJOVdqmu7sVyTY3a6/2eEJLmCGOQFc5X7+eQdvHjim7YH8/nTpZWSRTswmgpcXaA+3uDXY6SUrLljFzpq2NpNLZqYjHUzaNr/AZs6RdXU3SMgwS/enTvP72dhUyVF1NU8L06bwuuznnUqo0Z0VNmsR9IiL4Fx7O3xQWxjJv996rgurLyng+IYDLLuM2VgtcUREXJIDXe/o0ybKlxZ75Q2P0oAlTYxDy89ls6+mnqT4bBr3F997L7+2YAGSJtcZGSlALFyr7pcxDz8mhqm0mYE8OHV+LgplUe3qU42fyZH5/7pwKQm9q4jZXXEFCtZtzbl4AZEypdNr09zN//tQpEmJYGLcrLWU1qdhYbj9rlsoPnzvXc0iP2XzhcJDYu7ooOd9zj+dx0Bh9+EWYQohbAGwAsBDAxYZh7PGw3WcB/BRAGIBfGYbxmD/n1Rhd5Od7zvP2Je2ZS6w5HKwgXlpKsli6lK/PPcdt77qLhGrGSLOeJKkeOMDSZVJCllk3SUmqXujs2STI1FSaCA4dUuTuyaQhi1fs30/VPSyM9s/Dh3nNtbVKapUxq2Fh/CwykkT8wx8ObmHhqa+SdOYtX87jy/z7NWu0dDne8FfCLAOwHsBGTxsIIcIA/ALAlQCqAewWQmwxDOOgn+fWGAf4kvZkbGhMDItwREVR4qurY/GNVavUtqOR9dTdrdI/pUkhNpZS5aJFJMs9e5hXn5jIeMusLJ7Tm/23pIQkGB1NyfjUKZJkTw+98/v3k3AdDpJ1WBilXPdWIIDvZANpYkhMVOaLlhYl5WuMH/wiTMMwDgGAkGkN1rgYwDHDME64tn0VwA0ANGGGEOyWpLOKDQ0LU9k35uZugcx6Anh9s2aRnIWgRCjtmdOm0RwQF8fX5GSSXVMT1eSHH/a+ELS2qlYfAMN9qqp4zXPnUoWWxUZkhaTJk4emNNopy+ZvHVUJ3SEy8BgLG2YmAJOPEtUALvG0sRDibgB3A0COrgow5rB6yADgoYdILk4n1d49e1gNyf0BlFKjJI3mZjosYmMpLfX0qG0DRQwSkqxlPrlUx8vKVDm7Q4coBSYkkNxuuIHX6ys0KiGBNkTpOJLtb2fNokd/wwYlLW/fropbuKdn2i3L5q8zT3eIHB34JEwhxDYAVgWyvmsYxps2zmElfhoWn/ELw3gWwLMAUFhY6HE7jcDD00PW1cV0w7g4FR5z/Djw1FPAM88MJtmoKEpekZEkq9RUbr98Ob9LTx98zkAUWJbb79tHMpdFQGTA95QpJMeEBBUPaSYzO3bTggKaGWprVZjQ7Nkqr9ssLc+fryqwu+ehFxUF1gzhCbpD5OjAZxymYRhrDMPIs/izQ5YAJcps0/ssALUjuViN0YWn3PS//Y2kIwtmREfzfXGxdfk4IUgAsoDusmUkSzv9Y8zHi4hgeuD69fQOW5V5M29/8cUkxuZmnls2Clu0iJ9nZipJs7ubweqAPcJav54hQxdeCFx3HV/NlX7MMbG9vbRbrlw5NA/dnz5Pw8FolhE8nzEWKvluAHOFEDMB1AC4HcDnx+C8GsOEJ3XR3EDNDCGsJZlZs/j68MNKUkxPZ566N+8woI7ndKqwmqlTmU1jpVK6n3/VKm7b1kaJMiGBUt5ddw1uWZubSyeNrypEZsTGUnI0DC4C7tdiR40OtBnCEwLtUNMg/A0rugnAzwEkA/iTEKLEMIyrhRAZYPjQOsMw+oQQ9wF4Fwwres4wjAN+X7lGwOHpIZs5k1k6Mo9c5kKvWuXdJmcmELs2NXm8nTtVOwXDoIQoq/pYbS+Rmsoan9XVKnxJQtoo3VV+T4Tl3roiL4/S5UhzziUCnWxghUA71DQIf73krwN43eLzWgDrTO+3Atjqz7k0Rh+eHrIHH2QFo8ZGfhYVRafKPffYt8nZtalJ0jYXz5X2RiuVMieHFYHMtkVzzUgruBOWTOF0d3RJgq+qYuWjqirmm8fEMGzp/vu9V2kaT4yVJHu+QWf6aPwfvD1k3grP2pFk7HqHJWlHRtL+KAQJc8kSayLOy2PnQ9l/p7WVx7RrE/Qk+cbE8LPaWjqSZOTciRMMF8rJ4QISzJ7nsZBkzzcIwxwYF2QoLCw09uyxTB7SCCJ4CkUyf1Zfb52HnpjI7c3bTpkCvPIKJccpU+hhz8zk9u7ktGEDs4lqapSEGRtLW6VVhXb3a21oIDm7X9eOHWxC9sYbTK2cNIl21f5+Zg1FRDD+8sILue+GDaM8yBoBhRBir2EYhcPdT0uYGj7hK8zHSsV1l9pqamiLnD17sCT6mc8M3ra8nM6e5cuZSin7CE2bZi3JVVaqSu8ACXDXLqYnurfHLS8fXEi4uxv4+GPmlZsRH0+JsqSEnuy4ONpsBwZInF1dPP7ChdrzfL7BZ1iRxvkN97AhqxYR7rAKT5o1i2mI7qXoysoGb1tbq7Jx0tNZ+/Gaa2g7tFIv3VtwHDo0tEJ7YiJjRmVVdEmWBw6oGpNmtLXRC97cTOlz0iSq6ELw//5+/p7UVO15Pt+gCVPDK0bSR91TDKDTObSfjPu20tljJkFvUpx7XGNjI19ljKXcv7iYkqWUHqOjSZZRUSRG97jIe+5hsYvEREqUERGqRUdMDKXf0Yqh1AheaJVcwyvsOmvMGE4MoPu28fGqBJqnfd1NBNdfT0lVVmjPyFDV0+X+ZslS5oPLcm+SGN0dXffeS294fj4lXtmetqCA5Juerj3P5xs0YWp4xUgCoIcTA+i+bUYGiSs3lxKf+75W9tEtW5R902xCMJ972TLGcpaV8TgOB7+LiCAxWpGeOWrA4QBWr9YFLM53aC+5hleYCcpMQL5CaYaTD+6+bV6ekhjd992wYSiBy/fSU+3Ja//447Q/VldTWoyIYDaS7sB4/mGkXnJNmBo+MRplwkZ6zLvuomQ5yWR9HxiwzuwZi9+hEZrQYUUao4ZAB0D7U3rMnxxpHcit4S+0l1xjzDESz7vEWFX70dCwgiZMjTGHP6XHRqO1sIaGXWiVXGPM4W/pMa1aa4wXtISpMebQarVGqEITpsaYQ6vVGqEKrZJrjAu0Wq0RitASpoaGhoZNaMLU0NDQsAlNmBoaGho2oQlTQ0NDwyY0YWpoaGjYhCZMDQ0NDZvQhKmhoaFhE5owNTQ0NGxCE6aGhoaGTWjC1NDQ0LAJTZgaGhoaNqEJU0NDQ8MmNGFqaGho2IQmTA0NDQ2b0ISpoaGhYROaMDU0NDRsQhOmhoaGhk1owtTQ0NCwCU2YGhoaGjahCVNDQ0PDJvwiTCHELUKIA0KIASFEoZftTgohPhVClAgh9vhzTg0NDY3xgr9dI8sArAew0ca2qw3DOO3n+TQ0NDTGDX4RpmEYhwBACBGYq9HQ0NAIYoyVDdMA8J4QYq8Q4u4xOqeGhoZGQOFTwhRCbAOQZvHVdw3DeNPmeS4zDKNWCJEC4M9CiMOGYez0cL67AUhSdQohymyeI5gwDUComh9C9dpD9bqB0L32UL1uAJg/kp18EqZhGGtGcmC3Y9S6XhuFEK8DuBiAJWEahvEsgGcBQAixxzAMj86kYEWoXjcQutceqtcNhO61h+p1A7z2kew36iq5ECJWCDFF/g/gKtBZpKGhoRFS8Des6CYhRDWA5QD+JIR41/V5hhBiq2uzVAB/F0LsB/AxgD8ZhvGOP+fV0NDQGA/46yV/HcDrFp/XAljn+v8EgAtHeIpnR35144pQvW4gdK89VK8bCN1rD9XrBkZ47cIwjEBfiIaGhsaEhE6N1NDQ0LCJoCHMUE6zHMa1f1YIcUQIcUwI8eBYXqOH65kqhPizEOKo6zXRw3ZBM+a+xlAQP3N9XyqEWDIe1+kOG9e9SgjR5hrjEiHE98bjOt0hhHhOCNHoKbwvWMcbsHXtwx9zwzCC4g/AQjA2ajuAQi/bnQQwbbyvd7jXDiAMwHEAswBEAtgPYNE4X/f/AHjQ9f+DAH4czGNuZwxB2/nbAASAZQA+CpHrXgXgj+N9rRbXvgLAEgBlHr4PuvEexrUPe8yDRsI0DOOQYRhHxvs6RgKb134xgGOGYZwwDKMHwKsAbhj9q/OKGwD8zvX/7wDcOH6XYgt2xvAGAM8bRDGABCFE+lhfqBuC8d7bgsEEkzNeNgnG8QZg69qHjaAhzGEgVNMsMwFUmd5Xuz4bT6QahlEHAK7XFA/bBcuY2xnDYBxnu9e0XAixXwjxthAid2wuzW8E43gPB8Mac3+rFQ0LY51mGUgE4NqtKpSMeoiCt+sexmHGZcwtYGcMx2WcfcDONX0CYLphGOeEEOsAvAFg7mhfWAAQjONtF8Me8zElTGOM0ywDiQBcezWAbNP7LAC1fh7TJ7xdtxCiQQiRbhhGnUuNavRwjHEZcwvYGcNxGWcf8HlNhmG0m/7fKoR4SggxzQj+kojBON62MJIxDymVPMTTLHcDmCuEmCmEiARwO4At43xNWwDc4fr/DgBDJOUgG3M7Y7gFwBdd3ttlANqk2WEc4fO6hRBpQrBOohDiYvDZbB7zKx0+gnG8bWFEYz7eniyTx+omcLVyAmgA8K7r8wwAW13/zwI9jPsBHADV4ZC4dkN5FMtBj+m4XzuAJADvAzjqep0a7GNuNYYAvgrgq67/BYBfuL7/FF4iLoLsuu9zje9+AMUALh3va3Zd1ysA6gD0uub4l0JhvG1e+7DHXGf6aGhoaNhESKnkGhoaGuMJTZgaGhoaNqEJU0NDQ8MmNGFqaGho2IQmTA0NDQ2b0ISpoaGhYROaMDU0NDRsQhOmhoaGhk38f0kQZEHWjjQjAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\"\"\"\n", + "Hier wordt met matplotlib een grafiek van de samples getekend.\n", + "allereerst wordt er een figuur aangemaakt, daarna worden de waarden die zijn gegenereerd getekend op deze figuur.\n", + "Hierna worden de limits van de x en y assen gezet.\n", + "Daarna wordt de legenda aangemaakt, hierbij zijn de bolletjes een 0 en de kruisjes een 1.\n", + "Als laatst wordt de titel van de figuur aangemaakt.\n", + "\"\"\"\n", + "\n", + "plt.figure(figsize=(5, 5))\n", + "plt.plot(X[y==0, 0], X[y==0, 1], 'ob', alpha=0.5)\n", + "plt.plot(X[y==1, 0], X[y==1, 1], 'xr', alpha=0.5)\n", + "plt.xlim(-1.5, 1.5)\n", + "plt.ylim(-1.5, 1.5)\n", + "plt.legend(['0', '1'])\n", + "plt.title(\"Blue circles and Red crosses\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "9efb32c3", + "metadata": {}, + "outputs": [], + "source": [ + "# importeer modules van tensorflow\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.optimizers import SGD" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "43c0a1d3", + "metadata": {}, + "outputs": [], + "source": [ + "# Maak een sequentieel model aan\n", + "model = Sequential()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "585aa0e2", + "metadata": {}, + "outputs": [], + "source": [ + "# voeg een laag aan het model toe met 4 output neurons en 2 input neurons. Deze laag gebruikt de hyperbolic tangent activation functie.\n", + "model.add(Dense(4, input_shape=(2,), activation='tanh'))" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "84e68325", + "metadata": {}, + "outputs": [], + "source": [ + "# voeg nog een laag toe met 1 output neuron. Deze laag gebruikt de Sigmoid activation function, sigmoid(x) = 1 / (1 + exp(-x))\n", + "model.add(Dense(1, activation='sigmoid'))" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "fef8e12a", + "metadata": {}, + "outputs": [], + "source": [ + "\"\"\"\n", + "compile configureert het model voor het trainen.\n", + "- als optimizer wordt de gradient descent optimizer gebruikt met een learning rate van 0.5\n", + "- als loss wordt binary cross entropy gebruikt. \n", + "- bij de metrics parameter wordt een lijst van attributen gezet waarop het model wordt geëvalueerd. In dit geval is het alleen de nauwkeurigheid\n", + "\"\"\" \n", + "model.compile(SGD(learning_rate=0.5), 'binary_crossentropy', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "0e1bcf7b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.6605 - accuracy: 0.6200\n", + "Epoch 2/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.5513 - accuracy: 0.8240\n", + "Epoch 3/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.4052 - accuracy: 0.9510\n", + "Epoch 4/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.2894 - accuracy: 0.9940\n", + "Epoch 5/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.2142 - accuracy: 1.0000\n", + "Epoch 6/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.1680 - accuracy: 1.0000\n", + "Epoch 7/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.1372 - accuracy: 1.0000\n", + "Epoch 8/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.1153 - accuracy: 1.0000\n", + "Epoch 9/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.0988 - accuracy: 1.0000\n", + "Epoch 10/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.0865 - accuracy: 1.0000\n", + "Epoch 11/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.0765 - accuracy: 1.0000\n", + "Epoch 12/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.0686 - accuracy: 1.0000\n", + "Epoch 13/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.0622 - accuracy: 1.0000\n", + "Epoch 14/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.0567 - accuracy: 1.0000\n", + "Epoch 15/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.0519 - accuracy: 1.0000\n", + "Epoch 16/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.0482 - accuracy: 1.0000\n", + "Epoch 17/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.0447 - accuracy: 1.0000\n", + "Epoch 18/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.0418 - accuracy: 0.9990\n", + "Epoch 19/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.0392 - accuracy: 0.9990\n", + "Epoch 20/20\n", + "32/32 [==============================] - 0s 1ms/step - loss: 0.0369 - accuracy: 0.9990\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\"\"\"\n", + "fit traint het model voor het aantal gegeven epochs.\n", + "- X staat voor de input samples.\n", + "- y staat voor de target data (tensors)\n", + "- epochs staat voor hoe vaak het model getrained wordt.\n", + "\"\"\"\n", + "model.fit(X, y, epochs=20)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "20f9bb50", + "metadata": {}, + "outputs": [], + "source": [ + "\"\"\"\n", + "met de linspace functies worden nummers gegenereerd over een gelijk interval.\n", + "met de meshgrid functies worden coordinate matrices gemaakt van coordinate vectors.\n", + "met de c_ functie wordt een matrix gemaakt van de genenereerde arrays.\n", + "met de predict functie worden output predictions gegenereerd voor de input samples.\n", + "met de reshape functie wordt de shape aangepast naar die van de meshgrid.\n", + "\"\"\"\n", + "hticks = np.linspace(-1.5, 1.5, 101)\n", + "vticks = np.linspace(-1.5, 1.5, 101)\n", + "aa, bb = np.meshgrid(hticks, vticks)\n", + "ab = np.c_[aa.ravel(), bb.ravel()]\n", + "c = model.predict(ab)\n", + "cc = c.reshape(aa.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "a2e4f082", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-1.5 , -1.5 ],\n", + " [-1.47, -1.5 ],\n", + " [-1.44, -1.5 ],\n", + " ...,\n", + " [ 1.44, 1.5 ],\n", + " [ 1.47, 1.5 ],\n", + " [ 1.5 , 1.5 ]])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ab" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "1e5b54db", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Blue circles and Red crosses')" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUwAAAE/CAYAAAAt2PowAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACSa0lEQVR4nO29d3hd1Zku/i4d6ajbkqxiyXKVsVywjYPAmGbASTCEQJILMQnDwCS/kJlM2u2ZJE/mTi6Tmzu5MzeVSXyHJIQUHDMBEiDYiQmmG9sYXLCEm2xLsrqsYpWjsn9/vPqytrb2Pmefpub1Ps95Ttt17bXf/fVPWZYFAwMDA4PISJnsAzAwMDCYLjCEaWBgYOAThjANDAwMfMIQpoGBgYFPGMI0MDAw8AlDmAYGBgY+YQhzikIp9VOl1IMTvM8jSqkbYljvBqVUXeKPKHFQStUqpd47AfuZ8mNhEDsMYU4SRm/gPqVUj1KqQyn1jFJq/mQek2VZqyzLemEyj2EyMPpwCo1ei3al1B+UUssn+7gMph4MYU4uPmhZVg6AUgBNAL43ycfjCaVU6mQfQ5LxT6PXYh6AegAPT+bBXATjPS1hCHMKwLKsfgCPA1jp9r9S6n6l1MuO3yyl1NLRz+lKqf+jlDqjlGpSSv1QKZXptT+l1KeUUkeVUt1KqXeUUu8Z/f3PaqtS6n8opR5XSv1cKdUF4H6lVIFS6idKqYZRqfhJj+2XKaX+XSnVopQ6pZT6vO2/K5VS+5RSXaPH+i8e28hXSj09uo2O0c/ltv9fUEr9T6XUK6PnsVMpVWj7/16l1GmlVJtS6iteY+GEZVl9AH4N4DKf55M5KqF2KKXeAXBFuO0rpVaNSrDto+f/5dHf3ca7TCn129FljyulPhVpHJVSGaPbaFNKnVdK7VVKlYz+N1sp9bBS6pxSql4p9aBSKjD631Kl1G6lVKdSqlUptc3vmF1MMIQ5BaCUygKwBcDrMW7ifwNYBt7kS0Ep6Wse+7oLwP8A8JcAZgG4HUCbx3bvAIk8D8AvADwKIAvAKgDFAP6vy/ZTAPwOwNujx7EJwBeVUjePLvIdAN+xLGsWgAqQnNyQAuAnABYCWACgD8D3Hct8HMBfjR5LEMB/GT2GlQD+FcC9AMoAzAFQDh9QSmUD+BiA4z7P5+9Hz6MCwM0A7guz7VwAfwTw3OhxLQWwy7aIc7x/BaBudNk7AXxDKbVpdFmvcbwPwGwA80fP+6/BsQOARwAMje53HYD3A/j/Rv/7nwB2AsgHx2rKajuTCsuyzGsSXgBqAfQAOA9O4gYAq23//xTAg6Of7wfwsmN9C5z4CsAFABW2/zYAOOWx3x0AvhDmmN47+vl/AHjR9l8pgBEA+S7r3QCgbvTzegBnHP//HYCfjH5+EcA/ACiMcrwuA9Bh+/4CgK/avn8GwHOjn78G4DHbf9kAQnJuLtv+KYD+0WsxAuAUgDU+z+ckgM22/x6QsXDZz8cAHPD4zzne8wEMA8i1/fa/APw03DgC+ASAV+X4bb+XABgAkOk4nj+Nfv4ZgK0Ayif73pjKLyNhTi4+ZFlWHoB0AJ8FsFspNTfKbRSBUt/+URXsPCjBFHksPx/ACZ/bPutYr92yrI4I6ywEUCbHMno8XwZvWAD4JCgNV4+qi7e5bUQplaWU+tGoWt0FEkSeqJCjaLR97gWQM/q5zH7slmVdgLcULfg/o9diESiRVfo8nzH7AnA6zD4ijb19O2XgeHc7tj1v9LPXOD4KPhQfGzWd/JNSKm30PNIAnLOdx49A6RwA/hv48H1DMVriE2GO86KFMSxPAViWNQzgN0qpHwG4FlTL7LgAkiIAwEGqreANvsqyrHofuzsLqnC+Ds2xXoFSKs+yrPMRtn/KsqxLXDdoWccAfGxU1f0IgMeVUnNGSc2O/wyS1nrLshqVUpcBOADe1JFwDsAK+TJq8pjjYz1YlnVGKfUFAI8opZ6OdD6j+5oP4Mjo9wVhNn8WlOo8d2/73ACOd66NNBeADqlI4/gPAP5BKbUIwLMAakbfB0CJdMjlvBsBfAoAlFLXAvijUupFy7KOhzneiw5GwpwCUMQdoP3oqMsibwNYpZS6TCmVAapvAADLskYA/D8A/1cpVTy6vXk2G5sT/wbgvyilLh/d71Kl1MJIx2hZ1jkAvwfwkKJDJk0pdb3Lom8A6FJK/fdRh0hAKXWpUuqK0WP7C6VU0ehxnx9dZ9hlO7ngg+C8UqoAtBX6xeMAblNKXauUCgL4OqKY65Zl/QEkrAcinQ9oO/y70TEpB/C5MJt+GsBcpdQXFR11uUqp9R7HcBZUrf/XqCNnDShV/gLwHkel1I1KqdWjkngXgEEAw6PXbyeAf1ZKzVJKpSilKpRSG0e3d5fSTrUOkLzdrstFDUOYk4vfKaV6wIn9jwDusyzriHMhy7LeBW/6PwI4BuBlxyL/HXRSvD6qvv4RWqV0bmv76L5+CaAbwJMACnwe773gDVgNoBnAF122Pwzgg6DN8RQoAf8b6IgAgM0Ajoye93cA3G0xSsCJbwPIHF3/ddDM4AujY/i34DmeAwkg2mDyb4FqamqE8/kHUFU+BRLSo2GOqxvA+0a31wheyxvDHMPHQBNBA4AnAPz9KJkD3uM4F3xgdIEP390Afj66zl+CzrF3wDF5HLRNA/Tu7xnd3m9BO/epMMd2UUKNGnwNDAwMDCLASJgGBgYGPpEQwlRK/Vgp1ayUOuzx/w2jAbFvjb5cYwQNDAwMpjIS5SX/KRhU/LMwy7xkWZZrCImBgYHBdEBCJEzLsl4E0J6IbRkYGBhMVUykDXODUuptpdTvlVKrJnC/BgYGBgnBRAWuvwlgoWVZPUqpW8FQFtdAYKXUA2D8GzIzsy9fvNhU2TIwMEgs3nlnf6tlWV7ZcJ5IWFjRaFbB05ZlXepj2VoAVZZltYZbbtWqKmvbtn0JOT4DAwMDwerVar9lWVXRrjchKrlSaq5SSo1+vnJ0v5Fyew0MDAymFBKikiulfgVWrClULM//92CiPyzL+iFYmupvlFJDYLrb3ZaJmDcwMJhmSAhhWpYVrqAALMv6PsbXMjQwMDCYVjDVigwMDKKGZQ3CsurgXgZg6kCpDChVDla4ix+GMA0MDKKGZdWhsDAXeXmLMOqemHKwLAvnz7ehtbUOSi1OyDZNLrmBgUHUsKx+5OXNmbJkCQBKKeTlzUmoFGwI08DAICZMZbIUJPoYDWEaGBhMW+zc+RzWrq3EpZcuxf/5P99M+v4MYRoYGExLDA8P4z/+x7/Fk0/+Hm+++Q62b/8Vjh59J6n7NE4fAwODpOPQIeCpp4CzZ4H584E77gBWr45vm/v2vYGKiqVYvHgJAODOO+/G008/hRUrVibgiN1hJEwDA4Ok4tAh4DvfAc6fB+bN4/t3vsPf40FDQz3mzZv/5+/z5pWjocFPH8DYYQjTwMAgqXjqKSAvj6+UFP35qafi265bsmCyHVGGMA0MDJKKs2eBWbPG/jZrFn+PB/PmlaO+Xm+kvr4OpaVl8W00AgxhGhgYJBXz5wNdXWN/6+ri7/Hg8suvwPHjx1BbewqhUAiPP/4YPvCB2+PbaAQYwjQwMEgq7riDdsvz54GREf35jjvi225qair+5V++j9tvvxnr1q3ARz7yUaxcmdza5MZLbmBgkFSsXg184QtjveT33Re/lxwANm++FZs33xr/hnzCEKaBgUHSsXp1YghysmFUcgMDAwOfMIRpYGBg4BOGMA0MDAx8whCmgYGBgU8YwjQwMDDwCUOYBgYG0xKf/vQnsHBhMaqqInb2ThhMWJGBgQ/U1AC7dgENDUBZGbBpE1BZmfx1Dbxx773346//+rP41Kf+csL2aSRMA4MIqKkBHnmE6Xxz5/L9kUf4ezLXnSlIee0VqNpTY35TtaeQ8torcW332muvR0FBQVzbiBaGMA0MImDXLhaLmDWL1Xbk865dyV13psAqLUPgN9v/TJqq9hQCv9kOK8mFMpIBo5IbGERAQwOlQztycvh7MtedKbAWLcbwR+5C4DfbMXL5FUjZvxfDH7kL1qLEdHKcSBjCNJjxiNeGWFZGVdpeoqynh78nc92ZBGvRYpLlS7sxct3GaUmWgCFMAxcky0mRqO26bQdw37bYEGfNGmtDvO8+//vetInrAJQOe3q4nQ9/OLnrziSo2lNI2b8XI9dtRMr+vbAWLpqWpGlsmAZjkCwnRaK267ad734X+N733LedCBtiZSUJdtYsoLGR734JN551ZwrEZjn8kbswsvHGP6vnTkdQtLjvvo/hhhs24N13a7B0aTl++tOHE3TE3jASpsEY2AkG0O+7dsV3kydqu27b6ejg55Urx287UTbEysrYzz+edWcC1LmGMTZLsWmqcw1xSZmPPPKrRB2ibxjCNBiDZDkpYtmum+rttp2BAaC/H9i7F2ht5fe0NCAzE1izhmpwomyI8ZoVLsaYzJEN14z7zVq0eFqq5IYwDcYgUU4KJzH09gKvvgqEQkBuLrB4MRAMem/Xy/aYkTGeAEdG+H8wCHR2UvXu7eX35mbAsli0Nl4bYrz20ETYUw0mF4YwDcYgGieFnRSDQf4WCmmiKi8nMZw+DRw8CAQCQEEBpcF9+0hin/+8+3F4qfChkO4PI8c3OAhkZfH31FRAKWBoiMdRXs51Zs3S5P3hD8dGUPGaFZJl7jCYOBjCNBgDcVLYpUM7wQhJVlcD9fXA0qUkq337+P/ll/O/nh6guJjSXnMz26oGApQQu7v5ubUV+P73uWxuLrB8uVZRvVT4xsbxx7dkCTBnDvCnP1GaTE/n78PDep3PfCb+sYnXXDHTYjIty0p6W9t44daKNx4YwjQYBy8nhV2l7OqiJHf8OKW6nBwuU1tLiS47Gzh1CigsJEFmZwMXLgBXXEGifOstbmNwkKTa2Umbo6io4UwDzuN76CFKscEg0NfH3wYHSdKJjHmM11wxk2IylcrA+fNtyMubM2VJ07IsnD/fBqUyErZNQ5gGvmFXKXt6SJKhECWkRYu4THc3pcX+fn4G+F1+B0ikKSmUADMyKBEODFASrazkfqIxDVRUAL/7HQmzv5+k2dOj7YSJinm0H9PAAB8gHR3Ahg38HEmtnkkxmUqVo7W1Di0tLZN9KGGhVAaUKk/Y9gxhGviGXaXMzSVp2G2X8vvixVTRc3LokCkuplpcUcHvbW2USoNBvX4wSFLNyQGOHuVvPT3AuXN6/zk5wLZt/Nzaqpfv6SFh9/dT6h0Y4Ht/P6VVgFJovJ5pMVds2wbs2UMJ9qqreOx+nDeRzB3TCUqlQanp5+WOF4YwZzASHcJiVykXLwbefptEWVxM0gK4/WCQDp2SEhLlwoXATTcBJ07wWObM4TrNzSS39HTtPT97lsvMmwcsW8bvBw8yPEhspQMDtIFmZVGV7+ujOn/ZZVT5ARJzYyM/J9IzXVlJM8P1149VrQF/zpuLPSZzuiMhhKmU+jGA2wA0W5Y1rpqnopHjOwBuBdAL4H7Lst5MxL4N3JGMEBa7SllQQIfP8eMkxqIi/h4K8fPnPz/eUSTEfd11wO7dJM1jx7jOyAhJ9vhxblfIqLmZ9s/mZn7PyaEtdGiI+x0YIFmnpGibKaBtg8nwTB89SulWnFWLF3M8pqvzxsA/EiVh/hTA9wH8zOP/WwBcMvpaD+BfR98NkoRkEIVTpVy4EPjEJ8Jvz424d+8GNm6kxNnbq4ln4UJKi/Pnc93WVpLgyAg/5+ZSOh0a0tsXtV5U/ZGRsbbBRx9NrGe6pobrKsXtDAxQ0l66lMfvXPZiC1Kf6UgIYVqW9aJSalGYRe4A8DOLPv7XlVJ5SqlSy7LOhVnHIA4kI4QlFgLwIu4TJ9xDfR56iGQXCpGIAgF6vMWJ1NnJ5dLSSLYtLSTJ/Hyq5Y2NY22DXp7pYDA2u+auXVqyDoVI3m1ttLVmZ2vnjwlSn5mYqOIb8wCctX2vG/3NIEkoK9N2RUE8ISw7dgBf/jLf6+oYxuOneEZDgw45EoQj7k2bSC7V1SS19HQSo6Q6XrhA8hwepn0zFKLzZXiY6vi995KIhZRke11dOiOorg5oaoqtEEhDAyXgtWu5z/p6mgMKCrTzJ1FFPwymHibK6eMWqOUaUaqUegDAAwBQWrogmcc0I+Al9SUyhGXHDuAb36Ckl51NAujupqTlpeLbA9xPnmRQOkAVu72dBOMWiiNq/1e+wiD0oSGS2vAw1d+MDNo+W1pIoJmZlC4XLyaZfvObdBiVldErf+KE9rbn5AArVnD9YNCfucI5vsEgt1dYSKeTqOHp6boQyDe/SUIuLmZQvdhVwz0ojPo+PTBREmYdgPm27+UAXKeOZVlbLcuqsiyrKj+/aEIObroiXMm0RJUVq6kBtm7VZDkyQsIbGSEpuBGA/bhWrybBvPIKQ3Eky6e42Fuqq6ykV/2KK3jcJSUkQfGcb9rE3z/8YeDWW0mWR44AL79MVTktjRLwt7/N92XLuM3cXK4bCvmTet3Gt6mJEmpXFx1RjY3cR28v933sGFV0iRx4+23aXwFvCd/0/Zk+mCgJ87cAPquUegx09nQa+2X8iOTYSUQIy65dlPKELAMB/t7Tw+9XXhn5uKqq6Ojp7SWRLF5Mqaury1tCFQk5GNRxlQMDlFR7ekiiPT3a1tnRwdjOQIBhSKmp2ru+cOHYsfGbceM2vvPnc5+hEHD+PMl53jzud/9+knJRkQ67UooSdjDoLeGbHPPpg0SFFf0KwA0ACpVSdQD+HkAaAFiW9UMAz4IhRcfBsKK/SsR+L3ZMRG5yQwNV3pQUSpYAP1+4wBtbqp2HO67CQtoZAR0n6XasTrV040aq4K+/zvXXrNHEc/fdJOHaWqrrXV1U4WfN0tLvwoU62wgg4T7/PLctefDz53ubK8Lls5eVAddeq1NDg0E+WLq6+BApLKSd8+RJkvaVV3oHqc+0HPOZjER5yT8W4X8LwN8mYl8GGhORm1xWRnW8u5t2x54ekmVaGvDAA1zG6W12O6709PHbth+rV/jRffcBW7ZoIi0qAtat07bJ06dJVIEASUspErt4r0MhkmQgQIlwzhyq6JmZJLveXto13cgs3PiK8yc7m+aA2lqOk73WQ2Ehj+nKK8MX//BzHY2Nc2rAtKiYxnB6gE+fZhHd6mqSWCJsYJs2kWyWLgVmz6ajo7SUHvNFi9xtbxUV4z3T+fkkXPtvXV1j+/F4eZUrK0k4Dz7I5Xfv5rrLllECDQS4/5QUEiZA4mpsJLk3N1PS6+jQyy1cSGl3xYqxXvVw42s/ZnsUwtAQv5eV8Vj27aNTynmOfq+jcz1j45w6MKmR0xj2QPKjRyl9SLm1l19mQYoNGyihJSJYPS2N0pJINw895G5727OHRCYl39as0XUvvfKo/aqlTntfVpbO9ikp0VIlQHuiFPmwLJKZqOJe2/c6d7djfuQRSpaSDx8IkIQbG3nuhYXch4QSeV2DSPvxY+M0EujEwBDmNIXzBikqovNBnCDp6bT7VVfHHzDt5Tyqrqa0Y08RtCwS5vXXAzfcoO2D4bYD+DcvuNlHRd0eGQEWLKBjac8eLpcxWtmrvp7E2tSk1z17ltLnV7/qTTLOY66p0SaI/n7gzBnuNycHuPRSLYm//jrXy8nxF7QebmwiPUxMkPzEwRDmNITzBjl9mhJlfr6uRZmeTvKSdg6J9rjW1JCEnCmCIyMk6mg9vn7jRp3EungxpcqyMuDqq/V6zrCh/Hx9vCMjtDu+/TbJzbJof4xEMvZxT0ujDVQpEnRWFq9DXh6Xy8+PLBFu20aPPkApfMsWfnb+LrGfs2bpdNG2NtpjnUHy0Yy5QfQwhDkNYb9BWlt17GFvL298KbsWCFDyy8nRds1EqWzOFMFgkO/NzcD73z92WT8eX7+lz5zE6qyMJOtt20a1WCk9Fjk5JMiaGuCdd2hTLSzkcUvRj3AkYx/3vXu5vUCATqasLO6nuprS7npHpQSnRPjd71LCzc7mb/v20c5qWbS12n8vKOD3nBzGeaak0DMvsaw9PbTnRjvmBtHDEOY0hF1FO3WK0mRxMQOqMzPphGhtpbSzfDlvzPp6kkmiVDa7l/jUKV2bMj9/vEfcr+feT9yoG7HaKyMJtmwhAZ09S9U5I4PH+3d/x3VPnyYRKaWP99QpXYLO7aFiH3c532CQD6n0dF2FXmpkijTY3c3vku20axdJMSdH71spqvdKkfzl9/5+nsfICIk9NZXnsWaNjmU9dy68BBppTI390z8MYU5D2NVSuXEBXeXn7FlKKqLOSTWdRKhsbimPElt5+jSrDb34Ism6slITSaQmatHcqH4D8rOzdQm49HQttTU0kCxDIU1MQ0Mct8WLvR8q9nGXAsp9fdxOdze3tXw5pcvvfY+klZmpK9Tv2QN87nMkuP5+nTIJ6GrxIhED1Biam/ku5AyMrRGQk6PtpB0d7hKoXzODsX9Ghgkrmoawh6GIvW9gAFi1isHea9dSotqzhzdEbq4mU0EsKptbyqOE0EhnyEWLtDr6+uskE7ebL9mhMrt28ZyvvZbjde21/C6ZPkKkAwN8uDQ3k2SWL/cullFRQVV8xw6GK507x1dWFk0iPT18iPzud7pYyOAgpb6hIX4XabOzU1deAjhOGRl8iZe/o4Prp6Zy3awsfu7vpxQJcJ8rVnCMm5sZEZCby2LKkuEUruCHKRISHYyEOQ1hV0ulX87SpZSaTp9mqMu6dTqLZe9eSk/2eo2iJkcj5bmlPFZXA4cO8TjWrNH7KCrS0pjb9pLtqAjnWb73XpLz0qX0mre3k5gkQ8e5PMBx2r17/DoFBSSxjAwSV3U1/wsE6LFXitfEsvTDbc0aSp+trVyvr4/fAwESrVSKP39eE6102+zu5jabm/VDU2y98+axa2dKivs5RDtOBuNhCHOawq6W2kmvtpY314kTvKkWL+ZNfvgwSVPU0/x84Pbbo1PH3EJ6rr5a3+DR3HjJvlF7e4EnnqA0lp3NkJ/iYt110hlb2tqqVV6B3fZqJ3h5KOzYwXGUfPrWVtqKJfd+eFiXnhse1iFIp04BK1dSfe7upiRZXEypsLERePNNkmcgoAPx29p43bKyeE7nz4+X3mPJ/JpJnSwnAoYwZwCEPGtqgC9+kTepdGJ84w0tkUjvm/R0/rZnT3RSXqSbK5obL5k36o4dNA/09elxePVVntOXv8xl3OIrw4U1uRF8fr7Or29t1cU2xF4qMZ+WxWNRillSAwN8oIlEax+H2lpqBhLX+sYbOoZ0YEDv9z3v4br2c4ilpN9M6mQ5ETA2zCkKCZD+6lf9pznu2sWbSSm+hocpiTQ18QaUQO7ly4HycpJKLMV9namYR4+SMKTsmVt6X6Rt+U0j9IPHHuNDY/58SpBK8bz7+yNn23iVw3MryFxSwu13ddF2qRSJMiuLD6biYl09PhjUNTTtcBZYlh7u3d1cXsKFLIvbz8rSkqbzOsVS0i9RZQAvFhgJcwpCpJ3hYZLdoUMkwwceAG6+WS8jKZGSaSOhPmfOcJmODqp1Q0O8+ezhM5dfzs+S7SJ9w4VY3LJf7KpsdfX4ij+WRXJwtolwQzJbzjY10YaakqIJamSEzqlwCOd9d5PEAgFeEzF/FBfTPglwjAcG+ABbuZLjX1urx7mykmPllLSdPdw7Ohg7KjZRQPdEv/ba6M4hlvM2GAtDmFMMNTWs2C2pdwUFvOl6eljId9EiLieEKi0SOjtJWCdOkMQ6OujJTU/nDZc6eqWl/3dPD2/Agwcp0WRnk1BaWqjuedk05eZ66CHe7M5akbNmha/MY0eybtSSkrGkA3AsSkpi36YfgrcTn1PV7uoaW9quq4uk7iRitx7uEg4lCQmWRc0hEdK4QXQwhDkB8OuJFslSKppLqbJgkDdTe7sO9xgeBg4c0HbJ7Gwu19fHG+7qq3VRiqVLqT4DvNmkpqTUmBQJU1rk9vfrEBPA3aY5lb2rd9/NausAx+XCBb4+9an4thutBGq3BXr959aJ062Huz1BIBhkURUjFU48DGEmGdEEBosntqBAd0MU7+rcubr3dWcnJUvJYBkeJpnm5lKKOXSIpLl8ue4tIymBnZ3MRNmyhS1o58/XXt/nn9f2M4EXCZaVkYTt6nxx8fhWs5MBMVs89hjPv6SEZCm/JwORJNBw/4UjYpk/wSDNKEK2knduMLEwhJlkRBNvKFJbfr5uy5CaSsmvqYn/SbXwlBSS5dAQlxkYoPq2fz+lknvv1Z5zuVEliNsZhhIKUXppbeXLrrp6ea4rKhigLep8dzdJ+qabpkaq3c03J5cg3eBFfPGMRzJtvQbRwxBmkhGN6ioEJnF5bW0Mjk5Lo3TZ3MybrbqakmJ2NiXLgQHGHaanu6fEhVMj7UUg8vJIep2dlHDDpTWeODFWnc/NJYnu2cMAb5NqRyQi9dA4ZaYODGEmGdHEG4odrL2dpJeRwc+zZlFqFO/q8uW0WzY3k1AlqHnWLAY/R2owJqispDTZ0UEpMz+fbWEbG6nW33RT+D40dnUeoAnhhReYAWRKjRFeGsa2bbxOU6ngxVTQDKY6TBxmkuEWb3j2LFVftxjLjAxKeNJpcNMm4JZbSJIrVuhtBgKczJs301EjTbn89MC2IxSig0ja2i5dyu/Ll3u3bgDc4xLlezSxnTMdzjhLgBrBa69NrZYTpg2GPxjCTDKcgcGhkK5IY5+YO3Zo4/6NN1LaO3+eKY07djBAvKLCfZtz5gCXXKLJsrWVksLLLwN33gl8/eveE9+L+CJl3HgFnq9ZE9v2ZiqCQWYZPf88r2Fr69gCw1Ol4IUpwuEPRiWfANhtUA89xJvIqaI99hiXke9Ll/IG6+0lUZaU0Da4aJHenj2XXKSDpibaEXt7qcIPDbGiUFOTe93IWFLjWlpoU739duCllxiQvWRJ5BCaiw01NTSb9PTQRtzfz2vR2wtcd93YZZMphftRtadymNhUgiHMCYbXxGxq0tk3AO2K5eW6ig7gbZcUiXPbNpLl4KBuo9DRQXLr6Ai/bjgvrDNDRiTdigpdXf3ECf2/G5FejLawXbt4DYuLxxZZlnx+OxIhhduJUQqJtLTo5njz53s7nUwRDn8whDnB8JqYJSXjq2YPDTG1r7VVdyB0PvHtN0l9PeMtxWNu335Kyth1/UgdQpRCkOFgX8aNSO2kW1QUeXszAfJwTEnR5pKREY69NIZLlBTu7DckHTszMmgCOn6cUq4chzw87QWhnamuF6tmEA7GhjnB8LL93X0330+fBt56Sy+fnc0qOK2t45/4TkN9WxvJ0rIYzA7QOdTfTwKVdSMZ+CVFEvBHluFQUTH+Jdu3v2YivOzDUvA3kQUv7DbI2lpdib25WbfCkKLD8uC1z4Nly0iWR44Av/0t8NxzTJvdts04fuwwEuYEI5wKvGgR88iHhihxXrhA9c2yKAEsWjT2ie8MWZkzhyR8/rzOOxbizM/XucfhgukLCvg5XqIMB+e2T5yYmRKom324ro4q+qOP8tpLgkEssGsJ1dWsgg+MbVsC6GpJksElD17nPMjOpjmnr4+mBCC8/ftihCHMSYBMPJns4ol0Vs0W1VyaazmlkIYGql979/JmCAR0ZW+RXoaGmAr56U/rdb3sqCdP8nMyydINbgTqxHQkUefDUQpnBIN8MMUT1O8MiD95klleVVW63xCgW3GEQrr3j6jajz46dh6cOkXClHJ4AD/b7d8Xe6ymIcxJQLjsD7uNs7BwfNUbe6vc3l7apkT9CoVIkHl5DDO64Qb3CR3OjjrRZOmGSBKoYDqQqJ8IiViC+p3S4fLllAarq7mt/fv5++WX63kiy4tG45wHUoDFXrNTJFO7Cn8xZ3EZwpwEhFOJvcJ81q0bP1lrarTKLUhPZzO0r33Ne/9u+2huBj760cSeZ6LgRuJuJDrVCTSa0J1IkpxTu5DU1LNnKSVWVdE0c+gQl1+7lgU77KFora0MoM/P5+/BoC6CDJBoW1p01MW2bcntwzQdYJw+kwC37A+5cbwqYJ84MT6wODWV7+npJL30dEoU0nXQC859BAIkS/FsTwf4dSZNJYeS3yQBP1k3wSClyIEBzh1pe7FmDfDgg+zcefo0yS4nh/Zw2Ya9AtJVV3F7e/ZwXxUVfAh3dOjWGFKJ6rXXtKovuNhiNY2EOcGoqeFEPHSIdqzFi6l2228ct2ILTnsToHvK3HCD/k0K00aSUOz7aGmZGqp4vPAriQomWiL1myQQb0fNmhoWm1aKcyQUokq+dKm2l9u3b+/wuWkTJcnnn+f68+ZRYykspPRaUzN23C62WE1DmBMIebIXFzNfvLubIUSXXEIpz3njOGMsBwfHFruQyuL2/uRe6ruXrWkqSWDJgNeDIByRChJNqH5LtflR3UMhahNubS927dItgKUpG0Bvd1oaP3ttv7KS5pxQSMeQ2o9/z57x8+1iitU0hDmBsEsOUkG7rY32wy99yb2LoZDe4CDj4gAdWGzvKWO/AaOVUJIpXfb18T0zM3n7iAWRztkPoQLRk6qfUm1+sm5kGbe2Fw0N9HKfPUv1OhikI/DChbFZY87tB4Paqej2gE5Ppwo/a9bFW5vTEOYEQCTFp5+mdLlkifaAj4zQjuhVfV0mtUzc5mZKCfbJapdEJWtDug0K3GxNiZAuhRC9YJdkpH+5H0w2wfp9iLiFQNkRi5TqR3UPt8y2bdRgQiHOlaEhxn8WFOhYXLf4UAl5Skujw+iddzjPLrtM10a9mDzibjCEmUC42Q0B4Hvfo63xwgWqUK2tuie1lw3ITS2TtrEPPjh2n071u76ehGOXDsJVTo8WTpJ0HqcX/C4HRCbXySZUgR9J1QteZOqlugNjw8o2bhyvXQiZSSvenh5megUCfIh6tcwIBjnmp09TxS8oYA/1zk7g9dfZQ+hiJ0vAEGbC4BWj1t/Pnjw5ObQ5njtH8jx8mN0ZvWxAfoshuKnfS5fSyJ+f7y2hxCJd2okyGvKLBZG2H45QpwqZAuEJNVyAvlN1d5tfu3e7k5jdvhkIMGtn0SKq2LItO1lWVFD7mT1blx9sb+d8LSjQBaEvdrIEDGEmDF52w1df5ZM6PV3nc7e0UAq84QZvG5Bfj6qXJNrbG9nW5Fe6FKJMNklGg3DHMl3JNFyKaDR26XD2TTfi3bqVc1MprcZLi98FC2ILHZqpGUEJIUyl1GYA3wEQAPBvlmV90/H/DQCeAjCa/o/fWJb19UTse6rAy7MpT3VBVhaf3IODrGheUzNWzbJPrIwMXXVmzRp3acIuiUoqZVsb88q9Jmk00uVUJMtIiJVMBRNBqkePssBFfT1DdzZv1hX1gbHkKY4cv0Hv4R62bsQrc7S+nmYje4O9/Hw+9EMhztNwLaLtKaDNzZRsZ1pGUNyB60qpAIAfALgFwEoAH1NKrXRZ9CXLsi4bfc0osgS8g5LLyzkJBwZoVB8Y4Pc1a7wDlO3V12+4gSpRf7/7fqX6kVQ56u4e2wjNq9JMJOmyr4+vuXOjJ8uUFCspr0RAzifcS8493CseHD1Kqa6zU9sJt27l7wJnQP7s2f4r2XslP1RWuidNZGTootA5OfSsX7jAUKXjx6mep6RwXn75y3y3wzmPq6tphgqFZl719kRImFcCOG5Z1kkAUEo9BuAOAO8kYNtTHvJkPXp0bKFWeap/4hMsl9XRQTJLT+f/W7Z4q1nO6uvh1C+5Ob75TU702bN1MLyfRmhuiFaqdCOz3ByXBeNAd4/7fpwYGVFx78uP/TQcaUaSUJ97jtdp9mx+l/fnnhsrZQoqKoCPfxz453+mqaW4OHIMpFeBFzfb+OAgH7KZmTyWzk5qKxcuUCMKBPi/OJG2btWV/2Uf9nkcCumwuWh7TE11JIIw5wE4a/teB2C9y3IblFJvA2gA8F8syzqSgH1PKuz2oMpKTqjjx3kzLV8+tmyb08juFmYEuFdfl9+9JpyzylG4dSJl9fglSyd5JZognfC7/e6e5JNqvA6p+npKlnbk5vJ3L6xYAfzn/wz88pf+Ktl7OSE3bqSzCNDqen+/zj3v7mbM5mWXMUhdHEES/J6TQ4nT/iB2mgtyc7lNKScHzJyMoEQQptvsc87aNwEstCyrRyl1K4AnAVziujGlHgDwAACUli5IwOElD/Yna2urbnvb3T3W1uPWf2fWLC0pvP02iyNImJG9+rog0oSTZluhECdsfr5uuhbO9uSGcIRgJ8pkk2QsiHRMfiTVZBGqSKbFxdQ4pDo6wDkzb1747a5YAfzP/8nPkeI/vbSXEyfGhxRt2MD5c4ntjuzq4jxsb+dcEoRCVN3tD2KnHb23lyp5Zmbk/vbTDYkgzDoA823fy0Ep8s+wLKvL9vlZpdRDSqlCy7JanRuzLGsrgK0AsGpVVWIMV0mCPFlbW0l66ek6v9vLyG2fyEuWcD2ldFtdqb7ulALCTThns62ODpoIZs9my1yRLm6/PbJ06XWzx02UnZ0xrBQGosdGCT/HHklKjZVQZWw/9jHg+98fn2K4ZYv/bYVCwA9+wODy1FTaxO3ViMI5ibxClmQZOZ6776b63dOjywcODNCkZH94i5OpowM4doxaTn4+74c9e5gdNBMcPkBiCHMvgEuUUosB1AO4G8DH7QsopeYCaLIsy1JKXQk6m9oSsO9JhTxZT53SYUMDA3wCi5E7XJ5wYSEly5MnSXhXXqlJcc+eyB5ygbPZ1rlzNOTn5Y0NTXnpJe+KROFsckKWvojSixhV/LbFP8Oy/BNwDMQa7jwjSah+yPTSS4HPfhb43e+YYVNeznbIixbxOkSygR49CnzrW7zWaWm6h4+9Mno0Tc0i5bhv3UohoKCAZBkI6KQM+/pf+xolykCA0umqVbr+50wgSyABhGlZ1pBS6rMAdoBhRT+2LOuIUuqvR///IYA7AfyNUmoIQB+Auy3LmtLSox/Ik7WtjWTZ1ETbTXk5idPN5uicyIWFnFRXXqnDjERlv+EG/bQPB2ezre5uSpoXLuhlcnJo+3JDOLulL7J0klciydEN0WzfD7FGQaqxkKkbiV56KV9O2B1KXsT53HPUaqS0X18fr6+9Mnq07ZNF6hQnprTQ2LQJ+MY3/MVUdndz7qenUxp9+20+7GeCs0eQkHqYlmU9a1nWMsuyKizL+sfR3344SpawLOv7lmWtsixrrWVZV1mW9Woi9jvZkCdrZqbOxZ03j0/Y/ft1q1M7vJqgufXb8RuS4Qxpys3VYSGC5mZ3D6wgJrLs7NSEpJR+ueH118czdm0tf08m7Mfl9gL0ebi9okBuzvgXMD7MKhzsYVxeIUz19bpPjx32h3S40CIveIW5AXyYP/gg5+muXcBXv0rbuISt7dpFjUaGVTSumpqZ4ewRmEyfOFFZSdVDnvLBoLb1HDnCiWV/KkdSf6IJUBY4pYniYt4kFRUk5Z4evjZvHr+ul90yJcUKT5RAdJLe3LnAU08Bd9xB3bO2Vn8P5x52IpJnJFpEOodwpOlDMnWOoV0KDae+yzURidMubc6bB7z7rvZeZ2byMO2dQQHvykheWTiRsonCtagQ26hU1JL+RefPj1XfpzsMYUYBr+IaBw+SmFpbOVGys2mIFzJyZjqEU3+isT0JnCS8cCFw0026MMPs2ayo7pQwveyWnmRpJw+/ZClkmJZG6//PfkZd9PBh4Oab+bs9knrvXhrAFtgiJM6cob3jiiuiI1dBPCTrdZ5edtQIJGofV7tzyYs8584dT5qbN7MA9alTWosYHKSEF4mcIpFeuIe1W7xlbS3wla/oquxr1/K4urt5L2zYMHPsl4AhTN9wm2jf+97YklhK6RL+mZmcRKJWAyy7VVgYPn3MLU7OT0hGuDqL4WIvnTeIp8oYjVTpJDUhxOXL6T3Ys4c9FJYvH79uSQnw7LPArbeSNM+c0d/t2/KLnp7wJBsrmbqNg5NEfZKnSJ1+SXPFCuC//lc+aA8c4DJXXUWbdyRyCidFRnpY2wlVIkNEkiwupuCwZg3jgWPx/E8HGML0CbeJ1t7Oz8uX67CiYJBpiqmpJM+9e5l5Y1nkieuv56R79VVOquLisaTqFicXT5FWr7xxN+nS02bphyztpORFamfO8K5av57v5eVjJUmA32+9lSS5Zg3wzDPABz/oLXFGQiSCTSSZOsfHJ3lq4vRW1YU0BStW0Bljh+Sfh6vBefQopb+eHj7QZW4+/zyD6d2y1eRhbSdUiQwB+N2tXuu6deM1qFjm8VQq5GEI0yfcuvR1dXHSSHjQqVOcMBJaNGcOP7/9NlX2vDx/6WN+qnJHAz/SZcxk6YcogbGS4oIFJEv7dzsWLCBZ7tlDUnzrLd4pInFu3Qrcdtv47fslUSCy6u8lmUZDovYx80GeuTnhpU0hTS/veUVF+ID2mhrOL6V047Q9e5hSW1DAOTc0RD/cm2/yEt19t56Ldlt5V5e214uiYK/X6tTITp9mHvq8eVzeL+lNtda+pmukT7h16Tt/nkQIkPSuuIL3woIFOrRCWpc2N4+9wGJ78ps+JlWNnN7JWOBlu3QlSy/Pd329JhRpjB4OTU1jyVEkyaam8cvaJdHGRubpPfssxfJnnyVZvvUWl5Pln32WBCjYu1f/b9/u3r38LKq/1zbknJwvOW/7+fuBm1feBXbPuhdiLf6xaxelR8vSc/PCBc47sZY0N1NCnTeP83X3bj3X7J53OR3JUAPGzl+7RtbezpRhpXRUSLjCMM5jjjZqJJkwhBkHJPvBHiJ0/jzv77VrdfvbnByd+SBYvJiTNRh0Dy+yw0/bVTeEK+PmJl2OQTjvcDREKbjiCndJEhhLbGfOMGG6vJxpSrfeSnLs7QV27qTkedVV/P0XvwB+8hN3STUSIdpVfyFiN2nXiXgJ1EmcLghHmvGU2WtooBRon5sANZ/CQq1m5+TQRllTw0iPb35zLGl+5jPAP/4jgx285q+9KpJ9u5Ly65f0wrWkngwYldwn3Lr0bdigA4jFvnLVVTq7QZ68XV2aWAEdfjR/Pu/fd9/lNnNy9CSyS6PxtF11quO+pEsvNdxOlImCENuKFTSiPfooMwE2bODAyHG89BLZ4skndQHHM2cogV5zzfj6d05b6MGD4wnRrvqvXx+ZLN1gHwu7Gh9JdVdKO4lcVHRRzxOJsjKqxs3Neg4PD2sVX+agdDSdNYtk2tY2Xg2OFB5nt3fKdqXOAeCf9GKJGkkmDGH6hFcV6xUr+MQVeOXl3ncff7NPsM9/nr898gi/5+S422hiic0MB6d0OaFkKSRoRyAAvPACiS81lSQ6PMwcz+Fh4MUXgc99jge+fTvw4x+zNNTcuVzn8GE+nQ4f1ukzhw/TiFxQoEnz1Kmxdk4/TqhoYB8bP8RplzQ97Jpe9kw/KZROVFQwHTM7my9p0ZyWBrz8Mh/+ra18HhUX61TfOXPcU32dRWXsDp6KivHRHpal7Z1+SS/ajKVkwxCmT/i9cJGevE6J8KGHvKVHea+uZr758uXu9iI3uIUSOaVLTztZIsnSSZBuOuU11wAPP8xCoBUVrEry8MO0Vb70EslOmtNccw2JrroauOsu1iVLSeHyn/yk3v7QEMkVYLzNK68w4foDH+AxnTtHIpYexrfeqp1JZWWaWKN1JglkrPwSpwtpekmZTo+5X5w4waG0S5hFRWzHK62fOzs5dBLlMTDAeRfuAe3Vb0iatOXmcn9Ll/L5Jeq7H9Lz28t9omAI0yeiuXDReLm9pMfqaqZbzpoFrF5Nh9O+fTQLxFMuy7kvV+nSDdGSpZ0o/RjeZs2iUff550lut9zC6OyREarbRUUckMOHub3ubkqOIyP87fbbKT61t4+tMNLdDfzpT7zzhSHmztVxYBUVJE6AxufvfIeVS/7hH8bHgMYCebpKL4pw8JA0w8VoRgOxYdq7ib7xBp83117L762tFPYbG0lw8pDu6tIPaGeYj5il3ErJifblXCca0kt01Eg8MIQZBZJx4bxsNN3d/E9+r6oiiR46xCyecBMurn7jbtJlNGQpROnXO1FXB/z0p0xfGRlhefqDB6nbiTH4ox/lstu3c7vr1ul4rVCI9s7qakqhR44AK1eSdJcvJyN0d1PvXL6cv19zDc+rqor7uuYaRoCXlHB7+fmMrampYeBsPGo64E/aFJumA4m0ZbrNtY4OSn2CwkJKhnv2cH6JmUge0G7S5Guv0XZvh1MinUqkFw8MYSYQsQTYeqn6Tgd0YSGdxo2NY22mXvCjjo+TLr1UcT+IVqIUtLSQLF96id83bCCJDQ6S5AoKtMNHYrCuu46eiIMH6YUTe8Wtt1LC3LmT5PfrXzMc4fbbWeLn179mHbWdOymFSprVzp3UQZ98kv8XFVGc37CB5Gw/t2XL/J+bE3KBwyGMPTNeuM01MRnbkZ5OAnTrOupmQsrP59y3B8zPlArrThjCTBDCBdgCTIuUwgTOYq9u3SF37Uq8dzCmkBQ/0mW0UqUd69ZRyhTU1lKynDOH22tvZ6xWZiYlx7vu4nLHjtGFK8fX00Nivesu/v7887yDc3O5LMDvIqIDlCrXrSNjPPkkifjdd/kSZ1JZGYlV8Jvf8Ng2btS/RZt55KWee0iZiYKbWemBB2jJePllCu3p6XxGfe5z7g97NxNSZSUlUmdB5JlQYd0JQ5gJglfoz7ZtNLKfOUOjOqCLvd5+O43jbrUvY/UO+lHHxzl73GyXflXxeMhS0NJConv7bTp+liyhGt7WxoF95x0OwLJlJK8dOxgJHQzqVKnWVt7tTz9NcVrSWdLT6dWQgNj586mWAywz9a//SrX9zjt5LpK0vWoVSW37dh6bkGZeHvcBMAwqIyM2O6cfm2YS4FZt3cnR4TjbTa0PJ5HONBjCTBC8nDcvvMD7WkivpYVmsqYm3sdXX+3uIf/MZ2L3DvqJvRyX1RNL0d9oyPLAAUp4dmmtro4DIlLmm2/yzguFdGHIPXt0x7DHH9f7nT2b9sr163VU9R//yJMvL6cE+Ktf0bZ5yy1cJieHhHfokA5dev55EvTatXxw7N1LUrUskuY77/BVXs5jPHiQ2ztwgGaD116L3s4ZSTVPolruxK5dPN1Vq/Rv4bqNej3IZ0oLikgwhJkgOBtBnTpFbbKzk5JlSgqJLyWFdqOhIUqdFRVjn9Z2Y3kiDeVRCYB+pMtoJcuiorG2w7o6/V0+/9Vf6f+2b9fS49//Pbfx3e+yPNwll7Agx/LlFOErK0lgZWU89vXrGas5dy73e+EC9/PHPzJr6JOfJEE+/TTwkY9Qqvzf/5tq//LlXP/mm3kcq1bx/Y03qKLL8Y+MaDtnaSnHI1r7ppuUmWS13IloY3ynWpjPRMMQZoJQUaEbRvX303QWDNIg3trK34QsR0b4npJCgcXerS8eO2VM3vFYmpPFooaXl5Nsdu7U9TBF2mxpGUukLS0kr7w8nRpy5AhF5d5eiubDw5REi4ooPZaW0vZxxRW0ZebmUnK87jo6fNraKG3ecAPF+0OHuJ/bbuOdf/o07af33afJUgg9L4/kWFWlj/HwYX4XO2dqanSk6ccBNAGItf7qxUKQTphc8gSgpoa2SClsIK12Fy2itpmVpetkjozwXk9NJd+IShMpn9wvwnWFBDyC1WNRx2OxWZaXkyz37eP7ypUkJVHVhaSKikhkixaR8LZvp2fi2DEGDM6dC/zwhwz96eujBHn2LHXL/ftJjrLuwYMkxmee4ZOpu5vL/9M/8Yl26BBbOA4PM73lpz/lskKWR47Q5inkuG8fj2fePDZikofA0BDP8Te/oeTqzI9/+mld+CNJiNR61w2RWqYYjMVFS5iJrP4jDp+FC7W90rJ4fwG0U0qRAsui8CPNohYtiq7vSrRwa0ERtqFZJHV8715mydhRV6cr2YaDXTLbuZMnLYTzxhuaiMrLtUR68CBPorMTuOceXbE2FCJJioE2K4uEOjJCsb6iAvj97xmadPYsw4t6eihl/vu/U2rcv59VJDo76bQpLqYT55FH9HbfeYfv588zhOHxx0m6oqqLdNzSwoGeM4eB8L/8JYnyzBkWCTl8eHz8TowIl+UTrhamG2Lp/XMx46JUyRNdY8/en7y7WzeB6uuj43fpUvoFjh7VebwXLvD1xS9SA5w26O0d68Cxq65OHDhANXnVKkpq77xDqW/fPhLev/wLbZGXXsqA9bffpuFXKUqfLS0k55dfpqh++jSD0+vr+S45goWFjMBOTdV19rZto53yuedos9y/n6QsarDUNUtL4xNMpL+yMkqoZ8/ymCWMaft2TpTeXhIn4H7e69bx/dVX6YG3LJLzxz8efwC8DdHmkYfDRKnYU6kQcKy4KAlz1y5qYDU1Oqe2uNhf9R832PuTFxTwnh8c5KQeGKDmuHYtC3XU15MHSkqAT30qcWQZrg1FQlFaqh04YosU+6MTRUUkrmeeoTNF0hkvXOBd09nJ+MeiIhKfUnyqnD9P7/Xs2cATT1A6fPdd5oXu3q1z9VJSdMe3UIgifloaj0kpEt6Xv6yrHHV08GIHAjw+pXihAgFKskuWULpeu5aSYn09yV5y2J9/nhLosWNc/s47uR2786qlhWNUUaE7Ynp50cPFZE4BJJLgploh4FhxURKm5GlnZOhiwMeOxV6YVUIt2tspTAC6fUVXFyXKZcso0GRkTKFJ4pbd4wd2W6Q4QtzChgCSz+9+R7KRQPSCAj6xlixhPGVTE7d3//2U5F5/nQNZV8ftSf/iJ54ggXV2cv2BAdoO+/pIhFLCp66Oyy9bxm1LOFJpKe2cr79O1b6/n+ff1sb1WlooQebmkuTsknFdHQPef/97kuzICB8Es2ZpKVSIc2iIY5OezmN/8cX4KyFFQCz2SzcISR49OrZdRbwEF0+JwqmEi9KG2d1N4SQ9XavPKSljq59HA7EDZWQwS6+jg9yQn08BaO7cqVEtOm785jckA7st8pVXGEguUqdk7Yiqft11tD0ODVEEl8o899xDqbO/X4vle/bw6bJoEe/WWbNIjHPmkLguu4z7lVaY8+aRJPPyWKEEoMSWmqq7cT35JP9fuZLxL0ePkryU4oXJzdWBsXV1ZIzlyzXxv/MO9/3+9+vk/rQ0/jc4SCZpaBirnkuVpL/5GwbUWpa2aUaJaPLIo7VfOmEvVC2mpePHeWninbtTrRBwrLgoJUwpkjowoPuSjIzEX+qxsJD3r2T01NaSC8TkJfuebpPkz5gzR5OBSFUASWXVqvFhQ0Ig775Lcjt+nIT2kY/obJ1580hWIyNaeuvoIDk1NPDubWqi56ymhgPa2soL2NvLJ9LwMMlOPre1aVHphhu0wyYQoF3k9GmSb10dnT0vvsgnWn8/z+O3v+WTLxQi0UpU9/bt/D5nDqXWtDRdYemmm7SkvWoVl+vvp5R7zz1U4ZuaIkuZljUuaN1eqShcT594UFPDyuqiALS18TRDIR0OG8/cnWqFgGPFRUmYK1bQqWqvC+gsexUtJGOipET3Zc7KIiFLDcvWVpoDQiF65qed0bu0VKupu3dzAIU4pV1herpW1QGSjJTczs3l/zt2cGD6+kiYGzYw0HxoiMRZUMDB7O4mMaalcZtFRfxt9mwO5pw5HNyeHpLf8DCdLg0NzBoqLCRZZmeTrIJBOpbe9z4ue/PNTMVatIgX68IFHsPVV5P4Zs/WNsydO3k+c+aQ/D77WbLX9u188r7yim6VKBB39oIF7kQ5BeIwAS1ZtrVRKxoYILmlpnIIRPNyElw0Ns6pVgg4VlyUhCkXT8pXycWT2LNYjN3iKU9J0QR57Bgds889R3W9s5N8cfnliTV6h2ulG0+KtyskkPv553VwqaivIn1K4QqxTYh+96Uv8f9vfYtEduedHOw//YliU3c3B2pkhKSclkaV/pVXdHjQvHkkS1HjJSOgqIgS54sv8re0NL5XV/NJODDA/VRUkDDnziVJt7dz35s2USr88Y95bpJbvn07z6eujg8HCSMCKBHfdRe3deSI7jkUCIwlznBIgMPnxIn41HGxL0qXUynA0d7OU3GWeAOid+LMlAyhi5Iww128WL15TpWjtZUTubiYT+mTJ3V6sn1yJ8roPSEeckDbL2+6iUT2/e/rKj+Aljg7OrQHeP16LakBwD//M216Z89ykA8dIqFefz3De3p6eKfOmsXtZmaSAFNTKbUtXEgxPRCglCsOG6V4x1dUcNmeHl7gYJAXdvZsSo9SLq63l1Kz9EUGKAW/731cPzOTF86ucgP6CXXLLZQ229t5fnPm8Ol4//0cp+rq+MrBTRDkYb94MQVwgEPf18c5K/ZLO8E5nTihEE1QX/kKh8pNyJgJGUIXJWEC3hfPrzfPKYU6e5hUV/PzunVaa0xLI48Ipp0989w5qqoSRlRWxvzuxx6jWn377VxOHCCrVuniGna0tPCu+vWvSUb9/RyMmhpKmAMDtGVaFgnyiitIbhcuUPpsaqLU9/rrVHXr6kiW4iDq6OBy3d3UMevrudzQEFXwnBwdFiSFg7/3PdblvOsu7vO558ggJ0+SoA8f1rms9jAq6TP02mucLPffr8fAr5Tpge6eibFfysO+sJBBDadOUT0vLaVSEKnMW2sriVZyCqZryJAfXJRe8nDw481za3srPUwkY0K6TIp6Hm0f8imJtjZNFgcO8ERTUqjKHjpElfcnP6Fa2tLC5ZykceAAnybbt5OEBgZIkoODOoA1EOB2xQP+7rv8/OUv0+ssKY/vfS/XzcggWaak6By/8+f5u6jsEkfW0EDRv6KCzp/Zs+nAKSigOv/znwM/+AGJ9tlnGfQeCnE7Dz/Mc7OHTkmMpvQNsXvM29rC90Z3IoaiG4kIJ5L0yNOn+Xxoa+PD/e67vQmvrEybYKWNrlJa2JjW0SBhYAjTAftEEDiJzau5vPQwefBBClCx9iFPFDIzfTTLiuYmvfRSTRbDwySQjRspoa1cSUkzL4/S2fDw2HUlfbKoiMbd6mo+TUTyk/AiaVOYl0e1uL2dx1hRwTu5oIDEd9llNAmINJmXx4sxNMR1srO5TcviPletooSclsY7+5lnSF7PPMPjP3uWF+z550mQO3cyb331an2xbrtNB73bz0tMFADXl3GaMyd8b3Q3xFDWLd5wospKXsbjx3XLiqVLKQR4pQzbc9C7ujjMAwOc58A01J584qJVyb3gx5vnLInV2sonc3Oz3oZzO8EguUESU6aE0Xv27OirFQnpBQKUvg4e5JPg8ceplr/+OvAXf8GePDU1JFKJ0RwYIFlJA5jDh6kup6TwWHp7ebe2tJB0TpzgoA0O8rdf/ILH+9d/zTv7xRe572XLeFHEcZSaqh1I/f3chtTDbG3lRbhwgemLc+bw4rS361a7p06RWEdGKAkrxde771JnFezbp22WAJ+aXV3aY15aSgYJ1xvdJ2LpEukGL4fmiRO0fNjDfux1Md3WEz+ADM/atf67mk5XGAnTAT/FCOxSqNhvWlsp3OzYQc1RKoXZt/O5zwFf+xol0M98Zprad4T8iooYOpSWRm/x1VdTAty8mZLcsmXAj37EPPCdO0keb7zBp8rKlSS8M2d0NZLOTr6fP08CO3hQS6AdHbxTN2wg2f361/RKj4xom2dJCUkwK0s3RJJOkfv3UwJtbtYtJwIBvqR4aU8PyfPYMZJsTw+JTwqNCMlt306psq6O5715M3/fuZPn9YEP6CpMsm56OoPy16zR24kQUuS0XwLj7ZfRquNupqRHHuHv4UxRXusBnMf/+I+MzJpI7WmyoKwJLFYaLVatqrK2bds32YcxDnZPenU177n2dt6zs2frpvXf+MbEkGK4PHJnaFHE5mfhqhWJJ3xoSDca++UvKTG+8w5J89VX+S72waeeIrF2duq+4d/7Hpfr7eX3lhZdOHTePK4rto6sLF2BvKpKd4Q8cIAkKCWgUlO5vWCQ2zh3jnfthQvcdkcHyWrzZopFg4MUqXbvJtHn5tKMoJSWUiVae80a4BOf4JPv8ceppg8MjLXnil5sz/h55RVu27Ko89olzJ6esSFFch+OquR+HD7RhhM99ND44HH799Onx8YmFxfr2GSv9bza6E71GOPVq9V+y7Kqol3PSJgxwC6FNjfT5FVSwvtXWskMDsZu9E5k6bmYINLP3r1jnRbLlpGIpHrIk0+SgLKzSYaDgyTLF1/knZadTZJ74QUOTlUV7/xDhzQBtrbyv85OrtPczMyC2bMp6XV2kmxSUigpPvssmSIY1PGdGRna2ZOZyc/33AO85z286zs7KT02N1PSCwbZM6i+nrbHuXNJrBKqlJmpa/QND5M9GhtJeNddx+3Z7bnr1o0tSbdzJ5nj2DFu4557OC633jrWpumEh/0yUep4OCmyooKn193Ny9bdze8VFWPXa23ltNi7l+baCZ+bkwxDmDGispJP19tu4/1ln+uhEE1xTs+6HxIMpzYlCmHzk+1ST0nJeKfFiy+SRN58E/jQh2h7WLOG5LdmDb9ffz1te+npJJcbb+TT4x//kRLarFkkyb4+rtPdTWmuoYHOnGCQgxoIcF/795Ogliwh6bW16Uyhjg5KlpmZfO/o4HGdPEkzgAxkdjYJ7dgxSngvv0yS/7u/4/8jI9oYJ98lf7awkKp4ZiZDmqqqaHvZ59B+pFqRFCaZM4dkKWr4ggUkzaamqK9PIsKJwjk0T5zgpcjN5bMjN5ffT5zQ64n5SVKKg0HOzR07kj9npwoS4vRRSm0G8B0AAQD/ZlnWNx3/q9H/bwXQC+B+y7LeTMS+40W8qsSmTVxfmhKGQpxQ8+dro3ekFrz2/be2Jreqy8iIGlt1XRw/blWL5Aa3Oy1WrOC79N9Zu1anDcrvr7xCieqxx7j+Bz/I/3/zG5LekiUUm3p7aYssLaXkWlJCQgsEKF1ef73OGDpyhGpyXx8HWilKjw0NHPCyMpLi/Pm8ywcGdBn8L3yBRPad73C5116jB7yqiiQ3OKjPPy2Nvw0M8LhKS2kzXbiQx7Z+PSutp6QwSgDQ25FMn8OHeY5Ssso5phIkH+E6hUMs2T1OR+TZs/SMl5Vx+OfPH7t8KEQpsrSUwywmY/lv7VqS5mOPcW5O90pEfhC3hKmUCgD4AYBbAKwE8DGl1ErHYrcAuGT09QCAf413v4lAoqS5hQs54U6coHlv6VLe82L09gpD2rZt/P5fe01nHAomNURjwQKSgDgtUlLGBm6LGnrihP49P5+iyN13kzh+/GMayBYtohp84QJJ5/Rp3oGiljc16ZjKW26hXTQrSwernzvH7QUCFIE6OnQJtQsXaGdcupRMUFvLfXzhC8zseeIJkn0gQGZ47TXgf/0v4NvfJmHOm0ci6+wkG2RlcbuSQSTZPatW0WY5dy4l1Oee09XiMzJ0YPtll4VXwZ32ywnoEmk3Jb37Lsly6VL+PjzMIWlq4jyUtiu9vfx/6VJt30xP1x7xnByuMxMqEflBIlTyKwEctyzrpGVZIQCPAbjDscwdAH5mEa8DyFNKlSZg33HBi8j82h6FcIuLeY8UFpIPjhzRT2LA23Z08OD4/efnjyfseEI0fMViukF0tzNneKDr1/O9qoqSnh3l5cCWLZpEV64kOTU3k0gPHqT3WwrrHjlCNbuoiGRYWEjJbv58fp83j/8DlDQzMvj/JZeQZFeupESXnc2nS2Yml9u5UzdQW7aM67S0cN8jI+wY2dtLT/aGDXxiSf7q3/wNj29oiGLTnDk6s2jVKv7e20v76xtvcF9z5/LCP/+8TpWxP0x8quB2ONXxRGf3iClp+XL6vBYu5NwLBvl/UxNPNRQiiZ47x+dNdjaXnTWL6wG0Y/7ud3xuScui1lb+Z8KKvDEPwFnb97rR36JdZsIRb40+O+EqxYlXWsr7JhikM/jrX6cn/dVX9WQCNB85919Zyfs72U2pxtnJ7NESIv1IoPWtt451Wjh7+tghvX3uuosH/sYbJBqlSHbLl1M6PH1aE1JjIwlq/nxKe1lZXCc/n0RYWkoHztq1fO3ZQxIVD3heHtX5EydoW83MpPS3Zg1rlhUX87eFCyki/eY3ZAFp11lVxd9OnaIEK5Jlaiovxq5duubmz3/OFK73v59S5e9/z6ektNUQsjx3jgyyYIFmGJ/wo47HC+fcHx7W2TqhEC+DdDYV22VJCcnx9Gk+e1padCGqri5+f+st/j9Tw4oSQZhuV9cZq+RnGS6o1ANKqX1KqX0dHR5leBIEP1k9XqipoWAhHsMjRzjhJNg9FCLfVFfzPuvpoR+gpUWT4Jo14/efns4onWQ2pRp3Q3qpg01NYwOtRWJqa/PeuMRpilibl0eRRYppPP00T7Knh3fbyAhJtKODOmJGBtXp7Gy9H8kAOnuW62VlcQCDQf53zz0k28xM3uG1tbzDX36Z3vBnniEBh0I8huPH9bF9+MMkvoMHeZw33UTSHBjgMUl61tmztGX+xV/obJ+uLp7L5s18CEiM5oEDdI65ZfQ4L3iMYX3xZvc4535uLk8/P5+CuSRNjYzoCkZNTRTMm5t1l+OSEj4jSkq0VNrcPDPzyIHEEGYdALu5uByAU0bzswwAwLKsrZZlVVmWVZWfH+esiIBYW4yKKi6ewoEB3ieiyuTmUljJztats6uqSKaHDmkS3LLFff9btugUS78B7pGkjpjU8hUrxmelLFhAL7DXBsvL+ST4wQ9INufOkQQlzSknZ6xNr7IS+NjH+H9nJ8Wa/n4O4MAA/29s5N16/Dg/5+fTaRMIcNt//COJvKqKF6Sjgxdo9WqaEnJyaLTLyuKFSkmh5HjkCMlVKV2a54knyCaBgI7vXLKEF2ZoiE/AoiKuqxSJuqmJ4UYADX8vvsgL7JXR4yzpluRwIjc4535xMU9XKd0uaWSEr54ePi+amzk3581jQScpPi99qs6f5xDF2rlgOiARhLkXwCVKqcVKqSCAuwH81rHMbwH8pSKuAtBpWVYYvW5iEGuLUVHFly8nIQJ8Ajc363xamTRSdKOwkFrt8uWaBBPV4jSStOFlA/OllrshUsmytjYeVEEBYxSDQX33S3uHkRESXH8/SWrWLBLV8DCXnz2bg2kPRk9P5/pLl9KBdP/9JMdAgKYCpSghSo/w1lZ6xi9c4Pb37uU20tNpAujpAf7wB97phYVcTymmd0oOejBIPbO0lMvJBX/nHV7cjRt1O+Bly0j6lZUxpT/6ye5JFJxzb+FCNuWzOxxTU3WkVW8vL9X3v89ggV27+Cw8eZLDKM8babdkwoo8YFnWkFLqswB2gGFFP7Ys64hS6q9H//8hgGfBkKLjYFjRX8W730Qhlhp99mLBUg4rK4tRJEuXkieCQU6kFSv0em7q/mTVCPQML/KDvXt5BwE6jUhiEKU6UWkpfwuF6Og5cYLf29t5R61dS2Lt7SXhiY3yRz+iLfDqqxme1NCgM4ne+16tpotU9w//wJQq8Uj86U9Us197jSRWX8/9nzunjXZFRSTe4mJKnnPnUjLu6+PF7Ouj5Dp7NqXhtDQa9a6/nkGHIuWuX69tlmvW0J55xRVkijNnxpNmAtTxeIsF2+E29958k0N74gQJMyeHl6u7WwcydHbylZKiAxQk3n9khHNfnKczTS1PSBymZVnPgqRo/+2Hts8WgL9NxL6mAuzFggsLddfXUEjHXy9frrsiiFozHUvy/znA1A4JaAdINvbe5HV1JNTNm0mg3/oWvcypqTru6tZbKZn9/Oe6f8/rr5OgNmwg+f3pT7qK+h/+QPHnnntIWHv2kLAefRS4916G8Bw7RiPxFVdwmxkZ1COLiylpLljAO7uzk+S3YgVJtbSUbCBtfwMB7rezkyYA8ZgPDVHVzszkdoeGeF51dVTP6+sZg5qaSoIXZ5mTNKeAOh4OK1bo3nL9/RwqSckvLKQFo6yMAkJ9vfa9paTwc14eCXamhhUlhDAvNlRUAFu3aiN5SQnvM6c67QyKn8zqRBJe5GxZ0d2DsbnlYsgCeOfU14/fmDh/HnmEd5S9N/mBAyTLgwe5/ic/SalRpKu8PBLU8DAHTUhWYlg++UnaCRcvJtGlpfHJ9MwzHLw5c0hYSnFAH36YNlWJ5Txzhp0hLYt3/4kTPMbz5/kEKy8nCe7aRbLs6KBEK1k7l11GhpD4SxmTri7+PjJCtpBe6r//PdUKOX9huvJyf03PbNdhotTxcJDg9txcnR9w+jTnjVgjxHYvz7rWVt2eSRxEMzWsyBBmlJCA3qVLeT+0t/P+f+AB/yX5k1WoQOri+oVvtdxNylywgAf9wgvszGjPqwZ0JXLJusnO5n+nT1MaPH2aFc9bW3lX5udzMF97jYNSXKy92XPn8o781rf4PjAAfPGL/P222+hJy8igZDo4SNKUsvd5eZRSm5t1nx+pkFtXR7JMT9du46YmLpOVpRsxiRmgqIi/z5nD0KKHH2aVeQmzamzk56NHx0uXCVLHkwmZlz09uvlmcTGJULzl4g0H+FnSJPv7ddCD9DGfdtqUDxjCDIOaGsY2HzzI79IuV2Iv7ZVc/E7mWHsGRUJRkXcztKjhR8o8c4YEJ6mAUjZNIJXIX3iB27vsMjpPrr2WgyWtI9rbqev19lJKkxz0Z57hU+nkSRK5pFIODNCWeO4cT7qpid7wX/yCx5GdrQMKi4pIsADXTU+n2DY8TPFIanNK+115imVl8a4PhXQnSalidPnl3M6hQyTbI0eY0bRzJ8egvd275mUC1PFE2S+dkHk5PMw5KfkCc+fy9OvreTmysnROweWX6+zWzEw++3JyeAm2bJl59kvAEKYnamoYeH7mjO4zvm8fJ4hEkAjsdQMjSY72YHcpxdjWxvhqr/4piYIvtdyP88ce0N7fT1Fj504STFWVzq3+938nMRUVkSxKS0mI115LwpFiwR/9KLf78MNc5o9/ZFD54cMk1upqEqWkLDY3cwAffpgS5rvvkuD6+nh3z53LYxwZ0Xd+aakOVxoc5HmWl7Pi0k036YB5QJeDa27WrHHuHI9h71566NPTKQF/4QvczqWX8uEQQ4HgqaCO79pFsjx+nKeWn09J8/Rp+tRkmYYG3UE5FOK9sWiR7mTc0cEQ2PXrDWFeVNi1i8JCTo5uNaEUBY6amrFP+p4eqiXf/S4nzMAABaMjR4DPf37sxBEPu2RPyORsb0+MpBm3Wu4GkTJFLXcGtAMckJdeIom1tOgofcnCEQ/55ZdzW+9/P73gH/iAzr9esIBEnJtLtXbuXN7FTU10pqSnU0fs6GDq1Hvfyzs6PZ1kWV5OW2VLC59Wf/gDpduUFB5DYSEHPRCgSt7cTBJ94w3dlfJjH+PFHxjgb5mZJGEhXGl/kZUF3HEHiXTfPpoSpEBJefl4ddyt9uUUQkMDh1mirgBe7vZ2DodXPPBDD/GecBLt1q0k0plGmqa8mwekCI7k2AL8nJHB+9UZbH7+PH0RgI69PHuWKr2gpoZcsXMnk1BGRjjJBgcpbMXbOMqvuuam8o2JyZw9O/xNfcUV46UoIZtPfpLeb6UozS1cCHz60ySt7GwS4MqVDBP6wAd0ebiXXtIhPi0tJKRTp/gEkGDAQIDkVVFBb/qLL3Lg9+7lds6fJ5Hfcw/jY8SxlJ9P4nvrLQ64xHw1NWmi7OtjgHp9PS9gWhpDHfLyeNyXXUYiXL2ax3bppcw/X7OGUvP111NSjlTz0j7GznH3uDZA8u2XZWWc1/b57lam0Akn0SaiHuxUhiFMD5SVcQKIgRvgZ4l8cQabi+oukyY9nd/F/mkv1CEts9vaeI9LsPtEhGK4qXqRcpf/DK+2CvZA9qoq4OabeYevXauJafFiXVxj3z4S66WXsirRSy8xjEhaXpSU6AZJIyMcdImizssjCZ88yUHu7eV6CxdSin3ySXrlzp/nXbt4Mcnw7bc5wPn5vDA9PdxeQQG3v3Ahj6O1lTGh99/PCx4Kcd9nz/JBkZnJKICzZ3kegQCJv3S0loyz4IYPZ49fdTxZ9kuAArnMS2loJk6ecN7uWIl2usIQpgc2beJF7+mhJiZtXvLzY0tdFNvlwoUUViQg+MIFXSorUaEYsUojUWf+OCuyAwyz2bGDRYMHBkg+Tz5Jz7Jl8c66/36SXFERl8/IoAf9hRdIqmvXktQGB3Vic0kJpbi6Oup/+fm6cEdbG6XWvDx64I8e5b43beIgS3ZRcbFWEbKySHZSgPiaa7QzKRTicaWl0Z6bl0dp85e/pP31L/+ShP/ww9x+aenYh4az4IZPZ89korKSkR6WRTU8GBxfptANsRLtdIUhTA9UVrJpWVUV79vBQX522iQFa9aQ/AYG+H7mDLXEQGB8k6nCQt53JSW8fwsKEleVyI8U4lbyzXdBDrvEZK/IvmwZ8E//xFTEv/gLksrtt9PbPTTE9wsX6FFuatI2zltuoRg+MkJ1t6GB0mZmJlVjsTfOmsXlr7uOA9vWxqD1OXMY9P773+sUyL4+DkRGBklw5UoScns7bZ4FBToSOyOD+21s5O/veQ+rqgwNcXuLF3OZQ4d4XidPasnyk5+k6u+EPEjsY1Vby+O0wa86PlG4+WY6eDZvpvVh4cLINvVYiXa6wjh9wqCykl0e/WDLFmqR9fU6w6eggIbvRx7hPdfTo6tRFxbSEdzcPIXa7rohXIiRsyL7kSOUDlevpiRYXc2TrK3lk2R4mNKiFOe48kqG9dx2G6XQ1as5eIEAny6pqRw4SaHMyKCDpqKChPab31D0nz+f9s++PkqH8+bp5jOHDlEN+NWvdMMayTl//nkS9YkTJN45c/hkLC/XdcvS03keH/4wt7NvH8lZKs6fPz+2+CnA89y6lQS7fj3P/6mn6CRywI86nmz7pR3RpOrao0Kk+3AoND2aoMUK0zUygaipYXhQWxvvvcWLx6ZN9veTMO39zpNRBkviMcN5yyU80R5iFHj9FaCsFDmXLtY/HjxIRpde4kKY9kD2V19luuL69SScAwdINCdOUJIrKaEN8cQJqreSpqgUg9cPHiQ5PvEEf1uwgMRYXq5VainEITnc/f2sXitFSE+f5knNmcOYyoYGElVOjm6rAegA95YWts44d45qfG8v1egrrmAZt6IiHmNrKz9XVFBtt2c1uQWqS8jVZZdxTG64geNxxx3cr01y99MZEkhs/ngk+E2qsMcTJ3s+JwOma+QUQGUlhZv3v5/3nTS1l14/iahM5Ad+1XInRuaWIe3J7fROA3x/8smxrOq0xzkrsgN05nR2kmTuugv4+Mdp38jPJ8GIN3zNGpJLZiafMpdcQgJsbKTHuqmJBNzbq73ZK1dSAn31VQ5sMEgpTzzinZ1cVlrnlpZSKkxL4z4/9jGeQ1YWvdtpabxQWVkk5eeeA/72b5nrLlXUi4u5n337xnaLBLicSNmvvqrjUy+9lGT5yis0B0iWwyjcyHKi4WzMF00zM7HJh0IMZN+3j88ne1TITIRRyRMMe2EOgAJKdTUn1q5dWupraNBhF8l6IvuJybQHsluLFmPwQ3cBv9iO9GuuoEp7773uTbt6emi0sheZKC+nY6S9nU+Nw4fHriOE2dJCIlKKd9uFC5TI5s4lCR47RsKTmnlKUTK75x5u51e/4vJ1dTwBaWKWnk4Jdv9+Lr9kic7qOX+e/3/wg1TTDx4kQdbW0m5y1VXAz35GhxTAQsd3303PeTDIc7ntNr5LPc1LL+Wy9r5H69fze3U1JctrruG7LBMGExms7pZxtnUr7Y9+mpk1NPBZc/CgLpw9MMBw1Jqa+Ob0VO5xbggzAbBf4GCQgtH8+ZxA9jSy06epRa5Zw/9Pnwa+/GVOihUrdBW0REwUP6mSmZlaNRcML1iClPdcwdCcjRtpV+jsdLdl2gPY9+4lOVkWJUXprPjTn9KL8NJLvKtWriSZ/PjHvDuvvprqumXpnj/792ubYmMj9zU8TDIeGqJD6dQpfpZc8dRUEmMoxP0UFPB4z57ltq+9ltLef/yP/H/jRh5zdzeXaWsjWR46xNftt1NiXbCANsu77+ZFKSmhd/zDH9aecaeUHQqRiO+4g2S8YAEl9dxcYPHi8G2OHUiW/VIye2pqOATSXrepaaww7BXqVlbGWGJ7oLuUBIinrFuyUocTBUOYUcDtyQfoHNxTpyhADQ7yHhwZ0YWGCwt5f2ZnU2jKzmZ0jKQoHzrEeG+ZKIODEzdR7FKmqj2FwJt70XvlRmRJGqCQphMrVmhbZkkJRZTbbqO0tns3yaOigs6V/n7elZ/4BL3gv/gFnxiWReY+d44S6rPP0vkjFc5bWzkA0jQmN1d/njOHAfCZmXxSDQ3xOAsKuO2TJ0naf/M3HHRp1ztvHkn7Ix+hJCq1MwEG2VoW/wdYwk2cPZKu+eEPc7vA2DRRkbK//32S+qJFXGbhQkrqDQ0cS0SnjifDflldTQE9I0NLh7294/u1eYW6bdpEIVxyHKS99Jo18cVf2lOHganXstcQpk94PfmkK+zhw/xNwgalA6zdlilO2u5ukqsknbS1cd1AgCQbCukWqPFMlKKiyGq5XcpUtaeQ9tR2DNzxUagli4AVi1hx6K67SEKRPOYPPEDyGBlhFs711/MgfvITks1115EdXn2V6rX0cW1poQgueebHjtFuqBTwH/4DpbXmZpIXoMN6lOJxSOk2qWIrpdkCAYYtbdzIwgCdndyG5LYuW0ai3LCB5NrbS/sqwAt9113aXjlnDvdbVcVzFenSmSZaUAD83d9pFhSn6uLFYaXLic4d7+7mPBXpMD2dp9zdrSvZ1dRwaK+6ivbNEydItBJAkJura2bm5lIwCAa9Cd6Pqi2pw3ZMpdqaxunjE14teQ8e1BXBgkFqhsEg79eREW0wb23lRDx+XAtIwaB+MlsWyTcU0mpOU9PETZTGRiClsQGDd9wFaxGloO6ixSSNhgZ/cZl2W96mTVSxy8sZgiPZNg8/zPjFG2+ko+X8earVb77Jdf/wB7LH4sXAZz/LJ05zM9X6q6/m4EsfhcxMxnNlZfH38nJKmTk5ut9PaSnjQ0+c4PGVlXG7NTXAV75CybipCfhP/4lkd+oUL8I112iyrKvjE7GqitKovWumPU1UxkJsogLH2PnOrEoicnJ0yTYJOA8GOeyhkA4ZXb+eqvq3v00tqK6OhFlfz+Hq7+cD+fLLub5XLLEIHJEcSvE0JpwIGAnTJ+xFM44c4T1mWZQus7N5n8rTeniY96o4cKUEZDDIySbvgJYyAU5U+RwM0ndy5ZXxH7tfKXP4qmv+/Nufi3KMSkZ/Rjgp02nLk/4cUs3nd7+jyj53LhPqr7pKS3Xz53NgCws5YB/8INf7f/+PoktrK8N3lizh9t99lyR56BAl16ws3XAtPZ3fh4cp6eblUQxqayPpXnIJz+nsWRLghg28QHV1XC8YpL1T7lKpJp+aShXi6FGuH6mEm4+QvXB9x5MZf7lihS78JDbM+fO1/XLjRl1R68ABktZbb/HS5eaSYPv7+YyTUqPhYon9qtpSwBgYG640VWprGsL0ibIy3sd21Xt4mC/pbCDdV4eHKVRkZvJeF/+EaIEdHbq73qpVJN/WVp16aVn8nJamn9axeg6jqZMZc+k3L4+5tLEYGuLAffCDfD9yhAQEUOpcu5YnlprK99tuo/rb0cG78tgxDu7ChVzm2WcZFL57N0+wuppkKU3KAgGq0J2dOghWmqy1t1PK3bCB3xsb6YBSik+VTZvomNq+na+VK8fGXYojzFlN3SvPPkzcpR8kK/5SiKmyciwxbdrEzh/2ilp9fSTXjg6dzZOZqcuDpqUxTTgc/Kra0pxtqnQqcMIQpk9s2kSP9oULOjUZ4CQYGOBk6+vjRMrPJ2kWFFBjfPRRTqwUmwFkZIRC0sKFFLK6u8kbfX2cmKmpNAkCwNe/ThUpL0/7P6J1CEVjy9TH6FH6LZLHHNBZQDt2UMr7D/+BpFNWRolt1Soy+V13MW0yEKCoftNNPNnNm6meBwK6PW5mJh1Gt91GT/qdd5LUjh7lwYtnfGBA2zRnz+arp0e3/RWvvnS2TEvj/9nZJEhJwWxv5zLSeqOtjU+8BQsSJl1OFsIRk4TGiZ09M1NrP0rpRp25uf7VZWe4HeC97mQ1BvQDY8P0CZlIlkWyS00lWYok+Z730L9QUECyzMzk5Nq1S1cTs6OnR7fc/d73mMO7ejXvTcnplbTK6motqEjUSjSl4KKRUnyVfnODVw/zyy6j80fsgeXllNikw2R7u45HEU/35s18mtx4I+/K2lqq0dXVVNn37+cTSAr7zpnD/3t6uO2sLBKfiNdlZRw0sU92dvKCdXdTdF+xghd06VKdXfTcczoH/cABkr5UznUiDulyMvr2CCor3YvISM9y6eSRnc1hy8vTDf36++mX81v/wNkHPVG1EyYaRsKMAitW6PYuYq+Upk/SPbKsjALXokW6t0lTEzmhvNzbLuP2VH3oIZ1NIQ2pAN73l18evUMo6VKmG6Rqj2T3AByI8nLdcTE3l5ImQPX44EFKmq++SttnSwtJcuVKSpMrVpBot2/ngM+bx1TKpUsprt95p5ZOt2xhDKj0Kl+8mBfnO9/h8oWFlFo/8hGywL593P/mzZSEL72Uds777gtfST3B0mWy0iH9mnYyMnSd19JSmps7Onjcw8M83YUL/ZuGprqq7RcmlzwK1NSwqvrx47qCEcAJVVREgqyu1qWupGybswVvWZm/IPWvfpUcs3+/Jmaxb1ZVkUw/8xn/x9/SEjnzxy3HHABSUqyx3SU7OzVhCuxV2Z2QcB37hg8c4EGtXEkClRa6RUV8Mm3eTBFbqpinpFAsf+EFOn/KyugV+/nPeUe/+SbFIamK/p73cNAaG+mxACjFpqVxPcti9HUgQAnzppsozf7VX/G4GhpI6GvWsDjwmTN8+tlLtzmrqQPcbgTpMpyzB0gOYfrJ/7Yv40y8SE+fXvni4WByyScAlZVMAElLI1mmpOj+XZIvXlvLe01ipAH9n6g/mzbRX+E3xGLxYl1nUMI/YlVnInleo1IR3R62fooMC9at0w4VgAScm0sylBTFEyeo0ldVkRSPH2coUHc3bZLV1XQAvfMOCa+9nf/n51NizMzk6777KBq1tvLCjYzQjrl8OfvyXHEF1e73vEer5f/+7yTD9nbaVZ99ltsOd65TWADxCo3btUvnlX/lK5zDoRAJu6qK8/fQoeTWP5guMIQZJU6cYGz1xz5Gbe997+PkO3VKt4sRb3ldnfZ+243b4SauHWL3CQZ1GvL587zHY5m48dgyR0ZUZFumW5HhSBu24/3v1+0rdu+myv25z9EwvGoVw4lSU/nUuOceSrmNjRzE227TwYFz55J8MzL0/rq6tAp+8iQly+xskvDcuVz2Qx+i1Ctq+d13cztz5wI//CHtsU613O2c45QukwV7TVaBdCOWGEnL4uvttzl3CwsZiSX29ouZLAFjw4wabuERBQW8B8vLOcEaG3UtiOpqmszs9spYQyyuvTYxhQhisWUKXMOMnKq5Wx9zgFLmu++OjV9yquWrVvGEDx7kNjo6uFxBAfD447R7fPrTfCp96lOsq3nypG5QduECB2nuXGYY3XIL1//BD3T3SqV4jOfOUZKUOMvyctpRfvITkvOdd+rSdR/6kH4Syjn6UMVjQbLsl16e6u5u/icPbjH/nDrlrxNANCXhpmpRDb8wEmaUcMtEKCmhT0HSoiWLUMIxnNKgVzZDMDi23JZUfYm2HUY4xCtluiJSKws7nKp5URFtF9u36+pDkk5iWXTeSArjjTcyF72qiup8VRVtiy+/zMErLWVpNskL/6u/0iL/nXdymRMnuNwll/BYd++m+G734t92G6VWeyB+Y6NWx6NQxd2ky8mCl6c6J0c/38T8Y1n6/3DmH78ZPH6Xm+owhBkl3CZdIEDNTgSXvDwud911NKs5Sc5tG2fPMmNioiZUPLZMX2FGXrbMvXsp2QlzlJdzoJqa6FH7l3+h/nfjjRzIrCwa0C69VMdu2jF3LuttKsV0xqoqHbZUXk5iLSri9qVRWTBIAv1v/40k2N6ut9fYyOWqqnQg/tVXj+8G6UMV98JkhRKJxuKsybpihb5chYUUsqVRZyS7pV/zkt/lpjqMSh4lvMIjAHcPpFtKl9s2Skp4H9tTxzo6WMF93ryx6ZMTUfoN0L1/7OaDqMKM3FRz6QMkGBqiFHfddUydLC6mS/bdd3myHR0kylde4fISfmQ/mQMHSHCHD3NwJGwJoLQqKveRI/S+Wxa3d9ddfMlgCIkvW0ZidwvEr61lwKzz3F0eHLFIl8murl5ZyVPYu5dBBXv36t5ygK7JvGgR5yjAefroo+7zzq95aaoX1fALQ5gxwCsTIZo4M+c2vvrVsXV6W1uZETg8zMm7bzS66vLLE1cj0E+BYSDGlEmv2Ex7H6CmJorQ11zDWMnSUtogH3+cqjbAu0qqD0nDd4GdDO1ZRHbPe0uLTsOsr6dKD5A8Zdl168aSJTA2dEhQUDC+mLKLKh4uBXIyA9UBRm790z/p0qWnTlFo/ou/oN3aSwjwqk3pN4MnmkyfqQxDmAlEPCldzgl16hRVl9mzdWsagJ/lXo639JtfKTOmYHaBm5Rpr2pUVESyBFjF6J13GMKzezfV5pER1tOcP5953KJqA5oM3bKI5Ld16/h+4MD4Zevqxi7rFvpkPw8gZlV8sjzjTkfLc8/xmSQZaykpvGTPPTe2vYRXfypg7LzzWyxjqhfV8Atjw5wicNo129r4vnixrnBkr3KUCHVG6mX6ge8wIzcH0Isvju1ffuYMCTEvj/bJzExde/L976cUeOONHITDh2kIlpJuQoDy2d5fB9B2SyfCLdvYGJ4snecjSKAqDiReHXdztJw5Q0sHwAgtgDHFp0+PX6+9neGsAwM6zMg57+x20Zoavnp6dGyn23LJ7mmVTBgJM0nwqs7uFVbhtGvOmUNzXmGhLqcFaK10ItWZqMOM7Jg3j5KcOFAAVltXigMgoodd0pP3SOp2IuCHLL1CiByYao4er5Jqw8M6tVcKwoyMjF+voECHGAG0YgQCJNyHHtLzV+ZwXR2HKSfHXX2fykU1/MIQZhLgVp39u9/V+eRz547v5+OcfHbpYNEinaIm1YoSpc74qcouiMkBBPCkb7iBpJmezv8+/nHtULnvPhpp7Tvwo27HA6fN0gvhQohcVPGpFEbk5mjJyKBKLi3iR0Z4Onl549dbvJiSJaDbrohPzkmIU721RKJgCDMGRArAdZs8En+9ciWz+/bv5yTs7mbkjNvT2C5xSqEcSVlLdOGChAezO73mAGMfDx6kW9aeMSPl0uxB7W5qtd37HQ+iJcsIdktBPI6ecOp4rAHfbo6W0lKtUodCTPPNz2dShOynupq5AMuXM8To1ClKj9nZnIdiywQ0Ic4UL3gkGMKMEn662rlNHqlQvXs3CVPaz/T383txsQ4hst8UE/F0TkSYUUTVfHCQ9kipxl5ePj7N0C0TKNGIlyxd7JbhHD3xIp4uim6OlrIyHr60RklPJ2GuX6/3s3q17jV++eXcT1MTl7GTpZ0QZ4oXPBLiIkylVAGAbQAWAagF8FHLsjpclqsF0A1gGMBQLFVCpgr8qB5uk0cC1P/ccExRNZLeKu+8w4nsVHdk2xORTpY01by2FnjqKXZSTEvT1djtcY4CO2kCiSNOO3vFQ5YORFLF/UqXXohX1c3I0CFpa9YAn/+8Xt8+p5z7qaqipHnoEH1uV12lY4EBOoCqq7U9s6KCwgAwvb3gkRCvhPklALssy/qmUupLo9//u8eyN1qW1Rrn/iYdflQPtye72I0uXCBBSiplby/fh4bo6JEsCIBhHv39sfdojkaViyfMSOCpmjc26h7dUiDj1lvHt3kQCKElStr0K1UCkcnSh91SEI2jx0sd99JWnn8+/HW1S6Y33KAJDHDXXKQthUCKbjQ2MiVXtif7t5d96+rSbeztJQuFLB96aHrnj9sRb1jRHQBGhxGPAPhQnNub8vDT1c4ZQhEKkSSLixnKMTLCl7TVlYls7zWWk0PNNdZ0slhyd/2GGYlqboeQhmuo0VVX6R7dQkQFBe7B4XYIwTU2xqbfynrLliWcLAVuZBnNoUYab+d8a20lWQWD4a/rtm0U7Pft4/KRqvQHg6wz8vzzzP6xV9mSB68UqN+3j/OzqopzRubliRNj6x4AMyN/3I54JcwSy7LOAYBlWeeUUsUey1kAdiqlLAA/sixra5z7nTT4DcC1P8UfeohkCdBwLiEcw8N8lwB1u31IbhK3clxOQ7qbJBmPKpdQ1dytolG41EknnNKmHU7Ry/m/H5IUREmWXtk80ajignCxl875Vl3Nz8uXj9VG7Ne1poZF4vPyuI7EUa5Zo+eOfc4Eg3TySFsjKTw/fz7rv4qkWlnJZZqa+NnLnimYiZ7ziISplPojADed6CtR7Ocay7IaRgn1D0qpasuyXvTY3wMAHgCA0lIXdW2SEUup/YYG/n/woG6b3ddH4qyo0E9xqRwjJLxmDT+HM6R7OQV6esbzhR+vZbyqOQPaHdXZgfGhRtGQJjD+ZNwINBqCtCMGsgyHRMZcOudbKEQ1WMiqtZVk19zM7/KwzM/ndykzCHCuiDfcPmdefZVDsHQpozm6u3lJSkr48HSSXl4et2EnejcHz0z0nEckTMuy3uv1n1KqSSlVOipdlgJo9thGw+h7s1LqCQBXAnAlzFHpcyvAFhWRT2HiEa33WpxAa9eyEll/PydOYSHtPl1dnOCzZrnn8gLe0qzXU/zcuchkGw5+pEw3r7kgYqgRED1p2hErOToRI1l6SZfRkKXfzB6ntiImHGmDq5RuSCYPy5ISFtcYGeExZWWRbN20j1CIkmVHh7aSjIzwfNxIr7KS2avOB7xTy5qJnvN4bZi/BTDqy8V9AJ5yLqCUylZK5cpnAO8HcDjO/U4rVFTQLrR/P5/OmZm6o6sEoW/ZQrvPvfdynUcf5cTeuDF8OplXFW3JtoilS5/cxPGkTQIe9kynp1mIyqscXDKRYLKcCNhTaE+eJFlaFrt6CAk2NfHaFRRoTaC1lWq8xEza54xkj0naLaCJzc1mn57Otu6R0hxnSqdIO+K1YX4TwK+VUp8EcAbAXQCglCoD8G+WZd0KoATAE4qSRSqAX1qW9Vyc+502qKmhB3HpUk7k9nZG1ixdytBEexC6m3q9e3d4r7jXU1yyh2Lt0hetah5VfGYiJc1YEC4gPQ6yTIZ06YRdRW9upmS5ZIlW0XNyGImRksLjkZhLqdMKjJ8zixdrR4600bVLjG5ajp9IjZnSKdKOuAjTsqw2AOOeF6Mq+K2jn08CWBvPfqYz7OrPwoX8TSars+NjLEZycQp0dJCQOzroiX/ggfgD3/2mTYazZ3o6gdxIE9Al4ZJBnHZRaZLJMh7Yr6vbwzIjg8HntbWUGnNzubwU3XA6koJBOnhKSng+TmKLh/RmQv64HSbTJ8mIxvAdi5G8spJq+9atlFgLCjjxd+9mJE8iJms89kxXJ5AXaQJjpU0gccQZTqoEJowsBYmoSuQVsbFmDUnQHrXV1aX36Sb5ff7z/mu3emEm9OyJBEOYSUY0hm+/yzonZmsrbw77el1diQnfENU8nmLDgMMJBEQmTSB+4owkUQpiIEtBtGQZr3RpR6Tq/0B4p4xk61RX8/OWLbHPl3hSOKcTDGEmGdEUTvWzrNvEfO01xobbkcjwjaTYM4HwpAm4E6fAjUDdHEcxECUQmSzjKQicyJqXsVT/r6kBvvENOo0si9LoK6/QJvq5z8VGcDMx5tINhjCTDLsUUF1NO+OFC8BXvkLVyf5U92Mkd5uY+fn+4uLiQbT2TDfSBOCungO6WEc44hS4EajXsl6YBLJMdr8eO8Kp0du2kSwDAZLl8DBTdOvrYye4mRhz6QZDmBOE1lYWYA2FmDOelkbPpPOp7jbR7Sp4dfX4HlyVlez2ECkuLhGIhzQBbdMEwkibgDtxCvySoht8EKUcpxPx2CwTqYpHshVG+l+6EKel8X14mNlAZ84wNTIW26PTnOQszjFT7JmmRUWSISp0dTXv1UCAnuyREZJbe3v43HBnTngwyHjOVlsZk/R0quShEPDCCyTijAz3bX3962yVc+ed/BxNXm808ZlCKm7xia5xmgBJzB6v6dHrO2rItqQ0WwSpMllkWVTE8Xb2no8GO3aw8PRzz7FG5enTY/Oz/dYQSEsjUYZCugAMwPkVS763PeaypYVzsKeHD/eZkEMuMISZZIgKLQU40tIY9tPRwck5MBBebXH2c16+nL9XV48NBl6/nhlEVVWsTuOc+DU1wPe+x4mclqYl3O9+d/JJ0xdxRkuezvXCEKUfFRxIDFnGU4yipobREEoxGiIUYi3V4WH90LXPN6lpWVs7tsHZmjW8/oODmiwlI2j58tj6hdsLzhw65F6cY7r1IHeDUcmTBFGLnn6awcWBAF/DwyTMUIiv9PTwtkanbaiwkLnE+/ZRmgR0A8ZwRvdduyjN5uTo3GKlSNzR2q2i8ZxHUs8BuDuEgLEEZ1fX/cKFIAWR1G9BPGQpkIdMvI6RXbtYiyA/f2yOeFOTVq8bGvj54EH+L8U3Xn+dc7Kyknbzkyd5/aRXVFYWcOWVnF8jI7HZHsWcJHM2xSaOzRR7piHMJMDuyS4upmrS18cJ1N9P0gwE+PuCBeFTxdxCjXp7KUFWVWmb5YsvUsq0wz5JGxp4c9hbe0sXylgmcrSkCXjXBLY7hAAX4gTCkl80iJYogdjJ0unkidcx0tBAsgyFOIc6OvTnJUu4TFkZ6xWkp499MObljSXm7GwGq9fX8//sbJ0JFK/DcCbmkAsMYSYBdkliyRIWSJD88cFBOnpmzSLhecW+2fur1NczlXL+fE6848f5PVIFmbNnua+vfpXbGBnRUi3gT8INh2hjNMNJm8B44gQ8yDMG+CVKIDFSpZtHPByR+An6DgYpTTY2avOO9JRrbuY2Nm0Cfvc7zgfL0q0o7KXddu3iXFq1amwBj5MnuY94HYYzpQe5GwxhJgF2SaKwkFWKpATXbbdF9hjaJdRly3jjHj9OyXLFCt5Q8+dzsp86RSlxYIDk1dOjiy7U1mp7VWMjKxgpxUk8Zw5vuvnz4yuGYCfNEycYCVBfT0f25s08XjsiSZvAeFXdDj8E6lZ+LRJJ2o8pXqIE3MOHvIhk3brIQd81NZxDHR3UVCyLD9/hYT54y8tppywspPbS3Ew1u7CQdslgUB9TuPl55ZXx53vPxBxygSHMJMApSRQWcsJeeeX4/HE3OG1dCxfq8m+f+Qy9q6dPk0TT03kDtbdz2YwM3lSnTrEaUnY27ZtSHHZggHGgg4NsQfDpTycmG6imBvj1r0kE8+fT5Lh1K3PanaQJjJU2gfDEaYdd+gwHPwQpSIT6DYQnS3vV8nPnaBpZvpxE4lZurbaWsbo33aSLqIRC7PpYX89rnpLC6z80xOu6Zw8bcl5xhW4hsWjReKkx3vnpBzMth1xgvORJQLxlrbxKtolKtWkTyVIpTvS2Nn4uLSUp3nwzTX59fSTO/n5KmdnZ3M7y5TQVLF2auEm9axfttbm5wPnz2in9XJi6VJmZ+iXdJCKVSZOwn0ivSLDvz34csSISWYp3XIgkJ0drGmJf3rsX+P3vOZbivRZps7qay8yeTXU7N5efldKtI/LySIJFRdq+fejQ+PJrM7Hs2kTBSJhJQLwqiUgAoZBWuYNBHVJUWUmVt6uLkuPwMNfJytI1DQsKKGlKvJ28B4PxOXu84PSMtrfzZpTiQ5EgZGWXOoHEdtt1knEiKqPbw6u8sngieceDQV1erbubZNndrcODZs2iVJqezu/5+dqOKdk6HR1j02OdTczsmMkqc7JhCDNJiEcl2bSJ8ZFnz1IqTEsjMZ48yWDzUIg3VEkJ1ai9eyl9hELaC15Sook2JYUquGXxRorX2eMGp5qXnc2bNTfXv1MIGEtiTvK0IxyRhpNSE9k+IpxUaYdf73hfH69ZSgolx5ER3YsnJ4djeuYM3/PzqVmkpuoHqb0NLhDeMz1TVeZkwxDmFERlJQlPwkZyc6luHz/O71dfTQI8eJAkdeECb6TUVNqvxL6Zm8ubcHiYN5+08fUTzhQt3BwaQ0NsogVocvFLnEB4cpsoUnSDX6IURAqzkT49r7yiWy5LCNrIiO7Fs2kTHTsHD/Jav+99OsrC3gZ3pnmmpxIMYU5RhEK8EaQIbH297suSkkJHUFcXcOAACXFoiO9799KWtWqVDkM6e5YS5ZkzJNpw4Uyxwq+aZ1dhoyFPJ5JNik74Ub29ECnMRgg1GOR5DQzoVPqWFl47ebgVFnL57m7+J9kzRs2eGBjCTDJiLapqt2vl5DDko7d3bN2J+nrtCJBUt64uSpZS3X3WLL2+hJcA7BmU6CKvftQ8IRsJRbIjHgJNBpzHF2uloUhkJoTa20vJMRDQjrrUVN1+4pFH+FCsq+NDs7OTD1F7CFKk8b8YivwmE4Ywk4hEFlVNSxvfBqKhgTeUkGAwSMlECnNIhSS5wfLydKWayy+f3CKvTvKZCgTqlh8fjiS9yMfr93AVze+7jx7t9naGhs2dy2vb30/zjDiOamr4f3o6H5bNzTr11Q9ZXgxFfpMJQ5hJRDy5w2LXEpW8sFCnWEqjqpERShh2SL56ayvj8lpadCrmG28w9EeC2qWFwVQo8uqHQJ0IR6hHjzKkyRlEH2mbfqVIL/LZuJHtQSIFobsR6i230P7c3Mxrnp5Os8rChdpxJD3DAR3t4De98mIp8ptMGMJMIuLJHRa7lr0vi9xM0qiqvJzEKITY30+1XCngj3/UmSBKUSrp6eH62dl0FAEMbJ6KRREiEVc4Qj1xQgfRZ2dz3P75n4GPfpQkm4givl7k89hjJB8vUgon5VVUcDnpzZSRoTO8enr4e24uJUsJMcrN9Z+nfbEU+U0mDGEmEfEUIXBzFAQCwJe+pKWBigrgW9+iw6evjzdSWhrDUN5+W1dGysjg68IFbictjZLp+fMk1tmzoyvyGskOtmMHiaOpierk3XczmD6R8CK9mhrgRz+ialtQwBayQkxvvjm+lUes8CKfpiZqBs7f7XncbkS7bRsfeNKOuamJNsq1azm2Z8/SnLJoEX+XcoHz5/v3hs/kohgTBZPpk0TEk1Fhry/Y2Dg+WwMgCf3X/0pSkIo0114LvOc9lKxyc/muFMlTMDxMtVyk06ws/7UZRUI6fZq2USlou2MH/9+xA/j2t6kqFhXx/dvf1v8nE3JsbW0ci4EBPjhaWxMvSZWVje2S0doKvPoqpcFXXx1b4NlOSl5ZXAcP6lbMV15JMi4rI4lKVMSaNfxeXq4zfUR937Ur8rWrqGAUxY4dNM+cPm0yfKKFkTCTiHhDPfx4PW++ma+vfnVspk1Jia5QVFpKEhke5k1ZVkYJJhjURTj82rN27eJ2JI89PZ037de/TpvpkSOarAG+9/dTJX7ppeR6ZkV6mzNHq60As6WCwcRKUnYNYGBA526vW0eTwL59lDTT08PncQPujTG7uzmOkrkFUJpMSwMefHCsap+TE9mBU1ND22pxMa9dczPH5f77jf0yGhjCTDIi9ehJFIE4b8RVq7TqNjxMAs3M5O8LF7J3S07O2HJvfqSwhgaSbXo6t9vURMIdGKB6392tJSCAEldXF+1vyfbMipq8eDElS4AE097uX221XxuJPgiFxl8n+8NQxnL5cjrn8vOZ+33oEItnuIUQAeN7iff06OuXm8uxtNcvtUuq0Tpw5EHX3EzJf948bu/pp5kIYUjTHwxhTjCSFdrhvBGDQapgJSX6hq+ooJRhb5bW18fPzz8/Nl/dC2VlJIL8fJLKyAi3EQhQ9U9N5e9ZWXx1dDB7JSODUpika27bBnzta7GfrxM1NZSoDx7kg2FoSEvVZWXhx9et9mhWFqVEwDsEK1yF8WCQNmIn/PQSHxjgug0NlJZfeEHHZT7wAJeJ1oFjf9DZH5CxVNy/mGFsmBMMZ4+eRPU7cbN5fv7zJKV77+UyL71E4pKCDpI2mZKi89WlEK0XNm0iGdXWUnKT8Ca5EUtLx0qePT3cXyBAIsjJIYFKy4REQB5CxcXc99mz2o6Zn68Dv8OtK/ZlpaiyvvOOThqorQ1/nez2TCnI29PD43GzDVdWsiDGgw/yXYj3vvs4Vq+/TtJfvZoPmLNned2WLuUDr6ZmvA0VCO/AKSvj9bLnm0shD+Ml9w8jYU4wkhna4aX+2yVaUQH/9m8p5Ukr1NxcxikGg5EljqIi3WLHsrRTKT+fxLhgge4emJPD3/Lzw7dMcB5zNCYL+0OotlaHV/X20gkW7pzs6/b0aDNFQwM90oC2I3pdJ7t0f/Ikz8+yWEIvmljHykqS+8aNXG/vXtotAY6dpMPu2hV9VXOpqWk/x4EBbt94yf3DEOYEI9GhHZHIJZytSwp52FVJtwZYso+jR/k5EKANrK9P94QJBrUUuWIFb+7PfIbLf/GLmlw7Oynp5Oa698COxWRhfwgND2uS6emJ3NTLvq7EONptl/K7bM/tOtnV7OZmSpZLlmjJ1km04a6Z/XjsQepO0o7WoVhZSXV+61aq4fn5HKdAwHjJo4EhzAlGIvud+CGXcBKtH/KWfQwPkxx7enRsZ1oaQ5jefZdSXTA4/iasrAQ2bKAk29rKG1+CspUaf7xuBN/RAXzzmyRpt4eC/TyE9IDIROdcV5xFoZBuXifnICq713WS49m7lw+EU6f4XTK0ZP+RrpnzXM6f53cprFJcrOsERFui7eabKTWbXPLYYQhzgpHIqjJ+PKXhSDFcj5mvf50OlNZWSiPBIElO1LkLF0gGQ0MMBm9u9ia0LVu4n6NHSaZSIf7yy7Vd0IvgW1uBY8e4Hy/ny6ZN7Lku3vDz53mcGzZoolu3jsH5TqKwj0FBAe2Ex4/TWSbB8aEQP4e7Tjt2UHrr7eVreJjS9CWXcKyKi4HPfU5L6OLNFylUxsB+PHl5HLOUFI5tdzft0zfdFM0sGQtTBzM+GMKcBCRq0vqxh4aTaN3Ie906dh2UQrXDw7RFDg3RNpmZSYmvq4sqdmoqHT32DCS385Uca6W4jZwcBk7Pnj32eJ0Ef+oUCUNqeXrZBKVleXo6yS0UItmuWEHy27pVpxwODmrSBfggEI/4mjXAN74R3fWpqeH2leK+xOyQkUGbamEhSdMuoZ8/T2l27Voek4yB/Zq8/DIfVCMjvAYlJTy+SPnwBsmDIcxpDD8qdSSJ1kneDz3Emz0nh+STmUnyGRykdKOUjsG8cIFq+caNkQnmxAmtSorzZ2BAF8cVOAm+vZ0S2eLFehnnQ8HeNhYgUVZXs61DURGzWjIySEyhkG5TLOmIs2YBN9ygHybRwp7/LQ6tzEySXU8Pj02qDDkldLegehnL3/2OkqXkjQ8MMNzJeLUnD4YwpzH82kOjkWilIZfY/6R/jFK8ybOyKOkVFfF96VJ/Eo84KqS8XDConUB2p4OT4AsKqM7aQ4OcDwW7pN3aSoLs7SUZdnRQlV20SJM9QKJqbqaEKznnTvU4HOyOm+pqnsvZs7pvUl6efqBIr56cHD2efX3hg+q3beN1qKsj+UqUgfMBYzCxMIQ5jZGMKttlZQyNkQygrCwSijRcy8zk73l5JBm7OumEnVTq60l8a9eOb+y2a9f4gsb2UmgSJ+n1ULBL2keOUN1NTeXy0uahsVGXgxsaIrmlpo7NOXeqx15wOm6OHGHcaSCgg+br6rityy/nMYszSsbzwgWS+Zw54yMAamoYiykOr1CIx5+fz8/Gqz15MIQ5zZFoI/6mTQzaPnNG2wWHh0lsJSUkObsJoKvL3QPtJBXpQbRmjSaRujqSSFeXt5ffz0PBLmkLcVkWCaajQ5sPJGSouZlkWVbG4/Kbcy4PAHtWVEoKP6emjq2WHggAy5Zph1dxMZ1XoRAl3XXruIxbuNSuXSRygMfW0UGJtKuLpgPjtJk8GMI0GIPKSnpzpdkWoHsAAf5MADU1DANqa6MEtXixtl82N1MVLSsjidgJ2MuhE+mhYCdVIcCiIl1cubdXtxcWiW39ehKq35xz+wNAYkpFKh0epq2xoYH7DwS43LvvUnLOyOA2JH9bWoh4hfTYzRfS3VPSJeU6GEwO4iJMpdRdAP4HgBUArrQsa5/HcpsBfAdAAMC/WZb1zXj2a5BcVFZ653lHkvaEWNrbdeO1mho6PlauJGk8+CCX/epXqZ7aEWvWk5Dq8eOMVzx7lqp4SgrJbfZsXQt0/nySZ2GhNhEIuXsFyEvxipoaLiukeOoUCbClRUutopIHAtxfMEgi/uxnx7aw8OqrJCYGp/liwwYjXU424pUwDwP4CIAfeS2glAoA+AGA9wGoA7BXKfVby7LeiXPfBpOASNKexIZmZNBumZ7Oz62tLL5RVaWXTUbWUyhE4urr02mbGRkksYoKkuWRI8yrf+sthkSVlPA9XDZRdTVJMCODkvG5cyTJwUF652tqSP7BoDYLFBaObwUCRE42EBPDrFnafNHVZaTLqYC4CNOyrKMAoKQnqDuuBHDcsqyTo8s+BuAOAIYwpxH85nfbPdaSUy12vezsscsmMusJ4PGVl5PIlKKEGQjwPS9Pt+dobtYhRuJFf+CB8A+C7m5Kq1JkRGqK9vRQvW5u5rn29FASLS2lScCZ0ugn2SBRzjzTITLxmAgb5jwAZ23f6wCs91pYKfUAgAcAoLR0QXKPzGAc3G4yAPjud0kuAwP0oh85wmpIzhtQpEYhjfPnSZaZmZSWJD8bSLyXX8h6eJhB9kLYx47pYrynTpHwpBfOTTfxeCOFRuXkMARKHEeBAEl33jzmzD/0kJaW9+7lclLUBNCSs9/iK/E680yHyOQgImEqpf4IYK7LX1+xLOspH/twEz8tr4Uty9oKYCsArFpV5bmcQeLhdZP199MmmJNDAgiF+F1qWjqL7ko1d8uiWjowQHtcMDi+F08iCizb61mePEkyk7CoUEg3fZOivBI8LmTmx266YgUlRmkJkZurOzoCY6XlRYt0BXZnHvquXRPTV8d0iEwOIhKmZVnvjXMfdQDm276XAzC5ClMQXjfZq69SWpTwm/R0kuHBg+7l45Ti5+pqqsJr1mjHRyR12769tDSmBz79NPPVt2wJX75u9WoSVShE9Tkri+p4RQVtiRUVWm22LF0s2Q9hCSFWVo41H9iLjNilZbHVuuWhJ9IM4QXTITI5mAiVfC+AS5RSiwHUA7gbwMcnYL8GUcLrJhsc9F7HjWTLy/n+6U9rAikqYuxhOO+wfXuhkA6rmT2b5OumUjr3X1XFZbu6KAXm5pIYP/Qhqt19fZQQly7VAfl+CcuZc+48Fj9qdDKSDdxgOkQmB/GGFX0YwPcAFAF4Rin1lmVZNyulysDwoVstyxpSSn0WwA4wrOjHlmUdifvIDRIOr5usvJwqrdS9lFzoqqrwkoxbxk4km5psb/9+7WARqdBZ2ci+vKCwkDU+Gxt1+JITTpXfi7DsdUAbGkiy8eScCyaiYlCiHWoGRLxe8icAPOHyewOAW23fnwXwbDz7Mkg+vG6yT3yChSDa2ymdpafTqbJli3+bnF+bmpC2vXiu2BvdVMqyMlY9stsW7TUj3eAkrJqa8aXfAE3wTU2MvWxsZKxmZibtut/8ZvgqTZOJiZJkLzaYTB+DPyPcTRau8KwfScavTU1IOxiks0gpvi9f7k7EFRUk8+xs7QmPpmakl+SbkcHfmpvHetDr60mY0rp4KnueTe3LxMMQpsEYeN1k4X736oJol9qk1JmbJOpUkS+5hCRVW0tSDec0OnGC/9slzKIi4LHH3PugO/fV2uou+e7bp51IKSl8Scvi7GxK2wsWuJsJDGYuDGEaRESkMB83FdcptUlg9/z546u725c9fVoX6Vi5ktuqrmbet5sk19AwNryntZUZPMPD4yu019ay0O/QELc3OMiWwesdUcFiCqip4TFLWJJlkTgHBrj9xYuN5/liQ0rkRQwuZtjLq9lV1nAtct1aCZeXMwXR3gb4vvsoIdqXtWfjFBWx9uPGjXTmuElxznazUqG9oGBsG+Nt23RVdCmTdvy4rjFpR08PCbujg2mWKSlUwwHGeA4P83yc/XoMZj6MhGkQFrEEQHvZKxsbmRVjx6OPjl22u1vbIu3reklxTkdVWxtJzlmh/YUXxlZFl5jSoSHdcsMu+Ur7igMHSN7p6ZRk29u5/sqV0YUkGcwMGMI0CItYAqCjiQF0LivZOJKF47au00SwcSMl1YYGerHdKrQDOn9cyDIYpKq9YQP373R0bdlCb/iyZfSUd3QwEL+ykuQbqTGawcyDIUyDsIglADqaGEDnssXFujr6yMj4dd3so7t3a/umV4X2NWtIjsePczvihEpNdc8gAsY6tNLSgCuvNAUsLnYoS8pqT0GsWlVlbdvmWmLTYIJgJyinyuonv9tPPrhz2YoKLTE617UXuRDId1H3vQqISH/1piaq1mlprFJ0883xj5PB9MLq1Wq/ZVlVkZccCyNhGoRFrAHQkWIAYy095sdE4LVvIy0axAtDmAYRkegA6HhKj8WTI20CuQ3ihQkrMphwuIUdSQB4JGzapL3TIyP6s+mkaDARMIRpMOFoaNDB4QK/AeBiInDGcxrJ0WAiYFRygwlHvKXHjGptMFkwEqbBhMOo1QbTFYYwDSYcRq02mK4wKrnBpMCo1QbTEUbCNDAwMPAJQ5gGBgYGPmEI08DAwMAnDGEaGBgY+IQhTAMDAwOfMIRpYGBg4BOGMA0MDAx8whCmgYGBgU8YwjQwMDDwCUOYBgYGBj5hCNPAwMDAJwxhGhgYGPiEIUwDAwMDnzCEaWBgYOAThjANDAwMfMIQpoGBgYFPGMI0MDAw8AlDmAYGBgY+YQjTwMDAwCcMYRoYGBj4RFyEqZS6Syl1RCk1opSqCrNcrVLqkFLqLaXUvnj2aWBgYDBZiLdr5GEAHwHwIx/L3mhZVmuc+zMwMDCYNMRFmJZlHQUApVRijsbAwMBgCmOibJgWgJ1Kqf1KqQcmaJ8GBgYGCUVECVMp9UcAc13++oplWU/53M81lmU1KKWKAfxBKVVtWdaLHvt7AICQ6sDq1eqwz31MJRQCmK7mh+l67NP1uIHpe+zT9bgBoDKWlSISpmVZ741lw45tNIy+NyulngBwJQBXwrQsayuArQCglNpnWZanM2mqYroeNzB9j326HjcwfY99uh43wGOPZb2kq+RKqWylVK58BvB+0FlkYGBgMK0Qb1jRh5VSdQA2AHhGKbVj9PcypdSzo4uVAHhZKfU2gDcAPGNZ1nPx7NfAwMBgMhCvl/wJAE+4/N4A4NbRzycBrI1xF1tjP7pJxXQ9bmD6Hvt0PW5g+h77dD1uIMZjV5ZlJfpADAwMDGYkTGqkgYGBgU9MGcKczmmWURz7ZqVUjVLquFLqSxN5jB7HU6CU+oNS6tjoe77HclNmzCONoSK+O/r/QaXUeybjOJ3wcdw3KKU6R8f4LaXU1ybjOJ1QSv1YKdWslHt431Qdb8DXsUc/5pZlTYkXgBVgbNQLAKrCLFcLoHCyjzfaYwcQAHACwBIAQQBvA1g5ycf9TwC+NPr5SwD+91Qecz9jCNrOfw9AAbgKwJ5pctw3AHh6so/V5divB/AeAIc9/p9y4x3FsUc95lNGwrQs66hlWTWTfRyxwOexXwnguGVZJy3LCgF4DMAdyT+6sLgDwCOjnx8B8KHJOxRf8DOGdwD4mUW8DiBPKVU60QfqwFS89r5gMcGkPcwiU3G8Afg69qgxZQgzCkzXNMt5AM7avteN/jaZKLEs6xwAjL4Xeyw3VcbczxhOxXH2e0wblFJvK6V+r5RaNTGHFjem4nhHg6jGPN5qRVFhotMsE4kEHLtbhZKkhyiEO+4oNjMpY+4CP2M4KeMcAX6O6U0ACy3L6lFK3QrgSQCXJPvAEoCpON5+EfWYTyhhWhOcZplIJODY6wDMt30vB9AQ5zYjItxxK6WalFKllmWdG1Wjmj22MSlj7gI/Yzgp4xwBEY/Jsqwu2+dnlVIPKaUKralfEnEqjrcvxDLm00oln+ZplnsBXKKUWqyUCgK4G8BvJ/mYfgvgvtHP9wEYJylPsTH3M4a/BfCXo97bqwB0itlhEhHxuJVSc5VinUSl1JXgvdk24UcaPabiePtCTGM+2Z4sm8fqw+DTagBAE4Ado7+XAXh29PMS0MP4NoAjoDo8LY7d0h7Fd0GP6aQfO4A5AHYBODb6XjDVx9xtDAH8NYC/Hv2sAPxg9P9DCBNxMcWO+7Oj4/s2gNcBXD3Zxzx6XL8CcA7A4Ogc/+R0GG+fxx71mJtMHwMDAwOfmFYquYGBgcFkwhCmgYGBgU8YwjQwMDDwCUOYBgYGBj5hCNPAwMDAJwxhGhgYGPiEIUwDAwMDnzCEaWBgYOAT/z/jMcuSLs0uIgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\"\"\"\n", + "Hier wordt met matplotlib een grafiek van de samples getekend.\n", + "allereerst wordt er een figuur aangemaakt\n", + "Daarna wordt de contour getekend aan de hand van de output van het model.\n", + "Daarna worden de waarden die zijn gegenereerd getekend op deze figuur.\n", + "Hierna worden de limits van de x en y assen gezet.\n", + "Daarna wordt de legenda aangemaakt, hierbij zijn de bolletjes een 0 en de kruisjes een 1.\n", + "Als laatst wordt de titel van de figuur aangemaakt.\n", + "\"\"\"\n", + "plt.figure(figsize=(5, 5))\n", + "plt.contourf(aa, bb, cc, cmap='bwr', alpha=0.2)\n", + "plt.plot(X[y==0, 0], X[y==0, 1], 'ob', alpha=0.5)\n", + "plt.plot(X[y==1, 0], X[y==1, 1], 'xr', alpha=0.5)\n", + "plt.xlim(-1.5, 1.5)\n", + "plt.ylim(-1.5, 1.5)\n", + "plt.legend(['0', '1'])\n", + "plt.title(\"Blue circles and Red crosses\")" + ] + }, + { + "cell_type": "markdown", + "id": "9267f151", + "metadata": {}, + "source": [ + "## 4.2 : ZTDL 2 - Data" + ] + }, + { + "cell_type": "markdown", + "id": "20cea62e", + "metadata": {}, + "source": [ + "a. we hebben allebei het notebook bestudeerd.\n", + "b. we hebben een spreadsheet gevonden over heart attack analysis and predictions.\n", + "c. Hieronder zijn een aantal technieken en plots te zien die wij op de data hebben uitgevoerd. Om het beter te begrijpen hebben wij allebei samen de technieken en plots uitgevoerd." + ] + }, + { + "cell_type": "markdown", + "id": "eaab705e", + "metadata": {}, + "source": [ + "### Standaard info\n", + "We hebben eerst de standaard gegevens van de dataset verkend." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "4deee696", + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "6b792675", + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../data/heart.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "81faf37f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "pandas.core.frame.DataFrame" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "6417b5c6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
agesexcptrtbpscholfbsrestecgthalachhexngoldpeakslpcaathalloutput
063131452331015002.30011
137121302500118703.50021
241011302040017201.42021
356111202360117800.82021
457001203540116310.62021
\n", + "
" + ], + "text/plain": [ + " age sex cp trtbps chol fbs restecg thalachh exng oldpeak slp \\\n", + "0 63 1 3 145 233 1 0 150 0 2.3 0 \n", + "1 37 1 2 130 250 0 1 187 0 3.5 0 \n", + "2 41 0 1 130 204 0 0 172 0 1.4 2 \n", + "3 56 1 1 120 236 0 1 178 0 0.8 2 \n", + "4 57 0 0 120 354 0 1 163 1 0.6 2 \n", + "\n", + " caa thall output \n", + "0 0 1 1 \n", + "1 0 2 1 \n", + "2 0 2 1 \n", + "3 0 2 1 \n", + "4 0 2 1 " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "202237c5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 303 entries, 0 to 302\n", + "Data columns (total 14 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 age 303 non-null int64 \n", + " 1 sex 303 non-null int64 \n", + " 2 cp 303 non-null int64 \n", + " 3 trtbps 303 non-null int64 \n", + " 4 chol 303 non-null int64 \n", + " 5 fbs 303 non-null int64 \n", + " 6 restecg 303 non-null int64 \n", + " 7 thalachh 303 non-null int64 \n", + " 8 exng 303 non-null int64 \n", + " 9 oldpeak 303 non-null float64\n", + " 10 slp 303 non-null int64 \n", + " 11 caa 303 non-null int64 \n", + " 12 thall 303 non-null int64 \n", + " 13 output 303 non-null int64 \n", + "dtypes: float64(1), int64(13)\n", + "memory usage: 33.3 KB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "9a94370a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
agesexcptrtbpscholfbsrestecgthalachhexngoldpeakslpcaathalloutput
count303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000
mean54.3663370.6831680.966997131.623762246.2640260.1485150.528053149.6468650.3267331.0396041.3993400.7293732.3135310.544554
std9.0821010.4660111.03205217.53814351.8307510.3561980.52586022.9051610.4697941.1610750.6162261.0226060.6122770.498835
min29.0000000.0000000.00000094.000000126.0000000.0000000.00000071.0000000.0000000.0000000.0000000.0000000.0000000.000000
25%47.5000000.0000000.000000120.000000211.0000000.0000000.000000133.5000000.0000000.0000001.0000000.0000002.0000000.000000
50%55.0000001.0000001.000000130.000000240.0000000.0000001.000000153.0000000.0000000.8000001.0000000.0000002.0000001.000000
75%61.0000001.0000002.000000140.000000274.5000000.0000001.000000166.0000001.0000001.6000002.0000001.0000003.0000001.000000
max77.0000001.0000003.000000200.000000564.0000001.0000002.000000202.0000001.0000006.2000002.0000004.0000003.0000001.000000
\n", + "
" + ], + "text/plain": [ + " age sex cp trtbps chol fbs \\\n", + "count 303.000000 303.000000 303.000000 303.000000 303.000000 303.000000 \n", + "mean 54.366337 0.683168 0.966997 131.623762 246.264026 0.148515 \n", + "std 9.082101 0.466011 1.032052 17.538143 51.830751 0.356198 \n", + "min 29.000000 0.000000 0.000000 94.000000 126.000000 0.000000 \n", + "25% 47.500000 0.000000 0.000000 120.000000 211.000000 0.000000 \n", + "50% 55.000000 1.000000 1.000000 130.000000 240.000000 0.000000 \n", + "75% 61.000000 1.000000 2.000000 140.000000 274.500000 0.000000 \n", + "max 77.000000 1.000000 3.000000 200.000000 564.000000 1.000000 \n", + "\n", + " restecg thalachh exng oldpeak slp caa \\\n", + "count 303.000000 303.000000 303.000000 303.000000 303.000000 303.000000 \n", + "mean 0.528053 149.646865 0.326733 1.039604 1.399340 0.729373 \n", + "std 0.525860 22.905161 0.469794 1.161075 0.616226 1.022606 \n", + "min 0.000000 71.000000 0.000000 0.000000 0.000000 0.000000 \n", + "25% 0.000000 133.500000 0.000000 0.000000 1.000000 0.000000 \n", + "50% 1.000000 153.000000 0.000000 0.800000 1.000000 0.000000 \n", + "75% 1.000000 166.000000 1.000000 1.600000 2.000000 1.000000 \n", + "max 2.000000 202.000000 1.000000 6.200000 2.000000 4.000000 \n", + "\n", + " thall output \n", + "count 303.000000 303.000000 \n", + "mean 2.313531 0.544554 \n", + "std 0.612277 0.498835 \n", + "min 0.000000 0.000000 \n", + "25% 2.000000 0.000000 \n", + "50% 2.000000 1.000000 \n", + "75% 3.000000 1.000000 \n", + "max 3.000000 1.000000 " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "345b68bd", + "metadata": {}, + "source": [ + "### indexing\n", + "We zullen nu verschillende items in de dataset indexeren" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "ce906842", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "age 54.0\n", + "sex 1.0\n", + "cp 0.0\n", + "trtbps 140.0\n", + "chol 239.0\n", + "fbs 0.0\n", + "restecg 1.0\n", + "thalachh 160.0\n", + "exng 0.0\n", + "oldpeak 1.2\n", + "slp 2.0\n", + "caa 0.0\n", + "thall 2.0\n", + "output 1.0\n", + "Name: 10, dtype: float64" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# het 10de element ophalen uit de dataset\n", + "df.iloc[10]" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "5f8d9afe", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
agesexoldpeak
06312.3
13713.5
24101.4
35610.8
45700.6
55710.4
65601.3
74410.0
85210.5
\n", + "
" + ], + "text/plain": [ + " age sex oldpeak\n", + "0 63 1 2.3\n", + "1 37 1 3.5\n", + "2 41 0 1.4\n", + "3 56 1 0.8\n", + "4 57 0 0.6\n", + "5 57 1 0.4\n", + "6 56 0 1.3\n", + "7 44 1 0.0\n", + "8 52 1 0.5" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# de age, sex en oldpeak van de eerste 9 elementen ophalen\n", + "df.loc[0:8,['age','sex','oldpeak']]" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "ce4a5f85", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 1\n", + "1 1\n", + "2 0\n", + "3 1\n", + "4 0\n", + "Name: sex, dtype: int64" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# de head opvragen van de elementen met het sex attribuut\n", + "df['sex'].head()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "d129b322", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 0], dtype=int64)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# unieke element van sex ophalen\n", + "df['sex'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "37d36915", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
agesexcptrtbpscholfbsrestecgthalachhexngoldpeakslpcaathalloutput
7229111302040020200.02021
5834131181820017400.02021
12534011182100119200.72021
23935101262820015610.02030
6535001381830118201.42021
.............................................
6071021102651013000.02121
15171001121490112501.61021
12974011202690012110.22121
14476021401970211601.11021
23877101253040016210.02320
\n", + "

303 rows × 14 columns

\n", + "
" + ], + "text/plain": [ + " age sex cp trtbps chol fbs restecg thalachh exng oldpeak slp \\\n", + "72 29 1 1 130 204 0 0 202 0 0.0 2 \n", + "58 34 1 3 118 182 0 0 174 0 0.0 2 \n", + "125 34 0 1 118 210 0 1 192 0 0.7 2 \n", + "239 35 1 0 126 282 0 0 156 1 0.0 2 \n", + "65 35 0 0 138 183 0 1 182 0 1.4 2 \n", + ".. ... ... .. ... ... ... ... ... ... ... ... \n", + "60 71 0 2 110 265 1 0 130 0 0.0 2 \n", + "151 71 0 0 112 149 0 1 125 0 1.6 1 \n", + "129 74 0 1 120 269 0 0 121 1 0.2 2 \n", + "144 76 0 2 140 197 0 2 116 0 1.1 1 \n", + "238 77 1 0 125 304 0 0 162 1 0.0 2 \n", + "\n", + " caa thall output \n", + "72 0 2 1 \n", + "58 0 2 1 \n", + "125 0 2 1 \n", + "239 0 3 0 \n", + "65 0 2 1 \n", + ".. ... ... ... \n", + "60 1 2 1 \n", + "151 0 2 1 \n", + "129 1 2 1 \n", + "144 0 2 1 \n", + "238 3 2 0 \n", + "\n", + "[303 rows x 14 columns]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# sorteer de values van attribuut age op optellende manier\n", + "df.sort_values('age', ascending = True)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "c379d785", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABxgUlEQVR4nO2dd3wcxd3/33MnnXq1LFu25V5wwaYY03szkFASyAMhhCSUhEAaz5NQUp4khBTSG0/iAL8QklASOoTeMcUF995t2bIl2Vbvuv39MTu7s3t70p2KVTzv10uvO93t7s3uznzmO9/vd2aFZVkYDAaDYWgR6u8CGAwGg6H3MeJuMBgMQxAj7gaDwTAEMeJuMBgMQxAj7gaDwTAEMeJuMBgMQxAj7oYhjRDCEkJM7sZ+4+19U3qpHG8KIa7v5r5jhRD1Qohwb5TFcHhgxN1gGGAIIbYLIc5R/1uWtdOyrGzLsjr6s1yGwYURd4Ohh/SWdW8w9CZG3A19hhDidiHEFiFEnRBirRDiMu27sBDil0KIKiHENiHELbobRAiRJ4S4XwhRLoTYLYT4UTy3hH2sO7XfWiqEKNU2OUcIsUkIcVAI8UchhLD3CwkhviOE2CGEqBBC/E0IkZfguW0XQtwmhFgJNAghUoQQJwgh3hNCVAshVgghzoiz7yQhxOtCiP32+f9DCJFvf/cQMBZ41nbFfMvvIhJCjBJCPCOEOCCE2CyEuEE79veFEI/Z51InhFgjhJibyDkZhhiWZZk/89cnf8AVwCikEfFfQANQYn/3JWAtMAYoAF4FLCDF/v4p4M9AFlAMLAK+GOd3vgmsAqYBApgDDLO/s4DngHykaFYC8+3vvgBsBiYC2cATwEP2d+P18gT85nZgOVAKZACjgf3Ahfb5nmv/P9ze/k3gevv9ZPv7NGA48DbwG9+xz9H+95QFeAu4F0gHjrLP6Wz7u+8DzXY5wsBPgA/6uy6Yv0P/1+8FMH+Hz58thpfY71/XxRo4RwkYMAJoATK0768C3ohz3A3quAHfWcAp2v+PAbfb718Dvqx9Nw1os8uQiLh/Qfv/NtUxaJ+9BFxrv3fEPeBYlwLLfMcOFHe7M+kAcrTvfwL81X7/feBV7bsZQFN/33vzd+j/jK/Q0GcIIT4L3IoUJ5DWcZH9fhSwS9tcfz8OSAXKbQ8KSGtY30anFNjSSVH2au8b7XKoMuzQvtuB27kkgr/MVwghPq59lgq84d9JCFEM/A44FchBntvBBH9zFHDAsqw6X7l114v/fNOFECmWZbUn+BuGIYARd0OfIIQYB/wFOBt437KsDiHEcqTbBKAc6ZJR6D7yXUjLvShBQdoFTAJWJ1nMPUhRVowF2oF9vrLFQ19SdRfScr8h3sYaP7H3nW1Z1n4hxKXAH+IcN6jMhUKIHE3gxwK7E/hdw2GECaga+oospEhVAgghPg/M0r5/DPiaEGK0HUy8TX1hWVY58DLwSyFErh34nCSEOD3Ob90H3CWEmCIks4UQwxIo48PAN4QQE4QQ2cCPgUe7aeH+Hfi4EOJ8O8CbLoQ4QwgR1EnkAPVAtRBiNDJmoLMPGQeIwbKsXcB7wE/s35gNXAf8oxtlNgxhjLgb+gTLstYCvwTeR4rVkcBCbZO/IAV8JbAM+A/Sala53J8FIsig60Hg30BJnJ/7FbKzeBmoBe5HBjm74gHgIWRAcxsyEPmVRM7Pjy26lwB3Iju0XUjRDmpjPwCOAWqA55GBXJ2fAN+xs27+J2D/q5Curj3Ak8D/Wpb1SnfKbRi6CMsyD+sw9D9CiAuAP1mWNa7LjQ0GQ5cYy93QLwghMoQQF9r54aOB/0VaoQaDoRcwlruhXxBCZCLztY8AmpDuia9ZllXbrwUzGIYIRtwNBoNhCGLcMgaDwTAEGRB57kVFRdb48eP7uxgGg8EwqFi6dGmVZVnDg74bEOI+fvx4lixZ0t/FMBgMhkGFEGJHvO+MW8ZgMBiGIEbcDQaDYQhixN1gMBiGIAPC524wGAw9oa2tjbKyMpqbm/u7KH1Ceno6Y8aMITU1NeF9jLgbDIZBT1lZGTk5OYwfPx5tmeghgWVZ7N+/n7KyMiZMmJDwfsYtYzAYBj3Nzc0MGzZsyAk7gBCCYcOGJT0qMeJuMBiGBENR2BXdOTcj7oZYqnfBJrOCrMEwmDHibohl8X3wr8/3dykMBkMPMOJuiKWjVf4ZDIZBixF3QyxWVP4ZDIakuPTSSzn22GOZOXMmCxYsAOD+++9n6tSpnHHGGdxwww3ccsstAFRWVvLJT36S4447juOOO46FCxd2duikMamQhlisKFgdXW9nMAxAfvDsGtbu6d3HAswYlcv/fnxml9s98MADFBYW0tTUxHHHHcdFF13EXXfdxUcffUROTg5nnXUWc+bMAeBrX/sa3/jGNzjllFPYuXMn559/PuvWreu1MhtxN8QS7TCWu8HQDX73u9/x5JPygWK7du3ioYce4vTTT6ewsBCAK664go0bNwLw6quvsnbtWmff2tpa6urqyMnJ6ZWyGHE3xKKEPRqFkPHcGQYXiVjYfcGbb77Jq6++yvvvv09mZiZnnHEG06ZNi2uNR6NR3n//fTIyEnmWe/KYlmuIRYm7sd4NhoSpqamhoKCAzMxM1q9fzwcffEBjYyNvvfUWBw8epL29nccff9zZ/rzzzuMPf/iD8//y5ct7tTxG3A2xKH+7EXeDIWHmz59Pe3s7s2fP5rvf/S4nnHACo0eP5s477+T444/nnHPOYcaMGeTl5QHShbNkyRJmz57NjBkz+NOf/tSr5TFuGUMs6rm6JqhqMCRMWloaL7zwQsznc+fO5cYbb6S9vZ3LLruM8847D4CioiIeffTRPiuPsdwNsRi3jMHQa3z/+9/nqKOOYtasWUyYMIFLL730kPyusdwNsUQ7vK8Gg6Hb/OIXv+iX3zWWuyEWY7kbDIMeI+6GWIy4GwyDHiPuhlhMtozBMOgx4m6IxVjuBsOgx4i7IRaVCmkCqgZDj/jc5z7Hv//974S33759O7NmzeqV3zbiboglatwyBsNgx4i7IRbHLWMsd4MhGf72t78xe/Zs5syZwzXXXAPA22+/zUknncTEiRMdK96yLL75zW8ya9YsjjzyyD6ZzGTy3A2xGJ+7YTDzwu2wd1XvHnPkkXDBTzvdZM2aNdx9990sXLiQoqIiDhw4wK233kp5eTnvvvsu69ev5+KLL+byyy/niSeeYPny5axYsYKqqiqOO+44TjvttF4tsrHcDbFYZhKTwZAsr7/+OpdffjlFRUUAzjK/l156KaFQiBkzZrBv3z4A3n33Xa666irC4TAjRozg9NNPZ/Hixb1aHmO5G2JxLHerf8thMHSHLizsvsKyLIQQMZ+npaV5ttFf+5KELHchxHYhxCohxHIhxBL7s0IhxCtCiE32a4G2/R1CiM1CiA1CiPP7qvCGPsK4ZQyGpDn77LN57LHH2L9/PwAHDhyIu+1pp53Go48+SkdHB5WVlbz99tvMmzevV8uTjOV+pmVZVdr/twOvWZb1UyHE7fb/twkhZgBXAjOBUcCrQoiplmWic4OGqAmoGgzJMnPmTL797W9z+umnEw6HOfroo+Nue9lll/H+++8zZ84chBDcc889jBw5ku3bt/daeUQiwwMhxHZgri7uQogNwBmWZZULIUqANy3LmiaEuAPAsqyf2Nu9BHzfsqz34x1/7ty51pIlS3p2Jobe44ELYOd7cNN7MKJ/nmpjMCTDunXrmD59en8Xo08JOkchxFLLsuYGbZ9oQNUCXhZCLBVC3Gh/NsKyrHIA+7XY/nw0sEvbt8z+zF+oG4UQS4QQSyorKxMshuGQ4Dxmz1juBsNgJVG3zMmWZe0RQhQDrwgh1neybWxEQXYO3g8sawGwAKTlnmA5DIcCs7aMwTDoSchytyxrj/1aATwJzAP22e4Y7NcKe/MyoFTbfQywp7cKbDgEmElMhkHIochA6S+6c25dirsQIksIkaPeA+cBq4FngGvtza4FnrbfPwNcKYRIE0JMAKYAi5IumaH/MKmQhkFGeno6+/fvH5ICb1kW+/fvJz09Pan9EnHLjACetPM3U4B/Wpb1ohBiMfCYEOI6YCdwhV2QNUKIx4C1QDtws8mUGWSYtWUMg4wxY8ZQVlbGUI3fpaenM2bMmKT26VLcLcvaCswJ+Hw/cHacfe4G7k6qJIaBg1kV0jDISE1NZcKECf1djAGFWX7AEIuZxGQwDHqMuBticbJljOVuMAxWjLgbYjGWu8Ew6DHibojFTGIyGAY9RtwNsTjZMkMvrcxgOFww4m6IxUxiMhgGPUbcDbEoi9343A2GQYsRd0MsZm0Zg2HQY8TdEIsJqBoMgx4j7oZYTCqkwTDoMeJuiCVqJjEZDIMdI+6GWMyqkAbDoMeIuyEW43M3GAY9RtwNsRifu8Ew6DHibojFiLvBMOgx4m6IxcxQNRgGPUbcDbGYJzEZDIMeI+6GWExA1WAY9BhxN8RifO4Gw6DHiLshFrO2jMEw6DHibvCiT1wy4m4wDFqMuBu86IJuxN1gGLQYcTd40YOoJqBqMAxajLgnS1M1dLT3dyn6DmO5GwxDAiPuyfLHebDk/v4uRd/hEXdjuRsMgxUj7slgWVC/D+r29ndJ+g5d0I3lbjAMWoy4J8PhsM65LuhRI+6GfqZ6V3+XYNBixD0ZDoeZm8bnbuiK+grY8ELf/07ZEvjNLKja1Pe/NQRJWNyFEGEhxDIhxHP2/4VCiFeEEJvs1wJt2zuEEJuFEBuEEOf3RcH7hcNhck/UiLuhCz76Gzzy6b5PLKivkK8NVX37O0OUZCz3rwHrtP9vB16zLGsK8Jr9P0KIGcCVwExgPnCvECLcO8XtZ5TFHj1csmWG8AjF0H3am2U96et2EG2zX4dwe+tDEhJ3IcQY4CLgPu3jS4AH7fcPApdqnz9iWVaLZVnbgM3AvF4pbX+jxM64ZQyHM0ps+1p0O4y494RELfffAN8C9NY+wrKscgD7tdj+fDSgR0HK7M88CCFuFEIsEUIsqaysTLbc/cNhEVA1k5gMXXCoRNeIe4/oUtyFEB8DKizLWprgMUXAZzFPWrYsa4FlWXMty5o7fPjwBA/dz5iAaiyVG+GNH5uHaR9OHKr1/o1bpkckYrmfDFwshNgOPAKcJYT4O7BPCFECYL/a0Q/KgFJt/zHAnl4rcX9yODzEIllx3/A8vPUzaK3vuzIZBhaHSnSN5d4juhR3y7LusCxrjGVZ45GB0tcty/oM8Axwrb3ZtcDT9vtngCuFEGlCiAnAFGBRr5e8P7AOg4BqNMlJTB2HyP9qGDgcKtFVx1e/Z0iKlB7s+1PgMSHEdcBO4AoAy7LWCCEeA9YC7cDNljVEnNTRwyygmsh5OsG1IXxNDF4OVTtwOhFTt7pDUuJuWdabwJv2+/3A2XG2uxu4u4dlG3gcDg+OTnY9d2NdHX4cKreM8bn3CDNDNRkOi1TIJN0yhyotzjBwOFQWtfG59wgj7smgZm8eNgHVZNwypgEeNqh73dcjWEfczaiwOxhxT4bDwnJPMlvmcJi1a/ByqDr0qPG59wQj7slwOAiZ50lMiYi7GTofdpgZqoMCI+7J4CwcNoQtiaQtdxNQPew4VD53U7d6hBH3ZDjcUiGNz90QxKFKf+1o9f6eISmMuCfD4bDkb7d97kO4wzN4OeRuGVO3uoMR92SIJrm2TEfb4KuY3XXLmIyGwwclun3tnjSjwh5hxD0Zkp3EdN/Z8PbP+648fUG3Z6iaBnjYcMjXljGGQ3cw4p4Mya4tc3A77N/cZ8XpE5JeW8ZkNBx2HKqsMZOJ1SOGlrg3VcNfzoaqPhLUZP3L7a3QUtc3Zekruutz7+tHrh1ObHsHdie6wnY/4HTofRx76jhEgdshytAS94PbYfcS2Luyb46fTCqkZcnHkbUMsqVwu+1zN+Lea7z8bXjrnv4uRXwOWUDVzpYxqZDdYmiJe19H1x3LPVF3hQWtg81yT/JJTEbce5/WBmkYDFTMwmGDgqEl7n1dGZIJqHa0yNch75Yx2TK9TlvzwHZzqbL1+doyxnDoCUNL3J1JD30kNMn43NuVuA82t4y95K8ImTz3ZNjyBtSU9c6x2pvcutzfWFbsvT1Uk5jM2jI9YoiJe5KWezQK//kmVG1KbPtksmXUsHqwWe6qIYVSzQzVZHjsWvjwz71zrLbmgTMSWnwf/O5o72cmFXJQMMTEXVnuCfb0DRWwaAFsfi2x7ZNxyyjLvb1pYA+x/ahzDKcm9tBr1fAO96BXW4N7z3uCZdl1ZoBcz4PboXqHb0G5QzRaMz73HjE0xT3RhqG2S3QInExAVW/ogymoqsQ9FDYB1USJRuX59+QavPxd+HCBrJNWdOCIuxqB6gHeQzW3YTDNoXj8Blj3bH+XwsMQE/ckK4PTGSQo7smkQuqNYTD53S3dLWPWc08IFTzvyTXY+CJsfUNa7TBwfO6qHrdp9flQu2UGw8h37VOw473+LoWHISbuSa4i15GkSyGZtWX0xtk6mMRdd8sYyz0h1CitJ26K9hZ5DZWIRtvhyZvghdt7Xr6e0G7X46X/D/54gh1gPdQB1QFetyxLtveB0iHbHObi3k3LPZmAKsQGVZsOei2hgYTjlknUcu+muFsW1Fcmt89ARdWfnqQGdrTa4t7o/r9vtfxLhrKlsPnV7pfDj6rHuz+CynXeej3YUiFbG2DBmbBnee8cTzFAJ1sNMXFPNlummz73ZAKq4BX3hv3ws/Hw7NcS+81DTVTzufflwzoW/QV+MTnxTKWBTHsvuGU6WuU1VOLZ0dY9a/DdX0n/fW+hzq3pgHzV63J3zjeRIL1z/F623Ov2wp6PYO+q3jmeojfufx8wxMS9j90yVjcDqnqDeOkO+Vq2OLHfPNTobpmE3E/dHKJvfFG+HtyR3H4Dkd54qER7q7yGbU3usTpak8/AaW9xj9EbqHhC43752hNxX/kY/CA/8fkAvR1Q7auHfyTrAThEHObirm5Kgg2ou5a77nPf9o58HTY5sd88VOxZDksf9LllEkmF7ObQWV37cGpy+w1EekM0OlqlpepY7q1S8JMVjGhb74qMqseNQZZ7kh36mifla6KLovW3uHe0wffzZLtI5LiqvMsfhr1JutP6gCEm7klG15P1lVlJ5PfG87m3NsR+PxB486fw/K2a6KYkF1Ct3+c23kRQv5OSllw5ByLOsLybqyRaljQwou2u1d3RJj9L1nLvaO+dfHtFp26ZJMU9c5h8bahKbPvedssku/aU6tBe+yGsew7q9gVvp66ROv4Lt8HSv3a7mL3F0BT3hHtm5S9ONKBqW7LJrC0DbiqkpS0kNpCGcB1tsP0ded2qd8rPkk2FXP5P+Nfn5LLLiaAaREMVPPHFgRtgToSeWu66UaI6fatDXqPuWO59Ie6qLvTELZNVJF+Vi6crknWbdnm8ZC13+9xFCB67BpY91MVx29z9BoDxNsTEvY+zZZLJ6Q6axNTe7DaSntz8hiqor+j+/n7KFruuowNb5GsoJclJTHbFViOTrlANdvu7sPIR2D+IA6s9Dajp9Vb3l7fWd8Nyb0vczZgI/nqqi3tnRk5HO1Ru9H4mwvK1rrzr3412AJb2vhMq1iXmQkxWH1rtzCW1zpI/lrHgTGnU+C337sRK+oAhJu5JrkXRXbcMdD0EV40iku02CF34enLzfz4JfjGl+/v72fqm+36/Le7hJFMhFYkG8/zxjr4YyahhdV/T00lMuuh4Ug2jyQu18rknk5USxIGtsOap2PvSUqv9Vifn+5//gT8e5013VXWjZnfXv6+3yc5+Z99auPeExCYQJTuyV+01ZHdK+rWwLJl5U7HWO8KIdnTvvvUBXYq7ECJdCLFICLFCCLFGCPED+/NCIcQrQohN9muBts8dQojNQogNQojz+/IEPCS7tkx3lx+A+FbLzg+hdo87+SOjwK0kutUzAIZtDnXlkFUM4Yhs1CAt94R87r6OUeVpd4W65u2+196ibi/8Yqq349LpzacItSdZ72L2V51DW2zn2Nl1WfpXeP9e72eqDD21HJc8AE/cGFtP9eSAzs539ROx26vZtzW73DKueza4I4omKO7qWImMBpLVB1V2NeLQOxzdMOzQ7p9TrweBuAMtwFmWZc0BjgLmCyFOAG4HXrMsawrwmv0/QogZwJXATGA+cK8Q6ur0MckOuxLNc3/zp7BvTWIPsnj0M/De72WjCEek5a7EXb2m5QY32mX/gA0vxC/H/50Mvz+287J2h9YGSM+F/HFuhQ6ldG25R6Ox2yRruTvZIXEaQ+VG+PFot9NJlLq98v4GPcO2eif8sKD31gJRZe/upB5ddPxi2pkFuPoJWPmob3vN79sT2prkMfxLZyQaUG2pcY/jHNM+N5UKuewh2V4q1sXu77HcOxlZOymatfG3cY6ZrFvGbq9C2Ptr19RZGLDF65YZTOJuSdQdTrX/LOASQOUIPQhcar+/BHjEsqwWy7K2AZuBeb1Z6LgkG4BJxC3T3gJv/gTWPp2Y5d7aAM21cr+UdIhkutasqiyZw4It94W/hcX3xy/LvtV988Dt1gaIZEHhBPezRFaFDLoGyVruqsHEs1D3b5IdTsX6xI7rlMMWlcaDsd99ZAfGtr2d3DHj0dOUPb0e+gPLVjR+9lc0IDNGCWFPR0LOgmG+zjrZgKou7upYLbVwz0TXuj+4PXY/j7hr9ax2j32Menjr51C9K7Zc8ehNt4w+6vdY8er6DwJxBxBChIUQy4EK4BXLsj4ERliWVQ5gvxbbm48Gdmm7l9mf+Y95oxBiiRBiSWVlL01D7+4kps5uhN5D61ZqPKulo1UKXEeLtNxTM93AjAqsZhYG/2ZzTf+4a1ob5Agjf5z7WSIB1aDrnKjl7nfHxLM01bVrSKKOdLS5nUxTgN99/fPyVT/fntDTgKq+v19MIf610We0Op/ZZehpPYrXJhIRd90oaNPiTKrjKp4pLe4dC+X/KkNLR3VSIuT+TvkK+NV0KF8Jz9wCb/wIlv/DLlcC6zcle586dctosSLdrZbs3Jk+JCFxtyyrw7Kso4AxwDwhxKxONhdBhwg45gLLsuZaljV3+PDhCRW2S9SFbWuEp2/uOnCTiOWuD7M8a1oHVBDLcv2mjuWe7Vbwriz3ltrELd/epLVeWu7ZI9zPEgmoBop7dy33eOJuN7DGBHOjK9bDXUWw+nF7P5+4N1RBxRr7N3upI+3NgGpQSmg8t2FQVkayS2rEI961SSRbRk919FvuY+bBl9+Dcae4nweJu2qTqZnue7Xdno/cORXKxZOQ5a7WAEow3tKZ5a4bfXrW3WByy+hYllUNvIn0pe8TQpQA2K8qN68MKNV2GwPs6WlBE0JVgs2vwbK/w3Pf6GL7BFIhdd+wXpmDKohq3G2NcvuUNOmWafW7ZYpkI9SDesra7M2p44mi3DJZw9zPEnkSU4/E3eeOiXcP1DVLdOLLdnsG8Npn5Kvfcq/VOvzeytBxAqrdDNJ6smUC7n97q1yTyN9RRdtjLURnNHooLPc49UNfUkLPEGtrgtR0+f74GyGcJg2d6oAlKFTdSkl3f6fZ9qvv/NDdTtXRvnTLCFsmdVeX7gJ2dKRdG5EOAnEXQgwXQuTb7zOAc4D1wDPAtfZm1wJP2++fAa4UQqQJISYAU4BFvVzuYJxZj3YFaq7uYvsEJjG1a8OvrtwyesNqb5Hinqr53NXQMbPQ3j5g/Zl+sdxtcc8scj8LdxJQrS2X/tKga5Bs59RVKmRbkm4ZNYlKzXyNsdy14wwUy113FwRa7i3w5BflaNTzecCEJVWGnopLIpZ7tF36wJc/7N2merv7fuub8KuZ8KdT5GqoqZny8xmXwG3bYfSxbsaLjqoPqZnuOTXbQdragLVp+iSgWu/dz+Nzb3Ffg9wyg0HcgRLgDSHESmAx0uf+HPBT4FwhxCbgXPt/LMtaAzwGrAVeBG62rL5eG9RGiasSJVUZ4m6fjFumueuAqu4WUuIeydIsdyXuw9xjKlRZ+2OmZmu9dB9lae6xznzuy/8O//5C8ISlZDundp8FH1Q2SFzcVYceSpGvfsu9QXMZ9Fb6ZXuAaLx2F2x8ObH9dSsw6Pq1t8oRh999oa9FE3OsnrplErTcfzsHnvqSa1WDd4LdtrelGO9dJedQKMML5Kg2r7QLt0x6gLjbjoCckuByxcNpn03w2Ge7Dqir+q3apMctowdRA9wyA8DnntLVBpZlrQSODvh8P3B2nH3uBu7ucemSxX9h44l7NAqv3+Wm1yViube3dJ0K6bhlmmy3TLptuTfYSw/Uy+BMeq732HpZD7VbxrI0t4xmuXe2cFhLHWAFlzXZ8rdrFlAQTkA1QbeMstSbDnpfFaqTCKf1reW++D653s7U82K3/8cV0mI943bv/lZAKqT6vrk2diTV0Wa7ZtrleUbbtGyZnrplErDc9292205LnVavtX3r9rrvrQ5IzfAeL3+sLHtzrbs/uNcyNUOe/wu3u7ErJe5FU9389njiXr4CRhwJoZDbYdTsksK+9mm4eTEMnxq8r7MOVMDTsfRYkVOH23vPLdYLDLEZqj6Rbo4zVKvdLde9XvdM8H5Bx2xv9vpUO7XcmzTL3R5WdrS6WSkpGe4xFWpYeajdMuohEZEsd0QBnQdUleAG+YeTLX+XAdUkfe7Kp66O21Tt7YgbKmXHlTW893zuQZNjOtriL8WwZ7mcN6HwLA8dkPXR3iLFyz8K0XPaX7wN/n2d5pY5BJZ7+XLt81opmPef75uJ7asjuuUOUGBnLPnnMahzU23lw/+DjS/J96qOFWmiHCTuFevgz6fBG7ad6bRPrd1teS12P4UaNQZZ7kHWusct0wczrpNkaIl7zFT4OI1LWZdKvBLNlunKclfHURNAwmmQmiU/a21ws1KUP1ivAKojirZ1Xh6d3njMmWqIkWxIz3c/F6H4AVXVuLprueudZJcBVS1bxh+wtCyZFaPngesBU7mRdwTXUCWFPTU9cb+oZcGTX5Lr4AShzkG/Xh0t8R+v2NrgFUD9frfUunXGOX6L/Ly92e1YQbPSW2SGSr22amFP3QLxro1qU2Hfap4tdbBnGez6QFrroRRXmHX8lnvJUfJ1zzLv51HNLaPQzy+SDXlahnWQuKs2teox+eq0Za2OdmY0OG4Z7elYivYAcfdkyzT3fAmIHjK0xL1TC7wdnv269Pv5rcvOGoLulokmIe665Q7yN1vqIS1bE/cAy13tnwi9YXkqAYpky6GrIpQSv5PpTNxbE7Dc9fN2JsvEExP7eNH22AD5nmXS97/tLfm/ZQWnv+pB1YZK6X5Kxi3T1ggrHoYtbwR/73fLRKPyfZDlHo1KgfSIu3burQ2yjug0HcDJJtatdyenvUWKTSJrF9VXeEcN8dD3V0FQfaK53wJvqXUFr7nGdknaQq4bDX5xLxgPGYXuGu/RKOz8INZy95OWCzmj7OPnBYu76oiUT99pn9p919M2o1F46dtQuUH+71xPy7s/EJzn3q61SSvW2DzEDH1xVw2gaoN8yO9Dl8U26mh7/DS2uKmQ2vsHL5ZLBziWVJMUPpXnDlL0lG9bNQyPz70LcQ+yAnpF3JXl7rMWUzNsH25AJ9bameWegLjr+3UV1NYFy29lqQ5RdVBNB4NdRbogNtqWe0ok8esXtPCbjj+g6qyQGWC5O0P9OELc2gBpOd599GCy3lHpdbO9uWtxb2+RC87930nB5+HZVmsj6XnyVWV5gdeiBnmNOnRxT3PrVP5Ydzu/WAsh4w+7P5L/b30dHjjffXasvzNwypTrWu4FE+QEQX8b1l1cej66fm76/In6ffD+H9wlQPz3W7+muvtFr0eee9C/fvchJu4BAqEathqaV++IY1HFEZeuLHfLkrnVu5d6b3JLrRQQZfUoay0Sx3LXXQdBAhU4UugFy0B3y+g4ZQwQiRjLXZu31tYkfa8Lzozvd9Q7gC4DqvVy8TWQSwN7Zj82u7/50UPB09ghwHIfLjvYRBufI+5x3CyO5e5btKvFXrJXv0/+dYbAW29VHdHRxV0PEOtumY5Wb/mCrufC3waXPwj9vjvirsVkVP0IR+Rrc603kUG33LNHuNv5OwWQ4l65Tp67ymZSGTf+UYwiLRfGnggf/y3MuFh+5r8/ujW/d7V3ZK3Q64YaGbb5stsU+n0Kcsvo+0K/p0MOMXEPEBNVSfSbWL4isX31zztavAFGZbm3NdprPTd6G3FTtRR25ZZpbZTWRSTbtdw9ee5dWO5BnU9vWO6qAfgt96Cgr8Lvi9Stq7ZG6Z/e8xHUxZm7pp+f5RPEmN9qhElnwVGfgXd+CX861X0ijvr9XR/K6ej+hcCU71q/tg1VtlsmknjQq0vL3SfuSgRaG+BHxfDwf2nnUx97LL0etAWJu2Zdli2Gqs32bGhtqYH2ZjwTwdtbYNW/4Z1fuZ8pi1SJdWcEWe4ZmuWu6nD2SPnaUud1y4Q1wyY9zz2G350DUDJHtqGK9e6IRgmt/1o4ZcqVM0eP/Zzb6fhdM7o4798Ua7mn53uvrZoj4XTAfnHvIs8dvG5JI+69SJDYKatHH5oHLQMbzy3gCajqk5jshqWGfq31vt+3ZGNQAtOmu2UCrGLdcg9ybQS6nPrALZNmp6MpC6uzoKlqJPqj8tqa3EYSL+AbuH5KJzNUI1nSQjvjDti3yh2yq99XDbTB7siVCCk3gtqutUFe26yiblruccTdPzlG/a+23/xqwLF0EdDO3YrGWqu65f76XfCHY73+XOVz12lvgQ/uhfd+5/7e3pV2+boI2He0e92Oymeuu2XUPc8e7p6Xxy2T7tap9FxX3IPcLIUT5evBbe51Ue3Bb3QoVD0F143lF3e9U29t8GazgcyT190yMZa77357VoUMyHMH3xLHcerXRw/B9oXB3/UiQ0zcAyqtCpjogZOgpxjFExfHLeObxKT8e7ol5reuMws1y73BFapwgFumM8u9tdH1yR/7OTjpK3YZEnTL7F0Vf0KNX9xv/hA++0znlnubz3LXrbG2Ju37OIHhoM/3rYUFZ8TOKFVuinAKHHGR93edxcFsV4XaV03GUqLkPOTZrgOZw3rX5x5X3DWxcax5zRhQLiZ/OfyCFpTR4bci/W6Y1np535sOyuuyZ5ks34gjO7coO9rcTlJROFFeU93iV/c8ku0+kMbjlklzhTytC3F30iG3ufdU1Xf/tVBLAehxCSX0MeKuCW1bo3sPVMeVM9KeH2D/71ju9ig83gQx8Bp9+vXUDbN49euZW+CvFwZ/14sMMXEPuJhOKt0Bd9Zi0GzHrtwy/lRI/5oWrY2xx8go1HzuKlsmJ47lXutmI/jF74kb5IMTAEYdLX2UnZUZZN6wClIt/K18+HUQerYMQO4omHh6cFzA2UeJq7LcdXHXLdI4lkvQyGTfKilAVZvczyzLdlPYDdy5lk3e31firkRQiXtGvl0O+zrr8YWUJFIhdUEOQk+FtKzg+1K10VsGfRKYX5g7c8soPP7flthrrceADmyTriuA8SfLcipBq9ntXatl4W/gD74Vuk/6Cty8yHufHXHPknW6pcYrnmoCH9iWe769X5z0yJwS23K3r48ydvzXQrmB0oMsd9+kxdZ6t1NpbYy9zjklcqSkRN2x3BuC73WQW8b/zNrWLup/IqtX9hJDR9xV+pkfdbEbD8inDaVkBD+gN95QNa7lbr/XLXd/gDOzwBWm1gZXqFTDeOomePm78n1zjStKfvHbv1l7QlKq/IPOxf31H8lOAWQHFG9CV2fZMuAKaGuDXGpVL5/fck/N8pY9Gctd4X9alRV1RcIpky+g61ju9n1VC6A54q7Owd4vkm2nQiYo7l1a7tpxoh3B96V8BXy4ANY9537m5E/76l5nAVVnX321xeZYt8yO9933B7bICT15Y92VP+v3ybTg3xwJD2izaCs3ekccYE9wK/Ra3c49z5CWc0ud93qqdZXAZ7kH+NxBZrwc0MRduWXUMRQqQyZNG0U4GWm++9NSJ383nBbgNgVy7Guh6o1uuQfNbtez6vTrrXcEHrdMQD2ImYfRdwwhcfc1ECWAykXQdEBW0LRsAlYgjt/Q9WVC9crhWO7xfO7ILA9VOVUD1X3u4OYcN1RCvr2YZluzrGhKVJoOupZMOOJmHnTmO2084E79bm2Q+wele6oG4W9ETrqmLSJ/OQv+fKrswJQo+X3uGQW+rJ94U9g7sV5068ufyeOIu7LctY4bXP+p6iSVADhuEjVKybTdMomKu0q5tMvz0UPus2bB5zOPJ+4r4Z1fyHV5nPOzy+Ove0E+d//DzPTHyrU1x17r9iY7y0jIsiorVtWdv5wNvz8mdqKa7pJRLhBVF9TId+KZ7j1PzbQt9zpvfdTneHgCqnFSGwsnSMvdccv4xFUFTVVapW65665PnZZ62bGoB+b424tam0bVG93nrt7rOfrgnbCk8Ih7F6mQ6uEih4DBL+7RqFyVzn9j07Jlg3As9/22D9zXcFQF7sotA97f8FvubY2xHYzullGz6/RUSJCVqKNN9ujDj3CP9bNx8LMJcpjfeMCt9OFU+Qedi3tLrSxba6O7Fkz5crkcsk5rvbS4Q76q4Ii7nT9duV7+rweg/NkymQXeCh0v571sUewsTIU+wvCPKvTZvqps4HZAShCUuEcyvYFTp7yZybllWrTRWbQDnvmKfEScwmO5twdbbI1VAdkc9nn4656qM0qIsaSAnvo/kDtGfqSv2dJaT6DBUjxDLsx1YIsdu8h0654/k0l1/PoDrVUKqtpn7ufhol/C1f9yhd5xy9R5r4Nuuevi3pnlXlfuWtEqKKuu2fSPw4W/gCn2KEMPqMa13Gvld6lZwW5TNYpRbi89W8ZflxRB4t4SR9yDNEWtgKmvwNpHDH5xX/mIXJVO5fA6DcOeROE8bu2AFFu/uCvB2PZW8OzKeMGSQLdMQEA1FJJlUkFc5RJQNFVLYbeiMHya/Tt2maNtsYHacEQT907cMqpRNFS6Fe6hS+Hvn/BandU7vAuGKZxsmWZ3bXTwiooqp+oI9FQ5tW8QW96A8afETmGH2AwHcC2zcKrssP2Wux9l5aVmSJGJ8bln2amQybpl6lwhjTdhyDNLUStPU3VseVV9ixH3DHmeKenuCDQ9F87+Lnxigfxft9zjLXebVwrDJtqWuwrmpwZv62QeaeKeO0qOftQzRAvGw3HXy2OoB1goy7251nseus89Ldd1kcWz3AvGy9eKtfI12i7vnTq3zGEw7wa3w/FY7r5OX9Fqx7gimXIE77/OuaPsc7bbpsdyV+LuaxtBT2/TO+2uYk7q4SJ6+fuIwS/uqjI47gW78qRE5HvllmncLyuIf8irKsYr35MP6/UTb4JCjFvGV3lCKVpaYaZ3UkZYW4yzudqdHl2kxF37Hf9iUeHUxNwyjrhXaXm79nFf/5G9f7uccDThtNj99WyZvavczzsTd7+VE5TyeHC7tCQnneVafzqembqajxykyKRmxgZUPeVOdwNsqZle37pzPDvu0dEiR0aWBa/fLSe6BKGupRV1LUvdENDve5DPPa8U6vcSQzy3jOrAw6nutVUuJiU2+n2IF0/JGyOn6DdUyXNPzXTrjj4hCeQ1jXZ4R2an3Aqfi/MQcZUWnJophUrPcwefWybX7fjjTUpSKZX68hH6vVSPRCycKDu8wknadhmAsEeYG90spJY6+XvqUZf+9pI3RtYt9XzeIJ+7/zrp+e2KlrrYUSUEGw9K3BNdP6oHDH5xV5XcmQFnX+RwmntTox1SRIPcMnogcctrWnpau1xRzhMAa3J9n37LHcvbyDIKXIsnLce1tPyBy6ZqV9yHTZJuIj1Y5l+yVnfLdPZUeEfcK9wKpwLOyjWzZ5msxJPOit1fz3P3TNEOEHe17dFXy6C1/3udTa/I10lnudafp9y65W5fWz0ekJoRG9D1lDvDG4DV3S96fCFFdZCt0mX29j3wp5Nl4NGP7lN1JlDFGX77xT2UKlPuajVL2zluHLdMSpot8GluOZWlp4bzulslruU+xnaZ1GqWu308/2SitkZZ1/S5HDkj5QSjIJQ4RTLdgKp+Hvqieel5MOuTcPkDskxBKPHXYwDhNDjuBrjsz3D0NfKzoinw7XIoPsLdLhSS57ZjIfzxOJnfD252WsQO9PuvczgCI2a6cS9luetumRhx1/LbFW0NbqfVpbjbbplDsPrr4Bd31WiURaUs93DEvanNNbLSZhTGiqv/f7U63cHtMsOhRnuQQGujK6xBj/fSF7bSXRQZBZq4+zoXq8MWFCEtPN0yhQBxj3SdLRPtcAWpvkLLflAWTY0s95bX5e9OPCP2GLrPXc8uUuIGsZZ7Xincug6+blv65Svg8Ru8DWHNkzK2MHxqsLjrHaRqYHp+tQqOqbL5Sc1072mKcstoGT8Qu76P/pt/OQt2LfIeUxdPFTvxNOJWd6Tjd8tkFEjx0ztIFecJWm0Q7HucIoVdua4KJ7jHEyFvZxHvuQX5pVJ0Wupixd0f1G5rip3/oceG/CjhUm6Z1jrv/UhJl09bOv8nkDtalmPWJ+MfT58gpf9+OAXmXOmNCQW5liJZrpG06l/ytbUeIra4B7lNQykwYpYUd8tyLfe2Bvu9cN1AiiC3jLoOYN9T26gLCtirbJlD8NyGwS/uB2z/sfIVetwymfKmKoHMyA9wy/j+V72+ykvWaWtwG0eM5Y5bOcBbWTMLXYsoaDp1+Qrp/1OuJN2d4Z/Uk0i2jN7h1OzyWmPK8qvZLa9dfmmchqWJe0OVm6WgW+6qnEoEUtJlY8wrBQSsf14ut6qGorV7YMd7MPMT8n9/Bgh4hdS5b1oD0x9bGNRAUjO82TUpadrMxEb5m/o1VGulA3zcns25+glfmbTr6Yi7XYaWeilsKq0u2u69L0F1Tt0Dxy3T6vVFp6S7ZVRGgZrbEApJazIht0ypFF6rQ7r3dLeM39pva4xNuQxaKkChhDyS5V5v3RBJSZPX5MQvuyPYzvDHa7r6fT+RLDcwun+rDBC31rtumUDLPVVa7i010iWr6na0XV6LtNzYDk5/7Kbn9zXLXb0PstxVp9rWJDuUza+5K2L2MoNb3Jtr3MqvByzBDqjaN1WJQCRL9uQ6yi8I0se46l+w/J9yISM/bU0Blrsm7h7LXRMkveIGTafeu8oVz9QMr2jpgTPoPFtmx/uw4UWvGPkX0xp5pHytLZMdR7yovZ7n3nhAZjNAHJ+76lDtxiiEnelgC0hzjbw/f79cfnfk5fLzIJ+7XvZAcdeuTzy3jBJTlR2i57lHsu3y2Y22o8VNvyyaKi05/9pDLfWuz9sRd/u+q/kHKl4SaLn76pzqCBy3TIu3Hqak2fc5DWe0pcQd5D3T60U8y125ZUB28JFs182DBUd8DK55Uv7b3pycuKtzTM1wy64bN8kIszqOP8De2cghZv8s19hoqXHvqXLLBGXLhFLd9rDedr8qC7yuHDLyYutoULYMeN0y6pp3tugelvz+hW/Be39I+DSTYXCLuz6b8eA2+aoaTkrETYFy8rEzOnfLnPJ12cCfugle+2Hs73W0Jma5R3K8gp4ZIO5XPw7n3S3fN1e7AaOUDK9o+Z8vGdLF3VfBXvkuPPs1r0Ae2ObdRlXmmt1ukDmIUIoc/rfbPne1/keQuGcP964lAt4JL801sOYpqFgD//UPGVuAOG4ZTaiaDtq+W+1YKo4CwQHV1EyZAnjBz2HqfJ/Pvd4VIt0to65XWo70Me9d6Z0T0FIn/c8Qu2iZGjmqR7VFO7yNOkjcVVxCz5bRU0P1gKqieIb7PnOYN9Aez+fuN2YimuWufkd3J3TXLaPKro84UyKx+3SGELEjyGTE3d+uy2xrOKIs9wC3TDhVduYlR8GZ35FLM0ydL7+r3SPdgTHi3oVbpqPFFfqYh5fbCwwqN2Nboz1qS+I8k2Bwi3vRFLjqUSk8SmTVxATHcm/w5mOrC68sMd1Nkp4HX/4gIHtEG1b6xb2l3nUvNFdLQTz3BzInWOGx3O3fm3KO93eKJrtl1C13v7h73DJ6Jk+zfHxb/V45o1Vx0CfuxTPk+dSUubn/QQghO5qmg/L65ZfKcwsS96M/Cze957U+/eJes1Pek2kXuJ93FVBtOugNTIPPLRPHchcCjr/RnTCmZ8v4c8h1n3t6rhT31nppke9ZLu+vLu5+n7uy3IdNka9Wh88tUxA7WkzPk52L7pbxW+6hVG+j14Xe31n43TKjj3VTC/VtdZ87eJflbWuyH0GY4v0+HqruRbK8ZU9k33j4XTPdFXcRhue+Id+r9Z38lnsoRdaTSCZ88S04/Ztw07tu/awrlxOY/P593XLXXWnZWiKBSmX1+9xV56cMKueJbUl2hAkyuMU9PQ+mzXddBuCKu5pE0aq5ZVIzXXFVU9SdHG176K+WEdXRG4i6Ecot01rnpgA2HZSN8rjrYMxcdx8loOGI16JRub8Awya75elU3PVsGW25gz3L3OwZ9Ti4nJLYpRayh9vZG7ttt0wcyx1kFox6GHFmkbwOQdkykUzXGlfojbulVnYmeWO8Qh3kc28OEHdPmbTOL15AVUd/4lJroxZs1WIKjuWe62aH7PoA7j8XPnpQGgiOuGuzfkH6d7NHuNaY7pY58RYZRNTrzwlflm4pFeQDO9tCy3tWHXg4Arcsga/6HkHnF1P/mipXPAhfs11L+m+n+sVdm2jU1iSvtz4jMyHLPSN4Qlp3rNEYyz1JnzvI6/iJBdLteOQV0hJPzbIXV/NlMQWhzygPtNzVciQt3lhKXqn7PhwJniTXFiTurUbcO0U1rHDEFcxwqpsto1vuStzVBc4tgTHz4PL/5x7viI/BpLPd2YBB4q5b7soV1FQdfKOUQPmHjnpDUpZfSsTnM9/h3SdetoxaGApccdcfIOyUpVBmLxzYJjumeJY7SMtEBUOziuRoRw/OOrNmA85ZF9nmGjntOr/Uu42/4YQjsiNQ6ahN1QHirue5x7HcPeegW+4NmrjbZV72kJzIBfI+F9n3oXyFvL6qc1MduHJdOJb7Fplzrc4l2u4KwNnfgynneuvP2d+Tq1vq4t7a6J3UkpImO+HsYlke5RJTeKzUUKzl7rHyNQGKsdw1l1dbozvpx/k+EZ97VvBKj92y3H33OinL3T7P9DzZed62Az55nzffXifeZC592/T8YLfMqn/L+66P+vUUz3BEHsf/WEh1v1Wcy7hlEkA1jKzhrvA5ee4Nrm9Td8s4sxiz4PpXYNKZ7vFS0uCaJ2QqF/isKl9AtbXeXamuudo7QUnhiLtvOK03JGX56oFIsNMYdbeQPolJE/c9H8kRTOFE6dsGmQngYB8js1AuvqTW9u7Mck9Jc8U9c5hb3nCaG+zTYwA6+jTz5hrXctfxu2VySqQ4OguCVcc2eOVqgzg+d7+4p7ti29rgdjpKfJY8IP8i2bI8qRny+qrJNCqOoiYPKbdMtE0+HGTfGjkL1CPu9ghK1UVV59SsU3Wu6trqfliQ1/aT98up/kHolnIkh5ilB3Sr1DNNP9MrJH7LvaXOWyeDAt4K1WFGMuO4ZbohWP57HTSDOR7O2vH2ddQ7S89ozm4H8c5Nv7ZBlvvWN+Hx62SdTosn7nYWjlpoT6GMEeU1aG82lnuXqAqcVeQKRorde2K5PajullHrSgRVTEXQGtRBlrvyt0Xbg2+Uso5j1qbWfckq4yQtdg0S5T8FX7aM5pZpqJIVbNTR7mfF0933qowZhd4YRadumQz32mUWuQ1m+FTvwlFB6JZbfYV0Z+SN9W7jbziqgajOrTO3TLRDirbwVeGYBdAiWkC1UVvKQBOOjlavqKXnuZNNnIydwtjyPvoZeU+P+Zwm7vYCc6EUNzdb1c+0HPeeD5sinw6kgmy6CKdEZJ2J98Qkvc4GzfjUDYwYt4wm/B6fe6M76Uf5vjtLYVQdZkp6sFsmGWFW9CigqmbDBlwzT6Bf3f94lrtP3NV2qp59+Cf3e/2e+d0yo4+VHb/uYlVGpp4KG20z4t4puuUe9lnuoE1wSnfFPX8sXPWIm3MdeNyAiqKLe0ebtCLVGhUQ7MvLiCPuQaSkx04wUQuKqd8XQoqHbrk3HZTlHXti8H45JfaSCDkwXBP9Ti13TaAzC93KXDxDWzgqjrjrIqtmffotd78wq+uoJpI1HfTGJdRx9fRW/6p9QZa7s3CYloPsz+bwPNkn17WqlbinZnrvs+KUW6H0ONeoUD53vcEqgdWFtmiyHAWodU10S7MrYdTrUdC8Cb0ORjpxyyjfMNiWu73Q1k3vwbVxlh1QzLzMPWZvB1Q7eyRfPHS3jB//DGeI73PXz6X4CLeeB3Vg+rXNLXHfhyMw6hg5uteX7lAjTtXmVGZYsplFCTI0xN1Zd2O4ezP0Iaea3JCa6Vo6qZkyMt7ZAj5ORdGGvbpbRvk6MwrdyHmQRaAskiAr69OPwfXaSo3htNg1WdSCYuA2znBEikg0as+us63c8ae62+pPnc8dJcsphNei78pyB3lN0/NxrsPwI7TlHuIsBKW7ZdT07hi3jLIwbQux9Hh5Xx6+Uvq82xoCxN3+PX8OvDPK8lvuae6aJ61atoxfODyWe66bauiIe7rXOlOoeIsu7u0+cVcioIuBirGoobvnKUddNHZdaPQsDYVeB1XmBgRnyzjr9Wg+99yS4PWGdC78JXxrm7ed6fQkoKpEvjvZMoGWuy7uynJPwC0z7aJgI2baRfLVv1CaIpzqzkvQJyj5A6pK3LszykmAoSHu6oZmFbk3Qy0/ANJyD6XIix60qlxXx7WirpWpW+7KZZGR7x4vcGp0trQUgqysqed7M2uCKrRjgQtXRMKpUkjuPxfuO8cVd70j0Nd5OeEmOPNO+V4PtHblcwd7saaQG1wsnuGeZ7yle/U0MbX8QUxA1T4XdU/Gnwqfe16+V08HinHL2L/36NXe7/WVIHU82TINmlvGd5/SfZa7Qol7Skbwuigq3uLxucez3LX7rwduIdbn3hm65R7U4ejuIyHc3w8KqILr6mqpj7+wl59wiivGgeLeDct95JHeOtwdcU8LaNd6HVVZT/Es94x8+d1Z35Xn6FjuWr2a/Sn5qj94Q7/m4YjsIDOHedcqUgFVFb9R8Zw+cst0EjEZRHgCqnEsd/U+Z6SclVd6QuLHbW+RlmvTAZ/lXm1vlydvZP2+4BslhJ1tkhP7nZ+gRqEqu39I3VAJu5e4n6mc8KJpMoVSX49jwmmuNaZb1X7xDCqL6gyUq6J4enCl1wlyj6iJWgp1jKnz5TC/+AjXmlGumSCfO7iiqIv7ga0Blnu6vFe/mCpHRKlxRMBvuSuCLHcRcrOGHMvdPheV596V5V4wXh6nfLn9m/lambsSd+0c9Q5Tpfz5feVpObKu6ssP6L+jMpD8AdVESUlzr0larnTvdMfVUDIHbtsO//mmt3yJ0JlbRr9eU8+XzxOI53NPSYPvVrrXMMiIKZ0nX/UHbwghOwXdh55RGPzge+Vz72+3jBCiVAjxhhBinRBijRDia/bnhUKIV4QQm+zXAm2fO4QQm4UQG4QQ5/dJyXVUQ83ULfdU96Y2VnnFZtJZnQdSFfpMMj1XHaTlrnre9Hx3KBkvCn/JH+Dkr3f9m0EVWgVU9YYZSpWzPnWU0H3pHbjNN3kpHvEqObjnojqXy/4EY46TIqfKEtfn7luSoHh6bHaMchekpMHU8+T79Dx5Hkr04om7U367HPEsd3U9nYel2I00sxBu3yUXtgKfz10TCCdwqFnuejqoY7lrq4V2tHgbbCgkxceTZpgm3Wb7Vnt/X4SDJ3fpxEvBi2QGW6Qey90XUAV5zVpqZefnz+hKBCG0TjPHe+zuEG/lys7ozC2j6sbcL7j1o7N6r3eO6nrq9TynRLYDtba+v9xq/4x8r7g7AVVbKwaAW6Yd+G/LsqYDJwA3CyFmALcDr1mWNQV4zf4f+7srgZnAfOBeIYJmq/QiRVNkTvqoozRxT3MrXOP++BZmZzji3uyKtzOJKep1y2QWeL/3M/kc7zKl8QgS96AKGU6NfUSa/uQctc/Rn4HimcRw/WtwcRdrWig3jFo3ZdoFcP2rUqy6dMtoK0WCnObtR4mYv0PMH+c++UlNSlPoLolQCoy1R2BdibtCTzNNz3UDYbooBAbl4vjc1ShIdBJQBTly8z/4IbPITbmMZNqpkgk0dH104knBSwsWrbQceT9CYSk8jnhqbhn1BKZE3TIxZbKvu+qkepK7repOMuKuP/XJT94YORnsol+5dS2eW8aP/lCS1Ew494fyGl7/Ksy4WHb6Z9juzuNvtLfVOpogy13VA6UfnXU0PaBLt4xlWeVAuf2+TgixDhgNXAKcYW/2IPAmcJv9+SOWZbUA24QQm4F5wPu9XXiH7GK41Q7aqeVa9ckLTQddCysZnAWAmjXL3b4Re1d6rQUlLj29Uf5GUTjJreR+twwgg5F2oDPIxXLJH4N/Z8xcr68/CDU7Vq2bouOIezy3jC9wqa+Noogn7gXjpOWeUeB2LAoVxJ5+MfzXQ/KpTiA7+HDEO1sZYq9nyVHe/3PsDJh4bhnnOOmxMQPPufjy3P314KpHYuMbGQXurOLUTO8chs7QOzhVfpCjhbYAO0qtr6JQwXhlMaZmuiOb7rhlQLa1Btxr1xPL3RH3JDoIJerxJuWpGIces0oEJ/suIteR9/Mdbcb2Od+HKee7c1bS89zlKUCbTGnHPhy3TN9Y7kn53IUQ44GjgQ+BEbbwY1lWuRBCRe9GAx9ou5XZn/mPdSNwI8DYsWP9X3cf5+ZFvEPt7ljuaXnyYcAn3QKrHvcef92zsPUt+T4Rt0yi6I3i8y9K/55aZVGvkGrpgQmnyUcEQuf+8+6gfk9ldugEDVd1lEWrpsYXjIvdxrGifIKkfPPjTibm2a6Tz4Zxp8B5d9m/Y9/XwklwZ3lsFoR+PW/fGWvZKcvdnwoZcz4Z7r6RHG2NfN+5xLPc9QwlhX6/Iln2Gu4JNHSPuI9w3+uP5dNJz/W6cgItdzslMyjonwjKWi0YL9P/uttJgOvSSsZdUTIHLlsAk8/tfDunziXYTnU3byKM01KRdcv98Rtg40uyIw2F5DV3Aqr9nC0jhMgGHge+bllWnGXo5KYBn1kxH1jWAsuy5lqWNXf48OGJFqNr9ICq/ti3eJNtOj1WCD77lHSpKItAhOHi38v3LbWyMaVmuFZZ0HonyaA37tR0bVKWT9zVlHk9Za23xf2aJ6XlHzhRRqVCxrmumcPktTrnB1Isx50Uu41yZfjFXcUYxp8Su09WEXz+eXebwknSuh8xMzi9TRfZwCF7Kcz/GczS5jvEs9wjWXLN9+teiv1en8TU3pJYg/WvUx8KJ7afZ6JNvvtef76uzklfgfk/8W4Hms89053UFtSxJYLq5OdcBV9dnticjnh0x3IXAub8V9fByWTFWnWW3THa0vOluNfukc81aKlxjZHUzP53ywAIIVKRwv4Py7LUkwz2CSFKbKu9BLC7fsoAffw6BtjTWwXuEmVBRLKlOKrofXcsdx3VEDta4ZjPymDmltekv11frtQ/uzRZ9MatC5OaFq9QQb2+FPeiKe5w1o8S0njiPuuT9nKqs73CqRPPLTNmrryP6kn3nZE9HG5ZFP/7rtwDQsAJX/J+Fs9yBzj2WnftG33NF88kprbEhCnGck9NLHNCv+Z68C8lLViERh/rHTs74h4wV6GnPvfUTO9oojvoD3/pbbrrc++WuOfJ+rD+efczpU+65d5fa8sIIQRwP7DOsqxfaV89A1xrv78WeFr7/EohRJoQYgIwBeik9fUyRZPhyoddYVDWe2+JuwrIKctRWU7KLeOfXZosnmVe9XVA0oN7+JI5ssKEUnpmLSWLahxxlx9Ik8Le6THiNJySOXDn7tiVJruDup7JNM54lrtCCJmP/4WX3c86m6EajxjLPSV5y10nnuXuJ8VvuWtto6dumd6wQrtjuSeK6K7PvRvnpUaKa550P3M6wSzNcu8/n/vJwDXAKiHEcvuzO4GfAo8JIa4DdgJXAFiWtUYI8RiwFplpc7Nl+dM6+pgjLnTfZw2XK7h1xy2j409fUj5kJ5Bju2XiPTghUfwz3RSpGcHWhnqcWUtdYo8z6y26SoVMhM78n711LkogknE3+N03aianjt9l1JXPPQgl7iKE8/SlRATNf+zjb5L1sqEiMYvU75bRJ7v1JKAKvSPI/phAb5KsJe64Zboh7mp29Y6FslOxOrTn+Ga6cbN+zJZ5l2A/OsDZcfa5G7i7B+XqPbJ7y3JX4m6Ltwr6qRvYW24Zj7j7porr/3/6Me1JSCN7HshNlq7cMomgyuxfY6Y3Udcz3iJcQfg7gkTcA55JTK2JuVeUuKdm2ZNgEkyF9Hc0F/xUvr76g85nHCv0DBCQQcB37O+6K+7+h6D0BHWvuuv/74ykfe5xgv6JoNe50uNh53vuowz10ddAyJYZlCirpKfiHtdyz/d+39NBin9JVkXhBK8ITtXmhs39vPfhxIeCrgKqiSB64M9MlmTE3RGXPG8QrDMcy70jCcs9X76qhh5KMBUyHuf8b2LbhX0+bX22drfdMr0o7hPPlMH8kQFzI3pKsj73cJKdgY5e5yafLcVdTYrzpKb2Y0B1UKN87j29gBl+cR8vX3Uh6A3iPVrtsj8TdwCl1ro4lHSVCpnQMQ6BuKu11YPWhYlHRoFcHCo1HVY/nqDl7l84LIH65qzzb1/DRFMhe4rf7aEHUbs7FT7Si+IeCslZ5H1Bty337oh7vvt+8jnw+l3u/7rl3t+pkIMWZR2pqb/dRVnmam3wjAKZh63WmQiF5CjhzG/37Hc84q5PWkoNTvXrLxy3TA9GRIdC3EuPl08/UumriRAKw1X/lE/jgsTOUY1CXroT6vYk53NXwcjSeTC6i4llvYESNr2unfZNGNlFALwz1Dkcis6pJyQ7icnxuXfHLZPvvleT+HLttCXdcjdumW6ihpkqkNFdUjPg9Ntgmhas/fx/vNt8c1PPfgPi+9wHGo5bpgcZOj3xZyb8GyE49b+7t29qElkbegdVNNV9ildnqMavrN6Lf5dU8bqNOh+9fp31HfnXXYqmSOPmUGZsdYekUyF74pbxPYDlliXBj9w0bpluooacapJGT1BL5vYlTupe6qHNfkkWJxWyB5Z7vElMAwUnJS8JnztII2DiGV3vE06RQcPuxC3O+YF3PfFkCKcGZwD1hJmXyr+BjiPWCUpfuAduGb9o63NGDoFbZuiL+7DJ8rUnQ85DSTjAqhqIqIrbE0st2anghxonDzwJnzu4dS4RMvK7dw1P+Xry+yjCkT4TlAFP0pZ7D2aogpxkGNTR+9f66QMGaKvqRUYeKR8bpj9ybiDjDJn7ZqjWazgLh/UkoGqHfAaquDvLFific9es4GTE/fTbvY9oOxSE0wa+b7yvSNbNkpIm11aKN1O7K+I9rtDJkEqJXT+plxigraqXGRGw5O1ApS9n5/UmXT1mLxGcPPcB7pZJxHLXSWYK/9FXJ3fs3mDGxcELuR0OOEH8JJYf+MqSrrdLFiXufTiCOjzEfTARFOwaiGQOk8Hq7uZFw8D3uSdjuQ8mpl0g/w5HnGyZfpY+Z0nsvmvnRtwHGqEwzvNeBzLHfFY+Hq8nlXMo+dwV/oeLGAYWPclb700cy92I++FFSvrAD3ilpHX+8IpEOBR57j0h2ScCfeldN4/ZMDDpSWpjb+LM6DVumcMLtYjUUCc00N0yAasmdsbII/uuLIbeYaAYFMpy70O3zNCfoToY8S8SNlQ5lGvLdIfULHkvElmMyzA4iOTINZrUzPV+K4dxyxyehCOHh7gfihmqPSElAje+6a4Aahj8ZA+HG98KfuzhoaQ3F1qLgxH3gUhKep8O1wYMA2WI3Bn9LQKG3qerh8gcCiJ9vxaPccsMRLKKDg9XwEDPczcY+grjljlMufyBgW3N9hZigM9QNRj6inBqz9fv7wLTqgYi2cVdbzMUGOh57gZDXxLJNG4ZwxBloKdCGgx9SSS7T1Oejclk6D8GeraMwdCXjD+1T9e9MuJu6D8Gep67wdCXfOLPfXp445Yx9B+lx8lnlZo8coOh1zEmk6H/KBgvn1VqMBh6HWO5GwwGwxDEiLvBYDAMQYy4GwwGwxDEiLvBYDAMQYy4GwwGwxCkS3EXQjwghKgQQqzWPisUQrwihNhkvxZo390hhNgshNgghDi/rwpuMBgMhvgkYrn/FZjv++x24DXLsqYAr9n/I4SYAVwJzLT3uVcIs+SfwWAwHGq6FHfLst4GDvg+vgR40H7/IHCp9vkjlmW1WJa1DdgMzOudohoMBoMhUbrrcx9hWVY5gP2qljEcDezStiuzP4tBCHGjEGKJEGJJZWVlN4thMBgMhiB6O6AqAj6zgja0LGuBZVlzLcuaO3z48F4uhsFgMBzedFfc9wkhSgDs1wr78zKgVNtuDLCn+8UzGAwGQ3forrg/A1xrv78WeFr7/EohRJoQYgIwBVjUsyIaDAaDIVm6XDhMCPEwcAZQJIQoA/4X+CnwmBDiOmAncAWAZVlrhBCPAWuBduBmy7I6+qjsBoPBYIhDl+JuWdZVcb46O872dwN396RQBoPBYOgZZoaqwWAwDEGMuBsOeypqm7GswKQuQx9S29zG/e9uIxo1174vMOJuGPRYlsWzK/bQ1hFNet99tc2ccs8b/OWdrX1QMkNnfPvJ1dz13FqW7DjY30UZkhhxT4DVu2toaGnv72IAsLu6iV0HGvu7GAOKZbuq+crDy3h5zb6k93113T5a26Pc9842WtpjY//Ldh6kfoDc+6HG+vJaAKJm1NQnGHG3sSyLBW9viRHOlvYOPvb7d/n8Xxf3U8m8fOPR5Xz90eV9/js1jW3srWnulWMpy/r3r23qkyH4zv3ynm3f35D0vq+u3Ud6aoiKuhZeXL3X893q3TVcdu97/OKlDb1SzoFAQ0s7FXW9c191Xl27j/N+/VanRtCLq/dy8k9fp7a5DYDK+hYAFm6uYsq3/9Op0dLY2s6vX9lIc9vQSL6rqm/pc6PhsBd3y7J4atlu1pXX8eP/rOeqv3zg+X5/fSsAi7bJ5XWa2zocgdLf+6lvaWfn/kY6khCz97ZUsXxXddzvO6IWK8uq2bC3rk99xM+s2MOcH77M+b95u1fE+NmV5Xzl4WX88pWNbK6s74USSvbXt/CpP73PB1v3A7AjSXFvbutg4Zb9fGpuKSEBmyu8ZfvJC+sAeHLZbh5fWpaUKH714WWc8rPXeWzxrq43jlO21vbk3UyKB9/bzu2Pr6S9I+oRxP99Zg0X/vZdmlqTF0nLsjzHikYtGlulQL21sZKN++p5dV3w6MmyLL7096Xsrm5i3R5psVc3SpH/2/s7aOuweHLZ7pj9Wto7eHjRTl5Zu4/fvraJtzfKpUq2VzXwiXsXsr0q9p5blsVji3d5ympZFo8t2UWd3bHo1Le0c9WCD/jQrke9xTceXc7Ty2PPCeAz933I955eHfhdbzGoxb2yroV/friT8pqmhPdpbY/yjUeXs84eEq4sq+Hrjy7nD29sAqDsoPdYVbZ1AdDU2sGp97zBAwu3YVkWZ//yLe57N9ZXa1kWF/z2bU77+Rv81BaIRPj0Xz7k0j8upKK2mc0V9TFitbWynua2KPUt7eyt7X3rS/GO3YBqmtqoamjpYutgGlraeWeTPM6qsmrn8z3V8vru2N/AVx9expo9NXzl4WWOSPiprGvh5n9+xL6A81264yCLth/gCVsUdnZi+VmWRVNrB19/ZJkj4mUHG2ltj3LsuAKKstM8v1HT2MbCzfs5adIwapra+O9/reD+d7cldO7RqMWzK/dQdrCJHzy7hhdWlXc5CvrVyxt4clmZ8/9n7vuQ+b95m/ZuxBFAivgji3cx439f4lN/ft8p1xvrK6iqb+Hxj8q6OIKX9XtrOe/Xb3PqPW9woKGVxdsP8PcPd3DiT16nrrmNDfvqAHhuZTkAK8uqufWx5U75db/6jv2NHpFNDctVS15bX8HN//iImkb3u2dXlHPHE6v4vze3ALDNFvOfvrCej3ZW80hA57lmTy3fenylI6xvbaxkyY6DfOvfK3l40c6Y7R9dvIv3t+7nnwHfdZftVQ08uWw3X3tkOUt3HOSRRTupsOtXR9RiS2U9b2+s6lMjbVCL+96aZu58chUry2oS3mfNnhqeXLaby+5dCMBzK+XqCEu1yre7ugnLsvjjG5v5cKu7IOYzK3ZTWdfCmxsqqW5sY3d1U+Bvb61qYNcBKWKLticWLKrVKvvPX9rA1x9dxq2PrfBss3qP+1t+K1Pn+8+sYf5v3k7odxX1Le3OsFjvOPydnZ+nl+/mlJ+97hFny7L42O/f5Zr7F7G3ppmtlQ3kpsspFeW2yL2wei/PrNjDRb97l2dX7GHZzurA47++fh/P25a/HyXmysJV7hk/jy3exTF3vcKtjy3nqeV7eGbFHk9ZSvIyGJmXzt7aFrZU1tPaHmW33Qldffw4vnDyBMAdxXVFTVMblgXXnDCO5vYoN/3jI3743JqY7cprmqhpbOO5lXv43eubnft9sKGVJTsOsrWqgXttUQOoqGumsi64s62oa+aN9RVstEW2KDviXJuVZTXUNLbx2voK9je0EkkJ8df3tgOyDenukEXbDrDg7S2sLKvm3jc3Y1kWjy8tY/5v3mFTRT2VdS1896nVfOrP7/O393dQ09TGWxsr2bSvDiHgrQ2VNLa2c/EfFvLER7udkdqzK/YQCUu52b6/gS2VruFSZV/XFbuqeX5VOf9a6gq2MhDW75XntbWygY376nhxzV4i4RDPrdzjCOTu6ibm/uhVXlsnV0NZvbuW5buqufaBRdz275UAnvYM0N4R5QG7035jfUVMUL61Pco9L65ng/37igVvb2GtPQLRue+drby3pcoZwRRlR7jhb0u4/YlVfPq+D2lu66CqvoW2Douq+hbPdehtupzENJAZkZcG4FhclmWxfX8j7R1RJg7PJhySFkFNUxt5GamAW0ma26Js2FvnWBr7at1Gs3BTFWdMG87PX9rgNBKA/7dwOyCDbEr0gvyEyk1wzvRi3tlURXtHlJRw5/2oqjwhASvKqtl1oIm2jiiNre1kRuRtWr27lnBI0BG12FxRz6lThvPRzoM0t3Zw0uQi51iq4W6vamB8UVbMbz343nbe21LF18+ZyraqBi48soRfvbyRfy3dxaI7z6G8ppmJw7PYWtlA2cEm8jJSWbr9IJ84ZjR1ze0UZLnX5N9Lyyg72MT7W/Zz9vQRALy5odKxsLbvb2BrVQMnTBzGq+v2UW6L5urd3k6xPI5lu9u+zou2HYg5nx0+MS+vbaalvYO0FPcRApv21fGtx1eSEhK8YPvUV9ojCVfc0xmRm86qshrm/+Zt7rxwOmMLMwEYlZ/ORbNnsHTnQfbVNvPksjLmjiuktDCT/6wqZ0xBBrPH5HvKoXzJ8yYUcvb0Ym5/fBXvbHTrwX9WlfPu5ir++eFOLjt6NGvsTnt4dhqNre28sUGKU2lhBr96ZSPji7K4eM4o5v/mHQ40tLL1xxcSsuv2B1v309DSzu9e38wK26X3yWPGsL+hlY/NLsGy4PlV5dzy8Ee8s6kKgOtPmcC9b27h7ufX8pd3tlGYFeH2+Ufw74/KHPfjrNG5rN5dy/SSXN7ZVElxTho/++RsPv/Xxbyybh+W5RoYjyzaxcHGNmaPyWNlWQ1//2CHdv3rGZmbzmvrKjht6nC2VNazZMdB3t1cRUiA3+sXCYd4dPEurjtlApYF79plVmyranBE9fOnjOfPb21l2a5qlu2sRiBH2q+sk/d59Z4ahudIjdhq18dF2w/QEbUcbdhcWc/u6ibOnTGCV9buY8n2g5wwsZC/f7CD/MwIz67Yw8tr93GwsY0fXDyTz9z3IVcdX8qP/7OeK49roKq+hbGFWXzquDE0tHTwo+fXkZYSYmReOgCNrR00tnZwxrThvLmhklsfW85V88Y65/P8ynI+eexoxhRk0tsManEvykojHBLsrWmmtrmNq//yIats0Ridn8E/rj+emqY2Lv/Te1xzwni++7HpjjsmJST49pOrKK9pJpISorU9SjgkSE8JsWp3jSMiyqoYW5jpdAwNrR28aTfAXQebiEYtp7G1tkdZuLmK4pw0LppdwqvrKthS2cC0kTmdnosq10WzR9nWiPx86Y6DnDpluLPNrFG5bN/f6DSsn/xnHdWNbbxy6+kAnmHecyv3cMtZU5z/d+5vZE9NEwve3sru6iZesrNLtv74QlaUVVPX3M7r6yvYW9PMBbNGsrWygS0V9XzVtppX76nh8aVlvPrfpzMyN536lnanI3tjQ4Uj7h9sc32XWysb2HmgkYuOLGHV7hr22IK6Zk8t6akhmtui9nb1vLi6nPNnjqS8ppnvPb2aey6fwxbNp7qirNor7lrHOiI3jX21Lew60MTk4mzn84WbpTjcdeks7nhiFVmRMCt2VWNZluMqKc5NY2RuOq/UyuuxaneN0xmPys+Qx89JY215Ld94dAVXzRvLDy6eyZf/8REAM0pymT0mj1vPm0pxTjoVtqEwPCeNEyYO4zsfm84t/1zGJX9cyHWnTOA7T62mvUPep0XbDjjWeGV9C5+570M+skcxL339NK5a8AE/f2k9HzuyhAMNrZ5r3RG1+O/HVlBe00TUgq+fM4X15XWOy+WMacUMy47w/KpyR9gvml3CJ48dw71vbuEv70iL9UBDK997ZrVzL8D1h9/z4gYiKSEmF2czd7x84JoeCxhTkMG79jU+ZXIRK8tqHMsZ4NevbnRGXV89ezIdq6O8saGScEhw79XHcNdz69hd3URpYQZXHjeW3IxUvvvUai747TvceeF09je0Ovc2JGBrVT3bqhoQAq6eN44/v7WV37+2iTc2VJIZkZ36+nLZTlWbUuSkpVDX3M668lqEgF+/solJxbI+3XTGJN5YX8HbmyqJWhbffVqOtOxmTVV9C6+v38ei7QdYtF12gK+vr6DCvncPLNxGSkiQnZbCpOJsNu+royAzlYP2dbz6+HGcOHEYP3txPYvt0XwkJcSvX93Ipoo6/vDpY+htBrVbJhQSFOeksbe2mUVbD7Bqdw1fP2cK93xyNntqmnhmxR5+/J91dEQtHli4jWdW7GF9eR1zxxVw2tThLNlxkEhKiI8dWQLIBjxjVC7ryms9gZrMSJhPzR0DwCi7R37WduccaGjlnF+/xVcfXkZ7R5Tzfv0W/1m1lxMmDuPI0XmAa6Xe985W3thQwbaqBseXv+DtLXzhr4v53tNryE1P4aRJw9DdcB9oQZ6yg02MG5bFtBE5vLaugrV7atlUUe+4kQCnsgE8vGiXJ2bwpb8v5coFHzguB/24Ki3tkcU7qW9pZ3JxNgWZqfz2tU3Odg99sIOG1g4u/O07nPzT13lpzT7aOixK8tJ5c4Mcmv/oubVs3FvHxOFZhAQs3FJFR9RiQlEWJXnplNc0UdfcxraqBm46fTJP3Xwyo/LS+X8Lt/Olv3/EirIaXl9fwavrKnhl7V62VjZw8uRhCAEvr9nH9O++6Ixydu5vIMVufSdPKvJca/f6HWB0fgZXzRvLUzefzG0XHMHBxjZ2HWiivKaZouwIaSlhx9IC2LivjvLqJlJCgqJsafmNyE13RmuLtx9wOobstBSG56Tx+Edl/OZVea0q6+V3ympUZVuzp5Y7nlhFY2sHv//00Xz2xHGU1zTR2hHlmLH5WBaOsF81byyZkRQ+c8I4dh1o4uW1bibPb1/bRHuHNCJ2VzcREoLCrAhfOn0SFxw50tlubGEmpZpFeNMZk/jjp49hYlGWU49/eMlMQI5krz1xHN//+AynToAUyHXltYwvyiInPZWRuXK/aSNyGJGbxm/+6yjn+MoIWbW7hpG56YwtzGSr7XYoyo5w9vQRjoV65rRi5s8qcUbU44dlcfOZk7l63lh+dOks1u+t41v/XklIwFdsA+XkyUVU1beysqyaUXkZlBZmUJQd4U07RtRoB4nbnYSHKMt2VnPCxEIAPn/yeEIC/u/NLVz2x/d4dd0+Fry9lUg4xJGj85g9Jo8Pt+5nwdtbKcpO4+EbTuCDO87m3Bkj2F7VwKM+/75qaz/5xJH85BNHUpAV4YZTJ/L0zSez5ofzufPC6c62E4oy+eLpkzhn+ginM//XF0/kT585hutPnUhfMKjFHWSjq6htcXrp60+dyKeOK2VKcTYPL9rJh9sO8J2LZjB1RDb/9+YW1u2t5YiSHD4+Rwr6WdOKmWpb1SPy0pleksv6vXXOMA6gKDuNj80eBcC5M0ZQnJPGxn2uz3trZQPPrNjD9X9bwvb9jXz2xHF8a/40JhRlk5Ea5pW1+6isa+HH/1nH/e9s4zP3fcg3/7WCXQca+ekL6x03waj8DCZqluno/Aye+Gg3tc1tRKMW5TVNjMrP4M6LphO1LK5/cDHVjW00tnbwvafXcOPflrDF9nH+97lT2d/Qwq2PreDPb23hygXvO/7YSDjEx+eMcn7njQ0VNLR2UJCZ6lh4I/PSGV0grdZ5Ewopyo5gWbJMBxvb2FPTzM9eXE9RdoSbzphE2cEmvvv0au57dxvvbq5i+shcSvIynOyGicOzKMnPYOWuGr7/zFoAZpfmcVRpPmMKM2myMxs2V9Q79/KtjZVsq6rniJG5jCnI4IXV5TS1dbBo237aO6KUHWzirCOKCYcEV84by+TibH732ibHb2pZFou2H+CEicMAOKo0n2PHSevzo50H2VvT5Ij6iFxX3Dftkx3miNx0Z/hebAu1KqOKf/z5mmN58AvzOH7CMFbZ8RfVeJW4F2RFuOXMyZwzvZgWe4R44qRhjC3MdNwSp2hutT9++hh+fNksAM6bOZJIOMQvXt4ISD/+yrIaFryzlX8tLaMgM5X/fO1UHr7hBNJTw8zRXESlhRmMse8hwNQRckQjhOC8mSOdTm/cMCm4Fx81ijOmFTvbH6dZ6hOGyXqpRkV3XjSdD+88h7njC/nwzrP55w3HM2NULiBFtiQ/3dn2qnmlLP72ORRlp5GVJp0Fqv3lZsj/C21XXygk+MwJ45heksve2mZOmlTEVfPG8qfPHMs1J4wD4I0NlUwoykIIwcxReQTFJAsyUxFCvv70E7NZcM2xfPnMyVxwZAnPryonJSyYXpKLZclzSg2HOGHiMJbvquatjZV87qRxnDhpGMW56Ywflsn2/Q28tTH2oUKRlBCXHzuGq+aNZdGdZ/PVsyc73422R30hAaW2m0/Vv9z0FOaU5jN/VglHlebHHLc3GPTiPjI3nb21zazfW8fYwkyy7cpz7LhC6XIJh7h87hiuP3Ui6/fWUdfcztGlBZw7YyTHjM3n2pPGOzdhZG46R4zMpb6l3RnOAwzLjjC+KItf/9ccrj91onODdOZNKOTNDZVkpIa5/YIjGFOQSTgk+OLpE3lxzV6ufWARUUtafburm3hnUxW/eHkD4ZDgua+cyv9dfQy/uGIOE4fLBhEJh/jdVUezr7aZbz+5mn11zbR1WIwuyOCoUlnuPZqf+qEPdvDy2n08ZWeOfOLYMXxqbinLdhzkJy+s54OtB2iPWlw1byy/vfIofnnFHN751pmAG1T+7InjneOV5GVQ3yyDpJccNcoRn79dN48l3zmHnLQUKutauGBWCWcdIQXhAztY1dZhMak4mzEFGdQ1txMJh5gyIodReenUtbTz1PLdTCnO5phSeR1163JrZb3j/vrPqr00t0WZODyLiUXZjhCuLa+jvKaZ9qjFWUcU89F3zmXehEJum38EW6sanPNZs6eWAw2tjuUGcMTIXIbnpPHSmr2U1zQzMte994qW9igfbj3AqHz3M138AScTQ9WdmaNz2bC3jtb2KJV1LaSlhMhJc72e/3P+NH5xxRxSQoKjS/PJTU9l3DC3Iz9ZE/dZo3MRQnYqeRmpnHVEseOGu/XcqZwxbTh/XbidtzZUcO6MEUwdkeO4/cYNyyQvI5VIOMSInHTSU8OMyJWdzNQRrmvwzgun89I3TiM1HOKUyUUUZkWYMyafEu2cz5sx0hkZKXeYEuzpJe6xRuSmc9KkInLTU0hPtd1ZeRnOtqdOGe6cz02nT+KuS2c5xpKy3Asy3TgOuOL/8TklhEOC+bNGctz4Qq08mc61kr9RxJGj85z/Z43OY+l3zmXpd85lfFEW580cSXpqmBttK/mGUydyxbFj7HOR+xw/cRhRS44yPmcH0dW5t3VYRC04c5r3wUIzR+WSarvwhBDOeQKOcTQqP8OJAyntUO6+vmTwi3teOvtqmllXXuupcOoinj5tOLnpqVx61Gi+eNpEfnHFHC47ejTZaSk88eWTOXHSMNevmpvOEfYxVu2ucaw2NTS/7OgxlBZmOsdWlXfmqFx+fvlsUsOCc2aMcAKgAF87ewpXzStlrW2Nttj+yvaoxdPL93D5sWMYmZfOBUeWMGt0HkXZEXLSUygtzODYcQX893nTeHbFHu54YhUAo+3Gd/wEV7B0Hlsi/a0luemUFmRS55soce1J47jgyBIiKSFKCzMpyo6wePtBhIBrThznbFeSl84Eu0HPnzmSL54+idvmH8Gk4dkUZadxml3JPza7hDEFmY5VqJhcnO1U7tOmDic7LYX0VFnBP3P8WF659XTyMmXDVsFLgC2V9awvr3UECWBKcQ4Th7tCuK68lk0VsgOYUJTlHOec6cWMH5bJI4vk8Pn5VeWEQ8KJBQCEQ4KLjizh9fUVbKmsp8Sx3NOcewkyY0hvgMX294VZESIpId5YL604ZfnPGpVHa0eUTRV1VNa1MDwnzdPQAfIzI9x16SxuPW+q57xTQoKjxxaQGhbkpKd4rgfAdae6QlOQFeHiOaOoqGuhtrndcYUohBAcMzafccMynThQaUEmIQGThrv3KJIScgyhOy6czjO3nExKOERaitsZTCrOcjqN8bZ1f/XxY7njgiMozvF2duq3VSdYkpfOyZOLGFOQ4em48jJTueaEcU7bUuJemOUV96uOG8sXT5voGWEWZEWYabs6xxVmOdcd5Ajn2a+c4rjAinPSKcyKONdAMac0n5e/cRpfPXsKp02V1051CHPHFTA6P4PbL5juXBvAGbXkpKdw6dHyqaETirKIhEMcXRpr6ClU3ZigjcZnjc4jEg45RkFfMqgDqiAFua6lnbqWdk9FOHHSMCIpIT41Vz4YKpIS4g7NB6ZTaotQSV46R4zMkYGXlnZmj8lj2c5qT8YMuB3HzFG5NLd1cMGskYwblsVjXzwxJuothOCuS2aRlxEhHII/vrGFlJBg6ogcctJT+N7HZsZsr/KuAb58xiSWbD/AGxukmCjBmT0mn/TUEO0dluNjPGnSMD7Yup95EwoJhYRnSA6yck4t9gZ2lUVx6pThzm+CFLNffeoodh5oZFh2GsOy0xwLB+C6UyaQl5HKceNlJ3PmtGI27qtn3oRCFm07wOTh2TxnpxyeN0OK6yeOGcPu6ia+Of8ITxmUW6AwK8JbGytpbotyx4XTyUlPIRwSzB1X4ORRR1JCbNhbx/Kd1YSEbCz6tfvUcaXc8+IGHl28k2dX7OFk2yrV+djsEiejSDXA0QUZ5KZLH/ePnltLQ2uHxxWjRGtycTaWZbF4+0GKstOcDkt1Cmt211JZ3+K4ZPzomRJKxMcUZMjOtiCT4tzYTmHuuAJPZ3vmtGJCQj6/UhdOxd2XHemZKTp7TD4dluWU1U92WopHzMYUZLKvtoUxBZkcVZrP+r11jlthyogcpoyInxwwIiedHfsbKcnP4PSpw3n3trPibguQm64s91TP5wVZkcD2evYRxazYVc0wu02ePKWIS48axfkzZR1TnXVxbvD1B3cEM7k4m0duPMFxZWWlpbDw9tjyqlHLyZOKnA5ycnE2v/6vo5xOL4i0lDBHjMzhaM3tkp4a5mvnTPEE/fuKQS/uI/Pcm3ik1tBH52ew4nvnkREJrtA6xbnp3Hv1MZw0aRiZkRQe/eKJ/OSFdXzmhHF88aGlHtEDmDkqj7yMVKYUZ3PP5bNJDckB0NFjg3vxlHCI2y84gua2Dv701lamjczhyS+fTGpYxDRkgL98dq7zMFohBGcdUeyIu+rxIykhTppURH1LOyt2VdPSHuXbF01nSnEO6pB6R/O5k8Zz7owRMZbMaVOLeHjRLsfH+8dPH8Nr6/aRlhImLSXsSXvUOWZsAcdo53vjaROZOTqP0fnp/O61zUwuzubmMyfT3B7lotlyiD2hKItffeqomGPNnzWSX0TnsHFfHQvelpPCjirN9wj3LFs8P3H0aB5ZvItnV5YzpTjH8eEqPjW3lH8vKeO2x+VI59Zzp8b83rHjCvjORdN5YfVex92UGUlh8XfOcYJrP3txPefNdIOTStwnDMtimD3aGa11nuOHZZGfmcrfPtjO5op6Tp/a9XOBMyJhinPSGGtbhvdcPpvs9NgmKYTgrW+e6WRuFGRFOHHSMFraojEdF8QO+b990fSkZkqPKchg6Y6DjM7P4OYzJ3PWEcVxOwY/SlRH5cVa9kE4bpk49czPTWdMYmRuumPI5aan8psrj3a+L7HPvThO5+pHxWM6Y2RuOufPHMGnj3fjE6V2x9cVz37lFEK+Nn7zmZPjbN27DHpxV8PDSDjEmUcUe75LRNgVF9oZMwAzRuXy0HXHAzKF7nTf0DeSEuKVW08jLyPVk1PdFempYc6fOUIOzVLie8RSfTnxx9sVMCc9hZx018L5zZVHYUXhsnsXsn1/A5OGZ3uOq1vup08bHmjlfe9jM/nGOVMptsXrotkljhgnw7DsNC62G9yDX5gHyCHw3+z3nZGeGubyY8fw0PvbARnIU5aw4uixBbzzrTNp7YjyyOJdbKtqcDKYdIqy03j11tNZW15Le9RittZBKIQQXH/qxJgsBXUvZ43Oc+6/oiAzlWPtLKvMtDC8ucVxkYEMBP7yijnc+NBSOqIWJXmJDbt/cPFMx8qfOz7Y1QbE1Jd7rz42zqPnYwmHhOMGSYRTJhexv76VrLQUstJSkvIPq/ZYkuA+ucotk5mYuKeGQ3zquNK436vRTWkv5o2HQoI/XzPX+f/uy2ZxYgKdAsS25UPJoBf3o8fmc9W8Ur58xuSkKnCiqAi9nyCfYyLce/WxSe8zpTibwqxIjDWihrSlhZkIQYx1lZ+ZSlYkTENrh+N68pMRCSfVCfYl588cKaeOzz8icESjXAPHTyjkw20HmDYyN2YbkI1xVoCo9wQhBI/fdBIgZxOHQyJGQM6ePoJnbjmZbVUNju+3Ky44MvmOFFyLty+4Ym4pV8yNL6CdoYLQifqUlXslnhsrWaaOyOGJL5/EUb6JZb3J1ccHa8JAQwyEhxTMnTvXWrJkSX8XY0Dzl7e3EgoJrjtlQsx3myvqaW7rCBS08379Fhv31bPuh/MHjIj3lN3VTdz5xCp++skjE7aQe5uFm6uYMiK72538UKW2uY2l2w/GjKLj0dLewRvrK5k/a2TXGxtiEEIstSxrbuB3RtyHNl/462JW7Kpm6XfP7e+iGAyGXqYzcR/0bhlD51x/yoQuF/8yGAxDDyPuQ5yTAoKoBoNh6DPoJzEZDAaDIRYj7gaDwTAEMeJuMBgMQxAj7gaDwTAEMeJuMBgMQxAj7gaDwTAEMeJuMBgMQxAj7gaDwTAEGRDLDwghKoEdXW4YnyKgqsutBj7mPAYeQ+VczHkMPHrjXMZZlhW4vvSAEPeeIoRYEm99hcGEOY+Bx1A5F3MeA4++PhfjljEYDIYhiBF3g8FgGIIMFXFf0N8F6CXMeQw8hsq5mPMYePTpuQwJn7vBYDAYvAwVy91gMBgMGkbcDQaDYQgyqMVdCDFfCLFBCLFZCHF7f5cnGYQQ24UQq4QQy4UQS+zPCoUQrwghNtmvBf1dziCEEA8IISqEEKu1z+KWXQhxh32PNgghzu+fUscS5zy+L4TYbd+X5UKIC7XvBup5lAoh3hBCrBNCrBFCfM3+fDDek3jnMqjuixAiXQixSAixwj6PH9ifH7p7YlnWoPwDwsAWYCIQAVYAM/q7XEmUfztQ5PvsHuB2+/3twM/6u5xxyn4acAywuquyAzPse5MGTLDvWbi/z6GT8/g+8D8B2w7k8ygBjrHf5wAb7fIOxnsS71wG1X0BBJBtv08FPgROOJT3ZDBb7vOAzZZlbbUsqxV4BLikn8vUUy4BHrTfPwhc2n9FiY9lWW8DB3wfxyv7JcAjlmW1WJa1DdiMvHf9TpzziMdAPo9yy7I+st/XAeuA0QzOexLvXOIxIM/FktTb/6bafxaH8J4MZnEfDezS/i+j80ow0LCAl4UQS4UQN9qfjbAsqxxkJQeK+610yROv7IPxPt0ihFhpu23UsHlQnIcQYjxwNNJSHNT3xHcuMMjuixAiLIRYDlQAr1iWdUjvyWAWdxHw2WDK6zzZsqxjgAuAm4UQp/V3gfqIwXaf/g+YBBwFlAO/tD8f8OchhMgGHge+bllWbWebBnw20M9l0N0Xy7I6LMs6ChgDzBNCzOpk814/j8Es7mVAqfb/GGBPP5UlaSzL2mO/VgBPIodg+4QQJQD2a0X/lTBp4pV9UN0ny7L22Y0yCvwFd2g8oM9DCJGKFMN/WJb1hP3xoLwnQecyWO8LgGVZ1cCbwHwO4T0ZzOK+GJgihJgghIgAVwLP9HOZEkIIkSWEyFHvgfOA1cjyX2tvdi3wdP+UsFvEK/szwJVCiDQhxARgCrCoH8qXEKrh2VyGvC8wgM9DCCGA+4F1lmX9Svtq0N2TeOcy2O6LEGK4ECLffp8BnAOs51Dek/6OKvcwIn0hMpq+Bfh2f5cniXJPREbGVwBrVNmBYcBrwCb7tbC/yxqn/A8jh8ZtSIvjus7KDnzbvkcbgAv6u/xdnMdDwCpgpd3gSgbBeZyCHMKvBJbbfxcO0nsS71wG1X0BZgPL7PKuBr5nf37I7olZfsBgMBiGIIPZLWMwGAyGOBhxNxgMhiGIEXeDwWAYghhxNxgMhiGIEXeDwWAYghhxNxgMhiGIEXeDwWAYgvx/o0fNtSCOHLUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "dfplot = df[['age','chol']]\n", + "dfplot.plot(title='age chol relation')" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "601da936", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True 207\n", + "False 96\n", + "Name: sex, dtype: int64" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "amountMale = df['sex'] > 0 # assuming male = 1\n", + "piecounts = amountMale.value_counts()\n", + "piecounts" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "a128aabd", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWkAAAEeCAYAAABIXOQ3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABAc0lEQVR4nO3dd3gc1bnH8e+ZbdKqrNwreG0sZIONjZsMBDAtAQTCdEJJgRBCS24SkijtooQSEUrCTSghhNAChBYQiF7jKgzGdAvZWC6427LaStvm3D9mjI2xpJW9q1ntvp/n0WMsvat9ZaSfZs+corTWCCGESE+G0w0IIYTonIS0EEKkMQlpIYRIYxLSQgiRxiSkhRAijUlICyFEGpOQFkKINCYhLYQQaUxCWggh0piEtBBCpDEJaSGESGMS0kIIkcYkpIUQIo1JSAshRBqTkBZCiDQmIS2EEGlMQloIIdKYhLQQQqQxCWkhhEhjEtJCCJHGJKSFECKNSUgLIUQak5AWQog0JiEthBBpTEJaCCHSmIS0EEKkMQlpIYRIYxLSQgiRxiSkhRAijUlICyFEGpOQFkKINCYhLYQQaUxCWggh0pjb6QZE5gtW1OQBo4BB9tvAXf7sD+QAXsAHuABlP1wD7UAz0GL/ufPbRmCl/ba6oaos3itflBC9RGmtne5BZIBgRY0LGAvsv5u34b3URhz4HGjACu1lwBLg3YaqstW91IMQSSUhLfZIsKJmGHAIMBMoBaYCeY421bUt2IFt//l2Q1VZnZMNCZEICWmRkGBFzRjgROAIrGDex9mOkmIt8BrwKvCqXG2LdCQhLXYrWFHjBY7ECuYTsYYtMt0yrMB+CXihoaos5HA/QkhIix2CFTX5wOnAaVrro5VS+U735KA24DngUeA5CWzhFAnpLGff8Ps6cIHW+hSllN/pntJQG1ADPAbUNFSVtTvcj8giEtJZKlhRMwUrmM9VSg12up8+pAm4H7izoarsY6ebEZlPQjqLBCtqPMBZWusfK6WmOt1PBngTuAN4sqGqLOp0MyIzSUhngWBFTX+t9SVo/UNlGEOd7icDbQD+AdzeUFX2udPNiMwiIZ3BghU147Q2fwx8Sykjx+l+skAY+Cfwh4aqslVONyMyg4R0BgpW1Oynzfh1KONMpZTsz9L7oljj1tc3VJV95nQzom+TkM4gwYqa4WYscp1yec5XSsm+LM6LAf8CrmuoKqt3uhnRN0lIZ4BgRc0AHYtcjct9iVKG1+l+xFfEgL8DVzdUlW1yuhnRt0hI92HBihqvGYv8QhmuXyrDlet0P6JbTcAvG6rK7ujRoyoD5wCHAb+lsmlbCvoSaUzGK/uofX/82ElmLLLccHt/LwHdZwQAT6LF5SUe//uX5hcCNwFXAJ9SGfgelQHVzUNFBpGQ7mNG/eyp4fv+z6OvGD7/M4bbO9LpfkTitNYfA7cnUlte4vED17WE9bPACPvdg7CGTV6jMjA6NV2KdCM3l/qIYEWNEW9rrDByCn5r5OTJdLq+KB79acNNp8YSrD4+WKSGl450Hbqbj80CPqAyUAHcRmWTjFlmMLmS7gNGXnbv/mZH64euvH7XKZdbAroPMiOhN1fedOoLidSWl3iGAGVXzvBOdBvK1UlZHvAX4HUqA2OS1adIPxLSaW7ExX/7uSuv6AMjJ3+8072IPaNNM67cvosTqS0v8SjgzCNGuQYWD3Al8v/8SKyr6sv2qkmRtmS4I00NPf+Pg92Fg//jGTBydy93RR+io+1/X/WnsxKdJz3OUEz/7mTPjB48hR+4jcrAUcBFVDY197xLka7kSjoNDf/uX87wDh5T7y4cJAHdx+l4tMnw5f0ikdryEo8buOCCgzwjB/j3aI+VM4B3qAxM3oPHijQlIZ1GAoec5Rrx/b894Bk8+lHDm1vodD9i7+lY9FcNVWWJXtkeVpTDqLL93TP34inHAguoDHx/Lz6HSCMS0mliwPFX7lsw+YT3PP1Hnq+UknmwGcCMdnxq+Px3JlJbXuIpAM6+fLq3OMe91wcv5AB/ozLwAJUBmUPfx0lIp4GBJ191nL/k0HfdgcEHOt2LSCb1/YaqMjPB4rKSAcagacNdydzn+3ysOdVyqEMfJiHtIH9xqRp85tU/9Zcc+owrt7C/0/2I5DHDoedX3Xzam4nUlpd4RgDfuHyGd7LLSPquhTOBhVQGZHZQHyUh7RB/cam3sPSMB3LHTLvRcPt8Tvcjkkeb8ahyey9JpNaecvfNb+znHhQsMsamqKXRwHwqA0en6POLFJKQdkDe+CP6Bb523ms5Iw84TylDxp8zjI523LryxlNWJ1g+0W1w0HkHeUpT2hQUAS9QGfhOip9HJJmEdC/Lm3DUmMAhZ83xDdnvMKd7EcmnY5HNhi/v6kRqy0s8XuCCiw727FOUowamuDWwNnf6J5WBq3rhuUSSSEj3ooKDTzio6JCzX/EOHi03CDOUNuNXNVSVhRIsnzXIr0YeO2avptztiRupDPyql59T7CEJ6V5SOP2UmYWlZzzvGbCP7F6WocxI+3urbjnjvkRqy0s8RcAZV5Z6S3xu5cR+LNdRGfidA88rekhCuhcEZp75jcIZp1V7ioYOd7oXkRpaa43h+l4PHjJ70hBj4EFDjMmp6ikB/0tl4A8OPr9IgIR0CvmLS1XB1JNOKph28oPugoGDnO5HpI6OhB5fddOpbydSW17iCQKzfjDNO8VwfuFSBZWBmx3uQXRBQjpF/MWlysjJPzUw47S73fkDeuOmkHCINuMdhi/vykRqy0s8BnDu7HHuISMKjVEpbi1RP6Ey8FunmxC7JyGdAv7iUqXc3pMCM8+61R0YMsTpfkRq6WjHDQ1VZRsSLD84x834Mw/w9PbNwu78nspAQtupit4lIZ0KhmtW4JCzb/UMGCnHW2U4MxZZa/jyrk+ktrzEkwOcf8lUb7DAp4pS29keuYPKwGynmxBfJiGdZP7i0pmB0jPu8A4eLbM4soEZ/2FDVVkkwepjRxSoYUeMcqV64cqecgEPUxk43OlGxA4S0knkLy49qGDKSXf4hpeUON2LSD0z0r5w1S1nPJFIbXmJZyAw+8pS74Eel0r4xHAH5ADVVAYmON2IsEhIJ4m/uHRc7tgZt+QED57sdC8i9bQ2TWW4ezKGe3rpCNeA8QONvhB+RVhBLZt+pQEJ6STwF5eO8AwefU3+hGOPcH5GlegNOtJ+/8qbZn+YSG15iadYwaHfm+KZ3oe+P0YDj1AZ6OwgXNFLJKT3kr+4tMDI61cRmHH6N5TLnc4vY0WS6His1fDl/SSR2vISjws4/5wJnuFD8o0RKW4t2Y4DEropKlJHQnov+ItL3bg8Pyg69OzTDZ+/wOl+RO/QsUhlQ1VZY4LlM/O9jD1lnDtdbxZ25+dUBs5yuolsJiG9h/zFpQo4MzDjtIvchYOHOd2P6B1mNLzC8Pn/nEhteYknD/jmZdO9Y/we1Zd/id9DZeAgp5vIVhLSe+6w3OKZP5CZHFnnBw1VZfEEa48f008NnjnSNS2lHaVeHvAolYG9PXtR7AEJ6T3gLy4d6yocfGX+AUfNcLoX0XvMcOi1VTef9lIiteUlnqFA2RUzfBPdhnKnuLXeUALIHh8OkJDuIX9xaT5KXR6YecZhyu1xYotJ4QBtmjHl8X4/kVr7SKyzZwVdg8b2N8aluLXe9AMqA2VON5FtJKR7wB6HPr9g8olfcxcM7Gt36sVe0NH2v6384ynLEywf71JM/fYkz/SUNuWMf1AZkB0de5GEdM8c4h069uSc0QdPcboR0Xt0LNpo+PIqEqktL/F4gAu+NckzYoDfyMTNtYYAdzvdRDaRkE6Qv7h0iPLkfK9w2imHKGXIv1sW0fHoLxuqyloTLP9avxxGnVDc60di9aZyKgM9OeBA7AUJmwT4i0s9wMUFU06aYvjy+jndj+g9ZrRjqeHz35VIbXmJpxA4+4oZvuIct8r0mRA3UhkY6nQT2UBCOjEnegYFZ/hGjJvodCOit6mLG6rKdILFJx0wyBg4dbiRDcNhRcCfHe4hK0hId8NfXDoSmF049eSDZZgju5jh0DOrbj5tbiK15SWekcDXL5vunWwolS3fJ2dTGTje6SYyXbZ8M+0Rf3GpAVyQN+Ho0a68frKBfxbRZjys3J5LE6m1p9x984Sx7kH7Boz9Utxauvk/KgNep5vIZBLSXZtp+AOT/PuV9tV9F8Qe0tGOP6+8cfbnCZYf5DE46NyJnmz8PikGrnK6iUwmId0Jf3FpIXB+4bTZE2TRSnbRschGw5f3u0Rqy0s8PuCC703x7BvIUQNS3Fq6+jWVgeFON5GpJKQ7d5p32P4jvINGHeh0I6J3aTP+k4aqsvYEy2cNyVMjjhnTZ3e5SwY/8L9ON5GpJKR3w19cWgzMyp943CSnexG9y4y0v7vqljP+lUhteYmnH3D6laXe8V6X8qW4tXR3EZWBsU43kYkkpHdh3yw8P3fMtH7uggGjnO5H9B6ttVYu90U9eMipBw81BkwYbMg2nuAGrnW6iUwkIf1VBwNB/7jDs/nla1bSkdC/V944+91EastLPKOBIy6Z5p1q9KEzsVLsLCoDBzvdRKaRkN6Jv7jUC5zrL/laf1duQSbuuyA6oeOxdsOX96NEastLPAZw3mnj3UOHFxjyamsHhRy3lXQS0l92CEoN8I+dkcn7Lojd0LHw9Q1VZRsTLJ+W62bcGQd45Pvkq46nMnCo001kEglpm7+4NAc43T/u8AFGTv5Ap/sRvceMhdcYvrwbEqktL/HkAuf9YJp3dL5XBVLcWl/1M6cbyCQS0jscBhTkBqdMdboR0ctMfUVDVVk0werj9ilUQw4f5crEvaKTpZzKQLHTTWQKCWm+uIo+NWfUJJ/LXyiHymYRM9I+b9Utpz+dSG15iWcQUH5lqXeC21CeFLfWlxnAT5xuIlNISFumAnm5Y2dmw+5lwqa1aSq3N6F9ke39Oc48dB/XoHEDXbLAqXvfpjIgw4ZJkPUhbc+LLvcMGGm6A4P3d7of0Xt0pP2fK/9YvjTB8mIFpRcd7OnrJ3/3llzgMqebyARZH9LAeGBw3vhZE5XMd80aOh5rMXx5CW0MVF7icQHnnzvRM3xQniF7VCTuctkhb+9JSEOZkVsQ8wzad7LTjYjeo2OR/22oKtuWYPkhBV72O7kko4/ESoXBwMlON9HXZXVI+4tL9wEOyBt/5D7KcMuNoCxhRsOfGT7/XxKpLS/x5APfvHyGdz+/R+WnuLVM9F2nG+jrsjqkgWOBiHfoWNlIKbtc0lBVFk+w9oSx/Y3BpSNcMha9Z46nMiAzpvZC1oa0v7i0ADjMO2Ss6cotlAM1s4QZDr286ubTXkmktrzEMww44YoZ3oNchnKluLVM5QIucLqJvixrQxo4CHDljpk6welGRO/QphlVbu8lidTaU+7OPma0a9CYfobM+tk7MuSxF7I5pI9BqSbPoFGyzWSW0NH2O1beeMqKBMsPcCmmXDDJOyOlTWWHcVQGDnG6ib4qK0PaX1w6FBidO3pqf8OTU+B0PyL1dCy61fDl/SqR2vISjwf41ncme0b2z1WDU9xatjjT6Qb6qqwMaawVhmbOvhPlhmGW0GbsFw1VZW0Jlh8+IFftc/xYmXKXRKc43UBflXUhba8wPAbD3eguGlbidD8i9cxIx0eGN/cfidSWl3gCwFlXzPDu73Or3BS3lk3GUBmY6HQTfVHWhTQwBijKGTVpoHK5s/1cuoyntUYZxsUNVWU6wYecPGGwMfDgYYacMJJ8cjW9B7IxpKcAcd+wYtlKMQvoSPtTK286dUEiteUlnn2BYy+d5p1iKJWNPxupNtvpBvqirPpG9BeXKqAU2OrpN1ymVWU4bcbDyu25PJFae8rduWXF7sH7BIzRKW4tW02lMjDS6Sb6mqwKaWAo0M/df6RPTl/JfDracfPKG2evTbB8stfFgd+c6JEDiFPrRKcb6GuyLaT3B8jZ9yAZ6shwOhbZYPjyrkmktrzE4wPO//5U76hCn+qf4tay3ZFON9DXZFtIlwIt3oH7SkhnOG3Gf9xQVdaRYPnRQ/PV8FlBl1xFp94RTjfQ12RNSPuLS/1ACcpoduX3H+V0PyJ1zEj726tuOePhRGrLSzz9gdN+WOo9wOtSsvdx6o2kMiBj/j2QNSENjAWUd2jxQOVyyw9jhtJam8rlTuhILNupU4cZAw8cZMj2AL1HrqZ7IJtCejwQ8w4eLXeXM5iOhB5ZeePs9xKpLS/x7Accfsk071Q5lKdXybh0D2RTSB8INLuLhu7jdCMiNXQ8FjJ8eT9KpLa8xGMA5555gHvY0HxDvid61+FON9CXZEVI+4tLc4CRQJs7f4BcSWcoHYtc21BVtjnB8ul+DyWnjvfI/hy9byyVgYDTTfQVWRHSwAhAG/6AT/n8A5xuRiSfGQ2vMnz+GxOpLS/x+IHzLp3mHZ3vVYUpbk3snuzjkaBsCelRgPINHzdSxh4zlb68oaoslmDx10cF1NDD9nXJXtHOkRu1CcqWkD4ACHn6DZez1jKQGWmfs+rm059NpLa8xDMYOPmKGd4D3YZyp7g10TkJ6QRlfEjb+3WUAM1GXpEMdWQYrc24cnsTmnJn789x5tf2dQ0sGeg6IMWtia7JcEeCMj6kgSIgD4i4cgokpDOMjrT/Y+Ufyz9NsHx/QzHjwoM901PalEjEBCoDMvaYgGwI6YGACWD48mRTpQyi49Emw5f380Rqy0s8buCC8w/yjBjoN2TYy3mFgEx9TEA2hPQAwHDl9/crtyfH6WZE8uhY9DcNVWVNCZYfEvAxuqxYjsRKI0GnG+gLsiGkhwNxz4B9ZKgjg5jRjmWGz397IrXlJZ584JzLZ3jH5npUXopbE4mTK+kEZENIjwLa3YWDJaQziTK+31BVZiZYXbb/AGPw9OGuqSntSfTUHoW0UupCpVS9UiqilNqW5J72ilKqUimV6FFtCcmGkB4JhIy8on5ONyKSwwyHXlh106mvJ1JbXuIZDnzj8uneSS5DuVLcmuiZfXv6AKXUcOAuYD5wNHBssptKNxk9T9RfXOoF+gOrDG+uvMzNANqMR5Xb+4NEau0pd+d8fT/X4NH9DNlDPP3syZV0MeAC7tNaz01yP2kpo0Ma6Ic1s0MrT46EdAbQ0Y6/rPrTWSsTLJ/gNjj4/IO8abOZ/4vLYtwwL8zHm0waOzSD/IpD93FROcvHAYOsC/2WsOZ3b4Z5e22cxevitETg9W/7mRXs/sf13iURvvt052cdrPtpPkPzrRfQN88P86eFEaImXDjZw3XH+DB2WpFbuybGsQ+E+PDSfEYVpeRFd4+upJVS9wLftv/6qr16+D6t9XeUUhcDV2CtiWgFngZ+prXeutPjNXAd0Aj8EGvm1xvAd+2SvwLfAJqBv2qtb9jpsYOAa4GjsF6dbwHm2M/xeTd9u4Gf2b2Pth/7MPBrrXW3B1NkekjnARrAcPskpPs4HYtsMXx5v02ktrzE4wUuuPBgz8iiHJU2Uy+3tmumDnNx2XQvg/yKVU0mVfMizLy7jQ/sMNzSrrnn3QhThrk4bj83T36S6Gp3KCt2s+Ai/5fepzWc/HA7Y/qpLwL6tRUxKl4Nc9uJORR4FZc8207JQIPvTLa2Wo+bmktrOvjV13ypCmiAnk6FvAZ4B/g/4HJgMbBJKVUF/NR+/8+w9uq5FpiglDpUax3f6XNcAHwIXAYMAf4M3A8UAM9jDaWcCVQppT7QWj9nP64/0AH8EtiENSHhp8A8pdS4bsL2QeBk4AasYZrx9tcSBE7v7ovOhpAGQHm8/q4KRfrTZuznK6tODSVYfsRAv9rnuDHpNeXumxM9fHOi50vvmzHCxbjb2nj84yg/PdTHqIBi6y+sfZ9e+SzWo5AelGcwKO/LoTpnZYwt7ZrfzfJ98b7n62McN8bN96daofzmyhjPL4t9EdK3L4rSEYOrDk3p+Rg92glPa71cKfWJ/dePtdYLlVJBrGD+ndb699trlVKfAnOxwvGpnT5NGDhFax2z6yYAPwZ+q7W+1n7fG8CpWGH9nP3cdcAX2+AqpVzAPGAVcALwn931rJQ6HDgb+LbW+n773a8opbYCDyqlJmutl3T1dWf6jcM87K9RubxyJd2HmZGOD1bdcuY9idSWl3gCwJlXzvDu73OrtJ8bP8BvDTF47Nuayd4E7L73onhdcM6EHddkkTjk7vS7Is+j6LB/F2xoNfnfNzq47cQcPK6ULgr0UhnY24un47B+xv+llHJvfwNqsYYtdj0F5uXtAW1bav/54vZ32B9fxi5j5kqpS5VS7ymlWoEYVkCDNcTSmeOBCPDELv29ZH+821NqsiGkwXAZuNxp/8Mqdk9rjTKMnhyJdcpBQ4yBk4YaB6esqb0UNzWRuKZ+S5xLnu1gaL7inAme7h/YQ+1RzWMfRzlpfzcD/Dt+3EtHunjlsxiL18VZttXksY+jzBxh/Za46uUwZcUejhrdKy+093Zf6cH2n8uA6C5vhViL2XbWuMvfI128/4vMUEpdCdwOvAKcBswAtr9K6ypbBgNerHHynXvbaH+826nBSfu/oJS6SGv9j53+7gJ+o7X+XbKeYw/0B2KuvH65skVp36Uj7U+s+tOZbyVSW17iGQUc/YNp3ilGGv9PL727jXfWWdO8x/Y3eO1bfgbnJf+a6amlMZrD8O1JX/4FcPaBbp5a6mbqXW0AHBV08cNSL282xHj20yhLL89Pei+d2Nsn2mL/+XW+GrQ7f3xvnQO8qrX+6fZ3KKUSOVB3C9ZYdmen0azt7hMk81flMUqp04GLsH47/BN4M4mff0/0A6LK7c30sfeMpc14h+HzX5FI7fYjscpL3ENGFhrB1Ha2dx44NZfmsOazRs1NC8Ic90CIuRfmEUzyTbr73oswyK84sfjLPwIuQ/HomX7WtphE4zCqyCAa11z+XAfXHpXDkHyDWxeGubU2QmsEThvv5k/fyCHXk/Tfe3s73PEy1gyufbXWLyehn874sYZPdvbd3RXu4gXgF0BAa/3qnjxx0sJLa32uUups4AMgBHxTaz0vWZ9/DxUBUWW4UjKs0758EU0LHyeyYTkohaf/CIpmfZfcUZMAiGxayba5DxJZW4cZbsNdOIT8g46lYNopKKPzdRVmOMSW5/+PyIblxNu2guHG038EBVNPJv/Ao75U2/zWkzQvehptxsk/6FiKjvgWSu34csNr69jw798w/MLbcAcG7/pUaU9Hwzeu/NOZ6xMsn+xzccBZB3rSZspdZ8bb0+1KR8IJxW6Cf26ham6YO0/KTdpzrGsxeeWzOFfO8OI2dh+uwwt2fK/8eWGEHDdcOt3Dy8tj/Pb1MP/9bh4jChTfeDDE9XPCXHN00kcN9+pekX0z8Qbgr0qpEqwLww6s8eTjgLu11gktfOrGC8AvlFK/At7CWkhzRgL9vaGUehh4XCl1i/1YE2tmx4nAL7TWXe7imMzhjmKsu59PYE0xuUAp9a7WOtG78angBeIYrqTfom5Z8jxbX76TgiknETj0HNAmkY0r0NEwALGWLWx4+Je4CgbQ7+iLMfyFdKx8j8bX/0k81ES/WZ3/EtZmDAwXhTPPtII1HqVt6Ry2PHszZqiJwumzAWhf+R6Nb95H/+MuxfDmsuXFv+LpP5L8icfanyfO1pduJ7D98/QxZiyyzvD5r0uktrzEkwNccMk0b7DQp/rU6tKiHMXY/gbLtia6yj0xD74fJa7h25O7H+te02xy7Zwwr1yQh6EULyyLcdx+biYPtX6ZfHeyl/vfj3DN0UltEZKQQVrrX9mzPi633zSwGngVqN/bz2/7PdZF34+xxqDfxJpT/VkCjz0fuBK4EPg11gyTBqyblRu6e3AyhwGeAa7QWr+irLHAnwCLsE7pdooL0Mm+ko41baDx1b/Tb9aFFE4/5Yv3547ZsTVE+/JFmO3NDD3/Rjz9R1gfHzWJWOM62j58rcuQduUWMqj8Z196X+5+04lu/ZzW91/+IqQ7PnuHnOBkCiYfb/199Qe0f/bOFyHd8u5z6FiEwhmnJeXr7nVm/EcNVWXhBKuPGV6ghh05qu8dibWh1WTpZpPzJib3xuH970c5aIjxRdB25X9e6OC8iR6mj9hR2xbZsQVFa0Sjk7ojxRfi3ZfsoLV+BfjKywKt9QPAA908dnePuxe4dzfvn7XL39uBS+23nald6iqByl3eZwK32m89lsyQnqG1brab0sDNSqnqRB9srwb6nf1FJosBaJIc0q3vvwxKUXDwCZ3W6HjUamCX6dlGTh56D7/bXbmFxOM7Zg/peBTDvWPuq/LkoFuteyfxtkaa5jzIoFN/jXL1vSF5M9K+aNUtZzyWSG15iWcAMHvcQCPqNkjpxN69deq/Q0wZ6uKgIQaFPsWnW0z+tDCC24Cf7jQn+fn6KG1R+GCDlWFvNsTZHNLkeeCE4h1h7v59M9+e5OEfp3x5mGTxujgfbjS5+es+uvPishhzVsWpu2LHPbxjx7i4tTbC7YsiDC9Q/OWtCN9J4Ip8D/QopLNRMn96c5VSfwJGaK2PV0odABxC8l5u7ImUXEl3rPkYT/+RtH3yX5rmP0KsaSPuwBAKp59CwZSTAMgb9zWa5j3M1pfvoOioC3HlFtKxcgltH71O4LBvJvQ8WmvQJma4jVDdfNpXLGbACT/84uO+4SVsefF2wuuXYfj8hJbO++IXR+Pr95C733RyRvXNo+SUJ2dwsKKmqKGqbFsC5acDvLYivvzQfcz5M0a4Dk1td3tu5ggXj34c5eYFJpE47BMwmDXKxS8P93/ppuGlNR2sbNrxy7zyTesFxaiAouF/doRlXFtvu7pvSRS3QbdX5+GY5ornO7jxOB9FOTsuCk8o9nD9MSbXzwkTimpmj/PwmyO6D/w9kNwxngyk9vSq7iufSKnnsWZ0/FprPcmesP2u1jqhs8xScSXtLy69HnD5Rh7YL1B6+sXJ+ryf//0HxFu3oFweio74Fu5+wwgtnUvrkufpd8zFFE6zhkCijWvZ9MS1RLdsn/OuCHztXIoSDOnmd56h8ZW/WX8x3PQ/5mIKppR98XFtxtlcfSOhOmufGd++BzH49P8lsr6eTU9ey/CL78SV16eGZ3f1eENV2ZldFZSXeDxY81e3Au1eF8YdZTkXDcozhvdKh2JvTaOy6R2nm0hnCV1JK6UqgauxbgjeCnwNa/7f1VrrfyqlLgBmYc0F1Eqp/ey7rnGl1DnA97EOnszFurL+s9b6vgSedxLWGvfDsQbrFwMVWus5CX59LkBjxpP721qb6Eg7A2f/GH+JddGWO2oSsaaNNC18jIKp5ZjtzWz6z/Uor4+Bs3+JK7eAjpXv0zT/3yiXh8DMbm8Mkzf+CHzDx2G2NxNaVsvWV/4GhkHBZOtqWRkuBs2uINayBcw47sBgdDxmXb0fcQGuvH40v/00LW9XY0Y78O9/iHUT05OSK6JUOCNYUfO9hqqyuzsrqK6LRstLPA8A3wNWROKYtyyIPPG7o3yXeF0qrYc+BCBX0t3q6TDAY0ANMBtro5N7lFLXYw2mL8e6g+kDHlJKzQSagDHA48B59uOeAe5WSnW53aRSagrWZiT9gYuxXtJuwVr3nujm7S5Am9GOaOJfYveM3AIAcoKTv/T+3NEHY7ZtI966lebaJ4g1bWDwWdeQV3IYOfseRNHh51NYehrb5jxIPNT9qU8ufwDfsGJyx0xlwNcvI+/Ao2h8/R50/Mt7ObgLBnwxe6P57adRbi/5B59I+4p32WaPSw+/6HYi6+ppXvBocv4Res+twYqacd3UzAEWYm2sw0ebzK3VdbGalHcmkkHGpLvR05C+UWv9f/ak8Qux/oEvwVqf/i2sq5k41pLJh4ArtdbXa61v11q/BLyGNZXlXr56l/Qrz4W1Nv5orfXj9m5Up2JNeUloJzSsqThKJzmkvQNHdfJs1tCRUgaRTQ14+g3HlfPlBVW+YfuDGSPWuK7nzzt0LDrSTrxt224/HmveTNP8f9P/65ehlEH7infIDR6Md8gYXP4AeROPpX3F4h4/r8P8wCPBippOL/+r66Ia685+C/Yy4/vfi76/dHP8/d5pUeyFRM+ozFo9Dennt/+H1roRa/35QntWx35Yu0Ftv7O1HnArpYqVUg8rpT5nx7r179HFpiRKqVzgSKwrd3OnTUkU1tr5bjclsYUBlxkORbqt7IHc/Q8B+Ergta9YjKtgIK78frjy+hFtXEu8o/XLDa2tA8BV0PPTvMKrP0R5c3Hl7X67g8ZX7yLvwFnWLwKbGd2xg6KOtGPv3NrXTAL+2FVBdV20BWtsuj/2MN4f5oRrmsN6d0uFRfrY2n1JdutpSO9uE5Lt7/utHdbblyS9APwNa9nmJKACa2x5OnAP1rBIZ/pjDVX8lq9umnIF0E/tvKyucx2AYXa0hpN1gxQgd8w0fPsexNYXb6Pl3edoX7GYLS/8hY6Gdyk6/HwACiafgI5F2Pjv39L2yRzaG5aw7b8P0PzWf8jd/xDchYO++Hwr/1jO5ud2TKFsWfI8m2v+TOtHr9Ox6gNCdfPZ9PQNhOrmETjkbJTrq3fs2z97h441H9PviG/t6HPUZDoaltCyuIbQpwtoWfwsOcG03XOoOz8MVtSUdVVQXRetxxpa2wegsYPIXe9EnoibWsY901OUyqYWp5tId8mcgrd9bGn7zlDzsYZARgGH73zUjX1V3JVtWDcUbsPakPsr7Ani3ekAXGhTY8YjuNxJuZGklGLwab+h8c372Db3IcyOVjwDRjLw5KvIO2AWAL4R4xh67g1sm/8wja/ehRkJ4S4cQuCwcyicfuouX4xpvdk8A4OE6hey7fV7iHe04MotxDNgHwadcTX+/aZ/pR8di7L1lTvpd9R3MXYaXsndbxpFR36LpgWPomNhcotnEjj07GT8Ezjln8GKmkkNVWVdjRU9D0zA+r5b/9+V8c+nDIu/dvRod8afhdcHJWvzo4yW0BS8nWZ3eHbei1Up1QDM1Vqfr5R6FvgcOAnr1IITsV5+BoGZWuta+zH9gBVYG46onT7Xl6bg2RtvK+CoBAP5K/zFpZdirXjcPPDkn//Y8OYU7snnEWnlVeDrXZ0UXl7iGYg1K6gVaFPAbWU5F4wsNMb0Uo8iMR9T2eTkiuQ+IZmLPM7CWov+c/vvBfZ/NwO3KaXKlFJnYa1535zA5/sJMBV4USl1jlLqSKXU6Uqp6+zjchLRgv1qQcfCbT34WkT6OgbrJI5OVddFNwN3Yx2PZGjghrnh/3TEHN1HRnyVXEknIGkhrbUOaa2fxLqaBtiqtX4Ma0aGC2us8A9YPzwPJvD5FmONX2/BOrvsJaw52hOB/ybY1hchbUYSmPMm+oprghU13e3RsRjrqnskwMom3frQB9GnUt2Y6JFNTjfQFyRtxWE68heXzsI6oXdl4LBzj/cNHZv2W1iKhH0GTG6oKuv0xpO9M97VWBvLbwGonOU7fsowl3wfpIebqWy6yukm0l2mH5/VhL2iyWxv2eZsKyLJxgB3dFVQXRftwLov4seeTXTD3PDLW0JmovtTi9Ra7nQDfUE2hLQGiIe2yXBH5jkvWFHzra4Kquuiq7GG14YDqj1G/NbayBMxUyd1gZPYI4nsxZz1Mj2kt2Hv9xpv3SIhnZluC1bUjO2m5k2sbQyGAyxZb25+rj72Qso7E92RK+kEZHpIN2OFtIpt27DN4V5EauQDDwcrajrdk7O6LmpibUXQjnWCNHcvji5etjX+ca90KHYnDqx0uom+IKNDOlRfG8Ma8vDGW7eEdDyW1OXhIm1MA7o8Zqu6LtqMNT49AHvGz/VzIs+0RrS8wnLGKiqbZMgpARkd0raN2DeNzI6Wbs8TE33WVcGKmuO6Kqiuiy4Fnsaelrc5pDv+/k7kCTOTpzilr6VON9BXZENIr8Pax5p4W6Pc1c9cCrg/WFHT3Ym7zwDLsBa68HpDfPW8VfE3U92c+ArZ6D9B2RDSDdhX0rGmTRLSmW0ocG+wouYrB45uV10XjQJ3YS2wygW4eUHkv2tbTBkf7V0S0gnKhpBehz1XOrp1tYR05jsB+J+uCqrrohuxVr4OAwxTo2+cF34yHNPtvdCfsEhIJyhbQtoAiGxYvlFrU7atzHxVwYqa7vZkXQS8gX2ay/JG3fzoR9GET7cXe2UTlU2rnW6ir8iGkG7B2g3Nq6PhmBkOyaYumc+LNS0vr7MC+zSXR7A2++oP8NjHsaXvb4i/3TstZjW5iu6BjA/pUH2txlrZlA8Qb2tc62xHopeUYG3M1anqumgIa2l5AVawUzU3/GJju5aNf1JLQroHMj6kbZ8CeQCxrZ/LDaLscWGwoqbLUw6q66INwMPY0/JaI8T+8lb48ZipY109TuwVmU3TA9kS0mu2/0d4zccrnGxE9Lq/BStqgt3UvAIswV42/vZac+NLy2MvpbivbBUG5nZbJb6QLSG9CnsPj+jWNdvMSPs2Z9sRvSgAPBSsqOn0yDZ72fg9WAFSAHDn29FFKxrNut5pMavMp7JJZtH0QFaEdKi+dhvWykNryKN5o1xNZ5dDgMquCqrrotuwDk4ehDWHmj/MDT/dFtFyUGpyveJ0A31NVoS0bTFQBBDdvFpCOvv8MlhRM6urguq66IdYKxJHAqxv1e33Lok+KcvGk0pCuoeyKaQ/wb5C6lj9oYR09jGAB4MVNQO6qXsaa3e2QQAvLo811K6JyxhqcmwDZIpjD2VTSG8PZhVv3tga72iVaVbZZwTwj64KquuiEaxhDy+QA3DT/MgbG1rNNV09TiTkFSqbZDFZD2VNSIfqa1uxZnnkA0S3rJZduLLTKcGKmsu6Kqiui64D/ol9mkvUxLxpfuSJSFyHe6XDzPWY0w30RVkT0ra3se7207Hy/Y8c7kU45+ZgRc2EbmoWYE0VGwlQt8Xc9uQnsWdS3lmG0lq3AzVO99EXZVtIf4w9Lh1ZV7fBDLdtdbgf4Ywc4JFgRU1uZwX2svF/YY2j9gN46IPoRx9tjC/pjQYzjVLqOSqb2pzuoy/KtpBegbWXRw5AdPNquZrOXgcCt3RVUF0XbcM6zaUQ8AD8YW74uW0dWvZ/6blHnW6gr8qqkA7V18aBeVhHKNG+6j054y67/SBYUXNqVwXVddHlWGOpIwGaw0TvWBR5PG7qeG80mAlkqGPvZFVI295h+5DH2rr1ZjgkQx7Z7e5gRc3IbmpeBD7C2n+aBWvi619bEZf5vglSStXIUMeey8aQXgG0YZ/WEtm8UoY8slt/4F/BippOfxaq66JxrEMC4tizg/76VmThym3mst5psc+7x+kG+rKsC2l7yGMuMBCg/dMFi7WsKMt2RwC/7qqgui66FWv+9GDApYEb5oWfCkV1ay/012eZWq/CeiUi9lDWhbRtMeAGa8OleMvm5Q73I5x3dbCi5tCuCqrrou8BL2CPT69p1m0PvBf9j/yO75yh1F2ygGXvZGtILwe2YG+41LHyPVmqKlxYu+UVdVP3BNaiqEEANfWxz95ea85PcW99ktY6RjcrPEX3sjKkQ/W1JvA89pBHqH7hp2ako9nZrkQaGIU1pNGp6rpoGLgT656GD+CGeeFXN7WZcuLPLjQ8TWWTHP68l7IypG2LsG4EudCmjmxYvtjphkRaOCtYUfO9rgqq66KfA/dj7QWiInHMWxZEnojGdaRXOuwjDKW6/IUnEpO1IR2qr20GFmK/bA3VzV0sJ4kL263Bippx3dTMAWqxTxv/aJO5tbou9lzKO+sj4qZeimxLmhRZG9K2N7BfssaaNrTEGtfJ4hYB4Mc6bdzXWYG9bPx+rBWsAYD73ou+V7c5/kHvtJjeXIaqorJJ7qgmQbaH9HJgPfaRSW2fvDlH7tQL22Tghq4KquuiLVjLxvtjzxa6fk742eawbkx5d2ksZup1wENO95EpsjqkQ/W1GngO64eMyPplG2NN62ULU7Hdj4IVNWVdFVTXReuBx4F9ABo7iNz1TuSJuKmzdujMpbiByqao031kiqwOadtbQCuQCxBaOve/zrYj0sw/gxU1w7qpeR5YCgwB+O/K+Of/XRl/PeWdpaGYqbcope5yuo9MkvUhHaqvDWMdmTQYIPz5J+tiTRvrne1KpJFBwP3BihrVWUF1XTQG/B3rRHo/wJ8XRuauaTY/650W04eCG+Q08OTK+pC2zQPasbcwbaubJ1fTYmfHAj/vqqC6LroZK6iHAoYGbpgb/k9HTId6ob+0EI3rTS5D3eZ0H5lGQhoI1de2A9Vsv5pe/cGaWPPmrLsKEl26JlhRM72bmsXAq9jLxlc26daHPog+lerG0sgvqWzKml9KvUVCeoc5QBh7Sl7bR6+9LBsviZ14sKblFXRWYE/L+zewAXvP8qeWxuoXr4vX9k6LzmmP6nqPS/3T6T4ykYS0LVRf24a1MfkQgPDapeujW1YtcbQpkW72w5py16nqumiHXZPH9mXjc8MvbwmZG1LfnnNcBpfLRkqpISH9ZW9gjU3nArQsrnlVx2Oy1Ffs7PxgRc0FXRVU10VXAw9iLxtvjxG/tTbyeMzUGTktrTWi/+u9pvllp/vIVBLSOwnV17ZivVwdAhBv2dzWseYjuYkodnVbsKJmbDc1b2CdAjQcYMl6c/Nz9bEXUt1YbzO1NnPcXOp0H5lMQvqr5gOfY58Q3brk+YVmOJTVK8jEVxRgjU97OiuorouawL1Yr8wKAe5eHF28bGs8o7YeaI3wD/fvmzPqa0o3EtK7CNXXxrBeqhYBSsci8VD9wpec7UqkoWnAdV0VVNdFm4A7sG4i2svGI8+0RnRT6ttLvVBUbyr0qf9xuo9MJyG9e0uxXqoOAQjVzV0aa9oo59mJXV0VrKg5rquC6rroJ1iLpfYB2BzSHXcvjjxhZsDMoW0d+hKZcpd6EtK7Ye/p8Sjgxb4Can6n+lm5iSh2obBWIw7qpu4ZYBn2L/3XVsRXz1sVfzPVzaXSxjbzxeE3t/zH6T6ygYR0J0L1teuxpuQNB4g1rm1qb3hX9scVuxoK3NfNsvEo1okvLuyZQ39aGPnvuhZzZe+0mFwdMd3mdanzne4jW0hId60G6yzEIoDWJc8virVsaXCyIZGWTgB+1FVBdV10I3A3MAwwYib6xvmRJ8Mx3ef2udgS0lcVVTVvdrqPbCEh3YVQfW0H1g9WP+x/q+a3n35ahj3EbtwQrKg5uJuaRcCb2Ke5LNtqNj/6UbQ65Z0l0boW89URt7Tc6XQf2URCuhuh+to64GXs/RhiW9dsa//s7Red7UqkIS/WtLy8zgrsZeMPY7066w/w2Mexpe9viL/TOy3unaYOvXVtiz7D6T6yjYR0Yp4EtrJ92OP9lxZHt62TwwHErkqA/+uqoLouGsJaNl6AFexUzQ2/0NiuN6W+vT0XM7X50ab4BVPvat3mdC/ZRkI6AaH62hDWjZ8irJs/NM1/5CkzHNrqZF8iLV0YrKg5q6uC6rpoA9YV9QiA1gixv74Vfjxm6lgv9LdHlm427zz0H21y0K4DJKQTFKqvrQeexZ7vara3hJvfqX5Um/G0/cESjrkrWFET7KbmFeA97NlDi9aaG19aHkvLRVNrms0Pf/Vq+Eqn+8hWEtI98zRQjzXtisi6Tze0L6utcbYlkYYCwEPBihp3ZwX2svF7sLbHLQC48+3oohWNZl3vtJiYpg7d9PEm8yS7X+EACekeCNXXRoE7gRj2D1brB68siWxaudjRxkQ6OgS4uquC6rroNqxhtIHYw2h/mBt+ui2iW1LeXQLCMR2dsyp2ztcfaOuT87kzhYR0D4Xqa7cAt2Htx+ABaFrwyPPx9ub1jjYm0tGvghU1R3ZVUF0X/RBrPv5IgPWtuv3eJdEnnV42bmqtX/ksdt1JD4Uybue+vkZCeg+E6ms/AR7H/sHS0XCsacGjj5jRcKuznYk0YwAPBitq+ndT9xSwEuvQW15cHmuoXROfm+LeujR/dfyJv70TvcbJHoRFQnrPPQ+8i32HPta4tqn57af+JQtdxC5GAv/oqqC6LhrBGvbwYh+GfNP8yBsbWs01qW/vqz7aGF/8x3mRC2QcOj1ISO+hUH1tHOuHrxFrTJHI2rr1rR+8/G+tTfnmFjubHayouayrguq66Drgn1izPVTUxLxpfuSJSFyHe6VD28pt5up73o2eaB8DJtKAhPReCNXXtgB/wvp3DAC0L1/0WejThX1qqa/oFTcHK2omdFOzAJiHPYxWt8Xc9p9PYs+mvDPbmmZz413vRI6/eUE4o89j7GskpPdSqL52HXAz1ukbfoC2D195r2P1R2842ZdIOznAI8GKmtzOCuxl4w8C27BXt/7rg+iHH22ML0l1cxtazcbb3oqcc92csJyykmYkpJMgVF+7HPgL1n7BXoDmt554M7JxxduONibSzYFYv9A7VV0XbcNaNl6EPXvoD3PDzzV16C2pampLyGz+61uRi/8wN/x6qp5D7DkJ6SQJ1dcuAe7DeqnqAtg254GayMYVfWLzHNFrLg1W1MzuqqC6Lroc69CJkQDNYaK3L4o8Hjd1PNnNNHXottsXRX/03gbzyWR/bpEcEtLJ9TpQDYzC/rfdNueBZ+WKWuziH8GKmpHd1LwIfIS1/zQL1sTXv7Yi/moym7ACOlKxaG38PnuoRaQhCekkso/dehJ4CQiyI6hrIhs+W+RgayK99MeaP93pz191XTSOtZd5HMgD+OtbkQUrt5lJOWtzc8hsumFe+NcL1sRvl4BObxLSSRaqrzWBh7CuhIJsD+q5Dz4X3rD8LQdbE+nlSODXXRVU10W3Ys2fHgIYGrhhXvipUFTv1aKpdS3mlt+9Ef7dhxvNv8pc6PQnIZ0CdlA/DLzATkHdNPdfz4fX1y90sDWRXq4OVtQc2lVBdV30Pazvo30A1jTrtgffjz61p6vGV24zN1z9RvjXK5v0X+yrdZHmJKRTxA7qR7BWJgbZvg/1vIdfbF/x7ova4b0ZRFpwYe2WF+im7glgDfay8Wc/jS1/e605v6dPVr8l/vn/vt7x0/Wt+u/VdVHZYrePkJBOITuo/421gc4owA3QsviZhW0fvS57UQuwvi/u6qqgui4axtp90We/ccO88Kub2sy1iT7J/NWxpb95LXxZYwcPyRBH3yIhnWJ2UD8KPAbsi703Q6hu7tLmt5++14xF2pzsT6SFs4IVNRd1VVBdF/0ceABrrxgViWPesiDyRDSuu9wrJm5q898fRhdUzY1c3h7jGblJ2PcoedXde/zFpYcCF2Odl9gC4Ok/sihwyNnnGTl5Ax1tTjgtBExtqCrr9OzM8hKPAi4DDsYa/uA7kz2TThvvmb27+vaobv/LW5HX566KX1NdF5V7IX2UhHQv8xeXjgN+DESwTo3G8Adyig479wx34aD9HG1OOG0JMLOhqqzTTZXKSzwFwO/tvzYB3Hic77SSga6JO9dtajO3Xj8nUr280bzWXhwj+igZ7uhlofrapVg/ZBHshQpmqKlj68t3PNix+sPX5YZiVpsM3NBVQXVdtAW4A2uutRvg+jnhZ5vDunF7zQcb4p/99KWOO5c3mldJQPd9ciXtEH9xaT/gSmA0sBowAXJGTwnmTzzudMPjy3eyP+Gosoaqsi5P5i4v8ZQDpwMrAI4Y5Rrxw1LvBU98HFv88IfR+4F7ZbvRzCAh7SB/cakPOAc4BlgHtAO4CgbmBQ45+3R3wYDRTvYnHLMJmNhQVdbplqHlJR438DOsm9EbgIJ+OQxr7OAh4DmZwZE5JKQd5i8uVcAM4HtYQyCbAFBKFc44/UjfiPFHKKWUgy2K3hUHrgGubagq63KxSXmJZyBwLda0vFbg9uq66Cepb1H0JgnpNOEvLh0OXI41Tr0Ge/jDN/LAEfmTvnGKKyd/kJP9idQzO1pbwxs+u3jDw798JNHHlJd4JmGdTP7v6rpoY3f1ou+RkE4j/uLSXOCbwCx2Gv5QLo+rYPrsI3zDS76mlCE3ezOM1lqH1y59v2Xxs0t0pP0G+6BjIQAJ6bRjD3/MBL6FtWx4HaABvMNLhhZMPuEUV27hUAdbFEkUDzWta1n87NuRDcvfBv5un/QjxBckpNOUPfvjPKzx6g2AtTLRcBmFU8sP84084AhluNwOtij2go7HIu0r3lnU+v7Ly9DmU0BNqL426nRfIv1ISKcx+6p6KvBdrGO51mJfVbv7DQ8UTD7hWHe/4RPkvmLfEt22rr550VPvxZs3LQHuD9XXrna6J5G+JKT7AH9xaQBrqt6hWKsUm7d/zLfPhBH5Bx71DVdev32c6k8kJh5qWtv20evvdqx6fw3WVrZzQ/W1sl2o6JKEdB9hX1VPBC4ABmINgXyxWCHvgCMPzN1vxrGGN7fImQ5FZ8xw29ZQ/cIFobp5W4CFwCOh+lqZiSESIiHdx/iLS73A4cCZWKdJr8WaW4tye135k46f4Rsx/jDD48tzsE0BmNFwa0fDuwtaP3x1HWZ8PfAg8KF9zJoQCZGQ7qP8xaWFwInAN4Aw1pW1BlCeHHf+xGOn+UYeeJgsL+99ZrSjJfz5J2+3vv/y5zrasRVrq9raUH2t7B8uekxCuo/zF5cOA84CpmDNANnE9rB2e115Bxw1KWffCYcZvrz+DraZFeLtLRs7Vr1f2/bxG5sx4xHgP8Cbofpa2UND7DEJ6Qxgj1ePAWZjjVt3sNOVNUopf8nXxuWMmlTqzu8/yqk+M1WsZfOK9uWLFrUvX9SGtVL0eeClUH1ti8OtiQwgIZ1B7LAOAidjbQwfxQrrL2YQeAaNHuAvnjnVO2jUJOX2+h1pNAPoeLQjumXNR6H6hR9G1tdrrF+MzwFzQvW125ztTmQSCekM5S8uHQF8HesmI1jDIO3bP65cHpe/5LDxvpEHTnHl9x8tc627p7XW8ZbNn4U//2RJ6NP563Usko81JfJpYFGovra9m08hRI9JSGc4f3Fpf6AU6wZjACuoN2Nv4ATgGTiqf+7oKQd6Bo4a7/IXDnOm0/RldrRtiWxcviT06YKPY00bcrE2228AqoEP5IagSCUJ6SzhLy51AeOAo7GGQsAK69DOde7+I4tyRx883jswON7IKxqZjdukaq212da4OrJl9afhVR/URzZ+pgE/1i+4N7HmOq+SqXSiN0hIZyH76no61tV1EdYNxq1s3x/E5iocnJ87eso4z4B9xrgLBozK5DFsHY+FY80bl0c2rqjrWLF4Wbyt0YP1ykMD7wNvAJ+E6mu7PJ1biGSTkM5i/uJSAxgJTMIau95+Ynkj9mnmO/MOGTvIO2z/oKf/8KC7YGCwL4e2Ge1oibduXR3btn51ZOOKVeF1dZuJxwJArl2yApgLvCs3AoWTJKQF8MXMkGHABOAIYLj9oQiwjZ2WoG/nHbLfIM+g4DB34aAhrrx+Q4zcwiHpuHhGxyKheEfrZrNt24Zo4+erw2s/XRVr/LwJyMN6JWEAMeA9YBHwaai+tsm5joXYQUJafIUd2AOwpvNNwLrSDtgf7jS0AVz5A/zewaOHuIuGDnH5i/orn7/Q8PoLlTenULk8eaka4tZmLKqj4RYzHGqMh5o2xVu3bI5t27ApumXV5njr1hDW3twF9htYwbweeBdrOOMzGcoQ6UhCWnRrN6E9EeiHNUPEwJqP3Wa/dbqrm3J7Xe7AkEJXwcBCI7cgT7m8HuX2epXb41Uuj0e5PF7lcnswXG60NtHxuDbNOGY8rrUZxzRNbcZiOtrRYXa0tZkdraF4qKkt3rK51exoCe/0VDlYN/r8dn/a7nUZ8AHWUMbqUH1ta3L/pYRIPglpsUf8xaV5wGBgCFZ4j8U6udqNFYgKKyAjWHuLbH/b2+lqBtbGUh6sA1i99tv2IHZh3QRdjTVN7nOsBT1rZaqc6IskpEXS2Dci+2ON8xZiDZFsD/JBWDcmc9i+XN36M5FvQLXTnybWTc0mrIUkG7GmEm6x/9wse2WITCIhLXqVHeRerCvhnf/0Yl0Fxzt5i2HNUw7L/GSRTSSkhRAijRlONyCEEKJzEtJCCJHGJKSFECKNSUgLIUQak5AWQog0JiEthBBpTEJaCCHSmIS0EEKkMQlpIYRIYxLSQgiRxiSkhRAijUlICyFEGpOQFkKINCYhLYQQaUxCWggh0piEtBBCpDEJaSGESGMS0kIIkcYkpIUQIo1JSAshRBqTkBZCiDQmIS2EEGlMQloIIdKYhLQQQqQxCWkhhEhjEtJCCJHGJKSFECKNSUgLIUQak5AWQog0JiEthBBp7P8B4xCC1grDOhYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "piecounts.plot(kind='pie',\n", + " figsize=(5, 5),\n", + " explode=[0, 0.12],\n", + " labels=['male', 'female'],\n", + " autopct='%1.1f%%',\n", + " shadow=True,\n", + " startangle=60,\n", + " fontsize=16);" + ] + }, + { + "cell_type": "markdown", + "id": "95e144df", + "metadata": {}, + "source": [ + "## 4.3 : ZTDL 3 – Machine Learning" + ] + }, + { + "cell_type": "markdown", + "id": "79972227", + "metadata": {}, + "source": [ + "### Linear regression\n", + "Deze code blokken zijn nodig als setup voor de linear regression met keras\n", + "We hebben gekozen voor een dataset die gebruikt kan worden voor linear regression. De dataset heeft geen bepaalde betekenis." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "09ee5be2", + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "37389405", + "metadata": {}, + "outputs": [], + "source": [ + "# read the csv file into the df variable\n", + "df = pd.read_csv('../data/test.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "a7ea6eb2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
xy
07779.775152
12123.177279
22225.609262
32017.857388
43641.849864
\n", + "
" + ], + "text/plain": [ + " x y\n", + "0 77 79.775152\n", + "1 21 23.177279\n", + "2 22 25.609262\n", + "3 20 17.857388\n", + "4 36 41.849864" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# check out what is in the first few lines\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "952802ba", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAzA0lEQVR4nO3deZzcdZXv/9eppSudzkoCMatBA2ISScR2wSg/BcfBAYIzBnSGRWdUZu5DL85cJUEdXMAFRLmjd5xxGHSEwatA4EcCLqNDcBgioEE7MQlBoizZIKFJAp10qms5949aUsu3lu5Ud3VXvZ+PR0hX1be+9fmG5Hvqs51j7o6IiAhAqNkNEBGR0UNBQURE8hQUREQkT0FBRETyFBRERCRPQUFERPIUFKRlmNnnzOzWBpznrWb2eCPalD3fd83sC406X8m5G3LNIjkKCiIl3P2/3f1VQ3mvmX3AzB5sdJsaYTiDUzM+R4aHgoKIiOQpKEhDmdkrzewFMzst+3iWmT1vZm+rcPyVZvZ7M3vJzLaa2Z8WvPYBM3vQzL5qZvvN7Ekze1fB6yea2X9l3/szYHqVdm02s/MKHkez7VoacOzbzGxnweOnzOwTZrbJzA6a2W1mNi7gfa8GvgWcbmZ9Znag4OWpZvbDbFsfMbNXFrzvFDP7WfbP7XEzu7DKdVS9ZjO7w8yezbbzATNblH3+MuAiYGW2bfdkn6/2578g+1kHs39Wt9Vqc6XPkTHE3fVLvxr6C/gw8BgwHvgP4KtVjr0AmEXmC8p7gUPAzOxrHwAS2fOFgf8B7AYs+/pDwA1ADDgDeAm4tcLnrARuK3h8PvDbCse+DdhZ8Pgp4JfZdh6Xvba/qfDeDwAPljz3XeAF4A1ABPge8IPsa13ADuAvs6+dBjwPLKpw/qrXDPwVMDH7+j8APSXt+MIg/vy/D3w6+9o44C31tDnoc/Rr7PxST0Eazt3/FXgCeASYSebGUunYO9x9t7un3f227PveUHDI0+7+r+6eAm7Onm+Gmc0DXg9c5e5xd38AqPat9FbgT8xsUvbxJcC/D+KyvpFt5wvZz1k6iPcC3OXuv3T3JJmgkHv/ucBT7v5v7p50918DdwIrSk9QzzW7+3fc/SV3jwOfA5aY2eRKjarx558AXg7Mcvcj7p6bK6m7zTL2KCjIcPlXYDHwf7I3qEBmdqmZ9ZjZgexwy2KKh0Sezf3g7oezP04g8+12v7sfKjj26Uqf4+67gfXAe8xsCvAuMjfnej1b8PPhbBsGo9L7Xw68MXf92T+Di4CXBZyj6jWbWdjMrs0OB71IpocD1YfVqv35rwQM+KWZbTGzvxpCm2WMiTS7AdJ6zGwCmaGLbwOfM7M7s9+wS497OZngcRbwkLunzKyHzI2olj1kxum7Cm6S84BqaX9vBj5E5u/9Q+6+q85LGozBph3eAfyXu/9RHcfWuua/IDMs9g4yAWEysJ+jf55Fbav15+/uz5IZusPM3gL8p5k9UEeblXp5DFNPQYbD14FH3f1DwA/JTL4G6SJzA9kHYGZ/Seabak3u/jSwAfi8mXVkb1rn1Xjb3WTGvz8G3FLP5wzBc8AcM+uo8/h7gZPN7JLs5HfUzF6fnbQuUsc1TwTiQC+Z+ZwvBbTtFQWPq/75m9kFZjYn+3B/9thUHW0u/RwZQxQUpKHM7HzgbOBvsk/9L+A0M7uo9Fh33wp8jczk6XPAa8gM8dTrL4A3kpnE/Sw1bvTu3k9m7PtE4K5BfM5grAO2AM+a2fO1Dnb3l4B3Au8jM4n+LHAdmYniINWu+RYyw0m7gK3AwyXv/TawMDvkc3cdf/6vBx4xsz5gLfAxd3+yjjYXfU6tPwMZXXKrOETagpl9BjjZ3S9udltERiPNKUjbMLPjgA+SWXkkIgE0fCRtwcw+TGaC9MfZpZwiEkDDRyIikqeegoiI5I3pOYXp06f7/Pnzm90MEZEx5dFHH33e3Y8Pem1MB4X58+ezYcOGZjdDRGRMMbOKu/81fCQiInkKCiIikqegICIieQoKIiKSp6AgIiJ5CgoiImNMb1+cjTsO0NtXsVTJkI3pJakiIu1mTc8uVq7eSNhCpDzN9SuWsHzp7IadXz0FEZExorcvzsdv7yGedA4nUsSTzv+6vaehPQYFBRGRMWLL7hdJpoufS6YzzzeKgoKIyJhRKYFp4xKbKiiIiIwRi2ZNJhwqLmEeDhmLZk1u2GcoKIiIjCFW0isofXysFBRERMaInfv76YwWLxrtjEbYub+/YZ+hoCAiMopU24MwZ2oniXTxTHMinWbO1M6Gfb72KYiIjBJrenax6s5NREMhEuk0X3nPqUV7EKZNiPGV95zKypJjpk2INawNwxYUzOw7wLnAXndfnH3uOOA2YD7wFHChu+/PvvZJMkXVU8Dl7v4fw9U2EZHRprcvzqo7N3EkkeYImd7Ayjs3sWzB9KKb/vKls1m2YDo79/czZ2pnQwMCDO/w0XeBs0ueuxK4z91PAu7LPsbMFgLvAxZl3/NPZhYexraJiIyIelNS7NzfTzRUfEuOhkL5+YLhTG1RaNh6Cu7+gJnNL3n6fOBt2Z9vBn4OrMo+/wN3jwNPmtl24A3AQ8PVPhGR4VZrOKhQtfmCwvP0J5KYGeMi4ZrnHIqRnmie4e57ALK/n5B9fjawo+C4ndnnypjZZWa2wcw27Nu3b1gbKyIyVIXDQS/FkxxJpFl556aK3/Rz8wXjoiEmxiKMi4b4yntOBSg6TzINiZTXdc6hGC0TzRbwXODiW3e/EbgRoLu7u7ELdEVE6tTbF686rp8bDsrND8DR4aBK8wBB8wUbdxwoO0+hWuccrJEOCs+Z2Ux332NmM4G92ed3AnMLjpsD7B7htomI1KWeYaFay0cLgwqQ/3n/oQGeeO4lujrCTJsQY87UTo4kUxXbMtaXpK4F3g9cm/19TcHz/9fMbgBmAScBvxzhtomI1FTvKqGg5aNXnbuQnfv7+cnmZ7n63i2ELUQ8mSIUyswRHE6kSKWPDoBcevo8PnbWyUXP5XTFwqTSPqaWpH6fzKTydDPbCXyWTDC43cw+CDwDXADg7lvM7HZgK5AEPuLulUOjiEiTDGZYqHA4aPOug1x9z1ZCBv2J3Hszt7lUykmkkmWfdctDz7DwZZMIiAlc8c6TOW/J7IYvSR3O1Ud/XuGlsyoc/0Xgi8PVHhGRRhjsruLcTXvFt35BIjX4adCf/25v4POvOH5iwwMCKM2FiMig5IaFYhFjfDRMLGL5VUK5fQSFewp6++Lcs3HXkAICwP3bni97LhKCRbMmHdN1VDJaVh+JiIwZmdu7ZdZNurHh6RfycweF+wiOJFO4O9Hw0PfixlNHeyXjIiEc5/oVS4allwAKCiIig5KbaI4XlEC75aFnAArmGYrnCJLpwU2RRkKUVVjrioX5/HmLePspJwxbQAANH4mIDEpQOopG+7t3nEwsUrx9K5X2YQ8IoKAgIjIoQRPNQxWLBN+CXzNnMtevWFK2u3m4AwJo+EhEpG65DWfLT53J7Y/uyj//1gXT+NXT+8vmFEr3HYQMujoimT0L5yxk7nHj+eDNvyqahI6GM+U1p02IDWs21EoUFERE6rCmZxcrV28iZEZ/oniO4FdP7+fWv3oDT/UeZuncKUzt6mDL7oN8+JYNFMwTEw0b37zotfmbPsDXLljCFas3EQ4ZqbRz/YqjPYJpE2IjFgxyFBRERGro7YvziTs2Vl1W+uc3PUw0FCblaT5z7iJikRCRUIg4RwNIRzjM5M6OEa2PMFgKCiIiJUqT3W3ZfbBqQDiS3aGcSGUCwKfv3kxXR5hDA8U9ikq5j5rRI6hEQUFEpEBQsruQBSVyzuwbSDsMpMonngsDQldHmJQfzVM0mDoLI02rj0REsirVQKjkktPn8fnlC6uesysW5vPLF7F+1ZksXzp70HUWRpp6CiIiWZWS3U3qjOYnggt9/5c7aqavGEimi/YXDKXOwkhST0FEWtJQahpXSnY3a/I4LKDuV188VbSzOYh78fsGm1BvpCkoiEjLWdOzi2XXrePimx5h2XXrWNuzq/abyCwBvfB1c4qeW75kFj07DhCLDC1/UWc0ws79/UWfEVR2czT0EkDDRyLSYuotglPpvbc/urPouds37GRtzy6OJIeW5TSoFzDalqEWUlAQkZZyLGP2Qe8FAgNCOJRJnT2QSjOQTJcNLtWqjDaalqEWUlAQkZZyLGP2g8lrFAmR3528fvvzXLF6I2EL5TevLZ49edT1AuqhoCAiLSWoNnK9Y/aF74Wjm9KCFO5OHs3DQYOloCAiLWf50tksnDmJnh0HWDp3CgtmTMy/VrqTOOi9yxZMZ8vuF8uS1RUq7X2M1uGgwVJQEJGWU2nHcL07iadNiHHGyccXJatLpNK4O53RyKB6H2ONla6hHUu6u7t9w4YNzW6GiIwivX1xll23rmjoZ1w0xL0ffQvn/uODZc+vX3Vm2c29sDcBBP48lgOCmT3q7t1Br6mnICItpdLqo54dB+palVSrNzGWg0E9tHlNRFpKpdVHS+dO4UiyOGvpkWSqKGvpA7/by8rVG0dtXqKRoKAgIi2l0o7hqV0dZSknco9zO6D/5tZfEy/Zk5DrTbQLDR+JSMsJWiK6cccBOqMRXoon88d1RiNs2f1ifgd0kNGUl2gkqKcgImPCUBLcFao0rARONFR+KxwfDY+6vEQjQT0FERm1cquANu86yDU/3Fp3UZpKk8VBm9oWzZpcFixikRDfuuR1LJo1qa0CAjRpSaqZ/R3wIcCB3wJ/CYwHbgPmA08BF7r7/mrn0ZJUkdaVu7GHzcrKWlZaSgqVl6Tmjg/avLa2Z1dZsBgtldCGw6hakmpms4HLgYXu3m9mtwPvAxYC97n7tWZ2JXAlsGqk2ycizVeY6TRItQR3tRLiBe08bqU0FceqWXMKEaDTzCJkegi7gfOBm7Ov3wy8uzlNE5Fm6u2Lc/+2vWUrhQoVTv6WzjUMNSHetAkxlsyd0tYBAZrQU3D3XWb2VeAZoB/4qbv/1MxmuPue7DF7zOyEkW6biDRX4ZBR6dJQgPEdYdJ+NB31mp5drMymoUilnc+ct5DFsyZz1TkLy+Yg2v1mX69mDB9NJdMrOBE4ANxhZhcP4v2XAZcBzJs3bziaKCINVCsBXeFx1YaMAC564zze2z0XgO+uf5Iv/PAxkgV1kz/9/2+mqyNMyp2rzs0EiHYfDhqsZqw+egfwpLvvAzCzu4A3A8+Z2cxsL2EmsDfoze5+I3AjZCaaR6jNIjIE9SagA+raIHbrw0/znfVPkUpX/qefm5S+5t6tFSejpbJmzCk8A7zJzMabmQFnAY8Ba4H3Z495P7CmCW0TkUGotneg8Jt/PSkjujrCVXsJAP2JdNWAUKjddiI3SjPmFB4xs9XAr4Ek8Bsy3/wnALeb2QfJBI4LRrptIlK/Wr2AwZbFPDSQIhY24iX1CzrCxkCFmgbVtNtO5EZpyuojd/+su5/i7ovd/RJ3j7t7r7uf5e4nZX9/oRltE5Ha6ukFBK0CGkilOdifoLcvHrhqyEJWdHwsYtxw4VJikeLnS8UiRtggGraifEcaOho87WgWkUGrpxdQWhbzSDJFKp3mI9/7NUeSqbKCNbkdx4W1jq9fsYRzl8wi7Z4/z+FEqmgI6cLuOVz0xpe3VL2DZlJQEJFBq3cvQK4s5oPb9/GlHz1GIk1RQrrczyvv3MSyBdPJ3OoNDHArOk/h5rL9hwYCS21C69c7GG4KCiIyaLleQOG3+qDhmty8Q8iMkkwVRdJp556Nu/jyj7cV7U/IBYvS8y6YMbEsGEhjKCiIyJBU+lafU8++g5yBlHPtjx+vWMvgwe3P17W0td49EVKZgoKIDFruhh9PHr3hl36rD5p3AIiFQ8RT5YHiSLL8uUQ6TVdHOB9ccucK6kEMZk+EVKZ6CiIyaLkbfqHSfQFB8w4dYePysxYQrr6YqKiWwaGBVM3PGuyeCKlMQUFEBq2eiebSspiRUGbI6Z9+/ntqbTv4yopTWb/qTJYvnV3XZ9UTpKQ+CgoiMmiV6iAHpaRev+pMvnnRaYRDIRIpL6uNUGpcNMTc48aXLW2t9llDzYwq5TSnICJDkltuWmlpaM60CTEmd0bpCIeK5iCqCVraWq3eQemeCGVGHToFBREZlHpKZJauApoztZP+RLLsXF2xMAPJdNlGtqCbeVBxnEIqlNMYCgoiUrfcCp9IyOiLZ4aBSlcEBS0fzWxMM3ILWQHCZvzzRZk6yNCYnci1AofUpqAgImWC1vvXUyJzy+4Xy5aPXrF6I5efeVJZdtOUO+BFcwfSfAoKIgJUHha66pyFLJ49mYP9icB9BzlHkinAy46JJ51v3PdEhU+tsTZVRpyCgogUlcHMrQ7K3dg/ffdmJsTCJFJOKl15otjdmTU5eO6gNB02QCREfuhIRg8FBZE2tv25l3hw+/N86UePVa1ZkJs/iIaNWATCoRCHS5aWdkYj7D54pGzuoFQsHAJzrl+xRENGo5CCgkib+szdv+WWh58Z1HvGRcJ8+c8W83xfPBtIjr42kErx250HalZG+9zyhbxz0csUEEYpBQWRNrT9uZcGHRAADg0k+fgdm+gIh3CMSCizlLQ/kSTt8I/3b695jmg4pIAwimlHs0gb6tlxYEjvSzvEk5n8QomUEw6F+PKfvSa/W7m/joyoS+dOGdJny8hQUBBpQ426MXeEQxxJpOgIl99KYgHPXXr6PNVBGOU0fCTShhbMmMilp8/jlocGP4RUKJFOs3TulLK8Q7FIiH+9tJtFsyZVrZImo496CiJt6urzX8Pqv34TH37riVWPM8gnonvrgmlFr13YPYcFMyaWJay7fsWpnHHy8UybEGPBjIms6J6rgDBGqKcg0qYK9yaUioSMvz/n1bxlwXQgMwcxf9p4Lv7OL4uOu33DTj521snKO9RCFBREWkilcpSFzwNs2X2Qlas3lpW/zOmMhnntvKls2fNiPo9RPJXGPLhcZi7nkILB2KegINIiKpWjLHz+SDKFu9MRCVcMCFC5DGbQcapZ0FoUFETGuN6+eNE3/8KspQtnTgq8sScrFLrpioVJpb2oDGbh+8ZFQ6TTTiwSVs2CFqWgIDKG5XoBIbOyb/7RUIieHQeqJrErdd2fncrpr5zGtAkxevviZauKAH50+Vs5NJDS3EGL0uojkVGsty/Oxh0HAgvQF6ayLs1DBEeXi2ayl9bnSCJVswzmghkTWTJ3igJCi1JPQWSUqjRHkLNzfz9eJc/Qhd1zmNrVgXv1XESFSje1aVVR+2lKUDCzKcBNwGIy6RT/CngcuA2YDzwFXOju+5vRPpGRULoiqPDGW9gLKK1slrsxd3WEA1NS59z2qx28YvoEYpFwxTmEQpV2G2tVUXtpVk/h68BP3H2FmXUA44FPAfe5+7VmdiVwJbCqSe0TGVaFvYD+RBIzY1zB5O3Lp3WVzQUULv8EODSQYlw0VLESWjzpfPFHj5GoEjhikRCffNcpvGXBdG0uE6AJcwpmNgk4A/g2gLsPuPsB4Hzg5uxhNwPvHum2iYyEwl7AS/EkyTQkUs5L8SRHEmlW3rmJro5w2SRv6fLPOVM7a6apLgwIndEQYcvURBjfESYWyew8/sCyExUQJK8ZE82vAPYB/2ZmvzGzm8ysC5jh7nsAsr+fEPRmM7vMzDaY2YZ9+/aNXKtFGmTn/n6ioer/9A4NpAIneUuHcZJVegGlUqlMkHH3bA2c+t8r7aMZw0cR4DTgf7r7I2b2dTJDRXVx9xuBGwG6u7v1t1rGnDlTOwOXeuYcSWQ2jlWb5O3ti3PPxt2Duq0P5D7SIZnOzDGUzlOINKOnsBPY6e6PZB+vJhMknjOzmQDZ3/c2oW0iw65wqef4aLjs9Vj4aJ3kIGt6dvHma9fx5R9vO+a25OYpRHJGvKfg7s+a2Q4ze5W7Pw6cBWzN/no/cG329zUj3TaR4RCUjyjXC9iy+0U+fMsG4smjPQcLGXOmdgYuSV22YDqfuGNjxcnjsMFV576a3zxzgDUb99Rsm9JUSCkbzBrmhn2o2VIyS1I7gD8Af0mm13I7MA94BrjA3V+odp7u7m7fsGHD8DZW5BjU2msAsLZnFysLjrnqnIXMPa4zGyyO/vuMRUJcfuYruf6nT1T8vEtPn8fV578GyJTc7NlxgBcODXDDf/6u4kqn0vZI6zOzR929O/C1ZgSFRlFQkNGsty/OsuvWFS0ZHRcNsX7VmWVj+LnexOZdB7n63q0YcCRZPu8QC1vVvQm1zh+0J0LaT7WgoB3NIsMkt8qo2l6DnNzjFd/6RdV9BdUCQq3zFz6nYCCVKPeRyDAJWmVUbQx/y+6DVQNCPTRHIMdKQUFkmAQllLvq3IXs3N9Pb188INldeQW0eo2PhivuZRAZDA0fiQyjwr0Gm3cd5Jp7txYVu+mMRgoml8djVN9SFjSnEIuE+NYlr2PRrEkKCHLMFBREhlnuRv3eGx8qK3bzUjwJwKfv3kxXR6jmZjQzw/Ci4977+jmccfLxDW61tCsNH4nUoXCop1KNg2q1D+pLbVG7EM6RZLoscNy+YWfgZ4oMhXoKIjUEZTSNhkOk0s71K8rrIAet/58ztZP+RHJIn98ZCdEfsDw1p9KKI5GhUE9BpIpKGU0PD6SIJ9N8/I6NbH/upaJjjiTSXLF6E99d/yTbn3spfy6z8onkzkj1yeU3nTiVf7m0m3CVw7TiSBpJQUGkilrDPomU8+D2fWXHxJNpPnfPVt7xvx/gM2t+y879/YyLFOc56oqF+fAZryRW5Y7/8JP7GR8NEQqVH9MV04ojabyaQcHMPmpmU0eiMSKjTa2MpgCH4ikGUpWPueWhZ0gkU2XnSaack2dMhIAeRKF/f/gZYpHif6pdHWE+f94i1q86U2kqpKHq6Sm8DPiVmd1uZmdbUB9YpEVNmxDjwu45VY/55//6Pal0mmjYym7eOU/1Hi7asxANG6l0mk/e9duC9wb/0/rJ5t30xYuzpqbcefspJ6iHIA1XMyi4+98DJ5GplPYB4Akz+5KZvXKY2yYy7KqtGMq9fvuGnWXPFw759MVTJNMQMvj8eQsDz7N07hSWL53N+lVn8s2LXkvIIJkmP08RMvjaBUsIB3znKowHGjKS4VbXnIJnsuY9m/2VBKYCq83sK8PYNpFjUuuGv6ZnF8uuW8fFNz3CsuvWsbZnV9kxQXMKXbEwf/3/vZIJseI5go5wmFfPmsylp88rev7S0+fly11OmxBjcmcHHeHy9849rov//d4lxCIhOgLmGTRkJCOh5pJUM7ucTH2D58mku77C3RNmFgKeAFYObxNFBq/WEtHCVUW5zWRBVciClpLGEymWL5nFjf/9h6Lnc6uArj7/NVz6pvn07DjA0rlTyuofV8uJtGTulGydhYNlqbM1ZCQjoZ6ewnTgz9z9j939DndPALh7Gjh3WFsnMki9fXEe+N0+Vq4uXiK68s5NRT2GoB5ApSpkpdNoZsbUrg6+8p5TiUWM8dEwsYgVDeksmDGRFd1zywICBOdEKnzvtAkxzjj5BK5fsaRmjWaRRqvZU3D3z1R57bHGNkdk6HK9gxBWVMkMyjd41ZvBdOf+/rJvTgbcv21v9jMs84RXXn9RrfJatboG9Rwj0mja0SwtoXA4KEjpDT/3bb204lmup5C7AXd1hMsS0A2knKvu/i39yeLng4afqg1jldY4CFLPMSKNpKAgLSGooA3A+I4wafd8ymog8Nv65l0HueaHW8tu3rsPBhe1Lw0IUN4bqXfeQmQ0UVCQlhA0HBSLGN+6+DR2vNCfT1kd9G0dyjOY5m7eL/bXn6+otDcymMprIqOF0lxISwiavL1+xRIWzZrMNT/cOqRJ5y27X+T5viM1P7vS3oHBVl4TGQ3UU5CWETQxu3HHgarf1nv74hzsT5SlqehPJPnwLRuIVshL1NURJuXOVecsZPHsyYETwUHzFlpBJKOdgoK0lNKJ2Wrf1gsngXOpJsZFwgykUqQ9k9QuXjB61BkNkXb4zHkLWTwrOBCU0goiGWsUFKSlVfq2DpRNAsci8M2LXgvAR773GxKpoxGhK5bZTTyUzWNaQSRjiYKCtLzSb+uQ2WeQTpesIHKY3NkR2LtIpbWbWNqDgoKMGUGbwOqV+7a+pmcXV9yxERwGSoJCPOV0dYTzvYsrVm8iHDJSaddcgLQNBQUZE2rlMgpSGkR6++L83W09lHYQcsZFQxwayKQk9dx/3fKPRNqBgoKMekPZBBYUREJGxYCQM2dqZ/7zMsnoUnV9nkiraNo+BTMLm9lvzOze7OPjzOxnZvZE9ndVexMgeB9BCLj5F08V1UDOKa2rnNub8HTv4cDzxyKhon0Gg0mWJ9Jqmrl57WNAYUK9K4H73P0k4L7sY5HA9NWHE2m+sW57vgZyoUpBZM/B4I1oX7tgSVGNAm06k3bWlKBgZnOAc8jUZ8g5H7g5+/PNwLtHuFkyilWrAnvLQ88U9RiCbuqHE2lufeSZsvdeevo8zl0yq2hYqFZqa5FW1qw5hX8gU5ynMNn8DHffA+Due8zshKA3mtllwGUA8+bNCzpEWszO/f2Mi4SL9g2UWrtxN+9/8/z8KqPc6iHDORKQvK4jlEl53f3y4wLPp01n0q5GvKdgZucCe9390aG8391vdPdud+8+/vjjG9w6GUm1ymXmBA0flbrpv//AsuvW8b2Hn2bjjgO8dCQJOKngTNoMpJ2BlJflQSo0bUKMJXOnKCBIW2lGT2EZsNzM/gQYB0wys1uB58xsZraXMBPY24S2yQgZ7BLTzPBR5aVDh7N1FD5992a6OsL5paW1lOZBUs9A2t2I9xTc/ZPuPsfd5wPvA9a5+8XAWjK1oMn+vmak2yYjo9LqoErf2HPDR4XGd4R5b/ccxkfL/wrXGxCgOA/SsuvWcfFNj7DsunWs7dk1uIsSaRGjKXX2tcAfmdkTwB9lH0sLClodFA4Z92/bGxgYKqWdeOtJx5eV3axXYbprYFBBSqSVNXXzmrv/HPh59ude4KxmtkdGRtAcwaF4is+u3cLfr9lcNpRUmtTuSDJFKp1m1Z2bSNXYjDY+GmIglcYskwE1V3azMN11rfTaIu1EO5qlKYLmCHLDPoW7h3Pj/MsWTGf9qjPZsvsgH75lA/EUJGsME8UiIa4+fzFvPyWzkK3SfIH2JYgcpaAgI67WElN35/5te4kn01x979Z8UrrrV5zKy6d10REOE0/WLpNpRlFm00rf+lUMR+QoBQUZcUHfzAvFk85n1mzhcKK4J/DxOzby48vfGvjerliYgWQad6czGhn0jV37EkQyFBRkxBVuLgMCJ4tLAwJAIuXsPtjPha+bwy0PH92dfGH3bC5643zmTO1k/6EBenYcYOncKSyYMbHsHLXapWAg7U5BQRpmMOv8c6mpQ1XSVwR5sT/J7Y/uLHpu7cY9rDr71Ty4/flBp9cWkWIKCtIQg9mMVpya+uhk8/hoKL8JLUgkBJM6I4ErhbbsPjjo9NoiUm407VOQMWowm9F6++Lcv20vkVBxD6ErFubq8xfzxT9dnE9EFw0bYYPx0TCxiHHDhUtZNGty4EohMKW7FmkA9RTkmOU2o9Va57+mZxcrV28iZNCfqFwD+exFLyuqp1w6JBW0UmjRrElaVirSAAoKckx6++Ic7B/g8EDxEtH+RLLohtzbF+cTd2wkUbLbrCsWJpV2rjpnYf5bfemEb+nwT6WVQlpWKnLsFBSkLkGTyLl5hEjIynYWl9Y/2LL7YFlAALjinScTDYe55odbBzVBHLRSSMtKRY6dgoLUFDSJvGzB9Pw8QpBxkXDJ8FHwKqND8RTfWPc48WRjJoi1rFTk2GiiWaqqNIm8ZfeLZRO7hUqHjxbNmkQk4PB/vH972T4FTRCLNI+CglRVqYg9eNVdyaXDR9MmxLjhwqXEIkZnQXQonXAGTRCLNJOCglRVKVncolmT83WMx3eEy96XGz4qtHzpbH5x5Vlc8+7FTIiVv2d8R1j1kEWaTEFBqqpWxH750tmsX3Um37r4NMIlUwalw0eF53v7KSeQTBdPOscixrcuPo31q87ULmSRJtJEs9RUe1WPZX8dvdF7hYllqJyV9IyTTxiW9otI/RQUpC5Bq3pyq5JwSHnxN/9U2rln4y7OW5L51l8aULR8VGR0MvcapatGse7ubt+wYUOzmzHmFe5BAKruJs4dny92k6z896czGiJRUvVMSepEms/MHnX37qDX1FNoc4V7EPoTyfwN/EgyVVabYPnS2fnjQ2ZVAwIUrizyfEEdJakTGd0UFNpY4R6Eo3mLvKgi2kvxozfzhTMnVd2wBtARNgaqFE4ebO3jwaTjFpFjp6DQxoIS2VUSDYXoCShwD5kspmky+YvmHjc+O6wUfM6BVIqD/QP09sVr3uQHk45bRBpDQaGN1SqLWSiRTrN07pSy42ORECvPfhVvWTA9X+ns+hVHVxYVDkn1J5KkHT7yvd/UXXNB9RFERpb2KbSh3r44G3ccADi6AS1avpkMMr2A3N6EBTMmFu1ZiIaNVDrN1376O879xwdZ27MLIL9/4dYPvZFHPvUOHv7kWXzzotMIh0IkUl6z5gJU3kmt9Bciw0s9hTYTNCSzftWZPPT7Xj76/d+UHf+VFady+iunlS0lza8+ShXPO+S+yZcuYZ3cGaUjHCoaVqo2v1BpJ7XSX4gML/UU2kRvX5wHfreXlas3liW3A5h73HjGRYv/OoyLhph73Piym/a0CTEmd3bQES7uXVT7Jj/Ym3y1ndQiMnzUUxij6lmVkztm866DXPPDrYHLSHM38ko359zzpZ83Z2onR5KpomOPJFM1b/KDKYKjDW4iI09BYQyqZ1VOYQGcvniqwpmOfluvdtOuVE+hdONjrY2QQ7nJqz6CyMga8aBgZnOBW4CXAWngRnf/upkdB9wGzAeeAi509/0j3b7Rrp5VOYXHVJJbRlr4bT3opl3p8268pJvOaCQ/nwDQGY3U3IOgm7zI6NaMnkIS+Li7/9rMJgKPmtnPgA8A97n7tWZ2JXAlsKoJ7RvVgvYWlE7Y1tp/0BG2smWkOaU37UqfF1RPQRPBImPfiE80u/sed/919ueXgMeA2cD5wM3Zw24G3j3SbRsL6pmwDRrvLzo+5Vz7422c838yy0hzS1SDlofWU09BE8EiraOpcwpmNh94LfAIMMPd90AmcJhZYB5lM7sMuAxg3rx5I9TS0aPeCdtq4/sOHMkuDf3b23qIho2OcCZh3VXnLGTx7Mn54aNqn6eJYJHW07QsqWY2Afgv4IvufpeZHXD3KQWv73f3qdXO0c5ZUiutPurti3P/tr187p4tVSeYq5kQC5NMe9EEtnIQibSOUZcl1cyiwJ3A99z9ruzTz5nZzGwvYSawtxltGyuq1TcIm3FoYGgBAcgHk2qb0USkNY34nIJlKrp/G3jM3W8oeGkt8P7sz+8H1ox020aLwjH+SuP9G57s5YafPs6GJ3vz78mtEjqWgFBIaSVE2k8zegrLgEuA35pZT/a5TwHXAreb2QeBZ4ALmtC2pivcE1CppsHFNz3Mg9szweAb67bz1gXT+MQfn1J3xtNCMyd1sL8/Gdi70GoikfYz4kHB3R+EigV8zxrJtow2wfUNinMLdXWE8wEh57+39/KBNx+pO+NpoT0vDrD6r99ENBJm8+6DXHPv1rp3HItI69GO5lGk1v6CaCjET7c+F/jaxp0H86uEjMKqZ0eFgaCBpad6D7Oiey5L5k7h7EUv04SySBtTQrxRpFZ9g8MDSRacMCHwtZmTx7FswXTWrzqTf7nkdWVdMQO+8KeLA9+7dO6U/M/TJsRYMneKAoJIm1JQGEVyewJikRCd0fL/NSmHf/jPJwLf+6UfbWPZdetYv/15Fs2aTCRcHBYiYeOdi17GpacX7+249PR5ZbuaRaR9afholPHsf9Pp4GmX3GRwNATvff08bvvVMyTSxfMON17yOsZFwkW1lsdFwuzc38/V57+GS980n54dB1g6d4oCgogUUVAYRXITzZn01tU3FY6LRlg6dwqrf70zYMjJqqbCWDBjooKBiATS8NEokduJnE7Xt8O8P5Fk/rTxZZlQjyTSzJo8TnmJRGRI1FM4Ro1I/7CmZxdX3NEDDgN1rio1Mw4nUsTCRjx1NJDEwpn9BspLJCJDoaBwDOopdlNLb1+cv/1BT43BonId4RB/2HeobMeHhSw/TKTUFCIyWBo+GqLCjWaF9Y6D0k9XS0390O97Bx0QIDPh/NWfPk7aIRJCw0Qi0hDqKQxR0EazcMi4f9te3n7KCfkbc63exPN9RwLPHwlBMmAoaXw0xOHsPEIucV0sEuKbF53GolmTFBBE5JiopzBEQRvNDsVTfHbtFpZdty5fvKZWb+ItC44PPH8ICBtEw5bvBXzqXafwobe+gq6OcNGxHeEQkzujCggicswUFIYot9FsXDREV+zoTfrQQIojiTRXrN7IPRt3E7biQf/SzKMLZkws21AGmQnnlEM67Xzzotdy1TkLueE/f8e3H3xSietEZNho+KhOhauMIDN8lEsrcf+2vXzqrk1FK4fiSee6n2wry0FUeAPPnfNVMyYRi4RIu5NIFc8wpBxe7E9wzQ+3li0/7YqFSWWL4aiXICKNoKBQh1rprJfOnRK4lLQwIHR1hEn50Rt47pyRkNWskPZ830DZ/EVXR5jPn7eoaP5CRORYafiohtJ5gUTKSWbTSuTmCHYf7GdcQK6inK5YmM8vX8T6VWeyfOnsonPWCgjRsPGWBdPL5i9S7goIItJwCgo17Nzfj1fZZRwNhahcHiIjlS6+gedWLlXTGQ0Ri4T42gVLWDBjonYoi8iI0PBRDV0d4aIdw6US6TSLZk3K1zKIhkL0J5KYWSYpXUCxmlopssMG/3JJd9ESU+1QFpGRoKBQw6GBFOOiobJJ3lg4BHZ0jqD0pg1UvIHnVi6tvHMTITMOl6wmGt8RCVxiqh3KIjLcFBSonr9oztTOshVBAKGQUTqqVHjTDtq9XCgXRLbsPsiHb9mQzYyaoSWmItIsbR8Uau043n9ogFTAnEJ/IvPtfuWdm1i2YHpRMKk3J9K0CTHOOPkErl+xJD/0pNrIItJMbR0UClcB5ZZ7lt7ke3YcqHqO3Ga0wh5CrXOW0nyBiIwWbb36KGgVUOmO48L6xUFKh3rqOWcQ1UYWkdGgrYNC0Cqg0pt8UBqKcMgqLg2t55wiIqNVWw8fFa4Cqjaef/X5r2H5qbN44InnOeOk6Zx4/ISiVUYbdxzID/vUe04RkdHI3IeSzX906O7u9g0bNhzzeWpVT6s0cVxtQrkRFdlERIaDmT3q7t1Br7V1TyGn2vr/ShPHC2dOqjqhrD0FIjIWtfWcQj2CJo7DZqzduJtIqHpabBGRsWbUBQUzO9vMHjez7WZ25Uh8ZrVymYHFdAZSfPvBP5Qls9OEsoiMdaMqKJhZGPgm8C5gIfDnZrZwOD9zTc8ull23jotveiRfMa1QUTGdjsJiOgVprGNhJakTkZYw2uYU3gBsd/c/AJjZD4Dzga3D8WH1bjTLbS67f9tePnfPlqIeguoaiEgrGVU9BWA2sKPg8c7scw3X2xfn/m17654XmDYhxttPOYFkurQymuoaiEjrGG1BIagwQdFd2MwuM7MNZrZh3759Q/qQ3JDRZ9duKZsXGEilOdifCJxfKBxKUl0DEWlFo2qfgpmdDnzO3f84+/iTAO7+5aDjh7JPobcvzrLr1gXWOx5IpstKbQYlstMeBBEZy6rtUxhtPYVfASeZ2Ylm1gG8D1jbyA8IqqQWDcFfvGEeRnmpzUo9BuUpEpFWNKqCgrsngY8C/wE8Btzu7lsa+RlBldQSafj3h5+mpNYNnnbtOxCRtjLaVh/h7j8CfjRc5z80kCISgmRJNczS4SSAeMqLlqGKiLS6UdVTGAldHeGygFDJuGiIQ6XdBxGRFtZ2QSFXc7le2qEsIu1k1A0fDbdKN/lKq480mSwi7aTtgkJQvYOrzlnI4tmT8wFDy01FpF21XVCA2jWRFQxEpF21ZVCA6jUURETaVdtNNIuISGUKCiIikqegICIieQoKIiKSp6AgIiJ5oyp19mCZ2T7g6WM4xXTg+QY1Zyxot+sFXXO70DUPzsvd/figF8Z0UDhWZrahUk7xVtRu1wu65naha24cDR+JiEiegoKIiOS1e1C4sdkNGGHtdr2ga24XuuYGaes5BRERKdbuPQURESmgoCAiInltGRTM7Gwze9zMtpvZlc1uz3Aws7lmdr+ZPWZmW8zsY9nnjzOzn5nZE9nfpza7rY1kZmEz+42Z3Zt93NLXC2BmU8xstZlty/7/Pr2Vr9vM/i77d3qzmX3fzMa12vWa2XfMbK+ZbS54ruI1mtkns/ezx83sj4/ls9suKJhZGPgm8C5gIfDnZrawua0aFkng4+7+auBNwEey13klcJ+7nwTcl33cSj4GPFbwuNWvF+DrwE/c/RRgCZnrb8nrNrPZwOVAt7svBsLA+2i96/0ucHbJc4HXmP13/T5gUfY9/5S9zw1J2wUF4A3Adnf/g7sPAD8Azm9ymxrO3fe4+6+zP79E5kYxm8y13pw97Gbg3U1p4DAwsznAOcBNBU+37PUCmNkk4Azg2wDuPuDuB2jt644AnWYWAcYDu2mx63X3B4AXSp6udI3nAz9w97i7PwlsJ3OfG5J2DAqzgR0Fj3dmn2tZZjYfeC3wCDDD3fdAJnAAJzSxaY32D8BKIF3wXCtfL8ArgH3Av2WHzW4ysy5a9LrdfRfwVeAZYA9w0N1/Soteb4lK19jQe1o7BgULeK5l1+Wa2QTgTuBv3f3FZrdnuJjZucBed3+02W0ZYRHgNOCf3f21wCHG/tBJRdlx9POBE4FZQJeZXdzcVjVdQ+9p7RgUdgJzCx7PIdP9bDlmFiUTEL7n7ndln37OzGZmX58J7G1W+xpsGbDczJ4iMyR4ppndSuteb85OYKe7P5J9vJpMkGjV634H8KS773P3BHAX8GZa93oLVbrGht7T2jEo/Ao4ycxONLMOMhM0a5vcpoYzMyMzzvyYu99Q8NJa4P3Zn98PrBnptg0Hd/+ku89x9/lk/p+uc/eLadHrzXH3Z4EdZvaq7FNnAVtp3et+BniTmY3P/h0/i8x8Wateb6FK17gWeJ+ZxczsROAk4JdD/hR3b7tfwJ8AvwN+D3y62e0Zpmt8C5ku5CagJ/vrT4BpZFYuPJH9/bhmt3UYrv1twL3Zn9vhepcCG7L/r+8GprbydQOfB7YBm4F/B2Ktdr3A98nMmSTI9AQ+WO0agU9n72ePA+86ls9WmgsREclrx+EjERGpQEFBRETyFBRERCRPQUFERPIUFEREJE9BQURE8hQUREQkT0FBpIHM7PVmtimb478rm/d/cbPbJVIvbV4TaTAz+wIwDugkk5foy01ukkjdFBREGiybU+tXwBHgze6eanKTROqm4SORxjsOmABMJNNjEBkz1FMQaTAzW0smffeJwEx3/2iTmyRSt0izGyDSSszsUiDp7v83Wyf3F2Z2pruva3bbROqhnoKIiORpTkFERPIUFEREJE9BQURE8hQUREQkT0FBRETyFBRERCRPQUFERPL+H+N7Dnkm90CaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot the points in the dataset\n", + "df.plot(kind='scatter',\n", + " x='x',\n", + " y='y',\n", + " title='x and y in the dataset')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "8e9d0f89", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAwlElEQVR4nO3de5yUdf3//8drZvbASUBA5BgYaAIKGnkILdMOZCqffkgfNFNLs0+pqSlodeun1tffL0UsU9OPEqWlGYIpmr/6mFpqH0+ogOCJDQ8sIAKiAi57mHn9/riunZ3ZndkD7Oy1M/u832572+s0M69rxes11/t6v19vc3dEREQAYlEHICIi3YeSgoiIpCkpiIhImpKCiIikKSmIiEiakoKIiKQpKUjRM7MrzOwPnfA+R5vZa50RU/h+vzOz/9NZ79fsvTvlnEWaU1IQCbn7E+5+wO681szONLMnOzumzlDI5NTG5/7DzM7u6s+VPaOkICIiaUoK0inMbI6ZLWm27QYz+2We4y8zs3+b2XYze9nMvpqx70wze9LMrjWzbWb2hpl9OWP/WDP7Z/jah4HBrcR1qZk9bWaJcP27ZrbazCpzHHuMmVVnrL9pZpeY2Uoz+8DM/pTndQcCtwBHmtkOM3s/Y/dAM/tLGOszZvbxjNd9wsweNrP3zOw1M/taK+fR6jmb2T1m9k4Y5+NmNjHcfg7wdWBuGNsDbf39c3z2YWa2zMw+NLNNZnZdxr4jzOx/zex9M1thZseE268CjgZuDD/3xnzvL92Mu+tHP3v8AwwDdgIDwvUE8C7wyTzHzwKGE3wx+c/wtcPCfWcC9cC3gTjwXWADYOH+p4DrgArgM8B24A95PicGPA5cAYwHtgGH5Dn2GKA6Y/1N4Nkwzr2BV4D/yvPaM4Enm237HfAecFj497gTuDvc1wdYB3wz3HcosAWYmOf9Wz1n4FtAv3D/L4HlzeL4P+39++f57G+Ey32BI8LlEcBW4Pjwfb4Qrg8J9/8DODvqf5v66diP7hSkU7j7RoKL76xw03Rgi7s/n+f4e9x9g7un3P1PwBqCi2ejt9z9NndPArcTJJ2hZjYa+BTwE3evdffHgQdaiSsFnA58H1gKXOPuL3bg1H4Vxvle+DlTOvBagHvd/Vl3byBICo2vPwF4091/6+4N7v4CsAQ4ufkbtOec3X2hu29391qCBDjZzPrnC6odf/9M9cA4Mxvs7jvc/elw+2nAQ+7+UPg+DwPLCJKEFCklBelMtxNcKAh//z7fgWZ2upktD5sd3gcmkd0k8k7jgrt/FC72Jfh2u83dd2Yc+1ZrQbn7m8BjwBjgpvacSK44gI/CGDrj9R8DDm88//Bv8HVg3xzv0eo5m1nczH4eNgd9SHCHA603q7X19890FrA/8KqZPWdmJ2Scw6xm53AUQQKXIpWIOgApKfcBN5vZJIJvwnNzHWRmHwNuA44DnnL3pJktB6wdn7GRoJ2+T8ZFcjSQt9yvmR0PHAk8AswDvtOus+mYjpYbXgf8092/0I5j2zrnU4EZwOcJEkJ/gmayxr9nVmwd/fu7+xrgFDOLAf8XsNjMBoXn8Ht3/3aeuFWCuQjpTkE6jbvvAhYDdwHPuvvbeQ7tQ3DB2AxgZt8k+Kbans94i6CJ4kozKzezo4AT8x1vZoOB3wBnA2cAJ4ZJorNtAkaaWXk7j38Q2N/MvmFmZeHPp8KH1lnacc79gFqC9vzewP+TI7b9MtY79Pc3s9PMbEjYFPd+uDkJ/IHg7/ml8G6lMnxYPzLP50oRUFKQznY7cBCtNB25+8vAfIIHmJvC4//Vgc84FTic4CHu5cAdrRx7K3B/2O69laApZEH4TbczPQqsBt4xsy1tHezu24EvArMJHqK/A1xN8KA4l9bO+Q6C5qT1wMvA081e+xtgQtjEc99u/P2nA6vNbAdwPTDb3Xe5+zqCO5QfESSYdcAcmq4r1wMnW9CD7FetvL90I429OUQ6RfhQ9FVgX3f/MOp4RKRjdKcgnSZsc/4BQbdLJQSRIqQHzdIpzKwPQVPEWwTNDSJShNR8JCIiaWo+EhGRtKJuPho8eLCPGTMm6jBERIrK888/v8Xdh+TaV9RJYcyYMSxbtizqMEREioqZ5a0CoOYjERFJU1IQEZE0JQUREUlTUhARkTQlBRERSStYUjCzUWb2mJm9YsH0hxeE268ws/VhLfflmRUrzeyHZlYVTk34pULFJiIiuRXyTqEBuNjdDwSOAM41swnhvl+4+5Tw5yGAcN9sYCJBmYRfm1m8gPGJSNRqauDCC2HNmqgjkVDBkoK7bwynGGwsE/wKwZyu+cwgKKRW6+5vAFXknx5QRErB7bfD9dfDAQfABRdEHY3QRc8UzGwMcAjwTLjpPDNbaWYLzWxguG0EQT32RtXkSCJmdo6ZLTOzZZs3by5k2CJSSMkkXHttsOwOY8dGG48AXZAUzKwvwYTkF4bllG8GPk4wgflGgsk+IPdUgC2q9bn7re4+1d2nDhmSc5S2iBSDJUvg3/8OlgcOhLPPjjYeAQqcFMysjCAh3Onu9wK4+yZ3T4ZT+91GUxNRNTAq4+UjCWakEpFS4w5XX920ft550LdvdPFIWiF7HxnBNICvuPt1GduHZRz2VWBVuLwUmG1mFWY2FhgPPFuo+EQkQo8+Ci+8ECxXVgZJQbqFQhbEmwZ8A3jJzJaH234EnGJmUwiaht4EvgPg7qvNbBHBHLMNwLnunixgfCISlcy7hG99C/bZJ7pYJEtRT7IzdepUV5VUkSLzwgvwyU8Gy7FY0B11v/2ijamHMbPn3X1qrn0a0SwiXeuaa5qWv/Y1JYRuRklBRLrO2rVwzz1N63PnRheL5KSkICJdZ/58SKWC5S98AQ45JNp4pAUlBRHpGu++CwsXNq1feml0sUheSgoi0jVuuAF27QqWP/lJOPbYaOORnJQURKTwduyAm25qWp87FyxXEQOJmpKCiBTeggWwbVuw/PGPw8yZ0cYjeSkpiEhh1dfDddc1rV9yCcRVFb+7UlIQkcL64x9hXVgAeZ994Iwzoo1HWqWkICKF4549WO3734devaKLR9qkpCAihfPQQ7B6dbDcty9873vRxiNtUlIQkcLJLHx3zjnBvAnSrSkpiEhhPPUUPPFEsJxIwEUXRRuPtIuSgogURuazhK9/HUaOjC4WaTclBRHpfK++Cvff37SuwndFQ0lBRDrfvHlBzyOAE0+ECROijUfaTUlBRDrX+vXw+983ravwXVFRUhCRzvXLXwajmAE+/WmYNi3ScKRjlBREpPO8/z789383resuoegoKYhI57nlFti+PVieMAFOOCHaeKTDlBREpHPs2hU0HTWaMwdiusQUG/0XE5HOcccdsGlTsDxiBJx6arTxyG5RUhCRPZdMwrXXNq1fdBGUl0cXj+w2JQUR2XP33Qdr1gTLAwYEdY6kKCkpiMiecc8ufPe970G/ftHFI3tESUFE9sw//gHPPRcsV1QEcyZI0VJSEJE9k1n47swzYejQyEKRPaekICK7b8UK+Otfg+VYLJh/WYqakoKI7L7Mu4SZM2HcuOhikU6hpCAiu+fNN+FPf2paV3nskqCkICK757rrgvEJAMceC1OnRhuPdIqCJQUzG2Vmj5nZK2a22swuCLfvbWYPm9ma8PfAjNf80MyqzOw1M/tSoWITkT20ZQssWNC0rsJ3JaOQdwoNwMXufiBwBHCumU0ALgMecffxwCPhOuG+2cBEYDrwazOLFzA+EdldN94INTXB8pQp8IUvRBqOdJ6CJQV33+juL4TL24FXgBHADOD28LDbgf8Il2cAd7t7rbu/AVQBhxUqPhHZTTt3wg03NK3PnQtm0cUjnapLnimY2RjgEOAZYKi7b4QgcQD7hIeNANZlvKw63Nb8vc4xs2Vmtmzz5s0FjVtEcli4EN57L1geOxZmzYo2HulUBU8KZtYXWAJc6O4ftnZojm3eYoP7re4+1d2nDhkypLPCFJH2qK+H+fOb1i++GBKJ6OKRTlfQpGBmZQQJ4U53vzfcvMnMhoX7hwHvhturgVEZLx8JbChkfCLSQYsWwVtvBcuDB8M3vxltPNLpCtn7yIDfAK+4+3UZu5YCZ4TLZwD3Z2yfbWYVZjYWGA88W6j4RKSD3LMHq51/PvTuHV08UhCFvO+bBnwDeMnMlofbfgT8HFhkZmcBbwOzANx9tZktAl4m6Ll0rrsnCxifiHTE3/4GK1cGy717w7nnRhuPFETBkoK7P0nu5wQAx+V5zVXAVYWKSUT2QGZ57G9/GwYNii4WKRiNaBaRtj37bFAiGyAehx/8INJwpHCUFESkbZl3CaecAqNHRxeLFJSSgoi07vXX4c9/blpX4buSpqQgIq279tqg5xHA8cfDQQdFG48UlJKCiOS3cSPcfnvTugrflTwlBRHJ7/rroa4uWD78cDj66GjjkYJTUhCR3D78EG6+uWn90ktV+K4HUFIQkdz++7+DxABwwAEwY0a08UiXUFIQkZZqa+EXv2hanzMHYrpc9AT6rywiLf3hD8FDZoBhw+C006KNR7qMkoKIZEulYN68pvULL4SKisjCka6lpCAi2ZYuhddeC5b32gu+851o45EupaQgIk3cs0tafPe70L9/dPFIl1NSEJEmTzwBTz8dLJeXwwUXRBuPdDklBRFpknmXcPrpwUNm6VGUFEQk8NJL8NBDwbJZ0A1VehwlBREJZPY4+upXYf/9o4tFIqOkICLw9tvwxz82ras8do+lpCAicN110NAQLH/2s0HxO+mRlBREerqtW+G225rWVR67R1NSEOnpfv1r+OijYPngg2H69GjjkUgpKYj0ZB99BL/6VdP63Lkqj93DKSmI9GS//S1s2RIsjx4NX/tatPFI5JQURHqqhgaYP79p/eKLoawsunikW1BSEOmpFi+GN94IlgcNgrPOijYe6RaUFER6ouaF7847D/r0iS4e6TaUFER6oocfhuXLg+VevYKkIIKSgkjPdM01TctnnQWDB0cXi3QrSgoiPc3zz8MjjwTL8XjwgFkkpKQg0tNkPkv4z/+EMWMiC0W6n4IlBTNbaGbvmtmqjG1XmNl6M1se/hyfse+HZlZlZq+Z2ZcKFZdIj1ZVBUuWNK2rPLY0U8g7hd8BucbL/8Ldp4Q/DwGY2QRgNjAxfM2vzSxewNhEeqb58yGVCpa/9CWYMiXScKT7KVhScPfHgffaefgM4G53r3X3N4Aq4LBCxSbSI23aFIxgbqTCd5JDFM8UzjOzlWHz0sBw2whgXcYx1eG2FszsHDNbZmbLNm/eXOhYRUrHr34FtbXB8qc+BcccE2k40j11dVK4Gfg4MAXYCDSOsc9VgctzvYG73+ruU9196pAhQwoSpEjJ2b49qIbaSIXvJI8uTQruvsndk+6eAm6jqYmoGhiVcehIYENXxiZS0m67Dd5/P1gePz6YblMkhy5NCmY2LGP1q0Bjz6SlwGwzqzCzscB44NmujE2kZNXVBTOrNbrkkmB8gkgOiUK9sZn9ETgGGGxm1cDlwDFmNoWgaehN4DsA7r7azBYBLwMNwLnunixUbCI9yl13wfr1wfLQoXD66dHGI91awZKCu5+SY/NvWjn+KuCqQsUj0iOlUtklLS64ACoro4tHuj2NaBYpZQ8+CK+8Eiz36wff/W608Ui3p6QgUsoy7xK+8x0YMCCyUKQ4KCmIlKp//Sv4gWBGtQsvjDQcKQ5KCiKlKrPw3WmnwYic40FFsigpiJSi1avhgQea1lX4TtpJSUGkFF17bdPyjBlw4IHRxSJFRUlBpNRUV8Oddzatq/CddICSgkip+cUvoL4+WD7qKDjyyGjjkaKipCBSSrZtg1tvbVrXXYJ0kJKCSCm5+WbYsSNYnjgRjj++9eNFmlFSECkVNTVw/fVN63PnQkz/i0vH6F+MSKm4/XZ4991geeRImD072nikKCkpiJSCZDK7G+oPfgDl5dHFI0WrzaRgZhNybDumEMGIyG66917497+D5YED4dvfjjYeKVrtuVNYZGaXWqCXmd0A/L+FDkxE2sk9u6TFuedC377RxSNFrT1J4XCCqTL/F3iOYJrMaYUMSkQ64NFH4fnng+XKSjj//GjjkaLWnqRQD9QAvYBK4I1wjmUR6Q4y7xK++U3YZ5/oYpGi156k8BxBUvgUcBRwipktLmhUItI+L74IDz8cLMdiwfzLInugPdNxnuXuy8Lld4AZZvaNAsYkIu2VOYnOrFmw337RxSIloc07hYyEkLnt94UJR0Tabe1aWLSoaX3u3OhikZKhcQoixWr+fEiFj/c+/3k49NBo45GSoKQgUow2b4aFC5vWVfhOOomSgkgxuuEG2LUrWD70UDjuuGjjkZKhpCBSbHbsgBtvbFqfOxfMootHSoqSgkixWbAgmDcBgt5GM2dGG4+UFCUFkWJSXw/XXde0fsklkGhPz3KR9lFSECkmd98N69YFy0OGwJlnRhqOlB4lBZFi4Z49WO3734devaKLR0qSkoJIsXjoIVi1Klju0we+971o45GSpKQgUiwy7xLOOQf23ju6WKRkKSmIFIOnn4bHHw+WEwm46KJo45GSVbCkYGYLzexdM1uVsW1vM3vYzNaEvwdm7PuhmVWZ2Wtm9qVCxSVSlDLLY596KowaFV0ssse27qhlxbr32bqjdreOq9q0ncXL1lG1aXunx1bIvmy/A24E7sjYdhnwiLv/3MwuC9cvDaf8nA1MBIYDfzez/d09WcD4RIrDq6/C/fc3ravwXbezdUct1dtqGDmwF4P6VmRt61MeZ2ddMr3v/uXrmbt4JfGYkUw5804+mJOmjGjxnvcvX8+lS1ZSFotRn0pxzczguP/7vpe44+m308edfuRofjrjoE47l4IlBXd/3MzGNNs8AzgmXL4d+Adwabj9bnevBd4wsyrgMOCpQsUnUjTmzQt6HgGccAJMnBhtPJIl18V7+64GrnhgNZ5yGhwqEjHM4CdfmcAVD6ymPunp1198zwoG9C5n4vC9shLKpUtWsqs+xS6Coodzl6xkeP/KrIQAcMdTb3P6EWMYN7Rfp5xPV496GeruGwHcfaOZNU4RNQJ4OuO46nBbC2Z2DnAOwOjRowsYqkg3sGED/D6jUr0K33UrVZu2c8k9K6hPevrifeHdy2k+NWVtQ7DligdWUd+s/aM+6ZxzxzIw0ncD1dtqKIvF0u8JUBaL8fiaLTnjWL7u/U5LCt3lQXOuwi2eYxvufqu7T3X3qUOGDClwWCIR++Uvg1HMAJ/+NBx1VKThlLr2tvVDcIcw/fonsr71Ay0SQqZYnhpVuxpS7KpPMXfJSrbuqGXkwF7Up7LfqT6V4jPjB+d8/ZRRA9qMt726OilsMrNhAOHvd8Pt1UDmk7ORwIYujk2ke3n/fbjllqZ1PUsoqPuXr2fa1Y9y2oJnmHb1oyxdvj5rf2bC2LqjlrmLV9KQyvndNa+UQ7yV2oVlsRjV22oY1LeCa2YeTGVZjH4VCSrLYlwz82Cmjh3E6Udmt5CcfuToTrtLgK5vPloKnAH8PPx9f8b2u8zsOoIHzeOBZ7s4NpHu5ZZbYHvYu+TAA+HEE6ONp4RVbdrOnMUrqWtoasO/5J4VTBi2F+OG9mvx3ODcY8YRj3W8Mu3xk/blLy9tzNMOEtwNjBwYjFI/acoIpo0b3OIB9k9nHMTpR4xh+br3mTJqQKcmBABz71ima/cbm/2R4KHyYGATcDlwH7AIGA28Dcxy9/fC438MfAtoAC509/+vrc+YOnWqL1vWYrZQkeK3axeMHQvvvBOsL1wI3/xmtDGVoK07arnzmbf51SOv05Cj3ScRM+Z+6QCu+/vr7KpvOqAiYbhDXbL9188EEEvEqMv4oEQM4jGjPB7P6mFUaGb2vLtPzbmvUEmhKygpSMm67bZg1DLA8OHwxhtQXh5tTCUm6Bq6gtqGtq+BZQb1GYf1q0gw9WMDeez1ze3+vLI4VCTi7KhtetLcryLBTV8/hP69yrPuBgqttaSgmrsi3U0yGXRDbXTRRUoInaBq03aerNrM4L6VfGLffly6ZGW7EgJkJwQImnmmjRvUoaTg3tQLKfN9Jg7v32XJoD2UFES6m/vugzVrguX+/ZvuGCSvXIPHMjUf8GVAeWL3Z6v7yVcm0L9XWYde05CCRMypSMQojzeNaehOCQGUFES6F/fskhbf+x7stVd08XRTmUngyaotOUf+NqratL3FgC+Hdt8lNNe7PMakEf35oKYu5/4bTzmEvXqVsXbzDub97TV21jU1F/UqS3DT1w+lf6+yLm0u6gglBZHu5J//hOeeC5YrKoI5EyRLZk+gumSKhmSKpJPuNTRn8QoG9C5LN8ssX/d+p35+Q9IZObAXIwf2oixuWeMUyuLGkR8fxKC+FUwcvhc//+urWa8Nmov26pbJoFF3GbwmIpB9l3DGGbDvvtHF0g1lln/YXttAbUOQEDLVNjj/9YcX0mMNOnNgF8DlJ05kUN8KBvWtYP6syVQkYvQuj1ORiDF/1uT0BT/fWIPunBBAvY9Euo8VK2DKlGDZDF57DcaPjzSk7qKxueiDmjrOvfNFttc2tOt1FYkY/3vZsVz/yOvc8dTbbb+gFYmYceWMiXz98I/ljC1fc1Bb+6Og3kcixSCzx9HMmUWdEHbnQpjvNdnNRUk6Moi4tiHFXc+8nR7w9WTVZt7Y8hF/ePqt9B1GWdy44qSJvLejjhsfW5MeM/CTr0xg1N69+LCmgb16JfL2Emq8a8inrf3djZKCSHfw5ptw991N60Vc0iJfyed8tu6oZcETa1nw5BskwnLS5x87nlMPD8o5NK8WmogFdwCJuLGztu3q+jc+toZTDw9KQQzsU860qx/NanKKGUyfuC+D+lZw6uGju923+q6mpCDSHVx3XTA+AeBzn4NPfSraeHZTrpLPcxavYNq4wTkvsvcvX8/Fi5anRxM3PrSd//Dr3PhYFed9blyLaqGZPXhWrf+An/3l5XQCOu6AffjLqneyPqM8Hk/XE8pVfTRzf7F9qy8EJQWRqG3ZAgsWNK0XcXnsXBfd2gbnrmfe5vzjspvDmorK5X6v2oYUNz5WRUMy+4Ca+oZ0D57JowYwfdK+6W/3AH9/dVNWd9PMekL5qo827hf1PhKJ3k03QU1NsDxlCnzxi5GGsydGDuxFXbJlk86Nj1Xx+Oubs0pSV2+roa2acrl6F1mz8tONyaHxW/68kyfn7fFTrD2CupLuFESitHMn3HBD0/rcuUHPoyK0dUctqzd8wAkHDWfJi9llp2sbUpz9u+ewGMw7eTInTRkRJpDWZh/IrTzRVF46l3zVRdu7v6dTUhCJ0sKFsHVrsDxmDMyaFWk4bQku/B8CntUb5/7l69MzkOVTl3JIwUV/Ws60ceFkMbvRI74+HDzWmlLrEdSVlBREolJfD/PnN61ffDEkov9fsvmFH4KmnlXrP+DypavSzwDK4sb8WZOZNm5wmwkhU9JhwRNrmT5pGL3LE+0ec9Do8hMn6IJeQNH/CxTpqbZtg0mT4K23YPBg+Na3oo6I+5ev5wd/Wp5ux49ZUDyuV3l2yWcIvrHPWbyS+bMObndCaPSbJ99g5qEjqalvOyEEXVDj1CdTXH5iy8Fj0rmUFESiss8+8OCD8NJLsHYt9O4daThVm7ZnJQQgPVCseUJoFI8ZW3bkLgzXmrJEjFff+ZAg5TR9YDxmxC34nUzB5SdNYPrEfdX+34WUFESidtBBwU8XyTVyuHG8QAe/8FPXkOKocYNJxMjbtTTf6y7KGJ/QqHdZPOekM0oGXUdJQaTEtVVmetq4wS3uENrL3RnYp5zrvjaFOYtXYBgNqRSpFOTKEb3LYyRTkEylciaR7jjpTE+jpCBSwpqXmW68GDcOLpu7ZCWzp47arYQAQbmJ6m01Wd08P6ip59w7X2jxAPm7n92P6ZOG5d1fntCYge5ASUGkBG3dUctT/97KnHtWUJf0rBHGmeJm3P7UW7v9OQ2ppu6hjd08t+6obTFquCJhnH30fnn3l8eNh84/inFD++12LNI5NKJZpEhs3VHLinXvZ40KznXMrx5Zw2FX/Z3z/vgidW3cAtTUJXdnqEBa49wCmXKNGp53cuvzDFw7a7ISQjeh+RREikBjM1AiZtQlnctPnNCia+adT7/FlQ+83KFRwjGjQ6WoASrLYqScnDFkKsZ5BnoKzacgUsQyK482+vGfV/Hc2q1MGT2AScP78/dX3+WWf67t0PtWJGLgUNuBJFIeN279xtR2TSmpUcXFSUlBpBvK/BZdva2GRI7Kcfet2Mh9Kzbu0ed4BxuPLj9pIp/Zf8gefaZ0b0oKIl0sV7NJ826jcxevJB4zGpIpzjpqLLvq255MpiPK4sa8kw8G4OIcJSrK4sYph41i0bJq4mYaTdyD6JmCSIE0v/hv3VHLnc+8zU2PVVEebxon4JDVbbSuIdXi+3vc2O1uo5nmfHF/DhrZP2ssQGN10w9rGgBnr15l6f1q9y9NrT1TUFIQ6QTNL553Pv0WVz74Mgkz6lMpjp+0L39d/U7W5C8AZTHDjDZ7CXWGRAye+dHndXEXPWgWKaTmcxKfdPAwFj0fzCfQWBXo/jxt//Ud7fqzGyoTMRzP6hYqko+SgsgeyDUncWNC6GzZpeNa16c8TtKdn5wwgUnD+6v5R9pNSUFkD+Sak7hQYjFoT+/RPhVxrjxxIp/7xD5KBNJhkYxoNrM3zewlM1tuZsvCbXub2cNmtib8PTCK2ERyyTeaeHenlOyo8rhRmYi369hkypUQZLdFWebic+4+JeNhx2XAI+4+HngkXBeJ3P3L1zPt6kc5bcEzTLv6UZYub2oeGtS3gvM+N26PP+OIsbm/A1WWxagsi3H5SRNJttEppHd5XBPRyx7rTs1HM4BjwuXbgX8Al0YVjAjkfmZwyT0rmDBsr3StnlMPH80Nj75O3W4OJehdHuOHx0+gviHJf976dPYkNynnoe8fzbih/ehXkWDukpWkUt6it1JFwrjltENVdlr2WFR3Cg78j5k9b2bnhNuGuvtGgPD3PrleaGbnmNkyM1u2efPmLgpXeqrGZwaZ6pLO8Tc8mb5jeLJqC07LEce55PofLuVBM1RZIk7v8uzvaRWJODvDbHPSlBH869Jjuee/Ps2PvvwJyuNGn/DuYN7Jk/nM/moykj0X1Z3CNHffYGb7AA+b2avtfaG73wrcCsE4hUIFKKWpo0Xa+pTH2ZljYvm6hhSXLF7J8P6VXLpkZbvnKE4Bnz9wCI+v2UpZ3EimPKu5p3lJ6fpUKl2aGprqBU0eNYCZnxypgWXS6SJJCu6+Ifz9rpn9GTgM2GRmw9x9o5kNA96NIjYpHh0dbdt8PME1Mw/mpCkj8u4/afJwlrxQnbdfUV1DitkLnsE7ONbgiTVbeej8o9hZl2wx5eQ1Mw9mbrMY852bCspJIXR5UjCzPkDM3beHy18EfgosBc4Afh7+vr+rY5Pi0dYFvrlczwbmLF7BgN5BSQeAuYtXUtuQMd5gWXWbcTTkuUOYeegIlryQe7xCeTzGzrokk0cNaLEvcwYz3QFIFKK4UxgK/NnMGj//Lnf/q5k9Bywys7OAt4FZEcQmRSDXBX7ukpVMGLYXGz7YxfptH1EbTijf+DC4elsNcctu969tcP7rDy+QcufYA/ahtiMzz7eisizGQSP2ypsUmjcJNac7AIlSlycFd18LTM6xfStwXFfHI8Un14Axd/jiLx5v0dRz+pGj+emMg3h67db0A9tMH4XbHlr1TqfGeNS4IZTFX23xrKFC8xBLN9eduqSKtOs5Qa4BY/m+5d/x1NsM7FXO9Y9WdUp8iZjRkOcZQu/yOCkPHhyPG9qP+bMmMyejBPb5x47n1MNHKyFIt6akIN1Ge58TPFm1hYYOjCK+8bE9TwgzDx3ByAG98iaXXOME9HxAilGUI5pF0jKfE2yvbWBXfYpL7llB1abtWcdVbdrOD/60vENzC7T1j7wiEeP0I0dTWRajT0XLUhIVCeO7n/04N//z3zlfXx63vOMEGruPKiFIsdCdgrRbISdcyfWcoC7pTL/+Cb599FjOPno/nqzawiWLOpYQAOrzHB8zuOjz+6ebdC44bn+qt9Wwav0H/OwvL2fdseysS1IWj1GXzH4uURa39IhjkVKgpCDt0tEuoB01cmCvFgO3ABpSzs3/XMutj6/FDDqpgxAQXNAz2/gzB4ZNn7Rvi1nTctUeuuKkiUoIUlLUfCRtytW0M3fJyhYVQ9v7XrmqjTYO3CqP5y4XkfTOTQgA5fE41dtqcu5r3uzTGF9lWYw+5XHK48ZV/zFJcxZLydGdgrQpV9NOWSxG9baadjUjNTY7NW+W+ckJExg1sDfgTBzen5OmjGB4/0pm3/ZM3h4+zSVixucPHMJfV3d8AHxb4wWa04Nj6QmUFKRNIwf2oqY+u/5PTX1D+oLa2rOGxmanuFl6nEBjcvnxn1eljyuLG6d8ahSLnq8mbtCy2lBu7s5jr22hIm7UJp2KRAwz+NTHBvJE1db0cQZ848jRLFpW3a4SEvloYJmUOiUFaZdgBLo3Ww8u+nPDvvjJlDPv5KZnDZnNTm2pTzp3PP12h+NKOiQbMgexOX85P3jwW7VpO09WbWZw30qO/PigrIfJ+qYvkpuSgrSpelsNlYk49cmm7++ViTirN3zAJfesyBq1e/E9KxjQu5zh/StZvu79FqUlOqIsbu2uPtoos9T0uKH9WjwE1jd9kdYpKUiWXE1Bfcrj1CZblnRev62mxUW7Pul867fP0uBB//9cI43zbc/lR1/+BNf+z2skYsZHOe44ErHsB9AdfU4gItmUFCTtzqff4soHVlMWj5EMyzU4cOmSlVjYHbOyLOiw9rWpI7l86cs536chzBP5LvyeZ1rJ7Aaq4LiZnxyZnjdg1YYP+NmDLxOPBXcQl584IT0b2Z48JxCRJkoKAgQJ4cf3BQ9+GwdozVm8ArCsi3sq5dx19uGctvDZ3Z6wvvlUkgC9yuIY8FF9MmNbguptNemuoZNHDWD6xH1b3MmoR5BI51FS6CFa6yG0dUctVz7Y8lt/DMNi2c8EyuIxHl+zJe+3/d2Vcif7PiF3U1CuZwJ6TiDSeZQUStTWHbWs3vAh4Kx7ryY9PqAumeKEg/flcwcM5RP79mNnXZIPauopjxt1zfqBNniKVH32tp11SRY88Qa1DfmTQnncqEs6lWUxkinH3UnEYuzK0ZxUmYiBwTUzDwZQU5BIxJQUStD9y9dz8aLlLUYAN44PWPLCBpa8sAEgPYI4leOb/5cn7cvSFS3nGchs4slUFoMrTprEpBH9g7mNw+kmAVZv+JCzbn8u68F0Wdy49fSpTBy+l5qCRLoJJYUSkNk0BDB38Yp2l4RobN+PGcSNdLG5uMFfVnZs4pmfzZjE7DxlHz6z/5Cs+QUaxzR8Zv8hWcepKUgkWkoKRSgzCTxZtSVr8Nh5nxtH3GJA7m/z+TSvKtHRSqQAwwf2bnW/ykSIdH9KCt1YrofDmdVK65JJGlKQzLii/+rRNcHclAUSN6gsj7OzNjvpJGIwcfhebb5edwIi3ZuSQjfS/A6geanqaeMGM3fxSmobUlnF6TLVJ50hfcrYvLM+5/6OiMeCgnOJWIz6ZIrLT5yYLim9av0H/PTB1cQtRtJTzDt5si72IiVASaGbaH4HkPLgAt948Z+zeCVfOWhYu0YCd0ZCAPjpSZNazCsATWWlc+0TkeKmpNDFcjUJVW3aziX3LKc+Sd47gNqGFPe+uH6PPz9ukIjHKA9nETv50FHct3x9ul5Qo+9+dj++fkTw0DjfBV9NQSKlR0mhCzWfvewnX5nA1p11XP/313frwW5HxIDysli6GSqzt9KSF6uzjq1IGGcfvV9hAxKRbklJoYtklpFOzydw36o2XtV54nHjwfOOSlcNzfyGf83MgzVoTEQAJYUuk2v2sraUx6Cuk6agLE/EWjQRNVJXURFppDmaC6T5XMT5JqZvTXsTggHl8Rh9KuJUlsX42tSRLY5JprzVktLN5yQWkZ5Jdwq7qT1TUGY2x5w0ZUS6mSZzasq2NC8nDU2Tz5TFjFgM5p08ucU3/cmjBnDlAy9TFg8GtalJSETawzq72mVXmjp1qi9btqzgn9M8AeS76DceO+3qR7OmoKxIxPjfy45lUN+KpknsN3zATx94uV1dTCvLYjQkndOOGM1ph3+MnXXJrNpC+S72rSUuEem5zOx5d5+aa5/uFNqQq8fQz/7yctYD4zmLVzJt3GAG9a3I+eygtiHFgifXcun0A7Muzp8ZP5iHX3m3zRgaE8zdz63j/GPHM25o+y7w6jIqIh3Vo5NC82/Sudab9xi68oHVlCeyH8XUNqS465m3Of+48Ywc2Cvn5DM3/2MtIwf0pm9lgkuXrMQ9/8xk+ZTFYlRvq9GFXkQKpscmhcY7gLgZ9ckU/3HIcJau2JjVJPSxQX1I5Jhkpi7HxfzGx9Zw6uGjGdS3gm9NG8PN/1zb4pjLl64iHmt9fmIDelfE05+RWWpa8w+LSKF1u95HZjbdzF4zsyozu6wQn7F1Ry1zFwd3ADvrktQlnUXL1rOrPsX22gZ21aeYs3glz6zdyo5mhd+S7px11NgW71kej1O9rabVz42ZEW+WZDIlDB6+6DPcdfYRPP3D45g/azKVZTH6VSSoDAee6S5BRAqpW90pmFkcuAn4AlANPGdmS9099wzxu+nOZ95us+mmtiHFNX97rcX2n5wwgekT92Xhv7JnH2v8Fr91Ry0L//Vm3vdNNq9RneHKGZPSg8tA4wdEpOt1tzuFw4Aqd1/r7nXA3cCMzvyArTtquemxNe06tqHZBbxPeZxJw/szqG8F807O/S2+elsN5fGWf9Z4DK6dNZl5Jx9MZVmMyrLgmPK4UZ6IcdVXJ6VrDWXS+AER6Urd6k4BGAGsy1ivBg7PPMDMzgHOARg9enSHPyC4aMepbWho++Bmkt40ACzft/hcg9TK48ZD3z86fRfQ+Lr2dCsVEelK3S0p5Gpwz/q67u63ArdCME6hox/QkZHFiRjEY0FF0Vw1gXJ1+RzUtyJnLaHMZiF1FRWR7qq7JYVqYFTG+khgQ2d+QPOLdk19A+5QWRanLpnC3elVlsia2Kajbfp6FiAixaq7JYXngPFmNhZYD8wGTu3sD2l+0QZyLmdOKtNRuhsQkWLUrZKCuzeY2XnA34A4sNDdVxfis5pftPMti4j0JN0qKQC4+0PAQ1HHISLSE3W3LqkiIhIhJQUREUlTUhARkTQlBRERSSvqSXbMbDPwVoE/ZjCwpcCfESWdX3Er5fMr5XODaM/vY+4+JNeOok4KXcHMluWboagU6PyKWymfXymfG3Tf81PzkYiIpCkpiIhImpJC226NOoAC0/kVt1I+v1I+N+im56dnCiIikqY7BRERSVNSEBGRNCWFVpjZdDN7zcyqzOyyqOPZE2Y2ysweM7NXzGy1mV0Qbt/bzB42szXh74FRx7onzCxuZi+a2YPhesmcn5kNMLPFZvZq+N/xyBI7v4vCf5urzOyPZlZZzOdnZgvN7F0zW5WxLe/5mNkPw2vNa2b2pWiiVlLIy8ziwE3Al4EJwClmNiHaqPZIA3Cxux8IHAGcG57PZcAj7j4eeCRcL2YXAK9krJfS+V0P/NXdPwFMJjjPkjg/MxsBfB+Y6u6TCErnz6a4z+93wPRm23KeT/j/4mxgYviaX4fXoC6npJDfYUCVu6919zrgbmBGxDHtNnff6O4vhMvbCS4oIwjO6fbwsNuB/4gkwE5gZiOBrwALMjaXxPmZ2V7AZ4DfALh7nbu/T4mcXygB9DKzBNCbYNbFoj0/d38ceK/Z5nznMwO4291r3f0NoIrgGtTllBTyGwGsy1ivDrcVPTMbAxwCPAMMdfeNECQOYJ8IQ9tTvwTmApmTcJfK+e0HbAZ+GzaPLTCzPpTI+bn7euBa4G1gI/CBu/8PJXJ+GfKdT7e53igp5Gc5thV9/10z6wssAS509w+jjqezmNkJwLvu/nzUsRRIAjgUuNndDwF2UlxNKa0K29ZnAGOB4UAfMzst2qi6VLe53igp5FcNjMpYH0lwO1u0zKyMICHc6e73hps3mdmwcP8w4N2o4ttD04CTzOxNgqa+Y83sD5TO+VUD1e7+TLi+mCBJlMr5fR54w903u3s9cC/waUrn/BrlO59uc71RUsjvOWC8mY01s3KCh0BLI45pt5mZEbRHv+Lu12XsWgqcES6fAdzf1bF1Bnf/obuPdPcxBP+tHnX30yid83sHWGdmB4SbjgNepkTOj6DZ6Agz6x3+Wz2O4LlXqZxfo3znsxSYbWYVZjYWGA88G0F84O76yfMDHA+8Dvwb+HHU8ezhuRxFcDu6Elge/hwPDCLoBbEm/L131LF2wrkeAzwYLpfM+QFTgGXhf8P7gIEldn5XAq8Cq4DfAxXFfH7AHwmej9QT3Amc1dr5AD8OrzWvAV+OKm6VuRARkTQ1H4mISJqSgoiIpCkpiIhImpKCiIikKSmIiEiakoKIiKQpKYiISJqSgkgnMrOfNc5VEa5fZWbfjzImkY7Q4DWRThRWoL3X3Q81sxjByNXD3H1rtJGJtE8i6gBESom7v2lmW83sEGAo8KISghQTJQWRzrcAOBPYF1gYbSgiHaPmI5FOFlbVfQkoA8a7ezLikETaTXcKIp3M3evM7DHgfSUEKTZKCiKdLHzAfAQwK+pYRDpKXVJFOpGZTSCYdP0Rd18TdTwiHaVnCiIikqY7BRERSVNSEBGRNCUFERFJU1IQEZE0JQUREUn7/wHw2afm+jrrsAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot the points again\n", + "df.plot(kind='scatter',\n", + " x='x',\n", + " y='y',\n", + " title='y and x in the data set')\n", + "\n", + "# Here we're plotting the red line 'by hand' with fixed values\n", + "# We'll try to learn this line with an algorithm below\n", + "plt.plot([55, 78], [75, 250], color='red', linewidth=3)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "bf4cd5b6", + "metadata": {}, + "outputs": [], + "source": [ + "# define a method to calculate a point for a line given the input values\n", + "def line(x, w=0, b=0):\n", + " return x * w + b" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "b4842e99", + "metadata": {}, + "outputs": [], + "source": [ + "# generate evenly spaced numbers \n", + "x = np.linspace(55, 80, 100)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "479278e7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([55. , 55.25252525, 55.50505051, 55.75757576, 56.01010101,\n", + " 56.26262626, 56.51515152, 56.76767677, 57.02020202, 57.27272727,\n", + " 57.52525253, 57.77777778, 58.03030303, 58.28282828, 58.53535354,\n", + " 58.78787879, 59.04040404, 59.29292929, 59.54545455, 59.7979798 ,\n", + " 60.05050505, 60.3030303 , 60.55555556, 60.80808081, 61.06060606,\n", + " 61.31313131, 61.56565657, 61.81818182, 62.07070707, 62.32323232,\n", + " 62.57575758, 62.82828283, 63.08080808, 63.33333333, 63.58585859,\n", + " 63.83838384, 64.09090909, 64.34343434, 64.5959596 , 64.84848485,\n", + " 65.1010101 , 65.35353535, 65.60606061, 65.85858586, 66.11111111,\n", + " 66.36363636, 66.61616162, 66.86868687, 67.12121212, 67.37373737,\n", + " 67.62626263, 67.87878788, 68.13131313, 68.38383838, 68.63636364,\n", + " 68.88888889, 69.14141414, 69.39393939, 69.64646465, 69.8989899 ,\n", + " 70.15151515, 70.4040404 , 70.65656566, 70.90909091, 71.16161616,\n", + " 71.41414141, 71.66666667, 71.91919192, 72.17171717, 72.42424242,\n", + " 72.67676768, 72.92929293, 73.18181818, 73.43434343, 73.68686869,\n", + " 73.93939394, 74.19191919, 74.44444444, 74.6969697 , 74.94949495,\n", + " 75.2020202 , 75.45454545, 75.70707071, 75.95959596, 76.21212121,\n", + " 76.46464646, 76.71717172, 76.96969697, 77.22222222, 77.47474747,\n", + " 77.72727273, 77.97979798, 78.23232323, 78.48484848, 78.73737374,\n", + " 78.98989899, 79.24242424, 79.49494949, 79.74747475, 80. ])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "56cd60cd", + "metadata": {}, + "outputs": [], + "source": [ + "# generate line points\n", + "yhat = line(x, w=0, b=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "bd73d23f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "yhat" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "7af98bd1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAzg0lEQVR4nO3de5zcdX3v8ddnLjvZbMiFBGKuBg0Uk0iirgpGOBU8FQsG2wa0h5seqz3n6MH2WBLQogi1glTbeqRViq1QrRKCh0S8HFqCR4mABN3EJASJ3HKThCUJbLI7O5fP+WMumctvLrvZ3ZmdeT8fjyW7v/nN78Imv898b5+PuTsiIiIAoUZfgIiINA8FBRERyVNQEBGRPAUFERHJU1AQEZE8BQUREclTUJC2ZmZ9ZvaaETrWB8zsoZE4VsCxf9fMdo/GsUUKKShIW3P3Se7+9FDfZ2YLzMzNLDIa13U8RjM41Tjv9Wb2zbE+r4wsBQUREclTUJBRYWZXm9k9Jdv+t5n9XYX9Z5vZPWZ2wMyeMbOrCl673szWmNmdZvaKmW0zs+4Kx3mbmb1oZvOyPy81s0NmdnqF/d3MFma//4aZ3Wpm38+e51Eze22FW/xJ9s9D2S6oswqO+TdmdjB7H+8u2D7FzL5uZvvMbI+Z/ZWZhStcV2f2eg6a2XbgzSWvX2Nmv8le53Yz+4Ps9tcBXwXOyl7Xoez2C8zsl2b2spntMrPrK9wXZjbDzO7L/n97ycx+amah7GuBvyczOx/4JPC+7Hk3Vzq+NDl315e+RvwLmAUcAaZmf44A+4E3BewbAh4HPg10AK8BngbelX39emAA+H0gDHweeKTKuT8HbAA6gS3Ax6rs68DC7PffAF4C3pK93m8B36nwvgXZ90YKtn0ASAAfzl7nfwf2ApZ9/V7ga0AXcDLwc+BPKxz/JuCnwInAPGArsLvg9YuB2dn/d+/L/r+eVXAdD5Uc73eB12f3PwN4AXhvhXN/nkxgiWa/zgaszt/TNxv9d09fx/elloKMCnffR+bT9MXZTecDL7r74wG7vxk4yd1vcPdBz/Tx/xPw/oJ9HnL3H7h7CvhXYGmV018PTCHz0N0L3DqES/+uu//c3ZNkgsKyIbwX4Dl3/6fsdd5BJjjONLOZwLuBP3P3I+6+H/hbiu+x0CXA59z9JXffBXy58EV3v9vd97p72t3vAp4iE8wCufuP3f1X2f23AN8G/lOF3RPZ6361uyfc/afu7tT3e5JxTkFBRtMdwGXZ7y8j8zAP8mpgdra74lC2y+OTwMyCfX5b8P1RYEKlQV53T5D51L8E+GL2gVav0vNMGsJ7i97v7kez304ic49RYF/BPX6NTIshyGxgV8HPzxW+aGZXmFlPwbGWADMqXZSZvdXMHsx2+xwG/luV/W8BdgL3m9nTZnZNdns9vycZ55pu5oS0lHuBfzSzJcCFwKoK++0CnnH3U0fipGY2B/gM8C/AF83sze4eH4ljFxhqeuFdQByYkW2F1LKPTLfRtuzP83MvmNmryXxCPw942N1TZtZDpoun0rX9G/AV4N3uPpAd2wkMCu7+CvAJ4BNmthh40Mweo/bvSSmXW4BaCjJq3H0AWEvmgfRzd3++wq4/B142s9XZAdawmS0xszdX2L8iMzMyrYSvAx8i83C9cVg3UN0BIE2mX72mbHfa/WSC1GQzC5nZa82sUhfOGuBaM5tmZnOB/1nwWheZB/ABADP7IJmWQs4LwFwz6yjYdgLwUjYgvAX4L5Wu1cwuNLOF2f+XLwOp7Fet39MLwILcoLSMT/rlyWi7g8wAZ6WuI7L97+8h03//DPAicDuZcYGhuopMd8Z12W6jDwIfNLOzh3GsirJdQ58DNma7Us6s421XkBmg3Q4cJBMwZ1XY97NkuoyeIRNM8v//3H078EXgYTIP4tcDGwveu4FMC+O3ZvZidtv/AG4ws1fIDBSvqXKdpwL/AfRlz/EP2TGJWr+nu7N/9prZL6ocX5qYDa27VWRozGw+sAN4lbu/3OjrEZHq1FKQUZPtRvhfZKZ1KiCIjAMaaJZRYWZdZLo2niMzHVVExgF1H4mISJ66j0REJG9cdx/NmDHDFyxY0OjLEBEZVx5//PEX3f2koNfGdVBYsGABmzZtavRliIiMK2b2XKXX1H0kIiJ5CgoiIpKnoCAiInkKCiIikqegICIieQoKIiLjTG9fnM27DtHbN9IZ4cf5lFQRkXazrmcPq9ZuJmwhUp7mlpVLWbFszogdXy0FEZFxorcvzifW9BBPOkcTKeJJ53+t6RnRFoOCgojIOLFt78sk08XbkunM9pGioCAiMm5USmA6colNFRRERMaJxbOnEA5Z0bZwyFg8ezhFCoMpKIiIjCNW0ioo/fl4KSiIiIwTuw/20xktnjTaGY2w+2D/iJ1DQUFEpIlUW4Mwd1oniXTxSHMinWbutM4RO7/WKYiINIl1PXtYfc8WoqEQiXSaL/zRGUVrEKZPivGFPzqDVSX7TJ8UG7FrGLWgYGb/DFwI7Hf3JdltJwJ3AQuAZ4FL3P1g9rVrgQ8BKeAqd/+/o3VtIiLNprcvzup7tjCQSDNApjWw6p4tLF84o+ihv2LZHJYvnMHug/3MndY5ogEBRrf76BuUF2y/BnjA3U8FHsj+jJktAt4PLM6+5x/MLDyK1yYiMibqTUmx+2A/0VDxIzkaCuXHC0YztUWhUWspuPtPzGxByeaLgN/Nfn8H8GNgdXb7d9w9DjxjZjuBtwAPj9b1iYiMtlrdQYWqjRcUHqc/kcTMmBAJ1zzmcIz1QPNMd98HkP3z5Oz2OcCugv12Z7eVMbOPmNkmM9t04MCBUb1YEZHhKuwOeiWeZCCRZtU9Wyp+0s+NF0yIhjghFmFCNMQX/ugMgKLjJNOQSHldxxyOZhlotoBtgZNv3f024DaA7u7ukZ2gKyJSp96+eNV+/Vx3UG58AI51B1UaBwgaL9i861DZcQrVOuZQjXVQeMHMZrn7PjObBezPbt8NzCvYby6wd4yvTUSkLvV0C9WaPloYVID89wePDPLUC6/Q1RFm+qQYc6d1MpBMVbyW8T4ldT1wJXBT9s91Bdv/zcy+BMwGTgV+PsbXJiJSU72zhIKmj1534SJ2H+znR1t/yw33bSNsIeLJFKFQZozgaCJFKn2sA+SKs+bz8fNOK9qW0xULk0r7uJqS+m0yg8ozzGw38BkywWCNmX0IeB64GMDdt5nZGmA7kAQ+6u6VQ6OISIMMpVuosDto657D3PC97YQM+hO592Yec6mUk0gly85158PPs+hVkwmICVz9e6fxnqVzRnxK6mjOPvrjCi+dV2H/zwGfG63rEREZCUNdVZx7aK/86s9IpIY+DPrjX+8P3P6ak04Y8YAASnMhIjIkuW6hWMSYGA0Ti1h+llBuHUHhmoLevjjf27xnWAEB4MEdL5Zti4Rg8ezJx3UflTTL7CMRkXEj83i3zLxJNzY991J+7KBwHcFAMoW7Ew0Pfy1uPHWsVTIhEsJxblm5dFRaCaCgICIyJLmB5nhBCbQ7H34eoGCcoXiMIJke2hBpJERZhbWuWJjPvmcx7zj95FELCKDuIxGRIQlKRzHS/vydpxGLFC/fSqV91AMCKCiIiAxJ0EDzcMUiwY/g18+dwi0rl5atbh7tgADqPhIRqVtuwdmKM2ax5vE9+e1nL5zOY88dLBtTKF13EDLo6ohk1ixcsIh5J07kQ3c8VjQIHQ1nymtOnxQb1WyolSgoiIjUYV3PHlat3ULIjP5E8RjBY88d5Jv/9S0823uUZfOmMq2rg217D/PhOzdRME5MNGzceukb8g99gC9evJSr124hHDJSaeeWlcdaBNMnxcYsGOQoKIiI1NDbF+cv7t5cdVrpH9/+CNFQmJSn+fSFi4lFQkRCIeIcCyAd4TBTOjvGtD7CUCkoiIiUKE12t23v4aoBYSC7QjmRygSAT927la6OMEcGi1sUlXIfNaJFUImCgohIgaBkdyELSuScWTeQdhhMlQ88FwaEro4wKT+Wp2godRbGmmYfiYhkVaqBUMnlZ83nsysWVT1mVyzMZ1csZuPqc1mxbM6Q6yyMNbUURESyKiW7m9wZzQ8EF/r2z3fVTF8xmEwXrS8YTp2FsaSWgoi0pOHUNK6U7G72lAlYQN2vvniqaGVzEPfi9w01od5YU1AQkZazrmcPy2/ewGW3P8rymzewvmdP7TeRmQJ6yZvmFm1bsXQ2PbsOEYsML39RZzTC7oP9RecIKrvZDK0EUPeRiLSYeovgVHrvmsd3F21bs2k363v2MJAcXpbToFZAs01DLaSgICIt5Xj67IPeCwQGhHAokzp7MJVmMJku61yqVRmtmaahFlJQEJGWcjx99kPJaxQJkV+dvHHni1y9djNhC+UXry2ZM6XpWgH1UFAQkZYSVBu53j77wvfCsUVpQQpXJzdzd9BQKSiISMtZsWwOi2ZNpmfXIZbNm8rCmSfkXytdSRz03uULZ7Bt78tlyeoKlbY+mrU7aKgUFESk5VRaMVzvSuLpk2Kcc9pJRcnqEqk07k5nNDKk1sd4Y6VzaMeT7u5u37RpU6MvQ0SaSG9fnOU3byjq+pkQDXHfx97OhV95qGz7xtXnlj3cC1sTQOD34zkgmNnj7t4d9JpaCiLSUirNPurZdaiuWUm1WhPjORjUQ4vXRKSlVJp9tGzeVAaSxVlLB5KpoqylP/n1flat3dy0eYnGgoKCiLSUSiuGp3V1lKWcyP2cWwH93775C+IlaxJyrYl2oe4jEWk5QVNEN+86RGc0wivxZH6/zmiEbXtfzq+ADtJMeYnGgloKIjIuDCfBXaFK3UrgREPlj8KJ0XDT5SUaC2opiEjTys0C2rrnMDd+f3vdRWkqDRYHLWpbPHtKWbCIRUJ89fI3sXj25LYKCNCgKalm9ufAnwAO/Ar4IDARuAtYADwLXOLuB6sdR1NSRVpX7sEeNisra1lpKilUnpKa2z9o8dr6nj1lwaJZKqGNhqaakmpmc4CrgEXu3m9ma4D3A4uAB9z9JjO7BrgGWD3W1ycijVeY6TRItQR3tRLiBa08bqU0FcerUWMKEaDTzCJkWgh7gYuAO7Kv3wG8tzGXJiKN1NsX58Ed+8tmChUqHPwtHWsYbkK86ZNiLJ03ta0DAjSgpeDue8zsb4DngX7gfne/38xmuvu+7D77zOzksb42EWmswi6j0qmhABM7wqT9WDrqdT17WJVNQ5FKO59+zyKWzJ7CdRcsKhuDaPeHfb0a0X00jUyr4BTgEHC3mV02hPd/BPgIwPz580fjEkVkBNVKQFe4X7UuI4BL3zqf93XPA+AbG5/hr77/BMmCusmf+j9b6eoIk3LnugszAaLdu4OGqhGzj94JPOPuBwDM7LvA24AXzGxWtpUwC9gf9GZ3vw24DTIDzWN0zSIyDPUmoAPqWiD2zUee4583PksqXfmffm5Q+sb7tlccjJbKGjGm8DxwpplNNDMDzgOeANYDV2b3uRJY14BrE5EhqLZ2oPCTfz0pI7o6wlVbCQD9iXTVgFCo3VYij5RGjCk8amZrgV8ASeCXZD75TwLWmNmHyASOi8f62kSkfrVaAUMti3lkMEUsbMRL6hd0hI3BCjUNqmm3lcgjpSGzj9z9M+5+ursvcffL3T3u7r3ufp67n5r986VGXJuI1FZPKyBoFtBgKs3h/gS9ffHAWUMWsqL9YxHjS5csIxYp3l4qFjHCBtGwFeU7UtfR0GlFs4gMWT2tgNKymAPJFKl0mo9+6xcMJFNlBWtyK44Lax3fsnIpFy6dTdo9f5yjiVRRF9Il3XO59K2vbql6B42koCAiQ1bvWoBcWcyHdh7gr3/wBIk0RQnpct+vumcLyxfOIPOoNzDAreg4hYvLDh4ZDCy1Ca1f72C0KSiIyJDlWgGFn+qDumty4w4hM0oyVRRJp53vbd7D53+4o2h9Qi5YlB534cwTyoKBjAwFBREZlkqf6nPqWXeQM5hybvrhkxVrGTy088W6prbWuyZCKlNQEJEhyz3w48ljD/zST/VB4w4AsXCIeKo8UAwky7cl0mm6OsL54JI7VlALYihrIqQy1VMQkSHLPfALla4LCBp36AgbV523kHD1yURFtQyODKZqnmuoayKkMgUFERmyegaaS8tiRkKZLqd/+PFvqLXs4Asrz2Dj6nNZsWxOXeeqJ0hJfRQURGTIKtVBDkpJvXH1udx66RsJh0IkUl5WG6HUhGiIeSdOLJvaWu1cw82MKuU0piAiw5KbblppamjO9EkxpnRG6QiHisYgqgma2lqt3kHpmghlRh0+BQURGZJ6SmSWzgKaO62T/kSy7FhdsTCDyXTZQragh3lQcZxCKpQzMhQURKRuuRk+kZDRF890A5XOCAqaPppZmGbkJrIChM34x0szdZBhZFYi1wocUpuCgoiUCZrvX0+JzG17Xy6bPnr12s1cde6pZdlNU+6AF40dSOMpKIgIULlb6LoLFrFkzhQO9ycC1x3kDCRTgJftE086X37gqQpnrTE3VcacgoKIFJXBzM0Oyj3YP3XvVibFwiRSTipdeaDY3Zk9JXjsoDQdNkAkRL7rSJqHgoJIG9v5wis8tPNF/voHT1StWZAbP4iGjVgEwqEQR0umlnZGI+w9PFA2dlAqFg6BObesXKouoyakoCDSpj5976+485Hnh/SeCZEwn//DJbzYF88GkmOvDaZS/Gr3oZqV0a5fsYjfW/wqBYQmpaAg0oZ2vvDKkAMCwJHBJJ+4ewsd4RCOEQllppL2J5KkHb7y4M6ax4iGQwoITUwrmkXaUM+uQ8N6X9ohnszkF0qknHAoxOf/8PX51cr9dWREXTZv6rDOLWNDQUGkDY3Ug7kjHGIgkaIjXP4oiQVsu+Ks+aqD0OTUfSTShhbOPIErzprPnQ8PvQupUCKdZtm8qWV5h2KREP90RTeLZ0+uWiVNmo9aCiJt6oaLXs/aPz2TD599StX9DPKJ6M5eOL3otUu657Jw5gllCetuWXkG55x2EtMnxVg48wRWds9TQBgn1FIQaVOFaxNKRULGX17wOt6+cAaQGYNYMH0il/3zz4v2W7NpNx8/7zTlHWohCgoiLaRSOcrC7QDb9h5m1drNZeUvczqjYd4wfxrb9r2cz2MUT6UxDy6Xmcs5pGAw/ikoiLSISuUoC7cPJFO4Ox2RcMWAAJXLYAbtp5oFrUVBQWSc6+2LF33yL8xaumjW5MAHe7JCoZuuWJhU2ovKYBa+b0I0RDrtxCJh1SxoUQoKIuNYrhUQMiv75B8NhejZdahqErtSN//hGZz12ulMnxSjty9eNqsI4AdXnc2RwZTGDlqUZh+JNLHevjibdx0KLEBfmMq6NA8RHJsumsleWp+BRKpmGcyFM09g6bypCggtSi0FkSZVaYwgZ/fBfrxKnqFLuucyrasD9+q5iAqVLmrTrKL205CgYGZTgduBJWTSKf5X4EngLmAB8CxwibsfbMT1iYyF0hlBhQ/ewlZAaWWz3IO5qyMcmJI6567HdvGaGZOIRcIVxxAKVVptrFlF7aVRLYW/B37k7ivNrAOYCHwSeMDdbzKza4BrgNUNuj6RUVXYCuhPJDEzJhQM3r56elfZWEDh9E+AI4MpJkRDFSuhxZPO537wBIkqgSMWCXHtu0/n7QtnaHGZAA0YUzCzycA5wNcB3H3Q3Q8BFwF3ZHe7A3jvWF+byFgobAW8Ek+STEMi5bwSTzKQSLPqni10dYTLBnlLp3/OndZZM011YUDojIYIW6YmwsSOMLFIZuXxB5afooAgeY0YaH4NcAD4FzP7pZndbmZdwEx33weQ/fPkoDeb2UfMbJOZbTpw4MDYXbXICNl9sJ9oqPo/vSODqcBB3tJunGSVVkCpVCoTZNw9WwOn/vdK+2hE91EEeCPwP939UTP7ezJdRXVx99uA2wC6u7v1t1rGnbnTOgOneuYMJDILx6oN8vb2xfne5r1DeqwP5k7pkExnxhhKxylEGtFS2A3sdvdHsz+vJRMkXjCzWQDZP/c34NpERl3hVM+J0XDZ67HwsTrJQdb17OFtN23g8z/ccdzXkhunEMkZ85aCu//WzHaZ2e+4+5PAecD27NeVwE3ZP9eN9bWJjIagfES5VsC2vS/z4Ts3EU8eazlYyJg7rTNwSuryhTP4i7s3Vxw8Dhtcd+Hr+OXzh1i3eV/Na1OaCillQ5nDPGInNVtGZkpqB/A08EEyrZY1wHzgeeBid3+p2nG6u7t906ZNo3uxIseh1loDgPU9e1hVsM91Fyxi3omd2WBx7N9nLBLiqnNfyy33P1XxfFecNZ8bLno9kCm52bPrEC8dGeRL//HrijOdSq9HWp+ZPe7u3YGvNSIojBQFBWlmvX1xlt+8oWjK6IRoiI2rzy3rw8+1JrbuOcwN923HgIFk+bhDLGxV1ybUOn7QmghpP9WCglY0i4yS3CyjamsNcnI/r/zqz6quK6gWEGodv3CbgoFUotxHIqMkaJZRtT78bXsPVw0I9dAYgRwvBQWRURKUUO66Cxex+2A/vX3xgGR35RXQ6jUxGq64lkFkKNR9JDKKCtcabN1zmBvv215U7KYzGikYXJ6IUX1JWdCYQiwS4quXv4nFsycrIMhxU1AQGWW5B/X7bnu4rNjNK/EkAJ+6dytdHaGai9HMDMOL9nvfm+dyzmknjfBVS7tS95FIHQq7eirVOKhW+6C+1Ba1C+EMJNNlgWPNpt2B5xQZDrUURGoIymgaDYdIpZ1bVpbXQQ6a/z93Wif9ieSwzt8ZCdEfMD01p9KMI5HhUEtBpIpKGU2PDqaIJ9N84u7N7HzhlaJ9BhJprl67hW9sfIadL7ySP5ZZ+UByZ6T64PKZp0zja1d0E66ym2YcyUhSUBCpola3TyLlPLTzQNk+8WSa67+3nXf+7U/49LpfsftgPxMixXmOumJhPnzOa4lVeeI/8sxBJkZDhELl+3TFNONIRl7NoGBmHzOzaWNxMSLNplZGU4Aj8RSDqcr73Pnw8ySSqbLjJFPOaTNPgIAWRKF/feR5YpHif6pdHWE++57FbFx9rtJUyIiqp6XwKuAxM1tjZudbUBtYpEVNnxTjku65Vff5x//3G1LpNNGwlT28c57tPVq0ZiEaNlLpNNd+91cF7w3+p/WjrXvpixdnTU25847TT1YLQUZczaDg7n8JnEqmUtoHgKfM7K/N7LWjfG0io67ajKHc62s27S7bXtjl0xdPkUxDyOCz71kUeJxl86ayYtkcNq4+l1svfQMhg2Sa/DhFyOCLFy8lHPCZqzAeqMtIRltdYwqeyZr32+xXEpgGrDWzL4zitYkcl1oP/HU9e1h+8wYuu/1Rlt+8gfU9e8r2CRpT6IqF+dP/9FomxYrHCDrCYV43ewpXnDW/aPsVZ83Pl7ucPinGlM4OOsLl7513Yhd/+76lxCIhOgLGGdRlJGOh5pRUM7uKTH2DF8mku77a3RNmFgKeAlaN7iWKDF2tKaKFs4pyi8mCqpAFTSWNJ1KsWDqb2376dNH23CygGy56PVecuYCeXYdYNm9qWf3jajmRls6bmq2zcLgsdba6jGQs1NNSmAH8obu/y93vdvcEgLungQtH9epEhqi3L85Pfn2AVWuLp4iuumdLUYshqAVQqQpZ6TCamTGtq4Mv/NEZxCLGxGiYWMSKunQWzjyBld3zygICBOdEKnzv9EkxzjntZG5ZubRmjWaRkVazpeDun67y2hMjezkiw5drHYSwokpmUL7Aq94MprsP9pd9cjLgwR37s+ewzAavPP+iWuW1anUN6tlHZKRpRbO0hMLuoCClD/zcp/XSime5lkLuAdzVES5LQDeYcq6791f0J4u3B3U/VevGKq1xEKSefURGkoKCtISggjYAEzvCpN3zKauBwE/rW/cc5sbvby97eO89HFzUvjQgQHlrpN5xC5FmoqAgLSGoOygWMb562RvZ9VJ/PmV10Kd1KM9gmnt4v9xff76i0tbIUCqviTQLpbmQlhA0eHvLyqUsnj2FG7+/fViDztv2vsyLfQM1z11p7cBQK6+JNAO1FKRlBA3Mbt51qOqn9d6+OIf7E2VpKvoTST585yaiFfISdXWESblz3QWLWDJnSuBAcNC4hWYQSbNTUJCWUjowW+3TeuEgcC7VxIRImMFUirRnktrFC3qPOqMh0g6ffs8ilswODgSlNINIxhsFBWlplT6tA2WDwLEI3HrpGwD46Ld+SSJ1LCJ0xTKriYezeEwziGQ8UVCQllf6aR0y6wzS6ZIZRA5TOjsCWxeptFYTS3tQUJBxI2gRWL1yn9bX9ezh6rs3g8NgSVCIp5yujnC+dXH12i2EQ0Yq7RoLkLahoCDjQq1cRkFKg0hvX5w/v6uH0gZCzoRoiCODmZSknvuvW/4nkXagoCBNbziLwIKCSMioGBBy5k7rzJ8vk4wuVdf5RFpFw9YpmFnYzH5pZvdlfz7RzP7dzJ7K/qlqbwIEryMIAXf87NmiGsg5pXWVc2sTnus9Gnj8WCRUtM5gKMnyRFpNIxevfRwoTKh3DfCAu58KPJD9WSQwffXRRJovb9iZr4FcqFIQ2Xc4eCHaFy9eWlSjQIvOpJ01JCiY2VzgAjL1GXIuAu7Ifn8H8N4xvixpYtWqwN758PNFLYagh/rRRJpvPvp82XuvOGs+Fy6dXdQtVCu1tUgra9SYwt+RKc5TmGx+prvvA3D3fWZ2ctAbzewjwEcA5s+fH7SLtJjdB/uZEAkXrRsotX7zXq5824L8LKPc7CHDGQhIXtcRyqS87n71iYHH06IzaVdj3lIwswuB/e7++HDe7+63uXu3u3efdNJJI3x1MpZqlcvMCeo+KnX7T59m+c0b+NYjz7F51yFeGUgCTio4kzaDaWcw5WV5kApNnxRj6bypCgjSVhrRUlgOrDCz3wcmAJPN7JvAC2Y2K9tKmAXsb8C1yRgZ6hTTTPdR5alDR7N1FD5171a6OsL5qaW1lOZBUstA2t2YtxTc/Vp3n+vuC4D3Axvc/TJgPZla0GT/XDfW1yZjo9LsoEqf2HPdR4UmdoR5X/dcJkbL/wrXGxCgOA/S8ps3cNntj7L85g2s79kztJsSaRHNlDr7JuA/m9lTwH/O/iwtKGh2UDhkPLhjf2BgqJR24uxTTyoru1mvwnTXwJCClEgra+jiNXf/MfDj7Pe9wHmNvB4ZG0FjBEfiKT6zfht/uW5rWVdSaVK7gWSKVDrN6nu2kKqxGG1iNMRgKo1ZJgNqruxmYbrrWum1RdqJVjRLQwSNEeS6fQpXD+f6+ZcvnMHG1eeybe9hPnznJuIpSNboJopFQtxw0RLecXpmIlul8QKtSxA5RkFBxlytKabuzoM79hNPprnhvu35pHS3rDyDV0/voiMcJp6sXSbTjKLMppU+9asYjsgxCgoy5oI+mReKJ51Pr9vG0URxS+ATd2/mh1edHfjerliYwWQad6czGhnyg13rEkQyFBRkzBUuLgMCB4tLAwJAIuXsPdzPJW+ay52PHFudfEn3HC596wLmTuvk4JFBenYdYtm8qSyceULZMWpdl4KBtDsFBRkxQ5nnn0tNHaqSviLIy/1J1jy+u2jb+s37WH3+63ho54tDTq8tIsUUFGREDGUxWnFq6mODzROjofwitCCREEzujATOFNq29/CQ02uLSLlmWqcg49RQFqP19sV5cMd+IqHiFkJXLMwNFy3hc3+wJJ+ILho2wgYTo2FiEeNLlyxj8ewpgTOFwJTuWmQEqKUgxy23GK3WPP91PXtYtXYLIYP+ROUayOcvflVRPeXSLqmgmUKLZ0/WtFKREaCgIMelty/O4f5Bjg4WTxHtTySLHsi9fXH+4u7NJEpWm3XFwqTSznUXLMp/qi8d8C3t/qk0U0jTSkWOn4KC1CVoEDk3jhAJWdnK4tL6B9v2Hi4LCABX/95pRMNhbvz+9iENEAfNFNK0UpHjp6AgNQUNIi9fOCM/jhBkQiRc0n0UPMvoSDzFlzc8STw5MgPEmlYqcnw00CxVVRpE3rb35bKB3UKl3UeLZ08mErD7Vx7cWbZOQQPEIo2joCBVVSpiD151VXJp99H0STG+dMkyYhGjsyA6lA44gwaIRRpJQUGqqpQsbvHsKfk6xhM7wmXvy3UfFVqxbA4/u+Y8bnzvEibFyt8zsSOsesgiDaagIFVVK2K/YtkcNq4+l69e9kbCJUMGpd1Hhcd7x+knk0wXDzrHIsZXL3sjG1efq1XIIg2kgWapqfasHst+HXvQe4WBZaiclfSc004elesXkfopKEhdgmb15GYl4ZDy4k/+qbTzvc17eM/SzKf+0oCi6aMizcnca5SuamLd3d2+adOmRl/GuFe4BgGoupo4t3++2E2y8t+fzmiIREnVMyWpE2k8M3vc3buDXlNLoc0VrkHoTyTzD/CBZKqsNsGKZXPy+4fMqgYEKJxZ5PmCOkpSJ9LcFBTaWOEahGN5i7yoItor8WMP80WzJlddsAbQETYGqxROHmrt46Gk4xaR46eg0MaCEtlVEg2F6AkocA+ZLKZpMvmL5p04MdutFHzMwVSKw/2D9PbFaz7kh5KOW0RGhoJCG6tVFrNQIp1m2bypZfvHIiFWnf87vH3hjHyls1tWHptZVNgl1Z9Iknb46Ld+WXfNBdVHEBlbWqfQhnr74mzedQjg2AK0aPliMsi0AnJrExbOPKFozUI0bKTSab54/6+58CsPsb5nD0B+/cI3/+StPPrJd/LItedx66VvJBwKkUh5zZoLUHkltdJfiIwutRTaTFCXzMbV5/Lwb3r52Ld/Wbb/F1aewVmvnV42lTQ/+yhVPO6Q+yRfOoV1SmeUjnCoqFup2vhCpZXUSn8hMrrUUmgTvX1xfvLr/axau7ksuR3AvBMnMiFa/NdhQjTEvBMnlj20p0+KMaWzg45wceui2if5oT7kq62kFpHRo5bCOFXPrJzcPlv3HObG728PnEaae5BXejjntpeeb+60TgaSqaJ9B5Kpmg/5oRTB0QI3kbGnoDAO1TMrp7AATl88VeFIxz6tV3toV6qnULrwsdZCyOE85FUfQWRsjXlQMLN5wJ3Aq4A0cJu7/72ZnQjcBSwAngUucfeDY319za6eWTmF+1SSm0Za+Gk96KFd6Xy3Xd5NZzSSH08A6IxGaq5B0ENepLk1oqWQBD7h7r8wsxOAx83s34EPAA+4+01mdg1wDbC6AdfX1ILWFpQO2NZaf9ARtrJppDmlD+1K5wuqp6CBYJHxb8wHmt19n7v/Ivv9K8ATwBzgIuCO7G53AO8d62sbD+oZsA3q7y/aP+Xc9MMdXPC/M9NIc1NUg6aH1lNPQQPBIq2joWMKZrYAeAPwKDDT3fdBJnCYWWAeZTP7CPARgPnz54/RlTaPegdsq/XvOzCQnRr6Z3f1EA0bHeFMwrrrLljEkjlT8t1H1c6ngWCR1tOwLKlmNgn4f8Dn3P27ZnbI3acWvH7Q3adVO0Y7Z0mtNPuoty/Ogzv2c/33tlUdYK5mUixMMu1FA9jKQSTSOpouS6qZRYF7gG+5+3ezm18ws1nZVsIsYH8jrm28qFbfIGzGkcHhBQQgH0yqLUYTkdY05mMKlqno/nXgCXf/UsFL64Ers99fCawb62trFoV9/JX6+zc908uX7n+STc/05t+TmyV0PAGhkNJKiLSfRrQUlgOXA78ys57stk8CNwFrzOxDwPPAxQ24toYrXBNQqabBZbc/wkM7M8Hgyxt2cvbC6fzFu06vO+NpoVmTOzjYnwxsXWg2kUj7GfOg4O4PQcUCvueN5bU0m+D6BsW5hbo6wvmAkPPTnb184G0DdWc8LbTv5UHW/umZRCNhtu49zI33ba97xbGItB6taG4itdYXREMh7t/+QuBrm3cfzs8SMgqrnh0TBoI6lp7tPcrK7nksnTeV8xe/SgPKIm1MCfGaSK36BkcHkyw8eVLga7OmTGD5whlsXH0uX7v8TWVNMQP+6g+WBL532byp+e+nT4qxdN5UBQSRNqWg0ERyawJikRCd0fJfTcrh7/7jqcD3/vUPdrD85g1s3Pkii2dPIRIuDguRsPF7i1/FFWcVr+244qz5ZauaRaR9qfuoyXj2v+l08LBLbjA4GoL3vXk+dz32PIl08bjDbZe/iQmRcFGt5QmRMLsP9nPDRa/nijMX0LPrEMvmTVVAEJEiCgpNJDfQnElvXX1R4YRohGXzprL2F7sDupysaiqMhTNPUDAQkUDqPmoSuZXI6XR9K8z7E0kWTJ9Ylgl1IJFm9pQJykskIsOilsJxGon0D+t69nD13T3gMFjnrFIz42giRSxsxFPHAkksnFlvoLxEIjIcCgrHoZ5iN7X09sX5s+/01OgsKtcRDvH0gSNlKz4sZPluIqWmEJGhUvfRMBUuNCusdxyUfrpaauqHf9M75IAAmQHnv7n/SdIOkRDqJhKREaGWwjAFLTQLh4wHd+znHaefnH8w12pNvNg3EHj8SAiSAV1JE6MhjmbHEXKJ62KRELde+kYWz56sgCAix0UthWEKWmh2JJ7iM+u3sfzmDfniNbVaE29feFLg8UNA2CAatnwr4JPvPp0/Ofs1dHWEi/btCIeY0hlVQBCR46agMEy5hWYToiG6Ysce0kcGUwwk0ly9djPf27yXsBV3+pdmHl0484SyBWWQGXBOOaTTzq2XvoHrLljEl/7j13z9oWeUuE5ERo26j+pUOMsIMt1HubQSD+7Yzye/u6Vo5lA86dz8ox1lOYgKH+C5Y/7OzMnEIiHS7iRSxSMMKYeX+xPc+P3tZdNPu2JhUtliOGoliMhIUFCoQ6101svmTQ2cSloYELo6wqT82AM8d8xIyGpWSHuxb7Bs/KKrI8xn37O4aPxCROR4qfuohtJxgUTKSWbTSuTGCPYe7mdCQK6inK5YmM+uWMzG1eeyYtmcomPWCgjRsPH2hTPKxi9S7goIIjLiFBRq2H2wH6+yyjgaClG5PERGKl38AM/NXKqmMxoiFgnxxYuXsnDmCVqhLCJjQt1HNXR1hItWDJdKpNMsnj05X8sgGgrRn0hiZpmkdAHFamqlyA4bfO3y7qIpplqhLCJjQUGhhiODKSZEQ2WDvLFwCOzYGEHpQxuo+ADPzVxadc8WQmYcLZlNNLEjEjjFVCuURWS0KShQPX/R3GmdZTOCAEIho7RXqfChHbR6uVAuiGzbe5gP37kpmxk1Q1NMRaRR2j4o1FpxfPDIIKmAMYX+RObT/ap7trB84YyiYFJvTqTpk2Kcc9rJ3LJyab7rSbWRRaSR2jooFM4Cyk33LH3I9+w6VPUYucVohS2EWscspfECEWkWbT37KGgWUOmK48L6xUFKu3rqOWYQ1UYWkWbQ1kEhaBZQ6UM+KA1FOGQVp4bWc0wRkWbV1t1HhbOAqvXn33DR61lxxmx+8tSLnHPqDE45aVLRLKPNuw7lu33qPaaISDMy9+Fk828O3d3dvmnTpuM+Tq3qaZUGjqsNKI9ERTYRkdFgZo+7e3fQa23dUsipNv+/0sDxolmTqw4oa02BiIxHbT2mUI+ggeOwGes37yUSqp4WW0RkvGm6oGBm55vZk2a208yuGYtzViuXGVhMZzDF1x96uiyZnQaURWS8a6qgYGZh4Fbg3cAi4I/NbNFonnNdzx6W37yBy25/NF8xrVBRMZ2OwmI6BWmsY2ElqRORltBsYwpvAXa6+9MAZvYd4CJg+2icrN6FZrnFZQ/u2M/139tW1EJQXQMRaSVN1VIA5gC7Cn7end024nr74jy4Y3/d4wLTJ8V4x+knk0yXVkZTXQMZYWb6Gu6XHLdmCwpBv9Wip7CZfcTMNpnZpgMHDgzrJLkuo8+s31Y2LjCYSnO4PxE4vlDYlaS6BiLSippqnYKZnQVc7+7vyv58LYC7fz5o/+GsU+jti7P85g2B9Y4Hk+myUptBiey0BkFGlT7xDl8TPc+aWbV1Cs3WUngMONXMTjGzDuD9wPqRPEFQJbVoCP7LW+ZjlJfarNRiUJ4iGTXu+hrulxy3pgoK7p4EPgb8X+AJYI27bxvJcwRVUkuk4V8feY6SWjd42rXuQETaSrPNPsLdfwD8YLSOf2QwRSQEyZJqmKXdSQDxlBdNQxURaXVN1VIYC10d4bKAUMmEaIgjpc0HEZEW1nZBIVdzuV5aoSwi7aTpuo9GW6WHfKXZRxpMFpF20nZBIajewXUXLGLJnCn5gKHppiLSrtouKEDtmsgKBiLSrtoyKED1GgoiIu2q7QaaRUSkMgUFERHJU1AQEZE8BQUREclTUBARkbymSp09VGZ2AHjuOA4xA3hxhC5nPGi3+wXdc7vQPQ/Nq939pKAXxnVQOF5mtqlSTvFW1G73C7rndqF7HjnqPhIRkTwFBRERyWv3oHBboy9gjLXb/YLuuV3onkdIW48piIhIsXZvKYiISAEFBRERyWvLoGBm55vZk2a208yuafT1jAYzm2dmD5rZE2a2zcw+nt1+opn9u5k9lf1zWqOvdSSZWdjMfmlm92V/bun7BTCzqWa21sx2ZH/fZ7XyfZvZn2f/Tm81s2+b2YRWu18z+2cz229mWwu2VbxHM7s2+zx70szedTznbrugYGZh4Fbg3cAi4I/NbFFjr2pUJIFPuPvrgDOBj2bv8xrgAXc/FXgg+3Mr+TjwRMHPrX6/AH8P/MjdTweWkrn/lrxvM5sDXAV0u/sSIAy8n9a7328A55dsC7zH7L/r9wOLs+/5h+xzbljaLigAbwF2uvvT7j4IfAe4qMHXNOLcfZ+7/yL7/StkHhRzyNzrHdnd7gDe25ALHAVmNhe4ALi9YHPL3i+AmU0GzgG+DuDug+5+iNa+7wjQaWYRYCKwlxa7X3f/CfBSyeZK93gR8B13j7v7M8BOMs+5YWnHoDAH2FXw8+7stpZlZguANwCPAjPdfR9kAgdwcgMvbaT9HbAKSBdsa+X7BXgNcAD4l2y32e1m1kWL3re77wH+Bnge2Accdvf7adH7LVHpHkf0mdaOQcECtrXsvFwzmwTcA/yZu7/c6OsZLWZ2IbDf3R9v9LWMsQjwRuAf3f0NwBHGf9dJRdl+9IuAU4DZQJeZXdbYq2q4EX2mtWNQ2A3MK/h5LpnmZ8sxsyiZgPAtd/9udvMLZjYr+/osYH+jrm+ELQdWmNmzZLoEzzWzb9K695uzG9jt7o9mf15LJki06n2/E3jG3Q+4ewL4LvA2Wvd+C1W6xxF9prVjUHgMONXMTjGzDjIDNOsbfE0jzsyMTD/zE+7+pYKX1gNXZr+/Elg31tc2Gtz9Wnef6+4LyPxON7j7ZbTo/ea4+2+BXWb2O9lN5wHbad37fh4408wmZv+On0dmvKxV77dQpXtcD7zfzGJmdgpwKvDzYZ/F3dvuC/h94NfAb4BPNfp6Ruke306mCbkF6Ml+/T4wnczMhaeyf57Y6GsdhXv/XeC+7PftcL/LgE3Z3/W9wLRWvm/gs8AOYCvwr0Cs1e4X+DaZMZMEmZbAh6rdI/Cp7PPsSeDdx3NupbkQEZG8duw+EhGRChQUREQkT0FBRETyFBRERCRPQUFERPIUFEREJE9BQURE8hQUREaQmb3ZzLZkc/x3ZfP+L2n0dYnUS4vXREaYmf0VMAHoJJOX6PMNviSRuikoiIywbE6tx4AB4G3unmrwJYnUTd1HIiPvRGAScAKZFoPIuKGWgsgIM7P1ZNJ3nwLMcvePNfiSROoWafQFiLQSM7sCSLr7v2Xr5P7MzM519w2NvjaReqilICIieRpTEBGRPAUFERHJU1AQEZE8BQUREclTUBARkTwFBRERyVNQEBGRvP8PJziVnOJC7zoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# draw the points again, now with the line\n", + "df.plot(kind='scatter',\n", + " x='x',\n", + " y='y',\n", + " title='y en x in the data set')\n", + "plt.plot(x, yhat, color='red', linewidth=3)" + ] + }, + { + "cell_type": "markdown", + "id": "077d7978", + "metadata": {}, + "source": [ + "### Cost function" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "62838ac9", + "metadata": {}, + "outputs": [], + "source": [ + "# calculate the mean squared error given the input parameters.\n", + "def mean_squared_error(y_true, y_pred):\n", + " s = (y_true - y_pred)**2\n", + " return s.mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "4bea9b4a", + "metadata": {}, + "outputs": [], + "source": [ + "# get the x and y values from the dataset\n", + "X = df[['x']].values\n", + "y_true = df['y'].values" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "392f50b2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 79.77515201, 23.17727887, 25.60926156, 17.85738813,\n", + " 41.84986439, 9.80523488, 58.87465933, 97.61793701,\n", + " 18.39512747, 8.74674765, 2.81141583, 17.09537241,\n", + " 95.14907176, 61.38800663, 40.24701716, 14.82248589,\n", + " 66.95806869, 16.63507984, 90.65513736, 77.22982636,\n", + " 92.11906278, 46.91387709, 89.82634442, 21.71380347,\n", + " 97.41206981, 57.01631363, 78.31056542, 19.1315097 ,\n", + " 93.03483388, 26.59112396, 97.55155344, 31.43524822,\n", + " 35.12724777, 78.61042432, 33.07112825, 51.69967172,\n", + " 53.62235225, 69.46306072, 27.42497237, 36.34644189,\n", + " 95.06140858, 68.16724757, 50.96155532, 78.04237454,\n", + " 5.60766487, 36.11334779, 67.2352155 , 65.01324035,\n", + " 38.14753871, 34.31141446, 95.28503937, 87.84749912,\n", + " 54.08170635, 31.93063515, 59.61247085, -1.04011421,\n", + " 47.49374765, 62.60089773, 70.9146434 , 56.14834113,\n", + " 14.05572877, 68.11367147, 75.59701346, 59.225745 ,\n", + " 85.45504157, 17.76197116, 38.68888682, 50.96343637,\n", + " 51.83503872, 17.0761107 , 46.56141773, 10.34754461,\n", + " 77.91032969, 50.17008622, 13.25690647, 31.32274932,\n", + " 73.9308764 , 74.45114379, 52.01932286, 83.68820499,\n", + " 70.3698748 , 23.44479161, 49.83051801, 49.88226593,\n", + " 41.04525583, 33.37834391, 81.29750133, 105.5918375 ,\n", + " 56.82457013, 48.67252645, 67.02150613, 38.43076389,\n", + " 58.61466887, 89.12377509, 60.9105427 , 13.83959878,\n", + " 16.89085185, 84.06676818, 70.34969772, 33.38474138,\n", + " -1.63296825, 88.54475895, 17.44047622, 75.69298554,\n", + " 41.97607107, 12.59244741, 0.27530726, 98.13258005,\n", + " 87.45721555, -2.34473854, 39.3294153 , 16.68715211,\n", + " 96.58888601, 97.70342201, 67.01715955, 25.63476257,\n", + " 13.41310757, 95.15647284, 9.74416426, -3.46788379,\n", + " 62.82816355, 97.27405461, 95.58017185, 7.46850184,\n", + " 45.44599591, 46.69013968, 74.4993599 , 21.63500655,\n", + " 91.59548851, 26.49487961, 67.38654703, 74.25362837,\n", + " 12.07991648, 21.32273728, 29.31770045, 26.48713683,\n", + " 68.94699774, 59.10598995, 64.37521087, 60.20758349,\n", + " 70.34329706, 97.1082562 , 75.7584178 , 10.80462727,\n", + " 12.11219941, 63.28312382, 98.03017721, 63.19354354,\n", + " 34.8534823 , -2.81991397, 59.8313966 , 29.38505024,\n", + " 97.00148372, 85.18657275, 61.74063192, 18.84798163,\n", + " 78.79008525, 95.12400481, 30.48881287, 10.41468095,\n", + " 38.98317436, 46.11021062, 52.45103628, 21.16523945,\n", + " 52.28620611, 44.18863945, 97.13832018, 67.22008001,\n", + " 18.98322306, 24.3884599 , 79.44769523, 40.03504862,\n", + " 53.32005764, 54.55446979, -2.7611826 , 37.80182795,\n", + " 57.48741435, 36.06292994, 49.83538167, 74.68953276,\n", + " 14.86159401, 101.0697879 , 99.43577876, 91.69240746,\n", + " 34.12473248, 6.07939007, 59.07247174, 56.43046022,\n", + " 30.49412933, 48.35172635, 89.73153611, 72.86282528,\n", + " 80.97144285, 91.36566374, 60.07137496, 99.87382707,\n", + " 8.65571417, 69.39858505, 19.38780134, 53.11628433,\n", + " 78.39683006, 25.75612514, 75.07484683, 92.88772282,\n", + " 69.45498498, 13.12109842, 48.09843134, 79.3142548 ,\n", + " 68.48820749, 73.2300846 , 24.68362712, 41.90368917,\n", + " 62.22635684, 45.96396877, 23.52647153, 51.80035866,\n", + " 51.10774273, 95.79747345, 9.24113898, 7.64652976,\n", + " 9.28169975, 103.5266162 , 47.41006725, 42.03835773,\n", + " 96.11982476, 38.05766408, 105.4503788 , 88.80306911,\n", + " 15.49301141, 12.42624606, 40.00709598, 5.6340309 ,\n", + " 87.36938931, 89.73951993, 66.61499643, 72.9138853 ,\n", + " 57.19103506, 11.21710477, 0.67607675, 28.15668543,\n", + " 95.3958003 , 52.05490703, 59.70864577, 36.79224762,\n", + " 37.08457698, 24.18437976, 67.28725332, 82.870594 ,\n", + " 89.899991 , 36.94173178, 19.87562242, 90.71481654,\n", + " 61.09367762, 60.11134958, 64.83296316, 81.40381769,\n", + " 92.40217686, 2.57662538, 63.80768172, 38.67780759,\n", + " 16.82839701, 99.78687252, 44.68913433, 71.00377824,\n", + " 51.57326718, 19.87846479, 79.50341495, 34.58876491,\n", + " 55.7383467 , 68.19721905, 55.81628509, 9.3914168 ,\n", + " 56.01448111, 77.9969477 , 55.37049953, 11.89457829,\n", + " 94.79081712, 25.69041546, 53.52042319, 18.31396758,\n", + " 21.42637785, 30.41303282, 67.68142149, 17.0854783 ,\n", + " 60.91792707, 14.99514319, 16.74923937, 41.46923883,\n", + " 42.84526108, 59.12912974, 91.30863673, 8.67333636,\n", + " 39.31485292, 5.3136862 , 5.40522052, 68.5458879 ,\n", + " 47.33487629, 54.09063686, 63.29717058, 52.45946688])" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_true" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "0806d238", + "metadata": {}, + "outputs": [], + "source": [ + "# convert the points of the y values to line points\n", + "y_pred = line(X)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "aa0ef0f8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0]], dtype=int64)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_pred" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "55ff0a77", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3464.291087139079" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# calculate the mean square error for the points\n", + "mean_squared_error(y_true, y_pred.ravel())" + ] + }, + { + "cell_type": "markdown", + "id": "a60e5104", + "metadata": {}, + "source": [ + "### Linear regression with keras" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "ccde02ca", + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.optimizers import Adam, SGD" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "3c2b554a", + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "4da8d3b5", + "metadata": {}, + "outputs": [], + "source": [ + "# make a model with 1 layer, 1 output node and 1 input node\n", + "model.add(Dense(1, input_shape=(1,)))" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "afbf17ff", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential\"\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "dense (Dense) (None, 1) 2 \n", + "=================================================================\n", + "Total params: 2\n", + "Trainable params: 2\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "35dda627", + "metadata": {}, + "outputs": [], + "source": [ + "# get the model ready for training\n", + "model.compile(Adam(learning_rate=0.8), 'mean_squared_error')" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "fe11b9d0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/40\n", + "10/10 [==============================] - 0s 889us/step - loss: 276.5771\n", + "Epoch 2/40\n", + "10/10 [==============================] - 0s 889us/step - loss: 70.1189\n", + "Epoch 3/40\n", + "10/10 [==============================] - 0s 893us/step - loss: 38.0515\n", + "Epoch 4/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 27.3967\n", + "Epoch 5/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 25.7747\n", + "Epoch 6/40\n", + "10/10 [==============================] - 0s 777us/step - loss: 20.8342\n", + "Epoch 7/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 15.4722\n", + "Epoch 8/40\n", + "10/10 [==============================] - 0s 997us/step - loss: 9.9356\n", + "Epoch 9/40\n", + "10/10 [==============================] - 0s 778us/step - loss: 9.9688\n", + "Epoch 10/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 10.1344\n", + "Epoch 11/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 10.7054\n", + "Epoch 12/40\n", + "10/10 [==============================] - 0s 889us/step - loss: 9.7593\n", + "Epoch 13/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 9.4868\n", + "Epoch 14/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 9.8315\n", + "Epoch 15/40\n", + "10/10 [==============================] - 0s 889us/step - loss: 10.3213\n", + "Epoch 16/40\n", + "10/10 [==============================] - 0s 999us/step - loss: 17.9203\n", + "Epoch 17/40\n", + "10/10 [==============================] - 0s 889us/step - loss: 14.1653\n", + "Epoch 18/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 18.5441\n", + "Epoch 19/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 15.2991\n", + "Epoch 20/40\n", + "10/10 [==============================] - 0s 778us/step - loss: 10.4892\n", + "Epoch 21/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 9.3215\n", + "Epoch 22/40\n", + "10/10 [==============================] - ETA: 0s - loss: 9.491 - 0s 1ms/step - loss: 10.7091\n", + "Epoch 23/40\n", + "10/10 [==============================] - 0s 885us/step - loss: 10.4797\n", + "Epoch 24/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 11.5123\n", + "Epoch 25/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 13.3325\n", + "Epoch 26/40\n", + "10/10 [==============================] - 0s 775us/step - loss: 13.3366\n", + "Epoch 27/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 16.0355\n", + "Epoch 28/40\n", + "10/10 [==============================] - ETA: 0s - loss: 24.20 - 0s 1ms/step - loss: 14.7609\n", + "Epoch 29/40\n", + "10/10 [==============================] - 0s 889us/step - loss: 10.3856\n", + "Epoch 30/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 10.1707\n", + "Epoch 31/40\n", + "10/10 [==============================] - 0s 778us/step - loss: 9.4444\n", + "Epoch 32/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 10.1405\n", + "Epoch 33/40\n", + "10/10 [==============================] - 0s 890us/step - loss: 13.1112\n", + "Epoch 34/40\n", + "10/10 [==============================] - 0s 778us/step - loss: 10.2187\n", + "Epoch 35/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 10.7566\n", + "Epoch 36/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 11.3941\n", + "Epoch 37/40\n", + "10/10 [==============================] - 0s 889us/step - loss: 15.5596\n", + "Epoch 38/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 15.3198\n", + "Epoch 39/40\n", + "10/10 [==============================] - 0s 1ms/step - loss: 13.1469\n", + "Epoch 40/40\n", + "10/10 [==============================] - 0s 888us/step - loss: 9.4861\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# start training the model for 40 epochs\n", + "model.fit(X, y_true, epochs=40)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "a22c9fb1", + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "9787ea0d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA/mklEQVR4nO3dd3wUZf7A8c93d5NNSOgoUgUFxMAJKlYUuyLVAoqKvfyseBbA3hugnnrenQVR8LCBniB2saBYQQMCgqIgBBAw0gLJZsvz+2NnJ7ub2WQDSTbZfN+vF7DzzOzMM5sw3326GGNQSimlAFypzoBSSqm6Q4OCUkopmwYFpZRSNg0KSimlbBoUlFJK2TQoKKWUsmlQUDYRuUtE/lsN5zlSRJZVR56s870gIvdV1/nizl0t91wfiMg5IvJBBfuPFpGC2sxTRUTkUxG5xHpdYd4rOc+7InJ+9eYufWlQUNXOGPO5MWafnXmviFwgIl9Ud56qQ00Gp9q4jjFmqjHmxKjrGBHpUt3XqQnxeU/EKcgbY042xkyuudylFw0KSqkaJyKeVOdBJUeDQh0jInuLyF8icoC13VZE/hSRoxMcf5OI/Coi20RkiYicGrXvAhH5QkQeFpFNIrJCRE6O2t9ZRD6z3vsh0KqCfC0SkcFR2xlWvno7HBtTDSEiK0XkRhFZKCJbRORVEclyeN++wFPAYSJSJCKbo3Y3F5G3rbx+IyJ7R72vu4h8aH1uy0TkjAruo8J7FpFpIvKHlc85ItLDSr8MOAcYY+XtLSu9os+/i3WtLdZn9WpleU50nYpY1zjden2EVQIYYG0fLyL51mu7FCYic6y3L7Cuc2bU+W4QkQ0isk5ELqzgup+KyIMi8q11jzNEpIW1r5OVj4tFZBXwsZV+kYj8ZP0+vi8ie0ad7wQRWWqd60lAovbFlCBFpEfU57deRG4Rkf7ALcCZ1j0tiMpnpBrKJSK3icjv1j1OEZGmcXk+X0RWWT+zWyv7/NOOMUb/1LE/wKXAT0Aj4H3g4QqOHQ60JRzgzwS2A22sfRcAfut8buAKYC0g1v6vgEcBL9AP2Ab8N8F1xgCvRm0PBX5McOzRQEHU9krgWyufLax7uzzBey8AvohLewH4CzgY8ABTgVesfTnAauBCa98BwJ9AjwTnr/CegYuAxtb+x4D8uHzcV4XP/2XgVmtfFnBEMnl2uk4lvy/3AP+0Xt8C/AqMi9r3uNNnCxigS9zPLWC9JwMYAOwAmie47qfAGqCndU+vRz5LoJN1/inWvmzgFGA5sK9137cBX1rHtwK2AsOsa19n5eWS+LxbP591wA3W59oYOMTadxdxv8NWPiPnucjKw15ALvAG8GJcnp+18tsL8AH7pvqZUJt/Up4B/ZPgBwMzgR+BhYC3Cu/LB4Zary8Alkfta2T90u8BdLT+0+VE7X8p/j9U1L62hB+gTazt6cCYBMceTfmgMDJqezzwVIL3xjy4rLQXgIlR2wOApdbrM4HP445/GrjT4dxVvedm1ufVNCofFT6s4z7/KcAzQPu4YyrMczLXiXvvccBC6/V7wCXA19b2Z8BpTp8tzkGhGPBEpW0ADk1w3U+Bh6K284BSwl9AOlnn3ytq/7vAxVHbLsJBZ0/gvEierX0CFOAcFM4CfkiQp7vif57EBoXZwJVR+/Yh/MXJE5Xn9lH7vwVGJPuzSIc/Wn1Udz1L+BvYP40xvkQHich5IpIvIput6paexFaJ/BF5YYzZYb3MJfyQ32SM2R517O+JrmOMWQvMBU4XkWbAyYS/sSfrj6jXO6w8VEWi9+8JHBK5f+szOIdw4ItX4T2LiFtEHrKqg7YSDmZQcbVaRZ//GMIPt29FZLGIXLQTeU7GV0A3EWkN9CYcjDqISCvCpas5Fbw3XqExJhC1XdnPanXU698Jf8tvlWD/nsDjUff8F+HPpx3hn419rAk/kaPfG60D4dLQzmhL7O/574QDQuuotF39Xa3XtPGnDhKRXMJVF88Bd4nI68aYvxyO25Nw8DgO+MoYE7TqjyX+WAfrCNfT50Q9JDsS/qaUyGTC30I91vXWJHlLVVHVaXtXA58ZY05I4tjK7vlswtVixxMOCE2BTZR9njF5q+zzN8b8QbjqDhE5AvjIqsuvLM9V+gyMMTtEZD5wLbDIGFMqIl8C1wO/GmP+rMr5qqhD1OuOhL91/xmVHn0vq4H7jTHlvkyISNfoc4mIxJ072mrCpQUnlX12awkHp+g8B4D1QPtK3tsgaEmhbnocmG+MuQR4m3Djq5Mcwv8JNgJYjYI9k7mAMeZ3YB5wt4hkWg+twZW87U3C9d/XEv42WhPWA+1FJDPJ42cR/pZ8roQbvzNE5CAJN1rHSOKeGxOuQy4kXNX2gEPe9orarvDzF5HhIhJ50Gyyjg0mkef460S6qb5QwefwGXC19S+Eq0yit52Uu85OGCkieSLSiHBbxHRjTDDBsU8BN0tZ431TERlu7Xsb6CEip0m4p9IoEpecZgF7iMjfRcQrIo1F5JCoe+okIomebS8D10m4w0Eu4Z/xq3GlowZNg0IdIyJDgf7A5VbS9cABInJO/LHGmCXAI4SrD9YDfyNcxZOss4FDCBfj76SSB70xpphwY2Jnwg10NeFjYDHwh4hU+g3XGLMNOBEYQfhb4B/AOMINxU4quucphKsT1gBLgK/j3vsckGdVf7yZxOd/EPCNiBQRbiO61hizIok8x1zHSutAxT/bzwgHtTkJtp3cBUy2rpOwx1YlXiTcBvIH4UbfUYkONMb8j/B9vmJVzy0iXA2JVZoZDjxEOCh3JcH9Wp/fCYQD+h/AL8Ax1u5p1r+FIvK9w9snWXmeA6wASoBrkrrTBiLSC0WppIjIHUA3Y8zIVOelobBKTQuA/Ywx/lTnJ0JEPiXcqDsx1XlR1UfbFFTSJNwH/WLg3FTnpSExxpQS7sapVI3T6iOVFBG5lHAD37vGmKr0ZlFK1SNafaSUUsqmJQWllFK2et2m0KpVK9OpU6dUZ0MppeqV+fPn/2mM2c1pX70OCp06dWLevHmpzoZSStUrIpJw9gKtPlJKKWXToKCUUsqmQUEppZRNg4JSSimbBgWllFI2DQpKKVXPFBb5WLB6M4VFCZda2Wn1ukuqUko1NDPy1zBm+gLc4iJoQkwY1oshvdtV2/m1pKCUUvVEYZGPG17Lxxcw7PAH8QUM17+WX60lBg0KSilVTyxeu5VAKDYtEAqnVxcNCkopVW8kmsC0+iY21aCglFL1RI+2TXG7Ypdgd7uEHm2bVts1NCgopVQ9InGlgvjtXaVBQSml6omCTcVkZ8R2Gs3O8FCwqbjarqFBQSml6pCKxiC0b5bFfW+MY+W4QVz95SsA+EMh2jfPrrbr6zgFpZSqI2bkr2Hs6wvJcLnwh0KMP32/sjEIH39My+OOY6h17E+depKV4WL86fvRMtdbbXmosaAgIpOAQcAGY0xPK60F8CrQCVgJnGGM2WTtu5nwovBBYJQx5v2ayptSStU1hUU+xr6+kBJ/iBLC/U7HvL6Qvntk0bLLnrB9e/jADh0o/P5HRhUbxjfPrtaAADVbffQC0D8u7SZgtjGmKzDb2kZE8oARQA/rPf8WEXcN5k0ppWpFslNSFGwqJsMV+0i+ds5UWrZpZQeEX978gMIlv0BWVo3lt8ZKCsaYOSLSKS55KHC09Xoy8Ckw1kp/xRjjA1aIyHLgYOCrmsqfUkrVtAqrg+K0b56NPxQuIeyzcSXvT7ra3vfbiAsZ0GU4Gd+HKP7mI0SELI+70nPujNpuU2htjFkHYIxZJyK7W+ntgK+jjiuw0soRkcuAywA6duxYg1lVSqmdl7A6qEsrxyqflrleJgzZl66DjqX7hhV2+l+/r2XAs/kx5wGDPxio9Jw7o670PhKHNMfOt8aYZ4wxfYwxfXbbzXHdaaWUqnGVVQs5VQdluFyJu49OnMjggzvbAWHrK9PBGFZLdrnzJH3OnVDbJYX1ItLGKiW0ATZY6QVAh6jj2gNrazlvSimVlGSqhaKrgyKiu48WFvko2FRMx+1/0nzfrvYx20/oz7v3P03vjs1pYp2nJBBMmJfq7pJa2yWFmcD51uvzgRlR6SNExCsinYGuwLe1nDellKpUdLXQNl+AEn+IMa8vLFdiaJnrZfzp+5GV4aKx10NWhovbB+VRsKmYqV//zuEPfsTGEwbEBIQjr3yeHgdczY2v/8jx/5jDHTN+BCAYKl9xkuN117suqS8TblRuJSIFwJ3AQ8BrInIxsAoYDmCMWSwirwFLgABwlTEmcWhUSqkUiVQLldXvl1XhxD+ch/RuR98urSjYVMyiNVu4560luAQOWfoNy6bfbR9364lXMnX/AeWuNeWrVeTt0QSHmMDoE7sxuFe7au+SWpO9j85KsOu4BMffD9xfU/lRSqnqUFm1ULzIQ3vYU1+SvX0bCx8fYe/7pWUHBlz4BH53RsLrffrzBsf0vXZrXO0BAXREs1JKVUmkWmh01Opn40/fD4AFqzfbwaFgU7H9+q0Faxj94UQu++5/9nkGXvA4i1vvXen1Pln6Z7k0jwt6tG1SHbdT/tw1clallEpj4docCfebNMK83/9ijNXwXOwP2OMISgJBeq5Zxv8mX2+/99+HDmP8URckfS1fsKxUkuVxYTBMGNarRkoJoEFBKaWqJNLQ7ItaAm3KV6sAYsYRiK+Y2RMvp+OW9QD43B4OvOYliryNKr2Gx0W5FdZyvG7uHtyDY7rvXmMBAerOOAWllKoXnMYfxDt//lv8/MipdkA494x72OfGN5MKCADXHd8Nryd2+FYwZGo8IICWFJRSqkqcGpojOmz+g8+fvsTenrlvP0YNHg3iND4XvB5XTIkj4m/tmzJhWC+7SioyFqKmAwJoUFBKqaRFBpwN2a8Nr81fY6f326s5//fQVfRdkW+nHXvdVH7PakZ0f1KXQE6mB38oxO0D8+jQohEXT/4Of7DsmAx3eHnNlrleuztr+xqYDTURDQpKKZWEGflrGDN9IS4Riv1lw6j6L5vLU+MetLfXP/EUngsv4K61W7h0yjyi2onJcAv/Omd/+6EP8MjwXoyevhC3SwiGDBOGlZUIWuZ6ay0YRGhQUEqpShQW+bhx2oKYb/TNd2zhh3+eY28vaNuNkRc8Sul64Y5Ff+D1uPC4XPgoCyCZbjdNszNjHvTRA9xqs0SQiAYFpZSKE6kmijykF6/dEhMQ7n//Sc7Jf8/ePv7if7O8VcfwEmEYbn1zETmZbraXxk7M4DT3UeQaqQ4GERoUlFIqitNkdy6rofjAgiW8PnWMfexjR53Lv/ueRWmwfGNxdEDIyXQTNMZuLK7KOgu1TYxxnKG6XujTp4+ZN29eqrOhlEoThUU++o77mBJ/1ICxDBePDuzGwccdSKsdWwD4K7sJh18xiXOP7c5erXK5+X+LEp4zfnxBomvMHXtsrZUWRGS+MaaP0z4tKSillMVpsrvLv5zGgPuet7fPOPshvu3QE4CXv10dU63kpDQQihlfUJUJ9VJBg4JSKi3F19knI3oMwt6Fq5k98Qp732u9TmRM/1Exxxf5Kp/MOb42pqoT6tU2DQpKqbSzs3X2LXO9nNm7DUNHjeCAtcvs9Jkf/MDdn/8BpVWf0T87wxNTCohMqJeKgWnJ0KCglEorVV0bOdq2ic9z96UX2dtXDr2Jd7ofQdZnaykJ7Fz7q1MpoK51Q42mQUEplVZ2qs5+3Tpo25bG1ubcPfdj5Jn3YSQ8x5FTQHC7hEYZbkqDIUoDoXKLyud43QRDJmEpoC51Q42mQUEplVaqVGdvDIwcCS+9ZCedeOVEfm68R6XX8biwRyfPXf5nzPoKdwzqQc92TetcKSAZGhSUUmkl6Tr72bPh+OPLth99FK67jqvz1zDm9YUAMd1G40WPTq7L1UFVpUFBKZV2hvRuR16bJuSv3kzvDs3o0rqxva9w3Z8036sjrpLicMKee8LSpZCVZb+3b5dWLF67tdxkddHiSx91tTqoqnQ9BaVU2pmRv4ZBT37B3W8tYdCTXzAzPzyj6bJLr6Vl293sgDDnxbdg5Uo7IES0zPXSr9tuPDK8F16Pi0aZbjLcgscFjb0esjJcdarHUHXSkoJSKq049T6a+O8ZDHn2Kvaxjpl04BDuOf4yspa5mFvkK/dwj4xx6NulFV/edGzMesvpUEVUEQ0KSqm0Et37yBMMMOuFa+n+5+/2/v2ufYWtWbmAc6+kysY4pGswiNCgoJRKK5HeRyPy3+Oh95+009dOeZWjlubGtBGUBIIxs5YuXruFMdMX4AuYKo9xSBcaFJRSaaXlX+tZet8Ae3t2t0PZ/so0+nbdDfPARzHHRqagiJQOXCL44sYk1KV5iWqDBgWlVHowBk45BWbOtJOWfLWQ3j270TLXy4LVm8nO8LDNF7D3Z2d4WLx2q90G4aQuzUtUG7T3kVKqXigs8rFg9WYKi3zld779NrhcZQHhqaco3FaCv10H+5BEg9rAkOEq/yhslOFO615GiWhJQSlVZ0V6AS1as4V7315SvvF30yZo0aLsDT16wA8/MGPxBsaO+7jc8U6D2nq0bVouWHg9Lp4690B6tG3SoAICpGiRHRG5DrgEMMCPwIVAI+BVoBOwEjjDGLOpovPoIjtKpa9IPb9bpNyyllkZLn7Y9C7Z//pnWWJ+PvTqVekiNk5Tas+0RjHXxZXQakKdWmRHRNoBo4A8Y0yxiLwGjADygNnGmIdE5CbgJmBsbedPKZV60WMN4u237mdmTrm+LOGWW+D+++3NyibEcxp5nE7TVOyqVFUfeYBsEfETLiGsBW4Gjrb2TwY+RYOCUg1OYZGPT5ZuKLc4TWbAz+yJl9Nhy3oATFYWsn49hS4vBas32w/znV3EJl2mqdhVtR4UjDFrRORhYBVQDHxgjPlARFobY9ZZx6wTkd1rO29KqdSKrjKK7hp64bwZ3Dn7WXv7y/+8zOGXj2BG/hrGTJ+L2yUEQ4Y7BufRs21Tbh+YV64NQh/4yUlF9VFzYCjQGdgMTBORkVV4/2XAZQAdO3asiSwqpapRsstiOlUZxVcVLTpqIFmvvMTuIrwwdwX3vf0TgVBZ8Lj1f4vIyXQTNIbbB4UDREOvDqqqVFQfHQ+sMMZsBBCRN4DDgfUi0sYqJbQBNji92RjzDPAMhBuaaynPSqmdUJVlMQs2FduvXaEgv00YGrP/oKumUNS8FaVPfEEwlPi/fqRR+t5ZS+zGZZW8VIxTWAUcKiKNRESA44CfgJnA+dYx5wMzUpA3pVQVVDR2IPqb/zZfgBJ/iDGvL3QeZwDkZLop8YcYNfflmIDw9MGn0WnsLDbmtqDYH6owIESLNC6rqklFm8I3IjId+B4IAD8Q/uafC7wmIhcTDhzDaztvSqnkVVYKqOqymKW/rWDluEExaV1ufBNXZgYkWNOgIg1tJHJ1SUnvI2PMncCdcck+wqUGpVQd5zQ9dfzEcU69gEqDIbYU++3Sgt3W0GVP8tavt48bfvZDfNehJ16P8Mjw3twwLb/cnETRvB4hEDS4XEKWx62Ny7tARzQrpaosmVJA/LKYJYEgwVCIq6Z+T0kgiDGGYUvn8ND/xtvnWN/3GPodfSNuceE1ISYM68WgXm0JGWOfZ4c/GFOFdEaf9pxzyJ4NZr2DmqZBQSlVZcmOBYgsi/nF8o088M5P+EOwzRegsW87Pz52ZsyxfxWs5+uNfpi+EAQwEnOe6MFlm7aXOi61Cem/3kFN06CglKqySClg9PQFuMVF0DhX10RPSR2ZqeKF1+7k6BXz7WNGDb6R9/52DLesLOLBd5fGVBMlWsugS+vG5YKBqh4aFJRSOyX86JZy3+oj4scdHLx6Ea+9dJO9f31uCw65akp4I2h46N1lCdcy+GL5n0l1bU12TIRKTIOCUqrKIg98X6CsCin+W32k3SEQLGX5w6fEvP/wKyaxtknspAUlgfLzHPlDIXIy3ZU2akPVxkSoxHQ9BaVUlUUe+NHixwW0b57NdR88ExMQHus3kn/N/pn1TSuexSZ6LYPtpcFKr1XVMREqMS0pKKWqrNKG5p9/puU++3BR1P5uY2dg3B4yP/210mEH44ftx2F7t7Snuq6sUbuqYyJUYlpSUEpVWaShOSvDRWOvp2yFspxMyMiAffaxj9382VzmLNuAeDLwB025tRHiZWW46NCiUbmureWuFfWw39mZUVV5WlJQSu2USHdTu2vomy/B/peXHXD22TB1Ks2Apqs3k+l2xbRBVMSpa2tF6x3Ej4nQwWs7T4OCUqpK4pfI3K1kG58/HDvmoPCPQgpKXbQv8tlrHBT7A+XOleN1UxoIYYwhO8NT4cO8svUOdKGc6qFBQSmVtEgPH49LKPIFeePFGzhg7TJ7/9aXp/FJ98MY++Q3Md/Y+3ZphQn3XbWPdYvwn3PC6yBD9YxE1oVydp0GBaVUOU79/aN7+PT7bT5TppVNX7asVUeGXfkM/zrgAMa+OC+m++jo6QsYdWzXcrObBo0BTEzbgUo9DQpKKaB8tVDkm/7tA/Po2a4pW4r95IQCLB03JOZ9B131Ihtzm5MRCAKmXC8gX8DwxOxfEly1/KA3lVoaFJRSMctgRnoHRR7st765iFyvm9tnPs78/Pfs99xz7KVMOqhs3QNjDG2bOrcd+Bz6oHpc2FVHqu7QoKBUA7Z8/Ta+WP4nD7zzE6UJBg9037CC956/JiYt77Z32OGP7UmUneFh7ZaScm0H8bxuF4hhwrBeWmVUB2lQUKqBuuPNH5ny9aqE+8WEWDE+tqro1Muf4uLLBzGmyGcFkrJ9pcEgPxZsrnRltLuG5HFijz00INRRGhSUaoCWr99WYUC45Ns3uO2TSfb2i/sP4PYTr8QlcMO0hWS6XRgEjyvclbTYHyBk4MlPlld67Qy3SwNCHaZBQakGKH/1Zsf03bcV8u2/z49J63bD/yj1ZAAQMuALhOxBaF6PiwdP+xs3TFuALxDCn8Symb07NNulvKuapUFBqQbI6cE8+9nL2fuvAnt75Bn38kXn/Ss8T6bbRYk/6Dha2et24QvGpp13WEddB6GO06CgVAPUpXVjzjusI1O+WsVJy77k6TcfsPd91y6P4SPHV/DuMv5QiN4dmpWbd8jrcfHseX3o0bZJhaukqbpHg4JSDdQ9x3XmnlP2i0nrPeolNmfHdhMVINcbnoLioD2b8/nyQnvfGX3a06V1Y8d5h/p12w0ID0rTYFB/aFBQqiE64wyYNs3eHNv/Gl7tdZK97XEJtw3clyO6tALCbRCdWjZi5KRvY07z2rwCrj2um847lEY0KCiVRhItRxlJ7/TrIpoec6SdviPDS95100FiRxZnZ7jZv2NzFq/baq9m5guGEOO8XGZkziENBvWfBgWl0kSi5Shn5K/h5mk/sOSBwTHHH3XZM/zevK3juRItg+l0nK5ZkF40KChVzxUW+Vi8dgtjpi/AFzAx6xjntWlCwagxLPn8Jfv4/xwyjHFHX+B4rhyvm2DIxCyDGR0QsjJchEIGr8etaxakKQ0KStVjkdKBSwRfILZqZ8+tG+iyRxO6RKXtPXoGQZc74fnGnVbxMpgA74w6ku2lQW07SFMaFJSqwxK1EUT2Rap34n33z5HstmOzvX36OeOZ3z6v0uuV+IPllsGM71WkPYnSmwYFpeqoRG0EEQWbijFx8wydsvgTHpv1iL1d2n8AeftfSZKrYJYb1Ka9ihqelAQFEWkGTAR6Ep5O8SJgGfAq0AlYCZxhjNmUivwpVRuiSwEQu/JYdCkguo2gb5dW9oM5J9NtT0ndpKSIhY+PiDn/ATdOY9QpB+J9fxmB6JnrEkg02lh7FTUsqSopPA68Z4wZJiKZQCPgFmC2MeYhEbkJuAkYm6L8KVWjoksBxf4AIkJWVOPtni1zyjXyRnf/BNheGiQrw8Uz/72Vfit/sI+7ZvBo3so7CoD73/mpwvmIvB4XN5/cnSO6tNJqIQWkICiISBOgH3ABgDGmFCgVkaHA0dZhk4FP0aCg0pBTKQAM/mB4cZoxry9k1tVHlGvkje/+2Wnxdyy9b4C9vbZxKw6/8oXY90QFhOwMF6WBEC6XkOF2EQwZJgyLrZJSKhUlhb2AjcDzItILmA9cC7Q2xqwDMMasE5Hdnd4sIpcBlwF07NixdnKsVDUq2FRcrhQQb3tp0LGRt2WuF/x+yMykadTxh18xibVNHP/L2ILW5HTGGGsNnMpnNFUNTyqCggc4ALjGGPONiDxOuKooKcaYZ4BnAPr06aO/1aread8827GrZ0SJPzxwzLGR9/rr4R//sI+dcOS5/OvwM5O6bmlZoYRAKNzGEN9OoVQqgkIBUGCM+cbank44KKwXkTZWKaENsCEFeVOqxkV39XQh7PDHNgJ73WXrJEe4fv4ZDoydvK77LbMoqbz9uELx7RRKuWr7gsaYP4DVIrKPlXQcsASYCURW9zgfmFHbeVOqJhQW+ViwejOFRT47bUjvdswdeyxPnXsgXk/sf0NxCe2bZzMjfw19H5pNzz1b0jwqIJxy4WN0GuscENwCdw3el6G92iSVN52mQsVLVe+ja4CpVs+j34ALCQeo10TkYmAVMDxFeVOq2lQ01qBlrpd+3XZjwrDYtoPbB+axeO0Wfrj5AZa+9++yc/U8hoLHnyL/g18SXu+cQztyQd+9uKAvXHPsNvJXb+av7aU8+tHPCXs6aSlBRRNj6m+1fJ8+fcy8efNSnQ2lHBUW+eg77uOYEcdZGS7mjj3WcXRywaZiFq3Zwj9f/YqvHzsrZn/366dTkpGF1y322AQnlZ3faUyEanhEZL4xpo/TPh3RrFQNcepllKgO394+5BC+XveznX7JabfzUddD7O2KAkJl549O02CgEtGgoFQNcepllLAO/913aTlgAC2tzZ9268TJFz1Z5WtqG4HaVRoUlKohThPK3T4oj4JNxfYxa9ZtYr9usY3CB131Ihtzm1fpWo0y3IQw2kagdpkGBaVqUPRYg0VrtnDvrCXhKqVAkPvffpwzFnxgH7v81vs5IdCrwiFlTm0KXo+Lp849kB5tm2hAULtMg4JSNSzyoD7zma8o8YfovGE57z4/KuaYTmPeIsflxlQwyhlARBBMTOA486D29Ou2W3VnWzVQGhSUSkIyvXcqWvugYFMxmQJLxw2KST/+4n+zvFV4upbtpZXPb13iMAf2a/MKuPa4blpKUNVCg4JSlXCa0TR+QrnK1j7oMvk/LLz3Fnt7yv4DuePEK5K6frbHRXEFCyLoqGRVnTQoKFWBxDOahocT3zBtAXltmpQ7ZvT0hfy1vZSjckrpvH93cqLO2e2G/1HqyQAg2yMUBxK3IhzauTlXHtOVC5//lkS9UbXHkapOtT7NhVL1SWSsQSL+oOGL5RvLHeMLhDh6UF8679/dTrtk5IN0GjvLDgg5XjeX9tsbr1sSnv/rFZtolOHC5Sp/TI7XTVaGS3scqWpVaUlBRK4GpuoqaKohqmxGU4DtviClwbJj+i+by1NvPmhvf92hJ57PPuWLSd9C1OjmQNDQrXVjEKGiaaxf/HoVXo/LLp1AeNW1uwf34Jjuu2tAUNUqmeqjPYDvROR7YBLwvqnPc2MoVQUtc72c0ac9U75alfCY/3z2K8FQiKbBEhY8PCxmX69RL7MluzEPF+6IGbNQEggSDIW4+Y0fCYZCZLgFl4DPoSrpvUVr8cVNfhc0RgOCqhGVVh8ZY24DugLPEV4t7RcReUBE9q7hvClV45xmMI3f/9q8gnLp0VU+Rb4gj7/xYExAGH3yKDqNncWW7PASl707NLNnRv3XOfvjEgiEYJsvQCAELoFHhvfCLeWriaIDglYZqZqWVEOzMcaIyB/AH0AAaA5MF5EPjTFjajKDSu2sirqIQsUzmEY4zV+U43Vzcd/OTJq7gi4rlvDmizfY+4KNG3P3lC+Y9vVqO+28wzra6x+3zPXSNDuTTLcbXyBgH5PpdtOhRQ7/OLMXo6cvxBhDaVzLslYZqdqQTJvCKMLrG/wJTARGG2P8IuICfgE0KKg6p7IHvlOvIqdVyNo3z6bYH4g5t88fZEjP1lx/UveY9BOufI5Xxp3DPblezjusM/mrN9O7QzM7IESfM9GcSL06NKNvl1YsXruFS6fMi6lO0iojVRuS6X3UCjjNGHOSMWaaMcYPYIwJAYMqfqtStauwyMecnzcyZnr4gb/NF6DEH2LM6wtjqoicehVF+vvHk7gqnevm/Jcu7crmJnr28DPY59a3uebSk+wHdpfWjRnWp0O5gABlcyJlZbho7PWUqw4Kr7OwOxOG9Up4jFI1pdKSgjHmjgr2/VS92VFq50VKBy4EX9xgr/gBXsnOYFqwqdj+5tRy+2bmPzkyZn/ezW+BxwOhxH0vnKqxHNdfjpPMMUpVNx28ptJCdHWQk/gHvuMMpgPLZjCNPIBzMt34gobx7zzGGT9+ZL//rPMn8NUe+0IIsNZTdqp+qmzltcoe9Mkco1R10qCg0oJTgzBAo0w3IWNipqx2+ra+aM0W7n17SbmH9/YPZ7Ny3Kn2+R44+kKeOeR0xzzEl0aSbbdQqi7RoKDSglN1kNcjPDXyAFb/VWxPWe30bR3KZjCNPLzvfPlbBh11Ab22bgXgj9wWHHXZs/gyEj/M40sjVVl5Tam6Qqe5UGnBqfF2wrBe9GjblHvfXlKlRudr5r7MD+NPw2UFhNPOmcChV01JGBASjR2o0sprStURWlJQacOpYXbB6s0VflsvLPKxpdhPaTBE142/8+Gkq+zjph44kAcHXk1R/HBiwm0NQWO4fWAePds1dWwIdmq30B5Eqq7ToKDSSnzDbEXf1iONwFkYXn9uFD3/+NU+5qC/v8xGb+OY4cTZGS5CBu4YnEfPts6BIJ72IFL1jQYFldYSfVsHGPv6QgZ9/wEPv/OYffziJ5+n8IQBlEz9AXxlg9ZyvDs/mlh7EKn6RIOCSnvx39YBvpqzkKX3DbCP+bTzgVw+4i5eHXIEPRxKF8GQjiZWDYMGBVVvVDaXUUUi39Zn/FBA5tkjGLR0rr3viP+bSEGzPSAUbiuIlC5GT1+I2yUEQ0bbAlSDoUFB1QvJTF4XLz6IbH1zFkNPHWzvv/2Ey3nxgLKZWrIyXGy3BqKZyN+m4rUOlEo3GhRUnbczg8Cig4h3xza+/ccImliL1Pzaoh39L3oSvzuj3PvaN8+2rxeejC7xaGWl0lHKximIiFtEfhCRWdZ2CxH5UER+sf5tXtk5VMPgNHmdC5j85UqWr99W7vjoIHLV+88y7+HhuKyAMOj8xzju0qdjAoLX44oZZ1CVyfKUSjepHLx2LRA9od5NwGxjTFdgtrWtlOP01Tv8IZ74eDnH/2MOd8z4MWZfwaZi9lv/KyvHDeLyb14HYOJhw7jtjYUs2qNLufM/MrwXc8cea1dH6aAz1ZClJCiISHtgIOH1GSKGApOt15OBU2o5W6oOi5++OtqUr1aVlRhKS+l5zEG89uw1AATExd/+/ir39buA/35TfknN8w7ryKBebWOqhSqb2lqpdJaqNoXHCC/OEz3ZfGtjzDoAY8w6Ednd6Y0ichlwGUDHjh1rOJuqLijYVEyWx40/GEh4zMwFa7ls8fvkXn8tbivtkhH38MXeB1LisO5xpktAoM+eLRzPp4POVENV6yUFERkEbDDGzN+Z9xtjnjHG9DHG9Nltt92qOXeqNlW2PnKEU/VRzP4t67n+pO7kXn8tAJsHDGXqlyv4fO8DCTrPpE1pKLzcZfw8SNFa5nrp1aGZBgTVoKSipNAXGCIiA4AsoImI/BdYLyJtrFJCG2BDCvKmaklVu5iGq49iv/GLCfH8tLs5ekXZ94tDr3iBba1as33G4qTyET8PkpYMVENX60HBGHMzcDOAiBwN3GiMGSkiEwivBf2Q9e+M2s6bqh1V7WLqVH00+Ldv+Oe0e+3t0Sdfy7T9TghvlJafwC6R+HmQqjIOQql0VJfGKTwEvCYiFwOrgOEpzo+qIU7rDLhdwidLNzhOJRHdG6hZ8Vbynzjb3reo9d4MPe9Rgi43VZHjddsjlQFdDEcpS0qDgjHmU+BT63UhcFwq86Nqh1MbwXZfkDtnLua2GYvKfUuP9AbadunlnDNvlp0+9P/+w4JmHSq8VqMMF6XBECISLm1Yy25GT3dd2fTaSjUkdamkoBoQpzaC7Q5rHRcW+fjro88YcupJ9nFP9DuHRw87q9JreD0u7hnak2O6hzuyJWov0HEJSpXRoKBqXWVdTI0xfLJ0A4GiHRwzuC9diwoBKG3clGXfLebZlxbFTGudiAgx1VGJvvXrYjhKldGgoGqd0zfzaL6AYcVNdzN69nN22oizHmB+516826yJ43tzvG5KAyGMMWRneKr8YNdxCUqFaVBQtS56amoAX6DsId/5rzV88uz/2dvTeh7P6AHXhr/2Bw1rtxRzxoHtmfJ12ejkM/q045xDOtG+eTabtpeSv3ozvTs0o0vr6LGRyeVLg4Fq6DQoqGpTlX7+kampXdb0Fa5QkFdevpmDC5bYx/S5+kX+zImdF3FrcYDX5hfEpM1csI6x/ffli+V/ardSpXaRBgVVLarSzz92amrDkCWf8cRbE+z91wwezVt5R5V7n8cFTbI9jj2FFq/dot1KlaoGGhTULqvKYLTCIh+fLN2AxyW02r6JeU+ea+/buP8hfPjkS3z47jIau1yUBIKEQgavx03QhJgwrBc92jZ17CkEot1KlaoGGhTULnMajOb0QJ6Rv4Yx0xfiwnDfjEc4fdHH9r7+VzzD1PHncXaul5P2axeznnJ8lZRTT6Eebcs3QGu3UqWqToOC2iWFRT62FJeyozS2i2ixPxDzQC4s8nHjtAX0+W0BL79yi50+/oRLmHTIadw+MM9exCa+wTf+m36inkLarVSpXadBQSXFqRE50o7gcQnBuNmp49c/+OmXtcx/eDhNSncAsLZxK4657BluPrUXt7vd3Pv2kio1EDv1FNJupUrtOg0KqlJOjch9u7Sy2xGcZHncZdVHd9/NEXfdZe87deTD/NCuOxCe3uKJj5fhC1RPA7F2K1Vq12hQUBVK1Ij8zLl9yrUjRCv2B9hz3W/Q8UA7bcqBg7jj+Mtjjnvyk+Ux4xRAG4iVSqVUrtGs6oFEi9iDSTgq2R0KMnPSKJodUhYQKCyk2cSn8HqEbE/Z+YodShraQKxU6mhQUBVKNFlcj7ZN7XWMG2WWTVs9fOEH/DphKHnrfwsnvPkmGAMtWjCkdzu+vOk47j2lJ7ne8lNdN8p063rISqWYVh+pClU0WVykYXfx2i3c/Pi7zP33Bfb7Ptm7D/v98DktG2eVO98x3XfnthmLYtK9HuGpkQfQo21TDQhKpZAGBVWpCnv1GMO+11zE3A/etpOOuPw51jXfg2/jeiBFJAo0/brtXtO3opSqhAYFlRSnXj1fPfkih11znr1924lX8t/9B4Q3Qoa3FqxhcK9w19L4gKLdR5Wqm8QYU/lRdVSfPn3MvHnzUp2Nei96DAJQ4WhigL/WbKB5hz0Q63dneYv2nHzRP/G7M2LOm53hwh+36plOUqdU6onIfGNMH6d9WlJo4KLHIBT7A/YDvCQQLLc2wZDe7fjlgivoOvkp+/0DL3icxa33djx3Wc8iYy+oo5PUKVW3ae+jBix6DMI2X4BACPxBwzZfAH/QEAjBNl+AEn+IyU++DiJ2QPjPIcPoNHZWuYCQ6XZuR4iIjEGoSh4XrN5MYZGv6jeolKoyLSk0YE4T2cXLDPh5f9KVdN60DgC/y8MBo6ayzZtjH9Mow00Iw+0D8+jQohGXTplXbkBaRGkwyJbiUgqLfJWWFqoyHbdSqnpoUGjAKlsW87z5b3HPR0/b22te+R/HLfLGTG3h9bgY038fjujSyl7pbMKwsp5F0VVSxf4AIQNXTf0h6TUXdH0EpWqXBoUGKLphOdI11IWwwx8EoP3mP/ji6Uvs49/JO5LAf19iyP7tGb/PGvuBXxIIEgyFeOSDn3novaX2Qz6+ZxHA4rVb7RJEMu0LyU7HrZSqXhoUGhinKpm5Y4/lq18Lueal+Ux+7U76rfzBPv6j9+dxyOE9y3UlXbx2S/ghHwy3O0DsQz6+C2vT7Awy3a6YaqWKHvKJRlLr9BdK1SxtaG4gCot8zPl5A2OmL7Ablkv8Ica8vhCAHt9+zIrxQ+yAcOOAv9P9tnfYbd+9yz20W+Z6aZqdSaY7dqqKihqRq/qQjwxwy8pw0djr0ekvlKolWlKop5zWN0h0zKI1W7j37SW4RKx1kcu0KimiZeMsWlrbC/boymnnPkzQ5SYL7Id2/PXaN8+mJBCMOVdJIFjpQ74qi+DoADelap8GhXoomV450QvgFPmCjue554P/cN4PZdNTfDJ9Nlfk+2gU99BOtJ5C/MDHygZC7sxDXtdHUKp21XpQEJEOwBRgDyAEPGOMeVxEWgCvAp2AlcAZxphNtZ2/ui6ZXjnRxzg5oOAn3pg6uizh3nvhtts4Bph7UmyJoKL1FLIzPHZ7AkB2hqfShmB9yCtVt6WipBAAbjDGfC8ijYH5IvIhcAEw2xjzkIjcBNwEjE1B/uq0ZHrlJBp/4PX7+PzpS9h9ezjWBps1w11QADllYw7iH9qJrue0noI2BCtV/9V6Q7MxZp0x5nvr9TbgJ6AdMBSYbB02GTiltvNWHyTTYOtU3/9/30xn2aOn2wFh5LnjyLvqJWb+srnCUcPJrKegDcFKpY+UtimISCdgf+AboLUxZh2EA4eIOM6jLCKXAZcBdOzYsZZyWnck22Abqd/fq7CAjyeWLYH56t9OYOyAa8MbgRB/fzWfDLeQ6Q5PWHf7wDx6tmtqVx8ls56CNgQrlT5SNkuqiOQCnwH3G2PeEJHNxphmUfs3GWOaV3SOhjxLaqLeR4VFPj5ZuoF7Zixk0vOj6bPmJ3vfgVf/l8KcZpWeO9frJhAyMQ3YyfR2UkrVD3VullQRyQBeB6YaY96wkteLSBurlNAG2JCKvNUXTg22kV5CQxZ9ysI3x9vpVw8Zw6x9+yV97khvpYoGoyml0lMqeh8J8BzwkzHm0ahdM4HzgYesf2fUdt7qikTrG0Q/lOetKGTOL3/Sr2sr+nRuSWGRjwmTP2XpYyPtY77q+DfOHnE/Rnau6UinlVCq4UlFSaEvcC7wo4jkW2m3EA4Gr4nIxcAqYHgK8pZy0WMCEq1pMHLi13yxvBCAJz5ezpF7t+Dx9x7nizdetc9z9KVPs7JF5TOKtmmSyabiAG4RtpfGNk5rbyKlGp5aDwrGmC+ARJPuH1ebealrnMYEQOzcQjmZbjsgABz2+wJeHHervX3vMRfz3MGnJn3NdVtLmf5/h5LhcbNo7RbunbUk6RHHSqn0oyOa65DK1jfIcLn4YMl6ABqVFvPdk+eS4y8BYOvubZkzcw5TZ/1MNtGrnpVxA05jm1cW7mBYnw706tCM/j320AZlpRownRCvDqlsfYMdpQG67J7LdZ9PZck/htsB4ZRzH+HtmV9yWI/2zB17LE+fe2C5opgA953a0/G8vTs0s1+3zPXSq0MzDQhKNVAaFOqQyJgAr8dFdkb5H02XDSu59KguXPvlywA8f+BgOo2dRX7bfXjgnaX0Hfcxc5f/SY+2TfHELYvpcQsn9tiD8w6LHdtx3mEd7cVxlFJKq4/qGGP9HQqVPdQ9wQBvTf47+25caaf1+fvL9O/Xg4zvVuEPxbY7PHPugWR53PZiNgBZHjcFm4q5Z+jfOO/QTuSv3kzvDs00ICilYmhQqEMiDc3h6a3D4eHMBe8z7r1/2sdcctrtfNT1EBp7PfTu0Izp3xc4VDlJhVNhdGndWIOBUsqRBoU6IjISORQKB4M2Wzfy1X8utPd/tPdBXHL6HSDhEkSxP0Cnlo3KzYRa4g/RtmlWldcuUEop0KCwy6pj+ocZ+WsYPS0fDJQGDU+9+QD9f/7K3t/38kmsaRo7FZRIeE1lr1vwBcumKvG6w+MNdF4ipdTO0KCwC5JZ7KYyhUU+/v5KPgY4+td5vDD9LnvfrSdeydT9Bzi+L9Pt4reN28uN+BCX2NVEOjWFUqqqNCjspGQWu4k+NtE39q9+LaRxSRELHx9hp/3csiMDL3wcvzsj4fW3lwZ5+INlhAx4XMSMetZAoJTaWRoUdpLTQDO3S/hk6QaO6b67/WCurDTR6aE7WPjKc/b2gAueYEnrvfC4wGkMW6MMFzusdoTIxHVej4t/nXMAPdo20YCglNolOk5hJzkNNNvuC3LnzMX0HfcxM/PXxJQmtvkClPhDjHl9YXgxm3nzQISeVkB48rAz6DR2Fkta7wWEfzBugQy32IvY3HJydy45ci9yMt0x1810u2ianaEBQSm1y7SksJOiF59xu4Tt1rf2yKRyo6cv4OaT98UtsZX+jUIBcnt0h1UrwwmZmdz/wqc8u+CvmONKI/EmZPjXOfuz+q9i7n17iU5cp5SqUVpSSFL0kpWR1327tGLu2GO5e3APMuM+SV/AMO69pTEP8PPnv8X3DwzBawWErW++xYLl6+nUuS1ej4sMd/l5AoMGthb7ufftJZT4QzHny/G6dRlMpVS10pJCEiqbzrp3h2Zl3+yjRCal67D5Dz5/+pKyHWedxYzR4xn7xo94vv/abhtI5M+i0nLtFzmZbu4e3COm/UIppXaVlhQqEd8u4A8aAta0EpE2grVbislymKtITIgXX7ktNiCsWUPhM88z9o0fKfGHKg0IGW7hiC6tyrVfBI3RgKCUqnYaFCpRsKkYE0q8jnWGy4XT8hAnLfuSFeOHcOTv+QBse3oiGANt29o9lyqSneHC63HxyPBedGndmPGn70dWhstudNYqI6VUTdDqo0rkZLpjRgzH84dC9GjbxG503q1kG58/fKa9f0Hbbqya8QGD++xpp1U2RbZb4Olz+8R0MdURykqp2qAlhUpsLw06Vg153S68HrG/sQ/p3Y78tW/EBISls7+m/bKFMQEBynouZWW4aBTXvRSgUabHsYuprnWglKppGhSI7VkUr33zbPwOJQWXS7CrjebOBRGyJk0Mb99/P4XbSvB13SfhNYf0bsfcscfy1MgD8Hpiq5+0i6lSKlUafPVRZSOON20vJejQplDsD5LlL+HwI3rC9s3hxJYtYdUqZvy8ibHjPq50TqSWuV76ddudCcN66YymSqk6oUEHhWTmL8pfvdnxvVd8PY2xn00uS5gzB448skpzIkVoe4FSqq5o0EHBaf6iDJeLgk3F9oM5ev1igL0LVzN74hX29mv79+e4OW/axydzTic6o6lSqi5o0G0KTr2A4uvzu7RuzHmHdcQVCvLGizfEBITDrnuZrEkTYx7myZxTKaXqqgYdFKJ7AVXU//+eooX8NmEoB6xdBsC2KVNZsGoTs+45lb5dWsU0Uid7TqWUqosadPURVFKfv24dtG1rb37dqTcXnnMf4/7WmyEdmiVspNY2AqVUfdXggwI41OcbAyNHwksv2Un9LnuWVc3bQCDccJzXpkmFDcraRqCUqo80KMSbPRuOP97eXHPHA/TnALb5AnaaW4SZC9biccWOL0imQVkppeqyOtemICL9RWSZiCwXkZtq45qFRT5+/Gk1JienLCB06gTFxWSNvr78YjqlQZ774rdyk9lpg7JSqr6rU0FBRNzAv4CTgTzgLBHJq8lrzshfw6snX8Df8joiO3aEE7/5BlasgKysmIbj6BXPtkfNla3rGiil0kVdqz46GFhujPkNQEReAYYCS2riYpu/nsfQww6yt5/rM5QJ/f+PuXm9aBl1XKTh+JOlG7jrrcUxJQRd10AplU7qVEkBaAesjtousNKqnf/gQ2kWFRD2u/YV7j3uUrtdIF7LXC/HdN+dQNyUF7qugVIqndS1oFB+YQKIeQqLyGUiMk9E5m3cuHGnLvLuJz+S8d03AFx0+h10GjuLrVm5AJQGQ2wp9jtOjqdjEJRS6U6MSbxWQG0TkcOAu4wxJ1nbNwMYYx50Or5Pnz5m3rx5VbpGYZGPvuM+ptGWTfyV3QQkHIdyvG5KA6FyS206TWRXWOTTMQhKqXpLROYbY/o47atrJYXvgK4i0llEMoERwMzqvEBkJbW/GjW1A0KGC84+uCNC+aU2E5UYdF0DpVQ6qlNBwRgTAK4G3gd+Al4zxiyuzms4raTmD8GLX/9OadxyySZkHNsXlFIqXdW13kcYY94B3qmp828vDeJxQSBuNcwSf/nlMX1BE9MNVSml0l2dKinUhpxMd7mAkEhWhovt8cUHpZRKYw0uKCRaczkRHaGslGpI6lz1UU1L9JBP1PtIG5OVUg1JgwsKkbEG0Wsi3z4wj57tmtoBQ7ubKqUaqgYXFKDyNZE1GCilGqoGGRRA10RWSiknDa6hWSmlVGIaFJRSStk0KCillLJpUFBKKWXToKCUUspWp6bOrioR2Qj8vgunaAX8WU3ZqQ8a2v2C3nNDofdcNXsaY3Zz2lGvg8KuEpF5ieYUT0cN7X5B77mh0HuuPlp9pJRSyqZBQSmllK2hB4VnUp2BWtbQ7hf0nhsKvedq0qDbFJRSSsVq6CUFpZRSUTQoKKWUsjXIoCAi/UVkmYgsF5GbUp2fmiAiHUTkExH5SUQWi8i1VnoLEflQRH6x/m2e6rxWJxFxi8gPIjLL2k7r+wUQkWYiMl1Ello/78PS+b5F5Drrd3qRiLwsIlnpdr8iMklENojIoqi0hPcoIjdbz7NlInLSrly7wQUFEXED/wJOBvKAs0QkL7W5qhEB4AZjzL7AocBV1n3eBMw2xnQFZlvb6eRa4Keo7XS/X4DHgfeMMd2BXoTvPy3vW0TaAaOAPsaYnoAbGEH63e8LQP+4NMd7tP5fjwB6WO/5t/Wc2ykNLigABwPLjTG/GWNKgVeAoSnOU7Uzxqwzxnxvvd5G+EHRjvC9TrYOmwyckpIM1gARaQ8MBCZGJaft/QKISBOgH/AcgDGm1BizmfS+bw+QLSIeoBGwljS7X2PMHOCvuORE9zgUeMUY4zPGrACWE37O7ZSGGBTaAaujtgustLQlIp2A/YFvgNbGmHUQDhzA7inMWnV7DBgDhKLS0vl+AfYCNgLPW9VmE0UkhzS9b2PMGuBhYBWwDthijPmANL3fOInusVqfaQ0xKIhDWtr2yxWRXOB14O/GmK2pzk9NEZFBwAZjzPxU56WWeYADgP8YY/YHtlP/q04SsurRhwKdgbZAjoiMTG2uUq5an2kNMSgUAB2ittsTLn6mHRHJIBwQphpj3rCS14tIG2t/G2BDqvJXzfoCQ0RkJeEqwWNF5L+k7/1GFAAFxphvrO3phINEut738cAKY8xGY4wfeAM4nPS932iJ7rFan2kNMSh8B3QVkc4ikkm4gWZmivNU7URECNcz/2SMeTRq10zgfOv1+cCM2s5bTTDG3GyMaW+M6UT4Z/qxMWYkaXq/EcaYP4DVIrKPlXQcsIT0ve9VwKEi0sj6HT+OcHtZut5vtET3OBMYISJeEekMdAW+3emrGGMa3B9gAPAz8Ctwa6rzU0P3eAThIuRCIN/6MwBoSbjnwi/Wvy1SndcauPejgVnW64Zwv72BedbP+k2geTrfN3A3sBRYBLwIeNPtfoGXCbeZ+AmXBC6u6B6BW63n2TLg5F25tk5zoZRSytYQq4+UUkoloEFBKaWUTYOCUkopmwYFpZRSNg0KSimlbBoUlFJK2TQoKKWUsmlQUKoaichBIrLQmuM/x5r3v2eq86VUsnTwmlLVTETuA7KAbMLzEj2Y4iwplTQNCkpVM2tOre+AEuBwY0wwxVlSKmlafaRU9WsB5AKNCZcYlKo3tKSgVDUTkZmEp+/uDLQxxlyd4iwplTRPqjOgVDoRkfOAgDHmJWud3C9F5FhjzMepzptSydCSglJKKZu2KSillLJpUFBKKWXToKCUUsqmQUEppZRNg4JSSimbBgWllFI2DQpKKaVs/w9g9UoDpIYbsgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df.plot(kind='scatter',\n", + " x='x',\n", + " y='y',\n", + " title='x and y in the dataset, with prediction')\n", + "plt.plot(X, y_pred, color='red')" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "ccaf0068", + "metadata": {}, + "outputs": [], + "source": [ + "W, B = model.get_weights()" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "5e966641", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1.030289]], dtype=float32)" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "W" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "d7d8eb87", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.44838893], dtype=float32)" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "B" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "18ef5e31", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/exercises/Untitled.ipynb b/exercises/Untitled.ipynb new file mode 100644 index 0000000..363fcab --- /dev/null +++ b/exercises/Untitled.ipynb @@ -0,0 +1,6 @@ +{ + "cells": [], + "metadata": {}, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/solutions/2 Data exploration Exercises Solution.ipynb b/solutions/2 Data exploration Exercises Solution.ipynb new file mode 100644 index 0000000..3e5fab8 --- /dev/null +++ b/solutions/2 Data exploration Exercises Solution.ipynb @@ -0,0 +1,404 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import pandas as pd" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 1\n", + "- load the dataset: `../data/international-airline-passengers.csv`\n", + "- inspect it using the `.info()` and `.head()` commands\n", + "- use the function `pd.to_datetime()` to change the column type of 'Month' to a datatime type\n", + "- set the index of df to be a datetime index using the column 'Month' and the `df.set_index()` method\n", + "- choose the appropriate plot and display the data\n", + "- choose appropriate scale\n", + "- label the axes" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# - load the dataset: ../data/international-airline-passengers.csv\n", + "df = pd.read_csv('../data/international-airline-passengers.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# - inspect it using the .info() and .head() commands\n", + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# - use the function to_datetime() to change the column type of 'Month' to a datatime type\n", + "# - set the index of df to be a datetime index using the column 'Month' and tthe set_index() method\n", + "\n", + "df['Month'] = pd.to_datetime(df['Month'])\n", + "df = df.set_index('Month')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# - choose the appropriate plot and display the data\n", + "# - choose appropriate scale\n", + "# - label the axes\n", + "\n", + "df.plot();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 2\n", + "- load the dataset: `../data/weight-height.csv`\n", + "- inspect it\n", + "- plot it using a scatter plot with Weight as a function of Height\n", + "- plot the male and female populations with 2 different colors on a new scatter plot\n", + "- remember to label the axes" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# - load the dataset: ../data/weight-height.csv\n", + "# - inspect it\n", + "df = pd.read_csv('../data/weight-height.csv')\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "df['Gender'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# - plot it using a scatter plot with Weight as a function of Height\n", + "_ = df.plot(kind='scatter', x='Height', y='Weight');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# - plot the male and female populations with 2 different colors on a new scatter plot\n", + "# - remember to label the axes\n", + "\n", + "# this can be done in several ways, showing 2 here:\n", + "males = df[df['Gender'] == 'Male']\n", + "females = df.query('Gender == \"Female\"')\n", + "fig, ax = plt.subplots()\n", + "\n", + "males.plot(kind='scatter', x='Height', y='Weight',\n", + " ax=ax, color='blue', alpha=0.3,\n", + " title='Male & Female Populations')\n", + "\n", + "females.plot(kind='scatter', x='Height', y='Weight',\n", + " ax=ax, color='red', alpha=0.3);" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['Gendercolor'] = df['Gender'].map({'Male': 'blue', 'Female': 'red'})\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.plot(kind='scatter', \n", + " x='Height',\n", + " y='Weight',\n", + " c=df['Gendercolor'],\n", + " alpha=0.3,\n", + " title='Male & Female Populations');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig, ax = plt.subplots()\n", + "ax.plot(males['Height'], males['Weight'], 'ob', \n", + " females['Height'], females['Weight'], 'or', alpha=0.3)\n", + "plt.xlabel('Height')\n", + "plt.ylabel('Weight')\n", + "plt.title('Male & Female Populations');" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exercise 3\n", + "- plot the histogram of the heights for males and for females on the same plot\n", + "- use alpha to control transparency in the plot comand\n", + "- plot a vertical line at the mean of each population using `plt.axvline()`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "males['Height'].plot(kind='hist',\n", + " bins=50,\n", + " range=(50, 80),\n", + " alpha=0.3,\n", + " color='blue')\n", + "\n", + "females['Height'].plot(kind='hist',\n", + " bins=50,\n", + " range=(50, 80),\n", + " alpha=0.3,\n", + " color='red')\n", + "\n", + "plt.title('Height distribution')\n", + "plt.legend([\"Males\", \"Females\"])\n", + "plt.xlabel(\"Heigth (in)\")\n", + "\n", + "\n", + "plt.axvline(males['Height'].mean(), color='blue', linewidth=2)\n", + "plt.axvline(females['Height'].mean(), color='red', linewidth=2);" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "males['Height'].plot(kind='hist',\n", + " bins=200,\n", + " range=(50, 80),\n", + " alpha=0.3,\n", + " color='blue',\n", + " cumulative=True,\n", + " density=True)\n", + "\n", + "females['Height'].plot(kind='hist',\n", + " bins=200,\n", + " range=(50, 80),\n", + " alpha=0.3,\n", + " color='red',\n", + " cumulative=True,\n", + " density=True)\n", + "\n", + "plt.title('Height distribution')\n", + "plt.legend([\"Males\", \"Females\"])\n", + "plt.xlabel(\"Heigth (in)\")\n", + "\n", + "plt.axhline(0.8)\n", + "plt.axhline(0.5)\n", + "plt.axhline(0.2);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 4\n", + "- plot the weights of the males and females using a box plot\n", + "- which one is easier to read?\n", + "- (remember to put in titles, axes and legends)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dfpvt = df.pivot(columns = 'Gender', values = 'Weight')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dfpvt.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dfpvt.info()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dfpvt.plot(kind='box')\n", + "plt.title('Weight Box Plot')\n", + "plt.ylabel(\"Weight (lbs)\");" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 5\n", + "- load the dataset: `../data/titanic-train.csv`\n", + "- learn about scattermatrix here: http://pandas.pydata.org/pandas-docs/stable/visualization.html\n", + "- display the data using a scattermatrix" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../data/titanic-train.csv')\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from pandas.plotting import scatter_matrix" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "_ = scatter_matrix(df.drop('PassengerId', axis=1), figsize=(10, 10))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/solutions/3 Machine Learning Exercises Solution.ipynb b/solutions/3 Machine Learning Exercises Solution.ipynb new file mode 100644 index 0000000..604e979 --- /dev/null +++ b/solutions/3 Machine Learning Exercises Solution.ipynb @@ -0,0 +1,669 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Machine Learning Exercises Solution" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import numpy as np" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 1\n", + "\n", + "You've just been hired at a real estate investment firm and they would like you to build a model for pricing houses. You are given a dataset that contains data for house prices and a few features like number of bedrooms, size in square feet and age of the house. Let's see if you can build a model that is able to predict the price. In this exercise we extend what we have learned about linear regression to a dataset with more than one feature. Here are the steps to complete it:\n", + "\n", + "1. Load the dataset ../data/housing-data.csv\n", + "- plot the histograms for each feature\n", + "- create 2 variables called X and y: X shall be a matrix with 3 columns (sqft,bdrms,age) and y shall be a vector with 1 column (price)\n", + "- create a linear regression model in Keras with the appropriate number of inputs and output\n", + "- split the data into train and test with a 20% test size\n", + "- train the model on the training set and check its accuracy on training and test set\n", + "- how's your model doing? Is the loss growing smaller?\n", + "- try to improve your model with these experiments:\n", + " - normalize the input features with one of the rescaling techniques mentioned above\n", + " - use a different value for the learning rate of your model\n", + " - use a different optimizer\n", + "- once you're satisfied with training, check the R2score on the test set" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the dataset ../data/housing-data.csv\n", + "df = pd.read_csv('../data/housing-data.csv')\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.columns" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# plot the histograms for each feature\n", + "plt.figure(figsize=(15, 5))\n", + "for i, feature in enumerate(df.columns):\n", + " plt.subplot(1, 4, i+1)\n", + " df[feature].plot(kind='hist', title=feature)\n", + " plt.xlabel(feature)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# create 2 variables called X and y:\n", + "# X shall be a matrix with 3 columns (sqft,bdrms,age)\n", + "# and y shall be a vector with 1 column (price)\n", + "X = df[['sqft', 'bdrms', 'age']].values\n", + "y = df['price'].values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.optimizers import Adam" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# create a linear regression model in Keras\n", + "# with the appropriate number of inputs and output\n", + "model = Sequential()\n", + "model.add(Dense(1, input_shape=(3,)))\n", + "model.compile(Adam(learning_rate=0.8), 'mean_squared_error')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# split the data into train and test with a 20% test size\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "len(X_train)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "len(X)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# train the model on the training set and check its accuracy on training and test set\n", + "# how's your model doing? Is the loss growing smaller?\n", + "model.fit(X_train, y_train, epochs=10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import r2_score" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# check the R2score on training and test set (probably very bad)\n", + "\n", + "y_train_pred = model.predict(X_train)\n", + "y_test_pred = model.predict(X_test)\n", + "\n", + "print(\"The R2 score on the Train set is:\\t{:0.3f}\".format(r2_score(y_train, y_train_pred)))\n", + "print(\"The R2 score on the Test set is:\\t{:0.3f}\".format(r2_score(y_test, y_test_pred)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# try to improve your model with these experiments:\n", + "# - normalize the input features with one of the rescaling techniques mentioned above\n", + "# - use a different value for the learning rate of your model\n", + "# - use a different optimizer\n", + "df['sqft1000'] = df['sqft']/1000.0\n", + "df['age10'] = df['age']/10.0\n", + "df['price100k'] = df['price']/1e5" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X = df[['sqft1000', 'bdrms', 'age10']].values\n", + "y = df['price100k'].values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Dense(1, input_dim=3))\n", + "model.compile(Adam(learning_rate=0.1), 'mean_squared_error')\n", + "model.fit(X_train, y_train, epochs=20)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# once you're satisfied with training, check the R2score on the test set\n", + "\n", + "y_train_pred = model.predict(X_train)\n", + "y_test_pred = model.predict(X_test)\n", + "\n", + "print(\"The R2 score on the Train set is:\\t{:0.3f}\".format(r2_score(y_train, y_train_pred)))\n", + "print(\"The R2 score on the Test set is:\\t{:0.3f}\".format(r2_score(y_test, y_test_pred)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train, epochs=40, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# once you're satisfied with training, check the R2score on the test set\n", + "\n", + "y_train_pred = model.predict(X_train)\n", + "y_test_pred = model.predict(X_test)\n", + "\n", + "print(\"The R2 score on the Train set is:\\t{:0.3f}\".format(r2_score(y_train, y_train_pred)))\n", + "print(\"The R2 score on the Test set is:\\t{:0.3f}\".format(r2_score(y_test, y_test_pred)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 2\n", + "\n", + "Your boss was extremely happy with your work on the housing price prediction model and decided to entrust you with a more challenging task. They've seen a lot of people leave the company recently and they would like to understand why that's happening. They have collected historical data on employees and they would like you to build a model that is able to predict which employee will leave next. The would like a model that is better than random guessing. They also prefer false negatives than false positives, in this first phase. Fields in the dataset include:\n", + "\n", + "- Employee satisfaction level\n", + "- Last evaluation\n", + "- Number of projects\n", + "- Average monthly hours\n", + "- Time spent at the company\n", + "- Whether they have had a work accident\n", + "- Whether they have had a promotion in the last 5 years\n", + "- Department\n", + "- Salary\n", + "- Whether the employee has left\n", + "\n", + "Your goal is to predict the binary outcome variable `left` using the rest of the data. Since the outcome is binary, this is a classification problem. Here are some things you may want to try out:\n", + "\n", + "1. load the dataset at ../data/HR_comma_sep.csv, inspect it with `.head()`, `.info()` and `.describe()`.\n", + "- Establish a benchmark: what would be your accuracy score if you predicted everyone stay?\n", + "- Check if any feature needs rescaling. You may plot a histogram of the feature to decide which rescaling method is more appropriate.\n", + "- convert the categorical features into binary dummy columns. You will then have to combine them with the numerical features using `pd.concat`.\n", + "- do the usual train/test split with a 20% test size\n", + "- play around with learning rate and optimizer\n", + "- check the confusion matrix, precision and recall\n", + "- check if you still get the same results if you use a 5-Fold cross validation on all the data\n", + "- Is the model good enough for your boss?\n", + "\n", + "As you will see in this exercise, the a logistic regression model is not good enough to help your boss. In the next chapter we will learn how to go beyond linear models.\n", + "\n", + "This dataset comes from https://www.kaggle.com/ludobenistant/hr-analytics/ and is released under [CC BY-SA 4.0 License](https://creativecommons.org/licenses/by-sa/4.0/)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# load the dataset at ../data/HR_comma_sep.csv, inspect it with `.head()`, `.info()` and `.describe()`.\n", + "\n", + "df = pd.read_csv('../data/HR_comma_sep.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Establish a benchmark: what would be your accuracy score if you predicted everyone stay?\n", + "\n", + "df.left.value_counts() / len(df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Predicting 0 all the time would yield an accuracy of 76%" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Check if any feature needs rescaling.\n", + "# You may plot a histogram of the feature to decide which rescaling method is more appropriate.\n", + "df['average_montly_hours'].plot(kind='hist');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['average_montly_hours_100'] = df['average_montly_hours']/100.0" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['average_montly_hours_100'].plot(kind='hist');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df['time_spend_company'].plot(kind='hist');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# convert the categorical features into binary dummy columns.\n", + "# You will then have to combine them with\n", + "# the numerical features using `pd.concat`.\n", + "df_dummies = pd.get_dummies(df[['sales', 'salary']])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_dummies.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.columns" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X = pd.concat([df[['satisfaction_level', 'last_evaluation', 'number_project',\n", + " 'time_spend_company', 'Work_accident',\n", + " 'promotion_last_5years', 'average_montly_hours_100']],\n", + " df_dummies], axis=1).values\n", + "y = df['left'].values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# do the usual train/test split with a 20% test size\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# play around with learning rate and optimizer\n", + "\n", + "model = Sequential()\n", + "model.add(Dense(1, input_dim=20, activation='sigmoid'))\n", + "model.compile(Adam(learning_rate=0.5), 'binary_crossentropy', metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train, epochs=10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_test_pred = model.predict_classes(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import confusion_matrix, classification_report" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def pretty_confusion_matrix(y_true, y_pred, labels=[\"False\", \"True\"]):\n", + " cm = confusion_matrix(y_true, y_pred)\n", + " pred_labels = ['Predicted '+ l for l in labels]\n", + " df = pd.DataFrame(cm, index=labels, columns=pred_labels)\n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# check the confusion matrix, precision and recall\n", + "\n", + "pretty_confusion_matrix(y_test, y_test_pred, labels=['Stay', 'Leave'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(classification_report(y_test, y_test_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.wrappers.scikit_learn import KerasClassifier" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# check if you still get the same results if you use a 5-Fold cross validation on all the data\n", + "\n", + "def build_logistic_regression_model():\n", + " model = Sequential()\n", + " model.add(Dense(1, input_dim=20, activation='sigmoid'))\n", + " model.compile(Adam(learning_rate=0.5), 'binary_crossentropy', metrics=['accuracy'])\n", + " return model\n", + "\n", + "model = KerasClassifier(build_fn=build_logistic_regression_model,\n", + " epochs=10, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import KFold, cross_val_score" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "cv = KFold(5, shuffle=True)\n", + "scores = cross_val_score(model, X, y, cv=cv)\n", + "\n", + "print(\"The cross validation accuracy is {:0.4f} ± {:0.4f}\".format(scores.mean(), scores.std()))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "scores" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Is the model good enough for your boss?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "No, the model is not good enough for my boss, since it performs no better than the benchmark." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/solutions/4 Deep Learning Intro Exercises Solution.ipynb b/solutions/4 Deep Learning Intro Exercises Solution.ipynb new file mode 100644 index 0000000..712f75a --- /dev/null +++ b/solutions/4 Deep Learning Intro Exercises Solution.ipynb @@ -0,0 +1,413 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Deep Learning Intro" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import numpy as np" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 1" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "The [Pima Indians dataset](https://archive.ics.uci.edu/ml/datasets/diabetes) is a very famous dataset distributed by UCI and originally collected from the National Institute of Diabetes and Digestive and Kidney Diseases. It contains data from clinical exams for women age 21 and above of Pima indian origins. The objective is to predict based on diagnostic measurements whether a patient has diabetes.\n", + "\n", + "It has the following features:\n", + "\n", + "- Pregnancies: Number of times pregnant\n", + "- Glucose: Plasma glucose concentration a 2 hours in an oral glucose tolerance test\n", + "- BloodPressure: Diastolic blood pressure (mm Hg)\n", + "- SkinThickness: Triceps skin fold thickness (mm)\n", + "- Insulin: 2-Hour serum insulin (mu U/ml)\n", + "- BMI: Body mass index (weight in kg/(height in m)^2)\n", + "- DiabetesPedigreeFunction: Diabetes pedigree function\n", + "- Age: Age (years)\n", + "\n", + "The last colum is the outcome, and it is a binary variable.\n", + "\n", + "In this first exercise we will explore it through the following steps:\n", + "\n", + "1. Load the ..data/diabetes.csv dataset, use pandas to explore the range of each feature\n", + "- For each feature draw a histogram. Bonus points if you draw all the histograms in the same figure.\n", + "- Explore correlations of features with the outcome column. You can do this in several ways, for example using the `sns.pairplot` we used above or drawing a heatmap of the correlations.\n", + "- Do features need standardization? If so what stardardization technique will you use? MinMax? Standard?\n", + "- Prepare your final `X` and `y` variables to be used by a ML model. Make sure you define your target variable well. Will you need dummy columns?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../data/diabetes.csv')\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "_ = df.hist(figsize=(12, 10))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sns.pairplot(df, hue='Outcome');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sns.heatmap(df.corr(), annot = True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import StandardScaler" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.utils import to_categorical" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sc = StandardScaler()\n", + "X = sc.fit_transform(df.drop('Outcome', axis=1))\n", + "y = df['Outcome'].values\n", + "y_cat = to_categorical(y)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_cat.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 2" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "Build a fully connected NN model that predicts diabetes. Follow these steps:\n", + "\n", + "1. Split your data in a train/test with a test size of 20% and a `random_state = 22`\n", + "- define a sequential model with at least one inner layer. You will have to make choices for the following things:\n", + " - what is the size of the input?\n", + " - how many nodes will you use in each layer?\n", + " - what is the size of the output?\n", + " - what activation functions will you use in the inner layers?\n", + " - what activation function will you use at output?\n", + " - what loss function will you use?\n", + " - what optimizer will you use?\n", + "- fit your model on the training set, using a validation_split of 0.1\n", + "- test your trained model on the test data from the train/test split\n", + "- check the accuracy score, the confusion matrix and the classification report" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y_cat,\n", + " random_state=22,\n", + " test_size=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.optimizers import Adam" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Dense(32, input_shape=(8,), activation='relu'))\n", + "model.add(Dense(32, activation='relu'))\n", + "model.add(Dense(2, activation='softmax'))\n", + "model.compile(Adam(learning_rate=0.05),\n", + " loss='categorical_crossentropy',\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "32*8 + 32" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train, epochs=20, verbose=2, validation_split=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_test_class = np.argmax(y_test, axis=1)\n", + "y_pred_class = np.argmax(y_pred, axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import accuracy_score\n", + "from sklearn.metrics import classification_report\n", + "from sklearn.metrics import confusion_matrix" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pd.Series(y_test_class).value_counts() / len(y_test_class)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "accuracy_score(y_test_class, y_pred_class)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(classification_report(y_test_class, y_pred_class))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "confusion_matrix(y_test_class, y_pred_class)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 3\n", + "Compare your work with the results presented in [this notebook](https://www.kaggle.com/sheshu/pima-data-visualisation-and-machine-learning). Are your Neural Network results better or worse than the results obtained by traditional Machine Learning techniques?\n", + "\n", + "- Try training a Support Vector Machine or a Random Forest model on the exact same train/test split. Is the performance better or worse?\n", + "- Try restricting your features to only 4 features like in the suggested notebook. How does model performance change?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.ensemble import RandomForestClassifier\n", + "from sklearn.svm import SVC\n", + "from sklearn.naive_bayes import GaussianNB\n", + "\n", + "for mod in [RandomForestClassifier(), SVC(), GaussianNB()]:\n", + " mod.fit(X_train, y_train[:, 1])\n", + " y_pred = mod.predict(X_test)\n", + " print(\"=\"*80)\n", + " print(mod)\n", + " print(\"-\"*80)\n", + " print(\"Accuracy score: {:0.3}\".format(accuracy_score(y_test_class,\n", + " y_pred)))\n", + " print(\"Confusion Matrix:\")\n", + " print(confusion_matrix(y_test_class, y_pred))\n", + " print()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 4\n", + "\n", + "[Tensorflow playground](http://playground.tensorflow.org/) is a web based neural network demo. It is really useful to develop an intuition about what happens when you change architecture, activation function or other parameters. Try playing with it for a few minutes. You don't nee do understand the meaning of every knob and button in the page, just get a sense for what happens if you change something. In the next chapter we'll explore these things in more detail.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/solutions/5 Gradient Descent Exercises Solution.ipynb b/solutions/5 Gradient Descent Exercises Solution.ipynb new file mode 100644 index 0000000..c0930b6 --- /dev/null +++ b/solutions/5 Gradient Descent Exercises Solution.ipynb @@ -0,0 +1,518 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Gradient Descent" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 1\n", + "\n", + "You've just been hired at a wine company and they would like you to help them build a model that predicts the quality of their wine based on several measurements. They give you a dataset with wine\n", + "\n", + "- Load the ../data/wines.csv into Pandas\n", + "- Use the column called \"Class\" as target\n", + "- Check how many classes are there in target, and if necessary use dummy columns for a multi-class classification\n", + "- Use all the other columns as features, check their range and distribution (using seaborn pairplot)\n", + "- Rescale all the features using either MinMaxScaler or StandardScaler\n", + "- Build a deep model with at least 1 hidden layer to classify the data\n", + "- Choose the cost function, what will you use? Mean Squared Error? Binary Cross-Entropy? Categorical Cross-Entropy?\n", + "- Choose an optimizer\n", + "- Choose a value for the learning rate, you may want to try with several values\n", + "- Choose a batch size\n", + "- Train your model on all the data using a `validation_split=0.2`. Can you converge to 100% validation accuracy?\n", + "- What's the minumum number of epochs to converge?\n", + "- Repeat the training several times to verify how stable your results are" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../data/wines.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y = df['Class']" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y.value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_cat = pd.get_dummies(y)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_cat.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X = df.drop('Class', axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sns.pairplot(df, hue='Class')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import StandardScaler" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sc = StandardScaler()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "Xsc = sc.fit_transform(X)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.optimizers import SGD, Adam, Adadelta, RMSprop\n", + "import tensorflow.keras.backend as K" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "model = Sequential()\n", + "model.add(Dense(5, input_shape=(13,),\n", + " kernel_initializer='he_normal',\n", + " activation='relu'))\n", + "model.add(Dense(3, activation='softmax'))\n", + "\n", + "model.compile(RMSprop(learning_rate=0.1),\n", + " 'categorical_crossentropy',\n", + " metrics=['accuracy'])\n", + "\n", + "model.fit(Xsc, y_cat.values,\n", + " batch_size=8,\n", + " epochs=10,\n", + " verbose=1,\n", + " validation_split=0.2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 2\n", + "\n", + "Since this dataset has 13 features we can only visualize pairs of features like we did in the Paired plot. We could however exploit the fact that a neural network is a function to extract 2 high level features to represent our data.\n", + "\n", + "- Build a deep fully connected network with the following structure:\n", + " - Layer 1: 8 nodes\n", + " - Layer 2: 5 nodes\n", + " - Layer 3: 2 nodes\n", + " - Output : 3 nodes\n", + "- Choose activation functions, inizializations, optimizer and learning rate so that it converges to 100% accuracy within 20 epochs (not easy)\n", + "- Remember to train the model on the scaled data\n", + "- Define a Feature Function like we did above between the input of the 1st layer and the output of the 3rd layer\n", + "- Calculate the features and plot them on a 2-dimensional scatter plot\n", + "- Can we distinguish the 3 classes well?\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "model = Sequential()\n", + "model.add(Dense(8, input_shape=(13,),\n", + " kernel_initializer='he_normal', activation='tanh'))\n", + "model.add(Dense(5, kernel_initializer='he_normal', activation='tanh'))\n", + "model.add(Dense(2, kernel_initializer='he_normal', activation='tanh'))\n", + "model.add(Dense(3, activation='softmax'))\n", + "\n", + "model.compile(RMSprop(learning_rate=0.05),\n", + " 'categorical_crossentropy',\n", + " metrics=['accuracy'])\n", + "\n", + "model.fit(Xsc, y_cat.values,\n", + " batch_size=16,\n", + " epochs=20,\n", + " verbose=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "inp = model.layers[0].input\n", + "out = model.layers[2].output" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "features_function = K.function([inp], [out])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "features = features_function([Xsc])[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "features.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.scatter(features[:, 0], features[:, 1], c=y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 3\n", + "\n", + "Keras functional API. So far we've always used the Sequential model API in Keras. However, Keras also offers a Functional API, which is much more powerful. You can find its [documentation here](https://keras.io/getting-started/functional-api-guide/). Let's see how we can leverage it.\n", + "\n", + "- define an input layer called `inputs`\n", + "- define two hidden layers as before, one with 8 nodes, one with 5 nodes\n", + "- define a `second_to_last` layer with 2 nodes\n", + "- define an output layer with 3 nodes\n", + "- create a model that connect input and output\n", + "- train it and make sure that it converges\n", + "- define a function between inputs and second_to_last layer\n", + "- recalculate the features and plot them" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.layers import Input\n", + "from tensorflow.keras.models import Model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "\n", + "inputs = Input(shape=(13,))\n", + "x = Dense(8, kernel_initializer='he_normal', activation='tanh')(inputs)\n", + "x = Dense(5, kernel_initializer='he_normal', activation='tanh')(x)\n", + "second_to_last = Dense(2, kernel_initializer='he_normal',\n", + " activation='tanh')(x)\n", + "outputs = Dense(3, activation='softmax')(second_to_last)\n", + "\n", + "model = Model(inputs=inputs, outputs=outputs)\n", + "\n", + "model.compile(RMSprop(learning_rate=0.05),\n", + " 'categorical_crossentropy',\n", + " metrics=['accuracy'])\n", + "\n", + "model.fit(Xsc, y_cat.values, batch_size=16, epochs=20, verbose=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "features_function = K.function([inputs], [second_to_last])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "features = features_function([Xsc])[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.scatter(features[:, 0], features[:, 1], c=y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 4 \n", + "\n", + "Keras offers the possibility to call a function at each epoch. These are Callbacks, and their [documentation is here](https://keras.io/callbacks/). Callbacks allow us to add some neat functionality. In this exercise we'll explore a few of them.\n", + "\n", + "- Split the data into train and test sets with a test_size = 0.3 and random_state=42\n", + "- Reset and recompile your model\n", + "- train the model on the train data using `validation_data=(X_test, y_test)`\n", + "- Use the `EarlyStopping` callback to stop your training if the `val_loss` doesn't improve\n", + "- Use the `ModelCheckpoint` callback to save the trained model to disk once training is finished\n", + "- Use the `TensorBoard` callback to output your training information to a `/tmp/` subdirectory\n", + "- Watch the next video for an overview of tensorboard" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, TensorBoard" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "checkpointer = ModelCheckpoint(filepath=\"/tmp/udemy/weights.hdf5\",\n", + " verbose=1, save_best_only=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "earlystopper = EarlyStopping(monitor='val_loss', min_delta=0,\n", + " patience=1, verbose=1, mode='auto')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "tensorboard = TensorBoard(log_dir='/tmp/udemy/tensorboard/')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(Xsc, y_cat.values,\n", + " test_size=0.3,\n", + " random_state=42)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "\n", + "inputs = Input(shape=(13,))\n", + "\n", + "x = Dense(8, kernel_initializer='he_normal', activation='tanh')(inputs)\n", + "x = Dense(5, kernel_initializer='he_normal', activation='tanh')(x)\n", + "second_to_last = Dense(2, kernel_initializer='he_normal',\n", + " activation='tanh')(x)\n", + "outputs = Dense(3, activation='softmax')(second_to_last)\n", + "\n", + "model = Model(inputs=inputs, outputs=outputs)\n", + "\n", + "model.compile(RMSprop(learning_rate=0.05), 'categorical_crossentropy',\n", + " metrics=['accuracy'])\n", + "\n", + "model.fit(X_train, y_train, batch_size=32,\n", + " epochs=20, verbose=2,\n", + " validation_data=(X_test, y_test),\n", + " callbacks=[checkpointer, earlystopper, tensorboard])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Run Tensorboard with the command:\n", + "\n", + " tensorboard --logdir /tmp/udemy/tensorboard/\n", + " \n", + "and open your browser at http://localhost:6006" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/solutions/6 Convolutional Neural Networks Exercises Solution.ipynb b/solutions/6 Convolutional Neural Networks Exercises Solution.ipynb new file mode 100644 index 0000000..15f5bba --- /dev/null +++ b/solutions/6 Convolutional Neural Networks Exercises Solution.ipynb @@ -0,0 +1,365 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Convolutional Neural Networks Exercises Solution" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.utils import to_categorical" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D, Flatten\n", + "import tensorflow.keras.backend as K" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "### Exercise 1\n", + "\n", + "You've been hired by a shipping company to overhaul the way they route mail, parcels and packages. They want to build an image recognition system capable of recognizing the digits in the zipcode on a package, so that it can be automatically routed to the correct location.\n", + "You are tasked to build the digit recognition system. Luckily, you can rely on the MNIST dataset for the intial training of your model!\n", + "\n", + "Build a deep convolutional neural network with at least two convolutional and two pooling layers before the fully connected layer.\n", + "\n", + "- Start from the network we have just built\n", + "- Insert a `Conv2D` layer after the first `MaxPool2D`, give it 64 filters.\n", + "- Insert a `MaxPool2D` after that one\n", + "- Insert an `Activation` layer\n", + "- retrain the model\n", + "- does performance improve?\n", + "- how many parameters does this new model have? More or less than the previous model? Why?\n", + "- how long did this second model take to train? Longer or shorter than the previous model? Why?\n", + "- did it perform better or worse than the previous model?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.datasets import mnist" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "(X_train, y_train), (X_test, y_test) = mnist.load_data(('/tmp/mnist.npz'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train = X_train.astype('float32') / 255.0\n", + "X_test = X_test.astype('float32') / 255.0\n", + "\n", + "X_train = X_train.reshape(-1, 28, 28, 1)\n", + "X_test = X_test.reshape(-1, 28, 28, 1)\n", + "\n", + "y_train_cat = to_categorical(y_train, 10)\n", + "y_test_cat = to_categorical(y_test, 10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "\n", + "model = Sequential()\n", + "\n", + "model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))\n", + "model.add(MaxPool2D(pool_size=(2, 2)))\n", + "\n", + "model.add(Conv2D(64, (3, 3), activation='relu'))\n", + "model.add(MaxPool2D(pool_size=(2, 2)))\n", + "\n", + "model.add(Flatten())\n", + "\n", + "model.add(Dense(128, activation='relu'))\n", + "\n", + "model.add(Dense(10, activation='softmax'))\n", + "\n", + "model.compile(loss='categorical_crossentropy',\n", + " optimizer='rmsprop',\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train_cat, batch_size=128,\n", + " epochs=2, verbose=1, validation_split=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.evaluate(X_test, y_test_cat)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 2\n", + "\n", + "Pleased with your performance with the digits recognition task, your boss decides to challenge you with a harder task. Their online branch allows people to upload images to a website that generates and prints a postcard that is shipped to destination. Your boss would like to know what images people are loading on the site in order to provide targeted advertising on the same page, so he asks you to build an image recognition system capable of recognizing a few objects. Luckily for you, there's a dataset ready made with a collection of labeled images. This is the [Cifar 10 Dataset](http://www.cs.toronto.edu/~kriz/cifar.html), a very famous dataset that contains images for 10 different categories:\n", + "\n", + "- airplane \t\t\t\t\t\t\t\t\t\t\n", + "- automobile \t\t\t\t\t\t\t\t\t\t\n", + "- bird \t\t\t\t\t\t\t\t\t\t\n", + "- cat \t\t\t\t\t\t\t\t\t\t\n", + "- deer \t\t\t\t\t\t\t\t\t\t\n", + "- dog \t\t\t\t\t\t\t\t\t\t\n", + "- frog \t\t\t\t\t\t\t\t\t\t\n", + "- horse \t\t\t\t\t\t\t\t\t\t\n", + "- ship \t\t\t\t\t\t\t\t\t\t\n", + "- truck\n", + "\n", + "In this exercise we will reach the limit of what you can achieve on your laptop and get ready for the next session on cloud GPUs.\n", + "\n", + "Here's what you have to do:\n", + "- load the cifar10 dataset using `keras.datasets.cifar10.load_data()`\n", + "- display a few images, see how hard/easy it is for you to recognize an object with such low resolution\n", + "- check the shape of X_train, does it need reshape?\n", + "- check the scale of X_train, does it need rescaling?\n", + "- check the shape of y_train, does it need reshape?\n", + "- build a model with the following architecture, and choose the parameters and activation functions for each of the layers:\n", + " - conv2d\n", + " - conv2d\n", + " - maxpool\n", + " - conv2d\n", + " - conv2d\n", + " - maxpool\n", + " - flatten\n", + " - dense\n", + " - output\n", + "- compile the model and check the number of parameters\n", + "- attempt to train the model with the optimizer of your choice. How fast does training proceed?\n", + "- If training is too slow (as expected) stop the execution and move to the next session!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.datasets import cifar10" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "(X_train, y_train), (X_test, y_test) = cifar10.load_data()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.imshow(X_train[1])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train = X_train.astype('float32') / 255.0\n", + "X_test = X_test.astype('float32') / 255.0" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train_cat = to_categorical(y_train, 10)\n", + "y_test_cat = to_categorical(y_test, 10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_train_cat.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Conv2D(32, (3, 3),\n", + " padding='same',\n", + " input_shape=(32, 32, 3),\n", + " activation='relu'))\n", + "model.add(Conv2D(32, (3, 3), activation='relu'))\n", + "model.add(MaxPool2D(pool_size=(2, 2)))\n", + "\n", + "model.add(Conv2D(64, (3, 3), padding='same', activation='relu'))\n", + "model.add(Conv2D(64, (3, 3), activation='relu'))\n", + "model.add(MaxPool2D(pool_size=(2, 2)))\n", + "\n", + "model.add(Flatten())\n", + "model.add(Dense(512, activation='relu'))\n", + "model.add(Dense(10, activation='softmax'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.compile(loss='categorical_crossentropy',\n", + " optimizer='rmsprop',\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train, y_train_cat,\n", + " batch_size=32,\n", + " epochs=2,\n", + " validation_data=(X_test, y_test_cat),\n", + " shuffle=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/solutions/8 Recurrent Neural Networks Exercises Solutions.ipynb b/solutions/8 Recurrent Neural Networks Exercises Solutions.ipynb new file mode 100644 index 0000000..76f49e1 --- /dev/null +++ b/solutions/8 Recurrent Neural Networks Exercises Solutions.ipynb @@ -0,0 +1,333 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Recurrent Neural Networks" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Time series forecasting" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from pandas.tseries.offsets import MonthEnd\n", + "\n", + "df = pd.read_csv('../data/cansim-0800020-eng-6674700030567901031.csv',\n", + " skiprows=6, skipfooter=9,\n", + " engine='python')\n", + "\n", + "df['Adjustments'] = pd.to_datetime(df['Adjustments']) + MonthEnd(1)\n", + "df = df.set_index('Adjustments')\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "split_date = pd.Timestamp('01-01-2011')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train = df.loc[:split_date, ['Unadjusted']]\n", + "test = df.loc[split_date:, ['Unadjusted']]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "sc = MinMaxScaler()\n", + "\n", + "train_sc = sc.fit_transform(train)\n", + "test_sc = sc.transform(test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_sc_df = pd.DataFrame(train_sc, columns=['Scaled'], index=train.index)\n", + "test_sc_df = pd.DataFrame(test_sc, columns=['Scaled'], index=test.index)\n", + "\n", + "for s in range(1, 13):\n", + " train_sc_df['shift_{}'.format(s)] = train_sc_df['Scaled'].shift(s)\n", + " test_sc_df['shift_{}'.format(s)] = test_sc_df['Scaled'].shift(s)\n", + "\n", + "X_train = train_sc_df.dropna().drop('Scaled', axis=1)\n", + "y_train = train_sc_df.dropna()[['Scaled']]\n", + "\n", + "X_test = test_sc_df.dropna().drop('Scaled', axis=1)\n", + "y_test = test_sc_df.dropna()[['Scaled']]\n", + "\n", + "X_train = X_train.values\n", + "X_test= X_test.values\n", + "\n", + "y_train = y_train.values\n", + "y_test = y_test.values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 1\n", + "\n", + "In the model above we reshaped the input shape to: `(num_samples, 1, 12)`, i.e. we treated a window of 12 months as a vector of 12 coordinates that we simultaneously passed to all the LSTM nodes. An alternative way to look at the problem is to reshape the input to `(num_samples, 12, 1)`. This means we consider each input window as a sequence of 12 values that we will pass in sequence to the LSTM. In principle this looks like a more accurate description of our situation. But does it yield better predictions? Let's check it.\n", + "\n", + "- Reshape `X_train` and `X_test` so that they represent a set of univariate sequences\n", + "- retrain the same LSTM(6) model, you'll have to adapt the `input_shape`\n", + "- check the performance of this new model, is it better at predicting the test data?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train_t = X_train.reshape(X_train.shape[0], 12, 1)\n", + "X_test_t = X_test.reshape(X_test.shape[0], 12, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train_t.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import LSTM, Dense\n", + "import tensorflow.keras.backend as K\n", + "from tensorflow.keras.callbacks import EarlyStopping" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "model = Sequential()\n", + "\n", + "model.add(LSTM(6, input_shape=(12, 1)))\n", + "\n", + "model.add(Dense(1))\n", + "\n", + "model.compile(loss='mean_squared_error', optimizer='adam')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "early_stop = EarlyStopping(monitor='loss', patience=1, verbose=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train_t, y_train, epochs=600,\n", + " batch_size=32, verbose=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test_t)\n", + "plt.plot(y_test)\n", + "plt.plot(y_pred)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Exercise 2\n", + "\n", + "RNN models can be applied to images too. In general we can apply them to any data where there's a connnection between nearby units. Let's see how we can easily build a model that works with images.\n", + "\n", + "- Load the MNIST data, by now you should be able to do it blindfolded :)\n", + "- reshape it so that an image looks like a long sequence of pixels\n", + "- create a recurrent model and train it on the training data\n", + "- how does it perform compared to a fully connected? How does it compare to Convolutional Neural Networks?\n", + "\n", + "(feel free to run this exercise on a cloud GPU if it's too slow on your laptop)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.datasets import mnist\n", + "from tensorflow.keras.utils import to_categorical" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "(X_train, y_train), (X_test, y_test) = mnist.load_data()\n", + "X_train = X_train.astype('float32') / 255.0\n", + "X_test = X_test.astype('float32') / 255.0\n", + "y_train_cat = to_categorical(y_train, 10)\n", + "y_test_cat = to_categorical(y_test, 10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train = X_train.reshape(X_train.shape[0], -1, 1)\n", + "X_test = X_test.reshape(X_test.shape[0], -1, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(X_train.shape)\n", + "print(X_test.shape)\n", + "print(y_train_cat.shape)\n", + "print(y_test_cat.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# define the model\n", + "K.clear_session()\n", + "model = Sequential()\n", + "model.add(LSTM(32, input_shape=X_train.shape[1:]))\n", + "model.add(Dense(10, activation='softmax'))\n", + "\n", + "# compile the model\n", + "model.compile(loss='categorical_crossentropy',\n", + " optimizer='rmsprop',\n", + " metrics=['accuracy'])\n", + "\n", + "model.fit(X_train, y_train_cat,\n", + " batch_size=32,\n", + " epochs=100,\n", + " validation_split=0.3,\n", + " shuffle=True,\n", + " verbose=2,\n", + " )\n", + "\n", + "model.evaluate(X_test, y_test_cat)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/solutions/9 Improving performance Exercises Solutions.ipynb b/solutions/9 Improving performance Exercises Solutions.ipynb new file mode 100644 index 0000000..97ba008 --- /dev/null +++ b/solutions/9 Improving performance Exercises Solutions.ipynb @@ -0,0 +1,520 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 9 Improving performance Exercises Solutions" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 1\n", + "\n", + "- Reload the IMDB data keeping only the first 20000 most common words\n", + "- pad the reviews to a shorter length (eg. 70 or 80), this time make sure you keep the first part of the review if it's longer than the maximum length\n", + "- re run the model (remember to set max_features correctly)\n", + "- does it train faster this time?\n", + "- do you get a better performance?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.datasets import imdb\n", + "from tensorflow.keras.preprocessing.sequence import pad_sequences\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Embedding, LSTM, Dense" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "max_features = 20000\n", + "skip_top = 200" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "(X_train, y_train), (X_test, y_test) = imdb.load_data('/tmp/imdb.npz',\n", + " num_words=max_features,\n", + " start_char=1,\n", + " oov_char=2,\n", + " index_from=3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "maxlen = 80" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train_pad = pad_sequences(X_train, maxlen=maxlen, truncating='post')\n", + "X_test_pad = pad_sequences(X_test, maxlen=maxlen, truncating='post')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Embedding(max_features, 128))\n", + "model.add(LSTM(64, dropout=0.2, recurrent_dropout=0.2))\n", + "model.add(Dense(1, activation='sigmoid'))\n", + "\n", + "model.compile(loss='binary_crossentropy',\n", + " optimizer='adam',\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(X_train_pad, y_train,\n", + " batch_size=32,\n", + " epochs=2,\n", + " validation_split=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "score, acc = model.evaluate(X_test_pad, y_test)\n", + "print('Test score:', score)\n", + "print('Test accuracy:', acc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 2\n", + "\n", + "- Reload the digits data as above\n", + "- define a function repeated_training_reg_dropout that adds regularization and dropout to a fully connected network\n", + "- compare the performance with/witouth dropout and regularization like we did for batch normalization\n", + "- do you get a better performance?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.datasets import load_digits\n", + "from tensorflow.keras.utils import to_categorical\n", + "from sklearn.model_selection import train_test_split\n", + "from tensorflow.keras.layers import Dropout\n", + "import tensorflow.keras.backend as K" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "digits = load_digits()\n", + "X, y = digits.data, digits.target\n", + "y_cat = to_categorical(y)\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y_cat, test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def repeated_training_reg_dropout(X_train,\n", + " y_train,\n", + " X_test,\n", + " y_test,\n", + " units=512,\n", + " activation='sigmoid',\n", + " optimizer='sgd',\n", + " do_dropout=False,\n", + " rate=0.3,\n", + " kernel_regularizer='l2',\n", + " epochs=10,\n", + " repeats=3):\n", + " histories = []\n", + " \n", + " for repeat in range(repeats):\n", + " K.clear_session()\n", + "\n", + " model = Sequential()\n", + " \n", + " # first fully connected layer\n", + " model.add(Dense(units,\n", + " input_shape=X_train.shape[1:],\n", + " kernel_initializer='normal',\n", + " kernel_regularizer=kernel_regularizer,\n", + " activation=activation))\n", + " if do_dropout:\n", + " model.add(Dropout(rate))\n", + "\n", + " # second fully connected layer\n", + " model.add(Dense(units,\n", + " kernel_initializer='normal',\n", + " kernel_regularizer=kernel_regularizer,\n", + " activation=activation))\n", + " if do_dropout:\n", + " model.add(Dropout(rate))\n", + "\n", + " # third fully connected layer\n", + " model.add(Dense(units,\n", + " kernel_initializer='normal',\n", + " kernel_regularizer=kernel_regularizer,\n", + " activation=activation))\n", + " if do_dropout:\n", + " model.add(Dropout(rate))\n", + "\n", + " # output layer\n", + " model.add(Dense(10, activation='softmax'))\n", + " \n", + " model.compile(optimizer,\n", + " 'categorical_crossentropy',\n", + " metrics=['accuracy'])\n", + "\n", + " h = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=epochs, verbose=0)\n", + " histories.append([h.history['accuracy'], h.history['val_accuracy']])\n", + " print(repeat, end=' ')\n", + "\n", + " histories = np.array(histories)\n", + " \n", + " # calculate mean and standard deviation across repeats:\n", + " mean_acc = histories.mean(axis=0)\n", + " std_acc = histories.std(axis=0)\n", + " print()\n", + " \n", + " return mean_acc[0], std_acc[0], mean_acc[1], std_acc[1]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mean_acc, std_acc, mean_acc_val, std_acc_val = repeated_training_reg_dropout(X_train,\n", + " y_train,\n", + " X_test,\n", + " y_test,\n", + " do_dropout=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mean_acc_do, std_acc_do, mean_acc_val_do, std_acc_val_do = repeated_training_reg_dropout(X_train,\n", + " y_train,\n", + " X_test,\n", + " y_test,\n", + " do_dropout=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_mean_std(m, s):\n", + " plt.plot(m)\n", + " plt.fill_between(range(len(m)), m-s, m+s, alpha=0.1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plot_mean_std(mean_acc, std_acc)\n", + "plot_mean_std(mean_acc_val, std_acc_val)\n", + "plot_mean_std(mean_acc_do, std_acc_do)\n", + "plot_mean_std(mean_acc_val_do, std_acc_val_do)\n", + "plt.ylim(0, 1.01)\n", + "plt.title(\"Dropout and Regularization Accuracy\")\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Accuracy')\n", + "plt.legend(['Train', 'Test', 'Train with Dropout and Regularization', 'Test with Dropout and Regularization'], loc='best')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 3\n", + "\n", + "This is a very long and complex exercise, that should give you an idea of a real world scenario. Feel free to look at the solution if you feel lost. Also, feel free to run this with a GPU, in which case you don't need to download the data.\n", + "\n", + "If you are running this locally, download and unpack the male/female pictures from [here](https://www.dropbox.com/s/nov493om2jmh2gp/male_female.tgz?dl=0). These images and labels were obtained from [Crowdflower](https://www.crowdflower.com/data-for-everyone/).\n", + "\n", + "Your goal is to build an image classifier that will recognize the gender of a person from pictures.\n", + "\n", + "- Have a look at the directory structure and inspect a couple of pictures\n", + "- Design a model that will take a color image of size 64x64 as input and return a binary output (female=0/male=1)\n", + "- Feel free to introduce any regularization technique in your model (Dropout, Batch Normalization, Weight Regularization)\n", + "- Compile your model with an optimizer of your choice\n", + "- Using `ImageDataGenerator`, define a train generator that will augment your images with some geometric transformations. Feel free to choose the parameters that make sense to you.\n", + "- Define also a test generator, whose only purpose is to rescale the pixels by 1./255\n", + "- use the function `flow_from_directory` to generate batches from the train and test folders. Make sure you set the `target_size` to 64x64.\n", + "- Use the `model.fit_generator` function to fit the model on the batches generated from the ImageDataGenerator. Since you are streaming and augmenting the data in real time you will have to decide how many batches make an epoch and how many epochs you want to run\n", + "- Train your model (you should get to at least 85% accuracy)\n", + "- Once you are satisfied with your training, check a few of the misclassified pictures. Are those sensible errors?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# If you are running this locally\n", + "# uncomment the next 4 lines to download, extract and set the data path:\n", + "# !wget 'https://www.dropbox.com/s/nov493om2jmh2gp/male_female.tgz?dl=1' -O ../data/male_female.tgz\n", + "# data_path = '../data/male_female'\n", + "# !mkdir -p {data_path}\n", + "# !tar -xzvf ../data/male_female.tgz --directory {data_path}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.layers import Conv2D\n", + "from tensorflow.keras.layers import MaxPooling2D\n", + "from tensorflow.keras.layers import Flatten\n", + "from tensorflow.keras.layers import BatchNormalization\n", + "from itertools import islice\n", + "from tensorflow.keras.preprocessing.image import ImageDataGenerator" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "K.clear_session()\n", + "\n", + "model = Sequential()\n", + "model.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))\n", + "model.add(MaxPooling2D(pool_size = (2, 2)))\n", + "model.add(BatchNormalization())\n", + "\n", + "model.add(Conv2D(64, (3, 3), activation = 'relu'))\n", + "model.add(MaxPooling2D(pool_size = (2, 2)))\n", + "model.add(BatchNormalization())\n", + "\n", + "model.add(Conv2D(64, (3, 3), activation = 'relu'))\n", + "model.add(MaxPooling2D(pool_size = (2, 2)))\n", + "model.add(BatchNormalization())\n", + "\n", + "model.add(Flatten())\n", + "\n", + "model.add(Dense(128, activation = 'relu'))\n", + "model.add(Dense(1, activation = 'sigmoid'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.compile(optimizer = 'adam',\n", + " loss = 'binary_crossentropy',\n", + " metrics = ['accuracy'])\n", + "\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_gen = ImageDataGenerator(rescale = 1./255,\n", + " width_shift_range=0.1,\n", + " height_shift_range=0.1,\n", + " rotation_range = 10,\n", + " shear_range = 0.2,\n", + " zoom_range = 0.2,\n", + " horizontal_flip = True)\n", + "\n", + "test_gen = ImageDataGenerator(rescale = 1./255)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train = train_gen.flow_from_directory(data_path + '/train',\n", + " target_size = (64, 64),\n", + " batch_size = 16,\n", + " class_mode = 'binary')\n", + "\n", + "test = test_gen.flow_from_directory(data_path + '/test',\n", + " target_size = (64, 64),\n", + " batch_size = 16,\n", + " class_mode = 'binary')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.fit(train,\n", + " steps_per_epoch = 800,\n", + " epochs = 200,\n", + " validation_data = test,\n", + " validation_steps = 200)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_test = []\n", + "y_test = []\n", + "for ts in islice(test, 50):\n", + " X_test.append(ts[0])\n", + " y_test.append(ts[1])\n", + "\n", + "X_test = np.concatenate(X_test)\n", + "y_test = np.concatenate(y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict_classes(X_test).ravel()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "np.argwhere(y_test != y_pred).ravel()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.imshow(X_test[14])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tests/test_nb.py b/tests/test_nb.py new file mode 100644 index 0000000..700de90 --- /dev/null +++ b/tests/test_nb.py @@ -0,0 +1,77 @@ +# tests that too long to execute on Travis are temporarily commented out +# TODO: find a way to fix this + +import subprocess +import tempfile + + +def _exec_notebook(path): + with tempfile.NamedTemporaryFile(suffix=".ipynb") as fout: + args = ["jupyter", "nbconvert", "--to", "notebook", "--execute", + "--ExecutePreprocessor.timeout=1000", + "--output", fout.name, path] + subprocess.check_call(args) + + +def test_0(): + _exec_notebook('course/0_Check_Environment.ipynb') + + +def test_1(): + _exec_notebook('course/1 First Deep Learning Model.ipynb') + + +def test_2(): + _exec_notebook('course/2 Data.ipynb') + + +def test_3(): + _exec_notebook('course/3 Machine Learning.ipynb') + + +def test_4(): + _exec_notebook('course/4 Deep Learning Intro.ipynb') + + +def test_5(): + _exec_notebook('course/5 Gradient Descent.ipynb') + + +def test_6(): + _exec_notebook('course/6 Convolutional Neural Networks.ipynb') + + +def test_8(): + _exec_notebook('course/8 Recurrent Neural Networks.ipynb') + + +def test_9(): + _exec_notebook('course/9 Improving performance.ipynb') + + +def test_2_sol(): + _exec_notebook('solutions/2 Data exploration Exercises Solution.ipynb') + + +def test_3_sol(): + _exec_notebook('solutions/3 Machine Learning Exercises Solution.ipynb') + + +def test_4_sol(): + _exec_notebook('solutions/4 Deep Learning Intro Exercises Solution.ipynb') + + +def test_5_sol(): + _exec_notebook('solutions/5 Gradient Descent Exercises Solution.ipynb') + + +def test_6_sol(): + _exec_notebook('solutions/6 Convolutional Neural Networks Exercises Solution.ipynb') + + +def test_8_sol(): + _exec_notebook('solutions/8 Recurrent Neural Networks Exercises Solutions.ipynb') + + +def test_9_sol(): + _exec_notebook('solutions/9 Improving performance Exercises Solutions.ipynb')