diff --git a/exercises/Jupyter notebook CVML.ipynb b/exercises/Jupyter notebook CVML.ipynb index f2b45d5..e6022e5 100644 --- a/exercises/Jupyter notebook CVML.ipynb +++ b/exercises/Jupyter notebook CVML.ipynb @@ -2627,6 +2627,13 @@ "metadata": {}, "outputs": [], "source": [ + "\"\"\"\n", + "compile het model met de binary crossentropy loss function. Dit doen we omdat\n", + "we maar 2 verschillende klassen hebben.\n", + "We gebruiken rmsprop als optimizer omdat INVULLEN\n", + "We gebruiken de accuracy als metric omdat we daarop willen trainen.\n", + "\"\"\"\n", + "\n", "model.compile(loss='binary_crossentropy',\n", " optimizer='rmsprop',\n", " metrics=['accuracy'])" @@ -2792,6 +2799,9 @@ } ], "source": [ + "\n", + "#fit het model met de datasets. We gebruiken 70 epochs en 3 stappen per epoch.\n", + "\n", "model_ft = model.fit(train_dataset,\n", " steps_per_epoch=3,\n", " epochs=70,\n", @@ -3188,6 +3198,7 @@ } ], "source": [ + "# laat het netwerk een prediction doen op alle test fotos.\n", "dir_path = '../data/imgs/test/'\n", "\n", "for i in os.listdir(dir_path):\n", @@ -3210,12 +3221,13 @@ ] }, { - "cell_type": "code", - "execution_count": null, - "id": "530bae52", + "cell_type": "markdown", + "id": "069341a9", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "### Conclusie\n", + "We hebben het CNN getest en " + ] } ], "metadata": {